]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-vectorizer.h
tree-vectorizer.h (_stmt_vec_info::reduc_vectype_in): New.
[thirdparty/gcc.git] / gcc / tree-vectorizer.h
1 /* Vectorizer
2 Copyright (C) 2003-2019 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #ifndef GCC_TREE_VECTORIZER_H
22 #define GCC_TREE_VECTORIZER_H
23
24 typedef class _stmt_vec_info *stmt_vec_info;
25
26 #include "tree-data-ref.h"
27 #include "tree-hash-traits.h"
28 #include "target.h"
29
30 /* Used for naming of new temporaries. */
31 enum vect_var_kind {
32 vect_simple_var,
33 vect_pointer_var,
34 vect_scalar_var,
35 vect_mask_var
36 };
37
38 /* Defines type of operation. */
39 enum operation_type {
40 unary_op = 1,
41 binary_op,
42 ternary_op
43 };
44
45 /* Define type of available alignment support. */
46 enum dr_alignment_support {
47 dr_unaligned_unsupported,
48 dr_unaligned_supported,
49 dr_explicit_realign,
50 dr_explicit_realign_optimized,
51 dr_aligned
52 };
53
54 /* Define type of def-use cross-iteration cycle. */
55 enum vect_def_type {
56 vect_uninitialized_def = 0,
57 vect_constant_def = 1,
58 vect_external_def,
59 vect_internal_def,
60 vect_induction_def,
61 vect_reduction_def,
62 vect_double_reduction_def,
63 vect_nested_cycle,
64 vect_unknown_def_type
65 };
66
67 /* Define type of reduction. */
68 enum vect_reduction_type {
69 TREE_CODE_REDUCTION,
70 COND_REDUCTION,
71 INTEGER_INDUC_COND_REDUCTION,
72 CONST_COND_REDUCTION,
73
74 /* Retain a scalar phi and use a FOLD_EXTRACT_LAST within the loop
75 to implement:
76
77 for (int i = 0; i < VF; ++i)
78 res = cond[i] ? val[i] : res; */
79 EXTRACT_LAST_REDUCTION,
80
81 /* Use a folding reduction within the loop to implement:
82
83 for (int i = 0; i < VF; ++i)
84 res = res OP val[i];
85
86 (with no reassocation). */
87 FOLD_LEFT_REDUCTION
88 };
89
90 #define VECTORIZABLE_CYCLE_DEF(D) (((D) == vect_reduction_def) \
91 || ((D) == vect_double_reduction_def) \
92 || ((D) == vect_nested_cycle))
93
94 /* Structure to encapsulate information about a group of like
95 instructions to be presented to the target cost model. */
96 struct stmt_info_for_cost {
97 int count;
98 enum vect_cost_for_stmt kind;
99 enum vect_cost_model_location where;
100 stmt_vec_info stmt_info;
101 int misalign;
102 };
103
104 typedef vec<stmt_info_for_cost> stmt_vector_for_cost;
105
106 /* Maps base addresses to an innermost_loop_behavior that gives the maximum
107 known alignment for that base. */
108 typedef hash_map<tree_operand_hash,
109 innermost_loop_behavior *> vec_base_alignments;
110
111 /************************************************************************
112 SLP
113 ************************************************************************/
114 typedef struct _slp_tree *slp_tree;
115
116 /* A computation tree of an SLP instance. Each node corresponds to a group of
117 stmts to be packed in a SIMD stmt. */
118 struct _slp_tree {
119 /* Nodes that contain def-stmts of this node statements operands. */
120 vec<slp_tree> children;
121 /* A group of scalar stmts to be vectorized together. */
122 vec<stmt_vec_info> stmts;
123 /* Load permutation relative to the stores, NULL if there is no
124 permutation. */
125 vec<unsigned> load_permutation;
126 /* Vectorized stmt/s. */
127 vec<stmt_vec_info> vec_stmts;
128 /* Number of vector stmts that are created to replace the group of scalar
129 stmts. It is calculated during the transformation phase as the number of
130 scalar elements in one scalar iteration (GROUP_SIZE) multiplied by VF
131 divided by vector size. */
132 unsigned int vec_stmts_size;
133 /* Reference count in the SLP graph. */
134 unsigned int refcnt;
135 /* The maximum number of vector elements for the subtree rooted
136 at this node. */
137 poly_uint64 max_nunits;
138 /* Whether the scalar computations use two different operators. */
139 bool two_operators;
140 /* The DEF type of this node. */
141 enum vect_def_type def_type;
142 };
143
144
145 /* SLP instance is a sequence of stmts in a loop that can be packed into
146 SIMD stmts. */
147 typedef class _slp_instance {
148 public:
149 /* The root of SLP tree. */
150 slp_tree root;
151
152 /* Size of groups of scalar stmts that will be replaced by SIMD stmt/s. */
153 unsigned int group_size;
154
155 /* The unrolling factor required to vectorized this SLP instance. */
156 poly_uint64 unrolling_factor;
157
158 /* The group of nodes that contain loads of this SLP instance. */
159 vec<slp_tree> loads;
160
161 /* The SLP node containing the reduction PHIs. */
162 slp_tree reduc_phis;
163 } *slp_instance;
164
165
166 /* Access Functions. */
167 #define SLP_INSTANCE_TREE(S) (S)->root
168 #define SLP_INSTANCE_GROUP_SIZE(S) (S)->group_size
169 #define SLP_INSTANCE_UNROLLING_FACTOR(S) (S)->unrolling_factor
170 #define SLP_INSTANCE_LOADS(S) (S)->loads
171
172 #define SLP_TREE_CHILDREN(S) (S)->children
173 #define SLP_TREE_SCALAR_STMTS(S) (S)->stmts
174 #define SLP_TREE_VEC_STMTS(S) (S)->vec_stmts
175 #define SLP_TREE_NUMBER_OF_VEC_STMTS(S) (S)->vec_stmts_size
176 #define SLP_TREE_LOAD_PERMUTATION(S) (S)->load_permutation
177 #define SLP_TREE_TWO_OPERATORS(S) (S)->two_operators
178 #define SLP_TREE_DEF_TYPE(S) (S)->def_type
179
180
181
182 /* Describes two objects whose addresses must be unequal for the vectorized
183 loop to be valid. */
184 typedef std::pair<tree, tree> vec_object_pair;
185
186 /* Records that vectorization is only possible if abs (EXPR) >= MIN_VALUE.
187 UNSIGNED_P is true if we can assume that abs (EXPR) == EXPR. */
188 class vec_lower_bound {
189 public:
190 vec_lower_bound () {}
191 vec_lower_bound (tree e, bool u, poly_uint64 m)
192 : expr (e), unsigned_p (u), min_value (m) {}
193
194 tree expr;
195 bool unsigned_p;
196 poly_uint64 min_value;
197 };
198
199 /* Vectorizer state shared between different analyses like vector sizes
200 of the same CFG region. */
201 class vec_info_shared {
202 public:
203 vec_info_shared();
204 ~vec_info_shared();
205
206 void save_datarefs();
207 void check_datarefs();
208
209 /* All data references. Freed by free_data_refs, so not an auto_vec. */
210 vec<data_reference_p> datarefs;
211 vec<data_reference> datarefs_copy;
212
213 /* The loop nest in which the data dependences are computed. */
214 auto_vec<loop_p> loop_nest;
215
216 /* All data dependences. Freed by free_dependence_relations, so not
217 an auto_vec. */
218 vec<ddr_p> ddrs;
219 };
220
221 /* Vectorizer state common between loop and basic-block vectorization. */
222 class vec_info {
223 public:
224 enum vec_kind { bb, loop };
225
226 vec_info (vec_kind, void *, vec_info_shared *);
227 ~vec_info ();
228
229 stmt_vec_info add_stmt (gimple *);
230 stmt_vec_info lookup_stmt (gimple *);
231 stmt_vec_info lookup_def (tree);
232 stmt_vec_info lookup_single_use (tree);
233 class dr_vec_info *lookup_dr (data_reference *);
234 void move_dr (stmt_vec_info, stmt_vec_info);
235 void remove_stmt (stmt_vec_info);
236 void replace_stmt (gimple_stmt_iterator *, stmt_vec_info, gimple *);
237
238 /* The type of vectorization. */
239 vec_kind kind;
240
241 /* Shared vectorizer state. */
242 vec_info_shared *shared;
243
244 /* The mapping of GIMPLE UID to stmt_vec_info. */
245 vec<stmt_vec_info> stmt_vec_infos;
246
247 /* All SLP instances. */
248 auto_vec<slp_instance> slp_instances;
249
250 /* Maps base addresses to an innermost_loop_behavior that gives the maximum
251 known alignment for that base. */
252 vec_base_alignments base_alignments;
253
254 /* All interleaving chains of stores, represented by the first
255 stmt in the chain. */
256 auto_vec<stmt_vec_info> grouped_stores;
257
258 /* Cost data used by the target cost model. */
259 void *target_cost_data;
260
261 private:
262 stmt_vec_info new_stmt_vec_info (gimple *stmt);
263 void set_vinfo_for_stmt (gimple *, stmt_vec_info);
264 void free_stmt_vec_infos ();
265 void free_stmt_vec_info (stmt_vec_info);
266 };
267
268 class _loop_vec_info;
269 class _bb_vec_info;
270
271 template<>
272 template<>
273 inline bool
274 is_a_helper <_loop_vec_info *>::test (vec_info *i)
275 {
276 return i->kind == vec_info::loop;
277 }
278
279 template<>
280 template<>
281 inline bool
282 is_a_helper <_bb_vec_info *>::test (vec_info *i)
283 {
284 return i->kind == vec_info::bb;
285 }
286
287
288 /* In general, we can divide the vector statements in a vectorized loop
289 into related groups ("rgroups") and say that for each rgroup there is
290 some nS such that the rgroup operates on nS values from one scalar
291 iteration followed by nS values from the next. That is, if VF is the
292 vectorization factor of the loop, the rgroup operates on a sequence:
293
294 (1,1) (1,2) ... (1,nS) (2,1) ... (2,nS) ... (VF,1) ... (VF,nS)
295
296 where (i,j) represents a scalar value with index j in a scalar
297 iteration with index i.
