]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree.c
re PR tree-optimization/17454 (ICE with --enable-checking=fold)
[thirdparty/gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This file contains the low level primitives for operating on tree nodes,
23 including allocation, list operations, interning of identifiers,
24 construction of data type nodes and statement nodes,
25 and construction of type conversion nodes. It also contains
26 tables index by tree code that describe how to take apart
27 nodes of that code.
28
29 It is intended to be language-independent, but occasionally
30 calls language-dependent routines defined (for C) in typecheck.c. */
31
32 #include "config.h"
33 #include "system.h"
34 #include "coretypes.h"
35 #include "tm.h"
36 #include "flags.h"
37 #include "tree.h"
38 #include "real.h"
39 #include "tm_p.h"
40 #include "function.h"
41 #include "obstack.h"
42 #include "toplev.h"
43 #include "ggc.h"
44 #include "hashtab.h"
45 #include "output.h"
46 #include "target.h"
47 #include "langhooks.h"
48 #include "tree-iterator.h"
49 #include "basic-block.h"
50 #include "tree-flow.h"
51 #include "params.h"
52
53 /* Each tree code class has an associated string representation.
54 These must correspond to the tree_code_class entries. */
55
56 const char *const tree_code_class_strings[] =
57 {
58 "exceptional",
59 "constant",
60 "type",
61 "declaration",
62 "reference",
63 "comparison",
64 "unary",
65 "binary",
66 "statement",
67 "expression",
68 };
69
70 /* obstack.[ch] explicitly declined to prototype this. */
71 extern int _obstack_allocated_p (struct obstack *h, void *obj);
72
73 #ifdef GATHER_STATISTICS
74 /* Statistics-gathering stuff. */
75
76 int tree_node_counts[(int) all_kinds];
77 int tree_node_sizes[(int) all_kinds];
78
79 /* Keep in sync with tree.h:enum tree_node_kind. */
80 static const char * const tree_node_kind_names[] = {
81 "decls",
82 "types",
83 "blocks",
84 "stmts",
85 "refs",
86 "exprs",
87 "constants",
88 "identifiers",
89 "perm_tree_lists",
90 "temp_tree_lists",
91 "vecs",
92 "binfos",
93 "phi_nodes",
94 "ssa names",
95 "random kinds",
96 "lang_decl kinds",
97 "lang_type kinds"
98 };
99 #endif /* GATHER_STATISTICS */
100
101 /* Unique id for next decl created. */
102 static GTY(()) int next_decl_uid;
103 /* Unique id for next type created. */
104 static GTY(()) int next_type_uid = 1;
105
106 /* Since we cannot rehash a type after it is in the table, we have to
107 keep the hash code. */
108
109 struct type_hash GTY(())
110 {
111 unsigned long hash;
112 tree type;
113 };
114
115 /* Initial size of the hash table (rounded to next prime). */
116 #define TYPE_HASH_INITIAL_SIZE 1000
117
118 /* Now here is the hash table. When recording a type, it is added to
119 the slot whose index is the hash code. Note that the hash table is
120 used for several kinds of types (function types, array types and
121 array index range types, for now). While all these live in the
122 same table, they are completely independent, and the hash code is
123 computed differently for each of these. */
124
125 static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash)))
126 htab_t type_hash_table;
127
128 /* Hash table and temporary node for larger integer const values. */
129 static GTY (()) tree int_cst_node;
130 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
131 htab_t int_cst_hash_table;
132
133 static void set_type_quals (tree, int);
134 static int type_hash_eq (const void *, const void *);
135 static hashval_t type_hash_hash (const void *);
136 static hashval_t int_cst_hash_hash (const void *);
137 static int int_cst_hash_eq (const void *, const void *);
138 static void print_type_hash_statistics (void);
139 static tree make_vector_type (tree, int, enum machine_mode);
140 static int type_hash_marked_p (const void *);
141 static unsigned int type_hash_list (tree, hashval_t);
142 static unsigned int attribute_hash_list (tree, hashval_t);
143
144 tree global_trees[TI_MAX];
145 tree integer_types[itk_none];
146 \f
147 /* Init tree.c. */
148
149 void
150 init_ttree (void)
151 {
152 /* Initialize the hash table of types. */
153 type_hash_table = htab_create_ggc (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
154 type_hash_eq, 0);
155 int_cst_hash_table = htab_create_ggc (1024, int_cst_hash_hash,
156 int_cst_hash_eq, NULL);
157 int_cst_node = make_node (INTEGER_CST);
158 }
159
160 \f
161 /* The name of the object as the assembler will see it (but before any
162 translations made by ASM_OUTPUT_LABELREF). Often this is the same
163 as DECL_NAME. It is an IDENTIFIER_NODE. */
164 tree
165 decl_assembler_name (tree decl)
166 {
167 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
168 lang_hooks.set_decl_assembler_name (decl);
169 return DECL_CHECK (decl)->decl.assembler_name;
170 }
171
172 /* Compute the number of bytes occupied by a tree with code CODE.
173 This function cannot be used for TREE_VEC, PHI_NODE, or STRING_CST
174 codes, which are of variable length. */
175 size_t
176 tree_code_size (enum tree_code code)
177 {
178 switch (TREE_CODE_CLASS (code))
179 {
180 case tcc_declaration: /* A decl node */
181 return sizeof (struct tree_decl);
182
183 case tcc_type: /* a type node */
184 return sizeof (struct tree_type);
185
186 case tcc_reference: /* a reference */
187 case tcc_expression: /* an expression */
188 case tcc_statement: /* an expression with side effects */
189 case tcc_comparison: /* a comparison expression */
190 case tcc_unary: /* a unary arithmetic expression */
191 case tcc_binary: /* a binary arithmetic expression */
192 return (sizeof (struct tree_exp)
193 + (TREE_CODE_LENGTH (code) - 1) * sizeof (char *));
194
195 case tcc_constant: /* a constant */
196 switch (code)
197 {
198 case INTEGER_CST: return sizeof (struct tree_int_cst);
199 case REAL_CST: return sizeof (struct tree_real_cst);
200 case COMPLEX_CST: return sizeof (struct tree_complex);
201 case VECTOR_CST: return sizeof (struct tree_vector);
202 case STRING_CST: gcc_unreachable ();
203 default:
204 return lang_hooks.tree_size (code);
205 }
206
207 case tcc_exceptional: /* something random, like an identifier. */
208 switch (code)
209 {
210 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
211 case TREE_LIST: return sizeof (struct tree_list);
212
213 case ERROR_MARK:
214 case PLACEHOLDER_EXPR: return sizeof (struct tree_common);
215
216 case TREE_VEC:
217 case PHI_NODE: gcc_unreachable ();
218
219 case SSA_NAME: return sizeof (struct tree_ssa_name);
220
221 case STATEMENT_LIST: return sizeof (struct tree_statement_list);
222 case BLOCK: return sizeof (struct tree_block);
223 case VALUE_HANDLE: return sizeof (struct tree_value_handle);
224
225 default:
226 return lang_hooks.tree_size (code);
227 }
228
229 default:
230 gcc_unreachable ();
231 }
232 }
233
234 /* Compute the number of bytes occupied by NODE. This routine only
235 looks at TREE_CODE, except for PHI_NODE and TREE_VEC nodes. */
236 size_t
237 tree_size (tree node)
238 {
239 enum tree_code code = TREE_CODE (node);
240 switch (code)
241 {
242 case PHI_NODE:
243 return (sizeof (struct tree_phi_node)
244 + (PHI_ARG_CAPACITY (node) - 1) * sizeof (struct phi_arg_d));
245
246 case TREE_BINFO:
247 return (offsetof (struct tree_binfo, base_binfos)
248 + VEC_embedded_size (tree, BINFO_N_BASE_BINFOS (node)));
249
250 case TREE_VEC:
251 return (sizeof (struct tree_vec)
252 + (TREE_VEC_LENGTH (node) - 1) * sizeof(char *));
253
254 case STRING_CST:
255 return sizeof (struct tree_string) + TREE_STRING_LENGTH (node) - 1;
256
257 default:
258 return tree_code_size (code);
259 }
260 }
261
262 /* Return a newly allocated node of code CODE. For decl and type
263 nodes, some other fields are initialized. The rest of the node is
264 initialized to zero. This function cannot be used for PHI_NODE or
265 TREE_VEC nodes, which is enforced by asserts in tree_code_size.
266
267 Achoo! I got a code in the node. */
268
269 tree
270 make_node_stat (enum tree_code code MEM_STAT_DECL)
271 {
272 tree t;
273 enum tree_code_class type = TREE_CODE_CLASS (code);
274 size_t length = tree_code_size (code);
275 #ifdef GATHER_STATISTICS
276 tree_node_kind kind;
277
278 switch (type)
279 {
280 case tcc_declaration: /* A decl node */
281 kind = d_kind;
282 break;
283
284 case tcc_type: /* a type node */
285 kind = t_kind;
286 break;
287
288 case tcc_statement: /* an expression with side effects */
289 kind = s_kind;
290 break;
291
292 case tcc_reference: /* a reference */
293 kind = r_kind;
294 break;
295
296 case tcc_expression: /* an expression */
297 case tcc_comparison: /* a comparison expression */
298 case tcc_unary: /* a unary arithmetic expression */
299 case tcc_binary: /* a binary arithmetic expression */
300 kind = e_kind;
301 break;
302
303 case tcc_constant: /* a constant */
304 kind = c_kind;
305 break;
306
307 case tcc_exceptional: /* something random, like an identifier. */
308 switch (code)
309 {
310 case IDENTIFIER_NODE:
311 kind = id_kind;
312 break;
313
314 case TREE_VEC:;
315 kind = vec_kind;
316 break;
317
318 case TREE_BINFO:
319 kind = binfo_kind;
320 break;
321
322 case PHI_NODE:
323 kind = phi_kind;
324 break;
325
326 case SSA_NAME:
327 kind = ssa_name_kind;
328 break;
329
330 case BLOCK:
331 kind = b_kind;
332 break;
333
334 default:
335 kind = x_kind;
336 break;
337 }
338 break;
339
340 default:
341 gcc_unreachable ();
342 }
343
344 tree_node_counts[(int) kind]++;
345 tree_node_sizes[(int) kind] += length;
346 #endif
347
348 if (code == IDENTIFIER_NODE)
349 t = ggc_alloc_zone_stat (length, &tree_id_zone PASS_MEM_STAT);
350 else
351 t = ggc_alloc_zone_stat (length, &tree_zone PASS_MEM_STAT);
352
353 memset (t, 0, length);
354
355 TREE_SET_CODE (t, code);
356
357 switch (type)
358 {
359 case tcc_statement:
360 TREE_SIDE_EFFECTS (t) = 1;
361 break;
362
363 case tcc_declaration:
364 if (code != FUNCTION_DECL)
365 DECL_ALIGN (t) = 1;
366 DECL_USER_ALIGN (t) = 0;
367 DECL_IN_SYSTEM_HEADER (t) = in_system_header;
368 DECL_SOURCE_LOCATION (t) = input_location;
369 DECL_UID (t) = next_decl_uid++;
370
371 /* We have not yet computed the alias set for this declaration. */
372 DECL_POINTER_ALIAS_SET (t) = -1;
373 break;
374
375 case tcc_type:
376 TYPE_UID (t) = next_type_uid++;
377 TYPE_ALIGN (t) = char_type_node ? TYPE_ALIGN (char_type_node) : 0;
378 TYPE_USER_ALIGN (t) = 0;
379 TYPE_MAIN_VARIANT (t) = t;
380
381 /* Default to no attributes for type, but let target change that. */
382 TYPE_ATTRIBUTES (t) = NULL_TREE;
383 targetm.set_default_type_attributes (t);
384
385 /* We have not yet computed the alias set for this type. */
386 TYPE_ALIAS_SET (t) = -1;
387 break;
388
389 case tcc_constant:
390 TREE_CONSTANT (t) = 1;
391 TREE_INVARIANT (t) = 1;
392 break;
393
394 case tcc_expression:
395 switch (code)
396 {
397 case INIT_EXPR:
398 case MODIFY_EXPR:
399 case VA_ARG_EXPR:
400 case PREDECREMENT_EXPR:
401 case PREINCREMENT_EXPR:
402 case POSTDECREMENT_EXPR:
403 case POSTINCREMENT_EXPR:
404 /* All of these have side-effects, no matter what their
405 operands are. */
406 TREE_SIDE_EFFECTS (t) = 1;
407 break;
408
409 default:
410 break;
411 }
412 break;
413
414 default:
415 /* Other classes need no special treatment. */
416 break;
417 }
418
419 return t;
420 }
421 \f
422 /* Return a new node with the same contents as NODE except that its
423 TREE_CHAIN is zero and it has a fresh uid. */
424
425 tree
426 copy_node_stat (tree node MEM_STAT_DECL)
427 {
428 tree t;
429 enum tree_code code = TREE_CODE (node);
430 size_t length;
431
432 gcc_assert (code != STATEMENT_LIST);
433
434 length = tree_size (node);
435 t = ggc_alloc_zone_stat (length, &tree_zone PASS_MEM_STAT);
436 memcpy (t, node, length);
437
438 TREE_CHAIN (t) = 0;
439 TREE_ASM_WRITTEN (t) = 0;
440 TREE_VISITED (t) = 0;
441 t->common.ann = 0;
442
443 if (TREE_CODE_CLASS (code) == tcc_declaration)
444 DECL_UID (t) = next_decl_uid++;
445 else if (TREE_CODE_CLASS (code) == tcc_type)
446 {
447 TYPE_UID (t) = next_type_uid++;
448 /* The following is so that the debug code for
449 the copy is different from the original type.
450 The two statements usually duplicate each other
451 (because they clear fields of the same union),
452 but the optimizer should catch that. */
453 TYPE_SYMTAB_POINTER (t) = 0;
454 TYPE_SYMTAB_ADDRESS (t) = 0;
455
456 /* Do not copy the values cache. */
457 if (TYPE_CACHED_VALUES_P(t))
458 {
459 TYPE_CACHED_VALUES_P (t) = 0;
460 TYPE_CACHED_VALUES (t) = NULL_TREE;
461 }
462 }
463
464 return t;
465 }
466
467 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
468 For example, this can copy a list made of TREE_LIST nodes. */
469
470 tree
471 copy_list (tree list)
472 {
473 tree head;
474 tree prev, next;
475
476 if (list == 0)
477 return 0;
478
479 head = prev = copy_node (list);
480 next = TREE_CHAIN (list);
481 while (next)
482 {
483 TREE_CHAIN (prev) = copy_node (next);
484 prev = TREE_CHAIN (prev);
485 next = TREE_CHAIN (next);
486 }
487 return head;
488 }
489
490 \f
491 /* Create an INT_CST node with a LOW value sign extended. */
492
493 tree
494 build_int_cst (tree type, HOST_WIDE_INT low)
495 {
496 return build_int_cst_wide (type, low, low < 0 ? -1 : 0);
497 }
498
499 /* Create an INT_CST node with a LOW value zero extended. */
500
501 tree
502 build_int_cstu (tree type, unsigned HOST_WIDE_INT low)
503 {
504 return build_int_cst_wide (type, low, 0);
505 }
506
507 /* Create an INT_CST node with a LOW value in TYPE. The value is sign extended
508 if it is negative. This function is similar to build_int_cst, but
509 the extra bits outside of the type precision are cleared. Constants
510 with these extra bits may confuse the fold so that it detects overflows
511 even in cases when they do not occur, and in general should be avoided.
512 We cannot however make this a default behavior of build_int_cst without
513 more intrusive changes, since there are parts of gcc that rely on the extra
514 precision of the integer constants. */
515
516 tree
517 build_int_cst_type (tree type, HOST_WIDE_INT low)
518 {
519 unsigned HOST_WIDE_INT val = (unsigned HOST_WIDE_INT) low;
520 unsigned HOST_WIDE_INT hi;
521 unsigned bits;
522 bool signed_p;
523 bool negative;
524
525 if (!type)
526 type = integer_type_node;
527
528 bits = TYPE_PRECISION (type);
529 signed_p = !TYPE_UNSIGNED (type);
530
531 if (bits >= HOST_BITS_PER_WIDE_INT)
532 negative = (low < 0);
533 else
534 {
535 /* If the sign bit is inside precision of LOW, use it to determine
536 the sign of the constant. */
537 negative = ((val >> (bits - 1)) & 1) != 0;
538
539 /* Mask out the bits outside of the precision of the constant. */
540 if (signed_p && negative)
541 val = val | ((~(unsigned HOST_WIDE_INT) 0) << bits);
542 else
543 val = val & ~((~(unsigned HOST_WIDE_INT) 0) << bits);
544 }
545
546 /* Determine the high bits. */
547 hi = (negative ? ~(unsigned HOST_WIDE_INT) 0 : 0);
548
549 /* For unsigned type we need to mask out the bits outside of the type
550 precision. */
551 if (!signed_p)
552 {
553 if (bits <= HOST_BITS_PER_WIDE_INT)
554 hi = 0;
555 else
556 {
557 bits -= HOST_BITS_PER_WIDE_INT;
558 hi = hi & ~((~(unsigned HOST_WIDE_INT) 0) << bits);
559 }
560 }
561
562 return build_int_cst_wide (type, val, hi);
563 }
564
565 /* These are the hash table functions for the hash table of INTEGER_CST
566 nodes of a sizetype. */
567
568 /* Return the hash code code X, an INTEGER_CST. */
569
570 static hashval_t
571 int_cst_hash_hash (const void *x)
572 {
573 tree t = (tree) x;
574
575 return (TREE_INT_CST_HIGH (t) ^ TREE_INT_CST_LOW (t)
576 ^ htab_hash_pointer (TREE_TYPE (t)));
577 }
578
579 /* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
580 is the same as that given by *Y, which is the same. */
581
582 static int
583 int_cst_hash_eq (const void *x, const void *y)
584 {
585 tree xt = (tree) x;
586 tree yt = (tree) y;
587
588 return (TREE_TYPE (xt) == TREE_TYPE (yt)
589 && TREE_INT_CST_HIGH (xt) == TREE_INT_CST_HIGH (yt)
590 && TREE_INT_CST_LOW (xt) == TREE_INT_CST_LOW (yt));
591 }
592
593 /* Create an INT_CST node of TYPE and value HI:LOW. If TYPE is NULL,
594 integer_type_node is used. The returned node is always shared.
595 For small integers we use a per-type vector cache, for larger ones
596 we use a single hash table. */
597
598 tree
599 build_int_cst_wide (tree type, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
600 {
601 tree t;
602 int ix = -1;
603 int limit = 0;
604
605 if (!type)
606 type = integer_type_node;
607
608 switch (TREE_CODE (type))
609 {
610 case POINTER_TYPE:
611 case REFERENCE_TYPE:
612 /* Cache NULL pointer. */
613 if (!hi && !low)
614 {
615 limit = 1;
616 ix = 0;
617 }
618 break;
619
620 case BOOLEAN_TYPE:
621 /* Cache false or true. */
622 limit = 2;
623 if (!hi && low < 2)
624 ix = low;
625 break;
626
627 case INTEGER_TYPE:
628 case CHAR_TYPE:
629 case OFFSET_TYPE:
630 if (TYPE_UNSIGNED (type))
631 {
632 /* Cache 0..N */
633 limit = INTEGER_SHARE_LIMIT;
634 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
635 ix = low;
636 }
637 else
638 {
639 /* Cache -1..N */
640 limit = INTEGER_SHARE_LIMIT + 1;
641 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
642 ix = low + 1;
643 else if (hi == -1 && low == -(unsigned HOST_WIDE_INT)1)
644 ix = 0;
645 }
646 break;
647 default:
648 break;
649 }
650
651 if (ix >= 0)
652 {
653 /* Look for it in the type's vector of small shared ints. */
654 if (!TYPE_CACHED_VALUES_P (type))
655 {
656 TYPE_CACHED_VALUES_P (type) = 1;
657 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
658 }
659
660 t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix);
661 if (t)
662 {
663 /* Make sure no one is clobbering the shared constant. */
664 gcc_assert (TREE_TYPE (t) == type);
665 gcc_assert (TREE_INT_CST_LOW (t) == low);
666 gcc_assert (TREE_INT_CST_HIGH (t) == hi);
667 }
668 else
669 {
670 /* Create a new shared int. */
671 t = make_node (INTEGER_CST);
672
673 TREE_INT_CST_LOW (t) = low;
674 TREE_INT_CST_HIGH (t) = hi;
675 TREE_TYPE (t) = type;
676
677 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
678 }
679 }
680 else
681 {
682 /* Use the cache of larger shared ints. */
683 void **slot;
684
685 TREE_INT_CST_LOW (int_cst_node) = low;
686 TREE_INT_CST_HIGH (int_cst_node) = hi;
687 TREE_TYPE (int_cst_node) = type;
688
689 slot = htab_find_slot (int_cst_hash_table, int_cst_node, INSERT);
690 t = *slot;
691 if (!t)
692 {
693 /* Insert this one into the hash table. */
694 t = int_cst_node;
695 *slot = t;
696 /* Make a new node for next time round. */
697 int_cst_node = make_node (INTEGER_CST);
698 }
699 }
700
701 return t;
702 }
703
704 /* Builds an integer constant in TYPE such that lowest BITS bits are ones
705 and the rest are zeros. */
706
707 tree
708 build_low_bits_mask (tree type, unsigned bits)
709 {
710 unsigned HOST_WIDE_INT low;
711 HOST_WIDE_INT high;
712 unsigned HOST_WIDE_INT all_ones = ~(unsigned HOST_WIDE_INT) 0;
713
714 gcc_assert (bits <= TYPE_PRECISION (type));
715
716 if (bits == TYPE_PRECISION (type)
717 && !TYPE_UNSIGNED (type))
718 {
719 /* Sign extended all-ones mask. */
720 low = all_ones;
721 high = -1;
722 }
723 else if (bits <= HOST_BITS_PER_WIDE_INT)
724 {
725 low = all_ones >> (HOST_BITS_PER_WIDE_INT - bits);
726 high = 0;
727 }
728 else
729 {
730 bits -= HOST_BITS_PER_WIDE_INT;
731 low = all_ones;
732 high = all_ones >> (HOST_BITS_PER_WIDE_INT - bits);
733 }
734
735 return build_int_cst_wide (type, low, high);
736 }
737
738 /* Checks that X is integer constant that can be expressed in (unsigned)
739 HOST_WIDE_INT without loss of precision. */
740
741 bool
742 cst_and_fits_in_hwi (tree x)
743 {
744 if (TREE_CODE (x) != INTEGER_CST)
745 return false;
746
747 if (TYPE_PRECISION (TREE_TYPE (x)) > HOST_BITS_PER_WIDE_INT)
748 return false;
749
750 return (TREE_INT_CST_HIGH (x) == 0
751 || TREE_INT_CST_HIGH (x) == -1);
752 }
753
754 /* Return a new VECTOR_CST node whose type is TYPE and whose values
755 are in a list pointed by VALS. */
756
757 tree
758 build_vector (tree type, tree vals)
759 {
760 tree v = make_node (VECTOR_CST);
761 int over1 = 0, over2 = 0;
762 tree link;
763
764 TREE_VECTOR_CST_ELTS (v) = vals;
765 TREE_TYPE (v) = type;
766
767 /* Iterate through elements and check for overflow. */
768 for (link = vals; link; link = TREE_CHAIN (link))
769 {
770 tree value = TREE_VALUE (link);
771
772 over1 |= TREE_OVERFLOW (value);
773 over2 |= TREE_CONSTANT_OVERFLOW (value);
774 }
775
776 TREE_OVERFLOW (v) = over1;
777 TREE_CONSTANT_OVERFLOW (v) = over2;
778
779 return v;
780 }
781
782 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
783 are in a list pointed to by VALS. */
784 tree
785 build_constructor (tree type, tree vals)
786 {
787 tree c = make_node (CONSTRUCTOR);
788 TREE_TYPE (c) = type;
789 CONSTRUCTOR_ELTS (c) = vals;
790
791 /* ??? May not be necessary. Mirrors what build does. */
792 if (vals)
793 {
794 TREE_SIDE_EFFECTS (c) = TREE_SIDE_EFFECTS (vals);
795 TREE_READONLY (c) = TREE_READONLY (vals);
796 TREE_CONSTANT (c) = TREE_CONSTANT (vals);
797 TREE_INVARIANT (c) = TREE_INVARIANT (vals);
798 }
799
800 return c;
801 }
802
803 /* Return a new REAL_CST node whose type is TYPE and value is D. */
804
805 tree
806 build_real (tree type, REAL_VALUE_TYPE d)
807 {
808 tree v;
809 REAL_VALUE_TYPE *dp;
810 int overflow = 0;
811
812 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
813 Consider doing it via real_convert now. */
814
815 v = make_node (REAL_CST);
816 dp = ggc_alloc (sizeof (REAL_VALUE_TYPE));
817 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
818
819 TREE_TYPE (v) = type;
820 TREE_REAL_CST_PTR (v) = dp;
821 TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
822 return v;
823 }
824
825 /* Return a new REAL_CST node whose type is TYPE
826 and whose value is the integer value of the INTEGER_CST node I. */
827
828 REAL_VALUE_TYPE
829 real_value_from_int_cst (tree type, tree i)
830 {
831 REAL_VALUE_TYPE d;
832
833 /* Clear all bits of the real value type so that we can later do
834 bitwise comparisons to see if two values are the same. */
835 memset (&d, 0, sizeof d);
836
837 real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode,
838 TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
839 TYPE_UNSIGNED (TREE_TYPE (i)));
840 return d;
841 }
842
843 /* Given a tree representing an integer constant I, return a tree
844 representing the same value as a floating-point constant of type TYPE. */
845
846 tree
847 build_real_from_int_cst (tree type, tree i)
848 {
849 tree v;
850 int overflow = TREE_OVERFLOW (i);
851
852 v = build_real (type, real_value_from_int_cst (type, i));
853
854 TREE_OVERFLOW (v) |= overflow;
855 TREE_CONSTANT_OVERFLOW (v) |= overflow;
856 return v;
857 }
858
859 /* Return a newly constructed STRING_CST node whose value is
860 the LEN characters at STR.
