]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree.c
function.h: Flatten file.
[thirdparty/gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file contains the low level primitives for operating on tree nodes,
21 including allocation, list operations, interning of identifiers,
22 construction of data type nodes and statement nodes,
23 and construction of type conversion nodes. It also contains
24 tables index by tree code that describe how to take apart
25 nodes of that code.
26
27 It is intended to be language-independent, but occasionally
28 calls language-dependent routines defined (for C) in typecheck.c. */
29
30 #include "config.h"
31 #include "system.h"
32 #include "coretypes.h"
33 #include "tm.h"
34 #include "flags.h"
35 #include "tree.h"
36 #include "stor-layout.h"
37 #include "calls.h"
38 #include "attribs.h"
39 #include "varasm.h"
40 #include "tm_p.h"
41 #include "hashtab.h"
42 #include "hash-set.h"
43 #include "vec.h"
44 #include "machmode.h"
45 #include "hard-reg-set.h"
46 #include "input.h"
47 #include "function.h"
48 #include "obstack.h"
49 #include "toplev.h" /* get_random_seed */
50 #include "inchash.h"
51 #include "filenames.h"
52 #include "output.h"
53 #include "target.h"
54 #include "common/common-target.h"
55 #include "langhooks.h"
56 #include "tree-inline.h"
57 #include "tree-iterator.h"
58 #include "basic-block.h"
59 #include "bitmap.h"
60 #include "tree-ssa-alias.h"
61 #include "internal-fn.h"
62 #include "gimple-expr.h"
63 #include "is-a.h"
64 #include "gimple.h"
65 #include "gimple-iterator.h"
66 #include "gimplify.h"
67 #include "gimple-ssa.h"
68 #include "cgraph.h"
69 #include "tree-phinodes.h"
70 #include "stringpool.h"
71 #include "tree-ssanames.h"
72 #include "expr.h"
73 #include "tree-dfa.h"
74 #include "params.h"
75 #include "tree-pass.h"
76 #include "langhooks-def.h"
77 #include "diagnostic.h"
78 #include "tree-diagnostic.h"
79 #include "tree-pretty-print.h"
80 #include "except.h"
81 #include "debug.h"
82 #include "intl.h"
83 #include "wide-int.h"
84 #include "builtins.h"
85
86 /* Tree code classes. */
87
88 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
89 #define END_OF_BASE_TREE_CODES tcc_exceptional,
90
91 const enum tree_code_class tree_code_type[] = {
92 #include "all-tree.def"
93 };
94
95 #undef DEFTREECODE
96 #undef END_OF_BASE_TREE_CODES
97
98 /* Table indexed by tree code giving number of expression
99 operands beyond the fixed part of the node structure.
100 Not used for types or decls. */
101
102 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
103 #define END_OF_BASE_TREE_CODES 0,
104
105 const unsigned char tree_code_length[] = {
106 #include "all-tree.def"
107 };
108
109 #undef DEFTREECODE
110 #undef END_OF_BASE_TREE_CODES
111
112 /* Names of tree components.
113 Used for printing out the tree and error messages. */
114 #define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
115 #define END_OF_BASE_TREE_CODES "@dummy",
116
117 static const char *const tree_code_name[] = {
118 #include "all-tree.def"
119 };
120
121 #undef DEFTREECODE
122 #undef END_OF_BASE_TREE_CODES
123
124 /* Each tree code class has an associated string representation.
125 These must correspond to the tree_code_class entries. */
126
127 const char *const tree_code_class_strings[] =
128 {
129 "exceptional",
130 "constant",
131 "type",
132 "declaration",
133 "reference",
134 "comparison",
135 "unary",
136 "binary",
137 "statement",
138 "vl_exp",
139 "expression"
140 };
141
142 /* obstack.[ch] explicitly declined to prototype this. */
143 extern int _obstack_allocated_p (struct obstack *h, void *obj);
144
145 /* Statistics-gathering stuff. */
146
147 static int tree_code_counts[MAX_TREE_CODES];
148 int tree_node_counts[(int) all_kinds];
149 int tree_node_sizes[(int) all_kinds];
150
151 /* Keep in sync with tree.h:enum tree_node_kind. */
152 static const char * const tree_node_kind_names[] = {
153 "decls",
154 "types",
155 "blocks",
156 "stmts",
157 "refs",
158 "exprs",
159 "constants",
160 "identifiers",
161 "vecs",
162 "binfos",
