]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-vrp.c
[multiple changes]
[thirdparty/gcc.git] / gcc / tree-vrp.c
1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005, 2006, 2007 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to
19 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "ggc.h"
27 #include "flags.h"
28 #include "tree.h"
29 #include "basic-block.h"
30 #include "tree-flow.h"
31 #include "tree-pass.h"
32 #include "tree-dump.h"
33 #include "timevar.h"
34 #include "diagnostic.h"
35 #include "toplev.h"
36 #include "intl.h"
37 #include "cfgloop.h"
38 #include "tree-scalar-evolution.h"
39 #include "tree-ssa-propagate.h"
40 #include "tree-chrec.h"
41
42 /* Set of SSA names found during the dominator traversal of a
43 sub-graph in find_assert_locations. */
44 static sbitmap found_in_subgraph;
45
46 /* Local functions. */
47 static int compare_values (tree val1, tree val2);
48 static int compare_values_warnv (tree val1, tree val2, bool *);
49 static void vrp_meet (value_range_t *, value_range_t *);
50 static tree vrp_evaluate_conditional_warnv (tree, bool, bool *);
51
52 /* Location information for ASSERT_EXPRs. Each instance of this
53 structure describes an ASSERT_EXPR for an SSA name. Since a single
54 SSA name may have more than one assertion associated with it, these
55 locations are kept in a linked list attached to the corresponding
56 SSA name. */
57 struct assert_locus_d
58 {
59 /* Basic block where the assertion would be inserted. */
60 basic_block bb;
61
62 /* Some assertions need to be inserted on an edge (e.g., assertions
63 generated by COND_EXPRs). In those cases, BB will be NULL. */
64 edge e;
65
66 /* Pointer to the statement that generated this assertion. */
67 block_stmt_iterator si;
68
69 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
70 enum tree_code comp_code;
71
72 /* Value being compared against. */
73 tree val;
74
75 /* Next node in the linked list. */
76 struct assert_locus_d *next;
77 };
78
79 typedef struct assert_locus_d *assert_locus_t;
80
81 /* If bit I is present, it means that SSA name N_i has a list of
82 assertions that should be inserted in the IL. */
83 static bitmap need_assert_for;
84
85 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
86 holds a list of ASSERT_LOCUS_T nodes that describe where
87 ASSERT_EXPRs for SSA name N_I should be inserted. */
88 static assert_locus_t *asserts_for;
89
90 /* Set of blocks visited in find_assert_locations. Used to avoid
91 visiting the same block more than once. */
92 static sbitmap blocks_visited;
93
94 /* Value range array. After propagation, VR_VALUE[I] holds the range
95 of values that SSA name N_I may take. */
96 static value_range_t **vr_value;
97
98 /* For a PHI node which sets SSA name N_I, VR_COUNTS[I] holds the
99 number of executable edges we saw the last time we visited the
100 node. */
101 static int *vr_phi_edge_counts;
102
103
104 /* Return whether TYPE should use an overflow infinity distinct from
105 TYPE_{MIN,MAX}_VALUE. We use an overflow infinity value to
106 represent a signed overflow during VRP computations. An infinity
107 is distinct from a half-range, which will go from some number to
108 TYPE_{MIN,MAX}_VALUE. */
109
110 static inline bool
111 needs_overflow_infinity (tree type)
112 {
113 return INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_WRAPS (type);
114 }
115
116 /* Return whether TYPE can support our overflow infinity
117 representation: we use the TREE_OVERFLOW flag, which only exists
118 for constants. If TYPE doesn't support this, we don't optimize
119 cases which would require signed overflow--we drop them to
120 VARYING. */
121
122 static inline bool
123 supports_overflow_infinity (tree type)
124 {
125 #ifdef ENABLE_CHECKING
126 gcc_assert (needs_overflow_infinity (type));
127 #endif
128 return (TYPE_MIN_VALUE (type) != NULL_TREE
129 && CONSTANT_CLASS_P (TYPE_MIN_VALUE (type))
130 && TYPE_MAX_VALUE (type) != NULL_TREE
131 && CONSTANT_CLASS_P (TYPE_MAX_VALUE (type)));
132 }
133
134 /* VAL is the maximum or minimum value of a type. Return a
135 corresponding overflow infinity. */
136
137 static inline tree
138 make_overflow_infinity (tree val)
139 {
140 #ifdef ENABLE_CHECKING
141 gcc_assert (val != NULL_TREE && CONSTANT_CLASS_P (val));
142 #endif
143 val = copy_node (val);
144 TREE_OVERFLOW (val) = 1;
145 return val;
146 }
147
148 /* Return a negative overflow infinity for TYPE. */
149
150 static inline tree
151 negative_overflow_infinity (tree type)
152 {
153 #ifdef ENABLE_CHECKING
154 gcc_assert (supports_overflow_infinity (type));
155 #endif
156 return make_overflow_infinity (TYPE_MIN_VALUE (type));
157 }
158
159 /* Return a positive overflow infinity for TYPE. */
160
161 static inline tree
162 positive_overflow_infinity (tree type)
163 {
164 #ifdef ENABLE_CHECKING
165 gcc_assert (supports_overflow_infinity (type));
166 #endif
167 return make_overflow_infinity (TYPE_MAX_VALUE (type));
168 }
169
170 /* Return whether VAL is a negative overflow infinity. */
171
172 static inline bool
173 is_negative_overflow_infinity (tree val)
174 {
175 return (needs_overflow_infinity (TREE_TYPE (val))
176 && CONSTANT_CLASS_P (val)
177 && TREE_OVERFLOW (val)
178 && operand_equal_p (val, TYPE_MIN_VALUE (TREE_TYPE (val)), 0));
179 }
180
181 /* Return whether VAL is a positive overflow infinity. */
182
183 static inline bool
184 is_positive_overflow_infinity (tree val)
185 {
186 return (needs_overflow_infinity (TREE_TYPE (val))
187 && CONSTANT_CLASS_P (val)
188 && TREE_OVERFLOW (val)
189 && operand_equal_p (val, TYPE_MAX_VALUE (TREE_TYPE (val)), 0));
190 }
191
192 /* Return whether VAL is a positive or negative overflow infinity. */
193
194 static inline bool
195 is_overflow_infinity (tree val)
196 {
197 return (needs_overflow_infinity (TREE_TYPE (val))
198 && CONSTANT_CLASS_P (val)
199 && TREE_OVERFLOW (val)
200 && (operand_equal_p (val, TYPE_MAX_VALUE (TREE_TYPE (val)), 0)
201 || operand_equal_p (val, TYPE_MIN_VALUE (TREE_TYPE (val)), 0)));
202 }
203
204 /* If VAL is now an overflow infinity, return VAL. Otherwise, return
205 the same value with TREE_OVERFLOW clear. This can be used to avoid
206 confusing a regular value with an overflow value. */
207
208 static inline tree
209 avoid_overflow_infinity (tree val)
210 {
211 if (!is_overflow_infinity (val))
212 return val;
213
214 if (operand_equal_p (val, TYPE_MAX_VALUE (TREE_TYPE (val)), 0))
215 return TYPE_MAX_VALUE (TREE_TYPE (val));
216 else
217 {
218 #ifdef ENABLE_CHECKING
219 gcc_assert (operand_equal_p (val, TYPE_MIN_VALUE (TREE_TYPE (val)), 0));
220 #endif
221 return TYPE_MIN_VALUE (TREE_TYPE (val));
222 }
223 }
224
225
226 /* Return whether VAL is equal to the maximum value of its type. This
227 will be true for a positive overflow infinity. We can't do a
228 simple equality comparison with TYPE_MAX_VALUE because C typedefs
229 and Ada subtypes can produce types whose TYPE_MAX_VALUE is not ==
230 to the integer constant with the same value in the type. */
231
232 static inline bool
233 vrp_val_is_max (tree val)
234 {
235 tree type_max = TYPE_MAX_VALUE (TREE_TYPE (val));
236
237 return (val == type_max
238 || (type_max != NULL_TREE
239 && operand_equal_p (val, type_max, 0)));
240 }
241
242 /* Return whether VAL is equal to the minimum value of its type. This
243 will be true for a negative overflow infinity. */
244
245 static inline bool
246 vrp_val_is_min (tree val)
247 {
248 tree type_min = TYPE_MIN_VALUE (TREE_TYPE (val));
249
250 return (val == type_min
251 || (type_min != NULL_TREE
252 && operand_equal_p (val, type_min, 0)));
253 }
254
255
256 /* Return true if ARG is marked with the nonnull attribute in the
257 current function signature. */
258
259 static bool
260 nonnull_arg_p (tree arg)
261 {
262 tree t, attrs, fntype;
263 unsigned HOST_WIDE_INT arg_num;
264
265 gcc_assert (TREE_CODE (arg) == PARM_DECL && POINTER_TYPE_P (TREE_TYPE (arg)));
266
267 /* The static chain decl is always non null. */
268 if (arg == cfun->static_chain_decl)
269 return true;
270
271 fntype = TREE_TYPE (current_function_decl);
272 attrs = lookup_attribute ("nonnull", TYPE_ATTRIBUTES (fntype));
273
274 /* If "nonnull" wasn't specified, we know nothing about the argument. */
275 if (attrs == NULL_TREE)
276 return false;
277
278 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
279 if (TREE_VALUE (attrs) == NULL_TREE)
280 return true;
281
282 /* Get the position number for ARG in the function signature. */
283 for (arg_num = 1, t = DECL_ARGUMENTS (current_function_decl);
284 t;
285 t = TREE_CHAIN (t), arg_num++)
286 {
287 if (t == arg)
288 break;
289 }
290
291 gcc_assert (t == arg);
292
293 /* Now see if ARG_NUM is mentioned in the nonnull list. */
294 for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
295 {
296 if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
297 return true;
298 }
299
300 return false;
301 }
302
303
304 /* Set value range VR to {T, MIN, MAX, EQUIV}. */
305
306 static void
307 set_value_range (value_range_t *vr, enum value_range_type t, tree min,
308 tree max, bitmap equiv)
309 {
310 #if defined ENABLE_CHECKING
311 /* Check the validity of the range. */
312 if (t == VR_RANGE || t == VR_ANTI_RANGE)
313 {
314 int cmp;
315
316 gcc_assert (min && max);
317
318 if (INTEGRAL_TYPE_P (TREE_TYPE (min)) && t == VR_ANTI_RANGE)
319 gcc_assert (!vrp_val_is_min (min) || !vrp_val_is_max (max));
320
321 cmp = compare_values (min, max);
322 gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
323
324 if (needs_overflow_infinity (TREE_TYPE (min)))
325 gcc_assert (!is_overflow_infinity (min)
326 || !is_overflow_infinity (max));
327 }
328
329 if (t == VR_UNDEFINED || t == VR_VARYING)
330 gcc_assert (min == NULL_TREE && max == NULL_TREE);
331
332 if (t == VR_UNDEFINED || t == VR_VARYING)
333 gcc_assert (equiv == NULL || bitmap_empty_p (equiv));
334 #endif
335
336 vr->type = t;
337 vr->min = min;
338 vr->max = max;
339
340 /* Since updating the equivalence set involves deep copying the
341 bitmaps, only do it if absolutely necessary. */
342 if (vr->equiv == NULL
343 && equiv != NULL)
344 vr->equiv = BITMAP_ALLOC (NULL);
345
346 if (equiv != vr->equiv)
347 {
348 if (equiv && !bitmap_empty_p (equiv))
349 bitmap_copy (vr->equiv, equiv);
350 else
351 bitmap_clear (vr->equiv);
352 }
353 }
354
355
356 /* Copy value range FROM into value range TO. */
357
358 static inline void
359 copy_value_range (value_range_t *to, value_range_t *from)
360 {
361 set_value_range (to, from->type, from->min, from->max, from->equiv);
362 }
363
364
365 /* Set value range VR to VR_VARYING. */
366
367 static inline void
368 set_value_range_to_varying (value_range_t *vr)
369 {
370 vr->type = VR_VARYING;
371 vr->min = vr->max = NULL_TREE;
372 if (vr->equiv)
373 bitmap_clear (vr->equiv);
374 }
375
376 /* Set value range VR to a single value. This function is only called
377 with values we get from statements, and exists to clear the
378 TREE_OVERFLOW flag so that we don't think we have an overflow
379 infinity when we shouldn't. */
380
381 static inline void
382 set_value_range_to_value (value_range_t *vr, tree val, bitmap equiv)
383 {
384 gcc_assert (is_gimple_min_invariant (val));
385 val = avoid_overflow_infinity (val);
386 set_value_range (vr, VR_RANGE, val, val, equiv);
387 }
388
389 /* Set value range VR to a non-negative range of type TYPE.
390 OVERFLOW_INFINITY indicates whether to use an overflow infinity
391 rather than TYPE_MAX_VALUE; this should be true if we determine
392 that the range is nonnegative based on the assumption that signed
393 overflow does not occur. */
394
395 static inline void
396 set_value_range_to_nonnegative (value_range_t *vr, tree type,
397 bool overflow_infinity)
398 {
399 tree zero;
400
401 if (overflow_infinity && !supports_overflow_infinity (type))
402 {
403 set_value_range_to_varying (vr);
404 return;
405 }
406
407 zero = build_int_cst (type, 0);
408 set_value_range (vr, VR_RANGE, zero,
409 (overflow_infinity
410 ? positive_overflow_infinity (type)
411 : TYPE_MAX_VALUE (type)),
412 vr->equiv);
413 }
414
415 /* Set value range VR to a non-NULL range of type TYPE. */
416
417 static inline void
418 set_value_range_to_nonnull (value_range_t *vr, tree type)
419 {
420 tree zero = build_int_cst (type, 0);
421 set_value_range (vr, VR_ANTI_RANGE, zero, zero, vr->equiv);
422 }
423
424
425 /* Set value range VR to a NULL range of type TYPE. */
426
427 static inline void
428 set_value_range_to_null (value_range_t *vr, tree type)
429 {
430 set_value_range_to_value (vr, build_int_cst (type, 0), vr->equiv);
431 }
432
433
434 /* Set value range VR to a range of a truthvalue of type TYPE. */
435
436 static inline void
437 set_value_range_to_truthvalue (value_range_t *vr, tree type)
438 {
439 if (TYPE_PRECISION (type) == 1)
440 set_value_range_to_varying (vr);
441 else
442 set_value_range (vr, VR_RANGE,
443 build_int_cst (type, 0), build_int_cst (type, 1),
444 vr->equiv);
445 }
446
447
448 /* Set value range VR to VR_UNDEFINED. */
449
450 static inline void
451 set_value_range_to_undefined (value_range_t *vr)
452 {
453 vr->type = VR_UNDEFINED;
454 vr->min = vr->max = NULL_TREE;
455 if (vr->equiv)
456 bitmap_clear (vr->equiv);
457 }
458
459
460 /* Return value range information for VAR.
461
462 If we have no values ranges recorded (ie, VRP is not running), then
463 return NULL. Otherwise create an empty range if none existed for VAR. */
464
465 static value_range_t *
466 get_value_range (tree var)
467 {
468 value_range_t *vr;
469 tree sym;
470 unsigned ver = SSA_NAME_VERSION (var);
471
472 /* If we have no recorded ranges, then return NULL. */
473 if (! vr_value)
474 return NULL;
475
476 vr = vr_value[ver];
477 if (vr)
478 return vr;
479
480 /* Create a default value range. */
481 vr_value[ver] = vr = XCNEW (value_range_t);
482
483 /* Defer allocating the equivalence set. */
484 vr->equiv = NULL;
485
486 /* If VAR is a default definition, the variable can take any value
487 in VAR's type. */
488 sym = SSA_NAME_VAR (var);
489 if (SSA_NAME_IS_DEFAULT_DEF (var))
490 {
491 /* Try to use the "nonnull" attribute to create ~[0, 0]
492 anti-ranges for pointers. Note that this is only valid with
493 default definitions of PARM_DECLs. */
494 if (TREE_CODE (sym) == PARM_DECL
495 && POINTER_TYPE_P (TREE_TYPE (sym))
496 && nonnull_arg_p (sym))
497 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
498 else
499 set_value_range_to_varying (vr);
500 }
501
502 return vr;
503 }
504
505 /* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
506
507 static inline bool
508 vrp_operand_equal_p (tree val1, tree val2)
509 {
510 if (val1 == val2)
511 return true;
512 if (!val1 || !val2 || !operand_equal_p (val1, val2, 0))
513 return false;
514 if (is_overflow_infinity (val1))
515 return is_overflow_infinity (val2);
516 return true;
517 }
518
519 /* Return true, if the bitmaps B1 and B2 are equal. */
520
521 static inline bool
522 vrp_bitmap_equal_p (bitmap b1, bitmap b2)
523 {
524 return (b1 == b2
525 || (b1 && b2
526 && bitmap_equal_p (b1, b2)));
527 }
528
529 /* Update the value range and equivalence set for variable VAR to
530 NEW_VR. Return true if NEW_VR is different from VAR's previous
531 value.
532
533 NOTE: This function assumes that NEW_VR is a temporary value range
534 object created for the sole purpose of updating VAR's range. The
535 storage used by the equivalence set from NEW_VR will be freed by
536 this function. Do not call update_value_range when NEW_VR
537 is the range object associated with another SSA name. */
538
539 static inline bool
540 update_value_range (tree var, value_range_t *new_vr)
541 {
542 value_range_t *old_vr;
543 bool is_new;
544
545 /* Update the value range, if necessary. */
546 old_vr = get_value_range (var);
547 is_new = old_vr->type != new_vr->type
548 || !vrp_operand_equal_p (old_vr->min, new_vr->min)
549 || !vrp_operand_equal_p (old_vr->max, new_vr->max)
550 || !vrp_bitmap_equal_p (old_vr->equiv, new_vr->equiv);
551
552 if (is_new)
553 set_value_range (old_vr, new_vr->type, new_vr->min, new_vr->max,
554 new_vr->equiv);
555
556 BITMAP_FREE (new_vr->equiv);
557
558 return is_new;
559 }
560
561
562 /* Add VAR and VAR's equivalence set to EQUIV. This is the central
563 point where equivalence processing can be turned on/off. */
564
565 static void
566 add_equivalence (bitmap *equiv, tree var)
567 {
568 unsigned ver = SSA_NAME_VERSION (var);
569 value_range_t *vr = vr_value[ver];
570
571 if (*equiv == NULL)
572 *equiv = BITMAP_ALLOC (NULL);
573 bitmap_set_bit (*equiv, ver);
574 if (vr && vr->equiv)
575 bitmap_ior_into (*equiv, vr->equiv);
576 }
577
578
579 /* Return true if VR is ~[0, 0]. */
580
581 static inline bool
582 range_is_nonnull (value_range_t *vr)
583 {
584 return vr->type == VR_ANTI_RANGE
585 && integer_zerop (vr->min)
586 && integer_zerop (vr->max);
587 }
588
589
590 /* Return true if VR is [0, 0]. */
591
592 static inline bool
593 range_is_null (value_range_t *vr)
594 {
595 return vr->type == VR_RANGE
596 && integer_zerop (vr->min)
597 && integer_zerop (vr->max);
598 }
599
600
601 /* Return true if value range VR involves at least one symbol. */
602
603 static inline bool
604 symbolic_range_p (value_range_t *vr)
605 {
606 return (!is_gimple_min_invariant (vr->min)
607 || !is_gimple_min_invariant (vr->max));
608 }
609
610 /* Return true if value range VR uses an overflow infinity. */
611
612 static inline bool
613 overflow_infinity_range_p (value_range_t *vr)
614 {
615 return (vr->type == VR_RANGE
616 && (is_overflow_infinity (vr->min)
617 || is_overflow_infinity (vr->max)));
618 }
619
620 /* Return false if we can not make a valid comparison based on VR;
621 this will be the case if it uses an overflow infinity and overflow
622 is not undefined (i.e., -fno-strict-overflow is in effect).
623 Otherwise return true, and set *STRICT_OVERFLOW_P to true if VR
624 uses an overflow infinity. */
625
626 static bool
627 usable_range_p (value_range_t *vr, bool *strict_overflow_p)
628 {
629 gcc_assert (vr->type == VR_RANGE);
630 if (is_overflow_infinity (vr->min))
631 {
632 *strict_overflow_p = true;
633 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->min)))
634 return false;
635 }
636 if (is_overflow_infinity (vr->max))
637 {
638 *strict_overflow_p = true;
639 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->max)))
640 return false;
641 }
642 return true;
643 }
644
645
646 /* Like tree_expr_nonnegative_warnv_p, but this function uses value
647 ranges obtained so far. */
648
649 static bool
650 vrp_expr_computes_nonnegative (tree expr, bool *strict_overflow_p)
651 {
652 return tree_expr_nonnegative_warnv_p (expr, strict_overflow_p);
653 }
654
655 /* Like tree_expr_nonzero_warnv_p, but this function uses value ranges
656 obtained so far. */
657
658 static bool
659 vrp_expr_computes_nonzero (tree expr, bool *strict_overflow_p)
660 {
661 if (tree_expr_nonzero_warnv_p (expr, strict_overflow_p))
662 return true;
663
664 /* If we have an expression of the form &X->a, then the expression
665 is nonnull if X is nonnull. */
666 if (TREE_CODE (expr) == ADDR_EXPR)
667 {
668 tree base = get_base_address (TREE_OPERAND (expr, 0));
669
670 if (base != NULL_TREE
671 && TREE_CODE (base) == INDIRECT_REF
672 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
673 {
674 value_range_t *vr = get_value_range (TREE_OPERAND (base, 0));
675 if (range_is_nonnull (vr))
676 return true;
677 }
678 }
679
680 return false;
681 }
682
683 /* Returns true if EXPR is a valid value (as expected by compare_values) --
684 a gimple invariant, or SSA_NAME +- CST. */
685
686 static bool
687 valid_value_p (tree expr)
688 {
689 if (TREE_CODE (expr) == SSA_NAME)
690 return true;
691
692 if (TREE_CODE (expr) == PLUS_EXPR
693 || TREE_CODE (expr) == MINUS_EXPR)
694 return (TREE_CODE (TREE_OPERAND (expr, 0)) == SSA_NAME
695 && TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST);
696
697 return is_gimple_min_invariant (expr);
698 }
699
700 /* Return
701 1 if VAL < VAL2
702 0 if !(VAL < VAL2)
703 -2 if those are incomparable. */
704 static inline int
705 operand_less_p (tree val, tree val2)
706 {
707 /* LT is folded faster than GE and others. Inline the common case. */
708 if (TREE_CODE (val) == INTEGER_CST && TREE_CODE (val2) == INTEGER_CST)
709 {
710 if (TYPE_UNSIGNED (TREE_TYPE (val)))
711 return INT_CST_LT_UNSIGNED (val, val2);
712 else
713 {
714 if (INT_CST_LT (val, val2))
715 return 1;
716 }
717 }
718 else
719 {
720 tree tcmp;
721
722 fold_defer_overflow_warnings ();
723
724 tcmp = fold_binary_to_constant (LT_EXPR, boolean_type_node, val, val2);
725
726 fold_undefer_and_ignore_overflow_warnings ();
727
728 if (!tcmp)
729 return -2;
730
731 if (!integer_zerop (tcmp))
732 return 1;
733 }
734
735 /* val >= val2, not considering overflow infinity. */
736 if (is_negative_overflow_infinity (val))
737 return is_negative_overflow_infinity (val2) ? 0 : 1;
738 else if (is_positive_overflow_infinity (val2))
739 return is_positive_overflow_infinity (val) ? 0 : 1;
740
741 return 0;
742 }
743
744 /* Compare two values VAL1 and VAL2. Return
745
746 -2 if VAL1 and VAL2 cannot be compared at compile-time,
747 -1 if VAL1 < VAL2,
748 0 if VAL1 == VAL2,
749 +1 if VAL1 > VAL2, and
750 +2 if VAL1 != VAL2
751
752 This is similar to tree_int_cst_compare but supports pointer values
753 and values that cannot be compared at compile time.
754
755 If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
756 true if the return value is only valid if we assume that signed
757 overflow is undefined. */
758
759 static int
760 compare_values_warnv (tree val1, tree val2, bool *strict_overflow_p)
761 {
762 if (val1 == val2)
763 return 0;
764
765 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
766 both integers. */
767 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
768 == POINTER_TYPE_P (TREE_TYPE (val2)));
769 /* Convert the two values into the same type. This is needed because
770 sizetype causes sign extension even for unsigned types. */
771 val2 = fold_convert (TREE_TYPE (val1), val2);
772 STRIP_USELESS_TYPE_CONVERSION (val2);
773
774 if ((TREE_CODE (val1) == SSA_NAME
775 || TREE_CODE (val1) == PLUS_EXPR
776 || TREE_CODE (val1) == MINUS_EXPR)
777 && (TREE_CODE (val2) == SSA_NAME
778 || TREE_CODE (val2) == PLUS_EXPR
779 || TREE_CODE (val2) == MINUS_EXPR))
780 {
781 tree n1, c1, n2, c2;
782 enum tree_code code1, code2;
783
784 /* If VAL1 and VAL2 are of the form 'NAME [+-] CST' or 'NAME',
785 return -1 or +1 accordingly. If VAL1 and VAL2 don't use the
786 same name, return -2. */
787 if (TREE_CODE (val1) == SSA_NAME)
788 {
789 code1 = SSA_NAME;
790 n1 = val1;
791 c1 = NULL_TREE;
792 }
793 else
794 {
795 code1 = TREE_CODE (val1);
796 n1 = TREE_OPERAND (val1, 0);
797 c1 = TREE_OPERAND (val1, 1);
798 if (tree_int_cst_sgn (c1) == -1)
799 {
800 if (is_negative_overflow_infinity (c1))
801 return -2;
802 c1 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c1), c1);
803 if (!c1)
804 return -2;
805 code1 = code1 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
806 }
807 }
808
809 if (TREE_CODE (val2) == SSA_NAME)
810 {
811 code2 = SSA_NAME;
812 n2 = val2;
813 c2 = NULL_TREE;
814 }
815 else
816 {
817 code2 = TREE_CODE (val2);
818 n2 = TREE_OPERAND (val2, 0);
819 c2 = TREE_OPERAND (val2, 1);
820 if (tree_int_cst_sgn (c2) == -1)
821 {
822 if (is_negative_overflow_infinity (c2))
823 return -2;
824 c2 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c2), c2);
825 if (!c2)
826 return -2;
827 code2 = code2 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
828 }
829 }
830
831 /* Both values must use the same name. */
832 if (n1 != n2)
833 return -2;
834
835 if (code1 == SSA_NAME
836 && code2 == SSA_NAME)
837 /* NAME == NAME */
838 return 0;
839
840 /* If overflow is defined we cannot simplify more. */
841 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1)))
842 return -2;
843
844 if (strict_overflow_p != NULL
845 && (code1 == SSA_NAME || !TREE_NO_WARNING (val1))
846 && (code2 == SSA_NAME || !TREE_NO_WARNING (val2)))
847 *strict_overflow_p = true;
848
849 if (code1 == SSA_NAME)
850 {
851 if (code2 == PLUS_EXPR)
852 /* NAME < NAME + CST */
853 return -1;
854 else if (code2 == MINUS_EXPR)
855 /* NAME > NAME - CST */
856 return 1;
857 }
858 else if (code1 == PLUS_EXPR)
859 {
860 if (code2 == SSA_NAME)
861 /* NAME + CST > NAME */
862 return 1;
863 else if (code2 == PLUS_EXPR)
864 /* NAME + CST1 > NAME + CST2, if CST1 > CST2 */
865 return compare_values_warnv (c1, c2, strict_overflow_p);
866 else if (code2 == MINUS_EXPR)
867 /* NAME + CST1 > NAME - CST2 */
868 return 1;
869 }
870 else if (code1 == MINUS_EXPR)
871 {
872 if (code2 == SSA_NAME)
873 /* NAME - CST < NAME */
874 return -1;
875 else if (code2 == PLUS_EXPR)
876 /* NAME - CST1 < NAME + CST2 */
877 return -1;
878 else if (code2 == MINUS_EXPR)
879 /* NAME - CST1 > NAME - CST2, if CST1 < CST2. Notice that
880 C1 and C2 are swapped in the call to compare_values. */
881 return compare_values_warnv (c2, c1, strict_overflow_p);
882 }
883
884 gcc_unreachable ();
885 }
886
887 /* We cannot compare non-constants. */
888 if (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2))
889 return -2;
890
891 if (!POINTER_TYPE_P (TREE_TYPE (val1)))
892 {
893 /* We cannot compare overflowed values, except for overflow
894 infinities. */
895 if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
896 {
897 if (strict_overflow_p != NULL)
898 *strict_overflow_p = true;
899 if (is_negative_overflow_infinity (val1))
900 return is_negative_overflow_infinity (val2) ? 0 : -1;
901 else if (is_negative_overflow_infinity (val2))
902 return 1;
903 else if (is_positive_overflow_infinity (val1))
904 return is_positive_overflow_infinity (val2) ? 0 : 1;
905 else if (is_positive_overflow_infinity (val2))
906 return -1;
907 return -2;
908 }
909
910 return tree_int_cst_compare (val1, val2);
911 }
912 else
913 {
914 tree t;
915
916 /* First see if VAL1 and VAL2 are not the same. */
917 if (val1 == val2 || operand_equal_p (val1, val2, 0))
918 return 0;
919
920 /* If VAL1 is a lower address than VAL2, return -1. */
921 if (operand_less_p (val1, val2) == 1)
922 return -1;
923
924 /* If VAL1 is a higher address than VAL2, return +1. */
925 if (operand_less_p (val2, val1) == 1)
926 return 1;
927
928 /* If VAL1 is different than VAL2, return +2.