861 The TREE_TYPE is not initialized. */
862
863 tree
864 build_string (int len, const char *str)
865 {
866 tree s;
867 size_t length;
868
869 length = len + sizeof (struct tree_string);
870
871 #ifdef GATHER_STATISTICS
872 tree_node_counts[(int) c_kind]++;
873 tree_node_sizes[(int) c_kind] += length;
874 #endif
875
876 s = ggc_alloc_tree (length);
877
878 memset (s, 0, sizeof (struct tree_common));
879 TREE_SET_CODE (s, STRING_CST);
880 TREE_STRING_LENGTH (s) = len;
881 memcpy ((char *) TREE_STRING_POINTER (s), str, len);
882 ((char *) TREE_STRING_POINTER (s))[len] = '\0';
883
884 return s;
885 }
886
887 /* Return a newly constructed COMPLEX_CST node whose value is
888 specified by the real and imaginary parts REAL and IMAG.
889 Both REAL and IMAG should be constant nodes. TYPE, if specified,
890 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
891
892 tree
893 build_complex (tree type, tree real, tree imag)
894 {
895 tree t = make_node (COMPLEX_CST);
896
897 TREE_REALPART (t) = real;
898 TREE_IMAGPART (t) = imag;
899 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
900 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
901 TREE_CONSTANT_OVERFLOW (t)
902 = TREE_CONSTANT_OVERFLOW (real) | TREE_CONSTANT_OVERFLOW (imag);
903 return t;
904 }
905
906 /* Build a BINFO with LEN language slots. */
907
908 tree
909 make_tree_binfo_stat (unsigned base_binfos MEM_STAT_DECL)
910 {
911 tree t;
912 size_t length = (offsetof (struct tree_binfo, base_binfos)
913 + VEC_embedded_size (tree, base_binfos));
914
915 #ifdef GATHER_STATISTICS
916 tree_node_counts[(int) binfo_kind]++;
917 tree_node_sizes[(int) binfo_kind] += length;
918 #endif
919
920 t = ggc_alloc_zone_stat (length, &tree_zone PASS_MEM_STAT);
921
922 memset (t, 0, offsetof (struct tree_binfo, base_binfos));
923
924 TREE_SET_CODE (t, TREE_BINFO);
925
926 VEC_embedded_init (tree, BINFO_BASE_BINFOS (t), base_binfos);
927
928 return t;
929 }
930
931
932 /* Build a newly constructed TREE_VEC node of length LEN. */
933
934 tree
935 make_tree_vec_stat (int len MEM_STAT_DECL)
936 {
937 tree t;
938 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
939
940 #ifdef GATHER_STATISTICS
941 tree_node_counts[(int) vec_kind]++;
942 tree_node_sizes[(int) vec_kind] += length;
943 #endif
944
945 t = ggc_alloc_zone_stat (length, &tree_zone PASS_MEM_STAT);
946
947 memset (t, 0, length);
948
949 TREE_SET_CODE (t, TREE_VEC);
950 TREE_VEC_LENGTH (t) = len;
951
952 return t;
953 }
954 \f
955 /* Return 1 if EXPR is the integer constant zero or a complex constant
956 of zero. */
957
958 int
959 integer_zerop (tree expr)
960 {
961 STRIP_NOPS (expr);
962
963 return ((TREE_CODE (expr) == INTEGER_CST
964 && ! TREE_CONSTANT_OVERFLOW (expr)
965 && TREE_INT_CST_LOW (expr) == 0
966 && TREE_INT_CST_HIGH (expr) == 0)
967 || (TREE_CODE (expr) == COMPLEX_CST
968 && integer_zerop (TREE_REALPART (expr))
969 && integer_zerop (TREE_IMAGPART (expr))));
970 }
971
972 /* Return 1 if EXPR is the integer constant one or the corresponding
973 complex constant. */
974
975 int
976 integer_onep (tree expr)
977 {
978 STRIP_NOPS (expr);
979
980 return ((TREE_CODE (expr) == INTEGER_CST
981 && ! TREE_CONSTANT_OVERFLOW (expr)
982 && TREE_INT_CST_LOW (expr) == 1
983 && TREE_INT_CST_HIGH (expr) == 0)
984 || (TREE_CODE (expr) == COMPLEX_CST
985 && integer_onep (TREE_REALPART (expr))
986 && integer_zerop (TREE_IMAGPART (expr))));
987 }
988
989 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
990 it contains. Likewise for the corresponding complex constant. */
991
992 int
993 integer_all_onesp (tree expr)
994 {
995 int prec;
996 int uns;
997
998 STRIP_NOPS (expr);
999
1000 if (TREE_CODE (expr) == COMPLEX_CST
1001 && integer_all_onesp (TREE_REALPART (expr))
1002 && integer_zerop (TREE_IMAGPART (expr)))
1003 return 1;
1004
1005 else if (TREE_CODE (expr) != INTEGER_CST
1006 || TREE_CONSTANT_OVERFLOW (expr))
1007 return 0;
1008
1009 uns = TYPE_UNSIGNED (TREE_TYPE (expr));
1010 if (!uns)
1011 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1012 && TREE_INT_CST_HIGH (expr) == -1);
1013
1014 /* Note that using TYPE_PRECISION here is wrong. We care about the
1015 actual bits, not the (arbitrary) range of the type. */
1016 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
1017 if (prec >= HOST_BITS_PER_WIDE_INT)
1018 {
1019 HOST_WIDE_INT high_value;
1020 int shift_amount;
1021
1022 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
1023
1024 /* Can not handle precisions greater than twice the host int size. */
1025 gcc_assert (shift_amount <= HOST_BITS_PER_WIDE_INT);
1026 if (shift_amount == HOST_BITS_PER_WIDE_INT)
1027 /* Shifting by the host word size is undefined according to the ANSI
1028 standard, so we must handle this as a special case. */
1029 high_value = -1;
1030 else
1031 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
1032
1033 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1034 && TREE_INT_CST_HIGH (expr) == high_value);
1035 }
1036 else
1037 return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
1038 }
1039
1040 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
1041 one bit on). */
1042
1043 int
1044 integer_pow2p (tree expr)
1045 {
1046 int prec;
1047 HOST_WIDE_INT high, low;
1048
1049 STRIP_NOPS (expr);
1050
1051 if (TREE_CODE (expr) == COMPLEX_CST
1052 && integer_pow2p (TREE_REALPART (expr))
1053 && integer_zerop (TREE_IMAGPART (expr)))
1054 return 1;
1055
1056 if (TREE_CODE (expr) != INTEGER_CST || TREE_CONSTANT_OVERFLOW (expr))
1057 return 0;
1058
1059 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1060 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1061 high = TREE_INT_CST_HIGH (expr);
1062 low = TREE_INT_CST_LOW (expr);
1063
1064 /* First clear all bits that are beyond the type's precision in case
1065 we've been sign extended. */
1066
1067 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1068 ;
1069 else if (prec > HOST_BITS_PER_WIDE_INT)
1070 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1071 else
1072 {
1073 high = 0;
1074 if (prec < HOST_BITS_PER_WIDE_INT)
1075 low &= ~((HOST_WIDE_INT) (-1) << prec);
1076 }
1077
1078 if (high == 0 && low == 0)
1079 return 0;
1080
1081 return ((high == 0 && (low & (low - 1)) == 0)
1082 || (low == 0 && (high & (high - 1)) == 0));
1083 }
1084
1085 /* Return 1 if EXPR is an integer constant other than zero or a
1086 complex constant other than zero. */
1087
1088 int
1089 integer_nonzerop (tree expr)
1090 {
1091 STRIP_NOPS (expr);
1092
1093 return ((TREE_CODE (expr) == INTEGER_CST
1094 && ! TREE_CONSTANT_OVERFLOW (expr)
1095 && (TREE_INT_CST_LOW (expr) != 0
1096 || TREE_INT_CST_HIGH (expr) != 0))
1097 || (TREE_CODE (expr) == COMPLEX_CST
1098 && (integer_nonzerop (TREE_REALPART (expr))
1099 || integer_nonzerop (TREE_IMAGPART (expr)))));
1100 }
1101
1102 /* Return the power of two represented by a tree node known to be a
1103 power of two. */
1104
1105 int
1106 tree_log2 (tree expr)
1107 {
1108 int prec;
1109 HOST_WIDE_INT high, low;
1110
1111 STRIP_NOPS (expr);
1112
1113 if (TREE_CODE (expr) == COMPLEX_CST)
1114 return tree_log2 (TREE_REALPART (expr));
1115
1116 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1117 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1118
1119 high = TREE_INT_CST_HIGH (expr);
1120 low = TREE_INT_CST_LOW (expr);
1121
1122 /* First clear all bits that are beyond the type's precision in case
1123 we've been sign extended. */
1124
1125 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1126 ;
1127 else if (prec > HOST_BITS_PER_WIDE_INT)
1128 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1129 else
1130 {
1131 high = 0;
1132 if (prec < HOST_BITS_PER_WIDE_INT)
1133 low &= ~((HOST_WIDE_INT) (-1) << prec);
1134 }
1135
1136 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
1137 : exact_log2 (low));
1138 }
1139
1140 /* Similar, but return the largest integer Y such that 2 ** Y is less
1141 than or equal to EXPR. */
1142
1143 int
1144 tree_floor_log2 (tree expr)
1145 {
1146 int prec;
1147 HOST_WIDE_INT high, low;
1148
1149 STRIP_NOPS (expr);
1150
1151 if (TREE_CODE (expr) == COMPLEX_CST)
1152 return tree_log2 (TREE_REALPART (expr));
1153
1154 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1155 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1156
1157 high = TREE_INT_CST_HIGH (expr);
1158 low = TREE_INT_CST_LOW (expr);
1159
1160 /* First clear all bits that are beyond the type's precision in case
1161 we've been sign extended. Ignore if type's precision hasn't been set
1162 since what we are doing is setting it. */
1163
1164 if (prec == 2 * HOST_BITS_PER_WIDE_INT || prec == 0)
1165 ;
1166 else if (prec > HOST_BITS_PER_WIDE_INT)
1167 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1168 else
1169 {
1170 high = 0;
1171 if (prec < HOST_BITS_PER_WIDE_INT)
1172 low &= ~((HOST_WIDE_INT) (-1) << prec);
1173 }
1174
1175 return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
1176 : floor_log2 (low));
1177 }
1178
1179 /* Return 1 if EXPR is the real constant zero. */
1180
1181 int
1182 real_zerop (tree expr)
1183 {
1184 STRIP_NOPS (expr);
1185
1186 return ((TREE_CODE (expr) == REAL_CST
1187 && ! TREE_CONSTANT_OVERFLOW (expr)
1188 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0))
1189 || (TREE_CODE (expr) == COMPLEX_CST
1190 && real_zerop (TREE_REALPART (expr))
1191 && real_zerop (TREE_IMAGPART (expr))));
1192 }
1193
1194 /* Return 1 if EXPR is the real constant one in real or complex form. */
1195
1196 int
1197 real_onep (tree expr)
1198 {
1199 STRIP_NOPS (expr);
1200
1201 return ((TREE_CODE (expr) == REAL_CST
1202 && ! TREE_CONSTANT_OVERFLOW (expr)
1203 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1))
1204 || (TREE_CODE (expr) == COMPLEX_CST
1205 && real_onep (TREE_REALPART (expr))
1206 && real_zerop (TREE_IMAGPART (expr))));
1207 }
1208
1209 /* Return 1 if EXPR is the real constant two. */
1210
1211 int
1212 real_twop (tree expr)
1213 {
1214 STRIP_NOPS (expr);
1215
1216 return ((TREE_CODE (expr) == REAL_CST
1217 && ! TREE_CONSTANT_OVERFLOW (expr)
1218 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2))
1219 || (TREE_CODE (expr) == COMPLEX_CST
1220 && real_twop (TREE_REALPART (expr))
1221 && real_zerop (TREE_IMAGPART (expr))));
1222 }
1223
1224 /* Return 1 if EXPR is the real constant minus one. */
1225
1226 int
1227 real_minus_onep (tree expr)
1228 {
1229 STRIP_NOPS (expr);
1230
1231 return ((TREE_CODE (expr) == REAL_CST
1232 && ! TREE_CONSTANT_OVERFLOW (expr)
1233 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconstm1))
1234 || (TREE_CODE (expr) == COMPLEX_CST
1235 && real_minus_onep (TREE_REALPART (expr))
1236 && real_zerop (TREE_IMAGPART (expr))));
1237 }
1238
1239 /* Nonzero if EXP is a constant or a cast of a constant. */
1240
1241 int
1242 really_constant_p (tree exp)
1243 {
1244 /* This is not quite the same as STRIP_NOPS. It does more. */
1245 while (TREE_CODE (exp) == NOP_EXPR
1246 || TREE_CODE (exp) == CONVERT_EXPR
1247 || TREE_CODE (exp) == NON_LVALUE_EXPR)
1248 exp = TREE_OPERAND (exp, 0);
1249 return TREE_CONSTANT (exp);
1250 }
1251 \f
1252 /* Return first list element whose TREE_VALUE is ELEM.
1253 Return 0 if ELEM is not in LIST. */
1254
1255 tree
1256 value_member (tree elem, tree list)
1257 {
1258 while (list)
1259 {
1260 if (elem == TREE_VALUE (list))
1261 return list;
1262 list = TREE_CHAIN (list);
1263 }
1264 return NULL_TREE;
1265 }
1266
1267 /* Return first list element whose TREE_PURPOSE is ELEM.
1268 Return 0 if ELEM is not in LIST. */
1269
1270 tree
1271 purpose_member (tree elem, tree list)
1272 {
1273 while (list)
1274 {
1275 if (elem == TREE_PURPOSE (list))
1276 return list;
1277 list = TREE_CHAIN (list);
1278 }
1279 return NULL_TREE;
1280 }
1281
1282 /* Return nonzero if ELEM is part of the chain CHAIN. */
1283
1284 int
1285 chain_member (tree elem, tree chain)
1286 {
1287 while (chain)
1288 {
1289 if (elem == chain)
1290 return 1;
1291 chain = TREE_CHAIN (chain);
1292 }
1293
1294 return 0;
1295 }
1296
1297 /* Return the length of a chain of nodes chained through TREE_CHAIN.
1298 We expect a null pointer to mark the end of the chain.
1299 This is the Lisp primitive `length'. */
1300
1301 int
1302 list_length (tree t)
1303 {
1304 tree p = t;
1305 #ifdef ENABLE_TREE_CHECKING
1306 tree q = t;
1307 #endif
1308 int len = 0;
1309
1310 while (p)
1311 {
1312 p = TREE_CHAIN (p);
1313 #ifdef ENABLE_TREE_CHECKING
1314 if (len % 2)
1315 q = TREE_CHAIN (q);
1316 gcc_assert (p != q);
1317 #endif
1318 len++;
1319 }
1320
1321 return len;
1322 }
1323
1324 /* Returns the number of FIELD_DECLs in TYPE. */
1325
1326 int
1327 fields_length (tree type)
1328 {
1329 tree t = TYPE_FIELDS (type);
1330 int count = 0;
1331
1332 for (; t; t = TREE_CHAIN (t))
1333 if (TREE_CODE (t) == FIELD_DECL)
1334 ++count;
1335
1336 return count;
1337 }
1338
1339 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
1340 by modifying the last node in chain 1 to point to chain 2.
1341 This is the Lisp primitive `nconc'. */
1342
1343 tree
1344 chainon (tree op1, tree op2)
1345 {
1346 tree t1;
1347
1348 if (!op1)
1349 return op2;
1350 if (!op2)
1351 return op1;
1352
1353 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
1354 continue;
1355 TREE_CHAIN (t1) = op2;
1356
1357 #ifdef ENABLE_TREE_CHECKING
1358 {
1359 tree t2;
1360 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
1361 gcc_assert (t2 != t1);
1362 }
1363 #endif
1364
1365 return op1;
1366 }
1367
1368 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
1369
1370 tree
1371 tree_last (tree chain)
1372 {
1373 tree next;
1374 if (chain)
1375 while ((next = TREE_CHAIN (chain)))
1376 chain = next;
1377 return chain;
1378 }
1379
1380 /* Reverse the order of elements in the chain T,
1381 and return the new head of the chain (old last element). */
1382
1383 tree
1384 nreverse (tree t)
1385 {
1386 tree prev = 0, decl, next;
1387 for (decl = t; decl; decl = next)
1388 {
1389 next = TREE_CHAIN (decl);
1390 TREE_CHAIN (decl) = prev;
1391 prev = decl;
1392 }
1393 return prev;
1394 }
1395 \f
1396 /* Return a newly created TREE_LIST node whose
1397 purpose and value fields are PARM and VALUE. */
1398
1399 tree
1400 build_tree_list_stat (tree parm, tree value MEM_STAT_DECL)
1401 {
1402 tree t = make_node_stat (TREE_LIST PASS_MEM_STAT);
1403 TREE_PURPOSE (t) = parm;
1404 TREE_VALUE (t) = value;
1405 return t;
1406 }
1407
1408 /* Return a newly created TREE_LIST node whose
1409 purpose and value fields are PURPOSE and VALUE
1410 and whose TREE_CHAIN is CHAIN. */
1411
1412 tree
1413 tree_cons_stat (tree purpose, tree value, tree chain MEM_STAT_DECL)
1414 {
1415 tree node;
1416
1417 node = ggc_alloc_zone_stat (sizeof (struct tree_list),
1418 &tree_zone PASS_MEM_STAT);
1419
1420 memset (node, 0, sizeof (struct tree_common));
1421
1422 #ifdef GATHER_STATISTICS
1423 tree_node_counts[(int) x_kind]++;
1424 tree_node_sizes[(int) x_kind] += sizeof (struct tree_list);
1425 #endif
1426
1427 TREE_SET_CODE (node, TREE_LIST);
1428 TREE_CHAIN (node) = chain;
1429 TREE_PURPOSE (node) = purpose;
1430 TREE_VALUE (node) = value;
1431 return node;
1432 }
1433
1434 \f
1435 /* Return the size nominally occupied by an object of type TYPE
1436 when it resides in memory. The value is measured in units of bytes,
1437 and its data type is that normally used for type sizes
1438 (which is the first type created by make_signed_type or
1439 make_unsigned_type). */
1440
1441 tree
1442 size_in_bytes (tree type)
1443 {
1444 tree t;
1445
1446 if (type == error_mark_node)
1447 return integer_zero_node;
1448
1449 type = TYPE_MAIN_VARIANT (type);
1450 t = TYPE_SIZE_UNIT (type);
1451
1452 if (t == 0)
1453 {
1454 lang_hooks.types.incomplete_type_error (NULL_TREE, type);
1455 return size_zero_node;
1456 }
1457
1458 if (TREE_CODE (t) == INTEGER_CST)
1459 t = force_fit_type (t, 0, false, false);
1460
1461 return t;
1462 }
1463
1464 /* Return the size of TYPE (in bytes) as a wide integer
1465 or return -1 if the size can vary or is larger than an integer. */
1466
1467 HOST_WIDE_INT
1468 int_size_in_bytes (tree type)
1469 {
1470 tree t;
1471
1472 if (type == error_mark_node)
1473 return 0;
1474
1475 type = TYPE_MAIN_VARIANT (type);
1476 t = TYPE_SIZE_UNIT (type);
1477 if (t == 0
1478 || TREE_CODE (t) != INTEGER_CST
1479 || TREE_OVERFLOW (t)
1480 || TREE_INT_CST_HIGH (t) != 0
1481 /* If the result would appear negative, it's too big to represent. */
1482 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
1483 return -1;
1484
1485 return TREE_INT_CST_LOW (t);
1486 }
1487 \f
1488 /* Return the bit position of FIELD, in bits from the start of the record.
1489 This is a tree of type bitsizetype. */
1490
1491 tree
1492 bit_position (tree field)
1493 {
1494 return bit_from_pos (DECL_FIELD_OFFSET (field),
1495 DECL_FIELD_BIT_OFFSET (field));
1496 }
1497
1498 /* Likewise, but return as an integer. Abort if it cannot be represented
1499 in that way (since it could be a signed value, we don't have the option
1500 of returning -1 like int_size_in_byte can. */
1501
1502 HOST_WIDE_INT
1503 int_bit_position (tree field)
1504 {
1505 return tree_low_cst (bit_position (field), 0);
1506 }
1507 \f
1508 /* Return the byte position of FIELD, in bytes from the start of the record.
1509 This is a tree of type sizetype. */
1510
1511 tree
1512 byte_position (tree field)
1513 {
1514 return byte_from_pos (DECL_FIELD_OFFSET (field),
1515 DECL_FIELD_BIT_OFFSET (field));
1516 }
1517
1518 /* Likewise, but return as an integer. Abort if it cannot be represented
1519 in that way (since it could be a signed value, we don't have the option
1520 of returning -1 like int_size_in_byte can. */
1521
1522 HOST_WIDE_INT
1523 int_byte_position (tree field)
1524 {
1525 return tree_low_cst (byte_position (field), 0);
1526 }
1527 \f
1528 /* Return the strictest alignment, in bits, that T is known to have. */
1529
1530 unsigned int
1531 expr_align (tree t)
1532 {
1533 unsigned int align0, align1;
1534
1535 switch (TREE_CODE (t))
1536 {
1537 case NOP_EXPR: case CONVERT_EXPR: case NON_LVALUE_EXPR:
1538 /* If we have conversions, we know that the alignment of the
1539 object must meet each of the alignments of the types. */
1540 align0 = expr_align (TREE_OPERAND (t, 0));
1541 align1 = TYPE_ALIGN (TREE_TYPE (t));
1542 return MAX (align0, align1);
1543
1544 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
1545 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
1546 case CLEANUP_POINT_EXPR:
1547 /* These don't change the alignment of an object. */
1548 return expr_align (TREE_OPERAND (t, 0));
1549
1550 case COND_EXPR:
1551 /* The best we can do is say that the alignment is the least aligned
1552 of the two arms. */
1553 align0 = expr_align (TREE_OPERAND (t, 1));
1554 align1 = expr_align (TREE_OPERAND (t, 2));
1555 return MIN (align0, align1);
1556
1557 case LABEL_DECL: case CONST_DECL:
1558 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
1559 if (DECL_ALIGN (t) != 0)
1560 return DECL_ALIGN (t);
1561 break;
1562
1563 case FUNCTION_DECL:
1564 return FUNCTION_BOUNDARY;
1565
1566 default:
1567 break;
1568 }
1569
1570 /* Otherwise take the alignment from that of the type. */
1571 return TYPE_ALIGN (TREE_TYPE (t));
1572 }
1573 \f
1574 /* Return, as a tree node, the number of elements for TYPE (which is an
1575 ARRAY_TYPE) minus one. This counts only elements of the top array. */
1576
1577 tree
1578 array_type_nelts (tree type)
1579 {
1580 tree index_type, min, max;
1581
1582 /* If they did it with unspecified bounds, then we should have already
1583 given an error about it before we got here. */
1584 if (! TYPE_DOMAIN (type))
1585 return error_mark_node;
1586
1587 index_type = TYPE_DOMAIN (type);
1588 min = TYPE_MIN_VALUE (index_type);
1589 max = TYPE_MAX_VALUE (index_type);
1590
1591 return (integer_zerop (min)
1592 ? max
1593 : fold (build2 (MINUS_EXPR, TREE_TYPE (max), max, min)));
1594 }
1595 \f
1596 /* If arg is static -- a reference to an object in static storage -- then
1597 return the object. This is not the same as the C meaning of `static'.
1598 If arg isn't static, return NULL. */
1599
1600 tree
1601 staticp (tree arg)
1602 {
1603 switch (TREE_CODE (arg))
1604 {
1605 case FUNCTION_DECL:
1606 /* Nested functions are static, even though taking their address will
1607 involve a trampoline as we unnest the nested function and create
1608 the trampoline on the tree level. */
1609 return arg;
1610
1611 case VAR_DECL:
1612 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
1613 && ! DECL_THREAD_LOCAL (arg)
1614 && ! DECL_NON_ADDR_CONST_P (arg)
1615 ? arg : NULL);
1616
1617 case CONST_DECL:
1618 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
1619 ? arg : NULL);
1620
1621 case CONSTRUCTOR:
1622 return TREE_STATIC (arg) ? arg : NULL;
1623
1624 case LABEL_DECL:
1625 case STRING_CST:
1626 return arg;
1627
1628 case COMPONENT_REF:
1629 /* If the thing being referenced is not a field, then it is
1630 something language specific. */
1631 if (TREE_CODE (TREE_OPERAND (arg, 1)) != FIELD_DECL)
1632 return (*lang_hooks.staticp) (arg);
1633
1634 /* If we are referencing a bitfield, we can't evaluate an
1635 ADDR_EXPR at compile time and so it isn't a constant. */
1636 if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
1637 return NULL;
1638
1639 return staticp (TREE_OPERAND (arg, 0));
1640
1641 case BIT_FIELD_REF:
1642 return NULL;
1643
1644 case MISALIGNED_INDIRECT_REF:
1645 case ALIGN_INDIRECT_REF:
1646 case INDIRECT_REF:
1647 return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;
1648
1649 case ARRAY_REF:
1650 case ARRAY_RANGE_REF:
1651 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
1652 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
1653 return staticp (TREE_OPERAND (arg, 0));
1654 else
1655 return false;
1656
1657 default:
1658 if ((unsigned int) TREE_CODE (arg)
1659 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
1660 return lang_hooks.staticp (arg);
1661 else
1662 return NULL;
1663 }
1664 }
1665 \f
1666 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
1667 Do this to any expression which may be used in more than one place,
1668 but must be evaluated only once.
1669
1670 Normally, expand_expr would reevaluate the expression each time.
1671 Calling save_expr produces something that is evaluated and recorded
1672 the first time expand_expr is called on it. Subsequent calls to
1673 expand_expr just reuse the recorded value.