163 "ssa names",
164 "constructors",
165 "random kinds",
166 "lang_decl kinds",
167 "lang_type kinds",
168 "omp clauses",
169 };
170
171 /* Unique id for next decl created. */
172 static GTY(()) int next_decl_uid;
173 /* Unique id for next type created. */
174 static GTY(()) int next_type_uid = 1;
175 /* Unique id for next debug decl created. Use negative numbers,
176 to catch erroneous uses. */
177 static GTY(()) int next_debug_decl_uid;
178
179 /* Since we cannot rehash a type after it is in the table, we have to
180 keep the hash code. */
181
182 struct GTY(()) type_hash {
183 unsigned long hash;
184 tree type;
185 };
186
187 /* Initial size of the hash table (rounded to next prime). */
188 #define TYPE_HASH_INITIAL_SIZE 1000
189
190 /* Now here is the hash table. When recording a type, it is added to
191 the slot whose index is the hash code. Note that the hash table is
192 used for several kinds of types (function types, array types and
193 array index range types, for now). While all these live in the
194 same table, they are completely independent, and the hash code is
195 computed differently for each of these. */
196
197 static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash)))
198 htab_t type_hash_table;
199
200 /* Hash table and temporary node for larger integer const values. */
201 static GTY (()) tree int_cst_node;
202 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
203 htab_t int_cst_hash_table;
204
205 /* Hash table for optimization flags and target option flags. Use the same
206 hash table for both sets of options. Nodes for building the current
207 optimization and target option nodes. The assumption is most of the time
208 the options created will already be in the hash table, so we avoid
209 allocating and freeing up a node repeatably. */
210 static GTY (()) tree cl_optimization_node;
211 static GTY (()) tree cl_target_option_node;
212 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
213 htab_t cl_option_hash_table;
214
215 /* General tree->tree mapping structure for use in hash tables. */
216
217
218 static GTY ((if_marked ("tree_decl_map_marked_p"), param_is (struct tree_decl_map)))
219 htab_t debug_expr_for_decl;
220
221 static GTY ((if_marked ("tree_decl_map_marked_p"), param_is (struct tree_decl_map)))
222 htab_t value_expr_for_decl;
223
224 static GTY ((if_marked ("tree_vec_map_marked_p"), param_is (struct tree_vec_map)))
225 htab_t debug_args_for_decl;
226
227 static void set_type_quals (tree, int);
228 static int type_hash_eq (const void *, const void *);
229 static hashval_t type_hash_hash (const void *);
230 static hashval_t int_cst_hash_hash (const void *);
231 static int int_cst_hash_eq (const void *, const void *);
232 static hashval_t cl_option_hash_hash (const void *);
233 static int cl_option_hash_eq (const void *, const void *);
234 static void print_type_hash_statistics (void);
235 static void print_debug_expr_statistics (void);
236 static void print_value_expr_statistics (void);
237 static int type_hash_marked_p (const void *);
238 static void type_hash_list (const_tree, inchash::hash &);
239 static void attribute_hash_list (const_tree, inchash::hash &);
240
241 tree global_trees[TI_MAX];
242 tree integer_types[itk_none];
243
244 bool int_n_enabled_p[NUM_INT_N_ENTS];
245 struct int_n_trees_t int_n_trees [NUM_INT_N_ENTS];
246
247 unsigned char tree_contains_struct[MAX_TREE_CODES][64];
248
249 /* Number of operands for each OpenMP clause. */
250 unsigned const char omp_clause_num_ops[] =
251 {
252 0, /* OMP_CLAUSE_ERROR */
253 1, /* OMP_CLAUSE_PRIVATE */
254 1, /* OMP_CLAUSE_SHARED */
255 1, /* OMP_CLAUSE_FIRSTPRIVATE */
256 2, /* OMP_CLAUSE_LASTPRIVATE */
257 4, /* OMP_CLAUSE_REDUCTION */
258 1, /* OMP_CLAUSE_COPYIN */
259 1, /* OMP_CLAUSE_COPYPRIVATE */
260 3, /* OMP_CLAUSE_LINEAR */
261 2, /* OMP_CLAUSE_ALIGNED */
262 1, /* OMP_CLAUSE_DEPEND */
263 1, /* OMP_CLAUSE_UNIFORM */
264 2, /* OMP_CLAUSE_FROM */
265 2, /* OMP_CLAUSE_TO */
266 2, /* OMP_CLAUSE_MAP */
267 1, /* OMP_CLAUSE__LOOPTEMP_ */
