]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree.c
PR c++/33506
[thirdparty/gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This file contains the low level primitives for operating on tree nodes,
23 including allocation, list operations, interning of identifiers,
24 construction of data type nodes and statement nodes,
25 and construction of type conversion nodes. It also contains
26 tables index by tree code that describe how to take apart
27 nodes of that code.
28
29 It is intended to be language-independent, but occasionally
30 calls language-dependent routines defined (for C) in typecheck.c. */
31
32 #include "config.h"
33 #include "system.h"
34 #include "coretypes.h"
35 #include "tm.h"
36 #include "flags.h"
37 #include "tree.h"
38 #include "real.h"
39 #include "tm_p.h"
40 #include "function.h"
41 #include "obstack.h"
42 #include "toplev.h"
43 #include "ggc.h"
44 #include "hashtab.h"
45 #include "output.h"
46 #include "target.h"
47 #include "langhooks.h"
48 #include "tree-iterator.h"
49 #include "basic-block.h"
50 #include "tree-flow.h"
51 #include "params.h"
52 #include "pointer-set.h"
53 #include "fixed-value.h"
54
55 /* Each tree code class has an associated string representation.
56 These must correspond to the tree_code_class entries. */
57
58 const char *const tree_code_class_strings[] =
59 {
60 "exceptional",
61 "constant",
62 "type",
63 "declaration",
64 "reference",
65 "comparison",
66 "unary",
67 "binary",
68 "statement",
69 "vl_exp",
70 "expression",
71 "gimple_stmt"
72 };
73
74 /* obstack.[ch] explicitly declined to prototype this. */
75 extern int _obstack_allocated_p (struct obstack *h, void *obj);
76
77 #ifdef GATHER_STATISTICS
78 /* Statistics-gathering stuff. */
79
80 int tree_node_counts[(int) all_kinds];
81 int tree_node_sizes[(int) all_kinds];
82
83 /* Keep in sync with tree.h:enum tree_node_kind. */
84 static const char * const tree_node_kind_names[] = {
85 "decls",
86 "types",
87 "blocks",
88 "stmts",
89 "refs",
90 "exprs",
91 "constants",
92 "identifiers",
93 "perm_tree_lists",
94 "temp_tree_lists",
95 "vecs",
96 "binfos",
97 "phi_nodes",
98 "ssa names",
99 "constructors",
100 "random kinds",
101 "lang_decl kinds",
102 "lang_type kinds",
103 "omp clauses",
104 "gimple statements"
105 };
106 #endif /* GATHER_STATISTICS */
107
108 /* Unique id for next decl created. */
109 static GTY(()) int next_decl_uid;
110 /* Unique id for next type created. */
111 static GTY(()) int next_type_uid = 1;
112
113 /* Since we cannot rehash a type after it is in the table, we have to
114 keep the hash code. */
115
116 struct type_hash GTY(())
117 {
118 unsigned long hash;
119 tree type;
120 };
121
122 /* Initial size of the hash table (rounded to next prime). */
123 #define TYPE_HASH_INITIAL_SIZE 1000
124
125 /* Now here is the hash table. When recording a type, it is added to
126 the slot whose index is the hash code. Note that the hash table is
127 used for several kinds of types (function types, array types and
128 array index range types, for now). While all these live in the
129 same table, they are completely independent, and the hash code is
130 computed differently for each of these. */
131
132 static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash)))
133 htab_t type_hash_table;
134
135 /* Hash table and temporary node for larger integer const values. */
136 static GTY (()) tree int_cst_node;
137 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
138 htab_t int_cst_hash_table;
139
140 /* General tree->tree mapping structure for use in hash tables. */
141
142
143 static GTY ((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
144 htab_t debug_expr_for_decl;
145
146 static GTY ((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
147 htab_t value_expr_for_decl;
148
149 static GTY ((if_marked ("tree_priority_map_marked_p"),
150 param_is (struct tree_priority_map)))
151 htab_t init_priority_for_decl;
152
153 static GTY ((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
154 htab_t restrict_base_for_decl;
155
156 static void set_type_quals (tree, int);
157 static int type_hash_eq (const void *, const void *);
158 static hashval_t type_hash_hash (const void *);
159 static hashval_t int_cst_hash_hash (const void *);
160 static int int_cst_hash_eq (const void *, const void *);
161 static void print_type_hash_statistics (void);
162 static void print_debug_expr_statistics (void);
163 static void print_value_expr_statistics (void);
164 static int type_hash_marked_p (const void *);
165 static unsigned int type_hash_list (const_tree, hashval_t);
166 static unsigned int attribute_hash_list (const_tree, hashval_t);
167
168 tree global_trees[TI_MAX];
169 tree integer_types[itk_none];
170
171 unsigned char tree_contains_struct[MAX_TREE_CODES][64];
172
173 /* Number of operands for each OpenMP clause. */
174 unsigned const char omp_clause_num_ops[] =
175 {
176 0, /* OMP_CLAUSE_ERROR */
177 1, /* OMP_CLAUSE_PRIVATE */
178 1, /* OMP_CLAUSE_SHARED */
179 1, /* OMP_CLAUSE_FIRSTPRIVATE */
180 1, /* OMP_CLAUSE_LASTPRIVATE */
181 4, /* OMP_CLAUSE_REDUCTION */
182 1, /* OMP_CLAUSE_COPYIN */
183 1, /* OMP_CLAUSE_COPYPRIVATE */
184 1, /* OMP_CLAUSE_IF */
185 1, /* OMP_CLAUSE_NUM_THREADS */
186 1, /* OMP_CLAUSE_SCHEDULE */
187 0, /* OMP_CLAUSE_NOWAIT */
188 0, /* OMP_CLAUSE_ORDERED */
189 0 /* OMP_CLAUSE_DEFAULT */
190 };
191
192 const char * const omp_clause_code_name[] =
193 {
194 "error_clause",
195 "private",
196 "shared",
197 "firstprivate",
198 "lastprivate",
199 "reduction",
200 "copyin",
201 "copyprivate",
202 "if",
203 "num_threads",
204 "schedule",
205 "nowait",
206 "ordered",
207 "default"
208 };
209 \f
210 /* Init tree.c. */
211
212 void
213 init_ttree (void)
214 {
215 /* Initialize the hash table of types. */
216 type_hash_table = htab_create_ggc (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
217 type_hash_eq, 0);
218
219 debug_expr_for_decl = htab_create_ggc (512, tree_map_hash,
220 tree_map_eq, 0);
221
222 value_expr_for_decl = htab_create_ggc (512, tree_map_hash,
223 tree_map_eq, 0);
224 init_priority_for_decl = htab_create_ggc (512, tree_priority_map_hash,
225 tree_priority_map_eq, 0);
226 restrict_base_for_decl = htab_create_ggc (256, tree_map_hash,
227 tree_map_eq, 0);
228
229 int_cst_hash_table = htab_create_ggc (1024, int_cst_hash_hash,
230 int_cst_hash_eq, NULL);
231
232 int_cst_node = make_node (INTEGER_CST);
233
234 tree_contains_struct[FUNCTION_DECL][TS_DECL_NON_COMMON] = 1;
235 tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_NON_COMMON] = 1;
236 tree_contains_struct[TYPE_DECL][TS_DECL_NON_COMMON] = 1;
237
238
239 tree_contains_struct[CONST_DECL][TS_DECL_COMMON] = 1;
240 tree_contains_struct[VAR_DECL][TS_DECL_COMMON] = 1;
241 tree_contains_struct[PARM_DECL][TS_DECL_COMMON] = 1;
242 tree_contains_struct[RESULT_DECL][TS_DECL_COMMON] = 1;
243 tree_contains_struct[FUNCTION_DECL][TS_DECL_COMMON] = 1;
244 tree_contains_struct[TYPE_DECL][TS_DECL_COMMON] = 1;
245 tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_COMMON] = 1;
246 tree_contains_struct[LABEL_DECL][TS_DECL_COMMON] = 1;
247 tree_contains_struct[FIELD_DECL][TS_DECL_COMMON] = 1;
248
249
250 tree_contains_struct[CONST_DECL][TS_DECL_WRTL] = 1;
251 tree_contains_struct[VAR_DECL][TS_DECL_WRTL] = 1;
252 tree_contains_struct[PARM_DECL][TS_DECL_WRTL] = 1;
253 tree_contains_struct[RESULT_DECL][TS_DECL_WRTL] = 1;
254 tree_contains_struct[FUNCTION_DECL][TS_DECL_WRTL] = 1;
255 tree_contains_struct[LABEL_DECL][TS_DECL_WRTL] = 1;
256
257 tree_contains_struct[CONST_DECL][TS_DECL_MINIMAL] = 1;
258 tree_contains_struct[VAR_DECL][TS_DECL_MINIMAL] = 1;
259 tree_contains_struct[PARM_DECL][TS_DECL_MINIMAL] = 1;
260 tree_contains_struct[RESULT_DECL][TS_DECL_MINIMAL] = 1;
261 tree_contains_struct[FUNCTION_DECL][TS_DECL_MINIMAL] = 1;
262 tree_contains_struct[TYPE_DECL][TS_DECL_MINIMAL] = 1;
263 tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_MINIMAL] = 1;
264 tree_contains_struct[LABEL_DECL][TS_DECL_MINIMAL] = 1;
265 tree_contains_struct[FIELD_DECL][TS_DECL_MINIMAL] = 1;
266 tree_contains_struct[STRUCT_FIELD_TAG][TS_DECL_MINIMAL] = 1;
267 tree_contains_struct[NAME_MEMORY_TAG][TS_DECL_MINIMAL] = 1;
268 tree_contains_struct[SYMBOL_MEMORY_TAG][TS_DECL_MINIMAL] = 1;
269 tree_contains_struct[MEMORY_PARTITION_TAG][TS_DECL_MINIMAL] = 1;
270
271 tree_contains_struct[STRUCT_FIELD_TAG][TS_MEMORY_TAG] = 1;
272 tree_contains_struct[NAME_MEMORY_TAG][TS_MEMORY_TAG] = 1;
273 tree_contains_struct[SYMBOL_MEMORY_TAG][TS_MEMORY_TAG] = 1;
274 tree_contains_struct[MEMORY_PARTITION_TAG][TS_MEMORY_TAG] = 1;
275
276 tree_contains_struct[STRUCT_FIELD_TAG][TS_STRUCT_FIELD_TAG] = 1;
277 tree_contains_struct[MEMORY_PARTITION_TAG][TS_MEMORY_PARTITION_TAG] = 1;
278
279 tree_contains_struct[VAR_DECL][TS_DECL_WITH_VIS] = 1;
280 tree_contains_struct[FUNCTION_DECL][TS_DECL_WITH_VIS] = 1;
281 tree_contains_struct[TYPE_DECL][TS_DECL_WITH_VIS] = 1;
282 tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_WITH_VIS] = 1;
283
284 tree_contains_struct[VAR_DECL][TS_VAR_DECL] = 1;
285 tree_contains_struct[FIELD_DECL][TS_FIELD_DECL] = 1;
286 tree_contains_struct[PARM_DECL][TS_PARM_DECL] = 1;
287 tree_contains_struct[LABEL_DECL][TS_LABEL_DECL] = 1;
288 tree_contains_struct[RESULT_DECL][TS_RESULT_DECL] = 1;
289 tree_contains_struct[CONST_DECL][TS_CONST_DECL] = 1;
290 tree_contains_struct[TYPE_DECL][TS_TYPE_DECL] = 1;
291 tree_contains_struct[FUNCTION_DECL][TS_FUNCTION_DECL] = 1;
292
293 lang_hooks.init_ts ();
294 }
295
296 \f
297 /* The name of the object as the assembler will see it (but before any
298 translations made by ASM_OUTPUT_LABELREF). Often this is the same
299 as DECL_NAME. It is an IDENTIFIER_NODE. */
300 tree
301 decl_assembler_name (tree decl)
302 {
303 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
304 lang_hooks.set_decl_assembler_name (decl);
305 return DECL_WITH_VIS_CHECK (decl)->decl_with_vis.assembler_name;
306 }
307
308 /* Compare ASMNAME with the DECL_ASSEMBLER_NAME of DECL. */
309
310 bool
311 decl_assembler_name_equal (tree decl, tree asmname)
312 {
313 tree decl_asmname = DECL_ASSEMBLER_NAME (decl);
314
315 if (decl_asmname == asmname)
316 return true;
317
318 /* If the target assembler name was set by the user, things are trickier.
319 We have a leading '*' to begin with. After that, it's arguable what
320 is the correct thing to do with -fleading-underscore. Arguably, we've
321 historically been doing the wrong thing in assemble_alias by always
322 printing the leading underscore. Since we're not changing that, make
323 sure user_label_prefix follows the '*' before matching. */
324 if (IDENTIFIER_POINTER (decl_asmname)[0] == '*')
325 {
326 const char *decl_str = IDENTIFIER_POINTER (decl_asmname) + 1;
327 size_t ulp_len = strlen (user_label_prefix);
328
329 if (ulp_len == 0)
330 ;
331 else if (strncmp (decl_str, user_label_prefix, ulp_len) == 0)
332 decl_str += ulp_len;
333 else
334 return false;
335
336 return strcmp (decl_str, IDENTIFIER_POINTER (asmname)) == 0;
337 }
338
339 return false;
340 }
341
342 /* Compute the number of bytes occupied by a tree with code CODE.
343 This function cannot be used for nodes that have variable sizes,
344 including TREE_VEC, PHI_NODE, STRING_CST, and CALL_EXPR. */
345 size_t
346 tree_code_size (enum tree_code code)
347 {
348 switch (TREE_CODE_CLASS (code))
349 {
350 case tcc_declaration: /* A decl node */
351 {
352 switch (code)
353 {
354 case FIELD_DECL:
355 return sizeof (struct tree_field_decl);
356 case PARM_DECL:
357 return sizeof (struct tree_parm_decl);
358 case VAR_DECL:
359 return sizeof (struct tree_var_decl);
360 case LABEL_DECL:
361 return sizeof (struct tree_label_decl);
362 case RESULT_DECL:
363 return sizeof (struct tree_result_decl);
364 case CONST_DECL:
365 return sizeof (struct tree_const_decl);
366 case TYPE_DECL:
367 return sizeof (struct tree_type_decl);
368 case FUNCTION_DECL:
369 return sizeof (struct tree_function_decl);
370 case NAME_MEMORY_TAG:
371 case SYMBOL_MEMORY_TAG:
372 return sizeof (struct tree_memory_tag);
373 case STRUCT_FIELD_TAG:
374 return sizeof (struct tree_struct_field_tag);
375 case MEMORY_PARTITION_TAG:
376 return sizeof (struct tree_memory_partition_tag);
377 default:
378 return sizeof (struct tree_decl_non_common);
379 }
380 }
381
382 case tcc_type: /* a type node */
383 return sizeof (struct tree_type);
384
385 case tcc_reference: /* a reference */
386 case tcc_expression: /* an expression */
387 case tcc_statement: /* an expression with side effects */
388 case tcc_comparison: /* a comparison expression */
389 case tcc_unary: /* a unary arithmetic expression */
390 case tcc_binary: /* a binary arithmetic expression */
391 return (sizeof (struct tree_exp)
392 + (TREE_CODE_LENGTH (code) - 1) * sizeof (tree));
393
394 case tcc_gimple_stmt:
395 return (sizeof (struct gimple_stmt)
396 + (TREE_CODE_LENGTH (code) - 1) * sizeof (char *));
397
398 case tcc_constant: /* a constant */
399 switch (code)
400 {
401 case INTEGER_CST: return sizeof (struct tree_int_cst);
402 case REAL_CST: return sizeof (struct tree_real_cst);
403 case FIXED_CST: return sizeof (struct tree_fixed_cst);
404 case COMPLEX_CST: return sizeof (struct tree_complex);
405 case VECTOR_CST: return sizeof (struct tree_vector);
406 case STRING_CST: gcc_unreachable ();
407 default:
408 return lang_hooks.tree_size (code);
409 }
410
411 case tcc_exceptional: /* something random, like an identifier. */
412 switch (code)
413 {
414 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
415 case TREE_LIST: return sizeof (struct tree_list);
416
417 case ERROR_MARK:
418 case PLACEHOLDER_EXPR: return sizeof (struct tree_common);
419
420 case TREE_VEC:
421 case OMP_CLAUSE:
422 case PHI_NODE: gcc_unreachable ();
423
424 case SSA_NAME: return sizeof (struct tree_ssa_name);
425
426 case STATEMENT_LIST: return sizeof (struct tree_statement_list);
427 case BLOCK: return sizeof (struct tree_block);
428 case VALUE_HANDLE: return sizeof (struct tree_value_handle);
429 case CONSTRUCTOR: return sizeof (struct tree_constructor);
430
431 default:
432 return lang_hooks.tree_size (code);
433 }
434
435 default:
436 gcc_unreachable ();
437 }
438 }
439
440 /* Compute the number of bytes occupied by NODE. This routine only
441 looks at TREE_CODE, except for those nodes that have variable sizes. */
442 size_t
443 tree_size (const_tree node)
444 {
445 const enum tree_code code = TREE_CODE (node);
446 switch (code)
447 {
448 case PHI_NODE:
449 return (sizeof (struct tree_phi_node)
450 + (PHI_ARG_CAPACITY (node) - 1) * sizeof (struct phi_arg_d));
451
452 case TREE_BINFO:
453 return (offsetof (struct tree_binfo, base_binfos)
454 + VEC_embedded_size (tree, BINFO_N_BASE_BINFOS (node)));
455
456 case TREE_VEC:
457 return (sizeof (struct tree_vec)
458 + (TREE_VEC_LENGTH (node) - 1) * sizeof (tree));
459
460 case STRING_CST:
461 return TREE_STRING_LENGTH (node) + offsetof (struct tree_string, str) + 1;
462
463 case OMP_CLAUSE:
464 return (sizeof (struct tree_omp_clause)
465 + (omp_clause_num_ops[OMP_CLAUSE_CODE (node)] - 1)
466 * sizeof (tree));
467
468 default:
469 if (TREE_CODE_CLASS (code) == tcc_vl_exp)
470 return (sizeof (struct tree_exp)
471 + (VL_EXP_OPERAND_LENGTH (node) - 1) * sizeof (tree));
472 else
473 return tree_code_size (code);
474 }
475 }
476
477 /* Return a newly allocated node of code CODE. For decl and type
478 nodes, some other fields are initialized. The rest of the node is
479 initialized to zero. This function cannot be used for PHI_NODE,
480 TREE_VEC or OMP_CLAUSE nodes, which is enforced by asserts in
481 tree_code_size.
482
483 Achoo! I got a code in the node. */
484
485 tree
486 make_node_stat (enum tree_code code MEM_STAT_DECL)
487 {
488 tree t;
489 enum tree_code_class type = TREE_CODE_CLASS (code);
490 size_t length = tree_code_size (code);
491 #ifdef GATHER_STATISTICS
492 tree_node_kind kind;
493
494 switch (type)
495 {
496 case tcc_declaration: /* A decl node */
497 kind = d_kind;
498 break;
499
500 case tcc_type: /* a type node */
501 kind = t_kind;
502 break;
503
504 case tcc_statement: /* an expression with side effects */
505 kind = s_kind;
506 break;
507
508 case tcc_reference: /* a reference */
509 kind = r_kind;
510 break;
511
512 case tcc_expression: /* an expression */
513 case tcc_comparison: /* a comparison expression */
514 case tcc_unary: /* a unary arithmetic expression */
515 case tcc_binary: /* a binary arithmetic expression */
516 kind = e_kind;
517 break;
518
519 case tcc_constant: /* a constant */
520 kind = c_kind;
521 break;
522
523 case tcc_gimple_stmt:
524 kind = gimple_stmt_kind;
525 break;
526
527 case tcc_exceptional: /* something random, like an identifier. */
528 switch (code)
529 {
530 case IDENTIFIER_NODE:
531 kind = id_kind;
532 break;
533
534 case TREE_VEC:
535 kind = vec_kind;
536 break;
537
538 case TREE_BINFO:
539 kind = binfo_kind;
540 break;
541
542 case PHI_NODE:
543 kind = phi_kind;
544 break;
545
546 case SSA_NAME:
547 kind = ssa_name_kind;
548 break;
549
550 case BLOCK:
551 kind = b_kind;
552 break;
553
554 case CONSTRUCTOR:
555 kind = constr_kind;
556 break;
557
558 default:
559 kind = x_kind;
560 break;
561 }
562 break;
563
564 default:
565 gcc_unreachable ();
566 }
567
568 tree_node_counts[(int) kind]++;
569 tree_node_sizes[(int) kind] += length;
570 #endif
571
572 if (code == IDENTIFIER_NODE)
573 t = ggc_alloc_zone_pass_stat (length, &tree_id_zone);
574 else
575 t = ggc_alloc_zone_pass_stat (length, &tree_zone);
576
577 memset (t, 0, length);
578
579 TREE_SET_CODE (t, code);
580
581 switch (type)
582 {
583 case tcc_statement:
584 TREE_SIDE_EFFECTS (t) = 1;
585 break;
586
587 case tcc_declaration:
588 if (CODE_CONTAINS_STRUCT (code, TS_DECL_WITH_VIS))
589 DECL_IN_SYSTEM_HEADER (t) = in_system_header;
590 if (CODE_CONTAINS_STRUCT (code, TS_DECL_COMMON))
591 {
592 if (code == FUNCTION_DECL)
593 {
594 DECL_ALIGN (t) = FUNCTION_BOUNDARY;
595 DECL_MODE (t) = FUNCTION_MODE;
596 }
597 else
598 DECL_ALIGN (t) = 1;
599 /* We have not yet computed the alias set for this declaration. */
600 DECL_POINTER_ALIAS_SET (t) = -1;
601 }
602 DECL_SOURCE_LOCATION (t) = input_location;
603 DECL_UID (t) = next_decl_uid++;
604
605 break;
606
607 case tcc_type:
608 TYPE_UID (t) = next_type_uid++;
609 TYPE_ALIGN (t) = BITS_PER_UNIT;
610 TYPE_USER_ALIGN (t) = 0;
611 TYPE_MAIN_VARIANT (t) = t;
612 TYPE_CANONICAL (t) = t;
613
614 /* Default to no attributes for type, but let target change that. */
615 TYPE_ATTRIBUTES (t) = NULL_TREE;
616 targetm.set_default_type_attributes (t);
617
618 /* We have not yet computed the alias set for this type. */
619 TYPE_ALIAS_SET (t) = -1;
620 break;
621
622 case tcc_constant:
623 TREE_CONSTANT (t) = 1;
624 TREE_INVARIANT (t) = 1;
625 break;
626
627 case tcc_expression:
628 switch (code)
629 {
630 case INIT_EXPR:
631 case MODIFY_EXPR:
632 case VA_ARG_EXPR:
633 case PREDECREMENT_EXPR:
634 case PREINCREMENT_EXPR:
635 case POSTDECREMENT_EXPR:
636 case POSTINCREMENT_EXPR:
637 /* All of these have side-effects, no matter what their
638 operands are. */
639 TREE_SIDE_EFFECTS (t) = 1;
640 break;
641
642 default:
643 break;
644 }
645 break;
646
647 case tcc_gimple_stmt:
648 switch (code)
649 {
650 case GIMPLE_MODIFY_STMT:
651 TREE_SIDE_EFFECTS (t) = 1;
652 break;
653
654 default:
655 break;
656 }
657
658 default:
659 /* Other classes need no special treatment. */
660 break;
661 }
662
663 return t;
664 }
665 \f
666 /* Return a new node with the same contents as NODE except that its
667 TREE_CHAIN is zero and it has a fresh uid. */
668
669 tree
670 copy_node_stat (tree node MEM_STAT_DECL)
671 {
672 tree t;
673 enum tree_code code = TREE_CODE (node);
674 size_t length;
675
676 gcc_assert (code != STATEMENT_LIST);
677
678 length = tree_size (node);
679 t = ggc_alloc_zone_pass_stat (length, &tree_zone);
680 memcpy (t, node, length);
681
682 if (!GIMPLE_TUPLE_P (node))
683 TREE_CHAIN (t) = 0;
684 TREE_ASM_WRITTEN (t) = 0;
685 TREE_VISITED (t) = 0;
686 t->base.ann = 0;
687
688 if (TREE_CODE_CLASS (code) == tcc_declaration)
689 {
690 DECL_UID (t) = next_decl_uid++;
691 if ((TREE_CODE (node) == PARM_DECL || TREE_CODE (node) == VAR_DECL)
692 && DECL_HAS_VALUE_EXPR_P (node))
693 {
694 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (node));
695 DECL_HAS_VALUE_EXPR_P (t) = 1;
696 }
697 if (TREE_CODE (node) == VAR_DECL && DECL_HAS_INIT_PRIORITY_P (node))
698 {
699 SET_DECL_INIT_PRIORITY (t, DECL_INIT_PRIORITY (node));
700 DECL_HAS_INIT_PRIORITY_P (t) = 1;
701 }
702 if (TREE_CODE (node) == VAR_DECL && DECL_BASED_ON_RESTRICT_P (node))
703 {
704 SET_DECL_RESTRICT_BASE (t, DECL_GET_RESTRICT_BASE (node));
705 DECL_BASED_ON_RESTRICT_P (t) = 1;
706 }
707 }
708 else if (TREE_CODE_CLASS (code) == tcc_type)
709 {
710 TYPE_UID (t) = next_type_uid++;
711 /* The following is so that the debug code for
712 the copy is different from the original type.
713 The two statements usually duplicate each other
714 (because they clear fields of the same union),
715 but the optimizer should catch that. */
716 TYPE_SYMTAB_POINTER (t) = 0;
717 TYPE_SYMTAB_ADDRESS (t) = 0;
718
719 /* Do not copy the values cache. */
720 if (TYPE_CACHED_VALUES_P(t))
721 {
722 TYPE_CACHED_VALUES_P (t) = 0;
723 TYPE_CACHED_VALUES (t) = NULL_TREE;
724 }
725 }
726
727 return t;
728 }
729
730 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
731 For example, this can copy a list made of TREE_LIST nodes. */
732
733 tree
734 copy_list (tree list)
735 {
736 tree head;
737 tree prev, next;
738
739 if (list == 0)
740 return 0;
741
742 head = prev = copy_node (list);
743 next = TREE_CHAIN (list);
744 while (next)
745 {
746 TREE_CHAIN (prev) = copy_node (next);
747 prev = TREE_CHAIN (prev);
748 next = TREE_CHAIN (next);
749 }
750 return head;
751 }
752
753 \f
754 /* Create an INT_CST node with a LOW value sign extended. */
755
756 tree
757 build_int_cst (tree type, HOST_WIDE_INT low)
758 {
759 /* Support legacy code. */
760 if (!type)
761 type = integer_type_node;
762
763 return build_int_cst_wide (type, low, low < 0 ? -1 : 0);
764 }
765
766 /* Create an INT_CST node with a LOW value zero extended. */
767
768 tree
769 build_int_cstu (tree type, unsigned HOST_WIDE_INT low)
770 {
771 return build_int_cst_wide (type, low, 0);
772 }
773
774 /* Create an INT_CST node with a LOW value in TYPE. The value is sign extended
775 if it is negative. This function is similar to build_int_cst, but
776 the extra bits outside of the type precision are cleared. Constants
777 with these extra bits may confuse the fold so that it detects overflows
778 even in cases when they do not occur, and in general should be avoided.
779 We cannot however make this a default behavior of build_int_cst without
780 more intrusive changes, since there are parts of gcc that rely on the extra
781 precision of the integer constants. */
782
783 tree
784 build_int_cst_type (tree type, HOST_WIDE_INT low)
785 {
786 unsigned HOST_WIDE_INT low1;
787 HOST_WIDE_INT hi;
788
789 gcc_assert (type);
790
791 fit_double_type (low, low < 0 ? -1 : 0, &low1, &hi, type);
792
793 return build_int_cst_wide (type, low1, hi);
794 }
795
796 /* Create an INT_CST node of TYPE and value HI:LOW. The value is truncated
797 and sign extended according to the value range of TYPE. */
798
799 tree
800 build_int_cst_wide_type (tree type,
801 unsigned HOST_WIDE_INT low, HOST_WIDE_INT high)
802 {
803 fit_double_type (low, high, &low, &high, type);
804 return build_int_cst_wide (type, low, high);
805 }
806
807 /* These are the hash table functions for the hash table of INTEGER_CST
808 nodes of a sizetype. */
809
810 /* Return the hash code code X, an INTEGER_CST. */
811
812 static hashval_t
813 int_cst_hash_hash (const void *x)
814 {
815 const_tree const t = (const_tree) x;
816
817 return (TREE_INT_CST_HIGH (t) ^ TREE_INT_CST_LOW (t)
818 ^ htab_hash_pointer (TREE_TYPE (t)));
819 }
820
821 /* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
822 is the same as that given by *Y, which is the same. */
823
824 static int
825 int_cst_hash_eq (const void *x, const void *y)
826 {
827 const_tree const xt = (const_tree) x;
828 const_tree const yt = (const_tree) y;
829
830 return (TREE_TYPE (xt) == TREE_TYPE (yt)
831 && TREE_INT_CST_HIGH (xt) == TREE_INT_CST_HIGH (yt)
832 && TREE_INT_CST_LOW (xt) == TREE_INT_CST_LOW (yt));
833 }
834
835 /* Create an INT_CST node of TYPE and value HI:LOW.
836 The returned node is always shared. For small integers we use a
837 per-type vector cache, for larger ones we use a single hash table. */
838
839 tree
840 build_int_cst_wide (tree type, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
841 {
842 tree t;
843 int ix = -1;
844 int limit = 0;
845
846 gcc_assert (type);
847
848 switch (TREE_CODE (type))
849 {
850 case POINTER_TYPE:
851 case REFERENCE_TYPE:
852 /* Cache NULL pointer. */
853 if (!hi && !low)
854 {
855 limit = 1;
856 ix = 0;
857 }
858 break;
859
860 case BOOLEAN_TYPE:
861 /* Cache false or true. */
862 limit = 2;
863 if (!hi && low < 2)
864 ix = low;
865 break;
866
867 case INTEGER_TYPE:
868 case OFFSET_TYPE:
869 if (TYPE_UNSIGNED (type))
870 {
871 /* Cache 0..N */
872 limit = INTEGER_SHARE_LIMIT;
873 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
874 ix = low;
875 }
876 else
877 {
878 /* Cache -1..N */
879 limit = INTEGER_SHARE_LIMIT + 1;
880 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
881 ix = low + 1;
882 else if (hi == -1 && low == -(unsigned HOST_WIDE_INT)1)
883 ix = 0;
884 }
885 break;
886
887 case ENUMERAL_TYPE:
888 break;
889
890 default:
891 gcc_unreachable ();
892 }
893
894 if (ix >= 0)
895 {
896 /* Look for it in the type's vector of small shared ints. */
897 if (!TYPE_CACHED_VALUES_P (type))
898 {
899 TYPE_CACHED_VALUES_P (type) = 1;
900 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
901 }
902
903 t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix);
904 if (t)
905 {
906 /* Make sure no one is clobbering the shared constant. */
907 gcc_assert (TREE_TYPE (t) == type);
908 gcc_assert (TREE_INT_CST_LOW (t) == low);
909 gcc_assert (TREE_INT_CST_HIGH (t) == hi);
910 }
911 else
912 {
913 /* Create a new shared int. */
914 t = make_node (INTEGER_CST);
915
916 TREE_INT_CST_LOW (t) = low;
917 TREE_INT_CST_HIGH (t) = hi;
918 TREE_TYPE (t) = type;
919
920 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
921 }
922 }
923 else
924 {
925 /* Use the cache of larger shared ints. */
926 void **slot;
927
928 TREE_INT_CST_LOW (int_cst_node) = low;
929 TREE_INT_CST_HIGH (int_cst_node) = hi;
930 TREE_TYPE (int_cst_node) = type;
931
932 slot = htab_find_slot (int_cst_hash_table, int_cst_node, INSERT);
933 t = *slot;
934 if (!t)
935 {
936 /* Insert this one into the hash table. */
937 t = int_cst_node;
938 *slot = t;
939 /* Make a new node for next time round. */
940 int_cst_node = make_node (INTEGER_CST);
941 }
942 }
943
944 return t;
945 }
946
947 /* Builds an integer constant in TYPE such that lowest BITS bits are ones
948 and the rest are zeros. */
949
950 tree
951 build_low_bits_mask (tree type, unsigned bits)
952 {
953 unsigned HOST_WIDE_INT low;
954 HOST_WIDE_INT high;
955 unsigned HOST_WIDE_INT all_ones = ~(unsigned HOST_WIDE_INT) 0;
956
957 gcc_assert (bits <= TYPE_PRECISION (type));
958
959 if (bits == TYPE_PRECISION (type)
960 && !TYPE_UNSIGNED (type))
961 {
962 /* Sign extended all-ones mask. */
963 low = all_ones;
964 high = -1;
965 }
966 else if (bits <= HOST_BITS_PER_WIDE_INT)
967 {
968 low = all_ones >> (HOST_BITS_PER_WIDE_INT - bits);
969 high = 0;
970 }
971 else
972 {
973 bits -= HOST_BITS_PER_WIDE_INT;
974 low = all_ones;
975 high = all_ones >> (HOST_BITS_PER_WIDE_INT - bits);
976 }
977
978 return build_int_cst_wide (type, low, high);
979 }
980
981 /* Checks that X is integer constant that can be expressed in (unsigned)
982 HOST_WIDE_INT without loss of precision. */
983
984 bool
985 cst_and_fits_in_hwi (const_tree x)
986 {
987 if (TREE_CODE (x) != INTEGER_CST)
988 return false;
989
990 if (TYPE_PRECISION (TREE_TYPE (x)) > HOST_BITS_PER_WIDE_INT)
991 return false;
992
993 return (TREE_INT_CST_HIGH (x) == 0
994 || TREE_INT_CST_HIGH (x) == -1);
995 }
996
997 /* Return a new VECTOR_CST node whose type is TYPE and whose values
998 are in a list pointed to by VALS. */
999
1000 tree
1001 build_vector (tree type, tree vals)
1002 {
1003 tree v = make_node (VECTOR_CST);
1004 int over = 0;
1005 tree link;
1006
1007 TREE_VECTOR_CST_ELTS (v) = vals;
1008 TREE_TYPE (v) = type;
1009
1010 /* Iterate through elements and check for overflow. */
1011 for (link = vals; link; link = TREE_CHAIN (link))
1012 {
1013 tree value = TREE_VALUE (link);
1014
1015 /* Don't crash if we get an address constant. */
1016 if (!CONSTANT_CLASS_P (value))
1017 continue;
1018
1019 over |= TREE_OVERFLOW (value);
1020 }
1021
1022 TREE_OVERFLOW (v) = over;
1023 return v;
1024 }
1025
1026 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1027 are extracted from V, a vector of CONSTRUCTOR_ELT. */
1028
1029 tree
1030 build_vector_from_ctor (tree type, VEC(constructor_elt,gc) *v)
1031 {
1032 tree list = NULL_TREE;
1033 unsigned HOST_WIDE_INT idx;
1034 tree value;
1035
1036 FOR_EACH_CONSTRUCTOR_VALUE (v, idx, value)
1037 list = tree_cons (NULL_TREE, value, list);
1038 return build_vector (type, nreverse (list));
1039 }
1040
1041 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1042 are in the VEC pointed to by VALS. */
1043 tree
1044 build_constructor (tree type, VEC(constructor_elt,gc) *vals)
1045 {
1046 tree c = make_node (CONSTRUCTOR);
1047 TREE_TYPE (c) = type;
1048 CONSTRUCTOR_ELTS (c) = vals;
1049 return c;
1050 }
1051
1052 /* Build a CONSTRUCTOR node made of a single initializer, with the specified
1053 INDEX and VALUE. */
1054 tree
1055 build_constructor_single (tree type, tree index, tree value)
1056 {
1057 VEC(constructor_elt,gc) *v;
1058 constructor_elt *elt;
1059 tree t;
1060
1061 v = VEC_alloc (constructor_elt, gc, 1);
1062 elt = VEC_quick_push (constructor_elt, v, NULL);
1063 elt->index = index;
1064 elt->value = value;
1065
1066 t = build_constructor (type, v);
1067 TREE_CONSTANT (t) = TREE_CONSTANT (value);
1068 return t;
1069 }
1070
1071
1072 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1073 are in a list pointed to by VALS. */
1074 tree
1075 build_constructor_from_list (tree type, tree vals)
1076 {
1077 tree t, val;
1078 VEC(constructor_elt,gc) *v = NULL;
1079 bool constant_p = true;
1080
1081 if (vals)
1082 {
1083 v = VEC_alloc (constructor_elt, gc, list_length (vals));
1084 for (t = vals; t; t = TREE_CHAIN (t))
1085 {
1086 constructor_elt *elt = VEC_quick_push (constructor_elt, v, NULL);
1087 val = TREE_VALUE (t);
1088 elt->index = TREE_PURPOSE (t);
1089 elt->value = val;
1090 if (!TREE_CONSTANT (val))
1091 constant_p = false;
1092 }
1093 }
1094
1095 t = build_constructor (type, v);
1096 TREE_CONSTANT (t) = constant_p;
1097 return t;
1098 }
1099
1100 /* Return a new FIXED_CST node whose type is TYPE and value is F. */
1101
1102 tree
1103 build_fixed (tree type, FIXED_VALUE_TYPE f)
1104 {
1105 tree v;
1106 FIXED_VALUE_TYPE *fp;
1107
1108 v = make_node (FIXED_CST);
1109 fp = ggc_alloc (sizeof (FIXED_VALUE_TYPE));
1110 memcpy (fp, &f, sizeof (FIXED_VALUE_TYPE));
1111
1112 TREE_TYPE (v) = type;
1113 TREE_FIXED_CST_PTR (v) = fp;
1114 return v;
1115 }
1116
1117 /* Return a new REAL_CST node whose type is TYPE and value is D. */
1118
1119 tree
1120 build_real (tree type, REAL_VALUE_TYPE d)
1121 {
1122 tree v;
1123 REAL_VALUE_TYPE *dp;
1124 int overflow = 0;
1125
1126 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
1127 Consider doing it via real_convert now. */
1128
1129 v = make_node (REAL_CST);
1130 dp = ggc_alloc (sizeof (REAL_VALUE_TYPE));
1131 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
1132
1133 TREE_TYPE (v) = type;
1134 TREE_REAL_CST_PTR (v) = dp;
1135 TREE_OVERFLOW (v) = overflow;
1136 return v;
1137 }
1138
1139 /* Return a new REAL_CST node whose type is TYPE
1140 and whose value is the integer value of the INTEGER_CST node I. */
1141
1142 REAL_VALUE_TYPE
1143 real_value_from_int_cst (const_tree type, const_tree i)
1144 {
1145 REAL_VALUE_TYPE d;
1146
1147 /* Clear all bits of the real value type so that we can later do
1148 bitwise comparisons to see if two values are the same. */
1149 memset (&d, 0, sizeof d);
1150
1151 real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode,
1152 TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
1153 TYPE_UNSIGNED (TREE_TYPE (i)));
1154 return d;
1155 }
1156
1157 /* Given a tree representing an integer constant I, return a tree
1158 representing the same value as a floating-point constant of type TYPE. */
1159
1160 tree
1161 build_real_from_int_cst (tree type, const_tree i)
1162 {
1163 tree v;
1164 int overflow = TREE_OVERFLOW (i);
1165
1166 v = build_real (type, real_value_from_int_cst (type, i));
1167
1168 TREE_OVERFLOW (v) |= overflow;
1169 return v;
1170 }
1171
1172 /* Return a newly constructed STRING_CST node whose value is
1173 the LEN characters at STR.