1674
1675 The call to expand_expr that generates code that actually computes
1676 the value is the first call *at compile time*. Subsequent calls
1677 *at compile time* generate code to use the saved value.
1678 This produces correct result provided that *at run time* control
1679 always flows through the insns made by the first expand_expr
1680 before reaching the other places where the save_expr was evaluated.
1681 You, the caller of save_expr, must make sure this is so.
1682
1683 Constants, and certain read-only nodes, are returned with no
1684 SAVE_EXPR because that is safe. Expressions containing placeholders
1685 are not touched; see tree.def for an explanation of what these
1686 are used for. */
1687
1688 tree
1689 save_expr (tree expr)
1690 {
1691 tree t = fold (expr);
1692 tree inner;
1693
1694 /* If the tree evaluates to a constant, then we don't want to hide that
1695 fact (i.e. this allows further folding, and direct checks for constants).
1696 However, a read-only object that has side effects cannot be bypassed.
1697 Since it is no problem to reevaluate literals, we just return the
1698 literal node. */
1699 inner = skip_simple_arithmetic (t);
1700
1701 if (TREE_INVARIANT (inner)
1702 || (TREE_READONLY (inner) && ! TREE_SIDE_EFFECTS (inner))
1703 || TREE_CODE (inner) == SAVE_EXPR
1704 || TREE_CODE (inner) == ERROR_MARK)
1705 return t;
1706
1707 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
1708 it means that the size or offset of some field of an object depends on
1709 the value within another field.
1710
1711 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
1712 and some variable since it would then need to be both evaluated once and
1713 evaluated more than once. Front-ends must assure this case cannot
1714 happen by surrounding any such subexpressions in their own SAVE_EXPR
1715 and forcing evaluation at the proper time. */
1716 if (contains_placeholder_p (inner))
1717 return t;
1718
1719 t = build1 (SAVE_EXPR, TREE_TYPE (expr), t);
1720
1721 /* This expression might be placed ahead of a jump to ensure that the
1722 value was computed on both sides of the jump. So make sure it isn't
1723 eliminated as dead. */
1724 TREE_SIDE_EFFECTS (t) = 1;
1725 TREE_INVARIANT (t) = 1;
1726 return t;
1727 }
1728
1729 /* Look inside EXPR and into any simple arithmetic operations. Return
1730 the innermost non-arithmetic node. */
1731
1732 tree
1733 skip_simple_arithmetic (tree expr)
1734 {
1735 tree inner;
1736
1737 /* We don't care about whether this can be used as an lvalue in this
1738 context. */
1739 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
1740 expr = TREE_OPERAND (expr, 0);
1741
1742 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
1743 a constant, it will be more efficient to not make another SAVE_EXPR since
1744 it will allow better simplification and GCSE will be able to merge the
1745 computations if they actually occur. */
1746 inner = expr;
1747 while (1)
1748 {
1749 if (UNARY_CLASS_P (inner))
1750 inner = TREE_OPERAND (inner, 0);
1751 else if (BINARY_CLASS_P (inner))
1752 {
1753 if (TREE_INVARIANT (TREE_OPERAND (inner, 1)))
1754 inner = TREE_OPERAND (inner, 0);
1755 else if (TREE_INVARIANT (TREE_OPERAND (inner, 0)))
1756 inner = TREE_OPERAND (inner, 1);
1757 else
1758 break;
1759 }
1760 else
1761 break;
1762 }
1763
1764 return inner;
1765 }
1766
1767 /* Return which tree structure is used by T. */
1768
1769 enum tree_node_structure_enum
1770 tree_node_structure (tree t)
1771 {
1772 enum tree_code code = TREE_CODE (t);
1773
1774 switch (TREE_CODE_CLASS (code))
1775 {
1776 case tcc_declaration:
1777 return TS_DECL;
1778 case tcc_type:
1779 return TS_TYPE;
1780 case tcc_reference:
1781 case tcc_comparison:
1782 case tcc_unary:
1783 case tcc_binary:
1784 case tcc_expression:
1785 case tcc_statement:
1786 return TS_EXP;
1787 default: /* tcc_constant and tcc_exceptional */
1788 break;
1789 }
1790 switch (code)
1791 {
1792 /* tcc_constant cases. */
1793 case INTEGER_CST: return TS_INT_CST;
1794 case REAL_CST: return TS_REAL_CST;
1795 case COMPLEX_CST: return TS_COMPLEX;
1796 case VECTOR_CST: return TS_VECTOR;
1797 case STRING_CST: return TS_STRING;
1798 /* tcc_exceptional cases. */
1799 case ERROR_MARK: return TS_COMMON;
1800 case IDENTIFIER_NODE: return TS_IDENTIFIER;
1801 case TREE_LIST: return TS_LIST;
1802 case TREE_VEC: return TS_VEC;
1803 case PHI_NODE: return TS_PHI_NODE;
1804 case SSA_NAME: return TS_SSA_NAME;
1805 case PLACEHOLDER_EXPR: return TS_COMMON;
1806 case STATEMENT_LIST: return TS_STATEMENT_LIST;
1807 case BLOCK: return TS_BLOCK;
1808 case TREE_BINFO: return TS_BINFO;
1809 case VALUE_HANDLE: return TS_VALUE_HANDLE;
1810
1811 default:
1812 gcc_unreachable ();
1813 }
1814 }
1815 \f
1816 /* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
1817 or offset that depends on a field within a record. */
1818
1819 bool
1820 contains_placeholder_p (tree exp)
1821 {
1822 enum tree_code code;
1823
1824 if (!exp)
1825 return 0;
1826
1827 code = TREE_CODE (exp);
1828 if (code == PLACEHOLDER_EXPR)
1829 return 1;
1830
1831 switch (TREE_CODE_CLASS (code))
1832 {
1833 case tcc_reference:
1834 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
1835 position computations since they will be converted into a
1836 WITH_RECORD_EXPR involving the reference, which will assume
1837 here will be valid. */
1838 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
1839
1840 case tcc_exceptional:
1841 if (code == TREE_LIST)
1842 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
1843 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
1844 break;
1845
1846 case tcc_unary:
1847 case tcc_binary:
1848 case tcc_comparison:
1849 case tcc_expression:
1850 switch (code)
1851 {
1852 case COMPOUND_EXPR:
1853 /* Ignoring the first operand isn't quite right, but works best. */
1854 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
1855
1856 case COND_EXPR:
1857 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
1858 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
1859 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
1860
1861 default:
1862 break;
1863 }
1864
1865 switch (TREE_CODE_LENGTH (code))
1866 {
1867 case 1:
1868 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
1869 case 2:
1870 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
1871 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
1872 default:
1873 return 0;
1874 }
1875
1876 default:
1877 return 0;
1878 }
1879 return 0;
1880 }
1881
1882 /* Return true if any part of the computation of TYPE involves a
1883 PLACEHOLDER_EXPR. This includes size, bounds, qualifiers
1884 (for QUAL_UNION_TYPE) and field positions. */
1885
1886 static bool
1887 type_contains_placeholder_1 (tree type)
1888 {
1889 /* If the size contains a placeholder or the parent type (component type in
1890 the case of arrays) type involves a placeholder, this type does. */
1891 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
1892 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
1893 || (TREE_TYPE (type) != 0
1894 && type_contains_placeholder_p (TREE_TYPE (type))))
1895 return true;
1896
1897 /* Now do type-specific checks. Note that the last part of the check above
1898 greatly limits what we have to do below. */
1899 switch (TREE_CODE (type))
1900 {
1901 case VOID_TYPE:
1902 case COMPLEX_TYPE:
1903 case ENUMERAL_TYPE:
1904 case BOOLEAN_TYPE:
1905 case CHAR_TYPE:
1906 case POINTER_TYPE:
1907 case OFFSET_TYPE:
1908 case REFERENCE_TYPE:
1909 case METHOD_TYPE:
1910 case FILE_TYPE:
1911 case FUNCTION_TYPE:
1912 case VECTOR_TYPE:
1913 return false;
1914
1915 case INTEGER_TYPE:
1916 case REAL_TYPE:
1917 /* Here we just check the bounds. */
1918 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
1919 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
1920
1921 case ARRAY_TYPE:
1922 /* We're already checked the component type (TREE_TYPE), so just check
1923 the index type. */
1924 return type_contains_placeholder_p (TYPE_DOMAIN (type));
1925
1926 case RECORD_TYPE:
1927 case UNION_TYPE:
1928 case QUAL_UNION_TYPE:
1929 {
1930 tree field;
1931
1932 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1933 if (TREE_CODE (field) == FIELD_DECL
1934 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
1935 || (TREE_CODE (type) == QUAL_UNION_TYPE
1936 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
1937 || type_contains_placeholder_p (TREE_TYPE (field))))
1938 return true;
1939
1940 return false;
1941 }
1942
1943 default:
1944 gcc_unreachable ();
1945 }
1946 }
1947
1948 bool
1949 type_contains_placeholder_p (tree type)
1950 {
1951 bool result;
1952
1953 /* If the contains_placeholder_bits field has been initialized,
1954 then we know the answer. */
1955 if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0)
1956 return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1;
1957
1958 /* Indicate that we've seen this type node, and the answer is false.
1959 This is what we want to return if we run into recursion via fields. */
1960 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1;
1961
1962 /* Compute the real value. */
1963 result = type_contains_placeholder_1 (type);
1964
1965 /* Store the real value. */
1966 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1;
1967
1968 return result;
1969 }
1970 \f
1971 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
1972 return a tree with all occurrences of references to F in a
1973 PLACEHOLDER_EXPR replaced by R. Note that we assume here that EXP
1974 contains only arithmetic expressions or a CALL_EXPR with a
1975 PLACEHOLDER_EXPR occurring only in its arglist. */
1976
1977 tree
1978 substitute_in_expr (tree exp, tree f, tree r)
1979 {
1980 enum tree_code code = TREE_CODE (exp);
1981 tree op0, op1, op2;
1982 tree new;
1983 tree inner;
1984
1985 /* We handle TREE_LIST and COMPONENT_REF separately. */
1986 if (code == TREE_LIST)
1987 {
1988 op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
1989 op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
1990 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
1991 return exp;
1992
1993 return tree_cons (TREE_PURPOSE (exp), op1, op0);
1994 }
1995 else if (code == COMPONENT_REF)
1996 {
1997 /* If this expression is getting a value from a PLACEHOLDER_EXPR
1998 and it is the right field, replace it with R. */
1999 for (inner = TREE_OPERAND (exp, 0);
2000 REFERENCE_CLASS_P (inner);
2001 inner = TREE_OPERAND (inner, 0))
2002 ;
2003 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
2004 && TREE_OPERAND (exp, 1) == f)
2005 return r;
2006
2007 /* If this expression hasn't been completed let, leave it alone. */
2008 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && TREE_TYPE (inner) == 0)
2009 return exp;
2010
2011 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2012 if (op0 == TREE_OPERAND (exp, 0))
2013 return exp;
2014
2015 new = fold (build3 (COMPONENT_REF, TREE_TYPE (exp),
2016 op0, TREE_OPERAND (exp, 1), NULL_TREE));
2017 }
2018 else
2019 switch (TREE_CODE_CLASS (code))
2020 {
2021 case tcc_constant:
2022 case tcc_declaration:
2023 return exp;
2024
2025 case tcc_exceptional:
2026 case tcc_unary:
2027 case tcc_binary:
2028 case tcc_comparison:
2029 case tcc_expression:
2030 case tcc_reference:
2031 switch (TREE_CODE_LENGTH (code))
2032 {
2033 case 0:
2034 return exp;
2035
2036 case 1:
2037 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2038 if (op0 == TREE_OPERAND (exp, 0))
2039 return exp;
2040
2041 new = fold (build1 (code, TREE_TYPE (exp), op0));
2042 break;
2043
2044 case 2:
2045 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2046 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
2047
2048 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
2049 return exp;
2050
2051 new = fold (build2 (code, TREE_TYPE (exp), op0, op1));
2052 break;
2053
2054 case 3:
2055 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2056 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
2057 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
2058
2059 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2060 && op2 == TREE_OPERAND (exp, 2))
2061 return exp;
2062
2063 new = fold (build3 (code, TREE_TYPE (exp), op0, op1, op2));
2064 break;
2065
2066 default:
2067 gcc_unreachable ();
2068 }
2069 break;
2070
2071 default:
2072 gcc_unreachable ();
2073 }
2074
2075 TREE_READONLY (new) = TREE_READONLY (exp);
2076 return new;
2077 }
2078
2079 /* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
2080 for it within OBJ, a tree that is an object or a chain of references. */
2081
2082 tree
2083 substitute_placeholder_in_expr (tree exp, tree obj)
2084 {
2085 enum tree_code code = TREE_CODE (exp);
2086 tree op0, op1, op2, op3;
2087
2088 /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
2089 in the chain of OBJ. */
2090 if (code == PLACEHOLDER_EXPR)
2091 {
2092 tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
2093 tree elt;
2094
2095 for (elt = obj; elt != 0;
2096 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
2097 || TREE_CODE (elt) == COND_EXPR)
2098 ? TREE_OPERAND (elt, 1)
2099 : (REFERENCE_CLASS_P (elt)
2100 || UNARY_CLASS_P (elt)
2101 || BINARY_CLASS_P (elt)
2102 || EXPRESSION_CLASS_P (elt))
2103 ? TREE_OPERAND (elt, 0) : 0))
2104 if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
2105 return elt;
2106
2107 for (elt = obj; elt != 0;
2108 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
2109 || TREE_CODE (elt) == COND_EXPR)
2110 ? TREE_OPERAND (elt, 1)
2111 : (REFERENCE_CLASS_P (elt)
2112 || UNARY_CLASS_P (elt)
2113 || BINARY_CLASS_P (elt)
2114 || EXPRESSION_CLASS_P (elt))
2115 ? TREE_OPERAND (elt, 0) : 0))
2116 if (POINTER_TYPE_P (TREE_TYPE (elt))
2117 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
2118 == need_type))
2119 return fold (build1 (INDIRECT_REF, need_type, elt));
2120
2121 /* If we didn't find it, return the original PLACEHOLDER_EXPR. If it
2122 survives until RTL generation, there will be an error. */
2123 return exp;
2124 }
2125
2126 /* TREE_LIST is special because we need to look at TREE_VALUE
2127 and TREE_CHAIN, not TREE_OPERANDS. */
2128 else if (code == TREE_LIST)
2129 {
2130 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
2131 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
2132 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
2133 return exp;
2134
2135 return tree_cons (TREE_PURPOSE (exp), op1, op0);
2136 }
2137 else
2138 switch (TREE_CODE_CLASS (code))
2139 {
2140 case tcc_constant:
2141 case tcc_declaration:
2142 return exp;
2143
2144 case tcc_exceptional:
2145 case tcc_unary:
2146 case tcc_binary:
2147 case tcc_comparison:
2148 case tcc_expression:
2149 case tcc_reference:
2150 case tcc_statement:
2151 switch (TREE_CODE_LENGTH (code))
2152 {
2153 case 0:
2154 return exp;
2155
2156 case 1:
2157 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2158 if (op0 == TREE_OPERAND (exp, 0))
2159 return exp;
2160 else
2161 return fold (build1 (code, TREE_TYPE (exp), op0));
2162
2163 case 2:
2164 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2165 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2166
2167 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
2168 return exp;
2169 else
2170 return fold (build2 (code, TREE_TYPE (exp), op0, op1));
2171
2172 case 3:
2173 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2174 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2175 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
2176
2177 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2178 && op2 == TREE_OPERAND (exp, 2))
2179 return exp;
2180 else
2181 return fold (build3 (code, TREE_TYPE (exp), op0, op1, op2));
2182
2183 case 4:
2184 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2185 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2186 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
2187 op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
2188
2189 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2190 && op2 == TREE_OPERAND (exp, 2)
2191 && op3 == TREE_OPERAND (exp, 3))
2192 return exp;
2193 else
2194 return fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
2195
2196 default:
2197 gcc_unreachable ();
2198 }
2199 break;
2200
2201 default:
2202 gcc_unreachable ();
2203 }
2204 }
2205 \f
2206 /* Stabilize a reference so that we can use it any number of times
2207 without causing its operands to be evaluated more than once.
2208 Returns the stabilized reference. This works by means of save_expr,
2209 so see the caveats in the comments about save_expr.
2210
2211 Also allows conversion expressions whose operands are references.
2212 Any other kind of expression is returned unchanged. */
2213
2214 tree
2215 stabilize_reference (tree ref)
2216 {
2217 tree result;
2218 enum tree_code code = TREE_CODE (ref);
2219
2220 switch (code)
2221 {
2222 case VAR_DECL:
2223 case PARM_DECL:
2224 case RESULT_DECL:
2225 /* No action is needed in this case. */
2226 return ref;
2227
2228 case NOP_EXPR:
2229 case CONVERT_EXPR:
2230 case FLOAT_EXPR:
2231 case FIX_TRUNC_EXPR:
2232 case FIX_FLOOR_EXPR:
2233 case FIX_ROUND_EXPR:
2234 case FIX_CEIL_EXPR:
2235 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
2236 break;
2237
2238 case INDIRECT_REF:
2239 result = build_nt (INDIRECT_REF,
2240 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
2241 break;
2242
2243 case COMPONENT_REF:
2244 result = build_nt (COMPONENT_REF,
2245 stabilize_reference (TREE_OPERAND (ref, 0)),
2246 TREE_OPERAND (ref, 1), NULL_TREE);
2247 break;
2248
2249 case BIT_FIELD_REF:
2250 result = build_nt (BIT_FIELD_REF,
2251 stabilize_reference (TREE_OPERAND (ref, 0)),
2252 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2253 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
2254 break;
2255
2256 case ARRAY_REF:
2257 result = build_nt (ARRAY_REF,
2258 stabilize_reference (TREE_OPERAND (ref, 0)),
2259 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2260 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
2261 break;
2262
2263 case ARRAY_RANGE_REF:
2264 result = build_nt (ARRAY_RANGE_REF,
2265 stabilize_reference (TREE_OPERAND (ref, 0)),
2266 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2267 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
2268 break;
2269
2270 case COMPOUND_EXPR:
2271 /* We cannot wrap the first expression in a SAVE_EXPR, as then
2272 it wouldn't be ignored. This matters when dealing with
2273 volatiles. */
2274 return stabilize_reference_1 (ref);
2275
2276 /* If arg isn't a kind of lvalue we recognize, make no change.
2277 Caller should recognize the error for an invalid lvalue. */
2278 default:
2279 return ref;
2280
2281 case ERROR_MARK:
2282 return error_mark_node;
2283 }
2284
2285 TREE_TYPE (result) = TREE_TYPE (ref);
2286 TREE_READONLY (result) = TREE_READONLY (ref);
2287 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
2288 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
2289
2290 return result;
2291 }
2292
2293 /* Subroutine of stabilize_reference; this is called for subtrees of
2294 references. Any expression with side-effects must be put in a SAVE_EXPR
2295 to ensure that it is only evaluated once.
2296
2297 We don't put SAVE_EXPR nodes around everything, because assigning very
2298 simple expressions to temporaries causes us to miss good opportunities
2299 for optimizations. Among other things, the opportunity to fold in the
2300 addition of a constant into an addressing mode often gets lost, e.g.
2301 "y[i+1] += x;". In general, we take the approach that we should not make
2302 an assignment unless we are forced into it - i.e., that any non-side effect
2303 operator should be allowed, and that cse should take care of coalescing
2304 multiple utterances of the same expression should that prove fruitful. */
2305
2306 tree
2307 stabilize_reference_1 (tree e)
2308 {
2309 tree result;
2310 enum tree_code code = TREE_CODE (e);
2311
2312 /* We cannot ignore const expressions because it might be a reference
2313 to a const array but whose index contains side-effects. But we can
2314 ignore things that are actual constant or that already have been
2315 handled by this function. */
2316
2317 if (TREE_INVARIANT (e))
2318 return e;
2319
2320 switch (TREE_CODE_CLASS (code))
2321 {
2322 case tcc_exceptional:
2323 case tcc_type:
2324 case tcc_declaration:
2325 case tcc_comparison:
2326 case tcc_statement:
2327 case tcc_expression:
2328 case tcc_reference:
2329 /* If the expression has side-effects, then encase it in a SAVE_EXPR
2330 so that it will only be evaluated once. */
2331 /* The reference (r) and comparison (<) classes could be handled as
2332 below, but it is generally faster to only evaluate them once. */
2333 if (TREE_SIDE_EFFECTS (e))
2334 return save_expr (e);
2335 return e;
2336
2337 case tcc_constant:
2338 /* Constants need no processing. In fact, we should never reach
2339 here. */
2340 return e;
2341
2342 case tcc_binary:
2343 /* Division is slow and tends to be compiled with jumps,
2344 especially the division by powers of 2 that is often
2345 found inside of an array reference. So do it just once. */
2346 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
2347 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
2348 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
2349 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
2350 return save_expr (e);
2351 /* Recursively stabilize each operand. */
2352 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
2353 stabilize_reference_1 (TREE_OPERAND (e, 1)));
2354 break;
2355
2356 case tcc_unary:
2357 /* Recursively stabilize each operand. */
2358 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
2359 break;
2360
2361 default:
2362 gcc_unreachable ();
2363 }
2364
2365 TREE_TYPE (result) = TREE_TYPE (e);
2366 TREE_READONLY (result) = TREE_READONLY (e);
2367 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
2368 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
2369 TREE_INVARIANT (result) = 1;
2370
2371 return result;
2372 }
2373 \f
2374 /* Low-level constructors for expressions. */
2375
2376 /* A helper function for build1 and constant folders. Set TREE_CONSTANT,
2377 TREE_INVARIANT, and TREE_SIDE_EFFECTS for an ADDR_EXPR. */
2378
2379 void
2380 recompute_tree_invarant_for_addr_expr (tree t)
2381 {
2382 tree node;
2383 bool tc = true, ti = true, se = false;
2384
2385 /* We started out assuming this address is both invariant and constant, but
2386 does not have side effects. Now go down any handled components and see if
2387 any of them involve offsets that are either non-constant or non-invariant.
2388 Also check for side-effects.
2389
2390 ??? Note that this code makes no attempt to deal with the case where
2391 taking the address of something causes a copy due to misalignment. */
2392
2393 #define UPDATE_TITCSE(NODE) \
2394 do { tree _node = (NODE); \
2395 if (_node && !TREE_INVARIANT (_node)) ti = false; \
2396 if (_node && !TREE_CONSTANT (_node)) tc = false; \
2397 if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
2398
2399 for (node = TREE_OPERAND (t, 0); handled_component_p (node);
2400 node = TREE_OPERAND (node, 0))
2401 {
2402 /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
2403 array reference (probably made temporarily by the G++ front end),
2404 so ignore all the operands. */
2405 if ((TREE_CODE (node) == ARRAY_REF
2406 || TREE_CODE (node) == ARRAY_RANGE_REF)
2407 && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
2408 {
2409 UPDATE_TITCSE (TREE_OPERAND (node, 1));
2410 if (TREE_OPERAND (node, 2))
2411 UPDATE_TITCSE (TREE_OPERAND (node, 2));
2412 if (TREE_OPERAND (node, 3))
2413 UPDATE_TITCSE (TREE_OPERAND (node, 3));
2414 }
2415 /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
2416 FIELD_DECL, apparently. The G++ front end can put something else
2417 there, at least temporarily. */
2418 else if (TREE_CODE (node) == COMPONENT_REF
2419 && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
2420 {
2421 if (TREE_OPERAND (node, 2))
2422 UPDATE_TITCSE (TREE_OPERAND (node, 2));
2423 }
2424 else if (TREE_CODE (node) == BIT_FIELD_REF)
2425 UPDATE_TITCSE (TREE_OPERAND (node, 2));
2426 }
2427
2428 /* Now see what's inside. If it's an INDIRECT_REF, copy our properties from
2429 the address, since &(*a)->b is a form of addition. If it's a decl, it's
2430 invariant and constant if the decl is static. It's also invariant if it's
2431 a decl in the current function. Taking the address of a volatile variable
2432 is not volatile. If it's a constant, the address is both invariant and
2433 constant. Otherwise it's neither. */
2434 if (TREE_CODE (node) == INDIRECT_REF)
2435 UPDATE_TITCSE (TREE_OPERAND (node, 0));
2436 else if (DECL_P (node))
2437 {
2438 if (staticp (node))
2439 ;
2440 else if (decl_function_context (node) == current_function_decl
2441 /* Addresses of thread-local variables are invariant. */
2442 || (TREE_CODE (node) == VAR_DECL && DECL_THREAD_LOCAL (node)))
2443 tc = false;
2444 else
2445 ti = tc = false;
2446 }
2447 else if (CONSTANT_CLASS_P (node))
2448 ;
2449 else
2450 {
2451 ti = tc = false;
2452 se |= TREE_SIDE_EFFECTS (node);
2453 }
2454
2455 TREE_CONSTANT (t) = tc;
2456 TREE_INVARIANT (t) = ti;
2457 TREE_SIDE_EFFECTS (t) = se;
2458 #undef UPDATE_TITCSE
2459 }
2460
2461 /* Build an expression of code CODE, data type TYPE, and operands as
2462 specified. Expressions and reference nodes can be created this way.