298
299 [ We use the term "rgroup" to emphasise that this grouping isn't
300 necessarily the same as the grouping of statements used elsewhere.
301 For example, if we implement a group of scalar loads using gather
302 loads, we'll use a separate gather load for each scalar load, and
303 thus each gather load will belong to its own rgroup. ]
304
305 In general this sequence will occupy nV vectors concatenated
306 together. If these vectors have nL lanes each, the total number
307 of scalar values N is given by:
308
309 N = nS * VF = nV * nL
310
311 None of nS, VF, nV and nL are required to be a power of 2. nS and nV
312 are compile-time constants but VF and nL can be variable (if the target
313 supports variable-length vectors).
314
315 In classical vectorization, each iteration of the vector loop would
316 handle exactly VF iterations of the original scalar loop. However,
317 in a fully-masked loop, a particular iteration of the vector loop
318 might handle fewer than VF iterations of the scalar loop. The vector
319 lanes that correspond to iterations of the scalar loop are said to be
320 "active" and the other lanes are said to be "inactive".
321
322 In a fully-masked loop, many rgroups need to be masked to ensure that
323 they have no effect for the inactive lanes. Each such rgroup needs a
324 sequence of booleans in the same order as above, but with each (i,j)
325 replaced by a boolean that indicates whether iteration i is active.
326 This sequence occupies nV vector masks that again have nL lanes each.
327 Thus the mask sequence as a whole consists of VF independent booleans
328 that are each repeated nS times.
329
330 We make the simplifying assumption that if a sequence of nV masks is
331 suitable for one (nS,nL) pair, we can reuse it for (nS/2,nL/2) by
332 VIEW_CONVERTing it. This holds for all current targets that support
333 fully-masked loops. For example, suppose the scalar loop is:
334
335 float *f;
336 double *d;
337 for (int i = 0; i < n; ++i)
338 {
339 f[i * 2 + 0] += 1.0f;
340 f[i * 2 + 1] += 2.0f;
341 d[i] += 3.0;
342 }
343
344 and suppose that vectors have 256 bits. The vectorized f accesses
345 will belong to one rgroup and the vectorized d access to another:
346
347 f rgroup: nS = 2, nV = 1, nL = 8
348 d rgroup: nS = 1, nV = 1, nL = 4
349 VF = 4
350
351 [ In this simple example the rgroups do correspond to the normal
352 SLP grouping scheme. ]
353
354 If only the first three lanes are active, the masks we need are:
355
356 f rgroup: 1 1 | 1 1 | 1 1 | 0 0
357 d rgroup: 1 | 1 | 1 | 0
358
359 Here we can use a mask calculated for f's rgroup for d's, but not
360 vice versa.
361
362 Thus for each value of nV, it is enough to provide nV masks, with the
363 mask being calculated based on the highest nL (or, equivalently, based
364 on the highest nS) required by any rgroup with that nV. We therefore
365 represent the entire collection of masks as a two-level table, with the
366 first level being indexed by nV - 1 (since nV == 0 doesn't exist) and
367 the second being indexed by the mask index 0 <= i < nV. */
368
369 /* The masks needed by rgroups with nV vectors, according to the
370 description above. */
371 struct rgroup_masks {
372 /* The largest nS for all rgroups that use these masks. */
373 unsigned int max_nscalars_per_iter;
374
375 /* The type of mask to use, based on the highest nS recorded above. */
376 tree mask_type;
377
378 /* A vector of nV masks, in iteration order. */
379 vec<tree> masks;
380 };
381
382 typedef auto_vec<rgroup_masks> vec_loop_masks;
383
384 /*-----------------------------------------------------------------*/
385 /* Info on vectorized loops. */
386 /*-----------------------------------------------------------------*/
387 typedef class _loop_vec_info : public vec_info {
388 public:
389 _loop_vec_info (class loop *, vec_info_shared *);
390 ~_loop_vec_info ();
391
392 /* The loop to which this info struct refers to. */
393 class loop *loop;
394
395 /* The loop basic blocks. */
396 basic_block *bbs;
397
398 /* Number of latch executions. */
399 tree num_itersm1;
400 /* Number of iterations. */
401 tree num_iters;
402 /* Number of iterations of the original loop. */
403 tree num_iters_unchanged;
404 /* Condition under which this loop is analyzed and versioned. */
405 tree num_iters_assumptions;
406
407 /* Threshold of number of iterations below which vectorization will not be
408 performed. It is calculated from MIN_PROFITABLE_ITERS and
409 PARAM_MIN_VECT_LOOP_BOUND. */
410 unsigned int th;
411
412 /* When applying loop versioning, the vector form should only be used
413 if the number of scalar iterations is >= this value, on top of all
414 the other requirements. Ignored when loop versioning is not being
415 used. */
416 poly_uint64 versioning_threshold;
417
418 /* Unrolling factor */
419 poly_uint64 vectorization_factor;
420
421 /* Maximum runtime vectorization factor, or MAX_VECTORIZATION_FACTOR
422 if there is no particular limit. */
423 unsigned HOST_WIDE_INT max_vectorization_factor;
424
425 /* The masks that a fully-masked loop should use to avoid operating
426 on inactive scalars. */
427 vec_loop_masks masks;
428
429 /* If we are using a loop mask to align memory addresses, this variable
430 contains the number of vector elements that we should skip in the
431 first iteration of the vector loop (i.e. the number of leading
432 elements that should be false in the first mask). */
433 tree mask_skip_niters;
434
435 /* Type of the variables to use in the WHILE_ULT call for fully-masked
436 loops. */
437 tree mask_compare_type;
438
439 /* For #pragma omp simd if (x) loops the x expression. If constant 0,
440 the loop should not be vectorized, if constant non-zero, simd_if_cond
441 shouldn't be set and loop vectorized normally, if SSA_NAME, the loop
442 should be versioned on that condition, using scalar loop if the condition
443 is false and vectorized loop otherwise. */
444 tree simd_if_cond;
445
446 /* Type of the IV to use in the WHILE_ULT call for fully-masked
447 loops. */
448 tree iv_type;
449
450 /* Unknown DRs according to which loop was peeled. */
451 class dr_vec_info *unaligned_dr;
452
453 /* peeling_for_alignment indicates whether peeling for alignment will take
454 place, and what the peeling factor should be:
455 peeling_for_alignment = X means:
456 If X=0: Peeling for alignment will not be applied.
457 If X>0: Peel first X iterations.
458 If X=-1: Generate a runtime test to calculate the number of iterations
459 to be peeled, using the dataref recorded in the field
460 unaligned_dr. */
461 int peeling_for_alignment;
462
463 /* The mask used to check the alignment of pointers or arrays. */
464 int ptr_mask;
465
466 /* Data Dependence Relations defining address ranges that are candidates
467 for a run-time aliasing check. */
468 auto_vec<ddr_p> may_alias_ddrs;
469
470 /* Data Dependence Relations defining address ranges together with segment
471 lengths from which the run-time aliasing check is built. */
472 auto_vec<dr_with_seg_len_pair_t> comp_alias_ddrs;
473
474 /* Check that the addresses of each pair of objects is unequal. */
475 auto_vec<vec_object_pair> check_unequal_addrs;
476
477 /* List of values that are required to be nonzero. This is used to check
478 whether things like "x[i * n] += 1;" are safe and eventually gets added
479 to the checks for lower bounds below. */
480 auto_vec<tree> check_nonzero;
481
482 /* List of values that need to be checked for a minimum value. */
483 auto_vec<vec_lower_bound> lower_bounds;
484
485 /* Statements in the loop that have data references that are candidates for a
486 runtime (loop versioning) misalignment check. */
487 auto_vec<stmt_vec_info> may_misalign_stmts;
488
489 /* Reduction cycles detected in the loop. Used in loop-aware SLP. */
490 auto_vec<stmt_vec_info> reductions;
491
492 /* All reduction chains in the loop, represented by the first
493 stmt in the chain. */
494 auto_vec<stmt_vec_info> reduction_chains;
495
496 /* Cost vector for a single scalar iteration. */
497 auto_vec<stmt_info_for_cost> scalar_cost_vec;
498
499 /* Map of IV base/step expressions to inserted name in the preheader. */
500 hash_map<tree_operand_hash, tree> *ivexpr_map;
501
502 /* Map of OpenMP "omp simd array" scan variables to corresponding
503 rhs of the store of the initializer. */
504 hash_map<tree, tree> *scan_map;
505
506 /* The unrolling factor needed to SLP the loop. In case of that pure SLP is
507 applied to the loop, i.e., no unrolling is needed, this is 1. */
508 poly_uint64 slp_unrolling_factor;
509
510 /* Cost of a single scalar iteration. */
511 int single_scalar_iteration_cost;
512
513 /* Is the loop vectorizable? */
514 bool vectorizable;
515
516 /* Records whether we still have the option of using a fully-masked loop. */
517 bool can_fully_mask_p;
518
519 /* True if have decided to use a fully-masked loop. */
520 bool fully_masked_p;
521
522 /* When we have grouped data accesses with gaps, we may introduce invalid
523 memory accesses. We peel the last iteration of the loop to prevent
524 this. */
525 bool peeling_for_gaps;
526
527 /* When the number of iterations is not a multiple of the vector size
528 we need to peel off iterations at the end to form an epilogue loop. */
529 bool peeling_for_niter;
530
531 /* True if there are no loop carried data dependencies in the loop.
