]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-vrp.c
re PR tree-optimization/31522 (False overflow warning with phi nodes)
[thirdparty/gcc.git] / gcc / tree-vrp.c
1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005, 2006, 2007 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to
19 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "ggc.h"
27 #include "flags.h"
28 #include "tree.h"
29 #include "basic-block.h"
30 #include "tree-flow.h"
31 #include "tree-pass.h"
32 #include "tree-dump.h"
33 #include "timevar.h"
34 #include "diagnostic.h"
35 #include "toplev.h"
36 #include "intl.h"
37 #include "cfgloop.h"
38 #include "tree-scalar-evolution.h"
39 #include "tree-ssa-propagate.h"
40 #include "tree-chrec.h"
41
42 /* Set of SSA names found during the dominator traversal of a
43 sub-graph in find_assert_locations. */
44 static sbitmap found_in_subgraph;
45
46 /* Local functions. */
47 static int compare_values (tree val1, tree val2);
48 static int compare_values_warnv (tree val1, tree val2, bool *);
49 static void vrp_meet (value_range_t *, value_range_t *);
50 static tree vrp_evaluate_conditional_warnv (tree, bool, bool *);
51
52 /* Location information for ASSERT_EXPRs. Each instance of this
53 structure describes an ASSERT_EXPR for an SSA name. Since a single
54 SSA name may have more than one assertion associated with it, these
55 locations are kept in a linked list attached to the corresponding
56 SSA name. */
57 struct assert_locus_d
58 {
59 /* Basic block where the assertion would be inserted. */
60 basic_block bb;
61
62 /* Some assertions need to be inserted on an edge (e.g., assertions
63 generated by COND_EXPRs). In those cases, BB will be NULL. */
64 edge e;
65
66 /* Pointer to the statement that generated this assertion. */
67 block_stmt_iterator si;
68
69 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
70 enum tree_code comp_code;
71
72 /* Value being compared against. */
73 tree val;
74
75 /* Next node in the linked list. */
76 struct assert_locus_d *next;
77 };
78
79 typedef struct assert_locus_d *assert_locus_t;
80
81 /* If bit I is present, it means that SSA name N_i has a list of
82 assertions that should be inserted in the IL. */
83 static bitmap need_assert_for;
84
85 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
86 holds a list of ASSERT_LOCUS_T nodes that describe where
87 ASSERT_EXPRs for SSA name N_I should be inserted. */
88 static assert_locus_t *asserts_for;
89
90 /* Set of blocks visited in find_assert_locations. Used to avoid
91 visiting the same block more than once. */
92 static sbitmap blocks_visited;
93
94 /* Value range array. After propagation, VR_VALUE[I] holds the range
95 of values that SSA name N_I may take. */
96 static value_range_t **vr_value;
97
98 /* For a PHI node which sets SSA name N_I, VR_COUNTS[I] holds the
99 number of executable edges we saw the last time we visited the
100 node. */
101 static int *vr_phi_edge_counts;
102
103
104 /* Return whether TYPE should use an overflow infinity distinct from
105 TYPE_{MIN,MAX}_VALUE. We use an overflow infinity value to
106 represent a signed overflow during VRP computations. An infinity
107 is distinct from a half-range, which will go from some number to
108 TYPE_{MIN,MAX}_VALUE. */
109
110 static inline bool
111 needs_overflow_infinity (tree type)
112 {
113 return INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_WRAPS (type);
114 }
115
116 /* Return whether TYPE can support our overflow infinity
117 representation: we use the TREE_OVERFLOW flag, which only exists
118 for constants. If TYPE doesn't support this, we don't optimize
119 cases which would require signed overflow--we drop them to
120 VARYING. */
121
122 static inline bool
123 supports_overflow_infinity (tree type)
124 {
125 #ifdef ENABLE_CHECKING
126 gcc_assert (needs_overflow_infinity (type));
127 #endif
128 return (TYPE_MIN_VALUE (type) != NULL_TREE
129 && CONSTANT_CLASS_P (TYPE_MIN_VALUE (type))
130 && TYPE_MAX_VALUE (type) != NULL_TREE
131 && CONSTANT_CLASS_P (TYPE_MAX_VALUE (type)));
132 }
133
134 /* VAL is the maximum or minimum value of a type. Return a
135 corresponding overflow infinity. */
136
137 static inline tree
138 make_overflow_infinity (tree val)
139 {
140 #ifdef ENABLE_CHECKING
141 gcc_assert (val != NULL_TREE && CONSTANT_CLASS_P (val));
142 #endif
143 val = copy_node (val);
144 TREE_OVERFLOW (val) = 1;
145 return val;
146 }
147
148 /* Return a negative overflow infinity for TYPE. */
149
150 static inline tree
151 negative_overflow_infinity (tree type)
152 {
153 #ifdef ENABLE_CHECKING
154 gcc_assert (supports_overflow_infinity (type));
155 #endif
156 return make_overflow_infinity (TYPE_MIN_VALUE (type));
157 }
158
159 /* Return a positive overflow infinity for TYPE. */
160
161 static inline tree
162 positive_overflow_infinity (tree type)
163 {
164 #ifdef ENABLE_CHECKING
165 gcc_assert (supports_overflow_infinity (type));
166 #endif
167 return make_overflow_infinity (TYPE_MAX_VALUE (type));
168 }
169
170 /* Return whether VAL is a negative overflow infinity. */
171
172 static inline bool
173 is_negative_overflow_infinity (tree val)
174 {
175 return (needs_overflow_infinity (TREE_TYPE (val))
176 && CONSTANT_CLASS_P (val)
177 && TREE_OVERFLOW (val)
178 && operand_equal_p (val, TYPE_MIN_VALUE (TREE_TYPE (val)), 0));
179 }
180
181 /* Return whether VAL is a positive overflow infinity. */
182
183 static inline bool
184 is_positive_overflow_infinity (tree val)
185 {
186 return (needs_overflow_infinity (TREE_TYPE (val))
187 && CONSTANT_CLASS_P (val)
188 && TREE_OVERFLOW (val)
189 && operand_equal_p (val, TYPE_MAX_VALUE (TREE_TYPE (val)), 0));
190 }
191
192 /* Return whether VAL is a positive or negative overflow infinity. */
193
194 static inline bool
195 is_overflow_infinity (tree val)
196 {
197 return (needs_overflow_infinity (TREE_TYPE (val))
198 && CONSTANT_CLASS_P (val)
199 && TREE_OVERFLOW (val)
200 && (operand_equal_p (val, TYPE_MAX_VALUE (TREE_TYPE (val)), 0)
201 || operand_equal_p (val, TYPE_MIN_VALUE (TREE_TYPE (val)), 0)));
202 }
203
204
205 /* Return true if ARG is marked with the nonnull attribute in the
206 current function signature. */
207
208 static bool
209 nonnull_arg_p (tree arg)
210 {
211 tree t, attrs, fntype;
212 unsigned HOST_WIDE_INT arg_num;
213
214 gcc_assert (TREE_CODE (arg) == PARM_DECL && POINTER_TYPE_P (TREE_TYPE (arg)));
215
216 /* The static chain decl is always non null. */
217 if (arg == cfun->static_chain_decl)
218 return true;
219
220 fntype = TREE_TYPE (current_function_decl);
221 attrs = lookup_attribute ("nonnull", TYPE_ATTRIBUTES (fntype));
222
223 /* If "nonnull" wasn't specified, we know nothing about the argument. */
224 if (attrs == NULL_TREE)
225 return false;
226
227 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
228 if (TREE_VALUE (attrs) == NULL_TREE)
229 return true;
230
231 /* Get the position number for ARG in the function signature. */
232 for (arg_num = 1, t = DECL_ARGUMENTS (current_function_decl);
233 t;
234 t = TREE_CHAIN (t), arg_num++)
235 {
236 if (t == arg)
237 break;
238 }
239
240 gcc_assert (t == arg);
241
242 /* Now see if ARG_NUM is mentioned in the nonnull list. */
243 for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
244 {
245 if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
246 return true;
247 }
248
249 return false;
250 }
251
252
253 /* Set value range VR to {T, MIN, MAX, EQUIV}. */
254
255 static void
256 set_value_range (value_range_t *vr, enum value_range_type t, tree min,
257 tree max, bitmap equiv)
258 {
259 #if defined ENABLE_CHECKING
260 /* Check the validity of the range. */
261 if (t == VR_RANGE || t == VR_ANTI_RANGE)
262 {
263 int cmp;
264
265 gcc_assert (min && max);
266
267 if (INTEGRAL_TYPE_P (TREE_TYPE (min)) && t == VR_ANTI_RANGE)
268 gcc_assert ((min != TYPE_MIN_VALUE (TREE_TYPE (min))
269 && !is_negative_overflow_infinity (min))
270 || (max != TYPE_MAX_VALUE (TREE_TYPE (max))
271 && !is_positive_overflow_infinity (max)));
272
273 cmp = compare_values (min, max);
274 gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
275 }
276
277 if (t == VR_UNDEFINED || t == VR_VARYING)
278 gcc_assert (min == NULL_TREE && max == NULL_TREE);
279
280 if (t == VR_UNDEFINED || t == VR_VARYING)
281 gcc_assert (equiv == NULL || bitmap_empty_p (equiv));
282 #endif
283
284 vr->type = t;
285 vr->min = min;
286 vr->max = max;
287
288 /* Since updating the equivalence set involves deep copying the
289 bitmaps, only do it if absolutely necessary. */
290 if (vr->equiv == NULL)
291 vr->equiv = BITMAP_ALLOC (NULL);
292
293 if (equiv != vr->equiv)
294 {
295 if (equiv && !bitmap_empty_p (equiv))
296 bitmap_copy (vr->equiv, equiv);
297 else
298 bitmap_clear (vr->equiv);
299 }
300 }
301
302
303 /* Copy value range FROM into value range TO. */
304
305 static inline void
306 copy_value_range (value_range_t *to, value_range_t *from)
307 {
308 set_value_range (to, from->type, from->min, from->max, from->equiv);
309 }
310
311
312 /* Set value range VR to VR_VARYING. */
313
314 static inline void
315 set_value_range_to_varying (value_range_t *vr)
316 {
317 vr->type = VR_VARYING;
318 vr->min = vr->max = NULL_TREE;
319 if (vr->equiv)
320 bitmap_clear (vr->equiv);
321 }
322
323 /* Set value range VR to a non-negative range of type TYPE.
324 OVERFLOW_INFINITY indicates whether to use a overflow infinity
325 rather than TYPE_MAX_VALUE; this should be true if we determine
326 that the range is nonnegative based on the assumption that signed
327 overflow does not occur. */
328
329 static inline void
330 set_value_range_to_nonnegative (value_range_t *vr, tree type,
331 bool overflow_infinity)
332 {
333 tree zero;
334
335 if (overflow_infinity && !supports_overflow_infinity (type))
336 {
337 set_value_range_to_varying (vr);
338 return;
339 }
340
341 zero = build_int_cst (type, 0);
342 set_value_range (vr, VR_RANGE, zero,
343 (overflow_infinity
344 ? positive_overflow_infinity (type)
345 : TYPE_MAX_VALUE (type)),
346 vr->equiv);
347 }
348
349 /* Set value range VR to a non-NULL range of type TYPE. */
350
351 static inline void
352 set_value_range_to_nonnull (value_range_t *vr, tree type)
353 {
354 tree zero = build_int_cst (type, 0);
355 set_value_range (vr, VR_ANTI_RANGE, zero, zero, vr->equiv);
356 }
357
358
359 /* Set value range VR to a NULL range of type TYPE. */
360
361 static inline void
362 set_value_range_to_null (value_range_t *vr, tree type)
363 {
364 tree zero = build_int_cst (type, 0);
365 set_value_range (vr, VR_RANGE, zero, zero, vr->equiv);
366 }
367
368
369 /* Set value range VR to a range of a truthvalue of type TYPE. */
370
371 static inline void
372 set_value_range_to_truthvalue (value_range_t *vr, tree type)
373 {
374 if (TYPE_PRECISION (type) == 1)
375 set_value_range_to_varying (vr);
376 else
377 set_value_range (vr, VR_RANGE,
378 build_int_cst (type, 0), build_int_cst (type, 1),
379 vr->equiv);
380 }
381
382
383 /* Set value range VR to VR_UNDEFINED. */
384
385 static inline void
386 set_value_range_to_undefined (value_range_t *vr)
387 {
388 vr->type = VR_UNDEFINED;
389 vr->min = vr->max = NULL_TREE;
390 if (vr->equiv)
391 bitmap_clear (vr->equiv);
392 }
393
394
395 /* Return value range information for VAR.
396
397 If we have no values ranges recorded (ie, VRP is not running), then
398 return NULL. Otherwise create an empty range if none existed for VAR. */
399
400 static value_range_t *
401 get_value_range (tree var)
402 {
403 value_range_t *vr;
404 tree sym;
405 unsigned ver = SSA_NAME_VERSION (var);
406
407 /* If we have no recorded ranges, then return NULL. */
408 if (! vr_value)
409 return NULL;
410
411 vr = vr_value[ver];
412 if (vr)
413 return vr;
414
415 /* Create a default value range. */
416 vr_value[ver] = vr = XCNEW (value_range_t);
417
418 /* Allocate an equivalence set. */
419 vr->equiv = BITMAP_ALLOC (NULL);
420
421 /* If VAR is a default definition, the variable can take any value
422 in VAR's type. */
423 sym = SSA_NAME_VAR (var);
424 if (SSA_NAME_IS_DEFAULT_DEF (var))
425 {
426 /* Try to use the "nonnull" attribute to create ~[0, 0]
427 anti-ranges for pointers. Note that this is only valid with
428 default definitions of PARM_DECLs. */
429 if (TREE_CODE (sym) == PARM_DECL
430 && POINTER_TYPE_P (TREE_TYPE (sym))
431 && nonnull_arg_p (sym))
432 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
433 else
434 set_value_range_to_varying (vr);
435 }
436
437 return vr;
438 }
439
440 /* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
441
442 static inline bool
443 vrp_operand_equal_p (tree val1, tree val2)
444 {
445 if (val1 == val2)
446 return true;
447 if (!val1 || !val2 || !operand_equal_p (val1, val2, 0))
448 return false;
449 if (is_overflow_infinity (val1))
450 return is_overflow_infinity (val2);
451 return true;
452 }
453
454 /* Return true, if the bitmaps B1 and B2 are equal. */
455
456 static inline bool
457 vrp_bitmap_equal_p (bitmap b1, bitmap b2)
458 {
459 return (b1 == b2
460 || (b1 && b2
461 && bitmap_equal_p (b1, b2)));
462 }
463
464 /* Update the value range and equivalence set for variable VAR to
465 NEW_VR. Return true if NEW_VR is different from VAR's previous
466 value.
467
468 NOTE: This function assumes that NEW_VR is a temporary value range
469 object created for the sole purpose of updating VAR's range. The
470 storage used by the equivalence set from NEW_VR will be freed by
471 this function. Do not call update_value_range when NEW_VR
472 is the range object associated with another SSA name. */
473
474 static inline bool
475 update_value_range (tree var, value_range_t *new_vr)
476 {
477 value_range_t *old_vr;
478 bool is_new;
479
480 /* Update the value range, if necessary. */
481 old_vr = get_value_range (var);
482 is_new = old_vr->type != new_vr->type
483 || !vrp_operand_equal_p (old_vr->min, new_vr->min)
484 || !vrp_operand_equal_p (old_vr->max, new_vr->max)
485 || !vrp_bitmap_equal_p (old_vr->equiv, new_vr->equiv);
486
487 if (is_new)
488 set_value_range (old_vr, new_vr->type, new_vr->min, new_vr->max,
489 new_vr->equiv);
490
491 BITMAP_FREE (new_vr->equiv);
492 new_vr->equiv = NULL;
493
494 return is_new;
495 }
496
497
498 /* Add VAR and VAR's equivalence set to EQUIV. */
499
500 static void
501 add_equivalence (bitmap equiv, tree var)
502 {
503 unsigned ver = SSA_NAME_VERSION (var);
504 value_range_t *vr = vr_value[ver];
505
506 bitmap_set_bit (equiv, ver);
507 if (vr && vr->equiv)
508 bitmap_ior_into (equiv, vr->equiv);
509 }
510
511
512 /* Return true if VR is ~[0, 0]. */
513
514 static inline bool
515 range_is_nonnull (value_range_t *vr)
516 {
517 return vr->type == VR_ANTI_RANGE
518 && integer_zerop (vr->min)
519 && integer_zerop (vr->max);
520 }
521
522
523 /* Return true if VR is [0, 0]. */
524
525 static inline bool
526 range_is_null (value_range_t *vr)
527 {
528 return vr->type == VR_RANGE
529 && integer_zerop (vr->min)
530 && integer_zerop (vr->max);
531 }
532
533
534 /* Return true if value range VR involves at least one symbol. */
535
536 static inline bool
537 symbolic_range_p (value_range_t *vr)
538 {
539 return (!is_gimple_min_invariant (vr->min)
540 || !is_gimple_min_invariant (vr->max));
541 }
542
543 /* Return true if value range VR uses a overflow infinity. */
544
545 static inline bool
546 overflow_infinity_range_p (value_range_t *vr)
547 {
548 return (vr->type == VR_RANGE
549 && (is_overflow_infinity (vr->min)
550 || is_overflow_infinity (vr->max)));
551 }
552
553 /* Return false if we can not make a valid comparison based on VR;
554 this will be the case if it uses an overflow infinity and overflow
555 is not undefined (i.e., -fno-strict-overflow is in effect).
556 Otherwise return true, and set *STRICT_OVERFLOW_P to true if VR
557 uses an overflow infinity. */
558
559 static bool
560 usable_range_p (value_range_t *vr, bool *strict_overflow_p)
561 {
562 gcc_assert (vr->type == VR_RANGE);
563 if (is_overflow_infinity (vr->min))
564 {
565 *strict_overflow_p = true;
566 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->min)))
567 return false;
568 }
569 if (is_overflow_infinity (vr->max))
570 {
571 *strict_overflow_p = true;
572 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->max)))
573 return false;
574 }
575 return true;
576 }
577
578
579 /* Like tree_expr_nonnegative_warnv_p, but this function uses value
580 ranges obtained so far. */
581
582 static bool
583 vrp_expr_computes_nonnegative (tree expr, bool *strict_overflow_p)
584 {
585 return tree_expr_nonnegative_warnv_p (expr, strict_overflow_p);
586 }
587
588 /* Like tree_expr_nonzero_warnv_p, but this function uses value ranges
589 obtained so far. */
590
591 static bool
592 vrp_expr_computes_nonzero (tree expr, bool *strict_overflow_p)
593 {
594 if (tree_expr_nonzero_warnv_p (expr, strict_overflow_p))
595 return true;
596
597 /* If we have an expression of the form &X->a, then the expression
598 is nonnull if X is nonnull. */
599 if (TREE_CODE (expr) == ADDR_EXPR)
600 {
601 tree base = get_base_address (TREE_OPERAND (expr, 0));
602
603 if (base != NULL_TREE
604 && TREE_CODE (base) == INDIRECT_REF
605 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
606 {
607 value_range_t *vr = get_value_range (TREE_OPERAND (base, 0));
608 if (range_is_nonnull (vr))
609 return true;
610 }
611 }
612
613 return false;
614 }
615
616 /* Returns true if EXPR is a valid value (as expected by compare_values) --
617 a gimple invariant, or SSA_NAME +- CST. */
618
619 static bool
620 valid_value_p (tree expr)
621 {
622 if (TREE_CODE (expr) == SSA_NAME)
623 return true;
624
625 if (TREE_CODE (expr) == PLUS_EXPR
626 || TREE_CODE (expr) == MINUS_EXPR)
627 return (TREE_CODE (TREE_OPERAND (expr, 0)) == SSA_NAME
628 && TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST);
629
630 return is_gimple_min_invariant (expr);
631 }
632
633 /* Return
634 1 if VAL < VAL2
635 0 if !(VAL < VAL2)
636 -2 if those are incomparable. */
637 static inline int
638 operand_less_p (tree val, tree val2)
639 {
640 /* LT is folded faster than GE and others. Inline the common case. */
641 if (TREE_CODE (val) == INTEGER_CST && TREE_CODE (val2) == INTEGER_CST)
642 {
643 if (TYPE_UNSIGNED (TREE_TYPE (val)))
644 return INT_CST_LT_UNSIGNED (val, val2);
645 else
646 {
647 if (INT_CST_LT (val, val2))
648 return 1;
649 }
650 }
651 else
652 {
653 tree tcmp;
654
655 fold_defer_overflow_warnings ();
656
657 tcmp = fold_binary_to_constant (LT_EXPR, boolean_type_node, val, val2);
658
659 fold_undefer_and_ignore_overflow_warnings ();
660
661 if (!tcmp)
662 return -2;
663
664 if (!integer_zerop (tcmp))
665 return 1;
666 }
667
668 /* val >= val2, not considering overflow infinity. */
669 if (is_negative_overflow_infinity (val))
670 return is_negative_overflow_infinity (val2) ? 0 : 1;
671 else if (is_positive_overflow_infinity (val2))
672 return is_positive_overflow_infinity (val) ? 0 : 1;
673
674 return 0;
675 }
676
677 /* Compare two values VAL1 and VAL2. Return
678
679 -2 if VAL1 and VAL2 cannot be compared at compile-time,
680 -1 if VAL1 < VAL2,
681 0 if VAL1 == VAL2,
682 +1 if VAL1 > VAL2, and
683 +2 if VAL1 != VAL2
684
685 This is similar to tree_int_cst_compare but supports pointer values
686 and values that cannot be compared at compile time.
687
688 If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
689 true if the return value is only valid if we assume that signed
690 overflow is undefined. */
691
692 static int
693 compare_values_warnv (tree val1, tree val2, bool *strict_overflow_p)
694 {
695 if (val1 == val2)
696 return 0;
697
698 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
699 both integers. */
700 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
701 == POINTER_TYPE_P (TREE_TYPE (val2)));
702
703 if ((TREE_CODE (val1) == SSA_NAME
704 || TREE_CODE (val1) == PLUS_EXPR
705 || TREE_CODE (val1) == MINUS_EXPR)
706 && (TREE_CODE (val2) == SSA_NAME
707 || TREE_CODE (val2) == PLUS_EXPR
708 || TREE_CODE (val2) == MINUS_EXPR))
709 {
710 tree n1, c1, n2, c2;
711 enum tree_code code1, code2;
712
713 /* If VAL1 and VAL2 are of the form 'NAME [+-] CST' or 'NAME',
714 return -1 or +1 accordingly. If VAL1 and VAL2 don't use the
715 same name, return -2. */
716 if (TREE_CODE (val1) == SSA_NAME)
717 {
718 code1 = SSA_NAME;
719 n1 = val1;
720 c1 = NULL_TREE;
721 }
722 else
723 {
724 code1 = TREE_CODE (val1);
725 n1 = TREE_OPERAND (val1, 0);
726 c1 = TREE_OPERAND (val1, 1);
727 if (tree_int_cst_sgn (c1) == -1)
728 {
729 if (is_negative_overflow_infinity (c1))
730 return -2;
731 c1 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c1), c1);
732 if (!c1)
733 return -2;
734 code1 = code1 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
735 }
736 }
737
738 if (TREE_CODE (val2) == SSA_NAME)
739 {
740 code2 = SSA_NAME;
741 n2 = val2;
742 c2 = NULL_TREE;
743 }
744 else
745 {
746 code2 = TREE_CODE (val2);
747 n2 = TREE_OPERAND (val2, 0);
748 c2 = TREE_OPERAND (val2, 1);
749 if (tree_int_cst_sgn (c2) == -1)
750 {
751 if (is_negative_overflow_infinity (c2))
752 return -2;
753 c2 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c2), c2);
754 if (!c2)
755 return -2;
756 code2 = code2 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
757 }
758 }
759
760 /* Both values must use the same name. */
761 if (n1 != n2)
762 return -2;
763
764 if (code1 == SSA_NAME
765 && code2 == SSA_NAME)
766 /* NAME == NAME */
767 return 0;
768
769 /* If overflow is defined we cannot simplify more. */
770 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1)))
771 return -2;
772
773 if (strict_overflow_p != NULL)
774 *strict_overflow_p = true;
775
776 if (code1 == SSA_NAME)
777 {
778 if (code2 == PLUS_EXPR)
779 /* NAME < NAME + CST */
780 return -1;
781 else if (code2 == MINUS_EXPR)
782 /* NAME > NAME - CST */
783 return 1;
784 }
785 else if (code1 == PLUS_EXPR)
786 {
787 if (code2 == SSA_NAME)
788 /* NAME + CST > NAME */
789 return 1;
790 else if (code2 == PLUS_EXPR)
791 /* NAME + CST1 > NAME + CST2, if CST1 > CST2 */
792 return compare_values_warnv (c1, c2, strict_overflow_p);
793 else if (code2 == MINUS_EXPR)
794 /* NAME + CST1 > NAME - CST2 */
795 return 1;
796 }
797 else if (code1 == MINUS_EXPR)
798 {
799 if (code2 == SSA_NAME)
800 /* NAME - CST < NAME */
801 return -1;
802 else if (code2 == PLUS_EXPR)
803 /* NAME - CST1 < NAME + CST2 */
804 return -1;
805 else if (code2 == MINUS_EXPR)
806 /* NAME - CST1 > NAME - CST2, if CST1 < CST2. Notice that
807 C1 and C2 are swapped in the call to compare_values. */
808 return compare_values_warnv (c2, c1, strict_overflow_p);
809 }
810
811 gcc_unreachable ();
812 }
813
814 /* We cannot compare non-constants. */
815 if (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2))
816 return -2;
817
818 if (!POINTER_TYPE_P (TREE_TYPE (val1)))
819 {
820 /* We cannot compare overflowed values, except for overflow
821 infinities. */
822 if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
823 {
824 if (strict_overflow_p != NULL)
825 *strict_overflow_p = true;
826 if (is_negative_overflow_infinity (val1))
827 return is_negative_overflow_infinity (val2) ? 0 : -1;
828 else if (is_negative_overflow_infinity (val2))
829 return 1;
830 else if (is_positive_overflow_infinity (val1))
831 return is_positive_overflow_infinity (val2) ? 0 : 1;
832 else if (is_positive_overflow_infinity (val2))
833 return -1;
834 return -2;
835 }
836
837 return tree_int_cst_compare (val1, val2);
838 }
839 else
840 {
841 tree t;
842
843 /* First see if VAL1 and VAL2 are not the same. */
844 if (val1 == val2 || operand_equal_p (val1, val2, 0))
845 return 0;
846
847 /* If VAL1 is a lower address than VAL2, return -1. */
848 if (operand_less_p (val1, val2) == 1)
849 return -1;
850
851 /* If VAL1 is a higher address than VAL2, return +1. */
852 if (operand_less_p (val2, val1) == 1)
853 return 1;
854
855 /* If VAL1 is different than VAL2, return +2.
