]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree.c
targhooks.c (default_unwind_emit, [...]): Use gcc_assert, gcc_unreachable & internal_...
[thirdparty/gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This file contains the low level primitives for operating on tree nodes,
23 including allocation, list operations, interning of identifiers,
24 construction of data type nodes and statement nodes,
25 and construction of type conversion nodes. It also contains
26 tables index by tree code that describe how to take apart
27 nodes of that code.
28
29 It is intended to be language-independent, but occasionally
30 calls language-dependent routines defined (for C) in typecheck.c. */
31
32 #include "config.h"
33 #include "system.h"
34 #include "coretypes.h"
35 #include "tm.h"
36 #include "flags.h"
37 #include "tree.h"
38 #include "real.h"
39 #include "tm_p.h"
40 #include "function.h"
41 #include "obstack.h"
42 #include "toplev.h"
43 #include "ggc.h"
44 #include "hashtab.h"
45 #include "output.h"
46 #include "target.h"
47 #include "langhooks.h"
48 #include "tree-iterator.h"
49 #include "basic-block.h"
50 #include "tree-flow.h"
51 #include "params.h"
52
53 /* obstack.[ch] explicitly declined to prototype this. */
54 extern int _obstack_allocated_p (struct obstack *h, void *obj);
55
56 #ifdef GATHER_STATISTICS
57 /* Statistics-gathering stuff. */
58
59 int tree_node_counts[(int) all_kinds];
60 int tree_node_sizes[(int) all_kinds];
61
62 /* Keep in sync with tree.h:enum tree_node_kind. */
63 static const char * const tree_node_kind_names[] = {
64 "decls",
65 "types",
66 "blocks",
67 "stmts",
68 "refs",
69 "exprs",
70 "constants",
71 "identifiers",
72 "perm_tree_lists",
73 "temp_tree_lists",
74 "vecs",
75 "binfos",
76 "phi_nodes",
77 "ssa names",
78 "random kinds",
79 "lang_decl kinds",
80 "lang_type kinds"
81 };
82 #endif /* GATHER_STATISTICS */
83
84 /* Unique id for next decl created. */
85 static GTY(()) int next_decl_uid;
86 /* Unique id for next type created. */
87 static GTY(()) int next_type_uid = 1;
88
89 /* Since we cannot rehash a type after it is in the table, we have to
90 keep the hash code. */
91
92 struct type_hash GTY(())
93 {
94 unsigned long hash;
95 tree type;
96 };
97
98 /* Initial size of the hash table (rounded to next prime). */
99 #define TYPE_HASH_INITIAL_SIZE 1000
100
101 /* Now here is the hash table. When recording a type, it is added to
102 the slot whose index is the hash code. Note that the hash table is
103 used for several kinds of types (function types, array types and
104 array index range types, for now). While all these live in the
105 same table, they are completely independent, and the hash code is
106 computed differently for each of these. */
107
108 static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash)))
109 htab_t type_hash_table;
110
111 static void set_type_quals (tree, int);
112 static int type_hash_eq (const void *, const void *);
113 static hashval_t type_hash_hash (const void *);
114 static void print_type_hash_statistics (void);
115 static tree make_vector_type (tree, int, enum machine_mode);
116 static int type_hash_marked_p (const void *);
117 static unsigned int type_hash_list (tree, hashval_t);
118 static unsigned int attribute_hash_list (tree, hashval_t);
119
120 tree global_trees[TI_MAX];
121 tree integer_types[itk_none];
122 \f
123 /* Init tree.c. */
124
125 void
126 init_ttree (void)
127 {
128 /* Initialize the hash table of types. */
129 type_hash_table = htab_create_ggc (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
130 type_hash_eq, 0);
131 }
132
133 \f
134 /* The name of the object as the assembler will see it (but before any
135 translations made by ASM_OUTPUT_LABELREF). Often this is the same
136 as DECL_NAME. It is an IDENTIFIER_NODE. */
137 tree
138 decl_assembler_name (tree decl)
139 {
140 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
141 lang_hooks.set_decl_assembler_name (decl);
142 return DECL_CHECK (decl)->decl.assembler_name;
143 }
144
145 /* Compute the number of bytes occupied by 'node'. This routine only
146 looks at TREE_CODE and, if the code is TREE_VEC, TREE_VEC_LENGTH. */
147 size_t
148 tree_size (tree node)
149 {
150 enum tree_code code = TREE_CODE (node);
151
152 switch (TREE_CODE_CLASS (code))
153 {
154 case 'd': /* A decl node */
155 return sizeof (struct tree_decl);
156
157 case 't': /* a type node */
158 return sizeof (struct tree_type);
159
160 case 'r': /* a reference */
161 case 'e': /* an expression */
162 case 's': /* an expression with side effects */
163 case '<': /* a comparison expression */
164 case '1': /* a unary arithmetic expression */
165 case '2': /* a binary arithmetic expression */
166 return (sizeof (struct tree_exp)
167 + TREE_CODE_LENGTH (code) * sizeof (char *) - sizeof (char *));
168
169 case 'c': /* a constant */
170 switch (code)
171 {
172 case INTEGER_CST: return sizeof (struct tree_int_cst);
173 case REAL_CST: return sizeof (struct tree_real_cst);
174 case COMPLEX_CST: return sizeof (struct tree_complex);
175 case VECTOR_CST: return sizeof (struct tree_vector);
176 case STRING_CST: return sizeof (struct tree_string);
177 default:
178 return lang_hooks.tree_size (code);
179 }
180
181 case 'x': /* something random, like an identifier. */
182 switch (code)
183 {
184 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
185 case TREE_LIST: return sizeof (struct tree_list);
186 case TREE_VEC: return (sizeof (struct tree_vec)
187 + TREE_VEC_LENGTH(node) * sizeof(char *)
188 - sizeof (char *));
189
190 case ERROR_MARK:
191 case PLACEHOLDER_EXPR: return sizeof (struct tree_common);
192
193 case PHI_NODE: return (sizeof (struct tree_phi_node)
194 + (PHI_ARG_CAPACITY (node) - 1) *
195 sizeof (struct phi_arg_d));
196
197 case SSA_NAME: return sizeof (struct tree_ssa_name);
198
199 case STATEMENT_LIST: return sizeof (struct tree_statement_list);
200 case BLOCK: return sizeof (struct tree_block);
201 case VALUE_HANDLE: return sizeof (struct tree_value_handle);
202
203 default:
204 return lang_hooks.tree_size (code);
205 }
206
207 default:
208 gcc_unreachable ();
209 }
210 }
211
212 /* Return a newly allocated node of code CODE.
213 For decl and type nodes, some other fields are initialized.
214 The rest of the node is initialized to zero.
215
216 Achoo! I got a code in the node. */
217
218 tree
219 make_node_stat (enum tree_code code MEM_STAT_DECL)
220 {
221 tree t;
222 int type = TREE_CODE_CLASS (code);
223 size_t length;
224 #ifdef GATHER_STATISTICS
225 tree_node_kind kind;
226 #endif
227 struct tree_common ttmp;
228
229 /* We can't allocate a TREE_VEC, PHI_NODE, or STRING_CST
230 without knowing how many elements it will have. */
231 gcc_assert (code != TREE_VEC);
232 gcc_assert (code != PHI_NODE);
233
234 TREE_SET_CODE ((tree)&ttmp, code);
235 length = tree_size ((tree)&ttmp);
236
237 #ifdef GATHER_STATISTICS
238 switch (type)
239 {
240 case 'd': /* A decl node */
241 kind = d_kind;
242 break;
243
244 case 't': /* a type node */
245 kind = t_kind;
246 break;
247
248 case 's': /* an expression with side effects */
249 kind = s_kind;
250 break;
251
252 case 'r': /* a reference */
253 kind = r_kind;
254 break;
255
256 case 'e': /* an expression */
257 case '<': /* a comparison expression */
258 case '1': /* a unary arithmetic expression */
259 case '2': /* a binary arithmetic expression */
260 kind = e_kind;
261 break;
262
263 case 'c': /* a constant */
264 kind = c_kind;
265 break;
266
267 case 'x': /* something random, like an identifier. */
268 if (code == IDENTIFIER_NODE)
269 kind = id_kind;
270 else if (code == TREE_VEC)
271 kind = vec_kind;
272 else if (code == TREE_BINFO)
273 kind = binfo_kind;
274 else if (code == PHI_NODE)
275 kind = phi_kind;
276 else if (code == SSA_NAME)
277 kind = ssa_name_kind;
278 else if (code == BLOCK)
279 kind = b_kind;
280 else
281 kind = x_kind;
282 break;
283
284 default:
285 gcc_unreachable ();
286 }
287
288 tree_node_counts[(int) kind]++;
289 tree_node_sizes[(int) kind] += length;
290 #endif
291
292 t = ggc_alloc_zone_stat (length, tree_zone PASS_MEM_STAT);
293
294 memset (t, 0, length);
295
296 TREE_SET_CODE (t, code);
297
298 switch (type)
299 {
300 case 's':
301 TREE_SIDE_EFFECTS (t) = 1;
302 break;
303
304 case 'd':
305 if (code != FUNCTION_DECL)
306 DECL_ALIGN (t) = 1;
307 DECL_USER_ALIGN (t) = 0;
308 DECL_IN_SYSTEM_HEADER (t) = in_system_header;
309 DECL_SOURCE_LOCATION (t) = input_location;
310 DECL_UID (t) = next_decl_uid++;
311
312 /* We have not yet computed the alias set for this declaration. */
313 DECL_POINTER_ALIAS_SET (t) = -1;
314 break;
315
316 case 't':
317 TYPE_UID (t) = next_type_uid++;
318 TYPE_ALIGN (t) = char_type_node ? TYPE_ALIGN (char_type_node) : 0;
319 TYPE_USER_ALIGN (t) = 0;
320 TYPE_MAIN_VARIANT (t) = t;
321
322 /* Default to no attributes for type, but let target change that. */
323 TYPE_ATTRIBUTES (t) = NULL_TREE;
324 targetm.set_default_type_attributes (t);
325
326 /* We have not yet computed the alias set for this type. */
327 TYPE_ALIAS_SET (t) = -1;
328 break;
329
330 case 'c':
331 TREE_CONSTANT (t) = 1;
332 TREE_INVARIANT (t) = 1;
333 break;
334
335 case 'e':
336 switch (code)
337 {
338 case INIT_EXPR:
339 case MODIFY_EXPR:
340 case VA_ARG_EXPR:
341 case PREDECREMENT_EXPR:
342 case PREINCREMENT_EXPR:
343 case POSTDECREMENT_EXPR:
344 case POSTINCREMENT_EXPR:
345 /* All of these have side-effects, no matter what their
346 operands are. */
347 TREE_SIDE_EFFECTS (t) = 1;
348 break;
349
350 default:
351 break;
352 }
353 break;
354 }
355
356 return t;
357 }
358 \f
359 /* Return a new node with the same contents as NODE except that its
360 TREE_CHAIN is zero and it has a fresh uid. */
361
362 tree
363 copy_node_stat (tree node MEM_STAT_DECL)
364 {
365 tree t;
366 enum tree_code code = TREE_CODE (node);
367 size_t length;
368
369 gcc_assert (code != STATEMENT_LIST);
370
371 length = tree_size (node);
372 t = ggc_alloc_zone_stat (length, tree_zone PASS_MEM_STAT);
373 memcpy (t, node, length);
374
375 TREE_CHAIN (t) = 0;
376 TREE_ASM_WRITTEN (t) = 0;
377 TREE_VISITED (t) = 0;
378 t->common.ann = 0;
379
380 if (TREE_CODE_CLASS (code) == 'd')
381 DECL_UID (t) = next_decl_uid++;
382 else if (TREE_CODE_CLASS (code) == 't')
383 {
384 TYPE_UID (t) = next_type_uid++;
385 /* The following is so that the debug code for
386 the copy is different from the original type.
387 The two statements usually duplicate each other
388 (because they clear fields of the same union),
389 but the optimizer should catch that. */
390 TYPE_SYMTAB_POINTER (t) = 0;
391 TYPE_SYMTAB_ADDRESS (t) = 0;
392
393 /* Do not copy the values cache. */
394 if (TYPE_CACHED_VALUES_P(t))
395 {
396 TYPE_CACHED_VALUES_P (t) = 0;
397 TYPE_CACHED_VALUES (t) = NULL_TREE;
398 }
399 }
400
401 return t;
402 }
403
404 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
405 For example, this can copy a list made of TREE_LIST nodes. */
406
407 tree
408 copy_list (tree list)
409 {
410 tree head;
411 tree prev, next;
412
413 if (list == 0)
414 return 0;
415
416 head = prev = copy_node (list);
417 next = TREE_CHAIN (list);
418 while (next)
419 {
420 TREE_CHAIN (prev) = copy_node (next);
421 prev = TREE_CHAIN (prev);
422 next = TREE_CHAIN (next);
423 }
424 return head;
425 }
426
427 \f
428 /* Create an INT_CST node with a LOW value sign extended. */
429
430 tree
431 build_int_cst (tree type, HOST_WIDE_INT low)
432 {
433 return build_int_cst_wide (type, low, low < 0 ? -1 : 0);
434 }
435
436 /* Create an INT_CST node with a LOW value zero extended. */
437
438 tree
439 build_int_cstu (tree type, unsigned HOST_WIDE_INT low)
440 {
441 return build_int_cst_wide (type, low, 0);
442 }
443
444 /* Create an INT_CST node with a LOW value zero or sign extended depending
445 on the type. */
446
447 tree
448 build_int_cst_type (tree type, HOST_WIDE_INT low)
449 {
450 unsigned HOST_WIDE_INT val = (unsigned HOST_WIDE_INT) low;
451 unsigned bits;
452 bool signed_p;
453 bool negative;
454 tree ret;
455
456 if (!type)
457 type = integer_type_node;
458
459 bits = TYPE_PRECISION (type);
460 signed_p = !TYPE_UNSIGNED (type);
461 negative = ((val >> (bits - 1)) & 1) != 0;
462
463 if (signed_p && negative)
464 {
465 if (bits < HOST_BITS_PER_WIDE_INT)
466 val = val | ((~(unsigned HOST_WIDE_INT) 0) << bits);
467 ret = build_int_cst_wide (type, val, ~(unsigned HOST_WIDE_INT) 0);
468 }
469 else
470 {
471 if (bits < HOST_BITS_PER_WIDE_INT)
472 val = val & ~((~(unsigned HOST_WIDE_INT) 0) << bits);
473 ret = build_int_cst_wide (type, val, 0);
474 }
475
476 return ret;
477 }
478
479 /* Create an INT_CST node of TYPE and value HI:LOW. If TYPE is NULL,
480 integer_type_node is used. */
481
482 tree
483 build_int_cst_wide (tree type, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
484 {
485 tree t;
486 int ix = -1;
487 int limit = 0;
488
489 if (!type)
490 type = integer_type_node;
491
492 switch (TREE_CODE (type))
493 {
494 case POINTER_TYPE:
495 case REFERENCE_TYPE:
496 /* Cache NULL pointer. */
497 if (!hi && !low)
498 {
499 limit = 1;
500 ix = 0;
501 }
502 break;
503
504 case BOOLEAN_TYPE:
505 /* Cache false or true. */
506 limit = 2;
507 if (!hi && low < 2)
508 ix = low;
509 break;
510
511 case INTEGER_TYPE:
512 case CHAR_TYPE:
513 case OFFSET_TYPE:
514 if (TYPE_UNSIGNED (type))
515 {
516 /* Cache 0..N */
517 limit = INTEGER_SHARE_LIMIT;
518 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
519 ix = low;
520 }
521 else
522 {
523 /* Cache -1..N */
524 limit = INTEGER_SHARE_LIMIT + 1;
525 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
526 ix = low + 1;
527 else if (hi == -1 && low == -(unsigned HOST_WIDE_INT)1)
528 ix = 0;
529 }
530 break;
531 default:
532 break;
533 }
534
535 if (ix >= 0)
536 {
537 if (!TYPE_CACHED_VALUES_P (type))
538 {
539 TYPE_CACHED_VALUES_P (type) = 1;
540 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
541 }
542
543 t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix);
544 if (t)
545 {
546 /* Make sure no one is clobbering the shared constant. */
547 gcc_assert (TREE_TYPE (t) == type);
548 gcc_assert (TREE_INT_CST_LOW (t) == low);
549 gcc_assert (TREE_INT_CST_HIGH (t) == hi);
550 return t;
551 }
552 }
553
554 t = make_node (INTEGER_CST);
555
556 TREE_INT_CST_LOW (t) = low;
557 TREE_INT_CST_HIGH (t) = hi;
558 TREE_TYPE (t) = type;
559
560 if (ix >= 0)
561 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
562
563 return t;
564 }
565
566 /* Checks that X is integer constant that can be expressed in (unsigned)
567 HOST_WIDE_INT without loss of precision. */
568
569 bool
570 cst_and_fits_in_hwi (tree x)
571 {
572 if (TREE_CODE (x) != INTEGER_CST)
573 return false;
574
575 if (TYPE_PRECISION (TREE_TYPE (x)) > HOST_BITS_PER_WIDE_INT)
576 return false;
577
578 return (TREE_INT_CST_HIGH (x) == 0
579 || TREE_INT_CST_HIGH (x) == -1);
580 }
581
582 /* Return a new VECTOR_CST node whose type is TYPE and whose values
583 are in a list pointed by VALS. */
584
585 tree
586 build_vector (tree type, tree vals)
587 {
588 tree v = make_node (VECTOR_CST);
589 int over1 = 0, over2 = 0;
590 tree link;
591
592 TREE_VECTOR_CST_ELTS (v) = vals;
593 TREE_TYPE (v) = type;
594
595 /* Iterate through elements and check for overflow. */
596 for (link = vals; link; link = TREE_CHAIN (link))
597 {
598 tree value = TREE_VALUE (link);
599
600 over1 |= TREE_OVERFLOW (value);
601 over2 |= TREE_CONSTANT_OVERFLOW (value);
602 }
603
604 TREE_OVERFLOW (v) = over1;
605 TREE_CONSTANT_OVERFLOW (v) = over2;
606
607 return v;
608 }
609
610 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
611 are in a list pointed to by VALS. */
612 tree
613 build_constructor (tree type, tree vals)
614 {
615 tree c = make_node (CONSTRUCTOR);
616 TREE_TYPE (c) = type;
617 CONSTRUCTOR_ELTS (c) = vals;
618
619 /* ??? May not be necessary. Mirrors what build does. */
620 if (vals)
621 {
622 TREE_SIDE_EFFECTS (c) = TREE_SIDE_EFFECTS (vals);
623 TREE_READONLY (c) = TREE_READONLY (vals);
624 TREE_CONSTANT (c) = TREE_CONSTANT (vals);
625 TREE_INVARIANT (c) = TREE_INVARIANT (vals);
626 }
627
628 return c;
629 }
630
631 /* Return a new REAL_CST node whose type is TYPE and value is D. */
632
633 tree
634 build_real (tree type, REAL_VALUE_TYPE d)
635 {
636 tree v;
637 REAL_VALUE_TYPE *dp;
638 int overflow = 0;
639
640 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
641 Consider doing it via real_convert now. */
642
643 v = make_node (REAL_CST);
644 dp = ggc_alloc (sizeof (REAL_VALUE_TYPE));
645 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
646
647 TREE_TYPE (v) = type;
648 TREE_REAL_CST_PTR (v) = dp;
649 TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
650 return v;
651 }
652
653 /* Return a new REAL_CST node whose type is TYPE
654 and whose value is the integer value of the INTEGER_CST node I. */
655
656 REAL_VALUE_TYPE
657 real_value_from_int_cst (tree type, tree i)
658 {
659 REAL_VALUE_TYPE d;
660
661 /* Clear all bits of the real value type so that we can later do
662 bitwise comparisons to see if two values are the same. */
663 memset (&d, 0, sizeof d);
664
665 real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode,
666 TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
667 TYPE_UNSIGNED (TREE_TYPE (i)));
668 return d;
669 }
670
671 /* Given a tree representing an integer constant I, return a tree
672 representing the same value as a floating-point constant of type TYPE. */
673
674 tree
675 build_real_from_int_cst (tree type, tree i)
676 {
677 tree v;
678 int overflow = TREE_OVERFLOW (i);
679
680 v = build_real (type, real_value_from_int_cst (type, i));
681
682 TREE_OVERFLOW (v) |= overflow;
683 TREE_CONSTANT_OVERFLOW (v) |= overflow;
684 return v;
685 }
686
687 /* Return a newly constructed STRING_CST node whose value is
688 the LEN characters at STR.
689 The TREE_TYPE is not initialized. */
690
691 tree
692 build_string (int len, const char *str)
693 {
694 tree s = make_node (STRING_CST);
695
696 TREE_STRING_LENGTH (s) = len;
697 TREE_STRING_POINTER (s) = ggc_alloc_string (str, len);
698
699 return s;
700 }
701
702 /* Return a newly constructed COMPLEX_CST node whose value is
703 specified by the real and imaginary parts REAL and IMAG.
