]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree.c
* c-lang.c (LANG_HOOKS_INCOMPLETE_TYPE_ERROR): Redefine.
[thirdparty/gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This file contains the low level primitives for operating on tree nodes,
23 including allocation, list operations, interning of identifiers,
24 construction of data type nodes and statement nodes,
25 and construction of type conversion nodes. It also contains
26 tables index by tree code that describe how to take apart
27 nodes of that code.
28
29 It is intended to be language-independent, but occasionally
30 calls language-dependent routines defined (for C) in typecheck.c.
31
32 The low-level allocation routines oballoc and permalloc
33 are used also for allocating many other kinds of objects
34 by all passes of the compiler. */
35
36 #include "config.h"
37 #include "system.h"
38 #include "flags.h"
39 #include "tree.h"
40 #include "tm_p.h"
41 #include "function.h"
42 #include "obstack.h"
43 #include "toplev.h"
44 #include "ggc.h"
45 #include "hashtab.h"
46 #include "output.h"
47 #include "target.h"
48 #include "langhooks.h"
49
50 #define obstack_chunk_alloc xmalloc
51 #define obstack_chunk_free free
52 /* obstack.[ch] explicitly declined to prototype this. */
53 extern int _obstack_allocated_p PARAMS ((struct obstack *h, PTR obj));
54
55 /* Objects allocated on this obstack last forever. */
56
57 struct obstack permanent_obstack;
58
59 /* Statistics-gathering stuff. */
60 typedef enum
61 {
62 d_kind,
63 t_kind,
64 b_kind,
65 s_kind,
66 r_kind,
67 e_kind,
68 c_kind,
69 id_kind,
70 perm_list_kind,
71 temp_list_kind,
72 vec_kind,
73 x_kind,
74 lang_decl,
75 lang_type,
76 all_kinds
77 } tree_node_kind;
78
79 int tree_node_counts[(int) all_kinds];
80 int tree_node_sizes[(int) all_kinds];
81
82 static const char * const tree_node_kind_names[] = {
83 "decls",
84 "types",
85 "blocks",
86 "stmts",
87 "refs",
88 "exprs",
89 "constants",
90 "identifiers",
91 "perm_tree_lists",
92 "temp_tree_lists",
93 "vecs",
94 "random kinds",
95 "lang_decl kinds",
96 "lang_type kinds"
97 };
98
99 /* Unique id for next decl created. */
100 static int next_decl_uid;
101 /* Unique id for next type created. */
102 static int next_type_uid = 1;
103
104 /* Since we cannot rehash a type after it is in the table, we have to
105 keep the hash code. */
106
107 struct type_hash
108 {
109 unsigned long hash;
110 tree type;
111 };
112
113 /* Initial size of the hash table (rounded to next prime). */
114 #define TYPE_HASH_INITIAL_SIZE 1000
115
116 /* Now here is the hash table. When recording a type, it is added to
117 the slot whose index is the hash code. Note that the hash table is
118 used for several kinds of types (function types, array types and
119 array index range types, for now). While all these live in the
120 same table, they are completely independent, and the hash code is
121 computed differently for each of these. */
122
123 htab_t type_hash_table;
124
125 static void set_type_quals PARAMS ((tree, int));
126 static void append_random_chars PARAMS ((char *));
127 static int type_hash_eq PARAMS ((const void*, const void*));
128 static unsigned int type_hash_hash PARAMS ((const void*));
129 static void print_type_hash_statistics PARAMS((void));
130 static void finish_vector_type PARAMS((tree));
131 static tree make_vector PARAMS ((enum machine_mode, tree, int));
132 static int type_hash_marked_p PARAMS ((const void *));
133 static void type_hash_mark PARAMS ((const void *));
134 static int mark_tree_hashtable_entry PARAMS((void **, void *));
135
136 tree global_trees[TI_MAX];
137 tree integer_types[itk_none];
138 \f
139 /* Init the principal obstacks. */
140
141 void
142 init_obstacks ()
143 {
144 gcc_obstack_init (&permanent_obstack);
145
146 /* Initialize the hash table of types. */
147 type_hash_table = htab_create (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
148 type_hash_eq, 0);
149 ggc_add_deletable_htab (type_hash_table, type_hash_marked_p,
150 type_hash_mark);
151 ggc_add_tree_root (global_trees, TI_MAX);
152 ggc_add_tree_root (integer_types, itk_none);
153 }
154
155 \f
156 /* Allocate SIZE bytes in the permanent obstack
157 and return a pointer to them. */
158
159 char *
160 permalloc (size)
161 int size;
162 {
163 return (char *) obstack_alloc (&permanent_obstack, size);
164 }
165
166 /* Allocate NELEM items of SIZE bytes in the permanent obstack
167 and return a pointer to them. The storage is cleared before
168 returning the value. */
169
170 char *
171 perm_calloc (nelem, size)
172 int nelem;
173 long size;
174 {
175 char *rval = (char *) obstack_alloc (&permanent_obstack, nelem * size);
176 memset (rval, 0, nelem * size);
177 return rval;
178 }
179
180 /* The name of the object as the assembler will see it (but before any
181 translations made by ASM_OUTPUT_LABELREF). Often this is the same
182 as DECL_NAME. It is an IDENTIFIER_NODE. */
183 tree
184 decl_assembler_name (decl)
185 tree decl;
186 {
187 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
188 (*lang_hooks.set_decl_assembler_name) (decl);
189 return DECL_CHECK (decl)->decl.assembler_name;
190 }
191
192 /* Compute the number of bytes occupied by 'node'. This routine only
193 looks at TREE_CODE and, if the code is TREE_VEC, TREE_VEC_LENGTH. */
194 size_t
195 tree_size (node)
196 tree node;
197 {
198 enum tree_code code = TREE_CODE (node);
199
200 switch (TREE_CODE_CLASS (code))
201 {
202 case 'd': /* A decl node */
203 return sizeof (struct tree_decl);
204
205 case 't': /* a type node */
206 return sizeof (struct tree_type);
207
208 case 'b': /* a lexical block node */
209 return sizeof (struct tree_block);
210
211 case 'r': /* a reference */
212 case 'e': /* an expression */
213 case 's': /* an expression with side effects */
214 case '<': /* a comparison expression */
215 case '1': /* a unary arithmetic expression */
216 case '2': /* a binary arithmetic expression */
217 return (sizeof (struct tree_exp)
218 + (TREE_CODE_LENGTH (code) - 1) * sizeof (char *));
219
220 case 'c': /* a constant */
221 /* We can't use TREE_CODE_LENGTH for INTEGER_CST, since the number of
222 words is machine-dependent due to varying length of HOST_WIDE_INT,
223 which might be wider than a pointer (e.g., long long). Similarly
224 for REAL_CST, since the number of words is machine-dependent due
225 to varying size and alignment of `double'. */
226 if (code == INTEGER_CST)
227 return sizeof (struct tree_int_cst);
228 else if (code == REAL_CST)
229 return sizeof (struct tree_real_cst);
230 else
231 return (sizeof (struct tree_common)
232 + TREE_CODE_LENGTH (code) * sizeof (char *));
233
234 case 'x': /* something random, like an identifier. */
235 {
236 size_t length;
237 length = (sizeof (struct tree_common)
238 + TREE_CODE_LENGTH (code) * sizeof (char *));
239 if (code == TREE_VEC)
240 length += (TREE_VEC_LENGTH (node) - 1) * sizeof (char *);
241 return length;
242 }
243
244 default:
245 abort ();
246 }
247 }
248
249 /* Return a newly allocated node of code CODE.
250 For decl and type nodes, some other fields are initialized.
251 The rest of the node is initialized to zero.
252
253 Achoo! I got a code in the node. */
254
255 tree
256 make_node (code)
257 enum tree_code code;
258 {
259 tree t;
260 int type = TREE_CODE_CLASS (code);
261 size_t length;
262 #ifdef GATHER_STATISTICS
263 tree_node_kind kind;
264 #endif
265 struct tree_common ttmp;
266
267 /* We can't allocate a TREE_VEC without knowing how many elements
268 it will have. */
269 if (code == TREE_VEC)
270 abort ();
271
272 TREE_SET_CODE ((tree)&ttmp, code);
273 length = tree_size ((tree)&ttmp);
274
275 #ifdef GATHER_STATISTICS
276 switch (type)
277 {
278 case 'd': /* A decl node */
279 kind = d_kind;
280 break;
281
282 case 't': /* a type node */
283 kind = t_kind;
284 break;
285
286 case 'b': /* a lexical block */
287 kind = b_kind;
288 break;
289
290 case 's': /* an expression with side effects */
291 kind = s_kind;
292 break;
293
294 case 'r': /* a reference */
295 kind = r_kind;
296 break;
297
298 case 'e': /* an expression */
299 case '<': /* a comparison expression */
300 case '1': /* a unary arithmetic expression */
301 case '2': /* a binary arithmetic expression */
302 kind = e_kind;
303 break;
304
305 case 'c': /* a constant */
306 kind = c_kind;
307 break;
308
309 case 'x': /* something random, like an identifier. */
310 if (code == IDENTIFIER_NODE)
311 kind = id_kind;
312 else if (code == TREE_VEC)
313 kind = vec_kind;
314 else
315 kind = x_kind;
316 break;
317
318 default:
319 abort ();
320 }
321
322 tree_node_counts[(int) kind]++;
323 tree_node_sizes[(int) kind] += length;
324 #endif
325
326 t = ggc_alloc_tree (length);
327
328 memset ((PTR) t, 0, length);
329
330 TREE_SET_CODE (t, code);
331
332 switch (type)
333 {
334 case 's':
335 TREE_SIDE_EFFECTS (t) = 1;
336 TREE_TYPE (t) = void_type_node;
337 break;
338
339 case 'd':
340 if (code != FUNCTION_DECL)
341 DECL_ALIGN (t) = 1;
342 DECL_USER_ALIGN (t) = 0;
343 DECL_IN_SYSTEM_HEADER (t) = in_system_header;
344 DECL_SOURCE_LINE (t) = lineno;
345 DECL_SOURCE_FILE (t) =
346 (input_filename) ? input_filename : "<built-in>";
347 DECL_UID (t) = next_decl_uid++;
348
349 /* We have not yet computed the alias set for this declaration. */
350 DECL_POINTER_ALIAS_SET (t) = -1;
351 break;
352
353 case 't':
354 TYPE_UID (t) = next_type_uid++;
355 TYPE_ALIGN (t) = char_type_node ? TYPE_ALIGN (char_type_node) : 0;
356 TYPE_USER_ALIGN (t) = 0;
357 TYPE_MAIN_VARIANT (t) = t;
358
359 /* Default to no attributes for type, but let target change that. */
360 TYPE_ATTRIBUTES (t) = NULL_TREE;
361 (*targetm.set_default_type_attributes) (t);
362
363 /* We have not yet computed the alias set for this type. */
364 TYPE_ALIAS_SET (t) = -1;
365 break;
366
367 case 'c':
368 TREE_CONSTANT (t) = 1;
369 break;
370
371 case 'e':
372 switch (code)
373 {
374 case INIT_EXPR:
375 case MODIFY_EXPR:
376 case VA_ARG_EXPR:
377 case RTL_EXPR:
378 case PREDECREMENT_EXPR:
379 case PREINCREMENT_EXPR:
380 case POSTDECREMENT_EXPR:
381 case POSTINCREMENT_EXPR:
382 /* All of these have side-effects, no matter what their
383 operands are. */
384 TREE_SIDE_EFFECTS (t) = 1;
385 break;
386
387 default:
388 break;
389 }
390 break;
391 }
392
393 return t;
394 }
395 \f
396 /* Return a new node with the same contents as NODE except that its
397 TREE_CHAIN is zero and it has a fresh uid. */
398
399 tree
400 copy_node (node)
401 tree node;
402 {
403 tree t;
404 enum tree_code code = TREE_CODE (node);
405 size_t length;
406
407 length = tree_size (node);
408 t = ggc_alloc_tree (length);
409 memcpy (t, node, length);
410
411 TREE_CHAIN (t) = 0;
412 TREE_ASM_WRITTEN (t) = 0;
413
414 if (TREE_CODE_CLASS (code) == 'd')
415 DECL_UID (t) = next_decl_uid++;
416 else if (TREE_CODE_CLASS (code) == 't')
417 {
418 TYPE_UID (t) = next_type_uid++;
419 /* The following is so that the debug code for
420 the copy is different from the original type.
421 The two statements usually duplicate each other
422 (because they clear fields of the same union),
423 but the optimizer should catch that. */
424 TYPE_SYMTAB_POINTER (t) = 0;
425 TYPE_SYMTAB_ADDRESS (t) = 0;
426 }
427
428 return t;
429 }
430
431 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
432 For example, this can copy a list made of TREE_LIST nodes. */
433
434 tree
435 copy_list (list)
436 tree list;
437 {
438 tree head;
439 tree prev, next;
440
441 if (list == 0)
442 return 0;
443
444 head = prev = copy_node (list);
445 next = TREE_CHAIN (list);
446 while (next)
447 {
448 TREE_CHAIN (prev) = copy_node (next);
449 prev = TREE_CHAIN (prev);
450 next = TREE_CHAIN (next);
451 }
452 return head;
453 }
454
455 \f
456 /* Return a newly constructed INTEGER_CST node whose constant value
457 is specified by the two ints LOW and HI.
458 The TREE_TYPE is set to `int'.
459
460 This function should be used via the `build_int_2' macro. */
461
462 tree
463 build_int_2_wide (low, hi)
464 unsigned HOST_WIDE_INT low;
465 HOST_WIDE_INT hi;
466 {
467 tree t = make_node (INTEGER_CST);
468
469 TREE_INT_CST_LOW (t) = low;
470 TREE_INT_CST_HIGH (t) = hi;
471 TREE_TYPE (t) = integer_type_node;
472 return t;
473 }
474
475 /* Return a new VECTOR_CST node whose type is TYPE and whose values
476 are in a list pointed by VALS. */
477
478 tree
479 build_vector (type, vals)
480 tree type, vals;
481 {
482 tree v = make_node (VECTOR_CST);
483 int over1 = 0, over2 = 0;
484 tree link;
485
486 TREE_VECTOR_CST_ELTS (v) = vals;
487 TREE_TYPE (v) = type;
488
489 /* Iterate through elements and check for overflow. */
490 for (link = vals; link; link = TREE_CHAIN (link))
491 {
492 tree value = TREE_VALUE (link);
493
494 over1 |= TREE_OVERFLOW (value);
495 over2 |= TREE_CONSTANT_OVERFLOW (value);
496 }
497
498 TREE_OVERFLOW (v) = over1;
499 TREE_CONSTANT_OVERFLOW (v) = over2;
500
501 return v;
502 }
503
504 /* Return a new REAL_CST node whose type is TYPE and value is D. */
505
506 tree
507 build_real (type, d)
508 tree type;
509 REAL_VALUE_TYPE d;
510 {
511 tree v;
512 int overflow = 0;
513
514 /* Check for valid float value for this type on this target machine;
515 if not, can print error message and store a valid value in D. */
516 #ifdef CHECK_FLOAT_VALUE
517 CHECK_FLOAT_VALUE (TYPE_MODE (type), d, overflow);
518 #endif
519
520 v = make_node (REAL_CST);
521 TREE_TYPE (v) = type;
522 TREE_REAL_CST (v) = d;
523 TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
524 return v;
525 }
526
527 /* Return a new REAL_CST node whose type is TYPE
528 and whose value is the integer value of the INTEGER_CST node I. */
529
530 REAL_VALUE_TYPE
531 real_value_from_int_cst (type, i)
532 tree type ATTRIBUTE_UNUSED, i;
533 {
534 REAL_VALUE_TYPE d;
535
536 /* Clear all bits of the real value type so that we can later do
537 bitwise comparisons to see if two values are the same. */
538 memset ((char *) &d, 0, sizeof d);
539
540 if (! TREE_UNSIGNED (TREE_TYPE (i)))
541 REAL_VALUE_FROM_INT (d, TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
542 TYPE_MODE (type));
543 else
544 REAL_VALUE_FROM_UNSIGNED_INT (d, TREE_INT_CST_LOW (i),
545 TREE_INT_CST_HIGH (i), TYPE_MODE (type));
546 return d;
547 }
548
549 /* Given a tree representing an integer constant I, return a tree
550 representing the same value as a floating-point constant of type TYPE. */
551
552 tree
553 build_real_from_int_cst (type, i)
554 tree type;
555 tree i;
556 {
557 tree v;
558 int overflow = TREE_OVERFLOW (i);
559 REAL_VALUE_TYPE d;
560
561 v = make_node (REAL_CST);
562 TREE_TYPE (v) = type;
563
564 d = real_value_from_int_cst (type, i);
565
566 /* Check for valid float value for this type on this target machine. */
567 #ifdef CHECK_FLOAT_VALUE
568 CHECK_FLOAT_VALUE (TYPE_MODE (type), d, overflow);
569 #endif
570
571 TREE_REAL_CST (v) = d;
572 TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
573 return v;
574 }
575
576 /* Return a newly constructed STRING_CST node whose value is
577 the LEN characters at STR.
578 The TREE_TYPE is not initialized. */
579
580 tree
581 build_string (len, str)
582 int len;
583 const char *str;
584 {
585 tree s = make_node (STRING_CST);
586
587 TREE_STRING_LENGTH (s) = len;
588 TREE_STRING_POINTER (s) = ggc_alloc_string (str, len);
589
590 return s;
591 }
592
593 /* Return a newly constructed COMPLEX_CST node whose value is
594 specified by the real and imaginary parts REAL and IMAG.