532 If loop->safelen <= 1, then this is always true, either the loop
533 didn't have any loop carried data dependencies, or the loop is being
534 vectorized guarded with some runtime alias checks, or couldn't
535 be vectorized at all, but then this field shouldn't be used.
536 For loop->safelen >= 2, the user has asserted that there are no
537 backward dependencies, but there still could be loop carried forward
538 dependencies in such loops. This flag will be false if normal
539 vectorizer data dependency analysis would fail or require versioning
540 for alias, but because of loop->safelen >= 2 it has been vectorized
541 even without versioning for alias. E.g. in:
542 #pragma omp simd
543 for (int i = 0; i < m; i++)
544 a[i] = a[i + k] * c;
545 (or #pragma simd or #pragma ivdep) we can vectorize this and it will
546 DTRT even for k > 0 && k < m, but without safelen we would not
547 vectorize this, so this field would be false. */
548 bool no_data_dependencies;
549
550 /* Mark loops having masked stores. */
551 bool has_mask_store;
552
553 /* Queued scaling factor for the scalar loop. */
554 profile_probability scalar_loop_scaling;
555
556 /* If if-conversion versioned this loop before conversion, this is the
557 loop version without if-conversion. */
558 class loop *scalar_loop;
559
560 /* For loops being epilogues of already vectorized loops
561 this points to the original vectorized loop. Otherwise NULL. */
562 _loop_vec_info *orig_loop_info;
563
564 } *loop_vec_info;
565
566 /* Access Functions. */
567 #define LOOP_VINFO_LOOP(L) (L)->loop
568 #define LOOP_VINFO_BBS(L) (L)->bbs
569 #define LOOP_VINFO_NITERSM1(L) (L)->num_itersm1
570 #define LOOP_VINFO_NITERS(L) (L)->num_iters
571 /* Since LOOP_VINFO_NITERS and LOOP_VINFO_NITERSM1 can change after
572 prologue peeling retain total unchanged scalar loop iterations for
573 cost model. */
574 #define LOOP_VINFO_NITERS_UNCHANGED(L) (L)->num_iters_unchanged
575 #define LOOP_VINFO_NITERS_ASSUMPTIONS(L) (L)->num_iters_assumptions
576 #define LOOP_VINFO_COST_MODEL_THRESHOLD(L) (L)->th
577 #define LOOP_VINFO_VERSIONING_THRESHOLD(L) (L)->versioning_threshold
578 #define LOOP_VINFO_VECTORIZABLE_P(L) (L)->vectorizable
579 #define LOOP_VINFO_CAN_FULLY_MASK_P(L) (L)->can_fully_mask_p
580 #define LOOP_VINFO_FULLY_MASKED_P(L) (L)->fully_masked_p
581 #define LOOP_VINFO_VECT_FACTOR(L) (L)->vectorization_factor
582 #define LOOP_VINFO_MAX_VECT_FACTOR(L) (L)->max_vectorization_factor
583 #define LOOP_VINFO_MASKS(L) (L)->masks
584 #define LOOP_VINFO_MASK_SKIP_NITERS(L) (L)->mask_skip_niters
585 #define LOOP_VINFO_MASK_COMPARE_TYPE(L) (L)->mask_compare_type
586 #define LOOP_VINFO_MASK_IV_TYPE(L) (L)->iv_type
587 #define LOOP_VINFO_PTR_MASK(L) (L)->ptr_mask
588 #define LOOP_VINFO_LOOP_NEST(L) (L)->shared->loop_nest
589 #define LOOP_VINFO_DATAREFS(L) (L)->shared->datarefs
590 #define LOOP_VINFO_DDRS(L) (L)->shared->ddrs
591 #define LOOP_VINFO_INT_NITERS(L) (TREE_INT_CST_LOW ((L)->num_iters))
592 #define LOOP_VINFO_PEELING_FOR_ALIGNMENT(L) (L)->peeling_for_alignment
593 #define LOOP_VINFO_UNALIGNED_DR(L) (L)->unaligned_dr
594 #define LOOP_VINFO_MAY_MISALIGN_STMTS(L) (L)->may_misalign_stmts
595 #define LOOP_VINFO_MAY_ALIAS_DDRS(L) (L)->may_alias_ddrs
596 #define LOOP_VINFO_COMP_ALIAS_DDRS(L) (L)->comp_alias_ddrs
597 #define LOOP_VINFO_CHECK_UNEQUAL_ADDRS(L) (L)->check_unequal_addrs
598 #define LOOP_VINFO_CHECK_NONZERO(L) (L)->check_nonzero
599 #define LOOP_VINFO_LOWER_BOUNDS(L) (L)->lower_bounds
600 #define LOOP_VINFO_GROUPED_STORES(L) (L)->grouped_stores
601 #define LOOP_VINFO_SLP_INSTANCES(L) (L)->slp_instances
602 #define LOOP_VINFO_SLP_UNROLLING_FACTOR(L) (L)->slp_unrolling_factor
603 #define LOOP_VINFO_REDUCTIONS(L) (L)->reductions
604 #define LOOP_VINFO_REDUCTION_CHAINS(L) (L)->reduction_chains
605 #define LOOP_VINFO_TARGET_COST_DATA(L) (L)->target_cost_data
606 #define LOOP_VINFO_PEELING_FOR_GAPS(L) (L)->peeling_for_gaps
607 #define LOOP_VINFO_PEELING_FOR_NITER(L) (L)->peeling_for_niter
608 #define LOOP_VINFO_NO_DATA_DEPENDENCIES(L) (L)->no_data_dependencies
609 #define LOOP_VINFO_SCALAR_LOOP(L) (L)->scalar_loop
610 #define LOOP_VINFO_SCALAR_LOOP_SCALING(L) (L)->scalar_loop_scaling
611 #define LOOP_VINFO_HAS_MASK_STORE(L) (L)->has_mask_store
612 #define LOOP_VINFO_SCALAR_ITERATION_COST(L) (L)->scalar_cost_vec
613 #define LOOP_VINFO_SINGLE_SCALAR_ITERATION_COST(L) (L)->single_scalar_iteration_cost
614 #define LOOP_VINFO_ORIG_LOOP_INFO(L) (L)->orig_loop_info
615 #define LOOP_VINFO_SIMD_IF_COND(L) (L)->simd_if_cond
616
617 #define LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT(L) \
618 ((L)->may_misalign_stmts.length () > 0)
619 #define LOOP_REQUIRES_VERSIONING_FOR_ALIAS(L) \
620 ((L)->comp_alias_ddrs.length () > 0 \
621 || (L)->check_unequal_addrs.length () > 0 \
622 || (L)->lower_bounds.length () > 0)
623 #define LOOP_REQUIRES_VERSIONING_FOR_NITERS(L) \
624 (LOOP_VINFO_NITERS_ASSUMPTIONS (L))
625 #define LOOP_REQUIRES_VERSIONING_FOR_SIMD_IF_COND(L) \
626 (LOOP_VINFO_SIMD_IF_COND (L))
627 #define LOOP_REQUIRES_VERSIONING(L) \
628 (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (L) \
629 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (L) \
630 || LOOP_REQUIRES_VERSIONING_FOR_NITERS (L) \
631 || LOOP_REQUIRES_VERSIONING_FOR_SIMD_IF_COND (L))
632
633 #define LOOP_VINFO_NITERS_KNOWN_P(L) \
634 (tree_fits_shwi_p ((L)->num_iters) && tree_to_shwi ((L)->num_iters) > 0)
635
636 #define LOOP_VINFO_EPILOGUE_P(L) \
637 (LOOP_VINFO_ORIG_LOOP_INFO (L) != NULL)
638
639 #define LOOP_VINFO_ORIG_MAX_VECT_FACTOR(L) \
640 (LOOP_VINFO_MAX_VECT_FACTOR (LOOP_VINFO_ORIG_LOOP_INFO (L)))
641
642 /* Wrapper for loop_vec_info, for tracking success/failure, where a non-NULL
643 value signifies success, and a NULL value signifies failure, supporting
644 propagating an opt_problem * describing the failure back up the call
645 stack. */
646 typedef opt_pointer_wrapper <loop_vec_info> opt_loop_vec_info;
647
648 static inline loop_vec_info
649 loop_vec_info_for_loop (class loop *loop)
650 {
651 return (loop_vec_info) loop->aux;
652 }
653
654 typedef class _bb_vec_info : public vec_info
655 {
656 public:
657 _bb_vec_info (gimple_stmt_iterator, gimple_stmt_iterator, vec_info_shared *);
658 ~_bb_vec_info ();
659
660 basic_block bb;
661 gimple_stmt_iterator region_begin;
662 gimple_stmt_iterator region_end;
663 } *bb_vec_info;
664
665 #define BB_VINFO_BB(B) (B)->bb
666 #define BB_VINFO_GROUPED_STORES(B) (B)->grouped_stores
667 #define BB_VINFO_SLP_INSTANCES(B) (B)->slp_instances
668 #define BB_VINFO_DATAREFS(B) (B)->shared->datarefs
669 #define BB_VINFO_DDRS(B) (B)->shared->ddrs
670 #define BB_VINFO_TARGET_COST_DATA(B) (B)->target_cost_data
671
672 static inline bb_vec_info
673 vec_info_for_bb (basic_block bb)
674 {
675 return (bb_vec_info) bb->aux;
676 }
677
678 /*-----------------------------------------------------------------*/
679 /* Info on vectorized defs. */
680 /*-----------------------------------------------------------------*/
681 enum stmt_vec_info_type {
682 undef_vec_info_type = 0,
683 load_vec_info_type,
684 store_vec_info_type,
685 shift_vec_info_type,
686 op_vec_info_type,
687 call_vec_info_type,
688 call_simd_clone_vec_info_type,
689 assignment_vec_info_type,
690 condition_vec_info_type,
691 comparison_vec_info_type,
692 reduc_vec_info_type,
693 induc_vec_info_type,
694 type_promotion_vec_info_type,
695 type_demotion_vec_info_type,
696 type_conversion_vec_info_type,
697 cycle_phi_info_type,
698 lc_phi_info_type,
699 loop_exit_ctrl_vec_info_type
700 };
701
702 /* Indicates whether/how a variable is used in the scope of loop/basic
703 block. */
704 enum vect_relevant {
705 vect_unused_in_scope = 0,
706
707 /* The def is only used outside the loop. */
708 vect_used_only_live,
709 /* The def is in the inner loop, and the use is in the outer loop, and the
710 use is a reduction stmt. */
711 vect_used_in_outer_by_reduction,
712 /* The def is in the inner loop, and the use is in the outer loop (and is
713 not part of reduction). */
714 vect_used_in_outer,
715
716 /* defs that feed computations that end up (only) in a reduction. These
717 defs may be used by non-reduction stmts, but eventually, any
718 computations/values that are affected by these defs are used to compute
719 a reduction (i.e. don't get stored to memory, for example). We use this
720 to identify computations that we can change the order in which they are
721 computed. */
722 vect_used_by_reduction,
723
724 vect_used_in_scope
725 };
726
727 /* The type of vectorization that can be applied to the stmt: regular loop-based
728 vectorization; pure SLP - the stmt is a part of SLP instances and does not
729 have uses outside SLP instances; or hybrid SLP and loop-based - the stmt is
730 a part of SLP instance and also must be loop-based vectorized, since it has
731 uses outside SLP sequences.