929 For integer constants we either have already returned -1 or 1
930 or they are equivalent. We still might succeed in proving
931 something about non-trivial operands. */
932 if (TREE_CODE (val1) != INTEGER_CST
933 || TREE_CODE (val2) != INTEGER_CST)
934 {
935 t = fold_binary_to_constant (NE_EXPR, boolean_type_node, val1, val2);
936 if (t && tree_expr_nonzero_p (t))
937 return 2;
938 }
939
940 return -2;
941 }
942 }
943
944 /* Compare values like compare_values_warnv, but treat comparisons of
945 nonconstants which rely on undefined overflow as incomparable. */
946
947 static int
948 compare_values (tree val1, tree val2)
949 {
950 bool sop;
951 int ret;
952
953 sop = false;
954 ret = compare_values_warnv (val1, val2, &sop);
955 if (sop
956 && (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2)))
957 ret = -2;
958 return ret;
959 }
960
961
962 /* Return 1 if VAL is inside value range VR (VR->MIN <= VAL <= VR->MAX),
963 0 if VAL is not inside VR,
964 -2 if we cannot tell either way.
965
966 FIXME, the current semantics of this functions are a bit quirky
967 when taken in the context of VRP. In here we do not care
968 about VR's type. If VR is the anti-range ~[3, 5] the call
969 value_inside_range (4, VR) will return 1.
970
971 This is counter-intuitive in a strict sense, but the callers
972 currently expect this. They are calling the function
973 merely to determine whether VR->MIN <= VAL <= VR->MAX. The
974 callers are applying the VR_RANGE/VR_ANTI_RANGE semantics
975 themselves.
976
977 This also applies to value_ranges_intersect_p and
978 range_includes_zero_p. The semantics of VR_RANGE and
979 VR_ANTI_RANGE should be encoded here, but that also means
980 adapting the users of these functions to the new semantics.
981
982 Benchmark compile/20001226-1.c compilation time after changing this
983 function. */
984
985 static inline int
986 value_inside_range (tree val, value_range_t * vr)
987 {
988 int cmp1, cmp2;
989
990 cmp1 = operand_less_p (val, vr->min);
991 if (cmp1 == -2)
992 return -2;
993 if (cmp1 == 1)
994 return 0;
995
996 cmp2 = operand_less_p (vr->max, val);
997 if (cmp2 == -2)
998 return -2;
999
1000 return !cmp2;
1001 }
1002
1003
1004 /* Return true if value ranges VR0 and VR1 have a non-empty
1005 intersection.
1006
1007 Benchmark compile/20001226-1.c compilation time after changing this
1008 function.
1009 */
1010
1011 static inline bool
1012 value_ranges_intersect_p (value_range_t *vr0, value_range_t *vr1)
1013 {
1014 /* The value ranges do not intersect if the maximum of the first range is
1015 less than the minimum of the second range or vice versa.
1016 When those relations are unknown, we can't do any better. */
1017 if (operand_less_p (vr0->max, vr1->min) != 0)
1018 return false;
1019 if (operand_less_p (vr1->max, vr0->min) != 0)
1020 return false;
1021 return true;
1022 }
1023
1024
1025 /* Return true if VR includes the value zero, false otherwise. FIXME,
1026 currently this will return false for an anti-range like ~[-4, 3].
1027 This will be wrong when the semantics of value_inside_range are
1028 modified (currently the users of this function expect these
1029 semantics). */
1030
1031 static inline bool
1032 range_includes_zero_p (value_range_t *vr)
1033 {
1034 tree zero;
1035
1036 gcc_assert (vr->type != VR_UNDEFINED
1037 && vr->type != VR_VARYING
1038 && !symbolic_range_p (vr));
1039
1040 zero = build_int_cst (TREE_TYPE (vr->min), 0);
1041 return (value_inside_range (zero, vr) == 1);
1042 }
1043
1044 /* Return true if T, an SSA_NAME, is known to be nonnegative. Return
1045 false otherwise or if no value range information is available. */
1046
1047 bool
1048 ssa_name_nonnegative_p (tree t)
1049 {
1050 value_range_t *vr = get_value_range (t);
1051
1052 if (!vr)
1053 return false;
1054
1055 /* Testing for VR_ANTI_RANGE is not useful here as any anti-range
1056 which would return a useful value should be encoded as a VR_RANGE. */
1057 if (vr->type == VR_RANGE)
1058 {
1059 int result = compare_values (vr->min, integer_zero_node);
1060
1061 return (result == 0 || result == 1);
1062 }
1063 return false;
1064 }
1065
1066 /* Return true if T, an SSA_NAME, is known to be nonzero. Return
1067 false otherwise or if no value range information is available. */
1068
1069 bool
1070 ssa_name_nonzero_p (tree t)
1071 {
1072 value_range_t *vr = get_value_range (t);
1073
1074 if (!vr)
1075 return false;
1076
1077 /* A VR_RANGE which does not include zero is a nonzero value. */
1078 if (vr->type == VR_RANGE && !symbolic_range_p (vr))
1079 return ! range_includes_zero_p (vr);
1080
1081 /* A VR_ANTI_RANGE which does include zero is a nonzero value. */
1082 if (vr->type == VR_ANTI_RANGE && !symbolic_range_p (vr))
1083 return range_includes_zero_p (vr);
1084
1085 return false;
1086 }
1087
1088
1089 /* Extract value range information from an ASSERT_EXPR EXPR and store
1090 it in *VR_P. */
1091
1092 static void
1093 extract_range_from_assert (value_range_t *vr_p, tree expr)
1094 {
1095 tree var, cond, limit, min, max, type;
1096 value_range_t *var_vr, *limit_vr;
1097 enum tree_code cond_code;
1098
1099 var = ASSERT_EXPR_VAR (expr);
1100 cond = ASSERT_EXPR_COND (expr);
1101
1102 gcc_assert (COMPARISON_CLASS_P (cond));
1103
1104 /* Find VAR in the ASSERT_EXPR conditional. */
1105 if (var == TREE_OPERAND (cond, 0))
1106 {
1107 /* If the predicate is of the form VAR COMP LIMIT, then we just
1108 take LIMIT from the RHS and use the same comparison code. */
1109 limit = TREE_OPERAND (cond, 1);
1110 cond_code = TREE_CODE (cond);
1111 }
1112 else
1113 {
1114 /* If the predicate is of the form LIMIT COMP VAR, then we need
1115 to flip around the comparison code to create the proper range
1116 for VAR. */
1117 limit = TREE_OPERAND (cond, 0);
1118 cond_code = swap_tree_comparison (TREE_CODE (cond));
1119 }
1120
1121 limit = avoid_overflow_infinity (limit);
1122
1123 type = TREE_TYPE (limit);
1124 gcc_assert (limit != var);
1125
1126 /* For pointer arithmetic, we only keep track of pointer equality
1127 and inequality. */
1128 if (POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR)
1129 {
1130 set_value_range_to_varying (vr_p);
1131 return;
1132 }
1133
1134 /* If LIMIT is another SSA name and LIMIT has a range of its own,
1135 try to use LIMIT's range to avoid creating symbolic ranges
1136 unnecessarily. */
1137 limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL;
1138
1139 /* LIMIT's range is only interesting if it has any useful information. */
1140 if (limit_vr
1141 && (limit_vr->type == VR_UNDEFINED
1142 || limit_vr->type == VR_VARYING
1143 || symbolic_range_p (limit_vr)))
1144 limit_vr = NULL;
1145
1146 /* Initially, the new range has the same set of equivalences of
1147 VAR's range. This will be revised before returning the final
1148 value. Since assertions may be chained via mutually exclusive
1149 predicates, we will need to trim the set of equivalences before
1150 we are done. */
1151 gcc_assert (vr_p->equiv == NULL);
1152 add_equivalence (&vr_p->equiv, var);
1153
1154 /* Extract a new range based on the asserted comparison for VAR and
1155 LIMIT's value range. Notice that if LIMIT has an anti-range, we
1156 will only use it for equality comparisons (EQ_EXPR). For any
1157 other kind of assertion, we cannot derive a range from LIMIT's
1158 anti-range that can be used to describe the new range. For
1159 instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
1160 then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
1161 no single range for x_2 that could describe LE_EXPR, so we might
1162 as well build the range [b_4, +INF] for it. */
1163 if (cond_code == EQ_EXPR)
1164 {
1165 enum value_range_type range_type;
1166
1167 if (limit_vr)
1168 {
1169 range_type = limit_vr->type;
1170 min = limit_vr->min;
1171 max = limit_vr->max;
1172 }
1173 else
1174 {
1175 range_type = VR_RANGE;
1176 min = limit;
1177 max = limit;
1178 }
1179
1180 set_value_range (vr_p, range_type, min, max, vr_p->equiv);
1181
1182 /* When asserting the equality VAR == LIMIT and LIMIT is another
1183 SSA name, the new range will also inherit the equivalence set
1184 from LIMIT. */
1185 if (TREE_CODE (limit) == SSA_NAME)
1186 add_equivalence (&vr_p->equiv, limit);
1187 }
1188 else if (cond_code == NE_EXPR)
1189 {
1190 /* As described above, when LIMIT's range is an anti-range and
1191 this assertion is an inequality (NE_EXPR), then we cannot
1192 derive anything from the anti-range. For instance, if
1193 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
1194 not imply that VAR's range is [0, 0]. So, in the case of
1195 anti-ranges, we just assert the inequality using LIMIT and
1196 not its anti-range.
1197
1198 If LIMIT_VR is a range, we can only use it to build a new
1199 anti-range if LIMIT_VR is a single-valued range. For
1200 instance, if LIMIT_VR is [0, 1], the predicate
1201 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
1202 Rather, it means that for value 0 VAR should be ~[0, 0]
1203 and for value 1, VAR should be ~[1, 1]. We cannot
1204 represent these ranges.
1205
1206 The only situation in which we can build a valid
1207 anti-range is when LIMIT_VR is a single-valued range
1208 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
1209 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
1210 if (limit_vr
1211 && limit_vr->type == VR_RANGE
1212 && compare_values (limit_vr->min, limit_vr->max) == 0)
1213 {
1214 min = limit_vr->min;
1215 max = limit_vr->max;
1216 }
1217 else
1218 {
1219 /* In any other case, we cannot use LIMIT's range to build a
1220 valid anti-range. */
1221 min = max = limit;
1222 }
1223
1224 /* If MIN and MAX cover the whole range for their type, then
1225 just use the original LIMIT. */
1226 if (INTEGRAL_TYPE_P (type)
1227 && vrp_val_is_min (min)
1228 && vrp_val_is_max (max))
1229 min = max = limit;
1230
1231 set_value_range (vr_p, VR_ANTI_RANGE, min, max, vr_p->equiv);
1232 }
1233 else if (cond_code == LE_EXPR || cond_code == LT_EXPR)
1234 {
1235 min = TYPE_MIN_VALUE (type);
1236
1237 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1238 max = limit;
1239 else
1240 {
1241 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1242 range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
1243 LT_EXPR. */
1244 max = limit_vr->max;
1245 }
1246
1247 /* If the maximum value forces us to be out of bounds, simply punt.
1248 It would be pointless to try and do anything more since this
1249 all should be optimized away above us. */
1250 if ((cond_code == LT_EXPR
1251 && compare_values (max, min) == 0)
1252 || is_overflow_infinity (max))
1253 set_value_range_to_varying (vr_p);
1254 else
1255 {
1256 /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
1257 if (cond_code == LT_EXPR)
1258 {
1259 tree one = build_int_cst (type, 1);
1260 max = fold_build2 (MINUS_EXPR, type, max, one);
1261 if (EXPR_P (max))
1262 TREE_NO_WARNING (max) = 1;
1263 }
1264
1265 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1266 }
1267 }
1268 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
1269 {
1270 max = TYPE_MAX_VALUE (type);
1271
1272 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1273 min = limit;
1274 else
1275 {
1276 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1277 range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
1278 GT_EXPR. */
1279 min = limit_vr->min;
1280 }
1281
1282 /* If the minimum value forces us to be out of bounds, simply punt.
1283 It would be pointless to try and do anything more since this
1284 all should be optimized away above us. */
1285 if ((cond_code == GT_EXPR
1286 && compare_values (min, max) == 0)
1287 || is_overflow_infinity (min))
1288 set_value_range_to_varying (vr_p);
1289 else
1290 {
1291 /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
1292 if (cond_code == GT_EXPR)
1293 {
1294 tree one = build_int_cst (type, 1);
1295 min = fold_build2 (PLUS_EXPR, type, min, one);
1296 if (EXPR_P (min))
1297 TREE_NO_WARNING (min) = 1;
1298 }
1299
1300 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1301 }
1302 }
1303 else
1304 gcc_unreachable ();
1305
1306 /* If VAR already had a known range, it may happen that the new
1307 range we have computed and VAR's range are not compatible. For
1308 instance,
1309
1310 if (p_5 == NULL)
1311 p_6 = ASSERT_EXPR <p_5, p_5 == NULL>;
1312 x_7 = p_6->fld;
1313 p_8 = ASSERT_EXPR <p_6, p_6 != NULL>;
1314
1315 While the above comes from a faulty program, it will cause an ICE
1316 later because p_8 and p_6 will have incompatible ranges and at
1317 the same time will be considered equivalent. A similar situation
1318 would arise from
1319
1320 if (i_5 > 10)
1321 i_6 = ASSERT_EXPR <i_5, i_5 > 10>;
1322 if (i_5 < 5)
1323 i_7 = ASSERT_EXPR <i_6, i_6 < 5>;
1324
1325 Again i_6 and i_7 will have incompatible ranges. It would be
1326 pointless to try and do anything with i_7's range because
1327 anything dominated by 'if (i_5 < 5)' will be optimized away.
1328 Note, due to the wa in which simulation proceeds, the statement
1329 i_7 = ASSERT_EXPR <...> we would never be visited because the
1330 conditional 'if (i_5 < 5)' always evaluates to false. However,
1331 this extra check does not hurt and may protect against future
1332 changes to VRP that may get into a situation similar to the
1333 NULL pointer dereference example.
1334
1335 Note that these compatibility tests are only needed when dealing
1336 with ranges or a mix of range and anti-range. If VAR_VR and VR_P
1337 are both anti-ranges, they will always be compatible, because two
1338 anti-ranges will always have a non-empty intersection. */
1339
1340 var_vr = get_value_range (var);
1341
1342 /* We may need to make adjustments when VR_P and VAR_VR are numeric
1343 ranges or anti-ranges. */
1344 if (vr_p->type == VR_VARYING
1345 || vr_p->type == VR_UNDEFINED
1346 || var_vr->type == VR_VARYING
1347 || var_vr->type == VR_UNDEFINED
1348 || symbolic_range_p (vr_p)
1349 || symbolic_range_p (var_vr))
1350 return;
1351
1352 if (var_vr->type == VR_RANGE && vr_p->type == VR_RANGE)
1353 {
1354 /* If the two ranges have a non-empty intersection, we can
1355 refine the resulting range. Since the assert expression
1356 creates an equivalency and at the same time it asserts a
1357 predicate, we can take the intersection of the two ranges to
1358 get better precision. */
1359 if (value_ranges_intersect_p (var_vr, vr_p))
1360 {
1361 /* Use the larger of the two minimums. */
1362 if (compare_values (vr_p->min, var_vr->min) == -1)
1363 min = var_vr->min;
1364 else
1365 min = vr_p->min;
1366
1367 /* Use the smaller of the two maximums. */
1368 if (compare_values (vr_p->max, var_vr->max) == 1)
1369 max = var_vr->max;
1370 else
1371 max = vr_p->max;
1372
1373 set_value_range (vr_p, vr_p->type, min, max, vr_p->equiv);
1374 }
1375 else
1376 {
1377 /* The two ranges do not intersect, set the new range to
1378 VARYING, because we will not be able to do anything
1379 meaningful with it. */
1380 set_value_range_to_varying (vr_p);
1381 }
1382 }
1383 else if ((var_vr->type == VR_RANGE && vr_p->type == VR_ANTI_RANGE)
1384 || (var_vr->type == VR_ANTI_RANGE && vr_p->type == VR_RANGE))
1385 {
1386 /* A range and an anti-range will cancel each other only if
1387 their ends are the same. For instance, in the example above,
1388 p_8's range ~[0, 0] and p_6's range [0, 0] are incompatible,
1389 so VR_P should be set to VR_VARYING. */
1390 if (compare_values (var_vr->min, vr_p->min) == 0
1391 && compare_values (var_vr->max, vr_p->max) == 0)
1392 set_value_range_to_varying (vr_p);
1393 else
1394 {
1395 tree min, max, anti_min, anti_max, real_min, real_max;
1396 int cmp;
1397
1398 /* We want to compute the logical AND of the two ranges;
1399 there are three cases to consider.
1400
1401
1402 1. The VR_ANTI_RANGE range is completely within the
1403 VR_RANGE and the endpoints of the ranges are
1404 different. In that case the resulting range
1405 should be whichever range is more precise.
1406 Typically that will be the VR_RANGE.
1407
1408 2. The VR_ANTI_RANGE is completely disjoint from
1409 the VR_RANGE. In this case the resulting range
1410 should be the VR_RANGE.
1411
1412 3. There is some overlap between the VR_ANTI_RANGE
1413 and the VR_RANGE.
1414
1415 3a. If the high limit of the VR_ANTI_RANGE resides
1416 within the VR_RANGE, then the result is a new
1417 VR_RANGE starting at the high limit of the
1418 the VR_ANTI_RANGE + 1 and extending to the
1419 high limit of the original VR_RANGE.
1420
1421 3b. If the low limit of the VR_ANTI_RANGE resides
1422 within the VR_RANGE, then the result is a new
1423 VR_RANGE starting at the low limit of the original
1424 VR_RANGE and extending to the low limit of the
1425 VR_ANTI_RANGE - 1. */
1426 if (vr_p->type == VR_ANTI_RANGE)
1427 {
1428 anti_min = vr_p->min;
1429 anti_max = vr_p->max;
1430 real_min = var_vr->min;
1431 real_max = var_vr->max;
1432 }
1433 else
1434 {
1435 anti_min = var_vr->min;
1436 anti_max = var_vr->max;
1437 real_min = vr_p->min;
1438 real_max = vr_p->max;
1439 }
1440
1441
1442 /* Case 1, VR_ANTI_RANGE completely within VR_RANGE,
1443 not including any endpoints. */
1444 if (compare_values (anti_max, real_max) == -1
1445 && compare_values (anti_min, real_min) == 1)
1446 {
1447 set_value_range (vr_p, VR_RANGE, real_min,
1448 real_max, vr_p->equiv);
1449 }
1450 /* Case 2, VR_ANTI_RANGE completely disjoint from
1451 VR_RANGE. */
1452 else if (compare_values (anti_min, real_max) == 1
1453 || compare_values (anti_max, real_min) == -1)
1454 {
1455 set_value_range (vr_p, VR_RANGE, real_min,
1456 real_max, vr_p->equiv);
1457 }
1458 /* Case 3a, the anti-range extends into the low
1459 part of the real range. Thus creating a new
1460 low for the real range. */
1461 else if (((cmp = compare_values (anti_max, real_min)) == 1
1462 || cmp == 0)
1463 && compare_values (anti_max, real_max) == -1)
1464 {
1465 gcc_assert (!is_positive_overflow_infinity (anti_max));
1466 if (needs_overflow_infinity (TREE_TYPE (anti_max))
1467 && vrp_val_is_max (anti_max))
1468 {
1469 if (!supports_overflow_infinity (TREE_TYPE (var_vr->min)))
1470 {
1471 set_value_range_to_varying (vr_p);
1472 return;
1473 }
1474 min = positive_overflow_infinity (TREE_TYPE (var_vr->min));
1475 }
1476 else
1477 min = fold_build2 (PLUS_EXPR, TREE_TYPE (var_vr->min),
1478 anti_max,
1479 build_int_cst (TREE_TYPE (var_vr->min), 1));
1480 max = real_max;
1481 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1482 }
1483 /* Case 3b, the anti-range extends into the high
1484 part of the real range. Thus creating a new
1485 higher for the real range. */
1486 else if (compare_values (anti_min, real_min) == 1
1487 && ((cmp = compare_values (anti_min, real_max)) == -1
1488 || cmp == 0))
1489 {
1490 gcc_assert (!is_negative_overflow_infinity (anti_min));
1491 if (needs_overflow_infinity (TREE_TYPE (anti_min))
1492 && vrp_val_is_min (anti_min))
1493 {
1494 if (!supports_overflow_infinity (TREE_TYPE (var_vr->min)))
1495 {
1496 set_value_range_to_varying (vr_p);
1497 return;
1498 }
1499 max = negative_overflow_infinity (TREE_TYPE (var_vr->min));
1500 }
1501 else if (!POINTER_TYPE_P (TREE_TYPE (var_vr->min)))
1502 max = fold_build2 (MINUS_EXPR, TREE_TYPE (var_vr->min),
1503 anti_min,
1504 build_int_cst (TREE_TYPE (var_vr->min), 1));
1505 else
1506 max = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (var_vr->min),
1507 anti_min,
1508 size_int (-1));
1509 min = real_min;
1510 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1511 }
1512 }
1513 }
1514 }
1515
1516
1517 /* Extract range information from SSA name VAR and store it in VR. If
1518 VAR has an interesting range, use it. Otherwise, create the
1519 range [VAR, VAR] and return it. This is useful in situations where
1520 we may have conditionals testing values of VARYING names. For
1521 instance,
1522
1523 x_3 = y_5;
1524 if (x_3 > y_5)
1525 ...
1526
1527 Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
1528 always false. */
1529
1530 static void
1531 extract_range_from_ssa_name (value_range_t *vr, tree var)
1532 {
1533 value_range_t *var_vr = get_value_range (var);
1534
1535 if (var_vr->type != VR_UNDEFINED && var_vr->type != VR_VARYING)
1536 copy_value_range (vr, var_vr);
1537 else
1538 set_value_range (vr, VR_RANGE, var, var, NULL);
1539
1540 add_equivalence (&vr->equiv, var);
1541 }
1542
1543
1544 /* Wrapper around int_const_binop. If the operation overflows and we
1545 are not using wrapping arithmetic, then adjust the result to be
1546 -INF or +INF depending on CODE, VAL1 and VAL2. This can return
1547 NULL_TREE if we need to use an overflow infinity representation but
1548 the type does not support it. */
1549
1550 static tree
1551 vrp_int_const_binop (enum tree_code code, tree val1, tree val2)
1552 {
1553 tree res;
1554
1555 res = int_const_binop (code, val1, val2, 0);
1556
1557 /* If we are not using wrapping arithmetic, operate symbolically
1558 on -INF and +INF. */
1559 if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (val1)))
1560 {
1561 int checkz = compare_values (res, val1);
1562 bool overflow = false;
1563
1564 /* Ensure that res = val1 [+*] val2 >= val1
1565 or that res = val1 - val2 <= val1. */
1566 if ((code == PLUS_EXPR
1567 && !(checkz == 1 || checkz == 0))
1568 || (code == MINUS_EXPR
1569 && !(checkz == 0 || checkz == -1)))
1570 {
1571 overflow = true;
1572 }
1573 /* Checking for multiplication overflow is done by dividing the
1574 output of the multiplication by the first input of the
1575 multiplication. If the result of that division operation is
1576 not equal to the second input of the multiplication, then the
1577 multiplication overflowed. */
1578 else if (code == MULT_EXPR && !integer_zerop (val1))
1579 {
1580 tree tmp = int_const_binop (TRUNC_DIV_EXPR,
1581 res,
1582 val1, 0);
1583 int check = compare_values (tmp, val2);
1584
1585 if (check != 0)
1586 overflow = true;
1587 }
1588
1589 if (overflow)
1590 {
1591 res = copy_node (res);
1592 TREE_OVERFLOW (res) = 1;
1593 }
1594
1595 }
1596 else if ((TREE_OVERFLOW (res)
1597 && !TREE_OVERFLOW (val1)
1598 && !TREE_OVERFLOW (val2))
1599 || is_overflow_infinity (val1)
1600 || is_overflow_infinity (val2))
1601 {
1602 /* If the operation overflowed but neither VAL1 nor VAL2 are
1603 overflown, return -INF or +INF depending on the operation
1604 and the combination of signs of the operands. */
1605 int sgn1 = tree_int_cst_sgn (val1);
1606 int sgn2 = tree_int_cst_sgn (val2);
1607
1608 if (needs_overflow_infinity (TREE_TYPE (res))
1609 && !supports_overflow_infinity (TREE_TYPE (res)))
1610 return NULL_TREE;
1611
1612 /* We have to punt on adding infinities of different signs,
1613 since we can't tell what the sign of the result should be.