268 1, /* OMP_CLAUSE_IF */
269 1, /* OMP_CLAUSE_NUM_THREADS */
270 1, /* OMP_CLAUSE_SCHEDULE */
271 0, /* OMP_CLAUSE_NOWAIT */
272 0, /* OMP_CLAUSE_ORDERED */
273 0, /* OMP_CLAUSE_DEFAULT */
274 3, /* OMP_CLAUSE_COLLAPSE */
275 0, /* OMP_CLAUSE_UNTIED */
276 1, /* OMP_CLAUSE_FINAL */
277 0, /* OMP_CLAUSE_MERGEABLE */
278 1, /* OMP_CLAUSE_DEVICE */
279 1, /* OMP_CLAUSE_DIST_SCHEDULE */
280 0, /* OMP_CLAUSE_INBRANCH */
281 0, /* OMP_CLAUSE_NOTINBRANCH */
282 1, /* OMP_CLAUSE_NUM_TEAMS */
283 1, /* OMP_CLAUSE_THREAD_LIMIT */
284 0, /* OMP_CLAUSE_PROC_BIND */
285 1, /* OMP_CLAUSE_SAFELEN */
286 1, /* OMP_CLAUSE_SIMDLEN */
287 0, /* OMP_CLAUSE_FOR */
288 0, /* OMP_CLAUSE_PARALLEL */
289 0, /* OMP_CLAUSE_SECTIONS */
290 0, /* OMP_CLAUSE_TASKGROUP */
291 1, /* OMP_CLAUSE__SIMDUID_ */
292 1, /* OMP_CLAUSE__CILK_FOR_COUNT_ */
293 };
294
295 const char * const omp_clause_code_name[] =
296 {
297 "error_clause",
298 "private",
299 "shared",
300 "firstprivate",
301 "lastprivate",
302 "reduction",
303 "copyin",
304 "copyprivate",
305 "linear",
306 "aligned",
307 "depend",
308 "uniform",
309 "from",
310 "to",
311 "map",
312 "_looptemp_",
313 "if",
314 "num_threads",
315 "schedule",
316 "nowait",
317 "ordered",
318 "default",
319 "collapse",
320 "untied",
321 "final",
322 "mergeable",
323 "device",
324 "dist_schedule",
325 "inbranch",
326 "notinbranch",
327 "num_teams",
328 "thread_limit",
329 "proc_bind",
330 "safelen",
331 "simdlen",
332 "for",
333 "parallel",
334 "sections",
335 "taskgroup",
336 "_simduid_",
337 "_Cilk_for_count_"
338 };
339
340
341 /* Return the tree node structure used by tree code CODE. */
342
343 static inline enum tree_node_structure_enum
344 tree_node_structure_for_code (enum tree_code code)
345 {
346 switch (TREE_CODE_CLASS (code))
347 {
348 case tcc_declaration:
349 {
350 switch (code)
351 {
352 case FIELD_DECL:
353 return TS_FIELD_DECL;
354 case PARM_DECL:
355 return TS_PARM_DECL;
356 case VAR_DECL:
357 return TS_VAR_DECL;
358 case LABEL_DECL:
359 return TS_LABEL_DECL;
360 case RESULT_DECL:
361 return TS_RESULT_DECL;
362 case DEBUG_EXPR_DECL:
363 return TS_DECL_WRTL;
364 case CONST_DECL:
365 return TS_CONST_DECL;
366 case TYPE_DECL:
367 return TS_TYPE_DECL;
368 case FUNCTION_DECL:
369 return TS_FUNCTION_DECL;
370 case TRANSLATION_UNIT_DECL:
371 return TS_TRANSLATION_UNIT_DECL;
372 default:
373 return TS_DECL_NON_COMMON;
374 }
375 }
376 case tcc_type:
377 return TS_TYPE_NON_COMMON;
378 case tcc_reference:
379 case tcc_comparison:
380 case tcc_unary:
381 case tcc_binary:
382 case tcc_expression:
383 case tcc_statement:
384 case tcc_vl_exp:
385 return TS_EXP;
386 default: /* tcc_constant and tcc_exceptional */
387 break;
388 }
389 switch (code)
390 {
391 /* tcc_constant cases. */
392 case VOID_CST: return TS_TYPED;
393 case INTEGER_CST: return TS_INT_CST;
394 case REAL_CST: return TS_REAL_CST;
395 case FIXED_CST: return TS_FIXED_CST;
396 case COMPLEX_CST: return TS_COMPLEX;
397 case VECTOR_CST: return TS_VECTOR;
398 case STRING_CST: return TS_STRING;
399 /* tcc_exceptional cases. */
400 case ERROR_MARK: return TS_COMMON;
401 case IDENTIFIER_NODE: return TS_IDENTIFIER;
402 case TREE_LIST: return TS_LIST;
403 case TREE_VEC: return TS_VEC;
404 case SSA_NAME: return TS_SSA_NAME;
405 case PLACEHOLDER_EXPR: return TS_COMMON;
406 case STATEMENT_LIST: return TS_STATEMENT_LIST;
407 case BLOCK: return TS_BLOCK;
408 case CONSTRUCTOR: return TS_CONSTRUCTOR;
409 case TREE_BINFO: return TS_BINFO;
410 case OMP_CLAUSE: return TS_OMP_CLAUSE;
411 case OPTIMIZATION_NODE: return TS_OPTIMIZATION;
412 case TARGET_OPTION_NODE: return TS_TARGET_OPTION;
413
414 default:
415 gcc_unreachable ();
416 }
417 }
418
419
420 /* Initialize tree_contains_struct to describe the hierarchy of tree
421 nodes. */
422
423 static void
424 initialize_tree_contains_struct (void)
425 {
426 unsigned i;
427
428 for (i = ERROR_MARK; i < LAST_AND_UNUSED_TREE_CODE; i++)
429 {
430 enum tree_code code;
431 enum tree_node_structure_enum ts_code;
432
433 code = (enum tree_code) i;
434 ts_code = tree_node_structure_for_code (code);