732
733 In the loop context the meanings of pure and hybrid SLP are slightly
734 different. By saying that pure SLP is applied to the loop, we mean that we
735 exploit only intra-iteration parallelism in the loop; i.e., the loop can be
736 vectorized without doing any conceptual unrolling, cause we don't pack
737 together stmts from different iterations, only within a single iteration.
738 Loop hybrid SLP means that we exploit both intra-iteration and
739 inter-iteration parallelism (e.g., number of elements in the vector is 4
740 and the slp-group-size is 2, in which case we don't have enough parallelism
741 within an iteration, so we obtain the rest of the parallelism from subsequent
742 iterations by unrolling the loop by 2). */
743 enum slp_vect_type {
744 loop_vect = 0,
745 pure_slp,
746 hybrid
747 };
748
749 /* Says whether a statement is a load, a store of a vectorized statement
750 result, or a store of an invariant value. */
751 enum vec_load_store_type {
752 VLS_LOAD,
753 VLS_STORE,
754 VLS_STORE_INVARIANT
755 };
756
757 /* Describes how we're going to vectorize an individual load or store,
758 or a group of loads or stores. */
759 enum vect_memory_access_type {
760 /* An access to an invariant address. This is used only for loads. */
761 VMAT_INVARIANT,
762
763 /* A simple contiguous access. */
764 VMAT_CONTIGUOUS,
765
766 /* A contiguous access that goes down in memory rather than up,
767 with no additional permutation. This is used only for stores
768 of invariants. */
769 VMAT_CONTIGUOUS_DOWN,
770
771 /* A simple contiguous access in which the elements need to be permuted
772 after loading or before storing. Only used for loop vectorization;
773 SLP uses separate permutes. */
774 VMAT_CONTIGUOUS_PERMUTE,
775
776 /* A simple contiguous access in which the elements need to be reversed
777 after loading or before storing. */
778 VMAT_CONTIGUOUS_REVERSE,
779
780 /* An access that uses IFN_LOAD_LANES or IFN_STORE_LANES. */
781 VMAT_LOAD_STORE_LANES,
782
783 /* An access in which each scalar element is loaded or stored
784 individually. */
785 VMAT_ELEMENTWISE,
786
787 /* A hybrid of VMAT_CONTIGUOUS and VMAT_ELEMENTWISE, used for grouped
788 SLP accesses. Each unrolled iteration uses a contiguous load
789 or store for the whole group, but the groups from separate iterations
790 are combined in the same way as for VMAT_ELEMENTWISE. */
791 VMAT_STRIDED_SLP,
792
793 /* The access uses gather loads or scatter stores. */
794 VMAT_GATHER_SCATTER
795 };
796
797 class dr_vec_info {
798 public:
799 /* The data reference itself. */
800 data_reference *dr;
801 /* The statement that contains the data reference. */
802 stmt_vec_info stmt;
803 /* The misalignment in bytes of the reference, or -1 if not known. */
804 int misalignment;
805 /* The byte alignment that we'd ideally like the reference to have,
806 and the value that misalignment is measured against. */
807 poly_uint64 target_alignment;
808 /* If true the alignment of base_decl needs to be increased. */
809 bool base_misaligned;
810 tree base_decl;
811 };
812
813 typedef struct data_reference *dr_p;
814
815 class _stmt_vec_info {
816 public:
817
818 enum stmt_vec_info_type type;
819
820 /* Indicates whether this stmts is part of a computation whose result is
821 used outside the loop. */
822 bool live;
823
824 /* Stmt is part of some pattern (computation idiom) */
825 bool in_pattern_p;
826
827 /* True if the statement was created during pattern recognition as
828 part of the replacement for RELATED_STMT. This implies that the
829 statement isn't part of any basic block, although for convenience
830 its gimple_bb is the same as for RELATED_STMT. */
831 bool pattern_stmt_p;
832
833 /* Is this statement vectorizable or should it be skipped in (partial)
834 vectorization. */
835 bool vectorizable;
836
837 /* The stmt to which this info struct refers to. */
838 gimple *stmt;
839
840 /* The vec_info with respect to which STMT is vectorized. */
841 vec_info *vinfo;
842
843 /* The vector type to be used for the LHS of this statement. */
844 tree vectype;
845
846 /* The vectorized version of the stmt. */
847 stmt_vec_info vectorized_stmt;
848
849
850 /* The following is relevant only for stmts that contain a non-scalar
851 data-ref (array/pointer/struct access). A GIMPLE stmt is expected to have
852 at most one such data-ref. */
853
854 dr_vec_info dr_aux;
855
856 /* Information about the data-ref relative to this loop
857 nest (the loop that is being considered for vectorization). */
858 innermost_loop_behavior dr_wrt_vec_loop;
859
860 /* For loop PHI nodes, the base and evolution part of it. This makes sure
861 this information is still available in vect_update_ivs_after_vectorizer
862 where we may not be able to re-analyze the PHI nodes evolution as
863 peeling for the prologue loop can make it unanalyzable. The evolution
864 part is still correct after peeling, but the base may have changed from
865 the version here. */
866 tree loop_phi_evolution_base_unchanged;
867 tree loop_phi_evolution_part;
868
869 /* Used for various bookkeeping purposes, generally holding a pointer to
870 some other stmt S that is in some way "related" to this stmt.
871 Current use of this field is:
872 If this stmt is part of a pattern (i.e. the field 'in_pattern_p' is
873 true): S is the "pattern stmt" that represents (and replaces) the
874 sequence of stmts that constitutes the pattern. Similarly, the
875 related_stmt of the "pattern stmt" points back to this stmt (which is
876 the last stmt in the original sequence of stmts that constitutes the
877 pattern). */
878 stmt_vec_info related_stmt;
879
880 /* Used to keep a sequence of def stmts of a pattern stmt if such exists.
881 The sequence is attached to the original statement rather than the
882 pattern statement. */
883 gimple_seq pattern_def_seq;
884
885 /* List of datarefs that are known to have the same alignment as the dataref
886 of this stmt. */
887 vec<dr_p> same_align_refs;
888
889 /* Selected SIMD clone's function info. First vector element
890 is SIMD clone's function decl, followed by a pair of trees (base + step)
891 for linear arguments (pair of NULLs for other arguments). */
892 vec<tree> simd_clone_info;
893
894 /* Classify the def of this stmt. */
895 enum vect_def_type def_type;
896
897 /* Whether the stmt is SLPed, loop-based vectorized, or both. */
898 enum slp_vect_type slp_type;
899
900 /* Interleaving and reduction chains info. */
901 /* First element in the group. */
902 stmt_vec_info first_element;
903 /* Pointer to the next element in the group. */
904 stmt_vec_info next_element;
905 /* The size of the group. */
906 unsigned int size;
907 /* For stores, number of stores from this group seen. We vectorize the last
908 one. */
909 unsigned int store_count;
910 /* For loads only, the gap from the previous load. For consecutive loads, GAP
911 is 1. */
912 unsigned int gap;
913
914 /* The minimum negative dependence distance this stmt participates in
915 or zero if none. */
916 unsigned int min_neg_dist;
917
918 /* Not all stmts in the loop need to be vectorized. e.g, the increment
919 of the loop induction variable and computation of array indexes. relevant
920 indicates whether the stmt needs to be vectorized. */
921 enum vect_relevant relevant;
922
923 /* For loads if this is a gather, for stores if this is a scatter. */
924 bool gather_scatter_p;
925
926 /* True if this is an access with loop-invariant stride. */
927 bool strided_p;
928
929 /* For both loads and stores. */
930 unsigned simd_lane_access_p : 3;
931
932 /* Classifies how the load or store is going to be implemented
933 for loop vectorization. */
934 vect_memory_access_type memory_access_type;
935
936 /* For CONST_COND_REDUCTION and INTEGER_INDUC_COND_REDUCTION, the
937 reduction code. */
938 enum tree_code cond_reduc_code;
939
940 /* For INTEGER_INDUC_COND_REDUCTION, the initial value to be used. */
941 tree induc_cond_initial_val;
942
943 /* If not NULL the value to be added to compute final reduction value. */
944 tree reduc_epilogue_adjustment;
945
946 /* On a reduction PHI the reduction type as detected by
947 vect_is_simple_reduction and vectorizable_reduction. */
948 enum vect_reduction_type reduc_type;
949
950 /* The original reduction code, to be used in the epilogue. */
951 enum tree_code reduc_code;
952 /* An internal function we should use in the epilogue. */
953 internal_fn reduc_fn;
954
955 /* On a stmt participating in the reduction the index of the operand
956 on the reduction SSA cycle. */
957 int reduc_idx;
958
959 /* On a reduction PHI the def returned by vect_force_simple_reduction.
