]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree.c
convert.c (strip_float_extensions): Move ...
[thirdparty/gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 2011, 2012 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This file contains the low level primitives for operating on tree nodes,
23 including allocation, list operations, interning of identifiers,
24 construction of data type nodes and statement nodes,
25 and construction of type conversion nodes. It also contains
26 tables index by tree code that describe how to take apart
27 nodes of that code.
28
29 It is intended to be language-independent, but occasionally
30 calls language-dependent routines defined (for C) in typecheck.c. */
31
32 #include "config.h"
33 #include "system.h"
34 #include "coretypes.h"
35 #include "tm.h"
36 #include "flags.h"
37 #include "tree.h"
38 #include "tm_p.h"
39 #include "function.h"
40 #include "obstack.h"
41 #include "toplev.h"
42 #include "ggc.h"
43 #include "hashtab.h"
44 #include "filenames.h"
45 #include "output.h"
46 #include "target.h"
47 #include "common/common-target.h"
48 #include "langhooks.h"
49 #include "tree-inline.h"
50 #include "tree-iterator.h"
51 #include "basic-block.h"
52 #include "tree-flow.h"
53 #include "params.h"
54 #include "pointer-set.h"
55 #include "tree-pass.h"
56 #include "langhooks-def.h"
57 #include "diagnostic.h"
58 #include "tree-diagnostic.h"
59 #include "tree-pretty-print.h"
60 #include "cgraph.h"
61 #include "timevar.h"
62 #include "except.h"
63 #include "debug.h"
64 #include "intl.h"
65
66 /* Tree code classes. */
67
68 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
69 #define END_OF_BASE_TREE_CODES tcc_exceptional,
70
71 const enum tree_code_class tree_code_type[] = {
72 #include "all-tree.def"
73 };
74
75 #undef DEFTREECODE
76 #undef END_OF_BASE_TREE_CODES
77
78 /* Table indexed by tree code giving number of expression
79 operands beyond the fixed part of the node structure.
80 Not used for types or decls. */
81
82 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
83 #define END_OF_BASE_TREE_CODES 0,
84
85 const unsigned char tree_code_length[] = {
86 #include "all-tree.def"
87 };
88
89 #undef DEFTREECODE
90 #undef END_OF_BASE_TREE_CODES
91
92 /* Names of tree components.
93 Used for printing out the tree and error messages. */
94 #define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
95 #define END_OF_BASE_TREE_CODES "@dummy",
96
97 const char *const tree_code_name[] = {
98 #include "all-tree.def"
99 };
100
101 #undef DEFTREECODE
102 #undef END_OF_BASE_TREE_CODES
103
104 /* Each tree code class has an associated string representation.
105 These must correspond to the tree_code_class entries. */
106
107 const char *const tree_code_class_strings[] =
108 {
109 "exceptional",
110 "constant",
111 "type",
112 "declaration",
113 "reference",
114 "comparison",
115 "unary",
116 "binary",
117 "statement",
118 "vl_exp",
119 "expression"
120 };
121
122 /* obstack.[ch] explicitly declined to prototype this. */
123 extern int _obstack_allocated_p (struct obstack *h, void *obj);
124
125 #ifdef GATHER_STATISTICS
126 /* Statistics-gathering stuff. */
127
128 static int tree_code_counts[MAX_TREE_CODES];
129 int tree_node_counts[(int) all_kinds];
130 int tree_node_sizes[(int) all_kinds];
131
132 /* Keep in sync with tree.h:enum tree_node_kind. */
133 static const char * const tree_node_kind_names[] = {
134 "decls",
135 "types",
136 "blocks",
137 "stmts",
138 "refs",
139 "exprs",
140 "constants",
141 "identifiers",
142 "vecs",
143 "binfos",
144 "ssa names",
145 "constructors",
146 "random kinds",
147 "lang_decl kinds",
148 "lang_type kinds",
149 "omp clauses",
150 };
151 #endif /* GATHER_STATISTICS */
152
153 /* Unique id for next decl created. */
154 static GTY(()) int next_decl_uid;
155 /* Unique id for next type created. */
156 static GTY(()) int next_type_uid = 1;
157 /* Unique id for next debug decl created. Use negative numbers,
158 to catch erroneous uses. */
159 static GTY(()) int next_debug_decl_uid;
160
161 /* Since we cannot rehash a type after it is in the table, we have to
162 keep the hash code. */
163
164 struct GTY(()) type_hash {
165 unsigned long hash;
166 tree type;
167 };
168
169 /* Initial size of the hash table (rounded to next prime). */
170 #define TYPE_HASH_INITIAL_SIZE 1000
171
172 /* Now here is the hash table. When recording a type, it is added to
173 the slot whose index is the hash code. Note that the hash table is
174 used for several kinds of types (function types, array types and
175 array index range types, for now). While all these live in the
176 same table, they are completely independent, and the hash code is
177 computed differently for each of these. */
178
179 static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash)))
180 htab_t type_hash_table;
181
182 /* Hash table and temporary node for larger integer const values. */
183 static GTY (()) tree int_cst_node;
184 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
185 htab_t int_cst_hash_table;
186
187 /* Hash table for optimization flags and target option flags. Use the same
188 hash table for both sets of options. Nodes for building the current
189 optimization and target option nodes. The assumption is most of the time
190 the options created will already be in the hash table, so we avoid
191 allocating and freeing up a node repeatably. */
192 static GTY (()) tree cl_optimization_node;
193 static GTY (()) tree cl_target_option_node;
194 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
195 htab_t cl_option_hash_table;
196
197 /* General tree->tree mapping structure for use in hash tables. */
198
199
200 static GTY ((if_marked ("tree_decl_map_marked_p"), param_is (struct tree_decl_map)))
201 htab_t debug_expr_for_decl;
202
203 static GTY ((if_marked ("tree_decl_map_marked_p"), param_is (struct tree_decl_map)))
204 htab_t value_expr_for_decl;
205
206 static GTY ((if_marked ("tree_vec_map_marked_p"), param_is (struct tree_vec_map)))
207 htab_t debug_args_for_decl;
208
209 static GTY ((if_marked ("tree_priority_map_marked_p"),
210 param_is (struct tree_priority_map)))
211 htab_t init_priority_for_decl;
212
213 static void set_type_quals (tree, int);
214 static int type_hash_eq (const void *, const void *);
215 static hashval_t type_hash_hash (const void *);
216 static hashval_t int_cst_hash_hash (const void *);
217 static int int_cst_hash_eq (const void *, const void *);
218 static hashval_t cl_option_hash_hash (const void *);
219 static int cl_option_hash_eq (const void *, const void *);
220 static void print_type_hash_statistics (void);
221 static void print_debug_expr_statistics (void);
222 static void print_value_expr_statistics (void);
223 static int type_hash_marked_p (const void *);
224 static unsigned int type_hash_list (const_tree, hashval_t);
225 static unsigned int attribute_hash_list (const_tree, hashval_t);
226
227 tree global_trees[TI_MAX];
228 tree integer_types[itk_none];
229
230 unsigned char tree_contains_struct[MAX_TREE_CODES][64];
231
232 /* Number of operands for each OpenMP clause. */
233 unsigned const char omp_clause_num_ops[] =
234 {
235 0, /* OMP_CLAUSE_ERROR */
236 1, /* OMP_CLAUSE_PRIVATE */
237 1, /* OMP_CLAUSE_SHARED */
238 1, /* OMP_CLAUSE_FIRSTPRIVATE */
239 2, /* OMP_CLAUSE_LASTPRIVATE */
240 4, /* OMP_CLAUSE_REDUCTION */
241 1, /* OMP_CLAUSE_COPYIN */
242 1, /* OMP_CLAUSE_COPYPRIVATE */
243 1, /* OMP_CLAUSE_IF */
244 1, /* OMP_CLAUSE_NUM_THREADS */
245 1, /* OMP_CLAUSE_SCHEDULE */
246 0, /* OMP_CLAUSE_NOWAIT */
247 0, /* OMP_CLAUSE_ORDERED */
248 0, /* OMP_CLAUSE_DEFAULT */
249 3, /* OMP_CLAUSE_COLLAPSE */
250 0, /* OMP_CLAUSE_UNTIED */
251 1, /* OMP_CLAUSE_FINAL */
252 0 /* OMP_CLAUSE_MERGEABLE */
253 };
254
255 const char * const omp_clause_code_name[] =
256 {
257 "error_clause",
258 "private",
259 "shared",
260 "firstprivate",
261 "lastprivate",
262 "reduction",
263 "copyin",
264 "copyprivate",
265 "if",
266 "num_threads",
267 "schedule",
268 "nowait",
269 "ordered",
270 "default",
271 "collapse",
272 "untied",
273 "final",
274 "mergeable"
275 };
276
277
278 /* Return the tree node structure used by tree code CODE. */
279
280 static inline enum tree_node_structure_enum
281 tree_node_structure_for_code (enum tree_code code)
282 {
283 switch (TREE_CODE_CLASS (code))
284 {
285 case tcc_declaration:
286 {
287 switch (code)
288 {
289 case FIELD_DECL:
290 return TS_FIELD_DECL;
291 case PARM_DECL:
292 return TS_PARM_DECL;
293 case VAR_DECL:
294 return TS_VAR_DECL;
295 case LABEL_DECL:
296 return TS_LABEL_DECL;
297 case RESULT_DECL:
298 return TS_RESULT_DECL;
299 case DEBUG_EXPR_DECL:
300 return TS_DECL_WRTL;
301 case CONST_DECL:
302 return TS_CONST_DECL;
303 case TYPE_DECL:
304 return TS_TYPE_DECL;
305 case FUNCTION_DECL:
306 return TS_FUNCTION_DECL;
307 case TRANSLATION_UNIT_DECL:
308 return TS_TRANSLATION_UNIT_DECL;
309 default:
310 return TS_DECL_NON_COMMON;
311 }
312 }
313 case tcc_type:
314 return TS_TYPE_NON_COMMON;
315 case tcc_reference:
316 case tcc_comparison:
317 case tcc_unary:
318 case tcc_binary:
319 case tcc_expression:
320 case tcc_statement:
321 case tcc_vl_exp:
322 return TS_EXP;
323 default: /* tcc_constant and tcc_exceptional */
324 break;
325 }
326 switch (code)
327 {
328 /* tcc_constant cases. */
329 case INTEGER_CST: return TS_INT_CST;
330 case REAL_CST: return TS_REAL_CST;
331 case FIXED_CST: return TS_FIXED_CST;
332 case COMPLEX_CST: return TS_COMPLEX;
333 case VECTOR_CST: return TS_VECTOR;
334 case STRING_CST: return TS_STRING;
335 /* tcc_exceptional cases. */
336 case ERROR_MARK: return TS_COMMON;
337 case IDENTIFIER_NODE: return TS_IDENTIFIER;
338 case TREE_LIST: return TS_LIST;
339 case TREE_VEC: return TS_VEC;
340 case SSA_NAME: return TS_SSA_NAME;
341 case PLACEHOLDER_EXPR: return TS_COMMON;
342 case STATEMENT_LIST: return TS_STATEMENT_LIST;
343 case BLOCK: return TS_BLOCK;
344 case CONSTRUCTOR: return TS_CONSTRUCTOR;
345 case TREE_BINFO: return TS_BINFO;
346 case OMP_CLAUSE: return TS_OMP_CLAUSE;
347 case OPTIMIZATION_NODE: return TS_OPTIMIZATION;
348 case TARGET_OPTION_NODE: return TS_TARGET_OPTION;
349
350 default:
351 gcc_unreachable ();
352 }
353 }
354
355
356 /* Initialize tree_contains_struct to describe the hierarchy of tree
357 nodes. */
358
359 static void
360 initialize_tree_contains_struct (void)
361 {
362 unsigned i;
363
364 for (i = ERROR_MARK; i < LAST_AND_UNUSED_TREE_CODE; i++)
365 {
366 enum tree_code code;
367 enum tree_node_structure_enum ts_code;
368
369 code = (enum tree_code) i;
370 ts_code = tree_node_structure_for_code (code);
371
372 /* Mark the TS structure itself. */
373 tree_contains_struct[code][ts_code] = 1;
374
375 /* Mark all the structures that TS is derived from. */
376 switch (ts_code)
377 {
378 case TS_TYPED:
379 case TS_BLOCK:
380 MARK_TS_BASE (code);
381 break;
382
383 case TS_COMMON:
384 case TS_INT_CST:
385 case TS_REAL_CST:
386 case TS_FIXED_CST:
387 case TS_VECTOR:
388 case TS_STRING:
389 case TS_COMPLEX:
390 case TS_SSA_NAME:
391 case TS_CONSTRUCTOR:
392 case TS_EXP:
393 case TS_STATEMENT_LIST:
394 MARK_TS_TYPED (code);
395 break;
396
397 case TS_IDENTIFIER:
398 case TS_DECL_MINIMAL:
399 case TS_TYPE_COMMON:
400 case TS_LIST:
401 case TS_VEC:
402 case TS_BINFO:
403 case TS_OMP_CLAUSE:
404 case TS_OPTIMIZATION:
405 case TS_TARGET_OPTION:
406 MARK_TS_COMMON (code);
407 break;
408
409 case TS_TYPE_WITH_LANG_SPECIFIC:
410 MARK_TS_TYPE_COMMON (code);
411 break;
412
413 case TS_TYPE_NON_COMMON:
414 MARK_TS_TYPE_WITH_LANG_SPECIFIC (code);
415 break;
416
417 case TS_DECL_COMMON:
418 MARK_TS_DECL_MINIMAL (code);
419 break;
420
421 case TS_DECL_WRTL:
422 case TS_CONST_DECL:
423 MARK_TS_DECL_COMMON (code);
424 break;
425
426 case TS_DECL_NON_COMMON:
427 MARK_TS_DECL_WITH_VIS (code);
428 break;
429
430 case TS_DECL_WITH_VIS:
431 case TS_PARM_DECL:
432 case TS_LABEL_DECL:
433 case TS_RESULT_DECL:
434 MARK_TS_DECL_WRTL (code);
435 break;
436
437 case TS_FIELD_DECL:
438 MARK_TS_DECL_COMMON (code);
439 break;
440
441 case TS_VAR_DECL:
442 MARK_TS_DECL_WITH_VIS (code);
443 break;
444
445 case TS_TYPE_DECL:
446 case TS_FUNCTION_DECL:
447 MARK_TS_DECL_NON_COMMON (code);
448 break;
449
450 case TS_TRANSLATION_UNIT_DECL:
451 MARK_TS_DECL_COMMON (code);
452 break;
453
454 default:
455 gcc_unreachable ();
456 }
457 }
458
459 /* Basic consistency checks for attributes used in fold. */
460 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_NON_COMMON]);
461 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_NON_COMMON]);
462 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_COMMON]);
463 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_COMMON]);
464 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_COMMON]);
465 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_COMMON]);
466 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_COMMON]);
467 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_COMMON]);
468 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_COMMON]);
469 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_COMMON]);
470 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_COMMON]);
471 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WRTL]);
472 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_WRTL]);
473 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_WRTL]);
474 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WRTL]);
475 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_WRTL]);
476 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_MINIMAL]);
477 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_MINIMAL]);
478 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_MINIMAL]);
479 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_MINIMAL]);
480 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_MINIMAL]);
481 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_MINIMAL]);
482 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_MINIMAL]);
483 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_MINIMAL]);
484 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_MINIMAL]);
485 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WITH_VIS]);
486 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WITH_VIS]);
487 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_WITH_VIS]);
488 gcc_assert (tree_contains_struct[VAR_DECL][TS_VAR_DECL]);
489 gcc_assert (tree_contains_struct[FIELD_DECL][TS_FIELD_DECL]);
490 gcc_assert (tree_contains_struct[PARM_DECL][TS_PARM_DECL]);
491 gcc_assert (tree_contains_struct[LABEL_DECL][TS_LABEL_DECL]);
492 gcc_assert (tree_contains_struct[RESULT_DECL][TS_RESULT_DECL]);
493 gcc_assert (tree_contains_struct[CONST_DECL][TS_CONST_DECL]);
494 gcc_assert (tree_contains_struct[TYPE_DECL][TS_TYPE_DECL]);
495 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_FUNCTION_DECL]);
496 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_MINIMAL]);
497 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_COMMON]);
498 }
499
500
501 /* Init tree.c. */
502
503 void
504 init_ttree (void)
505 {
506 /* Initialize the hash table of types. */
507 type_hash_table = htab_create_ggc (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
508 type_hash_eq, 0);
509
510 debug_expr_for_decl = htab_create_ggc (512, tree_decl_map_hash,
511 tree_decl_map_eq, 0);
512
513 value_expr_for_decl = htab_create_ggc (512, tree_decl_map_hash,
514 tree_decl_map_eq, 0);
515 init_priority_for_decl = htab_create_ggc (512, tree_priority_map_hash,
516 tree_priority_map_eq, 0);
517
518 int_cst_hash_table = htab_create_ggc (1024, int_cst_hash_hash,
519 int_cst_hash_eq, NULL);
520
521 int_cst_node = make_node (INTEGER_CST);
522
523 cl_option_hash_table = htab_create_ggc (64, cl_option_hash_hash,
524 cl_option_hash_eq, NULL);
525
526 cl_optimization_node = make_node (OPTIMIZATION_NODE);
527 cl_target_option_node = make_node (TARGET_OPTION_NODE);
528
529 /* Initialize the tree_contains_struct array. */
530 initialize_tree_contains_struct ();
531 lang_hooks.init_ts ();
532 }
533
534 \f
535 /* The name of the object as the assembler will see it (but before any
536 translations made by ASM_OUTPUT_LABELREF). Often this is the same
537 as DECL_NAME. It is an IDENTIFIER_NODE. */
538 tree
539 decl_assembler_name (tree decl)
540 {
541 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
542 lang_hooks.set_decl_assembler_name (decl);
543 return DECL_WITH_VIS_CHECK (decl)->decl_with_vis.assembler_name;
544 }
545
546 /* Compare ASMNAME with the DECL_ASSEMBLER_NAME of DECL. */
547
548 bool
549 decl_assembler_name_equal (tree decl, const_tree asmname)
550 {
551 tree decl_asmname = DECL_ASSEMBLER_NAME (decl);
552 const char *decl_str;
553 const char *asmname_str;
554 bool test = false;
555
556 if (decl_asmname == asmname)
557 return true;
558
559 decl_str = IDENTIFIER_POINTER (decl_asmname);
560 asmname_str = IDENTIFIER_POINTER (asmname);
561
562
563 /* If the target assembler name was set by the user, things are trickier.
564 We have a leading '*' to begin with. After that, it's arguable what
565 is the correct thing to do with -fleading-underscore. Arguably, we've
566 historically been doing the wrong thing in assemble_alias by always
567 printing the leading underscore. Since we're not changing that, make
568 sure user_label_prefix follows the '*' before matching. */
569 if (decl_str[0] == '*')
570 {
571 size_t ulp_len = strlen (user_label_prefix);
572
573 decl_str ++;
574
575 if (ulp_len == 0)
576 test = true;
577 else if (strncmp (decl_str, user_label_prefix, ulp_len) == 0)
578 decl_str += ulp_len, test=true;
579 else
580 decl_str --;
581 }
582 if (asmname_str[0] == '*')
583 {
584 size_t ulp_len = strlen (user_label_prefix);
585
586 asmname_str ++;
587
588 if (ulp_len == 0)
589 test = true;
590 else if (strncmp (asmname_str, user_label_prefix, ulp_len) == 0)
591 asmname_str += ulp_len, test=true;
592 else
593 asmname_str --;
594 }
595
596 if (!test)
597 return false;
598 return strcmp (decl_str, asmname_str) == 0;
599 }
600
601 /* Hash asmnames ignoring the user specified marks. */
602
603 hashval_t
604 decl_assembler_name_hash (const_tree asmname)
605 {
606 if (IDENTIFIER_POINTER (asmname)[0] == '*')
607 {
608 const char *decl_str = IDENTIFIER_POINTER (asmname) + 1;
609 size_t ulp_len = strlen (user_label_prefix);
610
611 if (ulp_len == 0)
612 ;
613 else if (strncmp (decl_str, user_label_prefix, ulp_len) == 0)
614 decl_str += ulp_len;
615
616 return htab_hash_string (decl_str);
617 }
618
619 return htab_hash_string (IDENTIFIER_POINTER (asmname));
620 }
621
622 /* Compute the number of bytes occupied by a tree with code CODE.
623 This function cannot be used for nodes that have variable sizes,
624 including TREE_VEC, STRING_CST, and CALL_EXPR. */
625 size_t
626 tree_code_size (enum tree_code code)
627 {
628 switch (TREE_CODE_CLASS (code))
629 {
630 case tcc_declaration: /* A decl node */
631 {
632 switch (code)
633 {
634 case FIELD_DECL:
635 return sizeof (struct tree_field_decl);
636 case PARM_DECL:
637 return sizeof (struct tree_parm_decl);
638 case VAR_DECL:
639 return sizeof (struct tree_var_decl);
640 case LABEL_DECL:
641 return sizeof (struct tree_label_decl);
642 case RESULT_DECL:
643 return sizeof (struct tree_result_decl);
644 case CONST_DECL:
645 return sizeof (struct tree_const_decl);
646 case TYPE_DECL:
647 return sizeof (struct tree_type_decl);
648 case FUNCTION_DECL:
649 return sizeof (struct tree_function_decl);
650 case DEBUG_EXPR_DECL:
651 return sizeof (struct tree_decl_with_rtl);
652 default:
653 return sizeof (struct tree_decl_non_common);
654 }
655 }
656
657 case tcc_type: /* a type node */
658 return sizeof (struct tree_type_non_common);
659
660 case tcc_reference: /* a reference */
661 case tcc_expression: /* an expression */
662 case tcc_statement: /* an expression with side effects */
663 case tcc_comparison: /* a comparison expression */
664 case tcc_unary: /* a unary arithmetic expression */
665 case tcc_binary: /* a binary arithmetic expression */
666 return (sizeof (struct tree_exp)
667 + (TREE_CODE_LENGTH (code) - 1) * sizeof (tree));
668
669 case tcc_constant: /* a constant */
670 switch (code)
671 {
672 case INTEGER_CST: return sizeof (struct tree_int_cst);
673 case REAL_CST: return sizeof (struct tree_real_cst);
674 case FIXED_CST: return sizeof (struct tree_fixed_cst);
675 case COMPLEX_CST: return sizeof (struct tree_complex);
676 case VECTOR_CST: return sizeof (struct tree_vector);
677 case STRING_CST: gcc_unreachable ();
678 default:
679 return lang_hooks.tree_size (code);
680 }
681
682 case tcc_exceptional: /* something random, like an identifier. */
683 switch (code)
684 {
685 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
686 case TREE_LIST: return sizeof (struct tree_list);
687
688 case ERROR_MARK:
689 case PLACEHOLDER_EXPR: return sizeof (struct tree_common);
690
691 case TREE_VEC:
692 case OMP_CLAUSE: gcc_unreachable ();
693
694 case SSA_NAME: return sizeof (struct tree_ssa_name);
695
696 case STATEMENT_LIST: return sizeof (struct tree_statement_list);
697 case BLOCK: return sizeof (struct tree_block);
698 case CONSTRUCTOR: return sizeof (struct tree_constructor);
699 case OPTIMIZATION_NODE: return sizeof (struct tree_optimization_option);
700 case TARGET_OPTION_NODE: return sizeof (struct tree_target_option);
701
702 default:
703 return lang_hooks.tree_size (code);
704 }
705
706 default:
707 gcc_unreachable ();
708 }
709 }
710
711 /* Compute the number of bytes occupied by NODE. This routine only
712 looks at TREE_CODE, except for those nodes that have variable sizes. */
713 size_t
714 tree_size (const_tree node)
715 {
716 const enum tree_code code = TREE_CODE (node);
717 switch (code)
718 {
719 case TREE_BINFO:
720 return (offsetof (struct tree_binfo, base_binfos)
721 + VEC_embedded_size (tree, BINFO_N_BASE_BINFOS (node)));
722
723 case TREE_VEC:
724 return (sizeof (struct tree_vec)
725 + (TREE_VEC_LENGTH (node) - 1) * sizeof (tree));
726
727 case STRING_CST:
728 return TREE_STRING_LENGTH (node) + offsetof (struct tree_string, str) + 1;
729
730 case OMP_CLAUSE:
731 return (sizeof (struct tree_omp_clause)
732 + (omp_clause_num_ops[OMP_CLAUSE_CODE (node)] - 1)
733 * sizeof (tree));
734
735 default:
736 if (TREE_CODE_CLASS (code) == tcc_vl_exp)
737 return (sizeof (struct tree_exp)
738 + (VL_EXP_OPERAND_LENGTH (node) - 1) * sizeof (tree));
739 else
740 return tree_code_size (code);
741 }
742 }
743
744 /* Record interesting allocation statistics for a tree node with CODE
745 and LENGTH. */
746
747 static void
748 record_node_allocation_statistics (enum tree_code code ATTRIBUTE_UNUSED,
749 size_t length ATTRIBUTE_UNUSED)
750 {
751 #ifdef GATHER_STATISTICS
752 enum tree_code_class type = TREE_CODE_CLASS (code);
753 tree_node_kind kind;
754
755 switch (type)
756 {
757 case tcc_declaration: /* A decl node */
758 kind = d_kind;
759 break;
760
761 case tcc_type: /* a type node */
762 kind = t_kind;
763 break;
764
765 case tcc_statement: /* an expression with side effects */
766 kind = s_kind;
767 break;
768
769 case tcc_reference: /* a reference */
770 kind = r_kind;
771 break;
772
773 case tcc_expression: /* an expression */
774 case tcc_comparison: /* a comparison expression */
775 case tcc_unary: /* a unary arithmetic expression */
776 case tcc_binary: /* a binary arithmetic expression */
777 kind = e_kind;
778 break;
779
780 case tcc_constant: /* a constant */
781 kind = c_kind;
782 break;
783
784 case tcc_exceptional: /* something random, like an identifier. */
785 switch (code)
786 {
787 case IDENTIFIER_NODE:
788 kind = id_kind;
789 break;
790
791 case TREE_VEC:
792 kind = vec_kind;
793 break;
794
795 case TREE_BINFO:
796 kind = binfo_kind;
797 break;
798
799 case SSA_NAME:
800 kind = ssa_name_kind;
801 break;
802
803 case BLOCK:
804 kind = b_kind;
805 break;
806
807 case CONSTRUCTOR:
808 kind = constr_kind;
809 break;
810
811 case OMP_CLAUSE:
812 kind = omp_clause_kind;
813 break;
814
815 default:
816 kind = x_kind;
817 break;
818 }
819 break;
820
821 case tcc_vl_exp:
822 kind = e_kind;
823 break;
824
825 default:
826 gcc_unreachable ();
827 }
828
829 tree_code_counts[(int) code]++;
830 tree_node_counts[(int) kind]++;
831 tree_node_sizes[(int) kind] += length;
832 #endif
833 }
834
835 /* Allocate and return a new UID from the DECL_UID namespace. */
836
837 int
838 allocate_decl_uid (void)
839 {
840 return next_decl_uid++;
841 }
842
843 /* Return a newly allocated node of code CODE. For decl and type
844 nodes, some other fields are initialized. The rest of the node is
845 initialized to zero. This function cannot be used for TREE_VEC or
846 OMP_CLAUSE nodes, which is enforced by asserts in tree_code_size.
847
848 Achoo! I got a code in the node. */
849
850 tree
851 make_node_stat (enum tree_code code MEM_STAT_DECL)
852 {
853 tree t;
854 enum tree_code_class type = TREE_CODE_CLASS (code);
855 size_t length = tree_code_size (code);
856
857 record_node_allocation_statistics (code, length);
858
859 t = ggc_alloc_zone_cleared_tree_node_stat (
860 (code == IDENTIFIER_NODE) ? &tree_id_zone : &tree_zone,
861 length PASS_MEM_STAT);
862 TREE_SET_CODE (t, code);
863
864 switch (type)
865 {
866 case tcc_statement:
867 TREE_SIDE_EFFECTS (t) = 1;
868 break;
869
870 case tcc_declaration:
871 if (CODE_CONTAINS_STRUCT (code, TS_DECL_COMMON))
872 {
873 if (code == FUNCTION_DECL)
874 {
875 DECL_ALIGN (t) = FUNCTION_BOUNDARY;
876 DECL_MODE (t) = FUNCTION_MODE;
877 }
878 else
879 DECL_ALIGN (t) = 1;
880 }
881 DECL_SOURCE_LOCATION (t) = input_location;
882 if (TREE_CODE (t) == DEBUG_EXPR_DECL)
883 DECL_UID (t) = --next_debug_decl_uid;
884 else
885 {
886 DECL_UID (t) = allocate_decl_uid ();
887 SET_DECL_PT_UID (t, -1);
888 }
889 if (TREE_CODE (t) == LABEL_DECL)
890 LABEL_DECL_UID (t) = -1;
891
892 break;
893
894 case tcc_type:
895 TYPE_UID (t) = next_type_uid++;
896 TYPE_ALIGN (t) = BITS_PER_UNIT;
897 TYPE_USER_ALIGN (t) = 0;
898 TYPE_MAIN_VARIANT (t) = t;
899 TYPE_CANONICAL (t) = t;
900
901 /* Default to no attributes for type, but let target change that. */
902 TYPE_ATTRIBUTES (t) = NULL_TREE;
903 targetm.set_default_type_attributes (t);
904
905 /* We have not yet computed the alias set for this type. */
906 TYPE_ALIAS_SET (t) = -1;
907 break;
908
909 case tcc_constant:
910 TREE_CONSTANT (t) = 1;
911 break;
912
913 case tcc_expression:
914 switch (code)
915 {
916 case INIT_EXPR:
917 case MODIFY_EXPR:
918 case VA_ARG_EXPR:
919 case PREDECREMENT_EXPR:
920 case PREINCREMENT_EXPR:
921 case POSTDECREMENT_EXPR:
922 case POSTINCREMENT_EXPR:
923 /* All of these have side-effects, no matter what their
924 operands are. */
925 TREE_SIDE_EFFECTS (t) = 1;
926 break;
927
928 default:
929 break;
930 }
931 break;
932
933 default:
934 /* Other classes need no special treatment. */
935 break;
936 }
937
938 return t;
939 }
940 \f
941 /* Return a new node with the same contents as NODE except that its
942 TREE_CHAIN, if it has one, is zero and it has a fresh uid. */
943
944 tree
945 copy_node_stat (tree node MEM_STAT_DECL)
946 {
947 tree t;
948 enum tree_code code = TREE_CODE (node);
949 size_t length;
950
951 gcc_assert (code != STATEMENT_LIST);
952
953 length = tree_size (node);
954 record_node_allocation_statistics (code, length);
955 t = ggc_alloc_zone_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
956 memcpy (t, node, length);
957
958 if (CODE_CONTAINS_STRUCT (code, TS_COMMON))
959 TREE_CHAIN (t) = 0;
960 TREE_ASM_WRITTEN (t) = 0;
961 TREE_VISITED (t) = 0;
962 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
963 *DECL_VAR_ANN_PTR (t) = 0;
964
965 if (TREE_CODE_CLASS (code) == tcc_declaration)
966 {
967 if (code == DEBUG_EXPR_DECL)
968 DECL_UID (t) = --next_debug_decl_uid;
969 else
970 {
971 DECL_UID (t) = allocate_decl_uid ();
972 if (DECL_PT_UID_SET_P (node))
973 SET_DECL_PT_UID (t, DECL_PT_UID (node));
974 }
975 if ((TREE_CODE (node) == PARM_DECL || TREE_CODE (node) == VAR_DECL)
976 && DECL_HAS_VALUE_EXPR_P (node))
977 {
978 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (node));
979 DECL_HAS_VALUE_EXPR_P (t) = 1;
980 }
981 if (TREE_CODE (node) == VAR_DECL && DECL_HAS_INIT_PRIORITY_P (node))
982 {
983 SET_DECL_INIT_PRIORITY (t, DECL_INIT_PRIORITY (node));
984 DECL_HAS_INIT_PRIORITY_P (t) = 1;
985 }
986 }
987 else if (TREE_CODE_CLASS (code) == tcc_type)
988 {
989 TYPE_UID (t) = next_type_uid++;
990 /* The following is so that the debug code for
991 the copy is different from the original type.
992 The two statements usually duplicate each other
993 (because they clear fields of the same union),
994 but the optimizer should catch that. */
995 TYPE_SYMTAB_POINTER (t) = 0;
996 TYPE_SYMTAB_ADDRESS (t) = 0;
997
998 /* Do not copy the values cache. */
999 if (TYPE_CACHED_VALUES_P(t))
1000 {
1001 TYPE_CACHED_VALUES_P (t) = 0;
1002 TYPE_CACHED_VALUES (t) = NULL_TREE;
1003 }
1004 }
1005
1006 return t;
1007 }
1008
1009 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
1010 For example, this can copy a list made of TREE_LIST nodes. */
1011
1012 tree
1013 copy_list (tree list)
1014 {
1015 tree head;
1016 tree prev, next;
1017
1018 if (list == 0)
1019 return 0;
1020
1021 head = prev = copy_node (list);
1022 next = TREE_CHAIN (list);
1023 while (next)
1024 {
1025 TREE_CHAIN (prev) = copy_node (next);
1026 prev = TREE_CHAIN (prev);
1027 next = TREE_CHAIN (next);
1028 }
1029 return head;
1030 }
1031
1032 \f
1033 /* Create an INT_CST node with a LOW value sign extended to TYPE. */
1034
1035 tree
1036 build_int_cst (tree type, HOST_WIDE_INT low)
1037 {
1038 /* Support legacy code. */
1039 if (!type)
1040 type = integer_type_node;
1041
1042 return double_int_to_tree (type, shwi_to_double_int (low));
1043 }
1044
1045 /* Create an INT_CST node with a LOW value sign extended to TYPE. */
1046
1047 tree
1048 build_int_cst_type (tree type, HOST_WIDE_INT low)
1049 {
1050 gcc_assert (type);
1051
1052 return double_int_to_tree (type, shwi_to_double_int (low));
1053 }
1054
1055 /* Constructs tree in type TYPE from with value given by CST. Signedness
1056 of CST is assumed to be the same as the signedness of TYPE. */
1057
1058 tree
1059 double_int_to_tree (tree type, double_int cst)
1060 {
1061 /* Size types *are* sign extended. */
1062 bool sign_extended_type = (!TYPE_UNSIGNED (type)
1063 || (TREE_CODE (type) == INTEGER_TYPE
1064 && TYPE_IS_SIZETYPE (type)));
1065
1066 cst = double_int_ext (cst, TYPE_PRECISION (type), !sign_extended_type);
1067
1068 return build_int_cst_wide (type, cst.low, cst.high);
1069 }
1070
1071 /* Returns true if CST fits into range of TYPE. Signedness of CST is assumed
1072 to be the same as the signedness of TYPE. */
1073
1074 bool
1075 double_int_fits_to_tree_p (const_tree type, double_int cst)
1076 {
1077 /* Size types *are* sign extended. */
1078 bool sign_extended_type = (!TYPE_UNSIGNED (type)
1079 || (TREE_CODE (type) == INTEGER_TYPE
1080 && TYPE_IS_SIZETYPE (type)));
1081
1082 double_int ext
1083 = double_int_ext (cst, TYPE_PRECISION (type), !sign_extended_type);
1084
1085 return double_int_equal_p (cst, ext);
1086 }
1087
1088 /* We force the double_int CST to the range of the type TYPE by sign or
1089 zero extending it. OVERFLOWABLE indicates if we are interested in
1090 overflow of the value, when >0 we are only interested in signed
1091 overflow, for <0 we are interested in any overflow. OVERFLOWED
1092 indicates whether overflow has already occurred. CONST_OVERFLOWED
1093 indicates whether constant overflow has already occurred. We force
1094 T's value to be within range of T's type (by setting to 0 or 1 all
1095 the bits outside the type's range). We set TREE_OVERFLOWED if,
1096 OVERFLOWED is nonzero,
1097 or OVERFLOWABLE is >0 and signed overflow occurs
1098 or OVERFLOWABLE is <0 and any overflow occurs
1099 We return a new tree node for the extended double_int. The node
1100 is shared if no overflow flags are set. */
1101
1102
1103 tree
1104 force_fit_type_double (tree type, double_int cst, int overflowable,
1105 bool overflowed)
1106 {
1107 bool sign_extended_type;
1108
1109 /* Size types *are* sign extended. */
1110 sign_extended_type = (!TYPE_UNSIGNED (type)
1111 || (TREE_CODE (type) == INTEGER_TYPE
1112 && TYPE_IS_SIZETYPE (type)));
1113
1114 /* If we need to set overflow flags, return a new unshared node. */
1115 if (overflowed || !double_int_fits_to_tree_p(type, cst))
1116 {
1117 if (overflowed
1118 || overflowable < 0
1119 || (overflowable > 0 && sign_extended_type))
1120 {
1121 tree t = make_node (INTEGER_CST);
1122 TREE_INT_CST (t) = double_int_ext (cst, TYPE_PRECISION (type),
1123 !sign_extended_type);
1124 TREE_TYPE (t) = type;
1125 TREE_OVERFLOW (t) = 1;
1126 return t;
1127 }
1128 }
1129
1130 /* Else build a shared node. */
1131 return double_int_to_tree (type, cst);
1132 }
1133
1134 /* These are the hash table functions for the hash table of INTEGER_CST
1135 nodes of a sizetype. */
1136
1137 /* Return the hash code code X, an INTEGER_CST. */
1138
1139 static hashval_t
1140 int_cst_hash_hash (const void *x)
1141 {
1142 const_tree const t = (const_tree) x;
1143
1144 return (TREE_INT_CST_HIGH (t) ^ TREE_INT_CST_LOW (t)
1145 ^ htab_hash_pointer (TREE_TYPE (t)));
1146 }
1147
1148 /* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
1149 is the same as that given by *Y, which is the same. */
1150
1151 static int
1152 int_cst_hash_eq (const void *x, const void *y)
1153 {
1154 const_tree const xt = (const_tree) x;
1155 const_tree const yt = (const_tree) y;
1156
1157 return (TREE_TYPE (xt) == TREE_TYPE (yt)
1158 && TREE_INT_CST_HIGH (xt) == TREE_INT_CST_HIGH (yt)
1159 && TREE_INT_CST_LOW (xt) == TREE_INT_CST_LOW (yt));
1160 }
1161
1162 /* Create an INT_CST node of TYPE and value HI:LOW.
1163 The returned node is always shared. For small integers we use a
1164 per-type vector cache, for larger ones we use a single hash table. */
1165
1166 tree
1167 build_int_cst_wide (tree type, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
1168 {
1169 tree t;
1170 int ix = -1;
1171 int limit = 0;
1172
1173 gcc_assert (type);
1174
1175 switch (TREE_CODE (type))
1176 {
1177 case NULLPTR_TYPE:
1178 gcc_assert (hi == 0 && low == 0);
1179 /* Fallthru. */
1180
1181 case POINTER_TYPE:
1182 case REFERENCE_TYPE:
1183 /* Cache NULL pointer. */
1184 if (!hi && !low)
1185 {
1186 limit = 1;
1187 ix = 0;
1188 }
1189 break;
1190
1191 case BOOLEAN_TYPE:
1192 /* Cache false or true. */
1193 limit = 2;
1194 if (!hi && low < 2)
1195 ix = low;
1196 break;
1197
1198 case INTEGER_TYPE:
1199 case OFFSET_TYPE:
1200 if (TYPE_UNSIGNED (type))
1201 {
1202 /* Cache 0..N */
1203 limit = INTEGER_SHARE_LIMIT;
1204 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
1205 ix = low;
1206 }
1207 else
1208 {
1209 /* Cache -1..N */
1210 limit = INTEGER_SHARE_LIMIT + 1;
1211 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
1212 ix = low + 1;
1213 else if (hi == -1 && low == -(unsigned HOST_WIDE_INT)1)
1214 ix = 0;
1215 }
1216 break;
1217
1218 case ENUMERAL_TYPE:
1219 break;
1220
1221 default:
1222 gcc_unreachable ();
1223 }
1224
1225 if (ix >= 0)
1226 {
1227 /* Look for it in the type's vector of small shared ints. */
1228 if (!TYPE_CACHED_VALUES_P (type))
1229 {
1230 TYPE_CACHED_VALUES_P (type) = 1;
1231 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
1232 }
1233
1234 t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix);
1235 if (t)
1236 {
1237 /* Make sure no one is clobbering the shared constant. */
1238 gcc_assert (TREE_TYPE (t) == type);
1239 gcc_assert (TREE_INT_CST_LOW (t) == low);
1240 gcc_assert (TREE_INT_CST_HIGH (t) == hi);
1241 }
1242 else
1243 {
1244 /* Create a new shared int. */
1245 t = make_node (INTEGER_CST);
1246
1247 TREE_INT_CST_LOW (t) = low;
1248 TREE_INT_CST_HIGH (t) = hi;
1249 TREE_TYPE (t) = type;
1250
1251 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
1252 }
1253 }
1254 else
1255 {
1256 /* Use the cache of larger shared ints. */
1257 void **slot;
1258
1259 TREE_INT_CST_LOW (int_cst_node) = low;
1260 TREE_INT_CST_HIGH (int_cst_node) = hi;
1261 TREE_TYPE (int_cst_node) = type;
1262
1263 slot = htab_find_slot (int_cst_hash_table, int_cst_node, INSERT);
1264 t = (tree) *slot;
1265 if (!t)
1266 {
1267 /* Insert this one into the hash table. */
1268 t = int_cst_node;
1269 *slot = t;
1270 /* Make a new node for next time round. */
1271 int_cst_node = make_node (INTEGER_CST);
1272 }
1273 }
1274
1275 return t;
1276 }
1277
1278 /* Builds an integer constant in TYPE such that lowest BITS bits are ones
1279 and the rest are zeros. */
1280
1281 tree
1282 build_low_bits_mask (tree type, unsigned bits)
1283 {
1284 double_int mask;
1285
1286 gcc_assert (bits <= TYPE_PRECISION (type));
1287
1288 if (bits == TYPE_PRECISION (type)
1289 && !TYPE_UNSIGNED (type))
1290 /* Sign extended all-ones mask. */
1291 mask = double_int_minus_one;
1292 else
1293 mask = double_int_mask (bits);
1294
1295 return build_int_cst_wide (type, mask.low, mask.high);
1296 }
1297
1298 /* Checks that X is integer constant that can be expressed in (unsigned)
1299 HOST_WIDE_INT without loss of precision. */
1300
1301 bool
1302 cst_and_fits_in_hwi (const_tree x)
1303 {
1304 if (TREE_CODE (x) != INTEGER_CST)
1305 return false;
1306
1307 if (TYPE_PRECISION (TREE_TYPE (x)) > HOST_BITS_PER_WIDE_INT)
1308 return false;
1309
1310 return (TREE_INT_CST_HIGH (x) == 0
1311 || TREE_INT_CST_HIGH (x) == -1);
1312 }
1313
1314 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1315 are in a list pointed to by VALS. */
1316
1317 tree
1318 build_vector (tree type, tree vals)
1319 {
1320 tree v = make_node (VECTOR_CST);
1321 int over = 0;
1322 tree link;
1323 unsigned cnt = 0;
1324
1325 TREE_VECTOR_CST_ELTS (v) = vals;
1326 TREE_TYPE (v) = type;
1327
1328 /* Iterate through elements and check for overflow. */
1329 for (link = vals; link; link = TREE_CHAIN (link))
1330 {
1331 tree value = TREE_VALUE (link);
1332 cnt++;
1333
1334 /* Don't crash if we get an address constant. */
1335 if (!CONSTANT_CLASS_P (value))
1336 continue;
1337
1338 over |= TREE_OVERFLOW (value);
1339 }
1340
1341 gcc_assert (cnt == TYPE_VECTOR_SUBPARTS (type));
1342
1343 TREE_OVERFLOW (v) = over;
1344 return v;
1345 }
1346
1347 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1348 are extracted from V, a vector of CONSTRUCTOR_ELT. */
1349
1350 tree
1351 build_vector_from_ctor (tree type, VEC(constructor_elt,gc) *v)
1352 {
1353 tree list = NULL_TREE;
1354 unsigned HOST_WIDE_INT idx;
1355 tree value;
1356
1357 FOR_EACH_CONSTRUCTOR_VALUE (v, idx, value)
1358 list = tree_cons (NULL_TREE, value, list);
1359 for (; idx < TYPE_VECTOR_SUBPARTS (type); ++idx)
1360 list = tree_cons (NULL_TREE,
1361 build_zero_cst (TREE_TYPE (type)), list);
1362 return build_vector (type, nreverse (list));
1363 }
1364
1365 /* Build a vector of type VECTYPE where all the elements are SCs. */
1366 tree
1367 build_vector_from_val (tree vectype, tree sc)
1368 {
1369 int i, nunits = TYPE_VECTOR_SUBPARTS (vectype);
1370 VEC(constructor_elt, gc) *v = NULL;
1371
1372 if (sc == error_mark_node)
1373 return sc;
1374
1375 /* Verify that the vector type is suitable for SC. Note that there
1376 is some inconsistency in the type-system with respect to restrict
1377 qualifications of pointers. Vector types always have a main-variant
1378 element type and the qualification is applied to the vector-type.
1379 So TREE_TYPE (vector-type) does not return a properly qualified
1380 vector element-type. */
1381 gcc_checking_assert (types_compatible_p (TYPE_MAIN_VARIANT (TREE_TYPE (sc)),
1382 TREE_TYPE (vectype)));
1383
1384 v = VEC_alloc (constructor_elt, gc, nunits);
1385 for (i = 0; i < nunits; ++i)
1386 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, sc);
1387
1388 if (CONSTANT_CLASS_P (sc))
1389 return build_vector_from_ctor (vectype, v);
1390 else
1391 return build_constructor (vectype, v);
1392 }
1393
1394 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1395 are in the VEC pointed to by VALS. */
1396 tree
1397 build_constructor (tree type, VEC(constructor_elt,gc) *vals)
1398 {
1399 tree c = make_node (CONSTRUCTOR);
1400 unsigned int i;
1401 constructor_elt *elt;
1402 bool constant_p = true;
1403
1404 TREE_TYPE (c) = type;
1405 CONSTRUCTOR_ELTS (c) = vals;
1406
1407 FOR_EACH_VEC_ELT (constructor_elt, vals, i, elt)
1408 if (!TREE_CONSTANT (elt->value))
1409 {
1410 constant_p = false;
1411 break;
1412 }
1413
1414 TREE_CONSTANT (c) = constant_p;
1415
1416 return c;
1417 }
1418
1419 /* Build a CONSTRUCTOR node made of a single initializer, with the specified
1420 INDEX and VALUE. */
1421 tree
1422 build_constructor_single (tree type, tree index, tree value)
1423 {
1424 VEC(constructor_elt,gc) *v;
1425 constructor_elt *elt;
1426
1427 v = VEC_alloc (constructor_elt, gc, 1);
1428 elt = VEC_quick_push (constructor_elt, v, NULL);
1429 elt->index = index;
1430 elt->value = value;
1431
1432 return build_constructor (type, v);
1433 }
1434
1435
1436 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1437 are in a list pointed to by VALS. */
1438 tree
1439 build_constructor_from_list (tree type, tree vals)
1440 {
1441 tree t;
1442 VEC(constructor_elt,gc) *v = NULL;
1443
1444 if (vals)
1445 {
1446 v = VEC_alloc (constructor_elt, gc, list_length (vals));
1447 for (t = vals; t; t = TREE_CHAIN (t))
1448 CONSTRUCTOR_APPEND_ELT (v, TREE_PURPOSE (t), TREE_VALUE (t));
1449 }
1450
1451 return build_constructor (type, v);
1452 }
1453
1454 /* Return a new FIXED_CST node whose type is TYPE and value is F. */
1455
1456 tree
1457 build_fixed (tree type, FIXED_VALUE_TYPE f)
1458 {
1459 tree v;
1460 FIXED_VALUE_TYPE *fp;
1461
1462 v = make_node (FIXED_CST);
1463 fp = ggc_alloc_fixed_value ();
1464 memcpy (fp, &f, sizeof (FIXED_VALUE_TYPE));
1465
1466 TREE_TYPE (v) = type;
1467 TREE_FIXED_CST_PTR (v) = fp;
1468 return v;
1469 }
1470
1471 /* Return a new REAL_CST node whose type is TYPE and value is D. */
1472
1473 tree
1474 build_real (tree type, REAL_VALUE_TYPE d)
1475 {
1476 tree v;
1477 REAL_VALUE_TYPE *dp;
1478 int overflow = 0;
1479
1480 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
1481 Consider doing it via real_convert now. */
1482
1483 v = make_node (REAL_CST);
1484 dp = ggc_alloc_real_value ();
1485 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
1486
1487 TREE_TYPE (v) = type;
1488 TREE_REAL_CST_PTR (v) = dp;
1489 TREE_OVERFLOW (v) = overflow;
1490 return v;
1491 }
1492
1493 /* Return a new REAL_CST node whose type is TYPE
1494 and whose value is the integer value of the INTEGER_CST node I. */
1495
1496 REAL_VALUE_TYPE
1497 real_value_from_int_cst (const_tree type, const_tree i)
1498 {
1499 REAL_VALUE_TYPE d;
1500
1501 /* Clear all bits of the real value type so that we can later do
1502 bitwise comparisons to see if two values are the same. */
1503 memset (&d, 0, sizeof d);
1504
1505 real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode,
1506 TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
1507 TYPE_UNSIGNED (TREE_TYPE (i)));
1508 return d;
1509 }
1510
1511 /* Given a tree representing an integer constant I, return a tree
1512 representing the same value as a floating-point constant of type TYPE. */
1513
1514 tree
1515 build_real_from_int_cst (tree type, const_tree i)
1516 {
1517 tree v;
1518 int overflow = TREE_OVERFLOW (i);
1519
1520 v = build_real (type, real_value_from_int_cst (type, i));
1521
1522 TREE_OVERFLOW (v) |= overflow;
1523 return v;
1524 }
1525
1526 /* Return a newly constructed STRING_CST node whose value is
1527 the LEN characters at STR.