704 Both REAL and IMAG should be constant nodes. TYPE, if specified,
705 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
706
707 tree
708 build_complex (tree type, tree real, tree imag)
709 {
710 tree t = make_node (COMPLEX_CST);
711
712 TREE_REALPART (t) = real;
713 TREE_IMAGPART (t) = imag;
714 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
715 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
716 TREE_CONSTANT_OVERFLOW (t)
717 = TREE_CONSTANT_OVERFLOW (real) | TREE_CONSTANT_OVERFLOW (imag);
718 return t;
719 }
720
721 /* Build a BINFO with LEN language slots. */
722
723 tree
724 make_tree_binfo_stat (unsigned base_binfos MEM_STAT_DECL)
725 {
726 tree t;
727 size_t length = (offsetof (struct tree_binfo, base_binfos)
728 + VEC_embedded_size (tree, base_binfos));
729
730 #ifdef GATHER_STATISTICS
731 tree_node_counts[(int) binfo_kind]++;
732 tree_node_sizes[(int) binfo_kind] += length;
733 #endif
734
735 t = ggc_alloc_zone_stat (length, tree_zone PASS_MEM_STAT);
736
737 memset (t, 0, offsetof (struct tree_binfo, base_binfos));
738
739 TREE_SET_CODE (t, TREE_BINFO);
740
741 VEC_embedded_init (tree, BINFO_BASE_BINFOS (t), base_binfos);
742
743 return t;
744 }
745
746
747 /* Build a newly constructed TREE_VEC node of length LEN. */
748
749 tree
750 make_tree_vec_stat (int len MEM_STAT_DECL)
751 {
752 tree t;
753 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
754
755 #ifdef GATHER_STATISTICS
756 tree_node_counts[(int) vec_kind]++;
757 tree_node_sizes[(int) vec_kind] += length;
758 #endif
759
760 t = ggc_alloc_zone_stat (length, tree_zone PASS_MEM_STAT);
761
762 memset (t, 0, length);
763
764 TREE_SET_CODE (t, TREE_VEC);
765 TREE_VEC_LENGTH (t) = len;
766
767 return t;
768 }
769 \f
770 /* Return 1 if EXPR is the integer constant zero or a complex constant
771 of zero. */
772
773 int
774 integer_zerop (tree expr)
775 {
776 STRIP_NOPS (expr);
777
778 return ((TREE_CODE (expr) == INTEGER_CST
779 && ! TREE_CONSTANT_OVERFLOW (expr)
780 && TREE_INT_CST_LOW (expr) == 0
781 && TREE_INT_CST_HIGH (expr) == 0)
782 || (TREE_CODE (expr) == COMPLEX_CST
783 && integer_zerop (TREE_REALPART (expr))
784 && integer_zerop (TREE_IMAGPART (expr))));
785 }
786
787 /* Return 1 if EXPR is the integer constant one or the corresponding
788 complex constant. */
789
790 int
791 integer_onep (tree expr)
792 {
793 STRIP_NOPS (expr);
794
795 return ((TREE_CODE (expr) == INTEGER_CST
796 && ! TREE_CONSTANT_OVERFLOW (expr)
797 && TREE_INT_CST_LOW (expr) == 1
798 && TREE_INT_CST_HIGH (expr) == 0)
799 || (TREE_CODE (expr) == COMPLEX_CST
800 && integer_onep (TREE_REALPART (expr))
801 && integer_zerop (TREE_IMAGPART (expr))));
802 }
803
804 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
805 it contains. Likewise for the corresponding complex constant. */
806
807 int
808 integer_all_onesp (tree expr)
809 {
810 int prec;
811 int uns;
812
813 STRIP_NOPS (expr);
814
815 if (TREE_CODE (expr) == COMPLEX_CST
816 && integer_all_onesp (TREE_REALPART (expr))
817 && integer_zerop (TREE_IMAGPART (expr)))
818 return 1;
819
820 else if (TREE_CODE (expr) != INTEGER_CST
821 || TREE_CONSTANT_OVERFLOW (expr))
822 return 0;
823
824 uns = TYPE_UNSIGNED (TREE_TYPE (expr));
825 if (!uns)
826 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
827 && TREE_INT_CST_HIGH (expr) == -1);
828
829 /* Note that using TYPE_PRECISION here is wrong. We care about the
830 actual bits, not the (arbitrary) range of the type. */
831 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
832 if (prec >= HOST_BITS_PER_WIDE_INT)
833 {
834 HOST_WIDE_INT high_value;
835 int shift_amount;
836
837 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
838
839 /* Can not handle precisions greater than twice the host int size. */
840 gcc_assert (shift_amount <= HOST_BITS_PER_WIDE_INT);
841 if (shift_amount == HOST_BITS_PER_WIDE_INT)
842 /* Shifting by the host word size is undefined according to the ANSI
843 standard, so we must handle this as a special case. */
844 high_value = -1;
845 else
846 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
847
848 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
849 && TREE_INT_CST_HIGH (expr) == high_value);
850 }
851 else
852 return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
853 }
854
855 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
856 one bit on). */
857
858 int
859 integer_pow2p (tree expr)
860 {
861 int prec;
862 HOST_WIDE_INT high, low;
863
864 STRIP_NOPS (expr);
865
866 if (TREE_CODE (expr) == COMPLEX_CST
867 && integer_pow2p (TREE_REALPART (expr))
868 && integer_zerop (TREE_IMAGPART (expr)))
869 return 1;
870
871 if (TREE_CODE (expr) != INTEGER_CST || TREE_CONSTANT_OVERFLOW (expr))
872 return 0;
873
874 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
875 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
876 high = TREE_INT_CST_HIGH (expr);
877 low = TREE_INT_CST_LOW (expr);
878
879 /* First clear all bits that are beyond the type's precision in case
880 we've been sign extended. */
881
882 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
883 ;
884 else if (prec > HOST_BITS_PER_WIDE_INT)
885 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
886 else
887 {
888 high = 0;
889 if (prec < HOST_BITS_PER_WIDE_INT)
890 low &= ~((HOST_WIDE_INT) (-1) << prec);
891 }
892
893 if (high == 0 && low == 0)
894 return 0;
895
896 return ((high == 0 && (low & (low - 1)) == 0)
897 || (low == 0 && (high & (high - 1)) == 0));
898 }
899
900 /* Return 1 if EXPR is an integer constant other than zero or a
901 complex constant other than zero. */
902
903 int
904 integer_nonzerop (tree expr)
905 {
906 STRIP_NOPS (expr);
907
908 return ((TREE_CODE (expr) == INTEGER_CST
909 && ! TREE_CONSTANT_OVERFLOW (expr)
910 && (TREE_INT_CST_LOW (expr) != 0
911 || TREE_INT_CST_HIGH (expr) != 0))
912 || (TREE_CODE (expr) == COMPLEX_CST
913 && (integer_nonzerop (TREE_REALPART (expr))
914 || integer_nonzerop (TREE_IMAGPART (expr)))));
915 }
916
917 /* Return the power of two represented by a tree node known to be a
918 power of two. */
919
920 int
921 tree_log2 (tree expr)
922 {
923 int prec;
924 HOST_WIDE_INT high, low;
925
926 STRIP_NOPS (expr);
927
928 if (TREE_CODE (expr) == COMPLEX_CST)
929 return tree_log2 (TREE_REALPART (expr));
930
931 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
932 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
933
934 high = TREE_INT_CST_HIGH (expr);
935 low = TREE_INT_CST_LOW (expr);
936
937 /* First clear all bits that are beyond the type's precision in case
938 we've been sign extended. */
939
940 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
941 ;
942 else if (prec > HOST_BITS_PER_WIDE_INT)
943 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
944 else
945 {
946 high = 0;
947 if (prec < HOST_BITS_PER_WIDE_INT)
948 low &= ~((HOST_WIDE_INT) (-1) << prec);
949 }
950
951 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
952 : exact_log2 (low));
953 }
954
955 /* Similar, but return the largest integer Y such that 2 ** Y is less
956 than or equal to EXPR. */
957
958 int
959 tree_floor_log2 (tree expr)
960 {
961 int prec;
962 HOST_WIDE_INT high, low;
963
964 STRIP_NOPS (expr);
965
966 if (TREE_CODE (expr) == COMPLEX_CST)
967 return tree_log2 (TREE_REALPART (expr));
968
969 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
970 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
971
972 high = TREE_INT_CST_HIGH (expr);
973 low = TREE_INT_CST_LOW (expr);
974
975 /* First clear all bits that are beyond the type's precision in case
976 we've been sign extended. Ignore if type's precision hasn't been set
977 since what we are doing is setting it. */
978
979 if (prec == 2 * HOST_BITS_PER_WIDE_INT || prec == 0)
980 ;
981 else if (prec > HOST_BITS_PER_WIDE_INT)
982 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
983 else
984 {
985 high = 0;
986 if (prec < HOST_BITS_PER_WIDE_INT)
987 low &= ~((HOST_WIDE_INT) (-1) << prec);
988 }
989
990 return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
991 : floor_log2 (low));
992 }
993
994 /* Return 1 if EXPR is the real constant zero. */
995
996 int
997 real_zerop (tree expr)
998 {
999 STRIP_NOPS (expr);
1000
1001 return ((TREE_CODE (expr) == REAL_CST
1002 && ! TREE_CONSTANT_OVERFLOW (expr)
1003 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0))
1004 || (TREE_CODE (expr) == COMPLEX_CST
1005 && real_zerop (TREE_REALPART (expr))
1006 && real_zerop (TREE_IMAGPART (expr))));
1007 }
1008
1009 /* Return 1 if EXPR is the real constant one in real or complex form. */
1010
1011 int
1012 real_onep (tree expr)
1013 {
1014 STRIP_NOPS (expr);
1015
1016 return ((TREE_CODE (expr) == REAL_CST
1017 && ! TREE_CONSTANT_OVERFLOW (expr)
1018 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1))
1019 || (TREE_CODE (expr) == COMPLEX_CST
1020 && real_onep (TREE_REALPART (expr))
1021 && real_zerop (TREE_IMAGPART (expr))));
1022 }
1023
1024 /* Return 1 if EXPR is the real constant two. */
1025
1026 int
1027 real_twop (tree expr)
1028 {
1029 STRIP_NOPS (expr);
1030
1031 return ((TREE_CODE (expr) == REAL_CST
1032 && ! TREE_CONSTANT_OVERFLOW (expr)
1033 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2))
1034 || (TREE_CODE (expr) == COMPLEX_CST
1035 && real_twop (TREE_REALPART (expr))
1036 && real_zerop (TREE_IMAGPART (expr))));
1037 }
1038
1039 /* Return 1 if EXPR is the real constant minus one. */
1040
1041 int
1042 real_minus_onep (tree expr)
1043 {
1044 STRIP_NOPS (expr);
1045
1046 return ((TREE_CODE (expr) == REAL_CST
1047 && ! TREE_CONSTANT_OVERFLOW (expr)
1048 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconstm1))
1049 || (TREE_CODE (expr) == COMPLEX_CST
1050 && real_minus_onep (TREE_REALPART (expr))
1051 && real_zerop (TREE_IMAGPART (expr))));
1052 }
1053
1054 /* Nonzero if EXP is a constant or a cast of a constant. */
1055
1056 int
1057 really_constant_p (tree exp)
1058 {
1059 /* This is not quite the same as STRIP_NOPS. It does more. */
1060 while (TREE_CODE (exp) == NOP_EXPR
1061 || TREE_CODE (exp) == CONVERT_EXPR
1062 || TREE_CODE (exp) == NON_LVALUE_EXPR)
1063 exp = TREE_OPERAND (exp, 0);
1064 return TREE_CONSTANT (exp);
1065 }
1066 \f
1067 /* Return first list element whose TREE_VALUE is ELEM.
1068 Return 0 if ELEM is not in LIST. */
1069
1070 tree
1071 value_member (tree elem, tree list)
1072 {
1073 while (list)
1074 {
1075 if (elem == TREE_VALUE (list))
1076 return list;
1077 list = TREE_CHAIN (list);
1078 }
1079 return NULL_TREE;
1080 }
1081
1082 /* Return first list element whose TREE_PURPOSE is ELEM.
1083 Return 0 if ELEM is not in LIST. */
1084
1085 tree
1086 purpose_member (tree elem, tree list)
1087 {
1088 while (list)
1089 {
1090 if (elem == TREE_PURPOSE (list))
1091 return list;
1092 list = TREE_CHAIN (list);
1093 }
1094 return NULL_TREE;
1095 }
1096
1097 /* Return nonzero if ELEM is part of the chain CHAIN. */
1098
1099 int
1100 chain_member (tree elem, tree chain)
1101 {
1102 while (chain)
1103 {
1104 if (elem == chain)
1105 return 1;
1106 chain = TREE_CHAIN (chain);
1107 }
1108
1109 return 0;
1110 }
1111
1112 /* Return the length of a chain of nodes chained through TREE_CHAIN.
1113 We expect a null pointer to mark the end of the chain.
1114 This is the Lisp primitive `length'. */
1115
1116 int
1117 list_length (tree t)
1118 {
1119 tree p = t;
1120 #ifdef ENABLE_TREE_CHECKING
1121 tree q = t;
1122 #endif
1123 int len = 0;
1124
1125 while (p)
1126 {
1127 p = TREE_CHAIN (p);
1128 #ifdef ENABLE_TREE_CHECKING
1129 if (len % 2)
1130 q = TREE_CHAIN (q);
1131 gcc_assert (p != q);
1132 #endif
1133 len++;
1134 }
1135
1136 return len;
1137 }
1138
1139 /* Returns the number of FIELD_DECLs in TYPE. */
1140
1141 int
1142 fields_length (tree type)
1143 {
1144 tree t = TYPE_FIELDS (type);
1145 int count = 0;
1146
1147 for (; t; t = TREE_CHAIN (t))
1148 if (TREE_CODE (t) == FIELD_DECL)
1149 ++count;
1150
1151 return count;
1152 }
1153
1154 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
1155 by modifying the last node in chain 1 to point to chain 2.
1156 This is the Lisp primitive `nconc'. */
1157
1158 tree
1159 chainon (tree op1, tree op2)
1160 {
1161 tree t1;
1162
1163 if (!op1)
1164 return op2;
1165 if (!op2)
1166 return op1;
1167
1168 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
1169 continue;
1170 TREE_CHAIN (t1) = op2;
1171
1172 #ifdef ENABLE_TREE_CHECKING
1173 {
1174 tree t2;
1175 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
1176 gcc_assert (t2 != t1);
1177 }
1178 #endif
1179
1180 return op1;
1181 }
1182
1183 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
1184
1185 tree
1186 tree_last (tree chain)
1187 {
1188 tree next;
1189 if (chain)
1190 while ((next = TREE_CHAIN (chain)))
1191 chain = next;
1192 return chain;
1193 }
1194
1195 /* Reverse the order of elements in the chain T,
1196 and return the new head of the chain (old last element). */
1197
1198 tree
1199 nreverse (tree t)
1200 {
1201 tree prev = 0, decl, next;
1202 for (decl = t; decl; decl = next)
1203 {
1204 next = TREE_CHAIN (decl);
1205 TREE_CHAIN (decl) = prev;
1206 prev = decl;
1207 }
1208 return prev;
1209 }
1210 \f
1211 /* Return a newly created TREE_LIST node whose
1212 purpose and value fields are PARM and VALUE. */
1213
1214 tree
1215 build_tree_list_stat (tree parm, tree value MEM_STAT_DECL)
1216 {
1217 tree t = make_node_stat (TREE_LIST PASS_MEM_STAT);
1218 TREE_PURPOSE (t) = parm;
1219 TREE_VALUE (t) = value;
1220 return t;
1221 }
1222
1223 /* Return a newly created TREE_LIST node whose
1224 purpose and value fields are PURPOSE and VALUE
1225 and whose TREE_CHAIN is CHAIN. */
1226
1227 tree
1228 tree_cons_stat (tree purpose, tree value, tree chain MEM_STAT_DECL)
1229 {
1230 tree node;
1231
1232 node = ggc_alloc_zone_stat (sizeof (struct tree_list),
1233 tree_zone PASS_MEM_STAT);
1234
1235 memset (node, 0, sizeof (struct tree_common));
1236
1237 #ifdef GATHER_STATISTICS
1238 tree_node_counts[(int) x_kind]++;
1239 tree_node_sizes[(int) x_kind] += sizeof (struct tree_list);
1240 #endif
1241
1242 TREE_SET_CODE (node, TREE_LIST);
1243 TREE_CHAIN (node) = chain;
1244 TREE_PURPOSE (node) = purpose;
1245 TREE_VALUE (node) = value;
1246 return node;
1247 }
1248
1249 \f
1250 /* Return the size nominally occupied by an object of type TYPE
1251 when it resides in memory. The value is measured in units of bytes,
1252 and its data type is that normally used for type sizes
1253 (which is the first type created by make_signed_type or
1254 make_unsigned_type). */
1255
1256 tree
1257 size_in_bytes (tree type)
1258 {
1259 tree t;
1260
1261 if (type == error_mark_node)
1262 return integer_zero_node;
1263
1264 type = TYPE_MAIN_VARIANT (type);
1265 t = TYPE_SIZE_UNIT (type);
1266
1267 if (t == 0)
1268 {
1269 lang_hooks.types.incomplete_type_error (NULL_TREE, type);
1270 return size_zero_node;
1271 }
1272
1273 if (TREE_CODE (t) == INTEGER_CST)
1274 t = force_fit_type (t, 0, false, false);
1275
1276 return t;
1277 }
1278
1279 /* Return the size of TYPE (in bytes) as a wide integer
1280 or return -1 if the size can vary or is larger than an integer. */
1281
1282 HOST_WIDE_INT
1283 int_size_in_bytes (tree type)
1284 {
1285 tree t;
1286
1287 if (type == error_mark_node)
1288 return 0;
1289
1290 type = TYPE_MAIN_VARIANT (type);
1291 t = TYPE_SIZE_UNIT (type);
1292 if (t == 0
1293 || TREE_CODE (t) != INTEGER_CST
1294 || TREE_OVERFLOW (t)
1295 || TREE_INT_CST_HIGH (t) != 0
1296 /* If the result would appear negative, it's too big to represent. */
1297 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
1298 return -1;
1299
1300 return TREE_INT_CST_LOW (t);
1301 }
1302 \f
1303 /* Return the bit position of FIELD, in bits from the start of the record.
1304 This is a tree of type bitsizetype. */
1305
1306 tree
1307 bit_position (tree field)
1308 {
1309 return bit_from_pos (DECL_FIELD_OFFSET (field),
1310 DECL_FIELD_BIT_OFFSET (field));
1311 }
1312
1313 /* Likewise, but return as an integer. Abort if it cannot be represented
1314 in that way (since it could be a signed value, we don't have the option
1315 of returning -1 like int_size_in_byte can. */
1316
1317 HOST_WIDE_INT
1318 int_bit_position (tree field)
1319 {
1320 return tree_low_cst (bit_position (field), 0);
1321 }
1322 \f
1323 /* Return the byte position of FIELD, in bytes from the start of the record.
1324 This is a tree of type sizetype. */
1325
1326 tree
1327 byte_position (tree field)
1328 {
1329 return byte_from_pos (DECL_FIELD_OFFSET (field),
1330 DECL_FIELD_BIT_OFFSET (field));
1331 }
1332
1333 /* Likewise, but return as an integer. Abort if it cannot be represented
1334 in that way (since it could be a signed value, we don't have the option
1335 of returning -1 like int_size_in_byte can. */
1336
1337 HOST_WIDE_INT
1338 int_byte_position (tree field)
1339 {
1340 return tree_low_cst (byte_position (field), 0);
1341 }
1342 \f
1343 /* Return the strictest alignment, in bits, that T is known to have. */
1344
1345 unsigned int
1346 expr_align (tree t)
1347 {
1348 unsigned int align0, align1;
1349
1350 switch (TREE_CODE (t))
1351 {
1352 case NOP_EXPR: case CONVERT_EXPR: case NON_LVALUE_EXPR:
1353 /* If we have conversions, we know that the alignment of the
1354 object must meet each of the alignments of the types. */
1355 align0 = expr_align (TREE_OPERAND (t, 0));
1356 align1 = TYPE_ALIGN (TREE_TYPE (t));
1357 return MAX (align0, align1);
1358
1359 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
1360 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
1361 case CLEANUP_POINT_EXPR:
1362 /* These don't change the alignment of an object. */
1363 return expr_align (TREE_OPERAND (t, 0));
1364
1365 case COND_EXPR:
1366 /* The best we can do is say that the alignment is the least aligned
1367 of the two arms. */
1368 align0 = expr_align (TREE_OPERAND (t, 1));
1369 align1 = expr_align (TREE_OPERAND (t, 2));
1370 return MIN (align0, align1);
1371
1372 case LABEL_DECL: case CONST_DECL:
1373 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
1374 if (DECL_ALIGN (t) != 0)
1375 return DECL_ALIGN (t);
1376 break;
1377
1378 case FUNCTION_DECL:
1379 return FUNCTION_BOUNDARY;
1380
1381 default:
1382 break;
1383 }
1384
1385 /* Otherwise take the alignment from that of the type. */
1386 return TYPE_ALIGN (TREE_TYPE (t));
1387 }
1388 \f
1389 /* Return, as a tree node, the number of elements for TYPE (which is an
1390 ARRAY_TYPE) minus one. This counts only elements of the top array. */
1391
1392 tree
1393 array_type_nelts (tree type)
1394 {
1395 tree index_type, min, max;
1396
1397 /* If they did it with unspecified bounds, then we should have already
1398 given an error about it before we got here. */
1399 if (! TYPE_DOMAIN (type))
1400 return error_mark_node;
1401
1402 index_type = TYPE_DOMAIN (type);
1403 min = TYPE_MIN_VALUE (index_type);
1404 max = TYPE_MAX_VALUE (index_type);
1405
1406 return (integer_zerop (min)
1407 ? max
1408 : fold (build2 (MINUS_EXPR, TREE_TYPE (max), max, min)));
1409 }
1410 \f
1411 /* If arg is static -- a reference to an object in static storage -- then
1412 return the object. This is not the same as the C meaning of `static'.
1413 If arg isn't static, return NULL. */
1414
1415 tree
1416 staticp (tree arg)
1417 {
1418 switch (TREE_CODE (arg))
1419 {
1420 case FUNCTION_DECL:
1421 /* Nested functions aren't static, since taking their address
1422 involves a trampoline. */
1423 return ((decl_function_context (arg) == 0 || DECL_NO_STATIC_CHAIN (arg))
1424 && ! DECL_NON_ADDR_CONST_P (arg)
1425 ? arg : NULL);
1426
1427 case VAR_DECL:
1428 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
1429 && ! DECL_THREAD_LOCAL (arg)
1430 && ! DECL_NON_ADDR_CONST_P (arg)
1431 ? arg : NULL);
1432
1433 case CONSTRUCTOR:
1434 return TREE_STATIC (arg) ? arg : NULL;
1435
1436 case LABEL_DECL:
1437 case STRING_CST:
1438 return arg;
1439
1440 case COMPONENT_REF:
1441 /* If the thing being referenced is not a field, then it is
1442 something language specific. */
1443 if (TREE_CODE (TREE_OPERAND (arg, 1)) != FIELD_DECL)
1444 return (*lang_hooks.staticp) (arg);
1445
1446 /* If we are referencing a bitfield, we can't evaluate an
1447 ADDR_EXPR at compile time and so it isn't a constant. */
1448 if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
1449 return NULL;
1450
1451 return staticp (TREE_OPERAND (arg, 0));
1452
1453 case BIT_FIELD_REF:
1454 return NULL;
1455
1456 case INDIRECT_REF:
1457 return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;
1458
1459 case ARRAY_REF:
1460 case ARRAY_RANGE_REF:
1461 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
1462 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
1463 return staticp (TREE_OPERAND (arg, 0));
1464 else
1465 return false;
1466
1467 default:
1468 if ((unsigned int) TREE_CODE (arg)
1469 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
1470 return lang_hooks.staticp (arg);
1471 else
1472 return NULL;
1473 }
1474 }
1475 \f
1476 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
1477 Do this to any expression which may be used in more than one place,
1478 but must be evaluated only once.
1479
1480 Normally, expand_expr would reevaluate the expression each time.
1481 Calling save_expr produces something that is evaluated and recorded
1482 the first time expand_expr is called on it. Subsequent calls to
1483 expand_expr just reuse the recorded value.
1484
1485 The call to expand_expr that generates code that actually computes
1486 the value is the first call *at compile time*. Subsequent calls
1487 *at compile time* generate code to use the saved value.
1488 This produces correct result provided that *at run time* control
1489 always flows through the insns made by the first expand_expr
1490 before reaching the other places where the save_expr was evaluated.
1491 You, the caller of save_expr, must make sure this is so.
1492
1493 Constants, and certain read-only nodes, are returned with no
1494 SAVE_EXPR because that is safe. Expressions containing placeholders
1495 are not touched; see tree.def for an explanation of what these
1496 are used for. */
1497
1498 tree
1499 save_expr (tree expr)
1500 {
1501 tree t = fold (expr);
1502 tree inner;
1503
1504 /* If the tree evaluates to a constant, then we don't want to hide that
1505 fact (i.e. this allows further folding, and direct checks for constants).
1506 However, a read-only object that has side effects cannot be bypassed.
1507 Since it is no problem to reevaluate literals, we just return the
1508 literal node. */
1509 inner = skip_simple_arithmetic (t);
1510
1511 if (TREE_INVARIANT (inner)
1512 || (TREE_READONLY (inner) && ! TREE_SIDE_EFFECTS (inner))
1513 || TREE_CODE (inner) == SAVE_EXPR
1514 || TREE_CODE (inner) == ERROR_MARK)
1515 return t;
1516
1517 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
1518 it means that the size or offset of some field of an object depends on
1519 the value within another field.