960 On the def returned by vect_force_simple_reduction the
961 corresponding PHI. */
962 stmt_vec_info reduc_def;
963
964 /* The vector input type relevant for reduction vectorization. */
965 tree reduc_vectype_in;
966
967 /* Whether we force a single cycle PHI during reduction vectorization. */
968 bool force_single_cycle;
969
970 /* Whether on this stmt reduction meta is recorded. */
971 bool is_reduc_info;
972
973 /* The number of scalar stmt references from active SLP instances. */
974 unsigned int num_slp_uses;
975
976 /* If nonzero, the lhs of the statement could be truncated to this
977 many bits without affecting any users of the result. */
978 unsigned int min_output_precision;
979
980 /* If nonzero, all non-boolean input operands have the same precision,
981 and they could each be truncated to this many bits without changing
982 the result. */
983 unsigned int min_input_precision;
984
985 /* If OPERATION_BITS is nonzero, the statement could be performed on
986 an integer with the sign and number of bits given by OPERATION_SIGN
987 and OPERATION_BITS without changing the result. */
988 unsigned int operation_precision;
989 signop operation_sign;
990
991 /* True if this is only suitable for SLP vectorization. */
992 bool slp_vect_only_p;
993 };
994
995 /* Information about a gather/scatter call. */
996 struct gather_scatter_info {
997 /* The internal function to use for the gather/scatter operation,
998 or IFN_LAST if a built-in function should be used instead. */
999 internal_fn ifn;
1000
1001 /* The FUNCTION_DECL for the built-in gather/scatter function,
1002 or null if an internal function should be used instead. */
1003 tree decl;
1004
1005 /* The loop-invariant base value. */
1006 tree base;
1007
1008 /* The original scalar offset, which is a non-loop-invariant SSA_NAME. */
1009 tree offset;
1010
1011 /* Each offset element should be multiplied by this amount before
1012 being added to the base. */
1013 int scale;
1014
1015 /* The definition type for the vectorized offset. */
1016 enum vect_def_type offset_dt;
1017
1018 /* The type of the vectorized offset. */
1019 tree offset_vectype;
1020
1021 /* The type of the scalar elements after loading or before storing. */
1022 tree element_type;
1023
1024 /* The type of the scalar elements being loaded or stored. */
1025 tree memory_type;
1026 };
1027
1028 /* Access Functions. */
1029 #define STMT_VINFO_TYPE(S) (S)->type
1030 #define STMT_VINFO_STMT(S) (S)->stmt
1031 inline loop_vec_info
1032 STMT_VINFO_LOOP_VINFO (stmt_vec_info stmt_vinfo)
1033 {
1034 if (loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (stmt_vinfo->vinfo))
1035 return loop_vinfo;
1036 return NULL;
1037 }
1038 inline bb_vec_info
1039 STMT_VINFO_BB_VINFO (stmt_vec_info stmt_vinfo)
1040 {
1041 if (bb_vec_info bb_vinfo = dyn_cast <bb_vec_info> (stmt_vinfo->vinfo))
1042 return bb_vinfo;
1043 return NULL;
1044 }
1045 #define STMT_VINFO_RELEVANT(S) (S)->relevant
1046 #define STMT_VINFO_LIVE_P(S) (S)->live
1047 #define STMT_VINFO_VECTYPE(S) (S)->vectype
1048 #define STMT_VINFO_VEC_STMT(S) (S)->vectorized_stmt
1049 #define STMT_VINFO_VECTORIZABLE(S) (S)->vectorizable
1050 #define STMT_VINFO_DATA_REF(S) ((S)->dr_aux.dr + 0)
1051 #define STMT_VINFO_GATHER_SCATTER_P(S) (S)->gather_scatter_p
1052 #define STMT_VINFO_STRIDED_P(S) (S)->strided_p
1053 #define STMT_VINFO_MEMORY_ACCESS_TYPE(S) (S)->memory_access_type
1054 #define STMT_VINFO_SIMD_LANE_ACCESS_P(S) (S)->simd_lane_access_p
1055 #define STMT_VINFO_VEC_COND_REDUC_CODE(S) (S)->cond_reduc_code
1056 #define STMT_VINFO_VEC_INDUC_COND_INITIAL_VAL(S) (S)->induc_cond_initial_val
1057 #define STMT_VINFO_REDUC_EPILOGUE_ADJUSTMENT(S) (S)->reduc_epilogue_adjustment
1058 #define STMT_VINFO_REDUC_IDX(S) (S)->reduc_idx
1059 #define STMT_VINFO_FORCE_SINGLE_CYCLE(S) (S)->force_single_cycle
1060
1061 #define STMT_VINFO_DR_WRT_VEC_LOOP(S) (S)->dr_wrt_vec_loop
1062 #define STMT_VINFO_DR_BASE_ADDRESS(S) (S)->dr_wrt_vec_loop.base_address
1063 #define STMT_VINFO_DR_INIT(S) (S)->dr_wrt_vec_loop.init
1064 #define STMT_VINFO_DR_OFFSET(S) (S)->dr_wrt_vec_loop.offset
1065 #define STMT_VINFO_DR_STEP(S) (S)->dr_wrt_vec_loop.step
1066 #define STMT_VINFO_DR_BASE_ALIGNMENT(S) (S)->dr_wrt_vec_loop.base_alignment
1067 #define STMT_VINFO_DR_BASE_MISALIGNMENT(S) \
1068 (S)->dr_wrt_vec_loop.base_misalignment
1069 #define STMT_VINFO_DR_OFFSET_ALIGNMENT(S) \
1070 (S)->dr_wrt_vec_loop.offset_alignment
1071 #define STMT_VINFO_DR_STEP_ALIGNMENT(S) \
1072 (S)->dr_wrt_vec_loop.step_alignment
1073
1074 #define STMT_VINFO_DR_INFO(S) \
1075 (gcc_checking_assert ((S)->dr_aux.stmt == (S)), &(S)->dr_aux)
1076
1077 #define STMT_VINFO_IN_PATTERN_P(S) (S)->in_pattern_p
1078 #define STMT_VINFO_RELATED_STMT(S) (S)->related_stmt
1079 #define STMT_VINFO_PATTERN_DEF_SEQ(S) (S)->pattern_def_seq
1080 #define STMT_VINFO_SAME_ALIGN_REFS(S) (S)->same_align_refs
1081 #define STMT_VINFO_SIMD_CLONE_INFO(S) (S)->simd_clone_info
1082 #define STMT_VINFO_DEF_TYPE(S) (S)->def_type
1083 #define STMT_VINFO_GROUPED_ACCESS(S) \
1084 ((S)->dr_aux.dr && DR_GROUP_FIRST_ELEMENT(S))
1085 #define STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED(S) (S)->loop_phi_evolution_base_unchanged
1086 #define STMT_VINFO_LOOP_PHI_EVOLUTION_PART(S) (S)->loop_phi_evolution_part
1087 #define STMT_VINFO_MIN_NEG_DIST(S) (S)->min_neg_dist
1088 #define STMT_VINFO_NUM_SLP_USES(S) (S)->num_slp_uses
1089 #define STMT_VINFO_REDUC_TYPE(S) (S)->reduc_type
1090 #define STMT_VINFO_REDUC_CODE(S) (S)->reduc_code
1091 #define STMT_VINFO_REDUC_FN(S) (S)->reduc_fn
1092 #define STMT_VINFO_REDUC_DEF(S) (S)->reduc_def
1093 #define STMT_VINFO_REDUC_VECTYPE_IN(S) (S)->reduc_vectype_in
1094 #define STMT_VINFO_SLP_VECT_ONLY(S) (S)->slp_vect_only_p
1095
1096 #define DR_GROUP_FIRST_ELEMENT(S) \
1097 (gcc_checking_assert ((S)->dr_aux.dr), (S)->first_element)
1098 #define DR_GROUP_NEXT_ELEMENT(S) \
1099 (gcc_checking_assert ((S)->dr_aux.dr), (S)->next_element)
1100 #define DR_GROUP_SIZE(S) \
1101 (gcc_checking_assert ((S)->dr_aux.dr), (S)->size)
1102 #define DR_GROUP_STORE_COUNT(S) \
1103 (gcc_checking_assert ((S)->dr_aux.dr), (S)->store_count)
1104 #define DR_GROUP_GAP(S) \
1105 (gcc_checking_assert ((S)->dr_aux.dr), (S)->gap)
1106
1107 #define REDUC_GROUP_FIRST_ELEMENT(S) \
1108 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->first_element)
1109 #define REDUC_GROUP_NEXT_ELEMENT(S) \
1110 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->next_element)
1111 #define REDUC_GROUP_SIZE(S) \
1112 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->size)
1113
1114 #define STMT_VINFO_RELEVANT_P(S) ((S)->relevant != vect_unused_in_scope)
1115
1116 #define HYBRID_SLP_STMT(S) ((S)->slp_type == hybrid)
1117 #define PURE_SLP_STMT(S) ((S)->slp_type == pure_slp)
1118 #define STMT_SLP_TYPE(S) (S)->slp_type
1119
1120 #define VECT_MAX_COST 1000
1121
1122 /* The maximum number of intermediate steps required in multi-step type
1123 conversion. */
1124 #define MAX_INTERM_CVT_STEPS 3
1125
1126 #define MAX_VECTORIZATION_FACTOR INT_MAX
1127
1128 /* Nonzero if TYPE represents a (scalar) boolean type or type
1129 in the middle-end compatible with it (unsigned precision 1 integral
1130 types). Used to determine which types should be vectorized as
1131 VECTOR_BOOLEAN_TYPE_P. */
1132
1133 #define VECT_SCALAR_BOOLEAN_TYPE_P(TYPE) \
1134 (TREE_CODE (TYPE) == BOOLEAN_TYPE \
1135 || ((TREE_CODE (TYPE) == INTEGER_TYPE \
1136 || TREE_CODE (TYPE) == ENUMERAL_TYPE) \
1137 && TYPE_PRECISION (TYPE) == 1 \
1138 && TYPE_UNSIGNED (TYPE)))
1139
1140 static inline bool
1141 nested_in_vect_loop_p (class loop *loop, stmt_vec_info stmt_info)
1142 {
1143 return (loop->inner
1144 && (loop->inner == (gimple_bb (stmt_info->stmt))->loop_father));
1145 }
1146
1147 /* Return TRUE if a statement represented by STMT_INFO is a part of a
1148 pattern. */
1149
1150 static inline bool
1151 is_pattern_stmt_p (stmt_vec_info stmt_info)
1152 {
1153 return stmt_info->pattern_stmt_p;
1154 }
1155
1156 /* If STMT_INFO is a pattern statement, return the statement that it
1157 replaces, otherwise return STMT_INFO itself. */
1158
1159 inline stmt_vec_info
1160 vect_orig_stmt (stmt_vec_info stmt_info)
1161 {
1162 if (is_pattern_stmt_p (stmt_info))