1614 Likewise for subtracting infinities of the same sign. */
1615 if (((code == PLUS_EXPR && sgn1 != sgn2)
1616 || (code == MINUS_EXPR && sgn1 == sgn2))
1617 && is_overflow_infinity (val1)
1618 && is_overflow_infinity (val2))
1619 return NULL_TREE;
1620
1621 /* Don't try to handle division or shifting of infinities. */
1622 if ((code == TRUNC_DIV_EXPR
1623 || code == FLOOR_DIV_EXPR
1624 || code == CEIL_DIV_EXPR
1625 || code == EXACT_DIV_EXPR
1626 || code == ROUND_DIV_EXPR
1627 || code == RSHIFT_EXPR)
1628 && (is_overflow_infinity (val1)
1629 || is_overflow_infinity (val2)))
1630 return NULL_TREE;
1631
1632 /* Notice that we only need to handle the restricted set of
1633 operations handled by extract_range_from_binary_expr.
1634 Among them, only multiplication, addition and subtraction
1635 can yield overflow without overflown operands because we
1636 are working with integral types only... except in the
1637 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
1638 for division too. */
1639
1640 /* For multiplication, the sign of the overflow is given
1641 by the comparison of the signs of the operands. */
1642 if ((code == MULT_EXPR && sgn1 == sgn2)
1643 /* For addition, the operands must be of the same sign
1644 to yield an overflow. Its sign is therefore that
1645 of one of the operands, for example the first. For
1646 infinite operands X + -INF is negative, not positive. */
1647 || (code == PLUS_EXPR
1648 && (sgn1 >= 0
1649 ? !is_negative_overflow_infinity (val2)
1650 : is_positive_overflow_infinity (val2)))
1651 /* For subtraction, non-infinite operands must be of
1652 different signs to yield an overflow. Its sign is
1653 therefore that of the first operand or the opposite of
1654 that of the second operand. A first operand of 0 counts
1655 as positive here, for the corner case 0 - (-INF), which
1656 overflows, but must yield +INF. For infinite operands 0
1657 - INF is negative, not positive. */
1658 || (code == MINUS_EXPR
1659 && (sgn1 >= 0
1660 ? !is_positive_overflow_infinity (val2)
1661 : is_negative_overflow_infinity (val2)))
1662 /* We only get in here with positive shift count, so the
1663 overflow direction is the same as the sign of val1.
1664 Actually rshift does not overflow at all, but we only
1665 handle the case of shifting overflowed -INF and +INF. */
1666 || (code == RSHIFT_EXPR
1667 && sgn1 >= 0)
1668 /* For division, the only case is -INF / -1 = +INF. */
1669 || code == TRUNC_DIV_EXPR
1670 || code == FLOOR_DIV_EXPR
1671 || code == CEIL_DIV_EXPR
1672 || code == EXACT_DIV_EXPR
1673 || code == ROUND_DIV_EXPR)
1674 return (needs_overflow_infinity (TREE_TYPE (res))
1675 ? positive_overflow_infinity (TREE_TYPE (res))
1676 : TYPE_MAX_VALUE (TREE_TYPE (res)));
1677 else
1678 return (needs_overflow_infinity (TREE_TYPE (res))
1679 ? negative_overflow_infinity (TREE_TYPE (res))
1680 : TYPE_MIN_VALUE (TREE_TYPE (res)));
1681 }
1682
1683 return res;
1684 }
1685
1686
1687 /* Extract range information from a binary expression EXPR based on
1688 the ranges of each of its operands and the expression code. */
1689
1690 static void
1691 extract_range_from_binary_expr (value_range_t *vr, tree expr)
1692 {
1693 enum tree_code code = TREE_CODE (expr);
1694 enum value_range_type type;
1695 tree op0, op1, min, max;
1696 int cmp;
1697 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
1698 value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
1699
1700 /* Not all binary expressions can be applied to ranges in a
1701 meaningful way. Handle only arithmetic operations. */
1702 if (code != PLUS_EXPR
1703 && code != MINUS_EXPR
1704 && code != POINTER_PLUS_EXPR
1705 && code != MULT_EXPR
1706 && code != TRUNC_DIV_EXPR
1707 && code != FLOOR_DIV_EXPR
1708 && code != CEIL_DIV_EXPR
1709 && code != EXACT_DIV_EXPR
1710 && code != ROUND_DIV_EXPR
1711 && code != RSHIFT_EXPR
1712 && code != MIN_EXPR
1713 && code != MAX_EXPR
1714 && code != BIT_AND_EXPR
1715 && code != TRUTH_ANDIF_EXPR
1716 && code != TRUTH_ORIF_EXPR
1717 && code != TRUTH_AND_EXPR
1718 && code != TRUTH_OR_EXPR)
1719 {
1720 set_value_range_to_varying (vr);
1721 return;
1722 }
1723
1724 /* Get value ranges for each operand. For constant operands, create
1725 a new value range with the operand to simplify processing. */
1726 op0 = TREE_OPERAND (expr, 0);
1727 if (TREE_CODE (op0) == SSA_NAME)
1728 vr0 = *(get_value_range (op0));
1729 else if (is_gimple_min_invariant (op0))
1730 set_value_range_to_value (&vr0, op0, NULL);
1731 else
1732 set_value_range_to_varying (&vr0);
1733
1734 op1 = TREE_OPERAND (expr, 1);
1735 if (TREE_CODE (op1) == SSA_NAME)
1736 vr1 = *(get_value_range (op1));
1737 else if (is_gimple_min_invariant (op1))
1738 set_value_range_to_value (&vr1, op1, NULL);
1739 else
1740 set_value_range_to_varying (&vr1);
1741
1742 /* If either range is UNDEFINED, so is the result. */
1743 if (vr0.type == VR_UNDEFINED || vr1.type == VR_UNDEFINED)
1744 {
1745 set_value_range_to_undefined (vr);
1746 return;
1747 }
1748
1749 /* The type of the resulting value range defaults to VR0.TYPE. */
1750 type = vr0.type;
1751
1752 /* Refuse to operate on VARYING ranges, ranges of different kinds
1753 and symbolic ranges. As an exception, we allow BIT_AND_EXPR
1754 because we may be able to derive a useful range even if one of
1755 the operands is VR_VARYING or symbolic range. TODO, we may be
1756 able to derive anti-ranges in some cases. */
1757 if (code != BIT_AND_EXPR
1758 && code != TRUTH_AND_EXPR
1759 && code != TRUTH_OR_EXPR
1760 && (vr0.type == VR_VARYING
1761 || vr1.type == VR_VARYING
1762 || vr0.type != vr1.type
1763 || symbolic_range_p (&vr0)
1764 || symbolic_range_p (&vr1)))
1765 {
1766 set_value_range_to_varying (vr);
1767 return;
1768 }
1769
1770 /* Now evaluate the expression to determine the new range. */
1771 if (POINTER_TYPE_P (TREE_TYPE (expr))
1772 || POINTER_TYPE_P (TREE_TYPE (op0))
1773 || POINTER_TYPE_P (TREE_TYPE (op1)))
1774 {
1775 if (code == MIN_EXPR || code == MAX_EXPR)
1776 {
1777 /* For MIN/MAX expressions with pointers, we only care about
1778 nullness, if both are non null, then the result is nonnull.
1779 If both are null, then the result is null. Otherwise they
1780 are varying. */
1781 if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
1782 set_value_range_to_nonnull (vr, TREE_TYPE (expr));
1783 else if (range_is_null (&vr0) && range_is_null (&vr1))
1784 set_value_range_to_null (vr, TREE_TYPE (expr));
1785 else
1786 set_value_range_to_varying (vr);
1787
1788 return;
1789 }
1790 gcc_assert (code == POINTER_PLUS_EXPR);
1791 /* For pointer types, we are really only interested in asserting
1792 whether the expression evaluates to non-NULL. */
1793 if (range_is_nonnull (&vr0) || range_is_nonnull (&vr1))
1794 set_value_range_to_nonnull (vr, TREE_TYPE (expr));
1795 else if (range_is_null (&vr0) && range_is_null (&vr1))
1796 set_value_range_to_null (vr, TREE_TYPE (expr));
1797 else
1798 set_value_range_to_varying (vr);
1799
1800 return;
1801 }
1802
1803 /* For integer ranges, apply the operation to each end of the
1804 range and see what we end up with. */
1805 if (code == TRUTH_ANDIF_EXPR
1806 || code == TRUTH_ORIF_EXPR
1807 || code == TRUTH_AND_EXPR
1808 || code == TRUTH_OR_EXPR)
1809 {
1810 /* If one of the operands is zero, we know that the whole
1811 expression evaluates zero. */
1812 if (code == TRUTH_AND_EXPR
1813 && ((vr0.type == VR_RANGE
1814 && integer_zerop (vr0.min)
1815 && integer_zerop (vr0.max))
1816 || (vr1.type == VR_RANGE
1817 && integer_zerop (vr1.min)
1818 && integer_zerop (vr1.max))))
1819 {
1820 type = VR_RANGE;
1821 min = max = build_int_cst (TREE_TYPE (expr), 0);
1822 }
1823 /* If one of the operands is one, we know that the whole
1824 expression evaluates one. */
1825 else if (code == TRUTH_OR_EXPR
1826 && ((vr0.type == VR_RANGE
1827 && integer_onep (vr0.min)
1828 && integer_onep (vr0.max))
1829 || (vr1.type == VR_RANGE
1830 && integer_onep (vr1.min)
1831 && integer_onep (vr1.max))))
1832 {
1833 type = VR_RANGE;
1834 min = max = build_int_cst (TREE_TYPE (expr), 1);
1835 }
1836 else if (vr0.type != VR_VARYING
1837 && vr1.type != VR_VARYING
1838 && vr0.type == vr1.type
1839 && !symbolic_range_p (&vr0)
1840 && !overflow_infinity_range_p (&vr0)
1841 && !symbolic_range_p (&vr1)
1842 && !overflow_infinity_range_p (&vr1))
1843 {
1844 /* Boolean expressions cannot be folded with int_const_binop. */
1845 min = fold_binary (code, TREE_TYPE (expr), vr0.min, vr1.min);
1846 max = fold_binary (code, TREE_TYPE (expr), vr0.max, vr1.max);
1847 }
1848 else
1849 {
1850 /* The result of a TRUTH_*_EXPR is always true or false. */
1851 set_value_range_to_truthvalue (vr, TREE_TYPE (expr));
1852 return;
1853 }
1854 }
1855 else if (code == PLUS_EXPR
1856 || code == MIN_EXPR
1857 || code == MAX_EXPR)
1858 {
1859 /* If we have a PLUS_EXPR with two VR_ANTI_RANGEs, drop to
1860 VR_VARYING. It would take more effort to compute a precise
1861 range for such a case. For example, if we have op0 == 1 and
1862 op1 == -1 with their ranges both being ~[0,0], we would have
1863 op0 + op1 == 0, so we cannot claim that the sum is in ~[0,0].
1864 Note that we are guaranteed to have vr0.type == vr1.type at
1865 this point. */
1866 if (code == PLUS_EXPR && vr0.type == VR_ANTI_RANGE)
1867 {
1868 set_value_range_to_varying (vr);
1869 return;
1870 }
1871
1872 /* For operations that make the resulting range directly
1873 proportional to the original ranges, apply the operation to
1874 the same end of each range. */
1875 min = vrp_int_const_binop (code, vr0.min, vr1.min);
1876 max = vrp_int_const_binop (code, vr0.max, vr1.max);
1877 }
1878 else if (code == MULT_EXPR
1879 || code == TRUNC_DIV_EXPR
1880 || code == FLOOR_DIV_EXPR
1881 || code == CEIL_DIV_EXPR
1882 || code == EXACT_DIV_EXPR
1883 || code == ROUND_DIV_EXPR
1884 || code == RSHIFT_EXPR)
1885 {
1886 tree val[4];
1887 size_t i;
1888 bool sop;
1889
1890 /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
1891 drop to VR_VARYING. It would take more effort to compute a
1892 precise range for such a case. For example, if we have
1893 op0 == 65536 and op1 == 65536 with their ranges both being
1894 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
1895 we cannot claim that the product is in ~[0,0]. Note that we
1896 are guaranteed to have vr0.type == vr1.type at this
1897 point. */
1898 if (code == MULT_EXPR
1899 && vr0.type == VR_ANTI_RANGE
1900 && !TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0)))
1901 {
1902 set_value_range_to_varying (vr);
1903 return;
1904 }
1905
1906 /* If we have a RSHIFT_EXPR with any shift values outside [0..prec-1],
1907 then drop to VR_VARYING. Outside of this range we get undefined
1908 behavior from the shift operation. We cannot even trust
1909 SHIFT_COUNT_TRUNCATED at this stage, because that applies to rtl
1910 shifts, and the operation at the tree level may be widened. */
1911 if (code == RSHIFT_EXPR)
1912 {
1913 if (vr1.type == VR_ANTI_RANGE
1914 || !vrp_expr_computes_nonnegative (op1, &sop)
1915 || (operand_less_p
1916 (build_int_cst (TREE_TYPE (vr1.max),
1917 TYPE_PRECISION (TREE_TYPE (expr)) - 1),
1918 vr1.max) != 0))
1919 {
1920 set_value_range_to_varying (vr);
1921 return;
1922 }
1923 }
1924
1925 /* Multiplications and divisions are a bit tricky to handle,
1926 depending on the mix of signs we have in the two ranges, we
1927 need to operate on different values to get the minimum and
1928 maximum values for the new range. One approach is to figure
1929 out all the variations of range combinations and do the
1930 operations.
1931
1932 However, this involves several calls to compare_values and it
1933 is pretty convoluted. It's simpler to do the 4 operations
1934 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
1935 MAX1) and then figure the smallest and largest values to form
1936 the new range. */
1937
1938 /* Divisions by zero result in a VARYING value. */
1939 else if (code != MULT_EXPR
1940 && (vr0.type == VR_ANTI_RANGE || range_includes_zero_p (&vr1)))
1941 {
1942 set_value_range_to_varying (vr);
1943 return;
1944 }
1945
1946 /* Compute the 4 cross operations. */
1947 sop = false;
1948 val[0] = vrp_int_const_binop (code, vr0.min, vr1.min);
1949 if (val[0] == NULL_TREE)
1950 sop = true;
1951
1952 if (vr1.max == vr1.min)
1953 val[1] = NULL_TREE;
1954 else
1955 {
1956 val[1] = vrp_int_const_binop (code, vr0.min, vr1.max);
1957 if (val[1] == NULL_TREE)
1958 sop = true;
1959 }
1960
1961 if (vr0.max == vr0.min)
1962 val[2] = NULL_TREE;
1963 else
1964 {
1965 val[2] = vrp_int_const_binop (code, vr0.max, vr1.min);
1966 if (val[2] == NULL_TREE)
1967 sop = true;
1968 }
1969
1970 if (vr0.min == vr0.max || vr1.min == vr1.max)
1971 val[3] = NULL_TREE;
1972 else
1973 {
1974 val[3] = vrp_int_const_binop (code, vr0.max, vr1.max);
1975 if (val[3] == NULL_TREE)
1976 sop = true;
1977 }
1978
1979 if (sop)
1980 {
1981 set_value_range_to_varying (vr);
1982 return;
1983 }
1984
1985 /* Set MIN to the minimum of VAL[i] and MAX to the maximum
1986 of VAL[i]. */
1987 min = val[0];
1988 max = val[0];
1989 for (i = 1; i < 4; i++)
1990 {
1991 if (!is_gimple_min_invariant (min)
1992 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
1993 || !is_gimple_min_invariant (max)
1994 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
1995 break;
1996
1997 if (val[i])
1998 {
1999 if (!is_gimple_min_invariant (val[i])
2000 || (TREE_OVERFLOW (val[i])
2001 && !is_overflow_infinity (val[i])))
2002 {
2003 /* If we found an overflowed value, set MIN and MAX
2004 to it so that we set the resulting range to
2005 VARYING. */
2006 min = max = val[i];
2007 break;
2008 }
2009
2010 if (compare_values (val[i], min) == -1)
2011 min = val[i];
2012
2013 if (compare_values (val[i], max) == 1)
2014 max = val[i];
2015 }
2016 }
2017 }
2018 else if (code == MINUS_EXPR)
2019 {
2020 /* If we have a MINUS_EXPR with two VR_ANTI_RANGEs, drop to
2021 VR_VARYING. It would take more effort to compute a precise
2022 range for such a case. For example, if we have op0 == 1 and
2023 op1 == 1 with their ranges both being ~[0,0], we would have
2024 op0 - op1 == 0, so we cannot claim that the difference is in
2025 ~[0,0]. Note that we are guaranteed to have
2026 vr0.type == vr1.type at this point. */
2027 if (vr0.type == VR_ANTI_RANGE)
2028 {
2029 set_value_range_to_varying (vr);
2030 return;
2031 }
2032
2033 /* For MINUS_EXPR, apply the operation to the opposite ends of
2034 each range. */
2035 min = vrp_int_const_binop (code, vr0.min, vr1.max);
2036 max = vrp_int_const_binop (code, vr0.max, vr1.min);
2037 }
2038 else if (code == BIT_AND_EXPR)
2039 {
2040 if (vr0.type == VR_RANGE
2041 && vr0.min == vr0.max
2042 && TREE_CODE (vr0.max) == INTEGER_CST
2043 && !TREE_OVERFLOW (vr0.max)
2044 && tree_int_cst_sgn (vr0.max) >= 0)
2045 {
2046 min = build_int_cst (TREE_TYPE (expr), 0);
2047 max = vr0.max;
2048 }
2049 else if (vr1.type == VR_RANGE
2050 && vr1.min == vr1.max
2051 && TREE_CODE (vr1.max) == INTEGER_CST
2052 && !TREE_OVERFLOW (vr1.max)
2053 && tree_int_cst_sgn (vr1.max) >= 0)
2054 {
2055 type = VR_RANGE;
2056 min = build_int_cst (TREE_TYPE (expr), 0);
2057 max = vr1.max;
2058 }
2059 else
2060 {
2061 set_value_range_to_varying (vr);
2062 return;
2063 }
2064 }
2065 else
2066 gcc_unreachable ();
2067
2068 /* If either MIN or MAX overflowed, then set the resulting range to
2069 VARYING. But we do accept an overflow infinity
2070 representation. */
2071 if (min == NULL_TREE
2072 || !is_gimple_min_invariant (min)
2073 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2074 || max == NULL_TREE
2075 || !is_gimple_min_invariant (max)
2076 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2077 {
2078 set_value_range_to_varying (vr);
2079 return;
2080 }
2081
2082 /* We punt if:
2083 1) [-INF, +INF]
2084 2) [-INF, +-INF(OVF)]
2085 3) [+-INF(OVF), +INF]
2086 4) [+-INF(OVF), +-INF(OVF)]
2087 We learn nothing when we have INF and INF(OVF) on both sides.
2088 Note that we do accept [-INF, -INF] and [+INF, +INF] without
2089 overflow. */
2090 if ((vrp_val_is_min (min) || is_overflow_infinity (min))
2091 && (vrp_val_is_max (max) || is_overflow_infinity (max)))
2092 {
2093 set_value_range_to_varying (vr);
2094 return;
2095 }
2096
2097 cmp = compare_values (min, max);
2098 if (cmp == -2 || cmp == 1)
2099 {
2100 /* If the new range has its limits swapped around (MIN > MAX),
2101 then the operation caused one of them to wrap around, mark
2102 the new range VARYING. */
2103 set_value_range_to_varying (vr);
2104 }
2105 else
2106 set_value_range (vr, type, min, max, NULL);
2107 }
2108
2109
2110 /* Extract range information from a unary expression EXPR based on
2111 the range of its operand and the expression code. */
2112
2113 static void
2114 extract_range_from_unary_expr (value_range_t *vr, tree expr)
2115 {
2116 enum tree_code code = TREE_CODE (expr);
2117 tree min, max, op0;
2118 int cmp;
2119 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2120
2121 /* Refuse to operate on certain unary expressions for which we
2122 cannot easily determine a resulting range. */
2123 if (code == FIX_TRUNC_EXPR
2124 || code == FLOAT_EXPR
2125 || code == BIT_NOT_EXPR
2126 || code == NON_LVALUE_EXPR
2127 || code == CONJ_EXPR)
2128 {
2129 set_value_range_to_varying (vr);
2130 return;
2131 }
2132
2133 /* Get value ranges for the operand. For constant operands, create
2134 a new value range with the operand to simplify processing. */
2135 op0 = TREE_OPERAND (expr, 0);
2136 if (TREE_CODE (op0) == SSA_NAME)
2137 vr0 = *(get_value_range (op0));
2138 else if (is_gimple_min_invariant (op0))
2139 set_value_range_to_value (&vr0, op0, NULL);
2140 else
2141 set_value_range_to_varying (&vr0);
2142
2143 /* If VR0 is UNDEFINED, so is the result. */
2144 if (vr0.type == VR_UNDEFINED)
2145 {
2146 set_value_range_to_undefined (vr);
2147 return;
2148 }
2149
2150 /* Refuse to operate on symbolic ranges, or if neither operand is
2151 a pointer or integral type. */
2152 if ((!INTEGRAL_TYPE_P (TREE_TYPE (op0))
2153 && !POINTER_TYPE_P (TREE_TYPE (op0)))
2154 || (vr0.type != VR_VARYING
2155 && symbolic_range_p (&vr0)))
2156 {
2157 set_value_range_to_varying (vr);
2158 return;
2159 }
2160
2161 /* If the expression involves pointers, we are only interested in
2162 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
2163 if (POINTER_TYPE_P (TREE_TYPE (expr)) || POINTER_TYPE_P (TREE_TYPE (op0)))
2164 {
2165 bool sop;
2166
2167 sop = false;
2168 if (range_is_nonnull (&vr0)
2169 || (tree_expr_nonzero_warnv_p (expr, &sop)
2170 && !sop))
2171 set_value_range_to_nonnull (vr, TREE_TYPE (expr));
2172 else if (range_is_null (&vr0))
2173 set_value_range_to_null (vr, TREE_TYPE (expr));
2174 else
2175 set_value_range_to_varying (vr);
2176
2177 return;
2178 }
2179
2180 /* Handle unary expressions on integer ranges. */
2181 if (code == NOP_EXPR || code == CONVERT_EXPR)
2182 {
2183 tree inner_type = TREE_TYPE (op0);
2184 tree outer_type = TREE_TYPE (expr);
2185
2186 /* If VR0 represents a simple range, then try to convert
2187 the min and max values for the range to the same type
2188 as OUTER_TYPE. If the results compare equal to VR0's
2189 min and max values and the new min is still less than
2190 or equal to the new max, then we can safely use the newly
2191 computed range for EXPR. This allows us to compute
2192 accurate ranges through many casts. */
2193 if ((vr0.type == VR_RANGE
2194 && !overflow_infinity_range_p (&vr0))
2195 || (vr0.type == VR_VARYING
2196 && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)))
2197 {
2198 tree new_min, new_max, orig_min, orig_max;
2199
2200 /* Convert the input operand min/max to OUTER_TYPE. If
2201 the input has no range information, then use the min/max
2202 for the input's type. */
2203 if (vr0.type == VR_RANGE)
2204 {
2205 orig_min = vr0.min;
2206 orig_max = vr0.max;
2207 }
2208 else
2209 {
2210 orig_min = TYPE_MIN_VALUE (inner_type);
2211 orig_max = TYPE_MAX_VALUE (inner_type);
2212 }
2213
2214 new_min = fold_convert (outer_type, orig_min);
2215 new_max = fold_convert (outer_type, orig_max);
2216
2217 /* Verify the new min/max values are gimple values and
2218 that they compare equal to the original input's
2219 min/max values. */
2220 if (is_gimple_val (new_min)
2221 && is_gimple_val (new_max)
2222 && tree_int_cst_equal (new_min, orig_min)
2223 && tree_int_cst_equal (new_max, orig_max)
2224 && (!is_overflow_infinity (new_min)
2225 || !is_overflow_infinity (new_max))
2226 && (cmp = compare_values (new_min, new_max)) <= 0
2227 && cmp >= -1)
2228 {
2229 set_value_range (vr, VR_RANGE, new_min, new_max, vr->equiv);
2230 return;
2231 }
2232 }
2233
2234 /* When converting types of different sizes, set the result to
2235 VARYING. Things like sign extensions and precision loss may
2236 change the range. For instance, if x_3 is of type 'long long
2237 int' and 'y_5 = (unsigned short) x_3', if x_3 is ~[0, 0], it
2238 is impossible to know at compile time whether y_5 will be
2239 ~[0, 0]. */
2240 if (TYPE_SIZE (inner_type) != TYPE_SIZE (outer_type)
2241 || TYPE_PRECISION (inner_type) != TYPE_PRECISION (outer_type))
2242 {
2243 set_value_range_to_varying (vr);
2244 return;
2245 }
2246 }
2247
2248 /* Conversion of a VR_VARYING value to a wider type can result
2249 in a usable range. So wait until after we've handled conversions
2250 before dropping the result to VR_VARYING if we had a source
2251 operand that is VR_VARYING. */
2252 if (vr0.type == VR_VARYING)
2253 {
2254 set_value_range_to_varying (vr);
2255 return;
2256 }
2257
2258 /* Apply the operation to each end of the range and see what we end
2259 up with. */
2260 if (code == NEGATE_EXPR
2261 && !TYPE_UNSIGNED (TREE_TYPE (expr)))
2262 {
2263 /* NEGATE_EXPR flips the range around. We need to treat
2264 TYPE_MIN_VALUE specially. */
2265 if (is_positive_overflow_infinity (vr0.max))
2266 min = negative_overflow_infinity (TREE_TYPE (expr));
2267 else if (is_negative_overflow_infinity (vr0.max))
2268 min = positive_overflow_infinity (TREE_TYPE (expr));
2269 else if (!vrp_val_is_min (vr0.max))
2270 min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
2271 else if (needs_overflow_infinity (TREE_TYPE (expr)))
2272 {
2273 if (supports_overflow_infinity (TREE_TYPE (expr))
2274 && !is_overflow_infinity (vr0.min)
2275 && !vrp_val_is_min (vr0.min))
2276 min = positive_overflow_infinity (TREE_TYPE (expr));
2277 else
2278 {
2279 set_value_range_to_varying (vr);
2280 return;
2281 }
2282 }
2283 else
2284 min = TYPE_MIN_VALUE (TREE_TYPE (expr));
2285
2286 if (is_positive_overflow_infinity (vr0.min))
2287 max = negative_overflow_infinity (TREE_TYPE (expr));
2288 else if (is_negative_overflow_infinity (vr0.min))
2289 max = positive_overflow_infinity (TREE_TYPE (expr));
2290 else if (!vrp_val_is_min (vr0.min))
2291 max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
2292 else if (needs_overflow_infinity (TREE_TYPE (expr)))
2293 {
2294 if (supports_overflow_infinity (TREE_TYPE (expr)))
2295 max = positive_overflow_infinity (TREE_TYPE (expr));
2296 else
2297 {
2298 set_value_range_to_varying (vr);
2299 return;
2300 }
2301 }
2302 else
2303 max = TYPE_MIN_VALUE (TREE_TYPE (expr));
2304 }
2305 else if (code == NEGATE_EXPR
2306 && TYPE_UNSIGNED (TREE_TYPE (expr)))
2307 {
2308 if (!range_includes_zero_p (&vr0))
2309 {
2310 max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
2311 min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
2312 }
2313 else
2314 {
2315 if (range_is_null (&vr0))
2316 set_value_range_to_null (vr, TREE_TYPE (expr));
2317 else
2318 set_value_range_to_varying (vr);
2319 return;
2320 }
2321 }
2322 else if (code == ABS_EXPR
2323 && !TYPE_UNSIGNED (TREE_TYPE (expr)))
2324 {
2325 /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
2326 useful range. */
2327 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (expr))
2328 && ((vr0.type == VR_RANGE
2329 && vrp_val_is_min (vr0.min))
2330 || (vr0.type == VR_ANTI_RANGE
2331 && !vrp_val_is_min (vr0.min)
2332 && !range_includes_zero_p (&vr0))))
2333 {
2334 set_value_range_to_varying (vr);
2335 return;
2336 }
2337
2338 /* ABS_EXPR may flip the range around, if the original range
2339 included negative values. */
2340 if (is_overflow_infinity (vr0.min))
2341 min = positive_overflow_infinity (TREE_TYPE (expr));
2342 else if (!vrp_val_is_min (vr0.min))
2343 min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
2344 else if (!needs_overflow_infinity (TREE_TYPE (expr)))
2345 min = TYPE_MAX_VALUE (TREE_TYPE (expr));
2346 else if (supports_overflow_infinity (TREE_TYPE (expr)))
2347 min = positive_overflow_infinity (TREE_TYPE (expr));
2348 else
2349 {
2350 set_value_range_to_varying (vr);
2351 return;
2352 }
2353
2354 if (is_overflow_infinity (vr0.max))
2355 max = positive_overflow_infinity (TREE_TYPE (expr));
2356 else if (!vrp_val_is_min (vr0.max))
2357 max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
2358 else if (!needs_overflow_infinity (TREE_TYPE (expr)))