435
436 /* Mark the TS structure itself. */
437 tree_contains_struct[code][ts_code] = 1;
438
439 /* Mark all the structures that TS is derived from. */
440 switch (ts_code)
441 {
442 case TS_TYPED:
443 case TS_BLOCK:
444 MARK_TS_BASE (code);
445 break;
446
447 case TS_COMMON:
448 case TS_INT_CST:
449 case TS_REAL_CST:
450 case TS_FIXED_CST:
451 case TS_VECTOR:
452 case TS_STRING:
453 case TS_COMPLEX:
454 case TS_SSA_NAME:
455 case TS_CONSTRUCTOR:
456 case TS_EXP:
457 case TS_STATEMENT_LIST:
458 MARK_TS_TYPED (code);
459 break;
460
461 case TS_IDENTIFIER:
462 case TS_DECL_MINIMAL:
463 case TS_TYPE_COMMON:
464 case TS_LIST:
465 case TS_VEC:
466 case TS_BINFO:
467 case TS_OMP_CLAUSE:
468 case TS_OPTIMIZATION:
469 case TS_TARGET_OPTION:
470 MARK_TS_COMMON (code);
471 break;
472
473 case TS_TYPE_WITH_LANG_SPECIFIC:
474 MARK_TS_TYPE_COMMON (code);
475 break;
476
477 case TS_TYPE_NON_COMMON:
478 MARK_TS_TYPE_WITH_LANG_SPECIFIC (code);
479 break;
480
481 case TS_DECL_COMMON:
482 MARK_TS_DECL_MINIMAL (code);
483 break;
484
485 case TS_DECL_WRTL:
486 case TS_CONST_DECL:
487 MARK_TS_DECL_COMMON (code);
488 break;
489
490 case TS_DECL_NON_COMMON:
491 MARK_TS_DECL_WITH_VIS (code);
492 break;
493
494 case TS_DECL_WITH_VIS:
495 case TS_PARM_DECL:
496 case TS_LABEL_DECL:
497 case TS_RESULT_DECL:
498 MARK_TS_DECL_WRTL (code);
499 break;
500
501 case TS_FIELD_DECL:
502 MARK_TS_DECL_COMMON (code);
503 break;
504
505 case TS_VAR_DECL:
506 MARK_TS_DECL_WITH_VIS (code);
507 break;
508
509 case TS_TYPE_DECL:
510 case TS_FUNCTION_DECL:
511 MARK_TS_DECL_NON_COMMON (code);
512 break;
513
514 case TS_TRANSLATION_UNIT_DECL:
515 MARK_TS_DECL_COMMON (code);
516 break;
517
518 default:
519 gcc_unreachable ();
520 }
521 }
522
523 /* Basic consistency checks for attributes used in fold. */
524 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_NON_COMMON]);
525 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_NON_COMMON]);
526 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_COMMON]);
527 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_COMMON]);
528 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_COMMON]);
529 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_COMMON]);
530 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_COMMON]);
531 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_COMMON]);
532 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_COMMON]);
533 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_COMMON]);
534 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_COMMON]);
535 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WRTL]);
536 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_WRTL]);
537 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_WRTL]);
538 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WRTL]);
539 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_WRTL]);
540 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_MINIMAL]);
541 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_MINIMAL]);
542 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_MINIMAL]);
543 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_MINIMAL]);
544 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_MINIMAL]);
545 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_MINIMAL]);
546 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_MINIMAL]);
547 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_MINIMAL]);
548 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_MINIMAL]);
549 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WITH_VIS]);
550 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WITH_VIS]);
551 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_WITH_VIS]);
552 gcc_assert (tree_contains_struct[VAR_DECL][TS_VAR_DECL]);
553 gcc_assert (tree_contains_struct[FIELD_DECL][TS_FIELD_DECL]);
554 gcc_assert (tree_contains_struct[PARM_DECL][TS_PARM_DECL]);
555 gcc_assert (tree_contains_struct[LABEL_DECL][TS_LABEL_DECL]);
556 gcc_assert (tree_contains_struct[RESULT_DECL][TS_RESULT_DECL]);
