]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-vrp.c
gcc/
[thirdparty/gcc.git] / gcc / tree-vrp.c
1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005-2013 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "ggc.h"
26 #include "flags.h"
27 #include "tree.h"
28 #include "basic-block.h"
29 #include "tree-flow.h"
30 #include "tree-pass.h"
31 #include "tree-dump.h"
32 #include "gimple-pretty-print.h"
33 #include "diagnostic-core.h"
34 #include "intl.h"
35 #include "cfgloop.h"
36 #include "tree-scalar-evolution.h"
37 #include "tree-ssa-propagate.h"
38 #include "tree-chrec.h"
39 #include "gimple-fold.h"
40 #include "expr.h"
41 #include "optabs.h"
42
43
44 /* Type of value ranges. See value_range_d for a description of these
45 types. */
46 enum value_range_type { VR_UNDEFINED, VR_RANGE, VR_ANTI_RANGE, VR_VARYING };
47
48 /* Range of values that can be associated with an SSA_NAME after VRP
49 has executed. */
50 struct value_range_d
51 {
52 /* Lattice value represented by this range. */
53 enum value_range_type type;
54
55 /* Minimum and maximum values represented by this range. These
56 values should be interpreted as follows:
57
58 - If TYPE is VR_UNDEFINED or VR_VARYING then MIN and MAX must
59 be NULL.
60
61 - If TYPE == VR_RANGE then MIN holds the minimum value and
62 MAX holds the maximum value of the range [MIN, MAX].
63
64 - If TYPE == ANTI_RANGE the variable is known to NOT
65 take any values in the range [MIN, MAX]. */
66 tree min;
67 tree max;
68
69 /* Set of SSA names whose value ranges are equivalent to this one.
70 This set is only valid when TYPE is VR_RANGE or VR_ANTI_RANGE. */
71 bitmap equiv;
72 };
73
74 typedef struct value_range_d value_range_t;
75
76 #define VR_INITIALIZER { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL }
77
78 /* Set of SSA names found live during the RPO traversal of the function
79 for still active basic-blocks. */
80 static sbitmap *live;
81
82 /* Return true if the SSA name NAME is live on the edge E. */
83
84 static bool
85 live_on_edge (edge e, tree name)
86 {
87 return (live[e->dest->index]
88 && bitmap_bit_p (live[e->dest->index], SSA_NAME_VERSION (name)));
89 }
90
91 /* Local functions. */
92 static int compare_values (tree val1, tree val2);
93 static int compare_values_warnv (tree val1, tree val2, bool *);
94 static void vrp_meet (value_range_t *, value_range_t *);
95 static void vrp_intersect_ranges (value_range_t *, value_range_t *);
96 static tree vrp_evaluate_conditional_warnv_with_ops (enum tree_code,
97 tree, tree, bool, bool *,
98 bool *);
99
100 /* Location information for ASSERT_EXPRs. Each instance of this
101 structure describes an ASSERT_EXPR for an SSA name. Since a single
102 SSA name may have more than one assertion associated with it, these
103 locations are kept in a linked list attached to the corresponding
104 SSA name. */
105 struct assert_locus_d
106 {
107 /* Basic block where the assertion would be inserted. */
108 basic_block bb;
109
110 /* Some assertions need to be inserted on an edge (e.g., assertions
111 generated by COND_EXPRs). In those cases, BB will be NULL. */
112 edge e;
113
114 /* Pointer to the statement that generated this assertion. */
115 gimple_stmt_iterator si;
116
117 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
118 enum tree_code comp_code;
119
120 /* Value being compared against. */
121 tree val;
122
123 /* Expression to compare. */
124 tree expr;
125
126 /* Next node in the linked list. */
127 struct assert_locus_d *next;
128 };
129
130 typedef struct assert_locus_d *assert_locus_t;
131
132 /* If bit I is present, it means that SSA name N_i has a list of
133 assertions that should be inserted in the IL. */
134 static bitmap need_assert_for;
135
136 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
137 holds a list of ASSERT_LOCUS_T nodes that describe where
138 ASSERT_EXPRs for SSA name N_I should be inserted. */
139 static assert_locus_t *asserts_for;
140
141 /* Value range array. After propagation, VR_VALUE[I] holds the range
142 of values that SSA name N_I may take. */
143 static unsigned num_vr_values;
144 static value_range_t **vr_value;
145 static bool values_propagated;
146
147 /* For a PHI node which sets SSA name N_I, VR_COUNTS[I] holds the
148 number of executable edges we saw the last time we visited the
149 node. */
150 static int *vr_phi_edge_counts;
151
152 typedef struct {
153 gimple stmt;
154 tree vec;
155 } switch_update;
156
157 static vec<edge> to_remove_edges;
158 static vec<switch_update> to_update_switch_stmts;
159
160
161 /* Return the maximum value for TYPE. */
162
163 static inline tree
164 vrp_val_max (const_tree type)
165 {
166 if (!INTEGRAL_TYPE_P (type))
167 return NULL_TREE;
168
169 return TYPE_MAX_VALUE (type);
170 }
171
172 /* Return the minimum value for TYPE. */
173
174 static inline tree
175 vrp_val_min (const_tree type)
176 {
177 if (!INTEGRAL_TYPE_P (type))
178 return NULL_TREE;
179
180 return TYPE_MIN_VALUE (type);
181 }
182
183 /* Return whether VAL is equal to the maximum value of its type. This
184 will be true for a positive overflow infinity. We can't do a
185 simple equality comparison with TYPE_MAX_VALUE because C typedefs
186 and Ada subtypes can produce types whose TYPE_MAX_VALUE is not ==
187 to the integer constant with the same value in the type. */
188
189 static inline bool
190 vrp_val_is_max (const_tree val)
191 {
192 tree type_max = vrp_val_max (TREE_TYPE (val));
193 return (val == type_max
194 || (type_max != NULL_TREE
195 && operand_equal_p (val, type_max, 0)));
196 }
197
198 /* Return whether VAL is equal to the minimum value of its type. This
199 will be true for a negative overflow infinity. */
200
201 static inline bool
202 vrp_val_is_min (const_tree val)
203 {
204 tree type_min = vrp_val_min (TREE_TYPE (val));
205 return (val == type_min
206 || (type_min != NULL_TREE
207 && operand_equal_p (val, type_min, 0)));
208 }
209
210
211 /* Return whether TYPE should use an overflow infinity distinct from
212 TYPE_{MIN,MAX}_VALUE. We use an overflow infinity value to
213 represent a signed overflow during VRP computations. An infinity
214 is distinct from a half-range, which will go from some number to
215 TYPE_{MIN,MAX}_VALUE. */
216
217 static inline bool
218 needs_overflow_infinity (const_tree type)
219 {
220 return INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_WRAPS (type);
221 }
222
223 /* Return whether TYPE can support our overflow infinity
224 representation: we use the TREE_OVERFLOW flag, which only exists
225 for constants. If TYPE doesn't support this, we don't optimize
226 cases which would require signed overflow--we drop them to
227 VARYING. */
228
229 static inline bool
230 supports_overflow_infinity (const_tree type)
231 {
232 tree min = vrp_val_min (type), max = vrp_val_max (type);
233 #ifdef ENABLE_CHECKING
234 gcc_assert (needs_overflow_infinity (type));
235 #endif
236 return (min != NULL_TREE
237 && CONSTANT_CLASS_P (min)
238 && max != NULL_TREE
239 && CONSTANT_CLASS_P (max));
240 }
241
242 /* VAL is the maximum or minimum value of a type. Return a
243 corresponding overflow infinity. */
244
245 static inline tree
246 make_overflow_infinity (tree val)
247 {
248 gcc_checking_assert (val != NULL_TREE && CONSTANT_CLASS_P (val));
249 val = copy_node (val);
250 TREE_OVERFLOW (val) = 1;
251 return val;
252 }
253
254 /* Return a negative overflow infinity for TYPE. */
255
256 static inline tree
257 negative_overflow_infinity (tree type)
258 {
259 gcc_checking_assert (supports_overflow_infinity (type));
260 return make_overflow_infinity (vrp_val_min (type));
261 }
262
263 /* Return a positive overflow infinity for TYPE. */
264
265 static inline tree
266 positive_overflow_infinity (tree type)
267 {
268 gcc_checking_assert (supports_overflow_infinity (type));
269 return make_overflow_infinity (vrp_val_max (type));
270 }
271
272 /* Return whether VAL is a negative overflow infinity. */
273
274 static inline bool
275 is_negative_overflow_infinity (const_tree val)
276 {
277 return (needs_overflow_infinity (TREE_TYPE (val))
278 && CONSTANT_CLASS_P (val)
279 && TREE_OVERFLOW (val)
280 && vrp_val_is_min (val));
281 }
282
283 /* Return whether VAL is a positive overflow infinity. */
284
285 static inline bool
286 is_positive_overflow_infinity (const_tree val)
287 {
288 return (needs_overflow_infinity (TREE_TYPE (val))
289 && CONSTANT_CLASS_P (val)
290 && TREE_OVERFLOW (val)
291 && vrp_val_is_max (val));
292 }
293
294 /* Return whether VAL is a positive or negative overflow infinity. */
295
296 static inline bool
297 is_overflow_infinity (const_tree val)
298 {
299 return (needs_overflow_infinity (TREE_TYPE (val))
300 && CONSTANT_CLASS_P (val)
301 && TREE_OVERFLOW (val)
302 && (vrp_val_is_min (val) || vrp_val_is_max (val)));
303 }
304
305 /* Return whether STMT has a constant rhs that is_overflow_infinity. */
306
307 static inline bool
308 stmt_overflow_infinity (gimple stmt)
309 {
310 if (is_gimple_assign (stmt)
311 && get_gimple_rhs_class (gimple_assign_rhs_code (stmt)) ==
312 GIMPLE_SINGLE_RHS)
313 return is_overflow_infinity (gimple_assign_rhs1 (stmt));
314 return false;
315 }
316
317 /* If VAL is now an overflow infinity, return VAL. Otherwise, return
318 the same value with TREE_OVERFLOW clear. This can be used to avoid
319 confusing a regular value with an overflow value. */
320
321 static inline tree
322 avoid_overflow_infinity (tree val)
323 {
324 if (!is_overflow_infinity (val))
325 return val;
326
327 if (vrp_val_is_max (val))
328 return vrp_val_max (TREE_TYPE (val));
329 else
330 {
331 gcc_checking_assert (vrp_val_is_min (val));
332 return vrp_val_min (TREE_TYPE (val));
333 }
334 }
335
336
337 /* Return true if ARG is marked with the nonnull attribute in the
338 current function signature. */
339
340 static bool
341 nonnull_arg_p (const_tree arg)
342 {
343 tree t, attrs, fntype;
344 unsigned HOST_WIDE_INT arg_num;
345
346 gcc_assert (TREE_CODE (arg) == PARM_DECL && POINTER_TYPE_P (TREE_TYPE (arg)));
347
348 /* The static chain decl is always non null. */
349 if (arg == cfun->static_chain_decl)
350 return true;
351
352 fntype = TREE_TYPE (current_function_decl);
353 for (attrs = TYPE_ATTRIBUTES (fntype); attrs; attrs = TREE_CHAIN (attrs))
354 {
355 attrs = lookup_attribute ("nonnull", attrs);
356
357 /* If "nonnull" wasn't specified, we know nothing about the argument. */
358 if (attrs == NULL_TREE)
359 return false;
360
361 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
362 if (TREE_VALUE (attrs) == NULL_TREE)
363 return true;
364
365 /* Get the position number for ARG in the function signature. */
366 for (arg_num = 1, t = DECL_ARGUMENTS (current_function_decl);
367 t;
368 t = DECL_CHAIN (t), arg_num++)
369 {
370 if (t == arg)
371 break;
372 }
373
374 gcc_assert (t == arg);
375
376 /* Now see if ARG_NUM is mentioned in the nonnull list. */
377 for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
378 {
379 if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
380 return true;
381 }
382 }
383
384 return false;
385 }
386
387
388 /* Set value range VR to VR_UNDEFINED. */
389
390 static inline void
391 set_value_range_to_undefined (value_range_t *vr)
392 {
393 vr->type = VR_UNDEFINED;
394 vr->min = vr->max = NULL_TREE;
395 if (vr->equiv)
396 bitmap_clear (vr->equiv);
397 }
398
399
400 /* Set value range VR to VR_VARYING. */
401
402 static inline void
403 set_value_range_to_varying (value_range_t *vr)
404 {
405 vr->type = VR_VARYING;
406 vr->min = vr->max = NULL_TREE;
407 if (vr->equiv)
408 bitmap_clear (vr->equiv);
409 }
410
411
412 /* Set value range VR to {T, MIN, MAX, EQUIV}. */
413
414 static void
415 set_value_range (value_range_t *vr, enum value_range_type t, tree min,
416 tree max, bitmap equiv)
417 {
418 #if defined ENABLE_CHECKING
419 /* Check the validity of the range. */
420 if (t == VR_RANGE || t == VR_ANTI_RANGE)
421 {
422 int cmp;
423
424 gcc_assert (min && max);
425
426 if (INTEGRAL_TYPE_P (TREE_TYPE (min)) && t == VR_ANTI_RANGE)
427 gcc_assert (!vrp_val_is_min (min) || !vrp_val_is_max (max));
428
429 cmp = compare_values (min, max);
430 gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
431
432 if (needs_overflow_infinity (TREE_TYPE (min)))
433 gcc_assert (!is_overflow_infinity (min)
434 || !is_overflow_infinity (max));
435 }
436
437 if (t == VR_UNDEFINED || t == VR_VARYING)
438 gcc_assert (min == NULL_TREE && max == NULL_TREE);
439
440 if (t == VR_UNDEFINED || t == VR_VARYING)
441 gcc_assert (equiv == NULL || bitmap_empty_p (equiv));
442 #endif
443
444 vr->type = t;
445 vr->min = min;
446 vr->max = max;
447
448 /* Since updating the equivalence set involves deep copying the
449 bitmaps, only do it if absolutely necessary. */
450 if (vr->equiv == NULL
451 && equiv != NULL)
452 vr->equiv = BITMAP_ALLOC (NULL);
453
454 if (equiv != vr->equiv)
455 {
456 if (equiv && !bitmap_empty_p (equiv))
457 bitmap_copy (vr->equiv, equiv);
458 else
459 bitmap_clear (vr->equiv);
460 }
461 }
462
463
464 /* Set value range VR to the canonical form of {T, MIN, MAX, EQUIV}.
465 This means adjusting T, MIN and MAX representing the case of a
466 wrapping range with MAX < MIN covering [MIN, type_max] U [type_min, MAX]
467 as anti-rage ~[MAX+1, MIN-1]. Likewise for wrapping anti-ranges.
468 In corner cases where MAX+1 or MIN-1 wraps this will fall back
469 to varying.
470 This routine exists to ease canonicalization in the case where we
471 extract ranges from var + CST op limit. */
472
473 static void
474 set_and_canonicalize_value_range (value_range_t *vr, enum value_range_type t,
475 tree min, tree max, bitmap equiv)
476 {
477 /* Use the canonical setters for VR_UNDEFINED and VR_VARYING. */
478 if (t == VR_UNDEFINED)
479 {
480 set_value_range_to_undefined (vr);
481 return;
482 }
483 else if (t == VR_VARYING)
484 {
485 set_value_range_to_varying (vr);
486 return;
487 }
488
489 /* Nothing to canonicalize for symbolic ranges. */
490 if (TREE_CODE (min) != INTEGER_CST
491 || TREE_CODE (max) != INTEGER_CST)
492 {
493 set_value_range (vr, t, min, max, equiv);
494 return;
495 }
496
497 /* Wrong order for min and max, to swap them and the VR type we need
498 to adjust them. */
499 if (tree_int_cst_lt (max, min))
500 {
501 tree one, tmp;
502
503 /* For one bit precision if max < min, then the swapped
504 range covers all values, so for VR_RANGE it is varying and
505 for VR_ANTI_RANGE empty range, so drop to varying as well. */
506 if (TYPE_PRECISION (TREE_TYPE (min)) == 1)
507 {
508 set_value_range_to_varying (vr);
509 return;
510 }
511
512 one = build_int_cst (TREE_TYPE (min), 1);
513 tmp = int_const_binop (PLUS_EXPR, max, one);
514 max = int_const_binop (MINUS_EXPR, min, one);
515 min = tmp;
516
517 /* There's one corner case, if we had [C+1, C] before we now have
518 that again. But this represents an empty value range, so drop
519 to varying in this case. */
520 if (tree_int_cst_lt (max, min))
521 {
522 set_value_range_to_varying (vr);
523 return;
524 }
525
526 t = t == VR_RANGE ? VR_ANTI_RANGE : VR_RANGE;
527 }
528
529 /* Anti-ranges that can be represented as ranges should be so. */
530 if (t == VR_ANTI_RANGE)
531 {
532 bool is_min = vrp_val_is_min (min);
533 bool is_max = vrp_val_is_max (max);
534
535 if (is_min && is_max)
536 {
537 /* We cannot deal with empty ranges, drop to varying.
538 ??? This could be VR_UNDEFINED instead. */
539 set_value_range_to_varying (vr);
540 return;
541 }
542 else if (TYPE_PRECISION (TREE_TYPE (min)) == 1
543 && (is_min || is_max))
544 {
545 /* Non-empty boolean ranges can always be represented
546 as a singleton range. */
547 if (is_min)
548 min = max = vrp_val_max (TREE_TYPE (min));
549 else
550 min = max = vrp_val_min (TREE_TYPE (min));
551 t = VR_RANGE;
552 }
553 else if (is_min
554 /* As a special exception preserve non-null ranges. */
555 && !(TYPE_UNSIGNED (TREE_TYPE (min))
556 && integer_zerop (max)))
557 {
558 tree one = build_int_cst (TREE_TYPE (max), 1);
559 min = int_const_binop (PLUS_EXPR, max, one);
560 max = vrp_val_max (TREE_TYPE (max));
561 t = VR_RANGE;
562 }
563 else if (is_max)
564 {
565 tree one = build_int_cst (TREE_TYPE (min), 1);
566 max = int_const_binop (MINUS_EXPR, min, one);
567 min = vrp_val_min (TREE_TYPE (min));
568 t = VR_RANGE;
569 }
570 }
571
572 /* Drop [-INF(OVF), +INF(OVF)] to varying. */
573 if (needs_overflow_infinity (TREE_TYPE (min))
574 && is_overflow_infinity (min)
575 && is_overflow_infinity (max))
576 {
577 set_value_range_to_varying (vr);
578 return;
579 }
580
581 set_value_range (vr, t, min, max, equiv);
582 }
583
584 /* Copy value range FROM into value range TO. */
585
586 static inline void
587 copy_value_range (value_range_t *to, value_range_t *from)
588 {
589 set_value_range (to, from->type, from->min, from->max, from->equiv);
590 }
591
592 /* Set value range VR to a single value. This function is only called
593 with values we get from statements, and exists to clear the
594 TREE_OVERFLOW flag so that we don't think we have an overflow
595 infinity when we shouldn't. */
596
597 static inline void
598 set_value_range_to_value (value_range_t *vr, tree val, bitmap equiv)
599 {
600 gcc_assert (is_gimple_min_invariant (val));
601 val = avoid_overflow_infinity (val);
602 set_value_range (vr, VR_RANGE, val, val, equiv);
603 }
604
605 /* Set value range VR to a non-negative range of type TYPE.
606 OVERFLOW_INFINITY indicates whether to use an overflow infinity
607 rather than TYPE_MAX_VALUE; this should be true if we determine
608 that the range is nonnegative based on the assumption that signed
609 overflow does not occur. */
610
611 static inline void
612 set_value_range_to_nonnegative (value_range_t *vr, tree type,
613 bool overflow_infinity)
614 {
615 tree zero;
616
617 if (overflow_infinity && !supports_overflow_infinity (type))
618 {
619 set_value_range_to_varying (vr);
620 return;
621 }
622
623 zero = build_int_cst (type, 0);
624 set_value_range (vr, VR_RANGE, zero,
625 (overflow_infinity
626 ? positive_overflow_infinity (type)
627 : TYPE_MAX_VALUE (type)),
628 vr->equiv);
629 }
630
631 /* Set value range VR to a non-NULL range of type TYPE. */
632
633 static inline void
634 set_value_range_to_nonnull (value_range_t *vr, tree type)
635 {
636 tree zero = build_int_cst (type, 0);
637 set_value_range (vr, VR_ANTI_RANGE, zero, zero, vr->equiv);
638 }
639
640
641 /* Set value range VR to a NULL range of type TYPE. */
642
643 static inline void
644 set_value_range_to_null (value_range_t *vr, tree type)
645 {
646 set_value_range_to_value (vr, build_int_cst (type, 0), vr->equiv);
647 }
648
649
650 /* Set value range VR to a range of a truthvalue of type TYPE. */
651
652 static inline void
653 set_value_range_to_truthvalue (value_range_t *vr, tree type)
654 {
655 if (TYPE_PRECISION (type) == 1)
656 set_value_range_to_varying (vr);
657 else
658 set_value_range (vr, VR_RANGE,
659 build_int_cst (type, 0), build_int_cst (type, 1),
660 vr->equiv);
661 }
662
663
664 /* If abs (min) < abs (max), set VR to [-max, max], if
665 abs (min) >= abs (max), set VR to [-min, min]. */
666
667 static void
668 abs_extent_range (value_range_t *vr, tree min, tree max)
669 {
670 int cmp;
671
672 gcc_assert (TREE_CODE (min) == INTEGER_CST);
673 gcc_assert (TREE_CODE (max) == INTEGER_CST);
674 gcc_assert (INTEGRAL_TYPE_P (TREE_TYPE (min)));
675 gcc_assert (!TYPE_UNSIGNED (TREE_TYPE (min)));
676 min = fold_unary (ABS_EXPR, TREE_TYPE (min), min);
677 max = fold_unary (ABS_EXPR, TREE_TYPE (max), max);
678 if (TREE_OVERFLOW (min) || TREE_OVERFLOW (max))
679 {
680 set_value_range_to_varying (vr);
681 return;
682 }
683 cmp = compare_values (min, max);
684 if (cmp == -1)
685 min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), max);
686 else if (cmp == 0 || cmp == 1)
687 {
688 max = min;
689 min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), min);
690 }
691 else
692 {
693 set_value_range_to_varying (vr);
694 return;
695 }
696 set_and_canonicalize_value_range (vr, VR_RANGE, min, max, NULL);
697 }
698
699
700 /* Return value range information for VAR.
701
702 If we have no values ranges recorded (ie, VRP is not running), then
703 return NULL. Otherwise create an empty range if none existed for VAR. */
704
705 static value_range_t *
706 get_value_range (const_tree var)
707 {
708 static const struct value_range_d vr_const_varying
709 = { VR_VARYING, NULL_TREE, NULL_TREE, NULL };
710 value_range_t *vr;
711 tree sym;
712 unsigned ver = SSA_NAME_VERSION (var);
713
714 /* If we have no recorded ranges, then return NULL. */
715 if (! vr_value)
716 return NULL;
717
718 /* If we query the range for a new SSA name return an unmodifiable VARYING.
719 We should get here at most from the substitute-and-fold stage which
720 will never try to change values. */
721 if (ver >= num_vr_values)
722 return CONST_CAST (value_range_t *, &vr_const_varying);
723
724 vr = vr_value[ver];
725 if (vr)
726 return vr;
727
728 /* After propagation finished do not allocate new value-ranges. */
729 if (values_propagated)
730 return CONST_CAST (value_range_t *, &vr_const_varying);
731
732 /* Create a default value range. */
733 vr_value[ver] = vr = XCNEW (value_range_t);
734
735 /* Defer allocating the equivalence set. */
736 vr->equiv = NULL;
737
738 /* If VAR is a default definition of a parameter, the variable can
739 take any value in VAR's type. */
740 if (SSA_NAME_IS_DEFAULT_DEF (var))
741 {
742 sym = SSA_NAME_VAR (var);
743 if (TREE_CODE (sym) == PARM_DECL)
744 {
745 /* Try to use the "nonnull" attribute to create ~[0, 0]
746 anti-ranges for pointers. Note that this is only valid with
747 default definitions of PARM_DECLs. */
748 if (POINTER_TYPE_P (TREE_TYPE (sym))
749 && nonnull_arg_p (sym))
750 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
751 else
752 set_value_range_to_varying (vr);
753 }
754 else if (TREE_CODE (sym) == RESULT_DECL
755 && DECL_BY_REFERENCE (sym))
756 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
757 }
758
759 return vr;
760 }
761
762 /* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
763
764 static inline bool
765 vrp_operand_equal_p (const_tree val1, const_tree val2)
766 {
767 if (val1 == val2)
768 return true;
769 if (!val1 || !val2 || !operand_equal_p (val1, val2, 0))
770 return false;
771 if (is_overflow_infinity (val1))
772 return is_overflow_infinity (val2);
773 return true;
774 }
775
776 /* Return true, if the bitmaps B1 and B2 are equal. */
777
778 static inline bool
779 vrp_bitmap_equal_p (const_bitmap b1, const_bitmap b2)
780 {
781 return (b1 == b2
782 || ((!b1 || bitmap_empty_p (b1))
783 && (!b2 || bitmap_empty_p (b2)))
784 || (b1 && b2
785 && bitmap_equal_p (b1, b2)));
786 }
787
788 /* Update the value range and equivalence set for variable VAR to
789 NEW_VR. Return true if NEW_VR is different from VAR's previous
790 value.
791
792 NOTE: This function assumes that NEW_VR is a temporary value range
793 object created for the sole purpose of updating VAR's range. The
794 storage used by the equivalence set from NEW_VR will be freed by
795 this function. Do not call update_value_range when NEW_VR
796 is the range object associated with another SSA name. */
797
798 static inline bool
799 update_value_range (const_tree var, value_range_t *new_vr)
800 {
801 value_range_t *old_vr;
802 bool is_new;
803
804 /* Update the value range, if necessary. */
805 old_vr = get_value_range (var);
806 is_new = old_vr->type != new_vr->type
807 || !vrp_operand_equal_p (old_vr->min, new_vr->min)
808 || !vrp_operand_equal_p (old_vr->max, new_vr->max)
809 || !vrp_bitmap_equal_p (old_vr->equiv, new_vr->equiv);
810
811 if (is_new)
812 {
813 /* Do not allow transitions up the lattice. The following
814 is slightly more awkward than just new_vr->type < old_vr->type
815 because VR_RANGE and VR_ANTI_RANGE need to be considered
816 the same. We may not have is_new when transitioning to
817 UNDEFINED or from VARYING. */
818 if (new_vr->type == VR_UNDEFINED
819 || old_vr->type == VR_VARYING)
820 set_value_range_to_varying (old_vr);
821 else
822 set_value_range (old_vr, new_vr->type, new_vr->min, new_vr->max,
823 new_vr->equiv);
824 }
825
826 BITMAP_FREE (new_vr->equiv);
827
828 return is_new;
829 }
830
831
832 /* Add VAR and VAR's equivalence set to EQUIV. This is the central
833 point where equivalence processing can be turned on/off. */
834
835 static void
836 add_equivalence (bitmap *equiv, const_tree var)
837 {
838 unsigned ver = SSA_NAME_VERSION (var);
839 value_range_t *vr = vr_value[ver];
840
841 if (*equiv == NULL)
842 *equiv = BITMAP_ALLOC (NULL);
843 bitmap_set_bit (*equiv, ver);
844 if (vr && vr->equiv)
845 bitmap_ior_into (*equiv, vr->equiv);
846 }
847
848
849 /* Return true if VR is ~[0, 0]. */
850
851 static inline bool
852 range_is_nonnull (value_range_t *vr)
853 {
854 return vr->type == VR_ANTI_RANGE
855 && integer_zerop (vr->min)
856 && integer_zerop (vr->max);
857 }
858
859
860 /* Return true if VR is [0, 0]. */
861
862 static inline bool
863 range_is_null (value_range_t *vr)
864 {
865 return vr->type == VR_RANGE
866 && integer_zerop (vr->min)
867 && integer_zerop (vr->max);
868 }
869
870 /* Return true if max and min of VR are INTEGER_CST. It's not necessary
871 a singleton. */
872
873 static inline bool
874 range_int_cst_p (value_range_t *vr)
875 {
876 return (vr->type == VR_RANGE
877 && TREE_CODE (vr->max) == INTEGER_CST
878 && TREE_CODE (vr->min) == INTEGER_CST);
879 }
880
881 /* Return true if VR is a INTEGER_CST singleton. */
882
883 static inline bool
884 range_int_cst_singleton_p (value_range_t *vr)
885 {
886 return (range_int_cst_p (vr)
887 && !TREE_OVERFLOW (vr->min)
888 && !TREE_OVERFLOW (vr->max)
889 && tree_int_cst_equal (vr->min, vr->max));
890 }
891
892 /* Return true if value range VR involves at least one symbol. */
893
894 static inline bool
895 symbolic_range_p (value_range_t *vr)
896 {
897 return (!is_gimple_min_invariant (vr->min)
898 || !is_gimple_min_invariant (vr->max));
899 }
900
901 /* Return true if value range VR uses an overflow infinity. */
902
903 static inline bool
904 overflow_infinity_range_p (value_range_t *vr)
905 {
906 return (vr->type == VR_RANGE
907 && (is_overflow_infinity (vr->min)
908 || is_overflow_infinity (vr->max)));
909 }
910
911 /* Return false if we can not make a valid comparison based on VR;
912 this will be the case if it uses an overflow infinity and overflow
913 is not undefined (i.e., -fno-strict-overflow is in effect).
914 Otherwise return true, and set *STRICT_OVERFLOW_P to true if VR
915 uses an overflow infinity. */
916
917 static bool
918 usable_range_p (value_range_t *vr, bool *strict_overflow_p)
919 {
920 gcc_assert (vr->type == VR_RANGE);
921 if (is_overflow_infinity (vr->min))
922 {
923 *strict_overflow_p = true;
924 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->min)))
925 return false;
926 }
927 if (is_overflow_infinity (vr->max))
928 {
929 *strict_overflow_p = true;
930 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->max)))
931 return false;
932 }
933 return true;
934 }
935
936
937 /* Return true if the result of assignment STMT is know to be non-negative.
938 If the return value is based on the assumption that signed overflow is
939 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
940 *STRICT_OVERFLOW_P.*/
941
942 static bool
943 gimple_assign_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
944 {
945 enum tree_code code = gimple_assign_rhs_code (stmt);
946 switch (get_gimple_rhs_class (code))
947 {
948 case GIMPLE_UNARY_RHS:
949 return tree_unary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt),
950 gimple_expr_type (stmt),
951 gimple_assign_rhs1 (stmt),
952 strict_overflow_p);
953 case GIMPLE_BINARY_RHS:
954 return tree_binary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt),
955 gimple_expr_type (stmt),
956 gimple_assign_rhs1 (stmt),
957 gimple_assign_rhs2 (stmt),
958 strict_overflow_p);
959 case GIMPLE_TERNARY_RHS:
960 return false;
961 case GIMPLE_SINGLE_RHS:
962 return tree_single_nonnegative_warnv_p (gimple_assign_rhs1 (stmt),
963 strict_overflow_p);
964 case GIMPLE_INVALID_RHS:
965 gcc_unreachable ();
966 default:
967 gcc_unreachable ();
968 }
969 }
970
971 /* Return true if return value of call STMT is know to be non-negative.
972 If the return value is based on the assumption that signed overflow is
973 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
974 *STRICT_OVERFLOW_P.*/
975
976 static bool
977 gimple_call_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
978 {
979 tree arg0 = gimple_call_num_args (stmt) > 0 ?
980 gimple_call_arg (stmt, 0) : NULL_TREE;
981 tree arg1 = gimple_call_num_args (stmt) > 1 ?
982 gimple_call_arg (stmt, 1) : NULL_TREE;
983
984 return tree_call_nonnegative_warnv_p (gimple_expr_type (stmt),
985 gimple_call_fndecl (stmt),
986 arg0,
987 arg1,
988 strict_overflow_p);
989 }
990
991 /* Return true if STMT is know to to compute a non-negative value.
992 If the return value is based on the assumption that signed overflow is
993 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
994 *STRICT_OVERFLOW_P.*/
995
996 static bool
997 gimple_stmt_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
998 {
999 switch (gimple_code (stmt))
1000 {
1001 case GIMPLE_ASSIGN:
1002 return gimple_assign_nonnegative_warnv_p (stmt, strict_overflow_p);
1003 case GIMPLE_CALL:
1004 return gimple_call_nonnegative_warnv_p (stmt, strict_overflow_p);
1005 default:
1006 gcc_unreachable ();
1007 }
1008 }
1009
1010 /* Return true if the result of assignment STMT is know to be non-zero.
1011 If the return value is based on the assumption that signed overflow is
1012 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
1013 *STRICT_OVERFLOW_P.*/
1014
1015 static bool
1016 gimple_assign_nonzero_warnv_p (gimple stmt, bool *strict_overflow_p)
1017 {
1018 enum tree_code code = gimple_assign_rhs_code (stmt);
1019 switch (get_gimple_rhs_class (code))
1020 {
1021 case GIMPLE_UNARY_RHS:
1022 return tree_unary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
1023 gimple_expr_type (stmt),
1024 gimple_assign_rhs1 (stmt),
1025 strict_overflow_p);
1026 case GIMPLE_BINARY_RHS:
1027 return tree_binary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
1028 gimple_expr_type (stmt),
1029 gimple_assign_rhs1 (stmt),
1030 gimple_assign_rhs2 (stmt),
1031 strict_overflow_p);
1032 case GIMPLE_TERNARY_RHS:
1033 return false;
1034 case GIMPLE_SINGLE_RHS:
1035 return tree_single_nonzero_warnv_p (gimple_assign_rhs1 (stmt),
1036 strict_overflow_p);
1037 case GIMPLE_INVALID_RHS:
1038 gcc_unreachable ();
1039 default:
1040 gcc_unreachable ();
1041 }
1042 }
1043
1044 /* Return true if STMT is know to to compute a non-zero value.
1045 If the return value is based on the assumption that signed overflow is
1046 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
1047 *STRICT_OVERFLOW_P.*/
1048
1049 static bool
1050 gimple_stmt_nonzero_warnv_p (gimple stmt, bool *strict_overflow_p)
1051 {
1052 switch (gimple_code (stmt))
1053 {
1054 case GIMPLE_ASSIGN:
1055 return gimple_assign_nonzero_warnv_p (stmt, strict_overflow_p);
1056 case GIMPLE_CALL:
1057 return gimple_alloca_call_p (stmt);
1058 default:
1059 gcc_unreachable ();
1060 }
1061 }
1062
1063 /* Like tree_expr_nonzero_warnv_p, but this function uses value ranges
1064 obtained so far. */
1065
1066 static bool
1067 vrp_stmt_computes_nonzero (gimple stmt, bool *strict_overflow_p)
1068 {
1069 if (gimple_stmt_nonzero_warnv_p (stmt, strict_overflow_p))
1070 return true;
1071
1072 /* If we have an expression of the form &X->a, then the expression
1073 is nonnull if X is nonnull. */
1074 if (is_gimple_assign (stmt)
1075 && gimple_assign_rhs_code (stmt) == ADDR_EXPR)
1076 {
1077 tree expr = gimple_assign_rhs1 (stmt);
1078 tree base = get_base_address (TREE_OPERAND (expr, 0));
1079
1080 if (base != NULL_TREE
1081 && TREE_CODE (base) == MEM_REF
1082 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
1083 {
1084 value_range_t *vr = get_value_range (TREE_OPERAND (base, 0));
1085 if (range_is_nonnull (vr))
1086 return true;
1087 }
1088 }
1089
1090 return false;
1091 }
1092
1093 /* Returns true if EXPR is a valid value (as expected by compare_values) --
1094 a gimple invariant, or SSA_NAME +- CST. */
1095
1096 static bool
1097 valid_value_p (tree expr)
1098 {
1099 if (TREE_CODE (expr) == SSA_NAME)
1100 return true;
1101
1102 if (TREE_CODE (expr) == PLUS_EXPR
1103 || TREE_CODE (expr) == MINUS_EXPR)
1104 return (TREE_CODE (TREE_OPERAND (expr, 0)) == SSA_NAME
1105 && TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST);
1106
1107 return is_gimple_min_invariant (expr);
1108 }
1109
1110 /* Return
1111 1 if VAL < VAL2
1112 0 if !(VAL < VAL2)
1113 -2 if those are incomparable. */
1114 static inline int
1115 operand_less_p (tree val, tree val2)
1116 {
1117 /* LT is folded faster than GE and others. Inline the common case. */
1118 if (TREE_CODE (val) == INTEGER_CST && TREE_CODE (val2) == INTEGER_CST)
1119 {
1120 if (TYPE_UNSIGNED (TREE_TYPE (val)))
1121 return INT_CST_LT_UNSIGNED (val, val2);
1122 else
1123 {
1124 if (INT_CST_LT (val, val2))
1125 return 1;
1126 }
1127 }
1128 else
1129 {
1130 tree tcmp;
1131
1132 fold_defer_overflow_warnings ();
1133
1134 tcmp = fold_binary_to_constant (LT_EXPR, boolean_type_node, val, val2);
1135
1136 fold_undefer_and_ignore_overflow_warnings ();
1137
1138 if (!tcmp
1139 || TREE_CODE (tcmp) != INTEGER_CST)
1140 return -2;
1141
1142 if (!integer_zerop (tcmp))
1143 return 1;
1144 }
1145
1146 /* val >= val2, not considering overflow infinity. */
1147 if (is_negative_overflow_infinity (val))
1148 return is_negative_overflow_infinity (val2) ? 0 : 1;
1149 else if (is_positive_overflow_infinity (val2))
1150 return is_positive_overflow_infinity (val) ? 0 : 1;
1151
1152 return 0;
1153 }
1154
1155 /* Compare two values VAL1 and VAL2. Return
1156
1157 -2 if VAL1 and VAL2 cannot be compared at compile-time,
1158 -1 if VAL1 < VAL2,
1159 0 if VAL1 == VAL2,
1160 +1 if VAL1 > VAL2, and
1161 +2 if VAL1 != VAL2
1162
1163 This is similar to tree_int_cst_compare but supports pointer values
1164 and values that cannot be compared at compile time.
1165
1166 If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
1167 true if the return value is only valid if we assume that signed
1168 overflow is undefined. */
1169
1170 static int
1171 compare_values_warnv (tree val1, tree val2, bool *strict_overflow_p)
1172 {
1173 if (val1 == val2)
1174 return 0;
1175
1176 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
1177 both integers. */
1178 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
1179 == POINTER_TYPE_P (TREE_TYPE (val2)));
1180 /* Convert the two values into the same type. This is needed because
1181 sizetype causes sign extension even for unsigned types. */
1182 val2 = fold_convert (TREE_TYPE (val1), val2);
1183 STRIP_USELESS_TYPE_CONVERSION (val2);
1184
1185 if ((TREE_CODE (val1) == SSA_NAME
1186 || TREE_CODE (val1) == PLUS_EXPR
1187 || TREE_CODE (val1) == MINUS_EXPR)
1188 && (TREE_CODE (val2) == SSA_NAME
1189 || TREE_CODE (val2) == PLUS_EXPR
1190 || TREE_CODE (val2) == MINUS_EXPR))
1191 {
1192 tree n1, c1, n2, c2;
1193 enum tree_code code1, code2;
1194
1195 /* If VAL1 and VAL2 are of the form 'NAME [+-] CST' or 'NAME',
1196 return -1 or +1 accordingly. If VAL1 and VAL2 don't use the
1197 same name, return -2. */
1198 if (TREE_CODE (val1) == SSA_NAME)
1199 {
1200 code1 = SSA_NAME;
1201 n1 = val1;
1202 c1 = NULL_TREE;
1203 }
1204 else
1205 {
1206 code1 = TREE_CODE (val1);
1207 n1 = TREE_OPERAND (val1, 0);
1208 c1 = TREE_OPERAND (val1, 1);
1209 if (tree_int_cst_sgn (c1) == -1)
1210 {
1211 if (is_negative_overflow_infinity (c1))
1212 return -2;
1213 c1 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c1), c1);
1214 if (!c1)
1215 return -2;
1216 code1 = code1 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
1217 }
1218 }
1219
1220 if (TREE_CODE (val2) == SSA_NAME)
1221 {
1222 code2 = SSA_NAME;
1223 n2 = val2;
1224 c2 = NULL_TREE;
1225 }
1226 else
1227 {
1228 code2 = TREE_CODE (val2);
1229 n2 = TREE_OPERAND (val2, 0);
1230 c2 = TREE_OPERAND (val2, 1);
1231 if (tree_int_cst_sgn (c2) == -1)
1232 {
1233 if (is_negative_overflow_infinity (c2))
1234 return -2;
1235 c2 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c2), c2);
1236 if (!c2)
1237 return -2;
1238 code2 = code2 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
1239 }
1240 }
1241
1242 /* Both values must use the same name. */
1243 if (n1 != n2)
1244 return -2;
1245
1246 if (code1 == SSA_NAME
1247 && code2 == SSA_NAME)
1248 /* NAME == NAME */
1249 return 0;
1250
1251 /* If overflow is defined we cannot simplify more. */
1252 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1)))
1253 return -2;
1254
1255 if (strict_overflow_p != NULL
1256 && (code1 == SSA_NAME || !TREE_NO_WARNING (val1))
1257 && (code2 == SSA_NAME || !TREE_NO_WARNING (val2)))
1258 *strict_overflow_p = true;
1259
1260 if (code1 == SSA_NAME)
1261 {
1262 if (code2 == PLUS_EXPR)
1263 /* NAME < NAME + CST */
1264 return -1;
1265 else if (code2 == MINUS_EXPR)
1266 /* NAME > NAME - CST */
1267 return 1;
1268 }
1269 else if (code1 == PLUS_EXPR)
1270 {
1271 if (code2 == SSA_NAME)
1272 /* NAME + CST > NAME */
1273 return 1;
1274 else if (code2 == PLUS_EXPR)
1275 /* NAME + CST1 > NAME + CST2, if CST1 > CST2 */
1276 return compare_values_warnv (c1, c2, strict_overflow_p);
1277 else if (code2 == MINUS_EXPR)
1278 /* NAME + CST1 > NAME - CST2 */
1279 return 1;
1280 }
1281 else if (code1 == MINUS_EXPR)
1282 {
1283 if (code2 == SSA_NAME)
1284 /* NAME - CST < NAME */
1285 return -1;
1286 else if (code2 == PLUS_EXPR)
1287 /* NAME - CST1 < NAME + CST2 */
1288 return -1;
1289 else if (code2 == MINUS_EXPR)
1290 /* NAME - CST1 > NAME - CST2, if CST1 < CST2. Notice that
1291 C1 and C2 are swapped in the call to compare_values. */
1292 return compare_values_warnv (c2, c1, strict_overflow_p);
1293 }
1294
1295 gcc_unreachable ();
1296 }
1297
1298 /* We cannot compare non-constants. */
1299 if (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2))
1300 return -2;
1301
1302 if (!POINTER_TYPE_P (TREE_TYPE (val1)))
1303 {
1304 /* We cannot compare overflowed values, except for overflow
1305 infinities. */
1306 if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
1307 {
1308 if (strict_overflow_p != NULL)
1309 *strict_overflow_p = true;
1310 if (is_negative_overflow_infinity (val1))
1311 return is_negative_overflow_infinity (val2) ? 0 : -1;
1312 else if (is_negative_overflow_infinity (val2))
1313 return 1;
1314 else if (is_positive_overflow_infinity (val1))
1315 return is_positive_overflow_infinity (val2) ? 0 : 1;
1316 else if (is_positive_overflow_infinity (val2))
1317 return -1;
1318 return -2;
1319 }
1320
1321 return tree_int_cst_compare (val1, val2);
1322 }
1323 else
1324 {
1325 tree t;
1326
1327 /* First see if VAL1 and VAL2 are not the same. */
1328 if (val1 == val2 || operand_equal_p (val1, val2, 0))
1329 return 0;
1330
1331 /* If VAL1 is a lower address than VAL2, return -1. */
1332 if (operand_less_p (val1, val2) == 1)
1333 return -1;
1334
1335 /* If VAL1 is a higher address than VAL2, return +1. */
1336 if (operand_less_p (val2, val1) == 1)
1337 return 1;
1338
1339 /* If VAL1 is different than VAL2, return +2.