1163 return STMT_VINFO_RELATED_STMT (stmt_info);
1164 return stmt_info;
1165 }
1166
1167 /* Return the later statement between STMT1_INFO and STMT2_INFO. */
1168
1169 static inline stmt_vec_info
1170 get_later_stmt (stmt_vec_info stmt1_info, stmt_vec_info stmt2_info)
1171 {
1172 if (gimple_uid (vect_orig_stmt (stmt1_info)->stmt)
1173 > gimple_uid (vect_orig_stmt (stmt2_info)->stmt))
1174 return stmt1_info;
1175 else
1176 return stmt2_info;
1177 }
1178
1179 /* If STMT_INFO has been replaced by a pattern statement, return the
1180 replacement statement, otherwise return STMT_INFO itself. */
1181
1182 inline stmt_vec_info
1183 vect_stmt_to_vectorize (stmt_vec_info stmt_info)
1184 {
1185 if (STMT_VINFO_IN_PATTERN_P (stmt_info))
1186 return STMT_VINFO_RELATED_STMT (stmt_info);
1187 return stmt_info;
1188 }
1189
1190 /* Return true if BB is a loop header. */
1191
1192 static inline bool
1193 is_loop_header_bb_p (basic_block bb)
1194 {
1195 if (bb == (bb->loop_father)->header)
1196 return true;
1197 gcc_checking_assert (EDGE_COUNT (bb->preds) == 1);
1198 return false;
1199 }
1200
1201 /* Return pow2 (X). */
1202
1203 static inline int
1204 vect_pow2 (int x)
1205 {
1206 int i, res = 1;
1207
1208 for (i = 0; i < x; i++)
1209 res *= 2;
1210
1211 return res;
1212 }
1213
1214 /* Alias targetm.vectorize.builtin_vectorization_cost. */
1215
1216 static inline int
1217 builtin_vectorization_cost (enum vect_cost_for_stmt type_of_cost,
1218 tree vectype, int misalign)
1219 {
1220 return targetm.vectorize.builtin_vectorization_cost (type_of_cost,
1221 vectype, misalign);
1222 }
1223
1224 /* Get cost by calling cost target builtin. */
1225
1226 static inline
1227 int vect_get_stmt_cost (enum vect_cost_for_stmt type_of_cost)
1228 {
1229 return builtin_vectorization_cost (type_of_cost, NULL, 0);
1230 }
1231
1232 /* Alias targetm.vectorize.init_cost. */
1233
1234 static inline void *
1235 init_cost (class loop *loop_info)
1236 {
1237 return targetm.vectorize.init_cost (loop_info);
1238 }
1239
1240 extern void dump_stmt_cost (FILE *, void *, int, enum vect_cost_for_stmt,
1241 stmt_vec_info, int, unsigned,
1242 enum vect_cost_model_location);
1243
1244 /* Alias targetm.vectorize.add_stmt_cost. */
1245
1246 static inline unsigned
1247 add_stmt_cost (void *data, int count, enum vect_cost_for_stmt kind,
1248 stmt_vec_info stmt_info, int misalign,
1249 enum vect_cost_model_location where)
1250 {
1251 unsigned cost = targetm.vectorize.add_stmt_cost (data, count, kind,
1252 stmt_info, misalign, where);
1253 if (dump_file && (dump_flags & TDF_DETAILS))
1254 dump_stmt_cost (dump_file, data, count, kind, stmt_info, misalign,
1255 cost, where);
1256 return cost;
1257 }
1258
1259 /* Alias targetm.vectorize.finish_cost. */
1260
1261 static inline void
1262 finish_cost (void *data, unsigned *prologue_cost,
1263 unsigned *body_cost, unsigned *epilogue_cost)
1264 {
1265 targetm.vectorize.finish_cost (data, prologue_cost, body_cost, epilogue_cost);
1266 }
1267
1268 /* Alias targetm.vectorize.destroy_cost_data. */
1269
1270 static inline void
1271 destroy_cost_data (void *data)
1272 {
1273 targetm.vectorize.destroy_cost_data (data);
1274 }
1275
1276 inline void
1277 add_stmt_costs (void *data, stmt_vector_for_cost *cost_vec)
1278 {
1279 stmt_info_for_cost *cost;
1280 unsigned i;
1281 FOR_EACH_VEC_ELT (*cost_vec, i, cost)
1282 add_stmt_cost (data, cost->count, cost->kind, cost->stmt_info,
1283 cost->misalign, cost->where);
1284 }
1285
1286 /*-----------------------------------------------------------------*/
1287 /* Info on data references alignment. */
1288 /*-----------------------------------------------------------------*/
1289 #define DR_MISALIGNMENT_UNKNOWN (-1)
1290 #define DR_MISALIGNMENT_UNINITIALIZED (-2)
1291
1292 inline void
1293 set_dr_misalignment (dr_vec_info *dr_info, int val)
1294 {
1295 dr_info->misalignment = val;
1296 }
1297
1298 inline int
1299 dr_misalignment (dr_vec_info *dr_info)
1300 {
1301 int misalign = dr_info->misalignment;
1302 gcc_assert (misalign != DR_MISALIGNMENT_UNINITIALIZED);
1303 return misalign;
1304 }
1305
1306 /* Reflects actual alignment of first access in the vectorized loop,
1307 taking into account peeling/versioning if applied. */
1308 #define DR_MISALIGNMENT(DR) dr_misalignment (DR)
1309 #define SET_DR_MISALIGNMENT(DR, VAL) set_dr_misalignment (DR, VAL)
1310
1311 /* Only defined once DR_MISALIGNMENT is defined. */
1312 #define DR_TARGET_ALIGNMENT(DR) ((DR)->target_alignment)
1313
1314 /* Return true if data access DR_INFO is aligned to its target alignment
1315 (which may be less than a full vector). */
1316
1317 static inline bool
1318 aligned_access_p (dr_vec_info *dr_info)
1319 {
1320 return (DR_MISALIGNMENT (dr_info) == 0);
1321 }
1322
1323 /* Return TRUE if the alignment of the data access is known, and FALSE
1324 otherwise. */
1325
1326 static inline bool
1327 known_alignment_for_access_p (dr_vec_info *dr_info)
1328 {
1329 return (DR_MISALIGNMENT (dr_info) != DR_MISALIGNMENT_UNKNOWN);
1330 }
1331
1332 /* Return the minimum alignment in bytes that the vectorized version
1333 of DR_INFO is guaranteed to have. */
1334
1335 static inline unsigned int
1336 vect_known_alignment_in_bytes (dr_vec_info *dr_info)
1337 {
1338 if (DR_MISALIGNMENT (dr_info) == DR_MISALIGNMENT_UNKNOWN)
1339 return TYPE_ALIGN_UNIT (TREE_TYPE (DR_REF (dr_info->dr)));
1340 if (DR_MISALIGNMENT (dr_info) == 0)
1341 return known_alignment (DR_TARGET_ALIGNMENT (dr_info));
1342 return DR_MISALIGNMENT (dr_info) & -DR_MISALIGNMENT (dr_info);
1343 }
1344
1345 /* Return the behavior of DR_INFO with respect to the vectorization context
1346 (which for outer loop vectorization might not be the behavior recorded
1347 in DR_INFO itself). */
1348
1349 static inline innermost_loop_behavior *
1350 vect_dr_behavior (dr_vec_info *dr_info)
1351 {
1352 stmt_vec_info stmt_info = dr_info->stmt;
1353 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
1354 if (loop_vinfo == NULL
1355 || !nested_in_vect_loop_p (LOOP_VINFO_LOOP (loop_vinfo), stmt_info))
1356 return &DR_INNERMOST (dr_info->dr);
1357 else
1358 return &STMT_VINFO_DR_WRT_VEC_LOOP (stmt_info);
1359 }
1360
1361 /* Return true if the vect cost model is unlimited. */
1362 static inline bool
1363 unlimited_cost_model (loop_p loop)
1364 {
1365 if (loop != NULL && loop->force_vectorize
1366 && flag_simd_cost_model != VECT_COST_MODEL_DEFAULT)
1367 return flag_simd_cost_model == VECT_COST_MODEL_UNLIMITED;
1368 return (flag_vect_cost_model == VECT_COST_MODEL_UNLIMITED);
1369 }
1370
1371 /* Return true if the loop described by LOOP_VINFO is fully-masked and
1372 if the first iteration should use a partial mask in order to achieve
1373 alignment. */
1374
1375 static inline bool
1376 vect_use_loop_mask_for_alignment_p (loop_vec_info loop_vinfo)
1377 {
1378 return (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo)
1379 && LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo));
1380 }
1381
1382 /* Return the number of vectors of type VECTYPE that are needed to get
1383 NUNITS elements. NUNITS should be based on the vectorization factor,
1384 so it is always a known multiple of the number of elements in VECTYPE. */
1385
1386 static inline unsigned int
1387 vect_get_num_vectors (poly_uint64 nunits, tree vectype)
1388 {
1389 return exact_div (nunits, TYPE_VECTOR_SUBPARTS (vectype)).to_constant ();
1390 }
1391
1392 /* Return the number of copies needed for loop vectorization when
1393 a statement operates on vectors of type VECTYPE. This is the
1394 vectorization factor divided by the number of elements in
1395 VECTYPE and is always known at compile time. */
1396
1397 static inline unsigned int
1398 vect_get_num_copies (loop_vec_info loop_vinfo, tree vectype)
1399 {
1400 return vect_get_num_vectors (LOOP_VINFO_VECT_FACTOR (loop_vinfo), vectype);
1401 }
1402
1403 /* Update maximum unit count *MAX_NUNITS so that it accounts for
1404 NUNITS. *MAX_NUNITS can be 1 if we haven't yet recorded anything. */
1405
1406 static inline void
1407 vect_update_max_nunits (poly_uint64 *max_nunits, poly_uint64 nunits)
1408 {
1409 /* All unit counts have the form current_vector_size * X for some
1410 rational X, so two unit sizes must have a common multiple.
