]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-vrp.c
re PR tree-optimization/21258 (Teach VRP to pick up a constant from case label.)
[thirdparty/gcc.git] / gcc / tree-vrp.c
1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005, 2006, 2007 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to
19 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "ggc.h"
27 #include "flags.h"
28 #include "tree.h"
29 #include "basic-block.h"
30 #include "tree-flow.h"
31 #include "tree-pass.h"
32 #include "tree-dump.h"
33 #include "timevar.h"
34 #include "diagnostic.h"
35 #include "toplev.h"
36 #include "intl.h"
37 #include "cfgloop.h"
38 #include "tree-scalar-evolution.h"
39 #include "tree-ssa-propagate.h"
40 #include "tree-chrec.h"
41
42 /* Set of SSA names found during the dominator traversal of a
43 sub-graph in find_assert_locations. */
44 static sbitmap found_in_subgraph;
45
46 /* Local functions. */
47 static int compare_values (tree val1, tree val2);
48 static int compare_values_warnv (tree val1, tree val2, bool *);
49 static void vrp_meet (value_range_t *, value_range_t *);
50 static tree vrp_evaluate_conditional_warnv (tree, bool, bool *);
51
52 /* Location information for ASSERT_EXPRs. Each instance of this
53 structure describes an ASSERT_EXPR for an SSA name. Since a single
54 SSA name may have more than one assertion associated with it, these
55 locations are kept in a linked list attached to the corresponding
56 SSA name. */
57 struct assert_locus_d
58 {
59 /* Basic block where the assertion would be inserted. */
60 basic_block bb;
61
62 /* Some assertions need to be inserted on an edge (e.g., assertions
63 generated by COND_EXPRs). In those cases, BB will be NULL. */
64 edge e;
65
66 /* Pointer to the statement that generated this assertion. */
67 block_stmt_iterator si;
68
69 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
70 enum tree_code comp_code;
71
72 /* Value being compared against. */
73 tree val;
74
75 /* Next node in the linked list. */
76 struct assert_locus_d *next;
77 };
78
79 typedef struct assert_locus_d *assert_locus_t;
80
81 /* If bit I is present, it means that SSA name N_i has a list of
82 assertions that should be inserted in the IL. */
83 static bitmap need_assert_for;
84
85 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
86 holds a list of ASSERT_LOCUS_T nodes that describe where
87 ASSERT_EXPRs for SSA name N_I should be inserted. */
88 static assert_locus_t *asserts_for;
89
90 /* Set of blocks visited in find_assert_locations. Used to avoid
91 visiting the same block more than once. */
92 static sbitmap blocks_visited;
93
94 /* Value range array. After propagation, VR_VALUE[I] holds the range
95 of values that SSA name N_I may take. */
96 static value_range_t **vr_value;
97
98
99 /* Return whether TYPE should use an overflow infinity distinct from
100 TYPE_{MIN,MAX}_VALUE. We use an overflow infinity value to
101 represent a signed overflow during VRP computations. An infinity
102 is distinct from a half-range, which will go from some number to
103 TYPE_{MIN,MAX}_VALUE. */
104
105 static inline bool
106 needs_overflow_infinity (tree type)
107 {
108 return INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_WRAPS (type);
109 }
110
111 /* Return whether TYPE can support our overflow infinity
112 representation: we use the TREE_OVERFLOW flag, which only exists
113 for constants. If TYPE doesn't support this, we don't optimize
114 cases which would require signed overflow--we drop them to
115 VARYING. */
116
117 static inline bool
118 supports_overflow_infinity (tree type)
119 {
120 #ifdef ENABLE_CHECKING
121 gcc_assert (needs_overflow_infinity (type));
122 #endif
123 return (TYPE_MIN_VALUE (type) != NULL_TREE
124 && CONSTANT_CLASS_P (TYPE_MIN_VALUE (type))
125 && TYPE_MAX_VALUE (type) != NULL_TREE
126 && CONSTANT_CLASS_P (TYPE_MAX_VALUE (type)));
127 }
128
129 /* VAL is the maximum or minimum value of a type. Return a
130 corresponding overflow infinity. */
131
132 static inline tree
133 make_overflow_infinity (tree val)
134 {
135 #ifdef ENABLE_CHECKING
136 gcc_assert (val != NULL_TREE && CONSTANT_CLASS_P (val));
137 #endif
138 val = copy_node (val);
139 TREE_OVERFLOW (val) = 1;
140 return val;
141 }
142
143 /* Return a negative overflow infinity for TYPE. */
144
145 static inline tree
146 negative_overflow_infinity (tree type)
147 {
148 #ifdef ENABLE_CHECKING
149 gcc_assert (supports_overflow_infinity (type));
150 #endif
151 return make_overflow_infinity (TYPE_MIN_VALUE (type));
152 }
153
154 /* Return a positive overflow infinity for TYPE. */
155
156 static inline tree
157 positive_overflow_infinity (tree type)
158 {
159 #ifdef ENABLE_CHECKING
160 gcc_assert (supports_overflow_infinity (type));
161 #endif
162 return make_overflow_infinity (TYPE_MAX_VALUE (type));
163 }
164
165 /* Return whether VAL is a negative overflow infinity. */
166
167 static inline bool
168 is_negative_overflow_infinity (tree val)
169 {
170 return (needs_overflow_infinity (TREE_TYPE (val))
171 && CONSTANT_CLASS_P (val)
172 && TREE_OVERFLOW (val)
173 && operand_equal_p (val, TYPE_MIN_VALUE (TREE_TYPE (val)), 0));
174 }
175
176 /* Return whether VAL is a positive overflow infinity. */
177
178 static inline bool
179 is_positive_overflow_infinity (tree val)
180 {
181 return (needs_overflow_infinity (TREE_TYPE (val))
182 && CONSTANT_CLASS_P (val)
183 && TREE_OVERFLOW (val)
184 && operand_equal_p (val, TYPE_MAX_VALUE (TREE_TYPE (val)), 0));
185 }
186
187 /* Return whether VAL is a positive or negative overflow infinity. */
188
189 static inline bool
190 is_overflow_infinity (tree val)
191 {
192 return (needs_overflow_infinity (TREE_TYPE (val))
193 && CONSTANT_CLASS_P (val)
194 && TREE_OVERFLOW (val)
195 && (operand_equal_p (val, TYPE_MAX_VALUE (TREE_TYPE (val)), 0)
196 || operand_equal_p (val, TYPE_MIN_VALUE (TREE_TYPE (val)), 0)));
197 }
198
199
200 /* Return true if ARG is marked with the nonnull attribute in the
201 current function signature. */
202
203 static bool
204 nonnull_arg_p (tree arg)
205 {
206 tree t, attrs, fntype;
207 unsigned HOST_WIDE_INT arg_num;
208
209 gcc_assert (TREE_CODE (arg) == PARM_DECL && POINTER_TYPE_P (TREE_TYPE (arg)));
210
211 /* The static chain decl is always non null. */
212 if (arg == cfun->static_chain_decl)
213 return true;
214
215 fntype = TREE_TYPE (current_function_decl);
216 attrs = lookup_attribute ("nonnull", TYPE_ATTRIBUTES (fntype));
217
218 /* If "nonnull" wasn't specified, we know nothing about the argument. */
219 if (attrs == NULL_TREE)
220 return false;
221
222 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
223 if (TREE_VALUE (attrs) == NULL_TREE)
224 return true;
225
226 /* Get the position number for ARG in the function signature. */
227 for (arg_num = 1, t = DECL_ARGUMENTS (current_function_decl);
228 t;
229 t = TREE_CHAIN (t), arg_num++)
230 {
231 if (t == arg)
232 break;
233 }
234
235 gcc_assert (t == arg);
236
237 /* Now see if ARG_NUM is mentioned in the nonnull list. */
238 for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
239 {
240 if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
241 return true;
242 }
243
244 return false;
245 }
246
247
248 /* Set value range VR to {T, MIN, MAX, EQUIV}. */
249
250 static void
251 set_value_range (value_range_t *vr, enum value_range_type t, tree min,
252 tree max, bitmap equiv)
253 {
254 #if defined ENABLE_CHECKING
255 /* Check the validity of the range. */
256 if (t == VR_RANGE || t == VR_ANTI_RANGE)
257 {
258 int cmp;
259
260 gcc_assert (min && max);
261
262 if (INTEGRAL_TYPE_P (TREE_TYPE (min)) && t == VR_ANTI_RANGE)
263 gcc_assert ((min != TYPE_MIN_VALUE (TREE_TYPE (min))
264 && !is_negative_overflow_infinity (min))
265 || (max != TYPE_MAX_VALUE (TREE_TYPE (max))
266 && !is_positive_overflow_infinity (max)));
267
268 cmp = compare_values (min, max);
269 gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
270 }
271
272 if (t == VR_UNDEFINED || t == VR_VARYING)
273 gcc_assert (min == NULL_TREE && max == NULL_TREE);
274
275 if (t == VR_UNDEFINED || t == VR_VARYING)
276 gcc_assert (equiv == NULL || bitmap_empty_p (equiv));
277 #endif
278
279 vr->type = t;
280 vr->min = min;
281 vr->max = max;
282
283 /* Since updating the equivalence set involves deep copying the
284 bitmaps, only do it if absolutely necessary. */
285 if (vr->equiv == NULL)
286 vr->equiv = BITMAP_ALLOC (NULL);
287
288 if (equiv != vr->equiv)
289 {
290 if (equiv && !bitmap_empty_p (equiv))
291 bitmap_copy (vr->equiv, equiv);
292 else
293 bitmap_clear (vr->equiv);
294 }
295 }
296
297
298 /* Copy value range FROM into value range TO. */
299
300 static inline void
301 copy_value_range (value_range_t *to, value_range_t *from)
302 {
303 set_value_range (to, from->type, from->min, from->max, from->equiv);
304 }
305
306
307 /* Set value range VR to VR_VARYING. */
308
309 static inline void
310 set_value_range_to_varying (value_range_t *vr)
311 {
312 vr->type = VR_VARYING;
313 vr->min = vr->max = NULL_TREE;
314 if (vr->equiv)
315 bitmap_clear (vr->equiv);
316 }
317
318 /* Set value range VR to a non-negative range of type TYPE.
319 OVERFLOW_INFINITY indicates whether to use a overflow infinity
320 rather than TYPE_MAX_VALUE; this should be true if we determine
321 that the range is nonnegative based on the assumption that signed
322 overflow does not occur. */
323
324 static inline void
325 set_value_range_to_nonnegative (value_range_t *vr, tree type,
326 bool overflow_infinity)
327 {
328 tree zero;
329
330 if (overflow_infinity && !supports_overflow_infinity (type))
331 {
332 set_value_range_to_varying (vr);
333 return;
334 }
335
336 zero = build_int_cst (type, 0);
337 set_value_range (vr, VR_RANGE, zero,
338 (overflow_infinity
339 ? positive_overflow_infinity (type)
340 : TYPE_MAX_VALUE (type)),
341 vr->equiv);
342 }
343
344 /* Set value range VR to a non-NULL range of type TYPE. */
345
346 static inline void
347 set_value_range_to_nonnull (value_range_t *vr, tree type)
348 {
349 tree zero = build_int_cst (type, 0);
350 set_value_range (vr, VR_ANTI_RANGE, zero, zero, vr->equiv);
351 }
352
353
354 /* Set value range VR to a NULL range of type TYPE. */
355
356 static inline void
357 set_value_range_to_null (value_range_t *vr, tree type)
358 {
359 tree zero = build_int_cst (type, 0);
360 set_value_range (vr, VR_RANGE, zero, zero, vr->equiv);
361 }
362
363
364 /* Set value range VR to a range of a truthvalue of type TYPE. */
365
366 static inline void
367 set_value_range_to_truthvalue (value_range_t *vr, tree type)
368 {
369 if (TYPE_PRECISION (type) == 1)
370 set_value_range_to_varying (vr);
371 else
372 set_value_range (vr, VR_RANGE,
373 build_int_cst (type, 0), build_int_cst (type, 1),
374 vr->equiv);
375 }
376
377
378 /* Set value range VR to VR_UNDEFINED. */
379
380 static inline void
381 set_value_range_to_undefined (value_range_t *vr)
382 {
383 vr->type = VR_UNDEFINED;
384 vr->min = vr->max = NULL_TREE;
385 if (vr->equiv)
386 bitmap_clear (vr->equiv);
387 }
388
389
390 /* Return value range information for VAR.
391
392 If we have no values ranges recorded (ie, VRP is not running), then
393 return NULL. Otherwise create an empty range if none existed for VAR. */
394
395 static value_range_t *
396 get_value_range (tree var)
397 {
398 value_range_t *vr;
399 tree sym;
400 unsigned ver = SSA_NAME_VERSION (var);
401
402 /* If we have no recorded ranges, then return NULL. */
403 if (! vr_value)
404 return NULL;
405
406 vr = vr_value[ver];
407 if (vr)
408 return vr;
409
410 /* Create a default value range. */
411 vr_value[ver] = vr = XCNEW (value_range_t);
412
413 /* Allocate an equivalence set. */
414 vr->equiv = BITMAP_ALLOC (NULL);
415
416 /* If VAR is a default definition, the variable can take any value
417 in VAR's type. */
418 sym = SSA_NAME_VAR (var);
419 if (SSA_NAME_IS_DEFAULT_DEF (var))
420 {
421 /* Try to use the "nonnull" attribute to create ~[0, 0]
422 anti-ranges for pointers. Note that this is only valid with
423 default definitions of PARM_DECLs. */
424 if (TREE_CODE (sym) == PARM_DECL
425 && POINTER_TYPE_P (TREE_TYPE (sym))
426 && nonnull_arg_p (sym))
427 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
428 else
429 set_value_range_to_varying (vr);
430 }
431
432 return vr;
433 }
434
435 /* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
436
437 static inline bool
438 vrp_operand_equal_p (tree val1, tree val2)
439 {
440 if (val1 == val2)
441 return true;
442 if (!val1 || !val2 || !operand_equal_p (val1, val2, 0))
443 return false;
444 if (is_overflow_infinity (val1))
445 return is_overflow_infinity (val2);
446 return true;
447 }
448
449 /* Return true, if the bitmaps B1 and B2 are equal. */
450
451 static inline bool
452 vrp_bitmap_equal_p (bitmap b1, bitmap b2)
453 {
454 return (b1 == b2
455 || (b1 && b2
456 && bitmap_equal_p (b1, b2)));
457 }
458
459 /* Update the value range and equivalence set for variable VAR to
460 NEW_VR. Return true if NEW_VR is different from VAR's previous
461 value.
462
463 NOTE: This function assumes that NEW_VR is a temporary value range
464 object created for the sole purpose of updating VAR's range. The
465 storage used by the equivalence set from NEW_VR will be freed by
466 this function. Do not call update_value_range when NEW_VR
467 is the range object associated with another SSA name. */
468
469 static inline bool
470 update_value_range (tree var, value_range_t *new_vr)
471 {
472 value_range_t *old_vr;
473 bool is_new;
474
475 /* Update the value range, if necessary. */
476 old_vr = get_value_range (var);
477 is_new = old_vr->type != new_vr->type
478 || !vrp_operand_equal_p (old_vr->min, new_vr->min)
479 || !vrp_operand_equal_p (old_vr->max, new_vr->max)
480 || !vrp_bitmap_equal_p (old_vr->equiv, new_vr->equiv);
481
482 if (is_new)
483 set_value_range (old_vr, new_vr->type, new_vr->min, new_vr->max,
484 new_vr->equiv);
485
486 BITMAP_FREE (new_vr->equiv);
487 new_vr->equiv = NULL;
488
489 return is_new;
490 }
491
492
493 /* Add VAR and VAR's equivalence set to EQUIV. */
494
495 static void
496 add_equivalence (bitmap equiv, tree var)
497 {
498 unsigned ver = SSA_NAME_VERSION (var);
499 value_range_t *vr = vr_value[ver];
500
501 bitmap_set_bit (equiv, ver);
502 if (vr && vr->equiv)
503 bitmap_ior_into (equiv, vr->equiv);
504 }
505
506
507 /* Return true if VR is ~[0, 0]. */
508
509 static inline bool
510 range_is_nonnull (value_range_t *vr)
511 {
512 return vr->type == VR_ANTI_RANGE
513 && integer_zerop (vr->min)
514 && integer_zerop (vr->max);
515 }
516
517
518 /* Return true if VR is [0, 0]. */
519
520 static inline bool
521 range_is_null (value_range_t *vr)
522 {
523 return vr->type == VR_RANGE
524 && integer_zerop (vr->min)
525 && integer_zerop (vr->max);
526 }
527
528
529 /* Return true if value range VR involves at least one symbol. */
530
531 static inline bool
532 symbolic_range_p (value_range_t *vr)
533 {
534 return (!is_gimple_min_invariant (vr->min)
535 || !is_gimple_min_invariant (vr->max));
536 }
537
538 /* Return true if value range VR uses a overflow infinity. */
539
540 static inline bool
541 overflow_infinity_range_p (value_range_t *vr)
542 {
543 return (vr->type == VR_RANGE
544 && (is_overflow_infinity (vr->min)
545 || is_overflow_infinity (vr->max)));
546 }
547
548 /* Return false if we can not make a valid comparison based on VR;
549 this will be the case if it uses an overflow infinity and overflow
550 is not undefined (i.e., -fno-strict-overflow is in effect).
551 Otherwise return true, and set *STRICT_OVERFLOW_P to true if VR
552 uses an overflow infinity. */
553
554 static bool
555 usable_range_p (value_range_t *vr, bool *strict_overflow_p)
556 {
557 gcc_assert (vr->type == VR_RANGE);
558 if (is_overflow_infinity (vr->min))
559 {
560 *strict_overflow_p = true;
561 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->min)))
562 return false;
563 }
564 if (is_overflow_infinity (vr->max))
565 {
566 *strict_overflow_p = true;
567 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->max)))
568 return false;
569 }
570 return true;
571 }
572
573
574 /* Like tree_expr_nonnegative_warnv_p, but this function uses value
575 ranges obtained so far. */
576
577 static bool
578 vrp_expr_computes_nonnegative (tree expr, bool *strict_overflow_p)
579 {
580 return tree_expr_nonnegative_warnv_p (expr, strict_overflow_p);
581 }
582
583 /* Like tree_expr_nonzero_warnv_p, but this function uses value ranges
584 obtained so far. */
585
586 static bool
587 vrp_expr_computes_nonzero (tree expr, bool *strict_overflow_p)
588 {
589 if (tree_expr_nonzero_warnv_p (expr, strict_overflow_p))
590 return true;
591
592 /* If we have an expression of the form &X->a, then the expression
593 is nonnull if X is nonnull. */
594 if (TREE_CODE (expr) == ADDR_EXPR)
595 {
596 tree base = get_base_address (TREE_OPERAND (expr, 0));
597
598 if (base != NULL_TREE
599 && TREE_CODE (base) == INDIRECT_REF
600 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
601 {
602 value_range_t *vr = get_value_range (TREE_OPERAND (base, 0));
603 if (range_is_nonnull (vr))
604 return true;
605 }
606 }
607
608 return false;
609 }
610
611 /* Returns true if EXPR is a valid value (as expected by compare_values) --
612 a gimple invariant, or SSA_NAME +- CST. */
613
614 static bool
615 valid_value_p (tree expr)
616 {
617 if (TREE_CODE (expr) == SSA_NAME)
618 return true;
619
620 if (TREE_CODE (expr) == PLUS_EXPR
621 || TREE_CODE (expr) == MINUS_EXPR)
622 return (TREE_CODE (TREE_OPERAND (expr, 0)) == SSA_NAME
623 && TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST);
624
625 return is_gimple_min_invariant (expr);
626 }
627
628 /* Return
629 1 if VAL < VAL2
630 0 if !(VAL < VAL2)
631 -2 if those are incomparable. */
632 static inline int
633 operand_less_p (tree val, tree val2)
634 {
635 /* LT is folded faster than GE and others. Inline the common case. */
636 if (TREE_CODE (val) == INTEGER_CST && TREE_CODE (val2) == INTEGER_CST)
637 {
638 if (TYPE_UNSIGNED (TREE_TYPE (val)))
639 return INT_CST_LT_UNSIGNED (val, val2);
640 else
641 {
642 if (INT_CST_LT (val, val2))
643 return 1;
644 }
645 }
646 else
647 {
648 tree tcmp;
649
650 fold_defer_overflow_warnings ();
651
652 tcmp = fold_binary_to_constant (LT_EXPR, boolean_type_node, val, val2);
653
654 fold_undefer_and_ignore_overflow_warnings ();
655
656 if (!tcmp)
657 return -2;
658
659 if (!integer_zerop (tcmp))
660 return 1;
661 }
662
663 /* val >= val2, not considering overflow infinity. */
664 if (is_negative_overflow_infinity (val))
665 return is_negative_overflow_infinity (val2) ? 0 : 1;
666 else if (is_positive_overflow_infinity (val2))
667 return is_positive_overflow_infinity (val) ? 0 : 1;
668
669 return 0;
670 }
671
672 /* Compare two values VAL1 and VAL2. Return
673
674 -2 if VAL1 and VAL2 cannot be compared at compile-time,
675 -1 if VAL1 < VAL2,
676 0 if VAL1 == VAL2,
677 +1 if VAL1 > VAL2, and
678 +2 if VAL1 != VAL2
679
680 This is similar to tree_int_cst_compare but supports pointer values
681 and values that cannot be compared at compile time.
682
683 If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
684 true if the return value is only valid if we assume that signed
685 overflow is undefined. */
686
687 static int
688 compare_values_warnv (tree val1, tree val2, bool *strict_overflow_p)
689 {
690 if (val1 == val2)
691 return 0;
692
693 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
694 both integers. */
695 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
696 == POINTER_TYPE_P (TREE_TYPE (val2)));
697
698 if ((TREE_CODE (val1) == SSA_NAME
699 || TREE_CODE (val1) == PLUS_EXPR
700 || TREE_CODE (val1) == MINUS_EXPR)
701 && (TREE_CODE (val2) == SSA_NAME
702 || TREE_CODE (val2) == PLUS_EXPR
703 || TREE_CODE (val2) == MINUS_EXPR))
704 {
705 tree n1, c1, n2, c2;
706 enum tree_code code1, code2;
707
708 /* If VAL1 and VAL2 are of the form 'NAME [+-] CST' or 'NAME',
709 return -1 or +1 accordingly. If VAL1 and VAL2 don't use the
710 same name, return -2. */
711 if (TREE_CODE (val1) == SSA_NAME)
712 {
713 code1 = SSA_NAME;
714 n1 = val1;
715 c1 = NULL_TREE;
716 }
717 else
718 {
719 code1 = TREE_CODE (val1);
720 n1 = TREE_OPERAND (val1, 0);
721 c1 = TREE_OPERAND (val1, 1);
722 if (tree_int_cst_sgn (c1) == -1)
723 {
724 if (is_negative_overflow_infinity (c1))
725 return -2;
726 c1 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c1), c1);
727 if (!c1)
728 return -2;
729 code1 = code1 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
730 }
731 }
732
733 if (TREE_CODE (val2) == SSA_NAME)
734 {
735 code2 = SSA_NAME;
736 n2 = val2;
737 c2 = NULL_TREE;
738 }
739 else
740 {
741 code2 = TREE_CODE (val2);
742 n2 = TREE_OPERAND (val2, 0);
743 c2 = TREE_OPERAND (val2, 1);
744 if (tree_int_cst_sgn (c2) == -1)
745 {
746 if (is_negative_overflow_infinity (c2))
747 return -2;
748 c2 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c2), c2);
749 if (!c2)
750 return -2;
751 code2 = code2 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
752 }
753 }
754
755 /* Both values must use the same name. */
756 if (n1 != n2)
757 return -2;
758
759 if (code1 == SSA_NAME
760 && code2 == SSA_NAME)
761 /* NAME == NAME */
762 return 0;
763
764 /* If overflow is defined we cannot simplify more. */
765 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1)))
766 return -2;
767
768 if (strict_overflow_p != NULL)
769 *strict_overflow_p = true;
770
771 if (code1 == SSA_NAME)
772 {
773 if (code2 == PLUS_EXPR)
774 /* NAME < NAME + CST */
775 return -1;
776 else if (code2 == MINUS_EXPR)
777 /* NAME > NAME - CST */
778 return 1;
779 }
780 else if (code1 == PLUS_EXPR)
781 {
782 if (code2 == SSA_NAME)
783 /* NAME + CST > NAME */
784 return 1;
785 else if (code2 == PLUS_EXPR)
786 /* NAME + CST1 > NAME + CST2, if CST1 > CST2 */
787 return compare_values_warnv (c1, c2, strict_overflow_p);
788 else if (code2 == MINUS_EXPR)
789 /* NAME + CST1 > NAME - CST2 */
790 return 1;
791 }
792 else if (code1 == MINUS_EXPR)
793 {
794 if (code2 == SSA_NAME)
795 /* NAME - CST < NAME */
796 return -1;
797 else if (code2 == PLUS_EXPR)
798 /* NAME - CST1 < NAME + CST2 */
799 return -1;
800 else if (code2 == MINUS_EXPR)
801 /* NAME - CST1 > NAME - CST2, if CST1 < CST2. Notice that
802 C1 and C2 are swapped in the call to compare_values. */
803 return compare_values_warnv (c2, c1, strict_overflow_p);
804 }
805
806 gcc_unreachable ();
807 }
808
809 /* We cannot compare non-constants. */
810 if (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2))
811 return -2;
812
813 if (!POINTER_TYPE_P (TREE_TYPE (val1)))
814 {
815 /* We cannot compare overflowed values, except for overflow
816 infinities. */
817 if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
818 {
819 if (strict_overflow_p != NULL)
820 *strict_overflow_p = true;
821 if (is_negative_overflow_infinity (val1))
822 return is_negative_overflow_infinity (val2) ? 0 : -1;
823 else if (is_negative_overflow_infinity (val2))
824 return 1;
825 else if (is_positive_overflow_infinity (val1))
826 return is_positive_overflow_infinity (val2) ? 0 : 1;
827 else if (is_positive_overflow_infinity (val2))
828 return -1;
829 return -2;
830 }
831
832 return tree_int_cst_compare (val1, val2);
833 }
834 else
835 {
836 tree t;
837
838 /* First see if VAL1 and VAL2 are not the same. */
839 if (val1 == val2 || operand_equal_p (val1, val2, 0))
840 return 0;
841
842 /* If VAL1 is a lower address than VAL2, return -1. */
843 if (operand_less_p (val1, val2) == 1)
844 return -1;
845
846 /* If VAL1 is a higher address than VAL2, return +1. */
847 if (operand_less_p (val2, val1) == 1)
848 return 1;
849
850 /* If VAL1 is different than VAL2, return +2.