1340 For integer constants we either have already returned -1 or 1
1341 or they are equivalent. We still might succeed in proving
1342 something about non-trivial operands. */
1343 if (TREE_CODE (val1) != INTEGER_CST
1344 || TREE_CODE (val2) != INTEGER_CST)
1345 {
1346 t = fold_binary_to_constant (NE_EXPR, boolean_type_node, val1, val2);
1347 if (t && integer_onep (t))
1348 return 2;
1349 }
1350
1351 return -2;
1352 }
1353 }
1354
1355 /* Compare values like compare_values_warnv, but treat comparisons of
1356 nonconstants which rely on undefined overflow as incomparable. */
1357
1358 static int
1359 compare_values (tree val1, tree val2)
1360 {
1361 bool sop;
1362 int ret;
1363
1364 sop = false;
1365 ret = compare_values_warnv (val1, val2, &sop);
1366 if (sop
1367 && (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2)))
1368 ret = -2;
1369 return ret;
1370 }
1371
1372
1373 /* Return 1 if VAL is inside value range MIN <= VAL <= MAX,
1374 0 if VAL is not inside [MIN, MAX],
1375 -2 if we cannot tell either way.
1376
1377 Benchmark compile/20001226-1.c compilation time after changing this
1378 function. */
1379
1380 static inline int
1381 value_inside_range (tree val, tree min, tree max)
1382 {
1383 int cmp1, cmp2;
1384
1385 cmp1 = operand_less_p (val, min);
1386 if (cmp1 == -2)
1387 return -2;
1388 if (cmp1 == 1)
1389 return 0;
1390
1391 cmp2 = operand_less_p (max, val);
1392 if (cmp2 == -2)
1393 return -2;
1394
1395 return !cmp2;
1396 }
1397
1398
1399 /* Return true if value ranges VR0 and VR1 have a non-empty
1400 intersection.
1401
1402 Benchmark compile/20001226-1.c compilation time after changing this
1403 function.
1404 */
1405
1406 static inline bool
1407 value_ranges_intersect_p (value_range_t *vr0, value_range_t *vr1)
1408 {
1409 /* The value ranges do not intersect if the maximum of the first range is
1410 less than the minimum of the second range or vice versa.
1411 When those relations are unknown, we can't do any better. */
1412 if (operand_less_p (vr0->max, vr1->min) != 0)
1413 return false;
1414 if (operand_less_p (vr1->max, vr0->min) != 0)
1415 return false;
1416 return true;
1417 }
1418
1419
1420 /* Return 1 if [MIN, MAX] includes the value zero, 0 if it does not
1421 include the value zero, -2 if we cannot tell. */
1422
1423 static inline int
1424 range_includes_zero_p (tree min, tree max)
1425 {
1426 tree zero = build_int_cst (TREE_TYPE (min), 0);
1427 return value_inside_range (zero, min, max);
1428 }
1429
1430 /* Return true if *VR is know to only contain nonnegative values. */
1431
1432 static inline bool
1433 value_range_nonnegative_p (value_range_t *vr)
1434 {
1435 /* Testing for VR_ANTI_RANGE is not useful here as any anti-range
1436 which would return a useful value should be encoded as a
1437 VR_RANGE. */
1438 if (vr->type == VR_RANGE)
1439 {
1440 int result = compare_values (vr->min, integer_zero_node);
1441 return (result == 0 || result == 1);
1442 }
1443
1444 return false;
1445 }
1446
1447 /* Return true if T, an SSA_NAME, is known to be nonnegative. Return
1448 false otherwise or if no value range information is available. */
1449
1450 bool
1451 ssa_name_nonnegative_p (const_tree t)
1452 {
1453 value_range_t *vr = get_value_range (t);
1454
1455 if (INTEGRAL_TYPE_P (t)
1456 && TYPE_UNSIGNED (t))
1457 return true;
1458
1459 if (!vr)
1460 return false;
1461
1462 return value_range_nonnegative_p (vr);
1463 }
1464
1465 /* If *VR has a value rante that is a single constant value return that,
1466 otherwise return NULL_TREE. */
1467
1468 static tree
1469 value_range_constant_singleton (value_range_t *vr)
1470 {
1471 if (vr->type == VR_RANGE
1472 && operand_equal_p (vr->min, vr->max, 0)
1473 && is_gimple_min_invariant (vr->min))
1474 return vr->min;
1475
1476 return NULL_TREE;
1477 }
1478
1479 /* If OP has a value range with a single constant value return that,
1480 otherwise return NULL_TREE. This returns OP itself if OP is a
1481 constant. */
1482
1483 static tree
1484 op_with_constant_singleton_value_range (tree op)
1485 {
1486 if (is_gimple_min_invariant (op))
1487 return op;
1488
1489 if (TREE_CODE (op) != SSA_NAME)
1490 return NULL_TREE;
1491
1492 return value_range_constant_singleton (get_value_range (op));
1493 }
1494
1495 /* Return true if op is in a boolean [0, 1] value-range. */
1496
1497 static bool
1498 op_with_boolean_value_range_p (tree op)
1499 {
1500 value_range_t *vr;
1501
1502 if (TYPE_PRECISION (TREE_TYPE (op)) == 1)
1503 return true;
1504
1505 if (integer_zerop (op)
1506 || integer_onep (op))
1507 return true;
1508
1509 if (TREE_CODE (op) != SSA_NAME)
1510 return false;
1511
1512 vr = get_value_range (op);
1513 return (vr->type == VR_RANGE
1514 && integer_zerop (vr->min)
1515 && integer_onep (vr->max));
1516 }
1517
1518 /* Extract value range information from an ASSERT_EXPR EXPR and store
1519 it in *VR_P. */
1520
1521 static void
1522 extract_range_from_assert (value_range_t *vr_p, tree expr)
1523 {
1524 tree var, cond, limit, min, max, type;
1525 value_range_t *limit_vr;
1526 enum tree_code cond_code;
1527
1528 var = ASSERT_EXPR_VAR (expr);
1529 cond = ASSERT_EXPR_COND (expr);
1530
1531 gcc_assert (COMPARISON_CLASS_P (cond));
1532
1533 /* Find VAR in the ASSERT_EXPR conditional. */
1534 if (var == TREE_OPERAND (cond, 0)
1535 || TREE_CODE (TREE_OPERAND (cond, 0)) == PLUS_EXPR
1536 || TREE_CODE (TREE_OPERAND (cond, 0)) == NOP_EXPR)
1537 {
1538 /* If the predicate is of the form VAR COMP LIMIT, then we just
1539 take LIMIT from the RHS and use the same comparison code. */
1540 cond_code = TREE_CODE (cond);
1541 limit = TREE_OPERAND (cond, 1);
1542 cond = TREE_OPERAND (cond, 0);
1543 }
1544 else
1545 {
1546 /* If the predicate is of the form LIMIT COMP VAR, then we need
1547 to flip around the comparison code to create the proper range
1548 for VAR. */
1549 cond_code = swap_tree_comparison (TREE_CODE (cond));
1550 limit = TREE_OPERAND (cond, 0);
1551 cond = TREE_OPERAND (cond, 1);
1552 }
1553
1554 limit = avoid_overflow_infinity (limit);
1555
1556 type = TREE_TYPE (var);
1557 gcc_assert (limit != var);
1558
1559 /* For pointer arithmetic, we only keep track of pointer equality
1560 and inequality. */
1561 if (POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR)
1562 {
1563 set_value_range_to_varying (vr_p);
1564 return;
1565 }
1566
1567 /* If LIMIT is another SSA name and LIMIT has a range of its own,
1568 try to use LIMIT's range to avoid creating symbolic ranges
1569 unnecessarily. */
1570 limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL;
1571
1572 /* LIMIT's range is only interesting if it has any useful information. */
1573 if (limit_vr
1574 && (limit_vr->type == VR_UNDEFINED
1575 || limit_vr->type == VR_VARYING
1576 || symbolic_range_p (limit_vr)))
1577 limit_vr = NULL;
1578
1579 /* Initially, the new range has the same set of equivalences of
1580 VAR's range. This will be revised before returning the final
1581 value. Since assertions may be chained via mutually exclusive
1582 predicates, we will need to trim the set of equivalences before
1583 we are done. */
1584 gcc_assert (vr_p->equiv == NULL);
1585 add_equivalence (&vr_p->equiv, var);
1586
1587 /* Extract a new range based on the asserted comparison for VAR and
1588 LIMIT's value range. Notice that if LIMIT has an anti-range, we
1589 will only use it for equality comparisons (EQ_EXPR). For any
1590 other kind of assertion, we cannot derive a range from LIMIT's
1591 anti-range that can be used to describe the new range. For
1592 instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
1593 then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
1594 no single range for x_2 that could describe LE_EXPR, so we might
1595 as well build the range [b_4, +INF] for it.
1596 One special case we handle is extracting a range from a
1597 range test encoded as (unsigned)var + CST <= limit. */
1598 if (TREE_CODE (cond) == NOP_EXPR
1599 || TREE_CODE (cond) == PLUS_EXPR)
1600 {
1601 if (TREE_CODE (cond) == PLUS_EXPR)
1602 {
1603 min = fold_build1 (NEGATE_EXPR, TREE_TYPE (TREE_OPERAND (cond, 1)),
1604 TREE_OPERAND (cond, 1));
1605 max = int_const_binop (PLUS_EXPR, limit, min);
1606 cond = TREE_OPERAND (cond, 0);
1607 }
1608 else
1609 {
1610 min = build_int_cst (TREE_TYPE (var), 0);
1611 max = limit;
1612 }
1613
1614 /* Make sure to not set TREE_OVERFLOW on the final type
1615 conversion. We are willingly interpreting large positive
1616 unsigned values as negative singed values here. */
1617 min = force_fit_type_double (TREE_TYPE (var), tree_to_double_int (min),
1618 0, false);
1619 max = force_fit_type_double (TREE_TYPE (var), tree_to_double_int (max),
1620 0, false);
1621
1622 /* We can transform a max, min range to an anti-range or
1623 vice-versa. Use set_and_canonicalize_value_range which does
1624 this for us. */
1625 if (cond_code == LE_EXPR)
1626 set_and_canonicalize_value_range (vr_p, VR_RANGE,
1627 min, max, vr_p->equiv);
1628 else if (cond_code == GT_EXPR)
1629 set_and_canonicalize_value_range (vr_p, VR_ANTI_RANGE,
1630 min, max, vr_p->equiv);
1631 else
1632 gcc_unreachable ();
1633 }
1634 else if (cond_code == EQ_EXPR)
1635 {
1636 enum value_range_type range_type;
1637
1638 if (limit_vr)
1639 {
1640 range_type = limit_vr->type;
1641 min = limit_vr->min;
1642 max = limit_vr->max;
1643 }
1644 else
1645 {
1646 range_type = VR_RANGE;
1647 min = limit;
1648 max = limit;
1649 }
1650
1651 set_value_range (vr_p, range_type, min, max, vr_p->equiv);
1652
1653 /* When asserting the equality VAR == LIMIT and LIMIT is another
1654 SSA name, the new range will also inherit the equivalence set
1655 from LIMIT. */
1656 if (TREE_CODE (limit) == SSA_NAME)
1657 add_equivalence (&vr_p->equiv, limit);
1658 }
1659 else if (cond_code == NE_EXPR)
1660 {
1661 /* As described above, when LIMIT's range is an anti-range and
1662 this assertion is an inequality (NE_EXPR), then we cannot
1663 derive anything from the anti-range. For instance, if
1664 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
1665 not imply that VAR's range is [0, 0]. So, in the case of
1666 anti-ranges, we just assert the inequality using LIMIT and
1667 not its anti-range.
1668
1669 If LIMIT_VR is a range, we can only use it to build a new
1670 anti-range if LIMIT_VR is a single-valued range. For
1671 instance, if LIMIT_VR is [0, 1], the predicate
1672 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
1673 Rather, it means that for value 0 VAR should be ~[0, 0]
1674 and for value 1, VAR should be ~[1, 1]. We cannot
1675 represent these ranges.
1676
1677 The only situation in which we can build a valid
1678 anti-range is when LIMIT_VR is a single-valued range
1679 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
1680 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
1681 if (limit_vr
1682 && limit_vr->type == VR_RANGE
1683 && compare_values (limit_vr->min, limit_vr->max) == 0)
1684 {
1685 min = limit_vr->min;
1686 max = limit_vr->max;
1687 }
1688 else
1689 {
1690 /* In any other case, we cannot use LIMIT's range to build a
1691 valid anti-range. */
1692 min = max = limit;
1693 }
1694
1695 /* If MIN and MAX cover the whole range for their type, then
1696 just use the original LIMIT. */
1697 if (INTEGRAL_TYPE_P (type)
1698 && vrp_val_is_min (min)
1699 && vrp_val_is_max (max))
1700 min = max = limit;
1701
1702 set_and_canonicalize_value_range (vr_p, VR_ANTI_RANGE,
1703 min, max, vr_p->equiv);
1704 }
1705 else if (cond_code == LE_EXPR || cond_code == LT_EXPR)
1706 {
1707 min = TYPE_MIN_VALUE (type);
1708
1709 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1710 max = limit;
1711 else
1712 {
1713 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1714 range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
1715 LT_EXPR. */
1716 max = limit_vr->max;
1717 }
1718
1719 /* If the maximum value forces us to be out of bounds, simply punt.
1720 It would be pointless to try and do anything more since this
1721 all should be optimized away above us. */
1722 if ((cond_code == LT_EXPR
1723 && compare_values (max, min) == 0)
1724 || (CONSTANT_CLASS_P (max) && TREE_OVERFLOW (max)))
1725 set_value_range_to_varying (vr_p);
1726 else
1727 {
1728 /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
1729 if (cond_code == LT_EXPR)
1730 {
1731 if (TYPE_PRECISION (TREE_TYPE (max)) == 1
1732 && !TYPE_UNSIGNED (TREE_TYPE (max)))
1733 max = fold_build2 (PLUS_EXPR, TREE_TYPE (max), max,
1734 build_int_cst (TREE_TYPE (max), -1));
1735 else
1736 max = fold_build2 (MINUS_EXPR, TREE_TYPE (max), max,
1737 build_int_cst (TREE_TYPE (max), 1));
1738 if (EXPR_P (max))
1739 TREE_NO_WARNING (max) = 1;
1740 }
1741
1742 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1743 }
1744 }
1745 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
1746 {
1747 max = TYPE_MAX_VALUE (type);
1748
1749 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1750 min = limit;
1751 else
1752 {
1753 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1754 range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
1755 GT_EXPR. */
1756 min = limit_vr->min;
1757 }
1758
1759 /* If the minimum value forces us to be out of bounds, simply punt.
1760 It would be pointless to try and do anything more since this
1761 all should be optimized away above us. */
1762 if ((cond_code == GT_EXPR
1763 && compare_values (min, max) == 0)
1764 || (CONSTANT_CLASS_P (min) && TREE_OVERFLOW (min)))
1765 set_value_range_to_varying (vr_p);
1766 else
1767 {
1768 /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
1769 if (cond_code == GT_EXPR)
1770 {
1771 if (TYPE_PRECISION (TREE_TYPE (min)) == 1
1772 && !TYPE_UNSIGNED (TREE_TYPE (min)))
1773 min = fold_build2 (MINUS_EXPR, TREE_TYPE (min), min,
1774 build_int_cst (TREE_TYPE (min), -1));
1775 else
1776 min = fold_build2 (PLUS_EXPR, TREE_TYPE (min), min,
1777 build_int_cst (TREE_TYPE (min), 1));
1778 if (EXPR_P (min))
1779 TREE_NO_WARNING (min) = 1;
1780 }
1781
1782 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1783 }
1784 }
1785 else
1786 gcc_unreachable ();
1787
1788 /* Finally intersect the new range with what we already know about var. */
1789 vrp_intersect_ranges (vr_p, get_value_range (var));
1790 }
1791
1792
1793 /* Extract range information from SSA name VAR and store it in VR. If
1794 VAR has an interesting range, use it. Otherwise, create the
1795 range [VAR, VAR] and return it. This is useful in situations where
1796 we may have conditionals testing values of VARYING names. For
1797 instance,
1798
1799 x_3 = y_5;
1800 if (x_3 > y_5)
1801 ...
1802
1803 Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
1804 always false. */
1805
1806 static void
1807 extract_range_from_ssa_name (value_range_t *vr, tree var)
1808 {
1809 value_range_t *var_vr = get_value_range (var);
1810
1811 if (var_vr->type != VR_UNDEFINED && var_vr->type != VR_VARYING)
1812 copy_value_range (vr, var_vr);
1813 else
1814 set_value_range (vr, VR_RANGE, var, var, NULL);
1815
1816 add_equivalence (&vr->equiv, var);
1817 }
1818
1819
1820 /* Wrapper around int_const_binop. If the operation overflows and we
1821 are not using wrapping arithmetic, then adjust the result to be
1822 -INF or +INF depending on CODE, VAL1 and VAL2. This can return
1823 NULL_TREE if we need to use an overflow infinity representation but
1824 the type does not support it. */
1825
1826 static tree
1827 vrp_int_const_binop (enum tree_code code, tree val1, tree val2)
1828 {
1829 tree res;
1830
1831 res = int_const_binop (code, val1, val2);
1832
1833 /* If we are using unsigned arithmetic, operate symbolically
1834 on -INF and +INF as int_const_binop only handles signed overflow. */
1835 if (TYPE_UNSIGNED (TREE_TYPE (val1)))
1836 {
1837 int checkz = compare_values (res, val1);
1838 bool overflow = false;
1839
1840 /* Ensure that res = val1 [+*] val2 >= val1
1841 or that res = val1 - val2 <= val1. */
1842 if ((code == PLUS_EXPR
1843 && !(checkz == 1 || checkz == 0))
1844 || (code == MINUS_EXPR
1845 && !(checkz == 0 || checkz == -1)))
1846 {
1847 overflow = true;
1848 }
1849 /* Checking for multiplication overflow is done by dividing the
1850 output of the multiplication by the first input of the
1851 multiplication. If the result of that division operation is
1852 not equal to the second input of the multiplication, then the
1853 multiplication overflowed. */
1854 else if (code == MULT_EXPR && !integer_zerop (val1))
1855 {
1856 tree tmp = int_const_binop (TRUNC_DIV_EXPR,
1857 res,
1858 val1);
1859 int check = compare_values (tmp, val2);
1860
1861 if (check != 0)
1862 overflow = true;
1863 }
1864
1865 if (overflow)
1866 {
1867 res = copy_node (res);
1868 TREE_OVERFLOW (res) = 1;
1869 }
1870
1871 }
1872 else if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (val1)))
1873 /* If the singed operation wraps then int_const_binop has done
1874 everything we want. */
1875 ;
1876 else if ((TREE_OVERFLOW (res)
1877 && !TREE_OVERFLOW (val1)
1878 && !TREE_OVERFLOW (val2))
1879 || is_overflow_infinity (val1)
1880 || is_overflow_infinity (val2))
1881 {
1882 /* If the operation overflowed but neither VAL1 nor VAL2 are
1883 overflown, return -INF or +INF depending on the operation
1884 and the combination of signs of the operands. */
1885 int sgn1 = tree_int_cst_sgn (val1);
1886 int sgn2 = tree_int_cst_sgn (val2);
1887
1888 if (needs_overflow_infinity (TREE_TYPE (res))
1889 && !supports_overflow_infinity (TREE_TYPE (res)))
1890 return NULL_TREE;
1891
1892 /* We have to punt on adding infinities of different signs,
1893 since we can't tell what the sign of the result should be.
1894 Likewise for subtracting infinities of the same sign. */
1895 if (((code == PLUS_EXPR && sgn1 != sgn2)
1896 || (code == MINUS_EXPR && sgn1 == sgn2))
1897 && is_overflow_infinity (val1)
1898 && is_overflow_infinity (val2))
1899 return NULL_TREE;
1900
1901 /* Don't try to handle division or shifting of infinities. */
1902 if ((code == TRUNC_DIV_EXPR
1903 || code == FLOOR_DIV_EXPR
1904 || code == CEIL_DIV_EXPR
1905 || code == EXACT_DIV_EXPR
1906 || code == ROUND_DIV_EXPR
1907 || code == RSHIFT_EXPR)
1908 && (is_overflow_infinity (val1)
1909 || is_overflow_infinity (val2)))
1910 return NULL_TREE;
1911
1912 /* Notice that we only need to handle the restricted set of
1913 operations handled by extract_range_from_binary_expr.
1914 Among them, only multiplication, addition and subtraction
1915 can yield overflow without overflown operands because we
1916 are working with integral types only... except in the
1917 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
1918 for division too. */
1919
1920 /* For multiplication, the sign of the overflow is given
1921 by the comparison of the signs of the operands. */
1922 if ((code == MULT_EXPR && sgn1 == sgn2)
1923 /* For addition, the operands must be of the same sign
1924 to yield an overflow. Its sign is therefore that
1925 of one of the operands, for example the first. For
1926 infinite operands X + -INF is negative, not positive. */
1927 || (code == PLUS_EXPR
1928 && (sgn1 >= 0
1929 ? !is_negative_overflow_infinity (val2)
1930 : is_positive_overflow_infinity (val2)))
1931 /* For subtraction, non-infinite operands must be of
1932 different signs to yield an overflow. Its sign is
1933 therefore that of the first operand or the opposite of
1934 that of the second operand. A first operand of 0 counts
1935 as positive here, for the corner case 0 - (-INF), which
1936 overflows, but must yield +INF. For infinite operands 0
1937 - INF is negative, not positive. */
1938 || (code == MINUS_EXPR
1939 && (sgn1 >= 0
1940 ? !is_positive_overflow_infinity (val2)
1941 : is_negative_overflow_infinity (val2)))
1942 /* We only get in here with positive shift count, so the
1943 overflow direction is the same as the sign of val1.
1944 Actually rshift does not overflow at all, but we only
1945 handle the case of shifting overflowed -INF and +INF. */
1946 || (code == RSHIFT_EXPR
1947 && sgn1 >= 0)
1948 /* For division, the only case is -INF / -1 = +INF. */
1949 || code == TRUNC_DIV_EXPR
1950 || code == FLOOR_DIV_EXPR
1951 || code == CEIL_DIV_EXPR
1952 || code == EXACT_DIV_EXPR
1953 || code == ROUND_DIV_EXPR)
1954 return (needs_overflow_infinity (TREE_TYPE (res))
1955 ? positive_overflow_infinity (TREE_TYPE (res))
1956 : TYPE_MAX_VALUE (TREE_TYPE (res)));
1957 else
1958 return (needs_overflow_infinity (TREE_TYPE (res))
1959 ? negative_overflow_infinity (TREE_TYPE (res))
1960 : TYPE_MIN_VALUE (TREE_TYPE (res)));
1961 }
1962
1963 return res;
1964 }
1965
1966
1967 /* For range VR compute two double_int bitmasks. In *MAY_BE_NONZERO
1968 bitmask if some bit is unset, it means for all numbers in the range
1969 the bit is 0, otherwise it might be 0 or 1. In *MUST_BE_NONZERO
1970 bitmask if some bit is set, it means for all numbers in the range
1971 the bit is 1, otherwise it might be 0 or 1. */
1972
1973 static bool
1974 zero_nonzero_bits_from_vr (value_range_t *vr,
1975 double_int *may_be_nonzero,
1976 double_int *must_be_nonzero)
1977 {
1978 *may_be_nonzero = double_int_minus_one;
1979 *must_be_nonzero = double_int_zero;
1980 if (!range_int_cst_p (vr)
1981 || TREE_OVERFLOW (vr->min)
1982 || TREE_OVERFLOW (vr->max))
1983 return false;
1984
1985 if (range_int_cst_singleton_p (vr))
1986 {
1987 *may_be_nonzero = tree_to_double_int (vr->min);
1988 *must_be_nonzero = *may_be_nonzero;
1989 }
1990 else if (tree_int_cst_sgn (vr->min) >= 0
1991 || tree_int_cst_sgn (vr->max) < 0)
1992 {
1993 double_int dmin = tree_to_double_int (vr->min);
1994 double_int dmax = tree_to_double_int (vr->max);
1995 double_int xor_mask = dmin ^ dmax;
1996 *may_be_nonzero = dmin | dmax;
1997 *must_be_nonzero = dmin & dmax;
1998 if (xor_mask.high != 0)
1999 {
2000 unsigned HOST_WIDE_INT mask
2001 = ((unsigned HOST_WIDE_INT) 1
2002 << floor_log2 (xor_mask.high)) - 1;
2003 may_be_nonzero->low = ALL_ONES;
2004 may_be_nonzero->high |= mask;
2005 must_be_nonzero->low = 0;
2006 must_be_nonzero->high &= ~mask;
2007 }
2008 else if (xor_mask.low != 0)
2009 {
2010 unsigned HOST_WIDE_INT mask
2011 = ((unsigned HOST_WIDE_INT) 1
2012 << floor_log2 (xor_mask.low)) - 1;
2013 may_be_nonzero->low |= mask;
2014 must_be_nonzero->low &= ~mask;
2015 }
2016 }
2017
2018 return true;
2019 }
2020
2021 /* Create two value-ranges in *VR0 and *VR1 from the anti-range *AR
2022 so that *VR0 U *VR1 == *AR. Returns true if that is possible,
2023 false otherwise. If *AR can be represented with a single range
2024 *VR1 will be VR_UNDEFINED. */
2025
2026 static bool
2027 ranges_from_anti_range (value_range_t *ar,
2028 value_range_t *vr0, value_range_t *vr1)
2029 {
2030 tree type = TREE_TYPE (ar->min);
2031
2032 vr0->type = VR_UNDEFINED;
2033 vr1->type = VR_UNDEFINED;
2034
2035 if (ar->type != VR_ANTI_RANGE
2036 || TREE_CODE (ar->min) != INTEGER_CST
2037 || TREE_CODE (ar->max) != INTEGER_CST
2038 || !vrp_val_min (type)
2039 || !vrp_val_max (type))
2040 return false;
2041
2042 if (!vrp_val_is_min (ar->min))
2043 {
2044 vr0->type = VR_RANGE;
2045 vr0->min = vrp_val_min (type);
2046 vr0->max
2047 = double_int_to_tree (type,
2048 tree_to_double_int (ar->min) - double_int_one);
2049 }
2050 if (!vrp_val_is_max (ar->max))
2051 {
2052 vr1->type = VR_RANGE;
2053 vr1->min
2054 = double_int_to_tree (type,
2055 tree_to_double_int (ar->max) + double_int_one);
2056 vr1->max = vrp_val_max (type);
2057 }
2058 if (vr0->type == VR_UNDEFINED)
2059 {
2060 *vr0 = *vr1;
2061 vr1->type = VR_UNDEFINED;
2062 }
2063
2064 return vr0->type != VR_UNDEFINED;
2065 }
2066
2067 /* Helper to extract a value-range *VR for a multiplicative operation
2068 *VR0 CODE *VR1. */
2069
2070 static void
2071 extract_range_from_multiplicative_op_1 (value_range_t *vr,
2072 enum tree_code code,
2073 value_range_t *vr0, value_range_t *vr1)
2074 {
2075 enum value_range_type type;
2076 tree val[4];
2077 size_t i;
2078 tree min, max;
2079 bool sop;
2080 int cmp;
2081
2082 /* Multiplications, divisions and shifts are a bit tricky to handle,
2083 depending on the mix of signs we have in the two ranges, we
2084 need to operate on different values to get the minimum and
2085 maximum values for the new range. One approach is to figure
2086 out all the variations of range combinations and do the
2087 operations.
2088
2089 However, this involves several calls to compare_values and it
2090 is pretty convoluted. It's simpler to do the 4 operations
2091 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
2092 MAX1) and then figure the smallest and largest values to form
2093 the new range. */
2094 gcc_assert (code == MULT_EXPR
2095 || code == TRUNC_DIV_EXPR
2096 || code == FLOOR_DIV_EXPR
2097 || code == CEIL_DIV_EXPR
2098 || code == EXACT_DIV_EXPR
2099 || code == ROUND_DIV_EXPR
2100 || code == RSHIFT_EXPR
2101 || code == LSHIFT_EXPR);
2102 gcc_assert ((vr0->type == VR_RANGE
2103 || (code == MULT_EXPR && vr0->type == VR_ANTI_RANGE))
2104 && vr0->type == vr1->type);
2105
2106 type = vr0->type;
2107
2108 /* Compute the 4 cross operations. */
2109 sop = false;
2110 val[0] = vrp_int_const_binop (code, vr0->min, vr1->min);
2111 if (val[0] == NULL_TREE)
2112 sop = true;
2113
2114 if (vr1->max == vr1->min)
2115 val[1] = NULL_TREE;
2116 else
2117 {
2118 val[1] = vrp_int_const_binop (code, vr0->min, vr1->max);
2119 if (val[1] == NULL_TREE)
2120 sop = true;
2121 }
2122
2123 if (vr0->max == vr0->min)
2124 val[2] = NULL_TREE;
2125 else
2126 {
2127 val[2] = vrp_int_const_binop (code, vr0->max, vr1->min);
2128 if (val[2] == NULL_TREE)
2129 sop = true;
2130 }
2131
2132 if (vr0->min == vr0->max || vr1->min == vr1->max)
2133 val[3] = NULL_TREE;
2134 else
2135 {
2136 val[3] = vrp_int_const_binop (code, vr0->max, vr1->max);
2137 if (val[3] == NULL_TREE)
2138 sop = true;
2139 }
2140
2141 if (sop)
2142 {
2143 set_value_range_to_varying (vr);
2144 return;
2145 }
2146
2147 /* Set MIN to the minimum of VAL[i] and MAX to the maximum
2148 of VAL[i]. */
2149 min = val[0];
2150 max = val[0];
2151 for (i = 1; i < 4; i++)
2152 {
2153 if (!is_gimple_min_invariant (min)
2154 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2155 || !is_gimple_min_invariant (max)
2156 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2157 break;
2158
2159 if (val[i])
2160 {
2161 if (!is_gimple_min_invariant (val[i])
2162 || (TREE_OVERFLOW (val[i])
2163 && !is_overflow_infinity (val[i])))
2164 {
2165 /* If we found an overflowed value, set MIN and MAX
2166 to it so that we set the resulting range to
2167 VARYING. */
2168 min = max = val[i];
2169 break;
2170 }
2171
2172 if (compare_values (val[i], min) == -1)
2173 min = val[i];
2174
2175 if (compare_values (val[i], max) == 1)
2176 max = val[i];
2177 }
2178 }
2179
2180 /* If either MIN or MAX overflowed, then set the resulting range to
2181 VARYING. But we do accept an overflow infinity
2182 representation. */
2183 if (min == NULL_TREE
2184 || !is_gimple_min_invariant (min)
2185 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2186 || max == NULL_TREE
2187 || !is_gimple_min_invariant (max)
2188 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2189 {
2190 set_value_range_to_varying (vr);
2191 return;
2192 }
2193
2194 /* We punt if:
2195 1) [-INF, +INF]
2196 2) [-INF, +-INF(OVF)]
2197 3) [+-INF(OVF), +INF]
2198 4) [+-INF(OVF), +-INF(OVF)]
2199 We learn nothing when we have INF and INF(OVF) on both sides.
2200 Note that we do accept [-INF, -INF] and [+INF, +INF] without
2201 overflow. */
2202 if ((vrp_val_is_min (min) || is_overflow_infinity (min))
2203 && (vrp_val_is_max (max) || is_overflow_infinity (max)))
2204 {
2205 set_value_range_to_varying (vr);
2206 return;
2207 }
2208
2209 cmp = compare_values (min, max);
2210 if (cmp == -2 || cmp == 1)
2211 {
2212 /* If the new range has its limits swapped around (MIN > MAX),
2213 then the operation caused one of them to wrap around, mark
2214 the new range VARYING. */
2215 set_value_range_to_varying (vr);
2216 }
2217 else
2218 set_value_range (vr, type, min, max, NULL);
2219 }
2220
2221 /* Some quadruple precision helpers. */
2222 static int
2223 quad_int_cmp (double_int l0, double_int h0,
2224 double_int l1, double_int h1, bool uns)
2225 {
2226 int c = h0.cmp (h1, uns);
2227 if (c != 0) return c;
2228 return l0.ucmp (l1);
2229 }
2230
2231 static void
2232 quad_int_pair_sort (double_int *l0, double_int *h0,
2233 double_int *l1, double_int *h1, bool uns)
2234 {
2235 if (quad_int_cmp (*l0, *h0, *l1, *h1, uns) > 0)
2236 {
2237 double_int tmp;
2238 tmp = *l0; *l0 = *l1; *l1 = tmp;
2239 tmp = *h0; *h0 = *h1; *h1 = tmp;
2240 }
2241 }
2242
2243 /* Extract range information from a binary operation CODE based on
2244 the ranges of each of its operands, *VR0 and *VR1 with resulting
2245 type EXPR_TYPE. The resulting range is stored in *VR. */
2246
2247 static void
2248 extract_range_from_binary_expr_1 (value_range_t *vr,
2249 enum tree_code code, tree expr_type,
2250 value_range_t *vr0_, value_range_t *vr1_)
2251 {
2252 value_range_t vr0 = *vr0_, vr1 = *vr1_;
2253 value_range_t vrtem0 = VR_INITIALIZER, vrtem1 = VR_INITIALIZER;
2254 enum value_range_type type;
2255 tree min = NULL_TREE, max = NULL_TREE;
2256 int cmp;
2257
2258 if (!INTEGRAL_TYPE_P (expr_type)
2259 && !POINTER_TYPE_P (expr_type))
2260 {
2261 set_value_range_to_varying (vr);
2262 return;
2263 }
2264
2265 /* Not all binary expressions can be applied to ranges in a
2266 meaningful way. Handle only arithmetic operations. */
2267 if (code != PLUS_EXPR
2268 && code != MINUS_EXPR
2269 && code != POINTER_PLUS_EXPR
2270 && code != MULT_EXPR
2271 && code != TRUNC_DIV_EXPR
2272 && code != FLOOR_DIV_EXPR
2273 && code != CEIL_DIV_EXPR
2274 && code != EXACT_DIV_EXPR
2275 && code != ROUND_DIV_EXPR
2276 && code != TRUNC_MOD_EXPR
2277 && code != RSHIFT_EXPR
2278 && code != LSHIFT_EXPR
2279 && code != MIN_EXPR
2280 && code != MAX_EXPR
2281 && code != BIT_AND_EXPR
2282 && code != BIT_IOR_EXPR
2283 && code != BIT_XOR_EXPR)
2284 {
2285 set_value_range_to_varying (vr);
2286 return;
2287 }
2288
2289 /* If both ranges are UNDEFINED, so is the result. */
2290 if (vr0.type == VR_UNDEFINED && vr1.type == VR_UNDEFINED)
2291 {
2292 set_value_range_to_undefined (vr);
2293 return;
2294 }
2295 /* If one of the ranges is UNDEFINED drop it to VARYING for the following
2296 code. At some point we may want to special-case operations that
2297 have UNDEFINED result for all or some value-ranges of the not UNDEFINED
2298 operand. */
2299 else if (vr0.type == VR_UNDEFINED)
2300 set_value_range_to_varying (&vr0);
2301 else if (vr1.type == VR_UNDEFINED)
2302 set_value_range_to_varying (&vr1);
2303
2304 /* Now canonicalize anti-ranges to ranges when they are not symbolic
2305 and express ~[] op X as ([]' op X) U ([]'' op X). */
2306 if (vr0.type == VR_ANTI_RANGE
2307 && ranges_from_anti_range (&vr0, &vrtem0, &vrtem1))
2308 {
2309 extract_range_from_binary_expr_1 (vr, code, expr_type, &vrtem0, vr1_);
2310 if (vrtem1.type != VR_UNDEFINED)
2311 {
2312 value_range_t vrres = VR_INITIALIZER;
2313 extract_range_from_binary_expr_1 (&vrres, code, expr_type,
2314 &vrtem1, vr1_);
2315 vrp_meet (vr, &vrres);
2316 }
2317 return;
2318 }
2319 /* Likewise for X op ~[]. */
2320 if (vr1.type == VR_ANTI_RANGE
2321 && ranges_from_anti_range (&vr1, &vrtem0, &vrtem1))
2322 {
2323 extract_range_from_binary_expr_1 (vr, code, expr_type, vr0_, &vrtem0);
2324 if (vrtem1.type != VR_UNDEFINED)
2325 {
2326 value_range_t vrres = VR_INITIALIZER;
2327 extract_range_from_binary_expr_1 (&vrres, code, expr_type,
2328 vr0_, &vrtem1);
2329 vrp_meet (vr, &vrres);
2330 }
2331 return;
2332 }
2333
2334 /* The type of the resulting value range defaults to VR0.TYPE. */
2335 type = vr0.type;
2336
2337 /* Refuse to operate on VARYING ranges, ranges of different kinds
2338 and symbolic ranges. As an exception, we allow BIT_AND_EXPR
2339 because we may be able to derive a useful range even if one of
2340 the operands is VR_VARYING or symbolic range. Similarly for
2341 divisions. TODO, we may be able to derive anti-ranges in
2342 some cases. */
2343 if (code != BIT_AND_EXPR
2344 && code != BIT_IOR_EXPR
2345 && code != TRUNC_DIV_EXPR
2346 && code != FLOOR_DIV_EXPR
2347 && code != CEIL_DIV_EXPR
2348 && code != EXACT_DIV_EXPR
2349 && code != ROUND_DIV_EXPR
2350 && code != TRUNC_MOD_EXPR
2351 && code != MIN_EXPR
2352 && code != MAX_EXPR
2353 && (vr0.type == VR_VARYING
2354 || vr1.type == VR_VARYING
2355 || vr0.type != vr1.type
2356 || symbolic_range_p (&vr0)
2357 || symbolic_range_p (&vr1)))
2358 {
2359 set_value_range_to_varying (vr);
2360 return;
2361 }
2362
2363 /* Now evaluate the expression to determine the new range. */
2364 if (POINTER_TYPE_P (expr_type))
2365 {
2366 if (code == MIN_EXPR || code == MAX_EXPR)
2367 {
2368 /* For MIN/MAX expressions with pointers, we only care about
2369 nullness, if both are non null, then the result is nonnull.
2370 If both are null, then the result is null. Otherwise they
2371 are varying. */
2372 if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
2373 set_value_range_to_nonnull (vr, expr_type);
2374 else if (range_is_null (&vr0) && range_is_null (&vr1))
2375 set_value_range_to_null (vr, expr_type);
2376 else
2377 set_value_range_to_varying (vr);
2378 }
2379 else if (code == POINTER_PLUS_EXPR)
2380 {
2381 /* For pointer types, we are really only interested in asserting
2382 whether the expression evaluates to non-NULL. */
2383 if (range_is_nonnull (&vr0) || range_is_nonnull (&vr1))
2384 set_value_range_to_nonnull (vr, expr_type);
2385 else if (range_is_null (&vr0) && range_is_null (&vr1))
2386 set_value_range_to_null (vr, expr_type);
2387 else
2388 set_value_range_to_varying (vr);
2389 }
2390 else if (code == BIT_AND_EXPR)
2391 {
2392 /* For pointer types, we are really only interested in asserting
2393 whether the expression evaluates to non-NULL. */
2394 if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
2395 set_value_range_to_nonnull (vr, expr_type);
2396 else if (range_is_null (&vr0) || range_is_null (&vr1))
2397 set_value_range_to_null (vr, expr_type);
2398 else
2399 set_value_range_to_varying (vr);
2400 }
2401 else
2402 set_value_range_to_varying (vr);
2403
2404 return;
2405 }
2406
2407 /* For integer ranges, apply the operation to each end of the
2408 range and see what we end up with. */
2409 if (code == PLUS_EXPR || code == MINUS_EXPR)
2410 {
2411 /* If we have a PLUS_EXPR with two VR_RANGE integer constant
2412 ranges compute the precise range for such case if possible. */
2413 if (range_int_cst_p (&vr0)
2414 && range_int_cst_p (&vr1)
2415 /* We need as many bits as the possibly unsigned inputs. */
2416 && TYPE_PRECISION (expr_type) <= HOST_BITS_PER_DOUBLE_INT)
2417 {
2418 double_int min0 = tree_to_double_int (vr0.min);
2419 double_int max0 = tree_to_double_int (vr0.max);
2420 double_int min1 = tree_to_double_int (vr1.min);
2421 double_int max1 = tree_to_double_int (vr1.max);
2422 bool uns = TYPE_UNSIGNED (expr_type);
2423 double_int type_min
2424 = double_int::min_value (TYPE_PRECISION (expr_type), uns);
2425 double_int type_max
2426 = double_int::max_value (TYPE_PRECISION (expr_type), uns);
2427 double_int dmin, dmax;
2428 int min_ovf = 0;
2429 int max_ovf = 0;
2430
2431 if (code == PLUS_EXPR)
2432 {
2433 dmin = min0 + min1;
2434 dmax = max0 + max1;
2435
2436 /* Check for overflow in double_int. */
2437 if (min1.cmp (double_int_zero, uns) != dmin.cmp (min0, uns))
2438 min_ovf = min0.cmp (dmin, uns);
2439 if (max1.cmp (double_int_zero, uns) != dmax.cmp (max0, uns))
2440 max_ovf = max0.cmp (dmax, uns);
2441 }
2442 else /* if (code == MINUS_EXPR) */
2443 {
2444 dmin = min0 - max1;
2445 dmax = max0 - min1;
2446
2447 if (double_int_zero.cmp (max1, uns) != dmin.cmp (min0, uns))
2448 min_ovf = min0.cmp (max1, uns);
2449 if (double_int_zero.cmp (min1, uns) != dmax.cmp (max0, uns))
2450 max_ovf = max0.cmp (min1, uns);
2451 }
2452
2453 /* For non-wrapping arithmetic look at possibly smaller
2454 value-ranges of the type. */
2455 if (!TYPE_OVERFLOW_WRAPS (expr_type))
2456 {
2457 if (vrp_val_min (expr_type))
2458 type_min = tree_to_double_int (vrp_val_min (expr_type));
2459 if (vrp_val_max (expr_type))
2460 type_max = tree_to_double_int (vrp_val_max (expr_type));
2461 }
2462
2463 /* Check for type overflow. */
2464 if (min_ovf == 0)
2465 {
2466 if (dmin.cmp (type_min, uns) == -1)
2467 min_ovf = -1;
2468 else if (dmin.cmp (type_max, uns) == 1)
2469 min_ovf = 1;
2470 }
2471 if (max_ovf == 0)
2472 {
2473 if (dmax.cmp (type_min, uns) == -1)
2474 max_ovf = -1;
2475 else if (dmax.cmp (type_max, uns) == 1)
2476 max_ovf = 1;
2477 }
2478
2479 if (TYPE_OVERFLOW_WRAPS (expr_type))
2480 {
2481 /* If overflow wraps, truncate the values and adjust the
2482 range kind and bounds appropriately. */
2483 double_int tmin
2484 = dmin.ext (TYPE_PRECISION (expr_type), uns);
2485 double_int tmax
2486 = dmax.ext (TYPE_PRECISION (expr_type), uns);
2487 if (min_ovf == max_ovf)
2488 {
2489 /* No overflow or both overflow or underflow. The
2490 range kind stays VR_RANGE. */
2491 min = double_int_to_tree (expr_type, tmin);
2492 max = double_int_to_tree (expr_type, tmax);
2493 }
2494 else if (min_ovf == -1
2495 && max_ovf == 1)
2496 {
2497 /* Underflow and overflow, drop to VR_VARYING. */
2498 set_value_range_to_varying (vr);
2499 return;
2500 }
2501 else
2502 {
2503 /* Min underflow or max overflow. The range kind
2504 changes to VR_ANTI_RANGE. */
2505 bool covers = false;
2506 double_int tem = tmin;
2507 gcc_assert ((min_ovf == -1 && max_ovf == 0)
2508 || (max_ovf == 1 && min_ovf == 0));
2509 type = VR_ANTI_RANGE;
2510 tmin = tmax + double_int_one;
2511 if (tmin.cmp (tmax, uns) < 0)
2512 covers = true;
2513 tmax = tem + double_int_minus_one;
2514 if (tmax.cmp (tem, uns) > 0)
2515 covers = true;
2516 /* If the anti-range would cover nothing, drop to varying.