1174 The TREE_TYPE is not initialized. */
1175
1176 tree
1177 build_string (int len, const char *str)
1178 {
1179 tree s;
1180 size_t length;
1181
1182 /* Do not waste bytes provided by padding of struct tree_string. */
1183 length = len + offsetof (struct tree_string, str) + 1;
1184
1185 #ifdef GATHER_STATISTICS
1186 tree_node_counts[(int) c_kind]++;
1187 tree_node_sizes[(int) c_kind] += length;
1188 #endif
1189
1190 s = ggc_alloc_tree (length);
1191
1192 memset (s, 0, sizeof (struct tree_common));
1193 TREE_SET_CODE (s, STRING_CST);
1194 TREE_CONSTANT (s) = 1;
1195 TREE_INVARIANT (s) = 1;
1196 TREE_STRING_LENGTH (s) = len;
1197 memcpy (s->string.str, str, len);
1198 s->string.str[len] = '\0';
1199
1200 return s;
1201 }
1202
1203 /* Return a newly constructed COMPLEX_CST node whose value is
1204 specified by the real and imaginary parts REAL and IMAG.
1205 Both REAL and IMAG should be constant nodes. TYPE, if specified,
1206 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
1207
1208 tree
1209 build_complex (tree type, tree real, tree imag)
1210 {
1211 tree t = make_node (COMPLEX_CST);
1212
1213 TREE_REALPART (t) = real;
1214 TREE_IMAGPART (t) = imag;
1215 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
1216 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
1217 return t;
1218 }
1219
1220 /* Return a constant of arithmetic type TYPE which is the
1221 multiplicative identity of the set TYPE. */
1222
1223 tree
1224 build_one_cst (tree type)
1225 {
1226 switch (TREE_CODE (type))
1227 {
1228 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1229 case POINTER_TYPE: case REFERENCE_TYPE:
1230 case OFFSET_TYPE:
1231 return build_int_cst (type, 1);
1232
1233 case REAL_TYPE:
1234 return build_real (type, dconst1);
1235
1236 case FIXED_POINT_TYPE:
1237 /* We can only generate 1 for accum types. */
1238 gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
1239 return build_fixed (type, FCONST1(TYPE_MODE (type)));
1240
1241 case VECTOR_TYPE:
1242 {
1243 tree scalar, cst;
1244 int i;
1245
1246 scalar = build_one_cst (TREE_TYPE (type));
1247
1248 /* Create 'vect_cst_ = {cst,cst,...,cst}' */
1249 cst = NULL_TREE;
1250 for (i = TYPE_VECTOR_SUBPARTS (type); --i >= 0; )
1251 cst = tree_cons (NULL_TREE, scalar, cst);
1252
1253 return build_vector (type, cst);
1254 }
1255
1256 case COMPLEX_TYPE:
1257 return build_complex (type,
1258 build_one_cst (TREE_TYPE (type)),
1259 fold_convert (TREE_TYPE (type), integer_zero_node));
1260
1261 default:
1262 gcc_unreachable ();
1263 }
1264 }
1265
1266 /* Build a BINFO with LEN language slots. */
1267
1268 tree
1269 make_tree_binfo_stat (unsigned base_binfos MEM_STAT_DECL)
1270 {
1271 tree t;
1272 size_t length = (offsetof (struct tree_binfo, base_binfos)
1273 + VEC_embedded_size (tree, base_binfos));
1274
1275 #ifdef GATHER_STATISTICS
1276 tree_node_counts[(int) binfo_kind]++;
1277 tree_node_sizes[(int) binfo_kind] += length;
1278 #endif
1279
1280 t = ggc_alloc_zone_pass_stat (length, &tree_zone);
1281
1282 memset (t, 0, offsetof (struct tree_binfo, base_binfos));
1283
1284 TREE_SET_CODE (t, TREE_BINFO);
1285
1286 VEC_embedded_init (tree, BINFO_BASE_BINFOS (t), base_binfos);
1287
1288 return t;
1289 }
1290
1291
1292 /* Build a newly constructed TREE_VEC node of length LEN. */
1293
1294 tree
1295 make_tree_vec_stat (int len MEM_STAT_DECL)
1296 {
1297 tree t;
1298 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
1299
1300 #ifdef GATHER_STATISTICS
1301 tree_node_counts[(int) vec_kind]++;
1302 tree_node_sizes[(int) vec_kind] += length;
1303 #endif
1304
1305 t = ggc_alloc_zone_pass_stat (length, &tree_zone);
1306
1307 memset (t, 0, length);
1308
1309 TREE_SET_CODE (t, TREE_VEC);
1310 TREE_VEC_LENGTH (t) = len;
1311
1312 return t;
1313 }
1314 \f
1315 /* Return 1 if EXPR is the integer constant zero or a complex constant
1316 of zero. */
1317
1318 int
1319 integer_zerop (const_tree expr)
1320 {
1321 STRIP_NOPS (expr);
1322
1323 return ((TREE_CODE (expr) == INTEGER_CST
1324 && TREE_INT_CST_LOW (expr) == 0
1325 && TREE_INT_CST_HIGH (expr) == 0)
1326 || (TREE_CODE (expr) == COMPLEX_CST
1327 && integer_zerop (TREE_REALPART (expr))
1328 && integer_zerop (TREE_IMAGPART (expr))));
1329 }
1330
1331 /* Return 1 if EXPR is the integer constant one or the corresponding
1332 complex constant. */
1333
1334 int
1335 integer_onep (const_tree expr)
1336 {
1337 STRIP_NOPS (expr);
1338
1339 return ((TREE_CODE (expr) == INTEGER_CST
1340 && TREE_INT_CST_LOW (expr) == 1
1341 && TREE_INT_CST_HIGH (expr) == 0)
1342 || (TREE_CODE (expr) == COMPLEX_CST
1343 && integer_onep (TREE_REALPART (expr))
1344 && integer_zerop (TREE_IMAGPART (expr))));
1345 }
1346
1347 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
1348 it contains. Likewise for the corresponding complex constant. */
1349
1350 int
1351 integer_all_onesp (const_tree expr)
1352 {
1353 int prec;
1354 int uns;
1355
1356 STRIP_NOPS (expr);
1357
1358 if (TREE_CODE (expr) == COMPLEX_CST
1359 && integer_all_onesp (TREE_REALPART (expr))
1360 && integer_zerop (TREE_IMAGPART (expr)))
1361 return 1;
1362
1363 else if (TREE_CODE (expr) != INTEGER_CST)
1364 return 0;
1365
1366 uns = TYPE_UNSIGNED (TREE_TYPE (expr));
1367 if (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1368 && TREE_INT_CST_HIGH (expr) == -1)
1369 return 1;
1370 if (!uns)
1371 return 0;
1372
1373 /* Note that using TYPE_PRECISION here is wrong. We care about the
1374 actual bits, not the (arbitrary) range of the type. */
1375 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
1376 if (prec >= HOST_BITS_PER_WIDE_INT)
1377 {
1378 HOST_WIDE_INT high_value;
1379 int shift_amount;
1380
1381 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
1382
1383 /* Can not handle precisions greater than twice the host int size. */
1384 gcc_assert (shift_amount <= HOST_BITS_PER_WIDE_INT);
1385 if (shift_amount == HOST_BITS_PER_WIDE_INT)
1386 /* Shifting by the host word size is undefined according to the ANSI
1387 standard, so we must handle this as a special case. */
1388 high_value = -1;
1389 else
1390 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
1391
1392 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1393 && TREE_INT_CST_HIGH (expr) == high_value);
1394 }
1395 else
1396 return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
1397 }
1398
1399 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
1400 one bit on). */
1401
1402 int
1403 integer_pow2p (const_tree expr)
1404 {
1405 int prec;
1406 HOST_WIDE_INT high, low;
1407
1408 STRIP_NOPS (expr);
1409
1410 if (TREE_CODE (expr) == COMPLEX_CST
1411 && integer_pow2p (TREE_REALPART (expr))
1412 && integer_zerop (TREE_IMAGPART (expr)))
1413 return 1;
1414
1415 if (TREE_CODE (expr) != INTEGER_CST)
1416 return 0;
1417
1418 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1419 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1420 high = TREE_INT_CST_HIGH (expr);
1421 low = TREE_INT_CST_LOW (expr);
1422
1423 /* First clear all bits that are beyond the type's precision in case
1424 we've been sign extended. */
1425
1426 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1427 ;
1428 else if (prec > HOST_BITS_PER_WIDE_INT)
1429 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1430 else
1431 {
1432 high = 0;
1433 if (prec < HOST_BITS_PER_WIDE_INT)
1434 low &= ~((HOST_WIDE_INT) (-1) << prec);
1435 }
1436
1437 if (high == 0 && low == 0)
1438 return 0;
1439
1440 return ((high == 0 && (low & (low - 1)) == 0)
1441 || (low == 0 && (high & (high - 1)) == 0));
1442 }
1443
1444 /* Return 1 if EXPR is an integer constant other than zero or a
1445 complex constant other than zero. */
1446
1447 int
1448 integer_nonzerop (const_tree expr)
1449 {
1450 STRIP_NOPS (expr);
1451
1452 return ((TREE_CODE (expr) == INTEGER_CST
1453 && (TREE_INT_CST_LOW (expr) != 0
1454 || TREE_INT_CST_HIGH (expr) != 0))
1455 || (TREE_CODE (expr) == COMPLEX_CST
1456 && (integer_nonzerop (TREE_REALPART (expr))
1457 || integer_nonzerop (TREE_IMAGPART (expr)))));
1458 }
1459
1460 /* Return 1 if EXPR is the fixed-point constant zero. */
1461
1462 int
1463 fixed_zerop (const_tree expr)
1464 {
1465 return (TREE_CODE (expr) == FIXED_CST
1466 && double_int_zero_p (TREE_FIXED_CST (expr).data));
1467 }
1468
1469 /* Return the power of two represented by a tree node known to be a
1470 power of two. */
1471
1472 int
1473 tree_log2 (const_tree expr)
1474 {
1475 int prec;
1476 HOST_WIDE_INT high, low;
1477
1478 STRIP_NOPS (expr);
1479
1480 if (TREE_CODE (expr) == COMPLEX_CST)
1481 return tree_log2 (TREE_REALPART (expr));
1482
1483 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1484 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1485
1486 high = TREE_INT_CST_HIGH (expr);
1487 low = TREE_INT_CST_LOW (expr);
1488
1489 /* First clear all bits that are beyond the type's precision in case
1490 we've been sign extended. */
1491
1492 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1493 ;
1494 else if (prec > HOST_BITS_PER_WIDE_INT)
1495 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1496 else
1497 {
1498 high = 0;
1499 if (prec < HOST_BITS_PER_WIDE_INT)
1500 low &= ~((HOST_WIDE_INT) (-1) << prec);
1501 }
1502
1503 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
1504 : exact_log2 (low));
1505 }
1506
1507 /* Similar, but return the largest integer Y such that 2 ** Y is less
1508 than or equal to EXPR. */
1509
1510 int
1511 tree_floor_log2 (const_tree expr)
1512 {
1513 int prec;
1514 HOST_WIDE_INT high, low;
1515
1516 STRIP_NOPS (expr);
1517
1518 if (TREE_CODE (expr) == COMPLEX_CST)
1519 return tree_log2 (TREE_REALPART (expr));
1520
1521 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1522 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1523
1524 high = TREE_INT_CST_HIGH (expr);
1525 low = TREE_INT_CST_LOW (expr);
1526
1527 /* First clear all bits that are beyond the type's precision in case
1528 we've been sign extended. Ignore if type's precision hasn't been set
1529 since what we are doing is setting it. */
1530
1531 if (prec == 2 * HOST_BITS_PER_WIDE_INT || prec == 0)
1532 ;
1533 else if (prec > HOST_BITS_PER_WIDE_INT)
1534 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1535 else
1536 {
1537 high = 0;
1538 if (prec < HOST_BITS_PER_WIDE_INT)
1539 low &= ~((HOST_WIDE_INT) (-1) << prec);
1540 }
1541
1542 return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
1543 : floor_log2 (low));
1544 }
1545
1546 /* Return 1 if EXPR is the real constant zero. */
1547
1548 int
1549 real_zerop (const_tree expr)
1550 {
1551 STRIP_NOPS (expr);
1552
1553 return ((TREE_CODE (expr) == REAL_CST
1554 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0))
1555 || (TREE_CODE (expr) == COMPLEX_CST
1556 && real_zerop (TREE_REALPART (expr))
1557 && real_zerop (TREE_IMAGPART (expr))));
1558 }
1559
1560 /* Return 1 if EXPR is the real constant one in real or complex form. */
1561
1562 int
1563 real_onep (const_tree expr)
1564 {
1565 STRIP_NOPS (expr);
1566
1567 return ((TREE_CODE (expr) == REAL_CST
1568 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1))
1569 || (TREE_CODE (expr) == COMPLEX_CST
1570 && real_onep (TREE_REALPART (expr))
1571 && real_zerop (TREE_IMAGPART (expr))));
1572 }
1573
1574 /* Return 1 if EXPR is the real constant two. */
1575
1576 int
1577 real_twop (const_tree expr)
1578 {
1579 STRIP_NOPS (expr);
1580
1581 return ((TREE_CODE (expr) == REAL_CST
1582 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2))
1583 || (TREE_CODE (expr) == COMPLEX_CST
1584 && real_twop (TREE_REALPART (expr))
1585 && real_zerop (TREE_IMAGPART (expr))));
1586 }
1587
1588 /* Return 1 if EXPR is the real constant minus one. */
1589
1590 int
1591 real_minus_onep (const_tree expr)
1592 {
1593 STRIP_NOPS (expr);
1594
1595 return ((TREE_CODE (expr) == REAL_CST
1596 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconstm1))
1597 || (TREE_CODE (expr) == COMPLEX_CST
1598 && real_minus_onep (TREE_REALPART (expr))
1599 && real_zerop (TREE_IMAGPART (expr))));
1600 }
1601
1602 /* Nonzero if EXP is a constant or a cast of a constant. */
1603
1604 int
1605 really_constant_p (const_tree exp)
1606 {
1607 /* This is not quite the same as STRIP_NOPS. It does more. */
1608 while (TREE_CODE (exp) == NOP_EXPR
1609 || TREE_CODE (exp) == CONVERT_EXPR
1610 || TREE_CODE (exp) == NON_LVALUE_EXPR)
1611 exp = TREE_OPERAND (exp, 0);
1612 return TREE_CONSTANT (exp);
1613 }
1614 \f
1615 /* Return first list element whose TREE_VALUE is ELEM.
1616 Return 0 if ELEM is not in LIST. */
1617
1618 tree
1619 value_member (tree elem, tree list)
1620 {
1621 while (list)
1622 {
1623 if (elem == TREE_VALUE (list))
1624 return list;
1625 list = TREE_CHAIN (list);
1626 }
1627 return NULL_TREE;
1628 }
1629
1630 /* Return first list element whose TREE_PURPOSE is ELEM.
1631 Return 0 if ELEM is not in LIST. */
1632
1633 tree
1634 purpose_member (const_tree elem, tree list)
1635 {
1636 while (list)
1637 {
1638 if (elem == TREE_PURPOSE (list))
1639 return list;
1640 list = TREE_CHAIN (list);
1641 }
1642 return NULL_TREE;
1643 }
1644
1645 /* Return nonzero if ELEM is part of the chain CHAIN. */
1646
1647 int
1648 chain_member (const_tree elem, const_tree chain)
1649 {
1650 while (chain)
1651 {
1652 if (elem == chain)
1653 return 1;
1654 chain = TREE_CHAIN (chain);
1655 }
1656
1657 return 0;
1658 }
1659
1660 /* Return the length of a chain of nodes chained through TREE_CHAIN.
1661 We expect a null pointer to mark the end of the chain.
1662 This is the Lisp primitive `length'. */
1663
1664 int
1665 list_length (const_tree t)
1666 {
1667 const_tree p = t;
1668 #ifdef ENABLE_TREE_CHECKING
1669 const_tree q = t;
1670 #endif
1671 int len = 0;
1672
1673 while (p)
1674 {
1675 p = TREE_CHAIN (p);
1676 #ifdef ENABLE_TREE_CHECKING
1677 if (len % 2)
1678 q = TREE_CHAIN (q);
1679 gcc_assert (p != q);
1680 #endif
1681 len++;
1682 }
1683
1684 return len;
1685 }
1686
1687 /* Returns the number of FIELD_DECLs in TYPE. */
1688
1689 int
1690 fields_length (const_tree type)
1691 {
1692 tree t = TYPE_FIELDS (type);
1693 int count = 0;
1694
1695 for (; t; t = TREE_CHAIN (t))
1696 if (TREE_CODE (t) == FIELD_DECL)
1697 ++count;
1698
1699 return count;
1700 }
1701
1702 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
1703 by modifying the last node in chain 1 to point to chain 2.
1704 This is the Lisp primitive `nconc'. */
1705
1706 tree
1707 chainon (tree op1, tree op2)
1708 {
1709 tree t1;
1710
1711 if (!op1)
1712 return op2;
1713 if (!op2)
1714 return op1;
1715
1716 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
1717 continue;
1718 TREE_CHAIN (t1) = op2;
1719
1720 #ifdef ENABLE_TREE_CHECKING
1721 {
1722 tree t2;
1723 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
1724 gcc_assert (t2 != t1);
1725 }
1726 #endif
1727
1728 return op1;
1729 }
1730
1731 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
1732
1733 tree
1734 tree_last (tree chain)
1735 {
1736 tree next;
1737 if (chain)
1738 while ((next = TREE_CHAIN (chain)))
1739 chain = next;
1740 return chain;
1741 }
1742
1743 /* Reverse the order of elements in the chain T,
1744 and return the new head of the chain (old last element). */
1745
1746 tree
1747 nreverse (tree t)
1748 {
1749 tree prev = 0, decl, next;
1750 for (decl = t; decl; decl = next)
1751 {
1752 next = TREE_CHAIN (decl);
1753 TREE_CHAIN (decl) = prev;
1754 prev = decl;
1755 }
1756 return prev;
1757 }
1758 \f
1759 /* Return a newly created TREE_LIST node whose
1760 purpose and value fields are PARM and VALUE. */
1761
1762 tree
1763 build_tree_list_stat (tree parm, tree value MEM_STAT_DECL)
1764 {
1765 tree t = make_node_stat (TREE_LIST PASS_MEM_STAT);
1766 TREE_PURPOSE (t) = parm;
1767 TREE_VALUE (t) = value;
1768 return t;
1769 }
1770
1771 /* Return a newly created TREE_LIST node whose
1772 purpose and value fields are PURPOSE and VALUE
1773 and whose TREE_CHAIN is CHAIN. */
1774
1775 tree
1776 tree_cons_stat (tree purpose, tree value, tree chain MEM_STAT_DECL)
1777 {
1778 tree node;
1779
1780 node = ggc_alloc_zone_pass_stat (sizeof (struct tree_list), &tree_zone);
1781
1782 memset (node, 0, sizeof (struct tree_common));
1783
1784 #ifdef GATHER_STATISTICS
1785 tree_node_counts[(int) x_kind]++;
1786 tree_node_sizes[(int) x_kind] += sizeof (struct tree_list);
1787 #endif
1788
1789 TREE_SET_CODE (node, TREE_LIST);
1790 TREE_CHAIN (node) = chain;
1791 TREE_PURPOSE (node) = purpose;
1792 TREE_VALUE (node) = value;
1793 return node;
1794 }
1795
1796 \f
1797 /* Return the size nominally occupied by an object of type TYPE
1798 when it resides in memory. The value is measured in units of bytes,
1799 and its data type is that normally used for type sizes
1800 (which is the first type created by make_signed_type or
1801 make_unsigned_type). */
1802
1803 tree
1804 size_in_bytes (const_tree type)
1805 {
1806 tree t;
1807
1808 if (type == error_mark_node)
1809 return integer_zero_node;
1810
1811 type = TYPE_MAIN_VARIANT (type);
1812 t = TYPE_SIZE_UNIT (type);
1813
1814 if (t == 0)
1815 {
1816 lang_hooks.types.incomplete_type_error (NULL_TREE, type);
1817 return size_zero_node;
1818 }
1819
1820 return t;
1821 }
1822
1823 /* Return the size of TYPE (in bytes) as a wide integer
1824 or return -1 if the size can vary or is larger than an integer. */
1825
1826 HOST_WIDE_INT
1827 int_size_in_bytes (const_tree type)
1828 {
1829 tree t;
1830
1831 if (type == error_mark_node)
1832 return 0;
1833
1834 type = TYPE_MAIN_VARIANT (type);
1835 t = TYPE_SIZE_UNIT (type);
1836 if (t == 0
1837 || TREE_CODE (t) != INTEGER_CST
1838 || TREE_INT_CST_HIGH (t) != 0
1839 /* If the result would appear negative, it's too big to represent. */
1840 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
1841 return -1;
1842
1843 return TREE_INT_CST_LOW (t);
1844 }
1845
1846 /* Return the maximum size of TYPE (in bytes) as a wide integer
1847 or return -1 if the size can vary or is larger than an integer. */
1848
1849 HOST_WIDE_INT
1850 max_int_size_in_bytes (const_tree type)
1851 {
1852 HOST_WIDE_INT size = -1;
1853 tree size_tree;
1854
1855 /* If this is an array type, check for a possible MAX_SIZE attached. */
1856
1857 if (TREE_CODE (type) == ARRAY_TYPE)
1858 {
1859 size_tree = TYPE_ARRAY_MAX_SIZE (type);
1860
1861 if (size_tree && host_integerp (size_tree, 1))
1862 size = tree_low_cst (size_tree, 1);
1863 }
1864
1865 /* If we still haven't been able to get a size, see if the language
1866 can compute a maximum size. */
1867
1868 if (size == -1)
1869 {
1870 size_tree = lang_hooks.types.max_size (type);
1871
1872 if (size_tree && host_integerp (size_tree, 1))
1873 size = tree_low_cst (size_tree, 1);
1874 }
1875
1876 return size;
1877 }
1878 \f
1879 /* Return the bit position of FIELD, in bits from the start of the record.
1880 This is a tree of type bitsizetype. */
1881
1882 tree
1883 bit_position (const_tree field)
1884 {
1885 return bit_from_pos (DECL_FIELD_OFFSET (field),
1886 DECL_FIELD_BIT_OFFSET (field));
1887 }
1888
1889 /* Likewise, but return as an integer. It must be representable in
1890 that way (since it could be a signed value, we don't have the
1891 option of returning -1 like int_size_in_byte can. */
1892
1893 HOST_WIDE_INT
1894 int_bit_position (const_tree field)
1895 {
1896 return tree_low_cst (bit_position (field), 0);
1897 }
1898 \f
1899 /* Return the byte position of FIELD, in bytes from the start of the record.
1900 This is a tree of type sizetype. */
1901
1902 tree
1903 byte_position (const_tree field)
1904 {
1905 return byte_from_pos (DECL_FIELD_OFFSET (field),
1906 DECL_FIELD_BIT_OFFSET (field));
1907 }
1908
1909 /* Likewise, but return as an integer. It must be representable in
1910 that way (since it could be a signed value, we don't have the
1911 option of returning -1 like int_size_in_byte can. */
1912
1913 HOST_WIDE_INT
1914 int_byte_position (const_tree field)
1915 {
1916 return tree_low_cst (byte_position (field), 0);
1917 }
1918 \f
1919 /* Return the strictest alignment, in bits, that T is known to have. */
1920
1921 unsigned int
1922 expr_align (const_tree t)
1923 {
1924 unsigned int align0, align1;
1925
1926 switch (TREE_CODE (t))
1927 {
1928 case NOP_EXPR: case CONVERT_EXPR: case NON_LVALUE_EXPR:
1929 /* If we have conversions, we know that the alignment of the
1930 object must meet each of the alignments of the types. */
1931 align0 = expr_align (TREE_OPERAND (t, 0));
1932 align1 = TYPE_ALIGN (TREE_TYPE (t));
1933 return MAX (align0, align1);
1934
1935 case GIMPLE_MODIFY_STMT:
1936 /* We should never ask for the alignment of a gimple statement. */
1937 gcc_unreachable ();
1938
1939 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
1940 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
1941 case CLEANUP_POINT_EXPR:
1942 /* These don't change the alignment of an object. */
1943 return expr_align (TREE_OPERAND (t, 0));
1944
1945 case COND_EXPR:
1946 /* The best we can do is say that the alignment is the least aligned
1947 of the two arms. */
1948 align0 = expr_align (TREE_OPERAND (t, 1));
1949 align1 = expr_align (TREE_OPERAND (t, 2));
1950 return MIN (align0, align1);
1951
1952 /* FIXME: LABEL_DECL and CONST_DECL never have DECL_ALIGN set
1953 meaningfully, it's always 1. */
1954 case LABEL_DECL: case CONST_DECL:
1955 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
1956 case FUNCTION_DECL:
1957 gcc_assert (DECL_ALIGN (t) != 0);
1958 return DECL_ALIGN (t);
1959
1960 default:
1961 break;
1962 }
1963
1964 /* Otherwise take the alignment from that of the type. */
1965 return TYPE_ALIGN (TREE_TYPE (t));
1966 }
1967 \f
1968 /* Return, as a tree node, the number of elements for TYPE (which is an
1969 ARRAY_TYPE) minus one. This counts only elements of the top array. */
1970
1971 tree
1972 array_type_nelts (const_tree type)
1973 {
1974 tree index_type, min, max;
1975
1976 /* If they did it with unspecified bounds, then we should have already
1977 given an error about it before we got here. */
1978 if (! TYPE_DOMAIN (type))
1979 return error_mark_node;
1980
1981 index_type = TYPE_DOMAIN (type);
1982 min = TYPE_MIN_VALUE (index_type);
1983 max = TYPE_MAX_VALUE (index_type);
1984
1985 return (integer_zerop (min)
1986 ? max
1987 : fold_build2 (MINUS_EXPR, TREE_TYPE (max), max, min));
1988 }
1989 \f
1990 /* If arg is static -- a reference to an object in static storage -- then
1991 return the object. This is not the same as the C meaning of `static'.
1992 If arg isn't static, return NULL. */
1993
1994 tree
1995 staticp (tree arg)
1996 {
1997 switch (TREE_CODE (arg))
1998 {
1999 case FUNCTION_DECL:
2000 /* Nested functions are static, even though taking their address will
2001 involve a trampoline as we unnest the nested function and create
2002 the trampoline on the tree level. */
2003 return arg;
2004
2005 case VAR_DECL:
2006 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2007 && ! DECL_THREAD_LOCAL_P (arg)
2008 && ! DECL_DLLIMPORT_P (arg)
2009 ? arg : NULL);
2010
2011 case CONST_DECL:
2012 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2013 ? arg : NULL);
2014
2015 case CONSTRUCTOR:
2016 return TREE_STATIC (arg) ? arg : NULL;
2017
2018 case LABEL_DECL:
2019 case STRING_CST:
2020 return arg;
2021
2022 case COMPONENT_REF:
2023 /* If the thing being referenced is not a field, then it is
2024 something language specific. */
2025 if (TREE_CODE (TREE_OPERAND (arg, 1)) != FIELD_DECL)
2026 return (*lang_hooks.staticp) (arg);
2027
2028 /* If we are referencing a bitfield, we can't evaluate an
2029 ADDR_EXPR at compile time and so it isn't a constant. */
2030 if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
2031 return NULL;
2032
2033 return staticp (TREE_OPERAND (arg, 0));
2034
2035 case BIT_FIELD_REF:
2036 return NULL;
2037
2038 case MISALIGNED_INDIRECT_REF:
2039 case ALIGN_INDIRECT_REF:
2040 case INDIRECT_REF:
2041 return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;
2042
2043 case ARRAY_REF:
2044 case ARRAY_RANGE_REF:
2045 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
2046 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
2047 return staticp (TREE_OPERAND (arg, 0));
2048 else
2049 return false;
2050
2051 default:
2052 if ((unsigned int) TREE_CODE (arg)
2053 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
2054 return lang_hooks.staticp (arg);
2055 else
2056 return NULL;
2057 }
2058 }
2059 \f
2060 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
2061 Do this to any expression which may be used in more than one place,
2062 but must be evaluated only once.
2063
2064 Normally, expand_expr would reevaluate the expression each time.
2065 Calling save_expr produces something that is evaluated and recorded
2066 the first time expand_expr is called on it. Subsequent calls to
2067 expand_expr just reuse the recorded value.
2068
2069 The call to expand_expr that generates code that actually computes
2070 the value is the first call *at compile time*. Subsequent calls
2071 *at compile time* generate code to use the saved value.
2072 This produces correct result provided that *at run time* control
2073 always flows through the insns made by the first expand_expr
2074 before reaching the other places where the save_expr was evaluated.
2075 You, the caller of save_expr, must make sure this is so.
2076
2077 Constants, and certain read-only nodes, are returned with no
2078 SAVE_EXPR because that is safe. Expressions containing placeholders
2079 are not touched; see tree.def for an explanation of what these
2080 are used for. */
2081
2082 tree
2083 save_expr (tree expr)
2084 {
2085 tree t = fold (expr);
2086 tree inner;
2087
2088 /* If the tree evaluates to a constant, then we don't want to hide that
2089 fact (i.e. this allows further folding, and direct checks for constants).
2090 However, a read-only object that has side effects cannot be bypassed.
2091 Since it is no problem to reevaluate literals, we just return the
2092 literal node. */
2093 inner = skip_simple_arithmetic (t);
2094
2095 if (TREE_INVARIANT (inner)
2096 || (TREE_READONLY (inner) && ! TREE_SIDE_EFFECTS (inner))
2097 || TREE_CODE (inner) == SAVE_EXPR
2098 || TREE_CODE (inner) == ERROR_MARK)
2099 return t;
2100
2101 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
2102 it means that the size or offset of some field of an object depends on
2103 the value within another field.
2104
2105 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
2106 and some variable since it would then need to be both evaluated once and
2107 evaluated more than once. Front-ends must assure this case cannot
2108 happen by surrounding any such subexpressions in their own SAVE_EXPR
2109 and forcing evaluation at the proper time. */
2110 if (contains_placeholder_p (inner))
2111 return t;
2112
2113 t = build1 (SAVE_EXPR, TREE_TYPE (expr), t);
2114
2115 /* This expression might be placed ahead of a jump to ensure that the
2116 value was computed on both sides of the jump. So make sure it isn't
2117 eliminated as dead. */
2118 TREE_SIDE_EFFECTS (t) = 1;
2119 TREE_INVARIANT (t) = 1;
2120 return t;
2121 }
2122
2123 /* Look inside EXPR and into any simple arithmetic operations. Return
2124 the innermost non-arithmetic node. */
2125
2126 tree
2127 skip_simple_arithmetic (tree expr)
2128 {
2129 tree inner;
2130
2131 /* We don't care about whether this can be used as an lvalue in this
2132 context. */
2133 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
2134 expr = TREE_OPERAND (expr, 0);
2135
2136 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
2137 a constant, it will be more efficient to not make another SAVE_EXPR since
2138 it will allow better simplification and GCSE will be able to merge the
2139 computations if they actually occur. */
2140 inner = expr;
2141 while (1)
2142 {
2143 if (UNARY_CLASS_P (inner))
2144 inner = TREE_OPERAND (inner, 0);
2145 else if (BINARY_CLASS_P (inner))
2146 {
2147 if (TREE_INVARIANT (TREE_OPERAND (inner, 1)))
2148 inner = TREE_OPERAND (inner, 0);
2149 else if (TREE_INVARIANT (TREE_OPERAND (inner, 0)))
2150 inner = TREE_OPERAND (inner, 1);
2151 else
2152 break;
2153 }
2154 else
2155 break;
2156 }
2157
2158 return inner;
2159 }
2160
2161 /* Return which tree structure is used by T. */
2162
2163 enum tree_node_structure_enum
2164 tree_node_structure (const_tree t)
2165 {
2166 const enum tree_code code = TREE_CODE (t);
2167
2168 switch (TREE_CODE_CLASS (code))
2169 {
2170 case tcc_declaration:
2171 {
2172 switch (code)
2173 {
2174 case FIELD_DECL:
2175 return TS_FIELD_DECL;
2176 case PARM_DECL:
2177 return TS_PARM_DECL;
2178 case VAR_DECL:
2179 return TS_VAR_DECL;
2180 case LABEL_DECL:
2181 return TS_LABEL_DECL;
2182 case RESULT_DECL:
2183 return TS_RESULT_DECL;
2184 case CONST_DECL:
2185 return TS_CONST_DECL;
2186 case TYPE_DECL:
2187 return TS_TYPE_DECL;
2188 case FUNCTION_DECL:
2189 return TS_FUNCTION_DECL;
2190 case SYMBOL_MEMORY_TAG:
2191 case NAME_MEMORY_TAG:
2192 case STRUCT_FIELD_TAG:
2193 case MEMORY_PARTITION_TAG:
2194 return TS_MEMORY_TAG;
2195 default:
2196 return TS_DECL_NON_COMMON;
2197 }
2198 }
2199 case tcc_type:
2200 return TS_TYPE;
2201 case tcc_reference:
2202 case tcc_comparison:
2203 case tcc_unary:
2204 case tcc_binary:
2205 case tcc_expression:
2206 case tcc_statement:
2207 case tcc_vl_exp:
2208 return TS_EXP;
2209 case tcc_gimple_stmt:
2210 return TS_GIMPLE_STATEMENT;
2211 default: /* tcc_constant and tcc_exceptional */
2212 break;
2213 }
2214 switch (code)
2215 {
2216 /* tcc_constant cases. */
2217 case INTEGER_CST: return TS_INT_CST;
2218 case REAL_CST: return TS_REAL_CST;
2219 case FIXED_CST: return TS_FIXED_CST;
2220 case COMPLEX_CST: return TS_COMPLEX;
2221 case VECTOR_CST: return TS_VECTOR;
2222 case STRING_CST: return TS_STRING;
2223 /* tcc_exceptional cases. */
2224 /* FIXME tuples: eventually this should be TS_BASE. For now, nothing
2225 returns TS_BASE. */
2226 case ERROR_MARK: return TS_COMMON;
2227 case IDENTIFIER_NODE: return TS_IDENTIFIER;
2228 case TREE_LIST: return TS_LIST;
2229 case TREE_VEC: return TS_VEC;
2230 case PHI_NODE: return TS_PHI_NODE;
2231 case SSA_NAME: return TS_SSA_NAME;
2232 case PLACEHOLDER_EXPR: return TS_COMMON;
2233 case STATEMENT_LIST: return TS_STATEMENT_LIST;
2234 case BLOCK: return TS_BLOCK;
2235 case CONSTRUCTOR: return TS_CONSTRUCTOR;
2236 case TREE_BINFO: return TS_BINFO;
2237 case VALUE_HANDLE: return TS_VALUE_HANDLE;
2238 case OMP_CLAUSE: return TS_OMP_CLAUSE;
2239
2240 default:
2241 gcc_unreachable ();
2242 }
2243 }
2244 \f
2245 /* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
2246 or offset that depends on a field within a record. */
2247
2248 bool
2249 contains_placeholder_p (const_tree exp)
2250 {
2251 enum tree_code code;
2252
2253 if (!exp)
2254 return 0;
2255
2256 code = TREE_CODE (exp);
2257 if (code == PLACEHOLDER_EXPR)
2258 return 1;
2259
2260 switch (TREE_CODE_CLASS (code))
2261 {
2262 case tcc_reference:
2263 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
2264 position computations since they will be converted into a
2265 WITH_RECORD_EXPR involving the reference, which will assume
2266 here will be valid. */
2267 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
2268
2269 case tcc_exceptional:
2270 if (code == TREE_LIST)
2271 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
2272 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
2273 break;
2274
2275 case tcc_unary:
2276 case tcc_binary:
2277 case tcc_comparison:
2278 case tcc_expression:
2279 switch (code)
2280 {
2281 case COMPOUND_EXPR:
2282 /* Ignoring the first operand isn't quite right, but works best. */
2283 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
2284
2285 case COND_EXPR:
2286 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
2287 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
2288 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
2289
2290 default:
2291 break;
2292 }
2293
2294 switch (TREE_CODE_LENGTH (code))
2295 {
2296 case 1:
2297 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
2298 case 2:
2299 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
2300 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
2301 default:
2302 return 0;
2303 }
2304
2305 case tcc_vl_exp:
2306 switch (code)
2307 {
2308 case CALL_EXPR:
2309 {
2310 const_tree arg;
2311 const_call_expr_arg_iterator iter;
2312 FOR_EACH_CONST_CALL_EXPR_ARG (arg, iter, exp)
2313 if (CONTAINS_PLACEHOLDER_P (arg))
2314 return 1;
2315 return 0;
2316 }
2317 default:
2318 return 0;
2319 }
2320
2321 default:
2322 return 0;
2323 }
2324 return 0;
2325 }
2326
2327 /* Return true if any part of the computation of TYPE involves a
2328 PLACEHOLDER_EXPR. This includes size, bounds, qualifiers
2329 (for QUAL_UNION_TYPE) and field positions. */
2330
2331 static bool
2332 type_contains_placeholder_1 (const_tree type)
2333 {
2334 /* If the size contains a placeholder or the parent type (component type in
2335 the case of arrays) type involves a placeholder, this type does. */
2336 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
2337 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
2338 || (TREE_TYPE (type) != 0
2339 && type_contains_placeholder_p (TREE_TYPE (type))))
2340 return true;
2341
2342 /* Now do type-specific checks. Note that the last part of the check above
2343 greatly limits what we have to do below. */
2344 switch (TREE_CODE (type))
2345 {
2346 case VOID_TYPE:
2347 case COMPLEX_TYPE:
2348 case ENUMERAL_TYPE:
2349 case BOOLEAN_TYPE:
2350 case POINTER_TYPE:
2351 case OFFSET_TYPE:
2352 case REFERENCE_TYPE:
2353 case METHOD_TYPE:
2354 case FUNCTION_TYPE:
2355 case VECTOR_TYPE:
2356 return false;
2357
2358 case INTEGER_TYPE:
2359 case REAL_TYPE:
2360 case FIXED_POINT_TYPE:
2361 /* Here we just check the bounds. */
2362 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
2363 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
2364
2365 case ARRAY_TYPE:
2366 /* We're already checked the component type (TREE_TYPE), so just check
2367 the index type. */
2368 return type_contains_placeholder_p (TYPE_DOMAIN (type));
2369
2370 case RECORD_TYPE:
2371 case UNION_TYPE:
2372 case QUAL_UNION_TYPE:
2373 {
2374 tree field;
2375
2376 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
2377 if (TREE_CODE (field) == FIELD_DECL
2378 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
2379 || (TREE_CODE (type) == QUAL_UNION_TYPE
2380 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
2381 || type_contains_placeholder_p (TREE_TYPE (field))))
2382 return true;
2383
2384 return false;
2385 }
2386
2387 default:
2388 gcc_unreachable ();
2389 }
2390 }
2391
2392 bool
2393 type_contains_placeholder_p (tree type)
2394 {
2395 bool result;
2396
2397 /* If the contains_placeholder_bits field has been initialized,
2398 then we know the answer. */
2399 if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0)
2400 return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1;
2401
2402 /* Indicate that we've seen this type node, and the answer is false.