1528 Note that for a C string literal, LEN should include the trailing NUL.
1529 The TREE_TYPE is not initialized. */
1530
1531 tree
1532 build_string (int len, const char *str)
1533 {
1534 tree s;
1535 size_t length;
1536
1537 /* Do not waste bytes provided by padding of struct tree_string. */
1538 length = len + offsetof (struct tree_string, str) + 1;
1539
1540 record_node_allocation_statistics (STRING_CST, length);
1541
1542 s = ggc_alloc_tree_node (length);
1543
1544 memset (s, 0, sizeof (struct tree_typed));
1545 TREE_SET_CODE (s, STRING_CST);
1546 TREE_CONSTANT (s) = 1;
1547 TREE_STRING_LENGTH (s) = len;
1548 memcpy (s->string.str, str, len);
1549 s->string.str[len] = '\0';
1550
1551 return s;
1552 }
1553
1554 /* Return a newly constructed COMPLEX_CST node whose value is
1555 specified by the real and imaginary parts REAL and IMAG.
1556 Both REAL and IMAG should be constant nodes. TYPE, if specified,
1557 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
1558
1559 tree
1560 build_complex (tree type, tree real, tree imag)
1561 {
1562 tree t = make_node (COMPLEX_CST);
1563
1564 TREE_REALPART (t) = real;
1565 TREE_IMAGPART (t) = imag;
1566 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
1567 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
1568 return t;
1569 }
1570
1571 /* Return a constant of arithmetic type TYPE which is the
1572 multiplicative identity of the set TYPE. */
1573
1574 tree
1575 build_one_cst (tree type)
1576 {
1577 switch (TREE_CODE (type))
1578 {
1579 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1580 case POINTER_TYPE: case REFERENCE_TYPE:
1581 case OFFSET_TYPE:
1582 return build_int_cst (type, 1);
1583
1584 case REAL_TYPE:
1585 return build_real (type, dconst1);
1586
1587 case FIXED_POINT_TYPE:
1588 /* We can only generate 1 for accum types. */
1589 gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
1590 return build_fixed (type, FCONST1(TYPE_MODE (type)));
1591
1592 case VECTOR_TYPE:
1593 {
1594 tree scalar = build_one_cst (TREE_TYPE (type));
1595
1596 return build_vector_from_val (type, scalar);
1597 }
1598
1599 case COMPLEX_TYPE:
1600 return build_complex (type,
1601 build_one_cst (TREE_TYPE (type)),
1602 build_zero_cst (TREE_TYPE (type)));
1603
1604 default:
1605 gcc_unreachable ();
1606 }
1607 }
1608
1609 /* Build 0 constant of type TYPE. This is used by constructor folding
1610 and thus the constant should be represented in memory by
1611 zero(es). */
1612
1613 tree
1614 build_zero_cst (tree type)
1615 {
1616 switch (TREE_CODE (type))
1617 {
1618 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1619 case POINTER_TYPE: case REFERENCE_TYPE:
1620 case OFFSET_TYPE:
1621 return build_int_cst (type, 0);
1622
1623 case REAL_TYPE:
1624 return build_real (type, dconst0);
1625
1626 case FIXED_POINT_TYPE:
1627 return build_fixed (type, FCONST0 (TYPE_MODE (type)));
1628
1629 case VECTOR_TYPE:
1630 {
1631 tree scalar = build_zero_cst (TREE_TYPE (type));
1632
1633 return build_vector_from_val (type, scalar);
1634 }
1635
1636 case COMPLEX_TYPE:
1637 {
1638 tree zero = build_zero_cst (TREE_TYPE (type));
1639
1640 return build_complex (type, zero, zero);
1641 }
1642
1643 default:
1644 if (!AGGREGATE_TYPE_P (type))
1645 return fold_convert (type, integer_zero_node);
1646 return build_constructor (type, NULL);
1647 }
1648 }
1649
1650
1651 /* Build a BINFO with LEN language slots. */
1652
1653 tree
1654 make_tree_binfo_stat (unsigned base_binfos MEM_STAT_DECL)
1655 {
1656 tree t;
1657 size_t length = (offsetof (struct tree_binfo, base_binfos)
1658 + VEC_embedded_size (tree, base_binfos));
1659
1660 record_node_allocation_statistics (TREE_BINFO, length);
1661
1662 t = ggc_alloc_zone_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
1663
1664 memset (t, 0, offsetof (struct tree_binfo, base_binfos));
1665
1666 TREE_SET_CODE (t, TREE_BINFO);
1667
1668 VEC_embedded_init (tree, BINFO_BASE_BINFOS (t), base_binfos);
1669
1670 return t;
1671 }
1672
1673 /* Create a CASE_LABEL_EXPR tree node and return it. */
1674
1675 tree
1676 build_case_label (tree low_value, tree high_value, tree label_decl)
1677 {
1678 tree t = make_node (CASE_LABEL_EXPR);
1679
1680 TREE_TYPE (t) = void_type_node;
1681 SET_EXPR_LOCATION (t, DECL_SOURCE_LOCATION (label_decl));
1682
1683 CASE_LOW (t) = low_value;
1684 CASE_HIGH (t) = high_value;
1685 CASE_LABEL (t) = label_decl;
1686 CASE_CHAIN (t) = NULL_TREE;
1687
1688 return t;
1689 }
1690
1691 /* Build a newly constructed TREE_VEC node of length LEN. */
1692
1693 tree
1694 make_tree_vec_stat (int len MEM_STAT_DECL)
1695 {
1696 tree t;
1697 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
1698
1699 record_node_allocation_statistics (TREE_VEC, length);
1700
1701 t = ggc_alloc_zone_cleared_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
1702
1703 TREE_SET_CODE (t, TREE_VEC);
1704 TREE_VEC_LENGTH (t) = len;
1705
1706 return t;
1707 }
1708 \f
1709 /* Return 1 if EXPR is the integer constant zero or a complex constant
1710 of zero. */
1711
1712 int
1713 integer_zerop (const_tree expr)
1714 {
1715 STRIP_NOPS (expr);
1716
1717 switch (TREE_CODE (expr))
1718 {
1719 case INTEGER_CST:
1720 return (TREE_INT_CST_LOW (expr) == 0
1721 && TREE_INT_CST_HIGH (expr) == 0);
1722 case COMPLEX_CST:
1723 return (integer_zerop (TREE_REALPART (expr))
1724 && integer_zerop (TREE_IMAGPART (expr)));
1725 case VECTOR_CST:
1726 {
1727 tree elt;
1728 for (elt = TREE_VECTOR_CST_ELTS (expr); elt; elt = TREE_CHAIN (elt))
1729 if (!integer_zerop (TREE_VALUE (elt)))
1730 return false;
1731 return true;
1732 }
1733 default:
1734 return false;
1735 }
1736 }
1737
1738 /* Return 1 if EXPR is the integer constant one or the corresponding
1739 complex constant. */
1740
1741 int
1742 integer_onep (const_tree expr)
1743 {
1744 STRIP_NOPS (expr);
1745
1746 switch (TREE_CODE (expr))
1747 {
1748 case INTEGER_CST:
1749 return (TREE_INT_CST_LOW (expr) == 1
1750 && TREE_INT_CST_HIGH (expr) == 0);
1751 case COMPLEX_CST:
1752 return (integer_onep (TREE_REALPART (expr))
1753 && integer_zerop (TREE_IMAGPART (expr)));
1754 case VECTOR_CST:
1755 {
1756 tree elt;
1757 for (elt = TREE_VECTOR_CST_ELTS (expr); elt; elt = TREE_CHAIN (elt))
1758 if (!integer_onep (TREE_VALUE (elt)))
1759 return false;
1760 return true;
1761 }
1762 default:
1763 return false;
1764 }
1765 }
1766
1767 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
1768 it contains. Likewise for the corresponding complex constant. */
1769
1770 int
1771 integer_all_onesp (const_tree expr)
1772 {
1773 int prec;
1774 int uns;
1775
1776 STRIP_NOPS (expr);
1777
1778 if (TREE_CODE (expr) == COMPLEX_CST
1779 && integer_all_onesp (TREE_REALPART (expr))
1780 && integer_zerop (TREE_IMAGPART (expr)))
1781 return 1;
1782
1783 else if (TREE_CODE (expr) == VECTOR_CST)
1784 {
1785 tree elt;
1786 for (elt = TREE_VECTOR_CST_ELTS (expr); elt; elt = TREE_CHAIN (elt))
1787 if (!integer_all_onesp (TREE_VALUE (elt)))
1788 return 0;
1789 return 1;
1790 }
1791
1792 else if (TREE_CODE (expr) != INTEGER_CST)
1793 return 0;
1794
1795 uns = TYPE_UNSIGNED (TREE_TYPE (expr));
1796 if (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1797 && TREE_INT_CST_HIGH (expr) == -1)
1798 return 1;
1799 if (!uns)
1800 return 0;
1801
1802 prec = TYPE_PRECISION (TREE_TYPE (expr));
1803 if (prec >= HOST_BITS_PER_WIDE_INT)
1804 {
1805 HOST_WIDE_INT high_value;
1806 int shift_amount;
1807
1808 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
1809
1810 /* Can not handle precisions greater than twice the host int size. */
1811 gcc_assert (shift_amount <= HOST_BITS_PER_WIDE_INT);
1812 if (shift_amount == HOST_BITS_PER_WIDE_INT)
1813 /* Shifting by the host word size is undefined according to the ANSI
1814 standard, so we must handle this as a special case. */
1815 high_value = -1;
1816 else
1817 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
1818
1819 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1820 && TREE_INT_CST_HIGH (expr) == high_value);
1821 }
1822 else
1823 return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
1824 }
1825
1826 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
1827 one bit on). */
1828
1829 int
1830 integer_pow2p (const_tree expr)
1831 {
1832 int prec;
1833 HOST_WIDE_INT high, low;
1834
1835 STRIP_NOPS (expr);
1836
1837 if (TREE_CODE (expr) == COMPLEX_CST
1838 && integer_pow2p (TREE_REALPART (expr))
1839 && integer_zerop (TREE_IMAGPART (expr)))
1840 return 1;
1841
1842 if (TREE_CODE (expr) != INTEGER_CST)
1843 return 0;
1844
1845 prec = TYPE_PRECISION (TREE_TYPE (expr));
1846 high = TREE_INT_CST_HIGH (expr);
1847 low = TREE_INT_CST_LOW (expr);
1848
1849 /* First clear all bits that are beyond the type's precision in case
1850 we've been sign extended. */
1851
1852 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1853 ;
1854 else if (prec > HOST_BITS_PER_WIDE_INT)
1855 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1856 else
1857 {
1858 high = 0;
1859 if (prec < HOST_BITS_PER_WIDE_INT)
1860 low &= ~((HOST_WIDE_INT) (-1) << prec);
1861 }
1862
1863 if (high == 0 && low == 0)
1864 return 0;
1865
1866 return ((high == 0 && (low & (low - 1)) == 0)
1867 || (low == 0 && (high & (high - 1)) == 0));
1868 }
1869
1870 /* Return 1 if EXPR is an integer constant other than zero or a
1871 complex constant other than zero. */
1872
1873 int
1874 integer_nonzerop (const_tree expr)
1875 {
1876 STRIP_NOPS (expr);
1877
1878 return ((TREE_CODE (expr) == INTEGER_CST
1879 && (TREE_INT_CST_LOW (expr) != 0
1880 || TREE_INT_CST_HIGH (expr) != 0))
1881 || (TREE_CODE (expr) == COMPLEX_CST
1882 && (integer_nonzerop (TREE_REALPART (expr))
1883 || integer_nonzerop (TREE_IMAGPART (expr)))));
1884 }
1885
1886 /* Return 1 if EXPR is the fixed-point constant zero. */
1887
1888 int
1889 fixed_zerop (const_tree expr)
1890 {
1891 return (TREE_CODE (expr) == FIXED_CST
1892 && double_int_zero_p (TREE_FIXED_CST (expr).data));
1893 }
1894
1895 /* Return the power of two represented by a tree node known to be a
1896 power of two. */
1897
1898 int
1899 tree_log2 (const_tree expr)
1900 {
1901 int prec;
1902 HOST_WIDE_INT high, low;
1903
1904 STRIP_NOPS (expr);
1905
1906 if (TREE_CODE (expr) == COMPLEX_CST)
1907 return tree_log2 (TREE_REALPART (expr));
1908
1909 prec = TYPE_PRECISION (TREE_TYPE (expr));
1910 high = TREE_INT_CST_HIGH (expr);
1911 low = TREE_INT_CST_LOW (expr);
1912
1913 /* First clear all bits that are beyond the type's precision in case
1914 we've been sign extended. */
1915
1916 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1917 ;
1918 else if (prec > HOST_BITS_PER_WIDE_INT)
1919 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1920 else
1921 {
1922 high = 0;
1923 if (prec < HOST_BITS_PER_WIDE_INT)
1924 low &= ~((HOST_WIDE_INT) (-1) << prec);
1925 }
1926
1927 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
1928 : exact_log2 (low));
1929 }
1930
1931 /* Similar, but return the largest integer Y such that 2 ** Y is less
1932 than or equal to EXPR. */
1933
1934 int
1935 tree_floor_log2 (const_tree expr)
1936 {
1937 int prec;
1938 HOST_WIDE_INT high, low;
1939
1940 STRIP_NOPS (expr);
1941
1942 if (TREE_CODE (expr) == COMPLEX_CST)
1943 return tree_log2 (TREE_REALPART (expr));
1944
1945 prec = TYPE_PRECISION (TREE_TYPE (expr));
1946 high = TREE_INT_CST_HIGH (expr);
1947 low = TREE_INT_CST_LOW (expr);
1948
1949 /* First clear all bits that are beyond the type's precision in case
1950 we've been sign extended. Ignore if type's precision hasn't been set
1951 since what we are doing is setting it. */
1952
1953 if (prec == 2 * HOST_BITS_PER_WIDE_INT || prec == 0)
1954 ;
1955 else if (prec > HOST_BITS_PER_WIDE_INT)
1956 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1957 else
1958 {
1959 high = 0;
1960 if (prec < HOST_BITS_PER_WIDE_INT)
1961 low &= ~((HOST_WIDE_INT) (-1) << prec);
1962 }
1963
1964 return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
1965 : floor_log2 (low));
1966 }
1967
1968 /* Return 1 if EXPR is the real constant zero. Trailing zeroes matter for
1969 decimal float constants, so don't return 1 for them. */
1970
1971 int
1972 real_zerop (const_tree expr)
1973 {
1974 STRIP_NOPS (expr);
1975
1976 return ((TREE_CODE (expr) == REAL_CST
1977 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0)
1978 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
1979 || (TREE_CODE (expr) == COMPLEX_CST
1980 && real_zerop (TREE_REALPART (expr))
1981 && real_zerop (TREE_IMAGPART (expr))));
1982 }
1983
1984 /* Return 1 if EXPR is the real constant one in real or complex form.
1985 Trailing zeroes matter for decimal float constants, so don't return
1986 1 for them. */
1987
1988 int
1989 real_onep (const_tree expr)
1990 {
1991 STRIP_NOPS (expr);
1992
1993 return ((TREE_CODE (expr) == REAL_CST
1994 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1)
1995 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
1996 || (TREE_CODE (expr) == COMPLEX_CST
1997 && real_onep (TREE_REALPART (expr))
1998 && real_zerop (TREE_IMAGPART (expr))));
1999 }
2000
2001 /* Return 1 if EXPR is the real constant two. Trailing zeroes matter
2002 for decimal float constants, so don't return 1 for them. */
2003
2004 int
2005 real_twop (const_tree expr)
2006 {
2007 STRIP_NOPS (expr);
2008
2009 return ((TREE_CODE (expr) == REAL_CST
2010 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2)
2011 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
2012 || (TREE_CODE (expr) == COMPLEX_CST
2013 && real_twop (TREE_REALPART (expr))
2014 && real_zerop (TREE_IMAGPART (expr))));
2015 }
2016
2017 /* Return 1 if EXPR is the real constant minus one. Trailing zeroes
2018 matter for decimal float constants, so don't return 1 for them. */
2019
2020 int
2021 real_minus_onep (const_tree expr)
2022 {
2023 STRIP_NOPS (expr);
2024
2025 return ((TREE_CODE (expr) == REAL_CST
2026 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconstm1)
2027 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
2028 || (TREE_CODE (expr) == COMPLEX_CST
2029 && real_minus_onep (TREE_REALPART (expr))
2030 && real_zerop (TREE_IMAGPART (expr))));
2031 }
2032
2033 /* Nonzero if EXP is a constant or a cast of a constant. */
2034
2035 int
2036 really_constant_p (const_tree exp)
2037 {
2038 /* This is not quite the same as STRIP_NOPS. It does more. */
2039 while (CONVERT_EXPR_P (exp)
2040 || TREE_CODE (exp) == NON_LVALUE_EXPR)
2041 exp = TREE_OPERAND (exp, 0);
2042 return TREE_CONSTANT (exp);
2043 }
2044 \f
2045 /* Return first list element whose TREE_VALUE is ELEM.
2046 Return 0 if ELEM is not in LIST. */
2047
2048 tree
2049 value_member (tree elem, tree list)
2050 {
2051 while (list)
2052 {
2053 if (elem == TREE_VALUE (list))
2054 return list;
2055 list = TREE_CHAIN (list);
2056 }
2057 return NULL_TREE;
2058 }
2059
2060 /* Return first list element whose TREE_PURPOSE is ELEM.
2061 Return 0 if ELEM is not in LIST. */
2062
2063 tree
2064 purpose_member (const_tree elem, tree list)
2065 {
2066 while (list)
2067 {
2068 if (elem == TREE_PURPOSE (list))
2069 return list;
2070 list = TREE_CHAIN (list);
2071 }
2072 return NULL_TREE;
2073 }
2074
2075 /* Return true if ELEM is in V. */
2076
2077 bool
2078 vec_member (const_tree elem, VEC(tree,gc) *v)
2079 {
2080 unsigned ix;
2081 tree t;
2082 FOR_EACH_VEC_ELT (tree, v, ix, t)
2083 if (elem == t)
2084 return true;
2085 return false;
2086 }
2087
2088 /* Returns element number IDX (zero-origin) of chain CHAIN, or
2089 NULL_TREE. */
2090
2091 tree
2092 chain_index (int idx, tree chain)
2093 {
2094 for (; chain && idx > 0; --idx)
2095 chain = TREE_CHAIN (chain);
2096 return chain;
2097 }
2098
2099 /* Return nonzero if ELEM is part of the chain CHAIN. */
2100
2101 int
2102 chain_member (const_tree elem, const_tree chain)
2103 {
2104 while (chain)
2105 {
2106 if (elem == chain)
2107 return 1;
2108 chain = DECL_CHAIN (chain);
2109 }
2110
2111 return 0;
2112 }
2113
2114 /* Return the length of a chain of nodes chained through TREE_CHAIN.
2115 We expect a null pointer to mark the end of the chain.
2116 This is the Lisp primitive `length'. */
2117
2118 int
2119 list_length (const_tree t)
2120 {
2121 const_tree p = t;
2122 #ifdef ENABLE_TREE_CHECKING
2123 const_tree q = t;
2124 #endif
2125 int len = 0;
2126
2127 while (p)
2128 {
2129 p = TREE_CHAIN (p);
2130 #ifdef ENABLE_TREE_CHECKING
2131 if (len % 2)
2132 q = TREE_CHAIN (q);
2133 gcc_assert (p != q);
2134 #endif
2135 len++;
2136 }
2137
2138 return len;
2139 }
2140
2141 /* Returns the number of FIELD_DECLs in TYPE. */
2142
2143 int
2144 fields_length (const_tree type)
2145 {
2146 tree t = TYPE_FIELDS (type);
2147 int count = 0;
2148
2149 for (; t; t = DECL_CHAIN (t))
2150 if (TREE_CODE (t) == FIELD_DECL)
2151 ++count;
2152
2153 return count;
2154 }
2155
2156 /* Returns the first FIELD_DECL in the TYPE_FIELDS of the RECORD_TYPE or
2157 UNION_TYPE TYPE, or NULL_TREE if none. */
2158
2159 tree
2160 first_field (const_tree type)
2161 {
2162 tree t = TYPE_FIELDS (type);
2163 while (t && TREE_CODE (t) != FIELD_DECL)
2164 t = TREE_CHAIN (t);
2165 return t;
2166 }
2167
2168 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
2169 by modifying the last node in chain 1 to point to chain 2.
2170 This is the Lisp primitive `nconc'. */
2171
2172 tree
2173 chainon (tree op1, tree op2)
2174 {
2175 tree t1;
2176
2177 if (!op1)
2178 return op2;
2179 if (!op2)
2180 return op1;
2181
2182 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
2183 continue;
2184 TREE_CHAIN (t1) = op2;
2185
2186 #ifdef ENABLE_TREE_CHECKING
2187 {
2188 tree t2;
2189 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
2190 gcc_assert (t2 != t1);
2191 }
2192 #endif
2193
2194 return op1;
2195 }
2196
2197 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
2198
2199 tree
2200 tree_last (tree chain)
2201 {
2202 tree next;
2203 if (chain)
2204 while ((next = TREE_CHAIN (chain)))
2205 chain = next;
2206 return chain;
2207 }
2208
2209 /* Reverse the order of elements in the chain T,
2210 and return the new head of the chain (old last element). */
2211
2212 tree
2213 nreverse (tree t)
2214 {
2215 tree prev = 0, decl, next;
2216 for (decl = t; decl; decl = next)
2217 {
2218 /* We shouldn't be using this function to reverse BLOCK chains; we
2219 have blocks_nreverse for that. */
2220 gcc_checking_assert (TREE_CODE (decl) != BLOCK);
2221 next = TREE_CHAIN (decl);
2222 TREE_CHAIN (decl) = prev;
2223 prev = decl;
2224 }
2225 return prev;
2226 }
2227 \f
2228 /* Return a newly created TREE_LIST node whose
2229 purpose and value fields are PARM and VALUE. */
2230
2231 tree
2232 build_tree_list_stat (tree parm, tree value MEM_STAT_DECL)
2233 {
2234 tree t = make_node_stat (TREE_LIST PASS_MEM_STAT);
2235 TREE_PURPOSE (t) = parm;
2236 TREE_VALUE (t) = value;
2237 return t;
2238 }
2239
2240 /* Build a chain of TREE_LIST nodes from a vector. */
2241
2242 tree
2243 build_tree_list_vec_stat (const VEC(tree,gc) *vec MEM_STAT_DECL)
2244 {
2245 tree ret = NULL_TREE;
2246 tree *pp = &ret;
2247 unsigned int i;
2248 tree t;
2249 FOR_EACH_VEC_ELT (tree, vec, i, t)
2250 {
2251 *pp = build_tree_list_stat (NULL, t PASS_MEM_STAT);
2252 pp = &TREE_CHAIN (*pp);
2253 }
2254 return ret;
2255 }
2256
2257 /* Return a newly created TREE_LIST node whose
2258 purpose and value fields are PURPOSE and VALUE
2259 and whose TREE_CHAIN is CHAIN. */
2260
2261 tree
2262 tree_cons_stat (tree purpose, tree value, tree chain MEM_STAT_DECL)
2263 {
2264 tree node;
2265
2266 node = ggc_alloc_zone_tree_node_stat (&tree_zone, sizeof (struct tree_list)
2267 PASS_MEM_STAT);
2268 memset (node, 0, sizeof (struct tree_common));
2269
2270 record_node_allocation_statistics (TREE_LIST, sizeof (struct tree_list));
2271
2272 TREE_SET_CODE (node, TREE_LIST);
2273 TREE_CHAIN (node) = chain;
2274 TREE_PURPOSE (node) = purpose;
2275 TREE_VALUE (node) = value;
2276 return node;
2277 }
2278
2279 /* Return the values of the elements of a CONSTRUCTOR as a vector of
2280 trees. */
2281
2282 VEC(tree,gc) *
2283 ctor_to_vec (tree ctor)
2284 {
2285 VEC(tree, gc) *vec = VEC_alloc (tree, gc, CONSTRUCTOR_NELTS (ctor));
2286 unsigned int ix;
2287 tree val;
2288
2289 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (ctor), ix, val)
2290 VEC_quick_push (tree, vec, val);
2291
2292 return vec;
2293 }
2294 \f
2295 /* Return the size nominally occupied by an object of type TYPE
2296 when it resides in memory. The value is measured in units of bytes,
2297 and its data type is that normally used for type sizes
2298 (which is the first type created by make_signed_type or
2299 make_unsigned_type). */
2300
2301 tree
2302 size_in_bytes (const_tree type)
2303 {
2304 tree t;
2305
2306 if (type == error_mark_node)
2307 return integer_zero_node;
2308
2309 type = TYPE_MAIN_VARIANT (type);
2310 t = TYPE_SIZE_UNIT (type);
2311
2312 if (t == 0)
2313 {
2314 lang_hooks.types.incomplete_type_error (NULL_TREE, type);
2315 return size_zero_node;
2316 }
2317
2318 return t;
2319 }
2320
2321 /* Return the size of TYPE (in bytes) as a wide integer
2322 or return -1 if the size can vary or is larger than an integer. */
2323
2324 HOST_WIDE_INT
2325 int_size_in_bytes (const_tree type)
2326 {
2327 tree t;
2328
2329 if (type == error_mark_node)
2330 return 0;
2331
2332 type = TYPE_MAIN_VARIANT (type);
2333 t = TYPE_SIZE_UNIT (type);
2334 if (t == 0
2335 || TREE_CODE (t) != INTEGER_CST
2336 || TREE_INT_CST_HIGH (t) != 0
2337 /* If the result would appear negative, it's too big to represent. */
2338 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
2339 return -1;
2340
2341 return TREE_INT_CST_LOW (t);
2342 }
2343
2344 /* Return the maximum size of TYPE (in bytes) as a wide integer
2345 or return -1 if the size can vary or is larger than an integer. */
2346
2347 HOST_WIDE_INT
2348 max_int_size_in_bytes (const_tree type)
2349 {
2350 HOST_WIDE_INT size = -1;
2351 tree size_tree;
2352
2353 /* If this is an array type, check for a possible MAX_SIZE attached. */
2354
2355 if (TREE_CODE (type) == ARRAY_TYPE)
2356 {
2357 size_tree = TYPE_ARRAY_MAX_SIZE (type);
2358
2359 if (size_tree && host_integerp (size_tree, 1))
2360 size = tree_low_cst (size_tree, 1);
2361 }
2362
2363 /* If we still haven't been able to get a size, see if the language
2364 can compute a maximum size. */
2365
2366 if (size == -1)
2367 {
2368 size_tree = lang_hooks.types.max_size (type);
2369
2370 if (size_tree && host_integerp (size_tree, 1))
2371 size = tree_low_cst (size_tree, 1);
2372 }
2373
2374 return size;
2375 }
2376
2377 /* Returns a tree for the size of EXP in bytes. */
2378
2379 tree
2380 tree_expr_size (const_tree exp)
2381 {
2382 if (DECL_P (exp)
2383 && DECL_SIZE_UNIT (exp) != 0)
2384 return DECL_SIZE_UNIT (exp);
2385 else
2386 return size_in_bytes (TREE_TYPE (exp));
2387 }
2388 \f
2389 /* Return the bit position of FIELD, in bits from the start of the record.
2390 This is a tree of type bitsizetype. */
2391
2392 tree
2393 bit_position (const_tree field)
2394 {
2395 return bit_from_pos (DECL_FIELD_OFFSET (field),
2396 DECL_FIELD_BIT_OFFSET (field));
2397 }
2398
2399 /* Likewise, but return as an integer. It must be representable in
2400 that way (since it could be a signed value, we don't have the
2401 option of returning -1 like int_size_in_byte can. */
2402
2403 HOST_WIDE_INT
2404 int_bit_position (const_tree field)
2405 {
2406 return tree_low_cst (bit_position (field), 0);
2407 }
2408 \f
2409 /* Return the byte position of FIELD, in bytes from the start of the record.
2410 This is a tree of type sizetype. */
2411
2412 tree
2413 byte_position (const_tree field)
2414 {
2415 return byte_from_pos (DECL_FIELD_OFFSET (field),
2416 DECL_FIELD_BIT_OFFSET (field));
2417 }
2418
2419 /* Likewise, but return as an integer. It must be representable in
2420 that way (since it could be a signed value, we don't have the
2421 option of returning -1 like int_size_in_byte can. */
2422
2423 HOST_WIDE_INT
2424 int_byte_position (const_tree field)
2425 {
2426 return tree_low_cst (byte_position (field), 0);
2427 }
2428 \f
2429 /* Return the strictest alignment, in bits, that T is known to have. */
2430
2431 unsigned int
2432 expr_align (const_tree t)
2433 {
2434 unsigned int align0, align1;
2435
2436 switch (TREE_CODE (t))
2437 {
2438 CASE_CONVERT: case NON_LVALUE_EXPR:
2439 /* If we have conversions, we know that the alignment of the
2440 object must meet each of the alignments of the types. */
2441 align0 = expr_align (TREE_OPERAND (t, 0));
2442 align1 = TYPE_ALIGN (TREE_TYPE (t));
2443 return MAX (align0, align1);
2444
2445 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
2446 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
2447 case CLEANUP_POINT_EXPR:
2448 /* These don't change the alignment of an object. */
2449 return expr_align (TREE_OPERAND (t, 0));
2450
2451 case COND_EXPR:
2452 /* The best we can do is say that the alignment is the least aligned
2453 of the two arms. */
2454 align0 = expr_align (TREE_OPERAND (t, 1));
2455 align1 = expr_align (TREE_OPERAND (t, 2));
2456 return MIN (align0, align1);
2457
2458 /* FIXME: LABEL_DECL and CONST_DECL never have DECL_ALIGN set
2459 meaningfully, it's always 1. */
2460 case LABEL_DECL: case CONST_DECL:
2461 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
2462 case FUNCTION_DECL:
2463 gcc_assert (DECL_ALIGN (t) != 0);
2464 return DECL_ALIGN (t);
2465
2466 default:
2467 break;
2468 }
2469
2470 /* Otherwise take the alignment from that of the type. */
2471 return TYPE_ALIGN (TREE_TYPE (t));
2472 }
2473 \f
2474 /* Return, as a tree node, the number of elements for TYPE (which is an
2475 ARRAY_TYPE) minus one. This counts only elements of the top array. */
2476
2477 tree
2478 array_type_nelts (const_tree type)
2479 {
2480 tree index_type, min, max;
2481
2482 /* If they did it with unspecified bounds, then we should have already
2483 given an error about it before we got here. */
2484 if (! TYPE_DOMAIN (type))
2485 return error_mark_node;
2486
2487 index_type = TYPE_DOMAIN (type);
2488 min = TYPE_MIN_VALUE (index_type);
2489 max = TYPE_MAX_VALUE (index_type);
2490
2491 /* TYPE_MAX_VALUE may not be set if the array has unknown length. */
2492 if (!max)
2493 return error_mark_node;
2494
2495 return (integer_zerop (min)
2496 ? max
2497 : fold_build2 (MINUS_EXPR, TREE_TYPE (max), max, min));
2498 }
2499 \f
2500 /* If arg is static -- a reference to an object in static storage -- then
2501 return the object. This is not the same as the C meaning of `static'.
2502 If arg isn't static, return NULL. */
2503
2504 tree
2505 staticp (tree arg)
2506 {
2507 switch (TREE_CODE (arg))
2508 {
2509 case FUNCTION_DECL:
2510 /* Nested functions are static, even though taking their address will
2511 involve a trampoline as we unnest the nested function and create
2512 the trampoline on the tree level. */
2513 return arg;
2514
2515 case VAR_DECL:
2516 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2517 && ! DECL_THREAD_LOCAL_P (arg)
2518 && ! DECL_DLLIMPORT_P (arg)
2519 ? arg : NULL);
2520
2521 case CONST_DECL:
2522 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2523 ? arg : NULL);
2524
2525 case CONSTRUCTOR:
2526 return TREE_STATIC (arg) ? arg : NULL;
2527
2528 case LABEL_DECL:
2529 case STRING_CST:
2530 return arg;
2531
2532 case COMPONENT_REF:
2533 /* If the thing being referenced is not a field, then it is
2534 something language specific. */
2535 gcc_assert (TREE_CODE (TREE_OPERAND (arg, 1)) == FIELD_DECL);
2536
2537 /* If we are referencing a bitfield, we can't evaluate an
2538 ADDR_EXPR at compile time and so it isn't a constant. */
2539 if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
2540 return NULL;
2541
2542 return staticp (TREE_OPERAND (arg, 0));
2543
2544 case BIT_FIELD_REF:
2545 return NULL;
2546
2547 case INDIRECT_REF:
2548 return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;
2549
2550 case ARRAY_REF:
2551 case ARRAY_RANGE_REF:
2552 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
2553 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
2554 return staticp (TREE_OPERAND (arg, 0));
2555 else
2556 return NULL;
2557
2558 case COMPOUND_LITERAL_EXPR:
2559 return TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (arg)) ? arg : NULL;
2560
2561 default:
2562 return NULL;
2563 }
2564 }
2565
2566 \f
2567
2568
2569 /* Return whether OP is a DECL whose address is function-invariant. */
2570
2571 bool
2572 decl_address_invariant_p (const_tree op)
2573 {
2574 /* The conditions below are slightly less strict than the one in
2575 staticp. */
2576
2577 switch (TREE_CODE (op))
2578 {
2579 case PARM_DECL:
2580 case RESULT_DECL:
2581 case LABEL_DECL:
2582 case FUNCTION_DECL:
2583 return true;
2584
2585 case VAR_DECL:
2586 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
2587 || DECL_THREAD_LOCAL_P (op)
2588 || DECL_CONTEXT (op) == current_function_decl
2589 || decl_function_context (op) == current_function_decl)
2590 return true;
2591 break;
2592
2593 case CONST_DECL:
2594 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
2595 || decl_function_context (op) == current_function_decl)
2596 return true;
2597 break;
2598
2599 default:
2600 break;
2601 }
2602
2603 return false;
2604 }
2605
2606 /* Return whether OP is a DECL whose address is interprocedural-invariant. */
2607
2608 bool
2609 decl_address_ip_invariant_p (const_tree op)
2610 {
2611 /* The conditions below are slightly less strict than the one in
2612 staticp. */
2613
2614 switch (TREE_CODE (op))
2615 {
2616 case LABEL_DECL:
2617 case FUNCTION_DECL:
2618 case STRING_CST:
2619 return true;
2620
2621 case VAR_DECL:
2622 if (((TREE_STATIC (op) || DECL_EXTERNAL (op))
2623 && !DECL_DLLIMPORT_P (op))
2624 || DECL_THREAD_LOCAL_P (op))
2625 return true;
2626 break;
2627
2628 case CONST_DECL:
2629 if ((TREE_STATIC (op) || DECL_EXTERNAL (op)))
2630 return true;
2631 break;
2632
2633 default:
2634 break;
2635 }
2636
2637 return false;
2638 }
2639
2640
2641 /* Return true if T is function-invariant (internal function, does
2642 not handle arithmetic; that's handled in skip_simple_arithmetic and
2643 tree_invariant_p). */
2644
2645 static bool tree_invariant_p (tree t);
2646
2647 static bool
2648 tree_invariant_p_1 (tree t)
2649 {
2650 tree op;
2651
2652 if (TREE_CONSTANT (t)
2653 || (TREE_READONLY (t) && !TREE_SIDE_EFFECTS (t)))
2654 return true;
2655
2656 switch (TREE_CODE (t))
2657 {
2658 case SAVE_EXPR:
2659 return true;
2660
2661 case ADDR_EXPR:
2662 op = TREE_OPERAND (t, 0);
2663 while (handled_component_p (op))
2664 {
2665 switch (TREE_CODE (op))
2666 {
2667 case ARRAY_REF:
2668 case ARRAY_RANGE_REF:
2669 if (!tree_invariant_p (TREE_OPERAND (op, 1))
2670 || TREE_OPERAND (op, 2) != NULL_TREE
2671 || TREE_OPERAND (op, 3) != NULL_TREE)
2672 return false;
2673 break;
2674
2675 case COMPONENT_REF:
2676 if (TREE_OPERAND (op, 2) != NULL_TREE)
2677 return false;
2678 break;
2679
2680 default:;
2681 }
2682 op = TREE_OPERAND (op, 0);
2683 }
2684
2685 return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
2686
2687 default:
2688 break;
2689 }
2690
2691 return false;
2692 }
2693
2694 /* Return true if T is function-invariant. */
2695
2696 static bool
2697 tree_invariant_p (tree t)
2698 {
2699 tree inner = skip_simple_arithmetic (t);
2700 return tree_invariant_p_1 (inner);
2701 }
2702
2703 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
2704 Do this to any expression which may be used in more than one place,
2705 but must be evaluated only once.
2706
2707 Normally, expand_expr would reevaluate the expression each time.
2708 Calling save_expr produces something that is evaluated and recorded
2709 the first time expand_expr is called on it. Subsequent calls to
2710 expand_expr just reuse the recorded value.
2711
2712 The call to expand_expr that generates code that actually computes
2713 the value is the first call *at compile time*. Subsequent calls
2714 *at compile time* generate code to use the saved value.
2715 This produces correct result provided that *at run time* control
2716 always flows through the insns made by the first expand_expr
2717 before reaching the other places where the save_expr was evaluated.
2718 You, the caller of save_expr, must make sure this is so.
2719
2720 Constants, and certain read-only nodes, are returned with no
2721 SAVE_EXPR because that is safe. Expressions containing placeholders
2722 are not touched; see tree.def for an explanation of what these
2723 are used for. */
2724
2725 tree
2726 save_expr (tree expr)
2727 {
2728 tree t = fold (expr);
2729 tree inner;
2730
2731 /* If the tree evaluates to a constant, then we don't want to hide that
2732 fact (i.e. this allows further folding, and direct checks for constants).
2733 However, a read-only object that has side effects cannot be bypassed.
2734 Since it is no problem to reevaluate literals, we just return the
2735 literal node. */
2736 inner = skip_simple_arithmetic (t);
2737 if (TREE_CODE (inner) == ERROR_MARK)
2738 return inner;
2739
2740 if (tree_invariant_p_1 (inner))
2741 return t;
2742
2743 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
2744 it means that the size or offset of some field of an object depends on
2745 the value within another field.
2746
2747 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
2748 and some variable since it would then need to be both evaluated once and
2749 evaluated more than once. Front-ends must assure this case cannot
2750 happen by surrounding any such subexpressions in their own SAVE_EXPR
2751 and forcing evaluation at the proper time. */
2752 if (contains_placeholder_p (inner))
2753 return t;
2754
2755 t = build1 (SAVE_EXPR, TREE_TYPE (expr), t);
2756 SET_EXPR_LOCATION (t, EXPR_LOCATION (expr));
2757
2758 /* This expression might be placed ahead of a jump to ensure that the
2759 value was computed on both sides of the jump. So make sure it isn't
2760 eliminated as dead. */
2761 TREE_SIDE_EFFECTS (t) = 1;
2762 return t;
2763 }
2764
2765 /* Look inside EXPR and into any simple arithmetic operations. Return
2766 the innermost non-arithmetic node. */
2767
2768 tree
2769 skip_simple_arithmetic (tree expr)
2770 {
2771 tree inner;
2772
2773 /* We don't care about whether this can be used as an lvalue in this
2774 context. */
2775 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
2776 expr = TREE_OPERAND (expr, 0);
2777
2778 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
2779 a constant, it will be more efficient to not make another SAVE_EXPR since
2780 it will allow better simplification and GCSE will be able to merge the
2781 computations if they actually occur. */
2782 inner = expr;
2783 while (1)
2784 {
2785 if (UNARY_CLASS_P (inner))
2786 inner = TREE_OPERAND (inner, 0);
2787 else if (BINARY_CLASS_P (inner))
2788 {
2789 if (tree_invariant_p (TREE_OPERAND (inner, 1)))
2790 inner = TREE_OPERAND (inner, 0);
2791 else if (tree_invariant_p (TREE_OPERAND (inner, 0)))
2792 inner = TREE_OPERAND (inner, 1);
2793 else
2794 break;
2795 }
2796 else
2797 break;
2798 }
2799
2800 return inner;
2801 }
2802
2803
2804 /* Return which tree structure is used by T. */
2805
2806 enum tree_node_structure_enum
2807 tree_node_structure (const_tree t)
2808 {
2809 const enum tree_code code = TREE_CODE (t);
2810 return tree_node_structure_for_code (code);
2811 }
2812
2813 /* Set various status flags when building a CALL_EXPR object T. */
2814
2815 static void
2816 process_call_operands (tree t)
2817 {
2818 bool side_effects = TREE_SIDE_EFFECTS (t);
2819 bool read_only = false;
2820 int i = call_expr_flags (t);
2821
2822 /* Calls have side-effects, except those to const or pure functions. */
2823 if ((i & ECF_LOOPING_CONST_OR_PURE) || !(i & (ECF_CONST | ECF_PURE)))
2824 side_effects = true;
2825 /* Propagate TREE_READONLY of arguments for const functions. */
2826 if (i & ECF_CONST)
2827 read_only = true;
2828
2829 if (!side_effects || read_only)
2830 for (i = 1; i < TREE_OPERAND_LENGTH (t); i++)
2831 {
2832 tree op = TREE_OPERAND (t, i);
2833 if (op && TREE_SIDE_EFFECTS (op))
2834 side_effects = true;
2835 if (op && !TREE_READONLY (op) && !CONSTANT_CLASS_P (op))
2836 read_only = false;
2837 }
2838
2839 TREE_SIDE_EFFECTS (t) = side_effects;
2840 TREE_READONLY (t) = read_only;
2841 }
2842 \f
2843 /* Return true if EXP contains a PLACEHOLDER_EXPR, i.e. if it represents a
2844 size or offset that depends on a field within a record. */
2845
2846 bool
2847 contains_placeholder_p (const_tree exp)
2848 {
2849 enum tree_code code;
2850
2851 if (!exp)
2852 return 0;
2853
2854 code = TREE_CODE (exp);
2855 if (code == PLACEHOLDER_EXPR)
2856 return 1;
2857
2858 switch (TREE_CODE_CLASS (code))
2859 {
2860 case tcc_reference:
2861 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
2862 position computations since they will be converted into a
2863 WITH_RECORD_EXPR involving the reference, which will assume
2864 here will be valid. */
2865 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
2866
2867 case tcc_exceptional:
2868 if (code == TREE_LIST)
2869 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
2870 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
2871 break;
2872
2873 case tcc_unary:
2874 case tcc_binary:
2875 case tcc_comparison:
2876 case tcc_expression:
2877 switch (code)
2878 {
2879 case COMPOUND_EXPR:
2880 /* Ignoring the first operand isn't quite right, but works best. */
2881 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
2882
2883 case COND_EXPR:
2884 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
2885 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
2886 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
2887
2888 case SAVE_EXPR:
2889 /* The save_expr function never wraps anything containing
2890 a PLACEHOLDER_EXPR. */
2891 return 0;
2892
2893 default:
2894 break;
2895 }
2896
2897 switch (TREE_CODE_LENGTH (code))
2898 {
2899 case 1:
2900 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
2901 case 2:
2902 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
2903 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
2904 default:
2905 return 0;
2906 }
2907
2908 case tcc_vl_exp:
2909 switch (code)
2910 {
2911 case CALL_EXPR:
2912 {
2913 const_tree arg;
2914 const_call_expr_arg_iterator iter;
2915 FOR_EACH_CONST_CALL_EXPR_ARG (arg, iter, exp)
2916 if (CONTAINS_PLACEHOLDER_P (arg))
2917 return 1;
2918 return 0;
2919 }
2920 default:
2921 return 0;
2922 }
2923
2924 default:
2925 return 0;
2926 }
2927 return 0;
2928 }
2929
2930 /* Return true if any part of the structure of TYPE involves a PLACEHOLDER_EXPR
2931 directly. This includes size, bounds, qualifiers (for QUAL_UNION_TYPE) and
2932 field positions. */
2933
2934 static bool
2935 type_contains_placeholder_1 (const_tree type)
2936 {
2937 /* If the size contains a placeholder or the parent type (component type in
2938 the case of arrays) type involves a placeholder, this type does. */
2939 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
2940 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
2941 || (!POINTER_TYPE_P (type)
2942 && TREE_TYPE (type)
2943 && type_contains_placeholder_p (TREE_TYPE (type))))
2944 return true;
2945
2946 /* Now do type-specific checks. Note that the last part of the check above
2947 greatly limits what we have to do below. */
2948 switch (TREE_CODE (type))
2949 {
2950 case VOID_TYPE:
2951 case COMPLEX_TYPE:
2952 case ENUMERAL_TYPE:
2953 case BOOLEAN_TYPE:
2954 case POINTER_TYPE:
2955 case OFFSET_TYPE:
2956 case REFERENCE_TYPE:
2957 case METHOD_TYPE:
2958 case FUNCTION_TYPE:
2959 case VECTOR_TYPE:
2960 return false;
2961
2962 case INTEGER_TYPE:
2963 case REAL_TYPE:
2964 case FIXED_POINT_TYPE:
2965 /* Here we just check the bounds. */
2966 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
2967 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
2968
2969 case ARRAY_TYPE:
2970 /* We have already checked the component type above, so just check the
2971 domain type. */
2972 return type_contains_placeholder_p (TYPE_DOMAIN (type));
2973
2974 case RECORD_TYPE:
2975 case UNION_TYPE:
2976 case QUAL_UNION_TYPE:
2977 {
2978 tree field;
2979
2980 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2981 if (TREE_CODE (field) == FIELD_DECL
2982 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
2983 || (TREE_CODE (type) == QUAL_UNION_TYPE
2984 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
2985 || type_contains_placeholder_p (TREE_TYPE (field))))
2986 return true;
2987
2988 return false;
2989 }
2990
2991 default:
2992 gcc_unreachable ();
2993 }
2994 }
2995
2996 /* Wrapper around above function used to cache its result. */
2997
2998 bool
2999 type_contains_placeholder_p (tree type)
3000 {
3001 bool result;
3002
3003 /* If the contains_placeholder_bits field has been initialized,
3004 then we know the answer. */
3005 if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0)
3006 return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1;
3007
3008 /* Indicate that we've seen this type node, and the answer is false.