1520
1521 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
1522 and some variable since it would then need to be both evaluated once and
1523 evaluated more than once. Front-ends must assure this case cannot
1524 happen by surrounding any such subexpressions in their own SAVE_EXPR
1525 and forcing evaluation at the proper time. */
1526 if (contains_placeholder_p (inner))
1527 return t;
1528
1529 t = build1 (SAVE_EXPR, TREE_TYPE (expr), t);
1530
1531 /* This expression might be placed ahead of a jump to ensure that the
1532 value was computed on both sides of the jump. So make sure it isn't
1533 eliminated as dead. */
1534 TREE_SIDE_EFFECTS (t) = 1;
1535 TREE_INVARIANT (t) = 1;
1536 return t;
1537 }
1538
1539 /* Look inside EXPR and into any simple arithmetic operations. Return
1540 the innermost non-arithmetic node. */
1541
1542 tree
1543 skip_simple_arithmetic (tree expr)
1544 {
1545 tree inner;
1546
1547 /* We don't care about whether this can be used as an lvalue in this
1548 context. */
1549 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
1550 expr = TREE_OPERAND (expr, 0);
1551
1552 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
1553 a constant, it will be more efficient to not make another SAVE_EXPR since
1554 it will allow better simplification and GCSE will be able to merge the
1555 computations if they actually occur. */
1556 inner = expr;
1557 while (1)
1558 {
1559 if (TREE_CODE_CLASS (TREE_CODE (inner)) == '1')
1560 inner = TREE_OPERAND (inner, 0);
1561 else if (TREE_CODE_CLASS (TREE_CODE (inner)) == '2')
1562 {
1563 if (TREE_INVARIANT (TREE_OPERAND (inner, 1)))
1564 inner = TREE_OPERAND (inner, 0);
1565 else if (TREE_INVARIANT (TREE_OPERAND (inner, 0)))
1566 inner = TREE_OPERAND (inner, 1);
1567 else
1568 break;
1569 }
1570 else
1571 break;
1572 }
1573
1574 return inner;
1575 }
1576
1577 /* Returns the index of the first non-tree operand for CODE, or the number
1578 of operands if all are trees. */
1579
1580 int
1581 first_rtl_op (enum tree_code code)
1582 {
1583 switch (code)
1584 {
1585 default:
1586 return TREE_CODE_LENGTH (code);
1587 }
1588 }
1589
1590 /* Return which tree structure is used by T. */
1591
1592 enum tree_node_structure_enum
1593 tree_node_structure (tree t)
1594 {
1595 enum tree_code code = TREE_CODE (t);
1596
1597 switch (TREE_CODE_CLASS (code))
1598 {
1599 case 'd': return TS_DECL;
1600 case 't': return TS_TYPE;
1601 case 'r': case '<': case '1': case '2': case 'e': case 's':
1602 return TS_EXP;
1603 default: /* 'c' and 'x' */
1604 break;
1605 }
1606 switch (code)
1607 {
1608 /* 'c' cases. */
1609 case INTEGER_CST: return TS_INT_CST;
1610 case REAL_CST: return TS_REAL_CST;
1611 case COMPLEX_CST: return TS_COMPLEX;
1612 case VECTOR_CST: return TS_VECTOR;
1613 case STRING_CST: return TS_STRING;
1614 /* 'x' cases. */
1615 case ERROR_MARK: return TS_COMMON;
1616 case IDENTIFIER_NODE: return TS_IDENTIFIER;
1617 case TREE_LIST: return TS_LIST;
1618 case TREE_VEC: return TS_VEC;
1619 case PHI_NODE: return TS_PHI_NODE;
1620 case SSA_NAME: return TS_SSA_NAME;
1621 case PLACEHOLDER_EXPR: return TS_COMMON;
1622 case STATEMENT_LIST: return TS_STATEMENT_LIST;
1623 case BLOCK: return TS_BLOCK;
1624 case TREE_BINFO: return TS_BINFO;
1625 case VALUE_HANDLE: return TS_VALUE_HANDLE;
1626
1627 default:
1628 gcc_unreachable ();
1629 }
1630 }
1631 \f
1632 /* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
1633 or offset that depends on a field within a record. */
1634
1635 bool
1636 contains_placeholder_p (tree exp)
1637 {
1638 enum tree_code code;
1639
1640 if (!exp)
1641 return 0;
1642
1643 code = TREE_CODE (exp);
1644 if (code == PLACEHOLDER_EXPR)
1645 return 1;
1646
1647 switch (TREE_CODE_CLASS (code))
1648 {
1649 case 'r':
1650 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
1651 position computations since they will be converted into a
1652 WITH_RECORD_EXPR involving the reference, which will assume
1653 here will be valid. */
1654 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
1655
1656 case 'x':
1657 if (code == TREE_LIST)
1658 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
1659 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
1660 break;
1661
1662 case '1':
1663 case '2': case '<':
1664 case 'e':
1665 switch (code)
1666 {
1667 case COMPOUND_EXPR:
1668 /* Ignoring the first operand isn't quite right, but works best. */
1669 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
1670
1671 case COND_EXPR:
1672 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
1673 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
1674 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
1675
1676 default:
1677 break;
1678 }
1679
1680 switch (first_rtl_op (code))
1681 {
1682 case 1:
1683 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
1684 case 2:
1685 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
1686 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
1687 default:
1688 return 0;
1689 }
1690
1691 default:
1692 return 0;
1693 }
1694 return 0;
1695 }
1696
1697 /* Return 1 if any part of the computation of TYPE involves a PLACEHOLDER_EXPR.
1698 This includes size, bounds, qualifiers (for QUAL_UNION_TYPE) and field
1699 positions. */
1700
1701 bool
1702 type_contains_placeholder_p (tree type)
1703 {
1704 /* If the size contains a placeholder or the parent type (component type in
1705 the case of arrays) type involves a placeholder, this type does. */
1706 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
1707 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
1708 || (TREE_TYPE (type) != 0
1709 && type_contains_placeholder_p (TREE_TYPE (type))))
1710 return 1;
1711
1712 /* Now do type-specific checks. Note that the last part of the check above
1713 greatly limits what we have to do below. */
1714 switch (TREE_CODE (type))
1715 {
1716 case VOID_TYPE:
1717 case COMPLEX_TYPE:
1718 case ENUMERAL_TYPE:
1719 case BOOLEAN_TYPE:
1720 case CHAR_TYPE:
1721 case POINTER_TYPE:
1722 case OFFSET_TYPE:
1723 case REFERENCE_TYPE:
1724 case METHOD_TYPE:
1725 case FILE_TYPE:
1726 case FUNCTION_TYPE:
1727 return 0;
1728
1729 case INTEGER_TYPE:
1730 case REAL_TYPE:
1731 /* Here we just check the bounds. */
1732 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
1733 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
1734
1735 case ARRAY_TYPE:
1736 case SET_TYPE:
1737 case VECTOR_TYPE:
1738 /* We're already checked the component type (TREE_TYPE), so just check
1739 the index type. */
1740 return type_contains_placeholder_p (TYPE_DOMAIN (type));
1741
1742 case RECORD_TYPE:
1743 case UNION_TYPE:
1744 case QUAL_UNION_TYPE:
1745 {
1746 static tree seen_types = 0;
1747 tree field;
1748 bool ret = 0;
1749
1750 /* We have to be careful here that we don't end up in infinite
1751 recursions due to a field of a type being a pointer to that type
1752 or to a mutually-recursive type. So we store a list of record
1753 types that we've seen and see if this type is in them. To save
1754 memory, we don't use a list for just one type. Here we check
1755 whether we've seen this type before and store it if not. */
1756 if (seen_types == 0)
1757 seen_types = type;
1758 else if (TREE_CODE (seen_types) != TREE_LIST)
1759 {
1760 if (seen_types == type)
1761 return 0;
1762
1763 seen_types = tree_cons (NULL_TREE, type,
1764 build_tree_list (NULL_TREE, seen_types));
1765 }
1766 else
1767 {
1768 if (value_member (type, seen_types) != 0)
1769 return 0;
1770
1771 seen_types = tree_cons (NULL_TREE, type, seen_types);
1772 }
1773
1774 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1775 if (TREE_CODE (field) == FIELD_DECL
1776 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
1777 || (TREE_CODE (type) == QUAL_UNION_TYPE
1778 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
1779 || type_contains_placeholder_p (TREE_TYPE (field))))
1780 {
1781 ret = true;
1782 break;
1783 }
1784
1785 /* Now remove us from seen_types and return the result. */
1786 if (seen_types == type)
1787 seen_types = 0;
1788 else
1789 seen_types = TREE_CHAIN (seen_types);
1790
1791 return ret;
1792 }
1793
1794 default:
1795 gcc_unreachable ();
1796 }
1797 }
1798
1799 /* Return 1 if EXP contains any expressions that produce cleanups for an
1800 outer scope to deal with. Used by fold. */
1801
1802 int
1803 has_cleanups (tree exp)
1804 {
1805 int i, nops, cmp;
1806
1807 if (! TREE_SIDE_EFFECTS (exp))
1808 return 0;
1809
1810 switch (TREE_CODE (exp))
1811 {
1812 case TARGET_EXPR:
1813 case WITH_CLEANUP_EXPR:
1814 return 1;
1815
1816 case CLEANUP_POINT_EXPR:
1817 return 0;
1818
1819 case CALL_EXPR:
1820 for (exp = TREE_OPERAND (exp, 1); exp; exp = TREE_CHAIN (exp))
1821 {
1822 cmp = has_cleanups (TREE_VALUE (exp));
1823 if (cmp)
1824 return cmp;
1825 }
1826 return 0;
1827
1828 case DECL_EXPR:
1829 return (DECL_INITIAL (DECL_EXPR_DECL (exp))
1830 && has_cleanups (DECL_INITIAL (DECL_EXPR_DECL (exp))));
1831
1832 default:
1833 break;
1834 }
1835
1836 /* This general rule works for most tree codes. All exceptions should be
1837 handled above. If this is a language-specific tree code, we can't
1838 trust what might be in the operand, so say we don't know
1839 the situation. */
1840 if ((int) TREE_CODE (exp) >= (int) LAST_AND_UNUSED_TREE_CODE)
1841 return -1;
1842
1843 nops = first_rtl_op (TREE_CODE (exp));
1844 for (i = 0; i < nops; i++)
1845 if (TREE_OPERAND (exp, i) != 0)
1846 {
1847 int type = TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, i)));
1848 if (type == 'e' || type == '<' || type == '1' || type == '2'
1849 || type == 'r' || type == 's')
1850 {
1851 cmp = has_cleanups (TREE_OPERAND (exp, i));
1852 if (cmp)
1853 return cmp;
1854 }
1855 }
1856
1857 return 0;
1858 }
1859 \f
1860 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
1861 return a tree with all occurrences of references to F in a
1862 PLACEHOLDER_EXPR replaced by R. Note that we assume here that EXP
1863 contains only arithmetic expressions or a CALL_EXPR with a
1864 PLACEHOLDER_EXPR occurring only in its arglist. */
1865
1866 tree
1867 substitute_in_expr (tree exp, tree f, tree r)
1868 {
1869 enum tree_code code = TREE_CODE (exp);
1870 tree op0, op1, op2;
1871 tree new;
1872 tree inner;
1873
1874 /* We handle TREE_LIST and COMPONENT_REF separately. */
1875 if (code == TREE_LIST)
1876 {
1877 op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
1878 op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
1879 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
1880 return exp;
1881
1882 return tree_cons (TREE_PURPOSE (exp), op1, op0);
1883 }
1884 else if (code == COMPONENT_REF)
1885 {
1886 /* If this expression is getting a value from a PLACEHOLDER_EXPR
1887 and it is the right field, replace it with R. */
1888 for (inner = TREE_OPERAND (exp, 0);
1889 TREE_CODE_CLASS (TREE_CODE (inner)) == 'r';
1890 inner = TREE_OPERAND (inner, 0))
1891 ;
1892 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
1893 && TREE_OPERAND (exp, 1) == f)
1894 return r;
1895
1896 /* If this expression hasn't been completed let, leave it alone. */
1897 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && TREE_TYPE (inner) == 0)
1898 return exp;
1899
1900 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
1901 if (op0 == TREE_OPERAND (exp, 0))
1902 return exp;
1903
1904 new = fold (build3 (COMPONENT_REF, TREE_TYPE (exp),
1905 op0, TREE_OPERAND (exp, 1), NULL_TREE));
1906 }
1907 else
1908 switch (TREE_CODE_CLASS (code))
1909 {
1910 case 'c':
1911 case 'd':
1912 return exp;
1913
1914 case 'x':
1915 case '1':
1916 case '2':
1917 case '<':
1918 case 'e':
1919 case 'r':
1920 switch (first_rtl_op (code))
1921 {
1922 case 0:
1923 return exp;
1924
1925 case 1:
1926 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
1927 if (op0 == TREE_OPERAND (exp, 0))
1928 return exp;
1929
1930 new = fold (build1 (code, TREE_TYPE (exp), op0));
1931 break;
1932
1933 case 2:
1934 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
1935 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
1936
1937 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
1938 return exp;
1939
1940 new = fold (build2 (code, TREE_TYPE (exp), op0, op1));
1941 break;
1942
1943 case 3:
1944 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
1945 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
1946 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
1947
1948 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
1949 && op2 == TREE_OPERAND (exp, 2))
1950 return exp;
1951
1952 new = fold (build3 (code, TREE_TYPE (exp), op0, op1, op2));
1953 break;
1954
1955 default:
1956 gcc_unreachable ();
1957 }
1958 break;
1959
1960 default:
1961 gcc_unreachable ();
1962 }
1963
1964 TREE_READONLY (new) = TREE_READONLY (exp);
1965 return new;
1966 }
1967
1968 /* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
1969 for it within OBJ, a tree that is an object or a chain of references. */
1970
1971 tree
1972 substitute_placeholder_in_expr (tree exp, tree obj)
1973 {
1974 enum tree_code code = TREE_CODE (exp);
1975 tree op0, op1, op2, op3;
1976
1977 /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
1978 in the chain of OBJ. */
1979 if (code == PLACEHOLDER_EXPR)
1980 {
1981 tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
1982 tree elt;
1983
1984 for (elt = obj; elt != 0;
1985 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
1986 || TREE_CODE (elt) == COND_EXPR)
1987 ? TREE_OPERAND (elt, 1)
1988 : (TREE_CODE_CLASS (TREE_CODE (elt)) == 'r'
1989 || TREE_CODE_CLASS (TREE_CODE (elt)) == '1'
1990 || TREE_CODE_CLASS (TREE_CODE (elt)) == '2'
1991 || TREE_CODE_CLASS (TREE_CODE (elt)) == 'e')
1992 ? TREE_OPERAND (elt, 0) : 0))
1993 if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
1994 return elt;
1995
1996 for (elt = obj; elt != 0;
1997 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
1998 || TREE_CODE (elt) == COND_EXPR)
1999 ? TREE_OPERAND (elt, 1)
2000 : (TREE_CODE_CLASS (TREE_CODE (elt)) == 'r'
2001 || TREE_CODE_CLASS (TREE_CODE (elt)) == '1'
2002 || TREE_CODE_CLASS (TREE_CODE (elt)) == '2'
2003 || TREE_CODE_CLASS (TREE_CODE (elt)) == 'e')
2004 ? TREE_OPERAND (elt, 0) : 0))
2005 if (POINTER_TYPE_P (TREE_TYPE (elt))
2006 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
2007 == need_type))
2008 return fold (build1 (INDIRECT_REF, need_type, elt));
2009
2010 /* If we didn't find it, return the original PLACEHOLDER_EXPR. If it
2011 survives until RTL generation, there will be an error. */
2012 return exp;
2013 }
2014
2015 /* TREE_LIST is special because we need to look at TREE_VALUE
2016 and TREE_CHAIN, not TREE_OPERANDS. */
2017 else if (code == TREE_LIST)
2018 {
2019 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
2020 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
2021 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
2022 return exp;
2023
2024 return tree_cons (TREE_PURPOSE (exp), op1, op0);
2025 }
2026 else
2027 switch (TREE_CODE_CLASS (code))
2028 {
2029 case 'c':
2030 case 'd':
2031 return exp;
2032
2033 case 'x':
2034 case '1':
2035 case '2':
2036 case '<':
2037 case 'e':
2038 case 'r':
2039 case 's':
2040 switch (first_rtl_op (code))
2041 {
2042 case 0:
2043 return exp;
2044
2045 case 1:
2046 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2047 if (op0 == TREE_OPERAND (exp, 0))
2048 return exp;
2049 else
2050 return fold (build1 (code, TREE_TYPE (exp), op0));
2051
2052 case 2:
2053 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2054 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2055
2056 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
2057 return exp;
2058 else
2059 return fold (build2 (code, TREE_TYPE (exp), op0, op1));
2060
2061 case 3:
2062 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2063 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2064 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
2065
2066 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2067 && op2 == TREE_OPERAND (exp, 2))
2068 return exp;
2069 else
2070 return fold (build3 (code, TREE_TYPE (exp), op0, op1, op2));
2071
2072 case 4:
2073 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2074 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2075 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
2076 op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
2077
2078 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2079 && op2 == TREE_OPERAND (exp, 2)
2080 && op3 == TREE_OPERAND (exp, 3))
2081 return exp;
2082 else
2083 return fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
2084
2085 default:
2086 gcc_unreachable ();
2087 }
2088 break;
2089
2090 default:
2091 gcc_unreachable ();
2092 }
2093 }
2094 \f
2095 /* Stabilize a reference so that we can use it any number of times
2096 without causing its operands to be evaluated more than once.
2097 Returns the stabilized reference. This works by means of save_expr,
2098 so see the caveats in the comments about save_expr.
2099
2100 Also allows conversion expressions whose operands are references.
2101 Any other kind of expression is returned unchanged. */
2102
2103 tree
2104 stabilize_reference (tree ref)
2105 {
2106 tree result;
2107 enum tree_code code = TREE_CODE (ref);
2108
2109 switch (code)
2110 {
2111 case VAR_DECL:
2112 case PARM_DECL:
2113 case RESULT_DECL:
2114 /* No action is needed in this case. */
2115 return ref;
2116
2117 case NOP_EXPR:
2118 case CONVERT_EXPR:
2119 case FLOAT_EXPR:
2120 case FIX_TRUNC_EXPR:
2121 case FIX_FLOOR_EXPR:
2122 case FIX_ROUND_EXPR:
2123 case FIX_CEIL_EXPR:
2124 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
2125 break;
2126
2127 case INDIRECT_REF:
2128 result = build_nt (INDIRECT_REF,
2129 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
2130 break;
2131
2132 case COMPONENT_REF:
2133 result = build_nt (COMPONENT_REF,
2134 stabilize_reference (TREE_OPERAND (ref, 0)),
2135 TREE_OPERAND (ref, 1), NULL_TREE);
2136 break;
2137
2138 case BIT_FIELD_REF:
2139 result = build_nt (BIT_FIELD_REF,
2140 stabilize_reference (TREE_OPERAND (ref, 0)),
2141 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2142 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
2143 break;
2144
2145 case ARRAY_REF:
2146 result = build_nt (ARRAY_REF,
2147 stabilize_reference (TREE_OPERAND (ref, 0)),
2148 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2149 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
2150 break;
2151
2152 case ARRAY_RANGE_REF:
2153 result = build_nt (ARRAY_RANGE_REF,
2154 stabilize_reference (TREE_OPERAND (ref, 0)),
2155 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2156 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
2157 break;
2158
2159 case COMPOUND_EXPR:
2160 /* We cannot wrap the first expression in a SAVE_EXPR, as then
2161 it wouldn't be ignored. This matters when dealing with
2162 volatiles. */
2163 return stabilize_reference_1 (ref);
2164
2165 /* If arg isn't a kind of lvalue we recognize, make no change.
2166 Caller should recognize the error for an invalid lvalue. */
2167 default:
2168 return ref;
2169
2170 case ERROR_MARK:
2171 return error_mark_node;
2172 }
2173
2174 TREE_TYPE (result) = TREE_TYPE (ref);
2175 TREE_READONLY (result) = TREE_READONLY (ref);
2176 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
2177 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
2178
2179 return result;
2180 }
2181
2182 /* Subroutine of stabilize_reference; this is called for subtrees of
2183 references. Any expression with side-effects must be put in a SAVE_EXPR
2184 to ensure that it is only evaluated once.
2185
2186 We don't put SAVE_EXPR nodes around everything, because assigning very
2187 simple expressions to temporaries causes us to miss good opportunities
2188 for optimizations. Among other things, the opportunity to fold in the
2189 addition of a constant into an addressing mode often gets lost, e.g.
2190 "y[i+1] += x;". In general, we take the approach that we should not make
2191 an assignment unless we are forced into it - i.e., that any non-side effect
2192 operator should be allowed, and that cse should take care of coalescing
2193 multiple utterances of the same expression should that prove fruitful. */
2194
2195 tree
2196 stabilize_reference_1 (tree e)
2197 {
2198 tree result;
2199 enum tree_code code = TREE_CODE (e);
2200
2201 /* We cannot ignore const expressions because it might be a reference
2202 to a const array but whose index contains side-effects. But we can
2203 ignore things that are actual constant or that already have been
2204 handled by this function. */
2205
2206 if (TREE_INVARIANT (e))
2207 return e;
2208
2209 switch (TREE_CODE_CLASS (code))
2210 {
2211 case 'x':
2212 case 't':
2213 case 'd':
2214 case '<':
2215 case 's':
2216 case 'e':
2217 case 'r':
2218 /* If the expression has side-effects, then encase it in a SAVE_EXPR
2219 so that it will only be evaluated once. */
2220 /* The reference (r) and comparison (<) classes could be handled as
2221 below, but it is generally faster to only evaluate them once. */
2222 if (TREE_SIDE_EFFECTS (e))
2223 return save_expr (e);
2224 return e;
2225
2226 case 'c':
2227 /* Constants need no processing. In fact, we should never reach
2228 here. */
2229 return e;
2230
2231 case '2':
2232 /* Division is slow and tends to be compiled with jumps,
2233 especially the division by powers of 2 that is often
2234 found inside of an array reference. So do it just once. */
2235 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
2236 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
2237 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
2238 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
2239 return save_expr (e);
2240 /* Recursively stabilize each operand. */
2241 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
2242 stabilize_reference_1 (TREE_OPERAND (e, 1)));
2243 break;
2244
2245 case '1':
2246 /* Recursively stabilize each operand. */
2247 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
2248 break;
2249
2250 default:
2251 gcc_unreachable ();
2252 }
2253
2254 TREE_TYPE (result) = TREE_TYPE (e);
2255 TREE_READONLY (result) = TREE_READONLY (e);
2256 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
2257 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
2258 TREE_INVARIANT (result) = 1;
2259
2260 return result;
2261 }
2262 \f
2263 /* Low-level constructors for expressions. */
2264
2265 /* A helper function for build1 and constant folders. Set TREE_CONSTANT,
2266 TREE_INVARIANT, and TREE_SIDE_EFFECTS for an ADDR_EXPR. */
2267
2268 void
2269 recompute_tree_invarant_for_addr_expr (tree t)
2270 {
2271 tree node;
2272 bool tc = true, ti = true, se = false;
2273
2274 /* We started out assuming this address is both invariant and constant, but
2275 does not have side effects. Now go down any handled components and see if
2276 any of them involve offsets that are either non-constant or non-invariant.
