]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree.c
[Ada] Disable unwanted warnings in Assertion_Policy(Ignore) mode
[thirdparty/gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987-2020 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file contains the low level primitives for operating on tree nodes,
21 including allocation, list operations, interning of identifiers,
22 construction of data type nodes and statement nodes,
23 and construction of type conversion nodes. It also contains
24 tables index by tree code that describe how to take apart
25 nodes of that code.
26
27 It is intended to be language-independent but can occasionally
28 calls language-dependent routines. */
29
30 #include "config.h"
31 #include "system.h"
32 #include "coretypes.h"
33 #include "backend.h"
34 #include "target.h"
35 #include "tree.h"
36 #include "gimple.h"
37 #include "tree-pass.h"
38 #include "ssa.h"
39 #include "cgraph.h"
40 #include "diagnostic.h"
41 #include "flags.h"
42 #include "alias.h"
43 #include "fold-const.h"
44 #include "stor-layout.h"
45 #include "calls.h"
46 #include "attribs.h"
47 #include "toplev.h" /* get_random_seed */
48 #include "output.h"
49 #include "common/common-target.h"
50 #include "langhooks.h"
51 #include "tree-inline.h"
52 #include "tree-iterator.h"
53 #include "internal-fn.h"
54 #include "gimple-iterator.h"
55 #include "gimplify.h"
56 #include "tree-dfa.h"
57 #include "langhooks-def.h"
58 #include "tree-diagnostic.h"
59 #include "except.h"
60 #include "builtins.h"
61 #include "print-tree.h"
62 #include "ipa-utils.h"
63 #include "selftest.h"
64 #include "stringpool.h"
65 #include "attribs.h"
66 #include "rtl.h"
67 #include "regs.h"
68 #include "tree-vector-builder.h"
69 #include "gimple-fold.h"
70 #include "escaped_string.h"
71
72 /* Tree code classes. */
73
74 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
75 #define END_OF_BASE_TREE_CODES tcc_exceptional,
76
77 const enum tree_code_class tree_code_type[] = {
78 #include "all-tree.def"
79 };
80
81 #undef DEFTREECODE
82 #undef END_OF_BASE_TREE_CODES
83
84 /* Table indexed by tree code giving number of expression
85 operands beyond the fixed part of the node structure.
86 Not used for types or decls. */
87
88 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
89 #define END_OF_BASE_TREE_CODES 0,
90
91 const unsigned char tree_code_length[] = {
92 #include "all-tree.def"
93 };
94
95 #undef DEFTREECODE
96 #undef END_OF_BASE_TREE_CODES
97
98 /* Names of tree components.
99 Used for printing out the tree and error messages. */
100 #define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
101 #define END_OF_BASE_TREE_CODES "@dummy",
102
103 static const char *const tree_code_name[] = {
104 #include "all-tree.def"
105 };
106
107 #undef DEFTREECODE
108 #undef END_OF_BASE_TREE_CODES
109
110 /* Each tree code class has an associated string representation.
111 These must correspond to the tree_code_class entries. */
112
113 const char *const tree_code_class_strings[] =
114 {
115 "exceptional",
116 "constant",
117 "type",
118 "declaration",
119 "reference",
120 "comparison",
121 "unary",
122 "binary",
123 "statement",
124 "vl_exp",
125 "expression"
126 };
127
128 /* obstack.[ch] explicitly declined to prototype this. */
129 extern int _obstack_allocated_p (struct obstack *h, void *obj);
130
131 /* Statistics-gathering stuff. */
132
133 static uint64_t tree_code_counts[MAX_TREE_CODES];
134 uint64_t tree_node_counts[(int) all_kinds];
135 uint64_t tree_node_sizes[(int) all_kinds];
136
137 /* Keep in sync with tree.h:enum tree_node_kind. */
138 static const char * const tree_node_kind_names[] = {
139 "decls",
140 "types",
141 "blocks",
142 "stmts",
143 "refs",
144 "exprs",
145 "constants",
146 "identifiers",
147 "vecs",
148 "binfos",
149 "ssa names",
150 "constructors",
151 "random kinds",
152 "lang_decl kinds",
153 "lang_type kinds",
154 "omp clauses",
155 };
156
157 /* Unique id for next decl created. */
158 static GTY(()) int next_decl_uid;
159 /* Unique id for next type created. */
160 static GTY(()) unsigned next_type_uid = 1;
161 /* Unique id for next debug decl created. Use negative numbers,
162 to catch erroneous uses. */
163 static GTY(()) int next_debug_decl_uid;
164
165 /* Since we cannot rehash a type after it is in the table, we have to
166 keep the hash code. */
167
168 struct GTY((for_user)) type_hash {
169 unsigned long hash;
170 tree type;
171 };
172
173 /* Initial size of the hash table (rounded to next prime). */
174 #define TYPE_HASH_INITIAL_SIZE 1000
175
176 struct type_cache_hasher : ggc_cache_ptr_hash<type_hash>
177 {
178 static hashval_t hash (type_hash *t) { return t->hash; }
179 static bool equal (type_hash *a, type_hash *b);
180
181 static int
182 keep_cache_entry (type_hash *&t)
183 {
184 return ggc_marked_p (t->type);
185 }
186 };
187
188 /* Now here is the hash table. When recording a type, it is added to
189 the slot whose index is the hash code. Note that the hash table is
190 used for several kinds of types (function types, array types and
191 array index range types, for now). While all these live in the
192 same table, they are completely independent, and the hash code is
193 computed differently for each of these. */
194
195 static GTY ((cache)) hash_table<type_cache_hasher> *type_hash_table;
196
197 /* Hash table and temporary node for larger integer const values. */
198 static GTY (()) tree int_cst_node;
199
200 struct int_cst_hasher : ggc_cache_ptr_hash<tree_node>
201 {
202 static hashval_t hash (tree t);
203 static bool equal (tree x, tree y);
204 };
205
206 static GTY ((cache)) hash_table<int_cst_hasher> *int_cst_hash_table;
207
208 /* Class and variable for making sure that there is a single POLY_INT_CST
209 for a given value. */
210 struct poly_int_cst_hasher : ggc_cache_ptr_hash<tree_node>
211 {
212 typedef std::pair<tree, const poly_wide_int *> compare_type;
213 static hashval_t hash (tree t);
214 static bool equal (tree x, const compare_type &y);
215 };
216
217 static GTY ((cache)) hash_table<poly_int_cst_hasher> *poly_int_cst_hash_table;
218
219 /* Hash table for optimization flags and target option flags. Use the same
220 hash table for both sets of options. Nodes for building the current
221 optimization and target option nodes. The assumption is most of the time
222 the options created will already be in the hash table, so we avoid
223 allocating and freeing up a node repeatably. */
224 static GTY (()) tree cl_optimization_node;
225 static GTY (()) tree cl_target_option_node;
226
227 struct cl_option_hasher : ggc_cache_ptr_hash<tree_node>
228 {
229 static hashval_t hash (tree t);
230 static bool equal (tree x, tree y);
231 };
232
233 static GTY ((cache)) hash_table<cl_option_hasher> *cl_option_hash_table;
234
235 /* General tree->tree mapping structure for use in hash tables. */
236
237
238 static GTY ((cache))
239 hash_table<tree_decl_map_cache_hasher> *debug_expr_for_decl;
240
241 static GTY ((cache))
242 hash_table<tree_decl_map_cache_hasher> *value_expr_for_decl;
243
244 struct tree_vec_map_cache_hasher : ggc_cache_ptr_hash<tree_vec_map>
245 {
246 static hashval_t hash (tree_vec_map *m) { return DECL_UID (m->base.from); }
247
248 static bool
249 equal (tree_vec_map *a, tree_vec_map *b)
250 {
251 return a->base.from == b->base.from;
252 }
253
254 static int
255 keep_cache_entry (tree_vec_map *&m)
256 {
257 return ggc_marked_p (m->base.from);
258 }
259 };
260
261 static GTY ((cache))
262 hash_table<tree_vec_map_cache_hasher> *debug_args_for_decl;
263
264 static void set_type_quals (tree, int);
265 static void print_type_hash_statistics (void);
266 static void print_debug_expr_statistics (void);
267 static void print_value_expr_statistics (void);
268
269 static tree build_array_type_1 (tree, tree, bool, bool, bool);
270
271 tree global_trees[TI_MAX];
272 tree integer_types[itk_none];
273
274 bool int_n_enabled_p[NUM_INT_N_ENTS];
275 struct int_n_trees_t int_n_trees [NUM_INT_N_ENTS];
276
277 bool tree_contains_struct[MAX_TREE_CODES][64];
278
279 /* Number of operands for each OpenMP clause. */
280 unsigned const char omp_clause_num_ops[] =
281 {
282 0, /* OMP_CLAUSE_ERROR */
283 1, /* OMP_CLAUSE_PRIVATE */
284 1, /* OMP_CLAUSE_SHARED */
285 1, /* OMP_CLAUSE_FIRSTPRIVATE */
286 2, /* OMP_CLAUSE_LASTPRIVATE */
287 5, /* OMP_CLAUSE_REDUCTION */
288 5, /* OMP_CLAUSE_TASK_REDUCTION */
289 5, /* OMP_CLAUSE_IN_REDUCTION */
290 1, /* OMP_CLAUSE_COPYIN */
291 1, /* OMP_CLAUSE_COPYPRIVATE */
292 3, /* OMP_CLAUSE_LINEAR */
293 2, /* OMP_CLAUSE_ALIGNED */
294 1, /* OMP_CLAUSE_DEPEND */
295 1, /* OMP_CLAUSE_NONTEMPORAL */
296 1, /* OMP_CLAUSE_UNIFORM */
297 1, /* OMP_CLAUSE_TO_DECLARE */
298 1, /* OMP_CLAUSE_LINK */
299 2, /* OMP_CLAUSE_FROM */
300 2, /* OMP_CLAUSE_TO */
301 2, /* OMP_CLAUSE_MAP */
302 1, /* OMP_CLAUSE_USE_DEVICE_PTR */
303 1, /* OMP_CLAUSE_USE_DEVICE_ADDR */
304 1, /* OMP_CLAUSE_IS_DEVICE_PTR */
305 1, /* OMP_CLAUSE_INCLUSIVE */
306 1, /* OMP_CLAUSE_EXCLUSIVE */
307 2, /* OMP_CLAUSE__CACHE_ */
308 2, /* OMP_CLAUSE_GANG */
309 1, /* OMP_CLAUSE_ASYNC */
310 1, /* OMP_CLAUSE_WAIT */
311 0, /* OMP_CLAUSE_AUTO */
312 0, /* OMP_CLAUSE_SEQ */
313 1, /* OMP_CLAUSE__LOOPTEMP_ */
314 1, /* OMP_CLAUSE__REDUCTEMP_ */
315 1, /* OMP_CLAUSE__CONDTEMP_ */
316 1, /* OMP_CLAUSE__SCANTEMP_ */
317 1, /* OMP_CLAUSE_IF */
318 1, /* OMP_CLAUSE_NUM_THREADS */
319 1, /* OMP_CLAUSE_SCHEDULE */
320 0, /* OMP_CLAUSE_NOWAIT */
321 1, /* OMP_CLAUSE_ORDERED */
322 0, /* OMP_CLAUSE_DEFAULT */
323 3, /* OMP_CLAUSE_COLLAPSE */
324 0, /* OMP_CLAUSE_UNTIED */
325 1, /* OMP_CLAUSE_FINAL */
326 0, /* OMP_CLAUSE_MERGEABLE */
327 1, /* OMP_CLAUSE_DEVICE */
328 1, /* OMP_CLAUSE_DIST_SCHEDULE */
329 0, /* OMP_CLAUSE_INBRANCH */
330 0, /* OMP_CLAUSE_NOTINBRANCH */
331 1, /* OMP_CLAUSE_NUM_TEAMS */
332 1, /* OMP_CLAUSE_THREAD_LIMIT */
333 0, /* OMP_CLAUSE_PROC_BIND */
334 1, /* OMP_CLAUSE_SAFELEN */
335 1, /* OMP_CLAUSE_SIMDLEN */
336 0, /* OMP_CLAUSE_DEVICE_TYPE */
337 0, /* OMP_CLAUSE_FOR */
338 0, /* OMP_CLAUSE_PARALLEL */
339 0, /* OMP_CLAUSE_SECTIONS */
340 0, /* OMP_CLAUSE_TASKGROUP */
341 1, /* OMP_CLAUSE_PRIORITY */
342 1, /* OMP_CLAUSE_GRAINSIZE */
343 1, /* OMP_CLAUSE_NUM_TASKS */
344 0, /* OMP_CLAUSE_NOGROUP */
345 0, /* OMP_CLAUSE_THREADS */
346 0, /* OMP_CLAUSE_SIMD */
347 1, /* OMP_CLAUSE_HINT */
348 0, /* OMP_CLAUSE_DEFAULTMAP */
349 0, /* OMP_CLAUSE_ORDER */
350 0, /* OMP_CLAUSE_BIND */
351 1, /* OMP_CLAUSE__SIMDUID_ */
352 0, /* OMP_CLAUSE__SIMT_ */
353 0, /* OMP_CLAUSE_INDEPENDENT */
354 1, /* OMP_CLAUSE_WORKER */
355 1, /* OMP_CLAUSE_VECTOR */
356 1, /* OMP_CLAUSE_NUM_GANGS */
357 1, /* OMP_CLAUSE_NUM_WORKERS */
358 1, /* OMP_CLAUSE_VECTOR_LENGTH */
359 3, /* OMP_CLAUSE_TILE */
360 2, /* OMP_CLAUSE__GRIDDIM_ */
361 0, /* OMP_CLAUSE_IF_PRESENT */
362 0, /* OMP_CLAUSE_FINALIZE */
363 };
364
365 const char * const omp_clause_code_name[] =
366 {
367 "error_clause",
368 "private",
369 "shared",
370 "firstprivate",
371 "lastprivate",
372 "reduction",
373 "task_reduction",
374 "in_reduction",
375 "copyin",
376 "copyprivate",
377 "linear",
378 "aligned",
379 "depend",
380 "nontemporal",
381 "uniform",
382 "to",
383 "link",
384 "from",
385 "to",
386 "map",
387 "use_device_ptr",
388 "use_device_addr",
389 "is_device_ptr",
390 "inclusive",
391 "exclusive",
392 "_cache_",
393 "gang",
394 "async",
395 "wait",
396 "auto",
397 "seq",
398 "_looptemp_",
399 "_reductemp_",
400 "_condtemp_",
401 "_scantemp_",
402 "if",
403 "num_threads",
404 "schedule",
405 "nowait",
406 "ordered",
407 "default",
408 "collapse",
409 "untied",
410 "final",
411 "mergeable",
412 "device",
413 "dist_schedule",
414 "inbranch",
415 "notinbranch",
416 "num_teams",
417 "thread_limit",
418 "proc_bind",
419 "safelen",
420 "simdlen",
421 "device_type",
422 "for",
423 "parallel",
424 "sections",
425 "taskgroup",
426 "priority",
427 "grainsize",
428 "num_tasks",
429 "nogroup",
430 "threads",
431 "simd",
432 "hint",
433 "defaultmap",
434 "order",
435 "bind",
436 "_simduid_",
437 "_simt_",
438 "independent",
439 "worker",
440 "vector",
441 "num_gangs",
442 "num_workers",
443 "vector_length",
444 "tile",
445 "_griddim_",
446 "if_present",
447 "finalize",
448 };
449
450
451 /* Return the tree node structure used by tree code CODE. */
452
453 static inline enum tree_node_structure_enum
454 tree_node_structure_for_code (enum tree_code code)
455 {
456 switch (TREE_CODE_CLASS (code))
457 {
458 case tcc_declaration:
459 switch (code)
460 {
461 case CONST_DECL: return TS_CONST_DECL;
462 case DEBUG_EXPR_DECL: return TS_DECL_WRTL;
463 case FIELD_DECL: return TS_FIELD_DECL;
464 case FUNCTION_DECL: return TS_FUNCTION_DECL;
465 case LABEL_DECL: return TS_LABEL_DECL;
466 case PARM_DECL: return TS_PARM_DECL;
467 case RESULT_DECL: return TS_RESULT_DECL;
468 case TRANSLATION_UNIT_DECL: return TS_TRANSLATION_UNIT_DECL;
469 case TYPE_DECL: return TS_TYPE_DECL;
470 case VAR_DECL: return TS_VAR_DECL;
471 default: return TS_DECL_NON_COMMON;
472 }
473
474 case tcc_type: return TS_TYPE_NON_COMMON;
475
476 case tcc_binary:
477 case tcc_comparison:
478 case tcc_expression:
479 case tcc_reference:
480 case tcc_statement:
481 case tcc_unary:
482 case tcc_vl_exp: return TS_EXP;
483
484 default: /* tcc_constant and tcc_exceptional */
485 break;
486 }
487
488 switch (code)
489 {
490 /* tcc_constant cases. */
491 case COMPLEX_CST: return TS_COMPLEX;
492 case FIXED_CST: return TS_FIXED_CST;
493 case INTEGER_CST: return TS_INT_CST;
494 case POLY_INT_CST: return TS_POLY_INT_CST;
495 case REAL_CST: return TS_REAL_CST;
496 case STRING_CST: return TS_STRING;
497 case VECTOR_CST: return TS_VECTOR;
498 case VOID_CST: return TS_TYPED;
499
500 /* tcc_exceptional cases. */
501 case BLOCK: return TS_BLOCK;
502 case CONSTRUCTOR: return TS_CONSTRUCTOR;
503 case ERROR_MARK: return TS_COMMON;
504 case IDENTIFIER_NODE: return TS_IDENTIFIER;
505 case OMP_CLAUSE: return TS_OMP_CLAUSE;
506 case OPTIMIZATION_NODE: return TS_OPTIMIZATION;
507 case PLACEHOLDER_EXPR: return TS_COMMON;
508 case SSA_NAME: return TS_SSA_NAME;
509 case STATEMENT_LIST: return TS_STATEMENT_LIST;
510 case TARGET_OPTION_NODE: return TS_TARGET_OPTION;
511 case TREE_BINFO: return TS_BINFO;
512 case TREE_LIST: return TS_LIST;
513 case TREE_VEC: return TS_VEC;
514
515 default:
516 gcc_unreachable ();
517 }
518 }
519
520
521 /* Initialize tree_contains_struct to describe the hierarchy of tree
522 nodes. */
523
524 static void
525 initialize_tree_contains_struct (void)
526 {
527 unsigned i;
528
529 for (i = ERROR_MARK; i < LAST_AND_UNUSED_TREE_CODE; i++)
530 {
531 enum tree_code code;
532 enum tree_node_structure_enum ts_code;
533
534 code = (enum tree_code) i;
535 ts_code = tree_node_structure_for_code (code);
536
537 /* Mark the TS structure itself. */
538 tree_contains_struct[code][ts_code] = 1;
539
540 /* Mark all the structures that TS is derived from. */
541 switch (ts_code)
542 {
543 case TS_TYPED:
544 case TS_BLOCK:
545 case TS_OPTIMIZATION:
546 case TS_TARGET_OPTION:
547 MARK_TS_BASE (code);
548 break;
549
550 case TS_COMMON:
551 case TS_INT_CST:
552 case TS_POLY_INT_CST:
553 case TS_REAL_CST:
554 case TS_FIXED_CST:
555 case TS_VECTOR:
556 case TS_STRING:
557 case TS_COMPLEX:
558 case TS_SSA_NAME:
559 case TS_CONSTRUCTOR:
560 case TS_EXP:
561 case TS_STATEMENT_LIST:
562 MARK_TS_TYPED (code);
563 break;
564
565 case TS_IDENTIFIER:
566 case TS_DECL_MINIMAL:
567 case TS_TYPE_COMMON:
568 case TS_LIST:
569 case TS_VEC:
570 case TS_BINFO:
571 case TS_OMP_CLAUSE:
572 MARK_TS_COMMON (code);
573 break;
574
575 case TS_TYPE_WITH_LANG_SPECIFIC:
576 MARK_TS_TYPE_COMMON (code);
577 break;
578
579 case TS_TYPE_NON_COMMON:
580 MARK_TS_TYPE_WITH_LANG_SPECIFIC (code);
581 break;
582
583 case TS_DECL_COMMON:
584 MARK_TS_DECL_MINIMAL (code);
585 break;
586
587 case TS_DECL_WRTL:
588 case TS_CONST_DECL:
589 MARK_TS_DECL_COMMON (code);
590 break;
591
592 case TS_DECL_NON_COMMON:
593 MARK_TS_DECL_WITH_VIS (code);
594 break;
595
596 case TS_DECL_WITH_VIS:
597 case TS_PARM_DECL:
598 case TS_LABEL_DECL:
599 case TS_RESULT_DECL:
600 MARK_TS_DECL_WRTL (code);
601 break;
602
603 case TS_FIELD_DECL:
604 MARK_TS_DECL_COMMON (code);
605 break;
606
607 case TS_VAR_DECL:
608 MARK_TS_DECL_WITH_VIS (code);
609 break;
610
611 case TS_TYPE_DECL:
612 case TS_FUNCTION_DECL:
613 MARK_TS_DECL_NON_COMMON (code);
614 break;
615
616 case TS_TRANSLATION_UNIT_DECL:
617 MARK_TS_DECL_COMMON (code);
618 break;
619
620 default:
621 gcc_unreachable ();
622 }
623 }
624
625 /* Basic consistency checks for attributes used in fold. */
626 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_NON_COMMON]);
627 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_NON_COMMON]);
628 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_COMMON]);
629 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_COMMON]);
630 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_COMMON]);
631 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_COMMON]);
632 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_COMMON]);
633 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_COMMON]);
634 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_COMMON]);
635 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_COMMON]);
636 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_COMMON]);
637 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WRTL]);
638 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_WRTL]);
639 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_WRTL]);
640 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WRTL]);
641 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_WRTL]);
642 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_MINIMAL]);
643 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_MINIMAL]);
644 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_MINIMAL]);
645 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_MINIMAL]);
646 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_MINIMAL]);
647 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_MINIMAL]);
648 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_MINIMAL]);
649 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_MINIMAL]);
650 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_MINIMAL]);
651 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WITH_VIS]);
652 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WITH_VIS]);
653 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_WITH_VIS]);
654 gcc_assert (tree_contains_struct[VAR_DECL][TS_VAR_DECL]);
655 gcc_assert (tree_contains_struct[FIELD_DECL][TS_FIELD_DECL]);
656 gcc_assert (tree_contains_struct[PARM_DECL][TS_PARM_DECL]);
657 gcc_assert (tree_contains_struct[LABEL_DECL][TS_LABEL_DECL]);
658 gcc_assert (tree_contains_struct[RESULT_DECL][TS_RESULT_DECL]);
659 gcc_assert (tree_contains_struct[CONST_DECL][TS_CONST_DECL]);
660 gcc_assert (tree_contains_struct[TYPE_DECL][TS_TYPE_DECL]);
661 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_FUNCTION_DECL]);
662 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_MINIMAL]);
663 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_COMMON]);
664 gcc_assert (tree_contains_struct[NAMELIST_DECL][TS_DECL_MINIMAL]);
665 gcc_assert (tree_contains_struct[NAMELIST_DECL][TS_DECL_COMMON]);
666 }
667
668
669 /* Init tree.c. */
670
671 void
672 init_ttree (void)
673 {
674 /* Initialize the hash table of types. */
675 type_hash_table
676 = hash_table<type_cache_hasher>::create_ggc (TYPE_HASH_INITIAL_SIZE);
677
678 debug_expr_for_decl
679 = hash_table<tree_decl_map_cache_hasher>::create_ggc (512);
680
681 value_expr_for_decl
682 = hash_table<tree_decl_map_cache_hasher>::create_ggc (512);
683
684 int_cst_hash_table = hash_table<int_cst_hasher>::create_ggc (1024);
685
686 poly_int_cst_hash_table = hash_table<poly_int_cst_hasher>::create_ggc (64);
687
688 int_cst_node = make_int_cst (1, 1);
689
690 cl_option_hash_table = hash_table<cl_option_hasher>::create_ggc (64);
691
692 cl_optimization_node = make_node (OPTIMIZATION_NODE);
693 cl_target_option_node = make_node (TARGET_OPTION_NODE);
694
695 /* Initialize the tree_contains_struct array. */
696 initialize_tree_contains_struct ();
697 lang_hooks.init_ts ();
698 }
699
700 \f
701 /* The name of the object as the assembler will see it (but before any
702 translations made by ASM_OUTPUT_LABELREF). Often this is the same
703 as DECL_NAME. It is an IDENTIFIER_NODE. */
704 tree
705 decl_assembler_name (tree decl)
706 {
707 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
708 lang_hooks.set_decl_assembler_name (decl);
709 return DECL_ASSEMBLER_NAME_RAW (decl);
710 }
711
712 /* The DECL_ASSEMBLER_NAME_RAW of DECL is being explicitly set to NAME
713 (either of which may be NULL). Inform the FE, if this changes the
714 name. */
715
716 void
717 overwrite_decl_assembler_name (tree decl, tree name)
718 {
719 if (DECL_ASSEMBLER_NAME_RAW (decl) != name)
720 lang_hooks.overwrite_decl_assembler_name (decl, name);
721 }
722
723 /* When the target supports COMDAT groups, this indicates which group the
724 DECL is associated with. This can be either an IDENTIFIER_NODE or a
725 decl, in which case its DECL_ASSEMBLER_NAME identifies the group. */
726 tree
727 decl_comdat_group (const_tree node)
728 {
729 struct symtab_node *snode = symtab_node::get (node);
730 if (!snode)
731 return NULL;
732 return snode->get_comdat_group ();
733 }
734
735 /* Likewise, but make sure it's been reduced to an IDENTIFIER_NODE. */
736 tree
737 decl_comdat_group_id (const_tree node)
738 {
739 struct symtab_node *snode = symtab_node::get (node);
740 if (!snode)
741 return NULL;
742 return snode->get_comdat_group_id ();
743 }
744
745 /* When the target supports named section, return its name as IDENTIFIER_NODE
746 or NULL if it is in no section. */
747 const char *
748 decl_section_name (const_tree node)
749 {
750 struct symtab_node *snode = symtab_node::get (node);
751 if (!snode)
752 return NULL;
753 return snode->get_section ();
754 }
755
756 /* Set section name of NODE to VALUE (that is expected to be
757 identifier node) */
758 void
759 set_decl_section_name (tree node, const char *value)
760 {
761 struct symtab_node *snode;
762
763 if (value == NULL)
764 {
765 snode = symtab_node::get (node);
766 if (!snode)
767 return;
768 }
769 else if (VAR_P (node))
770 snode = varpool_node::get_create (node);
771 else
772 snode = cgraph_node::get_create (node);
773 snode->set_section (value);
774 }
775
776 /* Return TLS model of a variable NODE. */
777 enum tls_model
778 decl_tls_model (const_tree node)
779 {
780 struct varpool_node *snode = varpool_node::get (node);
781 if (!snode)
782 return TLS_MODEL_NONE;
783 return snode->tls_model;
784 }
785
786 /* Set TLS model of variable NODE to MODEL. */
787 void
788 set_decl_tls_model (tree node, enum tls_model model)
789 {
790 struct varpool_node *vnode;
791
792 if (model == TLS_MODEL_NONE)
793 {
794 vnode = varpool_node::get (node);
795 if (!vnode)
796 return;
797 }
798 else
799 vnode = varpool_node::get_create (node);
800 vnode->tls_model = model;
801 }
802
803 /* Compute the number of bytes occupied by a tree with code CODE.
804 This function cannot be used for nodes that have variable sizes,
805 including TREE_VEC, INTEGER_CST, STRING_CST, and CALL_EXPR. */
806 size_t
807 tree_code_size (enum tree_code code)
808 {
809 switch (TREE_CODE_CLASS (code))
810 {
811 case tcc_declaration: /* A decl node */
812 switch (code)
813 {
814 case FIELD_DECL: return sizeof (tree_field_decl);
815 case PARM_DECL: return sizeof (tree_parm_decl);
816 case VAR_DECL: return sizeof (tree_var_decl);
817 case LABEL_DECL: return sizeof (tree_label_decl);
818 case RESULT_DECL: return sizeof (tree_result_decl);
819 case CONST_DECL: return sizeof (tree_const_decl);
820 case TYPE_DECL: return sizeof (tree_type_decl);
821 case FUNCTION_DECL: return sizeof (tree_function_decl);
822 case DEBUG_EXPR_DECL: return sizeof (tree_decl_with_rtl);
823 case TRANSLATION_UNIT_DECL: return sizeof (tree_translation_unit_decl);
824 case NAMESPACE_DECL:
825 case IMPORTED_DECL:
826 case NAMELIST_DECL: return sizeof (tree_decl_non_common);
827 default:
828 gcc_checking_assert (code >= NUM_TREE_CODES);
829 return lang_hooks.tree_size (code);
830 }
831
832 case tcc_type: /* a type node */
833 switch (code)
834 {
835 case OFFSET_TYPE:
836 case ENUMERAL_TYPE:
837 case BOOLEAN_TYPE:
838 case INTEGER_TYPE:
839 case REAL_TYPE:
840 case POINTER_TYPE:
841 case REFERENCE_TYPE:
842 case NULLPTR_TYPE:
843 case FIXED_POINT_TYPE:
844 case COMPLEX_TYPE:
845 case VECTOR_TYPE:
846 case ARRAY_TYPE:
847 case RECORD_TYPE:
848 case UNION_TYPE:
849 case QUAL_UNION_TYPE:
850 case VOID_TYPE:
851 case FUNCTION_TYPE:
852 case METHOD_TYPE:
853 case LANG_TYPE: return sizeof (tree_type_non_common);
854 default:
855 gcc_checking_assert (code >= NUM_TREE_CODES);
856 return lang_hooks.tree_size (code);
857 }
858
859 case tcc_reference: /* a reference */
860 case tcc_expression: /* an expression */
861 case tcc_statement: /* an expression with side effects */
862 case tcc_comparison: /* a comparison expression */
863 case tcc_unary: /* a unary arithmetic expression */
864 case tcc_binary: /* a binary arithmetic expression */
865 return (sizeof (struct tree_exp)
866 + (TREE_CODE_LENGTH (code) - 1) * sizeof (tree));
867
868 case tcc_constant: /* a constant */
869 switch (code)
870 {
871 case VOID_CST: return sizeof (tree_typed);
872 case INTEGER_CST: gcc_unreachable ();
873 case POLY_INT_CST: return sizeof (tree_poly_int_cst);
874 case REAL_CST: return sizeof (tree_real_cst);
875 case FIXED_CST: return sizeof (tree_fixed_cst);
876 case COMPLEX_CST: return sizeof (tree_complex);
877 case VECTOR_CST: gcc_unreachable ();
878 case STRING_CST: gcc_unreachable ();
879 default:
880 gcc_checking_assert (code >= NUM_TREE_CODES);
881 return lang_hooks.tree_size (code);
882 }
883
884 case tcc_exceptional: /* something random, like an identifier. */
885 switch (code)
886 {
887 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
888 case TREE_LIST: return sizeof (tree_list);
889
890 case ERROR_MARK:
891 case PLACEHOLDER_EXPR: return sizeof (tree_common);
892
893 case TREE_VEC: gcc_unreachable ();
894 case OMP_CLAUSE: gcc_unreachable ();
895
896 case SSA_NAME: return sizeof (tree_ssa_name);
897
898 case STATEMENT_LIST: return sizeof (tree_statement_list);
899 case BLOCK: return sizeof (struct tree_block);
900 case CONSTRUCTOR: return sizeof (tree_constructor);
901 case OPTIMIZATION_NODE: return sizeof (tree_optimization_option);
902 case TARGET_OPTION_NODE: return sizeof (tree_target_option);
903
904 default:
905 gcc_checking_assert (code >= NUM_TREE_CODES);
906 return lang_hooks.tree_size (code);
907 }
908
909 default:
910 gcc_unreachable ();
911 }
912 }
913
914 /* Compute the number of bytes occupied by NODE. This routine only
915 looks at TREE_CODE, except for those nodes that have variable sizes. */
916 size_t
917 tree_size (const_tree node)
918 {
919 const enum tree_code code = TREE_CODE (node);
920 switch (code)
921 {
922 case INTEGER_CST:
923 return (sizeof (struct tree_int_cst)
924 + (TREE_INT_CST_EXT_NUNITS (node) - 1) * sizeof (HOST_WIDE_INT));
925
926 case TREE_BINFO:
927 return (offsetof (struct tree_binfo, base_binfos)
928 + vec<tree, va_gc>
929 ::embedded_size (BINFO_N_BASE_BINFOS (node)));
930
931 case TREE_VEC:
932 return (sizeof (struct tree_vec)
933 + (TREE_VEC_LENGTH (node) - 1) * sizeof (tree));
934
935 case VECTOR_CST:
936 return (sizeof (struct tree_vector)
937 + (vector_cst_encoded_nelts (node) - 1) * sizeof (tree));
938
939 case STRING_CST:
940 return TREE_STRING_LENGTH (node) + offsetof (struct tree_string, str) + 1;
941
942 case OMP_CLAUSE:
943 return (sizeof (struct tree_omp_clause)
944 + (omp_clause_num_ops[OMP_CLAUSE_CODE (node)] - 1)
945 * sizeof (tree));
946
947 default:
948 if (TREE_CODE_CLASS (code) == tcc_vl_exp)
949 return (sizeof (struct tree_exp)
950 + (VL_EXP_OPERAND_LENGTH (node) - 1) * sizeof (tree));
951 else
952 return tree_code_size (code);
953 }
954 }
955
956 /* Return tree node kind based on tree CODE. */
957
958 static tree_node_kind
959 get_stats_node_kind (enum tree_code code)
960 {
961 enum tree_code_class type = TREE_CODE_CLASS (code);
962
963 switch (type)
964 {
965 case tcc_declaration: /* A decl node */
966 return d_kind;
967 case tcc_type: /* a type node */
968 return t_kind;
969 case tcc_statement: /* an expression with side effects */
970 return s_kind;
971 case tcc_reference: /* a reference */
972 return r_kind;
973 case tcc_expression: /* an expression */
974 case tcc_comparison: /* a comparison expression */
975 case tcc_unary: /* a unary arithmetic expression */
976 case tcc_binary: /* a binary arithmetic expression */
977 return e_kind;
978 case tcc_constant: /* a constant */
979 return c_kind;
980 case tcc_exceptional: /* something random, like an identifier. */
981 switch (code)
982 {
983 case IDENTIFIER_NODE:
984 return id_kind;
985 case TREE_VEC:
986 return vec_kind;
987 case TREE_BINFO:
988 return binfo_kind;
989 case SSA_NAME:
990 return ssa_name_kind;
991 case BLOCK:
992 return b_kind;
993 case CONSTRUCTOR:
994 return constr_kind;
995 case OMP_CLAUSE:
996 return omp_clause_kind;
997 default:
998 return x_kind;
999 }
1000 break;
1001 case tcc_vl_exp:
1002 return e_kind;
1003 default:
1004 gcc_unreachable ();
1005 }
1006 }
1007
1008 /* Record interesting allocation statistics for a tree node with CODE
1009 and LENGTH. */
1010
1011 static void
1012 record_node_allocation_statistics (enum tree_code code, size_t length)
1013 {
1014 if (!GATHER_STATISTICS)
1015 return;
1016
1017 tree_node_kind kind = get_stats_node_kind (code);
1018
1019 tree_code_counts[(int) code]++;
1020 tree_node_counts[(int) kind]++;
1021 tree_node_sizes[(int) kind] += length;
1022 }
1023
1024 /* Allocate and return a new UID from the DECL_UID namespace. */
1025
1026 int
1027 allocate_decl_uid (void)
1028 {
1029 return next_decl_uid++;
1030 }
1031
1032 /* Return a newly allocated node of code CODE. For decl and type
1033 nodes, some other fields are initialized. The rest of the node is
1034 initialized to zero. This function cannot be used for TREE_VEC,
1035 INTEGER_CST or OMP_CLAUSE nodes, which is enforced by asserts in
1036 tree_code_size.
1037
1038 Achoo! I got a code in the node. */
1039
1040 tree
1041 make_node (enum tree_code code MEM_STAT_DECL)
1042 {
1043 tree t;
1044 enum tree_code_class type = TREE_CODE_CLASS (code);
1045 size_t length = tree_code_size (code);
1046
1047 record_node_allocation_statistics (code, length);
1048
1049 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
1050 TREE_SET_CODE (t, code);
1051
1052 switch (type)
1053 {
1054 case tcc_statement:
1055 if (code != DEBUG_BEGIN_STMT)
1056 TREE_SIDE_EFFECTS (t) = 1;
1057 break;
1058
1059 case tcc_declaration:
1060 if (CODE_CONTAINS_STRUCT (code, TS_DECL_COMMON))
1061 {
1062 if (code == FUNCTION_DECL)
1063 {
1064 SET_DECL_ALIGN (t, FUNCTION_ALIGNMENT (FUNCTION_BOUNDARY));
1065 SET_DECL_MODE (t, FUNCTION_MODE);
1066 }
1067 else
1068 SET_DECL_ALIGN (t, 1);
1069 }
1070 DECL_SOURCE_LOCATION (t) = input_location;
1071 if (TREE_CODE (t) == DEBUG_EXPR_DECL)
1072 DECL_UID (t) = --next_debug_decl_uid;
1073 else
1074 {
1075 DECL_UID (t) = allocate_decl_uid ();
1076 SET_DECL_PT_UID (t, -1);
1077 }
1078 if (TREE_CODE (t) == LABEL_DECL)
1079 LABEL_DECL_UID (t) = -1;
1080
1081 break;
1082
1083 case tcc_type:
1084 TYPE_UID (t) = next_type_uid++;
1085 SET_TYPE_ALIGN (t, BITS_PER_UNIT);
1086 TYPE_USER_ALIGN (t) = 0;
1087 TYPE_MAIN_VARIANT (t) = t;
1088 TYPE_CANONICAL (t) = t;
1089
1090 /* Default to no attributes for type, but let target change that. */
1091 TYPE_ATTRIBUTES (t) = NULL_TREE;
1092 targetm.set_default_type_attributes (t);
1093
1094 /* We have not yet computed the alias set for this type. */
1095 TYPE_ALIAS_SET (t) = -1;
1096 break;
1097
1098 case tcc_constant:
1099 TREE_CONSTANT (t) = 1;
1100 break;
1101
1102 case tcc_expression:
1103 switch (code)
1104 {
1105 case INIT_EXPR:
1106 case MODIFY_EXPR:
1107 case VA_ARG_EXPR:
1108 case PREDECREMENT_EXPR:
1109 case PREINCREMENT_EXPR:
1110 case POSTDECREMENT_EXPR:
1111 case POSTINCREMENT_EXPR:
1112 /* All of these have side-effects, no matter what their
1113 operands are. */
1114 TREE_SIDE_EFFECTS (t) = 1;
1115 break;
1116
1117 default:
1118 break;
1119 }
1120 break;
1121
1122 case tcc_exceptional:
1123 switch (code)
1124 {
1125 case TARGET_OPTION_NODE:
1126 TREE_TARGET_OPTION(t)
1127 = ggc_cleared_alloc<struct cl_target_option> ();
1128 break;
1129
1130 case OPTIMIZATION_NODE:
1131 TREE_OPTIMIZATION (t)
1132 = ggc_cleared_alloc<struct cl_optimization> ();
1133 break;
1134
1135 default:
1136 break;
1137 }
1138 break;
1139
1140 default:
1141 /* Other classes need no special treatment. */
1142 break;
1143 }
1144
1145 return t;
1146 }
1147
1148 /* Free tree node. */
1149
1150 void
1151 free_node (tree node)
1152 {
1153 enum tree_code code = TREE_CODE (node);
1154 if (GATHER_STATISTICS)
1155 {
1156 enum tree_node_kind kind = get_stats_node_kind (code);
1157
1158 gcc_checking_assert (tree_code_counts[(int) TREE_CODE (node)] != 0);
1159 gcc_checking_assert (tree_node_counts[(int) kind] != 0);
1160 gcc_checking_assert (tree_node_sizes[(int) kind] >= tree_size (node));
1161
1162 tree_code_counts[(int) TREE_CODE (node)]--;
1163 tree_node_counts[(int) kind]--;
1164 tree_node_sizes[(int) kind] -= tree_size (node);
1165 }
1166 if (CODE_CONTAINS_STRUCT (code, TS_CONSTRUCTOR))
1167 vec_free (CONSTRUCTOR_ELTS (node));
1168 else if (code == BLOCK)
1169 vec_free (BLOCK_NONLOCALIZED_VARS (node));
1170 else if (code == TREE_BINFO)
1171 vec_free (BINFO_BASE_ACCESSES (node));
1172 else if (code == OPTIMIZATION_NODE)
1173 cl_optimization_option_free (TREE_OPTIMIZATION (node));
1174 else if (code == TARGET_OPTION_NODE)
1175 cl_target_option_free (TREE_TARGET_OPTION (node));
1176 ggc_free (node);
1177 }
1178 \f
1179 /* Return a new node with the same contents as NODE except that its
1180 TREE_CHAIN, if it has one, is zero and it has a fresh uid. */
1181
1182 tree
1183 copy_node (tree node MEM_STAT_DECL)
1184 {
1185 tree t;
1186 enum tree_code code = TREE_CODE (node);
1187 size_t length;
1188
1189 gcc_assert (code != STATEMENT_LIST);
1190
1191 length = tree_size (node);
1192 record_node_allocation_statistics (code, length);
1193 t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
1194 memcpy (t, node, length);
1195
1196 if (CODE_CONTAINS_STRUCT (code, TS_COMMON))
1197 TREE_CHAIN (t) = 0;
1198 TREE_ASM_WRITTEN (t) = 0;
1199 TREE_VISITED (t) = 0;
1200
1201 if (TREE_CODE_CLASS (code) == tcc_declaration)
1202 {
1203 if (code == DEBUG_EXPR_DECL)
1204 DECL_UID (t) = --next_debug_decl_uid;
1205 else
1206 {
1207 DECL_UID (t) = allocate_decl_uid ();
1208 if (DECL_PT_UID_SET_P (node))
1209 SET_DECL_PT_UID (t, DECL_PT_UID (node));
1210 }
1211 if ((TREE_CODE (node) == PARM_DECL || VAR_P (node))
1212 && DECL_HAS_VALUE_EXPR_P (node))
1213 {
1214 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (node));
1215 DECL_HAS_VALUE_EXPR_P (t) = 1;
1216 }
1217 /* DECL_DEBUG_EXPR is copied explicitely by callers. */
1218 if (VAR_P (node))
1219 {
1220 DECL_HAS_DEBUG_EXPR_P (t) = 0;
1221 t->decl_with_vis.symtab_node = NULL;
1222 }
1223 if (VAR_P (node) && DECL_HAS_INIT_PRIORITY_P (node))
1224 {
1225 SET_DECL_INIT_PRIORITY (t, DECL_INIT_PRIORITY (node));
1226 DECL_HAS_INIT_PRIORITY_P (t) = 1;
1227 }
1228 if (TREE_CODE (node) == FUNCTION_DECL)
1229 {
1230 DECL_STRUCT_FUNCTION (t) = NULL;
1231 t->decl_with_vis.symtab_node = NULL;
1232 }
1233 }
1234 else if (TREE_CODE_CLASS (code) == tcc_type)
1235 {
1236 TYPE_UID (t) = next_type_uid++;
1237 /* The following is so that the debug code for
1238 the copy is different from the original type.
1239 The two statements usually duplicate each other
1240 (because they clear fields of the same union),
1241 but the optimizer should catch that. */
1242 TYPE_SYMTAB_ADDRESS (t) = 0;
1243 TYPE_SYMTAB_DIE (t) = 0;
1244
1245 /* Do not copy the values cache. */
1246 if (TYPE_CACHED_VALUES_P (t))
1247 {
1248 TYPE_CACHED_VALUES_P (t) = 0;
1249 TYPE_CACHED_VALUES (t) = NULL_TREE;
1250 }
1251 }
1252 else if (code == TARGET_OPTION_NODE)
1253 {
1254 TREE_TARGET_OPTION (t) = ggc_alloc<struct cl_target_option>();
1255 memcpy (TREE_TARGET_OPTION (t), TREE_TARGET_OPTION (node),
1256 sizeof (struct cl_target_option));
1257 }
1258 else if (code == OPTIMIZATION_NODE)
1259 {
1260 TREE_OPTIMIZATION (t) = ggc_alloc<struct cl_optimization>();
1261 memcpy (TREE_OPTIMIZATION (t), TREE_OPTIMIZATION (node),
1262 sizeof (struct cl_optimization));
1263 }
1264
1265 return t;
1266 }
1267
1268 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
1269 For example, this can copy a list made of TREE_LIST nodes. */
1270
1271 tree
1272 copy_list (tree list)
1273 {
1274 tree head;
1275 tree prev, next;
1276
1277 if (list == 0)
1278 return 0;
1279
1280 head = prev = copy_node (list);
1281 next = TREE_CHAIN (list);
1282 while (next)
1283 {
1284 TREE_CHAIN (prev) = copy_node (next);
1285 prev = TREE_CHAIN (prev);
1286 next = TREE_CHAIN (next);
1287 }
1288 return head;
1289 }
1290
1291 \f
1292 /* Return the value that TREE_INT_CST_EXT_NUNITS should have for an
1293 INTEGER_CST with value CST and type TYPE. */
1294
1295 static unsigned int
1296 get_int_cst_ext_nunits (tree type, const wide_int &cst)
1297 {
1298 gcc_checking_assert (cst.get_precision () == TYPE_PRECISION (type));
1299 /* We need extra HWIs if CST is an unsigned integer with its
1300 upper bit set. */
1301 if (TYPE_UNSIGNED (type) && wi::neg_p (cst))
1302 return cst.get_precision () / HOST_BITS_PER_WIDE_INT + 1;
1303 return cst.get_len ();
1304 }
1305
1306 /* Return a new INTEGER_CST with value CST and type TYPE. */
1307
1308 static tree
1309 build_new_int_cst (tree type, const wide_int &cst)
1310 {
1311 unsigned int len = cst.get_len ();
1312 unsigned int ext_len = get_int_cst_ext_nunits (type, cst);
1313 tree nt = make_int_cst (len, ext_len);
1314
1315 if (len < ext_len)
1316 {
1317 --ext_len;
1318 TREE_INT_CST_ELT (nt, ext_len)
1319 = zext_hwi (-1, cst.get_precision () % HOST_BITS_PER_WIDE_INT);
1320 for (unsigned int i = len; i < ext_len; ++i)
1321 TREE_INT_CST_ELT (nt, i) = -1;
1322 }
1323 else if (TYPE_UNSIGNED (type)
1324 && cst.get_precision () < len * HOST_BITS_PER_WIDE_INT)
1325 {
1326 len--;
1327 TREE_INT_CST_ELT (nt, len)
1328 = zext_hwi (cst.elt (len),
1329 cst.get_precision () % HOST_BITS_PER_WIDE_INT);
1330 }
1331
1332 for (unsigned int i = 0; i < len; i++)
1333 TREE_INT_CST_ELT (nt, i) = cst.elt (i);
1334 TREE_TYPE (nt) = type;
1335 return nt;
1336 }
1337
1338 /* Return a new POLY_INT_CST with coefficients COEFFS and type TYPE. */
1339
1340 static tree
1341 build_new_poly_int_cst (tree type, tree (&coeffs)[NUM_POLY_INT_COEFFS]
1342 CXX_MEM_STAT_INFO)
1343 {
1344 size_t length = sizeof (struct tree_poly_int_cst);
1345 record_node_allocation_statistics (POLY_INT_CST, length);
1346
1347 tree t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
1348
1349 TREE_SET_CODE (t, POLY_INT_CST);
1350 TREE_CONSTANT (t) = 1;
1351 TREE_TYPE (t) = type;
1352 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1353 POLY_INT_CST_COEFF (t, i) = coeffs[i];
1354 return t;
1355 }
1356
1357 /* Create a constant tree that contains CST sign-extended to TYPE. */
1358
1359 tree
1360 build_int_cst (tree type, poly_int64 cst)
1361 {
1362 /* Support legacy code. */
1363 if (!type)
1364 type = integer_type_node;
1365
1366 return wide_int_to_tree (type, wi::shwi (cst, TYPE_PRECISION (type)));
1367 }
1368
1369 /* Create a constant tree that contains CST zero-extended to TYPE. */
1370
1371 tree
1372 build_int_cstu (tree type, poly_uint64 cst)
1373 {
1374 return wide_int_to_tree (type, wi::uhwi (cst, TYPE_PRECISION (type)));
1375 }
1376
1377 /* Create a constant tree that contains CST sign-extended to TYPE. */
1378
1379 tree
1380 build_int_cst_type (tree type, poly_int64 cst)
1381 {
1382 gcc_assert (type);
1383 return wide_int_to_tree (type, wi::shwi (cst, TYPE_PRECISION (type)));
1384 }
1385
1386 /* Constructs tree in type TYPE from with value given by CST. Signedness
1387 of CST is assumed to be the same as the signedness of TYPE. */
1388
1389 tree
1390 double_int_to_tree (tree type, double_int cst)
1391 {
1392 return wide_int_to_tree (type, widest_int::from (cst, TYPE_SIGN (type)));
1393 }
1394
1395 /* We force the wide_int CST to the range of the type TYPE by sign or
1396 zero extending it. OVERFLOWABLE indicates if we are interested in
1397 overflow of the value, when >0 we are only interested in signed
1398 overflow, for <0 we are interested in any overflow. OVERFLOWED
1399 indicates whether overflow has already occurred. CONST_OVERFLOWED
1400 indicates whether constant overflow has already occurred. We force
1401 T's value to be within range of T's type (by setting to 0 or 1 all
1402 the bits outside the type's range). We set TREE_OVERFLOWED if,
1403 OVERFLOWED is nonzero,
1404 or OVERFLOWABLE is >0 and signed overflow occurs
1405 or OVERFLOWABLE is <0 and any overflow occurs
1406 We return a new tree node for the extended wide_int. The node
1407 is shared if no overflow flags are set. */
1408
1409
1410 tree
1411 force_fit_type (tree type, const poly_wide_int_ref &cst,
1412 int overflowable, bool overflowed)
1413 {
1414 signop sign = TYPE_SIGN (type);
1415
1416 /* If we need to set overflow flags, return a new unshared node. */
1417 if (overflowed || !wi::fits_to_tree_p (cst, type))
1418 {
1419 if (overflowed
1420 || overflowable < 0
1421 || (overflowable > 0 && sign == SIGNED))
1422 {
1423 poly_wide_int tmp = poly_wide_int::from (cst, TYPE_PRECISION (type),
1424 sign);
1425 tree t;
1426 if (tmp.is_constant ())
1427 t = build_new_int_cst (type, tmp.coeffs[0]);
1428 else
1429 {
1430 tree coeffs[NUM_POLY_INT_COEFFS];
1431 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1432 {
1433 coeffs[i] = build_new_int_cst (type, tmp.coeffs[i]);
1434 TREE_OVERFLOW (coeffs[i]) = 1;
1435 }
1436 t = build_new_poly_int_cst (type, coeffs);
1437 }
1438 TREE_OVERFLOW (t) = 1;
1439 return t;
1440 }
1441 }
1442
1443 /* Else build a shared node. */
1444 return wide_int_to_tree (type, cst);
1445 }
1446
1447 /* These are the hash table functions for the hash table of INTEGER_CST
1448 nodes of a sizetype. */
1449
1450 /* Return the hash code X, an INTEGER_CST. */
1451
1452 hashval_t
1453 int_cst_hasher::hash (tree x)
1454 {
1455 const_tree const t = x;
1456 hashval_t code = TYPE_UID (TREE_TYPE (t));
1457 int i;
1458
1459 for (i = 0; i < TREE_INT_CST_NUNITS (t); i++)
1460 code = iterative_hash_host_wide_int (TREE_INT_CST_ELT(t, i), code);
1461
1462 return code;
1463 }
1464
1465 /* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
1466 is the same as that given by *Y, which is the same. */
1467
1468 bool
1469 int_cst_hasher::equal (tree x, tree y)
1470 {
1471 const_tree const xt = x;
1472 const_tree const yt = y;
1473
1474 if (TREE_TYPE (xt) != TREE_TYPE (yt)
1475 || TREE_INT_CST_NUNITS (xt) != TREE_INT_CST_NUNITS (yt)
1476 || TREE_INT_CST_EXT_NUNITS (xt) != TREE_INT_CST_EXT_NUNITS (yt))
1477 return false;
1478
1479 for (int i = 0; i < TREE_INT_CST_NUNITS (xt); i++)
1480 if (TREE_INT_CST_ELT (xt, i) != TREE_INT_CST_ELT (yt, i))
1481 return false;
1482
1483 return true;
1484 }
1485
1486 /* Create an INT_CST node of TYPE and value CST.
1487 The returned node is always shared. For small integers we use a
1488 per-type vector cache, for larger ones we use a single hash table.
1489 The value is extended from its precision according to the sign of
1490 the type to be a multiple of HOST_BITS_PER_WIDE_INT. This defines
1491 the upper bits and ensures that hashing and value equality based
1492 upon the underlying HOST_WIDE_INTs works without masking. */
1493
1494 static tree
1495 wide_int_to_tree_1 (tree type, const wide_int_ref &pcst)
1496 {
1497 tree t;
1498 int ix = -1;
1499 int limit = 0;
1500
1501 gcc_assert (type);
1502 unsigned int prec = TYPE_PRECISION (type);
1503 signop sgn = TYPE_SIGN (type);
1504
1505 /* Verify that everything is canonical. */
1506 int l = pcst.get_len ();
1507 if (l > 1)
1508 {
1509 if (pcst.elt (l - 1) == 0)
1510 gcc_checking_assert (pcst.elt (l - 2) < 0);
1511 if (pcst.elt (l - 1) == HOST_WIDE_INT_M1)
1512 gcc_checking_assert (pcst.elt (l - 2) >= 0);
1513 }
1514
1515 wide_int cst = wide_int::from (pcst, prec, sgn);
1516 unsigned int ext_len = get_int_cst_ext_nunits (type, cst);
1517
1518 if (ext_len == 1)
1519 {
1520 /* We just need to store a single HOST_WIDE_INT. */
1521 HOST_WIDE_INT hwi;
1522 if (TYPE_UNSIGNED (type))
1523 hwi = cst.to_uhwi ();
1524 else
1525 hwi = cst.to_shwi ();
1526
1527 switch (TREE_CODE (type))
1528 {
1529 case NULLPTR_TYPE:
1530 gcc_assert (hwi == 0);
1531 /* Fallthru. */
1532
1533 case POINTER_TYPE:
1534 case REFERENCE_TYPE:
1535 /* Cache NULL pointer and zero bounds. */
1536 if (hwi == 0)
1537 {
1538 limit = 1;
1539 ix = 0;
1540 }
1541 break;
1542
1543 case BOOLEAN_TYPE:
1544 /* Cache false or true. */
1545 limit = 2;
1546 if (IN_RANGE (hwi, 0, 1))
1547 ix = hwi;
1548 break;
1549
1550 case INTEGER_TYPE:
1551 case OFFSET_TYPE:
1552 if (TYPE_SIGN (type) == UNSIGNED)
1553 {
1554 /* Cache [0, N). */
1555 limit = param_integer_share_limit;
1556 if (IN_RANGE (hwi, 0, param_integer_share_limit - 1))
1557 ix = hwi;
1558 }
1559 else
1560 {
1561 /* Cache [-1, N). */
1562 limit = param_integer_share_limit + 1;
1563 if (IN_RANGE (hwi, -1, param_integer_share_limit - 1))
1564 ix = hwi + 1;
1565 }
1566 break;
1567
1568 case ENUMERAL_TYPE:
1569 break;
1570
1571 default:
1572 gcc_unreachable ();
1573 }
1574
1575 if (ix >= 0)
1576 {
1577 /* Look for it in the type's vector of small shared ints. */
1578 if (!TYPE_CACHED_VALUES_P (type))
1579 {
1580 TYPE_CACHED_VALUES_P (type) = 1;
1581 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
1582 }
1583
1584 t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix);
1585 if (t)
1586 /* Make sure no one is clobbering the shared constant. */
1587 gcc_checking_assert (TREE_TYPE (t) == type
1588 && TREE_INT_CST_NUNITS (t) == 1
1589 && TREE_INT_CST_OFFSET_NUNITS (t) == 1
1590 && TREE_INT_CST_EXT_NUNITS (t) == 1
1591 && TREE_INT_CST_ELT (t, 0) == hwi);
1592 else
1593 {
1594 /* Create a new shared int. */
1595 t = build_new_int_cst (type, cst);
1596 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
1597 }
1598 }
1599 else
1600 {
1601 /* Use the cache of larger shared ints, using int_cst_node as
1602 a temporary. */
1603
1604 TREE_INT_CST_ELT (int_cst_node, 0) = hwi;
1605 TREE_TYPE (int_cst_node) = type;
1606
1607 tree *slot = int_cst_hash_table->find_slot (int_cst_node, INSERT);
1608 t = *slot;
1609 if (!t)
1610 {
1611 /* Insert this one into the hash table. */
1612 t = int_cst_node;
1613 *slot = t;
1614 /* Make a new node for next time round. */
1615 int_cst_node = make_int_cst (1, 1);
1616 }
1617 }
1618 }
1619 else
1620 {
1621 /* The value either hashes properly or we drop it on the floor
1622 for the gc to take care of. There will not be enough of them
1623 to worry about. */
1624
1625 tree nt = build_new_int_cst (type, cst);
1626 tree *slot = int_cst_hash_table->find_slot (nt, INSERT);
1627 t = *slot;
1628 if (!t)
1629 {
1630 /* Insert this one into the hash table. */
1631 t = nt;
1632 *slot = t;
1633 }
1634 else
1635 ggc_free (nt);
1636 }
1637
1638 return t;
1639 }
1640
1641 hashval_t
1642 poly_int_cst_hasher::hash (tree t)
1643 {
1644 inchash::hash hstate;
1645
1646 hstate.add_int (TYPE_UID (TREE_TYPE (t)));
1647 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1648 hstate.add_wide_int (wi::to_wide (POLY_INT_CST_COEFF (t, i)));
1649
1650 return hstate.end ();
1651 }
1652
1653 bool
1654 poly_int_cst_hasher::equal (tree x, const compare_type &y)
1655 {
1656 if (TREE_TYPE (x) != y.first)
1657 return false;
1658 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1659 if (wi::to_wide (POLY_INT_CST_COEFF (x, i)) != y.second->coeffs[i])
1660 return false;
1661 return true;
1662 }
1663
1664 /* Build a POLY_INT_CST node with type TYPE and with the elements in VALUES.
1665 The elements must also have type TYPE. */
1666
1667 tree
1668 build_poly_int_cst (tree type, const poly_wide_int_ref &values)
1669 {
1670 unsigned int prec = TYPE_PRECISION (type);
1671 gcc_assert (prec <= values.coeffs[0].get_precision ());
1672 poly_wide_int c = poly_wide_int::from (values, prec, SIGNED);
1673
1674 inchash::hash h;
1675 h.add_int (TYPE_UID (type));
1676 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1677 h.add_wide_int (c.coeffs[i]);
1678 poly_int_cst_hasher::compare_type comp (type, &c);
1679 tree *slot = poly_int_cst_hash_table->find_slot_with_hash (comp, h.end (),
1680 INSERT);
1681 if (*slot == NULL_TREE)
1682 {
1683 tree coeffs[NUM_POLY_INT_COEFFS];
1684 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1685 coeffs[i] = wide_int_to_tree_1 (type, c.coeffs[i]);
1686 *slot = build_new_poly_int_cst (type, coeffs);
1687 }
1688 return *slot;
1689 }
1690
1691 /* Create a constant tree with value VALUE in type TYPE. */
1692
1693 tree
1694 wide_int_to_tree (tree type, const poly_wide_int_ref &value)
1695 {
1696 if (value.is_constant ())
1697 return wide_int_to_tree_1 (type, value.coeffs[0]);
1698 return build_poly_int_cst (type, value);
1699 }
1700
1701 void
1702 cache_integer_cst (tree t)
1703 {
1704 tree type = TREE_TYPE (t);
1705 int ix = -1;
1706 int limit = 0;
1707 int prec = TYPE_PRECISION (type);
1708
1709 gcc_assert (!TREE_OVERFLOW (t));
1710
1711 switch (TREE_CODE (type))
1712 {
1713 case NULLPTR_TYPE:
1714 gcc_assert (integer_zerop (t));
1715 /* Fallthru. */
1716
1717 case POINTER_TYPE:
1718 case REFERENCE_TYPE:
1719 /* Cache NULL pointer. */
1720 if (integer_zerop (t))
1721 {
1722 limit = 1;
1723 ix = 0;
1724 }
1725 break;
1726
1727 case BOOLEAN_TYPE:
1728 /* Cache false or true. */
1729 limit = 2;
1730 if (wi::ltu_p (wi::to_wide (t), 2))
1731 ix = TREE_INT_CST_ELT (t, 0);
1732 break;
1733
1734 case INTEGER_TYPE:
1735 case OFFSET_TYPE:
1736 if (TYPE_UNSIGNED (type))
1737 {
1738 /* Cache 0..N */
1739 limit = param_integer_share_limit;
1740
1741 /* This is a little hokie, but if the prec is smaller than
1742 what is necessary to hold param_integer_share_limit, then the
1743 obvious test will not get the correct answer. */
1744 if (prec < HOST_BITS_PER_WIDE_INT)
1745 {
1746 if (tree_to_uhwi (t)
1747 < (unsigned HOST_WIDE_INT) param_integer_share_limit)
1748 ix = tree_to_uhwi (t);
1749 }
1750 else if (wi::ltu_p (wi::to_wide (t), param_integer_share_limit))
1751 ix = tree_to_uhwi (t);
1752 }
1753 else
1754 {
1755 /* Cache -1..N */
1756 limit = param_integer_share_limit + 1;
1757
1758 if (integer_minus_onep (t))
1759 ix = 0;
1760 else if (!wi::neg_p (wi::to_wide (t)))
1761 {
1762 if (prec < HOST_BITS_PER_WIDE_INT)
1763 {
1764 if (tree_to_shwi (t) < param_integer_share_limit)
1765 ix = tree_to_shwi (t) + 1;
1766 }
1767 else if (wi::ltu_p (wi::to_wide (t), param_integer_share_limit))
1768 ix = tree_to_shwi (t) + 1;
1769 }
1770 }
1771 break;
1772
1773 case ENUMERAL_TYPE:
1774 break;
1775
1776 default:
1777 gcc_unreachable ();
1778 }
1779
1780 if (ix >= 0)
1781 {
1782 /* Look for it in the type's vector of small shared ints. */
1783 if (!TYPE_CACHED_VALUES_P (type))
1784 {
1785 TYPE_CACHED_VALUES_P (type) = 1;
1786 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
1787 }
1788
1789 gcc_assert (TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) == NULL_TREE);
1790 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
1791 }
1792 else
1793 {
1794 /* Use the cache of larger shared ints. */
1795 tree *slot = int_cst_hash_table->find_slot (t, INSERT);
1796 /* If there is already an entry for the number verify it's the
1797 same. */
1798 if (*slot)
1799 gcc_assert (wi::to_wide (tree (*slot)) == wi::to_wide (t));
1800 else
1801 /* Otherwise insert this one into the hash table. */
1802 *slot = t;
1803 }
1804 }
1805
1806
1807 /* Builds an integer constant in TYPE such that lowest BITS bits are ones
1808 and the rest are zeros. */
1809
1810 tree
1811 build_low_bits_mask (tree type, unsigned bits)
1812 {
1813 gcc_assert (bits <= TYPE_PRECISION (type));
1814
1815 return wide_int_to_tree (type, wi::mask (bits, false,
1816 TYPE_PRECISION (type)));
1817 }
1818
1819 /* Checks that X is integer constant that can be expressed in (unsigned)
1820 HOST_WIDE_INT without loss of precision. */
1821
1822 bool
1823 cst_and_fits_in_hwi (const_tree x)
1824 {
1825 return (TREE_CODE (x) == INTEGER_CST
1826 && (tree_fits_shwi_p (x) || tree_fits_uhwi_p (x)));
1827 }
1828
1829 /* Build a newly constructed VECTOR_CST with the given values of
1830 (VECTOR_CST_)LOG2_NPATTERNS and (VECTOR_CST_)NELTS_PER_PATTERN. */
1831
1832 tree
1833 make_vector (unsigned log2_npatterns,
1834 unsigned int nelts_per_pattern MEM_STAT_DECL)
1835 {
1836 gcc_assert (IN_RANGE (nelts_per_pattern, 1, 3));
1837 tree t;
1838 unsigned npatterns = 1 << log2_npatterns;
1839 unsigned encoded_nelts = npatterns * nelts_per_pattern;
1840 unsigned length = (sizeof (struct tree_vector)
1841 + (encoded_nelts - 1) * sizeof (tree));
1842
1843 record_node_allocation_statistics (VECTOR_CST, length);
1844
1845 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
1846
1847 TREE_SET_CODE (t, VECTOR_CST);
1848 TREE_CONSTANT (t) = 1;
1849 VECTOR_CST_LOG2_NPATTERNS (t) = log2_npatterns;
1850 VECTOR_CST_NELTS_PER_PATTERN (t) = nelts_per_pattern;
1851
1852 return t;
1853 }
1854
1855 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1856 are extracted from V, a vector of CONSTRUCTOR_ELT. */
1857
1858 tree
1859 build_vector_from_ctor (tree type, vec<constructor_elt, va_gc> *v)
1860 {
1861 if (vec_safe_length (v) == 0)
1862 return build_zero_cst (type);
1863
1864 unsigned HOST_WIDE_INT idx, nelts;
1865 tree value;
1866
1867 /* We can't construct a VECTOR_CST for a variable number of elements. */
1868 nelts = TYPE_VECTOR_SUBPARTS (type).to_constant ();
1869 tree_vector_builder vec (type, nelts, 1);
1870 FOR_EACH_CONSTRUCTOR_VALUE (v, idx, value)
1871 {
1872 if (TREE_CODE (value) == VECTOR_CST)
1873 {
1874 /* If NELTS is constant then this must be too. */
1875 unsigned int sub_nelts = VECTOR_CST_NELTS (value).to_constant ();
1876 for (unsigned i = 0; i < sub_nelts; ++i)
1877 vec.quick_push (VECTOR_CST_ELT (value, i));
1878 }
1879 else
1880 vec.quick_push (value);
1881 }
1882 while (vec.length () < nelts)
1883 vec.quick_push (build_zero_cst (TREE_TYPE (type)));
1884
1885 return vec.build ();
1886 }
1887
1888 /* Build a vector of type VECTYPE where all the elements are SCs. */
1889 tree
1890 build_vector_from_val (tree vectype, tree sc)
1891 {
1892 unsigned HOST_WIDE_INT i, nunits;
1893
1894 if (sc == error_mark_node)
1895 return sc;
1896
1897 /* Verify that the vector type is suitable for SC. Note that there
1898 is some inconsistency in the type-system with respect to restrict
1899 qualifications of pointers. Vector types always have a main-variant
1900 element type and the qualification is applied to the vector-type.
1901 So TREE_TYPE (vector-type) does not return a properly qualified
1902 vector element-type. */
1903 gcc_checking_assert (types_compatible_p (TYPE_MAIN_VARIANT (TREE_TYPE (sc)),
1904 TREE_TYPE (vectype)));
1905
1906 if (CONSTANT_CLASS_P (sc))
1907 {
1908 tree_vector_builder v (vectype, 1, 1);
1909 v.quick_push (sc);
1910 return v.build ();
1911 }
1912 else if (!TYPE_VECTOR_SUBPARTS (vectype).is_constant (&nunits))
1913 return fold_build1 (VEC_DUPLICATE_EXPR, vectype, sc);
1914 else
1915 {
1916 vec<constructor_elt, va_gc> *v;
1917 vec_alloc (v, nunits);
1918 for (i = 0; i < nunits; ++i)
1919 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, sc);
1920 return build_constructor (vectype, v);
1921 }
1922 }
1923
1924 /* If TYPE is not a vector type, just return SC, otherwise return
1925 build_vector_from_val (TYPE, SC). */
1926
1927 tree
1928 build_uniform_cst (tree type, tree sc)
1929 {
1930 if (!VECTOR_TYPE_P (type))
1931 return sc;
1932
1933 return build_vector_from_val (type, sc);
1934 }
1935
1936 /* Build a vector series of type TYPE in which element I has the value
1937 BASE + I * STEP. The result is a constant if BASE and STEP are constant
1938 and a VEC_SERIES_EXPR otherwise. */
1939
1940 tree
1941 build_vec_series (tree type, tree base, tree step)
1942 {
1943 if (integer_zerop (step))
1944 return build_vector_from_val (type, base);
1945 if (TREE_CODE (base) == INTEGER_CST && TREE_CODE (step) == INTEGER_CST)
1946 {
1947 tree_vector_builder builder (type, 1, 3);
1948 tree elt1 = wide_int_to_tree (TREE_TYPE (base),
1949 wi::to_wide (base) + wi::to_wide (step));
1950 tree elt2 = wide_int_to_tree (TREE_TYPE (base),
1951 wi::to_wide (elt1) + wi::to_wide (step));
1952 builder.quick_push (base);
1953 builder.quick_push (elt1);
1954 builder.quick_push (elt2);
1955 return builder.build ();
1956 }
1957 return build2 (VEC_SERIES_EXPR, type, base, step);
1958 }
1959
1960 /* Return a vector with the same number of units and number of bits
1961 as VEC_TYPE, but in which the elements are a linear series of unsigned
1962 integers { BASE, BASE + STEP, BASE + STEP * 2, ... }. */
1963
1964 tree
1965 build_index_vector (tree vec_type, poly_uint64 base, poly_uint64 step)
1966 {
1967 tree index_vec_type = vec_type;
1968 tree index_elt_type = TREE_TYPE (vec_type);
1969 poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (vec_type);
1970 if (!INTEGRAL_TYPE_P (index_elt_type) || !TYPE_UNSIGNED (index_elt_type))
1971 {
1972 index_elt_type = build_nonstandard_integer_type
1973 (GET_MODE_BITSIZE (SCALAR_TYPE_MODE (index_elt_type)), true);
1974 index_vec_type = build_vector_type (index_elt_type, nunits);
1975 }
1976
1977 tree_vector_builder v (index_vec_type, 1, 3);
1978 for (unsigned int i = 0; i < 3; ++i)
1979 v.quick_push (build_int_cstu (index_elt_type, base + i * step));
1980 return v.build ();
1981 }
1982
1983 /* Return a VECTOR_CST of type VEC_TYPE in which the first NUM_A
1984 elements are A and the rest are B. */
1985
1986 tree
1987 build_vector_a_then_b (tree vec_type, unsigned int num_a, tree a, tree b)
1988 {
1989 gcc_assert (known_le (num_a, TYPE_VECTOR_SUBPARTS (vec_type)));
1990 unsigned int count = constant_lower_bound (TYPE_VECTOR_SUBPARTS (vec_type));
1991 /* Optimize the constant case. */
1992 if ((count & 1) == 0 && TYPE_VECTOR_SUBPARTS (vec_type).is_constant ())
1993 count /= 2;
1994 tree_vector_builder builder (vec_type, count, 2);
1995 for (unsigned int i = 0; i < count * 2; ++i)
1996 builder.quick_push (i < num_a ? a : b);
1997 return builder.build ();
1998 }
1999
2000 /* Something has messed with the elements of CONSTRUCTOR C after it was built;
2001 calculate TREE_CONSTANT and TREE_SIDE_EFFECTS. */
2002
2003 void
2004 recompute_constructor_flags (tree c)
2005 {
2006 unsigned int i;
2007 tree val;
2008 bool constant_p = true;
2009 bool side_effects_p = false;
2010 vec<constructor_elt, va_gc> *vals = CONSTRUCTOR_ELTS (c);
2011
2012 FOR_EACH_CONSTRUCTOR_VALUE (vals, i, val)
2013 {
2014 /* Mostly ctors will have elts that don't have side-effects, so
2015 the usual case is to scan all the elements. Hence a single
2016 loop for both const and side effects, rather than one loop
2017 each (with early outs). */
2018 if (!TREE_CONSTANT (val))
2019 constant_p = false;
2020 if (TREE_SIDE_EFFECTS (val))
2021 side_effects_p = true;
2022 }
2023
2024 TREE_SIDE_EFFECTS (c) = side_effects_p;
2025 TREE_CONSTANT (c) = constant_p;
2026 }
2027
2028 /* Make sure that TREE_CONSTANT and TREE_SIDE_EFFECTS are correct for
2029 CONSTRUCTOR C. */
2030
2031 void
2032 verify_constructor_flags (tree c)
2033 {
2034 unsigned int i;
2035 tree val;
2036 bool constant_p = TREE_CONSTANT (c);
2037 bool side_effects_p = TREE_SIDE_EFFECTS (c);
2038 vec<constructor_elt, va_gc> *vals = CONSTRUCTOR_ELTS (c);
2039
2040 FOR_EACH_CONSTRUCTOR_VALUE (vals, i, val)
2041 {
2042 if (constant_p && !TREE_CONSTANT (val))
2043 internal_error ("non-constant element in constant CONSTRUCTOR");
2044 if (!side_effects_p && TREE_SIDE_EFFECTS (val))
2045 internal_error ("side-effects element in no-side-effects CONSTRUCTOR");
2046 }
2047 }
2048
2049 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
2050 are in the vec pointed to by VALS. */
2051 tree
2052 build_constructor (tree type, vec<constructor_elt, va_gc> *vals MEM_STAT_DECL)
2053 {
2054 tree c = make_node (CONSTRUCTOR PASS_MEM_STAT);
2055
2056 TREE_TYPE (c) = type;
2057 CONSTRUCTOR_ELTS (c) = vals;
2058
2059 recompute_constructor_flags (c);
2060
2061 return c;
2062 }
2063
2064 /* Build a CONSTRUCTOR node made of a single initializer, with the specified
2065 INDEX and VALUE. */
2066 tree
2067 build_constructor_single (tree type, tree index, tree value)
2068 {
2069 vec<constructor_elt, va_gc> *v;
2070 constructor_elt elt = {index, value};
2071
2072 vec_alloc (v, 1);
2073 v->quick_push (elt);
2074
2075 return build_constructor (type, v);
2076 }
2077
2078
2079 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
2080 are in a list pointed to by VALS. */
2081 tree
2082 build_constructor_from_list (tree type, tree vals)
2083 {
2084 tree t;
2085 vec<constructor_elt, va_gc> *v = NULL;
2086
2087 if (vals)
2088 {
2089 vec_alloc (v, list_length (vals));
2090 for (t = vals; t; t = TREE_CHAIN (t))
2091 CONSTRUCTOR_APPEND_ELT (v, TREE_PURPOSE (t), TREE_VALUE (t));
2092 }
2093
2094 return build_constructor (type, v);
2095 }
2096
2097 /* Return a new CONSTRUCTOR node whose type is TYPE. NELTS is the number
2098 of elements, provided as index/value pairs. */
2099
2100 tree
2101 build_constructor_va (tree type, int nelts, ...)