2463 Constants, decls, types and misc nodes cannot be.
2464
2465 We define 5 non-variadic functions, from 0 to 4 arguments. This is
2466 enough for all extant tree codes. These functions can be called
2467 directly (preferably!), but can also be obtained via GCC preprocessor
2468 magic within the build macro. */
2469
2470 tree
2471 build0_stat (enum tree_code code, tree tt MEM_STAT_DECL)
2472 {
2473 tree t;
2474
2475 gcc_assert (TREE_CODE_LENGTH (code) == 0);
2476
2477 t = make_node_stat (code PASS_MEM_STAT);
2478 TREE_TYPE (t) = tt;
2479
2480 return t;
2481 }
2482
2483 tree
2484 build1_stat (enum tree_code code, tree type, tree node MEM_STAT_DECL)
2485 {
2486 int length = sizeof (struct tree_exp);
2487 #ifdef GATHER_STATISTICS
2488 tree_node_kind kind;
2489 #endif
2490 tree t;
2491
2492 #ifdef GATHER_STATISTICS
2493 switch (TREE_CODE_CLASS (code))
2494 {
2495 case tcc_statement: /* an expression with side effects */
2496 kind = s_kind;
2497 break;
2498 case tcc_reference: /* a reference */
2499 kind = r_kind;
2500 break;
2501 default:
2502 kind = e_kind;
2503 break;
2504 }
2505
2506 tree_node_counts[(int) kind]++;
2507 tree_node_sizes[(int) kind] += length;
2508 #endif
2509
2510 gcc_assert (TREE_CODE_LENGTH (code) == 1);
2511
2512 t = ggc_alloc_zone_stat (length, &tree_zone PASS_MEM_STAT);
2513
2514 memset (t, 0, sizeof (struct tree_common));
2515
2516 TREE_SET_CODE (t, code);
2517
2518 TREE_TYPE (t) = type;
2519 #ifdef USE_MAPPED_LOCATION
2520 SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
2521 #else
2522 SET_EXPR_LOCUS (t, NULL);
2523 #endif
2524 TREE_COMPLEXITY (t) = 0;
2525 TREE_OPERAND (t, 0) = node;
2526 TREE_BLOCK (t) = NULL_TREE;
2527 if (node && !TYPE_P (node))
2528 {
2529 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
2530 TREE_READONLY (t) = TREE_READONLY (node);
2531 }
2532
2533 if (TREE_CODE_CLASS (code) == tcc_statement)
2534 TREE_SIDE_EFFECTS (t) = 1;
2535 else switch (code)
2536 {
2537 case INIT_EXPR:
2538 case MODIFY_EXPR:
2539 case VA_ARG_EXPR:
2540 case PREDECREMENT_EXPR:
2541 case PREINCREMENT_EXPR:
2542 case POSTDECREMENT_EXPR:
2543 case POSTINCREMENT_EXPR:
2544 /* All of these have side-effects, no matter what their
2545 operands are. */
2546 TREE_SIDE_EFFECTS (t) = 1;
2547 TREE_READONLY (t) = 0;
2548 break;
2549
2550 case MISALIGNED_INDIRECT_REF:
2551 case ALIGN_INDIRECT_REF:
2552 case INDIRECT_REF:
2553 /* Whether a dereference is readonly has nothing to do with whether
2554 its operand is readonly. */
2555 TREE_READONLY (t) = 0;
2556 break;
2557
2558 case ADDR_EXPR:
2559 if (node)
2560 recompute_tree_invarant_for_addr_expr (t);
2561 break;
2562
2563 default:
2564 if (TREE_CODE_CLASS (code) == tcc_unary
2565 && node && !TYPE_P (node)
2566 && TREE_CONSTANT (node))
2567 TREE_CONSTANT (t) = 1;
2568 if (TREE_CODE_CLASS (code) == tcc_unary
2569 && node && TREE_INVARIANT (node))
2570 TREE_INVARIANT (t) = 1;
2571 if (TREE_CODE_CLASS (code) == tcc_reference
2572 && node && TREE_THIS_VOLATILE (node))
2573 TREE_THIS_VOLATILE (t) = 1;
2574 break;
2575 }
2576
2577 return t;
2578 }
2579
2580 #define PROCESS_ARG(N) \
2581 do { \
2582 TREE_OPERAND (t, N) = arg##N; \
2583 if (arg##N &&!TYPE_P (arg##N)) \
2584 { \
2585 if (TREE_SIDE_EFFECTS (arg##N)) \
2586 side_effects = 1; \
2587 if (!TREE_READONLY (arg##N)) \
2588 read_only = 0; \
2589 if (!TREE_CONSTANT (arg##N)) \
2590 constant = 0; \
2591 if (!TREE_INVARIANT (arg##N)) \
2592 invariant = 0; \
2593 } \
2594 } while (0)
2595
2596 tree
2597 build2_stat (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
2598 {
2599 bool constant, read_only, side_effects, invariant;
2600 tree t;
2601
2602 gcc_assert (TREE_CODE_LENGTH (code) == 2);
2603
2604 t = make_node_stat (code PASS_MEM_STAT);
2605 TREE_TYPE (t) = tt;
2606
2607 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
2608 result based on those same flags for the arguments. But if the
2609 arguments aren't really even `tree' expressions, we shouldn't be trying
2610 to do this. */
2611
2612 /* Expressions without side effects may be constant if their
2613 arguments are as well. */
2614 constant = (TREE_CODE_CLASS (code) == tcc_comparison
2615 || TREE_CODE_CLASS (code) == tcc_binary);
2616 read_only = 1;
2617 side_effects = TREE_SIDE_EFFECTS (t);
2618 invariant = constant;
2619
2620 PROCESS_ARG(0);
2621 PROCESS_ARG(1);
2622
2623 TREE_READONLY (t) = read_only;
2624 TREE_CONSTANT (t) = constant;
2625 TREE_INVARIANT (t) = invariant;
2626 TREE_SIDE_EFFECTS (t) = side_effects;
2627 TREE_THIS_VOLATILE (t)
2628 = (TREE_CODE_CLASS (code) == tcc_reference
2629 && arg0 && TREE_THIS_VOLATILE (arg0));
2630
2631 return t;
2632 }
2633
2634 tree
2635 build3_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
2636 tree arg2 MEM_STAT_DECL)
2637 {
2638 bool constant, read_only, side_effects, invariant;
2639 tree t;
2640
2641 gcc_assert (TREE_CODE_LENGTH (code) == 3);
2642
2643 t = make_node_stat (code PASS_MEM_STAT);
2644 TREE_TYPE (t) = tt;
2645
2646 side_effects = TREE_SIDE_EFFECTS (t);
2647
2648 PROCESS_ARG(0);
2649 PROCESS_ARG(1);
2650 PROCESS_ARG(2);
2651
2652 if (code == CALL_EXPR && !side_effects)
2653 {
2654 tree node;
2655 int i;
2656
2657 /* Calls have side-effects, except those to const or
2658 pure functions. */
2659 i = call_expr_flags (t);
2660 if (!(i & (ECF_CONST | ECF_PURE)))
2661 side_effects = 1;
2662
2663 /* And even those have side-effects if their arguments do. */
2664 else for (node = arg1; node; node = TREE_CHAIN (node))
2665 if (TREE_SIDE_EFFECTS (TREE_VALUE (node)))
2666 {
2667 side_effects = 1;
2668 break;
2669 }
2670 }
2671
2672 TREE_SIDE_EFFECTS (t) = side_effects;
2673 TREE_THIS_VOLATILE (t)
2674 = (TREE_CODE_CLASS (code) == tcc_reference
2675 && arg0 && TREE_THIS_VOLATILE (arg0));
2676
2677 return t;
2678 }
2679
2680 tree
2681 build4_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
2682 tree arg2, tree arg3 MEM_STAT_DECL)
2683 {
2684 bool constant, read_only, side_effects, invariant;
2685 tree t;
2686
2687 gcc_assert (TREE_CODE_LENGTH (code) == 4);
2688
2689 t = make_node_stat (code PASS_MEM_STAT);
2690 TREE_TYPE (t) = tt;
2691
2692 side_effects = TREE_SIDE_EFFECTS (t);
2693
2694 PROCESS_ARG(0);
2695 PROCESS_ARG(1);
2696 PROCESS_ARG(2);
2697 PROCESS_ARG(3);
2698
2699 TREE_SIDE_EFFECTS (t) = side_effects;
2700 TREE_THIS_VOLATILE (t)
2701 = (TREE_CODE_CLASS (code) == tcc_reference
2702 && arg0 && TREE_THIS_VOLATILE (arg0));
2703
2704 return t;
2705 }
2706
2707 /* Backup definition for non-gcc build compilers. */
2708
2709 tree
2710 (build) (enum tree_code code, tree tt, ...)
2711 {
2712 tree t, arg0, arg1, arg2, arg3;
2713 int length = TREE_CODE_LENGTH (code);
2714 va_list p;
2715
2716 va_start (p, tt);
2717 switch (length)
2718 {
2719 case 0:
2720 t = build0 (code, tt);
2721 break;
2722 case 1:
2723 arg0 = va_arg (p, tree);
2724 t = build1 (code, tt, arg0);
2725 break;
2726 case 2:
2727 arg0 = va_arg (p, tree);
2728 arg1 = va_arg (p, tree);
2729 t = build2 (code, tt, arg0, arg1);
2730 break;
2731 case 3:
2732 arg0 = va_arg (p, tree);
2733 arg1 = va_arg (p, tree);
2734 arg2 = va_arg (p, tree);
2735 t = build3 (code, tt, arg0, arg1, arg2);
2736 break;
2737 case 4:
2738 arg0 = va_arg (p, tree);
2739 arg1 = va_arg (p, tree);
2740 arg2 = va_arg (p, tree);
2741 arg3 = va_arg (p, tree);
2742 t = build4 (code, tt, arg0, arg1, arg2, arg3);
2743 break;
2744 default:
2745 gcc_unreachable ();
2746 }
2747 va_end (p);
2748
2749 return t;
2750 }
2751
2752 /* Similar except don't specify the TREE_TYPE
2753 and leave the TREE_SIDE_EFFECTS as 0.
2754 It is permissible for arguments to be null,
2755 or even garbage if their values do not matter. */
2756
2757 tree
2758 build_nt (enum tree_code code, ...)
2759 {
2760 tree t;
2761 int length;
2762 int i;
2763 va_list p;
2764
2765 va_start (p, code);
2766
2767 t = make_node (code);
2768 length = TREE_CODE_LENGTH (code);
2769
2770 for (i = 0; i < length; i++)
2771 TREE_OPERAND (t, i) = va_arg (p, tree);
2772
2773 va_end (p);
2774 return t;
2775 }
2776 \f
2777 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
2778 We do NOT enter this node in any sort of symbol table.
2779
2780 layout_decl is used to set up the decl's storage layout.
2781 Other slots are initialized to 0 or null pointers. */
2782
2783 tree
2784 build_decl_stat (enum tree_code code, tree name, tree type MEM_STAT_DECL)
2785 {
2786 tree t;
2787
2788 t = make_node_stat (code PASS_MEM_STAT);
2789
2790 /* if (type == error_mark_node)
2791 type = integer_type_node; */
2792 /* That is not done, deliberately, so that having error_mark_node
2793 as the type can suppress useless errors in the use of this variable. */
2794
2795 DECL_NAME (t) = name;
2796 TREE_TYPE (t) = type;
2797
2798 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
2799 layout_decl (t, 0);
2800 else if (code == FUNCTION_DECL)
2801 DECL_MODE (t) = FUNCTION_MODE;
2802
2803 /* Set default visibility to whatever the user supplied with
2804 visibility_specified depending on #pragma GCC visibility. */
2805 DECL_VISIBILITY (t) = default_visibility;
2806 DECL_VISIBILITY_SPECIFIED (t) = visibility_options.inpragma;
2807
2808 return t;
2809 }
2810 \f
2811 /* BLOCK nodes are used to represent the structure of binding contours
2812 and declarations, once those contours have been exited and their contents
2813 compiled. This information is used for outputting debugging info. */
2814
2815 tree
2816 build_block (tree vars, tree tags ATTRIBUTE_UNUSED, tree subblocks,
2817 tree supercontext, tree chain)
2818 {
2819 tree block = make_node (BLOCK);
2820
2821 BLOCK_VARS (block) = vars;
2822 BLOCK_SUBBLOCKS (block) = subblocks;
2823 BLOCK_SUPERCONTEXT (block) = supercontext;
2824 BLOCK_CHAIN (block) = chain;
2825 return block;
2826 }
2827
2828 #if 1 /* ! defined(USE_MAPPED_LOCATION) */
2829 /* ??? gengtype doesn't handle conditionals */
2830 static GTY(()) tree last_annotated_node;
2831 #endif
2832
2833 #ifdef USE_MAPPED_LOCATION
2834
2835 expanded_location
2836 expand_location (source_location loc)
2837 {
2838 expanded_location xloc;
2839 if (loc == 0) { xloc.file = NULL; xloc.line = 0; xloc.column = 0; }
2840 else
2841 {
2842 const struct line_map *map = linemap_lookup (&line_table, loc);
2843 xloc.file = map->to_file;
2844 xloc.line = SOURCE_LINE (map, loc);
2845 xloc.column = SOURCE_COLUMN (map, loc);
2846 };
2847 return xloc;
2848 }
2849
2850 #else
2851
2852 /* Record the exact location where an expression or an identifier were
2853 encountered. */
2854
2855 void
2856 annotate_with_file_line (tree node, const char *file, int line)
2857 {
2858 /* Roughly one percent of the calls to this function are to annotate
2859 a node with the same information already attached to that node!
2860 Just return instead of wasting memory. */
2861 if (EXPR_LOCUS (node)
2862 && (EXPR_FILENAME (node) == file
2863 || ! strcmp (EXPR_FILENAME (node), file))
2864 && EXPR_LINENO (node) == line)
2865 {
2866 last_annotated_node = node;
2867 return;
2868 }
2869
2870 /* In heavily macroized code (such as GCC itself) this single
2871 entry cache can reduce the number of allocations by more
2872 than half. */
2873 if (last_annotated_node
2874 && EXPR_LOCUS (last_annotated_node)
2875 && (EXPR_FILENAME (last_annotated_node) == file
2876 || ! strcmp (EXPR_FILENAME (last_annotated_node), file))
2877 && EXPR_LINENO (last_annotated_node) == line)
2878 {
2879 SET_EXPR_LOCUS (node, EXPR_LOCUS (last_annotated_node));
2880 return;
2881 }
2882
2883 SET_EXPR_LOCUS (node, ggc_alloc (sizeof (location_t)));
2884 EXPR_LINENO (node) = line;
2885 EXPR_FILENAME (node) = file;
2886 last_annotated_node = node;
2887 }
2888
2889 void
2890 annotate_with_locus (tree node, location_t locus)
2891 {
2892 annotate_with_file_line (node, locus.file, locus.line);
2893 }
2894 #endif
2895 \f
2896 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
2897 is ATTRIBUTE. */
2898
2899 tree
2900 build_decl_attribute_variant (tree ddecl, tree attribute)
2901 {
2902 DECL_ATTRIBUTES (ddecl) = attribute;
2903 return ddecl;
2904 }
2905
2906 /* Borrowed from hashtab.c iterative_hash implementation. */
2907 #define mix(a,b,c) \
2908 { \
2909 a -= b; a -= c; a ^= (c>>13); \
2910 b -= c; b -= a; b ^= (a<< 8); \
2911 c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
2912 a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
2913 b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
2914 c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
2915 a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
2916 b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
2917 c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
2918 }
2919
2920
2921 /* Produce good hash value combining VAL and VAL2. */
2922 static inline hashval_t
2923 iterative_hash_hashval_t (hashval_t val, hashval_t val2)
2924 {
2925 /* the golden ratio; an arbitrary value. */
2926 hashval_t a = 0x9e3779b9;
2927
2928 mix (a, val, val2);
2929 return val2;
2930 }
2931
2932 /* Produce good hash value combining PTR and VAL2. */
2933 static inline hashval_t
2934 iterative_hash_pointer (void *ptr, hashval_t val2)
2935 {
2936 if (sizeof (ptr) == sizeof (hashval_t))
2937 return iterative_hash_hashval_t ((size_t) ptr, val2);
2938 else
2939 {
2940 hashval_t a = (hashval_t) (size_t) ptr;
2941 /* Avoid warnings about shifting of more than the width of the type on
2942 hosts that won't execute this path. */
2943 int zero = 0;
2944 hashval_t b = (hashval_t) ((size_t) ptr >> (sizeof (hashval_t) * 8 + zero));
2945 mix (a, b, val2);
2946 return val2;
2947 }
2948 }
2949
2950 /* Produce good hash value combining VAL and VAL2. */
2951 static inline hashval_t
2952 iterative_hash_host_wide_int (HOST_WIDE_INT val, hashval_t val2)
2953 {
2954 if (sizeof (HOST_WIDE_INT) == sizeof (hashval_t))
2955 return iterative_hash_hashval_t (val, val2);
2956 else
2957 {
2958 hashval_t a = (hashval_t) val;
2959 /* Avoid warnings about shifting of more than the width of the type on
2960 hosts that won't execute this path. */
2961 int zero = 0;
2962 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 8 + zero));
2963 mix (a, b, val2);
2964 if (sizeof (HOST_WIDE_INT) > 2 * sizeof (hashval_t))
2965 {
2966 hashval_t a = (hashval_t) (val >> (sizeof (hashval_t) * 16 + zero));
2967 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 24 + zero));
2968 mix (a, b, val2);
2969 }
2970 return val2;
2971 }
2972 }
2973
2974 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
2975 is ATTRIBUTE.
2976
2977 Record such modified types already made so we don't make duplicates. */
2978
2979 tree
2980 build_type_attribute_variant (tree ttype, tree attribute)
2981 {
2982 if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
2983 {
2984 hashval_t hashcode = 0;
2985 tree ntype;
2986 enum tree_code code = TREE_CODE (ttype);
2987
2988 ntype = copy_node (ttype);
2989
2990 TYPE_POINTER_TO (ntype) = 0;
2991 TYPE_REFERENCE_TO (ntype) = 0;
2992 TYPE_ATTRIBUTES (ntype) = attribute;
2993
2994 /* Create a new main variant of TYPE. */
2995 TYPE_MAIN_VARIANT (ntype) = ntype;
2996 TYPE_NEXT_VARIANT (ntype) = 0;
2997 set_type_quals (ntype, TYPE_UNQUALIFIED);
2998
2999 hashcode = iterative_hash_object (code, hashcode);
3000 if (TREE_TYPE (ntype))
3001 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (ntype)),
3002 hashcode);
3003 hashcode = attribute_hash_list (attribute, hashcode);
3004
3005 switch (TREE_CODE (ntype))
3006 {
3007 case FUNCTION_TYPE:
3008 hashcode = type_hash_list (TYPE_ARG_TYPES (ntype), hashcode);
3009 break;
3010 case ARRAY_TYPE:
3011 hashcode = iterative_hash_object (TYPE_HASH (TYPE_DOMAIN (ntype)),
3012 hashcode);
3013 break;
3014 case INTEGER_TYPE:
3015 hashcode = iterative_hash_object
3016 (TREE_INT_CST_LOW (TYPE_MAX_VALUE (ntype)), hashcode);
3017 hashcode = iterative_hash_object
3018 (TREE_INT_CST_HIGH (TYPE_MAX_VALUE (ntype)), hashcode);
3019 break;
3020 case REAL_TYPE:
3021 {
3022 unsigned int precision = TYPE_PRECISION (ntype);
3023 hashcode = iterative_hash_object (precision, hashcode);
3024 }
3025 break;
3026 default:
3027 break;
3028 }
3029
3030 ntype = type_hash_canon (hashcode, ntype);
3031 ttype = build_qualified_type (ntype, TYPE_QUALS (ttype));
3032 }
3033
3034 return ttype;
3035 }
3036
3037
3038 /* Return nonzero if IDENT is a valid name for attribute ATTR,
3039 or zero if not.
3040
3041 We try both `text' and `__text__', ATTR may be either one. */
3042 /* ??? It might be a reasonable simplification to require ATTR to be only
3043 `text'. One might then also require attribute lists to be stored in
3044 their canonicalized form. */
3045
3046 static int
3047 is_attribute_with_length_p (const char *attr, int attr_len, tree ident)
3048 {
3049 int ident_len;
3050 const char *p;
3051
3052 if (TREE_CODE (ident) != IDENTIFIER_NODE)
3053 return 0;
3054
3055 p = IDENTIFIER_POINTER (ident);
3056 ident_len = IDENTIFIER_LENGTH (ident);
3057
3058 if (ident_len == attr_len
3059 && strcmp (attr, p) == 0)
3060 return 1;
3061
3062 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
3063 if (attr[0] == '_')
3064 {
3065 gcc_assert (attr[1] == '_');
3066 gcc_assert (attr[attr_len - 2] == '_');
3067 gcc_assert (attr[attr_len - 1] == '_');
3068 gcc_assert (attr[1] == '_');
3069 if (ident_len == attr_len - 4
3070 && strncmp (attr + 2, p, attr_len - 4) == 0)
3071 return 1;
3072 }
3073 else
3074 {
3075 if (ident_len == attr_len + 4
3076 && p[0] == '_' && p[1] == '_'
3077 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
3078 && strncmp (attr, p + 2, attr_len) == 0)
3079 return 1;
3080 }
3081
3082 return 0;
3083 }
3084
3085 /* Return nonzero if IDENT is a valid name for attribute ATTR,
3086 or zero if not.
3087
3088 We try both `text' and `__text__', ATTR may be either one. */
3089
3090 int
3091 is_attribute_p (const char *attr, tree ident)
3092 {
3093 return is_attribute_with_length_p (attr, strlen (attr), ident);
3094 }
3095
3096 /* Given an attribute name and a list of attributes, return a pointer to the
3097 attribute's list element if the attribute is part of the list, or NULL_TREE
3098 if not found. If the attribute appears more than once, this only
3099 returns the first occurrence; the TREE_CHAIN of the return value should
3100 be passed back in if further occurrences are wanted. */
3101
3102 tree
3103 lookup_attribute (const char *attr_name, tree list)
3104 {
3105 tree l;
3106 size_t attr_len = strlen (attr_name);
3107
3108 for (l = list; l; l = TREE_CHAIN (l))
3109 {
3110 gcc_assert (TREE_CODE (TREE_PURPOSE (l)) == IDENTIFIER_NODE);
3111 if (is_attribute_with_length_p (attr_name, attr_len, TREE_PURPOSE (l)))
3112 return l;
3113 }
3114
3115 return NULL_TREE;
3116 }
3117
3118 /* Return an attribute list that is the union of a1 and a2. */
3119
3120 tree
3121 merge_attributes (tree a1, tree a2)
3122 {
3123 tree attributes;
3124
3125 /* Either one unset? Take the set one. */
3126
3127 if ((attributes = a1) == 0)
3128 attributes = a2;
3129
3130 /* One that completely contains the other? Take it. */
3131
3132 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
3133 {
3134 if (attribute_list_contained (a2, a1))
3135 attributes = a2;
3136 else
3137 {
3138 /* Pick the longest list, and hang on the other list. */
3139
3140 if (list_length (a1) < list_length (a2))
3141 attributes = a2, a2 = a1;
3142
3143 for (; a2 != 0; a2 = TREE_CHAIN (a2))
3144 {
3145 tree a;
3146 for (a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
3147 attributes);
3148 a != NULL_TREE;
3149 a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
3150 TREE_CHAIN (a)))
3151 {
3152 if (simple_cst_equal (TREE_VALUE (a), TREE_VALUE (a2)) == 1)
3153 break;
3154 }
3155 if (a == NULL_TREE)
3156 {
3157 a1 = copy_node (a2);
3158 TREE_CHAIN (a1) = attributes;
3159 attributes = a1;
3160 }
3161 }
3162 }
3163 }
3164 return attributes;
3165 }
3166
3167 /* Given types T1 and T2, merge their attributes and return
3168 the result. */
3169
3170 tree
3171 merge_type_attributes (tree t1, tree t2)
3172 {
3173 return merge_attributes (TYPE_ATTRIBUTES (t1),
3174 TYPE_ATTRIBUTES (t2));
3175 }
3176
3177 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
3178 the result. */
3179
3180 tree
3181 merge_decl_attributes (tree olddecl, tree newdecl)
3182 {
3183 return merge_attributes (DECL_ATTRIBUTES (olddecl),
3184 DECL_ATTRIBUTES (newdecl));
3185 }
3186
3187 #if TARGET_DLLIMPORT_DECL_ATTRIBUTES
3188
3189 /* Specialization of merge_decl_attributes for various Windows targets.
3190
3191 This handles the following situation:
3192
3193 __declspec (dllimport) int foo;
3194 int foo;
3195
3196 The second instance of `foo' nullifies the dllimport. */
3197
3198 tree
3199 merge_dllimport_decl_attributes (tree old, tree new)
3200 {
3201 tree a;
3202 int delete_dllimport_p;
3203
3204 old = DECL_ATTRIBUTES (old);
3205 new = DECL_ATTRIBUTES (new);
3206
3207 /* What we need to do here is remove from `old' dllimport if it doesn't
3208 appear in `new'. dllimport behaves like extern: if a declaration is
3209 marked dllimport and a definition appears later, then the object
3210 is not dllimport'd. */
3211 if (lookup_attribute ("dllimport", old) != NULL_TREE
3212 && lookup_attribute ("dllimport", new) == NULL_TREE)
3213 delete_dllimport_p = 1;
3214 else
3215 delete_dllimport_p = 0;
3216
3217 a = merge_attributes (old, new);
3218
3219 if (delete_dllimport_p)
3220 {
3221 tree prev, t;
3222
3223 /* Scan the list for dllimport and delete it. */
3224 for (prev = NULL_TREE, t = a; t; prev = t, t = TREE_CHAIN (t))
3225 {
3226 if (is_attribute_p ("dllimport", TREE_PURPOSE (t)))
3227 {
3228 if (prev == NULL_TREE)
3229 a = TREE_CHAIN (a);
3230 else
3231 TREE_CHAIN (prev) = TREE_CHAIN (t);
3232 break;
3233 }
3234 }
3235 }
3236
3237 return a;
3238 }
3239
3240 /* Handle a "dllimport" or "dllexport" attribute; arguments as in
3241 struct attribute_spec.handler. */
3242
3243 tree
3244 handle_dll_attribute (tree * pnode, tree name, tree args, int flags,
3245 bool *no_add_attrs)
3246 {
3247 tree node = *pnode;
3248
3249 /* These attributes may apply to structure and union types being created,
3250 but otherwise should pass to the declaration involved. */
3251 if (!DECL_P (node))
3252 {
3253 if (flags & ((int) ATTR_FLAG_DECL_NEXT | (int) ATTR_FLAG_FUNCTION_NEXT
3254 | (int) ATTR_FLAG_ARRAY_NEXT))
3255 {
3256 *no_add_attrs = true;
3257 return tree_cons (name, args, NULL_TREE);
3258 }
3259 if (TREE_CODE (node) != RECORD_TYPE && TREE_CODE (node) != UNION_TYPE)
3260 {
3261 warning ("%qs attribute ignored", IDENTIFIER_POINTER (name));
3262 *no_add_attrs = true;
3263 }
3264
3265 return NULL_TREE;
3266 }
3267
3268 /* Report error on dllimport ambiguities seen now before they cause
3269 any damage. */
3270 if (is_attribute_p ("dllimport", name))
3271 {
3272 /* Like MS, treat definition of dllimported variables and
3273 non-inlined functions on declaration as syntax errors. We
3274 allow the attribute for function definitions if declared
3275 inline. */
3276 if (TREE_CODE (node) == FUNCTION_DECL && DECL_INITIAL (node)
3277 && !DECL_DECLARED_INLINE_P (node))
3278 {
3279 error ("%Jfunction %qD definition is marked dllimport.", node, node);
3280 *no_add_attrs = true;
3281 }
3282
3283 else if (TREE_CODE (node) == VAR_DECL)
3284 {
3285 if (DECL_INITIAL (node))
3286 {
3287 error ("%Jvariable %qD definition is marked dllimport.",
3288 node, node);
3289 *no_add_attrs = true;
3290 }
3291
3292 /* `extern' needn't be specified with dllimport.