557 gcc_assert (tree_contains_struct[CONST_DECL][TS_CONST_DECL]);
558 gcc_assert (tree_contains_struct[TYPE_DECL][TS_TYPE_DECL]);
559 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_FUNCTION_DECL]);
560 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_MINIMAL]);
561 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_COMMON]);
562 gcc_assert (tree_contains_struct[NAMELIST_DECL][TS_DECL_MINIMAL]);
563 gcc_assert (tree_contains_struct[NAMELIST_DECL][TS_DECL_COMMON]);
564 }
565
566
567 /* Init tree.c. */
568
569 void
570 init_ttree (void)
571 {
572 /* Initialize the hash table of types. */
573 type_hash_table = htab_create_ggc (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
574 type_hash_eq, 0);
575
576 debug_expr_for_decl = htab_create_ggc (512, tree_decl_map_hash,
577 tree_decl_map_eq, 0);
578
579 value_expr_for_decl = htab_create_ggc (512, tree_decl_map_hash,
580 tree_decl_map_eq, 0);
581
582 int_cst_hash_table = htab_create_ggc (1024, int_cst_hash_hash,
583 int_cst_hash_eq, NULL);
584
585 int_cst_node = make_int_cst (1, 1);
586
587 cl_option_hash_table = htab_create_ggc (64, cl_option_hash_hash,
588 cl_option_hash_eq, NULL);
589
590 cl_optimization_node = make_node (OPTIMIZATION_NODE);
591 cl_target_option_node = make_node (TARGET_OPTION_NODE);
592
593 /* Initialize the tree_contains_struct array. */
594 initialize_tree_contains_struct ();
595 lang_hooks.init_ts ();
596 }
597
598 \f
599 /* The name of the object as the assembler will see it (but before any
600 translations made by ASM_OUTPUT_LABELREF). Often this is the same
601 as DECL_NAME. It is an IDENTIFIER_NODE. */
602 tree
603 decl_assembler_name (tree decl)
604 {
605 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
606 lang_hooks.set_decl_assembler_name (decl);
607 return DECL_WITH_VIS_CHECK (decl)->decl_with_vis.assembler_name;
608 }
609
610 /* When the target supports COMDAT groups, this indicates which group the
611 DECL is associated with. This can be either an IDENTIFIER_NODE or a
612 decl, in which case its DECL_ASSEMBLER_NAME identifies the group. */
613 tree
614 decl_comdat_group (const_tree node)
615 {
616 struct symtab_node *snode = symtab_node::get (node);
617 if (!snode)
618 return NULL;
619 return snode->get_comdat_group ();
620 }
621
622 /* Likewise, but make sure it's been reduced to an IDENTIFIER_NODE. */
623 tree
624 decl_comdat_group_id (const_tree node)
625 {
626 struct symtab_node *snode = symtab_node::get (node);
627 if (!snode)
628 return NULL;
629 return snode->get_comdat_group_id ();
630 }
631
632 /* When the target supports named section, return its name as IDENTIFIER_NODE
633 or NULL if it is in no section. */
634 const char *
635 decl_section_name (const_tree node)
636 {
637 struct symtab_node *snode = symtab_node::get (node);
638 if (!snode)
639 return NULL;
640 return snode->get_section ();
641 }
642
643 /* Set section section name of NODE to VALUE (that is expected to
644 be identifier node) */
645 void
646 set_decl_section_name (tree node, const char *value)
647 {
648 struct symtab_node *snode;
649
650 if (value == NULL)
651 {
652 snode = symtab_node::get (node);
653 if (!snode)
654 return;
655 }
656 else if (TREE_CODE (node) == VAR_DECL)
657 snode = varpool_node::get_create (node);
658 else
659 snode = cgraph_node::get_create (node);
660 snode->set_section (value);
661 }
662
663 /* Return TLS model of a variable NODE. */
664 enum tls_model
665 decl_tls_model (const_tree node)
666 {
667 struct varpool_node *snode = varpool_node::get (node);
668 if (!snode)
669 return TLS_MODEL_NONE;
670 return snode->tls_model;
671 }
672
673 /* Set TLS model of variable NODE to MODEL. */
674 void
675 set_decl_tls_model (tree node, enum tls_model model)
676 {
677 struct varpool_node *vnode;
678
679 if (model == TLS_MODEL_NONE)
680 {
681 vnode = varpool_node::get (node);
682 if (!vnode)
683 return;
684 }
685 else
686 vnode = varpool_node::get_create (node);
687 vnode->tls_model = model;
688 }
689
690 /* Compute the number of bytes occupied by a tree with code CODE.