2102 {
2103 vec<constructor_elt, va_gc> *v = NULL;
2104 va_list p;
2105
2106 va_start (p, nelts);
2107 vec_alloc (v, nelts);
2108 while (nelts--)
2109 {
2110 tree index = va_arg (p, tree);
2111 tree value = va_arg (p, tree);
2112 CONSTRUCTOR_APPEND_ELT (v, index, value);
2113 }
2114 va_end (p);
2115 return build_constructor (type, v);
2116 }
2117
2118 /* Return a node of type TYPE for which TREE_CLOBBER_P is true. */
2119
2120 tree
2121 build_clobber (tree type)
2122 {
2123 tree clobber = build_constructor (type, NULL);
2124 TREE_THIS_VOLATILE (clobber) = true;
2125 return clobber;
2126 }
2127
2128 /* Return a new FIXED_CST node whose type is TYPE and value is F. */
2129
2130 tree
2131 build_fixed (tree type, FIXED_VALUE_TYPE f)
2132 {
2133 tree v;
2134 FIXED_VALUE_TYPE *fp;
2135
2136 v = make_node (FIXED_CST);
2137 fp = ggc_alloc<fixed_value> ();
2138 memcpy (fp, &f, sizeof (FIXED_VALUE_TYPE));
2139
2140 TREE_TYPE (v) = type;
2141 TREE_FIXED_CST_PTR (v) = fp;
2142 return v;
2143 }
2144
2145 /* Return a new REAL_CST node whose type is TYPE and value is D. */
2146
2147 tree
2148 build_real (tree type, REAL_VALUE_TYPE d)
2149 {
2150 tree v;
2151 REAL_VALUE_TYPE *dp;
2152 int overflow = 0;
2153
2154 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
2155 Consider doing it via real_convert now. */
2156
2157 v = make_node (REAL_CST);
2158 dp = ggc_alloc<real_value> ();
2159 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
2160
2161 TREE_TYPE (v) = type;
2162 TREE_REAL_CST_PTR (v) = dp;
2163 TREE_OVERFLOW (v) = overflow;
2164 return v;
2165 }
2166
2167 /* Like build_real, but first truncate D to the type. */
2168
2169 tree
2170 build_real_truncate (tree type, REAL_VALUE_TYPE d)
2171 {
2172 return build_real (type, real_value_truncate (TYPE_MODE (type), d));
2173 }
2174
2175 /* Return a new REAL_CST node whose type is TYPE
2176 and whose value is the integer value of the INTEGER_CST node I. */
2177
2178 REAL_VALUE_TYPE
2179 real_value_from_int_cst (const_tree type, const_tree i)
2180 {
2181 REAL_VALUE_TYPE d;
2182
2183 /* Clear all bits of the real value type so that we can later do
2184 bitwise comparisons to see if two values are the same. */
2185 memset (&d, 0, sizeof d);
2186
2187 real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode, wi::to_wide (i),
2188 TYPE_SIGN (TREE_TYPE (i)));
2189 return d;
2190 }
2191
2192 /* Given a tree representing an integer constant I, return a tree
2193 representing the same value as a floating-point constant of type TYPE. */
2194
2195 tree
2196 build_real_from_int_cst (tree type, const_tree i)
2197 {
2198 tree v;
2199 int overflow = TREE_OVERFLOW (i);
2200
2201 v = build_real (type, real_value_from_int_cst (type, i));
2202
2203 TREE_OVERFLOW (v) |= overflow;
2204 return v;
2205 }
2206
2207 /* Return a newly constructed STRING_CST node whose value is
2208 the LEN characters at STR.
2209 Note that for a C string literal, LEN should include the trailing NUL.
2210 The TREE_TYPE is not initialized. */
2211
2212 tree
2213 build_string (int len, const char *str)
2214 {
2215 tree s;
2216 size_t length;
2217
2218 /* Do not waste bytes provided by padding of struct tree_string. */
2219 length = len + offsetof (struct tree_string, str) + 1;
2220
2221 record_node_allocation_statistics (STRING_CST, length);
2222
2223 s = (tree) ggc_internal_alloc (length);
2224
2225 memset (s, 0, sizeof (struct tree_typed));
2226 TREE_SET_CODE (s, STRING_CST);
2227 TREE_CONSTANT (s) = 1;
2228 TREE_STRING_LENGTH (s) = len;
2229 memcpy (s->string.str, str, len);
2230 s->string.str[len] = '\0';
2231
2232 return s;
2233 }
2234
2235 /* Return a newly constructed COMPLEX_CST node whose value is
2236 specified by the real and imaginary parts REAL and IMAG.
2237 Both REAL and IMAG should be constant nodes. TYPE, if specified,
2238 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
2239
2240 tree
2241 build_complex (tree type, tree real, tree imag)
2242 {
2243 gcc_assert (CONSTANT_CLASS_P (real));
2244 gcc_assert (CONSTANT_CLASS_P (imag));
2245
2246 tree t = make_node (COMPLEX_CST);
2247
2248 TREE_REALPART (t) = real;
2249 TREE_IMAGPART (t) = imag;
2250 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
2251 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
2252 return t;
2253 }
2254
2255 /* Build a complex (inf +- 0i), such as for the result of cproj.
2256 TYPE is the complex tree type of the result. If NEG is true, the
2257 imaginary zero is negative. */
2258
2259 tree
2260 build_complex_inf (tree type, bool neg)
2261 {
2262 REAL_VALUE_TYPE rinf, rzero = dconst0;
2263
2264 real_inf (&rinf);
2265 rzero.sign = neg;
2266 return build_complex (type, build_real (TREE_TYPE (type), rinf),
2267 build_real (TREE_TYPE (type), rzero));
2268 }
2269
2270 /* Return the constant 1 in type TYPE. If TYPE has several elements, each
2271 element is set to 1. In particular, this is 1 + i for complex types. */
2272
2273 tree
2274 build_each_one_cst (tree type)
2275 {
2276 if (TREE_CODE (type) == COMPLEX_TYPE)
2277 {
2278 tree scalar = build_one_cst (TREE_TYPE (type));
2279 return build_complex (type, scalar, scalar);
2280 }
2281 else
2282 return build_one_cst (type);
2283 }
2284
2285 /* Return a constant of arithmetic type TYPE which is the
2286 multiplicative identity of the set TYPE. */
2287
2288 tree
2289 build_one_cst (tree type)
2290 {
2291 switch (TREE_CODE (type))
2292 {
2293 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2294 case POINTER_TYPE: case REFERENCE_TYPE:
2295 case OFFSET_TYPE:
2296 return build_int_cst (type, 1);
2297
2298 case REAL_TYPE:
2299 return build_real (type, dconst1);
2300
2301 case FIXED_POINT_TYPE:
2302 /* We can only generate 1 for accum types. */
2303 gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
2304 return build_fixed (type, FCONST1 (TYPE_MODE (type)));
2305
2306 case VECTOR_TYPE:
2307 {
2308 tree scalar = build_one_cst (TREE_TYPE (type));
2309
2310 return build_vector_from_val (type, scalar);
2311 }
2312
2313 case COMPLEX_TYPE:
2314 return build_complex (type,
2315 build_one_cst (TREE_TYPE (type)),
2316 build_zero_cst (TREE_TYPE (type)));
2317
2318 default:
2319 gcc_unreachable ();
2320 }
2321 }
2322
2323 /* Return an integer of type TYPE containing all 1's in as much precision as
2324 it contains, or a complex or vector whose subparts are such integers. */
2325
2326 tree
2327 build_all_ones_cst (tree type)
2328 {
2329 if (TREE_CODE (type) == COMPLEX_TYPE)
2330 {
2331 tree scalar = build_all_ones_cst (TREE_TYPE (type));
2332 return build_complex (type, scalar, scalar);
2333 }
2334 else
2335 return build_minus_one_cst (type);
2336 }
2337
2338 /* Return a constant of arithmetic type TYPE which is the
2339 opposite of the multiplicative identity of the set TYPE. */
2340
2341 tree
2342 build_minus_one_cst (tree type)
2343 {
2344 switch (TREE_CODE (type))
2345 {
2346 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2347 case POINTER_TYPE: case REFERENCE_TYPE:
2348 case OFFSET_TYPE:
2349 return build_int_cst (type, -1);
2350
2351 case REAL_TYPE:
2352 return build_real (type, dconstm1);
2353
2354 case FIXED_POINT_TYPE:
2355 /* We can only generate 1 for accum types. */
2356 gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
2357 return build_fixed (type,
2358 fixed_from_double_int (double_int_minus_one,
2359 SCALAR_TYPE_MODE (type)));
2360
2361 case VECTOR_TYPE:
2362 {
2363 tree scalar = build_minus_one_cst (TREE_TYPE (type));
2364
2365 return build_vector_from_val (type, scalar);
2366 }
2367
2368 case COMPLEX_TYPE:
2369 return build_complex (type,
2370 build_minus_one_cst (TREE_TYPE (type)),
2371 build_zero_cst (TREE_TYPE (type)));
2372
2373 default:
2374 gcc_unreachable ();
2375 }
2376 }
2377
2378 /* Build 0 constant of type TYPE. This is used by constructor folding
2379 and thus the constant should be represented in memory by
2380 zero(es). */
2381
2382 tree
2383 build_zero_cst (tree type)
2384 {
2385 switch (TREE_CODE (type))
2386 {
2387 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2388 case POINTER_TYPE: case REFERENCE_TYPE:
2389 case OFFSET_TYPE: case NULLPTR_TYPE:
2390 return build_int_cst (type, 0);
2391
2392 case REAL_TYPE:
2393 return build_real (type, dconst0);
2394
2395 case FIXED_POINT_TYPE:
2396 return build_fixed (type, FCONST0 (TYPE_MODE (type)));
2397
2398 case VECTOR_TYPE:
2399 {
2400 tree scalar = build_zero_cst (TREE_TYPE (type));
2401
2402 return build_vector_from_val (type, scalar);
2403 }
2404
2405 case COMPLEX_TYPE:
2406 {
2407 tree zero = build_zero_cst (TREE_TYPE (type));
2408
2409 return build_complex (type, zero, zero);
2410 }
2411
2412 default:
2413 if (!AGGREGATE_TYPE_P (type))
2414 return fold_convert (type, integer_zero_node);
2415 return build_constructor (type, NULL);
2416 }
2417 }
2418
2419
2420 /* Build a BINFO with LEN language slots. */
2421
2422 tree
2423 make_tree_binfo (unsigned base_binfos MEM_STAT_DECL)
2424 {
2425 tree t;
2426 size_t length = (offsetof (struct tree_binfo, base_binfos)
2427 + vec<tree, va_gc>::embedded_size (base_binfos));
2428
2429 record_node_allocation_statistics (TREE_BINFO, length);
2430
2431 t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
2432
2433 memset (t, 0, offsetof (struct tree_binfo, base_binfos));
2434
2435 TREE_SET_CODE (t, TREE_BINFO);
2436
2437 BINFO_BASE_BINFOS (t)->embedded_init (base_binfos);
2438
2439 return t;
2440 }
2441
2442 /* Create a CASE_LABEL_EXPR tree node and return it. */
2443
2444 tree
2445 build_case_label (tree low_value, tree high_value, tree label_decl)
2446 {
2447 tree t = make_node (CASE_LABEL_EXPR);
2448
2449 TREE_TYPE (t) = void_type_node;
2450 SET_EXPR_LOCATION (t, DECL_SOURCE_LOCATION (label_decl));
2451
2452 CASE_LOW (t) = low_value;
2453 CASE_HIGH (t) = high_value;
2454 CASE_LABEL (t) = label_decl;
2455 CASE_CHAIN (t) = NULL_TREE;
2456
2457 return t;
2458 }
2459
2460 /* Build a newly constructed INTEGER_CST node. LEN and EXT_LEN are the
2461 values of TREE_INT_CST_NUNITS and TREE_INT_CST_EXT_NUNITS respectively.
2462 The latter determines the length of the HOST_WIDE_INT vector. */
2463
2464 tree
2465 make_int_cst (int len, int ext_len MEM_STAT_DECL)
2466 {
2467 tree t;
2468 int length = ((ext_len - 1) * sizeof (HOST_WIDE_INT)
2469 + sizeof (struct tree_int_cst));
2470
2471 gcc_assert (len);
2472 record_node_allocation_statistics (INTEGER_CST, length);
2473
2474 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
2475
2476 TREE_SET_CODE (t, INTEGER_CST);
2477 TREE_INT_CST_NUNITS (t) = len;
2478 TREE_INT_CST_EXT_NUNITS (t) = ext_len;
2479 /* to_offset can only be applied to trees that are offset_int-sized
2480 or smaller. EXT_LEN is correct if it fits, otherwise the constant
2481 must be exactly the precision of offset_int and so LEN is correct. */
2482 if (ext_len <= OFFSET_INT_ELTS)
2483 TREE_INT_CST_OFFSET_NUNITS (t) = ext_len;
2484 else
2485 TREE_INT_CST_OFFSET_NUNITS (t) = len;
2486
2487 TREE_CONSTANT (t) = 1;
2488
2489 return t;
2490 }
2491
2492 /* Build a newly constructed TREE_VEC node of length LEN. */
2493
2494 tree
2495 make_tree_vec (int len MEM_STAT_DECL)
2496 {
2497 tree t;
2498 size_t length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
2499
2500 record_node_allocation_statistics (TREE_VEC, length);
2501
2502 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
2503
2504 TREE_SET_CODE (t, TREE_VEC);
2505 TREE_VEC_LENGTH (t) = len;
2506
2507 return t;
2508 }
2509
2510 /* Grow a TREE_VEC node to new length LEN. */
2511
2512 tree
2513 grow_tree_vec (tree v, int len MEM_STAT_DECL)
2514 {
2515 gcc_assert (TREE_CODE (v) == TREE_VEC);
2516
2517 int oldlen = TREE_VEC_LENGTH (v);
2518 gcc_assert (len > oldlen);
2519
2520 size_t oldlength = (oldlen - 1) * sizeof (tree) + sizeof (struct tree_vec);
2521 size_t length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
2522
2523 record_node_allocation_statistics (TREE_VEC, length - oldlength);
2524
2525 v = (tree) ggc_realloc (v, length PASS_MEM_STAT);
2526
2527 TREE_VEC_LENGTH (v) = len;
2528
2529 return v;
2530 }
2531 \f
2532 /* Return 1 if EXPR is the constant zero, whether it is integral, float or
2533 fixed, and scalar, complex or vector. */
2534
2535 bool
2536 zerop (const_tree expr)
2537 {
2538 return (integer_zerop (expr)
2539 || real_zerop (expr)
2540 || fixed_zerop (expr));
2541 }
2542
2543 /* Return 1 if EXPR is the integer constant zero or a complex constant
2544 of zero, or a location wrapper for such a constant. */
2545
2546 bool
2547 integer_zerop (const_tree expr)
2548 {
2549 STRIP_ANY_LOCATION_WRAPPER (expr);
2550
2551 switch (TREE_CODE (expr))
2552 {
2553 case INTEGER_CST:
2554 return wi::to_wide (expr) == 0;
2555 case COMPLEX_CST:
2556 return (integer_zerop (TREE_REALPART (expr))
2557 && integer_zerop (TREE_IMAGPART (expr)));
2558 case VECTOR_CST:
2559 return (VECTOR_CST_NPATTERNS (expr) == 1
2560 && VECTOR_CST_DUPLICATE_P (expr)
2561 && integer_zerop (VECTOR_CST_ENCODED_ELT (expr, 0)));
2562 default:
2563 return false;
2564 }
2565 }
2566
2567 /* Return 1 if EXPR is the integer constant one or the corresponding
2568 complex constant, or a location wrapper for such a constant. */
2569
2570 bool
2571 integer_onep (const_tree expr)
2572 {
2573 STRIP_ANY_LOCATION_WRAPPER (expr);
2574
2575 switch (TREE_CODE (expr))
2576 {
2577 case INTEGER_CST:
2578 return wi::eq_p (wi::to_widest (expr), 1);
2579 case COMPLEX_CST:
2580 return (integer_onep (TREE_REALPART (expr))
2581 && integer_zerop (TREE_IMAGPART (expr)));
2582 case VECTOR_CST:
2583 return (VECTOR_CST_NPATTERNS (expr) == 1
2584 && VECTOR_CST_DUPLICATE_P (expr)
2585 && integer_onep (VECTOR_CST_ENCODED_ELT (expr, 0)));
2586 default:
2587 return false;
2588 }
2589 }
2590
2591 /* Return 1 if EXPR is the integer constant one. For complex and vector,
2592 return 1 if every piece is the integer constant one.
2593 Also return 1 for location wrappers for such a constant. */
2594
2595 bool
2596 integer_each_onep (const_tree expr)
2597 {
2598 STRIP_ANY_LOCATION_WRAPPER (expr);
2599
2600 if (TREE_CODE (expr) == COMPLEX_CST)
2601 return (integer_onep (TREE_REALPART (expr))
2602 && integer_onep (TREE_IMAGPART (expr)));
2603 else
2604 return integer_onep (expr);
2605 }
2606
2607 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
2608 it contains, or a complex or vector whose subparts are such integers,
2609 or a location wrapper for such a constant. */
2610
2611 bool
2612 integer_all_onesp (const_tree expr)
2613 {
2614 STRIP_ANY_LOCATION_WRAPPER (expr);
2615
2616 if (TREE_CODE (expr) == COMPLEX_CST
2617 && integer_all_onesp (TREE_REALPART (expr))
2618 && integer_all_onesp (TREE_IMAGPART (expr)))
2619 return true;
2620
2621 else if (TREE_CODE (expr) == VECTOR_CST)
2622 return (VECTOR_CST_NPATTERNS (expr) == 1
2623 && VECTOR_CST_DUPLICATE_P (expr)
2624 && integer_all_onesp (VECTOR_CST_ENCODED_ELT (expr, 0)));
2625
2626 else if (TREE_CODE (expr) != INTEGER_CST)
2627 return false;
2628
2629 return (wi::max_value (TYPE_PRECISION (TREE_TYPE (expr)), UNSIGNED)
2630 == wi::to_wide (expr));
2631 }
2632
2633 /* Return 1 if EXPR is the integer constant minus one, or a location wrapper
2634 for such a constant. */
2635
2636 bool
2637 integer_minus_onep (const_tree expr)
2638 {
2639 STRIP_ANY_LOCATION_WRAPPER (expr);
2640
2641 if (TREE_CODE (expr) == COMPLEX_CST)
2642 return (integer_all_onesp (TREE_REALPART (expr))
2643 && integer_zerop (TREE_IMAGPART (expr)));
2644 else
2645 return integer_all_onesp (expr);
2646 }
2647
2648 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
2649 one bit on), or a location wrapper for such a constant. */
2650
2651 bool
2652 integer_pow2p (const_tree expr)
2653 {
2654 STRIP_ANY_LOCATION_WRAPPER (expr);
2655
2656 if (TREE_CODE (expr) == COMPLEX_CST
2657 && integer_pow2p (TREE_REALPART (expr))
2658 && integer_zerop (TREE_IMAGPART (expr)))
2659 return true;
2660
2661 if (TREE_CODE (expr) != INTEGER_CST)
2662 return false;
2663
2664 return wi::popcount (wi::to_wide (expr)) == 1;
2665 }
2666
2667 /* Return 1 if EXPR is an integer constant other than zero or a
2668 complex constant other than zero, or a location wrapper for such a
2669 constant. */
2670
2671 bool
2672 integer_nonzerop (const_tree expr)
2673 {
2674 STRIP_ANY_LOCATION_WRAPPER (expr);
2675
2676 return ((TREE_CODE (expr) == INTEGER_CST
2677 && wi::to_wide (expr) != 0)
2678 || (TREE_CODE (expr) == COMPLEX_CST
2679 && (integer_nonzerop (TREE_REALPART (expr))
2680 || integer_nonzerop (TREE_IMAGPART (expr)))));
2681 }
2682
2683 /* Return 1 if EXPR is the integer constant one. For vector,
2684 return 1 if every piece is the integer constant minus one
2685 (representing the value TRUE).
2686 Also return 1 for location wrappers for such a constant. */
2687
2688 bool
2689 integer_truep (const_tree expr)
2690 {
2691 STRIP_ANY_LOCATION_WRAPPER (expr);
2692
2693 if (TREE_CODE (expr) == VECTOR_CST)
2694 return integer_all_onesp (expr);
2695 return integer_onep (expr);
2696 }
2697
2698 /* Return 1 if EXPR is the fixed-point constant zero, or a location wrapper
2699 for such a constant. */
2700
2701 bool
2702 fixed_zerop (const_tree expr)
2703 {
2704 STRIP_ANY_LOCATION_WRAPPER (expr);
2705
2706 return (TREE_CODE (expr) == FIXED_CST
2707 && TREE_FIXED_CST (expr).data.is_zero ());
2708 }
2709
2710 /* Return the power of two represented by a tree node known to be a
2711 power of two. */
2712
2713 int
2714 tree_log2 (const_tree expr)
2715 {
2716 if (TREE_CODE (expr) == COMPLEX_CST)
2717 return tree_log2 (TREE_REALPART (expr));
2718
2719 return wi::exact_log2 (wi::to_wide (expr));
2720 }
2721
2722 /* Similar, but return the largest integer Y such that 2 ** Y is less
2723 than or equal to EXPR. */
2724
2725 int
2726 tree_floor_log2 (const_tree expr)
2727 {
2728 if (TREE_CODE (expr) == COMPLEX_CST)
2729 return tree_log2 (TREE_REALPART (expr));
2730
2731 return wi::floor_log2 (wi::to_wide (expr));
2732 }
2733
2734 /* Return number of known trailing zero bits in EXPR, or, if the value of
2735 EXPR is known to be zero, the precision of it's type. */
2736
2737 unsigned int
2738 tree_ctz (const_tree expr)
2739 {
2740 if (!INTEGRAL_TYPE_P (TREE_TYPE (expr))
2741 && !POINTER_TYPE_P (TREE_TYPE (expr)))
2742 return 0;
2743
2744 unsigned int ret1, ret2, prec = TYPE_PRECISION (TREE_TYPE (expr));
2745 switch (TREE_CODE (expr))
2746 {
2747 case INTEGER_CST:
2748 ret1 = wi::ctz (wi::to_wide (expr));
2749 return MIN (ret1, prec);
2750 case SSA_NAME:
2751 ret1 = wi::ctz (get_nonzero_bits (expr));
2752 return MIN (ret1, prec);
2753 case PLUS_EXPR:
2754 case MINUS_EXPR:
2755 case BIT_IOR_EXPR:
2756 case BIT_XOR_EXPR:
2757 case MIN_EXPR:
2758 case MAX_EXPR:
2759 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2760 if (ret1 == 0)
2761 return ret1;
2762 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2763 return MIN (ret1, ret2);
2764 case POINTER_PLUS_EXPR:
2765 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2766 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2767 /* Second operand is sizetype, which could be in theory
2768 wider than pointer's precision. Make sure we never
2769 return more than prec. */
2770 ret2 = MIN (ret2, prec);
2771 return MIN (ret1, ret2);
2772 case BIT_AND_EXPR:
2773 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2774 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2775 return MAX (ret1, ret2);
2776 case MULT_EXPR:
2777 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2778 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2779 return MIN (ret1 + ret2, prec);
2780 case LSHIFT_EXPR:
2781 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2782 if (tree_fits_uhwi_p (TREE_OPERAND (expr, 1))
2783 && (tree_to_uhwi (TREE_OPERAND (expr, 1)) < prec))
2784 {
2785 ret2 = tree_to_uhwi (TREE_OPERAND (expr, 1));
2786 return MIN (ret1 + ret2, prec);
2787 }
2788 return ret1;
2789 case RSHIFT_EXPR:
2790 if (tree_fits_uhwi_p (TREE_OPERAND (expr, 1))
2791 && (tree_to_uhwi (TREE_OPERAND (expr, 1)) < prec))
2792 {
2793 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2794 ret2 = tree_to_uhwi (TREE_OPERAND (expr, 1));
2795 if (ret1 > ret2)
2796 return ret1 - ret2;
2797 }
2798 return 0;
2799 case TRUNC_DIV_EXPR:
2800 case CEIL_DIV_EXPR:
2801 case FLOOR_DIV_EXPR:
2802 case ROUND_DIV_EXPR:
2803 case EXACT_DIV_EXPR:
2804 if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
2805 && tree_int_cst_sgn (TREE_OPERAND (expr, 1)) == 1)
2806 {
2807 int l = tree_log2 (TREE_OPERAND (expr, 1));
2808 if (l >= 0)
2809 {
2810 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2811 ret2 = l;
2812 if (ret1 > ret2)
2813 return ret1 - ret2;
2814 }
2815 }
2816 return 0;
2817 CASE_CONVERT:
2818 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2819 if (ret1 && ret1 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (expr, 0))))
2820 ret1 = prec;
2821 return MIN (ret1, prec);
2822 case SAVE_EXPR:
2823 return tree_ctz (TREE_OPERAND (expr, 0));
2824 case COND_EXPR:
2825 ret1 = tree_ctz (TREE_OPERAND (expr, 1));
2826 if (ret1 == 0)
2827 return 0;
2828 ret2 = tree_ctz (TREE_OPERAND (expr, 2));
2829 return MIN (ret1, ret2);
2830 case COMPOUND_EXPR:
2831 return tree_ctz (TREE_OPERAND (expr, 1));
2832 case ADDR_EXPR:
2833 ret1 = get_pointer_alignment (CONST_CAST_TREE (expr));
2834 if (ret1 > BITS_PER_UNIT)
2835 {
2836 ret1 = ctz_hwi (ret1 / BITS_PER_UNIT);
2837 return MIN (ret1, prec);
2838 }
2839 return 0;
2840 default:
2841 return 0;
2842 }
2843 }
2844
2845 /* Return 1 if EXPR is the real constant zero. Trailing zeroes matter for
2846 decimal float constants, so don't return 1 for them.
2847 Also return 1 for location wrappers around such a constant. */
2848
2849 bool
2850 real_zerop (const_tree expr)
2851 {
2852 STRIP_ANY_LOCATION_WRAPPER (expr);
2853
2854 switch (TREE_CODE (expr))
2855 {
2856 case REAL_CST:
2857 return real_equal (&TREE_REAL_CST (expr), &dconst0)
2858 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2859 case COMPLEX_CST:
2860 return real_zerop (TREE_REALPART (expr))
2861 && real_zerop (TREE_IMAGPART (expr));
2862 case VECTOR_CST:
2863 {
2864 /* Don't simply check for a duplicate because the predicate
2865 accepts both +0.0 and -0.0. */
2866 unsigned count = vector_cst_encoded_nelts (expr);
2867 for (unsigned int i = 0; i < count; ++i)
2868 if (!real_zerop (VECTOR_CST_ENCODED_ELT (expr, i)))
2869 return false;
2870 return true;
2871 }
2872 default:
2873 return false;
2874 }
2875 }
2876
2877 /* Return 1 if EXPR is the real constant one in real or complex form.
2878 Trailing zeroes matter for decimal float constants, so don't return
2879 1 for them.
2880 Also return 1 for location wrappers around such a constant. */
2881
2882 bool
2883 real_onep (const_tree expr)
2884 {
2885 STRIP_ANY_LOCATION_WRAPPER (expr);
2886
2887 switch (TREE_CODE (expr))
2888 {
2889 case REAL_CST:
2890 return real_equal (&TREE_REAL_CST (expr), &dconst1)
2891 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2892 case COMPLEX_CST:
2893 return real_onep (TREE_REALPART (expr))
2894 && real_zerop (TREE_IMAGPART (expr));
2895 case VECTOR_CST:
2896 return (VECTOR_CST_NPATTERNS (expr) == 1
2897 && VECTOR_CST_DUPLICATE_P (expr)
2898 && real_onep (VECTOR_CST_ENCODED_ELT (expr, 0)));
2899 default:
2900 return false;
2901 }
2902 }
2903
2904 /* Return 1 if EXPR is the real constant minus one. Trailing zeroes
2905 matter for decimal float constants, so don't return 1 for them.
2906 Also return 1 for location wrappers around such a constant. */
2907
2908 bool
2909 real_minus_onep (const_tree expr)
2910 {
2911 STRIP_ANY_LOCATION_WRAPPER (expr);
2912
2913 switch (TREE_CODE (expr))
2914 {
2915 case REAL_CST:
2916 return real_equal (&TREE_REAL_CST (expr), &dconstm1)
2917 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2918 case COMPLEX_CST:
2919 return real_minus_onep (TREE_REALPART (expr))
2920 && real_zerop (TREE_IMAGPART (expr));
2921 case VECTOR_CST:
2922 return (VECTOR_CST_NPATTERNS (expr) == 1
2923 && VECTOR_CST_DUPLICATE_P (expr)
2924 && real_minus_onep (VECTOR_CST_ENCODED_ELT (expr, 0)));
2925 default:
2926 return false;
2927 }
2928 }
2929
2930 /* Nonzero if EXP is a constant or a cast of a constant. */
2931
2932 bool
2933 really_constant_p (const_tree exp)
2934 {
2935 /* This is not quite the same as STRIP_NOPS. It does more. */
2936 while (CONVERT_EXPR_P (exp)
2937 || TREE_CODE (exp) == NON_LVALUE_EXPR)
2938 exp = TREE_OPERAND (exp, 0);
2939 return TREE_CONSTANT (exp);
2940 }
2941
2942 /* Return true if T holds a polynomial pointer difference, storing it in
2943 *VALUE if so. A true return means that T's precision is no greater
2944 than 64 bits, which is the largest address space we support, so *VALUE
2945 never loses precision. However, the signedness of the result does
2946 not necessarily match the signedness of T: sometimes an unsigned type
2947 like sizetype is used to encode a value that is actually negative. */
2948
2949 bool
2950 ptrdiff_tree_p (const_tree t, poly_int64_pod *value)
2951 {
2952 if (!t)
2953 return false;
2954 if (TREE_CODE (t) == INTEGER_CST)
2955 {
2956 if (!cst_and_fits_in_hwi (t))
2957 return false;
2958 *value = int_cst_value (t);
2959 return true;
2960 }
2961 if (POLY_INT_CST_P (t))
2962 {
2963 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2964 if (!cst_and_fits_in_hwi (POLY_INT_CST_COEFF (t, i)))
2965 return false;
2966 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2967 value->coeffs[i] = int_cst_value (POLY_INT_CST_COEFF (t, i));
2968 return true;
2969 }
2970 return false;
2971 }
2972
2973 poly_int64
2974 tree_to_poly_int64 (const_tree t)
2975 {
2976 gcc_assert (tree_fits_poly_int64_p (t));
2977 if (POLY_INT_CST_P (t))
2978 return poly_int_cst_value (t).force_shwi ();
2979 return TREE_INT_CST_LOW (t);
2980 }
2981
2982 poly_uint64
2983 tree_to_poly_uint64 (const_tree t)
2984 {
2985 gcc_assert (tree_fits_poly_uint64_p (t));
2986 if (POLY_INT_CST_P (t))
2987 return poly_int_cst_value (t).force_uhwi ();
2988 return TREE_INT_CST_LOW (t);
2989 }
2990 \f
2991 /* Return first list element whose TREE_VALUE is ELEM.
2992 Return 0 if ELEM is not in LIST. */
2993
2994 tree
2995 value_member (tree elem, tree list)
2996 {
2997 while (list)
2998 {
2999 if (elem == TREE_VALUE (list))
3000 return list;
3001 list = TREE_CHAIN (list);
3002 }
3003 return NULL_TREE;
3004 }
3005
3006 /* Return first list element whose TREE_PURPOSE is ELEM.
3007 Return 0 if ELEM is not in LIST. */
3008
3009 tree
3010 purpose_member (const_tree elem, tree list)
3011 {
3012 while (list)
3013 {
3014 if (elem == TREE_PURPOSE (list))
3015 return list;
3016 list = TREE_CHAIN (list);
3017 }
3018 return NULL_TREE;
3019 }
3020
3021 /* Return true if ELEM is in V. */
3022
3023 bool
3024 vec_member (const_tree elem, vec<tree, va_gc> *v)
3025 {
3026 unsigned ix;
3027 tree t;
3028 FOR_EACH_VEC_SAFE_ELT (v, ix, t)
3029 if (elem == t)
3030 return true;
3031 return false;
3032 }
3033
3034 /* Returns element number IDX (zero-origin) of chain CHAIN, or
3035 NULL_TREE. */
3036
3037 tree
3038 chain_index (int idx, tree chain)
3039 {
3040 for (; chain && idx > 0; --idx)
3041 chain = TREE_CHAIN (chain);
3042 return chain;
3043 }
3044
3045 /* Return nonzero if ELEM is part of the chain CHAIN. */
3046
3047 bool
3048 chain_member (const_tree elem, const_tree chain)
3049 {
3050 while (chain)
3051 {
3052 if (elem == chain)
3053 return true;
3054 chain = DECL_CHAIN (chain);
3055 }
3056
3057 return false;
3058 }
3059
3060 /* Return the length of a chain of nodes chained through TREE_CHAIN.
3061 We expect a null pointer to mark the end of the chain.
3062 This is the Lisp primitive `length'. */
3063
3064 int
3065 list_length (const_tree t)
3066 {
3067 const_tree p = t;
3068 #ifdef ENABLE_TREE_CHECKING
3069 const_tree q = t;
3070 #endif
3071 int len = 0;
3072
3073 while (p)
3074 {
3075 p = TREE_CHAIN (p);
3076 #ifdef ENABLE_TREE_CHECKING
3077 if (len % 2)
3078 q = TREE_CHAIN (q);
3079 gcc_assert (p != q);
3080 #endif
3081 len++;
3082 }
3083
3084 return len;
3085 }
3086
3087 /* Returns the first FIELD_DECL in the TYPE_FIELDS of the RECORD_TYPE or
3088 UNION_TYPE TYPE, or NULL_TREE if none. */
3089
3090 tree
3091 first_field (const_tree type)
3092 {
3093 tree t = TYPE_FIELDS (type);
3094 while (t && TREE_CODE (t) != FIELD_DECL)
3095 t = TREE_CHAIN (t);
3096 return t;
3097 }
3098
3099 /* Returns the last FIELD_DECL in the TYPE_FIELDS of the RECORD_TYPE or
3100 UNION_TYPE TYPE, or NULL_TREE if none. */
3101
3102 tree
3103 last_field (const_tree type)
3104 {
3105 tree last = NULL_TREE;
3106
3107 for (tree fld = TYPE_FIELDS (type); fld; fld = TREE_CHAIN (fld))
3108 {
3109 if (TREE_CODE (fld) != FIELD_DECL)
3110 continue;
3111
3112 last = fld;
3113 }
3114
3115 return last;
3116 }
3117
3118 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
3119 by modifying the last node in chain 1 to point to chain 2.
3120 This is the Lisp primitive `nconc'. */
3121
3122 tree
3123 chainon (tree op1, tree op2)
3124 {
3125 tree t1;
3126
3127 if (!op1)
3128 return op2;
3129 if (!op2)
3130 return op1;
3131
3132 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
3133 continue;
3134 TREE_CHAIN (t1) = op2;
3135
3136 #ifdef ENABLE_TREE_CHECKING
3137 {
3138 tree t2;
3139 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
3140 gcc_assert (t2 != t1);
3141 }
3142 #endif
3143
3144 return op1;
3145 }
3146
3147 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
3148
3149 tree
3150 tree_last (tree chain)
3151 {
3152 tree next;
3153 if (chain)
3154 while ((next = TREE_CHAIN (chain)))
3155 chain = next;
3156 return chain;
3157 }
3158
3159 /* Reverse the order of elements in the chain T,
3160 and return the new head of the chain (old last element). */
3161
3162 tree
3163 nreverse (tree t)
3164 {
3165 tree prev = 0, decl, next;
3166 for (decl = t; decl; decl = next)
3167 {
3168 /* We shouldn't be using this function to reverse BLOCK chains; we
3169 have blocks_nreverse for that. */
3170 gcc_checking_assert (TREE_CODE (decl) != BLOCK);
3171 next = TREE_CHAIN (decl);
3172 TREE_CHAIN (decl) = prev;
3173 prev = decl;
3174 }
3175 return prev;
3176 }
3177 \f
3178 /* Return a newly created TREE_LIST node whose
3179 purpose and value fields are PARM and VALUE. */
3180
3181 tree
3182 build_tree_list (tree parm, tree value MEM_STAT_DECL)
3183 {
3184 tree t = make_node (TREE_LIST PASS_MEM_STAT);
3185 TREE_PURPOSE (t) = parm;
3186 TREE_VALUE (t) = value;
3187 return t;
3188 }
3189
3190 /* Build a chain of TREE_LIST nodes from a vector. */
3191
3192 tree
3193 build_tree_list_vec (const vec<tree, va_gc> *vec MEM_STAT_DECL)
3194 {
3195 tree ret = NULL_TREE;
3196 tree *pp = &ret;
3197 unsigned int i;
3198 tree t;
3199 FOR_EACH_VEC_SAFE_ELT (vec, i, t)
3200 {
3201 *pp = build_tree_list (NULL, t PASS_MEM_STAT);
3202 pp = &TREE_CHAIN (*pp);
3203 }
3204 return ret;
3205 }
3206
3207 /* Return a newly created TREE_LIST node whose
3208 purpose and value fields are PURPOSE and VALUE
3209 and whose TREE_CHAIN is CHAIN. */
3210
3211 tree
3212 tree_cons (tree purpose, tree value, tree chain MEM_STAT_DECL)
3213 {
3214 tree node;
3215
3216 node = ggc_alloc_tree_node_stat (sizeof (struct tree_list) PASS_MEM_STAT);
3217 memset (node, 0, sizeof (struct tree_common));
3218
3219 record_node_allocation_statistics (TREE_LIST, sizeof (struct tree_list));
3220
3221 TREE_SET_CODE (node, TREE_LIST);
3222 TREE_CHAIN (node) = chain;
3223 TREE_PURPOSE (node) = purpose;
3224 TREE_VALUE (node) = value;
3225 return node;
3226 }
3227
3228 /* Return the values of the elements of a CONSTRUCTOR as a vector of
3229 trees. */
3230
3231 vec<tree, va_gc> *
3232 ctor_to_vec (tree ctor)
3233 {
3234 vec<tree, va_gc> *vec;
3235 vec_alloc (vec, CONSTRUCTOR_NELTS (ctor));
3236 unsigned int ix;
3237 tree val;
3238
3239 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (ctor), ix, val)
3240 vec->quick_push (val);
3241
3242 return vec;
3243 }
3244 \f
3245 /* Return the size nominally occupied by an object of type TYPE
3246 when it resides in memory. The value is measured in units of bytes,
3247 and its data type is that normally used for type sizes
3248 (which is the first type created by make_signed_type or
3249 make_unsigned_type). */
3250
3251 tree
3252 size_in_bytes_loc (location_t loc, const_tree type)
3253 {
3254 tree t;
3255
3256 if (type == error_mark_node)
3257 return integer_zero_node;
3258
3259 type = TYPE_MAIN_VARIANT (type);
3260 t = TYPE_SIZE_UNIT (type);
3261
3262 if (t == 0)
3263 {
3264 lang_hooks.types.incomplete_type_error (loc, NULL_TREE, type);
3265 return size_zero_node;
3266 }
3267
3268 return t;
3269 }
3270
3271 /* Return the size of TYPE (in bytes) as a wide integer
3272 or return -1 if the size can vary or is larger than an integer. */
3273
3274 HOST_WIDE_INT
3275 int_size_in_bytes (const_tree type)
3276 {
3277 tree t;
3278
3279 if (type == error_mark_node)
3280 return 0;
3281
3282 type = TYPE_MAIN_VARIANT (type);
3283 t = TYPE_SIZE_UNIT (type);
3284
3285 if (t && tree_fits_uhwi_p (t))
3286 return TREE_INT_CST_LOW (t);
3287 else
3288 return -1;
3289 }
3290
3291 /* Return the maximum size of TYPE (in bytes) as a wide integer
3292 or return -1 if the size can vary or is larger than an integer. */
3293
3294 HOST_WIDE_INT
3295 max_int_size_in_bytes (const_tree type)
3296 {
3297 HOST_WIDE_INT size = -1;
3298 tree size_tree;
3299
3300 /* If this is an array type, check for a possible MAX_SIZE attached. */
3301
3302 if (TREE_CODE (type) == ARRAY_TYPE)
3303 {
3304 size_tree = TYPE_ARRAY_MAX_SIZE (type);
3305
3306 if (size_tree && tree_fits_uhwi_p (size_tree))
3307 size = tree_to_uhwi (size_tree);
3308 }
3309
3310 /* If we still haven't been able to get a size, see if the language
3311 can compute a maximum size. */
3312
3313 if (size == -1)
3314 {
3315 size_tree = lang_hooks.types.max_size (type);
3316
3317 if (size_tree && tree_fits_uhwi_p (size_tree))
3318 size = tree_to_uhwi (size_tree);
3319 }
3320
3321 return size;
3322 }
3323 \f
3324 /* Return the bit position of FIELD, in bits from the start of the record.
3325 This is a tree of type bitsizetype. */
3326
3327 tree
3328 bit_position (const_tree field)
3329 {
3330 return bit_from_pos (DECL_FIELD_OFFSET (field),
3331 DECL_FIELD_BIT_OFFSET (field));
3332 }
3333 \f
3334 /* Return the byte position of FIELD, in bytes from the start of the record.
3335 This is a tree of type sizetype. */
3336
3337 tree
3338 byte_position (const_tree field)
3339 {
3340 return byte_from_pos (DECL_FIELD_OFFSET (field),
3341 DECL_FIELD_BIT_OFFSET (field));
3342 }
3343
3344 /* Likewise, but return as an integer. It must be representable in
3345 that way (since it could be a signed value, we don't have the
3346 option of returning -1 like int_size_in_byte can. */
3347
3348 HOST_WIDE_INT
3349 int_byte_position (const_tree field)
3350 {
3351 return tree_to_shwi (byte_position (field));
3352 }
3353 \f
3354 /* Return, as a tree node, the number of elements for TYPE (which is an
3355 ARRAY_TYPE) minus one. This counts only elements of the top array. */
3356
3357 tree
3358 array_type_nelts (const_tree type)
3359 {
3360 tree index_type, min, max;
3361
3362 /* If they did it with unspecified bounds, then we should have already
3363 given an error about it before we got here. */
3364 if (! TYPE_DOMAIN (type))
3365 return error_mark_node;
3366
3367 index_type = TYPE_DOMAIN (type);
3368 min = TYPE_MIN_VALUE (index_type);
3369 max = TYPE_MAX_VALUE (index_type);
3370
3371 /* TYPE_MAX_VALUE may not be set if the array has unknown length. */
3372 if (!max)
3373 return error_mark_node;
3374
3375 return (integer_zerop (min)
3376 ? max
3377 : fold_build2 (MINUS_EXPR, TREE_TYPE (max), max, min));
3378 }
3379 \f
3380 /* If arg is static -- a reference to an object in static storage -- then
3381 return the object. This is not the same as the C meaning of `static'.
3382 If arg isn't static, return NULL. */
3383
3384 tree
3385 staticp (tree arg)
3386 {
3387 switch (TREE_CODE (arg))
3388 {
3389 case FUNCTION_DECL:
3390 /* Nested functions are static, even though taking their address will
3391 involve a trampoline as we unnest the nested function and create
3392 the trampoline on the tree level. */
3393 return arg;
3394
3395 case VAR_DECL:
3396 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
3397 && ! DECL_THREAD_LOCAL_P (arg)
3398 && ! DECL_DLLIMPORT_P (arg)
3399 ? arg : NULL);
3400
3401 case CONST_DECL:
3402 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
3403 ? arg : NULL);
3404
3405 case CONSTRUCTOR:
3406 return TREE_STATIC (arg) ? arg : NULL;
3407
3408 case LABEL_DECL:
3409 case STRING_CST:
3410 return arg;
3411
3412 case COMPONENT_REF:
3413 /* If the thing being referenced is not a field, then it is
3414 something language specific. */
3415 gcc_assert (TREE_CODE (TREE_OPERAND (arg, 1)) == FIELD_DECL);
3416
3417 /* If we are referencing a bitfield, we can't evaluate an
3418 ADDR_EXPR at compile time and so it isn't a constant. */
3419 if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
3420 return NULL;
3421
3422 return staticp (TREE_OPERAND (arg, 0));
3423
3424 case BIT_FIELD_REF:
3425 return NULL;
3426
3427 case INDIRECT_REF:
3428 return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;
3429
3430 case ARRAY_REF:
3431 case ARRAY_RANGE_REF:
3432 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
3433 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
3434 return staticp (TREE_OPERAND (arg, 0));
3435 else
3436 return NULL;
3437
3438 case COMPOUND_LITERAL_EXPR:
3439 return TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (arg)) ? arg : NULL;
3440
3441 default:
3442 return NULL;
3443 }
3444 }
3445
3446 \f
3447
3448
3449 /* Return whether OP is a DECL whose address is function-invariant. */
3450
3451 bool
3452 decl_address_invariant_p (const_tree op)
3453 {
3454 /* The conditions below are slightly less strict than the one in
3455 staticp. */
3456
3457 switch (TREE_CODE (op))
3458 {
3459 case PARM_DECL:
3460 case RESULT_DECL:
3461 case LABEL_DECL:
3462 case FUNCTION_DECL:
3463 return true;
3464
3465 case VAR_DECL:
3466 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
3467 || DECL_THREAD_LOCAL_P (op)
3468 || DECL_CONTEXT (op) == current_function_decl
3469 || decl_function_context (op) == current_function_decl)
3470 return true;
3471 break;
3472
3473 case CONST_DECL:
3474 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
3475 || decl_function_context (op) == current_function_decl)
3476 return true;
3477 break;
3478
3479 default:
3480 break;
3481 }
3482
3483 return false;
3484 }
3485
3486 /* Return whether OP is a DECL whose address is interprocedural-invariant. */
3487
3488 bool
3489 decl_address_ip_invariant_p (const_tree op)
3490 {
3491 /* The conditions below are slightly less strict than the one in
3492 staticp. */
3493
3494 switch (TREE_CODE (op))
3495 {
3496 case LABEL_DECL:
3497 case FUNCTION_DECL:
3498 case STRING_CST:
3499 return true;
3500
3501 case VAR_DECL:
3502 if (((TREE_STATIC (op) || DECL_EXTERNAL (op))
3503 && !DECL_DLLIMPORT_P (op))
3504 || DECL_THREAD_LOCAL_P (op))
3505 return true;
3506 break;
3507
3508 case CONST_DECL:
3509 if ((TREE_STATIC (op) || DECL_EXTERNAL (op)))
3510 return true;
3511 break;
3512
3513 default:
3514 break;
3515 }
3516
3517 return false;
3518 }
3519
3520
3521 /* Return true if T is function-invariant (internal function, does
3522 not handle arithmetic; that's handled in skip_simple_arithmetic and
3523 tree_invariant_p). */
3524
3525 static bool
3526 tree_invariant_p_1 (tree t)
3527 {
3528 tree op;
3529
3530 if (TREE_CONSTANT (t)
3531 || (TREE_READONLY (t) && !TREE_SIDE_EFFECTS (t)))
3532 return true;
3533
3534 switch (TREE_CODE (t))
3535 {
3536 case SAVE_EXPR:
3537 return true;
3538
3539 case ADDR_EXPR:
3540 op = TREE_OPERAND (t, 0);
3541 while (handled_component_p (op))
3542 {
3543 switch (TREE_CODE (op))
3544 {
3545 case ARRAY_REF:
3546 case ARRAY_RANGE_REF:
3547 if (!tree_invariant_p (TREE_OPERAND (op, 1))
3548 || TREE_OPERAND (op, 2) != NULL_TREE
3549 || TREE_OPERAND (op, 3) != NULL_TREE)
3550 return false;
3551 break;
3552
3553 case COMPONENT_REF:
3554 if (TREE_OPERAND (op, 2) != NULL_TREE)
3555 return false;
3556 break;
3557
3558 default:;
3559 }
3560 op = TREE_OPERAND (op, 0);
3561 }
3562
3563 return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
3564
3565 default:
3566 break;
3567 }
3568
3569 return false;
3570 }
3571
3572 /* Return true if T is function-invariant. */
3573
3574 bool
3575 tree_invariant_p (tree t)
3576 {
3577 tree inner = skip_simple_arithmetic (t);
3578 return tree_invariant_p_1 (inner);
3579 }
3580
3581 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
3582 Do this to any expression which may be used in more than one place,
3583 but must be evaluated only once.
3584
3585 Normally, expand_expr would reevaluate the expression each time.
3586 Calling save_expr produces something that is evaluated and recorded
3587 the first time expand_expr is called on it. Subsequent calls to
3588 expand_expr just reuse the recorded value.
3589
3590 The call to expand_expr that generates code that actually computes
3591 the value is the first call *at compile time*. Subsequent calls
3592 *at compile time* generate code to use the saved value.
3593 This produces correct result provided that *at run time* control
3594 always flows through the insns made by the first expand_expr
3595 before reaching the other places where the save_expr was evaluated.
3596 You, the caller of save_expr, must make sure this is so.
3597
3598 Constants, and certain read-only nodes, are returned with no
3599 SAVE_EXPR because that is safe. Expressions containing placeholders
3600 are not touched; see tree.def for an explanation of what these
3601 are used for. */
3602
3603 tree
3604 save_expr (tree expr)
3605 {
3606 tree inner;
3607
3608 /* If the tree evaluates to a constant, then we don't want to hide that
3609 fact (i.e. this allows further folding, and direct checks for constants).
3610 However, a read-only object that has side effects cannot be bypassed.
3611 Since it is no problem to reevaluate literals, we just return the
3612 literal node. */
3613 inner = skip_simple_arithmetic (expr);
3614 if (TREE_CODE (inner) == ERROR_MARK)
3615 return inner;
3616
3617 if (tree_invariant_p_1 (inner))
3618 return expr;
3619
3620 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
3621 it means that the size or offset of some field of an object depends on
3622 the value within another field.
3623
3624 Note that it must not be the case that EXPR contains both a PLACEHOLDER_EXPR
3625 and some variable since it would then need to be both evaluated once and
3626 evaluated more than once. Front-ends must assure this case cannot
3627 happen by surrounding any such subexpressions in their own SAVE_EXPR
3628 and forcing evaluation at the proper time. */
3629 if (contains_placeholder_p (inner))
3630 return expr;
3631
3632 expr = build1_loc (EXPR_LOCATION (expr), SAVE_EXPR, TREE_TYPE (expr), expr);
3633
3634 /* This expression might be placed ahead of a jump to ensure that the
3635 value was computed on both sides of the jump. So make sure it isn't
3636 eliminated as dead. */
3637 TREE_SIDE_EFFECTS (expr) = 1;
3638 return expr;
3639 }
3640
3641 /* Look inside EXPR into any simple arithmetic operations. Return the
3642 outermost non-arithmetic or non-invariant node. */
3643
3644 tree
3645 skip_simple_arithmetic (tree expr)
3646 {
3647 /* We don't care about whether this can be used as an lvalue in this
3648 context. */
3649 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
3650 expr = TREE_OPERAND (expr, 0);
3651
3652 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
3653 a constant, it will be more efficient to not make another SAVE_EXPR since
3654 it will allow better simplification and GCSE will be able to merge the
3655 computations if they actually occur. */
3656 while (true)
3657 {
3658 if (UNARY_CLASS_P (expr))
3659 expr = TREE_OPERAND (expr, 0);
3660 else if (BINARY_CLASS_P (expr))
3661 {
3662 if (tree_invariant_p (TREE_OPERAND (expr, 1)))
3663 expr = TREE_OPERAND (expr, 0);
3664 else if (tree_invariant_p (TREE_OPERAND (expr, 0)))
3665 expr = TREE_OPERAND (expr, 1);
3666 else
3667 break;
3668 }
3669 else
3670 break;
3671 }
3672
3673 return expr;
3674 }
3675
3676 /* Look inside EXPR into simple arithmetic operations involving constants.
3677 Return the outermost non-arithmetic or non-constant node. */
3678
3679 tree
3680 skip_simple_constant_arithmetic (tree expr)
3681 {
3682 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
3683 expr = TREE_OPERAND (expr, 0);
3684
3685 while (true)
3686 {
3687 if (UNARY_CLASS_P (expr))
3688 expr = TREE_OPERAND (expr, 0);
3689 else if (BINARY_CLASS_P (expr))
3690 {
3691 if (TREE_CONSTANT (TREE_OPERAND (expr, 1)))
3692 expr = TREE_OPERAND (expr, 0);
3693 else if (TREE_CONSTANT (TREE_OPERAND (expr, 0)))
3694 expr = TREE_OPERAND (expr, 1);
3695 else
3696 break;
3697 }
3698 else
3699 break;
3700 }
3701
3702 return expr;
3703 }
3704
3705 /* Return which tree structure is used by T. */
3706
3707 enum tree_node_structure_enum
3708 tree_node_structure (const_tree t)
3709 {
3710 const enum tree_code code = TREE_CODE (t);
3711 return tree_node_structure_for_code (code);
3712 }
3713
3714 /* Set various status flags when building a CALL_EXPR object T. */
3715
3716 static void
3717 process_call_operands (tree t)
3718 {
3719 bool side_effects = TREE_SIDE_EFFECTS (t);
3720 bool read_only = false;
3721 int i = call_expr_flags (t);
3722
3723 /* Calls have side-effects, except those to const or pure functions. */
3724 if ((i & ECF_LOOPING_CONST_OR_PURE) || !(i & (ECF_CONST | ECF_PURE)))
3725 side_effects = true;
3726 /* Propagate TREE_READONLY of arguments for const functions. */
3727 if (i & ECF_CONST)
3728 read_only = true;
3729
3730 if (!side_effects || read_only)
3731 for (i = 1; i < TREE_OPERAND_LENGTH (t); i++)
3732 {
3733 tree op = TREE_OPERAND (t, i);
3734 if (op && TREE_SIDE_EFFECTS (op))
3735 side_effects = true;
3736 if (op && !TREE_READONLY (op) && !CONSTANT_CLASS_P (op))
3737 read_only = false;
3738 }
3739
3740 TREE_SIDE_EFFECTS (t) = side_effects;
3741 TREE_READONLY (t) = read_only;
3742 }
3743 \f
3744 /* Return true if EXP contains a PLACEHOLDER_EXPR, i.e. if it represents a
3745 size or offset that depends on a field within a record. */
3746
3747 bool
3748 contains_placeholder_p (const_tree exp)
3749 {
3750 enum tree_code code;
3751
3752 if (!exp)
3753 return 0;
3754
3755 code = TREE_CODE (exp);
3756 if (code == PLACEHOLDER_EXPR)
3757 return 1;
3758
3759 switch (TREE_CODE_CLASS (code))
3760 {
3761 case tcc_reference:
3762 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
3763 position computations since they will be converted into a
3764 WITH_RECORD_EXPR involving the reference, which will assume
3765 here will be valid. */
3766 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
3767
3768 case tcc_exceptional:
3769 if (code == TREE_LIST)
3770 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
3771 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
3772 break;
3773
3774 case tcc_unary:
3775 case tcc_binary:
3776 case tcc_comparison:
3777 case tcc_expression:
3778 switch (code)
3779 {
3780 case COMPOUND_EXPR:
3781 /* Ignoring the first operand isn't quite right, but works best. */
3782 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
3783
3784 case COND_EXPR:
3785 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
3786 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
3787 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
3788
3789 case SAVE_EXPR:
3790 /* The save_expr function never wraps anything containing
3791 a PLACEHOLDER_EXPR. */
3792 return 0;
3793
3794 default:
3795 break;
3796 }
3797
3798 switch (TREE_CODE_LENGTH (code))
3799 {
3800 case 1:
3801 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
3802 case 2:
3803 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
3804 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
3805 default:
3806 return 0;
3807 }
3808
3809 case tcc_vl_exp:
3810 switch (code)
3811 {
3812 case CALL_EXPR:
3813 {
3814 const_tree arg;
3815 const_call_expr_arg_iterator iter;
3816 FOR_EACH_CONST_CALL_EXPR_ARG (arg, iter, exp)
3817 if (CONTAINS_PLACEHOLDER_P (arg))
3818 return 1;
3819 return 0;
3820 }
3821 default:
3822 return 0;
3823 }
3824
3825 default:
3826 return 0;
3827 }
3828 return 0;
3829 }
3830
3831 /* Return true if any part of the structure of TYPE involves a PLACEHOLDER_EXPR
3832 directly. This includes size, bounds, qualifiers (for QUAL_UNION_TYPE) and
3833 field positions. */
3834
3835 static bool
3836 type_contains_placeholder_1 (const_tree type)
3837 {
3838 /* If the size contains a placeholder or the parent type (component type in
3839 the case of arrays) type involves a placeholder, this type does. */
3840 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
3841 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
3842 || (!POINTER_TYPE_P (type)
3843 && TREE_TYPE (type)
3844 && type_contains_placeholder_p (TREE_TYPE (type))))
3845 return true;
3846
3847 /* Now do type-specific checks. Note that the last part of the check above
3848 greatly limits what we have to do below. */
3849 switch (TREE_CODE (type))
3850 {
3851 case VOID_TYPE:
3852 case COMPLEX_TYPE:
3853 case ENUMERAL_TYPE:
3854 case BOOLEAN_TYPE:
3855 case POINTER_TYPE:
3856 case OFFSET_TYPE:
3857 case REFERENCE_TYPE:
3858 case METHOD_TYPE:
3859 case FUNCTION_TYPE:
3860 case VECTOR_TYPE:
3861 case NULLPTR_TYPE:
3862 return false;
3863
3864 case INTEGER_TYPE:
3865 case REAL_TYPE:
3866 case FIXED_POINT_TYPE:
3867 /* Here we just check the bounds. */
3868 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
3869 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
3870
3871 case ARRAY_TYPE:
3872 /* We have already checked the component type above, so just check
3873 the domain type. Flexible array members have a null domain. */
3874 return TYPE_DOMAIN (type) ?
3875 type_contains_placeholder_p (TYPE_DOMAIN (type)) : false;
3876
3877 case RECORD_TYPE:
3878 case UNION_TYPE:
3879 case QUAL_UNION_TYPE:
3880 {
3881 tree field;
3882
3883 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
3884 if (TREE_CODE (field) == FIELD_DECL
3885 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
3886 || (TREE_CODE (type) == QUAL_UNION_TYPE
3887 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
3888 || type_contains_placeholder_p (TREE_TYPE (field))))
3889 return true;
3890
3891 return false;
3892 }
3893
3894 default:
3895 gcc_unreachable ();
3896 }
3897 }
3898
3899 /* Wrapper around above function used to cache its result. */
3900
3901 bool
3902 type_contains_placeholder_p (tree type)
3903 {
3904 bool result;
3905
3906 /* If the contains_placeholder_bits field has been initialized,
3907 then we know the answer. */
3908 if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0)
3909 return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1;
3910
3911 /* Indicate that we've seen this type node, and the answer is false.
3912 This is what we want to return if we run into recursion via fields. */
3913 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1;
3914
3915 /* Compute the real value. */
3916 result = type_contains_placeholder_1 (type);
3917
3918 /* Store the real value. */
3919 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1;
3920
3921 return result;
3922 }
3923 \f
3924 /* Push tree EXP onto vector QUEUE if it is not already present. */
3925
3926 static void
3927 push_without_duplicates (tree exp, vec<tree> *queue)
3928 {
3929 unsigned int i;
3930 tree iter;
3931
3932 FOR_EACH_VEC_ELT (*queue, i, iter)
3933 if (simple_cst_equal (iter, exp) == 1)
3934 break;
3935
3936 if (!iter)
3937 queue->safe_push (exp);
3938 }
3939
3940 /* Given a tree EXP, find all occurrences of references to fields
3941 in a PLACEHOLDER_EXPR and place them in vector REFS without
3942 duplicates. Also record VAR_DECLs and CONST_DECLs. Note that
3943 we assume here that EXP contains only arithmetic expressions
3944 or CALL_EXPRs with PLACEHOLDER_EXPRs occurring only in their
3945 argument list. */
3946
3947 void
3948 find_placeholder_in_expr (tree exp, vec<tree> *refs)
3949 {
3950 enum tree_code code = TREE_CODE (exp);
3951 tree inner;
3952 int i;
3953
3954 /* We handle TREE_LIST and COMPONENT_REF separately. */
3955 if (code == TREE_LIST)
3956 {
3957 FIND_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), refs);
3958 FIND_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), refs);
3959 }
3960 else if (code == COMPONENT_REF)
3961 {
3962 for (inner = TREE_OPERAND (exp, 0);
3963 REFERENCE_CLASS_P (inner);
3964 inner = TREE_OPERAND (inner, 0))
3965 ;
3966
3967 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
3968 push_without_duplicates (exp, refs);
3969 else
3970 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), refs);
3971 }
3972 else
3973 switch (TREE_CODE_CLASS (code))
3974 {
3975 case tcc_constant:
3976 break;
3977
3978 case tcc_declaration:
3979 /* Variables allocated to static storage can stay. */
3980 if (!TREE_STATIC (exp))
3981 push_without_duplicates (exp, refs);
3982 break;
3983
3984 case tcc_expression:
3985 /* This is the pattern built in ada/make_aligning_type. */
3986 if (code == ADDR_EXPR
3987 && TREE_CODE (TREE_OPERAND (exp, 0)) == PLACEHOLDER_EXPR)
3988 {
3989 push_without_duplicates (exp, refs);
3990 break;
3991 }
3992
3993 /* Fall through. */
3994
3995 case tcc_exceptional:
3996 case tcc_unary:
3997 case tcc_binary:
3998 case tcc_comparison:
3999 case tcc_reference:
4000 for (i = 0; i < TREE_CODE_LENGTH (code); i++)
4001 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
4002 break;
4003
4004 case tcc_vl_exp:
4005 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
4006 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
4007 break;
4008
4009 default:
4010 gcc_unreachable ();
4011 }
4012 }
4013
4014 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
4015 return a tree with all occurrences of references to F in a
4016 PLACEHOLDER_EXPR replaced by R. Also handle VAR_DECLs and
4017 CONST_DECLs. Note that we assume here that EXP contains only
4018 arithmetic expressions or CALL_EXPRs with PLACEHOLDER_EXPRs
4019 occurring only in their argument list. */
4020
4021 tree
4022 substitute_in_expr (tree exp, tree f, tree r)
4023 {
4024 enum tree_code code = TREE_CODE (exp);
4025 tree op0, op1, op2, op3;
4026 tree new_tree;
4027
4028 /* We handle TREE_LIST and COMPONENT_REF separately. */
4029 if (code == TREE_LIST)
4030 {
4031 op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
4032 op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
4033 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
4034 return exp;
4035
4036 return tree_cons (TREE_PURPOSE (exp), op1, op0);
4037 }
4038 else if (code == COMPONENT_REF)
4039 {
4040 tree inner;
4041
4042 /* If this expression is getting a value from a PLACEHOLDER_EXPR
4043 and it is the right field, replace it with R. */
4044 for (inner = TREE_OPERAND (exp, 0);
4045 REFERENCE_CLASS_P (inner);
4046 inner = TREE_OPERAND (inner, 0))
4047 ;
4048
4049 /* The field. */
4050 op1 = TREE_OPERAND (exp, 1);
4051
4052 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && op1 == f)
4053 return r;
4054
4055 /* If this expression hasn't been completed let, leave it alone. */
4056 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && !TREE_TYPE (inner))
4057 return exp;
4058
4059 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
4060 if (op0 == TREE_OPERAND (exp, 0))
4061 return exp;
4062
4063 new_tree
4064 = fold_build3 (COMPONENT_REF, TREE_TYPE (exp), op0, op1, NULL_TREE);
4065 }
4066 else
4067 switch (TREE_CODE_CLASS (code))
4068 {
4069 case tcc_constant:
4070 return exp;
4071
4072 case tcc_declaration:
4073 if (exp == f)
4074 return r;
4075 else
4076 return exp;
4077
4078 case tcc_expression:
4079 if (exp == f)
4080 return r;
4081
4082 /* Fall through. */
4083
4084 case tcc_exceptional:
4085 case tcc_unary:
4086 case tcc_binary:
4087 case tcc_comparison:
4088 case tcc_reference:
4089 switch (TREE_CODE_LENGTH (code))
4090 {
4091 case 0:
4092 return exp;
4093
4094 case 1:
4095 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
4096 if (op0 == TREE_OPERAND (exp, 0))
4097 return exp;
4098
4099 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
4100 break;
4101
4102 case 2:
4103 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
4104 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
4105
4106 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
4107 return exp;
4108
4109 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
4110 break;
4111
4112 case 3:
4113 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
4114 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
4115 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
4116
4117 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
4118 && op2 == TREE_OPERAND (exp, 2))
4119 return exp;
4120
4121 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
4122 break;
4123
4124 case 4:
4125 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
4126 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
4127 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
4128 op3 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 3), f, r);
4129
4130 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
4131 && op2 == TREE_OPERAND (exp, 2)
4132 && op3 == TREE_OPERAND (exp, 3))
4133 return exp;
4134
4135 new_tree
4136 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
4137 break;
4138
4139 default:
4140 gcc_unreachable ();
4141 }
4142 break;
4143
4144 case tcc_vl_exp:
4145 {
4146 int i;
4147
4148 new_tree = NULL_TREE;
4149
4150 /* If we are trying to replace F with a constant or with another
4151 instance of one of the arguments of the call, inline back
4152 functions which do nothing else than computing a value from
4153 the arguments they are passed. This makes it possible to
4154 fold partially or entirely the replacement expression. */
4155 if (code == CALL_EXPR)
4156 {
4157 bool maybe_inline = false;
4158 if (CONSTANT_CLASS_P (r))
4159 maybe_inline = true;
4160 else
4161 for (i = 3; i < TREE_OPERAND_LENGTH (exp); i++)
4162 if (operand_equal_p (TREE_OPERAND (exp, i), r, 0))
4163 {
4164 maybe_inline = true;
4165 break;
4166 }
4167 if (maybe_inline)
4168 {
4169 tree t = maybe_inline_call_in_expr (exp);
4170 if (t)
4171 return SUBSTITUTE_IN_EXPR (t, f, r);
4172 }
4173 }
4174
4175 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
4176 {
4177 tree op = TREE_OPERAND (exp, i);
4178 tree new_op = SUBSTITUTE_IN_EXPR (op, f, r);
4179 if (new_op != op)
4180 {
4181 if (!new_tree)
4182 new_tree = copy_node (exp);
4183 TREE_OPERAND (new_tree, i) = new_op;
4184 }
4185 }
4186
4187 if (new_tree)
4188 {
4189 new_tree = fold (new_tree);
4190 if (TREE_CODE (new_tree) == CALL_EXPR)
4191 process_call_operands (new_tree);
4192 }
4193 else
4194 return exp;
4195 }
4196 break;
4197
4198 default:
4199 gcc_unreachable ();
4200 }
4201
4202 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
4203
4204 if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
4205 TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
4206
4207 return new_tree;
4208 }
4209
4210 /* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
4211 for it within OBJ, a tree that is an object or a chain of references. */
4212
4213 tree
4214 substitute_placeholder_in_expr (tree exp, tree obj)
4215 {
4216 enum tree_code code = TREE_CODE (exp);
4217 tree op0, op1, op2, op3;
4218 tree new_tree;
4219
4220 /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
4221 in the chain of OBJ. */
4222 if (code == PLACEHOLDER_EXPR)
4223 {
4224 tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
4225 tree elt;
4226
4227 for (elt = obj; elt != 0;
4228 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
4229 || TREE_CODE (elt) == COND_EXPR)
4230 ? TREE_OPERAND (elt, 1)
4231 : (REFERENCE_CLASS_P (elt)
4232 || UNARY_CLASS_P (elt)
4233 || BINARY_CLASS_P (elt)
4234 || VL_EXP_CLASS_P (elt)
4235 || EXPRESSION_CLASS_P (elt))
4236 ? TREE_OPERAND (elt, 0) : 0))
4237 if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
4238 return elt;
4239
4240 for (elt = obj; elt != 0;
4241 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
4242 || TREE_CODE (elt) == COND_EXPR)
4243 ? TREE_OPERAND (elt, 1)
4244 : (REFERENCE_CLASS_P (elt)
4245 || UNARY_CLASS_P (elt)
4246 || BINARY_CLASS_P (elt)
4247 || VL_EXP_CLASS_P (elt)
4248 || EXPRESSION_CLASS_P (elt))
4249 ? TREE_OPERAND (elt, 0) : 0))
4250 if (POINTER_TYPE_P (TREE_TYPE (elt))
4251 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
4252 == need_type))
4253 return fold_build1 (INDIRECT_REF, need_type, elt);
4254
4255 /* If we didn't find it, return the original PLACEHOLDER_EXPR. If it
4256 survives until RTL generation, there will be an error. */
4257 return exp;
4258 }
4259
4260 /* TREE_LIST is special because we need to look at TREE_VALUE
4261 and TREE_CHAIN, not TREE_OPERANDS. */
4262 else if (code == TREE_LIST)
4263 {
4264 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
4265 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
4266 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
4267 return exp;
4268
4269 return tree_cons (TREE_PURPOSE (exp), op1, op0);
4270 }
4271 else
4272 switch (TREE_CODE_CLASS (code))
4273 {
4274 case tcc_constant:
4275 case tcc_declaration:
4276 return exp;
4277
4278 case tcc_exceptional:
4279 case tcc_unary:
4280 case tcc_binary:
4281 case tcc_comparison:
4282 case tcc_expression:
4283 case tcc_reference:
4284 case tcc_statement:
4285 switch (TREE_CODE_LENGTH (code))
4286 {
4287 case 0:
4288 return exp;
4289
4290 case 1:
4291 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
4292 if (op0 == TREE_OPERAND (exp, 0))
4293 return exp;
4294
4295 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
4296 break;
4297
4298 case 2:
4299 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
4300 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
4301
4302 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
4303 return exp;
4304
4305 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
4306 break;
4307
4308 case 3:
4309 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
4310 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
4311 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
4312
4313 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
4314 && op2 == TREE_OPERAND (exp, 2))
4315 return exp;
4316
4317 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
4318 break;
4319
4320 case 4:
4321 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
4322 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
4323 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
4324 op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
4325
4326 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
4327 && op2 == TREE_OPERAND (exp, 2)
4328 && op3 == TREE_OPERAND (exp, 3))
4329 return exp;
4330
4331 new_tree
4332 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
4333 break;
4334
4335 default:
4336 gcc_unreachable ();
4337 }
4338 break;
4339
4340 case tcc_vl_exp:
4341 {
4342 int i;
4343
4344 new_tree = NULL_TREE;
4345
4346 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
4347 {
4348 tree op = TREE_OPERAND (exp, i);
4349 tree new_op = SUBSTITUTE_PLACEHOLDER_IN_EXPR (op, obj);
4350 if (new_op != op)
4351 {
4352 if (!new_tree)
4353 new_tree = copy_node (exp);
4354 TREE_OPERAND (new_tree, i) = new_op;
4355 }
4356 }
4357
4358 if (new_tree)
4359 {
4360 new_tree = fold (new_tree);
4361 if (TREE_CODE (new_tree) == CALL_EXPR)
4362 process_call_operands (new_tree);
4363 }
4364 else
4365 return exp;
4366 }
4367 break;
4368
4369 default:
4370 gcc_unreachable ();
4371 }
4372
4373 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
4374
4375 if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
4376 TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
4377
4378 return new_tree;
4379 }
4380 \f
4381
4382 /* Subroutine of stabilize_reference; this is called for subtrees of
4383 references. Any expression with side-effects must be put in a SAVE_EXPR
4384 to ensure that it is only evaluated once.
4385
4386 We don't put SAVE_EXPR nodes around everything, because assigning very
4387 simple expressions to temporaries causes us to miss good opportunities
4388 for optimizations. Among other things, the opportunity to fold in the
4389 addition of a constant into an addressing mode often gets lost, e.g.
4390 "y[i+1] += x;". In general, we take the approach that we should not make
4391 an assignment unless we are forced into it - i.e., that any non-side effect
4392 operator should be allowed, and that cse should take care of coalescing
4393 multiple utterances of the same expression should that prove fruitful. */
4394
4395 static tree
4396 stabilize_reference_1 (tree e)
4397 {
4398 tree result;
4399 enum tree_code code = TREE_CODE (e);
4400
4401 /* We cannot ignore const expressions because it might be a reference
4402 to a const array but whose index contains side-effects. But we can
4403 ignore things that are actual constant or that already have been
4404 handled by this function. */
4405
4406 if (tree_invariant_p (e))
4407 return e;
4408
4409 switch (TREE_CODE_CLASS (code))
4410 {
4411 case tcc_exceptional:
4412 /* Always wrap STATEMENT_LIST into SAVE_EXPR, even if it doesn't
4413 have side-effects. */
4414 if (code == STATEMENT_LIST)
4415 return save_expr (e);
4416 /* FALLTHRU */
4417 case tcc_type:
4418 case tcc_declaration:
4419 case tcc_comparison:
4420 case tcc_statement:
4421 case tcc_expression:
4422 case tcc_reference:
4423 case tcc_vl_exp:
4424 /* If the expression has side-effects, then encase it in a SAVE_EXPR
4425 so that it will only be evaluated once. */
4426 /* The reference (r) and comparison (<) classes could be handled as
4427 below, but it is generally faster to only evaluate them once. */
4428 if (TREE_SIDE_EFFECTS (e))
4429 return save_expr (e);
4430 return e;
4431
4432 case tcc_constant:
4433 /* Constants need no processing. In fact, we should never reach
4434 here. */
4435 return e;
4436
4437 case tcc_binary:
4438 /* Division is slow and tends to be compiled with jumps,
4439 especially the division by powers of 2 that is often
4440 found inside of an array reference. So do it just once. */
4441 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
4442 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
4443 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
4444 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
4445 return save_expr (e);
4446 /* Recursively stabilize each operand. */
4447 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
4448 stabilize_reference_1 (TREE_OPERAND (e, 1)));
4449 break;
4450
4451 case tcc_unary:
4452 /* Recursively stabilize each operand. */
4453 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
4454 break;
4455
4456 default:
4457 gcc_unreachable ();
4458 }
4459
4460 TREE_TYPE (result) = TREE_TYPE (e);
4461 TREE_READONLY (result) = TREE_READONLY (e);
4462 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
4463 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
4464
4465 return result;
4466 }
4467
4468 /* Stabilize a reference so that we can use it any number of times
4469 without causing its operands to be evaluated more than once.