851 For integer constants we either have already returned -1 or 1
852 or they are equivalent. We still might succeed in proving
853 something about non-trivial operands. */
854 if (TREE_CODE (val1) != INTEGER_CST
855 || TREE_CODE (val2) != INTEGER_CST)
856 {
857 t = fold_binary_to_constant (NE_EXPR, boolean_type_node, val1, val2);
858 if (t && tree_expr_nonzero_p (t))
859 return 2;
860 }
861
862 return -2;
863 }
864 }
865
866 /* Compare values like compare_values_warnv, but treat comparisons of
867 nonconstants which rely on undefined overflow as incomparable. */
868
869 static int
870 compare_values (tree val1, tree val2)
871 {
872 bool sop;
873 int ret;
874
875 sop = false;
876 ret = compare_values_warnv (val1, val2, &sop);
877 if (sop
878 && (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2)))
879 ret = -2;
880 return ret;
881 }
882
883
884 /* Return 1 if VAL is inside value range VR (VR->MIN <= VAL <= VR->MAX),
885 0 if VAL is not inside VR,
886 -2 if we cannot tell either way.
887
888 FIXME, the current semantics of this functions are a bit quirky
889 when taken in the context of VRP. In here we do not care
890 about VR's type. If VR is the anti-range ~[3, 5] the call
891 value_inside_range (4, VR) will return 1.
892
893 This is counter-intuitive in a strict sense, but the callers
894 currently expect this. They are calling the function
895 merely to determine whether VR->MIN <= VAL <= VR->MAX. The
896 callers are applying the VR_RANGE/VR_ANTI_RANGE semantics
897 themselves.
898
899 This also applies to value_ranges_intersect_p and
900 range_includes_zero_p. The semantics of VR_RANGE and
901 VR_ANTI_RANGE should be encoded here, but that also means
902 adapting the users of these functions to the new semantics.
903
904 Benchmark compile/20001226-1.c compilation time after changing this
905 function. */
906
907 static inline int
908 value_inside_range (tree val, value_range_t * vr)
909 {
910 int cmp1, cmp2;
911
912 cmp1 = operand_less_p (val, vr->min);
913 if (cmp1 == -2)
914 return -2;
915 if (cmp1 == 1)
916 return 0;
917
918 cmp2 = operand_less_p (vr->max, val);
919 if (cmp2 == -2)
920 return -2;
921
922 return !cmp2;
923 }
924
925
926 /* Return true if value ranges VR0 and VR1 have a non-empty
927 intersection.
928
929 Benchmark compile/20001226-1.c compilation time after changing this
930 function.
931 */
932
933 static inline bool
934 value_ranges_intersect_p (value_range_t *vr0, value_range_t *vr1)
935 {
936 /* The value ranges do not intersect if the maximum of the first range is
937 less than the minimum of the second range or vice versa.
938 When those relations are unknown, we can't do any better. */
939 if (operand_less_p (vr0->max, vr1->min) != 0)
940 return false;
941 if (operand_less_p (vr1->max, vr0->min) != 0)
942 return false;
943 return true;
944 }
945
946
947 /* Return true if VR includes the value zero, false otherwise. FIXME,
948 currently this will return false for an anti-range like ~[-4, 3].
949 This will be wrong when the semantics of value_inside_range are
950 modified (currently the users of this function expect these
951 semantics). */
952
953 static inline bool
954 range_includes_zero_p (value_range_t *vr)
955 {
956 tree zero;
957
958 gcc_assert (vr->type != VR_UNDEFINED
959 && vr->type != VR_VARYING
960 && !symbolic_range_p (vr));
961
962 zero = build_int_cst (TREE_TYPE (vr->min), 0);
963 return (value_inside_range (zero, vr) == 1);
964 }
965
966 /* Return true if T, an SSA_NAME, is known to be nonnegative. Return
967 false otherwise or if no value range information is available. */
968
969 bool
970 ssa_name_nonnegative_p (tree t)
971 {
972 value_range_t *vr = get_value_range (t);
973
974 if (!vr)
975 return false;
976
977 /* Testing for VR_ANTI_RANGE is not useful here as any anti-range
978 which would return a useful value should be encoded as a VR_RANGE. */
979 if (vr->type == VR_RANGE)
980 {
981 int result = compare_values (vr->min, integer_zero_node);
982
983 return (result == 0 || result == 1);
984 }
985 return false;
986 }
987
988 /* Return true if T, an SSA_NAME, is known to be nonzero. Return
989 false otherwise or if no value range information is available. */
990
991 bool
992 ssa_name_nonzero_p (tree t)
993 {
994 value_range_t *vr = get_value_range (t);
995
996 if (!vr)
997 return false;
998
999 /* A VR_RANGE which does not include zero is a nonzero value. */
1000 if (vr->type == VR_RANGE && !symbolic_range_p (vr))
1001 return ! range_includes_zero_p (vr);
1002
1003 /* A VR_ANTI_RANGE which does include zero is a nonzero value. */
1004 if (vr->type == VR_ANTI_RANGE && !symbolic_range_p (vr))
1005 return range_includes_zero_p (vr);
1006
1007 return false;
1008 }
1009
1010
1011 /* Extract value range information from an ASSERT_EXPR EXPR and store
1012 it in *VR_P. */
1013
1014 static void
1015 extract_range_from_assert (value_range_t *vr_p, tree expr)
1016 {
1017 tree var, cond, limit, min, max, type;
1018 value_range_t *var_vr, *limit_vr;
1019 enum tree_code cond_code;
1020
1021 var = ASSERT_EXPR_VAR (expr);
1022 cond = ASSERT_EXPR_COND (expr);
1023
1024 gcc_assert (COMPARISON_CLASS_P (cond));
1025
1026 /* Find VAR in the ASSERT_EXPR conditional. */
1027 if (var == TREE_OPERAND (cond, 0))
1028 {
1029 /* If the predicate is of the form VAR COMP LIMIT, then we just
1030 take LIMIT from the RHS and use the same comparison code. */
1031 limit = TREE_OPERAND (cond, 1);
1032 cond_code = TREE_CODE (cond);
1033 }
1034 else
1035 {
1036 /* If the predicate is of the form LIMIT COMP VAR, then we need
1037 to flip around the comparison code to create the proper range
1038 for VAR. */
1039 limit = TREE_OPERAND (cond, 0);
1040 cond_code = swap_tree_comparison (TREE_CODE (cond));
1041 }
1042
1043 type = TREE_TYPE (limit);
1044 gcc_assert (limit != var);
1045
1046 /* For pointer arithmetic, we only keep track of pointer equality
1047 and inequality. */
1048 if (POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR)
1049 {
1050 set_value_range_to_varying (vr_p);
1051 return;
1052 }
1053
1054 /* If LIMIT is another SSA name and LIMIT has a range of its own,
1055 try to use LIMIT's range to avoid creating symbolic ranges
1056 unnecessarily. */
1057 limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL;
1058
1059 /* LIMIT's range is only interesting if it has any useful information. */
1060 if (limit_vr
1061 && (limit_vr->type == VR_UNDEFINED
1062 || limit_vr->type == VR_VARYING
1063 || symbolic_range_p (limit_vr)))
1064 limit_vr = NULL;
1065
1066 /* Initially, the new range has the same set of equivalences of
1067 VAR's range. This will be revised before returning the final
1068 value. Since assertions may be chained via mutually exclusive
1069 predicates, we will need to trim the set of equivalences before
1070 we are done. */
1071 gcc_assert (vr_p->equiv == NULL);
1072 vr_p->equiv = BITMAP_ALLOC (NULL);
1073 add_equivalence (vr_p->equiv, var);
1074
1075 /* Extract a new range based on the asserted comparison for VAR and
1076 LIMIT's value range. Notice that if LIMIT has an anti-range, we
1077 will only use it for equality comparisons (EQ_EXPR). For any
1078 other kind of assertion, we cannot derive a range from LIMIT's
1079 anti-range that can be used to describe the new range. For
1080 instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
1081 then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
1082 no single range for x_2 that could describe LE_EXPR, so we might
1083 as well build the range [b_4, +INF] for it. */
1084 if (cond_code == EQ_EXPR)
1085 {
1086 enum value_range_type range_type;
1087
1088 if (limit_vr)
1089 {
1090 range_type = limit_vr->type;
1091 min = limit_vr->min;
1092 max = limit_vr->max;
1093 }
1094 else
1095 {
1096 range_type = VR_RANGE;
1097 min = limit;
1098 max = limit;
1099 }
1100
1101 set_value_range (vr_p, range_type, min, max, vr_p->equiv);
1102
1103 /* When asserting the equality VAR == LIMIT and LIMIT is another
1104 SSA name, the new range will also inherit the equivalence set
1105 from LIMIT. */
1106 if (TREE_CODE (limit) == SSA_NAME)
1107 add_equivalence (vr_p->equiv, limit);
1108 }
1109 else if (cond_code == NE_EXPR)
1110 {
1111 /* As described above, when LIMIT's range is an anti-range and
1112 this assertion is an inequality (NE_EXPR), then we cannot
1113 derive anything from the anti-range. For instance, if
1114 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
1115 not imply that VAR's range is [0, 0]. So, in the case of
1116 anti-ranges, we just assert the inequality using LIMIT and
1117 not its anti-range.
1118
1119 If LIMIT_VR is a range, we can only use it to build a new
1120 anti-range if LIMIT_VR is a single-valued range. For
1121 instance, if LIMIT_VR is [0, 1], the predicate
1122 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
1123 Rather, it means that for value 0 VAR should be ~[0, 0]
1124 and for value 1, VAR should be ~[1, 1]. We cannot
1125 represent these ranges.
1126
1127 The only situation in which we can build a valid
1128 anti-range is when LIMIT_VR is a single-valued range
1129 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
1130 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
1131 if (limit_vr
1132 && limit_vr->type == VR_RANGE
1133 && compare_values (limit_vr->min, limit_vr->max) == 0)
1134 {
1135 min = limit_vr->min;
1136 max = limit_vr->max;
1137 }
1138 else
1139 {
1140 /* In any other case, we cannot use LIMIT's range to build a
1141 valid anti-range. */
1142 min = max = limit;
1143 }
1144
1145 /* If MIN and MAX cover the whole range for their type, then
1146 just use the original LIMIT. */
1147 if (INTEGRAL_TYPE_P (type)
1148 && (min == TYPE_MIN_VALUE (type)
1149 || is_negative_overflow_infinity (min))
1150 && (max == TYPE_MAX_VALUE (type)
1151 || is_positive_overflow_infinity (max)))
1152 min = max = limit;
1153
1154 set_value_range (vr_p, VR_ANTI_RANGE, min, max, vr_p->equiv);
1155 }
1156 else if (cond_code == LE_EXPR || cond_code == LT_EXPR)
1157 {
1158 min = TYPE_MIN_VALUE (type);
1159
1160 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1161 max = limit;
1162 else
1163 {
1164 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1165 range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
1166 LT_EXPR. */
1167 max = limit_vr->max;
1168 }
1169
1170 /* If the maximum value forces us to be out of bounds, simply punt.
1171 It would be pointless to try and do anything more since this
1172 all should be optimized away above us. */
1173 if ((cond_code == LT_EXPR
1174 && compare_values (max, min) == 0)
1175 || is_overflow_infinity (max))
1176 set_value_range_to_varying (vr_p);
1177 else
1178 {
1179 /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
1180 if (cond_code == LT_EXPR)
1181 {
1182 tree one = build_int_cst (type, 1);
1183 max = fold_build2 (MINUS_EXPR, type, max, one);
1184 }
1185
1186 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1187 }
1188 }
1189 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
1190 {
1191 max = TYPE_MAX_VALUE (type);
1192
1193 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1194 min = limit;
1195 else
1196 {
1197 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1198 range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
1199 GT_EXPR. */
1200 min = limit_vr->min;
1201 }
1202
1203 /* If the minimum value forces us to be out of bounds, simply punt.
1204 It would be pointless to try and do anything more since this
1205 all should be optimized away above us. */
1206 if ((cond_code == GT_EXPR
1207 && compare_values (min, max) == 0)
1208 || is_overflow_infinity (min))
1209 set_value_range_to_varying (vr_p);
1210 else
1211 {
1212 /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
1213 if (cond_code == GT_EXPR)
1214 {
1215 tree one = build_int_cst (type, 1);
1216 min = fold_build2 (PLUS_EXPR, type, min, one);
1217 }
1218
1219 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1220 }
1221 }
1222 else
1223 gcc_unreachable ();
1224
1225 /* If VAR already had a known range, it may happen that the new
1226 range we have computed and VAR's range are not compatible. For
1227 instance,
1228
1229 if (p_5 == NULL)
1230 p_6 = ASSERT_EXPR <p_5, p_5 == NULL>;
1231 x_7 = p_6->fld;
1232 p_8 = ASSERT_EXPR <p_6, p_6 != NULL>;
1233
1234 While the above comes from a faulty program, it will cause an ICE
1235 later because p_8 and p_6 will have incompatible ranges and at
1236 the same time will be considered equivalent. A similar situation
1237 would arise from
1238
1239 if (i_5 > 10)
1240 i_6 = ASSERT_EXPR <i_5, i_5 > 10>;
1241 if (i_5 < 5)
1242 i_7 = ASSERT_EXPR <i_6, i_6 < 5>;
1243
1244 Again i_6 and i_7 will have incompatible ranges. It would be
1245 pointless to try and do anything with i_7's range because
1246 anything dominated by 'if (i_5 < 5)' will be optimized away.
1247 Note, due to the wa in which simulation proceeds, the statement
1248 i_7 = ASSERT_EXPR <...> we would never be visited because the
1249 conditional 'if (i_5 < 5)' always evaluates to false. However,
1250 this extra check does not hurt and may protect against future
1251 changes to VRP that may get into a situation similar to the
1252 NULL pointer dereference example.
1253
1254 Note that these compatibility tests are only needed when dealing
1255 with ranges or a mix of range and anti-range. If VAR_VR and VR_P
1256 are both anti-ranges, they will always be compatible, because two
1257 anti-ranges will always have a non-empty intersection. */
1258
1259 var_vr = get_value_range (var);
1260
1261 /* We may need to make adjustments when VR_P and VAR_VR are numeric
1262 ranges or anti-ranges. */
1263 if (vr_p->type == VR_VARYING
1264 || vr_p->type == VR_UNDEFINED
1265 || var_vr->type == VR_VARYING
1266 || var_vr->type == VR_UNDEFINED
1267 || symbolic_range_p (vr_p)
1268 || symbolic_range_p (var_vr))
1269 return;
1270
1271 if (var_vr->type == VR_RANGE && vr_p->type == VR_RANGE)
1272 {
1273 /* If the two ranges have a non-empty intersection, we can
1274 refine the resulting range. Since the assert expression
1275 creates an equivalency and at the same time it asserts a
1276 predicate, we can take the intersection of the two ranges to
1277 get better precision. */
1278 if (value_ranges_intersect_p (var_vr, vr_p))
1279 {
1280 /* Use the larger of the two minimums. */
1281 if (compare_values (vr_p->min, var_vr->min) == -1)
1282 min = var_vr->min;
1283 else
1284 min = vr_p->min;
1285
1286 /* Use the smaller of the two maximums. */
1287 if (compare_values (vr_p->max, var_vr->max) == 1)
1288 max = var_vr->max;
1289 else
1290 max = vr_p->max;
1291
1292 set_value_range (vr_p, vr_p->type, min, max, vr_p->equiv);
1293 }
1294 else
1295 {
1296 /* The two ranges do not intersect, set the new range to
1297 VARYING, because we will not be able to do anything
1298 meaningful with it. */
1299 set_value_range_to_varying (vr_p);
1300 }
1301 }
1302 else if ((var_vr->type == VR_RANGE && vr_p->type == VR_ANTI_RANGE)
1303 || (var_vr->type == VR_ANTI_RANGE && vr_p->type == VR_RANGE))
1304 {
1305 /* A range and an anti-range will cancel each other only if
1306 their ends are the same. For instance, in the example above,
1307 p_8's range ~[0, 0] and p_6's range [0, 0] are incompatible,
1308 so VR_P should be set to VR_VARYING. */
1309 if (compare_values (var_vr->min, vr_p->min) == 0
1310 && compare_values (var_vr->max, vr_p->max) == 0)
1311 set_value_range_to_varying (vr_p);
1312 else
1313 {
1314 tree min, max, anti_min, anti_max, real_min, real_max;
1315 int cmp;
1316
1317 /* We want to compute the logical AND of the two ranges;
1318 there are three cases to consider.
1319
1320
1321 1. The VR_ANTI_RANGE range is completely within the
1322 VR_RANGE and the endpoints of the ranges are
1323 different. In that case the resulting range
1324 should be whichever range is more precise.
1325 Typically that will be the VR_RANGE.
1326
1327 2. The VR_ANTI_RANGE is completely disjoint from
1328 the VR_RANGE. In this case the resulting range
1329 should be the VR_RANGE.
1330
1331 3. There is some overlap between the VR_ANTI_RANGE
1332 and the VR_RANGE.
1333
1334 3a. If the high limit of the VR_ANTI_RANGE resides
1335 within the VR_RANGE, then the result is a new
1336 VR_RANGE starting at the high limit of the
1337 the VR_ANTI_RANGE + 1 and extending to the
1338 high limit of the original VR_RANGE.
1339
1340 3b. If the low limit of the VR_ANTI_RANGE resides
1341 within the VR_RANGE, then the result is a new
1342 VR_RANGE starting at the low limit of the original
1343 VR_RANGE and extending to the low limit of the
1344 VR_ANTI_RANGE - 1. */
1345 if (vr_p->type == VR_ANTI_RANGE)
1346 {
1347 anti_min = vr_p->min;
1348 anti_max = vr_p->max;
1349 real_min = var_vr->min;
1350 real_max = var_vr->max;
1351 }
1352 else
1353 {
1354 anti_min = var_vr->min;
1355 anti_max = var_vr->max;
1356 real_min = vr_p->min;
1357 real_max = vr_p->max;
1358 }
1359
1360
1361 /* Case 1, VR_ANTI_RANGE completely within VR_RANGE,
1362 not including any endpoints. */
1363 if (compare_values (anti_max, real_max) == -1
1364 && compare_values (anti_min, real_min) == 1)
1365 {
1366 set_value_range (vr_p, VR_RANGE, real_min,
1367 real_max, vr_p->equiv);
1368 }
1369 /* Case 2, VR_ANTI_RANGE completely disjoint from
1370 VR_RANGE. */
1371 else if (compare_values (anti_min, real_max) == 1
1372 || compare_values (anti_max, real_min) == -1)
1373 {
1374 set_value_range (vr_p, VR_RANGE, real_min,
1375 real_max, vr_p->equiv);
1376 }
1377 /* Case 3a, the anti-range extends into the low
1378 part of the real range. Thus creating a new
1379 low for the real range. */
1380 else if (((cmp = compare_values (anti_max, real_min)) == 1
1381 || cmp == 0)
1382 && compare_values (anti_max, real_max) == -1)
1383 {
1384 gcc_assert (!is_positive_overflow_infinity (anti_max));
1385 if (needs_overflow_infinity (TREE_TYPE (anti_max))
1386 && anti_max == TYPE_MAX_VALUE (TREE_TYPE (anti_max)))
1387 {
1388 if (!supports_overflow_infinity (TREE_TYPE (var_vr->min)))
1389 {
1390 set_value_range_to_varying (vr_p);
1391 return;
1392 }
1393 min = positive_overflow_infinity (TREE_TYPE (var_vr->min));
1394 }
1395 else
1396 min = fold_build2 (PLUS_EXPR, TREE_TYPE (var_vr->min),
1397 anti_max,
1398 build_int_cst (TREE_TYPE (var_vr->min), 1));
1399 max = real_max;
1400 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1401 }
1402 /* Case 3b, the anti-range extends into the high
1403 part of the real range. Thus creating a new
1404 higher for the real range. */
1405 else if (compare_values (anti_min, real_min) == 1
1406 && ((cmp = compare_values (anti_min, real_max)) == -1
1407 || cmp == 0))
1408 {
1409 gcc_assert (!is_negative_overflow_infinity (anti_min));
1410 if (needs_overflow_infinity (TREE_TYPE (anti_min))
1411 && anti_min == TYPE_MIN_VALUE (TREE_TYPE (anti_min)))
1412 {
1413 if (!supports_overflow_infinity (TREE_TYPE (var_vr->min)))
1414 {
1415 set_value_range_to_varying (vr_p);
1416 return;
1417 }
1418 max = negative_overflow_infinity (TREE_TYPE (var_vr->min));
1419 }
1420 else
1421 max = fold_build2 (MINUS_EXPR, TREE_TYPE (var_vr->min),
1422 anti_min,
1423 build_int_cst (TREE_TYPE (var_vr->min), 1));
1424 min = real_min;
1425 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1426 }
1427 }
1428 }
1429 }
1430
1431
1432 /* Extract range information from SSA name VAR and store it in VR. If
1433 VAR has an interesting range, use it. Otherwise, create the
1434 range [VAR, VAR] and return it. This is useful in situations where
1435 we may have conditionals testing values of VARYING names. For
1436 instance,
1437
1438 x_3 = y_5;
1439 if (x_3 > y_5)
1440 ...
1441
1442 Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
1443 always false. */
1444
1445 static void
1446 extract_range_from_ssa_name (value_range_t *vr, tree var)
1447 {
1448 value_range_t *var_vr = get_value_range (var);
1449
1450 if (var_vr->type != VR_UNDEFINED && var_vr->type != VR_VARYING)
1451 copy_value_range (vr, var_vr);
1452 else
1453 set_value_range (vr, VR_RANGE, var, var, NULL);
1454
1455 add_equivalence (vr->equiv, var);
1456 }
1457
1458
1459 /* Wrapper around int_const_binop. If the operation overflows and we
1460 are not using wrapping arithmetic, then adjust the result to be
1461 -INF or +INF depending on CODE, VAL1 and VAL2. This can return
1462 NULL_TREE if we need to use an overflow infinity representation but
1463 the type does not support it. */
1464
1465 static tree
1466 vrp_int_const_binop (enum tree_code code, tree val1, tree val2)
1467 {
1468 tree res;
1469
1470 res = int_const_binop (code, val1, val2, 0);
1471
1472 /* If we are not using wrapping arithmetic, operate symbolically
1473 on -INF and +INF. */
1474 if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (val1)))
1475 {
1476 int checkz = compare_values (res, val1);
1477 bool overflow = false;
1478
1479 /* Ensure that res = val1 [+*] val2 >= val1
1480 or that res = val1 - val2 <= val1. */
1481 if ((code == PLUS_EXPR
1482 && !(checkz == 1 || checkz == 0))
1483 || (code == MINUS_EXPR
1484 && !(checkz == 0 || checkz == -1)))
1485 {
1486 overflow = true;
1487 }
1488 /* Checking for multiplication overflow is done by dividing the
1489 output of the multiplication by the first input of the
1490 multiplication. If the result of that division operation is
1491 not equal to the second input of the multiplication, then the
1492 multiplication overflowed. */
1493 else if (code == MULT_EXPR && !integer_zerop (val1))
1494 {
1495 tree tmp = int_const_binop (TRUNC_DIV_EXPR,
1496 res,
1497 val1, 0);
1498 int check = compare_values (tmp, val2);
1499
1500 if (check != 0)
1501 overflow = true;
1502 }
1503
1504 if (overflow)
1505 {
1506 res = copy_node (res);
1507 TREE_OVERFLOW (res) = 1;
1508 }
1509
1510 }
1511 else if ((TREE_OVERFLOW (res)
1512 && !TREE_OVERFLOW (val1)
1513 && !TREE_OVERFLOW (val2))
1514 || is_overflow_infinity (val1)
1515 || is_overflow_infinity (val2))
1516 {
1517 /* If the operation overflowed but neither VAL1 nor VAL2 are
1518 overflown, return -INF or +INF depending on the operation
1519 and the combination of signs of the operands. */
1520 int sgn1 = tree_int_cst_sgn (val1);
1521 int sgn2 = tree_int_cst_sgn (val2);
1522
1523 if (needs_overflow_infinity (TREE_TYPE (res))
1524 && !supports_overflow_infinity (TREE_TYPE (res)))
1525 return NULL_TREE;
1526
1527 /* We have to punt on adding infinities of different signs,
1528 since we can't tell what the sign of the result should be.
1529 Likewise for subtracting infinities of the same sign. */
1530 if (((code == PLUS_EXPR && sgn1 != sgn2)
1531 || (code == MINUS_EXPR && sgn1 == sgn2))
1532 && is_overflow_infinity (val1)
1533 && is_overflow_infinity (val2))
1534 return NULL_TREE;
1535
1536 /* Don't try to handle division or shifting of infinities. */
1537 if ((code == TRUNC_DIV_EXPR
1538 || code == FLOOR_DIV_EXPR
1539 || code == CEIL_DIV_EXPR
1540 || code == EXACT_DIV_EXPR
1541 || code == ROUND_DIV_EXPR
1542 || code == RSHIFT_EXPR)
1543 && (is_overflow_infinity (val1)
1544 || is_overflow_infinity (val2)))
1545 return NULL_TREE;
1546
1547 /* Notice that we only need to handle the restricted set of
1548 operations handled by extract_range_from_binary_expr.
1549 Among them, only multiplication, addition and subtraction
1550 can yield overflow without overflown operands because we
1551 are working with integral types only... except in the
1552 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
1553 for division too. */
1554
1555 /* For multiplication, the sign of the overflow is given
1556 by the comparison of the signs of the operands. */
1557 if ((code == MULT_EXPR && sgn1 == sgn2)
1558 /* For addition, the operands must be of the same sign
1559 to yield an overflow. Its sign is therefore that
1560 of one of the operands, for example the first. For
1561 infinite operands X + -INF is negative, not positive. */
1562 || (code == PLUS_EXPR
1563 && (sgn1 >= 0
1564 ? !is_negative_overflow_infinity (val2)
1565 : is_positive_overflow_infinity (val2)))
1566 /* For subtraction, non-infinite operands must be of
1567 different signs to yield an overflow. Its sign is
1568 therefore that of the first operand or the opposite of
1569 that of the second operand. A first operand of 0 counts
1570 as positive here, for the corner case 0 - (-INF), which
1571 overflows, but must yield +INF. For infinite operands 0
1572 - INF is negative, not positive. */
1573 || (code == MINUS_EXPR
1574 && (sgn1 >= 0
1575 ? !is_positive_overflow_infinity (val2)
1576 : is_negative_overflow_infinity (val2)))
1577 /* We only get in here with positive shift count, so the
1578 overflow direction is the same as the sign of val1.