2277 Also check for side-effects.
2278
2279 ??? Note that this code makes no attempt to deal with the case where
2280 taking the address of something causes a copy due to misalignment. */
2281
2282 #define UPDATE_TITCSE(NODE) \
2283 do { tree _node = (NODE); \
2284 if (_node && !TREE_INVARIANT (_node)) ti = false; \
2285 if (_node && !TREE_CONSTANT (_node)) tc = false; \
2286 if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
2287
2288 for (node = TREE_OPERAND (t, 0); handled_component_p (node);
2289 node = TREE_OPERAND (node, 0))
2290 {
2291 /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
2292 array reference (probably made temporarily by the G++ front end),
2293 so ignore all the operands. */
2294 if ((TREE_CODE (node) == ARRAY_REF
2295 || TREE_CODE (node) == ARRAY_RANGE_REF)
2296 && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
2297 {
2298 UPDATE_TITCSE (TREE_OPERAND (node, 1));
2299 if (TREE_OPERAND (node, 2))
2300 UPDATE_TITCSE (TREE_OPERAND (node, 2));
2301 if (TREE_OPERAND (node, 3))
2302 UPDATE_TITCSE (TREE_OPERAND (node, 3));
2303 }
2304 /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
2305 FIELD_DECL, apparently. The G++ front end can put something else
2306 there, at least temporarily. */
2307 else if (TREE_CODE (node) == COMPONENT_REF
2308 && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
2309 {
2310 if (TREE_OPERAND (node, 2))
2311 UPDATE_TITCSE (TREE_OPERAND (node, 2));
2312 }
2313 else if (TREE_CODE (node) == BIT_FIELD_REF)
2314 UPDATE_TITCSE (TREE_OPERAND (node, 2));
2315 }
2316
2317 /* Now see what's inside. If it's an INDIRECT_REF, copy our properties from
2318 it. If it's a decl, it's invariant and constant if the decl is static.
2319 It's also invariant if it's a decl in the current function. (Taking the
2320 address of a volatile variable is not volatile.) If it's a constant,
2321 the address is both invariant and constant. Otherwise it's neither. */
2322 if (TREE_CODE (node) == INDIRECT_REF)
2323 {
2324 /* If this is &((T*)0)->field, then this is a form of addition. */
2325 if (TREE_CODE (TREE_OPERAND (node, 0)) != INTEGER_CST)
2326 UPDATE_TITCSE (node);
2327 }
2328 else if (DECL_P (node))
2329 {
2330 if (staticp (node))
2331 ;
2332 else if (decl_function_context (node) == current_function_decl)
2333 tc = false;
2334 else
2335 ti = tc = false;
2336 }
2337 else if (TREE_CODE_CLASS (TREE_CODE (node)) == 'c')
2338 ;
2339 else
2340 {
2341 ti = tc = false;
2342 se |= TREE_SIDE_EFFECTS (node);
2343 }
2344
2345 TREE_CONSTANT (t) = tc;
2346 TREE_INVARIANT (t) = ti;
2347 TREE_SIDE_EFFECTS (t) = se;
2348 #undef UPDATE_TITCSE
2349 }
2350
2351 /* Build an expression of code CODE, data type TYPE, and operands as
2352 specified. Expressions and reference nodes can be created this way.
2353 Constants, decls, types and misc nodes cannot be.
2354
2355 We define 5 non-variadic functions, from 0 to 4 arguments. This is
2356 enough for all extant tree codes. These functions can be called
2357 directly (preferably!), but can also be obtained via GCC preprocessor
2358 magic within the build macro. */
2359
2360 tree
2361 build0_stat (enum tree_code code, tree tt MEM_STAT_DECL)
2362 {
2363 tree t;
2364
2365 gcc_assert (TREE_CODE_LENGTH (code) == 0);
2366
2367 t = make_node_stat (code PASS_MEM_STAT);
2368 TREE_TYPE (t) = tt;
2369
2370 return t;
2371 }
2372
2373 tree
2374 build1_stat (enum tree_code code, tree type, tree node MEM_STAT_DECL)
2375 {
2376 int length = sizeof (struct tree_exp);
2377 #ifdef GATHER_STATISTICS
2378 tree_node_kind kind;
2379 #endif
2380 tree t;
2381
2382 #ifdef GATHER_STATISTICS
2383 switch (TREE_CODE_CLASS (code))
2384 {
2385 case 's': /* an expression with side effects */
2386 kind = s_kind;
2387 break;
2388 case 'r': /* a reference */
2389 kind = r_kind;
2390 break;
2391 default:
2392 kind = e_kind;
2393 break;
2394 }
2395
2396 tree_node_counts[(int) kind]++;
2397 tree_node_sizes[(int) kind] += length;
2398 #endif
2399
2400 gcc_assert (TREE_CODE_LENGTH (code) == 1);
2401
2402 t = ggc_alloc_zone_stat (length, tree_zone PASS_MEM_STAT);
2403
2404 memset (t, 0, sizeof (struct tree_common));
2405
2406 TREE_SET_CODE (t, code);
2407
2408 TREE_TYPE (t) = type;
2409 #ifdef USE_MAPPED_LOCATION
2410 SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
2411 #else
2412 SET_EXPR_LOCUS (t, NULL);
2413 #endif
2414 TREE_COMPLEXITY (t) = 0;
2415 TREE_OPERAND (t, 0) = node;
2416 TREE_BLOCK (t) = NULL_TREE;
2417 if (node && !TYPE_P (node) && first_rtl_op (code) != 0)
2418 {
2419 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
2420 TREE_READONLY (t) = TREE_READONLY (node);
2421 }
2422
2423 if (TREE_CODE_CLASS (code) == 's')
2424 TREE_SIDE_EFFECTS (t) = 1;
2425 else switch (code)
2426 {
2427 case INIT_EXPR:
2428 case MODIFY_EXPR:
2429 case VA_ARG_EXPR:
2430 case PREDECREMENT_EXPR:
2431 case PREINCREMENT_EXPR:
2432 case POSTDECREMENT_EXPR:
2433 case POSTINCREMENT_EXPR:
2434 /* All of these have side-effects, no matter what their
2435 operands are. */
2436 TREE_SIDE_EFFECTS (t) = 1;
2437 TREE_READONLY (t) = 0;
2438 break;
2439
2440 case INDIRECT_REF:
2441 /* Whether a dereference is readonly has nothing to do with whether
2442 its operand is readonly. */
2443 TREE_READONLY (t) = 0;
2444 break;
2445
2446 case ADDR_EXPR:
2447 if (node)
2448 recompute_tree_invarant_for_addr_expr (t);
2449 break;
2450
2451 default:
2452 if (TREE_CODE_CLASS (code) == '1' && node && !TYPE_P (node)
2453 && TREE_CONSTANT (node))
2454 TREE_CONSTANT (t) = 1;
2455 if (TREE_CODE_CLASS (code) == '1' && node && TREE_INVARIANT (node))
2456 TREE_INVARIANT (t) = 1;
2457 if (TREE_CODE_CLASS (code) == 'r' && node && TREE_THIS_VOLATILE (node))
2458 TREE_THIS_VOLATILE (t) = 1;
2459 break;
2460 }
2461
2462 return t;
2463 }
2464
2465 #define PROCESS_ARG(N) \
2466 do { \
2467 TREE_OPERAND (t, N) = arg##N; \
2468 if (arg##N &&!TYPE_P (arg##N) && fro > N) \
2469 { \
2470 if (TREE_SIDE_EFFECTS (arg##N)) \
2471 side_effects = 1; \
2472 if (!TREE_READONLY (arg##N)) \
2473 read_only = 0; \
2474 if (!TREE_CONSTANT (arg##N)) \
2475 constant = 0; \
2476 if (!TREE_INVARIANT (arg##N)) \
2477 invariant = 0; \
2478 } \
2479 } while (0)
2480
2481 tree
2482 build2_stat (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
2483 {
2484 bool constant, read_only, side_effects, invariant;
2485 tree t;
2486 int fro;
2487
2488 gcc_assert (TREE_CODE_LENGTH (code) == 2);
2489
2490 t = make_node_stat (code PASS_MEM_STAT);
2491 TREE_TYPE (t) = tt;
2492
2493 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
2494 result based on those same flags for the arguments. But if the
2495 arguments aren't really even `tree' expressions, we shouldn't be trying
2496 to do this. */
2497 fro = first_rtl_op (code);
2498
2499 /* Expressions without side effects may be constant if their
2500 arguments are as well. */
2501 constant = (TREE_CODE_CLASS (code) == '<'
2502 || TREE_CODE_CLASS (code) == '2');
2503 read_only = 1;
2504 side_effects = TREE_SIDE_EFFECTS (t);
2505 invariant = constant;
2506
2507 PROCESS_ARG(0);
2508 PROCESS_ARG(1);
2509
2510 TREE_READONLY (t) = read_only;
2511 TREE_CONSTANT (t) = constant;
2512 TREE_INVARIANT (t) = invariant;
2513 TREE_SIDE_EFFECTS (t) = side_effects;
2514 TREE_THIS_VOLATILE (t)
2515 = TREE_CODE_CLASS (code) == 'r' && arg0 && TREE_THIS_VOLATILE (arg0);
2516
2517 return t;
2518 }
2519
2520 tree
2521 build3_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
2522 tree arg2 MEM_STAT_DECL)
2523 {
2524 bool constant, read_only, side_effects, invariant;
2525 tree t;
2526 int fro;
2527
2528 gcc_assert (TREE_CODE_LENGTH (code) == 3);
2529
2530 t = make_node_stat (code PASS_MEM_STAT);
2531 TREE_TYPE (t) = tt;
2532
2533 fro = first_rtl_op (code);
2534
2535 side_effects = TREE_SIDE_EFFECTS (t);
2536
2537 PROCESS_ARG(0);
2538 PROCESS_ARG(1);
2539 PROCESS_ARG(2);
2540
2541 if (code == CALL_EXPR && !side_effects)
2542 {
2543 tree node;
2544 int i;
2545
2546 /* Calls have side-effects, except those to const or
2547 pure functions. */
2548 i = call_expr_flags (t);
2549 if (!(i & (ECF_CONST | ECF_PURE)))
2550 side_effects = 1;
2551
2552 /* And even those have side-effects if their arguments do. */
2553 else for (node = arg1; node; node = TREE_CHAIN (node))
2554 if (TREE_SIDE_EFFECTS (TREE_VALUE (node)))
2555 {
2556 side_effects = 1;
2557 break;
2558 }
2559 }
2560
2561 TREE_SIDE_EFFECTS (t) = side_effects;
2562 TREE_THIS_VOLATILE (t)
2563 = TREE_CODE_CLASS (code) == 'r' && arg0 && TREE_THIS_VOLATILE (arg0);
2564
2565 return t;
2566 }
2567
2568 tree
2569 build4_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
2570 tree arg2, tree arg3 MEM_STAT_DECL)
2571 {
2572 bool constant, read_only, side_effects, invariant;
2573 tree t;
2574 int fro;
2575
2576 gcc_assert (TREE_CODE_LENGTH (code) == 4);
2577
2578 t = make_node_stat (code PASS_MEM_STAT);
2579 TREE_TYPE (t) = tt;
2580
2581 fro = first_rtl_op (code);
2582
2583 side_effects = TREE_SIDE_EFFECTS (t);
2584
2585 PROCESS_ARG(0);
2586 PROCESS_ARG(1);
2587 PROCESS_ARG(2);
2588 PROCESS_ARG(3);
2589
2590 TREE_SIDE_EFFECTS (t) = side_effects;
2591 TREE_THIS_VOLATILE (t)
2592 = TREE_CODE_CLASS (code) == 'r' && arg0 && TREE_THIS_VOLATILE (arg0);
2593
2594 return t;
2595 }
2596
2597 /* Backup definition for non-gcc build compilers. */
2598
2599 tree
2600 (build) (enum tree_code code, tree tt, ...)
2601 {
2602 tree t, arg0, arg1, arg2, arg3;
2603 int length = TREE_CODE_LENGTH (code);
2604 va_list p;
2605
2606 va_start (p, tt);
2607 switch (length)
2608 {
2609 case 0:
2610 t = build0 (code, tt);
2611 break;
2612 case 1:
2613 arg0 = va_arg (p, tree);
2614 t = build1 (code, tt, arg0);
2615 break;
2616 case 2:
2617 arg0 = va_arg (p, tree);
2618 arg1 = va_arg (p, tree);
2619 t = build2 (code, tt, arg0, arg1);
2620 break;
2621 case 3:
2622 arg0 = va_arg (p, tree);
2623 arg1 = va_arg (p, tree);
2624 arg2 = va_arg (p, tree);
2625 t = build3 (code, tt, arg0, arg1, arg2);
2626 break;
2627 case 4:
2628 arg0 = va_arg (p, tree);
2629 arg1 = va_arg (p, tree);
2630 arg2 = va_arg (p, tree);
2631 arg3 = va_arg (p, tree);
2632 t = build4 (code, tt, arg0, arg1, arg2, arg3);
2633 break;
2634 default:
2635 gcc_unreachable ();
2636 }
2637 va_end (p);
2638
2639 return t;
2640 }
2641
2642 /* Similar except don't specify the TREE_TYPE
2643 and leave the TREE_SIDE_EFFECTS as 0.
2644 It is permissible for arguments to be null,
2645 or even garbage if their values do not matter. */
2646
2647 tree
2648 build_nt (enum tree_code code, ...)
2649 {
2650 tree t;
2651 int length;
2652 int i;
2653 va_list p;
2654
2655 va_start (p, code);
2656
2657 t = make_node (code);
2658 length = TREE_CODE_LENGTH (code);
2659
2660 for (i = 0; i < length; i++)
2661 TREE_OPERAND (t, i) = va_arg (p, tree);
2662
2663 va_end (p);
2664 return t;
2665 }
2666 \f
2667 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
2668 We do NOT enter this node in any sort of symbol table.
2669
2670 layout_decl is used to set up the decl's storage layout.
2671 Other slots are initialized to 0 or null pointers. */
2672
2673 tree
2674 build_decl_stat (enum tree_code code, tree name, tree type MEM_STAT_DECL)
2675 {
2676 tree t;
2677
2678 t = make_node_stat (code PASS_MEM_STAT);
2679
2680 /* if (type == error_mark_node)
2681 type = integer_type_node; */
2682 /* That is not done, deliberately, so that having error_mark_node
2683 as the type can suppress useless errors in the use of this variable. */
2684
2685 DECL_NAME (t) = name;
2686 TREE_TYPE (t) = type;
2687
2688 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
2689 layout_decl (t, 0);
2690 else if (code == FUNCTION_DECL)
2691 DECL_MODE (t) = FUNCTION_MODE;
2692
2693 /* Set default visibility to whatever the user supplied with
2694 visibility_specified depending on #pragma GCC visibility. */
2695 DECL_VISIBILITY (t) = default_visibility;
2696 DECL_VISIBILITY_SPECIFIED (t) = visibility_options.inpragma;
2697
2698 return t;
2699 }
2700 \f
2701 /* BLOCK nodes are used to represent the structure of binding contours
2702 and declarations, once those contours have been exited and their contents
2703 compiled. This information is used for outputting debugging info. */
2704
2705 tree
2706 build_block (tree vars, tree tags ATTRIBUTE_UNUSED, tree subblocks,
2707 tree supercontext, tree chain)
2708 {
2709 tree block = make_node (BLOCK);
2710
2711 BLOCK_VARS (block) = vars;
2712 BLOCK_SUBBLOCKS (block) = subblocks;
2713 BLOCK_SUPERCONTEXT (block) = supercontext;
2714 BLOCK_CHAIN (block) = chain;
2715 return block;
2716 }
2717
2718 #if 1 /* ! defined(USE_MAPPED_LOCATION) */
2719 /* ??? gengtype doesn't handle conditionals */
2720 static GTY(()) tree last_annotated_node;
2721 #endif
2722
2723 #ifdef USE_MAPPED_LOCATION
2724
2725 expanded_location
2726 expand_location (source_location loc)
2727 {
2728 expanded_location xloc;
2729 if (loc == 0) { xloc.file = NULL; xloc.line = 0; xloc.column = 0; }
2730 else
2731 {
2732 const struct line_map *map = linemap_lookup (&line_table, loc);
2733 xloc.file = map->to_file;
2734 xloc.line = SOURCE_LINE (map, loc);
2735 xloc.column = SOURCE_COLUMN (map, loc);
2736 };
2737 return xloc;
2738 }
2739
2740 #else
2741
2742 /* Record the exact location where an expression or an identifier were
2743 encountered. */
2744
2745 void
2746 annotate_with_file_line (tree node, const char *file, int line)
2747 {
2748 /* Roughly one percent of the calls to this function are to annotate
2749 a node with the same information already attached to that node!
2750 Just return instead of wasting memory. */
2751 if (EXPR_LOCUS (node)
2752 && (EXPR_FILENAME (node) == file
2753 || ! strcmp (EXPR_FILENAME (node), file))
2754 && EXPR_LINENO (node) == line)
2755 {
2756 last_annotated_node = node;
2757 return;
2758 }
2759
2760 /* In heavily macroized code (such as GCC itself) this single
2761 entry cache can reduce the number of allocations by more
2762 than half. */
2763 if (last_annotated_node
2764 && EXPR_LOCUS (last_annotated_node)
2765 && (EXPR_FILENAME (last_annotated_node) == file
2766 || ! strcmp (EXPR_FILENAME (last_annotated_node), file))
2767 && EXPR_LINENO (last_annotated_node) == line)
2768 {
2769 SET_EXPR_LOCUS (node, EXPR_LOCUS (last_annotated_node));
2770 return;
2771 }
2772
2773 SET_EXPR_LOCUS (node, ggc_alloc (sizeof (location_t)));
2774 EXPR_LINENO (node) = line;
2775 EXPR_FILENAME (node) = file;
2776 last_annotated_node = node;
2777 }
2778
2779 void
2780 annotate_with_locus (tree node, location_t locus)
2781 {
2782 annotate_with_file_line (node, locus.file, locus.line);
2783 }
2784 #endif
2785 \f
2786 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
2787 is ATTRIBUTE. */
2788
2789 tree
2790 build_decl_attribute_variant (tree ddecl, tree attribute)
2791 {
2792 DECL_ATTRIBUTES (ddecl) = attribute;
2793 return ddecl;
2794 }
2795
2796 /* Borrowed from hashtab.c iterative_hash implementation. */
2797 #define mix(a,b,c) \
2798 { \
2799 a -= b; a -= c; a ^= (c>>13); \
2800 b -= c; b -= a; b ^= (a<< 8); \
2801 c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
2802 a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
2803 b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
2804 c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
2805 a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
2806 b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
2807 c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
2808 }
2809
2810
2811 /* Produce good hash value combining VAL and VAL2. */
2812 static inline hashval_t
2813 iterative_hash_hashval_t (hashval_t val, hashval_t val2)
2814 {
2815 /* the golden ratio; an arbitrary value. */
2816 hashval_t a = 0x9e3779b9;
2817
2818 mix (a, val, val2);
2819 return val2;
2820 }
2821
2822 /* Produce good hash value combining PTR and VAL2. */
2823 static inline hashval_t
2824 iterative_hash_pointer (void *ptr, hashval_t val2)
2825 {
2826 if (sizeof (ptr) == sizeof (hashval_t))
2827 return iterative_hash_hashval_t ((size_t) ptr, val2);
2828 else
2829 {
2830 hashval_t a = (hashval_t) (size_t) ptr;
2831 /* Avoid warnings about shifting of more than the width of the type on
2832 hosts that won't execute this path. */
2833 int zero = 0;
2834 hashval_t b = (hashval_t) ((size_t) ptr >> (sizeof (hashval_t) * 8 + zero));
2835 mix (a, b, val2);
2836 return val2;
2837 }
2838 }
2839
2840 /* Produce good hash value combining VAL and VAL2. */
2841 static inline hashval_t
2842 iterative_hash_host_wide_int (HOST_WIDE_INT val, hashval_t val2)
2843 {
2844 if (sizeof (HOST_WIDE_INT) == sizeof (hashval_t))
2845 return iterative_hash_hashval_t (val, val2);
2846 else
2847 {
2848 hashval_t a = (hashval_t) val;
2849 /* Avoid warnings about shifting of more than the width of the type on
2850 hosts that won't execute this path. */
2851 int zero = 0;
2852 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 8 + zero));
2853 mix (a, b, val2);
2854 if (sizeof (HOST_WIDE_INT) > 2 * sizeof (hashval_t))
2855 {
2856 hashval_t a = (hashval_t) (val >> (sizeof (hashval_t) * 16 + zero));
2857 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 24 + zero));
2858 mix (a, b, val2);
2859 }
2860 return val2;
2861 }
2862 }
2863
2864 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
2865 is ATTRIBUTE.
2866
2867 Record such modified types already made so we don't make duplicates. */
2868
2869 tree
2870 build_type_attribute_variant (tree ttype, tree attribute)
2871 {
2872 if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
2873 {
2874 hashval_t hashcode = 0;
2875 tree ntype;
2876 enum tree_code code = TREE_CODE (ttype);
2877
2878 ntype = copy_node (ttype);
2879
2880 TYPE_POINTER_TO (ntype) = 0;
2881 TYPE_REFERENCE_TO (ntype) = 0;
2882 TYPE_ATTRIBUTES (ntype) = attribute;
2883
2884 /* Create a new main variant of TYPE. */
2885 TYPE_MAIN_VARIANT (ntype) = ntype;
2886 TYPE_NEXT_VARIANT (ntype) = 0;
2887 set_type_quals (ntype, TYPE_UNQUALIFIED);
2888
2889 hashcode = iterative_hash_object (code, hashcode);
2890 if (TREE_TYPE (ntype))
2891 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (ntype)),
2892 hashcode);
2893 hashcode = attribute_hash_list (attribute, hashcode);
2894
2895 switch (TREE_CODE (ntype))
2896 {
2897 case FUNCTION_TYPE:
2898 hashcode = type_hash_list (TYPE_ARG_TYPES (ntype), hashcode);
2899 break;
2900 case ARRAY_TYPE:
2901 hashcode = iterative_hash_object (TYPE_HASH (TYPE_DOMAIN (ntype)),
2902 hashcode);
2903 break;
2904 case INTEGER_TYPE:
2905 hashcode = iterative_hash_object
2906 (TREE_INT_CST_LOW (TYPE_MAX_VALUE (ntype)), hashcode);
2907 hashcode = iterative_hash_object
2908 (TREE_INT_CST_HIGH (TYPE_MAX_VALUE (ntype)), hashcode);
2909 break;
2910 case REAL_TYPE:
2911 {
2912 unsigned int precision = TYPE_PRECISION (ntype);
2913 hashcode = iterative_hash_object (precision, hashcode);
2914 }
2915 break;
2916 default:
2917 break;
2918 }
2919
2920 ntype = type_hash_canon (hashcode, ntype);
2921 ttype = build_qualified_type (ntype, TYPE_QUALS (ttype));
2922 }
2923
2924 return ttype;
2925 }
2926
2927 /* Return nonzero if IDENT is a valid name for attribute ATTR,
2928 or zero if not.