856 For integer constants we either have already returned -1 or 1
857 or they are equivalent. We still might succeed in proving
858 something about non-trivial operands. */
859 if (TREE_CODE (val1) != INTEGER_CST
860 || TREE_CODE (val2) != INTEGER_CST)
861 {
862 t = fold_binary_to_constant (NE_EXPR, boolean_type_node, val1, val2);
863 if (t && tree_expr_nonzero_p (t))
864 return 2;
865 }
866
867 return -2;
868 }
869 }
870
871 /* Compare values like compare_values_warnv, but treat comparisons of
872 nonconstants which rely on undefined overflow as incomparable. */
873
874 static int
875 compare_values (tree val1, tree val2)
876 {
877 bool sop;
878 int ret;
879
880 sop = false;
881 ret = compare_values_warnv (val1, val2, &sop);
882 if (sop
883 && (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2)))
884 ret = -2;
885 return ret;
886 }
887
888
889 /* Return 1 if VAL is inside value range VR (VR->MIN <= VAL <= VR->MAX),
890 0 if VAL is not inside VR,
891 -2 if we cannot tell either way.
892
893 FIXME, the current semantics of this functions are a bit quirky
894 when taken in the context of VRP. In here we do not care
895 about VR's type. If VR is the anti-range ~[3, 5] the call
896 value_inside_range (4, VR) will return 1.
897
898 This is counter-intuitive in a strict sense, but the callers
899 currently expect this. They are calling the function
900 merely to determine whether VR->MIN <= VAL <= VR->MAX. The
901 callers are applying the VR_RANGE/VR_ANTI_RANGE semantics
902 themselves.
903
904 This also applies to value_ranges_intersect_p and
905 range_includes_zero_p. The semantics of VR_RANGE and
906 VR_ANTI_RANGE should be encoded here, but that also means
907 adapting the users of these functions to the new semantics.
908
909 Benchmark compile/20001226-1.c compilation time after changing this
910 function. */
911
912 static inline int
913 value_inside_range (tree val, value_range_t * vr)
914 {
915 int cmp1, cmp2;
916
917 cmp1 = operand_less_p (val, vr->min);
918 if (cmp1 == -2)
919 return -2;
920 if (cmp1 == 1)
921 return 0;
922
923 cmp2 = operand_less_p (vr->max, val);
924 if (cmp2 == -2)
925 return -2;
926
927 return !cmp2;
928 }
929
930
931 /* Return true if value ranges VR0 and VR1 have a non-empty
932 intersection.
933
934 Benchmark compile/20001226-1.c compilation time after changing this
935 function.
936 */
937
938 static inline bool
939 value_ranges_intersect_p (value_range_t *vr0, value_range_t *vr1)
940 {
941 /* The value ranges do not intersect if the maximum of the first range is
942 less than the minimum of the second range or vice versa.
943 When those relations are unknown, we can't do any better. */
944 if (operand_less_p (vr0->max, vr1->min) != 0)
945 return false;
946 if (operand_less_p (vr1->max, vr0->min) != 0)
947 return false;
948 return true;
949 }
950
951
952 /* Return true if VR includes the value zero, false otherwise. FIXME,
953 currently this will return false for an anti-range like ~[-4, 3].
954 This will be wrong when the semantics of value_inside_range are
955 modified (currently the users of this function expect these
956 semantics). */
957
958 static inline bool
959 range_includes_zero_p (value_range_t *vr)
960 {
961 tree zero;
962
963 gcc_assert (vr->type != VR_UNDEFINED
964 && vr->type != VR_VARYING
965 && !symbolic_range_p (vr));
966
967 zero = build_int_cst (TREE_TYPE (vr->min), 0);
968 return (value_inside_range (zero, vr) == 1);
969 }
970
971 /* Return true if T, an SSA_NAME, is known to be nonnegative. Return
972 false otherwise or if no value range information is available. */
973
974 bool
975 ssa_name_nonnegative_p (tree t)
976 {
977 value_range_t *vr = get_value_range (t);
978
979 if (!vr)
980 return false;
981
982 /* Testing for VR_ANTI_RANGE is not useful here as any anti-range
983 which would return a useful value should be encoded as a VR_RANGE. */
984 if (vr->type == VR_RANGE)
985 {
986 int result = compare_values (vr->min, integer_zero_node);
987
988 return (result == 0 || result == 1);
989 }
990 return false;
991 }
992
993 /* Return true if T, an SSA_NAME, is known to be nonzero. Return
994 false otherwise or if no value range information is available. */
995
996 bool
997 ssa_name_nonzero_p (tree t)
998 {
999 value_range_t *vr = get_value_range (t);
1000
1001 if (!vr)
1002 return false;
1003
1004 /* A VR_RANGE which does not include zero is a nonzero value. */
1005 if (vr->type == VR_RANGE && !symbolic_range_p (vr))
1006 return ! range_includes_zero_p (vr);
1007
1008 /* A VR_ANTI_RANGE which does include zero is a nonzero value. */
1009 if (vr->type == VR_ANTI_RANGE && !symbolic_range_p (vr))
1010 return range_includes_zero_p (vr);
1011
1012 return false;
1013 }
1014
1015
1016 /* Extract value range information from an ASSERT_EXPR EXPR and store
1017 it in *VR_P. */
1018
1019 static void
1020 extract_range_from_assert (value_range_t *vr_p, tree expr)
1021 {
1022 tree var, cond, limit, min, max, type;
1023 value_range_t *var_vr, *limit_vr;
1024 enum tree_code cond_code;
1025
1026 var = ASSERT_EXPR_VAR (expr);
1027 cond = ASSERT_EXPR_COND (expr);
1028
1029 gcc_assert (COMPARISON_CLASS_P (cond));
1030
1031 /* Find VAR in the ASSERT_EXPR conditional. */
1032 if (var == TREE_OPERAND (cond, 0))
1033 {
1034 /* If the predicate is of the form VAR COMP LIMIT, then we just
1035 take LIMIT from the RHS and use the same comparison code. */
1036 limit = TREE_OPERAND (cond, 1);
1037 cond_code = TREE_CODE (cond);
1038 }
1039 else
1040 {
1041 /* If the predicate is of the form LIMIT COMP VAR, then we need
1042 to flip around the comparison code to create the proper range
1043 for VAR. */
1044 limit = TREE_OPERAND (cond, 0);
1045 cond_code = swap_tree_comparison (TREE_CODE (cond));
1046 }
1047
1048 type = TREE_TYPE (limit);
1049 gcc_assert (limit != var);
1050
1051 /* For pointer arithmetic, we only keep track of pointer equality
1052 and inequality. */
1053 if (POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR)
1054 {
1055 set_value_range_to_varying (vr_p);
1056 return;
1057 }
1058
1059 /* If LIMIT is another SSA name and LIMIT has a range of its own,
1060 try to use LIMIT's range to avoid creating symbolic ranges
1061 unnecessarily. */
1062 limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL;
1063
1064 /* LIMIT's range is only interesting if it has any useful information. */
1065 if (limit_vr
1066 && (limit_vr->type == VR_UNDEFINED
1067 || limit_vr->type == VR_VARYING
1068 || symbolic_range_p (limit_vr)))
1069 limit_vr = NULL;
1070
1071 /* Initially, the new range has the same set of equivalences of
1072 VAR's range. This will be revised before returning the final
1073 value. Since assertions may be chained via mutually exclusive
1074 predicates, we will need to trim the set of equivalences before
1075 we are done. */
1076 gcc_assert (vr_p->equiv == NULL);
1077 vr_p->equiv = BITMAP_ALLOC (NULL);
1078 add_equivalence (vr_p->equiv, var);
1079
1080 /* Extract a new range based on the asserted comparison for VAR and
1081 LIMIT's value range. Notice that if LIMIT has an anti-range, we
1082 will only use it for equality comparisons (EQ_EXPR). For any
1083 other kind of assertion, we cannot derive a range from LIMIT's
1084 anti-range that can be used to describe the new range. For
1085 instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
1086 then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
1087 no single range for x_2 that could describe LE_EXPR, so we might
1088 as well build the range [b_4, +INF] for it. */
1089 if (cond_code == EQ_EXPR)
1090 {
1091 enum value_range_type range_type;
1092
1093 if (limit_vr)
1094 {
1095 range_type = limit_vr->type;
1096 min = limit_vr->min;
1097 max = limit_vr->max;
1098 }
1099 else
1100 {
1101 range_type = VR_RANGE;
1102 min = limit;
1103 max = limit;
1104 }
1105
1106 set_value_range (vr_p, range_type, min, max, vr_p->equiv);
1107
1108 /* When asserting the equality VAR == LIMIT and LIMIT is another
1109 SSA name, the new range will also inherit the equivalence set
1110 from LIMIT. */
1111 if (TREE_CODE (limit) == SSA_NAME)
1112 add_equivalence (vr_p->equiv, limit);
1113 }
1114 else if (cond_code == NE_EXPR)
1115 {
1116 /* As described above, when LIMIT's range is an anti-range and
1117 this assertion is an inequality (NE_EXPR), then we cannot
1118 derive anything from the anti-range. For instance, if
1119 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
1120 not imply that VAR's range is [0, 0]. So, in the case of
1121 anti-ranges, we just assert the inequality using LIMIT and
1122 not its anti-range.
1123
1124 If LIMIT_VR is a range, we can only use it to build a new
1125 anti-range if LIMIT_VR is a single-valued range. For
1126 instance, if LIMIT_VR is [0, 1], the predicate
1127 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
1128 Rather, it means that for value 0 VAR should be ~[0, 0]
1129 and for value 1, VAR should be ~[1, 1]. We cannot
1130 represent these ranges.
1131
1132 The only situation in which we can build a valid
1133 anti-range is when LIMIT_VR is a single-valued range
1134 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
1135 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
1136 if (limit_vr
1137 && limit_vr->type == VR_RANGE
1138 && compare_values (limit_vr->min, limit_vr->max) == 0)
1139 {
1140 min = limit_vr->min;
1141 max = limit_vr->max;
1142 }
1143 else
1144 {
1145 /* In any other case, we cannot use LIMIT's range to build a
1146 valid anti-range. */
1147 min = max = limit;
1148 }
1149
1150 /* If MIN and MAX cover the whole range for their type, then
1151 just use the original LIMIT. */
1152 if (INTEGRAL_TYPE_P (type)
1153 && (min == TYPE_MIN_VALUE (type)
1154 || is_negative_overflow_infinity (min))
1155 && (max == TYPE_MAX_VALUE (type)
1156 || is_positive_overflow_infinity (max)))
1157 min = max = limit;
1158
1159 set_value_range (vr_p, VR_ANTI_RANGE, min, max, vr_p->equiv);
1160 }
1161 else if (cond_code == LE_EXPR || cond_code == LT_EXPR)
1162 {
1163 min = TYPE_MIN_VALUE (type);
1164
1165 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1166 max = limit;
1167 else
1168 {
1169 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1170 range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
1171 LT_EXPR. */
1172 max = limit_vr->max;
1173 }
1174
1175 /* If the maximum value forces us to be out of bounds, simply punt.
1176 It would be pointless to try and do anything more since this
1177 all should be optimized away above us. */
1178 if ((cond_code == LT_EXPR
1179 && compare_values (max, min) == 0)
1180 || is_overflow_infinity (max))
1181 set_value_range_to_varying (vr_p);
1182 else
1183 {
1184 /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
1185 if (cond_code == LT_EXPR)
1186 {
1187 tree one = build_int_cst (type, 1);
1188 max = fold_build2 (MINUS_EXPR, type, max, one);
1189 }
1190
1191 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1192 }
1193 }
1194 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
1195 {
1196 max = TYPE_MAX_VALUE (type);
1197
1198 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1199 min = limit;
1200 else
1201 {
1202 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1203 range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
1204 GT_EXPR. */
1205 min = limit_vr->min;
1206 }
1207
1208 /* If the minimum value forces us to be out of bounds, simply punt.
1209 It would be pointless to try and do anything more since this
1210 all should be optimized away above us. */
1211 if ((cond_code == GT_EXPR
1212 && compare_values (min, max) == 0)
1213 || is_overflow_infinity (min))
1214 set_value_range_to_varying (vr_p);
1215 else
1216 {
1217 /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
1218 if (cond_code == GT_EXPR)
1219 {
1220 tree one = build_int_cst (type, 1);
1221 min = fold_build2 (PLUS_EXPR, type, min, one);
1222 }
1223
1224 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1225 }
1226 }
1227 else
1228 gcc_unreachable ();
1229
1230 /* If VAR already had a known range, it may happen that the new
1231 range we have computed and VAR's range are not compatible. For
1232 instance,
1233
1234 if (p_5 == NULL)
1235 p_6 = ASSERT_EXPR <p_5, p_5 == NULL>;
1236 x_7 = p_6->fld;
1237 p_8 = ASSERT_EXPR <p_6, p_6 != NULL>;
1238
1239 While the above comes from a faulty program, it will cause an ICE
1240 later because p_8 and p_6 will have incompatible ranges and at
1241 the same time will be considered equivalent. A similar situation
1242 would arise from
1243
1244 if (i_5 > 10)
1245 i_6 = ASSERT_EXPR <i_5, i_5 > 10>;
1246 if (i_5 < 5)
1247 i_7 = ASSERT_EXPR <i_6, i_6 < 5>;
1248
1249 Again i_6 and i_7 will have incompatible ranges. It would be
1250 pointless to try and do anything with i_7's range because
1251 anything dominated by 'if (i_5 < 5)' will be optimized away.
1252 Note, due to the wa in which simulation proceeds, the statement
1253 i_7 = ASSERT_EXPR <...> we would never be visited because the
1254 conditional 'if (i_5 < 5)' always evaluates to false. However,
1255 this extra check does not hurt and may protect against future
1256 changes to VRP that may get into a situation similar to the
1257 NULL pointer dereference example.
1258
1259 Note that these compatibility tests are only needed when dealing
1260 with ranges or a mix of range and anti-range. If VAR_VR and VR_P
1261 are both anti-ranges, they will always be compatible, because two
1262 anti-ranges will always have a non-empty intersection. */
1263
1264 var_vr = get_value_range (var);
1265
1266 /* We may need to make adjustments when VR_P and VAR_VR are numeric
1267 ranges or anti-ranges. */
1268 if (vr_p->type == VR_VARYING
1269 || vr_p->type == VR_UNDEFINED
1270 || var_vr->type == VR_VARYING
1271 || var_vr->type == VR_UNDEFINED
1272 || symbolic_range_p (vr_p)
1273 || symbolic_range_p (var_vr))
1274 return;
1275
1276 if (var_vr->type == VR_RANGE && vr_p->type == VR_RANGE)
1277 {
1278 /* If the two ranges have a non-empty intersection, we can
1279 refine the resulting range. Since the assert expression
1280 creates an equivalency and at the same time it asserts a
1281 predicate, we can take the intersection of the two ranges to
1282 get better precision. */
1283 if (value_ranges_intersect_p (var_vr, vr_p))
1284 {
1285 /* Use the larger of the two minimums. */
1286 if (compare_values (vr_p->min, var_vr->min) == -1)
1287 min = var_vr->min;
1288 else
1289 min = vr_p->min;
1290
1291 /* Use the smaller of the two maximums. */
1292 if (compare_values (vr_p->max, var_vr->max) == 1)
1293 max = var_vr->max;
1294 else
1295 max = vr_p->max;
1296
1297 set_value_range (vr_p, vr_p->type, min, max, vr_p->equiv);
1298 }
1299 else
1300 {
1301 /* The two ranges do not intersect, set the new range to
1302 VARYING, because we will not be able to do anything
1303 meaningful with it. */
1304 set_value_range_to_varying (vr_p);
1305 }
1306 }
1307 else if ((var_vr->type == VR_RANGE && vr_p->type == VR_ANTI_RANGE)
1308 || (var_vr->type == VR_ANTI_RANGE && vr_p->type == VR_RANGE))
1309 {
1310 /* A range and an anti-range will cancel each other only if
1311 their ends are the same. For instance, in the example above,
1312 p_8's range ~[0, 0] and p_6's range [0, 0] are incompatible,
1313 so VR_P should be set to VR_VARYING. */
1314 if (compare_values (var_vr->min, vr_p->min) == 0
1315 && compare_values (var_vr->max, vr_p->max) == 0)
1316 set_value_range_to_varying (vr_p);
1317 else
1318 {
1319 tree min, max, anti_min, anti_max, real_min, real_max;
1320 int cmp;
1321
1322 /* We want to compute the logical AND of the two ranges;
1323 there are three cases to consider.
1324
1325
1326 1. The VR_ANTI_RANGE range is completely within the
1327 VR_RANGE and the endpoints of the ranges are
1328 different. In that case the resulting range
1329 should be whichever range is more precise.
1330 Typically that will be the VR_RANGE.
1331
1332 2. The VR_ANTI_RANGE is completely disjoint from
1333 the VR_RANGE. In this case the resulting range
1334 should be the VR_RANGE.
1335
1336 3. There is some overlap between the VR_ANTI_RANGE
1337 and the VR_RANGE.
1338
1339 3a. If the high limit of the VR_ANTI_RANGE resides
1340 within the VR_RANGE, then the result is a new
1341 VR_RANGE starting at the high limit of the
1342 the VR_ANTI_RANGE + 1 and extending to the
1343 high limit of the original VR_RANGE.
1344
1345 3b. If the low limit of the VR_ANTI_RANGE resides
1346 within the VR_RANGE, then the result is a new
1347 VR_RANGE starting at the low limit of the original
1348 VR_RANGE and extending to the low limit of the
1349 VR_ANTI_RANGE - 1. */
1350 if (vr_p->type == VR_ANTI_RANGE)
1351 {
1352 anti_min = vr_p->min;
1353 anti_max = vr_p->max;
1354 real_min = var_vr->min;
1355 real_max = var_vr->max;
1356 }
1357 else
1358 {
1359 anti_min = var_vr->min;
1360 anti_max = var_vr->max;
1361 real_min = vr_p->min;
1362 real_max = vr_p->max;
1363 }
1364
1365
1366 /* Case 1, VR_ANTI_RANGE completely within VR_RANGE,
1367 not including any endpoints. */
1368 if (compare_values (anti_max, real_max) == -1
1369 && compare_values (anti_min, real_min) == 1)
1370 {
1371 set_value_range (vr_p, VR_RANGE, real_min,
1372 real_max, vr_p->equiv);
1373 }
1374 /* Case 2, VR_ANTI_RANGE completely disjoint from
1375 VR_RANGE. */
1376 else if (compare_values (anti_min, real_max) == 1
1377 || compare_values (anti_max, real_min) == -1)
1378 {
1379 set_value_range (vr_p, VR_RANGE, real_min,
1380 real_max, vr_p->equiv);
1381 }
1382 /* Case 3a, the anti-range extends into the low
1383 part of the real range. Thus creating a new
1384 low for the real range. */
1385 else if (((cmp = compare_values (anti_max, real_min)) == 1
1386 || cmp == 0)
1387 && compare_values (anti_max, real_max) == -1)
1388 {
1389 gcc_assert (!is_positive_overflow_infinity (anti_max));
1390 if (needs_overflow_infinity (TREE_TYPE (anti_max))
1391 && anti_max == TYPE_MAX_VALUE (TREE_TYPE (anti_max)))
1392 {
1393 if (!supports_overflow_infinity (TREE_TYPE (var_vr->min)))
1394 {
1395 set_value_range_to_varying (vr_p);
1396 return;
1397 }
1398 min = positive_overflow_infinity (TREE_TYPE (var_vr->min));
1399 }
1400 else
1401 min = fold_build2 (PLUS_EXPR, TREE_TYPE (var_vr->min),
1402 anti_max,
1403 build_int_cst (TREE_TYPE (var_vr->min), 1));
1404 max = real_max;
1405 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1406 }
1407 /* Case 3b, the anti-range extends into the high
1408 part of the real range. Thus creating a new
1409 higher for the real range. */
1410 else if (compare_values (anti_min, real_min) == 1
1411 && ((cmp = compare_values (anti_min, real_max)) == -1
1412 || cmp == 0))
1413 {
1414 gcc_assert (!is_negative_overflow_infinity (anti_min));
1415 if (needs_overflow_infinity (TREE_TYPE (anti_min))
1416 && anti_min == TYPE_MIN_VALUE (TREE_TYPE (anti_min)))
1417 {
1418 if (!supports_overflow_infinity (TREE_TYPE (var_vr->min)))
1419 {
1420 set_value_range_to_varying (vr_p);
1421 return;
1422 }
1423 max = negative_overflow_infinity (TREE_TYPE (var_vr->min));
1424 }
1425 else
1426 max = fold_build2 (MINUS_EXPR, TREE_TYPE (var_vr->min),
1427 anti_min,
1428 build_int_cst (TREE_TYPE (var_vr->min), 1));
1429 min = real_min;
1430 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1431 }
1432 }
1433 }
1434 }
1435
1436
1437 /* Extract range information from SSA name VAR and store it in VR. If
1438 VAR has an interesting range, use it. Otherwise, create the
1439 range [VAR, VAR] and return it. This is useful in situations where
1440 we may have conditionals testing values of VARYING names. For
1441 instance,
1442
1443 x_3 = y_5;
1444 if (x_3 > y_5)
1445 ...
1446
1447 Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
1448 always false. */
1449
1450 static void
1451 extract_range_from_ssa_name (value_range_t *vr, tree var)
1452 {
1453 value_range_t *var_vr = get_value_range (var);
1454
1455 if (var_vr->type != VR_UNDEFINED && var_vr->type != VR_VARYING)
1456 copy_value_range (vr, var_vr);
1457 else
1458 set_value_range (vr, VR_RANGE, var, var, NULL);
1459
1460 add_equivalence (vr->equiv, var);
1461 }
1462
1463
1464 /* Wrapper around int_const_binop. If the operation overflows and we
1465 are not using wrapping arithmetic, then adjust the result to be
1466 -INF or +INF depending on CODE, VAL1 and VAL2. This can return
1467 NULL_TREE if we need to use an overflow infinity representation but
1468 the type does not support it. */
1469
1470 static tree
1471 vrp_int_const_binop (enum tree_code code, tree val1, tree val2)
1472 {
1473 tree res;
1474
1475 res = int_const_binop (code, val1, val2, 0);
1476
1477 /* If we are not using wrapping arithmetic, operate symbolically
1478 on -INF and +INF. */
1479 if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (val1)))
1480 {
1481 int checkz = compare_values (res, val1);
1482 bool overflow = false;
1483
1484 /* Ensure that res = val1 [+*] val2 >= val1
1485 or that res = val1 - val2 <= val1. */
1486 if ((code == PLUS_EXPR
1487 && !(checkz == 1 || checkz == 0))
1488 || (code == MINUS_EXPR
1489 && !(checkz == 0 || checkz == -1)))
1490 {
1491 overflow = true;
1492 }
1493 /* Checking for multiplication overflow is done by dividing the
1494 output of the multiplication by the first input of the
1495 multiplication. If the result of that division operation is
1496 not equal to the second input of the multiplication, then the
1497 multiplication overflowed. */
1498 else if (code == MULT_EXPR && !integer_zerop (val1))
1499 {
1500 tree tmp = int_const_binop (TRUNC_DIV_EXPR,
1501 res,
1502 val1, 0);
1503 int check = compare_values (tmp, val2);
1504
1505 if (check != 0)
1506 overflow = true;
1507 }
1508
1509 if (overflow)
1510 {
1511 res = copy_node (res);
1512 TREE_OVERFLOW (res) = 1;
1513 }
1514
1515 }
1516 else if ((TREE_OVERFLOW (res)
1517 && !TREE_OVERFLOW (val1)
1518 && !TREE_OVERFLOW (val2))
1519 || is_overflow_infinity (val1)
1520 || is_overflow_infinity (val2))
1521 {
1522 /* If the operation overflowed but neither VAL1 nor VAL2 are
1523 overflown, return -INF or +INF depending on the operation
1524 and the combination of signs of the operands. */
1525 int sgn1 = tree_int_cst_sgn (val1);
1526 int sgn2 = tree_int_cst_sgn (val2);
1527
1528 if (needs_overflow_infinity (TREE_TYPE (res))
1529 && !supports_overflow_infinity (TREE_TYPE (res)))
1530 return NULL_TREE;
1531
1532 /* We have to punt on adding infinities of different signs,
1533 since we can't tell what the sign of the result should be.
1534 Likewise for subtracting infinities of the same sign. */
1535 if (((code == PLUS_EXPR && sgn1 != sgn2)
1536 || (code == MINUS_EXPR && sgn1 == sgn2))
1537 && is_overflow_infinity (val1)
1538 && is_overflow_infinity (val2))
1539 return NULL_TREE;
1540
1541 /* Don't try to handle division or shifting of infinities. */
1542 if ((code == TRUNC_DIV_EXPR
1543 || code == FLOOR_DIV_EXPR
1544 || code == CEIL_DIV_EXPR
1545 || code == EXACT_DIV_EXPR
1546 || code == ROUND_DIV_EXPR
1547 || code == RSHIFT_EXPR)
1548 && (is_overflow_infinity (val1)
1549 || is_overflow_infinity (val2)))
1550 return NULL_TREE;
1551
1552 /* Notice that we only need to handle the restricted set of
1553 operations handled by extract_range_from_binary_expr.
1554 Among them, only multiplication, addition and subtraction
1555 can yield overflow without overflown operands because we
1556 are working with integral types only... except in the
1557 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
1558 for division too. */
1559
1560 /* For multiplication, the sign of the overflow is given
1561 by the comparison of the signs of the operands. */
1562 if ((code == MULT_EXPR && sgn1 == sgn2)
1563 /* For addition, the operands must be of the same sign
1564 to yield an overflow. Its sign is therefore that
1565 of one of the operands, for example the first. For
1566 infinite operands X + -INF is negative, not positive. */
1567 || (code == PLUS_EXPR
1568 && (sgn1 >= 0
1569 ? !is_negative_overflow_infinity (val2)
1570 : is_positive_overflow_infinity (val2)))
1571 /* For subtraction, non-infinite operands must be of
1572 different signs to yield an overflow. Its sign is
1573 therefore that of the first operand or the opposite of
1574 that of the second operand. A first operand of 0 counts
1575 as positive here, for the corner case 0 - (-INF), which
1576 overflows, but must yield +INF. For infinite operands 0
1577 - INF is negative, not positive. */
1578 || (code == MINUS_EXPR
1579 && (sgn1 >= 0
1580 ? !is_positive_overflow_infinity (val2)
1581 : is_negative_overflow_infinity (val2)))
1582 /* We only get in here with positive shift count, so the
1583 overflow direction is the same as the sign of val1.