1411 Everything is a multiple of the initial value of 1. */
1412 *max_nunits = force_common_multiple (*max_nunits, nunits);
1413 }
1414
1415 /* Update maximum unit count *MAX_NUNITS so that it accounts for
1416 the number of units in vector type VECTYPE. *MAX_NUNITS can be 1
1417 if we haven't yet recorded any vector types. */
1418
1419 static inline void
1420 vect_update_max_nunits (poly_uint64 *max_nunits, tree vectype)
1421 {
1422 vect_update_max_nunits (max_nunits, TYPE_VECTOR_SUBPARTS (vectype));
1423 }
1424
1425 /* Return the vectorization factor that should be used for costing
1426 purposes while vectorizing the loop described by LOOP_VINFO.
1427 Pick a reasonable estimate if the vectorization factor isn't
1428 known at compile time. */
1429
1430 static inline unsigned int
1431 vect_vf_for_cost (loop_vec_info loop_vinfo)
1432 {
1433 return estimated_poly_value (LOOP_VINFO_VECT_FACTOR (loop_vinfo));
1434 }
1435
1436 /* Estimate the number of elements in VEC_TYPE for costing purposes.
1437 Pick a reasonable estimate if the exact number isn't known at
1438 compile time. */
1439
1440 static inline unsigned int
1441 vect_nunits_for_cost (tree vec_type)
1442 {
1443 return estimated_poly_value (TYPE_VECTOR_SUBPARTS (vec_type));
1444 }
1445
1446 /* Return the maximum possible vectorization factor for LOOP_VINFO. */
1447
1448 static inline unsigned HOST_WIDE_INT
1449 vect_max_vf (loop_vec_info loop_vinfo)
1450 {
1451 unsigned HOST_WIDE_INT vf;
1452 if (LOOP_VINFO_VECT_FACTOR (loop_vinfo).is_constant (&vf))
1453 return vf;
1454 return MAX_VECTORIZATION_FACTOR;
1455 }
1456
1457 /* Return the size of the value accessed by unvectorized data reference
1458 DR_INFO. This is only valid once STMT_VINFO_VECTYPE has been calculated
1459 for the associated gimple statement, since that guarantees that DR_INFO
1460 accesses either a scalar or a scalar equivalent. ("Scalar equivalent"
1461 here includes things like V1SI, which can be vectorized in the same way
1462 as a plain SI.) */
1463
1464 inline unsigned int
1465 vect_get_scalar_dr_size (dr_vec_info *dr_info)
1466 {
1467 return tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr_info->dr))));
1468 }
1469
1470 /* Source location + hotness information. */
1471 extern dump_user_location_t vect_location;
1472
1473 /* A macro for calling:
1474 dump_begin_scope (MSG, vect_location);
1475 via an RAII object, thus printing "=== MSG ===\n" to the dumpfile etc,
1476 and then calling
1477 dump_end_scope ();
1478 once the object goes out of scope, thus capturing the nesting of
1479 the scopes.
1480
1481 These scopes affect dump messages within them: dump messages at the
1482 top level implicitly default to MSG_PRIORITY_USER_FACING, whereas those
1483 in a nested scope implicitly default to MSG_PRIORITY_INTERNALS. */
1484
1485 #define DUMP_VECT_SCOPE(MSG) \
1486 AUTO_DUMP_SCOPE (MSG, vect_location)
1487
1488 /* A sentinel class for ensuring that the "vect_location" global gets
1489 reset at the end of a scope.
1490
1491 The "vect_location" global is used during dumping and contains a
1492 location_t, which could contain references to a tree block via the
1493 ad-hoc data. This data is used for tracking inlining information,
1494 but it's not a GC root; it's simply assumed that such locations never
1495 get accessed if the blocks are optimized away.
1496
1497 Hence we need to ensure that such locations are purged at the end
1498 of any operations using them (e.g. via this class). */
1499
1500 class auto_purge_vect_location
1501 {
1502 public:
1503 ~auto_purge_vect_location ();
1504 };
1505
1506 /*-----------------------------------------------------------------*/
1507 /* Function prototypes. */
1508 /*-----------------------------------------------------------------*/
1509
1510 /* Simple loop peeling and versioning utilities for vectorizer's purposes -
1511 in tree-vect-loop-manip.c. */
1512 extern void vect_set_loop_condition (class loop *, loop_vec_info,
1513 tree, tree, tree, bool);
1514 extern bool slpeel_can_duplicate_loop_p (const class loop *, const_edge);
1515 class loop *slpeel_tree_duplicate_loop_to_edge_cfg (class loop *,
1516 class loop *, edge);
1517 class loop *vect_loop_versioning (loop_vec_info, unsigned int, bool,
1518 poly_uint64);
1519 extern class loop *vect_do_peeling (loop_vec_info, tree, tree,
1520 tree *, tree *, tree *, int, bool, bool);
1521 extern void vect_prepare_for_masked_peels (loop_vec_info);
1522 extern dump_user_location_t find_loop_location (class loop *);
1523 extern bool vect_can_advance_ivs_p (loop_vec_info);
1524
1525 /* In tree-vect-stmts.c. */
1526 extern poly_uint64 current_vector_size;
1527 extern tree get_vectype_for_scalar_type (tree);
1528 extern tree get_vectype_for_scalar_type_and_size (tree, poly_uint64);
1529 extern tree get_mask_type_for_scalar_type (tree);
1530 extern tree get_same_sized_vectype (tree, tree);
1531 extern bool vect_get_loop_mask_type (loop_vec_info);
1532 extern bool vect_is_simple_use (tree, vec_info *, enum vect_def_type *,
1533 stmt_vec_info * = NULL, gimple ** = NULL);
1534 extern bool vect_is_simple_use (tree, vec_info *, enum vect_def_type *,
1535 tree *, stmt_vec_info * = NULL,
1536 gimple ** = NULL);
1537 extern bool supportable_widening_operation (enum tree_code, stmt_vec_info,
1538 tree, tree, enum tree_code *,
1539 enum tree_code *, int *,
1540 vec<tree> *);
1541 extern bool supportable_narrowing_operation (enum tree_code, tree, tree,
1542 enum tree_code *,
1543 int *, vec<tree> *);
1544 extern unsigned record_stmt_cost (stmt_vector_for_cost *, int,
1545 enum vect_cost_for_stmt, stmt_vec_info,
1546 int, enum vect_cost_model_location);
1547 extern stmt_vec_info vect_finish_replace_stmt (stmt_vec_info, gimple *);
1548 extern stmt_vec_info vect_finish_stmt_generation (stmt_vec_info, gimple *,
1549 gimple_stmt_iterator *);
1550 extern opt_result vect_mark_stmts_to_be_vectorized (loop_vec_info, bool *);
1551 extern tree vect_get_store_rhs (stmt_vec_info);
1552 extern tree vect_get_vec_def_for_operand_1 (stmt_vec_info, enum vect_def_type);
1553 extern tree vect_get_vec_def_for_operand (tree, stmt_vec_info, tree = NULL);
1554 extern void vect_get_vec_defs (tree, tree, stmt_vec_info, vec<tree> *,
1555 vec<tree> *, slp_tree);
1556 extern void vect_get_vec_defs_for_stmt_copy (vec_info *,
1557 vec<tree> *, vec<tree> *);
1558 extern tree vect_init_vector (stmt_vec_info, tree, tree,
1559 gimple_stmt_iterator *);
1560 extern tree vect_get_vec_def_for_stmt_copy (vec_info *, tree);
1561 extern bool vect_transform_stmt (stmt_vec_info, gimple_stmt_iterator *,
1562 slp_tree, slp_instance);
1563 extern void vect_remove_stores (stmt_vec_info);
1564 extern opt_result vect_analyze_stmt (stmt_vec_info, bool *, slp_tree,
1565 slp_instance, stmt_vector_for_cost *);
1566 extern void vect_get_load_cost (stmt_vec_info, int, bool,
1567 unsigned int *, unsigned int *,
1568 stmt_vector_for_cost *,
1569 stmt_vector_for_cost *, bool);
1570 extern void vect_get_store_cost (stmt_vec_info, int,
1571 unsigned int *, stmt_vector_for_cost *);
1572 extern bool vect_supportable_shift (enum tree_code, tree);