2929
2930 We try both `text' and `__text__', ATTR may be either one. */
2931 /* ??? It might be a reasonable simplification to require ATTR to be only
2932 `text'. One might then also require attribute lists to be stored in
2933 their canonicalized form. */
2934
2935 int
2936 is_attribute_p (const char *attr, tree ident)
2937 {
2938 int ident_len, attr_len;
2939 const char *p;
2940
2941 if (TREE_CODE (ident) != IDENTIFIER_NODE)
2942 return 0;
2943
2944 if (strcmp (attr, IDENTIFIER_POINTER (ident)) == 0)
2945 return 1;
2946
2947 p = IDENTIFIER_POINTER (ident);
2948 ident_len = strlen (p);
2949 attr_len = strlen (attr);
2950
2951 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
2952 if (attr[0] == '_')
2953 {
2954 gcc_assert (attr[1] == '_');
2955 gcc_assert (attr[attr_len - 2] == '_');
2956 gcc_assert (attr[attr_len - 1] == '_');
2957 gcc_assert (attr[1] == '_');
2958 if (ident_len == attr_len - 4
2959 && strncmp (attr + 2, p, attr_len - 4) == 0)
2960 return 1;
2961 }
2962 else
2963 {
2964 if (ident_len == attr_len + 4
2965 && p[0] == '_' && p[1] == '_'
2966 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
2967 && strncmp (attr, p + 2, attr_len) == 0)
2968 return 1;
2969 }
2970
2971 return 0;
2972 }
2973
2974 /* Given an attribute name and a list of attributes, return a pointer to the
2975 attribute's list element if the attribute is part of the list, or NULL_TREE
2976 if not found. If the attribute appears more than once, this only
2977 returns the first occurrence; the TREE_CHAIN of the return value should
2978 be passed back in if further occurrences are wanted. */
2979
2980 tree
2981 lookup_attribute (const char *attr_name, tree list)
2982 {
2983 tree l;
2984
2985 for (l = list; l; l = TREE_CHAIN (l))
2986 {
2987 gcc_assert (TREE_CODE (TREE_PURPOSE (l)) == IDENTIFIER_NODE);
2988 if (is_attribute_p (attr_name, TREE_PURPOSE (l)))
2989 return l;
2990 }
2991
2992 return NULL_TREE;
2993 }
2994
2995 /* Return an attribute list that is the union of a1 and a2. */
2996
2997 tree
2998 merge_attributes (tree a1, tree a2)
2999 {
3000 tree attributes;
3001
3002 /* Either one unset? Take the set one. */
3003
3004 if ((attributes = a1) == 0)
3005 attributes = a2;
3006
3007 /* One that completely contains the other? Take it. */
3008
3009 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
3010 {
3011 if (attribute_list_contained (a2, a1))
3012 attributes = a2;
3013 else
3014 {
3015 /* Pick the longest list, and hang on the other list. */
3016
3017 if (list_length (a1) < list_length (a2))
3018 attributes = a2, a2 = a1;
3019
3020 for (; a2 != 0; a2 = TREE_CHAIN (a2))
3021 {
3022 tree a;
3023 for (a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
3024 attributes);
3025 a != NULL_TREE;
3026 a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
3027 TREE_CHAIN (a)))
3028 {
3029 if (simple_cst_equal (TREE_VALUE (a), TREE_VALUE (a2)) == 1)
3030 break;
3031 }
3032 if (a == NULL_TREE)
3033 {
3034 a1 = copy_node (a2);
3035 TREE_CHAIN (a1) = attributes;
3036 attributes = a1;
3037 }
3038 }
3039 }
3040 }
3041 return attributes;
3042 }
3043
3044 /* Given types T1 and T2, merge their attributes and return
3045 the result. */
3046
3047 tree
3048 merge_type_attributes (tree t1, tree t2)
3049 {
3050 return merge_attributes (TYPE_ATTRIBUTES (t1),
3051 TYPE_ATTRIBUTES (t2));
3052 }
3053
3054 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
3055 the result. */
3056
3057 tree
3058 merge_decl_attributes (tree olddecl, tree newdecl)
3059 {
3060 return merge_attributes (DECL_ATTRIBUTES (olddecl),
3061 DECL_ATTRIBUTES (newdecl));
3062 }
3063
3064 #if TARGET_DLLIMPORT_DECL_ATTRIBUTES
3065
3066 /* Specialization of merge_decl_attributes for various Windows targets.
3067
3068 This handles the following situation:
3069
3070 __declspec (dllimport) int foo;
3071 int foo;
3072
3073 The second instance of `foo' nullifies the dllimport. */
3074
3075 tree
3076 merge_dllimport_decl_attributes (tree old, tree new)
3077 {
3078 tree a;
3079 int delete_dllimport_p;
3080
3081 old = DECL_ATTRIBUTES (old);
3082 new = DECL_ATTRIBUTES (new);
3083
3084 /* What we need to do here is remove from `old' dllimport if it doesn't
3085 appear in `new'. dllimport behaves like extern: if a declaration is
3086 marked dllimport and a definition appears later, then the object
3087 is not dllimport'd. */
3088 if (lookup_attribute ("dllimport", old) != NULL_TREE
3089 && lookup_attribute ("dllimport", new) == NULL_TREE)
3090 delete_dllimport_p = 1;
3091 else
3092 delete_dllimport_p = 0;
3093
3094 a = merge_attributes (old, new);
3095
3096 if (delete_dllimport_p)
3097 {
3098 tree prev, t;
3099
3100 /* Scan the list for dllimport and delete it. */
3101 for (prev = NULL_TREE, t = a; t; prev = t, t = TREE_CHAIN (t))
3102 {
3103 if (is_attribute_p ("dllimport", TREE_PURPOSE (t)))
3104 {
3105 if (prev == NULL_TREE)
3106 a = TREE_CHAIN (a);
3107 else
3108 TREE_CHAIN (prev) = TREE_CHAIN (t);
3109 break;
3110 }
3111 }
3112 }
3113
3114 return a;
3115 }
3116
3117 /* Handle a "dllimport" or "dllexport" attribute; arguments as in
3118 struct attribute_spec.handler. */
3119
3120 tree
3121 handle_dll_attribute (tree * pnode, tree name, tree args, int flags,
3122 bool *no_add_attrs)
3123 {
3124 tree node = *pnode;
3125
3126 /* These attributes may apply to structure and union types being created,
3127 but otherwise should pass to the declaration involved. */
3128 if (!DECL_P (node))
3129 {
3130 if (flags & ((int) ATTR_FLAG_DECL_NEXT | (int) ATTR_FLAG_FUNCTION_NEXT
3131 | (int) ATTR_FLAG_ARRAY_NEXT))
3132 {
3133 *no_add_attrs = true;
3134 return tree_cons (name, args, NULL_TREE);
3135 }
3136 if (TREE_CODE (node) != RECORD_TYPE && TREE_CODE (node) != UNION_TYPE)
3137 {
3138 warning ("`%s' attribute ignored", IDENTIFIER_POINTER (name));
3139 *no_add_attrs = true;
3140 }
3141
3142 return NULL_TREE;
3143 }
3144
3145 /* Report error on dllimport ambiguities seen now before they cause
3146 any damage. */
3147 if (is_attribute_p ("dllimport", name))
3148 {
3149 /* Like MS, treat definition of dllimported variables and
3150 non-inlined functions on declaration as syntax errors. We
3151 allow the attribute for function definitions if declared
3152 inline. */
3153 if (TREE_CODE (node) == FUNCTION_DECL && DECL_INITIAL (node)
3154 && !DECL_DECLARED_INLINE_P (node))
3155 {
3156 error ("%Jfunction `%D' definition is marked dllimport.", node, node);
3157 *no_add_attrs = true;
3158 }
3159
3160 else if (TREE_CODE (node) == VAR_DECL)
3161 {
3162 if (DECL_INITIAL (node))
3163 {
3164 error ("%Jvariable `%D' definition is marked dllimport.",
3165 node, node);
3166 *no_add_attrs = true;
3167 }
3168
3169 /* `extern' needn't be specified with dllimport.
3170 Specify `extern' now and hope for the best. Sigh. */
3171 DECL_EXTERNAL (node) = 1;
3172 /* Also, implicitly give dllimport'd variables declared within
3173 a function global scope, unless declared static. */
3174 if (current_function_decl != NULL_TREE && !TREE_STATIC (node))
3175 TREE_PUBLIC (node) = 1;
3176 }
3177 }
3178
3179 /* Report error if symbol is not accessible at global scope. */
3180 if (!TREE_PUBLIC (node)
3181 && (TREE_CODE (node) == VAR_DECL
3182 || TREE_CODE (node) == FUNCTION_DECL))
3183 {
3184 error ("%Jexternal linkage required for symbol '%D' because of "
3185 "'%s' attribute.", node, node, IDENTIFIER_POINTER (name));
3186 *no_add_attrs = true;
3187 }
3188
3189 return NULL_TREE;
3190 }
3191
3192 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
3193 \f
3194 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
3195 of the various TYPE_QUAL values. */
3196
3197 static void
3198 set_type_quals (tree type, int type_quals)
3199 {
3200 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
3201 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
3202 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
3203 }
3204
3205 /* Returns true iff cand is equivalent to base with type_quals. */
3206
3207 bool
3208 check_qualified_type (tree cand, tree base, int type_quals)
3209 {
3210 return (TYPE_QUALS (cand) == type_quals
3211 && TYPE_NAME (cand) == TYPE_NAME (base)
3212 /* Apparently this is needed for Objective-C. */
3213 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
3214 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
3215 TYPE_ATTRIBUTES (base)));
3216 }
3217
3218 /* Return a version of the TYPE, qualified as indicated by the
3219 TYPE_QUALS, if one exists. If no qualified version exists yet,
3220 return NULL_TREE. */
3221
3222 tree
3223 get_qualified_type (tree type, int type_quals)
3224 {
3225 tree t;
3226
3227 if (TYPE_QUALS (type) == type_quals)
3228 return type;
3229
3230 /* Search the chain of variants to see if there is already one there just
3231 like the one we need to have. If so, use that existing one. We must
3232 preserve the TYPE_NAME, since there is code that depends on this. */
3233 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
3234 if (check_qualified_type (t, type, type_quals))
3235 return t;
3236
3237 return NULL_TREE;
3238 }
3239
3240 /* Like get_qualified_type, but creates the type if it does not
3241 exist. This function never returns NULL_TREE. */
3242
3243 tree
3244 build_qualified_type (tree type, int type_quals)
3245 {
3246 tree t;
3247
3248 /* See if we already have the appropriate qualified variant. */
3249 t = get_qualified_type (type, type_quals);
3250
3251 /* If not, build it. */
3252 if (!t)
3253 {
3254 t = build_variant_type_copy (type);
3255 set_type_quals (t, type_quals);
3256 }
3257
3258 return t;
3259 }
3260
3261 /* Create a new distinct copy of TYPE. The new type is made its own
3262 MAIN_VARIANT. */
3263
3264 tree
3265 build_distinct_type_copy (tree type)
3266 {
3267 tree t = copy_node (type);
3268
3269 TYPE_POINTER_TO (t) = 0;
3270 TYPE_REFERENCE_TO (t) = 0;
3271
3272 /* Make it its own variant. */
3273 TYPE_MAIN_VARIANT (t) = t;
3274 TYPE_NEXT_VARIANT (t) = 0;
3275
3276 return t;
3277 }
3278
3279 /* Create a new variant of TYPE, equivalent but distinct.
3280 This is so the caller can modify it. */
3281
3282 tree
3283 build_variant_type_copy (tree type)
3284 {
3285 tree t, m = TYPE_MAIN_VARIANT (type);
3286
3287 t = build_distinct_type_copy (type);
3288
3289 /* Add the new type to the chain of variants of TYPE. */
3290 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
3291 TYPE_NEXT_VARIANT (m) = t;
3292 TYPE_MAIN_VARIANT (t) = m;
3293
3294 return t;
3295 }
3296 \f
3297 /* Hashing of types so that we don't make duplicates.
3298 The entry point is `type_hash_canon'. */
3299
3300 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
3301 with types in the TREE_VALUE slots), by adding the hash codes
3302 of the individual types. */
3303
3304 unsigned int
3305 type_hash_list (tree list, hashval_t hashcode)
3306 {
3307 tree tail;
3308
3309 for (tail = list; tail; tail = TREE_CHAIN (tail))
3310 if (TREE_VALUE (tail) != error_mark_node)
3311 hashcode = iterative_hash_object (TYPE_HASH (TREE_VALUE (tail)),
3312 hashcode);
3313
3314 return hashcode;
3315 }
3316
3317 /* These are the Hashtable callback functions. */
3318
3319 /* Returns true iff the types are equivalent. */
3320
3321 static int
3322 type_hash_eq (const void *va, const void *vb)
3323 {
3324 const struct type_hash *a = va, *b = vb;
3325
3326 /* First test the things that are the same for all types. */
3327 if (a->hash != b->hash
3328 || TREE_CODE (a->type) != TREE_CODE (b->type)
3329 || TREE_TYPE (a->type) != TREE_TYPE (b->type)
3330 || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
3331 TYPE_ATTRIBUTES (b->type))
3332 || TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
3333 || TYPE_MODE (a->type) != TYPE_MODE (b->type))
3334 return 0;
3335
3336 switch (TREE_CODE (a->type))
3337 {
3338 case VOID_TYPE:
3339 case COMPLEX_TYPE:
3340 case VECTOR_TYPE:
3341 case POINTER_TYPE:
3342 case REFERENCE_TYPE:
3343 return 1;
3344
3345 case ENUMERAL_TYPE:
3346 if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
3347 && !(TYPE_VALUES (a->type)
3348 && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
3349 && TYPE_VALUES (b->type)
3350 && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
3351 && type_list_equal (TYPE_VALUES (a->type),
3352 TYPE_VALUES (b->type))))
3353 return 0;
3354
3355 /* ... fall through ... */
3356
3357 case INTEGER_TYPE:
3358 case REAL_TYPE:
3359 case BOOLEAN_TYPE:
3360 case CHAR_TYPE:
3361 return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
3362 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
3363 TYPE_MAX_VALUE (b->type)))
3364 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
3365 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
3366 TYPE_MIN_VALUE (b->type))));
3367
3368 case OFFSET_TYPE:
3369 return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
3370
3371 case METHOD_TYPE:
3372 return (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
3373 && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
3374 || (TYPE_ARG_TYPES (a->type)
3375 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
3376 && TYPE_ARG_TYPES (b->type)
3377 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
3378 && type_list_equal (TYPE_ARG_TYPES (a->type),
3379 TYPE_ARG_TYPES (b->type)))));
3380
3381 case ARRAY_TYPE:
3382 case SET_TYPE:
3383 return TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type);
3384
3385 case RECORD_TYPE:
3386 case UNION_TYPE:
3387 case QUAL_UNION_TYPE:
3388 return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
3389 || (TYPE_FIELDS (a->type)
3390 && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
3391 && TYPE_FIELDS (b->type)
3392 && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
3393 && type_list_equal (TYPE_FIELDS (a->type),
3394 TYPE_FIELDS (b->type))));
3395
3396 case FUNCTION_TYPE:
3397 return (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
3398 || (TYPE_ARG_TYPES (a->type)
3399 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
3400 && TYPE_ARG_TYPES (b->type)
3401 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
3402 && type_list_equal (TYPE_ARG_TYPES (a->type),
3403 TYPE_ARG_TYPES (b->type))));
3404
3405 default:
3406 return 0;
3407 }
3408 }
3409
3410 /* Return the cached hash value. */
3411
3412 static hashval_t
3413 type_hash_hash (const void *item)
3414 {
3415 return ((const struct type_hash *) item)->hash;
3416 }
3417
3418 /* Look in the type hash table for a type isomorphic to TYPE.
3419 If one is found, return it. Otherwise return 0. */
3420
3421 tree
3422 type_hash_lookup (hashval_t hashcode, tree type)
3423 {
3424 struct type_hash *h, in;
3425
3426 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
3427 must call that routine before comparing TYPE_ALIGNs. */
3428 layout_type (type);
3429
3430 in.hash = hashcode;
3431 in.type = type;
3432
3433 h = htab_find_with_hash (type_hash_table, &in, hashcode);
3434 if (h)
3435 return h->type;
3436 return NULL_TREE;
3437 }
3438
3439 /* Add an entry to the type-hash-table
3440 for a type TYPE whose hash code is HASHCODE. */
3441
3442 void
3443 type_hash_add (hashval_t hashcode, tree type)
3444 {
3445 struct type_hash *h;
3446 void **loc;
3447
3448 h = ggc_alloc (sizeof (struct type_hash));
3449 h->hash = hashcode;
3450 h->type = type;
3451 loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
3452 *(struct type_hash **) loc = h;
3453 }
3454
3455 /* Given TYPE, and HASHCODE its hash code, return the canonical
3456 object for an identical type if one already exists.
3457 Otherwise, return TYPE, and record it as the canonical object.
3458
3459 To use this function, first create a type of the sort you want.
3460 Then compute its hash code from the fields of the type that
3461 make it different from other similar types.
3462 Then call this function and use the value. */
3463
3464 tree
3465 type_hash_canon (unsigned int hashcode, tree type)
3466 {
3467 tree t1;
3468
3469 /* The hash table only contains main variants, so ensure that's what we're
3470 being passed. */
3471 gcc_assert (TYPE_MAIN_VARIANT (type) == type);
3472
3473 if (!lang_hooks.types.hash_types)
3474 return type;
3475
3476 /* See if the type is in the hash table already. If so, return it.
3477 Otherwise, add the type. */
3478 t1 = type_hash_lookup (hashcode, type);
3479 if (t1 != 0)
3480 {
3481 #ifdef GATHER_STATISTICS
3482 tree_node_counts[(int) t_kind]--;
3483 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type);
3484 #endif
3485 return t1;
3486 }
3487 else
3488 {
3489 type_hash_add (hashcode, type);
3490 return type;
3491 }
3492 }
3493
3494 /* See if the data pointed to by the type hash table is marked. We consider
3495 it marked if the type is marked or if a debug type number or symbol
3496 table entry has been made for the type. This reduces the amount of
3497 debugging output and eliminates that dependency of the debug output on
3498 the number of garbage collections. */
3499
3500 static int
3501 type_hash_marked_p (const void *p)
3502 {
3503 tree type = ((struct type_hash *) p)->type;
3504
3505 return ggc_marked_p (type) || TYPE_SYMTAB_POINTER (type);
3506 }
3507
3508 static void
3509 print_type_hash_statistics (void)
3510 {
3511 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
3512 (long) htab_size (type_hash_table),
3513 (long) htab_elements (type_hash_table),
3514 htab_collisions (type_hash_table));
3515 }
3516
3517 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
3518 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
3519 by adding the hash codes of the individual attributes. */
3520
3521 unsigned int
3522 attribute_hash_list (tree list, hashval_t hashcode)
3523 {
3524 tree tail;
3525
3526 for (tail = list; tail; tail = TREE_CHAIN (tail))
3527 /* ??? Do we want to add in TREE_VALUE too? */
3528 hashcode = iterative_hash_object
3529 (IDENTIFIER_HASH_VALUE (TREE_PURPOSE (tail)), hashcode);
3530 return hashcode;
3531 }
3532
3533 /* Given two lists of attributes, return true if list l2 is
3534 equivalent to l1. */
3535
3536 int
3537 attribute_list_equal (tree l1, tree l2)
3538 {
3539 return attribute_list_contained (l1, l2)
3540 && attribute_list_contained (l2, l1);
3541 }
3542
3543 /* Given two lists of attributes, return true if list L2 is
3544 completely contained within L1. */
3545 /* ??? This would be faster if attribute names were stored in a canonicalized
3546 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
3547 must be used to show these elements are equivalent (which they are). */
3548 /* ??? It's not clear that attributes with arguments will always be handled
3549 correctly. */
3550
3551 int
3552 attribute_list_contained (tree l1, tree l2)
3553 {
3554 tree t1, t2;
3555
3556 /* First check the obvious, maybe the lists are identical. */
3557 if (l1 == l2)
3558 return 1;
3559
3560 /* Maybe the lists are similar. */
3561 for (t1 = l1, t2 = l2;
3562 t1 != 0 && t2 != 0
3563 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
3564 && TREE_VALUE (t1) == TREE_VALUE (t2);
3565 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
3566
3567 /* Maybe the lists are equal. */
3568 if (t1 == 0 && t2 == 0)
3569 return 1;
3570
3571 for (; t2 != 0; t2 = TREE_CHAIN (t2))
3572 {
3573 tree attr;
3574 for (attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)), l1);
3575 attr != NULL_TREE;
3576 attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
3577 TREE_CHAIN (attr)))
3578 {
3579 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) == 1)
3580 break;
3581 }
3582
3583 if (attr == 0)
3584 return 0;
3585
3586 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) != 1)
3587 return 0;
3588 }
3589
3590 return 1;
3591 }
3592
3593 /* Given two lists of types
3594 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
3595 return 1 if the lists contain the same types in the same order.
3596 Also, the TREE_PURPOSEs must match. */
3597
3598 int
3599 type_list_equal (tree l1, tree l2)
3600 {
3601 tree t1, t2;
3602
3603 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
3604 if (TREE_VALUE (t1) != TREE_VALUE (t2)
3605 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
3606 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
3607 && (TREE_TYPE (TREE_PURPOSE (t1))
3608 == TREE_TYPE (TREE_PURPOSE (t2))))))
3609 return 0;
3610
3611 return t1 == t2;
3612 }
3613
3614 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
3615 given by TYPE. If the argument list accepts variable arguments,
3616 then this function counts only the ordinary arguments. */
3617
3618 int
3619 type_num_arguments (tree type)
3620 {
3621 int i = 0;
3622 tree t;
3623
3624 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
3625 /* If the function does not take a variable number of arguments,
3626 the last element in the list will have type `void'. */
3627 if (VOID_TYPE_P (TREE_VALUE (t)))
3628 break;
3629 else
3630 ++i;
3631
3632 return i;
3633 }
3634
3635 /* Nonzero if integer constants T1 and T2
3636 represent the same constant value. */
3637
3638 int
3639 tree_int_cst_equal (tree t1, tree t2)
3640 {
3641 if (t1 == t2)
3642 return 1;
3643
3644 if (t1 == 0 || t2 == 0)
3645 return 0;
3646
3647 if (TREE_CODE (t1) == INTEGER_CST
3648 && TREE_CODE (t2) == INTEGER_CST
3649 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3650 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
3651 return 1;
3652
3653 return 0;
3654 }
3655
3656 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
3657 The precise way of comparison depends on their data type. */
3658
3659 int
3660 tree_int_cst_lt (tree t1, tree t2)
3661 {
3662 if (t1 == t2)
3663 return 0;
3664
3665 if (TYPE_UNSIGNED (TREE_TYPE (t1)) != TYPE_UNSIGNED (TREE_TYPE (t2)))
3666 {
3667 int t1_sgn = tree_int_cst_sgn (t1);
3668 int t2_sgn = tree_int_cst_sgn (t2);
3669
3670 if (t1_sgn < t2_sgn)
3671 return 1;
3672 else if (t1_sgn > t2_sgn)
3673 return 0;
3674 /* Otherwise, both are non-negative, so we compare them as
3675 unsigned just in case one of them would overflow a signed
3676 type. */
3677 }
3678 else if (!TYPE_UNSIGNED (TREE_TYPE (t1)))
3679 return INT_CST_LT (t1, t2);
3680
3681 return INT_CST_LT_UNSIGNED (t1, t2);
3682 }
3683
3684 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
3685
3686 int
3687 tree_int_cst_compare (tree t1, tree t2)
3688 {
3689 if (tree_int_cst_lt (t1, t2))
3690 return -1;
3691 else if (tree_int_cst_lt (t2, t1))
3692 return 1;
3693 else
3694 return 0;
3695 }
3696
3697 /* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
3698 the host. If POS is zero, the value can be represented in a single
3699 HOST_WIDE_INT. If POS is nonzero, the value must be positive and can
3700 be represented in a single unsigned HOST_WIDE_INT. */
3701
3702 int
3703 host_integerp (tree t, int pos)
3704 {
3705 return (TREE_CODE (t) == INTEGER_CST
3706 && ! TREE_OVERFLOW (t)
3707 && ((TREE_INT_CST_HIGH (t) == 0
3708 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
3709 || (! pos && TREE_INT_CST_HIGH (t) == -1
3710 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0
3711 && !TYPE_UNSIGNED (TREE_TYPE (t)))
3712 || (pos && TREE_INT_CST_HIGH (t) == 0)));
3713 }
3714
3715 /* Return the HOST_WIDE_INT least significant bits of T if it is an
3716 INTEGER_CST and there is no overflow. POS is nonzero if the result must
3717 be positive. Abort if we cannot satisfy the above conditions. */
3718
3719 HOST_WIDE_INT
3720 tree_low_cst (tree t, int pos)
3721 {
3722 gcc_assert (host_integerp (t, pos));
3723 return TREE_INT_CST_LOW (t);
3724 }
3725
3726 /* Return the most significant bit of the integer constant T. */
3727
3728 int
3729 tree_int_cst_msb (tree t)
3730 {
3731 int prec;
3732 HOST_WIDE_INT h;
3733 unsigned HOST_WIDE_INT l;
3734
3735 /* Note that using TYPE_PRECISION here is wrong. We care about the
3736 actual bits, not the (arbitrary) range of the type. */
3737 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t))) - 1;
3738 rshift_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t), prec,
3739 2 * HOST_BITS_PER_WIDE_INT, &l, &h, 0);
3740 return (l & 1) == 1;
3741 }
3742
3743 /* Return an indication of the sign of the integer constant T.