4470 Returns the stabilized reference. This works by means of save_expr,
4471 so see the caveats in the comments about save_expr.
4472
4473 Also allows conversion expressions whose operands are references.
4474 Any other kind of expression is returned unchanged. */
4475
4476 tree
4477 stabilize_reference (tree ref)
4478 {
4479 tree result;
4480 enum tree_code code = TREE_CODE (ref);
4481
4482 switch (code)
4483 {
4484 case VAR_DECL:
4485 case PARM_DECL:
4486 case RESULT_DECL:
4487 /* No action is needed in this case. */
4488 return ref;
4489
4490 CASE_CONVERT:
4491 case FLOAT_EXPR:
4492 case FIX_TRUNC_EXPR:
4493 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
4494 break;
4495
4496 case INDIRECT_REF:
4497 result = build_nt (INDIRECT_REF,
4498 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
4499 break;
4500
4501 case COMPONENT_REF:
4502 result = build_nt (COMPONENT_REF,
4503 stabilize_reference (TREE_OPERAND (ref, 0)),
4504 TREE_OPERAND (ref, 1), NULL_TREE);
4505 break;
4506
4507 case BIT_FIELD_REF:
4508 result = build_nt (BIT_FIELD_REF,
4509 stabilize_reference (TREE_OPERAND (ref, 0)),
4510 TREE_OPERAND (ref, 1), TREE_OPERAND (ref, 2));
4511 REF_REVERSE_STORAGE_ORDER (result) = REF_REVERSE_STORAGE_ORDER (ref);
4512 break;
4513
4514 case ARRAY_REF:
4515 result = build_nt (ARRAY_REF,
4516 stabilize_reference (TREE_OPERAND (ref, 0)),
4517 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
4518 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
4519 break;
4520
4521 case ARRAY_RANGE_REF:
4522 result = build_nt (ARRAY_RANGE_REF,
4523 stabilize_reference (TREE_OPERAND (ref, 0)),
4524 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
4525 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
4526 break;
4527
4528 case COMPOUND_EXPR:
4529 /* We cannot wrap the first expression in a SAVE_EXPR, as then
4530 it wouldn't be ignored. This matters when dealing with
4531 volatiles. */
4532 return stabilize_reference_1 (ref);
4533
4534 /* If arg isn't a kind of lvalue we recognize, make no change.
4535 Caller should recognize the error for an invalid lvalue. */
4536 default:
4537 return ref;
4538
4539 case ERROR_MARK:
4540 return error_mark_node;
4541 }
4542
4543 TREE_TYPE (result) = TREE_TYPE (ref);
4544 TREE_READONLY (result) = TREE_READONLY (ref);
4545 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
4546 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
4547
4548 return result;
4549 }
4550 \f
4551 /* Low-level constructors for expressions. */
4552
4553 /* A helper function for build1 and constant folders. Set TREE_CONSTANT,
4554 and TREE_SIDE_EFFECTS for an ADDR_EXPR. */
4555
4556 void
4557 recompute_tree_invariant_for_addr_expr (tree t)
4558 {
4559 tree node;
4560 bool tc = true, se = false;
4561
4562 gcc_assert (TREE_CODE (t) == ADDR_EXPR);
4563
4564 /* We started out assuming this address is both invariant and constant, but
4565 does not have side effects. Now go down any handled components and see if
4566 any of them involve offsets that are either non-constant or non-invariant.
4567 Also check for side-effects.
4568
4569 ??? Note that this code makes no attempt to deal with the case where
4570 taking the address of something causes a copy due to misalignment. */
4571
4572 #define UPDATE_FLAGS(NODE) \
4573 do { tree _node = (NODE); \
4574 if (_node && !TREE_CONSTANT (_node)) tc = false; \
4575 if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
4576
4577 for (node = TREE_OPERAND (t, 0); handled_component_p (node);
4578 node = TREE_OPERAND (node, 0))
4579 {
4580 /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
4581 array reference (probably made temporarily by the G++ front end),
4582 so ignore all the operands. */
4583 if ((TREE_CODE (node) == ARRAY_REF
4584 || TREE_CODE (node) == ARRAY_RANGE_REF)
4585 && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
4586 {
4587 UPDATE_FLAGS (TREE_OPERAND (node, 1));
4588 if (TREE_OPERAND (node, 2))
4589 UPDATE_FLAGS (TREE_OPERAND (node, 2));
4590 if (TREE_OPERAND (node, 3))
4591 UPDATE_FLAGS (TREE_OPERAND (node, 3));
4592 }
4593 /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
4594 FIELD_DECL, apparently. The G++ front end can put something else
4595 there, at least temporarily. */
4596 else if (TREE_CODE (node) == COMPONENT_REF
4597 && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
4598 {
4599 if (TREE_OPERAND (node, 2))
4600 UPDATE_FLAGS (TREE_OPERAND (node, 2));
4601 }
4602 }
4603
4604 node = lang_hooks.expr_to_decl (node, &tc, &se);
4605
4606 /* Now see what's inside. If it's an INDIRECT_REF, copy our properties from
4607 the address, since &(*a)->b is a form of addition. If it's a constant, the
4608 address is constant too. If it's a decl, its address is constant if the
4609 decl is static. Everything else is not constant and, furthermore,
4610 taking the address of a volatile variable is not volatile. */
4611 if (TREE_CODE (node) == INDIRECT_REF
4612 || TREE_CODE (node) == MEM_REF)
4613 UPDATE_FLAGS (TREE_OPERAND (node, 0));
4614 else if (CONSTANT_CLASS_P (node))
4615 ;
4616 else if (DECL_P (node))
4617 tc &= (staticp (node) != NULL_TREE);
4618 else
4619 {
4620 tc = false;
4621 se |= TREE_SIDE_EFFECTS (node);
4622 }
4623
4624
4625 TREE_CONSTANT (t) = tc;
4626 TREE_SIDE_EFFECTS (t) = se;
4627 #undef UPDATE_FLAGS
4628 }
4629
4630 /* Build an expression of code CODE, data type TYPE, and operands as
4631 specified. Expressions and reference nodes can be created this way.
4632 Constants, decls, types and misc nodes cannot be.
4633
4634 We define 5 non-variadic functions, from 0 to 4 arguments. This is
4635 enough for all extant tree codes. */
4636
4637 tree
4638 build0 (enum tree_code code, tree tt MEM_STAT_DECL)
4639 {
4640 tree t;
4641
4642 gcc_assert (TREE_CODE_LENGTH (code) == 0);
4643
4644 t = make_node (code PASS_MEM_STAT);
4645 TREE_TYPE (t) = tt;
4646
4647 return t;
4648 }
4649
4650 tree
4651 build1 (enum tree_code code, tree type, tree node MEM_STAT_DECL)
4652 {
4653 int length = sizeof (struct tree_exp);
4654 tree t;
4655
4656 record_node_allocation_statistics (code, length);
4657
4658 gcc_assert (TREE_CODE_LENGTH (code) == 1);
4659
4660 t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
4661
4662 memset (t, 0, sizeof (struct tree_common));
4663
4664 TREE_SET_CODE (t, code);
4665
4666 TREE_TYPE (t) = type;
4667 SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
4668 TREE_OPERAND (t, 0) = node;
4669 if (node && !TYPE_P (node))
4670 {
4671 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
4672 TREE_READONLY (t) = TREE_READONLY (node);
4673 }
4674
4675 if (TREE_CODE_CLASS (code) == tcc_statement)
4676 {
4677 if (code != DEBUG_BEGIN_STMT)
4678 TREE_SIDE_EFFECTS (t) = 1;
4679 }
4680 else switch (code)
4681 {
4682 case VA_ARG_EXPR:
4683 /* All of these have side-effects, no matter what their
4684 operands are. */
4685 TREE_SIDE_EFFECTS (t) = 1;
4686 TREE_READONLY (t) = 0;
4687 break;
4688
4689 case INDIRECT_REF:
4690 /* Whether a dereference is readonly has nothing to do with whether
4691 its operand is readonly. */
4692 TREE_READONLY (t) = 0;
4693 break;
4694
4695 case ADDR_EXPR:
4696 if (node)
4697 recompute_tree_invariant_for_addr_expr (t);
4698 break;
4699
4700 default:
4701 if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
4702 && node && !TYPE_P (node)
4703 && TREE_CONSTANT (node))
4704 TREE_CONSTANT (t) = 1;
4705 if (TREE_CODE_CLASS (code) == tcc_reference
4706 && node && TREE_THIS_VOLATILE (node))
4707 TREE_THIS_VOLATILE (t) = 1;
4708 break;
4709 }
4710
4711 return t;
4712 }
4713
4714 #define PROCESS_ARG(N) \
4715 do { \
4716 TREE_OPERAND (t, N) = arg##N; \
4717 if (arg##N &&!TYPE_P (arg##N)) \
4718 { \
4719 if (TREE_SIDE_EFFECTS (arg##N)) \
4720 side_effects = 1; \
4721 if (!TREE_READONLY (arg##N) \
4722 && !CONSTANT_CLASS_P (arg##N)) \
4723 (void) (read_only = 0); \
4724 if (!TREE_CONSTANT (arg##N)) \
4725 (void) (constant = 0); \
4726 } \
4727 } while (0)
4728
4729 tree
4730 build2 (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
4731 {
4732 bool constant, read_only, side_effects, div_by_zero;
4733 tree t;
4734
4735 gcc_assert (TREE_CODE_LENGTH (code) == 2);
4736
4737 if ((code == MINUS_EXPR || code == PLUS_EXPR || code == MULT_EXPR)
4738 && arg0 && arg1 && tt && POINTER_TYPE_P (tt)
4739 /* When sizetype precision doesn't match that of pointers
4740 we need to be able to build explicit extensions or truncations
4741 of the offset argument. */
4742 && TYPE_PRECISION (sizetype) == TYPE_PRECISION (tt))
4743 gcc_assert (TREE_CODE (arg0) == INTEGER_CST
4744 && TREE_CODE (arg1) == INTEGER_CST);
4745
4746 if (code == POINTER_PLUS_EXPR && arg0 && arg1 && tt)
4747 gcc_assert (POINTER_TYPE_P (tt) && POINTER_TYPE_P (TREE_TYPE (arg0))
4748 && ptrofftype_p (TREE_TYPE (arg1)));
4749
4750 t = make_node (code PASS_MEM_STAT);
4751 TREE_TYPE (t) = tt;
4752
4753 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
4754 result based on those same flags for the arguments. But if the
4755 arguments aren't really even `tree' expressions, we shouldn't be trying
4756 to do this. */
4757
4758 /* Expressions without side effects may be constant if their
4759 arguments are as well. */
4760 constant = (TREE_CODE_CLASS (code) == tcc_comparison
4761 || TREE_CODE_CLASS (code) == tcc_binary);
4762 read_only = 1;
4763 side_effects = TREE_SIDE_EFFECTS (t);
4764
4765 switch (code)
4766 {
4767 case TRUNC_DIV_EXPR:
4768 case CEIL_DIV_EXPR:
4769 case FLOOR_DIV_EXPR:
4770 case ROUND_DIV_EXPR:
4771 case EXACT_DIV_EXPR:
4772 case CEIL_MOD_EXPR:
4773 case FLOOR_MOD_EXPR:
4774 case ROUND_MOD_EXPR:
4775 case TRUNC_MOD_EXPR:
4776 div_by_zero = integer_zerop (arg1);
4777 break;
4778 default:
4779 div_by_zero = false;
4780 }
4781
4782 PROCESS_ARG (0);
4783 PROCESS_ARG (1);
4784
4785 TREE_SIDE_EFFECTS (t) = side_effects;
4786 if (code == MEM_REF)
4787 {
4788 if (arg0 && TREE_CODE (arg0) == ADDR_EXPR)
4789 {
4790 tree o = TREE_OPERAND (arg0, 0);
4791 TREE_READONLY (t) = TREE_READONLY (o);
4792 TREE_THIS_VOLATILE (t) = TREE_THIS_VOLATILE (o);
4793 }
4794 }
4795 else
4796 {
4797 TREE_READONLY (t) = read_only;
4798 /* Don't mark X / 0 as constant. */
4799 TREE_CONSTANT (t) = constant && !div_by_zero;
4800 TREE_THIS_VOLATILE (t)
4801 = (TREE_CODE_CLASS (code) == tcc_reference
4802 && arg0 && TREE_THIS_VOLATILE (arg0));
4803 }
4804
4805 return t;
4806 }
4807
4808
4809 tree
4810 build3 (enum tree_code code, tree tt, tree arg0, tree arg1,
4811 tree arg2 MEM_STAT_DECL)
4812 {
4813 bool constant, read_only, side_effects;
4814 tree t;
4815
4816 gcc_assert (TREE_CODE_LENGTH (code) == 3);
4817 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
4818
4819 t = make_node (code PASS_MEM_STAT);
4820 TREE_TYPE (t) = tt;
4821
4822 read_only = 1;
4823
4824 /* As a special exception, if COND_EXPR has NULL branches, we
4825 assume that it is a gimple statement and always consider
4826 it to have side effects. */
4827 if (code == COND_EXPR
4828 && tt == void_type_node
4829 && arg1 == NULL_TREE
4830 && arg2 == NULL_TREE)
4831 side_effects = true;
4832 else
4833 side_effects = TREE_SIDE_EFFECTS (t);
4834
4835 PROCESS_ARG (0);
4836 PROCESS_ARG (1);
4837 PROCESS_ARG (2);
4838
4839 if (code == COND_EXPR)
4840 TREE_READONLY (t) = read_only;
4841
4842 TREE_SIDE_EFFECTS (t) = side_effects;
4843 TREE_THIS_VOLATILE (t)
4844 = (TREE_CODE_CLASS (code) == tcc_reference
4845 && arg0 && TREE_THIS_VOLATILE (arg0));
4846
4847 return t;
4848 }
4849
4850 tree
4851 build4 (enum tree_code code, tree tt, tree arg0, tree arg1,
4852 tree arg2, tree arg3 MEM_STAT_DECL)
4853 {
4854 bool constant, read_only, side_effects;
4855 tree t;
4856
4857 gcc_assert (TREE_CODE_LENGTH (code) == 4);
4858
4859 t = make_node (code PASS_MEM_STAT);
4860 TREE_TYPE (t) = tt;
4861
4862 side_effects = TREE_SIDE_EFFECTS (t);
4863
4864 PROCESS_ARG (0);
4865 PROCESS_ARG (1);
4866 PROCESS_ARG (2);
4867 PROCESS_ARG (3);
4868
4869 TREE_SIDE_EFFECTS (t) = side_effects;
4870 TREE_THIS_VOLATILE (t)
4871 = (TREE_CODE_CLASS (code) == tcc_reference
4872 && arg0 && TREE_THIS_VOLATILE (arg0));
4873
4874 return t;
4875 }
4876
4877 tree
4878 build5 (enum tree_code code, tree tt, tree arg0, tree arg1,
4879 tree arg2, tree arg3, tree arg4 MEM_STAT_DECL)
4880 {
4881 bool constant, read_only, side_effects;
4882 tree t;
4883
4884 gcc_assert (TREE_CODE_LENGTH (code) == 5);
4885
4886 t = make_node (code PASS_MEM_STAT);
4887 TREE_TYPE (t) = tt;
4888
4889 side_effects = TREE_SIDE_EFFECTS (t);
4890
4891 PROCESS_ARG (0);
4892 PROCESS_ARG (1);
4893 PROCESS_ARG (2);
4894 PROCESS_ARG (3);
4895 PROCESS_ARG (4);
4896
4897 TREE_SIDE_EFFECTS (t) = side_effects;
4898 if (code == TARGET_MEM_REF)
4899 {
4900 if (arg0 && TREE_CODE (arg0) == ADDR_EXPR)
4901 {
4902 tree o = TREE_OPERAND (arg0, 0);
4903 TREE_READONLY (t) = TREE_READONLY (o);
4904 TREE_THIS_VOLATILE (t) = TREE_THIS_VOLATILE (o);
4905 }
4906 }
4907 else
4908 TREE_THIS_VOLATILE (t)
4909 = (TREE_CODE_CLASS (code) == tcc_reference
4910 && arg0 && TREE_THIS_VOLATILE (arg0));
4911
4912 return t;
4913 }
4914
4915 /* Build a simple MEM_REF tree with the sematics of a plain INDIRECT_REF
4916 on the pointer PTR. */
4917
4918 tree
4919 build_simple_mem_ref_loc (location_t loc, tree ptr)
4920 {
4921 poly_int64 offset = 0;
4922 tree ptype = TREE_TYPE (ptr);
4923 tree tem;
4924 /* For convenience allow addresses that collapse to a simple base
4925 and offset. */
4926 if (TREE_CODE (ptr) == ADDR_EXPR
4927 && (handled_component_p (TREE_OPERAND (ptr, 0))
4928 || TREE_CODE (TREE_OPERAND (ptr, 0)) == MEM_REF))
4929 {
4930 ptr = get_addr_base_and_unit_offset (TREE_OPERAND (ptr, 0), &offset);
4931 gcc_assert (ptr);
4932 if (TREE_CODE (ptr) == MEM_REF)
4933 {
4934 offset += mem_ref_offset (ptr).force_shwi ();
4935 ptr = TREE_OPERAND (ptr, 0);
4936 }
4937 else
4938 ptr = build_fold_addr_expr (ptr);
4939 gcc_assert (is_gimple_reg (ptr) || is_gimple_min_invariant (ptr));
4940 }
4941 tem = build2 (MEM_REF, TREE_TYPE (ptype),
4942 ptr, build_int_cst (ptype, offset));
4943 SET_EXPR_LOCATION (tem, loc);
4944 return tem;
4945 }
4946
4947 /* Return the constant offset of a MEM_REF or TARGET_MEM_REF tree T. */
4948
4949 poly_offset_int
4950 mem_ref_offset (const_tree t)
4951 {
4952 return poly_offset_int::from (wi::to_poly_wide (TREE_OPERAND (t, 1)),
4953 SIGNED);
4954 }
4955
4956 /* Return an invariant ADDR_EXPR of type TYPE taking the address of BASE
4957 offsetted by OFFSET units. */
4958
4959 tree
4960 build_invariant_address (tree type, tree base, poly_int64 offset)
4961 {
4962 tree ref = fold_build2 (MEM_REF, TREE_TYPE (type),
4963 build_fold_addr_expr (base),
4964 build_int_cst (ptr_type_node, offset));
4965 tree addr = build1 (ADDR_EXPR, type, ref);
4966 recompute_tree_invariant_for_addr_expr (addr);
4967 return addr;
4968 }
4969
4970 /* Similar except don't specify the TREE_TYPE
4971 and leave the TREE_SIDE_EFFECTS as 0.
4972 It is permissible for arguments to be null,
4973 or even garbage if their values do not matter. */
4974
4975 tree
4976 build_nt (enum tree_code code, ...)
4977 {
4978 tree t;
4979 int length;
4980 int i;
4981 va_list p;
4982
4983 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
4984
4985 va_start (p, code);
4986
4987 t = make_node (code);
4988 length = TREE_CODE_LENGTH (code);
4989
4990 for (i = 0; i < length; i++)
4991 TREE_OPERAND (t, i) = va_arg (p, tree);
4992
4993 va_end (p);
4994 return t;
4995 }
4996
4997 /* Similar to build_nt, but for creating a CALL_EXPR object with a
4998 tree vec. */
4999
5000 tree
5001 build_nt_call_vec (tree fn, vec<tree, va_gc> *args)
5002 {
5003 tree ret, t;
5004 unsigned int ix;
5005
5006 ret = build_vl_exp (CALL_EXPR, vec_safe_length (args) + 3);
5007 CALL_EXPR_FN (ret) = fn;
5008 CALL_EXPR_STATIC_CHAIN (ret) = NULL_TREE;
5009 FOR_EACH_VEC_SAFE_ELT (args, ix, t)
5010 CALL_EXPR_ARG (ret, ix) = t;
5011 return ret;
5012 }
5013 \f
5014 /* Create a DECL_... node of code CODE, name NAME (if non-null)
5015 and data type TYPE.
5016 We do NOT enter this node in any sort of symbol table.
5017
5018 LOC is the location of the decl.
5019
5020 layout_decl is used to set up the decl's storage layout.
5021 Other slots are initialized to 0 or null pointers. */
5022
5023 tree
5024 build_decl (location_t loc, enum tree_code code, tree name,
5025 tree type MEM_STAT_DECL)
5026 {
5027 tree t;
5028
5029 t = make_node (code PASS_MEM_STAT);
5030 DECL_SOURCE_LOCATION (t) = loc;
5031
5032 /* if (type == error_mark_node)
5033 type = integer_type_node; */
5034 /* That is not done, deliberately, so that having error_mark_node
5035 as the type can suppress useless errors in the use of this variable. */
5036
5037 DECL_NAME (t) = name;
5038 TREE_TYPE (t) = type;
5039
5040 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
5041 layout_decl (t, 0);
5042
5043 return t;
5044 }
5045
5046 /* Builds and returns function declaration with NAME and TYPE. */
5047
5048 tree
5049 build_fn_decl (const char *name, tree type)
5050 {
5051 tree id = get_identifier (name);
5052 tree decl = build_decl (input_location, FUNCTION_DECL, id, type);
5053
5054 DECL_EXTERNAL (decl) = 1;
5055 TREE_PUBLIC (decl) = 1;
5056 DECL_ARTIFICIAL (decl) = 1;
5057 TREE_NOTHROW (decl) = 1;
5058
5059 return decl;
5060 }
5061
5062 vec<tree, va_gc> *all_translation_units;
5063
5064 /* Builds a new translation-unit decl with name NAME, queues it in the
5065 global list of translation-unit decls and returns it. */
5066
5067 tree
5068 build_translation_unit_decl (tree name)
5069 {
5070 tree tu = build_decl (UNKNOWN_LOCATION, TRANSLATION_UNIT_DECL,
5071 name, NULL_TREE);
5072 TRANSLATION_UNIT_LANGUAGE (tu) = lang_hooks.name;
5073 vec_safe_push (all_translation_units, tu);
5074 return tu;
5075 }
5076
5077 \f
5078 /* BLOCK nodes are used to represent the structure of binding contours
5079 and declarations, once those contours have been exited and their contents
5080 compiled. This information is used for outputting debugging info. */
5081
5082 tree
5083 build_block (tree vars, tree subblocks, tree supercontext, tree chain)
5084 {
5085 tree block = make_node (BLOCK);
5086
5087 BLOCK_VARS (block) = vars;
5088 BLOCK_SUBBLOCKS (block) = subblocks;
5089 BLOCK_SUPERCONTEXT (block) = supercontext;
5090 BLOCK_CHAIN (block) = chain;
5091 return block;
5092 }
5093
5094 \f
5095 /* Like SET_EXPR_LOCATION, but make sure the tree can have a location.
5096
5097 LOC is the location to use in tree T. */
5098
5099 void
5100 protected_set_expr_location (tree t, location_t loc)
5101 {
5102 if (CAN_HAVE_LOCATION_P (t))
5103 SET_EXPR_LOCATION (t, loc);
5104 else if (t && TREE_CODE (t) == STATEMENT_LIST)
5105 {
5106 t = expr_single (t);
5107 if (t && CAN_HAVE_LOCATION_P (t))
5108 SET_EXPR_LOCATION (t, loc);
5109 }
5110 }
5111
5112 /* Like PROTECTED_SET_EXPR_LOCATION, but only do that if T has
5113 UNKNOWN_LOCATION. */
5114
5115 void
5116 protected_set_expr_location_if_unset (tree t, location_t loc)
5117 {
5118 t = expr_single (t);
5119 if (t && !EXPR_HAS_LOCATION (t))
5120 protected_set_expr_location (t, loc);
5121 }
5122
5123 /* Data used when collecting DECLs and TYPEs for language data removal. */
5124
5125 class free_lang_data_d
5126 {
5127 public:
5128 free_lang_data_d () : decls (100), types (100) {}
5129
5130 /* Worklist to avoid excessive recursion. */
5131 auto_vec<tree> worklist;
5132
5133 /* Set of traversed objects. Used to avoid duplicate visits. */
5134 hash_set<tree> pset;
5135
5136 /* Array of symbols to process with free_lang_data_in_decl. */
5137 auto_vec<tree> decls;
5138
5139 /* Array of types to process with free_lang_data_in_type. */
5140 auto_vec<tree> types;
5141 };
5142
5143
5144 /* Add type or decl T to one of the list of tree nodes that need their
5145 language data removed. The lists are held inside FLD. */
5146
5147 static void
5148 add_tree_to_fld_list (tree t, class free_lang_data_d *fld)
5149 {
5150 if (DECL_P (t))
5151 fld->decls.safe_push (t);
5152 else if (TYPE_P (t))
5153 fld->types.safe_push (t);
5154 else
5155 gcc_unreachable ();
5156 }
5157
5158 /* Push tree node T into FLD->WORKLIST. */
5159
5160 static inline void
5161 fld_worklist_push (tree t, class free_lang_data_d *fld)
5162 {
5163 if (t && !is_lang_specific (t) && !fld->pset.contains (t))
5164 fld->worklist.safe_push ((t));
5165 }
5166
5167
5168 \f
5169 /* Return simplified TYPE_NAME of TYPE. */
5170
5171 static tree
5172 fld_simplified_type_name (tree type)
5173 {
5174 if (!TYPE_NAME (type) || TREE_CODE (TYPE_NAME (type)) != TYPE_DECL)
5175 return TYPE_NAME (type);
5176 /* Drop TYPE_DECLs in TYPE_NAME in favor of the identifier in the
5177 TYPE_DECL if the type doesn't have linkage.
5178 this must match fld_ */
5179 if (type != TYPE_MAIN_VARIANT (type)
5180 || (!DECL_ASSEMBLER_NAME_SET_P (TYPE_NAME (type))
5181 && (TREE_CODE (type) != RECORD_TYPE
5182 || !TYPE_BINFO (type)
5183 || !BINFO_VTABLE (TYPE_BINFO (type)))))
5184 return DECL_NAME (TYPE_NAME (type));
5185 return TYPE_NAME (type);
5186 }
5187
5188 /* Do same comparsion as check_qualified_type skipping lang part of type
5189 and be more permissive about type names: we only care that names are
5190 same (for diagnostics) and that ODR names are the same.
5191 If INNER_TYPE is non-NULL, be sure that TREE_TYPE match it. */
5192
5193 static bool
5194 fld_type_variant_equal_p (tree t, tree v, tree inner_type)
5195 {
5196 if (TYPE_QUALS (t) != TYPE_QUALS (v)
5197 /* We want to match incomplete variants with complete types.
5198 In this case we need to ignore alignment. */
5199 || ((!RECORD_OR_UNION_TYPE_P (t) || COMPLETE_TYPE_P (v))
5200 && (TYPE_ALIGN (t) != TYPE_ALIGN (v)
5201 || TYPE_USER_ALIGN (t) != TYPE_USER_ALIGN (v)))
5202 || fld_simplified_type_name (t) != fld_simplified_type_name (v)
5203 || !attribute_list_equal (TYPE_ATTRIBUTES (t),
5204 TYPE_ATTRIBUTES (v))
5205 || (inner_type && TREE_TYPE (v) != inner_type))
5206 return false;
5207
5208 return true;
5209 }
5210
5211 /* Find variant of FIRST that match T and create new one if necessary.
5212 Set TREE_TYPE to INNER_TYPE if non-NULL. */
5213
5214 static tree
5215 fld_type_variant (tree first, tree t, class free_lang_data_d *fld,
5216 tree inner_type = NULL)
5217 {
5218 if (first == TYPE_MAIN_VARIANT (t))
5219 return t;
5220 for (tree v = first; v; v = TYPE_NEXT_VARIANT (v))
5221 if (fld_type_variant_equal_p (t, v, inner_type))
5222 return v;
5223 tree v = build_variant_type_copy (first);
5224 TYPE_READONLY (v) = TYPE_READONLY (t);
5225 TYPE_VOLATILE (v) = TYPE_VOLATILE (t);
5226 TYPE_ATOMIC (v) = TYPE_ATOMIC (t);
5227 TYPE_RESTRICT (v) = TYPE_RESTRICT (t);
5228 TYPE_ADDR_SPACE (v) = TYPE_ADDR_SPACE (t);
5229 TYPE_NAME (v) = TYPE_NAME (t);
5230 TYPE_ATTRIBUTES (v) = TYPE_ATTRIBUTES (t);
5231 TYPE_CANONICAL (v) = TYPE_CANONICAL (t);
5232 /* Variants of incomplete types should have alignment
5233 set to BITS_PER_UNIT. Do not copy the actual alignment. */
5234 if (!RECORD_OR_UNION_TYPE_P (v) || COMPLETE_TYPE_P (v))
5235 {
5236 SET_TYPE_ALIGN (v, TYPE_ALIGN (t));
5237 TYPE_USER_ALIGN (v) = TYPE_USER_ALIGN (t);
5238 }
5239 if (inner_type)
5240 TREE_TYPE (v) = inner_type;
5241 gcc_checking_assert (fld_type_variant_equal_p (t,v, inner_type));
5242 if (!fld->pset.add (v))
5243 add_tree_to_fld_list (v, fld);
5244 return v;
5245 }
5246
5247 /* Map complete types to incomplete types. */
5248
5249 static hash_map<tree, tree> *fld_incomplete_types;
5250
5251 /* Map types to simplified types. */
5252
5253 static hash_map<tree, tree> *fld_simplified_types;
5254
5255 /* Produce variant of T whose TREE_TYPE is T2. If it is main variant,
5256 use MAP to prevent duplicates. */
5257
5258 static tree
5259 fld_process_array_type (tree t, tree t2, hash_map<tree, tree> *map,
5260 class free_lang_data_d *fld)
5261 {
5262 if (TREE_TYPE (t) == t2)
5263 return t;
5264
5265 if (TYPE_MAIN_VARIANT (t) != t)
5266 {
5267 return fld_type_variant
5268 (fld_process_array_type (TYPE_MAIN_VARIANT (t),
5269 TYPE_MAIN_VARIANT (t2), map, fld),
5270 t, fld, t2);
5271 }
5272
5273 bool existed;
5274 tree &array
5275 = map->get_or_insert (t, &existed);
5276 if (!existed)
5277 {
5278 array
5279 = build_array_type_1 (t2, TYPE_DOMAIN (t), TYPE_TYPELESS_STORAGE (t),
5280 false, false);
5281 TYPE_CANONICAL (array) = TYPE_CANONICAL (t);
5282 if (!fld->pset.add (array))
5283 add_tree_to_fld_list (array, fld);
5284 }
5285 return array;
5286 }
5287
5288 /* Return CTX after removal of contexts that are not relevant */
5289
5290 static tree
5291 fld_decl_context (tree ctx)
5292 {
5293 /* Variably modified types are needed for tree_is_indexable to decide
5294 whether the type needs to go to local or global section.
5295 This code is semi-broken but for now it is easiest to keep contexts
5296 as expected. */
5297 if (ctx && TYPE_P (ctx)
5298 && !variably_modified_type_p (ctx, NULL_TREE))
5299 {
5300 while (ctx && TYPE_P (ctx))
5301 ctx = TYPE_CONTEXT (ctx);
5302 }
5303 return ctx;
5304 }
5305
5306 /* For T being aggregate type try to turn it into a incomplete variant.
5307 Return T if no simplification is possible. */
5308
5309 static tree
5310 fld_incomplete_type_of (tree t, class free_lang_data_d *fld)
5311 {
5312 if (!t)
5313 return NULL;
5314 if (POINTER_TYPE_P (t))
5315 {
5316 tree t2 = fld_incomplete_type_of (TREE_TYPE (t), fld);
5317 if (t2 != TREE_TYPE (t))
5318 {
5319 tree first;
5320 if (TREE_CODE (t) == POINTER_TYPE)
5321 first = build_pointer_type_for_mode (t2, TYPE_MODE (t),
5322 TYPE_REF_CAN_ALIAS_ALL (t));
5323 else
5324 first = build_reference_type_for_mode (t2, TYPE_MODE (t),
5325 TYPE_REF_CAN_ALIAS_ALL (t));
5326 gcc_assert (TYPE_CANONICAL (t2) != t2
5327 && TYPE_CANONICAL (t2) == TYPE_CANONICAL (TREE_TYPE (t)));
5328 if (!fld->pset.add (first))
5329 add_tree_to_fld_list (first, fld);
5330 return fld_type_variant (first, t, fld);
5331 }
5332 return t;
5333 }
5334 if (TREE_CODE (t) == ARRAY_TYPE)
5335 return fld_process_array_type (t,
5336 fld_incomplete_type_of (TREE_TYPE (t), fld),
5337 fld_incomplete_types, fld);
5338 if ((!RECORD_OR_UNION_TYPE_P (t) && TREE_CODE (t) != ENUMERAL_TYPE)
5339 || !COMPLETE_TYPE_P (t))
5340 return t;
5341 if (TYPE_MAIN_VARIANT (t) == t)
5342 {
5343 bool existed;
5344 tree &copy
5345 = fld_incomplete_types->get_or_insert (t, &existed);
5346
5347 if (!existed)
5348 {
5349 copy = build_distinct_type_copy (t);
5350
5351 /* It is possible that type was not seen by free_lang_data yet. */
5352 if (!fld->pset.add (copy))
5353 add_tree_to_fld_list (copy, fld);
5354 TYPE_SIZE (copy) = NULL;
5355 TYPE_USER_ALIGN (copy) = 0;
5356 TYPE_SIZE_UNIT (copy) = NULL;
5357 TYPE_CANONICAL (copy) = TYPE_CANONICAL (t);
5358 TREE_ADDRESSABLE (copy) = 0;
5359 if (AGGREGATE_TYPE_P (t))
5360 {
5361 SET_TYPE_MODE (copy, VOIDmode);
5362 SET_TYPE_ALIGN (copy, BITS_PER_UNIT);
5363 TYPE_TYPELESS_STORAGE (copy) = 0;
5364 TYPE_FIELDS (copy) = NULL;
5365 TYPE_BINFO (copy) = NULL;
5366 TYPE_FINAL_P (copy) = 0;
5367 TYPE_EMPTY_P (copy) = 0;
5368 }
5369 else
5370 {
5371 TYPE_VALUES (copy) = NULL;
5372 ENUM_IS_OPAQUE (copy) = 0;
5373 ENUM_IS_SCOPED (copy) = 0;
5374 }
5375
5376 /* Build copy of TYPE_DECL in TYPE_NAME if necessary.
5377 This is needed for ODR violation warnings to come out right (we
5378 want duplicate TYPE_DECLs whenever the type is duplicated because
5379 of ODR violation. Because lang data in the TYPE_DECL may not
5380 have been freed yet, rebuild it from scratch and copy relevant
5381 fields. */
5382 TYPE_NAME (copy) = fld_simplified_type_name (copy);
5383 tree name = TYPE_NAME (copy);
5384
5385 if (name && TREE_CODE (name) == TYPE_DECL)
5386 {
5387 gcc_checking_assert (TREE_TYPE (name) == t);
5388 tree name2 = build_decl (DECL_SOURCE_LOCATION (name), TYPE_DECL,
5389 DECL_NAME (name), copy);
5390 if (DECL_ASSEMBLER_NAME_SET_P (name))
5391 SET_DECL_ASSEMBLER_NAME (name2, DECL_ASSEMBLER_NAME (name));
5392 SET_DECL_ALIGN (name2, 0);
5393 DECL_CONTEXT (name2) = fld_decl_context
5394 (DECL_CONTEXT (name));
5395 TYPE_NAME (copy) = name2;
5396 }
5397 }
5398 return copy;
5399 }
5400 return (fld_type_variant
5401 (fld_incomplete_type_of (TYPE_MAIN_VARIANT (t), fld), t, fld));
5402 }
5403
5404 /* Simplify type T for scenarios where we do not need complete pointer
5405 types. */
5406
5407 static tree
5408 fld_simplified_type (tree t, class free_lang_data_d *fld)
5409 {
5410 if (!t)
5411 return t;
5412 if (POINTER_TYPE_P (t))
5413 return fld_incomplete_type_of (t, fld);
5414 /* FIXME: This triggers verification error, see PR88140. */
5415 if (TREE_CODE (t) == ARRAY_TYPE && 0)
5416 return fld_process_array_type (t, fld_simplified_type (TREE_TYPE (t), fld),
5417 fld_simplified_types, fld);
5418 return t;
5419 }
5420
5421 /* Reset the expression *EXPR_P, a size or position.
5422
5423 ??? We could reset all non-constant sizes or positions. But it's cheap
5424 enough to not do so and refrain from adding workarounds to dwarf2out.c.
5425
5426 We need to reset self-referential sizes or positions because they cannot
5427 be gimplified and thus can contain a CALL_EXPR after the gimplification
5428 is finished, which will run afoul of LTO streaming. And they need to be
5429 reset to something essentially dummy but not constant, so as to preserve
5430 the properties of the object they are attached to. */
5431
5432 static inline void
5433 free_lang_data_in_one_sizepos (tree *expr_p)
5434 {
5435 tree expr = *expr_p;
5436 if (CONTAINS_PLACEHOLDER_P (expr))
5437 *expr_p = build0 (PLACEHOLDER_EXPR, TREE_TYPE (expr));
5438 }
5439
5440
5441 /* Reset all the fields in a binfo node BINFO. We only keep
5442 BINFO_VTABLE, which is used by gimple_fold_obj_type_ref. */
5443
5444 static void
5445 free_lang_data_in_binfo (tree binfo)
5446 {
5447 unsigned i;
5448 tree t;
5449
5450 gcc_assert (TREE_CODE (binfo) == TREE_BINFO);
5451
5452 BINFO_VIRTUALS (binfo) = NULL_TREE;
5453 BINFO_BASE_ACCESSES (binfo) = NULL;
5454 BINFO_INHERITANCE_CHAIN (binfo) = NULL_TREE;
5455 BINFO_SUBVTT_INDEX (binfo) = NULL_TREE;
5456 BINFO_VPTR_FIELD (binfo) = NULL_TREE;
5457 TREE_PUBLIC (binfo) = 0;
5458
5459 FOR_EACH_VEC_ELT (*BINFO_BASE_BINFOS (binfo), i, t)
5460 free_lang_data_in_binfo (t);
5461 }
5462
5463
5464 /* Reset all language specific information still present in TYPE. */
5465
5466 static void
5467 free_lang_data_in_type (tree type, class free_lang_data_d *fld)
5468 {
5469 gcc_assert (TYPE_P (type));
5470
5471 /* Give the FE a chance to remove its own data first. */
5472 lang_hooks.free_lang_data (type);
5473
5474 TREE_LANG_FLAG_0 (type) = 0;
5475 TREE_LANG_FLAG_1 (type) = 0;
5476 TREE_LANG_FLAG_2 (type) = 0;
5477 TREE_LANG_FLAG_3 (type) = 0;
5478 TREE_LANG_FLAG_4 (type) = 0;
5479 TREE_LANG_FLAG_5 (type) = 0;
5480 TREE_LANG_FLAG_6 (type) = 0;
5481
5482 TYPE_NEEDS_CONSTRUCTING (type) = 0;
5483
5484 /* Purge non-marked variants from the variants chain, so that they
5485 don't reappear in the IL after free_lang_data. */
5486 while (TYPE_NEXT_VARIANT (type)
5487 && !fld->pset.contains (TYPE_NEXT_VARIANT (type)))
5488 {
5489 tree t = TYPE_NEXT_VARIANT (type);
5490 TYPE_NEXT_VARIANT (type) = TYPE_NEXT_VARIANT (t);
5491 /* Turn the removed types into distinct types. */
5492 TYPE_MAIN_VARIANT (t) = t;
5493 TYPE_NEXT_VARIANT (t) = NULL_TREE;
5494 }
5495
5496 if (TREE_CODE (type) == FUNCTION_TYPE)
5497 {
5498 TREE_TYPE (type) = fld_simplified_type (TREE_TYPE (type), fld);
5499 /* Remove the const and volatile qualifiers from arguments. The
5500 C++ front end removes them, but the C front end does not,
5501 leading to false ODR violation errors when merging two
5502 instances of the same function signature compiled by
5503 different front ends. */
5504 for (tree p = TYPE_ARG_TYPES (type); p; p = TREE_CHAIN (p))
5505 {
5506 TREE_VALUE (p) = fld_simplified_type (TREE_VALUE (p), fld);
5507 tree arg_type = TREE_VALUE (p);
5508
5509 if (TYPE_READONLY (arg_type) || TYPE_VOLATILE (arg_type))
5510 {
5511 int quals = TYPE_QUALS (arg_type)
5512 & ~TYPE_QUAL_CONST
5513 & ~TYPE_QUAL_VOLATILE;
5514 TREE_VALUE (p) = build_qualified_type (arg_type, quals);
5515 if (!fld->pset.add (TREE_VALUE (p)))
5516 free_lang_data_in_type (TREE_VALUE (p), fld);
5517 }
5518 /* C++ FE uses TREE_PURPOSE to store initial values. */
5519 TREE_PURPOSE (p) = NULL;
5520 }
5521 }
5522 else if (TREE_CODE (type) == METHOD_TYPE)
5523 {
5524 TREE_TYPE (type) = fld_simplified_type (TREE_TYPE (type), fld);
5525 for (tree p = TYPE_ARG_TYPES (type); p; p = TREE_CHAIN (p))
5526 {
5527 /* C++ FE uses TREE_PURPOSE to store initial values. */
5528 TREE_VALUE (p) = fld_simplified_type (TREE_VALUE (p), fld);
5529 TREE_PURPOSE (p) = NULL;
5530 }
5531 }
5532 else if (RECORD_OR_UNION_TYPE_P (type))
5533 {
5534 /* Remove members that are not FIELD_DECLs from the field list
5535 of an aggregate. These occur in C++. */
5536 for (tree *prev = &TYPE_FIELDS (type), member; (member = *prev);)
5537 if (TREE_CODE (member) == FIELD_DECL)
5538 prev = &DECL_CHAIN (member);
5539 else
5540 *prev = DECL_CHAIN (member);
5541
5542 TYPE_VFIELD (type) = NULL_TREE;
5543
5544 if (TYPE_BINFO (type))
5545 {
5546 free_lang_data_in_binfo (TYPE_BINFO (type));
5547 /* We need to preserve link to bases and virtual table for all
5548 polymorphic types to make devirtualization machinery working. */
5549 if (!BINFO_VTABLE (TYPE_BINFO (type)))
5550 TYPE_BINFO (type) = NULL;
5551 }
5552 }
5553 else if (INTEGRAL_TYPE_P (type)
5554 || SCALAR_FLOAT_TYPE_P (type)
5555 || FIXED_POINT_TYPE_P (type))
5556 {
5557 if (TREE_CODE (type) == ENUMERAL_TYPE)
5558 {
5559 ENUM_IS_OPAQUE (type) = 0;
5560 ENUM_IS_SCOPED (type) = 0;
5561 /* Type values are used only for C++ ODR checking. Drop them
5562 for all type variants and non-ODR types.
5563 For ODR types the data is freed in free_odr_warning_data. */
5564 if (!TYPE_VALUES (type))
5565 ;
5566 else if (TYPE_MAIN_VARIANT (type) != type
5567 || !type_with_linkage_p (type)
5568 || type_in_anonymous_namespace_p (type))
5569 TYPE_VALUES (type) = NULL;
5570 else
5571 register_odr_enum (type);
5572 }
5573 free_lang_data_in_one_sizepos (&TYPE_MIN_VALUE (type));
5574 free_lang_data_in_one_sizepos (&TYPE_MAX_VALUE (type));
5575 }
5576
5577 TYPE_LANG_SLOT_1 (type) = NULL_TREE;
5578
5579 free_lang_data_in_one_sizepos (&TYPE_SIZE (type));
5580 free_lang_data_in_one_sizepos (&TYPE_SIZE_UNIT (type));
5581
5582 if (TYPE_CONTEXT (type)
5583 && TREE_CODE (TYPE_CONTEXT (type)) == BLOCK)
5584 {
5585 tree ctx = TYPE_CONTEXT (type);
5586 do
5587 {
5588 ctx = BLOCK_SUPERCONTEXT (ctx);
5589 }
5590 while (ctx && TREE_CODE (ctx) == BLOCK);
5591 TYPE_CONTEXT (type) = ctx;
5592 }
5593
5594 TYPE_STUB_DECL (type) = NULL;
5595 TYPE_NAME (type) = fld_simplified_type_name (type);
5596 }
5597
5598
5599 /* Return true if DECL may need an assembler name to be set. */
5600
5601 static inline bool
5602 need_assembler_name_p (tree decl)
5603 {
5604 /* We use DECL_ASSEMBLER_NAME to hold mangled type names for One Definition
5605 Rule merging. This makes type_odr_p to return true on those types during
5606 LTO and by comparing the mangled name, we can say what types are intended
5607 to be equivalent across compilation unit.
5608
5609 We do not store names of type_in_anonymous_namespace_p.
5610
5611 Record, union and enumeration type have linkage that allows use
5612 to check type_in_anonymous_namespace_p. We do not mangle compound types
5613 that always can be compared structurally.
5614
5615 Similarly for builtin types, we compare properties of their main variant.
5616 A special case are integer types where mangling do make differences
5617 between char/signed char/unsigned char etc. Storing name for these makes
5618 e.g. -fno-signed-char/-fsigned-char mismatches to be handled well.
5619 See cp/mangle.c:write_builtin_type for details. */
5620
5621 if (TREE_CODE (decl) == TYPE_DECL)
5622 {
5623 if (DECL_NAME (decl)
5624 && decl == TYPE_NAME (TREE_TYPE (decl))
5625 && TYPE_MAIN_VARIANT (TREE_TYPE (decl)) == TREE_TYPE (decl)
5626 && !TYPE_ARTIFICIAL (TREE_TYPE (decl))
5627 && ((TREE_CODE (TREE_TYPE (decl)) != RECORD_TYPE
5628 && TREE_CODE (TREE_TYPE (decl)) != UNION_TYPE)
5629 || TYPE_CXX_ODR_P (TREE_TYPE (decl)))
5630 && (type_with_linkage_p (TREE_TYPE (decl))
5631 || TREE_CODE (TREE_TYPE (decl)) == INTEGER_TYPE)
5632 && !variably_modified_type_p (TREE_TYPE (decl), NULL_TREE))
5633 return !DECL_ASSEMBLER_NAME_SET_P (decl);
5634 return false;
5635 }
5636 /* Only FUNCTION_DECLs and VAR_DECLs are considered. */
5637 if (!VAR_OR_FUNCTION_DECL_P (decl))
5638 return false;
5639
5640 /* If DECL already has its assembler name set, it does not need a
5641 new one. */
5642 if (!HAS_DECL_ASSEMBLER_NAME_P (decl)
5643 || DECL_ASSEMBLER_NAME_SET_P (decl))
5644 return false;
5645
5646 /* Abstract decls do not need an assembler name. */
5647 if (DECL_ABSTRACT_P (decl))
5648 return false;
5649
5650 /* For VAR_DECLs, only static, public and external symbols need an
5651 assembler name. */
5652 if (VAR_P (decl)
5653 && !TREE_STATIC (decl)
5654 && !TREE_PUBLIC (decl)
5655 && !DECL_EXTERNAL (decl))
5656 return false;
5657
5658 if (TREE_CODE (decl) == FUNCTION_DECL)
5659 {
5660 /* Do not set assembler name on builtins. Allow RTL expansion to
5661 decide whether to expand inline or via a regular call. */
5662 if (fndecl_built_in_p (decl)
5663 && DECL_BUILT_IN_CLASS (decl) != BUILT_IN_FRONTEND)
5664 return false;
5665
5666 /* Functions represented in the callgraph need an assembler name. */
5667 if (cgraph_node::get (decl) != NULL)
5668 return true;
5669
5670 /* Unused and not public functions don't need an assembler name. */
5671 if (!TREE_USED (decl) && !TREE_PUBLIC (decl))
5672 return false;
5673 }
5674
5675 return true;
5676 }
5677
5678
5679 /* Reset all language specific information still present in symbol
5680 DECL. */
5681
5682 static void
5683 free_lang_data_in_decl (tree decl, class free_lang_data_d *fld)
5684 {
5685 gcc_assert (DECL_P (decl));
5686
5687 /* Give the FE a chance to remove its own data first. */
5688 lang_hooks.free_lang_data (decl);
5689
5690 TREE_LANG_FLAG_0 (decl) = 0;
5691 TREE_LANG_FLAG_1 (decl) = 0;
5692 TREE_LANG_FLAG_2 (decl) = 0;
5693 TREE_LANG_FLAG_3 (decl) = 0;
5694 TREE_LANG_FLAG_4 (decl) = 0;
5695 TREE_LANG_FLAG_5 (decl) = 0;
5696 TREE_LANG_FLAG_6 (decl) = 0;
5697
5698 free_lang_data_in_one_sizepos (&DECL_SIZE (decl));
5699 free_lang_data_in_one_sizepos (&DECL_SIZE_UNIT (decl));
5700 if (TREE_CODE (decl) == FIELD_DECL)
5701 {
5702 DECL_FCONTEXT (decl) = NULL;
5703 free_lang_data_in_one_sizepos (&DECL_FIELD_OFFSET (decl));
5704 if (TREE_CODE (DECL_CONTEXT (decl)) == QUAL_UNION_TYPE)
5705 DECL_QUALIFIER (decl) = NULL_TREE;
5706 }
5707
5708 if (TREE_CODE (decl) == FUNCTION_DECL)
5709 {
5710 struct cgraph_node *node;
5711 /* Frontends do not set TREE_ADDRESSABLE on public variables even though
5712 the address may be taken in other unit, so this flag has no practical
5713 use for middle-end.
5714
5715 It would make more sense if frontends set TREE_ADDRESSABLE to 0 only
5716 for public objects that indeed cannot be adressed, but it is not
5717 the case. Set the flag to true so we do not get merge failures for
5718 i.e. virtual tables between units that take address of it and
5719 units that don't. */
5720 if (TREE_PUBLIC (decl))
5721 TREE_ADDRESSABLE (decl) = true;
5722 TREE_TYPE (decl) = fld_simplified_type (TREE_TYPE (decl), fld);
5723 if (!(node = cgraph_node::get (decl))
5724 || (!node->definition && !node->clones))
5725 {
5726 if (node)
5727 node->release_body ();
5728 else
5729 {
5730 release_function_body (decl);
5731 DECL_ARGUMENTS (decl) = NULL;
5732 DECL_RESULT (decl) = NULL;
5733 DECL_INITIAL (decl) = error_mark_node;
5734 }
5735 }
5736 if (gimple_has_body_p (decl) || (node && node->thunk.thunk_p))
5737 {
5738 tree t;
5739
5740 /* If DECL has a gimple body, then the context for its
5741 arguments must be DECL. Otherwise, it doesn't really
5742 matter, as we will not be emitting any code for DECL. In
5743 general, there may be other instances of DECL created by
5744 the front end and since PARM_DECLs are generally shared,
5745 their DECL_CONTEXT changes as the replicas of DECL are
5746 created. The only time where DECL_CONTEXT is important
5747 is for the FUNCTION_DECLs that have a gimple body (since
5748 the PARM_DECL will be used in the function's body). */
5749 for (t = DECL_ARGUMENTS (decl); t; t = TREE_CHAIN (t))
5750 DECL_CONTEXT (t) = decl;
5751 if (!DECL_FUNCTION_SPECIFIC_TARGET (decl))
5752 DECL_FUNCTION_SPECIFIC_TARGET (decl)
5753 = target_option_default_node;
5754 if (!DECL_FUNCTION_SPECIFIC_OPTIMIZATION (decl))
5755 DECL_FUNCTION_SPECIFIC_OPTIMIZATION (decl)
5756 = optimization_default_node;
5757 }
5758
5759 /* DECL_SAVED_TREE holds the GENERIC representation for DECL.
5760 At this point, it is not needed anymore. */
5761 DECL_SAVED_TREE (decl) = NULL_TREE;
5762
5763 /* Clear the abstract origin if it refers to a method.
5764 Otherwise dwarf2out.c will ICE as we splice functions out of
5765 TYPE_FIELDS and thus the origin will not be output
5766 correctly. */
5767 if (DECL_ABSTRACT_ORIGIN (decl)
5768 && DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))
5769 && RECORD_OR_UNION_TYPE_P
5770 (DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))))
5771 DECL_ABSTRACT_ORIGIN (decl) = NULL_TREE;
5772
5773 DECL_VINDEX (decl) = NULL_TREE;
5774 }
5775 else if (VAR_P (decl))
5776 {
5777 /* See comment above why we set the flag for functions. */
5778 if (TREE_PUBLIC (decl))
5779 TREE_ADDRESSABLE (decl) = true;
5780 if ((DECL_EXTERNAL (decl)
5781 && (!TREE_STATIC (decl) || !TREE_READONLY (decl)))
5782 || (decl_function_context (decl) && !TREE_STATIC (decl)))
5783 DECL_INITIAL (decl) = NULL_TREE;
5784 }
5785 else if (TREE_CODE (decl) == TYPE_DECL)
5786 {
5787 DECL_VISIBILITY (decl) = VISIBILITY_DEFAULT;
5788 DECL_VISIBILITY_SPECIFIED (decl) = 0;
5789 TREE_PUBLIC (decl) = 0;
5790 TREE_PRIVATE (decl) = 0;
5791 DECL_ARTIFICIAL (decl) = 0;
5792 TYPE_DECL_SUPPRESS_DEBUG (decl) = 0;
5793 DECL_INITIAL (decl) = NULL_TREE;
5794 DECL_ORIGINAL_TYPE (decl) = NULL_TREE;
5795 DECL_MODE (decl) = VOIDmode;
5796 SET_DECL_ALIGN (decl, 0);
5797 /* TREE_TYPE is cleared at WPA time in free_odr_warning_data. */
5798 }
5799 else if (TREE_CODE (decl) == FIELD_DECL)
5800 {
5801 TREE_TYPE (decl) = fld_simplified_type (TREE_TYPE (decl), fld);
5802 DECL_INITIAL (decl) = NULL_TREE;
5803 }
5804 else if (TREE_CODE (decl) == TRANSLATION_UNIT_DECL
5805 && DECL_INITIAL (decl)
5806 && TREE_CODE (DECL_INITIAL (decl)) == BLOCK)
5807 {
5808 /* Strip builtins from the translation-unit BLOCK. We still have targets
5809 without builtin_decl_explicit support and also builtins are shared
5810 nodes and thus we can't use TREE_CHAIN in multiple lists. */
5811 tree *nextp = &BLOCK_VARS (DECL_INITIAL (decl));
5812 while (*nextp)
5813 {
5814 tree var = *nextp;
5815 if (TREE_CODE (var) == FUNCTION_DECL
5816 && fndecl_built_in_p (var))
5817 *nextp = TREE_CHAIN (var);
5818 else
5819 nextp = &TREE_CHAIN (var);
5820 }
5821 }
5822 /* We need to keep field decls associated with their trees. Otherwise tree
5823 merging may merge some fileds and keep others disjoint wich in turn will
5824 not do well with TREE_CHAIN pointers linking them.
5825
5826 Also do not drop containing types for virtual methods and tables because
5827 these are needed by devirtualization.
5828 C++ destructors are special because C++ frontends sometimes produces
5829 virtual destructor as an alias of non-virtual destructor. In
5830 devirutalization code we always walk through aliases and we need
5831 context to be preserved too. See PR89335 */
5832 if (TREE_CODE (decl) != FIELD_DECL
5833 && ((TREE_CODE (decl) != VAR_DECL && TREE_CODE (decl) != FUNCTION_DECL)
5834 || (!DECL_VIRTUAL_P (decl)
5835 && (TREE_CODE (decl) != FUNCTION_DECL
5836 || !DECL_CXX_DESTRUCTOR_P (decl)))))
5837 DECL_CONTEXT (decl) = fld_decl_context (DECL_CONTEXT (decl));
5838 }
5839
5840
5841 /* Operand callback helper for free_lang_data_in_node. *TP is the
5842 subtree operand being considered. */
5843
5844 static tree
5845 find_decls_types_r (tree *tp, int *ws, void *data)
5846 {
5847 tree t = *tp;
5848 class free_lang_data_d *fld = (class free_lang_data_d *) data;
5849
5850 if (TREE_CODE (t) == TREE_LIST)
5851 return NULL_TREE;
5852
5853 /* Language specific nodes will be removed, so there is no need
5854 to gather anything under them. */
5855 if (is_lang_specific (t))
5856 {
5857 *ws = 0;
5858 return NULL_TREE;
5859 }
5860
5861 if (DECL_P (t))
5862 {
5863 /* Note that walk_tree does not traverse every possible field in
5864 decls, so we have to do our own traversals here. */
5865 add_tree_to_fld_list (t, fld);
5866
5867 fld_worklist_push (DECL_NAME (t), fld);
5868 fld_worklist_push (DECL_CONTEXT (t), fld);
5869 fld_worklist_push (DECL_SIZE (t), fld);
5870 fld_worklist_push (DECL_SIZE_UNIT (t), fld);
5871
5872 /* We are going to remove everything under DECL_INITIAL for
5873 TYPE_DECLs. No point walking them. */
5874 if (TREE_CODE (t) != TYPE_DECL)
5875 fld_worklist_push (DECL_INITIAL (t), fld);
5876
5877 fld_worklist_push (DECL_ATTRIBUTES (t), fld);
5878 fld_worklist_push (DECL_ABSTRACT_ORIGIN (t), fld);
5879
5880 if (TREE_CODE (t) == FUNCTION_DECL)
5881 {
5882 fld_worklist_push (DECL_ARGUMENTS (t), fld);
5883 fld_worklist_push (DECL_RESULT (t), fld);
5884 }
5885 else if (TREE_CODE (t) == FIELD_DECL)
5886 {
5887 fld_worklist_push (DECL_FIELD_OFFSET (t), fld);
5888 fld_worklist_push (DECL_BIT_FIELD_TYPE (t), fld);
5889 fld_worklist_push (DECL_FIELD_BIT_OFFSET (t), fld);
5890 fld_worklist_push (DECL_FCONTEXT (t), fld);
5891 }
5892
5893 if ((VAR_P (t) || TREE_CODE (t) == PARM_DECL)
5894 && DECL_HAS_VALUE_EXPR_P (t))
5895 fld_worklist_push (DECL_VALUE_EXPR (t), fld);
5896
5897 if (TREE_CODE (t) != FIELD_DECL
5898 && TREE_CODE (t) != TYPE_DECL)
5899 fld_worklist_push (TREE_CHAIN (t), fld);
5900 *ws = 0;
5901 }
5902 else if (TYPE_P (t))
5903 {
5904 /* Note that walk_tree does not traverse every possible field in
5905 types, so we have to do our own traversals here. */
5906 add_tree_to_fld_list (t, fld);
5907
5908 if (!RECORD_OR_UNION_TYPE_P (t))
5909 fld_worklist_push (TYPE_CACHED_VALUES (t), fld);
5910 fld_worklist_push (TYPE_SIZE (t), fld);
5911 fld_worklist_push (TYPE_SIZE_UNIT (t), fld);
5912 fld_worklist_push (TYPE_ATTRIBUTES (t), fld);
5913 fld_worklist_push (TYPE_POINTER_TO (t), fld);
5914 fld_worklist_push (TYPE_REFERENCE_TO (t), fld);
5915 fld_worklist_push (TYPE_NAME (t), fld);
5916 /* While we do not stream TYPE_POINTER_TO and TYPE_REFERENCE_TO
5917 lists, we may look types up in these lists and use them while
5918 optimizing the function body. Thus we need to free lang data
5919 in them. */
5920 if (TREE_CODE (t) == POINTER_TYPE)
5921 fld_worklist_push (TYPE_NEXT_PTR_TO (t), fld);
5922 if (TREE_CODE (t) == REFERENCE_TYPE)
5923 fld_worklist_push (TYPE_NEXT_REF_TO (t), fld);
5924 if (!POINTER_TYPE_P (t))
5925 fld_worklist_push (TYPE_MIN_VALUE_RAW (t), fld);
5926 /* TYPE_MAX_VALUE_RAW is TYPE_BINFO for record types. */
5927 if (!RECORD_OR_UNION_TYPE_P (t))
5928 fld_worklist_push (TYPE_MAX_VALUE_RAW (t), fld);
5929 fld_worklist_push (TYPE_MAIN_VARIANT (t), fld);
5930 /* Do not walk TYPE_NEXT_VARIANT. We do not stream it and thus
5931 do not and want not to reach unused variants this way. */
5932 if (TYPE_CONTEXT (t))
5933 {
5934 tree ctx = TYPE_CONTEXT (t);
5935 /* We adjust BLOCK TYPE_CONTEXTs to the innermost non-BLOCK one.
5936 So push that instead. */
5937 while (ctx && TREE_CODE (ctx) == BLOCK)
5938 ctx = BLOCK_SUPERCONTEXT (ctx);
5939 fld_worklist_push (ctx, fld);
5940 }
5941 fld_worklist_push (TYPE_CANONICAL (t), fld);
5942
5943 if (RECORD_OR_UNION_TYPE_P (t) && TYPE_BINFO (t))
5944 {
5945 unsigned i;
5946 tree tem;
5947 FOR_EACH_VEC_ELT (*BINFO_BASE_BINFOS (TYPE_BINFO (t)), i, tem)
5948 fld_worklist_push (TREE_TYPE (tem), fld);
5949 fld_worklist_push (BINFO_TYPE (TYPE_BINFO (t)), fld);
5950 fld_worklist_push (BINFO_VTABLE (TYPE_BINFO (t)), fld);
5951 }
5952 if (RECORD_OR_UNION_TYPE_P (t))
5953 {
5954 tree tem;
5955 /* Push all TYPE_FIELDS - there can be interleaving interesting
5956 and non-interesting things. */
5957 tem = TYPE_FIELDS (t);
5958 while (tem)
5959 {
5960 if (TREE_CODE (tem) == FIELD_DECL)
5961 fld_worklist_push (tem, fld);
5962 tem = TREE_CHAIN (tem);
5963 }
5964 }
5965 if (FUNC_OR_METHOD_TYPE_P (t))
5966 fld_worklist_push (TYPE_METHOD_BASETYPE (t), fld);
5967
5968 fld_worklist_push (TYPE_STUB_DECL (t), fld);
5969 *ws = 0;
5970 }
5971 else if (TREE_CODE (t) == BLOCK)
5972 {
5973 for (tree *tem = &BLOCK_VARS (t); *tem; )
5974 {
5975 if (TREE_CODE (*tem) != LABEL_DECL
5976 && (TREE_CODE (*tem) != VAR_DECL
5977 || !auto_var_in_fn_p (*tem, DECL_CONTEXT (*tem))))
5978 {
5979 gcc_assert (TREE_CODE (*tem) != RESULT_DECL
5980 && TREE_CODE (*tem) != PARM_DECL);
5981 *tem = TREE_CHAIN (*tem);
5982 }
5983 else
5984 {
5985 fld_worklist_push (*tem, fld);
5986 tem = &TREE_CHAIN (*tem);
5987 }
5988 }
5989 for (tree tem = BLOCK_SUBBLOCKS (t); tem; tem = BLOCK_CHAIN (tem))
5990 fld_worklist_push (tem, fld);
5991 fld_worklist_push (BLOCK_ABSTRACT_ORIGIN (t), fld);
5992 }
5993
5994 if (TREE_CODE (t) != IDENTIFIER_NODE
5995 && CODE_CONTAINS_STRUCT (TREE_CODE (t), TS_TYPED))
5996 fld_worklist_push (TREE_TYPE (t), fld);
5997
5998 return NULL_TREE;
5999 }
6000
6001
6002 /* Find decls and types in T. */
6003
6004 static void
6005 find_decls_types (tree t, class free_lang_data_d *fld)
6006 {
6007 while (1)
6008 {
6009 if (!fld->pset.contains (t))
6010 walk_tree (&t, find_decls_types_r, fld, &fld->pset);
6011 if (fld->worklist.is_empty ())
6012 break;
6013 t = fld->worklist.pop ();
6014 }
6015 }
6016
6017 /* Translate all the types in LIST with the corresponding runtime
6018 types. */
6019
6020 static tree
6021 get_eh_types_for_runtime (tree list)
6022 {
6023 tree head, prev;
6024
6025 if (list == NULL_TREE)
6026 return NULL_TREE;
6027
6028 head = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
6029 prev = head;
6030 list = TREE_CHAIN (list);
6031 while (list)
6032 {
6033 tree n = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
6034 TREE_CHAIN (prev) = n;
6035 prev = TREE_CHAIN (prev);
6036 list = TREE_CHAIN (list);
6037 }
6038
6039 return head;
6040 }
6041
6042
6043 /* Find decls and types referenced in EH region R and store them in
6044 FLD->DECLS and FLD->TYPES. */
6045
6046 static void
6047 find_decls_types_in_eh_region (eh_region r, class free_lang_data_d *fld)
6048 {
6049 switch (r->type)
6050 {
6051 case ERT_CLEANUP:
6052 break;
6053
6054 case ERT_TRY:
6055 {
6056 eh_catch c;
6057
6058 /* The types referenced in each catch must first be changed to the
6059 EH types used at runtime. This removes references to FE types
6060 in the region. */
6061 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
6062 {
6063 c->type_list = get_eh_types_for_runtime (c->type_list);
6064 walk_tree (&c->type_list, find_decls_types_r, fld, &fld->pset);
6065 }
6066 }
6067 break;
6068
6069 case ERT_ALLOWED_EXCEPTIONS:
6070 r->u.allowed.type_list
6071 = get_eh_types_for_runtime (r->u.allowed.type_list);
6072 walk_tree (&r->u.allowed.type_list, find_decls_types_r, fld, &fld->pset);
6073 break;
6074
6075 case ERT_MUST_NOT_THROW:
6076 walk_tree (&r->u.must_not_throw.failure_decl,
6077 find_decls_types_r, fld, &fld->pset);
6078 break;
6079 }
6080 }
6081
6082
6083 /* Find decls and types referenced in cgraph node N and store them in
6084 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
6085 look for *every* kind of DECL and TYPE node reachable from N,
6086 including those embedded inside types and decls (i.e,, TYPE_DECLs,
6087 NAMESPACE_DECLs, etc). */
6088
6089 static void
6090 find_decls_types_in_node (struct cgraph_node *n, class free_lang_data_d *fld)
6091 {
6092 basic_block bb;
6093 struct function *fn;
6094 unsigned ix;
6095 tree t;
6096
6097 find_decls_types (n->decl, fld);
6098
6099 if (!gimple_has_body_p (n->decl))
6100 return;
6101
6102 gcc_assert (current_function_decl == NULL_TREE && cfun == NULL);
6103
6104 fn = DECL_STRUCT_FUNCTION (n->decl);
6105
6106 /* Traverse locals. */
6107 FOR_EACH_LOCAL_DECL (fn, ix, t)
6108 find_decls_types (t, fld);
6109
6110 /* Traverse EH regions in FN. */
6111 {
6112 eh_region r;
6113 FOR_ALL_EH_REGION_FN (r, fn)
6114 find_decls_types_in_eh_region (r, fld);
6115 }
6116
6117 /* Traverse every statement in FN. */
6118 FOR_EACH_BB_FN (bb, fn)
6119 {
6120 gphi_iterator psi;
6121 gimple_stmt_iterator si;
6122 unsigned i;
6123
6124 for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
6125 {
6126 gphi *phi = psi.phi ();
6127
6128 for (i = 0; i < gimple_phi_num_args (phi); i++)
6129 {
6130 tree *arg_p = gimple_phi_arg_def_ptr (phi, i);
6131 find_decls_types (*arg_p, fld);
6132 }
6133 }
6134
6135 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6136 {
6137 gimple *stmt = gsi_stmt (si);
6138
6139 if (is_gimple_call (stmt))
6140 find_decls_types (gimple_call_fntype (stmt), fld);
6141
6142 for (i = 0; i < gimple_num_ops (stmt); i++)
6143 {
6144 tree arg = gimple_op (stmt, i);
6145 find_decls_types (arg, fld);
6146 /* find_decls_types doesn't walk TREE_PURPOSE of TREE_LISTs,
6147 which we need for asm stmts. */
6148 if (arg
6149 && TREE_CODE (arg) == TREE_LIST
6150 && TREE_PURPOSE (arg)
6151 && gimple_code (stmt) == GIMPLE_ASM)
6152 find_decls_types (TREE_PURPOSE (arg), fld);
6153 }
6154 }
6155 }
6156 }
6157
6158
6159 /* Find decls and types referenced in varpool node N and store them in
6160 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
6161 look for *every* kind of DECL and TYPE node reachable from N,
6162 including those embedded inside types and decls (i.e,, TYPE_DECLs,
6163 NAMESPACE_DECLs, etc). */
6164
6165 static void
6166 find_decls_types_in_var (varpool_node *v, class free_lang_data_d *fld)
6167 {
6168 find_decls_types (v->decl, fld);
6169 }
6170
6171 /* If T needs an assembler name, have one created for it. */
6172
6173 void
6174 assign_assembler_name_if_needed (tree t)
6175 {
6176 if (need_assembler_name_p (t))
6177 {
6178 /* When setting DECL_ASSEMBLER_NAME, the C++ mangler may emit
6179 diagnostics that use input_location to show locus
6180 information. The problem here is that, at this point,
6181 input_location is generally anchored to the end of the file
6182 (since the parser is long gone), so we don't have a good
6183 position to pin it to.
6184
6185 To alleviate this problem, this uses the location of T's
6186 declaration. Examples of this are
6187 testsuite/g++.dg/template/cond2.C and
6188 testsuite/g++.dg/template/pr35240.C. */
6189 location_t saved_location = input_location;
6190 input_location = DECL_SOURCE_LOCATION (t);
6191
6192 decl_assembler_name (t);
6193
6194 input_location = saved_location;
6195 }
6196 }
6197
6198
6199 /* Free language specific information for every operand and expression
6200 in every node of the call graph. This process operates in three stages:
6201
6202 1- Every callgraph node and varpool node is traversed looking for
6203 decls and types embedded in them. This is a more exhaustive
6204 search than that done by find_referenced_vars, because it will
6205 also collect individual fields, decls embedded in types, etc.
6206
6207 2- All the decls found are sent to free_lang_data_in_decl.
6208
6209 3- All the types found are sent to free_lang_data_in_type.