1573 extern tree vect_gen_perm_mask_any (tree, const vec_perm_indices &);
1574 extern tree vect_gen_perm_mask_checked (tree, const vec_perm_indices &);
1575 extern void optimize_mask_stores (class loop*);
1576 extern gcall *vect_gen_while (tree, tree, tree);
1577 extern tree vect_gen_while_not (gimple_seq *, tree, tree, tree);
1578 extern opt_result vect_get_vector_types_for_stmt (stmt_vec_info, tree *,
1579 tree *);
1580 extern opt_tree vect_get_mask_type_for_stmt (stmt_vec_info);
1581
1582 /* In tree-vect-data-refs.c. */
1583 extern bool vect_can_force_dr_alignment_p (const_tree, poly_uint64);
1584 extern enum dr_alignment_support vect_supportable_dr_alignment
1585 (dr_vec_info *, bool);
1586 extern tree vect_get_smallest_scalar_type (stmt_vec_info, HOST_WIDE_INT *,
1587 HOST_WIDE_INT *);
1588 extern opt_result vect_analyze_data_ref_dependences (loop_vec_info, unsigned int *);
1589 extern bool vect_slp_analyze_instance_dependence (slp_instance);
1590 extern opt_result vect_enhance_data_refs_alignment (loop_vec_info);
1591 extern opt_result vect_analyze_data_refs_alignment (loop_vec_info);
1592 extern opt_result vect_verify_datarefs_alignment (loop_vec_info);
1593 extern bool vect_slp_analyze_and_verify_instance_alignment (slp_instance);
1594 extern opt_result vect_analyze_data_ref_accesses (vec_info *);
1595 extern opt_result vect_prune_runtime_alias_test_list (loop_vec_info);
1596 extern bool vect_gather_scatter_fn_p (bool, bool, tree, tree, unsigned int,
1597 signop, int, internal_fn *, tree *);
1598 extern bool vect_check_gather_scatter (stmt_vec_info, loop_vec_info,
1599 gather_scatter_info *);
1600 extern opt_result vect_find_stmt_data_reference (loop_p, gimple *,
1601 vec<data_reference_p> *);
1602 extern opt_result vect_analyze_data_refs (vec_info *, poly_uint64 *, bool *);
1603 extern void vect_record_base_alignments (vec_info *);
1604 extern tree vect_create_data_ref_ptr (stmt_vec_info, tree, class loop *, tree,
1605 tree *, gimple_stmt_iterator *,
1606 gimple **, bool,
1607 tree = NULL_TREE, tree = NULL_TREE);
1608 extern tree bump_vector_ptr (tree, gimple *, gimple_stmt_iterator *,
1609 stmt_vec_info, tree);
1610 extern void vect_copy_ref_info (tree, tree);
1611 extern tree vect_create_destination_var (tree, tree);
1612 extern bool vect_grouped_store_supported (tree, unsigned HOST_WIDE_INT);
1613 extern bool vect_store_lanes_supported (tree, unsigned HOST_WIDE_INT, bool);
1614 extern bool vect_grouped_load_supported (tree, bool, unsigned HOST_WIDE_INT);
1615 extern bool vect_load_lanes_supported (tree, unsigned HOST_WIDE_INT, bool);
1616 extern void vect_permute_store_chain (vec<tree> ,unsigned int, stmt_vec_info,
1617 gimple_stmt_iterator *, vec<tree> *);
1618 extern tree vect_setup_realignment (stmt_vec_info, gimple_stmt_iterator *,
1619 tree *, enum dr_alignment_support, tree,
1620 class loop **);
1621 extern void vect_transform_grouped_load (stmt_vec_info, vec<tree> , int,
1622 gimple_stmt_iterator *);
1623 extern void vect_record_grouped_load_vectors (stmt_vec_info, vec<tree>);
1624 extern tree vect_get_new_vect_var (tree, enum vect_var_kind, const char *);
1625 extern tree vect_get_new_ssa_name (tree, enum vect_var_kind,
1626 const char * = NULL);
1627 extern tree vect_create_addr_base_for_vector_ref (stmt_vec_info, gimple_seq *,
1628 tree, tree = NULL_TREE);
1629
1630 /* In tree-vect-loop.c. */
1631 extern widest_int vect_iv_limit_for_full_masking (loop_vec_info loop_vinfo);
1632 /* Used in gimple-loop-interchange.c and tree-parloops.c. */
1633 extern bool check_reduction_path (dump_user_location_t, loop_p, gphi *, tree,
1634 enum tree_code);
1635 /* Drive for loop analysis stage. */
1636 extern opt_loop_vec_info vect_analyze_loop (class loop *,
1637 loop_vec_info,
1638 vec_info_shared *);
1639 extern tree vect_build_loop_niters (loop_vec_info, bool * = NULL);
1640 extern void vect_gen_vector_loop_niters (loop_vec_info, tree, tree *,
1641 tree *, bool);
1642 extern tree vect_halve_mask_nunits (tree);
1643 extern tree vect_double_mask_nunits (tree);
1644 extern void vect_record_loop_mask (loop_vec_info, vec_loop_masks *,
1645 unsigned int, tree);
1646 extern tree vect_get_loop_mask (gimple_stmt_iterator *, vec_loop_masks *,
1647 unsigned int, tree, unsigned int);
1648 extern stmt_vec_info info_for_reduction (stmt_vec_info);
1649
1650 /* Drive for loop transformation stage. */
1651 extern class loop *vect_transform_loop (loop_vec_info);
1652 extern opt_loop_vec_info vect_analyze_loop_form (class loop *,
1653 vec_info_shared *);
1654 extern bool vectorizable_live_operation (stmt_vec_info, gimple_stmt_iterator *,
1655 slp_tree, slp_instance, int,
1656 stmt_vec_info *,
1657 stmt_vector_for_cost *);
1658 extern bool vectorizable_reduction (stmt_vec_info, slp_tree, slp_instance,
1659 stmt_vector_for_cost *);
1660 extern bool vectorizable_induction (stmt_vec_info, gimple_stmt_iterator *,
1661 stmt_vec_info *, slp_tree,
1662 stmt_vector_for_cost *);
1663 extern bool vect_transform_reduction (stmt_vec_info, gimple_stmt_iterator *,
1664 stmt_vec_info *, slp_tree);
1665 extern bool vect_transform_cycle_phi (stmt_vec_info, stmt_vec_info *,
1666 slp_tree, slp_instance);
1667 extern bool vectorizable_lc_phi (stmt_vec_info, stmt_vec_info *, slp_tree);
1668 extern bool vect_worthwhile_without_simd_p (vec_info *, tree_code);
1669 extern int vect_get_known_peeling_cost (loop_vec_info, int, int *,
1670 stmt_vector_for_cost *,
1671 stmt_vector_for_cost *,
1672 stmt_vector_for_cost *);
1673 extern tree cse_and_gimplify_to_preheader (loop_vec_info, tree);
1674
1675 /* In tree-vect-slp.c. */
1676 extern void vect_free_slp_instance (slp_instance, bool);
1677 extern bool vect_transform_slp_perm_load (slp_tree, vec<tree> ,
1678 gimple_stmt_iterator *, poly_uint64,
1679 slp_instance, bool, unsigned *);
1680 extern bool vect_slp_analyze_operations (vec_info *);
1681 extern void vect_schedule_slp (vec_info *);
1682 extern opt_result vect_analyze_slp (vec_info *, unsigned);
1683 extern bool vect_make_slp_decision (loop_vec_info);
1684 extern void vect_detect_hybrid_slp (loop_vec_info);
1685 extern void vect_get_slp_defs (vec<tree> , slp_tree, vec<vec<tree> > *);
1686 extern bool vect_slp_bb (basic_block);
1687 extern stmt_vec_info vect_find_last_scalar_stmt_in_slp (slp_tree);
1688 extern bool is_simple_and_all_uses_invariant (stmt_vec_info, loop_vec_info);
1689 extern bool can_duplicate_and_interleave_p (unsigned int, machine_mode,
1690 unsigned int * = NULL,
1691 tree * = NULL, tree * = NULL);
1692 extern void duplicate_and_interleave (gimple_seq *, tree, vec<tree>,
1693 unsigned int, vec<tree> &);
1694 extern int vect_get_place_in_interleaving_chain (stmt_vec_info, stmt_vec_info);
1695
1696 /* In tree-vect-patterns.c. */
1697 /* Pattern recognition functions.
1698 Additional pattern recognition functions can (and will) be added
1699 in the future. */
1700 void vect_pattern_recog (vec_info *);
1701
1702 /* In tree-vectorizer.c. */
1703 unsigned vectorize_loops (void);
1704 void vect_free_loop_info_assumptions (class loop *);
1705 gimple *vect_loop_vectorized_call (class loop *, gcond **cond = NULL);
1706
1707
1708 #endif /* GCC_TREE_VECTORIZER_H */