1584 Actually rshift does not overflow at all, but we only
1585 handle the case of shifting overflowed -INF and +INF. */
1586 || (code == RSHIFT_EXPR
1587 && sgn1 >= 0)
1588 /* For division, the only case is -INF / -1 = +INF. */
1589 || code == TRUNC_DIV_EXPR
1590 || code == FLOOR_DIV_EXPR
1591 || code == CEIL_DIV_EXPR
1592 || code == EXACT_DIV_EXPR
1593 || code == ROUND_DIV_EXPR)
1594 return (needs_overflow_infinity (TREE_TYPE (res))
1595 ? positive_overflow_infinity (TREE_TYPE (res))
1596 : TYPE_MAX_VALUE (TREE_TYPE (res)));
1597 else
1598 return (needs_overflow_infinity (TREE_TYPE (res))
1599 ? negative_overflow_infinity (TREE_TYPE (res))
1600 : TYPE_MIN_VALUE (TREE_TYPE (res)));
1601 }
1602
1603 return res;
1604 }
1605
1606
1607 /* Extract range information from a binary expression EXPR based on
1608 the ranges of each of its operands and the expression code. */
1609
1610 static void
1611 extract_range_from_binary_expr (value_range_t *vr, tree expr)
1612 {
1613 enum tree_code code = TREE_CODE (expr);
1614 enum value_range_type type;
1615 tree op0, op1, min, max;
1616 int cmp;
1617 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
1618 value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
1619
1620 /* Not all binary expressions can be applied to ranges in a
1621 meaningful way. Handle only arithmetic operations. */
1622 if (code != PLUS_EXPR
1623 && code != MINUS_EXPR
1624 && code != MULT_EXPR
1625 && code != TRUNC_DIV_EXPR
1626 && code != FLOOR_DIV_EXPR
1627 && code != CEIL_DIV_EXPR
1628 && code != EXACT_DIV_EXPR
1629 && code != ROUND_DIV_EXPR
1630 && code != RSHIFT_EXPR
1631 && code != MIN_EXPR
1632 && code != MAX_EXPR
1633 && code != BIT_AND_EXPR
1634 && code != TRUTH_ANDIF_EXPR
1635 && code != TRUTH_ORIF_EXPR
1636 && code != TRUTH_AND_EXPR
1637 && code != TRUTH_OR_EXPR)
1638 {
1639 set_value_range_to_varying (vr);
1640 return;
1641 }
1642
1643 /* Get value ranges for each operand. For constant operands, create
1644 a new value range with the operand to simplify processing. */
1645 op0 = TREE_OPERAND (expr, 0);
1646 if (TREE_CODE (op0) == SSA_NAME)
1647 vr0 = *(get_value_range (op0));
1648 else if (is_gimple_min_invariant (op0))
1649 set_value_range (&vr0, VR_RANGE, op0, op0, NULL);
1650 else
1651 set_value_range_to_varying (&vr0);
1652
1653 op1 = TREE_OPERAND (expr, 1);
1654 if (TREE_CODE (op1) == SSA_NAME)
1655 vr1 = *(get_value_range (op1));
1656 else if (is_gimple_min_invariant (op1))
1657 set_value_range (&vr1, VR_RANGE, op1, op1, NULL);
1658 else
1659 set_value_range_to_varying (&vr1);
1660
1661 /* If either range is UNDEFINED, so is the result. */
1662 if (vr0.type == VR_UNDEFINED || vr1.type == VR_UNDEFINED)
1663 {
1664 set_value_range_to_undefined (vr);
1665 return;
1666 }
1667
1668 /* The type of the resulting value range defaults to VR0.TYPE. */
1669 type = vr0.type;
1670
1671 /* Refuse to operate on VARYING ranges, ranges of different kinds
1672 and symbolic ranges. As an exception, we allow BIT_AND_EXPR
1673 because we may be able to derive a useful range even if one of
1674 the operands is VR_VARYING or symbolic range. TODO, we may be
1675 able to derive anti-ranges in some cases. */
1676 if (code != BIT_AND_EXPR
1677 && code != TRUTH_AND_EXPR
1678 && code != TRUTH_OR_EXPR
1679 && (vr0.type == VR_VARYING
1680 || vr1.type == VR_VARYING
1681 || vr0.type != vr1.type
1682 || symbolic_range_p (&vr0)
1683 || symbolic_range_p (&vr1)))
1684 {
1685 set_value_range_to_varying (vr);
1686 return;
1687 }
1688
1689 /* Now evaluate the expression to determine the new range. */
1690 if (POINTER_TYPE_P (TREE_TYPE (expr))
1691 || POINTER_TYPE_P (TREE_TYPE (op0))
1692 || POINTER_TYPE_P (TREE_TYPE (op1)))
1693 {
1694 /* For pointer types, we are really only interested in asserting
1695 whether the expression evaluates to non-NULL. FIXME, we used
1696 to gcc_assert (code == PLUS_EXPR || code == MINUS_EXPR), but
1697 ivopts is generating expressions with pointer multiplication
1698 in them. */
1699 if (code == PLUS_EXPR)
1700 {
1701 if (range_is_nonnull (&vr0) || range_is_nonnull (&vr1))
1702 set_value_range_to_nonnull (vr, TREE_TYPE (expr));
1703 else if (range_is_null (&vr0) && range_is_null (&vr1))
1704 set_value_range_to_null (vr, TREE_TYPE (expr));
1705 else
1706 set_value_range_to_varying (vr);
1707 }
1708 else
1709 {
1710 /* Subtracting from a pointer, may yield 0, so just drop the
1711 resulting range to varying. */
1712 set_value_range_to_varying (vr);
1713 }
1714
1715 return;
1716 }
1717
1718 /* For integer ranges, apply the operation to each end of the
1719 range and see what we end up with. */
1720 if (code == TRUTH_ANDIF_EXPR
1721 || code == TRUTH_ORIF_EXPR
1722 || code == TRUTH_AND_EXPR
1723 || code == TRUTH_OR_EXPR)
1724 {
1725 /* If one of the operands is zero, we know that the whole
1726 expression evaluates zero. */
1727 if (code == TRUTH_AND_EXPR
1728 && ((vr0.type == VR_RANGE
1729 && integer_zerop (vr0.min)
1730 && integer_zerop (vr0.max))
1731 || (vr1.type == VR_RANGE
1732 && integer_zerop (vr1.min)
1733 && integer_zerop (vr1.max))))
1734 {
1735 type = VR_RANGE;
1736 min = max = build_int_cst (TREE_TYPE (expr), 0);
1737 }
1738 /* If one of the operands is one, we know that the whole
1739 expression evaluates one. */
1740 else if (code == TRUTH_OR_EXPR
1741 && ((vr0.type == VR_RANGE
1742 && integer_onep (vr0.min)
1743 && integer_onep (vr0.max))
1744 || (vr1.type == VR_RANGE
1745 && integer_onep (vr1.min)
1746 && integer_onep (vr1.max))))
1747 {
1748 type = VR_RANGE;
1749 min = max = build_int_cst (TREE_TYPE (expr), 1);
1750 }
1751 else if (vr0.type != VR_VARYING
1752 && vr1.type != VR_VARYING
1753 && vr0.type == vr1.type
1754 && !symbolic_range_p (&vr0)
1755 && !overflow_infinity_range_p (&vr0)
1756 && !symbolic_range_p (&vr1)
1757 && !overflow_infinity_range_p (&vr1))
1758 {
1759 /* Boolean expressions cannot be folded with int_const_binop. */
1760 min = fold_binary (code, TREE_TYPE (expr), vr0.min, vr1.min);
1761 max = fold_binary (code, TREE_TYPE (expr), vr0.max, vr1.max);
1762 }
1763 else
1764 {
1765 /* The result of a TRUTH_*_EXPR is always true or false. */
1766 set_value_range_to_truthvalue (vr, TREE_TYPE (expr));
1767 return;
1768 }
1769 }
1770 else if (code == PLUS_EXPR
1771 || code == MIN_EXPR
1772 || code == MAX_EXPR)
1773 {
1774 /* If we have a PLUS_EXPR with two VR_ANTI_RANGEs, drop to
1775 VR_VARYING. It would take more effort to compute a precise
1776 range for such a case. For example, if we have op0 == 1 and
1777 op1 == -1 with their ranges both being ~[0,0], we would have
1778 op0 + op1 == 0, so we cannot claim that the sum is in ~[0,0].
1779 Note that we are guaranteed to have vr0.type == vr1.type at
1780 this point. */
1781 if (code == PLUS_EXPR && vr0.type == VR_ANTI_RANGE)
1782 {
1783 set_value_range_to_varying (vr);
1784 return;
1785 }
1786
1787 /* For operations that make the resulting range directly
1788 proportional to the original ranges, apply the operation to
1789 the same end of each range. */
1790 min = vrp_int_const_binop (code, vr0.min, vr1.min);
1791 max = vrp_int_const_binop (code, vr0.max, vr1.max);
1792 }
1793 else if (code == MULT_EXPR
1794 || code == TRUNC_DIV_EXPR
1795 || code == FLOOR_DIV_EXPR
1796 || code == CEIL_DIV_EXPR
1797 || code == EXACT_DIV_EXPR
1798 || code == ROUND_DIV_EXPR
1799 || code == RSHIFT_EXPR)
1800 {
1801 tree val[4];
1802 size_t i;
1803 bool sop;
1804
1805 /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
1806 drop to VR_VARYING. It would take more effort to compute a
1807 precise range for such a case. For example, if we have
1808 op0 == 65536 and op1 == 65536 with their ranges both being
1809 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
1810 we cannot claim that the product is in ~[0,0]. Note that we
1811 are guaranteed to have vr0.type == vr1.type at this
1812 point. */
1813 if (code == MULT_EXPR
1814 && vr0.type == VR_ANTI_RANGE
1815 && !TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0)))
1816 {
1817 set_value_range_to_varying (vr);
1818 return;
1819 }
1820
1821 /* If we have a RSHIFT_EXPR with any shift values outside [0..prec-1],
1822 then drop to VR_VARYING. Outside of this range we get undefined
1823 behavior from the shift operation. We cannot even trust
1824 SHIFT_COUNT_TRUNCATED at this stage, because that applies to rtl
1825 shifts, and the operation at the tree level may be widened. */
1826 if (code == RSHIFT_EXPR)
1827 {
1828 if (vr1.type == VR_ANTI_RANGE
1829 || !vrp_expr_computes_nonnegative (op1, &sop)
1830 || (operand_less_p
1831 (build_int_cst (TREE_TYPE (vr1.max),
1832 TYPE_PRECISION (TREE_TYPE (expr)) - 1),
1833 vr1.max) != 0))
1834 {
1835 set_value_range_to_varying (vr);
1836 return;
1837 }
1838 }
1839
1840 /* Multiplications and divisions are a bit tricky to handle,
1841 depending on the mix of signs we have in the two ranges, we
1842 need to operate on different values to get the minimum and
1843 maximum values for the new range. One approach is to figure
1844 out all the variations of range combinations and do the
1845 operations.
1846
1847 However, this involves several calls to compare_values and it
1848 is pretty convoluted. It's simpler to do the 4 operations
1849 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
1850 MAX1) and then figure the smallest and largest values to form
1851 the new range. */
1852
1853 /* Divisions by zero result in a VARYING value. */
1854 else if (code != MULT_EXPR
1855 && (vr0.type == VR_ANTI_RANGE || range_includes_zero_p (&vr1)))
1856 {
1857 set_value_range_to_varying (vr);
1858 return;
1859 }
1860
1861 /* Compute the 4 cross operations. */
1862 sop = false;
1863 val[0] = vrp_int_const_binop (code, vr0.min, vr1.min);
1864 if (val[0] == NULL_TREE)
1865 sop = true;
1866
1867 if (vr1.max == vr1.min)
1868 val[1] = NULL_TREE;
1869 else
1870 {
1871 val[1] = vrp_int_const_binop (code, vr0.min, vr1.max);
1872 if (val[1] == NULL_TREE)
1873 sop = true;
1874 }
1875
1876 if (vr0.max == vr0.min)
1877 val[2] = NULL_TREE;
1878 else
1879 {
1880 val[2] = vrp_int_const_binop (code, vr0.max, vr1.min);
1881 if (val[2] == NULL_TREE)
1882 sop = true;
1883 }
1884
1885 if (vr0.min == vr0.max || vr1.min == vr1.max)
1886 val[3] = NULL_TREE;
1887 else
1888 {
1889 val[3] = vrp_int_const_binop (code, vr0.max, vr1.max);
1890 if (val[3] == NULL_TREE)
1891 sop = true;
1892 }
1893
1894 if (sop)
1895 {
1896 set_value_range_to_varying (vr);
1897 return;
1898 }
1899
1900 /* Set MIN to the minimum of VAL[i] and MAX to the maximum
1901 of VAL[i]. */
1902 min = val[0];
1903 max = val[0];
1904 for (i = 1; i < 4; i++)
1905 {
1906 if (!is_gimple_min_invariant (min)
1907 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
1908 || !is_gimple_min_invariant (max)
1909 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
1910 break;
1911
1912 if (val[i])
1913 {
1914 if (!is_gimple_min_invariant (val[i])
1915 || (TREE_OVERFLOW (val[i])
1916 && !is_overflow_infinity (val[i])))
1917 {
1918 /* If we found an overflowed value, set MIN and MAX
1919 to it so that we set the resulting range to
1920 VARYING. */
1921 min = max = val[i];
1922 break;
1923 }
1924
1925 if (compare_values (val[i], min) == -1)
1926 min = val[i];
1927
1928 if (compare_values (val[i], max) == 1)
1929 max = val[i];
1930 }
1931 }
1932 }
1933 else if (code == MINUS_EXPR)
1934 {
1935 /* If we have a MINUS_EXPR with two VR_ANTI_RANGEs, drop to
1936 VR_VARYING. It would take more effort to compute a precise
1937 range for such a case. For example, if we have op0 == 1 and
1938 op1 == 1 with their ranges both being ~[0,0], we would have
1939 op0 - op1 == 0, so we cannot claim that the difference is in
1940 ~[0,0]. Note that we are guaranteed to have
1941 vr0.type == vr1.type at this point. */
1942 if (vr0.type == VR_ANTI_RANGE)
1943 {
1944 set_value_range_to_varying (vr);
1945 return;
1946 }
1947
1948 /* For MINUS_EXPR, apply the operation to the opposite ends of
1949 each range. */
1950 min = vrp_int_const_binop (code, vr0.min, vr1.max);
1951 max = vrp_int_const_binop (code, vr0.max, vr1.min);
1952 }
1953 else if (code == BIT_AND_EXPR)
1954 {
1955 if (vr0.type == VR_RANGE
1956 && vr0.min == vr0.max
1957 && TREE_CODE (vr0.max) == INTEGER_CST
1958 && !TREE_OVERFLOW (vr0.max)
1959 && tree_int_cst_sgn (vr0.max) >= 0)
1960 {
1961 min = build_int_cst (TREE_TYPE (expr), 0);
1962 max = vr0.max;
1963 }
1964 else if (vr1.type == VR_RANGE
1965 && vr1.min == vr1.max
1966 && TREE_CODE (vr1.max) == INTEGER_CST
1967 && !TREE_OVERFLOW (vr1.max)
1968 && tree_int_cst_sgn (vr1.max) >= 0)
1969 {
1970 type = VR_RANGE;
1971 min = build_int_cst (TREE_TYPE (expr), 0);
1972 max = vr1.max;
1973 }
1974 else
1975 {
1976 set_value_range_to_varying (vr);
1977 return;
1978 }
1979 }
1980 else
1981 gcc_unreachable ();
1982
1983 /* If either MIN or MAX overflowed, then set the resulting range to
1984 VARYING. But we do accept an overflow infinity
1985 representation. */
1986 if (min == NULL_TREE
1987 || !is_gimple_min_invariant (min)
1988 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
1989 || max == NULL_TREE
1990 || !is_gimple_min_invariant (max)
1991 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
1992 {
1993 set_value_range_to_varying (vr);
1994 return;
1995 }
1996
1997 /* We punt if:
1998 1) [-INF, +INF]
1999 2) [-INF, +-INF(OVF)]
2000 3) [+-INF(OVF), +INF]
2001 4) [+-INF(OVF), +-INF(OVF)]
2002 We learn nothing when we have INF and INF(OVF) on both sides.
2003 Note that we do accept [-INF, -INF] and [+INF, +INF] without
2004 overflow. */
2005 if ((min == TYPE_MIN_VALUE (TREE_TYPE (min))
2006 || is_overflow_infinity (min))
2007 && (max == TYPE_MAX_VALUE (TREE_TYPE (max))
2008 || is_overflow_infinity (max)))
2009 {
2010 set_value_range_to_varying (vr);
2011 return;
2012 }
2013
2014 cmp = compare_values (min, max);
2015 if (cmp == -2 || cmp == 1)
2016 {
2017 /* If the new range has its limits swapped around (MIN > MAX),
2018 then the operation caused one of them to wrap around, mark
2019 the new range VARYING. */
2020 set_value_range_to_varying (vr);
2021 }
2022 else
2023 set_value_range (vr, type, min, max, NULL);
2024 }
2025
2026
2027 /* Extract range information from a unary expression EXPR based on
2028 the range of its operand and the expression code. */
2029
2030 static void
2031 extract_range_from_unary_expr (value_range_t *vr, tree expr)
2032 {
2033 enum tree_code code = TREE_CODE (expr);
2034 tree min, max, op0;
2035 int cmp;
2036 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2037
2038 /* Refuse to operate on certain unary expressions for which we
2039 cannot easily determine a resulting range. */
2040 if (code == FIX_TRUNC_EXPR
2041 || code == FLOAT_EXPR
2042 || code == BIT_NOT_EXPR
2043 || code == NON_LVALUE_EXPR
2044 || code == CONJ_EXPR)
2045 {
2046 set_value_range_to_varying (vr);
2047 return;
2048 }
2049
2050 /* Get value ranges for the operand. For constant operands, create
2051 a new value range with the operand to simplify processing. */
2052 op0 = TREE_OPERAND (expr, 0);
2053 if (TREE_CODE (op0) == SSA_NAME)
2054 vr0 = *(get_value_range (op0));
2055 else if (is_gimple_min_invariant (op0))
2056 set_value_range (&vr0, VR_RANGE, op0, op0, NULL);
2057 else
2058 set_value_range_to_varying (&vr0);
2059
2060 /* If VR0 is UNDEFINED, so is the result. */
2061 if (vr0.type == VR_UNDEFINED)
2062 {
2063 set_value_range_to_undefined (vr);
2064 return;
2065 }
2066
2067 /* Refuse to operate on symbolic ranges, or if neither operand is
2068 a pointer or integral type. */
2069 if ((!INTEGRAL_TYPE_P (TREE_TYPE (op0))
2070 && !POINTER_TYPE_P (TREE_TYPE (op0)))
2071 || (vr0.type != VR_VARYING
2072 && symbolic_range_p (&vr0)))
2073 {
2074 set_value_range_to_varying (vr);
2075 return;
2076 }
2077
2078 /* If the expression involves pointers, we are only interested in
2079 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
2080 if (POINTER_TYPE_P (TREE_TYPE (expr)) || POINTER_TYPE_P (TREE_TYPE (op0)))
2081 {
2082 bool sop;
2083
2084 sop = false;
2085 if (range_is_nonnull (&vr0)
2086 || (tree_expr_nonzero_warnv_p (expr, &sop)
2087 && !sop))
2088 set_value_range_to_nonnull (vr, TREE_TYPE (expr));
2089 else if (range_is_null (&vr0))
2090 set_value_range_to_null (vr, TREE_TYPE (expr));
2091 else
2092 set_value_range_to_varying (vr);
2093
2094 return;
2095 }
2096
2097 /* Handle unary expressions on integer ranges. */
2098 if (code == NOP_EXPR || code == CONVERT_EXPR)
2099 {
2100 tree inner_type = TREE_TYPE (op0);
2101 tree outer_type = TREE_TYPE (expr);
2102
2103 /* If VR0 represents a simple range, then try to convert
2104 the min and max values for the range to the same type
2105 as OUTER_TYPE. If the results compare equal to VR0's
2106 min and max values and the new min is still less than
2107 or equal to the new max, then we can safely use the newly
2108 computed range for EXPR. This allows us to compute
2109 accurate ranges through many casts. */
2110 if ((vr0.type == VR_RANGE
2111 && !overflow_infinity_range_p (&vr0))
2112 || (vr0.type == VR_VARYING
2113 && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)))
2114 {
2115 tree new_min, new_max, orig_min, orig_max;
2116
2117 /* Convert the input operand min/max to OUTER_TYPE. If
2118 the input has no range information, then use the min/max
2119 for the input's type. */
2120 if (vr0.type == VR_RANGE)
2121 {
2122 orig_min = vr0.min;
2123 orig_max = vr0.max;
2124 }
2125 else
2126 {
2127 orig_min = TYPE_MIN_VALUE (inner_type);
2128 orig_max = TYPE_MAX_VALUE (inner_type);
2129 }
2130
2131 new_min = fold_convert (outer_type, orig_min);
2132 new_max = fold_convert (outer_type, orig_max);
2133
2134 /* Verify the new min/max values are gimple values and
2135 that they compare equal to the original input's
2136 min/max values. */
2137 if (is_gimple_val (new_min)
2138 && is_gimple_val (new_max)
2139 && tree_int_cst_equal (new_min, orig_min)
2140 && tree_int_cst_equal (new_max, orig_max)
2141 && (cmp = compare_values (new_min, new_max)) <= 0
2142 && cmp >= -1)
2143 {
2144 set_value_range (vr, VR_RANGE, new_min, new_max, vr->equiv);
2145 return;
2146 }
2147 }
2148
2149 /* When converting types of different sizes, set the result to
2150 VARYING. Things like sign extensions and precision loss may
2151 change the range. For instance, if x_3 is of type 'long long
2152 int' and 'y_5 = (unsigned short) x_3', if x_3 is ~[0, 0], it
2153 is impossible to know at compile time whether y_5 will be
2154 ~[0, 0]. */
2155 if (TYPE_SIZE (inner_type) != TYPE_SIZE (outer_type)
2156 || TYPE_PRECISION (inner_type) != TYPE_PRECISION (outer_type))
2157 {
2158 set_value_range_to_varying (vr);
2159 return;
2160 }
2161 }
2162
2163 /* Conversion of a VR_VARYING value to a wider type can result
2164 in a usable range. So wait until after we've handled conversions
2165 before dropping the result to VR_VARYING if we had a source
2166 operand that is VR_VARYING. */
2167 if (vr0.type == VR_VARYING)
2168 {
2169 set_value_range_to_varying (vr);
2170 return;
2171 }
2172
2173 /* Apply the operation to each end of the range and see what we end
2174 up with. */
2175 if (code == NEGATE_EXPR
2176 && !TYPE_UNSIGNED (TREE_TYPE (expr)))
2177 {
2178 /* NEGATE_EXPR flips the range around. We need to treat
2179 TYPE_MIN_VALUE specially. */
2180 if (is_positive_overflow_infinity (vr0.max))
2181 min = negative_overflow_infinity (TREE_TYPE (expr));
2182 else if (is_negative_overflow_infinity (vr0.max))
2183 min = positive_overflow_infinity (TREE_TYPE (expr));
2184 else if (vr0.max != TYPE_MIN_VALUE (TREE_TYPE (expr)))
2185 min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
2186 else if (needs_overflow_infinity (TREE_TYPE (expr)))
2187 {
2188 if (supports_overflow_infinity (TREE_TYPE (expr)))
2189 min = positive_overflow_infinity (TREE_TYPE (expr));
2190 else
2191 {
2192 set_value_range_to_varying (vr);
2193 return;
2194 }
2195 }
2196 else
2197 min = TYPE_MIN_VALUE (TREE_TYPE (expr));
2198
2199 if (is_positive_overflow_infinity (vr0.min))
2200 max = negative_overflow_infinity (TREE_TYPE (expr));
2201 else if (is_negative_overflow_infinity (vr0.min))
2202 max = positive_overflow_infinity (TREE_TYPE (expr));
2203 else if (vr0.min != TYPE_MIN_VALUE (TREE_TYPE (expr)))
2204 max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
2205 else if (needs_overflow_infinity (TREE_TYPE (expr)))
2206 {
2207 if (supports_overflow_infinity (TREE_TYPE (expr)))
2208 max = positive_overflow_infinity (TREE_TYPE (expr));
2209 else
2210 {
2211 set_value_range_to_varying (vr);
2212 return;
2213 }
2214 }
2215 else
2216 max = TYPE_MIN_VALUE (TREE_TYPE (expr));
2217 }
2218 else if (code == NEGATE_EXPR
2219 && TYPE_UNSIGNED (TREE_TYPE (expr)))
2220 {
2221 if (!range_includes_zero_p (&vr0))
2222 {
2223 max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
2224 min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
2225 }
2226 else
2227 {
2228 if (range_is_null (&vr0))
2229 set_value_range_to_null (vr, TREE_TYPE (expr));
2230 else
2231 set_value_range_to_varying (vr);
2232 return;
2233 }
2234 }
2235 else if (code == ABS_EXPR
2236 && !TYPE_UNSIGNED (TREE_TYPE (expr)))
2237 {
2238 /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
2239 useful range. */
2240 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (expr))
2241 && ((vr0.type == VR_RANGE
2242 && vr0.min == TYPE_MIN_VALUE (TREE_TYPE (expr)))
2243 || (vr0.type == VR_ANTI_RANGE
2244 && vr0.min != TYPE_MIN_VALUE (TREE_TYPE (expr))
2245 && !range_includes_zero_p (&vr0))))
2246 {
2247 set_value_range_to_varying (vr);
2248 return;
2249 }
2250
2251 /* ABS_EXPR may flip the range around, if the original range
2252 included negative values. */
2253 if (is_overflow_infinity (vr0.min))
2254 min = positive_overflow_infinity (TREE_TYPE (expr));
2255 else if (vr0.min != TYPE_MIN_VALUE (TREE_TYPE (expr)))
2256 min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
2257 else if (!needs_overflow_infinity (TREE_TYPE (expr)))
2258 min = TYPE_MAX_VALUE (TREE_TYPE (expr));
2259 else if (supports_overflow_infinity (TREE_TYPE (expr)))
2260 min = positive_overflow_infinity (TREE_TYPE (expr));
2261 else
2262 {
2263 set_value_range_to_varying (vr);
2264 return;
2265 }
2266
2267 if (is_overflow_infinity (vr0.max))
2268 max = positive_overflow_infinity (TREE_TYPE (expr));
2269 else if (vr0.max != TYPE_MIN_VALUE (TREE_TYPE (expr)))
2270 max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
2271 else if (!needs_overflow_infinity (TREE_TYPE (expr)))
2272 max = TYPE_MAX_VALUE (TREE_TYPE (expr));
2273 else if (supports_overflow_infinity (TREE_TYPE (expr)))
2274 max = positive_overflow_infinity (TREE_TYPE (expr));
2275 else
2276 {
2277 set_value_range_to_varying (vr);
2278 return;
2279 }
2280
2281 cmp = compare_values (min, max);
2282
2283 /* If a VR_ANTI_RANGEs contains zero, then we have
2284 ~[-INF, min(MIN, MAX)]. */
2285 if (vr0.type == VR_ANTI_RANGE)
2286 {
2287 if (range_includes_zero_p (&vr0))
2288 {
2289 /* Take the lower of the two values. */
2290 if (cmp != 1)
2291 max = min;
2292
2293 /* Create ~[-INF, min (abs(MIN), abs(MAX))]
2294 or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
2295 flag_wrapv is set and the original anti-range doesn't include
2296 TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
2297 if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (expr)))
2298 {
2299 tree type_min_value = TYPE_MIN_VALUE (TREE_TYPE (expr));
2300
2301 min = (vr0.min != type_min_value
2302 ? int_const_binop (PLUS_EXPR, type_min_value,
2303 integer_one_node, 0)
2304 : type_min_value);
2305 }
2306 else
2307 {
2308 if (overflow_infinity_range_p (&vr0))
2309 min = negative_overflow_infinity (TREE_TYPE (expr));
2310 else
2311 min = TYPE_MIN_VALUE (TREE_TYPE (expr));
2312 }
2313 }
2314 else
2315 {
2316 /* All else has failed, so create the range [0, INF], even for
2317 flag_wrapv since TYPE_MIN_VALUE is in the original
2318 anti-range. */
2319 vr0.type = VR_RANGE;
2320 min = build_int_cst (TREE_TYPE (expr), 0);
2321 if (needs_overflow_infinity (TREE_TYPE (expr)))
2322 {
2323 if (supports_overflow_infinity (TREE_TYPE (expr)))
2324 max = positive_overflow_infinity (TREE_TYPE (expr));
2325 else
2326 {
2327 set_value_range_to_varying (vr);
2328 return;
2329 }
2330 }
2331 else
2332 max = TYPE_MAX_VALUE (TREE_TYPE (expr));
2333 }
2334 }
2335
2336 /* If the range contains zero then we know that the minimum value in the
2337 range will be zero. */
2338 else if (range_includes_zero_p (&vr0))
2339 {
2340 if (cmp == 1)
2341 max = min;
2342 min = build_int_cst (TREE_TYPE (expr), 0);
2343 }
2344 else
2345 {
2346 /* If the range was reversed, swap MIN and MAX. */
2347 if (cmp == 1)
2348 {
2349 tree t = min;
2350 min = max;
2351 max = t;
2352 }
2353 }
2354 }
2355 else
2356 {
2357 /* Otherwise, operate on each end of the range. */
2358 min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
2359 max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
2360
2361 if (needs_overflow_infinity (TREE_TYPE (expr)))
2362 {
2363 gcc_assert (code != NEGATE_EXPR && code != ABS_EXPR);
2364 if (is_overflow_infinity (vr0.min))
2365 min = vr0.min;
2366 else if (TREE_OVERFLOW (min))
2367 {
2368 if (supports_overflow_infinity (TREE_TYPE (expr)))
2369 min = (tree_int_cst_sgn (min) >= 0
2370 ? positive_overflow_infinity (TREE_TYPE (min))
2371 : negative_overflow_infinity (TREE_TYPE (min)));
2372 else
2373 {
2374 set_value_range_to_varying (vr);
2375 return;
2376 }
2377 }
2378
2379 if (is_overflow_infinity (vr0.max))
2380 max = vr0.max;
2381 else if (TREE_OVERFLOW (max))
2382 {
2383 if (supports_overflow_infinity (TREE_TYPE (expr)))
2384 max = (tree_int_cst_sgn (max) >= 0
2385 ? positive_overflow_infinity (TREE_TYPE (max))
2386 : negative_overflow_infinity (TREE_TYPE (max)));