6210
6211 The ordering between decls and types is important because
6212 free_lang_data_in_decl sets assembler names, which includes
6213 mangling. So types cannot be freed up until assembler names have
6214 been set up. */
6215
6216 static void
6217 free_lang_data_in_cgraph (class free_lang_data_d *fld)
6218 {
6219 struct cgraph_node *n;
6220 varpool_node *v;
6221 tree t;
6222 unsigned i;
6223 alias_pair *p;
6224
6225 /* Find decls and types in the body of every function in the callgraph. */
6226 FOR_EACH_FUNCTION (n)
6227 find_decls_types_in_node (n, fld);
6228
6229 FOR_EACH_VEC_SAFE_ELT (alias_pairs, i, p)
6230 find_decls_types (p->decl, fld);
6231
6232 /* Find decls and types in every varpool symbol. */
6233 FOR_EACH_VARIABLE (v)
6234 find_decls_types_in_var (v, fld);
6235
6236 /* Set the assembler name on every decl found. We need to do this
6237 now because free_lang_data_in_decl will invalidate data needed
6238 for mangling. This breaks mangling on interdependent decls. */
6239 FOR_EACH_VEC_ELT (fld->decls, i, t)
6240 assign_assembler_name_if_needed (t);
6241
6242 /* Traverse every decl found freeing its language data. */
6243 FOR_EACH_VEC_ELT (fld->decls, i, t)
6244 free_lang_data_in_decl (t, fld);
6245
6246 /* Traverse every type found freeing its language data. */
6247 FOR_EACH_VEC_ELT (fld->types, i, t)
6248 free_lang_data_in_type (t, fld);
6249 }
6250
6251
6252 /* Free resources that are used by FE but are not needed once they are done. */
6253
6254 static unsigned
6255 free_lang_data (void)
6256 {
6257 unsigned i;
6258 class free_lang_data_d fld;
6259
6260 /* If we are the LTO frontend we have freed lang-specific data already. */
6261 if (in_lto_p
6262 || (!flag_generate_lto && !flag_generate_offload))
6263 {
6264 /* Rebuild type inheritance graph even when not doing LTO to get
6265 consistent profile data. */
6266 rebuild_type_inheritance_graph ();
6267 return 0;
6268 }
6269
6270 fld_incomplete_types = new hash_map<tree, tree>;
6271 fld_simplified_types = new hash_map<tree, tree>;
6272
6273 /* Provide a dummy TRANSLATION_UNIT_DECL if the FE failed to provide one. */
6274 if (vec_safe_is_empty (all_translation_units))
6275 build_translation_unit_decl (NULL_TREE);
6276
6277 /* Allocate and assign alias sets to the standard integer types
6278 while the slots are still in the way the frontends generated them. */
6279 for (i = 0; i < itk_none; ++i)
6280 if (integer_types[i])
6281 TYPE_ALIAS_SET (integer_types[i]) = get_alias_set (integer_types[i]);
6282
6283 /* Traverse the IL resetting language specific information for
6284 operands, expressions, etc. */
6285 free_lang_data_in_cgraph (&fld);
6286
6287 /* Create gimple variants for common types. */
6288 for (unsigned i = 0;
6289 i < sizeof (builtin_structptr_types) / sizeof (builtin_structptr_type);
6290 ++i)
6291 builtin_structptr_types[i].node = builtin_structptr_types[i].base;
6292
6293 /* Reset some langhooks. Do not reset types_compatible_p, it may
6294 still be used indirectly via the get_alias_set langhook. */
6295 lang_hooks.dwarf_name = lhd_dwarf_name;
6296 lang_hooks.decl_printable_name = gimple_decl_printable_name;
6297 lang_hooks.gimplify_expr = lhd_gimplify_expr;
6298 lang_hooks.overwrite_decl_assembler_name = lhd_overwrite_decl_assembler_name;
6299 lang_hooks.print_xnode = lhd_print_tree_nothing;
6300 lang_hooks.print_decl = lhd_print_tree_nothing;
6301 lang_hooks.print_type = lhd_print_tree_nothing;
6302 lang_hooks.print_identifier = lhd_print_tree_nothing;
6303
6304 lang_hooks.tree_inlining.var_mod_type_p = hook_bool_tree_tree_false;
6305
6306 if (flag_checking)
6307 {
6308 int i;
6309 tree t;
6310
6311 FOR_EACH_VEC_ELT (fld.types, i, t)
6312 verify_type (t);
6313 }
6314
6315 /* We do not want the default decl_assembler_name implementation,
6316 rather if we have fixed everything we want a wrapper around it
6317 asserting that all non-local symbols already got their assembler
6318 name and only produce assembler names for local symbols. Or rather
6319 make sure we never call decl_assembler_name on local symbols and
6320 devise a separate, middle-end private scheme for it. */
6321
6322 /* Reset diagnostic machinery. */
6323 tree_diagnostics_defaults (global_dc);
6324
6325 rebuild_type_inheritance_graph ();
6326
6327 delete fld_incomplete_types;
6328 delete fld_simplified_types;
6329
6330 return 0;
6331 }
6332
6333
6334 namespace {
6335
6336 const pass_data pass_data_ipa_free_lang_data =
6337 {
6338 SIMPLE_IPA_PASS, /* type */
6339 "*free_lang_data", /* name */
6340 OPTGROUP_NONE, /* optinfo_flags */
6341 TV_IPA_FREE_LANG_DATA, /* tv_id */
6342 0, /* properties_required */
6343 0, /* properties_provided */
6344 0, /* properties_destroyed */
6345 0, /* todo_flags_start */
6346 0, /* todo_flags_finish */
6347 };
6348
6349 class pass_ipa_free_lang_data : public simple_ipa_opt_pass
6350 {
6351 public:
6352 pass_ipa_free_lang_data (gcc::context *ctxt)
6353 : simple_ipa_opt_pass (pass_data_ipa_free_lang_data, ctxt)
6354 {}
6355
6356 /* opt_pass methods: */
6357 virtual unsigned int execute (function *) { return free_lang_data (); }
6358
6359 }; // class pass_ipa_free_lang_data
6360
6361 } // anon namespace
6362
6363 simple_ipa_opt_pass *
6364 make_pass_ipa_free_lang_data (gcc::context *ctxt)
6365 {
6366 return new pass_ipa_free_lang_data (ctxt);
6367 }
6368 \f
6369 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
6370 of the various TYPE_QUAL values. */
6371
6372 static void
6373 set_type_quals (tree type, int type_quals)
6374 {
6375 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
6376 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
6377 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
6378 TYPE_ATOMIC (type) = (type_quals & TYPE_QUAL_ATOMIC) != 0;
6379 TYPE_ADDR_SPACE (type) = DECODE_QUAL_ADDR_SPACE (type_quals);
6380 }
6381
6382 /* Returns true iff CAND and BASE have equivalent language-specific
6383 qualifiers. */
6384
6385 bool
6386 check_lang_type (const_tree cand, const_tree base)
6387 {
6388 if (lang_hooks.types.type_hash_eq == NULL)
6389 return true;
6390 /* type_hash_eq currently only applies to these types. */
6391 if (TREE_CODE (cand) != FUNCTION_TYPE
6392 && TREE_CODE (cand) != METHOD_TYPE)
6393 return true;
6394 return lang_hooks.types.type_hash_eq (cand, base);
6395 }
6396
6397 /* This function checks to see if TYPE matches the size one of the built-in
6398 atomic types, and returns that core atomic type. */
6399
6400 static tree
6401 find_atomic_core_type (const_tree type)
6402 {
6403 tree base_atomic_type;
6404
6405 /* Only handle complete types. */
6406 if (!tree_fits_uhwi_p (TYPE_SIZE (type)))
6407 return NULL_TREE;
6408
6409 switch (tree_to_uhwi (TYPE_SIZE (type)))
6410 {
6411 case 8:
6412 base_atomic_type = atomicQI_type_node;
6413 break;
6414
6415 case 16:
6416 base_atomic_type = atomicHI_type_node;
6417 break;
6418
6419 case 32:
6420 base_atomic_type = atomicSI_type_node;
6421 break;
6422
6423 case 64:
6424 base_atomic_type = atomicDI_type_node;
6425 break;
6426
6427 case 128:
6428 base_atomic_type = atomicTI_type_node;
6429 break;
6430
6431 default:
6432 base_atomic_type = NULL_TREE;
6433 }
6434
6435 return base_atomic_type;
6436 }
6437
6438 /* Returns true iff unqualified CAND and BASE are equivalent. */
6439
6440 bool
6441 check_base_type (const_tree cand, const_tree base)
6442 {
6443 if (TYPE_NAME (cand) != TYPE_NAME (base)
6444 /* Apparently this is needed for Objective-C. */
6445 || TYPE_CONTEXT (cand) != TYPE_CONTEXT (base)
6446 || !attribute_list_equal (TYPE_ATTRIBUTES (cand),
6447 TYPE_ATTRIBUTES (base)))
6448 return false;
6449 /* Check alignment. */
6450 if (TYPE_ALIGN (cand) == TYPE_ALIGN (base))
6451 return true;
6452 /* Atomic types increase minimal alignment. We must to do so as well
6453 or we get duplicated canonical types. See PR88686. */
6454 if ((TYPE_QUALS (cand) & TYPE_QUAL_ATOMIC))
6455 {
6456 /* See if this object can map to a basic atomic type. */
6457 tree atomic_type = find_atomic_core_type (cand);
6458 if (atomic_type && TYPE_ALIGN (atomic_type) == TYPE_ALIGN (cand))
6459 return true;
6460 }
6461 return false;
6462 }
6463
6464 /* Returns true iff CAND is equivalent to BASE with TYPE_QUALS. */
6465
6466 bool
6467 check_qualified_type (const_tree cand, const_tree base, int type_quals)
6468 {
6469 return (TYPE_QUALS (cand) == type_quals
6470 && check_base_type (cand, base)
6471 && check_lang_type (cand, base));
6472 }
6473
6474 /* Returns true iff CAND is equivalent to BASE with ALIGN. */
6475
6476 static bool
6477 check_aligned_type (const_tree cand, const_tree base, unsigned int align)
6478 {
6479 return (TYPE_QUALS (cand) == TYPE_QUALS (base)
6480 && TYPE_NAME (cand) == TYPE_NAME (base)
6481 /* Apparently this is needed for Objective-C. */
6482 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
6483 /* Check alignment. */
6484 && TYPE_ALIGN (cand) == align
6485 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
6486 TYPE_ATTRIBUTES (base))
6487 && check_lang_type (cand, base));
6488 }
6489
6490 /* Return a version of the TYPE, qualified as indicated by the
6491 TYPE_QUALS, if one exists. If no qualified version exists yet,
6492 return NULL_TREE. */
6493
6494 tree
6495 get_qualified_type (tree type, int type_quals)
6496 {
6497 if (TYPE_QUALS (type) == type_quals)
6498 return type;
6499
6500 tree mv = TYPE_MAIN_VARIANT (type);
6501 if (check_qualified_type (mv, type, type_quals))
6502 return mv;
6503
6504 /* Search the chain of variants to see if there is already one there just
6505 like the one we need to have. If so, use that existing one. We must
6506 preserve the TYPE_NAME, since there is code that depends on this. */
6507 for (tree *tp = &TYPE_NEXT_VARIANT (mv); *tp; tp = &TYPE_NEXT_VARIANT (*tp))
6508 if (check_qualified_type (*tp, type, type_quals))
6509 {
6510 /* Put the found variant at the head of the variant list so
6511 frequently searched variants get found faster. The C++ FE
6512 benefits greatly from this. */
6513 tree t = *tp;
6514 *tp = TYPE_NEXT_VARIANT (t);
6515 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (mv);
6516 TYPE_NEXT_VARIANT (mv) = t;
6517 return t;
6518 }
6519
6520 return NULL_TREE;
6521 }
6522
6523 /* Like get_qualified_type, but creates the type if it does not
6524 exist. This function never returns NULL_TREE. */
6525
6526 tree
6527 build_qualified_type (tree type, int type_quals MEM_STAT_DECL)
6528 {
6529 tree t;
6530
6531 /* See if we already have the appropriate qualified variant. */
6532 t = get_qualified_type (type, type_quals);
6533
6534 /* If not, build it. */
6535 if (!t)
6536 {
6537 t = build_variant_type_copy (type PASS_MEM_STAT);
6538 set_type_quals (t, type_quals);
6539
6540 if (((type_quals & TYPE_QUAL_ATOMIC) == TYPE_QUAL_ATOMIC))
6541 {
6542 /* See if this object can map to a basic atomic type. */
6543 tree atomic_type = find_atomic_core_type (type);
6544 if (atomic_type)
6545 {
6546 /* Ensure the alignment of this type is compatible with
6547 the required alignment of the atomic type. */
6548 if (TYPE_ALIGN (atomic_type) > TYPE_ALIGN (t))
6549 SET_TYPE_ALIGN (t, TYPE_ALIGN (atomic_type));
6550 }
6551 }
6552
6553 if (TYPE_STRUCTURAL_EQUALITY_P (type))
6554 /* Propagate structural equality. */
6555 SET_TYPE_STRUCTURAL_EQUALITY (t);
6556 else if (TYPE_CANONICAL (type) != type)
6557 /* Build the underlying canonical type, since it is different
6558 from TYPE. */
6559 {
6560 tree c = build_qualified_type (TYPE_CANONICAL (type), type_quals);
6561 TYPE_CANONICAL (t) = TYPE_CANONICAL (c);
6562 }
6563 else
6564 /* T is its own canonical type. */
6565 TYPE_CANONICAL (t) = t;
6566
6567 }
6568
6569 return t;
6570 }
6571
6572 /* Create a variant of type T with alignment ALIGN. */
6573
6574 tree
6575 build_aligned_type (tree type, unsigned int align)
6576 {
6577 tree t;
6578
6579 if (TYPE_PACKED (type)
6580 || TYPE_ALIGN (type) == align)
6581 return type;
6582
6583 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
6584 if (check_aligned_type (t, type, align))
6585 return t;
6586
6587 t = build_variant_type_copy (type);
6588 SET_TYPE_ALIGN (t, align);
6589 TYPE_USER_ALIGN (t) = 1;
6590
6591 return t;
6592 }
6593
6594 /* Create a new distinct copy of TYPE. The new type is made its own
6595 MAIN_VARIANT. If TYPE requires structural equality checks, the
6596 resulting type requires structural equality checks; otherwise, its
6597 TYPE_CANONICAL points to itself. */
6598
6599 tree
6600 build_distinct_type_copy (tree type MEM_STAT_DECL)
6601 {
6602 tree t = copy_node (type PASS_MEM_STAT);
6603
6604 TYPE_POINTER_TO (t) = 0;
6605 TYPE_REFERENCE_TO (t) = 0;
6606
6607 /* Set the canonical type either to a new equivalence class, or
6608 propagate the need for structural equality checks. */
6609 if (TYPE_STRUCTURAL_EQUALITY_P (type))
6610 SET_TYPE_STRUCTURAL_EQUALITY (t);
6611 else
6612 TYPE_CANONICAL (t) = t;
6613
6614 /* Make it its own variant. */
6615 TYPE_MAIN_VARIANT (t) = t;
6616 TYPE_NEXT_VARIANT (t) = 0;
6617
6618 /* Note that it is now possible for TYPE_MIN_VALUE to be a value
6619 whose TREE_TYPE is not t. This can also happen in the Ada
6620 frontend when using subtypes. */
6621
6622 return t;
6623 }
6624
6625 /* Create a new variant of TYPE, equivalent but distinct. This is so
6626 the caller can modify it. TYPE_CANONICAL for the return type will
6627 be equivalent to TYPE_CANONICAL of TYPE, indicating that the types
6628 are considered equal by the language itself (or that both types
6629 require structural equality checks). */
6630
6631 tree
6632 build_variant_type_copy (tree type MEM_STAT_DECL)
6633 {
6634 tree t, m = TYPE_MAIN_VARIANT (type);
6635
6636 t = build_distinct_type_copy (type PASS_MEM_STAT);
6637
6638 /* Since we're building a variant, assume that it is a non-semantic
6639 variant. This also propagates TYPE_STRUCTURAL_EQUALITY_P. */
6640 TYPE_CANONICAL (t) = TYPE_CANONICAL (type);
6641 /* Type variants have no alias set defined. */
6642 TYPE_ALIAS_SET (t) = -1;
6643
6644 /* Add the new type to the chain of variants of TYPE. */
6645 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
6646 TYPE_NEXT_VARIANT (m) = t;
6647 TYPE_MAIN_VARIANT (t) = m;
6648
6649 return t;
6650 }
6651 \f
6652 /* Return true if the from tree in both tree maps are equal. */
6653
6654 int
6655 tree_map_base_eq (const void *va, const void *vb)
6656 {
6657 const struct tree_map_base *const a = (const struct tree_map_base *) va,
6658 *const b = (const struct tree_map_base *) vb;
6659 return (a->from == b->from);
6660 }
6661
6662 /* Hash a from tree in a tree_base_map. */
6663
6664 unsigned int
6665 tree_map_base_hash (const void *item)
6666 {
6667 return htab_hash_pointer (((const struct tree_map_base *)item)->from);
6668 }
6669
6670 /* Return true if this tree map structure is marked for garbage collection
6671 purposes. We simply return true if the from tree is marked, so that this
6672 structure goes away when the from tree goes away. */
6673
6674 int
6675 tree_map_base_marked_p (const void *p)
6676 {
6677 return ggc_marked_p (((const struct tree_map_base *) p)->from);
6678 }
6679
6680 /* Hash a from tree in a tree_map. */
6681
6682 unsigned int
6683 tree_map_hash (const void *item)
6684 {
6685 return (((const struct tree_map *) item)->hash);
6686 }
6687
6688 /* Hash a from tree in a tree_decl_map. */
6689
6690 unsigned int
6691 tree_decl_map_hash (const void *item)
6692 {
6693 return DECL_UID (((const struct tree_decl_map *) item)->base.from);
6694 }
6695
6696 /* Return the initialization priority for DECL. */
6697
6698 priority_type
6699 decl_init_priority_lookup (tree decl)
6700 {
6701 symtab_node *snode = symtab_node::get (decl);
6702
6703 if (!snode)
6704 return DEFAULT_INIT_PRIORITY;
6705 return
6706 snode->get_init_priority ();
6707 }
6708
6709 /* Return the finalization priority for DECL. */
6710
6711 priority_type
6712 decl_fini_priority_lookup (tree decl)
6713 {
6714 cgraph_node *node = cgraph_node::get (decl);
6715
6716 if (!node)
6717 return DEFAULT_INIT_PRIORITY;
6718 return
6719 node->get_fini_priority ();
6720 }
6721
6722 /* Set the initialization priority for DECL to PRIORITY. */
6723
6724 void
6725 decl_init_priority_insert (tree decl, priority_type priority)
6726 {
6727 struct symtab_node *snode;
6728
6729 if (priority == DEFAULT_INIT_PRIORITY)
6730 {
6731 snode = symtab_node::get (decl);
6732 if (!snode)
6733 return;
6734 }
6735 else if (VAR_P (decl))
6736 snode = varpool_node::get_create (decl);
6737 else
6738 snode = cgraph_node::get_create (decl);
6739 snode->set_init_priority (priority);
6740 }
6741
6742 /* Set the finalization priority for DECL to PRIORITY. */
6743
6744 void
6745 decl_fini_priority_insert (tree decl, priority_type priority)
6746 {
6747 struct cgraph_node *node;
6748
6749 if (priority == DEFAULT_INIT_PRIORITY)
6750 {
6751 node = cgraph_node::get (decl);
6752 if (!node)
6753 return;
6754 }
6755 else
6756 node = cgraph_node::get_create (decl);
6757 node->set_fini_priority (priority);
6758 }
6759
6760 /* Print out the statistics for the DECL_DEBUG_EXPR hash table. */
6761
6762 static void
6763 print_debug_expr_statistics (void)
6764 {
6765 fprintf (stderr, "DECL_DEBUG_EXPR hash: size %ld, %ld elements, %f collisions\n",
6766 (long) debug_expr_for_decl->size (),
6767 (long) debug_expr_for_decl->elements (),
6768 debug_expr_for_decl->collisions ());
6769 }
6770
6771 /* Print out the statistics for the DECL_VALUE_EXPR hash table. */
6772
6773 static void
6774 print_value_expr_statistics (void)
6775 {
6776 fprintf (stderr, "DECL_VALUE_EXPR hash: size %ld, %ld elements, %f collisions\n",
6777 (long) value_expr_for_decl->size (),
6778 (long) value_expr_for_decl->elements (),
6779 value_expr_for_decl->collisions ());
6780 }
6781
6782 /* Lookup a debug expression for FROM, and return it if we find one. */
6783
6784 tree
6785 decl_debug_expr_lookup (tree from)
6786 {
6787 struct tree_decl_map *h, in;
6788 in.base.from = from;
6789
6790 h = debug_expr_for_decl->find_with_hash (&in, DECL_UID (from));
6791 if (h)
6792 return h->to;
6793 return NULL_TREE;
6794 }
6795
6796 /* Insert a mapping FROM->TO in the debug expression hashtable. */
6797
6798 void
6799 decl_debug_expr_insert (tree from, tree to)
6800 {
6801 struct tree_decl_map *h;
6802
6803 h = ggc_alloc<tree_decl_map> ();
6804 h->base.from = from;
6805 h->to = to;
6806 *debug_expr_for_decl->find_slot_with_hash (h, DECL_UID (from), INSERT) = h;
6807 }
6808
6809 /* Lookup a value expression for FROM, and return it if we find one. */
6810
6811 tree
6812 decl_value_expr_lookup (tree from)
6813 {
6814 struct tree_decl_map *h, in;
6815 in.base.from = from;
6816
6817 h = value_expr_for_decl->find_with_hash (&in, DECL_UID (from));
6818 if (h)
6819 return h->to;
6820 return NULL_TREE;
6821 }
6822
6823 /* Insert a mapping FROM->TO in the value expression hashtable. */
6824
6825 void
6826 decl_value_expr_insert (tree from, tree to)
6827 {
6828 struct tree_decl_map *h;
6829
6830 h = ggc_alloc<tree_decl_map> ();
6831 h->base.from = from;
6832 h->to = to;
6833 *value_expr_for_decl->find_slot_with_hash (h, DECL_UID (from), INSERT) = h;
6834 }
6835
6836 /* Lookup a vector of debug arguments for FROM, and return it if we
6837 find one. */
6838
6839 vec<tree, va_gc> **
6840 decl_debug_args_lookup (tree from)
6841 {
6842 struct tree_vec_map *h, in;
6843
6844 if (!DECL_HAS_DEBUG_ARGS_P (from))
6845 return NULL;
6846 gcc_checking_assert (debug_args_for_decl != NULL);
6847 in.base.from = from;
6848 h = debug_args_for_decl->find_with_hash (&in, DECL_UID (from));
6849 if (h)
6850 return &h->to;
6851 return NULL;
6852 }
6853
6854 /* Insert a mapping FROM->empty vector of debug arguments in the value
6855 expression hashtable. */
6856
6857 vec<tree, va_gc> **
6858 decl_debug_args_insert (tree from)
6859 {
6860 struct tree_vec_map *h;
6861 tree_vec_map **loc;
6862
6863 if (DECL_HAS_DEBUG_ARGS_P (from))
6864 return decl_debug_args_lookup (from);
6865 if (debug_args_for_decl == NULL)
6866 debug_args_for_decl = hash_table<tree_vec_map_cache_hasher>::create_ggc (64);
6867 h = ggc_alloc<tree_vec_map> ();
6868 h->base.from = from;
6869 h->to = NULL;
6870 loc = debug_args_for_decl->find_slot_with_hash (h, DECL_UID (from), INSERT);
6871 *loc = h;
6872 DECL_HAS_DEBUG_ARGS_P (from) = 1;
6873 return &h->to;
6874 }
6875
6876 /* Hashing of types so that we don't make duplicates.
6877 The entry point is `type_hash_canon'. */
6878
6879 /* Generate the default hash code for TYPE. This is designed for
6880 speed, rather than maximum entropy. */
6881
6882 hashval_t
6883 type_hash_canon_hash (tree type)
6884 {
6885 inchash::hash hstate;
6886
6887 hstate.add_int (TREE_CODE (type));
6888
6889 if (TREE_TYPE (type))
6890 hstate.add_object (TYPE_HASH (TREE_TYPE (type)));
6891
6892 for (tree t = TYPE_ATTRIBUTES (type); t; t = TREE_CHAIN (t))
6893 /* Just the identifier is adequate to distinguish. */
6894 hstate.add_object (IDENTIFIER_HASH_VALUE (get_attribute_name (t)));
6895
6896 switch (TREE_CODE (type))
6897 {
6898 case METHOD_TYPE:
6899 hstate.add_object (TYPE_HASH (TYPE_METHOD_BASETYPE (type)));
6900 /* FALLTHROUGH. */
6901 case FUNCTION_TYPE:
6902 for (tree t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
6903 if (TREE_VALUE (t) != error_mark_node)
6904 hstate.add_object (TYPE_HASH (TREE_VALUE (t)));
6905 break;
6906
6907 case OFFSET_TYPE:
6908 hstate.add_object (TYPE_HASH (TYPE_OFFSET_BASETYPE (type)));
6909 break;
6910
6911 case ARRAY_TYPE:
6912 {
6913 if (TYPE_DOMAIN (type))
6914 hstate.add_object (TYPE_HASH (TYPE_DOMAIN (type)));
6915 if (!AGGREGATE_TYPE_P (TREE_TYPE (type)))
6916 {
6917 unsigned typeless = TYPE_TYPELESS_STORAGE (type);
6918 hstate.add_object (typeless);
6919 }
6920 }
6921 break;
6922
6923 case INTEGER_TYPE:
6924 {
6925 tree t = TYPE_MAX_VALUE (type);
6926 if (!t)
6927 t = TYPE_MIN_VALUE (type);
6928 for (int i = 0; i < TREE_INT_CST_NUNITS (t); i++)
6929 hstate.add_object (TREE_INT_CST_ELT (t, i));
6930 break;
6931 }
6932
6933 case REAL_TYPE:
6934 case FIXED_POINT_TYPE:
6935 {
6936 unsigned prec = TYPE_PRECISION (type);
6937 hstate.add_object (prec);
6938 break;
6939 }
6940
6941 case VECTOR_TYPE:
6942 hstate.add_poly_int (TYPE_VECTOR_SUBPARTS (type));
6943 break;
6944
6945 default:
6946 break;
6947 }
6948
6949 return hstate.end ();
6950 }
6951
6952 /* These are the Hashtable callback functions. */
6953
6954 /* Returns true iff the types are equivalent. */
6955
6956 bool
6957 type_cache_hasher::equal (type_hash *a, type_hash *b)
6958 {
6959 /* First test the things that are the same for all types. */
6960 if (a->hash != b->hash
6961 || TREE_CODE (a->type) != TREE_CODE (b->type)
6962 || TREE_TYPE (a->type) != TREE_TYPE (b->type)
6963 || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
6964 TYPE_ATTRIBUTES (b->type))
6965 || (TREE_CODE (a->type) != COMPLEX_TYPE
6966 && TYPE_NAME (a->type) != TYPE_NAME (b->type)))
6967 return 0;
6968
6969 /* Be careful about comparing arrays before and after the element type
6970 has been completed; don't compare TYPE_ALIGN unless both types are
6971 complete. */
6972 if (COMPLETE_TYPE_P (a->type) && COMPLETE_TYPE_P (b->type)
6973 && (TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
6974 || TYPE_MODE (a->type) != TYPE_MODE (b->type)))
6975 return 0;
6976
6977 switch (TREE_CODE (a->type))
6978 {
6979 case VOID_TYPE:
6980 case COMPLEX_TYPE:
6981 case POINTER_TYPE:
6982 case REFERENCE_TYPE:
6983 case NULLPTR_TYPE:
6984 return 1;
6985
6986 case VECTOR_TYPE:
6987 return known_eq (TYPE_VECTOR_SUBPARTS (a->type),
6988 TYPE_VECTOR_SUBPARTS (b->type));
6989
6990 case ENUMERAL_TYPE:
6991 if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
6992 && !(TYPE_VALUES (a->type)
6993 && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
6994 && TYPE_VALUES (b->type)
6995 && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
6996 && type_list_equal (TYPE_VALUES (a->type),
6997 TYPE_VALUES (b->type))))
6998 return 0;
6999
7000 /* fall through */
7001
7002 case INTEGER_TYPE:
7003 case REAL_TYPE:
7004 case BOOLEAN_TYPE:
7005 if (TYPE_PRECISION (a->type) != TYPE_PRECISION (b->type))
7006 return false;
7007 return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
7008 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
7009 TYPE_MAX_VALUE (b->type)))
7010 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
7011 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
7012 TYPE_MIN_VALUE (b->type))));
7013
7014 case FIXED_POINT_TYPE:
7015 return TYPE_SATURATING (a->type) == TYPE_SATURATING (b->type);
7016
7017 case OFFSET_TYPE:
7018 return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
7019
7020 case METHOD_TYPE:
7021 if (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
7022 && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
7023 || (TYPE_ARG_TYPES (a->type)
7024 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
7025 && TYPE_ARG_TYPES (b->type)
7026 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
7027 && type_list_equal (TYPE_ARG_TYPES (a->type),
7028 TYPE_ARG_TYPES (b->type)))))
7029 break;
7030 return 0;
7031 case ARRAY_TYPE:
7032 /* Don't compare TYPE_TYPELESS_STORAGE flag on aggregates,
7033 where the flag should be inherited from the element type
7034 and can change after ARRAY_TYPEs are created; on non-aggregates
7035 compare it and hash it, scalars will never have that flag set
7036 and we need to differentiate between arrays created by different
7037 front-ends or middle-end created arrays. */
7038 return (TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type)
7039 && (AGGREGATE_TYPE_P (TREE_TYPE (a->type))
7040 || (TYPE_TYPELESS_STORAGE (a->type)
7041 == TYPE_TYPELESS_STORAGE (b->type))));
7042
7043 case RECORD_TYPE:
7044 case UNION_TYPE:
7045 case QUAL_UNION_TYPE:
7046 return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
7047 || (TYPE_FIELDS (a->type)
7048 && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
7049 && TYPE_FIELDS (b->type)
7050 && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
7051 && type_list_equal (TYPE_FIELDS (a->type),
7052 TYPE_FIELDS (b->type))));
7053
7054 case FUNCTION_TYPE:
7055 if (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
7056 || (TYPE_ARG_TYPES (a->type)
7057 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
7058 && TYPE_ARG_TYPES (b->type)
7059 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
7060 && type_list_equal (TYPE_ARG_TYPES (a->type),
7061 TYPE_ARG_TYPES (b->type))))
7062 break;
7063 return 0;
7064
7065 default:
7066 return 0;
7067 }
7068
7069 if (lang_hooks.types.type_hash_eq != NULL)
7070 return lang_hooks.types.type_hash_eq (a->type, b->type);
7071
7072 return 1;
7073 }
7074
7075 /* Given TYPE, and HASHCODE its hash code, return the canonical
7076 object for an identical type if one already exists.
7077 Otherwise, return TYPE, and record it as the canonical object.
7078
7079 To use this function, first create a type of the sort you want.
7080 Then compute its hash code from the fields of the type that
7081 make it different from other similar types.
7082 Then call this function and use the value. */
7083
7084 tree
7085 type_hash_canon (unsigned int hashcode, tree type)
7086 {
7087 type_hash in;
7088 type_hash **loc;
7089
7090 /* The hash table only contains main variants, so ensure that's what we're
7091 being passed. */
7092 gcc_assert (TYPE_MAIN_VARIANT (type) == type);
7093
7094 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
7095 must call that routine before comparing TYPE_ALIGNs. */
7096 layout_type (type);
7097
7098 in.hash = hashcode;
7099 in.type = type;
7100
7101 loc = type_hash_table->find_slot_with_hash (&in, hashcode, INSERT);
7102 if (*loc)
7103 {
7104 tree t1 = ((type_hash *) *loc)->type;
7105 gcc_assert (TYPE_MAIN_VARIANT (t1) == t1
7106 && t1 != type);
7107 if (TYPE_UID (type) + 1 == next_type_uid)
7108 --next_type_uid;
7109 /* Free also min/max values and the cache for integer
7110 types. This can't be done in free_node, as LTO frees
7111 those on its own. */
7112 if (TREE_CODE (type) == INTEGER_TYPE)
7113 {
7114 if (TYPE_MIN_VALUE (type)
7115 && TREE_TYPE (TYPE_MIN_VALUE (type)) == type)
7116 {
7117 /* Zero is always in TYPE_CACHED_VALUES. */
7118 if (! TYPE_UNSIGNED (type))
7119 int_cst_hash_table->remove_elt (TYPE_MIN_VALUE (type));
7120 ggc_free (TYPE_MIN_VALUE (type));
7121 }
7122 if (TYPE_MAX_VALUE (type)
7123 && TREE_TYPE (TYPE_MAX_VALUE (type)) == type)
7124 {
7125 int_cst_hash_table->remove_elt (TYPE_MAX_VALUE (type));
7126 ggc_free (TYPE_MAX_VALUE (type));
7127 }
7128 if (TYPE_CACHED_VALUES_P (type))
7129 ggc_free (TYPE_CACHED_VALUES (type));
7130 }
7131 free_node (type);
7132 return t1;
7133 }
7134 else
7135 {
7136 struct type_hash *h;
7137
7138 h = ggc_alloc<type_hash> ();
7139 h->hash = hashcode;
7140 h->type = type;
7141 *loc = h;
7142
7143 return type;
7144 }
7145 }
7146
7147 static void
7148 print_type_hash_statistics (void)
7149 {
7150 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
7151 (long) type_hash_table->size (),
7152 (long) type_hash_table->elements (),
7153 type_hash_table->collisions ());
7154 }
7155
7156 /* Given two lists of types
7157 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
7158 return 1 if the lists contain the same types in the same order.
7159 Also, the TREE_PURPOSEs must match. */
7160
7161 bool
7162 type_list_equal (const_tree l1, const_tree l2)
7163 {
7164 const_tree t1, t2;
7165
7166 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
7167 if (TREE_VALUE (t1) != TREE_VALUE (t2)
7168 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
7169 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
7170 && (TREE_TYPE (TREE_PURPOSE (t1))
7171 == TREE_TYPE (TREE_PURPOSE (t2))))))
7172 return false;
7173
7174 return t1 == t2;
7175 }
7176
7177 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
7178 given by TYPE. If the argument list accepts variable arguments,
7179 then this function counts only the ordinary arguments. */
7180
7181 int
7182 type_num_arguments (const_tree fntype)
7183 {
7184 int i = 0;
7185
7186 for (tree t = TYPE_ARG_TYPES (fntype); t; t = TREE_CHAIN (t))
7187 /* If the function does not take a variable number of arguments,
7188 the last element in the list will have type `void'. */
7189 if (VOID_TYPE_P (TREE_VALUE (t)))
7190 break;
7191 else
7192 ++i;
7193
7194 return i;
7195 }
7196
7197 /* Return the type of the function TYPE's argument ARGNO if known.
7198 For vararg function's where ARGNO refers to one of the variadic
7199 arguments return null. Otherwise, return a void_type_node for
7200 out-of-bounds ARGNO. */
7201
7202 tree
7203 type_argument_type (const_tree fntype, unsigned argno)
7204 {
7205 /* Treat zero the same as an out-of-bounds argument number. */
7206 if (!argno)
7207 return void_type_node;
7208
7209 function_args_iterator iter;
7210
7211 tree argtype;
7212 unsigned i = 1;
7213 FOREACH_FUNCTION_ARGS (fntype, argtype, iter)
7214 {
7215 /* A vararg function's argument list ends in a null. Otherwise,
7216 an ordinary function's argument list ends with void. Return
7217 null if ARGNO refers to a vararg argument, void_type_node if
7218 it's out of bounds, and the formal argument type otherwise. */
7219 if (!argtype)
7220 break;
7221
7222 if (i == argno || VOID_TYPE_P (argtype))
7223 return argtype;
7224
7225 ++i;
7226 }
7227
7228 return NULL_TREE;
7229 }
7230
7231 /* Nonzero if integer constants T1 and T2
7232 represent the same constant value. */
7233
7234 int
7235 tree_int_cst_equal (const_tree t1, const_tree t2)
7236 {
7237 if (t1 == t2)
7238 return 1;
7239
7240 if (t1 == 0 || t2 == 0)
7241 return 0;
7242
7243 STRIP_ANY_LOCATION_WRAPPER (t1);
7244 STRIP_ANY_LOCATION_WRAPPER (t2);
7245
7246 if (TREE_CODE (t1) == INTEGER_CST
7247 && TREE_CODE (t2) == INTEGER_CST
7248 && wi::to_widest (t1) == wi::to_widest (t2))
7249 return 1;
7250
7251 return 0;
7252 }
7253
7254 /* Return true if T is an INTEGER_CST whose numerical value (extended
7255 according to TYPE_UNSIGNED) fits in a signed HOST_WIDE_INT. */
7256
7257 bool
7258 tree_fits_shwi_p (const_tree t)
7259 {
7260 return (t != NULL_TREE
7261 && TREE_CODE (t) == INTEGER_CST
7262 && wi::fits_shwi_p (wi::to_widest (t)));
7263 }
7264
7265 /* Return true if T is an INTEGER_CST or POLY_INT_CST whose numerical
7266 value (extended according to TYPE_UNSIGNED) fits in a poly_int64. */
7267
7268 bool
7269 tree_fits_poly_int64_p (const_tree t)
7270 {
7271 if (t == NULL_TREE)
7272 return false;
7273 if (POLY_INT_CST_P (t))
7274 {
7275 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; i++)
7276 if (!wi::fits_shwi_p (wi::to_wide (POLY_INT_CST_COEFF (t, i))))
7277 return false;
7278 return true;
7279 }
7280 return (TREE_CODE (t) == INTEGER_CST
7281 && wi::fits_shwi_p (wi::to_widest (t)));
7282 }
7283
7284 /* Return true if T is an INTEGER_CST whose numerical value (extended
7285 according to TYPE_UNSIGNED) fits in an unsigned HOST_WIDE_INT. */
7286
7287 bool
7288 tree_fits_uhwi_p (const_tree t)
7289 {
7290 return (t != NULL_TREE
7291 && TREE_CODE (t) == INTEGER_CST
7292 && wi::fits_uhwi_p (wi::to_widest (t)));
7293 }
7294
7295 /* Return true if T is an INTEGER_CST or POLY_INT_CST whose numerical
7296 value (extended according to TYPE_UNSIGNED) fits in a poly_uint64. */
7297
7298 bool
7299 tree_fits_poly_uint64_p (const_tree t)
7300 {
7301 if (t == NULL_TREE)
7302 return false;
7303 if (POLY_INT_CST_P (t))
7304 {
7305 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; i++)
7306 if (!wi::fits_uhwi_p (wi::to_widest (POLY_INT_CST_COEFF (t, i))))
7307 return false;
7308 return true;
7309 }
7310 return (TREE_CODE (t) == INTEGER_CST
7311 && wi::fits_uhwi_p (wi::to_widest (t)));
7312 }
7313
7314 /* T is an INTEGER_CST whose numerical value (extended according to
7315 TYPE_UNSIGNED) fits in a signed HOST_WIDE_INT. Return that
7316 HOST_WIDE_INT. */
7317
7318 HOST_WIDE_INT
7319 tree_to_shwi (const_tree t)
7320 {
7321 gcc_assert (tree_fits_shwi_p (t));
7322 return TREE_INT_CST_LOW (t);
7323 }
7324
7325 /* T is an INTEGER_CST whose numerical value (extended according to
7326 TYPE_UNSIGNED) fits in an unsigned HOST_WIDE_INT. Return that
7327 HOST_WIDE_INT. */
7328
7329 unsigned HOST_WIDE_INT
7330 tree_to_uhwi (const_tree t)
7331 {
7332 gcc_assert (tree_fits_uhwi_p (t));
7333 return TREE_INT_CST_LOW (t);
7334 }
7335
7336 /* Return the most significant (sign) bit of T. */
7337
7338 int
7339 tree_int_cst_sign_bit (const_tree t)
7340 {
7341 unsigned bitno = TYPE_PRECISION (TREE_TYPE (t)) - 1;
7342
7343 return wi::extract_uhwi (wi::to_wide (t), bitno, 1);
7344 }
7345
7346 /* Return an indication of the sign of the integer constant T.
7347 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
7348 Note that -1 will never be returned if T's type is unsigned. */
7349
7350 int
7351 tree_int_cst_sgn (const_tree t)
7352 {
7353 if (wi::to_wide (t) == 0)
7354 return 0;
7355 else if (TYPE_UNSIGNED (TREE_TYPE (t)))
7356 return 1;
7357 else if (wi::neg_p (wi::to_wide (t)))
7358 return -1;
7359 else
7360 return 1;
7361 }
7362
7363 /* Return the minimum number of bits needed to represent VALUE in a
7364 signed or unsigned type, UNSIGNEDP says which. */
7365
7366 unsigned int
7367 tree_int_cst_min_precision (tree value, signop sgn)
7368 {
7369 /* If the value is negative, compute its negative minus 1. The latter
7370 adjustment is because the absolute value of the largest negative value
7371 is one larger than the largest positive value. This is equivalent to
7372 a bit-wise negation, so use that operation instead. */
7373
7374 if (tree_int_cst_sgn (value) < 0)
7375 value = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (value), value);
7376
7377 /* Return the number of bits needed, taking into account the fact
7378 that we need one more bit for a signed than unsigned type.
7379 If value is 0 or -1, the minimum precision is 1 no matter
7380 whether unsignedp is true or false. */
7381
7382 if (integer_zerop (value))
7383 return 1;
7384 else
7385 return tree_floor_log2 (value) + 1 + (sgn == SIGNED ? 1 : 0) ;
7386 }
7387
7388 /* Return truthvalue of whether T1 is the same tree structure as T2.
7389 Return 1 if they are the same.
7390 Return 0 if they are understandably different.
7391 Return -1 if either contains tree structure not understood by
7392 this function. */
7393
7394 int
7395 simple_cst_equal (const_tree t1, const_tree t2)
7396 {
7397 enum tree_code code1, code2;
7398 int cmp;
7399 int i;
7400
7401 if (t1 == t2)
7402 return 1;
7403 if (t1 == 0 || t2 == 0)
7404 return 0;
7405
7406 /* For location wrappers to be the same, they must be at the same
7407 source location (and wrap the same thing). */
7408 if (location_wrapper_p (t1) && location_wrapper_p (t2))
7409 {
7410 if (EXPR_LOCATION (t1) != EXPR_LOCATION (t2))
7411 return 0;
7412 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7413 }
7414
7415 code1 = TREE_CODE (t1);
7416 code2 = TREE_CODE (t2);
7417
7418 if (CONVERT_EXPR_CODE_P (code1) || code1 == NON_LVALUE_EXPR)
7419 {
7420 if (CONVERT_EXPR_CODE_P (code2)
7421 || code2 == NON_LVALUE_EXPR)
7422 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7423 else
7424 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
7425 }
7426
7427 else if (CONVERT_EXPR_CODE_P (code2)
7428 || code2 == NON_LVALUE_EXPR)
7429 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
7430
7431 if (code1 != code2)
7432 return 0;
7433
7434 switch (code1)
7435 {
7436 case INTEGER_CST:
7437 return wi::to_widest (t1) == wi::to_widest (t2);
7438
7439 case REAL_CST:
7440 return real_identical (&TREE_REAL_CST (t1), &TREE_REAL_CST (t2));
7441
7442 case FIXED_CST:
7443 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1), TREE_FIXED_CST (t2));
7444
7445 case STRING_CST:
7446 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
7447 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
7448 TREE_STRING_LENGTH (t1)));
7449
7450 case CONSTRUCTOR:
7451 {
7452 unsigned HOST_WIDE_INT idx;
7453 vec<constructor_elt, va_gc> *v1 = CONSTRUCTOR_ELTS (t1);
7454 vec<constructor_elt, va_gc> *v2 = CONSTRUCTOR_ELTS (t2);
7455
7456 if (vec_safe_length (v1) != vec_safe_length (v2))
7457 return false;
7458
7459 for (idx = 0; idx < vec_safe_length (v1); ++idx)
7460 /* ??? Should we handle also fields here? */
7461 if (!simple_cst_equal ((*v1)[idx].value, (*v2)[idx].value))
7462 return false;
7463 return true;
7464 }
7465
7466 case SAVE_EXPR:
7467 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7468
7469 case CALL_EXPR:
7470 cmp = simple_cst_equal (CALL_EXPR_FN (t1), CALL_EXPR_FN (t2));
7471 if (cmp <= 0)
7472 return cmp;
7473 if (call_expr_nargs (t1) != call_expr_nargs (t2))
7474 return 0;
7475 {
7476 const_tree arg1, arg2;
7477 const_call_expr_arg_iterator iter1, iter2;
7478 for (arg1 = first_const_call_expr_arg (t1, &iter1),
7479 arg2 = first_const_call_expr_arg (t2, &iter2);
7480 arg1 && arg2;
7481 arg1 = next_const_call_expr_arg (&iter1),
7482 arg2 = next_const_call_expr_arg (&iter2))
7483 {
7484 cmp = simple_cst_equal (arg1, arg2);
7485 if (cmp <= 0)
7486 return cmp;
7487 }
7488 return arg1 == arg2;
7489 }
7490
7491 case TARGET_EXPR:
7492 /* Special case: if either target is an unallocated VAR_DECL,
7493 it means that it's going to be unified with whatever the
7494 TARGET_EXPR is really supposed to initialize, so treat it
7495 as being equivalent to anything. */
7496 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
7497 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
7498 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
7499 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
7500 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
7501 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
7502 cmp = 1;
7503 else
7504 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7505
7506 if (cmp <= 0)
7507 return cmp;
7508
7509 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
7510
7511 case WITH_CLEANUP_EXPR:
7512 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7513 if (cmp <= 0)
7514 return cmp;
7515
7516 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
7517
7518 case COMPONENT_REF:
7519 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
7520 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7521
7522 return 0;
7523
7524 case VAR_DECL:
7525 case PARM_DECL:
7526 case CONST_DECL:
7527 case FUNCTION_DECL:
7528 return 0;
7529
7530 default:
7531 if (POLY_INT_CST_P (t1))
7532 /* A false return means maybe_ne rather than known_ne. */
7533 return known_eq (poly_widest_int::from (poly_int_cst_value (t1),
7534 TYPE_SIGN (TREE_TYPE (t1))),
7535 poly_widest_int::from (poly_int_cst_value (t2),
7536 TYPE_SIGN (TREE_TYPE (t2))));
7537 break;
7538 }
7539
7540 /* This general rule works for most tree codes. All exceptions should be
7541 handled above. If this is a language-specific tree code, we can't
7542 trust what might be in the operand, so say we don't know
7543 the situation. */
7544 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
7545 return -1;
7546
7547 switch (TREE_CODE_CLASS (code1))
7548 {
7549 case tcc_unary:
7550 case tcc_binary:
7551 case tcc_comparison:
7552 case tcc_expression:
7553 case tcc_reference:
7554 case tcc_statement:
7555 cmp = 1;
7556 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
7557 {
7558 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
7559 if (cmp <= 0)
7560 return cmp;
7561 }
7562
7563 return cmp;
7564
7565 default:
7566 return -1;
7567 }
7568 }
7569
7570 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
7571 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
7572 than U, respectively. */
7573
7574 int
7575 compare_tree_int (const_tree t, unsigned HOST_WIDE_INT u)
7576 {
7577 if (tree_int_cst_sgn (t) < 0)
7578 return -1;
7579 else if (!tree_fits_uhwi_p (t))
7580 return 1;
7581 else if (TREE_INT_CST_LOW (t) == u)
7582 return 0;
7583 else if (TREE_INT_CST_LOW (t) < u)
7584 return -1;
7585 else
7586 return 1;
7587 }
7588
7589 /* Return true if SIZE represents a constant size that is in bounds of
7590 what the middle-end and the backend accepts (covering not more than
7591 half of the address-space).
7592 When PERR is non-null, set *PERR on failure to the description of
7593 why SIZE is not valid. */
7594
7595 bool
7596 valid_constant_size_p (const_tree size, cst_size_error *perr /* = NULL */)
7597 {
7598 if (POLY_INT_CST_P (size))
7599 {
7600 if (TREE_OVERFLOW (size))
7601 return false;
7602 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
7603 if (!valid_constant_size_p (POLY_INT_CST_COEFF (size, i)))
7604 return false;
7605 return true;
7606 }
7607
7608 cst_size_error error;
7609 if (!perr)
7610 perr = &error;
7611
7612 if (TREE_CODE (size) != INTEGER_CST)
7613 {
7614 *perr = cst_size_not_constant;
7615 return false;
7616 }
7617
7618 if (TREE_OVERFLOW_P (size))
7619 {
7620 *perr = cst_size_overflow;
7621 return false;
7622 }
7623
7624 if (tree_int_cst_sgn (size) < 0)
7625 {
7626 *perr = cst_size_negative;
7627 return false;
7628 }
7629 if (!tree_fits_uhwi_p (size)
7630 || (wi::to_widest (TYPE_MAX_VALUE (sizetype))
7631 < wi::to_widest (size) * 2))
7632 {
7633 *perr = cst_size_too_big;
7634 return false;
7635 }
7636
7637 return true;
7638 }
7639
7640 /* Return the precision of the type, or for a complex or vector type the
7641 precision of the type of its elements. */
7642
7643 unsigned int
7644 element_precision (const_tree type)
7645 {
7646 if (!TYPE_P (type))
7647 type = TREE_TYPE (type);
7648 enum tree_code code = TREE_CODE (type);
7649 if (code == COMPLEX_TYPE || code == VECTOR_TYPE)
7650 type = TREE_TYPE (type);
7651
7652 return TYPE_PRECISION (type);
7653 }
7654
7655 /* Return true if CODE represents an associative tree code. Otherwise
7656 return false. */
7657 bool
7658 associative_tree_code (enum tree_code code)
7659 {
7660 switch (code)
7661 {
7662 case BIT_IOR_EXPR:
7663 case BIT_AND_EXPR:
7664 case BIT_XOR_EXPR:
7665 case PLUS_EXPR:
7666 case MULT_EXPR:
7667 case MIN_EXPR:
7668 case MAX_EXPR:
7669 return true;
7670
7671 default:
7672 break;
7673 }
7674 return false;
7675 }
7676
7677 /* Return true if CODE represents a commutative tree code. Otherwise
7678 return false. */
7679 bool
7680 commutative_tree_code (enum tree_code code)
7681 {
7682 switch (code)
7683 {
7684 case PLUS_EXPR:
7685 case MULT_EXPR:
7686 case MULT_HIGHPART_EXPR:
7687 case MIN_EXPR:
7688 case MAX_EXPR:
7689 case BIT_IOR_EXPR:
7690 case BIT_XOR_EXPR:
7691 case BIT_AND_EXPR:
7692 case NE_EXPR:
7693 case EQ_EXPR:
7694 case UNORDERED_EXPR:
7695 case ORDERED_EXPR:
7696 case UNEQ_EXPR:
7697 case LTGT_EXPR:
7698 case TRUTH_AND_EXPR:
7699 case TRUTH_XOR_EXPR:
7700 case TRUTH_OR_EXPR:
7701 case WIDEN_MULT_EXPR:
7702 case VEC_WIDEN_MULT_HI_EXPR:
7703 case VEC_WIDEN_MULT_LO_EXPR:
7704 case VEC_WIDEN_MULT_EVEN_EXPR:
7705 case VEC_WIDEN_MULT_ODD_EXPR:
7706 return true;
7707
7708 default:
7709 break;
7710 }
7711 return false;
7712 }
7713
7714 /* Return true if CODE represents a ternary tree code for which the
7715 first two operands are commutative. Otherwise return false. */
7716 bool
7717 commutative_ternary_tree_code (enum tree_code code)
7718 {
7719 switch (code)
7720 {
7721 case WIDEN_MULT_PLUS_EXPR:
7722 case WIDEN_MULT_MINUS_EXPR:
7723 case DOT_PROD_EXPR:
7724 return true;
7725
7726 default:
7727 break;
7728 }
7729 return false;
7730 }
7731
7732 /* Returns true if CODE can overflow. */
7733
7734 bool
7735 operation_can_overflow (enum tree_code code)
7736 {
7737 switch (code)
7738 {
7739 case PLUS_EXPR:
7740 case MINUS_EXPR:
7741 case MULT_EXPR:
7742 case LSHIFT_EXPR:
7743 /* Can overflow in various ways. */
7744 return true;
7745 case TRUNC_DIV_EXPR:
7746 case EXACT_DIV_EXPR:
7747 case FLOOR_DIV_EXPR:
7748 case CEIL_DIV_EXPR:
7749 /* For INT_MIN / -1. */
7750 return true;
7751 case NEGATE_EXPR:
7752 case ABS_EXPR:
7753 /* For -INT_MIN. */
7754 return true;
7755 default:
7756 /* These operators cannot overflow. */
7757 return false;
7758 }
7759 }
7760
7761 /* Returns true if CODE operating on operands of type TYPE doesn't overflow, or
7762 ftrapv doesn't generate trapping insns for CODE. */
7763
7764 bool
7765 operation_no_trapping_overflow (tree type, enum tree_code code)
7766 {
7767 gcc_checking_assert (ANY_INTEGRAL_TYPE_P (type));
7768
7769 /* We don't generate instructions that trap on overflow for complex or vector
7770 types. */
7771 if (!INTEGRAL_TYPE_P (type))
7772 return true;
7773
7774 if (!TYPE_OVERFLOW_TRAPS (type))
7775 return true;
7776
7777 switch (code)
7778 {
7779 case PLUS_EXPR:
7780 case MINUS_EXPR:
7781 case MULT_EXPR:
7782 case NEGATE_EXPR:
7783 case ABS_EXPR:
7784 /* These operators can overflow, and -ftrapv generates trapping code for
7785 these. */
7786 return false;
7787 case TRUNC_DIV_EXPR:
7788 case EXACT_DIV_EXPR:
7789 case FLOOR_DIV_EXPR:
7790 case CEIL_DIV_EXPR:
7791 case LSHIFT_EXPR:
7792 /* These operators can overflow, but -ftrapv does not generate trapping
7793 code for these. */
7794 return true;
7795 default:
7796 /* These operators cannot overflow. */
7797 return true;
7798 }
7799 }
7800
7801 /* Constructors for pointer, array and function types.
7802 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
7803 constructed by language-dependent code, not here.) */
7804
7805 /* Construct, lay out and return the type of pointers to TO_TYPE with
7806 mode MODE. If CAN_ALIAS_ALL is TRUE, indicate this type can
7807 reference all of memory. If such a type has already been
7808 constructed, reuse it. */
7809
7810 tree
7811 build_pointer_type_for_mode (tree to_type, machine_mode mode,
7812 bool can_alias_all)
7813 {
7814 tree t;
7815 bool could_alias = can_alias_all;
7816
7817 if (to_type == error_mark_node)
7818 return error_mark_node;
7819
7820 /* If the pointed-to type has the may_alias attribute set, force
7821 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
7822 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
7823 can_alias_all = true;
7824
7825 /* In some cases, languages will have things that aren't a POINTER_TYPE
7826 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
7827 In that case, return that type without regard to the rest of our
7828 operands.
7829
7830 ??? This is a kludge, but consistent with the way this function has
7831 always operated and there doesn't seem to be a good way to avoid this
7832 at the moment. */
7833 if (TYPE_POINTER_TO (to_type) != 0
7834 && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
7835 return TYPE_POINTER_TO (to_type);
7836
7837 /* First, if we already have a type for pointers to TO_TYPE and it's
7838 the proper mode, use it. */
7839 for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
7840 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
7841 return t;
7842
7843 t = make_node (POINTER_TYPE);
7844
7845 TREE_TYPE (t) = to_type;
7846 SET_TYPE_MODE (t, mode);
7847 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
7848 TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
7849 TYPE_POINTER_TO (to_type) = t;
7850
7851 /* During LTO we do not set TYPE_CANONICAL of pointers and references. */
7852 if (TYPE_STRUCTURAL_EQUALITY_P (to_type) || in_lto_p)
7853 SET_TYPE_STRUCTURAL_EQUALITY (t);
7854 else if (TYPE_CANONICAL (to_type) != to_type || could_alias)
7855 TYPE_CANONICAL (t)
7856 = build_pointer_type_for_mode (TYPE_CANONICAL (to_type),
7857 mode, false);
7858
7859 /* Lay out the type. This function has many callers that are concerned
7860 with expression-construction, and this simplifies them all. */
7861 layout_type (t);
7862
7863 return t;
7864 }
7865
7866 /* By default build pointers in ptr_mode. */
7867
7868 tree
7869 build_pointer_type (tree to_type)
7870 {
7871 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
7872 : TYPE_ADDR_SPACE (to_type);
7873 machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
7874 return build_pointer_type_for_mode (to_type, pointer_mode, false);
7875 }
7876
7877 /* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE. */
7878
7879 tree
7880 build_reference_type_for_mode (tree to_type, machine_mode mode,
7881 bool can_alias_all)
7882 {
7883 tree t;
7884 bool could_alias = can_alias_all;
7885
7886 if (to_type == error_mark_node)
7887 return error_mark_node;
7888
7889 /* If the pointed-to type has the may_alias attribute set, force
7890 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
7891 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
7892 can_alias_all = true;
7893
7894 /* In some cases, languages will have things that aren't a REFERENCE_TYPE
7895 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
7896 In that case, return that type without regard to the rest of our
7897 operands.
7898
7899 ??? This is a kludge, but consistent with the way this function has
7900 always operated and there doesn't seem to be a good way to avoid this
7901 at the moment. */
7902 if (TYPE_REFERENCE_TO (to_type) != 0
7903 && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
7904 return TYPE_REFERENCE_TO (to_type);
7905
7906 /* First, if we already have a type for pointers to TO_TYPE and it's
7907 the proper mode, use it. */
7908 for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
7909 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
7910 return t;
7911
7912 t = make_node (REFERENCE_TYPE);
7913
7914 TREE_TYPE (t) = to_type;
7915 SET_TYPE_MODE (t, mode);
7916 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
7917 TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
7918 TYPE_REFERENCE_TO (to_type) = t;
7919
7920 /* During LTO we do not set TYPE_CANONICAL of pointers and references. */
7921 if (TYPE_STRUCTURAL_EQUALITY_P (to_type) || in_lto_p)
7922 SET_TYPE_STRUCTURAL_EQUALITY (t);
7923 else if (TYPE_CANONICAL (to_type) != to_type || could_alias)
7924 TYPE_CANONICAL (t)
7925 = build_reference_type_for_mode (TYPE_CANONICAL (to_type),
7926 mode, false);
7927
7928 layout_type (t);
7929
7930 return t;
7931 }
7932
7933
7934 /* Build the node for the type of references-to-TO_TYPE by default
7935 in ptr_mode. */
7936
7937 tree
7938 build_reference_type (tree to_type)
7939 {
7940 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
7941 : TYPE_ADDR_SPACE (to_type);
7942 machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
7943 return build_reference_type_for_mode (to_type, pointer_mode, false);
7944 }
7945
7946 #define MAX_INT_CACHED_PREC \
7947 (HOST_BITS_PER_WIDE_INT > 64 ? HOST_BITS_PER_WIDE_INT : 64)
7948 static GTY(()) tree nonstandard_integer_type_cache[2 * MAX_INT_CACHED_PREC + 2];
7949
7950 /* Builds a signed or unsigned integer type of precision PRECISION.
7951 Used for C bitfields whose precision does not match that of
7952 built-in target types. */
7953 tree
7954 build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
7955 int unsignedp)
7956 {
7957 tree itype, ret;
7958
7959 if (unsignedp)
7960 unsignedp = MAX_INT_CACHED_PREC + 1;
7961
7962 if (precision <= MAX_INT_CACHED_PREC)
7963 {
7964 itype = nonstandard_integer_type_cache[precision + unsignedp];
7965 if (itype)
7966 return itype;
7967 }
7968
7969 itype = make_node (INTEGER_TYPE);
7970 TYPE_PRECISION (itype) = precision;
7971
7972 if (unsignedp)
7973 fixup_unsigned_type (itype);
7974 else
7975 fixup_signed_type (itype);
7976
7977 inchash::hash hstate;
7978 inchash::add_expr (TYPE_MAX_VALUE (itype), hstate);
7979 ret = type_hash_canon (hstate.end (), itype);
7980 if (precision <= MAX_INT_CACHED_PREC)
7981 nonstandard_integer_type_cache[precision + unsignedp] = ret;
7982
7983 return ret;
7984 }
7985
7986 #define MAX_BOOL_CACHED_PREC \
7987 (HOST_BITS_PER_WIDE_INT > 64 ? HOST_BITS_PER_WIDE_INT : 64)
7988 static GTY(()) tree nonstandard_boolean_type_cache[MAX_BOOL_CACHED_PREC + 1];
7989
7990 /* Builds a boolean type of precision PRECISION.
7991 Used for boolean vectors to choose proper vector element size. */
7992 tree
7993 build_nonstandard_boolean_type (unsigned HOST_WIDE_INT precision)
7994 {
7995 tree type;
7996
7997 if (precision <= MAX_BOOL_CACHED_PREC)
7998 {
7999 type = nonstandard_boolean_type_cache[precision];
8000 if (type)
8001 return type;
8002 }
8003
8004 type = make_node (BOOLEAN_TYPE);
8005 TYPE_PRECISION (type) = precision;
8006 fixup_signed_type (type);
8007
8008 if (precision <= MAX_INT_CACHED_PREC)
8009 nonstandard_boolean_type_cache[precision] = type;
8010
8011 return type;
8012 }
8013
8014 /* Create a range of some discrete type TYPE (an INTEGER_TYPE, ENUMERAL_TYPE
8015 or BOOLEAN_TYPE) with low bound LOWVAL and high bound HIGHVAL. If SHARED
8016 is true, reuse such a type that has already been constructed. */
8017
8018 static tree
8019 build_range_type_1 (tree type, tree lowval, tree highval, bool shared)
8020 {
8021 tree itype = make_node (INTEGER_TYPE);
8022
8023 TREE_TYPE (itype) = type;
8024
8025 TYPE_MIN_VALUE (itype) = fold_convert (type, lowval);
8026 TYPE_MAX_VALUE (itype) = highval ? fold_convert (type, highval) : NULL;
8027
8028 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
8029 SET_TYPE_MODE (itype, TYPE_MODE (type));
8030 TYPE_SIZE (itype) = TYPE_SIZE (type);
8031 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
8032 SET_TYPE_ALIGN (itype, TYPE_ALIGN (type));
8033 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
8034 SET_TYPE_WARN_IF_NOT_ALIGN (itype, TYPE_WARN_IF_NOT_ALIGN (type));
8035
8036 if (!shared)
8037 return itype;
8038
8039 if ((TYPE_MIN_VALUE (itype)
8040 && TREE_CODE (TYPE_MIN_VALUE (itype)) != INTEGER_CST)
8041 || (TYPE_MAX_VALUE (itype)
8042 && TREE_CODE (TYPE_MAX_VALUE (itype)) != INTEGER_CST))
8043 {
8044 /* Since we cannot reliably merge this type, we need to compare it using
8045 structural equality checks. */
8046 SET_TYPE_STRUCTURAL_EQUALITY (itype);
8047 return itype;
8048 }
8049
8050 hashval_t hash = type_hash_canon_hash (itype);
8051 itype = type_hash_canon (hash, itype);
8052
8053 return itype;
8054 }
8055
8056 /* Wrapper around build_range_type_1 with SHARED set to true. */
8057
8058 tree
8059 build_range_type (tree type, tree lowval, tree highval)
8060 {
8061 return build_range_type_1 (type, lowval, highval, true);
8062 }
8063
8064 /* Wrapper around build_range_type_1 with SHARED set to false. */
8065
8066 tree
8067 build_nonshared_range_type (tree type, tree lowval, tree highval)
8068 {
8069 return build_range_type_1 (type, lowval, highval, false);
8070 }
8071
8072 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
8073 MAXVAL should be the maximum value in the domain
8074 (one less than the length of the array).
8075
8076 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
8077 We don't enforce this limit, that is up to caller (e.g. language front end).
8078 The limit exists because the result is a signed type and we don't handle
8079 sizes that use more than one HOST_WIDE_INT. */
8080
8081 tree
8082 build_index_type (tree maxval)
8083 {
8084 return build_range_type (sizetype, size_zero_node, maxval);
8085 }
8086
8087 /* Return true if the debug information for TYPE, a subtype, should be emitted
8088 as a subrange type. If so, set LOWVAL to the low bound and HIGHVAL to the
8089 high bound, respectively. Sometimes doing so unnecessarily obfuscates the
8090 debug info and doesn't reflect the source code. */
8091
8092 bool
8093 subrange_type_for_debug_p (const_tree type, tree *lowval, tree *highval)
8094 {
8095 tree base_type = TREE_TYPE (type), low, high;
8096
8097 /* Subrange types have a base type which is an integral type. */
8098 if (!INTEGRAL_TYPE_P (base_type))
8099 return false;
8100
8101 /* Get the real bounds of the subtype. */
8102 if (lang_hooks.types.get_subrange_bounds)
8103 lang_hooks.types.get_subrange_bounds (type, &low, &high);
8104 else
8105 {
8106 low = TYPE_MIN_VALUE (type);
8107 high = TYPE_MAX_VALUE (type);
8108 }
8109
8110 /* If the type and its base type have the same representation and the same
8111 name, then the type is not a subrange but a copy of the base type. */
8112 if ((TREE_CODE (base_type) == INTEGER_TYPE
8113 || TREE_CODE (base_type) == BOOLEAN_TYPE)
8114 && int_size_in_bytes (type) == int_size_in_bytes (base_type)
8115 && tree_int_cst_equal (low, TYPE_MIN_VALUE (base_type))
8116 && tree_int_cst_equal (high, TYPE_MAX_VALUE (base_type))
8117 && TYPE_IDENTIFIER (type) == TYPE_IDENTIFIER (base_type))
8118 return false;
8119
8120 if (lowval)
8121 *lowval = low;
8122 if (highval)
8123 *highval = high;
8124 return true;
8125 }
8126
8127 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
8128 and number of elements specified by the range of values of INDEX_TYPE.
8129 If TYPELESS_STORAGE is true, TYPE_TYPELESS_STORAGE flag is set on the type.
8130 If SHARED is true, reuse such a type that has already been constructed.
8131 If SET_CANONICAL is true, compute TYPE_CANONICAL from the element type. */
8132
8133 static tree
8134 build_array_type_1 (tree elt_type, tree index_type, bool typeless_storage,
8135 bool shared, bool set_canonical)
8136 {
8137 tree t;
8138
8139 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
8140 {
8141 error ("arrays of functions are not meaningful");
8142 elt_type = integer_type_node;
8143 }
8144
8145 t = make_node (ARRAY_TYPE);
8146 TREE_TYPE (t) = elt_type;
8147 TYPE_DOMAIN (t) = index_type;
8148 TYPE_ADDR_SPACE (t) = TYPE_ADDR_SPACE (elt_type);
8149 TYPE_TYPELESS_STORAGE (t) = typeless_storage;
8150 layout_type (t);
8151
8152 if (shared)
8153 {
8154 hashval_t hash = type_hash_canon_hash (t);
8155 t = type_hash_canon (hash, t);
8156 }
8157
8158 if (TYPE_CANONICAL (t) == t && set_canonical)
8159 {
8160 if (TYPE_STRUCTURAL_EQUALITY_P (elt_type)
8161 || (index_type && TYPE_STRUCTURAL_EQUALITY_P (index_type))
8162 || in_lto_p)
8163 SET_TYPE_STRUCTURAL_EQUALITY (t);
8164 else if (TYPE_CANONICAL (elt_type) != elt_type
8165 || (index_type && TYPE_CANONICAL (index_type) != index_type))
8166 TYPE_CANONICAL (t)
8167 = build_array_type_1 (TYPE_CANONICAL (elt_type),
8168 index_type
8169 ? TYPE_CANONICAL (index_type) : NULL_TREE,
8170 typeless_storage, shared, set_canonical);
8171 }
8172
8173 return t;
8174 }
8175
8176 /* Wrapper around build_array_type_1 with SHARED set to true. */
8177
8178 tree
8179 build_array_type (tree elt_type, tree index_type, bool typeless_storage)
8180 {
8181 return
8182 build_array_type_1 (elt_type, index_type, typeless_storage, true, true);
8183 }
8184
8185 /* Wrapper around build_array_type_1 with SHARED set to false. */
8186
8187 tree
8188 build_nonshared_array_type (tree elt_type, tree index_type)
8189 {
8190 return build_array_type_1 (elt_type, index_type, false, false, true);
8191 }
8192
8193 /* Return a representation of ELT_TYPE[NELTS], using indices of type
8194 sizetype. */
8195
8196 tree
8197 build_array_type_nelts (tree elt_type, poly_uint64 nelts)
8198 {
8199 return build_array_type (elt_type, build_index_type (size_int (nelts - 1)));
8200 }
8201
8202 /* Recursively examines the array elements of TYPE, until a non-array
8203 element type is found. */
8204
8205 tree
8206 strip_array_types (tree type)
8207 {
8208 while (TREE_CODE (type) == ARRAY_TYPE)
8209 type = TREE_TYPE (type);
8210
8211 return type;
8212 }
8213
8214 /* Computes the canonical argument types from the argument type list
8215 ARGTYPES.
8216
8217 Upon return, *ANY_STRUCTURAL_P will be true iff either it was true
8218 on entry to this function, or if any of the ARGTYPES are
8219 structural.
8220
8221 Upon return, *ANY_NONCANONICAL_P will be true iff either it was
8222 true on entry to this function, or if any of the ARGTYPES are
8223 non-canonical.
8224
8225 Returns a canonical argument list, which may be ARGTYPES when the
8226 canonical argument list is unneeded (i.e., *ANY_STRUCTURAL_P is
8227 true) or would not differ from ARGTYPES. */
8228
8229 static tree
8230 maybe_canonicalize_argtypes (tree argtypes,
8231 bool *any_structural_p,
8232 bool *any_noncanonical_p)
8233 {
8234 tree arg;
8235 bool any_noncanonical_argtypes_p = false;
8236
8237 for (arg = argtypes; arg && !(*any_structural_p); arg = TREE_CHAIN (arg))
8238 {
8239 if (!TREE_VALUE (arg) || TREE_VALUE (arg) == error_mark_node)
8240 /* Fail gracefully by stating that the type is structural. */
8241 *any_structural_p = true;
8242 else if (TYPE_STRUCTURAL_EQUALITY_P (TREE_VALUE (arg)))
8243 *any_structural_p = true;
8244 else if (TYPE_CANONICAL (TREE_VALUE (arg)) != TREE_VALUE (arg)
8245 || TREE_PURPOSE (arg))
8246 /* If the argument has a default argument, we consider it
8247 non-canonical even though the type itself is canonical.
8248 That way, different variants of function and method types
8249 with default arguments will all point to the variant with
8250 no defaults as their canonical type. */
8251 any_noncanonical_argtypes_p = true;
8252 }
8253
8254 if (*any_structural_p)
8255 return argtypes;
8256
8257 if (any_noncanonical_argtypes_p)
8258 {
8259 /* Build the canonical list of argument types. */
8260 tree canon_argtypes = NULL_TREE;
8261 bool is_void = false;
8262
8263 for (arg = argtypes; arg; arg = TREE_CHAIN (arg))
8264 {
8265 if (arg == void_list_node)
8266 is_void = true;
8267 else
8268 canon_argtypes = tree_cons (NULL_TREE,
8269 TYPE_CANONICAL (TREE_VALUE (arg)),
8270 canon_argtypes);
8271 }
8272
8273 canon_argtypes = nreverse (canon_argtypes);
8274 if (is_void)
8275 canon_argtypes = chainon (canon_argtypes, void_list_node);
8276
8277 /* There is a non-canonical type. */
8278 *any_noncanonical_p = true;
8279 return canon_argtypes;
8280 }
8281
8282 /* The canonical argument types are the same as ARGTYPES. */
8283 return argtypes;
8284 }
8285
8286 /* Construct, lay out and return
8287 the type of functions returning type VALUE_TYPE
8288 given arguments of types ARG_TYPES.
8289 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
8290 are data type nodes for the arguments of the function.
8291 If such a type has already been constructed, reuse it. */
8292
8293 tree
8294 build_function_type (tree value_type, tree arg_types)
8295 {
8296 tree t;
8297 inchash::hash hstate;
8298 bool any_structural_p, any_noncanonical_p;
8299 tree canon_argtypes;
8300
8301 gcc_assert (arg_types != error_mark_node);
8302
8303 if (TREE_CODE (value_type) == FUNCTION_TYPE)
8304 {
8305 error ("function return type cannot be function");
8306 value_type = integer_type_node;
8307 }
8308
8309 /* Make a node of the sort we want. */
8310 t = make_node (FUNCTION_TYPE);
8311 TREE_TYPE (t) = value_type;
8312 TYPE_ARG_TYPES (t) = arg_types;
8313
8314 /* If we already have such a type, use the old one. */
8315 hashval_t hash = type_hash_canon_hash (t);
8316 t = type_hash_canon (hash, t);
8317
8318 /* Set up the canonical type. */
8319 any_structural_p = TYPE_STRUCTURAL_EQUALITY_P (value_type);
8320 any_noncanonical_p = TYPE_CANONICAL (value_type) != value_type;
8321 canon_argtypes = maybe_canonicalize_argtypes (arg_types,
8322 &any_structural_p,
8323 &any_noncanonical_p);
8324 if (any_structural_p)
8325 SET_TYPE_STRUCTURAL_EQUALITY (t);
8326 else if (any_noncanonical_p)
8327 TYPE_CANONICAL (t) = build_function_type (TYPE_CANONICAL (value_type),
8328 canon_argtypes);
8329
8330 if (!COMPLETE_TYPE_P (t))
8331 layout_type (t);
8332 return t;
8333 }
8334
8335 /* Build a function type. The RETURN_TYPE is the type returned by the
8336 function. If VAARGS is set, no void_type_node is appended to the
8337 list. ARGP must be always be terminated be a NULL_TREE. */
8338
8339 static tree
8340 build_function_type_list_1 (bool vaargs, tree return_type, va_list argp)
8341 {
8342 tree t, args, last;
8343
8344 t = va_arg (argp, tree);
8345 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (argp, tree))
8346 args = tree_cons (NULL_TREE, t, args);
8347
8348 if (vaargs)
8349 {
8350 last = args;
8351 if (args != NULL_TREE)
8352 args = nreverse (args);
8353 gcc_assert (last != void_list_node);
8354 }
8355 else if (args == NULL_TREE)
8356 args = void_list_node;
8357 else
8358 {
8359 last = args;
8360 args = nreverse (args);
8361 TREE_CHAIN (last) = void_list_node;
8362 }
8363 args = build_function_type (return_type, args);
8364
8365 return args;
8366 }
8367
8368 /* Build a function type. The RETURN_TYPE is the type returned by the
8369 function. If additional arguments are provided, they are
8370 additional argument types. The list of argument types must always
8371 be terminated by NULL_TREE. */
8372
8373 tree
8374 build_function_type_list (tree return_type, ...)
8375 {
8376 tree args;
8377 va_list p;
8378
8379 va_start (p, return_type);
8380 args = build_function_type_list_1 (false, return_type, p);
8381 va_end (p);
8382 return args;
8383 }
8384
8385 /* Build a variable argument function type. The RETURN_TYPE is the
8386 type returned by the function. If additional arguments are provided,
8387 they are additional argument types. The list of argument types must
8388 always be terminated by NULL_TREE. */
8389
8390 tree
8391 build_varargs_function_type_list (tree return_type, ...)