3009 This is what we want to return if we run into recursion via fields. */
3010 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1;
3011
3012 /* Compute the real value. */
3013 result = type_contains_placeholder_1 (type);
3014
3015 /* Store the real value. */
3016 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1;
3017
3018 return result;
3019 }
3020 \f
3021 /* Push tree EXP onto vector QUEUE if it is not already present. */
3022
3023 static void
3024 push_without_duplicates (tree exp, VEC (tree, heap) **queue)
3025 {
3026 unsigned int i;
3027 tree iter;
3028
3029 FOR_EACH_VEC_ELT (tree, *queue, i, iter)
3030 if (simple_cst_equal (iter, exp) == 1)
3031 break;
3032
3033 if (!iter)
3034 VEC_safe_push (tree, heap, *queue, exp);
3035 }
3036
3037 /* Given a tree EXP, find all occurences of references to fields
3038 in a PLACEHOLDER_EXPR and place them in vector REFS without
3039 duplicates. Also record VAR_DECLs and CONST_DECLs. Note that
3040 we assume here that EXP contains only arithmetic expressions
3041 or CALL_EXPRs with PLACEHOLDER_EXPRs occurring only in their
3042 argument list. */
3043
3044 void
3045 find_placeholder_in_expr (tree exp, VEC (tree, heap) **refs)
3046 {
3047 enum tree_code code = TREE_CODE (exp);
3048 tree inner;
3049 int i;
3050
3051 /* We handle TREE_LIST and COMPONENT_REF separately. */
3052 if (code == TREE_LIST)
3053 {
3054 FIND_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), refs);
3055 FIND_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), refs);
3056 }
3057 else if (code == COMPONENT_REF)
3058 {
3059 for (inner = TREE_OPERAND (exp, 0);
3060 REFERENCE_CLASS_P (inner);
3061 inner = TREE_OPERAND (inner, 0))
3062 ;
3063
3064 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
3065 push_without_duplicates (exp, refs);
3066 else
3067 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), refs);
3068 }
3069 else
3070 switch (TREE_CODE_CLASS (code))
3071 {
3072 case tcc_constant:
3073 break;
3074
3075 case tcc_declaration:
3076 /* Variables allocated to static storage can stay. */
3077 if (!TREE_STATIC (exp))
3078 push_without_duplicates (exp, refs);
3079 break;
3080
3081 case tcc_expression:
3082 /* This is the pattern built in ada/make_aligning_type. */
3083 if (code == ADDR_EXPR
3084 && TREE_CODE (TREE_OPERAND (exp, 0)) == PLACEHOLDER_EXPR)
3085 {
3086 push_without_duplicates (exp, refs);
3087 break;
3088 }
3089
3090 /* Fall through... */
3091
3092 case tcc_exceptional:
3093 case tcc_unary:
3094 case tcc_binary:
3095 case tcc_comparison:
3096 case tcc_reference:
3097 for (i = 0; i < TREE_CODE_LENGTH (code); i++)
3098 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
3099 break;
3100
3101 case tcc_vl_exp:
3102 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3103 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
3104 break;
3105
3106 default:
3107 gcc_unreachable ();
3108 }
3109 }
3110
3111 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
3112 return a tree with all occurrences of references to F in a
3113 PLACEHOLDER_EXPR replaced by R. Also handle VAR_DECLs and
3114 CONST_DECLs. Note that we assume here that EXP contains only
3115 arithmetic expressions or CALL_EXPRs with PLACEHOLDER_EXPRs
3116 occurring only in their argument list. */
3117
3118 tree
3119 substitute_in_expr (tree exp, tree f, tree r)
3120 {
3121 enum tree_code code = TREE_CODE (exp);
3122 tree op0, op1, op2, op3;
3123 tree new_tree;
3124
3125 /* We handle TREE_LIST and COMPONENT_REF separately. */
3126 if (code == TREE_LIST)
3127 {
3128 op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
3129 op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
3130 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
3131 return exp;
3132
3133 return tree_cons (TREE_PURPOSE (exp), op1, op0);
3134 }
3135 else if (code == COMPONENT_REF)
3136 {
3137 tree inner;
3138
3139 /* If this expression is getting a value from a PLACEHOLDER_EXPR
3140 and it is the right field, replace it with R. */
3141 for (inner = TREE_OPERAND (exp, 0);
3142 REFERENCE_CLASS_P (inner);
3143 inner = TREE_OPERAND (inner, 0))
3144 ;
3145
3146 /* The field. */
3147 op1 = TREE_OPERAND (exp, 1);
3148
3149 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && op1 == f)
3150 return r;
3151
3152 /* If this expression hasn't been completed let, leave it alone. */
3153 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && !TREE_TYPE (inner))
3154 return exp;
3155
3156 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3157 if (op0 == TREE_OPERAND (exp, 0))
3158 return exp;
3159
3160 new_tree
3161 = fold_build3 (COMPONENT_REF, TREE_TYPE (exp), op0, op1, NULL_TREE);
3162 }
3163 else
3164 switch (TREE_CODE_CLASS (code))
3165 {
3166 case tcc_constant:
3167 return exp;
3168
3169 case tcc_declaration:
3170 if (exp == f)
3171 return r;
3172 else
3173 return exp;
3174
3175 case tcc_expression:
3176 if (exp == f)
3177 return r;
3178
3179 /* Fall through... */
3180
3181 case tcc_exceptional:
3182 case tcc_unary:
3183 case tcc_binary:
3184 case tcc_comparison:
3185 case tcc_reference:
3186 switch (TREE_CODE_LENGTH (code))
3187 {
3188 case 0:
3189 return exp;
3190
3191 case 1:
3192 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3193 if (op0 == TREE_OPERAND (exp, 0))
3194 return exp;
3195
3196 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
3197 break;
3198
3199 case 2:
3200 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3201 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3202
3203 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
3204 return exp;
3205
3206 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
3207 break;
3208
3209 case 3:
3210 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3211 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3212 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
3213
3214 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3215 && op2 == TREE_OPERAND (exp, 2))
3216 return exp;
3217
3218 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
3219 break;
3220
3221 case 4:
3222 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3223 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3224 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
3225 op3 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 3), f, r);
3226
3227 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3228 && op2 == TREE_OPERAND (exp, 2)
3229 && op3 == TREE_OPERAND (exp, 3))
3230 return exp;
3231
3232 new_tree
3233 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
3234 break;
3235
3236 default:
3237 gcc_unreachable ();
3238 }
3239 break;
3240
3241 case tcc_vl_exp:
3242 {
3243 int i;
3244
3245 new_tree = NULL_TREE;
3246
3247 /* If we are trying to replace F with a constant, inline back
3248 functions which do nothing else than computing a value from
3249 the arguments they are passed. This makes it possible to
3250 fold partially or entirely the replacement expression. */
3251 if (CONSTANT_CLASS_P (r) && code == CALL_EXPR)
3252 {
3253 tree t = maybe_inline_call_in_expr (exp);
3254 if (t)
3255 return SUBSTITUTE_IN_EXPR (t, f, r);
3256 }
3257
3258 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3259 {
3260 tree op = TREE_OPERAND (exp, i);
3261 tree new_op = SUBSTITUTE_IN_EXPR (op, f, r);
3262 if (new_op != op)
3263 {
3264 if (!new_tree)
3265 new_tree = copy_node (exp);
3266 TREE_OPERAND (new_tree, i) = new_op;
3267 }
3268 }
3269
3270 if (new_tree)
3271 {
3272 new_tree = fold (new_tree);
3273 if (TREE_CODE (new_tree) == CALL_EXPR)
3274 process_call_operands (new_tree);
3275 }
3276 else
3277 return exp;
3278 }
3279 break;
3280
3281 default:
3282 gcc_unreachable ();
3283 }
3284
3285 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
3286
3287 if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
3288 TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
3289
3290 return new_tree;
3291 }
3292
3293 /* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
3294 for it within OBJ, a tree that is an object or a chain of references. */
3295
3296 tree
3297 substitute_placeholder_in_expr (tree exp, tree obj)
3298 {
3299 enum tree_code code = TREE_CODE (exp);
3300 tree op0, op1, op2, op3;
3301 tree new_tree;
3302
3303 /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
3304 in the chain of OBJ. */
3305 if (code == PLACEHOLDER_EXPR)
3306 {
3307 tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
3308 tree elt;
3309
3310 for (elt = obj; elt != 0;
3311 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
3312 || TREE_CODE (elt) == COND_EXPR)
3313 ? TREE_OPERAND (elt, 1)
3314 : (REFERENCE_CLASS_P (elt)
3315 || UNARY_CLASS_P (elt)
3316 || BINARY_CLASS_P (elt)
3317 || VL_EXP_CLASS_P (elt)
3318 || EXPRESSION_CLASS_P (elt))
3319 ? TREE_OPERAND (elt, 0) : 0))
3320 if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
3321 return elt;
3322
3323 for (elt = obj; elt != 0;
3324 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
3325 || TREE_CODE (elt) == COND_EXPR)
3326 ? TREE_OPERAND (elt, 1)
3327 : (REFERENCE_CLASS_P (elt)
3328 || UNARY_CLASS_P (elt)
3329 || BINARY_CLASS_P (elt)
3330 || VL_EXP_CLASS_P (elt)
3331 || EXPRESSION_CLASS_P (elt))
3332 ? TREE_OPERAND (elt, 0) : 0))
3333 if (POINTER_TYPE_P (TREE_TYPE (elt))
3334 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
3335 == need_type))
3336 return fold_build1 (INDIRECT_REF, need_type, elt);
3337
3338 /* If we didn't find it, return the original PLACEHOLDER_EXPR. If it
3339 survives until RTL generation, there will be an error. */
3340 return exp;
3341 }
3342
3343 /* TREE_LIST is special because we need to look at TREE_VALUE
3344 and TREE_CHAIN, not TREE_OPERANDS. */
3345 else if (code == TREE_LIST)
3346 {
3347 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
3348 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
3349 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
3350 return exp;
3351
3352 return tree_cons (TREE_PURPOSE (exp), op1, op0);
3353 }
3354 else
3355 switch (TREE_CODE_CLASS (code))
3356 {
3357 case tcc_constant:
3358 case tcc_declaration:
3359 return exp;
3360
3361 case tcc_exceptional:
3362 case tcc_unary:
3363 case tcc_binary:
3364 case tcc_comparison:
3365 case tcc_expression:
3366 case tcc_reference:
3367 case tcc_statement:
3368 switch (TREE_CODE_LENGTH (code))
3369 {
3370 case 0:
3371 return exp;
3372
3373 case 1:
3374 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3375 if (op0 == TREE_OPERAND (exp, 0))
3376 return exp;
3377
3378 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
3379 break;
3380
3381 case 2:
3382 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3383 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3384
3385 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
3386 return exp;
3387
3388 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
3389 break;
3390
3391 case 3:
3392 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3393 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3394 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
3395
3396 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3397 && op2 == TREE_OPERAND (exp, 2))
3398 return exp;
3399
3400 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
3401 break;
3402
3403 case 4:
3404 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3405 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3406 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
3407 op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
3408
3409 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3410 && op2 == TREE_OPERAND (exp, 2)
3411 && op3 == TREE_OPERAND (exp, 3))
3412 return exp;
3413
3414 new_tree
3415 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
3416 break;
3417
3418 default:
3419 gcc_unreachable ();
3420 }
3421 break;
3422
3423 case tcc_vl_exp:
3424 {
3425 int i;
3426
3427 new_tree = NULL_TREE;
3428
3429 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3430 {
3431 tree op = TREE_OPERAND (exp, i);
3432 tree new_op = SUBSTITUTE_PLACEHOLDER_IN_EXPR (op, obj);
3433 if (new_op != op)
3434 {
3435 if (!new_tree)
3436 new_tree = copy_node (exp);
3437 TREE_OPERAND (new_tree, i) = new_op;
3438 }
3439 }
3440
3441 if (new_tree)
3442 {
3443 new_tree = fold (new_tree);
3444 if (TREE_CODE (new_tree) == CALL_EXPR)
3445 process_call_operands (new_tree);
3446 }
3447 else
3448 return exp;
3449 }
3450 break;
3451
3452 default:
3453 gcc_unreachable ();
3454 }
3455
3456 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
3457
3458 if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
3459 TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
3460
3461 return new_tree;
3462 }
3463 \f
3464 /* Stabilize a reference so that we can use it any number of times
3465 without causing its operands to be evaluated more than once.
3466 Returns the stabilized reference. This works by means of save_expr,
3467 so see the caveats in the comments about save_expr.
3468
3469 Also allows conversion expressions whose operands are references.
3470 Any other kind of expression is returned unchanged. */
3471
3472 tree
3473 stabilize_reference (tree ref)
3474 {
3475 tree result;
3476 enum tree_code code = TREE_CODE (ref);
3477
3478 switch (code)
3479 {
3480 case VAR_DECL:
3481 case PARM_DECL:
3482 case RESULT_DECL:
3483 /* No action is needed in this case. */
3484 return ref;
3485
3486 CASE_CONVERT:
3487 case FLOAT_EXPR:
3488 case FIX_TRUNC_EXPR:
3489 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
3490 break;
3491
3492 case INDIRECT_REF:
3493 result = build_nt (INDIRECT_REF,
3494 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
3495 break;
3496
3497 case COMPONENT_REF:
3498 result = build_nt (COMPONENT_REF,
3499 stabilize_reference (TREE_OPERAND (ref, 0)),
3500 TREE_OPERAND (ref, 1), NULL_TREE);
3501 break;
3502
3503 case BIT_FIELD_REF:
3504 result = build_nt (BIT_FIELD_REF,
3505 stabilize_reference (TREE_OPERAND (ref, 0)),
3506 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
3507 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
3508 break;
3509
3510 case ARRAY_REF:
3511 result = build_nt (ARRAY_REF,
3512 stabilize_reference (TREE_OPERAND (ref, 0)),
3513 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
3514 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
3515 break;
3516
3517 case ARRAY_RANGE_REF:
3518 result = build_nt (ARRAY_RANGE_REF,
3519 stabilize_reference (TREE_OPERAND (ref, 0)),
3520 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
3521 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
3522 break;
3523
3524 case COMPOUND_EXPR:
3525 /* We cannot wrap the first expression in a SAVE_EXPR, as then
3526 it wouldn't be ignored. This matters when dealing with
3527 volatiles. */
3528 return stabilize_reference_1 (ref);
3529
3530 /* If arg isn't a kind of lvalue we recognize, make no change.
3531 Caller should recognize the error for an invalid lvalue. */
3532 default:
3533 return ref;
3534
3535 case ERROR_MARK:
3536 return error_mark_node;
3537 }
3538
3539 TREE_TYPE (result) = TREE_TYPE (ref);
3540 TREE_READONLY (result) = TREE_READONLY (ref);
3541 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
3542 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
3543
3544 return result;
3545 }
3546
3547 /* Subroutine of stabilize_reference; this is called for subtrees of
3548 references. Any expression with side-effects must be put in a SAVE_EXPR
3549 to ensure that it is only evaluated once.
3550
3551 We don't put SAVE_EXPR nodes around everything, because assigning very
3552 simple expressions to temporaries causes us to miss good opportunities
3553 for optimizations. Among other things, the opportunity to fold in the
3554 addition of a constant into an addressing mode often gets lost, e.g.
3555 "y[i+1] += x;". In general, we take the approach that we should not make
3556 an assignment unless we are forced into it - i.e., that any non-side effect
3557 operator should be allowed, and that cse should take care of coalescing
3558 multiple utterances of the same expression should that prove fruitful. */
3559
3560 tree
3561 stabilize_reference_1 (tree e)
3562 {
3563 tree result;
3564 enum tree_code code = TREE_CODE (e);
3565
3566 /* We cannot ignore const expressions because it might be a reference
3567 to a const array but whose index contains side-effects. But we can
3568 ignore things that are actual constant or that already have been
3569 handled by this function. */
3570
3571 if (tree_invariant_p (e))
3572 return e;
3573
3574 switch (TREE_CODE_CLASS (code))
3575 {
3576 case tcc_exceptional:
3577 case tcc_type:
3578 case tcc_declaration:
3579 case tcc_comparison:
3580 case tcc_statement:
3581 case tcc_expression:
3582 case tcc_reference:
3583 case tcc_vl_exp:
3584 /* If the expression has side-effects, then encase it in a SAVE_EXPR
3585 so that it will only be evaluated once. */
3586 /* The reference (r) and comparison (<) classes could be handled as
3587 below, but it is generally faster to only evaluate them once. */
3588 if (TREE_SIDE_EFFECTS (e))
3589 return save_expr (e);
3590 return e;
3591
3592 case tcc_constant:
3593 /* Constants need no processing. In fact, we should never reach
3594 here. */
3595 return e;
3596
3597 case tcc_binary:
3598 /* Division is slow and tends to be compiled with jumps,
3599 especially the division by powers of 2 that is often
3600 found inside of an array reference. So do it just once. */
3601 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
3602 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
3603 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
3604 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
3605 return save_expr (e);
3606 /* Recursively stabilize each operand. */
3607 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
3608 stabilize_reference_1 (TREE_OPERAND (e, 1)));
3609 break;
3610
3611 case tcc_unary:
3612 /* Recursively stabilize each operand. */
3613 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
3614 break;
3615
3616 default:
3617 gcc_unreachable ();
3618 }
3619
3620 TREE_TYPE (result) = TREE_TYPE (e);
3621 TREE_READONLY (result) = TREE_READONLY (e);
3622 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
3623 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
3624
3625 return result;
3626 }
3627 \f
3628 /* Low-level constructors for expressions. */
3629
3630 /* A helper function for build1 and constant folders. Set TREE_CONSTANT,
3631 and TREE_SIDE_EFFECTS for an ADDR_EXPR. */
3632
3633 void
3634 recompute_tree_invariant_for_addr_expr (tree t)
3635 {
3636 tree node;
3637 bool tc = true, se = false;
3638
3639 /* We started out assuming this address is both invariant and constant, but
3640 does not have side effects. Now go down any handled components and see if
3641 any of them involve offsets that are either non-constant or non-invariant.
3642 Also check for side-effects.
3643
3644 ??? Note that this code makes no attempt to deal with the case where
3645 taking the address of something causes a copy due to misalignment. */
3646
3647 #define UPDATE_FLAGS(NODE) \
3648 do { tree _node = (NODE); \
3649 if (_node && !TREE_CONSTANT (_node)) tc = false; \
3650 if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
3651
3652 for (node = TREE_OPERAND (t, 0); handled_component_p (node);
3653 node = TREE_OPERAND (node, 0))
3654 {
3655 /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
3656 array reference (probably made temporarily by the G++ front end),
3657 so ignore all the operands. */
3658 if ((TREE_CODE (node) == ARRAY_REF
3659 || TREE_CODE (node) == ARRAY_RANGE_REF)
3660 && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
3661 {
3662 UPDATE_FLAGS (TREE_OPERAND (node, 1));
3663 if (TREE_OPERAND (node, 2))
3664 UPDATE_FLAGS (TREE_OPERAND (node, 2));
3665 if (TREE_OPERAND (node, 3))
3666 UPDATE_FLAGS (TREE_OPERAND (node, 3));
3667 }
3668 /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
3669 FIELD_DECL, apparently. The G++ front end can put something else
3670 there, at least temporarily. */
3671 else if (TREE_CODE (node) == COMPONENT_REF
3672 && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
3673 {
3674 if (TREE_OPERAND (node, 2))
3675 UPDATE_FLAGS (TREE_OPERAND (node, 2));
3676 }
3677 else if (TREE_CODE (node) == BIT_FIELD_REF)
3678 UPDATE_FLAGS (TREE_OPERAND (node, 2));
3679 }
3680
3681 node = lang_hooks.expr_to_decl (node, &tc, &se);
3682
3683 /* Now see what's inside. If it's an INDIRECT_REF, copy our properties from
3684 the address, since &(*a)->b is a form of addition. If it's a constant, the
3685 address is constant too. If it's a decl, its address is constant if the
3686 decl is static. Everything else is not constant and, furthermore,
3687 taking the address of a volatile variable is not volatile. */
3688 if (TREE_CODE (node) == INDIRECT_REF
3689 || TREE_CODE (node) == MEM_REF)
3690 UPDATE_FLAGS (TREE_OPERAND (node, 0));
3691 else if (CONSTANT_CLASS_P (node))
3692 ;
3693 else if (DECL_P (node))
3694 tc &= (staticp (node) != NULL_TREE);
3695 else
3696 {
3697 tc = false;
3698 se |= TREE_SIDE_EFFECTS (node);
3699 }
3700
3701
3702 TREE_CONSTANT (t) = tc;
3703 TREE_SIDE_EFFECTS (t) = se;
3704 #undef UPDATE_FLAGS
3705 }
3706
3707 /* Build an expression of code CODE, data type TYPE, and operands as
3708 specified. Expressions and reference nodes can be created this way.
3709 Constants, decls, types and misc nodes cannot be.
3710
3711 We define 5 non-variadic functions, from 0 to 4 arguments. This is
3712 enough for all extant tree codes. */
3713
3714 tree
3715 build0_stat (enum tree_code code, tree tt MEM_STAT_DECL)
3716 {
3717 tree t;
3718
3719 gcc_assert (TREE_CODE_LENGTH (code) == 0);
3720
3721 t = make_node_stat (code PASS_MEM_STAT);
3722 TREE_TYPE (t) = tt;
3723
3724 return t;
3725 }
3726
3727 tree
3728 build1_stat (enum tree_code code, tree type, tree node MEM_STAT_DECL)
3729 {
3730 int length = sizeof (struct tree_exp);
3731 tree t;
3732
3733 record_node_allocation_statistics (code, length);
3734
3735 gcc_assert (TREE_CODE_LENGTH (code) == 1);
3736
3737 t = ggc_alloc_zone_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
3738
3739 memset (t, 0, sizeof (struct tree_common));
3740
3741 TREE_SET_CODE (t, code);
3742
3743 TREE_TYPE (t) = type;
3744 SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
3745 TREE_OPERAND (t, 0) = node;
3746 TREE_BLOCK (t) = NULL_TREE;
3747 if (node && !TYPE_P (node))
3748 {
3749 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
3750 TREE_READONLY (t) = TREE_READONLY (node);
3751 }
3752
3753 if (TREE_CODE_CLASS (code) == tcc_statement)
3754 TREE_SIDE_EFFECTS (t) = 1;
3755 else switch (code)
3756 {
3757 case VA_ARG_EXPR:
3758 /* All of these have side-effects, no matter what their
3759 operands are. */
3760 TREE_SIDE_EFFECTS (t) = 1;
3761 TREE_READONLY (t) = 0;
3762 break;
3763
3764 case INDIRECT_REF:
3765 /* Whether a dereference is readonly has nothing to do with whether
3766 its operand is readonly. */
3767 TREE_READONLY (t) = 0;
3768 break;
3769
3770 case ADDR_EXPR:
3771 if (node)
3772 recompute_tree_invariant_for_addr_expr (t);
3773 break;
3774
3775 default:
3776 if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
3777 && node && !TYPE_P (node)
3778 && TREE_CONSTANT (node))
3779 TREE_CONSTANT (t) = 1;
3780 if (TREE_CODE_CLASS (code) == tcc_reference
3781 && node && TREE_THIS_VOLATILE (node))
3782 TREE_THIS_VOLATILE (t) = 1;
3783 break;
3784 }
3785
3786 return t;
3787 }
3788
3789 #define PROCESS_ARG(N) \
3790 do { \
3791 TREE_OPERAND (t, N) = arg##N; \
3792 if (arg##N &&!TYPE_P (arg##N)) \
3793 { \
3794 if (TREE_SIDE_EFFECTS (arg##N)) \
3795 side_effects = 1; \
3796 if (!TREE_READONLY (arg##N) \
3797 && !CONSTANT_CLASS_P (arg##N)) \
3798 (void) (read_only = 0); \
3799 if (!TREE_CONSTANT (arg##N)) \
3800 (void) (constant = 0); \
3801 } \
3802 } while (0)
3803
3804 tree
3805 build2_stat (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
3806 {
3807 bool constant, read_only, side_effects;
3808 tree t;
3809
3810 gcc_assert (TREE_CODE_LENGTH (code) == 2);
3811
3812 if ((code == MINUS_EXPR || code == PLUS_EXPR || code == MULT_EXPR)
3813 && arg0 && arg1 && tt && POINTER_TYPE_P (tt)
3814 /* When sizetype precision doesn't match that of pointers
3815 we need to be able to build explicit extensions or truncations
3816 of the offset argument. */
3817 && TYPE_PRECISION (sizetype) == TYPE_PRECISION (tt))
3818 gcc_assert (TREE_CODE (arg0) == INTEGER_CST
3819 && TREE_CODE (arg1) == INTEGER_CST);
3820
3821 if (code == POINTER_PLUS_EXPR && arg0 && arg1 && tt)
3822 gcc_assert (POINTER_TYPE_P (tt) && POINTER_TYPE_P (TREE_TYPE (arg0))
3823 && ptrofftype_p (TREE_TYPE (arg1)));
3824
3825 t = make_node_stat (code PASS_MEM_STAT);
3826 TREE_TYPE (t) = tt;
3827
3828 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
3829 result based on those same flags for the arguments. But if the
3830 arguments aren't really even `tree' expressions, we shouldn't be trying
3831 to do this. */
3832
3833 /* Expressions without side effects may be constant if their
3834 arguments are as well. */
3835 constant = (TREE_CODE_CLASS (code) == tcc_comparison
3836 || TREE_CODE_CLASS (code) == tcc_binary);
3837 read_only = 1;
3838 side_effects = TREE_SIDE_EFFECTS (t);
3839
3840 PROCESS_ARG(0);
3841 PROCESS_ARG(1);
3842
3843 TREE_READONLY (t) = read_only;
3844 TREE_CONSTANT (t) = constant;
3845 TREE_SIDE_EFFECTS (t) = side_effects;
3846 TREE_THIS_VOLATILE (t)
3847 = (TREE_CODE_CLASS (code) == tcc_reference
3848 && arg0 && TREE_THIS_VOLATILE (arg0));
3849
3850 return t;
3851 }
3852
3853
3854 tree
3855 build3_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3856 tree arg2 MEM_STAT_DECL)
3857 {
3858 bool constant, read_only, side_effects;
3859 tree t;
3860
3861 gcc_assert (TREE_CODE_LENGTH (code) == 3);
3862 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
3863
3864 t = make_node_stat (code PASS_MEM_STAT);
3865 TREE_TYPE (t) = tt;
3866
3867 read_only = 1;
3868
3869 /* As a special exception, if COND_EXPR has NULL branches, we
3870 assume that it is a gimple statement and always consider
3871 it to have side effects. */
3872 if (code == COND_EXPR
3873 && tt == void_type_node
3874 && arg1 == NULL_TREE
3875 && arg2 == NULL_TREE)
3876 side_effects = true;
3877 else
3878 side_effects = TREE_SIDE_EFFECTS (t);
3879
3880 PROCESS_ARG(0);
3881 PROCESS_ARG(1);
3882 PROCESS_ARG(2);
3883
3884 if (code == COND_EXPR)
3885 TREE_READONLY (t) = read_only;
3886
3887 TREE_SIDE_EFFECTS (t) = side_effects;
3888 TREE_THIS_VOLATILE (t)
3889 = (TREE_CODE_CLASS (code) == tcc_reference
3890 && arg0 && TREE_THIS_VOLATILE (arg0));
3891
3892 return t;
3893 }
3894
3895 tree
3896 build4_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3897 tree arg2, tree arg3 MEM_STAT_DECL)
3898 {
3899 bool constant, read_only, side_effects;
3900 tree t;
3901
3902 gcc_assert (TREE_CODE_LENGTH (code) == 4);
3903
3904 t = make_node_stat (code PASS_MEM_STAT);
3905 TREE_TYPE (t) = tt;
3906
3907 side_effects = TREE_SIDE_EFFECTS (t);
3908
3909 PROCESS_ARG(0);
3910 PROCESS_ARG(1);
3911 PROCESS_ARG(2);
3912 PROCESS_ARG(3);
3913
3914 TREE_SIDE_EFFECTS (t) = side_effects;
3915 TREE_THIS_VOLATILE (t)
3916 = (TREE_CODE_CLASS (code) == tcc_reference
3917 && arg0 && TREE_THIS_VOLATILE (arg0));
3918
3919 return t;
3920 }
3921
3922 tree
3923 build5_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3924 tree arg2, tree arg3, tree arg4 MEM_STAT_DECL)
3925 {
3926 bool constant, read_only, side_effects;
3927 tree t;
3928
3929 gcc_assert (TREE_CODE_LENGTH (code) == 5);
3930
3931 t = make_node_stat (code PASS_MEM_STAT);
3932 TREE_TYPE (t) = tt;
3933
3934 side_effects = TREE_SIDE_EFFECTS (t);
3935
3936 PROCESS_ARG(0);
3937 PROCESS_ARG(1);
3938 PROCESS_ARG(2);
3939 PROCESS_ARG(3);
3940 PROCESS_ARG(4);
3941
3942 TREE_SIDE_EFFECTS (t) = side_effects;
3943 TREE_THIS_VOLATILE (t)
3944 = (TREE_CODE_CLASS (code) == tcc_reference
3945 && arg0 && TREE_THIS_VOLATILE (arg0));
3946
3947 return t;
3948 }
3949
3950 tree
3951 build6_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3952 tree arg2, tree arg3, tree arg4, tree arg5 MEM_STAT_DECL)
3953 {
3954 bool constant, read_only, side_effects;
3955 tree t;
3956
3957 gcc_assert (code == TARGET_MEM_REF);
3958
3959 t = make_node_stat (code PASS_MEM_STAT);
3960 TREE_TYPE (t) = tt;
3961
3962 side_effects = TREE_SIDE_EFFECTS (t);
3963
3964 PROCESS_ARG(0);
3965 PROCESS_ARG(1);
3966 PROCESS_ARG(2);
3967 PROCESS_ARG(3);
3968 PROCESS_ARG(4);
3969 if (code == TARGET_MEM_REF)
3970 side_effects = 0;
3971 PROCESS_ARG(5);
3972
3973 TREE_SIDE_EFFECTS (t) = side_effects;
3974 TREE_THIS_VOLATILE (t)
3975 = (code == TARGET_MEM_REF
3976 && arg5 && TREE_THIS_VOLATILE (arg5));
3977
3978 return t;
3979 }
3980
3981 /* Build a simple MEM_REF tree with the sematics of a plain INDIRECT_REF
3982 on the pointer PTR. */
3983
3984 tree
3985 build_simple_mem_ref_loc (location_t loc, tree ptr)
3986 {
3987 HOST_WIDE_INT offset = 0;
3988 tree ptype = TREE_TYPE (ptr);
3989 tree tem;
3990 /* For convenience allow addresses that collapse to a simple base
3991 and offset. */
3992 if (TREE_CODE (ptr) == ADDR_EXPR
3993 && (handled_component_p (TREE_OPERAND (ptr, 0))
3994 || TREE_CODE (TREE_OPERAND (ptr, 0)) == MEM_REF))
3995 {
3996 ptr = get_addr_base_and_unit_offset (TREE_OPERAND (ptr, 0), &offset);
3997 gcc_assert (ptr);
3998 ptr = build_fold_addr_expr (ptr);
3999 gcc_assert (is_gimple_reg (ptr) || is_gimple_min_invariant (ptr));
4000 }
4001 tem = build2 (MEM_REF, TREE_TYPE (ptype),
4002 ptr, build_int_cst (ptype, offset));
4003 SET_EXPR_LOCATION (tem, loc);
4004 return tem;
4005 }
4006
4007 /* Return the constant offset of a MEM_REF or TARGET_MEM_REF tree T. */
4008
4009 double_int
4010 mem_ref_offset (const_tree t)
4011 {
4012 tree toff = TREE_OPERAND (t, 1);
4013 return double_int_sext (tree_to_double_int (toff),
4014 TYPE_PRECISION (TREE_TYPE (toff)));
4015 }
4016
4017 /* Return the pointer-type relevant for TBAA purposes from the
4018 gimple memory reference tree T. This is the type to be used for
4019 the offset operand of MEM_REF or TARGET_MEM_REF replacements of T. */
4020
4021 tree
4022 reference_alias_ptr_type (const_tree t)
4023 {
4024 const_tree base = t;
4025 while (handled_component_p (base))
4026 base = TREE_OPERAND (base, 0);
4027 if (TREE_CODE (base) == MEM_REF)
4028 return TREE_TYPE (TREE_OPERAND (base, 1));
4029 else if (TREE_CODE (base) == TARGET_MEM_REF)
4030 return TREE_TYPE (TMR_OFFSET (base));
4031 else
4032 return build_pointer_type (TYPE_MAIN_VARIANT (TREE_TYPE (base)));
4033 }
4034
4035 /* Return an invariant ADDR_EXPR of type TYPE taking the address of BASE
4036 offsetted by OFFSET units. */
4037
4038 tree
4039 build_invariant_address (tree type, tree base, HOST_WIDE_INT offset)
4040 {
4041 tree ref = fold_build2 (MEM_REF, TREE_TYPE (type),
4042 build_fold_addr_expr (base),
4043 build_int_cst (ptr_type_node, offset));
4044 tree addr = build1 (ADDR_EXPR, type, ref);
4045 recompute_tree_invariant_for_addr_expr (addr);
4046 return addr;
4047 }
4048
4049 /* Similar except don't specify the TREE_TYPE
4050 and leave the TREE_SIDE_EFFECTS as 0.
4051 It is permissible for arguments to be null,
4052 or even garbage if their values do not matter. */
4053
4054 tree
4055 build_nt (enum tree_code code, ...)
4056 {
4057 tree t;
4058 int length;
4059 int i;
4060 va_list p;
4061
4062 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
4063
4064 va_start (p, code);
4065
4066 t = make_node (code);
4067 length = TREE_CODE_LENGTH (code);
4068
4069 for (i = 0; i < length; i++)
4070 TREE_OPERAND (t, i) = va_arg (p, tree);
4071
4072 va_end (p);
4073 return t;
4074 }
4075
4076 /* Similar to build_nt, but for creating a CALL_EXPR object with a
4077 tree VEC. */
4078
4079 tree
4080 build_nt_call_vec (tree fn, VEC(tree,gc) *args)
4081 {
4082 tree ret, t;
4083 unsigned int ix;
4084
4085 ret = build_vl_exp (CALL_EXPR, VEC_length (tree, args) + 3);
4086 CALL_EXPR_FN (ret) = fn;
4087 CALL_EXPR_STATIC_CHAIN (ret) = NULL_TREE;
4088 FOR_EACH_VEC_ELT (tree, args, ix, t)
4089 CALL_EXPR_ARG (ret, ix) = t;
4090 return ret;
4091 }
4092 \f
4093 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
4094 We do NOT enter this node in any sort of symbol table.
4095
4096 LOC is the location of the decl.
4097
4098 layout_decl is used to set up the decl's storage layout.
4099 Other slots are initialized to 0 or null pointers. */
4100
4101 tree
4102 build_decl_stat (location_t loc, enum tree_code code, tree name,
4103 tree type MEM_STAT_DECL)
4104 {
4105 tree t;
4106
4107 t = make_node_stat (code PASS_MEM_STAT);
4108 DECL_SOURCE_LOCATION (t) = loc;
4109
4110 /* if (type == error_mark_node)
4111 type = integer_type_node; */
4112 /* That is not done, deliberately, so that having error_mark_node
4113 as the type can suppress useless errors in the use of this variable. */
4114
4115 DECL_NAME (t) = name;
4116 TREE_TYPE (t) = type;
4117
4118 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
4119 layout_decl (t, 0);
4120
4121 return t;
4122 }
4123
4124 /* Builds and returns function declaration with NAME and TYPE. */
4125
4126 tree
4127 build_fn_decl (const char *name, tree type)
4128 {
4129 tree id = get_identifier (name);
4130 tree decl = build_decl (input_location, FUNCTION_DECL, id, type);
4131
4132 DECL_EXTERNAL (decl) = 1;
4133 TREE_PUBLIC (decl) = 1;
4134 DECL_ARTIFICIAL (decl) = 1;
4135 TREE_NOTHROW (decl) = 1;
4136
4137 return decl;
4138 }
4139
4140 VEC(tree,gc) *all_translation_units;
4141
4142 /* Builds a new translation-unit decl with name NAME, queues it in the
4143 global list of translation-unit decls and returns it. */
4144
4145 tree
4146 build_translation_unit_decl (tree name)
4147 {
4148 tree tu = build_decl (UNKNOWN_LOCATION, TRANSLATION_UNIT_DECL,
4149 name, NULL_TREE);
4150 TRANSLATION_UNIT_LANGUAGE (tu) = lang_hooks.name;
4151 VEC_safe_push (tree, gc, all_translation_units, tu);
4152 return tu;
4153 }
4154
4155 \f
4156 /* BLOCK nodes are used to represent the structure of binding contours
4157 and declarations, once those contours have been exited and their contents
4158 compiled. This information is used for outputting debugging info. */
4159
4160 tree
4161 build_block (tree vars, tree subblocks, tree supercontext, tree chain)
4162 {
4163 tree block = make_node (BLOCK);
4164
4165 BLOCK_VARS (block) = vars;
4166 BLOCK_SUBBLOCKS (block) = subblocks;
4167 BLOCK_SUPERCONTEXT (block) = supercontext;
4168 BLOCK_CHAIN (block) = chain;
4169 return block;
4170 }
4171
4172 \f
4173 /* Like SET_EXPR_LOCATION, but make sure the tree can have a location.
4174
4175 LOC is the location to use in tree T. */
4176
4177 void
4178 protected_set_expr_location (tree t, location_t loc)
4179 {
4180 if (t && CAN_HAVE_LOCATION_P (t))
4181 SET_EXPR_LOCATION (t, loc);
4182 }
4183 \f
4184 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
4185 is ATTRIBUTE. */
4186
4187 tree
4188 build_decl_attribute_variant (tree ddecl, tree attribute)
4189 {
4190 DECL_ATTRIBUTES (ddecl) = attribute;
4191 return ddecl;
4192 }
4193
4194 /* Borrowed from hashtab.c iterative_hash implementation. */
4195 #define mix(a,b,c) \
4196 { \
4197 a -= b; a -= c; a ^= (c>>13); \
4198 b -= c; b -= a; b ^= (a<< 8); \
4199 c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
4200 a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
4201 b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
4202 c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
4203 a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
4204 b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
4205 c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
4206 }
4207
4208
4209 /* Produce good hash value combining VAL and VAL2. */
4210 hashval_t
4211 iterative_hash_hashval_t (hashval_t val, hashval_t val2)
4212 {
4213 /* the golden ratio; an arbitrary value. */
4214 hashval_t a = 0x9e3779b9;
4215
4216 mix (a, val, val2);
4217 return val2;
4218 }
4219
4220 /* Produce good hash value combining VAL and VAL2. */
4221 hashval_t
4222 iterative_hash_host_wide_int (HOST_WIDE_INT val, hashval_t val2)
4223 {
4224 if (sizeof (HOST_WIDE_INT) == sizeof (hashval_t))
4225 return iterative_hash_hashval_t (val, val2);
4226 else
4227 {
4228 hashval_t a = (hashval_t) val;
4229 /* Avoid warnings about shifting of more than the width of the type on
4230 hosts that won't execute this path. */
4231 int zero = 0;
4232 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 8 + zero));
4233 mix (a, b, val2);
4234 if (sizeof (HOST_WIDE_INT) > 2 * sizeof (hashval_t))
4235 {
4236 hashval_t a = (hashval_t) (val >> (sizeof (hashval_t) * 16 + zero));
4237 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 24 + zero));
4238 mix (a, b, val2);
4239 }
4240 return val2;
4241 }
4242 }
4243
4244 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
4245 is ATTRIBUTE and its qualifiers are QUALS.
4246
4247 Record such modified types already made so we don't make duplicates. */
4248
4249 tree
4250 build_type_attribute_qual_variant (tree ttype, tree attribute, int quals)
4251 {
4252 if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
4253 {
4254 hashval_t hashcode = 0;
4255 tree ntype;
4256 enum tree_code code = TREE_CODE (ttype);
4257
4258 /* Building a distinct copy of a tagged type is inappropriate; it
4259 causes breakage in code that expects there to be a one-to-one
4260 relationship between a struct and its fields.
4261 build_duplicate_type is another solution (as used in
4262 handle_transparent_union_attribute), but that doesn't play well
4263 with the stronger C++ type identity model. */
4264 if (TREE_CODE (ttype) == RECORD_TYPE
4265 || TREE_CODE (ttype) == UNION_TYPE
4266 || TREE_CODE (ttype) == QUAL_UNION_TYPE
4267 || TREE_CODE (ttype) == ENUMERAL_TYPE)
4268 {
4269 warning (OPT_Wattributes,
4270 "ignoring attributes applied to %qT after definition",
4271 TYPE_MAIN_VARIANT (ttype));
4272 return build_qualified_type (ttype, quals);
4273 }
4274
4275 ttype = build_qualified_type (ttype, TYPE_UNQUALIFIED);
4276 ntype = build_distinct_type_copy (ttype);
4277
4278 TYPE_ATTRIBUTES (ntype) = attribute;
4279
4280 hashcode = iterative_hash_object (code, hashcode);
4281 if (TREE_TYPE (ntype))
4282 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (ntype)),
4283 hashcode);
4284 hashcode = attribute_hash_list (attribute, hashcode);
4285
4286 switch (TREE_CODE (ntype))
4287 {
4288 case FUNCTION_TYPE:
4289 hashcode = type_hash_list (TYPE_ARG_TYPES (ntype), hashcode);
4290 break;
4291 case ARRAY_TYPE:
4292 if (TYPE_DOMAIN (ntype))
4293 hashcode = iterative_hash_object (TYPE_HASH (TYPE_DOMAIN (ntype)),
4294 hashcode);
4295 break;
4296 case INTEGER_TYPE:
4297 hashcode = iterative_hash_object
4298 (TREE_INT_CST_LOW (TYPE_MAX_VALUE (ntype)), hashcode);
4299 hashcode = iterative_hash_object
4300 (TREE_INT_CST_HIGH (TYPE_MAX_VALUE (ntype)), hashcode);
4301 break;
4302 case REAL_TYPE:
4303 case FIXED_POINT_TYPE:
4304 {
4305 unsigned int precision = TYPE_PRECISION (ntype);
4306 hashcode = iterative_hash_object (precision, hashcode);
4307 }
4308 break;
4309 default:
4310 break;
4311 }
4312
4313 ntype = type_hash_canon (hashcode, ntype);
4314
4315 /* If the target-dependent attributes make NTYPE different from
4316 its canonical type, we will need to use structural equality
4317 checks for this type. */
4318 if (TYPE_STRUCTURAL_EQUALITY_P (ttype)
4319 || !comp_type_attributes (ntype, ttype))
4320 SET_TYPE_STRUCTURAL_EQUALITY (ntype);
4321 else if (TYPE_CANONICAL (ntype) == ntype)
4322 TYPE_CANONICAL (ntype) = TYPE_CANONICAL (ttype);
4323
4324 ttype = build_qualified_type (ntype, quals);
4325 }
4326 else if (TYPE_QUALS (ttype) != quals)
4327 ttype = build_qualified_type (ttype, quals);
4328
4329 return ttype;
4330 }
4331
4332 /* Compare two attributes for their value identity. Return true if the
4333 attribute values are known to be equal; otherwise return false.
4334 */
4335
4336 static bool
4337 attribute_value_equal (const_tree attr1, const_tree attr2)
4338 {
4339 if (TREE_VALUE (attr1) == TREE_VALUE (attr2))
4340 return true;
4341
4342 if (TREE_VALUE (attr1) != NULL_TREE
4343 && TREE_CODE (TREE_VALUE (attr1)) == TREE_LIST
4344 && TREE_VALUE (attr2) != NULL
4345 && TREE_CODE (TREE_VALUE (attr2)) == TREE_LIST)
4346 return (simple_cst_list_equal (TREE_VALUE (attr1),
4347 TREE_VALUE (attr2)) == 1);
4348
4349 return (simple_cst_equal (TREE_VALUE (attr1), TREE_VALUE (attr2)) == 1);
4350 }
4351
4352 /* Return 0 if the attributes for two types are incompatible, 1 if they
4353 are compatible, and 2 if they are nearly compatible (which causes a
4354 warning to be generated). */
4355 int
4356 comp_type_attributes (const_tree type1, const_tree type2)
4357 {
4358 const_tree a1 = TYPE_ATTRIBUTES (type1);
4359 const_tree a2 = TYPE_ATTRIBUTES (type2);
4360 const_tree a;
4361
4362 if (a1 == a2)
4363 return 1;
4364 for (a = a1; a != NULL_TREE; a = TREE_CHAIN (a))
4365 {
4366 const struct attribute_spec *as;
4367 const_tree attr;
4368
4369 as = lookup_attribute_spec (TREE_PURPOSE (a));
4370 if (!as || as->affects_type_identity == false)
4371 continue;
4372
4373 attr = lookup_attribute (as->name, CONST_CAST_TREE (a2));
4374 if (!attr || !attribute_value_equal (a, attr))
4375 break;
4376 }
4377 if (!a)
4378 {
4379 for (a = a2; a != NULL_TREE; a = TREE_CHAIN (a))
4380 {
4381 const struct attribute_spec *as;
4382
4383 as = lookup_attribute_spec (TREE_PURPOSE (a));
4384 if (!as || as->affects_type_identity == false)
4385 continue;
4386
4387 if (!lookup_attribute (as->name, CONST_CAST_TREE (a1)))
4388 break;
4389 /* We don't need to compare trees again, as we did this
4390 already in first loop. */
4391 }
4392 /* All types - affecting identity - are equal, so
4393 there is no need to call target hook for comparison. */
4394 if (!a)
4395 return 1;
4396 }
4397 /* As some type combinations - like default calling-convention - might
4398 be compatible, we have to call the target hook to get the final result. */
4399 return targetm.comp_type_attributes (type1, type2);
4400 }
4401
4402 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
4403 is ATTRIBUTE.
4404
4405 Record such modified types already made so we don't make duplicates. */
4406
4407 tree
4408 build_type_attribute_variant (tree ttype, tree attribute)
4409 {
4410 return build_type_attribute_qual_variant (ttype, attribute,
4411 TYPE_QUALS (ttype));
4412 }
4413
4414
4415 /* Reset the expression *EXPR_P, a size or position.
4416
4417 ??? We could reset all non-constant sizes or positions. But it's cheap
4418 enough to not do so and refrain from adding workarounds to dwarf2out.c.
4419
4420 We need to reset self-referential sizes or positions because they cannot
4421 be gimplified and thus can contain a CALL_EXPR after the gimplification
4422 is finished, which will run afoul of LTO streaming. And they need to be
4423 reset to something essentially dummy but not constant, so as to preserve
4424 the properties of the object they are attached to. */
4425
4426 static inline void
4427 free_lang_data_in_one_sizepos (tree *expr_p)
4428 {
4429 tree expr = *expr_p;
4430 if (CONTAINS_PLACEHOLDER_P (expr))
4431 *expr_p = build0 (PLACEHOLDER_EXPR, TREE_TYPE (expr));
4432 }
4433
4434
4435 /* Reset all the fields in a binfo node BINFO. We only keep
4436 BINFO_VTABLE, which is used by gimple_fold_obj_type_ref. */
4437
4438 static void
4439 free_lang_data_in_binfo (tree binfo)
4440 {
4441 unsigned i;
4442 tree t;
4443
4444 gcc_assert (TREE_CODE (binfo) == TREE_BINFO);
4445
4446 BINFO_VIRTUALS (binfo) = NULL_TREE;
4447 BINFO_BASE_ACCESSES (binfo) = NULL;
4448 BINFO_INHERITANCE_CHAIN (binfo) = NULL_TREE;
4449 BINFO_SUBVTT_INDEX (binfo) = NULL_TREE;
4450
4451 FOR_EACH_VEC_ELT (tree, BINFO_BASE_BINFOS (binfo), i, t)
4452 free_lang_data_in_binfo (t);
4453 }
4454
4455
4456 /* Reset all language specific information still present in TYPE. */
4457
4458 static void
4459 free_lang_data_in_type (tree type)
4460 {
4461 gcc_assert (TYPE_P (type));
4462
4463 /* Give the FE a chance to remove its own data first. */
4464 lang_hooks.free_lang_data (type);
4465
4466 TREE_LANG_FLAG_0 (type) = 0;
4467 TREE_LANG_FLAG_1 (type) = 0;
4468 TREE_LANG_FLAG_2 (type) = 0;
4469 TREE_LANG_FLAG_3 (type) = 0;
4470 TREE_LANG_FLAG_4 (type) = 0;
4471 TREE_LANG_FLAG_5 (type) = 0;
4472 TREE_LANG_FLAG_6 (type) = 0;
4473
4474 if (TREE_CODE (type) == FUNCTION_TYPE)
4475 {
4476 /* Remove the const and volatile qualifiers from arguments. The
4477 C++ front end removes them, but the C front end does not,
4478 leading to false ODR violation errors when merging two
4479 instances of the same function signature compiled by
4480 different front ends. */
4481 tree p;
4482
4483 for (p = TYPE_ARG_TYPES (type); p; p = TREE_CHAIN (p))
4484 {
4485 tree arg_type = TREE_VALUE (p);
4486
4487 if (TYPE_READONLY (arg_type) || TYPE_VOLATILE (arg_type))
4488 {
4489 int quals = TYPE_QUALS (arg_type)
4490 & ~TYPE_QUAL_CONST
4491 & ~TYPE_QUAL_VOLATILE;
4492 TREE_VALUE (p) = build_qualified_type (arg_type, quals);
4493 free_lang_data_in_type (TREE_VALUE (p));
4494 }
4495 }
4496 }
4497
4498 /* Remove members that are not actually FIELD_DECLs from the field
4499 list of an aggregate. These occur in C++. */
4500 if (RECORD_OR_UNION_TYPE_P (type))
4501 {
4502 tree prev, member;
4503
4504 /* Note that TYPE_FIELDS can be shared across distinct
4505 TREE_TYPEs. Therefore, if the first field of TYPE_FIELDS is
4506 to be removed, we cannot set its TREE_CHAIN to NULL.
4507 Otherwise, we would not be able to find all the other fields
4508 in the other instances of this TREE_TYPE.