2387 else
2388 {
2389 set_value_range_to_varying (vr);
2390 return;
2391 }
2392 }
2393 }
2394 }
2395
2396 cmp = compare_values (min, max);
2397 if (cmp == -2 || cmp == 1)
2398 {
2399 /* If the new range has its limits swapped around (MIN > MAX),
2400 then the operation caused one of them to wrap around, mark
2401 the new range VARYING. */
2402 set_value_range_to_varying (vr);
2403 }
2404 else
2405 set_value_range (vr, vr0.type, min, max, NULL);
2406 }
2407
2408
2409 /* Extract range information from a conditional expression EXPR based on
2410 the ranges of each of its operands and the expression code. */
2411
2412 static void
2413 extract_range_from_cond_expr (value_range_t *vr, tree expr)
2414 {
2415 tree op0, op1;
2416 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2417 value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2418
2419 /* Get value ranges for each operand. For constant operands, create
2420 a new value range with the operand to simplify processing. */
2421 op0 = COND_EXPR_THEN (expr);
2422 if (TREE_CODE (op0) == SSA_NAME)
2423 vr0 = *(get_value_range (op0));
2424 else if (is_gimple_min_invariant (op0))
2425 set_value_range (&vr0, VR_RANGE, op0, op0, NULL);
2426 else
2427 set_value_range_to_varying (&vr0);
2428
2429 op1 = COND_EXPR_ELSE (expr);
2430 if (TREE_CODE (op1) == SSA_NAME)
2431 vr1 = *(get_value_range (op1));
2432 else if (is_gimple_min_invariant (op1))
2433 set_value_range (&vr1, VR_RANGE, op1, op1, NULL);
2434 else
2435 set_value_range_to_varying (&vr1);
2436
2437 /* The resulting value range is the union of the operand ranges */
2438 vrp_meet (&vr0, &vr1);
2439 copy_value_range (vr, &vr0);
2440 }
2441
2442
2443 /* Extract range information from a comparison expression EXPR based
2444 on the range of its operand and the expression code. */
2445
2446 static void
2447 extract_range_from_comparison (value_range_t *vr, tree expr)
2448 {
2449 bool sop = false;
2450 tree val = vrp_evaluate_conditional_warnv (expr, false, &sop);
2451
2452 /* A disadvantage of using a special infinity as an overflow
2453 representation is that we lose the ability to record overflow
2454 when we don't have an infinity. So we have to ignore a result
2455 which relies on overflow. */
2456
2457 if (val && !is_overflow_infinity (val) && !sop)
2458 {
2459 /* Since this expression was found on the RHS of an assignment,
2460 its type may be different from _Bool. Convert VAL to EXPR's
2461 type. */
2462 val = fold_convert (TREE_TYPE (expr), val);
2463 set_value_range (vr, VR_RANGE, val, val, vr->equiv);
2464 }
2465 else
2466 /* The result of a comparison is always true or false. */
2467 set_value_range_to_truthvalue (vr, TREE_TYPE (expr));
2468 }
2469
2470
2471 /* Try to compute a useful range out of expression EXPR and store it
2472 in *VR. */
2473
2474 static void
2475 extract_range_from_expr (value_range_t *vr, tree expr)
2476 {
2477 enum tree_code code = TREE_CODE (expr);
2478
2479 if (code == ASSERT_EXPR)
2480 extract_range_from_assert (vr, expr);
2481 else if (code == SSA_NAME)
2482 extract_range_from_ssa_name (vr, expr);
2483 else if (TREE_CODE_CLASS (code) == tcc_binary
2484 || code == TRUTH_ANDIF_EXPR
2485 || code == TRUTH_ORIF_EXPR
2486 || code == TRUTH_AND_EXPR
2487 || code == TRUTH_OR_EXPR
2488 || code == TRUTH_XOR_EXPR)
2489 extract_range_from_binary_expr (vr, expr);
2490 else if (TREE_CODE_CLASS (code) == tcc_unary)
2491 extract_range_from_unary_expr (vr, expr);
2492 else if (code == COND_EXPR)
2493 extract_range_from_cond_expr (vr, expr);
2494 else if (TREE_CODE_CLASS (code) == tcc_comparison)
2495 extract_range_from_comparison (vr, expr);
2496 else if (is_gimple_min_invariant (expr))
2497 set_value_range (vr, VR_RANGE, expr, expr, NULL);
2498 else
2499 set_value_range_to_varying (vr);
2500
2501 /* If we got a varying range from the tests above, try a final
2502 time to derive a nonnegative or nonzero range. This time
2503 relying primarily on generic routines in fold in conjunction
2504 with range data. */
2505 if (vr->type == VR_VARYING)
2506 {
2507 bool sop = false;
2508
2509 if (INTEGRAL_TYPE_P (TREE_TYPE (expr))
2510 && vrp_expr_computes_nonnegative (expr, &sop))
2511 set_value_range_to_nonnegative (vr, TREE_TYPE (expr),
2512 sop || is_overflow_infinity (expr));
2513 else if (vrp_expr_computes_nonzero (expr, &sop)
2514 && !sop)
2515 set_value_range_to_nonnull (vr, TREE_TYPE (expr));
2516 }
2517 }
2518
2519 /* Given a range VR, a LOOP and a variable VAR, determine whether it
2520 would be profitable to adjust VR using scalar evolution information
2521 for VAR. If so, update VR with the new limits. */
2522
2523 static void
2524 adjust_range_with_scev (value_range_t *vr, struct loop *loop, tree stmt,
2525 tree var)
2526 {
2527 tree init, step, chrec, tmin, tmax, min, max, type;
2528 enum ev_direction dir;
2529
2530 /* TODO. Don't adjust anti-ranges. An anti-range may provide
2531 better opportunities than a regular range, but I'm not sure. */
2532 if (vr->type == VR_ANTI_RANGE)
2533 return;
2534
2535 chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));
2536 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
2537 return;
2538
2539 init = initial_condition_in_loop_num (chrec, loop->num);
2540 step = evolution_part_in_loop_num (chrec, loop->num);
2541
2542 /* If STEP is symbolic, we can't know whether INIT will be the
2543 minimum or maximum value in the range. Also, unless INIT is
2544 a simple expression, compare_values and possibly other functions
2545 in tree-vrp won't be able to handle it. */
2546 if (step == NULL_TREE
2547 || !is_gimple_min_invariant (step)
2548 || !valid_value_p (init))
2549 return;
2550
2551 dir = scev_direction (chrec);
2552 if (/* Do not adjust ranges if we do not know whether the iv increases
2553 or decreases, ... */
2554 dir == EV_DIR_UNKNOWN
2555 /* ... or if it may wrap. */
2556 || scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
2557 true))
2558 return;
2559
2560 /* We use TYPE_MIN_VALUE and TYPE_MAX_VALUE here instead of
2561 negative_overflow_infinity and positive_overflow_infinity,
2562 because we have concluded that the loop probably does not
2563 wrap. */
2564
2565 type = TREE_TYPE (var);
2566 if (POINTER_TYPE_P (type) || !TYPE_MIN_VALUE (type))
2567 tmin = lower_bound_in_type (type, type);
2568 else
2569 tmin = TYPE_MIN_VALUE (type);
2570 if (POINTER_TYPE_P (type) || !TYPE_MAX_VALUE (type))
2571 tmax = upper_bound_in_type (type, type);
2572 else
2573 tmax = TYPE_MAX_VALUE (type);
2574
2575 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
2576 {
2577 min = tmin;
2578 max = tmax;
2579
2580 /* For VARYING or UNDEFINED ranges, just about anything we get
2581 from scalar evolutions should be better. */
2582
2583 if (dir == EV_DIR_DECREASES)
2584 max = init;
2585 else
2586 min = init;
2587
2588 /* If we would create an invalid range, then just assume we
2589 know absolutely nothing. This may be over-conservative,
2590 but it's clearly safe, and should happen only in unreachable
2591 parts of code, or for invalid programs. */
2592 if (compare_values (min, max) == 1)
2593 return;
2594
2595 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
2596 }
2597 else if (vr->type == VR_RANGE)
2598 {
2599 min = vr->min;
2600 max = vr->max;
2601
2602 if (dir == EV_DIR_DECREASES)
2603 {
2604 /* INIT is the maximum value. If INIT is lower than VR->MAX
2605 but no smaller than VR->MIN, set VR->MAX to INIT. */
2606 if (compare_values (init, max) == -1)
2607 {
2608 max = init;
2609
2610 /* If we just created an invalid range with the minimum
2611 greater than the maximum, we fail conservatively.
2612 This should happen only in unreachable
2613 parts of code, or for invalid programs. */
2614 if (compare_values (min, max) == 1)
2615 return;
2616 }
2617 }
2618 else
2619 {
2620 /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
2621 if (compare_values (init, min) == 1)
2622 {
2623 min = init;
2624
2625 /* Again, avoid creating invalid range by failing. */
2626 if (compare_values (min, max) == 1)
2627 return;
2628 }
2629 }
2630
2631 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
2632 }
2633 }
2634
2635
2636 /* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
2637
2638 - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
2639 all the values in the ranges.
2640
2641 - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
2642
2643 - Return NULL_TREE if it is not always possible to determine the
2644 value of the comparison.
2645
2646 Also set *STRICT_OVERFLOW_P to indicate whether a range with an
2647 overflow infinity was used in the test. */
2648
2649
2650 static tree
2651 compare_ranges (enum tree_code comp, value_range_t *vr0, value_range_t *vr1,
2652 bool *strict_overflow_p)
2653 {
2654 /* VARYING or UNDEFINED ranges cannot be compared. */
2655 if (vr0->type == VR_VARYING
2656 || vr0->type == VR_UNDEFINED
2657 || vr1->type == VR_VARYING
2658 || vr1->type == VR_UNDEFINED)
2659 return NULL_TREE;
2660
2661 /* Anti-ranges need to be handled separately. */
2662 if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
2663 {
2664 /* If both are anti-ranges, then we cannot compute any
2665 comparison. */
2666 if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
2667 return NULL_TREE;
2668
2669 /* These comparisons are never statically computable. */
2670 if (comp == GT_EXPR
2671 || comp == GE_EXPR
2672 || comp == LT_EXPR
2673 || comp == LE_EXPR)
2674 return NULL_TREE;
2675
2676 /* Equality can be computed only between a range and an
2677 anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
2678 if (vr0->type == VR_RANGE)
2679 {
2680 /* To simplify processing, make VR0 the anti-range. */
2681 value_range_t *tmp = vr0;
2682 vr0 = vr1;
2683 vr1 = tmp;
2684 }
2685
2686 gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);
2687
2688 if (compare_values_warnv (vr0->min, vr1->min, strict_overflow_p) == 0
2689 && compare_values_warnv (vr0->max, vr1->max, strict_overflow_p) == 0)
2690 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
2691
2692 return NULL_TREE;
2693 }
2694
2695 if (!usable_range_p (vr0, strict_overflow_p)
2696 || !usable_range_p (vr1, strict_overflow_p))
2697 return NULL_TREE;
2698
2699 /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
2700 operands around and change the comparison code. */
2701 if (comp == GT_EXPR || comp == GE_EXPR)
2702 {
2703 value_range_t *tmp;
2704 comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
2705 tmp = vr0;
2706 vr0 = vr1;
2707 vr1 = tmp;
2708 }
2709
2710 if (comp == EQ_EXPR)
2711 {
2712 /* Equality may only be computed if both ranges represent
2713 exactly one value. */
2714 if (compare_values_warnv (vr0->min, vr0->max, strict_overflow_p) == 0
2715 && compare_values_warnv (vr1->min, vr1->max, strict_overflow_p) == 0)
2716 {
2717 int cmp_min = compare_values_warnv (vr0->min, vr1->min,
2718 strict_overflow_p);
2719 int cmp_max = compare_values_warnv (vr0->max, vr1->max,
2720 strict_overflow_p);
2721 if (cmp_min == 0 && cmp_max == 0)
2722 return boolean_true_node;
2723 else if (cmp_min != -2 && cmp_max != -2)
2724 return boolean_false_node;
2725 }
2726 /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
2727 else if (compare_values_warnv (vr0->min, vr1->max,
2728 strict_overflow_p) == 1
2729 || compare_values_warnv (vr1->min, vr0->max,
2730 strict_overflow_p) == 1)
2731 return boolean_false_node;
2732
2733 return NULL_TREE;
2734 }
2735 else if (comp == NE_EXPR)
2736 {
2737 int cmp1, cmp2;
2738
2739 /* If VR0 is completely to the left or completely to the right
2740 of VR1, they are always different. Notice that we need to
2741 make sure that both comparisons yield similar results to
2742 avoid comparing values that cannot be compared at
2743 compile-time. */
2744 cmp1 = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
2745 cmp2 = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
2746 if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
2747 return boolean_true_node;
2748
2749 /* If VR0 and VR1 represent a single value and are identical,
2750 return false. */
2751 else if (compare_values_warnv (vr0->min, vr0->max,
2752 strict_overflow_p) == 0
2753 && compare_values_warnv (vr1->min, vr1->max,
2754 strict_overflow_p) == 0
2755 && compare_values_warnv (vr0->min, vr1->min,
2756 strict_overflow_p) == 0
2757 && compare_values_warnv (vr0->max, vr1->max,
2758 strict_overflow_p) == 0)
2759 return boolean_false_node;
2760
2761 /* Otherwise, they may or may not be different. */
2762 else
2763 return NULL_TREE;
2764 }
2765 else if (comp == LT_EXPR || comp == LE_EXPR)
2766 {
2767 int tst;
2768
2769 /* If VR0 is to the left of VR1, return true. */
2770 tst = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
2771 if ((comp == LT_EXPR && tst == -1)
2772 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
2773 {
2774 if (overflow_infinity_range_p (vr0)
2775 || overflow_infinity_range_p (vr1))
2776 *strict_overflow_p = true;
2777 return boolean_true_node;
2778 }
2779
2780 /* If VR0 is to the right of VR1, return false. */
2781 tst = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
2782 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
2783 || (comp == LE_EXPR && tst == 1))
2784 {
2785 if (overflow_infinity_range_p (vr0)
2786 || overflow_infinity_range_p (vr1))
2787 *strict_overflow_p = true;
2788 return boolean_false_node;
2789 }
2790
2791 /* Otherwise, we don't know. */
2792 return NULL_TREE;
2793 }
2794
2795 gcc_unreachable ();
2796 }
2797
2798
2799 /* Given a value range VR, a value VAL and a comparison code COMP, return
2800 BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
2801 values in VR. Return BOOLEAN_FALSE_NODE if the comparison
2802 always returns false. Return NULL_TREE if it is not always
2803 possible to determine the value of the comparison. Also set
2804 *STRICT_OVERFLOW_P to indicate whether a range with an overflow
2805 infinity was used in the test. */
2806
2807 static tree
2808 compare_range_with_value (enum tree_code comp, value_range_t *vr, tree val,
2809 bool *strict_overflow_p)
2810 {
2811 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
2812 return NULL_TREE;
2813
2814 /* Anti-ranges need to be handled separately. */
2815 if (vr->type == VR_ANTI_RANGE)
2816 {
2817 /* For anti-ranges, the only predicates that we can compute at
2818 compile time are equality and inequality. */
2819 if (comp == GT_EXPR
2820 || comp == GE_EXPR
2821 || comp == LT_EXPR
2822 || comp == LE_EXPR)
2823 return NULL_TREE;
2824
2825 /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
2826 if (value_inside_range (val, vr) == 1)
2827 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
2828
2829 return NULL_TREE;
2830 }
2831
2832 if (!usable_range_p (vr, strict_overflow_p))
2833 return NULL_TREE;
2834
2835 if (comp == EQ_EXPR)
2836 {
2837 /* EQ_EXPR may only be computed if VR represents exactly
2838 one value. */
2839 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0)
2840 {
2841 int cmp = compare_values_warnv (vr->min, val, strict_overflow_p);
2842 if (cmp == 0)
2843 return boolean_true_node;
2844 else if (cmp == -1 || cmp == 1 || cmp == 2)
2845 return boolean_false_node;
2846 }
2847 else if (compare_values_warnv (val, vr->min, strict_overflow_p) == -1
2848 || compare_values_warnv (vr->max, val, strict_overflow_p) == -1)
2849 return boolean_false_node;
2850
2851 return NULL_TREE;
2852 }
2853 else if (comp == NE_EXPR)
2854 {
2855 /* If VAL is not inside VR, then they are always different. */
2856 if (compare_values_warnv (vr->max, val, strict_overflow_p) == -1
2857 || compare_values_warnv (vr->min, val, strict_overflow_p) == 1)
2858 return boolean_true_node;
2859
2860 /* If VR represents exactly one value equal to VAL, then return
2861 false. */
2862 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0
2863 && compare_values_warnv (vr->min, val, strict_overflow_p) == 0)
2864 return boolean_false_node;
2865
2866 /* Otherwise, they may or may not be different. */
2867 return NULL_TREE;
2868 }
2869 else if (comp == LT_EXPR || comp == LE_EXPR)
2870 {
2871 int tst;
2872
2873 /* If VR is to the left of VAL, return true. */
2874 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
2875 if ((comp == LT_EXPR && tst == -1)
2876 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
2877 {
2878 if (overflow_infinity_range_p (vr))
2879 *strict_overflow_p = true;
2880 return boolean_true_node;
2881 }
2882
2883 /* If VR is to the right of VAL, return false. */
2884 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
2885 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
2886 || (comp == LE_EXPR && tst == 1))
2887 {
2888 if (overflow_infinity_range_p (vr))
2889 *strict_overflow_p = true;
2890 return boolean_false_node;
2891 }
2892
2893 /* Otherwise, we don't know. */
2894 return NULL_TREE;
2895 }
2896 else if (comp == GT_EXPR || comp == GE_EXPR)
2897 {
2898 int tst;
2899
2900 /* If VR is to the right of VAL, return true. */
2901 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
2902 if ((comp == GT_EXPR && tst == 1)
2903 || (comp == GE_EXPR && (tst == 0 || tst == 1)))
2904 {
2905 if (overflow_infinity_range_p (vr))
2906 *strict_overflow_p = true;
2907 return boolean_true_node;
2908 }
2909
2910 /* If VR is to the left of VAL, return false. */
2911 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
2912 if ((comp == GT_EXPR && (tst == -1 || tst == 0))
2913 || (comp == GE_EXPR && tst == -1))
2914 {
2915 if (overflow_infinity_range_p (vr))
2916 *strict_overflow_p = true;
2917 return boolean_false_node;
2918 }
2919
2920 /* Otherwise, we don't know. */
2921 return NULL_TREE;
2922 }
2923
2924 gcc_unreachable ();
2925 }
2926
2927
2928 /* Debugging dumps. */
2929
2930 void dump_value_range (FILE *, value_range_t *);
2931 void debug_value_range (value_range_t *);
2932 void dump_all_value_ranges (FILE *);
2933 void debug_all_value_ranges (void);
2934 void dump_vr_equiv (FILE *, bitmap);
2935 void debug_vr_equiv (bitmap);
2936
2937
2938 /* Dump value range VR to FILE. */
2939
2940 void
2941 dump_value_range (FILE *file, value_range_t *vr)
2942 {
2943 if (vr == NULL)
2944 fprintf (file, "[]");
2945 else if (vr->type == VR_UNDEFINED)
2946 fprintf (file, "UNDEFINED");
2947 else if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
2948 {
2949 tree type = TREE_TYPE (vr->min);
2950
2951 fprintf (file, "%s[", (vr->type == VR_ANTI_RANGE) ? "~" : "");
2952
2953 if (INTEGRAL_TYPE_P (type)
2954 && !TYPE_UNSIGNED (type)
2955 && vr->min == TYPE_MIN_VALUE (type))
2956 fprintf (file, "-INF");
2957 else if (needs_overflow_infinity (type)
2958 && is_negative_overflow_infinity (vr->min))
2959 fprintf (file, "-INF(OVF)");
2960 else
2961 print_generic_expr (file, vr->min, 0);
2962
2963 fprintf (file, ", ");
2964
2965 if (INTEGRAL_TYPE_P (type)
2966 && vr->max == TYPE_MAX_VALUE (type))
2967 fprintf (file, "+INF");
2968 else if (needs_overflow_infinity (type)
2969 && is_positive_overflow_infinity (vr->max))
2970 fprintf (file, "+INF(OVF)");
2971 else
2972 print_generic_expr (file, vr->max, 0);
2973
2974 fprintf (file, "]");
2975
2976 if (vr->equiv)
2977 {
2978 bitmap_iterator bi;
2979 unsigned i, c = 0;
2980
2981 fprintf (file, " EQUIVALENCES: { ");
2982
2983 EXECUTE_IF_SET_IN_BITMAP (vr->equiv, 0, i, bi)
2984 {
2985 print_generic_expr (file, ssa_name (i), 0);
2986 fprintf (file, " ");
2987 c++;
2988 }
2989
2990 fprintf (file, "} (%u elements)", c);
2991 }
2992 }
2993 else if (vr->type == VR_VARYING)
2994 fprintf (file, "VARYING");
2995 else
2996 fprintf (file, "INVALID RANGE");
2997 }
2998
2999
3000 /* Dump value range VR to stderr. */
3001
3002 void
3003 debug_value_range (value_range_t *vr)
3004 {
3005 dump_value_range (stderr, vr);
3006 fprintf (stderr, "\n");
3007 }
3008
3009
3010 /* Dump value ranges of all SSA_NAMEs to FILE. */
3011
3012 void
3013 dump_all_value_ranges (FILE *file)
3014 {
3015 size_t i;
3016
3017 for (i = 0; i < num_ssa_names; i++)
3018 {
3019 if (vr_value[i])
3020 {
3021 print_generic_expr (file, ssa_name (i), 0);
3022 fprintf (file, ": ");
3023 dump_value_range (file, vr_value[i]);
3024 fprintf (file, "\n");
3025 }
3026 }
3027
3028 fprintf (file, "\n");
3029 }
3030
3031
3032 /* Dump all value ranges to stderr. */
3033
3034 void
3035 debug_all_value_ranges (void)
3036 {
3037 dump_all_value_ranges (stderr);
3038 }
3039
3040
3041 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
3042 create a new SSA name N and return the assertion assignment
3043 'V = ASSERT_EXPR <V, V OP W>'. */
3044
3045 static tree
3046 build_assert_expr_for (tree cond, tree v)
3047 {
3048 tree n, assertion;
3049
3050 gcc_assert (TREE_CODE (v) == SSA_NAME);
3051 n = duplicate_ssa_name (v, NULL_TREE);
3052
3053 if (COMPARISON_CLASS_P (cond))
3054 {
3055 tree a = build2 (ASSERT_EXPR, TREE_TYPE (v), v, cond);
3056 assertion = build_gimple_modify_stmt (n, a);
3057 }
3058 else if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
3059 {
3060 /* Given !V, build the assignment N = false. */
3061 tree op0 = TREE_OPERAND (cond, 0);
3062 gcc_assert (op0 == v);
3063 assertion = build_gimple_modify_stmt (n, boolean_false_node);
3064 }
3065 else if (TREE_CODE (cond) == SSA_NAME)
3066 {
3067 /* Given V, build the assignment N = true. */
3068 gcc_assert (v == cond);
3069 assertion = build_gimple_modify_stmt (n, boolean_true_node);
3070 }
3071 else
3072 gcc_unreachable ();
3073
3074 SSA_NAME_DEF_STMT (n) = assertion;
3075
3076 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
3077 operand of the ASSERT_EXPR. Register the new name and the old one
3078 in the replacement table so that we can fix the SSA web after
3079 adding all the ASSERT_EXPRs. */
3080 register_new_name_mapping (n, v);
3081
3082 return assertion;
3083 }
3084
3085
3086 /* Return false if EXPR is a predicate expression involving floating
3087 point values. */
3088
3089 static inline bool
3090 fp_predicate (tree expr)
3091 {
3092 return (COMPARISON_CLASS_P (expr)
3093 && FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 0))));
3094 }
3095
3096
3097 /* If the range of values taken by OP can be inferred after STMT executes,
3098 return the comparison code (COMP_CODE_P) and value (VAL_P) that
3099 describes the inferred range. Return true if a range could be
3100 inferred. */
3101
3102 static bool
3103 infer_value_range (tree stmt, tree op, enum tree_code *comp_code_p, tree *val_p)
3104 {
3105 *val_p = NULL_TREE;
3106 *comp_code_p = ERROR_MARK;
3107
3108 /* Do not attempt to infer anything in names that flow through
3109 abnormal edges. */
3110 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
3111 return false;
3112
3113 /* Similarly, don't infer anything from statements that may throw
3114 exceptions. */
3115 if (tree_could_throw_p (stmt))
3116 return false;
3117
3118 /* If STMT is the last statement of a basic block with no
3119 successors, there is no point inferring anything about any of its
3120 operands. We would not be able to find a proper insertion point
3121 for the assertion, anyway. */
3122 if (stmt_ends_bb_p (stmt) && EDGE_COUNT (bb_for_stmt (stmt)->succs) == 0)
3123 return false;
3124
3125 /* We can only assume that a pointer dereference will yield
3126 non-NULL if -fdelete-null-pointer-checks is enabled. */
3127 if (flag_delete_null_pointer_checks && POINTER_TYPE_P (TREE_TYPE (op)))
3128 {
3129 unsigned num_uses, num_loads, num_stores;
3130
3131 count_uses_and_derefs (op, stmt, &num_uses, &num_loads, &num_stores);
3132 if (num_loads + num_stores > 0)
3133 {
3134 *val_p = build_int_cst (TREE_TYPE (op), 0);
3135 *comp_code_p = NE_EXPR;
3136 return true;
3137 }
3138 }
3139
3140 return false;
3141 }
3142
3143
3144 void dump_asserts_for (FILE *, tree);
3145 void debug_asserts_for (tree);
3146 void dump_all_asserts (FILE *);
3147 void debug_all_asserts (void);
3148
3149 /* Dump all the registered assertions for NAME to FILE. */
3150
3151 void
3152 dump_asserts_for (FILE *file, tree name)
3153 {
3154 assert_locus_t loc;
3155
3156 fprintf (file, "Assertions to be inserted for ");
3157 print_generic_expr (file, name, 0);
3158 fprintf (file, "\n");
3159
3160 loc = asserts_for[SSA_NAME_VERSION (name)];
3161 while (loc)
3162 {
3163 fprintf (file, "\t");
3164 print_generic_expr (file, bsi_stmt (loc->si), 0);
3165 fprintf (file, "\n\tBB #%d", loc->bb->index);
3166 if (loc->e)
3167 {
3168 fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
3169 loc->e->dest->index);
3170 dump_edge_info (file, loc->e, 0);
3171 }
3172 fprintf (file, "\n\tPREDICATE: ");
3173 print_generic_expr (file, name, 0);
3174 fprintf (file, " %s ", tree_code_name[(int)loc->comp_code]);
3175 print_generic_expr (file, loc->val, 0);
3176 fprintf (file, "\n\n");
3177 loc = loc->next;
3178 }
3179
3180 fprintf (file, "\n");
3181 }
3182
3183
3184 /* Dump all the registered assertions for NAME to stderr. */
3185
3186 void
3187 debug_asserts_for (tree name)
3188 {
3189 dump_asserts_for (stderr, name);
3190 }
3191
3192
3193 /* Dump all the registered assertions for all the names to FILE. */
3194
3195 void
3196 dump_all_asserts (FILE *file)
3197 {
3198 unsigned i;
3199 bitmap_iterator bi;
3200
3201 fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
3202 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
3203 dump_asserts_for (file, ssa_name (i));
3204 fprintf (file, "\n");
3205 }
3206
3207
3208 /* Dump all the registered assertions for all the names to stderr. */
3209
3210 void
3211 debug_all_asserts (void)
3212 {
3213 dump_all_asserts (stderr);
3214 }
3215
3216
3217 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
3218 'NAME COMP_CODE VAL' at a location that dominates block BB or
3219 E->DEST, then register this location as a possible insertion point
3220 for ASSERT_EXPR <NAME, NAME COMP_CODE VAL>.