595 Both REAL and IMAG should be constant nodes. TYPE, if specified,
596 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
597
598 tree
599 build_complex (type, real, imag)
600 tree type;
601 tree real, imag;
602 {
603 tree t = make_node (COMPLEX_CST);
604
605 TREE_REALPART (t) = real;
606 TREE_IMAGPART (t) = imag;
607 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
608 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
609 TREE_CONSTANT_OVERFLOW (t)
610 = TREE_CONSTANT_OVERFLOW (real) | TREE_CONSTANT_OVERFLOW (imag);
611 return t;
612 }
613
614 /* Build a newly constructed TREE_VEC node of length LEN. */
615
616 tree
617 make_tree_vec (len)
618 int len;
619 {
620 tree t;
621 int length = (len-1) * sizeof (tree) + sizeof (struct tree_vec);
622
623 #ifdef GATHER_STATISTICS
624 tree_node_counts[(int)vec_kind]++;
625 tree_node_sizes[(int)vec_kind] += length;
626 #endif
627
628 t = ggc_alloc_tree (length);
629
630 memset ((PTR) t, 0, length);
631 TREE_SET_CODE (t, TREE_VEC);
632 TREE_VEC_LENGTH (t) = len;
633
634 return t;
635 }
636 \f
637 /* Return 1 if EXPR is the integer constant zero or a complex constant
638 of zero. */
639
640 int
641 integer_zerop (expr)
642 tree expr;
643 {
644 STRIP_NOPS (expr);
645
646 return ((TREE_CODE (expr) == INTEGER_CST
647 && ! TREE_CONSTANT_OVERFLOW (expr)
648 && TREE_INT_CST_LOW (expr) == 0
649 && TREE_INT_CST_HIGH (expr) == 0)
650 || (TREE_CODE (expr) == COMPLEX_CST
651 && integer_zerop (TREE_REALPART (expr))
652 && integer_zerop (TREE_IMAGPART (expr))));
653 }
654
655 /* Return 1 if EXPR is the integer constant one or the corresponding
656 complex constant. */
657
658 int
659 integer_onep (expr)
660 tree expr;
661 {
662 STRIP_NOPS (expr);
663
664 return ((TREE_CODE (expr) == INTEGER_CST
665 && ! TREE_CONSTANT_OVERFLOW (expr)
666 && TREE_INT_CST_LOW (expr) == 1
667 && TREE_INT_CST_HIGH (expr) == 0)
668 || (TREE_CODE (expr) == COMPLEX_CST
669 && integer_onep (TREE_REALPART (expr))
670 && integer_zerop (TREE_IMAGPART (expr))));
671 }
672
673 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
674 it contains. Likewise for the corresponding complex constant. */
675
676 int
677 integer_all_onesp (expr)
678 tree expr;
679 {
680 int prec;
681 int uns;
682
683 STRIP_NOPS (expr);
684
685 if (TREE_CODE (expr) == COMPLEX_CST
686 && integer_all_onesp (TREE_REALPART (expr))
687 && integer_zerop (TREE_IMAGPART (expr)))
688 return 1;
689
690 else if (TREE_CODE (expr) != INTEGER_CST
691 || TREE_CONSTANT_OVERFLOW (expr))
692 return 0;
693
694 uns = TREE_UNSIGNED (TREE_TYPE (expr));
695 if (!uns)
696 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
697 && TREE_INT_CST_HIGH (expr) == -1);
698
699 /* Note that using TYPE_PRECISION here is wrong. We care about the
700 actual bits, not the (arbitrary) range of the type. */
701 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
702 if (prec >= HOST_BITS_PER_WIDE_INT)
703 {
704 HOST_WIDE_INT high_value;
705 int shift_amount;
706
707 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
708
709 if (shift_amount > HOST_BITS_PER_WIDE_INT)
710 /* Can not handle precisions greater than twice the host int size. */
711 abort ();
712 else if (shift_amount == HOST_BITS_PER_WIDE_INT)
713 /* Shifting by the host word size is undefined according to the ANSI
714 standard, so we must handle this as a special case. */
715 high_value = -1;
716 else
717 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
718
719 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
720 && TREE_INT_CST_HIGH (expr) == high_value);
721 }
722 else
723 return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
724 }
725
726 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
727 one bit on). */
728
729 int
730 integer_pow2p (expr)
731 tree expr;
732 {
733 int prec;
734 HOST_WIDE_INT high, low;
735
736 STRIP_NOPS (expr);
737
738 if (TREE_CODE (expr) == COMPLEX_CST
739 && integer_pow2p (TREE_REALPART (expr))
740 && integer_zerop (TREE_IMAGPART (expr)))
741 return 1;
742
743 if (TREE_CODE (expr) != INTEGER_CST || TREE_CONSTANT_OVERFLOW (expr))
744 return 0;
745
746 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
747 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
748 high = TREE_INT_CST_HIGH (expr);
749 low = TREE_INT_CST_LOW (expr);
750
751 /* First clear all bits that are beyond the type's precision in case
752 we've been sign extended. */
753
754 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
755 ;
756 else if (prec > HOST_BITS_PER_WIDE_INT)
757 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
758 else
759 {
760 high = 0;
761 if (prec < HOST_BITS_PER_WIDE_INT)
762 low &= ~((HOST_WIDE_INT) (-1) << prec);
763 }
764
765 if (high == 0 && low == 0)
766 return 0;
767
768 return ((high == 0 && (low & (low - 1)) == 0)
769 || (low == 0 && (high & (high - 1)) == 0));
770 }
771
772 /* Return the power of two represented by a tree node known to be a
773 power of two. */
774
775 int
776 tree_log2 (expr)
777 tree expr;
778 {
779 int prec;
780 HOST_WIDE_INT high, low;
781
782 STRIP_NOPS (expr);
783
784 if (TREE_CODE (expr) == COMPLEX_CST)
785 return tree_log2 (TREE_REALPART (expr));
786
787 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
788 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
789
790 high = TREE_INT_CST_HIGH (expr);
791 low = TREE_INT_CST_LOW (expr);
792
793 /* First clear all bits that are beyond the type's precision in case
794 we've been sign extended. */
795
796 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
797 ;
798 else if (prec > HOST_BITS_PER_WIDE_INT)
799 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
800 else
801 {
802 high = 0;
803 if (prec < HOST_BITS_PER_WIDE_INT)
804 low &= ~((HOST_WIDE_INT) (-1) << prec);
805 }
806
807 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
808 : exact_log2 (low));
809 }
810
811 /* Similar, but return the largest integer Y such that 2 ** Y is less
812 than or equal to EXPR. */
813
814 int
815 tree_floor_log2 (expr)
816 tree expr;
817 {
818 int prec;
819 HOST_WIDE_INT high, low;
820
821 STRIP_NOPS (expr);
822
823 if (TREE_CODE (expr) == COMPLEX_CST)
824 return tree_log2 (TREE_REALPART (expr));
825
826 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
827 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
828
829 high = TREE_INT_CST_HIGH (expr);
830 low = TREE_INT_CST_LOW (expr);
831
832 /* First clear all bits that are beyond the type's precision in case
833 we've been sign extended. Ignore if type's precision hasn't been set
834 since what we are doing is setting it. */
835
836 if (prec == 2 * HOST_BITS_PER_WIDE_INT || prec == 0)
837 ;
838 else if (prec > HOST_BITS_PER_WIDE_INT)
839 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
840 else
841 {
842 high = 0;
843 if (prec < HOST_BITS_PER_WIDE_INT)
844 low &= ~((HOST_WIDE_INT) (-1) << prec);
845 }
846
847 return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
848 : floor_log2 (low));
849 }
850
851 /* Return 1 if EXPR is the real constant zero. */
852
853 int
854 real_zerop (expr)
855 tree expr;
856 {
857 STRIP_NOPS (expr);
858
859 return ((TREE_CODE (expr) == REAL_CST
860 && ! TREE_CONSTANT_OVERFLOW (expr)
861 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0))
862 || (TREE_CODE (expr) == COMPLEX_CST
863 && real_zerop (TREE_REALPART (expr))
864 && real_zerop (TREE_IMAGPART (expr))));
865 }
866
867 /* Return 1 if EXPR is the real constant one in real or complex form. */
868
869 int
870 real_onep (expr)
871 tree expr;
872 {
873 STRIP_NOPS (expr);
874
875 return ((TREE_CODE (expr) == REAL_CST
876 && ! TREE_CONSTANT_OVERFLOW (expr)
877 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1))
878 || (TREE_CODE (expr) == COMPLEX_CST
879 && real_onep (TREE_REALPART (expr))
880 && real_zerop (TREE_IMAGPART (expr))));
881 }
882
883 /* Return 1 if EXPR is the real constant two. */
884
885 int
886 real_twop (expr)
887 tree expr;
888 {
889 STRIP_NOPS (expr);
890
891 return ((TREE_CODE (expr) == REAL_CST
892 && ! TREE_CONSTANT_OVERFLOW (expr)
893 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2))
894 || (TREE_CODE (expr) == COMPLEX_CST
895 && real_twop (TREE_REALPART (expr))
896 && real_zerop (TREE_IMAGPART (expr))));
897 }
898
899 /* Nonzero if EXP is a constant or a cast of a constant. */
900
901 int
902 really_constant_p (exp)
903 tree exp;
904 {
905 /* This is not quite the same as STRIP_NOPS. It does more. */
906 while (TREE_CODE (exp) == NOP_EXPR
907 || TREE_CODE (exp) == CONVERT_EXPR
908 || TREE_CODE (exp) == NON_LVALUE_EXPR)
909 exp = TREE_OPERAND (exp, 0);
910 return TREE_CONSTANT (exp);
911 }
912 \f
913 /* Return first list element whose TREE_VALUE is ELEM.
914 Return 0 if ELEM is not in LIST. */
915
916 tree
917 value_member (elem, list)
918 tree elem, list;
919 {
920 while (list)
921 {
922 if (elem == TREE_VALUE (list))
923 return list;
924 list = TREE_CHAIN (list);
925 }
926 return NULL_TREE;
927 }
928
929 /* Return first list element whose TREE_PURPOSE is ELEM.
930 Return 0 if ELEM is not in LIST. */
931
932 tree
933 purpose_member (elem, list)
934 tree elem, list;
935 {
936 while (list)
937 {
938 if (elem == TREE_PURPOSE (list))
939 return list;
940 list = TREE_CHAIN (list);
941 }
942 return NULL_TREE;
943 }
944
945 /* Return first list element whose BINFO_TYPE is ELEM.
946 Return 0 if ELEM is not in LIST. */
947
948 tree
949 binfo_member (elem, list)
950 tree elem, list;
951 {
952 while (list)
953 {
954 if (elem == BINFO_TYPE (list))
955 return list;
956 list = TREE_CHAIN (list);
957 }
958 return NULL_TREE;
959 }
960
961 /* Return nonzero if ELEM is part of the chain CHAIN. */
962
963 int
964 chain_member (elem, chain)
965 tree elem, chain;
966 {
967 while (chain)
968 {
969 if (elem == chain)
970 return 1;
971 chain = TREE_CHAIN (chain);
972 }
973
974 return 0;
975 }
976
977 /* Return nonzero if ELEM is equal to TREE_VALUE (CHAIN) for any piece of
978 chain CHAIN. This and the next function are currently unused, but
979 are retained for completeness. */
980
981 int
982 chain_member_value (elem, chain)
983 tree elem, chain;
984 {
985 while (chain)
986 {
987 if (elem == TREE_VALUE (chain))
988 return 1;
989 chain = TREE_CHAIN (chain);
990 }
991
992 return 0;
993 }
994
995 /* Return nonzero if ELEM is equal to TREE_PURPOSE (CHAIN)
996 for any piece of chain CHAIN. */
997
998 int
999 chain_member_purpose (elem, chain)
1000 tree elem, chain;
1001 {
1002 while (chain)
1003 {
1004 if (elem == TREE_PURPOSE (chain))
1005 return 1;
1006 chain = TREE_CHAIN (chain);
1007 }
1008
1009 return 0;
1010 }
1011
1012 /* Return the length of a chain of nodes chained through TREE_CHAIN.
1013 We expect a null pointer to mark the end of the chain.
1014 This is the Lisp primitive `length'. */
1015
1016 int
1017 list_length (t)
1018 tree t;
1019 {
1020 tree tail;
1021 int len = 0;
1022
1023 for (tail = t; tail; tail = TREE_CHAIN (tail))
1024 len++;
1025
1026 return len;
1027 }
1028
1029 /* Returns the number of FIELD_DECLs in TYPE. */
1030
1031 int
1032 fields_length (type)
1033 tree type;
1034 {
1035 tree t = TYPE_FIELDS (type);
1036 int count = 0;
1037
1038 for (; t; t = TREE_CHAIN (t))
1039 if (TREE_CODE (t) == FIELD_DECL)
1040 ++count;
1041
1042 return count;
1043 }
1044
1045 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
1046 by modifying the last node in chain 1 to point to chain 2.
1047 This is the Lisp primitive `nconc'. */
1048
1049 tree
1050 chainon (op1, op2)
1051 tree op1, op2;
1052 {
1053
1054 if (op1)
1055 {
1056 tree t1;
1057 #ifdef ENABLE_TREE_CHECKING
1058 tree t2;
1059 #endif
1060
1061 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
1062 ;
1063 TREE_CHAIN (t1) = op2;
1064 #ifdef ENABLE_TREE_CHECKING
1065 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
1066 if (t2 == t1)
1067 abort (); /* Circularity created. */
1068 #endif
1069 return op1;
1070 }
1071 else
1072 return op2;
1073 }
1074
1075 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
1076
1077 tree
1078 tree_last (chain)
1079 tree chain;
1080 {
1081 tree next;
1082 if (chain)
1083 while ((next = TREE_CHAIN (chain)))
1084 chain = next;
1085 return chain;
1086 }
1087
1088 /* Reverse the order of elements in the chain T,
1089 and return the new head of the chain (old last element). */
1090
1091 tree
1092 nreverse (t)
1093 tree t;
1094 {
1095 tree prev = 0, decl, next;
1096 for (decl = t; decl; decl = next)
1097 {
1098 next = TREE_CHAIN (decl);
1099 TREE_CHAIN (decl) = prev;
1100 prev = decl;
1101 }
1102 return prev;
1103 }
1104
1105 /* Given a chain CHAIN of tree nodes,
1106 construct and return a list of those nodes. */
1107
1108 tree
1109 listify (chain)
1110 tree chain;
1111 {
1112 tree result = NULL_TREE;
1113 tree in_tail = chain;
1114 tree out_tail = NULL_TREE;
1115
1116 while (in_tail)
1117 {
1118 tree next = tree_cons (NULL_TREE, in_tail, NULL_TREE);
1119 if (out_tail)
1120 TREE_CHAIN (out_tail) = next;
1121 else
1122 result = next;
1123 out_tail = next;
1124 in_tail = TREE_CHAIN (in_tail);
1125 }
1126
1127 return result;
1128 }
1129 \f
1130 /* Return a newly created TREE_LIST node whose
1131 purpose and value fields are PARM and VALUE. */
1132
1133 tree
1134 build_tree_list (parm, value)
1135 tree parm, value;
1136 {
1137 tree t = make_node (TREE_LIST);
1138 TREE_PURPOSE (t) = parm;
1139 TREE_VALUE (t) = value;
1140 return t;
1141 }
1142
1143 /* Return a newly created TREE_LIST node whose
1144 purpose and value fields are PARM and VALUE
1145 and whose TREE_CHAIN is CHAIN. */
1146
1147 tree
1148 tree_cons (purpose, value, chain)
1149 tree purpose, value, chain;
1150 {
1151 tree node;
1152
1153 node = ggc_alloc_tree (sizeof (struct tree_list));
1154
1155 memset (node, 0, sizeof (struct tree_common));
1156
1157 #ifdef GATHER_STATISTICS
1158 tree_node_counts[(int) x_kind]++;
1159 tree_node_sizes[(int) x_kind] += sizeof (struct tree_list);
1160 #endif
1161
1162 TREE_SET_CODE (node, TREE_LIST);
1163 TREE_CHAIN (node) = chain;
1164 TREE_PURPOSE (node) = purpose;
1165 TREE_VALUE (node) = value;
1166 return node;
1167 }
1168
1169 \f
1170 /* Return the size nominally occupied by an object of type TYPE
1171 when it resides in memory. The value is measured in units of bytes,
1172 and its data type is that normally used for type sizes
1173 (which is the first type created by make_signed_type or
1174 make_unsigned_type). */
1175
1176 tree
1177 size_in_bytes (type)
1178 tree type;
1179 {
1180 tree t;
1181
1182 if (type == error_mark_node)
1183 return integer_zero_node;
1184
1185 type = TYPE_MAIN_VARIANT (type);
1186 t = TYPE_SIZE_UNIT (type);
1187
1188 if (t == 0)
1189 {
1190 (*lang_hooks.types.incomplete_type_error) (NULL_TREE, type);
1191 return size_zero_node;
1192 }
1193
1194 if (TREE_CODE (t) == INTEGER_CST)
1195 force_fit_type (t, 0);
1196
1197 return t;
1198 }
1199
1200 /* Return the size of TYPE (in bytes) as a wide integer
1201 or return -1 if the size can vary or is larger than an integer. */
1202
1203 HOST_WIDE_INT
1204 int_size_in_bytes (type)
1205 tree type;
1206 {
1207 tree t;
1208
1209 if (type == error_mark_node)
1210 return 0;
1211
1212 type = TYPE_MAIN_VARIANT (type);
1213 t = TYPE_SIZE_UNIT (type);
1214 if (t == 0
1215 || TREE_CODE (t) != INTEGER_CST
1216 || TREE_OVERFLOW (t)
1217 || TREE_INT_CST_HIGH (t) != 0
1218 /* If the result would appear negative, it's too big to represent. */
1219 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
1220 return -1;
1221
1222 return TREE_INT_CST_LOW (t);
1223 }
1224 \f
1225 /* Return the bit position of FIELD, in bits from the start of the record.
1226 This is a tree of type bitsizetype. */
1227
1228 tree
1229 bit_position (field)
1230 tree field;
1231 {
1232
1233 return bit_from_pos (DECL_FIELD_OFFSET (field),
1234 DECL_FIELD_BIT_OFFSET (field));
1235 }
1236
1237 /* Likewise, but return as an integer. Abort if it cannot be represented
1238 in that way (since it could be a signed value, we don't have the option
1239 of returning -1 like int_size_in_byte can. */
1240
1241 HOST_WIDE_INT
1242 int_bit_position (field)
1243 tree field;
1244 {
1245 return tree_low_cst (bit_position (field), 0);
1246 }
1247 \f
1248 /* Return the byte position of FIELD, in bytes from the start of the record.