4509
4510 This was causing an ICE in testsuite/g++.dg/lto/20080915.C. */
4511 prev = NULL_TREE;
4512 member = TYPE_FIELDS (type);
4513 while (member)
4514 {
4515 if (TREE_CODE (member) == FIELD_DECL
4516 || TREE_CODE (member) == TYPE_DECL)
4517 {
4518 if (prev)
4519 TREE_CHAIN (prev) = member;
4520 else
4521 TYPE_FIELDS (type) = member;
4522 prev = member;
4523 }
4524
4525 member = TREE_CHAIN (member);
4526 }
4527
4528 if (prev)
4529 TREE_CHAIN (prev) = NULL_TREE;
4530 else
4531 TYPE_FIELDS (type) = NULL_TREE;
4532
4533 TYPE_METHODS (type) = NULL_TREE;
4534 if (TYPE_BINFO (type))
4535 free_lang_data_in_binfo (TYPE_BINFO (type));
4536 }
4537 else
4538 {
4539 /* For non-aggregate types, clear out the language slot (which
4540 overloads TYPE_BINFO). */
4541 TYPE_LANG_SLOT_1 (type) = NULL_TREE;
4542
4543 if (INTEGRAL_TYPE_P (type)
4544 || SCALAR_FLOAT_TYPE_P (type)
4545 || FIXED_POINT_TYPE_P (type))
4546 {
4547 free_lang_data_in_one_sizepos (&TYPE_MIN_VALUE (type));
4548 free_lang_data_in_one_sizepos (&TYPE_MAX_VALUE (type));
4549 }
4550 }
4551
4552 free_lang_data_in_one_sizepos (&TYPE_SIZE (type));
4553 free_lang_data_in_one_sizepos (&TYPE_SIZE_UNIT (type));
4554
4555 if (debug_info_level < DINFO_LEVEL_TERSE
4556 || (TYPE_CONTEXT (type)
4557 && TREE_CODE (TYPE_CONTEXT (type)) != FUNCTION_DECL
4558 && TREE_CODE (TYPE_CONTEXT (type)) != NAMESPACE_DECL))
4559 TYPE_CONTEXT (type) = NULL_TREE;
4560 }
4561
4562
4563 /* Return true if DECL may need an assembler name to be set. */
4564
4565 static inline bool
4566 need_assembler_name_p (tree decl)
4567 {
4568 /* Only FUNCTION_DECLs and VAR_DECLs are considered. */
4569 if (TREE_CODE (decl) != FUNCTION_DECL
4570 && TREE_CODE (decl) != VAR_DECL)
4571 return false;
4572
4573 /* If DECL already has its assembler name set, it does not need a
4574 new one. */
4575 if (!HAS_DECL_ASSEMBLER_NAME_P (decl)
4576 || DECL_ASSEMBLER_NAME_SET_P (decl))
4577 return false;
4578
4579 /* Abstract decls do not need an assembler name. */
4580 if (DECL_ABSTRACT (decl))
4581 return false;
4582
4583 /* For VAR_DECLs, only static, public and external symbols need an
4584 assembler name. */
4585 if (TREE_CODE (decl) == VAR_DECL
4586 && !TREE_STATIC (decl)
4587 && !TREE_PUBLIC (decl)
4588 && !DECL_EXTERNAL (decl))
4589 return false;
4590
4591 if (TREE_CODE (decl) == FUNCTION_DECL)
4592 {
4593 /* Do not set assembler name on builtins. Allow RTL expansion to
4594 decide whether to expand inline or via a regular call. */
4595 if (DECL_BUILT_IN (decl)
4596 && DECL_BUILT_IN_CLASS (decl) != BUILT_IN_FRONTEND)
4597 return false;
4598
4599 /* Functions represented in the callgraph need an assembler name. */
4600 if (cgraph_get_node (decl) != NULL)
4601 return true;
4602
4603 /* Unused and not public functions don't need an assembler name. */
4604 if (!TREE_USED (decl) && !TREE_PUBLIC (decl))
4605 return false;
4606 }
4607
4608 return true;
4609 }
4610
4611
4612 /* Reset all language specific information still present in symbol
4613 DECL. */
4614
4615 static void
4616 free_lang_data_in_decl (tree decl)
4617 {
4618 gcc_assert (DECL_P (decl));
4619
4620 /* Give the FE a chance to remove its own data first. */
4621 lang_hooks.free_lang_data (decl);
4622
4623 TREE_LANG_FLAG_0 (decl) = 0;
4624 TREE_LANG_FLAG_1 (decl) = 0;
4625 TREE_LANG_FLAG_2 (decl) = 0;
4626 TREE_LANG_FLAG_3 (decl) = 0;
4627 TREE_LANG_FLAG_4 (decl) = 0;
4628 TREE_LANG_FLAG_5 (decl) = 0;
4629 TREE_LANG_FLAG_6 (decl) = 0;
4630
4631 free_lang_data_in_one_sizepos (&DECL_SIZE (decl));
4632 free_lang_data_in_one_sizepos (&DECL_SIZE_UNIT (decl));
4633 if (TREE_CODE (decl) == FIELD_DECL)
4634 {
4635 free_lang_data_in_one_sizepos (&DECL_FIELD_OFFSET (decl));
4636 DECL_QUALIFIER (decl) = NULL_TREE;
4637 }
4638
4639 if (TREE_CODE (decl) == FUNCTION_DECL)
4640 {
4641 if (gimple_has_body_p (decl))
4642 {
4643 tree t;
4644
4645 /* If DECL has a gimple body, then the context for its
4646 arguments must be DECL. Otherwise, it doesn't really
4647 matter, as we will not be emitting any code for DECL. In
4648 general, there may be other instances of DECL created by
4649 the front end and since PARM_DECLs are generally shared,
4650 their DECL_CONTEXT changes as the replicas of DECL are
4651 created. The only time where DECL_CONTEXT is important
4652 is for the FUNCTION_DECLs that have a gimple body (since
4653 the PARM_DECL will be used in the function's body). */
4654 for (t = DECL_ARGUMENTS (decl); t; t = TREE_CHAIN (t))
4655 DECL_CONTEXT (t) = decl;
4656 }
4657
4658 /* DECL_SAVED_TREE holds the GENERIC representation for DECL.
4659 At this point, it is not needed anymore. */
4660 DECL_SAVED_TREE (decl) = NULL_TREE;
4661
4662 /* Clear the abstract origin if it refers to a method. Otherwise
4663 dwarf2out.c will ICE as we clear TYPE_METHODS and thus the
4664 origin will not be output correctly. */
4665 if (DECL_ABSTRACT_ORIGIN (decl)
4666 && DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))
4667 && RECORD_OR_UNION_TYPE_P
4668 (DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))))
4669 DECL_ABSTRACT_ORIGIN (decl) = NULL_TREE;
4670
4671 /* Sometimes the C++ frontend doesn't manage to transform a temporary
4672 DECL_VINDEX referring to itself into a vtable slot number as it
4673 should. Happens with functions that are copied and then forgotten
4674 about. Just clear it, it won't matter anymore. */
4675 if (DECL_VINDEX (decl) && !host_integerp (DECL_VINDEX (decl), 0))
4676 DECL_VINDEX (decl) = NULL_TREE;
4677 }
4678 else if (TREE_CODE (decl) == VAR_DECL)
4679 {
4680 if ((DECL_EXTERNAL (decl)
4681 && (!TREE_STATIC (decl) || !TREE_READONLY (decl)))
4682 || (decl_function_context (decl) && !TREE_STATIC (decl)))
4683 DECL_INITIAL (decl) = NULL_TREE;
4684 }
4685 else if (TREE_CODE (decl) == TYPE_DECL
4686 || TREE_CODE (decl) == FIELD_DECL)
4687 DECL_INITIAL (decl) = NULL_TREE;
4688 else if (TREE_CODE (decl) == TRANSLATION_UNIT_DECL
4689 && DECL_INITIAL (decl)
4690 && TREE_CODE (DECL_INITIAL (decl)) == BLOCK)
4691 {
4692 /* Strip builtins from the translation-unit BLOCK. We still have targets
4693 without builtin_decl_explicit support and also builtins are shared
4694 nodes and thus we can't use TREE_CHAIN in multiple lists. */
4695 tree *nextp = &BLOCK_VARS (DECL_INITIAL (decl));
4696 while (*nextp)
4697 {
4698 tree var = *nextp;
4699 if (TREE_CODE (var) == FUNCTION_DECL
4700 && DECL_BUILT_IN (var))
4701 *nextp = TREE_CHAIN (var);
4702 else
4703 nextp = &TREE_CHAIN (var);
4704 }
4705 }
4706 }
4707
4708
4709 /* Data used when collecting DECLs and TYPEs for language data removal. */
4710
4711 struct free_lang_data_d
4712 {
4713 /* Worklist to avoid excessive recursion. */
4714 VEC(tree,heap) *worklist;
4715
4716 /* Set of traversed objects. Used to avoid duplicate visits. */
4717 struct pointer_set_t *pset;
4718
4719 /* Array of symbols to process with free_lang_data_in_decl. */
4720 VEC(tree,heap) *decls;
4721
4722 /* Array of types to process with free_lang_data_in_type. */
4723 VEC(tree,heap) *types;
4724 };
4725
4726
4727 /* Save all language fields needed to generate proper debug information
4728 for DECL. This saves most fields cleared out by free_lang_data_in_decl. */
4729
4730 static void
4731 save_debug_info_for_decl (tree t)
4732 {
4733 /*struct saved_debug_info_d *sdi;*/
4734
4735 gcc_assert (debug_info_level > DINFO_LEVEL_TERSE && t && DECL_P (t));
4736
4737 /* FIXME. Partial implementation for saving debug info removed. */
4738 }
4739
4740
4741 /* Save all language fields needed to generate proper debug information
4742 for TYPE. This saves most fields cleared out by free_lang_data_in_type. */
4743
4744 static void
4745 save_debug_info_for_type (tree t)
4746 {
4747 /*struct saved_debug_info_d *sdi;*/
4748
4749 gcc_assert (debug_info_level > DINFO_LEVEL_TERSE && t && TYPE_P (t));
4750
4751 /* FIXME. Partial implementation for saving debug info removed. */
4752 }
4753
4754
4755 /* Add type or decl T to one of the list of tree nodes that need their
4756 language data removed. The lists are held inside FLD. */
4757
4758 static void
4759 add_tree_to_fld_list (tree t, struct free_lang_data_d *fld)
4760 {
4761 if (DECL_P (t))
4762 {
4763 VEC_safe_push (tree, heap, fld->decls, t);
4764 if (debug_info_level > DINFO_LEVEL_TERSE)
4765 save_debug_info_for_decl (t);
4766 }
4767 else if (TYPE_P (t))
4768 {
4769 VEC_safe_push (tree, heap, fld->types, t);
4770 if (debug_info_level > DINFO_LEVEL_TERSE)
4771 save_debug_info_for_type (t);
4772 }
4773 else
4774 gcc_unreachable ();
4775 }
4776
4777 /* Push tree node T into FLD->WORKLIST. */
4778
4779 static inline void
4780 fld_worklist_push (tree t, struct free_lang_data_d *fld)
4781 {
4782 if (t && !is_lang_specific (t) && !pointer_set_contains (fld->pset, t))
4783 VEC_safe_push (tree, heap, fld->worklist, (t));
4784 }
4785
4786
4787 /* Operand callback helper for free_lang_data_in_node. *TP is the
4788 subtree operand being considered. */
4789
4790 static tree
4791 find_decls_types_r (tree *tp, int *ws, void *data)
4792 {
4793 tree t = *tp;
4794 struct free_lang_data_d *fld = (struct free_lang_data_d *) data;
4795
4796 if (TREE_CODE (t) == TREE_LIST)
4797 return NULL_TREE;
4798
4799 /* Language specific nodes will be removed, so there is no need
4800 to gather anything under them. */
4801 if (is_lang_specific (t))
4802 {
4803 *ws = 0;
4804 return NULL_TREE;
4805 }
4806
4807 if (DECL_P (t))
4808 {
4809 /* Note that walk_tree does not traverse every possible field in
4810 decls, so we have to do our own traversals here. */
4811 add_tree_to_fld_list (t, fld);
4812
4813 fld_worklist_push (DECL_NAME (t), fld);
4814 fld_worklist_push (DECL_CONTEXT (t), fld);
4815 fld_worklist_push (DECL_SIZE (t), fld);
4816 fld_worklist_push (DECL_SIZE_UNIT (t), fld);
4817
4818 /* We are going to remove everything under DECL_INITIAL for
4819 TYPE_DECLs. No point walking them. */
4820 if (TREE_CODE (t) != TYPE_DECL)
4821 fld_worklist_push (DECL_INITIAL (t), fld);
4822
4823 fld_worklist_push (DECL_ATTRIBUTES (t), fld);
4824 fld_worklist_push (DECL_ABSTRACT_ORIGIN (t), fld);
4825
4826 if (TREE_CODE (t) == FUNCTION_DECL)
4827 {
4828 fld_worklist_push (DECL_ARGUMENTS (t), fld);
4829 fld_worklist_push (DECL_RESULT (t), fld);
4830 }
4831 else if (TREE_CODE (t) == TYPE_DECL)
4832 {
4833 fld_worklist_push (DECL_ARGUMENT_FLD (t), fld);
4834 fld_worklist_push (DECL_VINDEX (t), fld);
4835 fld_worklist_push (DECL_ORIGINAL_TYPE (t), fld);
4836 }
4837 else if (TREE_CODE (t) == FIELD_DECL)
4838 {
4839 fld_worklist_push (DECL_FIELD_OFFSET (t), fld);
4840 fld_worklist_push (DECL_BIT_FIELD_TYPE (t), fld);
4841 fld_worklist_push (DECL_FIELD_BIT_OFFSET (t), fld);
4842 fld_worklist_push (DECL_FCONTEXT (t), fld);
4843 }
4844 else if (TREE_CODE (t) == VAR_DECL)
4845 {
4846 fld_worklist_push (DECL_SECTION_NAME (t), fld);
4847 fld_worklist_push (DECL_COMDAT_GROUP (t), fld);
4848 }
4849
4850 if ((TREE_CODE (t) == VAR_DECL || TREE_CODE (t) == PARM_DECL)
4851 && DECL_HAS_VALUE_EXPR_P (t))
4852 fld_worklist_push (DECL_VALUE_EXPR (t), fld);
4853
4854 if (TREE_CODE (t) != FIELD_DECL
4855 && TREE_CODE (t) != TYPE_DECL)
4856 fld_worklist_push (TREE_CHAIN (t), fld);
4857 *ws = 0;
4858 }
4859 else if (TYPE_P (t))
4860 {
4861 /* Note that walk_tree does not traverse every possible field in
4862 types, so we have to do our own traversals here. */
4863 add_tree_to_fld_list (t, fld);
4864
4865 if (!RECORD_OR_UNION_TYPE_P (t))
4866 fld_worklist_push (TYPE_CACHED_VALUES (t), fld);
4867 fld_worklist_push (TYPE_SIZE (t), fld);
4868 fld_worklist_push (TYPE_SIZE_UNIT (t), fld);
4869 fld_worklist_push (TYPE_ATTRIBUTES (t), fld);
4870 fld_worklist_push (TYPE_POINTER_TO (t), fld);
4871 fld_worklist_push (TYPE_REFERENCE_TO (t), fld);
4872 fld_worklist_push (TYPE_NAME (t), fld);
4873 /* Do not walk TYPE_NEXT_PTR_TO or TYPE_NEXT_REF_TO. We do not stream
4874 them and thus do not and want not to reach unused pointer types
4875 this way. */
4876 if (!POINTER_TYPE_P (t))
4877 fld_worklist_push (TYPE_MINVAL (t), fld);
4878 if (!RECORD_OR_UNION_TYPE_P (t))
4879 fld_worklist_push (TYPE_MAXVAL (t), fld);
4880 fld_worklist_push (TYPE_MAIN_VARIANT (t), fld);
4881 /* Do not walk TYPE_NEXT_VARIANT. We do not stream it and thus
4882 do not and want not to reach unused variants this way. */
4883 fld_worklist_push (TYPE_CONTEXT (t), fld);
4884 /* Do not walk TYPE_CANONICAL. We do not stream it and thus do not
4885 and want not to reach unused types this way. */
4886
4887 if (RECORD_OR_UNION_TYPE_P (t) && TYPE_BINFO (t))
4888 {
4889 unsigned i;
4890 tree tem;
4891 for (i = 0; VEC_iterate (tree, BINFO_BASE_BINFOS (TYPE_BINFO (t)),
4892 i, tem); ++i)
4893 fld_worklist_push (TREE_TYPE (tem), fld);
4894 tem = BINFO_VIRTUALS (TYPE_BINFO (t));
4895 if (tem
4896 /* The Java FE overloads BINFO_VIRTUALS for its own purpose. */
4897 && TREE_CODE (tem) == TREE_LIST)
4898 do
4899 {
4900 fld_worklist_push (TREE_VALUE (tem), fld);
4901 tem = TREE_CHAIN (tem);
4902 }
4903 while (tem);
4904 }
4905 if (RECORD_OR_UNION_TYPE_P (t))
4906 {
4907 tree tem;
4908 /* Push all TYPE_FIELDS - there can be interleaving interesting
4909 and non-interesting things. */
4910 tem = TYPE_FIELDS (t);
4911 while (tem)
4912 {
4913 if (TREE_CODE (tem) == FIELD_DECL
4914 || TREE_CODE (tem) == TYPE_DECL)
4915 fld_worklist_push (tem, fld);
4916 tem = TREE_CHAIN (tem);
4917 }
4918 }
4919
4920 fld_worklist_push (TYPE_STUB_DECL (t), fld);
4921 *ws = 0;
4922 }
4923 else if (TREE_CODE (t) == BLOCK)
4924 {
4925 tree tem;
4926 for (tem = BLOCK_VARS (t); tem; tem = TREE_CHAIN (tem))
4927 fld_worklist_push (tem, fld);
4928 for (tem = BLOCK_SUBBLOCKS (t); tem; tem = BLOCK_CHAIN (tem))
4929 fld_worklist_push (tem, fld);
4930 fld_worklist_push (BLOCK_ABSTRACT_ORIGIN (t), fld);
4931 }
4932
4933 if (TREE_CODE (t) != IDENTIFIER_NODE
4934 && CODE_CONTAINS_STRUCT (TREE_CODE (t), TS_TYPED))
4935 fld_worklist_push (TREE_TYPE (t), fld);
4936
4937 return NULL_TREE;
4938 }
4939
4940
4941 /* Find decls and types in T. */
4942
4943 static void
4944 find_decls_types (tree t, struct free_lang_data_d *fld)
4945 {
4946 while (1)
4947 {
4948 if (!pointer_set_contains (fld->pset, t))
4949 walk_tree (&t, find_decls_types_r, fld, fld->pset);
4950 if (VEC_empty (tree, fld->worklist))
4951 break;
4952 t = VEC_pop (tree, fld->worklist);
4953 }
4954 }
4955
4956 /* Translate all the types in LIST with the corresponding runtime
4957 types. */
4958
4959 static tree
4960 get_eh_types_for_runtime (tree list)
4961 {
4962 tree head, prev;
4963
4964 if (list == NULL_TREE)
4965 return NULL_TREE;
4966
4967 head = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
4968 prev = head;
4969 list = TREE_CHAIN (list);
4970 while (list)
4971 {
4972 tree n = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
4973 TREE_CHAIN (prev) = n;
4974 prev = TREE_CHAIN (prev);
4975 list = TREE_CHAIN (list);
4976 }
4977
4978 return head;
4979 }
4980
4981
4982 /* Find decls and types referenced in EH region R and store them in
4983 FLD->DECLS and FLD->TYPES. */
4984
4985 static void
4986 find_decls_types_in_eh_region (eh_region r, struct free_lang_data_d *fld)
4987 {
4988 switch (r->type)
4989 {
4990 case ERT_CLEANUP:
4991 break;
4992
4993 case ERT_TRY:
4994 {
4995 eh_catch c;
4996
4997 /* The types referenced in each catch must first be changed to the
4998 EH types used at runtime. This removes references to FE types
4999 in the region. */
5000 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
5001 {
5002 c->type_list = get_eh_types_for_runtime (c->type_list);
5003 walk_tree (&c->type_list, find_decls_types_r, fld, fld->pset);
5004 }
5005 }
5006 break;
5007
5008 case ERT_ALLOWED_EXCEPTIONS:
5009 r->u.allowed.type_list
5010 = get_eh_types_for_runtime (r->u.allowed.type_list);
5011 walk_tree (&r->u.allowed.type_list, find_decls_types_r, fld, fld->pset);
5012 break;
5013
5014 case ERT_MUST_NOT_THROW:
5015 walk_tree (&r->u.must_not_throw.failure_decl,
5016 find_decls_types_r, fld, fld->pset);
5017 break;
5018 }
5019 }
5020
5021
5022 /* Find decls and types referenced in cgraph node N and store them in
5023 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
5024 look for *every* kind of DECL and TYPE node reachable from N,
5025 including those embedded inside types and decls (i.e,, TYPE_DECLs,
5026 NAMESPACE_DECLs, etc). */
5027
5028 static void
5029 find_decls_types_in_node (struct cgraph_node *n, struct free_lang_data_d *fld)
5030 {
5031 basic_block bb;
5032 struct function *fn;
5033 unsigned ix;
5034 tree t;
5035
5036 find_decls_types (n->decl, fld);
5037
5038 if (!gimple_has_body_p (n->decl))
5039 return;
5040
5041 gcc_assert (current_function_decl == NULL_TREE && cfun == NULL);
5042
5043 fn = DECL_STRUCT_FUNCTION (n->decl);
5044
5045 /* Traverse locals. */
5046 FOR_EACH_LOCAL_DECL (fn, ix, t)
5047 find_decls_types (t, fld);
5048
5049 /* Traverse EH regions in FN. */
5050 {
5051 eh_region r;
5052 FOR_ALL_EH_REGION_FN (r, fn)
5053 find_decls_types_in_eh_region (r, fld);
5054 }
5055
5056 /* Traverse every statement in FN. */
5057 FOR_EACH_BB_FN (bb, fn)
5058 {
5059 gimple_stmt_iterator si;
5060 unsigned i;
5061
5062 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
5063 {
5064 gimple phi = gsi_stmt (si);
5065
5066 for (i = 0; i < gimple_phi_num_args (phi); i++)
5067 {
5068 tree *arg_p = gimple_phi_arg_def_ptr (phi, i);
5069 find_decls_types (*arg_p, fld);
5070 }
5071 }
5072
5073 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5074 {
5075 gimple stmt = gsi_stmt (si);
5076
5077 if (is_gimple_call (stmt))
5078 find_decls_types (gimple_call_fntype (stmt), fld);
5079
5080 for (i = 0; i < gimple_num_ops (stmt); i++)
5081 {
5082 tree arg = gimple_op (stmt, i);
5083 find_decls_types (arg, fld);
5084 }
5085 }
5086 }
5087 }
5088
5089
5090 /* Find decls and types referenced in varpool node N and store them in
5091 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
5092 look for *every* kind of DECL and TYPE node reachable from N,
5093 including those embedded inside types and decls (i.e,, TYPE_DECLs,
5094 NAMESPACE_DECLs, etc). */
5095
5096 static void
5097 find_decls_types_in_var (struct varpool_node *v, struct free_lang_data_d *fld)
5098 {
5099 find_decls_types (v->decl, fld);
5100 }
5101
5102 /* If T needs an assembler name, have one created for it. */
5103
5104 void
5105 assign_assembler_name_if_neeeded (tree t)
5106 {
5107 if (need_assembler_name_p (t))
5108 {
5109 /* When setting DECL_ASSEMBLER_NAME, the C++ mangler may emit
5110 diagnostics that use input_location to show locus
5111 information. The problem here is that, at this point,
5112 input_location is generally anchored to the end of the file
5113 (since the parser is long gone), so we don't have a good
5114 position to pin it to.
5115
5116 To alleviate this problem, this uses the location of T's
5117 declaration. Examples of this are
5118 testsuite/g++.dg/template/cond2.C and
5119 testsuite/g++.dg/template/pr35240.C. */
5120 location_t saved_location = input_location;
5121 input_location = DECL_SOURCE_LOCATION (t);
5122
5123 decl_assembler_name (t);
5124
5125 input_location = saved_location;
5126 }
5127 }
5128
5129
5130 /* Free language specific information for every operand and expression
5131 in every node of the call graph. This process operates in three stages:
5132
5133 1- Every callgraph node and varpool node is traversed looking for
5134 decls and types embedded in them. This is a more exhaustive
5135 search than that done by find_referenced_vars, because it will
5136 also collect individual fields, decls embedded in types, etc.
5137
5138 2- All the decls found are sent to free_lang_data_in_decl.
5139
5140 3- All the types found are sent to free_lang_data_in_type.
5141
5142 The ordering between decls and types is important because
5143 free_lang_data_in_decl sets assembler names, which includes
5144 mangling. So types cannot be freed up until assembler names have
5145 been set up. */
5146
5147 static void
5148 free_lang_data_in_cgraph (void)
5149 {
5150 struct cgraph_node *n;
5151 struct varpool_node *v;
5152 struct free_lang_data_d fld;
5153 tree t;
5154 unsigned i;
5155 alias_pair *p;
5156
5157 /* Initialize sets and arrays to store referenced decls and types. */
5158 fld.pset = pointer_set_create ();
5159 fld.worklist = NULL;
5160 fld.decls = VEC_alloc (tree, heap, 100);
5161 fld.types = VEC_alloc (tree, heap, 100);
5162
5163 /* Find decls and types in the body of every function in the callgraph. */
5164 for (n = cgraph_nodes; n; n = n->next)
5165 find_decls_types_in_node (n, &fld);
5166
5167 FOR_EACH_VEC_ELT (alias_pair, alias_pairs, i, p)
5168 find_decls_types (p->decl, &fld);
5169
5170 /* Find decls and types in every varpool symbol. */
5171 for (v = varpool_nodes; v; v = v->next)
5172 find_decls_types_in_var (v, &fld);
5173
5174 /* Set the assembler name on every decl found. We need to do this
5175 now because free_lang_data_in_decl will invalidate data needed
5176 for mangling. This breaks mangling on interdependent decls. */
5177 FOR_EACH_VEC_ELT (tree, fld.decls, i, t)
5178 assign_assembler_name_if_neeeded (t);
5179
5180 /* Traverse every decl found freeing its language data. */
5181 FOR_EACH_VEC_ELT (tree, fld.decls, i, t)
5182 free_lang_data_in_decl (t);
5183
5184 /* Traverse every type found freeing its language data. */
5185 FOR_EACH_VEC_ELT (tree, fld.types, i, t)
5186 free_lang_data_in_type (t);
5187
5188 pointer_set_destroy (fld.pset);
5189 VEC_free (tree, heap, fld.worklist);
5190 VEC_free (tree, heap, fld.decls);
5191 VEC_free (tree, heap, fld.types);
5192 }
5193
5194
5195 /* Free resources that are used by FE but are not needed once they are done. */
5196
5197 static unsigned
5198 free_lang_data (void)
5199 {
5200 unsigned i;
5201
5202 /* If we are the LTO frontend we have freed lang-specific data already. */
5203 if (in_lto_p
5204 || !flag_generate_lto)
5205 return 0;
5206
5207 /* Allocate and assign alias sets to the standard integer types
5208 while the slots are still in the way the frontends generated them. */
5209 for (i = 0; i < itk_none; ++i)
5210 if (integer_types[i])
5211 TYPE_ALIAS_SET (integer_types[i]) = get_alias_set (integer_types[i]);
5212
5213 /* Traverse the IL resetting language specific information for
5214 operands, expressions, etc. */
5215 free_lang_data_in_cgraph ();
5216
5217 /* Create gimple variants for common types. */
5218 ptrdiff_type_node = integer_type_node;
5219 fileptr_type_node = ptr_type_node;
5220
5221 /* Reset some langhooks. Do not reset types_compatible_p, it may
5222 still be used indirectly via the get_alias_set langhook. */
5223 lang_hooks.callgraph.analyze_expr = NULL;
5224 lang_hooks.dwarf_name = lhd_dwarf_name;
5225 lang_hooks.decl_printable_name = gimple_decl_printable_name;
5226 /* We do not want the default decl_assembler_name implementation,
5227 rather if we have fixed everything we want a wrapper around it
5228 asserting that all non-local symbols already got their assembler
5229 name and only produce assembler names for local symbols. Or rather
5230 make sure we never call decl_assembler_name on local symbols and
5231 devise a separate, middle-end private scheme for it. */
5232
5233 /* Reset diagnostic machinery. */
5234 diagnostic_starter (global_dc) = default_tree_diagnostic_starter;
5235 diagnostic_finalizer (global_dc) = default_diagnostic_finalizer;
5236 diagnostic_format_decoder (global_dc) = default_tree_printer;
5237
5238 return 0;
5239 }
5240
5241
5242 struct simple_ipa_opt_pass pass_ipa_free_lang_data =
5243 {
5244 {
5245 SIMPLE_IPA_PASS,
5246 "*free_lang_data", /* name */
5247 NULL, /* gate */
5248 free_lang_data, /* execute */
5249 NULL, /* sub */
5250 NULL, /* next */
5251 0, /* static_pass_number */
5252 TV_IPA_FREE_LANG_DATA, /* tv_id */
5253 0, /* properties_required */
5254 0, /* properties_provided */
5255 0, /* properties_destroyed */
5256 0, /* todo_flags_start */
5257 TODO_ggc_collect /* todo_flags_finish */
5258 }
5259 };
5260
5261 /* The backbone of is_attribute_p(). ATTR_LEN is the string length of
5262 ATTR_NAME. Also used internally by remove_attribute(). */
5263 bool
5264 private_is_attribute_p (const char *attr_name, size_t attr_len, const_tree ident)
5265 {
5266 size_t ident_len = IDENTIFIER_LENGTH (ident);
5267
5268 if (ident_len == attr_len)
5269 {
5270 if (strcmp (attr_name, IDENTIFIER_POINTER (ident)) == 0)
5271 return true;
5272 }
5273 else if (ident_len == attr_len + 4)
5274 {
5275 /* There is the possibility that ATTR is 'text' and IDENT is
5276 '__text__'. */
5277 const char *p = IDENTIFIER_POINTER (ident);
5278 if (p[0] == '_' && p[1] == '_'
5279 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
5280 && strncmp (attr_name, p + 2, attr_len) == 0)
5281 return true;
5282 }
5283
5284 return false;
5285 }
5286
5287 /* The backbone of lookup_attribute(). ATTR_LEN is the string length
5288 of ATTR_NAME, and LIST is not NULL_TREE. */
5289 tree
5290 private_lookup_attribute (const char *attr_name, size_t attr_len, tree list)
5291 {
5292 while (list)
5293 {
5294 size_t ident_len = IDENTIFIER_LENGTH (TREE_PURPOSE (list));
5295
5296 if (ident_len == attr_len)
5297 {
5298 if (strcmp (attr_name, IDENTIFIER_POINTER (TREE_PURPOSE (list))) == 0)
5299 break;
5300 }
5301 /* TODO: If we made sure that attributes were stored in the
5302 canonical form without '__...__' (ie, as in 'text' as opposed
5303 to '__text__') then we could avoid the following case. */
5304 else if (ident_len == attr_len + 4)
5305 {
5306 const char *p = IDENTIFIER_POINTER (TREE_PURPOSE (list));
5307 if (p[0] == '_' && p[1] == '_'
5308 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
5309 && strncmp (attr_name, p + 2, attr_len) == 0)
5310 break;
5311 }
5312 list = TREE_CHAIN (list);
5313 }
5314
5315 return list;
5316 }
5317
5318 /* A variant of lookup_attribute() that can be used with an identifier
5319 as the first argument, and where the identifier can be either
5320 'text' or '__text__'.
5321
5322 Given an attribute ATTR_IDENTIFIER, and a list of attributes LIST,
5323 return a pointer to the attribute's list element if the attribute
5324 is part of the list, or NULL_TREE if not found. If the attribute
5325 appears more than once, this only returns the first occurrence; the
5326 TREE_CHAIN of the return value should be passed back in if further
5327 occurrences are wanted. ATTR_IDENTIFIER must be an identifier but
5328 can be in the form 'text' or '__text__'. */
5329 static tree
5330 lookup_ident_attribute (tree attr_identifier, tree list)
5331 {
5332 gcc_checking_assert (TREE_CODE (attr_identifier) == IDENTIFIER_NODE);
5333
5334 while (list)
5335 {
5336 gcc_checking_assert (TREE_CODE (TREE_PURPOSE (list)) == IDENTIFIER_NODE);
5337
5338 /* Identifiers can be compared directly for equality. */
5339 if (attr_identifier == TREE_PURPOSE (list))
5340 break;
5341
5342 /* If they are not equal, they may still be one in the form
5343 'text' while the other one is in the form '__text__'. TODO:
5344 If we were storing attributes in normalized 'text' form, then
5345 this could all go away and we could take full advantage of
5346 the fact that we're comparing identifiers. :-) */
5347 {
5348 size_t attr_len = IDENTIFIER_LENGTH (attr_identifier);
5349 size_t ident_len = IDENTIFIER_LENGTH (TREE_PURPOSE (list));
5350
5351 if (ident_len == attr_len + 4)
5352 {
5353 const char *p = IDENTIFIER_POINTER (TREE_PURPOSE (list));
5354 const char *q = IDENTIFIER_POINTER (attr_identifier);
5355 if (p[0] == '_' && p[1] == '_'
5356 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
5357 && strncmp (q, p + 2, attr_len) == 0)
5358 break;
5359 }
5360 else if (ident_len + 4 == attr_len)
5361 {
5362 const char *p = IDENTIFIER_POINTER (TREE_PURPOSE (list));
5363 const char *q = IDENTIFIER_POINTER (attr_identifier);
5364 if (q[0] == '_' && q[1] == '_'
5365 && q[attr_len - 2] == '_' && q[attr_len - 1] == '_'
5366 && strncmp (q + 2, p, ident_len) == 0)
5367 break;
5368 }
5369 }
5370 list = TREE_CHAIN (list);
5371 }
5372
5373 return list;
5374 }
5375
5376 /* Remove any instances of attribute ATTR_NAME in LIST and return the
5377 modified list. */
5378
5379 tree
5380 remove_attribute (const char *attr_name, tree list)
5381 {
5382 tree *p;
5383 size_t attr_len = strlen (attr_name);
5384
5385 gcc_checking_assert (attr_name[0] != '_');
5386
5387 for (p = &list; *p; )
5388 {
5389 tree l = *p;
5390 /* TODO: If we were storing attributes in normalized form, here
5391 we could use a simple strcmp(). */
5392 if (private_is_attribute_p (attr_name, attr_len, TREE_PURPOSE (l)))
5393 *p = TREE_CHAIN (l);
5394 else
5395 p = &TREE_CHAIN (l);
5396 }
5397
5398 return list;
5399 }
5400
5401 /* Return an attribute list that is the union of a1 and a2. */
5402
5403 tree
5404 merge_attributes (tree a1, tree a2)
5405 {
5406 tree attributes;
5407
5408 /* Either one unset? Take the set one. */
5409
5410 if ((attributes = a1) == 0)
5411 attributes = a2;
5412
5413 /* One that completely contains the other? Take it. */
5414
5415 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
5416 {
5417 if (attribute_list_contained (a2, a1))
5418 attributes = a2;
5419 else
5420 {
5421 /* Pick the longest list, and hang on the other list. */
5422
5423 if (list_length (a1) < list_length (a2))
5424 attributes = a2, a2 = a1;
5425
5426 for (; a2 != 0; a2 = TREE_CHAIN (a2))
5427 {
5428 tree a;
5429 for (a = lookup_ident_attribute (TREE_PURPOSE (a2), attributes);
5430 a != NULL_TREE && !attribute_value_equal (a, a2);
5431 a = lookup_ident_attribute (TREE_PURPOSE (a2), TREE_CHAIN (a)))
5432 ;
5433 if (a == NULL_TREE)
5434 {
5435 a1 = copy_node (a2);
5436 TREE_CHAIN (a1) = attributes;
5437 attributes = a1;
5438 }
5439 }
5440 }
5441 }
5442 return attributes;
5443 }
5444
5445 /* Given types T1 and T2, merge their attributes and return
5446 the result. */
5447
5448 tree
5449 merge_type_attributes (tree t1, tree t2)
5450 {
5451 return merge_attributes (TYPE_ATTRIBUTES (t1),
5452 TYPE_ATTRIBUTES (t2));
5453 }
5454
5455 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
5456 the result. */
5457
5458 tree
5459 merge_decl_attributes (tree olddecl, tree newdecl)
5460 {
5461 return merge_attributes (DECL_ATTRIBUTES (olddecl),
5462 DECL_ATTRIBUTES (newdecl));
5463 }
5464
5465 #if TARGET_DLLIMPORT_DECL_ATTRIBUTES
5466
5467 /* Specialization of merge_decl_attributes for various Windows targets.
5468
5469 This handles the following situation:
5470
5471 __declspec (dllimport) int foo;
5472 int foo;
5473
5474 The second instance of `foo' nullifies the dllimport. */
5475
5476 tree
5477 merge_dllimport_decl_attributes (tree old, tree new_tree)
5478 {
5479 tree a;
5480 int delete_dllimport_p = 1;
5481
5482 /* What we need to do here is remove from `old' dllimport if it doesn't
5483 appear in `new'. dllimport behaves like extern: if a declaration is
5484 marked dllimport and a definition appears later, then the object
5485 is not dllimport'd. We also remove a `new' dllimport if the old list
5486 contains dllexport: dllexport always overrides dllimport, regardless
5487 of the order of declaration. */
5488 if (!VAR_OR_FUNCTION_DECL_P (new_tree))
5489 delete_dllimport_p = 0;
5490 else if (DECL_DLLIMPORT_P (new_tree)
5491 && lookup_attribute ("dllexport", DECL_ATTRIBUTES (old)))
5492 {
5493 DECL_DLLIMPORT_P (new_tree) = 0;
5494 warning (OPT_Wattributes, "%q+D already declared with dllexport attribute: "
5495 "dllimport ignored", new_tree);
5496 }
5497 else if (DECL_DLLIMPORT_P (old) && !DECL_DLLIMPORT_P (new_tree))
5498 {
5499 /* Warn about overriding a symbol that has already been used, e.g.:
5500 extern int __attribute__ ((dllimport)) foo;
5501 int* bar () {return &foo;}
5502 int foo;
5503 */
5504 if (TREE_USED (old))
5505 {
5506 warning (0, "%q+D redeclared without dllimport attribute "
5507 "after being referenced with dll linkage", new_tree);
5508 /* If we have used a variable's address with dllimport linkage,
5509 keep the old DECL_DLLIMPORT_P flag: the ADDR_EXPR using the
5510 decl may already have had TREE_CONSTANT computed.
5511 We still remove the attribute so that assembler code refers
5512 to '&foo rather than '_imp__foo'. */
5513 if (TREE_CODE (old) == VAR_DECL && TREE_ADDRESSABLE (old))
5514 DECL_DLLIMPORT_P (new_tree) = 1;
5515 }
5516
5517 /* Let an inline definition silently override the external reference,
5518 but otherwise warn about attribute inconsistency. */
5519 else if (TREE_CODE (new_tree) == VAR_DECL
5520 || !DECL_DECLARED_INLINE_P (new_tree))
5521 warning (OPT_Wattributes, "%q+D redeclared without dllimport attribute: "
5522 "previous dllimport ignored", new_tree);
5523 }
5524 else
5525 delete_dllimport_p = 0;
5526
5527 a = merge_attributes (DECL_ATTRIBUTES (old), DECL_ATTRIBUTES (new_tree));
5528
5529 if (delete_dllimport_p)
5530 a = remove_attribute ("dllimport", a);
5531
5532 return a;
5533 }
5534
5535 /* Handle a "dllimport" or "dllexport" attribute; arguments as in
5536 struct attribute_spec.handler. */
5537
5538 tree
5539 handle_dll_attribute (tree * pnode, tree name, tree args, int flags,
5540 bool *no_add_attrs)
5541 {
5542 tree node = *pnode;
5543 bool is_dllimport;
5544
5545 /* These attributes may apply to structure and union types being created,
5546 but otherwise should pass to the declaration involved. */
5547 if (!DECL_P (node))
5548 {
5549 if (flags & ((int) ATTR_FLAG_DECL_NEXT | (int) ATTR_FLAG_FUNCTION_NEXT
5550 | (int) ATTR_FLAG_ARRAY_NEXT))
5551 {
5552 *no_add_attrs = true;
5553 return tree_cons (name, args, NULL_TREE);
5554 }
5555 if (TREE_CODE (node) == RECORD_TYPE
5556 || TREE_CODE (node) == UNION_TYPE)
5557 {
5558 node = TYPE_NAME (node);
5559 if (!node)
5560 return NULL_TREE;
5561 }
5562 else
5563 {
5564 warning (OPT_Wattributes, "%qE attribute ignored",
5565 name);
5566 *no_add_attrs = true;
5567 return NULL_TREE;
5568 }
5569 }
5570
5571 if (TREE_CODE (node) != FUNCTION_DECL
5572 && TREE_CODE (node) != VAR_DECL
5573 && TREE_CODE (node) != TYPE_DECL)
5574 {
5575 *no_add_attrs = true;
5576 warning (OPT_Wattributes, "%qE attribute ignored",
5577 name);
5578 return NULL_TREE;
5579 }
5580
5581 if (TREE_CODE (node) == TYPE_DECL
5582 && TREE_CODE (TREE_TYPE (node)) != RECORD_TYPE
5583 && TREE_CODE (TREE_TYPE (node)) != UNION_TYPE)
5584 {
5585 *no_add_attrs = true;
5586 warning (OPT_Wattributes, "%qE attribute ignored",
5587 name);
5588 return NULL_TREE;
5589 }
5590
5591 is_dllimport = is_attribute_p ("dllimport", name);
5592
5593 /* Report error on dllimport ambiguities seen now before they cause
5594 any damage. */
5595 if (is_dllimport)
5596 {
5597 /* Honor any target-specific overrides. */
5598 if (!targetm.valid_dllimport_attribute_p (node))
5599 *no_add_attrs = true;
5600
5601 else if (TREE_CODE (node) == FUNCTION_DECL
5602 && DECL_DECLARED_INLINE_P (node))
5603 {
5604 warning (OPT_Wattributes, "inline function %q+D declared as "
5605 " dllimport: attribute ignored", node);
5606 *no_add_attrs = true;
5607 }
5608 /* Like MS, treat definition of dllimported variables and
5609 non-inlined functions on declaration as syntax errors. */
5610 else if (TREE_CODE (node) == FUNCTION_DECL && DECL_INITIAL (node))
5611 {
5612 error ("function %q+D definition is marked dllimport", node);
5613 *no_add_attrs = true;
5614 }
5615
5616 else if (TREE_CODE (node) == VAR_DECL)
5617 {
5618 if (DECL_INITIAL (node))
5619 {
5620 error ("variable %q+D definition is marked dllimport",
5621 node);
5622 *no_add_attrs = true;
5623 }
5624
5625 /* `extern' needn't be specified with dllimport.
5626 Specify `extern' now and hope for the best. Sigh. */
5627 DECL_EXTERNAL (node) = 1;
5628 /* Also, implicitly give dllimport'd variables declared within
5629 a function global scope, unless declared static. */
5630 if (current_function_decl != NULL_TREE && !TREE_STATIC (node))
5631 TREE_PUBLIC (node) = 1;
5632 }
5633
5634 if (*no_add_attrs == false)
5635 DECL_DLLIMPORT_P (node) = 1;
5636 }
5637 else if (TREE_CODE (node) == FUNCTION_DECL
5638 && DECL_DECLARED_INLINE_P (node)
5639 && flag_keep_inline_dllexport)
5640 /* An exported function, even if inline, must be emitted. */
5641 DECL_EXTERNAL (node) = 0;
5642
5643 /* Report error if symbol is not accessible at global scope. */
5644 if (!TREE_PUBLIC (node)
5645 && (TREE_CODE (node) == VAR_DECL
5646 || TREE_CODE (node) == FUNCTION_DECL))
5647 {
5648 error ("external linkage required for symbol %q+D because of "
5649 "%qE attribute", node, name);
5650 *no_add_attrs = true;
5651 }
5652
5653 /* A dllexport'd entity must have default visibility so that other
5654 program units (shared libraries or the main executable) can see
5655 it. A dllimport'd entity must have default visibility so that
5656 the linker knows that undefined references within this program
5657 unit can be resolved by the dynamic linker. */
5658 if (!*no_add_attrs)
5659 {
5660 if (DECL_VISIBILITY_SPECIFIED (node)
5661 && DECL_VISIBILITY (node) != VISIBILITY_DEFAULT)
5662 error ("%qE implies default visibility, but %qD has already "
5663 "been declared with a different visibility",
5664 name, node);
5665 DECL_VISIBILITY (node) = VISIBILITY_DEFAULT;
5666 DECL_VISIBILITY_SPECIFIED (node) = 1;
5667 }
5668
5669 return NULL_TREE;
5670 }
5671
5672 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
5673 \f
5674 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
5675 of the various TYPE_QUAL values. */
5676
5677 static void
5678 set_type_quals (tree type, int type_quals)
5679 {
5680 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
5681 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
5682 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
5683 TYPE_ADDR_SPACE (type) = DECODE_QUAL_ADDR_SPACE (type_quals);
5684 }
5685
5686 /* Returns true iff CAND is equivalent to BASE with TYPE_QUALS. */
5687
5688 bool
5689 check_qualified_type (const_tree cand, const_tree base, int type_quals)
5690 {
5691 return (TYPE_QUALS (cand) == type_quals
5692 && TYPE_NAME (cand) == TYPE_NAME (base)
5693 /* Apparently this is needed for Objective-C. */
5694 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
5695 /* Check alignment. */
5696 && TYPE_ALIGN (cand) == TYPE_ALIGN (base)
5697 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
5698 TYPE_ATTRIBUTES (base)));
5699 }
5700
5701 /* Returns true iff CAND is equivalent to BASE with ALIGN. */
5702
5703 static bool
5704 check_aligned_type (const_tree cand, const_tree base, unsigned int align)
5705 {
5706 return (TYPE_QUALS (cand) == TYPE_QUALS (base)
5707 && TYPE_NAME (cand) == TYPE_NAME (base)
5708 /* Apparently this is needed for Objective-C. */
5709 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
5710 /* Check alignment. */
5711 && TYPE_ALIGN (cand) == align
5712 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
5713 TYPE_ATTRIBUTES (base)));
5714 }
5715
5716 /* Return a version of the TYPE, qualified as indicated by the
5717 TYPE_QUALS, if one exists. If no qualified version exists yet,
5718 return NULL_TREE. */
5719
5720 tree
5721 get_qualified_type (tree type, int type_quals)
5722 {
5723 tree t;
5724
5725 if (TYPE_QUALS (type) == type_quals)
5726 return type;
5727
5728 /* Search the chain of variants to see if there is already one there just
5729 like the one we need to have. If so, use that existing one. We must
5730 preserve the TYPE_NAME, since there is code that depends on this. */
5731 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
5732 if (check_qualified_type (t, type, type_quals))
5733 return t;
5734
5735 return NULL_TREE;
5736 }
5737
5738 /* Like get_qualified_type, but creates the type if it does not
5739 exist. This function never returns NULL_TREE. */
5740
5741 tree
5742 build_qualified_type (tree type, int type_quals)
5743 {
5744 tree t;
5745
5746 /* See if we already have the appropriate qualified variant. */
5747 t = get_qualified_type (type, type_quals);
5748
5749 /* If not, build it. */
5750 if (!t)
5751 {
5752 t = build_variant_type_copy (type);
5753 set_type_quals (t, type_quals);
5754
5755 if (TYPE_STRUCTURAL_EQUALITY_P (type))
5756 /* Propagate structural equality. */
5757 SET_TYPE_STRUCTURAL_EQUALITY (t);
5758 else if (TYPE_CANONICAL (type) != type)
5759 /* Build the underlying canonical type, since it is different
5760 from TYPE. */
5761 TYPE_CANONICAL (t) = build_qualified_type (TYPE_CANONICAL (type),
5762 type_quals);
5763 else
5764 /* T is its own canonical type. */
5765 TYPE_CANONICAL (t) = t;
5766
5767 }
5768
5769 return t;
5770 }
5771
5772 /* Create a variant of type T with alignment ALIGN. */
5773
5774 tree
5775 build_aligned_type (tree type, unsigned int align)
5776 {
5777 tree t;
5778
5779 if (TYPE_PACKED (type)
5780 || TYPE_ALIGN (type) == align)
5781 return type;
5782
5783 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
5784 if (check_aligned_type (t, type, align))
5785 return t;
5786
5787 t = build_variant_type_copy (type);
5788 TYPE_ALIGN (t) = align;
5789
5790 return t;
5791 }
5792
5793 /* Create a new distinct copy of TYPE. The new type is made its own
5794 MAIN_VARIANT. If TYPE requires structural equality checks, the
5795 resulting type requires structural equality checks; otherwise, its
5796 TYPE_CANONICAL points to itself. */
5797
5798 tree
5799 build_distinct_type_copy (tree type)
5800 {
5801 tree t = copy_node (type);
5802
5803 TYPE_POINTER_TO (t) = 0;
5804 TYPE_REFERENCE_TO (t) = 0;
5805
5806 /* Set the canonical type either to a new equivalence class, or
5807 propagate the need for structural equality checks. */
5808 if (TYPE_STRUCTURAL_EQUALITY_P (type))
5809 SET_TYPE_STRUCTURAL_EQUALITY (t);
5810 else
5811 TYPE_CANONICAL (t) = t;
5812
5813 /* Make it its own variant. */
5814 TYPE_MAIN_VARIANT (t) = t;
5815 TYPE_NEXT_VARIANT (t) = 0;
5816
5817 /* Note that it is now possible for TYPE_MIN_VALUE to be a value
5818 whose TREE_TYPE is not t. This can also happen in the Ada
5819 frontend when using subtypes. */
5820
5821 return t;
5822 }
5823
5824 /* Create a new variant of TYPE, equivalent but distinct. This is so
5825 the caller can modify it. TYPE_CANONICAL for the return type will
5826 be equivalent to TYPE_CANONICAL of TYPE, indicating that the types
5827 are considered equal by the language itself (or that both types
5828 require structural equality checks). */
5829
5830 tree
5831 build_variant_type_copy (tree type)
5832 {
5833 tree t, m = TYPE_MAIN_VARIANT (type);
5834
5835 t = build_distinct_type_copy (type);
5836
5837 /* Since we're building a variant, assume that it is a non-semantic
5838 variant. This also propagates TYPE_STRUCTURAL_EQUALITY_P. */
5839 TYPE_CANONICAL (t) = TYPE_CANONICAL (type);
5840
5841 /* Add the new type to the chain of variants of TYPE. */
5842 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
5843 TYPE_NEXT_VARIANT (m) = t;
5844 TYPE_MAIN_VARIANT (t) = m;
5845
5846 return t;
5847 }
5848 \f
5849 /* Return true if the from tree in both tree maps are equal. */
5850
5851 int
5852 tree_map_base_eq (const void *va, const void *vb)
5853 {
5854 const struct tree_map_base *const a = (const struct tree_map_base *) va,
5855 *const b = (const struct tree_map_base *) vb;
5856 return (a->from == b->from);
5857 }
5858
5859 /* Hash a from tree in a tree_base_map. */
5860
5861 unsigned int
5862 tree_map_base_hash (const void *item)
5863 {
5864 return htab_hash_pointer (((const struct tree_map_base *)item)->from);
5865 }
5866
5867 /* Return true if this tree map structure is marked for garbage collection
5868 purposes. We simply return true if the from tree is marked, so that this
5869 structure goes away when the from tree goes away. */
5870
5871 int
5872 tree_map_base_marked_p (const void *p)
5873 {
5874 return ggc_marked_p (((const struct tree_map_base *) p)->from);
5875 }
5876
5877 /* Hash a from tree in a tree_map. */
5878
5879 unsigned int
5880 tree_map_hash (const void *item)
5881 {
5882 return (((const struct tree_map *) item)->hash);
5883 }
5884
5885 /* Hash a from tree in a tree_decl_map. */
5886
5887 unsigned int
5888 tree_decl_map_hash (const void *item)
5889 {
5890 return DECL_UID (((const struct tree_decl_map *) item)->base.from);
5891 }
5892
5893 /* Return the initialization priority for DECL. */
5894
5895 priority_type
5896 decl_init_priority_lookup (tree decl)
5897 {
5898 struct tree_priority_map *h;
5899 struct tree_map_base in;
5900
5901 gcc_assert (VAR_OR_FUNCTION_DECL_P (decl));
5902 in.from = decl;
5903 h = (struct tree_priority_map *) htab_find (init_priority_for_decl, &in);
5904 return h ? h->init : DEFAULT_INIT_PRIORITY;
5905 }
5906
5907 /* Return the finalization priority for DECL. */
5908
5909 priority_type
5910 decl_fini_priority_lookup (tree decl)
5911 {
5912 struct tree_priority_map *h;
5913 struct tree_map_base in;
5914
5915 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
5916 in.from = decl;
5917 h = (struct tree_priority_map *) htab_find (init_priority_for_decl, &in);
5918 return h ? h->fini : DEFAULT_INIT_PRIORITY;
5919 }
5920
5921 /* Return the initialization and finalization priority information for
5922 DECL. If there is no previous priority information, a freshly
5923 allocated structure is returned. */
5924
5925 static struct tree_priority_map *
5926 decl_priority_info (tree decl)
5927 {
5928 struct tree_priority_map in;
5929 struct tree_priority_map *h;
5930 void **loc;
5931
5932 in.base.from = decl;
5933 loc = htab_find_slot (init_priority_for_decl, &in, INSERT);
5934 h = (struct tree_priority_map *) *loc;
5935 if (!h)
5936 {
5937 h = ggc_alloc_cleared_tree_priority_map ();
5938 *loc = h;
5939 h->base.from = decl;
5940 h->init = DEFAULT_INIT_PRIORITY;
5941 h->fini = DEFAULT_INIT_PRIORITY;
5942 }
5943
5944 return h;
5945 }
5946
5947 /* Set the initialization priority for DECL to PRIORITY. */
5948
5949 void
5950 decl_init_priority_insert (tree decl, priority_type priority)
5951 {
5952 struct tree_priority_map *h;
5953
5954 gcc_assert (VAR_OR_FUNCTION_DECL_P (decl));
5955 if (priority == DEFAULT_INIT_PRIORITY)
5956 return;
5957 h = decl_priority_info (decl);
5958 h->init = priority;
5959 }
5960
5961 /* Set the finalization priority for DECL to PRIORITY. */
5962
5963 void
5964 decl_fini_priority_insert (tree decl, priority_type priority)
5965 {
5966 struct tree_priority_map *h;
5967
5968 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
5969 if (priority == DEFAULT_INIT_PRIORITY)
5970 return;
5971 h = decl_priority_info (decl);
5972 h->fini = priority;
5973 }
5974
5975 /* Print out the statistics for the DECL_DEBUG_EXPR hash table. */
5976
5977 static void
5978 print_debug_expr_statistics (void)
5979 {
5980 fprintf (stderr, "DECL_DEBUG_EXPR hash: size %ld, %ld elements, %f collisions\n",
5981 (long) htab_size (debug_expr_for_decl),
5982 (long) htab_elements (debug_expr_for_decl),
5983 htab_collisions (debug_expr_for_decl));
5984 }
5985
5986 /* Print out the statistics for the DECL_VALUE_EXPR hash table. */
5987
5988 static void
5989 print_value_expr_statistics (void)
5990 {
5991 fprintf (stderr, "DECL_VALUE_EXPR hash: size %ld, %ld elements, %f collisions\n",
5992 (long) htab_size (value_expr_for_decl),
5993 (long) htab_elements (value_expr_for_decl),
5994 htab_collisions (value_expr_for_decl));
5995 }
5996
5997 /* Lookup a debug expression for FROM, and return it if we find one. */
5998
5999 tree
6000 decl_debug_expr_lookup (tree from)
6001 {
6002 struct tree_decl_map *h, in;
6003 in.base.from = from;
6004
6005 h = (struct tree_decl_map *)
6006 htab_find_with_hash (debug_expr_for_decl, &in, DECL_UID (from));
6007 if (h)
6008 return h->to;
6009 return NULL_TREE;
6010 }
6011
6012 /* Insert a mapping FROM->TO in the debug expression hashtable. */
6013
6014 void
6015 decl_debug_expr_insert (tree from, tree to)
6016 {
6017 struct tree_decl_map *h;
6018 void **loc;
6019
6020 h = ggc_alloc_tree_decl_map ();
6021 h->base.from = from;
6022 h->to = to;
6023 loc = htab_find_slot_with_hash (debug_expr_for_decl, h, DECL_UID (from),
6024 INSERT);
6025 *(struct tree_decl_map **) loc = h;
6026 }
6027
6028 /* Lookup a value expression for FROM, and return it if we find one. */
6029
6030 tree
6031 decl_value_expr_lookup (tree from)
6032 {
6033 struct tree_decl_map *h, in;
6034 in.base.from = from;
6035
6036 h = (struct tree_decl_map *)
6037 htab_find_with_hash (value_expr_for_decl, &in, DECL_UID (from));
6038 if (h)
6039 return h->to;
6040 return NULL_TREE;
6041 }
6042
6043 /* Insert a mapping FROM->TO in the value expression hashtable. */
6044
6045 void
6046 decl_value_expr_insert (tree from, tree to)
6047 {
6048 struct tree_decl_map *h;
6049 void **loc;
6050
6051 h = ggc_alloc_tree_decl_map ();
6052 h->base.from = from;
6053 h->to = to;
6054 loc = htab_find_slot_with_hash (value_expr_for_decl, h, DECL_UID (from),
6055 INSERT);
6056 *(struct tree_decl_map **) loc = h;
6057 }
6058
6059 /* Lookup a vector of debug arguments for FROM, and return it if we
6060 find one. */
6061
6062 VEC(tree, gc) **
6063 decl_debug_args_lookup (tree from)
6064 {
6065 struct tree_vec_map *h, in;
6066
6067 if (!DECL_HAS_DEBUG_ARGS_P (from))
6068 return NULL;
6069 gcc_checking_assert (debug_args_for_decl != NULL);
6070 in.base.from = from;
6071 h = (struct tree_vec_map *)
6072 htab_find_with_hash (debug_args_for_decl, &in, DECL_UID (from));
6073 if (h)
6074 return &h->to;
6075 return NULL;
6076 }
6077
6078 /* Insert a mapping FROM->empty vector of debug arguments in the value
6079 expression hashtable. */
6080
6081 VEC(tree, gc) **
6082 decl_debug_args_insert (tree from)
6083 {
6084 struct tree_vec_map *h;
6085 void **loc;
6086
6087 if (DECL_HAS_DEBUG_ARGS_P (from))
6088 return decl_debug_args_lookup (from);
6089 if (debug_args_for_decl == NULL)
6090 debug_args_for_decl = htab_create_ggc (64, tree_vec_map_hash,
6091 tree_vec_map_eq, 0);
6092 h = ggc_alloc_tree_vec_map ();
6093 h->base.from = from;
6094 h->to = NULL;
6095 loc = htab_find_slot_with_hash (debug_args_for_decl, h, DECL_UID (from),
6096 INSERT);
6097 *(struct tree_vec_map **) loc = h;
6098 DECL_HAS_DEBUG_ARGS_P (from) = 1;
6099 return &h->to;
6100 }
6101
6102 /* Hashing of types so that we don't make duplicates.