2517 Likewise if the anti-range bounds are outside of the
2518 types values. */
2519 if (covers || tmin.cmp (tmax, uns) > 0)
2520 {
2521 set_value_range_to_varying (vr);
2522 return;
2523 }
2524 min = double_int_to_tree (expr_type, tmin);
2525 max = double_int_to_tree (expr_type, tmax);
2526 }
2527 }
2528 else
2529 {
2530 /* If overflow does not wrap, saturate to the types min/max
2531 value. */
2532 if (min_ovf == -1)
2533 {
2534 if (needs_overflow_infinity (expr_type)
2535 && supports_overflow_infinity (expr_type))
2536 min = negative_overflow_infinity (expr_type);
2537 else
2538 min = double_int_to_tree (expr_type, type_min);
2539 }
2540 else if (min_ovf == 1)
2541 {
2542 if (needs_overflow_infinity (expr_type)
2543 && supports_overflow_infinity (expr_type))
2544 min = positive_overflow_infinity (expr_type);
2545 else
2546 min = double_int_to_tree (expr_type, type_max);
2547 }
2548 else
2549 min = double_int_to_tree (expr_type, dmin);
2550
2551 if (max_ovf == -1)
2552 {
2553 if (needs_overflow_infinity (expr_type)
2554 && supports_overflow_infinity (expr_type))
2555 max = negative_overflow_infinity (expr_type);
2556 else
2557 max = double_int_to_tree (expr_type, type_min);
2558 }
2559 else if (max_ovf == 1)
2560 {
2561 if (needs_overflow_infinity (expr_type)
2562 && supports_overflow_infinity (expr_type))
2563 max = positive_overflow_infinity (expr_type);
2564 else
2565 max = double_int_to_tree (expr_type, type_max);
2566 }
2567 else
2568 max = double_int_to_tree (expr_type, dmax);
2569 }
2570 if (needs_overflow_infinity (expr_type)
2571 && supports_overflow_infinity (expr_type))
2572 {
2573 if (is_negative_overflow_infinity (vr0.min)
2574 || (code == PLUS_EXPR
2575 ? is_negative_overflow_infinity (vr1.min)
2576 : is_positive_overflow_infinity (vr1.max)))
2577 min = negative_overflow_infinity (expr_type);
2578 if (is_positive_overflow_infinity (vr0.max)
2579 || (code == PLUS_EXPR
2580 ? is_positive_overflow_infinity (vr1.max)
2581 : is_negative_overflow_infinity (vr1.min)))
2582 max = positive_overflow_infinity (expr_type);
2583 }
2584 }
2585 else
2586 {
2587 /* For other cases, for example if we have a PLUS_EXPR with two
2588 VR_ANTI_RANGEs, drop to VR_VARYING. It would take more effort
2589 to compute a precise range for such a case.
2590 ??? General even mixed range kind operations can be expressed
2591 by for example transforming ~[3, 5] + [1, 2] to range-only
2592 operations and a union primitive:
2593 [-INF, 2] + [1, 2] U [5, +INF] + [1, 2]
2594 [-INF+1, 4] U [6, +INF(OVF)]
2595 though usually the union is not exactly representable with
2596 a single range or anti-range as the above is
2597 [-INF+1, +INF(OVF)] intersected with ~[5, 5]
2598 but one could use a scheme similar to equivalences for this. */
2599 set_value_range_to_varying (vr);
2600 return;
2601 }
2602 }
2603 else if (code == MIN_EXPR
2604 || code == MAX_EXPR)
2605 {
2606 if (vr0.type == VR_RANGE
2607 && !symbolic_range_p (&vr0))
2608 {
2609 type = VR_RANGE;
2610 if (vr1.type == VR_RANGE
2611 && !symbolic_range_p (&vr1))
2612 {
2613 /* For operations that make the resulting range directly
2614 proportional to the original ranges, apply the operation to
2615 the same end of each range. */
2616 min = vrp_int_const_binop (code, vr0.min, vr1.min);
2617 max = vrp_int_const_binop (code, vr0.max, vr1.max);
2618 }
2619 else if (code == MIN_EXPR)
2620 {
2621 min = vrp_val_min (expr_type);
2622 max = vr0.max;
2623 }
2624 else if (code == MAX_EXPR)
2625 {
2626 min = vr0.min;
2627 max = vrp_val_max (expr_type);
2628 }
2629 }
2630 else if (vr1.type == VR_RANGE
2631 && !symbolic_range_p (&vr1))
2632 {
2633 type = VR_RANGE;
2634 if (code == MIN_EXPR)
2635 {
2636 min = vrp_val_min (expr_type);
2637 max = vr1.max;
2638 }
2639 else if (code == MAX_EXPR)
2640 {
2641 min = vr1.min;
2642 max = vrp_val_max (expr_type);
2643 }
2644 }
2645 else
2646 {
2647 set_value_range_to_varying (vr);
2648 return;
2649 }
2650 }
2651 else if (code == MULT_EXPR)
2652 {
2653 /* Fancy code so that with unsigned, [-3,-1]*[-3,-1] does not
2654 drop to varying. */
2655 if (range_int_cst_p (&vr0)
2656 && range_int_cst_p (&vr1)
2657 && TYPE_OVERFLOW_WRAPS (expr_type))
2658 {
2659 double_int min0, max0, min1, max1, sizem1, size;
2660 double_int prod0l, prod0h, prod1l, prod1h,
2661 prod2l, prod2h, prod3l, prod3h;
2662 bool uns0, uns1, uns;
2663
2664 sizem1 = double_int::max_value (TYPE_PRECISION (expr_type), true);
2665 size = sizem1 + double_int_one;
2666
2667 min0 = tree_to_double_int (vr0.min);
2668 max0 = tree_to_double_int (vr0.max);
2669 min1 = tree_to_double_int (vr1.min);
2670 max1 = tree_to_double_int (vr1.max);
2671
2672 uns0 = TYPE_UNSIGNED (expr_type);
2673 uns1 = uns0;
2674
2675 /* Canonicalize the intervals. */
2676 if (TYPE_UNSIGNED (expr_type))
2677 {
2678 double_int min2 = size - min0;
2679 if (!min2.is_zero () && min2.cmp (max0, true) < 0)
2680 {
2681 min0 = -min2;
2682 max0 -= size;
2683 uns0 = false;
2684 }
2685
2686 min2 = size - min1;
2687 if (!min2.is_zero () && min2.cmp (max1, true) < 0)
2688 {
2689 min1 = -min2;
2690 max1 -= size;
2691 uns1 = false;
2692 }
2693 }
2694 uns = uns0 & uns1;
2695
2696 bool overflow;
2697 prod0l = min0.wide_mul_with_sign (min1, true, &prod0h, &overflow);
2698 if (!uns0 && min0.is_negative ())
2699 prod0h -= min1;
2700 if (!uns1 && min1.is_negative ())
2701 prod0h -= min0;
2702
2703 prod1l = min0.wide_mul_with_sign (max1, true, &prod1h, &overflow);
2704 if (!uns0 && min0.is_negative ())
2705 prod1h -= max1;
2706 if (!uns1 && max1.is_negative ())
2707 prod1h -= min0;
2708
2709 prod2l = max0.wide_mul_with_sign (min1, true, &prod2h, &overflow);
2710 if (!uns0 && max0.is_negative ())
2711 prod2h -= min1;
2712 if (!uns1 && min1.is_negative ())
2713 prod2h -= max0;
2714
2715 prod3l = max0.wide_mul_with_sign (max1, true, &prod3h, &overflow);
2716 if (!uns0 && max0.is_negative ())
2717 prod3h -= max1;
2718 if (!uns1 && max1.is_negative ())
2719 prod3h -= max0;
2720
2721 /* Sort the 4 products. */
2722 quad_int_pair_sort (&prod0l, &prod0h, &prod3l, &prod3h, uns);
2723 quad_int_pair_sort (&prod1l, &prod1h, &prod2l, &prod2h, uns);
2724 quad_int_pair_sort (&prod0l, &prod0h, &prod1l, &prod1h, uns);
2725 quad_int_pair_sort (&prod2l, &prod2h, &prod3l, &prod3h, uns);
2726
2727 /* Max - min. */
2728 if (prod0l.is_zero ())
2729 {
2730 prod1l = double_int_zero;
2731 prod1h = -prod0h;
2732 }
2733 else
2734 {
2735 prod1l = -prod0l;
2736 prod1h = ~prod0h;
2737 }
2738 prod2l = prod3l + prod1l;
2739 prod2h = prod3h + prod1h;
2740 if (prod2l.ult (prod3l))
2741 prod2h += double_int_one; /* carry */
2742
2743 if (!prod2h.is_zero ()
2744 || prod2l.cmp (sizem1, true) >= 0)
2745 {
2746 /* the range covers all values. */
2747 set_value_range_to_varying (vr);
2748 return;
2749 }
2750
2751 /* The following should handle the wrapping and selecting
2752 VR_ANTI_RANGE for us. */
2753 min = double_int_to_tree (expr_type, prod0l);
2754 max = double_int_to_tree (expr_type, prod3l);
2755 set_and_canonicalize_value_range (vr, VR_RANGE, min, max, NULL);
2756 return;
2757 }
2758
2759 /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
2760 drop to VR_VARYING. It would take more effort to compute a
2761 precise range for such a case. For example, if we have
2762 op0 == 65536 and op1 == 65536 with their ranges both being
2763 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
2764 we cannot claim that the product is in ~[0,0]. Note that we
2765 are guaranteed to have vr0.type == vr1.type at this
2766 point. */
2767 if (vr0.type == VR_ANTI_RANGE
2768 && !TYPE_OVERFLOW_UNDEFINED (expr_type))
2769 {
2770 set_value_range_to_varying (vr);
2771 return;
2772 }
2773
2774 extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
2775 return;
2776 }
2777 else if (code == RSHIFT_EXPR
2778 || code == LSHIFT_EXPR)
2779 {
2780 /* If we have a RSHIFT_EXPR with any shift values outside [0..prec-1],
2781 then drop to VR_VARYING. Outside of this range we get undefined
2782 behavior from the shift operation. We cannot even trust
2783 SHIFT_COUNT_TRUNCATED at this stage, because that applies to rtl
2784 shifts, and the operation at the tree level may be widened. */
2785 if (range_int_cst_p (&vr1)
2786 && compare_tree_int (vr1.min, 0) >= 0
2787 && compare_tree_int (vr1.max, TYPE_PRECISION (expr_type)) == -1)
2788 {
2789 if (code == RSHIFT_EXPR)
2790 {
2791 extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
2792 return;
2793 }
2794 /* We can map lshifts by constants to MULT_EXPR handling. */
2795 else if (code == LSHIFT_EXPR
2796 && range_int_cst_singleton_p (&vr1))
2797 {
2798 bool saved_flag_wrapv;
2799 value_range_t vr1p = VR_INITIALIZER;
2800 vr1p.type = VR_RANGE;
2801 vr1p.min
2802 = double_int_to_tree (expr_type,
2803 double_int_one
2804 .llshift (TREE_INT_CST_LOW (vr1.min),
2805 TYPE_PRECISION (expr_type)));
2806 vr1p.max = vr1p.min;
2807 /* We have to use a wrapping multiply though as signed overflow
2808 on lshifts is implementation defined in C89. */
2809 saved_flag_wrapv = flag_wrapv;
2810 flag_wrapv = 1;
2811 extract_range_from_binary_expr_1 (vr, MULT_EXPR, expr_type,
2812 &vr0, &vr1p);
2813 flag_wrapv = saved_flag_wrapv;
2814 return;
2815 }
2816 else if (code == LSHIFT_EXPR
2817 && range_int_cst_p (&vr0))
2818 {
2819 int prec = TYPE_PRECISION (expr_type);
2820 int overflow_pos = prec;
2821 int bound_shift;
2822 double_int bound, complement, low_bound, high_bound;
2823 bool uns = TYPE_UNSIGNED (expr_type);
2824 bool in_bounds = false;
2825
2826 if (!uns)
2827 overflow_pos -= 1;
2828
2829 bound_shift = overflow_pos - TREE_INT_CST_LOW (vr1.max);
2830 /* If bound_shift == HOST_BITS_PER_DOUBLE_INT, the llshift can
2831 overflow. However, for that to happen, vr1.max needs to be
2832 zero, which means vr1 is a singleton range of zero, which
2833 means it should be handled by the previous LSHIFT_EXPR
2834 if-clause. */
2835 bound = double_int_one.llshift (bound_shift, prec);
2836 complement = ~(bound - double_int_one);
2837
2838 if (uns)
2839 {
2840 low_bound = bound.zext (prec);
2841 high_bound = complement.zext (prec);
2842 if (tree_to_double_int (vr0.max).ult (low_bound))
2843 {
2844 /* [5, 6] << [1, 2] == [10, 24]. */
2845 /* We're shifting out only zeroes, the value increases
2846 monotonically. */
2847 in_bounds = true;
2848 }
2849 else if (high_bound.ult (tree_to_double_int (vr0.min)))
2850 {
2851 /* [0xffffff00, 0xffffffff] << [1, 2]
2852 == [0xfffffc00, 0xfffffffe]. */
2853 /* We're shifting out only ones, the value decreases
2854 monotonically. */
2855 in_bounds = true;
2856 }
2857 }
2858 else
2859 {
2860 /* [-1, 1] << [1, 2] == [-4, 4]. */
2861 low_bound = complement.sext (prec);
2862 high_bound = bound;
2863 if (tree_to_double_int (vr0.max).slt (high_bound)
2864 && low_bound.slt (tree_to_double_int (vr0.min)))
2865 {
2866 /* For non-negative numbers, we're shifting out only
2867 zeroes, the value increases monotonically.
2868 For negative numbers, we're shifting out only ones, the
2869 value decreases monotomically. */
2870 in_bounds = true;
2871 }
2872 }
2873
2874 if (in_bounds)
2875 {
2876 extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
2877 return;
2878 }
2879 }
2880 }
2881 set_value_range_to_varying (vr);
2882 return;
2883 }
2884 else if (code == TRUNC_DIV_EXPR
2885 || code == FLOOR_DIV_EXPR
2886 || code == CEIL_DIV_EXPR
2887 || code == EXACT_DIV_EXPR
2888 || code == ROUND_DIV_EXPR)
2889 {
2890 if (vr0.type != VR_RANGE || symbolic_range_p (&vr0))
2891 {
2892 /* For division, if op1 has VR_RANGE but op0 does not, something
2893 can be deduced just from that range. Say [min, max] / [4, max]
2894 gives [min / 4, max / 4] range. */
2895 if (vr1.type == VR_RANGE
2896 && !symbolic_range_p (&vr1)
2897 && range_includes_zero_p (vr1.min, vr1.max) == 0)
2898 {
2899 vr0.type = type = VR_RANGE;
2900 vr0.min = vrp_val_min (expr_type);
2901 vr0.max = vrp_val_max (expr_type);
2902 }
2903 else
2904 {
2905 set_value_range_to_varying (vr);
2906 return;
2907 }
2908 }
2909
2910 /* For divisions, if flag_non_call_exceptions is true, we must
2911 not eliminate a division by zero. */
2912 if (cfun->can_throw_non_call_exceptions
2913 && (vr1.type != VR_RANGE
2914 || range_includes_zero_p (vr1.min, vr1.max) != 0))
2915 {
2916 set_value_range_to_varying (vr);
2917 return;
2918 }
2919
2920 /* For divisions, if op0 is VR_RANGE, we can deduce a range
2921 even if op1 is VR_VARYING, VR_ANTI_RANGE, symbolic or can
2922 include 0. */
2923 if (vr0.type == VR_RANGE
2924 && (vr1.type != VR_RANGE
2925 || range_includes_zero_p (vr1.min, vr1.max) != 0))
2926 {
2927 tree zero = build_int_cst (TREE_TYPE (vr0.min), 0);
2928 int cmp;
2929
2930 min = NULL_TREE;
2931 max = NULL_TREE;
2932 if (TYPE_UNSIGNED (expr_type)
2933 || value_range_nonnegative_p (&vr1))
2934 {
2935 /* For unsigned division or when divisor is known
2936 to be non-negative, the range has to cover
2937 all numbers from 0 to max for positive max
2938 and all numbers from min to 0 for negative min. */
2939 cmp = compare_values (vr0.max, zero);
2940 if (cmp == -1)
2941 max = zero;
2942 else if (cmp == 0 || cmp == 1)
2943 max = vr0.max;
2944 else
2945 type = VR_VARYING;
2946 cmp = compare_values (vr0.min, zero);
2947 if (cmp == 1)
2948 min = zero;
2949 else if (cmp == 0 || cmp == -1)
2950 min = vr0.min;
2951 else
2952 type = VR_VARYING;
2953 }
2954 else
2955 {
2956 /* Otherwise the range is -max .. max or min .. -min
2957 depending on which bound is bigger in absolute value,
2958 as the division can change the sign. */
2959 abs_extent_range (vr, vr0.min, vr0.max);
2960 return;
2961 }
2962 if (type == VR_VARYING)
2963 {
2964 set_value_range_to_varying (vr);
2965 return;
2966 }
2967 }
2968 else
2969 {
2970 extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
2971 return;
2972 }
2973 }
2974 else if (code == TRUNC_MOD_EXPR)
2975 {
2976 if (vr1.type != VR_RANGE
2977 || range_includes_zero_p (vr1.min, vr1.max) != 0
2978 || vrp_val_is_min (vr1.min))
2979 {
2980 set_value_range_to_varying (vr);
2981 return;
2982 }
2983 type = VR_RANGE;
2984 /* Compute MAX <|vr1.min|, |vr1.max|> - 1. */
2985 max = fold_unary_to_constant (ABS_EXPR, expr_type, vr1.min);
2986 if (tree_int_cst_lt (max, vr1.max))
2987 max = vr1.max;
2988 max = int_const_binop (MINUS_EXPR, max, integer_one_node);
2989 /* If the dividend is non-negative the modulus will be
2990 non-negative as well. */
2991 if (TYPE_UNSIGNED (expr_type)
2992 || value_range_nonnegative_p (&vr0))
2993 min = build_int_cst (TREE_TYPE (max), 0);
2994 else
2995 min = fold_unary_to_constant (NEGATE_EXPR, expr_type, max);
2996 }
2997 else if (code == BIT_AND_EXPR || code == BIT_IOR_EXPR || code == BIT_XOR_EXPR)
2998 {
2999 bool int_cst_range0, int_cst_range1;
3000 double_int may_be_nonzero0, may_be_nonzero1;
3001 double_int must_be_nonzero0, must_be_nonzero1;
3002
3003 int_cst_range0 = zero_nonzero_bits_from_vr (&vr0, &may_be_nonzero0,
3004 &must_be_nonzero0);
3005 int_cst_range1 = zero_nonzero_bits_from_vr (&vr1, &may_be_nonzero1,
3006 &must_be_nonzero1);
3007
3008 type = VR_RANGE;
3009 if (code == BIT_AND_EXPR)
3010 {
3011 double_int dmax;
3012 min = double_int_to_tree (expr_type,
3013 must_be_nonzero0 & must_be_nonzero1);
3014 dmax = may_be_nonzero0 & may_be_nonzero1;
3015 /* If both input ranges contain only negative values we can
3016 truncate the result range maximum to the minimum of the
3017 input range maxima. */
3018 if (int_cst_range0 && int_cst_range1
3019 && tree_int_cst_sgn (vr0.max) < 0
3020 && tree_int_cst_sgn (vr1.max) < 0)
3021 {
3022 dmax = dmax.min (tree_to_double_int (vr0.max),
3023 TYPE_UNSIGNED (expr_type));
3024 dmax = dmax.min (tree_to_double_int (vr1.max),
3025 TYPE_UNSIGNED (expr_type));
3026 }
3027 /* If either input range contains only non-negative values
3028 we can truncate the result range maximum to the respective
3029 maximum of the input range. */
3030 if (int_cst_range0 && tree_int_cst_sgn (vr0.min) >= 0)
3031 dmax = dmax.min (tree_to_double_int (vr0.max),
3032 TYPE_UNSIGNED (expr_type));
3033 if (int_cst_range1 && tree_int_cst_sgn (vr1.min) >= 0)
3034 dmax = dmax.min (tree_to_double_int (vr1.max),
3035 TYPE_UNSIGNED (expr_type));
3036 max = double_int_to_tree (expr_type, dmax);
3037 }
3038 else if (code == BIT_IOR_EXPR)
3039 {
3040 double_int dmin;
3041 max = double_int_to_tree (expr_type,
3042 may_be_nonzero0 | may_be_nonzero1);
3043 dmin = must_be_nonzero0 | must_be_nonzero1;
3044 /* If the input ranges contain only positive values we can
3045 truncate the minimum of the result range to the maximum
3046 of the input range minima. */
3047 if (int_cst_range0 && int_cst_range1
3048 && tree_int_cst_sgn (vr0.min) >= 0
3049 && tree_int_cst_sgn (vr1.min) >= 0)
3050 {
3051 dmin = dmin.max (tree_to_double_int (vr0.min),
3052 TYPE_UNSIGNED (expr_type));
3053 dmin = dmin.max (tree_to_double_int (vr1.min),
3054 TYPE_UNSIGNED (expr_type));
3055 }
3056 /* If either input range contains only negative values
3057 we can truncate the minimum of the result range to the
3058 respective minimum range. */
3059 if (int_cst_range0 && tree_int_cst_sgn (vr0.max) < 0)
3060 dmin = dmin.max (tree_to_double_int (vr0.min),
3061 TYPE_UNSIGNED (expr_type));
3062 if (int_cst_range1 && tree_int_cst_sgn (vr1.max) < 0)
3063 dmin = dmin.max (tree_to_double_int (vr1.min),
3064 TYPE_UNSIGNED (expr_type));
3065 min = double_int_to_tree (expr_type, dmin);
3066 }
3067 else if (code == BIT_XOR_EXPR)
3068 {
3069 double_int result_zero_bits, result_one_bits;
3070 result_zero_bits = (must_be_nonzero0 & must_be_nonzero1)
3071 | ~(may_be_nonzero0 | may_be_nonzero1);
3072 result_one_bits = must_be_nonzero0.and_not (may_be_nonzero1)
3073 | must_be_nonzero1.and_not (may_be_nonzero0);
3074 max = double_int_to_tree (expr_type, ~result_zero_bits);
3075 min = double_int_to_tree (expr_type, result_one_bits);
3076 /* If the range has all positive or all negative values the
3077 result is better than VARYING. */
3078 if (tree_int_cst_sgn (min) < 0
3079 || tree_int_cst_sgn (max) >= 0)
3080 ;
3081 else
3082 max = min = NULL_TREE;
3083 }
3084 }
3085 else
3086 gcc_unreachable ();
3087
3088 /* If either MIN or MAX overflowed, then set the resulting range to
3089 VARYING. But we do accept an overflow infinity
3090 representation. */
3091 if (min == NULL_TREE
3092 || !is_gimple_min_invariant (min)
3093 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
3094 || max == NULL_TREE
3095 || !is_gimple_min_invariant (max)
3096 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
3097 {
3098 set_value_range_to_varying (vr);
3099 return;
3100 }
3101
3102 /* We punt if:
3103 1) [-INF, +INF]
3104 2) [-INF, +-INF(OVF)]
3105 3) [+-INF(OVF), +INF]
3106 4) [+-INF(OVF), +-INF(OVF)]
3107 We learn nothing when we have INF and INF(OVF) on both sides.
3108 Note that we do accept [-INF, -INF] and [+INF, +INF] without
3109 overflow. */
3110 if ((vrp_val_is_min (min) || is_overflow_infinity (min))
3111 && (vrp_val_is_max (max) || is_overflow_infinity (max)))
3112 {
3113 set_value_range_to_varying (vr);
3114 return;
3115 }
3116
3117 cmp = compare_values (min, max);
3118 if (cmp == -2 || cmp == 1)
3119 {
3120 /* If the new range has its limits swapped around (MIN > MAX),
3121 then the operation caused one of them to wrap around, mark
3122 the new range VARYING. */
3123 set_value_range_to_varying (vr);
3124 }
3125 else
3126 set_value_range (vr, type, min, max, NULL);
3127 }
3128
3129 /* Extract range information from a binary expression OP0 CODE OP1 based on
3130 the ranges of each of its operands with resulting type EXPR_TYPE.
3131 The resulting range is stored in *VR. */
3132
3133 static void
3134 extract_range_from_binary_expr (value_range_t *vr,
3135 enum tree_code code,
3136 tree expr_type, tree op0, tree op1)
3137 {
3138 value_range_t vr0 = VR_INITIALIZER;
3139 value_range_t vr1 = VR_INITIALIZER;
3140
3141 /* Get value ranges for each operand. For constant operands, create
3142 a new value range with the operand to simplify processing. */
3143 if (TREE_CODE (op0) == SSA_NAME)
3144 vr0 = *(get_value_range (op0));
3145 else if (is_gimple_min_invariant (op0))
3146 set_value_range_to_value (&vr0, op0, NULL);
3147 else
3148 set_value_range_to_varying (&vr0);
3149
3150 if (TREE_CODE (op1) == SSA_NAME)
3151 vr1 = *(get_value_range (op1));
3152 else if (is_gimple_min_invariant (op1))
3153 set_value_range_to_value (&vr1, op1, NULL);
3154 else
3155 set_value_range_to_varying (&vr1);
3156
3157 extract_range_from_binary_expr_1 (vr, code, expr_type, &vr0, &vr1);
3158 }
3159
3160 /* Extract range information from a unary operation CODE based on
3161 the range of its operand *VR0 with type OP0_TYPE with resulting type TYPE.
3162 The The resulting range is stored in *VR. */
3163
3164 static void
3165 extract_range_from_unary_expr_1 (value_range_t *vr,
3166 enum tree_code code, tree type,
3167 value_range_t *vr0_, tree op0_type)
3168 {
3169 value_range_t vr0 = *vr0_, vrtem0 = VR_INITIALIZER, vrtem1 = VR_INITIALIZER;
3170
3171 /* VRP only operates on integral and pointer types. */
3172 if (!(INTEGRAL_TYPE_P (op0_type)
3173 || POINTER_TYPE_P (op0_type))
3174 || !(INTEGRAL_TYPE_P (type)
3175 || POINTER_TYPE_P (type)))
3176 {
3177 set_value_range_to_varying (vr);
3178 return;
3179 }
3180
3181 /* If VR0 is UNDEFINED, so is the result. */
3182 if (vr0.type == VR_UNDEFINED)
3183 {
3184 set_value_range_to_undefined (vr);
3185 return;
3186 }
3187
3188 /* Handle operations that we express in terms of others. */
3189 if (code == PAREN_EXPR)
3190 {
3191 /* PAREN_EXPR is a simple copy. */
3192 copy_value_range (vr, &vr0);
3193 return;
3194 }
3195 else if (code == NEGATE_EXPR)
3196 {
3197 /* -X is simply 0 - X, so re-use existing code that also handles
3198 anti-ranges fine. */
3199 value_range_t zero = VR_INITIALIZER;
3200 set_value_range_to_value (&zero, build_int_cst (type, 0), NULL);
3201 extract_range_from_binary_expr_1 (vr, MINUS_EXPR, type, &zero, &vr0);
3202 return;
3203 }
3204 else if (code == BIT_NOT_EXPR)
3205 {
3206 /* ~X is simply -1 - X, so re-use existing code that also handles
3207 anti-ranges fine. */
3208 value_range_t minusone = VR_INITIALIZER;
3209 set_value_range_to_value (&minusone, build_int_cst (type, -1), NULL);
3210 extract_range_from_binary_expr_1 (vr, MINUS_EXPR,
3211 type, &minusone, &vr0);
3212 return;
3213 }
3214
3215 /* Now canonicalize anti-ranges to ranges when they are not symbolic
3216 and express op ~[] as (op []') U (op []''). */
3217 if (vr0.type == VR_ANTI_RANGE
3218 && ranges_from_anti_range (&vr0, &vrtem0, &vrtem1))
3219 {
3220 extract_range_from_unary_expr_1 (vr, code, type, &vrtem0, op0_type);
3221 if (vrtem1.type != VR_UNDEFINED)
3222 {
3223 value_range_t vrres = VR_INITIALIZER;
3224 extract_range_from_unary_expr_1 (&vrres, code, type,
3225 &vrtem1, op0_type);
3226 vrp_meet (vr, &vrres);
3227 }
3228 return;
3229 }
3230
3231 if (CONVERT_EXPR_CODE_P (code))
3232 {
3233 tree inner_type = op0_type;
3234 tree outer_type = type;
3235
3236 /* If the expression evaluates to a pointer, we are only interested in
3237 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
3238 if (POINTER_TYPE_P (type))
3239 {
3240 if (range_is_nonnull (&vr0))
3241 set_value_range_to_nonnull (vr, type);
3242 else if (range_is_null (&vr0))
3243 set_value_range_to_null (vr, type);
3244 else
3245 set_value_range_to_varying (vr);
3246 return;
3247 }
3248
3249 /* If VR0 is varying and we increase the type precision, assume
3250 a full range for the following transformation. */
3251 if (vr0.type == VR_VARYING
3252 && INTEGRAL_TYPE_P (inner_type)
3253 && TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type))
3254 {
3255 vr0.type = VR_RANGE;
3256 vr0.min = TYPE_MIN_VALUE (inner_type);
3257 vr0.max = TYPE_MAX_VALUE (inner_type);
3258 }
3259
3260 /* If VR0 is a constant range or anti-range and the conversion is
3261 not truncating we can convert the min and max values and
3262 canonicalize the resulting range. Otherwise we can do the
3263 conversion if the size of the range is less than what the
3264 precision of the target type can represent and the range is
3265 not an anti-range. */
3266 if ((vr0.type == VR_RANGE
3267 || vr0.type == VR_ANTI_RANGE)
3268 && TREE_CODE (vr0.min) == INTEGER_CST
3269 && TREE_CODE (vr0.max) == INTEGER_CST
3270 && (!is_overflow_infinity (vr0.min)
3271 || (vr0.type == VR_RANGE
3272 && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)
3273 && needs_overflow_infinity (outer_type)
3274 && supports_overflow_infinity (outer_type)))
3275 && (!is_overflow_infinity (vr0.max)
3276 || (vr0.type == VR_RANGE
3277 && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)
3278 && needs_overflow_infinity (outer_type)
3279 && supports_overflow_infinity (outer_type)))
3280 && (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type)
3281 || (vr0.type == VR_RANGE
3282 && integer_zerop (int_const_binop (RSHIFT_EXPR,
3283 int_const_binop (MINUS_EXPR, vr0.max, vr0.min),
3284 size_int (TYPE_PRECISION (outer_type)))))))
3285 {
3286 tree new_min, new_max;
3287 if (is_overflow_infinity (vr0.min))
3288 new_min = negative_overflow_infinity (outer_type);
3289 else
3290 new_min = force_fit_type_double (outer_type,
3291 tree_to_double_int (vr0.min),
3292 0, false);
3293 if (is_overflow_infinity (vr0.max))
3294 new_max = positive_overflow_infinity (outer_type);
3295 else
3296 new_max = force_fit_type_double (outer_type,
3297 tree_to_double_int (vr0.max),
3298 0, false);
3299 set_and_canonicalize_value_range (vr, vr0.type,
3300 new_min, new_max, NULL);
3301 return;
3302 }
3303
3304 set_value_range_to_varying (vr);
3305 return;
3306 }
3307 else if (code == ABS_EXPR)
3308 {
3309 tree min, max;
3310 int cmp;
3311
3312 /* Pass through vr0 in the easy cases. */
3313 if (TYPE_UNSIGNED (type)
3314 || value_range_nonnegative_p (&vr0))
3315 {
3316 copy_value_range (vr, &vr0);
3317 return;
3318 }
3319
3320 /* For the remaining varying or symbolic ranges we can't do anything
3321 useful. */
3322 if (vr0.type == VR_VARYING
3323 || symbolic_range_p (&vr0))
3324 {
3325 set_value_range_to_varying (vr);
3326 return;
3327 }
3328
3329 /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
3330 useful range. */
3331 if (!TYPE_OVERFLOW_UNDEFINED (type)
3332 && ((vr0.type == VR_RANGE
3333 && vrp_val_is_min (vr0.min))
3334 || (vr0.type == VR_ANTI_RANGE
3335 && !vrp_val_is_min (vr0.min))))
3336 {
3337 set_value_range_to_varying (vr);
3338 return;
3339 }
3340
3341 /* ABS_EXPR may flip the range around, if the original range
3342 included negative values. */
3343 if (is_overflow_infinity (vr0.min))
3344 min = positive_overflow_infinity (type);
3345 else if (!vrp_val_is_min (vr0.min))
3346 min = fold_unary_to_constant (code, type, vr0.min);
3347 else if (!needs_overflow_infinity (type))
3348 min = TYPE_MAX_VALUE (type);
3349 else if (supports_overflow_infinity (type))
3350 min = positive_overflow_infinity (type);
3351 else
3352 {
3353 set_value_range_to_varying (vr);
3354 return;
3355 }
3356
3357 if (is_overflow_infinity (vr0.max))
3358 max = positive_overflow_infinity (type);
3359 else if (!vrp_val_is_min (vr0.max))
3360 max = fold_unary_to_constant (code, type, vr0.max);
3361 else if (!needs_overflow_infinity (type))
3362 max = TYPE_MAX_VALUE (type);
3363 else if (supports_overflow_infinity (type)
3364 /* We shouldn't generate [+INF, +INF] as set_value_range
3365 doesn't like this and ICEs. */
3366 && !is_positive_overflow_infinity (min))
3367 max = positive_overflow_infinity (type);
3368 else
3369 {
3370 set_value_range_to_varying (vr);
3371 return;
3372 }
3373
3374 cmp = compare_values (min, max);
3375
3376 /* If a VR_ANTI_RANGEs contains zero, then we have
3377 ~[-INF, min(MIN, MAX)]. */
3378 if (vr0.type == VR_ANTI_RANGE)
3379 {
3380 if (range_includes_zero_p (vr0.min, vr0.max) == 1)
3381 {
3382 /* Take the lower of the two values. */
3383 if (cmp != 1)
3384 max = min;
3385
3386 /* Create ~[-INF, min (abs(MIN), abs(MAX))]
3387 or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
3388 flag_wrapv is set and the original anti-range doesn't include
3389 TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
3390 if (TYPE_OVERFLOW_WRAPS (type))
3391 {
3392 tree type_min_value = TYPE_MIN_VALUE (type);
3393
3394 min = (vr0.min != type_min_value
3395 ? int_const_binop (PLUS_EXPR, type_min_value,
3396 integer_one_node)
3397 : type_min_value);
3398 }
3399 else
3400 {
3401 if (overflow_infinity_range_p (&vr0))
3402 min = negative_overflow_infinity (type);
3403 else
3404 min = TYPE_MIN_VALUE (type);
3405 }
3406 }
3407 else
3408 {
3409 /* All else has failed, so create the range [0, INF], even for
3410 flag_wrapv since TYPE_MIN_VALUE is in the original
3411 anti-range. */
3412 vr0.type = VR_RANGE;
3413 min = build_int_cst (type, 0);
3414 if (needs_overflow_infinity (type))
3415 {
3416 if (supports_overflow_infinity (type))
3417 max = positive_overflow_infinity (type);
3418 else
3419 {
3420 set_value_range_to_varying (vr);
3421 return;
3422 }
3423 }
3424 else
3425 max = TYPE_MAX_VALUE (type);
3426 }
3427 }
3428
3429 /* If the range contains zero then we know that the minimum value in the
3430 range will be zero. */
3431 else if (range_includes_zero_p (vr0.min, vr0.max) == 1)
3432 {
3433 if (cmp == 1)
3434 max = min;
3435 min = build_int_cst (type, 0);
3436 }
3437 else
3438 {
3439 /* If the range was reversed, swap MIN and MAX. */
3440 if (cmp == 1)
3441 {
3442 tree t = min;
3443 min = max;
3444 max = t;
3445 }
3446 }
3447
3448 cmp = compare_values (min, max);
3449 if (cmp == -2 || cmp == 1)
3450 {
3451 /* If the new range has its limits swapped around (MIN > MAX),
3452 then the operation caused one of them to wrap around, mark
3453 the new range VARYING. */
3454 set_value_range_to_varying (vr);
3455 }
3456 else
3457 set_value_range (vr, vr0.type, min, max, NULL);
3458 return;
3459 }
3460
3461 /* For unhandled operations fall back to varying. */
3462 set_value_range_to_varying (vr);
3463 return;
3464 }
3465
3466
3467 /* Extract range information from a unary expression CODE OP0 based on
3468 the range of its operand with resulting type TYPE.
3469 The resulting range is stored in *VR. */
3470
3471 static void
3472 extract_range_from_unary_expr (value_range_t *vr, enum tree_code code,
3473 tree type, tree op0)
3474 {
3475 value_range_t vr0 = VR_INITIALIZER;
3476
3477 /* Get value ranges for the operand. For constant operands, create
3478 a new value range with the operand to simplify processing. */
3479 if (TREE_CODE (op0) == SSA_NAME)
3480 vr0 = *(get_value_range (op0));
3481 else if (is_gimple_min_invariant (op0))
3482 set_value_range_to_value (&vr0, op0, NULL);
3483 else
3484 set_value_range_to_varying (&vr0);
3485
3486 extract_range_from_unary_expr_1 (vr, code, type, &vr0, TREE_TYPE (op0));
3487 }
3488
3489
3490 /* Extract range information from a conditional expression STMT based on
3491 the ranges of each of its operands and the expression code. */
3492
3493 static void
3494 extract_range_from_cond_expr (value_range_t *vr, gimple stmt)
3495 {
3496 tree op0, op1;
3497 value_range_t vr0 = VR_INITIALIZER;
3498 value_range_t vr1 = VR_INITIALIZER;
3499
3500 /* Get value ranges for each operand. For constant operands, create
3501 a new value range with the operand to simplify processing. */
3502 op0 = gimple_assign_rhs2 (stmt);
3503 if (TREE_CODE (op0) == SSA_NAME)
3504 vr0 = *(get_value_range (op0));
3505 else if (is_gimple_min_invariant (op0))
3506 set_value_range_to_value (&vr0, op0, NULL);
3507 else
3508 set_value_range_to_varying (&vr0);
3509
3510 op1 = gimple_assign_rhs3 (stmt);
3511 if (TREE_CODE (op1) == SSA_NAME)
3512 vr1 = *(get_value_range (op1));
3513 else if (is_gimple_min_invariant (op1))
3514 set_value_range_to_value (&vr1, op1, NULL);
3515 else
3516 set_value_range_to_varying (&vr1);
3517
3518 /* The resulting value range is the union of the operand ranges */
3519 copy_value_range (vr, &vr0);
3520 vrp_meet (vr, &vr1);
3521 }
3522
3523
3524 /* Extract range information from a comparison expression EXPR based
3525 on the range of its operand and the expression code. */
3526
3527 static void
3528 extract_range_from_comparison (value_range_t *vr, enum tree_code code,
3529 tree type, tree op0, tree op1)
3530 {
3531 bool sop = false;
3532 tree val;
3533
3534 val = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, false, &sop,
3535 NULL);
3536
3537 /* A disadvantage of using a special infinity as an overflow
3538 representation is that we lose the ability to record overflow
3539 when we don't have an infinity. So we have to ignore a result
3540 which relies on overflow. */
3541
3542 if (val && !is_overflow_infinity (val) && !sop)
3543 {
3544 /* Since this expression was found on the RHS of an assignment,
3545 its type may be different from _Bool. Convert VAL to EXPR's
3546 type. */
3547 val = fold_convert (type, val);
3548 if (is_gimple_min_invariant (val))
3549 set_value_range_to_value (vr, val, vr->equiv);
3550 else
3551 set_value_range (vr, VR_RANGE, val, val, vr->equiv);
3552 }
3553 else
3554 /* The result of a comparison is always true or false. */
3555 set_value_range_to_truthvalue (vr, type);
3556 }
3557
3558 /* Try to derive a nonnegative or nonzero range out of STMT relying
3559 primarily on generic routines in fold in conjunction with range data.
3560 Store the result in *VR */
3561
3562 static void
3563 extract_range_basic (value_range_t *vr, gimple stmt)
3564 {
3565 bool sop = false;
3566 tree type = gimple_expr_type (stmt);
3567
3568 if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
3569 {
3570 tree fndecl = gimple_call_fndecl (stmt), arg;
3571 int mini, maxi, zerov = 0, prec;
3572
3573 switch (DECL_FUNCTION_CODE (fndecl))
3574 {
3575 case BUILT_IN_CONSTANT_P:
3576 /* If the call is __builtin_constant_p and the argument is a
3577 function parameter resolve it to false. This avoids bogus
3578 array bound warnings.
3579 ??? We could do this as early as inlining is finished. */
3580 arg = gimple_call_arg (stmt, 0);
3581 if (TREE_CODE (arg) == SSA_NAME
3582 && SSA_NAME_IS_DEFAULT_DEF (arg)
3583 && TREE_CODE (SSA_NAME_VAR (arg)) == PARM_DECL)
3584 {
3585 set_value_range_to_null (vr, type);
3586 return;
3587 }
3588 break;
3589 /* Both __builtin_ffs* and __builtin_popcount return
3590 [0, prec]. */
3591 CASE_INT_FN (BUILT_IN_FFS):
3592 CASE_INT_FN (BUILT_IN_POPCOUNT):
3593 arg = gimple_call_arg (stmt, 0);
3594 prec = TYPE_PRECISION (TREE_TYPE (arg));
3595 mini = 0;
3596 maxi = prec;
3597 if (TREE_CODE (arg) == SSA_NAME)
3598 {
3599 value_range_t *vr0 = get_value_range (arg);
3600 /* If arg is non-zero, then ffs or popcount
3601 are non-zero. */
3602 if (((vr0->type == VR_RANGE
3603 && integer_nonzerop (vr0->min))
3604 || (vr0->type == VR_ANTI_RANGE
3605 && integer_zerop (vr0->min)))
3606 && !TREE_OVERFLOW (vr0->min))
3607 mini = 1;
3608 /* If some high bits are known to be zero,
3609 we can decrease the maximum. */
3610 if (vr0->type == VR_RANGE
3611 && TREE_CODE (vr0->max) == INTEGER_CST
3612 && !TREE_OVERFLOW (vr0->max))
3613 maxi = tree_floor_log2 (vr0->max) + 1;
3614 }
3615 goto bitop_builtin;
3616 /* __builtin_parity* returns [0, 1]. */
3617 CASE_INT_FN (BUILT_IN_PARITY):
3618 mini = 0;
3619 maxi = 1;
3620 goto bitop_builtin;
3621 /* __builtin_c[lt]z* return [0, prec-1], except for
3622 when the argument is 0, but that is undefined behavior.