1249 This is a tree of type sizetype. */
1250
1251 tree
1252 byte_position (field)
1253 tree field;
1254 {
1255 return byte_from_pos (DECL_FIELD_OFFSET (field),
1256 DECL_FIELD_BIT_OFFSET (field));
1257 }
1258
1259 /* Likewise, but return as an integer. Abort if it cannot be represented
1260 in that way (since it could be a signed value, we don't have the option
1261 of returning -1 like int_size_in_byte can. */
1262
1263 HOST_WIDE_INT
1264 int_byte_position (field)
1265 tree field;
1266 {
1267 return tree_low_cst (byte_position (field), 0);
1268 }
1269 \f
1270 /* Return the strictest alignment, in bits, that T is known to have. */
1271
1272 unsigned int
1273 expr_align (t)
1274 tree t;
1275 {
1276 unsigned int align0, align1;
1277
1278 switch (TREE_CODE (t))
1279 {
1280 case NOP_EXPR: case CONVERT_EXPR: case NON_LVALUE_EXPR:
1281 /* If we have conversions, we know that the alignment of the
1282 object must meet each of the alignments of the types. */
1283 align0 = expr_align (TREE_OPERAND (t, 0));
1284 align1 = TYPE_ALIGN (TREE_TYPE (t));
1285 return MAX (align0, align1);
1286
1287 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
1288 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
1289 case WITH_RECORD_EXPR: case CLEANUP_POINT_EXPR: case UNSAVE_EXPR:
1290 /* These don't change the alignment of an object. */
1291 return expr_align (TREE_OPERAND (t, 0));
1292
1293 case COND_EXPR:
1294 /* The best we can do is say that the alignment is the least aligned
1295 of the two arms. */
1296 align0 = expr_align (TREE_OPERAND (t, 1));
1297 align1 = expr_align (TREE_OPERAND (t, 2));
1298 return MIN (align0, align1);
1299
1300 case LABEL_DECL: case CONST_DECL:
1301 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
1302 if (DECL_ALIGN (t) != 0)
1303 return DECL_ALIGN (t);
1304 break;
1305
1306 case FUNCTION_DECL:
1307 return FUNCTION_BOUNDARY;
1308
1309 default:
1310 break;
1311 }
1312
1313 /* Otherwise take the alignment from that of the type. */
1314 return TYPE_ALIGN (TREE_TYPE (t));
1315 }
1316 \f
1317 /* Return, as a tree node, the number of elements for TYPE (which is an
1318 ARRAY_TYPE) minus one. This counts only elements of the top array. */
1319
1320 tree
1321 array_type_nelts (type)
1322 tree type;
1323 {
1324 tree index_type, min, max;
1325
1326 /* If they did it with unspecified bounds, then we should have already
1327 given an error about it before we got here. */
1328 if (! TYPE_DOMAIN (type))
1329 return error_mark_node;
1330
1331 index_type = TYPE_DOMAIN (type);
1332 min = TYPE_MIN_VALUE (index_type);
1333 max = TYPE_MAX_VALUE (index_type);
1334
1335 return (integer_zerop (min)
1336 ? max
1337 : fold (build (MINUS_EXPR, TREE_TYPE (max), max, min)));
1338 }
1339 \f
1340 /* Return nonzero if arg is static -- a reference to an object in
1341 static storage. This is not the same as the C meaning of `static'. */
1342
1343 int
1344 staticp (arg)
1345 tree arg;
1346 {
1347 switch (TREE_CODE (arg))
1348 {
1349 case FUNCTION_DECL:
1350 /* Nested functions aren't static, since taking their address
1351 involves a trampoline. */
1352 return (decl_function_context (arg) == 0 || DECL_NO_STATIC_CHAIN (arg))
1353 && ! DECL_NON_ADDR_CONST_P (arg);
1354
1355 case VAR_DECL:
1356 return (TREE_STATIC (arg) || DECL_EXTERNAL (arg))
1357 && ! DECL_NON_ADDR_CONST_P (arg);
1358
1359 case CONSTRUCTOR:
1360 return TREE_STATIC (arg);
1361
1362 case LABEL_DECL:
1363 case STRING_CST:
1364 return 1;
1365
1366 /* If we are referencing a bitfield, we can't evaluate an
1367 ADDR_EXPR at compile time and so it isn't a constant. */
1368 case COMPONENT_REF:
1369 return (! DECL_BIT_FIELD (TREE_OPERAND (arg, 1))
1370 && staticp (TREE_OPERAND (arg, 0)));
1371
1372 case BIT_FIELD_REF:
1373 return 0;
1374
1375 #if 0
1376 /* This case is technically correct, but results in setting
1377 TREE_CONSTANT on ADDR_EXPRs that cannot be evaluated at
1378 compile time. */
1379 case INDIRECT_REF:
1380 return TREE_CONSTANT (TREE_OPERAND (arg, 0));
1381 #endif
1382
1383 case ARRAY_REF:
1384 case ARRAY_RANGE_REF:
1385 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
1386 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
1387 return staticp (TREE_OPERAND (arg, 0));
1388
1389 default:
1390 if ((unsigned int) TREE_CODE (arg)
1391 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
1392 return (*lang_hooks.staticp) (arg);
1393 else
1394 return 0;
1395 }
1396 }
1397 \f
1398 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
1399 Do this to any expression which may be used in more than one place,
1400 but must be evaluated only once.
1401
1402 Normally, expand_expr would reevaluate the expression each time.
1403 Calling save_expr produces something that is evaluated and recorded
1404 the first time expand_expr is called on it. Subsequent calls to
1405 expand_expr just reuse the recorded value.
1406
1407 The call to expand_expr that generates code that actually computes
1408 the value is the first call *at compile time*. Subsequent calls
1409 *at compile time* generate code to use the saved value.
1410 This produces correct result provided that *at run time* control
1411 always flows through the insns made by the first expand_expr
1412 before reaching the other places where the save_expr was evaluated.
1413 You, the caller of save_expr, must make sure this is so.
1414
1415 Constants, and certain read-only nodes, are returned with no
1416 SAVE_EXPR because that is safe. Expressions containing placeholders
1417 are not touched; see tree.def for an explanation of what these
1418 are used for. */
1419
1420 tree
1421 save_expr (expr)
1422 tree expr;
1423 {
1424 tree t = fold (expr);
1425 tree inner;
1426
1427 /* We don't care about whether this can be used as an lvalue in this
1428 context. */
1429 while (TREE_CODE (t) == NON_LVALUE_EXPR)
1430 t = TREE_OPERAND (t, 0);
1431
1432 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
1433 a constant, it will be more efficient to not make another SAVE_EXPR since
1434 it will allow better simplification and GCSE will be able to merge the
1435 computations if they actualy occur. */
1436 for (inner = t;
1437 (TREE_CODE_CLASS (TREE_CODE (inner)) == '1'
1438 || (TREE_CODE_CLASS (TREE_CODE (inner)) == '2'
1439 && TREE_CONSTANT (TREE_OPERAND (inner, 1))));
1440 inner = TREE_OPERAND (inner, 0))
1441 ;
1442
1443 /* If the tree evaluates to a constant, then we don't want to hide that
1444 fact (i.e. this allows further folding, and direct checks for constants).
1445 However, a read-only object that has side effects cannot be bypassed.
1446 Since it is no problem to reevaluate literals, we just return the
1447 literal node. */
1448 if (TREE_CONSTANT (inner)
1449 || (TREE_READONLY (inner) && ! TREE_SIDE_EFFECTS (inner))
1450 || TREE_CODE (inner) == SAVE_EXPR || TREE_CODE (inner) == ERROR_MARK)
1451 return t;
1452
1453 /* If T contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
1454 it means that the size or offset of some field of an object depends on
1455 the value within another field.
1456
1457 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
1458 and some variable since it would then need to be both evaluated once and
1459 evaluated more than once. Front-ends must assure this case cannot
1460 happen by surrounding any such subexpressions in their own SAVE_EXPR
1461 and forcing evaluation at the proper time. */
1462 if (contains_placeholder_p (t))
1463 return t;
1464
1465 t = build (SAVE_EXPR, TREE_TYPE (expr), t, current_function_decl, NULL_TREE);
1466
1467 /* This expression might be placed ahead of a jump to ensure that the
1468 value was computed on both sides of the jump. So make sure it isn't
1469 eliminated as dead. */
1470 TREE_SIDE_EFFECTS (t) = 1;
1471 TREE_READONLY (t) = 1;
1472 return t;
1473 }
1474
1475 /* Arrange for an expression to be expanded multiple independent
1476 times. This is useful for cleanup actions, as the backend can
1477 expand them multiple times in different places. */
1478
1479 tree
1480 unsave_expr (expr)
1481 tree expr;
1482 {
1483 tree t;
1484
1485 /* If this is already protected, no sense in protecting it again. */
1486 if (TREE_CODE (expr) == UNSAVE_EXPR)
1487 return expr;
1488
1489 t = build1 (UNSAVE_EXPR, TREE_TYPE (expr), expr);
1490 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (expr);
1491 return t;
1492 }
1493
1494 /* Returns the index of the first non-tree operand for CODE, or the number
1495 of operands if all are trees. */
1496
1497 int
1498 first_rtl_op (code)
1499 enum tree_code code;
1500 {
1501 switch (code)
1502 {
1503 case SAVE_EXPR:
1504 return 2;
1505 case GOTO_SUBROUTINE_EXPR:
1506 case RTL_EXPR:
1507 return 0;
1508 case WITH_CLEANUP_EXPR:
1509 return 2;
1510 case METHOD_CALL_EXPR:
1511 return 3;
1512 default:
1513 return TREE_CODE_LENGTH (code);
1514 }
1515 }
1516
1517 /* Perform any modifications to EXPR required when it is unsaved. Does
1518 not recurse into EXPR's subtrees. */
1519
1520 void
1521 unsave_expr_1 (expr)
1522 tree expr;
1523 {
1524 switch (TREE_CODE (expr))
1525 {
1526 case SAVE_EXPR:
1527 if (! SAVE_EXPR_PERSISTENT_P (expr))
1528 SAVE_EXPR_RTL (expr) = 0;
1529 break;
1530
1531 case TARGET_EXPR:
1532 /* Don't mess with a TARGET_EXPR that hasn't been expanded.
1533 It's OK for this to happen if it was part of a subtree that
1534 isn't immediately expanded, such as operand 2 of another
1535 TARGET_EXPR. */
1536 if (TREE_OPERAND (expr, 1))
1537 break;
1538
1539 TREE_OPERAND (expr, 1) = TREE_OPERAND (expr, 3);
1540 TREE_OPERAND (expr, 3) = NULL_TREE;
1541 break;
1542
1543 case RTL_EXPR:
1544 /* I don't yet know how to emit a sequence multiple times. */
1545 if (RTL_EXPR_SEQUENCE (expr) != 0)
1546 abort ();
1547 break;
1548
1549 default:
1550 break;
1551 }
1552 }
1553
1554 /* Default lang hook for "unsave_expr_now". */
1555
1556 tree
1557 lhd_unsave_expr_now (expr)
1558 tree expr;
1559 {
1560 enum tree_code code;
1561
1562 /* There's nothing to do for NULL_TREE. */
1563 if (expr == 0)
1564 return expr;
1565
1566 unsave_expr_1 (expr);
1567
1568 code = TREE_CODE (expr);
1569 switch (TREE_CODE_CLASS (code))
1570 {
1571 case 'c': /* a constant */
1572 case 't': /* a type node */
1573 case 'd': /* A decl node */
1574 case 'b': /* A block node */
1575 break;
1576
1577 case 'x': /* miscellaneous: e.g., identifier, TREE_LIST or ERROR_MARK. */
1578 if (code == TREE_LIST)
1579 {
1580 lhd_unsave_expr_now (TREE_VALUE (expr));
1581 lhd_unsave_expr_now (TREE_CHAIN (expr));
1582 }
1583 break;
1584
1585 case 'e': /* an expression */
1586 case 'r': /* a reference */
1587 case 's': /* an expression with side effects */
1588 case '<': /* a comparison expression */
1589 case '2': /* a binary arithmetic expression */
1590 case '1': /* a unary arithmetic expression */
1591 {
1592 int i;
1593
1594 for (i = first_rtl_op (code) - 1; i >= 0; i--)
1595 lhd_unsave_expr_now (TREE_OPERAND (expr, i));
1596 }
1597 break;
1598
1599 default:
1600 abort ();
1601 }
1602
1603 return expr;
1604 }
1605
1606 /* Return 0 if it is safe to evaluate EXPR multiple times,
1607 return 1 if it is safe if EXPR is unsaved afterward, or
1608 return 2 if it is completely unsafe.
1609
1610 This assumes that CALL_EXPRs and TARGET_EXPRs are never replicated in
1611 an expression tree, so that it safe to unsave them and the surrounding
1612 context will be correct.
1613
1614 SAVE_EXPRs basically *only* appear replicated in an expression tree,
1615 occasionally across the whole of a function. It is therefore only
1616 safe to unsave a SAVE_EXPR if you know that all occurrences appear
1617 below the UNSAVE_EXPR.
1618
1619 RTL_EXPRs consume their rtl during evaluation. It is therefore
1620 never possible to unsave them. */
1621
1622 int
1623 unsafe_for_reeval (expr)
1624 tree expr;
1625 {
1626 int unsafeness = 0;
1627 enum tree_code code;
1628 int i, tmp;
1629 tree exp;
1630 int first_rtl;
1631
1632 if (expr == NULL_TREE)
1633 return 1;
1634
1635 code = TREE_CODE (expr);
1636 first_rtl = first_rtl_op (code);
1637
1638 switch (code)
1639 {
1640 case SAVE_EXPR:
1641 case RTL_EXPR:
1642 return 2;
1643
1644 case TREE_LIST:
1645 for (exp = expr; exp != 0; exp = TREE_CHAIN (exp))
1646 {
1647 tmp = unsafe_for_reeval (TREE_VALUE (exp));
1648 unsafeness = MAX (tmp, unsafeness);
1649 }
1650
1651 return unsafeness;
1652
1653 case CALL_EXPR:
1654 tmp = unsafe_for_reeval (TREE_OPERAND (expr, 1));
1655 return MAX (tmp, 1);
1656
1657 case TARGET_EXPR:
1658 unsafeness = 1;
1659 break;
1660
1661 default:
1662 tmp = (*lang_hooks.unsafe_for_reeval) (expr);
1663 if (tmp >= 0)
1664 return tmp;
1665 break;
1666 }
1667
1668 switch (TREE_CODE_CLASS (code))
1669 {
1670 case 'c': /* a constant */
1671 case 't': /* a type node */
1672 case 'x': /* something random, like an identifier or an ERROR_MARK. */
1673 case 'd': /* A decl node */
1674 case 'b': /* A block node */
1675 return 0;
1676
1677 case 'e': /* an expression */
1678 case 'r': /* a reference */
1679 case 's': /* an expression with side effects */
1680 case '<': /* a comparison expression */
1681 case '2': /* a binary arithmetic expression */
1682 case '1': /* a unary arithmetic expression */
1683 for (i = first_rtl - 1; i >= 0; i--)
1684 {
1685 tmp = unsafe_for_reeval (TREE_OPERAND (expr, i));
1686 unsafeness = MAX (tmp, unsafeness);
1687 }
1688
1689 return unsafeness;
1690
1691 default:
1692 return 2;
1693 }
1694 }
1695 \f
1696 /* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
1697 or offset that depends on a field within a record. */
1698
1699 int
1700 contains_placeholder_p (exp)
1701 tree exp;
1702 {
1703 enum tree_code code;
1704 int result;
1705
1706 if (!exp)
1707 return 0;
1708
1709 /* If we have a WITH_RECORD_EXPR, it "cancels" any PLACEHOLDER_EXPR
1710 in it since it is supplying a value for it. */
1711 code = TREE_CODE (exp);
1712 if (code == WITH_RECORD_EXPR)
1713 return 0;
1714 else if (code == PLACEHOLDER_EXPR)
1715 return 1;
1716
1717 switch (TREE_CODE_CLASS (code))
1718 {
1719 case 'r':
1720 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
1721 position computations since they will be converted into a
1722 WITH_RECORD_EXPR involving the reference, which will assume
1723 here will be valid. */
1724 return contains_placeholder_p (TREE_OPERAND (exp, 0));
1725
1726 case 'x':
1727 if (code == TREE_LIST)
1728 return (contains_placeholder_p (TREE_VALUE (exp))
1729 || (TREE_CHAIN (exp) != 0
1730 && contains_placeholder_p (TREE_CHAIN (exp))));
1731 break;
1732
1733 case '1':
1734 case '2': case '<':
1735 case 'e':
1736 switch (code)
1737 {
1738 case COMPOUND_EXPR:
1739 /* Ignoring the first operand isn't quite right, but works best. */
1740 return contains_placeholder_p (TREE_OPERAND (exp, 1));
1741
1742 case RTL_EXPR:
1743 case CONSTRUCTOR:
1744 return 0;
1745
1746 case COND_EXPR:
1747 return (contains_placeholder_p (TREE_OPERAND (exp, 0))
1748 || contains_placeholder_p (TREE_OPERAND (exp, 1))
1749 || contains_placeholder_p (TREE_OPERAND (exp, 2)));
1750
1751 case SAVE_EXPR:
1752 /* If we already know this doesn't have a placeholder, don't
1753 check again. */
1754 if (SAVE_EXPR_NOPLACEHOLDER (exp) || SAVE_EXPR_RTL (exp) != 0)
1755 return 0;
1756
1757 SAVE_EXPR_NOPLACEHOLDER (exp) = 1;
1758 result = contains_placeholder_p (TREE_OPERAND (exp, 0));
1759 if (result)
1760 SAVE_EXPR_NOPLACEHOLDER (exp) = 0;
1761
1762 return result;
1763
1764 case CALL_EXPR:
1765 return (TREE_OPERAND (exp, 1) != 0
1766 && contains_placeholder_p (TREE_OPERAND (exp, 1)));
1767
1768 default:
1769 break;
1770 }
1771
1772 switch (TREE_CODE_LENGTH (code))
1773 {
1774 case 1:
1775 return contains_placeholder_p (TREE_OPERAND (exp, 0));
1776 case 2:
1777 return (contains_placeholder_p (TREE_OPERAND (exp, 0))
1778 || contains_placeholder_p (TREE_OPERAND (exp, 1)));
1779 default:
1780 return 0;
1781 }
1782
1783 default:
1784 return 0;
1785 }
1786 return 0;
1787 }
1788
1789 /* Return 1 if EXP contains any expressions that produce cleanups for an
1790 outer scope to deal with. Used by fold. */
1791
1792 int
1793 has_cleanups (exp)
1794 tree exp;
1795 {
1796 int i, nops, cmp;
1797
1798 if (! TREE_SIDE_EFFECTS (exp))
1799 return 0;
1800
1801 switch (TREE_CODE (exp))
1802 {
1803 case TARGET_EXPR:
1804 case GOTO_SUBROUTINE_EXPR:
1805 case WITH_CLEANUP_EXPR:
1806 return 1;
1807
1808 case CLEANUP_POINT_EXPR:
1809 return 0;
1810
1811 case CALL_EXPR:
1812 for (exp = TREE_OPERAND (exp, 1); exp; exp = TREE_CHAIN (exp))
1813 {
1814 cmp = has_cleanups (TREE_VALUE (exp));
1815 if (cmp)
1816 return cmp;
1817 }
1818 return 0;
1819
1820 default:
1821 break;
1822 }
1823
1824 /* This general rule works for most tree codes. All exceptions should be
1825 handled above. If this is a language-specific tree code, we can't
1826 trust what might be in the operand, so say we don't know
1827 the situation. */
1828 if ((int) TREE_CODE (exp) >= (int) LAST_AND_UNUSED_TREE_CODE)
1829 return -1;
1830
1831 nops = first_rtl_op (TREE_CODE (exp));
1832 for (i = 0; i < nops; i++)
1833 if (TREE_OPERAND (exp, i) != 0)
1834 {
1835 int type = TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, i)));
1836 if (type == 'e' || type == '<' || type == '1' || type == '2'
1837 || type == 'r' || type == 's')
1838 {
1839 cmp = has_cleanups (TREE_OPERAND (exp, i));
1840 if (cmp)
1841 return cmp;
1842 }
1843 }
1844
1845 return 0;
1846 }
1847 \f
1848 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
1849 return a tree with all occurrences of references to F in a
1850 PLACEHOLDER_EXPR replaced by R. Note that we assume here that EXP
1851 contains only arithmetic expressions or a CALL_EXPR with a
1852 PLACEHOLDER_EXPR occurring only in its arglist. */
1853
1854 tree
1855 substitute_in_expr (exp, f, r)
1856 tree exp;
1857 tree f;
1858 tree r;
1859 {
1860 enum tree_code code = TREE_CODE (exp);
1861 tree op0, op1, op2;
1862 tree new;
1863 tree inner;
1864
1865 switch (TREE_CODE_CLASS (code))
1866 {
1867 case 'c':
1868 case 'd':
1869 return exp;
1870
1871 case 'x':
1872 if (code == PLACEHOLDER_EXPR)
1873 return exp;
1874 else if (code == TREE_LIST)
1875 {
1876 op0 = (TREE_CHAIN (exp) == 0
1877 ? 0 : substitute_in_expr (TREE_CHAIN (exp), f, r));
1878 op1 = substitute_in_expr (TREE_VALUE (exp), f, r);
1879 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
1880 return exp;
1881
1882 return tree_cons (TREE_PURPOSE (exp), op1, op0);
1883 }
1884
1885 abort ();
1886
1887 case '1':
1888 case '2':
1889 case '<':
1890 case 'e':
1891 switch (TREE_CODE_LENGTH (code))
1892 {
1893 case 1:
1894 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
1895 if (op0 == TREE_OPERAND (exp, 0))
1896 return exp;
1897
1898 if (code == NON_LVALUE_EXPR)
1899 return op0;
1900
1901 new = fold (build1 (code, TREE_TYPE (exp), op0));
1902 break;
1903
1904 case 2:
1905 /* An RTL_EXPR cannot contain a PLACEHOLDER_EXPR; a CONSTRUCTOR
1906 could, but we don't support it. */
1907 if (code == RTL_EXPR)
1908 return exp;
1909 else if (code == CONSTRUCTOR)
1910 abort ();
1911
1912 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
1913 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
1914 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
1915 return exp;
1916
1917 new = fold (build (code, TREE_TYPE (exp), op0, op1));
1918 break;
1919
1920 case 3:
1921 /* It cannot be that anything inside a SAVE_EXPR contains a
1922 PLACEHOLDER_EXPR. */
1923 if (code == SAVE_EXPR)
1924 return exp;
1925
1926 else if (code == CALL_EXPR)
1927 {
1928 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
1929 if (op1 == TREE_OPERAND (exp, 1))
1930 return exp;
1931
1932 return build (code, TREE_TYPE (exp),
1933 TREE_OPERAND (exp, 0), op1, NULL_TREE);
1934 }
1935
1936 else if (code != COND_EXPR)
1937 abort ();
1938
1939 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
1940 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
1941 op2 = substitute_in_expr (TREE_OPERAND (exp, 2), f, r);
1942 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
1943 && op2 == TREE_OPERAND (exp, 2))
1944 return exp;
1945
1946 new = fold (build (code, TREE_TYPE (exp), op0, op1, op2));
1947 break;
1948
1949 default:
1950 abort ();
1951 }
1952
1953 break;
1954
1955 case 'r':
1956 switch (code)
1957 {
1958 case COMPONENT_REF:
1959 /* If this expression is getting a value from a PLACEHOLDER_EXPR
1960 and it is the right field, replace it with R. */
1961 for (inner = TREE_OPERAND (exp, 0);
1962 TREE_CODE_CLASS (TREE_CODE (inner)) == 'r';
1963 inner = TREE_OPERAND (inner, 0))
1964 ;
1965 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
1966 && TREE_OPERAND (exp, 1) == f)
1967 return r;
1968
1969 /* If this expression hasn't been completed let, leave it
1970 alone. */
1971 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
1972 && TREE_TYPE (inner) == 0)
1973 return exp;
1974
1975 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
1976 if (op0 == TREE_OPERAND (exp, 0))
1977 return exp;
1978
1979 new = fold (build (code, TREE_TYPE (exp), op0,
1980 TREE_OPERAND (exp, 1)));
1981 break;
1982
1983 case BIT_FIELD_REF:
1984 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
1985 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
1986 op2 = substitute_in_expr (TREE_OPERAND (exp, 2), f, r);
1987 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
1988 && op2 == TREE_OPERAND (exp, 2))
1989 return exp;
1990
1991 new = fold (build (code, TREE_TYPE (exp), op0, op1, op2));
1992 break;
1993
1994 case INDIRECT_REF:
1995 case BUFFER_REF:
1996 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
1997 if (op0 == TREE_OPERAND (exp, 0))
1998 return exp;
1999
2000 new = fold (build1 (code, TREE_TYPE (exp), op0));
2001 break;
2002
2003 default:
2004 abort ();
2005 }
2006 break;
2007
2008 default:
2009 abort ();
2010 }
2011
2012 TREE_READONLY (new) = TREE_READONLY (exp);
2013 return new;
2014 }
2015 \f
2016 /* Stabilize a reference so that we can use it any number of times
2017 without causing its operands to be evaluated more than once.