2359 max = TYPE_MAX_VALUE (TREE_TYPE (expr));
2360 else if (supports_overflow_infinity (TREE_TYPE (expr)))
2361 max = positive_overflow_infinity (TREE_TYPE (expr));
2362 else
2363 {
2364 set_value_range_to_varying (vr);
2365 return;
2366 }
2367
2368 cmp = compare_values (min, max);
2369
2370 /* If a VR_ANTI_RANGEs contains zero, then we have
2371 ~[-INF, min(MIN, MAX)]. */
2372 if (vr0.type == VR_ANTI_RANGE)
2373 {
2374 if (range_includes_zero_p (&vr0))
2375 {
2376 /* Take the lower of the two values. */
2377 if (cmp != 1)
2378 max = min;
2379
2380 /* Create ~[-INF, min (abs(MIN), abs(MAX))]
2381 or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
2382 flag_wrapv is set and the original anti-range doesn't include
2383 TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
2384 if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (expr)))
2385 {
2386 tree type_min_value = TYPE_MIN_VALUE (TREE_TYPE (expr));
2387
2388 min = (vr0.min != type_min_value
2389 ? int_const_binop (PLUS_EXPR, type_min_value,
2390 integer_one_node, 0)
2391 : type_min_value);
2392 }
2393 else
2394 {
2395 if (overflow_infinity_range_p (&vr0))
2396 min = negative_overflow_infinity (TREE_TYPE (expr));
2397 else
2398 min = TYPE_MIN_VALUE (TREE_TYPE (expr));
2399 }
2400 }
2401 else
2402 {
2403 /* All else has failed, so create the range [0, INF], even for
2404 flag_wrapv since TYPE_MIN_VALUE is in the original
2405 anti-range. */
2406 vr0.type = VR_RANGE;
2407 min = build_int_cst (TREE_TYPE (expr), 0);
2408 if (needs_overflow_infinity (TREE_TYPE (expr)))
2409 {
2410 if (supports_overflow_infinity (TREE_TYPE (expr)))
2411 max = positive_overflow_infinity (TREE_TYPE (expr));
2412 else
2413 {
2414 set_value_range_to_varying (vr);
2415 return;
2416 }
2417 }
2418 else
2419 max = TYPE_MAX_VALUE (TREE_TYPE (expr));
2420 }
2421 }
2422
2423 /* If the range contains zero then we know that the minimum value in the
2424 range will be zero. */
2425 else if (range_includes_zero_p (&vr0))
2426 {
2427 if (cmp == 1)
2428 max = min;
2429 min = build_int_cst (TREE_TYPE (expr), 0);
2430 }
2431 else
2432 {
2433 /* If the range was reversed, swap MIN and MAX. */
2434 if (cmp == 1)
2435 {
2436 tree t = min;
2437 min = max;
2438 max = t;
2439 }
2440 }
2441 }
2442 else
2443 {
2444 /* Otherwise, operate on each end of the range. */
2445 min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
2446 max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
2447
2448 if (needs_overflow_infinity (TREE_TYPE (expr)))
2449 {
2450 gcc_assert (code != NEGATE_EXPR && code != ABS_EXPR);
2451
2452 /* If both sides have overflowed, we don't know
2453 anything. */
2454 if ((is_overflow_infinity (vr0.min)
2455 || TREE_OVERFLOW (min))
2456 && (is_overflow_infinity (vr0.max)
2457 || TREE_OVERFLOW (max)))
2458 {
2459 set_value_range_to_varying (vr);
2460 return;
2461 }
2462
2463 if (is_overflow_infinity (vr0.min))
2464 min = vr0.min;
2465 else if (TREE_OVERFLOW (min))
2466 {
2467 if (supports_overflow_infinity (TREE_TYPE (expr)))
2468 min = (tree_int_cst_sgn (min) >= 0
2469 ? positive_overflow_infinity (TREE_TYPE (min))
2470 : negative_overflow_infinity (TREE_TYPE (min)));
2471 else
2472 {
2473 set_value_range_to_varying (vr);
2474 return;
2475 }
2476 }
2477
2478 if (is_overflow_infinity (vr0.max))
2479 max = vr0.max;
2480 else if (TREE_OVERFLOW (max))
2481 {
2482 if (supports_overflow_infinity (TREE_TYPE (expr)))
2483 max = (tree_int_cst_sgn (max) >= 0
2484 ? positive_overflow_infinity (TREE_TYPE (max))
2485 : negative_overflow_infinity (TREE_TYPE (max)));
2486 else
2487 {
2488 set_value_range_to_varying (vr);
2489 return;
2490 }
2491 }
2492 }
2493 }
2494
2495 cmp = compare_values (min, max);
2496 if (cmp == -2 || cmp == 1)
2497 {
2498 /* If the new range has its limits swapped around (MIN > MAX),
2499 then the operation caused one of them to wrap around, mark
2500 the new range VARYING. */
2501 set_value_range_to_varying (vr);
2502 }
2503 else
2504 set_value_range (vr, vr0.type, min, max, NULL);
2505 }
2506
2507
2508 /* Extract range information from a conditional expression EXPR based on
2509 the ranges of each of its operands and the expression code. */
2510
2511 static void
2512 extract_range_from_cond_expr (value_range_t *vr, tree expr)
2513 {
2514 tree op0, op1;
2515 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2516 value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2517
2518 /* Get value ranges for each operand. For constant operands, create
2519 a new value range with the operand to simplify processing. */
2520 op0 = COND_EXPR_THEN (expr);
2521 if (TREE_CODE (op0) == SSA_NAME)
2522 vr0 = *(get_value_range (op0));
2523 else if (is_gimple_min_invariant (op0))
2524 set_value_range_to_value (&vr0, op0, NULL);
2525 else
2526 set_value_range_to_varying (&vr0);
2527
2528 op1 = COND_EXPR_ELSE (expr);
2529 if (TREE_CODE (op1) == SSA_NAME)
2530 vr1 = *(get_value_range (op1));
2531 else if (is_gimple_min_invariant (op1))
2532 set_value_range_to_value (&vr1, op1, NULL);
2533 else
2534 set_value_range_to_varying (&vr1);
2535
2536 /* The resulting value range is the union of the operand ranges */
2537 vrp_meet (&vr0, &vr1);
2538 copy_value_range (vr, &vr0);
2539 }
2540
2541
2542 /* Extract range information from a comparison expression EXPR based
2543 on the range of its operand and the expression code. */
2544
2545 static void
2546 extract_range_from_comparison (value_range_t *vr, tree expr)
2547 {
2548 bool sop = false;
2549 tree val = vrp_evaluate_conditional_warnv (expr, false, &sop);
2550
2551 /* A disadvantage of using a special infinity as an overflow
2552 representation is that we lose the ability to record overflow
2553 when we don't have an infinity. So we have to ignore a result
2554 which relies on overflow. */
2555
2556 if (val && !is_overflow_infinity (val) && !sop)
2557 {
2558 /* Since this expression was found on the RHS of an assignment,
2559 its type may be different from _Bool. Convert VAL to EXPR's
2560 type. */
2561 val = fold_convert (TREE_TYPE (expr), val);
2562 if (is_gimple_min_invariant (val))
2563 set_value_range_to_value (vr, val, vr->equiv);
2564 else
2565 set_value_range (vr, VR_RANGE, val, val, vr->equiv);
2566 }
2567 else
2568 /* The result of a comparison is always true or false. */
2569 set_value_range_to_truthvalue (vr, TREE_TYPE (expr));
2570 }
2571
2572
2573 /* Try to compute a useful range out of expression EXPR and store it
2574 in *VR. */
2575
2576 static void
2577 extract_range_from_expr (value_range_t *vr, tree expr)
2578 {
2579 enum tree_code code = TREE_CODE (expr);
2580
2581 if (code == ASSERT_EXPR)
2582 extract_range_from_assert (vr, expr);
2583 else if (code == SSA_NAME)
2584 extract_range_from_ssa_name (vr, expr);
2585 else if (TREE_CODE_CLASS (code) == tcc_binary
2586 || code == TRUTH_ANDIF_EXPR
2587 || code == TRUTH_ORIF_EXPR
2588 || code == TRUTH_AND_EXPR
2589 || code == TRUTH_OR_EXPR
2590 || code == TRUTH_XOR_EXPR)
2591 extract_range_from_binary_expr (vr, expr);
2592 else if (TREE_CODE_CLASS (code) == tcc_unary)
2593 extract_range_from_unary_expr (vr, expr);
2594 else if (code == COND_EXPR)
2595 extract_range_from_cond_expr (vr, expr);
2596 else if (TREE_CODE_CLASS (code) == tcc_comparison)
2597 extract_range_from_comparison (vr, expr);
2598 else if (is_gimple_min_invariant (expr))
2599 set_value_range_to_value (vr, expr, NULL);
2600 else
2601 set_value_range_to_varying (vr);
2602
2603 /* If we got a varying range from the tests above, try a final
2604 time to derive a nonnegative or nonzero range. This time
2605 relying primarily on generic routines in fold in conjunction
2606 with range data. */
2607 if (vr->type == VR_VARYING)
2608 {
2609 bool sop = false;
2610
2611 if (INTEGRAL_TYPE_P (TREE_TYPE (expr))
2612 && vrp_expr_computes_nonnegative (expr, &sop))
2613 set_value_range_to_nonnegative (vr, TREE_TYPE (expr),
2614 sop || is_overflow_infinity (expr));
2615 else if (vrp_expr_computes_nonzero (expr, &sop)
2616 && !sop)
2617 set_value_range_to_nonnull (vr, TREE_TYPE (expr));
2618 }
2619 }
2620
2621 /* Given a range VR, a LOOP and a variable VAR, determine whether it
2622 would be profitable to adjust VR using scalar evolution information
2623 for VAR. If so, update VR with the new limits. */
2624
2625 static void
2626 adjust_range_with_scev (value_range_t *vr, struct loop *loop, tree stmt,
2627 tree var)
2628 {
2629 tree init, step, chrec, tmin, tmax, min, max, type;
2630 enum ev_direction dir;
2631
2632 /* TODO. Don't adjust anti-ranges. An anti-range may provide
2633 better opportunities than a regular range, but I'm not sure. */
2634 if (vr->type == VR_ANTI_RANGE)
2635 return;
2636
2637 chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));
2638 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
2639 return;
2640
2641 init = initial_condition_in_loop_num (chrec, loop->num);
2642 step = evolution_part_in_loop_num (chrec, loop->num);
2643
2644 /* If STEP is symbolic, we can't know whether INIT will be the
2645 minimum or maximum value in the range. Also, unless INIT is
2646 a simple expression, compare_values and possibly other functions
2647 in tree-vrp won't be able to handle it. */
2648 if (step == NULL_TREE
2649 || !is_gimple_min_invariant (step)
2650 || !valid_value_p (init))
2651 return;
2652
2653 dir = scev_direction (chrec);
2654 if (/* Do not adjust ranges if we do not know whether the iv increases
2655 or decreases, ... */
2656 dir == EV_DIR_UNKNOWN
2657 /* ... or if it may wrap. */
2658 || scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
2659 true))
2660 return;
2661
2662 /* We use TYPE_MIN_VALUE and TYPE_MAX_VALUE here instead of
2663 negative_overflow_infinity and positive_overflow_infinity,
2664 because we have concluded that the loop probably does not
2665 wrap. */
2666
2667 type = TREE_TYPE (var);
2668 if (POINTER_TYPE_P (type) || !TYPE_MIN_VALUE (type))
2669 tmin = lower_bound_in_type (type, type);
2670 else
2671 tmin = TYPE_MIN_VALUE (type);
2672 if (POINTER_TYPE_P (type) || !TYPE_MAX_VALUE (type))
2673 tmax = upper_bound_in_type (type, type);
2674 else
2675 tmax = TYPE_MAX_VALUE (type);
2676
2677 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
2678 {
2679 min = tmin;
2680 max = tmax;
2681
2682 /* For VARYING or UNDEFINED ranges, just about anything we get
2683 from scalar evolutions should be better. */
2684
2685 if (dir == EV_DIR_DECREASES)
2686 max = init;
2687 else
2688 min = init;
2689
2690 /* If we would create an invalid range, then just assume we
2691 know absolutely nothing. This may be over-conservative,
2692 but it's clearly safe, and should happen only in unreachable
2693 parts of code, or for invalid programs. */
2694 if (compare_values (min, max) == 1)
2695 return;
2696
2697 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
2698 }
2699 else if (vr->type == VR_RANGE)
2700 {
2701 min = vr->min;
2702 max = vr->max;
2703
2704 if (dir == EV_DIR_DECREASES)
2705 {
2706 /* INIT is the maximum value. If INIT is lower than VR->MAX
2707 but no smaller than VR->MIN, set VR->MAX to INIT. */
2708 if (compare_values (init, max) == -1)
2709 {
2710 max = init;
2711
2712 /* If we just created an invalid range with the minimum
2713 greater than the maximum, we fail conservatively.
2714 This should happen only in unreachable
2715 parts of code, or for invalid programs. */
2716 if (compare_values (min, max) == 1)
2717 return;
2718 }
2719
2720 /* According to the loop information, the variable does not
2721 overflow. If we think it does, probably because of an
2722 overflow due to arithmetic on a different INF value,
2723 reset now. */
2724 if (is_negative_overflow_infinity (min))
2725 min = tmin;
2726 }
2727 else
2728 {
2729 /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
2730 if (compare_values (init, min) == 1)
2731 {
2732 min = init;
2733
2734 /* Again, avoid creating invalid range by failing. */
2735 if (compare_values (min, max) == 1)
2736 return;
2737 }
2738
2739 if (is_positive_overflow_infinity (max))
2740 max = tmax;
2741 }
2742
2743 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
2744 }
2745 }
2746
2747 /* Return true if VAR may overflow at STMT. This checks any available
2748 loop information to see if we can determine that VAR does not
2749 overflow. */
2750
2751 static bool
2752 vrp_var_may_overflow (tree var, tree stmt)
2753 {
2754 struct loop *l;
2755 tree chrec, init, step;
2756
2757 if (current_loops == NULL)
2758 return true;
2759
2760 l = loop_containing_stmt (stmt);
2761 if (l == NULL)
2762 return true;
2763
2764 chrec = instantiate_parameters (l, analyze_scalar_evolution (l, var));
2765 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
2766 return true;
2767
2768 init = initial_condition_in_loop_num (chrec, l->num);
2769 step = evolution_part_in_loop_num (chrec, l->num);
2770
2771 if (step == NULL_TREE
2772 || !is_gimple_min_invariant (step)
2773 || !valid_value_p (init))
2774 return true;
2775
2776 /* If we get here, we know something useful about VAR based on the
2777 loop information. If it wraps, it may overflow. */
2778
2779 if (scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
2780 true))
2781 return true;
2782
2783 if (dump_file && (dump_flags & TDF_DETAILS) != 0)
2784 {
2785 print_generic_expr (dump_file, var, 0);
2786 fprintf (dump_file, ": loop information indicates does not overflow\n");
2787 }
2788
2789 return false;
2790 }
2791
2792
2793 /* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
2794
2795 - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
2796 all the values in the ranges.
2797
2798 - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
2799
2800 - Return NULL_TREE if it is not always possible to determine the
2801 value of the comparison.
2802
2803 Also set *STRICT_OVERFLOW_P to indicate whether a range with an
2804 overflow infinity was used in the test. */
2805
2806
2807 static tree
2808 compare_ranges (enum tree_code comp, value_range_t *vr0, value_range_t *vr1,
2809 bool *strict_overflow_p)
2810 {
2811 /* VARYING or UNDEFINED ranges cannot be compared. */
2812 if (vr0->type == VR_VARYING
2813 || vr0->type == VR_UNDEFINED
2814 || vr1->type == VR_VARYING
2815 || vr1->type == VR_UNDEFINED)
2816 return NULL_TREE;
2817
2818 /* Anti-ranges need to be handled separately. */
2819 if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
2820 {
2821 /* If both are anti-ranges, then we cannot compute any
2822 comparison. */
2823 if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
2824 return NULL_TREE;
2825
2826 /* These comparisons are never statically computable. */
2827 if (comp == GT_EXPR
2828 || comp == GE_EXPR
2829 || comp == LT_EXPR
2830 || comp == LE_EXPR)
2831 return NULL_TREE;
2832
2833 /* Equality can be computed only between a range and an
2834 anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
2835 if (vr0->type == VR_RANGE)
2836 {
2837 /* To simplify processing, make VR0 the anti-range. */
2838 value_range_t *tmp = vr0;
2839 vr0 = vr1;
2840 vr1 = tmp;
2841 }
2842
2843 gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);
2844
2845 if (compare_values_warnv (vr0->min, vr1->min, strict_overflow_p) == 0
2846 && compare_values_warnv (vr0->max, vr1->max, strict_overflow_p) == 0)
2847 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
2848
2849 return NULL_TREE;
2850 }
2851
2852 if (!usable_range_p (vr0, strict_overflow_p)
2853 || !usable_range_p (vr1, strict_overflow_p))
2854 return NULL_TREE;
2855
2856 /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
2857 operands around and change the comparison code. */
2858 if (comp == GT_EXPR || comp == GE_EXPR)
2859 {
2860 value_range_t *tmp;
2861 comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
2862 tmp = vr0;
2863 vr0 = vr1;
2864 vr1 = tmp;
2865 }
2866
2867 if (comp == EQ_EXPR)
2868 {
2869 /* Equality may only be computed if both ranges represent
2870 exactly one value. */
2871 if (compare_values_warnv (vr0->min, vr0->max, strict_overflow_p) == 0
2872 && compare_values_warnv (vr1->min, vr1->max, strict_overflow_p) == 0)
2873 {
2874 int cmp_min = compare_values_warnv (vr0->min, vr1->min,
2875 strict_overflow_p);
2876 int cmp_max = compare_values_warnv (vr0->max, vr1->max,
2877 strict_overflow_p);
2878 if (cmp_min == 0 && cmp_max == 0)
2879 return boolean_true_node;
2880 else if (cmp_min != -2 && cmp_max != -2)
2881 return boolean_false_node;
2882 }
2883 /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
2884 else if (compare_values_warnv (vr0->min, vr1->max,
2885 strict_overflow_p) == 1
2886 || compare_values_warnv (vr1->min, vr0->max,
2887 strict_overflow_p) == 1)
2888 return boolean_false_node;
2889
2890 return NULL_TREE;
2891 }
2892 else if (comp == NE_EXPR)
2893 {
2894 int cmp1, cmp2;
2895
2896 /* If VR0 is completely to the left or completely to the right
2897 of VR1, they are always different. Notice that we need to
2898 make sure that both comparisons yield similar results to
2899 avoid comparing values that cannot be compared at
2900 compile-time. */
2901 cmp1 = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
2902 cmp2 = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
2903 if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
2904 return boolean_true_node;
2905
2906 /* If VR0 and VR1 represent a single value and are identical,
2907 return false. */
2908 else if (compare_values_warnv (vr0->min, vr0->max,
2909 strict_overflow_p) == 0
2910 && compare_values_warnv (vr1->min, vr1->max,
2911 strict_overflow_p) == 0
2912 && compare_values_warnv (vr0->min, vr1->min,
2913 strict_overflow_p) == 0
2914 && compare_values_warnv (vr0->max, vr1->max,
2915 strict_overflow_p) == 0)
2916 return boolean_false_node;
2917
2918 /* Otherwise, they may or may not be different. */
2919 else
2920 return NULL_TREE;
2921 }
2922 else if (comp == LT_EXPR || comp == LE_EXPR)
2923 {
2924 int tst;
2925
2926 /* If VR0 is to the left of VR1, return true. */
2927 tst = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
2928 if ((comp == LT_EXPR && tst == -1)
2929 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
2930 {
2931 if (overflow_infinity_range_p (vr0)
2932 || overflow_infinity_range_p (vr1))
2933 *strict_overflow_p = true;
2934 return boolean_true_node;
2935 }
2936
2937 /* If VR0 is to the right of VR1, return false. */
2938 tst = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
2939 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
2940 || (comp == LE_EXPR && tst == 1))
2941 {
2942 if (overflow_infinity_range_p (vr0)
2943 || overflow_infinity_range_p (vr1))
2944 *strict_overflow_p = true;
2945 return boolean_false_node;
2946 }
2947
2948 /* Otherwise, we don't know. */
2949 return NULL_TREE;
2950 }
2951
2952 gcc_unreachable ();
2953 }
2954
2955
2956 /* Given a value range VR, a value VAL and a comparison code COMP, return
2957 BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
2958 values in VR. Return BOOLEAN_FALSE_NODE if the comparison
2959 always returns false. Return NULL_TREE if it is not always
2960 possible to determine the value of the comparison. Also set
2961 *STRICT_OVERFLOW_P to indicate whether a range with an overflow
2962 infinity was used in the test. */
2963
2964 static tree
2965 compare_range_with_value (enum tree_code comp, value_range_t *vr, tree val,
2966 bool *strict_overflow_p)
2967 {
2968 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
2969 return NULL_TREE;
2970
2971 /* Anti-ranges need to be handled separately. */
2972 if (vr->type == VR_ANTI_RANGE)
2973 {
2974 /* For anti-ranges, the only predicates that we can compute at
2975 compile time are equality and inequality. */
2976 if (comp == GT_EXPR
2977 || comp == GE_EXPR
2978 || comp == LT_EXPR
2979 || comp == LE_EXPR)
2980 return NULL_TREE;
2981
2982 /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
2983 if (value_inside_range (val, vr) == 1)
2984 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
2985
2986 return NULL_TREE;
2987 }
2988
2989 if (!usable_range_p (vr, strict_overflow_p))
2990 return NULL_TREE;
2991
2992 if (comp == EQ_EXPR)
2993 {
2994 /* EQ_EXPR may only be computed if VR represents exactly
2995 one value. */
2996 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0)
2997 {
2998 int cmp = compare_values_warnv (vr->min, val, strict_overflow_p);
2999 if (cmp == 0)
3000 return boolean_true_node;
3001 else if (cmp == -1 || cmp == 1 || cmp == 2)
3002 return boolean_false_node;
3003 }
3004 else if (compare_values_warnv (val, vr->min, strict_overflow_p) == -1
3005 || compare_values_warnv (vr->max, val, strict_overflow_p) == -1)
3006 return boolean_false_node;
3007
3008 return NULL_TREE;
3009 }
3010 else if (comp == NE_EXPR)
3011 {
3012 /* If VAL is not inside VR, then they are always different. */
3013 if (compare_values_warnv (vr->max, val, strict_overflow_p) == -1
3014 || compare_values_warnv (vr->min, val, strict_overflow_p) == 1)
3015 return boolean_true_node;
3016
3017 /* If VR represents exactly one value equal to VAL, then return
3018 false. */
3019 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0
3020 && compare_values_warnv (vr->min, val, strict_overflow_p) == 0)
3021 return boolean_false_node;
3022
3023 /* Otherwise, they may or may not be different. */
3024 return NULL_TREE;
3025 }
3026 else if (comp == LT_EXPR || comp == LE_EXPR)
3027 {
3028 int tst;
3029
3030 /* If VR is to the left of VAL, return true. */
3031 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
3032 if ((comp == LT_EXPR && tst == -1)
3033 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
3034 {
3035 if (overflow_infinity_range_p (vr))
3036 *strict_overflow_p = true;
3037 return boolean_true_node;
3038 }
3039
3040 /* If VR is to the right of VAL, return false. */
3041 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
3042 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
3043 || (comp == LE_EXPR && tst == 1))
3044 {
3045 if (overflow_infinity_range_p (vr))
3046 *strict_overflow_p = true;
3047 return boolean_false_node;
3048 }
3049
3050 /* Otherwise, we don't know. */
3051 return NULL_TREE;
3052 }
3053 else if (comp == GT_EXPR || comp == GE_EXPR)
3054 {
3055 int tst;
3056
3057 /* If VR is to the right of VAL, return true. */
3058 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
3059 if ((comp == GT_EXPR && tst == 1)
3060 || (comp == GE_EXPR && (tst == 0 || tst == 1)))
3061 {
3062 if (overflow_infinity_range_p (vr))
3063 *strict_overflow_p = true;
3064 return boolean_true_node;
3065 }
3066
3067 /* If VR is to the left of VAL, return false. */
3068 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
3069 if ((comp == GT_EXPR && (tst == -1 || tst == 0))
3070 || (comp == GE_EXPR && tst == -1))
3071 {
3072 if (overflow_infinity_range_p (vr))
3073 *strict_overflow_p = true;
3074 return boolean_false_node;
3075 }
3076
3077 /* Otherwise, we don't know. */
3078 return NULL_TREE;
3079 }
3080
3081 gcc_unreachable ();
3082 }
3083
3084
3085 /* Debugging dumps. */
3086
3087 void dump_value_range (FILE *, value_range_t *);
3088 void debug_value_range (value_range_t *);
3089 void dump_all_value_ranges (FILE *);
3090 void debug_all_value_ranges (void);
3091 void dump_vr_equiv (FILE *, bitmap);
3092 void debug_vr_equiv (bitmap);
3093
3094
3095 /* Dump value range VR to FILE. */
3096
3097 void
3098 dump_value_range (FILE *file, value_range_t *vr)
3099 {
3100 if (vr == NULL)
3101 fprintf (file, "[]");
3102 else if (vr->type == VR_UNDEFINED)
3103 fprintf (file, "UNDEFINED");
3104 else if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
3105 {
3106 tree type = TREE_TYPE (vr->min);
3107
3108 fprintf (file, "%s[", (vr->type == VR_ANTI_RANGE) ? "~" : "");
3109
3110 if (is_negative_overflow_infinity (vr->min))
3111 fprintf (file, "-INF(OVF)");
3112 else if (INTEGRAL_TYPE_P (type)
3113 && !TYPE_UNSIGNED (type)
3114 && vrp_val_is_min (vr->min))
3115 fprintf (file, "-INF");
3116 else
3117 print_generic_expr (file, vr->min, 0);
3118
3119 fprintf (file, ", ");
3120
3121 if (is_positive_overflow_infinity (vr->max))
3122 fprintf (file, "+INF(OVF)");
3123 else if (INTEGRAL_TYPE_P (type)
3124 && vrp_val_is_max (vr->max))
3125 fprintf (file, "+INF");
3126 else
3127 print_generic_expr (file, vr->max, 0);
3128
3129 fprintf (file, "]");
3130
3131 if (vr->equiv)
3132 {
3133 bitmap_iterator bi;
3134 unsigned i, c = 0;
3135
3136 fprintf (file, " EQUIVALENCES: { ");
3137
3138 EXECUTE_IF_SET_IN_BITMAP (vr->equiv, 0, i, bi)
3139 {
3140 print_generic_expr (file, ssa_name (i), 0);
3141 fprintf (file, " ");
3142 c++;
3143 }
3144
3145 fprintf (file, "} (%u elements)", c);
3146 }
3147 }
3148 else if (vr->type == VR_VARYING)
3149 fprintf (file, "VARYING");
3150 else
3151 fprintf (file, "INVALID RANGE");
3152 }
3153
3154
3155 /* Dump value range VR to stderr. */
3156
3157 void
3158 debug_value_range (value_range_t *vr)
3159 {
3160 dump_value_range (stderr, vr);
3161 fprintf (stderr, "\n");