3623 On many targets where the CLZ RTL or optab value is defined
3624 for 0 the value is prec, so include that in the range
3625 by default. */
3626 CASE_INT_FN (BUILT_IN_CLZ):
3627 arg = gimple_call_arg (stmt, 0);
3628 prec = TYPE_PRECISION (TREE_TYPE (arg));
3629 mini = 0;
3630 maxi = prec;
3631 if (optab_handler (clz_optab, TYPE_MODE (TREE_TYPE (arg)))
3632 != CODE_FOR_nothing
3633 && CLZ_DEFINED_VALUE_AT_ZERO (TYPE_MODE (TREE_TYPE (arg)),
3634 zerov)
3635 /* Handle only the single common value. */
3636 && zerov != prec)
3637 /* Magic value to give up, unless vr0 proves
3638 arg is non-zero. */
3639 mini = -2;
3640 if (TREE_CODE (arg) == SSA_NAME)
3641 {
3642 value_range_t *vr0 = get_value_range (arg);
3643 /* From clz of VR_RANGE minimum we can compute
3644 result maximum. */
3645 if (vr0->type == VR_RANGE
3646 && TREE_CODE (vr0->min) == INTEGER_CST
3647 && !TREE_OVERFLOW (vr0->min))
3648 {
3649 maxi = prec - 1 - tree_floor_log2 (vr0->min);
3650 if (maxi != prec)
3651 mini = 0;
3652 }
3653 else if (vr0->type == VR_ANTI_RANGE
3654 && integer_zerop (vr0->min)
3655 && !TREE_OVERFLOW (vr0->min))
3656 {
3657 maxi = prec - 1;
3658 mini = 0;
3659 }
3660 if (mini == -2)
3661 break;
3662 /* From clz of VR_RANGE maximum we can compute
3663 result minimum. */
3664 if (vr0->type == VR_RANGE
3665 && TREE_CODE (vr0->max) == INTEGER_CST
3666 && !TREE_OVERFLOW (vr0->max))
3667 {
3668 mini = prec - 1 - tree_floor_log2 (vr0->max);
3669 if (mini == prec)
3670 break;
3671 }
3672 }
3673 if (mini == -2)
3674 break;
3675 goto bitop_builtin;
3676 /* __builtin_ctz* return [0, prec-1], except for
3677 when the argument is 0, but that is undefined behavior.
3678 If there is a ctz optab for this mode and
3679 CTZ_DEFINED_VALUE_AT_ZERO, include that in the range,
3680 otherwise just assume 0 won't be seen. */
3681 CASE_INT_FN (BUILT_IN_CTZ):
3682 arg = gimple_call_arg (stmt, 0);
3683 prec = TYPE_PRECISION (TREE_TYPE (arg));
3684 mini = 0;
3685 maxi = prec - 1;
3686 if (optab_handler (ctz_optab, TYPE_MODE (TREE_TYPE (arg)))
3687 != CODE_FOR_nothing
3688 && CTZ_DEFINED_VALUE_AT_ZERO (TYPE_MODE (TREE_TYPE (arg)),
3689 zerov))
3690 {
3691 /* Handle only the two common values. */
3692 if (zerov == -1)
3693 mini = -1;
3694 else if (zerov == prec)
3695 maxi = prec;
3696 else
3697 /* Magic value to give up, unless vr0 proves
3698 arg is non-zero. */
3699 mini = -2;
3700 }
3701 if (TREE_CODE (arg) == SSA_NAME)
3702 {
3703 value_range_t *vr0 = get_value_range (arg);
3704 /* If arg is non-zero, then use [0, prec - 1]. */
3705 if (((vr0->type == VR_RANGE
3706 && integer_nonzerop (vr0->min))
3707 || (vr0->type == VR_ANTI_RANGE
3708 && integer_zerop (vr0->min)))
3709 && !TREE_OVERFLOW (vr0->min))
3710 {
3711 mini = 0;
3712 maxi = prec - 1;
3713 }
3714 /* If some high bits are known to be zero,
3715 we can decrease the result maximum. */
3716 if (vr0->type == VR_RANGE
3717 && TREE_CODE (vr0->max) == INTEGER_CST
3718 && !TREE_OVERFLOW (vr0->max))
3719 {
3720 maxi = tree_floor_log2 (vr0->max);
3721 /* For vr0 [0, 0] give up. */
3722 if (maxi == -1)
3723 break;
3724 }
3725 }
3726 if (mini == -2)
3727 break;
3728 goto bitop_builtin;
3729 /* __builtin_clrsb* returns [0, prec-1]. */
3730 CASE_INT_FN (BUILT_IN_CLRSB):
3731 arg = gimple_call_arg (stmt, 0);
3732 prec = TYPE_PRECISION (TREE_TYPE (arg));
3733 mini = 0;
3734 maxi = prec - 1;
3735 goto bitop_builtin;
3736 bitop_builtin:
3737 set_value_range (vr, VR_RANGE, build_int_cst (type, mini),
3738 build_int_cst (type, maxi), NULL);
3739 return;
3740 default:
3741 break;
3742 }
3743 }
3744 if (INTEGRAL_TYPE_P (type)
3745 && gimple_stmt_nonnegative_warnv_p (stmt, &sop))
3746 set_value_range_to_nonnegative (vr, type,
3747 sop || stmt_overflow_infinity (stmt));
3748 else if (vrp_stmt_computes_nonzero (stmt, &sop)
3749 && !sop)
3750 set_value_range_to_nonnull (vr, type);
3751 else
3752 set_value_range_to_varying (vr);
3753 }
3754
3755
3756 /* Try to compute a useful range out of assignment STMT and store it
3757 in *VR. */
3758
3759 static void
3760 extract_range_from_assignment (value_range_t *vr, gimple stmt)
3761 {
3762 enum tree_code code = gimple_assign_rhs_code (stmt);
3763
3764 if (code == ASSERT_EXPR)
3765 extract_range_from_assert (vr, gimple_assign_rhs1 (stmt));
3766 else if (code == SSA_NAME)
3767 extract_range_from_ssa_name (vr, gimple_assign_rhs1 (stmt));
3768 else if (TREE_CODE_CLASS (code) == tcc_binary)
3769 extract_range_from_binary_expr (vr, gimple_assign_rhs_code (stmt),
3770 gimple_expr_type (stmt),
3771 gimple_assign_rhs1 (stmt),
3772 gimple_assign_rhs2 (stmt));
3773 else if (TREE_CODE_CLASS (code) == tcc_unary)
3774 extract_range_from_unary_expr (vr, gimple_assign_rhs_code (stmt),
3775 gimple_expr_type (stmt),
3776 gimple_assign_rhs1 (stmt));
3777 else if (code == COND_EXPR)
3778 extract_range_from_cond_expr (vr, stmt);
3779 else if (TREE_CODE_CLASS (code) == tcc_comparison)
3780 extract_range_from_comparison (vr, gimple_assign_rhs_code (stmt),
3781 gimple_expr_type (stmt),
3782 gimple_assign_rhs1 (stmt),
3783 gimple_assign_rhs2 (stmt));
3784 else if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS
3785 && is_gimple_min_invariant (gimple_assign_rhs1 (stmt)))
3786 set_value_range_to_value (vr, gimple_assign_rhs1 (stmt), NULL);
3787 else
3788 set_value_range_to_varying (vr);
3789
3790 if (vr->type == VR_VARYING)
3791 extract_range_basic (vr, stmt);
3792 }
3793
3794 /* Given a range VR, a LOOP and a variable VAR, determine whether it
3795 would be profitable to adjust VR using scalar evolution information
3796 for VAR. If so, update VR with the new limits. */
3797
3798 static void
3799 adjust_range_with_scev (value_range_t *vr, struct loop *loop,
3800 gimple stmt, tree var)
3801 {
3802 tree init, step, chrec, tmin, tmax, min, max, type, tem;
3803 enum ev_direction dir;
3804
3805 /* TODO. Don't adjust anti-ranges. An anti-range may provide
3806 better opportunities than a regular range, but I'm not sure. */
3807 if (vr->type == VR_ANTI_RANGE)
3808 return;
3809
3810 chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));
3811
3812 /* Like in PR19590, scev can return a constant function. */
3813 if (is_gimple_min_invariant (chrec))
3814 {
3815 set_value_range_to_value (vr, chrec, vr->equiv);
3816 return;
3817 }
3818
3819 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
3820 return;
3821
3822 init = initial_condition_in_loop_num (chrec, loop->num);
3823 tem = op_with_constant_singleton_value_range (init);
3824 if (tem)
3825 init = tem;
3826 step = evolution_part_in_loop_num (chrec, loop->num);
3827 tem = op_with_constant_singleton_value_range (step);
3828 if (tem)
3829 step = tem;
3830
3831 /* If STEP is symbolic, we can't know whether INIT will be the
3832 minimum or maximum value in the range. Also, unless INIT is
3833 a simple expression, compare_values and possibly other functions
3834 in tree-vrp won't be able to handle it. */
3835 if (step == NULL_TREE
3836 || !is_gimple_min_invariant (step)
3837 || !valid_value_p (init))
3838 return;
3839
3840 dir = scev_direction (chrec);
3841 if (/* Do not adjust ranges if we do not know whether the iv increases
3842 or decreases, ... */
3843 dir == EV_DIR_UNKNOWN
3844 /* ... or if it may wrap. */
3845 || scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
3846 true))
3847 return;
3848
3849 /* We use TYPE_MIN_VALUE and TYPE_MAX_VALUE here instead of
3850 negative_overflow_infinity and positive_overflow_infinity,
3851 because we have concluded that the loop probably does not
3852 wrap. */
3853
3854 type = TREE_TYPE (var);
3855 if (POINTER_TYPE_P (type) || !TYPE_MIN_VALUE (type))
3856 tmin = lower_bound_in_type (type, type);
3857 else
3858 tmin = TYPE_MIN_VALUE (type);
3859 if (POINTER_TYPE_P (type) || !TYPE_MAX_VALUE (type))
3860 tmax = upper_bound_in_type (type, type);
3861 else
3862 tmax = TYPE_MAX_VALUE (type);
3863
3864 /* Try to use estimated number of iterations for the loop to constrain the
3865 final value in the evolution. */
3866 if (TREE_CODE (step) == INTEGER_CST
3867 && is_gimple_val (init)
3868 && (TREE_CODE (init) != SSA_NAME
3869 || get_value_range (init)->type == VR_RANGE))
3870 {
3871 double_int nit;
3872
3873 /* We are only entering here for loop header PHI nodes, so using
3874 the number of latch executions is the correct thing to use. */
3875 if (max_loop_iterations (loop, &nit))
3876 {
3877 value_range_t maxvr = VR_INITIALIZER;
3878 double_int dtmp;
3879 bool unsigned_p = TYPE_UNSIGNED (TREE_TYPE (step));
3880 bool overflow = false;
3881
3882 dtmp = tree_to_double_int (step)
3883 .mul_with_sign (nit, unsigned_p, &overflow);
3884 /* If the multiplication overflowed we can't do a meaningful
3885 adjustment. Likewise if the result doesn't fit in the type
3886 of the induction variable. For a signed type we have to
3887 check whether the result has the expected signedness which
3888 is that of the step as number of iterations is unsigned. */
3889 if (!overflow
3890 && double_int_fits_to_tree_p (TREE_TYPE (init), dtmp)
3891 && (unsigned_p
3892 || ((dtmp.high ^ TREE_INT_CST_HIGH (step)) >= 0)))
3893 {
3894 tem = double_int_to_tree (TREE_TYPE (init), dtmp);
3895 extract_range_from_binary_expr (&maxvr, PLUS_EXPR,
3896 TREE_TYPE (init), init, tem);
3897 /* Likewise if the addition did. */
3898 if (maxvr.type == VR_RANGE)
3899 {
3900 tmin = maxvr.min;
3901 tmax = maxvr.max;
3902 }
3903 }
3904 }
3905 }
3906
3907 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
3908 {
3909 min = tmin;
3910 max = tmax;
3911
3912 /* For VARYING or UNDEFINED ranges, just about anything we get
3913 from scalar evolutions should be better. */
3914
3915 if (dir == EV_DIR_DECREASES)
3916 max = init;
3917 else
3918 min = init;
3919
3920 /* If we would create an invalid range, then just assume we
3921 know absolutely nothing. This may be over-conservative,
3922 but it's clearly safe, and should happen only in unreachable
3923 parts of code, or for invalid programs. */
3924 if (compare_values (min, max) == 1)
3925 return;
3926
3927 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
3928 }
3929 else if (vr->type == VR_RANGE)
3930 {
3931 min = vr->min;
3932 max = vr->max;
3933
3934 if (dir == EV_DIR_DECREASES)
3935 {
3936 /* INIT is the maximum value. If INIT is lower than VR->MAX
3937 but no smaller than VR->MIN, set VR->MAX to INIT. */
3938 if (compare_values (init, max) == -1)
3939 max = init;
3940
3941 /* According to the loop information, the variable does not
3942 overflow. If we think it does, probably because of an
3943 overflow due to arithmetic on a different INF value,
3944 reset now. */
3945 if (is_negative_overflow_infinity (min)
3946 || compare_values (min, tmin) == -1)
3947 min = tmin;
3948
3949 }
3950 else
3951 {
3952 /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
3953 if (compare_values (init, min) == 1)
3954 min = init;
3955
3956 if (is_positive_overflow_infinity (max)
3957 || compare_values (tmax, max) == -1)
3958 max = tmax;
3959 }
3960
3961 /* If we just created an invalid range with the minimum
3962 greater than the maximum, we fail conservatively.
3963 This should happen only in unreachable
3964 parts of code, or for invalid programs. */
3965 if (compare_values (min, max) == 1)
3966 return;
3967
3968 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
3969 }
3970 }
3971
3972 /* Return true if VAR may overflow at STMT. This checks any available
3973 loop information to see if we can determine that VAR does not
3974 overflow. */
3975
3976 static bool
3977 vrp_var_may_overflow (tree var, gimple stmt)
3978 {
3979 struct loop *l;
3980 tree chrec, init, step;
3981
3982 if (current_loops == NULL)
3983 return true;
3984
3985 l = loop_containing_stmt (stmt);
3986 if (l == NULL
3987 || !loop_outer (l))
3988 return true;
3989
3990 chrec = instantiate_parameters (l, analyze_scalar_evolution (l, var));
3991 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
3992 return true;
3993
3994 init = initial_condition_in_loop_num (chrec, l->num);
3995 step = evolution_part_in_loop_num (chrec, l->num);
3996
3997 if (step == NULL_TREE
3998 || !is_gimple_min_invariant (step)
3999 || !valid_value_p (init))
4000 return true;
4001
4002 /* If we get here, we know something useful about VAR based on the
4003 loop information. If it wraps, it may overflow. */
4004
4005 if (scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
4006 true))
4007 return true;
4008
4009 if (dump_file && (dump_flags & TDF_DETAILS) != 0)
4010 {
4011 print_generic_expr (dump_file, var, 0);
4012 fprintf (dump_file, ": loop information indicates does not overflow\n");
4013 }
4014
4015 return false;
4016 }
4017
4018
4019 /* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
4020
4021 - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
4022 all the values in the ranges.
4023
4024 - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
4025
4026 - Return NULL_TREE if it is not always possible to determine the
4027 value of the comparison.
4028
4029 Also set *STRICT_OVERFLOW_P to indicate whether a range with an
4030 overflow infinity was used in the test. */
4031
4032
4033 static tree
4034 compare_ranges (enum tree_code comp, value_range_t *vr0, value_range_t *vr1,
4035 bool *strict_overflow_p)
4036 {
4037 /* VARYING or UNDEFINED ranges cannot be compared. */
4038 if (vr0->type == VR_VARYING
4039 || vr0->type == VR_UNDEFINED
4040 || vr1->type == VR_VARYING
4041 || vr1->type == VR_UNDEFINED)
4042 return NULL_TREE;
4043
4044 /* Anti-ranges need to be handled separately. */
4045 if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
4046 {
4047 /* If both are anti-ranges, then we cannot compute any
4048 comparison. */
4049 if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
4050 return NULL_TREE;
4051
4052 /* These comparisons are never statically computable. */
4053 if (comp == GT_EXPR
4054 || comp == GE_EXPR
4055 || comp == LT_EXPR
4056 || comp == LE_EXPR)
4057 return NULL_TREE;
4058
4059 /* Equality can be computed only between a range and an
4060 anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
4061 if (vr0->type == VR_RANGE)
4062 {
4063 /* To simplify processing, make VR0 the anti-range. */
4064 value_range_t *tmp = vr0;
4065 vr0 = vr1;
4066 vr1 = tmp;
4067 }
4068
4069 gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);
4070
4071 if (compare_values_warnv (vr0->min, vr1->min, strict_overflow_p) == 0
4072 && compare_values_warnv (vr0->max, vr1->max, strict_overflow_p) == 0)
4073 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
4074
4075 return NULL_TREE;
4076 }
4077
4078 if (!usable_range_p (vr0, strict_overflow_p)
4079 || !usable_range_p (vr1, strict_overflow_p))
4080 return NULL_TREE;
4081
4082 /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
4083 operands around and change the comparison code. */
4084 if (comp == GT_EXPR || comp == GE_EXPR)
4085 {
4086 value_range_t *tmp;
4087 comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
4088 tmp = vr0;
4089 vr0 = vr1;
4090 vr1 = tmp;
4091 }
4092
4093 if (comp == EQ_EXPR)
4094 {
4095 /* Equality may only be computed if both ranges represent
4096 exactly one value. */
4097 if (compare_values_warnv (vr0->min, vr0->max, strict_overflow_p) == 0
4098 && compare_values_warnv (vr1->min, vr1->max, strict_overflow_p) == 0)
4099 {
4100 int cmp_min = compare_values_warnv (vr0->min, vr1->min,
4101 strict_overflow_p);
4102 int cmp_max = compare_values_warnv (vr0->max, vr1->max,
4103 strict_overflow_p);
4104 if (cmp_min == 0 && cmp_max == 0)
4105 return boolean_true_node;
4106 else if (cmp_min != -2 && cmp_max != -2)
4107 return boolean_false_node;
4108 }
4109 /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
4110 else if (compare_values_warnv (vr0->min, vr1->max,
4111 strict_overflow_p) == 1
4112 || compare_values_warnv (vr1->min, vr0->max,
4113 strict_overflow_p) == 1)
4114 return boolean_false_node;
4115
4116 return NULL_TREE;
4117 }
4118 else if (comp == NE_EXPR)
4119 {
4120 int cmp1, cmp2;
4121
4122 /* If VR0 is completely to the left or completely to the right
4123 of VR1, they are always different. Notice that we need to
4124 make sure that both comparisons yield similar results to
4125 avoid comparing values that cannot be compared at
4126 compile-time. */
4127 cmp1 = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
4128 cmp2 = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
4129 if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
4130 return boolean_true_node;
4131
4132 /* If VR0 and VR1 represent a single value and are identical,
4133 return false. */
4134 else if (compare_values_warnv (vr0->min, vr0->max,
4135 strict_overflow_p) == 0
4136 && compare_values_warnv (vr1->min, vr1->max,
4137 strict_overflow_p) == 0
4138 && compare_values_warnv (vr0->min, vr1->min,
4139 strict_overflow_p) == 0
4140 && compare_values_warnv (vr0->max, vr1->max,
4141 strict_overflow_p) == 0)
4142 return boolean_false_node;
4143
4144 /* Otherwise, they may or may not be different. */
4145 else
4146 return NULL_TREE;
4147 }
4148 else if (comp == LT_EXPR || comp == LE_EXPR)
4149 {
4150 int tst;
4151
4152 /* If VR0 is to the left of VR1, return true. */
4153 tst = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
4154 if ((comp == LT_EXPR && tst == -1)
4155 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
4156 {
4157 if (overflow_infinity_range_p (vr0)
4158 || overflow_infinity_range_p (vr1))
4159 *strict_overflow_p = true;
4160 return boolean_true_node;
4161 }
4162
4163 /* If VR0 is to the right of VR1, return false. */
4164 tst = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
4165 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
4166 || (comp == LE_EXPR && tst == 1))
4167 {
4168 if (overflow_infinity_range_p (vr0)
4169 || overflow_infinity_range_p (vr1))
4170 *strict_overflow_p = true;
4171 return boolean_false_node;
4172 }
4173
4174 /* Otherwise, we don't know. */
4175 return NULL_TREE;
4176 }
4177
4178 gcc_unreachable ();
4179 }
4180
4181
4182 /* Given a value range VR, a value VAL and a comparison code COMP, return
4183 BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
4184 values in VR. Return BOOLEAN_FALSE_NODE if the comparison
4185 always returns false. Return NULL_TREE if it is not always
4186 possible to determine the value of the comparison. Also set
4187 *STRICT_OVERFLOW_P to indicate whether a range with an overflow
4188 infinity was used in the test. */
4189
4190 static tree
4191 compare_range_with_value (enum tree_code comp, value_range_t *vr, tree val,
4192 bool *strict_overflow_p)
4193 {
4194 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
4195 return NULL_TREE;
4196
4197 /* Anti-ranges need to be handled separately. */
4198 if (vr->type == VR_ANTI_RANGE)
4199 {
4200 /* For anti-ranges, the only predicates that we can compute at
4201 compile time are equality and inequality. */
4202 if (comp == GT_EXPR
4203 || comp == GE_EXPR
4204 || comp == LT_EXPR
4205 || comp == LE_EXPR)
4206 return NULL_TREE;
4207
4208 /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
4209 if (value_inside_range (val, vr->min, vr->max) == 1)
4210 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
4211
4212 return NULL_TREE;
4213 }
4214
4215 if (!usable_range_p (vr, strict_overflow_p))
4216 return NULL_TREE;
4217
4218 if (comp == EQ_EXPR)
4219 {
4220 /* EQ_EXPR may only be computed if VR represents exactly
4221 one value. */
4222 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0)
4223 {
4224 int cmp = compare_values_warnv (vr->min, val, strict_overflow_p);
4225 if (cmp == 0)
4226 return boolean_true_node;
4227 else if (cmp == -1 || cmp == 1 || cmp == 2)
4228 return boolean_false_node;
4229 }
4230 else if (compare_values_warnv (val, vr->min, strict_overflow_p) == -1
4231 || compare_values_warnv (vr->max, val, strict_overflow_p) == -1)
4232 return boolean_false_node;
4233
4234 return NULL_TREE;
4235 }
4236 else if (comp == NE_EXPR)
4237 {
4238 /* If VAL is not inside VR, then they are always different. */
4239 if (compare_values_warnv (vr->max, val, strict_overflow_p) == -1
4240 || compare_values_warnv (vr->min, val, strict_overflow_p) == 1)
4241 return boolean_true_node;
4242
4243 /* If VR represents exactly one value equal to VAL, then return
4244 false. */
4245 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0
4246 && compare_values_warnv (vr->min, val, strict_overflow_p) == 0)
4247 return boolean_false_node;
4248
4249 /* Otherwise, they may or may not be different. */
4250 return NULL_TREE;
4251 }
4252 else if (comp == LT_EXPR || comp == LE_EXPR)
4253 {
4254 int tst;
4255
4256 /* If VR is to the left of VAL, return true. */
4257 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
4258 if ((comp == LT_EXPR && tst == -1)
4259 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
4260 {
4261 if (overflow_infinity_range_p (vr))
4262 *strict_overflow_p = true;
4263 return boolean_true_node;
4264 }
4265
4266 /* If VR is to the right of VAL, return false. */
4267 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
4268 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
4269 || (comp == LE_EXPR && tst == 1))
4270 {
4271 if (overflow_infinity_range_p (vr))
4272 *strict_overflow_p = true;
4273 return boolean_false_node;
4274 }
4275
4276 /* Otherwise, we don't know. */
4277 return NULL_TREE;
4278 }
4279 else if (comp == GT_EXPR || comp == GE_EXPR)
4280 {
4281 int tst;
4282
4283 /* If VR is to the right of VAL, return true. */
4284 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
4285 if ((comp == GT_EXPR && tst == 1)
4286 || (comp == GE_EXPR && (tst == 0 || tst == 1)))
4287 {
4288 if (overflow_infinity_range_p (vr))
4289 *strict_overflow_p = true;
4290 return boolean_true_node;
4291 }
4292
4293 /* If VR is to the left of VAL, return false. */
4294 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
4295 if ((comp == GT_EXPR && (tst == -1 || tst == 0))
4296 || (comp == GE_EXPR && tst == -1))
4297 {
4298 if (overflow_infinity_range_p (vr))
4299 *strict_overflow_p = true;
4300 return boolean_false_node;
4301 }
4302
4303 /* Otherwise, we don't know. */
4304 return NULL_TREE;
4305 }
4306
4307 gcc_unreachable ();
4308 }
4309
4310
4311 /* Debugging dumps. */
4312
4313 void dump_value_range (FILE *, value_range_t *);
4314 void debug_value_range (value_range_t *);
4315 void dump_all_value_ranges (FILE *);
4316 void debug_all_value_ranges (void);
4317 void dump_vr_equiv (FILE *, bitmap);
4318 void debug_vr_equiv (bitmap);
4319
4320
4321 /* Dump value range VR to FILE. */
4322
4323 void
4324 dump_value_range (FILE *file, value_range_t *vr)
4325 {
4326 if (vr == NULL)
4327 fprintf (file, "[]");
4328 else if (vr->type == VR_UNDEFINED)
4329 fprintf (file, "UNDEFINED");
4330 else if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
4331 {
4332 tree type = TREE_TYPE (vr->min);
4333
4334 fprintf (file, "%s[", (vr->type == VR_ANTI_RANGE) ? "~" : "");
4335
4336 if (is_negative_overflow_infinity (vr->min))
4337 fprintf (file, "-INF(OVF)");
4338 else if (INTEGRAL_TYPE_P (type)
4339 && !TYPE_UNSIGNED (type)
4340 && vrp_val_is_min (vr->min))
4341 fprintf (file, "-INF");
4342 else
4343 print_generic_expr (file, vr->min, 0);
4344
4345 fprintf (file, ", ");
4346
4347 if (is_positive_overflow_infinity (vr->max))
4348 fprintf (file, "+INF(OVF)");
4349 else if (INTEGRAL_TYPE_P (type)
4350 && vrp_val_is_max (vr->max))
4351 fprintf (file, "+INF");
4352 else
4353 print_generic_expr (file, vr->max, 0);
4354
4355 fprintf (file, "]");
4356
4357 if (vr->equiv)
4358 {
4359 bitmap_iterator bi;
4360 unsigned i, c = 0;
4361
4362 fprintf (file, " EQUIVALENCES: { ");
4363
4364 EXECUTE_IF_SET_IN_BITMAP (vr->equiv, 0, i, bi)
4365 {
4366 print_generic_expr (file, ssa_name (i), 0);
4367 fprintf (file, " ");
4368 c++;
4369 }
4370
4371 fprintf (file, "} (%u elements)", c);
4372 }
4373 }
4374 else if (vr->type == VR_VARYING)
4375 fprintf (file, "VARYING");
4376 else
4377 fprintf (file, "INVALID RANGE");
4378 }
4379
4380
4381 /* Dump value range VR to stderr. */
4382
4383 DEBUG_FUNCTION void
4384 debug_value_range (value_range_t *vr)
4385 {
4386 dump_value_range (stderr, vr);
4387 fprintf (stderr, "\n");
4388 }
4389
4390
4391 /* Dump value ranges of all SSA_NAMEs to FILE. */
4392
4393 void
4394 dump_all_value_ranges (FILE *file)
4395 {
4396 size_t i;
4397
4398 for (i = 0; i < num_vr_values; i++)
4399 {
4400 if (vr_value[i])
4401 {
4402 print_generic_expr (file, ssa_name (i), 0);
4403 fprintf (file, ": ");
4404 dump_value_range (file, vr_value[i]);
4405 fprintf (file, "\n");
4406 }
4407 }
4408
4409 fprintf (file, "\n");
4410 }
4411
4412
4413 /* Dump all value ranges to stderr. */
4414
4415 DEBUG_FUNCTION void
4416 debug_all_value_ranges (void)
4417 {
4418 dump_all_value_ranges (stderr);
4419 }
4420
4421
4422 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
4423 create a new SSA name N and return the assertion assignment
4424 'V = ASSERT_EXPR <V, V OP W>'. */
4425
4426 static gimple
4427 build_assert_expr_for (tree cond, tree v)
4428 {
4429 tree a;
4430 gimple assertion;
4431
4432 gcc_assert (TREE_CODE (v) == SSA_NAME
4433 && COMPARISON_CLASS_P (cond));
4434
4435 a = build2 (ASSERT_EXPR, TREE_TYPE (v), v, cond);
4436 assertion = gimple_build_assign (NULL_TREE, a);
4437
4438 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
4439 operand of the ASSERT_EXPR. Create it so the new name and the old one
4440 are registered in the replacement table so that we can fix the SSA web
4441 after adding all the ASSERT_EXPRs. */
4442 create_new_def_for (v, assertion, NULL);
4443
4444 return assertion;
4445 }
4446
4447
4448 /* Return false if EXPR is a predicate expression involving floating
4449 point values. */
4450
4451 static inline bool
4452 fp_predicate (gimple stmt)
4453 {
4454 GIMPLE_CHECK (stmt, GIMPLE_COND);
4455
4456 return FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (stmt)));
4457 }
4458
4459
4460 /* If the range of values taken by OP can be inferred after STMT executes,
4461 return the comparison code (COMP_CODE_P) and value (VAL_P) that
4462 describes the inferred range. Return true if a range could be
4463 inferred. */
4464
4465 static bool
4466 infer_value_range (gimple stmt, tree op, enum tree_code *comp_code_p, tree *val_p)
4467 {
4468 *val_p = NULL_TREE;
4469 *comp_code_p = ERROR_MARK;
4470
4471 /* Do not attempt to infer anything in names that flow through
4472 abnormal edges. */
4473 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
4474 return false;
4475
4476 /* Similarly, don't infer anything from statements that may throw
4477 exceptions. */
4478 if (stmt_could_throw_p (stmt))
4479 return false;
4480
4481 /* If STMT is the last statement of a basic block with no
4482 successors, there is no point inferring anything about any of its
4483 operands. We would not be able to find a proper insertion point
4484 for the assertion, anyway. */
4485 if (stmt_ends_bb_p (stmt) && EDGE_COUNT (gimple_bb (stmt)->succs) == 0)
4486 return false;
4487
4488 /* We can only assume that a pointer dereference will yield
4489 non-NULL if -fdelete-null-pointer-checks is enabled. */
4490 if (flag_delete_null_pointer_checks
4491 && POINTER_TYPE_P (TREE_TYPE (op))
4492 && gimple_code (stmt) != GIMPLE_ASM)
4493 {
4494 unsigned num_uses, num_loads, num_stores;
4495
4496 count_uses_and_derefs (op, stmt, &num_uses, &num_loads, &num_stores);
4497 if (num_loads + num_stores > 0)
4498 {
4499 *val_p = build_int_cst (TREE_TYPE (op), 0);
4500 *comp_code_p = NE_EXPR;
4501 return true;
4502 }
4503 }
4504
4505 return false;
4506 }
4507
4508
4509 void dump_asserts_for (FILE *, tree);
4510 void debug_asserts_for (tree);
4511 void dump_all_asserts (FILE *);
4512 void debug_all_asserts (void);
4513
4514 /* Dump all the registered assertions for NAME to FILE. */
4515
4516 void
4517 dump_asserts_for (FILE *file, tree name)
4518 {
4519 assert_locus_t loc;
4520
4521 fprintf (file, "Assertions to be inserted for ");
4522 print_generic_expr (file, name, 0);
4523 fprintf (file, "\n");
4524
4525 loc = asserts_for[SSA_NAME_VERSION (name)];
4526 while (loc)
4527 {
4528 fprintf (file, "\t");
4529 print_gimple_stmt (file, gsi_stmt (loc->si), 0, 0);
4530 fprintf (file, "\n\tBB #%d", loc->bb->index);
4531 if (loc->e)
4532 {
4533 fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
4534 loc->e->dest->index);
4535 dump_edge_info (file, loc->e, dump_flags, 0);
4536 }
4537 fprintf (file, "\n\tPREDICATE: ");
4538 print_generic_expr (file, name, 0);
4539 fprintf (file, " %s ", tree_code_name[(int)loc->comp_code]);
4540 print_generic_expr (file, loc->val, 0);
4541 fprintf (file, "\n\n");
4542 loc = loc->next;
4543 }
4544
4545 fprintf (file, "\n");
4546 }
4547
4548
4549 /* Dump all the registered assertions for NAME to stderr. */
4550
4551 DEBUG_FUNCTION void
4552 debug_asserts_for (tree name)
4553 {
4554 dump_asserts_for (stderr, name);
4555 }
4556
4557
4558 /* Dump all the registered assertions for all the names to FILE. */
4559
4560 void
4561 dump_all_asserts (FILE *file)
4562 {
4563 unsigned i;
4564 bitmap_iterator bi;
4565
4566 fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
4567 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
4568 dump_asserts_for (file, ssa_name (i));
4569 fprintf (file, "\n");
4570 }
4571
4572
4573 /* Dump all the registered assertions for all the names to stderr. */
4574
4575 DEBUG_FUNCTION void
4576 debug_all_asserts (void)
4577 {
4578 dump_all_asserts (stderr);
4579 }
4580
4581
4582 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
4583 'EXPR COMP_CODE VAL' at a location that dominates block BB or
4584 E->DEST, then register this location as a possible insertion point
4585 for ASSERT_EXPR <NAME, EXPR COMP_CODE VAL>.
4586
4587 BB, E and SI provide the exact insertion point for the new
4588 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
4589 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
4590 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
4591 must not be NULL. */
4592
4593 static void
4594 register_new_assert_for (tree name, tree expr,
4595 enum tree_code comp_code,
4596 tree val,
4597 basic_block bb,
4598 edge e,
4599 gimple_stmt_iterator si)
4600 {
4601 assert_locus_t n, loc, last_loc;
4602 basic_block dest_bb;
4603
4604 gcc_checking_assert (bb == NULL || e == NULL);
4605
4606 if (e == NULL)
4607 gcc_checking_assert (gimple_code (gsi_stmt (si)) != GIMPLE_COND
4608 && gimple_code (gsi_stmt (si)) != GIMPLE_SWITCH);
4609
4610 /* Never build an assert comparing against an integer constant with
4611 TREE_OVERFLOW set. This confuses our undefined overflow warning
4612 machinery. */
4613 if (TREE_CODE (val) == INTEGER_CST
4614 && TREE_OVERFLOW (val))
4615 val = build_int_cst_wide (TREE_TYPE (val),
4616 TREE_INT_CST_LOW (val), TREE_INT_CST_HIGH (val));
4617
4618 /* The new assertion A will be inserted at BB or E. We need to
4619 determine if the new location is dominated by a previously
4620 registered location for A. If we are doing an edge insertion,
4621 assume that A will be inserted at E->DEST. Note that this is not
4622 necessarily true.
4623
4624 If E is a critical edge, it will be split. But even if E is
4625 split, the new block will dominate the same set of blocks that
4626 E->DEST dominates.
4627
4628 The reverse, however, is not true, blocks dominated by E->DEST
4629 will not be dominated by the new block created to split E. So,
4630 if the insertion location is on a critical edge, we will not use
4631 the new location to move another assertion previously registered
4632 at a block dominated by E->DEST. */
4633 dest_bb = (bb) ? bb : e->dest;
4634
4635 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
4636 VAL at a block dominating DEST_BB, then we don't need to insert a new
4637 one. Similarly, if the same assertion already exists at a block
4638 dominated by DEST_BB and the new location is not on a critical
4639 edge, then update the existing location for the assertion (i.e.,
4640 move the assertion up in the dominance tree).
4641
4642 Note, this is implemented as a simple linked list because there
4643 should not be more than a handful of assertions registered per
4644 name. If this becomes a performance problem, a table hashed by
4645 COMP_CODE and VAL could be implemented. */
4646 loc = asserts_for[SSA_NAME_VERSION (name)];
4647 last_loc = loc;
4648 while (loc)
4649 {
4650 if (loc->comp_code == comp_code
4651 && (loc->val == val
4652 || operand_equal_p (loc->val, val, 0))
4653 && (loc->expr == expr
4654 || operand_equal_p (loc->expr, expr, 0)))
4655 {
4656 /* If E is not a critical edge and DEST_BB
4657 dominates the existing location for the assertion, move
4658 the assertion up in the dominance tree by updating its
4659 location information. */
4660 if ((e == NULL || !EDGE_CRITICAL_P (e))
4661 && dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
4662 {
4663 loc->bb = dest_bb;
4664 loc->e = e;
4665 loc->si = si;
4666 return;
4667 }
4668 }
4669
4670 /* Update the last node of the list and move to the next one. */
4671 last_loc = loc;
4672 loc = loc->next;
4673 }
4674
4675 /* If we didn't find an assertion already registered for
4676 NAME COMP_CODE VAL, add a new one at the end of the list of
4677 assertions associated with NAME. */
4678 n = XNEW (struct assert_locus_d);
4679 n->bb = dest_bb;
4680 n->e = e;
4681 n->si = si;
4682 n->comp_code = comp_code;
4683 n->val = val;
4684 n->expr = expr;
4685 n->next = NULL;
4686
4687 if (last_loc)
4688 last_loc->next = n;
4689 else
4690 asserts_for[SSA_NAME_VERSION (name)] = n;
4691
4692 bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
4693 }
4694
4695 /* (COND_OP0 COND_CODE COND_OP1) is a predicate which uses NAME.
4696 Extract a suitable test code and value and store them into *CODE_P and
4697 *VAL_P so the predicate is normalized to NAME *CODE_P *VAL_P.
4698
4699 If no extraction was possible, return FALSE, otherwise return TRUE.
4700
4701 If INVERT is true, then we invert the result stored into *CODE_P. */
4702
4703 static bool
4704 extract_code_and_val_from_cond_with_ops (tree name, enum tree_code cond_code,
4705 tree cond_op0, tree cond_op1,
4706 bool invert, enum tree_code *code_p,
4707 tree *val_p)
4708 {
4709 enum tree_code comp_code;
4710 tree val;
4711
4712 /* Otherwise, we have a comparison of the form NAME COMP VAL
4713 or VAL COMP NAME. */
4714 if (name == cond_op1)
4715 {
4716 /* If the predicate is of the form VAL COMP NAME, flip
4717 COMP around because we need to register NAME as the
4718 first operand in the predicate. */
4719 comp_code = swap_tree_comparison (cond_code);
4720 val = cond_op0;
4721 }
4722 else
4723 {
4724 /* The comparison is of the form NAME COMP VAL, so the
4725 comparison code remains unchanged. */
4726 comp_code = cond_code;
4727 val = cond_op1;
4728 }
4729
4730 /* Invert the comparison code as necessary. */
4731 if (invert)
4732 comp_code = invert_tree_comparison (comp_code, 0);
4733
4734 /* VRP does not handle float types. */
4735 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (val)))
4736 return false;
4737
4738 /* Do not register always-false predicates.
4739 FIXME: this works around a limitation in fold() when dealing with
4740 enumerations. Given 'enum { N1, N2 } x;', fold will not
4741 fold 'if (x > N2)' to 'if (0)'. */
4742 if ((comp_code == GT_EXPR || comp_code == LT_EXPR)
4743 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
4744 {
4745 tree min = TYPE_MIN_VALUE (TREE_TYPE (val));
4746 tree max = TYPE_MAX_VALUE (TREE_TYPE (val));
4747
4748 if (comp_code == GT_EXPR
4749 && (!max
4750 || compare_values (val, max) == 0))
4751 return false;
4752
4753 if (comp_code == LT_EXPR
4754 && (!min
4755 || compare_values (val, min) == 0))
4756 return false;
4757 }
4758 *code_p = comp_code;
4759 *val_p = val;
4760 return true;
4761 }
4762
4763 /* Find out smallest RES where RES > VAL && (RES & MASK) == RES, if any
4764 (otherwise return VAL). VAL and MASK must be zero-extended for
4765 precision PREC. If SGNBIT is non-zero, first xor VAL with SGNBIT
4766 (to transform signed values into unsigned) and at the end xor
4767 SGNBIT back. */
4768
4769 static double_int
4770 masked_increment (double_int val, double_int mask, double_int sgnbit,
4771 unsigned int prec)
4772 {
4773 double_int bit = double_int_one, res;
4774 unsigned int i;
4775
4776 val ^= sgnbit;
4777 for (i = 0; i < prec; i++, bit += bit)
4778 {
4779 res = mask;
4780 if ((res & bit).is_zero ())
4781 continue;
4782 res = bit - double_int_one;
4783 res = (val + bit).and_not (res);
4784 res &= mask;
4785 if (res.ugt (val))
4786 return res ^ sgnbit;
4787 }
4788 return val ^ sgnbit;
4789 }
4790
4791 /* Try to register an edge assertion for SSA name NAME on edge E for
4792 the condition COND contributing to the conditional jump pointed to by BSI.
4793 Invert the condition COND if INVERT is true.
4794 Return true if an assertion for NAME could be registered. */
4795
4796 static bool
4797 register_edge_assert_for_2 (tree name, edge e, gimple_stmt_iterator bsi,
4798 enum tree_code cond_code,
4799 tree cond_op0, tree cond_op1, bool invert)
4800 {
4801 tree val;
4802 enum tree_code comp_code;
4803 bool retval = false;
4804
4805 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
4806 cond_op0,
4807 cond_op1,
4808 invert, &comp_code, &val))
4809 return false;
4810
4811 /* Only register an ASSERT_EXPR if NAME was found in the sub-graph
4812 reachable from E. */
4813 if (live_on_edge (e, name)
4814 && !has_single_use (name))
4815 {
4816 register_new_assert_for (name, name, comp_code, val, NULL, e, bsi);
4817 retval = true;
4818 }
4819
4820 /* In the case of NAME <= CST and NAME being defined as
4821 NAME = (unsigned) NAME2 + CST2 we can assert NAME2 >= -CST2
4822 and NAME2 <= CST - CST2. We can do the same for NAME > CST.