3221
3222 BB, E and SI provide the exact insertion point for the new
3223 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
3224 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
3225 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
3226 must not be NULL. */
3227
3228 static void
3229 register_new_assert_for (tree name,
3230 enum tree_code comp_code,
3231 tree val,
3232 basic_block bb,
3233 edge e,
3234 block_stmt_iterator si)
3235 {
3236 assert_locus_t n, loc, last_loc;
3237 bool found;
3238 basic_block dest_bb;
3239
3240 #if defined ENABLE_CHECKING
3241 gcc_assert (bb == NULL || e == NULL);
3242
3243 if (e == NULL)
3244 gcc_assert (TREE_CODE (bsi_stmt (si)) != COND_EXPR
3245 && TREE_CODE (bsi_stmt (si)) != SWITCH_EXPR);
3246 #endif
3247
3248 /* The new assertion A will be inserted at BB or E. We need to
3249 determine if the new location is dominated by a previously
3250 registered location for A. If we are doing an edge insertion,
3251 assume that A will be inserted at E->DEST. Note that this is not
3252 necessarily true.
3253
3254 If E is a critical edge, it will be split. But even if E is
3255 split, the new block will dominate the same set of blocks that
3256 E->DEST dominates.
3257
3258 The reverse, however, is not true, blocks dominated by E->DEST
3259 will not be dominated by the new block created to split E. So,
3260 if the insertion location is on a critical edge, we will not use
3261 the new location to move another assertion previously registered
3262 at a block dominated by E->DEST. */
3263 dest_bb = (bb) ? bb : e->dest;
3264
3265 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
3266 VAL at a block dominating DEST_BB, then we don't need to insert a new
3267 one. Similarly, if the same assertion already exists at a block
3268 dominated by DEST_BB and the new location is not on a critical
3269 edge, then update the existing location for the assertion (i.e.,
3270 move the assertion up in the dominance tree).
3271
3272 Note, this is implemented as a simple linked list because there
3273 should not be more than a handful of assertions registered per
3274 name. If this becomes a performance problem, a table hashed by
3275 COMP_CODE and VAL could be implemented. */
3276 loc = asserts_for[SSA_NAME_VERSION (name)];
3277 last_loc = loc;
3278 found = false;
3279 while (loc)
3280 {
3281 if (loc->comp_code == comp_code
3282 && (loc->val == val
3283 || operand_equal_p (loc->val, val, 0)))
3284 {
3285 /* If the assertion NAME COMP_CODE VAL has already been
3286 registered at a basic block that dominates DEST_BB, then
3287 we don't need to insert the same assertion again. Note
3288 that we don't check strict dominance here to avoid
3289 replicating the same assertion inside the same basic
3290 block more than once (e.g., when a pointer is
3291 dereferenced several times inside a block).
3292
3293 An exception to this rule are edge insertions. If the
3294 new assertion is to be inserted on edge E, then it will
3295 dominate all the other insertions that we may want to
3296 insert in DEST_BB. So, if we are doing an edge
3297 insertion, don't do this dominance check. */
3298 if (e == NULL
3299 && dominated_by_p (CDI_DOMINATORS, dest_bb, loc->bb))
3300 return;
3301
3302 /* Otherwise, if E is not a critical edge and DEST_BB
3303 dominates the existing location for the assertion, move
3304 the assertion up in the dominance tree by updating its
3305 location information. */
3306 if ((e == NULL || !EDGE_CRITICAL_P (e))
3307 && dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
3308 {
3309 loc->bb = dest_bb;
3310 loc->e = e;
3311 loc->si = si;
3312 return;
3313 }
3314 }
3315
3316 /* Update the last node of the list and move to the next one. */
3317 last_loc = loc;
3318 loc = loc->next;
3319 }
3320
3321 /* If we didn't find an assertion already registered for
3322 NAME COMP_CODE VAL, add a new one at the end of the list of
3323 assertions associated with NAME. */
3324 n = XNEW (struct assert_locus_d);
3325 n->bb = dest_bb;
3326 n->e = e;
3327 n->si = si;
3328 n->comp_code = comp_code;
3329 n->val = val;
3330 n->next = NULL;
3331
3332 if (last_loc)
3333 last_loc->next = n;
3334 else
3335 asserts_for[SSA_NAME_VERSION (name)] = n;
3336
3337 bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
3338 }
3339
3340 /* COND is a predicate which uses NAME. Extract a suitable test code
3341 and value and store them into *CODE_P and *VAL_P so the predicate
3342 is normalized to NAME *CODE_P *VAL_P.
3343
3344 If no extraction was possible, return FALSE, otherwise return TRUE.
3345
3346 If INVERT is true, then we invert the result stored into *CODE_P. */
3347
3348 static bool
3349 extract_code_and_val_from_cond (tree name, tree cond, bool invert,
3350 enum tree_code *code_p, tree *val_p)
3351 {
3352 enum tree_code comp_code;
3353 tree val;
3354
3355 /* Predicates may be a single SSA name or NAME OP VAL. */
3356 if (cond == name)
3357 {
3358 /* If the predicate is a name, it must be NAME, in which
3359 case we create the predicate NAME == true or
3360 NAME == false accordingly. */
3361 comp_code = EQ_EXPR;
3362 val = invert ? boolean_false_node : boolean_true_node;
3363 }
3364 else
3365 {
3366 /* Otherwise, we have a comparison of the form NAME COMP VAL
3367 or VAL COMP NAME. */
3368 if (name == TREE_OPERAND (cond, 1))
3369 {
3370 /* If the predicate is of the form VAL COMP NAME, flip
3371 COMP around because we need to register NAME as the
3372 first operand in the predicate. */
3373 comp_code = swap_tree_comparison (TREE_CODE (cond));
3374 val = TREE_OPERAND (cond, 0);
3375 }
3376 else
3377 {
3378 /* The comparison is of the form NAME COMP VAL, so the
3379 comparison code remains unchanged. */
3380 comp_code = TREE_CODE (cond);
3381 val = TREE_OPERAND (cond, 1);
3382 }
3383
3384 /* Invert the comparison code as necessary. */
3385 if (invert)
3386 comp_code = invert_tree_comparison (comp_code, 0);
3387
3388 /* VRP does not handle float types. */
3389 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (val)))
3390 return false;
3391
3392 /* Do not register always-false predicates.
3393 FIXME: this works around a limitation in fold() when dealing with
3394 enumerations. Given 'enum { N1, N2 } x;', fold will not
3395 fold 'if (x > N2)' to 'if (0)'. */
3396 if ((comp_code == GT_EXPR || comp_code == LT_EXPR)
3397 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
3398 {
3399 tree min = TYPE_MIN_VALUE (TREE_TYPE (val));
3400 tree max = TYPE_MAX_VALUE (TREE_TYPE (val));
3401
3402 if (comp_code == GT_EXPR
3403 && (!max
3404 || compare_values (val, max) == 0))
3405 return false;
3406
3407 if (comp_code == LT_EXPR
3408 && (!min
3409 || compare_values (val, min) == 0))
3410 return false;
3411 }
3412 }
3413 *code_p = comp_code;
3414 *val_p = val;
3415 return true;
3416 }
3417
3418 /* OP is an operand of a truth value expression which is known to have
3419 a particular value. Register any asserts for OP and for any
3420 operands in OP's defining statement.
3421
3422 If CODE is EQ_EXPR, then we want to register OP is zero (false),
3423 if CODE is NE_EXPR, then we want to register OP is nonzero (true). */
3424
3425 static bool
3426 register_edge_assert_for_1 (tree op, enum tree_code code,
3427 edge e, block_stmt_iterator bsi)
3428 {
3429 bool retval = false;
3430 tree op_def, rhs, val;
3431
3432 /* We only care about SSA_NAMEs. */
3433 if (TREE_CODE (op) != SSA_NAME)
3434 return false;
3435
3436 /* We know that OP will have a zero or nonzero value. If OP is used
3437 more than once go ahead and register an assert for OP.
3438
3439 The FOUND_IN_SUBGRAPH support is not helpful in this situation as
3440 it will always be set for OP (because OP is used in a COND_EXPR in
3441 the subgraph). */
3442 if (!has_single_use (op))
3443 {
3444 val = build_int_cst (TREE_TYPE (op), 0);
3445 register_new_assert_for (op, code, val, NULL, e, bsi);
3446 retval = true;
3447 }
3448
3449 /* Now look at how OP is set. If it's set from a comparison,
3450 a truth operation or some bit operations, then we may be able
3451 to register information about the operands of that assignment. */
3452 op_def = SSA_NAME_DEF_STMT (op);
3453 if (TREE_CODE (op_def) != GIMPLE_MODIFY_STMT)
3454 return retval;
3455
3456 rhs = GIMPLE_STMT_OPERAND (op_def, 1);
3457
3458 if (COMPARISON_CLASS_P (rhs))
3459 {
3460 bool invert = (code == EQ_EXPR ? true : false);
3461 tree op0 = TREE_OPERAND (rhs, 0);
3462 tree op1 = TREE_OPERAND (rhs, 1);
3463
3464 /* Conditionally register an assert for each SSA_NAME in the
3465 comparison. */
3466 if (TREE_CODE (op0) == SSA_NAME
3467 && !has_single_use (op0)
3468 && extract_code_and_val_from_cond (op0, rhs,
3469 invert, &code, &val))
3470 {
3471 register_new_assert_for (op0, code, val, NULL, e, bsi);
3472 retval = true;
3473 }
3474
3475 /* Similarly for the second operand of the comparison. */
3476 if (TREE_CODE (op1) == SSA_NAME
3477 && !has_single_use (op1)
3478 && extract_code_and_val_from_cond (op1, rhs,
3479 invert, &code, &val))
3480 {
3481 register_new_assert_for (op1, code, val, NULL, e, bsi);
3482 retval = true;
3483 }
3484 }
3485 else if ((code == NE_EXPR
3486 && (TREE_CODE (rhs) == TRUTH_AND_EXPR
3487 || TREE_CODE (rhs) == BIT_AND_EXPR))
3488 || (code == EQ_EXPR
3489 && (TREE_CODE (rhs) == TRUTH_OR_EXPR
3490 || TREE_CODE (rhs) == BIT_IOR_EXPR)))
3491 {
3492 /* Recurse on each operand. */
3493 retval |= register_edge_assert_for_1 (TREE_OPERAND (rhs, 0),
3494 code, e, bsi);
3495 retval |= register_edge_assert_for_1 (TREE_OPERAND (rhs, 1),
3496 code, e, bsi);
3497 }
3498 else if (TREE_CODE (rhs) == TRUTH_NOT_EXPR)
3499 {
3500 /* Recurse, flipping CODE. */
3501 code = invert_tree_comparison (code, false);
3502 retval |= register_edge_assert_for_1 (TREE_OPERAND (rhs, 0),
3503 code, e, bsi);
3504 }
3505 else if (TREE_CODE (rhs) == SSA_NAME)
3506 {
3507 /* Recurse through the copy. */
3508 retval |= register_edge_assert_for_1 (rhs, code, e, bsi);
3509 }
3510 else if (TREE_CODE (rhs) == NOP_EXPR
3511 || TREE_CODE (rhs) == CONVERT_EXPR
3512 || TREE_CODE (rhs) == NON_LVALUE_EXPR)
3513 {
3514 /* Recurse through the type conversion. */
3515 retval |= register_edge_assert_for_1 (TREE_OPERAND (rhs, 0),
3516 code, e, bsi);
3517 }
3518
3519 return retval;
3520 }
3521
3522 /* Try to register an edge assertion for SSA name NAME on edge E for
3523 the condition COND contributing to the conditional jump pointed to by SI.
3524 Return true if an assertion for NAME could be registered. */
3525
3526 static bool
3527 register_edge_assert_for (tree name, edge e, block_stmt_iterator si, tree cond)
3528 {
3529 tree val;
3530 enum tree_code comp_code;
3531 bool retval = false;
3532 bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
3533
3534 /* Do not attempt to infer anything in names that flow through
3535 abnormal edges. */
3536 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
3537 return false;
3538
3539 if (!extract_code_and_val_from_cond (name, cond, is_else_edge,
3540 &comp_code, &val))
3541 return false;
3542
3543 /* Only register an ASSERT_EXPR if NAME was found in the sub-graph
3544 reachable from E. */
3545 if (TEST_BIT (found_in_subgraph, SSA_NAME_VERSION (name)))
3546 {
3547 register_new_assert_for (name, comp_code, val, NULL, e, si);
3548 retval = true;
3549 }
3550
3551 /* If COND is effectively an equality test of an SSA_NAME against
3552 the value zero or one, then we may be able to assert values
3553 for SSA_NAMEs which flow into COND. */
3554
3555 /* In the case of NAME == 1 or NAME != 0, for TRUTH_AND_EXPR defining
3556 statement of NAME we can assert both operands of the TRUTH_AND_EXPR
3557 have nonzero value. */
3558 if (((comp_code == EQ_EXPR && integer_onep (val))
3559 || (comp_code == NE_EXPR && integer_zerop (val))))
3560 {
3561 tree def_stmt = SSA_NAME_DEF_STMT (name);
3562
3563 if (TREE_CODE (def_stmt) == GIMPLE_MODIFY_STMT
3564 && (TREE_CODE (GIMPLE_STMT_OPERAND (def_stmt, 1)) == TRUTH_AND_EXPR
3565 || TREE_CODE (GIMPLE_STMT_OPERAND (def_stmt, 1)) == BIT_AND_EXPR))
3566 {
3567 tree op0 = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 0);
3568 tree op1 = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 1);
3569 retval |= register_edge_assert_for_1 (op0, NE_EXPR, e, si);
3570 retval |= register_edge_assert_for_1 (op1, NE_EXPR, e, si);
3571 }
3572 }
3573
3574 /* In the case of NAME == 0 or NAME != 1, for TRUTH_OR_EXPR defining
3575 statement of NAME we can assert both operands of the TRUTH_OR_EXPR
3576 have zero value. */
3577 if (((comp_code == EQ_EXPR && integer_zerop (val))
3578 || (comp_code == NE_EXPR && integer_onep (val))))
3579 {
3580 tree def_stmt = SSA_NAME_DEF_STMT (name);
3581
3582 if (TREE_CODE (def_stmt) == GIMPLE_MODIFY_STMT
3583 && (TREE_CODE (GIMPLE_STMT_OPERAND (def_stmt, 1)) == TRUTH_OR_EXPR
3584 || TREE_CODE (GIMPLE_STMT_OPERAND (def_stmt, 1)) == BIT_IOR_EXPR))
3585 {
3586 tree op0 = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 0);
3587 tree op1 = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 1);
3588 retval |= register_edge_assert_for_1 (op0, EQ_EXPR, e, si);
3589 retval |= register_edge_assert_for_1 (op1, EQ_EXPR, e, si);
3590 }
3591 }
3592
3593 return retval;
3594 }
3595
3596
3597 static bool find_assert_locations (basic_block bb);
3598
3599 /* Determine whether the outgoing edges of BB should receive an
3600 ASSERT_EXPR for each of the operands of BB's LAST statement.
3601 The last statement of BB must be a COND_EXPR.
3602
3603 If any of the sub-graphs rooted at BB have an interesting use of
3604 the predicate operands, an assert location node is added to the
3605 list of assertions for the corresponding operands. */
3606
3607 static bool
3608 find_conditional_asserts (basic_block bb, tree last)
3609 {
3610 bool need_assert;
3611 block_stmt_iterator bsi;
3612 tree op;
3613 edge_iterator ei;
3614 edge e;
3615 ssa_op_iter iter;
3616
3617 need_assert = false;
3618 bsi = bsi_for_stmt (last);
3619
3620 /* Look for uses of the operands in each of the sub-graphs
3621 rooted at BB. We need to check each of the outgoing edges
3622 separately, so that we know what kind of ASSERT_EXPR to
3623 insert. */
3624 FOR_EACH_EDGE (e, ei, bb->succs)
3625 {
3626 if (e->dest == bb)
3627 continue;
3628
3629 /* Remove the COND_EXPR operands from the FOUND_IN_SUBGRAPH bitmap.
3630 Otherwise, when we finish traversing each of the sub-graphs, we
3631 won't know whether the variables were found in the sub-graphs or
3632 if they had been found in a block upstream from BB.
3633
3634 This is actually a bad idea is some cases, particularly jump
3635 threading. Consider a CFG like the following:
3636
3637 0
3638 /|
3639 1 |
3640 \|
3641 2
3642 / \
3643 3 4
3644
3645 Assume that one or more operands in the conditional at the
3646 end of block 0 are used in a conditional in block 2, but not
3647 anywhere in block 1. In this case we will not insert any
3648 assert statements in block 1, which may cause us to miss
3649 opportunities to optimize, particularly for jump threading. */
3650 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
3651 RESET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
3652
3653 /* Traverse the strictly dominated sub-graph rooted at E->DEST
3654 to determine if any of the operands in the conditional
3655 predicate are used. */
3656 if (e->dest != bb)
3657 need_assert |= find_assert_locations (e->dest);
3658
3659 /* Register the necessary assertions for each operand in the
3660 conditional predicate. */
3661 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
3662 need_assert |= register_edge_assert_for (op, e, bsi,
3663 COND_EXPR_COND (last));
3664 }
3665
3666 /* Finally, indicate that we have found the operands in the
3667 conditional. */
3668 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
3669 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
3670
3671 return need_assert;
3672 }
3673
3674 /* Compare two case labels sorting first by the destination label uid
3675 and then by the case value. */
3676
3677 static int
3678 compare_case_labels (const void *p1, const void *p2)
3679 {
3680 tree case1 = *(tree *)p1;
3681 tree case2 = *(tree *)p2;
3682 unsigned int uid1 = DECL_UID (CASE_LABEL (case1));
3683 unsigned int uid2 = DECL_UID (CASE_LABEL (case2));
3684
3685 if (uid1 < uid2)
3686 return -1;
3687 else if (uid1 == uid2)
3688 {
3689 /* Make sure the default label is first in a group. */
3690 if (!CASE_LOW (case1))
3691 return -1;
3692 else if (!CASE_LOW (case2))
3693 return 1;
3694 else
3695 return tree_int_cst_compare (CASE_LOW (case1), CASE_LOW (case2));
3696 }
3697 else
3698 return 1;
3699 }
3700
3701 /* Determine whether the outgoing edges of BB should receive an
3702 ASSERT_EXPR for each of the operands of BB's LAST statement.
3703 The last statement of BB must be a SWITCH_EXPR.
3704
3705 If any of the sub-graphs rooted at BB have an interesting use of
3706 the predicate operands, an assert location node is added to the
3707 list of assertions for the corresponding operands. */
3708
3709 static bool
3710 find_switch_asserts (basic_block bb, tree last)
3711 {
3712 bool need_assert;
3713 block_stmt_iterator bsi;
3714 tree op, cond;
3715 edge e;
3716 tree vec = SWITCH_LABELS (last), vec2;
3717 size_t n = TREE_VEC_LENGTH (vec);
3718 unsigned int idx;
3719
3720 need_assert = false;
3721 bsi = bsi_for_stmt (last);
3722 op = TREE_OPERAND (last, 0);
3723 if (TREE_CODE (op) != SSA_NAME)
3724 return false;
3725
3726 /* Build a vector of case labels sorted by destination label. */
3727 vec2 = make_tree_vec (n);
3728 for (idx = 0; idx < n; ++idx)
3729 TREE_VEC_ELT (vec2, idx) = TREE_VEC_ELT (vec, idx);
3730 qsort (&TREE_VEC_ELT (vec2, 0), n, sizeof (tree), compare_case_labels);
3731
3732 for (idx = 0; idx < n; ++idx)
3733 {
3734 tree min, max;
3735 tree cl = TREE_VEC_ELT (vec2, idx);
3736
3737 min = CASE_LOW (cl);
3738 max = CASE_HIGH (cl);
3739
3740 /* If there are multiple case labels with the same destination
3741 we need to combine them to a single value range for the edge. */
3742 if (idx + 1 < n
3743 && CASE_LABEL (cl) == CASE_LABEL (TREE_VEC_ELT (vec2, idx + 1)))
3744 {
3745 /* Skip labels until the last of the group. */
3746 do {
3747 ++idx;
3748 } while (idx < n
3749 && CASE_LABEL (cl) == CASE_LABEL (TREE_VEC_ELT (vec2, idx)));
3750 --idx;
3751
3752 /* Pick up the maximum of the case label range. */
3753 if (CASE_HIGH (TREE_VEC_ELT (vec2, idx)))
3754 max = CASE_HIGH (TREE_VEC_ELT (vec2, idx));
3755 else
3756 max = CASE_LOW (TREE_VEC_ELT (vec2, idx));
3757 }
3758
3759 /* Nothing to do if the range includes the default label until we
3760 can register anti-ranges. */
3761 if (min == NULL_TREE)
3762 continue;
3763
3764 /* Find the edge to register the assert expr on. */
3765 e = find_edge (bb, label_to_block (CASE_LABEL (cl)));
3766
3767 /* Remove the SWITCH_EXPR operand from the FOUND_IN_SUBGRAPH bitmap.