1579 Actually rshift does not overflow at all, but we only
1580 handle the case of shifting overflowed -INF and +INF. */
1581 || (code == RSHIFT_EXPR
1582 && sgn1 >= 0)
1583 /* For division, the only case is -INF / -1 = +INF. */
1584 || code == TRUNC_DIV_EXPR
1585 || code == FLOOR_DIV_EXPR
1586 || code == CEIL_DIV_EXPR
1587 || code == EXACT_DIV_EXPR
1588 || code == ROUND_DIV_EXPR)
1589 return (needs_overflow_infinity (TREE_TYPE (res))
1590 ? positive_overflow_infinity (TREE_TYPE (res))
1591 : TYPE_MAX_VALUE (TREE_TYPE (res)));
1592 else
1593 return (needs_overflow_infinity (TREE_TYPE (res))
1594 ? negative_overflow_infinity (TREE_TYPE (res))
1595 : TYPE_MIN_VALUE (TREE_TYPE (res)));
1596 }
1597
1598 return res;
1599 }
1600
1601
1602 /* Extract range information from a binary expression EXPR based on
1603 the ranges of each of its operands and the expression code. */
1604
1605 static void
1606 extract_range_from_binary_expr (value_range_t *vr, tree expr)
1607 {
1608 enum tree_code code = TREE_CODE (expr);
1609 enum value_range_type type;
1610 tree op0, op1, min, max;
1611 int cmp;
1612 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
1613 value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
1614
1615 /* Not all binary expressions can be applied to ranges in a
1616 meaningful way. Handle only arithmetic operations. */
1617 if (code != PLUS_EXPR
1618 && code != MINUS_EXPR
1619 && code != MULT_EXPR
1620 && code != TRUNC_DIV_EXPR
1621 && code != FLOOR_DIV_EXPR
1622 && code != CEIL_DIV_EXPR
1623 && code != EXACT_DIV_EXPR
1624 && code != ROUND_DIV_EXPR
1625 && code != RSHIFT_EXPR
1626 && code != MIN_EXPR
1627 && code != MAX_EXPR
1628 && code != BIT_AND_EXPR
1629 && code != TRUTH_ANDIF_EXPR
1630 && code != TRUTH_ORIF_EXPR
1631 && code != TRUTH_AND_EXPR
1632 && code != TRUTH_OR_EXPR)
1633 {
1634 set_value_range_to_varying (vr);
1635 return;
1636 }
1637
1638 /* Get value ranges for each operand. For constant operands, create
1639 a new value range with the operand to simplify processing. */
1640 op0 = TREE_OPERAND (expr, 0);
1641 if (TREE_CODE (op0) == SSA_NAME)
1642 vr0 = *(get_value_range (op0));
1643 else if (is_gimple_min_invariant (op0))
1644 set_value_range (&vr0, VR_RANGE, op0, op0, NULL);
1645 else
1646 set_value_range_to_varying (&vr0);
1647
1648 op1 = TREE_OPERAND (expr, 1);
1649 if (TREE_CODE (op1) == SSA_NAME)
1650 vr1 = *(get_value_range (op1));
1651 else if (is_gimple_min_invariant (op1))
1652 set_value_range (&vr1, VR_RANGE, op1, op1, NULL);
1653 else
1654 set_value_range_to_varying (&vr1);
1655
1656 /* If either range is UNDEFINED, so is the result. */
1657 if (vr0.type == VR_UNDEFINED || vr1.type == VR_UNDEFINED)
1658 {
1659 set_value_range_to_undefined (vr);
1660 return;
1661 }
1662
1663 /* The type of the resulting value range defaults to VR0.TYPE. */
1664 type = vr0.type;
1665
1666 /* Refuse to operate on VARYING ranges, ranges of different kinds
1667 and symbolic ranges. As an exception, we allow BIT_AND_EXPR
1668 because we may be able to derive a useful range even if one of
1669 the operands is VR_VARYING or symbolic range. TODO, we may be
1670 able to derive anti-ranges in some cases. */
1671 if (code != BIT_AND_EXPR
1672 && code != TRUTH_AND_EXPR
1673 && code != TRUTH_OR_EXPR
1674 && (vr0.type == VR_VARYING
1675 || vr1.type == VR_VARYING
1676 || vr0.type != vr1.type
1677 || symbolic_range_p (&vr0)
1678 || symbolic_range_p (&vr1)))
1679 {
1680 set_value_range_to_varying (vr);
1681 return;
1682 }
1683
1684 /* Now evaluate the expression to determine the new range. */
1685 if (POINTER_TYPE_P (TREE_TYPE (expr))
1686 || POINTER_TYPE_P (TREE_TYPE (op0))
1687 || POINTER_TYPE_P (TREE_TYPE (op1)))
1688 {
1689 /* For pointer types, we are really only interested in asserting
1690 whether the expression evaluates to non-NULL. FIXME, we used
1691 to gcc_assert (code == PLUS_EXPR || code == MINUS_EXPR), but
1692 ivopts is generating expressions with pointer multiplication
1693 in them. */
1694 if (code == PLUS_EXPR)
1695 {
1696 if (range_is_nonnull (&vr0) || range_is_nonnull (&vr1))
1697 set_value_range_to_nonnull (vr, TREE_TYPE (expr));
1698 else if (range_is_null (&vr0) && range_is_null (&vr1))
1699 set_value_range_to_null (vr, TREE_TYPE (expr));
1700 else
1701 set_value_range_to_varying (vr);
1702 }
1703 else
1704 {
1705 /* Subtracting from a pointer, may yield 0, so just drop the
1706 resulting range to varying. */
1707 set_value_range_to_varying (vr);
1708 }
1709
1710 return;
1711 }
1712
1713 /* For integer ranges, apply the operation to each end of the
1714 range and see what we end up with. */
1715 if (code == TRUTH_ANDIF_EXPR
1716 || code == TRUTH_ORIF_EXPR
1717 || code == TRUTH_AND_EXPR
1718 || code == TRUTH_OR_EXPR)
1719 {
1720 /* If one of the operands is zero, we know that the whole
1721 expression evaluates zero. */
1722 if (code == TRUTH_AND_EXPR
1723 && ((vr0.type == VR_RANGE
1724 && integer_zerop (vr0.min)
1725 && integer_zerop (vr0.max))
1726 || (vr1.type == VR_RANGE
1727 && integer_zerop (vr1.min)
1728 && integer_zerop (vr1.max))))
1729 {
1730 type = VR_RANGE;
1731 min = max = build_int_cst (TREE_TYPE (expr), 0);
1732 }
1733 /* If one of the operands is one, we know that the whole
1734 expression evaluates one. */
1735 else if (code == TRUTH_OR_EXPR
1736 && ((vr0.type == VR_RANGE
1737 && integer_onep (vr0.min)
1738 && integer_onep (vr0.max))
1739 || (vr1.type == VR_RANGE
1740 && integer_onep (vr1.min)
1741 && integer_onep (vr1.max))))
1742 {
1743 type = VR_RANGE;
1744 min = max = build_int_cst (TREE_TYPE (expr), 1);
1745 }
1746 else if (vr0.type != VR_VARYING
1747 && vr1.type != VR_VARYING
1748 && vr0.type == vr1.type
1749 && !symbolic_range_p (&vr0)
1750 && !overflow_infinity_range_p (&vr0)
1751 && !symbolic_range_p (&vr1)
1752 && !overflow_infinity_range_p (&vr1))
1753 {
1754 /* Boolean expressions cannot be folded with int_const_binop. */
1755 min = fold_binary (code, TREE_TYPE (expr), vr0.min, vr1.min);
1756 max = fold_binary (code, TREE_TYPE (expr), vr0.max, vr1.max);
1757 }
1758 else
1759 {
1760 /* The result of a TRUTH_*_EXPR is always true or false. */
1761 set_value_range_to_truthvalue (vr, TREE_TYPE (expr));
1762 return;
1763 }
1764 }
1765 else if (code == PLUS_EXPR
1766 || code == MIN_EXPR
1767 || code == MAX_EXPR)
1768 {
1769 /* If we have a PLUS_EXPR with two VR_ANTI_RANGEs, drop to
1770 VR_VARYING. It would take more effort to compute a precise
1771 range for such a case. For example, if we have op0 == 1 and
1772 op1 == -1 with their ranges both being ~[0,0], we would have
1773 op0 + op1 == 0, so we cannot claim that the sum is in ~[0,0].
1774 Note that we are guaranteed to have vr0.type == vr1.type at
1775 this point. */
1776 if (code == PLUS_EXPR && vr0.type == VR_ANTI_RANGE)
1777 {
1778 set_value_range_to_varying (vr);
1779 return;
1780 }
1781
1782 /* For operations that make the resulting range directly
1783 proportional to the original ranges, apply the operation to
1784 the same end of each range. */
1785 min = vrp_int_const_binop (code, vr0.min, vr1.min);
1786 max = vrp_int_const_binop (code, vr0.max, vr1.max);
1787 }
1788 else if (code == MULT_EXPR
1789 || code == TRUNC_DIV_EXPR
1790 || code == FLOOR_DIV_EXPR
1791 || code == CEIL_DIV_EXPR
1792 || code == EXACT_DIV_EXPR
1793 || code == ROUND_DIV_EXPR
1794 || code == RSHIFT_EXPR)
1795 {
1796 tree val[4];
1797 size_t i;
1798 bool sop;
1799
1800 /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
1801 drop to VR_VARYING. It would take more effort to compute a
1802 precise range for such a case. For example, if we have
1803 op0 == 65536 and op1 == 65536 with their ranges both being
1804 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
1805 we cannot claim that the product is in ~[0,0]. Note that we
1806 are guaranteed to have vr0.type == vr1.type at this
1807 point. */
1808 if (code == MULT_EXPR
1809 && vr0.type == VR_ANTI_RANGE
1810 && !TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0)))
1811 {
1812 set_value_range_to_varying (vr);
1813 return;
1814 }
1815
1816 /* If we have a RSHIFT_EXPR with any shift values outside [0..prec-1],
1817 then drop to VR_VARYING. Outside of this range we get undefined
1818 behaviour from the shift operation. We cannot even trust
1819 SHIFT_COUNT_TRUNCATED at this stage, because that applies to rtl
1820 shifts, and the operation at the tree level may be widened. */
1821 if (code == RSHIFT_EXPR)
1822 {
1823 if (vr1.type == VR_ANTI_RANGE
1824 || !vrp_expr_computes_nonnegative (op1, &sop)
1825 || (operand_less_p
1826 (build_int_cst (TREE_TYPE (vr1.max),
1827 TYPE_PRECISION (TREE_TYPE (expr)) - 1),
1828 vr1.max) != 0))
1829 {
1830 set_value_range_to_varying (vr);
1831 return;
1832 }
1833 }
1834
1835 /* Multiplications and divisions are a bit tricky to handle,
1836 depending on the mix of signs we have in the two ranges, we
1837 need to operate on different values to get the minimum and
1838 maximum values for the new range. One approach is to figure
1839 out all the variations of range combinations and do the
1840 operations.
1841
1842 However, this involves several calls to compare_values and it
1843 is pretty convoluted. It's simpler to do the 4 operations
1844 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
1845 MAX1) and then figure the smallest and largest values to form
1846 the new range. */
1847
1848 /* Divisions by zero result in a VARYING value. */
1849 else if (code != MULT_EXPR
1850 && (vr0.type == VR_ANTI_RANGE || range_includes_zero_p (&vr1)))
1851 {
1852 set_value_range_to_varying (vr);
1853 return;
1854 }
1855
1856 /* Compute the 4 cross operations. */
1857 sop = false;
1858 val[0] = vrp_int_const_binop (code, vr0.min, vr1.min);
1859 if (val[0] == NULL_TREE)
1860 sop = true;
1861
1862 if (vr1.max == vr1.min)
1863 val[1] = NULL_TREE;
1864 else
1865 {
1866 val[1] = vrp_int_const_binop (code, vr0.min, vr1.max);
1867 if (val[1] == NULL_TREE)
1868 sop = true;
1869 }
1870
1871 if (vr0.max == vr0.min)
1872 val[2] = NULL_TREE;
1873 else
1874 {
1875 val[2] = vrp_int_const_binop (code, vr0.max, vr1.min);
1876 if (val[2] == NULL_TREE)
1877 sop = true;
1878 }
1879
1880 if (vr0.min == vr0.max || vr1.min == vr1.max)
1881 val[3] = NULL_TREE;
1882 else
1883 {
1884 val[3] = vrp_int_const_binop (code, vr0.max, vr1.max);
1885 if (val[3] == NULL_TREE)
1886 sop = true;
1887 }
1888
1889 if (sop)
1890 {
1891 set_value_range_to_varying (vr);
1892 return;
1893 }
1894
1895 /* Set MIN to the minimum of VAL[i] and MAX to the maximum
1896 of VAL[i]. */
1897 min = val[0];
1898 max = val[0];
1899 for (i = 1; i < 4; i++)
1900 {
1901 if (!is_gimple_min_invariant (min)
1902 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
1903 || !is_gimple_min_invariant (max)
1904 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
1905 break;
1906
1907 if (val[i])
1908 {
1909 if (!is_gimple_min_invariant (val[i])
1910 || (TREE_OVERFLOW (val[i])
1911 && !is_overflow_infinity (val[i])))
1912 {
1913 /* If we found an overflowed value, set MIN and MAX
1914 to it so that we set the resulting range to
1915 VARYING. */
1916 min = max = val[i];
1917 break;
1918 }
1919
1920 if (compare_values (val[i], min) == -1)
1921 min = val[i];
1922
1923 if (compare_values (val[i], max) == 1)
1924 max = val[i];
1925 }
1926 }
1927 }
1928 else if (code == MINUS_EXPR)
1929 {
1930 /* If we have a MINUS_EXPR with two VR_ANTI_RANGEs, drop to
1931 VR_VARYING. It would take more effort to compute a precise
1932 range for such a case. For example, if we have op0 == 1 and
1933 op1 == 1 with their ranges both being ~[0,0], we would have
1934 op0 - op1 == 0, so we cannot claim that the difference is in
1935 ~[0,0]. Note that we are guaranteed to have
1936 vr0.type == vr1.type at this point. */
1937 if (vr0.type == VR_ANTI_RANGE)
1938 {
1939 set_value_range_to_varying (vr);
1940 return;
1941 }
1942
1943 /* For MINUS_EXPR, apply the operation to the opposite ends of
1944 each range. */
1945 min = vrp_int_const_binop (code, vr0.min, vr1.max);
1946 max = vrp_int_const_binop (code, vr0.max, vr1.min);
1947 }
1948 else if (code == BIT_AND_EXPR)
1949 {
1950 if (vr0.type == VR_RANGE
1951 && vr0.min == vr0.max
1952 && TREE_CODE (vr0.max) == INTEGER_CST
1953 && !TREE_OVERFLOW (vr0.max)
1954 && tree_int_cst_sgn (vr0.max) >= 0)
1955 {
1956 min = build_int_cst (TREE_TYPE (expr), 0);
1957 max = vr0.max;
1958 }
1959 else if (vr1.type == VR_RANGE
1960 && vr1.min == vr1.max
1961 && TREE_CODE (vr1.max) == INTEGER_CST
1962 && !TREE_OVERFLOW (vr1.max)
1963 && tree_int_cst_sgn (vr1.max) >= 0)
1964 {
1965 type = VR_RANGE;
1966 min = build_int_cst (TREE_TYPE (expr), 0);
1967 max = vr1.max;
1968 }
1969 else
1970 {
1971 set_value_range_to_varying (vr);
1972 return;
1973 }
1974 }
1975 else
1976 gcc_unreachable ();
1977
1978 /* If either MIN or MAX overflowed, then set the resulting range to
1979 VARYING. But we do accept an overflow infinity
1980 representation. */
1981 if (min == NULL_TREE
1982 || !is_gimple_min_invariant (min)
1983 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
1984 || max == NULL_TREE
1985 || !is_gimple_min_invariant (max)
1986 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
1987 {
1988 set_value_range_to_varying (vr);
1989 return;
1990 }
1991
1992 /* We punt if:
1993 1) [-INF, +INF]
1994 2) [-INF, +-INF(OVF)]
1995 3) [+-INF(OVF), +INF]
1996 4) [+-INF(OVF), +-INF(OVF)]
1997 We learn nothing when we have INF and INF(OVF) on both sides.
1998 Note that we do accept [-INF, -INF] and [+INF, +INF] without
1999 overflow. */
2000 if ((min == TYPE_MIN_VALUE (TREE_TYPE (min))
2001 || is_overflow_infinity (min))
2002 && (max == TYPE_MAX_VALUE (TREE_TYPE (max))
2003 || is_overflow_infinity (max)))
2004 {
2005 set_value_range_to_varying (vr);
2006 return;
2007 }
2008
2009 cmp = compare_values (min, max);
2010 if (cmp == -2 || cmp == 1)
2011 {
2012 /* If the new range has its limits swapped around (MIN > MAX),
2013 then the operation caused one of them to wrap around, mark
2014 the new range VARYING. */
2015 set_value_range_to_varying (vr);
2016 }
2017 else
2018 set_value_range (vr, type, min, max, NULL);
2019 }
2020
2021
2022 /* Extract range information from a unary expression EXPR based on
2023 the range of its operand and the expression code. */
2024
2025 static void
2026 extract_range_from_unary_expr (value_range_t *vr, tree expr)
2027 {
2028 enum tree_code code = TREE_CODE (expr);
2029 tree min, max, op0;
2030 int cmp;
2031 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2032
2033 /* Refuse to operate on certain unary expressions for which we
2034 cannot easily determine a resulting range. */
2035 if (code == FIX_TRUNC_EXPR
2036 || code == FLOAT_EXPR
2037 || code == BIT_NOT_EXPR
2038 || code == NON_LVALUE_EXPR
2039 || code == CONJ_EXPR)
2040 {
2041 set_value_range_to_varying (vr);
2042 return;
2043 }
2044
2045 /* Get value ranges for the operand. For constant operands, create
2046 a new value range with the operand to simplify processing. */
2047 op0 = TREE_OPERAND (expr, 0);
2048 if (TREE_CODE (op0) == SSA_NAME)
2049 vr0 = *(get_value_range (op0));
2050 else if (is_gimple_min_invariant (op0))
2051 set_value_range (&vr0, VR_RANGE, op0, op0, NULL);
2052 else
2053 set_value_range_to_varying (&vr0);
2054
2055 /* If VR0 is UNDEFINED, so is the result. */
2056 if (vr0.type == VR_UNDEFINED)
2057 {
2058 set_value_range_to_undefined (vr);
2059 return;
2060 }
2061
2062 /* Refuse to operate on symbolic ranges, or if neither operand is
2063 a pointer or integral type. */
2064 if ((!INTEGRAL_TYPE_P (TREE_TYPE (op0))
2065 && !POINTER_TYPE_P (TREE_TYPE (op0)))
2066 || (vr0.type != VR_VARYING
2067 && symbolic_range_p (&vr0)))
2068 {
2069 set_value_range_to_varying (vr);
2070 return;
2071 }
2072
2073 /* If the expression involves pointers, we are only interested in
2074 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
2075 if (POINTER_TYPE_P (TREE_TYPE (expr)) || POINTER_TYPE_P (TREE_TYPE (op0)))
2076 {
2077 bool sop;
2078
2079 sop = false;
2080 if (range_is_nonnull (&vr0)
2081 || (tree_expr_nonzero_warnv_p (expr, &sop)
2082 && !sop))
2083 set_value_range_to_nonnull (vr, TREE_TYPE (expr));
2084 else if (range_is_null (&vr0))
2085 set_value_range_to_null (vr, TREE_TYPE (expr));
2086 else
2087 set_value_range_to_varying (vr);
2088
2089 return;
2090 }
2091
2092 /* Handle unary expressions on integer ranges. */
2093 if (code == NOP_EXPR || code == CONVERT_EXPR)
2094 {
2095 tree inner_type = TREE_TYPE (op0);
2096 tree outer_type = TREE_TYPE (expr);
2097
2098 /* If VR0 represents a simple range, then try to convert
2099 the min and max values for the range to the same type
2100 as OUTER_TYPE. If the results compare equal to VR0's
2101 min and max values and the new min is still less than
2102 or equal to the new max, then we can safely use the newly
2103 computed range for EXPR. This allows us to compute
2104 accurate ranges through many casts. */
2105 if ((vr0.type == VR_RANGE
2106 && !overflow_infinity_range_p (&vr0))
2107 || (vr0.type == VR_VARYING
2108 && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)))
2109 {
2110 tree new_min, new_max, orig_min, orig_max;
2111
2112 /* Convert the input operand min/max to OUTER_TYPE. If
2113 the input has no range information, then use the min/max
2114 for the input's type. */
2115 if (vr0.type == VR_RANGE)
2116 {
2117 orig_min = vr0.min;
2118 orig_max = vr0.max;
2119 }
2120 else
2121 {
2122 orig_min = TYPE_MIN_VALUE (inner_type);
2123 orig_max = TYPE_MAX_VALUE (inner_type);
2124 }
2125
2126 new_min = fold_convert (outer_type, orig_min);
2127 new_max = fold_convert (outer_type, orig_max);
2128
2129 /* Verify the new min/max values are gimple values and
2130 that they compare equal to the original input's
2131 min/max values. */
2132 if (is_gimple_val (new_min)
2133 && is_gimple_val (new_max)
2134 && tree_int_cst_equal (new_min, orig_min)
2135 && tree_int_cst_equal (new_max, orig_max)
2136 && (cmp = compare_values (new_min, new_max)) <= 0
2137 && cmp >= -1)
2138 {
2139 set_value_range (vr, VR_RANGE, new_min, new_max, vr->equiv);
2140 return;
2141 }
2142 }
2143
2144 /* When converting types of different sizes, set the result to
2145 VARYING. Things like sign extensions and precision loss may
2146 change the range. For instance, if x_3 is of type 'long long
2147 int' and 'y_5 = (unsigned short) x_3', if x_3 is ~[0, 0], it
2148 is impossible to know at compile time whether y_5 will be
2149 ~[0, 0]. */
2150 if (TYPE_SIZE (inner_type) != TYPE_SIZE (outer_type)
2151 || TYPE_PRECISION (inner_type) != TYPE_PRECISION (outer_type))
2152 {
2153 set_value_range_to_varying (vr);
2154 return;
2155 }
2156 }
2157
2158 /* Conversion of a VR_VARYING value to a wider type can result
2159 in a usable range. So wait until after we've handled conversions
2160 before dropping the result to VR_VARYING if we had a source
2161 operand that is VR_VARYING. */
2162 if (vr0.type == VR_VARYING)
2163 {
2164 set_value_range_to_varying (vr);
2165 return;
2166 }
2167
2168 /* Apply the operation to each end of the range and see what we end
2169 up with. */
2170 if (code == NEGATE_EXPR
2171 && !TYPE_UNSIGNED (TREE_TYPE (expr)))
2172 {
2173 /* NEGATE_EXPR flips the range around. We need to treat
2174 TYPE_MIN_VALUE specially. */
2175 if (is_positive_overflow_infinity (vr0.max))
2176 min = negative_overflow_infinity (TREE_TYPE (expr));
2177 else if (is_negative_overflow_infinity (vr0.max))
2178 min = positive_overflow_infinity (TREE_TYPE (expr));
2179 else if (vr0.max != TYPE_MIN_VALUE (TREE_TYPE (expr)))
2180 min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
2181 else if (needs_overflow_infinity (TREE_TYPE (expr)))
2182 {
2183 if (supports_overflow_infinity (TREE_TYPE (expr)))
2184 min = positive_overflow_infinity (TREE_TYPE (expr));
2185 else
2186 {
2187 set_value_range_to_varying (vr);
2188 return;
2189 }
2190 }
2191 else
2192 min = TYPE_MIN_VALUE (TREE_TYPE (expr));
2193
2194 if (is_positive_overflow_infinity (vr0.min))
2195 max = negative_overflow_infinity (TREE_TYPE (expr));
2196 else if (is_negative_overflow_infinity (vr0.min))
2197 max = positive_overflow_infinity (TREE_TYPE (expr));
2198 else if (vr0.min != TYPE_MIN_VALUE (TREE_TYPE (expr)))
2199 max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
2200 else if (needs_overflow_infinity (TREE_TYPE (expr)))
2201 {
2202 if (supports_overflow_infinity (TREE_TYPE (expr)))
2203 max = positive_overflow_infinity (TREE_TYPE (expr));
2204 else
2205 {
2206 set_value_range_to_varying (vr);
2207 return;
2208 }
2209 }
2210 else
2211 max = TYPE_MIN_VALUE (TREE_TYPE (expr));
2212 }
2213 else if (code == NEGATE_EXPR
2214 && TYPE_UNSIGNED (TREE_TYPE (expr)))
2215 {
2216 if (!range_includes_zero_p (&vr0))
2217 {
2218 max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
2219 min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
2220 }
2221 else
2222 {
2223 if (range_is_null (&vr0))
2224 set_value_range_to_null (vr, TREE_TYPE (expr));
2225 else
2226 set_value_range_to_varying (vr);
2227 return;
2228 }
2229 }
2230 else if (code == ABS_EXPR
2231 && !TYPE_UNSIGNED (TREE_TYPE (expr)))
2232 {
2233 /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
2234 useful range. */
2235 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (expr))
2236 && ((vr0.type == VR_RANGE
2237 && vr0.min == TYPE_MIN_VALUE (TREE_TYPE (expr)))
2238 || (vr0.type == VR_ANTI_RANGE
2239 && vr0.min != TYPE_MIN_VALUE (TREE_TYPE (expr))
2240 && !range_includes_zero_p (&vr0))))
2241 {
2242 set_value_range_to_varying (vr);
2243 return;
2244 }
2245
2246 /* ABS_EXPR may flip the range around, if the original range
2247 included negative values. */
2248 if (is_overflow_infinity (vr0.min))
2249 min = positive_overflow_infinity (TREE_TYPE (expr));
2250 else if (vr0.min != TYPE_MIN_VALUE (TREE_TYPE (expr)))
2251 min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
2252 else if (!needs_overflow_infinity (TREE_TYPE (expr)))
2253 min = TYPE_MAX_VALUE (TREE_TYPE (expr));
2254 else if (supports_overflow_infinity (TREE_TYPE (expr)))
2255 min = positive_overflow_infinity (TREE_TYPE (expr));
2256 else
2257 {
2258 set_value_range_to_varying (vr);
2259 return;
2260 }
2261
2262 if (is_overflow_infinity (vr0.max))
2263 max = positive_overflow_infinity (TREE_TYPE (expr));
2264 else if (vr0.max != TYPE_MIN_VALUE (TREE_TYPE (expr)))
2265 max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
2266 else if (!needs_overflow_infinity (TREE_TYPE (expr)))
2267 max = TYPE_MAX_VALUE (TREE_TYPE (expr));
2268 else if (supports_overflow_infinity (TREE_TYPE (expr)))
2269 max = positive_overflow_infinity (TREE_TYPE (expr));
2270 else
2271 {
2272 set_value_range_to_varying (vr);
2273 return;
2274 }
2275
2276 cmp = compare_values (min, max);
2277
2278 /* If a VR_ANTI_RANGEs contains zero, then we have
2279 ~[-INF, min(MIN, MAX)]. */
2280 if (vr0.type == VR_ANTI_RANGE)
2281 {
2282 if (range_includes_zero_p (&vr0))
2283 {
2284 /* Take the lower of the two values. */
2285 if (cmp != 1)
2286 max = min;
2287
2288 /* Create ~[-INF, min (abs(MIN), abs(MAX))]
2289 or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
2290 flag_wrapv is set and the original anti-range doesn't include
2291 TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
2292 if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (expr)))
2293 {
2294 tree type_min_value = TYPE_MIN_VALUE (TREE_TYPE (expr));
2295
2296 min = (vr0.min != type_min_value
2297 ? int_const_binop (PLUS_EXPR, type_min_value,
2298 integer_one_node, 0)
2299 : type_min_value);
2300 }
2301 else
2302 {
2303 if (overflow_infinity_range_p (&vr0))
2304 min = negative_overflow_infinity (TREE_TYPE (expr));
2305 else
2306 min = TYPE_MIN_VALUE (TREE_TYPE (expr));
2307 }
2308 }
2309 else
2310 {
2311 /* All else has failed, so create the range [0, INF], even for
2312 flag_wrapv since TYPE_MIN_VALUE is in the original
2313 anti-range. */
2314 vr0.type = VR_RANGE;
2315 min = build_int_cst (TREE_TYPE (expr), 0);
2316 if (needs_overflow_infinity (TREE_TYPE (expr)))
2317 {
2318 if (supports_overflow_infinity (TREE_TYPE (expr)))
2319 max = positive_overflow_infinity (TREE_TYPE (expr));
2320 else
2321 {
2322 set_value_range_to_varying (vr);
2323 return;
2324 }
2325 }
2326 else
2327 max = TYPE_MAX_VALUE (TREE_TYPE (expr));
2328 }
2329 }
2330
2331 /* If the range contains zero then we know that the minimum value in the
2332 range will be zero. */
2333 else if (range_includes_zero_p (&vr0))
2334 {
2335 if (cmp == 1)
2336 max = min;
2337 min = build_int_cst (TREE_TYPE (expr), 0);
2338 }
2339 else
2340 {
2341 /* If the range was reversed, swap MIN and MAX. */
2342 if (cmp == 1)
2343 {
2344 tree t = min;
2345 min = max;
2346 max = t;
2347 }
2348 }
2349 }
2350 else
2351 {
2352 /* Otherwise, operate on each end of the range. */
2353 min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
2354 max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
2355
2356 if (needs_overflow_infinity (TREE_TYPE (expr)))
2357 {
2358 gcc_assert (code != NEGATE_EXPR && code != ABS_EXPR);
2359 if (is_overflow_infinity (vr0.min))
2360 min = vr0.min;
2361 else if (TREE_OVERFLOW (min))
2362 {
2363 if (supports_overflow_infinity (TREE_TYPE (expr)))
2364 min = (tree_int_cst_sgn (min) >= 0
2365 ? positive_overflow_infinity (TREE_TYPE (min))
2366 : negative_overflow_infinity (TREE_TYPE (min)));
2367 else
2368 {
2369 set_value_range_to_varying (vr);
2370 return;
2371 }
2372 }
2373
2374 if (is_overflow_infinity (vr0.max))
2375 max = vr0.max;
2376 else if (TREE_OVERFLOW (max))
2377 {
2378 if (supports_overflow_infinity (TREE_TYPE (expr)))
2379 max = (tree_int_cst_sgn (max) >= 0
2380 ? positive_overflow_infinity (TREE_TYPE (max))
2381 : negative_overflow_infinity (TREE_TYPE (max)));