4823 This catches range and anti-range tests. */
4824 if ((comp_code == LE_EXPR
4825 || comp_code == GT_EXPR)
4826 && TREE_CODE (val) == INTEGER_CST
4827 && TYPE_UNSIGNED (TREE_TYPE (val)))
4828 {
4829 gimple def_stmt = SSA_NAME_DEF_STMT (name);
4830 tree cst2 = NULL_TREE, name2 = NULL_TREE, name3 = NULL_TREE;
4831
4832 /* Extract CST2 from the (optional) addition. */
4833 if (is_gimple_assign (def_stmt)
4834 && gimple_assign_rhs_code (def_stmt) == PLUS_EXPR)
4835 {
4836 name2 = gimple_assign_rhs1 (def_stmt);
4837 cst2 = gimple_assign_rhs2 (def_stmt);
4838 if (TREE_CODE (name2) == SSA_NAME
4839 && TREE_CODE (cst2) == INTEGER_CST)
4840 def_stmt = SSA_NAME_DEF_STMT (name2);
4841 }
4842
4843 /* Extract NAME2 from the (optional) sign-changing cast. */
4844 if (gimple_assign_cast_p (def_stmt))
4845 {
4846 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt))
4847 && ! TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))
4848 && (TYPE_PRECISION (gimple_expr_type (def_stmt))
4849 == TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))))
4850 name3 = gimple_assign_rhs1 (def_stmt);
4851 }
4852
4853 /* If name3 is used later, create an ASSERT_EXPR for it. */
4854 if (name3 != NULL_TREE
4855 && TREE_CODE (name3) == SSA_NAME
4856 && (cst2 == NULL_TREE
4857 || TREE_CODE (cst2) == INTEGER_CST)
4858 && INTEGRAL_TYPE_P (TREE_TYPE (name3))
4859 && live_on_edge (e, name3)
4860 && !has_single_use (name3))
4861 {
4862 tree tmp;
4863
4864 /* Build an expression for the range test. */
4865 tmp = build1 (NOP_EXPR, TREE_TYPE (name), name3);
4866 if (cst2 != NULL_TREE)
4867 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
4868
4869 if (dump_file)
4870 {
4871 fprintf (dump_file, "Adding assert for ");
4872 print_generic_expr (dump_file, name3, 0);
4873 fprintf (dump_file, " from ");
4874 print_generic_expr (dump_file, tmp, 0);
4875 fprintf (dump_file, "\n");
4876 }
4877
4878 register_new_assert_for (name3, tmp, comp_code, val, NULL, e, bsi);
4879
4880 retval = true;
4881 }
4882
4883 /* If name2 is used later, create an ASSERT_EXPR for it. */
4884 if (name2 != NULL_TREE
4885 && TREE_CODE (name2) == SSA_NAME
4886 && TREE_CODE (cst2) == INTEGER_CST
4887 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
4888 && live_on_edge (e, name2)
4889 && !has_single_use (name2))
4890 {
4891 tree tmp;
4892
4893 /* Build an expression for the range test. */
4894 tmp = name2;
4895 if (TREE_TYPE (name) != TREE_TYPE (name2))
4896 tmp = build1 (NOP_EXPR, TREE_TYPE (name), tmp);
4897 if (cst2 != NULL_TREE)
4898 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
4899
4900 if (dump_file)
4901 {
4902 fprintf (dump_file, "Adding assert for ");
4903 print_generic_expr (dump_file, name2, 0);
4904 fprintf (dump_file, " from ");
4905 print_generic_expr (dump_file, tmp, 0);
4906 fprintf (dump_file, "\n");
4907 }
4908
4909 register_new_assert_for (name2, tmp, comp_code, val, NULL, e, bsi);
4910
4911 retval = true;
4912 }
4913 }
4914
4915 /* In the case of post-in/decrement tests like if (i++) ... and uses
4916 of the in/decremented value on the edge the extra name we want to
4917 assert for is not on the def chain of the name compared. Instead
4918 it is in the set of use stmts. */
4919 if ((comp_code == NE_EXPR
4920 || comp_code == EQ_EXPR)
4921 && TREE_CODE (val) == INTEGER_CST)
4922 {
4923 imm_use_iterator ui;
4924 gimple use_stmt;
4925 FOR_EACH_IMM_USE_STMT (use_stmt, ui, name)
4926 {
4927 /* Cut off to use-stmts that are in the predecessor. */
4928 if (gimple_bb (use_stmt) != e->src)
4929 continue;
4930
4931 if (!is_gimple_assign (use_stmt))
4932 continue;
4933
4934 enum tree_code code = gimple_assign_rhs_code (use_stmt);
4935 if (code != PLUS_EXPR
4936 && code != MINUS_EXPR)
4937 continue;
4938
4939 tree cst = gimple_assign_rhs2 (use_stmt);
4940 if (TREE_CODE (cst) != INTEGER_CST)
4941 continue;
4942
4943 tree name2 = gimple_assign_lhs (use_stmt);
4944 if (live_on_edge (e, name2))
4945 {
4946 cst = int_const_binop (code, val, cst);
4947 register_new_assert_for (name2, name2, comp_code, cst,
4948 NULL, e, bsi);
4949 retval = true;
4950 }
4951 }
4952 }
4953
4954 if (TREE_CODE_CLASS (comp_code) == tcc_comparison
4955 && TREE_CODE (val) == INTEGER_CST)
4956 {
4957 gimple def_stmt = SSA_NAME_DEF_STMT (name);
4958 tree name2 = NULL_TREE, names[2], cst2 = NULL_TREE;
4959 tree val2 = NULL_TREE;
4960 double_int mask = double_int_zero;
4961 unsigned int prec = TYPE_PRECISION (TREE_TYPE (val));
4962 unsigned int nprec = prec;
4963 enum tree_code rhs_code = ERROR_MARK;
4964
4965 if (is_gimple_assign (def_stmt))
4966 rhs_code = gimple_assign_rhs_code (def_stmt);
4967
4968 /* Add asserts for NAME cmp CST and NAME being defined
4969 as NAME = (int) NAME2. */
4970 if (!TYPE_UNSIGNED (TREE_TYPE (val))
4971 && (comp_code == LE_EXPR || comp_code == LT_EXPR
4972 || comp_code == GT_EXPR || comp_code == GE_EXPR)
4973 && gimple_assign_cast_p (def_stmt))
4974 {
4975 name2 = gimple_assign_rhs1 (def_stmt);
4976 if (CONVERT_EXPR_CODE_P (rhs_code)
4977 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
4978 && TYPE_UNSIGNED (TREE_TYPE (name2))
4979 && prec == TYPE_PRECISION (TREE_TYPE (name2))
4980 && (comp_code == LE_EXPR || comp_code == GT_EXPR
4981 || !tree_int_cst_equal (val,
4982 TYPE_MIN_VALUE (TREE_TYPE (val))))
4983 && live_on_edge (e, name2)
4984 && !has_single_use (name2))
4985 {
4986 tree tmp, cst;
4987 enum tree_code new_comp_code = comp_code;
4988
4989 cst = fold_convert (TREE_TYPE (name2),
4990 TYPE_MIN_VALUE (TREE_TYPE (val)));
4991 /* Build an expression for the range test. */
4992 tmp = build2 (PLUS_EXPR, TREE_TYPE (name2), name2, cst);
4993 cst = fold_build2 (PLUS_EXPR, TREE_TYPE (name2), cst,
4994 fold_convert (TREE_TYPE (name2), val));
4995 if (comp_code == LT_EXPR || comp_code == GE_EXPR)
4996 {
4997 new_comp_code = comp_code == LT_EXPR ? LE_EXPR : GT_EXPR;
4998 cst = fold_build2 (MINUS_EXPR, TREE_TYPE (name2), cst,
4999 build_int_cst (TREE_TYPE (name2), 1));
5000 }
5001
5002 if (dump_file)
5003 {
5004 fprintf (dump_file, "Adding assert for ");
5005 print_generic_expr (dump_file, name2, 0);
5006 fprintf (dump_file, " from ");
5007 print_generic_expr (dump_file, tmp, 0);
5008 fprintf (dump_file, "\n");
5009 }
5010
5011 register_new_assert_for (name2, tmp, new_comp_code, cst, NULL,
5012 e, bsi);
5013
5014 retval = true;
5015 }
5016 }
5017
5018 /* Add asserts for NAME cmp CST and NAME being defined as
5019 NAME = NAME2 >> CST2.
5020
5021 Extract CST2 from the right shift. */
5022 if (rhs_code == RSHIFT_EXPR)
5023 {
5024 name2 = gimple_assign_rhs1 (def_stmt);
5025 cst2 = gimple_assign_rhs2 (def_stmt);
5026 if (TREE_CODE (name2) == SSA_NAME
5027 && host_integerp (cst2, 1)
5028 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
5029 && IN_RANGE (tree_low_cst (cst2, 1), 1, prec - 1)
5030 && prec <= HOST_BITS_PER_DOUBLE_INT
5031 && prec == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (val)))
5032 && live_on_edge (e, name2)
5033 && !has_single_use (name2))
5034 {
5035 mask = double_int::mask (tree_low_cst (cst2, 1));
5036 val2 = fold_binary (LSHIFT_EXPR, TREE_TYPE (val), val, cst2);
5037 }
5038 }
5039 if (val2 != NULL_TREE
5040 && TREE_CODE (val2) == INTEGER_CST
5041 && simple_cst_equal (fold_build2 (RSHIFT_EXPR,
5042 TREE_TYPE (val),
5043 val2, cst2), val))
5044 {
5045 enum tree_code new_comp_code = comp_code;
5046 tree tmp, new_val;
5047
5048 tmp = name2;
5049 if (comp_code == EQ_EXPR || comp_code == NE_EXPR)
5050 {
5051 if (!TYPE_UNSIGNED (TREE_TYPE (val)))
5052 {
5053 tree type = build_nonstandard_integer_type (prec, 1);
5054 tmp = build1 (NOP_EXPR, type, name2);
5055 val2 = fold_convert (type, val2);
5056 }
5057 tmp = fold_build2 (MINUS_EXPR, TREE_TYPE (tmp), tmp, val2);
5058 new_val = double_int_to_tree (TREE_TYPE (tmp), mask);
5059 new_comp_code = comp_code == EQ_EXPR ? LE_EXPR : GT_EXPR;
5060 }
5061 else if (comp_code == LT_EXPR || comp_code == GE_EXPR)
5062 {
5063 double_int minval
5064 = double_int::min_value (prec, TYPE_UNSIGNED (TREE_TYPE (val)));
5065 new_val = val2;
5066 if (minval == tree_to_double_int (new_val))
5067 new_val = NULL_TREE;
5068 }
5069 else
5070 {
5071 double_int maxval
5072 = double_int::max_value (prec, TYPE_UNSIGNED (TREE_TYPE (val)));
5073 mask |= tree_to_double_int (val2);
5074 if (mask == maxval)
5075 new_val = NULL_TREE;
5076 else
5077 new_val = double_int_to_tree (TREE_TYPE (val2), mask);
5078 }
5079
5080 if (new_val)
5081 {
5082 if (dump_file)
5083 {
5084 fprintf (dump_file, "Adding assert for ");
5085 print_generic_expr (dump_file, name2, 0);
5086 fprintf (dump_file, " from ");
5087 print_generic_expr (dump_file, tmp, 0);
5088 fprintf (dump_file, "\n");
5089 }
5090
5091 register_new_assert_for (name2, tmp, new_comp_code, new_val,
5092 NULL, e, bsi);
5093 retval = true;
5094 }
5095 }
5096
5097 /* Add asserts for NAME cmp CST and NAME being defined as
5098 NAME = NAME2 & CST2.
5099
5100 Extract CST2 from the and.
5101
5102 Also handle
5103 NAME = (unsigned) NAME2;
5104 casts where NAME's type is unsigned and has smaller precision
5105 than NAME2's type as if it was NAME = NAME2 & MASK. */
5106 names[0] = NULL_TREE;
5107 names[1] = NULL_TREE;
5108 cst2 = NULL_TREE;
5109 if (rhs_code == BIT_AND_EXPR
5110 || (CONVERT_EXPR_CODE_P (rhs_code)
5111 && TREE_CODE (TREE_TYPE (val)) == INTEGER_TYPE
5112 && TYPE_UNSIGNED (TREE_TYPE (val))
5113 && TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))
5114 > prec
5115 && !retval))
5116 {
5117 name2 = gimple_assign_rhs1 (def_stmt);
5118 if (rhs_code == BIT_AND_EXPR)
5119 cst2 = gimple_assign_rhs2 (def_stmt);
5120 else
5121 {
5122 cst2 = TYPE_MAX_VALUE (TREE_TYPE (val));
5123 nprec = TYPE_PRECISION (TREE_TYPE (name2));
5124 }
5125 if (TREE_CODE (name2) == SSA_NAME
5126 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
5127 && TREE_CODE (cst2) == INTEGER_CST
5128 && !integer_zerop (cst2)
5129 && nprec <= HOST_BITS_PER_DOUBLE_INT
5130 && (nprec > 1
5131 || TYPE_UNSIGNED (TREE_TYPE (val))))
5132 {
5133 gimple def_stmt2 = SSA_NAME_DEF_STMT (name2);
5134 if (gimple_assign_cast_p (def_stmt2))
5135 {
5136 names[1] = gimple_assign_rhs1 (def_stmt2);
5137 if (!CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt2))
5138 || !INTEGRAL_TYPE_P (TREE_TYPE (names[1]))
5139 || (TYPE_PRECISION (TREE_TYPE (name2))
5140 != TYPE_PRECISION (TREE_TYPE (names[1])))
5141 || !live_on_edge (e, names[1])
5142 || has_single_use (names[1]))
5143 names[1] = NULL_TREE;
5144 }
5145 if (live_on_edge (e, name2)
5146 && !has_single_use (name2))
5147 names[0] = name2;
5148 }
5149 }
5150 if (names[0] || names[1])
5151 {
5152 double_int minv, maxv = double_int_zero, valv, cst2v;
5153 double_int tem, sgnbit;
5154 bool valid_p = false, valn = false, cst2n = false;
5155 enum tree_code ccode = comp_code;
5156
5157 valv = tree_to_double_int (val).zext (nprec);
5158 cst2v = tree_to_double_int (cst2).zext (nprec);
5159 if (!TYPE_UNSIGNED (TREE_TYPE (val)))
5160 {
5161 valn = valv.sext (nprec).is_negative ();
5162 cst2n = cst2v.sext (nprec).is_negative ();
5163 }
5164 /* If CST2 doesn't have most significant bit set,
5165 but VAL is negative, we have comparison like
5166 if ((x & 0x123) > -4) (always true). Just give up. */
5167 if (!cst2n && valn)
5168 ccode = ERROR_MARK;
5169 if (cst2n)
5170 sgnbit = double_int_one.llshift (nprec - 1, nprec).zext (nprec);
5171 else
5172 sgnbit = double_int_zero;
5173 minv = valv & cst2v;
5174 switch (ccode)
5175 {
5176 case EQ_EXPR:
5177 /* Minimum unsigned value for equality is VAL & CST2
5178 (should be equal to VAL, otherwise we probably should
5179 have folded the comparison into false) and
5180 maximum unsigned value is VAL | ~CST2. */
5181 maxv = valv | ~cst2v;
5182 maxv = maxv.zext (nprec);
5183 valid_p = true;
5184 break;
5185 case NE_EXPR:
5186 tem = valv | ~cst2v;
5187 tem = tem.zext (nprec);
5188 /* If VAL is 0, handle (X & CST2) != 0 as (X & CST2) > 0U. */
5189 if (valv.is_zero ())
5190 {
5191 cst2n = false;
5192 sgnbit = double_int_zero;
5193 goto gt_expr;
5194 }
5195 /* If (VAL | ~CST2) is all ones, handle it as
5196 (X & CST2) < VAL. */
5197 if (tem == double_int::mask (nprec))
5198 {
5199 cst2n = false;
5200 valn = false;
5201 sgnbit = double_int_zero;
5202 goto lt_expr;
5203 }
5204 if (!cst2n
5205 && cst2v.sext (nprec).is_negative ())
5206 sgnbit
5207 = double_int_one.llshift (nprec - 1, nprec).zext (nprec);
5208 if (!sgnbit.is_zero ())
5209 {
5210 if (valv == sgnbit)
5211 {
5212 cst2n = true;
5213 valn = true;
5214 goto gt_expr;
5215 }
5216 if (tem == double_int::mask (nprec - 1))
5217 {
5218 cst2n = true;
5219 goto lt_expr;
5220 }
5221 if (!cst2n)
5222 sgnbit = double_int_zero;
5223 }
5224 break;
5225 case GE_EXPR:
5226 /* Minimum unsigned value for >= if (VAL & CST2) == VAL
5227 is VAL and maximum unsigned value is ~0. For signed
5228 comparison, if CST2 doesn't have most significant bit
5229 set, handle it similarly. If CST2 has MSB set,
5230 the minimum is the same, and maximum is ~0U/2. */
5231 if (minv != valv)
5232 {
5233 /* If (VAL & CST2) != VAL, X & CST2 can't be equal to
5234 VAL. */
5235 minv = masked_increment (valv, cst2v, sgnbit, nprec);
5236 if (minv == valv)
5237 break;
5238 }
5239 maxv = double_int::mask (nprec - (cst2n ? 1 : 0));
5240 valid_p = true;
5241 break;
5242 case GT_EXPR:
5243 gt_expr:
5244 /* Find out smallest MINV where MINV > VAL
5245 && (MINV & CST2) == MINV, if any. If VAL is signed and
5246 CST2 has MSB set, compute it biased by 1 << (nprec - 1). */
5247 minv = masked_increment (valv, cst2v, sgnbit, nprec);
5248 if (minv == valv)
5249 break;
5250 maxv = double_int::mask (nprec - (cst2n ? 1 : 0));
5251 valid_p = true;
5252 break;
5253 case LE_EXPR:
5254 /* Minimum unsigned value for <= is 0 and maximum
5255 unsigned value is VAL | ~CST2 if (VAL & CST2) == VAL.
5256 Otherwise, find smallest VAL2 where VAL2 > VAL
5257 && (VAL2 & CST2) == VAL2 and use (VAL2 - 1) | ~CST2
5258 as maximum.
5259 For signed comparison, if CST2 doesn't have most
5260 significant bit set, handle it similarly. If CST2 has
5261 MSB set, the maximum is the same and minimum is INT_MIN. */
5262 if (minv == valv)
5263 maxv = valv;
5264 else
5265 {
5266 maxv = masked_increment (valv, cst2v, sgnbit, nprec);
5267 if (maxv == valv)
5268 break;
5269 maxv -= double_int_one;
5270 }
5271 maxv |= ~cst2v;
5272 maxv = maxv.zext (nprec);
5273 minv = sgnbit;
5274 valid_p = true;
5275 break;
5276 case LT_EXPR:
5277 lt_expr:
5278 /* Minimum unsigned value for < is 0 and maximum
5279 unsigned value is (VAL-1) | ~CST2 if (VAL & CST2) == VAL.
5280 Otherwise, find smallest VAL2 where VAL2 > VAL
5281 && (VAL2 & CST2) == VAL2 and use (VAL2 - 1) | ~CST2
5282 as maximum.
5283 For signed comparison, if CST2 doesn't have most
5284 significant bit set, handle it similarly. If CST2 has
5285 MSB set, the maximum is the same and minimum is INT_MIN. */
5286 if (minv == valv)
5287 {
5288 if (valv == sgnbit)
5289 break;
5290 maxv = valv;
5291 }
5292 else
5293 {
5294 maxv = masked_increment (valv, cst2v, sgnbit, nprec);
5295 if (maxv == valv)
5296 break;
5297 }
5298 maxv -= double_int_one;
5299 maxv |= ~cst2v;
5300 maxv = maxv.zext (nprec);
5301 minv = sgnbit;
5302 valid_p = true;
5303 break;
5304 default:
5305 break;
5306 }
5307 if (valid_p
5308 && (maxv - minv).zext (nprec) != double_int::mask (nprec))
5309 {
5310 tree tmp, new_val, type;
5311 int i;
5312
5313 for (i = 0; i < 2; i++)
5314 if (names[i])
5315 {
5316 double_int maxv2 = maxv;
5317 tmp = names[i];
5318 type = TREE_TYPE (names[i]);
5319 if (!TYPE_UNSIGNED (type))
5320 {
5321 type = build_nonstandard_integer_type (nprec, 1);
5322 tmp = build1 (NOP_EXPR, type, names[i]);
5323 }
5324 if (!minv.is_zero ())
5325 {
5326 tmp = build2 (PLUS_EXPR, type, tmp,
5327 double_int_to_tree (type, -minv));
5328 maxv2 = maxv - minv;
5329 }
5330 new_val = double_int_to_tree (type, maxv2);
5331
5332 if (dump_file)
5333 {
5334 fprintf (dump_file, "Adding assert for ");
5335 print_generic_expr (dump_file, names[i], 0);
5336 fprintf (dump_file, " from ");
5337 print_generic_expr (dump_file, tmp, 0);
5338 fprintf (dump_file, "\n");
5339 }
5340
5341 register_new_assert_for (names[i], tmp, LE_EXPR,
5342 new_val, NULL, e, bsi);
5343 retval = true;
5344 }
5345 }
5346 }
5347 }
5348
5349 return retval;
5350 }
5351
5352 /* OP is an operand of a truth value expression which is known to have
5353 a particular value. Register any asserts for OP and for any
5354 operands in OP's defining statement.
5355
5356 If CODE is EQ_EXPR, then we want to register OP is zero (false),
5357 if CODE is NE_EXPR, then we want to register OP is nonzero (true). */
5358
5359 static bool
5360 register_edge_assert_for_1 (tree op, enum tree_code code,
5361 edge e, gimple_stmt_iterator bsi)
5362 {
5363 bool retval = false;
5364 gimple op_def;
5365 tree val;
5366 enum tree_code rhs_code;
5367
5368 /* We only care about SSA_NAMEs. */
5369 if (TREE_CODE (op) != SSA_NAME)
5370 return false;
5371
5372 /* We know that OP will have a zero or nonzero value. If OP is used
5373 more than once go ahead and register an assert for OP.
5374
5375 The FOUND_IN_SUBGRAPH support is not helpful in this situation as
5376 it will always be set for OP (because OP is used in a COND_EXPR in
5377 the subgraph). */
5378 if (!has_single_use (op))
5379 {
5380 val = build_int_cst (TREE_TYPE (op), 0);
5381 register_new_assert_for (op, op, code, val, NULL, e, bsi);
5382 retval = true;
5383 }
5384
5385 /* Now look at how OP is set. If it's set from a comparison,
5386 a truth operation or some bit operations, then we may be able
5387 to register information about the operands of that assignment. */
5388 op_def = SSA_NAME_DEF_STMT (op);
5389 if (gimple_code (op_def) != GIMPLE_ASSIGN)
5390 return retval;
5391
5392 rhs_code = gimple_assign_rhs_code (op_def);
5393
5394 if (TREE_CODE_CLASS (rhs_code) == tcc_comparison)
5395 {
5396 bool invert = (code == EQ_EXPR ? true : false);
5397 tree op0 = gimple_assign_rhs1 (op_def);
5398 tree op1 = gimple_assign_rhs2 (op_def);
5399
5400 if (TREE_CODE (op0) == SSA_NAME)
5401 retval |= register_edge_assert_for_2 (op0, e, bsi, rhs_code, op0, op1,
5402 invert);
5403 if (TREE_CODE (op1) == SSA_NAME)
5404 retval |= register_edge_assert_for_2 (op1, e, bsi, rhs_code, op0, op1,
5405 invert);
5406 }
5407 else if ((code == NE_EXPR
5408 && gimple_assign_rhs_code (op_def) == BIT_AND_EXPR)
5409 || (code == EQ_EXPR
5410 && gimple_assign_rhs_code (op_def) == BIT_IOR_EXPR))
5411 {
5412 /* Recurse on each operand. */
5413 tree op0 = gimple_assign_rhs1 (op_def);
5414 tree op1 = gimple_assign_rhs2 (op_def);
5415 if (TREE_CODE (op0) == SSA_NAME
5416 && has_single_use (op0))
5417 retval |= register_edge_assert_for_1 (op0, code, e, bsi);
5418 if (TREE_CODE (op1) == SSA_NAME
5419 && has_single_use (op1))
5420 retval |= register_edge_assert_for_1 (op1, code, e, bsi);
5421 }
5422 else if (gimple_assign_rhs_code (op_def) == BIT_NOT_EXPR
5423 && TYPE_PRECISION (TREE_TYPE (gimple_assign_lhs (op_def))) == 1)
5424 {
5425 /* Recurse, flipping CODE. */
5426 code = invert_tree_comparison (code, false);
5427 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
5428 code, e, bsi);
5429 }
5430 else if (gimple_assign_rhs_code (op_def) == SSA_NAME)
5431 {
5432 /* Recurse through the copy. */
5433 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
5434 code, e, bsi);
5435 }
5436 else if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (op_def)))
5437 {
5438 /* Recurse through the type conversion. */
5439 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
5440 code, e, bsi);
5441 }
5442
5443 return retval;
5444 }
5445
5446 /* Try to register an edge assertion for SSA name NAME on edge E for
5447 the condition COND contributing to the conditional jump pointed to by SI.
5448 Return true if an assertion for NAME could be registered. */
5449
5450 static bool
5451 register_edge_assert_for (tree name, edge e, gimple_stmt_iterator si,
5452 enum tree_code cond_code, tree cond_op0,
5453 tree cond_op1)
5454 {
5455 tree val;
5456 enum tree_code comp_code;
5457 bool retval = false;
5458 bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
5459
5460 /* Do not attempt to infer anything in names that flow through
5461 abnormal edges. */
5462 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
5463 return false;
5464
5465 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
5466 cond_op0, cond_op1,
5467 is_else_edge,
5468 &comp_code, &val))
5469 return false;
5470
5471 /* Register ASSERT_EXPRs for name. */
5472 retval |= register_edge_assert_for_2 (name, e, si, cond_code, cond_op0,
5473 cond_op1, is_else_edge);
5474
5475
5476 /* If COND is effectively an equality test of an SSA_NAME against
5477 the value zero or one, then we may be able to assert values
5478 for SSA_NAMEs which flow into COND. */
5479
5480 /* In the case of NAME == 1 or NAME != 0, for BIT_AND_EXPR defining
5481 statement of NAME we can assert both operands of the BIT_AND_EXPR
5482 have nonzero value. */
5483 if (((comp_code == EQ_EXPR && integer_onep (val))
5484 || (comp_code == NE_EXPR && integer_zerop (val))))
5485 {
5486 gimple def_stmt = SSA_NAME_DEF_STMT (name);
5487
5488 if (is_gimple_assign (def_stmt)
5489 && gimple_assign_rhs_code (def_stmt) == BIT_AND_EXPR)
5490 {
5491 tree op0 = gimple_assign_rhs1 (def_stmt);
5492 tree op1 = gimple_assign_rhs2 (def_stmt);
5493 retval |= register_edge_assert_for_1 (op0, NE_EXPR, e, si);
5494 retval |= register_edge_assert_for_1 (op1, NE_EXPR, e, si);
5495 }
5496 }
5497
5498 /* In the case of NAME == 0 or NAME != 1, for BIT_IOR_EXPR defining
5499 statement of NAME we can assert both operands of the BIT_IOR_EXPR
5500 have zero value. */
5501 if (((comp_code == EQ_EXPR && integer_zerop (val))
5502 || (comp_code == NE_EXPR && integer_onep (val))))
5503 {
5504 gimple def_stmt = SSA_NAME_DEF_STMT (name);
5505
5506 /* For BIT_IOR_EXPR only if NAME == 0 both operands have
5507 necessarily zero value, or if type-precision is one. */
5508 if (is_gimple_assign (def_stmt)
5509 && (gimple_assign_rhs_code (def_stmt) == BIT_IOR_EXPR
5510 && (TYPE_PRECISION (TREE_TYPE (name)) == 1
5511 || comp_code == EQ_EXPR)))
5512 {
5513 tree op0 = gimple_assign_rhs1 (def_stmt);
5514 tree op1 = gimple_assign_rhs2 (def_stmt);
5515 retval |= register_edge_assert_for_1 (op0, EQ_EXPR, e, si);
5516 retval |= register_edge_assert_for_1 (op1, EQ_EXPR, e, si);
5517 }
5518 }
5519
5520 return retval;
5521 }
5522
5523
5524 /* Determine whether the outgoing edges of BB should receive an
5525 ASSERT_EXPR for each of the operands of BB's LAST statement.
5526 The last statement of BB must be a COND_EXPR.
5527
5528 If any of the sub-graphs rooted at BB have an interesting use of
5529 the predicate operands, an assert location node is added to the
5530 list of assertions for the corresponding operands. */
5531
5532 static bool
5533 find_conditional_asserts (basic_block bb, gimple last)
5534 {
5535 bool need_assert;
5536 gimple_stmt_iterator bsi;
5537 tree op;
5538 edge_iterator ei;
5539 edge e;
5540 ssa_op_iter iter;
5541
5542 need_assert = false;
5543 bsi = gsi_for_stmt (last);
5544
5545 /* Look for uses of the operands in each of the sub-graphs
5546 rooted at BB. We need to check each of the outgoing edges
5547 separately, so that we know what kind of ASSERT_EXPR to
5548 insert. */
5549 FOR_EACH_EDGE (e, ei, bb->succs)
5550 {
5551 if (e->dest == bb)
5552 continue;
5553
5554 /* Register the necessary assertions for each operand in the
5555 conditional predicate. */
5556 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
5557 {
5558 need_assert |= register_edge_assert_for (op, e, bsi,
5559 gimple_cond_code (last),
5560 gimple_cond_lhs (last),
5561 gimple_cond_rhs (last));
5562 }
5563 }
5564
5565 return need_assert;
5566 }
5567
5568 struct case_info
5569 {
5570 tree expr;
5571 basic_block bb;
5572 };
5573
5574 /* Compare two case labels sorting first by the destination bb index
5575 and then by the case value. */
5576
5577 static int
5578 compare_case_labels (const void *p1, const void *p2)
5579 {
5580 const struct case_info *ci1 = (const struct case_info *) p1;
5581 const struct case_info *ci2 = (const struct case_info *) p2;
5582 int idx1 = ci1->bb->index;
5583 int idx2 = ci2->bb->index;
5584
5585 if (idx1 < idx2)
5586 return -1;
5587 else if (idx1 == idx2)
5588 {
5589 /* Make sure the default label is first in a group. */
5590 if (!CASE_LOW (ci1->expr))
5591 return -1;
5592 else if (!CASE_LOW (ci2->expr))
5593 return 1;
5594 else
5595 return tree_int_cst_compare (CASE_LOW (ci1->expr),
5596 CASE_LOW (ci2->expr));
5597 }
5598 else
5599 return 1;
5600 }
5601
5602 /* Determine whether the outgoing edges of BB should receive an
5603 ASSERT_EXPR for each of the operands of BB's LAST statement.
5604 The last statement of BB must be a SWITCH_EXPR.
5605
5606 If any of the sub-graphs rooted at BB have an interesting use of
5607 the predicate operands, an assert location node is added to the
5608 list of assertions for the corresponding operands. */
5609
5610 static bool
5611 find_switch_asserts (basic_block bb, gimple last)
5612 {
5613 bool need_assert;
5614 gimple_stmt_iterator bsi;
5615 tree op;
5616 edge e;
5617 struct case_info *ci;
5618 size_t n = gimple_switch_num_labels (last);
5619 #if GCC_VERSION >= 4000
5620 unsigned int idx;
5621 #else
5622 /* Work around GCC 3.4 bug (PR 37086). */
5623 volatile unsigned int idx;
5624 #endif
5625
5626 need_assert = false;
5627 bsi = gsi_for_stmt (last);
5628 op = gimple_switch_index (last);
5629 if (TREE_CODE (op) != SSA_NAME)
5630 return false;
5631
5632 /* Build a vector of case labels sorted by destination label. */
5633 ci = XNEWVEC (struct case_info, n);
5634 for (idx = 0; idx < n; ++idx)
5635 {
5636 ci[idx].expr = gimple_switch_label (last, idx);
5637 ci[idx].bb = label_to_block (CASE_LABEL (ci[idx].expr));
5638 }
5639 qsort (ci, n, sizeof (struct case_info), compare_case_labels);
5640
5641 for (idx = 0; idx < n; ++idx)
5642 {
5643 tree min, max;
5644 tree cl = ci[idx].expr;
5645 basic_block cbb = ci[idx].bb;
5646
5647 min = CASE_LOW (cl);
5648 max = CASE_HIGH (cl);
5649
5650 /* If there are multiple case labels with the same destination
5651 we need to combine them to a single value range for the edge. */
5652 if (idx + 1 < n && cbb == ci[idx + 1].bb)
5653 {
5654 /* Skip labels until the last of the group. */
5655 do {
5656 ++idx;
5657 } while (idx < n && cbb == ci[idx].bb);
5658 --idx;
5659
5660 /* Pick up the maximum of the case label range. */
5661 if (CASE_HIGH (ci[idx].expr))
5662 max = CASE_HIGH (ci[idx].expr);
5663 else
5664 max = CASE_LOW (ci[idx].expr);
5665 }
5666
5667 /* Nothing to do if the range includes the default label until we
5668 can register anti-ranges. */
5669 if (min == NULL_TREE)
5670 continue;
5671
5672 /* Find the edge to register the assert expr on. */
5673 e = find_edge (bb, cbb);
5674
5675 /* Register the necessary assertions for the operand in the
5676 SWITCH_EXPR. */
5677 need_assert |= register_edge_assert_for (op, e, bsi,
5678 max ? GE_EXPR : EQ_EXPR,
5679 op,
5680 fold_convert (TREE_TYPE (op),
5681 min));
5682 if (max)
5683 {
5684 need_assert |= register_edge_assert_for (op, e, bsi, LE_EXPR,
5685 op,
5686 fold_convert (TREE_TYPE (op),
5687 max));
5688 }
5689 }
5690
5691 XDELETEVEC (ci);
5692 return need_assert;
5693 }
5694
5695
5696 /* Traverse all the statements in block BB looking for statements that
5697 may generate useful assertions for the SSA names in their operand.
5698 If a statement produces a useful assertion A for name N_i, then the
5699 list of assertions already generated for N_i is scanned to
5700 determine if A is actually needed.
5701
5702 If N_i already had the assertion A at a location dominating the
5703 current location, then nothing needs to be done. Otherwise, the
5704 new location for A is recorded instead.
5705
5706 1- For every statement S in BB, all the variables used by S are
5707 added to bitmap FOUND_IN_SUBGRAPH.
5708
5709 2- If statement S uses an operand N in a way that exposes a known
5710 value range for N, then if N was not already generated by an
5711 ASSERT_EXPR, create a new assert location for N. For instance,
5712 if N is a pointer and the statement dereferences it, we can
5713 assume that N is not NULL.
5714
5715 3- COND_EXPRs are a special case of #2. We can derive range
5716 information from the predicate but need to insert different
5717 ASSERT_EXPRs for each of the sub-graphs rooted at the
5718 conditional block. If the last statement of BB is a conditional
5719 expression of the form 'X op Y', then
5720
5721 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
5722
5723 b) If the conditional is the only entry point to the sub-graph
5724 corresponding to the THEN_CLAUSE, recurse into it. On
5725 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
5726 an ASSERT_EXPR is added for the corresponding variable.
5727
5728 c) Repeat step (b) on the ELSE_CLAUSE.
5729
5730 d) Mark X and Y in FOUND_IN_SUBGRAPH.
5731
5732 For instance,
5733
5734 if (a == 9)
5735 b = a;
5736 else
5737 b = c + 1;
5738
5739 In this case, an assertion on the THEN clause is useful to
5740 determine that 'a' is always 9 on that edge. However, an assertion
5741 on the ELSE clause would be unnecessary.
5742
5743 4- If BB does not end in a conditional expression, then we recurse
5744 into BB's dominator children.
5745
5746 At the end of the recursive traversal, every SSA name will have a
5747 list of locations where ASSERT_EXPRs should be added. When a new
5748 location for name N is found, it is registered by calling
5749 register_new_assert_for. That function keeps track of all the
5750 registered assertions to prevent adding unnecessary assertions.
5751 For instance, if a pointer P_4 is dereferenced more than once in a
5752 dominator tree, only the location dominating all the dereference of
5753 P_4 will receive an ASSERT_EXPR.
5754
5755 If this function returns true, then it means that there are names
5756 for which we need to generate ASSERT_EXPRs. Those assertions are
5757 inserted by process_assert_insertions. */
5758
5759 static bool
5760 find_assert_locations_1 (basic_block bb, sbitmap live)
5761 {
5762 gimple_stmt_iterator si;
5763 gimple last;
5764 bool need_assert;
5765
5766 need_assert = false;
5767 last = last_stmt (bb);
5768
5769 /* If BB's last statement is a conditional statement involving integer
5770 operands, determine if we need to add ASSERT_EXPRs. */
5771 if (last
5772 && gimple_code (last) == GIMPLE_COND
5773 && !fp_predicate (last)
5774 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
5775 need_assert |= find_conditional_asserts (bb, last);
5776
5777 /* If BB's last statement is a switch statement involving integer
5778 operands, determine if we need to add ASSERT_EXPRs. */
5779 if (last
5780 && gimple_code (last) == GIMPLE_SWITCH
5781 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
5782 need_assert |= find_switch_asserts (bb, last);
5783
5784 /* Traverse all the statements in BB marking used names and looking
5785 for statements that may infer assertions for their used operands. */
5786 for (si = gsi_last_bb (bb); !gsi_end_p (si); gsi_prev (&si))
5787 {
5788 gimple stmt;
5789 tree op;
5790 ssa_op_iter i;
5791
5792 stmt = gsi_stmt (si);
5793
5794 if (is_gimple_debug (stmt))
5795 continue;
5796
5797 /* See if we can derive an assertion for any of STMT's operands. */
5798 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
5799 {
5800 tree value;
5801 enum tree_code comp_code;
5802
5803 /* If op is not live beyond this stmt, do not bother to insert
5804 asserts for it. */
5805 if (!bitmap_bit_p (live, SSA_NAME_VERSION (op)))
5806 continue;
5807
5808 /* If OP is used in such a way that we can infer a value
5809 range for it, and we don't find a previous assertion for
5810 it, create a new assertion location node for OP. */
5811 if (infer_value_range (stmt, op, &comp_code, &value))
5812 {
5813 /* If we are able to infer a nonzero value range for OP,
5814 then walk backwards through the use-def chain to see if OP
5815 was set via a typecast.
5816
5817 If so, then we can also infer a nonzero value range
5818 for the operand of the NOP_EXPR. */
5819 if (comp_code == NE_EXPR && integer_zerop (value))
5820 {
5821 tree t = op;
5822 gimple def_stmt = SSA_NAME_DEF_STMT (t);
5823
5824 while (is_gimple_assign (def_stmt)
5825 && gimple_assign_rhs_code (def_stmt) == NOP_EXPR
5826 && TREE_CODE
5827 (gimple_assign_rhs1 (def_stmt)) == SSA_NAME
5828 && POINTER_TYPE_P
5829 (TREE_TYPE (gimple_assign_rhs1 (def_stmt))))
5830 {
5831 t = gimple_assign_rhs1 (def_stmt);
5832 def_stmt = SSA_NAME_DEF_STMT (t);
5833
5834 /* Note we want to register the assert for the
5835 operand of the NOP_EXPR after SI, not after the
5836 conversion. */
5837 if (! has_single_use (t))
5838 {
5839 register_new_assert_for (t, t, comp_code, value,
5840 bb, NULL, si);
5841 need_assert = true;
5842 }
5843 }
5844 }
5845
5846 register_new_assert_for (op, op, comp_code, value, bb, NULL, si);
5847 need_assert = true;
5848 }
5849 }
5850
5851 /* Update live. */
5852 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
5853 bitmap_set_bit (live, SSA_NAME_VERSION (op));
5854 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_DEF)
5855 bitmap_clear_bit (live, SSA_NAME_VERSION (op));
5856 }
5857
5858 /* Traverse all PHI nodes in BB, updating live. */
5859 for (si = gsi_start_phis (bb); !gsi_end_p(si); gsi_next (&si))
5860 {
5861 use_operand_p arg_p;
5862 ssa_op_iter i;
5863 gimple phi = gsi_stmt (si);
5864 tree res = gimple_phi_result (phi);
5865
5866 if (virtual_operand_p (res))
5867 continue;
5868
5869 FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
5870 {
5871 tree arg = USE_FROM_PTR (arg_p);
5872 if (TREE_CODE (arg) == SSA_NAME)
5873 bitmap_set_bit (live, SSA_NAME_VERSION (arg));
5874 }
5875
5876 bitmap_clear_bit (live, SSA_NAME_VERSION (res));
5877 }
5878
5879 return need_assert;
5880 }
5881
5882 /* Do an RPO walk over the function computing SSA name liveness
5883 on-the-fly and deciding on assert expressions to insert.
5884 Returns true if there are assert expressions to be inserted. */
5885
5886 static bool
5887 find_assert_locations (void)
5888 {
5889 int *rpo = XNEWVEC (int, last_basic_block);
5890 int *bb_rpo = XNEWVEC (int, last_basic_block);
5891 int *last_rpo = XCNEWVEC (int, last_basic_block);
5892 int rpo_cnt, i;
5893 bool need_asserts;
5894
5895 live = XCNEWVEC (sbitmap, last_basic_block);
5896 rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
5897 for (i = 0; i < rpo_cnt; ++i)
5898 bb_rpo[rpo[i]] = i;
5899
5900 need_asserts = false;
5901 for (i = rpo_cnt - 1; i >= 0; --i)
5902 {
5903 basic_block bb = BASIC_BLOCK (rpo[i]);
5904 edge e;
5905 edge_iterator ei;
5906
5907 if (!live[rpo[i]])
5908 {
5909 live[rpo[i]] = sbitmap_alloc (num_ssa_names);
5910 bitmap_clear (live[rpo[i]]);
5911 }
5912
5913 /* Process BB and update the live information with uses in
5914 this block. */
5915 need_asserts |= find_assert_locations_1 (bb, live[rpo[i]]);
5916
5917 /* Merge liveness into the predecessor blocks and free it. */
5918 if (!bitmap_empty_p (live[rpo[i]]))
5919 {
5920 int pred_rpo = i;
5921 FOR_EACH_EDGE (e, ei, bb->preds)
5922 {
5923 int pred = e->src->index;
5924 if ((e->flags & EDGE_DFS_BACK) || pred == ENTRY_BLOCK)
5925 continue;
5926
5927 if (!live[pred])
5928 {
5929 live[pred] = sbitmap_alloc (num_ssa_names);
5930 bitmap_clear (live[pred]);
5931 }
5932 bitmap_ior (live[pred], live[pred], live[rpo[i]]);
5933
5934 if (bb_rpo[pred] < pred_rpo)
5935 pred_rpo = bb_rpo[pred];
5936 }
5937
5938 /* Record the RPO number of the last visited block that needs
5939 live information from this block. */
5940 last_rpo[rpo[i]] = pred_rpo;
5941 }
5942 else
5943 {
5944 sbitmap_free (live[rpo[i]]);
5945 live[rpo[i]] = NULL;
5946 }
5947
5948 /* We can free all successors live bitmaps if all their
5949 predecessors have been visited already. */
5950 FOR_EACH_EDGE (e, ei, bb->succs)
5951 if (last_rpo[e->dest->index] == i
5952 && live[e->dest->index])
5953 {
5954 sbitmap_free (live[e->dest->index]);
5955 live[e->dest->index] = NULL;
5956 }
5957 }
5958
5959 XDELETEVEC (rpo);
5960 XDELETEVEC (bb_rpo);
5961 XDELETEVEC (last_rpo);
5962 for (i = 0; i < last_basic_block; ++i)
5963 if (live[i])
5964 sbitmap_free (live[i]);
5965 XDELETEVEC (live);
5966
5967 return need_asserts;
5968 }
5969
5970 /* Create an ASSERT_EXPR for NAME and insert it in the location
5971 indicated by LOC. Return true if we made any edge insertions. */
5972
5973 static bool
5974 process_assert_insertions_for (tree name, assert_locus_t loc)
5975 {
5976 /* Build the comparison expression NAME_i COMP_CODE VAL. */
5977 gimple stmt;
5978 tree cond;
5979 gimple assert_stmt;
5980 edge_iterator ei;
5981 edge e;
5982
5983 /* If we have X <=> X do not insert an assert expr for that. */
5984 if (loc->expr == loc->val)
5985 return false;
5986
5987 cond = build2 (loc->comp_code, boolean_type_node, loc->expr, loc->val);
5988 assert_stmt = build_assert_expr_for (cond, name);
5989 if (loc->e)
5990 {
5991 /* We have been asked to insert the assertion on an edge. This
5992 is used only by COND_EXPR and SWITCH_EXPR assertions. */
5993 gcc_checking_assert (gimple_code (gsi_stmt (loc->si)) == GIMPLE_COND
5994 || (gimple_code (gsi_stmt (loc->si))
5995 == GIMPLE_SWITCH));
5996
5997 gsi_insert_on_edge (loc->e, assert_stmt);
5998 return true;
5999 }
6000
6001 /* Otherwise, we can insert right after LOC->SI iff the
6002 statement must not be the last statement in the block. */
6003 stmt = gsi_stmt (loc->si);
6004 if (!stmt_ends_bb_p (stmt))
6005 {
6006 gsi_insert_after (&loc->si, assert_stmt, GSI_SAME_STMT);
6007 return false;
6008 }
6009
6010 /* If STMT must be the last statement in BB, we can only insert new
6011 assertions on the non-abnormal edge out of BB. Note that since
6012 STMT is not control flow, there may only be one non-abnormal edge
6013 out of BB. */
6014 FOR_EACH_EDGE (e, ei, loc->bb->succs)
6015 if (!(e->flags & EDGE_ABNORMAL))
6016 {
6017 gsi_insert_on_edge (e, assert_stmt);
6018 return true;
6019 }
6020
6021 gcc_unreachable ();
6022 }
6023
6024
6025 /* Process all the insertions registered for every name N_i registered
6026 in NEED_ASSERT_FOR. The list of assertions to be inserted are
6027 found in ASSERTS_FOR[i]. */
6028
6029 static void
6030 process_assert_insertions (void)
6031 {
6032 unsigned i;
6033 bitmap_iterator bi;
6034 bool update_edges_p = false;
6035 int num_asserts = 0;
6036
6037 if (dump_file && (dump_flags & TDF_DETAILS))
6038 dump_all_asserts (dump_file);
6039
6040 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
6041 {
6042 assert_locus_t loc = asserts_for[i];
6043 gcc_assert (loc);
6044
6045 while (loc)
6046 {
6047 assert_locus_t next = loc->next;
6048 update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
6049 free (loc);
6050 loc = next;
6051 num_asserts++;
6052 }
6053 }
6054
6055 if (update_edges_p)
6056 gsi_commit_edge_inserts ();
6057
6058 statistics_counter_event (cfun, "Number of ASSERT_EXPR expressions inserted",
6059 num_asserts);
6060 }
6061
6062
6063 /* Traverse the flowgraph looking for conditional jumps to insert range
6064 expressions. These range expressions are meant to provide information
6065 to optimizations that need to reason in terms of value ranges. They
6066 will not be expanded into RTL. For instance, given:
6067
6068 x = ...