3162 }
3163
3164
3165 /* Dump value ranges of all SSA_NAMEs to FILE. */
3166
3167 void
3168 dump_all_value_ranges (FILE *file)
3169 {
3170 size_t i;
3171
3172 for (i = 0; i < num_ssa_names; i++)
3173 {
3174 if (vr_value[i])
3175 {
3176 print_generic_expr (file, ssa_name (i), 0);
3177 fprintf (file, ": ");
3178 dump_value_range (file, vr_value[i]);
3179 fprintf (file, "\n");
3180 }
3181 }
3182
3183 fprintf (file, "\n");
3184 }
3185
3186
3187 /* Dump all value ranges to stderr. */
3188
3189 void
3190 debug_all_value_ranges (void)
3191 {
3192 dump_all_value_ranges (stderr);
3193 }
3194
3195
3196 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
3197 create a new SSA name N and return the assertion assignment
3198 'V = ASSERT_EXPR <V, V OP W>'. */
3199
3200 static tree
3201 build_assert_expr_for (tree cond, tree v)
3202 {
3203 tree n, assertion;
3204
3205 gcc_assert (TREE_CODE (v) == SSA_NAME);
3206 n = duplicate_ssa_name (v, NULL_TREE);
3207
3208 if (COMPARISON_CLASS_P (cond))
3209 {
3210 tree a = build2 (ASSERT_EXPR, TREE_TYPE (v), v, cond);
3211 assertion = build_gimple_modify_stmt (n, a);
3212 }
3213 else if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
3214 {
3215 /* Given !V, build the assignment N = false. */
3216 tree op0 = TREE_OPERAND (cond, 0);
3217 gcc_assert (op0 == v);
3218 assertion = build_gimple_modify_stmt (n, boolean_false_node);
3219 }
3220 else if (TREE_CODE (cond) == SSA_NAME)
3221 {
3222 /* Given V, build the assignment N = true. */
3223 gcc_assert (v == cond);
3224 assertion = build_gimple_modify_stmt (n, boolean_true_node);
3225 }
3226 else
3227 gcc_unreachable ();
3228
3229 SSA_NAME_DEF_STMT (n) = assertion;
3230
3231 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
3232 operand of the ASSERT_EXPR. Register the new name and the old one
3233 in the replacement table so that we can fix the SSA web after
3234 adding all the ASSERT_EXPRs. */
3235 register_new_name_mapping (n, v);
3236
3237 return assertion;
3238 }
3239
3240
3241 /* Return false if EXPR is a predicate expression involving floating
3242 point values. */
3243
3244 static inline bool
3245 fp_predicate (tree expr)
3246 {
3247 return (COMPARISON_CLASS_P (expr)
3248 && FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 0))));
3249 }
3250
3251
3252 /* If the range of values taken by OP can be inferred after STMT executes,
3253 return the comparison code (COMP_CODE_P) and value (VAL_P) that
3254 describes the inferred range. Return true if a range could be
3255 inferred. */
3256
3257 static bool
3258 infer_value_range (tree stmt, tree op, enum tree_code *comp_code_p, tree *val_p)
3259 {
3260 *val_p = NULL_TREE;
3261 *comp_code_p = ERROR_MARK;
3262
3263 /* Do not attempt to infer anything in names that flow through
3264 abnormal edges. */
3265 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
3266 return false;
3267
3268 /* Similarly, don't infer anything from statements that may throw
3269 exceptions. */
3270 if (tree_could_throw_p (stmt))
3271 return false;
3272
3273 /* If STMT is the last statement of a basic block with no
3274 successors, there is no point inferring anything about any of its
3275 operands. We would not be able to find a proper insertion point
3276 for the assertion, anyway. */
3277 if (stmt_ends_bb_p (stmt) && EDGE_COUNT (bb_for_stmt (stmt)->succs) == 0)
3278 return false;
3279
3280 /* We can only assume that a pointer dereference will yield
3281 non-NULL if -fdelete-null-pointer-checks is enabled. */
3282 if (flag_delete_null_pointer_checks && POINTER_TYPE_P (TREE_TYPE (op)))
3283 {
3284 unsigned num_uses, num_loads, num_stores;
3285
3286 count_uses_and_derefs (op, stmt, &num_uses, &num_loads, &num_stores);
3287 if (num_loads + num_stores > 0)
3288 {
3289 *val_p = build_int_cst (TREE_TYPE (op), 0);
3290 *comp_code_p = NE_EXPR;
3291 return true;
3292 }
3293 }
3294
3295 return false;
3296 }
3297
3298
3299 void dump_asserts_for (FILE *, tree);
3300 void debug_asserts_for (tree);
3301 void dump_all_asserts (FILE *);
3302 void debug_all_asserts (void);
3303
3304 /* Dump all the registered assertions for NAME to FILE. */
3305
3306 void
3307 dump_asserts_for (FILE *file, tree name)
3308 {
3309 assert_locus_t loc;
3310
3311 fprintf (file, "Assertions to be inserted for ");
3312 print_generic_expr (file, name, 0);
3313 fprintf (file, "\n");
3314
3315 loc = asserts_for[SSA_NAME_VERSION (name)];
3316 while (loc)
3317 {
3318 fprintf (file, "\t");
3319 print_generic_expr (file, bsi_stmt (loc->si), 0);
3320 fprintf (file, "\n\tBB #%d", loc->bb->index);
3321 if (loc->e)
3322 {
3323 fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
3324 loc->e->dest->index);
3325 dump_edge_info (file, loc->e, 0);
3326 }
3327 fprintf (file, "\n\tPREDICATE: ");
3328 print_generic_expr (file, name, 0);
3329 fprintf (file, " %s ", tree_code_name[(int)loc->comp_code]);
3330 print_generic_expr (file, loc->val, 0);
3331 fprintf (file, "\n\n");
3332 loc = loc->next;
3333 }
3334
3335 fprintf (file, "\n");
3336 }
3337
3338
3339 /* Dump all the registered assertions for NAME to stderr. */
3340
3341 void
3342 debug_asserts_for (tree name)
3343 {
3344 dump_asserts_for (stderr, name);
3345 }
3346
3347
3348 /* Dump all the registered assertions for all the names to FILE. */
3349
3350 void
3351 dump_all_asserts (FILE *file)
3352 {
3353 unsigned i;
3354 bitmap_iterator bi;
3355
3356 fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
3357 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
3358 dump_asserts_for (file, ssa_name (i));
3359 fprintf (file, "\n");
3360 }
3361
3362
3363 /* Dump all the registered assertions for all the names to stderr. */
3364
3365 void
3366 debug_all_asserts (void)
3367 {
3368 dump_all_asserts (stderr);
3369 }
3370
3371
3372 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
3373 'NAME COMP_CODE VAL' at a location that dominates block BB or
3374 E->DEST, then register this location as a possible insertion point
3375 for ASSERT_EXPR <NAME, NAME COMP_CODE VAL>.
3376
3377 BB, E and SI provide the exact insertion point for the new
3378 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
3379 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
3380 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
3381 must not be NULL. */
3382
3383 static void
3384 register_new_assert_for (tree name,
3385 enum tree_code comp_code,
3386 tree val,
3387 basic_block bb,
3388 edge e,
3389 block_stmt_iterator si)
3390 {
3391 assert_locus_t n, loc, last_loc;
3392 bool found;
3393 basic_block dest_bb;
3394
3395 #if defined ENABLE_CHECKING
3396 gcc_assert (bb == NULL || e == NULL);
3397
3398 if (e == NULL)
3399 gcc_assert (TREE_CODE (bsi_stmt (si)) != COND_EXPR
3400 && TREE_CODE (bsi_stmt (si)) != SWITCH_EXPR);
3401 #endif
3402
3403 /* The new assertion A will be inserted at BB or E. We need to
3404 determine if the new location is dominated by a previously
3405 registered location for A. If we are doing an edge insertion,
3406 assume that A will be inserted at E->DEST. Note that this is not
3407 necessarily true.
3408
3409 If E is a critical edge, it will be split. But even if E is
3410 split, the new block will dominate the same set of blocks that
3411 E->DEST dominates.
3412
3413 The reverse, however, is not true, blocks dominated by E->DEST
3414 will not be dominated by the new block created to split E. So,
3415 if the insertion location is on a critical edge, we will not use
3416 the new location to move another assertion previously registered
3417 at a block dominated by E->DEST. */
3418 dest_bb = (bb) ? bb : e->dest;
3419
3420 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
3421 VAL at a block dominating DEST_BB, then we don't need to insert a new
3422 one. Similarly, if the same assertion already exists at a block
3423 dominated by DEST_BB and the new location is not on a critical
3424 edge, then update the existing location for the assertion (i.e.,
3425 move the assertion up in the dominance tree).
3426
3427 Note, this is implemented as a simple linked list because there
3428 should not be more than a handful of assertions registered per
3429 name. If this becomes a performance problem, a table hashed by
3430 COMP_CODE and VAL could be implemented. */
3431 loc = asserts_for[SSA_NAME_VERSION (name)];
3432 last_loc = loc;
3433 found = false;
3434 while (loc)
3435 {
3436 if (loc->comp_code == comp_code
3437 && (loc->val == val
3438 || operand_equal_p (loc->val, val, 0)))
3439 {
3440 /* If the assertion NAME COMP_CODE VAL has already been
3441 registered at a basic block that dominates DEST_BB, then
3442 we don't need to insert the same assertion again. Note
3443 that we don't check strict dominance here to avoid
3444 replicating the same assertion inside the same basic
3445 block more than once (e.g., when a pointer is
3446 dereferenced several times inside a block).
3447
3448 An exception to this rule are edge insertions. If the
3449 new assertion is to be inserted on edge E, then it will
3450 dominate all the other insertions that we may want to
3451 insert in DEST_BB. So, if we are doing an edge
3452 insertion, don't do this dominance check. */
3453 if (e == NULL
3454 && dominated_by_p (CDI_DOMINATORS, dest_bb, loc->bb))
3455 return;
3456
3457 /* Otherwise, if E is not a critical edge and DEST_BB
3458 dominates the existing location for the assertion, move
3459 the assertion up in the dominance tree by updating its
3460 location information. */
3461 if ((e == NULL || !EDGE_CRITICAL_P (e))
3462 && dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
3463 {
3464 loc->bb = dest_bb;
3465 loc->e = e;
3466 loc->si = si;
3467 return;
3468 }
3469 }
3470
3471 /* Update the last node of the list and move to the next one. */
3472 last_loc = loc;
3473 loc = loc->next;
3474 }
3475
3476 /* If we didn't find an assertion already registered for
3477 NAME COMP_CODE VAL, add a new one at the end of the list of
3478 assertions associated with NAME. */
3479 n = XNEW (struct assert_locus_d);
3480 n->bb = dest_bb;
3481 n->e = e;
3482 n->si = si;
3483 n->comp_code = comp_code;
3484 n->val = val;
3485 n->next = NULL;
3486
3487 if (last_loc)
3488 last_loc->next = n;
3489 else
3490 asserts_for[SSA_NAME_VERSION (name)] = n;
3491
3492 bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
3493 }
3494
3495 /* COND is a predicate which uses NAME. Extract a suitable test code
3496 and value and store them into *CODE_P and *VAL_P so the predicate
3497 is normalized to NAME *CODE_P *VAL_P.
3498
3499 If no extraction was possible, return FALSE, otherwise return TRUE.
3500
3501 If INVERT is true, then we invert the result stored into *CODE_P. */
3502
3503 static bool
3504 extract_code_and_val_from_cond (tree name, tree cond, bool invert,
3505 enum tree_code *code_p, tree *val_p)
3506 {
3507 enum tree_code comp_code;
3508 tree val;
3509
3510 /* Predicates may be a single SSA name or NAME OP VAL. */
3511 if (cond == name)
3512 {
3513 /* If the predicate is a name, it must be NAME, in which
3514 case we create the predicate NAME == true or
3515 NAME == false accordingly. */
3516 comp_code = EQ_EXPR;
3517 val = invert ? boolean_false_node : boolean_true_node;
3518 }
3519 else
3520 {
3521 /* Otherwise, we have a comparison of the form NAME COMP VAL
3522 or VAL COMP NAME. */
3523 if (name == TREE_OPERAND (cond, 1))
3524 {
3525 /* If the predicate is of the form VAL COMP NAME, flip
3526 COMP around because we need to register NAME as the
3527 first operand in the predicate. */
3528 comp_code = swap_tree_comparison (TREE_CODE (cond));
3529 val = TREE_OPERAND (cond, 0);
3530 }
3531 else
3532 {
3533 /* The comparison is of the form NAME COMP VAL, so the
3534 comparison code remains unchanged. */
3535 comp_code = TREE_CODE (cond);
3536 val = TREE_OPERAND (cond, 1);
3537 }
3538
3539 /* Invert the comparison code as necessary. */
3540 if (invert)
3541 comp_code = invert_tree_comparison (comp_code, 0);
3542
3543 /* VRP does not handle float types. */
3544 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (val)))
3545 return false;
3546
3547 /* Do not register always-false predicates.
3548 FIXME: this works around a limitation in fold() when dealing with
3549 enumerations. Given 'enum { N1, N2 } x;', fold will not
3550 fold 'if (x > N2)' to 'if (0)'. */
3551 if ((comp_code == GT_EXPR || comp_code == LT_EXPR)
3552 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
3553 {
3554 tree min = TYPE_MIN_VALUE (TREE_TYPE (val));
3555 tree max = TYPE_MAX_VALUE (TREE_TYPE (val));
3556
3557 if (comp_code == GT_EXPR
3558 && (!max
3559 || compare_values (val, max) == 0))
3560 return false;
3561
3562 if (comp_code == LT_EXPR
3563 && (!min
3564 || compare_values (val, min) == 0))
3565 return false;
3566 }
3567 }
3568 *code_p = comp_code;
3569 *val_p = val;
3570 return true;
3571 }
3572
3573 /* OP is an operand of a truth value expression which is known to have
3574 a particular value. Register any asserts for OP and for any
3575 operands in OP's defining statement.
3576
3577 If CODE is EQ_EXPR, then we want to register OP is zero (false),
3578 if CODE is NE_EXPR, then we want to register OP is nonzero (true). */
3579
3580 static bool
3581 register_edge_assert_for_1 (tree op, enum tree_code code,
3582 edge e, block_stmt_iterator bsi)
3583 {
3584 bool retval = false;
3585 tree op_def, rhs, val;
3586
3587 /* We only care about SSA_NAMEs. */
3588 if (TREE_CODE (op) != SSA_NAME)
3589 return false;
3590
3591 /* We know that OP will have a zero or nonzero value. If OP is used
3592 more than once go ahead and register an assert for OP.
3593
3594 The FOUND_IN_SUBGRAPH support is not helpful in this situation as
3595 it will always be set for OP (because OP is used in a COND_EXPR in
3596 the subgraph). */
3597 if (!has_single_use (op))
3598 {
3599 val = build_int_cst (TREE_TYPE (op), 0);
3600 register_new_assert_for (op, code, val, NULL, e, bsi);
3601 retval = true;
3602 }
3603
3604 /* Now look at how OP is set. If it's set from a comparison,
3605 a truth operation or some bit operations, then we may be able
3606 to register information about the operands of that assignment. */
3607 op_def = SSA_NAME_DEF_STMT (op);
3608 if (TREE_CODE (op_def) != GIMPLE_MODIFY_STMT)
3609 return retval;
3610
3611 rhs = GIMPLE_STMT_OPERAND (op_def, 1);
3612
3613 if (COMPARISON_CLASS_P (rhs))
3614 {
3615 bool invert = (code == EQ_EXPR ? true : false);
3616 tree op0 = TREE_OPERAND (rhs, 0);
3617 tree op1 = TREE_OPERAND (rhs, 1);
3618
3619 /* Conditionally register an assert for each SSA_NAME in the
3620 comparison. */
3621 if (TREE_CODE (op0) == SSA_NAME
3622 && !has_single_use (op0)
3623 && extract_code_and_val_from_cond (op0, rhs,
3624 invert, &code, &val))
3625 {
3626 register_new_assert_for (op0, code, val, NULL, e, bsi);
3627 retval = true;
3628 }
3629
3630 /* Similarly for the second operand of the comparison. */
3631 if (TREE_CODE (op1) == SSA_NAME
3632 && !has_single_use (op1)
3633 && extract_code_and_val_from_cond (op1, rhs,
3634 invert, &code, &val))
3635 {
3636 register_new_assert_for (op1, code, val, NULL, e, bsi);
3637 retval = true;
3638 }
3639 }
3640 else if ((code == NE_EXPR
3641 && (TREE_CODE (rhs) == TRUTH_AND_EXPR
3642 || TREE_CODE (rhs) == BIT_AND_EXPR))
3643 || (code == EQ_EXPR
3644 && (TREE_CODE (rhs) == TRUTH_OR_EXPR
3645 || TREE_CODE (rhs) == BIT_IOR_EXPR)))
3646 {
3647 /* Recurse on each operand. */
3648 retval |= register_edge_assert_for_1 (TREE_OPERAND (rhs, 0),
3649 code, e, bsi);
3650 retval |= register_edge_assert_for_1 (TREE_OPERAND (rhs, 1),
3651 code, e, bsi);
3652 }
3653 else if (TREE_CODE (rhs) == TRUTH_NOT_EXPR)
3654 {
3655 /* Recurse, flipping CODE. */
3656 code = invert_tree_comparison (code, false);
3657 retval |= register_edge_assert_for_1 (TREE_OPERAND (rhs, 0),
3658 code, e, bsi);
3659 }
3660 else if (TREE_CODE (rhs) == SSA_NAME)
3661 {
3662 /* Recurse through the copy. */
3663 retval |= register_edge_assert_for_1 (rhs, code, e, bsi);
3664 }
3665 else if (TREE_CODE (rhs) == NOP_EXPR
3666 || TREE_CODE (rhs) == CONVERT_EXPR
3667 || TREE_CODE (rhs) == NON_LVALUE_EXPR)
3668 {
3669 /* Recurse through the type conversion. */
3670 retval |= register_edge_assert_for_1 (TREE_OPERAND (rhs, 0),
3671 code, e, bsi);
3672 }
3673
3674 return retval;
3675 }
3676
3677 /* Try to register an edge assertion for SSA name NAME on edge E for
3678 the condition COND contributing to the conditional jump pointed to by SI.
3679 Return true if an assertion for NAME could be registered. */
3680
3681 static bool
3682 register_edge_assert_for (tree name, edge e, block_stmt_iterator si, tree cond)
3683 {
3684 tree val;
3685 enum tree_code comp_code;
3686 bool retval = false;
3687 bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
3688
3689 /* Do not attempt to infer anything in names that flow through
3690 abnormal edges. */
3691 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
3692 return false;
3693
3694 if (!extract_code_and_val_from_cond (name, cond, is_else_edge,
3695 &comp_code, &val))
3696 return false;
3697
3698 /* Only register an ASSERT_EXPR if NAME was found in the sub-graph
3699 reachable from E. */
3700 if (TEST_BIT (found_in_subgraph, SSA_NAME_VERSION (name)))
3701 {
3702 register_new_assert_for (name, comp_code, val, NULL, e, si);
3703 retval = true;
3704 }
3705
3706 /* If COND is effectively an equality test of an SSA_NAME against
3707 the value zero or one, then we may be able to assert values
3708 for SSA_NAMEs which flow into COND. */
3709
3710 /* In the case of NAME == 1 or NAME != 0, for TRUTH_AND_EXPR defining
3711 statement of NAME we can assert both operands of the TRUTH_AND_EXPR
3712 have nonzero value. */
3713 if (((comp_code == EQ_EXPR && integer_onep (val))
3714 || (comp_code == NE_EXPR && integer_zerop (val))))
3715 {
3716 tree def_stmt = SSA_NAME_DEF_STMT (name);
3717
3718 if (TREE_CODE (def_stmt) == GIMPLE_MODIFY_STMT
3719 && (TREE_CODE (GIMPLE_STMT_OPERAND (def_stmt, 1)) == TRUTH_AND_EXPR
3720 || TREE_CODE (GIMPLE_STMT_OPERAND (def_stmt, 1)) == BIT_AND_EXPR))
3721 {
3722 tree op0 = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 0);
3723 tree op1 = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 1);
3724 retval |= register_edge_assert_for_1 (op0, NE_EXPR, e, si);
3725 retval |= register_edge_assert_for_1 (op1, NE_EXPR, e, si);
3726 }
3727 }
3728
3729 /* In the case of NAME == 0 or NAME != 1, for TRUTH_OR_EXPR defining
3730 statement of NAME we can assert both operands of the TRUTH_OR_EXPR
3731 have zero value. */
3732 if (((comp_code == EQ_EXPR && integer_zerop (val))
3733 || (comp_code == NE_EXPR && integer_onep (val))))
3734 {
3735 tree def_stmt = SSA_NAME_DEF_STMT (name);
3736
3737 if (TREE_CODE (def_stmt) == GIMPLE_MODIFY_STMT
3738 && (TREE_CODE (GIMPLE_STMT_OPERAND (def_stmt, 1)) == TRUTH_OR_EXPR
3739 || TREE_CODE (GIMPLE_STMT_OPERAND (def_stmt, 1)) == BIT_IOR_EXPR))
3740 {
3741 tree op0 = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 0);
3742 tree op1 = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 1);
3743 retval |= register_edge_assert_for_1 (op0, EQ_EXPR, e, si);
3744 retval |= register_edge_assert_for_1 (op1, EQ_EXPR, e, si);
3745 }
3746 }
3747
3748 return retval;
3749 }
3750
3751
3752 static bool find_assert_locations (basic_block bb);
3753
3754 /* Determine whether the outgoing edges of BB should receive an
3755 ASSERT_EXPR for each of the operands of BB's LAST statement.
3756 The last statement of BB must be a COND_EXPR.
3757
3758 If any of the sub-graphs rooted at BB have an interesting use of
3759 the predicate operands, an assert location node is added to the
3760 list of assertions for the corresponding operands. */
3761
3762 static bool
3763 find_conditional_asserts (basic_block bb, tree last)
3764 {
3765 bool need_assert;
3766 block_stmt_iterator bsi;
3767 tree op;
3768 edge_iterator ei;
3769 edge e;
3770 ssa_op_iter iter;
3771
3772 need_assert = false;
3773 bsi = bsi_for_stmt (last);
3774
3775 /* Look for uses of the operands in each of the sub-graphs
3776 rooted at BB. We need to check each of the outgoing edges
3777 separately, so that we know what kind of ASSERT_EXPR to
3778 insert. */
3779 FOR_EACH_EDGE (e, ei, bb->succs)
3780 {
3781 if (e->dest == bb)
3782 continue;
3783
3784 /* Remove the COND_EXPR operands from the FOUND_IN_SUBGRAPH bitmap.
3785 Otherwise, when we finish traversing each of the sub-graphs, we
3786 won't know whether the variables were found in the sub-graphs or
3787 if they had been found in a block upstream from BB.
3788
3789 This is actually a bad idea is some cases, particularly jump
3790 threading. Consider a CFG like the following:
3791
3792 0
3793 /|
3794 1 |
3795 \|
3796 2
3797 / \
3798 3 4
3799
3800 Assume that one or more operands in the conditional at the
3801 end of block 0 are used in a conditional in block 2, but not
3802 anywhere in block 1. In this case we will not insert any
3803 assert statements in block 1, which may cause us to miss
3804 opportunities to optimize, particularly for jump threading. */
3805 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
3806 RESET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
3807
3808 /* Traverse the strictly dominated sub-graph rooted at E->DEST
3809 to determine if any of the operands in the conditional
3810 predicate are used. */
3811 if (e->dest != bb)
3812 need_assert |= find_assert_locations (e->dest);
3813
3814 /* Register the necessary assertions for each operand in the
3815 conditional predicate. */
3816 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
3817 need_assert |= register_edge_assert_for (op, e, bsi,
3818 COND_EXPR_COND (last));
3819 }
3820
3821 /* Finally, indicate that we have found the operands in the
3822 conditional. */
3823 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
3824 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
3825
3826 return need_assert;
3827 }
3828
3829 /* Compare two case labels sorting first by the destination label uid
3830 and then by the case value. */
3831
3832 static int
3833 compare_case_labels (const void *p1, const void *p2)
3834 {
3835 tree case1 = *(tree *)p1;
3836 tree case2 = *(tree *)p2;
3837 unsigned int uid1 = DECL_UID (CASE_LABEL (case1));
3838 unsigned int uid2 = DECL_UID (CASE_LABEL (case2));
3839
3840 if (uid1 < uid2)
3841 return -1;
3842 else if (uid1 == uid2)
3843 {
3844 /* Make sure the default label is first in a group. */
3845 if (!CASE_LOW (case1))
3846 return -1;
3847 else if (!CASE_LOW (case2))
3848 return 1;
3849 else
3850 return tree_int_cst_compare (CASE_LOW (case1), CASE_LOW (case2));
3851 }
3852 else
3853 return 1;
3854 }
3855
3856 /* Determine whether the outgoing edges of BB should receive an
3857 ASSERT_EXPR for each of the operands of BB's LAST statement.
3858 The last statement of BB must be a SWITCH_EXPR.
3859
3860 If any of the sub-graphs rooted at BB have an interesting use of
3861 the predicate operands, an assert location node is added to the
3862 list of assertions for the corresponding operands. */
3863
3864 static bool
3865 find_switch_asserts (basic_block bb, tree last)
3866 {
3867 bool need_assert;
3868 block_stmt_iterator bsi;
3869 tree op, cond;
3870 edge e;
3871 tree vec = SWITCH_LABELS (last), vec2;
3872 size_t n = TREE_VEC_LENGTH (vec);
3873 unsigned int idx;
3874
3875 need_assert = false;
3876 bsi = bsi_for_stmt (last);
3877 op = TREE_OPERAND (last, 0);
3878 if (TREE_CODE (op) != SSA_NAME)
3879 return false;
3880
3881 /* Build a vector of case labels sorted by destination label. */
3882 vec2 = make_tree_vec (n);
3883 for (idx = 0; idx < n; ++idx)
3884 TREE_VEC_ELT (vec2, idx) = TREE_VEC_ELT (vec, idx);
3885 qsort (&TREE_VEC_ELT (vec2, 0), n, sizeof (tree), compare_case_labels);
3886
3887 for (idx = 0; idx < n; ++idx)
3888 {
3889 tree min, max;
3890 tree cl = TREE_VEC_ELT (vec2, idx);
3891
3892 min = CASE_LOW (cl);
3893 max = CASE_HIGH (cl);
3894
3895 /* If there are multiple case labels with the same destination
3896 we need to combine them to a single value range for the edge. */
3897 if (idx + 1 < n
3898 && CASE_LABEL (cl) == CASE_LABEL (TREE_VEC_ELT (vec2, idx + 1)))
3899 {
3900 /* Skip labels until the last of the group. */
3901 do {
3902 ++idx;
3903 } while (idx < n
3904 && CASE_LABEL (cl) == CASE_LABEL (TREE_VEC_ELT (vec2, idx)));
3905 --idx;
3906
3907 /* Pick up the maximum of the case label range. */
3908 if (CASE_HIGH (TREE_VEC_ELT (vec2, idx)))
3909 max = CASE_HIGH (TREE_VEC_ELT (vec2, idx));
3910 else
3911 max = CASE_LOW (TREE_VEC_ELT (vec2, idx));
3912 }
3913
3914 /* Nothing to do if the range includes the default label until we
3915 can register anti-ranges. */
3916 if (min == NULL_TREE)
3917 continue;
3918
3919 /* Find the edge to register the assert expr on. */
3920 e = find_edge (bb, label_to_block (CASE_LABEL (cl)));
3921
3922 /* Remove the SWITCH_EXPR operand from the FOUND_IN_SUBGRAPH bitmap.