6103 The entry point is `type_hash_canon'. */
6104
6105 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
6106 with types in the TREE_VALUE slots), by adding the hash codes
6107 of the individual types. */
6108
6109 static unsigned int
6110 type_hash_list (const_tree list, hashval_t hashcode)
6111 {
6112 const_tree tail;
6113
6114 for (tail = list; tail; tail = TREE_CHAIN (tail))
6115 if (TREE_VALUE (tail) != error_mark_node)
6116 hashcode = iterative_hash_object (TYPE_HASH (TREE_VALUE (tail)),
6117 hashcode);
6118
6119 return hashcode;
6120 }
6121
6122 /* These are the Hashtable callback functions. */
6123
6124 /* Returns true iff the types are equivalent. */
6125
6126 static int
6127 type_hash_eq (const void *va, const void *vb)
6128 {
6129 const struct type_hash *const a = (const struct type_hash *) va,
6130 *const b = (const struct type_hash *) vb;
6131
6132 /* First test the things that are the same for all types. */
6133 if (a->hash != b->hash
6134 || TREE_CODE (a->type) != TREE_CODE (b->type)
6135 || TREE_TYPE (a->type) != TREE_TYPE (b->type)
6136 || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
6137 TYPE_ATTRIBUTES (b->type))
6138 || (TREE_CODE (a->type) != COMPLEX_TYPE
6139 && TYPE_NAME (a->type) != TYPE_NAME (b->type)))
6140 return 0;
6141
6142 /* Be careful about comparing arrays before and after the element type
6143 has been completed; don't compare TYPE_ALIGN unless both types are
6144 complete. */
6145 if (COMPLETE_TYPE_P (a->type) && COMPLETE_TYPE_P (b->type)
6146 && (TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
6147 || TYPE_MODE (a->type) != TYPE_MODE (b->type)))
6148 return 0;
6149
6150 switch (TREE_CODE (a->type))
6151 {
6152 case VOID_TYPE:
6153 case COMPLEX_TYPE:
6154 case POINTER_TYPE:
6155 case REFERENCE_TYPE:
6156 return 1;
6157
6158 case VECTOR_TYPE:
6159 return TYPE_VECTOR_SUBPARTS (a->type) == TYPE_VECTOR_SUBPARTS (b->type);
6160
6161 case ENUMERAL_TYPE:
6162 if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
6163 && !(TYPE_VALUES (a->type)
6164 && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
6165 && TYPE_VALUES (b->type)
6166 && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
6167 && type_list_equal (TYPE_VALUES (a->type),
6168 TYPE_VALUES (b->type))))
6169 return 0;
6170
6171 /* ... fall through ... */
6172
6173 case INTEGER_TYPE:
6174 case REAL_TYPE:
6175 case BOOLEAN_TYPE:
6176 return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
6177 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
6178 TYPE_MAX_VALUE (b->type)))
6179 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
6180 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
6181 TYPE_MIN_VALUE (b->type))));
6182
6183 case FIXED_POINT_TYPE:
6184 return TYPE_SATURATING (a->type) == TYPE_SATURATING (b->type);
6185
6186 case OFFSET_TYPE:
6187 return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
6188
6189 case METHOD_TYPE:
6190 if (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
6191 && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
6192 || (TYPE_ARG_TYPES (a->type)
6193 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
6194 && TYPE_ARG_TYPES (b->type)
6195 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
6196 && type_list_equal (TYPE_ARG_TYPES (a->type),
6197 TYPE_ARG_TYPES (b->type)))))
6198 break;
6199 return 0;
6200 case ARRAY_TYPE:
6201 return TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type);
6202
6203 case RECORD_TYPE:
6204 case UNION_TYPE:
6205 case QUAL_UNION_TYPE:
6206 return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
6207 || (TYPE_FIELDS (a->type)
6208 && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
6209 && TYPE_FIELDS (b->type)
6210 && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
6211 && type_list_equal (TYPE_FIELDS (a->type),
6212 TYPE_FIELDS (b->type))));
6213
6214 case FUNCTION_TYPE:
6215 if (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
6216 || (TYPE_ARG_TYPES (a->type)
6217 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
6218 && TYPE_ARG_TYPES (b->type)
6219 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
6220 && type_list_equal (TYPE_ARG_TYPES (a->type),
6221 TYPE_ARG_TYPES (b->type))))
6222 break;
6223 return 0;
6224
6225 default:
6226 return 0;
6227 }
6228
6229 if (lang_hooks.types.type_hash_eq != NULL)
6230 return lang_hooks.types.type_hash_eq (a->type, b->type);
6231
6232 return 1;
6233 }
6234
6235 /* Return the cached hash value. */
6236
6237 static hashval_t
6238 type_hash_hash (const void *item)
6239 {
6240 return ((const struct type_hash *) item)->hash;
6241 }
6242
6243 /* Look in the type hash table for a type isomorphic to TYPE.
6244 If one is found, return it. Otherwise return 0. */
6245
6246 tree
6247 type_hash_lookup (hashval_t hashcode, tree type)
6248 {
6249 struct type_hash *h, in;
6250
6251 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
6252 must call that routine before comparing TYPE_ALIGNs. */
6253 layout_type (type);
6254
6255 in.hash = hashcode;
6256 in.type = type;
6257
6258 h = (struct type_hash *) htab_find_with_hash (type_hash_table, &in,
6259 hashcode);
6260 if (h)
6261 return h->type;
6262 return NULL_TREE;
6263 }
6264
6265 /* Add an entry to the type-hash-table
6266 for a type TYPE whose hash code is HASHCODE. */
6267
6268 void
6269 type_hash_add (hashval_t hashcode, tree type)
6270 {
6271 struct type_hash *h;
6272 void **loc;
6273
6274 h = ggc_alloc_type_hash ();
6275 h->hash = hashcode;
6276 h->type = type;
6277 loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
6278 *loc = (void *)h;
6279 }
6280
6281 /* Given TYPE, and HASHCODE its hash code, return the canonical
6282 object for an identical type if one already exists.
6283 Otherwise, return TYPE, and record it as the canonical object.
6284
6285 To use this function, first create a type of the sort you want.
6286 Then compute its hash code from the fields of the type that
6287 make it different from other similar types.
6288 Then call this function and use the value. */
6289
6290 tree
6291 type_hash_canon (unsigned int hashcode, tree type)
6292 {
6293 tree t1;
6294
6295 /* The hash table only contains main variants, so ensure that's what we're
6296 being passed. */
6297 gcc_assert (TYPE_MAIN_VARIANT (type) == type);
6298
6299 /* See if the type is in the hash table already. If so, return it.
6300 Otherwise, add the type. */
6301 t1 = type_hash_lookup (hashcode, type);
6302 if (t1 != 0)
6303 {
6304 #ifdef GATHER_STATISTICS
6305 tree_code_counts[(int) TREE_CODE (type)]--;
6306 tree_node_counts[(int) t_kind]--;
6307 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type_non_common);
6308 #endif
6309 return t1;
6310 }
6311 else
6312 {
6313 type_hash_add (hashcode, type);
6314 return type;
6315 }
6316 }
6317
6318 /* See if the data pointed to by the type hash table is marked. We consider
6319 it marked if the type is marked or if a debug type number or symbol
6320 table entry has been made for the type. */
6321
6322 static int
6323 type_hash_marked_p (const void *p)
6324 {
6325 const_tree const type = ((const struct type_hash *) p)->type;
6326
6327 return ggc_marked_p (type);
6328 }
6329
6330 static void
6331 print_type_hash_statistics (void)
6332 {
6333 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
6334 (long) htab_size (type_hash_table),
6335 (long) htab_elements (type_hash_table),
6336 htab_collisions (type_hash_table));
6337 }
6338
6339 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
6340 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
6341 by adding the hash codes of the individual attributes. */
6342
6343 static unsigned int
6344 attribute_hash_list (const_tree list, hashval_t hashcode)
6345 {
6346 const_tree tail;
6347
6348 for (tail = list; tail; tail = TREE_CHAIN (tail))
6349 /* ??? Do we want to add in TREE_VALUE too? */
6350 hashcode = iterative_hash_object
6351 (IDENTIFIER_HASH_VALUE (TREE_PURPOSE (tail)), hashcode);
6352 return hashcode;
6353 }
6354
6355 /* Given two lists of attributes, return true if list l2 is
6356 equivalent to l1. */
6357
6358 int
6359 attribute_list_equal (const_tree l1, const_tree l2)
6360 {
6361 if (l1 == l2)
6362 return 1;
6363
6364 return attribute_list_contained (l1, l2)
6365 && attribute_list_contained (l2, l1);
6366 }
6367
6368 /* Given two lists of attributes, return true if list L2 is
6369 completely contained within L1. */
6370 /* ??? This would be faster if attribute names were stored in a canonicalized
6371 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
6372 must be used to show these elements are equivalent (which they are). */
6373 /* ??? It's not clear that attributes with arguments will always be handled
6374 correctly. */
6375
6376 int
6377 attribute_list_contained (const_tree l1, const_tree l2)
6378 {
6379 const_tree t1, t2;
6380
6381 /* First check the obvious, maybe the lists are identical. */
6382 if (l1 == l2)
6383 return 1;
6384
6385 /* Maybe the lists are similar. */
6386 for (t1 = l1, t2 = l2;
6387 t1 != 0 && t2 != 0
6388 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
6389 && TREE_VALUE (t1) == TREE_VALUE (t2);
6390 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
6391 ;
6392
6393 /* Maybe the lists are equal. */
6394 if (t1 == 0 && t2 == 0)
6395 return 1;
6396
6397 for (; t2 != 0; t2 = TREE_CHAIN (t2))
6398 {
6399 const_tree attr;
6400 /* This CONST_CAST is okay because lookup_attribute does not
6401 modify its argument and the return value is assigned to a
6402 const_tree. */
6403 for (attr = lookup_ident_attribute (TREE_PURPOSE (t2), CONST_CAST_TREE(l1));
6404 attr != NULL_TREE && !attribute_value_equal (t2, attr);
6405 attr = lookup_ident_attribute (TREE_PURPOSE (t2), TREE_CHAIN (attr)))
6406 ;
6407
6408 if (attr == NULL_TREE)
6409 return 0;
6410 }
6411
6412 return 1;
6413 }
6414
6415 /* Given two lists of types
6416 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
6417 return 1 if the lists contain the same types in the same order.
6418 Also, the TREE_PURPOSEs must match. */
6419
6420 int
6421 type_list_equal (const_tree l1, const_tree l2)
6422 {
6423 const_tree t1, t2;
6424
6425 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
6426 if (TREE_VALUE (t1) != TREE_VALUE (t2)
6427 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
6428 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
6429 && (TREE_TYPE (TREE_PURPOSE (t1))
6430 == TREE_TYPE (TREE_PURPOSE (t2))))))
6431 return 0;
6432
6433 return t1 == t2;
6434 }
6435
6436 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
6437 given by TYPE. If the argument list accepts variable arguments,
6438 then this function counts only the ordinary arguments. */
6439
6440 int
6441 type_num_arguments (const_tree type)
6442 {
6443 int i = 0;
6444 tree t;
6445
6446 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
6447 /* If the function does not take a variable number of arguments,
6448 the last element in the list will have type `void'. */
6449 if (VOID_TYPE_P (TREE_VALUE (t)))
6450 break;
6451 else
6452 ++i;
6453
6454 return i;
6455 }
6456
6457 /* Nonzero if integer constants T1 and T2
6458 represent the same constant value. */
6459
6460 int
6461 tree_int_cst_equal (const_tree t1, const_tree t2)
6462 {
6463 if (t1 == t2)
6464 return 1;
6465
6466 if (t1 == 0 || t2 == 0)
6467 return 0;
6468
6469 if (TREE_CODE (t1) == INTEGER_CST
6470 && TREE_CODE (t2) == INTEGER_CST
6471 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
6472 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
6473 return 1;
6474
6475 return 0;
6476 }
6477
6478 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
6479 The precise way of comparison depends on their data type. */
6480
6481 int
6482 tree_int_cst_lt (const_tree t1, const_tree t2)
6483 {
6484 if (t1 == t2)
6485 return 0;
6486
6487 if (TYPE_UNSIGNED (TREE_TYPE (t1)) != TYPE_UNSIGNED (TREE_TYPE (t2)))
6488 {
6489 int t1_sgn = tree_int_cst_sgn (t1);
6490 int t2_sgn = tree_int_cst_sgn (t2);
6491
6492 if (t1_sgn < t2_sgn)
6493 return 1;
6494 else if (t1_sgn > t2_sgn)
6495 return 0;
6496 /* Otherwise, both are non-negative, so we compare them as
6497 unsigned just in case one of them would overflow a signed
6498 type. */
6499 }
6500 else if (!TYPE_UNSIGNED (TREE_TYPE (t1)))
6501 return INT_CST_LT (t1, t2);
6502
6503 return INT_CST_LT_UNSIGNED (t1, t2);
6504 }
6505
6506 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
6507
6508 int
6509 tree_int_cst_compare (const_tree t1, const_tree t2)
6510 {
6511 if (tree_int_cst_lt (t1, t2))
6512 return -1;
6513 else if (tree_int_cst_lt (t2, t1))
6514 return 1;
6515 else
6516 return 0;
6517 }
6518
6519 /* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
6520 the host. If POS is zero, the value can be represented in a single
6521 HOST_WIDE_INT. If POS is nonzero, the value must be non-negative and can
6522 be represented in a single unsigned HOST_WIDE_INT. */
6523
6524 int
6525 host_integerp (const_tree t, int pos)
6526 {
6527 if (t == NULL_TREE)
6528 return 0;
6529
6530 return (TREE_CODE (t) == INTEGER_CST
6531 && ((TREE_INT_CST_HIGH (t) == 0
6532 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
6533 || (! pos && TREE_INT_CST_HIGH (t) == -1
6534 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0
6535 && (!TYPE_UNSIGNED (TREE_TYPE (t))
6536 || (TREE_CODE (TREE_TYPE (t)) == INTEGER_TYPE
6537 && TYPE_IS_SIZETYPE (TREE_TYPE (t)))))
6538 || (pos && TREE_INT_CST_HIGH (t) == 0)));
6539 }
6540
6541 /* Return the HOST_WIDE_INT least significant bits of T if it is an
6542 INTEGER_CST and there is no overflow. POS is nonzero if the result must
6543 be non-negative. We must be able to satisfy the above conditions. */
6544
6545 HOST_WIDE_INT
6546 tree_low_cst (const_tree t, int pos)
6547 {
6548 gcc_assert (host_integerp (t, pos));
6549 return TREE_INT_CST_LOW (t);
6550 }
6551
6552 /* Return the HOST_WIDE_INT least significant bits of T, a sizetype
6553 kind INTEGER_CST. This makes sure to properly sign-extend the
6554 constant. */
6555
6556 HOST_WIDE_INT
6557 size_low_cst (const_tree t)
6558 {
6559 double_int d = tree_to_double_int (t);
6560 return double_int_sext (d, TYPE_PRECISION (TREE_TYPE (t))).low;
6561 }
6562
6563 /* Return the most significant (sign) bit of T. */
6564
6565 int
6566 tree_int_cst_sign_bit (const_tree t)
6567 {
6568 unsigned bitno = TYPE_PRECISION (TREE_TYPE (t)) - 1;
6569 unsigned HOST_WIDE_INT w;
6570
6571 if (bitno < HOST_BITS_PER_WIDE_INT)
6572 w = TREE_INT_CST_LOW (t);
6573 else
6574 {
6575 w = TREE_INT_CST_HIGH (t);
6576 bitno -= HOST_BITS_PER_WIDE_INT;
6577 }
6578
6579 return (w >> bitno) & 1;
6580 }
6581
6582 /* Return an indication of the sign of the integer constant T.
6583 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
6584 Note that -1 will never be returned if T's type is unsigned. */
6585
6586 int
6587 tree_int_cst_sgn (const_tree t)
6588 {
6589 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
6590 return 0;
6591 else if (TYPE_UNSIGNED (TREE_TYPE (t)))
6592 return 1;
6593 else if (TREE_INT_CST_HIGH (t) < 0)
6594 return -1;
6595 else
6596 return 1;
6597 }
6598
6599 /* Return the minimum number of bits needed to represent VALUE in a
6600 signed or unsigned type, UNSIGNEDP says which. */
6601
6602 unsigned int
6603 tree_int_cst_min_precision (tree value, bool unsignedp)
6604 {
6605 int log;
6606
6607 /* If the value is negative, compute its negative minus 1. The latter
6608 adjustment is because the absolute value of the largest negative value
6609 is one larger than the largest positive value. This is equivalent to
6610 a bit-wise negation, so use that operation instead. */
6611
6612 if (tree_int_cst_sgn (value) < 0)
6613 value = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (value), value);
6614
6615 /* Return the number of bits needed, taking into account the fact
6616 that we need one more bit for a signed than unsigned type. */
6617
6618 if (integer_zerop (value))
6619 log = 0;
6620 else
6621 log = tree_floor_log2 (value);
6622
6623 return log + 1 + !unsignedp;
6624 }
6625
6626 /* Compare two constructor-element-type constants. Return 1 if the lists
6627 are known to be equal; otherwise return 0. */
6628
6629 int
6630 simple_cst_list_equal (const_tree l1, const_tree l2)
6631 {
6632 while (l1 != NULL_TREE && l2 != NULL_TREE)
6633 {
6634 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
6635 return 0;
6636
6637 l1 = TREE_CHAIN (l1);
6638 l2 = TREE_CHAIN (l2);
6639 }
6640
6641 return l1 == l2;
6642 }
6643
6644 /* Return truthvalue of whether T1 is the same tree structure as T2.
6645 Return 1 if they are the same.
6646 Return 0 if they are understandably different.
6647 Return -1 if either contains tree structure not understood by
6648 this function. */
6649
6650 int
6651 simple_cst_equal (const_tree t1, const_tree t2)
6652 {
6653 enum tree_code code1, code2;
6654 int cmp;
6655 int i;
6656
6657 if (t1 == t2)
6658 return 1;
6659 if (t1 == 0 || t2 == 0)
6660 return 0;
6661
6662 code1 = TREE_CODE (t1);
6663 code2 = TREE_CODE (t2);
6664
6665 if (CONVERT_EXPR_CODE_P (code1) || code1 == NON_LVALUE_EXPR)
6666 {
6667 if (CONVERT_EXPR_CODE_P (code2)
6668 || code2 == NON_LVALUE_EXPR)
6669 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6670 else
6671 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
6672 }
6673
6674 else if (CONVERT_EXPR_CODE_P (code2)
6675 || code2 == NON_LVALUE_EXPR)
6676 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
6677
6678 if (code1 != code2)
6679 return 0;
6680
6681 switch (code1)
6682 {
6683 case INTEGER_CST:
6684 return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
6685 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
6686
6687 case REAL_CST:
6688 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
6689
6690 case FIXED_CST:
6691 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1), TREE_FIXED_CST (t2));
6692
6693 case STRING_CST:
6694 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
6695 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
6696 TREE_STRING_LENGTH (t1)));
6697
6698 case CONSTRUCTOR:
6699 {
6700 unsigned HOST_WIDE_INT idx;
6701 VEC(constructor_elt, gc) *v1 = CONSTRUCTOR_ELTS (t1);
6702 VEC(constructor_elt, gc) *v2 = CONSTRUCTOR_ELTS (t2);
6703
6704 if (VEC_length (constructor_elt, v1) != VEC_length (constructor_elt, v2))
6705 return false;
6706
6707 for (idx = 0; idx < VEC_length (constructor_elt, v1); ++idx)
6708 /* ??? Should we handle also fields here? */
6709 if (!simple_cst_equal (VEC_index (constructor_elt, v1, idx)->value,
6710 VEC_index (constructor_elt, v2, idx)->value))
6711 return false;
6712 return true;
6713 }
6714
6715 case SAVE_EXPR:
6716 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6717
6718 case CALL_EXPR:
6719 cmp = simple_cst_equal (CALL_EXPR_FN (t1), CALL_EXPR_FN (t2));
6720 if (cmp <= 0)
6721 return cmp;
6722 if (call_expr_nargs (t1) != call_expr_nargs (t2))
6723 return 0;
6724 {
6725 const_tree arg1, arg2;
6726 const_call_expr_arg_iterator iter1, iter2;
6727 for (arg1 = first_const_call_expr_arg (t1, &iter1),
6728 arg2 = first_const_call_expr_arg (t2, &iter2);
6729 arg1 && arg2;
6730 arg1 = next_const_call_expr_arg (&iter1),
6731 arg2 = next_const_call_expr_arg (&iter2))
6732 {
6733 cmp = simple_cst_equal (arg1, arg2);
6734 if (cmp <= 0)
6735 return cmp;
6736 }
6737 return arg1 == arg2;
6738 }
6739
6740 case TARGET_EXPR:
6741 /* Special case: if either target is an unallocated VAR_DECL,
6742 it means that it's going to be unified with whatever the
6743 TARGET_EXPR is really supposed to initialize, so treat it
6744 as being equivalent to anything. */
6745 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
6746 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
6747 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
6748 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
6749 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
6750 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
6751 cmp = 1;
6752 else
6753 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6754
6755 if (cmp <= 0)
6756 return cmp;
6757
6758 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
6759
6760 case WITH_CLEANUP_EXPR:
6761 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6762 if (cmp <= 0)
6763 return cmp;
6764
6765 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
6766
6767 case COMPONENT_REF:
6768 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
6769 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6770
6771 return 0;
6772
6773 case VAR_DECL:
6774 case PARM_DECL:
6775 case CONST_DECL:
6776 case FUNCTION_DECL:
6777 return 0;
6778
6779 default:
6780 break;
6781 }
6782
6783 /* This general rule works for most tree codes. All exceptions should be
6784 handled above. If this is a language-specific tree code, we can't
6785 trust what might be in the operand, so say we don't know
6786 the situation. */
6787 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
6788 return -1;
6789
6790 switch (TREE_CODE_CLASS (code1))
6791 {
6792 case tcc_unary:
6793 case tcc_binary:
6794 case tcc_comparison:
6795 case tcc_expression:
6796 case tcc_reference:
6797 case tcc_statement:
6798 cmp = 1;
6799 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
6800 {
6801 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
6802 if (cmp <= 0)
6803 return cmp;
6804 }
6805
6806 return cmp;
6807
6808 default:
6809 return -1;
6810 }
6811 }
6812
6813 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
6814 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
6815 than U, respectively. */
6816
6817 int
6818 compare_tree_int (const_tree t, unsigned HOST_WIDE_INT u)
6819 {
6820 if (tree_int_cst_sgn (t) < 0)
6821 return -1;
6822 else if (TREE_INT_CST_HIGH (t) != 0)
6823 return 1;
6824 else if (TREE_INT_CST_LOW (t) == u)
6825 return 0;
6826 else if (TREE_INT_CST_LOW (t) < u)
6827 return -1;
6828 else
6829 return 1;
6830 }
6831
6832 /* Return true if CODE represents an associative tree code. Otherwise
6833 return false. */
6834 bool
6835 associative_tree_code (enum tree_code code)
6836 {
6837 switch (code)
6838 {
6839 case BIT_IOR_EXPR:
6840 case BIT_AND_EXPR:
6841 case BIT_XOR_EXPR:
6842 case PLUS_EXPR:
6843 case MULT_EXPR:
6844 case MIN_EXPR:
6845 case MAX_EXPR:
6846 return true;
6847
6848 default:
6849 break;
6850 }
6851 return false;
6852 }
6853
6854 /* Return true if CODE represents a commutative tree code. Otherwise
6855 return false. */
6856 bool
6857 commutative_tree_code (enum tree_code code)
6858 {
6859 switch (code)
6860 {
6861 case PLUS_EXPR:
6862 case MULT_EXPR:
6863 case MIN_EXPR:
6864 case MAX_EXPR:
6865 case BIT_IOR_EXPR:
6866 case BIT_XOR_EXPR:
6867 case BIT_AND_EXPR:
6868 case NE_EXPR:
6869 case EQ_EXPR:
6870 case UNORDERED_EXPR:
6871 case ORDERED_EXPR:
6872 case UNEQ_EXPR:
6873 case LTGT_EXPR:
6874 case TRUTH_AND_EXPR:
6875 case TRUTH_XOR_EXPR:
6876 case TRUTH_OR_EXPR:
6877 return true;
6878
6879 default:
6880 break;
6881 }
6882 return false;
6883 }
6884
6885 /* Return true if CODE represents a ternary tree code for which the
6886 first two operands are commutative. Otherwise return false. */
6887 bool
6888 commutative_ternary_tree_code (enum tree_code code)
6889 {
6890 switch (code)
6891 {
6892 case WIDEN_MULT_PLUS_EXPR:
6893 case WIDEN_MULT_MINUS_EXPR:
6894 return true;
6895
6896 default:
6897 break;
6898 }
6899 return false;
6900 }
6901
6902 /* Generate a hash value for an expression. This can be used iteratively
6903 by passing a previous result as the VAL argument.
6904
6905 This function is intended to produce the same hash for expressions which
6906 would compare equal using operand_equal_p. */
6907
6908 hashval_t
6909 iterative_hash_expr (const_tree t, hashval_t val)
6910 {
6911 int i;
6912 enum tree_code code;
6913 char tclass;
6914
6915 if (t == NULL_TREE)
6916 return iterative_hash_hashval_t (0, val);
6917
6918 code = TREE_CODE (t);
6919
6920 switch (code)
6921 {
6922 /* Alas, constants aren't shared, so we can't rely on pointer
6923 identity. */
6924 case INTEGER_CST:
6925 val = iterative_hash_host_wide_int (TREE_INT_CST_LOW (t), val);
6926 return iterative_hash_host_wide_int (TREE_INT_CST_HIGH (t), val);
6927 case REAL_CST:
6928 {
6929 unsigned int val2 = real_hash (TREE_REAL_CST_PTR (t));
6930
6931 return iterative_hash_hashval_t (val2, val);
6932 }
6933 case FIXED_CST:
6934 {
6935 unsigned int val2 = fixed_hash (TREE_FIXED_CST_PTR (t));
6936
6937 return iterative_hash_hashval_t (val2, val);
6938 }
6939 case STRING_CST:
6940 return iterative_hash (TREE_STRING_POINTER (t),
6941 TREE_STRING_LENGTH (t), val);
6942 case COMPLEX_CST:
6943 val = iterative_hash_expr (TREE_REALPART (t), val);
6944 return iterative_hash_expr (TREE_IMAGPART (t), val);
6945 case VECTOR_CST:
6946 return iterative_hash_expr (TREE_VECTOR_CST_ELTS (t), val);
6947 case SSA_NAME:
6948 /* We can just compare by pointer. */
6949 return iterative_hash_host_wide_int (SSA_NAME_VERSION (t), val);
6950 case PLACEHOLDER_EXPR:
6951 /* The node itself doesn't matter. */
6952 return val;
6953 case TREE_LIST:
6954 /* A list of expressions, for a CALL_EXPR or as the elements of a
6955 VECTOR_CST. */
6956 for (; t; t = TREE_CHAIN (t))
6957 val = iterative_hash_expr (TREE_VALUE (t), val);
6958 return val;
6959 case CONSTRUCTOR:
6960 {
6961 unsigned HOST_WIDE_INT idx;
6962 tree field, value;
6963 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t), idx, field, value)
6964 {
6965 val = iterative_hash_expr (field, val);
6966 val = iterative_hash_expr (value, val);
6967 }
6968 return val;
6969 }
6970 case MEM_REF:
6971 {
6972 /* The type of the second operand is relevant, except for
6973 its top-level qualifiers. */
6974 tree type = TYPE_MAIN_VARIANT (TREE_TYPE (TREE_OPERAND (t, 1)));
6975
6976 val = iterative_hash_object (TYPE_HASH (type), val);
6977
6978 /* We could use the standard hash computation from this point
6979 on. */
6980 val = iterative_hash_object (code, val);
6981 val = iterative_hash_expr (TREE_OPERAND (t, 1), val);
6982 val = iterative_hash_expr (TREE_OPERAND (t, 0), val);
6983 return val;
6984 }
6985 case FUNCTION_DECL:
6986 /* When referring to a built-in FUNCTION_DECL, use the __builtin__ form.
6987 Otherwise nodes that compare equal according to operand_equal_p might
6988 get different hash codes. However, don't do this for machine specific
6989 or front end builtins, since the function code is overloaded in those
6990 cases. */
6991 if (DECL_BUILT_IN_CLASS (t) == BUILT_IN_NORMAL
6992 && builtin_decl_explicit_p (DECL_FUNCTION_CODE (t)))
6993 {
6994 t = builtin_decl_explicit (DECL_FUNCTION_CODE (t));
6995 code = TREE_CODE (t);
6996 }
6997 /* FALL THROUGH */
6998 default:
6999 tclass = TREE_CODE_CLASS (code);
7000
7001 if (tclass == tcc_declaration)
7002 {
7003 /* DECL's have a unique ID */
7004 val = iterative_hash_host_wide_int (DECL_UID (t), val);
7005 }
7006 else
7007 {
7008 gcc_assert (IS_EXPR_CODE_CLASS (tclass));
7009
7010 val = iterative_hash_object (code, val);
7011
7012 /* Don't hash the type, that can lead to having nodes which
7013 compare equal according to operand_equal_p, but which
7014 have different hash codes. */
7015 if (CONVERT_EXPR_CODE_P (code)
7016 || code == NON_LVALUE_EXPR)
7017 {
7018 /* Make sure to include signness in the hash computation. */
7019 val += TYPE_UNSIGNED (TREE_TYPE (t));
7020 val = iterative_hash_expr (TREE_OPERAND (t, 0), val);
7021 }
7022
7023 else if (commutative_tree_code (code))
7024 {
7025 /* It's a commutative expression. We want to hash it the same
7026 however it appears. We do this by first hashing both operands
7027 and then rehashing based on the order of their independent
7028 hashes. */
7029 hashval_t one = iterative_hash_expr (TREE_OPERAND (t, 0), 0);
7030 hashval_t two = iterative_hash_expr (TREE_OPERAND (t, 1), 0);
7031 hashval_t t;
7032
7033 if (one > two)
7034 t = one, one = two, two = t;
7035
7036 val = iterative_hash_hashval_t (one, val);
7037 val = iterative_hash_hashval_t (two, val);
7038 }
7039 else
7040 for (i = TREE_OPERAND_LENGTH (t) - 1; i >= 0; --i)
7041 val = iterative_hash_expr (TREE_OPERAND (t, i), val);
7042 }
7043 return val;
7044 }
7045 }
7046
7047 /* Generate a hash value for a pair of expressions. This can be used
7048 iteratively by passing a previous result as the VAL argument.
7049
7050 The same hash value is always returned for a given pair of expressions,
7051 regardless of the order in which they are presented. This is useful in
7052 hashing the operands of commutative functions. */
7053
7054 hashval_t
7055 iterative_hash_exprs_commutative (const_tree t1,
7056 const_tree t2, hashval_t val)
7057 {
7058 hashval_t one = iterative_hash_expr (t1, 0);
7059 hashval_t two = iterative_hash_expr (t2, 0);
7060 hashval_t t;
7061
7062 if (one > two)
7063 t = one, one = two, two = t;
7064 val = iterative_hash_hashval_t (one, val);
7065 val = iterative_hash_hashval_t (two, val);
7066
7067 return val;
7068 }
7069 \f
7070 /* Constructors for pointer, array and function types.
7071 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
7072 constructed by language-dependent code, not here.) */
7073
7074 /* Construct, lay out and return the type of pointers to TO_TYPE with
7075 mode MODE. If CAN_ALIAS_ALL is TRUE, indicate this type can
7076 reference all of memory. If such a type has already been
7077 constructed, reuse it. */
7078
7079 tree
7080 build_pointer_type_for_mode (tree to_type, enum machine_mode mode,
7081 bool can_alias_all)
7082 {
7083 tree t;
7084
7085 if (to_type == error_mark_node)
7086 return error_mark_node;
7087
7088 /* If the pointed-to type has the may_alias attribute set, force
7089 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
7090 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
7091 can_alias_all = true;
7092
7093 /* In some cases, languages will have things that aren't a POINTER_TYPE
7094 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
7095 In that case, return that type without regard to the rest of our
7096 operands.
7097
7098 ??? This is a kludge, but consistent with the way this function has
7099 always operated and there doesn't seem to be a good way to avoid this
7100 at the moment. */
7101 if (TYPE_POINTER_TO (to_type) != 0
7102 && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
7103 return TYPE_POINTER_TO (to_type);
7104
7105 /* First, if we already have a type for pointers to TO_TYPE and it's
7106 the proper mode, use it. */
7107 for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
7108 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
7109 return t;
7110
7111 t = make_node (POINTER_TYPE);
7112
7113 TREE_TYPE (t) = to_type;
7114 SET_TYPE_MODE (t, mode);
7115 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
7116 TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
7117 TYPE_POINTER_TO (to_type) = t;
7118
7119 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
7120 SET_TYPE_STRUCTURAL_EQUALITY (t);
7121 else if (TYPE_CANONICAL (to_type) != to_type)
7122 TYPE_CANONICAL (t)
7123 = build_pointer_type_for_mode (TYPE_CANONICAL (to_type),
7124 mode, can_alias_all);
7125
7126 /* Lay out the type. This function has many callers that are concerned
7127 with expression-construction, and this simplifies them all. */
7128 layout_type (t);
7129
7130 return t;
7131 }
7132
7133 /* By default build pointers in ptr_mode. */
7134
7135 tree
7136 build_pointer_type (tree to_type)
7137 {
7138 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
7139 : TYPE_ADDR_SPACE (to_type);
7140 enum machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
7141 return build_pointer_type_for_mode (to_type, pointer_mode, false);
7142 }
7143
7144 /* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE. */
7145
7146 tree
7147 build_reference_type_for_mode (tree to_type, enum machine_mode mode,
7148 bool can_alias_all)
7149 {
7150 tree t;
7151
7152 if (to_type == error_mark_node)
7153 return error_mark_node;
7154
7155 /* If the pointed-to type has the may_alias attribute set, force
7156 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
7157 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
7158 can_alias_all = true;
7159
7160 /* In some cases, languages will have things that aren't a REFERENCE_TYPE
7161 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
7162 In that case, return that type without regard to the rest of our
7163 operands.
7164
7165 ??? This is a kludge, but consistent with the way this function has
7166 always operated and there doesn't seem to be a good way to avoid this
7167 at the moment. */
7168 if (TYPE_REFERENCE_TO (to_type) != 0
7169 && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
7170 return TYPE_REFERENCE_TO (to_type);
7171
7172 /* First, if we already have a type for pointers to TO_TYPE and it's
7173 the proper mode, use it. */
7174 for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
7175 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
7176 return t;
7177
7178 t = make_node (REFERENCE_TYPE);
7179
7180 TREE_TYPE (t) = to_type;
7181 SET_TYPE_MODE (t, mode);
7182 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
7183 TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
7184 TYPE_REFERENCE_TO (to_type) = t;
7185
7186 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
7187 SET_TYPE_STRUCTURAL_EQUALITY (t);
7188 else if (TYPE_CANONICAL (to_type) != to_type)
7189 TYPE_CANONICAL (t)
7190 = build_reference_type_for_mode (TYPE_CANONICAL (to_type),
7191 mode, can_alias_all);
7192
7193 layout_type (t);
7194
7195 return t;
7196 }
7197
7198
7199 /* Build the node for the type of references-to-TO_TYPE by default
7200 in ptr_mode. */
7201
7202 tree
7203 build_reference_type (tree to_type)
7204 {
7205 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
7206 : TYPE_ADDR_SPACE (to_type);
7207 enum machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
7208 return build_reference_type_for_mode (to_type, pointer_mode, false);
7209 }
7210
7211 /* Build a type that is compatible with t but has no cv quals anywhere
7212 in its type, thus
7213
7214 const char *const *const * -> char ***. */
7215
7216 tree
7217 build_type_no_quals (tree t)
7218 {
7219 switch (TREE_CODE (t))
7220 {
7221 case POINTER_TYPE:
7222 return build_pointer_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
7223 TYPE_MODE (t),
7224 TYPE_REF_CAN_ALIAS_ALL (t));
7225 case REFERENCE_TYPE:
7226 return
7227 build_reference_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
7228 TYPE_MODE (t),
7229 TYPE_REF_CAN_ALIAS_ALL (t));
7230 default:
7231 return TYPE_MAIN_VARIANT (t);
7232 }
7233 }
7234
7235 #define MAX_INT_CACHED_PREC \
7236 (HOST_BITS_PER_WIDE_INT > 64 ? HOST_BITS_PER_WIDE_INT : 64)
7237 static GTY(()) tree nonstandard_integer_type_cache[2 * MAX_INT_CACHED_PREC + 2];
7238
7239 /* Builds a signed or unsigned integer type of precision PRECISION.
7240 Used for C bitfields whose precision does not match that of
7241 built-in target types. */
7242 tree
7243 build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
7244 int unsignedp)
7245 {
7246 tree itype, ret;
7247
7248 if (unsignedp)
7249 unsignedp = MAX_INT_CACHED_PREC + 1;
7250
7251 if (precision <= MAX_INT_CACHED_PREC)
7252 {
7253 itype = nonstandard_integer_type_cache[precision + unsignedp];
7254 if (itype)
7255 return itype;
7256 }
7257
7258 itype = make_node (INTEGER_TYPE);
7259 TYPE_PRECISION (itype) = precision;
7260
7261 if (unsignedp)
7262 fixup_unsigned_type (itype);
7263 else
7264 fixup_signed_type (itype);
7265
7266 ret = itype;
7267 if (host_integerp (TYPE_MAX_VALUE (itype), 1))
7268 ret = type_hash_canon (tree_low_cst (TYPE_MAX_VALUE (itype), 1), itype);
7269 if (precision <= MAX_INT_CACHED_PREC)
7270 nonstandard_integer_type_cache[precision + unsignedp] = ret;
7271
7272 return ret;
7273 }
7274
7275 /* Create a range of some discrete type TYPE (an INTEGER_TYPE, ENUMERAL_TYPE
7276 or BOOLEAN_TYPE) with low bound LOWVAL and high bound HIGHVAL. If SHARED
7277 is true, reuse such a type that has already been constructed. */
7278
7279 static tree
7280 build_range_type_1 (tree type, tree lowval, tree highval, bool shared)
7281 {
7282 tree itype = make_node (INTEGER_TYPE);
7283 hashval_t hashcode = 0;
7284
7285 TREE_TYPE (itype) = type;
7286
7287 TYPE_MIN_VALUE (itype) = fold_convert (type, lowval);
7288 TYPE_MAX_VALUE (itype) = highval ? fold_convert (type, highval) : NULL;
7289
7290 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
7291 SET_TYPE_MODE (itype, TYPE_MODE (type));
7292 TYPE_SIZE (itype) = TYPE_SIZE (type);
7293 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
7294 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
7295 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
7296
7297 if (!shared)
7298 return itype;
7299
7300 if ((TYPE_MIN_VALUE (itype)
7301 && TREE_CODE (TYPE_MIN_VALUE (itype)) != INTEGER_CST)
7302 || (TYPE_MAX_VALUE (itype)
7303 && TREE_CODE (TYPE_MAX_VALUE (itype)) != INTEGER_CST))
7304 {
7305 /* Since we cannot reliably merge this type, we need to compare it using
7306 structural equality checks. */
7307 SET_TYPE_STRUCTURAL_EQUALITY (itype);
7308 return itype;
7309 }
7310
7311 hashcode = iterative_hash_expr (TYPE_MIN_VALUE (itype), hashcode);
7312 hashcode = iterative_hash_expr (TYPE_MAX_VALUE (itype), hashcode);
7313 hashcode = iterative_hash_hashval_t (TYPE_HASH (type), hashcode);
7314 itype = type_hash_canon (hashcode, itype);
7315
7316 return itype;
7317 }
7318
7319 /* Wrapper around build_range_type_1 with SHARED set to true. */
7320
7321 tree
7322 build_range_type (tree type, tree lowval, tree highval)
7323 {
7324 return build_range_type_1 (type, lowval, highval, true);
7325 }
7326
7327 /* Wrapper around build_range_type_1 with SHARED set to false. */
7328
7329 tree
7330 build_nonshared_range_type (tree type, tree lowval, tree highval)
7331 {
7332 return build_range_type_1 (type, lowval, highval, false);
7333 }
7334
7335 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
7336 MAXVAL should be the maximum value in the domain
7337 (one less than the length of the array).
7338
7339 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
7340 We don't enforce this limit, that is up to caller (e.g. language front end).
7341 The limit exists because the result is a signed type and we don't handle
7342 sizes that use more than one HOST_WIDE_INT. */
7343
7344 tree
7345 build_index_type (tree maxval)
7346 {
7347 return build_range_type (sizetype, size_zero_node, maxval);
7348 }
7349
7350 /* Return true if the debug information for TYPE, a subtype, should be emitted
7351 as a subrange type. If so, set LOWVAL to the low bound and HIGHVAL to the
7352 high bound, respectively. Sometimes doing so unnecessarily obfuscates the
7353 debug info and doesn't reflect the source code. */
7354
7355 bool
7356 subrange_type_for_debug_p (const_tree type, tree *lowval, tree *highval)
7357 {
7358 tree base_type = TREE_TYPE (type), low, high;
7359
7360 /* Subrange types have a base type which is an integral type. */
7361 if (!INTEGRAL_TYPE_P (base_type))
7362 return false;
7363
7364 /* Get the real bounds of the subtype. */
7365 if (lang_hooks.types.get_subrange_bounds)
7366 lang_hooks.types.get_subrange_bounds (type, &low, &high);
7367 else
7368 {
7369 low = TYPE_MIN_VALUE (type);
7370 high = TYPE_MAX_VALUE (type);
7371 }
7372
7373 /* If the type and its base type have the same representation and the same
7374 name, then the type is not a subrange but a copy of the base type. */
7375 if ((TREE_CODE (base_type) == INTEGER_TYPE
7376 || TREE_CODE (base_type) == BOOLEAN_TYPE)
7377 && int_size_in_bytes (type) == int_size_in_bytes (base_type)
7378 && tree_int_cst_equal (low, TYPE_MIN_VALUE (base_type))
7379 && tree_int_cst_equal (high, TYPE_MAX_VALUE (base_type)))
7380 {
7381 tree type_name = TYPE_NAME (type);
7382 tree base_type_name = TYPE_NAME (base_type);
7383
7384 if (type_name && TREE_CODE (type_name) == TYPE_DECL)
7385 type_name = DECL_NAME (type_name);
7386
7387 if (base_type_name && TREE_CODE (base_type_name) == TYPE_DECL)
7388 base_type_name = DECL_NAME (base_type_name);
7389
7390 if (type_name == base_type_name)
7391 return false;
7392 }
7393
7394 if (lowval)
7395 *lowval = low;
7396 if (highval)
7397 *highval = high;
7398 return true;
7399 }
7400
7401 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
7402 and number of elements specified by the range of values of INDEX_TYPE.