3768 Otherwise, when we finish traversing each of the sub-graphs, we
3769 won't know whether the variables were found in the sub-graphs or
3770 if they had been found in a block upstream from BB. */
3771 RESET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
3772
3773 /* Traverse the strictly dominated sub-graph rooted at E->DEST
3774 to determine if any of the operands in the conditional
3775 predicate are used. */
3776 if (e->dest != bb)
3777 need_assert |= find_assert_locations (e->dest);
3778
3779 /* Register the necessary assertions for the operand in the
3780 SWITCH_EXPR. */
3781 cond = build2 (max ? GE_EXPR : EQ_EXPR, boolean_type_node,
3782 op, fold_convert (TREE_TYPE (op), min));
3783 need_assert |= register_edge_assert_for (op, e, bsi, cond);
3784 if (max)
3785 {
3786 cond = build2 (LE_EXPR, boolean_type_node,
3787 op, fold_convert (TREE_TYPE (op), max));
3788 need_assert |= register_edge_assert_for (op, e, bsi, cond);
3789 }
3790 }
3791
3792 /* Finally, indicate that we have found the operand in the
3793 SWITCH_EXPR. */
3794 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
3795
3796 return need_assert;
3797 }
3798
3799
3800 /* Traverse all the statements in block BB looking for statements that
3801 may generate useful assertions for the SSA names in their operand.
3802 If a statement produces a useful assertion A for name N_i, then the
3803 list of assertions already generated for N_i is scanned to
3804 determine if A is actually needed.
3805
3806 If N_i already had the assertion A at a location dominating the
3807 current location, then nothing needs to be done. Otherwise, the
3808 new location for A is recorded instead.
3809
3810 1- For every statement S in BB, all the variables used by S are
3811 added to bitmap FOUND_IN_SUBGRAPH.
3812
3813 2- If statement S uses an operand N in a way that exposes a known
3814 value range for N, then if N was not already generated by an
3815 ASSERT_EXPR, create a new assert location for N. For instance,
3816 if N is a pointer and the statement dereferences it, we can
3817 assume that N is not NULL.
3818
3819 3- COND_EXPRs are a special case of #2. We can derive range
3820 information from the predicate but need to insert different
3821 ASSERT_EXPRs for each of the sub-graphs rooted at the
3822 conditional block. If the last statement of BB is a conditional
3823 expression of the form 'X op Y', then
3824
3825 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
3826
3827 b) If the conditional is the only entry point to the sub-graph
3828 corresponding to the THEN_CLAUSE, recurse into it. On
3829 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
3830 an ASSERT_EXPR is added for the corresponding variable.
3831
3832 c) Repeat step (b) on the ELSE_CLAUSE.
3833
3834 d) Mark X and Y in FOUND_IN_SUBGRAPH.
3835
3836 For instance,
3837
3838 if (a == 9)
3839 b = a;
3840 else
3841 b = c + 1;
3842
3843 In this case, an assertion on the THEN clause is useful to
3844 determine that 'a' is always 9 on that edge. However, an assertion
3845 on the ELSE clause would be unnecessary.
3846
3847 4- If BB does not end in a conditional expression, then we recurse
3848 into BB's dominator children.
3849
3850 At the end of the recursive traversal, every SSA name will have a
3851 list of locations where ASSERT_EXPRs should be added. When a new
3852 location for name N is found, it is registered by calling
3853 register_new_assert_for. That function keeps track of all the
3854 registered assertions to prevent adding unnecessary assertions.
3855 For instance, if a pointer P_4 is dereferenced more than once in a
3856 dominator tree, only the location dominating all the dereference of
3857 P_4 will receive an ASSERT_EXPR.
3858
3859 If this function returns true, then it means that there are names
3860 for which we need to generate ASSERT_EXPRs. Those assertions are
3861 inserted by process_assert_insertions. */
3862
3863 static bool
3864 find_assert_locations (basic_block bb)
3865 {
3866 block_stmt_iterator si;
3867 tree last, phi;
3868 bool need_assert;
3869 basic_block son;
3870
3871 if (TEST_BIT (blocks_visited, bb->index))
3872 return false;
3873
3874 SET_BIT (blocks_visited, bb->index);
3875
3876 need_assert = false;
3877
3878 /* Traverse all PHI nodes in BB marking used operands. */
3879 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
3880 {
3881 use_operand_p arg_p;
3882 ssa_op_iter i;
3883
3884 FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
3885 {
3886 tree arg = USE_FROM_PTR (arg_p);
3887 if (TREE_CODE (arg) == SSA_NAME)
3888 {
3889 gcc_assert (is_gimple_reg (PHI_RESULT (phi)));
3890 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (arg));
3891 }
3892 }
3893 }
3894
3895 /* Traverse all the statements in BB marking used names and looking
3896 for statements that may infer assertions for their used operands. */
3897 last = NULL_TREE;
3898 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
3899 {
3900 tree stmt, op;
3901 ssa_op_iter i;
3902
3903 stmt = bsi_stmt (si);
3904
3905 /* See if we can derive an assertion for any of STMT's operands. */
3906 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
3907 {
3908 tree value;
3909 enum tree_code comp_code;
3910
3911 /* Mark OP in bitmap FOUND_IN_SUBGRAPH. If STMT is inside
3912 the sub-graph of a conditional block, when we return from
3913 this recursive walk, our parent will use the
3914 FOUND_IN_SUBGRAPH bitset to determine if one of the
3915 operands it was looking for was present in the sub-graph. */
3916 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
3917
3918 /* If OP is used in such a way that we can infer a value
3919 range for it, and we don't find a previous assertion for
3920 it, create a new assertion location node for OP. */
3921 if (infer_value_range (stmt, op, &comp_code, &value))
3922 {
3923 /* If we are able to infer a nonzero value range for OP,
3924 then walk backwards through the use-def chain to see if OP
3925 was set via a typecast.
3926
3927 If so, then we can also infer a nonzero value range
3928 for the operand of the NOP_EXPR. */
3929 if (comp_code == NE_EXPR && integer_zerop (value))
3930 {
3931 tree t = op;
3932 tree def_stmt = SSA_NAME_DEF_STMT (t);
3933
3934 while (TREE_CODE (def_stmt) == GIMPLE_MODIFY_STMT
3935 && TREE_CODE
3936 (GIMPLE_STMT_OPERAND (def_stmt, 1)) == NOP_EXPR
3937 && TREE_CODE
3938 (TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1),
3939 0)) == SSA_NAME
3940 && POINTER_TYPE_P
3941 (TREE_TYPE (TREE_OPERAND
3942 (GIMPLE_STMT_OPERAND (def_stmt,
3943 1), 0))))
3944 {
3945 t = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 0);
3946 def_stmt = SSA_NAME_DEF_STMT (t);
3947
3948 /* Note we want to register the assert for the
3949 operand of the NOP_EXPR after SI, not after the
3950 conversion. */
3951 if (! has_single_use (t))
3952 {
3953 register_new_assert_for (t, comp_code, value,
3954 bb, NULL, si);
3955 need_assert = true;
3956 }
3957 }
3958 }
3959
3960 /* If OP is used only once, namely in this STMT, don't
3961 bother creating an ASSERT_EXPR for it. Such an
3962 ASSERT_EXPR would do nothing but increase compile time. */
3963 if (!has_single_use (op))
3964 {
3965 register_new_assert_for (op, comp_code, value, bb, NULL, si);
3966 need_assert = true;
3967 }
3968 }
3969 }
3970
3971 /* Remember the last statement of the block. */
3972 last = stmt;
3973 }
3974
3975 /* If BB's last statement is a conditional expression
3976 involving integer operands, recurse into each of the sub-graphs
3977 rooted at BB to determine if we need to add ASSERT_EXPRs. */
3978 if (last
3979 && TREE_CODE (last) == COND_EXPR
3980 && !fp_predicate (COND_EXPR_COND (last))
3981 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
3982 need_assert |= find_conditional_asserts (bb, last);
3983
3984 if (last
3985 && TREE_CODE (last) == SWITCH_EXPR
3986 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
3987 need_assert |= find_switch_asserts (bb, last);
3988
3989 /* Recurse into the dominator children of BB. */
3990 for (son = first_dom_son (CDI_DOMINATORS, bb);
3991 son;
3992 son = next_dom_son (CDI_DOMINATORS, son))
3993 need_assert |= find_assert_locations (son);
3994
3995 return need_assert;
3996 }
3997
3998
3999 /* Create an ASSERT_EXPR for NAME and insert it in the location
4000 indicated by LOC. Return true if we made any edge insertions. */
4001
4002 static bool
4003 process_assert_insertions_for (tree name, assert_locus_t loc)
4004 {
4005 /* Build the comparison expression NAME_i COMP_CODE VAL. */
4006 tree stmt, cond, assert_expr;
4007 edge_iterator ei;
4008 edge e;
4009
4010 cond = build2 (loc->comp_code, boolean_type_node, name, loc->val);
4011 assert_expr = build_assert_expr_for (cond, name);
4012
4013 if (loc->e)
4014 {
4015 /* We have been asked to insert the assertion on an edge. This
4016 is used only by COND_EXPR and SWITCH_EXPR assertions. */
4017 #if defined ENABLE_CHECKING
4018 gcc_assert (TREE_CODE (bsi_stmt (loc->si)) == COND_EXPR
4019 || TREE_CODE (bsi_stmt (loc->si)) == SWITCH_EXPR);
4020 #endif
4021
4022 bsi_insert_on_edge (loc->e, assert_expr);
4023 return true;
4024 }
4025
4026 /* Otherwise, we can insert right after LOC->SI iff the
4027 statement must not be the last statement in the block. */
4028 stmt = bsi_stmt (loc->si);
4029 if (!stmt_ends_bb_p (stmt))
4030 {
4031 bsi_insert_after (&loc->si, assert_expr, BSI_SAME_STMT);
4032 return false;
4033 }
4034
4035 /* If STMT must be the last statement in BB, we can only insert new
4036 assertions on the non-abnormal edge out of BB. Note that since
4037 STMT is not control flow, there may only be one non-abnormal edge
4038 out of BB. */
4039 FOR_EACH_EDGE (e, ei, loc->bb->succs)
4040 if (!(e->flags & EDGE_ABNORMAL))
4041 {
4042 bsi_insert_on_edge (e, assert_expr);
4043 return true;
4044 }
4045
4046 gcc_unreachable ();
4047 }
4048
4049
4050 /* Process all the insertions registered for every name N_i registered
4051 in NEED_ASSERT_FOR. The list of assertions to be inserted are
4052 found in ASSERTS_FOR[i]. */
4053
4054 static void
4055 process_assert_insertions (void)
4056 {
4057 unsigned i;
4058 bitmap_iterator bi;
4059 bool update_edges_p = false;
4060 int num_asserts = 0;
4061
4062 if (dump_file && (dump_flags & TDF_DETAILS))
4063 dump_all_asserts (dump_file);
4064
4065 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
4066 {
4067 assert_locus_t loc = asserts_for[i];
4068 gcc_assert (loc);
4069
4070 while (loc)
4071 {
4072 assert_locus_t next = loc->next;
4073 update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
4074 free (loc);
4075 loc = next;
4076 num_asserts++;
4077 }
4078 }
4079
4080 if (update_edges_p)
4081 bsi_commit_edge_inserts ();
4082
4083 if (dump_file && (dump_flags & TDF_STATS))
4084 fprintf (dump_file, "\nNumber of ASSERT_EXPR expressions inserted: %d\n\n",
4085 num_asserts);
4086 }
4087
4088
4089 /* Traverse the flowgraph looking for conditional jumps to insert range
4090 expressions. These range expressions are meant to provide information
4091 to optimizations that need to reason in terms of value ranges. They
4092 will not be expanded into RTL. For instance, given:
4093
4094 x = ...
4095 y = ...
4096 if (x < y)
4097 y = x - 2;
4098 else
4099 x = y + 3;
4100
4101 this pass will transform the code into:
4102
4103 x = ...
4104 y = ...
4105 if (x < y)
4106 {
4107 x = ASSERT_EXPR <x, x < y>
4108 y = x - 2
4109 }
4110 else
4111 {
4112 y = ASSERT_EXPR <y, x <= y>
4113 x = y + 3
4114 }
4115
4116 The idea is that once copy and constant propagation have run, other
4117 optimizations will be able to determine what ranges of values can 'x'
4118 take in different paths of the code, simply by checking the reaching
4119 definition of 'x'. */
4120
4121 static void
4122 insert_range_assertions (void)
4123 {
4124 edge e;
4125 edge_iterator ei;
4126 bool update_ssa_p;
4127
4128 found_in_subgraph = sbitmap_alloc (num_ssa_names);
4129 sbitmap_zero (found_in_subgraph);
4130
4131 blocks_visited = sbitmap_alloc (last_basic_block);
4132 sbitmap_zero (blocks_visited);
4133
4134 need_assert_for = BITMAP_ALLOC (NULL);
4135 asserts_for = XCNEWVEC (assert_locus_t, num_ssa_names);
4136
4137 calculate_dominance_info (CDI_DOMINATORS);
4138
4139 update_ssa_p = false;
4140 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
4141 if (find_assert_locations (e->dest))
4142 update_ssa_p = true;
4143
4144 if (update_ssa_p)
4145 {
4146 process_assert_insertions ();
4147 update_ssa (TODO_update_ssa_no_phi);
4148 }
4149
4150 if (dump_file && (dump_flags & TDF_DETAILS))
4151 {
4152 fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
4153 dump_function_to_file (current_function_decl, dump_file, dump_flags);
4154 }
4155
4156 sbitmap_free (found_in_subgraph);
4157 free (asserts_for);
4158 BITMAP_FREE (need_assert_for);
4159 }
4160
4161 /* Checks one ARRAY_REF in REF, located at LOCUS. Ignores flexible arrays
4162 and "struct" hacks. If VRP can determine that the
4163 array subscript is a constant, check if it is outside valid
4164 range. If the array subscript is a RANGE, warn if it is
4165 non-overlapping with valid range.
4166 IGNORE_OFF_BY_ONE is true if the ARRAY_REF is inside a ADDR_EXPR. */
4167
4168 static void
4169 check_array_ref (tree ref, location_t* locus, bool ignore_off_by_one)
4170 {
4171 value_range_t* vr = NULL;
4172 tree low_sub, up_sub;
4173 tree low_bound, up_bound = array_ref_up_bound (ref);
4174
4175 low_sub = up_sub = TREE_OPERAND (ref, 1);
4176
4177 if (!up_bound || !locus || TREE_NO_WARNING (ref)
4178 || TREE_CODE (up_bound) != INTEGER_CST
4179 /* Can not check flexible arrays. */
4180 || (TYPE_SIZE (TREE_TYPE (ref)) == NULL_TREE
4181 && TYPE_DOMAIN (TREE_TYPE (ref)) != NULL_TREE
4182 && TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (ref))) == NULL_TREE)
4183 /* Accesses after the end of arrays of size 0 (gcc
4184 extension) and 1 are likely intentional ("struct
4185 hack"). */
4186 || compare_tree_int (up_bound, 1) <= 0)
4187 return;
4188
4189 low_bound = array_ref_low_bound (ref);
4190
4191 if (TREE_CODE (low_sub) == SSA_NAME)
4192 {
4193 vr = get_value_range (low_sub);
4194 if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
4195 {
4196 low_sub = vr->type == VR_RANGE ? vr->max : vr->min;
4197 up_sub = vr->type == VR_RANGE ? vr->min : vr->max;
4198 }
4199 }
4200
4201 if (vr && vr->type == VR_ANTI_RANGE)
4202 {
4203 if (TREE_CODE (up_sub) == INTEGER_CST
4204 && tree_int_cst_lt (up_bound, up_sub)
4205 && TREE_CODE (low_sub) == INTEGER_CST
4206 && tree_int_cst_lt (low_sub, low_bound))
4207 {
4208 warning (OPT_Warray_bounds,
4209 "%Harray subscript is outside array bounds", locus);
4210 TREE_NO_WARNING (ref) = 1;
4211 }
4212 }
4213 else if (TREE_CODE (up_sub) == INTEGER_CST
4214 && tree_int_cst_lt (up_bound, up_sub)
4215 && !tree_int_cst_equal (up_bound, up_sub)
4216 && (!ignore_off_by_one
4217 || !tree_int_cst_equal (int_const_binop (PLUS_EXPR,
4218 up_bound,
4219 integer_one_node,
4220 0),
4221 up_sub)))
4222 {
4223 warning (OPT_Warray_bounds, "%Harray subscript is above array bounds",
4224 locus);
4225 TREE_NO_WARNING (ref) = 1;
4226 }
4227 else if (TREE_CODE (low_sub) == INTEGER_CST
4228 && tree_int_cst_lt (low_sub, low_bound))
4229 {
4230 warning (OPT_Warray_bounds, "%Harray subscript is below array bounds",
4231 locus);
4232 TREE_NO_WARNING (ref) = 1;
4233 }
4234 }
4235
4236 /* walk_tree() callback that checks if *TP is
4237 an ARRAY_REF inside an ADDR_EXPR (in which an array
4238 subscript one outside the valid range is allowed). Call
4239 check_array_ref for each ARRAY_REF found. The location is
4240 passed in DATA. */
4241
4242 static tree
4243 check_array_bounds (tree *tp, int *walk_subtree, void *data)
4244 {
4245 tree t = *tp;
4246 tree stmt = (tree)data;
4247 location_t *location = EXPR_LOCUS (stmt);
4248
4249 *walk_subtree = TRUE;
4250
4251 if (TREE_CODE (t) == ARRAY_REF)
4252 check_array_ref (t, location, false /*ignore_off_by_one*/);
4253 else if (TREE_CODE (t) == ADDR_EXPR)
4254 {
4255 use_operand_p op;
4256 tree use_stmt;
4257 t = TREE_OPERAND (t, 0);
4258
4259 /* Don't warn on statements like
4260
4261 ssa_name = 500 + &array[-200]
4262
4263 or
4264
4265 ssa_name = &array[-200]
4266 other_name = ssa_name + 300;
4267
4268 which are sometimes
4269 produced by other optimizing passes. */
4270
4271 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT
4272 && BINARY_CLASS_P (GIMPLE_STMT_OPERAND (stmt, 1)))
4273 *walk_subtree = FALSE;
4274
4275 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT
4276 && TREE_CODE (GIMPLE_STMT_OPERAND (stmt, 0)) == SSA_NAME
4277 && single_imm_use (GIMPLE_STMT_OPERAND (stmt, 0), &op, &use_stmt)
4278 && TREE_CODE (use_stmt) == GIMPLE_MODIFY_STMT
4279 && BINARY_CLASS_P (GIMPLE_STMT_OPERAND (use_stmt, 1)))
4280 *walk_subtree = FALSE;
4281
4282 while (*walk_subtree && handled_component_p (t))
4283 {
4284 if (TREE_CODE (t) == ARRAY_REF)
4285 check_array_ref (t, location, true /*ignore_off_by_one*/);
4286 t = TREE_OPERAND (t, 0);
4287 }
4288 *walk_subtree = FALSE;
4289 }
4290
4291 return NULL_TREE;
4292 }
4293
4294 /* Walk over all statements of all reachable BBs and call check_array_bounds
4295 on them. */
4296
4297 static void
4298 check_all_array_refs (void)
4299 {
4300 basic_block bb;
4301 block_stmt_iterator si;
4302
4303 FOR_EACH_BB (bb)
4304 {
4305 /* Skip bb's that are clearly unreachable. */
4306 if (single_pred_p (bb))
4307 {
4308 basic_block pred_bb = EDGE_PRED (bb, 0)->src;
4309 tree ls = NULL_TREE;
4310
4311 if (!bsi_end_p (bsi_last (pred_bb)))
4312 ls = bsi_stmt (bsi_last (pred_bb));
4313
4314 if (ls && TREE_CODE (ls) == COND_EXPR
4315 && ((COND_EXPR_COND (ls) == boolean_false_node
4316 && (EDGE_PRED (bb, 0)->flags & EDGE_TRUE_VALUE))
4317 || (COND_EXPR_COND (ls) == boolean_true_node
4318 && (EDGE_PRED (bb, 0)->flags & EDGE_FALSE_VALUE))))
4319 continue;
4320 }
4321 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
4322 walk_tree (bsi_stmt_ptr (si), check_array_bounds,
4323 bsi_stmt (si), NULL);
4324 }
4325 }
4326
4327 /* Convert range assertion expressions into the implied copies and
4328 copy propagate away the copies. Doing the trivial copy propagation
4329 here avoids the need to run the full copy propagation pass after
4330 VRP.
4331
4332 FIXME, this will eventually lead to copy propagation removing the
4333 names that had useful range information attached to them. For
4334 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
4335 then N_i will have the range [3, +INF].
4336
4337 However, by converting the assertion into the implied copy
4338 operation N_i = N_j, we will then copy-propagate N_j into the uses
4339 of N_i and lose the range information. We may want to hold on to
4340 ASSERT_EXPRs a little while longer as the ranges could be used in
4341 things like jump threading.