8392 {
8393 tree args;
8394 va_list p;
8395
8396 va_start (p, return_type);
8397 args = build_function_type_list_1 (true, return_type, p);
8398 va_end (p);
8399
8400 return args;
8401 }
8402
8403 /* Build a function type. RETURN_TYPE is the type returned by the
8404 function; VAARGS indicates whether the function takes varargs. The
8405 function takes N named arguments, the types of which are provided in
8406 ARG_TYPES. */
8407
8408 static tree
8409 build_function_type_array_1 (bool vaargs, tree return_type, int n,
8410 tree *arg_types)
8411 {
8412 int i;
8413 tree t = vaargs ? NULL_TREE : void_list_node;
8414
8415 for (i = n - 1; i >= 0; i--)
8416 t = tree_cons (NULL_TREE, arg_types[i], t);
8417
8418 return build_function_type (return_type, t);
8419 }
8420
8421 /* Build a function type. RETURN_TYPE is the type returned by the
8422 function. The function takes N named arguments, the types of which
8423 are provided in ARG_TYPES. */
8424
8425 tree
8426 build_function_type_array (tree return_type, int n, tree *arg_types)
8427 {
8428 return build_function_type_array_1 (false, return_type, n, arg_types);
8429 }
8430
8431 /* Build a variable argument function type. RETURN_TYPE is the type
8432 returned by the function. The function takes N named arguments, the
8433 types of which are provided in ARG_TYPES. */
8434
8435 tree
8436 build_varargs_function_type_array (tree return_type, int n, tree *arg_types)
8437 {
8438 return build_function_type_array_1 (true, return_type, n, arg_types);
8439 }
8440
8441 /* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
8442 and ARGTYPES (a TREE_LIST) are the return type and arguments types
8443 for the method. An implicit additional parameter (of type
8444 pointer-to-BASETYPE) is added to the ARGTYPES. */
8445
8446 tree
8447 build_method_type_directly (tree basetype,
8448 tree rettype,
8449 tree argtypes)
8450 {
8451 tree t;
8452 tree ptype;
8453 bool any_structural_p, any_noncanonical_p;
8454 tree canon_argtypes;
8455
8456 /* Make a node of the sort we want. */
8457 t = make_node (METHOD_TYPE);
8458
8459 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
8460 TREE_TYPE (t) = rettype;
8461 ptype = build_pointer_type (basetype);
8462
8463 /* The actual arglist for this function includes a "hidden" argument
8464 which is "this". Put it into the list of argument types. */
8465 argtypes = tree_cons (NULL_TREE, ptype, argtypes);
8466 TYPE_ARG_TYPES (t) = argtypes;
8467
8468 /* If we already have such a type, use the old one. */
8469 hashval_t hash = type_hash_canon_hash (t);
8470 t = type_hash_canon (hash, t);
8471
8472 /* Set up the canonical type. */
8473 any_structural_p
8474 = (TYPE_STRUCTURAL_EQUALITY_P (basetype)
8475 || TYPE_STRUCTURAL_EQUALITY_P (rettype));
8476 any_noncanonical_p
8477 = (TYPE_CANONICAL (basetype) != basetype
8478 || TYPE_CANONICAL (rettype) != rettype);
8479 canon_argtypes = maybe_canonicalize_argtypes (TREE_CHAIN (argtypes),
8480 &any_structural_p,
8481 &any_noncanonical_p);
8482 if (any_structural_p)
8483 SET_TYPE_STRUCTURAL_EQUALITY (t);
8484 else if (any_noncanonical_p)
8485 TYPE_CANONICAL (t)
8486 = build_method_type_directly (TYPE_CANONICAL (basetype),
8487 TYPE_CANONICAL (rettype),
8488 canon_argtypes);
8489 if (!COMPLETE_TYPE_P (t))
8490 layout_type (t);
8491
8492 return t;
8493 }
8494
8495 /* Construct, lay out and return the type of methods belonging to class
8496 BASETYPE and whose arguments and values are described by TYPE.
8497 If that type exists already, reuse it.
8498 TYPE must be a FUNCTION_TYPE node. */
8499
8500 tree
8501 build_method_type (tree basetype, tree type)
8502 {
8503 gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
8504
8505 return build_method_type_directly (basetype,
8506 TREE_TYPE (type),
8507 TYPE_ARG_TYPES (type));
8508 }
8509
8510 /* Construct, lay out and return the type of offsets to a value
8511 of type TYPE, within an object of type BASETYPE.
8512 If a suitable offset type exists already, reuse it. */
8513
8514 tree
8515 build_offset_type (tree basetype, tree type)
8516 {
8517 tree t;
8518
8519 /* Make a node of the sort we want. */
8520 t = make_node (OFFSET_TYPE);
8521
8522 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
8523 TREE_TYPE (t) = type;
8524
8525 /* If we already have such a type, use the old one. */
8526 hashval_t hash = type_hash_canon_hash (t);
8527 t = type_hash_canon (hash, t);
8528
8529 if (!COMPLETE_TYPE_P (t))
8530 layout_type (t);
8531
8532 if (TYPE_CANONICAL (t) == t)
8533 {
8534 if (TYPE_STRUCTURAL_EQUALITY_P (basetype)
8535 || TYPE_STRUCTURAL_EQUALITY_P (type))
8536 SET_TYPE_STRUCTURAL_EQUALITY (t);
8537 else if (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)) != basetype
8538 || TYPE_CANONICAL (type) != type)
8539 TYPE_CANONICAL (t)
8540 = build_offset_type (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)),
8541 TYPE_CANONICAL (type));
8542 }
8543
8544 return t;
8545 }
8546
8547 /* Create a complex type whose components are COMPONENT_TYPE.
8548
8549 If NAMED is true, the type is given a TYPE_NAME. We do not always
8550 do so because this creates a DECL node and thus make the DECL_UIDs
8551 dependent on the type canonicalization hashtable, which is GC-ed,
8552 so the DECL_UIDs would not be stable wrt garbage collection. */
8553
8554 tree
8555 build_complex_type (tree component_type, bool named)
8556 {
8557 gcc_assert (INTEGRAL_TYPE_P (component_type)
8558 || SCALAR_FLOAT_TYPE_P (component_type)
8559 || FIXED_POINT_TYPE_P (component_type));
8560
8561 /* Make a node of the sort we want. */
8562 tree probe = make_node (COMPLEX_TYPE);
8563
8564 TREE_TYPE (probe) = TYPE_MAIN_VARIANT (component_type);
8565
8566 /* If we already have such a type, use the old one. */
8567 hashval_t hash = type_hash_canon_hash (probe);
8568 tree t = type_hash_canon (hash, probe);
8569
8570 if (t == probe)
8571 {
8572 /* We created a new type. The hash insertion will have laid
8573 out the type. We need to check the canonicalization and
8574 maybe set the name. */
8575 gcc_checking_assert (COMPLETE_TYPE_P (t)
8576 && !TYPE_NAME (t)
8577 && TYPE_CANONICAL (t) == t);
8578
8579 if (TYPE_STRUCTURAL_EQUALITY_P (TREE_TYPE (t)))
8580 SET_TYPE_STRUCTURAL_EQUALITY (t);
8581 else if (TYPE_CANONICAL (TREE_TYPE (t)) != TREE_TYPE (t))
8582 TYPE_CANONICAL (t)
8583 = build_complex_type (TYPE_CANONICAL (TREE_TYPE (t)), named);
8584
8585 /* We need to create a name, since complex is a fundamental type. */
8586 if (named)
8587 {
8588 const char *name = NULL;
8589
8590 if (TREE_TYPE (t) == char_type_node)
8591 name = "complex char";
8592 else if (TREE_TYPE (t) == signed_char_type_node)
8593 name = "complex signed char";
8594 else if (TREE_TYPE (t) == unsigned_char_type_node)
8595 name = "complex unsigned char";
8596 else if (TREE_TYPE (t) == short_integer_type_node)
8597 name = "complex short int";
8598 else if (TREE_TYPE (t) == short_unsigned_type_node)
8599 name = "complex short unsigned int";
8600 else if (TREE_TYPE (t) == integer_type_node)
8601 name = "complex int";
8602 else if (TREE_TYPE (t) == unsigned_type_node)
8603 name = "complex unsigned int";
8604 else if (TREE_TYPE (t) == long_integer_type_node)
8605 name = "complex long int";
8606 else if (TREE_TYPE (t) == long_unsigned_type_node)
8607 name = "complex long unsigned int";
8608 else if (TREE_TYPE (t) == long_long_integer_type_node)
8609 name = "complex long long int";
8610 else if (TREE_TYPE (t) == long_long_unsigned_type_node)
8611 name = "complex long long unsigned int";
8612
8613 if (name != NULL)
8614 TYPE_NAME (t) = build_decl (UNKNOWN_LOCATION, TYPE_DECL,
8615 get_identifier (name), t);
8616 }
8617 }
8618
8619 return build_qualified_type (t, TYPE_QUALS (component_type));
8620 }
8621
8622 /* If TYPE is a real or complex floating-point type and the target
8623 does not directly support arithmetic on TYPE then return the wider
8624 type to be used for arithmetic on TYPE. Otherwise, return
8625 NULL_TREE. */
8626
8627 tree
8628 excess_precision_type (tree type)
8629 {
8630 /* The target can give two different responses to the question of
8631 which excess precision mode it would like depending on whether we
8632 are in -fexcess-precision=standard or -fexcess-precision=fast. */
8633
8634 enum excess_precision_type requested_type
8635 = (flag_excess_precision == EXCESS_PRECISION_FAST
8636 ? EXCESS_PRECISION_TYPE_FAST
8637 : EXCESS_PRECISION_TYPE_STANDARD);
8638
8639 enum flt_eval_method target_flt_eval_method
8640 = targetm.c.excess_precision (requested_type);
8641
8642 /* The target should not ask for unpredictable float evaluation (though
8643 it might advertise that implicitly the evaluation is unpredictable,
8644 but we don't care about that here, it will have been reported
8645 elsewhere). If it does ask for unpredictable evaluation, we have
8646 nothing to do here. */
8647 gcc_assert (target_flt_eval_method != FLT_EVAL_METHOD_UNPREDICTABLE);
8648
8649 /* Nothing to do. The target has asked for all types we know about
8650 to be computed with their native precision and range. */
8651 if (target_flt_eval_method == FLT_EVAL_METHOD_PROMOTE_TO_FLOAT16)
8652 return NULL_TREE;
8653
8654 /* The target will promote this type in a target-dependent way, so excess
8655 precision ought to leave it alone. */
8656 if (targetm.promoted_type (type) != NULL_TREE)
8657 return NULL_TREE;
8658
8659 machine_mode float16_type_mode = (float16_type_node
8660 ? TYPE_MODE (float16_type_node)
8661 : VOIDmode);
8662 machine_mode float_type_mode = TYPE_MODE (float_type_node);
8663 machine_mode double_type_mode = TYPE_MODE (double_type_node);
8664
8665 switch (TREE_CODE (type))
8666 {
8667 case REAL_TYPE:
8668 {
8669 machine_mode type_mode = TYPE_MODE (type);
8670 switch (target_flt_eval_method)
8671 {
8672 case FLT_EVAL_METHOD_PROMOTE_TO_FLOAT:
8673 if (type_mode == float16_type_mode)
8674 return float_type_node;
8675 break;
8676 case FLT_EVAL_METHOD_PROMOTE_TO_DOUBLE:
8677 if (type_mode == float16_type_mode
8678 || type_mode == float_type_mode)
8679 return double_type_node;
8680 break;
8681 case FLT_EVAL_METHOD_PROMOTE_TO_LONG_DOUBLE:
8682 if (type_mode == float16_type_mode
8683 || type_mode == float_type_mode
8684 || type_mode == double_type_mode)
8685 return long_double_type_node;
8686 break;
8687 default:
8688 gcc_unreachable ();
8689 }
8690 break;
8691 }
8692 case COMPLEX_TYPE:
8693 {
8694 if (TREE_CODE (TREE_TYPE (type)) != REAL_TYPE)
8695 return NULL_TREE;
8696 machine_mode type_mode = TYPE_MODE (TREE_TYPE (type));
8697 switch (target_flt_eval_method)
8698 {
8699 case FLT_EVAL_METHOD_PROMOTE_TO_FLOAT:
8700 if (type_mode == float16_type_mode)
8701 return complex_float_type_node;
8702 break;
8703 case FLT_EVAL_METHOD_PROMOTE_TO_DOUBLE:
8704 if (type_mode == float16_type_mode
8705 || type_mode == float_type_mode)
8706 return complex_double_type_node;
8707 break;
8708 case FLT_EVAL_METHOD_PROMOTE_TO_LONG_DOUBLE:
8709 if (type_mode == float16_type_mode
8710 || type_mode == float_type_mode
8711 || type_mode == double_type_mode)
8712 return complex_long_double_type_node;
8713 break;
8714 default:
8715 gcc_unreachable ();
8716 }
8717 break;
8718 }
8719 default:
8720 break;
8721 }
8722
8723 return NULL_TREE;
8724 }
8725 \f
8726 /* Return OP, stripped of any conversions to wider types as much as is safe.
8727 Converting the value back to OP's type makes a value equivalent to OP.
8728
8729 If FOR_TYPE is nonzero, we return a value which, if converted to
8730 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
8731
8732 OP must have integer, real or enumeral type. Pointers are not allowed!
8733
8734 There are some cases where the obvious value we could return
8735 would regenerate to OP if converted to OP's type,
8736 but would not extend like OP to wider types.
8737 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
8738 For example, if OP is (unsigned short)(signed char)-1,
8739 we avoid returning (signed char)-1 if FOR_TYPE is int,
8740 even though extending that to an unsigned short would regenerate OP,
8741 since the result of extending (signed char)-1 to (int)
8742 is different from (int) OP. */
8743
8744 tree
8745 get_unwidened (tree op, tree for_type)
8746 {
8747 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
8748 tree type = TREE_TYPE (op);
8749 unsigned final_prec
8750 = TYPE_PRECISION (for_type != 0 ? for_type : type);
8751 int uns
8752 = (for_type != 0 && for_type != type
8753 && final_prec > TYPE_PRECISION (type)
8754 && TYPE_UNSIGNED (type));
8755 tree win = op;
8756
8757 while (CONVERT_EXPR_P (op))
8758 {
8759 int bitschange;
8760
8761 /* TYPE_PRECISION on vector types has different meaning
8762 (TYPE_VECTOR_SUBPARTS) and casts from vectors are view conversions,
8763 so avoid them here. */
8764 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == VECTOR_TYPE)
8765 break;
8766
8767 bitschange = TYPE_PRECISION (TREE_TYPE (op))
8768 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
8769
8770 /* Truncations are many-one so cannot be removed.
8771 Unless we are later going to truncate down even farther. */
8772 if (bitschange < 0
8773 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
8774 break;
8775
8776 /* See what's inside this conversion. If we decide to strip it,
8777 we will set WIN. */
8778 op = TREE_OPERAND (op, 0);
8779
8780 /* If we have not stripped any zero-extensions (uns is 0),
8781 we can strip any kind of extension.
8782 If we have previously stripped a zero-extension,
8783 only zero-extensions can safely be stripped.
8784 Any extension can be stripped if the bits it would produce
8785 are all going to be discarded later by truncating to FOR_TYPE. */
8786
8787 if (bitschange > 0)
8788 {
8789 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
8790 win = op;
8791 /* TYPE_UNSIGNED says whether this is a zero-extension.
8792 Let's avoid computing it if it does not affect WIN
8793 and if UNS will not be needed again. */
8794 if ((uns
8795 || CONVERT_EXPR_P (op))
8796 && TYPE_UNSIGNED (TREE_TYPE (op)))
8797 {
8798 uns = 1;
8799 win = op;
8800 }
8801 }
8802 }
8803
8804 /* If we finally reach a constant see if it fits in sth smaller and
8805 in that case convert it. */
8806 if (TREE_CODE (win) == INTEGER_CST)
8807 {
8808 tree wtype = TREE_TYPE (win);
8809 unsigned prec = wi::min_precision (wi::to_wide (win), TYPE_SIGN (wtype));
8810 if (for_type)
8811 prec = MAX (prec, final_prec);
8812 if (prec < TYPE_PRECISION (wtype))
8813 {
8814 tree t = lang_hooks.types.type_for_size (prec, TYPE_UNSIGNED (wtype));
8815 if (t && TYPE_PRECISION (t) < TYPE_PRECISION (wtype))
8816 win = fold_convert (t, win);
8817 }
8818 }
8819
8820 return win;
8821 }
8822 \f
8823 /* Return OP or a simpler expression for a narrower value
8824 which can be sign-extended or zero-extended to give back OP.
8825 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
8826 or 0 if the value should be sign-extended. */
8827
8828 tree
8829 get_narrower (tree op, int *unsignedp_ptr)
8830 {
8831 int uns = 0;
8832 int first = 1;
8833 tree win = op;
8834 bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));
8835
8836 if (TREE_CODE (op) == COMPOUND_EXPR)
8837 {
8838 do
8839 op = TREE_OPERAND (op, 1);
8840 while (TREE_CODE (op) == COMPOUND_EXPR);
8841 tree ret = get_narrower (op, unsignedp_ptr);
8842 if (ret == op)
8843 return win;
8844 auto_vec <tree, 16> v;
8845 unsigned int i;
8846 for (op = win; TREE_CODE (op) == COMPOUND_EXPR;
8847 op = TREE_OPERAND (op, 1))
8848 v.safe_push (op);
8849 FOR_EACH_VEC_ELT_REVERSE (v, i, op)
8850 ret = build2_loc (EXPR_LOCATION (op), COMPOUND_EXPR,
8851 TREE_TYPE (win), TREE_OPERAND (op, 0),
8852 ret);
8853 return ret;
8854 }
8855 while (TREE_CODE (op) == NOP_EXPR)
8856 {
8857 int bitschange
8858 = (TYPE_PRECISION (TREE_TYPE (op))
8859 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
8860
8861 /* Truncations are many-one so cannot be removed. */
8862 if (bitschange < 0)
8863 break;
8864
8865 /* See what's inside this conversion. If we decide to strip it,
8866 we will set WIN. */
8867
8868 if (bitschange > 0)
8869 {
8870 op = TREE_OPERAND (op, 0);
8871 /* An extension: the outermost one can be stripped,
8872 but remember whether it is zero or sign extension. */
8873 if (first)
8874 uns = TYPE_UNSIGNED (TREE_TYPE (op));
8875 /* Otherwise, if a sign extension has been stripped,
8876 only sign extensions can now be stripped;
8877 if a zero extension has been stripped, only zero-extensions. */
8878 else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
8879 break;
8880 first = 0;
8881 }
8882 else /* bitschange == 0 */
8883 {
8884 /* A change in nominal type can always be stripped, but we must
8885 preserve the unsignedness. */
8886 if (first)
8887 uns = TYPE_UNSIGNED (TREE_TYPE (op));
8888 first = 0;
8889 op = TREE_OPERAND (op, 0);
8890 /* Keep trying to narrow, but don't assign op to win if it
8891 would turn an integral type into something else. */
8892 if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
8893 continue;
8894 }
8895
8896 win = op;
8897 }
8898
8899 if (TREE_CODE (op) == COMPONENT_REF
8900 /* Since type_for_size always gives an integer type. */
8901 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
8902 && TREE_CODE (TREE_TYPE (op)) != FIXED_POINT_TYPE
8903 /* Ensure field is laid out already. */
8904 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
8905 && tree_fits_uhwi_p (DECL_SIZE (TREE_OPERAND (op, 1))))
8906 {
8907 unsigned HOST_WIDE_INT innerprec
8908 = tree_to_uhwi (DECL_SIZE (TREE_OPERAND (op, 1)));
8909 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
8910 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
8911 tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
8912
8913 /* We can get this structure field in a narrower type that fits it,
8914 but the resulting extension to its nominal type (a fullword type)
8915 must satisfy the same conditions as for other extensions.
8916
8917 Do this only for fields that are aligned (not bit-fields),
8918 because when bit-field insns will be used there is no
8919 advantage in doing this. */
8920
8921 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
8922 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
8923 && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
8924 && type != 0)
8925 {
8926 if (first)
8927 uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
8928 win = fold_convert (type, op);
8929 }
8930 }
8931
8932 *unsignedp_ptr = uns;
8933 return win;
8934 }
8935 \f
8936 /* Return true if integer constant C has a value that is permissible
8937 for TYPE, an integral type. */
8938
8939 bool
8940 int_fits_type_p (const_tree c, const_tree type)
8941 {
8942 tree type_low_bound, type_high_bound;
8943 bool ok_for_low_bound, ok_for_high_bound;
8944 signop sgn_c = TYPE_SIGN (TREE_TYPE (c));
8945
8946 /* Non-standard boolean types can have arbitrary precision but various
8947 transformations assume that they can only take values 0 and +/-1. */
8948 if (TREE_CODE (type) == BOOLEAN_TYPE)
8949 return wi::fits_to_boolean_p (wi::to_wide (c), type);
8950
8951 retry:
8952 type_low_bound = TYPE_MIN_VALUE (type);
8953 type_high_bound = TYPE_MAX_VALUE (type);
8954
8955 /* If at least one bound of the type is a constant integer, we can check
8956 ourselves and maybe make a decision. If no such decision is possible, but
8957 this type is a subtype, try checking against that. Otherwise, use
8958 fits_to_tree_p, which checks against the precision.
8959
8960 Compute the status for each possibly constant bound, and return if we see
8961 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
8962 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
8963 for "constant known to fit". */
8964
8965 /* Check if c >= type_low_bound. */
8966 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
8967 {
8968 if (tree_int_cst_lt (c, type_low_bound))
8969 return false;
8970 ok_for_low_bound = true;
8971 }
8972 else
8973 ok_for_low_bound = false;
8974
8975 /* Check if c <= type_high_bound. */
8976 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
8977 {
8978 if (tree_int_cst_lt (type_high_bound, c))
8979 return false;
8980 ok_for_high_bound = true;
8981 }
8982 else
8983 ok_for_high_bound = false;
8984
8985 /* If the constant fits both bounds, the result is known. */
8986 if (ok_for_low_bound && ok_for_high_bound)
8987 return true;
8988
8989 /* Perform some generic filtering which may allow making a decision
8990 even if the bounds are not constant. First, negative integers
8991 never fit in unsigned types, */
8992 if (TYPE_UNSIGNED (type) && sgn_c == SIGNED && wi::neg_p (wi::to_wide (c)))
8993 return false;
8994
8995 /* Second, narrower types always fit in wider ones. */
8996 if (TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (c)))
8997 return true;
8998
8999 /* Third, unsigned integers with top bit set never fit signed types. */
9000 if (!TYPE_UNSIGNED (type) && sgn_c == UNSIGNED)
9001 {
9002 int prec = GET_MODE_PRECISION (SCALAR_INT_TYPE_MODE (TREE_TYPE (c))) - 1;
9003 if (prec < TYPE_PRECISION (TREE_TYPE (c)))
9004 {
9005 /* When a tree_cst is converted to a wide-int, the precision
9006 is taken from the type. However, if the precision of the
9007 mode underneath the type is smaller than that, it is
9008 possible that the value will not fit. The test below
9009 fails if any bit is set between the sign bit of the
9010 underlying mode and the top bit of the type. */
9011 if (wi::zext (wi::to_wide (c), prec - 1) != wi::to_wide (c))
9012 return false;
9013 }
9014 else if (wi::neg_p (wi::to_wide (c)))
9015 return false;
9016 }
9017
9018 /* If we haven't been able to decide at this point, there nothing more we
9019 can check ourselves here. Look at the base type if we have one and it
9020 has the same precision. */
9021 if (TREE_CODE (type) == INTEGER_TYPE
9022 && TREE_TYPE (type) != 0
9023 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (type)))
9024 {
9025 type = TREE_TYPE (type);
9026 goto retry;
9027 }
9028
9029 /* Or to fits_to_tree_p, if nothing else. */
9030 return wi::fits_to_tree_p (wi::to_wide (c), type);
9031 }
9032
9033 /* Stores bounds of an integer TYPE in MIN and MAX. If TYPE has non-constant
9034 bounds or is a POINTER_TYPE, the maximum and/or minimum values that can be
9035 represented (assuming two's-complement arithmetic) within the bit
9036 precision of the type are returned instead. */
9037
9038 void
9039 get_type_static_bounds (const_tree type, mpz_t min, mpz_t max)
9040 {
9041 if (!POINTER_TYPE_P (type) && TYPE_MIN_VALUE (type)
9042 && TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST)
9043 wi::to_mpz (wi::to_wide (TYPE_MIN_VALUE (type)), min, TYPE_SIGN (type));
9044 else
9045 {
9046 if (TYPE_UNSIGNED (type))
9047 mpz_set_ui (min, 0);
9048 else
9049 {
9050 wide_int mn = wi::min_value (TYPE_PRECISION (type), SIGNED);
9051 wi::to_mpz (mn, min, SIGNED);
9052 }
9053 }
9054
9055 if (!POINTER_TYPE_P (type) && TYPE_MAX_VALUE (type)
9056 && TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST)
9057 wi::to_mpz (wi::to_wide (TYPE_MAX_VALUE (type)), max, TYPE_SIGN (type));
9058 else
9059 {
9060 wide_int mn = wi::max_value (TYPE_PRECISION (type), TYPE_SIGN (type));
9061 wi::to_mpz (mn, max, TYPE_SIGN (type));
9062 }
9063 }
9064
9065 /* Return true if VAR is an automatic variable. */
9066
9067 bool
9068 auto_var_p (const_tree var)
9069 {
9070 return ((((VAR_P (var) && ! DECL_EXTERNAL (var))
9071 || TREE_CODE (var) == PARM_DECL)
9072 && ! TREE_STATIC (var))
9073 || TREE_CODE (var) == RESULT_DECL);
9074 }
9075
9076 /* Return true if VAR is an automatic variable defined in function FN. */
9077
9078 bool
9079 auto_var_in_fn_p (const_tree var, const_tree fn)
9080 {
9081 return (DECL_P (var) && DECL_CONTEXT (var) == fn
9082 && (auto_var_p (var)
9083 || TREE_CODE (var) == LABEL_DECL));
9084 }
9085
9086 /* Subprogram of following function. Called by walk_tree.
9087
9088 Return *TP if it is an automatic variable or parameter of the
9089 function passed in as DATA. */
9090
9091 static tree
9092 find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
9093 {
9094 tree fn = (tree) data;
9095
9096 if (TYPE_P (*tp))
9097 *walk_subtrees = 0;
9098
9099 else if (DECL_P (*tp)
9100 && auto_var_in_fn_p (*tp, fn))
9101 return *tp;
9102
9103 return NULL_TREE;
9104 }
9105
9106 /* Returns true if T is, contains, or refers to a type with variable
9107 size. For METHOD_TYPEs and FUNCTION_TYPEs we exclude the
9108 arguments, but not the return type. If FN is nonzero, only return
9109 true if a modifier of the type or position of FN is a variable or
9110 parameter inside FN.
9111
9112 This concept is more general than that of C99 'variably modified types':
9113 in C99, a struct type is never variably modified because a VLA may not
9114 appear as a structure member. However, in GNU C code like:
9115
9116 struct S { int i[f()]; };
9117
9118 is valid, and other languages may define similar constructs. */
9119
9120 bool
9121 variably_modified_type_p (tree type, tree fn)
9122 {
9123 tree t;
9124
9125 /* Test if T is either variable (if FN is zero) or an expression containing
9126 a variable in FN. If TYPE isn't gimplified, return true also if
9127 gimplify_one_sizepos would gimplify the expression into a local
9128 variable. */
9129 #define RETURN_TRUE_IF_VAR(T) \
9130 do { tree _t = (T); \
9131 if (_t != NULL_TREE \
9132 && _t != error_mark_node \
9133 && !CONSTANT_CLASS_P (_t) \
9134 && TREE_CODE (_t) != PLACEHOLDER_EXPR \
9135 && (!fn \
9136 || (!TYPE_SIZES_GIMPLIFIED (type) \
9137 && (TREE_CODE (_t) != VAR_DECL \
9138 && !CONTAINS_PLACEHOLDER_P (_t))) \
9139 || walk_tree (&_t, find_var_from_fn, fn, NULL))) \
9140 return true; } while (0)
9141
9142 if (type == error_mark_node)
9143 return false;
9144
9145 /* If TYPE itself has variable size, it is variably modified. */
9146 RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
9147 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (type));
9148
9149 switch (TREE_CODE (type))
9150 {
9151 case POINTER_TYPE:
9152 case REFERENCE_TYPE:
9153 case VECTOR_TYPE:
9154 /* Ada can have pointer types refering to themselves indirectly. */
9155 if (TREE_VISITED (type))
9156 return false;
9157 TREE_VISITED (type) = true;
9158 if (variably_modified_type_p (TREE_TYPE (type), fn))
9159 {
9160 TREE_VISITED (type) = false;
9161 return true;
9162 }
9163 TREE_VISITED (type) = false;
9164 break;
9165
9166 case FUNCTION_TYPE:
9167 case METHOD_TYPE:
9168 /* If TYPE is a function type, it is variably modified if the
9169 return type is variably modified. */
9170 if (variably_modified_type_p (TREE_TYPE (type), fn))
9171 return true;
9172 break;
9173
9174 case INTEGER_TYPE:
9175 case REAL_TYPE:
9176 case FIXED_POINT_TYPE:
9177 case ENUMERAL_TYPE:
9178 case BOOLEAN_TYPE:
9179 /* Scalar types are variably modified if their end points
9180 aren't constant. */
9181 RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
9182 RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
9183 break;
9184
9185 case RECORD_TYPE:
9186 case UNION_TYPE:
9187 case QUAL_UNION_TYPE:
9188 /* We can't see if any of the fields are variably-modified by the
9189 definition we normally use, since that would produce infinite
9190 recursion via pointers. */
9191 /* This is variably modified if some field's type is. */
9192 for (t = TYPE_FIELDS (type); t; t = DECL_CHAIN (t))
9193 if (TREE_CODE (t) == FIELD_DECL)
9194 {
9195 RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
9196 RETURN_TRUE_IF_VAR (DECL_SIZE (t));
9197 RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));
9198
9199 /* If the type is a qualified union, then the DECL_QUALIFIER
9200 of fields can also be an expression containing a variable. */
9201 if (TREE_CODE (type) == QUAL_UNION_TYPE)
9202 RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));
9203
9204 /* If the field is a qualified union, then it's only a container
9205 for what's inside so we look into it. That's necessary in LTO
9206 mode because the sizes of the field tested above have been set
9207 to PLACEHOLDER_EXPRs by free_lang_data. */
9208 if (TREE_CODE (TREE_TYPE (t)) == QUAL_UNION_TYPE
9209 && variably_modified_type_p (TREE_TYPE (t), fn))
9210 return true;
9211 }
9212 break;
9213
9214 case ARRAY_TYPE:
9215 /* Do not call ourselves to avoid infinite recursion. This is
9216 variably modified if the element type is. */
9217 RETURN_TRUE_IF_VAR (TYPE_SIZE (TREE_TYPE (type)));
9218 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (TREE_TYPE (type)));
9219 break;
9220
9221 default:
9222 break;
9223 }
9224
9225 /* The current language may have other cases to check, but in general,
9226 all other types are not variably modified. */
9227 return lang_hooks.tree_inlining.var_mod_type_p (type, fn);
9228
9229 #undef RETURN_TRUE_IF_VAR
9230 }
9231
9232 /* Given a DECL or TYPE, return the scope in which it was declared, or
9233 NULL_TREE if there is no containing scope. */
9234
9235 tree
9236 get_containing_scope (const_tree t)
9237 {
9238 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
9239 }
9240
9241 /* Returns the ultimate TRANSLATION_UNIT_DECL context of DECL or NULL. */
9242
9243 const_tree
9244 get_ultimate_context (const_tree decl)
9245 {
9246 while (decl && TREE_CODE (decl) != TRANSLATION_UNIT_DECL)
9247 {
9248 if (TREE_CODE (decl) == BLOCK)
9249 decl = BLOCK_SUPERCONTEXT (decl);
9250 else
9251 decl = get_containing_scope (decl);
9252 }
9253 return decl;
9254 }
9255
9256 /* Return the innermost context enclosing DECL that is
9257 a FUNCTION_DECL, or zero if none. */
9258
9259 tree
9260 decl_function_context (const_tree decl)
9261 {
9262 tree context;
9263
9264 if (TREE_CODE (decl) == ERROR_MARK)
9265 return 0;
9266
9267 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
9268 where we look up the function at runtime. Such functions always take
9269 a first argument of type 'pointer to real context'.
9270
9271 C++ should really be fixed to use DECL_CONTEXT for the real context,
9272 and use something else for the "virtual context". */
9273 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VIRTUAL_P (decl))
9274 context
9275 = TYPE_MAIN_VARIANT
9276 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
9277 else
9278 context = DECL_CONTEXT (decl);
9279
9280 while (context && TREE_CODE (context) != FUNCTION_DECL)
9281 {
9282 if (TREE_CODE (context) == BLOCK)
9283 context = BLOCK_SUPERCONTEXT (context);
9284 else
9285 context = get_containing_scope (context);
9286 }
9287
9288 return context;
9289 }
9290
9291 /* Return the innermost context enclosing DECL that is
9292 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
9293 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
9294
9295 tree
9296 decl_type_context (const_tree decl)
9297 {
9298 tree context = DECL_CONTEXT (decl);
9299
9300 while (context)
9301 switch (TREE_CODE (context))
9302 {
9303 case NAMESPACE_DECL:
9304 case TRANSLATION_UNIT_DECL:
9305 return NULL_TREE;
9306
9307 case RECORD_TYPE:
9308 case UNION_TYPE:
9309 case QUAL_UNION_TYPE:
9310 return context;
9311
9312 case TYPE_DECL:
9313 case FUNCTION_DECL:
9314 context = DECL_CONTEXT (context);
9315 break;
9316
9317 case BLOCK:
9318 context = BLOCK_SUPERCONTEXT (context);
9319 break;
9320
9321 default:
9322 gcc_unreachable ();
9323 }
9324
9325 return NULL_TREE;
9326 }
9327
9328 /* CALL is a CALL_EXPR. Return the declaration for the function
9329 called, or NULL_TREE if the called function cannot be
9330 determined. */
9331
9332 tree
9333 get_callee_fndecl (const_tree call)
9334 {
9335 tree addr;
9336
9337 if (call == error_mark_node)
9338 return error_mark_node;
9339
9340 /* It's invalid to call this function with anything but a
9341 CALL_EXPR. */
9342 gcc_assert (TREE_CODE (call) == CALL_EXPR);
9343
9344 /* The first operand to the CALL is the address of the function
9345 called. */
9346 addr = CALL_EXPR_FN (call);
9347
9348 /* If there is no function, return early. */
9349 if (addr == NULL_TREE)
9350 return NULL_TREE;
9351
9352 STRIP_NOPS (addr);
9353
9354 /* If this is a readonly function pointer, extract its initial value. */
9355 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
9356 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
9357 && DECL_INITIAL (addr))
9358 addr = DECL_INITIAL (addr);
9359
9360 /* If the address is just `&f' for some function `f', then we know
9361 that `f' is being called. */
9362 if (TREE_CODE (addr) == ADDR_EXPR
9363 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
9364 return TREE_OPERAND (addr, 0);
9365
9366 /* We couldn't figure out what was being called. */
9367 return NULL_TREE;
9368 }
9369
9370 /* If CALL_EXPR CALL calls a normal built-in function or an internal function,
9371 return the associated function code, otherwise return CFN_LAST. */
9372
9373 combined_fn
9374 get_call_combined_fn (const_tree call)
9375 {
9376 /* It's invalid to call this function with anything but a CALL_EXPR. */
9377 gcc_assert (TREE_CODE (call) == CALL_EXPR);
9378
9379 if (!CALL_EXPR_FN (call))
9380 return as_combined_fn (CALL_EXPR_IFN (call));
9381
9382 tree fndecl = get_callee_fndecl (call);
9383 if (fndecl && fndecl_built_in_p (fndecl, BUILT_IN_NORMAL))
9384 return as_combined_fn (DECL_FUNCTION_CODE (fndecl));
9385
9386 return CFN_LAST;
9387 }
9388
9389 /* Comparator of indices based on tree_node_counts. */
9390
9391 static int
9392 tree_nodes_cmp (const void *p1, const void *p2)
9393 {
9394 const unsigned *n1 = (const unsigned *)p1;
9395 const unsigned *n2 = (const unsigned *)p2;
9396
9397 return tree_node_counts[*n1] - tree_node_counts[*n2];
9398 }
9399
9400 /* Comparator of indices based on tree_code_counts. */
9401
9402 static int
9403 tree_codes_cmp (const void *p1, const void *p2)
9404 {
9405 const unsigned *n1 = (const unsigned *)p1;
9406 const unsigned *n2 = (const unsigned *)p2;
9407
9408 return tree_code_counts[*n1] - tree_code_counts[*n2];
9409 }
9410
9411 #define TREE_MEM_USAGE_SPACES 40
9412
9413 /* Print debugging information about tree nodes generated during the compile,
9414 and any language-specific information. */
9415
9416 void
9417 dump_tree_statistics (void)
9418 {
9419 if (GATHER_STATISTICS)
9420 {
9421 uint64_t total_nodes, total_bytes;
9422 fprintf (stderr, "\nKind Nodes Bytes\n");
9423 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
9424 total_nodes = total_bytes = 0;
9425
9426 {
9427 auto_vec<unsigned> indices (all_kinds);
9428 for (unsigned i = 0; i < all_kinds; i++)
9429 indices.quick_push (i);
9430 indices.qsort (tree_nodes_cmp);
9431
9432 for (unsigned i = 0; i < (int) all_kinds; i++)
9433 {
9434 unsigned j = indices[i];
9435 fprintf (stderr, "%-20s %6" PRIu64 "%c %9" PRIu64 "%c\n",
9436 tree_node_kind_names[j], SIZE_AMOUNT (tree_node_counts[j]),
9437 SIZE_AMOUNT (tree_node_sizes[j]));
9438 total_nodes += tree_node_counts[j];
9439 total_bytes += tree_node_sizes[j];
9440 }
9441 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
9442 fprintf (stderr, "%-20s %6" PRIu64 "%c %9" PRIu64 "%c\n", "Total",
9443 SIZE_AMOUNT (total_nodes), SIZE_AMOUNT (total_bytes));
9444 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
9445 }
9446
9447 {
9448 fprintf (stderr, "Code Nodes\n");
9449 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
9450
9451 auto_vec<unsigned> indices (MAX_TREE_CODES);
9452 for (unsigned i = 0; i < MAX_TREE_CODES; i++)
9453 indices.quick_push (i);
9454 indices.qsort (tree_codes_cmp);
9455
9456 for (unsigned i = 0; i < MAX_TREE_CODES; i++)
9457 {
9458 unsigned j = indices[i];
9459 fprintf (stderr, "%-32s %6" PRIu64 "%c\n",
9460 get_tree_code_name ((enum tree_code) j),
9461 SIZE_AMOUNT (tree_code_counts[j]));
9462 }
9463 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
9464 fprintf (stderr, "\n");
9465 ssanames_print_statistics ();
9466 fprintf (stderr, "\n");
9467 phinodes_print_statistics ();
9468 fprintf (stderr, "\n");
9469 }
9470 }
9471 else
9472 fprintf (stderr, "(No per-node statistics)\n");
9473
9474 print_type_hash_statistics ();
9475 print_debug_expr_statistics ();
9476 print_value_expr_statistics ();
9477 lang_hooks.print_statistics ();
9478 }
9479 \f
9480 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
9481
9482 /* Generate a crc32 of the low BYTES bytes of VALUE. */
9483
9484 unsigned
9485 crc32_unsigned_n (unsigned chksum, unsigned value, unsigned bytes)
9486 {
9487 /* This relies on the raw feedback's top 4 bits being zero. */
9488 #define FEEDBACK(X) ((X) * 0x04c11db7)
9489 #define SYNDROME(X) (FEEDBACK ((X) & 1) ^ FEEDBACK ((X) & 2) \
9490 ^ FEEDBACK ((X) & 4) ^ FEEDBACK ((X) & 8))
9491 static const unsigned syndromes[16] =
9492 {
9493 SYNDROME(0x0), SYNDROME(0x1), SYNDROME(0x2), SYNDROME(0x3),
9494 SYNDROME(0x4), SYNDROME(0x5), SYNDROME(0x6), SYNDROME(0x7),
9495 SYNDROME(0x8), SYNDROME(0x9), SYNDROME(0xa), SYNDROME(0xb),
9496 SYNDROME(0xc), SYNDROME(0xd), SYNDROME(0xe), SYNDROME(0xf),
9497 };
9498 #undef FEEDBACK
9499 #undef SYNDROME
9500
9501 value <<= (32 - bytes * 8);
9502 for (unsigned ix = bytes * 2; ix--; value <<= 4)
9503 {
9504 unsigned feedback = syndromes[((value ^ chksum) >> 28) & 0xf];
9505
9506 chksum = (chksum << 4) ^ feedback;
9507 }
9508
9509 return chksum;
9510 }
9511
9512 /* Generate a crc32 of a string. */
9513
9514 unsigned
9515 crc32_string (unsigned chksum, const char *string)
9516 {
9517 do
9518 chksum = crc32_byte (chksum, *string);
9519 while (*string++);
9520 return chksum;
9521 }
9522
9523 /* P is a string that will be used in a symbol. Mask out any characters
9524 that are not valid in that context. */
9525
9526 void
9527 clean_symbol_name (char *p)
9528 {
9529 for (; *p; p++)
9530 if (! (ISALNUM (*p)
9531 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
9532 || *p == '$'
9533 #endif
9534 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
9535 || *p == '.'
9536 #endif
9537 ))
9538 *p = '_';
9539 }
9540
9541 static GTY(()) unsigned anon_cnt = 0; /* Saved for PCH. */
9542
9543 /* Create a unique anonymous identifier. The identifier is still a
9544 valid assembly label. */
9545
9546 tree
9547 make_anon_name ()
9548 {
9549 const char *fmt =
9550 #if !defined (NO_DOT_IN_LABEL)
9551 "."
9552 #elif !defined (NO_DOLLAR_IN_LABEL)
9553 "$"
9554 #else
9555 "_"
9556 #endif
9557 "_anon_%d";
9558
9559 char buf[24];
9560 int len = snprintf (buf, sizeof (buf), fmt, anon_cnt++);
9561 gcc_checking_assert (len < int (sizeof (buf)));
9562
9563 tree id = get_identifier_with_length (buf, len);
9564 IDENTIFIER_ANON_P (id) = true;
9565
9566 return id;
9567 }
9568
9569 /* Generate a name for a special-purpose function.
9570 The generated name may need to be unique across the whole link.
9571 Changes to this function may also require corresponding changes to
9572 xstrdup_mask_random.
9573 TYPE is some string to identify the purpose of this function to the
9574 linker or collect2; it must start with an uppercase letter,
9575 one of:
9576 I - for constructors
9577 D - for destructors
9578 N - for C++ anonymous namespaces
9579 F - for DWARF unwind frame information. */
9580
9581 tree
9582 get_file_function_name (const char *type)
9583 {
9584 char *buf;
9585 const char *p;
9586 char *q;
9587
9588 /* If we already have a name we know to be unique, just use that. */
9589 if (first_global_object_name)
9590 p = q = ASTRDUP (first_global_object_name);
9591 /* If the target is handling the constructors/destructors, they
9592 will be local to this file and the name is only necessary for
9593 debugging purposes.
9594 We also assign sub_I and sub_D sufixes to constructors called from
9595 the global static constructors. These are always local. */
9596 else if (((type[0] == 'I' || type[0] == 'D') && targetm.have_ctors_dtors)
9597 || (strncmp (type, "sub_", 4) == 0
9598 && (type[4] == 'I' || type[4] == 'D')))
9599 {
9600 const char *file = main_input_filename;
9601 if (! file)
9602 file = LOCATION_FILE (input_location);
9603 /* Just use the file's basename, because the full pathname
9604 might be quite long. */
9605 p = q = ASTRDUP (lbasename (file));
9606 }
9607 else
9608 {
9609 /* Otherwise, the name must be unique across the entire link.
9610 We don't have anything that we know to be unique to this translation
9611 unit, so use what we do have and throw in some randomness. */
9612 unsigned len;
9613 const char *name = weak_global_object_name;
9614 const char *file = main_input_filename;
9615
9616 if (! name)
9617 name = "";
9618 if (! file)
9619 file = LOCATION_FILE (input_location);
9620
9621 len = strlen (file);
9622 q = (char *) alloca (9 + 19 + len + 1);
9623 memcpy (q, file, len + 1);
9624
9625 snprintf (q + len, 9 + 19 + 1, "_%08X_" HOST_WIDE_INT_PRINT_HEX,
9626 crc32_string (0, name), get_random_seed (false));
9627
9628 p = q;
9629 }
9630
9631 clean_symbol_name (q);
9632 buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
9633 + strlen (type));
9634
9635 /* Set up the name of the file-level functions we may need.
9636 Use a global object (which is already required to be unique over
9637 the program) rather than the file name (which imposes extra
9638 constraints). */
9639 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
9640
9641 return get_identifier (buf);
9642 }
9643 \f
9644 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
9645
9646 /* Complain that the tree code of NODE does not match the expected 0
9647 terminated list of trailing codes. The trailing code list can be
9648 empty, for a more vague error message. FILE, LINE, and FUNCTION
9649 are of the caller. */
9650
9651 void
9652 tree_check_failed (const_tree node, const char *file,
9653 int line, const char *function, ...)
9654 {
9655 va_list args;
9656 const char *buffer;
9657 unsigned length = 0;
9658 enum tree_code code;
9659
9660 va_start (args, function);
9661 while ((code = (enum tree_code) va_arg (args, int)))
9662 length += 4 + strlen (get_tree_code_name (code));
9663 va_end (args);
9664 if (length)
9665 {
9666 char *tmp;
9667 va_start (args, function);
9668 length += strlen ("expected ");
9669 buffer = tmp = (char *) alloca (length);
9670 length = 0;
9671 while ((code = (enum tree_code) va_arg (args, int)))
9672 {
9673 const char *prefix = length ? " or " : "expected ";
9674
9675 strcpy (tmp + length, prefix);
9676 length += strlen (prefix);
9677 strcpy (tmp + length, get_tree_code_name (code));
9678 length += strlen (get_tree_code_name (code));
9679 }
9680 va_end (args);
9681 }
9682 else
9683 buffer = "unexpected node";
9684
9685 internal_error ("tree check: %s, have %s in %s, at %s:%d",
9686 buffer, get_tree_code_name (TREE_CODE (node)),
9687 function, trim_filename (file), line);
9688 }
9689
9690 /* Complain that the tree code of NODE does match the expected 0
9691 terminated list of trailing codes. FILE, LINE, and FUNCTION are of
9692 the caller. */
9693
9694 void
9695 tree_not_check_failed (const_tree node, const char *file,
9696 int line, const char *function, ...)
9697 {
9698 va_list args;
9699 char *buffer;
9700 unsigned length = 0;
9701 enum tree_code code;
9702
9703 va_start (args, function);
9704 while ((code = (enum tree_code) va_arg (args, int)))
9705 length += 4 + strlen (get_tree_code_name (code));
9706 va_end (args);
9707 va_start (args, function);
9708 buffer = (char *) alloca (length);
9709 length = 0;
9710 while ((code = (enum tree_code) va_arg (args, int)))
9711 {
9712 if (length)
9713 {
9714 strcpy (buffer + length, " or ");
9715 length += 4;
9716 }
9717 strcpy (buffer + length, get_tree_code_name (code));
9718 length += strlen (get_tree_code_name (code));
9719 }
9720 va_end (args);
9721
9722 internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
9723 buffer, get_tree_code_name (TREE_CODE (node)),
9724 function, trim_filename (file), line);
9725 }
9726
9727 /* Similar to tree_check_failed, except that we check for a class of tree
9728 code, given in CL. */
9729
9730 void
9731 tree_class_check_failed (const_tree node, const enum tree_code_class cl,
9732 const char *file, int line, const char *function)
9733 {
9734 internal_error
9735 ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
9736 TREE_CODE_CLASS_STRING (cl),
9737 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
9738 get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
9739 }
9740
9741 /* Similar to tree_check_failed, except that instead of specifying a
9742 dozen codes, use the knowledge that they're all sequential. */
9743
9744 void
9745 tree_range_check_failed (const_tree node, const char *file, int line,
9746 const char *function, enum tree_code c1,
9747 enum tree_code c2)
9748 {
9749 char *buffer;
9750 unsigned length = 0;
9751 unsigned int c;
9752
9753 for (c = c1; c <= c2; ++c)
9754 length += 4 + strlen (get_tree_code_name ((enum tree_code) c));
9755
9756 length += strlen ("expected ");
9757 buffer = (char *) alloca (length);
9758 length = 0;
9759
9760 for (c = c1; c <= c2; ++c)
9761 {
9762 const char *prefix = length ? " or " : "expected ";
9763
9764 strcpy (buffer + length, prefix);
9765 length += strlen (prefix);
9766 strcpy (buffer + length, get_tree_code_name ((enum tree_code) c));
9767 length += strlen (get_tree_code_name ((enum tree_code) c));
9768 }
9769
9770 internal_error ("tree check: %s, have %s in %s, at %s:%d",
9771 buffer, get_tree_code_name (TREE_CODE (node)),
9772 function, trim_filename (file), line);
9773 }
9774
9775
9776 /* Similar to tree_check_failed, except that we check that a tree does
9777 not have the specified code, given in CL. */
9778
9779 void
9780 tree_not_class_check_failed (const_tree node, const enum tree_code_class cl,
9781 const char *file, int line, const char *function)
9782 {
9783 internal_error
9784 ("tree check: did not expect class %qs, have %qs (%s) in %s, at %s:%d",
9785 TREE_CODE_CLASS_STRING (cl),
9786 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
9787 get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
9788 }
9789
9790
9791 /* Similar to tree_check_failed but applied to OMP_CLAUSE codes. */
9792
9793 void
9794 omp_clause_check_failed (const_tree node, const char *file, int line,
9795 const char *function, enum omp_clause_code code)
9796 {
9797 internal_error ("tree check: expected %<omp_clause %s%>, have %qs "
9798 "in %s, at %s:%d",
9799 omp_clause_code_name[code],
9800 get_tree_code_name (TREE_CODE (node)),
9801 function, trim_filename (file), line);
9802 }
9803
9804
9805 /* Similar to tree_range_check_failed but applied to OMP_CLAUSE codes. */
9806
9807 void
9808 omp_clause_range_check_failed (const_tree node, const char *file, int line,
9809 const char *function, enum omp_clause_code c1,
9810 enum omp_clause_code c2)
9811 {
9812 char *buffer;
9813 unsigned length = 0;
9814 unsigned int c;
9815
9816 for (c = c1; c <= c2; ++c)
9817 length += 4 + strlen (omp_clause_code_name[c]);
9818
9819 length += strlen ("expected ");
9820 buffer = (char *) alloca (length);
9821 length = 0;
9822
9823 for (c = c1; c <= c2; ++c)
9824 {
9825 const char *prefix = length ? " or " : "expected ";
9826
9827 strcpy (buffer + length, prefix);
9828 length += strlen (prefix);
9829 strcpy (buffer + length, omp_clause_code_name[c]);
9830 length += strlen (omp_clause_code_name[c]);
9831 }
9832
9833 internal_error ("tree check: %s, have %s in %s, at %s:%d",
9834 buffer, omp_clause_code_name[TREE_CODE (node)],
9835 function, trim_filename (file), line);
9836 }
9837
9838
9839 #undef DEFTREESTRUCT
9840 #define DEFTREESTRUCT(VAL, NAME) NAME,
9841
9842 static const char *ts_enum_names[] = {
9843 #include "treestruct.def"
9844 };
9845 #undef DEFTREESTRUCT
9846
9847 #define TS_ENUM_NAME(EN) (ts_enum_names[(EN)])
9848
9849 /* Similar to tree_class_check_failed, except that we check for
9850 whether CODE contains the tree structure identified by EN. */
9851
9852 void
9853 tree_contains_struct_check_failed (const_tree node,
9854 const enum tree_node_structure_enum en,
9855 const char *file, int line,
9856 const char *function)
9857 {
9858 internal_error
9859 ("tree check: expected tree that contains %qs structure, have %qs in %s, at %s:%d",
9860 TS_ENUM_NAME (en),
9861 get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
9862 }
9863
9864
9865 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
9866 (dynamically sized) vector. */
9867
9868 void
9869 tree_int_cst_elt_check_failed (int idx, int len, const char *file, int line,
9870 const char *function)
9871 {
9872 internal_error
9873 ("tree check: accessed elt %d of %<tree_int_cst%> with %d elts in %s, "
9874 "at %s:%d",
9875 idx + 1, len, function, trim_filename (file), line);
9876 }
9877
9878 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
9879 (dynamically sized) vector. */
9880
9881 void
9882 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
9883 const char *function)
9884 {
9885 internal_error
9886 ("tree check: accessed elt %d of %<tree_vec%> with %d elts in %s, at %s:%d",
9887 idx + 1, len, function, trim_filename (file), line);
9888 }
9889
9890 /* Similar to above, except that the check is for the bounds of the operand
9891 vector of an expression node EXP. */
9892
9893 void
9894 tree_operand_check_failed (int idx, const_tree exp, const char *file,
9895 int line, const char *function)
9896 {
9897 enum tree_code code = TREE_CODE (exp);
9898 internal_error
9899 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
9900 idx + 1, get_tree_code_name (code), TREE_OPERAND_LENGTH (exp),
9901 function, trim_filename (file), line);
9902 }
9903
9904 /* Similar to above, except that the check is for the number of
9905 operands of an OMP_CLAUSE node. */
9906
9907 void
9908 omp_clause_operand_check_failed (int idx, const_tree t, const char *file,
9909 int line, const char *function)
9910 {
9911 internal_error
9912 ("tree check: accessed operand %d of %<omp_clause %s%> with %d operands "
9913 "in %s, at %s:%d", idx + 1, omp_clause_code_name[OMP_CLAUSE_CODE (t)],
9914 omp_clause_num_ops [OMP_CLAUSE_CODE (t)], function,
9915 trim_filename (file), line);
9916 }
9917 #endif /* ENABLE_TREE_CHECKING */
9918 \f
9919 /* Create a new vector type node holding NUNITS units of type INNERTYPE,
9920 and mapped to the machine mode MODE. Initialize its fields and build
9921 the information necessary for debugging output. */
9922
9923 static tree
9924 make_vector_type (tree innertype, poly_int64 nunits, machine_mode mode)
9925 {
9926 tree t;
9927 tree mv_innertype = TYPE_MAIN_VARIANT (innertype);
9928
9929 t = make_node (VECTOR_TYPE);
9930 TREE_TYPE (t) = mv_innertype;
9931 SET_TYPE_VECTOR_SUBPARTS (t, nunits);
9932 SET_TYPE_MODE (t, mode);
9933
9934 if (TYPE_STRUCTURAL_EQUALITY_P (mv_innertype) || in_lto_p)
9935 SET_TYPE_STRUCTURAL_EQUALITY (t);
9936 else if ((TYPE_CANONICAL (mv_innertype) != innertype
9937 || mode != VOIDmode)
9938 && !VECTOR_BOOLEAN_TYPE_P (t))
9939 TYPE_CANONICAL (t)
9940 = make_vector_type (TYPE_CANONICAL (mv_innertype), nunits, VOIDmode);
9941
9942 layout_type (t);
9943
9944 hashval_t hash = type_hash_canon_hash (t);
9945 t = type_hash_canon (hash, t);
9946
9947 /* We have built a main variant, based on the main variant of the
9948 inner type. Use it to build the variant we return. */
9949 if ((TYPE_ATTRIBUTES (innertype) || TYPE_QUALS (innertype))
9950 && TREE_TYPE (t) != innertype)
9951 return build_type_attribute_qual_variant (t,
9952 TYPE_ATTRIBUTES (innertype),
9953 TYPE_QUALS (innertype));
9954
9955 return t;
9956 }
9957
9958 static tree
9959 make_or_reuse_type (unsigned size, int unsignedp)
9960 {
9961 int i;
9962
9963 if (size == INT_TYPE_SIZE)
9964 return unsignedp ? unsigned_type_node : integer_type_node;
9965 if (size == CHAR_TYPE_SIZE)
9966 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
9967 if (size == SHORT_TYPE_SIZE)
9968 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
9969 if (size == LONG_TYPE_SIZE)
9970 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
9971 if (size == LONG_LONG_TYPE_SIZE)
9972 return (unsignedp ? long_long_unsigned_type_node
9973 : long_long_integer_type_node);
9974
9975 for (i = 0; i < NUM_INT_N_ENTS; i ++)
9976 if (size == int_n_data[i].bitsize
9977 && int_n_enabled_p[i])
9978 return (unsignedp ? int_n_trees[i].unsigned_type
9979 : int_n_trees[i].signed_type);
9980
9981 if (unsignedp)
9982 return make_unsigned_type (size);
9983 else
9984 return make_signed_type (size);
9985 }
9986
9987 /* Create or reuse a fract type by SIZE, UNSIGNEDP, and SATP. */
9988
9989 static tree
9990 make_or_reuse_fract_type (unsigned size, int unsignedp, int satp)
9991 {
9992 if (satp)
9993 {
9994 if (size == SHORT_FRACT_TYPE_SIZE)
9995 return unsignedp ? sat_unsigned_short_fract_type_node
9996 : sat_short_fract_type_node;
9997 if (size == FRACT_TYPE_SIZE)
9998 return unsignedp ? sat_unsigned_fract_type_node : sat_fract_type_node;
9999 if (size == LONG_FRACT_TYPE_SIZE)
10000 return unsignedp ? sat_unsigned_long_fract_type_node
10001 : sat_long_fract_type_node;
10002 if (size == LONG_LONG_FRACT_TYPE_SIZE)
10003 return unsignedp ? sat_unsigned_long_long_fract_type_node
10004 : sat_long_long_fract_type_node;
10005 }
10006 else
10007 {
10008 if (size == SHORT_FRACT_TYPE_SIZE)
10009 return unsignedp ? unsigned_short_fract_type_node
10010 : short_fract_type_node;
10011 if (size == FRACT_TYPE_SIZE)
10012 return unsignedp ? unsigned_fract_type_node : fract_type_node;
10013 if (size == LONG_FRACT_TYPE_SIZE)
10014 return unsignedp ? unsigned_long_fract_type_node
10015 : long_fract_type_node;
10016 if (size == LONG_LONG_FRACT_TYPE_SIZE)
10017 return unsignedp ? unsigned_long_long_fract_type_node
10018 : long_long_fract_type_node;
10019 }
10020
10021 return make_fract_type (size, unsignedp, satp);
10022 }
10023
10024 /* Create or reuse an accum type by SIZE, UNSIGNEDP, and SATP. */
10025
10026 static tree
10027 make_or_reuse_accum_type (unsigned size, int unsignedp, int satp)
10028 {
10029 if (satp)
10030 {
10031 if (size == SHORT_ACCUM_TYPE_SIZE)
10032 return unsignedp ? sat_unsigned_short_accum_type_node
10033 : sat_short_accum_type_node;
10034 if (size == ACCUM_TYPE_SIZE)
10035 return unsignedp ? sat_unsigned_accum_type_node : sat_accum_type_node;
10036 if (size == LONG_ACCUM_TYPE_SIZE)
10037 return unsignedp ? sat_unsigned_long_accum_type_node
10038 : sat_long_accum_type_node;
10039 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
10040 return unsignedp ? sat_unsigned_long_long_accum_type_node
10041 : sat_long_long_accum_type_node;
10042 }
10043 else
10044 {
10045 if (size == SHORT_ACCUM_TYPE_SIZE)
10046 return unsignedp ? unsigned_short_accum_type_node
10047 : short_accum_type_node;
10048 if (size == ACCUM_TYPE_SIZE)
10049 return unsignedp ? unsigned_accum_type_node : accum_type_node;
10050 if (size == LONG_ACCUM_TYPE_SIZE)
10051 return unsignedp ? unsigned_long_accum_type_node
10052 : long_accum_type_node;
10053 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
10054 return unsignedp ? unsigned_long_long_accum_type_node
10055 : long_long_accum_type_node;
10056 }
10057
10058 return make_accum_type (size, unsignedp, satp);
10059 }
10060
10061
10062 /* Create an atomic variant node for TYPE. This routine is called
10063 during initialization of data types to create the 5 basic atomic
10064 types. The generic build_variant_type function requires these to
10065 already be set up in order to function properly, so cannot be
10066 called from there. If ALIGN is non-zero, then ensure alignment is
10067 overridden to this value. */
10068
10069 static tree
10070 build_atomic_base (tree type, unsigned int align)
10071 {
10072 tree t;
10073
10074 /* Make sure its not already registered. */
10075 if ((t = get_qualified_type (type, TYPE_QUAL_ATOMIC)))
10076 return t;
10077
10078 t = build_variant_type_copy (type);
10079 set_type_quals (t, TYPE_QUAL_ATOMIC);
10080
10081 if (align)
10082 SET_TYPE_ALIGN (t, align);
10083
10084 return t;
10085 }
10086
10087 /* Information about the _FloatN and _FloatNx types. This must be in
10088 the same order as the corresponding TI_* enum values. */
10089 const floatn_type_info floatn_nx_types[NUM_FLOATN_NX_TYPES] =
10090 {
10091 { 16, false },
10092 { 32, false },
10093 { 64, false },
10094 { 128, false },
10095 { 32, true },
10096 { 64, true },
10097 { 128, true },
10098 };
10099
10100
10101 /* Create nodes for all integer types (and error_mark_node) using the sizes
10102 of C datatypes. SIGNED_CHAR specifies whether char is signed. */
10103
10104 void
10105 build_common_tree_nodes (bool signed_char)
10106 {
10107 int i;
10108
10109 error_mark_node = make_node (ERROR_MARK);
10110 TREE_TYPE (error_mark_node) = error_mark_node;
10111
10112 initialize_sizetypes ();
10113
10114 /* Define both `signed char' and `unsigned char'. */
10115 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
10116 TYPE_STRING_FLAG (signed_char_type_node) = 1;
10117 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
10118 TYPE_STRING_FLAG (unsigned_char_type_node) = 1;
10119
10120 /* Define `char', which is like either `signed char' or `unsigned char'
10121 but not the same as either. */
10122 char_type_node
10123 = (signed_char
10124 ? make_signed_type (CHAR_TYPE_SIZE)
10125 : make_unsigned_type (CHAR_TYPE_SIZE));
10126 TYPE_STRING_FLAG (char_type_node) = 1;
10127
10128 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
10129 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
10130 integer_type_node = make_signed_type (INT_TYPE_SIZE);
10131 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
10132 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
10133 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
10134 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
10135 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
10136
10137 for (i = 0; i < NUM_INT_N_ENTS; i ++)
10138 {
10139 int_n_trees[i].signed_type = make_signed_type (int_n_data[i].bitsize);
10140 int_n_trees[i].unsigned_type = make_unsigned_type (int_n_data[i].bitsize);
10141
10142 if (int_n_enabled_p[i])
10143 {
10144 integer_types[itk_intN_0 + i * 2] = int_n_trees[i].signed_type;
10145 integer_types[itk_unsigned_intN_0 + i * 2] = int_n_trees[i].unsigned_type;
10146 }
10147 }
10148
10149 /* Define a boolean type. This type only represents boolean values but
10150 may be larger than char depending on the value of BOOL_TYPE_SIZE. */
10151 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
10152 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
10153 TYPE_PRECISION (boolean_type_node) = 1;
10154 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
10155
10156 /* Define what type to use for size_t. */
10157 if (strcmp (SIZE_TYPE, "unsigned int") == 0)
10158 size_type_node = unsigned_type_node;
10159 else if (strcmp (SIZE_TYPE, "long unsigned int") == 0)
10160 size_type_node = long_unsigned_type_node;
10161 else if (strcmp (SIZE_TYPE, "long long unsigned int") == 0)
10162 size_type_node = long_long_unsigned_type_node;
10163 else if (strcmp (SIZE_TYPE, "short unsigned int") == 0)
10164 size_type_node = short_unsigned_type_node;
10165 else
10166 {
10167 int i;
10168
10169 size_type_node = NULL_TREE;
10170 for (i = 0; i < NUM_INT_N_ENTS; i++)
10171 if (int_n_enabled_p[i])
10172 {
10173 char name[50], altname[50];
10174 sprintf (name, "__int%d unsigned", int_n_data[i].bitsize);
10175 sprintf (altname, "__int%d__ unsigned", int_n_data[i].bitsize);
10176
10177 if (strcmp (name, SIZE_TYPE) == 0
10178 || strcmp (altname, SIZE_TYPE) == 0)
10179 {
10180 size_type_node = int_n_trees[i].unsigned_type;
10181 }
10182 }
10183 if (size_type_node == NULL_TREE)
10184 gcc_unreachable ();
10185 }
10186
10187 /* Define what type to use for ptrdiff_t. */
10188 if (strcmp (PTRDIFF_TYPE, "int") == 0)
10189 ptrdiff_type_node = integer_type_node;
10190 else if (strcmp (PTRDIFF_TYPE, "long int") == 0)
10191 ptrdiff_type_node = long_integer_type_node;
10192 else if (strcmp (PTRDIFF_TYPE, "long long int") == 0)
10193 ptrdiff_type_node = long_long_integer_type_node;
10194 else if (strcmp (PTRDIFF_TYPE, "short int") == 0)
10195 ptrdiff_type_node = short_integer_type_node;
10196 else
10197 {
10198 ptrdiff_type_node = NULL_TREE;
10199 for (int i = 0; i < NUM_INT_N_ENTS; i++)
10200 if (int_n_enabled_p[i])
10201 {
10202 char name[50], altname[50];
10203 sprintf (name, "__int%d", int_n_data[i].bitsize);
10204 sprintf (altname, "__int%d__", int_n_data[i].bitsize);
10205
10206 if (strcmp (name, PTRDIFF_TYPE) == 0
10207 || strcmp (altname, PTRDIFF_TYPE) == 0)
10208 ptrdiff_type_node = int_n_trees[i].signed_type;
10209 }
10210 if (ptrdiff_type_node == NULL_TREE)
10211 gcc_unreachable ();
10212 }
10213
10214 /* Fill in the rest of the sized types. Reuse existing type nodes
10215 when possible. */
10216 intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
10217 intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
10218 intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
10219 intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
10220 intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);
10221
10222 unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
10223 unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
10224 unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
10225 unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
10226 unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);
10227
10228 /* Don't call build_qualified type for atomics. That routine does
10229 special processing for atomics, and until they are initialized
10230 it's better not to make that call.
10231
10232 Check to see if there is a target override for atomic types. */
10233
10234 atomicQI_type_node = build_atomic_base (unsigned_intQI_type_node,
10235 targetm.atomic_align_for_mode (QImode));
10236 atomicHI_type_node = build_atomic_base (unsigned_intHI_type_node,
10237 targetm.atomic_align_for_mode (HImode));
10238 atomicSI_type_node = build_atomic_base (unsigned_intSI_type_node,
10239 targetm.atomic_align_for_mode (SImode));
10240 atomicDI_type_node = build_atomic_base (unsigned_intDI_type_node,
10241 targetm.atomic_align_for_mode (DImode));
10242 atomicTI_type_node = build_atomic_base (unsigned_intTI_type_node,
10243 targetm.atomic_align_for_mode (TImode));
10244
10245 access_public_node = get_identifier ("public");
10246 access_protected_node = get_identifier ("protected");
10247 access_private_node = get_identifier ("private");
10248
10249 /* Define these next since types below may used them. */
10250 integer_zero_node = build_int_cst (integer_type_node, 0);
10251 integer_one_node = build_int_cst (integer_type_node, 1);
10252 integer_three_node = build_int_cst (integer_type_node, 3);
10253 integer_minus_one_node = build_int_cst (integer_type_node, -1);
10254
10255 size_zero_node = size_int (0);
10256 size_one_node = size_int (1);
10257 bitsize_zero_node = bitsize_int (0);
10258 bitsize_one_node = bitsize_int (1);
10259 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
10260
10261 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
10262 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
10263
10264 void_type_node = make_node (VOID_TYPE);
10265 layout_type (void_type_node);
10266
10267 /* We are not going to have real types in C with less than byte alignment,
10268 so we might as well not have any types that claim to have it. */
10269 SET_TYPE_ALIGN (void_type_node, BITS_PER_UNIT);
10270 TYPE_USER_ALIGN (void_type_node) = 0;
10271
10272 void_node = make_node (VOID_CST);
10273 TREE_TYPE (void_node) = void_type_node;
10274
10275 null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
10276 layout_type (TREE_TYPE (null_pointer_node));
10277
10278 ptr_type_node = build_pointer_type (void_type_node);
10279 const_ptr_type_node
10280 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
10281 for (unsigned i = 0;
10282 i < sizeof (builtin_structptr_types) / sizeof (builtin_structptr_type);
10283 ++i)
10284 builtin_structptr_types[i].node = builtin_structptr_types[i].base;
10285
10286 pointer_sized_int_node = build_nonstandard_integer_type (POINTER_SIZE, 1);
10287
10288 float_type_node = make_node (REAL_TYPE);
10289 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
10290 layout_type (float_type_node);
10291
10292 double_type_node = make_node (REAL_TYPE);
10293 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
10294 layout_type (double_type_node);
10295
10296 long_double_type_node = make_node (REAL_TYPE);
10297 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
10298 layout_type (long_double_type_node);
10299
10300 for (i = 0; i < NUM_FLOATN_NX_TYPES; i++)
10301 {
10302 int n = floatn_nx_types[i].n;
10303 bool extended = floatn_nx_types[i].extended;
10304 scalar_float_mode mode;
10305 if (!targetm.floatn_mode (n, extended).exists (&mode))
10306 continue;
10307 int precision = GET_MODE_PRECISION (mode);
10308 /* Work around the rs6000 KFmode having precision 113 not
10309 128. */
10310 const struct real_format *fmt = REAL_MODE_FORMAT (mode);
10311 gcc_assert (fmt->b == 2 && fmt->emin + fmt->emax == 3);
10312 int min_precision = fmt->p + ceil_log2 (fmt->emax - fmt->emin);
10313 if (!extended)
10314 gcc_assert (min_precision == n);
10315 if (precision < min_precision)
10316 precision = min_precision;
10317 FLOATN_NX_TYPE_NODE (i) = make_node (REAL_TYPE);
10318 TYPE_PRECISION (FLOATN_NX_TYPE_NODE (i)) = precision;
10319 layout_type (FLOATN_NX_TYPE_NODE (i));
10320 SET_TYPE_MODE (FLOATN_NX_TYPE_NODE (i), mode);
10321 }
10322
10323 float_ptr_type_node = build_pointer_type (float_type_node);
10324 double_ptr_type_node = build_pointer_type (double_type_node);
10325 long_double_ptr_type_node = build_pointer_type (long_double_type_node);
10326 integer_ptr_type_node = build_pointer_type (integer_type_node);
10327
10328 /* Fixed size integer types. */
10329 uint16_type_node = make_or_reuse_type (16, 1);
10330 uint32_type_node = make_or_reuse_type (32, 1);
10331 uint64_type_node = make_or_reuse_type (64, 1);
10332 if (targetm.scalar_mode_supported_p (TImode))
10333 uint128_type_node = make_or_reuse_type (128, 1);
10334
10335 /* Decimal float types. */
10336 if (targetm.decimal_float_supported_p ())
10337 {
10338 dfloat32_type_node = make_node (REAL_TYPE);
10339 TYPE_PRECISION (dfloat32_type_node) = DECIMAL32_TYPE_SIZE;
10340 SET_TYPE_MODE (dfloat32_type_node, SDmode);
10341 layout_type (dfloat32_type_node);
10342
10343 dfloat64_type_node = make_node (REAL_TYPE);
10344 TYPE_PRECISION (dfloat64_type_node) = DECIMAL64_TYPE_SIZE;
10345 SET_TYPE_MODE (dfloat64_type_node, DDmode);
10346 layout_type (dfloat64_type_node);
10347
10348 dfloat128_type_node = make_node (REAL_TYPE);
10349 TYPE_PRECISION (dfloat128_type_node) = DECIMAL128_TYPE_SIZE;
10350 SET_TYPE_MODE (dfloat128_type_node, TDmode);
10351 layout_type (dfloat128_type_node);
10352 }
10353
10354 complex_integer_type_node = build_complex_type (integer_type_node, true);
10355 complex_float_type_node = build_complex_type (float_type_node, true);
10356 complex_double_type_node = build_complex_type (double_type_node, true);
10357 complex_long_double_type_node = build_complex_type (long_double_type_node,
10358 true);
10359
10360 for (i = 0; i < NUM_FLOATN_NX_TYPES; i++)
10361 {
10362 if (FLOATN_NX_TYPE_NODE (i) != NULL_TREE)
10363 COMPLEX_FLOATN_NX_TYPE_NODE (i)
10364 = build_complex_type (FLOATN_NX_TYPE_NODE (i));
10365 }
10366
10367 /* Make fixed-point nodes based on sat/non-sat and signed/unsigned. */
10368 #define MAKE_FIXED_TYPE_NODE(KIND,SIZE) \
10369 sat_ ## KIND ## _type_node = \
10370 make_sat_signed_ ## KIND ## _type (SIZE); \
10371 sat_unsigned_ ## KIND ## _type_node = \
10372 make_sat_unsigned_ ## KIND ## _type (SIZE); \
10373 KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
10374 unsigned_ ## KIND ## _type_node = \
10375 make_unsigned_ ## KIND ## _type (SIZE);
10376
10377 #define MAKE_FIXED_TYPE_NODE_WIDTH(KIND,WIDTH,SIZE) \
10378 sat_ ## WIDTH ## KIND ## _type_node = \
10379 make_sat_signed_ ## KIND ## _type (SIZE); \
10380 sat_unsigned_ ## WIDTH ## KIND ## _type_node = \
10381 make_sat_unsigned_ ## KIND ## _type (SIZE); \
10382 WIDTH ## KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
10383 unsigned_ ## WIDTH ## KIND ## _type_node = \
10384 make_unsigned_ ## KIND ## _type (SIZE);
10385
10386 /* Make fixed-point type nodes based on four different widths. */
10387 #define MAKE_FIXED_TYPE_NODE_FAMILY(N1,N2) \
10388 MAKE_FIXED_TYPE_NODE_WIDTH (N1, short_, SHORT_ ## N2 ## _TYPE_SIZE) \
10389 MAKE_FIXED_TYPE_NODE (N1, N2 ## _TYPE_SIZE) \
10390 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_, LONG_ ## N2 ## _TYPE_SIZE) \
10391 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_long_, LONG_LONG_ ## N2 ## _TYPE_SIZE)
10392
10393 /* Make fixed-point mode nodes based on sat/non-sat and signed/unsigned. */
10394 #define MAKE_FIXED_MODE_NODE(KIND,NAME,MODE) \
10395 NAME ## _type_node = \
10396 make_or_reuse_signed_ ## KIND ## _type (GET_MODE_BITSIZE (MODE ## mode)); \
10397 u ## NAME ## _type_node = \
10398 make_or_reuse_unsigned_ ## KIND ## _type \
10399 (GET_MODE_BITSIZE (U ## MODE ## mode)); \
10400 sat_ ## NAME ## _type_node = \
10401 make_or_reuse_sat_signed_ ## KIND ## _type \
10402 (GET_MODE_BITSIZE (MODE ## mode)); \
10403 sat_u ## NAME ## _type_node = \
10404 make_or_reuse_sat_unsigned_ ## KIND ## _type \
10405 (GET_MODE_BITSIZE (U ## MODE ## mode));
10406
10407 /* Fixed-point type and mode nodes. */
10408 MAKE_FIXED_TYPE_NODE_FAMILY (fract, FRACT)
10409 MAKE_FIXED_TYPE_NODE_FAMILY (accum, ACCUM)
10410 MAKE_FIXED_MODE_NODE (fract, qq, QQ)
10411 MAKE_FIXED_MODE_NODE (fract, hq, HQ)
10412 MAKE_FIXED_MODE_NODE (fract, sq, SQ)
10413 MAKE_FIXED_MODE_NODE (fract, dq, DQ)
10414 MAKE_FIXED_MODE_NODE (fract, tq, TQ)
10415 MAKE_FIXED_MODE_NODE (accum, ha, HA)
10416 MAKE_FIXED_MODE_NODE (accum, sa, SA)
10417 MAKE_FIXED_MODE_NODE (accum, da, DA)
10418 MAKE_FIXED_MODE_NODE (accum, ta, TA)
10419
10420 {
10421 tree t = targetm.build_builtin_va_list ();
10422
10423 /* Many back-ends define record types without setting TYPE_NAME.