2382 else
2383 {
2384 set_value_range_to_varying (vr);
2385 return;
2386 }
2387 }
2388 }
2389 }
2390
2391 cmp = compare_values (min, max);
2392 if (cmp == -2 || cmp == 1)
2393 {
2394 /* If the new range has its limits swapped around (MIN > MAX),
2395 then the operation caused one of them to wrap around, mark
2396 the new range VARYING. */
2397 set_value_range_to_varying (vr);
2398 }
2399 else
2400 set_value_range (vr, vr0.type, min, max, NULL);
2401 }
2402
2403
2404 /* Extract range information from a conditional expression EXPR based on
2405 the ranges of each of its operands and the expression code. */
2406
2407 static void
2408 extract_range_from_cond_expr (value_range_t *vr, tree expr)
2409 {
2410 tree op0, op1;
2411 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2412 value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2413
2414 /* Get value ranges for each operand. For constant operands, create
2415 a new value range with the operand to simplify processing. */
2416 op0 = COND_EXPR_THEN (expr);
2417 if (TREE_CODE (op0) == SSA_NAME)
2418 vr0 = *(get_value_range (op0));
2419 else if (is_gimple_min_invariant (op0))
2420 set_value_range (&vr0, VR_RANGE, op0, op0, NULL);
2421 else
2422 set_value_range_to_varying (&vr0);
2423
2424 op1 = COND_EXPR_ELSE (expr);
2425 if (TREE_CODE (op1) == SSA_NAME)
2426 vr1 = *(get_value_range (op1));
2427 else if (is_gimple_min_invariant (op1))
2428 set_value_range (&vr1, VR_RANGE, op1, op1, NULL);
2429 else
2430 set_value_range_to_varying (&vr1);
2431
2432 /* The resulting value range is the union of the operand ranges */
2433 vrp_meet (&vr0, &vr1);
2434 copy_value_range (vr, &vr0);
2435 }
2436
2437
2438 /* Extract range information from a comparison expression EXPR based
2439 on the range of its operand and the expression code. */
2440
2441 static void
2442 extract_range_from_comparison (value_range_t *vr, tree expr)
2443 {
2444 bool sop = false;
2445 tree val = vrp_evaluate_conditional_warnv (expr, false, &sop);
2446
2447 /* A disadvantage of using a special infinity as an overflow
2448 representation is that we lose the ability to record overflow
2449 when we don't have an infinity. So we have to ignore a result
2450 which relies on overflow. */
2451
2452 if (val && !is_overflow_infinity (val) && !sop)
2453 {
2454 /* Since this expression was found on the RHS of an assignment,
2455 its type may be different from _Bool. Convert VAL to EXPR's
2456 type. */
2457 val = fold_convert (TREE_TYPE (expr), val);
2458 set_value_range (vr, VR_RANGE, val, val, vr->equiv);
2459 }
2460 else
2461 /* The result of a comparison is always true or false. */
2462 set_value_range_to_truthvalue (vr, TREE_TYPE (expr));
2463 }
2464
2465
2466 /* Try to compute a useful range out of expression EXPR and store it
2467 in *VR. */
2468
2469 static void
2470 extract_range_from_expr (value_range_t *vr, tree expr)
2471 {
2472 enum tree_code code = TREE_CODE (expr);
2473
2474 if (code == ASSERT_EXPR)
2475 extract_range_from_assert (vr, expr);
2476 else if (code == SSA_NAME)
2477 extract_range_from_ssa_name (vr, expr);
2478 else if (TREE_CODE_CLASS (code) == tcc_binary
2479 || code == TRUTH_ANDIF_EXPR
2480 || code == TRUTH_ORIF_EXPR
2481 || code == TRUTH_AND_EXPR
2482 || code == TRUTH_OR_EXPR
2483 || code == TRUTH_XOR_EXPR)
2484 extract_range_from_binary_expr (vr, expr);
2485 else if (TREE_CODE_CLASS (code) == tcc_unary)
2486 extract_range_from_unary_expr (vr, expr);
2487 else if (code == COND_EXPR)
2488 extract_range_from_cond_expr (vr, expr);
2489 else if (TREE_CODE_CLASS (code) == tcc_comparison)
2490 extract_range_from_comparison (vr, expr);
2491 else if (is_gimple_min_invariant (expr))
2492 set_value_range (vr, VR_RANGE, expr, expr, NULL);
2493 else
2494 set_value_range_to_varying (vr);
2495
2496 /* If we got a varying range from the tests above, try a final
2497 time to derive a nonnegative or nonzero range. This time
2498 relying primarily on generic routines in fold in conjunction
2499 with range data. */
2500 if (vr->type == VR_VARYING)
2501 {
2502 bool sop = false;
2503
2504 if (INTEGRAL_TYPE_P (TREE_TYPE (expr))
2505 && vrp_expr_computes_nonnegative (expr, &sop))
2506 set_value_range_to_nonnegative (vr, TREE_TYPE (expr),
2507 sop || is_overflow_infinity (expr));
2508 else if (vrp_expr_computes_nonzero (expr, &sop)
2509 && !sop)
2510 set_value_range_to_nonnull (vr, TREE_TYPE (expr));
2511 }
2512 }
2513
2514 /* Given a range VR, a LOOP and a variable VAR, determine whether it
2515 would be profitable to adjust VR using scalar evolution information
2516 for VAR. If so, update VR with the new limits. */
2517
2518 static void
2519 adjust_range_with_scev (value_range_t *vr, struct loop *loop, tree stmt,
2520 tree var)
2521 {
2522 tree init, step, chrec, tmin, tmax, min, max, type;
2523 enum ev_direction dir;
2524
2525 /* TODO. Don't adjust anti-ranges. An anti-range may provide
2526 better opportunities than a regular range, but I'm not sure. */
2527 if (vr->type == VR_ANTI_RANGE)
2528 return;
2529
2530 chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));
2531 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
2532 return;
2533
2534 init = initial_condition_in_loop_num (chrec, loop->num);
2535 step = evolution_part_in_loop_num (chrec, loop->num);
2536
2537 /* If STEP is symbolic, we can't know whether INIT will be the
2538 minimum or maximum value in the range. Also, unless INIT is
2539 a simple expression, compare_values and possibly other functions
2540 in tree-vrp won't be able to handle it. */
2541 if (step == NULL_TREE
2542 || !is_gimple_min_invariant (step)
2543 || !valid_value_p (init))
2544 return;
2545
2546 dir = scev_direction (chrec);
2547 if (/* Do not adjust ranges if we do not know whether the iv increases
2548 or decreases, ... */
2549 dir == EV_DIR_UNKNOWN
2550 /* ... or if it may wrap. */
2551 || scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
2552 true))
2553 return;
2554
2555 /* We use TYPE_MIN_VALUE and TYPE_MAX_VALUE here instead of
2556 negative_overflow_infinity and positive_overflow_infinity,
2557 because we have concluded that the loop probably does not
2558 wrap. */
2559
2560 type = TREE_TYPE (var);
2561 if (POINTER_TYPE_P (type) || !TYPE_MIN_VALUE (type))
2562 tmin = lower_bound_in_type (type, type);
2563 else
2564 tmin = TYPE_MIN_VALUE (type);
2565 if (POINTER_TYPE_P (type) || !TYPE_MAX_VALUE (type))
2566 tmax = upper_bound_in_type (type, type);
2567 else
2568 tmax = TYPE_MAX_VALUE (type);
2569
2570 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
2571 {
2572 min = tmin;
2573 max = tmax;
2574
2575 /* For VARYING or UNDEFINED ranges, just about anything we get
2576 from scalar evolutions should be better. */
2577
2578 if (dir == EV_DIR_DECREASES)
2579 max = init;
2580 else
2581 min = init;
2582
2583 /* If we would create an invalid range, then just assume we
2584 know absolutely nothing. This may be over-conservative,
2585 but it's clearly safe, and should happen only in unreachable
2586 parts of code, or for invalid programs. */
2587 if (compare_values (min, max) == 1)
2588 return;
2589
2590 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
2591 }
2592 else if (vr->type == VR_RANGE)
2593 {
2594 min = vr->min;
2595 max = vr->max;
2596
2597 if (dir == EV_DIR_DECREASES)
2598 {
2599 /* INIT is the maximum value. If INIT is lower than VR->MAX
2600 but no smaller than VR->MIN, set VR->MAX to INIT. */
2601 if (compare_values (init, max) == -1)
2602 {
2603 max = init;
2604
2605 /* If we just created an invalid range with the minimum
2606 greater than the maximum, we fail conservatively.
2607 This should happen only in unreachable
2608 parts of code, or for invalid programs. */
2609 if (compare_values (min, max) == 1)
2610 return;
2611 }
2612 }
2613 else
2614 {
2615 /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
2616 if (compare_values (init, min) == 1)
2617 {
2618 min = init;
2619
2620 /* Again, avoid creating invalid range by failing. */
2621 if (compare_values (min, max) == 1)
2622 return;
2623 }
2624 }
2625
2626 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
2627 }
2628 }
2629
2630
2631 /* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
2632
2633 - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
2634 all the values in the ranges.
2635
2636 - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
2637
2638 - Return NULL_TREE if it is not always possible to determine the
2639 value of the comparison.
2640
2641 Also set *STRICT_OVERFLOW_P to indicate whether a range with an
2642 overflow infinity was used in the test. */
2643
2644
2645 static tree
2646 compare_ranges (enum tree_code comp, value_range_t *vr0, value_range_t *vr1,
2647 bool *strict_overflow_p)
2648 {
2649 /* VARYING or UNDEFINED ranges cannot be compared. */
2650 if (vr0->type == VR_VARYING
2651 || vr0->type == VR_UNDEFINED
2652 || vr1->type == VR_VARYING
2653 || vr1->type == VR_UNDEFINED)
2654 return NULL_TREE;
2655
2656 /* Anti-ranges need to be handled separately. */
2657 if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
2658 {
2659 /* If both are anti-ranges, then we cannot compute any
2660 comparison. */
2661 if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
2662 return NULL_TREE;
2663
2664 /* These comparisons are never statically computable. */
2665 if (comp == GT_EXPR
2666 || comp == GE_EXPR
2667 || comp == LT_EXPR
2668 || comp == LE_EXPR)
2669 return NULL_TREE;
2670
2671 /* Equality can be computed only between a range and an
2672 anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
2673 if (vr0->type == VR_RANGE)
2674 {
2675 /* To simplify processing, make VR0 the anti-range. */
2676 value_range_t *tmp = vr0;
2677 vr0 = vr1;
2678 vr1 = tmp;
2679 }
2680
2681 gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);
2682
2683 if (compare_values_warnv (vr0->min, vr1->min, strict_overflow_p) == 0
2684 && compare_values_warnv (vr0->max, vr1->max, strict_overflow_p) == 0)
2685 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
2686
2687 return NULL_TREE;
2688 }
2689
2690 if (!usable_range_p (vr0, strict_overflow_p)
2691 || !usable_range_p (vr1, strict_overflow_p))
2692 return NULL_TREE;
2693
2694 /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
2695 operands around and change the comparison code. */
2696 if (comp == GT_EXPR || comp == GE_EXPR)
2697 {
2698 value_range_t *tmp;
2699 comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
2700 tmp = vr0;
2701 vr0 = vr1;
2702 vr1 = tmp;
2703 }
2704
2705 if (comp == EQ_EXPR)
2706 {
2707 /* Equality may only be computed if both ranges represent
2708 exactly one value. */
2709 if (compare_values_warnv (vr0->min, vr0->max, strict_overflow_p) == 0
2710 && compare_values_warnv (vr1->min, vr1->max, strict_overflow_p) == 0)
2711 {
2712 int cmp_min = compare_values_warnv (vr0->min, vr1->min,
2713 strict_overflow_p);
2714 int cmp_max = compare_values_warnv (vr0->max, vr1->max,
2715 strict_overflow_p);
2716 if (cmp_min == 0 && cmp_max == 0)
2717 return boolean_true_node;
2718 else if (cmp_min != -2 && cmp_max != -2)
2719 return boolean_false_node;
2720 }
2721 /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
2722 else if (compare_values_warnv (vr0->min, vr1->max,
2723 strict_overflow_p) == 1
2724 || compare_values_warnv (vr1->min, vr0->max,
2725 strict_overflow_p) == 1)
2726 return boolean_false_node;
2727
2728 return NULL_TREE;
2729 }
2730 else if (comp == NE_EXPR)
2731 {
2732 int cmp1, cmp2;
2733
2734 /* If VR0 is completely to the left or completely to the right
2735 of VR1, they are always different. Notice that we need to
2736 make sure that both comparisons yield similar results to
2737 avoid comparing values that cannot be compared at
2738 compile-time. */
2739 cmp1 = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
2740 cmp2 = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
2741 if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
2742 return boolean_true_node;
2743
2744 /* If VR0 and VR1 represent a single value and are identical,
2745 return false. */
2746 else if (compare_values_warnv (vr0->min, vr0->max,
2747 strict_overflow_p) == 0
2748 && compare_values_warnv (vr1->min, vr1->max,
2749 strict_overflow_p) == 0
2750 && compare_values_warnv (vr0->min, vr1->min,
2751 strict_overflow_p) == 0
2752 && compare_values_warnv (vr0->max, vr1->max,
2753 strict_overflow_p) == 0)
2754 return boolean_false_node;
2755
2756 /* Otherwise, they may or may not be different. */
2757 else
2758 return NULL_TREE;
2759 }
2760 else if (comp == LT_EXPR || comp == LE_EXPR)
2761 {
2762 int tst;
2763
2764 /* If VR0 is to the left of VR1, return true. */
2765 tst = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
2766 if ((comp == LT_EXPR && tst == -1)
2767 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
2768 {
2769 if (overflow_infinity_range_p (vr0)
2770 || overflow_infinity_range_p (vr1))
2771 *strict_overflow_p = true;
2772 return boolean_true_node;
2773 }
2774
2775 /* If VR0 is to the right of VR1, return false. */
2776 tst = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
2777 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
2778 || (comp == LE_EXPR && tst == 1))
2779 {
2780 if (overflow_infinity_range_p (vr0)
2781 || overflow_infinity_range_p (vr1))
2782 *strict_overflow_p = true;
2783 return boolean_false_node;
2784 }
2785
2786 /* Otherwise, we don't know. */
2787 return NULL_TREE;
2788 }
2789
2790 gcc_unreachable ();
2791 }
2792
2793
2794 /* Given a value range VR, a value VAL and a comparison code COMP, return
2795 BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
2796 values in VR. Return BOOLEAN_FALSE_NODE if the comparison
2797 always returns false. Return NULL_TREE if it is not always
2798 possible to determine the value of the comparison. Also set
2799 *STRICT_OVERFLOW_P to indicate whether a range with an overflow
2800 infinity was used in the test. */
2801
2802 static tree
2803 compare_range_with_value (enum tree_code comp, value_range_t *vr, tree val,
2804 bool *strict_overflow_p)
2805 {
2806 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
2807 return NULL_TREE;
2808
2809 /* Anti-ranges need to be handled separately. */
2810 if (vr->type == VR_ANTI_RANGE)
2811 {
2812 /* For anti-ranges, the only predicates that we can compute at
2813 compile time are equality and inequality. */
2814 if (comp == GT_EXPR
2815 || comp == GE_EXPR
2816 || comp == LT_EXPR
2817 || comp == LE_EXPR)
2818 return NULL_TREE;
2819
2820 /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
2821 if (value_inside_range (val, vr) == 1)
2822 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
2823
2824 return NULL_TREE;
2825 }
2826
2827 if (!usable_range_p (vr, strict_overflow_p))
2828 return NULL_TREE;
2829
2830 if (comp == EQ_EXPR)
2831 {
2832 /* EQ_EXPR may only be computed if VR represents exactly
2833 one value. */
2834 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0)
2835 {
2836 int cmp = compare_values_warnv (vr->min, val, strict_overflow_p);
2837 if (cmp == 0)
2838 return boolean_true_node;
2839 else if (cmp == -1 || cmp == 1 || cmp == 2)
2840 return boolean_false_node;
2841 }
2842 else if (compare_values_warnv (val, vr->min, strict_overflow_p) == -1
2843 || compare_values_warnv (vr->max, val, strict_overflow_p) == -1)
2844 return boolean_false_node;
2845
2846 return NULL_TREE;
2847 }
2848 else if (comp == NE_EXPR)
2849 {
2850 /* If VAL is not inside VR, then they are always different. */
2851 if (compare_values_warnv (vr->max, val, strict_overflow_p) == -1
2852 || compare_values_warnv (vr->min, val, strict_overflow_p) == 1)
2853 return boolean_true_node;
2854
2855 /* If VR represents exactly one value equal to VAL, then return
2856 false. */
2857 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0
2858 && compare_values_warnv (vr->min, val, strict_overflow_p) == 0)
2859 return boolean_false_node;
2860
2861 /* Otherwise, they may or may not be different. */
2862 return NULL_TREE;
2863 }
2864 else if (comp == LT_EXPR || comp == LE_EXPR)
2865 {
2866 int tst;
2867
2868 /* If VR is to the left of VAL, return true. */
2869 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
2870 if ((comp == LT_EXPR && tst == -1)
2871 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
2872 {
2873 if (overflow_infinity_range_p (vr))
2874 *strict_overflow_p = true;
2875 return boolean_true_node;
2876 }
2877
2878 /* If VR is to the right of VAL, return false. */
2879 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
2880 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
2881 || (comp == LE_EXPR && tst == 1))
2882 {
2883 if (overflow_infinity_range_p (vr))
2884 *strict_overflow_p = true;
2885 return boolean_false_node;
2886 }
2887
2888 /* Otherwise, we don't know. */
2889 return NULL_TREE;
2890 }
2891 else if (comp == GT_EXPR || comp == GE_EXPR)
2892 {
2893 int tst;
2894
2895 /* If VR is to the right of VAL, return true. */
2896 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
2897 if ((comp == GT_EXPR && tst == 1)
2898 || (comp == GE_EXPR && (tst == 0 || tst == 1)))
2899 {
2900 if (overflow_infinity_range_p (vr))
2901 *strict_overflow_p = true;
2902 return boolean_true_node;
2903 }
2904
2905 /* If VR is to the left of VAL, return false. */
2906 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
2907 if ((comp == GT_EXPR && (tst == -1 || tst == 0))
2908 || (comp == GE_EXPR && tst == -1))
2909 {
2910 if (overflow_infinity_range_p (vr))
2911 *strict_overflow_p = true;
2912 return boolean_false_node;
2913 }
2914
2915 /* Otherwise, we don't know. */
2916 return NULL_TREE;
2917 }
2918
2919 gcc_unreachable ();
2920 }
2921
2922
2923 /* Debugging dumps. */
2924
2925 void dump_value_range (FILE *, value_range_t *);
2926 void debug_value_range (value_range_t *);
2927 void dump_all_value_ranges (FILE *);
2928 void debug_all_value_ranges (void);
2929 void dump_vr_equiv (FILE *, bitmap);
2930 void debug_vr_equiv (bitmap);
2931
2932
2933 /* Dump value range VR to FILE. */
2934
2935 void
2936 dump_value_range (FILE *file, value_range_t *vr)
2937 {
2938 if (vr == NULL)
2939 fprintf (file, "[]");
2940 else if (vr->type == VR_UNDEFINED)
2941 fprintf (file, "UNDEFINED");
2942 else if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
2943 {
2944 tree type = TREE_TYPE (vr->min);
2945
2946 fprintf (file, "%s[", (vr->type == VR_ANTI_RANGE) ? "~" : "");
2947
2948 if (INTEGRAL_TYPE_P (type)
2949 && !TYPE_UNSIGNED (type)
2950 && vr->min == TYPE_MIN_VALUE (type))
2951 fprintf (file, "-INF");
2952 else if (needs_overflow_infinity (type)
2953 && is_negative_overflow_infinity (vr->min))
2954 fprintf (file, "-INF(OVF)");
2955 else
2956 print_generic_expr (file, vr->min, 0);
2957
2958 fprintf (file, ", ");
2959
2960 if (INTEGRAL_TYPE_P (type)
2961 && vr->max == TYPE_MAX_VALUE (type))
2962 fprintf (file, "+INF");
2963 else if (needs_overflow_infinity (type)
2964 && is_positive_overflow_infinity (vr->max))
2965 fprintf (file, "+INF(OVF)");
2966 else
2967 print_generic_expr (file, vr->max, 0);
2968
2969 fprintf (file, "]");
2970
2971 if (vr->equiv)
2972 {
2973 bitmap_iterator bi;
2974 unsigned i, c = 0;
2975
2976 fprintf (file, " EQUIVALENCES: { ");
2977
2978 EXECUTE_IF_SET_IN_BITMAP (vr->equiv, 0, i, bi)
2979 {
2980 print_generic_expr (file, ssa_name (i), 0);
2981 fprintf (file, " ");
2982 c++;
2983 }
2984
2985 fprintf (file, "} (%u elements)", c);
2986 }
2987 }
2988 else if (vr->type == VR_VARYING)
2989 fprintf (file, "VARYING");
2990 else
2991 fprintf (file, "INVALID RANGE");
2992 }
2993
2994
2995 /* Dump value range VR to stderr. */
2996
2997 void
2998 debug_value_range (value_range_t *vr)
2999 {
3000 dump_value_range (stderr, vr);
3001 fprintf (stderr, "\n");
3002 }
3003
3004
3005 /* Dump value ranges of all SSA_NAMEs to FILE. */
3006
3007 void
3008 dump_all_value_ranges (FILE *file)
3009 {
3010 size_t i;
3011
3012 for (i = 0; i < num_ssa_names; i++)
3013 {
3014 if (vr_value[i])
3015 {
3016 print_generic_expr (file, ssa_name (i), 0);
3017 fprintf (file, ": ");
3018 dump_value_range (file, vr_value[i]);
3019 fprintf (file, "\n");
3020 }
3021 }
3022
3023 fprintf (file, "\n");
3024 }
3025
3026
3027 /* Dump all value ranges to stderr. */
3028
3029 void
3030 debug_all_value_ranges (void)
3031 {
3032 dump_all_value_ranges (stderr);
3033 }
3034
3035
3036 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
3037 create a new SSA name N and return the assertion assignment
3038 'V = ASSERT_EXPR <V, V OP W>'. */
3039
3040 static tree
3041 build_assert_expr_for (tree cond, tree v)
3042 {
3043 tree n, assertion;
3044
3045 gcc_assert (TREE_CODE (v) == SSA_NAME);
3046 n = duplicate_ssa_name (v, NULL_TREE);
3047
3048 if (COMPARISON_CLASS_P (cond))
3049 {
3050 tree a = build2 (ASSERT_EXPR, TREE_TYPE (v), v, cond);
3051 assertion = build_gimple_modify_stmt (n, a);
3052 }
3053 else if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
3054 {
3055 /* Given !V, build the assignment N = false. */
3056 tree op0 = TREE_OPERAND (cond, 0);
3057 gcc_assert (op0 == v);
3058 assertion = build_gimple_modify_stmt (n, boolean_false_node);
3059 }
3060 else if (TREE_CODE (cond) == SSA_NAME)
3061 {
3062 /* Given V, build the assignment N = true. */
3063 gcc_assert (v == cond);
3064 assertion = build_gimple_modify_stmt (n, boolean_true_node);
3065 }
3066 else
3067 gcc_unreachable ();
3068
3069 SSA_NAME_DEF_STMT (n) = assertion;
3070
3071 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
3072 operand of the ASSERT_EXPR. Register the new name and the old one
3073 in the replacement table so that we can fix the SSA web after
3074 adding all the ASSERT_EXPRs. */
3075 register_new_name_mapping (n, v);
3076
3077 return assertion;
3078 }
3079
3080
3081 /* Return false if EXPR is a predicate expression involving floating
3082 point values. */
3083
3084 static inline bool
3085 fp_predicate (tree expr)
3086 {
3087 return (COMPARISON_CLASS_P (expr)
3088 && FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 0))));
3089 }
3090
3091
3092 /* If the range of values taken by OP can be inferred after STMT executes,
3093 return the comparison code (COMP_CODE_P) and value (VAL_P) that
3094 describes the inferred range. Return true if a range could be
3095 inferred. */
3096
3097 static bool
3098 infer_value_range (tree stmt, tree op, enum tree_code *comp_code_p, tree *val_p)
3099 {
3100 *val_p = NULL_TREE;
3101 *comp_code_p = ERROR_MARK;
3102
3103 /* Do not attempt to infer anything in names that flow through
3104 abnormal edges. */
3105 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
3106 return false;
3107
3108 /* Similarly, don't infer anything from statements that may throw
3109 exceptions. */
3110 if (tree_could_throw_p (stmt))
3111 return false;
3112
3113 /* If STMT is the last statement of a basic block with no
3114 successors, there is no point inferring anything about any of its
3115 operands. We would not be able to find a proper insertion point
3116 for the assertion, anyway. */
3117 if (stmt_ends_bb_p (stmt) && EDGE_COUNT (bb_for_stmt (stmt)->succs) == 0)
3118 return false;
3119
3120 /* We can only assume that a pointer dereference will yield
3121 non-NULL if -fdelete-null-pointer-checks is enabled. */
3122 if (flag_delete_null_pointer_checks && POINTER_TYPE_P (TREE_TYPE (op)))
3123 {
3124 unsigned num_uses, num_loads, num_stores;
3125
3126 count_uses_and_derefs (op, stmt, &num_uses, &num_loads, &num_stores);
3127 if (num_loads + num_stores > 0)
3128 {
3129 *val_p = build_int_cst (TREE_TYPE (op), 0);
3130 *comp_code_p = NE_EXPR;
3131 return true;
3132 }
3133 }
3134
3135 return false;
3136 }
3137
3138
3139 void dump_asserts_for (FILE *, tree);
3140 void debug_asserts_for (tree);
3141 void dump_all_asserts (FILE *);
3142 void debug_all_asserts (void);
3143
3144 /* Dump all the registered assertions for NAME to FILE. */
3145
3146 void
3147 dump_asserts_for (FILE *file, tree name)
3148 {
3149 assert_locus_t loc;
3150
3151 fprintf (file, "Assertions to be inserted for ");
3152 print_generic_expr (file, name, 0);
3153 fprintf (file, "\n");
3154
3155 loc = asserts_for[SSA_NAME_VERSION (name)];
3156 while (loc)
3157 {
3158 fprintf (file, "\t");
3159 print_generic_expr (file, bsi_stmt (loc->si), 0);
3160 fprintf (file, "\n\tBB #%d", loc->bb->index);
3161 if (loc->e)
3162 {
3163 fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
3164 loc->e->dest->index);
3165 dump_edge_info (file, loc->e, 0);
3166 }
3167 fprintf (file, "\n\tPREDICATE: ");
3168 print_generic_expr (file, name, 0);
3169 fprintf (file, " %s ", tree_code_name[(int)loc->comp_code]);
3170 print_generic_expr (file, loc->val, 0);
3171 fprintf (file, "\n\n");
3172 loc = loc->next;
3173 }
3174
3175 fprintf (file, "\n");
3176 }
3177
3178
3179 /* Dump all the registered assertions for NAME to stderr. */
3180
3181 void
3182 debug_asserts_for (tree name)
3183 {
3184 dump_asserts_for (stderr, name);
3185 }
3186
3187
3188 /* Dump all the registered assertions for all the names to FILE. */
3189
3190 void
3191 dump_all_asserts (FILE *file)
3192 {
3193 unsigned i;
3194 bitmap_iterator bi;
3195
3196 fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
3197 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
3198 dump_asserts_for (file, ssa_name (i));
3199 fprintf (file, "\n");
3200 }
3201
3202
3203 /* Dump all the registered assertions for all the names to stderr. */
3204
3205 void
3206 debug_all_asserts (void)
3207 {
3208 dump_all_asserts (stderr);
3209 }
3210
3211
3212 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
3213 'NAME COMP_CODE VAL' at a location that dominates block BB or
3214 E->DEST, then register this location as a possible insertion point
3215 for ASSERT_EXPR <NAME, NAME COMP_CODE VAL>.