691 This function cannot be used for nodes that have variable sizes,
692 including TREE_VEC, INTEGER_CST, STRING_CST, and CALL_EXPR. */
693 size_t
694 tree_code_size (enum tree_code code)
695 {
696 switch (TREE_CODE_CLASS (code))
697 {
698 case tcc_declaration: /* A decl node */
699 {
700 switch (code)
701 {
702 case FIELD_DECL:
703 return sizeof (struct tree_field_decl);
704 case PARM_DECL:
705 return sizeof (struct tree_parm_decl);
706 case VAR_DECL:
707 return sizeof (struct tree_var_decl);
708 case LABEL_DECL:
709 return sizeof (struct tree_label_decl);
710 case RESULT_DECL:
711 return sizeof (struct tree_result_decl);
712 case CONST_DECL:
713 return sizeof (struct tree_const_decl);
714 case TYPE_DECL:
715 return sizeof (struct tree_type_decl);
716 case FUNCTION_DECL:
717 return sizeof (struct tree_function_decl);
718 case DEBUG_EXPR_DECL:
719 return sizeof (struct tree_decl_with_rtl);
720 case TRANSLATION_UNIT_DECL:
721 return sizeof (struct tree_translation_unit_decl);
722 case NAMESPACE_DECL:
723 case IMPORTED_DECL:
724 case NAMELIST_DECL:
725 return sizeof (struct tree_decl_non_common);
726 default:
727 return lang_hooks.tree_size (code);
728 }
729 }
730
731 case tcc_type: /* a type node */
732 return sizeof (struct tree_type_non_common);
733
734 case tcc_reference: /* a reference */
735 case tcc_expression: /* an expression */
736 case tcc_statement: /* an expression with side effects */
737 case tcc_comparison: /* a comparison expression */
738 case tcc_unary: /* a unary arithmetic expression */
739 case tcc_binary: /* a binary arithmetic expression */
740 return (sizeof (struct tree_exp)
741 + (TREE_CODE_LENGTH (code) - 1) * sizeof (tree));
742
743 case tcc_constant: /* a constant */
744 switch (code)
745 {
746 case VOID_CST: return sizeof (struct tree_typed);
747 case INTEGER_CST: gcc_unreachable ();
748 case REAL_CST: return sizeof (struct tree_real_cst);
749 case FIXED_CST: return sizeof (struct tree_fixed_cst);
750 case COMPLEX_CST: return sizeof (struct tree_complex);
751 case VECTOR_CST: return sizeof (struct tree_vector);
752 case STRING_CST: gcc_unreachable ();
753 default:
754 return lang_hooks.tree_size (code);
755 }
756
757 case tcc_exceptional: /* something random, like an identifier. */
758 switch (code)
759 {
760 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
761 case TREE_LIST: return sizeof (struct tree_list);
762
763 case ERROR_MARK:
764 case PLACEHOLDER_EXPR: return sizeof (struct tree_common);
765
766 case TREE_VEC:
767 case OMP_CLAUSE: gcc_unreachable ();
768
769 case SSA_NAME: return sizeof (struct tree_ssa_name);
770
771 case STATEMENT_LIST: return sizeof (struct tree_statement_list);
772 case BLOCK: return sizeof (struct tree_block);
773 case CONSTRUCTOR: return sizeof (struct tree_constructor);
774 case OPTIMIZATION_NODE: return sizeof (struct tree_optimization_option);
775 case TARGET_OPTION_NODE: return sizeof (struct tree_target_option);
776
777 default:
778 return lang_hooks.tree_size (code);
779 }
780
781 default:
782 gcc_unreachable ();
783 }
784 }
785
786 /* Compute the number of bytes occupied by NODE. This routine only
787 looks at TREE_CODE, except for those nodes that have variable sizes. */
788 size_t
789 tree_size (const_tree node)
790 {
791 const enum tree_code code = TREE_CODE (node);
792 switch (code)
793 {
794 case INTEGER_CST:
795 return (sizeof (struct tree_int_cst)
796 + (TREE_INT_CST_EXT_NUNITS (node) - 1) * sizeof (HOST_WIDE_INT));
797
798 case TREE_BINFO:
799 return (offsetof (struct tree_binfo, base_binfos)
800 + vec<tree, va_gc>
801 ::embedded_size (BINFO_N_BASE_BINFOS (node)));
802
803 case TREE_VEC:
804 return (sizeof (struct tree_vec)
805 + (TREE_VEC_LENGTH (node) - 1) * sizeof (tree));
806
807 case VECTOR_CST:
808 return (sizeof (struct tree_vector)
809 + (TYPE_VECTOR_SUBPARTS (TREE_TYPE (node)) - 1) * sizeof (tree));
810
811 case STRING_CST:
812 return TREE_STRING_LENGTH (node) + offsetof (struct tree_string, str) + 1;
813
814 case OMP_CLAUSE:
815 return (sizeof (struct tree_omp_clause)
816 + (omp_clause_num_ops[OMP_CLAUSE_CODE (node)] - 1)
817 * sizeof (tree));
818
819 default:
820 if (TREE_CODE_CLASS (code) == tcc_vl_exp)
821 return (sizeof (struct tree_exp)
822 + (VL_EXP_OPERAND_LENGTH (node) - 1) * sizeof (tree));