4342
4343 The problem with keeping ASSERT_EXPRs around is that passes after
4344 VRP need to handle them appropriately.
4345
4346 Another approach would be to make the range information a first
4347 class property of the SSA_NAME so that it can be queried from
4348 any pass. This is made somewhat more complex by the need for
4349 multiple ranges to be associated with one SSA_NAME. */
4350
4351 static void
4352 remove_range_assertions (void)
4353 {
4354 basic_block bb;
4355 block_stmt_iterator si;
4356
4357 /* Note that the BSI iterator bump happens at the bottom of the
4358 loop and no bump is necessary if we're removing the statement
4359 referenced by the current BSI. */
4360 FOR_EACH_BB (bb)
4361 for (si = bsi_start (bb); !bsi_end_p (si);)
4362 {
4363 tree stmt = bsi_stmt (si);
4364 tree use_stmt;
4365
4366 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT
4367 && TREE_CODE (GIMPLE_STMT_OPERAND (stmt, 1)) == ASSERT_EXPR)
4368 {
4369 tree rhs = GIMPLE_STMT_OPERAND (stmt, 1), var;
4370 tree cond = fold (ASSERT_EXPR_COND (rhs));
4371 use_operand_p use_p;
4372 imm_use_iterator iter;
4373
4374 gcc_assert (cond != boolean_false_node);
4375
4376 /* Propagate the RHS into every use of the LHS. */
4377 var = ASSERT_EXPR_VAR (rhs);
4378 FOR_EACH_IMM_USE_STMT (use_stmt, iter,
4379 GIMPLE_STMT_OPERAND (stmt, 0))
4380 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
4381 {
4382 SET_USE (use_p, var);
4383 gcc_assert (TREE_CODE (var) == SSA_NAME);
4384 }
4385
4386 /* And finally, remove the copy, it is not needed. */
4387 bsi_remove (&si, true);
4388 release_defs (stmt);
4389 }
4390 else
4391 bsi_next (&si);
4392 }
4393
4394 sbitmap_free (blocks_visited);
4395 }
4396
4397
4398 /* Return true if STMT is interesting for VRP. */
4399
4400 static bool
4401 stmt_interesting_for_vrp (tree stmt)
4402 {
4403 if (TREE_CODE (stmt) == PHI_NODE
4404 && is_gimple_reg (PHI_RESULT (stmt))
4405 && (INTEGRAL_TYPE_P (TREE_TYPE (PHI_RESULT (stmt)))
4406 || POINTER_TYPE_P (TREE_TYPE (PHI_RESULT (stmt)))))
4407 return true;
4408 else if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT)
4409 {
4410 tree lhs = GIMPLE_STMT_OPERAND (stmt, 0);
4411 tree rhs = GIMPLE_STMT_OPERAND (stmt, 1);
4412
4413 /* In general, assignments with virtual operands are not useful
4414 for deriving ranges, with the obvious exception of calls to
4415 builtin functions. */
4416 if (TREE_CODE (lhs) == SSA_NAME
4417 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
4418 || POINTER_TYPE_P (TREE_TYPE (lhs)))
4419 && ((TREE_CODE (rhs) == CALL_EXPR
4420 && TREE_CODE (CALL_EXPR_FN (rhs)) == ADDR_EXPR
4421 && DECL_P (TREE_OPERAND (CALL_EXPR_FN (rhs), 0))
4422 && DECL_IS_BUILTIN (TREE_OPERAND (CALL_EXPR_FN (rhs), 0)))
4423 || ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS)))
4424 return true;
4425 }
4426 else if (TREE_CODE (stmt) == COND_EXPR || TREE_CODE (stmt) == SWITCH_EXPR)
4427 return true;
4428
4429 return false;
4430 }
4431
4432
4433 /* Initialize local data structures for VRP. */
4434
4435 static void
4436 vrp_initialize (void)
4437 {
4438 basic_block bb;
4439
4440 vr_value = XCNEWVEC (value_range_t *, num_ssa_names);
4441 vr_phi_edge_counts = XCNEWVEC (int, num_ssa_names);
4442
4443 FOR_EACH_BB (bb)
4444 {
4445 block_stmt_iterator si;
4446 tree phi;
4447
4448 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
4449 {
4450 if (!stmt_interesting_for_vrp (phi))
4451 {
4452 tree lhs = PHI_RESULT (phi);
4453 set_value_range_to_varying (get_value_range (lhs));
4454 DONT_SIMULATE_AGAIN (phi) = true;
4455 }
4456 else
4457 DONT_SIMULATE_AGAIN (phi) = false;
4458 }
4459
4460 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
4461 {
4462 tree stmt = bsi_stmt (si);
4463
4464 if (!stmt_interesting_for_vrp (stmt))
4465 {
4466 ssa_op_iter i;
4467 tree def;
4468 FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
4469 set_value_range_to_varying (get_value_range (def));
4470 DONT_SIMULATE_AGAIN (stmt) = true;
4471 }
4472 else
4473 {
4474 DONT_SIMULATE_AGAIN (stmt) = false;
4475 }
4476 }
4477 }
4478 }
4479
4480
4481 /* Visit assignment STMT. If it produces an interesting range, record
4482 the SSA name in *OUTPUT_P. */
4483
4484 static enum ssa_prop_result
4485 vrp_visit_assignment (tree stmt, tree *output_p)
4486 {
4487 tree lhs, rhs, def;
4488 ssa_op_iter iter;
4489
4490 lhs = GIMPLE_STMT_OPERAND (stmt, 0);
4491 rhs = GIMPLE_STMT_OPERAND (stmt, 1);
4492
4493 /* We only keep track of ranges in integral and pointer types. */
4494 if (TREE_CODE (lhs) == SSA_NAME
4495 && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
4496 /* It is valid to have NULL MIN/MAX values on a type. See
4497 build_range_type. */
4498 && TYPE_MIN_VALUE (TREE_TYPE (lhs))
4499 && TYPE_MAX_VALUE (TREE_TYPE (lhs)))
4500 || POINTER_TYPE_P (TREE_TYPE (lhs))))
4501 {
4502 struct loop *l;
4503 value_range_t new_vr = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
4504
4505 extract_range_from_expr (&new_vr, rhs);
4506
4507 /* If STMT is inside a loop, we may be able to know something
4508 else about the range of LHS by examining scalar evolution
4509 information. */
4510 if (current_loops && (l = loop_containing_stmt (stmt)))
4511 adjust_range_with_scev (&new_vr, l, stmt, lhs);
4512
4513 if (update_value_range (lhs, &new_vr))
4514 {
4515 *output_p = lhs;
4516
4517 if (dump_file && (dump_flags & TDF_DETAILS))
4518 {
4519 fprintf (dump_file, "Found new range for ");
4520 print_generic_expr (dump_file, lhs, 0);
4521 fprintf (dump_file, ": ");
4522 dump_value_range (dump_file, &new_vr);
4523 fprintf (dump_file, "\n\n");
4524 }
4525
4526 if (new_vr.type == VR_VARYING)
4527 return SSA_PROP_VARYING;
4528
4529 return SSA_PROP_INTERESTING;
4530 }
4531
4532 return SSA_PROP_NOT_INTERESTING;
4533 }
4534
4535 /* Every other statement produces no useful ranges. */
4536 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
4537 set_value_range_to_varying (get_value_range (def));
4538
4539 return SSA_PROP_VARYING;
4540 }
4541
4542
4543 /* Compare all the value ranges for names equivalent to VAR with VAL
4544 using comparison code COMP. Return the same value returned by
4545 compare_range_with_value, including the setting of
4546 *STRICT_OVERFLOW_P. */
4547
4548 static tree
4549 compare_name_with_value (enum tree_code comp, tree var, tree val,
4550 bool *strict_overflow_p)
4551 {
4552 bitmap_iterator bi;
4553 unsigned i;
4554 bitmap e;
4555 tree retval, t;
4556 int used_strict_overflow;
4557
4558 t = retval = NULL_TREE;
4559
4560 /* Get the set of equivalences for VAR. */
4561 e = get_value_range (var)->equiv;
4562
4563 /* Add VAR to its own set of equivalences so that VAR's value range
4564 is processed by this loop (otherwise, we would have to replicate
4565 the body of the loop just to check VAR's value range). */
4566 bitmap_set_bit (e, SSA_NAME_VERSION (var));
4567
4568 /* Start at -1. Set it to 0 if we do a comparison without relying
4569 on overflow, or 1 if all comparisons rely on overflow. */
4570 used_strict_overflow = -1;
4571
4572 EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
4573 {
4574 bool sop;
4575
4576 value_range_t equiv_vr = *(vr_value[i]);
4577
4578 /* If name N_i does not have a valid range, use N_i as its own
4579 range. This allows us to compare against names that may
4580 have N_i in their ranges. */
4581 if (equiv_vr.type == VR_VARYING || equiv_vr.type == VR_UNDEFINED)
4582 {
4583 equiv_vr.type = VR_RANGE;
4584 equiv_vr.min = ssa_name (i);
4585 equiv_vr.max = ssa_name (i);
4586 }
4587
4588 sop = false;
4589 t = compare_range_with_value (comp, &equiv_vr, val, &sop);
4590 if (t)
4591 {
4592 /* If we get different answers from different members
4593 of the equivalence set this check must be in a dead
4594 code region. Folding it to a trap representation
4595 would be correct here. For now just return don't-know. */
4596 if (retval != NULL
4597 && t != retval)
4598 {
4599 retval = NULL_TREE;
4600 break;
4601 }
4602 retval = t;
4603
4604 if (!sop)
4605 used_strict_overflow = 0;
4606 else if (used_strict_overflow < 0)
4607 used_strict_overflow = 1;
4608 }
4609 }
4610
4611 /* Remove VAR from its own equivalence set. */
4612 bitmap_clear_bit (e, SSA_NAME_VERSION (var));
4613
4614 if (retval)
4615 {
4616 if (used_strict_overflow > 0)
4617 *strict_overflow_p = true;
4618 return retval;
4619 }
4620
4621 /* We couldn't find a non-NULL value for the predicate. */
4622 return NULL_TREE;
4623 }
4624
4625
4626 /* Given a comparison code COMP and names N1 and N2, compare all the
4627 ranges equivalent to N1 against all the ranges equivalent to N2
4628 to determine the value of N1 COMP N2. Return the same value
4629 returned by compare_ranges. Set *STRICT_OVERFLOW_P to indicate
4630 whether we relied on an overflow infinity in the comparison. */
4631
4632
4633 static tree
4634 compare_names (enum tree_code comp, tree n1, tree n2,
4635 bool *strict_overflow_p)
4636 {
4637 tree t, retval;
4638 bitmap e1, e2;
4639 bitmap_iterator bi1, bi2;
4640 unsigned i1, i2;
4641 int used_strict_overflow;
4642
4643 /* Compare the ranges of every name equivalent to N1 against the
4644 ranges of every name equivalent to N2. */
4645 e1 = get_value_range (n1)->equiv;
4646 e2 = get_value_range (n2)->equiv;
4647
4648 /* Add N1 and N2 to their own set of equivalences to avoid
4649 duplicating the body of the loop just to check N1 and N2
4650 ranges. */
4651 bitmap_set_bit (e1, SSA_NAME_VERSION (n1));
4652 bitmap_set_bit (e2, SSA_NAME_VERSION (n2));
4653
4654 /* If the equivalence sets have a common intersection, then the two
4655 names can be compared without checking their ranges. */
4656 if (bitmap_intersect_p (e1, e2))
4657 {
4658 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
4659 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
4660
4661 return (comp == EQ_EXPR || comp == GE_EXPR || comp == LE_EXPR)
4662 ? boolean_true_node
4663 : boolean_false_node;
4664 }
4665
4666 /* Start at -1. Set it to 0 if we do a comparison without relying
4667 on overflow, or 1 if all comparisons rely on overflow. */
4668 used_strict_overflow = -1;
4669
4670 /* Otherwise, compare all the equivalent ranges. First, add N1 and
4671 N2 to their own set of equivalences to avoid duplicating the body
4672 of the loop just to check N1 and N2 ranges. */
4673 EXECUTE_IF_SET_IN_BITMAP (e1, 0, i1, bi1)
4674 {
4675 value_range_t vr1 = *(vr_value[i1]);
4676
4677 /* If the range is VARYING or UNDEFINED, use the name itself. */
4678 if (vr1.type == VR_VARYING || vr1.type == VR_UNDEFINED)
4679 {
4680 vr1.type = VR_RANGE;
4681 vr1.min = ssa_name (i1);
4682 vr1.max = ssa_name (i1);
4683 }
4684
4685 t = retval = NULL_TREE;
4686 EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2)
4687 {
4688 bool sop;
4689
4690 value_range_t vr2 = *(vr_value[i2]);
4691
4692 if (vr2.type == VR_VARYING || vr2.type == VR_UNDEFINED)
4693 {
4694 vr2.type = VR_RANGE;
4695 vr2.min = ssa_name (i2);
4696 vr2.max = ssa_name (i2);
4697 }
4698
4699 t = compare_ranges (comp, &vr1, &vr2, &sop);
4700 if (t)
4701 {
4702 /* If we get different answers from different members
4703 of the equivalence set this check must be in a dead
4704 code region. Folding it to a trap representation
4705 would be correct here. For now just return don't-know. */
4706 if (retval != NULL
4707 && t != retval)
4708 {
4709 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
4710 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
4711 return NULL_TREE;
4712 }
4713 retval = t;
4714
4715 if (!sop)
4716 used_strict_overflow = 0;
4717 else if (used_strict_overflow < 0)
4718 used_strict_overflow = 1;
4719 }
4720 }
4721
4722 if (retval)
4723 {
4724 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
4725 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
4726 if (used_strict_overflow > 0)
4727 *strict_overflow_p = true;
4728 return retval;
4729 }
4730 }
4731
4732 /* None of the equivalent ranges are useful in computing this
4733 comparison. */
4734 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
4735 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
4736 return NULL_TREE;
4737 }
4738
4739
4740 /* Given a conditional predicate COND, try to determine if COND yields
4741 true or false based on the value ranges of its operands. Return
4742 BOOLEAN_TRUE_NODE if the conditional always evaluates to true,
4743 BOOLEAN_FALSE_NODE if the conditional always evaluates to false, and,
4744 NULL if the conditional cannot be evaluated at compile time.
4745
4746 If USE_EQUIV_P is true, the ranges of all the names equivalent with
4747 the operands in COND are used when trying to compute its value.
4748 This is only used during final substitution. During propagation,
4749 we only check the range of each variable and not its equivalents.
4750
4751 Set *STRICT_OVERFLOW_P to indicate whether we relied on an overflow
4752 infinity to produce the result. */
4753
4754 static tree
4755 vrp_evaluate_conditional_warnv (tree cond, bool use_equiv_p,
4756 bool *strict_overflow_p)
4757 {
4758 gcc_assert (TREE_CODE (cond) == SSA_NAME
4759 || TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison);
4760
4761 if (TREE_CODE (cond) == SSA_NAME)
4762 {
4763 value_range_t *vr;
4764 tree retval;
4765
4766 if (use_equiv_p)
4767 retval = compare_name_with_value (NE_EXPR, cond, boolean_false_node,
4768 strict_overflow_p);
4769 else
4770 {
4771 value_range_t *vr = get_value_range (cond);
4772 retval = compare_range_with_value (NE_EXPR, vr, boolean_false_node,
4773 strict_overflow_p);
4774 }
4775
4776 /* If COND has a known boolean range, return it. */
4777 if (retval)
4778 return retval;
4779
4780 /* Otherwise, if COND has a symbolic range of exactly one value,
4781 return it. */
4782 vr = get_value_range (cond);
4783 if (vr->type == VR_RANGE && vr->min == vr->max)
4784 return vr->min;
4785 }
4786 else
4787 {
4788 tree op0 = TREE_OPERAND (cond, 0);
4789 tree op1 = TREE_OPERAND (cond, 1);
4790
4791 /* We only deal with integral and pointer types. */
4792 if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
4793 && !POINTER_TYPE_P (TREE_TYPE (op0)))
4794 return NULL_TREE;
4795
4796 if (use_equiv_p)
4797 {
4798 if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME)
4799 return compare_names (TREE_CODE (cond), op0, op1,
4800 strict_overflow_p);
4801 else if (TREE_CODE (op0) == SSA_NAME)
4802 return compare_name_with_value (TREE_CODE (cond), op0, op1,
4803 strict_overflow_p);
4804 else if (TREE_CODE (op1) == SSA_NAME)
4805 return (compare_name_with_value
4806 (swap_tree_comparison (TREE_CODE (cond)), op1, op0,
4807 strict_overflow_p));
4808 }
4809 else
4810 {
4811 value_range_t *vr0, *vr1;
4812
4813 vr0 = (TREE_CODE (op0) == SSA_NAME) ? get_value_range (op0) : NULL;
4814 vr1 = (TREE_CODE (op1) == SSA_NAME) ? get_value_range (op1) : NULL;
4815
4816 if (vr0 && vr1)
4817 return compare_ranges (TREE_CODE (cond), vr0, vr1,
4818 strict_overflow_p);
4819 else if (vr0 && vr1 == NULL)
4820 return compare_range_with_value (TREE_CODE (cond), vr0, op1,
4821 strict_overflow_p);
4822 else if (vr0 == NULL && vr1)
4823 return (compare_range_with_value
4824 (swap_tree_comparison (TREE_CODE (cond)), vr1, op0,
4825 strict_overflow_p));
4826 }
4827 }
4828
4829 /* Anything else cannot be computed statically. */
4830 return NULL_TREE;
4831 }
4832
4833 /* Given COND within STMT, try to simplify it based on value range
4834 information. Return NULL if the conditional can not be evaluated.
4835 The ranges of all the names equivalent with the operands in COND
4836 will be used when trying to compute the value. If the result is
4837 based on undefined signed overflow, issue a warning if
4838 appropriate. */
4839
4840 tree
4841 vrp_evaluate_conditional (tree cond, tree stmt)
4842 {
4843 bool sop;
4844 tree ret;
4845
4846 sop = false;
4847 ret = vrp_evaluate_conditional_warnv (cond, true, &sop);
4848
4849 if (ret && sop)
4850 {
4851 enum warn_strict_overflow_code wc;
4852 const char* warnmsg;
4853
4854 if (is_gimple_min_invariant (ret))
4855 {
4856 wc = WARN_STRICT_OVERFLOW_CONDITIONAL;
4857 warnmsg = G_("assuming signed overflow does not occur when "
4858 "simplifying conditional to constant");
4859 }
4860 else
4861 {
4862 wc = WARN_STRICT_OVERFLOW_COMPARISON;
4863 warnmsg = G_("assuming signed overflow does not occur when "
4864 "simplifying conditional");
4865 }
4866
4867 if (issue_strict_overflow_warning (wc))
4868 {
4869 location_t locus;
4870
4871 if (!EXPR_HAS_LOCATION (stmt))
4872 locus = input_location;
4873 else
4874 locus = EXPR_LOCATION (stmt);
4875 warning (OPT_Wstrict_overflow, "%H%s", &locus, warnmsg);
4876 }
4877 }
4878
4879 return ret;
4880 }
4881
4882
4883 /* Visit conditional statement STMT. If we can determine which edge
4884 will be taken out of STMT's basic block, record it in
4885 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
4886 SSA_PROP_VARYING. */
4887
4888 static enum ssa_prop_result
4889 vrp_visit_cond_stmt (tree stmt, edge *taken_edge_p)
4890 {
4891 tree cond, val;
4892 bool sop;
4893
4894 *taken_edge_p = NULL;
4895
4896 /* FIXME. Handle SWITCH_EXPRs. */
4897 if (TREE_CODE (stmt) == SWITCH_EXPR)
4898 return SSA_PROP_VARYING;
4899
4900 cond = COND_EXPR_COND (stmt);
4901
4902 if (dump_file && (dump_flags & TDF_DETAILS))
4903 {
4904 tree use;
4905 ssa_op_iter i;
4906
4907 fprintf (dump_file, "\nVisiting conditional with predicate: ");
4908 print_generic_expr (dump_file, cond, 0);
4909 fprintf (dump_file, "\nWith known ranges\n");
4910
4911 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
4912 {
4913 fprintf (dump_file, "\t");
4914 print_generic_expr (dump_file, use, 0);
4915 fprintf (dump_file, ": ");
4916 dump_value_range (dump_file, vr_value[SSA_NAME_VERSION (use)]);
4917 }
4918
4919 fprintf (dump_file, "\n");
4920 }
4921
4922 /* Compute the value of the predicate COND by checking the known
4923 ranges of each of its operands.
4924
4925 Note that we cannot evaluate all the equivalent ranges here
4926 because those ranges may not yet be final and with the current
4927 propagation strategy, we cannot determine when the value ranges
4928 of the names in the equivalence set have changed.
4929
4930 For instance, given the following code fragment
4931
4932 i_5 = PHI <8, i_13>
4933 ...
4934 i_14 = ASSERT_EXPR <i_5, i_5 != 0>
4935 if (i_14 == 1)
4936 ...
4937
4938 Assume that on the first visit to i_14, i_5 has the temporary
4939 range [8, 8] because the second argument to the PHI function is
4940 not yet executable. We derive the range ~[0, 0] for i_14 and the
4941 equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
4942 the first time, since i_14 is equivalent to the range [8, 8], we
4943 determine that the predicate is always false.
4944
4945 On the next round of propagation, i_13 is determined to be
4946 VARYING, which causes i_5 to drop down to VARYING. So, another
4947 visit to i_14 is scheduled. In this second visit, we compute the
4948 exact same range and equivalence set for i_14, namely ~[0, 0] and
4949 { i_5 }. But we did not have the previous range for i_5
4950 registered, so vrp_visit_assignment thinks that the range for
4951 i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
4952 is not visited again, which stops propagation from visiting
4953 statements in the THEN clause of that if().
4954
4955 To properly fix this we would need to keep the previous range
4956 value for the names in the equivalence set. This way we would've
4957 discovered that from one visit to the other i_5 changed from
4958 range [8, 8] to VR_VARYING.
4959
4960 However, fixing this apparent limitation may not be worth the
4961 additional checking. Testing on several code bases (GCC, DLV,
4962 MICO, TRAMP3D and SPEC2000) showed that doing this results in
4963 4 more predicates folded in SPEC. */
4964 sop = false;
4965 val = vrp_evaluate_conditional_warnv (cond, false, &sop);
4966 if (val)
4967 {
4968 if (!sop)
4969 *taken_edge_p = find_taken_edge (bb_for_stmt (stmt), val);
4970 else
4971 {
4972 if (dump_file && (dump_flags & TDF_DETAILS))
4973 fprintf (dump_file,
4974 "\nIgnoring predicate evaluation because "
4975 "it assumes that signed overflow is undefined");
4976 val = NULL_TREE;
4977 }
4978 }
4979
4980 if (dump_file && (dump_flags & TDF_DETAILS))
4981 {
4982 fprintf (dump_file, "\nPredicate evaluates to: ");
4983 if (val == NULL_TREE)
4984 fprintf (dump_file, "DON'T KNOW\n");
4985 else
4986 print_generic_stmt (dump_file, val, 0);
4987 }
4988
4989 return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
4990 }
4991
4992
4993 /* Evaluate statement STMT. If the statement produces a useful range,
4994 return SSA_PROP_INTERESTING and record the SSA name with the
4995 interesting range into *OUTPUT_P.
4996
4997 If STMT is a conditional branch and we can determine its truth
4998 value, the taken edge is recorded in *TAKEN_EDGE_P.
4999
5000 If STMT produces a varying value, return SSA_PROP_VARYING. */
5001
5002 static enum ssa_prop_result
5003 vrp_visit_stmt (tree stmt, edge *taken_edge_p, tree *output_p)
5004 {
5005 tree def;
5006 ssa_op_iter iter;
5007 stmt_ann_t ann;
5008
5009 if (dump_file && (dump_flags & TDF_DETAILS))
5010 {
5011 fprintf (dump_file, "\nVisiting statement:\n");
5012 print_generic_stmt (dump_file, stmt, dump_flags);
5013 fprintf (dump_file, "\n");
5014 }
5015
5016 ann = stmt_ann (stmt);
5017 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT)
5018 {
5019 tree rhs = GIMPLE_STMT_OPERAND (stmt, 1);
5020
5021 /* In general, assignments with virtual operands are not useful
5022 for deriving ranges, with the obvious exception of calls to
5023 builtin functions. */
5024 if ((TREE_CODE (rhs) == CALL_EXPR
5025 && TREE_CODE (CALL_EXPR_FN (rhs)) == ADDR_EXPR
5026 && DECL_P (TREE_OPERAND (CALL_EXPR_FN (rhs), 0))
5027 && DECL_IS_BUILTIN (TREE_OPERAND (CALL_EXPR_FN (rhs), 0)))
5028 || ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
5029 return vrp_visit_assignment (stmt, output_p);
5030 }
5031 else if (TREE_CODE (stmt) == COND_EXPR || TREE_CODE (stmt) == SWITCH_EXPR)
5032 return vrp_visit_cond_stmt (stmt, taken_edge_p);
5033
5034 /* All other statements produce nothing of interest for VRP, so mark
5035 their outputs varying and prevent further simulation. */
5036 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
5037 set_value_range_to_varying (get_value_range (def));
5038
5039 return SSA_PROP_VARYING;
5040 }
5041
5042
5043 /* Meet operation for value ranges. Given two value ranges VR0 and
5044 VR1, store in VR0 a range that contains both VR0 and VR1. This
5045 may not be the smallest possible such range. */
5046
5047 static void
5048 vrp_meet (value_range_t *vr0, value_range_t *vr1)
5049 {
5050 if (vr0->type == VR_UNDEFINED)
5051 {
5052 copy_value_range (vr0, vr1);
5053 return;
5054 }
5055
5056 if (vr1->type == VR_UNDEFINED)
5057 {
5058 /* Nothing to do. VR0 already has the resulting range. */
5059 return;
5060 }
5061
5062 if (vr0->type == VR_VARYING)
5063 {
5064 /* Nothing to do. VR0 already has the resulting range. */
5065 return;
5066 }
5067
5068 if (vr1->type == VR_VARYING)
5069 {
5070 set_value_range_to_varying (vr0);
5071 return;
5072 }
5073
5074 if (vr0->type == VR_RANGE && vr1->type == VR_RANGE)
5075 {
5076 int cmp;
5077 tree min, max;
5078
5079 /* Compute the convex hull of the ranges. The lower limit of
5080 the new range is the minimum of the two ranges. If they
5081 cannot be compared, then give up. */
5082 cmp = compare_values (vr0->min, vr1->min);
5083 if (cmp == 0 || cmp == 1)
5084 min = vr1->min;
5085 else if (cmp == -1)
5086 min = vr0->min;
5087 else
5088 goto give_up;
5089
5090 /* Similarly, the upper limit of the new range is the maximum
5091 of the two ranges. If they cannot be compared, then
5092 give up. */
5093 cmp = compare_values (vr0->max, vr1->max);
5094 if (cmp == 0 || cmp == -1)
5095 max = vr1->max;
5096 else if (cmp == 1)
5097 max = vr0->max;
5098 else
5099 goto give_up;
5100
5101 /* The resulting set of equivalences is the intersection of
5102 the two sets. */
5103 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
5104 bitmap_and_into (vr0->equiv, vr1->equiv);
5105 else if (vr0->equiv && !vr1->equiv)
5106 bitmap_clear (vr0->equiv);
5107
5108 set_value_range (vr0, vr0->type, min, max, vr0->equiv);
5109 }
5110 else if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
5111 {
5112 /* Two anti-ranges meet only if their complements intersect.
5113 Only handle the case of identical ranges. */
5114 if (compare_values (vr0->min, vr1->min) == 0
5115 && compare_values (vr0->max, vr1->max) == 0
5116 && compare_values (vr0->min, vr0->max) == 0)
5117 {
5118 /* The resulting set of equivalences is the intersection of
5119 the two sets. */
5120 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
5121 bitmap_and_into (vr0->equiv, vr1->equiv);
5122 else if (vr0->equiv && !vr1->equiv)
5123 bitmap_clear (vr0->equiv);
5124 }
5125 else
5126 goto give_up;
5127 }
5128 else if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
5129 {
5130 /* For a numeric range [VAL1, VAL2] and an anti-range ~[VAL3, VAL4],
5131 only handle the case where the ranges have an empty intersection.