2018 Returns the stabilized reference. This works by means of save_expr,
2019 so see the caveats in the comments about save_expr.
2020
2021 Also allows conversion expressions whose operands are references.
2022 Any other kind of expression is returned unchanged. */
2023
2024 tree
2025 stabilize_reference (ref)
2026 tree ref;
2027 {
2028 tree result;
2029 enum tree_code code = TREE_CODE (ref);
2030
2031 switch (code)
2032 {
2033 case VAR_DECL:
2034 case PARM_DECL:
2035 case RESULT_DECL:
2036 /* No action is needed in this case. */
2037 return ref;
2038
2039 case NOP_EXPR:
2040 case CONVERT_EXPR:
2041 case FLOAT_EXPR:
2042 case FIX_TRUNC_EXPR:
2043 case FIX_FLOOR_EXPR:
2044 case FIX_ROUND_EXPR:
2045 case FIX_CEIL_EXPR:
2046 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
2047 break;
2048
2049 case INDIRECT_REF:
2050 result = build_nt (INDIRECT_REF,
2051 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
2052 break;
2053
2054 case COMPONENT_REF:
2055 result = build_nt (COMPONENT_REF,
2056 stabilize_reference (TREE_OPERAND (ref, 0)),
2057 TREE_OPERAND (ref, 1));
2058 break;
2059
2060 case BIT_FIELD_REF:
2061 result = build_nt (BIT_FIELD_REF,
2062 stabilize_reference (TREE_OPERAND (ref, 0)),
2063 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2064 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
2065 break;
2066
2067 case ARRAY_REF:
2068 result = build_nt (ARRAY_REF,
2069 stabilize_reference (TREE_OPERAND (ref, 0)),
2070 stabilize_reference_1 (TREE_OPERAND (ref, 1)));
2071 break;
2072
2073 case ARRAY_RANGE_REF:
2074 result = build_nt (ARRAY_RANGE_REF,
2075 stabilize_reference (TREE_OPERAND (ref, 0)),
2076 stabilize_reference_1 (TREE_OPERAND (ref, 1)));
2077 break;
2078
2079 case COMPOUND_EXPR:
2080 /* We cannot wrap the first expression in a SAVE_EXPR, as then
2081 it wouldn't be ignored. This matters when dealing with
2082 volatiles. */
2083 return stabilize_reference_1 (ref);
2084
2085 case RTL_EXPR:
2086 result = build1 (INDIRECT_REF, TREE_TYPE (ref),
2087 save_expr (build1 (ADDR_EXPR,
2088 build_pointer_type (TREE_TYPE (ref)),
2089 ref)));
2090 break;
2091
2092 /* If arg isn't a kind of lvalue we recognize, make no change.
2093 Caller should recognize the error for an invalid lvalue. */
2094 default:
2095 return ref;
2096
2097 case ERROR_MARK:
2098 return error_mark_node;
2099 }
2100
2101 TREE_TYPE (result) = TREE_TYPE (ref);
2102 TREE_READONLY (result) = TREE_READONLY (ref);
2103 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
2104 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
2105
2106 return result;
2107 }
2108
2109 /* Subroutine of stabilize_reference; this is called for subtrees of
2110 references. Any expression with side-effects must be put in a SAVE_EXPR
2111 to ensure that it is only evaluated once.
2112
2113 We don't put SAVE_EXPR nodes around everything, because assigning very
2114 simple expressions to temporaries causes us to miss good opportunities
2115 for optimizations. Among other things, the opportunity to fold in the
2116 addition of a constant into an addressing mode often gets lost, e.g.
2117 "y[i+1] += x;". In general, we take the approach that we should not make
2118 an assignment unless we are forced into it - i.e., that any non-side effect
2119 operator should be allowed, and that cse should take care of coalescing
2120 multiple utterances of the same expression should that prove fruitful. */
2121
2122 tree
2123 stabilize_reference_1 (e)
2124 tree e;
2125 {
2126 tree result;
2127 enum tree_code code = TREE_CODE (e);
2128
2129 /* We cannot ignore const expressions because it might be a reference
2130 to a const array but whose index contains side-effects. But we can
2131 ignore things that are actual constant or that already have been
2132 handled by this function. */
2133
2134 if (TREE_CONSTANT (e) || code == SAVE_EXPR)
2135 return e;
2136
2137 switch (TREE_CODE_CLASS (code))
2138 {
2139 case 'x':
2140 case 't':
2141 case 'd':
2142 case 'b':
2143 case '<':
2144 case 's':
2145 case 'e':
2146 case 'r':
2147 /* If the expression has side-effects, then encase it in a SAVE_EXPR
2148 so that it will only be evaluated once. */
2149 /* The reference (r) and comparison (<) classes could be handled as
2150 below, but it is generally faster to only evaluate them once. */
2151 if (TREE_SIDE_EFFECTS (e))
2152 return save_expr (e);
2153 return e;
2154
2155 case 'c':
2156 /* Constants need no processing. In fact, we should never reach
2157 here. */
2158 return e;
2159
2160 case '2':
2161 /* Division is slow and tends to be compiled with jumps,
2162 especially the division by powers of 2 that is often
2163 found inside of an array reference. So do it just once. */
2164 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
2165 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
2166 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
2167 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
2168 return save_expr (e);
2169 /* Recursively stabilize each operand. */
2170 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
2171 stabilize_reference_1 (TREE_OPERAND (e, 1)));
2172 break;
2173
2174 case '1':
2175 /* Recursively stabilize each operand. */
2176 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
2177 break;
2178
2179 default:
2180 abort ();
2181 }
2182
2183 TREE_TYPE (result) = TREE_TYPE (e);
2184 TREE_READONLY (result) = TREE_READONLY (e);
2185 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
2186 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
2187
2188 return result;
2189 }
2190 \f
2191 /* Low-level constructors for expressions. */
2192
2193 /* Build an expression of code CODE, data type TYPE,
2194 and operands as specified by the arguments ARG1 and following arguments.
2195 Expressions and reference nodes can be created this way.
2196 Constants, decls, types and misc nodes cannot be. */
2197
2198 tree
2199 build VPARAMS ((enum tree_code code, tree tt, ...))
2200 {
2201 tree t;
2202 int length;
2203 int i;
2204 int fro;
2205 int constant;
2206
2207 VA_OPEN (p, tt);
2208 VA_FIXEDARG (p, enum tree_code, code);
2209 VA_FIXEDARG (p, tree, tt);
2210
2211 t = make_node (code);
2212 length = TREE_CODE_LENGTH (code);
2213 TREE_TYPE (t) = tt;
2214
2215 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
2216 result based on those same flags for the arguments. But if the
2217 arguments aren't really even `tree' expressions, we shouldn't be trying
2218 to do this. */
2219 fro = first_rtl_op (code);
2220
2221 /* Expressions without side effects may be constant if their
2222 arguments are as well. */
2223 constant = (TREE_CODE_CLASS (code) == '<'
2224 || TREE_CODE_CLASS (code) == '1'
2225 || TREE_CODE_CLASS (code) == '2'
2226 || TREE_CODE_CLASS (code) == 'c');
2227
2228 if (length == 2)
2229 {
2230 /* This is equivalent to the loop below, but faster. */
2231 tree arg0 = va_arg (p, tree);
2232 tree arg1 = va_arg (p, tree);
2233
2234 TREE_OPERAND (t, 0) = arg0;
2235 TREE_OPERAND (t, 1) = arg1;
2236 TREE_READONLY (t) = 1;
2237 if (arg0 && fro > 0)
2238 {
2239 if (TREE_SIDE_EFFECTS (arg0))
2240 TREE_SIDE_EFFECTS (t) = 1;
2241 if (!TREE_READONLY (arg0))
2242 TREE_READONLY (t) = 0;
2243 if (!TREE_CONSTANT (arg0))
2244 constant = 0;
2245 }
2246
2247 if (arg1 && fro > 1)
2248 {
2249 if (TREE_SIDE_EFFECTS (arg1))
2250 TREE_SIDE_EFFECTS (t) = 1;
2251 if (!TREE_READONLY (arg1))
2252 TREE_READONLY (t) = 0;
2253 if (!TREE_CONSTANT (arg1))
2254 constant = 0;
2255 }
2256 }
2257 else if (length == 1)
2258 {
2259 tree arg0 = va_arg (p, tree);
2260
2261 /* The only one-operand cases we handle here are those with side-effects.
2262 Others are handled with build1. So don't bother checked if the
2263 arg has side-effects since we'll already have set it.
2264
2265 ??? This really should use build1 too. */
2266 if (TREE_CODE_CLASS (code) != 's')
2267 abort ();
2268 TREE_OPERAND (t, 0) = arg0;
2269 }
2270 else
2271 {
2272 for (i = 0; i < length; i++)
2273 {
2274 tree operand = va_arg (p, tree);
2275
2276 TREE_OPERAND (t, i) = operand;
2277 if (operand && fro > i)
2278 {
2279 if (TREE_SIDE_EFFECTS (operand))
2280 TREE_SIDE_EFFECTS (t) = 1;
2281 if (!TREE_CONSTANT (operand))
2282 constant = 0;
2283 }
2284 }
2285 }
2286 VA_CLOSE (p);
2287
2288 TREE_CONSTANT (t) = constant;
2289 return t;
2290 }
2291
2292 /* Same as above, but only builds for unary operators.
2293 Saves lions share of calls to `build'; cuts down use
2294 of varargs, which is expensive for RISC machines. */
2295
2296 tree
2297 build1 (code, type, node)
2298 enum tree_code code;
2299 tree type;
2300 tree node;
2301 {
2302 int length;
2303 #ifdef GATHER_STATISTICS
2304 tree_node_kind kind;
2305 #endif
2306 tree t;
2307
2308 #ifdef GATHER_STATISTICS
2309 if (TREE_CODE_CLASS (code) == 'r')
2310 kind = r_kind;
2311 else
2312 kind = e_kind;
2313 #endif
2314
2315 #ifdef ENABLE_CHECKING
2316 if (TREE_CODE_CLASS (code) == '2'
2317 || TREE_CODE_CLASS (code) == '<'
2318 || TREE_CODE_LENGTH (code) != 1)
2319 abort ();
2320 #endif /* ENABLE_CHECKING */
2321
2322 length = sizeof (struct tree_exp);
2323
2324 t = ggc_alloc_tree (length);
2325
2326 memset ((PTR) t, 0, sizeof (struct tree_common));
2327
2328 #ifdef GATHER_STATISTICS
2329 tree_node_counts[(int) kind]++;
2330 tree_node_sizes[(int) kind] += length;
2331 #endif
2332
2333 TREE_SET_CODE (t, code);
2334
2335 TREE_TYPE (t) = type;
2336 TREE_COMPLEXITY (t) = 0;
2337 TREE_OPERAND (t, 0) = node;
2338 if (node && first_rtl_op (code) != 0)
2339 {
2340 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
2341 TREE_READONLY (t) = TREE_READONLY (node);
2342 }
2343
2344 switch (code)
2345 {
2346 case INIT_EXPR:
2347 case MODIFY_EXPR:
2348 case VA_ARG_EXPR:
2349 case RTL_EXPR:
2350 case PREDECREMENT_EXPR:
2351 case PREINCREMENT_EXPR:
2352 case POSTDECREMENT_EXPR:
2353 case POSTINCREMENT_EXPR:
2354 /* All of these have side-effects, no matter what their
2355 operands are. */
2356 TREE_SIDE_EFFECTS (t) = 1;
2357 TREE_READONLY (t) = 0;
2358 break;
2359
2360 case INDIRECT_REF:
2361 /* Whether a dereference is readonly has nothing to do with whether
2362 its operand is readonly. */
2363 TREE_READONLY (t) = 0;
2364 break;
2365
2366 default:
2367 if (TREE_CODE_CLASS (code) == '1' && node && TREE_CONSTANT (node))
2368 TREE_CONSTANT (t) = 1;
2369 break;
2370 }
2371
2372 return t;
2373 }
2374
2375 /* Similar except don't specify the TREE_TYPE
2376 and leave the TREE_SIDE_EFFECTS as 0.
2377 It is permissible for arguments to be null,
2378 or even garbage if their values do not matter. */
2379
2380 tree
2381 build_nt VPARAMS ((enum tree_code code, ...))
2382 {
2383 tree t;
2384 int length;
2385 int i;
2386
2387 VA_OPEN (p, code);
2388 VA_FIXEDARG (p, enum tree_code, code);
2389
2390 t = make_node (code);
2391 length = TREE_CODE_LENGTH (code);
2392
2393 for (i = 0; i < length; i++)
2394 TREE_OPERAND (t, i) = va_arg (p, tree);
2395
2396 VA_CLOSE (p);
2397 return t;
2398 }
2399 \f
2400 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
2401 We do NOT enter this node in any sort of symbol table.
2402
2403 layout_decl is used to set up the decl's storage layout.
2404 Other slots are initialized to 0 or null pointers. */
2405
2406 tree
2407 build_decl (code, name, type)
2408 enum tree_code code;
2409 tree name, type;
2410 {
2411 tree t;
2412
2413 t = make_node (code);
2414
2415 /* if (type == error_mark_node)
2416 type = integer_type_node; */
2417 /* That is not done, deliberately, so that having error_mark_node
2418 as the type can suppress useless errors in the use of this variable. */
2419
2420 DECL_NAME (t) = name;
2421 TREE_TYPE (t) = type;
2422
2423 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
2424 layout_decl (t, 0);
2425 else if (code == FUNCTION_DECL)
2426 DECL_MODE (t) = FUNCTION_MODE;
2427
2428 return t;
2429 }
2430 \f
2431 /* BLOCK nodes are used to represent the structure of binding contours
2432 and declarations, once those contours have been exited and their contents
2433 compiled. This information is used for outputting debugging info. */
2434
2435 tree
2436 build_block (vars, tags, subblocks, supercontext, chain)
2437 tree vars, tags ATTRIBUTE_UNUSED, subblocks, supercontext, chain;
2438 {
2439 tree block = make_node (BLOCK);
2440
2441 BLOCK_VARS (block) = vars;
2442 BLOCK_SUBBLOCKS (block) = subblocks;
2443 BLOCK_SUPERCONTEXT (block) = supercontext;
2444 BLOCK_CHAIN (block) = chain;
2445 return block;
2446 }
2447
2448 /* EXPR_WITH_FILE_LOCATION are used to keep track of the exact
2449 location where an expression or an identifier were encountered. It
2450 is necessary for languages where the frontend parser will handle
2451 recursively more than one file (Java is one of them). */
2452
2453 tree
2454 build_expr_wfl (node, file, line, col)
2455 tree node;
2456 const char *file;
2457 int line, col;
2458 {
2459 static const char *last_file = 0;
2460 static tree last_filenode = NULL_TREE;
2461 tree wfl = make_node (EXPR_WITH_FILE_LOCATION);
2462
2463 EXPR_WFL_NODE (wfl) = node;
2464 EXPR_WFL_SET_LINECOL (wfl, line, col);
2465 if (file != last_file)
2466 {
2467 last_file = file;
2468 last_filenode = file ? get_identifier (file) : NULL_TREE;
2469 }
2470
2471 EXPR_WFL_FILENAME_NODE (wfl) = last_filenode;
2472 if (node)
2473 {
2474 TREE_SIDE_EFFECTS (wfl) = TREE_SIDE_EFFECTS (node);
2475 TREE_TYPE (wfl) = TREE_TYPE (node);
2476 }
2477
2478 return wfl;
2479 }
2480 \f
2481 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
2482 is ATTRIBUTE. */
2483
2484 tree
2485 build_decl_attribute_variant (ddecl, attribute)
2486 tree ddecl, attribute;
2487 {
2488 DECL_ATTRIBUTES (ddecl) = attribute;
2489 return ddecl;
2490 }
2491
2492 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
2493 is ATTRIBUTE.