2403 This is what we want to return if we run into recursion via fields. */
2404 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1;
2405
2406 /* Compute the real value. */
2407 result = type_contains_placeholder_1 (type);
2408
2409 /* Store the real value. */
2410 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1;
2411
2412 return result;
2413 }
2414 \f
2415 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
2416 return a tree with all occurrences of references to F in a
2417 PLACEHOLDER_EXPR replaced by R. Note that we assume here that EXP
2418 contains only arithmetic expressions or a CALL_EXPR with a
2419 PLACEHOLDER_EXPR occurring only in its arglist. */
2420
2421 tree
2422 substitute_in_expr (tree exp, tree f, tree r)
2423 {
2424 enum tree_code code = TREE_CODE (exp);
2425 tree op0, op1, op2, op3;
2426 tree new;
2427 tree inner;
2428
2429 /* We handle TREE_LIST and COMPONENT_REF separately. */
2430 if (code == TREE_LIST)
2431 {
2432 op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
2433 op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
2434 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
2435 return exp;
2436
2437 return tree_cons (TREE_PURPOSE (exp), op1, op0);
2438 }
2439 else if (code == COMPONENT_REF)
2440 {
2441 /* If this expression is getting a value from a PLACEHOLDER_EXPR
2442 and it is the right field, replace it with R. */
2443 for (inner = TREE_OPERAND (exp, 0);
2444 REFERENCE_CLASS_P (inner);
2445 inner = TREE_OPERAND (inner, 0))
2446 ;
2447 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
2448 && TREE_OPERAND (exp, 1) == f)
2449 return r;
2450
2451 /* If this expression hasn't been completed let, leave it alone. */
2452 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && TREE_TYPE (inner) == 0)
2453 return exp;
2454
2455 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2456 if (op0 == TREE_OPERAND (exp, 0))
2457 return exp;
2458
2459 new = fold_build3 (COMPONENT_REF, TREE_TYPE (exp),
2460 op0, TREE_OPERAND (exp, 1), NULL_TREE);
2461 }
2462 else
2463 switch (TREE_CODE_CLASS (code))
2464 {
2465 case tcc_constant:
2466 case tcc_declaration:
2467 return exp;
2468
2469 case tcc_exceptional:
2470 case tcc_unary:
2471 case tcc_binary:
2472 case tcc_comparison:
2473 case tcc_expression:
2474 case tcc_reference:
2475 switch (TREE_CODE_LENGTH (code))
2476 {
2477 case 0:
2478 return exp;
2479
2480 case 1:
2481 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2482 if (op0 == TREE_OPERAND (exp, 0))
2483 return exp;
2484
2485 new = fold_build1 (code, TREE_TYPE (exp), op0);
2486 break;
2487
2488 case 2:
2489 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2490 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
2491
2492 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
2493 return exp;
2494
2495 new = fold_build2 (code, TREE_TYPE (exp), op0, op1);
2496 break;
2497
2498 case 3:
2499 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2500 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
2501 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
2502
2503 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2504 && op2 == TREE_OPERAND (exp, 2))
2505 return exp;
2506
2507 new = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
2508 break;
2509
2510 case 4:
2511 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2512 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
2513 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
2514 op3 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 3), f, r);
2515
2516 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2517 && op2 == TREE_OPERAND (exp, 2)
2518 && op3 == TREE_OPERAND (exp, 3))
2519 return exp;
2520
2521 new = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
2522 break;
2523
2524 default:
2525 gcc_unreachable ();
2526 }
2527 break;
2528
2529 case tcc_vl_exp:
2530 {
2531 tree copy = NULL_TREE;
2532 int i;
2533 int n = TREE_OPERAND_LENGTH (exp);
2534 for (i = 1; i < n; i++)
2535 {
2536 tree op = TREE_OPERAND (exp, i);
2537 tree newop = SUBSTITUTE_IN_EXPR (op, f, r);
2538 if (newop != op)
2539 {
2540 copy = copy_node (exp);
2541 TREE_OPERAND (copy, i) = newop;
2542 }
2543 }
2544 if (copy)
2545 new = fold (copy);
2546 else
2547 return exp;
2548 }
2549
2550 default:
2551 gcc_unreachable ();
2552 }
2553
2554 TREE_READONLY (new) = TREE_READONLY (exp);
2555 return new;
2556 }
2557
2558 /* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
2559 for it within OBJ, a tree that is an object or a chain of references. */
2560
2561 tree
2562 substitute_placeholder_in_expr (tree exp, tree obj)
2563 {
2564 enum tree_code code = TREE_CODE (exp);
2565 tree op0, op1, op2, op3;
2566
2567 /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
2568 in the chain of OBJ. */
2569 if (code == PLACEHOLDER_EXPR)
2570 {
2571 tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
2572 tree elt;
2573
2574 for (elt = obj; elt != 0;
2575 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
2576 || TREE_CODE (elt) == COND_EXPR)
2577 ? TREE_OPERAND (elt, 1)
2578 : (REFERENCE_CLASS_P (elt)
2579 || UNARY_CLASS_P (elt)
2580 || BINARY_CLASS_P (elt)
2581 || VL_EXP_CLASS_P (elt)
2582 || EXPRESSION_CLASS_P (elt))
2583 ? TREE_OPERAND (elt, 0) : 0))
2584 if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
2585 return elt;
2586
2587 for (elt = obj; elt != 0;
2588 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
2589 || TREE_CODE (elt) == COND_EXPR)
2590 ? TREE_OPERAND (elt, 1)
2591 : (REFERENCE_CLASS_P (elt)
2592 || UNARY_CLASS_P (elt)
2593 || BINARY_CLASS_P (elt)
2594 || VL_EXP_CLASS_P (elt)
2595 || EXPRESSION_CLASS_P (elt))
2596 ? TREE_OPERAND (elt, 0) : 0))
2597 if (POINTER_TYPE_P (TREE_TYPE (elt))
2598 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
2599 == need_type))
2600 return fold_build1 (INDIRECT_REF, need_type, elt);
2601
2602 /* If we didn't find it, return the original PLACEHOLDER_EXPR. If it
2603 survives until RTL generation, there will be an error. */
2604 return exp;
2605 }
2606
2607 /* TREE_LIST is special because we need to look at TREE_VALUE
2608 and TREE_CHAIN, not TREE_OPERANDS. */
2609 else if (code == TREE_LIST)
2610 {
2611 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
2612 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
2613 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
2614 return exp;
2615
2616 return tree_cons (TREE_PURPOSE (exp), op1, op0);
2617 }
2618 else
2619 switch (TREE_CODE_CLASS (code))
2620 {
2621 case tcc_constant:
2622 case tcc_declaration:
2623 return exp;
2624
2625 case tcc_exceptional:
2626 case tcc_unary:
2627 case tcc_binary:
2628 case tcc_comparison:
2629 case tcc_expression:
2630 case tcc_reference:
2631 case tcc_statement:
2632 switch (TREE_CODE_LENGTH (code))
2633 {
2634 case 0:
2635 return exp;
2636
2637 case 1:
2638 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2639 if (op0 == TREE_OPERAND (exp, 0))
2640 return exp;
2641 else
2642 return fold_build1 (code, TREE_TYPE (exp), op0);
2643
2644 case 2:
2645 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2646 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2647
2648 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
2649 return exp;
2650 else
2651 return fold_build2 (code, TREE_TYPE (exp), op0, op1);
2652
2653 case 3:
2654 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2655 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2656 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
2657
2658 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2659 && op2 == TREE_OPERAND (exp, 2))
2660 return exp;
2661 else
2662 return fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
2663
2664 case 4:
2665 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2666 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2667 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
2668 op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
2669
2670 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2671 && op2 == TREE_OPERAND (exp, 2)
2672 && op3 == TREE_OPERAND (exp, 3))
2673 return exp;
2674 else
2675 return fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
2676
2677 default:
2678 gcc_unreachable ();
2679 }
2680 break;
2681
2682 case tcc_vl_exp:
2683 {
2684 tree copy = NULL_TREE;
2685 int i;
2686 int n = TREE_OPERAND_LENGTH (exp);
2687 for (i = 1; i < n; i++)
2688 {
2689 tree op = TREE_OPERAND (exp, i);
2690 tree newop = SUBSTITUTE_PLACEHOLDER_IN_EXPR (op, obj);
2691 if (newop != op)
2692 {
2693 if (!copy)
2694 copy = copy_node (exp);
2695 TREE_OPERAND (copy, i) = newop;
2696 }
2697 }
2698 if (copy)
2699 return fold (copy);
2700 else
2701 return exp;
2702 }
2703
2704 default:
2705 gcc_unreachable ();
2706 }
2707 }
2708 \f
2709 /* Stabilize a reference so that we can use it any number of times
2710 without causing its operands to be evaluated more than once.
2711 Returns the stabilized reference. This works by means of save_expr,
2712 so see the caveats in the comments about save_expr.
2713
2714 Also allows conversion expressions whose operands are references.
2715 Any other kind of expression is returned unchanged. */
2716
2717 tree
2718 stabilize_reference (tree ref)
2719 {
2720 tree result;
2721 enum tree_code code = TREE_CODE (ref);
2722
2723 switch (code)
2724 {
2725 case VAR_DECL:
2726 case PARM_DECL:
2727 case RESULT_DECL:
2728 /* No action is needed in this case. */
2729 return ref;
2730
2731 case NOP_EXPR:
2732 case CONVERT_EXPR:
2733 case FLOAT_EXPR:
2734 case FIX_TRUNC_EXPR:
2735 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
2736 break;
2737
2738 case INDIRECT_REF:
2739 result = build_nt (INDIRECT_REF,
2740 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
2741 break;
2742
2743 case COMPONENT_REF:
2744 result = build_nt (COMPONENT_REF,
2745 stabilize_reference (TREE_OPERAND (ref, 0)),
2746 TREE_OPERAND (ref, 1), NULL_TREE);
2747 break;
2748
2749 case BIT_FIELD_REF:
2750 result = build_nt (BIT_FIELD_REF,
2751 stabilize_reference (TREE_OPERAND (ref, 0)),
2752 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2753 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
2754 break;
2755
2756 case ARRAY_REF:
2757 result = build_nt (ARRAY_REF,
2758 stabilize_reference (TREE_OPERAND (ref, 0)),
2759 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2760 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
2761 break;
2762
2763 case ARRAY_RANGE_REF:
2764 result = build_nt (ARRAY_RANGE_REF,
2765 stabilize_reference (TREE_OPERAND (ref, 0)),
2766 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2767 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
2768 break;
2769
2770 case COMPOUND_EXPR:
2771 /* We cannot wrap the first expression in a SAVE_EXPR, as then
2772 it wouldn't be ignored. This matters when dealing with
2773 volatiles. */
2774 return stabilize_reference_1 (ref);
2775
2776 /* If arg isn't a kind of lvalue we recognize, make no change.
2777 Caller should recognize the error for an invalid lvalue. */
2778 default:
2779 return ref;
2780
2781 case ERROR_MARK:
2782 return error_mark_node;
2783 }
2784
2785 TREE_TYPE (result) = TREE_TYPE (ref);
2786 TREE_READONLY (result) = TREE_READONLY (ref);
2787 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
2788 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
2789
2790 return result;
2791 }
2792
2793 /* Subroutine of stabilize_reference; this is called for subtrees of
2794 references. Any expression with side-effects must be put in a SAVE_EXPR
2795 to ensure that it is only evaluated once.
2796
2797 We don't put SAVE_EXPR nodes around everything, because assigning very
2798 simple expressions to temporaries causes us to miss good opportunities
2799 for optimizations. Among other things, the opportunity to fold in the
2800 addition of a constant into an addressing mode often gets lost, e.g.
2801 "y[i+1] += x;". In general, we take the approach that we should not make
2802 an assignment unless we are forced into it - i.e., that any non-side effect
2803 operator should be allowed, and that cse should take care of coalescing
2804 multiple utterances of the same expression should that prove fruitful. */
2805
2806 tree
2807 stabilize_reference_1 (tree e)
2808 {
2809 tree result;
2810 enum tree_code code = TREE_CODE (e);
2811
2812 /* We cannot ignore const expressions because it might be a reference
2813 to a const array but whose index contains side-effects. But we can
2814 ignore things that are actual constant or that already have been
2815 handled by this function. */
2816
2817 if (TREE_INVARIANT (e))
2818 return e;
2819
2820 switch (TREE_CODE_CLASS (code))
2821 {
2822 case tcc_exceptional:
2823 case tcc_type:
2824 case tcc_declaration:
2825 case tcc_comparison:
2826 case tcc_statement:
2827 case tcc_expression:
2828 case tcc_reference:
2829 case tcc_vl_exp:
2830 /* If the expression has side-effects, then encase it in a SAVE_EXPR
2831 so that it will only be evaluated once. */
2832 /* The reference (r) and comparison (<) classes could be handled as
2833 below, but it is generally faster to only evaluate them once. */
2834 if (TREE_SIDE_EFFECTS (e))
2835 return save_expr (e);
2836 return e;
2837
2838 case tcc_constant:
2839 /* Constants need no processing. In fact, we should never reach
2840 here. */
2841 return e;
2842
2843 case tcc_binary:
2844 /* Division is slow and tends to be compiled with jumps,
2845 especially the division by powers of 2 that is often
2846 found inside of an array reference. So do it just once. */
2847 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
2848 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
2849 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
2850 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
2851 return save_expr (e);
2852 /* Recursively stabilize each operand. */
2853 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
2854 stabilize_reference_1 (TREE_OPERAND (e, 1)));
2855 break;
2856
2857 case tcc_unary:
2858 /* Recursively stabilize each operand. */
2859 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
2860 break;
2861
2862 default:
2863 gcc_unreachable ();
2864 }
2865
2866 TREE_TYPE (result) = TREE_TYPE (e);
2867 TREE_READONLY (result) = TREE_READONLY (e);
2868 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
2869 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
2870 TREE_INVARIANT (result) = 1;
2871
2872 return result;
2873 }
2874 \f
2875 /* Low-level constructors for expressions. */
2876
2877 /* A helper function for build1 and constant folders. Set TREE_CONSTANT,
2878 TREE_INVARIANT, and TREE_SIDE_EFFECTS for an ADDR_EXPR. */
2879
2880 void
2881 recompute_tree_invariant_for_addr_expr (tree t)
2882 {
2883 tree node;
2884 bool tc = true, ti = true, se = false;
2885
2886 /* We started out assuming this address is both invariant and constant, but
2887 does not have side effects. Now go down any handled components and see if
2888 any of them involve offsets that are either non-constant or non-invariant.
2889 Also check for side-effects.
2890
2891 ??? Note that this code makes no attempt to deal with the case where
2892 taking the address of something causes a copy due to misalignment. */
2893
2894 #define UPDATE_TITCSE(NODE) \
2895 do { tree _node = (NODE); \
2896 if (_node && !TREE_INVARIANT (_node)) ti = false; \
2897 if (_node && !TREE_CONSTANT (_node)) tc = false; \
2898 if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
2899
2900 for (node = TREE_OPERAND (t, 0); handled_component_p (node);
2901 node = TREE_OPERAND (node, 0))
2902 {
2903 /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
2904 array reference (probably made temporarily by the G++ front end),
2905 so ignore all the operands. */
2906 if ((TREE_CODE (node) == ARRAY_REF
2907 || TREE_CODE (node) == ARRAY_RANGE_REF)
2908 && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
2909 {
2910 UPDATE_TITCSE (TREE_OPERAND (node, 1));
2911 if (TREE_OPERAND (node, 2))
2912 UPDATE_TITCSE (TREE_OPERAND (node, 2));
2913 if (TREE_OPERAND (node, 3))
2914 UPDATE_TITCSE (TREE_OPERAND (node, 3));
2915 }
2916 /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
2917 FIELD_DECL, apparently. The G++ front end can put something else
2918 there, at least temporarily. */
2919 else if (TREE_CODE (node) == COMPONENT_REF
2920 && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
2921 {
2922 if (TREE_OPERAND (node, 2))
2923 UPDATE_TITCSE (TREE_OPERAND (node, 2));
2924 }
2925 else if (TREE_CODE (node) == BIT_FIELD_REF)
2926 UPDATE_TITCSE (TREE_OPERAND (node, 2));
2927 }
2928
2929 node = lang_hooks.expr_to_decl (node, &tc, &ti, &se);
2930
2931 /* Now see what's inside. If it's an INDIRECT_REF, copy our properties from
2932 the address, since &(*a)->b is a form of addition. If it's a decl, it's
2933 invariant and constant if the decl is static. It's also invariant if it's
2934 a decl in the current function. Taking the address of a volatile variable
2935 is not volatile. If it's a constant, the address is both invariant and
2936 constant. Otherwise it's neither. */
2937 if (TREE_CODE (node) == INDIRECT_REF)
2938 UPDATE_TITCSE (TREE_OPERAND (node, 0));
2939 else if (DECL_P (node))
2940 {
2941 if (staticp (node))
2942 ;
2943 else if (decl_function_context (node) == current_function_decl
2944 /* Addresses of thread-local variables are invariant. */
2945 || (TREE_CODE (node) == VAR_DECL
2946 && DECL_THREAD_LOCAL_P (node)))
2947 tc = false;
2948 else
2949 ti = tc = false;
2950 }
2951 else if (CONSTANT_CLASS_P (node))
2952 ;
2953 else
2954 {
2955 ti = tc = false;
2956 se |= TREE_SIDE_EFFECTS (node);
2957 }
2958
2959 TREE_CONSTANT (t) = tc;
2960 TREE_INVARIANT (t) = ti;
2961 TREE_SIDE_EFFECTS (t) = se;
2962 #undef UPDATE_TITCSE
2963 }
2964
2965 /* Build an expression of code CODE, data type TYPE, and operands as
2966 specified. Expressions and reference nodes can be created this way.
2967 Constants, decls, types and misc nodes cannot be.
2968
2969 We define 5 non-variadic functions, from 0 to 4 arguments. This is
2970 enough for all extant tree codes. */
2971
2972 tree
2973 build0_stat (enum tree_code code, tree tt MEM_STAT_DECL)
2974 {
2975 tree t;
2976
2977 gcc_assert (TREE_CODE_LENGTH (code) == 0);
2978
2979 t = make_node_stat (code PASS_MEM_STAT);
2980 TREE_TYPE (t) = tt;
2981
2982 return t;
2983 }
2984
2985 tree
2986 build1_stat (enum tree_code code, tree type, tree node MEM_STAT_DECL)
2987 {
2988 int length = sizeof (struct tree_exp);
2989 #ifdef GATHER_STATISTICS
2990 tree_node_kind kind;
2991 #endif
2992 tree t;
2993
2994 #ifdef GATHER_STATISTICS
2995 switch (TREE_CODE_CLASS (code))
2996 {
2997 case tcc_statement: /* an expression with side effects */
2998 kind = s_kind;
2999 break;
3000 case tcc_reference: /* a reference */
3001 kind = r_kind;
3002 break;
3003 default:
3004 kind = e_kind;
3005 break;
3006 }
3007
3008 tree_node_counts[(int) kind]++;
3009 tree_node_sizes[(int) kind] += length;
3010 #endif
3011
3012 gcc_assert (TREE_CODE_LENGTH (code) == 1);
3013
3014 t = ggc_alloc_zone_pass_stat (length, &tree_zone);
3015
3016 memset (t, 0, sizeof (struct tree_common));
3017
3018 TREE_SET_CODE (t, code);
3019
3020 TREE_TYPE (t) = type;
3021 #ifdef USE_MAPPED_LOCATION
3022 SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
3023 #else
3024 SET_EXPR_LOCUS (t, NULL);
3025 #endif
3026 TREE_OPERAND (t, 0) = node;
3027 TREE_BLOCK (t) = NULL_TREE;
3028 if (node && !TYPE_P (node))
3029 {
3030 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
3031 TREE_READONLY (t) = TREE_READONLY (node);
3032 }
3033
3034 if (TREE_CODE_CLASS (code) == tcc_statement)
3035 TREE_SIDE_EFFECTS (t) = 1;
3036 else switch (code)
3037 {
3038 case VA_ARG_EXPR:
3039 /* All of these have side-effects, no matter what their
3040 operands are. */
3041 TREE_SIDE_EFFECTS (t) = 1;
3042 TREE_READONLY (t) = 0;
3043 break;
3044
3045 case MISALIGNED_INDIRECT_REF:
3046 case ALIGN_INDIRECT_REF:
3047 case INDIRECT_REF:
3048 /* Whether a dereference is readonly has nothing to do with whether
3049 its operand is readonly. */
3050 TREE_READONLY (t) = 0;
3051 break;
3052
3053 case ADDR_EXPR:
3054 if (node)
3055 recompute_tree_invariant_for_addr_expr (t);
3056 break;
3057
3058 default:
3059 if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
3060 && node && !TYPE_P (node)
3061 && TREE_CONSTANT (node))
3062 TREE_CONSTANT (t) = 1;
3063 if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
3064 && node && TREE_INVARIANT (node))
3065 TREE_INVARIANT (t) = 1;
3066 if (TREE_CODE_CLASS (code) == tcc_reference
3067 && node && TREE_THIS_VOLATILE (node))
3068 TREE_THIS_VOLATILE (t) = 1;
3069 break;
3070 }
3071
3072 return t;
3073 }
3074
3075 #define PROCESS_ARG(N) \
3076 do { \
3077 TREE_OPERAND (t, N) = arg##N; \
3078 if (arg##N &&!TYPE_P (arg##N)) \
3079 { \
3080 if (TREE_SIDE_EFFECTS (arg##N)) \
3081 side_effects = 1; \
3082 if (!TREE_READONLY (arg##N)) \
3083 read_only = 0; \
3084 if (!TREE_CONSTANT (arg##N)) \
3085 constant = 0; \
3086 if (!TREE_INVARIANT (arg##N)) \
3087 invariant = 0; \
3088 } \
3089 } while (0)
3090
3091 tree
3092 build2_stat (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
3093 {
3094 bool constant, read_only, side_effects, invariant;
3095 tree t;
3096
3097 gcc_assert (TREE_CODE_LENGTH (code) == 2);
3098
3099 #if 1
3100 /* FIXME tuples: Statement's aren't expressions! */
3101 if (code == GIMPLE_MODIFY_STMT)
3102 return build_gimple_modify_stmt_stat (arg0, arg1 PASS_MEM_STAT);
3103 #else
3104 /* Must use build_gimple_modify_stmt to construct GIMPLE_MODIFY_STMTs. */
3105 gcc_assert (code != GIMPLE_MODIFY_STMT);
3106 #endif
3107
3108 if ((code == MINUS_EXPR || code == PLUS_EXPR || code == MULT_EXPR)
3109 && arg0 && arg1 && tt && POINTER_TYPE_P (tt))
3110 gcc_assert (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST);
3111
3112 if (code == POINTER_PLUS_EXPR && arg0 && arg1 && tt)
3113 gcc_assert (POINTER_TYPE_P (tt) && POINTER_TYPE_P (TREE_TYPE (arg0))
3114 && INTEGRAL_TYPE_P (TREE_TYPE (arg1))
3115 && useless_type_conversion_p (sizetype, TREE_TYPE (arg1)));
3116
3117 t = make_node_stat (code PASS_MEM_STAT);
3118 TREE_TYPE (t) = tt;
3119
3120 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
3121 result based on those same flags for the arguments. But if the
3122 arguments aren't really even `tree' expressions, we shouldn't be trying
3123 to do this. */
3124
3125 /* Expressions without side effects may be constant if their
3126 arguments are as well. */
3127 constant = (TREE_CODE_CLASS (code) == tcc_comparison
3128 || TREE_CODE_CLASS (code) == tcc_binary);
3129 read_only = 1;
3130 side_effects = TREE_SIDE_EFFECTS (t);
3131 invariant = constant;
3132
3133 PROCESS_ARG(0);
3134 PROCESS_ARG(1);
3135
3136 TREE_READONLY (t) = read_only;
3137 TREE_CONSTANT (t) = constant;
3138 TREE_INVARIANT (t) = invariant;
3139 TREE_SIDE_EFFECTS (t) = side_effects;
3140 TREE_THIS_VOLATILE (t)
3141 = (TREE_CODE_CLASS (code) == tcc_reference
3142 && arg0 && TREE_THIS_VOLATILE (arg0));
3143
3144 return t;
3145 }
3146
3147
3148 /* Build a GIMPLE_MODIFY_STMT node. This tree code doesn't have a
3149 type, so we can't use build2 (a.k.a. build2_stat). */
3150
3151 tree
3152 build_gimple_modify_stmt_stat (tree arg0, tree arg1 MEM_STAT_DECL)
3153 {
3154 tree t;
3155
3156 t = make_node_stat (GIMPLE_MODIFY_STMT PASS_MEM_STAT);
3157 /* ?? We don't care about setting flags for tuples... */
3158 GIMPLE_STMT_OPERAND (t, 0) = arg0;
3159 GIMPLE_STMT_OPERAND (t, 1) = arg1;
3160 return t;
3161 }
3162
3163 tree
3164 build3_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3165 tree arg2 MEM_STAT_DECL)
3166 {
3167 bool constant, read_only, side_effects, invariant;
3168 tree t;
3169
3170 gcc_assert (TREE_CODE_LENGTH (code) == 3);
3171 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
3172
3173 t = make_node_stat (code PASS_MEM_STAT);
3174 TREE_TYPE (t) = tt;
3175
3176 /* As a special exception, if COND_EXPR has NULL branches, we
3177 assume that it is a gimple statement and always consider
3178 it to have side effects. */
3179 if (code == COND_EXPR
3180 && tt == void_type_node
3181 && arg1 == NULL_TREE
3182 && arg2 == NULL_TREE)
3183 side_effects = true;
3184 else
3185 side_effects = TREE_SIDE_EFFECTS (t);
3186
3187 PROCESS_ARG(0);
3188 PROCESS_ARG(1);
3189 PROCESS_ARG(2);
3190
3191 TREE_SIDE_EFFECTS (t) = side_effects;
3192 TREE_THIS_VOLATILE (t)
3193 = (TREE_CODE_CLASS (code) == tcc_reference
3194 && arg0 && TREE_THIS_VOLATILE (arg0));
3195
3196 return t;
3197 }
3198
3199 tree
3200 build4_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3201 tree arg2, tree arg3 MEM_STAT_DECL)
3202 {
3203 bool constant, read_only, side_effects, invariant;
3204 tree t;
3205
3206 gcc_assert (TREE_CODE_LENGTH (code) == 4);
3207
3208 t = make_node_stat (code PASS_MEM_STAT);
3209 TREE_TYPE (t) = tt;
3210
3211 side_effects = TREE_SIDE_EFFECTS (t);
3212
3213 PROCESS_ARG(0);
3214 PROCESS_ARG(1);
3215 PROCESS_ARG(2);
3216 PROCESS_ARG(3);
3217
3218 TREE_SIDE_EFFECTS (t) = side_effects;
3219 TREE_THIS_VOLATILE (t)
3220 = (TREE_CODE_CLASS (code) == tcc_reference
3221 && arg0 && TREE_THIS_VOLATILE (arg0));
3222
3223 return t;
3224 }
3225
3226 tree
3227 build5_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3228 tree arg2, tree arg3, tree arg4 MEM_STAT_DECL)
3229 {
3230 bool constant, read_only, side_effects, invariant;
3231 tree t;
3232
3233 gcc_assert (TREE_CODE_LENGTH (code) == 5);
3234
3235 t = make_node_stat (code PASS_MEM_STAT);
3236 TREE_TYPE (t) = tt;
3237
3238 side_effects = TREE_SIDE_EFFECTS (t);
3239
3240 PROCESS_ARG(0);
3241 PROCESS_ARG(1);
3242 PROCESS_ARG(2);
3243 PROCESS_ARG(3);
3244 PROCESS_ARG(4);
3245
3246 TREE_SIDE_EFFECTS (t) = side_effects;
3247 TREE_THIS_VOLATILE (t)
3248 = (TREE_CODE_CLASS (code) == tcc_reference
3249 && arg0 && TREE_THIS_VOLATILE (arg0));
3250
3251 return t;
3252 }
3253
3254 tree
3255 build7_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3256 tree arg2, tree arg3, tree arg4, tree arg5,
3257 tree arg6 MEM_STAT_DECL)
3258 {
3259 bool constant, read_only, side_effects, invariant;
3260 tree t;
3261
3262 gcc_assert (code == TARGET_MEM_REF);
3263
3264 t = make_node_stat (code PASS_MEM_STAT);
3265 TREE_TYPE (t) = tt;
3266
3267 side_effects = TREE_SIDE_EFFECTS (t);
3268
3269 PROCESS_ARG(0);
3270 PROCESS_ARG(1);
3271 PROCESS_ARG(2);
3272 PROCESS_ARG(3);
3273 PROCESS_ARG(4);
3274 PROCESS_ARG(5);
3275 PROCESS_ARG(6);
3276
3277 TREE_SIDE_EFFECTS (t) = side_effects;
3278 TREE_THIS_VOLATILE (t) = 0;
3279
3280 return t;
3281 }
3282
3283 /* Similar except don't specify the TREE_TYPE
3284 and leave the TREE_SIDE_EFFECTS as 0.
3285 It is permissible for arguments to be null,
3286 or even garbage if their values do not matter. */
3287
3288 tree
3289 build_nt (enum tree_code code, ...)
3290 {
3291 tree t;
3292 int length;
3293 int i;
3294 va_list p;
3295
3296 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
3297
3298 va_start (p, code);
3299
3300 t = make_node (code);
3301 length = TREE_CODE_LENGTH (code);
3302
3303 for (i = 0; i < length; i++)
3304 TREE_OPERAND (t, i) = va_arg (p, tree);
3305
3306 va_end (p);
3307 return t;
3308 }
3309
3310 /* Similar to build_nt, but for creating a CALL_EXPR object with
3311 ARGLIST passed as a list. */
3312
3313 tree
3314 build_nt_call_list (tree fn, tree arglist)
3315 {
3316 tree t;
3317 int i;
3318
3319 t = build_vl_exp (CALL_EXPR, list_length (arglist) + 3);
3320 CALL_EXPR_FN (t) = fn;
3321 CALL_EXPR_STATIC_CHAIN (t) = NULL_TREE;
3322 for (i = 0; arglist; arglist = TREE_CHAIN (arglist), i++)
3323 CALL_EXPR_ARG (t, i) = TREE_VALUE (arglist);
3324 return t;
3325 }
3326 \f
3327 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
3328 We do NOT enter this node in any sort of symbol table.
3329
3330 layout_decl is used to set up the decl's storage layout.
3331 Other slots are initialized to 0 or null pointers. */
3332
3333 tree
3334 build_decl_stat (enum tree_code code, tree name, tree type MEM_STAT_DECL)
3335 {
3336 tree t;
3337
3338 t = make_node_stat (code PASS_MEM_STAT);
3339
3340 /* if (type == error_mark_node)
3341 type = integer_type_node; */
3342 /* That is not done, deliberately, so that having error_mark_node
3343 as the type can suppress useless errors in the use of this variable. */
3344
3345 DECL_NAME (t) = name;
3346 TREE_TYPE (t) = type;
3347
3348 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
3349 layout_decl (t, 0);
3350
3351 return t;
3352 }
3353
3354 /* Builds and returns function declaration with NAME and TYPE. */
3355
3356 tree
3357 build_fn_decl (const char *name, tree type)
3358 {
3359 tree id = get_identifier (name);
3360 tree decl = build_decl (FUNCTION_DECL, id, type);
3361
3362 DECL_EXTERNAL (decl) = 1;
3363 TREE_PUBLIC (decl) = 1;
3364 DECL_ARTIFICIAL (decl) = 1;
3365 TREE_NOTHROW (decl) = 1;
3366
3367 return decl;
3368 }
3369
3370 \f
3371 /* BLOCK nodes are used to represent the structure of binding contours
3372 and declarations, once those contours have been exited and their contents
3373 compiled. This information is used for outputting debugging info. */
3374
3375 tree
3376 build_block (tree vars, tree subblocks, tree supercontext, tree chain)
3377 {
3378 tree block = make_node (BLOCK);
3379
3380 BLOCK_VARS (block) = vars;
3381 BLOCK_SUBBLOCKS (block) = subblocks;
3382 BLOCK_SUPERCONTEXT (block) = supercontext;
3383 BLOCK_CHAIN (block) = chain;
3384 return block;
3385 }
3386
3387 #if 1 /* ! defined(USE_MAPPED_LOCATION) */
3388 /* ??? gengtype doesn't handle conditionals */
3389 static GTY(()) source_locus last_annotated_node;
3390 #endif
3391
3392 #ifdef USE_MAPPED_LOCATION
3393
3394 expanded_location
3395 expand_location (source_location loc)
3396 {
3397 expanded_location xloc;
3398 if (loc == 0)
3399 {
3400 xloc.file = NULL;
3401 xloc.line = 0;
3402 xloc.column = 0;
3403 }
3404 else
3405 {
3406 const struct line_map *map = linemap_lookup (line_table, loc);
3407 xloc.file = map->to_file;
3408 xloc.line = SOURCE_LINE (map, loc);
3409 xloc.column = SOURCE_COLUMN (map, loc);
3410 };
3411 return xloc;
3412 }
3413
3414 #else
3415
3416 /* Record the exact location where an expression or an identifier were
3417 encountered. */
3418
3419 void
3420 annotate_with_file_line (tree node, const char *file, int line)
3421 {
3422 location_t *new_loc;
3423
3424 /* Roughly one percent of the calls to this function are to annotate
3425 a node with the same information already attached to that node!