3216
3217 BB, E and SI provide the exact insertion point for the new
3218 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
3219 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
3220 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
3221 must not be NULL. */
3222
3223 static void
3224 register_new_assert_for (tree name,
3225 enum tree_code comp_code,
3226 tree val,
3227 basic_block bb,
3228 edge e,
3229 block_stmt_iterator si)
3230 {
3231 assert_locus_t n, loc, last_loc;
3232 bool found;
3233 basic_block dest_bb;
3234
3235 #if defined ENABLE_CHECKING
3236 gcc_assert (bb == NULL || e == NULL);
3237
3238 if (e == NULL)
3239 gcc_assert (TREE_CODE (bsi_stmt (si)) != COND_EXPR
3240 && TREE_CODE (bsi_stmt (si)) != SWITCH_EXPR);
3241 #endif
3242
3243 /* The new assertion A will be inserted at BB or E. We need to
3244 determine if the new location is dominated by a previously
3245 registered location for A. If we are doing an edge insertion,
3246 assume that A will be inserted at E->DEST. Note that this is not
3247 necessarily true.
3248
3249 If E is a critical edge, it will be split. But even if E is
3250 split, the new block will dominate the same set of blocks that
3251 E->DEST dominates.
3252
3253 The reverse, however, is not true, blocks dominated by E->DEST
3254 will not be dominated by the new block created to split E. So,
3255 if the insertion location is on a critical edge, we will not use
3256 the new location to move another assertion previously registered
3257 at a block dominated by E->DEST. */
3258 dest_bb = (bb) ? bb : e->dest;
3259
3260 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
3261 VAL at a block dominating DEST_BB, then we don't need to insert a new
3262 one. Similarly, if the same assertion already exists at a block
3263 dominated by DEST_BB and the new location is not on a critical
3264 edge, then update the existing location for the assertion (i.e.,
3265 move the assertion up in the dominance tree).
3266
3267 Note, this is implemented as a simple linked list because there
3268 should not be more than a handful of assertions registered per
3269 name. If this becomes a performance problem, a table hashed by
3270 COMP_CODE and VAL could be implemented. */
3271 loc = asserts_for[SSA_NAME_VERSION (name)];
3272 last_loc = loc;
3273 found = false;
3274 while (loc)
3275 {
3276 if (loc->comp_code == comp_code
3277 && (loc->val == val
3278 || operand_equal_p (loc->val, val, 0)))
3279 {
3280 /* If the assertion NAME COMP_CODE VAL has already been
3281 registered at a basic block that dominates DEST_BB, then
3282 we don't need to insert the same assertion again. Note
3283 that we don't check strict dominance here to avoid
3284 replicating the same assertion inside the same basic
3285 block more than once (e.g., when a pointer is
3286 dereferenced several times inside a block).
3287
3288 An exception to this rule are edge insertions. If the
3289 new assertion is to be inserted on edge E, then it will
3290 dominate all the other insertions that we may want to
3291 insert in DEST_BB. So, if we are doing an edge
3292 insertion, don't do this dominance check. */
3293 if (e == NULL
3294 && dominated_by_p (CDI_DOMINATORS, dest_bb, loc->bb))
3295 return;
3296
3297 /* Otherwise, if E is not a critical edge and DEST_BB
3298 dominates the existing location for the assertion, move
3299 the assertion up in the dominance tree by updating its
3300 location information. */
3301 if ((e == NULL || !EDGE_CRITICAL_P (e))
3302 && dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
3303 {
3304 loc->bb = dest_bb;
3305 loc->e = e;
3306 loc->si = si;
3307 return;
3308 }
3309 }
3310
3311 /* Update the last node of the list and move to the next one. */
3312 last_loc = loc;
3313 loc = loc->next;
3314 }
3315
3316 /* If we didn't find an assertion already registered for
3317 NAME COMP_CODE VAL, add a new one at the end of the list of
3318 assertions associated with NAME. */
3319 n = XNEW (struct assert_locus_d);
3320 n->bb = dest_bb;
3321 n->e = e;
3322 n->si = si;
3323 n->comp_code = comp_code;
3324 n->val = val;
3325 n->next = NULL;
3326
3327 if (last_loc)
3328 last_loc->next = n;
3329 else
3330 asserts_for[SSA_NAME_VERSION (name)] = n;
3331
3332 bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
3333 }
3334
3335 /* COND is a predicate which uses NAME. Extract a suitable test code
3336 and value and store them into *CODE_P and *VAL_P so the predicate
3337 is normalized to NAME *CODE_P *VAL_P.
3338
3339 If no extraction was possible, return FALSE, otherwise return TRUE.
3340
3341 If INVERT is true, then we invert the result stored into *CODE_P. */
3342
3343 static bool
3344 extract_code_and_val_from_cond (tree name, tree cond, bool invert,
3345 enum tree_code *code_p, tree *val_p)
3346 {
3347 enum tree_code comp_code;
3348 tree val;
3349
3350 /* Predicates may be a single SSA name or NAME OP VAL. */
3351 if (cond == name)
3352 {
3353 /* If the predicate is a name, it must be NAME, in which
3354 case we create the predicate NAME == true or
3355 NAME == false accordingly. */
3356 comp_code = EQ_EXPR;
3357 val = invert ? boolean_false_node : boolean_true_node;
3358 }
3359 else
3360 {
3361 /* Otherwise, we have a comparison of the form NAME COMP VAL
3362 or VAL COMP NAME. */
3363 if (name == TREE_OPERAND (cond, 1))
3364 {
3365 /* If the predicate is of the form VAL COMP NAME, flip
3366 COMP around because we need to register NAME as the
3367 first operand in the predicate. */
3368 comp_code = swap_tree_comparison (TREE_CODE (cond));
3369 val = TREE_OPERAND (cond, 0);
3370 }
3371 else
3372 {
3373 /* The comparison is of the form NAME COMP VAL, so the
3374 comparison code remains unchanged. */
3375 comp_code = TREE_CODE (cond);
3376 val = TREE_OPERAND (cond, 1);
3377 }
3378
3379 /* Invert the comparison code as necessary. */
3380 if (invert)
3381 comp_code = invert_tree_comparison (comp_code, 0);
3382
3383 /* VRP does not handle float types. */
3384 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (val)))
3385 return false;
3386
3387 /* Do not register always-false predicates.
3388 FIXME: this works around a limitation in fold() when dealing with
3389 enumerations. Given 'enum { N1, N2 } x;', fold will not
3390 fold 'if (x > N2)' to 'if (0)'. */
3391 if ((comp_code == GT_EXPR || comp_code == LT_EXPR)
3392 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
3393 {
3394 tree min = TYPE_MIN_VALUE (TREE_TYPE (val));
3395 tree max = TYPE_MAX_VALUE (TREE_TYPE (val));
3396
3397 if (comp_code == GT_EXPR
3398 && (!max
3399 || compare_values (val, max) == 0))
3400 return false;
3401
3402 if (comp_code == LT_EXPR
3403 && (!min
3404 || compare_values (val, min) == 0))
3405 return false;
3406 }
3407 }
3408 *code_p = comp_code;
3409 *val_p = val;
3410 return true;
3411 }
3412
3413 /* OP is an operand of a truth value expression which is known to have
3414 a particular value. Register any asserts for OP and for any
3415 operands in OP's defining statement.
3416
3417 If CODE is EQ_EXPR, then we want to register OP is zero (false),
3418 if CODE is NE_EXPR, then we want to register OP is nonzero (true). */
3419
3420 static bool
3421 register_edge_assert_for_1 (tree op, enum tree_code code,
3422 edge e, block_stmt_iterator bsi)
3423 {
3424 bool retval = false;
3425 tree op_def, rhs, val;
3426
3427 /* We only care about SSA_NAMEs. */
3428 if (TREE_CODE (op) != SSA_NAME)
3429 return false;
3430
3431 /* We know that OP will have a zero or nonzero value. If OP is used
3432 more than once go ahead and register an assert for OP.
3433
3434 The FOUND_IN_SUBGRAPH support is not helpful in this situation as
3435 it will always be set for OP (because OP is used in a COND_EXPR in
3436 the subgraph). */
3437 if (!has_single_use (op))
3438 {
3439 val = build_int_cst (TREE_TYPE (op), 0);
3440 register_new_assert_for (op, code, val, NULL, e, bsi);
3441 retval = true;
3442 }
3443
3444 /* Now look at how OP is set. If it's set from a comparison,
3445 a truth operation or some bit operations, then we may be able
3446 to register information about the operands of that assignment. */
3447 op_def = SSA_NAME_DEF_STMT (op);
3448 if (TREE_CODE (op_def) != GIMPLE_MODIFY_STMT)
3449 return retval;
3450
3451 rhs = GIMPLE_STMT_OPERAND (op_def, 1);
3452
3453 if (COMPARISON_CLASS_P (rhs))
3454 {
3455 bool invert = (code == EQ_EXPR ? true : false);
3456 tree op0 = TREE_OPERAND (rhs, 0);
3457 tree op1 = TREE_OPERAND (rhs, 1);
3458
3459 /* Conditionally register an assert for each SSA_NAME in the
3460 comparison. */
3461 if (TREE_CODE (op0) == SSA_NAME
3462 && !has_single_use (op0)
3463 && extract_code_and_val_from_cond (op0, rhs,
3464 invert, &code, &val))
3465 {
3466 register_new_assert_for (op0, code, val, NULL, e, bsi);
3467 retval = true;
3468 }
3469
3470 /* Similarly for the second operand of the comparison. */
3471 if (TREE_CODE (op1) == SSA_NAME
3472 && !has_single_use (op1)
3473 && extract_code_and_val_from_cond (op1, rhs,
3474 invert, &code, &val))
3475 {
3476 register_new_assert_for (op1, code, val, NULL, e, bsi);
3477 retval = true;
3478 }
3479 }
3480 else if ((code == NE_EXPR
3481 && (TREE_CODE (rhs) == TRUTH_AND_EXPR
3482 || TREE_CODE (rhs) == BIT_AND_EXPR))
3483 || (code == EQ_EXPR
3484 && (TREE_CODE (rhs) == TRUTH_OR_EXPR
3485 || TREE_CODE (rhs) == BIT_IOR_EXPR)))
3486 {
3487 /* Recurse on each operand. */
3488 retval |= register_edge_assert_for_1 (TREE_OPERAND (rhs, 0),
3489 code, e, bsi);
3490 retval |= register_edge_assert_for_1 (TREE_OPERAND (rhs, 1),
3491 code, e, bsi);
3492 }
3493 else if (TREE_CODE (rhs) == TRUTH_NOT_EXPR)
3494 {
3495 /* Recurse, flipping CODE. */
3496 code = invert_tree_comparison (code, false);
3497 retval |= register_edge_assert_for_1 (TREE_OPERAND (rhs, 0),
3498 code, e, bsi);
3499 }
3500 else if (TREE_CODE (rhs) == SSA_NAME)
3501 {
3502 /* Recurse through the copy. */
3503 retval |= register_edge_assert_for_1 (rhs, code, e, bsi);
3504 }
3505 else if (TREE_CODE (rhs) == NOP_EXPR
3506 || TREE_CODE (rhs) == CONVERT_EXPR
3507 || TREE_CODE (rhs) == NON_LVALUE_EXPR)
3508 {
3509 /* Recurse through the type conversion. */
3510 retval |= register_edge_assert_for_1 (TREE_OPERAND (rhs, 0),
3511 code, e, bsi);
3512 }
3513
3514 return retval;
3515 }
3516
3517 /* Try to register an edge assertion for SSA name NAME on edge E for
3518 the condition COND contributing to the conditional jump pointed to by SI.
3519 Return true if an assertion for NAME could be registered. */
3520
3521 static bool
3522 register_edge_assert_for (tree name, edge e, block_stmt_iterator si, tree cond)
3523 {
3524 tree val;
3525 enum tree_code comp_code;
3526 bool retval = false;
3527 bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
3528
3529 /* Do not attempt to infer anything in names that flow through
3530 abnormal edges. */
3531 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
3532 return false;
3533
3534 if (!extract_code_and_val_from_cond (name, cond, is_else_edge,
3535 &comp_code, &val))
3536 return false;
3537
3538 /* Only register an ASSERT_EXPR if NAME was found in the sub-graph
3539 reachable from E. */
3540 if (TEST_BIT (found_in_subgraph, SSA_NAME_VERSION (name)))
3541 {
3542 register_new_assert_for (name, comp_code, val, NULL, e, si);
3543 retval = true;
3544 }
3545
3546 /* If COND is effectively an equality test of an SSA_NAME against
3547 the value zero or one, then we may be able to assert values
3548 for SSA_NAMEs which flow into COND. */
3549
3550 /* In the case of NAME == 1 or NAME != 0, for TRUTH_AND_EXPR defining
3551 statement of NAME we can assert both operands of the TRUTH_AND_EXPR
3552 have nonzero value. */
3553 if (((comp_code == EQ_EXPR && integer_onep (val))
3554 || (comp_code == NE_EXPR && integer_zerop (val))))
3555 {
3556 tree def_stmt = SSA_NAME_DEF_STMT (name);
3557
3558 if (TREE_CODE (def_stmt) == GIMPLE_MODIFY_STMT
3559 && (TREE_CODE (GIMPLE_STMT_OPERAND (def_stmt, 1)) == TRUTH_AND_EXPR
3560 || TREE_CODE (GIMPLE_STMT_OPERAND (def_stmt, 1)) == BIT_AND_EXPR))
3561 {
3562 tree op0 = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 0);
3563 tree op1 = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 1);
3564 retval |= register_edge_assert_for_1 (op0, NE_EXPR, e, si);
3565 retval |= register_edge_assert_for_1 (op1, NE_EXPR, e, si);
3566 }
3567 }
3568
3569 /* In the case of NAME == 0 or NAME != 1, for TRUTH_OR_EXPR defining
3570 statement of NAME we can assert both operands of the TRUTH_OR_EXPR
3571 have zero value. */
3572 if (((comp_code == EQ_EXPR && integer_zerop (val))
3573 || (comp_code == NE_EXPR && integer_onep (val))))
3574 {
3575 tree def_stmt = SSA_NAME_DEF_STMT (name);
3576
3577 if (TREE_CODE (def_stmt) == GIMPLE_MODIFY_STMT
3578 && (TREE_CODE (GIMPLE_STMT_OPERAND (def_stmt, 1)) == TRUTH_OR_EXPR
3579 || TREE_CODE (GIMPLE_STMT_OPERAND (def_stmt, 1)) == BIT_IOR_EXPR))
3580 {
3581 tree op0 = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 0);
3582 tree op1 = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 1);
3583 retval |= register_edge_assert_for_1 (op0, EQ_EXPR, e, si);
3584 retval |= register_edge_assert_for_1 (op1, EQ_EXPR, e, si);
3585 }
3586 }
3587
3588 return retval;
3589 }
3590
3591
3592 static bool find_assert_locations (basic_block bb);
3593
3594 /* Determine whether the outgoing edges of BB should receive an
3595 ASSERT_EXPR for each of the operands of BB's LAST statement.
3596 The last statement of BB must be a COND_EXPR.
3597
3598 If any of the sub-graphs rooted at BB have an interesting use of
3599 the predicate operands, an assert location node is added to the
3600 list of assertions for the corresponding operands. */
3601
3602 static bool
3603 find_conditional_asserts (basic_block bb, tree last)
3604 {
3605 bool need_assert;
3606 block_stmt_iterator bsi;
3607 tree op;
3608 edge_iterator ei;
3609 edge e;
3610 ssa_op_iter iter;
3611
3612 need_assert = false;
3613 bsi = bsi_for_stmt (last);
3614
3615 /* Look for uses of the operands in each of the sub-graphs
3616 rooted at BB. We need to check each of the outgoing edges
3617 separately, so that we know what kind of ASSERT_EXPR to
3618 insert. */
3619 FOR_EACH_EDGE (e, ei, bb->succs)
3620 {
3621 if (e->dest == bb)
3622 continue;
3623
3624 /* Remove the COND_EXPR operands from the FOUND_IN_SUBGRAPH bitmap.
3625 Otherwise, when we finish traversing each of the sub-graphs, we
3626 won't know whether the variables were found in the sub-graphs or
3627 if they had been found in a block upstream from BB.
3628
3629 This is actually a bad idea is some cases, particularly jump
3630 threading. Consider a CFG like the following:
3631
3632 0
3633 /|
3634 1 |
3635 \|
3636 2
3637 / \
3638 3 4
3639
3640 Assume that one or more operands in the conditional at the
3641 end of block 0 are used in a conditional in block 2, but not
3642 anywhere in block 1. In this case we will not insert any
3643 assert statements in block 1, which may cause us to miss
3644 opportunities to optimize, particularly for jump threading. */
3645 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
3646 RESET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
3647
3648 /* Traverse the strictly dominated sub-graph rooted at E->DEST
3649 to determine if any of the operands in the conditional
3650 predicate are used. */
3651 if (e->dest != bb)
3652 need_assert |= find_assert_locations (e->dest);
3653
3654 /* Register the necessary assertions for each operand in the
3655 conditional predicate. */
3656 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
3657 need_assert |= register_edge_assert_for (op, e, bsi,
3658 COND_EXPR_COND (last));
3659 }
3660
3661 /* Finally, indicate that we have found the operands in the
3662 conditional. */
3663 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
3664 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
3665
3666 return need_assert;
3667 }
3668
3669 /* Compare two case labels sorting first by the destination label uid
3670 and then by the case value. */
3671
3672 static int
3673 compare_case_labels (const void *p1, const void *p2)
3674 {
3675 tree case1 = *(tree *)p1;
3676 tree case2 = *(tree *)p2;
3677 unsigned int uid1 = DECL_UID (CASE_LABEL (case1));
3678 unsigned int uid2 = DECL_UID (CASE_LABEL (case2));
3679
3680 if (uid1 < uid2)
3681 return -1;
3682 else if (uid1 == uid2)
3683 {
3684 /* Make sure the default label is first in a group. */
3685 if (!CASE_LOW (case1))
3686 return -1;
3687 else if (!CASE_LOW (case2))
3688 return 1;
3689 else
3690 return tree_int_cst_compare (CASE_LOW (case1), CASE_LOW (case2));
3691 }
3692 else
3693 return 1;
3694 }
3695
3696 /* Determine whether the outgoing edges of BB should receive an
3697 ASSERT_EXPR for each of the operands of BB's LAST statement.
3698 The last statement of BB must be a SWITCH_EXPR.
3699
3700 If any of the sub-graphs rooted at BB have an interesting use of
3701 the predicate operands, an assert location node is added to the
3702 list of assertions for the corresponding operands. */
3703
3704 static bool
3705 find_switch_asserts (basic_block bb, tree last)
3706 {
3707 bool need_assert;
3708 block_stmt_iterator bsi;
3709 tree op, cond;
3710 edge e;
3711 tree vec = SWITCH_LABELS (last), vec2;
3712 size_t n = TREE_VEC_LENGTH (vec);
3713 unsigned int idx;
3714
3715 need_assert = false;
3716 bsi = bsi_for_stmt (last);
3717 op = TREE_OPERAND (last, 0);
3718 if (TREE_CODE (op) != SSA_NAME)
3719 return false;
3720
3721 /* Build a vector of case labels sorted by destination label. */
3722 vec2 = make_tree_vec (n);
3723 for (idx = 0; idx < n; ++idx)
3724 TREE_VEC_ELT (vec2, idx) = TREE_VEC_ELT (vec, idx);
3725 qsort (&TREE_VEC_ELT (vec2, 0), n, sizeof (tree), compare_case_labels);
3726
3727 for (idx = 0; idx < n; ++idx)
3728 {
3729 tree min, max;
3730 tree cl = TREE_VEC_ELT (vec2, idx);
3731
3732 min = CASE_LOW (cl);
3733 max = CASE_HIGH (cl);
3734
3735 /* If there are multiple case labels with the same destination
3736 we need to combine them to a single value range for the edge. */
3737 if (idx + 1 < n
3738 && CASE_LABEL (cl) == CASE_LABEL (TREE_VEC_ELT (vec2, idx + 1)))
3739 {
3740 /* Skip labels until the last of the group. */
3741 do {
3742 ++idx;
3743 } while (idx < n
3744 && CASE_LABEL (cl) == CASE_LABEL (TREE_VEC_ELT (vec2, idx)));
3745 --idx;
3746
3747 /* Pick up the maximum of the case label range. */
3748 if (CASE_HIGH (TREE_VEC_ELT (vec2, idx)))
3749 max = CASE_HIGH (TREE_VEC_ELT (vec2, idx));
3750 else
3751 max = CASE_LOW (TREE_VEC_ELT (vec2, idx));
3752 }
3753
3754 /* Nothing to do if the range includes the default label until we
3755 can register anti-ranges. */
3756 if (min == NULL_TREE)
3757 continue;
3758
3759 /* Find the edge to register the assert expr on. */
3760 e = find_edge (bb, label_to_block (CASE_LABEL (cl)));
3761
3762 /* Remove the SWITCH_EXPR operand from the FOUND_IN_SUBGRAPH bitmap.