2494
2495 Record such modified types already made so we don't make duplicates. */
2496
2497 tree
2498 build_type_attribute_variant (ttype, attribute)
2499 tree ttype, attribute;
2500 {
2501 if ( ! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
2502 {
2503 unsigned int hashcode;
2504 tree ntype;
2505
2506 ntype = copy_node (ttype);
2507
2508 TYPE_POINTER_TO (ntype) = 0;
2509 TYPE_REFERENCE_TO (ntype) = 0;
2510 TYPE_ATTRIBUTES (ntype) = attribute;
2511
2512 /* Create a new main variant of TYPE. */
2513 TYPE_MAIN_VARIANT (ntype) = ntype;
2514 TYPE_NEXT_VARIANT (ntype) = 0;
2515 set_type_quals (ntype, TYPE_UNQUALIFIED);
2516
2517 hashcode = (TYPE_HASH (TREE_CODE (ntype))
2518 + TYPE_HASH (TREE_TYPE (ntype))
2519 + attribute_hash_list (attribute));
2520
2521 switch (TREE_CODE (ntype))
2522 {
2523 case FUNCTION_TYPE:
2524 hashcode += TYPE_HASH (TYPE_ARG_TYPES (ntype));
2525 break;
2526 case ARRAY_TYPE:
2527 hashcode += TYPE_HASH (TYPE_DOMAIN (ntype));
2528 break;
2529 case INTEGER_TYPE:
2530 hashcode += TYPE_HASH (TYPE_MAX_VALUE (ntype));
2531 break;
2532 case REAL_TYPE:
2533 hashcode += TYPE_HASH (TYPE_PRECISION (ntype));
2534 break;
2535 default:
2536 break;
2537 }
2538
2539 ntype = type_hash_canon (hashcode, ntype);
2540 ttype = build_qualified_type (ntype, TYPE_QUALS (ttype));
2541 }
2542
2543 return ttype;
2544 }
2545
2546 /* Default value of targetm.comp_type_attributes that always returns 1. */
2547
2548 int
2549 default_comp_type_attributes (type1, type2)
2550 tree type1 ATTRIBUTE_UNUSED;
2551 tree type2 ATTRIBUTE_UNUSED;
2552 {
2553 return 1;
2554 }
2555
2556 /* Default version of targetm.set_default_type_attributes that always does
2557 nothing. */
2558
2559 void
2560 default_set_default_type_attributes (type)
2561 tree type ATTRIBUTE_UNUSED;
2562 {
2563 }
2564
2565 /* Default version of targetm.insert_attributes that always does nothing. */
2566 void
2567 default_insert_attributes (decl, attr_ptr)
2568 tree decl ATTRIBUTE_UNUSED;
2569 tree *attr_ptr ATTRIBUTE_UNUSED;
2570 {
2571 }
2572
2573 /* Default value of targetm.attribute_table that is empty. */
2574 const struct attribute_spec default_target_attribute_table[] =
2575 {
2576 { NULL, 0, 0, false, false, false, NULL }
2577 };
2578
2579 /* Default value of targetm.function_attribute_inlinable_p that always
2580 returns false. */
2581 bool
2582 default_function_attribute_inlinable_p (fndecl)
2583 tree fndecl ATTRIBUTE_UNUSED;
2584 {
2585 /* By default, functions with machine attributes cannot be inlined. */
2586 return false;
2587 }
2588
2589 /* Default value of targetm.ms_bitfield_layout_p that always returns
2590 false. */
2591 bool
2592 default_ms_bitfield_layout_p (record)
2593 tree record ATTRIBUTE_UNUSED;
2594 {
2595 /* By default, GCC does not use the MS VC++ bitfield layout rules. */
2596 return false;
2597 }
2598
2599 /* Return non-zero if IDENT is a valid name for attribute ATTR,
2600 or zero if not.
2601
2602 We try both `text' and `__text__', ATTR may be either one. */
2603 /* ??? It might be a reasonable simplification to require ATTR to be only
2604 `text'. One might then also require attribute lists to be stored in
2605 their canonicalized form. */
2606
2607 int
2608 is_attribute_p (attr, ident)
2609 const char *attr;
2610 tree ident;
2611 {
2612 int ident_len, attr_len;
2613 const char *p;
2614
2615 if (TREE_CODE (ident) != IDENTIFIER_NODE)
2616 return 0;
2617
2618 if (strcmp (attr, IDENTIFIER_POINTER (ident)) == 0)
2619 return 1;
2620
2621 p = IDENTIFIER_POINTER (ident);
2622 ident_len = strlen (p);
2623 attr_len = strlen (attr);
2624
2625 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
2626 if (attr[0] == '_')
2627 {
2628 if (attr[1] != '_'
2629 || attr[attr_len - 2] != '_'
2630 || attr[attr_len - 1] != '_')
2631 abort ();
2632 if (ident_len == attr_len - 4
2633 && strncmp (attr + 2, p, attr_len - 4) == 0)
2634 return 1;
2635 }
2636 else
2637 {
2638 if (ident_len == attr_len + 4
2639 && p[0] == '_' && p[1] == '_'
2640 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
2641 && strncmp (attr, p + 2, attr_len) == 0)
2642 return 1;
2643 }
2644
2645 return 0;
2646 }
2647
2648 /* Given an attribute name and a list of attributes, return a pointer to the
2649 attribute's list element if the attribute is part of the list, or NULL_TREE
2650 if not found. If the attribute appears more than once, this only
2651 returns the first occurrence; the TREE_CHAIN of the return value should
2652 be passed back in if further occurrences are wanted. */
2653
2654 tree
2655 lookup_attribute (attr_name, list)
2656 const char *attr_name;
2657 tree list;
2658 {
2659 tree l;
2660
2661 for (l = list; l; l = TREE_CHAIN (l))
2662 {
2663 if (TREE_CODE (TREE_PURPOSE (l)) != IDENTIFIER_NODE)
2664 abort ();
2665 if (is_attribute_p (attr_name, TREE_PURPOSE (l)))
2666 return l;
2667 }
2668
2669 return NULL_TREE;
2670 }
2671
2672 /* Return an attribute list that is the union of a1 and a2. */
2673
2674 tree
2675 merge_attributes (a1, a2)
2676 tree a1, a2;
2677 {
2678 tree attributes;
2679
2680 /* Either one unset? Take the set one. */
2681
2682 if ((attributes = a1) == 0)
2683 attributes = a2;
2684
2685 /* One that completely contains the other? Take it. */
2686
2687 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
2688 {
2689 if (attribute_list_contained (a2, a1))
2690 attributes = a2;
2691 else
2692 {
2693 /* Pick the longest list, and hang on the other list. */
2694
2695 if (list_length (a1) < list_length (a2))
2696 attributes = a2, a2 = a1;
2697
2698 for (; a2 != 0; a2 = TREE_CHAIN (a2))
2699 {
2700 tree a;
2701 for (a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
2702 attributes);
2703 a != NULL_TREE;
2704 a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
2705 TREE_CHAIN (a)))
2706 {
2707 if (simple_cst_equal (TREE_VALUE (a), TREE_VALUE (a2)) == 1)
2708 break;
2709 }
2710 if (a == NULL_TREE)
2711 {
2712 a1 = copy_node (a2);
2713 TREE_CHAIN (a1) = attributes;
2714 attributes = a1;
2715 }
2716 }
2717 }
2718 }
2719 return attributes;
2720 }
2721
2722 /* Given types T1 and T2, merge their attributes and return
2723 the result. */
2724
2725 tree
2726 merge_type_attributes (t1, t2)
2727 tree t1, t2;
2728 {
2729 return merge_attributes (TYPE_ATTRIBUTES (t1),
2730 TYPE_ATTRIBUTES (t2));
2731 }
2732
2733 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
2734 the result. */
2735
2736 tree
2737 merge_decl_attributes (olddecl, newdecl)
2738 tree olddecl, newdecl;
2739 {
2740 return merge_attributes (DECL_ATTRIBUTES (olddecl),
2741 DECL_ATTRIBUTES (newdecl));
2742 }
2743
2744 #ifdef TARGET_DLLIMPORT_DECL_ATTRIBUTES
2745
2746 /* Specialization of merge_decl_attributes for various Windows targets.
2747
2748 This handles the following situation:
2749
2750 __declspec (dllimport) int foo;
2751 int foo;
2752
2753 The second instance of `foo' nullifies the dllimport. */
2754
2755 tree
2756 merge_dllimport_decl_attributes (old, new)
2757 tree old;
2758 tree new;
2759 {
2760 tree a;
2761 int delete_dllimport_p;
2762
2763 old = DECL_ATTRIBUTES (old);
2764 new = DECL_ATTRIBUTES (new);
2765
2766 /* What we need to do here is remove from `old' dllimport if it doesn't
2767 appear in `new'. dllimport behaves like extern: if a declaration is
2768 marked dllimport and a definition appears later, then the object
2769 is not dllimport'd. */
2770 if (lookup_attribute ("dllimport", old) != NULL_TREE
2771 && lookup_attribute ("dllimport", new) == NULL_TREE)
2772 delete_dllimport_p = 1;
2773 else
2774 delete_dllimport_p = 0;
2775
2776 a = merge_attributes (old, new);
2777
2778 if (delete_dllimport_p)
2779 {
2780 tree prev, t;
2781
2782 /* Scan the list for dllimport and delete it. */
2783 for (prev = NULL_TREE, t = a; t; prev = t, t = TREE_CHAIN (t))
2784 {
2785 if (is_attribute_p ("dllimport", TREE_PURPOSE (t)))
2786 {
2787 if (prev == NULL_TREE)
2788 a = TREE_CHAIN (a);
2789 else
2790 TREE_CHAIN (prev) = TREE_CHAIN (t);
2791 break;
2792 }
2793 }
2794 }
2795
2796 return a;
2797 }
2798
2799 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
2800 \f
2801 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
2802 of the various TYPE_QUAL values. */
2803
2804 static void
2805 set_type_quals (type, type_quals)
2806 tree type;
2807 int type_quals;
2808 {
2809 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
2810 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
2811 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
2812 }
2813
2814 /* Return a version of the TYPE, qualified as indicated by the
2815 TYPE_QUALS, if one exists. If no qualified version exists yet,
2816 return NULL_TREE. */
2817
2818 tree
2819 get_qualified_type (type, type_quals)
2820 tree type;
2821 int type_quals;
2822 {
2823 tree t;
2824
2825 /* Search the chain of variants to see if there is already one there just
2826 like the one we need to have. If so, use that existing one. We must
2827 preserve the TYPE_NAME, since there is code that depends on this. */
2828 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
2829 if (TYPE_QUALS (t) == type_quals && TYPE_NAME (t) == TYPE_NAME (type))
2830 return t;
2831
2832 return NULL_TREE;
2833 }
2834
2835 /* Like get_qualified_type, but creates the type if it does not
2836 exist. This function never returns NULL_TREE. */
2837
2838 tree
2839 build_qualified_type (type, type_quals)
2840 tree type;
2841 int type_quals;
2842 {
2843 tree t;
2844
2845 /* See if we already have the appropriate qualified variant. */
2846 t = get_qualified_type (type, type_quals);
2847
2848 /* If not, build it. */
2849 if (!t)
2850 {
2851 t = build_type_copy (type);
2852 set_type_quals (t, type_quals);
2853 }
2854
2855 return t;
2856 }
2857
2858 /* Create a new variant of TYPE, equivalent but distinct.
2859 This is so the caller can modify it. */
2860
2861 tree
2862 build_type_copy (type)
2863 tree type;
2864 {
2865 tree t, m = TYPE_MAIN_VARIANT (type);
2866
2867 t = copy_node (type);
2868
2869 TYPE_POINTER_TO (t) = 0;
2870 TYPE_REFERENCE_TO (t) = 0;
2871
2872 /* Add this type to the chain of variants of TYPE. */
2873 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
2874 TYPE_NEXT_VARIANT (m) = t;
2875
2876 return t;
2877 }
2878 \f
2879 /* Hashing of types so that we don't make duplicates.
2880 The entry point is `type_hash_canon'. */
2881
2882 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
2883 with types in the TREE_VALUE slots), by adding the hash codes
2884 of the individual types. */
2885
2886 unsigned int
2887 type_hash_list (list)
2888 tree list;
2889 {
2890 unsigned int hashcode;
2891 tree tail;
2892
2893 for (hashcode = 0, tail = list; tail; tail = TREE_CHAIN (tail))
2894 hashcode += TYPE_HASH (TREE_VALUE (tail));
2895
2896 return hashcode;
2897 }
2898
2899 /* These are the Hashtable callback functions. */
2900
2901 /* Returns true if the types are equal. */
2902
2903 static int
2904 type_hash_eq (va, vb)
2905 const void *va;
2906 const void *vb;
2907 {
2908 const struct type_hash *a = va, *b = vb;
2909 if (a->hash == b->hash
2910 && TREE_CODE (a->type) == TREE_CODE (b->type)
2911 && TREE_TYPE (a->type) == TREE_TYPE (b->type)
2912 && attribute_list_equal (TYPE_ATTRIBUTES (a->type),
2913 TYPE_ATTRIBUTES (b->type))
2914 && TYPE_ALIGN (a->type) == TYPE_ALIGN (b->type)
2915 && (TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
2916 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
2917 TYPE_MAX_VALUE (b->type)))
2918 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
2919 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
2920 TYPE_MIN_VALUE (b->type)))
2921 /* Note that TYPE_DOMAIN is TYPE_ARG_TYPES for FUNCTION_TYPE. */
2922 && (TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type)
2923 || (TYPE_DOMAIN (a->type)
2924 && TREE_CODE (TYPE_DOMAIN (a->type)) == TREE_LIST
2925 && TYPE_DOMAIN (b->type)
2926 && TREE_CODE (TYPE_DOMAIN (b->type)) == TREE_LIST
2927 && type_list_equal (TYPE_DOMAIN (a->type),
2928 TYPE_DOMAIN (b->type)))))
2929 return 1;
2930 return 0;
2931 }
2932
2933 /* Return the cached hash value. */
2934
2935 static unsigned int
2936 type_hash_hash (item)
2937 const void *item;
2938 {
2939 return ((const struct type_hash *) item)->hash;
2940 }
2941
2942 /* Look in the type hash table for a type isomorphic to TYPE.
2943 If one is found, return it. Otherwise return 0. */
2944
2945 tree
2946 type_hash_lookup (hashcode, type)
2947 unsigned int hashcode;
2948 tree type;
2949 {
2950 struct type_hash *h, in;
2951
2952 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
2953 must call that routine before comparing TYPE_ALIGNs. */
2954 layout_type (type);
2955
2956 in.hash = hashcode;
2957 in.type = type;
2958
2959 h = htab_find_with_hash (type_hash_table, &in, hashcode);
2960 if (h)
2961 return h->type;
2962 return NULL_TREE;
2963 }
2964
2965 /* Add an entry to the type-hash-table
2966 for a type TYPE whose hash code is HASHCODE. */
2967
2968 void
2969 type_hash_add (hashcode, type)
2970 unsigned int hashcode;
2971 tree type;
2972 {
2973 struct type_hash *h;
2974 void **loc;
2975
2976 h = (struct type_hash *) ggc_alloc (sizeof (struct type_hash));
2977 h->hash = hashcode;
2978 h->type = type;
2979 loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
2980 *(struct type_hash **) loc = h;
2981 }
2982
2983 /* Given TYPE, and HASHCODE its hash code, return the canonical
2984 object for an identical type if one already exists.
2985 Otherwise, return TYPE, and record it as the canonical object
2986 if it is a permanent object.
2987
2988 To use this function, first create a type of the sort you want.
2989 Then compute its hash code from the fields of the type that
2990 make it different from other similar types.
2991 Then call this function and use the value.
2992 This function frees the type you pass in if it is a duplicate. */
2993
2994 /* Set to 1 to debug without canonicalization. Never set by program. */
2995 int debug_no_type_hash = 0;
2996
2997 tree
2998 type_hash_canon (hashcode, type)
2999 unsigned int hashcode;
3000 tree type;
3001 {
3002 tree t1;
3003
3004 if (debug_no_type_hash)
3005 return type;
3006
3007 /* See if the type is in the hash table already. If so, return it.
3008 Otherwise, add the type. */
3009 t1 = type_hash_lookup (hashcode, type);
3010 if (t1 != 0)
3011 {
3012 #ifdef GATHER_STATISTICS
3013 tree_node_counts[(int) t_kind]--;
3014 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type);
3015 #endif
3016 return t1;
3017 }
3018 else
3019 {
3020 type_hash_add (hashcode, type);
3021 return type;
3022 }
3023 }
3024
3025 /* See if the data pointed to by the type hash table is marked. We consider
3026 it marked if the type is marked or if a debug type number or symbol
3027 table entry has been made for the type. This reduces the amount of
3028 debugging output and eliminates that dependency of the debug output on
3029 the number of garbage collections. */
3030
3031 static int
3032 type_hash_marked_p (p)
3033 const void *p;
3034 {
3035 tree type = ((struct type_hash *) p)->type;
3036
3037 return ggc_marked_p (type) || TYPE_SYMTAB_POINTER (type);
3038 }
3039
3040 /* Mark the entry in the type hash table the type it points to is marked.