3426 Just return instead of wasting memory. */
3427 if (EXPR_LOCUS (node)
3428 && EXPR_LINENO (node) == line
3429 && (EXPR_FILENAME (node) == file
3430 || !strcmp (EXPR_FILENAME (node), file)))
3431 {
3432 last_annotated_node = EXPR_LOCUS (node);
3433 return;
3434 }
3435
3436 /* In heavily macroized code (such as GCC itself) this single
3437 entry cache can reduce the number of allocations by more
3438 than half. */
3439 if (last_annotated_node
3440 && last_annotated_node->line == line
3441 && (last_annotated_node->file == file
3442 || !strcmp (last_annotated_node->file, file)))
3443 {
3444 SET_EXPR_LOCUS (node, last_annotated_node);
3445 return;
3446 }
3447
3448 new_loc = GGC_NEW (location_t);
3449 new_loc->file = file;
3450 new_loc->line = line;
3451 SET_EXPR_LOCUS (node, new_loc);
3452 last_annotated_node = new_loc;
3453 }
3454
3455 void
3456 annotate_with_locus (tree node, location_t locus)
3457 {
3458 annotate_with_file_line (node, locus.file, locus.line);
3459 }
3460 #endif
3461 \f
3462 /* Source location accessor functions. */
3463
3464
3465 /* The source location of this expression. Non-tree_exp nodes such as
3466 decls and constants can be shared among multiple locations, so
3467 return nothing. */
3468 location_t
3469 expr_location (const_tree node)
3470 {
3471 #ifdef USE_MAPPED_LOCATION
3472 if (GIMPLE_STMT_P (node))
3473 return GIMPLE_STMT_LOCUS (node);
3474 return EXPR_P (node) ? node->exp.locus : UNKNOWN_LOCATION;
3475 #else
3476 if (GIMPLE_STMT_P (node))
3477 return EXPR_HAS_LOCATION (node)
3478 ? *GIMPLE_STMT_LOCUS (node) : UNKNOWN_LOCATION;
3479 return EXPR_HAS_LOCATION (node) ? *node->exp.locus : UNKNOWN_LOCATION;
3480 #endif
3481 }
3482
3483 void
3484 set_expr_location (tree node, location_t locus)
3485 {
3486 #ifdef USE_MAPPED_LOCATION
3487 if (GIMPLE_STMT_P (node))
3488 GIMPLE_STMT_LOCUS (node) = locus;
3489 else
3490 EXPR_CHECK (node)->exp.locus = locus;
3491 #else
3492 annotate_with_locus (node, locus);
3493 #endif
3494 }
3495
3496 bool
3497 expr_has_location (const_tree node)
3498 {
3499 #ifdef USE_MAPPED_LOCATION
3500 return expr_location (node) != UNKNOWN_LOCATION;
3501 #else
3502 return expr_locus (node) != NULL;
3503 #endif
3504 }
3505
3506 #ifdef USE_MAPPED_LOCATION
3507 source_location *
3508 #else
3509 source_locus
3510 #endif
3511 expr_locus (const_tree node)
3512 {
3513 #ifdef USE_MAPPED_LOCATION
3514 if (GIMPLE_STMT_P (node))
3515 return CONST_CAST (source_location *, &GIMPLE_STMT_LOCUS (node));
3516 return (EXPR_P (node)
3517 ? CONST_CAST (source_location *, &node->exp.locus)
3518 : (source_location *) NULL);
3519 #else
3520 if (GIMPLE_STMT_P (node))
3521 return GIMPLE_STMT_LOCUS (node);
3522 return EXPR_P (node) ? node->exp.locus : (source_locus) NULL;
3523 #endif
3524 }
3525
3526 void
3527 set_expr_locus (tree node,
3528 #ifdef USE_MAPPED_LOCATION
3529 source_location *loc
3530 #else
3531 source_locus loc
3532 #endif
3533 )
3534 {
3535 #ifdef USE_MAPPED_LOCATION
3536 if (loc == NULL)
3537 {
3538 if (GIMPLE_STMT_P (node))
3539 GIMPLE_STMT_LOCUS (node) = UNKNOWN_LOCATION;
3540 else
3541 EXPR_CHECK (node)->exp.locus = UNKNOWN_LOCATION;
3542 }
3543 else
3544 {
3545 if (GIMPLE_STMT_P (node))
3546 GIMPLE_STMT_LOCUS (node) = *loc;
3547 else
3548 EXPR_CHECK (node)->exp.locus = *loc;
3549 }
3550 #else
3551 if (GIMPLE_STMT_P (node))
3552 GIMPLE_STMT_LOCUS (node) = loc;
3553 else
3554 EXPR_CHECK (node)->exp.locus = loc;
3555 #endif
3556 }
3557
3558 /* Return the file name of the location of NODE. */
3559 const char *
3560 expr_filename (const_tree node)
3561 {
3562 if (GIMPLE_STMT_P (node))
3563 return LOCATION_FILE (location_from_locus (GIMPLE_STMT_LOCUS (node)));
3564 return LOCATION_FILE (location_from_locus (EXPR_CHECK (node)->exp.locus));
3565 }
3566
3567 /* Return the line number of the location of NODE. */
3568 int
3569 expr_lineno (const_tree node)
3570 {
3571 if (GIMPLE_STMT_P (node))
3572 return LOCATION_LINE (location_from_locus (GIMPLE_STMT_LOCUS (node)));
3573 return LOCATION_LINE (location_from_locus (EXPR_CHECK (node)->exp.locus));
3574 }
3575
3576 \f
3577 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
3578 is ATTRIBUTE. */
3579
3580 tree
3581 build_decl_attribute_variant (tree ddecl, tree attribute)
3582 {
3583 DECL_ATTRIBUTES (ddecl) = attribute;
3584 return ddecl;
3585 }
3586
3587 /* Borrowed from hashtab.c iterative_hash implementation. */
3588 #define mix(a,b,c) \
3589 { \
3590 a -= b; a -= c; a ^= (c>>13); \
3591 b -= c; b -= a; b ^= (a<< 8); \
3592 c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
3593 a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
3594 b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
3595 c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
3596 a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
3597 b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
3598 c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
3599 }
3600
3601
3602 /* Produce good hash value combining VAL and VAL2. */
3603 static inline hashval_t
3604 iterative_hash_hashval_t (hashval_t val, hashval_t val2)
3605 {
3606 /* the golden ratio; an arbitrary value. */
3607 hashval_t a = 0x9e3779b9;
3608
3609 mix (a, val, val2);
3610 return val2;
3611 }
3612
3613 /* Produce good hash value combining PTR and VAL2. */
3614 static inline hashval_t
3615 iterative_hash_pointer (const void *ptr, hashval_t val2)
3616 {
3617 if (sizeof (ptr) == sizeof (hashval_t))
3618 return iterative_hash_hashval_t ((size_t) ptr, val2);
3619 else
3620 {
3621 hashval_t a = (hashval_t) (size_t) ptr;
3622 /* Avoid warnings about shifting of more than the width of the type on
3623 hosts that won't execute this path. */
3624 int zero = 0;
3625 hashval_t b = (hashval_t) ((size_t) ptr >> (sizeof (hashval_t) * 8 + zero));
3626 mix (a, b, val2);
3627 return val2;
3628 }
3629 }
3630
3631 /* Produce good hash value combining VAL and VAL2. */
3632 static inline hashval_t
3633 iterative_hash_host_wide_int (HOST_WIDE_INT val, hashval_t val2)
3634 {
3635 if (sizeof (HOST_WIDE_INT) == sizeof (hashval_t))
3636 return iterative_hash_hashval_t (val, val2);
3637 else
3638 {
3639 hashval_t a = (hashval_t) val;
3640 /* Avoid warnings about shifting of more than the width of the type on
3641 hosts that won't execute this path. */
3642 int zero = 0;
3643 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 8 + zero));
3644 mix (a, b, val2);
3645 if (sizeof (HOST_WIDE_INT) > 2 * sizeof (hashval_t))
3646 {
3647 hashval_t a = (hashval_t) (val >> (sizeof (hashval_t) * 16 + zero));
3648 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 24 + zero));
3649 mix (a, b, val2);
3650 }
3651 return val2;
3652 }
3653 }
3654
3655 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
3656 is ATTRIBUTE and its qualifiers are QUALS.
3657
3658 Record such modified types already made so we don't make duplicates. */
3659
3660 static tree
3661 build_type_attribute_qual_variant (tree ttype, tree attribute, int quals)
3662 {
3663 if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
3664 {
3665 hashval_t hashcode = 0;
3666 tree ntype;
3667 enum tree_code code = TREE_CODE (ttype);
3668
3669 ntype = copy_node (ttype);
3670
3671 TYPE_POINTER_TO (ntype) = 0;
3672 TYPE_REFERENCE_TO (ntype) = 0;
3673 TYPE_ATTRIBUTES (ntype) = attribute;
3674
3675 /* Create a new main variant of TYPE. */
3676 TYPE_MAIN_VARIANT (ntype) = ntype;
3677 TYPE_NEXT_VARIANT (ntype) = 0;
3678 set_type_quals (ntype, TYPE_UNQUALIFIED);
3679
3680 hashcode = iterative_hash_object (code, hashcode);
3681 if (TREE_TYPE (ntype))
3682 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (ntype)),
3683 hashcode);
3684 hashcode = attribute_hash_list (attribute, hashcode);
3685
3686 switch (TREE_CODE (ntype))
3687 {
3688 case FUNCTION_TYPE:
3689 hashcode = type_hash_list (TYPE_ARG_TYPES (ntype), hashcode);
3690 break;
3691 case ARRAY_TYPE:
3692 hashcode = iterative_hash_object (TYPE_HASH (TYPE_DOMAIN (ntype)),
3693 hashcode);
3694 break;
3695 case INTEGER_TYPE:
3696 hashcode = iterative_hash_object
3697 (TREE_INT_CST_LOW (TYPE_MAX_VALUE (ntype)), hashcode);
3698 hashcode = iterative_hash_object
3699 (TREE_INT_CST_HIGH (TYPE_MAX_VALUE (ntype)), hashcode);
3700 break;
3701 case REAL_TYPE:
3702 case FIXED_POINT_TYPE:
3703 {
3704 unsigned int precision = TYPE_PRECISION (ntype);
3705 hashcode = iterative_hash_object (precision, hashcode);
3706 }
3707 break;
3708 default:
3709 break;
3710 }
3711
3712 ntype = type_hash_canon (hashcode, ntype);
3713
3714 /* If the target-dependent attributes make NTYPE different from
3715 its canonical type, we will need to use structural equality
3716 checks for this qualified type. */
3717 ttype = build_qualified_type (ttype, TYPE_UNQUALIFIED);
3718 if (TYPE_STRUCTURAL_EQUALITY_P (ttype)
3719 || !targetm.comp_type_attributes (ntype, ttype))
3720 SET_TYPE_STRUCTURAL_EQUALITY (ntype);
3721 else
3722 TYPE_CANONICAL (ntype) = TYPE_CANONICAL (ttype);
3723
3724 ttype = build_qualified_type (ntype, quals);
3725 }
3726
3727 return ttype;
3728 }
3729
3730
3731 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
3732 is ATTRIBUTE.
3733
3734 Record such modified types already made so we don't make duplicates. */
3735
3736 tree
3737 build_type_attribute_variant (tree ttype, tree attribute)
3738 {
3739 return build_type_attribute_qual_variant (ttype, attribute,
3740 TYPE_QUALS (ttype));
3741 }
3742
3743 /* Return nonzero if IDENT is a valid name for attribute ATTR,
3744 or zero if not.
3745
3746 We try both `text' and `__text__', ATTR may be either one. */
3747 /* ??? It might be a reasonable simplification to require ATTR to be only
3748 `text'. One might then also require attribute lists to be stored in
3749 their canonicalized form. */
3750
3751 static int
3752 is_attribute_with_length_p (const char *attr, int attr_len, const_tree ident)
3753 {
3754 int ident_len;
3755 const char *p;
3756
3757 if (TREE_CODE (ident) != IDENTIFIER_NODE)
3758 return 0;
3759
3760 p = IDENTIFIER_POINTER (ident);
3761 ident_len = IDENTIFIER_LENGTH (ident);
3762
3763 if (ident_len == attr_len
3764 && strcmp (attr, p) == 0)
3765 return 1;
3766
3767 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
3768 if (attr[0] == '_')
3769 {
3770 gcc_assert (attr[1] == '_');
3771 gcc_assert (attr[attr_len - 2] == '_');
3772 gcc_assert (attr[attr_len - 1] == '_');
3773 if (ident_len == attr_len - 4
3774 && strncmp (attr + 2, p, attr_len - 4) == 0)
3775 return 1;
3776 }
3777 else
3778 {
3779 if (ident_len == attr_len + 4
3780 && p[0] == '_' && p[1] == '_'
3781 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
3782 && strncmp (attr, p + 2, attr_len) == 0)
3783 return 1;
3784 }
3785
3786 return 0;
3787 }
3788
3789 /* Return nonzero if IDENT is a valid name for attribute ATTR,
3790 or zero if not.
3791
3792 We try both `text' and `__text__', ATTR may be either one. */
3793
3794 int
3795 is_attribute_p (const char *attr, const_tree ident)
3796 {
3797 return is_attribute_with_length_p (attr, strlen (attr), ident);
3798 }
3799
3800 /* Given an attribute name and a list of attributes, return a pointer to the
3801 attribute's list element if the attribute is part of the list, or NULL_TREE
3802 if not found. If the attribute appears more than once, this only
3803 returns the first occurrence; the TREE_CHAIN of the return value should
3804 be passed back in if further occurrences are wanted. */
3805
3806 tree
3807 lookup_attribute (const char *attr_name, tree list)
3808 {
3809 tree l;
3810 size_t attr_len = strlen (attr_name);
3811
3812 for (l = list; l; l = TREE_CHAIN (l))
3813 {
3814 gcc_assert (TREE_CODE (TREE_PURPOSE (l)) == IDENTIFIER_NODE);
3815 if (is_attribute_with_length_p (attr_name, attr_len, TREE_PURPOSE (l)))
3816 return l;
3817 }
3818 return NULL_TREE;
3819 }
3820
3821 /* Remove any instances of attribute ATTR_NAME in LIST and return the
3822 modified list. */
3823
3824 tree
3825 remove_attribute (const char *attr_name, tree list)
3826 {
3827 tree *p;
3828 size_t attr_len = strlen (attr_name);
3829
3830 for (p = &list; *p; )
3831 {
3832 tree l = *p;
3833 gcc_assert (TREE_CODE (TREE_PURPOSE (l)) == IDENTIFIER_NODE);
3834 if (is_attribute_with_length_p (attr_name, attr_len, TREE_PURPOSE (l)))
3835 *p = TREE_CHAIN (l);
3836 else
3837 p = &TREE_CHAIN (l);
3838 }
3839
3840 return list;
3841 }
3842
3843 /* Return an attribute list that is the union of a1 and a2. */
3844
3845 tree
3846 merge_attributes (tree a1, tree a2)
3847 {
3848 tree attributes;
3849
3850 /* Either one unset? Take the set one. */
3851
3852 if ((attributes = a1) == 0)
3853 attributes = a2;
3854
3855 /* One that completely contains the other? Take it. */
3856
3857 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
3858 {
3859 if (attribute_list_contained (a2, a1))
3860 attributes = a2;
3861 else
3862 {
3863 /* Pick the longest list, and hang on the other list. */
3864
3865 if (list_length (a1) < list_length (a2))
3866 attributes = a2, a2 = a1;
3867
3868 for (; a2 != 0; a2 = TREE_CHAIN (a2))
3869 {
3870 tree a;
3871 for (a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
3872 attributes);
3873 a != NULL_TREE;
3874 a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
3875 TREE_CHAIN (a)))
3876 {
3877 if (TREE_VALUE (a) != NULL
3878 && TREE_CODE (TREE_VALUE (a)) == TREE_LIST
3879 && TREE_VALUE (a2) != NULL
3880 && TREE_CODE (TREE_VALUE (a2)) == TREE_LIST)
3881 {
3882 if (simple_cst_list_equal (TREE_VALUE (a),
3883 TREE_VALUE (a2)) == 1)
3884 break;
3885 }
3886 else if (simple_cst_equal (TREE_VALUE (a),
3887 TREE_VALUE (a2)) == 1)
3888 break;
3889 }
3890 if (a == NULL_TREE)
3891 {
3892 a1 = copy_node (a2);
3893 TREE_CHAIN (a1) = attributes;
3894 attributes = a1;
3895 }
3896 }
3897 }
3898 }
3899 return attributes;
3900 }
3901
3902 /* Given types T1 and T2, merge their attributes and return
3903 the result. */
3904
3905 tree
3906 merge_type_attributes (tree t1, tree t2)
3907 {
3908 return merge_attributes (TYPE_ATTRIBUTES (t1),
3909 TYPE_ATTRIBUTES (t2));
3910 }
3911
3912 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
3913 the result. */
3914
3915 tree
3916 merge_decl_attributes (tree olddecl, tree newdecl)
3917 {
3918 return merge_attributes (DECL_ATTRIBUTES (olddecl),
3919 DECL_ATTRIBUTES (newdecl));
3920 }
3921
3922 #if TARGET_DLLIMPORT_DECL_ATTRIBUTES
3923
3924 /* Specialization of merge_decl_attributes for various Windows targets.
3925
3926 This handles the following situation:
3927
3928 __declspec (dllimport) int foo;
3929 int foo;
3930
3931 The second instance of `foo' nullifies the dllimport. */
3932
3933 tree
3934 merge_dllimport_decl_attributes (tree old, tree new)
3935 {
3936 tree a;
3937 int delete_dllimport_p = 1;
3938
3939 /* What we need to do here is remove from `old' dllimport if it doesn't
3940 appear in `new'. dllimport behaves like extern: if a declaration is
3941 marked dllimport and a definition appears later, then the object
3942 is not dllimport'd. We also remove a `new' dllimport if the old list
3943 contains dllexport: dllexport always overrides dllimport, regardless
3944 of the order of declaration. */
3945 if (!VAR_OR_FUNCTION_DECL_P (new))
3946 delete_dllimport_p = 0;
3947 else if (DECL_DLLIMPORT_P (new)
3948 && lookup_attribute ("dllexport", DECL_ATTRIBUTES (old)))
3949 {
3950 DECL_DLLIMPORT_P (new) = 0;
3951 warning (OPT_Wattributes, "%q+D already declared with dllexport attribute: "
3952 "dllimport ignored", new);
3953 }
3954 else if (DECL_DLLIMPORT_P (old) && !DECL_DLLIMPORT_P (new))
3955 {
3956 /* Warn about overriding a symbol that has already been used. eg:
3957 extern int __attribute__ ((dllimport)) foo;
3958 int* bar () {return &foo;}
3959 int foo;
3960 */
3961 if (TREE_USED (old))
3962 {
3963 warning (0, "%q+D redeclared without dllimport attribute "
3964 "after being referenced with dll linkage", new);
3965 /* If we have used a variable's address with dllimport linkage,
3966 keep the old DECL_DLLIMPORT_P flag: the ADDR_EXPR using the
3967 decl may already have had TREE_INVARIANT and TREE_CONSTANT
3968 computed.
3969 We still remove the attribute so that assembler code refers
3970 to '&foo rather than '_imp__foo'. */
3971 if (TREE_CODE (old) == VAR_DECL && TREE_ADDRESSABLE (old))
3972 DECL_DLLIMPORT_P (new) = 1;
3973 }
3974
3975 /* Let an inline definition silently override the external reference,
3976 but otherwise warn about attribute inconsistency. */
3977 else if (TREE_CODE (new) == VAR_DECL
3978 || !DECL_DECLARED_INLINE_P (new))
3979 warning (OPT_Wattributes, "%q+D redeclared without dllimport attribute: "
3980 "previous dllimport ignored", new);
3981 }
3982 else
3983 delete_dllimport_p = 0;
3984
3985 a = merge_attributes (DECL_ATTRIBUTES (old), DECL_ATTRIBUTES (new));
3986
3987 if (delete_dllimport_p)
3988 {
3989 tree prev, t;
3990 const size_t attr_len = strlen ("dllimport");
3991
3992 /* Scan the list for dllimport and delete it. */
3993 for (prev = NULL_TREE, t = a; t; prev = t, t = TREE_CHAIN (t))
3994 {
3995 if (is_attribute_with_length_p ("dllimport", attr_len,
3996 TREE_PURPOSE (t)))
3997 {
3998 if (prev == NULL_TREE)
3999 a = TREE_CHAIN (a);
4000 else
4001 TREE_CHAIN (prev) = TREE_CHAIN (t);
4002 break;
4003 }
4004 }
4005 }
4006
4007 return a;
4008 }
4009
4010 /* Handle a "dllimport" or "dllexport" attribute; arguments as in
4011 struct attribute_spec.handler. */
4012
4013 tree
4014 handle_dll_attribute (tree * pnode, tree name, tree args, int flags,
4015 bool *no_add_attrs)
4016 {
4017 tree node = *pnode;
4018
4019 /* These attributes may apply to structure and union types being created,
4020 but otherwise should pass to the declaration involved. */
4021 if (!DECL_P (node))
4022 {
4023 if (flags & ((int) ATTR_FLAG_DECL_NEXT | (int) ATTR_FLAG_FUNCTION_NEXT
4024 | (int) ATTR_FLAG_ARRAY_NEXT))
4025 {
4026 *no_add_attrs = true;
4027 return tree_cons (name, args, NULL_TREE);
4028 }
4029 if (TREE_CODE (node) == RECORD_TYPE
4030 || TREE_CODE (node) == UNION_TYPE)
4031 {
4032 node = TYPE_NAME (node);
4033 if (!node)
4034 return NULL_TREE;
4035 }
4036 else
4037 {
4038 warning (OPT_Wattributes, "%qs attribute ignored",
4039 IDENTIFIER_POINTER (name));
4040 *no_add_attrs = true;
4041 return NULL_TREE;
4042 }
4043 }
4044
4045 if (TREE_CODE (node) != FUNCTION_DECL
4046 && TREE_CODE (node) != VAR_DECL
4047 && TREE_CODE (node) != TYPE_DECL)
4048 {
4049 *no_add_attrs = true;
4050 warning (OPT_Wattributes, "%qs attribute ignored",
4051 IDENTIFIER_POINTER (name));
4052 return NULL_TREE;
4053 }
4054
4055 /* Report error on dllimport ambiguities seen now before they cause
4056 any damage. */
4057 else if (is_attribute_p ("dllimport", name))
4058 {
4059 /* Honor any target-specific overrides. */
4060 if (!targetm.valid_dllimport_attribute_p (node))
4061 *no_add_attrs = true;
4062
4063 else if (TREE_CODE (node) == FUNCTION_DECL
4064 && DECL_DECLARED_INLINE_P (node))
4065 {
4066 warning (OPT_Wattributes, "inline function %q+D declared as "
4067 " dllimport: attribute ignored", node);
4068 *no_add_attrs = true;
4069 }
4070 /* Like MS, treat definition of dllimported variables and
4071 non-inlined functions on declaration as syntax errors. */
4072 else if (TREE_CODE (node) == FUNCTION_DECL && DECL_INITIAL (node))
4073 {
4074 error ("function %q+D definition is marked dllimport", node);
4075 *no_add_attrs = true;
4076 }
4077
4078 else if (TREE_CODE (node) == VAR_DECL)
4079 {
4080 if (DECL_INITIAL (node))
4081 {
4082 error ("variable %q+D definition is marked dllimport",
4083 node);
4084 *no_add_attrs = true;
4085 }
4086
4087 /* `extern' needn't be specified with dllimport.
4088 Specify `extern' now and hope for the best. Sigh. */
4089 DECL_EXTERNAL (node) = 1;
4090 /* Also, implicitly give dllimport'd variables declared within
4091 a function global scope, unless declared static. */
4092 if (current_function_decl != NULL_TREE && !TREE_STATIC (node))
4093 TREE_PUBLIC (node) = 1;
4094 }
4095
4096 if (*no_add_attrs == false)
4097 DECL_DLLIMPORT_P (node) = 1;
4098 }
4099
4100 /* Report error if symbol is not accessible at global scope. */
4101 if (!TREE_PUBLIC (node)
4102 && (TREE_CODE (node) == VAR_DECL
4103 || TREE_CODE (node) == FUNCTION_DECL))
4104 {
4105 error ("external linkage required for symbol %q+D because of "
4106 "%qs attribute", node, IDENTIFIER_POINTER (name));
4107 *no_add_attrs = true;
4108 }
4109
4110 /* A dllexport'd entity must have default visibility so that other
4111 program units (shared libraries or the main executable) can see
4112 it. A dllimport'd entity must have default visibility so that
4113 the linker knows that undefined references within this program
4114 unit can be resolved by the dynamic linker. */
4115 if (!*no_add_attrs)
4116 {
4117 if (DECL_VISIBILITY_SPECIFIED (node)
4118 && DECL_VISIBILITY (node) != VISIBILITY_DEFAULT)
4119 error ("%qs implies default visibility, but %qD has already "
4120 "been declared with a different visibility",
4121 IDENTIFIER_POINTER (name), node);
4122 DECL_VISIBILITY (node) = VISIBILITY_DEFAULT;
4123 DECL_VISIBILITY_SPECIFIED (node) = 1;
4124 }
4125
4126 return NULL_TREE;
4127 }
4128
4129 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
4130 \f
4131 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
4132 of the various TYPE_QUAL values. */
4133
4134 static void
4135 set_type_quals (tree type, int type_quals)
4136 {
4137 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
4138 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
4139 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
4140 }
4141
4142 /* Returns true iff cand is equivalent to base with type_quals. */
4143
4144 bool
4145 check_qualified_type (const_tree cand, const_tree base, int type_quals)
4146 {
4147 return (TYPE_QUALS (cand) == type_quals
4148 && TYPE_NAME (cand) == TYPE_NAME (base)
4149 /* Apparently this is needed for Objective-C. */
4150 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
4151 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
4152 TYPE_ATTRIBUTES (base)));
4153 }
4154
4155 /* Return a version of the TYPE, qualified as indicated by the
4156 TYPE_QUALS, if one exists. If no qualified version exists yet,
4157 return NULL_TREE. */
4158
4159 tree
4160 get_qualified_type (tree type, int type_quals)
4161 {
4162 tree t;
4163
4164 if (TYPE_QUALS (type) == type_quals)
4165 return type;
4166
4167 /* Search the chain of variants to see if there is already one there just
4168 like the one we need to have. If so, use that existing one. We must
4169 preserve the TYPE_NAME, since there is code that depends on this. */
4170 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
4171 if (check_qualified_type (t, type, type_quals))
4172 return t;
4173
4174 return NULL_TREE;
4175 }
4176
4177 /* Like get_qualified_type, but creates the type if it does not
4178 exist. This function never returns NULL_TREE. */
4179
4180 tree
4181 build_qualified_type (tree type, int type_quals)
4182 {
4183 tree t;
4184
4185 /* See if we already have the appropriate qualified variant. */
4186 t = get_qualified_type (type, type_quals);
4187
4188 /* If not, build it. */
4189 if (!t)
4190 {
4191 t = build_variant_type_copy (type);
4192 set_type_quals (t, type_quals);
4193
4194 if (TYPE_STRUCTURAL_EQUALITY_P (type))
4195 /* Propagate structural equality. */
4196 SET_TYPE_STRUCTURAL_EQUALITY (t);
4197 else if (TYPE_CANONICAL (type) != type)
4198 /* Build the underlying canonical type, since it is different
4199 from TYPE. */
4200 TYPE_CANONICAL (t) = build_qualified_type (TYPE_CANONICAL (type),
4201 type_quals);
4202 else
4203 /* T is its own canonical type. */
4204 TYPE_CANONICAL (t) = t;
4205
4206 }
4207
4208 return t;
4209 }
4210
4211 /* Create a new distinct copy of TYPE. The new type is made its own
4212 MAIN_VARIANT. If TYPE requires structural equality checks, the
4213 resulting type requires structural equality checks; otherwise, its
4214 TYPE_CANONICAL points to itself. */
4215
4216 tree
4217 build_distinct_type_copy (tree type)
4218 {
4219 tree t = copy_node (type);
4220
4221 TYPE_POINTER_TO (t) = 0;
4222 TYPE_REFERENCE_TO (t) = 0;
4223
4224 /* Set the canonical type either to a new equivalence class, or
4225 propagate the need for structural equality checks. */
4226 if (TYPE_STRUCTURAL_EQUALITY_P (type))
4227 SET_TYPE_STRUCTURAL_EQUALITY (t);
4228 else
4229 TYPE_CANONICAL (t) = t;
4230
4231 /* Make it its own variant. */
4232 TYPE_MAIN_VARIANT (t) = t;
4233 TYPE_NEXT_VARIANT (t) = 0;
4234
4235 /* Note that it is now possible for TYPE_MIN_VALUE to be a value
4236 whose TREE_TYPE is not t. This can also happen in the Ada
4237 frontend when using subtypes. */
4238
4239 return t;
4240 }
4241
4242 /* Create a new variant of TYPE, equivalent but distinct. This is so
4243 the caller can modify it. TYPE_CANONICAL for the return type will
4244 be equivalent to TYPE_CANONICAL of TYPE, indicating that the types
4245 are considered equal by the language itself (or that both types
4246 require structural equality checks). */
4247
4248 tree
4249 build_variant_type_copy (tree type)
4250 {
4251 tree t, m = TYPE_MAIN_VARIANT (type);
4252
4253 t = build_distinct_type_copy (type);
4254
4255 /* Since we're building a variant, assume that it is a non-semantic
4256 variant. This also propagates TYPE_STRUCTURAL_EQUALITY_P. */
4257 TYPE_CANONICAL (t) = TYPE_CANONICAL (type);
4258
4259 /* Add the new type to the chain of variants of TYPE. */
4260 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
4261 TYPE_NEXT_VARIANT (m) = t;
4262 TYPE_MAIN_VARIANT (t) = m;
4263
4264 return t;
4265 }
4266 \f
4267 /* Return true if the from tree in both tree maps are equal. */
4268
4269 int
4270 tree_map_base_eq (const void *va, const void *vb)
4271 {
4272 const struct tree_map_base *const a = va, *const b = vb;
4273 return (a->from == b->from);
4274 }
4275
4276 /* Hash a from tree in a tree_map. */
4277
4278 unsigned int
4279 tree_map_base_hash (const void *item)
4280 {
4281 return htab_hash_pointer (((const struct tree_map_base *)item)->from);
4282 }
4283
4284 /* Return true if this tree map structure is marked for garbage collection
4285 purposes. We simply return true if the from tree is marked, so that this
4286 structure goes away when the from tree goes away. */
4287
4288 int
4289 tree_map_base_marked_p (const void *p)
4290 {
4291 return ggc_marked_p (((const struct tree_map_base *) p)->from);
4292 }
4293
4294 unsigned int
4295 tree_map_hash (const void *item)
4296 {
4297 return (((const struct tree_map *) item)->hash);
4298 }
4299
4300 /* Return the initialization priority for DECL. */
4301
4302 priority_type
4303 decl_init_priority_lookup (tree decl)
4304 {
4305 struct tree_priority_map *h;
4306 struct tree_map_base in;
4307
4308 gcc_assert (VAR_OR_FUNCTION_DECL_P (decl));
4309 gcc_assert (TREE_CODE (decl) == VAR_DECL
4310 ? DECL_HAS_INIT_PRIORITY_P (decl)
4311 : DECL_STATIC_CONSTRUCTOR (decl));
4312 in.from = decl;
4313 h = htab_find (init_priority_for_decl, &in);
4314 return h ? h->init : DEFAULT_INIT_PRIORITY;
4315 }
4316
4317 /* Return the finalization priority for DECL. */
4318
4319 priority_type
4320 decl_fini_priority_lookup (tree decl)
4321 {
4322 struct tree_priority_map *h;
4323 struct tree_map_base in;
4324
4325 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
4326 gcc_assert (DECL_STATIC_DESTRUCTOR (decl));
4327 in.from = decl;
4328 h = htab_find (init_priority_for_decl, &in);
4329 return h ? h->fini : DEFAULT_INIT_PRIORITY;
4330 }
4331
4332 /* Return the initialization and finalization priority information for
4333 DECL. If there is no previous priority information, a freshly
4334 allocated structure is returned. */
4335
4336 static struct tree_priority_map *
4337 decl_priority_info (tree decl)
4338 {
4339 struct tree_priority_map in;
4340 struct tree_priority_map *h;
4341 void **loc;
4342
4343 in.base.from = decl;
4344 loc = htab_find_slot (init_priority_for_decl, &in, INSERT);
4345 h = *loc;
4346 if (!h)
4347 {
4348 h = GGC_CNEW (struct tree_priority_map);
4349 *loc = h;
4350 h->base.from = decl;
4351 h->init = DEFAULT_INIT_PRIORITY;
4352 h->fini = DEFAULT_INIT_PRIORITY;
4353 }
4354
4355 return h;
4356 }
4357
4358 /* Set the initialization priority for DECL to PRIORITY. */
4359
4360 void
4361 decl_init_priority_insert (tree decl, priority_type priority)
4362 {
4363 struct tree_priority_map *h;
4364
4365 gcc_assert (VAR_OR_FUNCTION_DECL_P (decl));
4366 h = decl_priority_info (decl);
4367 h->init = priority;
4368 }
4369
4370 /* Set the finalization priority for DECL to PRIORITY. */
4371
4372 void
4373 decl_fini_priority_insert (tree decl, priority_type priority)
4374 {
4375 struct tree_priority_map *h;
4376
4377 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
4378 h = decl_priority_info (decl);
4379 h->fini = priority;
4380 }
4381
4382 /* Look up a restrict qualified base decl for FROM. */
4383
4384 tree
4385 decl_restrict_base_lookup (tree from)
4386 {
4387 struct tree_map *h;
4388 struct tree_map in;
4389
4390 in.base.from = from;
4391 h = htab_find_with_hash (restrict_base_for_decl, &in,
4392 htab_hash_pointer (from));
4393 return h ? h->to : NULL_TREE;
4394 }
4395
4396 /* Record the restrict qualified base TO for FROM. */
4397
4398 void
4399 decl_restrict_base_insert (tree from, tree to)
4400 {
4401 struct tree_map *h;
4402 void **loc;
4403
4404 h = ggc_alloc (sizeof (struct tree_map));
4405 h->hash = htab_hash_pointer (from);
4406 h->base.from = from;
4407 h->to = to;
4408 loc = htab_find_slot_with_hash (restrict_base_for_decl, h, h->hash, INSERT);
4409 *(struct tree_map **) loc = h;
4410 }
4411
4412 /* Print out the statistics for the DECL_DEBUG_EXPR hash table. */
4413
4414 static void
4415 print_debug_expr_statistics (void)
4416 {
4417 fprintf (stderr, "DECL_DEBUG_EXPR hash: size %ld, %ld elements, %f collisions\n",
4418 (long) htab_size (debug_expr_for_decl),
4419 (long) htab_elements (debug_expr_for_decl),
4420 htab_collisions (debug_expr_for_decl));
4421 }
4422
4423 /* Print out the statistics for the DECL_VALUE_EXPR hash table. */
4424
4425 static void
4426 print_value_expr_statistics (void)
4427 {
4428 fprintf (stderr, "DECL_VALUE_EXPR hash: size %ld, %ld elements, %f collisions\n",
4429 (long) htab_size (value_expr_for_decl),
4430 (long) htab_elements (value_expr_for_decl),
4431 htab_collisions (value_expr_for_decl));
4432 }
4433
4434 /* Print out statistics for the RESTRICT_BASE_FOR_DECL hash table, but
4435 don't print anything if the table is empty. */
4436
4437 static void
4438 print_restrict_base_statistics (void)
4439 {
4440 if (htab_elements (restrict_base_for_decl) != 0)
4441 fprintf (stderr,
4442 "RESTRICT_BASE hash: size %ld, %ld elements, %f collisions\n",
4443 (long) htab_size (restrict_base_for_decl),
4444 (long) htab_elements (restrict_base_for_decl),
4445 htab_collisions (restrict_base_for_decl));
4446 }
4447
4448 /* Lookup a debug expression for FROM, and return it if we find one. */
4449
4450 tree
4451 decl_debug_expr_lookup (tree from)
4452 {
4453 struct tree_map *h, in;
4454 in.base.from = from;
4455
4456 h = htab_find_with_hash (debug_expr_for_decl, &in, htab_hash_pointer (from));
4457 if (h)
4458 return h->to;
4459 return NULL_TREE;
4460 }
4461
4462 /* Insert a mapping FROM->TO in the debug expression hashtable. */
4463
4464 void
4465 decl_debug_expr_insert (tree from, tree to)
4466 {
4467 struct tree_map *h;
4468 void **loc;
4469
4470 h = ggc_alloc (sizeof (struct tree_map));
4471 h->hash = htab_hash_pointer (from);
4472 h->base.from = from;
4473 h->to = to;
4474 loc = htab_find_slot_with_hash (debug_expr_for_decl, h, h->hash, INSERT);
4475 *(struct tree_map **) loc = h;
4476 }
4477
4478 /* Lookup a value expression for FROM, and return it if we find one. */
4479
4480 tree
4481 decl_value_expr_lookup (tree from)
4482 {
4483 struct tree_map *h, in;
4484 in.base.from = from;
4485
4486 h = htab_find_with_hash (value_expr_for_decl, &in, htab_hash_pointer (from));
4487 if (h)
4488 return h->to;
4489 return NULL_TREE;
4490 }
4491
4492 /* Insert a mapping FROM->TO in the value expression hashtable. */
4493
4494 void
4495 decl_value_expr_insert (tree from, tree to)
4496 {
4497 struct tree_map *h;
4498 void **loc;
4499
4500 h = ggc_alloc (sizeof (struct tree_map));
4501 h->hash = htab_hash_pointer (from);
4502 h->base.from = from;
4503 h->to = to;
4504 loc = htab_find_slot_with_hash (value_expr_for_decl, h, h->hash, INSERT);
4505 *(struct tree_map **) loc = h;
4506 }
4507
4508 /* Hashing of types so that we don't make duplicates.