6069 y = ...
6070 if (x < y)
6071 y = x - 2;
6072 else
6073 x = y + 3;
6074
6075 this pass will transform the code into:
6076
6077 x = ...
6078 y = ...
6079 if (x < y)
6080 {
6081 x = ASSERT_EXPR <x, x < y>
6082 y = x - 2
6083 }
6084 else
6085 {
6086 y = ASSERT_EXPR <y, x <= y>
6087 x = y + 3
6088 }
6089
6090 The idea is that once copy and constant propagation have run, other
6091 optimizations will be able to determine what ranges of values can 'x'
6092 take in different paths of the code, simply by checking the reaching
6093 definition of 'x'. */
6094
6095 static void
6096 insert_range_assertions (void)
6097 {
6098 need_assert_for = BITMAP_ALLOC (NULL);
6099 asserts_for = XCNEWVEC (assert_locus_t, num_ssa_names);
6100
6101 calculate_dominance_info (CDI_DOMINATORS);
6102
6103 if (find_assert_locations ())
6104 {
6105 process_assert_insertions ();
6106 update_ssa (TODO_update_ssa_no_phi);
6107 }
6108
6109 if (dump_file && (dump_flags & TDF_DETAILS))
6110 {
6111 fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
6112 dump_function_to_file (current_function_decl, dump_file, dump_flags);
6113 }
6114
6115 free (asserts_for);
6116 BITMAP_FREE (need_assert_for);
6117 }
6118
6119 /* Checks one ARRAY_REF in REF, located at LOCUS. Ignores flexible arrays
6120 and "struct" hacks. If VRP can determine that the
6121 array subscript is a constant, check if it is outside valid
6122 range. If the array subscript is a RANGE, warn if it is
6123 non-overlapping with valid range.
6124 IGNORE_OFF_BY_ONE is true if the ARRAY_REF is inside a ADDR_EXPR. */
6125
6126 static void
6127 check_array_ref (location_t location, tree ref, bool ignore_off_by_one)
6128 {
6129 value_range_t* vr = NULL;
6130 tree low_sub, up_sub;
6131 tree low_bound, up_bound, up_bound_p1;
6132 tree base;
6133
6134 if (TREE_NO_WARNING (ref))
6135 return;
6136
6137 low_sub = up_sub = TREE_OPERAND (ref, 1);
6138 up_bound = array_ref_up_bound (ref);
6139
6140 /* Can not check flexible arrays or zero-length arrays. */
6141 if (!up_bound
6142 || TREE_CODE (up_bound) != INTEGER_CST
6143 || tree_int_cst_equal (up_bound, integer_minus_one_node))
6144 return;
6145
6146 /* Accesses to trailing arrays via pointers may access storage
6147 beyond the types array bounds. */
6148 base = get_base_address (ref);
6149 if (base && TREE_CODE (base) == MEM_REF)
6150 {
6151 tree cref, next = NULL_TREE;
6152
6153 if (TREE_CODE (TREE_OPERAND (ref, 0)) != COMPONENT_REF)
6154 return;
6155
6156 cref = TREE_OPERAND (ref, 0);
6157 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (cref, 0))) == RECORD_TYPE)
6158 for (next = DECL_CHAIN (TREE_OPERAND (cref, 1));
6159 next && TREE_CODE (next) != FIELD_DECL;
6160 next = DECL_CHAIN (next))
6161 ;
6162
6163 /* If this is the last field in a struct type or a field in a
6164 union type do not warn. */
6165 if (!next)
6166 return;
6167 }
6168
6169 low_bound = array_ref_low_bound (ref);
6170 up_bound_p1 = int_const_binop (PLUS_EXPR, up_bound, integer_one_node);
6171
6172 if (TREE_CODE (low_sub) == SSA_NAME)
6173 {
6174 vr = get_value_range (low_sub);
6175 if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
6176 {
6177 low_sub = vr->type == VR_RANGE ? vr->max : vr->min;
6178 up_sub = vr->type == VR_RANGE ? vr->min : vr->max;
6179 }
6180 }
6181
6182 if (vr && vr->type == VR_ANTI_RANGE)
6183 {
6184 if (TREE_CODE (up_sub) == INTEGER_CST
6185 && tree_int_cst_lt (up_bound, up_sub)
6186 && TREE_CODE (low_sub) == INTEGER_CST
6187 && tree_int_cst_lt (low_sub, low_bound))
6188 {
6189 warning_at (location, OPT_Warray_bounds,
6190 "array subscript is outside array bounds");
6191 TREE_NO_WARNING (ref) = 1;
6192 }
6193 }
6194 else if (TREE_CODE (up_sub) == INTEGER_CST
6195 && (ignore_off_by_one
6196 ? (tree_int_cst_lt (up_bound, up_sub)
6197 && !tree_int_cst_equal (up_bound_p1, up_sub))
6198 : (tree_int_cst_lt (up_bound, up_sub)
6199 || tree_int_cst_equal (up_bound_p1, up_sub))))
6200 {
6201 if (dump_file && (dump_flags & TDF_DETAILS))
6202 {
6203 fprintf (dump_file, "Array bound warning for ");
6204 dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
6205 fprintf (dump_file, "\n");
6206 }
6207 warning_at (location, OPT_Warray_bounds,
6208 "array subscript is above array bounds");
6209 TREE_NO_WARNING (ref) = 1;
6210 }
6211 else if (TREE_CODE (low_sub) == INTEGER_CST
6212 && tree_int_cst_lt (low_sub, low_bound))
6213 {
6214 if (dump_file && (dump_flags & TDF_DETAILS))
6215 {
6216 fprintf (dump_file, "Array bound warning for ");
6217 dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
6218 fprintf (dump_file, "\n");
6219 }
6220 warning_at (location, OPT_Warray_bounds,
6221 "array subscript is below array bounds");
6222 TREE_NO_WARNING (ref) = 1;
6223 }
6224 }
6225
6226 /* Searches if the expr T, located at LOCATION computes
6227 address of an ARRAY_REF, and call check_array_ref on it. */
6228
6229 static void
6230 search_for_addr_array (tree t, location_t location)
6231 {
6232 while (TREE_CODE (t) == SSA_NAME)
6233 {
6234 gimple g = SSA_NAME_DEF_STMT (t);
6235
6236 if (gimple_code (g) != GIMPLE_ASSIGN)
6237 return;
6238
6239 if (get_gimple_rhs_class (gimple_assign_rhs_code (g))
6240 != GIMPLE_SINGLE_RHS)
6241 return;
6242
6243 t = gimple_assign_rhs1 (g);
6244 }
6245
6246
6247 /* We are only interested in addresses of ARRAY_REF's. */
6248 if (TREE_CODE (t) != ADDR_EXPR)
6249 return;
6250
6251 /* Check each ARRAY_REFs in the reference chain. */
6252 do
6253 {
6254 if (TREE_CODE (t) == ARRAY_REF)
6255 check_array_ref (location, t, true /*ignore_off_by_one*/);
6256
6257 t = TREE_OPERAND (t, 0);
6258 }
6259 while (handled_component_p (t));
6260
6261 if (TREE_CODE (t) == MEM_REF
6262 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR
6263 && !TREE_NO_WARNING (t))
6264 {
6265 tree tem = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
6266 tree low_bound, up_bound, el_sz;
6267 double_int idx;
6268 if (TREE_CODE (TREE_TYPE (tem)) != ARRAY_TYPE
6269 || TREE_CODE (TREE_TYPE (TREE_TYPE (tem))) == ARRAY_TYPE
6270 || !TYPE_DOMAIN (TREE_TYPE (tem)))
6271 return;
6272
6273 low_bound = TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (tem)));
6274 up_bound = TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (tem)));
6275 el_sz = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (tem)));
6276 if (!low_bound
6277 || TREE_CODE (low_bound) != INTEGER_CST
6278 || !up_bound
6279 || TREE_CODE (up_bound) != INTEGER_CST
6280 || !el_sz
6281 || TREE_CODE (el_sz) != INTEGER_CST)
6282 return;
6283
6284 idx = mem_ref_offset (t);
6285 idx = idx.sdiv (tree_to_double_int (el_sz), TRUNC_DIV_EXPR);
6286 if (idx.slt (double_int_zero))
6287 {
6288 if (dump_file && (dump_flags & TDF_DETAILS))
6289 {
6290 fprintf (dump_file, "Array bound warning for ");
6291 dump_generic_expr (MSG_NOTE, TDF_SLIM, t);
6292 fprintf (dump_file, "\n");
6293 }
6294 warning_at (location, OPT_Warray_bounds,
6295 "array subscript is below array bounds");
6296 TREE_NO_WARNING (t) = 1;
6297 }
6298 else if (idx.sgt (tree_to_double_int (up_bound)
6299 - tree_to_double_int (low_bound)
6300 + double_int_one))
6301 {
6302 if (dump_file && (dump_flags & TDF_DETAILS))
6303 {
6304 fprintf (dump_file, "Array bound warning for ");
6305 dump_generic_expr (MSG_NOTE, TDF_SLIM, t);
6306 fprintf (dump_file, "\n");
6307 }
6308 warning_at (location, OPT_Warray_bounds,
6309 "array subscript is above array bounds");
6310 TREE_NO_WARNING (t) = 1;
6311 }
6312 }
6313 }
6314
6315 /* walk_tree() callback that checks if *TP is
6316 an ARRAY_REF inside an ADDR_EXPR (in which an array
6317 subscript one outside the valid range is allowed). Call
6318 check_array_ref for each ARRAY_REF found. The location is
6319 passed in DATA. */
6320
6321 static tree
6322 check_array_bounds (tree *tp, int *walk_subtree, void *data)
6323 {
6324 tree t = *tp;
6325 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
6326 location_t location;
6327
6328 if (EXPR_HAS_LOCATION (t))
6329 location = EXPR_LOCATION (t);
6330 else
6331 {
6332 location_t *locp = (location_t *) wi->info;
6333 location = *locp;
6334 }
6335
6336 *walk_subtree = TRUE;
6337
6338 if (TREE_CODE (t) == ARRAY_REF)
6339 check_array_ref (location, t, false /*ignore_off_by_one*/);
6340
6341 if (TREE_CODE (t) == MEM_REF
6342 || (TREE_CODE (t) == RETURN_EXPR && TREE_OPERAND (t, 0)))
6343 search_for_addr_array (TREE_OPERAND (t, 0), location);
6344
6345 if (TREE_CODE (t) == ADDR_EXPR)
6346 *walk_subtree = FALSE;
6347
6348 return NULL_TREE;
6349 }
6350
6351 /* Walk over all statements of all reachable BBs and call check_array_bounds
6352 on them. */
6353
6354 static void
6355 check_all_array_refs (void)
6356 {
6357 basic_block bb;
6358 gimple_stmt_iterator si;
6359
6360 FOR_EACH_BB (bb)
6361 {
6362 edge_iterator ei;
6363 edge e;
6364 bool executable = false;
6365
6366 /* Skip blocks that were found to be unreachable. */
6367 FOR_EACH_EDGE (e, ei, bb->preds)
6368 executable |= !!(e->flags & EDGE_EXECUTABLE);
6369 if (!executable)
6370 continue;
6371
6372 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6373 {
6374 gimple stmt = gsi_stmt (si);
6375 struct walk_stmt_info wi;
6376 if (!gimple_has_location (stmt))
6377 continue;
6378
6379 if (is_gimple_call (stmt))
6380 {
6381 size_t i;
6382 size_t n = gimple_call_num_args (stmt);
6383 for (i = 0; i < n; i++)
6384 {
6385 tree arg = gimple_call_arg (stmt, i);
6386 search_for_addr_array (arg, gimple_location (stmt));
6387 }
6388 }
6389 else
6390 {
6391 memset (&wi, 0, sizeof (wi));
6392 wi.info = CONST_CAST (void *, (const void *)
6393 gimple_location_ptr (stmt));
6394
6395 walk_gimple_op (gsi_stmt (si),
6396 check_array_bounds,
6397 &wi);
6398 }
6399 }
6400 }
6401 }
6402
6403 /* Convert range assertion expressions into the implied copies and
6404 copy propagate away the copies. Doing the trivial copy propagation
6405 here avoids the need to run the full copy propagation pass after
6406 VRP.
6407
6408 FIXME, this will eventually lead to copy propagation removing the
6409 names that had useful range information attached to them. For
6410 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
6411 then N_i will have the range [3, +INF].
6412
6413 However, by converting the assertion into the implied copy
6414 operation N_i = N_j, we will then copy-propagate N_j into the uses
6415 of N_i and lose the range information. We may want to hold on to
6416 ASSERT_EXPRs a little while longer as the ranges could be used in
6417 things like jump threading.
6418
6419 The problem with keeping ASSERT_EXPRs around is that passes after
6420 VRP need to handle them appropriately.
6421
6422 Another approach would be to make the range information a first
6423 class property of the SSA_NAME so that it can be queried from
6424 any pass. This is made somewhat more complex by the need for
6425 multiple ranges to be associated with one SSA_NAME. */
6426
6427 static void
6428 remove_range_assertions (void)
6429 {
6430 basic_block bb;
6431 gimple_stmt_iterator si;
6432
6433 /* Note that the BSI iterator bump happens at the bottom of the
6434 loop and no bump is necessary if we're removing the statement
6435 referenced by the current BSI. */
6436 FOR_EACH_BB (bb)
6437 for (si = gsi_start_bb (bb); !gsi_end_p (si);)
6438 {
6439 gimple stmt = gsi_stmt (si);
6440 gimple use_stmt;
6441
6442 if (is_gimple_assign (stmt)
6443 && gimple_assign_rhs_code (stmt) == ASSERT_EXPR)
6444 {
6445 tree rhs = gimple_assign_rhs1 (stmt);
6446 tree var;
6447 tree cond = fold (ASSERT_EXPR_COND (rhs));
6448 use_operand_p use_p;
6449 imm_use_iterator iter;
6450
6451 gcc_assert (cond != boolean_false_node);
6452
6453 /* Propagate the RHS into every use of the LHS. */
6454 var = ASSERT_EXPR_VAR (rhs);
6455 FOR_EACH_IMM_USE_STMT (use_stmt, iter,
6456 gimple_assign_lhs (stmt))
6457 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
6458 {
6459 SET_USE (use_p, var);
6460 gcc_assert (TREE_CODE (var) == SSA_NAME);
6461 }
6462
6463 /* And finally, remove the copy, it is not needed. */
6464 gsi_remove (&si, true);
6465 release_defs (stmt);
6466 }
6467 else
6468 gsi_next (&si);
6469 }
6470 }
6471
6472
6473 /* Return true if STMT is interesting for VRP. */
6474
6475 static bool
6476 stmt_interesting_for_vrp (gimple stmt)
6477 {
6478 if (gimple_code (stmt) == GIMPLE_PHI)
6479 {
6480 tree res = gimple_phi_result (stmt);
6481 return (!virtual_operand_p (res)
6482 && (INTEGRAL_TYPE_P (TREE_TYPE (res))
6483 || POINTER_TYPE_P (TREE_TYPE (res))));
6484 }
6485 else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
6486 {
6487 tree lhs = gimple_get_lhs (stmt);
6488
6489 /* In general, assignments with virtual operands are not useful
6490 for deriving ranges, with the obvious exception of calls to
6491 builtin functions. */
6492 if (lhs && TREE_CODE (lhs) == SSA_NAME
6493 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
6494 || POINTER_TYPE_P (TREE_TYPE (lhs)))
6495 && ((is_gimple_call (stmt)
6496 && gimple_call_fndecl (stmt) != NULL_TREE
6497 && DECL_BUILT_IN (gimple_call_fndecl (stmt)))
6498 || !gimple_vuse (stmt)))
6499 return true;
6500 }
6501 else if (gimple_code (stmt) == GIMPLE_COND
6502 || gimple_code (stmt) == GIMPLE_SWITCH)
6503 return true;
6504
6505 return false;
6506 }
6507
6508
6509 /* Initialize local data structures for VRP. */
6510
6511 static void
6512 vrp_initialize (void)
6513 {
6514 basic_block bb;
6515
6516 values_propagated = false;
6517 num_vr_values = num_ssa_names;
6518 vr_value = XCNEWVEC (value_range_t *, num_vr_values);
6519 vr_phi_edge_counts = XCNEWVEC (int, num_ssa_names);
6520
6521 FOR_EACH_BB (bb)
6522 {
6523 gimple_stmt_iterator si;
6524
6525 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
6526 {
6527 gimple phi = gsi_stmt (si);
6528 if (!stmt_interesting_for_vrp (phi))
6529 {
6530 tree lhs = PHI_RESULT (phi);
6531 set_value_range_to_varying (get_value_range (lhs));
6532 prop_set_simulate_again (phi, false);
6533 }
6534 else
6535 prop_set_simulate_again (phi, true);
6536 }
6537
6538 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6539 {
6540 gimple stmt = gsi_stmt (si);
6541
6542 /* If the statement is a control insn, then we do not
6543 want to avoid simulating the statement once. Failure
6544 to do so means that those edges will never get added. */
6545 if (stmt_ends_bb_p (stmt))
6546 prop_set_simulate_again (stmt, true);
6547 else if (!stmt_interesting_for_vrp (stmt))
6548 {
6549 ssa_op_iter i;
6550 tree def;
6551 FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
6552 set_value_range_to_varying (get_value_range (def));
6553 prop_set_simulate_again (stmt, false);
6554 }
6555 else
6556 prop_set_simulate_again (stmt, true);
6557 }
6558 }
6559 }
6560
6561 /* Return the singleton value-range for NAME or NAME. */
6562
6563 static inline tree
6564 vrp_valueize (tree name)
6565 {
6566 if (TREE_CODE (name) == SSA_NAME)
6567 {
6568 value_range_t *vr = get_value_range (name);
6569 if (vr->type == VR_RANGE
6570 && (vr->min == vr->max
6571 || operand_equal_p (vr->min, vr->max, 0)))
6572 return vr->min;
6573 }
6574 return name;
6575 }
6576
6577 /* Visit assignment STMT. If it produces an interesting range, record
6578 the SSA name in *OUTPUT_P. */
6579
6580 static enum ssa_prop_result
6581 vrp_visit_assignment_or_call (gimple stmt, tree *output_p)
6582 {
6583 tree def, lhs;
6584 ssa_op_iter iter;
6585 enum gimple_code code = gimple_code (stmt);
6586 lhs = gimple_get_lhs (stmt);
6587
6588 /* We only keep track of ranges in integral and pointer types. */
6589 if (TREE_CODE (lhs) == SSA_NAME
6590 && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
6591 /* It is valid to have NULL MIN/MAX values on a type. See
6592 build_range_type. */
6593 && TYPE_MIN_VALUE (TREE_TYPE (lhs))
6594 && TYPE_MAX_VALUE (TREE_TYPE (lhs)))
6595 || POINTER_TYPE_P (TREE_TYPE (lhs))))
6596 {
6597 value_range_t new_vr = VR_INITIALIZER;
6598
6599 /* Try folding the statement to a constant first. */
6600 tree tem = gimple_fold_stmt_to_constant (stmt, vrp_valueize);
6601 if (tem && !is_overflow_infinity (tem))
6602 set_value_range (&new_vr, VR_RANGE, tem, tem, NULL);
6603 /* Then dispatch to value-range extracting functions. */
6604 else if (code == GIMPLE_CALL)
6605 extract_range_basic (&new_vr, stmt);
6606 else
6607 extract_range_from_assignment (&new_vr, stmt);
6608
6609 if (update_value_range (lhs, &new_vr))
6610 {
6611 *output_p = lhs;
6612
6613 if (dump_file && (dump_flags & TDF_DETAILS))
6614 {
6615 fprintf (dump_file, "Found new range for ");
6616 print_generic_expr (dump_file, lhs, 0);
6617 fprintf (dump_file, ": ");
6618 dump_value_range (dump_file, &new_vr);
6619 fprintf (dump_file, "\n\n");
6620 }
6621
6622 if (new_vr.type == VR_VARYING)
6623 return SSA_PROP_VARYING;
6624
6625 return SSA_PROP_INTERESTING;
6626 }
6627
6628 return SSA_PROP_NOT_INTERESTING;
6629 }
6630
6631 /* Every other statement produces no useful ranges. */
6632 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
6633 set_value_range_to_varying (get_value_range (def));
6634
6635 return SSA_PROP_VARYING;
6636 }
6637
6638 /* Helper that gets the value range of the SSA_NAME with version I
6639 or a symbolic range containing the SSA_NAME only if the value range
6640 is varying or undefined. */
6641
6642 static inline value_range_t
6643 get_vr_for_comparison (int i)
6644 {
6645 value_range_t vr = *get_value_range (ssa_name (i));
6646
6647 /* If name N_i does not have a valid range, use N_i as its own
6648 range. This allows us to compare against names that may
6649 have N_i in their ranges. */
6650 if (vr.type == VR_VARYING || vr.type == VR_UNDEFINED)
6651 {
6652 vr.type = VR_RANGE;
6653 vr.min = ssa_name (i);
6654 vr.max = ssa_name (i);
6655 }
6656
6657 return vr;
6658 }
6659
6660 /* Compare all the value ranges for names equivalent to VAR with VAL
6661 using comparison code COMP. Return the same value returned by
6662 compare_range_with_value, including the setting of
6663 *STRICT_OVERFLOW_P. */
6664
6665 static tree
6666 compare_name_with_value (enum tree_code comp, tree var, tree val,
6667 bool *strict_overflow_p)
6668 {
6669 bitmap_iterator bi;
6670 unsigned i;
6671 bitmap e;
6672 tree retval, t;
6673 int used_strict_overflow;
6674 bool sop;
6675 value_range_t equiv_vr;
6676
6677 /* Get the set of equivalences for VAR. */
6678 e = get_value_range (var)->equiv;
6679
6680 /* Start at -1. Set it to 0 if we do a comparison without relying
6681 on overflow, or 1 if all comparisons rely on overflow. */
6682 used_strict_overflow = -1;
6683
6684 /* Compare vars' value range with val. */
6685 equiv_vr = get_vr_for_comparison (SSA_NAME_VERSION (var));
6686 sop = false;
6687 retval = compare_range_with_value (comp, &equiv_vr, val, &sop);
6688 if (retval)
6689 used_strict_overflow = sop ? 1 : 0;
6690
6691 /* If the equiv set is empty we have done all work we need to do. */
6692 if (e == NULL)
6693 {
6694 if (retval
6695 && used_strict_overflow > 0)
6696 *strict_overflow_p = true;
6697 return retval;
6698 }
6699
6700 EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
6701 {
6702 equiv_vr = get_vr_for_comparison (i);
6703 sop = false;
6704 t = compare_range_with_value (comp, &equiv_vr, val, &sop);
6705 if (t)
6706 {
6707 /* If we get different answers from different members
6708 of the equivalence set this check must be in a dead
6709 code region. Folding it to a trap representation
6710 would be correct here. For now just return don't-know. */
6711 if (retval != NULL
6712 && t != retval)
6713 {
6714 retval = NULL_TREE;
6715 break;
6716 }
6717 retval = t;
6718
6719 if (!sop)
6720 used_strict_overflow = 0;
6721 else if (used_strict_overflow < 0)
6722 used_strict_overflow = 1;
6723 }
6724 }
6725
6726 if (retval
6727 && used_strict_overflow > 0)
6728 *strict_overflow_p = true;
6729
6730 return retval;
6731 }
6732
6733
6734 /* Given a comparison code COMP and names N1 and N2, compare all the
6735 ranges equivalent to N1 against all the ranges equivalent to N2
6736 to determine the value of N1 COMP N2. Return the same value
6737 returned by compare_ranges. Set *STRICT_OVERFLOW_P to indicate
6738 whether we relied on an overflow infinity in the comparison. */
6739
6740
6741 static tree
6742 compare_names (enum tree_code comp, tree n1, tree n2,
6743 bool *strict_overflow_p)
6744 {
6745 tree t, retval;
6746 bitmap e1, e2;
6747 bitmap_iterator bi1, bi2;
6748 unsigned i1, i2;
6749 int used_strict_overflow;
6750 static bitmap_obstack *s_obstack = NULL;
6751 static bitmap s_e1 = NULL, s_e2 = NULL;
6752
6753 /* Compare the ranges of every name equivalent to N1 against the
6754 ranges of every name equivalent to N2. */
6755 e1 = get_value_range (n1)->equiv;
6756 e2 = get_value_range (n2)->equiv;
6757
6758 /* Use the fake bitmaps if e1 or e2 are not available. */
6759 if (s_obstack == NULL)
6760 {
6761 s_obstack = XNEW (bitmap_obstack);
6762 bitmap_obstack_initialize (s_obstack);
6763 s_e1 = BITMAP_ALLOC (s_obstack);
6764 s_e2 = BITMAP_ALLOC (s_obstack);
6765 }
6766 if (e1 == NULL)
6767 e1 = s_e1;
6768 if (e2 == NULL)
6769 e2 = s_e2;
6770
6771 /* Add N1 and N2 to their own set of equivalences to avoid
6772 duplicating the body of the loop just to check N1 and N2
6773 ranges. */
6774 bitmap_set_bit (e1, SSA_NAME_VERSION (n1));
6775 bitmap_set_bit (e2, SSA_NAME_VERSION (n2));
6776
6777 /* If the equivalence sets have a common intersection, then the two
6778 names can be compared without checking their ranges. */
6779 if (bitmap_intersect_p (e1, e2))
6780 {
6781 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
6782 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
6783
6784 return (comp == EQ_EXPR || comp == GE_EXPR || comp == LE_EXPR)
6785 ? boolean_true_node
6786 : boolean_false_node;
6787 }
6788
6789 /* Start at -1. Set it to 0 if we do a comparison without relying
6790 on overflow, or 1 if all comparisons rely on overflow. */
6791 used_strict_overflow = -1;
6792
6793 /* Otherwise, compare all the equivalent ranges. First, add N1 and
6794 N2 to their own set of equivalences to avoid duplicating the body
6795 of the loop just to check N1 and N2 ranges. */
6796 EXECUTE_IF_SET_IN_BITMAP (e1, 0, i1, bi1)
6797 {
6798 value_range_t vr1 = get_vr_for_comparison (i1);
6799
6800 t = retval = NULL_TREE;
6801 EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2)
6802 {
6803 bool sop = false;
6804
6805 value_range_t vr2 = get_vr_for_comparison (i2);
6806
6807 t = compare_ranges (comp, &vr1, &vr2, &sop);
6808 if (t)
6809 {
6810 /* If we get different answers from different members
6811 of the equivalence set this check must be in a dead
6812 code region. Folding it to a trap representation
6813 would be correct here. For now just return don't-know. */
6814 if (retval != NULL
6815 && t != retval)
6816 {
6817 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
6818 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
6819 return NULL_TREE;
6820 }
6821 retval = t;
6822
6823 if (!sop)
6824 used_strict_overflow = 0;
6825 else if (used_strict_overflow < 0)
6826 used_strict_overflow = 1;
6827 }
6828 }
6829
6830 if (retval)
6831 {
6832 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
6833 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
6834 if (used_strict_overflow > 0)
6835 *strict_overflow_p = true;
6836 return retval;
6837 }
6838 }
6839
6840 /* None of the equivalent ranges are useful in computing this
6841 comparison. */
6842 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
6843 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
6844 return NULL_TREE;
6845 }
6846
6847 /* Helper function for vrp_evaluate_conditional_warnv. */
6848
6849 static tree
6850 vrp_evaluate_conditional_warnv_with_ops_using_ranges (enum tree_code code,
6851 tree op0, tree op1,
6852 bool * strict_overflow_p)
6853 {
6854 value_range_t *vr0, *vr1;
6855
6856 vr0 = (TREE_CODE (op0) == SSA_NAME) ? get_value_range (op0) : NULL;
6857 vr1 = (TREE_CODE (op1) == SSA_NAME) ? get_value_range (op1) : NULL;
6858
6859 if (vr0 && vr1)
6860 return compare_ranges (code, vr0, vr1, strict_overflow_p);
6861 else if (vr0 && vr1 == NULL)
6862 return compare_range_with_value (code, vr0, op1, strict_overflow_p);
6863 else if (vr0 == NULL && vr1)
6864 return (compare_range_with_value
6865 (swap_tree_comparison (code), vr1, op0, strict_overflow_p));
6866 return NULL;
6867 }
6868
6869 /* Helper function for vrp_evaluate_conditional_warnv. */
6870
6871 static tree
6872 vrp_evaluate_conditional_warnv_with_ops (enum tree_code code, tree op0,
6873 tree op1, bool use_equiv_p,
6874 bool *strict_overflow_p, bool *only_ranges)
6875 {
6876 tree ret;
6877 if (only_ranges)
6878 *only_ranges = true;
6879
6880 /* We only deal with integral and pointer types. */
6881 if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
6882 && !POINTER_TYPE_P (TREE_TYPE (op0)))
6883 return NULL_TREE;
6884
6885 if (use_equiv_p)
6886 {
6887 if (only_ranges
6888 && (ret = vrp_evaluate_conditional_warnv_with_ops_using_ranges
6889 (code, op0, op1, strict_overflow_p)))
6890 return ret;
6891 *only_ranges = false;
6892 if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME)
6893 return compare_names (code, op0, op1, strict_overflow_p);
6894 else if (TREE_CODE (op0) == SSA_NAME)
6895 return compare_name_with_value (code, op0, op1, strict_overflow_p);
6896 else if (TREE_CODE (op1) == SSA_NAME)
6897 return (compare_name_with_value
6898 (swap_tree_comparison (code), op1, op0, strict_overflow_p));
6899 }
6900 else
6901 return vrp_evaluate_conditional_warnv_with_ops_using_ranges (code, op0, op1,
6902 strict_overflow_p);
6903 return NULL_TREE;
6904 }
6905
6906 /* Given (CODE OP0 OP1) within STMT, try to simplify it based on value range
6907 information. Return NULL if the conditional can not be evaluated.
6908 The ranges of all the names equivalent with the operands in COND
6909 will be used when trying to compute the value. If the result is
6910 based on undefined signed overflow, issue a warning if
6911 appropriate. */
6912
6913 static tree
6914 vrp_evaluate_conditional (enum tree_code code, tree op0, tree op1, gimple stmt)
6915 {
6916 bool sop;
6917 tree ret;
6918 bool only_ranges;
6919
6920 /* Some passes and foldings leak constants with overflow flag set
6921 into the IL. Avoid doing wrong things with these and bail out. */
6922 if ((TREE_CODE (op0) == INTEGER_CST
6923 && TREE_OVERFLOW (op0))
6924 || (TREE_CODE (op1) == INTEGER_CST
6925 && TREE_OVERFLOW (op1)))
6926 return NULL_TREE;
6927
6928 sop = false;
6929 ret = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, true, &sop,
6930 &only_ranges);
6931
6932 if (ret && sop)
6933 {
6934 enum warn_strict_overflow_code wc;
6935 const char* warnmsg;
6936
6937 if (is_gimple_min_invariant (ret))
6938 {
6939 wc = WARN_STRICT_OVERFLOW_CONDITIONAL;
6940 warnmsg = G_("assuming signed overflow does not occur when "
6941 "simplifying conditional to constant");
6942 }
6943 else
6944 {
6945 wc = WARN_STRICT_OVERFLOW_COMPARISON;
6946 warnmsg = G_("assuming signed overflow does not occur when "
6947 "simplifying conditional");
6948 }
6949
6950 if (issue_strict_overflow_warning (wc))
6951 {
6952 location_t location;
6953
6954 if (!gimple_has_location (stmt))
6955 location = input_location;
6956 else
6957 location = gimple_location (stmt);
6958 warning_at (location, OPT_Wstrict_overflow, "%s", warnmsg);
6959 }
6960 }
6961
6962 if (warn_type_limits
6963 && ret && only_ranges
6964 && TREE_CODE_CLASS (code) == tcc_comparison
6965 && TREE_CODE (op0) == SSA_NAME)
6966 {
6967 /* If the comparison is being folded and the operand on the LHS
6968 is being compared against a constant value that is outside of
6969 the natural range of OP0's type, then the predicate will
6970 always fold regardless of the value of OP0. If -Wtype-limits
6971 was specified, emit a warning. */
6972 tree type = TREE_TYPE (op0);
6973 value_range_t *vr0 = get_value_range (op0);
6974
6975 if (vr0->type != VR_VARYING
6976 && INTEGRAL_TYPE_P (type)
6977 && vrp_val_is_min (vr0->min)
6978 && vrp_val_is_max (vr0->max)
6979 && is_gimple_min_invariant (op1))
6980 {
6981 location_t location;
6982
6983 if (!gimple_has_location (stmt))
6984 location = input_location;
6985 else
6986 location = gimple_location (stmt);
6987
6988 warning_at (location, OPT_Wtype_limits,
6989 integer_zerop (ret)
6990 ? G_("comparison always false "
6991 "due to limited range of data type")
6992 : G_("comparison always true "
6993 "due to limited range of data type"));
6994 }
6995 }
6996
6997 return ret;
6998 }
6999
7000
7001 /* Visit conditional statement STMT. If we can determine which edge
7002 will be taken out of STMT's basic block, record it in
7003 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
7004 SSA_PROP_VARYING. */
7005
7006 static enum ssa_prop_result
7007 vrp_visit_cond_stmt (gimple stmt, edge *taken_edge_p)
7008 {
7009 tree val;
7010 bool sop;
7011
7012 *taken_edge_p = NULL;
7013
7014 if (dump_file && (dump_flags & TDF_DETAILS))
7015 {
7016 tree use;
7017 ssa_op_iter i;
7018
7019 fprintf (dump_file, "\nVisiting conditional with predicate: ");
7020 print_gimple_stmt (dump_file, stmt, 0, 0);
7021 fprintf (dump_file, "\nWith known ranges\n");
7022
7023 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
7024 {
7025 fprintf (dump_file, "\t");
7026 print_generic_expr (dump_file, use, 0);
7027 fprintf (dump_file, ": ");
7028 dump_value_range (dump_file, vr_value[SSA_NAME_VERSION (use)]);
7029 }
7030
7031 fprintf (dump_file, "\n");
7032 }
7033
7034 /* Compute the value of the predicate COND by checking the known
7035 ranges of each of its operands.
7036
7037 Note that we cannot evaluate all the equivalent ranges here
7038 because those ranges may not yet be final and with the current
7039 propagation strategy, we cannot determine when the value ranges
7040 of the names in the equivalence set have changed.
7041
7042 For instance, given the following code fragment
7043
7044 i_5 = PHI <8, i_13>
7045 ...
7046 i_14 = ASSERT_EXPR <i_5, i_5 != 0>
7047 if (i_14 == 1)
7048 ...
7049
7050 Assume that on the first visit to i_14, i_5 has the temporary
7051 range [8, 8] because the second argument to the PHI function is
7052 not yet executable. We derive the range ~[0, 0] for i_14 and the
7053 equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
7054 the first time, since i_14 is equivalent to the range [8, 8], we
7055 determine that the predicate is always false.
7056
7057 On the next round of propagation, i_13 is determined to be
7058 VARYING, which causes i_5 to drop down to VARYING. So, another
7059 visit to i_14 is scheduled. In this second visit, we compute the
7060 exact same range and equivalence set for i_14, namely ~[0, 0] and
7061 { i_5 }. But we did not have the previous range for i_5
7062 registered, so vrp_visit_assignment thinks that the range for
7063 i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
7064 is not visited again, which stops propagation from visiting
7065 statements in the THEN clause of that if().
7066
7067 To properly fix this we would need to keep the previous range
7068 value for the names in the equivalence set. This way we would've
7069 discovered that from one visit to the other i_5 changed from
7070 range [8, 8] to VR_VARYING.
7071
7072 However, fixing this apparent limitation may not be worth the
7073 additional checking. Testing on several code bases (GCC, DLV,
7074 MICO, TRAMP3D and SPEC2000) showed that doing this results in
7075 4 more predicates folded in SPEC. */
7076 sop = false;
7077
7078 val = vrp_evaluate_conditional_warnv_with_ops (gimple_cond_code (stmt),
7079 gimple_cond_lhs (stmt),
7080 gimple_cond_rhs (stmt),
7081 false, &sop, NULL);
7082 if (val)
7083 {
7084 if (!sop)
7085 *taken_edge_p = find_taken_edge (gimple_bb (stmt), val);
7086 else
7087 {
7088 if (dump_file && (dump_flags & TDF_DETAILS))
7089 fprintf (dump_file,
7090 "\nIgnoring predicate evaluation because "
7091 "it assumes that signed overflow is undefined");
7092 val = NULL_TREE;
7093 }
7094 }
7095
7096 if (dump_file && (dump_flags & TDF_DETAILS))
7097 {
7098 fprintf (dump_file, "\nPredicate evaluates to: ");
7099 if (val == NULL_TREE)
7100 fprintf (dump_file, "DON'T KNOW\n");
7101 else
7102 print_generic_stmt (dump_file, val, 0);
7103 }
7104
7105 return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
7106 }
7107
7108 /* Searches the case label vector VEC for the index *IDX of the CASE_LABEL
7109 that includes the value VAL. The search is restricted to the range
7110 [START_IDX, n - 1] where n is the size of VEC.
7111
7112 If there is a CASE_LABEL for VAL, its index is placed in IDX and true is
7113 returned.
7114
7115 If there is no CASE_LABEL for VAL and there is one that is larger than VAL,
7116 it is placed in IDX and false is returned.
7117
7118 If VAL is larger than any CASE_LABEL, n is placed on IDX and false is
7119 returned. */
7120
7121 static bool
7122 find_case_label_index (gimple stmt, size_t start_idx, tree val, size_t *idx)
7123 {
7124 size_t n = gimple_switch_num_labels (stmt);
7125 size_t low, high;
7126
7127 /* Find case label for minimum of the value range or the next one.
7128 At each iteration we are searching in [low, high - 1]. */
7129
7130 for (low = start_idx, high = n; high != low; )
7131 {
7132 tree t;
7133 int cmp;
7134 /* Note that i != high, so we never ask for n. */
7135 size_t i = (high + low) / 2;
7136 t = gimple_switch_label (stmt, i);
7137
7138 /* Cache the result of comparing CASE_LOW and val. */
7139 cmp = tree_int_cst_compare (CASE_LOW (t), val);
7140
7141 if (cmp == 0)
7142 {
7143 /* Ranges cannot be empty. */
7144 *idx = i;
7145 return true;
7146 }
7147 else if (cmp > 0)
7148 high = i;
7149 else
7150 {
7151 low = i + 1;
7152 if (CASE_HIGH (t) != NULL
7153 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
7154 {
7155 *idx = i;
7156 return true;
7157 }
7158 }
7159 }
7160
7161 *idx = high;
7162 return false;
7163 }
7164
7165 /* Searches the case label vector VEC for the range of CASE_LABELs that is used
7166 for values between MIN and MAX. The first index is placed in MIN_IDX. The
7167 last index is placed in MAX_IDX. If the range of CASE_LABELs is empty
7168 then MAX_IDX < MIN_IDX.
7169 Returns true if the default label is not needed. */
7170
7171 static bool
7172 find_case_label_range (gimple stmt, tree min, tree max, size_t *min_idx,
7173 size_t *max_idx)
7174 {
7175 size_t i, j;
7176 bool min_take_default = !find_case_label_index (stmt, 1, min, &i);
7177 bool max_take_default = !find_case_label_index (stmt, i, max, &j);
7178
7179 if (i == j
7180 && min_take_default
7181 && max_take_default)
7182 {
7183 /* Only the default case label reached.