3041 Also mark the type in case we are considering this entry "marked" by
3042 virtue of TYPE_SYMTAB_POINTER being set. */
3043
3044 static void
3045 type_hash_mark (p)
3046 const void *p;
3047 {
3048 ggc_mark (p);
3049 ggc_mark_tree (((struct type_hash *) p)->type);
3050 }
3051
3052 /* Mark the hashtable slot pointed to by ENTRY (which is really a
3053 `tree**') for GC. */
3054
3055 static int
3056 mark_tree_hashtable_entry (entry, data)
3057 void **entry;
3058 void *data ATTRIBUTE_UNUSED;
3059 {
3060 ggc_mark_tree ((tree) *entry);
3061 return 1;
3062 }
3063
3064 /* Mark ARG (which is really a htab_t whose slots are trees) for
3065 GC. */
3066
3067 void
3068 mark_tree_hashtable (arg)
3069 void *arg;
3070 {
3071 htab_t t = *(htab_t *) arg;
3072 htab_traverse (t, mark_tree_hashtable_entry, 0);
3073 }
3074
3075 static void
3076 print_type_hash_statistics ()
3077 {
3078 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
3079 (long) htab_size (type_hash_table),
3080 (long) htab_elements (type_hash_table),
3081 htab_collisions (type_hash_table));
3082 }
3083
3084 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
3085 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
3086 by adding the hash codes of the individual attributes. */
3087
3088 unsigned int
3089 attribute_hash_list (list)
3090 tree list;
3091 {
3092 unsigned int hashcode;
3093 tree tail;
3094
3095 for (hashcode = 0, tail = list; tail; tail = TREE_CHAIN (tail))
3096 /* ??? Do we want to add in TREE_VALUE too? */
3097 hashcode += TYPE_HASH (TREE_PURPOSE (tail));
3098 return hashcode;
3099 }
3100
3101 /* Given two lists of attributes, return true if list l2 is
3102 equivalent to l1. */
3103
3104 int
3105 attribute_list_equal (l1, l2)
3106 tree l1, l2;
3107 {
3108 return attribute_list_contained (l1, l2)
3109 && attribute_list_contained (l2, l1);
3110 }
3111
3112 /* Given two lists of attributes, return true if list L2 is
3113 completely contained within L1. */
3114 /* ??? This would be faster if attribute names were stored in a canonicalized
3115 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
3116 must be used to show these elements are equivalent (which they are). */
3117 /* ??? It's not clear that attributes with arguments will always be handled
3118 correctly. */
3119
3120 int
3121 attribute_list_contained (l1, l2)
3122 tree l1, l2;
3123 {
3124 tree t1, t2;
3125
3126 /* First check the obvious, maybe the lists are identical. */
3127 if (l1 == l2)
3128 return 1;
3129
3130 /* Maybe the lists are similar. */
3131 for (t1 = l1, t2 = l2;
3132 t1 != 0 && t2 != 0
3133 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
3134 && TREE_VALUE (t1) == TREE_VALUE (t2);
3135 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
3136
3137 /* Maybe the lists are equal. */
3138 if (t1 == 0 && t2 == 0)
3139 return 1;
3140
3141 for (; t2 != 0; t2 = TREE_CHAIN (t2))
3142 {
3143 tree attr;
3144 for (attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)), l1);
3145 attr != NULL_TREE;
3146 attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
3147 TREE_CHAIN (attr)))
3148 {
3149 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) == 1)
3150 break;
3151 }
3152
3153 if (attr == 0)
3154 return 0;
3155
3156 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) != 1)
3157 return 0;
3158 }
3159
3160 return 1;
3161 }
3162
3163 /* Given two lists of types
3164 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
3165 return 1 if the lists contain the same types in the same order.
3166 Also, the TREE_PURPOSEs must match. */
3167
3168 int
3169 type_list_equal (l1, l2)
3170 tree l1, l2;
3171 {
3172 tree t1, t2;
3173
3174 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
3175 if (TREE_VALUE (t1) != TREE_VALUE (t2)
3176 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
3177 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
3178 && (TREE_TYPE (TREE_PURPOSE (t1))
3179 == TREE_TYPE (TREE_PURPOSE (t2))))))
3180 return 0;
3181
3182 return t1 == t2;
3183 }
3184
3185 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
3186 given by TYPE. If the argument list accepts variable arguments,
3187 then this function counts only the ordinary arguments. */
3188
3189 int
3190 type_num_arguments (type)
3191 tree type;
3192 {
3193 int i = 0;
3194 tree t;
3195
3196 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
3197 /* If the function does not take a variable number of arguments,
3198 the last element in the list will have type `void'. */
3199 if (VOID_TYPE_P (TREE_VALUE (t)))
3200 break;
3201 else
3202 ++i;
3203
3204 return i;
3205 }
3206
3207 /* Nonzero if integer constants T1 and T2
3208 represent the same constant value. */
3209
3210 int
3211 tree_int_cst_equal (t1, t2)
3212 tree t1, t2;
3213 {
3214 if (t1 == t2)
3215 return 1;
3216
3217 if (t1 == 0 || t2 == 0)
3218 return 0;
3219
3220 if (TREE_CODE (t1) == INTEGER_CST
3221 && TREE_CODE (t2) == INTEGER_CST
3222 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3223 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
3224 return 1;
3225
3226 return 0;
3227 }
3228
3229 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
3230 The precise way of comparison depends on their data type. */
3231
3232 int
3233 tree_int_cst_lt (t1, t2)
3234 tree t1, t2;
3235 {
3236 if (t1 == t2)
3237 return 0;
3238
3239 if (! TREE_UNSIGNED (TREE_TYPE (t1)))
3240 return INT_CST_LT (t1, t2);
3241
3242 return INT_CST_LT_UNSIGNED (t1, t2);
3243 }
3244
3245 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
3246
3247 int
3248 tree_int_cst_compare (t1, t2)
3249 tree t1;
3250 tree t2;
3251 {
3252 if (tree_int_cst_lt (t1, t2))
3253 return -1;
3254 else if (tree_int_cst_lt (t2, t1))
3255 return 1;
3256 else
3257 return 0;
3258 }
3259
3260 /* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
3261 the host. If POS is zero, the value can be represented in a single
3262 HOST_WIDE_INT. If POS is nonzero, the value must be positive and can
3263 be represented in a single unsigned HOST_WIDE_INT. */
3264
3265 int
3266 host_integerp (t, pos)
3267 tree t;
3268 int pos;
3269 {
3270 return (TREE_CODE (t) == INTEGER_CST
3271 && ! TREE_OVERFLOW (t)
3272 && ((TREE_INT_CST_HIGH (t) == 0
3273 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
3274 || (! pos && TREE_INT_CST_HIGH (t) == -1
3275 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0
3276 && ! TREE_UNSIGNED (TREE_TYPE (t)))
3277 || (pos && TREE_INT_CST_HIGH (t) == 0)));
3278 }
3279
3280 /* Return the HOST_WIDE_INT least significant bits of T if it is an
3281 INTEGER_CST and there is no overflow. POS is nonzero if the result must
3282 be positive. Abort if we cannot satisfy the above conditions. */
3283
3284 HOST_WIDE_INT
3285 tree_low_cst (t, pos)
3286 tree t;
3287 int pos;
3288 {
3289 if (host_integerp (t, pos))
3290 return TREE_INT_CST_LOW (t);
3291 else
3292 abort ();
3293 }
3294
3295 /* Return the most significant bit of the integer constant T. */
3296
3297 int
3298 tree_int_cst_msb (t)
3299 tree t;
3300 {
3301 int prec;
3302 HOST_WIDE_INT h;
3303 unsigned HOST_WIDE_INT l;
3304
3305 /* Note that using TYPE_PRECISION here is wrong. We care about the
3306 actual bits, not the (arbitrary) range of the type. */
3307 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t))) - 1;
3308 rshift_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t), prec,
3309 2 * HOST_BITS_PER_WIDE_INT, &l, &h, 0);
3310 return (l & 1) == 1;
3311 }
3312
3313 /* Return an indication of the sign of the integer constant T.
3314 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
3315 Note that -1 will never be returned it T's type is unsigned. */
3316
3317 int
3318 tree_int_cst_sgn (t)
3319 tree t;
3320 {
3321 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
3322 return 0;
3323 else if (TREE_UNSIGNED (TREE_TYPE (t)))
3324 return 1;
3325 else if (TREE_INT_CST_HIGH (t) < 0)
3326 return -1;
3327 else
3328 return 1;
3329 }
3330
3331 /* Compare two constructor-element-type constants. Return 1 if the lists
3332 are known to be equal; otherwise return 0. */
3333
3334 int
3335 simple_cst_list_equal (l1, l2)
3336 tree l1, l2;
3337 {
3338 while (l1 != NULL_TREE && l2 != NULL_TREE)
3339 {
3340 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
3341 return 0;
3342
3343 l1 = TREE_CHAIN (l1);
3344 l2 = TREE_CHAIN (l2);
3345 }
3346
3347 return l1 == l2;
3348 }
3349
3350 /* Return truthvalue of whether T1 is the same tree structure as T2.
3351 Return 1 if they are the same.
3352 Return 0 if they are understandably different.
3353 Return -1 if either contains tree structure not understood by
3354 this function. */
3355
3356 int
3357 simple_cst_equal (t1, t2)
3358 tree t1, t2;
3359 {
3360 enum tree_code code1, code2;
3361 int cmp;
3362 int i;
3363
3364 if (t1 == t2)
3365 return 1;
3366 if (t1 == 0 || t2 == 0)
3367 return 0;
3368
3369 code1 = TREE_CODE (t1);
3370 code2 = TREE_CODE (t2);
3371
3372 if (code1 == NOP_EXPR || code1 == CONVERT_EXPR || code1 == NON_LVALUE_EXPR)
3373 {
3374 if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3375 || code2 == NON_LVALUE_EXPR)
3376 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3377 else
3378 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
3379 }
3380
3381 else if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3382 || code2 == NON_LVALUE_EXPR)
3383 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
3384
3385 if (code1 != code2)
3386 return 0;
3387
3388 switch (code1)
3389 {
3390 case INTEGER_CST:
3391 return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3392 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
3393
3394 case REAL_CST:
3395 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
3396
3397 case STRING_CST:
3398 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
3399 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
3400 TREE_STRING_LENGTH (t1)));
3401
3402 case CONSTRUCTOR:
3403 if (CONSTRUCTOR_ELTS (t1) == CONSTRUCTOR_ELTS (t2))
3404 return 1;
3405 else
3406 abort ();
3407
3408 case SAVE_EXPR:
3409 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3410
3411 case CALL_EXPR:
3412 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3413 if (cmp <= 0)
3414 return cmp;
3415 return
3416 simple_cst_list_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3417
3418 case TARGET_EXPR:
3419 /* Special case: if either target is an unallocated VAR_DECL,
3420 it means that it's going to be unified with whatever the
3421 TARGET_EXPR is really supposed to initialize, so treat it
3422 as being equivalent to anything. */
3423 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
3424 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
3425 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
3426 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
3427 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
3428 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
3429 cmp = 1;
3430 else
3431 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3432
3433 if (cmp <= 0)
3434 return cmp;
3435
3436 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3437
3438 case WITH_CLEANUP_EXPR:
3439 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3440 if (cmp <= 0)
3441 return cmp;
3442
3443 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
3444
3445 case COMPONENT_REF:
3446 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
3447 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3448
3449 return 0;
3450
3451 case VAR_DECL:
3452 case PARM_DECL:
3453 case CONST_DECL:
3454 case FUNCTION_DECL:
3455 return 0;
3456
3457 default:
3458 break;
3459 }
3460
3461 /* This general rule works for most tree codes. All exceptions should be
3462 handled above. If this is a language-specific tree code, we can't
3463 trust what might be in the operand, so say we don't know
3464 the situation. */
3465 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
3466 return -1;
3467
3468 switch (TREE_CODE_CLASS (code1))
3469 {
3470 case '1':
3471 case '2':
3472 case '<':
3473 case 'e':
3474 case 'r':
3475 case 's':
3476 cmp = 1;
3477 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
3478 {
3479 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
3480 if (cmp <= 0)
3481 return cmp;
3482 }
3483
3484 return cmp;
3485
3486 default:
3487 return -1;
3488 }
3489 }
3490
3491 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
3492 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
3493 than U, respectively. */
3494
3495 int
3496 compare_tree_int (t, u)
3497 tree t;
3498 unsigned HOST_WIDE_INT u;
3499 {
3500 if (tree_int_cst_sgn (t) < 0)
3501 return -1;
3502 else if (TREE_INT_CST_HIGH (t) != 0)
3503 return 1;
3504 else if (TREE_INT_CST_LOW (t) == u)
3505 return 0;
3506 else if (TREE_INT_CST_LOW (t) < u)
3507 return -1;
3508 else
3509 return 1;
3510 }
3511 \f
3512 /* Constructors for pointer, array and function types.
3513 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
3514 constructed by language-dependent code, not here.) */
3515
3516 /* Construct, lay out and return the type of pointers to TO_TYPE.
3517 If such a type has already been constructed, reuse it. */
3518
3519 tree
3520 build_pointer_type (to_type)
3521 tree to_type;
3522 {
3523 tree t = TYPE_POINTER_TO (to_type);
3524
3525 /* First, if we already have a type for pointers to TO_TYPE, use it. */
3526
3527 if (t != 0)
3528 return t;
3529
3530 /* We need a new one. */
3531 t = make_node (POINTER_TYPE);
3532
3533 TREE_TYPE (t) = to_type;
3534
3535 /* Record this type as the pointer to TO_TYPE. */
3536 TYPE_POINTER_TO (to_type) = t;
3537
3538 /* Lay out the type. This function has many callers that are concerned
3539 with expression-construction, and this simplifies them all.
3540 Also, it guarantees the TYPE_SIZE is in the same obstack as the type. */
3541 layout_type (t);
3542
3543 return t;
3544 }
3545
3546 /* Build the node for the type of references-to-TO_TYPE. */
3547
3548 tree
3549 build_reference_type (to_type)
3550 tree to_type;
3551 {
3552 tree t = TYPE_REFERENCE_TO (to_type);
3553
3554 /* First, if we already have a type for pointers to TO_TYPE, use it. */
3555
3556 if (t)
3557 return t;
3558
3559 /* We need a new one. */
3560 t = make_node (REFERENCE_TYPE);
3561
3562 TREE_TYPE (t) = to_type;
3563
3564 /* Record this type as the pointer to TO_TYPE. */
3565 TYPE_REFERENCE_TO (to_type) = t;
3566
3567 layout_type (t);
3568
3569 return t;
3570 }
3571
3572 /* Build a type that is compatible with t but has no cv quals anywhere
3573 in its type, thus
3574
3575 const char *const *const * -> char ***. */
3576
3577 tree
3578 build_type_no_quals (t)
3579 tree t;
3580 {
3581 switch (TREE_CODE (t))
3582 {
3583 case POINTER_TYPE:
3584 return build_pointer_type (build_type_no_quals (TREE_TYPE (t)));
3585 case REFERENCE_TYPE:
3586 return build_reference_type (build_type_no_quals (TREE_TYPE (t)));
3587 default:
3588 return TYPE_MAIN_VARIANT (t);
3589 }
3590 }
3591
3592 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
3593 MAXVAL should be the maximum value in the domain
3594 (one less than the length of the array).
3595
3596 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
3597 We don't enforce this limit, that is up to caller (e.g. language front end).
3598 The limit exists because the result is a signed type and we don't handle
3599 sizes that use more than one HOST_WIDE_INT. */
3600
3601 tree
3602 build_index_type (maxval)
3603 tree maxval;
3604 {
3605 tree itype = make_node (INTEGER_TYPE);
3606
3607 TREE_TYPE (itype) = sizetype;
3608 TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
3609 TYPE_MIN_VALUE (itype) = size_zero_node;
3610 TYPE_MAX_VALUE (itype) = convert (sizetype, maxval);
3611 TYPE_MODE (itype) = TYPE_MODE (sizetype);
3612 TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
3613 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (sizetype);
3614 TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
3615 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (sizetype);
3616
3617 if (host_integerp (maxval, 1))
3618 return type_hash_canon (tree_low_cst (maxval, 1), itype);
3619 else
3620 return itype;
3621 }
3622
3623 /* Create a range of some discrete type TYPE (an INTEGER_TYPE,
3624 ENUMERAL_TYPE, BOOLEAN_TYPE, or CHAR_TYPE), with
3625 low bound LOWVAL and high bound HIGHVAL.
3626 if TYPE==NULL_TREE, sizetype is used. */
3627
3628 tree
3629 build_range_type (type, lowval, highval)
3630 tree type, lowval, highval;
3631 {
3632 tree itype = make_node (INTEGER_TYPE);
3633
3634 TREE_TYPE (itype) = type;
3635 if (type == NULL_TREE)
3636 type = sizetype;
3637
3638 TYPE_MIN_VALUE (itype) = convert (type, lowval);
3639 TYPE_MAX_VALUE (itype) = highval ? convert (type, highval) : NULL;
3640
3641 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
3642 TYPE_MODE (itype) = TYPE_MODE (type);
3643 TYPE_SIZE (itype) = TYPE_SIZE (type);
3644 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
3645 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
3646 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
3647
3648 if (host_integerp (lowval, 0) && highval != 0 && host_integerp (highval, 0))
3649 return type_hash_canon (tree_low_cst (highval, 0)
3650 - tree_low_cst (lowval, 0),
3651 itype);
3652 else
3653 return itype;
3654 }
3655
3656 /* Just like build_index_type, but takes lowval and highval instead
3657 of just highval (maxval). */
3658
3659 tree
3660 build_index_2_type (lowval, highval)
3661 tree lowval, highval;
3662 {
3663 return build_range_type (sizetype, lowval, highval);
3664 }
3665
3666 /* Return nonzero iff ITYPE1 and ITYPE2 are equal (in the LISP sense).
3667 Needed because when index types are not hashed, equal index types
3668 built at different times appear distinct, even though structurally,
3669 they are not. */
3670
3671 int
3672 index_type_equal (itype1, itype2)
3673 tree itype1, itype2;
3674 {
3675 if (TREE_CODE (itype1) != TREE_CODE (itype2))
3676 return 0;
3677
3678 if (TREE_CODE (itype1) == INTEGER_TYPE)
3679 {
3680 if (TYPE_PRECISION (itype1) != TYPE_PRECISION (itype2)
3681 || TYPE_MODE (itype1) != TYPE_MODE (itype2)
3682 || simple_cst_equal (TYPE_SIZE (itype1), TYPE_SIZE (itype2)) != 1
3683 || TYPE_ALIGN (itype1) != TYPE_ALIGN (itype2))
3684 return 0;
3685
3686 if (1 == simple_cst_equal (TYPE_MIN_VALUE (itype1),
3687 TYPE_MIN_VALUE (itype2))
3688 && 1 == simple_cst_equal (TYPE_MAX_VALUE (itype1),
3689 TYPE_MAX_VALUE (itype2)))
3690 return 1;
3691 }
3692
3693 return 0;
3694 }
3695
3696 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
3697 and number of elements specified by the range of values of INDEX_TYPE.
3698 If such a type has already been constructed, reuse it. */
3699
3700 tree
3701 build_array_type (elt_type, index_type)
3702 tree elt_type, index_type;
3703 {
3704 tree t;
3705 unsigned int hashcode;
3706
3707 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
3708 {
3709 error ("arrays of functions are not meaningful");
3710 elt_type = integer_type_node;
3711 }
3712
3713 /* Make sure TYPE_POINTER_TO (elt_type) is filled in. */
3714 build_pointer_type (elt_type);
3715
3716 /* Allocate the array after the pointer type,
3717 in case we free it in type_hash_canon. */
3718 t = make_node (ARRAY_TYPE);
3719 TREE_TYPE (t) = elt_type;
3720 TYPE_DOMAIN (t) = index_type;
3721
3722 if (index_type == 0)
3723 {
3724 return t;
3725 }
3726
3727 hashcode = TYPE_HASH (elt_type) + TYPE_HASH (index_type);
3728 t = type_hash_canon (hashcode, t);
3729
3730 if (!COMPLETE_TYPE_P (t))
3731 layout_type (t);
3732 return t;
3733 }
3734
3735 /* Return the TYPE of the elements comprising
3736 the innermost dimension of ARRAY. */
3737
3738 tree
3739 get_inner_array_type (array)
3740 tree array;
3741 {
3742 tree type = TREE_TYPE (array);
3743
3744 while (TREE_CODE (type) == ARRAY_TYPE)
3745 type = TREE_TYPE (type);
3746
3747 return type;
3748 }
3749
3750 /* Construct, lay out and return
3751 the type of functions returning type VALUE_TYPE
3752 given arguments of types ARG_TYPES.