3293 Specify `extern' now and hope for the best. Sigh. */
3294 DECL_EXTERNAL (node) = 1;
3295 /* Also, implicitly give dllimport'd variables declared within
3296 a function global scope, unless declared static. */
3297 if (current_function_decl != NULL_TREE && !TREE_STATIC (node))
3298 TREE_PUBLIC (node) = 1;
3299 }
3300 }
3301
3302 /* Report error if symbol is not accessible at global scope. */
3303 if (!TREE_PUBLIC (node)
3304 && (TREE_CODE (node) == VAR_DECL
3305 || TREE_CODE (node) == FUNCTION_DECL))
3306 {
3307 error ("%Jexternal linkage required for symbol %qD because of "
3308 "%qs attribute.", node, node, IDENTIFIER_POINTER (name));
3309 *no_add_attrs = true;
3310 }
3311
3312 return NULL_TREE;
3313 }
3314
3315 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
3316 \f
3317 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
3318 of the various TYPE_QUAL values. */
3319
3320 static void
3321 set_type_quals (tree type, int type_quals)
3322 {
3323 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
3324 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
3325 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
3326 }
3327
3328 /* Returns true iff cand is equivalent to base with type_quals. */
3329
3330 bool
3331 check_qualified_type (tree cand, tree base, int type_quals)
3332 {
3333 return (TYPE_QUALS (cand) == type_quals
3334 && TYPE_NAME (cand) == TYPE_NAME (base)
3335 /* Apparently this is needed for Objective-C. */
3336 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
3337 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
3338 TYPE_ATTRIBUTES (base)));
3339 }
3340
3341 /* Return a version of the TYPE, qualified as indicated by the
3342 TYPE_QUALS, if one exists. If no qualified version exists yet,
3343 return NULL_TREE. */
3344
3345 tree
3346 get_qualified_type (tree type, int type_quals)
3347 {
3348 tree t;
3349
3350 if (TYPE_QUALS (type) == type_quals)
3351 return type;
3352
3353 /* Search the chain of variants to see if there is already one there just
3354 like the one we need to have. If so, use that existing one. We must
3355 preserve the TYPE_NAME, since there is code that depends on this. */
3356 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
3357 if (check_qualified_type (t, type, type_quals))
3358 return t;
3359
3360 return NULL_TREE;
3361 }
3362
3363 /* Like get_qualified_type, but creates the type if it does not
3364 exist. This function never returns NULL_TREE. */
3365
3366 tree
3367 build_qualified_type (tree type, int type_quals)
3368 {
3369 tree t;
3370
3371 /* See if we already have the appropriate qualified variant. */
3372 t = get_qualified_type (type, type_quals);
3373
3374 /* If not, build it. */
3375 if (!t)
3376 {
3377 t = build_variant_type_copy (type);
3378 set_type_quals (t, type_quals);
3379 }
3380
3381 return t;
3382 }
3383
3384 /* Create a new distinct copy of TYPE. The new type is made its own
3385 MAIN_VARIANT. */
3386
3387 tree
3388 build_distinct_type_copy (tree type)
3389 {
3390 tree t = copy_node (type);
3391
3392 TYPE_POINTER_TO (t) = 0;
3393 TYPE_REFERENCE_TO (t) = 0;
3394
3395 /* Make it its own variant. */
3396 TYPE_MAIN_VARIANT (t) = t;
3397 TYPE_NEXT_VARIANT (t) = 0;
3398
3399 return t;
3400 }
3401
3402 /* Create a new variant of TYPE, equivalent but distinct.
3403 This is so the caller can modify it. */
3404
3405 tree
3406 build_variant_type_copy (tree type)
3407 {
3408 tree t, m = TYPE_MAIN_VARIANT (type);
3409
3410 t = build_distinct_type_copy (type);
3411
3412 /* Add the new type to the chain of variants of TYPE. */
3413 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
3414 TYPE_NEXT_VARIANT (m) = t;
3415 TYPE_MAIN_VARIANT (t) = m;
3416
3417 return t;
3418 }
3419 \f
3420 /* Hashing of types so that we don't make duplicates.
3421 The entry point is `type_hash_canon'. */
3422
3423 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
3424 with types in the TREE_VALUE slots), by adding the hash codes
3425 of the individual types. */
3426
3427 unsigned int
3428 type_hash_list (tree list, hashval_t hashcode)
3429 {
3430 tree tail;
3431
3432 for (tail = list; tail; tail = TREE_CHAIN (tail))
3433 if (TREE_VALUE (tail) != error_mark_node)
3434 hashcode = iterative_hash_object (TYPE_HASH (TREE_VALUE (tail)),
3435 hashcode);
3436
3437 return hashcode;
3438 }
3439
3440 /* These are the Hashtable callback functions. */
3441
3442 /* Returns true iff the types are equivalent. */
3443
3444 static int
3445 type_hash_eq (const void *va, const void *vb)
3446 {
3447 const struct type_hash *a = va, *b = vb;
3448
3449 /* First test the things that are the same for all types. */
3450 if (a->hash != b->hash
3451 || TREE_CODE (a->type) != TREE_CODE (b->type)
3452 || TREE_TYPE (a->type) != TREE_TYPE (b->type)
3453 || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
3454 TYPE_ATTRIBUTES (b->type))
3455 || TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
3456 || TYPE_MODE (a->type) != TYPE_MODE (b->type))
3457 return 0;
3458
3459 switch (TREE_CODE (a->type))
3460 {
3461 case VOID_TYPE:
3462 case COMPLEX_TYPE:
3463 case POINTER_TYPE:
3464 case REFERENCE_TYPE:
3465 return 1;
3466
3467 case VECTOR_TYPE:
3468 return TYPE_VECTOR_SUBPARTS (a->type) == TYPE_VECTOR_SUBPARTS (b->type);
3469
3470 case ENUMERAL_TYPE:
3471 if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
3472 && !(TYPE_VALUES (a->type)
3473 && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
3474 && TYPE_VALUES (b->type)
3475 && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
3476 && type_list_equal (TYPE_VALUES (a->type),
3477 TYPE_VALUES (b->type))))
3478 return 0;
3479
3480 /* ... fall through ... */
3481
3482 case INTEGER_TYPE:
3483 case REAL_TYPE:
3484 case BOOLEAN_TYPE:
3485 case CHAR_TYPE:
3486 return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
3487 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
3488 TYPE_MAX_VALUE (b->type)))
3489 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
3490 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
3491 TYPE_MIN_VALUE (b->type))));
3492
3493 case OFFSET_TYPE:
3494 return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
3495
3496 case METHOD_TYPE:
3497 return (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
3498 && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
3499 || (TYPE_ARG_TYPES (a->type)
3500 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
3501 && TYPE_ARG_TYPES (b->type)
3502 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
3503 && type_list_equal (TYPE_ARG_TYPES (a->type),
3504 TYPE_ARG_TYPES (b->type)))));
3505
3506 case ARRAY_TYPE:
3507 return TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type);
3508
3509 case RECORD_TYPE:
3510 case UNION_TYPE:
3511 case QUAL_UNION_TYPE:
3512 return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
3513 || (TYPE_FIELDS (a->type)
3514 && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
3515 && TYPE_FIELDS (b->type)
3516 && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
3517 && type_list_equal (TYPE_FIELDS (a->type),
3518 TYPE_FIELDS (b->type))));
3519
3520 case FUNCTION_TYPE:
3521 return (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
3522 || (TYPE_ARG_TYPES (a->type)
3523 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
3524 && TYPE_ARG_TYPES (b->type)
3525 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
3526 && type_list_equal (TYPE_ARG_TYPES (a->type),
3527 TYPE_ARG_TYPES (b->type))));
3528
3529 default:
3530 return 0;
3531 }
3532 }
3533
3534 /* Return the cached hash value. */
3535
3536 static hashval_t
3537 type_hash_hash (const void *item)
3538 {
3539 return ((const struct type_hash *) item)->hash;
3540 }
3541
3542 /* Look in the type hash table for a type isomorphic to TYPE.
3543 If one is found, return it. Otherwise return 0. */
3544
3545 tree
3546 type_hash_lookup (hashval_t hashcode, tree type)
3547 {
3548 struct type_hash *h, in;
3549
3550 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
3551 must call that routine before comparing TYPE_ALIGNs. */
3552 layout_type (type);
3553
3554 in.hash = hashcode;
3555 in.type = type;
3556
3557 h = htab_find_with_hash (type_hash_table, &in, hashcode);
3558 if (h)
3559 return h->type;
3560 return NULL_TREE;
3561 }
3562
3563 /* Add an entry to the type-hash-table
3564 for a type TYPE whose hash code is HASHCODE. */
3565
3566 void
3567 type_hash_add (hashval_t hashcode, tree type)
3568 {
3569 struct type_hash *h;
3570 void **loc;
3571
3572 h = ggc_alloc (sizeof (struct type_hash));
3573 h->hash = hashcode;
3574 h->type = type;
3575 loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
3576 *(struct type_hash **) loc = h;
3577 }
3578
3579 /* Given TYPE, and HASHCODE its hash code, return the canonical
3580 object for an identical type if one already exists.
3581 Otherwise, return TYPE, and record it as the canonical object.
3582
3583 To use this function, first create a type of the sort you want.
3584 Then compute its hash code from the fields of the type that
3585 make it different from other similar types.
3586 Then call this function and use the value. */
3587
3588 tree
3589 type_hash_canon (unsigned int hashcode, tree type)
3590 {
3591 tree t1;
3592
3593 /* The hash table only contains main variants, so ensure that's what we're
3594 being passed. */
3595 gcc_assert (TYPE_MAIN_VARIANT (type) == type);
3596
3597 if (!lang_hooks.types.hash_types)
3598 return type;
3599
3600 /* See if the type is in the hash table already. If so, return it.
3601 Otherwise, add the type. */
3602 t1 = type_hash_lookup (hashcode, type);
3603 if (t1 != 0)
3604 {
3605 #ifdef GATHER_STATISTICS
3606 tree_node_counts[(int) t_kind]--;
3607 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type);
3608 #endif
3609 return t1;
3610 }
3611 else
3612 {
3613 type_hash_add (hashcode, type);
3614 return type;
3615 }
3616 }
3617
3618 /* See if the data pointed to by the type hash table is marked. We consider
3619 it marked if the type is marked or if a debug type number or symbol
3620 table entry has been made for the type. This reduces the amount of
3621 debugging output and eliminates that dependency of the debug output on
3622 the number of garbage collections. */
3623
3624 static int
3625 type_hash_marked_p (const void *p)
3626 {
3627 tree type = ((struct type_hash *) p)->type;
3628
3629 return ggc_marked_p (type) || TYPE_SYMTAB_POINTER (type);
3630 }
3631
3632 static void
3633 print_type_hash_statistics (void)
3634 {
3635 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
3636 (long) htab_size (type_hash_table),
3637 (long) htab_elements (type_hash_table),
3638 htab_collisions (type_hash_table));
3639 }
3640
3641 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
3642 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
3643 by adding the hash codes of the individual attributes. */
3644
3645 unsigned int
3646 attribute_hash_list (tree list, hashval_t hashcode)
3647 {
3648 tree tail;
3649
3650 for (tail = list; tail; tail = TREE_CHAIN (tail))
3651 /* ??? Do we want to add in TREE_VALUE too? */
3652 hashcode = iterative_hash_object
3653 (IDENTIFIER_HASH_VALUE (TREE_PURPOSE (tail)), hashcode);
3654 return hashcode;
3655 }
3656
3657 /* Given two lists of attributes, return true if list l2 is
3658 equivalent to l1. */
3659
3660 int
3661 attribute_list_equal (tree l1, tree l2)
3662 {
3663 return attribute_list_contained (l1, l2)
3664 && attribute_list_contained (l2, l1);
3665 }
3666
3667 /* Given two lists of attributes, return true if list L2 is
3668 completely contained within L1. */
3669 /* ??? This would be faster if attribute names were stored in a canonicalized
3670 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
3671 must be used to show these elements are equivalent (which they are). */
3672 /* ??? It's not clear that attributes with arguments will always be handled
3673 correctly. */
3674
3675 int
3676 attribute_list_contained (tree l1, tree l2)
3677 {
3678 tree t1, t2;
3679
3680 /* First check the obvious, maybe the lists are identical. */
3681 if (l1 == l2)
3682 return 1;
3683
3684 /* Maybe the lists are similar. */
3685 for (t1 = l1, t2 = l2;
3686 t1 != 0 && t2 != 0
3687 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
3688 && TREE_VALUE (t1) == TREE_VALUE (t2);
3689 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
3690
3691 /* Maybe the lists are equal. */
3692 if (t1 == 0 && t2 == 0)
3693 return 1;
3694
3695 for (; t2 != 0; t2 = TREE_CHAIN (t2))
3696 {
3697 tree attr;
3698 for (attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)), l1);
3699 attr != NULL_TREE;
3700 attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
3701 TREE_CHAIN (attr)))
3702 {
3703 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) == 1)
3704 break;
3705 }
3706
3707 if (attr == 0)
3708 return 0;
3709
3710 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) != 1)
3711 return 0;
3712 }
3713
3714 return 1;
3715 }
3716
3717 /* Given two lists of types
3718 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
3719 return 1 if the lists contain the same types in the same order.
3720 Also, the TREE_PURPOSEs must match. */
3721
3722 int
3723 type_list_equal (tree l1, tree l2)
3724 {
3725 tree t1, t2;
3726
3727 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
3728 if (TREE_VALUE (t1) != TREE_VALUE (t2)
3729 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
3730 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
3731 && (TREE_TYPE (TREE_PURPOSE (t1))
3732 == TREE_TYPE (TREE_PURPOSE (t2))))))
3733 return 0;
3734
3735 return t1 == t2;
3736 }
3737
3738 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
3739 given by TYPE. If the argument list accepts variable arguments,
3740 then this function counts only the ordinary arguments. */
3741
3742 int
3743 type_num_arguments (tree type)
3744 {
3745 int i = 0;
3746 tree t;
3747
3748 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
3749 /* If the function does not take a variable number of arguments,
3750 the last element in the list will have type `void'. */
3751 if (VOID_TYPE_P (TREE_VALUE (t)))
3752 break;
3753 else
3754 ++i;
3755
3756 return i;
3757 }
3758
3759 /* Nonzero if integer constants T1 and T2
3760 represent the same constant value. */
3761
3762 int
3763 tree_int_cst_equal (tree t1, tree t2)
3764 {
3765 if (t1 == t2)
3766 return 1;
3767
3768 if (t1 == 0 || t2 == 0)
3769 return 0;
3770
3771 if (TREE_CODE (t1) == INTEGER_CST
3772 && TREE_CODE (t2) == INTEGER_CST
3773 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3774 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
3775 return 1;
3776
3777 return 0;
3778 }
3779
3780 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
3781 The precise way of comparison depends on their data type. */
3782
3783 int
3784 tree_int_cst_lt (tree t1, tree t2)
3785 {
3786 if (t1 == t2)
3787 return 0;
3788
3789 if (TYPE_UNSIGNED (TREE_TYPE (t1)) != TYPE_UNSIGNED (TREE_TYPE (t2)))
3790 {
3791 int t1_sgn = tree_int_cst_sgn (t1);
3792 int t2_sgn = tree_int_cst_sgn (t2);
3793
3794 if (t1_sgn < t2_sgn)
3795 return 1;
3796 else if (t1_sgn > t2_sgn)
3797 return 0;
3798 /* Otherwise, both are non-negative, so we compare them as
3799 unsigned just in case one of them would overflow a signed
3800 type. */
3801 }
3802 else if (!TYPE_UNSIGNED (TREE_TYPE (t1)))
3803 return INT_CST_LT (t1, t2);
3804
3805 return INT_CST_LT_UNSIGNED (t1, t2);
3806 }
3807
3808 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
3809
3810 int
3811 tree_int_cst_compare (tree t1, tree t2)
3812 {
3813 if (tree_int_cst_lt (t1, t2))
3814 return -1;
3815 else if (tree_int_cst_lt (t2, t1))
3816 return 1;
3817 else
3818 return 0;
3819 }
3820
3821 /* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
3822 the host. If POS is zero, the value can be represented in a single
3823 HOST_WIDE_INT. If POS is nonzero, the value must be positive and can
3824 be represented in a single unsigned HOST_WIDE_INT. */
3825
3826 int
3827 host_integerp (tree t, int pos)
3828 {
3829 return (TREE_CODE (t) == INTEGER_CST
3830 && ! TREE_OVERFLOW (t)
3831 && ((TREE_INT_CST_HIGH (t) == 0
3832 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
3833 || (! pos && TREE_INT_CST_HIGH (t) == -1
3834 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0
3835 && !TYPE_UNSIGNED (TREE_TYPE (t)))
3836 || (pos && TREE_INT_CST_HIGH (t) == 0)));
3837 }
3838
3839 /* Return the HOST_WIDE_INT least significant bits of T if it is an
3840 INTEGER_CST and there is no overflow. POS is nonzero if the result must
3841 be positive. Abort if we cannot satisfy the above conditions. */
3842
3843 HOST_WIDE_INT
3844 tree_low_cst (tree t, int pos)
3845 {
3846 gcc_assert (host_integerp (t, pos));
3847 return TREE_INT_CST_LOW (t);
3848 }
3849
3850 /* Return the most significant bit of the integer constant T. */
3851
3852 int
3853 tree_int_cst_msb (tree t)
3854 {
3855 int prec;
3856 HOST_WIDE_INT h;
3857 unsigned HOST_WIDE_INT l;
3858
3859 /* Note that using TYPE_PRECISION here is wrong. We care about the
3860 actual bits, not the (arbitrary) range of the type. */
3861 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t))) - 1;
3862 rshift_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t), prec,
3863 2 * HOST_BITS_PER_WIDE_INT, &l, &h, 0);
3864 return (l & 1) == 1;
3865 }
3866
3867 /* Return an indication of the sign of the integer constant T.
3868 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
3869 Note that -1 will never be returned it T's type is unsigned. */
3870
3871 int
3872 tree_int_cst_sgn (tree t)
3873 {
3874 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
3875 return 0;
3876 else if (TYPE_UNSIGNED (TREE_TYPE (t)))
3877 return 1;
3878 else if (TREE_INT_CST_HIGH (t) < 0)
3879 return -1;
3880 else
3881 return 1;
3882 }
3883
3884 /* Compare two constructor-element-type constants. Return 1 if the lists
3885 are known to be equal; otherwise return 0. */
3886
3887 int
3888 simple_cst_list_equal (tree l1, tree l2)
3889 {
3890 while (l1 != NULL_TREE && l2 != NULL_TREE)
3891 {
3892 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
3893 return 0;
3894
3895 l1 = TREE_CHAIN (l1);
3896 l2 = TREE_CHAIN (l2);
3897 }
3898
3899 return l1 == l2;
3900 }
3901
3902 /* Return truthvalue of whether T1 is the same tree structure as T2.
3903 Return 1 if they are the same.
3904 Return 0 if they are understandably different.
3905 Return -1 if either contains tree structure not understood by
3906 this function. */
3907
3908 int
3909 simple_cst_equal (tree t1, tree t2)
3910 {
3911 enum tree_code code1, code2;
3912 int cmp;
3913 int i;
3914
3915 if (t1 == t2)
3916 return 1;
3917 if (t1 == 0 || t2 == 0)
3918 return 0;
3919
3920 code1 = TREE_CODE (t1);
3921 code2 = TREE_CODE (t2);
3922
3923 if (code1 == NOP_EXPR || code1 == CONVERT_EXPR || code1 == NON_LVALUE_EXPR)
3924 {
3925 if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3926 || code2 == NON_LVALUE_EXPR)
3927 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3928 else
3929 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
3930 }
3931
3932 else if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3933 || code2 == NON_LVALUE_EXPR)
3934 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
3935
3936 if (code1 != code2)
3937 return 0;
3938
3939 switch (code1)
3940 {
3941 case INTEGER_CST:
3942 return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3943 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
3944
3945 case REAL_CST:
3946 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
3947
3948 case STRING_CST:
3949 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
3950 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
3951 TREE_STRING_LENGTH (t1)));
3952
3953 case CONSTRUCTOR:
3954 return simple_cst_list_equal (CONSTRUCTOR_ELTS (t1),
3955 CONSTRUCTOR_ELTS (t2));
3956
3957 case SAVE_EXPR:
3958 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3959
3960 case CALL_EXPR:
3961 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3962 if (cmp <= 0)
3963 return cmp;
3964 return
3965 simple_cst_list_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3966
3967 case TARGET_EXPR:
3968 /* Special case: if either target is an unallocated VAR_DECL,
3969 it means that it's going to be unified with whatever the
3970 TARGET_EXPR is really supposed to initialize, so treat it
3971 as being equivalent to anything. */
3972 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
3973 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
3974 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
3975 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
3976 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
3977 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
3978 cmp = 1;
3979 else
3980 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3981
3982 if (cmp <= 0)
3983 return cmp;
3984
3985 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3986
3987 case WITH_CLEANUP_EXPR:
3988 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3989 if (cmp <= 0)
3990 return cmp;
3991
3992 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
3993
3994 case COMPONENT_REF:
3995 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
3996 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3997
3998 return 0;
3999
4000 case VAR_DECL:
4001 case PARM_DECL:
4002 case CONST_DECL:
4003 case FUNCTION_DECL:
4004 return 0;
4005
4006 default:
4007 break;
4008 }
4009
4010 /* This general rule works for most tree codes. All exceptions should be
4011 handled above. If this is a language-specific tree code, we can't
4012 trust what might be in the operand, so say we don't know
4013 the situation. */
4014 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
4015 return -1;
4016
4017 switch (TREE_CODE_CLASS (code1))
4018 {
4019 case tcc_unary:
4020 case tcc_binary:
4021 case tcc_comparison:
4022 case tcc_expression:
4023 case tcc_reference:
4024 case tcc_statement:
4025 cmp = 1;
4026 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
4027 {
4028 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
4029 if (cmp <= 0)
4030 return cmp;
4031 }
4032
4033 return cmp;
4034
4035 default:
4036 return -1;
4037 }
4038 }
4039
4040 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
4041 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
4042 than U, respectively. */
4043
4044 int
4045 compare_tree_int (tree t, unsigned HOST_WIDE_INT u)
4046 {
4047 if (tree_int_cst_sgn (t) < 0)
4048 return -1;
4049 else if (TREE_INT_CST_HIGH (t) != 0)
4050 return 1;
4051 else if (TREE_INT_CST_LOW (t) == u)
4052 return 0;
4053 else if (TREE_INT_CST_LOW (t) < u)
4054 return -1;
4055 else
4056 return 1;
4057 }
4058
4059 /* Return true if CODE represents an associative tree code. Otherwise
4060 return false. */
4061 bool
4062 associative_tree_code (enum tree_code code)
4063 {
4064 switch (code)
4065 {
4066 case BIT_IOR_EXPR:
4067 case BIT_AND_EXPR:
4068 case BIT_XOR_EXPR:
4069 case PLUS_EXPR:
4070 case MULT_EXPR:
4071 case MIN_EXPR:
4072 case MAX_EXPR:
4073 return true;
4074
4075 default:
4076 break;
4077 }
4078 return false;
4079 }
4080
4081 /* Return true if CODE represents a commutative tree code. Otherwise
4082 return false. */
4083 bool
4084 commutative_tree_code (enum tree_code code)
4085 {
4086 switch (code)
4087 {
4088 case PLUS_EXPR:
4089 case MULT_EXPR:
4090 case MIN_EXPR:
4091 case MAX_EXPR:
4092 case BIT_IOR_EXPR:
4093 case BIT_XOR_EXPR:
4094 case BIT_AND_EXPR:
4095 case NE_EXPR:
4096 case EQ_EXPR:
4097 case UNORDERED_EXPR:
4098 case ORDERED_EXPR:
4099 case UNEQ_EXPR:
4100 case LTGT_EXPR:
4101 case TRUTH_AND_EXPR:
4102 case TRUTH_XOR_EXPR:
4103 case TRUTH_OR_EXPR:
4104 return true;
4105
4106 default:
4107 break;
4108 }
4109 return false;
4110 }
4111
4112 /* Generate a hash value for an expression. This can be used iteratively
4113 by passing a previous result as the "val" argument.