3923 Otherwise, when we finish traversing each of the sub-graphs, we
3924 won't know whether the variables were found in the sub-graphs or
3925 if they had been found in a block upstream from BB. */
3926 RESET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
3927
3928 /* Traverse the strictly dominated sub-graph rooted at E->DEST
3929 to determine if any of the operands in the conditional
3930 predicate are used. */
3931 if (e->dest != bb)
3932 need_assert |= find_assert_locations (e->dest);
3933
3934 /* Register the necessary assertions for the operand in the
3935 SWITCH_EXPR. */
3936 cond = build2 (max ? GE_EXPR : EQ_EXPR, boolean_type_node,
3937 op, fold_convert (TREE_TYPE (op), min));
3938 need_assert |= register_edge_assert_for (op, e, bsi, cond);
3939 if (max)
3940 {
3941 cond = build2 (LE_EXPR, boolean_type_node,
3942 op, fold_convert (TREE_TYPE (op), max));
3943 need_assert |= register_edge_assert_for (op, e, bsi, cond);
3944 }
3945 }
3946
3947 /* Finally, indicate that we have found the operand in the
3948 SWITCH_EXPR. */
3949 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
3950
3951 return need_assert;
3952 }
3953
3954
3955 /* Traverse all the statements in block BB looking for statements that
3956 may generate useful assertions for the SSA names in their operand.
3957 If a statement produces a useful assertion A for name N_i, then the
3958 list of assertions already generated for N_i is scanned to
3959 determine if A is actually needed.
3960
3961 If N_i already had the assertion A at a location dominating the
3962 current location, then nothing needs to be done. Otherwise, the
3963 new location for A is recorded instead.
3964
3965 1- For every statement S in BB, all the variables used by S are
3966 added to bitmap FOUND_IN_SUBGRAPH.
3967
3968 2- If statement S uses an operand N in a way that exposes a known
3969 value range for N, then if N was not already generated by an
3970 ASSERT_EXPR, create a new assert location for N. For instance,
3971 if N is a pointer and the statement dereferences it, we can
3972 assume that N is not NULL.
3973
3974 3- COND_EXPRs are a special case of #2. We can derive range
3975 information from the predicate but need to insert different
3976 ASSERT_EXPRs for each of the sub-graphs rooted at the
3977 conditional block. If the last statement of BB is a conditional
3978 expression of the form 'X op Y', then
3979
3980 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
3981
3982 b) If the conditional is the only entry point to the sub-graph
3983 corresponding to the THEN_CLAUSE, recurse into it. On
3984 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
3985 an ASSERT_EXPR is added for the corresponding variable.
3986
3987 c) Repeat step (b) on the ELSE_CLAUSE.
3988
3989 d) Mark X and Y in FOUND_IN_SUBGRAPH.
3990
3991 For instance,
3992
3993 if (a == 9)
3994 b = a;
3995 else
3996 b = c + 1;
3997
3998 In this case, an assertion on the THEN clause is useful to
3999 determine that 'a' is always 9 on that edge. However, an assertion
4000 on the ELSE clause would be unnecessary.
4001
4002 4- If BB does not end in a conditional expression, then we recurse
4003 into BB's dominator children.
4004
4005 At the end of the recursive traversal, every SSA name will have a
4006 list of locations where ASSERT_EXPRs should be added. When a new
4007 location for name N is found, it is registered by calling
4008 register_new_assert_for. That function keeps track of all the
4009 registered assertions to prevent adding unnecessary assertions.
4010 For instance, if a pointer P_4 is dereferenced more than once in a
4011 dominator tree, only the location dominating all the dereference of
4012 P_4 will receive an ASSERT_EXPR.
4013
4014 If this function returns true, then it means that there are names
4015 for which we need to generate ASSERT_EXPRs. Those assertions are
4016 inserted by process_assert_insertions. */
4017
4018 static bool
4019 find_assert_locations (basic_block bb)
4020 {
4021 block_stmt_iterator si;
4022 tree last, phi;
4023 bool need_assert;
4024 basic_block son;
4025
4026 if (TEST_BIT (blocks_visited, bb->index))
4027 return false;
4028
4029 SET_BIT (blocks_visited, bb->index);
4030
4031 need_assert = false;
4032
4033 /* Traverse all PHI nodes in BB marking used operands. */
4034 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
4035 {
4036 use_operand_p arg_p;
4037 ssa_op_iter i;
4038
4039 FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
4040 {
4041 tree arg = USE_FROM_PTR (arg_p);
4042 if (TREE_CODE (arg) == SSA_NAME)
4043 {
4044 gcc_assert (is_gimple_reg (PHI_RESULT (phi)));
4045 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (arg));
4046 }
4047 }
4048 }
4049
4050 /* Traverse all the statements in BB marking used names and looking
4051 for statements that may infer assertions for their used operands. */
4052 last = NULL_TREE;
4053 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
4054 {
4055 tree stmt, op;
4056 ssa_op_iter i;
4057
4058 stmt = bsi_stmt (si);
4059
4060 /* See if we can derive an assertion for any of STMT's operands. */
4061 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
4062 {
4063 tree value;
4064 enum tree_code comp_code;
4065
4066 /* Mark OP in bitmap FOUND_IN_SUBGRAPH. If STMT is inside
4067 the sub-graph of a conditional block, when we return from
4068 this recursive walk, our parent will use the
4069 FOUND_IN_SUBGRAPH bitset to determine if one of the
4070 operands it was looking for was present in the sub-graph. */
4071 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
4072
4073 /* If OP is used in such a way that we can infer a value
4074 range for it, and we don't find a previous assertion for
4075 it, create a new assertion location node for OP. */
4076 if (infer_value_range (stmt, op, &comp_code, &value))
4077 {
4078 /* If we are able to infer a nonzero value range for OP,
4079 then walk backwards through the use-def chain to see if OP
4080 was set via a typecast.
4081
4082 If so, then we can also infer a nonzero value range
4083 for the operand of the NOP_EXPR. */
4084 if (comp_code == NE_EXPR && integer_zerop (value))
4085 {
4086 tree t = op;
4087 tree def_stmt = SSA_NAME_DEF_STMT (t);
4088
4089 while (TREE_CODE (def_stmt) == GIMPLE_MODIFY_STMT
4090 && TREE_CODE
4091 (GIMPLE_STMT_OPERAND (def_stmt, 1)) == NOP_EXPR
4092 && TREE_CODE
4093 (TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1),
4094 0)) == SSA_NAME
4095 && POINTER_TYPE_P
4096 (TREE_TYPE (TREE_OPERAND
4097 (GIMPLE_STMT_OPERAND (def_stmt,
4098 1), 0))))
4099 {
4100 t = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 0);
4101 def_stmt = SSA_NAME_DEF_STMT (t);
4102
4103 /* Note we want to register the assert for the
4104 operand of the NOP_EXPR after SI, not after the
4105 conversion. */
4106 if (! has_single_use (t))
4107 {
4108 register_new_assert_for (t, comp_code, value,
4109 bb, NULL, si);
4110 need_assert = true;
4111 }
4112 }
4113 }
4114
4115 /* If OP is used only once, namely in this STMT, don't
4116 bother creating an ASSERT_EXPR for it. Such an
4117 ASSERT_EXPR would do nothing but increase compile time. */
4118 if (!has_single_use (op))
4119 {
4120 register_new_assert_for (op, comp_code, value, bb, NULL, si);
4121 need_assert = true;
4122 }
4123 }
4124 }
4125
4126 /* Remember the last statement of the block. */
4127 last = stmt;
4128 }
4129
4130 /* If BB's last statement is a conditional expression
4131 involving integer operands, recurse into each of the sub-graphs
4132 rooted at BB to determine if we need to add ASSERT_EXPRs. */
4133 if (last
4134 && TREE_CODE (last) == COND_EXPR
4135 && !fp_predicate (COND_EXPR_COND (last))
4136 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
4137 need_assert |= find_conditional_asserts (bb, last);
4138
4139 if (last
4140 && TREE_CODE (last) == SWITCH_EXPR
4141 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
4142 need_assert |= find_switch_asserts (bb, last);
4143
4144 /* Recurse into the dominator children of BB. */
4145 for (son = first_dom_son (CDI_DOMINATORS, bb);
4146 son;
4147 son = next_dom_son (CDI_DOMINATORS, son))
4148 need_assert |= find_assert_locations (son);
4149
4150 return need_assert;
4151 }
4152
4153
4154 /* Create an ASSERT_EXPR for NAME and insert it in the location
4155 indicated by LOC. Return true if we made any edge insertions. */
4156
4157 static bool
4158 process_assert_insertions_for (tree name, assert_locus_t loc)
4159 {
4160 /* Build the comparison expression NAME_i COMP_CODE VAL. */
4161 tree stmt, cond, assert_expr;
4162 edge_iterator ei;
4163 edge e;
4164
4165 cond = build2 (loc->comp_code, boolean_type_node, name, loc->val);
4166 assert_expr = build_assert_expr_for (cond, name);
4167
4168 if (loc->e)
4169 {
4170 /* We have been asked to insert the assertion on an edge. This
4171 is used only by COND_EXPR and SWITCH_EXPR assertions. */
4172 #if defined ENABLE_CHECKING
4173 gcc_assert (TREE_CODE (bsi_stmt (loc->si)) == COND_EXPR
4174 || TREE_CODE (bsi_stmt (loc->si)) == SWITCH_EXPR);
4175 #endif
4176
4177 bsi_insert_on_edge (loc->e, assert_expr);
4178 return true;
4179 }
4180
4181 /* Otherwise, we can insert right after LOC->SI iff the
4182 statement must not be the last statement in the block. */
4183 stmt = bsi_stmt (loc->si);
4184 if (!stmt_ends_bb_p (stmt))
4185 {
4186 bsi_insert_after (&loc->si, assert_expr, BSI_SAME_STMT);
4187 return false;
4188 }
4189
4190 /* If STMT must be the last statement in BB, we can only insert new
4191 assertions on the non-abnormal edge out of BB. Note that since
4192 STMT is not control flow, there may only be one non-abnormal edge
4193 out of BB. */
4194 FOR_EACH_EDGE (e, ei, loc->bb->succs)
4195 if (!(e->flags & EDGE_ABNORMAL))
4196 {
4197 bsi_insert_on_edge (e, assert_expr);
4198 return true;
4199 }
4200
4201 gcc_unreachable ();
4202 }
4203
4204
4205 /* Process all the insertions registered for every name N_i registered
4206 in NEED_ASSERT_FOR. The list of assertions to be inserted are
4207 found in ASSERTS_FOR[i]. */
4208
4209 static void
4210 process_assert_insertions (void)
4211 {
4212 unsigned i;
4213 bitmap_iterator bi;
4214 bool update_edges_p = false;
4215 int num_asserts = 0;
4216
4217 if (dump_file && (dump_flags & TDF_DETAILS))
4218 dump_all_asserts (dump_file);
4219
4220 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
4221 {
4222 assert_locus_t loc = asserts_for[i];
4223 gcc_assert (loc);
4224
4225 while (loc)
4226 {
4227 assert_locus_t next = loc->next;
4228 update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
4229 free (loc);
4230 loc = next;
4231 num_asserts++;
4232 }
4233 }
4234
4235 if (update_edges_p)
4236 bsi_commit_edge_inserts ();
4237
4238 if (dump_file && (dump_flags & TDF_STATS))
4239 fprintf (dump_file, "\nNumber of ASSERT_EXPR expressions inserted: %d\n\n",
4240 num_asserts);
4241 }
4242
4243
4244 /* Traverse the flowgraph looking for conditional jumps to insert range
4245 expressions. These range expressions are meant to provide information
4246 to optimizations that need to reason in terms of value ranges. They
4247 will not be expanded into RTL. For instance, given:
4248
4249 x = ...
4250 y = ...
4251 if (x < y)
4252 y = x - 2;
4253 else
4254 x = y + 3;
4255
4256 this pass will transform the code into:
4257
4258 x = ...
4259 y = ...
4260 if (x < y)
4261 {
4262 x = ASSERT_EXPR <x, x < y>
4263 y = x - 2
4264 }
4265 else
4266 {
4267 y = ASSERT_EXPR <y, x <= y>
4268 x = y + 3
4269 }
4270
4271 The idea is that once copy and constant propagation have run, other
4272 optimizations will be able to determine what ranges of values can 'x'
4273 take in different paths of the code, simply by checking the reaching
4274 definition of 'x'. */
4275
4276 static void
4277 insert_range_assertions (void)
4278 {
4279 edge e;
4280 edge_iterator ei;
4281 bool update_ssa_p;
4282
4283 found_in_subgraph = sbitmap_alloc (num_ssa_names);
4284 sbitmap_zero (found_in_subgraph);
4285
4286 blocks_visited = sbitmap_alloc (last_basic_block);
4287 sbitmap_zero (blocks_visited);
4288
4289 need_assert_for = BITMAP_ALLOC (NULL);
4290 asserts_for = XCNEWVEC (assert_locus_t, num_ssa_names);
4291
4292 calculate_dominance_info (CDI_DOMINATORS);
4293
4294 update_ssa_p = false;
4295 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
4296 if (find_assert_locations (e->dest))
4297 update_ssa_p = true;
4298
4299 if (update_ssa_p)
4300 {
4301 process_assert_insertions ();
4302 update_ssa (TODO_update_ssa_no_phi);
4303 }
4304
4305 if (dump_file && (dump_flags & TDF_DETAILS))
4306 {
4307 fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
4308 dump_function_to_file (current_function_decl, dump_file, dump_flags);
4309 }
4310
4311 sbitmap_free (found_in_subgraph);
4312 free (asserts_for);
4313 BITMAP_FREE (need_assert_for);
4314 }
4315
4316 /* Checks one ARRAY_REF in REF, located at LOCUS. Ignores flexible arrays
4317 and "struct" hacks. If VRP can determine that the
4318 array subscript is a constant, check if it is outside valid
4319 range. If the array subscript is a RANGE, warn if it is
4320 non-overlapping with valid range.
4321 IGNORE_OFF_BY_ONE is true if the ARRAY_REF is inside a ADDR_EXPR. */
4322
4323 static void
4324 check_array_ref (tree ref, location_t* locus, bool ignore_off_by_one)
4325 {
4326 value_range_t* vr = NULL;
4327 tree low_sub, up_sub;
4328 tree low_bound, up_bound = array_ref_up_bound (ref);
4329
4330 low_sub = up_sub = TREE_OPERAND (ref, 1);
4331
4332 if (!up_bound || !locus || TREE_NO_WARNING (ref)
4333 || TREE_CODE (up_bound) != INTEGER_CST
4334 /* Can not check flexible arrays. */
4335 || (TYPE_SIZE (TREE_TYPE (ref)) == NULL_TREE
4336 && TYPE_DOMAIN (TREE_TYPE (ref)) != NULL_TREE
4337 && TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (ref))) == NULL_TREE)
4338 /* Accesses after the end of arrays of size 0 (gcc
4339 extension) and 1 are likely intentional ("struct
4340 hack"). */
4341 || compare_tree_int (up_bound, 1) <= 0)
4342 return;
4343
4344 low_bound = array_ref_low_bound (ref);
4345
4346 if (TREE_CODE (low_sub) == SSA_NAME)
4347 {
4348 vr = get_value_range (low_sub);
4349 if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
4350 {
4351 low_sub = vr->type == VR_RANGE ? vr->max : vr->min;
4352 up_sub = vr->type == VR_RANGE ? vr->min : vr->max;
4353 }
4354 }
4355
4356 if (vr && vr->type == VR_ANTI_RANGE)
4357 {
4358 if (TREE_CODE (up_sub) == INTEGER_CST
4359 && tree_int_cst_lt (up_bound, up_sub)
4360 && TREE_CODE (low_sub) == INTEGER_CST
4361 && tree_int_cst_lt (low_sub, low_bound))
4362 {
4363 warning (OPT_Warray_bounds,
4364 "%Harray subscript is outside array bounds", locus);
4365 TREE_NO_WARNING (ref) = 1;
4366 }
4367 }
4368 else if (TREE_CODE (up_sub) == INTEGER_CST
4369 && tree_int_cst_lt (up_bound, up_sub)
4370 && !tree_int_cst_equal (up_bound, up_sub)
4371 && (!ignore_off_by_one
4372 || !tree_int_cst_equal (int_const_binop (PLUS_EXPR,
4373 up_bound,
4374 integer_one_node,
4375 0),
4376 up_sub)))
4377 {
4378 warning (OPT_Warray_bounds, "%Harray subscript is above array bounds",
4379 locus);
4380 TREE_NO_WARNING (ref) = 1;
4381 }
4382 else if (TREE_CODE (low_sub) == INTEGER_CST
4383 && tree_int_cst_lt (low_sub, low_bound))
4384 {
4385 warning (OPT_Warray_bounds, "%Harray subscript is below array bounds",
4386 locus);
4387 TREE_NO_WARNING (ref) = 1;
4388 }
4389 }
4390
4391 /* Searches if the expr T, located at LOCATION computes
4392 address of an ARRAY_REF, and call check_array_ref on it. */
4393
4394 static void
4395 search_for_addr_array(tree t, location_t* location)
4396 {
4397 while (TREE_CODE (t) == SSA_NAME)
4398 {
4399 t = SSA_NAME_DEF_STMT (t);
4400 if (TREE_CODE (t) != GIMPLE_MODIFY_STMT)
4401 return;
4402 t = GIMPLE_STMT_OPERAND (t, 1);
4403 }
4404
4405
4406 /* We are only interested in addresses of ARRAY_REF's. */
4407 if (TREE_CODE (t) != ADDR_EXPR)
4408 return;
4409
4410 /* Check each ARRAY_REFs in the reference chain. */
4411 do
4412 {
4413 if (TREE_CODE (t) == ARRAY_REF)
4414 check_array_ref (t, location, true /*ignore_off_by_one*/);
4415
4416 t = TREE_OPERAND(t,0);
4417 }
4418 while (handled_component_p (t));
4419 }
4420
4421 /* walk_tree() callback that checks if *TP is
4422 an ARRAY_REF inside an ADDR_EXPR (in which an array
4423 subscript one outside the valid range is allowed). Call
4424 check_array_ref for each ARRAY_REF found. The location is
4425 passed in DATA. */
4426
4427 static tree
4428 check_array_bounds (tree *tp, int *walk_subtree, void *data)
4429 {
4430 tree t = *tp;
4431 tree stmt = (tree)data;
4432 location_t *location = EXPR_LOCUS (stmt);
4433
4434 *walk_subtree = TRUE;
4435
4436 if (TREE_CODE (t) == ARRAY_REF)
4437 check_array_ref (t, location, false /*ignore_off_by_one*/);
4438
4439 if (TREE_CODE (t) == INDIRECT_REF
4440 || (TREE_CODE (t) == RETURN_EXPR && TREE_OPERAND (t, 0)))
4441 search_for_addr_array (TREE_OPERAND (t, 0), location);
4442 else if (TREE_CODE (t) == CALL_EXPR)
4443 {
4444 tree arg;
4445 call_expr_arg_iterator iter;
4446
4447 FOR_EACH_CALL_EXPR_ARG (arg, iter, t)
4448 search_for_addr_array (arg, location);
4449 }
4450
4451 if (TREE_CODE (t) == ADDR_EXPR)
4452 *walk_subtree = FALSE;
4453
4454 return NULL_TREE;
4455 }
4456
4457 /* Walk over all statements of all reachable BBs and call check_array_bounds
4458 on them. */
4459
4460 static void
4461 check_all_array_refs (void)
4462 {
4463 basic_block bb;
4464 block_stmt_iterator si;
4465
4466 FOR_EACH_BB (bb)
4467 {
4468 /* Skip bb's that are clearly unreachable. */
4469 if (single_pred_p (bb))
4470 {
4471 basic_block pred_bb = EDGE_PRED (bb, 0)->src;
4472 tree ls = NULL_TREE;
4473
4474 if (!bsi_end_p (bsi_last (pred_bb)))
4475 ls = bsi_stmt (bsi_last (pred_bb));
4476
4477 if (ls && TREE_CODE (ls) == COND_EXPR
4478 && ((COND_EXPR_COND (ls) == boolean_false_node
4479 && (EDGE_PRED (bb, 0)->flags & EDGE_TRUE_VALUE))
4480 || (COND_EXPR_COND (ls) == boolean_true_node
4481 && (EDGE_PRED (bb, 0)->flags & EDGE_FALSE_VALUE))))
4482 continue;
4483 }
4484 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
4485 walk_tree (bsi_stmt_ptr (si), check_array_bounds,
4486 bsi_stmt (si), NULL);
4487 }
4488 }
4489
4490 /* Convert range assertion expressions into the implied copies and
4491 copy propagate away the copies. Doing the trivial copy propagation
4492 here avoids the need to run the full copy propagation pass after
4493 VRP.
4494
4495 FIXME, this will eventually lead to copy propagation removing the
4496 names that had useful range information attached to them. For
4497 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
4498 then N_i will have the range [3, +INF].
4499
4500 However, by converting the assertion into the implied copy
4501 operation N_i = N_j, we will then copy-propagate N_j into the uses
4502 of N_i and lose the range information. We may want to hold on to
4503 ASSERT_EXPRs a little while longer as the ranges could be used in
4504 things like jump threading.