823 else
824 return tree_code_size (code);
825 }
826 }
827
828 /* Record interesting allocation statistics for a tree node with CODE
829 and LENGTH. */
830
831 static void
832 record_node_allocation_statistics (enum tree_code code ATTRIBUTE_UNUSED,
833 size_t length ATTRIBUTE_UNUSED)
834 {
835 enum tree_code_class type = TREE_CODE_CLASS (code);
836 tree_node_kind kind;
837
838 if (!GATHER_STATISTICS)
839 return;
840
841 switch (type)
842 {
843 case tcc_declaration: /* A decl node */
844 kind = d_kind;
845 break;
846
847 case tcc_type: /* a type node */
848 kind = t_kind;
849 break;
850
851 case tcc_statement: /* an expression with side effects */
852 kind = s_kind;
853 break;
854
855 case tcc_reference: /* a reference */
856 kind = r_kind;
857 break;
858
859 case tcc_expression: /* an expression */
860 case tcc_comparison: /* a comparison expression */
861 case tcc_unary: /* a unary arithmetic expression */
862 case tcc_binary: /* a binary arithmetic expression */
863 kind = e_kind;
864 break;
865
866 case tcc_constant: /* a constant */
867 kind = c_kind;
868 break;
869
870 case tcc_exceptional: /* something random, like an identifier. */
871 switch (code)
872 {
873 case IDENTIFIER_NODE:
874 kind = id_kind;
875 break;
876
877 case TREE_VEC:
878 kind = vec_kind;
879 break;
880
881 case TREE_BINFO:
882 kind = binfo_kind;
883 break;
884
885 case SSA_NAME:
886 kind = ssa_name_kind;
887 break;
888
889 case BLOCK:
890 kind = b_kind;
891 break;
892
893 case CONSTRUCTOR:
894 kind = constr_kind;
895 break;
896
897 case OMP_CLAUSE:
898 kind = omp_clause_kind;
899 break;
900
901 default:
902 kind = x_kind;
903 break;
904 }
905 break;
906
907 case tcc_vl_exp:
908 kind = e_kind;
909 break;
910
911 default:
912 gcc_unreachable ();
913 }
914
915 tree_code_counts[(int) code]++;
916 tree_node_counts[(int) kind]++;
917 tree_node_sizes[(int) kind] += length;
918 }
919
920 /* Allocate and return a new UID from the DECL_UID namespace. */
921
922 int
923 allocate_decl_uid (void)
924 {
925 return next_decl_uid++;
926 }
927
928 /* Return a newly allocated node of code CODE. For decl and type
929 nodes, some other fields are initialized. The rest of the node is
930 initialized to zero. This function cannot be used for TREE_VEC,
931 INTEGER_CST or OMP_CLAUSE nodes, which is enforced by asserts in
932 tree_code_size.
933
934 Achoo! I got a code in the node. */
935
936 tree
937 make_node_stat (enum tree_code code MEM_STAT_DECL)
938 {
939 tree t;
940 enum tree_code_class type = TREE_CODE_CLASS (code);
941 size_t length = tree_code_size (code);
942
943 record_node_allocation_statistics (code, length);
944
945 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
946 TREE_SET_CODE (t, code);
947
948 switch (type)
949 {
950 case tcc_statement:
951 TREE_SIDE_EFFECTS (t) = 1;
952 break;
953
954 case tcc_declaration:
955 if (CODE_CONTAINS_STRUCT (code, TS_DECL_COMMON))
956 {
957 if (code == FUNCTION_DECL)
958 {
959 DECL_ALIGN (t) = FUNCTION_BOUNDARY;
960 DECL_MODE (t) = FUNCTION_MODE;
961 }
962 else
963 DECL_ALIGN (t) = 1;
964 }
965 DECL_SOURCE_LOCATION (t) = input_location;
966 if (TREE_CODE (t) == DEBUG_EXPR_DECL)
967 DECL_UID (t) = --next_debug_decl_uid;
968 else
969 {
970 DECL_UID (t) = allocate_decl_uid ();
971 SET_DECL_PT_UID (t, -1);
972 }
973 if (TREE_CODE (t) == LABEL_DECL)
974 LABEL_DECL_UID (t) = -1;
975
976 break;
977
978 case tcc_type:
979 TYPE_UID (t) = next_type_uid++;
980 TYPE_ALIGN (t) = BITS_PER_UNIT;
981 TYPE_USER_ALIGN (t) = 0;
982 TYPE_MAIN_VARIANT (t) = t;
983 TYPE_CANONICAL (t) = t;
984
985 /* Default to no attributes for type, but let target change that. */
986 TYPE_ATTRIBUTES (t) = NULL_TREE;
987 targetm.set_default_type_attributes (t);
988
989 /* We have not yet computed the alias set for this type. */
990 TYPE_ALIAS_SET (t) = -1;
991 break;
992
993 case tcc_constant:
994 TREE_CONSTANT (t) = 1;
995 break;
996
997 case tcc_expression:
998 switch (code)
999 {
1000 case INIT_EXPR:
1001 case MODIFY_EXPR:
1002 case VA_ARG_EXPR:
1003 case PREDECREMENT_EXPR:
1004 case PREINCREMENT_EXPR:
1005 case POSTDECREMENT_EXPR:
1006 case POSTINCREMENT_EXPR:
1007 /* All of these have side-effects, no matter what their
1008 operands are. */
1009 TREE_SIDE_EFFECTS (t) = 1;