4114
4115 This function is intended to produce the same hash for expressions which
4116 would compare equal using operand_equal_p. */
4117
4118 hashval_t
4119 iterative_hash_expr (tree t, hashval_t val)
4120 {
4121 int i;
4122 enum tree_code code;
4123 char class;
4124
4125 if (t == NULL_TREE)
4126 return iterative_hash_pointer (t, val);
4127
4128 code = TREE_CODE (t);
4129
4130 switch (code)
4131 {
4132 /* Alas, constants aren't shared, so we can't rely on pointer
4133 identity. */
4134 case INTEGER_CST:
4135 val = iterative_hash_host_wide_int (TREE_INT_CST_LOW (t), val);
4136 return iterative_hash_host_wide_int (TREE_INT_CST_HIGH (t), val);
4137 case REAL_CST:
4138 {
4139 unsigned int val2 = real_hash (TREE_REAL_CST_PTR (t));
4140
4141 return iterative_hash_hashval_t (val2, val);
4142 }
4143 case STRING_CST:
4144 return iterative_hash (TREE_STRING_POINTER (t),
4145 TREE_STRING_LENGTH (t), val);
4146 case COMPLEX_CST:
4147 val = iterative_hash_expr (TREE_REALPART (t), val);
4148 return iterative_hash_expr (TREE_IMAGPART (t), val);
4149 case VECTOR_CST:
4150 return iterative_hash_expr (TREE_VECTOR_CST_ELTS (t), val);
4151
4152 case SSA_NAME:
4153 case VALUE_HANDLE:
4154 /* we can just compare by pointer. */
4155 return iterative_hash_pointer (t, val);
4156
4157 case TREE_LIST:
4158 /* A list of expressions, for a CALL_EXPR or as the elements of a
4159 VECTOR_CST. */
4160 for (; t; t = TREE_CHAIN (t))
4161 val = iterative_hash_expr (TREE_VALUE (t), val);
4162 return val;
4163 case FUNCTION_DECL:
4164 /* When referring to a built-in FUNCTION_DECL, use the
4165 __builtin__ form. Otherwise nodes that compare equal
4166 according to operand_equal_p might get different
4167 hash codes. */
4168 if (DECL_BUILT_IN (t))
4169 {
4170 val = iterative_hash_pointer (built_in_decls[DECL_FUNCTION_CODE (t)],
4171 val);
4172 return val;
4173 }
4174 /* else FALL THROUGH */
4175 default:
4176 class = TREE_CODE_CLASS (code);
4177
4178 if (class == tcc_declaration)
4179 {
4180 /* Otherwise, we can just compare decls by pointer. */
4181 val = iterative_hash_pointer (t, val);
4182 }
4183 else
4184 {
4185 gcc_assert (IS_EXPR_CODE_CLASS (class));
4186
4187 val = iterative_hash_object (code, val);
4188
4189 /* Don't hash the type, that can lead to having nodes which
4190 compare equal according to operand_equal_p, but which
4191 have different hash codes. */
4192 if (code == NOP_EXPR
4193 || code == CONVERT_EXPR
4194 || code == NON_LVALUE_EXPR)
4195 {
4196 /* Make sure to include signness in the hash computation. */
4197 val += TYPE_UNSIGNED (TREE_TYPE (t));
4198 val = iterative_hash_expr (TREE_OPERAND (t, 0), val);
4199 }
4200
4201 else if (commutative_tree_code (code))
4202 {
4203 /* It's a commutative expression. We want to hash it the same
4204 however it appears. We do this by first hashing both operands
4205 and then rehashing based on the order of their independent
4206 hashes. */
4207 hashval_t one = iterative_hash_expr (TREE_OPERAND (t, 0), 0);
4208 hashval_t two = iterative_hash_expr (TREE_OPERAND (t, 1), 0);
4209 hashval_t t;
4210
4211 if (one > two)
4212 t = one, one = two, two = t;
4213
4214 val = iterative_hash_hashval_t (one, val);
4215 val = iterative_hash_hashval_t (two, val);
4216 }
4217 else
4218 for (i = TREE_CODE_LENGTH (code) - 1; i >= 0; --i)
4219 val = iterative_hash_expr (TREE_OPERAND (t, i), val);
4220 }
4221 return val;
4222 break;
4223 }
4224 }
4225 \f
4226 /* Constructors for pointer, array and function types.
4227 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
4228 constructed by language-dependent code, not here.) */
4229
4230 /* Construct, lay out and return the type of pointers to TO_TYPE with
4231 mode MODE. If CAN_ALIAS_ALL is TRUE, indicate this type can
4232 reference all of memory. If such a type has already been
4233 constructed, reuse it. */
4234
4235 tree
4236 build_pointer_type_for_mode (tree to_type, enum machine_mode mode,
4237 bool can_alias_all)
4238 {
4239 tree t;
4240
4241 /* In some cases, languages will have things that aren't a POINTER_TYPE
4242 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
4243 In that case, return that type without regard to the rest of our
4244 operands.
4245
4246 ??? This is a kludge, but consistent with the way this function has
4247 always operated and there doesn't seem to be a good way to avoid this
4248 at the moment. */
4249 if (TYPE_POINTER_TO (to_type) != 0
4250 && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
4251 return TYPE_POINTER_TO (to_type);
4252
4253 /* First, if we already have a type for pointers to TO_TYPE and it's
4254 the proper mode, use it. */
4255 for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
4256 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
4257 return t;
4258
4259 t = make_node (POINTER_TYPE);
4260
4261 TREE_TYPE (t) = to_type;
4262 TYPE_MODE (t) = mode;
4263 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
4264 TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
4265 TYPE_POINTER_TO (to_type) = t;
4266
4267 /* Lay out the type. This function has many callers that are concerned
4268 with expression-construction, and this simplifies them all. */
4269 layout_type (t);
4270
4271 return t;
4272 }
4273
4274 /* By default build pointers in ptr_mode. */
4275
4276 tree
4277 build_pointer_type (tree to_type)
4278 {
4279 return build_pointer_type_for_mode (to_type, ptr_mode, false);
4280 }
4281
4282 /* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE. */
4283
4284 tree
4285 build_reference_type_for_mode (tree to_type, enum machine_mode mode,
4286 bool can_alias_all)
4287 {
4288 tree t;
4289
4290 /* In some cases, languages will have things that aren't a REFERENCE_TYPE
4291 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
4292 In that case, return that type without regard to the rest of our
4293 operands.
4294
4295 ??? This is a kludge, but consistent with the way this function has
4296 always operated and there doesn't seem to be a good way to avoid this
4297 at the moment. */
4298 if (TYPE_REFERENCE_TO (to_type) != 0
4299 && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
4300 return TYPE_REFERENCE_TO (to_type);
4301
4302 /* First, if we already have a type for pointers to TO_TYPE and it's
4303 the proper mode, use it. */
4304 for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
4305 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
4306 return t;
4307
4308 t = make_node (REFERENCE_TYPE);
4309
4310 TREE_TYPE (t) = to_type;
4311 TYPE_MODE (t) = mode;
4312 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
4313 TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
4314 TYPE_REFERENCE_TO (to_type) = t;
4315
4316 layout_type (t);
4317
4318 return t;
4319 }
4320
4321
4322 /* Build the node for the type of references-to-TO_TYPE by default
4323 in ptr_mode. */
4324
4325 tree
4326 build_reference_type (tree to_type)
4327 {
4328 return build_reference_type_for_mode (to_type, ptr_mode, false);
4329 }
4330
4331 /* Build a type that is compatible with t but has no cv quals anywhere
4332 in its type, thus
4333
4334 const char *const *const * -> char ***. */
4335
4336 tree
4337 build_type_no_quals (tree t)
4338 {
4339 switch (TREE_CODE (t))
4340 {
4341 case POINTER_TYPE:
4342 return build_pointer_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
4343 TYPE_MODE (t),
4344 TYPE_REF_CAN_ALIAS_ALL (t));
4345 case REFERENCE_TYPE:
4346 return
4347 build_reference_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
4348 TYPE_MODE (t),
4349 TYPE_REF_CAN_ALIAS_ALL (t));
4350 default:
4351 return TYPE_MAIN_VARIANT (t);
4352 }
4353 }
4354
4355 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
4356 MAXVAL should be the maximum value in the domain
4357 (one less than the length of the array).
4358
4359 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
4360 We don't enforce this limit, that is up to caller (e.g. language front end).
4361 The limit exists because the result is a signed type and we don't handle
4362 sizes that use more than one HOST_WIDE_INT. */
4363
4364 tree
4365 build_index_type (tree maxval)
4366 {
4367 tree itype = make_node (INTEGER_TYPE);
4368
4369 TREE_TYPE (itype) = sizetype;
4370 TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
4371 TYPE_MIN_VALUE (itype) = size_zero_node;
4372 TYPE_MAX_VALUE (itype) = fold_convert (sizetype, maxval);
4373 TYPE_MODE (itype) = TYPE_MODE (sizetype);
4374 TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
4375 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (sizetype);
4376 TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
4377 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (sizetype);
4378
4379 if (host_integerp (maxval, 1))
4380 return type_hash_canon (tree_low_cst (maxval, 1), itype);
4381 else
4382 return itype;
4383 }
4384
4385 /* Builds a signed or unsigned integer type of precision PRECISION.
4386 Used for C bitfields whose precision does not match that of
4387 built-in target types. */
4388 tree
4389 build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
4390 int unsignedp)
4391 {
4392 tree itype = make_node (INTEGER_TYPE);
4393
4394 TYPE_PRECISION (itype) = precision;
4395
4396 if (unsignedp)
4397 fixup_unsigned_type (itype);
4398 else
4399 fixup_signed_type (itype);
4400
4401 if (host_integerp (TYPE_MAX_VALUE (itype), 1))
4402 return type_hash_canon (tree_low_cst (TYPE_MAX_VALUE (itype), 1), itype);
4403
4404 return itype;
4405 }
4406
4407 /* Create a range of some discrete type TYPE (an INTEGER_TYPE,
4408 ENUMERAL_TYPE, BOOLEAN_TYPE, or CHAR_TYPE), with
4409 low bound LOWVAL and high bound HIGHVAL.
4410 if TYPE==NULL_TREE, sizetype is used. */
4411
4412 tree
4413 build_range_type (tree type, tree lowval, tree highval)
4414 {
4415 tree itype = make_node (INTEGER_TYPE);
4416
4417 TREE_TYPE (itype) = type;
4418 if (type == NULL_TREE)
4419 type = sizetype;
4420
4421 TYPE_MIN_VALUE (itype) = convert (type, lowval);
4422 TYPE_MAX_VALUE (itype) = highval ? convert (type, highval) : NULL;
4423
4424 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
4425 TYPE_MODE (itype) = TYPE_MODE (type);
4426 TYPE_SIZE (itype) = TYPE_SIZE (type);
4427 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
4428 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
4429 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
4430
4431 if (host_integerp (lowval, 0) && highval != 0 && host_integerp (highval, 0))
4432 return type_hash_canon (tree_low_cst (highval, 0)
4433 - tree_low_cst (lowval, 0),
4434 itype);
4435 else
4436 return itype;
4437 }
4438
4439 /* Just like build_index_type, but takes lowval and highval instead
4440 of just highval (maxval). */
4441
4442 tree
4443 build_index_2_type (tree lowval, tree highval)
4444 {
4445 return build_range_type (sizetype, lowval, highval);
4446 }
4447
4448 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
4449 and number of elements specified by the range of values of INDEX_TYPE.
4450 If such a type has already been constructed, reuse it. */
4451
4452 tree
4453 build_array_type (tree elt_type, tree index_type)
4454 {
4455 tree t;
4456 hashval_t hashcode = 0;
4457
4458 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
4459 {
4460 error ("arrays of functions are not meaningful");
4461 elt_type = integer_type_node;
4462 }
4463
4464 t = make_node (ARRAY_TYPE);
4465 TREE_TYPE (t) = elt_type;
4466 TYPE_DOMAIN (t) = index_type;
4467
4468 if (index_type == 0)
4469 {
4470 layout_type (t);
4471 return t;
4472 }
4473
4474 hashcode = iterative_hash_object (TYPE_HASH (elt_type), hashcode);
4475 hashcode = iterative_hash_object (TYPE_HASH (index_type), hashcode);
4476 t = type_hash_canon (hashcode, t);
4477
4478 if (!COMPLETE_TYPE_P (t))
4479 layout_type (t);
4480 return t;
4481 }
4482
4483 /* Return the TYPE of the elements comprising
4484 the innermost dimension of ARRAY. */
4485
4486 tree
4487 get_inner_array_type (tree array)
4488 {
4489 tree type = TREE_TYPE (array);
4490
4491 while (TREE_CODE (type) == ARRAY_TYPE)
4492 type = TREE_TYPE (type);
4493
4494 return type;
4495 }
4496
4497 /* Construct, lay out and return
4498 the type of functions returning type VALUE_TYPE
4499 given arguments of types ARG_TYPES.
4500 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
4501 are data type nodes for the arguments of the function.
4502 If such a type has already been constructed, reuse it. */
4503
4504 tree
4505 build_function_type (tree value_type, tree arg_types)
4506 {
4507 tree t;
4508 hashval_t hashcode = 0;
4509
4510 if (TREE_CODE (value_type) == FUNCTION_TYPE)
4511 {
4512 error ("function return type cannot be function");
4513 value_type = integer_type_node;
4514 }
4515
4516 /* Make a node of the sort we want. */
4517 t = make_node (FUNCTION_TYPE);
4518 TREE_TYPE (t) = value_type;
4519 TYPE_ARG_TYPES (t) = arg_types;
4520
4521 /* If we already have such a type, use the old one. */
4522 hashcode = iterative_hash_object (TYPE_HASH (value_type), hashcode);
4523 hashcode = type_hash_list (arg_types, hashcode);
4524 t = type_hash_canon (hashcode, t);
4525
4526 if (!COMPLETE_TYPE_P (t))
4527 layout_type (t);
4528 return t;
4529 }
4530
4531 /* Build a function type. The RETURN_TYPE is the type returned by the
4532 function. If additional arguments are provided, they are
4533 additional argument types. The list of argument types must always
4534 be terminated by NULL_TREE. */
4535
4536 tree
4537 build_function_type_list (tree return_type, ...)
4538 {
4539 tree t, args, last;
4540 va_list p;
4541
4542 va_start (p, return_type);
4543
4544 t = va_arg (p, tree);
4545 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (p, tree))
4546 args = tree_cons (NULL_TREE, t, args);
4547
4548 if (args == NULL_TREE)
4549 args = void_list_node;
4550 else
4551 {
4552 last = args;
4553 args = nreverse (args);
4554 TREE_CHAIN (last) = void_list_node;
4555 }
4556 args = build_function_type (return_type, args);
4557
4558 va_end (p);
4559 return args;
4560 }
4561
4562 /* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
4563 and ARGTYPES (a TREE_LIST) are the return type and arguments types
4564 for the method. An implicit additional parameter (of type
4565 pointer-to-BASETYPE) is added to the ARGTYPES. */
4566
4567 tree
4568 build_method_type_directly (tree basetype,
4569 tree rettype,
4570 tree argtypes)
4571 {
4572 tree t;
4573 tree ptype;
4574 int hashcode = 0;
4575
4576 /* Make a node of the sort we want. */
4577 t = make_node (METHOD_TYPE);
4578
4579 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
4580 TREE_TYPE (t) = rettype;
4581 ptype = build_pointer_type (basetype);
4582
4583 /* The actual arglist for this function includes a "hidden" argument
4584 which is "this". Put it into the list of argument types. */
4585 argtypes = tree_cons (NULL_TREE, ptype, argtypes);
4586 TYPE_ARG_TYPES (t) = argtypes;
4587
4588 /* If we already have such a type, use the old one. */
4589 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
4590 hashcode = iterative_hash_object (TYPE_HASH (rettype), hashcode);
4591 hashcode = type_hash_list (argtypes, hashcode);
4592 t = type_hash_canon (hashcode, t);
4593
4594 if (!COMPLETE_TYPE_P (t))
4595 layout_type (t);
4596
4597 return t;
4598 }
4599
4600 /* Construct, lay out and return the type of methods belonging to class
4601 BASETYPE and whose arguments and values are described by TYPE.
4602 If that type exists already, reuse it.
4603 TYPE must be a FUNCTION_TYPE node. */
4604
4605 tree
4606 build_method_type (tree basetype, tree type)
4607 {
4608 gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
4609
4610 return build_method_type_directly (basetype,
4611 TREE_TYPE (type),
4612 TYPE_ARG_TYPES (type));
4613 }
4614
4615 /* Construct, lay out and return the type of offsets to a value
4616 of type TYPE, within an object of type BASETYPE.
4617 If a suitable offset type exists already, reuse it. */
4618
4619 tree
4620 build_offset_type (tree basetype, tree type)
4621 {
4622 tree t;
4623 hashval_t hashcode = 0;
4624
4625 /* Make a node of the sort we want. */
4626 t = make_node (OFFSET_TYPE);
4627
4628 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
4629 TREE_TYPE (t) = type;
4630
4631 /* If we already have such a type, use the old one. */
4632 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
4633 hashcode = iterative_hash_object (TYPE_HASH (type), hashcode);
4634 t = type_hash_canon (hashcode, t);
4635
4636 if (!COMPLETE_TYPE_P (t))
4637 layout_type (t);
4638
4639 return t;
4640 }
4641
4642 /* Create a complex type whose components are COMPONENT_TYPE. */
4643
4644 tree
4645 build_complex_type (tree component_type)
4646 {
4647 tree t;
4648 hashval_t hashcode;
4649
4650 /* Make a node of the sort we want. */
4651 t = make_node (COMPLEX_TYPE);
4652
4653 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
4654
4655 /* If we already have such a type, use the old one. */
4656 hashcode = iterative_hash_object (TYPE_HASH (component_type), 0);
4657 t = type_hash_canon (hashcode, t);
4658
4659 if (!COMPLETE_TYPE_P (t))
4660 layout_type (t);
4661
4662 /* If we are writing Dwarf2 output we need to create a name,
4663 since complex is a fundamental type. */
4664 if ((write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
4665 && ! TYPE_NAME (t))
4666 {
4667 const char *name;
4668 if (component_type == char_type_node)
4669 name = "complex char";
4670 else if (component_type == signed_char_type_node)
4671 name = "complex signed char";
4672 else if (component_type == unsigned_char_type_node)
4673 name = "complex unsigned char";
4674 else if (component_type == short_integer_type_node)
4675 name = "complex short int";
4676 else if (component_type == short_unsigned_type_node)
4677 name = "complex short unsigned int";
4678 else if (component_type == integer_type_node)
4679 name = "complex int";
4680 else if (component_type == unsigned_type_node)
4681 name = "complex unsigned int";
4682 else if (component_type == long_integer_type_node)
4683 name = "complex long int";
4684 else if (component_type == long_unsigned_type_node)
4685 name = "complex long unsigned int";
4686 else if (component_type == long_long_integer_type_node)
4687 name = "complex long long int";
4688 else if (component_type == long_long_unsigned_type_node)
4689 name = "complex long long unsigned int";
4690 else
4691 name = 0;
4692
4693 if (name != 0)
4694 TYPE_NAME (t) = get_identifier (name);
4695 }
4696
4697 return build_qualified_type (t, TYPE_QUALS (component_type));
4698 }
4699 \f
4700 /* Return OP, stripped of any conversions to wider types as much as is safe.
4701 Converting the value back to OP's type makes a value equivalent to OP.
4702
4703 If FOR_TYPE is nonzero, we return a value which, if converted to
4704 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
4705
4706 If FOR_TYPE is nonzero, unaligned bit-field references may be changed to the
4707 narrowest type that can hold the value, even if they don't exactly fit.
4708 Otherwise, bit-field references are changed to a narrower type
4709 only if they can be fetched directly from memory in that type.
4710
4711 OP must have integer, real or enumeral type. Pointers are not allowed!
4712
4713 There are some cases where the obvious value we could return
4714 would regenerate to OP if converted to OP's type,
4715 but would not extend like OP to wider types.
4716 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
4717 For example, if OP is (unsigned short)(signed char)-1,
4718 we avoid returning (signed char)-1 if FOR_TYPE is int,
4719 even though extending that to an unsigned short would regenerate OP,
4720 since the result of extending (signed char)-1 to (int)
4721 is different from (int) OP. */
4722
4723 tree
4724 get_unwidened (tree op, tree for_type)
4725 {
4726 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
4727 tree type = TREE_TYPE (op);
4728 unsigned final_prec
4729 = TYPE_PRECISION (for_type != 0 ? for_type : type);
4730 int uns
4731 = (for_type != 0 && for_type != type
4732 && final_prec > TYPE_PRECISION (type)
4733 && TYPE_UNSIGNED (type));
4734 tree win = op;
4735
4736 while (TREE_CODE (op) == NOP_EXPR
4737 || TREE_CODE (op) == CONVERT_EXPR)
4738 {
4739 int bitschange
4740 = TYPE_PRECISION (TREE_TYPE (op))
4741 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
4742
4743 /* Truncations are many-one so cannot be removed.
4744 Unless we are later going to truncate down even farther. */
4745 if (bitschange < 0
4746 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
4747 break;
4748
4749 /* See what's inside this conversion. If we decide to strip it,
4750 we will set WIN. */
4751 op = TREE_OPERAND (op, 0);
4752
4753 /* If we have not stripped any zero-extensions (uns is 0),
4754 we can strip any kind of extension.
4755 If we have previously stripped a zero-extension,
4756 only zero-extensions can safely be stripped.
4757 Any extension can be stripped if the bits it would produce
4758 are all going to be discarded later by truncating to FOR_TYPE. */
4759
4760 if (bitschange > 0)
4761 {
4762 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
4763 win = op;
4764 /* TYPE_UNSIGNED says whether this is a zero-extension.
4765 Let's avoid computing it if it does not affect WIN
4766 and if UNS will not be needed again. */
4767 if ((uns
4768 || TREE_CODE (op) == NOP_EXPR
4769 || TREE_CODE (op) == CONVERT_EXPR)
4770 && TYPE_UNSIGNED (TREE_TYPE (op)))
4771 {
4772 uns = 1;
4773 win = op;
4774 }
4775 }
4776 }
4777
4778 if (TREE_CODE (op) == COMPONENT_REF
4779 /* Since type_for_size always gives an integer type. */
4780 && TREE_CODE (type) != REAL_TYPE
4781 /* Don't crash if field not laid out yet. */
4782 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
4783 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
4784 {
4785 unsigned int innerprec
4786 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
4787 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
4788 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
4789 type = lang_hooks.types.type_for_size (innerprec, unsignedp);
4790
4791 /* We can get this structure field in the narrowest type it fits in.
4792 If FOR_TYPE is 0, do this only for a field that matches the
4793 narrower type exactly and is aligned for it
4794 The resulting extension to its nominal type (a fullword type)
4795 must fit the same conditions as for other extensions. */
4796
4797 if (type != 0
4798 && INT_CST_LT_UNSIGNED (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (op)))
4799 && (for_type || ! DECL_BIT_FIELD (TREE_OPERAND (op, 1)))
4800 && (! uns || final_prec <= innerprec || unsignedp))
4801 {
4802 win = build3 (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4803 TREE_OPERAND (op, 1), NULL_TREE);
4804 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4805 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4806 }
4807 }
4808
4809 return win;
4810 }
4811 \f
4812 /* Return OP or a simpler expression for a narrower value
4813 which can be sign-extended or zero-extended to give back OP.
4814 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
4815 or 0 if the value should be sign-extended. */
4816
4817 tree
4818 get_narrower (tree op, int *unsignedp_ptr)
4819 {
4820 int uns = 0;
4821 int first = 1;
4822 tree win = op;
4823 bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));
4824
4825 while (TREE_CODE (op) == NOP_EXPR)
4826 {
4827 int bitschange
4828 = (TYPE_PRECISION (TREE_TYPE (op))
4829 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
4830
4831 /* Truncations are many-one so cannot be removed. */
4832 if (bitschange < 0)
4833 break;
4834
4835 /* See what's inside this conversion. If we decide to strip it,
4836 we will set WIN. */
4837
4838 if (bitschange > 0)
4839 {
4840 op = TREE_OPERAND (op, 0);
4841 /* An extension: the outermost one can be stripped,
4842 but remember whether it is zero or sign extension. */
4843 if (first)
4844 uns = TYPE_UNSIGNED (TREE_TYPE (op));
4845 /* Otherwise, if a sign extension has been stripped,
4846 only sign extensions can now be stripped;
4847 if a zero extension has been stripped, only zero-extensions. */
4848 else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
4849 break;
4850 first = 0;
4851 }
4852 else /* bitschange == 0 */
4853 {
4854 /* A change in nominal type can always be stripped, but we must
4855 preserve the unsignedness. */
4856 if (first)
4857 uns = TYPE_UNSIGNED (TREE_TYPE (op));
4858 first = 0;
4859 op = TREE_OPERAND (op, 0);
4860 /* Keep trying to narrow, but don't assign op to win if it
4861 would turn an integral type into something else. */
4862 if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
4863 continue;
4864 }
4865
4866 win = op;
4867 }
4868
4869 if (TREE_CODE (op) == COMPONENT_REF
4870 /* Since type_for_size always gives an integer type. */
4871 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
4872 /* Ensure field is laid out already. */
4873 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
4874 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
4875 {
4876 unsigned HOST_WIDE_INT innerprec
4877 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
4878 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
4879 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
4880 tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
4881
4882 /* We can get this structure field in a narrower type that fits it,
4883 but the resulting extension to its nominal type (a fullword type)
4884 must satisfy the same conditions as for other extensions.