3753 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
3754 are data type nodes for the arguments of the function.
3755 If such a type has already been constructed, reuse it. */
3756
3757 tree
3758 build_function_type (value_type, arg_types)
3759 tree value_type, arg_types;
3760 {
3761 tree t;
3762 unsigned int hashcode;
3763
3764 if (TREE_CODE (value_type) == FUNCTION_TYPE)
3765 {
3766 error ("function return type cannot be function");
3767 value_type = integer_type_node;
3768 }
3769
3770 /* Make a node of the sort we want. */
3771 t = make_node (FUNCTION_TYPE);
3772 TREE_TYPE (t) = value_type;
3773 TYPE_ARG_TYPES (t) = arg_types;
3774
3775 /* If we already have such a type, use the old one and free this one. */
3776 hashcode = TYPE_HASH (value_type) + type_hash_list (arg_types);
3777 t = type_hash_canon (hashcode, t);
3778
3779 if (!COMPLETE_TYPE_P (t))
3780 layout_type (t);
3781 return t;
3782 }
3783
3784 /* Construct, lay out and return the type of methods belonging to class
3785 BASETYPE and whose arguments and values are described by TYPE.
3786 If that type exists already, reuse it.
3787 TYPE must be a FUNCTION_TYPE node. */
3788
3789 tree
3790 build_method_type (basetype, type)
3791 tree basetype, type;
3792 {
3793 tree t;
3794 unsigned int hashcode;
3795
3796 /* Make a node of the sort we want. */
3797 t = make_node (METHOD_TYPE);
3798
3799 if (TREE_CODE (type) != FUNCTION_TYPE)
3800 abort ();
3801
3802 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
3803 TREE_TYPE (t) = TREE_TYPE (type);
3804
3805 /* The actual arglist for this function includes a "hidden" argument
3806 which is "this". Put it into the list of argument types. */
3807
3808 TYPE_ARG_TYPES (t)
3809 = tree_cons (NULL_TREE,
3810 build_pointer_type (basetype), TYPE_ARG_TYPES (type));
3811
3812 /* If we already have such a type, use the old one and free this one. */
3813 hashcode = TYPE_HASH (basetype) + TYPE_HASH (type);
3814 t = type_hash_canon (hashcode, t);
3815
3816 if (!COMPLETE_TYPE_P (t))
3817 layout_type (t);
3818
3819 return t;
3820 }
3821
3822 /* Construct, lay out and return the type of offsets to a value
3823 of type TYPE, within an object of type BASETYPE.
3824 If a suitable offset type exists already, reuse it. */
3825
3826 tree
3827 build_offset_type (basetype, type)
3828 tree basetype, type;
3829 {
3830 tree t;
3831 unsigned int hashcode;
3832
3833 /* Make a node of the sort we want. */
3834 t = make_node (OFFSET_TYPE);
3835
3836 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
3837 TREE_TYPE (t) = type;
3838
3839 /* If we already have such a type, use the old one and free this one. */
3840 hashcode = TYPE_HASH (basetype) + TYPE_HASH (type);
3841 t = type_hash_canon (hashcode, t);
3842
3843 if (!COMPLETE_TYPE_P (t))
3844 layout_type (t);
3845
3846 return t;
3847 }
3848
3849 /* Create a complex type whose components are COMPONENT_TYPE. */
3850
3851 tree
3852 build_complex_type (component_type)
3853 tree component_type;
3854 {
3855 tree t;
3856 unsigned int hashcode;
3857
3858 /* Make a node of the sort we want. */
3859 t = make_node (COMPLEX_TYPE);
3860
3861 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
3862 set_type_quals (t, TYPE_QUALS (component_type));
3863
3864 /* If we already have such a type, use the old one and free this one. */
3865 hashcode = TYPE_HASH (component_type);
3866 t = type_hash_canon (hashcode, t);
3867
3868 if (!COMPLETE_TYPE_P (t))
3869 layout_type (t);
3870
3871 /* If we are writing Dwarf2 output we need to create a name,
3872 since complex is a fundamental type. */
3873 if ((write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
3874 && ! TYPE_NAME (t))
3875 {
3876 const char *name;
3877 if (component_type == char_type_node)
3878 name = "complex char";
3879 else if (component_type == signed_char_type_node)
3880 name = "complex signed char";
3881 else if (component_type == unsigned_char_type_node)
3882 name = "complex unsigned char";
3883 else if (component_type == short_integer_type_node)
3884 name = "complex short int";
3885 else if (component_type == short_unsigned_type_node)
3886 name = "complex short unsigned int";
3887 else if (component_type == integer_type_node)
3888 name = "complex int";
3889 else if (component_type == unsigned_type_node)
3890 name = "complex unsigned int";
3891 else if (component_type == long_integer_type_node)
3892 name = "complex long int";
3893 else if (component_type == long_unsigned_type_node)
3894 name = "complex long unsigned int";
3895 else if (component_type == long_long_integer_type_node)
3896 name = "complex long long int";
3897 else if (component_type == long_long_unsigned_type_node)
3898 name = "complex long long unsigned int";
3899 else
3900 name = 0;
3901
3902 if (name != 0)
3903 TYPE_NAME (t) = get_identifier (name);
3904 }
3905
3906 return t;
3907 }
3908 \f
3909 /* Return OP, stripped of any conversions to wider types as much as is safe.
3910 Converting the value back to OP's type makes a value equivalent to OP.
3911
3912 If FOR_TYPE is nonzero, we return a value which, if converted to
3913 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
3914
3915 If FOR_TYPE is nonzero, unaligned bit-field references may be changed to the
3916 narrowest type that can hold the value, even if they don't exactly fit.
3917 Otherwise, bit-field references are changed to a narrower type
3918 only if they can be fetched directly from memory in that type.
3919
3920 OP must have integer, real or enumeral type. Pointers are not allowed!
3921
3922 There are some cases where the obvious value we could return
3923 would regenerate to OP if converted to OP's type,
3924 but would not extend like OP to wider types.
3925 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
3926 For example, if OP is (unsigned short)(signed char)-1,
3927 we avoid returning (signed char)-1 if FOR_TYPE is int,
3928 even though extending that to an unsigned short would regenerate OP,
3929 since the result of extending (signed char)-1 to (int)
3930 is different from (int) OP. */
3931
3932 tree
3933 get_unwidened (op, for_type)
3934 tree op;
3935 tree for_type;
3936 {
3937 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
3938 tree type = TREE_TYPE (op);
3939 unsigned final_prec
3940 = TYPE_PRECISION (for_type != 0 ? for_type : type);
3941 int uns
3942 = (for_type != 0 && for_type != type
3943 && final_prec > TYPE_PRECISION (type)
3944 && TREE_UNSIGNED (type));
3945 tree win = op;
3946
3947 while (TREE_CODE (op) == NOP_EXPR)
3948 {
3949 int bitschange
3950 = TYPE_PRECISION (TREE_TYPE (op))
3951 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
3952
3953 /* Truncations are many-one so cannot be removed.
3954 Unless we are later going to truncate down even farther. */
3955 if (bitschange < 0
3956 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
3957 break;
3958
3959 /* See what's inside this conversion. If we decide to strip it,
3960 we will set WIN. */
3961 op = TREE_OPERAND (op, 0);
3962
3963 /* If we have not stripped any zero-extensions (uns is 0),
3964 we can strip any kind of extension.
3965 If we have previously stripped a zero-extension,
3966 only zero-extensions can safely be stripped.
3967 Any extension can be stripped if the bits it would produce
3968 are all going to be discarded later by truncating to FOR_TYPE. */
3969
3970 if (bitschange > 0)
3971 {
3972 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
3973 win = op;
3974 /* TREE_UNSIGNED says whether this is a zero-extension.
3975 Let's avoid computing it if it does not affect WIN
3976 and if UNS will not be needed again. */
3977 if ((uns || TREE_CODE (op) == NOP_EXPR)
3978 && TREE_UNSIGNED (TREE_TYPE (op)))
3979 {
3980 uns = 1;
3981 win = op;
3982 }
3983 }
3984 }
3985
3986 if (TREE_CODE (op) == COMPONENT_REF
3987 /* Since type_for_size always gives an integer type. */
3988 && TREE_CODE (type) != REAL_TYPE
3989 /* Don't crash if field not laid out yet. */
3990 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
3991 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
3992 {
3993 unsigned int innerprec
3994 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
3995 int unsignedp = TREE_UNSIGNED (TREE_OPERAND (op, 1));
3996 type = (*lang_hooks.types.type_for_size) (innerprec, unsignedp);
3997
3998 /* We can get this structure field in the narrowest type it fits in.
3999 If FOR_TYPE is 0, do this only for a field that matches the
4000 narrower type exactly and is aligned for it
4001 The resulting extension to its nominal type (a fullword type)
4002 must fit the same conditions as for other extensions. */
4003
4004 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
4005 && (for_type || ! DECL_BIT_FIELD (TREE_OPERAND (op, 1)))
4006 && (! uns || final_prec <= innerprec || unsignedp)
4007 && type != 0)
4008 {
4009 win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4010 TREE_OPERAND (op, 1));
4011 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4012 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4013 }
4014 }
4015
4016 return win;
4017 }
4018 \f
4019 /* Return OP or a simpler expression for a narrower value
4020 which can be sign-extended or zero-extended to give back OP.
4021 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
4022 or 0 if the value should be sign-extended. */
4023
4024 tree
4025 get_narrower (op, unsignedp_ptr)
4026 tree op;
4027 int *unsignedp_ptr;
4028 {
4029 int uns = 0;
4030 int first = 1;
4031 tree win = op;
4032
4033 while (TREE_CODE (op) == NOP_EXPR)
4034 {
4035 int bitschange
4036 = (TYPE_PRECISION (TREE_TYPE (op))
4037 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
4038
4039 /* Truncations are many-one so cannot be removed. */
4040 if (bitschange < 0)
4041 break;
4042
4043 /* See what's inside this conversion. If we decide to strip it,
4044 we will set WIN. */
4045 op = TREE_OPERAND (op, 0);
4046
4047 if (bitschange > 0)
4048 {
4049 /* An extension: the outermost one can be stripped,
4050 but remember whether it is zero or sign extension. */
4051 if (first)
4052 uns = TREE_UNSIGNED (TREE_TYPE (op));
4053 /* Otherwise, if a sign extension has been stripped,
4054 only sign extensions can now be stripped;
4055 if a zero extension has been stripped, only zero-extensions. */
4056 else if (uns != TREE_UNSIGNED (TREE_TYPE (op)))
4057 break;
4058 first = 0;
4059 }
4060 else /* bitschange == 0 */
4061 {
4062 /* A change in nominal type can always be stripped, but we must
4063 preserve the unsignedness. */
4064 if (first)
4065 uns = TREE_UNSIGNED (TREE_TYPE (op));
4066 first = 0;
4067 }
4068
4069 win = op;
4070 }
4071
4072 if (TREE_CODE (op) == COMPONENT_REF
4073 /* Since type_for_size always gives an integer type. */
4074 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
4075 /* Ensure field is laid out already. */
4076 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0)
4077 {
4078 unsigned HOST_WIDE_INT innerprec
4079 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
4080 tree type = (*lang_hooks.types.type_for_size) (innerprec,
4081 TREE_UNSIGNED (op));
4082
4083 /* We can get this structure field in a narrower type that fits it,
4084 but the resulting extension to its nominal type (a fullword type)
4085 must satisfy the same conditions as for other extensions.
4086
4087 Do this only for fields that are aligned (not bit-fields),
4088 because when bit-field insns will be used there is no
4089 advantage in doing this. */
4090
4091 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
4092 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
4093 && (first || uns == TREE_UNSIGNED (TREE_OPERAND (op, 1)))
4094 && type != 0)
4095 {
4096 if (first)
4097 uns = TREE_UNSIGNED (TREE_OPERAND (op, 1));
4098 win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4099 TREE_OPERAND (op, 1));
4100 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4101 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4102 }
4103 }
4104 *unsignedp_ptr = uns;
4105 return win;
4106 }
4107 \f
4108 /* Nonzero if integer constant C has a value that is permissible
4109 for type TYPE (an INTEGER_TYPE). */
4110
4111 int
4112 int_fits_type_p (c, type)
4113 tree c, type;
4114 {
4115 /* If the bounds of the type are integers, we can check ourselves.
4116 If not, but this type is a subtype, try checking against that.
4117 Otherwise, use force_fit_type, which checks against the precision. */
4118 if (TYPE_MAX_VALUE (type) != NULL_TREE
4119 && TYPE_MIN_VALUE (type) != NULL_TREE
4120 && TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST
4121 && TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST)
4122 {
4123 if (TREE_UNSIGNED (type))
4124 return (! INT_CST_LT_UNSIGNED (TYPE_MAX_VALUE (type), c)
4125 && ! INT_CST_LT_UNSIGNED (c, TYPE_MIN_VALUE (type))
4126 /* Negative ints never fit unsigned types. */
4127 && ! (TREE_INT_CST_HIGH (c) < 0
4128 && ! TREE_UNSIGNED (TREE_TYPE (c))));
4129 else
4130 return (! INT_CST_LT (TYPE_MAX_VALUE (type), c)
4131 && ! INT_CST_LT (c, TYPE_MIN_VALUE (type))
4132 /* Unsigned ints with top bit set never fit signed types. */
4133 && ! (TREE_INT_CST_HIGH (c) < 0
4134 && TREE_UNSIGNED (TREE_TYPE (c))));
4135 }
4136 else if (TREE_CODE (type) == INTEGER_TYPE && TREE_TYPE (type) != 0)
4137 return int_fits_type_p (c, TREE_TYPE (type));
4138 else
4139 {
4140 c = copy_node (c);
4141 TREE_TYPE (c) = type;
4142 return !force_fit_type (c, 0);
4143 }
4144 }
4145
4146 /* Given a DECL or TYPE, return the scope in which it was declared, or
4147 NULL_TREE if there is no containing scope. */
4148
4149 tree
4150 get_containing_scope (t)
4151 tree t;
4152 {
4153 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
4154 }
4155
4156 /* Return the innermost context enclosing DECL that is
4157 a FUNCTION_DECL, or zero if none. */
4158
4159 tree
4160 decl_function_context (decl)
4161 tree decl;
4162 {
4163 tree context;
4164
4165 if (TREE_CODE (decl) == ERROR_MARK)
4166 return 0;
4167
4168 if (TREE_CODE (decl) == SAVE_EXPR)
4169 context = SAVE_EXPR_CONTEXT (decl);
4170
4171 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
4172 where we look up the function at runtime. Such functions always take
4173 a first argument of type 'pointer to real context'.
4174
4175 C++ should really be fixed to use DECL_CONTEXT for the real context,
4176 and use something else for the "virtual context". */
4177 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
4178 context
4179 = TYPE_MAIN_VARIANT
4180 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4181 else
4182 context = DECL_CONTEXT (decl);
4183
4184 while (context && TREE_CODE (context) != FUNCTION_DECL)
4185 {
4186 if (TREE_CODE (context) == BLOCK)
4187 context = BLOCK_SUPERCONTEXT (context);
4188 else
4189 context = get_containing_scope (context);
4190 }
4191
4192 return context;
4193 }
4194
4195 /* Return the innermost context enclosing DECL that is
4196 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
4197 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
4198
4199 tree
4200 decl_type_context (decl)
4201 tree decl;
4202 {
4203 tree context = DECL_CONTEXT (decl);
4204
4205 while (context)
4206 {
4207 if (TREE_CODE (context) == RECORD_TYPE
4208 || TREE_CODE (context) == UNION_TYPE
4209 || TREE_CODE (context) == QUAL_UNION_TYPE)
4210 return context;
4211
4212 if (TREE_CODE (context) == TYPE_DECL
4213 || TREE_CODE (context) == FUNCTION_DECL)
4214 context = DECL_CONTEXT (context);
4215
4216 else if (TREE_CODE (context) == BLOCK)
4217 context = BLOCK_SUPERCONTEXT (context);
4218
4219 else
4220 /* Unhandled CONTEXT!? */
4221 abort ();
4222 }
4223 return NULL_TREE;
4224 }
4225
4226 /* CALL is a CALL_EXPR. Return the declaration for the function
4227 called, or NULL_TREE if the called function cannot be
4228 determined. */
4229
4230 tree
4231 get_callee_fndecl (call)
4232 tree call;
4233 {
4234 tree addr;
4235
4236 /* It's invalid to call this function with anything but a
4237 CALL_EXPR. */
4238 if (TREE_CODE (call) != CALL_EXPR)
4239 abort ();
4240
4241 /* The first operand to the CALL is the address of the function
4242 called. */
4243 addr = TREE_OPERAND (call, 0);
4244
4245 STRIP_NOPS (addr);
4246
4247 /* If this is a readonly function pointer, extract its initial value. */
4248 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
4249 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
4250 && DECL_INITIAL (addr))
4251 addr = DECL_INITIAL (addr);
4252
4253 /* If the address is just `&f' for some function `f', then we know
4254 that `f' is being called. */
4255 if (TREE_CODE (addr) == ADDR_EXPR
4256 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
4257 return TREE_OPERAND (addr, 0);
4258
4259 /* We couldn't figure out what was being called. */
4260 return NULL_TREE;
4261 }
4262
4263 /* Print debugging information about the obstack O, named STR. */
4264
4265 void
4266 print_obstack_statistics (str, o)
4267 const char *str;
4268 struct obstack *o;
4269 {
4270 struct _obstack_chunk *chunk = o->chunk;
4271 int n_chunks = 1;
4272 int n_alloc = 0;
4273
4274 n_alloc += o->next_free - chunk->contents;
4275 chunk = chunk->prev;
4276 while (chunk)
4277 {
4278 n_chunks += 1;
4279 n_alloc += chunk->limit - &chunk->contents[0];
4280 chunk = chunk->prev;
4281 }
4282 fprintf (stderr, "obstack %s: %u bytes, %d chunks\n",
4283 str, n_alloc, n_chunks);
4284 }
4285
4286 /* Print debugging information about tree nodes generated during the compile,
4287 and any language-specific information. */
4288
4289 void
4290 dump_tree_statistics ()
4291 {
4292 #ifdef GATHER_STATISTICS
4293 int i;
4294 int total_nodes, total_bytes;
4295 #endif
4296
4297 fprintf (stderr, "\n??? tree nodes created\n\n");
4298 #ifdef GATHER_STATISTICS
4299 fprintf (stderr, "Kind Nodes Bytes\n");
4300 fprintf (stderr, "-------------------------------------\n");
4301 total_nodes = total_bytes = 0;
4302 for (i = 0; i < (int) all_kinds; i++)
4303 {
4304 fprintf (stderr, "%-20s %6d %9d\n", tree_node_kind_names[i],
4305 tree_node_counts[i], tree_node_sizes[i]);
4306 total_nodes += tree_node_counts[i];
4307 total_bytes += tree_node_sizes[i];
4308 }
4309 fprintf (stderr, "-------------------------------------\n");
4310 fprintf (stderr, "%-20s %6d %9d\n", "Total", total_nodes, total_bytes);
4311 fprintf (stderr, "-------------------------------------\n");
4312 #else
4313 fprintf (stderr, "(No per-node statistics)\n");
4314 #endif
4315 print_obstack_statistics ("permanent_obstack", &permanent_obstack);
4316 print_type_hash_statistics ();
4317 (*lang_hooks.print_statistics) ();
4318 }
4319 \f
4320 #define FILE_FUNCTION_PREFIX_LEN 9
4321
4322 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
4323
4324 /* Appends 6 random characters to TEMPLATE to (hopefully) avoid name
4325 clashes in cases where we can't reliably choose a unique name.