4509 The entry point is `type_hash_canon'. */
4510
4511 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
4512 with types in the TREE_VALUE slots), by adding the hash codes
4513 of the individual types. */
4514
4515 static unsigned int
4516 type_hash_list (const_tree list, hashval_t hashcode)
4517 {
4518 const_tree tail;
4519
4520 for (tail = list; tail; tail = TREE_CHAIN (tail))
4521 if (TREE_VALUE (tail) != error_mark_node)
4522 hashcode = iterative_hash_object (TYPE_HASH (TREE_VALUE (tail)),
4523 hashcode);
4524
4525 return hashcode;
4526 }
4527
4528 /* These are the Hashtable callback functions. */
4529
4530 /* Returns true iff the types are equivalent. */
4531
4532 static int
4533 type_hash_eq (const void *va, const void *vb)
4534 {
4535 const struct type_hash *const a = va, *const b = vb;
4536
4537 /* First test the things that are the same for all types. */
4538 if (a->hash != b->hash
4539 || TREE_CODE (a->type) != TREE_CODE (b->type)
4540 || TREE_TYPE (a->type) != TREE_TYPE (b->type)
4541 || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
4542 TYPE_ATTRIBUTES (b->type))
4543 || TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
4544 || TYPE_MODE (a->type) != TYPE_MODE (b->type))
4545 return 0;
4546
4547 switch (TREE_CODE (a->type))
4548 {
4549 case VOID_TYPE:
4550 case COMPLEX_TYPE:
4551 case POINTER_TYPE:
4552 case REFERENCE_TYPE:
4553 return 1;
4554
4555 case VECTOR_TYPE:
4556 return TYPE_VECTOR_SUBPARTS (a->type) == TYPE_VECTOR_SUBPARTS (b->type);
4557
4558 case ENUMERAL_TYPE:
4559 if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
4560 && !(TYPE_VALUES (a->type)
4561 && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
4562 && TYPE_VALUES (b->type)
4563 && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
4564 && type_list_equal (TYPE_VALUES (a->type),
4565 TYPE_VALUES (b->type))))
4566 return 0;
4567
4568 /* ... fall through ... */
4569
4570 case INTEGER_TYPE:
4571 case REAL_TYPE:
4572 case BOOLEAN_TYPE:
4573 return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
4574 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
4575 TYPE_MAX_VALUE (b->type)))
4576 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
4577 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
4578 TYPE_MIN_VALUE (b->type))));
4579
4580 case FIXED_POINT_TYPE:
4581 return TYPE_SATURATING (a->type) == TYPE_SATURATING (b->type);
4582
4583 case OFFSET_TYPE:
4584 return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
4585
4586 case METHOD_TYPE:
4587 return (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
4588 && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
4589 || (TYPE_ARG_TYPES (a->type)
4590 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
4591 && TYPE_ARG_TYPES (b->type)
4592 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
4593 && type_list_equal (TYPE_ARG_TYPES (a->type),
4594 TYPE_ARG_TYPES (b->type)))));
4595
4596 case ARRAY_TYPE:
4597 return TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type);
4598
4599 case RECORD_TYPE:
4600 case UNION_TYPE:
4601 case QUAL_UNION_TYPE:
4602 return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
4603 || (TYPE_FIELDS (a->type)
4604 && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
4605 && TYPE_FIELDS (b->type)
4606 && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
4607 && type_list_equal (TYPE_FIELDS (a->type),
4608 TYPE_FIELDS (b->type))));
4609
4610 case FUNCTION_TYPE:
4611 if (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
4612 || (TYPE_ARG_TYPES (a->type)
4613 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
4614 && TYPE_ARG_TYPES (b->type)
4615 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
4616 && type_list_equal (TYPE_ARG_TYPES (a->type),
4617 TYPE_ARG_TYPES (b->type))))
4618 break;
4619 return 0;
4620
4621 default:
4622 return 0;
4623 }
4624
4625 if (lang_hooks.types.type_hash_eq != NULL)
4626 return lang_hooks.types.type_hash_eq (a->type, b->type);
4627
4628 return 1;
4629 }
4630
4631 /* Return the cached hash value. */
4632
4633 static hashval_t
4634 type_hash_hash (const void *item)
4635 {
4636 return ((const struct type_hash *) item)->hash;
4637 }
4638
4639 /* Look in the type hash table for a type isomorphic to TYPE.
4640 If one is found, return it. Otherwise return 0. */
4641
4642 tree
4643 type_hash_lookup (hashval_t hashcode, tree type)
4644 {
4645 struct type_hash *h, in;
4646
4647 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
4648 must call that routine before comparing TYPE_ALIGNs. */
4649 layout_type (type);
4650
4651 in.hash = hashcode;
4652 in.type = type;
4653
4654 h = htab_find_with_hash (type_hash_table, &in, hashcode);
4655 if (h)
4656 return h->type;
4657 return NULL_TREE;
4658 }
4659
4660 /* Add an entry to the type-hash-table
4661 for a type TYPE whose hash code is HASHCODE. */
4662
4663 void
4664 type_hash_add (hashval_t hashcode, tree type)
4665 {
4666 struct type_hash *h;
4667 void **loc;
4668
4669 h = ggc_alloc (sizeof (struct type_hash));
4670 h->hash = hashcode;
4671 h->type = type;
4672 loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
4673 *(struct type_hash **) loc = h;
4674 }
4675
4676 /* Given TYPE, and HASHCODE its hash code, return the canonical
4677 object for an identical type if one already exists.
4678 Otherwise, return TYPE, and record it as the canonical object.
4679
4680 To use this function, first create a type of the sort you want.
4681 Then compute its hash code from the fields of the type that
4682 make it different from other similar types.
4683 Then call this function and use the value. */
4684
4685 tree
4686 type_hash_canon (unsigned int hashcode, tree type)
4687 {
4688 tree t1;
4689
4690 /* The hash table only contains main variants, so ensure that's what we're
4691 being passed. */
4692 gcc_assert (TYPE_MAIN_VARIANT (type) == type);
4693
4694 if (!lang_hooks.types.hash_types)
4695 return type;
4696
4697 /* See if the type is in the hash table already. If so, return it.
4698 Otherwise, add the type. */
4699 t1 = type_hash_lookup (hashcode, type);
4700 if (t1 != 0)
4701 {
4702 #ifdef GATHER_STATISTICS
4703 tree_node_counts[(int) t_kind]--;
4704 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type);
4705 #endif
4706 return t1;
4707 }
4708 else
4709 {
4710 type_hash_add (hashcode, type);
4711 return type;
4712 }
4713 }
4714
4715 /* See if the data pointed to by the type hash table is marked. We consider
4716 it marked if the type is marked or if a debug type number or symbol
4717 table entry has been made for the type. This reduces the amount of
4718 debugging output and eliminates that dependency of the debug output on
4719 the number of garbage collections. */
4720
4721 static int
4722 type_hash_marked_p (const void *p)
4723 {
4724 const_tree const type = ((const struct type_hash *) p)->type;
4725
4726 return ggc_marked_p (type) || TYPE_SYMTAB_POINTER (type);
4727 }
4728
4729 static void
4730 print_type_hash_statistics (void)
4731 {
4732 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
4733 (long) htab_size (type_hash_table),
4734 (long) htab_elements (type_hash_table),
4735 htab_collisions (type_hash_table));
4736 }
4737
4738 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
4739 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
4740 by adding the hash codes of the individual attributes. */
4741
4742 static unsigned int
4743 attribute_hash_list (const_tree list, hashval_t hashcode)
4744 {
4745 const_tree tail;
4746
4747 for (tail = list; tail; tail = TREE_CHAIN (tail))
4748 /* ??? Do we want to add in TREE_VALUE too? */
4749 hashcode = iterative_hash_object
4750 (IDENTIFIER_HASH_VALUE (TREE_PURPOSE (tail)), hashcode);
4751 return hashcode;
4752 }
4753
4754 /* Given two lists of attributes, return true if list l2 is
4755 equivalent to l1. */
4756
4757 int
4758 attribute_list_equal (const_tree l1, const_tree l2)
4759 {
4760 return attribute_list_contained (l1, l2)
4761 && attribute_list_contained (l2, l1);
4762 }
4763
4764 /* Given two lists of attributes, return true if list L2 is
4765 completely contained within L1. */
4766 /* ??? This would be faster if attribute names were stored in a canonicalized
4767 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
4768 must be used to show these elements are equivalent (which they are). */
4769 /* ??? It's not clear that attributes with arguments will always be handled
4770 correctly. */
4771
4772 int
4773 attribute_list_contained (const_tree l1, const_tree l2)
4774 {
4775 const_tree t1, t2;
4776
4777 /* First check the obvious, maybe the lists are identical. */
4778 if (l1 == l2)
4779 return 1;
4780
4781 /* Maybe the lists are similar. */
4782 for (t1 = l1, t2 = l2;
4783 t1 != 0 && t2 != 0
4784 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
4785 && TREE_VALUE (t1) == TREE_VALUE (t2);
4786 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
4787
4788 /* Maybe the lists are equal. */
4789 if (t1 == 0 && t2 == 0)
4790 return 1;
4791
4792 for (; t2 != 0; t2 = TREE_CHAIN (t2))
4793 {
4794 const_tree attr;
4795 /* This CONST_CAST is okay because lookup_attribute does not
4796 modify its argument and the return value is assigned to a
4797 const_tree. */
4798 for (attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
4799 CONST_CAST_TREE(l1));
4800 attr != NULL_TREE;
4801 attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
4802 TREE_CHAIN (attr)))
4803 {
4804 if (TREE_VALUE (t2) != NULL
4805 && TREE_CODE (TREE_VALUE (t2)) == TREE_LIST
4806 && TREE_VALUE (attr) != NULL
4807 && TREE_CODE (TREE_VALUE (attr)) == TREE_LIST)
4808 {
4809 if (simple_cst_list_equal (TREE_VALUE (t2),
4810 TREE_VALUE (attr)) == 1)
4811 break;
4812 }
4813 else if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) == 1)
4814 break;
4815 }
4816
4817 if (attr == 0)
4818 return 0;
4819 }
4820
4821 return 1;
4822 }
4823
4824 /* Given two lists of types
4825 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
4826 return 1 if the lists contain the same types in the same order.
4827 Also, the TREE_PURPOSEs must match. */
4828
4829 int
4830 type_list_equal (const_tree l1, const_tree l2)
4831 {
4832 const_tree t1, t2;
4833
4834 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
4835 if (TREE_VALUE (t1) != TREE_VALUE (t2)
4836 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
4837 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
4838 && (TREE_TYPE (TREE_PURPOSE (t1))
4839 == TREE_TYPE (TREE_PURPOSE (t2))))))
4840 return 0;
4841
4842 return t1 == t2;
4843 }
4844
4845 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
4846 given by TYPE. If the argument list accepts variable arguments,
4847 then this function counts only the ordinary arguments. */
4848
4849 int
4850 type_num_arguments (const_tree type)
4851 {
4852 int i = 0;
4853 tree t;
4854
4855 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
4856 /* If the function does not take a variable number of arguments,
4857 the last element in the list will have type `void'. */
4858 if (VOID_TYPE_P (TREE_VALUE (t)))
4859 break;
4860 else
4861 ++i;
4862
4863 return i;
4864 }
4865
4866 /* Nonzero if integer constants T1 and T2
4867 represent the same constant value. */
4868
4869 int
4870 tree_int_cst_equal (const_tree t1, const_tree t2)
4871 {
4872 if (t1 == t2)
4873 return 1;
4874
4875 if (t1 == 0 || t2 == 0)
4876 return 0;
4877
4878 if (TREE_CODE (t1) == INTEGER_CST
4879 && TREE_CODE (t2) == INTEGER_CST
4880 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
4881 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
4882 return 1;
4883
4884 return 0;
4885 }
4886
4887 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
4888 The precise way of comparison depends on their data type. */
4889
4890 int
4891 tree_int_cst_lt (const_tree t1, const_tree t2)
4892 {
4893 if (t1 == t2)
4894 return 0;
4895
4896 if (TYPE_UNSIGNED (TREE_TYPE (t1)) != TYPE_UNSIGNED (TREE_TYPE (t2)))
4897 {
4898 int t1_sgn = tree_int_cst_sgn (t1);
4899 int t2_sgn = tree_int_cst_sgn (t2);
4900
4901 if (t1_sgn < t2_sgn)
4902 return 1;
4903 else if (t1_sgn > t2_sgn)
4904 return 0;
4905 /* Otherwise, both are non-negative, so we compare them as
4906 unsigned just in case one of them would overflow a signed
4907 type. */
4908 }
4909 else if (!TYPE_UNSIGNED (TREE_TYPE (t1)))
4910 return INT_CST_LT (t1, t2);
4911
4912 return INT_CST_LT_UNSIGNED (t1, t2);
4913 }
4914
4915 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
4916
4917 int
4918 tree_int_cst_compare (const_tree t1, const_tree t2)
4919 {
4920 if (tree_int_cst_lt (t1, t2))
4921 return -1;
4922 else if (tree_int_cst_lt (t2, t1))
4923 return 1;
4924 else
4925 return 0;
4926 }
4927
4928 /* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
4929 the host. If POS is zero, the value can be represented in a single
4930 HOST_WIDE_INT. If POS is nonzero, the value must be non-negative and can
4931 be represented in a single unsigned HOST_WIDE_INT. */
4932
4933 int
4934 host_integerp (const_tree t, int pos)
4935 {
4936 return (TREE_CODE (t) == INTEGER_CST
4937 && ((TREE_INT_CST_HIGH (t) == 0
4938 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
4939 || (! pos && TREE_INT_CST_HIGH (t) == -1
4940 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0
4941 && (!TYPE_UNSIGNED (TREE_TYPE (t))
4942 || TYPE_IS_SIZETYPE (TREE_TYPE (t))))
4943 || (pos && TREE_INT_CST_HIGH (t) == 0)));
4944 }
4945
4946 /* Return the HOST_WIDE_INT least significant bits of T if it is an
4947 INTEGER_CST and there is no overflow. POS is nonzero if the result must
4948 be non-negative. We must be able to satisfy the above conditions. */
4949
4950 HOST_WIDE_INT
4951 tree_low_cst (const_tree t, int pos)
4952 {
4953 gcc_assert (host_integerp (t, pos));
4954 return TREE_INT_CST_LOW (t);
4955 }
4956
4957 /* Return the most significant bit of the integer constant T. */
4958
4959 int
4960 tree_int_cst_msb (const_tree t)
4961 {
4962 int prec;
4963 HOST_WIDE_INT h;
4964 unsigned HOST_WIDE_INT l;
4965
4966 /* Note that using TYPE_PRECISION here is wrong. We care about the
4967 actual bits, not the (arbitrary) range of the type. */
4968 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t))) - 1;
4969 rshift_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t), prec,
4970 2 * HOST_BITS_PER_WIDE_INT, &l, &h, 0);
4971 return (l & 1) == 1;
4972 }
4973
4974 /* Return an indication of the sign of the integer constant T.
4975 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
4976 Note that -1 will never be returned if T's type is unsigned. */
4977
4978 int
4979 tree_int_cst_sgn (const_tree t)
4980 {
4981 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
4982 return 0;
4983 else if (TYPE_UNSIGNED (TREE_TYPE (t)))
4984 return 1;
4985 else if (TREE_INT_CST_HIGH (t) < 0)
4986 return -1;
4987 else
4988 return 1;
4989 }
4990
4991 /* Compare two constructor-element-type constants. Return 1 if the lists
4992 are known to be equal; otherwise return 0. */
4993
4994 int
4995 simple_cst_list_equal (const_tree l1, const_tree l2)
4996 {
4997 while (l1 != NULL_TREE && l2 != NULL_TREE)
4998 {
4999 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
5000 return 0;
5001
5002 l1 = TREE_CHAIN (l1);
5003 l2 = TREE_CHAIN (l2);
5004 }
5005
5006 return l1 == l2;
5007 }
5008
5009 /* Return truthvalue of whether T1 is the same tree structure as T2.
5010 Return 1 if they are the same.
5011 Return 0 if they are understandably different.
5012 Return -1 if either contains tree structure not understood by
5013 this function. */
5014
5015 int
5016 simple_cst_equal (const_tree t1, const_tree t2)
5017 {
5018 enum tree_code code1, code2;
5019 int cmp;
5020 int i;
5021
5022 if (t1 == t2)
5023 return 1;
5024 if (t1 == 0 || t2 == 0)
5025 return 0;
5026
5027 code1 = TREE_CODE (t1);
5028 code2 = TREE_CODE (t2);
5029
5030 if (code1 == NOP_EXPR || code1 == CONVERT_EXPR || code1 == NON_LVALUE_EXPR)
5031 {
5032 if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
5033 || code2 == NON_LVALUE_EXPR)
5034 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
5035 else
5036 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
5037 }
5038
5039 else if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
5040 || code2 == NON_LVALUE_EXPR)
5041 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
5042
5043 if (code1 != code2)
5044 return 0;
5045
5046 switch (code1)
5047 {
5048 case INTEGER_CST:
5049 return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
5050 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
5051
5052 case REAL_CST:
5053 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
5054
5055 case FIXED_CST:
5056 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1), TREE_FIXED_CST (t2));
5057
5058 case STRING_CST:
5059 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
5060 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
5061 TREE_STRING_LENGTH (t1)));
5062
5063 case CONSTRUCTOR:
5064 {
5065 unsigned HOST_WIDE_INT idx;
5066 VEC(constructor_elt, gc) *v1 = CONSTRUCTOR_ELTS (t1);
5067 VEC(constructor_elt, gc) *v2 = CONSTRUCTOR_ELTS (t2);
5068
5069 if (VEC_length (constructor_elt, v1) != VEC_length (constructor_elt, v2))
5070 return false;
5071
5072 for (idx = 0; idx < VEC_length (constructor_elt, v1); ++idx)
5073 /* ??? Should we handle also fields here? */
5074 if (!simple_cst_equal (VEC_index (constructor_elt, v1, idx)->value,
5075 VEC_index (constructor_elt, v2, idx)->value))
5076 return false;
5077 return true;
5078 }
5079
5080 case SAVE_EXPR:
5081 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
5082
5083 case CALL_EXPR:
5084 cmp = simple_cst_equal (CALL_EXPR_FN (t1), CALL_EXPR_FN (t2));
5085 if (cmp <= 0)
5086 return cmp;
5087 if (call_expr_nargs (t1) != call_expr_nargs (t2))
5088 return 0;
5089 {
5090 const_tree arg1, arg2;
5091 const_call_expr_arg_iterator iter1, iter2;
5092 for (arg1 = first_const_call_expr_arg (t1, &iter1),
5093 arg2 = first_const_call_expr_arg (t2, &iter2);
5094 arg1 && arg2;
5095 arg1 = next_const_call_expr_arg (&iter1),
5096 arg2 = next_const_call_expr_arg (&iter2))
5097 {
5098 cmp = simple_cst_equal (arg1, arg2);
5099 if (cmp <= 0)
5100 return cmp;
5101 }
5102 return arg1 == arg2;
5103 }
5104
5105 case TARGET_EXPR:
5106 /* Special case: if either target is an unallocated VAR_DECL,
5107 it means that it's going to be unified with whatever the
5108 TARGET_EXPR is really supposed to initialize, so treat it
5109 as being equivalent to anything. */
5110 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
5111 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
5112 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
5113 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
5114 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
5115 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
5116 cmp = 1;
5117 else
5118 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
5119
5120 if (cmp <= 0)
5121 return cmp;
5122
5123 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
5124
5125 case WITH_CLEANUP_EXPR:
5126 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
5127 if (cmp <= 0)
5128 return cmp;
5129
5130 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
5131
5132 case COMPONENT_REF:
5133 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
5134 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
5135
5136 return 0;
5137
5138 case VAR_DECL:
5139 case PARM_DECL:
5140 case CONST_DECL:
5141 case FUNCTION_DECL:
5142 return 0;
5143
5144 default:
5145 break;
5146 }
5147
5148 /* This general rule works for most tree codes. All exceptions should be
5149 handled above. If this is a language-specific tree code, we can't
5150 trust what might be in the operand, so say we don't know
5151 the situation. */
5152 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
5153 return -1;
5154
5155 switch (TREE_CODE_CLASS (code1))
5156 {
5157 case tcc_unary:
5158 case tcc_binary:
5159 case tcc_comparison:
5160 case tcc_expression:
5161 case tcc_reference:
5162 case tcc_statement:
5163 cmp = 1;
5164 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
5165 {
5166 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
5167 if (cmp <= 0)
5168 return cmp;
5169 }
5170
5171 return cmp;
5172
5173 default:
5174 return -1;
5175 }
5176 }
5177
5178 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
5179 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
5180 than U, respectively. */
5181
5182 int
5183 compare_tree_int (const_tree t, unsigned HOST_WIDE_INT u)
5184 {
5185 if (tree_int_cst_sgn (t) < 0)
5186 return -1;
5187 else if (TREE_INT_CST_HIGH (t) != 0)
5188 return 1;
5189 else if (TREE_INT_CST_LOW (t) == u)
5190 return 0;
5191 else if (TREE_INT_CST_LOW (t) < u)
5192 return -1;
5193 else
5194 return 1;
5195 }
5196
5197 /* Return true if CODE represents an associative tree code. Otherwise
5198 return false. */
5199 bool
5200 associative_tree_code (enum tree_code code)
5201 {
5202 switch (code)
5203 {
5204 case BIT_IOR_EXPR:
5205 case BIT_AND_EXPR:
5206 case BIT_XOR_EXPR:
5207 case PLUS_EXPR:
5208 case MULT_EXPR:
5209 case MIN_EXPR:
5210 case MAX_EXPR:
5211 return true;
5212
5213 default:
5214 break;
5215 }
5216 return false;
5217 }
5218
5219 /* Return true if CODE represents a commutative tree code. Otherwise
5220 return false. */
5221 bool
5222 commutative_tree_code (enum tree_code code)
5223 {
5224 switch (code)
5225 {
5226 case PLUS_EXPR:
5227 case MULT_EXPR:
5228 case MIN_EXPR:
5229 case MAX_EXPR:
5230 case BIT_IOR_EXPR:
5231 case BIT_XOR_EXPR:
5232 case BIT_AND_EXPR:
5233 case NE_EXPR:
5234 case EQ_EXPR:
5235 case UNORDERED_EXPR:
5236 case ORDERED_EXPR:
5237 case UNEQ_EXPR:
5238 case LTGT_EXPR:
5239 case TRUTH_AND_EXPR:
5240 case TRUTH_XOR_EXPR:
5241 case TRUTH_OR_EXPR:
5242 return true;
5243
5244 default:
5245 break;
5246 }
5247 return false;
5248 }
5249
5250 /* Generate a hash value for an expression. This can be used iteratively
5251 by passing a previous result as the "val" argument.
5252
5253 This function is intended to produce the same hash for expressions which
5254 would compare equal using operand_equal_p. */
5255
5256 hashval_t
5257 iterative_hash_expr (const_tree t, hashval_t val)
5258 {
5259 int i;
5260 enum tree_code code;
5261 char class;
5262
5263 if (t == NULL_TREE)
5264 return iterative_hash_pointer (t, val);
5265
5266 code = TREE_CODE (t);
5267
5268 switch (code)
5269 {
5270 /* Alas, constants aren't shared, so we can't rely on pointer
5271 identity. */
5272 case INTEGER_CST:
5273 val = iterative_hash_host_wide_int (TREE_INT_CST_LOW (t), val);
5274 return iterative_hash_host_wide_int (TREE_INT_CST_HIGH (t), val);
5275 case REAL_CST:
5276 {
5277 unsigned int val2 = real_hash (TREE_REAL_CST_PTR (t));
5278
5279 return iterative_hash_hashval_t (val2, val);
5280 }
5281 case FIXED_CST:
5282 {
5283 unsigned int val2 = fixed_hash (TREE_FIXED_CST_PTR (t));
5284
5285 return iterative_hash_hashval_t (val2, val);
5286 }
5287 case STRING_CST:
5288 return iterative_hash (TREE_STRING_POINTER (t),
5289 TREE_STRING_LENGTH (t), val);
5290 case COMPLEX_CST:
5291 val = iterative_hash_expr (TREE_REALPART (t), val);
5292 return iterative_hash_expr (TREE_IMAGPART (t), val);
5293 case VECTOR_CST:
5294 return iterative_hash_expr (TREE_VECTOR_CST_ELTS (t), val);
5295
5296 case SSA_NAME:
5297 case VALUE_HANDLE:
5298 /* we can just compare by pointer. */
5299 return iterative_hash_pointer (t, val);
5300
5301 case TREE_LIST:
5302 /* A list of expressions, for a CALL_EXPR or as the elements of a
5303 VECTOR_CST. */
5304 for (; t; t = TREE_CHAIN (t))
5305 val = iterative_hash_expr (TREE_VALUE (t), val);
5306 return val;
5307 case CONSTRUCTOR:
5308 {
5309 unsigned HOST_WIDE_INT idx;
5310 tree field, value;
5311 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t), idx, field, value)
5312 {
5313 val = iterative_hash_expr (field, val);
5314 val = iterative_hash_expr (value, val);
5315 }
5316 return val;
5317 }
5318 case FUNCTION_DECL:
5319 /* When referring to a built-in FUNCTION_DECL, use the
5320 __builtin__ form. Otherwise nodes that compare equal
5321 according to operand_equal_p might get different
5322 hash codes. */
5323 if (DECL_BUILT_IN (t))
5324 {
5325 val = iterative_hash_pointer (built_in_decls[DECL_FUNCTION_CODE (t)],
5326 val);
5327 return val;
5328 }
5329 /* else FALL THROUGH */
5330 default:
5331 class = TREE_CODE_CLASS (code);
5332
5333 if (class == tcc_declaration)
5334 {
5335 /* DECL's have a unique ID */
5336 val = iterative_hash_host_wide_int (DECL_UID (t), val);
5337 }
5338 else
5339 {
5340 gcc_assert (IS_EXPR_CODE_CLASS (class));
5341
5342 val = iterative_hash_object (code, val);
5343
5344 /* Don't hash the type, that can lead to having nodes which
5345 compare equal according to operand_equal_p, but which
5346 have different hash codes. */
5347 if (code == NOP_EXPR
5348 || code == CONVERT_EXPR
5349 || code == NON_LVALUE_EXPR)
5350 {
5351 /* Make sure to include signness in the hash computation. */
5352 val += TYPE_UNSIGNED (TREE_TYPE (t));
5353 val = iterative_hash_expr (TREE_OPERAND (t, 0), val);
5354 }
5355
5356 else if (commutative_tree_code (code))
5357 {
5358 /* It's a commutative expression. We want to hash it the same
5359 however it appears. We do this by first hashing both operands
5360 and then rehashing based on the order of their independent
5361 hashes. */
5362 hashval_t one = iterative_hash_expr (TREE_OPERAND (t, 0), 0);
5363 hashval_t two = iterative_hash_expr (TREE_OPERAND (t, 1), 0);
5364 hashval_t t;
5365
5366 if (one > two)
5367 t = one, one = two, two = t;
5368
5369 val = iterative_hash_hashval_t (one, val);
5370 val = iterative_hash_hashval_t (two, val);
5371 }
5372 else
5373 for (i = TREE_OPERAND_LENGTH (t) - 1; i >= 0; --i)
5374 val = iterative_hash_expr (TREE_OPERAND (t, i), val);
5375 }
5376 return val;
5377 break;
5378 }
5379 }
5380 \f
5381 /* Constructors for pointer, array and function types.
5382 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
5383 constructed by language-dependent code, not here.) */
5384
5385 /* Construct, lay out and return the type of pointers to TO_TYPE with
5386 mode MODE. If CAN_ALIAS_ALL is TRUE, indicate this type can
5387 reference all of memory. If such a type has already been
5388 constructed, reuse it. */
5389
5390 tree
5391 build_pointer_type_for_mode (tree to_type, enum machine_mode mode,
5392 bool can_alias_all)
5393 {
5394 tree t;
5395
5396 if (to_type == error_mark_node)
5397 return error_mark_node;
5398
5399 /* In some cases, languages will have things that aren't a POINTER_TYPE
5400 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
5401 In that case, return that type without regard to the rest of our
5402 operands.
5403
5404 ??? This is a kludge, but consistent with the way this function has
5405 always operated and there doesn't seem to be a good way to avoid this
5406 at the moment. */
5407 if (TYPE_POINTER_TO (to_type) != 0
5408 && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
5409 return TYPE_POINTER_TO (to_type);
5410
5411 /* First, if we already have a type for pointers to TO_TYPE and it's
5412 the proper mode, use it. */
5413 for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
5414 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
5415 return t;
5416
5417 t = make_node (POINTER_TYPE);
5418
5419 TREE_TYPE (t) = to_type;
5420 TYPE_MODE (t) = mode;
5421 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
5422 TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
5423 TYPE_POINTER_TO (to_type) = t;
5424
5425 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
5426 SET_TYPE_STRUCTURAL_EQUALITY (t);
5427 else if (TYPE_CANONICAL (to_type) != to_type)
5428 TYPE_CANONICAL (t)
5429 = build_pointer_type_for_mode (TYPE_CANONICAL (to_type),
5430 mode, can_alias_all);
5431
5432 /* Lay out the type. This function has many callers that are concerned
5433 with expression-construction, and this simplifies them all. */
5434 layout_type (t);
5435
5436 return t;
5437 }
5438
5439 /* By default build pointers in ptr_mode. */
5440
5441 tree
5442 build_pointer_type (tree to_type)
5443 {
5444 return build_pointer_type_for_mode (to_type, ptr_mode, false);
5445 }
5446
5447 /* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE. */
5448
5449 tree
5450 build_reference_type_for_mode (tree to_type, enum machine_mode mode,
5451 bool can_alias_all)
5452 {
5453 tree t;
5454
5455 /* In some cases, languages will have things that aren't a REFERENCE_TYPE
5456 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
5457 In that case, return that type without regard to the rest of our
5458 operands.
5459
5460 ??? This is a kludge, but consistent with the way this function has
5461 always operated and there doesn't seem to be a good way to avoid this
5462 at the moment. */
5463 if (TYPE_REFERENCE_TO (to_type) != 0
5464 && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
5465 return TYPE_REFERENCE_TO (to_type);
5466
5467 /* First, if we already have a type for pointers to TO_TYPE and it's
5468 the proper mode, use it. */
5469 for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
5470 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
5471 return t;
5472
5473 t = make_node (REFERENCE_TYPE);
5474
5475 TREE_TYPE (t) = to_type;
5476 TYPE_MODE (t) = mode;
5477 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
5478 TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
5479 TYPE_REFERENCE_TO (to_type) = t;
5480
5481 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
5482 SET_TYPE_STRUCTURAL_EQUALITY (t);
5483 else if (TYPE_CANONICAL (to_type) != to_type)
5484 TYPE_CANONICAL (t)
5485 = build_reference_type_for_mode (TYPE_CANONICAL (to_type),
5486 mode, can_alias_all);
5487
5488 layout_type (t);
5489
5490 return t;
5491 }
5492
5493
5494 /* Build the node for the type of references-to-TO_TYPE by default
5495 in ptr_mode. */
5496
5497 tree
5498 build_reference_type (tree to_type)
5499 {
5500 return build_reference_type_for_mode (to_type, ptr_mode, false);
5501 }
5502
5503 /* Build a type that is compatible with t but has no cv quals anywhere
5504 in its type, thus
5505
5506 const char *const *const * -> char ***. */
5507
5508 tree
5509 build_type_no_quals (tree t)
5510 {
5511 switch (TREE_CODE (t))
5512 {
5513 case POINTER_TYPE:
5514 return build_pointer_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
5515 TYPE_MODE (t),
5516 TYPE_REF_CAN_ALIAS_ALL (t));
5517 case REFERENCE_TYPE:
5518 return
5519 build_reference_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
5520 TYPE_MODE (t),
5521 TYPE_REF_CAN_ALIAS_ALL (t));
5522 default:
5523 return TYPE_MAIN_VARIANT (t);
5524 }
5525 }
5526
5527 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
5528 MAXVAL should be the maximum value in the domain
5529 (one less than the length of the array).
5530
5531 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
5532 We don't enforce this limit, that is up to caller (e.g. language front end).
5533 The limit exists because the result is a signed type and we don't handle
5534 sizes that use more than one HOST_WIDE_INT. */
5535
5536 tree
5537 build_index_type (tree maxval)
5538 {
5539 tree itype = make_node (INTEGER_TYPE);
5540
5541 TREE_TYPE (itype) = sizetype;
5542 TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
5543 TYPE_MIN_VALUE (itype) = size_zero_node;
5544 TYPE_MAX_VALUE (itype) = fold_convert (sizetype, maxval);
5545 TYPE_MODE (itype) = TYPE_MODE (sizetype);
5546 TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
5547 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (sizetype);
5548 TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
5549 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (sizetype);
5550
5551 if (host_integerp (maxval, 1))
5552 return type_hash_canon (tree_low_cst (maxval, 1), itype);
5553 else
5554 {
5555 /* Since we cannot hash this type, we need to compare it using
5556 structural equality checks. */
5557 SET_TYPE_STRUCTURAL_EQUALITY (itype);
5558 return itype;
5559 }
5560 }
5561
5562 /* Builds a signed or unsigned integer type of precision PRECISION.
5563 Used for C bitfields whose precision does not match that of
5564 built-in target types. */
5565 tree
5566 build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
5567 int unsignedp)
5568 {
5569 tree itype = make_node (INTEGER_TYPE);
5570
5571 TYPE_PRECISION (itype) = precision;
5572
5573 if (unsignedp)
5574 fixup_unsigned_type (itype);
5575 else
5576 fixup_signed_type (itype);
5577
5578 if (host_integerp (TYPE_MAX_VALUE (itype), 1))
5579 return type_hash_canon (tree_low_cst (TYPE_MAX_VALUE (itype), 1), itype);
5580
5581 return itype;
5582 }
5583
5584 /* Create a range of some discrete type TYPE (an INTEGER_TYPE,
5585 ENUMERAL_TYPE or BOOLEAN_TYPE), with low bound LOWVAL and
5586 high bound HIGHVAL. If TYPE is NULL, sizetype is used. */
5587
5588 tree
5589 build_range_type (tree type, tree lowval, tree highval)
5590 {
5591 tree itype = make_node (INTEGER_TYPE);
5592
5593 TREE_TYPE (itype) = type;
5594 if (type == NULL_TREE)
5595 type = sizetype;
5596
5597 TYPE_MIN_VALUE (itype) = fold_convert (type, lowval);
5598 TYPE_MAX_VALUE (itype) = highval ? fold_convert (type, highval) : NULL;
5599
5600 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
5601 TYPE_MODE (itype) = TYPE_MODE (type);
5602 TYPE_SIZE (itype) = TYPE_SIZE (type);
5603 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
5604 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
5605 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
5606
5607 if (host_integerp (lowval, 0) && highval != 0 && host_integerp (highval, 0))
5608 return type_hash_canon (tree_low_cst (highval, 0)
5609 - tree_low_cst (lowval, 0),
5610 itype);
5611 else
5612 return itype;
5613 }
5614
5615 /* Just like build_index_type, but takes lowval and highval instead
5616 of just highval (maxval). */
5617
5618 tree
5619 build_index_2_type (tree lowval, tree highval)
5620 {
5621 return build_range_type (sizetype, lowval, highval);
5622 }
5623
5624 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
5625 and number of elements specified by the range of values of INDEX_TYPE.
5626 If such a type has already been constructed, reuse it. */
5627
5628 tree
5629 build_array_type (tree elt_type, tree index_type)
5630 {
5631 tree t;
5632 hashval_t hashcode = 0;
5633
5634 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
5635 {
5636 error ("arrays of functions are not meaningful");
5637 elt_type = integer_type_node;
5638 }
5639
5640 t = make_node (ARRAY_TYPE);
5641 TREE_TYPE (t) = elt_type;
5642 TYPE_DOMAIN (t) = index_type;
5643
5644 if (index_type == 0)
5645 {
5646 tree save = t;
5647 hashcode = iterative_hash_object (TYPE_HASH (elt_type), hashcode);
5648 t = type_hash_canon (hashcode, t);
5649 if (save == t)
5650 layout_type (t);
5651
5652 if (TYPE_CANONICAL (t) == t)
5653 {
5654 if (TYPE_STRUCTURAL_EQUALITY_P (elt_type))
5655 SET_TYPE_STRUCTURAL_EQUALITY (t);
5656 else if (TYPE_CANONICAL (elt_type) != elt_type)
5657 TYPE_CANONICAL (t)
5658 = build_array_type (TYPE_CANONICAL (elt_type), index_type);
5659 }
5660
5661 return t;
5662 }
5663
5664 hashcode = iterative_hash_object (TYPE_HASH (elt_type), hashcode);
5665 hashcode = iterative_hash_object (TYPE_HASH (index_type), hashcode);
5666 t = type_hash_canon (hashcode, t);
5667
5668 if (!COMPLETE_TYPE_P (t))
5669 layout_type (t);
5670
5671 if (TYPE_CANONICAL (t) == t)
5672 {
5673 if (TYPE_STRUCTURAL_EQUALITY_P (elt_type)
5674 || TYPE_STRUCTURAL_EQUALITY_P (index_type))
5675 SET_TYPE_STRUCTURAL_EQUALITY (t);
5676 else if (TYPE_CANONICAL (elt_type) != elt_type
5677 || TYPE_CANONICAL (index_type) != index_type)
5678 TYPE_CANONICAL (t)
5679 = build_array_type (TYPE_CANONICAL (elt_type),
5680 TYPE_CANONICAL (index_type));
5681 }
5682
5683 return t;
5684 }
5685
5686 /* Return the TYPE of the elements comprising
5687 the innermost dimension of ARRAY. */
5688
5689 tree
5690 get_inner_array_type (const_tree array)
5691 {
5692 tree type = TREE_TYPE (array);
5693
5694 while (TREE_CODE (type) == ARRAY_TYPE)
5695 type = TREE_TYPE (type);
5696
5697 return type;
5698 }
5699
5700 /* Computes the canonical argument types from the argument type list
5701 ARGTYPES.
5702
5703 Upon return, *ANY_STRUCTURAL_P will be true iff either it was true
5704 on entry to this function, or if any of the ARGTYPES are
5705 structural.