5132 The result of the meet operation is the anti-range. */
5133 if (!symbolic_range_p (vr0)
5134 && !symbolic_range_p (vr1)
5135 && !value_ranges_intersect_p (vr0, vr1))
5136 {
5137 /* Copy most of VR1 into VR0. Don't copy VR1's equivalence
5138 set. We need to compute the intersection of the two
5139 equivalence sets. */
5140 if (vr1->type == VR_ANTI_RANGE)
5141 set_value_range (vr0, vr1->type, vr1->min, vr1->max, vr0->equiv);
5142
5143 /* The resulting set of equivalences is the intersection of
5144 the two sets. */
5145 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
5146 bitmap_and_into (vr0->equiv, vr1->equiv);
5147 else if (vr0->equiv && !vr1->equiv)
5148 bitmap_clear (vr0->equiv);
5149 }
5150 else
5151 goto give_up;
5152 }
5153 else
5154 gcc_unreachable ();
5155
5156 return;
5157
5158 give_up:
5159 /* Failed to find an efficient meet. Before giving up and setting
5160 the result to VARYING, see if we can at least derive a useful
5161 anti-range. FIXME, all this nonsense about distinguishing
5162 anti-ranges from ranges is necessary because of the odd
5163 semantics of range_includes_zero_p and friends. */
5164 if (!symbolic_range_p (vr0)
5165 && ((vr0->type == VR_RANGE && !range_includes_zero_p (vr0))
5166 || (vr0->type == VR_ANTI_RANGE && range_includes_zero_p (vr0)))
5167 && !symbolic_range_p (vr1)
5168 && ((vr1->type == VR_RANGE && !range_includes_zero_p (vr1))
5169 || (vr1->type == VR_ANTI_RANGE && range_includes_zero_p (vr1))))
5170 {
5171 set_value_range_to_nonnull (vr0, TREE_TYPE (vr0->min));
5172
5173 /* Since this meet operation did not result from the meeting of
5174 two equivalent names, VR0 cannot have any equivalences. */
5175 if (vr0->equiv)
5176 bitmap_clear (vr0->equiv);
5177 }
5178 else
5179 set_value_range_to_varying (vr0);
5180 }
5181
5182
5183 /* Visit all arguments for PHI node PHI that flow through executable
5184 edges. If a valid value range can be derived from all the incoming
5185 value ranges, set a new range for the LHS of PHI. */
5186
5187 static enum ssa_prop_result
5188 vrp_visit_phi_node (tree phi)
5189 {
5190 int i;
5191 tree lhs = PHI_RESULT (phi);
5192 value_range_t *lhs_vr = get_value_range (lhs);
5193 value_range_t vr_result = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
5194 int edges, old_edges;
5195
5196 copy_value_range (&vr_result, lhs_vr);
5197
5198 if (dump_file && (dump_flags & TDF_DETAILS))
5199 {
5200 fprintf (dump_file, "\nVisiting PHI node: ");
5201 print_generic_expr (dump_file, phi, dump_flags);
5202 }
5203
5204 edges = 0;
5205 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
5206 {
5207 edge e = PHI_ARG_EDGE (phi, i);
5208
5209 if (dump_file && (dump_flags & TDF_DETAILS))
5210 {
5211 fprintf (dump_file,
5212 "\n Argument #%d (%d -> %d %sexecutable)\n",
5213 i, e->src->index, e->dest->index,
5214 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
5215 }
5216
5217 if (e->flags & EDGE_EXECUTABLE)
5218 {
5219 tree arg = PHI_ARG_DEF (phi, i);
5220 value_range_t vr_arg;
5221
5222 ++edges;
5223
5224 if (TREE_CODE (arg) == SSA_NAME)
5225 {
5226 vr_arg = *(get_value_range (arg));
5227 }
5228 else
5229 {
5230 vr_arg.type = VR_RANGE;
5231 vr_arg.min = arg;
5232 vr_arg.max = arg;
5233 vr_arg.equiv = NULL;
5234 }
5235
5236 if (dump_file && (dump_flags & TDF_DETAILS))
5237 {
5238 fprintf (dump_file, "\t");
5239 print_generic_expr (dump_file, arg, dump_flags);
5240 fprintf (dump_file, "\n\tValue: ");
5241 dump_value_range (dump_file, &vr_arg);
5242 fprintf (dump_file, "\n");
5243 }
5244
5245 vrp_meet (&vr_result, &vr_arg);
5246
5247 if (vr_result.type == VR_VARYING)
5248 break;
5249 }
5250 }
5251
5252 if (vr_result.type == VR_VARYING)
5253 goto varying;
5254
5255 old_edges = vr_phi_edge_counts[SSA_NAME_VERSION (lhs)];
5256 vr_phi_edge_counts[SSA_NAME_VERSION (lhs)] = edges;
5257
5258 /* To prevent infinite iterations in the algorithm, derive ranges
5259 when the new value is slightly bigger or smaller than the
5260 previous one. We don't do this if we have seen a new executable
5261 edge; this helps us avoid an overflow infinity for conditionals
5262 which are not in a loop. */
5263 if (lhs_vr->type == VR_RANGE && vr_result.type == VR_RANGE
5264 && edges <= old_edges)
5265 {
5266 if (!POINTER_TYPE_P (TREE_TYPE (lhs)))
5267 {
5268 int cmp_min = compare_values (lhs_vr->min, vr_result.min);
5269 int cmp_max = compare_values (lhs_vr->max, vr_result.max);
5270
5271 /* If the new minimum is smaller or larger than the previous
5272 one, go all the way to -INF. In the first case, to avoid
5273 iterating millions of times to reach -INF, and in the
5274 other case to avoid infinite bouncing between different
5275 minimums. */
5276 if (cmp_min > 0 || cmp_min < 0)
5277 {
5278 /* If we will end up with a (-INF, +INF) range, set it
5279 to VARYING. */
5280 if (is_positive_overflow_infinity (vr_result.max)
5281 || (vr_result.max
5282 == TYPE_MAX_VALUE (TREE_TYPE (vr_result.max))))
5283 goto varying;
5284
5285 if (!needs_overflow_infinity (TREE_TYPE (vr_result.min)))
5286 vr_result.min = TYPE_MIN_VALUE (TREE_TYPE (vr_result.min));
5287 else if (supports_overflow_infinity (TREE_TYPE (vr_result.min)))
5288 vr_result.min =
5289 negative_overflow_infinity (TREE_TYPE (vr_result.min));
5290 else
5291 goto varying;
5292 }
5293
5294 /* Similarly, if the new maximum is smaller or larger than
5295 the previous one, go all the way to +INF. */
5296 if (cmp_max < 0 || cmp_max > 0)
5297 {
5298 /* If we will end up with a (-INF, +INF) range, set it
5299 to VARYING. */
5300 if (is_negative_overflow_infinity (vr_result.min)
5301 || (vr_result.min
5302 == TYPE_MIN_VALUE (TREE_TYPE (vr_result.min))))
5303 goto varying;
5304
5305 if (!needs_overflow_infinity (TREE_TYPE (vr_result.max)))
5306 vr_result.max = TYPE_MAX_VALUE (TREE_TYPE (vr_result.max));
5307 else if (supports_overflow_infinity (TREE_TYPE (vr_result.max)))
5308 vr_result.max =
5309 positive_overflow_infinity (TREE_TYPE (vr_result.max));
5310 else
5311 goto varying;
5312 }
5313 }
5314 }
5315
5316 /* If the new range is different than the previous value, keep
5317 iterating. */
5318 if (update_value_range (lhs, &vr_result))
5319 return SSA_PROP_INTERESTING;
5320
5321 /* Nothing changed, don't add outgoing edges. */
5322 return SSA_PROP_NOT_INTERESTING;
5323
5324 /* No match found. Set the LHS to VARYING. */
5325 varying:
5326 set_value_range_to_varying (lhs_vr);
5327 return SSA_PROP_VARYING;
5328 }
5329
5330 /* Simplify a division or modulo operator to a right shift or
5331 bitwise and if the first operand is unsigned or is greater
5332 than zero and the second operand is an exact power of two. */
5333
5334 static void
5335 simplify_div_or_mod_using_ranges (tree stmt, tree rhs, enum tree_code rhs_code)
5336 {
5337 tree val = NULL;
5338 tree op = TREE_OPERAND (rhs, 0);
5339 value_range_t *vr = get_value_range (TREE_OPERAND (rhs, 0));
5340
5341 if (TYPE_UNSIGNED (TREE_TYPE (op)))
5342 {
5343 val = integer_one_node;
5344 }
5345 else
5346 {
5347 bool sop = false;
5348
5349 val = compare_range_with_value (GT_EXPR, vr, integer_zero_node, &sop);
5350
5351 if (val
5352 && sop
5353 && integer_onep (val)
5354 && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
5355 {
5356 location_t locus;
5357
5358 if (!EXPR_HAS_LOCATION (stmt))
5359 locus = input_location;
5360 else
5361 locus = EXPR_LOCATION (stmt);
5362 warning (OPT_Wstrict_overflow,
5363 ("%Hassuming signed overflow does not occur when "
5364 "simplifying / or %% to >> or &"),
5365 &locus);
5366 }
5367 }
5368
5369 if (val && integer_onep (val))
5370 {
5371 tree t;
5372 tree op0 = TREE_OPERAND (rhs, 0);
5373 tree op1 = TREE_OPERAND (rhs, 1);
5374
5375 if (rhs_code == TRUNC_DIV_EXPR)
5376 {
5377 t = build_int_cst (NULL_TREE, tree_log2 (op1));
5378 t = build2 (RSHIFT_EXPR, TREE_TYPE (op0), op0, t);
5379 }
5380 else
5381 {
5382 t = build_int_cst (TREE_TYPE (op1), 1);
5383 t = int_const_binop (MINUS_EXPR, op1, t, 0);
5384 t = fold_convert (TREE_TYPE (op0), t);
5385 t = build2 (BIT_AND_EXPR, TREE_TYPE (op0), op0, t);
5386 }
5387
5388 GIMPLE_STMT_OPERAND (stmt, 1) = t;
5389 update_stmt (stmt);
5390 }
5391 }
5392
5393 /* If the operand to an ABS_EXPR is >= 0, then eliminate the
5394 ABS_EXPR. If the operand is <= 0, then simplify the
5395 ABS_EXPR into a NEGATE_EXPR. */
5396
5397 static void
5398 simplify_abs_using_ranges (tree stmt, tree rhs)
5399 {
5400 tree val = NULL;
5401 tree op = TREE_OPERAND (rhs, 0);
5402 tree type = TREE_TYPE (op);
5403 value_range_t *vr = get_value_range (TREE_OPERAND (rhs, 0));
5404
5405 if (TYPE_UNSIGNED (type))
5406 {
5407 val = integer_zero_node;
5408 }
5409 else if (vr)
5410 {
5411 bool sop = false;
5412
5413 val = compare_range_with_value (LE_EXPR, vr, integer_zero_node, &sop);
5414 if (!val)
5415 {
5416 sop = false;
5417 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node,
5418 &sop);
5419
5420 if (val)
5421 {
5422 if (integer_zerop (val))
5423 val = integer_one_node;
5424 else if (integer_onep (val))
5425 val = integer_zero_node;
5426 }
5427 }
5428
5429 if (val
5430 && (integer_onep (val) || integer_zerop (val)))
5431 {
5432 tree t;
5433
5434 if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
5435 {
5436 location_t locus;
5437
5438 if (!EXPR_HAS_LOCATION (stmt))
5439 locus = input_location;
5440 else
5441 locus = EXPR_LOCATION (stmt);
5442 warning (OPT_Wstrict_overflow,
5443 ("%Hassuming signed overflow does not occur when "
5444 "simplifying abs (X) to X or -X"),
5445 &locus);
5446 }
5447
5448 if (integer_onep (val))
5449 t = build1 (NEGATE_EXPR, TREE_TYPE (op), op);
5450 else
5451 t = op;
5452
5453 GIMPLE_STMT_OPERAND (stmt, 1) = t;
5454 update_stmt (stmt);
5455 }
5456 }
5457 }
5458
5459 /* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
5460 a known value range VR.
5461
5462 If there is one and only one value which will satisfy the
5463 conditional, then return that value. Else return NULL. */
5464
5465 static tree
5466 test_for_singularity (enum tree_code cond_code, tree op0,
5467 tree op1, value_range_t *vr)
5468 {
5469 tree min = NULL;
5470 tree max = NULL;
5471
5472 /* Extract minimum/maximum values which satisfy the
5473 the conditional as it was written. */
5474 if (cond_code == LE_EXPR || cond_code == LT_EXPR)
5475 {
5476 /* This should not be negative infinity; there is no overflow
5477 here. */
5478 min = TYPE_MIN_VALUE (TREE_TYPE (op0));
5479
5480 max = op1;
5481 if (cond_code == LT_EXPR && !is_overflow_infinity (max))
5482 {
5483 tree one = build_int_cst (TREE_TYPE (op0), 1);
5484 max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one);
5485 }
5486 }
5487 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
5488 {
5489 /* This should not be positive infinity; there is no overflow
5490 here. */
5491 max = TYPE_MAX_VALUE (TREE_TYPE (op0));
5492
5493 min = op1;
5494 if (cond_code == GT_EXPR && !is_overflow_infinity (min))
5495 {
5496 tree one = build_int_cst (TREE_TYPE (op0), 1);
5497 min = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), min, one);
5498 }
5499 }
5500
5501 /* Now refine the minimum and maximum values using any
5502 value range information we have for op0. */
5503 if (min && max)
5504 {
5505 if (compare_values (vr->min, min) == -1)
5506 min = min;
5507 else
5508 min = vr->min;
5509 if (compare_values (vr->max, max) == 1)
5510 max = max;
5511 else
5512 max = vr->max;
5513
5514 /* If the new min/max values have converged to a single value,
5515 then there is only one value which can satisfy the condition,
5516 return that value. */
5517 if (operand_equal_p (min, max, 0) && is_gimple_min_invariant (min))
5518 return min;
5519 }
5520 return NULL;
5521 }
5522
5523 /* Simplify a conditional using a relational operator to an equality
5524 test if the range information indicates only one value can satisfy
5525 the original conditional. */
5526
5527 static void
5528 simplify_cond_using_ranges (tree stmt)
5529 {
5530 tree cond = COND_EXPR_COND (stmt);
5531 tree op0 = TREE_OPERAND (cond, 0);
5532 tree op1 = TREE_OPERAND (cond, 1);
5533 enum tree_code cond_code = TREE_CODE (cond);
5534
5535 if (cond_code != NE_EXPR
5536 && cond_code != EQ_EXPR
5537 && TREE_CODE (op0) == SSA_NAME
5538 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
5539 && is_gimple_min_invariant (op1))
5540 {
5541 value_range_t *vr = get_value_range (op0);
5542
5543 /* If we have range information for OP0, then we might be
5544 able to simplify this conditional. */
5545 if (vr->type == VR_RANGE)
5546 {
5547 tree new = test_for_singularity (cond_code, op0, op1, vr);
5548
5549 if (new)
5550 {
5551 if (dump_file)
5552 {
5553 fprintf (dump_file, "Simplified relational ");
5554 print_generic_expr (dump_file, cond, 0);
5555 fprintf (dump_file, " into ");
5556 }
5557
5558 COND_EXPR_COND (stmt)
5559 = build2 (EQ_EXPR, boolean_type_node, op0, new);
5560 update_stmt (stmt);
5561
5562 if (dump_file)
5563 {
5564 print_generic_expr (dump_file, COND_EXPR_COND (stmt), 0);
5565 fprintf (dump_file, "\n");
5566 }
5567 return;
5568
5569 }
5570
5571 /* Try again after inverting the condition. We only deal
5572 with integral types here, so no need to worry about
5573 issues with inverting FP comparisons. */
5574 cond_code = invert_tree_comparison (cond_code, false);
5575 new = test_for_singularity (cond_code, op0, op1, vr);
5576
5577 if (new)
5578 {
5579 if (dump_file)
5580 {
5581 fprintf (dump_file, "Simplified relational ");
5582 print_generic_expr (dump_file, cond, 0);
5583 fprintf (dump_file, " into ");
5584 }
5585
5586 COND_EXPR_COND (stmt)
5587 = build2 (NE_EXPR, boolean_type_node, op0, new);
5588 update_stmt (stmt);
5589
5590 if (dump_file)
5591 {
5592 print_generic_expr (dump_file, COND_EXPR_COND (stmt), 0);
5593 fprintf (dump_file, "\n");
5594 }
5595 return;
5596
5597 }
5598 }
5599 }
5600 }
5601
5602 /* Simplify STMT using ranges if possible. */
5603
5604 void
5605 simplify_stmt_using_ranges (tree stmt)
5606 {
5607 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT)
5608 {
5609 tree rhs = GIMPLE_STMT_OPERAND (stmt, 1);
5610 enum tree_code rhs_code = TREE_CODE (rhs);
5611
5612 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
5613 and BIT_AND_EXPR respectively if the first operand is greater
5614 than zero and the second operand is an exact power of two. */
5615 if ((rhs_code == TRUNC_DIV_EXPR || rhs_code == TRUNC_MOD_EXPR)
5616 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs, 0)))
5617 && integer_pow2p (TREE_OPERAND (rhs, 1)))
5618 simplify_div_or_mod_using_ranges (stmt, rhs, rhs_code);
5619
5620 /* Transform ABS (X) into X or -X as appropriate. */
5621 if (rhs_code == ABS_EXPR
5622 && TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME
5623 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs, 0))))
5624 simplify_abs_using_ranges (stmt, rhs);
5625 }
5626 else if (TREE_CODE (stmt) == COND_EXPR
5627 && COMPARISON_CLASS_P (COND_EXPR_COND (stmt)))
5628 {
5629 simplify_cond_using_ranges (stmt);
5630 }
5631 }
5632
5633 /* Stack of dest,src equivalency pairs that need to be restored after
5634 each attempt to thread a block's incoming edge to an outgoing edge.
5635
5636 A NULL entry is used to mark the end of pairs which need to be
5637 restored. */
5638 static VEC(tree,heap) *stack;
5639
5640 /* A trivial wrapper so that we can present the generic jump threading
5641 code with a simple API for simplifying statements. STMT is the
5642 statement we want to simplify, WITHIN_STMT provides the location
5643 for any overflow warnings. */
5644
5645 static tree
5646 simplify_stmt_for_jump_threading (tree stmt, tree within_stmt)
5647 {
5648 /* We only use VRP information to simplify conditionals. This is
5649 overly conservative, but it's unclear if doing more would be
5650 worth the compile time cost. */
5651 if (TREE_CODE (stmt) != COND_EXPR)
5652 return NULL;
5653
5654 return vrp_evaluate_conditional (COND_EXPR_COND (stmt), within_stmt);
5655 }
5656
5657 /* Blocks which have more than one predecessor and more than
5658 one successor present jump threading opportunities. ie,
5659 when the block is reached from a specific predecessor, we
5660 may be able to determine which of the outgoing edges will
5661 be traversed. When this optimization applies, we are able
5662 to avoid conditionals at runtime and we may expose secondary
5663 optimization opportunities.
5664
5665 This routine is effectively a driver for the generic jump
5666 threading code. It basically just presents the generic code
5667 with edges that may be suitable for jump threading.
5668
5669 Unlike DOM, we do not iterate VRP if jump threading was successful.
5670 While iterating may expose new opportunities for VRP, it is expected
5671 those opportunities would be very limited and the compile time cost
5672 to expose those opportunities would be significant.
5673
5674 As jump threading opportunities are discovered, they are registered
5675 for later realization. */
5676
5677 static void
5678 identify_jump_threads (void)
5679 {
5680 basic_block bb;
5681 tree dummy;
5682
5683 /* Ugh. When substituting values earlier in this pass we can
5684 wipe the dominance information. So rebuild the dominator
5685 information as we need it within the jump threading code. */
5686 calculate_dominance_info (CDI_DOMINATORS);
5687
5688 /* We do not allow VRP information to be used for jump threading
5689 across a back edge in the CFG. Otherwise it becomes too
5690 difficult to avoid eliminating loop exit tests. Of course
5691 EDGE_DFS_BACK is not accurate at this time so we have to
5692 recompute it. */
5693 mark_dfs_back_edges ();
5694
5695 /* Allocate our unwinder stack to unwind any temporary equivalences
5696 that might be recorded. */
5697 stack = VEC_alloc (tree, heap, 20);
5698
5699 /* To avoid lots of silly node creation, we create a single
5700 conditional and just modify it in-place when attempting to
5701 thread jumps. */
5702 dummy = build2 (EQ_EXPR, boolean_type_node, NULL, NULL);
5703 dummy = build3 (COND_EXPR, void_type_node, dummy, NULL, NULL);
5704
5705 /* Walk through all the blocks finding those which present a
5706 potential jump threading opportunity. We could set this up
5707 as a dominator walker and record data during the walk, but
5708 I doubt it's worth the effort for the classes of jump
5709 threading opportunities we are trying to identify at this
5710 point in compilation. */
5711 FOR_EACH_BB (bb)
5712 {
5713 tree last, cond;
5714
5715 /* If the generic jump threading code does not find this block
5716 interesting, then there is nothing to do. */
5717 if (! potentially_threadable_block (bb))
5718 continue;
5719
5720 /* We only care about blocks ending in a COND_EXPR. While there
5721 may be some value in handling SWITCH_EXPR here, I doubt it's
5722 terribly important. */
5723 last = bsi_stmt (bsi_last (bb));
5724 if (TREE_CODE (last) != COND_EXPR)
5725 continue;
5726
5727 /* We're basically looking for any kind of conditional with
5728 integral type arguments. */
5729 cond = COND_EXPR_COND (last);
5730 if ((TREE_CODE (cond) == SSA_NAME
5731 && INTEGRAL_TYPE_P (TREE_TYPE (cond)))
5732 || (COMPARISON_CLASS_P (cond)
5733 && TREE_CODE (TREE_OPERAND (cond, 0)) == SSA_NAME
5734 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (cond, 0)))
5735 && (TREE_CODE (TREE_OPERAND (cond, 1)) == SSA_NAME
5736 || is_gimple_min_invariant (TREE_OPERAND (cond, 1)))
5737 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (cond, 1)))))
5738 {
5739 edge_iterator ei;
5740 edge e;
5741
5742 /* We've got a block with multiple predecessors and multiple
5743 successors which also ends in a suitable conditional. For
5744 each predecessor, see if we can thread it to a specific
5745 successor. */
5746 FOR_EACH_EDGE (e, ei, bb->preds)
5747 {
5748 /* Do not thread across back edges or abnormal edges
5749 in the CFG. */
5750 if (e->flags & (EDGE_DFS_BACK | EDGE_COMPLEX))
5751 continue;
5752
5753 thread_across_edge (dummy, e, true,
5754 &stack,
5755 simplify_stmt_for_jump_threading);
5756 }
5757 }
5758 }
5759
5760 /* We do not actually update the CFG or SSA graphs at this point as
5761 ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
5762 handle ASSERT_EXPRs gracefully. */
5763 }
5764
5765 /* We identified all the jump threading opportunities earlier, but could
5766 not transform the CFG at that time. This routine transforms the
5767 CFG and arranges for the dominator tree to be rebuilt if necessary.
5768
5769 Note the SSA graph update will occur during the normal TODO
5770 processing by the pass manager. */
5771 static void
5772 finalize_jump_threads (void)
5773 {
5774 bool cfg_altered = false;
5775 cfg_altered = thread_through_all_blocks ();
5776
5777 /* If we threaded jumps, then we need to recompute the dominance
5778 information. */
5779 if (cfg_altered)
5780 free_dominance_info (CDI_DOMINATORS);
5781 VEC_free (tree, heap, stack);
5782 }
5783
5784
5785 /* Traverse all the blocks folding conditionals with known ranges. */
5786
5787 static void
5788 vrp_finalize (void)
5789 {
5790 size_t i;
5791 prop_value_t *single_val_range;
5792 bool do_value_subst_p;
5793
5794 if (dump_file)
5795 {
5796 fprintf (dump_file, "\nValue ranges after VRP:\n\n");
5797 dump_all_value_ranges (dump_file);
5798 fprintf (dump_file, "\n");
5799 }
5800
5801 /* We may have ended with ranges that have exactly one value. Those
5802 values can be substituted as any other copy/const propagated
5803 value using substitute_and_fold. */
5804 single_val_range = XCNEWVEC (prop_value_t, num_ssa_names);
5805
5806 do_value_subst_p = false;
5807 for (i = 0; i < num_ssa_names; i++)
5808 if (vr_value[i]
5809 && vr_value[i]->type == VR_RANGE
5810 && vr_value[i]->min == vr_value[i]->max)
5811 {
5812 single_val_range[i].value = vr_value[i]->min;
5813 do_value_subst_p = true;
5814 }
5815
5816 if (!do_value_subst_p)
5817 {
5818 /* We found no single-valued ranges, don't waste time trying to
5819 do single value substitution in substitute_and_fold. */
5820 free (single_val_range);
5821 single_val_range = NULL;
5822 }
5823
5824 substitute_and_fold (single_val_range, true);
5825
5826 if (warn_array_bounds)
5827 check_all_array_refs ();
5828
5829 /* We must identify jump threading opportunities before we release
5830 the datastructures built by VRP. */
5831 identify_jump_threads ();
5832
5833 /* Free allocated memory. */
5834 for (i = 0; i < num_ssa_names; i++)
5835 if (vr_value[i])
5836 {
5837 BITMAP_FREE (vr_value[i]->equiv);
5838 free (vr_value[i]);
5839 }
5840
5841 free (single_val_range);
5842 free (vr_value);
5843 free (vr_phi_edge_counts);
5844
5845 /* So that we can distinguish between VRP data being available
5846 and not available. */
5847 vr_value = NULL;
5848 vr_phi_edge_counts = NULL;
5849 }
5850
5851
5852 /* Main entry point to VRP (Value Range Propagation). This pass is
5853 loosely based on J. R. C. Patterson, ``Accurate Static Branch
5854 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
5855 Programming Language Design and Implementation, pp. 67-78, 1995.
5856 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
5857
5858 This is essentially an SSA-CCP pass modified to deal with ranges
5859 instead of constants.
5860
5861 While propagating ranges, we may find that two or more SSA name
5862 have equivalent, though distinct ranges. For instance,
5863
5864 1 x_9 = p_3->a;
5865 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
5866 3 if (p_4 == q_2)
5867 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
5868 5 endif
5869 6 if (q_2)
5870
5871 In the code above, pointer p_5 has range [q_2, q_2], but from the
5872 code we can also determine that p_5 cannot be NULL and, if q_2 had
5873 a non-varying range, p_5's range should also be compatible with it.
5874
5875 These equivalences are created by two expressions: ASSERT_EXPR and
5876 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
5877 result of another assertion, then we can use the fact that p_5 and
5878 p_4 are equivalent when evaluating p_5's range.
5879
5880 Together with value ranges, we also propagate these equivalences
5881 between names so that we can take advantage of information from
5882 multiple ranges when doing final replacement. Note that this
5883 equivalency relation is transitive but not symmetric.
5884
5885 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
5886 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
5887 in contexts where that assertion does not hold (e.g., in line 6).
5888
5889 TODO, the main difference between this pass and Patterson's is that
5890 we do not propagate edge probabilities. We only compute whether
5891 edges can be taken or not. That is, instead of having a spectrum
5892 of jump probabilities between 0 and 1, we only deal with 0, 1 and
5893 DON'T KNOW. In the future, it may be worthwhile to propagate
5894 probabilities to aid branch prediction. */
5895
5896 static unsigned int
5897 execute_vrp (void)
5898 {
5899 insert_range_assertions ();
5900
5901 loop_optimizer_init (LOOPS_NORMAL);
5902 if (current_loops)
5903 scev_initialize ();
5904
5905 vrp_initialize ();
5906 ssa_propagate (vrp_visit_stmt, vrp_visit_phi_node);
5907 vrp_finalize ();
5908
5909 if (current_loops)
5910 {
5911 scev_finalize ();
5912 loop_optimizer_finalize ();
5913 }
5914
5915 /* ASSERT_EXPRs must be removed before finalizing jump threads
5916 as finalizing jump threads calls the CFG cleanup code which
5917 does not properly handle ASSERT_EXPRs. */
5918 remove_range_assertions ();
5919
5920 /* If we exposed any new variables, go ahead and put them into
5921 SSA form now, before we handle jump threading. This simplifies
5922 interactions between rewriting of _DECL nodes into SSA form
5923 and rewriting SSA_NAME nodes into SSA form after block
5924 duplication and CFG manipulation. */
5925 update_ssa (TODO_update_ssa);
5926
5927 finalize_jump_threads ();
5928 return 0;
5929 }
5930
5931 static bool
5932 gate_vrp (void)
5933 {
5934 return flag_tree_vrp != 0;
5935 }
5936
5937 struct tree_opt_pass pass_vrp =
5938 {
5939 "vrp", /* name */
5940 gate_vrp, /* gate */
5941 execute_vrp, /* execute */
5942 NULL, /* sub */
5943 NULL, /* next */
5944 0, /* static_pass_number */
5945 TV_TREE_VRP, /* tv_id */
5946 PROP_ssa | PROP_alias, /* properties_required */
5947 0, /* properties_provided */
5948 0, /* properties_destroyed */
5949 0, /* todo_flags_start */
5950 TODO_cleanup_cfg
5951 | TODO_ggc_collect
5952 | TODO_verify_ssa
5953 | TODO_dump_func
5954 | TODO_update_ssa, /* todo_flags_finish */
5955 0 /* letter */
5956 };