4505
4506 The problem with keeping ASSERT_EXPRs around is that passes after
4507 VRP need to handle them appropriately.
4508
4509 Another approach would be to make the range information a first
4510 class property of the SSA_NAME so that it can be queried from
4511 any pass. This is made somewhat more complex by the need for
4512 multiple ranges to be associated with one SSA_NAME. */
4513
4514 static void
4515 remove_range_assertions (void)
4516 {
4517 basic_block bb;
4518 block_stmt_iterator si;
4519
4520 /* Note that the BSI iterator bump happens at the bottom of the
4521 loop and no bump is necessary if we're removing the statement
4522 referenced by the current BSI. */
4523 FOR_EACH_BB (bb)
4524 for (si = bsi_start (bb); !bsi_end_p (si);)
4525 {
4526 tree stmt = bsi_stmt (si);
4527 tree use_stmt;
4528
4529 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT
4530 && TREE_CODE (GIMPLE_STMT_OPERAND (stmt, 1)) == ASSERT_EXPR)
4531 {
4532 tree rhs = GIMPLE_STMT_OPERAND (stmt, 1), var;
4533 tree cond = fold (ASSERT_EXPR_COND (rhs));
4534 use_operand_p use_p;
4535 imm_use_iterator iter;
4536
4537 gcc_assert (cond != boolean_false_node);
4538
4539 /* Propagate the RHS into every use of the LHS. */
4540 var = ASSERT_EXPR_VAR (rhs);
4541 FOR_EACH_IMM_USE_STMT (use_stmt, iter,
4542 GIMPLE_STMT_OPERAND (stmt, 0))
4543 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
4544 {
4545 SET_USE (use_p, var);
4546 gcc_assert (TREE_CODE (var) == SSA_NAME);
4547 }
4548
4549 /* And finally, remove the copy, it is not needed. */
4550 bsi_remove (&si, true);
4551 release_defs (stmt);
4552 }
4553 else
4554 bsi_next (&si);
4555 }
4556
4557 sbitmap_free (blocks_visited);
4558 }
4559
4560
4561 /* Return true if STMT is interesting for VRP. */
4562
4563 static bool
4564 stmt_interesting_for_vrp (tree stmt)
4565 {
4566 if (TREE_CODE (stmt) == PHI_NODE
4567 && is_gimple_reg (PHI_RESULT (stmt))
4568 && (INTEGRAL_TYPE_P (TREE_TYPE (PHI_RESULT (stmt)))
4569 || POINTER_TYPE_P (TREE_TYPE (PHI_RESULT (stmt)))))
4570 return true;
4571 else if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT)
4572 {
4573 tree lhs = GIMPLE_STMT_OPERAND (stmt, 0);
4574 tree rhs = GIMPLE_STMT_OPERAND (stmt, 1);
4575
4576 /* In general, assignments with virtual operands are not useful
4577 for deriving ranges, with the obvious exception of calls to
4578 builtin functions. */
4579 if (TREE_CODE (lhs) == SSA_NAME
4580 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
4581 || POINTER_TYPE_P (TREE_TYPE (lhs)))
4582 && ((TREE_CODE (rhs) == CALL_EXPR
4583 && TREE_CODE (CALL_EXPR_FN (rhs)) == ADDR_EXPR
4584 && DECL_P (TREE_OPERAND (CALL_EXPR_FN (rhs), 0))
4585 && DECL_IS_BUILTIN (TREE_OPERAND (CALL_EXPR_FN (rhs), 0)))
4586 || ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS)))
4587 return true;
4588 }
4589 else if (TREE_CODE (stmt) == COND_EXPR || TREE_CODE (stmt) == SWITCH_EXPR)
4590 return true;
4591
4592 return false;
4593 }
4594
4595
4596 /* Initialize local data structures for VRP. */
4597
4598 static void
4599 vrp_initialize (void)
4600 {
4601 basic_block bb;
4602
4603 vr_value = XCNEWVEC (value_range_t *, num_ssa_names);
4604 vr_phi_edge_counts = XCNEWVEC (int, num_ssa_names);
4605
4606 FOR_EACH_BB (bb)
4607 {
4608 block_stmt_iterator si;
4609 tree phi;
4610
4611 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
4612 {
4613 if (!stmt_interesting_for_vrp (phi))
4614 {
4615 tree lhs = PHI_RESULT (phi);
4616 set_value_range_to_varying (get_value_range (lhs));
4617 DONT_SIMULATE_AGAIN (phi) = true;
4618 }
4619 else
4620 DONT_SIMULATE_AGAIN (phi) = false;
4621 }
4622
4623 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
4624 {
4625 tree stmt = bsi_stmt (si);
4626
4627 if (!stmt_interesting_for_vrp (stmt))
4628 {
4629 ssa_op_iter i;
4630 tree def;
4631 FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
4632 set_value_range_to_varying (get_value_range (def));
4633 DONT_SIMULATE_AGAIN (stmt) = true;
4634 }
4635 else
4636 {
4637 DONT_SIMULATE_AGAIN (stmt) = false;
4638 }
4639 }
4640 }
4641 }
4642
4643
4644 /* Visit assignment STMT. If it produces an interesting range, record
4645 the SSA name in *OUTPUT_P. */
4646
4647 static enum ssa_prop_result
4648 vrp_visit_assignment (tree stmt, tree *output_p)
4649 {
4650 tree lhs, rhs, def;
4651 ssa_op_iter iter;
4652
4653 lhs = GIMPLE_STMT_OPERAND (stmt, 0);
4654 rhs = GIMPLE_STMT_OPERAND (stmt, 1);
4655
4656 /* We only keep track of ranges in integral and pointer types. */
4657 if (TREE_CODE (lhs) == SSA_NAME
4658 && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
4659 /* It is valid to have NULL MIN/MAX values on a type. See
4660 build_range_type. */
4661 && TYPE_MIN_VALUE (TREE_TYPE (lhs))
4662 && TYPE_MAX_VALUE (TREE_TYPE (lhs)))
4663 || POINTER_TYPE_P (TREE_TYPE (lhs))))
4664 {
4665 struct loop *l;
4666 value_range_t new_vr = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
4667
4668 extract_range_from_expr (&new_vr, rhs);
4669
4670 /* If STMT is inside a loop, we may be able to know something
4671 else about the range of LHS by examining scalar evolution
4672 information. */
4673 if (current_loops && (l = loop_containing_stmt (stmt)))
4674 adjust_range_with_scev (&new_vr, l, stmt, lhs);
4675
4676 if (update_value_range (lhs, &new_vr))
4677 {
4678 *output_p = lhs;
4679
4680 if (dump_file && (dump_flags & TDF_DETAILS))
4681 {
4682 fprintf (dump_file, "Found new range for ");
4683 print_generic_expr (dump_file, lhs, 0);
4684 fprintf (dump_file, ": ");
4685 dump_value_range (dump_file, &new_vr);
4686 fprintf (dump_file, "\n\n");
4687 }
4688
4689 if (new_vr.type == VR_VARYING)
4690 return SSA_PROP_VARYING;
4691
4692 return SSA_PROP_INTERESTING;
4693 }
4694
4695 return SSA_PROP_NOT_INTERESTING;
4696 }
4697
4698 /* Every other statement produces no useful ranges. */
4699 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
4700 set_value_range_to_varying (get_value_range (def));
4701
4702 return SSA_PROP_VARYING;
4703 }
4704
4705 /* Helper that gets the value range of the SSA_NAME with version I
4706 or a symbolic range containing the SSA_NAME only if the value range
4707 is varying or undefined. */
4708
4709 static inline value_range_t
4710 get_vr_for_comparison (int i)
4711 {
4712 value_range_t vr = *(vr_value[i]);
4713
4714 /* If name N_i does not have a valid range, use N_i as its own
4715 range. This allows us to compare against names that may
4716 have N_i in their ranges. */
4717 if (vr.type == VR_VARYING || vr.type == VR_UNDEFINED)
4718 {
4719 vr.type = VR_RANGE;
4720 vr.min = ssa_name (i);
4721 vr.max = ssa_name (i);
4722 }
4723
4724 return vr;
4725 }
4726
4727 /* Compare all the value ranges for names equivalent to VAR with VAL
4728 using comparison code COMP. Return the same value returned by
4729 compare_range_with_value, including the setting of
4730 *STRICT_OVERFLOW_P. */
4731
4732 static tree
4733 compare_name_with_value (enum tree_code comp, tree var, tree val,
4734 bool *strict_overflow_p)
4735 {
4736 bitmap_iterator bi;
4737 unsigned i;
4738 bitmap e;
4739 tree retval, t;
4740 int used_strict_overflow;
4741 bool sop;
4742 value_range_t equiv_vr;
4743
4744 /* Get the set of equivalences for VAR. */
4745 e = get_value_range (var)->equiv;
4746
4747 /* Start at -1. Set it to 0 if we do a comparison without relying
4748 on overflow, or 1 if all comparisons rely on overflow. */
4749 used_strict_overflow = -1;
4750
4751 /* Compare vars' value range with val. */
4752 equiv_vr = get_vr_for_comparison (SSA_NAME_VERSION (var));
4753 sop = false;
4754 retval = compare_range_with_value (comp, &equiv_vr, val, &sop);
4755 if (retval)
4756 used_strict_overflow = sop ? 1 : 0;
4757
4758 /* If the equiv set is empty we have done all work we need to do. */
4759 if (e == NULL)
4760 {
4761 if (retval
4762 && used_strict_overflow > 0)
4763 *strict_overflow_p = true;
4764 return retval;
4765 }
4766
4767 EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
4768 {
4769 equiv_vr = get_vr_for_comparison (i);
4770 sop = false;
4771 t = compare_range_with_value (comp, &equiv_vr, val, &sop);
4772 if (t)
4773 {
4774 /* If we get different answers from different members
4775 of the equivalence set this check must be in a dead
4776 code region. Folding it to a trap representation
4777 would be correct here. For now just return don't-know. */
4778 if (retval != NULL
4779 && t != retval)
4780 {
4781 retval = NULL_TREE;
4782 break;
4783 }
4784 retval = t;
4785
4786 if (!sop)
4787 used_strict_overflow = 0;
4788 else if (used_strict_overflow < 0)
4789 used_strict_overflow = 1;
4790 }
4791 }
4792
4793 if (retval
4794 && used_strict_overflow > 0)
4795 *strict_overflow_p = true;
4796
4797 return retval;
4798 }
4799
4800
4801 /* Given a comparison code COMP and names N1 and N2, compare all the
4802 ranges equivalent to N1 against all the ranges equivalent to N2
4803 to determine the value of N1 COMP N2. Return the same value
4804 returned by compare_ranges. Set *STRICT_OVERFLOW_P to indicate
4805 whether we relied on an overflow infinity in the comparison. */
4806
4807
4808 static tree
4809 compare_names (enum tree_code comp, tree n1, tree n2,
4810 bool *strict_overflow_p)
4811 {
4812 tree t, retval;
4813 bitmap e1, e2;
4814 bitmap_iterator bi1, bi2;
4815 unsigned i1, i2;
4816 int used_strict_overflow;
4817 static bitmap_obstack *s_obstack = NULL;
4818 static bitmap s_e1 = NULL, s_e2 = NULL;
4819
4820 /* Compare the ranges of every name equivalent to N1 against the
4821 ranges of every name equivalent to N2. */
4822 e1 = get_value_range (n1)->equiv;
4823 e2 = get_value_range (n2)->equiv;
4824
4825 /* Use the fake bitmaps if e1 or e2 are not available. */
4826 if (s_obstack == NULL)
4827 {
4828 s_obstack = XNEW (bitmap_obstack);
4829 bitmap_obstack_initialize (s_obstack);
4830 s_e1 = BITMAP_ALLOC (s_obstack);
4831 s_e2 = BITMAP_ALLOC (s_obstack);
4832 }
4833 if (e1 == NULL)
4834 e1 = s_e1;
4835 if (e2 == NULL)
4836 e2 = s_e2;
4837
4838 /* Add N1 and N2 to their own set of equivalences to avoid
4839 duplicating the body of the loop just to check N1 and N2
4840 ranges. */
4841 bitmap_set_bit (e1, SSA_NAME_VERSION (n1));
4842 bitmap_set_bit (e2, SSA_NAME_VERSION (n2));
4843
4844 /* If the equivalence sets have a common intersection, then the two
4845 names can be compared without checking their ranges. */
4846 if (bitmap_intersect_p (e1, e2))
4847 {
4848 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
4849 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
4850
4851 return (comp == EQ_EXPR || comp == GE_EXPR || comp == LE_EXPR)
4852 ? boolean_true_node
4853 : boolean_false_node;
4854 }
4855
4856 /* Start at -1. Set it to 0 if we do a comparison without relying
4857 on overflow, or 1 if all comparisons rely on overflow. */
4858 used_strict_overflow = -1;
4859
4860 /* Otherwise, compare all the equivalent ranges. First, add N1 and
4861 N2 to their own set of equivalences to avoid duplicating the body
4862 of the loop just to check N1 and N2 ranges. */
4863 EXECUTE_IF_SET_IN_BITMAP (e1, 0, i1, bi1)
4864 {
4865 value_range_t vr1 = get_vr_for_comparison (i1);
4866
4867 t = retval = NULL_TREE;
4868 EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2)
4869 {
4870 bool sop = false;
4871
4872 value_range_t vr2 = get_vr_for_comparison (i2);
4873
4874 t = compare_ranges (comp, &vr1, &vr2, &sop);
4875 if (t)
4876 {
4877 /* If we get different answers from different members
4878 of the equivalence set this check must be in a dead
4879 code region. Folding it to a trap representation
4880 would be correct here. For now just return don't-know. */
4881 if (retval != NULL
4882 && t != retval)
4883 {
4884 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
4885 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
4886 return NULL_TREE;
4887 }
4888 retval = t;
4889
4890 if (!sop)
4891 used_strict_overflow = 0;
4892 else if (used_strict_overflow < 0)
4893 used_strict_overflow = 1;
4894 }
4895 }
4896
4897 if (retval)
4898 {
4899 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
4900 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
4901 if (used_strict_overflow > 0)
4902 *strict_overflow_p = true;
4903 return retval;
4904 }
4905 }
4906
4907 /* None of the equivalent ranges are useful in computing this
4908 comparison. */
4909 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
4910 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
4911 return NULL_TREE;
4912 }
4913
4914
4915 /* Given a conditional predicate COND, try to determine if COND yields
4916 true or false based on the value ranges of its operands. Return
4917 BOOLEAN_TRUE_NODE if the conditional always evaluates to true,
4918 BOOLEAN_FALSE_NODE if the conditional always evaluates to false, and,
4919 NULL if the conditional cannot be evaluated at compile time.
4920
4921 If USE_EQUIV_P is true, the ranges of all the names equivalent with
4922 the operands in COND are used when trying to compute its value.
4923 This is only used during final substitution. During propagation,
4924 we only check the range of each variable and not its equivalents.
4925
4926 Set *STRICT_OVERFLOW_P to indicate whether we relied on an overflow
4927 infinity to produce the result. */
4928
4929 static tree
4930 vrp_evaluate_conditional_warnv (tree cond, bool use_equiv_p,
4931 bool *strict_overflow_p)
4932 {
4933 gcc_assert (TREE_CODE (cond) == SSA_NAME
4934 || TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison);
4935
4936 if (TREE_CODE (cond) == SSA_NAME)
4937 {
4938 value_range_t *vr;
4939 tree retval;
4940
4941 if (use_equiv_p)
4942 retval = compare_name_with_value (NE_EXPR, cond, boolean_false_node,
4943 strict_overflow_p);
4944 else
4945 {
4946 value_range_t *vr = get_value_range (cond);
4947 retval = compare_range_with_value (NE_EXPR, vr, boolean_false_node,
4948 strict_overflow_p);
4949 }
4950
4951 /* If COND has a known boolean range, return it. */
4952 if (retval)
4953 return retval;
4954
4955 /* Otherwise, if COND has a symbolic range of exactly one value,
4956 return it. */
4957 vr = get_value_range (cond);
4958 if (vr->type == VR_RANGE && vr->min == vr->max)
4959 return vr->min;
4960 }
4961 else
4962 {
4963 tree op0 = TREE_OPERAND (cond, 0);
4964 tree op1 = TREE_OPERAND (cond, 1);
4965
4966 /* We only deal with integral and pointer types. */
4967 if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
4968 && !POINTER_TYPE_P (TREE_TYPE (op0)))
4969 return NULL_TREE;
4970
4971 if (use_equiv_p)
4972 {
4973 if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME)
4974 return compare_names (TREE_CODE (cond), op0, op1,
4975 strict_overflow_p);
4976 else if (TREE_CODE (op0) == SSA_NAME)
4977 return compare_name_with_value (TREE_CODE (cond), op0, op1,
4978 strict_overflow_p);
4979 else if (TREE_CODE (op1) == SSA_NAME)
4980 return (compare_name_with_value
4981 (swap_tree_comparison (TREE_CODE (cond)), op1, op0,
4982 strict_overflow_p));
4983 }
4984 else
4985 {
4986 value_range_t *vr0, *vr1;
4987
4988 vr0 = (TREE_CODE (op0) == SSA_NAME) ? get_value_range (op0) : NULL;
4989 vr1 = (TREE_CODE (op1) == SSA_NAME) ? get_value_range (op1) : NULL;
4990
4991 if (vr0 && vr1)
4992 return compare_ranges (TREE_CODE (cond), vr0, vr1,
4993 strict_overflow_p);
4994 else if (vr0 && vr1 == NULL)
4995 return compare_range_with_value (TREE_CODE (cond), vr0, op1,
4996 strict_overflow_p);
4997 else if (vr0 == NULL && vr1)
4998 return (compare_range_with_value
4999 (swap_tree_comparison (TREE_CODE (cond)), vr1, op0,
5000 strict_overflow_p));
5001 }
5002 }
5003
5004 /* Anything else cannot be computed statically. */
5005 return NULL_TREE;
5006 }
5007
5008 /* Given COND within STMT, try to simplify it based on value range
5009 information. Return NULL if the conditional can not be evaluated.
5010 The ranges of all the names equivalent with the operands in COND
5011 will be used when trying to compute the value. If the result is
5012 based on undefined signed overflow, issue a warning if
5013 appropriate. */
5014
5015 tree
5016 vrp_evaluate_conditional (tree cond, tree stmt)
5017 {
5018 bool sop;
5019 tree ret;
5020
5021 sop = false;
5022 ret = vrp_evaluate_conditional_warnv (cond, true, &sop);
5023
5024 if (ret && sop)
5025 {
5026 enum warn_strict_overflow_code wc;
5027 const char* warnmsg;
5028
5029 if (is_gimple_min_invariant (ret))
5030 {
5031 wc = WARN_STRICT_OVERFLOW_CONDITIONAL;
5032 warnmsg = G_("assuming signed overflow does not occur when "
5033 "simplifying conditional to constant");
5034 }
5035 else
5036 {
5037 wc = WARN_STRICT_OVERFLOW_COMPARISON;
5038 warnmsg = G_("assuming signed overflow does not occur when "
5039 "simplifying conditional");
5040 }
5041
5042 if (issue_strict_overflow_warning (wc))
5043 {
5044 location_t locus;
5045
5046 if (!EXPR_HAS_LOCATION (stmt))
5047 locus = input_location;
5048 else
5049 locus = EXPR_LOCATION (stmt);
5050 warning (OPT_Wstrict_overflow, "%H%s", &locus, warnmsg);
5051 }
5052 }
5053
5054 return ret;
5055 }
5056
5057
5058 /* Visit conditional statement STMT. If we can determine which edge
5059 will be taken out of STMT's basic block, record it in
5060 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
5061 SSA_PROP_VARYING. */
5062
5063 static enum ssa_prop_result
5064 vrp_visit_cond_stmt (tree stmt, edge *taken_edge_p)
5065 {
5066 tree cond, val;
5067 bool sop;
5068
5069 *taken_edge_p = NULL;
5070
5071 /* FIXME. Handle SWITCH_EXPRs. */
5072 if (TREE_CODE (stmt) == SWITCH_EXPR)
5073 return SSA_PROP_VARYING;
5074
5075 cond = COND_EXPR_COND (stmt);
5076
5077 if (dump_file && (dump_flags & TDF_DETAILS))
5078 {
5079 tree use;
5080 ssa_op_iter i;
5081
5082 fprintf (dump_file, "\nVisiting conditional with predicate: ");
5083 print_generic_expr (dump_file, cond, 0);
5084 fprintf (dump_file, "\nWith known ranges\n");
5085
5086 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
5087 {
5088 fprintf (dump_file, "\t");
5089 print_generic_expr (dump_file, use, 0);
5090 fprintf (dump_file, ": ");
5091 dump_value_range (dump_file, vr_value[SSA_NAME_VERSION (use)]);
5092 }
5093
5094 fprintf (dump_file, "\n");
5095 }
5096
5097 /* Compute the value of the predicate COND by checking the known
5098 ranges of each of its operands.
5099
5100 Note that we cannot evaluate all the equivalent ranges here
5101 because those ranges may not yet be final and with the current
5102 propagation strategy, we cannot determine when the value ranges
5103 of the names in the equivalence set have changed.
5104
5105 For instance, given the following code fragment
5106
5107 i_5 = PHI <8, i_13>
5108 ...
5109 i_14 = ASSERT_EXPR <i_5, i_5 != 0>
5110 if (i_14 == 1)
5111 ...
5112
5113 Assume that on the first visit to i_14, i_5 has the temporary
5114 range [8, 8] because the second argument to the PHI function is
5115 not yet executable. We derive the range ~[0, 0] for i_14 and the
5116 equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
5117 the first time, since i_14 is equivalent to the range [8, 8], we
5118 determine that the predicate is always false.
5119
5120 On the next round of propagation, i_13 is determined to be
5121 VARYING, which causes i_5 to drop down to VARYING. So, another
5122 visit to i_14 is scheduled. In this second visit, we compute the
5123 exact same range and equivalence set for i_14, namely ~[0, 0] and
5124 { i_5 }. But we did not have the previous range for i_5
5125 registered, so vrp_visit_assignment thinks that the range for
5126 i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
5127 is not visited again, which stops propagation from visiting
5128 statements in the THEN clause of that if().
5129
5130 To properly fix this we would need to keep the previous range
5131 value for the names in the equivalence set. This way we would've
5132 discovered that from one visit to the other i_5 changed from
5133 range [8, 8] to VR_VARYING.
5134
5135 However, fixing this apparent limitation may not be worth the
5136 additional checking. Testing on several code bases (GCC, DLV,
5137 MICO, TRAMP3D and SPEC2000) showed that doing this results in
5138 4 more predicates folded in SPEC. */
5139 sop = false;
5140 val = vrp_evaluate_conditional_warnv (cond, false, &sop);
5141 if (val)
5142 {
5143 if (!sop)
5144 *taken_edge_p = find_taken_edge (bb_for_stmt (stmt), val);
5145 else
5146 {
5147 if (dump_file && (dump_flags & TDF_DETAILS))
5148 fprintf (dump_file,
5149 "\nIgnoring predicate evaluation because "
5150 "it assumes that signed overflow is undefined");
5151 val = NULL_TREE;
5152 }
5153 }
5154
5155 if (dump_file && (dump_flags & TDF_DETAILS))
5156 {
5157 fprintf (dump_file, "\nPredicate evaluates to: ");
5158 if (val == NULL_TREE)
5159 fprintf (dump_file, "DON'T KNOW\n");
5160 else
5161 print_generic_stmt (dump_file, val, 0);
5162 }
5163
5164 return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
5165 }
5166
5167
5168 /* Evaluate statement STMT. If the statement produces a useful range,
5169 return SSA_PROP_INTERESTING and record the SSA name with the
5170 interesting range into *OUTPUT_P.
5171
5172 If STMT is a conditional branch and we can determine its truth
5173 value, the taken edge is recorded in *TAKEN_EDGE_P.
5174
5175 If STMT produces a varying value, return SSA_PROP_VARYING. */
5176
5177 static enum ssa_prop_result
5178 vrp_visit_stmt (tree stmt, edge *taken_edge_p, tree *output_p)
5179 {
5180 tree def;
5181 ssa_op_iter iter;
5182 stmt_ann_t ann;
5183
5184 if (dump_file && (dump_flags & TDF_DETAILS))
5185 {
5186 fprintf (dump_file, "\nVisiting statement:\n");
5187 print_generic_stmt (dump_file, stmt, dump_flags);
5188 fprintf (dump_file, "\n");
5189 }
5190
5191 ann = stmt_ann (stmt);
5192 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT)
5193 {
5194 tree rhs = GIMPLE_STMT_OPERAND (stmt, 1);
5195
5196 /* In general, assignments with virtual operands are not useful
5197 for deriving ranges, with the obvious exception of calls to
5198 builtin functions. */
5199 if ((TREE_CODE (rhs) == CALL_EXPR
5200 && TREE_CODE (CALL_EXPR_FN (rhs)) == ADDR_EXPR
5201 && DECL_P (TREE_OPERAND (CALL_EXPR_FN (rhs), 0))
5202 && DECL_IS_BUILTIN (TREE_OPERAND (CALL_EXPR_FN (rhs), 0)))
5203 || ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
5204 return vrp_visit_assignment (stmt, output_p);
5205 }
5206 else if (TREE_CODE (stmt) == COND_EXPR || TREE_CODE (stmt) == SWITCH_EXPR)
5207 return vrp_visit_cond_stmt (stmt, taken_edge_p);
5208
5209 /* All other statements produce nothing of interest for VRP, so mark
5210 their outputs varying and prevent further simulation. */
5211 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
5212 set_value_range_to_varying (get_value_range (def));
5213
5214 return SSA_PROP_VARYING;
5215 }
5216
5217
5218 /* Meet operation for value ranges. Given two value ranges VR0 and
5219 VR1, store in VR0 a range that contains both VR0 and VR1. This
5220 may not be the smallest possible such range. */
5221
5222 static void
5223 vrp_meet (value_range_t *vr0, value_range_t *vr1)
5224 {
5225 if (vr0->type == VR_UNDEFINED)
5226 {
5227 copy_value_range (vr0, vr1);
5228 return;
5229 }
5230
5231 if (vr1->type == VR_UNDEFINED)
5232 {
5233 /* Nothing to do. VR0 already has the resulting range. */
5234 return;
5235 }
5236
5237 if (vr0->type == VR_VARYING)
5238 {
5239 /* Nothing to do. VR0 already has the resulting range. */
5240 return;
5241 }
5242
5243 if (vr1->type == VR_VARYING)
5244 {
5245 set_value_range_to_varying (vr0);
5246 return;
5247 }
5248
5249 if (vr0->type == VR_RANGE && vr1->type == VR_RANGE)
5250 {
5251 int cmp;
5252 tree min, max;
5253
5254 /* Compute the convex hull of the ranges. The lower limit of
5255 the new range is the minimum of the two ranges. If they
5256 cannot be compared, then give up. */
5257 cmp = compare_values (vr0->min, vr1->min);
5258 if (cmp == 0 || cmp == 1)
5259 min = vr1->min;
5260 else if (cmp == -1)
5261 min = vr0->min;
5262 else
5263 goto give_up;
5264
5265 /* Similarly, the upper limit of the new range is the maximum
5266 of the two ranges. If they cannot be compared, then
5267 give up. */
5268 cmp = compare_values (vr0->max, vr1->max);
5269 if (cmp == 0 || cmp == -1)
5270 max = vr1->max;
5271 else if (cmp == 1)
5272 max = vr0->max;
5273 else
5274 goto give_up;
5275
5276 /* Check for useless ranges. */
5277 if (INTEGRAL_TYPE_P (TREE_TYPE (min))
5278 && ((vrp_val_is_min (min) || is_overflow_infinity (min))
5279 && (vrp_val_is_max (max) || is_overflow_infinity (max))))
5280 goto give_up;
5281
5282 /* The resulting set of equivalences is the intersection of
5283 the two sets. */
5284 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
5285 bitmap_and_into (vr0->equiv, vr1->equiv);
5286 else if (vr0->equiv && !vr1->equiv)
5287 bitmap_clear (vr0->equiv);
5288
5289 set_value_range (vr0, vr0->type, min, max, vr0->equiv);
5290 }
5291 else if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
5292 {
5293 /* Two anti-ranges meet only if their complements intersect.
5294 Only handle the case of identical ranges. */
5295 if (compare_values (vr0->min, vr1->min) == 0
5296 && compare_values (vr0->max, vr1->max) == 0
5297 && compare_values (vr0->min, vr0->max) == 0)
5298 {
5299 /* The resulting set of equivalences is the intersection of
5300 the two sets. */
5301 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
5302 bitmap_and_into (vr0->equiv, vr1->equiv);
5303 else if (vr0->equiv && !vr1->equiv)
5304 bitmap_clear (vr0->equiv);
5305 }
5306 else
5307 goto give_up;
5308 }
5309 else if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
5310 {
5311 /* For a numeric range [VAL1, VAL2] and an anti-range ~[VAL3, VAL4],
5312 only handle the case where the ranges have an empty intersection.