3744 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
3745 Note that -1 will never be returned it T's type is unsigned. */
3746
3747 int
3748 tree_int_cst_sgn (tree t)
3749 {
3750 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
3751 return 0;
3752 else if (TYPE_UNSIGNED (TREE_TYPE (t)))
3753 return 1;
3754 else if (TREE_INT_CST_HIGH (t) < 0)
3755 return -1;
3756 else
3757 return 1;
3758 }
3759
3760 /* Compare two constructor-element-type constants. Return 1 if the lists
3761 are known to be equal; otherwise return 0. */
3762
3763 int
3764 simple_cst_list_equal (tree l1, tree l2)
3765 {
3766 while (l1 != NULL_TREE && l2 != NULL_TREE)
3767 {
3768 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
3769 return 0;
3770
3771 l1 = TREE_CHAIN (l1);
3772 l2 = TREE_CHAIN (l2);
3773 }
3774
3775 return l1 == l2;
3776 }
3777
3778 /* Return truthvalue of whether T1 is the same tree structure as T2.
3779 Return 1 if they are the same.
3780 Return 0 if they are understandably different.
3781 Return -1 if either contains tree structure not understood by
3782 this function. */
3783
3784 int
3785 simple_cst_equal (tree t1, tree t2)
3786 {
3787 enum tree_code code1, code2;
3788 int cmp;
3789 int i;
3790
3791 if (t1 == t2)
3792 return 1;
3793 if (t1 == 0 || t2 == 0)
3794 return 0;
3795
3796 code1 = TREE_CODE (t1);
3797 code2 = TREE_CODE (t2);
3798
3799 if (code1 == NOP_EXPR || code1 == CONVERT_EXPR || code1 == NON_LVALUE_EXPR)
3800 {
3801 if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3802 || code2 == NON_LVALUE_EXPR)
3803 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3804 else
3805 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
3806 }
3807
3808 else if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3809 || code2 == NON_LVALUE_EXPR)
3810 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
3811
3812 if (code1 != code2)
3813 return 0;
3814
3815 switch (code1)
3816 {
3817 case INTEGER_CST:
3818 return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3819 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
3820
3821 case REAL_CST:
3822 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
3823
3824 case STRING_CST:
3825 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
3826 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
3827 TREE_STRING_LENGTH (t1)));
3828
3829 case CONSTRUCTOR:
3830 return simple_cst_list_equal (CONSTRUCTOR_ELTS (t1),
3831 CONSTRUCTOR_ELTS (t2));
3832
3833 case SAVE_EXPR:
3834 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3835
3836 case CALL_EXPR:
3837 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3838 if (cmp <= 0)
3839 return cmp;
3840 return
3841 simple_cst_list_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3842
3843 case TARGET_EXPR:
3844 /* Special case: if either target is an unallocated VAR_DECL,
3845 it means that it's going to be unified with whatever the
3846 TARGET_EXPR is really supposed to initialize, so treat it
3847 as being equivalent to anything. */
3848 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
3849 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
3850 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
3851 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
3852 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
3853 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
3854 cmp = 1;
3855 else
3856 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3857
3858 if (cmp <= 0)
3859 return cmp;
3860
3861 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3862
3863 case WITH_CLEANUP_EXPR:
3864 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3865 if (cmp <= 0)
3866 return cmp;
3867
3868 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
3869
3870 case COMPONENT_REF:
3871 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
3872 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3873
3874 return 0;
3875
3876 case VAR_DECL:
3877 case PARM_DECL:
3878 case CONST_DECL:
3879 case FUNCTION_DECL:
3880 return 0;
3881
3882 default:
3883 break;
3884 }
3885
3886 /* This general rule works for most tree codes. All exceptions should be
3887 handled above. If this is a language-specific tree code, we can't
3888 trust what might be in the operand, so say we don't know
3889 the situation. */
3890 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
3891 return -1;
3892
3893 switch (TREE_CODE_CLASS (code1))
3894 {
3895 case '1':
3896 case '2':
3897 case '<':
3898 case 'e':
3899 case 'r':
3900 case 's':
3901 cmp = 1;
3902 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
3903 {
3904 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
3905 if (cmp <= 0)
3906 return cmp;
3907 }
3908
3909 return cmp;
3910
3911 default:
3912 return -1;
3913 }
3914 }
3915
3916 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
3917 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
3918 than U, respectively. */
3919
3920 int
3921 compare_tree_int (tree t, unsigned HOST_WIDE_INT u)
3922 {
3923 if (tree_int_cst_sgn (t) < 0)
3924 return -1;
3925 else if (TREE_INT_CST_HIGH (t) != 0)
3926 return 1;
3927 else if (TREE_INT_CST_LOW (t) == u)
3928 return 0;
3929 else if (TREE_INT_CST_LOW (t) < u)
3930 return -1;
3931 else
3932 return 1;
3933 }
3934
3935 /* Return true if CODE represents an associative tree code. Otherwise
3936 return false. */
3937 bool
3938 associative_tree_code (enum tree_code code)
3939 {
3940 switch (code)
3941 {
3942 case BIT_IOR_EXPR:
3943 case BIT_AND_EXPR:
3944 case BIT_XOR_EXPR:
3945 case PLUS_EXPR:
3946 case MULT_EXPR:
3947 case MIN_EXPR:
3948 case MAX_EXPR:
3949 return true;
3950
3951 default:
3952 break;
3953 }
3954 return false;
3955 }
3956
3957 /* Return true if CODE represents an commutative tree code. Otherwise
3958 return false. */
3959 bool
3960 commutative_tree_code (enum tree_code code)
3961 {
3962 switch (code)
3963 {
3964 case PLUS_EXPR:
3965 case MULT_EXPR:
3966 case MIN_EXPR:
3967 case MAX_EXPR:
3968 case BIT_IOR_EXPR:
3969 case BIT_XOR_EXPR:
3970 case BIT_AND_EXPR:
3971 case NE_EXPR:
3972 case EQ_EXPR:
3973 case UNORDERED_EXPR:
3974 case ORDERED_EXPR:
3975 case UNEQ_EXPR:
3976 case LTGT_EXPR:
3977 case TRUTH_AND_EXPR:
3978 case TRUTH_XOR_EXPR:
3979 case TRUTH_OR_EXPR:
3980 return true;
3981
3982 default:
3983 break;
3984 }
3985 return false;
3986 }
3987
3988 /* Generate a hash value for an expression. This can be used iteratively
3989 by passing a previous result as the "val" argument.
3990
3991 This function is intended to produce the same hash for expressions which
3992 would compare equal using operand_equal_p. */
3993
3994 hashval_t
3995 iterative_hash_expr (tree t, hashval_t val)
3996 {
3997 int i;
3998 enum tree_code code;
3999 char class;
4000
4001 if (t == NULL_TREE)
4002 return iterative_hash_pointer (t, val);
4003
4004 code = TREE_CODE (t);
4005
4006 switch (code)
4007 {
4008 /* Alas, constants aren't shared, so we can't rely on pointer
4009 identity. */
4010 case INTEGER_CST:
4011 val = iterative_hash_host_wide_int (TREE_INT_CST_LOW (t), val);
4012 return iterative_hash_host_wide_int (TREE_INT_CST_HIGH (t), val);
4013 case REAL_CST:
4014 {
4015 unsigned int val2 = real_hash (TREE_REAL_CST_PTR (t));
4016
4017 return iterative_hash_hashval_t (val2, val);
4018 }
4019 case STRING_CST:
4020 return iterative_hash (TREE_STRING_POINTER (t),
4021 TREE_STRING_LENGTH (t), val);
4022 case COMPLEX_CST:
4023 val = iterative_hash_expr (TREE_REALPART (t), val);
4024 return iterative_hash_expr (TREE_IMAGPART (t), val);
4025 case VECTOR_CST:
4026 return iterative_hash_expr (TREE_VECTOR_CST_ELTS (t), val);
4027
4028 case SSA_NAME:
4029 case VALUE_HANDLE:
4030 /* we can just compare by pointer. */
4031 return iterative_hash_pointer (t, val);
4032
4033 case TREE_LIST:
4034 /* A list of expressions, for a CALL_EXPR or as the elements of a
4035 VECTOR_CST. */
4036 for (; t; t = TREE_CHAIN (t))
4037 val = iterative_hash_expr (TREE_VALUE (t), val);
4038 return val;
4039 default:
4040 class = TREE_CODE_CLASS (code);
4041
4042 if (class == 'd')
4043 {
4044 /* Decls we can just compare by pointer. */
4045 val = iterative_hash_pointer (t, val);
4046 }
4047 else if (IS_EXPR_CODE_CLASS (class))
4048 {
4049 val = iterative_hash_object (code, val);
4050
4051 /* Don't hash the type, that can lead to having nodes which
4052 compare equal according to operand_equal_p, but which
4053 have different hash codes. */
4054 if (code == NOP_EXPR
4055 || code == CONVERT_EXPR
4056 || code == NON_LVALUE_EXPR)
4057 {
4058 /* Make sure to include signness in the hash computation. */
4059 val += TYPE_UNSIGNED (TREE_TYPE (t));
4060 val = iterative_hash_expr (TREE_OPERAND (t, 0), val);
4061 }
4062
4063 else if (commutative_tree_code (code))
4064 {
4065 /* It's a commutative expression. We want to hash it the same
4066 however it appears. We do this by first hashing both operands
4067 and then rehashing based on the order of their independent
4068 hashes. */
4069 hashval_t one = iterative_hash_expr (TREE_OPERAND (t, 0), 0);
4070 hashval_t two = iterative_hash_expr (TREE_OPERAND (t, 1), 0);
4071 hashval_t t;
4072
4073 if (one > two)
4074 t = one, one = two, two = t;
4075
4076 val = iterative_hash_hashval_t (one, val);
4077 val = iterative_hash_hashval_t (two, val);
4078 }
4079 else
4080 for (i = first_rtl_op (code) - 1; i >= 0; --i)
4081 val = iterative_hash_expr (TREE_OPERAND (t, i), val);
4082 }
4083 else
4084 gcc_unreachable ();
4085 return val;
4086 break;
4087 }
4088 }
4089 \f
4090 /* Constructors for pointer, array and function types.
4091 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
4092 constructed by language-dependent code, not here.) */
4093
4094 /* Construct, lay out and return the type of pointers to TO_TYPE with
4095 mode MODE. If CAN_ALIAS_ALL is TRUE, indicate this type can
4096 reference all of memory. If such a type has already been
4097 constructed, reuse it. */
4098
4099 tree
4100 build_pointer_type_for_mode (tree to_type, enum machine_mode mode,
4101 bool can_alias_all)
4102 {
4103 tree t;
4104
4105 /* In some cases, languages will have things that aren't a POINTER_TYPE
4106 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
4107 In that case, return that type without regard to the rest of our
4108 operands.
4109
4110 ??? This is a kludge, but consistent with the way this function has
4111 always operated and there doesn't seem to be a good way to avoid this
4112 at the moment. */
4113 if (TYPE_POINTER_TO (to_type) != 0
4114 && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
4115 return TYPE_POINTER_TO (to_type);
4116
4117 /* First, if we already have a type for pointers to TO_TYPE and it's
4118 the proper mode, use it. */
4119 for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
4120 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
4121 return t;
4122
4123 t = make_node (POINTER_TYPE);
4124
4125 TREE_TYPE (t) = to_type;
4126 TYPE_MODE (t) = mode;
4127 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
4128 TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
4129 TYPE_POINTER_TO (to_type) = t;
4130
4131 /* Lay out the type. This function has many callers that are concerned
4132 with expression-construction, and this simplifies them all. */
4133 layout_type (t);
4134
4135 return t;
4136 }
4137
4138 /* By default build pointers in ptr_mode. */
4139
4140 tree
4141 build_pointer_type (tree to_type)
4142 {
4143 return build_pointer_type_for_mode (to_type, ptr_mode, false);
4144 }
4145
4146 /* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE. */
4147
4148 tree
4149 build_reference_type_for_mode (tree to_type, enum machine_mode mode,
4150 bool can_alias_all)
4151 {
4152 tree t;
4153
4154 /* In some cases, languages will have things that aren't a REFERENCE_TYPE
4155 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
4156 In that case, return that type without regard to the rest of our
4157 operands.
4158
4159 ??? This is a kludge, but consistent with the way this function has
4160 always operated and there doesn't seem to be a good way to avoid this
4161 at the moment. */
4162 if (TYPE_REFERENCE_TO (to_type) != 0
4163 && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
4164 return TYPE_REFERENCE_TO (to_type);
4165
4166 /* First, if we already have a type for pointers to TO_TYPE and it's
4167 the proper mode, use it. */
4168 for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
4169 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
4170 return t;
4171
4172 t = make_node (REFERENCE_TYPE);
4173
4174 TREE_TYPE (t) = to_type;
4175 TYPE_MODE (t) = mode;
4176 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
4177 TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
4178 TYPE_REFERENCE_TO (to_type) = t;
4179
4180 layout_type (t);
4181
4182 return t;
4183 }
4184
4185
4186 /* Build the node for the type of references-to-TO_TYPE by default
4187 in ptr_mode. */
4188
4189 tree
4190 build_reference_type (tree to_type)
4191 {
4192 return build_reference_type_for_mode (to_type, ptr_mode, false);
4193 }
4194
4195 /* Build a type that is compatible with t but has no cv quals anywhere
4196 in its type, thus
4197
4198 const char *const *const * -> char ***. */
4199
4200 tree
4201 build_type_no_quals (tree t)
4202 {
4203 switch (TREE_CODE (t))
4204 {
4205 case POINTER_TYPE:
4206 return build_pointer_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
4207 TYPE_MODE (t),
4208 TYPE_REF_CAN_ALIAS_ALL (t));
4209 case REFERENCE_TYPE:
4210 return
4211 build_reference_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
4212 TYPE_MODE (t),
4213 TYPE_REF_CAN_ALIAS_ALL (t));
4214 default:
4215 return TYPE_MAIN_VARIANT (t);
4216 }
4217 }
4218
4219 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
4220 MAXVAL should be the maximum value in the domain
4221 (one less than the length of the array).
4222
4223 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
4224 We don't enforce this limit, that is up to caller (e.g. language front end).
4225 The limit exists because the result is a signed type and we don't handle
4226 sizes that use more than one HOST_WIDE_INT. */
4227
4228 tree
4229 build_index_type (tree maxval)
4230 {
4231 tree itype = make_node (INTEGER_TYPE);
4232
4233 TREE_TYPE (itype) = sizetype;
4234 TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
4235 TYPE_MIN_VALUE (itype) = size_zero_node;
4236 TYPE_MAX_VALUE (itype) = convert (sizetype, maxval);
4237 TYPE_MODE (itype) = TYPE_MODE (sizetype);
4238 TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
4239 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (sizetype);
4240 TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
4241 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (sizetype);
4242
4243 if (host_integerp (maxval, 1))
4244 return type_hash_canon (tree_low_cst (maxval, 1), itype);
4245 else
4246 return itype;
4247 }
4248
4249 /* Builds a signed or unsigned integer type of precision PRECISION.
4250 Used for C bitfields whose precision does not match that of
4251 built-in target types. */
4252 tree
4253 build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
4254 int unsignedp)
4255 {
4256 tree itype = make_node (INTEGER_TYPE);
4257
4258 TYPE_PRECISION (itype) = precision;
4259
4260 if (unsignedp)
4261 fixup_unsigned_type (itype);
4262 else
4263 fixup_signed_type (itype);
4264
4265 if (host_integerp (TYPE_MAX_VALUE (itype), 1))
4266 return type_hash_canon (tree_low_cst (TYPE_MAX_VALUE (itype), 1), itype);
4267
4268 return itype;
4269 }
4270
4271 /* Create a range of some discrete type TYPE (an INTEGER_TYPE,
4272 ENUMERAL_TYPE, BOOLEAN_TYPE, or CHAR_TYPE), with
4273 low bound LOWVAL and high bound HIGHVAL.
4274 if TYPE==NULL_TREE, sizetype is used. */
4275
4276 tree
4277 build_range_type (tree type, tree lowval, tree highval)
4278 {
4279 tree itype = make_node (INTEGER_TYPE);
4280
4281 TREE_TYPE (itype) = type;
4282 if (type == NULL_TREE)
4283 type = sizetype;
4284
4285 TYPE_MIN_VALUE (itype) = convert (type, lowval);
4286 TYPE_MAX_VALUE (itype) = highval ? convert (type, highval) : NULL;
4287
4288 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
4289 TYPE_MODE (itype) = TYPE_MODE (type);
4290 TYPE_SIZE (itype) = TYPE_SIZE (type);
4291 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
4292 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
4293 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
4294
4295 if (host_integerp (lowval, 0) && highval != 0 && host_integerp (highval, 0))
4296 return type_hash_canon (tree_low_cst (highval, 0)
4297 - tree_low_cst (lowval, 0),
4298 itype);
4299 else
4300 return itype;
4301 }
4302
4303 /* Just like build_index_type, but takes lowval and highval instead
4304 of just highval (maxval). */
4305
4306 tree
4307 build_index_2_type (tree lowval, tree highval)
4308 {
4309 return build_range_type (sizetype, lowval, highval);
4310 }
4311
4312 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
4313 and number of elements specified by the range of values of INDEX_TYPE.
4314 If such a type has already been constructed, reuse it. */
4315
4316 tree
4317 build_array_type (tree elt_type, tree index_type)
4318 {
4319 tree t;
4320 hashval_t hashcode = 0;
4321
4322 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
4323 {
4324 error ("arrays of functions are not meaningful");
4325 elt_type = integer_type_node;
4326 }
4327
4328 t = make_node (ARRAY_TYPE);
4329 TREE_TYPE (t) = elt_type;
4330 TYPE_DOMAIN (t) = index_type;
4331
4332 if (index_type == 0)
4333 return t;
4334
4335 hashcode = iterative_hash_object (TYPE_HASH (elt_type), hashcode);
4336 hashcode = iterative_hash_object (TYPE_HASH (index_type), hashcode);
4337 t = type_hash_canon (hashcode, t);
4338
4339 if (!COMPLETE_TYPE_P (t))
4340 layout_type (t);
4341 return t;
4342 }
4343
4344 /* Return the TYPE of the elements comprising
4345 the innermost dimension of ARRAY. */
4346
4347 tree
4348 get_inner_array_type (tree array)
4349 {
4350 tree type = TREE_TYPE (array);
4351
4352 while (TREE_CODE (type) == ARRAY_TYPE)
4353 type = TREE_TYPE (type);
4354
4355 return type;
4356 }
4357
4358 /* Construct, lay out and return
4359 the type of functions returning type VALUE_TYPE
4360 given arguments of types ARG_TYPES.
4361 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
4362 are data type nodes for the arguments of the function.
4363 If such a type has already been constructed, reuse it. */
4364
4365 tree
4366 build_function_type (tree value_type, tree arg_types)
4367 {
4368 tree t;
4369 hashval_t hashcode = 0;
4370
4371 if (TREE_CODE (value_type) == FUNCTION_TYPE)
4372 {
4373 error ("function return type cannot be function");
4374 value_type = integer_type_node;
4375 }
4376
4377 /* Make a node of the sort we want. */
4378 t = make_node (FUNCTION_TYPE);
4379 TREE_TYPE (t) = value_type;
4380 TYPE_ARG_TYPES (t) = arg_types;
4381
4382 /* If we already have such a type, use the old one. */
4383 hashcode = iterative_hash_object (TYPE_HASH (value_type), hashcode);
4384 hashcode = type_hash_list (arg_types, hashcode);
4385 t = type_hash_canon (hashcode, t);
4386
4387 if (!COMPLETE_TYPE_P (t))
4388 layout_type (t);
4389 return t;
4390 }
4391
4392 /* Build a function type. The RETURN_TYPE is the type returned by the
4393 function. If additional arguments are provided, they are
4394 additional argument types. The list of argument types must always
4395 be terminated by NULL_TREE. */
4396
4397 tree
4398 build_function_type_list (tree return_type, ...)
4399 {
4400 tree t, args, last;
4401 va_list p;
4402
4403 va_start (p, return_type);
4404
4405 t = va_arg (p, tree);
4406 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (p, tree))
4407 args = tree_cons (NULL_TREE, t, args);
4408
4409 last = args;
4410 args = nreverse (args);
4411 TREE_CHAIN (last) = void_list_node;
4412 args = build_function_type (return_type, args);
4413
4414 va_end (p);
4415 return args;
4416 }
4417
4418 /* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
4419 and ARGTYPES (a TREE_LIST) are the return type and arguments types
4420 for the method. An implicit additional parameter (of type
4421 pointer-to-BASETYPE) is added to the ARGTYPES. */
4422
4423 tree
4424 build_method_type_directly (tree basetype,
4425 tree rettype,
4426 tree argtypes)
4427 {
4428 tree t;
4429 tree ptype;
4430 int hashcode = 0;
4431
4432 /* Make a node of the sort we want. */
4433 t = make_node (METHOD_TYPE);
4434
4435 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
4436 TREE_TYPE (t) = rettype;
4437 ptype = build_pointer_type (basetype);
4438
4439 /* The actual arglist for this function includes a "hidden" argument
4440 which is "this". Put it into the list of argument types. */
4441 argtypes = tree_cons (NULL_TREE, ptype, argtypes);
4442 TYPE_ARG_TYPES (t) = argtypes;
4443
4444 /* If we already have such a type, use the old one. */
4445 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
4446 hashcode = iterative_hash_object (TYPE_HASH (rettype), hashcode);
4447 hashcode = type_hash_list (argtypes, hashcode);
4448 t = type_hash_canon (hashcode, t);
4449
4450 if (!COMPLETE_TYPE_P (t))
4451 layout_type (t);
4452
4453 return t;
4454 }
4455
4456 /* Construct, lay out and return the type of methods belonging to class
4457 BASETYPE and whose arguments and values are described by TYPE.
4458 If that type exists already, reuse it.
4459 TYPE must be a FUNCTION_TYPE node. */
4460
4461 tree
4462 build_method_type (tree basetype, tree type)
4463 {
4464 gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
4465
4466 return build_method_type_directly (basetype,
4467 TREE_TYPE (type),
4468 TYPE_ARG_TYPES (type));
4469 }
4470
4471 /* Construct, lay out and return the type of offsets to a value
4472 of type TYPE, within an object of type BASETYPE.