3763 Otherwise, when we finish traversing each of the sub-graphs, we
3764 won't know whether the variables were found in the sub-graphs or
3765 if they had been found in a block upstream from BB. */
3766 RESET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
3767
3768 /* Traverse the strictly dominated sub-graph rooted at E->DEST
3769 to determine if any of the operands in the conditional
3770 predicate are used. */
3771 if (e->dest != bb)
3772 need_assert |= find_assert_locations (e->dest);
3773
3774 /* Register the necessary assertions for the operand in the
3775 SWITCH_EXPR. */
3776 cond = build2 (max ? GE_EXPR : EQ_EXPR, boolean_type_node,
3777 op, fold_convert (TREE_TYPE (op), min));
3778 need_assert |= register_edge_assert_for (op, e, bsi, cond);
3779 if (max)
3780 {
3781 cond = build2 (LE_EXPR, boolean_type_node,
3782 op, fold_convert (TREE_TYPE (op), max));
3783 need_assert |= register_edge_assert_for (op, e, bsi, cond);
3784 }
3785 }
3786
3787 /* Finally, indicate that we have found the operand in the
3788 SWITCH_EXPR. */
3789 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
3790
3791 return need_assert;
3792 }
3793
3794
3795 /* Traverse all the statements in block BB looking for statements that
3796 may generate useful assertions for the SSA names in their operand.
3797 If a statement produces a useful assertion A for name N_i, then the
3798 list of assertions already generated for N_i is scanned to
3799 determine if A is actually needed.
3800
3801 If N_i already had the assertion A at a location dominating the
3802 current location, then nothing needs to be done. Otherwise, the
3803 new location for A is recorded instead.
3804
3805 1- For every statement S in BB, all the variables used by S are
3806 added to bitmap FOUND_IN_SUBGRAPH.
3807
3808 2- If statement S uses an operand N in a way that exposes a known
3809 value range for N, then if N was not already generated by an
3810 ASSERT_EXPR, create a new assert location for N. For instance,
3811 if N is a pointer and the statement dereferences it, we can
3812 assume that N is not NULL.
3813
3814 3- COND_EXPRs are a special case of #2. We can derive range
3815 information from the predicate but need to insert different
3816 ASSERT_EXPRs for each of the sub-graphs rooted at the
3817 conditional block. If the last statement of BB is a conditional
3818 expression of the form 'X op Y', then
3819
3820 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
3821
3822 b) If the conditional is the only entry point to the sub-graph
3823 corresponding to the THEN_CLAUSE, recurse into it. On
3824 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
3825 an ASSERT_EXPR is added for the corresponding variable.
3826
3827 c) Repeat step (b) on the ELSE_CLAUSE.
3828
3829 d) Mark X and Y in FOUND_IN_SUBGRAPH.
3830
3831 For instance,
3832
3833 if (a == 9)
3834 b = a;
3835 else
3836 b = c + 1;
3837
3838 In this case, an assertion on the THEN clause is useful to
3839 determine that 'a' is always 9 on that edge. However, an assertion
3840 on the ELSE clause would be unnecessary.
3841
3842 4- If BB does not end in a conditional expression, then we recurse
3843 into BB's dominator children.
3844
3845 At the end of the recursive traversal, every SSA name will have a
3846 list of locations where ASSERT_EXPRs should be added. When a new
3847 location for name N is found, it is registered by calling
3848 register_new_assert_for. That function keeps track of all the
3849 registered assertions to prevent adding unnecessary assertions.
3850 For instance, if a pointer P_4 is dereferenced more than once in a
3851 dominator tree, only the location dominating all the dereference of
3852 P_4 will receive an ASSERT_EXPR.
3853
3854 If this function returns true, then it means that there are names
3855 for which we need to generate ASSERT_EXPRs. Those assertions are
3856 inserted by process_assert_insertions. */
3857
3858 static bool
3859 find_assert_locations (basic_block bb)
3860 {
3861 block_stmt_iterator si;
3862 tree last, phi;
3863 bool need_assert;
3864 basic_block son;
3865
3866 if (TEST_BIT (blocks_visited, bb->index))
3867 return false;
3868
3869 SET_BIT (blocks_visited, bb->index);
3870
3871 need_assert = false;
3872
3873 /* Traverse all PHI nodes in BB marking used operands. */
3874 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
3875 {
3876 use_operand_p arg_p;
3877 ssa_op_iter i;
3878
3879 FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
3880 {
3881 tree arg = USE_FROM_PTR (arg_p);
3882 if (TREE_CODE (arg) == SSA_NAME)
3883 {
3884 gcc_assert (is_gimple_reg (PHI_RESULT (phi)));
3885 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (arg));
3886 }
3887 }
3888 }
3889
3890 /* Traverse all the statements in BB marking used names and looking
3891 for statements that may infer assertions for their used operands. */
3892 last = NULL_TREE;
3893 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
3894 {
3895 tree stmt, op;
3896 ssa_op_iter i;
3897
3898 stmt = bsi_stmt (si);
3899
3900 /* See if we can derive an assertion for any of STMT's operands. */
3901 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
3902 {
3903 tree value;
3904 enum tree_code comp_code;
3905
3906 /* Mark OP in bitmap FOUND_IN_SUBGRAPH. If STMT is inside
3907 the sub-graph of a conditional block, when we return from
3908 this recursive walk, our parent will use the
3909 FOUND_IN_SUBGRAPH bitset to determine if one of the
3910 operands it was looking for was present in the sub-graph. */
3911 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
3912
3913 /* If OP is used in such a way that we can infer a value
3914 range for it, and we don't find a previous assertion for
3915 it, create a new assertion location node for OP. */
3916 if (infer_value_range (stmt, op, &comp_code, &value))
3917 {
3918 /* If we are able to infer a nonzero value range for OP,
3919 then walk backwards through the use-def chain to see if OP
3920 was set via a typecast.
3921
3922 If so, then we can also infer a nonzero value range
3923 for the operand of the NOP_EXPR. */
3924 if (comp_code == NE_EXPR && integer_zerop (value))
3925 {
3926 tree t = op;
3927 tree def_stmt = SSA_NAME_DEF_STMT (t);
3928
3929 while (TREE_CODE (def_stmt) == GIMPLE_MODIFY_STMT
3930 && TREE_CODE
3931 (GIMPLE_STMT_OPERAND (def_stmt, 1)) == NOP_EXPR
3932 && TREE_CODE
3933 (TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1),
3934 0)) == SSA_NAME
3935 && POINTER_TYPE_P
3936 (TREE_TYPE (TREE_OPERAND
3937 (GIMPLE_STMT_OPERAND (def_stmt,
3938 1), 0))))
3939 {
3940 t = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 0);
3941 def_stmt = SSA_NAME_DEF_STMT (t);
3942
3943 /* Note we want to register the assert for the
3944 operand of the NOP_EXPR after SI, not after the
3945 conversion. */
3946 if (! has_single_use (t))
3947 {
3948 register_new_assert_for (t, comp_code, value,
3949 bb, NULL, si);
3950 need_assert = true;
3951 }
3952 }
3953 }
3954
3955 /* If OP is used only once, namely in this STMT, don't
3956 bother creating an ASSERT_EXPR for it. Such an
3957 ASSERT_EXPR would do nothing but increase compile time. */
3958 if (!has_single_use (op))
3959 {
3960 register_new_assert_for (op, comp_code, value, bb, NULL, si);
3961 need_assert = true;
3962 }
3963 }
3964 }
3965
3966 /* Remember the last statement of the block. */
3967 last = stmt;
3968 }
3969
3970 /* If BB's last statement is a conditional expression
3971 involving integer operands, recurse into each of the sub-graphs
3972 rooted at BB to determine if we need to add ASSERT_EXPRs. */
3973 if (last
3974 && TREE_CODE (last) == COND_EXPR
3975 && !fp_predicate (COND_EXPR_COND (last))
3976 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
3977 need_assert |= find_conditional_asserts (bb, last);
3978
3979 if (last
3980 && TREE_CODE (last) == SWITCH_EXPR
3981 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
3982 need_assert |= find_switch_asserts (bb, last);
3983
3984 /* Recurse into the dominator children of BB. */
3985 for (son = first_dom_son (CDI_DOMINATORS, bb);
3986 son;
3987 son = next_dom_son (CDI_DOMINATORS, son))
3988 need_assert |= find_assert_locations (son);
3989
3990 return need_assert;
3991 }
3992
3993
3994 /* Create an ASSERT_EXPR for NAME and insert it in the location
3995 indicated by LOC. Return true if we made any edge insertions. */
3996
3997 static bool
3998 process_assert_insertions_for (tree name, assert_locus_t loc)
3999 {
4000 /* Build the comparison expression NAME_i COMP_CODE VAL. */
4001 tree stmt, cond, assert_expr;
4002 edge_iterator ei;
4003 edge e;
4004
4005 cond = build2 (loc->comp_code, boolean_type_node, name, loc->val);
4006 assert_expr = build_assert_expr_for (cond, name);
4007
4008 if (loc->e)
4009 {
4010 /* We have been asked to insert the assertion on an edge. This
4011 is used only by COND_EXPR and SWITCH_EXPR assertions. */
4012 #if defined ENABLE_CHECKING
4013 gcc_assert (TREE_CODE (bsi_stmt (loc->si)) == COND_EXPR
4014 || TREE_CODE (bsi_stmt (loc->si)) == SWITCH_EXPR);
4015 #endif
4016
4017 bsi_insert_on_edge (loc->e, assert_expr);
4018 return true;
4019 }
4020
4021 /* Otherwise, we can insert right after LOC->SI iff the
4022 statement must not be the last statement in the block. */
4023 stmt = bsi_stmt (loc->si);
4024 if (!stmt_ends_bb_p (stmt))
4025 {
4026 bsi_insert_after (&loc->si, assert_expr, BSI_SAME_STMT);
4027 return false;
4028 }
4029
4030 /* If STMT must be the last statement in BB, we can only insert new
4031 assertions on the non-abnormal edge out of BB. Note that since
4032 STMT is not control flow, there may only be one non-abnormal edge
4033 out of BB. */
4034 FOR_EACH_EDGE (e, ei, loc->bb->succs)
4035 if (!(e->flags & EDGE_ABNORMAL))
4036 {
4037 bsi_insert_on_edge (e, assert_expr);
4038 return true;
4039 }
4040
4041 gcc_unreachable ();
4042 }
4043
4044
4045 /* Process all the insertions registered for every name N_i registered
4046 in NEED_ASSERT_FOR. The list of assertions to be inserted are
4047 found in ASSERTS_FOR[i]. */
4048
4049 static void
4050 process_assert_insertions (void)
4051 {
4052 unsigned i;
4053 bitmap_iterator bi;
4054 bool update_edges_p = false;
4055 int num_asserts = 0;
4056
4057 if (dump_file && (dump_flags & TDF_DETAILS))
4058 dump_all_asserts (dump_file);
4059
4060 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
4061 {
4062 assert_locus_t loc = asserts_for[i];
4063 gcc_assert (loc);
4064
4065 while (loc)
4066 {
4067 assert_locus_t next = loc->next;
4068 update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
4069 free (loc);
4070 loc = next;
4071 num_asserts++;
4072 }
4073 }
4074
4075 if (update_edges_p)
4076 bsi_commit_edge_inserts ();
4077
4078 if (dump_file && (dump_flags & TDF_STATS))
4079 fprintf (dump_file, "\nNumber of ASSERT_EXPR expressions inserted: %d\n\n",
4080 num_asserts);
4081 }
4082
4083
4084 /* Traverse the flowgraph looking for conditional jumps to insert range
4085 expressions. These range expressions are meant to provide information
4086 to optimizations that need to reason in terms of value ranges. They
4087 will not be expanded into RTL. For instance, given:
4088
4089 x = ...
4090 y = ...
4091 if (x < y)
4092 y = x - 2;
4093 else
4094 x = y + 3;
4095
4096 this pass will transform the code into:
4097
4098 x = ...
4099 y = ...
4100 if (x < y)
4101 {
4102 x = ASSERT_EXPR <x, x < y>
4103 y = x - 2
4104 }
4105 else
4106 {
4107 y = ASSERT_EXPR <y, x <= y>
4108 x = y + 3
4109 }
4110
4111 The idea is that once copy and constant propagation have run, other
4112 optimizations will be able to determine what ranges of values can 'x'
4113 take in different paths of the code, simply by checking the reaching
4114 definition of 'x'. */
4115
4116 static void
4117 insert_range_assertions (void)
4118 {
4119 edge e;
4120 edge_iterator ei;
4121 bool update_ssa_p;
4122
4123 found_in_subgraph = sbitmap_alloc (num_ssa_names);
4124 sbitmap_zero (found_in_subgraph);
4125
4126 blocks_visited = sbitmap_alloc (last_basic_block);
4127 sbitmap_zero (blocks_visited);
4128
4129 need_assert_for = BITMAP_ALLOC (NULL);
4130 asserts_for = XCNEWVEC (assert_locus_t, num_ssa_names);
4131
4132 calculate_dominance_info (CDI_DOMINATORS);
4133
4134 update_ssa_p = false;
4135 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
4136 if (find_assert_locations (e->dest))
4137 update_ssa_p = true;
4138
4139 if (update_ssa_p)
4140 {
4141 process_assert_insertions ();
4142 update_ssa (TODO_update_ssa_no_phi);
4143 }
4144
4145 if (dump_file && (dump_flags & TDF_DETAILS))
4146 {
4147 fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
4148 dump_function_to_file (current_function_decl, dump_file, dump_flags);
4149 }
4150
4151 sbitmap_free (found_in_subgraph);
4152 free (asserts_for);
4153 BITMAP_FREE (need_assert_for);
4154 }
4155
4156 /* Checks one ARRAY_REF in REF, located at LOCUS. Ignores flexible arrays
4157 and "struct" hacks. If VRP can determine that the
4158 array subscript is a constant, check if it is outside valid
4159 range. If the array subscript is a RANGE, warn if it is
4160 non-overlapping with valid range.
4161 IGNORE_OFF_BY_ONE is true if the ARRAY_REF is inside a ADDR_EXPR. */
4162
4163 static void
4164 check_array_ref (tree ref, location_t* locus, bool ignore_off_by_one)
4165 {
4166 value_range_t* vr = NULL;
4167 tree low_sub, up_sub;
4168 tree low_bound, up_bound = array_ref_up_bound (ref);
4169
4170 low_sub = up_sub = TREE_OPERAND (ref, 1);
4171
4172 if (!up_bound || !locus || TREE_NO_WARNING (ref)
4173 || TREE_CODE (up_bound) != INTEGER_CST
4174 /* Can not check flexible arrays. */
4175 || (TYPE_SIZE (TREE_TYPE (ref)) == NULL_TREE
4176 && TYPE_DOMAIN (TREE_TYPE (ref)) != NULL_TREE
4177 && TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (ref))) == NULL_TREE)
4178 /* Accesses after the end of arrays of size 0 (gcc
4179 extension) and 1 are likely intentional ("struct
4180 hack"). */
4181 || compare_tree_int (up_bound, 1) <= 0)
4182 return;
4183
4184 low_bound = array_ref_low_bound (ref);
4185
4186 if (TREE_CODE (low_sub) == SSA_NAME)
4187 {
4188 vr = get_value_range (low_sub);
4189 if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
4190 {
4191 low_sub = vr->type == VR_RANGE ? vr->max : vr->min;
4192 up_sub = vr->type == VR_RANGE ? vr->min : vr->max;
4193 }
4194 }
4195
4196 if (vr && vr->type == VR_ANTI_RANGE)
4197 {
4198 if (TREE_CODE (up_sub) == INTEGER_CST
4199 && tree_int_cst_lt (up_bound, up_sub)
4200 && TREE_CODE (low_sub) == INTEGER_CST
4201 && tree_int_cst_lt (low_sub, low_bound))
4202 {
4203 warning (OPT_Warray_bounds,
4204 "%Harray subscript is outside array bounds", locus);
4205 TREE_NO_WARNING (ref) = 1;
4206 }
4207 }
4208 else if (TREE_CODE (up_sub) == INTEGER_CST
4209 && tree_int_cst_lt (up_bound, up_sub)
4210 && !tree_int_cst_equal (up_bound, up_sub)
4211 && (!ignore_off_by_one
4212 || !tree_int_cst_equal (int_const_binop (PLUS_EXPR,
4213 up_bound,
4214 integer_one_node,
4215 0),
4216 up_sub)))
4217 {
4218 warning (OPT_Warray_bounds, "%Harray subscript is above array bounds",
4219 locus);
4220 TREE_NO_WARNING (ref) = 1;
4221 }
4222 else if (TREE_CODE (low_sub) == INTEGER_CST
4223 && tree_int_cst_lt (low_sub, low_bound))
4224 {
4225 warning (OPT_Warray_bounds, "%Harray subscript is below array bounds",
4226 locus);
4227 TREE_NO_WARNING (ref) = 1;
4228 }
4229 }
4230
4231 /* walk_tree() callback that checks if *TP is
4232 an ARRAY_REF inside an ADDR_EXPR (in which an array
4233 subscript one outside the valid range is allowed). Call
4234 check_array_ref for each ARRAY_REF found. The location is
4235 passed in DATA. */
4236
4237 static tree
4238 check_array_bounds (tree *tp, int *walk_subtree, void *data)
4239 {
4240 tree t = *tp;
4241 tree stmt = (tree)data;
4242 location_t *location = EXPR_LOCUS (stmt);
4243
4244 *walk_subtree = TRUE;
4245
4246 if (TREE_CODE (t) == ARRAY_REF)
4247 check_array_ref (t, location, false /*ignore_off_by_one*/);
4248 else if (TREE_CODE (t) == ADDR_EXPR)
4249 {
4250 use_operand_p op;
4251 tree use_stmt;
4252 t = TREE_OPERAND (t, 0);
4253
4254 /* Don't warn on statements like
4255
4256 ssa_name = 500 + &array[-200]
4257
4258 or
4259
4260 ssa_name = &array[-200]
4261 other_name = ssa_name + 300;
4262
4263 which are sometimes
4264 produced by other optimizing passes. */
4265
4266 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT
4267 && BINARY_CLASS_P (GIMPLE_STMT_OPERAND (stmt, 1)))
4268 *walk_subtree = FALSE;
4269
4270 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT
4271 && TREE_CODE (GIMPLE_STMT_OPERAND (stmt, 0)) == SSA_NAME
4272 && single_imm_use (GIMPLE_STMT_OPERAND (stmt, 0), &op, &use_stmt)
4273 && TREE_CODE (use_stmt) == GIMPLE_MODIFY_STMT
4274 && BINARY_CLASS_P (GIMPLE_STMT_OPERAND (use_stmt, 1)))
4275 *walk_subtree = FALSE;
4276
4277 while (*walk_subtree && handled_component_p (t))
4278 {
4279 if (TREE_CODE (t) == ARRAY_REF)
4280 check_array_ref (t, location, true /*ignore_off_by_one*/);
4281 t = TREE_OPERAND (t, 0);
4282 }
4283 *walk_subtree = FALSE;
4284 }
4285
4286 return NULL_TREE;
4287 }
4288
4289 /* Walk over all statements of all reachable BBs and call check_array_bounds
4290 on them. */
4291
4292 static void
4293 check_all_array_refs (void)
4294 {
4295 basic_block bb;
4296 block_stmt_iterator si;
4297
4298 FOR_EACH_BB (bb)
4299 {
4300 /* Skip bb's that are clearly unreachable. */
4301 if (single_pred_p (bb))
4302 {
4303 basic_block pred_bb = EDGE_PRED (bb, 0)->src;
4304 tree ls = NULL_TREE;
4305
4306 if (!bsi_end_p (bsi_last (pred_bb)))
4307 ls = bsi_stmt (bsi_last (pred_bb));
4308
4309 if (ls && TREE_CODE (ls) == COND_EXPR
4310 && ((COND_EXPR_COND (ls) == boolean_false_node
4311 && (EDGE_PRED (bb, 0)->flags & EDGE_TRUE_VALUE))
4312 || (COND_EXPR_COND (ls) == boolean_true_node
4313 && (EDGE_PRED (bb, 0)->flags & EDGE_FALSE_VALUE))))
4314 continue;
4315 }
4316 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
4317 walk_tree (bsi_stmt_ptr (si), check_array_bounds,
4318 bsi_stmt (si), NULL);
4319 }
4320 }
4321
4322 /* Convert range assertion expressions into the implied copies and
4323 copy propagate away the copies. Doing the trivial copy propagation
4324 here avoids the need to run the full copy propagation pass after
4325 VRP.
4326
4327 FIXME, this will eventually lead to copy propagation removing the
4328 names that had useful range information attached to them. For
4329 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
4330 then N_i will have the range [3, +INF].
4331
4332 However, by converting the assertion into the implied copy
4333 operation N_i = N_j, we will then copy-propagate N_j into the uses
4334 of N_i and lose the range information. We may want to hold on to
4335 ASSERT_EXPRs a little while longer as the ranges could be used in
4336 things like jump threading.