7403 If SHARED is true, reuse such a type that has already been constructed. */
7404
7405 static tree
7406 build_array_type_1 (tree elt_type, tree index_type, bool shared)
7407 {
7408 tree t;
7409
7410 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
7411 {
7412 error ("arrays of functions are not meaningful");
7413 elt_type = integer_type_node;
7414 }
7415
7416 t = make_node (ARRAY_TYPE);
7417 TREE_TYPE (t) = elt_type;
7418 TYPE_DOMAIN (t) = index_type;
7419 TYPE_ADDR_SPACE (t) = TYPE_ADDR_SPACE (elt_type);
7420 layout_type (t);
7421
7422 /* If the element type is incomplete at this point we get marked for
7423 structural equality. Do not record these types in the canonical
7424 type hashtable. */
7425 if (TYPE_STRUCTURAL_EQUALITY_P (t))
7426 return t;
7427
7428 if (shared)
7429 {
7430 hashval_t hashcode = iterative_hash_object (TYPE_HASH (elt_type), 0);
7431 if (index_type)
7432 hashcode = iterative_hash_object (TYPE_HASH (index_type), hashcode);
7433 t = type_hash_canon (hashcode, t);
7434 }
7435
7436 if (TYPE_CANONICAL (t) == t)
7437 {
7438 if (TYPE_STRUCTURAL_EQUALITY_P (elt_type)
7439 || (index_type && TYPE_STRUCTURAL_EQUALITY_P (index_type)))
7440 SET_TYPE_STRUCTURAL_EQUALITY (t);
7441 else if (TYPE_CANONICAL (elt_type) != elt_type
7442 || (index_type && TYPE_CANONICAL (index_type) != index_type))
7443 TYPE_CANONICAL (t)
7444 = build_array_type_1 (TYPE_CANONICAL (elt_type),
7445 index_type
7446 ? TYPE_CANONICAL (index_type) : NULL_TREE,
7447 shared);
7448 }
7449
7450 return t;
7451 }
7452
7453 /* Wrapper around build_array_type_1 with SHARED set to true. */
7454
7455 tree
7456 build_array_type (tree elt_type, tree index_type)
7457 {
7458 return build_array_type_1 (elt_type, index_type, true);
7459 }
7460
7461 /* Wrapper around build_array_type_1 with SHARED set to false. */
7462
7463 tree
7464 build_nonshared_array_type (tree elt_type, tree index_type)
7465 {
7466 return build_array_type_1 (elt_type, index_type, false);
7467 }
7468
7469 /* Return a representation of ELT_TYPE[NELTS], using indices of type
7470 sizetype. */
7471
7472 tree
7473 build_array_type_nelts (tree elt_type, unsigned HOST_WIDE_INT nelts)
7474 {
7475 return build_array_type (elt_type, build_index_type (size_int (nelts - 1)));
7476 }
7477
7478 /* Recursively examines the array elements of TYPE, until a non-array
7479 element type is found. */
7480
7481 tree
7482 strip_array_types (tree type)
7483 {
7484 while (TREE_CODE (type) == ARRAY_TYPE)
7485 type = TREE_TYPE (type);
7486
7487 return type;
7488 }
7489
7490 /* Computes the canonical argument types from the argument type list
7491 ARGTYPES.
7492
7493 Upon return, *ANY_STRUCTURAL_P will be true iff either it was true
7494 on entry to this function, or if any of the ARGTYPES are
7495 structural.
7496
7497 Upon return, *ANY_NONCANONICAL_P will be true iff either it was
7498 true on entry to this function, or if any of the ARGTYPES are
7499 non-canonical.
7500
7501 Returns a canonical argument list, which may be ARGTYPES when the
7502 canonical argument list is unneeded (i.e., *ANY_STRUCTURAL_P is
7503 true) or would not differ from ARGTYPES. */
7504
7505 static tree
7506 maybe_canonicalize_argtypes(tree argtypes,
7507 bool *any_structural_p,
7508 bool *any_noncanonical_p)
7509 {
7510 tree arg;
7511 bool any_noncanonical_argtypes_p = false;
7512
7513 for (arg = argtypes; arg && !(*any_structural_p); arg = TREE_CHAIN (arg))
7514 {
7515 if (!TREE_VALUE (arg) || TREE_VALUE (arg) == error_mark_node)
7516 /* Fail gracefully by stating that the type is structural. */
7517 *any_structural_p = true;
7518 else if (TYPE_STRUCTURAL_EQUALITY_P (TREE_VALUE (arg)))
7519 *any_structural_p = true;
7520 else if (TYPE_CANONICAL (TREE_VALUE (arg)) != TREE_VALUE (arg)
7521 || TREE_PURPOSE (arg))
7522 /* If the argument has a default argument, we consider it
7523 non-canonical even though the type itself is canonical.
7524 That way, different variants of function and method types
7525 with default arguments will all point to the variant with
7526 no defaults as their canonical type. */
7527 any_noncanonical_argtypes_p = true;
7528 }
7529
7530 if (*any_structural_p)
7531 return argtypes;
7532
7533 if (any_noncanonical_argtypes_p)
7534 {
7535 /* Build the canonical list of argument types. */
7536 tree canon_argtypes = NULL_TREE;
7537 bool is_void = false;
7538
7539 for (arg = argtypes; arg; arg = TREE_CHAIN (arg))
7540 {
7541 if (arg == void_list_node)
7542 is_void = true;
7543 else
7544 canon_argtypes = tree_cons (NULL_TREE,
7545 TYPE_CANONICAL (TREE_VALUE (arg)),
7546 canon_argtypes);
7547 }
7548
7549 canon_argtypes = nreverse (canon_argtypes);
7550 if (is_void)
7551 canon_argtypes = chainon (canon_argtypes, void_list_node);
7552
7553 /* There is a non-canonical type. */
7554 *any_noncanonical_p = true;
7555 return canon_argtypes;
7556 }
7557
7558 /* The canonical argument types are the same as ARGTYPES. */
7559 return argtypes;
7560 }
7561
7562 /* Construct, lay out and return
7563 the type of functions returning type VALUE_TYPE
7564 given arguments of types ARG_TYPES.
7565 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
7566 are data type nodes for the arguments of the function.
7567 If such a type has already been constructed, reuse it. */
7568
7569 tree
7570 build_function_type (tree value_type, tree arg_types)
7571 {
7572 tree t;
7573 hashval_t hashcode = 0;
7574 bool any_structural_p, any_noncanonical_p;
7575 tree canon_argtypes;
7576
7577 if (TREE_CODE (value_type) == FUNCTION_TYPE)
7578 {
7579 error ("function return type cannot be function");
7580 value_type = integer_type_node;
7581 }
7582
7583 /* Make a node of the sort we want. */
7584 t = make_node (FUNCTION_TYPE);
7585 TREE_TYPE (t) = value_type;
7586 TYPE_ARG_TYPES (t) = arg_types;
7587
7588 /* If we already have such a type, use the old one. */
7589 hashcode = iterative_hash_object (TYPE_HASH (value_type), hashcode);
7590 hashcode = type_hash_list (arg_types, hashcode);
7591 t = type_hash_canon (hashcode, t);
7592
7593 /* Set up the canonical type. */
7594 any_structural_p = TYPE_STRUCTURAL_EQUALITY_P (value_type);
7595 any_noncanonical_p = TYPE_CANONICAL (value_type) != value_type;
7596 canon_argtypes = maybe_canonicalize_argtypes (arg_types,
7597 &any_structural_p,
7598 &any_noncanonical_p);
7599 if (any_structural_p)
7600 SET_TYPE_STRUCTURAL_EQUALITY (t);
7601 else if (any_noncanonical_p)
7602 TYPE_CANONICAL (t) = build_function_type (TYPE_CANONICAL (value_type),
7603 canon_argtypes);
7604
7605 if (!COMPLETE_TYPE_P (t))
7606 layout_type (t);
7607 return t;
7608 }
7609
7610 /* Build variant of function type ORIG_TYPE skipping ARGS_TO_SKIP and the
7611 return value if SKIP_RETURN is true. */
7612
7613 static tree
7614 build_function_type_skip_args (tree orig_type, bitmap args_to_skip,
7615 bool skip_return)
7616 {
7617 tree new_type = NULL;
7618 tree args, new_args = NULL, t;
7619 tree new_reversed;
7620 int i = 0;
7621
7622 for (args = TYPE_ARG_TYPES (orig_type); args && args != void_list_node;
7623 args = TREE_CHAIN (args), i++)
7624 if (!args_to_skip || !bitmap_bit_p (args_to_skip, i))
7625 new_args = tree_cons (NULL_TREE, TREE_VALUE (args), new_args);
7626
7627 new_reversed = nreverse (new_args);
7628 if (args)
7629 {
7630 if (new_reversed)
7631 TREE_CHAIN (new_args) = void_list_node;
7632 else
7633 new_reversed = void_list_node;
7634 }
7635
7636 /* Use copy_node to preserve as much as possible from original type
7637 (debug info, attribute lists etc.)
7638 Exception is METHOD_TYPEs must have THIS argument.
7639 When we are asked to remove it, we need to build new FUNCTION_TYPE
7640 instead. */
7641 if (TREE_CODE (orig_type) != METHOD_TYPE
7642 || !args_to_skip
7643 || !bitmap_bit_p (args_to_skip, 0))
7644 {
7645 new_type = build_distinct_type_copy (orig_type);
7646 TYPE_ARG_TYPES (new_type) = new_reversed;
7647 }
7648 else
7649 {
7650 new_type
7651 = build_distinct_type_copy (build_function_type (TREE_TYPE (orig_type),
7652 new_reversed));
7653 TYPE_CONTEXT (new_type) = TYPE_CONTEXT (orig_type);
7654 }
7655
7656 if (skip_return)
7657 TREE_TYPE (new_type) = void_type_node;
7658
7659 /* This is a new type, not a copy of an old type. Need to reassociate
7660 variants. We can handle everything except the main variant lazily. */
7661 t = TYPE_MAIN_VARIANT (orig_type);
7662 if (t != orig_type)
7663 {
7664 t = build_function_type_skip_args (t, args_to_skip, skip_return);
7665 TYPE_MAIN_VARIANT (new_type) = t;
7666 TYPE_NEXT_VARIANT (new_type) = TYPE_NEXT_VARIANT (t);
7667 TYPE_NEXT_VARIANT (t) = new_type;
7668 }
7669 else
7670 {
7671 TYPE_MAIN_VARIANT (new_type) = new_type;
7672 TYPE_NEXT_VARIANT (new_type) = NULL;
7673 }
7674
7675 return new_type;
7676 }
7677
7678 /* Build variant of function decl ORIG_DECL skipping ARGS_TO_SKIP and the
7679 return value if SKIP_RETURN is true.
7680
7681 Arguments from DECL_ARGUMENTS list can't be removed now, since they are
7682 linked by TREE_CHAIN directly. The caller is responsible for eliminating
7683 them when they are being duplicated (i.e. copy_arguments_for_versioning). */
7684
7685 tree
7686 build_function_decl_skip_args (tree orig_decl, bitmap args_to_skip,
7687 bool skip_return)
7688 {
7689 tree new_decl = copy_node (orig_decl);
7690 tree new_type;
7691
7692 new_type = TREE_TYPE (orig_decl);
7693 if (prototype_p (new_type)
7694 || (skip_return && !VOID_TYPE_P (TREE_TYPE (new_type))))
7695 new_type
7696 = build_function_type_skip_args (new_type, args_to_skip, skip_return);
7697 TREE_TYPE (new_decl) = new_type;
7698
7699 /* For declarations setting DECL_VINDEX (i.e. methods)
7700 we expect first argument to be THIS pointer. */
7701 if (args_to_skip && bitmap_bit_p (args_to_skip, 0))
7702 DECL_VINDEX (new_decl) = NULL_TREE;
7703
7704 /* When signature changes, we need to clear builtin info. */
7705 if (DECL_BUILT_IN (new_decl)
7706 && args_to_skip
7707 && !bitmap_empty_p (args_to_skip))
7708 {
7709 DECL_BUILT_IN_CLASS (new_decl) = NOT_BUILT_IN;
7710 DECL_FUNCTION_CODE (new_decl) = (enum built_in_function) 0;
7711 }
7712 return new_decl;
7713 }
7714
7715 /* Build a function type. The RETURN_TYPE is the type returned by the
7716 function. If VAARGS is set, no void_type_node is appended to the
7717 the list. ARGP must be always be terminated be a NULL_TREE. */
7718
7719 static tree
7720 build_function_type_list_1 (bool vaargs, tree return_type, va_list argp)
7721 {
7722 tree t, args, last;
7723
7724 t = va_arg (argp, tree);
7725 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (argp, tree))
7726 args = tree_cons (NULL_TREE, t, args);
7727
7728 if (vaargs)
7729 {
7730 last = args;
7731 if (args != NULL_TREE)
7732 args = nreverse (args);
7733 gcc_assert (last != void_list_node);
7734 }
7735 else if (args == NULL_TREE)
7736 args = void_list_node;
7737 else
7738 {
7739 last = args;
7740 args = nreverse (args);
7741 TREE_CHAIN (last) = void_list_node;
7742 }
7743 args = build_function_type (return_type, args);
7744
7745 return args;
7746 }
7747
7748 /* Build a function type. The RETURN_TYPE is the type returned by the
7749 function. If additional arguments are provided, they are
7750 additional argument types. The list of argument types must always
7751 be terminated by NULL_TREE. */
7752
7753 tree
7754 build_function_type_list (tree return_type, ...)
7755 {
7756 tree args;
7757 va_list p;
7758
7759 va_start (p, return_type);
7760 args = build_function_type_list_1 (false, return_type, p);
7761 va_end (p);
7762 return args;
7763 }
7764
7765 /* Build a variable argument function type. The RETURN_TYPE is the
7766 type returned by the function. If additional arguments are provided,
7767 they are additional argument types. The list of argument types must
7768 always be terminated by NULL_TREE. */
7769
7770 tree
7771 build_varargs_function_type_list (tree return_type, ...)
7772 {
7773 tree args;
7774 va_list p;
7775
7776 va_start (p, return_type);
7777 args = build_function_type_list_1 (true, return_type, p);
7778 va_end (p);
7779
7780 return args;
7781 }
7782
7783 /* Build a function type. RETURN_TYPE is the type returned by the
7784 function; VAARGS indicates whether the function takes varargs. The
7785 function takes N named arguments, the types of which are provided in
7786 ARG_TYPES. */
7787
7788 static tree
7789 build_function_type_array_1 (bool vaargs, tree return_type, int n,
7790 tree *arg_types)
7791 {
7792 int i;
7793 tree t = vaargs ? NULL_TREE : void_list_node;
7794
7795 for (i = n - 1; i >= 0; i--)
7796 t = tree_cons (NULL_TREE, arg_types[i], t);
7797
7798 return build_function_type (return_type, t);
7799 }
7800
7801 /* Build a function type. RETURN_TYPE is the type returned by the
7802 function. The function takes N named arguments, the types of which
7803 are provided in ARG_TYPES. */
7804
7805 tree
7806 build_function_type_array (tree return_type, int n, tree *arg_types)
7807 {
7808 return build_function_type_array_1 (false, return_type, n, arg_types);
7809 }
7810
7811 /* Build a variable argument function type. RETURN_TYPE is the type
7812 returned by the function. The function takes N named arguments, the
7813 types of which are provided in ARG_TYPES. */
7814
7815 tree
7816 build_varargs_function_type_array (tree return_type, int n, tree *arg_types)
7817 {
7818 return build_function_type_array_1 (true, return_type, n, arg_types);
7819 }
7820
7821 /* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
7822 and ARGTYPES (a TREE_LIST) are the return type and arguments types
7823 for the method. An implicit additional parameter (of type
7824 pointer-to-BASETYPE) is added to the ARGTYPES. */
7825
7826 tree
7827 build_method_type_directly (tree basetype,
7828 tree rettype,
7829 tree argtypes)
7830 {
7831 tree t;
7832 tree ptype;
7833 int hashcode = 0;
7834 bool any_structural_p, any_noncanonical_p;
7835 tree canon_argtypes;
7836
7837 /* Make a node of the sort we want. */
7838 t = make_node (METHOD_TYPE);
7839
7840 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
7841 TREE_TYPE (t) = rettype;
7842 ptype = build_pointer_type (basetype);
7843
7844 /* The actual arglist for this function includes a "hidden" argument
7845 which is "this". Put it into the list of argument types. */
7846 argtypes = tree_cons (NULL_TREE, ptype, argtypes);
7847 TYPE_ARG_TYPES (t) = argtypes;
7848
7849 /* If we already have such a type, use the old one. */
7850 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
7851 hashcode = iterative_hash_object (TYPE_HASH (rettype), hashcode);
7852 hashcode = type_hash_list (argtypes, hashcode);
7853 t = type_hash_canon (hashcode, t);
7854
7855 /* Set up the canonical type. */
7856 any_structural_p
7857 = (TYPE_STRUCTURAL_EQUALITY_P (basetype)
7858 || TYPE_STRUCTURAL_EQUALITY_P (rettype));
7859 any_noncanonical_p
7860 = (TYPE_CANONICAL (basetype) != basetype
7861 || TYPE_CANONICAL (rettype) != rettype);
7862 canon_argtypes = maybe_canonicalize_argtypes (TREE_CHAIN (argtypes),
7863 &any_structural_p,
7864 &any_noncanonical_p);
7865 if (any_structural_p)
7866 SET_TYPE_STRUCTURAL_EQUALITY (t);
7867 else if (any_noncanonical_p)
7868 TYPE_CANONICAL (t)
7869 = build_method_type_directly (TYPE_CANONICAL (basetype),
7870 TYPE_CANONICAL (rettype),
7871 canon_argtypes);
7872 if (!COMPLETE_TYPE_P (t))
7873 layout_type (t);
7874
7875 return t;
7876 }
7877
7878 /* Construct, lay out and return the type of methods belonging to class
7879 BASETYPE and whose arguments and values are described by TYPE.
7880 If that type exists already, reuse it.
7881 TYPE must be a FUNCTION_TYPE node. */
7882
7883 tree
7884 build_method_type (tree basetype, tree type)
7885 {
7886 gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
7887
7888 return build_method_type_directly (basetype,
7889 TREE_TYPE (type),
7890 TYPE_ARG_TYPES (type));
7891 }
7892
7893 /* Construct, lay out and return the type of offsets to a value
7894 of type TYPE, within an object of type BASETYPE.
7895 If a suitable offset type exists already, reuse it. */
7896
7897 tree
7898 build_offset_type (tree basetype, tree type)
7899 {
7900 tree t;
7901 hashval_t hashcode = 0;
7902
7903 /* Make a node of the sort we want. */
7904 t = make_node (OFFSET_TYPE);
7905
7906 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
7907 TREE_TYPE (t) = type;
7908
7909 /* If we already have such a type, use the old one. */
7910 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
7911 hashcode = iterative_hash_object (TYPE_HASH (type), hashcode);
7912 t = type_hash_canon (hashcode, t);
7913
7914 if (!COMPLETE_TYPE_P (t))
7915 layout_type (t);
7916
7917 if (TYPE_CANONICAL (t) == t)
7918 {
7919 if (TYPE_STRUCTURAL_EQUALITY_P (basetype)
7920 || TYPE_STRUCTURAL_EQUALITY_P (type))
7921 SET_TYPE_STRUCTURAL_EQUALITY (t);
7922 else if (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)) != basetype
7923 || TYPE_CANONICAL (type) != type)
7924 TYPE_CANONICAL (t)
7925 = build_offset_type (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)),
7926 TYPE_CANONICAL (type));
7927 }
7928
7929 return t;
7930 }
7931
7932 /* Create a complex type whose components are COMPONENT_TYPE. */
7933
7934 tree
7935 build_complex_type (tree component_type)
7936 {
7937 tree t;
7938 hashval_t hashcode;
7939
7940 gcc_assert (INTEGRAL_TYPE_P (component_type)
7941 || SCALAR_FLOAT_TYPE_P (component_type)
7942 || FIXED_POINT_TYPE_P (component_type));
7943
7944 /* Make a node of the sort we want. */
7945 t = make_node (COMPLEX_TYPE);
7946
7947 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
7948
7949 /* If we already have such a type, use the old one. */
7950 hashcode = iterative_hash_object (TYPE_HASH (component_type), 0);
7951 t = type_hash_canon (hashcode, t);
7952
7953 if (!COMPLETE_TYPE_P (t))
7954 layout_type (t);
7955
7956 if (TYPE_CANONICAL (t) == t)
7957 {
7958 if (TYPE_STRUCTURAL_EQUALITY_P (component_type))
7959 SET_TYPE_STRUCTURAL_EQUALITY (t);
7960 else if (TYPE_CANONICAL (component_type) != component_type)
7961 TYPE_CANONICAL (t)
7962 = build_complex_type (TYPE_CANONICAL (component_type));
7963 }
7964
7965 /* We need to create a name, since complex is a fundamental type. */
7966 if (! TYPE_NAME (t))
7967 {
7968 const char *name;
7969 if (component_type == char_type_node)
7970 name = "complex char";
7971 else if (component_type == signed_char_type_node)
7972 name = "complex signed char";
7973 else if (component_type == unsigned_char_type_node)
7974 name = "complex unsigned char";
7975 else if (component_type == short_integer_type_node)
7976 name = "complex short int";
7977 else if (component_type == short_unsigned_type_node)
7978 name = "complex short unsigned int";
7979 else if (component_type == integer_type_node)
7980 name = "complex int";
7981 else if (component_type == unsigned_type_node)
7982 name = "complex unsigned int";
7983 else if (component_type == long_integer_type_node)
7984 name = "complex long int";
7985 else if (component_type == long_unsigned_type_node)
7986 name = "complex long unsigned int";
7987 else if (component_type == long_long_integer_type_node)
7988 name = "complex long long int";
7989 else if (component_type == long_long_unsigned_type_node)
7990 name = "complex long long unsigned int";
7991 else
7992 name = 0;
7993
7994 if (name != 0)
7995 TYPE_NAME (t) = build_decl (UNKNOWN_LOCATION, TYPE_DECL,
7996 get_identifier (name), t);
7997 }
7998
7999 return build_qualified_type (t, TYPE_QUALS (component_type));
8000 }
8001
8002 /* If TYPE is a real or complex floating-point type and the target
8003 does not directly support arithmetic on TYPE then return the wider
8004 type to be used for arithmetic on TYPE. Otherwise, return
8005 NULL_TREE. */
8006
8007 tree
8008 excess_precision_type (tree type)
8009 {
8010 if (flag_excess_precision != EXCESS_PRECISION_FAST)
8011 {
8012 int flt_eval_method = TARGET_FLT_EVAL_METHOD;
8013 switch (TREE_CODE (type))
8014 {
8015 case REAL_TYPE:
8016 switch (flt_eval_method)
8017 {
8018 case 1:
8019 if (TYPE_MODE (type) == TYPE_MODE (float_type_node))
8020 return double_type_node;
8021 break;
8022 case 2:
8023 if (TYPE_MODE (type) == TYPE_MODE (float_type_node)
8024 || TYPE_MODE (type) == TYPE_MODE (double_type_node))
8025 return long_double_type_node;
8026 break;
8027 default:
8028 gcc_unreachable ();
8029 }
8030 break;
8031 case COMPLEX_TYPE:
8032 if (TREE_CODE (TREE_TYPE (type)) != REAL_TYPE)
8033 return NULL_TREE;
8034 switch (flt_eval_method)
8035 {
8036 case 1:
8037 if (TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (float_type_node))
8038 return complex_double_type_node;
8039 break;
8040 case 2:
8041 if (TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (float_type_node)
8042 || (TYPE_MODE (TREE_TYPE (type))
8043 == TYPE_MODE (double_type_node)))
8044 return complex_long_double_type_node;
8045 break;
8046 default:
8047 gcc_unreachable ();
8048 }
8049 break;
8050 default:
8051 break;
8052 }
8053 }
8054 return NULL_TREE;
8055 }
8056 \f
8057 /* Return OP, stripped of any conversions to wider types as much as is safe.
8058 Converting the value back to OP's type makes a value equivalent to OP.
8059
8060 If FOR_TYPE is nonzero, we return a value which, if converted to
8061 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
8062
8063 OP must have integer, real or enumeral type. Pointers are not allowed!
8064
8065 There are some cases where the obvious value we could return
8066 would regenerate to OP if converted to OP's type,
8067 but would not extend like OP to wider types.
8068 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
8069 For example, if OP is (unsigned short)(signed char)-1,
8070 we avoid returning (signed char)-1 if FOR_TYPE is int,
8071 even though extending that to an unsigned short would regenerate OP,
8072 since the result of extending (signed char)-1 to (int)
8073 is different from (int) OP. */
8074
8075 tree
8076 get_unwidened (tree op, tree for_type)
8077 {
8078 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
8079 tree type = TREE_TYPE (op);
8080 unsigned final_prec
8081 = TYPE_PRECISION (for_type != 0 ? for_type : type);
8082 int uns
8083 = (for_type != 0 && for_type != type
8084 && final_prec > TYPE_PRECISION (type)
8085 && TYPE_UNSIGNED (type));
8086 tree win = op;
8087
8088 while (CONVERT_EXPR_P (op))
8089 {
8090 int bitschange;
8091
8092 /* TYPE_PRECISION on vector types has different meaning
8093 (TYPE_VECTOR_SUBPARTS) and casts from vectors are view conversions,
8094 so avoid them here. */
8095 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == VECTOR_TYPE)
8096 break;
8097
8098 bitschange = TYPE_PRECISION (TREE_TYPE (op))
8099 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
8100
8101 /* Truncations are many-one so cannot be removed.
8102 Unless we are later going to truncate down even farther. */
8103 if (bitschange < 0
8104 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
8105 break;
8106
8107 /* See what's inside this conversion. If we decide to strip it,
8108 we will set WIN. */
8109 op = TREE_OPERAND (op, 0);
8110
8111 /* If we have not stripped any zero-extensions (uns is 0),
8112 we can strip any kind of extension.
8113 If we have previously stripped a zero-extension,
8114 only zero-extensions can safely be stripped.
8115 Any extension can be stripped if the bits it would produce
8116 are all going to be discarded later by truncating to FOR_TYPE. */
8117
8118 if (bitschange > 0)
8119 {
8120 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
8121 win = op;
8122 /* TYPE_UNSIGNED says whether this is a zero-extension.
8123 Let's avoid computing it if it does not affect WIN
8124 and if UNS will not be needed again. */
8125 if ((uns
8126 || CONVERT_EXPR_P (op))
8127 && TYPE_UNSIGNED (TREE_TYPE (op)))
8128 {
8129 uns = 1;
8130 win = op;
8131 }
8132 }
8133 }
8134
8135 /* If we finally reach a constant see if it fits in for_type and
8136 in that case convert it. */
8137 if (for_type
8138 && TREE_CODE (win) == INTEGER_CST
8139 && TREE_TYPE (win) != for_type
8140 && int_fits_type_p (win, for_type))
8141 win = fold_convert (for_type, win);
8142
8143 return win;
8144 }
8145 \f
8146 /* Return OP or a simpler expression for a narrower value
8147 which can be sign-extended or zero-extended to give back OP.
8148 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
8149 or 0 if the value should be sign-extended. */
8150
8151 tree
8152 get_narrower (tree op, int *unsignedp_ptr)
8153 {
8154 int uns = 0;
8155 int first = 1;
8156 tree win = op;
8157 bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));
8158
8159 while (TREE_CODE (op) == NOP_EXPR)
8160 {
8161 int bitschange
8162 = (TYPE_PRECISION (TREE_TYPE (op))
8163 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
8164
8165 /* Truncations are many-one so cannot be removed. */
8166 if (bitschange < 0)
8167 break;
8168
8169 /* See what's inside this conversion. If we decide to strip it,
8170 we will set WIN. */
8171
8172 if (bitschange > 0)
8173 {
8174 op = TREE_OPERAND (op, 0);
8175 /* An extension: the outermost one can be stripped,
8176 but remember whether it is zero or sign extension. */
8177 if (first)
8178 uns = TYPE_UNSIGNED (TREE_TYPE (op));
8179 /* Otherwise, if a sign extension has been stripped,
8180 only sign extensions can now be stripped;
8181 if a zero extension has been stripped, only zero-extensions. */
8182 else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
8183 break;
8184 first = 0;
8185 }
8186 else /* bitschange == 0 */
8187 {
8188 /* A change in nominal type can always be stripped, but we must
8189 preserve the unsignedness. */
8190 if (first)
8191 uns = TYPE_UNSIGNED (TREE_TYPE (op));
8192 first = 0;
8193 op = TREE_OPERAND (op, 0);
8194 /* Keep trying to narrow, but don't assign op to win if it
8195 would turn an integral type into something else. */
8196 if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
8197 continue;
8198 }
8199
8200 win = op;
8201 }
8202
8203 if (TREE_CODE (op) == COMPONENT_REF
8204 /* Since type_for_size always gives an integer type. */
8205 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
8206 && TREE_CODE (TREE_TYPE (op)) != FIXED_POINT_TYPE
8207 /* Ensure field is laid out already. */
8208 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
8209 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
8210 {
8211 unsigned HOST_WIDE_INT innerprec
8212 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
8213 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
8214 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
8215 tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
8216
8217 /* We can get this structure field in a narrower type that fits it,
8218 but the resulting extension to its nominal type (a fullword type)
8219 must satisfy the same conditions as for other extensions.
8220
8221 Do this only for fields that are aligned (not bit-fields),
8222 because when bit-field insns will be used there is no
8223 advantage in doing this. */
8224
8225 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
8226 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
8227 && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
8228 && type != 0)
8229 {
8230 if (first)
8231 uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
8232 win = fold_convert (type, op);
8233 }
8234 }
8235
8236 *unsignedp_ptr = uns;
8237 return win;
8238 }
8239 \f
8240 /* Returns true if integer constant C has a value that is permissible
8241 for type TYPE (an INTEGER_TYPE). */
8242
8243 bool
8244 int_fits_type_p (const_tree c, const_tree type)
8245 {
8246 tree type_low_bound, type_high_bound;
8247 bool ok_for_low_bound, ok_for_high_bound, unsc;
8248 double_int dc, dd;
8249
8250 dc = tree_to_double_int (c);
8251 unsc = TYPE_UNSIGNED (TREE_TYPE (c));
8252
8253 if (TREE_CODE (TREE_TYPE (c)) == INTEGER_TYPE
8254 && TYPE_IS_SIZETYPE (TREE_TYPE (c))
8255 && unsc)
8256 /* So c is an unsigned integer whose type is sizetype and type is not.
8257 sizetype'd integers are sign extended even though they are
8258 unsigned. If the integer value fits in the lower end word of c,
8259 and if the higher end word has all its bits set to 1, that
8260 means the higher end bits are set to 1 only for sign extension.
8261 So let's convert c into an equivalent zero extended unsigned
8262 integer. */
8263 dc = double_int_zext (dc, TYPE_PRECISION (TREE_TYPE (c)));
8264
8265 retry:
8266 type_low_bound = TYPE_MIN_VALUE (type);
8267 type_high_bound = TYPE_MAX_VALUE (type);
8268
8269 /* If at least one bound of the type is a constant integer, we can check
8270 ourselves and maybe make a decision. If no such decision is possible, but
8271 this type is a subtype, try checking against that. Otherwise, use
8272 double_int_fits_to_tree_p, which checks against the precision.
8273
8274 Compute the status for each possibly constant bound, and return if we see
8275 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
8276 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
8277 for "constant known to fit". */
8278
8279 /* Check if c >= type_low_bound. */
8280 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
8281 {
8282 dd = tree_to_double_int (type_low_bound);
8283 if (TREE_CODE (type) == INTEGER_TYPE
8284 && TYPE_IS_SIZETYPE (type)
8285 && TYPE_UNSIGNED (type))
8286 dd = double_int_zext (dd, TYPE_PRECISION (type));
8287 if (unsc != TYPE_UNSIGNED (TREE_TYPE (type_low_bound)))
8288 {
8289 int c_neg = (!unsc && double_int_negative_p (dc));
8290 int t_neg = (unsc && double_int_negative_p (dd));
8291
8292 if (c_neg && !t_neg)
8293 return false;
8294 if ((c_neg || !t_neg) && double_int_ucmp (dc, dd) < 0)
8295 return false;
8296 }
8297 else if (double_int_cmp (dc, dd, unsc) < 0)
8298 return false;
8299 ok_for_low_bound = true;
8300 }
8301 else
8302 ok_for_low_bound = false;
8303
8304 /* Check if c <= type_high_bound. */
8305 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
8306 {
8307 dd = tree_to_double_int (type_high_bound);
8308 if (TREE_CODE (type) == INTEGER_TYPE
8309 && TYPE_IS_SIZETYPE (type)
8310 && TYPE_UNSIGNED (type))
8311 dd = double_int_zext (dd, TYPE_PRECISION (type));
8312 if (unsc != TYPE_UNSIGNED (TREE_TYPE (type_high_bound)))
8313 {
8314 int c_neg = (!unsc && double_int_negative_p (dc));
8315 int t_neg = (unsc && double_int_negative_p (dd));
8316
8317 if (t_neg && !c_neg)
8318 return false;
8319 if ((t_neg || !c_neg) && double_int_ucmp (dc, dd) > 0)
8320 return false;
8321 }
8322 else if (double_int_cmp (dc, dd, unsc) > 0)
8323 return false;
8324 ok_for_high_bound = true;
8325 }
8326 else
8327 ok_for_high_bound = false;
8328
8329 /* If the constant fits both bounds, the result is known. */
8330 if (ok_for_low_bound && ok_for_high_bound)
8331 return true;
8332
8333 /* Perform some generic filtering which may allow making a decision
8334 even if the bounds are not constant. First, negative integers
8335 never fit in unsigned types, */
8336 if (TYPE_UNSIGNED (type) && !unsc && double_int_negative_p (dc))
8337 return false;
8338
8339 /* Second, narrower types always fit in wider ones. */
8340 if (TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (c)))
8341 return true;
8342
8343 /* Third, unsigned integers with top bit set never fit signed types. */
8344 if (! TYPE_UNSIGNED (type) && unsc)
8345 {
8346 int prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (c))) - 1;
8347 if (prec < HOST_BITS_PER_WIDE_INT)
8348 {
8349 if (((((unsigned HOST_WIDE_INT) 1) << prec) & dc.low) != 0)
8350 return false;
8351 }
8352 else if (((((unsigned HOST_WIDE_INT) 1)
8353 << (prec - HOST_BITS_PER_WIDE_INT)) & dc.high) != 0)
8354 return false;
8355 }
8356
8357 /* If we haven't been able to decide at this point, there nothing more we
8358 can check ourselves here. Look at the base type if we have one and it
8359 has the same precision. */
8360 if (TREE_CODE (type) == INTEGER_TYPE
8361 && TREE_TYPE (type) != 0
8362 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (type)))
8363 {
8364 type = TREE_TYPE (type);
8365 goto retry;
8366 }
8367
8368 /* Or to double_int_fits_to_tree_p, if nothing else. */
8369 return double_int_fits_to_tree_p (type, dc);
8370 }
8371
8372 /* Stores bounds of an integer TYPE in MIN and MAX. If TYPE has non-constant
8373 bounds or is a POINTER_TYPE, the maximum and/or minimum values that can be
8374 represented (assuming two's-complement arithmetic) within the bit
8375 precision of the type are returned instead. */
8376
8377 void
8378 get_type_static_bounds (const_tree type, mpz_t min, mpz_t max)
8379 {
8380 if (!POINTER_TYPE_P (type) && TYPE_MIN_VALUE (type)
8381 && TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST)
8382 mpz_set_double_int (min, tree_to_double_int (TYPE_MIN_VALUE (type)),
8383 TYPE_UNSIGNED (type));
8384 else
8385 {
8386 if (TYPE_UNSIGNED (type))
8387 mpz_set_ui (min, 0);
8388 else
8389 {
8390 double_int mn;
8391 mn = double_int_mask (TYPE_PRECISION (type) - 1);
8392 mn = double_int_sext (double_int_add (mn, double_int_one),
8393 TYPE_PRECISION (type));
8394 mpz_set_double_int (min, mn, false);
8395 }
8396 }
8397
8398 if (!POINTER_TYPE_P (type) && TYPE_MAX_VALUE (type)
8399 && TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST)
8400 mpz_set_double_int (max, tree_to_double_int (TYPE_MAX_VALUE (type)),
8401 TYPE_UNSIGNED (type));
8402 else
8403 {
8404 if (TYPE_UNSIGNED (type))
8405 mpz_set_double_int (max, double_int_mask (TYPE_PRECISION (type)),
8406 true);
8407 else
8408 mpz_set_double_int (max, double_int_mask (TYPE_PRECISION (type) - 1),
8409 true);
8410 }
8411 }
8412
8413 /* Return true if VAR is an automatic variable defined in function FN. */
8414
8415 bool
8416 auto_var_in_fn_p (const_tree var, const_tree fn)
8417 {
8418 return (DECL_P (var) && DECL_CONTEXT (var) == fn
8419 && ((((TREE_CODE (var) == VAR_DECL && ! DECL_EXTERNAL (var))
8420 || TREE_CODE (var) == PARM_DECL)
8421 && ! TREE_STATIC (var))
8422 || TREE_CODE (var) == LABEL_DECL
8423 || TREE_CODE (var) == RESULT_DECL));
8424 }
8425
8426 /* Subprogram of following function. Called by walk_tree.
8427
8428 Return *TP if it is an automatic variable or parameter of the
8429 function passed in as DATA. */
8430
8431 static tree
8432 find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
8433 {
8434 tree fn = (tree) data;
8435
8436 if (TYPE_P (*tp))
8437 *walk_subtrees = 0;
8438
8439 else if (DECL_P (*tp)
8440 && auto_var_in_fn_p (*tp, fn))
8441 return *tp;
8442
8443 return NULL_TREE;
8444 }
8445
8446 /* Returns true if T is, contains, or refers to a type with variable
8447 size. For METHOD_TYPEs and FUNCTION_TYPEs we exclude the
8448 arguments, but not the return type. If FN is nonzero, only return
8449 true if a modifier of the type or position of FN is a variable or
8450 parameter inside FN.
8451
8452 This concept is more general than that of C99 'variably modified types':
8453 in C99, a struct type is never variably modified because a VLA may not
8454 appear as a structure member. However, in GNU C code like:
8455
8456 struct S { int i[f()]; };
8457
8458 is valid, and other languages may define similar constructs. */
8459
8460 bool
8461 variably_modified_type_p (tree type, tree fn)
8462 {
8463 tree t;
8464
8465 /* Test if T is either variable (if FN is zero) or an expression containing
8466 a variable in FN. */
8467 #define RETURN_TRUE_IF_VAR(T) \
8468 do { tree _t = (T); \
8469 if (_t && _t != error_mark_node && TREE_CODE (_t) != INTEGER_CST \
8470 && (!fn || walk_tree (&_t, find_var_from_fn, fn, NULL))) \
8471 return true; } while (0)
8472
8473 if (type == error_mark_node)
8474 return false;
8475
8476 /* If TYPE itself has variable size, it is variably modified. */
8477 RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
8478 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (type));
8479
8480 switch (TREE_CODE (type))
8481 {
8482 case POINTER_TYPE:
8483 case REFERENCE_TYPE:
8484 case VECTOR_TYPE:
8485 if (variably_modified_type_p (TREE_TYPE (type), fn))
8486 return true;
8487 break;
8488
8489 case FUNCTION_TYPE:
8490 case METHOD_TYPE:
8491 /* If TYPE is a function type, it is variably modified if the
8492 return type is variably modified. */
8493 if (variably_modified_type_p (TREE_TYPE (type), fn))
8494 return true;
8495 break;
8496
8497 case INTEGER_TYPE:
8498 case REAL_TYPE:
8499 case FIXED_POINT_TYPE:
8500 case ENUMERAL_TYPE:
8501 case BOOLEAN_TYPE:
8502 /* Scalar types are variably modified if their end points
8503 aren't constant. */
8504 RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
8505 RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
8506 break;
8507
8508 case RECORD_TYPE:
8509 case UNION_TYPE:
8510 case QUAL_UNION_TYPE:
8511 /* We can't see if any of the fields are variably-modified by the
8512 definition we normally use, since that would produce infinite
8513 recursion via pointers. */
8514 /* This is variably modified if some field's type is. */
8515 for (t = TYPE_FIELDS (type); t; t = DECL_CHAIN (t))
8516 if (TREE_CODE (t) == FIELD_DECL)
8517 {
8518 RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
8519 RETURN_TRUE_IF_VAR (DECL_SIZE (t));
8520 RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));
8521
8522 if (TREE_CODE (type) == QUAL_UNION_TYPE)
8523 RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));
8524 }
8525 break;
8526
8527 case ARRAY_TYPE:
8528 /* Do not call ourselves to avoid infinite recursion. This is
8529 variably modified if the element type is. */
8530 RETURN_TRUE_IF_VAR (TYPE_SIZE (TREE_TYPE (type)));
8531 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (TREE_TYPE (type)));
8532 break;
8533
8534 default:
8535 break;
8536 }
8537
8538 /* The current language may have other cases to check, but in general,
8539 all other types are not variably modified. */
8540 return lang_hooks.tree_inlining.var_mod_type_p (type, fn);
8541
8542 #undef RETURN_TRUE_IF_VAR
8543 }
8544
8545 /* Given a DECL or TYPE, return the scope in which it was declared, or
8546 NULL_TREE if there is no containing scope. */
8547
8548 tree
8549 get_containing_scope (const_tree t)
8550 {
8551 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
8552 }
8553
8554 /* Return the innermost context enclosing DECL that is
8555 a FUNCTION_DECL, or zero if none. */
8556
8557 tree
8558 decl_function_context (const_tree decl)
8559 {
8560 tree context;
8561
8562 if (TREE_CODE (decl) == ERROR_MARK)
8563 return 0;
8564
8565 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
8566 where we look up the function at runtime. Such functions always take
8567 a first argument of type 'pointer to real context'.
8568
8569 C++ should really be fixed to use DECL_CONTEXT for the real context,
8570 and use something else for the "virtual context". */
8571 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
8572 context
8573 = TYPE_MAIN_VARIANT
8574 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
8575 else
8576 context = DECL_CONTEXT (decl);
8577
8578 while (context && TREE_CODE (context) != FUNCTION_DECL)
8579 {
8580 if (TREE_CODE (context) == BLOCK)
8581 context = BLOCK_SUPERCONTEXT (context);
8582 else
8583 context = get_containing_scope (context);
8584 }
8585
8586 return context;
8587 }
8588
8589 /* Return the innermost context enclosing DECL that is
8590 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
8591 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
8592
8593 tree
8594 decl_type_context (const_tree decl)
8595 {
8596 tree context = DECL_CONTEXT (decl);
8597
8598 while (context)
8599 switch (TREE_CODE (context))
8600 {
8601 case NAMESPACE_DECL:
8602 case TRANSLATION_UNIT_DECL:
8603 return NULL_TREE;
8604
8605 case RECORD_TYPE:
8606 case UNION_TYPE:
8607 case QUAL_UNION_TYPE:
8608 return context;
8609
8610 case TYPE_DECL:
8611 case FUNCTION_DECL:
8612 context = DECL_CONTEXT (context);
8613 break;
8614
8615 case BLOCK:
8616 context = BLOCK_SUPERCONTEXT (context);
8617 break;
8618
8619 default:
8620 gcc_unreachable ();
8621 }
8622
8623 return NULL_TREE;
8624 }
8625
8626 /* CALL is a CALL_EXPR. Return the declaration for the function
8627 called, or NULL_TREE if the called function cannot be
8628 determined. */
8629
8630 tree
8631 get_callee_fndecl (const_tree call)
8632 {
8633 tree addr;
8634
8635 if (call == error_mark_node)
8636 return error_mark_node;
8637
8638 /* It's invalid to call this function with anything but a
8639 CALL_EXPR. */
8640 gcc_assert (TREE_CODE (call) == CALL_EXPR);
8641
8642 /* The first operand to the CALL is the address of the function
8643 called. */
8644 addr = CALL_EXPR_FN (call);
8645
8646 STRIP_NOPS (addr);
8647
8648 /* If this is a readonly function pointer, extract its initial value. */
8649 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
8650 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
8651 && DECL_INITIAL (addr))
8652 addr = DECL_INITIAL (addr);
8653
8654 /* If the address is just `&f' for some function `f', then we know
8655 that `f' is being called. */
8656 if (TREE_CODE (addr) == ADDR_EXPR
8657 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
8658 return TREE_OPERAND (addr, 0);
8659
8660 /* We couldn't figure out what was being called. */
8661 return NULL_TREE;
8662 }
8663
8664 /* Print debugging information about tree nodes generated during the compile,
8665 and any language-specific information. */
8666
8667 void
8668 dump_tree_statistics (void)
8669 {
8670 #ifdef GATHER_STATISTICS
8671 int i;
8672 int total_nodes, total_bytes;
8673 #endif
8674
8675 fprintf (stderr, "\n??? tree nodes created\n\n");
8676 #ifdef GATHER_STATISTICS
8677 fprintf (stderr, "Kind Nodes Bytes\n");
8678 fprintf (stderr, "---------------------------------------\n");
8679 total_nodes = total_bytes = 0;
8680 for (i = 0; i < (int) all_kinds; i++)
8681 {
8682 fprintf (stderr, "%-20s %7d %10d\n", tree_node_kind_names[i],
8683 tree_node_counts[i], tree_node_sizes[i]);
8684 total_nodes += tree_node_counts[i];
8685 total_bytes += tree_node_sizes[i];
8686 }
8687 fprintf (stderr, "---------------------------------------\n");
8688 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_nodes, total_bytes);
8689 fprintf (stderr, "---------------------------------------\n");
8690 fprintf (stderr, "Code Nodes\n");
8691 fprintf (stderr, "----------------------------\n");
8692 for (i = 0; i < (int) MAX_TREE_CODES; i++)
8693 fprintf (stderr, "%-20s %7d\n", tree_code_name[i], tree_code_counts[i]);
8694 fprintf (stderr, "----------------------------\n");
8695 ssanames_print_statistics ();
8696 phinodes_print_statistics ();
8697 #else
8698 fprintf (stderr, "(No per-node statistics)\n");
8699 #endif
8700 print_type_hash_statistics ();
8701 print_debug_expr_statistics ();
8702 print_value_expr_statistics ();
8703 lang_hooks.print_statistics ();
8704 }
8705 \f
8706 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
8707
8708 /* Generate a crc32 of a byte. */
8709
8710 unsigned
8711 crc32_byte (unsigned chksum, char byte)
8712 {
8713 unsigned value = (unsigned) byte << 24;
8714 unsigned ix;
8715
8716 for (ix = 8; ix--; value <<= 1)
8717 {
8718 unsigned feedback;
8719
8720 feedback = (value ^ chksum) & 0x80000000 ? 0x04c11db7 : 0;
8721 chksum <<= 1;
8722 chksum ^= feedback;
8723 }
8724 return chksum;
8725 }
8726
8727
8728 /* Generate a crc32 of a string. */
8729
8730 unsigned
8731 crc32_string (unsigned chksum, const char *string)
8732 {
8733 do
8734 {
8735 chksum = crc32_byte (chksum, *string);
8736 }
8737 while (*string++);
8738 return chksum;
8739 }
8740
8741 /* P is a string that will be used in a symbol. Mask out any characters
8742 that are not valid in that context. */
8743
8744 void
8745 clean_symbol_name (char *p)
8746 {
8747 for (; *p; p++)
8748 if (! (ISALNUM (*p)
8749 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
8750 || *p == '$'
8751 #endif
8752 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
8753 || *p == '.'
8754 #endif
8755 ))
8756 *p = '_';
8757 }
8758
8759 /* Generate a name for a special-purpose function.
8760 The generated name may need to be unique across the whole link.
8761 Changes to this function may also require corresponding changes to
8762 xstrdup_mask_random.
8763 TYPE is some string to identify the purpose of this function to the
8764 linker or collect2; it must start with an uppercase letter,
8765 one of:
8766 I - for constructors
8767 D - for destructors
8768 N - for C++ anonymous namespaces
8769 F - for DWARF unwind frame information. */
8770
8771 tree
8772 get_file_function_name (const char *type)
8773 {
8774 char *buf;
8775 const char *p;
8776 char *q;
8777
8778 /* If we already have a name we know to be unique, just use that. */
8779 if (first_global_object_name)
8780 p = q = ASTRDUP (first_global_object_name);
8781 /* If the target is handling the constructors/destructors, they
8782 will be local to this file and the name is only necessary for
8783 debugging purposes.