4473 If a suitable offset type exists already, reuse it. */
4474
4475 tree
4476 build_offset_type (tree basetype, tree type)
4477 {
4478 tree t;
4479 hashval_t hashcode = 0;
4480
4481 /* Make a node of the sort we want. */
4482 t = make_node (OFFSET_TYPE);
4483
4484 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
4485 TREE_TYPE (t) = type;
4486
4487 /* If we already have such a type, use the old one. */
4488 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
4489 hashcode = iterative_hash_object (TYPE_HASH (type), hashcode);
4490 t = type_hash_canon (hashcode, t);
4491
4492 if (!COMPLETE_TYPE_P (t))
4493 layout_type (t);
4494
4495 return t;
4496 }
4497
4498 /* Create a complex type whose components are COMPONENT_TYPE. */
4499
4500 tree
4501 build_complex_type (tree component_type)
4502 {
4503 tree t;
4504 hashval_t hashcode;
4505
4506 /* Make a node of the sort we want. */
4507 t = make_node (COMPLEX_TYPE);
4508
4509 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
4510
4511 /* If we already have such a type, use the old one. */
4512 hashcode = iterative_hash_object (TYPE_HASH (component_type), 0);
4513 t = type_hash_canon (hashcode, t);
4514
4515 if (!COMPLETE_TYPE_P (t))
4516 layout_type (t);
4517
4518 /* If we are writing Dwarf2 output we need to create a name,
4519 since complex is a fundamental type. */
4520 if ((write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
4521 && ! TYPE_NAME (t))
4522 {
4523 const char *name;
4524 if (component_type == char_type_node)
4525 name = "complex char";
4526 else if (component_type == signed_char_type_node)
4527 name = "complex signed char";
4528 else if (component_type == unsigned_char_type_node)
4529 name = "complex unsigned char";
4530 else if (component_type == short_integer_type_node)
4531 name = "complex short int";
4532 else if (component_type == short_unsigned_type_node)
4533 name = "complex short unsigned int";
4534 else if (component_type == integer_type_node)
4535 name = "complex int";
4536 else if (component_type == unsigned_type_node)
4537 name = "complex unsigned int";
4538 else if (component_type == long_integer_type_node)
4539 name = "complex long int";
4540 else if (component_type == long_unsigned_type_node)
4541 name = "complex long unsigned int";
4542 else if (component_type == long_long_integer_type_node)
4543 name = "complex long long int";
4544 else if (component_type == long_long_unsigned_type_node)
4545 name = "complex long long unsigned int";
4546 else
4547 name = 0;
4548
4549 if (name != 0)
4550 TYPE_NAME (t) = get_identifier (name);
4551 }
4552
4553 return build_qualified_type (t, TYPE_QUALS (component_type));
4554 }
4555 \f
4556 /* Return OP, stripped of any conversions to wider types as much as is safe.
4557 Converting the value back to OP's type makes a value equivalent to OP.
4558
4559 If FOR_TYPE is nonzero, we return a value which, if converted to
4560 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
4561
4562 If FOR_TYPE is nonzero, unaligned bit-field references may be changed to the
4563 narrowest type that can hold the value, even if they don't exactly fit.
4564 Otherwise, bit-field references are changed to a narrower type
4565 only if they can be fetched directly from memory in that type.
4566
4567 OP must have integer, real or enumeral type. Pointers are not allowed!
4568
4569 There are some cases where the obvious value we could return
4570 would regenerate to OP if converted to OP's type,
4571 but would not extend like OP to wider types.
4572 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
4573 For example, if OP is (unsigned short)(signed char)-1,
4574 we avoid returning (signed char)-1 if FOR_TYPE is int,
4575 even though extending that to an unsigned short would regenerate OP,
4576 since the result of extending (signed char)-1 to (int)
4577 is different from (int) OP. */
4578
4579 tree
4580 get_unwidened (tree op, tree for_type)
4581 {
4582 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
4583 tree type = TREE_TYPE (op);
4584 unsigned final_prec
4585 = TYPE_PRECISION (for_type != 0 ? for_type : type);
4586 int uns
4587 = (for_type != 0 && for_type != type
4588 && final_prec > TYPE_PRECISION (type)
4589 && TYPE_UNSIGNED (type));
4590 tree win = op;
4591
4592 while (TREE_CODE (op) == NOP_EXPR)
4593 {
4594 int bitschange
4595 = TYPE_PRECISION (TREE_TYPE (op))
4596 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
4597
4598 /* Truncations are many-one so cannot be removed.
4599 Unless we are later going to truncate down even farther. */
4600 if (bitschange < 0
4601 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
4602 break;
4603
4604 /* See what's inside this conversion. If we decide to strip it,
4605 we will set WIN. */
4606 op = TREE_OPERAND (op, 0);
4607
4608 /* If we have not stripped any zero-extensions (uns is 0),
4609 we can strip any kind of extension.
4610 If we have previously stripped a zero-extension,
4611 only zero-extensions can safely be stripped.
4612 Any extension can be stripped if the bits it would produce
4613 are all going to be discarded later by truncating to FOR_TYPE. */
4614
4615 if (bitschange > 0)
4616 {
4617 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
4618 win = op;
4619 /* TYPE_UNSIGNED says whether this is a zero-extension.
4620 Let's avoid computing it if it does not affect WIN
4621 and if UNS will not be needed again. */
4622 if ((uns || TREE_CODE (op) == NOP_EXPR)
4623 && TYPE_UNSIGNED (TREE_TYPE (op)))
4624 {
4625 uns = 1;
4626 win = op;
4627 }
4628 }
4629 }
4630
4631 if (TREE_CODE (op) == COMPONENT_REF
4632 /* Since type_for_size always gives an integer type. */
4633 && TREE_CODE (type) != REAL_TYPE
4634 /* Don't crash if field not laid out yet. */
4635 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
4636 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
4637 {
4638 unsigned int innerprec
4639 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
4640 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
4641 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
4642 type = lang_hooks.types.type_for_size (innerprec, unsignedp);
4643
4644 /* We can get this structure field in the narrowest type it fits in.
4645 If FOR_TYPE is 0, do this only for a field that matches the
4646 narrower type exactly and is aligned for it
4647 The resulting extension to its nominal type (a fullword type)
4648 must fit the same conditions as for other extensions. */
4649
4650 if (type != 0
4651 && INT_CST_LT_UNSIGNED (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (op)))
4652 && (for_type || ! DECL_BIT_FIELD (TREE_OPERAND (op, 1)))
4653 && (! uns || final_prec <= innerprec || unsignedp))
4654 {
4655 win = build3 (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4656 TREE_OPERAND (op, 1), NULL_TREE);
4657 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4658 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4659 }
4660 }
4661
4662 return win;
4663 }
4664 \f
4665 /* Return OP or a simpler expression for a narrower value
4666 which can be sign-extended or zero-extended to give back OP.
4667 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
4668 or 0 if the value should be sign-extended. */
4669
4670 tree
4671 get_narrower (tree op, int *unsignedp_ptr)
4672 {
4673 int uns = 0;
4674 int first = 1;
4675 tree win = op;
4676 bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));
4677
4678 while (TREE_CODE (op) == NOP_EXPR)
4679 {
4680 int bitschange
4681 = (TYPE_PRECISION (TREE_TYPE (op))
4682 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
4683
4684 /* Truncations are many-one so cannot be removed. */
4685 if (bitschange < 0)
4686 break;
4687
4688 /* See what's inside this conversion. If we decide to strip it,
4689 we will set WIN. */
4690
4691 if (bitschange > 0)
4692 {
4693 op = TREE_OPERAND (op, 0);
4694 /* An extension: the outermost one can be stripped,
4695 but remember whether it is zero or sign extension. */
4696 if (first)
4697 uns = TYPE_UNSIGNED (TREE_TYPE (op));
4698 /* Otherwise, if a sign extension has been stripped,
4699 only sign extensions can now be stripped;
4700 if a zero extension has been stripped, only zero-extensions. */
4701 else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
4702 break;
4703 first = 0;
4704 }
4705 else /* bitschange == 0 */
4706 {
4707 /* A change in nominal type can always be stripped, but we must
4708 preserve the unsignedness. */
4709 if (first)
4710 uns = TYPE_UNSIGNED (TREE_TYPE (op));
4711 first = 0;
4712 op = TREE_OPERAND (op, 0);
4713 /* Keep trying to narrow, but don't assign op to win if it
4714 would turn an integral type into something else. */
4715 if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
4716 continue;
4717 }
4718
4719 win = op;
4720 }
4721
4722 if (TREE_CODE (op) == COMPONENT_REF
4723 /* Since type_for_size always gives an integer type. */
4724 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
4725 /* Ensure field is laid out already. */
4726 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
4727 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
4728 {
4729 unsigned HOST_WIDE_INT innerprec
4730 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
4731 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
4732 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
4733 tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
4734
4735 /* We can get this structure field in a narrower type that fits it,
4736 but the resulting extension to its nominal type (a fullword type)
4737 must satisfy the same conditions as for other extensions.
4738
4739 Do this only for fields that are aligned (not bit-fields),
4740 because when bit-field insns will be used there is no
4741 advantage in doing this. */
4742
4743 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
4744 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
4745 && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
4746 && type != 0)
4747 {
4748 if (first)
4749 uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
4750 win = build3 (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4751 TREE_OPERAND (op, 1), NULL_TREE);
4752 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4753 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4754 }
4755 }
4756 *unsignedp_ptr = uns;
4757 return win;
4758 }
4759 \f
4760 /* Nonzero if integer constant C has a value that is permissible
4761 for type TYPE (an INTEGER_TYPE). */
4762
4763 int
4764 int_fits_type_p (tree c, tree type)
4765 {
4766 tree type_low_bound = TYPE_MIN_VALUE (type);
4767 tree type_high_bound = TYPE_MAX_VALUE (type);
4768 int ok_for_low_bound, ok_for_high_bound;
4769
4770 /* Perform some generic filtering first, which may allow making a decision
4771 even if the bounds are not constant. First, negative integers never fit
4772 in unsigned types, */
4773 if ((TYPE_UNSIGNED (type) && tree_int_cst_sgn (c) < 0)
4774 /* Also, unsigned integers with top bit set never fit signed types. */
4775 || (! TYPE_UNSIGNED (type)
4776 && TYPE_UNSIGNED (TREE_TYPE (c)) && tree_int_cst_msb (c)))
4777 return 0;
4778
4779 /* If at least one bound of the type is a constant integer, we can check
4780 ourselves and maybe make a decision. If no such decision is possible, but
4781 this type is a subtype, try checking against that. Otherwise, use
4782 force_fit_type, which checks against the precision.
4783
4784 Compute the status for each possibly constant bound, and return if we see
4785 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
4786 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
4787 for "constant known to fit". */
4788
4789 ok_for_low_bound = -1;
4790 ok_for_high_bound = -1;
4791
4792 /* Check if C >= type_low_bound. */
4793 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
4794 {
4795 ok_for_low_bound = ! tree_int_cst_lt (c, type_low_bound);
4796 if (! ok_for_low_bound)
4797 return 0;
4798 }
4799
4800 /* Check if c <= type_high_bound. */
4801 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
4802 {
4803 ok_for_high_bound = ! tree_int_cst_lt (type_high_bound, c);
4804 if (! ok_for_high_bound)
4805 return 0;
4806 }
4807
4808 /* If the constant fits both bounds, the result is known. */
4809 if (ok_for_low_bound == 1 && ok_for_high_bound == 1)
4810 return 1;
4811
4812 /* If we haven't been able to decide at this point, there nothing more we
4813 can check ourselves here. Look at the base type if we have one. */
4814 else if (TREE_CODE (type) == INTEGER_TYPE && TREE_TYPE (type) != 0)
4815 return int_fits_type_p (c, TREE_TYPE (type));
4816
4817 /* Or to force_fit_type, if nothing else. */
4818 else
4819 {
4820 c = copy_node (c);
4821 TREE_TYPE (c) = type;
4822 c = force_fit_type (c, -1, false, false);
4823 return !TREE_OVERFLOW (c);
4824 }
4825 }
4826
4827 /* Subprogram of following function. Called by walk_tree.
4828
4829 Return *TP if it is an automatic variable or parameter of the
4830 function passed in as DATA. */
4831
4832 static tree
4833 find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
4834 {
4835 tree fn = (tree) data;
4836
4837 if (TYPE_P (*tp))
4838 *walk_subtrees = 0;
4839
4840 else if (DECL_P (*tp) && lang_hooks.tree_inlining.auto_var_in_fn_p (*tp, fn))
4841 return *tp;
4842
4843 return NULL_TREE;
4844 }
4845
4846 /* Returns true if T is, contains, or refers to a type with variable
4847 size. If FN is nonzero, only return true if a modifier of the type
4848 or position of FN is a variable or parameter inside FN.
4849
4850 This concept is more general than that of C99 'variably modified types':
4851 in C99, a struct type is never variably modified because a VLA may not
4852 appear as a structure member. However, in GNU C code like:
4853
4854 struct S { int i[f()]; };
4855
4856 is valid, and other languages may define similar constructs. */
4857
4858 bool
4859 variably_modified_type_p (tree type, tree fn)
4860 {
4861 tree t;
4862
4863 /* Test if T is either variable (if FN is zero) or an expression containing
4864 a variable in FN. */
4865 #define RETURN_TRUE_IF_VAR(T) \
4866 do { tree _t = (T); \
4867 if (_t && _t != error_mark_node && TREE_CODE (_t) != INTEGER_CST \
4868 && (!fn || walk_tree (&_t, find_var_from_fn, fn, NULL))) \
4869 return true; } while (0)
4870
4871 if (type == error_mark_node)
4872 return false;
4873
4874 /* If TYPE itself has variable size, it is variably modified.
4875
4876 We do not yet have a representation of the C99 '[*]' syntax.
4877 When a representation is chosen, this function should be modified
4878 to test for that case as well. */
4879 RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
4880 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT(type));
4881
4882 switch (TREE_CODE (type))
4883 {
4884 case POINTER_TYPE:
4885 case REFERENCE_TYPE:
4886 case ARRAY_TYPE:
4887 case SET_TYPE:
4888 case VECTOR_TYPE:
4889 if (variably_modified_type_p (TREE_TYPE (type), fn))
4890 return true;
4891 break;
4892
4893 case FUNCTION_TYPE:
4894 case METHOD_TYPE:
4895 /* If TYPE is a function type, it is variably modified if any of the
4896 parameters or the return type are variably modified. */
4897 if (variably_modified_type_p (TREE_TYPE (type), fn))
4898 return true;
4899
4900 for (t = TYPE_ARG_TYPES (type);
4901 t && t != void_list_node;
4902 t = TREE_CHAIN (t))
4903 if (variably_modified_type_p (TREE_VALUE (t), fn))
4904 return true;
4905 break;
4906
4907 case INTEGER_TYPE:
4908 case REAL_TYPE:
4909 case ENUMERAL_TYPE:
4910 case BOOLEAN_TYPE:
4911 case CHAR_TYPE:
4912 /* Scalar types are variably modified if their end points
4913 aren't constant. */
4914 RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
4915 RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
4916 break;
4917
4918 case RECORD_TYPE:
4919 case UNION_TYPE:
4920 case QUAL_UNION_TYPE:
4921 /* We can't see if any of the field are variably-modified by the
4922 definition we normally use, since that would produce infinite
4923 recursion via pointers. */
4924 /* This is variably modified if some field's type is. */
4925 for (t = TYPE_FIELDS (type); t; t = TREE_CHAIN (t))
4926 if (TREE_CODE (t) == FIELD_DECL)
4927 {
4928 RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
4929 RETURN_TRUE_IF_VAR (DECL_SIZE (t));
4930 RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));
4931
4932 if (TREE_CODE (type) == QUAL_UNION_TYPE)
4933 RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));
4934 }
4935 break;
4936
4937 default:
4938 break;
4939 }
4940
4941 /* The current language may have other cases to check, but in general,
4942 all other types are not variably modified. */
4943 return lang_hooks.tree_inlining.var_mod_type_p (type, fn);
4944
4945 #undef RETURN_TRUE_IF_VAR
4946 }
4947
4948 /* Given a DECL or TYPE, return the scope in which it was declared, or
4949 NULL_TREE if there is no containing scope. */
4950
4951 tree
4952 get_containing_scope (tree t)
4953 {
4954 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
4955 }
4956
4957 /* Return the innermost context enclosing DECL that is
4958 a FUNCTION_DECL, or zero if none. */
4959
4960 tree
4961 decl_function_context (tree decl)
4962 {
4963 tree context;
4964
4965 if (TREE_CODE (decl) == ERROR_MARK)
4966 return 0;
4967
4968 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
4969 where we look up the function at runtime. Such functions always take
4970 a first argument of type 'pointer to real context'.
4971
4972 C++ should really be fixed to use DECL_CONTEXT for the real context,
4973 and use something else for the "virtual context". */
4974 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
4975 context
4976 = TYPE_MAIN_VARIANT
4977 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4978 else
4979 context = DECL_CONTEXT (decl);
4980
4981 while (context && TREE_CODE (context) != FUNCTION_DECL)
4982 {
4983 if (TREE_CODE (context) == BLOCK)
4984 context = BLOCK_SUPERCONTEXT (context);
4985 else
4986 context = get_containing_scope (context);
4987 }
4988
4989 return context;
4990 }
4991
4992 /* Return the innermost context enclosing DECL that is
4993 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
4994 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
4995
4996 tree
4997 decl_type_context (tree decl)
4998 {
4999 tree context = DECL_CONTEXT (decl);
5000
5001 while (context)
5002 switch (TREE_CODE (context))
5003 {
5004 case NAMESPACE_DECL:
5005 case TRANSLATION_UNIT_DECL:
5006 return NULL_TREE;
5007
5008 case RECORD_TYPE:
5009 case UNION_TYPE:
5010 case QUAL_UNION_TYPE:
5011 return context;
5012
5013 case TYPE_DECL:
5014 case FUNCTION_DECL:
5015 context = DECL_CONTEXT (context);
5016 break;
5017
5018 case BLOCK:
5019 context = BLOCK_SUPERCONTEXT (context);
5020 break;
5021
5022 default:
5023 gcc_unreachable ();
5024 }
5025
5026 return NULL_TREE;
5027 }
5028
5029 /* CALL is a CALL_EXPR. Return the declaration for the function
5030 called, or NULL_TREE if the called function cannot be
5031 determined. */
5032
5033 tree
5034 get_callee_fndecl (tree call)
5035 {
5036 tree addr;
5037
5038 /* It's invalid to call this function with anything but a
5039 CALL_EXPR. */
5040 gcc_assert (TREE_CODE (call) == CALL_EXPR);
5041
5042 /* The first operand to the CALL is the address of the function
5043 called. */
5044 addr = TREE_OPERAND (call, 0);
5045
5046 STRIP_NOPS (addr);
5047
5048 /* If this is a readonly function pointer, extract its initial value. */
5049 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
5050 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
5051 && DECL_INITIAL (addr))
5052 addr = DECL_INITIAL (addr);
5053
5054 /* If the address is just `&f' for some function `f', then we know
5055 that `f' is being called. */
5056 if (TREE_CODE (addr) == ADDR_EXPR
5057 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
5058 return TREE_OPERAND (addr, 0);
5059
5060 /* We couldn't figure out what was being called. Maybe the front
5061 end has some idea. */
5062 return lang_hooks.lang_get_callee_fndecl (call);
5063 }
5064
5065 /* Print debugging information about tree nodes generated during the compile,
5066 and any language-specific information. */
5067
5068 void
5069 dump_tree_statistics (void)
5070 {
5071 #ifdef GATHER_STATISTICS
5072 int i;
5073 int total_nodes, total_bytes;
5074 #endif
5075
5076 fprintf (stderr, "\n??? tree nodes created\n\n");
5077 #ifdef GATHER_STATISTICS
5078 fprintf (stderr, "Kind Nodes Bytes\n");
5079 fprintf (stderr, "---------------------------------------\n");
5080 total_nodes = total_bytes = 0;
5081 for (i = 0; i < (int) all_kinds; i++)
5082 {
5083 fprintf (stderr, "%-20s %7d %10d\n", tree_node_kind_names[i],
5084 tree_node_counts[i], tree_node_sizes[i]);
5085 total_nodes += tree_node_counts[i];
5086 total_bytes += tree_node_sizes[i];
5087 }
5088 fprintf (stderr, "---------------------------------------\n");
5089 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_nodes, total_bytes);
5090 fprintf (stderr, "---------------------------------------\n");
5091 ssanames_print_statistics ();
5092 phinodes_print_statistics ();
5093 #else
5094 fprintf (stderr, "(No per-node statistics)\n");
5095 #endif
5096 print_type_hash_statistics ();
5097 lang_hooks.print_statistics ();
5098 }
5099 \f
5100 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
5101
5102 /* Generate a crc32 of a string. */
5103
5104 unsigned
5105 crc32_string (unsigned chksum, const char *string)
5106 {
5107 do
5108 {
5109 unsigned value = *string << 24;
5110 unsigned ix;
5111
5112 for (ix = 8; ix--; value <<= 1)
5113 {
5114 unsigned feedback;
5115
5116 feedback = (value ^ chksum) & 0x80000000 ? 0x04c11db7 : 0;
5117 chksum <<= 1;
5118 chksum ^= feedback;
5119 }
5120 }
5121 while (*string++);
5122 return chksum;
5123 }
5124
5125 /* P is a string that will be used in a symbol. Mask out any characters
5126 that are not valid in that context. */
5127
5128 void
5129 clean_symbol_name (char *p)
5130 {
5131 for (; *p; p++)
5132 if (! (ISALNUM (*p)
5133 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
5134 || *p == '$'
5135 #endif
5136 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
5137 || *p == '.'
5138 #endif
5139 ))
5140 *p = '_';
5141 }
5142
5143 /* Generate a name for a function unique to this translation unit.
5144 TYPE is some string to identify the purpose of this function to the
5145 linker or collect2. */
5146
5147 tree
5148 get_file_function_name_long (const char *type)
5149 {
5150 char *buf;
5151 const char *p;
5152 char *q;
5153
5154 if (first_global_object_name)
5155 p = first_global_object_name;
5156 else
5157 {
5158 /* We don't have anything that we know to be unique to this translation
5159 unit, so use what we do have and throw in some randomness. */
5160 unsigned len;
5161 const char *name = weak_global_object_name;
5162 const char *file = main_input_filename;
5163
5164 if (! name)
5165 name = "";
5166 if (! file)
5167 file = input_filename;
5168
5169 len = strlen (file);
5170 q = alloca (9 * 2 + len + 1);
5171 memcpy (q, file, len + 1);
5172 clean_symbol_name (q);
5173
5174 sprintf (q + len, "_%08X_%08X", crc32_string (0, name),
5175 crc32_string (0, flag_random_seed));
5176
5177 p = q;
5178 }
5179
5180 buf = alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p) + strlen (type));
5181
5182 /* Set up the name of the file-level functions we may need.
5183 Use a global object (which is already required to be unique over
5184 the program) rather than the file name (which imposes extra
5185 constraints). */
5186 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
5187
5188 return get_identifier (buf);
5189 }
5190
5191 /* If KIND=='I', return a suitable global initializer (constructor) name.
5192 If KIND=='D', return a suitable global clean-up (destructor) name. */
5193
5194 tree
5195 get_file_function_name (int kind)
5196 {
5197 char p[2];
5198
5199 p[0] = kind;
5200 p[1] = 0;
5201
5202 return get_file_function_name_long (p);
5203 }
5204 \f
5205 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
5206 The result is placed in BUFFER (which has length BIT_SIZE),
5207 with one bit in each char ('\000' or '\001').