4337
4338 The problem with keeping ASSERT_EXPRs around is that passes after
4339 VRP need to handle them appropriately.
4340
4341 Another approach would be to make the range information a first
4342 class property of the SSA_NAME so that it can be queried from
4343 any pass. This is made somewhat more complex by the need for
4344 multiple ranges to be associated with one SSA_NAME. */
4345
4346 static void
4347 remove_range_assertions (void)
4348 {
4349 basic_block bb;
4350 block_stmt_iterator si;
4351
4352 /* Note that the BSI iterator bump happens at the bottom of the
4353 loop and no bump is necessary if we're removing the statement
4354 referenced by the current BSI. */
4355 FOR_EACH_BB (bb)
4356 for (si = bsi_start (bb); !bsi_end_p (si);)
4357 {
4358 tree stmt = bsi_stmt (si);
4359 tree use_stmt;
4360
4361 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT
4362 && TREE_CODE (GIMPLE_STMT_OPERAND (stmt, 1)) == ASSERT_EXPR)
4363 {
4364 tree rhs = GIMPLE_STMT_OPERAND (stmt, 1), var;
4365 tree cond = fold (ASSERT_EXPR_COND (rhs));
4366 use_operand_p use_p;
4367 imm_use_iterator iter;
4368
4369 gcc_assert (cond != boolean_false_node);
4370
4371 /* Propagate the RHS into every use of the LHS. */
4372 var = ASSERT_EXPR_VAR (rhs);
4373 FOR_EACH_IMM_USE_STMT (use_stmt, iter,
4374 GIMPLE_STMT_OPERAND (stmt, 0))
4375 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
4376 {
4377 SET_USE (use_p, var);
4378 gcc_assert (TREE_CODE (var) == SSA_NAME);
4379 }
4380
4381 /* And finally, remove the copy, it is not needed. */
4382 bsi_remove (&si, true);
4383 release_defs (stmt);
4384 }
4385 else
4386 bsi_next (&si);
4387 }
4388
4389 sbitmap_free (blocks_visited);
4390 }
4391
4392
4393 /* Return true if STMT is interesting for VRP. */
4394
4395 static bool
4396 stmt_interesting_for_vrp (tree stmt)
4397 {
4398 if (TREE_CODE (stmt) == PHI_NODE
4399 && is_gimple_reg (PHI_RESULT (stmt))
4400 && (INTEGRAL_TYPE_P (TREE_TYPE (PHI_RESULT (stmt)))
4401 || POINTER_TYPE_P (TREE_TYPE (PHI_RESULT (stmt)))))
4402 return true;
4403 else if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT)
4404 {
4405 tree lhs = GIMPLE_STMT_OPERAND (stmt, 0);
4406 tree rhs = GIMPLE_STMT_OPERAND (stmt, 1);
4407
4408 /* In general, assignments with virtual operands are not useful
4409 for deriving ranges, with the obvious exception of calls to
4410 builtin functions. */
4411 if (TREE_CODE (lhs) == SSA_NAME
4412 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
4413 || POINTER_TYPE_P (TREE_TYPE (lhs)))
4414 && ((TREE_CODE (rhs) == CALL_EXPR
4415 && TREE_CODE (CALL_EXPR_FN (rhs)) == ADDR_EXPR
4416 && DECL_P (TREE_OPERAND (CALL_EXPR_FN (rhs), 0))
4417 && DECL_IS_BUILTIN (TREE_OPERAND (CALL_EXPR_FN (rhs), 0)))
4418 || ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS)))
4419 return true;
4420 }
4421 else if (TREE_CODE (stmt) == COND_EXPR || TREE_CODE (stmt) == SWITCH_EXPR)
4422 return true;
4423
4424 return false;
4425 }
4426
4427
4428 /* Initialize local data structures for VRP. */
4429
4430 static void
4431 vrp_initialize (void)
4432 {
4433 basic_block bb;
4434
4435 vr_value = XCNEWVEC (value_range_t *, num_ssa_names);
4436
4437 FOR_EACH_BB (bb)
4438 {
4439 block_stmt_iterator si;
4440 tree phi;
4441
4442 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
4443 {
4444 if (!stmt_interesting_for_vrp (phi))
4445 {
4446 tree lhs = PHI_RESULT (phi);
4447 set_value_range_to_varying (get_value_range (lhs));
4448 DONT_SIMULATE_AGAIN (phi) = true;
4449 }
4450 else
4451 DONT_SIMULATE_AGAIN (phi) = false;
4452 }
4453
4454 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
4455 {
4456 tree stmt = bsi_stmt (si);
4457
4458 if (!stmt_interesting_for_vrp (stmt))
4459 {
4460 ssa_op_iter i;
4461 tree def;
4462 FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
4463 set_value_range_to_varying (get_value_range (def));
4464 DONT_SIMULATE_AGAIN (stmt) = true;
4465 }
4466 else
4467 {
4468 DONT_SIMULATE_AGAIN (stmt) = false;
4469 }
4470 }
4471 }
4472 }
4473
4474
4475 /* Visit assignment STMT. If it produces an interesting range, record
4476 the SSA name in *OUTPUT_P. */
4477
4478 static enum ssa_prop_result
4479 vrp_visit_assignment (tree stmt, tree *output_p)
4480 {
4481 tree lhs, rhs, def;
4482 ssa_op_iter iter;
4483
4484 lhs = GIMPLE_STMT_OPERAND (stmt, 0);
4485 rhs = GIMPLE_STMT_OPERAND (stmt, 1);
4486
4487 /* We only keep track of ranges in integral and pointer types. */
4488 if (TREE_CODE (lhs) == SSA_NAME
4489 && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
4490 /* It is valid to have NULL MIN/MAX values on a type. See
4491 build_range_type. */
4492 && TYPE_MIN_VALUE (TREE_TYPE (lhs))
4493 && TYPE_MAX_VALUE (TREE_TYPE (lhs)))
4494 || POINTER_TYPE_P (TREE_TYPE (lhs))))
4495 {
4496 struct loop *l;
4497 value_range_t new_vr = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
4498
4499 extract_range_from_expr (&new_vr, rhs);
4500
4501 /* If STMT is inside a loop, we may be able to know something
4502 else about the range of LHS by examining scalar evolution
4503 information. */
4504 if (current_loops && (l = loop_containing_stmt (stmt)))
4505 adjust_range_with_scev (&new_vr, l, stmt, lhs);
4506
4507 if (update_value_range (lhs, &new_vr))
4508 {
4509 *output_p = lhs;
4510
4511 if (dump_file && (dump_flags & TDF_DETAILS))
4512 {
4513 fprintf (dump_file, "Found new range for ");
4514 print_generic_expr (dump_file, lhs, 0);
4515 fprintf (dump_file, ": ");
4516 dump_value_range (dump_file, &new_vr);
4517 fprintf (dump_file, "\n\n");
4518 }
4519
4520 if (new_vr.type == VR_VARYING)
4521 return SSA_PROP_VARYING;
4522
4523 return SSA_PROP_INTERESTING;
4524 }
4525
4526 return SSA_PROP_NOT_INTERESTING;
4527 }
4528
4529 /* Every other statement produces no useful ranges. */
4530 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
4531 set_value_range_to_varying (get_value_range (def));
4532
4533 return SSA_PROP_VARYING;
4534 }
4535
4536
4537 /* Compare all the value ranges for names equivalent to VAR with VAL
4538 using comparison code COMP. Return the same value returned by
4539 compare_range_with_value, including the setting of
4540 *STRICT_OVERFLOW_P. */
4541
4542 static tree
4543 compare_name_with_value (enum tree_code comp, tree var, tree val,
4544 bool *strict_overflow_p)
4545 {
4546 bitmap_iterator bi;
4547 unsigned i;
4548 bitmap e;
4549 tree retval, t;
4550 int used_strict_overflow;
4551
4552 t = retval = NULL_TREE;
4553
4554 /* Get the set of equivalences for VAR. */
4555 e = get_value_range (var)->equiv;
4556
4557 /* Add VAR to its own set of equivalences so that VAR's value range
4558 is processed by this loop (otherwise, we would have to replicate
4559 the body of the loop just to check VAR's value range). */
4560 bitmap_set_bit (e, SSA_NAME_VERSION (var));
4561
4562 /* Start at -1. Set it to 0 if we do a comparison without relying
4563 on overflow, or 1 if all comparisons rely on overflow. */
4564 used_strict_overflow = -1;
4565
4566 EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
4567 {
4568 bool sop;
4569
4570 value_range_t equiv_vr = *(vr_value[i]);
4571
4572 /* If name N_i does not have a valid range, use N_i as its own
4573 range. This allows us to compare against names that may
4574 have N_i in their ranges. */
4575 if (equiv_vr.type == VR_VARYING || equiv_vr.type == VR_UNDEFINED)
4576 {
4577 equiv_vr.type = VR_RANGE;
4578 equiv_vr.min = ssa_name (i);
4579 equiv_vr.max = ssa_name (i);
4580 }
4581
4582 sop = false;
4583 t = compare_range_with_value (comp, &equiv_vr, val, &sop);
4584 if (t)
4585 {
4586 /* If we get different answers from different members
4587 of the equivalence set this check must be in a dead
4588 code region. Folding it to a trap representation
4589 would be correct here. For now just return don't-know. */
4590 if (retval != NULL
4591 && t != retval)
4592 {
4593 retval = NULL_TREE;
4594 break;
4595 }
4596 retval = t;
4597
4598 if (!sop)
4599 used_strict_overflow = 0;
4600 else if (used_strict_overflow < 0)
4601 used_strict_overflow = 1;
4602 }
4603 }
4604
4605 /* Remove VAR from its own equivalence set. */
4606 bitmap_clear_bit (e, SSA_NAME_VERSION (var));
4607
4608 if (retval)
4609 {
4610 if (used_strict_overflow > 0)
4611 *strict_overflow_p = true;
4612 return retval;
4613 }
4614
4615 /* We couldn't find a non-NULL value for the predicate. */
4616 return NULL_TREE;
4617 }
4618
4619
4620 /* Given a comparison code COMP and names N1 and N2, compare all the
4621 ranges equivalent to N1 against all the ranges equivalent to N2
4622 to determine the value of N1 COMP N2. Return the same value
4623 returned by compare_ranges. Set *STRICT_OVERFLOW_P to indicate
4624 whether we relied on an overflow infinity in the comparison. */
4625
4626
4627 static tree
4628 compare_names (enum tree_code comp, tree n1, tree n2,
4629 bool *strict_overflow_p)
4630 {
4631 tree t, retval;
4632 bitmap e1, e2;
4633 bitmap_iterator bi1, bi2;
4634 unsigned i1, i2;
4635 int used_strict_overflow;
4636
4637 /* Compare the ranges of every name equivalent to N1 against the
4638 ranges of every name equivalent to N2. */
4639 e1 = get_value_range (n1)->equiv;
4640 e2 = get_value_range (n2)->equiv;
4641
4642 /* Add N1 and N2 to their own set of equivalences to avoid
4643 duplicating the body of the loop just to check N1 and N2
4644 ranges. */
4645 bitmap_set_bit (e1, SSA_NAME_VERSION (n1));
4646 bitmap_set_bit (e2, SSA_NAME_VERSION (n2));
4647
4648 /* If the equivalence sets have a common intersection, then the two
4649 names can be compared without checking their ranges. */
4650 if (bitmap_intersect_p (e1, e2))
4651 {
4652 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
4653 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
4654
4655 return (comp == EQ_EXPR || comp == GE_EXPR || comp == LE_EXPR)
4656 ? boolean_true_node
4657 : boolean_false_node;
4658 }
4659
4660 /* Start at -1. Set it to 0 if we do a comparison without relying
4661 on overflow, or 1 if all comparisons rely on overflow. */
4662 used_strict_overflow = -1;
4663
4664 /* Otherwise, compare all the equivalent ranges. First, add N1 and
4665 N2 to their own set of equivalences to avoid duplicating the body
4666 of the loop just to check N1 and N2 ranges. */
4667 EXECUTE_IF_SET_IN_BITMAP (e1, 0, i1, bi1)
4668 {
4669 value_range_t vr1 = *(vr_value[i1]);
4670
4671 /* If the range is VARYING or UNDEFINED, use the name itself. */
4672 if (vr1.type == VR_VARYING || vr1.type == VR_UNDEFINED)
4673 {
4674 vr1.type = VR_RANGE;
4675 vr1.min = ssa_name (i1);
4676 vr1.max = ssa_name (i1);
4677 }
4678
4679 t = retval = NULL_TREE;
4680 EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2)
4681 {
4682 bool sop;
4683
4684 value_range_t vr2 = *(vr_value[i2]);
4685
4686 if (vr2.type == VR_VARYING || vr2.type == VR_UNDEFINED)
4687 {
4688 vr2.type = VR_RANGE;
4689 vr2.min = ssa_name (i2);
4690 vr2.max = ssa_name (i2);
4691 }
4692
4693 t = compare_ranges (comp, &vr1, &vr2, &sop);
4694 if (t)
4695 {
4696 /* If we get different answers from different members
4697 of the equivalence set this check must be in a dead
4698 code region. Folding it to a trap representation
4699 would be correct here. For now just return don't-know. */
4700 if (retval != NULL
4701 && t != retval)
4702 {
4703 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
4704 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
4705 return NULL_TREE;
4706 }
4707 retval = t;
4708
4709 if (!sop)
4710 used_strict_overflow = 0;
4711 else if (used_strict_overflow < 0)
4712 used_strict_overflow = 1;
4713 }
4714 }
4715
4716 if (retval)
4717 {
4718 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
4719 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
4720 if (used_strict_overflow > 0)
4721 *strict_overflow_p = true;
4722 return retval;
4723 }
4724 }
4725
4726 /* None of the equivalent ranges are useful in computing this
4727 comparison. */
4728 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
4729 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
4730 return NULL_TREE;
4731 }
4732
4733
4734 /* Given a conditional predicate COND, try to determine if COND yields
4735 true or false based on the value ranges of its operands. Return
4736 BOOLEAN_TRUE_NODE if the conditional always evaluates to true,
4737 BOOLEAN_FALSE_NODE if the conditional always evaluates to false, and,
4738 NULL if the conditional cannot be evaluated at compile time.
4739
4740 If USE_EQUIV_P is true, the ranges of all the names equivalent with
4741 the operands in COND are used when trying to compute its value.
4742 This is only used during final substitution. During propagation,
4743 we only check the range of each variable and not its equivalents.
4744
4745 Set *STRICT_OVERFLOW_P to indicate whether we relied on an overflow
4746 infinity to produce the result. */
4747
4748 static tree
4749 vrp_evaluate_conditional_warnv (tree cond, bool use_equiv_p,
4750 bool *strict_overflow_p)
4751 {
4752 gcc_assert (TREE_CODE (cond) == SSA_NAME
4753 || TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison);
4754
4755 if (TREE_CODE (cond) == SSA_NAME)
4756 {
4757 value_range_t *vr;
4758 tree retval;
4759
4760 if (use_equiv_p)
4761 retval = compare_name_with_value (NE_EXPR, cond, boolean_false_node,
4762 strict_overflow_p);
4763 else
4764 {
4765 value_range_t *vr = get_value_range (cond);
4766 retval = compare_range_with_value (NE_EXPR, vr, boolean_false_node,
4767 strict_overflow_p);
4768 }
4769
4770 /* If COND has a known boolean range, return it. */
4771 if (retval)
4772 return retval;
4773
4774 /* Otherwise, if COND has a symbolic range of exactly one value,
4775 return it. */
4776 vr = get_value_range (cond);
4777 if (vr->type == VR_RANGE && vr->min == vr->max)
4778 return vr->min;
4779 }
4780 else
4781 {
4782 tree op0 = TREE_OPERAND (cond, 0);
4783 tree op1 = TREE_OPERAND (cond, 1);
4784
4785 /* We only deal with integral and pointer types. */
4786 if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
4787 && !POINTER_TYPE_P (TREE_TYPE (op0)))
4788 return NULL_TREE;
4789
4790 if (use_equiv_p)
4791 {
4792 if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME)
4793 return compare_names (TREE_CODE (cond), op0, op1,
4794 strict_overflow_p);
4795 else if (TREE_CODE (op0) == SSA_NAME)
4796 return compare_name_with_value (TREE_CODE (cond), op0, op1,
4797 strict_overflow_p);
4798 else if (TREE_CODE (op1) == SSA_NAME)
4799 return (compare_name_with_value
4800 (swap_tree_comparison (TREE_CODE (cond)), op1, op0,
4801 strict_overflow_p));
4802 }
4803 else
4804 {
4805 value_range_t *vr0, *vr1;
4806
4807 vr0 = (TREE_CODE (op0) == SSA_NAME) ? get_value_range (op0) : NULL;
4808 vr1 = (TREE_CODE (op1) == SSA_NAME) ? get_value_range (op1) : NULL;
4809
4810 if (vr0 && vr1)
4811 return compare_ranges (TREE_CODE (cond), vr0, vr1,
4812 strict_overflow_p);
4813 else if (vr0 && vr1 == NULL)
4814 return compare_range_with_value (TREE_CODE (cond), vr0, op1,
4815 strict_overflow_p);
4816 else if (vr0 == NULL && vr1)
4817 return (compare_range_with_value
4818 (swap_tree_comparison (TREE_CODE (cond)), vr1, op0,
4819 strict_overflow_p));
4820 }
4821 }
4822
4823 /* Anything else cannot be computed statically. */
4824 return NULL_TREE;
4825 }
4826
4827 /* Given COND within STMT, try to simplify it based on value range
4828 information. Return NULL if the conditional can not be evaluated.
4829 The ranges of all the names equivalent with the operands in COND
4830 will be used when trying to compute the value. If the result is
4831 based on undefined signed overflow, issue a warning if
4832 appropriate. */
4833
4834 tree
4835 vrp_evaluate_conditional (tree cond, tree stmt)
4836 {
4837 bool sop;
4838 tree ret;
4839
4840 sop = false;
4841 ret = vrp_evaluate_conditional_warnv (cond, true, &sop);
4842
4843 if (ret && sop)
4844 {
4845 enum warn_strict_overflow_code wc;
4846 const char* warnmsg;
4847
4848 if (is_gimple_min_invariant (ret))
4849 {
4850 wc = WARN_STRICT_OVERFLOW_CONDITIONAL;
4851 warnmsg = G_("assuming signed overflow does not occur when "
4852 "simplifying conditional to constant");
4853 }
4854 else
4855 {
4856 wc = WARN_STRICT_OVERFLOW_COMPARISON;
4857 warnmsg = G_("assuming signed overflow does not occur when "
4858 "simplifying conditional");
4859 }
4860
4861 if (issue_strict_overflow_warning (wc))
4862 {
4863 location_t locus;
4864
4865 if (!EXPR_HAS_LOCATION (stmt))
4866 locus = input_location;
4867 else
4868 locus = EXPR_LOCATION (stmt);
4869 warning (OPT_Wstrict_overflow, "%H%s", &locus, warnmsg);
4870 }
4871 }
4872
4873 return ret;
4874 }
4875
4876
4877 /* Visit conditional statement STMT. If we can determine which edge
4878 will be taken out of STMT's basic block, record it in
4879 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
4880 SSA_PROP_VARYING. */
4881
4882 static enum ssa_prop_result
4883 vrp_visit_cond_stmt (tree stmt, edge *taken_edge_p)
4884 {
4885 tree cond, val;
4886 bool sop;
4887
4888 *taken_edge_p = NULL;
4889
4890 /* FIXME. Handle SWITCH_EXPRs. */
4891 if (TREE_CODE (stmt) == SWITCH_EXPR)
4892 return SSA_PROP_VARYING;
4893
4894 cond = COND_EXPR_COND (stmt);
4895
4896 if (dump_file && (dump_flags & TDF_DETAILS))
4897 {
4898 tree use;
4899 ssa_op_iter i;
4900
4901 fprintf (dump_file, "\nVisiting conditional with predicate: ");
4902 print_generic_expr (dump_file, cond, 0);
4903 fprintf (dump_file, "\nWith known ranges\n");
4904
4905 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
4906 {
4907 fprintf (dump_file, "\t");
4908 print_generic_expr (dump_file, use, 0);
4909 fprintf (dump_file, ": ");
4910 dump_value_range (dump_file, vr_value[SSA_NAME_VERSION (use)]);
4911 }
4912
4913 fprintf (dump_file, "\n");
4914 }
4915
4916 /* Compute the value of the predicate COND by checking the known
4917 ranges of each of its operands.
4918
4919 Note that we cannot evaluate all the equivalent ranges here
4920 because those ranges may not yet be final and with the current
4921 propagation strategy, we cannot determine when the value ranges
4922 of the names in the equivalence set have changed.
4923
4924 For instance, given the following code fragment
4925
4926 i_5 = PHI <8, i_13>
4927 ...
4928 i_14 = ASSERT_EXPR <i_5, i_5 != 0>
4929 if (i_14 == 1)
4930 ...
4931
4932 Assume that on the first visit to i_14, i_5 has the temporary
4933 range [8, 8] because the second argument to the PHI function is
4934 not yet executable. We derive the range ~[0, 0] for i_14 and the
4935 equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
4936 the first time, since i_14 is equivalent to the range [8, 8], we
4937 determine that the predicate is always false.
4938
4939 On the next round of propagation, i_13 is determined to be
4940 VARYING, which causes i_5 to drop down to VARYING. So, another
4941 visit to i_14 is scheduled. In this second visit, we compute the
4942 exact same range and equivalence set for i_14, namely ~[0, 0] and
4943 { i_5 }. But we did not have the previous range for i_5
4944 registered, so vrp_visit_assignment thinks that the range for
4945 i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
4946 is not visited again, which stops propagation from visiting
4947 statements in the THEN clause of that if().
4948
4949 To properly fix this we would need to keep the previous range
4950 value for the names in the equivalence set. This way we would've
4951 discovered that from one visit to the other i_5 changed from
4952 range [8, 8] to VR_VARYING.
4953
4954 However, fixing this apparent limitation may not be worth the
4955 additional checking. Testing on several code bases (GCC, DLV,
4956 MICO, TRAMP3D and SPEC2000) showed that doing this results in
4957 4 more predicates folded in SPEC. */
4958 sop = false;
4959 val = vrp_evaluate_conditional_warnv (cond, false, &sop);
4960 if (val)
4961 {
4962 if (!sop)
4963 *taken_edge_p = find_taken_edge (bb_for_stmt (stmt), val);
4964 else
4965 {
4966 if (dump_file && (dump_flags & TDF_DETAILS))
4967 fprintf (dump_file,
4968 "\nIgnoring predicate evaluation because "
4969 "it assumes that signed overflow is undefined");
4970 val = NULL_TREE;
4971 }
4972 }
4973
4974 if (dump_file && (dump_flags & TDF_DETAILS))
4975 {
4976 fprintf (dump_file, "\nPredicate evaluates to: ");
4977 if (val == NULL_TREE)
4978 fprintf (dump_file, "DON'T KNOW\n");
4979 else
4980 print_generic_stmt (dump_file, val, 0);
4981 }
4982
4983 return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
4984 }
4985
4986
4987 /* Evaluate statement STMT. If the statement produces a useful range,
4988 return SSA_PROP_INTERESTING and record the SSA name with the
4989 interesting range into *OUTPUT_P.
4990
4991 If STMT is a conditional branch and we can determine its truth
4992 value, the taken edge is recorded in *TAKEN_EDGE_P.
4993
4994 If STMT produces a varying value, return SSA_PROP_VARYING. */
4995
4996 static enum ssa_prop_result
4997 vrp_visit_stmt (tree stmt, edge *taken_edge_p, tree *output_p)
4998 {
4999 tree def;
5000 ssa_op_iter iter;
5001 stmt_ann_t ann;
5002
5003 if (dump_file && (dump_flags & TDF_DETAILS))
5004 {
5005 fprintf (dump_file, "\nVisiting statement:\n");
5006 print_generic_stmt (dump_file, stmt, dump_flags);
5007 fprintf (dump_file, "\n");
5008 }
5009
5010 ann = stmt_ann (stmt);
5011 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT)
5012 {
5013 tree rhs = GIMPLE_STMT_OPERAND (stmt, 1);
5014
5015 /* In general, assignments with virtual operands are not useful
5016 for deriving ranges, with the obvious exception of calls to
5017 builtin functions. */
5018 if ((TREE_CODE (rhs) == CALL_EXPR
5019 && TREE_CODE (CALL_EXPR_FN (rhs)) == ADDR_EXPR
5020 && DECL_P (TREE_OPERAND (CALL_EXPR_FN (rhs), 0))
5021 && DECL_IS_BUILTIN (TREE_OPERAND (CALL_EXPR_FN (rhs), 0)))
5022 || ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
5023 return vrp_visit_assignment (stmt, output_p);
5024 }
5025 else if (TREE_CODE (stmt) == COND_EXPR || TREE_CODE (stmt) == SWITCH_EXPR)
5026 return vrp_visit_cond_stmt (stmt, taken_edge_p);
5027
5028 /* All other statements produce nothing of interest for VRP, so mark
5029 their outputs varying and prevent further simulation. */
5030 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
5031 set_value_range_to_varying (get_value_range (def));
5032
5033 return SSA_PROP_VARYING;
5034 }
5035
5036
5037 /* Meet operation for value ranges. Given two value ranges VR0 and
5038 VR1, store in VR0 a range that contains both VR0 and VR1. This
5039 may not be the smallest possible such range. */
5040
5041 static void
5042 vrp_meet (value_range_t *vr0, value_range_t *vr1)
5043 {
5044 if (vr0->type == VR_UNDEFINED)
5045 {
5046 copy_value_range (vr0, vr1);
5047 return;
5048 }
5049
5050 if (vr1->type == VR_UNDEFINED)
5051 {
5052 /* Nothing to do. VR0 already has the resulting range. */
5053 return;
5054 }
5055
5056 if (vr0->type == VR_VARYING)
5057 {
5058 /* Nothing to do. VR0 already has the resulting range. */
5059 return;
5060 }
5061
5062 if (vr1->type == VR_VARYING)
5063 {
5064 set_value_range_to_varying (vr0);
5065 return;
5066 }
5067
5068 if (vr0->type == VR_RANGE && vr1->type == VR_RANGE)
5069 {
5070 int cmp;
5071 tree min, max;
5072
5073 /* Compute the convex hull of the ranges. The lower limit of
5074 the new range is the minimum of the two ranges. If they
5075 cannot be compared, then give up. */
5076 cmp = compare_values (vr0->min, vr1->min);
5077 if (cmp == 0 || cmp == 1)
5078 min = vr1->min;
5079 else if (cmp == -1)
5080 min = vr0->min;
5081 else
5082 goto give_up;
5083
5084 /* Similarly, the upper limit of the new range is the maximum
5085 of the two ranges. If they cannot be compared, then
5086 give up. */
5087 cmp = compare_values (vr0->max, vr1->max);
5088 if (cmp == 0 || cmp == -1)
5089 max = vr1->max;
5090 else if (cmp == 1)
5091 max = vr0->max;
5092 else
5093 goto give_up;
5094
5095 /* The resulting set of equivalences is the intersection of
5096 the two sets. */
5097 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
5098 bitmap_and_into (vr0->equiv, vr1->equiv);
5099 else if (vr0->equiv && !vr1->equiv)
5100 bitmap_clear (vr0->equiv);
5101
5102 set_value_range (vr0, vr0->type, min, max, vr0->equiv);
5103 }
5104 else if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
5105 {
5106 /* Two anti-ranges meet only if their complements intersect.
5107 Only handle the case of identical ranges. */
5108 if (compare_values (vr0->min, vr1->min) == 0
5109 && compare_values (vr0->max, vr1->max) == 0
5110 && compare_values (vr0->min, vr0->max) == 0)
5111 {
5112 /* The resulting set of equivalences is the intersection of
5113 the two sets. */
5114 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
5115 bitmap_and_into (vr0->equiv, vr1->equiv);
5116 else if (vr0->equiv && !vr1->equiv)
5117 bitmap_clear (vr0->equiv);
5118 }
5119 else
5120 goto give_up;
5121 }
5122 else if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
5123 {
5124 /* For a numeric range [VAL1, VAL2] and an anti-range ~[VAL3, VAL4],
5125 only handle the case where the ranges have an empty intersection.