7184 Return an empty range. */
7185 *min_idx = 1;
7186 *max_idx = 0;
7187 return false;
7188 }
7189 else
7190 {
7191 bool take_default = min_take_default || max_take_default;
7192 tree low, high;
7193 size_t k;
7194
7195 if (max_take_default)
7196 j--;
7197
7198 /* If the case label range is continuous, we do not need
7199 the default case label. Verify that. */
7200 high = CASE_LOW (gimple_switch_label (stmt, i));
7201 if (CASE_HIGH (gimple_switch_label (stmt, i)))
7202 high = CASE_HIGH (gimple_switch_label (stmt, i));
7203 for (k = i + 1; k <= j; ++k)
7204 {
7205 low = CASE_LOW (gimple_switch_label (stmt, k));
7206 if (!integer_onep (int_const_binop (MINUS_EXPR, low, high)))
7207 {
7208 take_default = true;
7209 break;
7210 }
7211 high = low;
7212 if (CASE_HIGH (gimple_switch_label (stmt, k)))
7213 high = CASE_HIGH (gimple_switch_label (stmt, k));
7214 }
7215
7216 *min_idx = i;
7217 *max_idx = j;
7218 return !take_default;
7219 }
7220 }
7221
7222 /* Searches the case label vector VEC for the ranges of CASE_LABELs that are
7223 used in range VR. The indices are placed in MIN_IDX1, MAX_IDX, MIN_IDX2 and
7224 MAX_IDX2. If the ranges of CASE_LABELs are empty then MAX_IDX1 < MIN_IDX1.
7225 Returns true if the default label is not needed. */
7226
7227 static bool
7228 find_case_label_ranges (gimple stmt, value_range_t *vr, size_t *min_idx1,
7229 size_t *max_idx1, size_t *min_idx2,
7230 size_t *max_idx2)
7231 {
7232 size_t i, j, k, l;
7233 unsigned int n = gimple_switch_num_labels (stmt);
7234 bool take_default;
7235 tree case_low, case_high;
7236 tree min = vr->min, max = vr->max;
7237
7238 gcc_checking_assert (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE);
7239
7240 take_default = !find_case_label_range (stmt, min, max, &i, &j);
7241
7242 /* Set second range to emtpy. */
7243 *min_idx2 = 1;
7244 *max_idx2 = 0;
7245
7246 if (vr->type == VR_RANGE)
7247 {
7248 *min_idx1 = i;
7249 *max_idx1 = j;
7250 return !take_default;
7251 }
7252
7253 /* Set first range to all case labels. */
7254 *min_idx1 = 1;
7255 *max_idx1 = n - 1;
7256
7257 if (i > j)
7258 return false;
7259
7260 /* Make sure all the values of case labels [i , j] are contained in
7261 range [MIN, MAX]. */
7262 case_low = CASE_LOW (gimple_switch_label (stmt, i));
7263 case_high = CASE_HIGH (gimple_switch_label (stmt, j));
7264 if (tree_int_cst_compare (case_low, min) < 0)
7265 i += 1;
7266 if (case_high != NULL_TREE
7267 && tree_int_cst_compare (max, case_high) < 0)
7268 j -= 1;
7269
7270 if (i > j)
7271 return false;
7272
7273 /* If the range spans case labels [i, j], the corresponding anti-range spans
7274 the labels [1, i - 1] and [j + 1, n - 1]. */
7275 k = j + 1;
7276 l = n - 1;
7277 if (k > l)
7278 {
7279 k = 1;
7280 l = 0;
7281 }
7282
7283 j = i - 1;
7284 i = 1;
7285 if (i > j)
7286 {
7287 i = k;
7288 j = l;
7289 k = 1;
7290 l = 0;
7291 }
7292
7293 *min_idx1 = i;
7294 *max_idx1 = j;
7295 *min_idx2 = k;
7296 *max_idx2 = l;
7297 return false;
7298 }
7299
7300 /* Visit switch statement STMT. If we can determine which edge
7301 will be taken out of STMT's basic block, record it in
7302 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
7303 SSA_PROP_VARYING. */
7304
7305 static enum ssa_prop_result
7306 vrp_visit_switch_stmt (gimple stmt, edge *taken_edge_p)
7307 {
7308 tree op, val;
7309 value_range_t *vr;
7310 size_t i = 0, j = 0, k, l;
7311 bool take_default;
7312
7313 *taken_edge_p = NULL;
7314 op = gimple_switch_index (stmt);
7315 if (TREE_CODE (op) != SSA_NAME)
7316 return SSA_PROP_VARYING;
7317
7318 vr = get_value_range (op);
7319 if (dump_file && (dump_flags & TDF_DETAILS))
7320 {
7321 fprintf (dump_file, "\nVisiting switch expression with operand ");
7322 print_generic_expr (dump_file, op, 0);
7323 fprintf (dump_file, " with known range ");
7324 dump_value_range (dump_file, vr);
7325 fprintf (dump_file, "\n");
7326 }
7327
7328 if ((vr->type != VR_RANGE
7329 && vr->type != VR_ANTI_RANGE)
7330 || symbolic_range_p (vr))
7331 return SSA_PROP_VARYING;
7332
7333 /* Find the single edge that is taken from the switch expression. */
7334 take_default = !find_case_label_ranges (stmt, vr, &i, &j, &k, &l);
7335
7336 /* Check if the range spans no CASE_LABEL. If so, we only reach the default
7337 label */
7338 if (j < i)
7339 {
7340 gcc_assert (take_default);
7341 val = gimple_switch_default_label (stmt);
7342 }
7343 else
7344 {
7345 /* Check if labels with index i to j and maybe the default label
7346 are all reaching the same label. */
7347
7348 val = gimple_switch_label (stmt, i);
7349 if (take_default
7350 && CASE_LABEL (gimple_switch_default_label (stmt))
7351 != CASE_LABEL (val))
7352 {
7353 if (dump_file && (dump_flags & TDF_DETAILS))
7354 fprintf (dump_file, " not a single destination for this "
7355 "range\n");
7356 return SSA_PROP_VARYING;
7357 }
7358 for (++i; i <= j; ++i)
7359 {
7360 if (CASE_LABEL (gimple_switch_label (stmt, i)) != CASE_LABEL (val))
7361 {
7362 if (dump_file && (dump_flags & TDF_DETAILS))
7363 fprintf (dump_file, " not a single destination for this "
7364 "range\n");
7365 return SSA_PROP_VARYING;
7366 }
7367 }
7368 for (; k <= l; ++k)
7369 {
7370 if (CASE_LABEL (gimple_switch_label (stmt, k)) != CASE_LABEL (val))
7371 {
7372 if (dump_file && (dump_flags & TDF_DETAILS))
7373 fprintf (dump_file, " not a single destination for this "
7374 "range\n");
7375 return SSA_PROP_VARYING;
7376 }
7377 }
7378 }
7379
7380 *taken_edge_p = find_edge (gimple_bb (stmt),
7381 label_to_block (CASE_LABEL (val)));
7382
7383 if (dump_file && (dump_flags & TDF_DETAILS))
7384 {
7385 fprintf (dump_file, " will take edge to ");
7386 print_generic_stmt (dump_file, CASE_LABEL (val), 0);
7387 }
7388
7389 return SSA_PROP_INTERESTING;
7390 }
7391
7392
7393 /* Evaluate statement STMT. If the statement produces a useful range,
7394 return SSA_PROP_INTERESTING and record the SSA name with the
7395 interesting range into *OUTPUT_P.
7396
7397 If STMT is a conditional branch and we can determine its truth
7398 value, the taken edge is recorded in *TAKEN_EDGE_P.
7399
7400 If STMT produces a varying value, return SSA_PROP_VARYING. */
7401
7402 static enum ssa_prop_result
7403 vrp_visit_stmt (gimple stmt, edge *taken_edge_p, tree *output_p)
7404 {
7405 tree def;
7406 ssa_op_iter iter;
7407
7408 if (dump_file && (dump_flags & TDF_DETAILS))
7409 {
7410 fprintf (dump_file, "\nVisiting statement:\n");
7411 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
7412 fprintf (dump_file, "\n");
7413 }
7414
7415 if (!stmt_interesting_for_vrp (stmt))
7416 gcc_assert (stmt_ends_bb_p (stmt));
7417 else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
7418 {
7419 /* In general, assignments with virtual operands are not useful
7420 for deriving ranges, with the obvious exception of calls to
7421 builtin functions. */
7422 if ((is_gimple_call (stmt)
7423 && gimple_call_fndecl (stmt) != NULL_TREE
7424 && DECL_BUILT_IN (gimple_call_fndecl (stmt)))
7425 || !gimple_vuse (stmt))
7426 return vrp_visit_assignment_or_call (stmt, output_p);
7427 }
7428 else if (gimple_code (stmt) == GIMPLE_COND)
7429 return vrp_visit_cond_stmt (stmt, taken_edge_p);
7430 else if (gimple_code (stmt) == GIMPLE_SWITCH)
7431 return vrp_visit_switch_stmt (stmt, taken_edge_p);
7432
7433 /* All other statements produce nothing of interest for VRP, so mark
7434 their outputs varying and prevent further simulation. */
7435 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
7436 set_value_range_to_varying (get_value_range (def));
7437
7438 return SSA_PROP_VARYING;
7439 }
7440
7441 /* Union the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and
7442 { VR1TYPE, VR0MIN, VR0MAX } and store the result
7443 in { *VR0TYPE, *VR0MIN, *VR0MAX }. This may not be the smallest
7444 possible such range. The resulting range is not canonicalized. */
7445
7446 static void
7447 union_ranges (enum value_range_type *vr0type,
7448 tree *vr0min, tree *vr0max,
7449 enum value_range_type vr1type,
7450 tree vr1min, tree vr1max)
7451 {
7452 bool mineq = operand_equal_p (*vr0min, vr1min, 0);
7453 bool maxeq = operand_equal_p (*vr0max, vr1max, 0);
7454
7455 /* [] is vr0, () is vr1 in the following classification comments. */
7456 if (mineq && maxeq)
7457 {
7458 /* [( )] */
7459 if (*vr0type == vr1type)
7460 /* Nothing to do for equal ranges. */
7461 ;
7462 else if ((*vr0type == VR_RANGE
7463 && vr1type == VR_ANTI_RANGE)
7464 || (*vr0type == VR_ANTI_RANGE
7465 && vr1type == VR_RANGE))
7466 {
7467 /* For anti-range with range union the result is varying. */
7468 goto give_up;
7469 }
7470 else
7471 gcc_unreachable ();
7472 }
7473 else if (operand_less_p (*vr0max, vr1min) == 1
7474 || operand_less_p (vr1max, *vr0min) == 1)
7475 {
7476 /* [ ] ( ) or ( ) [ ]
7477 If the ranges have an empty intersection, result of the union
7478 operation is the anti-range or if both are anti-ranges
7479 it covers all. */
7480 if (*vr0type == VR_ANTI_RANGE
7481 && vr1type == VR_ANTI_RANGE)
7482 goto give_up;
7483 else if (*vr0type == VR_ANTI_RANGE
7484 && vr1type == VR_RANGE)
7485 ;
7486 else if (*vr0type == VR_RANGE
7487 && vr1type == VR_ANTI_RANGE)
7488 {
7489 *vr0type = vr1type;
7490 *vr0min = vr1min;
7491 *vr0max = vr1max;
7492 }
7493 else if (*vr0type == VR_RANGE
7494 && vr1type == VR_RANGE)
7495 {
7496 /* The result is the convex hull of both ranges. */
7497 if (operand_less_p (*vr0max, vr1min) == 1)
7498 {
7499 /* If the result can be an anti-range, create one. */
7500 if (TREE_CODE (*vr0max) == INTEGER_CST
7501 && TREE_CODE (vr1min) == INTEGER_CST
7502 && vrp_val_is_min (*vr0min)
7503 && vrp_val_is_max (vr1max))
7504 {
7505 tree min = int_const_binop (PLUS_EXPR,
7506 *vr0max, integer_one_node);
7507 tree max = int_const_binop (MINUS_EXPR,
7508 vr1min, integer_one_node);
7509 if (!operand_less_p (max, min))
7510 {
7511 *vr0type = VR_ANTI_RANGE;
7512 *vr0min = min;
7513 *vr0max = max;
7514 }
7515 else
7516 *vr0max = vr1max;
7517 }
7518 else
7519 *vr0max = vr1max;
7520 }
7521 else
7522 {
7523 /* If the result can be an anti-range, create one. */
7524 if (TREE_CODE (vr1max) == INTEGER_CST
7525 && TREE_CODE (*vr0min) == INTEGER_CST
7526 && vrp_val_is_min (vr1min)
7527 && vrp_val_is_max (*vr0max))
7528 {
7529 tree min = int_const_binop (PLUS_EXPR,
7530 vr1max, integer_one_node);
7531 tree max = int_const_binop (MINUS_EXPR,
7532 *vr0min, integer_one_node);
7533 if (!operand_less_p (max, min))
7534 {
7535 *vr0type = VR_ANTI_RANGE;
7536 *vr0min = min;
7537 *vr0max = max;
7538 }
7539 else
7540 *vr0min = vr1min;
7541 }
7542 else
7543 *vr0min = vr1min;
7544 }
7545 }
7546 else
7547 gcc_unreachable ();
7548 }
7549 else if ((maxeq || operand_less_p (vr1max, *vr0max) == 1)
7550 && (mineq || operand_less_p (*vr0min, vr1min) == 1))
7551 {
7552 /* [ ( ) ] or [( ) ] or [ ( )] */
7553 if (*vr0type == VR_RANGE
7554 && vr1type == VR_RANGE)
7555 ;
7556 else if (*vr0type == VR_ANTI_RANGE
7557 && vr1type == VR_ANTI_RANGE)
7558 {
7559 *vr0type = vr1type;
7560 *vr0min = vr1min;
7561 *vr0max = vr1max;
7562 }
7563 else if (*vr0type == VR_ANTI_RANGE
7564 && vr1type == VR_RANGE)
7565 {
7566 /* Arbitrarily choose the right or left gap. */
7567 if (!mineq && TREE_CODE (vr1min) == INTEGER_CST)
7568 *vr0max = int_const_binop (MINUS_EXPR, vr1min, integer_one_node);
7569 else if (!maxeq && TREE_CODE (vr1max) == INTEGER_CST)
7570 *vr0min = int_const_binop (PLUS_EXPR, vr1max, integer_one_node);
7571 else
7572 goto give_up;
7573 }
7574 else if (*vr0type == VR_RANGE
7575 && vr1type == VR_ANTI_RANGE)
7576 /* The result covers everything. */
7577 goto give_up;
7578 else
7579 gcc_unreachable ();
7580 }
7581 else if ((maxeq || operand_less_p (*vr0max, vr1max) == 1)
7582 && (mineq || operand_less_p (vr1min, *vr0min) == 1))
7583 {
7584 /* ( [ ] ) or ([ ] ) or ( [ ]) */
7585 if (*vr0type == VR_RANGE
7586 && vr1type == VR_RANGE)
7587 {
7588 *vr0type = vr1type;
7589 *vr0min = vr1min;
7590 *vr0max = vr1max;
7591 }
7592 else if (*vr0type == VR_ANTI_RANGE
7593 && vr1type == VR_ANTI_RANGE)
7594 ;
7595 else if (*vr0type == VR_RANGE
7596 && vr1type == VR_ANTI_RANGE)
7597 {
7598 *vr0type = VR_ANTI_RANGE;
7599 if (!mineq && TREE_CODE (*vr0min) == INTEGER_CST)
7600 {
7601 *vr0max = int_const_binop (MINUS_EXPR, *vr0min, integer_one_node);
7602 *vr0min = vr1min;
7603 }
7604 else if (!maxeq && TREE_CODE (*vr0max) == INTEGER_CST)
7605 {
7606 *vr0min = int_const_binop (PLUS_EXPR, *vr0max, integer_one_node);
7607 *vr0max = vr1max;
7608 }
7609 else
7610 goto give_up;
7611 }
7612 else if (*vr0type == VR_ANTI_RANGE
7613 && vr1type == VR_RANGE)
7614 /* The result covers everything. */
7615 goto give_up;
7616 else
7617 gcc_unreachable ();
7618 }
7619 else if ((operand_less_p (vr1min, *vr0max) == 1
7620 || operand_equal_p (vr1min, *vr0max, 0))
7621 && operand_less_p (*vr0min, vr1min) == 1)
7622 {
7623 /* [ ( ] ) or [ ]( ) */
7624 if (*vr0type == VR_RANGE
7625 && vr1type == VR_RANGE)
7626 *vr0max = vr1max;
7627 else if (*vr0type == VR_ANTI_RANGE
7628 && vr1type == VR_ANTI_RANGE)
7629 *vr0min = vr1min;
7630 else if (*vr0type == VR_ANTI_RANGE
7631 && vr1type == VR_RANGE)
7632 {
7633 if (TREE_CODE (vr1min) == INTEGER_CST)
7634 *vr0max = int_const_binop (MINUS_EXPR, vr1min, integer_one_node);
7635 else
7636 goto give_up;
7637 }
7638 else if (*vr0type == VR_RANGE
7639 && vr1type == VR_ANTI_RANGE)
7640 {
7641 if (TREE_CODE (*vr0max) == INTEGER_CST)
7642 {
7643 *vr0type = vr1type;
7644 *vr0min = int_const_binop (PLUS_EXPR, *vr0max, integer_one_node);
7645 *vr0max = vr1max;
7646 }
7647 else
7648 goto give_up;
7649 }
7650 else
7651 gcc_unreachable ();
7652 }
7653 else if ((operand_less_p (*vr0min, vr1max) == 1
7654 || operand_equal_p (*vr0min, vr1max, 0))
7655 && operand_less_p (vr1min, *vr0min) == 1)
7656 {
7657 /* ( [ ) ] or ( )[ ] */
7658 if (*vr0type == VR_RANGE
7659 && vr1type == VR_RANGE)
7660 *vr0min = vr1min;
7661 else if (*vr0type == VR_ANTI_RANGE
7662 && vr1type == VR_ANTI_RANGE)
7663 *vr0max = vr1max;
7664 else if (*vr0type == VR_ANTI_RANGE
7665 && vr1type == VR_RANGE)
7666 {
7667 if (TREE_CODE (vr1max) == INTEGER_CST)
7668 *vr0min = int_const_binop (PLUS_EXPR, vr1max, integer_one_node);
7669 else
7670 goto give_up;
7671 }
7672 else if (*vr0type == VR_RANGE
7673 && vr1type == VR_ANTI_RANGE)
7674 {
7675 if (TREE_CODE (*vr0min) == INTEGER_CST)
7676 {
7677 *vr0type = vr1type;
7678 *vr0min = vr1min;
7679 *vr0max = int_const_binop (MINUS_EXPR, *vr0min, integer_one_node);
7680 }
7681 else
7682 goto give_up;
7683 }
7684 else
7685 gcc_unreachable ();
7686 }
7687 else
7688 goto give_up;
7689
7690 return;
7691
7692 give_up:
7693 *vr0type = VR_VARYING;
7694 *vr0min = NULL_TREE;
7695 *vr0max = NULL_TREE;
7696 }
7697
7698 /* Intersect the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and
7699 { VR1TYPE, VR0MIN, VR0MAX } and store the result
7700 in { *VR0TYPE, *VR0MIN, *VR0MAX }. This may not be the smallest
7701 possible such range. The resulting range is not canonicalized. */
7702
7703 static void
7704 intersect_ranges (enum value_range_type *vr0type,
7705 tree *vr0min, tree *vr0max,
7706 enum value_range_type vr1type,
7707 tree vr1min, tree vr1max)
7708 {
7709 bool mineq = operand_equal_p (*vr0min, vr1min, 0);
7710 bool maxeq = operand_equal_p (*vr0max, vr1max, 0);
7711
7712 /* [] is vr0, () is vr1 in the following classification comments. */
7713 if (mineq && maxeq)
7714 {
7715 /* [( )] */
7716 if (*vr0type == vr1type)
7717 /* Nothing to do for equal ranges. */
7718 ;
7719 else if ((*vr0type == VR_RANGE
7720 && vr1type == VR_ANTI_RANGE)
7721 || (*vr0type == VR_ANTI_RANGE
7722 && vr1type == VR_RANGE))
7723 {
7724 /* For anti-range with range intersection the result is empty. */
7725 *vr0type = VR_UNDEFINED;
7726 *vr0min = NULL_TREE;
7727 *vr0max = NULL_TREE;
7728 }
7729 else
7730 gcc_unreachable ();
7731 }
7732 else if (operand_less_p (*vr0max, vr1min) == 1
7733 || operand_less_p (vr1max, *vr0min) == 1)
7734 {
7735 /* [ ] ( ) or ( ) [ ]
7736 If the ranges have an empty intersection, the result of the
7737 intersect operation is the range for intersecting an
7738 anti-range with a range or empty when intersecting two ranges. */
7739 if (*vr0type == VR_RANGE
7740 && vr1type == VR_ANTI_RANGE)
7741 ;
7742 else if (*vr0type == VR_ANTI_RANGE
7743 && vr1type == VR_RANGE)
7744 {
7745 *vr0type = vr1type;
7746 *vr0min = vr1min;
7747 *vr0max = vr1max;
7748 }
7749 else if (*vr0type == VR_RANGE
7750 && vr1type == VR_RANGE)
7751 {
7752 *vr0type = VR_UNDEFINED;
7753 *vr0min = NULL_TREE;
7754 *vr0max = NULL_TREE;
7755 }
7756 else if (*vr0type == VR_ANTI_RANGE
7757 && vr1type == VR_ANTI_RANGE)
7758 {
7759 /* If the anti-ranges are adjacent to each other merge them. */
7760 if (TREE_CODE (*vr0max) == INTEGER_CST
7761 && TREE_CODE (vr1min) == INTEGER_CST
7762 && operand_less_p (*vr0max, vr1min) == 1
7763 && integer_onep (int_const_binop (MINUS_EXPR,
7764 vr1min, *vr0max)))
7765 *vr0max = vr1max;
7766 else if (TREE_CODE (vr1max) == INTEGER_CST
7767 && TREE_CODE (*vr0min) == INTEGER_CST
7768 && operand_less_p (vr1max, *vr0min) == 1
7769 && integer_onep (int_const_binop (MINUS_EXPR,
7770 *vr0min, vr1max)))
7771 *vr0min = vr1min;
7772 /* Else arbitrarily take VR0. */
7773 }
7774 }
7775 else if ((maxeq || operand_less_p (vr1max, *vr0max) == 1)
7776 && (mineq || operand_less_p (*vr0min, vr1min) == 1))
7777 {
7778 /* [ ( ) ] or [( ) ] or [ ( )] */
7779 if (*vr0type == VR_RANGE
7780 && vr1type == VR_RANGE)
7781 {
7782 /* If both are ranges the result is the inner one. */
7783 *vr0type = vr1type;
7784 *vr0min = vr1min;
7785 *vr0max = vr1max;
7786 }
7787 else if (*vr0type == VR_RANGE
7788 && vr1type == VR_ANTI_RANGE)
7789 {
7790 /* Choose the right gap if the left one is empty. */
7791 if (mineq)
7792 {
7793 if (TREE_CODE (vr1max) == INTEGER_CST)
7794 *vr0min = int_const_binop (PLUS_EXPR, vr1max, integer_one_node);
7795 else
7796 *vr0min = vr1max;
7797 }
7798 /* Choose the left gap if the right one is empty. */
7799 else if (maxeq)
7800 {
7801 if (TREE_CODE (vr1min) == INTEGER_CST)
7802 *vr0max = int_const_binop (MINUS_EXPR, vr1min,
7803 integer_one_node);
7804 else
7805 *vr0max = vr1min;
7806 }
7807 /* Choose the anti-range if the range is effectively varying. */
7808 else if (vrp_val_is_min (*vr0min)
7809 && vrp_val_is_max (*vr0max))
7810 {
7811 *vr0type = vr1type;
7812 *vr0min = vr1min;
7813 *vr0max = vr1max;
7814 }
7815 /* Else choose the range. */
7816 }
7817 else if (*vr0type == VR_ANTI_RANGE
7818 && vr1type == VR_ANTI_RANGE)
7819 /* If both are anti-ranges the result is the outer one. */
7820 ;
7821 else if (*vr0type == VR_ANTI_RANGE
7822 && vr1type == VR_RANGE)
7823 {
7824 /* The intersection is empty. */
7825 *vr0type = VR_UNDEFINED;
7826 *vr0min = NULL_TREE;
7827 *vr0max = NULL_TREE;
7828 }
7829 else
7830 gcc_unreachable ();
7831 }
7832 else if ((maxeq || operand_less_p (*vr0max, vr1max) == 1)
7833 && (mineq || operand_less_p (vr1min, *vr0min) == 1))
7834 {
7835 /* ( [ ] ) or ([ ] ) or ( [ ]) */
7836 if (*vr0type == VR_RANGE
7837 && vr1type == VR_RANGE)
7838 /* Choose the inner range. */
7839 ;
7840 else if (*vr0type == VR_ANTI_RANGE
7841 && vr1type == VR_RANGE)
7842 {
7843 /* Choose the right gap if the left is empty. */
7844 if (mineq)
7845 {
7846 *vr0type = VR_RANGE;
7847 if (TREE_CODE (*vr0max) == INTEGER_CST)
7848 *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
7849 integer_one_node);
7850 else
7851 *vr0min = *vr0max;
7852 *vr0max = vr1max;
7853 }
7854 /* Choose the left gap if the right is empty. */
7855 else if (maxeq)
7856 {
7857 *vr0type = VR_RANGE;
7858 if (TREE_CODE (*vr0min) == INTEGER_CST)
7859 *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
7860 integer_one_node);
7861 else
7862 *vr0max = *vr0min;
7863 *vr0min = vr1min;
7864 }
7865 /* Choose the anti-range if the range is effectively varying. */
7866 else if (vrp_val_is_min (vr1min)
7867 && vrp_val_is_max (vr1max))
7868 ;
7869 /* Else choose the range. */
7870 else
7871 {
7872 *vr0type = vr1type;
7873 *vr0min = vr1min;
7874 *vr0max = vr1max;
7875 }
7876 }
7877 else if (*vr0type == VR_ANTI_RANGE
7878 && vr1type == VR_ANTI_RANGE)
7879 {
7880 /* If both are anti-ranges the result is the outer one. */
7881 *vr0type = vr1type;
7882 *vr0min = vr1min;
7883 *vr0max = vr1max;
7884 }
7885 else if (vr1type == VR_ANTI_RANGE
7886 && *vr0type == VR_RANGE)
7887 {
7888 /* The intersection is empty. */
7889 *vr0type = VR_UNDEFINED;
7890 *vr0min = NULL_TREE;
7891 *vr0max = NULL_TREE;
7892 }
7893 else
7894 gcc_unreachable ();
7895 }
7896 else if ((operand_less_p (vr1min, *vr0max) == 1
7897 || operand_equal_p (vr1min, *vr0max, 0))
7898 && operand_less_p (*vr0min, vr1min) == 1)
7899 {
7900 /* [ ( ] ) or [ ]( ) */
7901 if (*vr0type == VR_ANTI_RANGE
7902 && vr1type == VR_ANTI_RANGE)
7903 *vr0max = vr1max;
7904 else if (*vr0type == VR_RANGE
7905 && vr1type == VR_RANGE)
7906 *vr0min = vr1min;
7907 else if (*vr0type == VR_RANGE
7908 && vr1type == VR_ANTI_RANGE)
7909 {
7910 if (TREE_CODE (vr1min) == INTEGER_CST)
7911 *vr0max = int_const_binop (MINUS_EXPR, vr1min,
7912 integer_one_node);
7913 else
7914 *vr0max = vr1min;
7915 }
7916 else if (*vr0type == VR_ANTI_RANGE
7917 && vr1type == VR_RANGE)
7918 {
7919 *vr0type = VR_RANGE;
7920 if (TREE_CODE (*vr0max) == INTEGER_CST)
7921 *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
7922 integer_one_node);
7923 else
7924 *vr0min = *vr0max;
7925 *vr0max = vr1max;
7926 }
7927 else
7928 gcc_unreachable ();
7929 }
7930 else if ((operand_less_p (*vr0min, vr1max) == 1
7931 || operand_equal_p (*vr0min, vr1max, 0))
7932 && operand_less_p (vr1min, *vr0min) == 1)
7933 {
7934 /* ( [ ) ] or ( )[ ] */
7935 if (*vr0type == VR_ANTI_RANGE
7936 && vr1type == VR_ANTI_RANGE)
7937 *vr0min = vr1min;
7938 else if (*vr0type == VR_RANGE
7939 && vr1type == VR_RANGE)
7940 *vr0max = vr1max;
7941 else if (*vr0type == VR_RANGE
7942 && vr1type == VR_ANTI_RANGE)
7943 {
7944 if (TREE_CODE (vr1max) == INTEGER_CST)
7945 *vr0min = int_const_binop (PLUS_EXPR, vr1max,
7946 integer_one_node);
7947 else
7948 *vr0min = vr1max;
7949 }
7950 else if (*vr0type == VR_ANTI_RANGE
7951 && vr1type == VR_RANGE)
7952 {
7953 *vr0type = VR_RANGE;
7954 if (TREE_CODE (*vr0min) == INTEGER_CST)
7955 *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
7956 integer_one_node);
7957 else
7958 *vr0max = *vr0min;
7959 *vr0min = vr1min;
7960 }
7961 else
7962 gcc_unreachable ();
7963 }
7964
7965 /* As a fallback simply use { *VRTYPE, *VR0MIN, *VR0MAX } as
7966 result for the intersection. That's always a conservative
7967 correct estimate. */
7968
7969 return;
7970 }
7971
7972
7973 /* Intersect the two value-ranges *VR0 and *VR1 and store the result
7974 in *VR0. This may not be the smallest possible such range. */
7975
7976 static void
7977 vrp_intersect_ranges_1 (value_range_t *vr0, value_range_t *vr1)
7978 {
7979 value_range_t saved;
7980
7981 /* If either range is VR_VARYING the other one wins. */
7982 if (vr1->type == VR_VARYING)
7983 return;
7984 if (vr0->type == VR_VARYING)
7985 {
7986 copy_value_range (vr0, vr1);
7987 return;
7988 }
7989
7990 /* When either range is VR_UNDEFINED the resulting range is
7991 VR_UNDEFINED, too. */
7992 if (vr0->type == VR_UNDEFINED)
7993 return;
7994 if (vr1->type == VR_UNDEFINED)
7995 {
7996 set_value_range_to_undefined (vr0);
7997 return;
7998 }
7999
8000 /* Save the original vr0 so we can return it as conservative intersection
8001 result when our worker turns things to varying. */
8002 saved = *vr0;
8003 intersect_ranges (&vr0->type, &vr0->min, &vr0->max,
8004 vr1->type, vr1->min, vr1->max);
8005 /* Make sure to canonicalize the result though as the inversion of a
8006 VR_RANGE can still be a VR_RANGE. */
8007 set_and_canonicalize_value_range (vr0, vr0->type,
8008 vr0->min, vr0->max, vr0->equiv);
8009 /* If that failed, use the saved original VR0. */
8010 if (vr0->type == VR_VARYING)
8011 {
8012 *vr0 = saved;
8013 return;
8014 }
8015 /* If the result is VR_UNDEFINED there is no need to mess with
8016 the equivalencies. */
8017 if (vr0->type == VR_UNDEFINED)
8018 return;
8019
8020 /* The resulting set of equivalences for range intersection is the union of
8021 the two sets. */
8022 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
8023 bitmap_ior_into (vr0->equiv, vr1->equiv);
8024 else if (vr1->equiv && !vr0->equiv)
8025 bitmap_copy (vr0->equiv, vr1->equiv);
8026 }
8027
8028 static void
8029 vrp_intersect_ranges (value_range_t *vr0, value_range_t *vr1)
8030 {
8031 if (dump_file && (dump_flags & TDF_DETAILS))
8032 {
8033 fprintf (dump_file, "Intersecting\n ");
8034 dump_value_range (dump_file, vr0);
8035 fprintf (dump_file, "\nand\n ");
8036 dump_value_range (dump_file, vr1);
8037 fprintf (dump_file, "\n");
8038 }
8039 vrp_intersect_ranges_1 (vr0, vr1);
8040 if (dump_file && (dump_flags & TDF_DETAILS))
8041 {
8042 fprintf (dump_file, "to\n ");
8043 dump_value_range (dump_file, vr0);
8044 fprintf (dump_file, "\n");
8045 }
8046 }
8047
8048 /* Meet operation for value ranges. Given two value ranges VR0 and
8049 VR1, store in VR0 a range that contains both VR0 and VR1. This
8050 may not be the smallest possible such range. */
8051
8052 static void
8053 vrp_meet_1 (value_range_t *vr0, value_range_t *vr1)
8054 {
8055 value_range_t saved;
8056
8057 if (vr0->type == VR_UNDEFINED)
8058 {
8059 set_value_range (vr0, vr1->type, vr1->min, vr1->max, vr1->equiv);
8060 return;
8061 }
8062
8063 if (vr1->type == VR_UNDEFINED)
8064 {
8065 /* VR0 already has the resulting range. */
8066 return;
8067 }
8068
8069 if (vr0->type == VR_VARYING)
8070 {
8071 /* Nothing to do. VR0 already has the resulting range. */
8072 return;
8073 }
8074
8075 if (vr1->type == VR_VARYING)
8076 {
8077 set_value_range_to_varying (vr0);
8078 return;
8079 }
8080
8081 saved = *vr0;
8082 union_ranges (&vr0->type, &vr0->min, &vr0->max,
8083 vr1->type, vr1->min, vr1->max);
8084 if (vr0->type == VR_VARYING)
8085 {
8086 /* Failed to find an efficient meet. Before giving up and setting
8087 the result to VARYING, see if we can at least derive a useful
8088 anti-range. FIXME, all this nonsense about distinguishing
8089 anti-ranges from ranges is necessary because of the odd
8090 semantics of range_includes_zero_p and friends. */
8091 if (((saved.type == VR_RANGE
8092 && range_includes_zero_p (saved.min, saved.max) == 0)
8093 || (saved.type == VR_ANTI_RANGE
8094 && range_includes_zero_p (saved.min, saved.max) == 1))
8095 && ((vr1->type == VR_RANGE
8096 && range_includes_zero_p (vr1->min, vr1->max) == 0)
8097 || (vr1->type == VR_ANTI_RANGE
8098 && range_includes_zero_p (vr1->min, vr1->max) == 1)))
8099 {
8100 set_value_range_to_nonnull (vr0, TREE_TYPE (saved.min));
8101
8102 /* Since this meet operation did not result from the meeting of
8103 two equivalent names, VR0 cannot have any equivalences. */
8104 if (vr0->equiv)
8105 bitmap_clear (vr0->equiv);
8106 return;
8107 }
8108
8109 set_value_range_to_varying (vr0);
8110 return;
8111 }
8112 set_and_canonicalize_value_range (vr0, vr0->type, vr0->min, vr0->max,
8113 vr0->equiv);
8114 if (vr0->type == VR_VARYING)
8115 return;
8116
8117 /* The resulting set of equivalences is always the intersection of
8118 the two sets. */
8119 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
8120 bitmap_and_into (vr0->equiv, vr1->equiv);
8121 else if (vr0->equiv && !vr1->equiv)
8122 bitmap_clear (vr0->equiv);
8123 }
8124
8125 static void
8126 vrp_meet (value_range_t *vr0, value_range_t *vr1)
8127 {
8128 if (dump_file && (dump_flags & TDF_DETAILS))
8129 {
8130 fprintf (dump_file, "Meeting\n ");
8131 dump_value_range (dump_file, vr0);
8132 fprintf (dump_file, "\nand\n ");
8133 dump_value_range (dump_file, vr1);
8134 fprintf (dump_file, "\n");
8135 }
8136 vrp_meet_1 (vr0, vr1);
8137 if (dump_file && (dump_flags & TDF_DETAILS))
8138 {
8139 fprintf (dump_file, "to\n ");
8140 dump_value_range (dump_file, vr0);
8141 fprintf (dump_file, "\n");
8142 }
8143 }
8144
8145
8146 /* Visit all arguments for PHI node PHI that flow through executable
8147 edges. If a valid value range can be derived from all the incoming
8148 value ranges, set a new range for the LHS of PHI. */
8149
8150 static enum ssa_prop_result
8151 vrp_visit_phi_node (gimple phi)
8152 {
8153 size_t i;
8154 tree lhs = PHI_RESULT (phi);
8155 value_range_t *lhs_vr = get_value_range (lhs);
8156 value_range_t vr_result = VR_INITIALIZER;
8157 bool first = true;
8158 int edges, old_edges;
8159 struct loop *l;
8160
8161 if (dump_file && (dump_flags & TDF_DETAILS))
8162 {
8163 fprintf (dump_file, "\nVisiting PHI node: ");
8164 print_gimple_stmt (dump_file, phi, 0, dump_flags);
8165 }
8166
8167 edges = 0;
8168 for (i = 0; i < gimple_phi_num_args (phi); i++)
8169 {
8170 edge e = gimple_phi_arg_edge (phi, i);
8171
8172 if (dump_file && (dump_flags & TDF_DETAILS))
8173 {
8174 fprintf (dump_file,
8175 "\n Argument #%d (%d -> %d %sexecutable)\n",
8176 (int) i, e->src->index, e->dest->index,
8177 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
8178 }
8179
8180 if (e->flags & EDGE_EXECUTABLE)
8181 {
8182 tree arg = PHI_ARG_DEF (phi, i);
8183 value_range_t vr_arg;
8184
8185 ++edges;
8186
8187 if (TREE_CODE (arg) == SSA_NAME)
8188 {
8189 vr_arg = *(get_value_range (arg));
8190 /* Do not allow equivalences or symbolic ranges to leak in from
8191 backedges. That creates invalid equivalencies.
8192 See PR53465 and PR54767. */
8193 if (e->flags & EDGE_DFS_BACK
8194 && (vr_arg.type == VR_RANGE
8195 || vr_arg.type == VR_ANTI_RANGE))
8196 {
8197 vr_arg.equiv = NULL;
8198 if (symbolic_range_p (&vr_arg))
8199 {
8200 vr_arg.type = VR_VARYING;
8201 vr_arg.min = NULL_TREE;
8202 vr_arg.max = NULL_TREE;
8203 }
8204 }
8205 }
8206 else
8207 {
8208 if (is_overflow_infinity (arg))
8209 {
8210 arg = copy_node (arg);
8211 TREE_OVERFLOW (arg) = 0;
8212 }
8213
8214 vr_arg.type = VR_RANGE;
8215 vr_arg.min = arg;
8216 vr_arg.max = arg;
8217 vr_arg.equiv = NULL;
8218 }
8219
8220 if (dump_file && (dump_flags & TDF_DETAILS))
8221 {
8222 fprintf (dump_file, "\t");
8223 print_generic_expr (dump_file, arg, dump_flags);
8224 fprintf (dump_file, "\n\tValue: ");
8225 dump_value_range (dump_file, &vr_arg);
8226 fprintf (dump_file, "\n");
8227 }
8228
8229 if (first)
8230 copy_value_range (&vr_result, &vr_arg);
8231 else
8232 vrp_meet (&vr_result, &vr_arg);
8233 first = false;
8234
8235 if (vr_result.type == VR_VARYING)
8236 break;
8237 }
8238 }
8239
8240 if (vr_result.type == VR_VARYING)
8241 goto varying;
8242 else if (vr_result.type == VR_UNDEFINED)
8243 goto update_range;
8244
8245 old_edges = vr_phi_edge_counts[SSA_NAME_VERSION (lhs)];
8246 vr_phi_edge_counts[SSA_NAME_VERSION (lhs)] = edges;
8247
8248 /* To prevent infinite iterations in the algorithm, derive ranges
8249 when the new value is slightly bigger or smaller than the
8250 previous one. We don't do this if we have seen a new executable
8251 edge; this helps us avoid an overflow infinity for conditionals
8252 which are not in a loop. If the old value-range was VR_UNDEFINED
8253 use the updated range and iterate one more time. */
8254 if (edges > 0
8255 && gimple_phi_num_args (phi) > 1
8256 && edges == old_edges
8257 && lhs_vr->type != VR_UNDEFINED)
8258 {
8259 int cmp_min = compare_values (lhs_vr->min, vr_result.min);
8260 int cmp_max = compare_values (lhs_vr->max, vr_result.max);
8261
8262 /* For non VR_RANGE or for pointers fall back to varying if
8263 the range changed. */
8264 if ((lhs_vr->type != VR_RANGE || vr_result.type != VR_RANGE
8265 || POINTER_TYPE_P (TREE_TYPE (lhs)))
8266 && (cmp_min != 0 || cmp_max != 0))
8267 goto varying;
8268
8269 /* If the new minimum is smaller or larger than the previous
8270 one, go all the way to -INF. In the first case, to avoid
8271 iterating millions of times to reach -INF, and in the
8272 other case to avoid infinite bouncing between different
8273 minimums. */
8274 if (cmp_min > 0 || cmp_min < 0)
8275 {
8276 if (!needs_overflow_infinity (TREE_TYPE (vr_result.min))
8277 || !vrp_var_may_overflow (lhs, phi))
8278 vr_result.min = TYPE_MIN_VALUE (TREE_TYPE (vr_result.min));
8279 else if (supports_overflow_infinity (TREE_TYPE (vr_result.min)))
8280 vr_result.min =
8281 negative_overflow_infinity (TREE_TYPE (vr_result.min));
8282 }
8283
8284 /* Similarly, if the new maximum is smaller or larger than
8285 the previous one, go all the way to +INF. */
8286 if (cmp_max < 0 || cmp_max > 0)
8287 {
8288 if (!needs_overflow_infinity (TREE_TYPE (vr_result.max))
8289 || !vrp_var_may_overflow (lhs, phi))
8290 vr_result.max = TYPE_MAX_VALUE (TREE_TYPE (vr_result.max));
8291 else if (supports_overflow_infinity (TREE_TYPE (vr_result.max)))
8292 vr_result.max =
8293 positive_overflow_infinity (TREE_TYPE (vr_result.max));
8294 }
8295
8296 /* If we dropped either bound to +-INF then if this is a loop
8297 PHI node SCEV may known more about its value-range. */
8298 if ((cmp_min > 0 || cmp_min < 0
8299 || cmp_max < 0 || cmp_max > 0)
8300 && current_loops
8301 && (l = loop_containing_stmt (phi))
8302 && l->header == gimple_bb (phi))
8303 adjust_range_with_scev (&vr_result, l, phi, lhs);
8304
8305 /* If we will end up with a (-INF, +INF) range, set it to
8306 VARYING. Same if the previous max value was invalid for
8307 the type and we end up with vr_result.min > vr_result.max. */
8308 if ((vrp_val_is_max (vr_result.max)
8309 && vrp_val_is_min (vr_result.min))
8310 || compare_values (vr_result.min,
8311 vr_result.max) > 0)
8312 goto varying;
8313 }
8314
8315 /* If the new range is different than the previous value, keep
8316 iterating. */
8317 update_range:
8318 if (update_value_range (lhs, &vr_result))
8319 {
8320 if (dump_file && (dump_flags & TDF_DETAILS))
8321 {
8322 fprintf (dump_file, "Found new range for ");
8323 print_generic_expr (dump_file, lhs, 0);
8324 fprintf (dump_file, ": ");
8325 dump_value_range (dump_file, &vr_result);
8326 fprintf (dump_file, "\n\n");
8327 }
8328
8329 return SSA_PROP_INTERESTING;
8330 }
8331
8332 /* Nothing changed, don't add outgoing edges. */
8333 return SSA_PROP_NOT_INTERESTING;
8334
8335 /* No match found. Set the LHS to VARYING. */
8336 varying:
8337 set_value_range_to_varying (lhs_vr);
8338 return SSA_PROP_VARYING;
8339 }
8340
8341 /* Simplify boolean operations if the source is known
8342 to be already a boolean. */
8343 static bool
8344 simplify_truth_ops_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
8345 {
8346 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
8347 tree lhs, op0, op1;
8348 bool need_conversion;
8349
8350 /* We handle only !=/== case here. */
8351 gcc_assert (rhs_code == EQ_EXPR || rhs_code == NE_EXPR);
8352
8353 op0 = gimple_assign_rhs1 (stmt);
8354 if (!op_with_boolean_value_range_p (op0))
8355 return false;
8356
8357 op1 = gimple_assign_rhs2 (stmt);
8358 if (!op_with_boolean_value_range_p (op1))
8359 return false;
8360
8361 /* Reduce number of cases to handle to NE_EXPR. As there is no
8362 BIT_XNOR_EXPR we cannot replace A == B with a single statement. */
8363 if (rhs_code == EQ_EXPR)
8364 {
8365 if (TREE_CODE (op1) == INTEGER_CST)
8366 op1 = int_const_binop (BIT_XOR_EXPR, op1, integer_one_node);
8367 else
8368 return false;
8369 }
8370
8371 lhs = gimple_assign_lhs (stmt);
8372 need_conversion
8373 = !useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (op0));
8374
8375 /* Make sure to not sign-extend a 1-bit 1 when converting the result. */
8376 if (need_conversion
8377 && !TYPE_UNSIGNED (TREE_TYPE (op0))
8378 && TYPE_PRECISION (TREE_TYPE (op0)) == 1
8379 && TYPE_PRECISION (TREE_TYPE (lhs)) > 1)
8380 return false;
8381
8382 /* For A != 0 we can substitute A itself. */
8383 if (integer_zerop (op1))
8384 gimple_assign_set_rhs_with_ops (gsi,
8385 need_conversion
8386 ? NOP_EXPR : TREE_CODE (op0),
8387 op0, NULL_TREE);
8388 /* For A != B we substitute A ^ B. Either with conversion. */
8389 else if (need_conversion)
8390 {
8391 tree tem = make_ssa_name (TREE_TYPE (op0), NULL);
8392 gimple newop = gimple_build_assign_with_ops (BIT_XOR_EXPR, tem, op0, op1);
8393 gsi_insert_before (gsi, newop, GSI_SAME_STMT);
8394 gimple_assign_set_rhs_with_ops (gsi, NOP_EXPR, tem, NULL_TREE);
8395 }
8396 /* Or without. */
8397 else
8398 gimple_assign_set_rhs_with_ops (gsi, BIT_XOR_EXPR, op0, op1);
8399 update_stmt (gsi_stmt (*gsi));
8400
8401 return true;
8402 }
8403
8404 /* Simplify a division or modulo operator to a right shift or
8405 bitwise and if the first operand is unsigned or is greater
8406 than zero and the second operand is an exact power of two. */
8407
8408 static bool
8409 simplify_div_or_mod_using_ranges (gimple stmt)
8410 {
8411 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
8412 tree val = NULL;
8413 tree op0 = gimple_assign_rhs1 (stmt);
8414 tree op1 = gimple_assign_rhs2 (stmt);
8415 value_range_t *vr = get_value_range (gimple_assign_rhs1 (stmt));
8416
8417 if (TYPE_UNSIGNED (TREE_TYPE (op0)))
8418 {
8419 val = integer_one_node;
8420 }
8421 else
8422 {
8423 bool sop = false;
8424
8425 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
8426
8427 if (val
8428 && sop
8429 && integer_onep (val)
8430 && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
8431 {
8432 location_t location;
8433
8434 if (!gimple_has_location (stmt))
8435 location = input_location;
8436 else
8437 location = gimple_location (stmt);
8438 warning_at (location, OPT_Wstrict_overflow,
8439 "assuming signed overflow does not occur when "
8440 "simplifying %</%> or %<%%%> to %<>>%> or %<&%>");
8441 }
8442 }
8443
8444 if (val && integer_onep (val))
8445 {
8446 tree t;
8447
8448 if (rhs_code == TRUNC_DIV_EXPR)
8449 {
8450 t = build_int_cst (integer_type_node, tree_log2 (op1));
8451 gimple_assign_set_rhs_code (stmt, RSHIFT_EXPR);
8452 gimple_assign_set_rhs1 (stmt, op0);
8453 gimple_assign_set_rhs2 (stmt, t);
8454 }
8455 else
8456 {
8457 t = build_int_cst (TREE_TYPE (op1), 1);
8458 t = int_const_binop (MINUS_EXPR, op1, t);
8459 t = fold_convert (TREE_TYPE (op0), t);
8460
8461 gimple_assign_set_rhs_code (stmt, BIT_AND_EXPR);
8462 gimple_assign_set_rhs1 (stmt, op0);
8463 gimple_assign_set_rhs2 (stmt, t);
8464 }
8465
8466 update_stmt (stmt);
8467 return true;
8468 }
8469
8470 return false;
8471 }
8472
8473 /* If the operand to an ABS_EXPR is >= 0, then eliminate the
8474 ABS_EXPR. If the operand is <= 0, then simplify the
8475 ABS_EXPR into a NEGATE_EXPR. */
8476
8477 static bool
8478 simplify_abs_using_ranges (gimple stmt)
8479 {
8480 tree val = NULL;
8481 tree op = gimple_assign_rhs1 (stmt);
8482 tree type = TREE_TYPE (op);
8483 value_range_t *vr = get_value_range (op);
8484
8485 if (TYPE_UNSIGNED (type))
8486 {
8487 val = integer_zero_node;
8488 }
8489 else if (vr)
8490 {
8491 bool sop = false;
8492
8493 val = compare_range_with_value (LE_EXPR, vr, integer_zero_node, &sop);
8494 if (!val)
8495 {
8496 sop = false;
8497 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node,
8498 &sop);
8499
8500 if (val)
8501 {
8502 if (integer_zerop (val))
8503 val = integer_one_node;
8504 else if (integer_onep (val))
8505 val = integer_zero_node;
8506 }
8507 }
8508
8509 if (val
8510 && (integer_onep (val) || integer_zerop (val)))
8511 {
8512 if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
8513 {
8514 location_t location;
8515
8516 if (!gimple_has_location (stmt))
8517 location = input_location;
8518 else
8519 location = gimple_location (stmt);
8520 warning_at (location, OPT_Wstrict_overflow,
8521 "assuming signed overflow does not occur when "
8522 "simplifying %<abs (X)%> to %<X%> or %<-X%>");
8523 }
8524
8525 gimple_assign_set_rhs1 (stmt, op);
8526 if (integer_onep (val))
8527 gimple_assign_set_rhs_code (stmt, NEGATE_EXPR);
8528 else
8529 gimple_assign_set_rhs_code (stmt, SSA_NAME);
8530 update_stmt (stmt);
8531 return true;
8532 }
8533 }
8534
8535 return false;
8536 }
8537
8538 /* Optimize away redundant BIT_AND_EXPR and BIT_IOR_EXPR.