10424 If we copied the record type here, we'd keep the original
10425 record type without a name. This breaks name mangling. So,
10426 don't copy record types and let c_common_nodes_and_builtins()
10427 declare the type to be __builtin_va_list. */
10428 if (TREE_CODE (t) != RECORD_TYPE)
10429 t = build_variant_type_copy (t);
10430
10431 va_list_type_node = t;
10432 }
10433
10434 /* SCEV analyzer global shared trees. */
10435 chrec_dont_know = make_node (SCEV_NOT_KNOWN);
10436 TREE_TYPE (chrec_dont_know) = void_type_node;
10437 chrec_known = make_node (SCEV_KNOWN);
10438 TREE_TYPE (chrec_known) = void_type_node;
10439 }
10440
10441 /* Modify DECL for given flags.
10442 TM_PURE attribute is set only on types, so the function will modify
10443 DECL's type when ECF_TM_PURE is used. */
10444
10445 void
10446 set_call_expr_flags (tree decl, int flags)
10447 {
10448 if (flags & ECF_NOTHROW)
10449 TREE_NOTHROW (decl) = 1;
10450 if (flags & ECF_CONST)
10451 TREE_READONLY (decl) = 1;
10452 if (flags & ECF_PURE)
10453 DECL_PURE_P (decl) = 1;
10454 if (flags & ECF_LOOPING_CONST_OR_PURE)
10455 DECL_LOOPING_CONST_OR_PURE_P (decl) = 1;
10456 if (flags & ECF_NOVOPS)
10457 DECL_IS_NOVOPS (decl) = 1;
10458 if (flags & ECF_NORETURN)
10459 TREE_THIS_VOLATILE (decl) = 1;
10460 if (flags & ECF_MALLOC)
10461 DECL_IS_MALLOC (decl) = 1;
10462 if (flags & ECF_RETURNS_TWICE)
10463 DECL_IS_RETURNS_TWICE (decl) = 1;
10464 if (flags & ECF_LEAF)
10465 DECL_ATTRIBUTES (decl) = tree_cons (get_identifier ("leaf"),
10466 NULL, DECL_ATTRIBUTES (decl));
10467 if (flags & ECF_COLD)
10468 DECL_ATTRIBUTES (decl) = tree_cons (get_identifier ("cold"),
10469 NULL, DECL_ATTRIBUTES (decl));
10470 if (flags & ECF_RET1)
10471 DECL_ATTRIBUTES (decl)
10472 = tree_cons (get_identifier ("fn spec"),
10473 build_tree_list (NULL_TREE, build_string (1, "1")),
10474 DECL_ATTRIBUTES (decl));
10475 if ((flags & ECF_TM_PURE) && flag_tm)
10476 apply_tm_attr (decl, get_identifier ("transaction_pure"));
10477 /* Looping const or pure is implied by noreturn.
10478 There is currently no way to declare looping const or looping pure alone. */
10479 gcc_assert (!(flags & ECF_LOOPING_CONST_OR_PURE)
10480 || ((flags & ECF_NORETURN) && (flags & (ECF_CONST | ECF_PURE))));
10481 }
10482
10483
10484 /* A subroutine of build_common_builtin_nodes. Define a builtin function. */
10485
10486 static void
10487 local_define_builtin (const char *name, tree type, enum built_in_function code,
10488 const char *library_name, int ecf_flags)
10489 {
10490 tree decl;
10491
10492 decl = add_builtin_function (name, type, code, BUILT_IN_NORMAL,
10493 library_name, NULL_TREE);
10494 set_call_expr_flags (decl, ecf_flags);
10495
10496 set_builtin_decl (code, decl, true);
10497 }
10498
10499 /* Call this function after instantiating all builtins that the language
10500 front end cares about. This will build the rest of the builtins
10501 and internal functions that are relied upon by the tree optimizers and
10502 the middle-end. */
10503
10504 void
10505 build_common_builtin_nodes (void)
10506 {
10507 tree tmp, ftype;
10508 int ecf_flags;
10509
10510 if (!builtin_decl_explicit_p (BUILT_IN_UNREACHABLE)
10511 || !builtin_decl_explicit_p (BUILT_IN_ABORT))
10512 {
10513 ftype = build_function_type (void_type_node, void_list_node);
10514 if (!builtin_decl_explicit_p (BUILT_IN_UNREACHABLE))
10515 local_define_builtin ("__builtin_unreachable", ftype,
10516 BUILT_IN_UNREACHABLE,
10517 "__builtin_unreachable",
10518 ECF_NOTHROW | ECF_LEAF | ECF_NORETURN
10519 | ECF_CONST | ECF_COLD);
10520 if (!builtin_decl_explicit_p (BUILT_IN_ABORT))
10521 local_define_builtin ("__builtin_abort", ftype, BUILT_IN_ABORT,
10522 "abort",
10523 ECF_LEAF | ECF_NORETURN | ECF_CONST | ECF_COLD);
10524 }
10525
10526 if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY)
10527 || !builtin_decl_explicit_p (BUILT_IN_MEMMOVE))
10528 {
10529 ftype = build_function_type_list (ptr_type_node,
10530 ptr_type_node, const_ptr_type_node,
10531 size_type_node, NULL_TREE);
10532
10533 if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY))
10534 local_define_builtin ("__builtin_memcpy", ftype, BUILT_IN_MEMCPY,
10535 "memcpy", ECF_NOTHROW | ECF_LEAF | ECF_RET1);
10536 if (!builtin_decl_explicit_p (BUILT_IN_MEMMOVE))
10537 local_define_builtin ("__builtin_memmove", ftype, BUILT_IN_MEMMOVE,
10538 "memmove", ECF_NOTHROW | ECF_LEAF | ECF_RET1);
10539 }
10540
10541 if (!builtin_decl_explicit_p (BUILT_IN_MEMCMP))
10542 {
10543 ftype = build_function_type_list (integer_type_node, const_ptr_type_node,
10544 const_ptr_type_node, size_type_node,
10545 NULL_TREE);
10546 local_define_builtin ("__builtin_memcmp", ftype, BUILT_IN_MEMCMP,
10547 "memcmp", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10548 }
10549
10550 if (!builtin_decl_explicit_p (BUILT_IN_MEMSET))
10551 {
10552 ftype = build_function_type_list (ptr_type_node,
10553 ptr_type_node, integer_type_node,
10554 size_type_node, NULL_TREE);
10555 local_define_builtin ("__builtin_memset", ftype, BUILT_IN_MEMSET,
10556 "memset", ECF_NOTHROW | ECF_LEAF | ECF_RET1);
10557 }
10558
10559 /* If we're checking the stack, `alloca' can throw. */
10560 const int alloca_flags
10561 = ECF_MALLOC | ECF_LEAF | (flag_stack_check ? 0 : ECF_NOTHROW);
10562
10563 if (!builtin_decl_explicit_p (BUILT_IN_ALLOCA))
10564 {
10565 ftype = build_function_type_list (ptr_type_node,
10566 size_type_node, NULL_TREE);
10567 local_define_builtin ("__builtin_alloca", ftype, BUILT_IN_ALLOCA,
10568 "alloca", alloca_flags);
10569 }
10570
10571 ftype = build_function_type_list (ptr_type_node, size_type_node,
10572 size_type_node, NULL_TREE);
10573 local_define_builtin ("__builtin_alloca_with_align", ftype,
10574 BUILT_IN_ALLOCA_WITH_ALIGN,
10575 "__builtin_alloca_with_align",
10576 alloca_flags);
10577
10578 ftype = build_function_type_list (ptr_type_node, size_type_node,
10579 size_type_node, size_type_node, NULL_TREE);
10580 local_define_builtin ("__builtin_alloca_with_align_and_max", ftype,
10581 BUILT_IN_ALLOCA_WITH_ALIGN_AND_MAX,
10582 "__builtin_alloca_with_align_and_max",
10583 alloca_flags);
10584
10585 ftype = build_function_type_list (void_type_node,
10586 ptr_type_node, ptr_type_node,
10587 ptr_type_node, NULL_TREE);
10588 local_define_builtin ("__builtin_init_trampoline", ftype,
10589 BUILT_IN_INIT_TRAMPOLINE,
10590 "__builtin_init_trampoline", ECF_NOTHROW | ECF_LEAF);
10591 local_define_builtin ("__builtin_init_heap_trampoline", ftype,
10592 BUILT_IN_INIT_HEAP_TRAMPOLINE,
10593 "__builtin_init_heap_trampoline",
10594 ECF_NOTHROW | ECF_LEAF);
10595 local_define_builtin ("__builtin_init_descriptor", ftype,
10596 BUILT_IN_INIT_DESCRIPTOR,
10597 "__builtin_init_descriptor", ECF_NOTHROW | ECF_LEAF);
10598
10599 ftype = build_function_type_list (ptr_type_node, ptr_type_node, NULL_TREE);
10600 local_define_builtin ("__builtin_adjust_trampoline", ftype,
10601 BUILT_IN_ADJUST_TRAMPOLINE,
10602 "__builtin_adjust_trampoline",
10603 ECF_CONST | ECF_NOTHROW);
10604 local_define_builtin ("__builtin_adjust_descriptor", ftype,
10605 BUILT_IN_ADJUST_DESCRIPTOR,
10606 "__builtin_adjust_descriptor",
10607 ECF_CONST | ECF_NOTHROW);
10608
10609 ftype = build_function_type_list (void_type_node,
10610 ptr_type_node, ptr_type_node, NULL_TREE);
10611 local_define_builtin ("__builtin_nonlocal_goto", ftype,
10612 BUILT_IN_NONLOCAL_GOTO,
10613 "__builtin_nonlocal_goto",
10614 ECF_NORETURN | ECF_NOTHROW);
10615
10616 ftype = build_function_type_list (void_type_node,
10617 ptr_type_node, ptr_type_node, NULL_TREE);
10618 local_define_builtin ("__builtin_setjmp_setup", ftype,
10619 BUILT_IN_SETJMP_SETUP,
10620 "__builtin_setjmp_setup", ECF_NOTHROW);
10621
10622 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
10623 local_define_builtin ("__builtin_setjmp_receiver", ftype,
10624 BUILT_IN_SETJMP_RECEIVER,
10625 "__builtin_setjmp_receiver", ECF_NOTHROW | ECF_LEAF);
10626
10627 ftype = build_function_type_list (ptr_type_node, NULL_TREE);
10628 local_define_builtin ("__builtin_stack_save", ftype, BUILT_IN_STACK_SAVE,
10629 "__builtin_stack_save", ECF_NOTHROW | ECF_LEAF);
10630
10631 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
10632 local_define_builtin ("__builtin_stack_restore", ftype,
10633 BUILT_IN_STACK_RESTORE,
10634 "__builtin_stack_restore", ECF_NOTHROW | ECF_LEAF);
10635
10636 ftype = build_function_type_list (integer_type_node, const_ptr_type_node,
10637 const_ptr_type_node, size_type_node,
10638 NULL_TREE);
10639 local_define_builtin ("__builtin_memcmp_eq", ftype, BUILT_IN_MEMCMP_EQ,
10640 "__builtin_memcmp_eq",
10641 ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10642
10643 local_define_builtin ("__builtin_strncmp_eq", ftype, BUILT_IN_STRNCMP_EQ,
10644 "__builtin_strncmp_eq",
10645 ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10646
10647 local_define_builtin ("__builtin_strcmp_eq", ftype, BUILT_IN_STRCMP_EQ,
10648 "__builtin_strcmp_eq",
10649 ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10650
10651 /* If there's a possibility that we might use the ARM EABI, build the
10652 alternate __cxa_end_cleanup node used to resume from C++. */
10653 if (targetm.arm_eabi_unwinder)
10654 {
10655 ftype = build_function_type_list (void_type_node, NULL_TREE);
10656 local_define_builtin ("__builtin_cxa_end_cleanup", ftype,
10657 BUILT_IN_CXA_END_CLEANUP,
10658 "__cxa_end_cleanup", ECF_NORETURN | ECF_LEAF);
10659 }
10660
10661 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
10662 local_define_builtin ("__builtin_unwind_resume", ftype,
10663 BUILT_IN_UNWIND_RESUME,
10664 ((targetm_common.except_unwind_info (&global_options)
10665 == UI_SJLJ)
10666 ? "_Unwind_SjLj_Resume" : "_Unwind_Resume"),
10667 ECF_NORETURN);
10668
10669 if (builtin_decl_explicit (BUILT_IN_RETURN_ADDRESS) == NULL_TREE)
10670 {
10671 ftype = build_function_type_list (ptr_type_node, integer_type_node,
10672 NULL_TREE);
10673 local_define_builtin ("__builtin_return_address", ftype,
10674 BUILT_IN_RETURN_ADDRESS,
10675 "__builtin_return_address",
10676 ECF_NOTHROW);
10677 }
10678
10679 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER)
10680 || !builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT))
10681 {
10682 ftype = build_function_type_list (void_type_node, ptr_type_node,
10683 ptr_type_node, NULL_TREE);
10684 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER))
10685 local_define_builtin ("__cyg_profile_func_enter", ftype,
10686 BUILT_IN_PROFILE_FUNC_ENTER,
10687 "__cyg_profile_func_enter", 0);
10688 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT))
10689 local_define_builtin ("__cyg_profile_func_exit", ftype,
10690 BUILT_IN_PROFILE_FUNC_EXIT,
10691 "__cyg_profile_func_exit", 0);
10692 }
10693
10694 /* The exception object and filter values from the runtime. The argument
10695 must be zero before exception lowering, i.e. from the front end. After
10696 exception lowering, it will be the region number for the exception
10697 landing pad. These functions are PURE instead of CONST to prevent
10698 them from being hoisted past the exception edge that will initialize
10699 its value in the landing pad. */
10700 ftype = build_function_type_list (ptr_type_node,
10701 integer_type_node, NULL_TREE);
10702 ecf_flags = ECF_PURE | ECF_NOTHROW | ECF_LEAF;
10703 /* Only use TM_PURE if we have TM language support. */
10704 if (builtin_decl_explicit_p (BUILT_IN_TM_LOAD_1))
10705 ecf_flags |= ECF_TM_PURE;
10706 local_define_builtin ("__builtin_eh_pointer", ftype, BUILT_IN_EH_POINTER,
10707 "__builtin_eh_pointer", ecf_flags);
10708
10709 tmp = lang_hooks.types.type_for_mode (targetm.eh_return_filter_mode (), 0);
10710 ftype = build_function_type_list (tmp, integer_type_node, NULL_TREE);
10711 local_define_builtin ("__builtin_eh_filter", ftype, BUILT_IN_EH_FILTER,
10712 "__builtin_eh_filter", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10713
10714 ftype = build_function_type_list (void_type_node,
10715 integer_type_node, integer_type_node,
10716 NULL_TREE);
10717 local_define_builtin ("__builtin_eh_copy_values", ftype,
10718 BUILT_IN_EH_COPY_VALUES,
10719 "__builtin_eh_copy_values", ECF_NOTHROW);
10720
10721 /* Complex multiplication and division. These are handled as builtins
10722 rather than optabs because emit_library_call_value doesn't support
10723 complex. Further, we can do slightly better with folding these
10724 beasties if the real and complex parts of the arguments are separate. */
10725 {
10726 int mode;
10727
10728 for (mode = MIN_MODE_COMPLEX_FLOAT; mode <= MAX_MODE_COMPLEX_FLOAT; ++mode)
10729 {
10730 char mode_name_buf[4], *q;
10731 const char *p;
10732 enum built_in_function mcode, dcode;
10733 tree type, inner_type;
10734 const char *prefix = "__";
10735
10736 if (targetm.libfunc_gnu_prefix)
10737 prefix = "__gnu_";
10738
10739 type = lang_hooks.types.type_for_mode ((machine_mode) mode, 0);
10740 if (type == NULL)
10741 continue;
10742 inner_type = TREE_TYPE (type);
10743
10744 ftype = build_function_type_list (type, inner_type, inner_type,
10745 inner_type, inner_type, NULL_TREE);
10746
10747 mcode = ((enum built_in_function)
10748 (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
10749 dcode = ((enum built_in_function)
10750 (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
10751
10752 for (p = GET_MODE_NAME (mode), q = mode_name_buf; *p; p++, q++)
10753 *q = TOLOWER (*p);
10754 *q = '\0';
10755
10756 /* For -ftrapping-math these should throw from a former
10757 -fnon-call-exception stmt. */
10758 built_in_names[mcode] = concat (prefix, "mul", mode_name_buf, "3",
10759 NULL);
10760 local_define_builtin (built_in_names[mcode], ftype, mcode,
10761 built_in_names[mcode],
10762 ECF_CONST | ECF_LEAF);
10763
10764 built_in_names[dcode] = concat (prefix, "div", mode_name_buf, "3",
10765 NULL);
10766 local_define_builtin (built_in_names[dcode], ftype, dcode,
10767 built_in_names[dcode],
10768 ECF_CONST | ECF_LEAF);
10769 }
10770 }
10771
10772 init_internal_fns ();
10773 }
10774
10775 /* HACK. GROSS. This is absolutely disgusting. I wish there was a
10776 better way.
10777
10778 If we requested a pointer to a vector, build up the pointers that
10779 we stripped off while looking for the inner type. Similarly for
10780 return values from functions.
10781
10782 The argument TYPE is the top of the chain, and BOTTOM is the
10783 new type which we will point to. */
10784
10785 tree
10786 reconstruct_complex_type (tree type, tree bottom)
10787 {
10788 tree inner, outer;
10789
10790 if (TREE_CODE (type) == POINTER_TYPE)
10791 {
10792 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10793 outer = build_pointer_type_for_mode (inner, TYPE_MODE (type),
10794 TYPE_REF_CAN_ALIAS_ALL (type));
10795 }
10796 else if (TREE_CODE (type) == REFERENCE_TYPE)
10797 {
10798 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10799 outer = build_reference_type_for_mode (inner, TYPE_MODE (type),
10800 TYPE_REF_CAN_ALIAS_ALL (type));
10801 }
10802 else if (TREE_CODE (type) == ARRAY_TYPE)
10803 {
10804 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10805 outer = build_array_type (inner, TYPE_DOMAIN (type));
10806 }
10807 else if (TREE_CODE (type) == FUNCTION_TYPE)
10808 {
10809 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10810 outer = build_function_type (inner, TYPE_ARG_TYPES (type));
10811 }
10812 else if (TREE_CODE (type) == METHOD_TYPE)
10813 {
10814 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10815 /* The build_method_type_directly() routine prepends 'this' to argument list,
10816 so we must compensate by getting rid of it. */
10817 outer
10818 = build_method_type_directly
10819 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (type))),
10820 inner,
10821 TREE_CHAIN (TYPE_ARG_TYPES (type)));
10822 }
10823 else if (TREE_CODE (type) == OFFSET_TYPE)
10824 {
10825 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10826 outer = build_offset_type (TYPE_OFFSET_BASETYPE (type), inner);
10827 }
10828 else
10829 return bottom;
10830
10831 return build_type_attribute_qual_variant (outer, TYPE_ATTRIBUTES (type),
10832 TYPE_QUALS (type));
10833 }
10834
10835 /* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
10836 the inner type. */
10837 tree
10838 build_vector_type_for_mode (tree innertype, machine_mode mode)
10839 {
10840 poly_int64 nunits;
10841 unsigned int bitsize;
10842
10843 switch (GET_MODE_CLASS (mode))
10844 {
10845 case MODE_VECTOR_BOOL:
10846 case MODE_VECTOR_INT:
10847 case MODE_VECTOR_FLOAT:
10848 case MODE_VECTOR_FRACT:
10849 case MODE_VECTOR_UFRACT:
10850 case MODE_VECTOR_ACCUM:
10851 case MODE_VECTOR_UACCUM:
10852 nunits = GET_MODE_NUNITS (mode);
10853 break;
10854
10855 case MODE_INT:
10856 /* Check that there are no leftover bits. */
10857 bitsize = GET_MODE_BITSIZE (as_a <scalar_int_mode> (mode));
10858 gcc_assert (bitsize % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0);
10859 nunits = bitsize / TREE_INT_CST_LOW (TYPE_SIZE (innertype));
10860 break;
10861
10862 default:
10863 gcc_unreachable ();
10864 }
10865
10866 return make_vector_type (innertype, nunits, mode);
10867 }
10868
10869 /* Similarly, but takes the inner type and number of units, which must be
10870 a power of two. */
10871
10872 tree
10873 build_vector_type (tree innertype, poly_int64 nunits)
10874 {
10875 return make_vector_type (innertype, nunits, VOIDmode);
10876 }
10877
10878 /* Build a truth vector with NUNITS units, giving it mode MASK_MODE. */
10879
10880 tree
10881 build_truth_vector_type_for_mode (poly_uint64 nunits, machine_mode mask_mode)
10882 {
10883 gcc_assert (mask_mode != BLKmode);
10884
10885 poly_uint64 vsize = GET_MODE_BITSIZE (mask_mode);
10886 unsigned HOST_WIDE_INT esize = vector_element_size (vsize, nunits);
10887 tree bool_type = build_nonstandard_boolean_type (esize);
10888
10889 return make_vector_type (bool_type, nunits, mask_mode);
10890 }
10891
10892 /* Build a vector type that holds one boolean result for each element of
10893 vector type VECTYPE. The public interface for this operation is
10894 truth_type_for. */
10895
10896 static tree
10897 build_truth_vector_type_for (tree vectype)
10898 {
10899 machine_mode vector_mode = TYPE_MODE (vectype);
10900 poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (vectype);
10901
10902 machine_mode mask_mode;
10903 if (VECTOR_MODE_P (vector_mode)
10904 && targetm.vectorize.get_mask_mode (vector_mode).exists (&mask_mode))
10905 return build_truth_vector_type_for_mode (nunits, mask_mode);
10906
10907 poly_uint64 vsize = tree_to_poly_uint64 (TYPE_SIZE (vectype));
10908 unsigned HOST_WIDE_INT esize = vector_element_size (vsize, nunits);
10909 tree bool_type = build_nonstandard_boolean_type (esize);
10910
10911 return make_vector_type (bool_type, nunits, BLKmode);
10912 }
10913
10914 /* Like build_vector_type, but builds a variant type with TYPE_VECTOR_OPAQUE
10915 set. */
10916
10917 tree
10918 build_opaque_vector_type (tree innertype, poly_int64 nunits)
10919 {
10920 tree t = make_vector_type (innertype, nunits, VOIDmode);
10921 tree cand;
10922 /* We always build the non-opaque variant before the opaque one,
10923 so if it already exists, it is TYPE_NEXT_VARIANT of this one. */
10924 cand = TYPE_NEXT_VARIANT (t);
10925 if (cand
10926 && TYPE_VECTOR_OPAQUE (cand)
10927 && check_qualified_type (cand, t, TYPE_QUALS (t)))
10928 return cand;
10929 /* Othewise build a variant type and make sure to queue it after
10930 the non-opaque type. */
10931 cand = build_distinct_type_copy (t);
10932 TYPE_VECTOR_OPAQUE (cand) = true;
10933 TYPE_CANONICAL (cand) = TYPE_CANONICAL (t);
10934 TYPE_NEXT_VARIANT (cand) = TYPE_NEXT_VARIANT (t);
10935 TYPE_NEXT_VARIANT (t) = cand;
10936 TYPE_MAIN_VARIANT (cand) = TYPE_MAIN_VARIANT (t);
10937 return cand;
10938 }
10939
10940 /* Return the value of element I of VECTOR_CST T as a wide_int. */
10941
10942 wide_int
10943 vector_cst_int_elt (const_tree t, unsigned int i)
10944 {
10945 /* First handle elements that are directly encoded. */
10946 unsigned int encoded_nelts = vector_cst_encoded_nelts (t);
10947 if (i < encoded_nelts)
10948 return wi::to_wide (VECTOR_CST_ENCODED_ELT (t, i));
10949
10950 /* Identify the pattern that contains element I and work out the index of
10951 the last encoded element for that pattern. */
10952 unsigned int npatterns = VECTOR_CST_NPATTERNS (t);
10953 unsigned int pattern = i % npatterns;
10954 unsigned int count = i / npatterns;
10955 unsigned int final_i = encoded_nelts - npatterns + pattern;
10956
10957 /* If there are no steps, the final encoded value is the right one. */
10958 if (!VECTOR_CST_STEPPED_P (t))
10959 return wi::to_wide (VECTOR_CST_ENCODED_ELT (t, final_i));
10960
10961 /* Otherwise work out the value from the last two encoded elements. */
10962 tree v1 = VECTOR_CST_ENCODED_ELT (t, final_i - npatterns);
10963 tree v2 = VECTOR_CST_ENCODED_ELT (t, final_i);
10964 wide_int diff = wi::to_wide (v2) - wi::to_wide (v1);
10965 return wi::to_wide (v2) + (count - 2) * diff;
10966 }
10967
10968 /* Return the value of element I of VECTOR_CST T. */
10969
10970 tree
10971 vector_cst_elt (const_tree t, unsigned int i)
10972 {
10973 /* First handle elements that are directly encoded. */
10974 unsigned int encoded_nelts = vector_cst_encoded_nelts (t);
10975 if (i < encoded_nelts)
10976 return VECTOR_CST_ENCODED_ELT (t, i);
10977
10978 /* If there are no steps, the final encoded value is the right one. */
10979 if (!VECTOR_CST_STEPPED_P (t))
10980 {
10981 /* Identify the pattern that contains element I and work out the index of
10982 the last encoded element for that pattern. */
10983 unsigned int npatterns = VECTOR_CST_NPATTERNS (t);
10984 unsigned int pattern = i % npatterns;
10985 unsigned int final_i = encoded_nelts - npatterns + pattern;
10986 return VECTOR_CST_ENCODED_ELT (t, final_i);
10987 }
10988
10989 /* Otherwise work out the value from the last two encoded elements. */
10990 return wide_int_to_tree (TREE_TYPE (TREE_TYPE (t)),
10991 vector_cst_int_elt (t, i));
10992 }
10993
10994 /* Given an initializer INIT, return TRUE if INIT is zero or some
10995 aggregate of zeros. Otherwise return FALSE. If NONZERO is not
10996 null, set *NONZERO if and only if INIT is known not to be all
10997 zeros. The combination of return value of false and *NONZERO
10998 false implies that INIT may but need not be all zeros. Other
10999 combinations indicate definitive answers. */
11000
11001 bool
11002 initializer_zerop (const_tree init, bool *nonzero /* = NULL */)
11003 {
11004 bool dummy;
11005 if (!nonzero)
11006 nonzero = &dummy;
11007
11008 /* Conservatively clear NONZERO and set it only if INIT is definitely
11009 not all zero. */
11010 *nonzero = false;
11011
11012 STRIP_NOPS (init);
11013
11014 unsigned HOST_WIDE_INT off = 0;
11015
11016 switch (TREE_CODE (init))
11017 {
11018 case INTEGER_CST:
11019 if (integer_zerop (init))
11020 return true;
11021
11022 *nonzero = true;
11023 return false;
11024
11025 case REAL_CST:
11026 /* ??? Note that this is not correct for C4X float formats. There,
11027 a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
11028 negative exponent. */
11029 if (real_zerop (init)
11030 && !REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init)))
11031 return true;
11032
11033 *nonzero = true;
11034 return false;
11035
11036 case FIXED_CST:
11037 if (fixed_zerop (init))
11038 return true;
11039
11040 *nonzero = true;
11041 return false;
11042
11043 case COMPLEX_CST:
11044 if (integer_zerop (init)
11045 || (real_zerop (init)
11046 && !REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
11047 && !REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init)))))
11048 return true;
11049
11050 *nonzero = true;
11051 return false;
11052
11053 case VECTOR_CST:
11054 if (VECTOR_CST_NPATTERNS (init) == 1
11055 && VECTOR_CST_DUPLICATE_P (init)
11056 && initializer_zerop (VECTOR_CST_ENCODED_ELT (init, 0)))
11057 return true;
11058
11059 *nonzero = true;
11060 return false;
11061
11062 case CONSTRUCTOR:
11063 {
11064 if (TREE_CLOBBER_P (init))
11065 return false;
11066
11067 unsigned HOST_WIDE_INT idx;
11068 tree elt;
11069
11070 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
11071 if (!initializer_zerop (elt, nonzero))
11072 return false;
11073
11074 return true;
11075 }
11076
11077 case MEM_REF:
11078 {
11079 tree arg = TREE_OPERAND (init, 0);
11080 if (TREE_CODE (arg) != ADDR_EXPR)
11081 return false;
11082 tree offset = TREE_OPERAND (init, 1);
11083 if (TREE_CODE (offset) != INTEGER_CST
11084 || !tree_fits_uhwi_p (offset))
11085 return false;
11086 off = tree_to_uhwi (offset);
11087 if (INT_MAX < off)
11088 return false;
11089 arg = TREE_OPERAND (arg, 0);
11090 if (TREE_CODE (arg) != STRING_CST)
11091 return false;
11092 init = arg;
11093 }
11094 /* Fall through. */
11095
11096 case STRING_CST:
11097 {
11098 gcc_assert (off <= INT_MAX);
11099
11100 int i = off;
11101 int n = TREE_STRING_LENGTH (init);
11102 if (n <= i)
11103 return false;
11104
11105 /* We need to loop through all elements to handle cases like
11106 "\0" and "\0foobar". */
11107 for (i = 0; i < n; ++i)
11108 if (TREE_STRING_POINTER (init)[i] != '\0')
11109 {
11110 *nonzero = true;
11111 return false;
11112 }
11113
11114 return true;
11115 }
11116
11117 default:
11118 return false;
11119 }
11120 }
11121
11122 /* Return true if EXPR is an initializer expression in which every element
11123 is a constant that is numerically equal to 0 or 1. The elements do not
11124 need to be equal to each other. */
11125
11126 bool
11127 initializer_each_zero_or_onep (const_tree expr)
11128 {
11129 STRIP_ANY_LOCATION_WRAPPER (expr);
11130
11131 switch (TREE_CODE (expr))
11132 {
11133 case INTEGER_CST:
11134 return integer_zerop (expr) || integer_onep (expr);
11135
11136 case REAL_CST:
11137 return real_zerop (expr) || real_onep (expr);
11138
11139 case VECTOR_CST:
11140 {
11141 unsigned HOST_WIDE_INT nelts = vector_cst_encoded_nelts (expr);
11142 if (VECTOR_CST_STEPPED_P (expr)
11143 && !TYPE_VECTOR_SUBPARTS (TREE_TYPE (expr)).is_constant (&nelts))
11144 return false;
11145
11146 for (unsigned int i = 0; i < nelts; ++i)
11147 {
11148 tree elt = vector_cst_elt (expr, i);
11149 if (!initializer_each_zero_or_onep (elt))
11150 return false;
11151 }
11152
11153 return true;
11154 }
11155
11156 default:
11157 return false;
11158 }
11159 }
11160
11161 /* Check if vector VEC consists of all the equal elements and
11162 that the number of elements corresponds to the type of VEC.
11163 The function returns first element of the vector
11164 or NULL_TREE if the vector is not uniform. */
11165 tree
11166 uniform_vector_p (const_tree vec)
11167 {
11168 tree first, t;
11169 unsigned HOST_WIDE_INT i, nelts;
11170
11171 if (vec == NULL_TREE)
11172 return NULL_TREE;
11173
11174 gcc_assert (VECTOR_TYPE_P (TREE_TYPE (vec)));
11175
11176 if (TREE_CODE (vec) == VEC_DUPLICATE_EXPR)
11177 return TREE_OPERAND (vec, 0);
11178
11179 else if (TREE_CODE (vec) == VECTOR_CST)
11180 {
11181 if (VECTOR_CST_NPATTERNS (vec) == 1 && VECTOR_CST_DUPLICATE_P (vec))
11182 return VECTOR_CST_ENCODED_ELT (vec, 0);
11183 return NULL_TREE;
11184 }
11185
11186 else if (TREE_CODE (vec) == CONSTRUCTOR
11187 && TYPE_VECTOR_SUBPARTS (TREE_TYPE (vec)).is_constant (&nelts))
11188 {
11189 first = error_mark_node;
11190
11191 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (vec), i, t)
11192 {
11193 if (i == 0)
11194 {
11195 first = t;
11196 continue;
11197 }
11198 if (!operand_equal_p (first, t, 0))
11199 return NULL_TREE;
11200 }
11201 if (i != nelts)
11202 return NULL_TREE;
11203
11204 return first;
11205 }
11206
11207 return NULL_TREE;
11208 }
11209
11210 /* If the argument is INTEGER_CST, return it. If the argument is vector
11211 with all elements the same INTEGER_CST, return that INTEGER_CST. Otherwise
11212 return NULL_TREE.
11213 Look through location wrappers. */
11214
11215 tree
11216 uniform_integer_cst_p (tree t)
11217 {
11218 STRIP_ANY_LOCATION_WRAPPER (t);
11219
11220 if (TREE_CODE (t) == INTEGER_CST)
11221 return t;
11222
11223 if (VECTOR_TYPE_P (TREE_TYPE (t)))
11224 {
11225 t = uniform_vector_p (t);
11226 if (t && TREE_CODE (t) == INTEGER_CST)
11227 return t;
11228 }
11229
11230 return NULL_TREE;
11231 }
11232
11233 /* If VECTOR_CST T has a single nonzero element, return the index of that
11234 element, otherwise return -1. */
11235
11236 int
11237 single_nonzero_element (const_tree t)
11238 {
11239 unsigned HOST_WIDE_INT nelts;
11240 unsigned int repeat_nelts;
11241 if (VECTOR_CST_NELTS (t).is_constant (&nelts))
11242 repeat_nelts = nelts;
11243 else if (VECTOR_CST_NELTS_PER_PATTERN (t) == 2)
11244 {
11245 nelts = vector_cst_encoded_nelts (t);
11246 repeat_nelts = VECTOR_CST_NPATTERNS (t);
11247 }
11248 else
11249 return -1;
11250
11251 int res = -1;
11252 for (unsigned int i = 0; i < nelts; ++i)
11253 {
11254 tree elt = vector_cst_elt (t, i);
11255 if (!integer_zerop (elt) && !real_zerop (elt))
11256 {
11257 if (res >= 0 || i >= repeat_nelts)
11258 return -1;
11259 res = i;
11260 }
11261 }
11262 return res;
11263 }
11264
11265 /* Build an empty statement at location LOC. */
11266
11267 tree
11268 build_empty_stmt (location_t loc)
11269 {
11270 tree t = build1 (NOP_EXPR, void_type_node, size_zero_node);
11271 SET_EXPR_LOCATION (t, loc);
11272 return t;
11273 }
11274
11275
11276 /* Build an OpenMP clause with code CODE. LOC is the location of the
11277 clause. */
11278
11279 tree
11280 build_omp_clause (location_t loc, enum omp_clause_code code)
11281 {
11282 tree t;
11283 int size, length;
11284
11285 length = omp_clause_num_ops[code];
11286 size = (sizeof (struct tree_omp_clause) + (length - 1) * sizeof (tree));
11287
11288 record_node_allocation_statistics (OMP_CLAUSE, size);
11289
11290 t = (tree) ggc_internal_alloc (size);
11291 memset (t, 0, size);
11292 TREE_SET_CODE (t, OMP_CLAUSE);
11293 OMP_CLAUSE_SET_CODE (t, code);
11294 OMP_CLAUSE_LOCATION (t) = loc;
11295
11296 return t;
11297 }
11298
11299 /* Build a tcc_vl_exp object with code CODE and room for LEN operands. LEN
11300 includes the implicit operand count in TREE_OPERAND 0, and so must be >= 1.
11301 Except for the CODE and operand count field, other storage for the
11302 object is initialized to zeros. */
11303
11304 tree
11305 build_vl_exp (enum tree_code code, int len MEM_STAT_DECL)
11306 {
11307 tree t;
11308 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_exp);
11309
11310 gcc_assert (TREE_CODE_CLASS (code) == tcc_vl_exp);
11311 gcc_assert (len >= 1);
11312
11313 record_node_allocation_statistics (code, length);
11314
11315 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
11316
11317 TREE_SET_CODE (t, code);
11318
11319 /* Can't use TREE_OPERAND to store the length because if checking is
11320 enabled, it will try to check the length before we store it. :-P */
11321 t->exp.operands[0] = build_int_cst (sizetype, len);
11322
11323 return t;
11324 }
11325
11326 /* Helper function for build_call_* functions; build a CALL_EXPR with
11327 indicated RETURN_TYPE, FN, and NARGS, but do not initialize any of
11328 the argument slots. */
11329
11330 static tree
11331 build_call_1 (tree return_type, tree fn, int nargs)
11332 {
11333 tree t;
11334
11335 t = build_vl_exp (CALL_EXPR, nargs + 3);
11336 TREE_TYPE (t) = return_type;
11337 CALL_EXPR_FN (t) = fn;
11338 CALL_EXPR_STATIC_CHAIN (t) = NULL;
11339
11340 return t;
11341 }
11342
11343 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
11344 FN and a null static chain slot. NARGS is the number of call arguments
11345 which are specified as "..." arguments. */
11346
11347 tree
11348 build_call_nary (tree return_type, tree fn, int nargs, ...)
11349 {
11350 tree ret;
11351 va_list args;
11352 va_start (args, nargs);
11353 ret = build_call_valist (return_type, fn, nargs, args);
11354 va_end (args);
11355 return ret;
11356 }
11357
11358 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
11359 FN and a null static chain slot. NARGS is the number of call arguments
11360 which are specified as a va_list ARGS. */
11361
11362 tree
11363 build_call_valist (tree return_type, tree fn, int nargs, va_list args)
11364 {
11365 tree t;
11366 int i;
11367
11368 t = build_call_1 (return_type, fn, nargs);
11369 for (i = 0; i < nargs; i++)
11370 CALL_EXPR_ARG (t, i) = va_arg (args, tree);
11371 process_call_operands (t);
11372 return t;
11373 }
11374
11375 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
11376 FN and a null static chain slot. NARGS is the number of call arguments
11377 which are specified as a tree array ARGS. */
11378
11379 tree
11380 build_call_array_loc (location_t loc, tree return_type, tree fn,
11381 int nargs, const tree *args)
11382 {
11383 tree t;
11384 int i;
11385
11386 t = build_call_1 (return_type, fn, nargs);
11387 for (i = 0; i < nargs; i++)
11388 CALL_EXPR_ARG (t, i) = args[i];
11389 process_call_operands (t);
11390 SET_EXPR_LOCATION (t, loc);
11391 return t;
11392 }
11393
11394 /* Like build_call_array, but takes a vec. */
11395
11396 tree
11397 build_call_vec (tree return_type, tree fn, vec<tree, va_gc> *args)
11398 {
11399 tree ret, t;
11400 unsigned int ix;
11401
11402 ret = build_call_1 (return_type, fn, vec_safe_length (args));
11403 FOR_EACH_VEC_SAFE_ELT (args, ix, t)
11404 CALL_EXPR_ARG (ret, ix) = t;
11405 process_call_operands (ret);
11406 return ret;
11407 }
11408
11409 /* Conveniently construct a function call expression. FNDECL names the
11410 function to be called and N arguments are passed in the array
11411 ARGARRAY. */
11412
11413 tree
11414 build_call_expr_loc_array (location_t loc, tree fndecl, int n, tree *argarray)
11415 {
11416 tree fntype = TREE_TYPE (fndecl);
11417 tree fn = build1 (ADDR_EXPR, build_pointer_type (fntype), fndecl);
11418
11419 return fold_build_call_array_loc (loc, TREE_TYPE (fntype), fn, n, argarray);
11420 }
11421
11422 /* Conveniently construct a function call expression. FNDECL names the
11423 function to be called and the arguments are passed in the vector
11424 VEC. */
11425
11426 tree
11427 build_call_expr_loc_vec (location_t loc, tree fndecl, vec<tree, va_gc> *vec)
11428 {
11429 return build_call_expr_loc_array (loc, fndecl, vec_safe_length (vec),
11430 vec_safe_address (vec));
11431 }
11432
11433
11434 /* Conveniently construct a function call expression. FNDECL names the
11435 function to be called, N is the number of arguments, and the "..."
11436 parameters are the argument expressions. */
11437
11438 tree
11439 build_call_expr_loc (location_t loc, tree fndecl, int n, ...)
11440 {
11441 va_list ap;
11442 tree *argarray = XALLOCAVEC (tree, n);
11443 int i;
11444
11445 va_start (ap, n);
11446 for (i = 0; i < n; i++)
11447 argarray[i] = va_arg (ap, tree);
11448 va_end (ap);
11449 return build_call_expr_loc_array (loc, fndecl, n, argarray);
11450 }
11451
11452 /* Like build_call_expr_loc (UNKNOWN_LOCATION, ...). Duplicated because
11453 varargs macros aren't supported by all bootstrap compilers. */
11454
11455 tree
11456 build_call_expr (tree fndecl, int n, ...)
11457 {
11458 va_list ap;
11459 tree *argarray = XALLOCAVEC (tree, n);
11460 int i;
11461
11462 va_start (ap, n);
11463 for (i = 0; i < n; i++)
11464 argarray[i] = va_arg (ap, tree);
11465 va_end (ap);
11466 return build_call_expr_loc_array (UNKNOWN_LOCATION, fndecl, n, argarray);
11467 }
11468
11469 /* Build an internal call to IFN, with arguments ARGS[0:N-1] and with return
11470 type TYPE. This is just like CALL_EXPR, except its CALL_EXPR_FN is NULL.
11471 It will get gimplified later into an ordinary internal function. */
11472
11473 tree
11474 build_call_expr_internal_loc_array (location_t loc, internal_fn ifn,
11475 tree type, int n, const tree *args)
11476 {
11477 tree t = build_call_1 (type, NULL_TREE, n);
11478 for (int i = 0; i < n; ++i)
11479 CALL_EXPR_ARG (t, i) = args[i];
11480 SET_EXPR_LOCATION (t, loc);
11481 CALL_EXPR_IFN (t) = ifn;
11482 process_call_operands (t);
11483 return t;
11484 }
11485
11486 /* Build internal call expression. This is just like CALL_EXPR, except
11487 its CALL_EXPR_FN is NULL. It will get gimplified later into ordinary
11488 internal function. */
11489
11490 tree
11491 build_call_expr_internal_loc (location_t loc, enum internal_fn ifn,
11492 tree type, int n, ...)
11493 {
11494 va_list ap;
11495 tree *argarray = XALLOCAVEC (tree, n);
11496 int i;
11497
11498 va_start (ap, n);
11499 for (i = 0; i < n; i++)
11500 argarray[i] = va_arg (ap, tree);
11501 va_end (ap);
11502 return build_call_expr_internal_loc_array (loc, ifn, type, n, argarray);
11503 }
11504
11505 /* Return a function call to FN, if the target is guaranteed to support it,
11506 or null otherwise.
11507
11508 N is the number of arguments, passed in the "...", and TYPE is the
11509 type of the return value. */
11510
11511 tree
11512 maybe_build_call_expr_loc (location_t loc, combined_fn fn, tree type,
11513 int n, ...)
11514 {
11515 va_list ap;
11516 tree *argarray = XALLOCAVEC (tree, n);
11517 int i;
11518
11519 va_start (ap, n);
11520 for (i = 0; i < n; i++)
11521 argarray[i] = va_arg (ap, tree);
11522 va_end (ap);
11523 if (internal_fn_p (fn))
11524 {
11525 internal_fn ifn = as_internal_fn (fn);
11526 if (direct_internal_fn_p (ifn))
11527 {
11528 tree_pair types = direct_internal_fn_types (ifn, type, argarray);
11529 if (!direct_internal_fn_supported_p (ifn, types,
11530 OPTIMIZE_FOR_BOTH))
11531 return NULL_TREE;
11532 }
11533 return build_call_expr_internal_loc_array (loc, ifn, type, n, argarray);
11534 }
11535 else
11536 {
11537 tree fndecl = builtin_decl_implicit (as_builtin_fn (fn));
11538 if (!fndecl)
11539 return NULL_TREE;
11540 return build_call_expr_loc_array (loc, fndecl, n, argarray);
11541 }
11542 }
11543
11544 /* Return a function call to the appropriate builtin alloca variant.
11545
11546 SIZE is the size to be allocated. ALIGN, if non-zero, is the requested
11547 alignment of the allocated area. MAX_SIZE, if non-negative, is an upper
11548 bound for SIZE in case it is not a fixed value. */
11549
11550 tree
11551 build_alloca_call_expr (tree size, unsigned int align, HOST_WIDE_INT max_size)
11552 {
11553 if (max_size >= 0)
11554 {
11555 tree t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN_AND_MAX);
11556 return
11557 build_call_expr (t, 3, size, size_int (align), size_int (max_size));
11558 }
11559 else if (align > 0)
11560 {
11561 tree t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN);
11562 return build_call_expr (t, 2, size, size_int (align));
11563 }
11564 else
11565 {
11566 tree t = builtin_decl_explicit (BUILT_IN_ALLOCA);
11567 return build_call_expr (t, 1, size);
11568 }
11569 }
11570
11571 /* Create a new constant string literal of type ELTYPE[SIZE] (or LEN
11572 if SIZE == -1) and return a tree node representing char* pointer to
11573 it as an ADDR_EXPR (ARRAY_REF (ELTYPE, ...)). The STRING_CST value
11574 is the LEN bytes at STR (the representation of the string, which may
11575 be wide). */
11576
11577 tree
11578 build_string_literal (int len, const char *str,
11579 tree eltype /* = char_type_node */,
11580 unsigned HOST_WIDE_INT size /* = -1 */)
11581 {
11582 tree t = build_string (len, str);
11583 /* Set the maximum valid index based on the string length or SIZE. */
11584 unsigned HOST_WIDE_INT maxidx
11585 = (size == HOST_WIDE_INT_M1U ? len : size) - 1;
11586
11587 tree index = build_index_type (size_int (maxidx));
11588 eltype = build_type_variant (eltype, 1, 0);
11589 tree type = build_array_type (eltype, index);
11590 TREE_TYPE (t) = type;
11591 TREE_CONSTANT (t) = 1;
11592 TREE_READONLY (t) = 1;
11593 TREE_STATIC (t) = 1;
11594
11595 type = build_pointer_type (eltype);
11596 t = build1 (ADDR_EXPR, type,
11597 build4 (ARRAY_REF, eltype,
11598 t, integer_zero_node, NULL_TREE, NULL_TREE));
11599 return t;
11600 }
11601
11602
11603
11604 /* Return true if T (assumed to be a DECL) must be assigned a memory
11605 location. */
11606
11607 bool
11608 needs_to_live_in_memory (const_tree t)
11609 {
11610 return (TREE_ADDRESSABLE (t)
11611 || is_global_var (t)
11612 || (TREE_CODE (t) == RESULT_DECL
11613 && !DECL_BY_REFERENCE (t)
11614 && aggregate_value_p (t, current_function_decl)));
11615 }
11616
11617 /* Return value of a constant X and sign-extend it. */
11618
11619 HOST_WIDE_INT
11620 int_cst_value (const_tree x)
11621 {
11622 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
11623 unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
11624
11625 /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
11626 gcc_assert (cst_and_fits_in_hwi (x));
11627
11628 if (bits < HOST_BITS_PER_WIDE_INT)
11629 {
11630 bool negative = ((val >> (bits - 1)) & 1) != 0;
11631 if (negative)
11632 val |= HOST_WIDE_INT_M1U << (bits - 1) << 1;
11633 else
11634 val &= ~(HOST_WIDE_INT_M1U << (bits - 1) << 1);
11635 }
11636
11637 return val;
11638 }
11639
11640 /* If TYPE is an integral or pointer type, return an integer type with
11641 the same precision which is unsigned iff UNSIGNEDP is true, or itself
11642 if TYPE is already an integer type of signedness UNSIGNEDP.
11643 If TYPE is a floating-point type, return an integer type with the same
11644 bitsize and with the signedness given by UNSIGNEDP; this is useful
11645 when doing bit-level operations on a floating-point value. */
11646
11647 tree
11648 signed_or_unsigned_type_for (int unsignedp, tree type)
11649 {
11650 if (ANY_INTEGRAL_TYPE_P (type) && TYPE_UNSIGNED (type) == unsignedp)
11651 return type;
11652
11653 if (TREE_CODE (type) == VECTOR_TYPE)
11654 {
11655 tree inner = TREE_TYPE (type);
11656 tree inner2 = signed_or_unsigned_type_for (unsignedp, inner);
11657 if (!inner2)
11658 return NULL_TREE;
11659 if (inner == inner2)
11660 return type;
11661 return build_vector_type (inner2, TYPE_VECTOR_SUBPARTS (type));
11662 }
11663
11664 if (TREE_CODE (type) == COMPLEX_TYPE)
11665 {
11666 tree inner = TREE_TYPE (type);
11667 tree inner2 = signed_or_unsigned_type_for (unsignedp, inner);
11668 if (!inner2)
11669 return NULL_TREE;
11670 if (inner == inner2)
11671 return type;
11672 return build_complex_type (inner2);
11673 }
11674
11675 unsigned int bits;
11676 if (INTEGRAL_TYPE_P (type)
11677 || POINTER_TYPE_P (type)
11678 || TREE_CODE (type) == OFFSET_TYPE)
11679 bits = TYPE_PRECISION (type);
11680 else if (TREE_CODE (type) == REAL_TYPE)
11681 bits = GET_MODE_BITSIZE (SCALAR_TYPE_MODE (type));
11682 else
11683 return NULL_TREE;
11684
11685 return build_nonstandard_integer_type (bits, unsignedp);
11686 }
11687
11688 /* If TYPE is an integral or pointer type, return an integer type with
11689 the same precision which is unsigned, or itself if TYPE is already an
11690 unsigned integer type. If TYPE is a floating-point type, return an
11691 unsigned integer type with the same bitsize as TYPE. */
11692
11693 tree
11694 unsigned_type_for (tree type)
11695 {
11696 return signed_or_unsigned_type_for (1, type);
11697 }
11698
11699 /* If TYPE is an integral or pointer type, return an integer type with
11700 the same precision which is signed, or itself if TYPE is already a
11701 signed integer type. If TYPE is a floating-point type, return a
11702 signed integer type with the same bitsize as TYPE. */
11703
11704 tree
11705 signed_type_for (tree type)
11706 {
11707 return signed_or_unsigned_type_for (0, type);
11708 }
11709
11710 /* If TYPE is a vector type, return a signed integer vector type with the
11711 same width and number of subparts. Otherwise return boolean_type_node. */
11712
11713 tree
11714 truth_type_for (tree type)
11715 {
11716 if (TREE_CODE (type) == VECTOR_TYPE)
11717 {
11718 if (VECTOR_BOOLEAN_TYPE_P (type))
11719 return type;
11720 return build_truth_vector_type_for (type);
11721 }
11722 else
11723 return boolean_type_node;
11724 }
11725
11726 /* Returns the largest value obtainable by casting something in INNER type to
11727 OUTER type. */
11728
11729 tree
11730 upper_bound_in_type (tree outer, tree inner)
11731 {
11732 unsigned int det = 0;
11733 unsigned oprec = TYPE_PRECISION (outer);
11734 unsigned iprec = TYPE_PRECISION (inner);
11735 unsigned prec;
11736
11737 /* Compute a unique number for every combination. */
11738 det |= (oprec > iprec) ? 4 : 0;
11739 det |= TYPE_UNSIGNED (outer) ? 2 : 0;
11740 det |= TYPE_UNSIGNED (inner) ? 1 : 0;
11741
11742 /* Determine the exponent to use. */
11743 switch (det)
11744 {
11745 case 0:
11746 case 1:
11747 /* oprec <= iprec, outer: signed, inner: don't care. */
11748 prec = oprec - 1;
11749 break;
11750 case 2:
11751 case 3:
11752 /* oprec <= iprec, outer: unsigned, inner: don't care. */
11753 prec = oprec;
11754 break;
11755 case 4:
11756 /* oprec > iprec, outer: signed, inner: signed. */
11757 prec = iprec - 1;
11758 break;
11759 case 5:
11760 /* oprec > iprec, outer: signed, inner: unsigned. */
11761 prec = iprec;
11762 break;
11763 case 6:
11764 /* oprec > iprec, outer: unsigned, inner: signed. */
11765 prec = oprec;
11766 break;
11767 case 7:
11768 /* oprec > iprec, outer: unsigned, inner: unsigned. */
11769 prec = iprec;
11770 break;
11771 default:
11772 gcc_unreachable ();
11773 }
11774
11775 return wide_int_to_tree (outer,
11776 wi::mask (prec, false, TYPE_PRECISION (outer)));
11777 }
11778
11779 /* Returns the smallest value obtainable by casting something in INNER type to
11780 OUTER type. */
11781
11782 tree
11783 lower_bound_in_type (tree outer, tree inner)
11784 {
11785 unsigned oprec = TYPE_PRECISION (outer);
11786 unsigned iprec = TYPE_PRECISION (inner);
11787
11788 /* If OUTER type is unsigned, we can definitely cast 0 to OUTER type
11789 and obtain 0. */
11790 if (TYPE_UNSIGNED (outer)
11791 /* If we are widening something of an unsigned type, OUTER type
11792 contains all values of INNER type. In particular, both INNER
11793 and OUTER types have zero in common. */
11794 || (oprec > iprec && TYPE_UNSIGNED (inner)))
11795 return build_int_cst (outer, 0);
11796 else
11797 {
11798 /* If we are widening a signed type to another signed type, we
11799 want to obtain -2^^(iprec-1). If we are keeping the
11800 precision or narrowing to a signed type, we want to obtain
11801 -2^(oprec-1). */
11802 unsigned prec = oprec > iprec ? iprec : oprec;
11803 return wide_int_to_tree (outer,
11804 wi::mask (prec - 1, true,
11805 TYPE_PRECISION (outer)));
11806 }
11807 }
11808
11809 /* Return nonzero if two operands that are suitable for PHI nodes are
11810 necessarily equal. Specifically, both ARG0 and ARG1 must be either
11811 SSA_NAME or invariant. Note that this is strictly an optimization.
11812 That is, callers of this function can directly call operand_equal_p
11813 and get the same result, only slower. */
11814
11815 int
11816 operand_equal_for_phi_arg_p (const_tree arg0, const_tree arg1)
11817 {
11818 if (arg0 == arg1)
11819 return 1;
11820 if (TREE_CODE (arg0) == SSA_NAME || TREE_CODE (arg1) == SSA_NAME)
11821 return 0;
11822 return operand_equal_p (arg0, arg1, 0);
11823 }
11824
11825 /* Returns number of zeros at the end of binary representation of X. */
11826
11827 tree
11828 num_ending_zeros (const_tree x)
11829 {
11830 return build_int_cst (TREE_TYPE (x), wi::ctz (wi::to_wide (x)));
11831 }
11832
11833
11834 #define WALK_SUBTREE(NODE) \
11835 do \
11836 { \
11837 result = walk_tree_1 (&(NODE), func, data, pset, lh); \
11838 if (result) \
11839 return result; \
11840 } \
11841 while (0)
11842
11843 /* This is a subroutine of walk_tree that walks field of TYPE that are to
11844 be walked whenever a type is seen in the tree. Rest of operands and return
11845 value are as for walk_tree. */
11846
11847 static tree
11848 walk_type_fields (tree type, walk_tree_fn func, void *data,
11849 hash_set<tree> *pset, walk_tree_lh lh)
11850 {
11851 tree result = NULL_TREE;
11852
11853 switch (TREE_CODE (type))
11854 {
11855 case POINTER_TYPE:
11856 case REFERENCE_TYPE:
11857 case VECTOR_TYPE:
11858 /* We have to worry about mutually recursive pointers. These can't
11859 be written in C. They can in Ada. It's pathological, but
11860 there's an ACATS test (c38102a) that checks it. Deal with this
11861 by checking if we're pointing to another pointer, that one
11862 points to another pointer, that one does too, and we have no htab.
11863 If so, get a hash table. We check three levels deep to avoid
11864 the cost of the hash table if we don't need one. */
11865 if (POINTER_TYPE_P (TREE_TYPE (type))
11866 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (type)))
11867 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (TREE_TYPE (type))))
11868 && !pset)
11869 {
11870 result = walk_tree_without_duplicates (&TREE_TYPE (type),
11871 func, data);
11872 if (result)
11873 return result;
11874
11875 break;
11876 }
11877
11878 /* fall through */
11879
11880 case COMPLEX_TYPE:
11881 WALK_SUBTREE (TREE_TYPE (type));
11882 break;
11883
11884 case METHOD_TYPE:
11885 WALK_SUBTREE (TYPE_METHOD_BASETYPE (type));
11886
11887 /* Fall through. */
11888
11889 case FUNCTION_TYPE:
11890 WALK_SUBTREE (TREE_TYPE (type));
11891 {
11892 tree arg;
11893
11894 /* We never want to walk into default arguments. */
11895 for (arg = TYPE_ARG_TYPES (type); arg; arg = TREE_CHAIN (arg))
11896 WALK_SUBTREE (TREE_VALUE (arg));
11897 }
11898 break;
11899
11900 case ARRAY_TYPE:
11901 /* Don't follow this nodes's type if a pointer for fear that
11902 we'll have infinite recursion. If we have a PSET, then we
11903 need not fear. */
11904 if (pset
11905 || (!POINTER_TYPE_P (TREE_TYPE (type))
11906 && TREE_CODE (TREE_TYPE (type)) != OFFSET_TYPE))
11907 WALK_SUBTREE (TREE_TYPE (type));
11908 WALK_SUBTREE (TYPE_DOMAIN (type));
11909 break;
11910
11911 case OFFSET_TYPE:
11912 WALK_SUBTREE (TREE_TYPE (type));
11913 WALK_SUBTREE (TYPE_OFFSET_BASETYPE (type));
11914 break;
11915
11916 default:
11917 break;
11918 }
11919
11920 return NULL_TREE;
11921 }
11922
11923 /* Apply FUNC to all the sub-trees of TP in a pre-order traversal. FUNC is
11924 called with the DATA and the address of each sub-tree. If FUNC returns a
11925 non-NULL value, the traversal is stopped, and the value returned by FUNC
11926 is returned. If PSET is non-NULL it is used to record the nodes visited,
11927 and to avoid visiting a node more than once. */
11928
11929 tree
11930 walk_tree_1 (tree *tp, walk_tree_fn func, void *data,
11931 hash_set<tree> *pset, walk_tree_lh lh)
11932 {
11933 enum tree_code code;
11934 int walk_subtrees;
11935 tree result;
11936
11937 #define WALK_SUBTREE_TAIL(NODE) \
11938 do \
11939 { \
11940 tp = & (NODE); \
11941 goto tail_recurse; \
11942 } \
11943 while (0)
11944
11945 tail_recurse:
11946 /* Skip empty subtrees. */
11947 if (!*tp)
11948 return NULL_TREE;
11949
11950 /* Don't walk the same tree twice, if the user has requested
11951 that we avoid doing so. */
11952 if (pset && pset->add (*tp))
11953 return NULL_TREE;
11954
11955 /* Call the function. */
11956 walk_subtrees = 1;
11957 result = (*func) (tp, &walk_subtrees, data);
11958
11959 /* If we found something, return it. */
11960 if (result)
11961 return result;
11962
11963 code = TREE_CODE (*tp);
11964
11965 /* Even if we didn't, FUNC may have decided that there was nothing
11966 interesting below this point in the tree. */
11967 if (!walk_subtrees)
11968 {
11969 /* But we still need to check our siblings. */
11970 if (code == TREE_LIST)
11971 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
11972 else if (code == OMP_CLAUSE)
11973 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11974 else
11975 return NULL_TREE;
11976 }
11977
11978 if (lh)
11979 {
11980 result = (*lh) (tp, &walk_subtrees, func, data, pset);
11981 if (result || !walk_subtrees)
11982 return result;
11983 }
11984
11985 switch (code)
11986 {
11987 case ERROR_MARK:
11988 case IDENTIFIER_NODE:
11989 case INTEGER_CST:
11990 case REAL_CST:
11991 case FIXED_CST:
11992 case VECTOR_CST:
11993 case STRING_CST:
11994 case BLOCK:
11995 case PLACEHOLDER_EXPR:
11996 case SSA_NAME:
11997 case FIELD_DECL:
11998 case RESULT_DECL:
11999 /* None of these have subtrees other than those already walked
12000 above. */
12001 break;
12002
12003 case TREE_LIST:
12004 WALK_SUBTREE (TREE_VALUE (*tp));
12005 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
12006 break;
12007
12008 case TREE_VEC:
12009 {
12010 int len = TREE_VEC_LENGTH (*tp);
12011
12012 if (len == 0)
12013 break;
12014
12015 /* Walk all elements but the first. */
12016 while (--len)
12017 WALK_SUBTREE (TREE_VEC_ELT (*tp, len));
12018
12019 /* Now walk the first one as a tail call. */
12020 WALK_SUBTREE_TAIL (TREE_VEC_ELT (*tp, 0));
12021 }
12022
12023 case COMPLEX_CST:
12024 WALK_SUBTREE (TREE_REALPART (*tp));
12025 WALK_SUBTREE_TAIL (TREE_IMAGPART (*tp));
12026
12027 case CONSTRUCTOR:
12028 {
12029 unsigned HOST_WIDE_INT idx;
12030 constructor_elt *ce;
12031
12032 for (idx = 0; vec_safe_iterate (CONSTRUCTOR_ELTS (*tp), idx, &ce);
12033 idx++)
12034 WALK_SUBTREE (ce->value);
12035 }
12036 break;
12037
12038 case SAVE_EXPR:
12039 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, 0));
12040
12041 case BIND_EXPR:
12042 {
12043 tree decl;
12044 for (decl = BIND_EXPR_VARS (*tp); decl; decl = DECL_CHAIN (decl))
12045 {
12046 /* Walk the DECL_INITIAL and DECL_SIZE. We don't want to walk
12047 into declarations that are just mentioned, rather than
12048 declared; they don't really belong to this part of the tree.
12049 And, we can see cycles: the initializer for a declaration
12050 can refer to the declaration itself. */
12051 WALK_SUBTREE (DECL_INITIAL (decl));
12052 WALK_SUBTREE (DECL_SIZE (decl));
12053 WALK_SUBTREE (DECL_SIZE_UNIT (decl));
12054 }
12055 WALK_SUBTREE_TAIL (BIND_EXPR_BODY (*tp));
12056 }
12057
12058 case STATEMENT_LIST:
12059 {
12060 tree_stmt_iterator i;
12061 for (i = tsi_start (*tp); !tsi_end_p (i); tsi_next (&i))
12062 WALK_SUBTREE (*tsi_stmt_ptr (i));
12063 }
12064 break;
12065
12066 case OMP_CLAUSE:
12067 switch (OMP_CLAUSE_CODE (*tp))
12068 {
12069 case OMP_CLAUSE_GANG:
12070 case OMP_CLAUSE__GRIDDIM_:
12071 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 1));
12072 /* FALLTHRU */
12073
12074 case OMP_CLAUSE_ASYNC:
12075 case OMP_CLAUSE_WAIT:
12076 case OMP_CLAUSE_WORKER:
12077 case OMP_CLAUSE_VECTOR:
12078 case OMP_CLAUSE_NUM_GANGS:
12079 case OMP_CLAUSE_NUM_WORKERS:
12080 case OMP_CLAUSE_VECTOR_LENGTH:
12081 case OMP_CLAUSE_PRIVATE:
12082 case OMP_CLAUSE_SHARED:
12083 case OMP_CLAUSE_FIRSTPRIVATE:
12084 case OMP_CLAUSE_COPYIN:
12085 case OMP_CLAUSE_COPYPRIVATE:
12086 case OMP_CLAUSE_FINAL:
12087 case OMP_CLAUSE_IF:
12088 case OMP_CLAUSE_NUM_THREADS:
12089 case OMP_CLAUSE_SCHEDULE:
12090 case OMP_CLAUSE_UNIFORM:
12091 case OMP_CLAUSE_DEPEND:
12092 case OMP_CLAUSE_NONTEMPORAL:
12093 case OMP_CLAUSE_NUM_TEAMS:
12094 case OMP_CLAUSE_THREAD_LIMIT:
12095 case OMP_CLAUSE_DEVICE:
12096 case OMP_CLAUSE_DIST_SCHEDULE:
12097 case OMP_CLAUSE_SAFELEN:
12098 case OMP_CLAUSE_SIMDLEN:
12099 case OMP_CLAUSE_ORDERED:
12100 case OMP_CLAUSE_PRIORITY:
12101 case OMP_CLAUSE_GRAINSIZE:
12102 case OMP_CLAUSE_NUM_TASKS:
12103 case OMP_CLAUSE_HINT:
12104 case OMP_CLAUSE_TO_DECLARE:
12105 case OMP_CLAUSE_LINK:
12106 case OMP_CLAUSE_USE_DEVICE_PTR:
12107 case OMP_CLAUSE_USE_DEVICE_ADDR:
12108 case OMP_CLAUSE_IS_DEVICE_PTR:
12109 case OMP_CLAUSE_INCLUSIVE:
12110 case OMP_CLAUSE_EXCLUSIVE:
12111 case OMP_CLAUSE__LOOPTEMP_:
12112 case OMP_CLAUSE__REDUCTEMP_:
12113 case OMP_CLAUSE__CONDTEMP_:
12114 case OMP_CLAUSE__SCANTEMP_:
12115 case OMP_CLAUSE__SIMDUID_:
12116 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 0));
12117 /* FALLTHRU */
12118
12119 case OMP_CLAUSE_INDEPENDENT:
12120 case OMP_CLAUSE_NOWAIT:
12121 case OMP_CLAUSE_DEFAULT:
12122 case OMP_CLAUSE_UNTIED:
12123 case OMP_CLAUSE_MERGEABLE:
12124 case OMP_CLAUSE_PROC_BIND:
12125 case OMP_CLAUSE_DEVICE_TYPE:
12126 case OMP_CLAUSE_INBRANCH:
12127 case OMP_CLAUSE_NOTINBRANCH:
12128 case OMP_CLAUSE_FOR:
12129 case OMP_CLAUSE_PARALLEL:
12130 case OMP_CLAUSE_SECTIONS:
12131 case OMP_CLAUSE_TASKGROUP:
12132 case OMP_CLAUSE_NOGROUP:
12133 case OMP_CLAUSE_THREADS:
12134 case OMP_CLAUSE_SIMD:
12135 case OMP_CLAUSE_DEFAULTMAP:
12136 case OMP_CLAUSE_ORDER:
12137 case OMP_CLAUSE_BIND:
12138 case OMP_CLAUSE_AUTO:
12139 case OMP_CLAUSE_SEQ:
12140 case OMP_CLAUSE_TILE:
12141 case OMP_CLAUSE__SIMT_:
12142 case OMP_CLAUSE_IF_PRESENT:
12143 case OMP_CLAUSE_FINALIZE:
12144 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
12145
12146 case OMP_CLAUSE_LASTPRIVATE:
12147 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
12148 WALK_SUBTREE (OMP_CLAUSE_LASTPRIVATE_STMT (*tp));
12149 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
12150
12151 case OMP_CLAUSE_COLLAPSE:
12152 {
12153 int i;
12154 for (i = 0; i < 3; i++)
12155 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
12156 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
12157 }
12158
12159 case OMP_CLAUSE_LINEAR:
12160 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
12161 WALK_SUBTREE (OMP_CLAUSE_LINEAR_STEP (*tp));
12162 WALK_SUBTREE (OMP_CLAUSE_LINEAR_STMT (*tp));
12163 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
12164
12165 case OMP_CLAUSE_ALIGNED:
12166 case OMP_CLAUSE_FROM:
12167 case OMP_CLAUSE_TO:
12168 case OMP_CLAUSE_MAP:
12169 case OMP_CLAUSE__CACHE_:
12170 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
12171 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 1));
12172 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
12173
12174 case OMP_CLAUSE_REDUCTION:
12175 case OMP_CLAUSE_TASK_REDUCTION:
12176 case OMP_CLAUSE_IN_REDUCTION:
12177 {
12178 int i;
12179 for (i = 0; i < 5; i++)
12180 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
12181 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
12182 }
12183
12184 default:
12185 gcc_unreachable ();
12186 }
12187 break;
12188
12189 case TARGET_EXPR:
12190 {
12191 int i, len;
12192
12193 /* TARGET_EXPRs are peculiar: operands 1 and 3 can be the same.
12194 But, we only want to walk once. */
12195 len = (TREE_OPERAND (*tp, 3) == TREE_OPERAND (*tp, 1)) ? 2 : 3;
12196 for (i = 0; i < len; ++i)
12197 WALK_SUBTREE (TREE_OPERAND (*tp, i));
12198 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len));
12199 }
12200
12201 case DECL_EXPR:
12202 /* If this is a TYPE_DECL, walk into the fields of the type that it's
12203 defining. We only want to walk into these fields of a type in this
12204 case and not in the general case of a mere reference to the type.
12205
12206 The criterion is as follows: if the field can be an expression, it
12207 must be walked only here. This should be in keeping with the fields
12208 that are directly gimplified in gimplify_type_sizes in order for the
12209 mark/copy-if-shared/unmark machinery of the gimplifier to work with
12210 variable-sized types.
12211
12212 Note that DECLs get walked as part of processing the BIND_EXPR. */
12213 if (TREE_CODE (DECL_EXPR_DECL (*tp)) == TYPE_DECL)
12214 {
12215 /* Call the function for the decl so e.g. copy_tree_body_r can
12216 replace it with the remapped one. */
12217 result = (*func) (&DECL_EXPR_DECL (*tp), &walk_subtrees, data);
12218 if (result || !walk_subtrees)
12219 return result;
12220
12221 tree *type_p = &TREE_TYPE (DECL_EXPR_DECL (*tp));
12222 if (TREE_CODE (*type_p) == ERROR_MARK)
12223 return NULL_TREE;
12224
12225 /* Call the function for the type. See if it returns anything or
12226 doesn't want us to continue. If we are to continue, walk both
12227 the normal fields and those for the declaration case. */
12228 result = (*func) (type_p, &walk_subtrees, data);
12229 if (result || !walk_subtrees)
12230 return result;
12231
12232 /* But do not walk a pointed-to type since it may itself need to
12233 be walked in the declaration case if it isn't anonymous. */
12234 if (!POINTER_TYPE_P (*type_p))
12235 {
12236 result = walk_type_fields (*type_p, func, data, pset, lh);
12237 if (result)
12238 return result;
12239 }
12240
12241 /* If this is a record type, also walk the fields. */
12242 if (RECORD_OR_UNION_TYPE_P (*type_p))
12243 {
12244 tree field;
12245
12246 for (field = TYPE_FIELDS (*type_p); field;
12247 field = DECL_CHAIN (field))
12248 {
12249 /* We'd like to look at the type of the field, but we can
12250 easily get infinite recursion. So assume it's pointed
12251 to elsewhere in the tree. Also, ignore things that
12252 aren't fields. */
12253 if (TREE_CODE (field) != FIELD_DECL)
12254 continue;
12255
12256 WALK_SUBTREE (DECL_FIELD_OFFSET (field));
12257 WALK_SUBTREE (DECL_SIZE (field));
12258 WALK_SUBTREE (DECL_SIZE_UNIT (field));
12259 if (TREE_CODE (*type_p) == QUAL_UNION_TYPE)
12260 WALK_SUBTREE (DECL_QUALIFIER (field));
12261 }
12262 }
12263
12264 /* Same for scalar types. */
12265 else if (TREE_CODE (*type_p) == BOOLEAN_TYPE
12266 || TREE_CODE (*type_p) == ENUMERAL_TYPE
12267 || TREE_CODE (*type_p) == INTEGER_TYPE
12268 || TREE_CODE (*type_p) == FIXED_POINT_TYPE
12269 || TREE_CODE (*type_p) == REAL_TYPE)
12270 {
12271 WALK_SUBTREE (TYPE_MIN_VALUE (*type_p));
12272 WALK_SUBTREE (TYPE_MAX_VALUE (*type_p));
12273 }
12274
12275 WALK_SUBTREE (TYPE_SIZE (*type_p));
12276 WALK_SUBTREE_TAIL (TYPE_SIZE_UNIT (*type_p));
12277 }
12278 /* FALLTHRU */
12279
12280 default:
12281 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
12282 {
12283 int i, len;
12284
12285 /* Walk over all the sub-trees of this operand. */
12286 len = TREE_OPERAND_LENGTH (*tp);
12287
12288 /* Go through the subtrees. We need to do this in forward order so
12289 that the scope of a FOR_EXPR is handled properly. */
12290 if (len)
12291 {
12292 for (i = 0; i < len - 1; ++i)
12293 WALK_SUBTREE (TREE_OPERAND (*tp, i));
12294 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len - 1));
12295 }
12296 }
12297 /* If this is a type, walk the needed fields in the type. */
12298 else if (TYPE_P (*tp))
12299 return walk_type_fields (*tp, func, data, pset, lh);
12300 break;
12301 }
12302
12303 /* We didn't find what we were looking for. */
12304 return NULL_TREE;
12305
12306 #undef WALK_SUBTREE_TAIL
12307 }
12308 #undef WALK_SUBTREE
12309
12310 /* Like walk_tree, but does not walk duplicate nodes more than once. */
12311
12312 tree
12313 walk_tree_without_duplicates_1 (tree *tp, walk_tree_fn func, void *data,
12314 walk_tree_lh lh)
12315 {
12316 tree result;
12317
12318 hash_set<tree> pset;
12319 result = walk_tree_1 (tp, func, data, &pset, lh);
12320 return result;
12321 }
12322
12323
12324 tree
12325 tree_block (tree t)
12326 {
12327 const enum tree_code_class c = TREE_CODE_CLASS (TREE_CODE (t));
12328
12329 if (IS_EXPR_CODE_CLASS (c))
12330 return LOCATION_BLOCK (t->exp.locus);
12331 gcc_unreachable ();
12332 return NULL;
12333 }
12334
12335 void
12336 tree_set_block (tree t, tree b)
12337 {
12338 const enum tree_code_class c = TREE_CODE_CLASS (TREE_CODE (t));
12339
12340 if (IS_EXPR_CODE_CLASS (c))
12341 {
12342 t->exp.locus = set_block (t->exp.locus, b);
12343 }
12344 else
12345 gcc_unreachable ();
12346 }
12347
12348 /* Create a nameless artificial label and put it in the current
12349 function context. The label has a location of LOC. Returns the
12350 newly created label. */
12351
12352 tree
12353 create_artificial_label (location_t loc)
12354 {
12355 tree lab = build_decl (loc,
12356 LABEL_DECL, NULL_TREE, void_type_node);
12357
12358 DECL_ARTIFICIAL (lab) = 1;
12359 DECL_IGNORED_P (lab) = 1;
12360 DECL_CONTEXT (lab) = current_function_decl;
12361 return lab;
12362 }
12363
12364 /* Given a tree, try to return a useful variable name that we can use
12365 to prefix a temporary that is being assigned the value of the tree.