5313 The result of the meet operation is the anti-range. */
5314 if (!symbolic_range_p (vr0)
5315 && !symbolic_range_p (vr1)
5316 && !value_ranges_intersect_p (vr0, vr1))
5317 {
5318 /* Copy most of VR1 into VR0. Don't copy VR1's equivalence
5319 set. We need to compute the intersection of the two
5320 equivalence sets. */
5321 if (vr1->type == VR_ANTI_RANGE)
5322 set_value_range (vr0, vr1->type, vr1->min, vr1->max, vr0->equiv);
5323
5324 /* The resulting set of equivalences is the intersection of
5325 the two sets. */
5326 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
5327 bitmap_and_into (vr0->equiv, vr1->equiv);
5328 else if (vr0->equiv && !vr1->equiv)
5329 bitmap_clear (vr0->equiv);
5330 }
5331 else
5332 goto give_up;
5333 }
5334 else
5335 gcc_unreachable ();
5336
5337 return;
5338
5339 give_up:
5340 /* Failed to find an efficient meet. Before giving up and setting
5341 the result to VARYING, see if we can at least derive a useful
5342 anti-range. FIXME, all this nonsense about distinguishing
5343 anti-ranges from ranges is necessary because of the odd
5344 semantics of range_includes_zero_p and friends. */
5345 if (!symbolic_range_p (vr0)
5346 && ((vr0->type == VR_RANGE && !range_includes_zero_p (vr0))
5347 || (vr0->type == VR_ANTI_RANGE && range_includes_zero_p (vr0)))
5348 && !symbolic_range_p (vr1)
5349 && ((vr1->type == VR_RANGE && !range_includes_zero_p (vr1))
5350 || (vr1->type == VR_ANTI_RANGE && range_includes_zero_p (vr1))))
5351 {
5352 set_value_range_to_nonnull (vr0, TREE_TYPE (vr0->min));
5353
5354 /* Since this meet operation did not result from the meeting of
5355 two equivalent names, VR0 cannot have any equivalences. */
5356 if (vr0->equiv)
5357 bitmap_clear (vr0->equiv);
5358 }
5359 else
5360 set_value_range_to_varying (vr0);
5361 }
5362
5363
5364 /* Visit all arguments for PHI node PHI that flow through executable
5365 edges. If a valid value range can be derived from all the incoming
5366 value ranges, set a new range for the LHS of PHI. */
5367
5368 static enum ssa_prop_result
5369 vrp_visit_phi_node (tree phi)
5370 {
5371 int i;
5372 tree lhs = PHI_RESULT (phi);
5373 value_range_t *lhs_vr = get_value_range (lhs);
5374 value_range_t vr_result = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
5375 int edges, old_edges;
5376
5377 copy_value_range (&vr_result, lhs_vr);
5378
5379 if (dump_file && (dump_flags & TDF_DETAILS))
5380 {
5381 fprintf (dump_file, "\nVisiting PHI node: ");
5382 print_generic_expr (dump_file, phi, dump_flags);
5383 }
5384
5385 edges = 0;
5386 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
5387 {
5388 edge e = PHI_ARG_EDGE (phi, i);
5389
5390 if (dump_file && (dump_flags & TDF_DETAILS))
5391 {
5392 fprintf (dump_file,
5393 "\n Argument #%d (%d -> %d %sexecutable)\n",
5394 i, e->src->index, e->dest->index,
5395 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
5396 }
5397
5398 if (e->flags & EDGE_EXECUTABLE)
5399 {
5400 tree arg = PHI_ARG_DEF (phi, i);
5401 value_range_t vr_arg;
5402
5403 ++edges;
5404
5405 if (TREE_CODE (arg) == SSA_NAME)
5406 {
5407 vr_arg = *(get_value_range (arg));
5408 }
5409 else
5410 {
5411 if (is_overflow_infinity (arg))
5412 {
5413 arg = copy_node (arg);
5414 TREE_OVERFLOW (arg) = 0;
5415 }
5416
5417 vr_arg.type = VR_RANGE;
5418 vr_arg.min = arg;
5419 vr_arg.max = arg;
5420 vr_arg.equiv = NULL;
5421 }
5422
5423 if (dump_file && (dump_flags & TDF_DETAILS))
5424 {
5425 fprintf (dump_file, "\t");
5426 print_generic_expr (dump_file, arg, dump_flags);
5427 fprintf (dump_file, "\n\tValue: ");
5428 dump_value_range (dump_file, &vr_arg);
5429 fprintf (dump_file, "\n");
5430 }
5431
5432 vrp_meet (&vr_result, &vr_arg);
5433
5434 if (vr_result.type == VR_VARYING)
5435 break;
5436 }
5437 }
5438
5439 if (vr_result.type == VR_VARYING)
5440 goto varying;
5441
5442 old_edges = vr_phi_edge_counts[SSA_NAME_VERSION (lhs)];
5443 vr_phi_edge_counts[SSA_NAME_VERSION (lhs)] = edges;
5444
5445 /* To prevent infinite iterations in the algorithm, derive ranges
5446 when the new value is slightly bigger or smaller than the
5447 previous one. We don't do this if we have seen a new executable
5448 edge; this helps us avoid an overflow infinity for conditionals
5449 which are not in a loop. */
5450 if (lhs_vr->type == VR_RANGE && vr_result.type == VR_RANGE
5451 && edges <= old_edges)
5452 {
5453 if (!POINTER_TYPE_P (TREE_TYPE (lhs)))
5454 {
5455 int cmp_min = compare_values (lhs_vr->min, vr_result.min);
5456 int cmp_max = compare_values (lhs_vr->max, vr_result.max);
5457
5458 /* If the new minimum is smaller or larger than the previous
5459 one, go all the way to -INF. In the first case, to avoid
5460 iterating millions of times to reach -INF, and in the
5461 other case to avoid infinite bouncing between different
5462 minimums. */
5463 if (cmp_min > 0 || cmp_min < 0)
5464 {
5465 /* If we will end up with a (-INF, +INF) range, set it
5466 to VARYING. */
5467 if (vrp_val_is_max (vr_result.max))
5468 goto varying;
5469
5470 if (!needs_overflow_infinity (TREE_TYPE (vr_result.min))
5471 || !vrp_var_may_overflow (lhs, phi))
5472 vr_result.min = TYPE_MIN_VALUE (TREE_TYPE (vr_result.min));
5473 else if (supports_overflow_infinity (TREE_TYPE (vr_result.min)))
5474 vr_result.min =
5475 negative_overflow_infinity (TREE_TYPE (vr_result.min));
5476 else
5477 goto varying;
5478 }
5479
5480 /* Similarly, if the new maximum is smaller or larger than
5481 the previous one, go all the way to +INF. */
5482 if (cmp_max < 0 || cmp_max > 0)
5483 {
5484 /* If we will end up with a (-INF, +INF) range, set it
5485 to VARYING. */
5486 if (vrp_val_is_min (vr_result.min))
5487 goto varying;
5488
5489 if (!needs_overflow_infinity (TREE_TYPE (vr_result.max))
5490 || !vrp_var_may_overflow (lhs, phi))
5491 vr_result.max = TYPE_MAX_VALUE (TREE_TYPE (vr_result.max));
5492 else if (supports_overflow_infinity (TREE_TYPE (vr_result.max)))
5493 vr_result.max =
5494 positive_overflow_infinity (TREE_TYPE (vr_result.max));
5495 else
5496 goto varying;
5497 }
5498 }
5499 }
5500
5501 /* If the new range is different than the previous value, keep
5502 iterating. */
5503 if (update_value_range (lhs, &vr_result))
5504 return SSA_PROP_INTERESTING;
5505
5506 /* Nothing changed, don't add outgoing edges. */
5507 return SSA_PROP_NOT_INTERESTING;
5508
5509 /* No match found. Set the LHS to VARYING. */
5510 varying:
5511 set_value_range_to_varying (lhs_vr);
5512 return SSA_PROP_VARYING;
5513 }
5514
5515 /* Simplify a division or modulo operator to a right shift or
5516 bitwise and if the first operand is unsigned or is greater
5517 than zero and the second operand is an exact power of two. */
5518
5519 static void
5520 simplify_div_or_mod_using_ranges (tree stmt, tree rhs, enum tree_code rhs_code)
5521 {
5522 tree val = NULL;
5523 tree op = TREE_OPERAND (rhs, 0);
5524 value_range_t *vr = get_value_range (TREE_OPERAND (rhs, 0));
5525
5526 if (TYPE_UNSIGNED (TREE_TYPE (op)))
5527 {
5528 val = integer_one_node;
5529 }
5530 else
5531 {
5532 bool sop = false;
5533
5534 val = compare_range_with_value (GT_EXPR, vr, integer_zero_node, &sop);
5535
5536 if (val
5537 && sop
5538 && integer_onep (val)
5539 && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
5540 {
5541 location_t locus;
5542
5543 if (!EXPR_HAS_LOCATION (stmt))
5544 locus = input_location;
5545 else
5546 locus = EXPR_LOCATION (stmt);
5547 warning (OPT_Wstrict_overflow,
5548 ("%Hassuming signed overflow does not occur when "
5549 "simplifying / or %% to >> or &"),
5550 &locus);
5551 }
5552 }
5553
5554 if (val && integer_onep (val))
5555 {
5556 tree t;
5557 tree op0 = TREE_OPERAND (rhs, 0);
5558 tree op1 = TREE_OPERAND (rhs, 1);
5559
5560 if (rhs_code == TRUNC_DIV_EXPR)
5561 {
5562 t = build_int_cst (NULL_TREE, tree_log2 (op1));
5563 t = build2 (RSHIFT_EXPR, TREE_TYPE (op0), op0, t);
5564 }
5565 else
5566 {
5567 t = build_int_cst (TREE_TYPE (op1), 1);
5568 t = int_const_binop (MINUS_EXPR, op1, t, 0);
5569 t = fold_convert (TREE_TYPE (op0), t);
5570 t = build2 (BIT_AND_EXPR, TREE_TYPE (op0), op0, t);
5571 }
5572
5573 GIMPLE_STMT_OPERAND (stmt, 1) = t;
5574 update_stmt (stmt);
5575 }
5576 }
5577
5578 /* If the operand to an ABS_EXPR is >= 0, then eliminate the
5579 ABS_EXPR. If the operand is <= 0, then simplify the
5580 ABS_EXPR into a NEGATE_EXPR. */
5581
5582 static void
5583 simplify_abs_using_ranges (tree stmt, tree rhs)
5584 {
5585 tree val = NULL;
5586 tree op = TREE_OPERAND (rhs, 0);
5587 tree type = TREE_TYPE (op);
5588 value_range_t *vr = get_value_range (TREE_OPERAND (rhs, 0));
5589
5590 if (TYPE_UNSIGNED (type))
5591 {
5592 val = integer_zero_node;
5593 }
5594 else if (vr)
5595 {
5596 bool sop = false;
5597
5598 val = compare_range_with_value (LE_EXPR, vr, integer_zero_node, &sop);
5599 if (!val)
5600 {
5601 sop = false;
5602 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node,
5603 &sop);
5604
5605 if (val)
5606 {
5607 if (integer_zerop (val))
5608 val = integer_one_node;
5609 else if (integer_onep (val))
5610 val = integer_zero_node;
5611 }
5612 }
5613
5614 if (val
5615 && (integer_onep (val) || integer_zerop (val)))
5616 {
5617 tree t;
5618
5619 if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
5620 {
5621 location_t locus;
5622
5623 if (!EXPR_HAS_LOCATION (stmt))
5624 locus = input_location;
5625 else
5626 locus = EXPR_LOCATION (stmt);
5627 warning (OPT_Wstrict_overflow,
5628 ("%Hassuming signed overflow does not occur when "
5629 "simplifying abs (X) to X or -X"),
5630 &locus);
5631 }
5632
5633 if (integer_onep (val))
5634 t = build1 (NEGATE_EXPR, TREE_TYPE (op), op);
5635 else
5636 t = op;
5637
5638 GIMPLE_STMT_OPERAND (stmt, 1) = t;
5639 update_stmt (stmt);
5640 }
5641 }
5642 }
5643
5644 /* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
5645 a known value range VR.
5646
5647 If there is one and only one value which will satisfy the
5648 conditional, then return that value. Else return NULL. */
5649
5650 static tree
5651 test_for_singularity (enum tree_code cond_code, tree op0,
5652 tree op1, value_range_t *vr)
5653 {
5654 tree min = NULL;
5655 tree max = NULL;
5656
5657 /* Extract minimum/maximum values which satisfy the
5658 the conditional as it was written. */
5659 if (cond_code == LE_EXPR || cond_code == LT_EXPR)
5660 {
5661 /* This should not be negative infinity; there is no overflow
5662 here. */
5663 min = TYPE_MIN_VALUE (TREE_TYPE (op0));
5664
5665 max = op1;
5666 if (cond_code == LT_EXPR && !is_overflow_infinity (max))
5667 {
5668 tree one = build_int_cst (TREE_TYPE (op0), 1);
5669 max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one);
5670 if (EXPR_P (max))
5671 TREE_NO_WARNING (max) = 1;
5672 }
5673 }
5674 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
5675 {
5676 /* This should not be positive infinity; there is no overflow
5677 here. */
5678 max = TYPE_MAX_VALUE (TREE_TYPE (op0));
5679
5680 min = op1;
5681 if (cond_code == GT_EXPR && !is_overflow_infinity (min))
5682 {
5683 tree one = build_int_cst (TREE_TYPE (op0), 1);
5684 min = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), min, one);
5685 if (EXPR_P (min))
5686 TREE_NO_WARNING (min) = 1;
5687 }
5688 }
5689
5690 /* Now refine the minimum and maximum values using any
5691 value range information we have for op0. */
5692 if (min && max)
5693 {
5694 if (compare_values (vr->min, min) == -1)
5695 min = min;
5696 else
5697 min = vr->min;
5698 if (compare_values (vr->max, max) == 1)
5699 max = max;
5700 else
5701 max = vr->max;
5702
5703 /* If the new min/max values have converged to a single value,
5704 then there is only one value which can satisfy the condition,
5705 return that value. */
5706 if (operand_equal_p (min, max, 0) && is_gimple_min_invariant (min))
5707 return min;
5708 }
5709 return NULL;
5710 }
5711
5712 /* Simplify a conditional using a relational operator to an equality
5713 test if the range information indicates only one value can satisfy
5714 the original conditional. */
5715
5716 static void
5717 simplify_cond_using_ranges (tree stmt)
5718 {
5719 tree cond = COND_EXPR_COND (stmt);
5720 tree op0 = TREE_OPERAND (cond, 0);
5721 tree op1 = TREE_OPERAND (cond, 1);
5722 enum tree_code cond_code = TREE_CODE (cond);
5723
5724 if (cond_code != NE_EXPR
5725 && cond_code != EQ_EXPR
5726 && TREE_CODE (op0) == SSA_NAME
5727 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
5728 && is_gimple_min_invariant (op1))
5729 {
5730 value_range_t *vr = get_value_range (op0);
5731
5732 /* If we have range information for OP0, then we might be
5733 able to simplify this conditional. */
5734 if (vr->type == VR_RANGE)
5735 {
5736 tree new = test_for_singularity (cond_code, op0, op1, vr);
5737
5738 if (new)
5739 {
5740 if (dump_file)
5741 {
5742 fprintf (dump_file, "Simplified relational ");
5743 print_generic_expr (dump_file, cond, 0);
5744 fprintf (dump_file, " into ");
5745 }
5746
5747 COND_EXPR_COND (stmt)
5748 = build2 (EQ_EXPR, boolean_type_node, op0, new);
5749 update_stmt (stmt);
5750
5751 if (dump_file)
5752 {
5753 print_generic_expr (dump_file, COND_EXPR_COND (stmt), 0);
5754 fprintf (dump_file, "\n");
5755 }
5756 return;
5757
5758 }
5759
5760 /* Try again after inverting the condition. We only deal
5761 with integral types here, so no need to worry about
5762 issues with inverting FP comparisons. */
5763 cond_code = invert_tree_comparison (cond_code, false);
5764 new = test_for_singularity (cond_code, op0, op1, vr);
5765
5766 if (new)
5767 {
5768 if (dump_file)
5769 {
5770 fprintf (dump_file, "Simplified relational ");
5771 print_generic_expr (dump_file, cond, 0);
5772 fprintf (dump_file, " into ");
5773 }
5774
5775 COND_EXPR_COND (stmt)
5776 = build2 (NE_EXPR, boolean_type_node, op0, new);
5777 update_stmt (stmt);
5778
5779 if (dump_file)
5780 {
5781 print_generic_expr (dump_file, COND_EXPR_COND (stmt), 0);
5782 fprintf (dump_file, "\n");
5783 }
5784 return;
5785
5786 }
5787 }
5788 }
5789 }
5790
5791 /* Simplify STMT using ranges if possible. */
5792
5793 void
5794 simplify_stmt_using_ranges (tree stmt)
5795 {
5796 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT)
5797 {
5798 tree rhs = GIMPLE_STMT_OPERAND (stmt, 1);
5799 enum tree_code rhs_code = TREE_CODE (rhs);
5800
5801 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
5802 and BIT_AND_EXPR respectively if the first operand is greater
5803 than zero and the second operand is an exact power of two. */
5804 if ((rhs_code == TRUNC_DIV_EXPR || rhs_code == TRUNC_MOD_EXPR)
5805 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs, 0)))
5806 && integer_pow2p (TREE_OPERAND (rhs, 1)))
5807 simplify_div_or_mod_using_ranges (stmt, rhs, rhs_code);
5808
5809 /* Transform ABS (X) into X or -X as appropriate. */
5810 if (rhs_code == ABS_EXPR
5811 && TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME
5812 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs, 0))))
5813 simplify_abs_using_ranges (stmt, rhs);
5814 }
5815 else if (TREE_CODE (stmt) == COND_EXPR
5816 && COMPARISON_CLASS_P (COND_EXPR_COND (stmt)))
5817 {
5818 simplify_cond_using_ranges (stmt);
5819 }
5820 }
5821
5822 /* Stack of dest,src equivalency pairs that need to be restored after
5823 each attempt to thread a block's incoming edge to an outgoing edge.
5824
5825 A NULL entry is used to mark the end of pairs which need to be
5826 restored. */
5827 static VEC(tree,heap) *stack;
5828
5829 /* A trivial wrapper so that we can present the generic jump threading
5830 code with a simple API for simplifying statements. STMT is the
5831 statement we want to simplify, WITHIN_STMT provides the location
5832 for any overflow warnings. */
5833
5834 static tree
5835 simplify_stmt_for_jump_threading (tree stmt, tree within_stmt)
5836 {
5837 /* We only use VRP information to simplify conditionals. This is
5838 overly conservative, but it's unclear if doing more would be
5839 worth the compile time cost. */
5840 if (TREE_CODE (stmt) != COND_EXPR)
5841 return NULL;
5842
5843 return vrp_evaluate_conditional (COND_EXPR_COND (stmt), within_stmt);
5844 }
5845
5846 /* Blocks which have more than one predecessor and more than
5847 one successor present jump threading opportunities. ie,
5848 when the block is reached from a specific predecessor, we
5849 may be able to determine which of the outgoing edges will
5850 be traversed. When this optimization applies, we are able
5851 to avoid conditionals at runtime and we may expose secondary
5852 optimization opportunities.
5853
5854 This routine is effectively a driver for the generic jump
5855 threading code. It basically just presents the generic code
5856 with edges that may be suitable for jump threading.
5857
5858 Unlike DOM, we do not iterate VRP if jump threading was successful.
5859 While iterating may expose new opportunities for VRP, it is expected
5860 those opportunities would be very limited and the compile time cost
5861 to expose those opportunities would be significant.
5862
5863 As jump threading opportunities are discovered, they are registered
5864 for later realization. */
5865
5866 static void
5867 identify_jump_threads (void)
5868 {
5869 basic_block bb;
5870 tree dummy;
5871
5872 /* Ugh. When substituting values earlier in this pass we can
5873 wipe the dominance information. So rebuild the dominator
5874 information as we need it within the jump threading code. */
5875 calculate_dominance_info (CDI_DOMINATORS);
5876
5877 /* We do not allow VRP information to be used for jump threading
5878 across a back edge in the CFG. Otherwise it becomes too
5879 difficult to avoid eliminating loop exit tests. Of course
5880 EDGE_DFS_BACK is not accurate at this time so we have to
5881 recompute it. */
5882 mark_dfs_back_edges ();
5883
5884 /* Allocate our unwinder stack to unwind any temporary equivalences
5885 that might be recorded. */
5886 stack = VEC_alloc (tree, heap, 20);
5887
5888 /* To avoid lots of silly node creation, we create a single
5889 conditional and just modify it in-place when attempting to
5890 thread jumps. */
5891 dummy = build2 (EQ_EXPR, boolean_type_node, NULL, NULL);
5892 dummy = build3 (COND_EXPR, void_type_node, dummy, NULL, NULL);
5893
5894 /* Walk through all the blocks finding those which present a
5895 potential jump threading opportunity. We could set this up
5896 as a dominator walker and record data during the walk, but
5897 I doubt it's worth the effort for the classes of jump
5898 threading opportunities we are trying to identify at this
5899 point in compilation. */
5900 FOR_EACH_BB (bb)
5901 {
5902 tree last, cond;
5903
5904 /* If the generic jump threading code does not find this block
5905 interesting, then there is nothing to do. */
5906 if (! potentially_threadable_block (bb))
5907 continue;
5908
5909 /* We only care about blocks ending in a COND_EXPR. While there
5910 may be some value in handling SWITCH_EXPR here, I doubt it's
5911 terribly important. */
5912 last = bsi_stmt (bsi_last (bb));
5913 if (TREE_CODE (last) != COND_EXPR)
5914 continue;
5915
5916 /* We're basically looking for any kind of conditional with
5917 integral type arguments. */
5918 cond = COND_EXPR_COND (last);
5919 if ((TREE_CODE (cond) == SSA_NAME
5920 && INTEGRAL_TYPE_P (TREE_TYPE (cond)))
5921 || (COMPARISON_CLASS_P (cond)
5922 && TREE_CODE (TREE_OPERAND (cond, 0)) == SSA_NAME
5923 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (cond, 0)))
5924 && (TREE_CODE (TREE_OPERAND (cond, 1)) == SSA_NAME
5925 || is_gimple_min_invariant (TREE_OPERAND (cond, 1)))
5926 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (cond, 1)))))
5927 {
5928 edge_iterator ei;
5929 edge e;
5930
5931 /* We've got a block with multiple predecessors and multiple
5932 successors which also ends in a suitable conditional. For
5933 each predecessor, see if we can thread it to a specific
5934 successor. */
5935 FOR_EACH_EDGE (e, ei, bb->preds)
5936 {
5937 /* Do not thread across back edges or abnormal edges
5938 in the CFG. */
5939 if (e->flags & (EDGE_DFS_BACK | EDGE_COMPLEX))
5940 continue;
5941
5942 thread_across_edge (dummy, e, true,
5943 &stack,
5944 simplify_stmt_for_jump_threading);
5945 }
5946 }
5947 }
5948
5949 /* We do not actually update the CFG or SSA graphs at this point as
5950 ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
5951 handle ASSERT_EXPRs gracefully. */
5952 }
5953
5954 /* We identified all the jump threading opportunities earlier, but could
5955 not transform the CFG at that time. This routine transforms the
5956 CFG and arranges for the dominator tree to be rebuilt if necessary.
5957
5958 Note the SSA graph update will occur during the normal TODO
5959 processing by the pass manager. */
5960 static void
5961 finalize_jump_threads (void)
5962 {
5963 thread_through_all_blocks (false);
5964 VEC_free (tree, heap, stack);
5965 }
5966
5967
5968 /* Traverse all the blocks folding conditionals with known ranges. */
5969
5970 static void
5971 vrp_finalize (void)
5972 {
5973 size_t i;
5974 prop_value_t *single_val_range;
5975 bool do_value_subst_p;
5976
5977 if (dump_file)
5978 {
5979 fprintf (dump_file, "\nValue ranges after VRP:\n\n");
5980 dump_all_value_ranges (dump_file);
5981 fprintf (dump_file, "\n");
5982 }
5983
5984 /* We may have ended with ranges that have exactly one value. Those
5985 values can be substituted as any other copy/const propagated
5986 value using substitute_and_fold. */
5987 single_val_range = XCNEWVEC (prop_value_t, num_ssa_names);
5988
5989 do_value_subst_p = false;
5990 for (i = 0; i < num_ssa_names; i++)
5991 if (vr_value[i]
5992 && vr_value[i]->type == VR_RANGE
5993 && vr_value[i]->min == vr_value[i]->max)
5994 {
5995 single_val_range[i].value = vr_value[i]->min;
5996 do_value_subst_p = true;
5997 }
5998
5999 if (!do_value_subst_p)
6000 {
6001 /* We found no single-valued ranges, don't waste time trying to
6002 do single value substitution in substitute_and_fold. */
6003 free (single_val_range);
6004 single_val_range = NULL;
6005 }
6006
6007 substitute_and_fold (single_val_range, true);
6008
6009 if (warn_array_bounds)
6010 check_all_array_refs ();
6011
6012 /* We must identify jump threading opportunities before we release
6013 the datastructures built by VRP. */
6014 identify_jump_threads ();
6015
6016 /* Free allocated memory. */
6017 for (i = 0; i < num_ssa_names; i++)
6018 if (vr_value[i])
6019 {
6020 BITMAP_FREE (vr_value[i]->equiv);
6021 free (vr_value[i]);
6022 }
6023
6024 free (single_val_range);
6025 free (vr_value);
6026 free (vr_phi_edge_counts);
6027
6028 /* So that we can distinguish between VRP data being available
6029 and not available. */
6030 vr_value = NULL;
6031 vr_phi_edge_counts = NULL;
6032 }
6033
6034
6035 /* Main entry point to VRP (Value Range Propagation). This pass is
6036 loosely based on J. R. C. Patterson, ``Accurate Static Branch
6037 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
6038 Programming Language Design and Implementation, pp. 67-78, 1995.
6039 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
6040
6041 This is essentially an SSA-CCP pass modified to deal with ranges
6042 instead of constants.
6043
6044 While propagating ranges, we may find that two or more SSA name
6045 have equivalent, though distinct ranges. For instance,
6046
6047 1 x_9 = p_3->a;
6048 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
6049 3 if (p_4 == q_2)
6050 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
6051 5 endif
6052 6 if (q_2)
6053
6054 In the code above, pointer p_5 has range [q_2, q_2], but from the
6055 code we can also determine that p_5 cannot be NULL and, if q_2 had
6056 a non-varying range, p_5's range should also be compatible with it.
6057
6058 These equivalences are created by two expressions: ASSERT_EXPR and
6059 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
6060 result of another assertion, then we can use the fact that p_5 and
6061 p_4 are equivalent when evaluating p_5's range.
6062
6063 Together with value ranges, we also propagate these equivalences
6064 between names so that we can take advantage of information from
6065 multiple ranges when doing final replacement. Note that this
6066 equivalency relation is transitive but not symmetric.
6067
6068 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
6069 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
6070 in contexts where that assertion does not hold (e.g., in line 6).
6071
6072 TODO, the main difference between this pass and Patterson's is that
6073 we do not propagate edge probabilities. We only compute whether
6074 edges can be taken or not. That is, instead of having a spectrum
6075 of jump probabilities between 0 and 1, we only deal with 0, 1 and
6076 DON'T KNOW. In the future, it may be worthwhile to propagate
6077 probabilities to aid branch prediction. */
6078
6079 static unsigned int
6080 execute_vrp (void)
6081 {
6082 loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
6083 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
6084 scev_initialize ();
6085
6086 insert_range_assertions ();
6087
6088 vrp_initialize ();
6089 ssa_propagate (vrp_visit_stmt, vrp_visit_phi_node);
6090 vrp_finalize ();
6091
6092 /* ASSERT_EXPRs must be removed before finalizing jump threads
6093 as finalizing jump threads calls the CFG cleanup code which
6094 does not properly handle ASSERT_EXPRs. */
6095 remove_range_assertions ();
6096
6097 /* If we exposed any new variables, go ahead and put them into
6098 SSA form now, before we handle jump threading. This simplifies
6099 interactions between rewriting of _DECL nodes into SSA form
6100 and rewriting SSA_NAME nodes into SSA form after block
6101 duplication and CFG manipulation. */
6102 update_ssa (TODO_update_ssa);
6103
6104 finalize_jump_threads ();
6105 scev_finalize ();
6106 loop_optimizer_finalize ();
6107
6108 return 0;
6109 }
6110
6111 static bool
6112 gate_vrp (void)
6113 {
6114 return flag_tree_vrp != 0;
6115 }
6116
6117 struct tree_opt_pass pass_vrp =
6118 {
6119 "vrp", /* name */
6120 gate_vrp, /* gate */
6121 execute_vrp, /* execute */
6122 NULL, /* sub */
6123 NULL, /* next */
6124 0, /* static_pass_number */
6125 TV_TREE_VRP, /* tv_id */
6126 PROP_ssa | PROP_alias, /* properties_required */
6127 0, /* properties_provided */
6128 0, /* properties_destroyed */
6129 0, /* todo_flags_start */
6130 TODO_cleanup_cfg
6131 | TODO_ggc_collect
6132 | TODO_verify_ssa
6133 | TODO_dump_func
6134 | TODO_update_ssa, /* todo_flags_finish */
6135 0 /* letter */
6136 };