5706
5707 Upon return, *ANY_NONCANONICAL_P will be true iff either it was
5708 true on entry to this function, or if any of the ARGTYPES are
5709 non-canonical.
5710
5711 Returns a canonical argument list, which may be ARGTYPES when the
5712 canonical argument list is unneeded (i.e., *ANY_STRUCTURAL_P is
5713 true) or would not differ from ARGTYPES. */
5714
5715 static tree
5716 maybe_canonicalize_argtypes(tree argtypes,
5717 bool *any_structural_p,
5718 bool *any_noncanonical_p)
5719 {
5720 tree arg;
5721 bool any_noncanonical_argtypes_p = false;
5722
5723 for (arg = argtypes; arg && !(*any_structural_p); arg = TREE_CHAIN (arg))
5724 {
5725 if (!TREE_VALUE (arg) || TREE_VALUE (arg) == error_mark_node)
5726 /* Fail gracefully by stating that the type is structural. */
5727 *any_structural_p = true;
5728 else if (TYPE_STRUCTURAL_EQUALITY_P (TREE_VALUE (arg)))
5729 *any_structural_p = true;
5730 else if (TYPE_CANONICAL (TREE_VALUE (arg)) != TREE_VALUE (arg)
5731 || TREE_PURPOSE (arg))
5732 /* If the argument has a default argument, we consider it
5733 non-canonical even though the type itself is canonical.
5734 That way, different variants of function and method types
5735 with default arguments will all point to the variant with
5736 no defaults as their canonical type. */
5737 any_noncanonical_argtypes_p = true;
5738 }
5739
5740 if (*any_structural_p)
5741 return argtypes;
5742
5743 if (any_noncanonical_argtypes_p)
5744 {
5745 /* Build the canonical list of argument types. */
5746 tree canon_argtypes = NULL_TREE;
5747 bool is_void = false;
5748
5749 for (arg = argtypes; arg; arg = TREE_CHAIN (arg))
5750 {
5751 if (arg == void_list_node)
5752 is_void = true;
5753 else
5754 canon_argtypes = tree_cons (NULL_TREE,
5755 TYPE_CANONICAL (TREE_VALUE (arg)),
5756 canon_argtypes);
5757 }
5758
5759 canon_argtypes = nreverse (canon_argtypes);
5760 if (is_void)
5761 canon_argtypes = chainon (canon_argtypes, void_list_node);
5762
5763 /* There is a non-canonical type. */
5764 *any_noncanonical_p = true;
5765 return canon_argtypes;
5766 }
5767
5768 /* The canonical argument types are the same as ARGTYPES. */
5769 return argtypes;
5770 }
5771
5772 /* Construct, lay out and return
5773 the type of functions returning type VALUE_TYPE
5774 given arguments of types ARG_TYPES.
5775 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
5776 are data type nodes for the arguments of the function.
5777 If such a type has already been constructed, reuse it. */
5778
5779 tree
5780 build_function_type (tree value_type, tree arg_types)
5781 {
5782 tree t;
5783 hashval_t hashcode = 0;
5784 bool any_structural_p, any_noncanonical_p;
5785 tree canon_argtypes;
5786
5787 if (TREE_CODE (value_type) == FUNCTION_TYPE)
5788 {
5789 error ("function return type cannot be function");
5790 value_type = integer_type_node;
5791 }
5792
5793 /* Make a node of the sort we want. */
5794 t = make_node (FUNCTION_TYPE);
5795 TREE_TYPE (t) = value_type;
5796 TYPE_ARG_TYPES (t) = arg_types;
5797
5798 /* If we already have such a type, use the old one. */
5799 hashcode = iterative_hash_object (TYPE_HASH (value_type), hashcode);
5800 hashcode = type_hash_list (arg_types, hashcode);
5801 t = type_hash_canon (hashcode, t);
5802
5803 /* Set up the canonical type. */
5804 any_structural_p = TYPE_STRUCTURAL_EQUALITY_P (value_type);
5805 any_noncanonical_p = TYPE_CANONICAL (value_type) != value_type;
5806 canon_argtypes = maybe_canonicalize_argtypes (arg_types,
5807 &any_structural_p,
5808 &any_noncanonical_p);
5809 if (any_structural_p)
5810 SET_TYPE_STRUCTURAL_EQUALITY (t);
5811 else if (any_noncanonical_p)
5812 TYPE_CANONICAL (t) = build_function_type (TYPE_CANONICAL (value_type),
5813 canon_argtypes);
5814
5815 if (!COMPLETE_TYPE_P (t))
5816 layout_type (t);
5817 return t;
5818 }
5819
5820 /* Build a function type. The RETURN_TYPE is the type returned by the
5821 function. If additional arguments are provided, they are
5822 additional argument types. The list of argument types must always
5823 be terminated by NULL_TREE. */
5824
5825 tree
5826 build_function_type_list (tree return_type, ...)
5827 {
5828 tree t, args, last;
5829 va_list p;
5830
5831 va_start (p, return_type);
5832
5833 t = va_arg (p, tree);
5834 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (p, tree))
5835 args = tree_cons (NULL_TREE, t, args);
5836
5837 if (args == NULL_TREE)
5838 args = void_list_node;
5839 else
5840 {
5841 last = args;
5842 args = nreverse (args);
5843 TREE_CHAIN (last) = void_list_node;
5844 }
5845 args = build_function_type (return_type, args);
5846
5847 va_end (p);
5848 return args;
5849 }
5850
5851 /* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
5852 and ARGTYPES (a TREE_LIST) are the return type and arguments types
5853 for the method. An implicit additional parameter (of type
5854 pointer-to-BASETYPE) is added to the ARGTYPES. */
5855
5856 tree
5857 build_method_type_directly (tree basetype,
5858 tree rettype,
5859 tree argtypes)
5860 {
5861 tree t;
5862 tree ptype;
5863 int hashcode = 0;
5864 bool any_structural_p, any_noncanonical_p;
5865 tree canon_argtypes;
5866
5867 /* Make a node of the sort we want. */
5868 t = make_node (METHOD_TYPE);
5869
5870 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
5871 TREE_TYPE (t) = rettype;
5872 ptype = build_pointer_type (basetype);
5873
5874 /* The actual arglist for this function includes a "hidden" argument
5875 which is "this". Put it into the list of argument types. */
5876 argtypes = tree_cons (NULL_TREE, ptype, argtypes);
5877 TYPE_ARG_TYPES (t) = argtypes;
5878
5879 /* If we already have such a type, use the old one. */
5880 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
5881 hashcode = iterative_hash_object (TYPE_HASH (rettype), hashcode);
5882 hashcode = type_hash_list (argtypes, hashcode);
5883 t = type_hash_canon (hashcode, t);
5884
5885 /* Set up the canonical type. */
5886 any_structural_p
5887 = (TYPE_STRUCTURAL_EQUALITY_P (basetype)
5888 || TYPE_STRUCTURAL_EQUALITY_P (rettype));
5889 any_noncanonical_p
5890 = (TYPE_CANONICAL (basetype) != basetype
5891 || TYPE_CANONICAL (rettype) != rettype);
5892 canon_argtypes = maybe_canonicalize_argtypes (TREE_CHAIN (argtypes),
5893 &any_structural_p,
5894 &any_noncanonical_p);
5895 if (any_structural_p)
5896 SET_TYPE_STRUCTURAL_EQUALITY (t);
5897 else if (any_noncanonical_p)
5898 TYPE_CANONICAL (t)
5899 = build_method_type_directly (TYPE_CANONICAL (basetype),
5900 TYPE_CANONICAL (rettype),
5901 canon_argtypes);
5902 if (!COMPLETE_TYPE_P (t))
5903 layout_type (t);
5904
5905 return t;
5906 }
5907
5908 /* Construct, lay out and return the type of methods belonging to class
5909 BASETYPE and whose arguments and values are described by TYPE.
5910 If that type exists already, reuse it.
5911 TYPE must be a FUNCTION_TYPE node. */
5912
5913 tree
5914 build_method_type (tree basetype, tree type)
5915 {
5916 gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
5917
5918 return build_method_type_directly (basetype,
5919 TREE_TYPE (type),
5920 TYPE_ARG_TYPES (type));
5921 }
5922
5923 /* Construct, lay out and return the type of offsets to a value
5924 of type TYPE, within an object of type BASETYPE.
5925 If a suitable offset type exists already, reuse it. */
5926
5927 tree
5928 build_offset_type (tree basetype, tree type)
5929 {
5930 tree t;
5931 hashval_t hashcode = 0;
5932
5933 /* Make a node of the sort we want. */
5934 t = make_node (OFFSET_TYPE);
5935
5936 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
5937 TREE_TYPE (t) = type;
5938
5939 /* If we already have such a type, use the old one. */
5940 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
5941 hashcode = iterative_hash_object (TYPE_HASH (type), hashcode);
5942 t = type_hash_canon (hashcode, t);
5943
5944 if (!COMPLETE_TYPE_P (t))
5945 layout_type (t);
5946
5947 if (TYPE_CANONICAL (t) == t)
5948 {
5949 if (TYPE_STRUCTURAL_EQUALITY_P (basetype)
5950 || TYPE_STRUCTURAL_EQUALITY_P (type))
5951 SET_TYPE_STRUCTURAL_EQUALITY (t);
5952 else if (TYPE_CANONICAL (basetype) != basetype
5953 || TYPE_CANONICAL (type) != type)
5954 TYPE_CANONICAL (t)
5955 = build_offset_type (TYPE_CANONICAL (basetype),
5956 TYPE_CANONICAL (type));
5957 }
5958
5959 return t;
5960 }
5961
5962 /* Create a complex type whose components are COMPONENT_TYPE. */
5963
5964 tree
5965 build_complex_type (tree component_type)
5966 {
5967 tree t;
5968 hashval_t hashcode;
5969
5970 /* Make a node of the sort we want. */
5971 t = make_node (COMPLEX_TYPE);
5972
5973 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
5974
5975 /* If we already have such a type, use the old one. */
5976 hashcode = iterative_hash_object (TYPE_HASH (component_type), 0);
5977 t = type_hash_canon (hashcode, t);
5978
5979 if (!COMPLETE_TYPE_P (t))
5980 layout_type (t);
5981
5982 if (TYPE_CANONICAL (t) == t)
5983 {
5984 if (TYPE_STRUCTURAL_EQUALITY_P (component_type))
5985 SET_TYPE_STRUCTURAL_EQUALITY (t);
5986 else if (TYPE_CANONICAL (component_type) != component_type)
5987 TYPE_CANONICAL (t)
5988 = build_complex_type (TYPE_CANONICAL (component_type));
5989 }
5990
5991 /* We need to create a name, since complex is a fundamental type. */
5992 if (! TYPE_NAME (t))
5993 {
5994 const char *name;
5995 if (component_type == char_type_node)
5996 name = "complex char";
5997 else if (component_type == signed_char_type_node)
5998 name = "complex signed char";
5999 else if (component_type == unsigned_char_type_node)
6000 name = "complex unsigned char";
6001 else if (component_type == short_integer_type_node)
6002 name = "complex short int";
6003 else if (component_type == short_unsigned_type_node)
6004 name = "complex short unsigned int";
6005 else if (component_type == integer_type_node)
6006 name = "complex int";
6007 else if (component_type == unsigned_type_node)
6008 name = "complex unsigned int";
6009 else if (component_type == long_integer_type_node)
6010 name = "complex long int";
6011 else if (component_type == long_unsigned_type_node)
6012 name = "complex long unsigned int";
6013 else if (component_type == long_long_integer_type_node)
6014 name = "complex long long int";
6015 else if (component_type == long_long_unsigned_type_node)
6016 name = "complex long long unsigned int";
6017 else
6018 name = 0;
6019
6020 if (name != 0)
6021 TYPE_NAME (t) = build_decl (TYPE_DECL, get_identifier (name), t);
6022 }
6023
6024 return build_qualified_type (t, TYPE_QUALS (component_type));
6025 }
6026 \f
6027 /* Return OP, stripped of any conversions to wider types as much as is safe.
6028 Converting the value back to OP's type makes a value equivalent to OP.
6029
6030 If FOR_TYPE is nonzero, we return a value which, if converted to
6031 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
6032
6033 If FOR_TYPE is nonzero, unaligned bit-field references may be changed to the
6034 narrowest type that can hold the value, even if they don't exactly fit.
6035 Otherwise, bit-field references are changed to a narrower type
6036 only if they can be fetched directly from memory in that type.
6037
6038 OP must have integer, real or enumeral type. Pointers are not allowed!
6039
6040 There are some cases where the obvious value we could return
6041 would regenerate to OP if converted to OP's type,
6042 but would not extend like OP to wider types.
6043 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
6044 For example, if OP is (unsigned short)(signed char)-1,
6045 we avoid returning (signed char)-1 if FOR_TYPE is int,
6046 even though extending that to an unsigned short would regenerate OP,
6047 since the result of extending (signed char)-1 to (int)
6048 is different from (int) OP. */
6049
6050 tree
6051 get_unwidened (tree op, tree for_type)
6052 {
6053 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
6054 tree type = TREE_TYPE (op);
6055 unsigned final_prec
6056 = TYPE_PRECISION (for_type != 0 ? for_type : type);
6057 int uns
6058 = (for_type != 0 && for_type != type
6059 && final_prec > TYPE_PRECISION (type)
6060 && TYPE_UNSIGNED (type));
6061 tree win = op;
6062
6063 while (TREE_CODE (op) == NOP_EXPR
6064 || TREE_CODE (op) == CONVERT_EXPR)
6065 {
6066 int bitschange;
6067
6068 /* TYPE_PRECISION on vector types has different meaning
6069 (TYPE_VECTOR_SUBPARTS) and casts from vectors are view conversions,
6070 so avoid them here. */
6071 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == VECTOR_TYPE)
6072 break;
6073
6074 bitschange = TYPE_PRECISION (TREE_TYPE (op))
6075 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
6076
6077 /* Truncations are many-one so cannot be removed.
6078 Unless we are later going to truncate down even farther. */
6079 if (bitschange < 0
6080 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
6081 break;
6082
6083 /* See what's inside this conversion. If we decide to strip it,
6084 we will set WIN. */
6085 op = TREE_OPERAND (op, 0);
6086
6087 /* If we have not stripped any zero-extensions (uns is 0),
6088 we can strip any kind of extension.
6089 If we have previously stripped a zero-extension,
6090 only zero-extensions can safely be stripped.
6091 Any extension can be stripped if the bits it would produce
6092 are all going to be discarded later by truncating to FOR_TYPE. */
6093
6094 if (bitschange > 0)
6095 {
6096 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
6097 win = op;
6098 /* TYPE_UNSIGNED says whether this is a zero-extension.
6099 Let's avoid computing it if it does not affect WIN
6100 and if UNS will not be needed again. */
6101 if ((uns
6102 || TREE_CODE (op) == NOP_EXPR
6103 || TREE_CODE (op) == CONVERT_EXPR)
6104 && TYPE_UNSIGNED (TREE_TYPE (op)))
6105 {
6106 uns = 1;
6107 win = op;
6108 }
6109 }
6110 }
6111
6112 if (TREE_CODE (op) == COMPONENT_REF
6113 /* Since type_for_size always gives an integer type. */
6114 && TREE_CODE (type) != REAL_TYPE
6115 && TREE_CODE (type) != FIXED_POINT_TYPE
6116 /* Don't crash if field not laid out yet. */
6117 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
6118 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
6119 {
6120 unsigned int innerprec
6121 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
6122 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
6123 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
6124 type = lang_hooks.types.type_for_size (innerprec, unsignedp);
6125
6126 /* We can get this structure field in the narrowest type it fits in.
6127 If FOR_TYPE is 0, do this only for a field that matches the
6128 narrower type exactly and is aligned for it
6129 The resulting extension to its nominal type (a fullword type)
6130 must fit the same conditions as for other extensions. */
6131
6132 if (type != 0
6133 && INT_CST_LT_UNSIGNED (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (op)))
6134 && (for_type || ! DECL_BIT_FIELD (TREE_OPERAND (op, 1)))
6135 && (! uns || final_prec <= innerprec || unsignedp))
6136 {
6137 win = build3 (COMPONENT_REF, type, TREE_OPERAND (op, 0),
6138 TREE_OPERAND (op, 1), NULL_TREE);
6139 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
6140 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
6141 }
6142 }
6143
6144 return win;
6145 }
6146 \f
6147 /* Return OP or a simpler expression for a narrower value
6148 which can be sign-extended or zero-extended to give back OP.
6149 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
6150 or 0 if the value should be sign-extended. */
6151
6152 tree
6153 get_narrower (tree op, int *unsignedp_ptr)
6154 {
6155 int uns = 0;
6156 int first = 1;
6157 tree win = op;
6158 bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));
6159
6160 while (TREE_CODE (op) == NOP_EXPR)
6161 {
6162 int bitschange
6163 = (TYPE_PRECISION (TREE_TYPE (op))
6164 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
6165
6166 /* Truncations are many-one so cannot be removed. */
6167 if (bitschange < 0)
6168 break;
6169
6170 /* See what's inside this conversion. If we decide to strip it,
6171 we will set WIN. */
6172
6173 if (bitschange > 0)
6174 {
6175 op = TREE_OPERAND (op, 0);
6176 /* An extension: the outermost one can be stripped,
6177 but remember whether it is zero or sign extension. */
6178 if (first)
6179 uns = TYPE_UNSIGNED (TREE_TYPE (op));
6180 /* Otherwise, if a sign extension has been stripped,
6181 only sign extensions can now be stripped;
6182 if a zero extension has been stripped, only zero-extensions. */
6183 else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
6184 break;
6185 first = 0;
6186 }
6187 else /* bitschange == 0 */
6188 {
6189 /* A change in nominal type can always be stripped, but we must
6190 preserve the unsignedness. */
6191 if (first)
6192 uns = TYPE_UNSIGNED (TREE_TYPE (op));
6193 first = 0;
6194 op = TREE_OPERAND (op, 0);
6195 /* Keep trying to narrow, but don't assign op to win if it
6196 would turn an integral type into something else. */
6197 if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
6198 continue;
6199 }
6200
6201 win = op;
6202 }
6203
6204 if (TREE_CODE (op) == COMPONENT_REF
6205 /* Since type_for_size always gives an integer type. */
6206 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
6207 && TREE_CODE (TREE_TYPE (op)) != FIXED_POINT_TYPE
6208 /* Ensure field is laid out already. */
6209 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
6210 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
6211 {
6212 unsigned HOST_WIDE_INT innerprec
6213 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
6214 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
6215 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
6216 tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
6217
6218 /* We can get this structure field in a narrower type that fits it,
6219 but the resulting extension to its nominal type (a fullword type)
6220 must satisfy the same conditions as for other extensions.
6221
6222 Do this only for fields that are aligned (not bit-fields),
6223 because when bit-field insns will be used there is no
6224 advantage in doing this. */
6225
6226 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
6227 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
6228 && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
6229 && type != 0)
6230 {
6231 if (first)
6232 uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
6233 win = fold_convert (type, op);
6234 }
6235 }
6236
6237 *unsignedp_ptr = uns;
6238 return win;
6239 }
6240 \f
6241 /* Nonzero if integer constant C has a value that is permissible
6242 for type TYPE (an INTEGER_TYPE). */
6243
6244 int
6245 int_fits_type_p (const_tree c, const_tree type)
6246 {
6247 tree type_low_bound = TYPE_MIN_VALUE (type);
6248 tree type_high_bound = TYPE_MAX_VALUE (type);
6249 bool ok_for_low_bound, ok_for_high_bound;
6250 unsigned HOST_WIDE_INT low;
6251 HOST_WIDE_INT high;
6252
6253 /* If at least one bound of the type is a constant integer, we can check
6254 ourselves and maybe make a decision. If no such decision is possible, but
6255 this type is a subtype, try checking against that. Otherwise, use
6256 fit_double_type, which checks against the precision.
6257
6258 Compute the status for each possibly constant bound, and return if we see
6259 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
6260 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
6261 for "constant known to fit". */
6262
6263 /* Check if C >= type_low_bound. */
6264 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
6265 {
6266 if (tree_int_cst_lt (c, type_low_bound))
6267 return 0;
6268 ok_for_low_bound = true;
6269 }
6270 else
6271 ok_for_low_bound = false;
6272
6273 /* Check if c <= type_high_bound. */
6274 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
6275 {
6276 if (tree_int_cst_lt (type_high_bound, c))
6277 return 0;
6278 ok_for_high_bound = true;
6279 }
6280 else
6281 ok_for_high_bound = false;
6282
6283 /* If the constant fits both bounds, the result is known. */
6284 if (ok_for_low_bound && ok_for_high_bound)
6285 return 1;
6286
6287 /* Perform some generic filtering which may allow making a decision
6288 even if the bounds are not constant. First, negative integers
6289 never fit in unsigned types, */
6290 if (TYPE_UNSIGNED (type) && tree_int_cst_sgn (c) < 0)
6291 return 0;
6292
6293 /* Second, narrower types always fit in wider ones. */
6294 if (TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (c)))
6295 return 1;
6296
6297 /* Third, unsigned integers with top bit set never fit signed types. */
6298 if (! TYPE_UNSIGNED (type)
6299 && TYPE_UNSIGNED (TREE_TYPE (c))
6300 && tree_int_cst_msb (c))
6301 return 0;
6302
6303 /* If we haven't been able to decide at this point, there nothing more we
6304 can check ourselves here. Look at the base type if we have one and it
6305 has the same precision. */
6306 if (TREE_CODE (type) == INTEGER_TYPE
6307 && TREE_TYPE (type) != 0
6308 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (type)))
6309 return int_fits_type_p (c, TREE_TYPE (type));
6310
6311 /* Or to fit_double_type, if nothing else. */
6312 low = TREE_INT_CST_LOW (c);
6313 high = TREE_INT_CST_HIGH (c);
6314 return !fit_double_type (low, high, &low, &high, type);
6315 }
6316
6317 /* Stores bounds of an integer TYPE in MIN and MAX. If TYPE has non-constant
6318 bounds or is a POINTER_TYPE, the maximum and/or minimum values that can be
6319 represented (assuming two's-complement arithmetic) within the bit
6320 precision of the type are returned instead. */
6321
6322 void
6323 get_type_static_bounds (const_tree type, mpz_t min, mpz_t max)
6324 {
6325 if (!POINTER_TYPE_P (type) && TYPE_MIN_VALUE (type)
6326 && TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST)
6327 mpz_set_double_int (min, tree_to_double_int (TYPE_MIN_VALUE (type)),
6328 TYPE_UNSIGNED (type));
6329 else
6330 {
6331 if (TYPE_UNSIGNED (type))
6332 mpz_set_ui (min, 0);
6333 else
6334 {
6335 double_int mn;
6336 mn = double_int_mask (TYPE_PRECISION (type) - 1);
6337 mn = double_int_sext (double_int_add (mn, double_int_one),
6338 TYPE_PRECISION (type));
6339 mpz_set_double_int (min, mn, false);
6340 }
6341 }
6342
6343 if (!POINTER_TYPE_P (type) && TYPE_MAX_VALUE (type)
6344 && TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST)
6345 mpz_set_double_int (max, tree_to_double_int (TYPE_MAX_VALUE (type)),
6346 TYPE_UNSIGNED (type));
6347 else
6348 {
6349 if (TYPE_UNSIGNED (type))
6350 mpz_set_double_int (max, double_int_mask (TYPE_PRECISION (type)),
6351 true);
6352 else
6353 mpz_set_double_int (max, double_int_mask (TYPE_PRECISION (type) - 1),
6354 true);
6355 }
6356 }
6357
6358 /* auto_var_in_fn_p is called to determine whether VAR is an automatic
6359 variable defined in function FN. */
6360
6361 bool
6362 auto_var_in_fn_p (const_tree var, const_tree fn)
6363 {
6364 return (DECL_P (var) && DECL_CONTEXT (var) == fn
6365 && (((TREE_CODE (var) == VAR_DECL || TREE_CODE (var) == PARM_DECL)
6366 && ! TREE_STATIC (var))
6367 || TREE_CODE (var) == LABEL_DECL
6368 || TREE_CODE (var) == RESULT_DECL));
6369 }
6370
6371 /* Subprogram of following function. Called by walk_tree.
6372
6373 Return *TP if it is an automatic variable or parameter of the
6374 function passed in as DATA. */
6375
6376 static tree
6377 find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
6378 {
6379 tree fn = (tree) data;
6380
6381 if (TYPE_P (*tp))
6382 *walk_subtrees = 0;
6383
6384 else if (DECL_P (*tp)
6385 && auto_var_in_fn_p (*tp, fn))
6386 return *tp;
6387
6388 return NULL_TREE;
6389 }
6390
6391 /* Returns true if T is, contains, or refers to a type with variable
6392 size. For METHOD_TYPEs and FUNCTION_TYPEs we exclude the
6393 arguments, but not the return type. If FN is nonzero, only return
6394 true if a modifier of the type or position of FN is a variable or
6395 parameter inside FN.
6396
6397 This concept is more general than that of C99 'variably modified types':
6398 in C99, a struct type is never variably modified because a VLA may not
6399 appear as a structure member. However, in GNU C code like:
6400
6401 struct S { int i[f()]; };
6402
6403 is valid, and other languages may define similar constructs. */
6404
6405 bool
6406 variably_modified_type_p (tree type, tree fn)
6407 {
6408 tree t;
6409
6410 /* Test if T is either variable (if FN is zero) or an expression containing
6411 a variable in FN. */
6412 #define RETURN_TRUE_IF_VAR(T) \
6413 do { tree _t = (T); \
6414 if (_t && _t != error_mark_node && TREE_CODE (_t) != INTEGER_CST \
6415 && (!fn || walk_tree (&_t, find_var_from_fn, fn, NULL))) \
6416 return true; } while (0)
6417
6418 if (type == error_mark_node)
6419 return false;
6420
6421 /* If TYPE itself has variable size, it is variably modified. */
6422 RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
6423 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (type));
6424
6425 switch (TREE_CODE (type))
6426 {
6427 case POINTER_TYPE:
6428 case REFERENCE_TYPE:
6429 case VECTOR_TYPE:
6430 if (variably_modified_type_p (TREE_TYPE (type), fn))
6431 return true;
6432 break;
6433
6434 case FUNCTION_TYPE:
6435 case METHOD_TYPE:
6436 /* If TYPE is a function type, it is variably modified if the
6437 return type is variably modified. */
6438 if (variably_modified_type_p (TREE_TYPE (type), fn))
6439 return true;
6440 break;
6441
6442 case INTEGER_TYPE:
6443 case REAL_TYPE:
6444 case FIXED_POINT_TYPE:
6445 case ENUMERAL_TYPE:
6446 case BOOLEAN_TYPE:
6447 /* Scalar types are variably modified if their end points
6448 aren't constant. */
6449 RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
6450 RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
6451 break;
6452
6453 case RECORD_TYPE:
6454 case UNION_TYPE:
6455 case QUAL_UNION_TYPE:
6456 /* We can't see if any of the fields are variably-modified by the
6457 definition we normally use, since that would produce infinite
6458 recursion via pointers. */
6459 /* This is variably modified if some field's type is. */
6460 for (t = TYPE_FIELDS (type); t; t = TREE_CHAIN (t))
6461 if (TREE_CODE (t) == FIELD_DECL)
6462 {
6463 RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
6464 RETURN_TRUE_IF_VAR (DECL_SIZE (t));
6465 RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));
6466
6467 if (TREE_CODE (type) == QUAL_UNION_TYPE)
6468 RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));
6469 }
6470 break;
6471
6472 case ARRAY_TYPE:
6473 /* Do not call ourselves to avoid infinite recursion. This is
6474 variably modified if the element type is. */
6475 RETURN_TRUE_IF_VAR (TYPE_SIZE (TREE_TYPE (type)));
6476 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (TREE_TYPE (type)));
6477 break;
6478
6479 default:
6480 break;
6481 }
6482
6483 /* The current language may have other cases to check, but in general,
6484 all other types are not variably modified. */
6485 return lang_hooks.tree_inlining.var_mod_type_p (type, fn);
6486
6487 #undef RETURN_TRUE_IF_VAR
6488 }
6489
6490 /* Given a DECL or TYPE, return the scope in which it was declared, or
6491 NULL_TREE if there is no containing scope. */
6492
6493 tree
6494 get_containing_scope (const_tree t)
6495 {
6496 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
6497 }
6498
6499 /* Return the innermost context enclosing DECL that is
6500 a FUNCTION_DECL, or zero if none. */
6501
6502 tree
6503 decl_function_context (const_tree decl)
6504 {
6505 tree context;
6506
6507 if (TREE_CODE (decl) == ERROR_MARK)
6508 return 0;
6509
6510 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
6511 where we look up the function at runtime. Such functions always take
6512 a first argument of type 'pointer to real context'.
6513
6514 C++ should really be fixed to use DECL_CONTEXT for the real context,
6515 and use something else for the "virtual context". */
6516 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
6517 context
6518 = TYPE_MAIN_VARIANT
6519 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
6520 else
6521 context = DECL_CONTEXT (decl);
6522
6523 while (context && TREE_CODE (context) != FUNCTION_DECL)
6524 {
6525 if (TREE_CODE (context) == BLOCK)
6526 context = BLOCK_SUPERCONTEXT (context);
6527 else
6528 context = get_containing_scope (context);
6529 }
6530
6531 return context;
6532 }
6533
6534 /* Return the innermost context enclosing DECL that is
6535 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
6536 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
6537
6538 tree
6539 decl_type_context (const_tree decl)
6540 {
6541 tree context = DECL_CONTEXT (decl);
6542
6543 while (context)
6544 switch (TREE_CODE (context))
6545 {
6546 case NAMESPACE_DECL:
6547 case TRANSLATION_UNIT_DECL:
6548 return NULL_TREE;
6549
6550 case RECORD_TYPE:
6551 case UNION_TYPE:
6552 case QUAL_UNION_TYPE:
6553 return context;
6554
6555 case TYPE_DECL:
6556 case FUNCTION_DECL:
6557 context = DECL_CONTEXT (context);
6558 break;
6559
6560 case BLOCK:
6561 context = BLOCK_SUPERCONTEXT (context);
6562 break;
6563
6564 default:
6565 gcc_unreachable ();
6566 }
6567
6568 return NULL_TREE;
6569 }
6570
6571 /* CALL is a CALL_EXPR. Return the declaration for the function
6572 called, or NULL_TREE if the called function cannot be
6573 determined. */
6574
6575 tree
6576 get_callee_fndecl (const_tree call)
6577 {
6578 tree addr;
6579
6580 if (call == error_mark_node)
6581 return error_mark_node;
6582
6583 /* It's invalid to call this function with anything but a
6584 CALL_EXPR. */
6585 gcc_assert (TREE_CODE (call) == CALL_EXPR);
6586
6587 /* The first operand to the CALL is the address of the function
6588 called. */
6589 addr = CALL_EXPR_FN (call);
6590
6591 STRIP_NOPS (addr);
6592
6593 /* If this is a readonly function pointer, extract its initial value. */
6594 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
6595 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
6596 && DECL_INITIAL (addr))
6597 addr = DECL_INITIAL (addr);
6598
6599 /* If the address is just `&f' for some function `f', then we know
6600 that `f' is being called. */
6601 if (TREE_CODE (addr) == ADDR_EXPR
6602 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
6603 return TREE_OPERAND (addr, 0);
6604
6605 /* We couldn't figure out what was being called. Maybe the front
6606 end has some idea. */
6607 return lang_hooks.lang_get_callee_fndecl (call);
6608 }
6609
6610 /* Print debugging information about tree nodes generated during the compile,
6611 and any language-specific information. */
6612
6613 void
6614 dump_tree_statistics (void)
6615 {
6616 #ifdef GATHER_STATISTICS
6617 int i;
6618 int total_nodes, total_bytes;
6619 #endif
6620
6621 fprintf (stderr, "\n??? tree nodes created\n\n");
6622 #ifdef GATHER_STATISTICS
6623 fprintf (stderr, "Kind Nodes Bytes\n");
6624 fprintf (stderr, "---------------------------------------\n");
6625 total_nodes = total_bytes = 0;
6626 for (i = 0; i < (int) all_kinds; i++)
6627 {
6628 fprintf (stderr, "%-20s %7d %10d\n", tree_node_kind_names[i],
6629 tree_node_counts[i], tree_node_sizes[i]);
6630 total_nodes += tree_node_counts[i];
6631 total_bytes += tree_node_sizes[i];
6632 }
6633 fprintf (stderr, "---------------------------------------\n");
6634 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_nodes, total_bytes);
6635 fprintf (stderr, "---------------------------------------\n");
6636 ssanames_print_statistics ();
6637 phinodes_print_statistics ();
6638 #else
6639 fprintf (stderr, "(No per-node statistics)\n");
6640 #endif
6641 print_type_hash_statistics ();
6642 print_debug_expr_statistics ();
6643 print_value_expr_statistics ();
6644 print_restrict_base_statistics ();
6645 lang_hooks.print_statistics ();
6646 }
6647 \f
6648 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
6649
6650 /* Generate a crc32 of a string. */
6651
6652 unsigned
6653 crc32_string (unsigned chksum, const char *string)
6654 {
6655 do
6656 {
6657 unsigned value = *string << 24;
6658 unsigned ix;
6659
6660 for (ix = 8; ix--; value <<= 1)
6661 {
6662 unsigned feedback;
6663
6664 feedback = (value ^ chksum) & 0x80000000 ? 0x04c11db7 : 0;
6665 chksum <<= 1;
6666 chksum ^= feedback;
6667 }
6668 }
6669 while (*string++);
6670 return chksum;
6671 }
6672
6673 /* P is a string that will be used in a symbol. Mask out any characters
6674 that are not valid in that context. */
6675
6676 void
6677 clean_symbol_name (char *p)
6678 {
6679 for (; *p; p++)
6680 if (! (ISALNUM (*p)
6681 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
6682 || *p == '$'
6683 #endif
6684 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
6685 || *p == '.'
6686 #endif
6687 ))
6688 *p = '_';
6689 }
6690
6691 /* Generate a name for a special-purpose function function.
6692 The generated name may need to be unique across the whole link.
6693 TYPE is some string to identify the purpose of this function to the
6694 linker or collect2; it must start with an uppercase letter,
6695 one of:
6696 I - for constructors
6697 D - for destructors
6698 N - for C++ anonymous namespaces
6699 F - for DWARF unwind frame information. */
6700
6701 tree
6702 get_file_function_name (const char *type)
6703 {
6704 char *buf;
6705 const char *p;
6706 char *q;
6707
6708 /* If we already have a name we know to be unique, just use that. */
6709 if (first_global_object_name)
6710 p = first_global_object_name;
6711 /* If the target is handling the constructors/destructors, they
6712 will be local to this file and the name is only necessary for
6713 debugging purposes. */
6714 else if ((type[0] == 'I' || type[0] == 'D') && targetm.have_ctors_dtors)
6715 {
6716 const char *file = main_input_filename;
6717 if (! file)
6718 file = input_filename;
6719 /* Just use the file's basename, because the full pathname
6720 might be quite long. */
6721 p = strrchr (file, '/');
6722 if (p)
6723 p++;
6724 else
6725 p = file;
6726 p = q = ASTRDUP (p);
6727 clean_symbol_name (q);
6728 }
6729 else
6730 {
6731 /* Otherwise, the name must be unique across the entire link.
6732 We don't have anything that we know to be unique to this translation
6733 unit, so use what we do have and throw in some randomness. */
6734 unsigned len;
6735 const char *name = weak_global_object_name;
6736 const char *file = main_input_filename;
6737
6738 if (! name)
6739 name = "";
6740 if (! file)
6741 file = input_filename;
6742
6743 len = strlen (file);
6744 q = alloca (9 * 2 + len + 1);
6745 memcpy (q, file, len + 1);
6746 clean_symbol_name (q);
6747
6748 sprintf (q + len, "_%08X_%08X", crc32_string (0, name),
6749 crc32_string (0, get_random_seed (false)));
6750
6751 p = q;
6752 }
6753
6754 buf = alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p) + strlen (type));
6755
6756 /* Set up the name of the file-level functions we may need.