12366 I.E. given <temp> = &A, return A. */
12367
12368 const char *
12369 get_name (tree t)
12370 {
12371 tree stripped_decl;
12372
12373 stripped_decl = t;
12374 STRIP_NOPS (stripped_decl);
12375 if (DECL_P (stripped_decl) && DECL_NAME (stripped_decl))
12376 return IDENTIFIER_POINTER (DECL_NAME (stripped_decl));
12377 else if (TREE_CODE (stripped_decl) == SSA_NAME)
12378 {
12379 tree name = SSA_NAME_IDENTIFIER (stripped_decl);
12380 if (!name)
12381 return NULL;
12382 return IDENTIFIER_POINTER (name);
12383 }
12384 else
12385 {
12386 switch (TREE_CODE (stripped_decl))
12387 {
12388 case ADDR_EXPR:
12389 return get_name (TREE_OPERAND (stripped_decl, 0));
12390 default:
12391 return NULL;
12392 }
12393 }
12394 }
12395
12396 /* Return true if TYPE has a variable argument list. */
12397
12398 bool
12399 stdarg_p (const_tree fntype)
12400 {
12401 function_args_iterator args_iter;
12402 tree n = NULL_TREE, t;
12403
12404 if (!fntype)
12405 return false;
12406
12407 FOREACH_FUNCTION_ARGS (fntype, t, args_iter)
12408 {
12409 n = t;
12410 }
12411
12412 return n != NULL_TREE && n != void_type_node;
12413 }
12414
12415 /* Return true if TYPE has a prototype. */
12416
12417 bool
12418 prototype_p (const_tree fntype)
12419 {
12420 tree t;
12421
12422 gcc_assert (fntype != NULL_TREE);
12423
12424 t = TYPE_ARG_TYPES (fntype);
12425 return (t != NULL_TREE);
12426 }
12427
12428 /* If BLOCK is inlined from an __attribute__((__artificial__))
12429 routine, return pointer to location from where it has been
12430 called. */
12431 location_t *
12432 block_nonartificial_location (tree block)
12433 {
12434 location_t *ret = NULL;
12435
12436 while (block && TREE_CODE (block) == BLOCK
12437 && BLOCK_ABSTRACT_ORIGIN (block))
12438 {
12439 tree ao = BLOCK_ABSTRACT_ORIGIN (block);
12440 if (TREE_CODE (ao) == FUNCTION_DECL)
12441 {
12442 /* If AO is an artificial inline, point RET to the
12443 call site locus at which it has been inlined and continue
12444 the loop, in case AO's caller is also an artificial
12445 inline. */
12446 if (DECL_DECLARED_INLINE_P (ao)
12447 && lookup_attribute ("artificial", DECL_ATTRIBUTES (ao)))
12448 ret = &BLOCK_SOURCE_LOCATION (block);
12449 else
12450 break;
12451 }
12452 else if (TREE_CODE (ao) != BLOCK)
12453 break;
12454
12455 block = BLOCK_SUPERCONTEXT (block);
12456 }
12457 return ret;
12458 }
12459
12460
12461 /* If EXP is inlined from an __attribute__((__artificial__))
12462 function, return the location of the original call expression. */
12463
12464 location_t
12465 tree_nonartificial_location (tree exp)
12466 {
12467 location_t *loc = block_nonartificial_location (TREE_BLOCK (exp));
12468
12469 if (loc)
12470 return *loc;
12471 else
12472 return EXPR_LOCATION (exp);
12473 }
12474
12475
12476 /* These are the hash table functions for the hash table of OPTIMIZATION_NODEq
12477 nodes. */
12478
12479 /* Return the hash code X, an OPTIMIZATION_NODE or TARGET_OPTION code. */
12480
12481 hashval_t
12482 cl_option_hasher::hash (tree x)
12483 {
12484 const_tree const t = x;
12485 const char *p;
12486 size_t i;
12487 size_t len = 0;
12488 hashval_t hash = 0;
12489
12490 if (TREE_CODE (t) == OPTIMIZATION_NODE)
12491 {
12492 p = (const char *)TREE_OPTIMIZATION (t);
12493 len = sizeof (struct cl_optimization);
12494 }
12495
12496 else if (TREE_CODE (t) == TARGET_OPTION_NODE)
12497 return cl_target_option_hash (TREE_TARGET_OPTION (t));
12498
12499 else
12500 gcc_unreachable ();
12501
12502 /* assume most opt flags are just 0/1, some are 2-3, and a few might be
12503 something else. */
12504 for (i = 0; i < len; i++)
12505 if (p[i])
12506 hash = (hash << 4) ^ ((i << 2) | p[i]);
12507
12508 return hash;
12509 }
12510
12511 /* Return nonzero if the value represented by *X (an OPTIMIZATION or
12512 TARGET_OPTION tree node) is the same as that given by *Y, which is the
12513 same. */
12514
12515 bool
12516 cl_option_hasher::equal (tree x, tree y)
12517 {
12518 const_tree const xt = x;
12519 const_tree const yt = y;
12520
12521 if (TREE_CODE (xt) != TREE_CODE (yt))
12522 return 0;
12523
12524 if (TREE_CODE (xt) == OPTIMIZATION_NODE)
12525 return cl_optimization_option_eq (TREE_OPTIMIZATION (xt),
12526 TREE_OPTIMIZATION (yt));
12527 else if (TREE_CODE (xt) == TARGET_OPTION_NODE)
12528 return cl_target_option_eq (TREE_TARGET_OPTION (xt),
12529 TREE_TARGET_OPTION (yt));
12530 else
12531 gcc_unreachable ();
12532 }
12533
12534 /* Build an OPTIMIZATION_NODE based on the options in OPTS. */
12535
12536 tree
12537 build_optimization_node (struct gcc_options *opts)
12538 {
12539 tree t;
12540
12541 /* Use the cache of optimization nodes. */
12542
12543 cl_optimization_save (TREE_OPTIMIZATION (cl_optimization_node),
12544 opts);
12545
12546 tree *slot = cl_option_hash_table->find_slot (cl_optimization_node, INSERT);
12547 t = *slot;
12548 if (!t)
12549 {
12550 /* Insert this one into the hash table. */
12551 t = cl_optimization_node;
12552 *slot = t;
12553
12554 /* Make a new node for next time round. */
12555 cl_optimization_node = make_node (OPTIMIZATION_NODE);
12556 }
12557
12558 return t;
12559 }
12560
12561 /* Build a TARGET_OPTION_NODE based on the options in OPTS. */
12562
12563 tree
12564 build_target_option_node (struct gcc_options *opts)
12565 {
12566 tree t;
12567
12568 /* Use the cache of optimization nodes. */
12569
12570 cl_target_option_save (TREE_TARGET_OPTION (cl_target_option_node),
12571 opts);
12572
12573 tree *slot = cl_option_hash_table->find_slot (cl_target_option_node, INSERT);
12574 t = *slot;
12575 if (!t)
12576 {
12577 /* Insert this one into the hash table. */
12578 t = cl_target_option_node;
12579 *slot = t;
12580
12581 /* Make a new node for next time round. */
12582 cl_target_option_node = make_node (TARGET_OPTION_NODE);
12583 }
12584
12585 return t;
12586 }
12587
12588 /* Clear TREE_TARGET_GLOBALS of all TARGET_OPTION_NODE trees,
12589 so that they aren't saved during PCH writing. */
12590
12591 void
12592 prepare_target_option_nodes_for_pch (void)
12593 {
12594 hash_table<cl_option_hasher>::iterator iter = cl_option_hash_table->begin ();
12595 for (; iter != cl_option_hash_table->end (); ++iter)
12596 if (TREE_CODE (*iter) == TARGET_OPTION_NODE)
12597 TREE_TARGET_GLOBALS (*iter) = NULL;
12598 }
12599
12600 /* Determine the "ultimate origin" of a block. */
12601
12602 tree
12603 block_ultimate_origin (const_tree block)
12604 {
12605 tree origin = BLOCK_ABSTRACT_ORIGIN (block);
12606
12607 if (origin == NULL_TREE)
12608 return NULL_TREE;
12609 else
12610 {
12611 gcc_checking_assert ((DECL_P (origin)
12612 && DECL_ORIGIN (origin) == origin)
12613 || BLOCK_ORIGIN (origin) == origin);
12614 return origin;
12615 }
12616 }
12617
12618 /* Return true iff conversion from INNER_TYPE to OUTER_TYPE generates
12619 no instruction. */
12620
12621 bool
12622 tree_nop_conversion_p (const_tree outer_type, const_tree inner_type)
12623 {
12624 /* Do not strip casts into or out of differing address spaces. */
12625 if (POINTER_TYPE_P (outer_type)
12626 && TYPE_ADDR_SPACE (TREE_TYPE (outer_type)) != ADDR_SPACE_GENERIC)
12627 {
12628 if (!POINTER_TYPE_P (inner_type)
12629 || (TYPE_ADDR_SPACE (TREE_TYPE (outer_type))
12630 != TYPE_ADDR_SPACE (TREE_TYPE (inner_type))))
12631 return false;
12632 }
12633 else if (POINTER_TYPE_P (inner_type)
12634 && TYPE_ADDR_SPACE (TREE_TYPE (inner_type)) != ADDR_SPACE_GENERIC)
12635 {
12636 /* We already know that outer_type is not a pointer with
12637 a non-generic address space. */
12638 return false;
12639 }
12640
12641 /* Use precision rather then machine mode when we can, which gives
12642 the correct answer even for submode (bit-field) types. */
12643 if ((INTEGRAL_TYPE_P (outer_type)
12644 || POINTER_TYPE_P (outer_type)
12645 || TREE_CODE (outer_type) == OFFSET_TYPE)
12646 && (INTEGRAL_TYPE_P (inner_type)
12647 || POINTER_TYPE_P (inner_type)
12648 || TREE_CODE (inner_type) == OFFSET_TYPE))
12649 return TYPE_PRECISION (outer_type) == TYPE_PRECISION (inner_type);
12650
12651 /* Otherwise fall back on comparing machine modes (e.g. for
12652 aggregate types, floats). */
12653 return TYPE_MODE (outer_type) == TYPE_MODE (inner_type);
12654 }
12655
12656 /* Return true iff conversion in EXP generates no instruction. Mark
12657 it inline so that we fully inline into the stripping functions even
12658 though we have two uses of this function. */
12659
12660 static inline bool
12661 tree_nop_conversion (const_tree exp)
12662 {
12663 tree outer_type, inner_type;
12664
12665 if (location_wrapper_p (exp))
12666 return true;
12667 if (!CONVERT_EXPR_P (exp)
12668 && TREE_CODE (exp) != NON_LVALUE_EXPR)
12669 return false;
12670
12671 outer_type = TREE_TYPE (exp);
12672 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
12673 if (!inner_type || inner_type == error_mark_node)
12674 return false;
12675
12676 return tree_nop_conversion_p (outer_type, inner_type);
12677 }
12678
12679 /* Return true iff conversion in EXP generates no instruction. Don't
12680 consider conversions changing the signedness. */
12681
12682 static bool
12683 tree_sign_nop_conversion (const_tree exp)
12684 {
12685 tree outer_type, inner_type;
12686
12687 if (!tree_nop_conversion (exp))
12688 return false;
12689
12690 outer_type = TREE_TYPE (exp);
12691 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
12692
12693 return (TYPE_UNSIGNED (outer_type) == TYPE_UNSIGNED (inner_type)
12694 && POINTER_TYPE_P (outer_type) == POINTER_TYPE_P (inner_type));
12695 }
12696
12697 /* Strip conversions from EXP according to tree_nop_conversion and
12698 return the resulting expression. */
12699
12700 tree
12701 tree_strip_nop_conversions (tree exp)
12702 {
12703 while (tree_nop_conversion (exp))
12704 exp = TREE_OPERAND (exp, 0);
12705 return exp;
12706 }
12707
12708 /* Strip conversions from EXP according to tree_sign_nop_conversion
12709 and return the resulting expression. */
12710
12711 tree
12712 tree_strip_sign_nop_conversions (tree exp)
12713 {
12714 while (tree_sign_nop_conversion (exp))
12715 exp = TREE_OPERAND (exp, 0);
12716 return exp;
12717 }
12718
12719 /* Avoid any floating point extensions from EXP. */
12720 tree
12721 strip_float_extensions (tree exp)
12722 {
12723 tree sub, expt, subt;
12724
12725 /* For floating point constant look up the narrowest type that can hold
12726 it properly and handle it like (type)(narrowest_type)constant.
12727 This way we can optimize for instance a=a*2.0 where "a" is float
12728 but 2.0 is double constant. */
12729 if (TREE_CODE (exp) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (TREE_TYPE (exp)))
12730 {
12731 REAL_VALUE_TYPE orig;
12732 tree type = NULL;
12733
12734 orig = TREE_REAL_CST (exp);
12735 if (TYPE_PRECISION (TREE_TYPE (exp)) > TYPE_PRECISION (float_type_node)
12736 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
12737 type = float_type_node;
12738 else if (TYPE_PRECISION (TREE_TYPE (exp))
12739 > TYPE_PRECISION (double_type_node)
12740 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
12741 type = double_type_node;
12742 if (type)
12743 return build_real_truncate (type, orig);
12744 }
12745
12746 if (!CONVERT_EXPR_P (exp))
12747 return exp;
12748
12749 sub = TREE_OPERAND (exp, 0);
12750 subt = TREE_TYPE (sub);
12751 expt = TREE_TYPE (exp);
12752
12753 if (!FLOAT_TYPE_P (subt))
12754 return exp;
12755
12756 if (DECIMAL_FLOAT_TYPE_P (expt) != DECIMAL_FLOAT_TYPE_P (subt))
12757 return exp;
12758
12759 if (TYPE_PRECISION (subt) > TYPE_PRECISION (expt))
12760 return exp;
12761
12762 return strip_float_extensions (sub);
12763 }
12764
12765 /* Strip out all handled components that produce invariant
12766 offsets. */
12767
12768 const_tree
12769 strip_invariant_refs (const_tree op)
12770 {
12771 while (handled_component_p (op))
12772 {
12773 switch (TREE_CODE (op))
12774 {
12775 case ARRAY_REF:
12776 case ARRAY_RANGE_REF:
12777 if (!is_gimple_constant (TREE_OPERAND (op, 1))
12778 || TREE_OPERAND (op, 2) != NULL_TREE
12779 || TREE_OPERAND (op, 3) != NULL_TREE)
12780 return NULL;
12781 break;
12782
12783 case COMPONENT_REF:
12784 if (TREE_OPERAND (op, 2) != NULL_TREE)
12785 return NULL;
12786 break;
12787
12788 default:;
12789 }
12790 op = TREE_OPERAND (op, 0);
12791 }
12792
12793 return op;
12794 }
12795
12796 static GTY(()) tree gcc_eh_personality_decl;
12797
12798 /* Return the GCC personality function decl. */
12799
12800 tree
12801 lhd_gcc_personality (void)
12802 {
12803 if (!gcc_eh_personality_decl)
12804 gcc_eh_personality_decl = build_personality_function ("gcc");
12805 return gcc_eh_personality_decl;
12806 }
12807
12808 /* TARGET is a call target of GIMPLE call statement
12809 (obtained by gimple_call_fn). Return true if it is
12810 OBJ_TYPE_REF representing an virtual call of C++ method.
12811 (As opposed to OBJ_TYPE_REF representing objc calls
12812 through a cast where middle-end devirtualization machinery
12813 can't apply.) */
12814
12815 bool
12816 virtual_method_call_p (const_tree target)
12817 {
12818 if (TREE_CODE (target) != OBJ_TYPE_REF)
12819 return false;
12820 tree t = TREE_TYPE (target);
12821 gcc_checking_assert (TREE_CODE (t) == POINTER_TYPE);
12822 t = TREE_TYPE (t);
12823 if (TREE_CODE (t) == FUNCTION_TYPE)
12824 return false;
12825 gcc_checking_assert (TREE_CODE (t) == METHOD_TYPE);
12826 /* If we do not have BINFO associated, it means that type was built
12827 without devirtualization enabled. Do not consider this a virtual
12828 call. */
12829 if (!TYPE_BINFO (obj_type_ref_class (target)))
12830 return false;
12831 return true;
12832 }
12833
12834 /* Lookup sub-BINFO of BINFO of TYPE at offset POS. */
12835
12836 static tree
12837 lookup_binfo_at_offset (tree binfo, tree type, HOST_WIDE_INT pos)
12838 {
12839 unsigned int i;
12840 tree base_binfo, b;
12841
12842 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
12843 if (pos == tree_to_shwi (BINFO_OFFSET (base_binfo))
12844 && types_same_for_odr (TREE_TYPE (base_binfo), type))
12845 return base_binfo;
12846 else if ((b = lookup_binfo_at_offset (base_binfo, type, pos)) != NULL)
12847 return b;
12848 return NULL;
12849 }
12850
12851 /* Try to find a base info of BINFO that would have its field decl at offset
12852 OFFSET within the BINFO type and which is of EXPECTED_TYPE. If it can be
12853 found, return, otherwise return NULL_TREE. */
12854
12855 tree
12856 get_binfo_at_offset (tree binfo, poly_int64 offset, tree expected_type)
12857 {
12858 tree type = BINFO_TYPE (binfo);
12859
12860 while (true)
12861 {
12862 HOST_WIDE_INT pos, size;
12863 tree fld;
12864 int i;
12865
12866 if (types_same_for_odr (type, expected_type))
12867 return binfo;
12868 if (maybe_lt (offset, 0))
12869 return NULL_TREE;
12870
12871 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
12872 {
12873 if (TREE_CODE (fld) != FIELD_DECL || !DECL_ARTIFICIAL (fld))
12874 continue;
12875
12876 pos = int_bit_position (fld);
12877 size = tree_to_uhwi (DECL_SIZE (fld));
12878 if (known_in_range_p (offset, pos, size))
12879 break;
12880 }
12881 if (!fld || TREE_CODE (TREE_TYPE (fld)) != RECORD_TYPE)
12882 return NULL_TREE;
12883
12884 /* Offset 0 indicates the primary base, whose vtable contents are
12885 represented in the binfo for the derived class. */
12886 else if (maybe_ne (offset, 0))
12887 {
12888 tree found_binfo = NULL, base_binfo;
12889 /* Offsets in BINFO are in bytes relative to the whole structure
12890 while POS is in bits relative to the containing field. */
12891 int binfo_offset = (tree_to_shwi (BINFO_OFFSET (binfo)) + pos
12892 / BITS_PER_UNIT);
12893
12894 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
12895 if (tree_to_shwi (BINFO_OFFSET (base_binfo)) == binfo_offset
12896 && types_same_for_odr (TREE_TYPE (base_binfo), TREE_TYPE (fld)))
12897 {
12898 found_binfo = base_binfo;
12899 break;
12900 }
12901 if (found_binfo)
12902 binfo = found_binfo;
12903 else
12904 binfo = lookup_binfo_at_offset (binfo, TREE_TYPE (fld),
12905 binfo_offset);
12906 }
12907
12908 type = TREE_TYPE (fld);
12909 offset -= pos;
12910 }
12911 }
12912
12913 /* Returns true if X is a typedef decl. */
12914
12915 bool
12916 is_typedef_decl (const_tree x)
12917 {
12918 return (x && TREE_CODE (x) == TYPE_DECL
12919 && DECL_ORIGINAL_TYPE (x) != NULL_TREE);
12920 }
12921
12922 /* Returns true iff TYPE is a type variant created for a typedef. */
12923
12924 bool
12925 typedef_variant_p (const_tree type)
12926 {
12927 return is_typedef_decl (TYPE_NAME (type));
12928 }
12929
12930 /* PR 84195: Replace control characters in "unescaped" with their
12931 escaped equivalents. Allow newlines if -fmessage-length has
12932 been set to a non-zero value. This is done here, rather than
12933 where the attribute is recorded as the message length can
12934 change between these two locations. */
12935
12936 void
12937 escaped_string::escape (const char *unescaped)
12938 {
12939 char *escaped;
12940 size_t i, new_i, len;
12941
12942 if (m_owned)
12943 free (m_str);
12944
12945 m_str = const_cast<char *> (unescaped);
12946 m_owned = false;
12947
12948 if (unescaped == NULL || *unescaped == 0)
12949 return;
12950
12951 len = strlen (unescaped);
12952 escaped = NULL;
12953 new_i = 0;
12954
12955 for (i = 0; i < len; i++)
12956 {
12957 char c = unescaped[i];
12958
12959 if (!ISCNTRL (c))
12960 {
12961 if (escaped)
12962 escaped[new_i++] = c;
12963 continue;
12964 }
12965
12966 if (c != '\n' || !pp_is_wrapping_line (global_dc->printer))
12967 {
12968 if (escaped == NULL)
12969 {
12970 /* We only allocate space for a new string if we
12971 actually encounter a control character that
12972 needs replacing. */
12973 escaped = (char *) xmalloc (len * 2 + 1);
12974 strncpy (escaped, unescaped, i);
12975 new_i = i;
12976 }
12977
12978 escaped[new_i++] = '\\';
12979
12980 switch (c)
12981 {
12982 case '\a': escaped[new_i++] = 'a'; break;
12983 case '\b': escaped[new_i++] = 'b'; break;
12984 case '\f': escaped[new_i++] = 'f'; break;
12985 case '\n': escaped[new_i++] = 'n'; break;
12986 case '\r': escaped[new_i++] = 'r'; break;
12987 case '\t': escaped[new_i++] = 't'; break;
12988 case '\v': escaped[new_i++] = 'v'; break;
12989 default: escaped[new_i++] = '?'; break;
12990 }
12991 }
12992 else if (escaped)
12993 escaped[new_i++] = c;
12994 }
12995
12996 if (escaped)
12997 {
12998 escaped[new_i] = 0;
12999 m_str = escaped;
13000 m_owned = true;
13001 }
13002 }
13003
13004 /* Warn about a use of an identifier which was marked deprecated. Returns
13005 whether a warning was given. */
13006
13007 bool
13008 warn_deprecated_use (tree node, tree attr)
13009 {
13010 escaped_string msg;
13011
13012 if (node == 0 || !warn_deprecated_decl)
13013 return false;
13014
13015 if (!attr)
13016 {
13017 if (DECL_P (node))
13018 attr = DECL_ATTRIBUTES (node);
13019 else if (TYPE_P (node))
13020 {
13021 tree decl = TYPE_STUB_DECL (node);
13022 if (decl)
13023 attr = lookup_attribute ("deprecated",
13024 TYPE_ATTRIBUTES (TREE_TYPE (decl)));
13025 }
13026 }
13027
13028 if (attr)
13029 attr = lookup_attribute ("deprecated", attr);
13030
13031 if (attr)
13032 msg.escape (TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
13033
13034 bool w = false;
13035 if (DECL_P (node))
13036 {
13037 auto_diagnostic_group d;
13038 if (msg)
13039 w = warning (OPT_Wdeprecated_declarations,
13040 "%qD is deprecated: %s", node, (const char *) msg);
13041 else
13042 w = warning (OPT_Wdeprecated_declarations,
13043 "%qD is deprecated", node);
13044 if (w)
13045 inform (DECL_SOURCE_LOCATION (node), "declared here");
13046 }
13047 else if (TYPE_P (node))
13048 {
13049 tree what = NULL_TREE;
13050 tree decl = TYPE_STUB_DECL (node);
13051
13052 if (TYPE_NAME (node))
13053 {
13054 if (TREE_CODE (TYPE_NAME (node)) == IDENTIFIER_NODE)
13055 what = TYPE_NAME (node);
13056 else if (TREE_CODE (TYPE_NAME (node)) == TYPE_DECL
13057 && DECL_NAME (TYPE_NAME (node)))
13058 what = DECL_NAME (TYPE_NAME (node));
13059 }
13060
13061 auto_diagnostic_group d;
13062 if (what)
13063 {
13064 if (msg)
13065 w = warning (OPT_Wdeprecated_declarations,
13066 "%qE is deprecated: %s", what, (const char *) msg);
13067 else
13068 w = warning (OPT_Wdeprecated_declarations,
13069 "%qE is deprecated", what);
13070 }
13071 else
13072 {
13073 if (msg)
13074 w = warning (OPT_Wdeprecated_declarations,
13075 "type is deprecated: %s", (const char *) msg);
13076 else
13077 w = warning (OPT_Wdeprecated_declarations,
13078 "type is deprecated");
13079 }
13080
13081 if (w && decl)
13082 inform (DECL_SOURCE_LOCATION (decl), "declared here");
13083 }
13084
13085 return w;
13086 }
13087
13088 /* Return true if REF has a COMPONENT_REF with a bit-field field declaration
13089 somewhere in it. */
13090
13091 bool
13092 contains_bitfld_component_ref_p (const_tree ref)
13093 {
13094 while (handled_component_p (ref))
13095 {
13096 if (TREE_CODE (ref) == COMPONENT_REF
13097 && DECL_BIT_FIELD (TREE_OPERAND (ref, 1)))
13098 return true;
13099 ref = TREE_OPERAND (ref, 0);
13100 }
13101
13102 return false;
13103 }
13104
13105 /* Try to determine whether a TRY_CATCH expression can fall through.
13106 This is a subroutine of block_may_fallthru. */
13107
13108 static bool
13109 try_catch_may_fallthru (const_tree stmt)
13110 {
13111 tree_stmt_iterator i;
13112
13113 /* If the TRY block can fall through, the whole TRY_CATCH can
13114 fall through. */
13115 if (block_may_fallthru (TREE_OPERAND (stmt, 0)))
13116 return true;
13117
13118 i = tsi_start (TREE_OPERAND (stmt, 1));
13119 switch (TREE_CODE (tsi_stmt (i)))
13120 {
13121 case CATCH_EXPR:
13122 /* We expect to see a sequence of CATCH_EXPR trees, each with a
13123 catch expression and a body. The whole TRY_CATCH may fall
13124 through iff any of the catch bodies falls through. */
13125 for (; !tsi_end_p (i); tsi_next (&i))
13126 {
13127 if (block_may_fallthru (CATCH_BODY (tsi_stmt (i))))
13128 return true;
13129 }
13130 return false;
13131
13132 case EH_FILTER_EXPR:
13133 /* The exception filter expression only matters if there is an
13134 exception. If the exception does not match EH_FILTER_TYPES,
13135 we will execute EH_FILTER_FAILURE, and we will fall through
13136 if that falls through. If the exception does match
13137 EH_FILTER_TYPES, the stack unwinder will continue up the
13138 stack, so we will not fall through. We don't know whether we
13139 will throw an exception which matches EH_FILTER_TYPES or not,
13140 so we just ignore EH_FILTER_TYPES and assume that we might
13141 throw an exception which doesn't match. */
13142 return block_may_fallthru (EH_FILTER_FAILURE (tsi_stmt (i)));
13143
13144 default:
13145 /* This case represents statements to be executed when an
13146 exception occurs. Those statements are implicitly followed
13147 by a RESX statement to resume execution after the exception.
13148 So in this case the TRY_CATCH never falls through. */
13149 return false;
13150 }
13151 }
13152
13153 /* Try to determine if we can fall out of the bottom of BLOCK. This guess
13154 need not be 100% accurate; simply be conservative and return true if we
13155 don't know. This is used only to avoid stupidly generating extra code.
13156 If we're wrong, we'll just delete the extra code later. */
13157
13158 bool
13159 block_may_fallthru (const_tree block)
13160 {
13161 /* This CONST_CAST is okay because expr_last returns its argument
13162 unmodified and we assign it to a const_tree. */
13163 const_tree stmt = expr_last (CONST_CAST_TREE (block));
13164
13165 switch (stmt ? TREE_CODE (stmt) : ERROR_MARK)
13166 {
13167 case GOTO_EXPR:
13168 case RETURN_EXPR:
13169 /* Easy cases. If the last statement of the block implies
13170 control transfer, then we can't fall through. */
13171 return false;
13172
13173 case SWITCH_EXPR:
13174 /* If there is a default: label or case labels cover all possible
13175 SWITCH_COND values, then the SWITCH_EXPR will transfer control
13176 to some case label in all cases and all we care is whether the
13177 SWITCH_BODY falls through. */
13178 if (SWITCH_ALL_CASES_P (stmt))
13179 return block_may_fallthru (SWITCH_BODY (stmt));
13180 return true;
13181
13182 case COND_EXPR:
13183 if (block_may_fallthru (COND_EXPR_THEN (stmt)))
13184 return true;
13185 return block_may_fallthru (COND_EXPR_ELSE (stmt));
13186
13187 case BIND_EXPR:
13188 return block_may_fallthru (BIND_EXPR_BODY (stmt));
13189
13190 case TRY_CATCH_EXPR:
13191 return try_catch_may_fallthru (stmt);
13192
13193 case TRY_FINALLY_EXPR:
13194 /* The finally clause is always executed after the try clause,
13195 so if it does not fall through, then the try-finally will not
13196 fall through. Otherwise, if the try clause does not fall
13197 through, then when the finally clause falls through it will
13198 resume execution wherever the try clause was going. So the
13199 whole try-finally will only fall through if both the try
13200 clause and the finally clause fall through. */
13201 return (block_may_fallthru (TREE_OPERAND (stmt, 0))
13202 && block_may_fallthru (TREE_OPERAND (stmt, 1)));
13203
13204 case EH_ELSE_EXPR:
13205 return block_may_fallthru (TREE_OPERAND (stmt, 0));
13206
13207 case MODIFY_EXPR:
13208 if (TREE_CODE (TREE_OPERAND (stmt, 1)) == CALL_EXPR)
13209 stmt = TREE_OPERAND (stmt, 1);
13210 else
13211 return true;
13212 /* FALLTHRU */
13213
13214 case CALL_EXPR:
13215 /* Functions that do not return do not fall through. */
13216 return (call_expr_flags (stmt) & ECF_NORETURN) == 0;
13217
13218 case CLEANUP_POINT_EXPR:
13219 return block_may_fallthru (TREE_OPERAND (stmt, 0));
13220
13221 case TARGET_EXPR:
13222 return block_may_fallthru (TREE_OPERAND (stmt, 1));
13223
13224 case ERROR_MARK:
13225 return true;
13226
13227 default:
13228 return lang_hooks.block_may_fallthru (stmt);
13229 }
13230 }
13231
13232 /* True if we are using EH to handle cleanups. */
13233 static bool using_eh_for_cleanups_flag = false;
13234
13235 /* This routine is called from front ends to indicate eh should be used for
13236 cleanups. */
13237 void
13238 using_eh_for_cleanups (void)
13239 {
13240 using_eh_for_cleanups_flag = true;
13241 }
13242
13243 /* Query whether EH is used for cleanups. */
13244 bool
13245 using_eh_for_cleanups_p (void)
13246 {
13247 return using_eh_for_cleanups_flag;
13248 }
13249
13250 /* Wrapper for tree_code_name to ensure that tree code is valid */
13251 const char *
13252 get_tree_code_name (enum tree_code code)
13253 {
13254 const char *invalid = "<invalid tree code>";
13255
13256 if (code >= MAX_TREE_CODES)
13257 {
13258 if (code == 0xa5a5)
13259 return "ggc_freed";
13260 return invalid;
13261 }
13262
13263 return tree_code_name[code];
13264 }
13265
13266 /* Drops the TREE_OVERFLOW flag from T. */
13267
13268 tree
13269 drop_tree_overflow (tree t)
13270 {
13271 gcc_checking_assert (TREE_OVERFLOW (t));
13272
13273 /* For tree codes with a sharing machinery re-build the result. */
13274 if (poly_int_tree_p (t))
13275 return wide_int_to_tree (TREE_TYPE (t), wi::to_poly_wide (t));
13276
13277 /* For VECTOR_CST, remove the overflow bits from the encoded elements
13278 and canonicalize the result. */
13279 if (TREE_CODE (t) == VECTOR_CST)
13280 {
13281 tree_vector_builder builder;
13282 builder.new_unary_operation (TREE_TYPE (t), t, true);
13283 unsigned int count = builder.encoded_nelts ();
13284 for (unsigned int i = 0; i < count; ++i)
13285 {
13286 tree elt = VECTOR_CST_ELT (t, i);
13287 if (TREE_OVERFLOW (elt))
13288 elt = drop_tree_overflow (elt);
13289 builder.quick_push (elt);
13290 }
13291 return builder.build ();
13292 }
13293
13294 /* Otherwise, as all tcc_constants are possibly shared, copy the node
13295 and drop the flag. */
13296 t = copy_node (t);
13297 TREE_OVERFLOW (t) = 0;
13298
13299 /* For constants that contain nested constants, drop the flag
13300 from those as well. */
13301 if (TREE_CODE (t) == COMPLEX_CST)
13302 {
13303 if (TREE_OVERFLOW (TREE_REALPART (t)))
13304 TREE_REALPART (t) = drop_tree_overflow (TREE_REALPART (t));
13305 if (TREE_OVERFLOW (TREE_IMAGPART (t)))
13306 TREE_IMAGPART (t) = drop_tree_overflow (TREE_IMAGPART (t));
13307 }
13308
13309 return t;
13310 }
13311
13312 /* Given a memory reference expression T, return its base address.
13313 The base address of a memory reference expression is the main
13314 object being referenced. For instance, the base address for
13315 'array[i].fld[j]' is 'array'. You can think of this as stripping
13316 away the offset part from a memory address.
13317
13318 This function calls handled_component_p to strip away all the inner
13319 parts of the memory reference until it reaches the base object. */
13320
13321 tree
13322 get_base_address (tree t)
13323 {
13324 while (handled_component_p (t))
13325 t = TREE_OPERAND (t, 0);
13326
13327 if ((TREE_CODE (t) == MEM_REF
13328 || TREE_CODE (t) == TARGET_MEM_REF)
13329 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR)
13330 t = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
13331
13332 /* ??? Either the alias oracle or all callers need to properly deal
13333 with WITH_SIZE_EXPRs before we can look through those. */
13334 if (TREE_CODE (t) == WITH_SIZE_EXPR)
13335 return NULL_TREE;
13336
13337 return t;
13338 }
13339
13340 /* Return a tree of sizetype representing the size, in bytes, of the element
13341 of EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
13342
13343 tree
13344 array_ref_element_size (tree exp)
13345 {
13346 tree aligned_size = TREE_OPERAND (exp, 3);
13347 tree elmt_type = TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)));
13348 location_t loc = EXPR_LOCATION (exp);
13349
13350 /* If a size was specified in the ARRAY_REF, it's the size measured
13351 in alignment units of the element type. So multiply by that value. */
13352 if (aligned_size)
13353 {
13354 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
13355 sizetype from another type of the same width and signedness. */
13356 if (TREE_TYPE (aligned_size) != sizetype)
13357 aligned_size = fold_convert_loc (loc, sizetype, aligned_size);
13358 return size_binop_loc (loc, MULT_EXPR, aligned_size,
13359 size_int (TYPE_ALIGN_UNIT (elmt_type)));
13360 }
13361
13362 /* Otherwise, take the size from that of the element type. Substitute
13363 any PLACEHOLDER_EXPR that we have. */
13364 else
13365 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type), exp);
13366 }
13367
13368 /* Return a tree representing the lower bound of the array mentioned in
13369 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
13370
13371 tree
13372 array_ref_low_bound (tree exp)
13373 {
13374 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
13375
13376 /* If a lower bound is specified in EXP, use it. */
13377 if (TREE_OPERAND (exp, 2))
13378 return TREE_OPERAND (exp, 2);
13379
13380 /* Otherwise, if there is a domain type and it has a lower bound, use it,
13381 substituting for a PLACEHOLDER_EXPR as needed. */
13382 if (domain_type && TYPE_MIN_VALUE (domain_type))
13383 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type), exp);
13384
13385 /* Otherwise, return a zero of the appropriate type. */
13386 tree idxtype = TREE_TYPE (TREE_OPERAND (exp, 1));
13387 return (idxtype == error_mark_node
13388 ? integer_zero_node : build_int_cst (idxtype, 0));
13389 }
13390
13391 /* Return a tree representing the upper bound of the array mentioned in
13392 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
13393
13394 tree
13395 array_ref_up_bound (tree exp)
13396 {
13397 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
13398
13399 /* If there is a domain type and it has an upper bound, use it, substituting
13400 for a PLACEHOLDER_EXPR as needed. */
13401 if (domain_type && TYPE_MAX_VALUE (domain_type))
13402 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type), exp);
13403
13404 /* Otherwise fail. */
13405 return NULL_TREE;
13406 }
13407
13408 /* Returns true if REF is an array reference, component reference,
13409 or memory reference to an array at the end of a structure.
13410 If this is the case, the array may be allocated larger
13411 than its upper bound implies. */
13412
13413 bool
13414 array_at_struct_end_p (tree ref)
13415 {
13416 tree atype;
13417
13418 if (TREE_CODE (ref) == ARRAY_REF
13419 || TREE_CODE (ref) == ARRAY_RANGE_REF)
13420 {
13421 atype = TREE_TYPE (TREE_OPERAND (ref, 0));
13422 ref = TREE_OPERAND (ref, 0);
13423 }
13424 else if (TREE_CODE (ref) == COMPONENT_REF
13425 && TREE_CODE (TREE_TYPE (TREE_OPERAND (ref, 1))) == ARRAY_TYPE)
13426 atype = TREE_TYPE (TREE_OPERAND (ref, 1));
13427 else if (TREE_CODE (ref) == MEM_REF)
13428 {
13429 tree arg = TREE_OPERAND (ref, 0);
13430 if (TREE_CODE (arg) == ADDR_EXPR)
13431 arg = TREE_OPERAND (arg, 0);
13432 tree argtype = TREE_TYPE (arg);
13433 if (TREE_CODE (argtype) == RECORD_TYPE)
13434 {
13435 if (tree fld = last_field (argtype))
13436 {
13437 atype = TREE_TYPE (fld);
13438 if (TREE_CODE (atype) != ARRAY_TYPE)
13439 return false;
13440 if (VAR_P (arg) && DECL_SIZE (fld))
13441 return false;
13442 }
13443 else
13444 return false;
13445 }
13446 else
13447 return false;
13448 }
13449 else
13450 return false;
13451
13452 if (TREE_CODE (ref) == STRING_CST)
13453 return false;
13454
13455 tree ref_to_array = ref;
13456 while (handled_component_p (ref))
13457 {
13458 /* If the reference chain contains a component reference to a
13459 non-union type and there follows another field the reference
13460 is not at the end of a structure. */
13461 if (TREE_CODE (ref) == COMPONENT_REF)
13462 {
13463 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (ref, 0))) == RECORD_TYPE)
13464 {
13465 tree nextf = DECL_CHAIN (TREE_OPERAND (ref, 1));
13466 while (nextf && TREE_CODE (nextf) != FIELD_DECL)
13467 nextf = DECL_CHAIN (nextf);
13468 if (nextf)
13469 return false;
13470 }
13471 }
13472 /* If we have a multi-dimensional array we do not consider
13473 a non-innermost dimension as flex array if the whole
13474 multi-dimensional array is at struct end.
13475 Same for an array of aggregates with a trailing array
13476 member. */
13477 else if (TREE_CODE (ref) == ARRAY_REF)
13478 return false;
13479 else if (TREE_CODE (ref) == ARRAY_RANGE_REF)
13480 ;
13481 /* If we view an underlying object as sth else then what we
13482 gathered up to now is what we have to rely on. */
13483 else if (TREE_CODE (ref) == VIEW_CONVERT_EXPR)
13484 break;
13485 else
13486 gcc_unreachable ();
13487
13488 ref = TREE_OPERAND (ref, 0);
13489 }
13490
13491 /* The array now is at struct end. Treat flexible arrays as
13492 always subject to extend, even into just padding constrained by
13493 an underlying decl. */
13494 if (! TYPE_SIZE (atype)
13495 || ! TYPE_DOMAIN (atype)
13496 || ! TYPE_MAX_VALUE (TYPE_DOMAIN (atype)))
13497 return true;
13498
13499 if (TREE_CODE (ref) == MEM_REF
13500 && TREE_CODE (TREE_OPERAND (ref, 0)) == ADDR_EXPR)
13501 ref = TREE_OPERAND (TREE_OPERAND (ref, 0), 0);
13502
13503 /* If the reference is based on a declared entity, the size of the array
13504 is constrained by its given domain. (Do not trust commons PR/69368). */
13505 if (DECL_P (ref)
13506 && !(flag_unconstrained_commons
13507 && VAR_P (ref) && DECL_COMMON (ref))
13508 && DECL_SIZE_UNIT (ref)
13509 && TREE_CODE (DECL_SIZE_UNIT (ref)) == INTEGER_CST)
13510 {
13511 /* Check whether the array domain covers all of the available
13512 padding. */
13513 poly_int64 offset;
13514 if (TREE_CODE (TYPE_SIZE_UNIT (TREE_TYPE (atype))) != INTEGER_CST
13515 || TREE_CODE (TYPE_MAX_VALUE (TYPE_DOMAIN (atype))) != INTEGER_CST
13516 || TREE_CODE (TYPE_MIN_VALUE (TYPE_DOMAIN (atype))) != INTEGER_CST)
13517 return true;
13518 if (! get_addr_base_and_unit_offset (ref_to_array, &offset))
13519 return true;
13520
13521 /* If at least one extra element fits it is a flexarray. */
13522 if (known_le ((wi::to_offset (TYPE_MAX_VALUE (TYPE_DOMAIN (atype)))
13523 - wi::to_offset (TYPE_MIN_VALUE (TYPE_DOMAIN (atype)))
13524 + 2)
13525 * wi::to_offset (TYPE_SIZE_UNIT (TREE_TYPE (atype))),
13526 wi::to_offset (DECL_SIZE_UNIT (ref)) - offset))
13527 return true;
13528
13529 return false;
13530 }
13531
13532 return true;
13533 }
13534
13535 /* Return a tree representing the offset, in bytes, of the field referenced
13536 by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
13537
13538 tree
13539 component_ref_field_offset (tree exp)
13540 {
13541 tree aligned_offset = TREE_OPERAND (exp, 2);
13542 tree field = TREE_OPERAND (exp, 1);
13543 location_t loc = EXPR_LOCATION (exp);
13544
13545 /* If an offset was specified in the COMPONENT_REF, it's the offset measured
13546 in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
13547 value. */
13548 if (aligned_offset)
13549 {
13550 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
13551 sizetype from another type of the same width and signedness. */
13552 if (TREE_TYPE (aligned_offset) != sizetype)
13553 aligned_offset = fold_convert_loc (loc, sizetype, aligned_offset);
13554 return size_binop_loc (loc, MULT_EXPR, aligned_offset,
13555 size_int (DECL_OFFSET_ALIGN (field)
13556 / BITS_PER_UNIT));
13557 }
13558
13559 /* Otherwise, take the offset from that of the field. Substitute
13560 any PLACEHOLDER_EXPR that we have. */
13561 else
13562 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field), exp);
13563 }
13564
13565 /* Given the initializer INIT, return the initializer for the field
13566 DECL if it exists, otherwise null. Used to obtain the initializer
13567 for a flexible array member and determine its size. */
13568
13569 static tree
13570 get_initializer_for (tree init, tree decl)
13571 {
13572 STRIP_NOPS (init);
13573
13574 tree fld, fld_init;
13575 unsigned HOST_WIDE_INT i;
13576 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), i, fld, fld_init)
13577 {
13578 if (decl == fld)
13579 return fld_init;
13580
13581 if (TREE_CODE (fld) == CONSTRUCTOR)
13582 {
13583 fld_init = get_initializer_for (fld_init, decl);
13584 if (fld_init)
13585 return fld_init;
13586 }
13587 }
13588
13589 return NULL_TREE;
13590 }
13591
13592 /* Determines the size of the member referenced by the COMPONENT_REF
13593 REF, using its initializer expression if necessary in order to
13594 determine the size of an initialized flexible array member.
13595 If non-null, *INTERIOR_ZERO_LENGTH is set when REF refers to
13596 an interior zero-length array.
13597 Returns the size as sizetype (which might be zero for an object
13598 with an uninitialized flexible array member) or null if the size
13599 cannot be determined. */
13600
13601 tree
13602 component_ref_size (tree ref, bool *interior_zero_length /* = NULL */)
13603 {
13604 gcc_assert (TREE_CODE (ref) == COMPONENT_REF);
13605
13606 bool int_0_len = false;
13607 if (!interior_zero_length)
13608 interior_zero_length = &int_0_len;
13609
13610 /* The object/argument referenced by the COMPONENT_REF and its type. */
13611 tree arg = TREE_OPERAND (ref, 0);
13612 tree argtype = TREE_TYPE (arg);
13613 /* The referenced member. */
13614 tree member = TREE_OPERAND (ref, 1);
13615
13616 tree memsize = DECL_SIZE_UNIT (member);
13617 if (memsize)
13618 {
13619 tree memtype = TREE_TYPE (member);
13620 if (TREE_CODE (memtype) != ARRAY_TYPE)
13621 return memsize;
13622
13623 bool trailing = array_at_struct_end_p (ref);
13624 bool zero_length = integer_zerop (memsize);
13625 if (!trailing && !zero_length)
13626 /* MEMBER is either an interior array or is an array with
13627 more than one element. */
13628 return memsize;
13629
13630 *interior_zero_length = zero_length && !trailing;
13631 if (*interior_zero_length)
13632 memsize = NULL_TREE;
13633
13634 if (!zero_length)
13635 if (tree dom = TYPE_DOMAIN (memtype))
13636 if (tree min = TYPE_MIN_VALUE (dom))
13637 if (tree max = TYPE_MAX_VALUE (dom))
13638 if (TREE_CODE (min) == INTEGER_CST
13639 && TREE_CODE (max) == INTEGER_CST)
13640 {
13641 offset_int minidx = wi::to_offset (min);
13642 offset_int maxidx = wi::to_offset (max);
13643 if (maxidx - minidx > 0)
13644 /* MEMBER is an array with more than one element. */
13645 return memsize;
13646 }
13647
13648 /* For a refernce to a zero- or one-element array member of a union
13649 use the size of the union instead of the size of the member. */
13650 if (TREE_CODE (argtype) == UNION_TYPE)
13651 memsize = TYPE_SIZE_UNIT (argtype);
13652 }
13653
13654 /* MEMBER is either a bona fide flexible array member, or a zero-length
13655 array member, or an array of length one treated as such. */
13656
13657 /* If the reference is to a declared object and the member a true
13658 flexible array, try to determine its size from its initializer. */
13659 poly_int64 baseoff = 0;
13660 tree base = get_addr_base_and_unit_offset (ref, &baseoff);
13661 if (!base || !VAR_P (base))
13662 {
13663 if (!*interior_zero_length)
13664 return NULL_TREE;
13665
13666 if (TREE_CODE (arg) != COMPONENT_REF)
13667 return NULL_TREE;
13668
13669 base = arg;
13670 while (TREE_CODE (base) == COMPONENT_REF)
13671 base = TREE_OPERAND (base, 0);
13672 baseoff = tree_to_poly_int64 (byte_position (TREE_OPERAND (ref, 1)));
13673 }
13674
13675 /* BASE is the declared object of which MEMBER is either a member
13676 or that is cast to ARGTYPE (e.g., a char buffer used to store
13677 an ARGTYPE object). */
13678 tree basetype = TREE_TYPE (base);
13679
13680 /* Determine the base type of the referenced object. If it's
13681 the same as ARGTYPE and MEMBER has a known size, return it. */
13682 tree bt = basetype;
13683 if (!*interior_zero_length)
13684 while (TREE_CODE (bt) == ARRAY_TYPE)
13685 bt = TREE_TYPE (bt);
13686 bool typematch = useless_type_conversion_p (argtype, bt);
13687 if (memsize && typematch)
13688 return memsize;
13689
13690 memsize = NULL_TREE;
13691
13692 if (typematch)
13693 /* MEMBER is a true flexible array member. Compute its size from
13694 the initializer of the BASE object if it has one. */
13695 if (tree init = DECL_P (base) ? DECL_INITIAL (base) : NULL_TREE)
13696 if (init != error_mark_node)
13697 {
13698 init = get_initializer_for (init, member);
13699 if (init)
13700 {
13701 memsize = TYPE_SIZE_UNIT (TREE_TYPE (init));
13702 if (tree refsize = TYPE_SIZE_UNIT (argtype))
13703 {
13704 /* Use the larger of the initializer size and the tail
13705 padding in the enclosing struct. */
13706 poly_int64 rsz = tree_to_poly_int64 (refsize);
13707 rsz -= baseoff;
13708 if (known_lt (tree_to_poly_int64 (memsize), rsz))
13709 memsize = wide_int_to_tree (TREE_TYPE (memsize), rsz);
13710 }
13711
13712 baseoff = 0;
13713 }
13714 }
13715
13716 if (!memsize)
13717 {
13718 if (typematch)
13719 {
13720 if (DECL_P (base)
13721 && DECL_EXTERNAL (base)
13722 && bt == basetype
13723 && !*interior_zero_length)
13724 /* The size of a flexible array member of an extern struct
13725 with no initializer cannot be determined (it's defined
13726 in another translation unit and can have an initializer
13727 with an arbitrary number of elements). */
13728 return NULL_TREE;
13729
13730 /* Use the size of the base struct or, for interior zero-length
13731 arrays, the size of the enclosing type. */
13732 memsize = TYPE_SIZE_UNIT (bt);
13733 }
13734 else if (DECL_P (base))
13735 /* Use the size of the BASE object (possibly an array of some
13736 other type such as char used to store the struct). */
13737 memsize = DECL_SIZE_UNIT (base);
13738 else
13739 return NULL_TREE;
13740 }
13741
13742 /* If the flexible array member has a known size use the greater
13743 of it and the tail padding in the enclosing struct.
13744 Otherwise, when the size of the flexible array member is unknown
13745 and the referenced object is not a struct, use the size of its
13746 type when known. This detects sizes of array buffers when cast
13747 to struct types with flexible array members. */
13748 if (memsize)
13749 {
13750 poly_int64 memsz64 = memsize ? tree_to_poly_int64 (memsize) : 0;
13751 if (known_lt (baseoff, memsz64))
13752 {
13753 memsz64 -= baseoff;
13754 return wide_int_to_tree (TREE_TYPE (memsize), memsz64);
13755 }
13756 return size_zero_node;
13757 }
13758
13759 /* Return "don't know" for an external non-array object since its
13760 flexible array member can be initialized to have any number of
13761 elements. Otherwise, return zero because the flexible array
13762 member has no elements. */
13763 return (DECL_P (base)
13764 && DECL_EXTERNAL (base)
13765 && (!typematch
13766 || TREE_CODE (basetype) != ARRAY_TYPE)
13767 ? NULL_TREE : size_zero_node);
13768 }
13769
13770 /* Return the machine mode of T. For vectors, returns the mode of the
13771 inner type. The main use case is to feed the result to HONOR_NANS,
13772 avoiding the BLKmode that a direct TYPE_MODE (T) might return. */
13773
13774 machine_mode
13775 element_mode (const_tree t)
13776 {
13777 if (!TYPE_P (t))
13778 t = TREE_TYPE (t);
13779 if (VECTOR_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
13780 t = TREE_TYPE (t);
13781 return TYPE_MODE (t);
13782 }
13783
13784 /* Vector types need to re-check the target flags each time we report
13785 the machine mode. We need to do this because attribute target can
13786 change the result of vector_mode_supported_p and have_regs_of_mode
13787 on a per-function basis. Thus the TYPE_MODE of a VECTOR_TYPE can
13788 change on a per-function basis. */
13789 /* ??? Possibly a better solution is to run through all the types
13790 referenced by a function and re-compute the TYPE_MODE once, rather
13791 than make the TYPE_MODE macro call a function. */
13792
13793 machine_mode
13794 vector_type_mode (const_tree t)
13795 {
13796 machine_mode mode;
13797
13798 gcc_assert (TREE_CODE (t) == VECTOR_TYPE);
13799
13800 mode = t->type_common.mode;
13801 if (VECTOR_MODE_P (mode)
13802 && (!targetm.vector_mode_supported_p (mode)
13803 || !have_regs_of_mode[mode]))
13804 {
13805 scalar_int_mode innermode;
13806
13807 /* For integers, try mapping it to a same-sized scalar mode. */
13808 if (is_int_mode (TREE_TYPE (t)->type_common.mode, &innermode))
13809 {
13810 poly_int64 size = (TYPE_VECTOR_SUBPARTS (t)
13811 * GET_MODE_BITSIZE (innermode));
13812 scalar_int_mode mode;
13813 if (int_mode_for_size (size, 0).exists (&mode)
13814 && have_regs_of_mode[mode])
13815 return mode;
13816 }
13817
13818 return BLKmode;
13819 }
13820
13821 return mode;
13822 }
13823
13824 /* Return the size in bits of each element of vector type TYPE. */
13825
13826 unsigned int
13827 vector_element_bits (const_tree type)
13828 {
13829 gcc_checking_assert (VECTOR_TYPE_P (type));
13830 if (VECTOR_BOOLEAN_TYPE_P (type))
13831 return vector_element_size (tree_to_poly_uint64 (TYPE_SIZE (type)),
13832 TYPE_VECTOR_SUBPARTS (type));
13833 return tree_to_uhwi (TYPE_SIZE (TREE_TYPE (type)));
13834 }
13835
13836 /* Calculate the size in bits of each element of vector type TYPE
13837 and return the result as a tree of type bitsizetype. */
13838
13839 tree
13840 vector_element_bits_tree (const_tree type)
13841 {
13842 gcc_checking_assert (VECTOR_TYPE_P (type));
13843 if (VECTOR_BOOLEAN_TYPE_P (type))
13844 return bitsize_int (vector_element_bits (type));
13845 return TYPE_SIZE (TREE_TYPE (type));
13846 }
13847
13848 /* Verify that basic properties of T match TV and thus T can be a variant of
13849 TV. TV should be the more specified variant (i.e. the main variant). */
13850
13851 static bool
13852 verify_type_variant (const_tree t, tree tv)
13853 {
13854 /* Type variant can differ by:
13855
13856 - TYPE_QUALS: TYPE_READONLY, TYPE_VOLATILE, TYPE_ATOMIC, TYPE_RESTRICT,
13857 ENCODE_QUAL_ADDR_SPACE.
13858 - main variant may be TYPE_COMPLETE_P and variant types !TYPE_COMPLETE_P
13859 in this case some values may not be set in the variant types
13860 (see TYPE_COMPLETE_P checks).
13861 - it is possible to have TYPE_ARTIFICIAL variant of non-artifical type
13862 - by TYPE_NAME and attributes (i.e. when variant originate by typedef)
13863 - TYPE_CANONICAL (TYPE_ALIAS_SET is the same among variants)
13864 - by the alignment: TYPE_ALIGN and TYPE_USER_ALIGN
13865 - during LTO by TYPE_CONTEXT if type is TYPE_FILE_SCOPE_P
13866 this is necessary to make it possible to merge types form different TUs
13867 - arrays, pointers and references may have TREE_TYPE that is a variant
13868 of TREE_TYPE of their main variants.
13869 - aggregates may have new TYPE_FIELDS list that list variants of
13870 the main variant TYPE_FIELDS.
13871 - vector types may differ by TYPE_VECTOR_OPAQUE
13872 */
13873
13874 /* Convenience macro for matching individual fields. */
13875 #define verify_variant_match(flag) \
13876 do { \
13877 if (flag (tv) != flag (t)) \
13878 { \
13879 error ("type variant differs by %s", #flag); \
13880 debug_tree (tv); \
13881 return false; \
13882 } \
13883 } while (false)
13884
13885 /* tree_base checks. */
13886
13887 verify_variant_match (TREE_CODE);
13888 /* FIXME: Ada builds non-artificial variants of artificial types. */
13889 if (TYPE_ARTIFICIAL (tv) && 0)
13890 verify_variant_match (TYPE_ARTIFICIAL);
13891 if (POINTER_TYPE_P (tv))
13892 verify_variant_match (TYPE_REF_CAN_ALIAS_ALL);
13893 /* FIXME: TYPE_SIZES_GIMPLIFIED may differs for Ada build. */
13894 verify_variant_match (TYPE_UNSIGNED);
13895 verify_variant_match (TYPE_PACKED);
13896 if (TREE_CODE (t) == REFERENCE_TYPE)
13897 verify_variant_match (TYPE_REF_IS_RVALUE);
13898 if (AGGREGATE_TYPE_P (t))
13899 verify_variant_match (TYPE_REVERSE_STORAGE_ORDER);
13900 else
13901 verify_variant_match (TYPE_SATURATING);
13902 /* FIXME: This check trigger during libstdc++ build. */
13903 if (RECORD_OR_UNION_TYPE_P (t) && COMPLETE_TYPE_P (t) && 0)
13904 verify_variant_match (TYPE_FINAL_P);
13905
13906 /* tree_type_common checks. */
13907
13908 if (COMPLETE_TYPE_P (t))
13909 {
13910 verify_variant_match (TYPE_MODE);
13911 if (TREE_CODE (TYPE_SIZE (t)) != PLACEHOLDER_EXPR
13912 && TREE_CODE (TYPE_SIZE (tv)) != PLACEHOLDER_EXPR)
13913 verify_variant_match (TYPE_SIZE);
13914 if (TREE_CODE (TYPE_SIZE_UNIT (t)) != PLACEHOLDER_EXPR
13915 && TREE_CODE (TYPE_SIZE_UNIT (tv)) != PLACEHOLDER_EXPR
13916 && TYPE_SIZE_UNIT (t) != TYPE_SIZE_UNIT (tv))
13917 {
13918 gcc_assert (!operand_equal_p (TYPE_SIZE_UNIT (t),
13919 TYPE_SIZE_UNIT (tv), 0));
13920 error ("type variant has different %<TYPE_SIZE_UNIT%>");
13921 debug_tree (tv);
13922 error ("type variant%'s %<TYPE_SIZE_UNIT%>");
13923 debug_tree (TYPE_SIZE_UNIT (tv));
13924 error ("type%'s %<TYPE_SIZE_UNIT%>");
13925 debug_tree (TYPE_SIZE_UNIT (t));
13926 return false;
13927 }
13928 verify_variant_match (TYPE_NEEDS_CONSTRUCTING);
13929 }
13930 verify_variant_match (TYPE_PRECISION);
13931 if (RECORD_OR_UNION_TYPE_P (t))
13932 verify_variant_match (TYPE_TRANSPARENT_AGGR);
13933 else if (TREE_CODE (t) == ARRAY_TYPE)
13934 verify_variant_match (TYPE_NONALIASED_COMPONENT);
13935 /* During LTO we merge variant lists from diferent translation units
13936 that may differ BY TYPE_CONTEXT that in turn may point
13937 to TRANSLATION_UNIT_DECL.
13938 Ada also builds variants of types with different TYPE_CONTEXT. */
13939 if ((!in_lto_p || !TYPE_FILE_SCOPE_P (t)) && 0)
13940 verify_variant_match (TYPE_CONTEXT);
13941 if (TREE_CODE (t) == ARRAY_TYPE || TREE_CODE (t) == INTEGER_TYPE)
13942 verify_variant_match (TYPE_STRING_FLAG);
13943 if (TREE_CODE (t) == RECORD_TYPE || TREE_CODE (t) == UNION_TYPE)
13944 verify_variant_match (TYPE_CXX_ODR_P);
13945 if (TYPE_ALIAS_SET_KNOWN_P (t))
13946 {
13947 error ("type variant with %<TYPE_ALIAS_SET_KNOWN_P%>");
13948 debug_tree (tv);
13949 return false;
13950 }
13951
13952 /* tree_type_non_common checks. */
13953
13954 /* FIXME: C FE uses TYPE_VFIELD to record C_TYPE_INCOMPLETE_VARS
13955 and dangle the pointer from time to time. */
13956 if (RECORD_OR_UNION_TYPE_P (t) && TYPE_VFIELD (t) != TYPE_VFIELD (tv)
13957 && (in_lto_p || !TYPE_VFIELD (tv)
13958 || TREE_CODE (TYPE_VFIELD (tv)) != TREE_LIST))
13959 {
13960 error ("type variant has different %<TYPE_VFIELD%>");
13961 debug_tree (tv);
13962 return false;
13963 }
13964 if ((TREE_CODE (t) == ENUMERAL_TYPE && COMPLETE_TYPE_P (t))
13965 || TREE_CODE (t) == INTEGER_TYPE
13966 || TREE_CODE (t) == BOOLEAN_TYPE
13967 || TREE_CODE (t) == REAL_TYPE
13968 || TREE_CODE (t) == FIXED_POINT_TYPE)
13969 {
13970 verify_variant_match (TYPE_MAX_VALUE);
13971 verify_variant_match (TYPE_MIN_VALUE);
13972 }
13973 if (TREE_CODE (t) == METHOD_TYPE)
13974 verify_variant_match (TYPE_METHOD_BASETYPE);
13975 if (TREE_CODE (t) == OFFSET_TYPE)
13976 verify_variant_match (TYPE_OFFSET_BASETYPE);
13977 if (TREE_CODE (t) == ARRAY_TYPE)
13978 verify_variant_match (TYPE_ARRAY_MAX_SIZE);
13979 /* FIXME: Be lax and allow TYPE_BINFO to be missing in variant types
13980 or even type's main variant. This is needed to make bootstrap pass
13981 and the bug seems new in GCC 5.
13982 C++ FE should be updated to make this consistent and we should check
13983 that TYPE_BINFO is always NULL for !COMPLETE_TYPE_P and otherwise there
13984 is a match with main variant.
13985
13986 Also disable the check for Java for now because of parser hack that builds
13987 first an dummy BINFO and then sometimes replace it by real BINFO in some
13988 of the copies. */
13989 if (RECORD_OR_UNION_TYPE_P (t) && TYPE_BINFO (t) && TYPE_BINFO (tv)
13990 && TYPE_BINFO (t) != TYPE_BINFO (tv)
13991 /* FIXME: Java sometimes keep dump TYPE_BINFOs on variant types.
13992 Since there is no cheap way to tell C++/Java type w/o LTO, do checking
13993 at LTO time only. */
13994 && (in_lto_p && odr_type_p (t)))
13995 {
13996 error ("type variant has different %<TYPE_BINFO%>");
13997 debug_tree (tv);
13998 error ("type variant%'s %<TYPE_BINFO%>");
13999 debug_tree (TYPE_BINFO (tv));
14000 error ("type%'s %<TYPE_BINFO%>");
14001 debug_tree (TYPE_BINFO (t));
14002 return false;
14003 }
14004
14005 /* Check various uses of TYPE_VALUES_RAW. */
14006 if (TREE_CODE (t) == ENUMERAL_TYPE
14007 && TYPE_VALUES (t))
14008 verify_variant_match (TYPE_VALUES);
14009 else if (TREE_CODE (t) == ARRAY_TYPE)
14010 verify_variant_match (TYPE_DOMAIN);
14011 /* Permit incomplete variants of complete type. While FEs may complete
14012 all variants, this does not happen for C++ templates in all cases. */
14013 else if (RECORD_OR_UNION_TYPE_P (t)
14014 && COMPLETE_TYPE_P (t)
14015 && TYPE_FIELDS (t) != TYPE_FIELDS (tv))
14016 {
14017 tree f1, f2;
14018
14019 /* Fortran builds qualified variants as new records with items of
14020 qualified type. Verify that they looks same. */
14021 for (f1 = TYPE_FIELDS (t), f2 = TYPE_FIELDS (tv);
14022 f1 && f2;
14023 f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2))
14024 if (TREE_CODE (f1) != FIELD_DECL || TREE_CODE (f2) != FIELD_DECL
14025 || (TYPE_MAIN_VARIANT (TREE_TYPE (f1))
14026 != TYPE_MAIN_VARIANT (TREE_TYPE (f2))
14027 /* FIXME: gfc_nonrestricted_type builds all types as variants
14028 with exception of pointer types. It deeply copies the type
14029 which means that we may end up with a variant type
14030 referring non-variant pointer. We may change it to
14031 produce types as variants, too, like
14032 objc_get_protocol_qualified_type does. */
14033 && !POINTER_TYPE_P (TREE_TYPE (f1)))
14034 || DECL_FIELD_OFFSET (f1) != DECL_FIELD_OFFSET (f2)
14035 || DECL_FIELD_BIT_OFFSET (f1) != DECL_FIELD_BIT_OFFSET (f2))
14036 break;
14037 if (f1 || f2)
14038 {
14039 error ("type variant has different %<TYPE_FIELDS%>");
14040 debug_tree (tv);
14041 error ("first mismatch is field");
14042 debug_tree (f1);
14043 error ("and field");
14044 debug_tree (f2);
14045 return false;
14046 }
14047 }
14048 else if ((TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE))
14049 verify_variant_match (TYPE_ARG_TYPES);
14050 /* For C++ the qualified variant of array type is really an array type
14051 of qualified TREE_TYPE.
14052 objc builds variants of pointer where pointer to type is a variant, too
14053 in objc_get_protocol_qualified_type. */
14054 if (TREE_TYPE (t) != TREE_TYPE (tv)
14055 && ((TREE_CODE (t) != ARRAY_TYPE
14056 && !POINTER_TYPE_P (t))
14057 || TYPE_MAIN_VARIANT (TREE_TYPE (t))
14058 != TYPE_MAIN_VARIANT (TREE_TYPE (tv))))
14059 {
14060 error ("type variant has different %<TREE_TYPE%>");
14061 debug_tree (tv);
14062 error ("type variant%'s %<TREE_TYPE%>");
14063 debug_tree (TREE_TYPE (tv));
14064 error ("type%'s %<TREE_TYPE%>");
14065 debug_tree (TREE_TYPE (t));
14066 return false;
14067 }
14068 if (type_with_alias_set_p (t)
14069 && !gimple_canonical_types_compatible_p (t, tv, false))
14070 {
14071 error ("type is not compatible with its variant");
14072 debug_tree (tv);
14073 error ("type variant%'s %<TREE_TYPE%>");
14074 debug_tree (TREE_TYPE (tv));
14075 error ("type%'s %<TREE_TYPE%>");
14076 debug_tree (TREE_TYPE (t));
14077 return false;
14078 }
14079 return true;
14080 #undef verify_variant_match
14081 }
14082
14083
14084 /* The TYPE_CANONICAL merging machinery. It should closely resemble
14085 the middle-end types_compatible_p function. It needs to avoid
14086 claiming types are different for types that should be treated
14087 the same with respect to TBAA. Canonical types are also used
14088 for IL consistency checks via the useless_type_conversion_p
14089 predicate which does not handle all type kinds itself but falls
14090 back to pointer-comparison of TYPE_CANONICAL for aggregates
14091 for example. */
14092
14093 /* Return true if TYPE_UNSIGNED of TYPE should be ignored for canonical
14094 type calculation because we need to allow inter-operability between signed
14095 and unsigned variants. */
14096
14097 bool
14098 type_with_interoperable_signedness (const_tree type)
14099 {
14100 /* Fortran standard require C_SIGNED_CHAR to be interoperable with both
14101 signed char and unsigned char. Similarly fortran FE builds
14102 C_SIZE_T as signed type, while C defines it unsigned. */
14103
14104 return tree_code_for_canonical_type_merging (TREE_CODE (type))
14105 == INTEGER_TYPE
14106 && (TYPE_PRECISION (type) == TYPE_PRECISION (signed_char_type_node)
14107 || TYPE_PRECISION (type) == TYPE_PRECISION (size_type_node));
14108 }
14109
14110 /* Return true iff T1 and T2 are structurally identical for what
14111 TBAA is concerned.
14112 This function is used both by lto.c canonical type merging and by the
14113 verifier. If TRUST_TYPE_CANONICAL we do not look into structure of types
14114 that have TYPE_CANONICAL defined and assume them equivalent. This is useful
14115 only for LTO because only in these cases TYPE_CANONICAL equivalence
14116 correspond to one defined by gimple_canonical_types_compatible_p. */
14117
14118 bool
14119 gimple_canonical_types_compatible_p (const_tree t1, const_tree t2,
14120 bool trust_type_canonical)
14121 {
14122 /* Type variants should be same as the main variant. When not doing sanity
14123 checking to verify this fact, go to main variants and save some work. */
14124 if (trust_type_canonical)
14125 {
14126 t1 = TYPE_MAIN_VARIANT (t1);
14127 t2 = TYPE_MAIN_VARIANT (t2);
14128 }
14129
14130 /* Check first for the obvious case of pointer identity. */
14131 if (t1 == t2)
14132 return true;
14133
14134 /* Check that we have two types to compare. */
14135 if (t1 == NULL_TREE || t2 == NULL_TREE)
14136 return false;
14137
14138 /* We consider complete types always compatible with incomplete type.
14139 This does not make sense for canonical type calculation and thus we
14140 need to ensure that we are never called on it.
14141
14142 FIXME: For more correctness the function probably should have three modes
14143 1) mode assuming that types are complete mathcing their structure
14144 2) mode allowing incomplete types but producing equivalence classes
14145 and thus ignoring all info from complete types
14146 3) mode allowing incomplete types to match complete but checking
14147 compatibility between complete types.