8784 We also assign sub_I and sub_D sufixes to constructors called from
8785 the global static constructors. These are always local. */
8786 else if (((type[0] == 'I' || type[0] == 'D') && targetm.have_ctors_dtors)
8787 || (strncmp (type, "sub_", 4) == 0
8788 && (type[4] == 'I' || type[4] == 'D')))
8789 {
8790 const char *file = main_input_filename;
8791 if (! file)
8792 file = input_filename;
8793 /* Just use the file's basename, because the full pathname
8794 might be quite long. */
8795 p = q = ASTRDUP (lbasename (file));
8796 }
8797 else
8798 {
8799 /* Otherwise, the name must be unique across the entire link.
8800 We don't have anything that we know to be unique to this translation
8801 unit, so use what we do have and throw in some randomness. */
8802 unsigned len;
8803 const char *name = weak_global_object_name;
8804 const char *file = main_input_filename;
8805
8806 if (! name)
8807 name = "";
8808 if (! file)
8809 file = input_filename;
8810
8811 len = strlen (file);
8812 q = (char *) alloca (9 + 17 + len + 1);
8813 memcpy (q, file, len + 1);
8814
8815 snprintf (q + len, 9 + 17 + 1, "_%08X_" HOST_WIDE_INT_PRINT_HEX,
8816 crc32_string (0, name), get_random_seed (false));
8817
8818 p = q;
8819 }
8820
8821 clean_symbol_name (q);
8822 buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
8823 + strlen (type));
8824
8825 /* Set up the name of the file-level functions we may need.
8826 Use a global object (which is already required to be unique over
8827 the program) rather than the file name (which imposes extra
8828 constraints). */
8829 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
8830
8831 return get_identifier (buf);
8832 }
8833 \f
8834 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
8835
8836 /* Complain that the tree code of NODE does not match the expected 0
8837 terminated list of trailing codes. The trailing code list can be
8838 empty, for a more vague error message. FILE, LINE, and FUNCTION
8839 are of the caller. */
8840
8841 void
8842 tree_check_failed (const_tree node, const char *file,
8843 int line, const char *function, ...)
8844 {
8845 va_list args;
8846 const char *buffer;
8847 unsigned length = 0;
8848 int code;
8849
8850 va_start (args, function);
8851 while ((code = va_arg (args, int)))
8852 length += 4 + strlen (tree_code_name[code]);
8853 va_end (args);
8854 if (length)
8855 {
8856 char *tmp;
8857 va_start (args, function);
8858 length += strlen ("expected ");
8859 buffer = tmp = (char *) alloca (length);
8860 length = 0;
8861 while ((code = va_arg (args, int)))
8862 {
8863 const char *prefix = length ? " or " : "expected ";
8864
8865 strcpy (tmp + length, prefix);
8866 length += strlen (prefix);
8867 strcpy (tmp + length, tree_code_name[code]);
8868 length += strlen (tree_code_name[code]);
8869 }
8870 va_end (args);
8871 }
8872 else
8873 buffer = "unexpected node";
8874
8875 internal_error ("tree check: %s, have %s in %s, at %s:%d",
8876 buffer, tree_code_name[TREE_CODE (node)],
8877 function, trim_filename (file), line);
8878 }
8879
8880 /* Complain that the tree code of NODE does match the expected 0
8881 terminated list of trailing codes. FILE, LINE, and FUNCTION are of
8882 the caller. */
8883
8884 void
8885 tree_not_check_failed (const_tree node, const char *file,
8886 int line, const char *function, ...)
8887 {
8888 va_list args;
8889 char *buffer;
8890 unsigned length = 0;
8891 int code;
8892
8893 va_start (args, function);
8894 while ((code = va_arg (args, int)))
8895 length += 4 + strlen (tree_code_name[code]);
8896 va_end (args);
8897 va_start (args, function);
8898 buffer = (char *) alloca (length);
8899 length = 0;
8900 while ((code = va_arg (args, int)))
8901 {
8902 if (length)
8903 {
8904 strcpy (buffer + length, " or ");
8905 length += 4;
8906 }
8907 strcpy (buffer + length, tree_code_name[code]);
8908 length += strlen (tree_code_name[code]);
8909 }
8910 va_end (args);
8911
8912 internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
8913 buffer, tree_code_name[TREE_CODE (node)],
8914 function, trim_filename (file), line);
8915 }
8916
8917 /* Similar to tree_check_failed, except that we check for a class of tree
8918 code, given in CL. */
8919
8920 void
8921 tree_class_check_failed (const_tree node, const enum tree_code_class cl,
8922 const char *file, int line, const char *function)
8923 {
8924 internal_error
8925 ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
8926 TREE_CODE_CLASS_STRING (cl),
8927 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
8928 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
8929 }
8930
8931 /* Similar to tree_check_failed, except that instead of specifying a
8932 dozen codes, use the knowledge that they're all sequential. */
8933
8934 void
8935 tree_range_check_failed (const_tree node, const char *file, int line,
8936 const char *function, enum tree_code c1,
8937 enum tree_code c2)
8938 {
8939 char *buffer;
8940 unsigned length = 0;
8941 unsigned int c;
8942
8943 for (c = c1; c <= c2; ++c)
8944 length += 4 + strlen (tree_code_name[c]);
8945
8946 length += strlen ("expected ");
8947 buffer = (char *) alloca (length);
8948 length = 0;
8949
8950 for (c = c1; c <= c2; ++c)
8951 {
8952 const char *prefix = length ? " or " : "expected ";
8953
8954 strcpy (buffer + length, prefix);
8955 length += strlen (prefix);
8956 strcpy (buffer + length, tree_code_name[c]);
8957 length += strlen (tree_code_name[c]);
8958 }
8959
8960 internal_error ("tree check: %s, have %s in %s, at %s:%d",
8961 buffer, tree_code_name[TREE_CODE (node)],
8962 function, trim_filename (file), line);
8963 }
8964
8965
8966 /* Similar to tree_check_failed, except that we check that a tree does
8967 not have the specified code, given in CL. */
8968
8969 void
8970 tree_not_class_check_failed (const_tree node, const enum tree_code_class cl,
8971 const char *file, int line, const char *function)
8972 {
8973 internal_error
8974 ("tree check: did not expect class %qs, have %qs (%s) in %s, at %s:%d",
8975 TREE_CODE_CLASS_STRING (cl),
8976 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
8977 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
8978 }
8979
8980
8981 /* Similar to tree_check_failed but applied to OMP_CLAUSE codes. */
8982
8983 void
8984 omp_clause_check_failed (const_tree node, const char *file, int line,
8985 const char *function, enum omp_clause_code code)
8986 {
8987 internal_error ("tree check: expected omp_clause %s, have %s in %s, at %s:%d",
8988 omp_clause_code_name[code], tree_code_name[TREE_CODE (node)],
8989 function, trim_filename (file), line);
8990 }
8991
8992
8993 /* Similar to tree_range_check_failed but applied to OMP_CLAUSE codes. */
8994
8995 void
8996 omp_clause_range_check_failed (const_tree node, const char *file, int line,
8997 const char *function, enum omp_clause_code c1,
8998 enum omp_clause_code c2)
8999 {
9000 char *buffer;
9001 unsigned length = 0;
9002 unsigned int c;
9003
9004 for (c = c1; c <= c2; ++c)
9005 length += 4 + strlen (omp_clause_code_name[c]);
9006
9007 length += strlen ("expected ");
9008 buffer = (char *) alloca (length);
9009 length = 0;
9010
9011 for (c = c1; c <= c2; ++c)
9012 {
9013 const char *prefix = length ? " or " : "expected ";
9014
9015 strcpy (buffer + length, prefix);
9016 length += strlen (prefix);
9017 strcpy (buffer + length, omp_clause_code_name[c]);
9018 length += strlen (omp_clause_code_name[c]);
9019 }
9020
9021 internal_error ("tree check: %s, have %s in %s, at %s:%d",
9022 buffer, omp_clause_code_name[TREE_CODE (node)],
9023 function, trim_filename (file), line);
9024 }
9025
9026
9027 #undef DEFTREESTRUCT
9028 #define DEFTREESTRUCT(VAL, NAME) NAME,
9029
9030 static const char *ts_enum_names[] = {
9031 #include "treestruct.def"
9032 };
9033 #undef DEFTREESTRUCT
9034
9035 #define TS_ENUM_NAME(EN) (ts_enum_names[(EN)])
9036
9037 /* Similar to tree_class_check_failed, except that we check for
9038 whether CODE contains the tree structure identified by EN. */
9039
9040 void
9041 tree_contains_struct_check_failed (const_tree node,
9042 const enum tree_node_structure_enum en,
9043 const char *file, int line,
9044 const char *function)
9045 {
9046 internal_error
9047 ("tree check: expected tree that contains %qs structure, have %qs in %s, at %s:%d",
9048 TS_ENUM_NAME(en),
9049 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
9050 }
9051
9052
9053 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
9054 (dynamically sized) vector. */
9055
9056 void
9057 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
9058 const char *function)
9059 {
9060 internal_error
9061 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
9062 idx + 1, len, function, trim_filename (file), line);
9063 }
9064
9065 /* Similar to above, except that the check is for the bounds of the operand
9066 vector of an expression node EXP. */
9067
9068 void
9069 tree_operand_check_failed (int idx, const_tree exp, const char *file,
9070 int line, const char *function)
9071 {
9072 int code = TREE_CODE (exp);
9073 internal_error
9074 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
9075 idx + 1, tree_code_name[code], TREE_OPERAND_LENGTH (exp),
9076 function, trim_filename (file), line);
9077 }
9078
9079 /* Similar to above, except that the check is for the number of
9080 operands of an OMP_CLAUSE node. */
9081
9082 void
9083 omp_clause_operand_check_failed (int idx, const_tree t, const char *file,
9084 int line, const char *function)
9085 {
9086 internal_error
9087 ("tree check: accessed operand %d of omp_clause %s with %d operands "
9088 "in %s, at %s:%d", idx + 1, omp_clause_code_name[OMP_CLAUSE_CODE (t)],
9089 omp_clause_num_ops [OMP_CLAUSE_CODE (t)], function,
9090 trim_filename (file), line);
9091 }
9092 #endif /* ENABLE_TREE_CHECKING */
9093 \f
9094 /* Create a new vector type node holding SUBPARTS units of type INNERTYPE,
9095 and mapped to the machine mode MODE. Initialize its fields and build
9096 the information necessary for debugging output. */
9097
9098 static tree
9099 make_vector_type (tree innertype, int nunits, enum machine_mode mode)
9100 {
9101 tree t;
9102 hashval_t hashcode = 0;
9103
9104 t = make_node (VECTOR_TYPE);
9105 TREE_TYPE (t) = TYPE_MAIN_VARIANT (innertype);
9106 SET_TYPE_VECTOR_SUBPARTS (t, nunits);
9107 SET_TYPE_MODE (t, mode);
9108
9109 if (TYPE_STRUCTURAL_EQUALITY_P (innertype))
9110 SET_TYPE_STRUCTURAL_EQUALITY (t);
9111 else if (TYPE_CANONICAL (innertype) != innertype
9112 || mode != VOIDmode)
9113 TYPE_CANONICAL (t)
9114 = make_vector_type (TYPE_CANONICAL (innertype), nunits, VOIDmode);
9115
9116 layout_type (t);
9117
9118 hashcode = iterative_hash_host_wide_int (VECTOR_TYPE, hashcode);
9119 hashcode = iterative_hash_host_wide_int (nunits, hashcode);
9120 hashcode = iterative_hash_host_wide_int (mode, hashcode);
9121 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (t)), hashcode);
9122 t = type_hash_canon (hashcode, t);
9123
9124 /* We have built a main variant, based on the main variant of the
9125 inner type. Use it to build the variant we return. */
9126 if ((TYPE_ATTRIBUTES (innertype) || TYPE_QUALS (innertype))
9127 && TREE_TYPE (t) != innertype)
9128 return build_type_attribute_qual_variant (t,
9129 TYPE_ATTRIBUTES (innertype),
9130 TYPE_QUALS (innertype));
9131
9132 return t;
9133 }
9134
9135 static tree
9136 make_or_reuse_type (unsigned size, int unsignedp)
9137 {
9138 if (size == INT_TYPE_SIZE)
9139 return unsignedp ? unsigned_type_node : integer_type_node;
9140 if (size == CHAR_TYPE_SIZE)
9141 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
9142 if (size == SHORT_TYPE_SIZE)
9143 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
9144 if (size == LONG_TYPE_SIZE)
9145 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
9146 if (size == LONG_LONG_TYPE_SIZE)
9147 return (unsignedp ? long_long_unsigned_type_node
9148 : long_long_integer_type_node);
9149 if (size == 128 && int128_integer_type_node)
9150 return (unsignedp ? int128_unsigned_type_node
9151 : int128_integer_type_node);
9152
9153 if (unsignedp)
9154 return make_unsigned_type (size);
9155 else
9156 return make_signed_type (size);
9157 }
9158
9159 /* Create or reuse a fract type by SIZE, UNSIGNEDP, and SATP. */
9160
9161 static tree
9162 make_or_reuse_fract_type (unsigned size, int unsignedp, int satp)
9163 {
9164 if (satp)
9165 {
9166 if (size == SHORT_FRACT_TYPE_SIZE)
9167 return unsignedp ? sat_unsigned_short_fract_type_node
9168 : sat_short_fract_type_node;
9169 if (size == FRACT_TYPE_SIZE)
9170 return unsignedp ? sat_unsigned_fract_type_node : sat_fract_type_node;
9171 if (size == LONG_FRACT_TYPE_SIZE)
9172 return unsignedp ? sat_unsigned_long_fract_type_node
9173 : sat_long_fract_type_node;
9174 if (size == LONG_LONG_FRACT_TYPE_SIZE)
9175 return unsignedp ? sat_unsigned_long_long_fract_type_node
9176 : sat_long_long_fract_type_node;
9177 }
9178 else
9179 {
9180 if (size == SHORT_FRACT_TYPE_SIZE)
9181 return unsignedp ? unsigned_short_fract_type_node
9182 : short_fract_type_node;
9183 if (size == FRACT_TYPE_SIZE)
9184 return unsignedp ? unsigned_fract_type_node : fract_type_node;
9185 if (size == LONG_FRACT_TYPE_SIZE)
9186 return unsignedp ? unsigned_long_fract_type_node
9187 : long_fract_type_node;
9188 if (size == LONG_LONG_FRACT_TYPE_SIZE)
9189 return unsignedp ? unsigned_long_long_fract_type_node
9190 : long_long_fract_type_node;
9191 }
9192
9193 return make_fract_type (size, unsignedp, satp);
9194 }
9195
9196 /* Create or reuse an accum type by SIZE, UNSIGNEDP, and SATP. */
9197
9198 static tree
9199 make_or_reuse_accum_type (unsigned size, int unsignedp, int satp)
9200 {
9201 if (satp)
9202 {
9203 if (size == SHORT_ACCUM_TYPE_SIZE)
9204 return unsignedp ? sat_unsigned_short_accum_type_node
9205 : sat_short_accum_type_node;
9206 if (size == ACCUM_TYPE_SIZE)
9207 return unsignedp ? sat_unsigned_accum_type_node : sat_accum_type_node;
9208 if (size == LONG_ACCUM_TYPE_SIZE)
9209 return unsignedp ? sat_unsigned_long_accum_type_node
9210 : sat_long_accum_type_node;
9211 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
9212 return unsignedp ? sat_unsigned_long_long_accum_type_node
9213 : sat_long_long_accum_type_node;
9214 }
9215 else
9216 {
9217 if (size == SHORT_ACCUM_TYPE_SIZE)
9218 return unsignedp ? unsigned_short_accum_type_node
9219 : short_accum_type_node;
9220 if (size == ACCUM_TYPE_SIZE)
9221 return unsignedp ? unsigned_accum_type_node : accum_type_node;
9222 if (size == LONG_ACCUM_TYPE_SIZE)
9223 return unsignedp ? unsigned_long_accum_type_node
9224 : long_accum_type_node;
9225 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
9226 return unsignedp ? unsigned_long_long_accum_type_node
9227 : long_long_accum_type_node;
9228 }
9229
9230 return make_accum_type (size, unsignedp, satp);
9231 }
9232
9233 /* Create nodes for all integer types (and error_mark_node) using the sizes
9234 of C datatypes. SIGNED_CHAR specifies whether char is signed,
9235 SHORT_DOUBLE specifies whether double should be of the same precision
9236 as float. */
9237
9238 void
9239 build_common_tree_nodes (bool signed_char, bool short_double)
9240 {
9241 error_mark_node = make_node (ERROR_MARK);
9242 TREE_TYPE (error_mark_node) = error_mark_node;
9243
9244 initialize_sizetypes ();
9245
9246 /* Define both `signed char' and `unsigned char'. */
9247 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
9248 TYPE_STRING_FLAG (signed_char_type_node) = 1;
9249 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
9250 TYPE_STRING_FLAG (unsigned_char_type_node) = 1;
9251
9252 /* Define `char', which is like either `signed char' or `unsigned char'
9253 but not the same as either. */
9254 char_type_node
9255 = (signed_char
9256 ? make_signed_type (CHAR_TYPE_SIZE)
9257 : make_unsigned_type (CHAR_TYPE_SIZE));
9258 TYPE_STRING_FLAG (char_type_node) = 1;
9259
9260 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
9261 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
9262 integer_type_node = make_signed_type (INT_TYPE_SIZE);
9263 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
9264 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
9265 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
9266 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
9267 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
9268 #if HOST_BITS_PER_WIDE_INT >= 64
9269 /* TODO: This isn't correct, but as logic depends at the moment on
9270 host's instead of target's wide-integer.
9271 If there is a target not supporting TImode, but has an 128-bit
9272 integer-scalar register, this target check needs to be adjusted. */
9273 if (targetm.scalar_mode_supported_p (TImode))
9274 {
9275 int128_integer_type_node = make_signed_type (128);
9276 int128_unsigned_type_node = make_unsigned_type (128);
9277 }
9278 #endif
9279
9280 /* Define a boolean type. This type only represents boolean values but
9281 may be larger than char depending on the value of BOOL_TYPE_SIZE.
9282 Front ends which want to override this size (i.e. Java) can redefine
9283 boolean_type_node before calling build_common_tree_nodes_2. */
9284 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
9285 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
9286 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
9287 TYPE_PRECISION (boolean_type_node) = 1;
9288
9289 /* Define what type to use for size_t. */
9290 if (strcmp (SIZE_TYPE, "unsigned int") == 0)
9291 size_type_node = unsigned_type_node;
9292 else if (strcmp (SIZE_TYPE, "long unsigned int") == 0)
9293 size_type_node = long_unsigned_type_node;
9294 else if (strcmp (SIZE_TYPE, "long long unsigned int") == 0)
9295 size_type_node = long_long_unsigned_type_node;
9296 else if (strcmp (SIZE_TYPE, "short unsigned int") == 0)
9297 size_type_node = short_unsigned_type_node;
9298 else
9299 gcc_unreachable ();
9300
9301 /* Fill in the rest of the sized types. Reuse existing type nodes
9302 when possible. */
9303 intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
9304 intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
9305 intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
9306 intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
9307 intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);
9308
9309 unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
9310 unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
9311 unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
9312 unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
9313 unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);
9314
9315 access_public_node = get_identifier ("public");
9316 access_protected_node = get_identifier ("protected");
9317 access_private_node = get_identifier ("private");
9318
9319 /* Define these next since types below may used them. */
9320 integer_zero_node = build_int_cst (integer_type_node, 0);
9321 integer_one_node = build_int_cst (integer_type_node, 1);
9322 integer_three_node = build_int_cst (integer_type_node, 3);
9323 integer_minus_one_node = build_int_cst (integer_type_node, -1);
9324
9325 size_zero_node = size_int (0);
9326 size_one_node = size_int (1);
9327 bitsize_zero_node = bitsize_int (0);
9328 bitsize_one_node = bitsize_int (1);
9329 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
9330
9331 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
9332 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
9333
9334 void_type_node = make_node (VOID_TYPE);
9335 layout_type (void_type_node);
9336
9337 /* We are not going to have real types in C with less than byte alignment,
9338 so we might as well not have any types that claim to have it. */
9339 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
9340 TYPE_USER_ALIGN (void_type_node) = 0;
9341
9342 null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
9343 layout_type (TREE_TYPE (null_pointer_node));
9344
9345 ptr_type_node = build_pointer_type (void_type_node);
9346 const_ptr_type_node
9347 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
9348 fileptr_type_node = ptr_type_node;
9349
9350 float_type_node = make_node (REAL_TYPE);
9351 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
9352 layout_type (float_type_node);
9353
9354 double_type_node = make_node (REAL_TYPE);
9355 if (short_double)
9356 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
9357 else
9358 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
9359 layout_type (double_type_node);
9360
9361 long_double_type_node = make_node (REAL_TYPE);
9362 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
9363 layout_type (long_double_type_node);
9364
9365 float_ptr_type_node = build_pointer_type (float_type_node);
9366 double_ptr_type_node = build_pointer_type (double_type_node);
9367 long_double_ptr_type_node = build_pointer_type (long_double_type_node);
9368 integer_ptr_type_node = build_pointer_type (integer_type_node);
9369
9370 /* Fixed size integer types. */
9371 uint32_type_node = build_nonstandard_integer_type (32, true);
9372 uint64_type_node = build_nonstandard_integer_type (64, true);
9373
9374 /* Decimal float types. */
9375 dfloat32_type_node = make_node (REAL_TYPE);
9376 TYPE_PRECISION (dfloat32_type_node) = DECIMAL32_TYPE_SIZE;
9377 layout_type (dfloat32_type_node);
9378 SET_TYPE_MODE (dfloat32_type_node, SDmode);
9379 dfloat32_ptr_type_node = build_pointer_type (dfloat32_type_node);
9380
9381 dfloat64_type_node = make_node (REAL_TYPE);
9382 TYPE_PRECISION (dfloat64_type_node) = DECIMAL64_TYPE_SIZE;
9383 layout_type (dfloat64_type_node);
9384 SET_TYPE_MODE (dfloat64_type_node, DDmode);
9385 dfloat64_ptr_type_node = build_pointer_type (dfloat64_type_node);
9386
9387 dfloat128_type_node = make_node (REAL_TYPE);
9388 TYPE_PRECISION (dfloat128_type_node) = DECIMAL128_TYPE_SIZE;
9389 layout_type (dfloat128_type_node);
9390 SET_TYPE_MODE (dfloat128_type_node, TDmode);
9391 dfloat128_ptr_type_node = build_pointer_type (dfloat128_type_node);
9392
9393 complex_integer_type_node = build_complex_type (integer_type_node);
9394 complex_float_type_node = build_complex_type (float_type_node);
9395 complex_double_type_node = build_complex_type (double_type_node);
9396 complex_long_double_type_node = build_complex_type (long_double_type_node);
9397
9398 /* Make fixed-point nodes based on sat/non-sat and signed/unsigned. */
9399 #define MAKE_FIXED_TYPE_NODE(KIND,SIZE) \
9400 sat_ ## KIND ## _type_node = \
9401 make_sat_signed_ ## KIND ## _type (SIZE); \
9402 sat_unsigned_ ## KIND ## _type_node = \
9403 make_sat_unsigned_ ## KIND ## _type (SIZE); \
9404 KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
9405 unsigned_ ## KIND ## _type_node = \
9406 make_unsigned_ ## KIND ## _type (SIZE);
9407
9408 #define MAKE_FIXED_TYPE_NODE_WIDTH(KIND,WIDTH,SIZE) \
9409 sat_ ## WIDTH ## KIND ## _type_node = \
9410 make_sat_signed_ ## KIND ## _type (SIZE); \
9411 sat_unsigned_ ## WIDTH ## KIND ## _type_node = \
9412 make_sat_unsigned_ ## KIND ## _type (SIZE); \
9413 WIDTH ## KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
9414 unsigned_ ## WIDTH ## KIND ## _type_node = \
9415 make_unsigned_ ## KIND ## _type (SIZE);
9416
9417 /* Make fixed-point type nodes based on four different widths. */
9418 #define MAKE_FIXED_TYPE_NODE_FAMILY(N1,N2) \
9419 MAKE_FIXED_TYPE_NODE_WIDTH (N1, short_, SHORT_ ## N2 ## _TYPE_SIZE) \
9420 MAKE_FIXED_TYPE_NODE (N1, N2 ## _TYPE_SIZE) \
9421 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_, LONG_ ## N2 ## _TYPE_SIZE) \
9422 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_long_, LONG_LONG_ ## N2 ## _TYPE_SIZE)
9423
9424 /* Make fixed-point mode nodes based on sat/non-sat and signed/unsigned. */
9425 #define MAKE_FIXED_MODE_NODE(KIND,NAME,MODE) \
9426 NAME ## _type_node = \
9427 make_or_reuse_signed_ ## KIND ## _type (GET_MODE_BITSIZE (MODE ## mode)); \
9428 u ## NAME ## _type_node = \
9429 make_or_reuse_unsigned_ ## KIND ## _type \
9430 (GET_MODE_BITSIZE (U ## MODE ## mode)); \
9431 sat_ ## NAME ## _type_node = \
9432 make_or_reuse_sat_signed_ ## KIND ## _type \
9433 (GET_MODE_BITSIZE (MODE ## mode)); \
9434 sat_u ## NAME ## _type_node = \
9435 make_or_reuse_sat_unsigned_ ## KIND ## _type \
9436 (GET_MODE_BITSIZE (U ## MODE ## mode));
9437
9438 /* Fixed-point type and mode nodes. */
9439 MAKE_FIXED_TYPE_NODE_FAMILY (fract, FRACT)
9440 MAKE_FIXED_TYPE_NODE_FAMILY (accum, ACCUM)
9441 MAKE_FIXED_MODE_NODE (fract, qq, QQ)
9442 MAKE_FIXED_MODE_NODE (fract, hq, HQ)
9443 MAKE_FIXED_MODE_NODE (fract, sq, SQ)
9444 MAKE_FIXED_MODE_NODE (fract, dq, DQ)
9445 MAKE_FIXED_MODE_NODE (fract, tq, TQ)
9446 MAKE_FIXED_MODE_NODE (accum, ha, HA)
9447 MAKE_FIXED_MODE_NODE (accum, sa, SA)
9448 MAKE_FIXED_MODE_NODE (accum, da, DA)
9449 MAKE_FIXED_MODE_NODE (accum, ta, TA)
9450
9451 {
9452 tree t = targetm.build_builtin_va_list ();
9453
9454 /* Many back-ends define record types without setting TYPE_NAME.
9455 If we copied the record type here, we'd keep the original
9456 record type without a name. This breaks name mangling. So,
9457 don't copy record types and let c_common_nodes_and_builtins()
9458 declare the type to be __builtin_va_list. */
9459 if (TREE_CODE (t) != RECORD_TYPE)
9460 t = build_variant_type_copy (t);
9461
9462 va_list_type_node = t;
9463 }
9464 }
9465
9466 /* A subroutine of build_common_builtin_nodes. Define a builtin function. */
9467
9468 static void
9469 local_define_builtin (const char *name, tree type, enum built_in_function code,
9470 const char *library_name, int ecf_flags)
9471 {
9472 tree decl;
9473
9474 decl = add_builtin_function (name, type, code, BUILT_IN_NORMAL,
9475 library_name, NULL_TREE);
9476 if (ecf_flags & ECF_CONST)
9477 TREE_READONLY (decl) = 1;
9478 if (ecf_flags & ECF_PURE)
9479 DECL_PURE_P (decl) = 1;
9480 if (ecf_flags & ECF_LOOPING_CONST_OR_PURE)
9481 DECL_LOOPING_CONST_OR_PURE_P (decl) = 1;
9482 if (ecf_flags & ECF_NORETURN)
9483 TREE_THIS_VOLATILE (decl) = 1;
9484 if (ecf_flags & ECF_NOTHROW)
9485 TREE_NOTHROW (decl) = 1;
9486 if (ecf_flags & ECF_MALLOC)
9487 DECL_IS_MALLOC (decl) = 1;
9488 if (ecf_flags & ECF_LEAF)
9489 DECL_ATTRIBUTES (decl) = tree_cons (get_identifier ("leaf"),
9490 NULL, DECL_ATTRIBUTES (decl));
9491 if ((ecf_flags & ECF_TM_PURE) && flag_tm)
9492 apply_tm_attr (decl, get_identifier ("transaction_pure"));
9493
9494 set_builtin_decl (code, decl, true);
9495 }
9496
9497 /* Call this function after instantiating all builtins that the language
9498 front end cares about. This will build the rest of the builtins that
9499 are relied upon by the tree optimizers and the middle-end. */
9500
9501 void
9502 build_common_builtin_nodes (void)
9503 {
9504 tree tmp, ftype;
9505 int ecf_flags;
9506
9507 if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY)
9508 || !builtin_decl_explicit_p (BUILT_IN_MEMMOVE))
9509 {
9510 ftype = build_function_type_list (ptr_type_node,
9511 ptr_type_node, const_ptr_type_node,
9512 size_type_node, NULL_TREE);
9513
9514 if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY))
9515 local_define_builtin ("__builtin_memcpy", ftype, BUILT_IN_MEMCPY,
9516 "memcpy", ECF_NOTHROW | ECF_LEAF);
9517 if (!builtin_decl_explicit_p (BUILT_IN_MEMMOVE))
9518 local_define_builtin ("__builtin_memmove", ftype, BUILT_IN_MEMMOVE,
9519 "memmove", ECF_NOTHROW | ECF_LEAF);
9520 }
9521
9522 if (!builtin_decl_explicit_p (BUILT_IN_MEMCMP))
9523 {
9524 ftype = build_function_type_list (integer_type_node, const_ptr_type_node,
9525 const_ptr_type_node, size_type_node,
9526 NULL_TREE);
9527 local_define_builtin ("__builtin_memcmp", ftype, BUILT_IN_MEMCMP,
9528 "memcmp", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
9529 }
9530
9531 if (!builtin_decl_explicit_p (BUILT_IN_MEMSET))
9532 {
9533 ftype = build_function_type_list (ptr_type_node,
9534 ptr_type_node, integer_type_node,
9535 size_type_node, NULL_TREE);
9536 local_define_builtin ("__builtin_memset", ftype, BUILT_IN_MEMSET,
9537 "memset", ECF_NOTHROW | ECF_LEAF);
9538 }
9539
9540 if (!builtin_decl_explicit_p (BUILT_IN_ALLOCA))
9541 {
9542 ftype = build_function_type_list (ptr_type_node,
9543 size_type_node, NULL_TREE);
9544 local_define_builtin ("__builtin_alloca", ftype, BUILT_IN_ALLOCA,
9545 "alloca", ECF_MALLOC | ECF_NOTHROW | ECF_LEAF);
9546 }
9547
9548 ftype = build_function_type_list (ptr_type_node, size_type_node,
9549 size_type_node, NULL_TREE);
9550 local_define_builtin ("__builtin_alloca_with_align", ftype,
9551 BUILT_IN_ALLOCA_WITH_ALIGN, "alloca",
9552 ECF_MALLOC | ECF_NOTHROW | ECF_LEAF);
9553
9554 /* If we're checking the stack, `alloca' can throw. */
9555 if (flag_stack_check)
9556 {
9557 TREE_NOTHROW (builtin_decl_explicit (BUILT_IN_ALLOCA)) = 0;
9558 TREE_NOTHROW (builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN)) = 0;
9559 }
9560
9561 ftype = build_function_type_list (void_type_node,
9562 ptr_type_node, ptr_type_node,
9563 ptr_type_node, NULL_TREE);
9564 local_define_builtin ("__builtin_init_trampoline", ftype,
9565 BUILT_IN_INIT_TRAMPOLINE,
9566 "__builtin_init_trampoline", ECF_NOTHROW | ECF_LEAF);
9567 local_define_builtin ("__builtin_init_heap_trampoline", ftype,
9568 BUILT_IN_INIT_HEAP_TRAMPOLINE,
9569 "__builtin_init_heap_trampoline",
9570 ECF_NOTHROW | ECF_LEAF);
9571
9572 ftype = build_function_type_list (ptr_type_node, ptr_type_node, NULL_TREE);
9573 local_define_builtin ("__builtin_adjust_trampoline", ftype,
9574 BUILT_IN_ADJUST_TRAMPOLINE,
9575 "__builtin_adjust_trampoline",
9576 ECF_CONST | ECF_NOTHROW);
9577
9578 ftype = build_function_type_list (void_type_node,
9579 ptr_type_node, ptr_type_node, NULL_TREE);
9580 local_define_builtin ("__builtin_nonlocal_goto", ftype,
9581 BUILT_IN_NONLOCAL_GOTO,
9582 "__builtin_nonlocal_goto",
9583 ECF_NORETURN | ECF_NOTHROW);
9584
9585 ftype = build_function_type_list (void_type_node,
9586 ptr_type_node, ptr_type_node, NULL_TREE);
9587 local_define_builtin ("__builtin_setjmp_setup", ftype,
9588 BUILT_IN_SETJMP_SETUP,
9589 "__builtin_setjmp_setup", ECF_NOTHROW);
9590
9591 ftype = build_function_type_list (ptr_type_node, ptr_type_node, NULL_TREE);
9592 local_define_builtin ("__builtin_setjmp_dispatcher", ftype,
9593 BUILT_IN_SETJMP_DISPATCHER,
9594 "__builtin_setjmp_dispatcher",
9595 ECF_PURE | ECF_NOTHROW);
9596
9597 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
9598 local_define_builtin ("__builtin_setjmp_receiver", ftype,
9599 BUILT_IN_SETJMP_RECEIVER,
9600 "__builtin_setjmp_receiver", ECF_NOTHROW);
9601
9602 ftype = build_function_type_list (ptr_type_node, NULL_TREE);
9603 local_define_builtin ("__builtin_stack_save", ftype, BUILT_IN_STACK_SAVE,
9604 "__builtin_stack_save", ECF_NOTHROW | ECF_LEAF);
9605
9606 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
9607 local_define_builtin ("__builtin_stack_restore", ftype,
9608 BUILT_IN_STACK_RESTORE,
9609 "__builtin_stack_restore", ECF_NOTHROW | ECF_LEAF);
9610
9611 /* If there's a possibility that we might use the ARM EABI, build the
9612 alternate __cxa_end_cleanup node used to resume from C++ and Java. */
9613 if (targetm.arm_eabi_unwinder)
9614 {
9615 ftype = build_function_type_list (void_type_node, NULL_TREE);
9616 local_define_builtin ("__builtin_cxa_end_cleanup", ftype,
9617 BUILT_IN_CXA_END_CLEANUP,
9618 "__cxa_end_cleanup", ECF_NORETURN | ECF_LEAF);
9619 }
9620
9621 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
9622 local_define_builtin ("__builtin_unwind_resume", ftype,
9623 BUILT_IN_UNWIND_RESUME,
9624 ((targetm_common.except_unwind_info (&global_options)
9625 == UI_SJLJ)
9626 ? "_Unwind_SjLj_Resume" : "_Unwind_Resume"),
9627 ECF_NORETURN);
9628
9629 if (builtin_decl_explicit (BUILT_IN_RETURN_ADDRESS) == NULL_TREE)
9630 {
9631 ftype = build_function_type_list (ptr_type_node, integer_type_node,
9632 NULL_TREE);
9633 local_define_builtin ("__builtin_return_address", ftype,
9634 BUILT_IN_RETURN_ADDRESS,
9635 "__builtin_return_address",
9636 ECF_NOTHROW);
9637 }
9638
9639 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER)
9640 || !builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT))
9641 {
9642 ftype = build_function_type_list (void_type_node, ptr_type_node,
9643 ptr_type_node, NULL_TREE);
9644 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER))
9645 local_define_builtin ("__cyg_profile_func_enter", ftype,
9646 BUILT_IN_PROFILE_FUNC_ENTER,
9647 "__cyg_profile_func_enter", 0);
9648 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT))
9649 local_define_builtin ("__cyg_profile_func_exit", ftype,
9650 BUILT_IN_PROFILE_FUNC_EXIT,
9651 "__cyg_profile_func_exit", 0);
9652 }
9653
9654 /* The exception object and filter values from the runtime. The argument
9655 must be zero before exception lowering, i.e. from the front end. After
9656 exception lowering, it will be the region number for the exception
9657 landing pad. These functions are PURE instead of CONST to prevent
9658 them from being hoisted past the exception edge that will initialize
9659 its value in the landing pad. */
9660 ftype = build_function_type_list (ptr_type_node,
9661 integer_type_node, NULL_TREE);
9662 ecf_flags = ECF_PURE | ECF_NOTHROW | ECF_LEAF;
9663 /* Only use TM_PURE if we we have TM language support. */
9664 if (builtin_decl_explicit_p (BUILT_IN_TM_LOAD_1))
9665 ecf_flags |= ECF_TM_PURE;
9666 local_define_builtin ("__builtin_eh_pointer", ftype, BUILT_IN_EH_POINTER,
9667 "__builtin_eh_pointer", ecf_flags);
9668
9669 tmp = lang_hooks.types.type_for_mode (targetm.eh_return_filter_mode (), 0);
9670 ftype = build_function_type_list (tmp, integer_type_node, NULL_TREE);
9671 local_define_builtin ("__builtin_eh_filter", ftype, BUILT_IN_EH_FILTER,
9672 "__builtin_eh_filter", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
9673
9674 ftype = build_function_type_list (void_type_node,
9675 integer_type_node, integer_type_node,
9676 NULL_TREE);
9677 local_define_builtin ("__builtin_eh_copy_values", ftype,
9678 BUILT_IN_EH_COPY_VALUES,
9679 "__builtin_eh_copy_values", ECF_NOTHROW);
9680
9681 /* Complex multiplication and division. These are handled as builtins
9682 rather than optabs because emit_library_call_value doesn't support
9683 complex. Further, we can do slightly better with folding these
9684 beasties if the real and complex parts of the arguments are separate. */
9685 {
9686 int mode;
9687
9688 for (mode = MIN_MODE_COMPLEX_FLOAT; mode <= MAX_MODE_COMPLEX_FLOAT; ++mode)
9689 {
9690 char mode_name_buf[4], *q;
9691 const char *p;
9692 enum built_in_function mcode, dcode;
9693 tree type, inner_type;
9694 const char *prefix = "__";
9695
9696 if (targetm.libfunc_gnu_prefix)
9697 prefix = "__gnu_";
9698
9699 type = lang_hooks.types.type_for_mode ((enum machine_mode) mode, 0);
9700 if (type == NULL)
9701 continue;
9702 inner_type = TREE_TYPE (type);
9703
9704 ftype = build_function_type_list (type, inner_type, inner_type,
9705 inner_type, inner_type, NULL_TREE);
9706
9707 mcode = ((enum built_in_function)
9708 (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
9709 dcode = ((enum built_in_function)
9710 (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
9711
9712 for (p = GET_MODE_NAME (mode), q = mode_name_buf; *p; p++, q++)
9713 *q = TOLOWER (*p);
9714 *q = '\0';
9715
9716 built_in_names[mcode] = concat (prefix, "mul", mode_name_buf, "3",
9717 NULL);
9718 local_define_builtin (built_in_names[mcode], ftype, mcode,
9719 built_in_names[mcode],
9720 ECF_CONST | ECF_NOTHROW | ECF_LEAF);
9721
9722 built_in_names[dcode] = concat (prefix, "div", mode_name_buf, "3",
9723 NULL);
9724 local_define_builtin (built_in_names[dcode], ftype, dcode,
9725 built_in_names[dcode],
9726 ECF_CONST | ECF_NOTHROW | ECF_LEAF);
9727 }
9728 }
9729 }
9730
9731 /* HACK. GROSS. This is absolutely disgusting. I wish there was a
9732 better way.
9733
9734 If we requested a pointer to a vector, build up the pointers that
9735 we stripped off while looking for the inner type. Similarly for
9736 return values from functions.
9737
9738 The argument TYPE is the top of the chain, and BOTTOM is the
9739 new type which we will point to. */
9740
9741 tree
9742 reconstruct_complex_type (tree type, tree bottom)
9743 {
9744 tree inner, outer;
9745
9746 if (TREE_CODE (type) == POINTER_TYPE)
9747 {
9748 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9749 outer = build_pointer_type_for_mode (inner, TYPE_MODE (type),
9750 TYPE_REF_CAN_ALIAS_ALL (type));
9751 }
9752 else if (TREE_CODE (type) == REFERENCE_TYPE)
9753 {
9754 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9755 outer = build_reference_type_for_mode (inner, TYPE_MODE (type),
9756 TYPE_REF_CAN_ALIAS_ALL (type));
9757 }
9758 else if (TREE_CODE (type) == ARRAY_TYPE)
9759 {
9760 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9761 outer = build_array_type (inner, TYPE_DOMAIN (type));
9762 }
9763 else if (TREE_CODE (type) == FUNCTION_TYPE)
9764 {
9765 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9766 outer = build_function_type (inner, TYPE_ARG_TYPES (type));
9767 }
9768 else if (TREE_CODE (type) == METHOD_TYPE)
9769 {
9770 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9771 /* The build_method_type_directly() routine prepends 'this' to argument list,
9772 so we must compensate by getting rid of it. */
9773 outer
9774 = build_method_type_directly
9775 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (type))),
9776 inner,
9777 TREE_CHAIN (TYPE_ARG_TYPES (type)));
9778 }
9779 else if (TREE_CODE (type) == OFFSET_TYPE)
9780 {
9781 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9782 outer = build_offset_type (TYPE_OFFSET_BASETYPE (type), inner);
9783 }
9784 else
9785 return bottom;
9786
9787 return build_type_attribute_qual_variant (outer, TYPE_ATTRIBUTES (type),
9788 TYPE_QUALS (type));
9789 }
9790
9791 /* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
9792 the inner type. */
9793 tree
9794 build_vector_type_for_mode (tree innertype, enum machine_mode mode)
9795 {
9796 int nunits;
9797
9798 switch (GET_MODE_CLASS (mode))
9799 {
9800 case MODE_VECTOR_INT:
9801 case MODE_VECTOR_FLOAT:
9802 case MODE_VECTOR_FRACT:
9803 case MODE_VECTOR_UFRACT:
9804 case MODE_VECTOR_ACCUM:
9805 case MODE_VECTOR_UACCUM:
9806 nunits = GET_MODE_NUNITS (mode);
9807 break;
9808
9809 case MODE_INT:
9810 /* Check that there are no leftover bits. */
9811 gcc_assert (GET_MODE_BITSIZE (mode)
9812 % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0);
9813
9814 nunits = GET_MODE_BITSIZE (mode)
9815 / TREE_INT_CST_LOW (TYPE_SIZE (innertype));
9816 break;
9817
9818 default:
9819 gcc_unreachable ();
9820 }
9821
9822 return make_vector_type (innertype, nunits, mode);
9823 }
9824
9825 /* Similarly, but takes the inner type and number of units, which must be
9826 a power of two. */
9827
9828 tree
9829 build_vector_type (tree innertype, int nunits)
9830 {
9831 return make_vector_type (innertype, nunits, VOIDmode);
9832 }
9833
9834 /* Similarly, but builds a variant type with TYPE_VECTOR_OPAQUE set. */
9835
9836 tree
9837 build_opaque_vector_type (tree innertype, int nunits)
9838 {
9839 tree t = make_vector_type (innertype, nunits, VOIDmode);
9840 tree cand;
9841 /* We always build the non-opaque variant before the opaque one,
9842 so if it already exists, it is TYPE_NEXT_VARIANT of this one. */
9843 cand = TYPE_NEXT_VARIANT (t);
9844 if (cand
9845 && TYPE_VECTOR_OPAQUE (cand)
9846 && check_qualified_type (cand, t, TYPE_QUALS (t)))
9847 return cand;
9848 /* Othewise build a variant type and make sure to queue it after
9849 the non-opaque type. */
9850 cand = build_distinct_type_copy (t);
9851 TYPE_VECTOR_OPAQUE (cand) = true;
9852 TYPE_CANONICAL (cand) = TYPE_CANONICAL (t);
9853 TYPE_NEXT_VARIANT (cand) = TYPE_NEXT_VARIANT (t);
9854 TYPE_NEXT_VARIANT (t) = cand;
9855 TYPE_MAIN_VARIANT (cand) = TYPE_MAIN_VARIANT (t);
9856 return cand;
9857 }
9858
9859
9860 /* Given an initializer INIT, return TRUE if INIT is zero or some
9861 aggregate of zeros. Otherwise return FALSE. */
9862 bool
9863 initializer_zerop (const_tree init)
9864 {
9865 tree elt;
9866
9867 STRIP_NOPS (init);
9868
9869 switch (TREE_CODE (init))
9870 {
9871 case INTEGER_CST:
9872 return integer_zerop (init);
9873
9874 case REAL_CST:
9875 /* ??? Note that this is not correct for C4X float formats. There,
9876 a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
9877 negative exponent. */
9878 return real_zerop (init)
9879 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
9880
9881 case FIXED_CST:
9882 return fixed_zerop (init);
9883
9884 case COMPLEX_CST:
9885 return integer_zerop (init)
9886 || (real_zerop (init)
9887 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
9888 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
9889
9890 case VECTOR_CST:
9891 for (elt = TREE_VECTOR_CST_ELTS (init); elt; elt = TREE_CHAIN (elt))
9892 if (!initializer_zerop (TREE_VALUE (elt)))
9893 return false;
9894 return true;
9895
9896 case CONSTRUCTOR:
9897 {
9898 unsigned HOST_WIDE_INT idx;
9899
9900 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
9901 if (!initializer_zerop (elt))
9902 return false;
9903 return true;
9904 }
9905
9906 case STRING_CST:
9907 {
9908 int i;
9909
9910 /* We need to loop through all elements to handle cases like
9911 "\0" and "\0foobar". */
9912 for (i = 0; i < TREE_STRING_LENGTH (init); ++i)
9913 if (TREE_STRING_POINTER (init)[i] != '\0')
9914 return false;
9915
9916 return true;
9917 }
9918
9919 default:
9920 return false;
9921 }
9922 }
9923
9924 /* Build an empty statement at location LOC. */
9925
9926 tree
9927 build_empty_stmt (location_t loc)
9928 {
9929 tree t = build1 (NOP_EXPR, void_type_node, size_zero_node);
9930 SET_EXPR_LOCATION (t, loc);
9931 return t;
9932 }
9933
9934
9935 /* Build an OpenMP clause with code CODE. LOC is the location of the
9936 clause. */
9937
9938 tree
9939 build_omp_clause (location_t loc, enum omp_clause_code code)
9940 {
9941 tree t;
9942 int size, length;
9943
9944 length = omp_clause_num_ops[code];
9945 size = (sizeof (struct tree_omp_clause) + (length - 1) * sizeof (tree));
9946
9947 record_node_allocation_statistics (OMP_CLAUSE, size);
9948
9949 t = ggc_alloc_tree_node (size);
9950 memset (t, 0, size);
9951 TREE_SET_CODE (t, OMP_CLAUSE);
9952 OMP_CLAUSE_SET_CODE (t, code);
9953 OMP_CLAUSE_LOCATION (t) = loc;
9954
9955 return t;
9956 }
9957
9958 /* Build a tcc_vl_exp object with code CODE and room for LEN operands. LEN
9959 includes the implicit operand count in TREE_OPERAND 0, and so must be >= 1.
9960 Except for the CODE and operand count field, other storage for the
9961 object is initialized to zeros. */
9962
9963 tree
9964 build_vl_exp_stat (enum tree_code code, int len MEM_STAT_DECL)
9965 {
9966 tree t;
9967 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_exp);
9968
9969 gcc_assert (TREE_CODE_CLASS (code) == tcc_vl_exp);
9970 gcc_assert (len >= 1);
9971
9972 record_node_allocation_statistics (code, length);
9973
9974 t = ggc_alloc_zone_cleared_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
9975
9976 TREE_SET_CODE (t, code);
9977
9978 /* Can't use TREE_OPERAND to store the length because if checking is
9979 enabled, it will try to check the length before we store it. :-P */
9980 t->exp.operands[0] = build_int_cst (sizetype, len);
9981
9982 return t;
9983 }
9984
9985 /* Helper function for build_call_* functions; build a CALL_EXPR with
9986 indicated RETURN_TYPE, FN, and NARGS, but do not initialize any of
9987 the argument slots. */
9988
9989 static tree
9990 build_call_1 (tree return_type, tree fn, int nargs)
9991 {
9992 tree t;
9993
9994 t = build_vl_exp (CALL_EXPR, nargs + 3);
9995 TREE_TYPE (t) = return_type;
9996 CALL_EXPR_FN (t) = fn;
9997 CALL_EXPR_STATIC_CHAIN (t) = NULL;
9998
9999 return t;
10000 }
10001
10002 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
10003 FN and a null static chain slot. NARGS is the number of call arguments
10004 which are specified as "..." arguments. */
10005
10006 tree
10007 build_call_nary (tree return_type, tree fn, int nargs, ...)