4885
4886 Do this only for fields that are aligned (not bit-fields),
4887 because when bit-field insns will be used there is no
4888 advantage in doing this. */
4889
4890 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
4891 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
4892 && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
4893 && type != 0)
4894 {
4895 if (first)
4896 uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
4897 win = build3 (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4898 TREE_OPERAND (op, 1), NULL_TREE);
4899 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4900 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4901 }
4902 }
4903 *unsignedp_ptr = uns;
4904 return win;
4905 }
4906 \f
4907 /* Nonzero if integer constant C has a value that is permissible
4908 for type TYPE (an INTEGER_TYPE). */
4909
4910 int
4911 int_fits_type_p (tree c, tree type)
4912 {
4913 tree type_low_bound = TYPE_MIN_VALUE (type);
4914 tree type_high_bound = TYPE_MAX_VALUE (type);
4915 bool ok_for_low_bound, ok_for_high_bound;
4916 tree tmp;
4917
4918 /* If at least one bound of the type is a constant integer, we can check
4919 ourselves and maybe make a decision. If no such decision is possible, but
4920 this type is a subtype, try checking against that. Otherwise, use
4921 force_fit_type, which checks against the precision.
4922
4923 Compute the status for each possibly constant bound, and return if we see
4924 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
4925 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
4926 for "constant known to fit". */
4927
4928 /* Check if C >= type_low_bound. */
4929 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
4930 {
4931 if (tree_int_cst_lt (c, type_low_bound))
4932 return 0;
4933 ok_for_low_bound = true;
4934 }
4935 else
4936 ok_for_low_bound = false;
4937
4938 /* Check if c <= type_high_bound. */
4939 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
4940 {
4941 if (tree_int_cst_lt (type_high_bound, c))
4942 return 0;
4943 ok_for_high_bound = true;
4944 }
4945 else
4946 ok_for_high_bound = false;
4947
4948 /* If the constant fits both bounds, the result is known. */
4949 if (ok_for_low_bound && ok_for_high_bound)
4950 return 1;
4951
4952 /* Perform some generic filtering which may allow making a decision
4953 even if the bounds are not constant. First, negative integers
4954 never fit in unsigned types, */
4955 if (TYPE_UNSIGNED (type) && tree_int_cst_sgn (c) < 0)
4956 return 0;
4957
4958 /* Second, narrower types always fit in wider ones. */
4959 if (TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (c)))
4960 return 1;
4961
4962 /* Third, unsigned integers with top bit set never fit signed types. */
4963 if (! TYPE_UNSIGNED (type)
4964 && TYPE_UNSIGNED (TREE_TYPE (c))
4965 && tree_int_cst_msb (c))
4966 return 0;
4967
4968 /* If we haven't been able to decide at this point, there nothing more we
4969 can check ourselves here. Look at the base type if we have one. */
4970 if (TREE_CODE (type) == INTEGER_TYPE && TREE_TYPE (type) != 0)
4971 return int_fits_type_p (c, TREE_TYPE (type));
4972
4973 /* Or to force_fit_type, if nothing else. */
4974 tmp = copy_node (c);
4975 TREE_TYPE (tmp) = type;
4976 tmp = force_fit_type (tmp, -1, false, false);
4977 return TREE_INT_CST_HIGH (tmp) == TREE_INT_CST_HIGH (c)
4978 && TREE_INT_CST_LOW (tmp) == TREE_INT_CST_LOW (c);
4979 }
4980
4981 /* Subprogram of following function. Called by walk_tree.
4982
4983 Return *TP if it is an automatic variable or parameter of the
4984 function passed in as DATA. */
4985
4986 static tree
4987 find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
4988 {
4989 tree fn = (tree) data;
4990
4991 if (TYPE_P (*tp))
4992 *walk_subtrees = 0;
4993
4994 else if (DECL_P (*tp)
4995 && lang_hooks.tree_inlining.auto_var_in_fn_p (*tp, fn))
4996 return *tp;
4997
4998 return NULL_TREE;
4999 }
5000
5001 /* Returns true if T is, contains, or refers to a type with variable
5002 size. If FN is nonzero, only return true if a modifier of the type
5003 or position of FN is a variable or parameter inside FN.
5004
5005 This concept is more general than that of C99 'variably modified types':
5006 in C99, a struct type is never variably modified because a VLA may not
5007 appear as a structure member. However, in GNU C code like:
5008
5009 struct S { int i[f()]; };
5010
5011 is valid, and other languages may define similar constructs. */
5012
5013 bool
5014 variably_modified_type_p (tree type, tree fn)
5015 {
5016 tree t;
5017
5018 /* Test if T is either variable (if FN is zero) or an expression containing
5019 a variable in FN. */
5020 #define RETURN_TRUE_IF_VAR(T) \
5021 do { tree _t = (T); \
5022 if (_t && _t != error_mark_node && TREE_CODE (_t) != INTEGER_CST \
5023 && (!fn || walk_tree (&_t, find_var_from_fn, fn, NULL))) \
5024 return true; } while (0)
5025
5026 if (type == error_mark_node)
5027 return false;
5028
5029 /* If TYPE itself has variable size, it is variably modified.
5030
5031 We do not yet have a representation of the C99 '[*]' syntax.
5032 When a representation is chosen, this function should be modified
5033 to test for that case as well. */
5034 RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
5035 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT(type));
5036
5037 switch (TREE_CODE (type))
5038 {
5039 case POINTER_TYPE:
5040 case REFERENCE_TYPE:
5041 case ARRAY_TYPE:
5042 case VECTOR_TYPE:
5043 if (variably_modified_type_p (TREE_TYPE (type), fn))
5044 return true;
5045 break;
5046
5047 case FUNCTION_TYPE:
5048 case METHOD_TYPE:
5049 /* If TYPE is a function type, it is variably modified if any of the
5050 parameters or the return type are variably modified. */
5051 if (variably_modified_type_p (TREE_TYPE (type), fn))
5052 return true;
5053
5054 for (t = TYPE_ARG_TYPES (type);
5055 t && t != void_list_node;
5056 t = TREE_CHAIN (t))
5057 if (variably_modified_type_p (TREE_VALUE (t), fn))
5058 return true;
5059 break;
5060
5061 case INTEGER_TYPE:
5062 case REAL_TYPE:
5063 case ENUMERAL_TYPE:
5064 case BOOLEAN_TYPE:
5065 case CHAR_TYPE:
5066 /* Scalar types are variably modified if their end points
5067 aren't constant. */
5068 RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
5069 RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
5070 break;
5071
5072 case RECORD_TYPE:
5073 case UNION_TYPE:
5074 case QUAL_UNION_TYPE:
5075 /* We can't see if any of the field are variably-modified by the
5076 definition we normally use, since that would produce infinite
5077 recursion via pointers. */
5078 /* This is variably modified if some field's type is. */
5079 for (t = TYPE_FIELDS (type); t; t = TREE_CHAIN (t))
5080 if (TREE_CODE (t) == FIELD_DECL)
5081 {
5082 RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
5083 RETURN_TRUE_IF_VAR (DECL_SIZE (t));
5084 RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));
5085
5086 if (TREE_CODE (type) == QUAL_UNION_TYPE)
5087 RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));
5088 }
5089 break;
5090
5091 default:
5092 break;
5093 }
5094
5095 /* The current language may have other cases to check, but in general,
5096 all other types are not variably modified. */
5097 return lang_hooks.tree_inlining.var_mod_type_p (type, fn);
5098
5099 #undef RETURN_TRUE_IF_VAR
5100 }
5101
5102 /* Given a DECL or TYPE, return the scope in which it was declared, or
5103 NULL_TREE if there is no containing scope. */
5104
5105 tree
5106 get_containing_scope (tree t)
5107 {
5108 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
5109 }
5110
5111 /* Return the innermost context enclosing DECL that is
5112 a FUNCTION_DECL, or zero if none. */
5113
5114 tree
5115 decl_function_context (tree decl)
5116 {
5117 tree context;
5118
5119 if (TREE_CODE (decl) == ERROR_MARK)
5120 return 0;
5121
5122 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
5123 where we look up the function at runtime. Such functions always take
5124 a first argument of type 'pointer to real context'.
5125
5126 C++ should really be fixed to use DECL_CONTEXT for the real context,
5127 and use something else for the "virtual context". */
5128 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
5129 context
5130 = TYPE_MAIN_VARIANT
5131 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
5132 else
5133 context = DECL_CONTEXT (decl);
5134
5135 while (context && TREE_CODE (context) != FUNCTION_DECL)
5136 {
5137 if (TREE_CODE (context) == BLOCK)
5138 context = BLOCK_SUPERCONTEXT (context);
5139 else
5140 context = get_containing_scope (context);
5141 }
5142
5143 return context;
5144 }
5145
5146 /* Return the innermost context enclosing DECL that is
5147 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
5148 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
5149
5150 tree
5151 decl_type_context (tree decl)
5152 {
5153 tree context = DECL_CONTEXT (decl);
5154
5155 while (context)
5156 switch (TREE_CODE (context))
5157 {
5158 case NAMESPACE_DECL:
5159 case TRANSLATION_UNIT_DECL:
5160 return NULL_TREE;
5161
5162 case RECORD_TYPE:
5163 case UNION_TYPE:
5164 case QUAL_UNION_TYPE:
5165 return context;
5166
5167 case TYPE_DECL:
5168 case FUNCTION_DECL:
5169 context = DECL_CONTEXT (context);
5170 break;
5171
5172 case BLOCK:
5173 context = BLOCK_SUPERCONTEXT (context);
5174 break;
5175
5176 default:
5177 gcc_unreachable ();
5178 }
5179
5180 return NULL_TREE;
5181 }
5182
5183 /* CALL is a CALL_EXPR. Return the declaration for the function
5184 called, or NULL_TREE if the called function cannot be
5185 determined. */
5186
5187 tree
5188 get_callee_fndecl (tree call)
5189 {
5190 tree addr;
5191
5192 /* It's invalid to call this function with anything but a
5193 CALL_EXPR. */
5194 gcc_assert (TREE_CODE (call) == CALL_EXPR);
5195
5196 /* The first operand to the CALL is the address of the function
5197 called. */
5198 addr = TREE_OPERAND (call, 0);
5199
5200 STRIP_NOPS (addr);
5201
5202 /* If this is a readonly function pointer, extract its initial value. */
5203 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
5204 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
5205 && DECL_INITIAL (addr))
5206 addr = DECL_INITIAL (addr);
5207
5208 /* If the address is just `&f' for some function `f', then we know
5209 that `f' is being called. */
5210 if (TREE_CODE (addr) == ADDR_EXPR
5211 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
5212 return TREE_OPERAND (addr, 0);
5213
5214 /* We couldn't figure out what was being called. Maybe the front
5215 end has some idea. */
5216 return lang_hooks.lang_get_callee_fndecl (call);
5217 }
5218
5219 /* Print debugging information about tree nodes generated during the compile,
5220 and any language-specific information. */
5221
5222 void
5223 dump_tree_statistics (void)
5224 {
5225 #ifdef GATHER_STATISTICS
5226 int i;
5227 int total_nodes, total_bytes;
5228 #endif
5229
5230 fprintf (stderr, "\n??? tree nodes created\n\n");
5231 #ifdef GATHER_STATISTICS
5232 fprintf (stderr, "Kind Nodes Bytes\n");
5233 fprintf (stderr, "---------------------------------------\n");
5234 total_nodes = total_bytes = 0;
5235 for (i = 0; i < (int) all_kinds; i++)
5236 {
5237 fprintf (stderr, "%-20s %7d %10d\n", tree_node_kind_names[i],
5238 tree_node_counts[i], tree_node_sizes[i]);
5239 total_nodes += tree_node_counts[i];
5240 total_bytes += tree_node_sizes[i];
5241 }
5242 fprintf (stderr, "---------------------------------------\n");
5243 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_nodes, total_bytes);
5244 fprintf (stderr, "---------------------------------------\n");
5245 ssanames_print_statistics ();
5246 phinodes_print_statistics ();
5247 #else
5248 fprintf (stderr, "(No per-node statistics)\n");
5249 #endif
5250 print_type_hash_statistics ();
5251 lang_hooks.print_statistics ();
5252 }
5253 \f
5254 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
5255
5256 /* Generate a crc32 of a string. */
5257
5258 unsigned
5259 crc32_string (unsigned chksum, const char *string)
5260 {
5261 do
5262 {
5263 unsigned value = *string << 24;
5264 unsigned ix;
5265
5266 for (ix = 8; ix--; value <<= 1)
5267 {
5268 unsigned feedback;
5269
5270 feedback = (value ^ chksum) & 0x80000000 ? 0x04c11db7 : 0;
5271 chksum <<= 1;
5272 chksum ^= feedback;
5273 }
5274 }
5275 while (*string++);
5276 return chksum;
5277 }
5278
5279 /* P is a string that will be used in a symbol. Mask out any characters
5280 that are not valid in that context. */
5281
5282 void
5283 clean_symbol_name (char *p)
5284 {
5285 for (; *p; p++)
5286 if (! (ISALNUM (*p)
5287 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
5288 || *p == '$'
5289 #endif
5290 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
5291 || *p == '.'
5292 #endif
5293 ))
5294 *p = '_';
5295 }
5296
5297 /* Generate a name for a function unique to this translation unit.
5298 TYPE is some string to identify the purpose of this function to the
5299 linker or collect2. */
5300
5301 tree
5302 get_file_function_name_long (const char *type)
5303 {
5304 char *buf;
5305 const char *p;
5306 char *q;
5307
5308 if (first_global_object_name)
5309 p = first_global_object_name;
5310 else
5311 {
5312 /* We don't have anything that we know to be unique to this translation
5313 unit, so use what we do have and throw in some randomness. */
5314 unsigned len;
5315 const char *name = weak_global_object_name;
5316 const char *file = main_input_filename;
5317
5318 if (! name)
5319 name = "";
5320 if (! file)
5321 file = input_filename;
5322
5323 len = strlen (file);
5324 q = alloca (9 * 2 + len + 1);
5325 memcpy (q, file, len + 1);
5326 clean_symbol_name (q);
5327
5328 sprintf (q + len, "_%08X_%08X", crc32_string (0, name),
5329 crc32_string (0, flag_random_seed));
5330
5331 p = q;
5332 }
5333
5334 buf = alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p) + strlen (type));
5335
5336 /* Set up the name of the file-level functions we may need.
5337 Use a global object (which is already required to be unique over
5338 the program) rather than the file name (which imposes extra
5339 constraints). */
5340 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
5341
5342 return get_identifier (buf);
5343 }
5344
5345 /* If KIND=='I', return a suitable global initializer (constructor) name.
5346 If KIND=='D', return a suitable global clean-up (destructor) name. */
5347
5348 tree
5349 get_file_function_name (int kind)
5350 {
5351 char p[2];
5352
5353 p[0] = kind;
5354 p[1] = 0;
5355
5356 return get_file_function_name_long (p);
5357 }
5358 \f
5359 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
5360 The result is placed in BUFFER (which has length BIT_SIZE),
5361 with one bit in each char ('\000' or '\001').
5362
5363 If the constructor is constant, NULL_TREE is returned.
5364 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
5365
5366 tree
5367 get_set_constructor_bits (tree init, char *buffer, int bit_size)
5368 {
5369 int i;
5370 tree vals;
5371 HOST_WIDE_INT domain_min
5372 = tree_low_cst (TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (init))), 0);
5373 tree non_const_bits = NULL_TREE;
5374
5375 for (i = 0; i < bit_size; i++)
5376 buffer[i] = 0;
5377
5378 for (vals = TREE_OPERAND (init, 1);
5379 vals != NULL_TREE; vals = TREE_CHAIN (vals))
5380 {
5381 if (!host_integerp (TREE_VALUE (vals), 0)
5382 || (TREE_PURPOSE (vals) != NULL_TREE
5383 && !host_integerp (TREE_PURPOSE (vals), 0)))
5384 non_const_bits
5385 = tree_cons (TREE_PURPOSE (vals), TREE_VALUE (vals), non_const_bits);
5386 else if (TREE_PURPOSE (vals) != NULL_TREE)
5387 {
5388 /* Set a range of bits to ones. */
5389 HOST_WIDE_INT lo_index
5390 = tree_low_cst (TREE_PURPOSE (vals), 0) - domain_min;
5391 HOST_WIDE_INT hi_index
5392 = tree_low_cst (TREE_VALUE (vals), 0) - domain_min;
5393
5394 gcc_assert (lo_index >= 0);
5395 gcc_assert (lo_index < bit_size);
5396 gcc_assert (hi_index >= 0);
5397 gcc_assert (hi_index < bit_size);
5398 for (; lo_index <= hi_index; lo_index++)
5399 buffer[lo_index] = 1;
5400 }
5401 else
5402 {
5403 /* Set a single bit to one. */
5404 HOST_WIDE_INT index
5405 = tree_low_cst (TREE_VALUE (vals), 0) - domain_min;
5406 if (index < 0 || index >= bit_size)
5407 {
5408 error ("invalid initializer for bit string");
5409 return NULL_TREE;
5410 }
5411 buffer[index] = 1;
5412 }
5413 }
5414 return non_const_bits;
5415 }
5416
5417 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
5418 The result is placed in BUFFER (which is an array of bytes).
5419 If the constructor is constant, NULL_TREE is returned.
5420 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
5421
5422 tree
5423 get_set_constructor_bytes (tree init, unsigned char *buffer, int wd_size)
5424 {
5425 int i;
5426 int set_word_size = BITS_PER_UNIT;
5427 int bit_size = wd_size * set_word_size;
5428 int bit_pos = 0;
5429 unsigned char *bytep = buffer;
5430 char *bit_buffer = alloca (bit_size);
5431 tree non_const_bits = get_set_constructor_bits (init, bit_buffer, bit_size);
5432
5433 for (i = 0; i < wd_size; i++)
5434 buffer[i] = 0;
5435
5436 for (i = 0; i < bit_size; i++)
5437 {
5438 if (bit_buffer[i])
5439 {
5440 if (BYTES_BIG_ENDIAN)
5441 *bytep |= (1 << (set_word_size - 1 - bit_pos));
5442 else
5443 *bytep |= 1 << bit_pos;
5444 }
5445 bit_pos++;
5446 if (bit_pos >= set_word_size)
5447 bit_pos = 0, bytep++;
5448 }
5449 return non_const_bits;
5450 }
5451 \f
5452 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
5453
5454 /* Complain that the tree code of NODE does not match the expected 0
5455 terminated list of trailing codes. The trailing code list can be
5456 empty, for a more vague error message. FILE, LINE, and FUNCTION
5457 are of the caller. */
5458
5459 void
5460 tree_check_failed (const tree node, const char *file,
5461 int line, const char *function, ...)
5462 {
5463 va_list args;
5464 char *buffer;
5465 unsigned length = 0;
5466 int code;
5467
5468 va_start (args, function);
5469 while ((code = va_arg (args, int)))
5470 length += 4 + strlen (tree_code_name[code]);
5471 va_end (args);
5472 if (length)
5473 {
5474 va_start (args, function);
5475 length += strlen ("expected ");
5476 buffer = alloca (length);
5477 length = 0;
5478 while ((code = va_arg (args, int)))
5479 {
5480 const char *prefix = length ? " or " : "expected ";
5481
5482 strcpy (buffer + length, prefix);
5483 length += strlen (prefix);
5484 strcpy (buffer + length, tree_code_name[code]);
5485 length += strlen (tree_code_name[code]);
5486 }
5487 va_end (args);
5488 }
5489 else
5490 buffer = (char *)"unexpected node";
5491
5492 internal_error ("tree check: %s, have %s in %s, at %s:%d",
5493 buffer, tree_code_name[TREE_CODE (node)],
5494 function, trim_filename (file), line);
5495 }
5496
5497 /* Complain that the tree code of NODE does match the expected 0
5498 terminated list of trailing codes. FILE, LINE, and FUNCTION are of
5499 the caller. */
5500
5501 void
5502 tree_not_check_failed (const tree node, const char *file,
5503 int line, const char *function, ...)
5504 {
5505 va_list args;
5506 char *buffer;
5507 unsigned length = 0;
5508 int code;
5509
5510 va_start (args, function);
5511 while ((code = va_arg (args, int)))
5512 length += 4 + strlen (tree_code_name[code]);
5513 va_end (args);
5514 va_start (args, function);
5515 buffer = alloca (length);
5516 length = 0;
5517 while ((code = va_arg (args, int)))
5518 {
5519 if (length)
5520 {
5521 strcpy (buffer + length, " or ");
5522 length += 4;
5523 }
5524 strcpy (buffer + length, tree_code_name[code]);
5525 length += strlen (tree_code_name[code]);
5526 }
5527 va_end (args);
5528
5529 internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
5530 buffer, tree_code_name[TREE_CODE (node)],
5531 function, trim_filename (file), line);
5532 }
5533
5534 /* Similar to tree_check_failed, except that we check for a class of tree
5535 code, given in CL. */
5536
5537 void
5538 tree_class_check_failed (const tree node, const enum tree_code_class cl,
5539 const char *file, int line, const char *function)
5540 {
5541 internal_error
5542 ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
5543 TREE_CODE_CLASS_STRING (cl),
5544 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
5545 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
5546 }
5547
5548 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
5549 (dynamically sized) vector. */
5550
5551 void
5552 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
5553 const char *function)
5554 {
5555 internal_error
5556 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
5557 idx + 1, len, function, trim_filename (file), line);
5558 }
5559
5560 /* Similar to above, except that the check is for the bounds of a PHI_NODE's
5561 (dynamically sized) vector. */
5562
5563 void
5564 phi_node_elt_check_failed (int idx, int len, const char *file, int line,
5565 const char *function)
5566 {
5567 internal_error
5568 ("tree check: accessed elt %d of phi_node with %d elts in %s, at %s:%d",
5569 idx + 1, len, function, trim_filename (file), line);
5570 }
5571
5572 /* Similar to above, except that the check is for the bounds of the operand
5573 vector of an expression node. */
5574
5575 void
5576 tree_operand_check_failed (int idx, enum tree_code code, const char *file,
5577 int line, const char *function)
5578 {
5579 internal_error
5580 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
5581 idx + 1, tree_code_name[code], TREE_CODE_LENGTH (code),
5582 function, trim_filename (file), line);
5583 }
5584 #endif /* ENABLE_TREE_CHECKING */
5585 \f
5586 /* Create a new vector type node holding SUBPARTS units of type INNERTYPE,
5587 and mapped to the machine mode MODE. Initialize its fields and build
5588 the information necessary for debugging output. */
5589
5590 static tree
5591 make_vector_type (tree innertype, int nunits, enum machine_mode mode)
5592 {
5593 tree t = make_node (VECTOR_TYPE);
5594
5595 TREE_TYPE (t) = TYPE_MAIN_VARIANT (innertype);
5596 TYPE_VECTOR_SUBPARTS (t) = nunits;
5597 TYPE_MODE (t) = mode;
5598 TYPE_READONLY (t) = TYPE_READONLY (innertype);
5599 TYPE_VOLATILE (t) = TYPE_VOLATILE (innertype);
5600
5601 layout_type (t);
5602
5603 {
5604 tree index = build_int_cst (NULL_TREE, nunits - 1);
5605 tree array = build_array_type (innertype, build_index_type (index));
5606 tree rt = make_node (RECORD_TYPE);
5607
5608 TYPE_FIELDS (rt) = build_decl (FIELD_DECL, get_identifier ("f"), array);
5609 DECL_CONTEXT (TYPE_FIELDS (rt)) = rt;
5610 layout_type (rt);
5611 TYPE_DEBUG_REPRESENTATION_TYPE (t) = rt;
5612 /* In dwarfout.c, type lookup uses TYPE_UID numbers. We want to output
5613 the representation type, and we want to find that die when looking up
5614 the vector type. This is most easily achieved by making the TYPE_UID
5615 numbers equal. */
5616 TYPE_UID (rt) = TYPE_UID (t);
5617 }
5618
5619 /* Build our main variant, based on the main variant of the inner type. */
5620 if (TYPE_MAIN_VARIANT (innertype) != innertype)
5621 {
5622 tree innertype_main_variant = TYPE_MAIN_VARIANT (innertype);
5623 unsigned int hash = TYPE_HASH (innertype_main_variant);
5624 TYPE_MAIN_VARIANT (t)
5625 = type_hash_canon (hash, make_vector_type (innertype_main_variant,
5626 nunits, mode));
5627 }
5628
5629 return t;
5630 }
5631
5632 static tree
5633 make_or_reuse_type (unsigned size, int unsignedp)
5634 {
5635 if (size == INT_TYPE_SIZE)
5636 return unsignedp ? unsigned_type_node : integer_type_node;
5637 if (size == CHAR_TYPE_SIZE)
5638 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
5639 if (size == SHORT_TYPE_SIZE)
5640 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
5641 if (size == LONG_TYPE_SIZE)
5642 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
5643 if (size == LONG_LONG_TYPE_SIZE)
5644 return (unsignedp ? long_long_unsigned_type_node
5645 : long_long_integer_type_node);
5646
5647 if (unsignedp)
5648 return make_unsigned_type (size);
5649 else
5650 return make_signed_type (size);
5651 }
5652
5653 /* Create nodes for all integer types (and error_mark_node) using the sizes
5654 of C datatypes. The caller should call set_sizetype soon after calling
5655 this function to select one of the types as sizetype. */
5656
5657 void
5658 build_common_tree_nodes (bool signed_char, bool signed_sizetype)
5659 {
5660 error_mark_node = make_node (ERROR_MARK);
5661 TREE_TYPE (error_mark_node) = error_mark_node;
5662
5663 initialize_sizetypes (signed_sizetype);
5664
5665 /* Define both `signed char' and `unsigned char'. */
5666 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
5667 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
5668
5669 /* Define `char', which is like either `signed char' or `unsigned char'
5670 but not the same as either. */
5671 char_type_node
5672 = (signed_char
5673 ? make_signed_type (CHAR_TYPE_SIZE)
5674 : make_unsigned_type (CHAR_TYPE_SIZE));
5675
5676 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
5677 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
5678 integer_type_node = make_signed_type (INT_TYPE_SIZE);
5679 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
5680 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
5681 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
5682 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
5683 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
5684
5685 /* Define a boolean type. This type only represents boolean values but
5686 may be larger than char depending on the value of BOOL_TYPE_SIZE.