14148
14149 1 and 2 can be used for canonical type calculation. 3 is the real
14150 definition of type compatibility that can be used i.e. for warnings during
14151 declaration merging. */
14152
14153 gcc_assert (!trust_type_canonical
14154 || (type_with_alias_set_p (t1) && type_with_alias_set_p (t2)));
14155
14156 /* If the types have been previously registered and found equal
14157 they still are. */
14158
14159 if (TYPE_CANONICAL (t1) && TYPE_CANONICAL (t2)
14160 && trust_type_canonical)
14161 {
14162 /* Do not use TYPE_CANONICAL of pointer types. For LTO streamed types
14163 they are always NULL, but they are set to non-NULL for types
14164 constructed by build_pointer_type and variants. In this case the
14165 TYPE_CANONICAL is more fine grained than the equivalnce we test (where
14166 all pointers are considered equal. Be sure to not return false
14167 negatives. */
14168 gcc_checking_assert (canonical_type_used_p (t1)
14169 && canonical_type_used_p (t2));
14170 return TYPE_CANONICAL (t1) == TYPE_CANONICAL (t2);
14171 }
14172
14173 /* For types where we do ODR based TBAA the canonical type is always
14174 set correctly, so we know that types are different if their
14175 canonical types does not match. */
14176 if (trust_type_canonical
14177 && (odr_type_p (t1) && odr_based_tbaa_p (t1))
14178 != (odr_type_p (t2) && odr_based_tbaa_p (t2)))
14179 return false;
14180
14181 /* Can't be the same type if the types don't have the same code. */
14182 enum tree_code code = tree_code_for_canonical_type_merging (TREE_CODE (t1));
14183 if (code != tree_code_for_canonical_type_merging (TREE_CODE (t2)))
14184 return false;
14185
14186 /* Qualifiers do not matter for canonical type comparison purposes. */
14187
14188 /* Void types and nullptr types are always the same. */
14189 if (TREE_CODE (t1) == VOID_TYPE
14190 || TREE_CODE (t1) == NULLPTR_TYPE)
14191 return true;
14192
14193 /* Can't be the same type if they have different mode. */
14194 if (TYPE_MODE (t1) != TYPE_MODE (t2))
14195 return false;
14196
14197 /* Non-aggregate types can be handled cheaply. */
14198 if (INTEGRAL_TYPE_P (t1)
14199 || SCALAR_FLOAT_TYPE_P (t1)
14200 || FIXED_POINT_TYPE_P (t1)
14201 || TREE_CODE (t1) == VECTOR_TYPE
14202 || TREE_CODE (t1) == COMPLEX_TYPE
14203 || TREE_CODE (t1) == OFFSET_TYPE
14204 || POINTER_TYPE_P (t1))
14205 {
14206 /* Can't be the same type if they have different recision. */
14207 if (TYPE_PRECISION (t1) != TYPE_PRECISION (t2))
14208 return false;
14209
14210 /* In some cases the signed and unsigned types are required to be
14211 inter-operable. */
14212 if (TYPE_UNSIGNED (t1) != TYPE_UNSIGNED (t2)
14213 && !type_with_interoperable_signedness (t1))
14214 return false;
14215
14216 /* Fortran's C_SIGNED_CHAR is !TYPE_STRING_FLAG but needs to be
14217 interoperable with "signed char". Unless all frontends are revisited
14218 to agree on these types, we must ignore the flag completely. */
14219
14220 /* Fortran standard define C_PTR type that is compatible with every
14221 C pointer. For this reason we need to glob all pointers into one.
14222 Still pointers in different address spaces are not compatible. */
14223 if (POINTER_TYPE_P (t1))
14224 {
14225 if (TYPE_ADDR_SPACE (TREE_TYPE (t1))
14226 != TYPE_ADDR_SPACE (TREE_TYPE (t2)))
14227 return false;
14228 }
14229
14230 /* Tail-recurse to components. */
14231 if (TREE_CODE (t1) == VECTOR_TYPE
14232 || TREE_CODE (t1) == COMPLEX_TYPE)
14233 return gimple_canonical_types_compatible_p (TREE_TYPE (t1),
14234 TREE_TYPE (t2),
14235 trust_type_canonical);
14236
14237 return true;
14238 }
14239
14240 /* Do type-specific comparisons. */
14241 switch (TREE_CODE (t1))
14242 {
14243 case ARRAY_TYPE:
14244 /* Array types are the same if the element types are the same and
14245 the number of elements are the same. */
14246 if (!gimple_canonical_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2),
14247 trust_type_canonical)
14248 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)
14249 || TYPE_REVERSE_STORAGE_ORDER (t1) != TYPE_REVERSE_STORAGE_ORDER (t2)
14250 || TYPE_NONALIASED_COMPONENT (t1) != TYPE_NONALIASED_COMPONENT (t2))
14251 return false;
14252 else
14253 {
14254 tree i1 = TYPE_DOMAIN (t1);
14255 tree i2 = TYPE_DOMAIN (t2);
14256
14257 /* For an incomplete external array, the type domain can be
14258 NULL_TREE. Check this condition also. */
14259 if (i1 == NULL_TREE && i2 == NULL_TREE)
14260 return true;
14261 else if (i1 == NULL_TREE || i2 == NULL_TREE)
14262 return false;
14263 else
14264 {
14265 tree min1 = TYPE_MIN_VALUE (i1);
14266 tree min2 = TYPE_MIN_VALUE (i2);
14267 tree max1 = TYPE_MAX_VALUE (i1);
14268 tree max2 = TYPE_MAX_VALUE (i2);
14269
14270 /* The minimum/maximum values have to be the same. */
14271 if ((min1 == min2
14272 || (min1 && min2
14273 && ((TREE_CODE (min1) == PLACEHOLDER_EXPR
14274 && TREE_CODE (min2) == PLACEHOLDER_EXPR)
14275 || operand_equal_p (min1, min2, 0))))
14276 && (max1 == max2
14277 || (max1 && max2
14278 && ((TREE_CODE (max1) == PLACEHOLDER_EXPR
14279 && TREE_CODE (max2) == PLACEHOLDER_EXPR)
14280 || operand_equal_p (max1, max2, 0)))))
14281 return true;
14282 else
14283 return false;
14284 }
14285 }
14286
14287 case METHOD_TYPE:
14288 case FUNCTION_TYPE:
14289 /* Function types are the same if the return type and arguments types
14290 are the same. */
14291 if (!gimple_canonical_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2),
14292 trust_type_canonical))
14293 return false;
14294
14295 if (TYPE_ARG_TYPES (t1) == TYPE_ARG_TYPES (t2))
14296 return true;
14297 else
14298 {
14299 tree parms1, parms2;
14300
14301 for (parms1 = TYPE_ARG_TYPES (t1), parms2 = TYPE_ARG_TYPES (t2);
14302 parms1 && parms2;
14303 parms1 = TREE_CHAIN (parms1), parms2 = TREE_CHAIN (parms2))
14304 {
14305 if (!gimple_canonical_types_compatible_p
14306 (TREE_VALUE (parms1), TREE_VALUE (parms2),
14307 trust_type_canonical))
14308 return false;
14309 }
14310
14311 if (parms1 || parms2)
14312 return false;
14313
14314 return true;
14315 }
14316
14317 case RECORD_TYPE:
14318 case UNION_TYPE:
14319 case QUAL_UNION_TYPE:
14320 {
14321 tree f1, f2;
14322
14323 /* Don't try to compare variants of an incomplete type, before
14324 TYPE_FIELDS has been copied around. */
14325 if (!COMPLETE_TYPE_P (t1) && !COMPLETE_TYPE_P (t2))
14326 return true;
14327
14328
14329 if (TYPE_REVERSE_STORAGE_ORDER (t1) != TYPE_REVERSE_STORAGE_ORDER (t2))
14330 return false;
14331
14332 /* For aggregate types, all the fields must be the same. */
14333 for (f1 = TYPE_FIELDS (t1), f2 = TYPE_FIELDS (t2);
14334 f1 || f2;
14335 f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2))
14336 {
14337 /* Skip non-fields and zero-sized fields. */
14338 while (f1 && (TREE_CODE (f1) != FIELD_DECL
14339 || (DECL_SIZE (f1)
14340 && integer_zerop (DECL_SIZE (f1)))))
14341 f1 = TREE_CHAIN (f1);
14342 while (f2 && (TREE_CODE (f2) != FIELD_DECL
14343 || (DECL_SIZE (f2)
14344 && integer_zerop (DECL_SIZE (f2)))))
14345 f2 = TREE_CHAIN (f2);
14346 if (!f1 || !f2)
14347 break;
14348 /* The fields must have the same name, offset and type. */
14349 if (DECL_NONADDRESSABLE_P (f1) != DECL_NONADDRESSABLE_P (f2)
14350 || !gimple_compare_field_offset (f1, f2)
14351 || !gimple_canonical_types_compatible_p
14352 (TREE_TYPE (f1), TREE_TYPE (f2),
14353 trust_type_canonical))
14354 return false;
14355 }
14356
14357 /* If one aggregate has more fields than the other, they
14358 are not the same. */
14359 if (f1 || f2)
14360 return false;
14361
14362 return true;
14363 }
14364
14365 default:
14366 /* Consider all types with language specific trees in them mutually
14367 compatible. This is executed only from verify_type and false
14368 positives can be tolerated. */
14369 gcc_assert (!in_lto_p);
14370 return true;
14371 }
14372 }
14373
14374 /* Verify type T. */
14375
14376 void
14377 verify_type (const_tree t)
14378 {
14379 bool error_found = false;
14380 tree mv = TYPE_MAIN_VARIANT (t);
14381 if (!mv)
14382 {
14383 error ("main variant is not defined");
14384 error_found = true;
14385 }
14386 else if (mv != TYPE_MAIN_VARIANT (mv))
14387 {
14388 error ("%<TYPE_MAIN_VARIANT%> has different %<TYPE_MAIN_VARIANT%>");
14389 debug_tree (mv);
14390 error_found = true;
14391 }
14392 else if (t != mv && !verify_type_variant (t, mv))
14393 error_found = true;
14394
14395 tree ct = TYPE_CANONICAL (t);
14396 if (!ct)
14397 ;
14398 else if (TYPE_CANONICAL (t) != ct)
14399 {
14400 error ("%<TYPE_CANONICAL%> has different %<TYPE_CANONICAL%>");
14401 debug_tree (ct);
14402 error_found = true;
14403 }
14404 /* Method and function types cannot be used to address memory and thus
14405 TYPE_CANONICAL really matters only for determining useless conversions.
14406
14407 FIXME: C++ FE produce declarations of builtin functions that are not
14408 compatible with main variants. */
14409 else if (TREE_CODE (t) == FUNCTION_TYPE)
14410 ;
14411 else if (t != ct
14412 /* FIXME: gimple_canonical_types_compatible_p cannot compare types
14413 with variably sized arrays because their sizes possibly
14414 gimplified to different variables. */
14415 && !variably_modified_type_p (ct, NULL)
14416 && !gimple_canonical_types_compatible_p (t, ct, false)
14417 && COMPLETE_TYPE_P (t))
14418 {
14419 error ("%<TYPE_CANONICAL%> is not compatible");
14420 debug_tree (ct);
14421 error_found = true;
14422 }
14423
14424 if (COMPLETE_TYPE_P (t) && TYPE_CANONICAL (t)
14425 && TYPE_MODE (t) != TYPE_MODE (TYPE_CANONICAL (t)))
14426 {
14427 error ("%<TYPE_MODE%> of %<TYPE_CANONICAL%> is not compatible");
14428 debug_tree (ct);
14429 error_found = true;
14430 }
14431 if (TYPE_MAIN_VARIANT (t) == t && ct && TYPE_MAIN_VARIANT (ct) != ct)
14432 {
14433 error ("%<TYPE_CANONICAL%> of main variant is not main variant");
14434 debug_tree (ct);
14435 debug_tree (TYPE_MAIN_VARIANT (ct));
14436 error_found = true;
14437 }
14438
14439
14440 /* Check various uses of TYPE_MIN_VALUE_RAW. */
14441 if (RECORD_OR_UNION_TYPE_P (t))
14442 {
14443 /* FIXME: C FE uses TYPE_VFIELD to record C_TYPE_INCOMPLETE_VARS
14444 and danagle the pointer from time to time. */
14445 if (TYPE_VFIELD (t)
14446 && TREE_CODE (TYPE_VFIELD (t)) != FIELD_DECL
14447 && TREE_CODE (TYPE_VFIELD (t)) != TREE_LIST)
14448 {
14449 error ("%<TYPE_VFIELD%> is not %<FIELD_DECL%> nor %<TREE_LIST%>");
14450 debug_tree (TYPE_VFIELD (t));
14451 error_found = true;
14452 }
14453 }
14454 else if (TREE_CODE (t) == POINTER_TYPE)
14455 {
14456 if (TYPE_NEXT_PTR_TO (t)
14457 && TREE_CODE (TYPE_NEXT_PTR_TO (t)) != POINTER_TYPE)
14458 {
14459 error ("%<TYPE_NEXT_PTR_TO%> is not %<POINTER_TYPE%>");
14460 debug_tree (TYPE_NEXT_PTR_TO (t));
14461 error_found = true;
14462 }
14463 }
14464 else if (TREE_CODE (t) == REFERENCE_TYPE)
14465 {
14466 if (TYPE_NEXT_REF_TO (t)
14467 && TREE_CODE (TYPE_NEXT_REF_TO (t)) != REFERENCE_TYPE)
14468 {
14469 error ("%<TYPE_NEXT_REF_TO%> is not %<REFERENCE_TYPE%>");
14470 debug_tree (TYPE_NEXT_REF_TO (t));
14471 error_found = true;
14472 }
14473 }
14474 else if (INTEGRAL_TYPE_P (t) || TREE_CODE (t) == REAL_TYPE
14475 || TREE_CODE (t) == FIXED_POINT_TYPE)
14476 {
14477 /* FIXME: The following check should pass:
14478 useless_type_conversion_p (const_cast <tree> (t),
14479 TREE_TYPE (TYPE_MIN_VALUE (t))
14480 but does not for C sizetypes in LTO. */
14481 }
14482
14483 /* Check various uses of TYPE_MAXVAL_RAW. */
14484 if (RECORD_OR_UNION_TYPE_P (t))
14485 {
14486 if (!TYPE_BINFO (t))
14487 ;
14488 else if (TREE_CODE (TYPE_BINFO (t)) != TREE_BINFO)
14489 {
14490 error ("%<TYPE_BINFO%> is not %<TREE_BINFO%>");
14491 debug_tree (TYPE_BINFO (t));
14492 error_found = true;
14493 }
14494 else if (TREE_TYPE (TYPE_BINFO (t)) != TYPE_MAIN_VARIANT (t))
14495 {
14496 error ("%<TYPE_BINFO%> type is not %<TYPE_MAIN_VARIANT%>");
14497 debug_tree (TREE_TYPE (TYPE_BINFO (t)));
14498 error_found = true;
14499 }
14500 }
14501 else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
14502 {
14503 if (TYPE_METHOD_BASETYPE (t)
14504 && TREE_CODE (TYPE_METHOD_BASETYPE (t)) != RECORD_TYPE
14505 && TREE_CODE (TYPE_METHOD_BASETYPE (t)) != UNION_TYPE)
14506 {
14507 error ("%<TYPE_METHOD_BASETYPE%> is not record nor union");
14508 debug_tree (TYPE_METHOD_BASETYPE (t));
14509 error_found = true;
14510 }
14511 }
14512 else if (TREE_CODE (t) == OFFSET_TYPE)
14513 {
14514 if (TYPE_OFFSET_BASETYPE (t)
14515 && TREE_CODE (TYPE_OFFSET_BASETYPE (t)) != RECORD_TYPE
14516 && TREE_CODE (TYPE_OFFSET_BASETYPE (t)) != UNION_TYPE)
14517 {
14518 error ("%<TYPE_OFFSET_BASETYPE%> is not record nor union");
14519 debug_tree (TYPE_OFFSET_BASETYPE (t));
14520 error_found = true;
14521 }
14522 }
14523 else if (INTEGRAL_TYPE_P (t) || TREE_CODE (t) == REAL_TYPE
14524 || TREE_CODE (t) == FIXED_POINT_TYPE)
14525 {
14526 /* FIXME: The following check should pass:
14527 useless_type_conversion_p (const_cast <tree> (t),
14528 TREE_TYPE (TYPE_MAX_VALUE (t))
14529 but does not for C sizetypes in LTO. */
14530 }
14531 else if (TREE_CODE (t) == ARRAY_TYPE)
14532 {
14533 if (TYPE_ARRAY_MAX_SIZE (t)
14534 && TREE_CODE (TYPE_ARRAY_MAX_SIZE (t)) != INTEGER_CST)
14535 {
14536 error ("%<TYPE_ARRAY_MAX_SIZE%> not %<INTEGER_CST%>");
14537 debug_tree (TYPE_ARRAY_MAX_SIZE (t));
14538 error_found = true;
14539 }
14540 }
14541 else if (TYPE_MAX_VALUE_RAW (t))
14542 {
14543 error ("%<TYPE_MAX_VALUE_RAW%> non-NULL");
14544 debug_tree (TYPE_MAX_VALUE_RAW (t));
14545 error_found = true;
14546 }
14547
14548 if (TYPE_LANG_SLOT_1 (t) && in_lto_p)
14549 {
14550 error ("%<TYPE_LANG_SLOT_1 (binfo)%> field is non-NULL");
14551 debug_tree (TYPE_LANG_SLOT_1 (t));
14552 error_found = true;
14553 }
14554
14555 /* Check various uses of TYPE_VALUES_RAW. */
14556 if (TREE_CODE (t) == ENUMERAL_TYPE)
14557 for (tree l = TYPE_VALUES (t); l; l = TREE_CHAIN (l))
14558 {
14559 tree value = TREE_VALUE (l);
14560 tree name = TREE_PURPOSE (l);
14561
14562 /* C FE porduce INTEGER_CST of INTEGER_TYPE, while C++ FE uses
14563 CONST_DECL of ENUMERAL TYPE. */
14564 if (TREE_CODE (value) != INTEGER_CST && TREE_CODE (value) != CONST_DECL)
14565 {
14566 error ("enum value is not %<CONST_DECL%> or %<INTEGER_CST%>");
14567 debug_tree (value);
14568 debug_tree (name);
14569 error_found = true;
14570 }
14571 if (TREE_CODE (TREE_TYPE (value)) != INTEGER_TYPE
14572 && !useless_type_conversion_p (const_cast <tree> (t), TREE_TYPE (value)))
14573 {
14574 error ("enum value type is not %<INTEGER_TYPE%> nor convertible "
14575 "to the enum");
14576 debug_tree (value);
14577 debug_tree (name);
14578 error_found = true;
14579 }
14580 if (TREE_CODE (name) != IDENTIFIER_NODE)
14581 {
14582 error ("enum value name is not %<IDENTIFIER_NODE%>");
14583 debug_tree (value);
14584 debug_tree (name);
14585 error_found = true;
14586 }
14587 }
14588 else if (TREE_CODE (t) == ARRAY_TYPE)
14589 {
14590 if (TYPE_DOMAIN (t) && TREE_CODE (TYPE_DOMAIN (t)) != INTEGER_TYPE)
14591 {
14592 error ("array %<TYPE_DOMAIN%> is not integer type");
14593 debug_tree (TYPE_DOMAIN (t));
14594 error_found = true;
14595 }
14596 }
14597 else if (RECORD_OR_UNION_TYPE_P (t))
14598 {
14599 if (TYPE_FIELDS (t) && !COMPLETE_TYPE_P (t) && in_lto_p)
14600 {
14601 error ("%<TYPE_FIELDS%> defined in incomplete type");
14602 error_found = true;
14603 }
14604 for (tree fld = TYPE_FIELDS (t); fld; fld = TREE_CHAIN (fld))
14605 {
14606 /* TODO: verify properties of decls. */
14607 if (TREE_CODE (fld) == FIELD_DECL)
14608 ;
14609 else if (TREE_CODE (fld) == TYPE_DECL)
14610 ;
14611 else if (TREE_CODE (fld) == CONST_DECL)
14612 ;
14613 else if (VAR_P (fld))
14614 ;
14615 else if (TREE_CODE (fld) == TEMPLATE_DECL)
14616 ;
14617 else if (TREE_CODE (fld) == USING_DECL)
14618 ;
14619 else if (TREE_CODE (fld) == FUNCTION_DECL)
14620 ;
14621 else
14622 {
14623 error ("wrong tree in %<TYPE_FIELDS%> list");
14624 debug_tree (fld);
14625 error_found = true;
14626 }
14627 }
14628 }
14629 else if (TREE_CODE (t) == INTEGER_TYPE
14630 || TREE_CODE (t) == BOOLEAN_TYPE
14631 || TREE_CODE (t) == OFFSET_TYPE
14632 || TREE_CODE (t) == REFERENCE_TYPE
14633 || TREE_CODE (t) == NULLPTR_TYPE
14634 || TREE_CODE (t) == POINTER_TYPE)
14635 {
14636 if (TYPE_CACHED_VALUES_P (t) != (TYPE_CACHED_VALUES (t) != NULL))
14637 {
14638 error ("%<TYPE_CACHED_VALUES_P%> is %i while %<TYPE_CACHED_VALUES%> "
14639 "is %p",
14640 TYPE_CACHED_VALUES_P (t), (void *)TYPE_CACHED_VALUES (t));
14641 error_found = true;
14642 }
14643 else if (TYPE_CACHED_VALUES_P (t) && TREE_CODE (TYPE_CACHED_VALUES (t)) != TREE_VEC)
14644 {
14645 error ("%<TYPE_CACHED_VALUES%> is not %<TREE_VEC%>");
14646 debug_tree (TYPE_CACHED_VALUES (t));
14647 error_found = true;
14648 }
14649 /* Verify just enough of cache to ensure that no one copied it to new type.
14650 All copying should go by copy_node that should clear it. */
14651 else if (TYPE_CACHED_VALUES_P (t))
14652 {
14653 int i;
14654 for (i = 0; i < TREE_VEC_LENGTH (TYPE_CACHED_VALUES (t)); i++)
14655 if (TREE_VEC_ELT (TYPE_CACHED_VALUES (t), i)
14656 && TREE_TYPE (TREE_VEC_ELT (TYPE_CACHED_VALUES (t), i)) != t)
14657 {
14658 error ("wrong %<TYPE_CACHED_VALUES%> entry");
14659 debug_tree (TREE_VEC_ELT (TYPE_CACHED_VALUES (t), i));
14660 error_found = true;
14661 break;
14662 }
14663 }
14664 }
14665 else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
14666 for (tree l = TYPE_ARG_TYPES (t); l; l = TREE_CHAIN (l))
14667 {
14668 /* C++ FE uses TREE_PURPOSE to store initial values. */
14669 if (TREE_PURPOSE (l) && in_lto_p)
14670 {
14671 error ("%<TREE_PURPOSE%> is non-NULL in %<TYPE_ARG_TYPES%> list");
14672 debug_tree (l);
14673 error_found = true;
14674 }
14675 if (!TYPE_P (TREE_VALUE (l)))
14676 {
14677 error ("wrong entry in %<TYPE_ARG_TYPES%> list");
14678 debug_tree (l);
14679 error_found = true;
14680 }
14681 }
14682 else if (!is_lang_specific (t) && TYPE_VALUES_RAW (t))
14683 {
14684 error ("%<TYPE_VALUES_RAW%> field is non-NULL");
14685 debug_tree (TYPE_VALUES_RAW (t));
14686 error_found = true;
14687 }
14688 if (TREE_CODE (t) != INTEGER_TYPE
14689 && TREE_CODE (t) != BOOLEAN_TYPE
14690 && TREE_CODE (t) != OFFSET_TYPE
14691 && TREE_CODE (t) != REFERENCE_TYPE
14692 && TREE_CODE (t) != NULLPTR_TYPE
14693 && TREE_CODE (t) != POINTER_TYPE
14694 && TYPE_CACHED_VALUES_P (t))
14695 {
14696 error ("%<TYPE_CACHED_VALUES_P%> is set while it should not be");
14697 error_found = true;
14698 }
14699
14700 /* ipa-devirt makes an assumption that TYPE_METHOD_BASETYPE is always
14701 TYPE_MAIN_VARIANT and it would be odd to add methods only to variatns
14702 of a type. */
14703 if (TREE_CODE (t) == METHOD_TYPE
14704 && TYPE_MAIN_VARIANT (TYPE_METHOD_BASETYPE (t)) != TYPE_METHOD_BASETYPE (t))
14705 {
14706 error ("%<TYPE_METHOD_BASETYPE%> is not main variant");
14707 error_found = true;
14708 }
14709
14710 if (error_found)
14711 {
14712 debug_tree (const_cast <tree> (t));
14713 internal_error ("%qs failed", __func__);
14714 }
14715 }
14716
14717
14718 /* Return 1 if ARG interpreted as signed in its precision is known to be
14719 always positive or 2 if ARG is known to be always negative, or 3 if
14720 ARG may be positive or negative. */
14721
14722 int
14723 get_range_pos_neg (tree arg)
14724 {
14725 if (arg == error_mark_node)
14726 return 3;
14727
14728 int prec = TYPE_PRECISION (TREE_TYPE (arg));
14729 int cnt = 0;
14730 if (TREE_CODE (arg) == INTEGER_CST)
14731 {
14732 wide_int w = wi::sext (wi::to_wide (arg), prec);
14733 if (wi::neg_p (w))
14734 return 2;
14735 else
14736 return 1;
14737 }
14738 while (CONVERT_EXPR_P (arg)
14739 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (arg, 0)))
14740 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg, 0))) <= prec)
14741 {
14742 arg = TREE_OPERAND (arg, 0);
14743 /* Narrower value zero extended into wider type
14744 will always result in positive values. */
14745 if (TYPE_UNSIGNED (TREE_TYPE (arg))
14746 && TYPE_PRECISION (TREE_TYPE (arg)) < prec)
14747 return 1;
14748 prec = TYPE_PRECISION (TREE_TYPE (arg));
14749 if (++cnt > 30)
14750 return 3;
14751 }
14752
14753 if (TREE_CODE (arg) != SSA_NAME)
14754 return 3;
14755 wide_int arg_min, arg_max;
14756 while (get_range_info (arg, &arg_min, &arg_max) != VR_RANGE)
14757 {
14758 gimple *g = SSA_NAME_DEF_STMT (arg);
14759 if (is_gimple_assign (g)
14760 && CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (g)))
14761 {
14762 tree t = gimple_assign_rhs1 (g);
14763 if (INTEGRAL_TYPE_P (TREE_TYPE (t))
14764 && TYPE_PRECISION (TREE_TYPE (t)) <= prec)
14765 {
14766 if (TYPE_UNSIGNED (TREE_TYPE (t))
14767 && TYPE_PRECISION (TREE_TYPE (t)) < prec)
14768 return 1;
14769 prec = TYPE_PRECISION (TREE_TYPE (t));
14770 arg = t;
14771 if (++cnt > 30)
14772 return 3;
14773 continue;
14774 }
14775 }
14776 return 3;
14777 }
14778 if (TYPE_UNSIGNED (TREE_TYPE (arg)))
14779 {
14780 /* For unsigned values, the "positive" range comes
14781 below the "negative" range. */
14782 if (!wi::neg_p (wi::sext (arg_max, prec), SIGNED))
14783 return 1;
14784 if (wi::neg_p (wi::sext (arg_min, prec), SIGNED))
14785 return 2;
14786 }
14787 else
14788 {
14789 if (!wi::neg_p (wi::sext (arg_min, prec), SIGNED))
14790 return 1;
14791 if (wi::neg_p (wi::sext (arg_max, prec), SIGNED))
14792 return 2;
14793 }
14794 return 3;
14795 }
14796
14797
14798
14799
14800 /* Return true if ARG is marked with the nonnull attribute in the
14801 current function signature. */
14802
14803 bool
14804 nonnull_arg_p (const_tree arg)
14805 {
14806 tree t, attrs, fntype;
14807 unsigned HOST_WIDE_INT arg_num;
14808
14809 gcc_assert (TREE_CODE (arg) == PARM_DECL
14810 && (POINTER_TYPE_P (TREE_TYPE (arg))
14811 || TREE_CODE (TREE_TYPE (arg)) == OFFSET_TYPE));
14812
14813 /* The static chain decl is always non null. */
14814 if (arg == cfun->static_chain_decl)
14815 return true;
14816
14817 /* THIS argument of method is always non-NULL. */
14818 if (TREE_CODE (TREE_TYPE (cfun->decl)) == METHOD_TYPE
14819 && arg == DECL_ARGUMENTS (cfun->decl)
14820 && flag_delete_null_pointer_checks)
14821 return true;
14822
14823 /* Values passed by reference are always non-NULL. */
14824 if (TREE_CODE (TREE_TYPE (arg)) == REFERENCE_TYPE
14825 && flag_delete_null_pointer_checks)
14826 return true;
14827
14828 fntype = TREE_TYPE (cfun->decl);
14829 for (attrs = TYPE_ATTRIBUTES (fntype); attrs; attrs = TREE_CHAIN (attrs))
14830 {
14831 attrs = lookup_attribute ("nonnull", attrs);
14832
14833 /* If "nonnull" wasn't specified, we know nothing about the argument. */
14834 if (attrs == NULL_TREE)
14835 return false;
14836
14837 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
14838 if (TREE_VALUE (attrs) == NULL_TREE)
14839 return true;
14840
14841 /* Get the position number for ARG in the function signature. */
14842 for (arg_num = 1, t = DECL_ARGUMENTS (cfun->decl);
14843 t;
14844 t = DECL_CHAIN (t), arg_num++)
14845 {
14846 if (t == arg)
14847 break;
14848 }
14849
14850 gcc_assert (t == arg);
14851
14852 /* Now see if ARG_NUM is mentioned in the nonnull list. */
14853 for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
14854 {
14855 if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
14856 return true;
14857 }
14858 }
14859
14860 return false;
14861 }
14862
14863 /* Combine LOC and BLOCK to a combined adhoc loc, retaining any range
14864 information. */
14865
14866 location_t
14867 set_block (location_t loc, tree block)
14868 {
14869 location_t pure_loc = get_pure_location (loc);
14870 source_range src_range = get_range_from_loc (line_table, loc);
14871 return COMBINE_LOCATION_DATA (line_table, pure_loc, src_range, block);
14872 }
14873
14874 location_t
14875 set_source_range (tree expr, location_t start, location_t finish)
14876 {
14877 source_range src_range;
14878 src_range.m_start = start;
14879 src_range.m_finish = finish;
14880 return set_source_range (expr, src_range);
14881 }
14882
14883 location_t
14884 set_source_range (tree expr, source_range src_range)
14885 {
14886 if (!EXPR_P (expr))
14887 return UNKNOWN_LOCATION;
14888
14889 location_t pure_loc = get_pure_location (EXPR_LOCATION (expr));
14890 location_t adhoc = COMBINE_LOCATION_DATA (line_table,
14891 pure_loc,
14892 src_range,
14893 NULL);
14894 SET_EXPR_LOCATION (expr, adhoc);
14895 return adhoc;
14896 }
14897
14898 /* Return EXPR, potentially wrapped with a node expression LOC,
14899 if !CAN_HAVE_LOCATION_P (expr).
14900
14901 NON_LVALUE_EXPR is used for wrapping constants, apart from STRING_CST.
14902 VIEW_CONVERT_EXPR is used for wrapping non-constants and STRING_CST.
14903
14904 Wrapper nodes can be identified using location_wrapper_p. */
14905
14906 tree
14907 maybe_wrap_with_location (tree expr, location_t loc)
14908 {
14909 if (expr == NULL)
14910 return NULL;
14911 if (loc == UNKNOWN_LOCATION)
14912 return expr;
14913 if (CAN_HAVE_LOCATION_P (expr))
14914 return expr;
14915 /* We should only be adding wrappers for constants and for decls,
14916 or for some exceptional tree nodes (e.g. BASELINK in the C++ FE). */
14917 gcc_assert (CONSTANT_CLASS_P (expr)
14918 || DECL_P (expr)
14919 || EXCEPTIONAL_CLASS_P (expr));
14920
14921 /* For now, don't add wrappers to exceptional tree nodes, to minimize
14922 any impact of the wrapper nodes. */
14923 if (EXCEPTIONAL_CLASS_P (expr))
14924 return expr;
14925
14926 /* If any auto_suppress_location_wrappers are active, don't create
14927 wrappers. */
14928 if (suppress_location_wrappers > 0)
14929 return expr;
14930
14931 tree_code code
14932 = (((CONSTANT_CLASS_P (expr) && TREE_CODE (expr) != STRING_CST)
14933 || (TREE_CODE (expr) == CONST_DECL && !TREE_STATIC (expr)))
14934 ? NON_LVALUE_EXPR : VIEW_CONVERT_EXPR);
14935 tree wrapper = build1_loc (loc, code, TREE_TYPE (expr), expr);
14936 /* Mark this node as being a wrapper. */
14937 EXPR_LOCATION_WRAPPER_P (wrapper) = 1;
14938 return wrapper;
14939 }
14940
14941 int suppress_location_wrappers;
14942
14943 /* Return the name of combined function FN, for debugging purposes. */
14944
14945 const char *
14946 combined_fn_name (combined_fn fn)
14947 {
14948 if (builtin_fn_p (fn))
14949 {
14950 tree fndecl = builtin_decl_explicit (as_builtin_fn (fn));
14951 return IDENTIFIER_POINTER (DECL_NAME (fndecl));
14952 }
14953 else
14954 return internal_fn_name (as_internal_fn (fn));
14955 }
14956
14957 /* Return a bitmap with a bit set corresponding to each argument in
14958 a function call type FNTYPE declared with attribute nonnull,
14959 or null if none of the function's argument are nonnull. The caller
14960 must free the bitmap. */
14961
14962 bitmap
14963 get_nonnull_args (const_tree fntype)
14964 {
14965 if (fntype == NULL_TREE)
14966 return NULL;
14967
14968 tree attrs = TYPE_ATTRIBUTES (fntype);
14969 if (!attrs)
14970 return NULL;
14971
14972 bitmap argmap = NULL;
14973
14974 /* A function declaration can specify multiple attribute nonnull,
14975 each with zero or more arguments. The loop below creates a bitmap
14976 representing a union of all the arguments. An empty (but non-null)
14977 bitmap means that all arguments have been declaraed nonnull. */
14978 for ( ; attrs; attrs = TREE_CHAIN (attrs))
14979 {
14980 attrs = lookup_attribute ("nonnull", attrs);
14981 if (!attrs)
14982 break;
14983
14984 if (!argmap)
14985 argmap = BITMAP_ALLOC (NULL);
14986
14987 if (!TREE_VALUE (attrs))
14988 {
14989 /* Clear the bitmap in case a previous attribute nonnull
14990 set it and this one overrides it for all arguments. */
14991 bitmap_clear (argmap);
14992 return argmap;
14993 }
14994
14995 /* Iterate over the indices of the format arguments declared nonnull
14996 and set a bit for each. */
14997 for (tree idx = TREE_VALUE (attrs); idx; idx = TREE_CHAIN (idx))
14998 {
14999 unsigned int val = TREE_INT_CST_LOW (TREE_VALUE (idx)) - 1;
15000 bitmap_set_bit (argmap, val);
15001 }
15002 }
15003
15004 return argmap;
15005 }
15006
15007 /* Returns true if TYPE is a type where it and all of its subobjects
15008 (recursively) are of structure, union, or array type. */
15009
15010 static bool
15011 default_is_empty_type (tree type)
15012 {
15013 if (RECORD_OR_UNION_TYPE_P (type))
15014 {
15015 for (tree field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
15016 if (TREE_CODE (field) == FIELD_DECL
15017 && !DECL_PADDING_P (field)
15018 && !default_is_empty_type (TREE_TYPE (field)))
15019 return false;
15020 return true;
15021 }
15022 else if (TREE_CODE (type) == ARRAY_TYPE)
15023 return (integer_minus_onep (array_type_nelts (type))
15024 || TYPE_DOMAIN (type) == NULL_TREE
15025 || default_is_empty_type (TREE_TYPE (type)));
15026 return false;
15027 }
15028
15029 /* Implement TARGET_EMPTY_RECORD_P. Return true if TYPE is an empty type
15030 that shouldn't be passed via stack. */
15031
15032 bool
15033 default_is_empty_record (const_tree type)
15034 {
15035 if (!abi_version_at_least (12))
15036 return false;
15037
15038 if (type == error_mark_node)
15039 return false;
15040
15041 if (TREE_ADDRESSABLE (type))
15042 return false;
15043
15044 return default_is_empty_type (TYPE_MAIN_VARIANT (type));
15045 }
15046
15047 /* Determine whether TYPE is a structure with a flexible array member,
15048 or a union containing such a structure (possibly recursively). */
15049
15050 bool
15051 flexible_array_type_p (const_tree type)
15052 {
15053 tree x, last;
15054 switch (TREE_CODE (type))
15055 {
15056 case RECORD_TYPE:
15057 last = NULL_TREE;
15058 for (x = TYPE_FIELDS (type); x != NULL_TREE; x = DECL_CHAIN (x))
15059 if (TREE_CODE (x) == FIELD_DECL)
15060 last = x;
15061 if (last == NULL_TREE)
15062 return false;
15063 if (TREE_CODE (TREE_TYPE (last)) == ARRAY_TYPE
15064 && TYPE_SIZE (TREE_TYPE (last)) == NULL_TREE
15065 && TYPE_DOMAIN (TREE_TYPE (last)) != NULL_TREE
15066 && TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (last))) == NULL_TREE)
15067 return true;
15068 return false;
15069 case UNION_TYPE:
15070 for (x = TYPE_FIELDS (type); x != NULL_TREE; x = DECL_CHAIN (x))
15071 {
15072 if (TREE_CODE (x) == FIELD_DECL
15073 && flexible_array_type_p (TREE_TYPE (x)))
15074 return true;
15075 }
15076 return false;
15077 default:
15078 return false;
15079 }
15080 }
15081
15082 /* Like int_size_in_bytes, but handle empty records specially. */
15083
15084 HOST_WIDE_INT
15085 arg_int_size_in_bytes (const_tree type)
15086 {
15087 return TYPE_EMPTY_P (type) ? 0 : int_size_in_bytes (type);
15088 }
15089
15090 /* Like size_in_bytes, but handle empty records specially. */
15091
15092 tree
15093 arg_size_in_bytes (const_tree type)
15094 {
15095 return TYPE_EMPTY_P (type) ? size_zero_node : size_in_bytes (type);
15096 }
15097
15098 /* Return true if an expression with CODE has to have the same result type as
15099 its first operand. */
15100
15101 bool
15102 expr_type_first_operand_type_p (tree_code code)
15103 {
15104 switch (code)
15105 {
15106 case NEGATE_EXPR:
15107 case ABS_EXPR:
15108 case BIT_NOT_EXPR:
15109 case PAREN_EXPR:
15110 case CONJ_EXPR:
15111
15112 case PLUS_EXPR:
15113 case MINUS_EXPR:
15114 case MULT_EXPR:
15115 case TRUNC_DIV_EXPR:
15116 case CEIL_DIV_EXPR:
15117 case FLOOR_DIV_EXPR:
15118 case ROUND_DIV_EXPR:
15119 case TRUNC_MOD_EXPR:
15120 case CEIL_MOD_EXPR:
15121 case FLOOR_MOD_EXPR:
15122 case ROUND_MOD_EXPR:
15123 case RDIV_EXPR:
15124 case EXACT_DIV_EXPR:
15125 case MIN_EXPR:
15126 case MAX_EXPR:
15127 case BIT_IOR_EXPR:
15128 case BIT_XOR_EXPR:
15129 case BIT_AND_EXPR:
15130
15131 case LSHIFT_EXPR:
15132 case RSHIFT_EXPR:
15133 case LROTATE_EXPR:
15134 case RROTATE_EXPR:
15135 return true;
15136
15137 default:
15138 return false;
15139 }
15140 }
15141
15142 /* Return a typenode for the "standard" C type with a given name. */
15143 tree
15144 get_typenode_from_name (const char *name)
15145 {
15146 if (name == NULL || *name == '\0')
15147 return NULL_TREE;
15148
15149 if (strcmp (name, "char") == 0)
15150 return char_type_node;
15151 if (strcmp (name, "unsigned char") == 0)
15152 return unsigned_char_type_node;
15153 if (strcmp (name, "signed char") == 0)
15154 return signed_char_type_node;
15155
15156 if (strcmp (name, "short int") == 0)
15157 return short_integer_type_node;
15158 if (strcmp (name, "short unsigned int") == 0)
15159 return short_unsigned_type_node;
15160
15161 if (strcmp (name, "int") == 0)
15162 return integer_type_node;
15163 if (strcmp (name, "unsigned int") == 0)
15164 return unsigned_type_node;
15165
15166 if (strcmp (name, "long int") == 0)
15167 return long_integer_type_node;
15168 if (strcmp (name, "long unsigned int") == 0)
15169 return long_unsigned_type_node;
15170
15171 if (strcmp (name, "long long int") == 0)
15172 return long_long_integer_type_node;
15173 if (strcmp (name, "long long unsigned int") == 0)
15174 return long_long_unsigned_type_node;
15175
15176 gcc_unreachable ();
15177 }
15178
15179 /* List of pointer types used to declare builtins before we have seen their
15180 real declaration.
15181
15182 Keep the size up to date in tree.h ! */
15183 const builtin_structptr_type builtin_structptr_types[6] =
15184 {
15185 { fileptr_type_node, ptr_type_node, "FILE" },
15186 { const_tm_ptr_type_node, const_ptr_type_node, "tm" },
15187 { fenv_t_ptr_type_node, ptr_type_node, "fenv_t" },
15188 { const_fenv_t_ptr_type_node, const_ptr_type_node, "fenv_t" },
15189 { fexcept_t_ptr_type_node, ptr_type_node, "fexcept_t" },
15190 { const_fexcept_t_ptr_type_node, const_ptr_type_node, "fexcept_t" }
15191 };
15192
15193 /* Return the maximum object size. */
15194
15195 tree
15196 max_object_size (void)
15197 {
15198 /* To do: Make this a configurable parameter. */
15199 return TYPE_MAX_VALUE (ptrdiff_type_node);
15200 }
15201
15202 /* A wrapper around TARGET_VERIFY_TYPE_CONTEXT that makes the silent_p
15203 parameter default to false and that weeds out error_mark_node. */
15204
15205 bool
15206 verify_type_context (location_t loc, type_context_kind context,
15207 const_tree type, bool silent_p)
15208 {
15209 if (type == error_mark_node)
15210 return true;
15211
15212 gcc_assert (TYPE_P (type));
15213 return (!targetm.verify_type_context
15214 || targetm.verify_type_context (loc, context, type, silent_p));
15215 }
15216
15217 #if CHECKING_P
15218
15219 namespace selftest {
15220
15221 /* Selftests for tree. */
15222
15223 /* Verify that integer constants are sane. */
15224
15225 static void
15226 test_integer_constants ()
15227 {
15228 ASSERT_TRUE (integer_type_node != NULL);
15229 ASSERT_TRUE (build_int_cst (integer_type_node, 0) != NULL);
15230
15231 tree type = integer_type_node;
15232
15233 tree zero = build_zero_cst (type);
15234 ASSERT_EQ (INTEGER_CST, TREE_CODE (zero));
15235 ASSERT_EQ (type, TREE_TYPE (zero));
15236
15237 tree one = build_int_cst (type, 1);
15238 ASSERT_EQ (INTEGER_CST, TREE_CODE (one));
15239 ASSERT_EQ (type, TREE_TYPE (zero));
15240 }
15241
15242 /* Verify identifiers. */
15243
15244 static void
15245 test_identifiers ()
15246 {
15247 tree identifier = get_identifier ("foo");
15248 ASSERT_EQ (3, IDENTIFIER_LENGTH (identifier));
15249 ASSERT_STREQ ("foo", IDENTIFIER_POINTER (identifier));
15250 }
15251
15252 /* Verify LABEL_DECL. */
15253
15254 static void
15255 test_labels ()
15256 {
15257 tree identifier = get_identifier ("err");
15258 tree label_decl = build_decl (UNKNOWN_LOCATION, LABEL_DECL,
15259 identifier, void_type_node);
15260 ASSERT_EQ (-1, LABEL_DECL_UID (label_decl));
15261 ASSERT_FALSE (FORCED_LABEL (label_decl));
15262 }
15263
15264 /* Return a new VECTOR_CST node whose type is TYPE and whose values
15265 are given by VALS. */
15266
15267 static tree
15268 build_vector (tree type, vec<tree> vals MEM_STAT_DECL)
15269 {
15270 gcc_assert (known_eq (vals.length (), TYPE_VECTOR_SUBPARTS (type)));
15271 tree_vector_builder builder (type, vals.length (), 1);
15272 builder.splice (vals);
15273 return builder.build ();
15274 }
15275
15276 /* Check that VECTOR_CST ACTUAL contains the elements in EXPECTED. */
15277
15278 static void
15279 check_vector_cst (vec<tree> expected, tree actual)
15280 {
15281 ASSERT_KNOWN_EQ (expected.length (),
15282 TYPE_VECTOR_SUBPARTS (TREE_TYPE (actual)));
15283 for (unsigned int i = 0; i < expected.length (); ++i)
15284 ASSERT_EQ (wi::to_wide (expected[i]),
15285 wi::to_wide (vector_cst_elt (actual, i)));
15286 }
15287
15288 /* Check that VECTOR_CST ACTUAL contains NPATTERNS duplicated elements,
15289 and that its elements match EXPECTED. */
15290
15291 static void
15292 check_vector_cst_duplicate (vec<tree> expected, tree actual,
15293 unsigned int npatterns)
15294 {
15295 ASSERT_EQ (npatterns, VECTOR_CST_NPATTERNS (actual));
15296 ASSERT_EQ (1, VECTOR_CST_NELTS_PER_PATTERN (actual));
15297 ASSERT_EQ (npatterns, vector_cst_encoded_nelts (actual));
15298 ASSERT_TRUE (VECTOR_CST_DUPLICATE_P (actual));
15299 ASSERT_FALSE (VECTOR_CST_STEPPED_P (actual));
15300 check_vector_cst (expected, actual);
15301 }
15302
15303 /* Check that VECTOR_CST ACTUAL contains NPATTERNS foreground elements
15304 and NPATTERNS background elements, and that its elements match
15305 EXPECTED. */
15306
15307 static void
15308 check_vector_cst_fill (vec<tree> expected, tree actual,
15309 unsigned int npatterns)
15310 {
15311 ASSERT_EQ (npatterns, VECTOR_CST_NPATTERNS (actual));
15312 ASSERT_EQ (2, VECTOR_CST_NELTS_PER_PATTERN (actual));
15313 ASSERT_EQ (2 * npatterns, vector_cst_encoded_nelts (actual));
15314 ASSERT_FALSE (VECTOR_CST_DUPLICATE_P (actual));
15315 ASSERT_FALSE (VECTOR_CST_STEPPED_P (actual));
15316 check_vector_cst (expected, actual);
15317 }
15318
15319 /* Check that VECTOR_CST ACTUAL contains NPATTERNS stepped patterns,
15320 and that its elements match EXPECTED. */
15321
15322 static void
15323 check_vector_cst_stepped (vec<tree> expected, tree actual,
15324 unsigned int npatterns)
15325 {
15326 ASSERT_EQ (npatterns, VECTOR_CST_NPATTERNS (actual));
15327 ASSERT_EQ (3, VECTOR_CST_NELTS_PER_PATTERN (actual));
15328 ASSERT_EQ (3 * npatterns, vector_cst_encoded_nelts (actual));
15329 ASSERT_FALSE (VECTOR_CST_DUPLICATE_P (actual));
15330 ASSERT_TRUE (VECTOR_CST_STEPPED_P (actual));
15331 check_vector_cst (expected, actual);
15332 }
15333
15334 /* Test the creation of VECTOR_CSTs. */
15335
15336 static void
15337 test_vector_cst_patterns (ALONE_CXX_MEM_STAT_INFO)
15338 {
15339 auto_vec<tree, 8> elements (8);
15340 elements.quick_grow (8);
15341 tree element_type = build_nonstandard_integer_type (16, true);
15342 tree vector_type = build_vector_type (element_type, 8);
15343
15344 /* Test a simple linear series with a base of 0 and a step of 1:
15345 { 0, 1, 2, 3, 4, 5, 6, 7 }. */
15346 for (unsigned int i = 0; i < 8; ++i)
15347 elements[i] = build_int_cst (element_type, i);
15348 tree vector = build_vector (vector_type, elements PASS_MEM_STAT);
15349 check_vector_cst_stepped (elements, vector, 1);
15350
15351 /* Try the same with the first element replaced by 100:
15352 { 100, 1, 2, 3, 4, 5, 6, 7 }. */
15353 elements[0] = build_int_cst (element_type, 100);
15354 vector = build_vector (vector_type, elements PASS_MEM_STAT);
15355 check_vector_cst_stepped (elements, vector, 1);
15356
15357 /* Try a series that wraps around.
15358 { 100, 65531, 65532, 65533, 65534, 65535, 0, 1 }. */
15359 for (unsigned int i = 1; i < 8; ++i)
15360 elements[i] = build_int_cst (element_type, (65530 + i) & 0xffff);
15361 vector = build_vector (vector_type, elements PASS_MEM_STAT);
15362 check_vector_cst_stepped (elements, vector, 1);
15363
15364 /* Try a downward series:
15365 { 100, 79, 78, 77, 76, 75, 75, 73 }. */
15366 for (unsigned int i = 1; i < 8; ++i)
15367 elements[i] = build_int_cst (element_type, 80 - i);
15368 vector = build_vector (vector_type, elements PASS_MEM_STAT);
15369 check_vector_cst_stepped (elements, vector, 1);
15370
15371 /* Try two interleaved series with different bases and steps:
15372 { 100, 53, 66, 206, 62, 212, 58, 218 }. */
15373 elements[1] = build_int_cst (element_type, 53);
15374 for (unsigned int i = 2; i < 8; i += 2)
15375 {
15376 elements[i] = build_int_cst (element_type, 70 - i * 2);
15377 elements[i + 1] = build_int_cst (element_type, 200 + i * 3);
15378 }
15379 vector = build_vector (vector_type, elements PASS_MEM_STAT);
15380 check_vector_cst_stepped (elements, vector, 2);
15381
15382 /* Try a duplicated value:
15383 { 100, 100, 100, 100, 100, 100, 100, 100 }. */
15384 for (unsigned int i = 1; i < 8; ++i)
15385 elements[i] = elements[0];
15386 vector = build_vector (vector_type, elements PASS_MEM_STAT);
15387 check_vector_cst_duplicate (elements, vector, 1);
15388
15389 /* Try an interleaved duplicated value:
15390 { 100, 55, 100, 55, 100, 55, 100, 55 }. */
15391 elements[1] = build_int_cst (element_type, 55);
15392 for (unsigned int i = 2; i < 8; ++i)
15393 elements[i] = elements[i - 2];
15394 vector = build_vector (vector_type, elements PASS_MEM_STAT);
15395 check_vector_cst_duplicate (elements, vector, 2);
15396
15397 /* Try a duplicated value with 2 exceptions
15398 { 41, 97, 100, 55, 100, 55, 100, 55 }. */
15399 elements[0] = build_int_cst (element_type, 41);
15400 elements[1] = build_int_cst (element_type, 97);
15401 vector = build_vector (vector_type, elements PASS_MEM_STAT);
15402 check_vector_cst_fill (elements, vector, 2);
15403
15404 /* Try with and without a step
15405 { 41, 97, 100, 21, 100, 35, 100, 49 }. */
15406 for (unsigned int i = 3; i < 8; i += 2)
15407 elements[i] = build_int_cst (element_type, i * 7);
15408 vector = build_vector (vector_type, elements PASS_MEM_STAT);
15409 check_vector_cst_stepped (elements, vector, 2);
15410
15411 /* Try a fully-general constant:
15412 { 41, 97, 100, 21, 100, 9990, 100, 49 }. */
15413 elements[5] = build_int_cst (element_type, 9990);
15414 vector = build_vector (vector_type, elements PASS_MEM_STAT);
15415 check_vector_cst_fill (elements, vector, 4);
15416 }
15417
15418 /* Verify that STRIP_NOPS (NODE) is EXPECTED.
15419 Helper function for test_location_wrappers, to deal with STRIP_NOPS
15420 modifying its argument in-place. */
15421
15422 static void
15423 check_strip_nops (tree node, tree expected)
15424 {
15425 STRIP_NOPS (node);
15426 ASSERT_EQ (expected, node);
15427 }
15428
15429 /* Verify location wrappers. */
15430
15431 static void
15432 test_location_wrappers ()
15433 {
15434 location_t loc = BUILTINS_LOCATION;
15435
15436 ASSERT_EQ (NULL_TREE, maybe_wrap_with_location (NULL_TREE, loc));
15437
15438 /* Wrapping a constant. */
15439 tree int_cst = build_int_cst (integer_type_node, 42);
15440 ASSERT_FALSE (CAN_HAVE_LOCATION_P (int_cst));
15441 ASSERT_FALSE (location_wrapper_p (int_cst));
15442
15443 tree wrapped_int_cst = maybe_wrap_with_location (int_cst, loc);
15444 ASSERT_TRUE (location_wrapper_p (wrapped_int_cst));
15445 ASSERT_EQ (loc, EXPR_LOCATION (wrapped_int_cst));
15446 ASSERT_EQ (int_cst, tree_strip_any_location_wrapper (wrapped_int_cst));
15447
15448 /* We shouldn't add wrapper nodes for UNKNOWN_LOCATION. */
15449 ASSERT_EQ (int_cst, maybe_wrap_with_location (int_cst, UNKNOWN_LOCATION));
15450
15451 /* We shouldn't add wrapper nodes for nodes that CAN_HAVE_LOCATION_P. */
15452 tree cast = build1 (NOP_EXPR, char_type_node, int_cst);
15453 ASSERT_TRUE (CAN_HAVE_LOCATION_P (cast));
15454 ASSERT_EQ (cast, maybe_wrap_with_location (cast, loc));
15455
15456 /* Wrapping a STRING_CST. */
15457 tree string_cst = build_string (4, "foo");
15458 ASSERT_FALSE (CAN_HAVE_LOCATION_P (string_cst));
15459 ASSERT_FALSE (location_wrapper_p (string_cst));
15460
15461 tree wrapped_string_cst = maybe_wrap_with_location (string_cst, loc);
15462 ASSERT_TRUE (location_wrapper_p (wrapped_string_cst));
15463 ASSERT_EQ (VIEW_CONVERT_EXPR, TREE_CODE (wrapped_string_cst));
15464 ASSERT_EQ (loc, EXPR_LOCATION (wrapped_string_cst));
15465 ASSERT_EQ (string_cst, tree_strip_any_location_wrapper (wrapped_string_cst));
15466
15467
15468 /* Wrapping a variable. */
15469 tree int_var = build_decl (UNKNOWN_LOCATION, VAR_DECL,
15470 get_identifier ("some_int_var"),
15471 integer_type_node);
15472 ASSERT_FALSE (CAN_HAVE_LOCATION_P (int_var));
15473 ASSERT_FALSE (location_wrapper_p (int_var));
15474
15475 tree wrapped_int_var = maybe_wrap_with_location (int_var, loc);
15476 ASSERT_TRUE (location_wrapper_p (wrapped_int_var));
15477 ASSERT_EQ (loc, EXPR_LOCATION (wrapped_int_var));
15478 ASSERT_EQ (int_var, tree_strip_any_location_wrapper (wrapped_int_var));
15479
15480 /* Verify that "reinterpret_cast<int>(some_int_var)" is not a location
15481 wrapper. */
15482 tree r_cast = build1 (NON_LVALUE_EXPR, integer_type_node, int_var);
15483 ASSERT_FALSE (location_wrapper_p (r_cast));
15484 ASSERT_EQ (r_cast, tree_strip_any_location_wrapper (r_cast));
15485
15486 /* Verify that STRIP_NOPS removes wrappers. */
15487 check_strip_nops (wrapped_int_cst, int_cst);
15488 check_strip_nops (wrapped_string_cst, string_cst);
15489 check_strip_nops (wrapped_int_var, int_var);
15490 }
15491
15492 /* Test various tree predicates. Verify that location wrappers don't
15493 affect the results. */
15494
15495 static void
15496 test_predicates ()
15497 {
15498 /* Build various constants and wrappers around them. */
15499
15500 location_t loc = BUILTINS_LOCATION;
15501
15502 tree i_0 = build_int_cst (integer_type_node, 0);
15503 tree wr_i_0 = maybe_wrap_with_location (i_0, loc);
15504
15505 tree i_1 = build_int_cst (integer_type_node, 1);
15506 tree wr_i_1 = maybe_wrap_with_location (i_1, loc);
15507
15508 tree i_m1 = build_int_cst (integer_type_node, -1);
15509 tree wr_i_m1 = maybe_wrap_with_location (i_m1, loc);
15510
15511 tree f_0 = build_real_from_int_cst (float_type_node, i_0);
15512 tree wr_f_0 = maybe_wrap_with_location (f_0, loc);
15513 tree f_1 = build_real_from_int_cst (float_type_node, i_1);
15514 tree wr_f_1 = maybe_wrap_with_location (f_1, loc);
15515 tree f_m1 = build_real_from_int_cst (float_type_node, i_m1);
15516 tree wr_f_m1 = maybe_wrap_with_location (f_m1, loc);
15517
15518 tree c_i_0 = build_complex (NULL_TREE, i_0, i_0);
15519 tree c_i_1 = build_complex (NULL_TREE, i_1, i_0);
15520 tree c_i_m1 = build_complex (NULL_TREE, i_m1, i_0);
15521
15522 tree c_f_0 = build_complex (NULL_TREE, f_0, f_0);
15523 tree c_f_1 = build_complex (NULL_TREE, f_1, f_0);
15524 tree c_f_m1 = build_complex (NULL_TREE, f_m1, f_0);
15525
15526 /* TODO: vector constants. */
15527
15528 /* Test integer_onep. */
15529 ASSERT_FALSE (integer_onep (i_0));
15530 ASSERT_FALSE (integer_onep (wr_i_0));
15531 ASSERT_TRUE (integer_onep (i_1));
15532 ASSERT_TRUE (integer_onep (wr_i_1));
15533 ASSERT_FALSE (integer_onep (i_m1));
15534 ASSERT_FALSE (integer_onep (wr_i_m1));
15535 ASSERT_FALSE (integer_onep (f_0));
15536 ASSERT_FALSE (integer_onep (wr_f_0));
15537 ASSERT_FALSE (integer_onep (f_1));
15538 ASSERT_FALSE (integer_onep (wr_f_1));
15539 ASSERT_FALSE (integer_onep (f_m1));
15540 ASSERT_FALSE (integer_onep (wr_f_m1));
15541 ASSERT_FALSE (integer_onep (c_i_0));
15542 ASSERT_TRUE (integer_onep (c_i_1));
15543 ASSERT_FALSE (integer_onep (c_i_m1));
15544 ASSERT_FALSE (integer_onep (c_f_0));
15545 ASSERT_FALSE (integer_onep (c_f_1));
15546 ASSERT_FALSE (integer_onep (c_f_m1));
15547
15548 /* Test integer_zerop. */
15549 ASSERT_TRUE (integer_zerop (i_0));
15550 ASSERT_TRUE (integer_zerop (wr_i_0));
15551 ASSERT_FALSE (integer_zerop (i_1));
15552 ASSERT_FALSE (integer_zerop (wr_i_1));
15553 ASSERT_FALSE (integer_zerop (i_m1));
15554 ASSERT_FALSE (integer_zerop (wr_i_m1));
15555 ASSERT_FALSE (integer_zerop (f_0));
15556 ASSERT_FALSE (integer_zerop (wr_f_0));
15557 ASSERT_FALSE (integer_zerop (f_1));
15558 ASSERT_FALSE (integer_zerop (wr_f_1));
15559 ASSERT_FALSE (integer_zerop (f_m1));
15560 ASSERT_FALSE (integer_zerop (wr_f_m1));
15561 ASSERT_TRUE (integer_zerop (c_i_0));
15562 ASSERT_FALSE (integer_zerop (c_i_1));
15563 ASSERT_FALSE (integer_zerop (c_i_m1));
15564 ASSERT_FALSE (integer_zerop (c_f_0));
15565 ASSERT_FALSE (integer_zerop (c_f_1));
15566 ASSERT_FALSE (integer_zerop (c_f_m1));
15567
15568 /* Test integer_all_onesp. */
15569 ASSERT_FALSE (integer_all_onesp (i_0));
15570 ASSERT_FALSE (integer_all_onesp (wr_i_0));
15571 ASSERT_FALSE (integer_all_onesp (i_1));
15572 ASSERT_FALSE (integer_all_onesp (wr_i_1));
15573 ASSERT_TRUE (integer_all_onesp (i_m1));
15574 ASSERT_TRUE (integer_all_onesp (wr_i_m1));
15575 ASSERT_FALSE (integer_all_onesp (f_0));
15576 ASSERT_FALSE (integer_all_onesp (wr_f_0));
15577 ASSERT_FALSE (integer_all_onesp (f_1));
15578 ASSERT_FALSE (integer_all_onesp (wr_f_1));
15579 ASSERT_FALSE (integer_all_onesp (f_m1));
15580 ASSERT_FALSE (integer_all_onesp (wr_f_m1));
15581 ASSERT_FALSE (integer_all_onesp (c_i_0));
15582 ASSERT_FALSE (integer_all_onesp (c_i_1));
15583 ASSERT_FALSE (integer_all_onesp (c_i_m1));
15584 ASSERT_FALSE (integer_all_onesp (c_f_0));
15585 ASSERT_FALSE (integer_all_onesp (c_f_1));
15586 ASSERT_FALSE (integer_all_onesp (c_f_m1));
15587
15588 /* Test integer_minus_onep. */
15589 ASSERT_FALSE (integer_minus_onep (i_0));
15590 ASSERT_FALSE (integer_minus_onep (wr_i_0));
15591 ASSERT_FALSE (integer_minus_onep (i_1));
15592 ASSERT_FALSE (integer_minus_onep (wr_i_1));
15593 ASSERT_TRUE (integer_minus_onep (i_m1));
15594 ASSERT_TRUE (integer_minus_onep (wr_i_m1));
15595 ASSERT_FALSE (integer_minus_onep (f_0));
15596 ASSERT_FALSE (integer_minus_onep (wr_f_0));
15597 ASSERT_FALSE (integer_minus_onep (f_1));
15598 ASSERT_FALSE (integer_minus_onep (wr_f_1));
15599 ASSERT_FALSE (integer_minus_onep (f_m1));
15600 ASSERT_FALSE (integer_minus_onep (wr_f_m1));
15601 ASSERT_FALSE (integer_minus_onep (c_i_0));
15602 ASSERT_FALSE (integer_minus_onep (c_i_1));
15603 ASSERT_TRUE (integer_minus_onep (c_i_m1));
15604 ASSERT_FALSE (integer_minus_onep (c_f_0));
15605 ASSERT_FALSE (integer_minus_onep (c_f_1));
15606 ASSERT_FALSE (integer_minus_onep (c_f_m1));
15607
15608 /* Test integer_each_onep. */
15609 ASSERT_FALSE (integer_each_onep (i_0));
15610 ASSERT_FALSE (integer_each_onep (wr_i_0));
15611 ASSERT_TRUE (integer_each_onep (i_1));
15612 ASSERT_TRUE (integer_each_onep (wr_i_1));
15613 ASSERT_FALSE (integer_each_onep (i_m1));
15614 ASSERT_FALSE (integer_each_onep (wr_i_m1));
15615 ASSERT_FALSE (integer_each_onep (f_0));
15616 ASSERT_FALSE (integer_each_onep (wr_f_0));
15617 ASSERT_FALSE (integer_each_onep (f_1));
15618 ASSERT_FALSE (integer_each_onep (wr_f_1));
15619 ASSERT_FALSE (integer_each_onep (f_m1));
15620 ASSERT_FALSE (integer_each_onep (wr_f_m1));
15621 ASSERT_FALSE (integer_each_onep (c_i_0));
15622 ASSERT_FALSE (integer_each_onep (c_i_1));
15623 ASSERT_FALSE (integer_each_onep (c_i_m1));
15624 ASSERT_FALSE (integer_each_onep (c_f_0));
15625 ASSERT_FALSE (integer_each_onep (c_f_1));
15626 ASSERT_FALSE (integer_each_onep (c_f_m1));
15627
15628 /* Test integer_truep. */
15629 ASSERT_FALSE (integer_truep (i_0));
15630 ASSERT_FALSE (integer_truep (wr_i_0));
15631 ASSERT_TRUE (integer_truep (i_1));
15632 ASSERT_TRUE (integer_truep (wr_i_1));
15633 ASSERT_FALSE (integer_truep (i_m1));
15634 ASSERT_FALSE (integer_truep (wr_i_m1));
15635 ASSERT_FALSE (integer_truep (f_0));
15636 ASSERT_FALSE (integer_truep (wr_f_0));
15637 ASSERT_FALSE (integer_truep (f_1));
15638 ASSERT_FALSE (integer_truep (wr_f_1));
15639 ASSERT_FALSE (integer_truep (f_m1));
15640 ASSERT_FALSE (integer_truep (wr_f_m1));
15641 ASSERT_FALSE (integer_truep (c_i_0));
15642 ASSERT_TRUE (integer_truep (c_i_1));
15643 ASSERT_FALSE (integer_truep (c_i_m1));
15644 ASSERT_FALSE (integer_truep (c_f_0));
15645 ASSERT_FALSE (integer_truep (c_f_1));
15646 ASSERT_FALSE (integer_truep (c_f_m1));
15647
15648 /* Test integer_nonzerop. */
15649 ASSERT_FALSE (integer_nonzerop (i_0));
15650 ASSERT_FALSE (integer_nonzerop (wr_i_0));
15651 ASSERT_TRUE (integer_nonzerop (i_1));
15652 ASSERT_TRUE (integer_nonzerop (wr_i_1));
15653 ASSERT_TRUE (integer_nonzerop (i_m1));
15654 ASSERT_TRUE (integer_nonzerop (wr_i_m1));
15655 ASSERT_FALSE (integer_nonzerop (f_0));
15656 ASSERT_FALSE (integer_nonzerop (wr_f_0));
15657 ASSERT_FALSE (integer_nonzerop (f_1));
15658 ASSERT_FALSE (integer_nonzerop (wr_f_1));
15659 ASSERT_FALSE (integer_nonzerop (f_m1));
15660 ASSERT_FALSE (integer_nonzerop (wr_f_m1));
15661 ASSERT_FALSE (integer_nonzerop (c_i_0));
15662 ASSERT_TRUE (integer_nonzerop (c_i_1));
15663 ASSERT_TRUE (integer_nonzerop (c_i_m1));
15664 ASSERT_FALSE (integer_nonzerop (c_f_0));
15665 ASSERT_FALSE (integer_nonzerop (c_f_1));
15666 ASSERT_FALSE (integer_nonzerop (c_f_m1));
15667
15668 /* Test real_zerop. */
15669 ASSERT_FALSE (real_zerop (i_0));
15670 ASSERT_FALSE (real_zerop (wr_i_0));
15671 ASSERT_FALSE (real_zerop (i_1));
15672 ASSERT_FALSE (real_zerop (wr_i_1));
15673 ASSERT_FALSE (real_zerop (i_m1));
15674 ASSERT_FALSE (real_zerop (wr_i_m1));
15675 ASSERT_TRUE (real_zerop (f_0));
15676 ASSERT_TRUE (real_zerop (wr_f_0));
15677 ASSERT_FALSE (real_zerop (f_1));
15678 ASSERT_FALSE (real_zerop (wr_f_1));
15679 ASSERT_FALSE (real_zerop (f_m1));
15680 ASSERT_FALSE (real_zerop (wr_f_m1));
15681 ASSERT_FALSE (real_zerop (c_i_0));
15682 ASSERT_FALSE (real_zerop (c_i_1));
15683 ASSERT_FALSE (real_zerop (c_i_m1));
15684 ASSERT_TRUE (real_zerop (c_f_0));
15685 ASSERT_FALSE (real_zerop (c_f_1));
15686 ASSERT_FALSE (real_zerop (c_f_m1));
15687
15688 /* Test real_onep. */
15689 ASSERT_FALSE (real_onep (i_0));
15690 ASSERT_FALSE (real_onep (wr_i_0));
15691 ASSERT_FALSE (real_onep (i_1));
15692 ASSERT_FALSE (real_onep (wr_i_1));
15693 ASSERT_FALSE (real_onep (i_m1));
15694 ASSERT_FALSE (real_onep (wr_i_m1));
15695 ASSERT_FALSE (real_onep (f_0));
15696 ASSERT_FALSE (real_onep (wr_f_0));
15697 ASSERT_TRUE (real_onep (f_1));
15698 ASSERT_TRUE (real_onep (wr_f_1));
15699 ASSERT_FALSE (real_onep (f_m1));
15700 ASSERT_FALSE (real_onep (wr_f_m1));
15701 ASSERT_FALSE (real_onep (c_i_0));
15702 ASSERT_FALSE (real_onep (c_i_1));
15703 ASSERT_FALSE (real_onep (c_i_m1));
15704 ASSERT_FALSE (real_onep (c_f_0));
15705 ASSERT_TRUE (real_onep (c_f_1));
15706 ASSERT_FALSE (real_onep (c_f_m1));
15707
15708 /* Test real_minus_onep. */
15709 ASSERT_FALSE (real_minus_onep (i_0));
15710 ASSERT_FALSE (real_minus_onep (wr_i_0));
15711 ASSERT_FALSE (real_minus_onep (i_1));
15712 ASSERT_FALSE (real_minus_onep (wr_i_1));
15713 ASSERT_FALSE (real_minus_onep (i_m1));
15714 ASSERT_FALSE (real_minus_onep (wr_i_m1));
15715 ASSERT_FALSE (real_minus_onep (f_0));
15716 ASSERT_FALSE (real_minus_onep (wr_f_0));
15717 ASSERT_FALSE (real_minus_onep (f_1));
15718 ASSERT_FALSE (real_minus_onep (wr_f_1));
15719 ASSERT_TRUE (real_minus_onep (f_m1));
15720 ASSERT_TRUE (real_minus_onep (wr_f_m1));
15721 ASSERT_FALSE (real_minus_onep (c_i_0));
15722 ASSERT_FALSE (real_minus_onep (c_i_1));
15723 ASSERT_FALSE (real_minus_onep (c_i_m1));
15724 ASSERT_FALSE (real_minus_onep (c_f_0));
15725 ASSERT_FALSE (real_minus_onep (c_f_1));
15726 ASSERT_TRUE (real_minus_onep (c_f_m1));
15727
15728 /* Test zerop. */
15729 ASSERT_TRUE (zerop (i_0));
15730 ASSERT_TRUE (zerop (wr_i_0));
15731 ASSERT_FALSE (zerop (i_1));
15732 ASSERT_FALSE (zerop (wr_i_1));
15733 ASSERT_FALSE (zerop (i_m1));
15734 ASSERT_FALSE (zerop (wr_i_m1));
15735 ASSERT_TRUE (zerop (f_0));
15736 ASSERT_TRUE (zerop (wr_f_0));
15737 ASSERT_FALSE (zerop (f_1));
15738 ASSERT_FALSE (zerop (wr_f_1));
15739 ASSERT_FALSE (zerop (f_m1));
15740 ASSERT_FALSE (zerop (wr_f_m1));
15741 ASSERT_TRUE (zerop (c_i_0));
15742 ASSERT_FALSE (zerop (c_i_1));
15743 ASSERT_FALSE (zerop (c_i_m1));
15744 ASSERT_TRUE (zerop (c_f_0));
15745 ASSERT_FALSE (zerop (c_f_1));
15746 ASSERT_FALSE (zerop (c_f_m1));
15747
15748 /* Test tree_expr_nonnegative_p. */
15749 ASSERT_TRUE (tree_expr_nonnegative_p (i_0));
15750 ASSERT_TRUE (tree_expr_nonnegative_p (wr_i_0));
15751 ASSERT_TRUE (tree_expr_nonnegative_p (i_1));
15752 ASSERT_TRUE (tree_expr_nonnegative_p (wr_i_1));
15753 ASSERT_FALSE (tree_expr_nonnegative_p (i_m1));
15754 ASSERT_FALSE (tree_expr_nonnegative_p (wr_i_m1));
15755 ASSERT_TRUE (tree_expr_nonnegative_p (f_0));
15756 ASSERT_TRUE (tree_expr_nonnegative_p (wr_f_0));
15757 ASSERT_TRUE (tree_expr_nonnegative_p (f_1));
15758 ASSERT_TRUE (tree_expr_nonnegative_p (wr_f_1));
15759 ASSERT_FALSE (tree_expr_nonnegative_p (f_m1));
15760 ASSERT_FALSE (tree_expr_nonnegative_p (wr_f_m1));
15761 ASSERT_FALSE (tree_expr_nonnegative_p (c_i_0));
15762 ASSERT_FALSE (tree_expr_nonnegative_p (c_i_1));
15763 ASSERT_FALSE (tree_expr_nonnegative_p (c_i_m1));
15764 ASSERT_FALSE (tree_expr_nonnegative_p (c_f_0));
15765 ASSERT_FALSE (tree_expr_nonnegative_p (c_f_1));
15766 ASSERT_FALSE (tree_expr_nonnegative_p (c_f_m1));
15767
15768 /* Test tree_expr_nonzero_p. */
15769 ASSERT_FALSE (tree_expr_nonzero_p (i_0));
15770 ASSERT_FALSE (tree_expr_nonzero_p (wr_i_0));
15771 ASSERT_TRUE (tree_expr_nonzero_p (i_1));
15772 ASSERT_TRUE (tree_expr_nonzero_p (wr_i_1));
15773 ASSERT_TRUE (tree_expr_nonzero_p (i_m1));
15774 ASSERT_TRUE (tree_expr_nonzero_p (wr_i_m1));
15775
15776 /* Test integer_valued_real_p. */
15777 ASSERT_FALSE (integer_valued_real_p (i_0));
15778 ASSERT_TRUE (integer_valued_real_p (f_0));
15779 ASSERT_TRUE (integer_valued_real_p (wr_f_0));
15780 ASSERT_TRUE (integer_valued_real_p (f_1));
15781 ASSERT_TRUE (integer_valued_real_p (wr_f_1));
15782
15783 /* Test integer_pow2p. */
15784 ASSERT_FALSE (integer_pow2p (i_0));
15785 ASSERT_TRUE (integer_pow2p (i_1));
15786 ASSERT_TRUE (integer_pow2p (wr_i_1));
15787
15788 /* Test uniform_integer_cst_p. */
15789 ASSERT_TRUE (uniform_integer_cst_p (i_0));
15790 ASSERT_TRUE (uniform_integer_cst_p (wr_i_0));
15791 ASSERT_TRUE (uniform_integer_cst_p (i_1));
15792 ASSERT_TRUE (uniform_integer_cst_p (wr_i_1));
15793 ASSERT_TRUE (uniform_integer_cst_p (i_m1));
15794 ASSERT_TRUE (uniform_integer_cst_p (wr_i_m1));
15795 ASSERT_FALSE (uniform_integer_cst_p (f_0));
15796 ASSERT_FALSE (uniform_integer_cst_p (wr_f_0));
15797 ASSERT_FALSE (uniform_integer_cst_p (f_1));
15798 ASSERT_FALSE (uniform_integer_cst_p (wr_f_1));
15799 ASSERT_FALSE (uniform_integer_cst_p (f_m1));
15800 ASSERT_FALSE (uniform_integer_cst_p (wr_f_m1));
15801 ASSERT_FALSE (uniform_integer_cst_p (c_i_0));
15802 ASSERT_FALSE (uniform_integer_cst_p (c_i_1));
15803 ASSERT_FALSE (uniform_integer_cst_p (c_i_m1));
15804 ASSERT_FALSE (uniform_integer_cst_p (c_f_0));
15805 ASSERT_FALSE (uniform_integer_cst_p (c_f_1));
15806 ASSERT_FALSE (uniform_integer_cst_p (c_f_m1));
15807 }
15808
15809 /* Check that string escaping works correctly. */
15810
15811 static void
15812 test_escaped_strings (void)
15813 {
15814 int saved_cutoff;
15815 escaped_string msg;
15816
15817 msg.escape (NULL);
15818 /* ASSERT_STREQ does not accept NULL as a valid test
15819 result, so we have to use ASSERT_EQ instead. */
15820 ASSERT_EQ (NULL, (const char *) msg);
15821
15822 msg.escape ("");
15823 ASSERT_STREQ ("", (const char *) msg);
15824
15825 msg.escape ("foobar");
15826 ASSERT_STREQ ("foobar", (const char *) msg);
15827
15828 /* Ensure that we have -fmessage-length set to 0. */
15829 saved_cutoff = pp_line_cutoff (global_dc->printer);
15830 pp_line_cutoff (global_dc->printer) = 0;
15831
15832 msg.escape ("foo\nbar");
15833 ASSERT_STREQ ("foo\\nbar", (const char *) msg);
15834
15835 msg.escape ("\a\b\f\n\r\t\v");
15836 ASSERT_STREQ ("\\a\\b\\f\\n\\r\\t\\v", (const char *) msg);
15837
15838 /* Now repeat the tests with -fmessage-length set to 5. */
15839 pp_line_cutoff (global_dc->printer) = 5;
15840
15841 /* Note that the newline is not translated into an escape. */
15842 msg.escape ("foo\nbar");
15843 ASSERT_STREQ ("foo\nbar", (const char *) msg);
15844
15845 msg.escape ("\a\b\f\n\r\t\v");
15846 ASSERT_STREQ ("\\a\\b\\f\n\\r\\t\\v", (const char *) msg);
15847
15848 /* Restore the original message length setting. */
15849 pp_line_cutoff (global_dc->printer) = saved_cutoff;
15850 }
15851
15852 /* Run all of the selftests within this file. */
15853
15854 void
15855 tree_c_tests ()
15856 {
15857 test_integer_constants ();
15858 test_identifiers ();
15859 test_labels ();
15860 test_vector_cst_patterns ();
15861 test_location_wrappers ();
15862 test_predicates ();
15863 test_escaped_strings ();
15864 }
15865
15866 } // namespace selftest
15867
15868 #endif /* CHECKING_P */
15869
15870 #include "gt-tree.h"