5208
5209 If the constructor is constant, NULL_TREE is returned.
5210 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
5211
5212 tree
5213 get_set_constructor_bits (tree init, char *buffer, int bit_size)
5214 {
5215 int i;
5216 tree vals;
5217 HOST_WIDE_INT domain_min
5218 = tree_low_cst (TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (init))), 0);
5219 tree non_const_bits = NULL_TREE;
5220
5221 for (i = 0; i < bit_size; i++)
5222 buffer[i] = 0;
5223
5224 for (vals = TREE_OPERAND (init, 1);
5225 vals != NULL_TREE; vals = TREE_CHAIN (vals))
5226 {
5227 if (!host_integerp (TREE_VALUE (vals), 0)
5228 || (TREE_PURPOSE (vals) != NULL_TREE
5229 && !host_integerp (TREE_PURPOSE (vals), 0)))
5230 non_const_bits
5231 = tree_cons (TREE_PURPOSE (vals), TREE_VALUE (vals), non_const_bits);
5232 else if (TREE_PURPOSE (vals) != NULL_TREE)
5233 {
5234 /* Set a range of bits to ones. */
5235 HOST_WIDE_INT lo_index
5236 = tree_low_cst (TREE_PURPOSE (vals), 0) - domain_min;
5237 HOST_WIDE_INT hi_index
5238 = tree_low_cst (TREE_VALUE (vals), 0) - domain_min;
5239
5240 gcc_assert (lo_index >= 0);
5241 gcc_assert (lo_index < bit_size);
5242 gcc_assert (hi_index >= 0);
5243 gcc_assert (hi_index < bit_size);
5244 for (; lo_index <= hi_index; lo_index++)
5245 buffer[lo_index] = 1;
5246 }
5247 else
5248 {
5249 /* Set a single bit to one. */
5250 HOST_WIDE_INT index
5251 = tree_low_cst (TREE_VALUE (vals), 0) - domain_min;
5252 if (index < 0 || index >= bit_size)
5253 {
5254 error ("invalid initializer for bit string");
5255 return NULL_TREE;
5256 }
5257 buffer[index] = 1;
5258 }
5259 }
5260 return non_const_bits;
5261 }
5262
5263 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
5264 The result is placed in BUFFER (which is an array of bytes).
5265 If the constructor is constant, NULL_TREE is returned.
5266 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
5267
5268 tree
5269 get_set_constructor_bytes (tree init, unsigned char *buffer, int wd_size)
5270 {
5271 int i;
5272 int set_word_size = BITS_PER_UNIT;
5273 int bit_size = wd_size * set_word_size;
5274 int bit_pos = 0;
5275 unsigned char *bytep = buffer;
5276 char *bit_buffer = alloca (bit_size);
5277 tree non_const_bits = get_set_constructor_bits (init, bit_buffer, bit_size);
5278
5279 for (i = 0; i < wd_size; i++)
5280 buffer[i] = 0;
5281
5282 for (i = 0; i < bit_size; i++)
5283 {
5284 if (bit_buffer[i])
5285 {
5286 if (BYTES_BIG_ENDIAN)
5287 *bytep |= (1 << (set_word_size - 1 - bit_pos));
5288 else
5289 *bytep |= 1 << bit_pos;
5290 }
5291 bit_pos++;
5292 if (bit_pos >= set_word_size)
5293 bit_pos = 0, bytep++;
5294 }
5295 return non_const_bits;
5296 }
5297 \f
5298 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
5299
5300 /* Complain that the tree code of NODE does not match the expected 0
5301 terminated list of trailing codes. FILE, LINE, and FUNCTION are of
5302 the caller. */
5303
5304 void
5305 tree_check_failed (const tree node, const char *file,
5306 int line, const char *function, ...)
5307 {
5308 va_list args;
5309 char *buffer;
5310 unsigned length = 0;
5311 int code;
5312
5313 va_start (args, function);
5314 while ((code = va_arg (args, int)))
5315 length += 4 + strlen (tree_code_name[code]);
5316 va_end (args);
5317 va_start (args, function);
5318 buffer = alloca (length);
5319 length = 0;
5320 while ((code = va_arg (args, int)))
5321 {
5322 if (length)
5323 {
5324 strcpy (buffer + length, " or ");
5325 length += 4;
5326 }
5327 strcpy (buffer + length, tree_code_name[code]);
5328 length += strlen (tree_code_name[code]);
5329 }
5330 va_end (args);
5331
5332 internal_error ("tree check: expected %s, have %s in %s, at %s:%d",
5333 buffer, tree_code_name[TREE_CODE (node)],
5334 function, trim_filename (file), line);
5335 }
5336
5337 /* Complain that the tree code of NODE does match the expected 0
5338 terminated list of trailing codes. FILE, LINE, and FUNCTION are of
5339 the caller. */
5340
5341 void
5342 tree_not_check_failed (const tree node, const char *file,
5343 int line, const char *function, ...)
5344 {
5345 va_list args;
5346 char *buffer;
5347 unsigned length = 0;
5348 int code;
5349
5350 va_start (args, function);
5351 while ((code = va_arg (args, int)))
5352 length += 4 + strlen (tree_code_name[code]);
5353 va_end (args);
5354 va_start (args, function);
5355 buffer = alloca (length);
5356 length = 0;
5357 while ((code = va_arg (args, int)))
5358 {
5359 if (length)
5360 {
5361 strcpy (buffer + length, " or ");
5362 length += 4;
5363 }
5364 strcpy (buffer + length, tree_code_name[code]);
5365 length += strlen (tree_code_name[code]);
5366 }
5367 va_end (args);
5368
5369 internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
5370 buffer, tree_code_name[TREE_CODE (node)],
5371 function, trim_filename (file), line);
5372 }
5373
5374 /* Similar to tree_check_failed, except that we check for a class of tree
5375 code, given in CL. */
5376
5377 void
5378 tree_class_check_failed (const tree node, int cl, const char *file,
5379 int line, const char *function)
5380 {
5381 internal_error
5382 ("tree check: expected class '%c', have '%c' (%s) in %s, at %s:%d",
5383 cl, TREE_CODE_CLASS (TREE_CODE (node)),
5384 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
5385 }
5386
5387 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
5388 (dynamically sized) vector. */
5389
5390 void
5391 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
5392 const char *function)
5393 {
5394 internal_error
5395 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
5396 idx + 1, len, function, trim_filename (file), line);
5397 }
5398
5399 /* Similar to above, except that the check is for the bounds of a PHI_NODE's
5400 (dynamically sized) vector. */
5401
5402 void
5403 phi_node_elt_check_failed (int idx, int len, const char *file, int line,
5404 const char *function)
5405 {
5406 internal_error
5407 ("tree check: accessed elt %d of phi_node with %d elts in %s, at %s:%d",
5408 idx + 1, len, function, trim_filename (file), line);
5409 }
5410
5411 /* Similar to above, except that the check is for the bounds of the operand
5412 vector of an expression node. */
5413
5414 void
5415 tree_operand_check_failed (int idx, enum tree_code code, const char *file,
5416 int line, const char *function)
5417 {
5418 internal_error
5419 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
5420 idx + 1, tree_code_name[code], TREE_CODE_LENGTH (code),
5421 function, trim_filename (file), line);
5422 }
5423 #endif /* ENABLE_TREE_CHECKING */
5424 \f
5425 /* Create a new vector type node holding SUBPARTS units of type INNERTYPE,
5426 and mapped to the machine mode MODE. Initialize its fields and build
5427 the information necessary for debugging output. */
5428
5429 static tree
5430 make_vector_type (tree innertype, int nunits, enum machine_mode mode)
5431 {
5432 tree t = make_node (VECTOR_TYPE);
5433
5434 TREE_TYPE (t) = innertype;
5435 TYPE_VECTOR_SUBPARTS (t) = nunits;
5436 TYPE_MODE (t) = mode;
5437 layout_type (t);
5438
5439 {
5440 tree index = build_int_cst (NULL_TREE, nunits - 1);
5441 tree array = build_array_type (innertype, build_index_type (index));
5442 tree rt = make_node (RECORD_TYPE);
5443
5444 TYPE_FIELDS (rt) = build_decl (FIELD_DECL, get_identifier ("f"), array);
5445 DECL_CONTEXT (TYPE_FIELDS (rt)) = rt;
5446 layout_type (rt);
5447 TYPE_DEBUG_REPRESENTATION_TYPE (t) = rt;
5448 /* In dwarfout.c, type lookup uses TYPE_UID numbers. We want to output
5449 the representation type, and we want to find that die when looking up
5450 the vector type. This is most easily achieved by making the TYPE_UID
5451 numbers equal. */
5452 TYPE_UID (rt) = TYPE_UID (t);
5453 }
5454
5455 return t;
5456 }
5457
5458 static tree
5459 make_or_reuse_type (unsigned size, int unsignedp)
5460 {
5461 if (size == INT_TYPE_SIZE)
5462 return unsignedp ? unsigned_type_node : integer_type_node;
5463 if (size == CHAR_TYPE_SIZE)
5464 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
5465 if (size == SHORT_TYPE_SIZE)
5466 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
5467 if (size == LONG_TYPE_SIZE)
5468 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
5469 if (size == LONG_LONG_TYPE_SIZE)
5470 return (unsignedp ? long_long_unsigned_type_node
5471 : long_long_integer_type_node);
5472
5473 if (unsignedp)
5474 return make_unsigned_type (size);
5475 else
5476 return make_signed_type (size);
5477 }
5478
5479 /* Create nodes for all integer types (and error_mark_node) using the sizes
5480 of C datatypes. The caller should call set_sizetype soon after calling
5481 this function to select one of the types as sizetype. */
5482
5483 void
5484 build_common_tree_nodes (bool signed_char, bool signed_sizetype)
5485 {
5486 error_mark_node = make_node (ERROR_MARK);
5487 TREE_TYPE (error_mark_node) = error_mark_node;
5488
5489 initialize_sizetypes (signed_sizetype);
5490
5491 /* Define both `signed char' and `unsigned char'. */
5492 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
5493 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
5494
5495 /* Define `char', which is like either `signed char' or `unsigned char'
5496 but not the same as either. */
5497 char_type_node
5498 = (signed_char
5499 ? make_signed_type (CHAR_TYPE_SIZE)
5500 : make_unsigned_type (CHAR_TYPE_SIZE));
5501
5502 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
5503 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
5504 integer_type_node = make_signed_type (INT_TYPE_SIZE);
5505 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
5506 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
5507 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
5508 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
5509 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
5510
5511 /* Define a boolean type. This type only represents boolean values but
5512 may be larger than char depending on the value of BOOL_TYPE_SIZE.
5513 Front ends which want to override this size (i.e. Java) can redefine
5514 boolean_type_node before calling build_common_tree_nodes_2. */
5515 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
5516 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
5517 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
5518 TYPE_PRECISION (boolean_type_node) = 1;
5519
5520 /* Fill in the rest of the sized types. Reuse existing type nodes
5521 when possible. */
5522 intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
5523 intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
5524 intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
5525 intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
5526 intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);
5527
5528 unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
5529 unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
5530 unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
5531 unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
5532 unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);
5533
5534 access_public_node = get_identifier ("public");
5535 access_protected_node = get_identifier ("protected");
5536 access_private_node = get_identifier ("private");
5537 }
5538
5539 /* Call this function after calling build_common_tree_nodes and set_sizetype.
5540 It will create several other common tree nodes. */
5541
5542 void
5543 build_common_tree_nodes_2 (int short_double)
5544 {
5545 /* Define these next since types below may used them. */
5546 integer_zero_node = build_int_cst (NULL_TREE, 0);
5547 integer_one_node = build_int_cst (NULL_TREE, 1);
5548 integer_minus_one_node = build_int_cst (NULL_TREE, -1);
5549
5550 size_zero_node = size_int (0);
5551 size_one_node = size_int (1);
5552 bitsize_zero_node = bitsize_int (0);
5553 bitsize_one_node = bitsize_int (1);
5554 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
5555
5556 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
5557 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
5558
5559 void_type_node = make_node (VOID_TYPE);
5560 layout_type (void_type_node);
5561
5562 /* We are not going to have real types in C with less than byte alignment,
5563 so we might as well not have any types that claim to have it. */
5564 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
5565 TYPE_USER_ALIGN (void_type_node) = 0;
5566
5567 null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
5568 layout_type (TREE_TYPE (null_pointer_node));
5569
5570 ptr_type_node = build_pointer_type (void_type_node);
5571 const_ptr_type_node
5572 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
5573 fileptr_type_node = ptr_type_node;
5574
5575 float_type_node = make_node (REAL_TYPE);
5576 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
5577 layout_type (float_type_node);
5578
5579 double_type_node = make_node (REAL_TYPE);
5580 if (short_double)
5581 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
5582 else
5583 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
5584 layout_type (double_type_node);
5585
5586 long_double_type_node = make_node (REAL_TYPE);
5587 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
5588 layout_type (long_double_type_node);
5589
5590 float_ptr_type_node = build_pointer_type (float_type_node);
5591 double_ptr_type_node = build_pointer_type (double_type_node);
5592 long_double_ptr_type_node = build_pointer_type (long_double_type_node);
5593 integer_ptr_type_node = build_pointer_type (integer_type_node);
5594
5595 complex_integer_type_node = make_node (COMPLEX_TYPE);
5596 TREE_TYPE (complex_integer_type_node) = integer_type_node;
5597 layout_type (complex_integer_type_node);
5598
5599 complex_float_type_node = make_node (COMPLEX_TYPE);
5600 TREE_TYPE (complex_float_type_node) = float_type_node;
5601 layout_type (complex_float_type_node);
5602
5603 complex_double_type_node = make_node (COMPLEX_TYPE);
5604 TREE_TYPE (complex_double_type_node) = double_type_node;
5605 layout_type (complex_double_type_node);
5606
5607 complex_long_double_type_node = make_node (COMPLEX_TYPE);
5608 TREE_TYPE (complex_long_double_type_node) = long_double_type_node;
5609 layout_type (complex_long_double_type_node);
5610
5611 {
5612 tree t = targetm.build_builtin_va_list ();
5613
5614 /* Many back-ends define record types without setting TYPE_NAME.
5615 If we copied the record type here, we'd keep the original
5616 record type without a name. This breaks name mangling. So,
5617 don't copy record types and let c_common_nodes_and_builtins()
5618 declare the type to be __builtin_va_list. */
5619 if (TREE_CODE (t) != RECORD_TYPE)
5620 t = build_variant_type_copy (t);
5621
5622 va_list_type_node = t;
5623 }
5624 }
5625
5626 /* HACK. GROSS. This is absolutely disgusting. I wish there was a
5627 better way.
5628
5629 If we requested a pointer to a vector, build up the pointers that
5630 we stripped off while looking for the inner type. Similarly for
5631 return values from functions.
5632
5633 The argument TYPE is the top of the chain, and BOTTOM is the
5634 new type which we will point to. */
5635
5636 tree
5637 reconstruct_complex_type (tree type, tree bottom)
5638 {
5639 tree inner, outer;
5640
5641 if (POINTER_TYPE_P (type))
5642 {
5643 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
5644 outer = build_pointer_type (inner);
5645 }
5646 else if (TREE_CODE (type) == ARRAY_TYPE)
5647 {
5648 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
5649 outer = build_array_type (inner, TYPE_DOMAIN (type));
5650 }
5651 else if (TREE_CODE (type) == FUNCTION_TYPE)
5652 {
5653 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
5654 outer = build_function_type (inner, TYPE_ARG_TYPES (type));
5655 }
5656 else if (TREE_CODE (type) == METHOD_TYPE)
5657 {
5658 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
5659 outer = build_method_type_directly (TYPE_METHOD_BASETYPE (type),
5660 inner,
5661 TYPE_ARG_TYPES (type));
5662 }
5663 else
5664 return bottom;
5665
5666 TYPE_READONLY (outer) = TYPE_READONLY (type);
5667 TYPE_VOLATILE (outer) = TYPE_VOLATILE (type);
5668
5669 return outer;
5670 }
5671
5672 /* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
5673 the inner type. */
5674 tree
5675 build_vector_type_for_mode (tree innertype, enum machine_mode mode)
5676 {
5677 int nunits;
5678
5679 switch (GET_MODE_CLASS (mode))
5680 {
5681 case MODE_VECTOR_INT:
5682 case MODE_VECTOR_FLOAT:
5683 nunits = GET_MODE_NUNITS (mode);
5684 break;
5685
5686 case MODE_INT:
5687 /* Check that there are no leftover bits. */
5688 gcc_assert (GET_MODE_BITSIZE (mode)
5689 % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0);
5690
5691 nunits = GET_MODE_BITSIZE (mode)
5692 / TREE_INT_CST_LOW (TYPE_SIZE (innertype));
5693 break;
5694
5695 default:
5696 gcc_unreachable ();
5697 }
5698
5699 return make_vector_type (innertype, nunits, mode);
5700 }
5701
5702 /* Similarly, but takes the inner type and number of units, which must be
5703 a power of two. */
5704
5705 tree
5706 build_vector_type (tree innertype, int nunits)
5707 {
5708 return make_vector_type (innertype, nunits, VOIDmode);
5709 }
5710
5711 /* Given an initializer INIT, return TRUE if INIT is zero or some
5712 aggregate of zeros. Otherwise return FALSE. */
5713 bool
5714 initializer_zerop (tree init)
5715 {
5716 tree elt;
5717
5718 STRIP_NOPS (init);
5719
5720 switch (TREE_CODE (init))
5721 {
5722 case INTEGER_CST:
5723 return integer_zerop (init);
5724
5725 case REAL_CST:
5726 /* ??? Note that this is not correct for C4X float formats. There,
5727 a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
5728 negative exponent. */
5729 return real_zerop (init)
5730 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
5731
5732 case COMPLEX_CST:
5733 return integer_zerop (init)
5734 || (real_zerop (init)
5735 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
5736 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
5737
5738 case VECTOR_CST:
5739 for (elt = TREE_VECTOR_CST_ELTS (init); elt; elt = TREE_CHAIN (elt))
5740 if (!initializer_zerop (TREE_VALUE (elt)))
5741 return false;
5742 return true;
5743
5744 case CONSTRUCTOR:
5745 elt = CONSTRUCTOR_ELTS (init);
5746 if (elt == NULL_TREE)
5747 return true;
5748
5749 /* A set is empty only if it has no elements. */
5750 if (TREE_CODE (TREE_TYPE (init)) == SET_TYPE)
5751 return false;
5752
5753 for (; elt ; elt = TREE_CHAIN (elt))
5754 if (! initializer_zerop (TREE_VALUE (elt)))
5755 return false;
5756 return true;
5757
5758 default:
5759 return false;
5760 }
5761 }
5762
5763 void
5764 add_var_to_bind_expr (tree bind_expr, tree var)
5765 {
5766 BIND_EXPR_VARS (bind_expr)
5767 = chainon (BIND_EXPR_VARS (bind_expr), var);
5768 if (BIND_EXPR_BLOCK (bind_expr))
5769 BLOCK_VARS (BIND_EXPR_BLOCK (bind_expr))
5770 = BIND_EXPR_VARS (bind_expr);
5771 }
5772
5773 /* Build an empty statement. */
5774
5775 tree
5776 build_empty_stmt (void)
5777 {
5778 return build1 (NOP_EXPR, void_type_node, size_zero_node);
5779 }
5780
5781
5782 /* Returns true if it is possible to prove that the index of
5783 an array access REF (an ARRAY_REF expression) falls into the
5784 array bounds. */
5785
5786 bool
5787 in_array_bounds_p (tree ref)
5788 {
5789 tree idx = TREE_OPERAND (ref, 1);
5790 tree min, max;
5791
5792 if (TREE_CODE (idx) != INTEGER_CST)
5793 return false;
5794
5795 min = array_ref_low_bound (ref);
5796 max = array_ref_up_bound (ref);
5797 if (!min
5798 || !max
5799 || TREE_CODE (min) != INTEGER_CST
5800 || TREE_CODE (max) != INTEGER_CST)
5801 return false;
5802
5803 if (tree_int_cst_lt (idx, min)
5804 || tree_int_cst_lt (max, idx))
5805 return false;
5806
5807 return true;
5808 }
5809
5810 /* Return true if T (assumed to be a DECL) is a global variable. */
5811
5812 bool
5813 is_global_var (tree t)
5814 {
5815 return (TREE_STATIC (t) || DECL_EXTERNAL (t));
5816 }
5817
5818 /* Return true if T (assumed to be a DECL) must be assigned a memory
5819 location. */
5820
5821 bool
5822 needs_to_live_in_memory (tree t)
5823 {
5824 return (TREE_ADDRESSABLE (t)
5825 || is_global_var (t)
5826 || (TREE_CODE (t) == RESULT_DECL
5827 && aggregate_value_p (t, current_function_decl)));
5828 }
5829
5830 /* There are situations in which a language considers record types
5831 compatible which have different field lists. Decide if two fields
5832 are compatible. It is assumed that the parent records are compatible. */
5833
5834 bool
5835 fields_compatible_p (tree f1, tree f2)
5836 {
5837 if (!operand_equal_p (DECL_FIELD_BIT_OFFSET (f1),
5838 DECL_FIELD_BIT_OFFSET (f2), OEP_ONLY_CONST))
5839 return false;
5840
5841 if (!operand_equal_p (DECL_FIELD_OFFSET (f1),
5842 DECL_FIELD_OFFSET (f2), OEP_ONLY_CONST))
5843 return false;
5844
5845 if (!lang_hooks.types_compatible_p (TREE_TYPE (f1), TREE_TYPE (f2)))
5846 return false;
5847
5848 return true;
5849 }
5850
5851 /* Locate within RECORD a field that is compatible with ORIG_FIELD. */
5852
5853 tree
5854 find_compatible_field (tree record, tree orig_field)
5855 {
5856 tree f;
5857
5858 for (f = TYPE_FIELDS (record); f ; f = TREE_CHAIN (f))
5859 if (TREE_CODE (f) == FIELD_DECL
5860 && fields_compatible_p (f, orig_field))
5861 return f;
5862
5863 /* ??? Why isn't this on the main fields list? */
5864 f = TYPE_VFIELD (record);
5865 if (f && TREE_CODE (f) == FIELD_DECL
5866 && fields_compatible_p (f, orig_field))
5867 return f;
5868
5869 /* ??? We should abort here, but Java appears to do Bad Things
5870 with inherited fields. */
5871 return orig_field;
5872 }
5873
5874 /* Return value of a constant X. */
5875
5876 HOST_WIDE_INT
5877 int_cst_value (tree x)
5878 {
5879 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
5880 unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
5881 bool negative = ((val >> (bits - 1)) & 1) != 0;
5882
5883 gcc_assert (bits <= HOST_BITS_PER_WIDE_INT);
5884
5885 if (negative)
5886 val |= (~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1;
5887 else
5888 val &= ~((~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1);
5889
5890 return val;
5891 }
5892
5893 /* Returns the greatest common divisor of A and B, which must be
5894 INTEGER_CSTs. */
5895
5896 tree
5897 tree_fold_gcd (tree a, tree b)
5898 {
5899 tree a_mod_b;
5900 tree type = TREE_TYPE (a);
5901
5902 gcc_assert (TREE_CODE (a) == INTEGER_CST);
5903 gcc_assert (TREE_CODE (b) == INTEGER_CST);
5904
5905 if (integer_zerop (a))
5906 return b;
5907
5908 if (integer_zerop (b))
5909 return a;
5910
5911 if (tree_int_cst_sgn (a) == -1)
5912 a = fold (build2 (MULT_EXPR, type, a,
5913 convert (type, integer_minus_one_node)));
5914
5915 if (tree_int_cst_sgn (b) == -1)
5916 b = fold (build2 (MULT_EXPR, type, b,
5917 convert (type, integer_minus_one_node)));
5918
5919 while (1)
5920 {
5921 a_mod_b = fold (build2 (CEIL_MOD_EXPR, type, a, b));
5922
5923 if (!TREE_INT_CST_LOW (a_mod_b)
5924 && !TREE_INT_CST_HIGH (a_mod_b))
5925 return b;
5926
5927 a = b;
5928 b = a_mod_b;
5929 }
5930 }
5931
5932 #include "gt-tree.h"