5126 The result of the meet operation is the anti-range. */
5127 if (!symbolic_range_p (vr0)
5128 && !symbolic_range_p (vr1)
5129 && !value_ranges_intersect_p (vr0, vr1))
5130 {
5131 /* Copy most of VR1 into VR0. Don't copy VR1's equivalence
5132 set. We need to compute the intersection of the two
5133 equivalence sets. */
5134 if (vr1->type == VR_ANTI_RANGE)
5135 set_value_range (vr0, vr1->type, vr1->min, vr1->max, vr0->equiv);
5136
5137 /* The resulting set of equivalences is the intersection of
5138 the two sets. */
5139 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
5140 bitmap_and_into (vr0->equiv, vr1->equiv);
5141 else if (vr0->equiv && !vr1->equiv)
5142 bitmap_clear (vr0->equiv);
5143 }
5144 else
5145 goto give_up;
5146 }
5147 else
5148 gcc_unreachable ();
5149
5150 return;
5151
5152 give_up:
5153 /* Failed to find an efficient meet. Before giving up and setting
5154 the result to VARYING, see if we can at least derive a useful
5155 anti-range. FIXME, all this nonsense about distinguishing
5156 anti-ranges from ranges is necessary because of the odd
5157 semantics of range_includes_zero_p and friends. */
5158 if (!symbolic_range_p (vr0)
5159 && ((vr0->type == VR_RANGE && !range_includes_zero_p (vr0))
5160 || (vr0->type == VR_ANTI_RANGE && range_includes_zero_p (vr0)))
5161 && !symbolic_range_p (vr1)
5162 && ((vr1->type == VR_RANGE && !range_includes_zero_p (vr1))
5163 || (vr1->type == VR_ANTI_RANGE && range_includes_zero_p (vr1))))
5164 {
5165 set_value_range_to_nonnull (vr0, TREE_TYPE (vr0->min));
5166
5167 /* Since this meet operation did not result from the meeting of
5168 two equivalent names, VR0 cannot have any equivalences. */
5169 if (vr0->equiv)
5170 bitmap_clear (vr0->equiv);
5171 }
5172 else
5173 set_value_range_to_varying (vr0);
5174 }
5175
5176
5177 /* Visit all arguments for PHI node PHI that flow through executable
5178 edges. If a valid value range can be derived from all the incoming
5179 value ranges, set a new range for the LHS of PHI. */
5180
5181 static enum ssa_prop_result
5182 vrp_visit_phi_node (tree phi)
5183 {
5184 int i;
5185 tree lhs = PHI_RESULT (phi);
5186 value_range_t *lhs_vr = get_value_range (lhs);
5187 value_range_t vr_result = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
5188 bool all_const = true;
5189
5190 copy_value_range (&vr_result, lhs_vr);
5191
5192 if (dump_file && (dump_flags & TDF_DETAILS))
5193 {
5194 fprintf (dump_file, "\nVisiting PHI node: ");
5195 print_generic_expr (dump_file, phi, dump_flags);
5196 }
5197
5198 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
5199 {
5200 edge e = PHI_ARG_EDGE (phi, i);
5201
5202 if (dump_file && (dump_flags & TDF_DETAILS))
5203 {
5204 fprintf (dump_file,
5205 "\n Argument #%d (%d -> %d %sexecutable)\n",
5206 i, e->src->index, e->dest->index,
5207 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
5208 }
5209
5210 if (e->flags & EDGE_EXECUTABLE)
5211 {
5212 tree arg = PHI_ARG_DEF (phi, i);
5213 value_range_t vr_arg;
5214
5215 if (TREE_CODE (arg) == SSA_NAME)
5216 {
5217 vr_arg = *(get_value_range (arg));
5218 all_const = false;
5219 }
5220 else
5221 {
5222 vr_arg.type = VR_RANGE;
5223 vr_arg.min = arg;
5224 vr_arg.max = arg;
5225 vr_arg.equiv = NULL;
5226 }
5227
5228 if (dump_file && (dump_flags & TDF_DETAILS))
5229 {
5230 fprintf (dump_file, "\t");
5231 print_generic_expr (dump_file, arg, dump_flags);
5232 fprintf (dump_file, "\n\tValue: ");
5233 dump_value_range (dump_file, &vr_arg);
5234 fprintf (dump_file, "\n");
5235 }
5236
5237 vrp_meet (&vr_result, &vr_arg);
5238
5239 if (vr_result.type == VR_VARYING)
5240 break;
5241 }
5242 }
5243
5244 if (vr_result.type == VR_VARYING)
5245 goto varying;
5246
5247 /* To prevent infinite iterations in the algorithm, derive ranges
5248 when the new value is slightly bigger or smaller than the
5249 previous one. */
5250 if (lhs_vr->type == VR_RANGE && vr_result.type == VR_RANGE
5251 && !all_const)
5252 {
5253 if (!POINTER_TYPE_P (TREE_TYPE (lhs)))
5254 {
5255 int cmp_min = compare_values (lhs_vr->min, vr_result.min);
5256 int cmp_max = compare_values (lhs_vr->max, vr_result.max);
5257
5258 /* If the new minimum is smaller or larger than the previous
5259 one, go all the way to -INF. In the first case, to avoid
5260 iterating millions of times to reach -INF, and in the
5261 other case to avoid infinite bouncing between different
5262 minimums. */
5263 if (cmp_min > 0 || cmp_min < 0)
5264 {
5265 /* If we will end up with a (-INF, +INF) range, set it
5266 to VARYING. */
5267 if (is_positive_overflow_infinity (vr_result.max)
5268 || (vr_result.max
5269 == TYPE_MAX_VALUE (TREE_TYPE (vr_result.max))))
5270 goto varying;
5271
5272 if (!needs_overflow_infinity (TREE_TYPE (vr_result.min)))
5273 vr_result.min = TYPE_MIN_VALUE (TREE_TYPE (vr_result.min));
5274 else if (supports_overflow_infinity (TREE_TYPE (vr_result.min)))
5275 vr_result.min =
5276 negative_overflow_infinity (TREE_TYPE (vr_result.min));
5277 else
5278 goto varying;
5279 }
5280
5281 /* Similarly, if the new maximum is smaller or larger than
5282 the previous one, go all the way to +INF. */
5283 if (cmp_max < 0 || cmp_max > 0)
5284 {
5285 /* If we will end up with a (-INF, +INF) range, set it
5286 to VARYING. */
5287 if (is_negative_overflow_infinity (vr_result.min)
5288 || (vr_result.min
5289 == TYPE_MIN_VALUE (TREE_TYPE (vr_result.min))))
5290 goto varying;
5291
5292 if (!needs_overflow_infinity (TREE_TYPE (vr_result.max)))
5293 vr_result.max = TYPE_MAX_VALUE (TREE_TYPE (vr_result.max));
5294 else if (supports_overflow_infinity (TREE_TYPE (vr_result.max)))
5295 vr_result.max =
5296 positive_overflow_infinity (TREE_TYPE (vr_result.max));
5297 else
5298 goto varying;
5299 }
5300 }
5301 }
5302
5303 /* If the new range is different than the previous value, keep
5304 iterating. */
5305 if (update_value_range (lhs, &vr_result))
5306 return SSA_PROP_INTERESTING;
5307
5308 /* Nothing changed, don't add outgoing edges. */
5309 return SSA_PROP_NOT_INTERESTING;
5310
5311 /* No match found. Set the LHS to VARYING. */
5312 varying:
5313 set_value_range_to_varying (lhs_vr);
5314 return SSA_PROP_VARYING;
5315 }
5316
5317 /* Simplify a division or modulo operator to a right shift or
5318 bitwise and if the first operand is unsigned or is greater
5319 than zero and the second operand is an exact power of two. */
5320
5321 static void
5322 simplify_div_or_mod_using_ranges (tree stmt, tree rhs, enum tree_code rhs_code)
5323 {
5324 tree val = NULL;
5325 tree op = TREE_OPERAND (rhs, 0);
5326 value_range_t *vr = get_value_range (TREE_OPERAND (rhs, 0));
5327
5328 if (TYPE_UNSIGNED (TREE_TYPE (op)))
5329 {
5330 val = integer_one_node;
5331 }
5332 else
5333 {
5334 bool sop = false;
5335
5336 val = compare_range_with_value (GT_EXPR, vr, integer_zero_node, &sop);
5337
5338 if (val
5339 && sop
5340 && integer_onep (val)
5341 && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
5342 {
5343 location_t locus;
5344
5345 if (!EXPR_HAS_LOCATION (stmt))
5346 locus = input_location;
5347 else
5348 locus = EXPR_LOCATION (stmt);
5349 warning (OPT_Wstrict_overflow,
5350 ("%Hassuming signed overflow does not occur when "
5351 "simplifying / or %% to >> or &"),
5352 &locus);
5353 }
5354 }
5355
5356 if (val && integer_onep (val))
5357 {
5358 tree t;
5359 tree op0 = TREE_OPERAND (rhs, 0);
5360 tree op1 = TREE_OPERAND (rhs, 1);
5361
5362 if (rhs_code == TRUNC_DIV_EXPR)
5363 {
5364 t = build_int_cst (NULL_TREE, tree_log2 (op1));
5365 t = build2 (RSHIFT_EXPR, TREE_TYPE (op0), op0, t);
5366 }
5367 else
5368 {
5369 t = build_int_cst (TREE_TYPE (op1), 1);
5370 t = int_const_binop (MINUS_EXPR, op1, t, 0);
5371 t = fold_convert (TREE_TYPE (op0), t);
5372 t = build2 (BIT_AND_EXPR, TREE_TYPE (op0), op0, t);
5373 }
5374
5375 GIMPLE_STMT_OPERAND (stmt, 1) = t;
5376 update_stmt (stmt);
5377 }
5378 }
5379
5380 /* If the operand to an ABS_EXPR is >= 0, then eliminate the
5381 ABS_EXPR. If the operand is <= 0, then simplify the
5382 ABS_EXPR into a NEGATE_EXPR. */
5383
5384 static void
5385 simplify_abs_using_ranges (tree stmt, tree rhs)
5386 {
5387 tree val = NULL;
5388 tree op = TREE_OPERAND (rhs, 0);
5389 tree type = TREE_TYPE (op);
5390 value_range_t *vr = get_value_range (TREE_OPERAND (rhs, 0));
5391
5392 if (TYPE_UNSIGNED (type))
5393 {
5394 val = integer_zero_node;
5395 }
5396 else if (vr)
5397 {
5398 bool sop = false;
5399
5400 val = compare_range_with_value (LE_EXPR, vr, integer_zero_node, &sop);
5401 if (!val)
5402 {
5403 sop = false;
5404 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node,
5405 &sop);
5406
5407 if (val)
5408 {
5409 if (integer_zerop (val))
5410 val = integer_one_node;
5411 else if (integer_onep (val))
5412 val = integer_zero_node;
5413 }
5414 }
5415
5416 if (val
5417 && (integer_onep (val) || integer_zerop (val)))
5418 {
5419 tree t;
5420
5421 if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
5422 {
5423 location_t locus;
5424
5425 if (!EXPR_HAS_LOCATION (stmt))
5426 locus = input_location;
5427 else
5428 locus = EXPR_LOCATION (stmt);
5429 warning (OPT_Wstrict_overflow,
5430 ("%Hassuming signed overflow does not occur when "
5431 "simplifying abs (X) to X or -X"),
5432 &locus);
5433 }
5434
5435 if (integer_onep (val))
5436 t = build1 (NEGATE_EXPR, TREE_TYPE (op), op);
5437 else
5438 t = op;
5439
5440 GIMPLE_STMT_OPERAND (stmt, 1) = t;
5441 update_stmt (stmt);
5442 }
5443 }
5444 }
5445
5446 /* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
5447 a known value range VR.
5448
5449 If there is one and only one value which will satisfy the
5450 conditional, then return that value. Else return NULL. */
5451
5452 static tree
5453 test_for_singularity (enum tree_code cond_code, tree op0,
5454 tree op1, value_range_t *vr)
5455 {
5456 tree min = NULL;
5457 tree max = NULL;
5458
5459 /* Extract minimum/maximum values which satisfy the
5460 the conditional as it was written. */
5461 if (cond_code == LE_EXPR || cond_code == LT_EXPR)
5462 {
5463 /* This should not be negative infinity; there is no overflow
5464 here. */
5465 min = TYPE_MIN_VALUE (TREE_TYPE (op0));
5466
5467 max = op1;
5468 if (cond_code == LT_EXPR && !is_overflow_infinity (max))
5469 {
5470 tree one = build_int_cst (TREE_TYPE (op0), 1);
5471 max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one);
5472 }
5473 }
5474 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
5475 {
5476 /* This should not be positive infinity; there is no overflow
5477 here. */
5478 max = TYPE_MAX_VALUE (TREE_TYPE (op0));
5479
5480 min = op1;
5481 if (cond_code == GT_EXPR && !is_overflow_infinity (min))
5482 {
5483 tree one = build_int_cst (TREE_TYPE (op0), 1);
5484 min = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), min, one);
5485 }
5486 }
5487
5488 /* Now refine the minimum and maximum values using any
5489 value range information we have for op0. */
5490 if (min && max)
5491 {
5492 if (compare_values (vr->min, min) == -1)
5493 min = min;
5494 else
5495 min = vr->min;
5496 if (compare_values (vr->max, max) == 1)
5497 max = max;
5498 else
5499 max = vr->max;
5500
5501 /* If the new min/max values have converged to a single value,
5502 then there is only one value which can satisfy the condition,
5503 return that value. */
5504 if (operand_equal_p (min, max, 0) && is_gimple_min_invariant (min))
5505 return min;
5506 }
5507 return NULL;
5508 }
5509
5510 /* Simplify a conditional using a relational operator to an equality
5511 test if the range information indicates only one value can satisfy
5512 the original conditional. */
5513
5514 static void
5515 simplify_cond_using_ranges (tree stmt)
5516 {
5517 tree cond = COND_EXPR_COND (stmt);
5518 tree op0 = TREE_OPERAND (cond, 0);
5519 tree op1 = TREE_OPERAND (cond, 1);
5520 enum tree_code cond_code = TREE_CODE (cond);
5521
5522 if (cond_code != NE_EXPR
5523 && cond_code != EQ_EXPR
5524 && TREE_CODE (op0) == SSA_NAME
5525 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
5526 && is_gimple_min_invariant (op1))
5527 {
5528 value_range_t *vr = get_value_range (op0);
5529
5530 /* If we have range information for OP0, then we might be
5531 able to simplify this conditional. */
5532 if (vr->type == VR_RANGE)
5533 {
5534 tree new = test_for_singularity (cond_code, op0, op1, vr);
5535
5536 if (new)
5537 {
5538 if (dump_file)
5539 {
5540 fprintf (dump_file, "Simplified relational ");
5541 print_generic_expr (dump_file, cond, 0);
5542 fprintf (dump_file, " into ");
5543 }
5544
5545 COND_EXPR_COND (stmt)
5546 = build2 (EQ_EXPR, boolean_type_node, op0, new);
5547 update_stmt (stmt);
5548
5549 if (dump_file)
5550 {
5551 print_generic_expr (dump_file, COND_EXPR_COND (stmt), 0);
5552 fprintf (dump_file, "\n");
5553 }
5554 return;
5555
5556 }
5557
5558 /* Try again after inverting the condition. We only deal
5559 with integral types here, so no need to worry about
5560 issues with inverting FP comparisons. */
5561 cond_code = invert_tree_comparison (cond_code, false);
5562 new = test_for_singularity (cond_code, op0, op1, vr);
5563
5564 if (new)
5565 {
5566 if (dump_file)
5567 {
5568 fprintf (dump_file, "Simplified relational ");
5569 print_generic_expr (dump_file, cond, 0);
5570 fprintf (dump_file, " into ");
5571 }
5572
5573 COND_EXPR_COND (stmt)
5574 = build2 (NE_EXPR, boolean_type_node, op0, new);
5575 update_stmt (stmt);
5576
5577 if (dump_file)
5578 {
5579 print_generic_expr (dump_file, COND_EXPR_COND (stmt), 0);
5580 fprintf (dump_file, "\n");
5581 }
5582 return;
5583
5584 }
5585 }
5586 }
5587 }
5588
5589 /* Simplify STMT using ranges if possible. */
5590
5591 void
5592 simplify_stmt_using_ranges (tree stmt)
5593 {
5594 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT)
5595 {
5596 tree rhs = GIMPLE_STMT_OPERAND (stmt, 1);
5597 enum tree_code rhs_code = TREE_CODE (rhs);
5598
5599 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
5600 and BIT_AND_EXPR respectively if the first operand is greater
5601 than zero and the second operand is an exact power of two. */
5602 if ((rhs_code == TRUNC_DIV_EXPR || rhs_code == TRUNC_MOD_EXPR)
5603 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs, 0)))
5604 && integer_pow2p (TREE_OPERAND (rhs, 1)))
5605 simplify_div_or_mod_using_ranges (stmt, rhs, rhs_code);
5606
5607 /* Transform ABS (X) into X or -X as appropriate. */
5608 if (rhs_code == ABS_EXPR
5609 && TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME
5610 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs, 0))))
5611 simplify_abs_using_ranges (stmt, rhs);
5612 }
5613 else if (TREE_CODE (stmt) == COND_EXPR
5614 && COMPARISON_CLASS_P (COND_EXPR_COND (stmt)))
5615 {
5616 simplify_cond_using_ranges (stmt);
5617 }
5618 }
5619
5620 /* Stack of dest,src equivalency pairs that need to be restored after
5621 each attempt to thread a block's incoming edge to an outgoing edge.
5622
5623 A NULL entry is used to mark the end of pairs which need to be
5624 restored. */
5625 static VEC(tree,heap) *stack;
5626
5627 /* A trivial wrapper so that we can present the generic jump threading
5628 code with a simple API for simplifying statements. STMT is the
5629 statement we want to simplify, WITHIN_STMT provides the location
5630 for any overflow warnings. */
5631
5632 static tree
5633 simplify_stmt_for_jump_threading (tree stmt, tree within_stmt)
5634 {
5635 /* We only use VRP information to simplify conditionals. This is
5636 overly conservative, but it's unclear if doing more would be
5637 worth the compile time cost. */
5638 if (TREE_CODE (stmt) != COND_EXPR)
5639 return NULL;
5640
5641 return vrp_evaluate_conditional (COND_EXPR_COND (stmt), within_stmt);
5642 }
5643
5644 /* Blocks which have more than one predecessor and more than
5645 one successor present jump threading opportunities. ie,
5646 when the block is reached from a specific predecessor, we
5647 may be able to determine which of the outgoing edges will
5648 be traversed. When this optimization applies, we are able
5649 to avoid conditionals at runtime and we may expose secondary
5650 optimization opportunities.
5651
5652 This routine is effectively a driver for the generic jump
5653 threading code. It basically just presents the generic code
5654 with edges that may be suitable for jump threading.
5655
5656 Unlike DOM, we do not iterate VRP if jump threading was successful.
5657 While iterating may expose new opportunities for VRP, it is expected
5658 those opportunities would be very limited and the compile time cost
5659 to expose those opportunities would be significant.
5660
5661 As jump threading opportunities are discovered, they are registered
5662 for later realization. */
5663
5664 static void
5665 identify_jump_threads (void)
5666 {
5667 basic_block bb;
5668 tree dummy;
5669
5670 /* Ugh. When substituting values earlier in this pass we can
5671 wipe the dominance information. So rebuild the dominator
5672 information as we need it within the jump threading code. */
5673 calculate_dominance_info (CDI_DOMINATORS);
5674
5675 /* We do not allow VRP information to be used for jump threading
5676 across a back edge in the CFG. Otherwise it becomes too
5677 difficult to avoid eliminating loop exit tests. Of course
5678 EDGE_DFS_BACK is not accurate at this time so we have to
5679 recompute it. */
5680 mark_dfs_back_edges ();
5681
5682 /* Allocate our unwinder stack to unwind any temporary equivalences
5683 that might be recorded. */
5684 stack = VEC_alloc (tree, heap, 20);
5685
5686 /* To avoid lots of silly node creation, we create a single
5687 conditional and just modify it in-place when attempting to
5688 thread jumps. */
5689 dummy = build2 (EQ_EXPR, boolean_type_node, NULL, NULL);
5690 dummy = build3 (COND_EXPR, void_type_node, dummy, NULL, NULL);
5691
5692 /* Walk through all the blocks finding those which present a
5693 potential jump threading opportunity. We could set this up
5694 as a dominator walker and record data during the walk, but
5695 I doubt it's worth the effort for the classes of jump
5696 threading opportunities we are trying to identify at this
5697 point in compilation. */
5698 FOR_EACH_BB (bb)
5699 {
5700 tree last, cond;
5701
5702 /* If the generic jump threading code does not find this block
5703 interesting, then there is nothing to do. */
5704 if (! potentially_threadable_block (bb))
5705 continue;
5706
5707 /* We only care about blocks ending in a COND_EXPR. While there
5708 may be some value in handling SWITCH_EXPR here, I doubt it's
5709 terribly important. */
5710 last = bsi_stmt (bsi_last (bb));
5711 if (TREE_CODE (last) != COND_EXPR)
5712 continue;
5713
5714 /* We're basically looking for any kind of conditional with
5715 integral type arguments. */
5716 cond = COND_EXPR_COND (last);
5717 if ((TREE_CODE (cond) == SSA_NAME
5718 && INTEGRAL_TYPE_P (TREE_TYPE (cond)))
5719 || (COMPARISON_CLASS_P (cond)
5720 && TREE_CODE (TREE_OPERAND (cond, 0)) == SSA_NAME
5721 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (cond, 0)))
5722 && (TREE_CODE (TREE_OPERAND (cond, 1)) == SSA_NAME
5723 || is_gimple_min_invariant (TREE_OPERAND (cond, 1)))
5724 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (cond, 1)))))
5725 {
5726 edge_iterator ei;
5727 edge e;
5728
5729 /* We've got a block with multiple predecessors and multiple
5730 successors which also ends in a suitable conditional. For
5731 each predecessor, see if we can thread it to a specific
5732 successor. */
5733 FOR_EACH_EDGE (e, ei, bb->preds)
5734 {
5735 /* Do not thread across back edges or abnormal edges
5736 in the CFG. */
5737 if (e->flags & (EDGE_DFS_BACK | EDGE_COMPLEX))
5738 continue;
5739
5740 thread_across_edge (dummy, e, true,
5741 &stack,
5742 simplify_stmt_for_jump_threading);
5743 }
5744 }
5745 }
5746
5747 /* We do not actually update the CFG or SSA graphs at this point as
5748 ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
5749 handle ASSERT_EXPRs gracefully. */
5750 }
5751
5752 /* We identified all the jump threading opportunities earlier, but could
5753 not transform the CFG at that time. This routine transforms the
5754 CFG and arranges for the dominator tree to be rebuilt if necessary.
5755
5756 Note the SSA graph update will occur during the normal TODO
5757 processing by the pass manager. */
5758 static void
5759 finalize_jump_threads (void)
5760 {
5761 bool cfg_altered = false;
5762 cfg_altered = thread_through_all_blocks ();
5763
5764 /* If we threaded jumps, then we need to recompute the dominance
5765 information. */
5766 if (cfg_altered)
5767 free_dominance_info (CDI_DOMINATORS);
5768 VEC_free (tree, heap, stack);
5769 }
5770
5771
5772 /* Traverse all the blocks folding conditionals with known ranges. */
5773
5774 static void
5775 vrp_finalize (void)
5776 {
5777 size_t i;
5778 prop_value_t *single_val_range;
5779 bool do_value_subst_p;
5780
5781 if (dump_file)
5782 {
5783 fprintf (dump_file, "\nValue ranges after VRP:\n\n");
5784 dump_all_value_ranges (dump_file);
5785 fprintf (dump_file, "\n");
5786 }
5787
5788 /* We may have ended with ranges that have exactly one value. Those
5789 values can be substituted as any other copy/const propagated
5790 value using substitute_and_fold. */
5791 single_val_range = XCNEWVEC (prop_value_t, num_ssa_names);
5792
5793 do_value_subst_p = false;
5794 for (i = 0; i < num_ssa_names; i++)
5795 if (vr_value[i]
5796 && vr_value[i]->type == VR_RANGE
5797 && vr_value[i]->min == vr_value[i]->max)
5798 {
5799 single_val_range[i].value = vr_value[i]->min;
5800 do_value_subst_p = true;
5801 }
5802
5803 if (!do_value_subst_p)
5804 {
5805 /* We found no single-valued ranges, don't waste time trying to
5806 do single value substitution in substitute_and_fold. */
5807 free (single_val_range);
5808 single_val_range = NULL;
5809 }
5810
5811 substitute_and_fold (single_val_range, true);
5812
5813 if (warn_array_bounds)
5814 check_all_array_refs ();
5815
5816 /* We must identify jump threading opportunities before we release
5817 the datastructures built by VRP. */
5818 identify_jump_threads ();
5819
5820 /* Free allocated memory. */
5821 for (i = 0; i < num_ssa_names; i++)
5822 if (vr_value[i])
5823 {
5824 BITMAP_FREE (vr_value[i]->equiv);
5825 free (vr_value[i]);
5826 }
5827
5828 free (single_val_range);
5829 free (vr_value);
5830
5831 /* So that we can distinguish between VRP data being available
5832 and not available. */
5833 vr_value = NULL;
5834 }
5835
5836
5837 /* Main entry point to VRP (Value Range Propagation). This pass is
5838 loosely based on J. R. C. Patterson, ``Accurate Static Branch
5839 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
5840 Programming Language Design and Implementation, pp. 67-78, 1995.
5841 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
5842
5843 This is essentially an SSA-CCP pass modified to deal with ranges
5844 instead of constants.
5845
5846 While propagating ranges, we may find that two or more SSA name
5847 have equivalent, though distinct ranges. For instance,
5848
5849 1 x_9 = p_3->a;
5850 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
5851 3 if (p_4 == q_2)
5852 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
5853 5 endif
5854 6 if (q_2)
5855
5856 In the code above, pointer p_5 has range [q_2, q_2], but from the
5857 code we can also determine that p_5 cannot be NULL and, if q_2 had
5858 a non-varying range, p_5's range should also be compatible with it.
5859
5860 These equivalences are created by two expressions: ASSERT_EXPR and
5861 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
5862 result of another assertion, then we can use the fact that p_5 and
5863 p_4 are equivalent when evaluating p_5's range.
5864
5865 Together with value ranges, we also propagate these equivalences
5866 between names so that we can take advantage of information from
5867 multiple ranges when doing final replacement. Note that this
5868 equivalency relation is transitive but not symmetric.
5869
5870 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
5871 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
5872 in contexts where that assertion does not hold (e.g., in line 6).
5873
5874 TODO, the main difference between this pass and Patterson's is that
5875 we do not propagate edge probabilities. We only compute whether
5876 edges can be taken or not. That is, instead of having a spectrum
5877 of jump probabilities between 0 and 1, we only deal with 0, 1 and
5878 DON'T KNOW. In the future, it may be worthwhile to propagate
5879 probabilities to aid branch prediction. */
5880
5881 static unsigned int
5882 execute_vrp (void)
5883 {
5884 insert_range_assertions ();
5885
5886 loop_optimizer_init (LOOPS_NORMAL);
5887 if (current_loops)
5888 scev_initialize ();
5889
5890 vrp_initialize ();
5891 ssa_propagate (vrp_visit_stmt, vrp_visit_phi_node);
5892 vrp_finalize ();
5893
5894 if (current_loops)
5895 {
5896 scev_finalize ();
5897 loop_optimizer_finalize ();
5898 }
5899
5900 /* ASSERT_EXPRs must be removed before finalizing jump threads
5901 as finalizing jump threads calls the CFG cleanup code which
5902 does not properly handle ASSERT_EXPRs. */
5903 remove_range_assertions ();
5904
5905 /* If we exposed any new variables, go ahead and put them into
5906 SSA form now, before we handle jump threading. This simplifies
5907 interactions between rewriting of _DECL nodes into SSA form
5908 and rewriting SSA_NAME nodes into SSA form after block
5909 duplication and CFG manipulation. */
5910 update_ssa (TODO_update_ssa);
5911
5912 finalize_jump_threads ();
5913 return 0;
5914 }
5915
5916 static bool
5917 gate_vrp (void)
5918 {
5919 return flag_tree_vrp != 0;
5920 }
5921
5922 struct tree_opt_pass pass_vrp =
5923 {
5924 "vrp", /* name */
5925 gate_vrp, /* gate */
5926 execute_vrp, /* execute */
5927 NULL, /* sub */
5928 NULL, /* next */
5929 0, /* static_pass_number */
5930 TV_TREE_VRP, /* tv_id */
5931 PROP_ssa | PROP_alias, /* properties_required */
5932 0, /* properties_provided */
5933 0, /* properties_destroyed */
5934 0, /* todo_flags_start */
5935 TODO_cleanup_cfg
5936 | TODO_ggc_collect
5937 | TODO_verify_ssa
5938 | TODO_dump_func
5939 | TODO_update_ssa, /* todo_flags_finish */
5940 0 /* letter */
5941 };