6757 Use a global object (which is already required to be unique over
6758 the program) rather than the file name (which imposes extra
6759 constraints). */
6760 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
6761
6762 return get_identifier (buf);
6763 }
6764 \f
6765 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
6766
6767 /* Complain that the tree code of NODE does not match the expected 0
6768 terminated list of trailing codes. The trailing code list can be
6769 empty, for a more vague error message. FILE, LINE, and FUNCTION
6770 are of the caller. */
6771
6772 void
6773 tree_check_failed (const_tree node, const char *file,
6774 int line, const char *function, ...)
6775 {
6776 va_list args;
6777 const char *buffer;
6778 unsigned length = 0;
6779 int code;
6780
6781 va_start (args, function);
6782 while ((code = va_arg (args, int)))
6783 length += 4 + strlen (tree_code_name[code]);
6784 va_end (args);
6785 if (length)
6786 {
6787 char *tmp;
6788 va_start (args, function);
6789 length += strlen ("expected ");
6790 buffer = tmp = alloca (length);
6791 length = 0;
6792 while ((code = va_arg (args, int)))
6793 {
6794 const char *prefix = length ? " or " : "expected ";
6795
6796 strcpy (tmp + length, prefix);
6797 length += strlen (prefix);
6798 strcpy (tmp + length, tree_code_name[code]);
6799 length += strlen (tree_code_name[code]);
6800 }
6801 va_end (args);
6802 }
6803 else
6804 buffer = "unexpected node";
6805
6806 internal_error ("tree check: %s, have %s in %s, at %s:%d",
6807 buffer, tree_code_name[TREE_CODE (node)],
6808 function, trim_filename (file), line);
6809 }
6810
6811 /* Complain that the tree code of NODE does match the expected 0
6812 terminated list of trailing codes. FILE, LINE, and FUNCTION are of
6813 the caller. */
6814
6815 void
6816 tree_not_check_failed (const_tree node, const char *file,
6817 int line, const char *function, ...)
6818 {
6819 va_list args;
6820 char *buffer;
6821 unsigned length = 0;
6822 int code;
6823
6824 va_start (args, function);
6825 while ((code = va_arg (args, int)))
6826 length += 4 + strlen (tree_code_name[code]);
6827 va_end (args);
6828 va_start (args, function);
6829 buffer = alloca (length);
6830 length = 0;
6831 while ((code = va_arg (args, int)))
6832 {
6833 if (length)
6834 {
6835 strcpy (buffer + length, " or ");
6836 length += 4;
6837 }
6838 strcpy (buffer + length, tree_code_name[code]);
6839 length += strlen (tree_code_name[code]);
6840 }
6841 va_end (args);
6842
6843 internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
6844 buffer, tree_code_name[TREE_CODE (node)],
6845 function, trim_filename (file), line);
6846 }
6847
6848 /* Similar to tree_check_failed, except that we check for a class of tree
6849 code, given in CL. */
6850
6851 void
6852 tree_class_check_failed (const_tree node, const enum tree_code_class cl,
6853 const char *file, int line, const char *function)
6854 {
6855 internal_error
6856 ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
6857 TREE_CODE_CLASS_STRING (cl),
6858 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
6859 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
6860 }
6861
6862 /* Similar to tree_check_failed, except that instead of specifying a
6863 dozen codes, use the knowledge that they're all sequential. */
6864
6865 void
6866 tree_range_check_failed (const_tree node, const char *file, int line,
6867 const char *function, enum tree_code c1,
6868 enum tree_code c2)
6869 {
6870 char *buffer;
6871 unsigned length = 0;
6872 enum tree_code c;
6873
6874 for (c = c1; c <= c2; ++c)
6875 length += 4 + strlen (tree_code_name[c]);
6876
6877 length += strlen ("expected ");
6878 buffer = alloca (length);
6879 length = 0;
6880
6881 for (c = c1; c <= c2; ++c)
6882 {
6883 const char *prefix = length ? " or " : "expected ";
6884
6885 strcpy (buffer + length, prefix);
6886 length += strlen (prefix);
6887 strcpy (buffer + length, tree_code_name[c]);
6888 length += strlen (tree_code_name[c]);
6889 }
6890
6891 internal_error ("tree check: %s, have %s in %s, at %s:%d",
6892 buffer, tree_code_name[TREE_CODE (node)],
6893 function, trim_filename (file), line);
6894 }
6895
6896
6897 /* Similar to tree_check_failed, except that we check that a tree does
6898 not have the specified code, given in CL. */
6899
6900 void
6901 tree_not_class_check_failed (const_tree node, const enum tree_code_class cl,
6902 const char *file, int line, const char *function)
6903 {
6904 internal_error
6905 ("tree check: did not expect class %qs, have %qs (%s) in %s, at %s:%d",
6906 TREE_CODE_CLASS_STRING (cl),
6907 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
6908 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
6909 }
6910
6911
6912 /* Similar to tree_check_failed but applied to OMP_CLAUSE codes. */
6913
6914 void
6915 omp_clause_check_failed (const_tree node, const char *file, int line,
6916 const char *function, enum omp_clause_code code)
6917 {
6918 internal_error ("tree check: expected omp_clause %s, have %s in %s, at %s:%d",
6919 omp_clause_code_name[code], tree_code_name[TREE_CODE (node)],
6920 function, trim_filename (file), line);
6921 }
6922
6923
6924 /* Similar to tree_range_check_failed but applied to OMP_CLAUSE codes. */
6925
6926 void
6927 omp_clause_range_check_failed (const_tree node, const char *file, int line,
6928 const char *function, enum omp_clause_code c1,
6929 enum omp_clause_code c2)
6930 {
6931 char *buffer;
6932 unsigned length = 0;
6933 enum omp_clause_code c;
6934
6935 for (c = c1; c <= c2; ++c)
6936 length += 4 + strlen (omp_clause_code_name[c]);
6937
6938 length += strlen ("expected ");
6939 buffer = alloca (length);
6940 length = 0;
6941
6942 for (c = c1; c <= c2; ++c)
6943 {
6944 const char *prefix = length ? " or " : "expected ";
6945
6946 strcpy (buffer + length, prefix);
6947 length += strlen (prefix);
6948 strcpy (buffer + length, omp_clause_code_name[c]);
6949 length += strlen (omp_clause_code_name[c]);
6950 }
6951
6952 internal_error ("tree check: %s, have %s in %s, at %s:%d",
6953 buffer, omp_clause_code_name[TREE_CODE (node)],
6954 function, trim_filename (file), line);
6955 }
6956
6957
6958 #undef DEFTREESTRUCT
6959 #define DEFTREESTRUCT(VAL, NAME) NAME,
6960
6961 static const char *ts_enum_names[] = {
6962 #include "treestruct.def"
6963 };
6964 #undef DEFTREESTRUCT
6965
6966 #define TS_ENUM_NAME(EN) (ts_enum_names[(EN)])
6967
6968 /* Similar to tree_class_check_failed, except that we check for
6969 whether CODE contains the tree structure identified by EN. */
6970
6971 void
6972 tree_contains_struct_check_failed (const_tree node,
6973 const enum tree_node_structure_enum en,
6974 const char *file, int line,
6975 const char *function)
6976 {
6977 internal_error
6978 ("tree check: expected tree that contains %qs structure, have %qs in %s, at %s:%d",
6979 TS_ENUM_NAME(en),
6980 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
6981 }
6982
6983
6984 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
6985 (dynamically sized) vector. */
6986
6987 void
6988 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
6989 const char *function)
6990 {
6991 internal_error
6992 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
6993 idx + 1, len, function, trim_filename (file), line);
6994 }
6995
6996 /* Similar to above, except that the check is for the bounds of a PHI_NODE's
6997 (dynamically sized) vector. */
6998
6999 void
7000 phi_node_elt_check_failed (int idx, int len, const char *file, int line,
7001 const char *function)
7002 {
7003 internal_error
7004 ("tree check: accessed elt %d of phi_node with %d elts in %s, at %s:%d",
7005 idx + 1, len, function, trim_filename (file), line);
7006 }
7007
7008 /* Similar to above, except that the check is for the bounds of the operand
7009 vector of an expression node EXP. */
7010
7011 void
7012 tree_operand_check_failed (int idx, const_tree exp, const char *file,
7013 int line, const char *function)
7014 {
7015 int code = TREE_CODE (exp);
7016 internal_error
7017 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
7018 idx + 1, tree_code_name[code], TREE_OPERAND_LENGTH (exp),
7019 function, trim_filename (file), line);
7020 }
7021
7022 /* Similar to above, except that the check is for the number of
7023 operands of an OMP_CLAUSE node. */
7024
7025 void
7026 omp_clause_operand_check_failed (int idx, const_tree t, const char *file,
7027 int line, const char *function)
7028 {
7029 internal_error
7030 ("tree check: accessed operand %d of omp_clause %s with %d operands "
7031 "in %s, at %s:%d", idx + 1, omp_clause_code_name[OMP_CLAUSE_CODE (t)],
7032 omp_clause_num_ops [OMP_CLAUSE_CODE (t)], function,
7033 trim_filename (file), line);
7034 }
7035 #endif /* ENABLE_TREE_CHECKING */
7036 \f
7037 /* Create a new vector type node holding SUBPARTS units of type INNERTYPE,
7038 and mapped to the machine mode MODE. Initialize its fields and build
7039 the information necessary for debugging output. */
7040
7041 static tree
7042 make_vector_type (tree innertype, int nunits, enum machine_mode mode)
7043 {
7044 tree t;
7045 hashval_t hashcode = 0;
7046
7047 /* Build a main variant, based on the main variant of the inner type, then
7048 use it to build the variant we return. */
7049 if ((TYPE_ATTRIBUTES (innertype) || TYPE_QUALS (innertype))
7050 && TYPE_MAIN_VARIANT (innertype) != innertype)
7051 return build_type_attribute_qual_variant (
7052 make_vector_type (TYPE_MAIN_VARIANT (innertype), nunits, mode),
7053 TYPE_ATTRIBUTES (innertype),
7054 TYPE_QUALS (innertype));
7055
7056 t = make_node (VECTOR_TYPE);
7057 TREE_TYPE (t) = TYPE_MAIN_VARIANT (innertype);
7058 SET_TYPE_VECTOR_SUBPARTS (t, nunits);
7059 TYPE_MODE (t) = mode;
7060 TYPE_READONLY (t) = TYPE_READONLY (innertype);
7061 TYPE_VOLATILE (t) = TYPE_VOLATILE (innertype);
7062
7063 if (TYPE_STRUCTURAL_EQUALITY_P (innertype))
7064 SET_TYPE_STRUCTURAL_EQUALITY (t);
7065 else if (TYPE_CANONICAL (innertype) != innertype
7066 || mode != VOIDmode)
7067 TYPE_CANONICAL (t)
7068 = make_vector_type (TYPE_CANONICAL (innertype), nunits, VOIDmode);
7069
7070 layout_type (t);
7071
7072 {
7073 tree index = build_int_cst (NULL_TREE, nunits - 1);
7074 tree array = build_array_type (innertype, build_index_type (index));
7075 tree rt = make_node (RECORD_TYPE);
7076
7077 TYPE_FIELDS (rt) = build_decl (FIELD_DECL, get_identifier ("f"), array);
7078 DECL_CONTEXT (TYPE_FIELDS (rt)) = rt;
7079 layout_type (rt);
7080 TYPE_DEBUG_REPRESENTATION_TYPE (t) = rt;
7081 /* In dwarfout.c, type lookup uses TYPE_UID numbers. We want to output
7082 the representation type, and we want to find that die when looking up
7083 the vector type. This is most easily achieved by making the TYPE_UID
7084 numbers equal. */
7085 TYPE_UID (rt) = TYPE_UID (t);
7086 }
7087
7088 hashcode = iterative_hash_host_wide_int (VECTOR_TYPE, hashcode);
7089 hashcode = iterative_hash_host_wide_int (mode, hashcode);
7090 hashcode = iterative_hash_object (TYPE_HASH (innertype), hashcode);
7091 return type_hash_canon (hashcode, t);
7092 }
7093
7094 static tree
7095 make_or_reuse_type (unsigned size, int unsignedp)
7096 {
7097 if (size == INT_TYPE_SIZE)
7098 return unsignedp ? unsigned_type_node : integer_type_node;
7099 if (size == CHAR_TYPE_SIZE)
7100 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
7101 if (size == SHORT_TYPE_SIZE)
7102 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
7103 if (size == LONG_TYPE_SIZE)
7104 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
7105 if (size == LONG_LONG_TYPE_SIZE)
7106 return (unsignedp ? long_long_unsigned_type_node
7107 : long_long_integer_type_node);
7108
7109 if (unsignedp)
7110 return make_unsigned_type (size);
7111 else
7112 return make_signed_type (size);
7113 }
7114
7115 /* Create or reuse a fract type by SIZE, UNSIGNEDP, and SATP. */
7116
7117 static tree
7118 make_or_reuse_fract_type (unsigned size, int unsignedp, int satp)
7119 {
7120 if (satp)
7121 {
7122 if (size == SHORT_FRACT_TYPE_SIZE)
7123 return unsignedp ? sat_unsigned_short_fract_type_node
7124 : sat_short_fract_type_node;
7125 if (size == FRACT_TYPE_SIZE)
7126 return unsignedp ? sat_unsigned_fract_type_node : sat_fract_type_node;
7127 if (size == LONG_FRACT_TYPE_SIZE)
7128 return unsignedp ? sat_unsigned_long_fract_type_node
7129 : sat_long_fract_type_node;
7130 if (size == LONG_LONG_FRACT_TYPE_SIZE)
7131 return unsignedp ? sat_unsigned_long_long_fract_type_node
7132 : sat_long_long_fract_type_node;
7133 }
7134 else
7135 {
7136 if (size == SHORT_FRACT_TYPE_SIZE)
7137 return unsignedp ? unsigned_short_fract_type_node
7138 : short_fract_type_node;
7139 if (size == FRACT_TYPE_SIZE)
7140 return unsignedp ? unsigned_fract_type_node : fract_type_node;
7141 if (size == LONG_FRACT_TYPE_SIZE)
7142 return unsignedp ? unsigned_long_fract_type_node
7143 : long_fract_type_node;
7144 if (size == LONG_LONG_FRACT_TYPE_SIZE)
7145 return unsignedp ? unsigned_long_long_fract_type_node
7146 : long_long_fract_type_node;
7147 }
7148
7149 return make_fract_type (size, unsignedp, satp);
7150 }
7151
7152 /* Create or reuse an accum type by SIZE, UNSIGNEDP, and SATP. */
7153
7154 static tree
7155 make_or_reuse_accum_type (unsigned size, int unsignedp, int satp)
7156 {
7157 if (satp)
7158 {
7159 if (size == SHORT_ACCUM_TYPE_SIZE)
7160 return unsignedp ? sat_unsigned_short_accum_type_node
7161 : sat_short_accum_type_node;
7162 if (size == ACCUM_TYPE_SIZE)
7163 return unsignedp ? sat_unsigned_accum_type_node : sat_accum_type_node;
7164 if (size == LONG_ACCUM_TYPE_SIZE)
7165 return unsignedp ? sat_unsigned_long_accum_type_node
7166 : sat_long_accum_type_node;
7167 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
7168 return unsignedp ? sat_unsigned_long_long_accum_type_node
7169 : sat_long_long_accum_type_node;
7170 }
7171 else
7172 {
7173 if (size == SHORT_ACCUM_TYPE_SIZE)
7174 return unsignedp ? unsigned_short_accum_type_node
7175 : short_accum_type_node;
7176 if (size == ACCUM_TYPE_SIZE)
7177 return unsignedp ? unsigned_accum_type_node : accum_type_node;
7178 if (size == LONG_ACCUM_TYPE_SIZE)
7179 return unsignedp ? unsigned_long_accum_type_node
7180 : long_accum_type_node;
7181 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
7182 return unsignedp ? unsigned_long_long_accum_type_node
7183 : long_long_accum_type_node;
7184 }
7185
7186 return make_accum_type (size, unsignedp, satp);
7187 }
7188
7189 /* Create nodes for all integer types (and error_mark_node) using the sizes
7190 of C datatypes. The caller should call set_sizetype soon after calling
7191 this function to select one of the types as sizetype. */
7192
7193 void
7194 build_common_tree_nodes (bool signed_char, bool signed_sizetype)
7195 {
7196 error_mark_node = make_node (ERROR_MARK);
7197 TREE_TYPE (error_mark_node) = error_mark_node;
7198
7199 initialize_sizetypes (signed_sizetype);
7200
7201 /* Define both `signed char' and `unsigned char'. */
7202 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
7203 TYPE_STRING_FLAG (signed_char_type_node) = 1;
7204 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
7205 TYPE_STRING_FLAG (unsigned_char_type_node) = 1;
7206
7207 /* Define `char', which is like either `signed char' or `unsigned char'
7208 but not the same as either. */
7209 char_type_node
7210 = (signed_char
7211 ? make_signed_type (CHAR_TYPE_SIZE)
7212 : make_unsigned_type (CHAR_TYPE_SIZE));
7213 TYPE_STRING_FLAG (char_type_node) = 1;
7214
7215 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
7216 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
7217 integer_type_node = make_signed_type (INT_TYPE_SIZE);
7218 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
7219 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
7220 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
7221 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
7222 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
7223
7224 /* Define a boolean type. This type only represents boolean values but
7225 may be larger than char depending on the value of BOOL_TYPE_SIZE.
7226 Front ends which want to override this size (i.e. Java) can redefine
7227 boolean_type_node before calling build_common_tree_nodes_2. */
7228 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
7229 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
7230 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
7231 TYPE_PRECISION (boolean_type_node) = 1;
7232
7233 /* Fill in the rest of the sized types. Reuse existing type nodes
7234 when possible. */
7235 intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
7236 intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
7237 intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
7238 intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
7239 intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);
7240
7241 unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
7242 unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
7243 unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
7244 unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
7245 unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);
7246
7247 access_public_node = get_identifier ("public");
7248 access_protected_node = get_identifier ("protected");
7249 access_private_node = get_identifier ("private");
7250 }
7251
7252 /* Call this function after calling build_common_tree_nodes and set_sizetype.
7253 It will create several other common tree nodes. */
7254
7255 void
7256 build_common_tree_nodes_2 (int short_double)
7257 {
7258 /* Define these next since types below may used them. */
7259 integer_zero_node = build_int_cst (NULL_TREE, 0);
7260 integer_one_node = build_int_cst (NULL_TREE, 1);
7261 integer_minus_one_node = build_int_cst (NULL_TREE, -1);
7262
7263 size_zero_node = size_int (0);
7264 size_one_node = size_int (1);
7265 bitsize_zero_node = bitsize_int (0);
7266 bitsize_one_node = bitsize_int (1);
7267 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
7268
7269 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
7270 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
7271
7272 void_type_node = make_node (VOID_TYPE);
7273 layout_type (void_type_node);
7274
7275 /* We are not going to have real types in C with less than byte alignment,
7276 so we might as well not have any types that claim to have it. */
7277 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
7278 TYPE_USER_ALIGN (void_type_node) = 0;
7279
7280 null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
7281 layout_type (TREE_TYPE (null_pointer_node));
7282
7283 ptr_type_node = build_pointer_type (void_type_node);
7284 const_ptr_type_node
7285 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
7286 fileptr_type_node = ptr_type_node;
7287
7288 float_type_node = make_node (REAL_TYPE);
7289 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
7290 layout_type (float_type_node);
7291
7292 double_type_node = make_node (REAL_TYPE);
7293 if (short_double)
7294 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
7295 else
7296 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
7297 layout_type (double_type_node);
7298
7299 long_double_type_node = make_node (REAL_TYPE);
7300 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
7301 layout_type (long_double_type_node);
7302
7303 float_ptr_type_node = build_pointer_type (float_type_node);
7304 double_ptr_type_node = build_pointer_type (double_type_node);
7305 long_double_ptr_type_node = build_pointer_type (long_double_type_node);
7306 integer_ptr_type_node = build_pointer_type (integer_type_node);
7307
7308 /* Fixed size integer types. */
7309 uint32_type_node = build_nonstandard_integer_type (32, true);
7310 uint64_type_node = build_nonstandard_integer_type (64, true);
7311
7312 /* Decimal float types. */
7313 dfloat32_type_node = make_node (REAL_TYPE);
7314 TYPE_PRECISION (dfloat32_type_node) = DECIMAL32_TYPE_SIZE;
7315 layout_type (dfloat32_type_node);
7316 TYPE_MODE (dfloat32_type_node) = SDmode;
7317 dfloat32_ptr_type_node = build_pointer_type (dfloat32_type_node);
7318
7319 dfloat64_type_node = make_node (REAL_TYPE);
7320 TYPE_PRECISION (dfloat64_type_node) = DECIMAL64_TYPE_SIZE;
7321 layout_type (dfloat64_type_node);
7322 TYPE_MODE (dfloat64_type_node) = DDmode;
7323 dfloat64_ptr_type_node = build_pointer_type (dfloat64_type_node);
7324
7325 dfloat128_type_node = make_node (REAL_TYPE);
7326 TYPE_PRECISION (dfloat128_type_node) = DECIMAL128_TYPE_SIZE;
7327 layout_type (dfloat128_type_node);
7328 TYPE_MODE (dfloat128_type_node) = TDmode;
7329 dfloat128_ptr_type_node = build_pointer_type (dfloat128_type_node);
7330
7331 complex_integer_type_node = build_complex_type (integer_type_node);
7332 complex_float_type_node = build_complex_type (float_type_node);
7333 complex_double_type_node = build_complex_type (double_type_node);
7334 complex_long_double_type_node = build_complex_type (long_double_type_node);
7335
7336 /* Make fixed-point nodes based on sat/non-sat and signed/unsigned. */
7337 #define MAKE_FIXED_TYPE_NODE(KIND,WIDTH,SIZE) \
7338 sat_ ## WIDTH ## KIND ## _type_node = \
7339 make_sat_signed_ ## KIND ## _type (SIZE); \
7340 sat_unsigned_ ## WIDTH ## KIND ## _type_node = \
7341 make_sat_unsigned_ ## KIND ## _type (SIZE); \
7342 WIDTH ## KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
7343 unsigned_ ## WIDTH ## KIND ## _type_node = \
7344 make_unsigned_ ## KIND ## _type (SIZE);
7345
7346 /* Make fixed-point type nodes based on four different widths. */
7347 #define MAKE_FIXED_TYPE_NODE_FAMILY(N1,N2) \
7348 MAKE_FIXED_TYPE_NODE (N1, short_, SHORT_ ## N2 ## _TYPE_SIZE) \
7349 MAKE_FIXED_TYPE_NODE (N1, , N2 ## _TYPE_SIZE) \
7350 MAKE_FIXED_TYPE_NODE (N1, long_, LONG_ ## N2 ## _TYPE_SIZE) \
7351 MAKE_FIXED_TYPE_NODE (N1, long_long_, LONG_LONG_ ## N2 ## _TYPE_SIZE)
7352
7353 /* Make fixed-point mode nodes based on sat/non-sat and signed/unsigned. */
7354 #define MAKE_FIXED_MODE_NODE(KIND,NAME,MODE) \
7355 NAME ## _type_node = \
7356 make_or_reuse_signed_ ## KIND ## _type (GET_MODE_BITSIZE (MODE ## mode)); \
7357 u ## NAME ## _type_node = \
7358 make_or_reuse_unsigned_ ## KIND ## _type \
7359 (GET_MODE_BITSIZE (U ## MODE ## mode)); \
7360 sat_ ## NAME ## _type_node = \
7361 make_or_reuse_sat_signed_ ## KIND ## _type \
7362 (GET_MODE_BITSIZE (MODE ## mode)); \
7363 sat_u ## NAME ## _type_node = \
7364 make_or_reuse_sat_unsigned_ ## KIND ## _type \
7365 (GET_MODE_BITSIZE (U ## MODE ## mode));
7366
7367 /* Fixed-point type and mode nodes. */
7368 MAKE_FIXED_TYPE_NODE_FAMILY (fract, FRACT)
7369 MAKE_FIXED_TYPE_NODE_FAMILY (accum, ACCUM)
7370 MAKE_FIXED_MODE_NODE (fract, qq, QQ)
7371 MAKE_FIXED_MODE_NODE (fract, hq, HQ)
7372 MAKE_FIXED_MODE_NODE (fract, sq, SQ)
7373 MAKE_FIXED_MODE_NODE (fract, dq, DQ)
7374 MAKE_FIXED_MODE_NODE (fract, tq, TQ)
7375 MAKE_FIXED_MODE_NODE (accum, ha, HA)
7376 MAKE_FIXED_MODE_NODE (accum, sa, SA)
7377 MAKE_FIXED_MODE_NODE (accum, da, DA)
7378 MAKE_FIXED_MODE_NODE (accum, ta, TA)
7379
7380 {
7381 tree t = targetm.build_builtin_va_list ();
7382
7383 /* Many back-ends define record types without setting TYPE_NAME.
7384 If we copied the record type here, we'd keep the original
7385 record type without a name. This breaks name mangling. So,
7386 don't copy record types and let c_common_nodes_and_builtins()
7387 declare the type to be __builtin_va_list. */
7388 if (TREE_CODE (t) != RECORD_TYPE)
7389 t = build_variant_type_copy (t);
7390
7391 va_list_type_node = t;
7392 }
7393 }
7394
7395 /* A subroutine of build_common_builtin_nodes. Define a builtin function. */
7396
7397 static void
7398 local_define_builtin (const char *name, tree type, enum built_in_function code,
7399 const char *library_name, int ecf_flags)
7400 {
7401 tree decl;
7402
7403 decl = add_builtin_function (name, type, code, BUILT_IN_NORMAL,
7404 library_name, NULL_TREE);
7405 if (ecf_flags & ECF_CONST)
7406 TREE_READONLY (decl) = 1;
7407 if (ecf_flags & ECF_PURE)
7408 DECL_IS_PURE (decl) = 1;
7409 if (ecf_flags & ECF_NORETURN)
7410 TREE_THIS_VOLATILE (decl) = 1;
7411 if (ecf_flags & ECF_NOTHROW)
7412 TREE_NOTHROW (decl) = 1;
7413 if (ecf_flags & ECF_MALLOC)
7414 DECL_IS_MALLOC (decl) = 1;
7415
7416 built_in_decls[code] = decl;
7417 implicit_built_in_decls[code] = decl;
7418 }
7419
7420 /* Call this function after instantiating all builtins that the language
7421 front end cares about. This will build the rest of the builtins that
7422 are relied upon by the tree optimizers and the middle-end. */
7423
7424 void
7425 build_common_builtin_nodes (void)
7426 {
7427 tree tmp, ftype;
7428
7429 if (built_in_decls[BUILT_IN_MEMCPY] == NULL
7430 || built_in_decls[BUILT_IN_MEMMOVE] == NULL)
7431 {
7432 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
7433 tmp = tree_cons (NULL_TREE, const_ptr_type_node, tmp);
7434 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
7435 ftype = build_function_type (ptr_type_node, tmp);
7436
7437 if (built_in_decls[BUILT_IN_MEMCPY] == NULL)
7438 local_define_builtin ("__builtin_memcpy", ftype, BUILT_IN_MEMCPY,
7439 "memcpy", ECF_NOTHROW);
7440 if (built_in_decls[BUILT_IN_MEMMOVE] == NULL)
7441 local_define_builtin ("__builtin_memmove", ftype, BUILT_IN_MEMMOVE,
7442 "memmove", ECF_NOTHROW);
7443 }
7444
7445 if (built_in_decls[BUILT_IN_MEMCMP] == NULL)
7446 {
7447 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
7448 tmp = tree_cons (NULL_TREE, const_ptr_type_node, tmp);
7449 tmp = tree_cons (NULL_TREE, const_ptr_type_node, tmp);
7450 ftype = build_function_type (integer_type_node, tmp);
7451 local_define_builtin ("__builtin_memcmp", ftype, BUILT_IN_MEMCMP,
7452 "memcmp", ECF_PURE | ECF_NOTHROW);
7453 }
7454
7455 if (built_in_decls[BUILT_IN_MEMSET] == NULL)
7456 {
7457 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
7458 tmp = tree_cons (NULL_TREE, integer_type_node, tmp);
7459 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
7460 ftype = build_function_type (ptr_type_node, tmp);
7461 local_define_builtin ("__builtin_memset", ftype, BUILT_IN_MEMSET,
7462 "memset", ECF_NOTHROW);
7463 }
7464
7465 if (built_in_decls[BUILT_IN_ALLOCA] == NULL)
7466 {
7467 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
7468 ftype = build_function_type (ptr_type_node, tmp);
7469 local_define_builtin ("__builtin_alloca", ftype, BUILT_IN_ALLOCA,
7470 "alloca", ECF_NOTHROW | ECF_MALLOC);
7471 }
7472
7473 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
7474 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
7475 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
7476 ftype = build_function_type (void_type_node, tmp);
7477 local_define_builtin ("__builtin_init_trampoline", ftype,
7478 BUILT_IN_INIT_TRAMPOLINE,
7479 "__builtin_init_trampoline", ECF_NOTHROW);
7480
7481 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
7482 ftype = build_function_type (ptr_type_node, tmp);
7483 local_define_builtin ("__builtin_adjust_trampoline", ftype,
7484 BUILT_IN_ADJUST_TRAMPOLINE,
7485 "__builtin_adjust_trampoline",
7486 ECF_CONST | ECF_NOTHROW);
7487
7488 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
7489 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
7490 ftype = build_function_type (void_type_node, tmp);
7491 local_define_builtin ("__builtin_nonlocal_goto", ftype,
7492 BUILT_IN_NONLOCAL_GOTO,
7493 "__builtin_nonlocal_goto",
7494 ECF_NORETURN | ECF_NOTHROW);
7495
7496 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
7497 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
7498 ftype = build_function_type (void_type_node, tmp);
7499 local_define_builtin ("__builtin_setjmp_setup", ftype,
7500 BUILT_IN_SETJMP_SETUP,
7501 "__builtin_setjmp_setup", ECF_NOTHROW);
7502
7503 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
7504 ftype = build_function_type (ptr_type_node, tmp);
7505 local_define_builtin ("__builtin_setjmp_dispatcher", ftype,
7506 BUILT_IN_SETJMP_DISPATCHER,
7507 "__builtin_setjmp_dispatcher",
7508 ECF_PURE | ECF_NOTHROW);
7509
7510 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
7511 ftype = build_function_type (void_type_node, tmp);
7512 local_define_builtin ("__builtin_setjmp_receiver", ftype,
7513 BUILT_IN_SETJMP_RECEIVER,
7514 "__builtin_setjmp_receiver", ECF_NOTHROW);
7515
7516 ftype = build_function_type (ptr_type_node, void_list_node);
7517 local_define_builtin ("__builtin_stack_save", ftype, BUILT_IN_STACK_SAVE,
7518 "__builtin_stack_save", ECF_NOTHROW);
7519
7520 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
7521 ftype = build_function_type (void_type_node, tmp);
7522 local_define_builtin ("__builtin_stack_restore", ftype,
7523 BUILT_IN_STACK_RESTORE,
7524 "__builtin_stack_restore", ECF_NOTHROW);
7525
7526 ftype = build_function_type (void_type_node, void_list_node);
7527 local_define_builtin ("__builtin_profile_func_enter", ftype,
7528 BUILT_IN_PROFILE_FUNC_ENTER, "profile_func_enter", 0);
7529 local_define_builtin ("__builtin_profile_func_exit", ftype,
7530 BUILT_IN_PROFILE_FUNC_EXIT, "profile_func_exit", 0);
7531
7532 /* Complex multiplication and division. These are handled as builtins
7533 rather than optabs because emit_library_call_value doesn't support
7534 complex. Further, we can do slightly better with folding these
7535 beasties if the real and complex parts of the arguments are separate. */
7536 {
7537 enum machine_mode mode;
7538
7539 for (mode = MIN_MODE_COMPLEX_FLOAT; mode <= MAX_MODE_COMPLEX_FLOAT; ++mode)
7540 {
7541 char mode_name_buf[4], *q;
7542 const char *p;
7543 enum built_in_function mcode, dcode;
7544 tree type, inner_type;
7545
7546 type = lang_hooks.types.type_for_mode (mode, 0);
7547 if (type == NULL)
7548 continue;
7549 inner_type = TREE_TYPE (type);
7550
7551 tmp = tree_cons (NULL_TREE, inner_type, void_list_node);
7552 tmp = tree_cons (NULL_TREE, inner_type, tmp);
7553 tmp = tree_cons (NULL_TREE, inner_type, tmp);
7554 tmp = tree_cons (NULL_TREE, inner_type, tmp);
7555 ftype = build_function_type (type, tmp);
7556
7557 mcode = BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT;
7558 dcode = BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT;
7559
7560 for (p = GET_MODE_NAME (mode), q = mode_name_buf; *p; p++, q++)
7561 *q = TOLOWER (*p);
7562 *q = '\0';
7563
7564 built_in_names[mcode] = concat ("__mul", mode_name_buf, "3", NULL);
7565 local_define_builtin (built_in_names[mcode], ftype, mcode,
7566 built_in_names[mcode], ECF_CONST | ECF_NOTHROW);
7567
7568 built_in_names[dcode] = concat ("__div", mode_name_buf, "3", NULL);
7569 local_define_builtin (built_in_names[dcode], ftype, dcode,
7570 built_in_names[dcode], ECF_CONST | ECF_NOTHROW);
7571 }
7572 }
7573 }
7574
7575 /* HACK. GROSS. This is absolutely disgusting. I wish there was a
7576 better way.
7577
7578 If we requested a pointer to a vector, build up the pointers that
7579 we stripped off while looking for the inner type. Similarly for
7580 return values from functions.
7581
7582 The argument TYPE is the top of the chain, and BOTTOM is the
7583 new type which we will point to. */
7584
7585 tree
7586 reconstruct_complex_type (tree type, tree bottom)
7587 {
7588 tree inner, outer;
7589
7590 if (TREE_CODE (type) == POINTER_TYPE)
7591 {
7592 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
7593 outer = build_pointer_type_for_mode (inner, TYPE_MODE (type),
7594 TYPE_REF_CAN_ALIAS_ALL (type));
7595 }
7596 else if (TREE_CODE (type) == REFERENCE_TYPE)
7597 {
7598 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
7599 outer = build_reference_type_for_mode (inner, TYPE_MODE (type),
7600 TYPE_REF_CAN_ALIAS_ALL (type));
7601 }
7602 else if (TREE_CODE (type) == ARRAY_TYPE)
7603 {
7604 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
7605 outer = build_array_type (inner, TYPE_DOMAIN (type));
7606 }
7607 else if (TREE_CODE (type) == FUNCTION_TYPE)
7608 {
7609 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
7610 outer = build_function_type (inner, TYPE_ARG_TYPES (type));
7611 }
7612 else if (TREE_CODE (type) == METHOD_TYPE)
7613 {
7614 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
7615 /* The build_method_type_directly() routine prepends 'this' to argument list,
7616 so we must compensate by getting rid of it. */
7617 outer
7618 = build_method_type_directly
7619 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (type))),
7620 inner,
7621 TREE_CHAIN (TYPE_ARG_TYPES (type)));
7622 }
7623 else
7624 return bottom;
7625
7626 return build_qualified_type (outer, TYPE_QUALS (type));
7627 }
7628
7629 /* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
7630 the inner type. */
7631 tree
7632 build_vector_type_for_mode (tree innertype, enum machine_mode mode)
7633 {
7634 int nunits;
7635
7636 switch (GET_MODE_CLASS (mode))
7637 {
7638 case MODE_VECTOR_INT:
7639 case MODE_VECTOR_FLOAT:
7640 case MODE_VECTOR_FRACT:
7641 case MODE_VECTOR_UFRACT:
7642 case MODE_VECTOR_ACCUM:
7643 case MODE_VECTOR_UACCUM:
7644 nunits = GET_MODE_NUNITS (mode);
7645 break;
7646
7647 case MODE_INT:
7648 /* Check that there are no leftover bits. */
7649 gcc_assert (GET_MODE_BITSIZE (mode)
7650 % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0);
7651
7652 nunits = GET_MODE_BITSIZE (mode)
7653 / TREE_INT_CST_LOW (TYPE_SIZE (innertype));
7654 break;
7655
7656 default:
7657 gcc_unreachable ();
7658 }
7659
7660 return make_vector_type (innertype, nunits, mode);
7661 }
7662
7663 /* Similarly, but takes the inner type and number of units, which must be
7664 a power of two. */
7665
7666 tree
7667 build_vector_type (tree innertype, int nunits)
7668 {
7669 return make_vector_type (innertype, nunits, VOIDmode);
7670 }
7671
7672
7673 /* Build RESX_EXPR with given REGION_NUMBER. */
7674 tree
7675 build_resx (int region_number)
7676 {
7677 tree t;
7678 t = build1 (RESX_EXPR, void_type_node,
7679 build_int_cst (NULL_TREE, region_number));
7680 return t;
7681 }
7682
7683 /* Given an initializer INIT, return TRUE if INIT is zero or some
7684 aggregate of zeros. Otherwise return FALSE. */
7685 bool
7686 initializer_zerop (const_tree init)
7687 {
7688 tree elt;
7689
7690 STRIP_NOPS (init);
7691
7692 switch (TREE_CODE (init))
7693 {
7694 case INTEGER_CST:
7695 return integer_zerop (init);
7696
7697 case REAL_CST:
7698 /* ??? Note that this is not correct for C4X float formats. There,
7699 a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
7700 negative exponent. */
7701 return real_zerop (init)
7702 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
7703
7704 case FIXED_CST:
7705 return fixed_zerop (init);
7706
7707 case COMPLEX_CST:
7708 return integer_zerop (init)
7709 || (real_zerop (init)
7710 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
7711 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
7712
7713 case VECTOR_CST:
7714 for (elt = TREE_VECTOR_CST_ELTS (init); elt; elt = TREE_CHAIN (elt))
7715 if (!initializer_zerop (TREE_VALUE (elt)))
7716 return false;
7717 return true;
7718
7719 case CONSTRUCTOR:
7720 {
7721 unsigned HOST_WIDE_INT idx;
7722
7723 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
7724 if (!initializer_zerop (elt))
7725 return false;
7726 return true;
7727 }
7728
7729 default:
7730 return false;
7731 }
7732 }
7733
7734 /* Build an empty statement. */
7735
7736 tree
7737 build_empty_stmt (void)
7738 {
7739 return build1 (NOP_EXPR, void_type_node, size_zero_node);
7740 }
7741
7742
7743 /* Build an OpenMP clause with code CODE. */
7744
7745 tree
7746 build_omp_clause (enum omp_clause_code code)
7747 {
7748 tree t;
7749 int size, length;
7750
7751 length = omp_clause_num_ops[code];
7752 size = (sizeof (struct tree_omp_clause) + (length - 1) * sizeof (tree));
7753
7754 t = ggc_alloc (size);
7755 memset (t, 0, size);
7756 TREE_SET_CODE (t, OMP_CLAUSE);
7757 OMP_CLAUSE_SET_CODE (t, code);
7758
7759 #ifdef GATHER_STATISTICS
7760 tree_node_counts[(int) omp_clause_kind]++;
7761 tree_node_sizes[(int) omp_clause_kind] += size;
7762 #endif
7763
7764 return t;
7765 }
7766
7767 /* Set various status flags when building a CALL_EXPR object T. */
7768
7769 static void
7770 process_call_operands (tree t)
7771 {
7772 bool side_effects;
7773
7774 side_effects = TREE_SIDE_EFFECTS (t);
7775 if (!side_effects)
7776 {
7777 int i, n;
7778 n = TREE_OPERAND_LENGTH (t);
7779 for (i = 1; i < n; i++)
7780 {
7781 tree op = TREE_OPERAND (t, i);
7782 if (op && TREE_SIDE_EFFECTS (op))
7783 {
7784 side_effects = 1;
7785 break;
7786 }
7787 }
7788 }
7789 if (!side_effects)
7790 {
7791 int i;
7792
7793 /* Calls have side-effects, except those to const or
7794 pure functions. */
7795 i = call_expr_flags (t);
7796 if (!(i & (ECF_CONST | ECF_PURE)))
7797 side_effects = 1;
7798 }
7799 TREE_SIDE_EFFECTS (t) = side_effects;
7800 }
7801
7802 /* Build a tcc_vl_exp object with code CODE and room for LEN operands. LEN
7803 includes the implicit operand count in TREE_OPERAND 0, and so must be >= 1.