4326
4327 Derived from mkstemp.c in libiberty. */
4328
4329 static void
4330 append_random_chars (template)
4331 char *template;
4332 {
4333 static const char letters[]
4334 = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";
4335 static unsigned HOST_WIDE_INT value;
4336 unsigned HOST_WIDE_INT v;
4337
4338 if (! value)
4339 {
4340 struct stat st;
4341
4342 /* VALUE should be unique for each file and must not change between
4343 compiles since this can cause bootstrap comparison errors. */
4344
4345 if (stat (main_input_filename, &st) < 0)
4346 {
4347 /* This can happen when preprocessed text is shipped between
4348 machines, e.g. with bug reports. Assume that uniqueness
4349 isn't actually an issue. */
4350 value = 1;
4351 }
4352 else
4353 {
4354 /* In VMS, ino is an array, so we have to use both values. We
4355 conditionalize that. */
4356 #ifdef VMS
4357 #define INO_TO_INT(INO) ((int) (INO)[1] << 16 ^ (int) (INO)[2])
4358 #else
4359 #define INO_TO_INT(INO) INO
4360 #endif
4361 value = st.st_dev ^ INO_TO_INT (st.st_ino) ^ st.st_mtime;
4362 }
4363 }
4364
4365 template += strlen (template);
4366
4367 v = value;
4368
4369 /* Fill in the random bits. */
4370 template[0] = letters[v % 62];
4371 v /= 62;
4372 template[1] = letters[v % 62];
4373 v /= 62;
4374 template[2] = letters[v % 62];
4375 v /= 62;
4376 template[3] = letters[v % 62];
4377 v /= 62;
4378 template[4] = letters[v % 62];
4379 v /= 62;
4380 template[5] = letters[v % 62];
4381
4382 template[6] = '\0';
4383 }
4384
4385 /* P is a string that will be used in a symbol. Mask out any characters
4386 that are not valid in that context. */
4387
4388 void
4389 clean_symbol_name (p)
4390 char *p;
4391 {
4392 for (; *p; p++)
4393 if (! (ISALNUM (*p)
4394 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
4395 || *p == '$'
4396 #endif
4397 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
4398 || *p == '.'
4399 #endif
4400 ))
4401 *p = '_';
4402 }
4403
4404 /* Generate a name for a function unique to this translation unit.
4405 TYPE is some string to identify the purpose of this function to the
4406 linker or collect2. */
4407
4408 tree
4409 get_file_function_name_long (type)
4410 const char *type;
4411 {
4412 char *buf;
4413 const char *p;
4414 char *q;
4415
4416 if (first_global_object_name)
4417 p = first_global_object_name;
4418 else
4419 {
4420 /* We don't have anything that we know to be unique to this translation
4421 unit, so use what we do have and throw in some randomness. */
4422
4423 const char *name = weak_global_object_name;
4424 const char *file = main_input_filename;
4425
4426 if (! name)
4427 name = "";
4428 if (! file)
4429 file = input_filename;
4430
4431 q = (char *) alloca (7 + strlen (name) + strlen (file));
4432
4433 sprintf (q, "%s%s", name, file);
4434 append_random_chars (q);
4435 p = q;
4436 }
4437
4438 buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
4439 + strlen (type));
4440
4441 /* Set up the name of the file-level functions we may need.
4442 Use a global object (which is already required to be unique over
4443 the program) rather than the file name (which imposes extra
4444 constraints). */
4445 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
4446
4447 /* Don't need to pull weird characters out of global names. */
4448 if (p != first_global_object_name)
4449 clean_symbol_name (buf + 11);
4450
4451 return get_identifier (buf);
4452 }
4453
4454 /* If KIND=='I', return a suitable global initializer (constructor) name.
4455 If KIND=='D', return a suitable global clean-up (destructor) name. */
4456
4457 tree
4458 get_file_function_name (kind)
4459 int kind;
4460 {
4461 char p[2];
4462
4463 p[0] = kind;
4464 p[1] = 0;
4465
4466 return get_file_function_name_long (p);
4467 }
4468 \f
4469 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
4470 The result is placed in BUFFER (which has length BIT_SIZE),
4471 with one bit in each char ('\000' or '\001').
4472
4473 If the constructor is constant, NULL_TREE is returned.
4474 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
4475
4476 tree
4477 get_set_constructor_bits (init, buffer, bit_size)
4478 tree init;
4479 char *buffer;
4480 int bit_size;
4481 {
4482 int i;
4483 tree vals;
4484 HOST_WIDE_INT domain_min
4485 = tree_low_cst (TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (init))), 0);
4486 tree non_const_bits = NULL_TREE;
4487
4488 for (i = 0; i < bit_size; i++)
4489 buffer[i] = 0;
4490
4491 for (vals = TREE_OPERAND (init, 1);
4492 vals != NULL_TREE; vals = TREE_CHAIN (vals))
4493 {
4494 if (!host_integerp (TREE_VALUE (vals), 0)
4495 || (TREE_PURPOSE (vals) != NULL_TREE
4496 && !host_integerp (TREE_PURPOSE (vals), 0)))
4497 non_const_bits
4498 = tree_cons (TREE_PURPOSE (vals), TREE_VALUE (vals), non_const_bits);
4499 else if (TREE_PURPOSE (vals) != NULL_TREE)
4500 {
4501 /* Set a range of bits to ones. */
4502 HOST_WIDE_INT lo_index
4503 = tree_low_cst (TREE_PURPOSE (vals), 0) - domain_min;
4504 HOST_WIDE_INT hi_index
4505 = tree_low_cst (TREE_VALUE (vals), 0) - domain_min;
4506
4507 if (lo_index < 0 || lo_index >= bit_size
4508 || hi_index < 0 || hi_index >= bit_size)
4509 abort ();
4510 for (; lo_index <= hi_index; lo_index++)
4511 buffer[lo_index] = 1;
4512 }
4513 else
4514 {
4515 /* Set a single bit to one. */
4516 HOST_WIDE_INT index
4517 = tree_low_cst (TREE_VALUE (vals), 0) - domain_min;
4518 if (index < 0 || index >= bit_size)
4519 {
4520 error ("invalid initializer for bit string");
4521 return NULL_TREE;
4522 }
4523 buffer[index] = 1;
4524 }
4525 }
4526 return non_const_bits;
4527 }
4528
4529 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
4530 The result is placed in BUFFER (which is an array of bytes).
4531 If the constructor is constant, NULL_TREE is returned.
4532 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
4533
4534 tree
4535 get_set_constructor_bytes (init, buffer, wd_size)
4536 tree init;
4537 unsigned char *buffer;
4538 int wd_size;
4539 {
4540 int i;
4541 int set_word_size = BITS_PER_UNIT;
4542 int bit_size = wd_size * set_word_size;
4543 int bit_pos = 0;
4544 unsigned char *bytep = buffer;
4545 char *bit_buffer = (char *) alloca (bit_size);
4546 tree non_const_bits = get_set_constructor_bits (init, bit_buffer, bit_size);
4547
4548 for (i = 0; i < wd_size; i++)
4549 buffer[i] = 0;
4550
4551 for (i = 0; i < bit_size; i++)
4552 {
4553 if (bit_buffer[i])
4554 {
4555 if (BYTES_BIG_ENDIAN)
4556 *bytep |= (1 << (set_word_size - 1 - bit_pos));
4557 else
4558 *bytep |= 1 << bit_pos;
4559 }
4560 bit_pos++;
4561 if (bit_pos >= set_word_size)
4562 bit_pos = 0, bytep++;
4563 }
4564 return non_const_bits;
4565 }
4566 \f
4567 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
4568 /* Complain that the tree code of NODE does not match the expected CODE.
4569 FILE, LINE, and FUNCTION are of the caller. */
4570
4571 void
4572 tree_check_failed (node, code, file, line, function)
4573 const tree node;
4574 enum tree_code code;
4575 const char *file;
4576 int line;
4577 const char *function;
4578 {
4579 internal_error ("tree check: expected %s, have %s in %s, at %s:%d",
4580 tree_code_name[code], tree_code_name[TREE_CODE (node)],
4581 function, trim_filename (file), line);
4582 }
4583
4584 /* Similar to above, except that we check for a class of tree
4585 code, given in CL. */
4586
4587 void
4588 tree_class_check_failed (node, cl, file, line, function)
4589 const tree node;
4590 int cl;
4591 const char *file;
4592 int line;
4593 const char *function;
4594 {
4595 internal_error
4596 ("tree check: expected class '%c', have '%c' (%s) in %s, at %s:%d",
4597 cl, TREE_CODE_CLASS (TREE_CODE (node)),
4598 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
4599 }
4600
4601 #endif /* ENABLE_TREE_CHECKING */
4602 \f
4603 /* For a new vector type node T, build the information necessary for
4604 debuggint output. */
4605
4606 static void
4607 finish_vector_type (t)
4608 tree t;
4609 {
4610 layout_type (t);
4611
4612 {
4613 tree index = build_int_2 (TYPE_VECTOR_SUBPARTS (t) - 1, 0);
4614 tree array = build_array_type (TREE_TYPE (t),
4615 build_index_type (index));
4616 tree rt = make_node (RECORD_TYPE);
4617
4618 TYPE_FIELDS (rt) = build_decl (FIELD_DECL, get_identifier ("f"), array);
4619 DECL_CONTEXT (TYPE_FIELDS (rt)) = rt;
4620 layout_type (rt);
4621 TYPE_DEBUG_REPRESENTATION_TYPE (t) = rt;
4622 /* In dwarfout.c, type lookup uses TYPE_UID numbers. We want to output
4623 the representation type, and we want to find that die when looking up
4624 the vector type. This is most easily achieved by making the TYPE_UID
4625 numbers equal. */
4626 TYPE_UID (rt) = TYPE_UID (t);
4627 }
4628 }
4629
4630 /* Create nodes for all integer types (and error_mark_node) using the sizes
4631 of C datatypes. The caller should call set_sizetype soon after calling
4632 this function to select one of the types as sizetype. */
4633
4634 void
4635 build_common_tree_nodes (signed_char)
4636 int signed_char;
4637 {
4638 error_mark_node = make_node (ERROR_MARK);
4639 TREE_TYPE (error_mark_node) = error_mark_node;
4640
4641 initialize_sizetypes ();
4642
4643 /* Define both `signed char' and `unsigned char'. */
4644 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
4645 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
4646
4647 /* Define `char', which is like either `signed char' or `unsigned char'
4648 but not the same as either. */
4649 char_type_node
4650 = (signed_char
4651 ? make_signed_type (CHAR_TYPE_SIZE)
4652 : make_unsigned_type (CHAR_TYPE_SIZE));
4653
4654 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
4655 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
4656 integer_type_node = make_signed_type (INT_TYPE_SIZE);
4657 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
4658 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
4659 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
4660 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
4661 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
4662
4663 intQI_type_node = make_signed_type (GET_MODE_BITSIZE (QImode));
4664 intHI_type_node = make_signed_type (GET_MODE_BITSIZE (HImode));
4665 intSI_type_node = make_signed_type (GET_MODE_BITSIZE (SImode));
4666 intDI_type_node = make_signed_type (GET_MODE_BITSIZE (DImode));
4667 intTI_type_node = make_signed_type (GET_MODE_BITSIZE (TImode));
4668
4669 unsigned_intQI_type_node = make_unsigned_type (GET_MODE_BITSIZE (QImode));
4670 unsigned_intHI_type_node = make_unsigned_type (GET_MODE_BITSIZE (HImode));
4671 unsigned_intSI_type_node = make_unsigned_type (GET_MODE_BITSIZE (SImode));
4672 unsigned_intDI_type_node = make_unsigned_type (GET_MODE_BITSIZE (DImode));
4673 unsigned_intTI_type_node = make_unsigned_type (GET_MODE_BITSIZE (TImode));
4674 }
4675
4676 /* Call this function after calling build_common_tree_nodes and set_sizetype.
4677 It will create several other common tree nodes. */
4678
4679 void
4680 build_common_tree_nodes_2 (short_double)
4681 int short_double;
4682 {
4683 /* Define these next since types below may used them. */
4684 integer_zero_node = build_int_2 (0, 0);
4685 integer_one_node = build_int_2 (1, 0);
4686 integer_minus_one_node = build_int_2 (-1, -1);
4687
4688 size_zero_node = size_int (0);
4689 size_one_node = size_int (1);
4690 bitsize_zero_node = bitsize_int (0);
4691 bitsize_one_node = bitsize_int (1);
4692 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
4693
4694 void_type_node = make_node (VOID_TYPE);
4695 layout_type (void_type_node);
4696
4697 /* We are not going to have real types in C with less than byte alignment,
4698 so we might as well not have any types that claim to have it. */
4699 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
4700 TYPE_USER_ALIGN (void_type_node) = 0;
4701
4702 null_pointer_node = build_int_2 (0, 0);
4703 TREE_TYPE (null_pointer_node) = build_pointer_type (void_type_node);
4704 layout_type (TREE_TYPE (null_pointer_node));
4705
4706 ptr_type_node = build_pointer_type (void_type_node);
4707 const_ptr_type_node
4708 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
4709
4710 float_type_node = make_node (REAL_TYPE);
4711 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
4712 layout_type (float_type_node);
4713
4714 double_type_node = make_node (REAL_TYPE);
4715 if (short_double)
4716 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
4717 else
4718 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
4719 layout_type (double_type_node);
4720
4721 long_double_type_node = make_node (REAL_TYPE);
4722 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
4723 layout_type (long_double_type_node);
4724
4725 complex_integer_type_node = make_node (COMPLEX_TYPE);
4726 TREE_TYPE (complex_integer_type_node) = integer_type_node;
4727 layout_type (complex_integer_type_node);
4728
4729 complex_float_type_node = make_node (COMPLEX_TYPE);
4730 TREE_TYPE (complex_float_type_node) = float_type_node;
4731 layout_type (complex_float_type_node);
4732
4733 complex_double_type_node = make_node (COMPLEX_TYPE);
4734 TREE_TYPE (complex_double_type_node) = double_type_node;
4735 layout_type (complex_double_type_node);
4736
4737 complex_long_double_type_node = make_node (COMPLEX_TYPE);
4738 TREE_TYPE (complex_long_double_type_node) = long_double_type_node;
4739 layout_type (complex_long_double_type_node);
4740
4741 {
4742 tree t;
4743 BUILD_VA_LIST_TYPE (t);
4744
4745 /* Many back-ends define record types without seting TYPE_NAME.
4746 If we copied the record type here, we'd keep the original
4747 record type without a name. This breaks name mangling. So,
4748 don't copy record types and let c_common_nodes_and_builtins()
4749 declare the type to be __builtin_va_list. */
4750 if (TREE_CODE (t) != RECORD_TYPE)
4751 t = build_type_copy (t);
4752
4753 va_list_type_node = t;
4754 }
4755
4756 unsigned_V4SI_type_node
4757 = make_vector (V4SImode, unsigned_intSI_type_node, 1);
4758 unsigned_V2SI_type_node
4759 = make_vector (V2SImode, unsigned_intSI_type_node, 1);
4760 unsigned_V4HI_type_node
4761 = make_vector (V4HImode, unsigned_intHI_type_node, 1);
4762 unsigned_V8QI_type_node
4763 = make_vector (V8QImode, unsigned_intQI_type_node, 1);
4764 unsigned_V8HI_type_node
4765 = make_vector (V8HImode, unsigned_intHI_type_node, 1);
4766 unsigned_V16QI_type_node
4767 = make_vector (V16QImode, unsigned_intQI_type_node, 1);
4768
4769 V16SF_type_node = make_vector (V16SFmode, float_type_node, 0);
4770 V4SF_type_node = make_vector (V4SFmode, float_type_node, 0);
4771 V4SI_type_node = make_vector (V4SImode, intSI_type_node, 0);
4772 V2SI_type_node = make_vector (V2SImode, intSI_type_node, 0);
4773 V4HI_type_node = make_vector (V4HImode, intHI_type_node, 0);
4774 V8QI_type_node = make_vector (V8QImode, intQI_type_node, 0);
4775 V8HI_type_node = make_vector (V8HImode, intHI_type_node, 0);
4776 V2SF_type_node = make_vector (V2SFmode, float_type_node, 0);
4777 V16QI_type_node = make_vector (V16QImode, intQI_type_node, 0);
4778 }
4779
4780 /* Returns a vector tree node given a vector mode, the inner type, and
4781 the signness. */
4782
4783 static tree
4784 make_vector (mode, innertype, unsignedp)
4785 enum machine_mode mode;
4786 tree innertype;
4787 int unsignedp;
4788 {
4789 tree t;
4790
4791 t = make_node (VECTOR_TYPE);
4792 TREE_TYPE (t) = innertype;
4793 TYPE_MODE (t) = mode;
4794 TREE_UNSIGNED (TREE_TYPE (t)) = unsignedp;
4795 finish_vector_type (t);
4796
4797 return t;
4798 }
4799
4800 /* Given an initializer INIT, return TRUE if INIT is zero or some
4801 aggregate of zeros. Otherwise return FALSE. */
4802
4803 bool
4804 initializer_zerop (init)
4805 tree init;
4806 {
4807 STRIP_NOPS (init);
4808
4809 switch (TREE_CODE (init))
4810 {
4811 case INTEGER_CST:
4812 return integer_zerop (init);
4813 case REAL_CST:
4814 return real_zerop (init)
4815 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
4816 case COMPLEX_CST:
4817 return integer_zerop (init)
4818 || (real_zerop (init)
4819 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
4820 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
4821 case CONSTRUCTOR:
4822 {
4823 if (AGGREGATE_TYPE_P (TREE_TYPE (init)))
4824 {
4825 tree aggr_init = TREE_OPERAND (init, 1);
4826
4827 while (aggr_init)
4828 {
4829 if (! initializer_zerop (TREE_VALUE (aggr_init)))
4830 return false;
4831 aggr_init = TREE_CHAIN (aggr_init);
4832 }
4833 return true;
4834 }
4835 return false;
4836 }
4837 default:
4838 return false;
4839 }
4840 }