10008 {
10009 tree ret;
10010 va_list args;
10011 va_start (args, nargs);
10012 ret = build_call_valist (return_type, fn, nargs, args);
10013 va_end (args);
10014 return ret;
10015 }
10016
10017 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
10018 FN and a null static chain slot. NARGS is the number of call arguments
10019 which are specified as a va_list ARGS. */
10020
10021 tree
10022 build_call_valist (tree return_type, tree fn, int nargs, va_list args)
10023 {
10024 tree t;
10025 int i;
10026
10027 t = build_call_1 (return_type, fn, nargs);
10028 for (i = 0; i < nargs; i++)
10029 CALL_EXPR_ARG (t, i) = va_arg (args, tree);
10030 process_call_operands (t);
10031 return t;
10032 }
10033
10034 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
10035 FN and a null static chain slot. NARGS is the number of call arguments
10036 which are specified as a tree array ARGS. */
10037
10038 tree
10039 build_call_array_loc (location_t loc, tree return_type, tree fn,
10040 int nargs, const tree *args)
10041 {
10042 tree t;
10043 int i;
10044
10045 t = build_call_1 (return_type, fn, nargs);
10046 for (i = 0; i < nargs; i++)
10047 CALL_EXPR_ARG (t, i) = args[i];
10048 process_call_operands (t);
10049 SET_EXPR_LOCATION (t, loc);
10050 return t;
10051 }
10052
10053 /* Like build_call_array, but takes a VEC. */
10054
10055 tree
10056 build_call_vec (tree return_type, tree fn, VEC(tree,gc) *args)
10057 {
10058 tree ret, t;
10059 unsigned int ix;
10060
10061 ret = build_call_1 (return_type, fn, VEC_length (tree, args));
10062 FOR_EACH_VEC_ELT (tree, args, ix, t)
10063 CALL_EXPR_ARG (ret, ix) = t;
10064 process_call_operands (ret);
10065 return ret;
10066 }
10067
10068
10069 /* Returns true if it is possible to prove that the index of
10070 an array access REF (an ARRAY_REF expression) falls into the
10071 array bounds. */
10072
10073 bool
10074 in_array_bounds_p (tree ref)
10075 {
10076 tree idx = TREE_OPERAND (ref, 1);
10077 tree min, max;
10078
10079 if (TREE_CODE (idx) != INTEGER_CST)
10080 return false;
10081
10082 min = array_ref_low_bound (ref);
10083 max = array_ref_up_bound (ref);
10084 if (!min
10085 || !max
10086 || TREE_CODE (min) != INTEGER_CST
10087 || TREE_CODE (max) != INTEGER_CST)
10088 return false;
10089
10090 if (tree_int_cst_lt (idx, min)
10091 || tree_int_cst_lt (max, idx))
10092 return false;
10093
10094 return true;
10095 }
10096
10097 /* Returns true if it is possible to prove that the range of
10098 an array access REF (an ARRAY_RANGE_REF expression) falls
10099 into the array bounds. */
10100
10101 bool
10102 range_in_array_bounds_p (tree ref)
10103 {
10104 tree domain_type = TYPE_DOMAIN (TREE_TYPE (ref));
10105 tree range_min, range_max, min, max;
10106
10107 range_min = TYPE_MIN_VALUE (domain_type);
10108 range_max = TYPE_MAX_VALUE (domain_type);
10109 if (!range_min
10110 || !range_max
10111 || TREE_CODE (range_min) != INTEGER_CST
10112 || TREE_CODE (range_max) != INTEGER_CST)
10113 return false;
10114
10115 min = array_ref_low_bound (ref);
10116 max = array_ref_up_bound (ref);
10117 if (!min
10118 || !max
10119 || TREE_CODE (min) != INTEGER_CST
10120 || TREE_CODE (max) != INTEGER_CST)
10121 return false;
10122
10123 if (tree_int_cst_lt (range_min, min)
10124 || tree_int_cst_lt (max, range_max))
10125 return false;
10126
10127 return true;
10128 }
10129
10130 /* Return true if T (assumed to be a DECL) must be assigned a memory
10131 location. */
10132
10133 bool
10134 needs_to_live_in_memory (const_tree t)
10135 {
10136 if (TREE_CODE (t) == SSA_NAME)
10137 t = SSA_NAME_VAR (t);
10138
10139 return (TREE_ADDRESSABLE (t)
10140 || is_global_var (t)
10141 || (TREE_CODE (t) == RESULT_DECL
10142 && !DECL_BY_REFERENCE (t)
10143 && aggregate_value_p (t, current_function_decl)));
10144 }
10145
10146 /* Return value of a constant X and sign-extend it. */
10147
10148 HOST_WIDE_INT
10149 int_cst_value (const_tree x)
10150 {
10151 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
10152 unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
10153
10154 /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
10155 gcc_assert (TREE_INT_CST_HIGH (x) == 0
10156 || TREE_INT_CST_HIGH (x) == -1);
10157
10158 if (bits < HOST_BITS_PER_WIDE_INT)
10159 {
10160 bool negative = ((val >> (bits - 1)) & 1) != 0;
10161 if (negative)
10162 val |= (~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1;
10163 else
10164 val &= ~((~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1);
10165 }
10166
10167 return val;
10168 }
10169
10170 /* Return value of a constant X and sign-extend it. */
10171
10172 HOST_WIDEST_INT
10173 widest_int_cst_value (const_tree x)
10174 {
10175 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
10176 unsigned HOST_WIDEST_INT val = TREE_INT_CST_LOW (x);
10177
10178 #if HOST_BITS_PER_WIDEST_INT > HOST_BITS_PER_WIDE_INT
10179 gcc_assert (HOST_BITS_PER_WIDEST_INT >= 2 * HOST_BITS_PER_WIDE_INT);
10180 val |= (((unsigned HOST_WIDEST_INT) TREE_INT_CST_HIGH (x))
10181 << HOST_BITS_PER_WIDE_INT);
10182 #else
10183 /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
10184 gcc_assert (TREE_INT_CST_HIGH (x) == 0
10185 || TREE_INT_CST_HIGH (x) == -1);
10186 #endif
10187
10188 if (bits < HOST_BITS_PER_WIDEST_INT)
10189 {
10190 bool negative = ((val >> (bits - 1)) & 1) != 0;
10191 if (negative)
10192 val |= (~(unsigned HOST_WIDEST_INT) 0) << (bits - 1) << 1;
10193 else
10194 val &= ~((~(unsigned HOST_WIDEST_INT) 0) << (bits - 1) << 1);
10195 }
10196
10197 return val;
10198 }
10199
10200 /* If TYPE is an integral type, return an equivalent type which is
10201 unsigned iff UNSIGNEDP is true. If TYPE is not an integral type,
10202 return TYPE itself. */
10203
10204 tree
10205 signed_or_unsigned_type_for (int unsignedp, tree type)
10206 {
10207 tree t = type;
10208 if (POINTER_TYPE_P (type))
10209 {
10210 /* If the pointer points to the normal address space, use the
10211 size_type_node. Otherwise use an appropriate size for the pointer
10212 based on the named address space it points to. */
10213 if (!TYPE_ADDR_SPACE (TREE_TYPE (t)))
10214 t = size_type_node;
10215 else
10216 return lang_hooks.types.type_for_size (TYPE_PRECISION (t), unsignedp);
10217 }
10218
10219 if (!INTEGRAL_TYPE_P (t) || TYPE_UNSIGNED (t) == unsignedp)
10220 return t;
10221
10222 return lang_hooks.types.type_for_size (TYPE_PRECISION (t), unsignedp);
10223 }
10224
10225 /* Returns unsigned variant of TYPE. */
10226
10227 tree
10228 unsigned_type_for (tree type)
10229 {
10230 return signed_or_unsigned_type_for (1, type);
10231 }
10232
10233 /* Returns signed variant of TYPE. */
10234
10235 tree
10236 signed_type_for (tree type)
10237 {
10238 return signed_or_unsigned_type_for (0, type);
10239 }
10240
10241 /* Returns the largest value obtainable by casting something in INNER type to
10242 OUTER type. */
10243
10244 tree
10245 upper_bound_in_type (tree outer, tree inner)
10246 {
10247 double_int high;
10248 unsigned int det = 0;
10249 unsigned oprec = TYPE_PRECISION (outer);
10250 unsigned iprec = TYPE_PRECISION (inner);
10251 unsigned prec;
10252
10253 /* Compute a unique number for every combination. */
10254 det |= (oprec > iprec) ? 4 : 0;
10255 det |= TYPE_UNSIGNED (outer) ? 2 : 0;
10256 det |= TYPE_UNSIGNED (inner) ? 1 : 0;
10257
10258 /* Determine the exponent to use. */
10259 switch (det)
10260 {
10261 case 0:
10262 case 1:
10263 /* oprec <= iprec, outer: signed, inner: don't care. */
10264 prec = oprec - 1;
10265 break;
10266 case 2:
10267 case 3:
10268 /* oprec <= iprec, outer: unsigned, inner: don't care. */
10269 prec = oprec;
10270 break;
10271 case 4:
10272 /* oprec > iprec, outer: signed, inner: signed. */
10273 prec = iprec - 1;
10274 break;
10275 case 5:
10276 /* oprec > iprec, outer: signed, inner: unsigned. */
10277 prec = iprec;
10278 break;
10279 case 6:
10280 /* oprec > iprec, outer: unsigned, inner: signed. */
10281 prec = oprec;
10282 break;
10283 case 7:
10284 /* oprec > iprec, outer: unsigned, inner: unsigned. */
10285 prec = iprec;
10286 break;
10287 default:
10288 gcc_unreachable ();
10289 }
10290
10291 /* Compute 2^^prec - 1. */
10292 if (prec <= HOST_BITS_PER_WIDE_INT)
10293 {
10294 high.high = 0;
10295 high.low = ((~(unsigned HOST_WIDE_INT) 0)
10296 >> (HOST_BITS_PER_WIDE_INT - prec));
10297 }
10298 else
10299 {
10300 high.high = ((~(unsigned HOST_WIDE_INT) 0)
10301 >> (2 * HOST_BITS_PER_WIDE_INT - prec));
10302 high.low = ~(unsigned HOST_WIDE_INT) 0;
10303 }
10304
10305 return double_int_to_tree (outer, high);
10306 }
10307
10308 /* Returns the smallest value obtainable by casting something in INNER type to
10309 OUTER type. */
10310
10311 tree
10312 lower_bound_in_type (tree outer, tree inner)
10313 {
10314 double_int low;
10315 unsigned oprec = TYPE_PRECISION (outer);
10316 unsigned iprec = TYPE_PRECISION (inner);
10317
10318 /* If OUTER type is unsigned, we can definitely cast 0 to OUTER type
10319 and obtain 0. */
10320 if (TYPE_UNSIGNED (outer)
10321 /* If we are widening something of an unsigned type, OUTER type
10322 contains all values of INNER type. In particular, both INNER
10323 and OUTER types have zero in common. */
10324 || (oprec > iprec && TYPE_UNSIGNED (inner)))
10325 low.low = low.high = 0;
10326 else
10327 {
10328 /* If we are widening a signed type to another signed type, we
10329 want to obtain -2^^(iprec-1). If we are keeping the
10330 precision or narrowing to a signed type, we want to obtain
10331 -2^(oprec-1). */
10332 unsigned prec = oprec > iprec ? iprec : oprec;
10333
10334 if (prec <= HOST_BITS_PER_WIDE_INT)
10335 {
10336 low.high = ~(unsigned HOST_WIDE_INT) 0;
10337 low.low = (~(unsigned HOST_WIDE_INT) 0) << (prec - 1);
10338 }
10339 else
10340 {
10341 low.high = ((~(unsigned HOST_WIDE_INT) 0)
10342 << (prec - HOST_BITS_PER_WIDE_INT - 1));
10343 low.low = 0;
10344 }
10345 }
10346
10347 return double_int_to_tree (outer, low);
10348 }
10349
10350 /* Return nonzero if two operands that are suitable for PHI nodes are
10351 necessarily equal. Specifically, both ARG0 and ARG1 must be either
10352 SSA_NAME or invariant. Note that this is strictly an optimization.
10353 That is, callers of this function can directly call operand_equal_p
10354 and get the same result, only slower. */
10355
10356 int
10357 operand_equal_for_phi_arg_p (const_tree arg0, const_tree arg1)
10358 {
10359 if (arg0 == arg1)
10360 return 1;
10361 if (TREE_CODE (arg0) == SSA_NAME || TREE_CODE (arg1) == SSA_NAME)
10362 return 0;
10363 return operand_equal_p (arg0, arg1, 0);
10364 }
10365
10366 /* Returns number of zeros at the end of binary representation of X.
10367
10368 ??? Use ffs if available? */
10369
10370 tree
10371 num_ending_zeros (const_tree x)
10372 {
10373 unsigned HOST_WIDE_INT fr, nfr;
10374 unsigned num, abits;
10375 tree type = TREE_TYPE (x);
10376
10377 if (TREE_INT_CST_LOW (x) == 0)
10378 {
10379 num = HOST_BITS_PER_WIDE_INT;
10380 fr = TREE_INT_CST_HIGH (x);
10381 }
10382 else
10383 {
10384 num = 0;
10385 fr = TREE_INT_CST_LOW (x);
10386 }
10387
10388 for (abits = HOST_BITS_PER_WIDE_INT / 2; abits; abits /= 2)
10389 {
10390 nfr = fr >> abits;
10391 if (nfr << abits == fr)
10392 {
10393 num += abits;
10394 fr = nfr;
10395 }
10396 }
10397
10398 if (num > TYPE_PRECISION (type))
10399 num = TYPE_PRECISION (type);
10400
10401 return build_int_cst_type (type, num);
10402 }
10403
10404
10405 #define WALK_SUBTREE(NODE) \
10406 do \
10407 { \
10408 result = walk_tree_1 (&(NODE), func, data, pset, lh); \
10409 if (result) \
10410 return result; \
10411 } \
10412 while (0)
10413
10414 /* This is a subroutine of walk_tree that walks field of TYPE that are to
10415 be walked whenever a type is seen in the tree. Rest of operands and return
10416 value are as for walk_tree. */
10417
10418 static tree
10419 walk_type_fields (tree type, walk_tree_fn func, void *data,
10420 struct pointer_set_t *pset, walk_tree_lh lh)
10421 {
10422 tree result = NULL_TREE;
10423
10424 switch (TREE_CODE (type))
10425 {
10426 case POINTER_TYPE:
10427 case REFERENCE_TYPE:
10428 /* We have to worry about mutually recursive pointers. These can't
10429 be written in C. They can in Ada. It's pathological, but
10430 there's an ACATS test (c38102a) that checks it. Deal with this
10431 by checking if we're pointing to another pointer, that one
10432 points to another pointer, that one does too, and we have no htab.
10433 If so, get a hash table. We check three levels deep to avoid
10434 the cost of the hash table if we don't need one. */
10435 if (POINTER_TYPE_P (TREE_TYPE (type))
10436 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (type)))
10437 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (TREE_TYPE (type))))
10438 && !pset)
10439 {
10440 result = walk_tree_without_duplicates (&TREE_TYPE (type),
10441 func, data);
10442 if (result)
10443 return result;
10444
10445 break;
10446 }
10447
10448 /* ... fall through ... */
10449
10450 case COMPLEX_TYPE:
10451 WALK_SUBTREE (TREE_TYPE (type));
10452 break;
10453
10454 case METHOD_TYPE:
10455 WALK_SUBTREE (TYPE_METHOD_BASETYPE (type));
10456
10457 /* Fall through. */
10458
10459 case FUNCTION_TYPE:
10460 WALK_SUBTREE (TREE_TYPE (type));
10461 {
10462 tree arg;
10463
10464 /* We never want to walk into default arguments. */
10465 for (arg = TYPE_ARG_TYPES (type); arg; arg = TREE_CHAIN (arg))
10466 WALK_SUBTREE (TREE_VALUE (arg));
10467 }
10468 break;
10469
10470 case ARRAY_TYPE:
10471 /* Don't follow this nodes's type if a pointer for fear that
10472 we'll have infinite recursion. If we have a PSET, then we
10473 need not fear. */
10474 if (pset
10475 || (!POINTER_TYPE_P (TREE_TYPE (type))
10476 && TREE_CODE (TREE_TYPE (type)) != OFFSET_TYPE))
10477 WALK_SUBTREE (TREE_TYPE (type));
10478 WALK_SUBTREE (TYPE_DOMAIN (type));
10479 break;
10480
10481 case OFFSET_TYPE:
10482 WALK_SUBTREE (TREE_TYPE (type));
10483 WALK_SUBTREE (TYPE_OFFSET_BASETYPE (type));
10484 break;
10485
10486 default:
10487 break;
10488 }
10489
10490 return NULL_TREE;
10491 }
10492
10493 /* Apply FUNC to all the sub-trees of TP in a pre-order traversal. FUNC is
10494 called with the DATA and the address of each sub-tree. If FUNC returns a
10495 non-NULL value, the traversal is stopped, and the value returned by FUNC
10496 is returned. If PSET is non-NULL it is used to record the nodes visited,
10497 and to avoid visiting a node more than once. */
10498
10499 tree
10500 walk_tree_1 (tree *tp, walk_tree_fn func, void *data,
10501 struct pointer_set_t *pset, walk_tree_lh lh)
10502 {
10503 enum tree_code code;
10504 int walk_subtrees;
10505 tree result;
10506
10507 #define WALK_SUBTREE_TAIL(NODE) \
10508 do \
10509 { \
10510 tp = & (NODE); \
10511 goto tail_recurse; \
10512 } \
10513 while (0)
10514
10515 tail_recurse:
10516 /* Skip empty subtrees. */
10517 if (!*tp)
10518 return NULL_TREE;
10519
10520 /* Don't walk the same tree twice, if the user has requested
10521 that we avoid doing so. */
10522 if (pset && pointer_set_insert (pset, *tp))
10523 return NULL_TREE;
10524
10525 /* Call the function. */
10526 walk_subtrees = 1;
10527 result = (*func) (tp, &walk_subtrees, data);
10528
10529 /* If we found something, return it. */
10530 if (result)
10531 return result;
10532
10533 code = TREE_CODE (*tp);
10534
10535 /* Even if we didn't, FUNC may have decided that there was nothing
10536 interesting below this point in the tree. */
10537 if (!walk_subtrees)
10538 {
10539 /* But we still need to check our siblings. */
10540 if (code == TREE_LIST)
10541 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
10542 else if (code == OMP_CLAUSE)
10543 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10544 else
10545 return NULL_TREE;
10546 }
10547
10548 if (lh)
10549 {
10550 result = (*lh) (tp, &walk_subtrees, func, data, pset);
10551 if (result || !walk_subtrees)
10552 return result;
10553 }
10554
10555 switch (code)
10556 {
10557 case ERROR_MARK:
10558 case IDENTIFIER_NODE:
10559 case INTEGER_CST:
10560 case REAL_CST:
10561 case FIXED_CST:
10562 case VECTOR_CST:
10563 case STRING_CST:
10564 case BLOCK:
10565 case PLACEHOLDER_EXPR:
10566 case SSA_NAME:
10567 case FIELD_DECL:
10568 case RESULT_DECL:
10569 /* None of these have subtrees other than those already walked
10570 above. */
10571 break;
10572
10573 case TREE_LIST:
10574 WALK_SUBTREE (TREE_VALUE (*tp));
10575 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
10576 break;
10577
10578 case TREE_VEC:
10579 {
10580 int len = TREE_VEC_LENGTH (*tp);
10581
10582 if (len == 0)
10583 break;
10584
10585 /* Walk all elements but the first. */
10586 while (--len)
10587 WALK_SUBTREE (TREE_VEC_ELT (*tp, len));
10588
10589 /* Now walk the first one as a tail call. */
10590 WALK_SUBTREE_TAIL (TREE_VEC_ELT (*tp, 0));
10591 }
10592
10593 case COMPLEX_CST:
10594 WALK_SUBTREE (TREE_REALPART (*tp));
10595 WALK_SUBTREE_TAIL (TREE_IMAGPART (*tp));
10596
10597 case CONSTRUCTOR:
10598 {
10599 unsigned HOST_WIDE_INT idx;
10600 constructor_elt *ce;
10601
10602 for (idx = 0;
10603 VEC_iterate(constructor_elt, CONSTRUCTOR_ELTS (*tp), idx, ce);
10604 idx++)
10605 WALK_SUBTREE (ce->value);
10606 }
10607 break;
10608
10609 case SAVE_EXPR:
10610 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, 0));
10611
10612 case BIND_EXPR:
10613 {
10614 tree decl;
10615 for (decl = BIND_EXPR_VARS (*tp); decl; decl = DECL_CHAIN (decl))
10616 {
10617 /* Walk the DECL_INITIAL and DECL_SIZE. We don't want to walk
10618 into declarations that are just mentioned, rather than
10619 declared; they don't really belong to this part of the tree.
10620 And, we can see cycles: the initializer for a declaration
10621 can refer to the declaration itself. */
10622 WALK_SUBTREE (DECL_INITIAL (decl));
10623 WALK_SUBTREE (DECL_SIZE (decl));
10624 WALK_SUBTREE (DECL_SIZE_UNIT (decl));
10625 }
10626 WALK_SUBTREE_TAIL (BIND_EXPR_BODY (*tp));
10627 }
10628
10629 case STATEMENT_LIST:
10630 {
10631 tree_stmt_iterator i;
10632 for (i = tsi_start (*tp); !tsi_end_p (i); tsi_next (&i))
10633 WALK_SUBTREE (*tsi_stmt_ptr (i));
10634 }
10635 break;
10636
10637 case OMP_CLAUSE:
10638 switch (OMP_CLAUSE_CODE (*tp))
10639 {
10640 case OMP_CLAUSE_PRIVATE:
10641 case OMP_CLAUSE_SHARED:
10642 case OMP_CLAUSE_FIRSTPRIVATE:
10643 case OMP_CLAUSE_COPYIN:
10644 case OMP_CLAUSE_COPYPRIVATE:
10645 case OMP_CLAUSE_FINAL:
10646 case OMP_CLAUSE_IF:
10647 case OMP_CLAUSE_NUM_THREADS:
10648 case OMP_CLAUSE_SCHEDULE:
10649 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 0));
10650 /* FALLTHRU */
10651
10652 case OMP_CLAUSE_NOWAIT:
10653 case OMP_CLAUSE_ORDERED:
10654 case OMP_CLAUSE_DEFAULT:
10655 case OMP_CLAUSE_UNTIED:
10656 case OMP_CLAUSE_MERGEABLE:
10657 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10658
10659 case OMP_CLAUSE_LASTPRIVATE:
10660 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
10661 WALK_SUBTREE (OMP_CLAUSE_LASTPRIVATE_STMT (*tp));
10662 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10663
10664 case OMP_CLAUSE_COLLAPSE:
10665 {
10666 int i;
10667 for (i = 0; i < 3; i++)
10668 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
10669 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10670 }
10671
10672 case OMP_CLAUSE_REDUCTION:
10673 {
10674 int i;
10675 for (i = 0; i < 4; i++)
10676 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
10677 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10678 }
10679
10680 default:
10681 gcc_unreachable ();
10682 }
10683 break;
10684
10685 case TARGET_EXPR:
10686 {
10687 int i, len;
10688
10689 /* TARGET_EXPRs are peculiar: operands 1 and 3 can be the same.
10690 But, we only want to walk once. */
10691 len = (TREE_OPERAND (*tp, 3) == TREE_OPERAND (*tp, 1)) ? 2 : 3;
10692 for (i = 0; i < len; ++i)
10693 WALK_SUBTREE (TREE_OPERAND (*tp, i));
10694 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len));
10695 }
10696
10697 case DECL_EXPR:
10698 /* If this is a TYPE_DECL, walk into the fields of the type that it's
10699 defining. We only want to walk into these fields of a type in this
10700 case and not in the general case of a mere reference to the type.
10701
10702 The criterion is as follows: if the field can be an expression, it
10703 must be walked only here. This should be in keeping with the fields
10704 that are directly gimplified in gimplify_type_sizes in order for the
10705 mark/copy-if-shared/unmark machinery of the gimplifier to work with
10706 variable-sized types.
10707
10708 Note that DECLs get walked as part of processing the BIND_EXPR. */
10709 if (TREE_CODE (DECL_EXPR_DECL (*tp)) == TYPE_DECL)
10710 {
10711 tree *type_p = &TREE_TYPE (DECL_EXPR_DECL (*tp));
10712 if (TREE_CODE (*type_p) == ERROR_MARK)
10713 return NULL_TREE;
10714
10715 /* Call the function for the type. See if it returns anything or
10716 doesn't want us to continue. If we are to continue, walk both
10717 the normal fields and those for the declaration case. */
10718 result = (*func) (type_p, &walk_subtrees, data);
10719 if (result || !walk_subtrees)
10720 return result;
10721
10722 /* But do not walk a pointed-to type since it may itself need to
10723 be walked in the declaration case if it isn't anonymous. */
10724 if (!POINTER_TYPE_P (*type_p))
10725 {
10726 result = walk_type_fields (*type_p, func, data, pset, lh);
10727 if (result)
10728 return result;
10729 }
10730
10731 /* If this is a record type, also walk the fields. */
10732 if (RECORD_OR_UNION_TYPE_P (*type_p))
10733 {
10734 tree field;
10735
10736 for (field = TYPE_FIELDS (*type_p); field;
10737 field = DECL_CHAIN (field))
10738 {
10739 /* We'd like to look at the type of the field, but we can
10740 easily get infinite recursion. So assume it's pointed
10741 to elsewhere in the tree. Also, ignore things that
10742 aren't fields. */
10743 if (TREE_CODE (field) != FIELD_DECL)
10744 continue;
10745
10746 WALK_SUBTREE (DECL_FIELD_OFFSET (field));
10747 WALK_SUBTREE (DECL_SIZE (field));
10748 WALK_SUBTREE (DECL_SIZE_UNIT (field));
10749 if (TREE_CODE (*type_p) == QUAL_UNION_TYPE)
10750 WALK_SUBTREE (DECL_QUALIFIER (field));
10751 }
10752 }
10753
10754 /* Same for scalar types. */
10755 else if (TREE_CODE (*type_p) == BOOLEAN_TYPE
10756 || TREE_CODE (*type_p) == ENUMERAL_TYPE
10757 || TREE_CODE (*type_p) == INTEGER_TYPE
10758 || TREE_CODE (*type_p) == FIXED_POINT_TYPE
10759 || TREE_CODE (*type_p) == REAL_TYPE)
10760 {
10761 WALK_SUBTREE (TYPE_MIN_VALUE (*type_p));
10762 WALK_SUBTREE (TYPE_MAX_VALUE (*type_p));
10763 }
10764
10765 WALK_SUBTREE (TYPE_SIZE (*type_p));
10766 WALK_SUBTREE_TAIL (TYPE_SIZE_UNIT (*type_p));
10767 }
10768 /* FALLTHRU */
10769
10770 default:
10771 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
10772 {
10773 int i, len;
10774
10775 /* Walk over all the sub-trees of this operand. */
10776 len = TREE_OPERAND_LENGTH (*tp);
10777
10778 /* Go through the subtrees. We need to do this in forward order so
10779 that the scope of a FOR_EXPR is handled properly. */
10780 if (len)
10781 {
10782 for (i = 0; i < len - 1; ++i)
10783 WALK_SUBTREE (TREE_OPERAND (*tp, i));
10784 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len - 1));
10785 }
10786 }
10787 /* If this is a type, walk the needed fields in the type. */
10788 else if (TYPE_P (*tp))
10789 return walk_type_fields (*tp, func, data, pset, lh);
10790 break;
10791 }
10792
10793 /* We didn't find what we were looking for. */
10794 return NULL_TREE;
10795
10796 #undef WALK_SUBTREE_TAIL
10797 }
10798 #undef WALK_SUBTREE
10799
10800 /* Like walk_tree, but does not walk duplicate nodes more than once. */
10801
10802 tree
10803 walk_tree_without_duplicates_1 (tree *tp, walk_tree_fn func, void *data,
10804 walk_tree_lh lh)
10805 {
10806 tree result;
10807 struct pointer_set_t *pset;
10808
10809 pset = pointer_set_create ();
10810 result = walk_tree_1 (tp, func, data, pset, lh);
10811 pointer_set_destroy (pset);
10812 return result;
10813 }
10814
10815
10816 tree *
10817 tree_block (tree t)
10818 {
10819 char const c = TREE_CODE_CLASS (TREE_CODE (t));
10820
10821 if (IS_EXPR_CODE_CLASS (c))
10822 return &t->exp.block;
10823 gcc_unreachable ();
10824 return NULL;
10825 }
10826
10827 /* Create a nameless artificial label and put it in the current
10828 function context. The label has a location of LOC. Returns the
10829 newly created label. */
10830
10831 tree
10832 create_artificial_label (location_t loc)
10833 {
10834 tree lab = build_decl (loc,
10835 LABEL_DECL, NULL_TREE, void_type_node);
10836
10837 DECL_ARTIFICIAL (lab) = 1;
10838 DECL_IGNORED_P (lab) = 1;
10839 DECL_CONTEXT (lab) = current_function_decl;
10840 return lab;
10841 }
10842
10843 /* Given a tree, try to return a useful variable name that we can use
10844 to prefix a temporary that is being assigned the value of the tree.
10845 I.E. given <temp> = &A, return A. */
10846
10847 const char *
10848 get_name (tree t)
10849 {
10850 tree stripped_decl;
10851
10852 stripped_decl = t;
10853 STRIP_NOPS (stripped_decl);
10854 if (DECL_P (stripped_decl) && DECL_NAME (stripped_decl))
10855 return IDENTIFIER_POINTER (DECL_NAME (stripped_decl));
10856 else
10857 {
10858 switch (TREE_CODE (stripped_decl))
10859 {
10860 case ADDR_EXPR:
10861 return get_name (TREE_OPERAND (stripped_decl, 0));
10862 default:
10863 return NULL;
10864 }
10865 }
10866 }
10867
10868 /* Return true if TYPE has a variable argument list. */
10869
10870 bool
10871 stdarg_p (const_tree fntype)
10872 {
10873 function_args_iterator args_iter;
10874 tree n = NULL_TREE, t;
10875
10876 if (!fntype)
10877 return false;
10878
10879 FOREACH_FUNCTION_ARGS(fntype, t, args_iter)
10880 {
10881 n = t;
10882 }
10883
10884 return n != NULL_TREE && n != void_type_node;
10885 }
10886
10887 /* Return true if TYPE has a prototype. */
10888
10889 bool
10890 prototype_p (tree fntype)
10891 {
10892 tree t;
10893
10894 gcc_assert (fntype != NULL_TREE);
10895
10896 t = TYPE_ARG_TYPES (fntype);
10897 return (t != NULL_TREE);
10898 }
10899
10900 /* If BLOCK is inlined from an __attribute__((__artificial__))
10901 routine, return pointer to location from where it has been
10902 called. */
10903 location_t *
10904 block_nonartificial_location (tree block)
10905 {
10906 location_t *ret = NULL;
10907
10908 while (block && TREE_CODE (block) == BLOCK
10909 && BLOCK_ABSTRACT_ORIGIN (block))
10910 {
10911 tree ao = BLOCK_ABSTRACT_ORIGIN (block);
10912
10913 while (TREE_CODE (ao) == BLOCK
10914 && BLOCK_ABSTRACT_ORIGIN (ao)
10915 && BLOCK_ABSTRACT_ORIGIN (ao) != ao)
10916 ao = BLOCK_ABSTRACT_ORIGIN (ao);
10917
10918 if (TREE_CODE (ao) == FUNCTION_DECL)
10919 {
10920 /* If AO is an artificial inline, point RET to the
10921 call site locus at which it has been inlined and continue
10922 the loop, in case AO's caller is also an artificial
10923 inline. */
10924 if (DECL_DECLARED_INLINE_P (ao)
10925 && lookup_attribute ("artificial", DECL_ATTRIBUTES (ao)))
10926 ret = &BLOCK_SOURCE_LOCATION (block);
10927 else
10928 break;
10929 }
10930 else if (TREE_CODE (ao) != BLOCK)
10931 break;
10932
10933 block = BLOCK_SUPERCONTEXT (block);
10934 }
10935 return ret;
10936 }
10937
10938
10939 /* If EXP is inlined from an __attribute__((__artificial__))
10940 function, return the location of the original call expression. */
10941
10942 location_t
10943 tree_nonartificial_location (tree exp)
10944 {
10945 location_t *loc = block_nonartificial_location (TREE_BLOCK (exp));
10946
10947 if (loc)
10948 return *loc;
10949 else
10950 return EXPR_LOCATION (exp);
10951 }
10952
10953
10954 /* These are the hash table functions for the hash table of OPTIMIZATION_NODEq
10955 nodes. */
10956
10957 /* Return the hash code code X, an OPTIMIZATION_NODE or TARGET_OPTION code. */
10958
10959 static hashval_t
10960 cl_option_hash_hash (const void *x)
10961 {
10962 const_tree const t = (const_tree) x;
10963 const char *p;
10964 size_t i;
10965 size_t len = 0;
10966 hashval_t hash = 0;
10967
10968 if (TREE_CODE (t) == OPTIMIZATION_NODE)
10969 {
10970 p = (const char *)TREE_OPTIMIZATION (t);
10971 len = sizeof (struct cl_optimization);
10972 }
10973
10974 else if (TREE_CODE (t) == TARGET_OPTION_NODE)
10975 {
10976 p = (const char *)TREE_TARGET_OPTION (t);
10977 len = sizeof (struct cl_target_option);
10978 }
10979
10980 else
10981 gcc_unreachable ();
10982
10983 /* assume most opt flags are just 0/1, some are 2-3, and a few might be
10984 something else. */
10985 for (i = 0; i < len; i++)
10986 if (p[i])
10987 hash = (hash << 4) ^ ((i << 2) | p[i]);
10988
10989 return hash;
10990 }
10991
10992 /* Return nonzero if the value represented by *X (an OPTIMIZATION or
10993 TARGET_OPTION tree node) is the same as that given by *Y, which is the
10994 same. */
10995
10996 static int
10997 cl_option_hash_eq (const void *x, const void *y)
10998 {
10999 const_tree const xt = (const_tree) x;
11000 const_tree const yt = (const_tree) y;
11001 const char *xp;
11002 const char *yp;
11003 size_t len;
11004
11005 if (TREE_CODE (xt) != TREE_CODE (yt))
11006 return 0;
11007
11008 if (TREE_CODE (xt) == OPTIMIZATION_NODE)
11009 {
11010 xp = (const char *)TREE_OPTIMIZATION (xt);
11011 yp = (const char *)TREE_OPTIMIZATION (yt);
11012 len = sizeof (struct cl_optimization);
11013 }
11014
11015 else if (TREE_CODE (xt) == TARGET_OPTION_NODE)
11016 {
11017 xp = (const char *)TREE_TARGET_OPTION (xt);
11018 yp = (const char *)TREE_TARGET_OPTION (yt);
11019 len = sizeof (struct cl_target_option);
11020 }
11021
11022 else
11023 gcc_unreachable ();
11024
11025 return (memcmp (xp, yp, len) == 0);
11026 }
11027
11028 /* Build an OPTIMIZATION_NODE based on the current options. */
11029
11030 tree
11031 build_optimization_node (void)
11032 {
11033 tree t;
11034 void **slot;
11035
11036 /* Use the cache of optimization nodes. */
11037
11038 cl_optimization_save (TREE_OPTIMIZATION (cl_optimization_node),
11039 &global_options);
11040
11041 slot = htab_find_slot (cl_option_hash_table, cl_optimization_node, INSERT);
11042 t = (tree) *slot;
11043 if (!t)
11044 {
11045 /* Insert this one into the hash table. */
11046 t = cl_optimization_node;
11047 *slot = t;
11048
11049 /* Make a new node for next time round. */
11050 cl_optimization_node = make_node (OPTIMIZATION_NODE);
11051 }
11052
11053 return t;
11054 }
11055
11056 /* Build a TARGET_OPTION_NODE based on the current options. */
11057
11058 tree
11059 build_target_option_node (void)
11060 {
11061 tree t;
11062 void **slot;
11063
11064 /* Use the cache of optimization nodes. */
11065
11066 cl_target_option_save (TREE_TARGET_OPTION (cl_target_option_node),
11067 &global_options);
11068
11069 slot = htab_find_slot (cl_option_hash_table, cl_target_option_node, INSERT);
11070 t = (tree) *slot;
11071 if (!t)
11072 {
11073 /* Insert this one into the hash table. */
11074 t = cl_target_option_node;
11075 *slot = t;
11076
11077 /* Make a new node for next time round. */
11078 cl_target_option_node = make_node (TARGET_OPTION_NODE);
11079 }
11080
11081 return t;
11082 }
11083
11084 /* Determine the "ultimate origin" of a block. The block may be an inlined
11085 instance of an inlined instance of a block which is local to an inline
11086 function, so we have to trace all of the way back through the origin chain
11087 to find out what sort of node actually served as the original seed for the
11088 given block. */
11089
11090 tree
11091 block_ultimate_origin (const_tree block)
11092 {
11093 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
11094
11095 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
11096 nodes in the function to point to themselves; ignore that if
11097 we're trying to output the abstract instance of this function. */
11098 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
11099 return NULL_TREE;
11100
11101 if (immediate_origin == NULL_TREE)
11102 return NULL_TREE;
11103 else
11104 {
11105 tree ret_val;
11106 tree lookahead = immediate_origin;
11107
11108 do
11109 {
11110 ret_val = lookahead;
11111 lookahead = (TREE_CODE (ret_val) == BLOCK
11112 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
11113 }
11114 while (lookahead != NULL && lookahead != ret_val);
11115
11116 /* The block's abstract origin chain may not be the *ultimate* origin of
11117 the block. It could lead to a DECL that has an abstract origin set.
11118 If so, we want that DECL's abstract origin (which is what DECL_ORIGIN
11119 will give us if it has one). Note that DECL's abstract origins are
11120 supposed to be the most distant ancestor (or so decl_ultimate_origin
11121 claims), so we don't need to loop following the DECL origins. */
11122 if (DECL_P (ret_val))
11123 return DECL_ORIGIN (ret_val);
11124
11125 return ret_val;
11126 }
11127 }
11128
11129 /* Return true if T1 and T2 are equivalent lists. */
11130
11131 bool
11132 list_equal_p (const_tree t1, const_tree t2)
11133 {
11134 for (; t1 && t2; t1 = TREE_CHAIN (t1) , t2 = TREE_CHAIN (t2))
11135 if (TREE_VALUE (t1) != TREE_VALUE (t2))
11136 return false;
11137 return !t1 && !t2;
11138 }
11139
11140 /* Return true iff conversion in EXP generates no instruction. Mark
11141 it inline so that we fully inline into the stripping functions even
11142 though we have two uses of this function. */
11143
11144 static inline bool
11145 tree_nop_conversion (const_tree exp)
11146 {
11147 tree outer_type, inner_type;
11148
11149 if (!CONVERT_EXPR_P (exp)
11150 && TREE_CODE (exp) != NON_LVALUE_EXPR)
11151 return false;
11152 if (TREE_OPERAND (exp, 0) == error_mark_node)
11153 return false;
11154
11155 outer_type = TREE_TYPE (exp);
11156 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
11157
11158 if (!inner_type)
11159 return false;
11160
11161 /* Use precision rather then machine mode when we can, which gives
11162 the correct answer even for submode (bit-field) types. */
11163 if ((INTEGRAL_TYPE_P (outer_type)
11164 || POINTER_TYPE_P (outer_type)
11165 || TREE_CODE (outer_type) == OFFSET_TYPE)
11166 && (INTEGRAL_TYPE_P (inner_type)
11167 || POINTER_TYPE_P (inner_type)
11168 || TREE_CODE (inner_type) == OFFSET_TYPE))
11169 return TYPE_PRECISION (outer_type) == TYPE_PRECISION (inner_type);
11170
11171 /* Otherwise fall back on comparing machine modes (e.g. for
11172 aggregate types, floats). */
11173 return TYPE_MODE (outer_type) == TYPE_MODE (inner_type);
11174 }
11175
11176 /* Return true iff conversion in EXP generates no instruction. Don't
11177 consider conversions changing the signedness. */
11178
11179 static bool
11180 tree_sign_nop_conversion (const_tree exp)
11181 {
11182 tree outer_type, inner_type;
11183
11184 if (!tree_nop_conversion (exp))
11185 return false;
11186
11187 outer_type = TREE_TYPE (exp);
11188 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
11189
11190 return (TYPE_UNSIGNED (outer_type) == TYPE_UNSIGNED (inner_type)
11191 && POINTER_TYPE_P (outer_type) == POINTER_TYPE_P (inner_type));
11192 }
11193
11194 /* Strip conversions from EXP according to tree_nop_conversion and
11195 return the resulting expression. */
11196
11197 tree
11198 tree_strip_nop_conversions (tree exp)
11199 {
11200 while (tree_nop_conversion (exp))
11201 exp = TREE_OPERAND (exp, 0);
11202 return exp;
11203 }
11204
11205 /* Strip conversions from EXP according to tree_sign_nop_conversion
11206 and return the resulting expression. */
11207
11208 tree
11209 tree_strip_sign_nop_conversions (tree exp)
11210 {
11211 while (tree_sign_nop_conversion (exp))
11212 exp = TREE_OPERAND (exp, 0);
11213 return exp;
11214 }
11215
11216 /* Avoid any floating point extensions from EXP. */
11217 tree
11218 strip_float_extensions (tree exp)
11219 {
11220 tree sub, expt, subt;
11221
11222 /* For floating point constant look up the narrowest type that can hold
11223 it properly and handle it like (type)(narrowest_type)constant.
11224 This way we can optimize for instance a=a*2.0 where "a" is float
11225 but 2.0 is double constant. */
11226 if (TREE_CODE (exp) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (TREE_TYPE (exp)))
11227 {
11228 REAL_VALUE_TYPE orig;
11229 tree type = NULL;
11230
11231 orig = TREE_REAL_CST (exp);
11232 if (TYPE_PRECISION (TREE_TYPE (exp)) > TYPE_PRECISION (float_type_node)
11233 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
11234 type = float_type_node;
11235 else if (TYPE_PRECISION (TREE_TYPE (exp))
11236 > TYPE_PRECISION (double_type_node)
11237 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
11238 type = double_type_node;
11239 if (type)
11240 return build_real (type, real_value_truncate (TYPE_MODE (type), orig));
11241 }
11242
11243 if (!CONVERT_EXPR_P (exp))
11244 return exp;
11245
11246 sub = TREE_OPERAND (exp, 0);
11247 subt = TREE_TYPE (sub);
11248 expt = TREE_TYPE (exp);
11249
11250 if (!FLOAT_TYPE_P (subt))
11251 return exp;
11252
11253 if (DECIMAL_FLOAT_TYPE_P (expt) != DECIMAL_FLOAT_TYPE_P (subt))
11254 return exp;
11255
11256 if (TYPE_PRECISION (subt) > TYPE_PRECISION (expt))
11257 return exp;
11258
11259 return strip_float_extensions (sub);
11260 }
11261
11262 /* Strip out all handled components that produce invariant
11263 offsets. */
11264
11265 const_tree
11266 strip_invariant_refs (const_tree op)
11267 {
11268 while (handled_component_p (op))
11269 {
11270 switch (TREE_CODE (op))
11271 {
11272 case ARRAY_REF:
11273 case ARRAY_RANGE_REF:
11274 if (!is_gimple_constant (TREE_OPERAND (op, 1))
11275 || TREE_OPERAND (op, 2) != NULL_TREE
11276 || TREE_OPERAND (op, 3) != NULL_TREE)
11277 return NULL;
11278 break;
11279
11280 case COMPONENT_REF:
11281 if (TREE_OPERAND (op, 2) != NULL_TREE)
11282 return NULL;
11283 break;
11284
11285 default:;
11286 }
11287 op = TREE_OPERAND (op, 0);
11288 }
11289
11290 return op;
11291 }
11292
11293 static GTY(()) tree gcc_eh_personality_decl;
11294
11295 /* Return the GCC personality function decl. */
11296
11297 tree
11298 lhd_gcc_personality (void)
11299 {
11300 if (!gcc_eh_personality_decl)
11301 gcc_eh_personality_decl = build_personality_function ("gcc");
11302 return gcc_eh_personality_decl;
11303 }
11304
11305 /* Try to find a base info of BINFO that would have its field decl at offset
11306 OFFSET within the BINFO type and which is of EXPECTED_TYPE. If it can be
11307 found, return, otherwise return NULL_TREE. */
11308
11309 tree
11310 get_binfo_at_offset (tree binfo, HOST_WIDE_INT offset, tree expected_type)
11311 {
11312 tree type = BINFO_TYPE (binfo);
11313
11314 while (true)
11315 {
11316 HOST_WIDE_INT pos, size;
11317 tree fld;
11318 int i;
11319
11320 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (expected_type))
11321 return binfo;
11322 if (offset < 0)
11323 return NULL_TREE;
11324
11325 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
11326 {
11327 if (TREE_CODE (fld) != FIELD_DECL)
11328 continue;
11329
11330 pos = int_bit_position (fld);
11331 size = tree_low_cst (DECL_SIZE (fld), 1);
11332 if (pos <= offset && (pos + size) > offset)
11333 break;
11334 }
11335 if (!fld || TREE_CODE (TREE_TYPE (fld)) != RECORD_TYPE)
11336 return NULL_TREE;
11337
11338 if (!DECL_ARTIFICIAL (fld))
11339 {
11340 binfo = TYPE_BINFO (TREE_TYPE (fld));
11341 if (!binfo)
11342 return NULL_TREE;
11343 }
11344 /* Offset 0 indicates the primary base, whose vtable contents are
11345 represented in the binfo for the derived class. */
11346 else if (offset != 0)
11347 {
11348 tree base_binfo, found_binfo = NULL_TREE;
11349 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
11350 if (TREE_TYPE (base_binfo) == TREE_TYPE (fld))
11351 {
11352 found_binfo = base_binfo;
11353 break;
11354 }
11355 if (!found_binfo)
11356 return NULL_TREE;
11357 binfo = found_binfo;
11358 }
11359
11360 type = TREE_TYPE (fld);
11361 offset -= pos;
11362 }
11363 }
11364
11365 /* Returns true if X is a typedef decl. */
11366
11367 bool
11368 is_typedef_decl (tree x)
11369 {
11370 return (x && TREE_CODE (x) == TYPE_DECL
11371 && DECL_ORIGINAL_TYPE (x) != NULL_TREE);
11372 }
11373
11374 /* Returns true iff TYPE is a type variant created for a typedef. */
11375
11376 bool
11377 typedef_variant_p (tree type)
11378 {
11379 return is_typedef_decl (TYPE_NAME (type));
11380 }
11381
11382 /* Warn about a use of an identifier which was marked deprecated. */
11383 void
11384 warn_deprecated_use (tree node, tree attr)
11385 {
11386 const char *msg;
11387
11388 if (node == 0 || !warn_deprecated_decl)
11389 return;
11390
11391 if (!attr)
11392 {
11393 if (DECL_P (node))
11394 attr = DECL_ATTRIBUTES (node);
11395 else if (TYPE_P (node))
11396 {
11397 tree decl = TYPE_STUB_DECL (node);
11398 if (decl)
11399 attr = lookup_attribute ("deprecated",
11400 TYPE_ATTRIBUTES (TREE_TYPE (decl)));
11401 }
11402 }
11403
11404 if (attr)
11405 attr = lookup_attribute ("deprecated", attr);
11406
11407 if (attr)
11408 msg = TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr)));
11409 else
11410 msg = NULL;
11411
11412 if (DECL_P (node))
11413 {
11414 expanded_location xloc = expand_location (DECL_SOURCE_LOCATION (node));
11415 if (msg)
11416 warning (OPT_Wdeprecated_declarations,
11417 "%qD is deprecated (declared at %s:%d): %s",
11418 node, xloc.file, xloc.line, msg);
11419 else
11420 warning (OPT_Wdeprecated_declarations,
11421 "%qD is deprecated (declared at %s:%d)",
11422 node, xloc.file, xloc.line);
11423 }
11424 else if (TYPE_P (node))
11425 {
11426 tree what = NULL_TREE;
11427 tree decl = TYPE_STUB_DECL (node);
11428
11429 if (TYPE_NAME (node))
11430 {
11431 if (TREE_CODE (TYPE_NAME (node)) == IDENTIFIER_NODE)
11432 what = TYPE_NAME (node);
11433 else if (TREE_CODE (TYPE_NAME (node)) == TYPE_DECL
11434 && DECL_NAME (TYPE_NAME (node)))
11435 what = DECL_NAME (TYPE_NAME (node));
11436 }
11437
11438 if (decl)
11439 {
11440 expanded_location xloc
11441 = expand_location (DECL_SOURCE_LOCATION (decl));
11442 if (what)
11443 {
11444 if (msg)
11445 warning (OPT_Wdeprecated_declarations,
11446 "%qE is deprecated (declared at %s:%d): %s",
11447 what, xloc.file, xloc.line, msg);
11448 else
11449 warning (OPT_Wdeprecated_declarations,
11450 "%qE is deprecated (declared at %s:%d)", what,
11451 xloc.file, xloc.line);
11452 }
11453 else
11454 {
11455 if (msg)
11456 warning (OPT_Wdeprecated_declarations,
11457 "type is deprecated (declared at %s:%d): %s",
11458 xloc.file, xloc.line, msg);
11459 else
11460 warning (OPT_Wdeprecated_declarations,
11461 "type is deprecated (declared at %s:%d)",
11462 xloc.file, xloc.line);
11463 }
11464 }
11465 else
11466 {
11467 if (what)
11468 {
11469 if (msg)
11470 warning (OPT_Wdeprecated_declarations, "%qE is deprecated: %s",
11471 what, msg);
11472 else
11473 warning (OPT_Wdeprecated_declarations, "%qE is deprecated", what);
11474 }
11475 else
11476 {
11477 if (msg)
11478 warning (OPT_Wdeprecated_declarations, "type is deprecated: %s",
11479 msg);
11480 else
11481 warning (OPT_Wdeprecated_declarations, "type is deprecated");
11482 }
11483 }
11484 }
11485 }
11486
11487 #include "gt-tree.h"