8539 If all the bits that are being cleared by & are already
8540 known to be zero from VR, or all the bits that are being
8541 set by | are already known to be one from VR, the bit
8542 operation is redundant. */
8543
8544 static bool
8545 simplify_bit_ops_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
8546 {
8547 tree op0 = gimple_assign_rhs1 (stmt);
8548 tree op1 = gimple_assign_rhs2 (stmt);
8549 tree op = NULL_TREE;
8550 value_range_t vr0 = VR_INITIALIZER;
8551 value_range_t vr1 = VR_INITIALIZER;
8552 double_int may_be_nonzero0, may_be_nonzero1;
8553 double_int must_be_nonzero0, must_be_nonzero1;
8554 double_int mask;
8555
8556 if (TREE_CODE (op0) == SSA_NAME)
8557 vr0 = *(get_value_range (op0));
8558 else if (is_gimple_min_invariant (op0))
8559 set_value_range_to_value (&vr0, op0, NULL);
8560 else
8561 return false;
8562
8563 if (TREE_CODE (op1) == SSA_NAME)
8564 vr1 = *(get_value_range (op1));
8565 else if (is_gimple_min_invariant (op1))
8566 set_value_range_to_value (&vr1, op1, NULL);
8567 else
8568 return false;
8569
8570 if (!zero_nonzero_bits_from_vr (&vr0, &may_be_nonzero0, &must_be_nonzero0))
8571 return false;
8572 if (!zero_nonzero_bits_from_vr (&vr1, &may_be_nonzero1, &must_be_nonzero1))
8573 return false;
8574
8575 switch (gimple_assign_rhs_code (stmt))
8576 {
8577 case BIT_AND_EXPR:
8578 mask = may_be_nonzero0.and_not (must_be_nonzero1);
8579 if (mask.is_zero ())
8580 {
8581 op = op0;
8582 break;
8583 }
8584 mask = may_be_nonzero1.and_not (must_be_nonzero0);
8585 if (mask.is_zero ())
8586 {
8587 op = op1;
8588 break;
8589 }
8590 break;
8591 case BIT_IOR_EXPR:
8592 mask = may_be_nonzero0.and_not (must_be_nonzero1);
8593 if (mask.is_zero ())
8594 {
8595 op = op1;
8596 break;
8597 }
8598 mask = may_be_nonzero1.and_not (must_be_nonzero0);
8599 if (mask.is_zero ())
8600 {
8601 op = op0;
8602 break;
8603 }
8604 break;
8605 default:
8606 gcc_unreachable ();
8607 }
8608
8609 if (op == NULL_TREE)
8610 return false;
8611
8612 gimple_assign_set_rhs_with_ops (gsi, TREE_CODE (op), op, NULL);
8613 update_stmt (gsi_stmt (*gsi));
8614 return true;
8615 }
8616
8617 /* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
8618 a known value range VR.
8619
8620 If there is one and only one value which will satisfy the
8621 conditional, then return that value. Else return NULL. */
8622
8623 static tree
8624 test_for_singularity (enum tree_code cond_code, tree op0,
8625 tree op1, value_range_t *vr)
8626 {
8627 tree min = NULL;
8628 tree max = NULL;
8629
8630 /* Extract minimum/maximum values which satisfy the
8631 the conditional as it was written. */
8632 if (cond_code == LE_EXPR || cond_code == LT_EXPR)
8633 {
8634 /* This should not be negative infinity; there is no overflow
8635 here. */
8636 min = TYPE_MIN_VALUE (TREE_TYPE (op0));
8637
8638 max = op1;
8639 if (cond_code == LT_EXPR && !is_overflow_infinity (max))
8640 {
8641 tree one = build_int_cst (TREE_TYPE (op0), 1);
8642 max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one);
8643 if (EXPR_P (max))
8644 TREE_NO_WARNING (max) = 1;
8645 }
8646 }
8647 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
8648 {
8649 /* This should not be positive infinity; there is no overflow
8650 here. */
8651 max = TYPE_MAX_VALUE (TREE_TYPE (op0));
8652
8653 min = op1;
8654 if (cond_code == GT_EXPR && !is_overflow_infinity (min))
8655 {
8656 tree one = build_int_cst (TREE_TYPE (op0), 1);
8657 min = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), min, one);
8658 if (EXPR_P (min))
8659 TREE_NO_WARNING (min) = 1;
8660 }
8661 }
8662
8663 /* Now refine the minimum and maximum values using any
8664 value range information we have for op0. */
8665 if (min && max)
8666 {
8667 if (compare_values (vr->min, min) == 1)
8668 min = vr->min;
8669 if (compare_values (vr->max, max) == -1)
8670 max = vr->max;
8671
8672 /* If the new min/max values have converged to a single value,
8673 then there is only one value which can satisfy the condition,
8674 return that value. */
8675 if (operand_equal_p (min, max, 0) && is_gimple_min_invariant (min))
8676 return min;
8677 }
8678 return NULL;
8679 }
8680
8681 /* Return whether the value range *VR fits in an integer type specified
8682 by PRECISION and UNSIGNED_P. */
8683
8684 static bool
8685 range_fits_type_p (value_range_t *vr, unsigned precision, bool unsigned_p)
8686 {
8687 tree src_type;
8688 unsigned src_precision;
8689 double_int tem;
8690
8691 /* We can only handle integral and pointer types. */
8692 src_type = TREE_TYPE (vr->min);
8693 if (!INTEGRAL_TYPE_P (src_type)
8694 && !POINTER_TYPE_P (src_type))
8695 return false;
8696
8697 /* An extension is fine unless VR is signed and unsigned_p,
8698 and so is an identity transform. */
8699 src_precision = TYPE_PRECISION (TREE_TYPE (vr->min));
8700 if ((src_precision < precision
8701 && !(unsigned_p && !TYPE_UNSIGNED (src_type)))
8702 || (src_precision == precision
8703 && TYPE_UNSIGNED (src_type) == unsigned_p))
8704 return true;
8705
8706 /* Now we can only handle ranges with constant bounds. */
8707 if (vr->type != VR_RANGE
8708 || TREE_CODE (vr->min) != INTEGER_CST
8709 || TREE_CODE (vr->max) != INTEGER_CST)
8710 return false;
8711
8712 /* For sign changes, the MSB of the double_int has to be clear.
8713 An unsigned value with its MSB set cannot be represented by
8714 a signed double_int, while a negative value cannot be represented
8715 by an unsigned double_int. */
8716 if (TYPE_UNSIGNED (src_type) != unsigned_p
8717 && (TREE_INT_CST_HIGH (vr->min) | TREE_INT_CST_HIGH (vr->max)) < 0)
8718 return false;
8719
8720 /* Then we can perform the conversion on both ends and compare
8721 the result for equality. */
8722 tem = tree_to_double_int (vr->min).ext (precision, unsigned_p);
8723 if (tree_to_double_int (vr->min) != tem)
8724 return false;
8725 tem = tree_to_double_int (vr->max).ext (precision, unsigned_p);
8726 if (tree_to_double_int (vr->max) != tem)
8727 return false;
8728
8729 return true;
8730 }
8731
8732 /* Simplify a conditional using a relational operator to an equality
8733 test if the range information indicates only one value can satisfy
8734 the original conditional. */
8735
8736 static bool
8737 simplify_cond_using_ranges (gimple stmt)
8738 {
8739 tree op0 = gimple_cond_lhs (stmt);
8740 tree op1 = gimple_cond_rhs (stmt);
8741 enum tree_code cond_code = gimple_cond_code (stmt);
8742
8743 if (cond_code != NE_EXPR
8744 && cond_code != EQ_EXPR
8745 && TREE_CODE (op0) == SSA_NAME
8746 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
8747 && is_gimple_min_invariant (op1))
8748 {
8749 value_range_t *vr = get_value_range (op0);
8750
8751 /* If we have range information for OP0, then we might be
8752 able to simplify this conditional. */
8753 if (vr->type == VR_RANGE)
8754 {
8755 tree new_tree = test_for_singularity (cond_code, op0, op1, vr);
8756
8757 if (new_tree)
8758 {
8759 if (dump_file)
8760 {
8761 fprintf (dump_file, "Simplified relational ");
8762 print_gimple_stmt (dump_file, stmt, 0, 0);
8763 fprintf (dump_file, " into ");
8764 }
8765
8766 gimple_cond_set_code (stmt, EQ_EXPR);
8767 gimple_cond_set_lhs (stmt, op0);
8768 gimple_cond_set_rhs (stmt, new_tree);
8769
8770 update_stmt (stmt);
8771
8772 if (dump_file)
8773 {
8774 print_gimple_stmt (dump_file, stmt, 0, 0);
8775 fprintf (dump_file, "\n");
8776 }
8777
8778 return true;
8779 }
8780
8781 /* Try again after inverting the condition. We only deal
8782 with integral types here, so no need to worry about
8783 issues with inverting FP comparisons. */
8784 cond_code = invert_tree_comparison (cond_code, false);
8785 new_tree = test_for_singularity (cond_code, op0, op1, vr);
8786
8787 if (new_tree)
8788 {
8789 if (dump_file)
8790 {
8791 fprintf (dump_file, "Simplified relational ");
8792 print_gimple_stmt (dump_file, stmt, 0, 0);
8793 fprintf (dump_file, " into ");
8794 }
8795
8796 gimple_cond_set_code (stmt, NE_EXPR);
8797 gimple_cond_set_lhs (stmt, op0);
8798 gimple_cond_set_rhs (stmt, new_tree);
8799
8800 update_stmt (stmt);
8801
8802 if (dump_file)
8803 {
8804 print_gimple_stmt (dump_file, stmt, 0, 0);
8805 fprintf (dump_file, "\n");
8806 }
8807
8808 return true;
8809 }
8810 }
8811 }
8812
8813 /* If we have a comparison of an SSA_NAME (OP0) against a constant,
8814 see if OP0 was set by a type conversion where the source of
8815 the conversion is another SSA_NAME with a range that fits
8816 into the range of OP0's type.
8817
8818 If so, the conversion is redundant as the earlier SSA_NAME can be
8819 used for the comparison directly if we just massage the constant in the
8820 comparison. */
8821 if (TREE_CODE (op0) == SSA_NAME
8822 && TREE_CODE (op1) == INTEGER_CST)
8823 {
8824 gimple def_stmt = SSA_NAME_DEF_STMT (op0);
8825 tree innerop;
8826
8827 if (!is_gimple_assign (def_stmt)
8828 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt)))
8829 return false;
8830
8831 innerop = gimple_assign_rhs1 (def_stmt);
8832
8833 if (TREE_CODE (innerop) == SSA_NAME
8834 && !POINTER_TYPE_P (TREE_TYPE (innerop)))
8835 {
8836 value_range_t *vr = get_value_range (innerop);
8837
8838 if (range_int_cst_p (vr)
8839 && range_fits_type_p (vr,
8840 TYPE_PRECISION (TREE_TYPE (op0)),
8841 TYPE_UNSIGNED (TREE_TYPE (op0)))
8842 && int_fits_type_p (op1, TREE_TYPE (innerop))
8843 /* The range must not have overflowed, or if it did overflow
8844 we must not be wrapping/trapping overflow and optimizing
8845 with strict overflow semantics. */
8846 && ((!is_negative_overflow_infinity (vr->min)
8847 && !is_positive_overflow_infinity (vr->max))
8848 || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (innerop))))
8849 {
8850 /* If the range overflowed and the user has asked for warnings
8851 when strict overflow semantics were used to optimize code,
8852 issue an appropriate warning. */
8853 if ((is_negative_overflow_infinity (vr->min)
8854 || is_positive_overflow_infinity (vr->max))
8855 && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_CONDITIONAL))
8856 {
8857 location_t location;
8858
8859 if (!gimple_has_location (stmt))
8860 location = input_location;
8861 else
8862 location = gimple_location (stmt);
8863 warning_at (location, OPT_Wstrict_overflow,
8864 "assuming signed overflow does not occur when "
8865 "simplifying conditional");
8866 }
8867
8868 tree newconst = fold_convert (TREE_TYPE (innerop), op1);
8869 gimple_cond_set_lhs (stmt, innerop);
8870 gimple_cond_set_rhs (stmt, newconst);
8871 return true;
8872 }
8873 }
8874 }
8875
8876 return false;
8877 }
8878
8879 /* Simplify a switch statement using the value range of the switch
8880 argument. */
8881
8882 static bool
8883 simplify_switch_using_ranges (gimple stmt)
8884 {
8885 tree op = gimple_switch_index (stmt);
8886 value_range_t *vr;
8887 bool take_default;
8888 edge e;
8889 edge_iterator ei;
8890 size_t i = 0, j = 0, n, n2;
8891 tree vec2;
8892 switch_update su;
8893 size_t k = 1, l = 0;
8894
8895 if (TREE_CODE (op) == SSA_NAME)
8896 {
8897 vr = get_value_range (op);
8898
8899 /* We can only handle integer ranges. */
8900 if ((vr->type != VR_RANGE
8901 && vr->type != VR_ANTI_RANGE)
8902 || symbolic_range_p (vr))
8903 return false;
8904
8905 /* Find case label for min/max of the value range. */
8906 take_default = !find_case_label_ranges (stmt, vr, &i, &j, &k, &l);
8907 }
8908 else if (TREE_CODE (op) == INTEGER_CST)
8909 {
8910 take_default = !find_case_label_index (stmt, 1, op, &i);
8911 if (take_default)
8912 {
8913 i = 1;
8914 j = 0;
8915 }
8916 else
8917 {
8918 j = i;
8919 }
8920 }
8921 else
8922 return false;
8923
8924 n = gimple_switch_num_labels (stmt);
8925
8926 /* Bail out if this is just all edges taken. */
8927 if (i == 1
8928 && j == n - 1
8929 && take_default)
8930 return false;
8931
8932 /* Build a new vector of taken case labels. */
8933 vec2 = make_tree_vec (j - i + 1 + l - k + 1 + (int)take_default);
8934 n2 = 0;
8935
8936 /* Add the default edge, if necessary. */
8937 if (take_default)
8938 TREE_VEC_ELT (vec2, n2++) = gimple_switch_default_label (stmt);
8939
8940 for (; i <= j; ++i, ++n2)
8941 TREE_VEC_ELT (vec2, n2) = gimple_switch_label (stmt, i);
8942
8943 for (; k <= l; ++k, ++n2)
8944 TREE_VEC_ELT (vec2, n2) = gimple_switch_label (stmt, k);
8945
8946 /* Mark needed edges. */
8947 for (i = 0; i < n2; ++i)
8948 {
8949 e = find_edge (gimple_bb (stmt),
8950 label_to_block (CASE_LABEL (TREE_VEC_ELT (vec2, i))));
8951 e->aux = (void *)-1;
8952 }
8953
8954 /* Queue not needed edges for later removal. */
8955 FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
8956 {
8957 if (e->aux == (void *)-1)
8958 {
8959 e->aux = NULL;
8960 continue;
8961 }
8962
8963 if (dump_file && (dump_flags & TDF_DETAILS))
8964 {
8965 fprintf (dump_file, "removing unreachable case label\n");
8966 }
8967 to_remove_edges.safe_push (e);
8968 e->flags &= ~EDGE_EXECUTABLE;
8969 }
8970
8971 /* And queue an update for the stmt. */
8972 su.stmt = stmt;
8973 su.vec = vec2;
8974 to_update_switch_stmts.safe_push (su);
8975 return false;
8976 }
8977
8978 /* Simplify an integral conversion from an SSA name in STMT. */
8979
8980 static bool
8981 simplify_conversion_using_ranges (gimple stmt)
8982 {
8983 tree innerop, middleop, finaltype;
8984 gimple def_stmt;
8985 value_range_t *innervr;
8986 bool inner_unsigned_p, middle_unsigned_p, final_unsigned_p;
8987 unsigned inner_prec, middle_prec, final_prec;
8988 double_int innermin, innermed, innermax, middlemin, middlemed, middlemax;
8989
8990 finaltype = TREE_TYPE (gimple_assign_lhs (stmt));
8991 if (!INTEGRAL_TYPE_P (finaltype))
8992 return false;
8993 middleop = gimple_assign_rhs1 (stmt);
8994 def_stmt = SSA_NAME_DEF_STMT (middleop);
8995 if (!is_gimple_assign (def_stmt)
8996 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt)))
8997 return false;
8998 innerop = gimple_assign_rhs1 (def_stmt);
8999 if (TREE_CODE (innerop) != SSA_NAME
9000 || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (innerop))
9001 return false;
9002
9003 /* Get the value-range of the inner operand. */
9004 innervr = get_value_range (innerop);
9005 if (innervr->type != VR_RANGE
9006 || TREE_CODE (innervr->min) != INTEGER_CST
9007 || TREE_CODE (innervr->max) != INTEGER_CST)
9008 return false;
9009
9010 /* Simulate the conversion chain to check if the result is equal if
9011 the middle conversion is removed. */
9012 innermin = tree_to_double_int (innervr->min);
9013 innermax = tree_to_double_int (innervr->max);
9014
9015 inner_prec = TYPE_PRECISION (TREE_TYPE (innerop));
9016 middle_prec = TYPE_PRECISION (TREE_TYPE (middleop));
9017 final_prec = TYPE_PRECISION (finaltype);
9018
9019 /* If the first conversion is not injective, the second must not
9020 be widening. */
9021 if ((innermax - innermin).ugt (double_int::mask (middle_prec))
9022 && middle_prec < final_prec)
9023 return false;
9024 /* We also want a medium value so that we can track the effect that
9025 narrowing conversions with sign change have. */
9026 inner_unsigned_p = TYPE_UNSIGNED (TREE_TYPE (innerop));
9027 if (inner_unsigned_p)
9028 innermed = double_int::mask (inner_prec).lrshift (1, inner_prec);
9029 else
9030 innermed = double_int_zero;
9031 if (innermin.cmp (innermed, inner_unsigned_p) >= 0
9032 || innermed.cmp (innermax, inner_unsigned_p) >= 0)
9033 innermed = innermin;
9034
9035 middle_unsigned_p = TYPE_UNSIGNED (TREE_TYPE (middleop));
9036 middlemin = innermin.ext (middle_prec, middle_unsigned_p);
9037 middlemed = innermed.ext (middle_prec, middle_unsigned_p);
9038 middlemax = innermax.ext (middle_prec, middle_unsigned_p);
9039
9040 /* Require that the final conversion applied to both the original
9041 and the intermediate range produces the same result. */
9042 final_unsigned_p = TYPE_UNSIGNED (finaltype);
9043 if (middlemin.ext (final_prec, final_unsigned_p)
9044 != innermin.ext (final_prec, final_unsigned_p)
9045 || middlemed.ext (final_prec, final_unsigned_p)
9046 != innermed.ext (final_prec, final_unsigned_p)
9047 || middlemax.ext (final_prec, final_unsigned_p)
9048 != innermax.ext (final_prec, final_unsigned_p))
9049 return false;
9050
9051 gimple_assign_set_rhs1 (stmt, innerop);
9052 update_stmt (stmt);
9053 return true;
9054 }
9055
9056 /* Simplify a conversion from integral SSA name to float in STMT. */
9057
9058 static bool
9059 simplify_float_conversion_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
9060 {
9061 tree rhs1 = gimple_assign_rhs1 (stmt);
9062 value_range_t *vr = get_value_range (rhs1);
9063 enum machine_mode fltmode = TYPE_MODE (TREE_TYPE (gimple_assign_lhs (stmt)));
9064 enum machine_mode mode;
9065 tree tem;
9066 gimple conv;
9067
9068 /* We can only handle constant ranges. */
9069 if (vr->type != VR_RANGE
9070 || TREE_CODE (vr->min) != INTEGER_CST
9071 || TREE_CODE (vr->max) != INTEGER_CST)
9072 return false;
9073
9074 /* First check if we can use a signed type in place of an unsigned. */
9075 if (TYPE_UNSIGNED (TREE_TYPE (rhs1))
9076 && (can_float_p (fltmode, TYPE_MODE (TREE_TYPE (rhs1)), 0)
9077 != CODE_FOR_nothing)
9078 && range_fits_type_p (vr, GET_MODE_PRECISION
9079 (TYPE_MODE (TREE_TYPE (rhs1))), 0))
9080 mode = TYPE_MODE (TREE_TYPE (rhs1));
9081 /* If we can do the conversion in the current input mode do nothing. */
9082 else if (can_float_p (fltmode, TYPE_MODE (TREE_TYPE (rhs1)),
9083 TYPE_UNSIGNED (TREE_TYPE (rhs1))) != CODE_FOR_nothing)
9084 return false;
9085 /* Otherwise search for a mode we can use, starting from the narrowest
9086 integer mode available. */
9087 else
9088 {
9089 mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
9090 do
9091 {
9092 /* If we cannot do a signed conversion to float from mode
9093 or if the value-range does not fit in the signed type
9094 try with a wider mode. */
9095 if (can_float_p (fltmode, mode, 0) != CODE_FOR_nothing
9096 && range_fits_type_p (vr, GET_MODE_PRECISION (mode), 0))
9097 break;
9098
9099 mode = GET_MODE_WIDER_MODE (mode);
9100 /* But do not widen the input. Instead leave that to the
9101 optabs expansion code. */
9102 if (GET_MODE_PRECISION (mode) > TYPE_PRECISION (TREE_TYPE (rhs1)))
9103 return false;
9104 }
9105 while (mode != VOIDmode);
9106 if (mode == VOIDmode)
9107 return false;
9108 }
9109
9110 /* It works, insert a truncation or sign-change before the
9111 float conversion. */
9112 tem = make_ssa_name (build_nonstandard_integer_type
9113 (GET_MODE_PRECISION (mode), 0), NULL);
9114 conv = gimple_build_assign_with_ops (NOP_EXPR, tem, rhs1, NULL_TREE);
9115 gsi_insert_before (gsi, conv, GSI_SAME_STMT);
9116 gimple_assign_set_rhs1 (stmt, tem);
9117 update_stmt (stmt);
9118
9119 return true;
9120 }
9121
9122 /* Simplify STMT using ranges if possible. */
9123
9124 static bool
9125 simplify_stmt_using_ranges (gimple_stmt_iterator *gsi)
9126 {
9127 gimple stmt = gsi_stmt (*gsi);
9128 if (is_gimple_assign (stmt))
9129 {
9130 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
9131 tree rhs1 = gimple_assign_rhs1 (stmt);
9132
9133 switch (rhs_code)
9134 {
9135 case EQ_EXPR:
9136 case NE_EXPR:
9137 /* Transform EQ_EXPR, NE_EXPR into BIT_XOR_EXPR or identity
9138 if the RHS is zero or one, and the LHS are known to be boolean
9139 values. */
9140 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
9141 return simplify_truth_ops_using_ranges (gsi, stmt);
9142 break;
9143
9144 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
9145 and BIT_AND_EXPR respectively if the first operand is greater
9146 than zero and the second operand is an exact power of two. */
9147 case TRUNC_DIV_EXPR:
9148 case TRUNC_MOD_EXPR:
9149 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
9150 && integer_pow2p (gimple_assign_rhs2 (stmt)))
9151 return simplify_div_or_mod_using_ranges (stmt);
9152 break;
9153
9154 /* Transform ABS (X) into X or -X as appropriate. */
9155 case ABS_EXPR:
9156 if (TREE_CODE (rhs1) == SSA_NAME
9157 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
9158 return simplify_abs_using_ranges (stmt);
9159 break;
9160
9161 case BIT_AND_EXPR:
9162 case BIT_IOR_EXPR:
9163 /* Optimize away BIT_AND_EXPR and BIT_IOR_EXPR
9164 if all the bits being cleared are already cleared or
9165 all the bits being set are already set. */
9166 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
9167 return simplify_bit_ops_using_ranges (gsi, stmt);
9168 break;
9169
9170 CASE_CONVERT:
9171 if (TREE_CODE (rhs1) == SSA_NAME
9172 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
9173 return simplify_conversion_using_ranges (stmt);
9174 break;
9175
9176 case FLOAT_EXPR:
9177 if (TREE_CODE (rhs1) == SSA_NAME
9178 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
9179 return simplify_float_conversion_using_ranges (gsi, stmt);
9180 break;
9181
9182 default:
9183 break;
9184 }
9185 }
9186 else if (gimple_code (stmt) == GIMPLE_COND)
9187 return simplify_cond_using_ranges (stmt);
9188 else if (gimple_code (stmt) == GIMPLE_SWITCH)
9189 return simplify_switch_using_ranges (stmt);
9190
9191 return false;
9192 }
9193
9194 /* If the statement pointed by SI has a predicate whose value can be
9195 computed using the value range information computed by VRP, compute
9196 its value and return true. Otherwise, return false. */
9197
9198 static bool
9199 fold_predicate_in (gimple_stmt_iterator *si)
9200 {
9201 bool assignment_p = false;
9202 tree val;
9203 gimple stmt = gsi_stmt (*si);
9204
9205 if (is_gimple_assign (stmt)
9206 && TREE_CODE_CLASS (gimple_assign_rhs_code (stmt)) == tcc_comparison)
9207 {
9208 assignment_p = true;
9209 val = vrp_evaluate_conditional (gimple_assign_rhs_code (stmt),
9210 gimple_assign_rhs1 (stmt),
9211 gimple_assign_rhs2 (stmt),
9212 stmt);
9213 }
9214 else if (gimple_code (stmt) == GIMPLE_COND)
9215 val = vrp_evaluate_conditional (gimple_cond_code (stmt),
9216 gimple_cond_lhs (stmt),
9217 gimple_cond_rhs (stmt),
9218 stmt);
9219 else
9220 return false;
9221
9222 if (val)
9223 {
9224 if (assignment_p)
9225 val = fold_convert (gimple_expr_type (stmt), val);
9226
9227 if (dump_file)
9228 {
9229 fprintf (dump_file, "Folding predicate ");
9230 print_gimple_expr (dump_file, stmt, 0, 0);
9231 fprintf (dump_file, " to ");
9232 print_generic_expr (dump_file, val, 0);
9233 fprintf (dump_file, "\n");
9234 }
9235
9236 if (is_gimple_assign (stmt))
9237 gimple_assign_set_rhs_from_tree (si, val);
9238 else
9239 {
9240 gcc_assert (gimple_code (stmt) == GIMPLE_COND);
9241 if (integer_zerop (val))
9242 gimple_cond_make_false (stmt);
9243 else if (integer_onep (val))
9244 gimple_cond_make_true (stmt);
9245 else
9246 gcc_unreachable ();
9247 }
9248
9249 return true;
9250 }
9251
9252 return false;
9253 }
9254
9255 /* Callback for substitute_and_fold folding the stmt at *SI. */
9256
9257 static bool
9258 vrp_fold_stmt (gimple_stmt_iterator *si)
9259 {
9260 if (fold_predicate_in (si))
9261 return true;
9262
9263 return simplify_stmt_using_ranges (si);
9264 }
9265
9266 /* Stack of dest,src equivalency pairs that need to be restored after
9267 each attempt to thread a block's incoming edge to an outgoing edge.
9268
9269 A NULL entry is used to mark the end of pairs which need to be
9270 restored. */
9271 static vec<tree> equiv_stack;
9272
9273 /* A trivial wrapper so that we can present the generic jump threading
9274 code with a simple API for simplifying statements. STMT is the
9275 statement we want to simplify, WITHIN_STMT provides the location
9276 for any overflow warnings. */
9277
9278 static tree
9279 simplify_stmt_for_jump_threading (gimple stmt, gimple within_stmt)
9280 {
9281 if (gimple_code (stmt) == GIMPLE_COND)
9282 return vrp_evaluate_conditional (gimple_cond_code (stmt),
9283 gimple_cond_lhs (stmt),
9284 gimple_cond_rhs (stmt), within_stmt);
9285
9286 if (gimple_code (stmt) == GIMPLE_ASSIGN)
9287 {
9288 value_range_t new_vr = VR_INITIALIZER;
9289 tree lhs = gimple_assign_lhs (stmt);
9290
9291 if (TREE_CODE (lhs) == SSA_NAME
9292 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
9293 || POINTER_TYPE_P (TREE_TYPE (lhs))))
9294 {
9295 extract_range_from_assignment (&new_vr, stmt);
9296 if (range_int_cst_singleton_p (&new_vr))
9297 return new_vr.min;
9298 }
9299 }
9300
9301 return NULL_TREE;
9302 }
9303
9304 /* Blocks which have more than one predecessor and more than
9305 one successor present jump threading opportunities, i.e.,
9306 when the block is reached from a specific predecessor, we
9307 may be able to determine which of the outgoing edges will
9308 be traversed. When this optimization applies, we are able
9309 to avoid conditionals at runtime and we may expose secondary
9310 optimization opportunities.
9311
9312 This routine is effectively a driver for the generic jump
9313 threading code. It basically just presents the generic code
9314 with edges that may be suitable for jump threading.
9315
9316 Unlike DOM, we do not iterate VRP if jump threading was successful.
9317 While iterating may expose new opportunities for VRP, it is expected
9318 those opportunities would be very limited and the compile time cost
9319 to expose those opportunities would be significant.
9320
9321 As jump threading opportunities are discovered, they are registered
9322 for later realization. */
9323
9324 static void
9325 identify_jump_threads (void)
9326 {
9327 basic_block bb;
9328 gimple dummy;
9329 int i;
9330 edge e;
9331
9332 /* Ugh. When substituting values earlier in this pass we can
9333 wipe the dominance information. So rebuild the dominator
9334 information as we need it within the jump threading code. */
9335 calculate_dominance_info (CDI_DOMINATORS);
9336
9337 /* We do not allow VRP information to be used for jump threading
9338 across a back edge in the CFG. Otherwise it becomes too
9339 difficult to avoid eliminating loop exit tests. Of course
9340 EDGE_DFS_BACK is not accurate at this time so we have to
9341 recompute it. */
9342 mark_dfs_back_edges ();
9343
9344 /* Do not thread across edges we are about to remove. Just marking
9345 them as EDGE_DFS_BACK will do. */
9346 FOR_EACH_VEC_ELT (to_remove_edges, i, e)
9347 e->flags |= EDGE_DFS_BACK;
9348
9349 /* Allocate our unwinder stack to unwind any temporary equivalences
9350 that might be recorded. */
9351 equiv_stack.create (20);
9352
9353 /* To avoid lots of silly node creation, we create a single
9354 conditional and just modify it in-place when attempting to
9355 thread jumps. */
9356 dummy = gimple_build_cond (EQ_EXPR,
9357 integer_zero_node, integer_zero_node,
9358 NULL, NULL);
9359
9360 /* Walk through all the blocks finding those which present a
9361 potential jump threading opportunity. We could set this up
9362 as a dominator walker and record data during the walk, but
9363 I doubt it's worth the effort for the classes of jump
9364 threading opportunities we are trying to identify at this
9365 point in compilation. */
9366 FOR_EACH_BB (bb)
9367 {
9368 gimple last;
9369
9370 /* If the generic jump threading code does not find this block
9371 interesting, then there is nothing to do. */
9372 if (! potentially_threadable_block (bb))
9373 continue;
9374
9375 /* We only care about blocks ending in a COND_EXPR. While there
9376 may be some value in handling SWITCH_EXPR here, I doubt it's
9377 terribly important. */
9378 last = gsi_stmt (gsi_last_bb (bb));
9379
9380 /* We're basically looking for a switch or any kind of conditional with
9381 integral or pointer type arguments. Note the type of the second
9382 argument will be the same as the first argument, so no need to
9383 check it explicitly. */
9384 if (gimple_code (last) == GIMPLE_SWITCH
9385 || (gimple_code (last) == GIMPLE_COND
9386 && TREE_CODE (gimple_cond_lhs (last)) == SSA_NAME
9387 && (INTEGRAL_TYPE_P (TREE_TYPE (gimple_cond_lhs (last)))
9388 || POINTER_TYPE_P (TREE_TYPE (gimple_cond_lhs (last))))
9389 && (TREE_CODE (gimple_cond_rhs (last)) == SSA_NAME
9390 || is_gimple_min_invariant (gimple_cond_rhs (last)))))
9391 {
9392 edge_iterator ei;
9393
9394 /* We've got a block with multiple predecessors and multiple
9395 successors which also ends in a suitable conditional or
9396 switch statement. For each predecessor, see if we can thread
9397 it to a specific successor. */
9398 FOR_EACH_EDGE (e, ei, bb->preds)
9399 {
9400 /* Do not thread across back edges or abnormal edges
9401 in the CFG. */
9402 if (e->flags & (EDGE_DFS_BACK | EDGE_COMPLEX))
9403 continue;
9404
9405 thread_across_edge (dummy, e, true, &equiv_stack,
9406 simplify_stmt_for_jump_threading);
9407 }
9408 }
9409 }
9410
9411 /* We do not actually update the CFG or SSA graphs at this point as
9412 ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
9413 handle ASSERT_EXPRs gracefully. */
9414 }
9415
9416 /* We identified all the jump threading opportunities earlier, but could
9417 not transform the CFG at that time. This routine transforms the
9418 CFG and arranges for the dominator tree to be rebuilt if necessary.
9419
9420 Note the SSA graph update will occur during the normal TODO
9421 processing by the pass manager. */
9422 static void
9423 finalize_jump_threads (void)
9424 {
9425 thread_through_all_blocks (false);
9426 equiv_stack.release ();
9427 }
9428
9429
9430 /* Traverse all the blocks folding conditionals with known ranges. */
9431
9432 static void
9433 vrp_finalize (void)
9434 {
9435 size_t i;
9436
9437 values_propagated = true;
9438
9439 if (dump_file)
9440 {
9441 fprintf (dump_file, "\nValue ranges after VRP:\n\n");
9442 dump_all_value_ranges (dump_file);
9443 fprintf (dump_file, "\n");
9444 }
9445
9446 substitute_and_fold (op_with_constant_singleton_value_range,
9447 vrp_fold_stmt, false);
9448
9449 if (warn_array_bounds)
9450 check_all_array_refs ();
9451
9452 /* We must identify jump threading opportunities before we release
9453 the datastructures built by VRP. */
9454 identify_jump_threads ();
9455
9456 /* Free allocated memory. */
9457 for (i = 0; i < num_vr_values; i++)
9458 if (vr_value[i])
9459 {
9460 BITMAP_FREE (vr_value[i]->equiv);
9461 free (vr_value[i]);
9462 }
9463
9464 free (vr_value);
9465 free (vr_phi_edge_counts);
9466
9467 /* So that we can distinguish between VRP data being available
9468 and not available. */
9469 vr_value = NULL;
9470 vr_phi_edge_counts = NULL;
9471 }
9472
9473
9474 /* Main entry point to VRP (Value Range Propagation). This pass is
9475 loosely based on J. R. C. Patterson, ``Accurate Static Branch
9476 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
9477 Programming Language Design and Implementation, pp. 67-78, 1995.
9478 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
9479
9480 This is essentially an SSA-CCP pass modified to deal with ranges
9481 instead of constants.
9482
9483 While propagating ranges, we may find that two or more SSA name
9484 have equivalent, though distinct ranges. For instance,
9485
9486 1 x_9 = p_3->a;
9487 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
9488 3 if (p_4 == q_2)
9489 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
9490 5 endif
9491 6 if (q_2)
9492
9493 In the code above, pointer p_5 has range [q_2, q_2], but from the
9494 code we can also determine that p_5 cannot be NULL and, if q_2 had
9495 a non-varying range, p_5's range should also be compatible with it.
9496
9497 These equivalences are created by two expressions: ASSERT_EXPR and
9498 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
9499 result of another assertion, then we can use the fact that p_5 and
9500 p_4 are equivalent when evaluating p_5's range.
9501
9502 Together with value ranges, we also propagate these equivalences
9503 between names so that we can take advantage of information from
9504 multiple ranges when doing final replacement. Note that this
9505 equivalency relation is transitive but not symmetric.
9506
9507 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
9508 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
9509 in contexts where that assertion does not hold (e.g., in line 6).
9510
9511 TODO, the main difference between this pass and Patterson's is that
9512 we do not propagate edge probabilities. We only compute whether
9513 edges can be taken or not. That is, instead of having a spectrum
9514 of jump probabilities between 0 and 1, we only deal with 0, 1 and
9515 DON'T KNOW. In the future, it may be worthwhile to propagate
9516 probabilities to aid branch prediction. */
9517
9518 static unsigned int
9519 execute_vrp (void)
9520 {
9521 int i;
9522 edge e;
9523 switch_update *su;
9524
9525 loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
9526 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
9527 scev_initialize ();
9528
9529 /* ??? This ends up using stale EDGE_DFS_BACK for liveness computation.
9530 Inserting assertions may split edges which will invalidate
9531 EDGE_DFS_BACK. */
9532 insert_range_assertions ();
9533
9534 to_remove_edges.create (10);
9535 to_update_switch_stmts.create (5);
9536 threadedge_initialize_values ();
9537
9538 /* For visiting PHI nodes we need EDGE_DFS_BACK computed. */
9539 mark_dfs_back_edges ();
9540
9541 vrp_initialize ();
9542 ssa_propagate (vrp_visit_stmt, vrp_visit_phi_node);
9543 vrp_finalize ();
9544
9545 free_numbers_of_iterations_estimates ();
9546
9547 /* ASSERT_EXPRs must be removed before finalizing jump threads
9548 as finalizing jump threads calls the CFG cleanup code which
9549 does not properly handle ASSERT_EXPRs. */
9550 remove_range_assertions ();
9551
9552 /* If we exposed any new variables, go ahead and put them into
9553 SSA form now, before we handle jump threading. This simplifies
9554 interactions between rewriting of _DECL nodes into SSA form
9555 and rewriting SSA_NAME nodes into SSA form after block
9556 duplication and CFG manipulation. */
9557 update_ssa (TODO_update_ssa);
9558
9559 finalize_jump_threads ();
9560
9561 /* Remove dead edges from SWITCH_EXPR optimization. This leaves the
9562 CFG in a broken state and requires a cfg_cleanup run. */
9563 FOR_EACH_VEC_ELT (to_remove_edges, i, e)
9564 remove_edge (e);
9565 /* Update SWITCH_EXPR case label vector. */
9566 FOR_EACH_VEC_ELT (to_update_switch_stmts, i, su)
9567 {
9568 size_t j;
9569 size_t n = TREE_VEC_LENGTH (su->vec);
9570 tree label;
9571 gimple_switch_set_num_labels (su->stmt, n);
9572 for (j = 0; j < n; j++)
9573 gimple_switch_set_label (su->stmt, j, TREE_VEC_ELT (su->vec, j));
9574 /* As we may have replaced the default label with a regular one
9575 make sure to make it a real default label again. This ensures
9576 optimal expansion. */
9577 label = gimple_switch_label (su->stmt, 0);
9578 CASE_LOW (label) = NULL_TREE;
9579 CASE_HIGH (label) = NULL_TREE;
9580 }
9581
9582 if (to_remove_edges.length () > 0)
9583 {
9584 free_dominance_info (CDI_DOMINATORS);
9585 if (current_loops)
9586 loops_state_set (LOOPS_NEED_FIXUP);
9587 }
9588
9589 to_remove_edges.release ();
9590 to_update_switch_stmts.release ();
9591 threadedge_finalize_values ();
9592
9593 scev_finalize ();
9594 loop_optimizer_finalize ();
9595 return 0;
9596 }
9597
9598 static bool
9599 gate_vrp (void)
9600 {
9601 return flag_tree_vrp != 0;
9602 }
9603
9604 namespace {
9605
9606 const pass_data pass_data_vrp =
9607 {
9608 GIMPLE_PASS, /* type */
9609 "vrp", /* name */
9610 OPTGROUP_NONE, /* optinfo_flags */
9611 true, /* has_gate */
9612 true, /* has_execute */
9613 TV_TREE_VRP, /* tv_id */
9614 PROP_ssa, /* properties_required */
9615 0, /* properties_provided */
9616 0, /* properties_destroyed */
9617 0, /* todo_flags_start */
9618 ( TODO_cleanup_cfg | TODO_update_ssa
9619 | TODO_verify_ssa
9620 | TODO_verify_flow ), /* todo_flags_finish */
9621 };
9622
9623 class pass_vrp : public gimple_opt_pass
9624 {
9625 public:
9626 pass_vrp(gcc::context *ctxt)
9627 : gimple_opt_pass(pass_data_vrp, ctxt)
9628 {}
9629
9630 /* opt_pass methods: */
9631 opt_pass * clone () { return new pass_vrp (ctxt_); }
9632 bool gate () { return gate_vrp (); }
9633 unsigned int execute () { return execute_vrp (); }
9634
9635 }; // class pass_vrp
9636
9637 } // anon namespace
9638
9639 gimple_opt_pass *
9640 make_pass_vrp (gcc::context *ctxt)
9641 {
9642 return new pass_vrp (ctxt);
9643 }