7804 Except for the CODE and operand count field, other storage for the
7805 object is initialized to zeros. */
7806
7807 tree
7808 build_vl_exp_stat (enum tree_code code, int len MEM_STAT_DECL)
7809 {
7810 tree t;
7811 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_exp);
7812
7813 gcc_assert (TREE_CODE_CLASS (code) == tcc_vl_exp);
7814 gcc_assert (len >= 1);
7815
7816 #ifdef GATHER_STATISTICS
7817 tree_node_counts[(int) e_kind]++;
7818 tree_node_sizes[(int) e_kind] += length;
7819 #endif
7820
7821 t = ggc_alloc_zone_pass_stat (length, &tree_zone);
7822
7823 memset (t, 0, length);
7824
7825 TREE_SET_CODE (t, code);
7826
7827 /* Can't use TREE_OPERAND to store the length because if checking is
7828 enabled, it will try to check the length before we store it. :-P */
7829 t->exp.operands[0] = build_int_cst (sizetype, len);
7830
7831 return t;
7832 }
7833
7834
7835 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE
7836 and FN and a null static chain slot. ARGLIST is a TREE_LIST of the
7837 arguments. */
7838
7839 tree
7840 build_call_list (tree return_type, tree fn, tree arglist)
7841 {
7842 tree t;
7843 int i;
7844
7845 t = build_vl_exp (CALL_EXPR, list_length (arglist) + 3);
7846 TREE_TYPE (t) = return_type;
7847 CALL_EXPR_FN (t) = fn;
7848 CALL_EXPR_STATIC_CHAIN (t) = NULL_TREE;
7849 for (i = 0; arglist; arglist = TREE_CHAIN (arglist), i++)
7850 CALL_EXPR_ARG (t, i) = TREE_VALUE (arglist);
7851 process_call_operands (t);
7852 return t;
7853 }
7854
7855 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
7856 FN and a null static chain slot. NARGS is the number of call arguments
7857 which are specified as "..." arguments. */
7858
7859 tree
7860 build_call_nary (tree return_type, tree fn, int nargs, ...)
7861 {
7862 tree ret;
7863 va_list args;
7864 va_start (args, nargs);
7865 ret = build_call_valist (return_type, fn, nargs, args);
7866 va_end (args);
7867 return ret;
7868 }
7869
7870 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
7871 FN and a null static chain slot. NARGS is the number of call arguments
7872 which are specified as a va_list ARGS. */
7873
7874 tree
7875 build_call_valist (tree return_type, tree fn, int nargs, va_list args)
7876 {
7877 tree t;
7878 int i;
7879
7880 t = build_vl_exp (CALL_EXPR, nargs + 3);
7881 TREE_TYPE (t) = return_type;
7882 CALL_EXPR_FN (t) = fn;
7883 CALL_EXPR_STATIC_CHAIN (t) = NULL_TREE;
7884 for (i = 0; i < nargs; i++)
7885 CALL_EXPR_ARG (t, i) = va_arg (args, tree);
7886 process_call_operands (t);
7887 return t;
7888 }
7889
7890 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
7891 FN and a null static chain slot. NARGS is the number of call arguments
7892 which are specified as a tree array ARGS. */
7893
7894 tree
7895 build_call_array (tree return_type, tree fn, int nargs, tree *args)
7896 {
7897 tree t;
7898 int i;
7899
7900 t = build_vl_exp (CALL_EXPR, nargs + 3);
7901 TREE_TYPE (t) = return_type;
7902 CALL_EXPR_FN (t) = fn;
7903 CALL_EXPR_STATIC_CHAIN (t) = NULL_TREE;
7904 for (i = 0; i < nargs; i++)
7905 CALL_EXPR_ARG (t, i) = args[i];
7906 process_call_operands (t);
7907 return t;
7908 }
7909
7910
7911 /* Returns true if it is possible to prove that the index of
7912 an array access REF (an ARRAY_REF expression) falls into the
7913 array bounds. */
7914
7915 bool
7916 in_array_bounds_p (tree ref)
7917 {
7918 tree idx = TREE_OPERAND (ref, 1);
7919 tree min, max;
7920
7921 if (TREE_CODE (idx) != INTEGER_CST)
7922 return false;
7923
7924 min = array_ref_low_bound (ref);
7925 max = array_ref_up_bound (ref);
7926 if (!min
7927 || !max
7928 || TREE_CODE (min) != INTEGER_CST
7929 || TREE_CODE (max) != INTEGER_CST)
7930 return false;
7931
7932 if (tree_int_cst_lt (idx, min)
7933 || tree_int_cst_lt (max, idx))
7934 return false;
7935
7936 return true;
7937 }
7938
7939 /* Returns true if it is possible to prove that the range of
7940 an array access REF (an ARRAY_RANGE_REF expression) falls
7941 into the array bounds. */
7942
7943 bool
7944 range_in_array_bounds_p (tree ref)
7945 {
7946 tree domain_type = TYPE_DOMAIN (TREE_TYPE (ref));
7947 tree range_min, range_max, min, max;
7948
7949 range_min = TYPE_MIN_VALUE (domain_type);
7950 range_max = TYPE_MAX_VALUE (domain_type);
7951 if (!range_min
7952 || !range_max
7953 || TREE_CODE (range_min) != INTEGER_CST
7954 || TREE_CODE (range_max) != INTEGER_CST)
7955 return false;
7956
7957 min = array_ref_low_bound (ref);
7958 max = array_ref_up_bound (ref);
7959 if (!min
7960 || !max
7961 || TREE_CODE (min) != INTEGER_CST
7962 || TREE_CODE (max) != INTEGER_CST)
7963 return false;
7964
7965 if (tree_int_cst_lt (range_min, min)
7966 || tree_int_cst_lt (max, range_max))
7967 return false;
7968
7969 return true;
7970 }
7971
7972 /* Return true if T (assumed to be a DECL) must be assigned a memory
7973 location. */
7974
7975 bool
7976 needs_to_live_in_memory (const_tree t)
7977 {
7978 if (TREE_CODE (t) == SSA_NAME)
7979 t = SSA_NAME_VAR (t);
7980
7981 return (TREE_ADDRESSABLE (t)
7982 || is_global_var (t)
7983 || (TREE_CODE (t) == RESULT_DECL
7984 && aggregate_value_p (t, current_function_decl)));
7985 }
7986
7987 /* There are situations in which a language considers record types
7988 compatible which have different field lists. Decide if two fields
7989 are compatible. It is assumed that the parent records are compatible. */
7990
7991 bool
7992 fields_compatible_p (const_tree f1, const_tree f2)
7993 {
7994 if (!operand_equal_p (DECL_FIELD_BIT_OFFSET (f1),
7995 DECL_FIELD_BIT_OFFSET (f2), OEP_ONLY_CONST))
7996 return false;
7997
7998 if (!operand_equal_p (DECL_FIELD_OFFSET (f1),
7999 DECL_FIELD_OFFSET (f2), OEP_ONLY_CONST))
8000 return false;
8001
8002 if (!types_compatible_p (TREE_TYPE (f1), TREE_TYPE (f2)))
8003 return false;
8004
8005 return true;
8006 }
8007
8008 /* Locate within RECORD a field that is compatible with ORIG_FIELD. */
8009
8010 tree
8011 find_compatible_field (tree record, tree orig_field)
8012 {
8013 tree f;
8014
8015 for (f = TYPE_FIELDS (record); f ; f = TREE_CHAIN (f))
8016 if (TREE_CODE (f) == FIELD_DECL
8017 && fields_compatible_p (f, orig_field))
8018 return f;
8019
8020 /* ??? Why isn't this on the main fields list? */
8021 f = TYPE_VFIELD (record);
8022 if (f && TREE_CODE (f) == FIELD_DECL
8023 && fields_compatible_p (f, orig_field))
8024 return f;
8025
8026 /* ??? We should abort here, but Java appears to do Bad Things
8027 with inherited fields. */
8028 return orig_field;
8029 }
8030
8031 /* Return value of a constant X. */
8032
8033 HOST_WIDE_INT
8034 int_cst_value (const_tree x)
8035 {
8036 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
8037 unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
8038 bool negative = ((val >> (bits - 1)) & 1) != 0;
8039
8040 gcc_assert (bits <= HOST_BITS_PER_WIDE_INT);
8041
8042 if (negative)
8043 val |= (~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1;
8044 else
8045 val &= ~((~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1);
8046
8047 return val;
8048 }
8049
8050 /* If TYPE is an integral type, return an equivalent type which is
8051 unsigned iff UNSIGNEDP is true. If TYPE is not an integral type,
8052 return TYPE itself. */
8053
8054 tree
8055 signed_or_unsigned_type_for (int unsignedp, tree type)
8056 {
8057 tree t = type;
8058 if (POINTER_TYPE_P (type))
8059 t = size_type_node;
8060
8061 if (!INTEGRAL_TYPE_P (t) || TYPE_UNSIGNED (t) == unsignedp)
8062 return t;
8063
8064 return lang_hooks.types.type_for_size (TYPE_PRECISION (t), unsignedp);
8065 }
8066
8067 /* Returns unsigned variant of TYPE. */
8068
8069 tree
8070 unsigned_type_for (tree type)
8071 {
8072 return signed_or_unsigned_type_for (1, type);
8073 }
8074
8075 /* Returns signed variant of TYPE. */
8076
8077 tree
8078 signed_type_for (tree type)
8079 {
8080 return signed_or_unsigned_type_for (0, type);
8081 }
8082
8083 /* Returns the largest value obtainable by casting something in INNER type to
8084 OUTER type. */
8085
8086 tree
8087 upper_bound_in_type (tree outer, tree inner)
8088 {
8089 unsigned HOST_WIDE_INT lo, hi;
8090 unsigned int det = 0;
8091 unsigned oprec = TYPE_PRECISION (outer);
8092 unsigned iprec = TYPE_PRECISION (inner);
8093 unsigned prec;
8094
8095 /* Compute a unique number for every combination. */
8096 det |= (oprec > iprec) ? 4 : 0;
8097 det |= TYPE_UNSIGNED (outer) ? 2 : 0;
8098 det |= TYPE_UNSIGNED (inner) ? 1 : 0;
8099
8100 /* Determine the exponent to use. */
8101 switch (det)
8102 {
8103 case 0:
8104 case 1:
8105 /* oprec <= iprec, outer: signed, inner: don't care. */
8106 prec = oprec - 1;
8107 break;
8108 case 2:
8109 case 3:
8110 /* oprec <= iprec, outer: unsigned, inner: don't care. */
8111 prec = oprec;
8112 break;
8113 case 4:
8114 /* oprec > iprec, outer: signed, inner: signed. */
8115 prec = iprec - 1;
8116 break;
8117 case 5:
8118 /* oprec > iprec, outer: signed, inner: unsigned. */
8119 prec = iprec;
8120 break;
8121 case 6:
8122 /* oprec > iprec, outer: unsigned, inner: signed. */
8123 prec = oprec;
8124 break;
8125 case 7:
8126 /* oprec > iprec, outer: unsigned, inner: unsigned. */
8127 prec = iprec;
8128 break;
8129 default:
8130 gcc_unreachable ();
8131 }
8132
8133 /* Compute 2^^prec - 1. */
8134 if (prec <= HOST_BITS_PER_WIDE_INT)
8135 {
8136 hi = 0;
8137 lo = ((~(unsigned HOST_WIDE_INT) 0)
8138 >> (HOST_BITS_PER_WIDE_INT - prec));
8139 }
8140 else
8141 {
8142 hi = ((~(unsigned HOST_WIDE_INT) 0)
8143 >> (2 * HOST_BITS_PER_WIDE_INT - prec));
8144 lo = ~(unsigned HOST_WIDE_INT) 0;
8145 }
8146
8147 return build_int_cst_wide (outer, lo, hi);
8148 }
8149
8150 /* Returns the smallest value obtainable by casting something in INNER type to
8151 OUTER type. */
8152
8153 tree
8154 lower_bound_in_type (tree outer, tree inner)
8155 {
8156 unsigned HOST_WIDE_INT lo, hi;
8157 unsigned oprec = TYPE_PRECISION (outer);
8158 unsigned iprec = TYPE_PRECISION (inner);
8159
8160 /* If OUTER type is unsigned, we can definitely cast 0 to OUTER type
8161 and obtain 0. */
8162 if (TYPE_UNSIGNED (outer)
8163 /* If we are widening something of an unsigned type, OUTER type
8164 contains all values of INNER type. In particular, both INNER
8165 and OUTER types have zero in common. */
8166 || (oprec > iprec && TYPE_UNSIGNED (inner)))
8167 lo = hi = 0;
8168 else
8169 {
8170 /* If we are widening a signed type to another signed type, we
8171 want to obtain -2^^(iprec-1). If we are keeping the
8172 precision or narrowing to a signed type, we want to obtain
8173 -2^(oprec-1). */
8174 unsigned prec = oprec > iprec ? iprec : oprec;
8175
8176 if (prec <= HOST_BITS_PER_WIDE_INT)
8177 {
8178 hi = ~(unsigned HOST_WIDE_INT) 0;
8179 lo = (~(unsigned HOST_WIDE_INT) 0) << (prec - 1);
8180 }
8181 else
8182 {
8183 hi = ((~(unsigned HOST_WIDE_INT) 0)
8184 << (prec - HOST_BITS_PER_WIDE_INT - 1));
8185 lo = 0;
8186 }
8187 }
8188
8189 return build_int_cst_wide (outer, lo, hi);
8190 }
8191
8192 /* Return nonzero if two operands that are suitable for PHI nodes are
8193 necessarily equal. Specifically, both ARG0 and ARG1 must be either
8194 SSA_NAME or invariant. Note that this is strictly an optimization.
8195 That is, callers of this function can directly call operand_equal_p
8196 and get the same result, only slower. */
8197
8198 int
8199 operand_equal_for_phi_arg_p (const_tree arg0, const_tree arg1)
8200 {
8201 if (arg0 == arg1)
8202 return 1;
8203 if (TREE_CODE (arg0) == SSA_NAME || TREE_CODE (arg1) == SSA_NAME)
8204 return 0;
8205 return operand_equal_p (arg0, arg1, 0);
8206 }
8207
8208 /* Returns number of zeros at the end of binary representation of X.
8209
8210 ??? Use ffs if available? */
8211
8212 tree
8213 num_ending_zeros (const_tree x)
8214 {
8215 unsigned HOST_WIDE_INT fr, nfr;
8216 unsigned num, abits;
8217 tree type = TREE_TYPE (x);
8218
8219 if (TREE_INT_CST_LOW (x) == 0)
8220 {
8221 num = HOST_BITS_PER_WIDE_INT;
8222 fr = TREE_INT_CST_HIGH (x);
8223 }
8224 else
8225 {
8226 num = 0;
8227 fr = TREE_INT_CST_LOW (x);
8228 }
8229
8230 for (abits = HOST_BITS_PER_WIDE_INT / 2; abits; abits /= 2)
8231 {
8232 nfr = fr >> abits;
8233 if (nfr << abits == fr)
8234 {
8235 num += abits;
8236 fr = nfr;
8237 }
8238 }
8239
8240 if (num > TYPE_PRECISION (type))
8241 num = TYPE_PRECISION (type);
8242
8243 return build_int_cst_type (type, num);
8244 }
8245
8246
8247 #define WALK_SUBTREE(NODE) \
8248 do \
8249 { \
8250 result = walk_tree_1 (&(NODE), func, data, pset, lh); \
8251 if (result) \
8252 return result; \
8253 } \
8254 while (0)
8255
8256 /* This is a subroutine of walk_tree that walks field of TYPE that are to
8257 be walked whenever a type is seen in the tree. Rest of operands and return
8258 value are as for walk_tree. */
8259
8260 static tree
8261 walk_type_fields (tree type, walk_tree_fn func, void *data,
8262 struct pointer_set_t *pset, walk_tree_lh lh)
8263 {
8264 tree result = NULL_TREE;
8265
8266 switch (TREE_CODE (type))
8267 {
8268 case POINTER_TYPE:
8269 case REFERENCE_TYPE:
8270 /* We have to worry about mutually recursive pointers. These can't
8271 be written in C. They can in Ada. It's pathological, but
8272 there's an ACATS test (c38102a) that checks it. Deal with this
8273 by checking if we're pointing to another pointer, that one
8274 points to another pointer, that one does too, and we have no htab.
8275 If so, get a hash table. We check three levels deep to avoid
8276 the cost of the hash table if we don't need one. */
8277 if (POINTER_TYPE_P (TREE_TYPE (type))
8278 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (type)))
8279 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (TREE_TYPE (type))))
8280 && !pset)
8281 {
8282 result = walk_tree_without_duplicates (&TREE_TYPE (type),
8283 func, data);
8284 if (result)
8285 return result;
8286
8287 break;
8288 }
8289
8290 /* ... fall through ... */
8291
8292 case COMPLEX_TYPE:
8293 WALK_SUBTREE (TREE_TYPE (type));
8294 break;
8295
8296 case METHOD_TYPE:
8297 WALK_SUBTREE (TYPE_METHOD_BASETYPE (type));
8298
8299 /* Fall through. */
8300
8301 case FUNCTION_TYPE:
8302 WALK_SUBTREE (TREE_TYPE (type));
8303 {
8304 tree arg;
8305
8306 /* We never want to walk into default arguments. */
8307 for (arg = TYPE_ARG_TYPES (type); arg; arg = TREE_CHAIN (arg))
8308 WALK_SUBTREE (TREE_VALUE (arg));
8309 }
8310 break;
8311
8312 case ARRAY_TYPE:
8313 /* Don't follow this nodes's type if a pointer for fear that
8314 we'll have infinite recursion. If we have a PSET, then we
8315 need not fear. */
8316 if (pset
8317 || (!POINTER_TYPE_P (TREE_TYPE (type))
8318 && TREE_CODE (TREE_TYPE (type)) != OFFSET_TYPE))
8319 WALK_SUBTREE (TREE_TYPE (type));
8320 WALK_SUBTREE (TYPE_DOMAIN (type));
8321 break;
8322
8323 case OFFSET_TYPE:
8324 WALK_SUBTREE (TREE_TYPE (type));
8325 WALK_SUBTREE (TYPE_OFFSET_BASETYPE (type));
8326 break;
8327
8328 default:
8329 break;
8330 }
8331
8332 return NULL_TREE;
8333 }
8334
8335 /* Apply FUNC to all the sub-trees of TP in a pre-order traversal. FUNC is
8336 called with the DATA and the address of each sub-tree. If FUNC returns a
8337 non-NULL value, the traversal is stopped, and the value returned by FUNC
8338 is returned. If PSET is non-NULL it is used to record the nodes visited,
8339 and to avoid visiting a node more than once. */
8340
8341 tree
8342 walk_tree_1 (tree *tp, walk_tree_fn func, void *data,
8343 struct pointer_set_t *pset, walk_tree_lh lh)
8344 {
8345 enum tree_code code;
8346 int walk_subtrees;
8347 tree result;
8348
8349 #define WALK_SUBTREE_TAIL(NODE) \
8350 do \
8351 { \
8352 tp = & (NODE); \
8353 goto tail_recurse; \
8354 } \
8355 while (0)
8356
8357 tail_recurse:
8358 /* Skip empty subtrees. */
8359 if (!*tp)
8360 return NULL_TREE;
8361
8362 /* Don't walk the same tree twice, if the user has requested
8363 that we avoid doing so. */
8364 if (pset && pointer_set_insert (pset, *tp))
8365 return NULL_TREE;
8366
8367 /* Call the function. */
8368 walk_subtrees = 1;
8369 result = (*func) (tp, &walk_subtrees, data);
8370
8371 /* If we found something, return it. */
8372 if (result)
8373 return result;
8374
8375 code = TREE_CODE (*tp);
8376
8377 /* Even if we didn't, FUNC may have decided that there was nothing
8378 interesting below this point in the tree. */
8379 if (!walk_subtrees)
8380 {
8381 /* But we still need to check our siblings. */
8382 if (code == TREE_LIST)
8383 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
8384 else if (code == OMP_CLAUSE)
8385 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
8386 else
8387 return NULL_TREE;
8388 }
8389
8390 if (lh)
8391 {
8392 result = (*lh) (tp, &walk_subtrees, func, data, pset);
8393 if (result || !walk_subtrees)
8394 return result;
8395 }
8396
8397 switch (code)
8398 {
8399 case ERROR_MARK:
8400 case IDENTIFIER_NODE:
8401 case INTEGER_CST:
8402 case REAL_CST:
8403 case FIXED_CST:
8404 case VECTOR_CST:
8405 case STRING_CST:
8406 case BLOCK:
8407 case PLACEHOLDER_EXPR:
8408 case SSA_NAME:
8409 case FIELD_DECL:
8410 case RESULT_DECL:
8411 /* None of these have subtrees other than those already walked
8412 above. */
8413 break;
8414
8415 case TREE_LIST:
8416 WALK_SUBTREE (TREE_VALUE (*tp));
8417 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
8418 break;
8419
8420 case TREE_VEC:
8421 {
8422 int len = TREE_VEC_LENGTH (*tp);
8423
8424 if (len == 0)
8425 break;
8426
8427 /* Walk all elements but the first. */
8428 while (--len)
8429 WALK_SUBTREE (TREE_VEC_ELT (*tp, len));
8430
8431 /* Now walk the first one as a tail call. */
8432 WALK_SUBTREE_TAIL (TREE_VEC_ELT (*tp, 0));
8433 }
8434
8435 case COMPLEX_CST:
8436 WALK_SUBTREE (TREE_REALPART (*tp));
8437 WALK_SUBTREE_TAIL (TREE_IMAGPART (*tp));
8438
8439 case CONSTRUCTOR:
8440 {
8441 unsigned HOST_WIDE_INT idx;
8442 constructor_elt *ce;
8443
8444 for (idx = 0;
8445 VEC_iterate(constructor_elt, CONSTRUCTOR_ELTS (*tp), idx, ce);
8446 idx++)
8447 WALK_SUBTREE (ce->value);
8448 }
8449 break;
8450
8451 case SAVE_EXPR:
8452 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, 0));
8453
8454 case BIND_EXPR:
8455 {
8456 tree decl;
8457 for (decl = BIND_EXPR_VARS (*tp); decl; decl = TREE_CHAIN (decl))
8458 {
8459 /* Walk the DECL_INITIAL and DECL_SIZE. We don't want to walk
8460 into declarations that are just mentioned, rather than
8461 declared; they don't really belong to this part of the tree.
8462 And, we can see cycles: the initializer for a declaration
8463 can refer to the declaration itself. */
8464 WALK_SUBTREE (DECL_INITIAL (decl));
8465 WALK_SUBTREE (DECL_SIZE (decl));
8466 WALK_SUBTREE (DECL_SIZE_UNIT (decl));
8467 }
8468 WALK_SUBTREE_TAIL (BIND_EXPR_BODY (*tp));
8469 }
8470
8471 case STATEMENT_LIST:
8472 {
8473 tree_stmt_iterator i;
8474 for (i = tsi_start (*tp); !tsi_end_p (i); tsi_next (&i))
8475 WALK_SUBTREE (*tsi_stmt_ptr (i));
8476 }
8477 break;
8478
8479 case OMP_CLAUSE:
8480 switch (OMP_CLAUSE_CODE (*tp))
8481 {
8482 case OMP_CLAUSE_PRIVATE:
8483 case OMP_CLAUSE_SHARED:
8484 case OMP_CLAUSE_FIRSTPRIVATE:
8485 case OMP_CLAUSE_LASTPRIVATE:
8486 case OMP_CLAUSE_COPYIN:
8487 case OMP_CLAUSE_COPYPRIVATE:
8488 case OMP_CLAUSE_IF:
8489 case OMP_CLAUSE_NUM_THREADS:
8490 case OMP_CLAUSE_SCHEDULE:
8491 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 0));
8492 /* FALLTHRU */
8493
8494 case OMP_CLAUSE_NOWAIT:
8495 case OMP_CLAUSE_ORDERED:
8496 case OMP_CLAUSE_DEFAULT:
8497 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
8498
8499 case OMP_CLAUSE_REDUCTION:
8500 {
8501 int i;
8502 for (i = 0; i < 4; i++)
8503 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
8504 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
8505 }
8506
8507 default:
8508 gcc_unreachable ();
8509 }
8510 break;
8511
8512 case TARGET_EXPR:
8513 {
8514 int i, len;
8515
8516 /* TARGET_EXPRs are peculiar: operands 1 and 3 can be the same.
8517 But, we only want to walk once. */
8518 len = (TREE_OPERAND (*tp, 3) == TREE_OPERAND (*tp, 1)) ? 2 : 3;
8519 for (i = 0; i < len; ++i)
8520 WALK_SUBTREE (TREE_OPERAND (*tp, i));
8521 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len));
8522 }
8523
8524 case DECL_EXPR:
8525 /* If this is a TYPE_DECL, walk into the fields of the type that it's
8526 defining. We only want to walk into these fields of a type in this
8527 case and not in the general case of a mere reference to the type.
8528
8529 The criterion is as follows: if the field can be an expression, it
8530 must be walked only here. This should be in keeping with the fields
8531 that are directly gimplified in gimplify_type_sizes in order for the
8532 mark/copy-if-shared/unmark machinery of the gimplifier to work with
8533 variable-sized types.
8534
8535 Note that DECLs get walked as part of processing the BIND_EXPR. */
8536 if (TREE_CODE (DECL_EXPR_DECL (*tp)) == TYPE_DECL)
8537 {
8538 tree *type_p = &TREE_TYPE (DECL_EXPR_DECL (*tp));
8539 if (TREE_CODE (*type_p) == ERROR_MARK)
8540 return NULL_TREE;
8541
8542 /* Call the function for the type. See if it returns anything or
8543 doesn't want us to continue. If we are to continue, walk both
8544 the normal fields and those for the declaration case. */
8545 result = (*func) (type_p, &walk_subtrees, data);
8546 if (result || !walk_subtrees)
8547 return result;
8548
8549 result = walk_type_fields (*type_p, func, data, pset, lh);
8550 if (result)
8551 return result;
8552
8553 /* If this is a record type, also walk the fields. */
8554 if (TREE_CODE (*type_p) == RECORD_TYPE
8555 || TREE_CODE (*type_p) == UNION_TYPE
8556 || TREE_CODE (*type_p) == QUAL_UNION_TYPE)
8557 {
8558 tree field;
8559
8560 for (field = TYPE_FIELDS (*type_p); field;
8561 field = TREE_CHAIN (field))
8562 {
8563 /* We'd like to look at the type of the field, but we can
8564 easily get infinite recursion. So assume it's pointed
8565 to elsewhere in the tree. Also, ignore things that
8566 aren't fields. */
8567 if (TREE_CODE (field) != FIELD_DECL)
8568 continue;
8569
8570 WALK_SUBTREE (DECL_FIELD_OFFSET (field));
8571 WALK_SUBTREE (DECL_SIZE (field));
8572 WALK_SUBTREE (DECL_SIZE_UNIT (field));
8573 if (TREE_CODE (*type_p) == QUAL_UNION_TYPE)
8574 WALK_SUBTREE (DECL_QUALIFIER (field));
8575 }
8576 }
8577
8578 /* Same for scalar types. */
8579 else if (TREE_CODE (*type_p) == BOOLEAN_TYPE
8580 || TREE_CODE (*type_p) == ENUMERAL_TYPE
8581 || TREE_CODE (*type_p) == INTEGER_TYPE
8582 || TREE_CODE (*type_p) == FIXED_POINT_TYPE
8583 || TREE_CODE (*type_p) == REAL_TYPE)
8584 {
8585 WALK_SUBTREE (TYPE_MIN_VALUE (*type_p));
8586 WALK_SUBTREE (TYPE_MAX_VALUE (*type_p));
8587 }
8588
8589 WALK_SUBTREE (TYPE_SIZE (*type_p));
8590 WALK_SUBTREE_TAIL (TYPE_SIZE_UNIT (*type_p));
8591 }
8592 /* FALLTHRU */
8593
8594 default:
8595 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code))
8596 || IS_GIMPLE_STMT_CODE_CLASS (TREE_CODE_CLASS (code)))
8597 {
8598 int i, len;
8599
8600 /* Walk over all the sub-trees of this operand. */
8601 len = TREE_OPERAND_LENGTH (*tp);
8602
8603 /* Go through the subtrees. We need to do this in forward order so
8604 that the scope of a FOR_EXPR is handled properly. */
8605 if (len)
8606 {
8607 for (i = 0; i < len - 1; ++i)
8608 WALK_SUBTREE (GENERIC_TREE_OPERAND (*tp, i));
8609 WALK_SUBTREE_TAIL (GENERIC_TREE_OPERAND (*tp, len - 1));
8610 }
8611 }
8612 /* If this is a type, walk the needed fields in the type. */
8613 else if (TYPE_P (*tp))
8614 return walk_type_fields (*tp, func, data, pset, lh);
8615 break;
8616 }
8617
8618 /* We didn't find what we were looking for. */
8619 return NULL_TREE;
8620
8621 #undef WALK_SUBTREE_TAIL
8622 }
8623 #undef WALK_SUBTREE
8624
8625 /* Like walk_tree, but does not walk duplicate nodes more than once. */
8626
8627 tree
8628 walk_tree_without_duplicates_1 (tree *tp, walk_tree_fn func, void *data,
8629 walk_tree_lh lh)
8630 {
8631 tree result;
8632 struct pointer_set_t *pset;
8633
8634 pset = pointer_set_create ();
8635 result = walk_tree_1 (tp, func, data, pset, lh);
8636 pointer_set_destroy (pset);
8637 return result;
8638 }
8639
8640
8641 /* Return true if STMT is an empty statement or contains nothing but
8642 empty statements. */
8643
8644 bool
8645 empty_body_p (tree stmt)
8646 {
8647 tree_stmt_iterator i;
8648 tree body;
8649
8650 if (IS_EMPTY_STMT (stmt))
8651 return true;
8652 else if (TREE_CODE (stmt) == BIND_EXPR)
8653 body = BIND_EXPR_BODY (stmt);
8654 else if (TREE_CODE (stmt) == STATEMENT_LIST)
8655 body = stmt;
8656 else
8657 return false;
8658
8659 for (i = tsi_start (body); !tsi_end_p (i); tsi_next (&i))
8660 if (!empty_body_p (tsi_stmt (i)))
8661 return false;
8662
8663 return true;
8664 }
8665
8666 tree *
8667 tree_block (tree t)
8668 {
8669 char const c = TREE_CODE_CLASS (TREE_CODE (t));
8670
8671 if (IS_EXPR_CODE_CLASS (c))
8672 return &t->exp.block;
8673 else if (IS_GIMPLE_STMT_CODE_CLASS (c))
8674 return &GIMPLE_STMT_BLOCK (t);
8675 gcc_unreachable ();
8676 return NULL;
8677 }
8678
8679 tree *
8680 generic_tree_operand (tree node, int i)
8681 {
8682 if (GIMPLE_STMT_P (node))
8683 return &GIMPLE_STMT_OPERAND (node, i);
8684 return &TREE_OPERAND (node, i);
8685 }
8686
8687 tree *
8688 generic_tree_type (tree node)
8689 {
8690 if (GIMPLE_STMT_P (node))
8691 return &void_type_node;
8692 return &TREE_TYPE (node);
8693 }
8694
8695 /* Build and return a TREE_LIST of arguments in the CALL_EXPR exp.
8696 FIXME: don't use this function. It exists for compatibility with
8697 the old representation of CALL_EXPRs where a list was used to hold the
8698 arguments. Places that currently extract the arglist from a CALL_EXPR
8699 ought to be rewritten to use the CALL_EXPR itself. */
8700 tree
8701 call_expr_arglist (tree exp)
8702 {
8703 tree arglist = NULL_TREE;
8704 int i;
8705 for (i = call_expr_nargs (exp) - 1; i >= 0; i--)
8706 arglist = tree_cons (NULL_TREE, CALL_EXPR_ARG (exp, i), arglist);
8707 return arglist;
8708 }
8709
8710 /* Return true if TYPE has a variable argument list. */
8711
8712 bool
8713 stdarg_p (tree fntype)
8714 {
8715 function_args_iterator args_iter;
8716 tree n = NULL_TREE, t;
8717
8718 if (!fntype)
8719 return false;
8720
8721 FOREACH_FUNCTION_ARGS(fntype, t, args_iter)
8722 {
8723 n = t;
8724 }
8725
8726 return n != NULL_TREE && n != void_type_node;
8727 }
8728
8729 /* Return true if TYPE has a prototype. */
8730
8731 bool
8732 prototype_p (tree fntype)
8733 {
8734 tree t;
8735
8736 gcc_assert (fntype != NULL_TREE);
8737
8738 t = TYPE_ARG_TYPES (fntype);
8739 return (t != NULL_TREE);
8740 }
8741
8742 /* Return the number of arguments that a function has. */
8743
8744 int
8745 function_args_count (tree fntype)
8746 {
8747 function_args_iterator args_iter;
8748 tree t;
8749 int num = 0;
8750
8751 if (fntype)
8752 {
8753 FOREACH_FUNCTION_ARGS(fntype, t, args_iter)
8754 {
8755 num++;
8756 }
8757 }
8758
8759 return num;
8760 }
8761
8762 /* If BLOCK is inlined from an __attribute__((__artificial__))
8763 routine, return pointer to location from where it has been
8764 called. */
8765 location_t *
8766 block_nonartificial_location (tree block)
8767 {
8768 location_t *ret = NULL;
8769
8770 while (block && TREE_CODE (block) == BLOCK
8771 && BLOCK_ABSTRACT_ORIGIN (block))
8772 {
8773 tree ao = BLOCK_ABSTRACT_ORIGIN (block);
8774
8775 while (TREE_CODE (ao) == BLOCK && BLOCK_ABSTRACT_ORIGIN (ao))
8776 ao = BLOCK_ABSTRACT_ORIGIN (ao);
8777
8778 if (TREE_CODE (ao) == FUNCTION_DECL)
8779 {
8780 /* If AO is an artificial inline, point RET to the
8781 call site locus at which it has been inlined and continue
8782 the loop, in case AO's caller is also an artificial
8783 inline. */
8784 if (DECL_DECLARED_INLINE_P (ao)
8785 && lookup_attribute ("artificial", DECL_ATTRIBUTES (ao)))
8786 ret = &BLOCK_SOURCE_LOCATION (block);
8787 else
8788 break;
8789 }
8790 else if (TREE_CODE (ao) != BLOCK)
8791 break;
8792
8793 block = BLOCK_SUPERCONTEXT (block);
8794 }
8795 return ret;
8796 }
8797
8798 #include "gt-tree.h"