5687 Front ends which want to override this size (i.e. Java) can redefine
5688 boolean_type_node before calling build_common_tree_nodes_2. */
5689 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
5690 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
5691 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
5692 TYPE_PRECISION (boolean_type_node) = 1;
5693
5694 /* Fill in the rest of the sized types. Reuse existing type nodes
5695 when possible. */
5696 intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
5697 intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
5698 intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
5699 intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
5700 intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);
5701
5702 unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
5703 unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
5704 unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
5705 unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
5706 unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);
5707
5708 access_public_node = get_identifier ("public");
5709 access_protected_node = get_identifier ("protected");
5710 access_private_node = get_identifier ("private");
5711 }
5712
5713 /* Call this function after calling build_common_tree_nodes and set_sizetype.
5714 It will create several other common tree nodes. */
5715
5716 void
5717 build_common_tree_nodes_2 (int short_double)
5718 {
5719 /* Define these next since types below may used them. */
5720 integer_zero_node = build_int_cst (NULL_TREE, 0);
5721 integer_one_node = build_int_cst (NULL_TREE, 1);
5722 integer_minus_one_node = build_int_cst (NULL_TREE, -1);
5723
5724 size_zero_node = size_int (0);
5725 size_one_node = size_int (1);
5726 bitsize_zero_node = bitsize_int (0);
5727 bitsize_one_node = bitsize_int (1);
5728 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
5729
5730 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
5731 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
5732
5733 void_type_node = make_node (VOID_TYPE);
5734 layout_type (void_type_node);
5735
5736 /* We are not going to have real types in C with less than byte alignment,
5737 so we might as well not have any types that claim to have it. */
5738 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
5739 TYPE_USER_ALIGN (void_type_node) = 0;
5740
5741 null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
5742 layout_type (TREE_TYPE (null_pointer_node));
5743
5744 ptr_type_node = build_pointer_type (void_type_node);
5745 const_ptr_type_node
5746 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
5747 fileptr_type_node = ptr_type_node;
5748
5749 float_type_node = make_node (REAL_TYPE);
5750 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
5751 layout_type (float_type_node);
5752
5753 double_type_node = make_node (REAL_TYPE);
5754 if (short_double)
5755 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
5756 else
5757 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
5758 layout_type (double_type_node);
5759
5760 long_double_type_node = make_node (REAL_TYPE);
5761 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
5762 layout_type (long_double_type_node);
5763
5764 float_ptr_type_node = build_pointer_type (float_type_node);
5765 double_ptr_type_node = build_pointer_type (double_type_node);
5766 long_double_ptr_type_node = build_pointer_type (long_double_type_node);
5767 integer_ptr_type_node = build_pointer_type (integer_type_node);
5768
5769 complex_integer_type_node = make_node (COMPLEX_TYPE);
5770 TREE_TYPE (complex_integer_type_node) = integer_type_node;
5771 layout_type (complex_integer_type_node);
5772
5773 complex_float_type_node = make_node (COMPLEX_TYPE);
5774 TREE_TYPE (complex_float_type_node) = float_type_node;
5775 layout_type (complex_float_type_node);
5776
5777 complex_double_type_node = make_node (COMPLEX_TYPE);
5778 TREE_TYPE (complex_double_type_node) = double_type_node;
5779 layout_type (complex_double_type_node);
5780
5781 complex_long_double_type_node = make_node (COMPLEX_TYPE);
5782 TREE_TYPE (complex_long_double_type_node) = long_double_type_node;
5783 layout_type (complex_long_double_type_node);
5784
5785 {
5786 tree t = targetm.build_builtin_va_list ();
5787
5788 /* Many back-ends define record types without setting TYPE_NAME.
5789 If we copied the record type here, we'd keep the original
5790 record type without a name. This breaks name mangling. So,
5791 don't copy record types and let c_common_nodes_and_builtins()
5792 declare the type to be __builtin_va_list. */
5793 if (TREE_CODE (t) != RECORD_TYPE)
5794 t = build_variant_type_copy (t);
5795
5796 va_list_type_node = t;
5797 }
5798 }
5799
5800 /* A subroutine of build_common_builtin_nodes. Define a builtin function. */
5801
5802 static void
5803 local_define_builtin (const char *name, tree type, enum built_in_function code,
5804 const char *library_name, int ecf_flags)
5805 {
5806 tree decl;
5807
5808 decl = lang_hooks.builtin_function (name, type, code, BUILT_IN_NORMAL,
5809 library_name, NULL_TREE);
5810 if (ecf_flags & ECF_CONST)
5811 TREE_READONLY (decl) = 1;
5812 if (ecf_flags & ECF_PURE)
5813 DECL_IS_PURE (decl) = 1;
5814 if (ecf_flags & ECF_NORETURN)
5815 TREE_THIS_VOLATILE (decl) = 1;
5816 if (ecf_flags & ECF_NOTHROW)
5817 TREE_NOTHROW (decl) = 1;
5818 if (ecf_flags & ECF_MALLOC)
5819 DECL_IS_MALLOC (decl) = 1;
5820
5821 built_in_decls[code] = decl;
5822 implicit_built_in_decls[code] = decl;
5823 }
5824
5825 /* Call this function after instantiating all builtins that the language
5826 front end cares about. This will build the rest of the builtins that
5827 are relied upon by the tree optimizers and the middle-end. */
5828
5829 void
5830 build_common_builtin_nodes (void)
5831 {
5832 tree tmp, ftype;
5833
5834 if (built_in_decls[BUILT_IN_MEMCPY] == NULL
5835 || built_in_decls[BUILT_IN_MEMMOVE] == NULL)
5836 {
5837 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
5838 tmp = tree_cons (NULL_TREE, const_ptr_type_node, tmp);
5839 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
5840 ftype = build_function_type (ptr_type_node, tmp);
5841
5842 if (built_in_decls[BUILT_IN_MEMCPY] == NULL)
5843 local_define_builtin ("__builtin_memcpy", ftype, BUILT_IN_MEMCPY,
5844 "memcpy", ECF_NOTHROW);
5845 if (built_in_decls[BUILT_IN_MEMMOVE] == NULL)
5846 local_define_builtin ("__builtin_memmove", ftype, BUILT_IN_MEMMOVE,
5847 "memmove", ECF_NOTHROW);
5848 }
5849
5850 if (built_in_decls[BUILT_IN_MEMCMP] == NULL)
5851 {
5852 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
5853 tmp = tree_cons (NULL_TREE, const_ptr_type_node, tmp);
5854 tmp = tree_cons (NULL_TREE, const_ptr_type_node, tmp);
5855 ftype = build_function_type (ptr_type_node, tmp);
5856 local_define_builtin ("__builtin_memcmp", ftype, BUILT_IN_MEMCMP,
5857 "memcmp", ECF_PURE | ECF_NOTHROW);
5858 }
5859
5860 if (built_in_decls[BUILT_IN_MEMSET] == NULL)
5861 {
5862 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
5863 tmp = tree_cons (NULL_TREE, integer_type_node, tmp);
5864 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
5865 ftype = build_function_type (ptr_type_node, tmp);
5866 local_define_builtin ("__builtin_memset", ftype, BUILT_IN_MEMSET,
5867 "memset", ECF_NOTHROW);
5868 }
5869
5870 if (built_in_decls[BUILT_IN_ALLOCA] == NULL)
5871 {
5872 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
5873 ftype = build_function_type (ptr_type_node, tmp);
5874 local_define_builtin ("__builtin_alloca", ftype, BUILT_IN_ALLOCA,
5875 "alloca", ECF_NOTHROW | ECF_MALLOC);
5876 }
5877
5878 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
5879 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
5880 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
5881 ftype = build_function_type (void_type_node, tmp);
5882 local_define_builtin ("__builtin_init_trampoline", ftype,
5883 BUILT_IN_INIT_TRAMPOLINE,
5884 "__builtin_init_trampoline", ECF_NOTHROW);
5885
5886 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
5887 ftype = build_function_type (ptr_type_node, tmp);
5888 local_define_builtin ("__builtin_adjust_trampoline", ftype,
5889 BUILT_IN_ADJUST_TRAMPOLINE,
5890 "__builtin_adjust_trampoline",
5891 ECF_CONST | ECF_NOTHROW);
5892
5893 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
5894 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
5895 ftype = build_function_type (void_type_node, tmp);
5896 local_define_builtin ("__builtin_nonlocal_goto", ftype,
5897 BUILT_IN_NONLOCAL_GOTO,
5898 "__builtin_nonlocal_goto",
5899 ECF_NORETURN | ECF_NOTHROW);
5900
5901 ftype = build_function_type (ptr_type_node, void_list_node);
5902 local_define_builtin ("__builtin_stack_save", ftype, BUILT_IN_STACK_SAVE,
5903 "__builtin_stack_save", ECF_NOTHROW);
5904
5905 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
5906 ftype = build_function_type (void_type_node, tmp);
5907 local_define_builtin ("__builtin_stack_restore", ftype,
5908 BUILT_IN_STACK_RESTORE,
5909 "__builtin_stack_restore", ECF_NOTHROW);
5910
5911 ftype = build_function_type (void_type_node, void_list_node);
5912 local_define_builtin ("__builtin_profile_func_enter", ftype,
5913 BUILT_IN_PROFILE_FUNC_ENTER, "profile_func_enter", 0);
5914 local_define_builtin ("__builtin_profile_func_exit", ftype,
5915 BUILT_IN_PROFILE_FUNC_EXIT, "profile_func_exit", 0);
5916
5917 /* Complex multiplication and division. These are handled as builtins
5918 rather than optabs because emit_library_call_value doesn't support
5919 complex. Further, we can do slightly better with folding these
5920 beasties if the real and complex parts of the arguments are separate. */
5921 {
5922 enum machine_mode mode;
5923
5924 for (mode = MIN_MODE_COMPLEX_FLOAT; mode <= MAX_MODE_COMPLEX_FLOAT; ++mode)
5925 {
5926 char mode_name_buf[4], *q;
5927 const char *p;
5928 enum built_in_function mcode, dcode;
5929 tree type, inner_type;
5930
5931 type = lang_hooks.types.type_for_mode (mode, 0);
5932 if (type == NULL)
5933 continue;
5934 inner_type = TREE_TYPE (type);
5935
5936 tmp = tree_cons (NULL_TREE, inner_type, void_list_node);
5937 tmp = tree_cons (NULL_TREE, inner_type, tmp);
5938 tmp = tree_cons (NULL_TREE, inner_type, tmp);
5939 tmp = tree_cons (NULL_TREE, inner_type, tmp);
5940 ftype = build_function_type (type, tmp);
5941
5942 mcode = BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT;
5943 dcode = BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT;
5944
5945 for (p = GET_MODE_NAME (mode), q = mode_name_buf; *p; p++, q++)
5946 *q = TOLOWER (*p);
5947 *q = '\0';
5948
5949 built_in_names[mcode] = concat ("__mul", mode_name_buf, "3", NULL);
5950 local_define_builtin (built_in_names[mcode], ftype, mcode,
5951 built_in_names[mcode], ECF_CONST | ECF_NOTHROW);
5952
5953 built_in_names[dcode] = concat ("__div", mode_name_buf, "3", NULL);
5954 local_define_builtin (built_in_names[dcode], ftype, dcode,
5955 built_in_names[dcode], ECF_CONST | ECF_NOTHROW);
5956 }
5957 }
5958 }
5959
5960 /* HACK. GROSS. This is absolutely disgusting. I wish there was a
5961 better way.
5962
5963 If we requested a pointer to a vector, build up the pointers that
5964 we stripped off while looking for the inner type. Similarly for
5965 return values from functions.
5966
5967 The argument TYPE is the top of the chain, and BOTTOM is the
5968 new type which we will point to. */
5969
5970 tree
5971 reconstruct_complex_type (tree type, tree bottom)
5972 {
5973 tree inner, outer;
5974
5975 if (POINTER_TYPE_P (type))
5976 {
5977 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
5978 outer = build_pointer_type (inner);
5979 }
5980 else if (TREE_CODE (type) == ARRAY_TYPE)
5981 {
5982 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
5983 outer = build_array_type (inner, TYPE_DOMAIN (type));
5984 }
5985 else if (TREE_CODE (type) == FUNCTION_TYPE)
5986 {
5987 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
5988 outer = build_function_type (inner, TYPE_ARG_TYPES (type));
5989 }
5990 else if (TREE_CODE (type) == METHOD_TYPE)
5991 {
5992 tree argtypes;
5993 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
5994 /* The build_method_type_directly() routine prepends 'this' to argument list,
5995 so we must compensate by getting rid of it. */
5996 argtypes = TYPE_ARG_TYPES (type);
5997 outer = build_method_type_directly (TYPE_METHOD_BASETYPE (type),
5998 inner,
5999 TYPE_ARG_TYPES (type));
6000 TYPE_ARG_TYPES (outer) = argtypes;
6001 }
6002 else
6003 return bottom;
6004
6005 TYPE_READONLY (outer) = TYPE_READONLY (type);
6006 TYPE_VOLATILE (outer) = TYPE_VOLATILE (type);
6007
6008 return outer;
6009 }
6010
6011 /* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
6012 the inner type. */
6013 tree
6014 build_vector_type_for_mode (tree innertype, enum machine_mode mode)
6015 {
6016 int nunits;
6017
6018 switch (GET_MODE_CLASS (mode))
6019 {
6020 case MODE_VECTOR_INT:
6021 case MODE_VECTOR_FLOAT:
6022 nunits = GET_MODE_NUNITS (mode);
6023 break;
6024
6025 case MODE_INT:
6026 /* Check that there are no leftover bits. */
6027 gcc_assert (GET_MODE_BITSIZE (mode)
6028 % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0);
6029
6030 nunits = GET_MODE_BITSIZE (mode)
6031 / TREE_INT_CST_LOW (TYPE_SIZE (innertype));
6032 break;
6033
6034 default:
6035 gcc_unreachable ();
6036 }
6037
6038 return make_vector_type (innertype, nunits, mode);
6039 }
6040
6041 /* Similarly, but takes the inner type and number of units, which must be
6042 a power of two. */
6043
6044 tree
6045 build_vector_type (tree innertype, int nunits)
6046 {
6047 return make_vector_type (innertype, nunits, VOIDmode);
6048 }
6049
6050 /* Given an initializer INIT, return TRUE if INIT is zero or some
6051 aggregate of zeros. Otherwise return FALSE. */
6052 bool
6053 initializer_zerop (tree init)
6054 {
6055 tree elt;
6056
6057 STRIP_NOPS (init);
6058
6059 switch (TREE_CODE (init))
6060 {
6061 case INTEGER_CST:
6062 return integer_zerop (init);
6063
6064 case REAL_CST:
6065 /* ??? Note that this is not correct for C4X float formats. There,
6066 a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
6067 negative exponent. */
6068 return real_zerop (init)
6069 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
6070
6071 case COMPLEX_CST:
6072 return integer_zerop (init)
6073 || (real_zerop (init)
6074 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
6075 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
6076
6077 case VECTOR_CST:
6078 for (elt = TREE_VECTOR_CST_ELTS (init); elt; elt = TREE_CHAIN (elt))
6079 if (!initializer_zerop (TREE_VALUE (elt)))
6080 return false;
6081 return true;
6082
6083 case CONSTRUCTOR:
6084 elt = CONSTRUCTOR_ELTS (init);
6085 if (elt == NULL_TREE)
6086 return true;
6087
6088 for (; elt ; elt = TREE_CHAIN (elt))
6089 if (! initializer_zerop (TREE_VALUE (elt)))
6090 return false;
6091 return true;
6092
6093 default:
6094 return false;
6095 }
6096 }
6097
6098 void
6099 add_var_to_bind_expr (tree bind_expr, tree var)
6100 {
6101 BIND_EXPR_VARS (bind_expr)
6102 = chainon (BIND_EXPR_VARS (bind_expr), var);
6103 if (BIND_EXPR_BLOCK (bind_expr))
6104 BLOCK_VARS (BIND_EXPR_BLOCK (bind_expr))
6105 = BIND_EXPR_VARS (bind_expr);
6106 }
6107
6108 /* Build an empty statement. */
6109
6110 tree
6111 build_empty_stmt (void)
6112 {
6113 return build1 (NOP_EXPR, void_type_node, size_zero_node);
6114 }
6115
6116
6117 /* Returns true if it is possible to prove that the index of
6118 an array access REF (an ARRAY_REF expression) falls into the
6119 array bounds. */
6120
6121 bool
6122 in_array_bounds_p (tree ref)
6123 {
6124 tree idx = TREE_OPERAND (ref, 1);
6125 tree min, max;
6126
6127 if (TREE_CODE (idx) != INTEGER_CST)
6128 return false;
6129
6130 min = array_ref_low_bound (ref);
6131 max = array_ref_up_bound (ref);
6132 if (!min
6133 || !max
6134 || TREE_CODE (min) != INTEGER_CST
6135 || TREE_CODE (max) != INTEGER_CST)
6136 return false;
6137
6138 if (tree_int_cst_lt (idx, min)
6139 || tree_int_cst_lt (max, idx))
6140 return false;
6141
6142 return true;
6143 }
6144
6145 /* Return true if T (assumed to be a DECL) is a global variable. */
6146
6147 bool
6148 is_global_var (tree t)
6149 {
6150 return (TREE_STATIC (t) || DECL_EXTERNAL (t));
6151 }
6152
6153 /* Return true if T (assumed to be a DECL) must be assigned a memory
6154 location. */
6155
6156 bool
6157 needs_to_live_in_memory (tree t)
6158 {
6159 return (TREE_ADDRESSABLE (t)
6160 || is_global_var (t)
6161 || (TREE_CODE (t) == RESULT_DECL
6162 && aggregate_value_p (t, current_function_decl)));
6163 }
6164
6165 /* There are situations in which a language considers record types
6166 compatible which have different field lists. Decide if two fields
6167 are compatible. It is assumed that the parent records are compatible. */
6168
6169 bool
6170 fields_compatible_p (tree f1, tree f2)
6171 {
6172 if (!operand_equal_p (DECL_FIELD_BIT_OFFSET (f1),
6173 DECL_FIELD_BIT_OFFSET (f2), OEP_ONLY_CONST))
6174 return false;
6175
6176 if (!operand_equal_p (DECL_FIELD_OFFSET (f1),
6177 DECL_FIELD_OFFSET (f2), OEP_ONLY_CONST))
6178 return false;
6179
6180 if (!lang_hooks.types_compatible_p (TREE_TYPE (f1), TREE_TYPE (f2)))
6181 return false;
6182
6183 return true;
6184 }
6185
6186 /* Locate within RECORD a field that is compatible with ORIG_FIELD. */
6187
6188 tree
6189 find_compatible_field (tree record, tree orig_field)
6190 {
6191 tree f;
6192
6193 for (f = TYPE_FIELDS (record); f ; f = TREE_CHAIN (f))
6194 if (TREE_CODE (f) == FIELD_DECL
6195 && fields_compatible_p (f, orig_field))
6196 return f;
6197
6198 /* ??? Why isn't this on the main fields list? */
6199 f = TYPE_VFIELD (record);
6200 if (f && TREE_CODE (f) == FIELD_DECL
6201 && fields_compatible_p (f, orig_field))
6202 return f;
6203
6204 /* ??? We should abort here, but Java appears to do Bad Things
6205 with inherited fields. */
6206 return orig_field;
6207 }
6208
6209 /* Return value of a constant X. */
6210
6211 HOST_WIDE_INT
6212 int_cst_value (tree x)
6213 {
6214 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
6215 unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
6216 bool negative = ((val >> (bits - 1)) & 1) != 0;
6217
6218 gcc_assert (bits <= HOST_BITS_PER_WIDE_INT);
6219
6220 if (negative)
6221 val |= (~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1;
6222 else
6223 val &= ~((~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1);
6224
6225 return val;
6226 }
6227
6228 /* Returns the greatest common divisor of A and B, which must be
6229 INTEGER_CSTs. */
6230
6231 tree
6232 tree_fold_gcd (tree a, tree b)
6233 {
6234 tree a_mod_b;
6235 tree type = TREE_TYPE (a);
6236
6237 gcc_assert (TREE_CODE (a) == INTEGER_CST);
6238 gcc_assert (TREE_CODE (b) == INTEGER_CST);
6239
6240 if (integer_zerop (a))
6241 return b;
6242
6243 if (integer_zerop (b))
6244 return a;
6245
6246 if (tree_int_cst_sgn (a) == -1)
6247 a = fold (build2 (MULT_EXPR, type, a,
6248 convert (type, integer_minus_one_node)));
6249
6250 if (tree_int_cst_sgn (b) == -1)
6251 b = fold (build2 (MULT_EXPR, type, b,
6252 convert (type, integer_minus_one_node)));
6253
6254 while (1)
6255 {
6256 a_mod_b = fold (build2 (FLOOR_MOD_EXPR, type, a, b));
6257
6258 if (!TREE_INT_CST_LOW (a_mod_b)
6259 && !TREE_INT_CST_HIGH (a_mod_b))
6260 return b;
6261
6262 a = b;
6263 b = a_mod_b;
6264 }
6265 }
6266
6267 /* Returns unsigned variant of TYPE. */
6268
6269 tree
6270 unsigned_type_for (tree type)
6271 {
6272 return lang_hooks.types.unsigned_type (type);
6273 }
6274
6275 /* Returns signed variant of TYPE. */
6276
6277 tree
6278 signed_type_for (tree type)
6279 {
6280 return lang_hooks.types.signed_type (type);
6281 }
6282
6283 /* Returns the largest value obtainable by casting something in INNER type to
6284 OUTER type. */
6285
6286 tree
6287 upper_bound_in_type (tree outer, tree inner)
6288 {
6289 unsigned HOST_WIDE_INT lo, hi;
6290 unsigned bits = TYPE_PRECISION (inner);
6291
6292 if (TYPE_UNSIGNED (outer) || TYPE_UNSIGNED (inner))
6293 {
6294 /* Zero extending in these cases. */
6295 if (bits <= HOST_BITS_PER_WIDE_INT)
6296 {
6297 hi = 0;
6298 lo = (~(unsigned HOST_WIDE_INT) 0)
6299 >> (HOST_BITS_PER_WIDE_INT - bits);
6300 }
6301 else
6302 {
6303 hi = (~(unsigned HOST_WIDE_INT) 0)
6304 >> (2 * HOST_BITS_PER_WIDE_INT - bits);
6305 lo = ~(unsigned HOST_WIDE_INT) 0;
6306 }
6307 }
6308 else
6309 {
6310 /* Sign extending in these cases. */
6311 if (bits <= HOST_BITS_PER_WIDE_INT)
6312 {
6313 hi = 0;
6314 lo = (~(unsigned HOST_WIDE_INT) 0)
6315 >> (HOST_BITS_PER_WIDE_INT - bits) >> 1;
6316 }
6317 else
6318 {
6319 hi = (~(unsigned HOST_WIDE_INT) 0)
6320 >> (2 * HOST_BITS_PER_WIDE_INT - bits) >> 1;
6321 lo = ~(unsigned HOST_WIDE_INT) 0;
6322 }
6323 }
6324
6325 return fold_convert (outer,
6326 build_int_cst_wide (inner, lo, hi));
6327 }
6328
6329 /* Returns the smallest value obtainable by casting something in INNER type to
6330 OUTER type. */
6331
6332 tree
6333 lower_bound_in_type (tree outer, tree inner)
6334 {
6335 unsigned HOST_WIDE_INT lo, hi;
6336 unsigned bits = TYPE_PRECISION (inner);
6337
6338 if (TYPE_UNSIGNED (outer) || TYPE_UNSIGNED (inner))
6339 lo = hi = 0;
6340 else if (bits <= HOST_BITS_PER_WIDE_INT)
6341 {
6342 hi = ~(unsigned HOST_WIDE_INT) 0;
6343 lo = (~(unsigned HOST_WIDE_INT) 0) << (bits - 1);
6344 }
6345 else
6346 {
6347 hi = (~(unsigned HOST_WIDE_INT) 0) << (bits - HOST_BITS_PER_WIDE_INT - 1);
6348 lo = 0;
6349 }
6350
6351 return fold_convert (outer,
6352 build_int_cst_wide (inner, lo, hi));
6353 }
6354
6355 /* Return nonzero if two operands that are suitable for PHI nodes are
6356 necessarily equal. Specifically, both ARG0 and ARG1 must be either
6357 SSA_NAME or invariant. Note that this is strictly an optimization.
6358 That is, callers of this function can directly call operand_equal_p
6359 and get the same result, only slower. */
6360
6361 int
6362 operand_equal_for_phi_arg_p (tree arg0, tree arg1)
6363 {
6364 if (arg0 == arg1)
6365 return 1;
6366 if (TREE_CODE (arg0) == SSA_NAME || TREE_CODE (arg1) == SSA_NAME)
6367 return 0;
6368 return operand_equal_p (arg0, arg1, 0);
6369 }
6370
6371 /* Returns number of zeros at the end of binary representation of X.
6372
6373 ??? Use ffs if available? */
6374
6375 tree
6376 num_ending_zeros (tree x)
6377 {
6378 unsigned HOST_WIDE_INT fr, nfr;
6379 unsigned num, abits;
6380 tree type = TREE_TYPE (x);
6381
6382 if (TREE_INT_CST_LOW (x) == 0)
6383 {
6384 num = HOST_BITS_PER_WIDE_INT;
6385 fr = TREE_INT_CST_HIGH (x);
6386 }
6387 else
6388 {
6389 num = 0;
6390 fr = TREE_INT_CST_LOW (x);
6391 }
6392
6393 for (abits = HOST_BITS_PER_WIDE_INT / 2; abits; abits /= 2)
6394 {
6395 nfr = fr >> abits;
6396 if (nfr << abits == fr)
6397 {
6398 num += abits;
6399 fr = nfr;
6400 }
6401 }
6402
6403 if (num > TYPE_PRECISION (type))
6404 num = TYPE_PRECISION (type);
6405
6406 return build_int_cst_type (type, num);
6407 }
6408
6409 #include "gt-tree.h"