1010 break;
1011
1012 default:
1013 break;
1014 }
1015 break;
1016
1017 default:
1018 /* Other classes need no special treatment. */
1019 break;
1020 }
1021
1022 return t;
1023 }
1024 \f
1025 /* Return a new node with the same contents as NODE except that its
1026 TREE_CHAIN, if it has one, is zero and it has a fresh uid. */
1027
1028 tree
1029 copy_node_stat (tree node MEM_STAT_DECL)
1030 {
1031 tree t;
1032 enum tree_code code = TREE_CODE (node);
1033 size_t length;
1034
1035 gcc_assert (code != STATEMENT_LIST);
1036
1037 length = tree_size (node);
1038 record_node_allocation_statistics (code, length);
1039 t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
1040 memcpy (t, node, length);
1041
1042 if (CODE_CONTAINS_STRUCT (code, TS_COMMON))
1043 TREE_CHAIN (t) = 0;
1044 TREE_ASM_WRITTEN (t) = 0;
1045 TREE_VISITED (t) = 0;
1046
1047 if (TREE_CODE_CLASS (code) == tcc_declaration)
1048 {
1049 if (code == DEBUG_EXPR_DECL)
1050 DECL_UID (t) = --next_debug_decl_uid;
1051 else
1052 {
1053 DECL_UID (t) = allocate_decl_uid ();
1054 if (DECL_PT_UID_SET_P (node))
1055 SET_DECL_PT_UID (t, DECL_PT_UID (node));
1056 }
1057 if ((TREE_CODE (node) == PARM_DECL || TREE_CODE (node) == VAR_DECL)
1058 && DECL_HAS_VALUE_EXPR_P (node))
1059 {
1060 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (node));
1061 DECL_HAS_VALUE_EXPR_P (t) = 1;
1062 }
1063 /* DECL_DEBUG_EXPR is copied explicitely by callers. */
1064 if (TREE_CODE (node) == VAR_DECL)
1065 {
1066 DECL_HAS_DEBUG_EXPR_P (t) = 0;
1067 t->decl_with_vis.symtab_node = NULL;
1068 }
1069 if (TREE_CODE (node) == VAR_DECL && DECL_HAS_INIT_PRIORITY_P (node))
1070 {
1071 SET_DECL_INIT_PRIORITY (t, DECL_INIT_PRIORITY (node));
1072 DECL_HAS_INIT_PRIORITY_P (t) = 1;
1073 }
1074 if (TREE_CODE (node) == FUNCTION_DECL)
1075 {
1076 DECL_STRUCT_FUNCTION (t) = NULL;
1077 t->decl_with_vis.symtab_node = NULL;
1078 }
1079 }
1080 else if (TREE_CODE_CLASS (code) == tcc_type)
1081 {
1082 TYPE_UID (t) = next_type_uid++;
1083 /* The following is so that the debug code for
1084 the copy is different from the original type.
1085 The two statements usually duplicate each other
1086 (because they clear fields of the same union),
1087 but the optimizer should catch that. */
1088 TYPE_SYMTAB_POINTER (t) = 0;
1089 TYPE_SYMTAB_ADDRESS (t) = 0;
1090
1091 /* Do not copy the values cache. */
1092 if (TYPE_CACHED_VALUES_P (t))
1093 {
1094 TYPE_CACHED_VALUES_P (t) = 0;
1095 TYPE_CACHED_VALUES (t) = NULL_TREE;
1096 }
1097 }
1098
1099 return t;
1100 }
1101
1102 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
1103 For example, this can copy a list made of TREE_LIST nodes. */
1104
1105 tree
1106 copy_list (tree list)
1107 {
1108 tree head;
1109 tree prev, next;
1110
1111 if (list == 0)
1112 return 0;
1113
1114 head = prev = copy_node (list);
1115 next = TREE_CHAIN (list);
1116 while (next)
1117 {
1118 TREE_CHAIN (prev) = copy_node (next);
1119 prev = TREE_CHAIN (prev);
1120 next = TREE_CHAIN (next);
1121 }
1122 return head;
1123 }
1124
1125 \f
1126 /* Return the value that TREE_INT_CST_EXT_NUNITS should have for an
1127 INTEGER_CST with value CST and type TYPE. */
1128
1129 static unsigned int
1130 get_int_cst_ext_nunits (tree type, const wide_int &cst)
1131 {
1132 gcc_checking_assert (cst.get_precision () == TYPE_PRECISION (type));
1133 /* We need an extra zero HWI if CST is an unsigned integer with its
1134 upper bit set, and if CST occupies a whole number of HWIs. */
1135 if (TYPE_UNSIGNED (type)
1136 && wi::neg_p (cst)
1137 && (cst.get_precision () % HOST_BITS_PER_WIDE_INT) == 0)
1138 return cst.get_precision () / HOST_BITS_PER_WIDE_INT + 1;
1139 return cst.get_len ();
1140 }
1141
1142 /* Return a new INTEGER_CST with value CST and type TYPE. */
1143
1144 static tree
1145 build_new_int_cst (tree type, const wide_int &cst)
1146 {
1147 unsigned int len = cst.get_len ();
1148 unsigned int ext_len = get_int_cst_ext_nunits (type, cst);
1149 tree nt = make_int_cst (len, ext_len);
1150
1151 if (len < ext_len)
1152 {
1153 --ext_len;
1154 TREE_INT_CST_ELT (nt, ext_len) = 0;
1155 for (unsigned int i = len; i < ext_len; ++i)
1156 TREE_INT_CST_ELT (nt, i) = -1;
1157 }
1158 else if (TYPE_UNSIGNED (type)
1159 && cst.get_precision () < len * HOST_BITS_PER_WIDE_INT)
1160 {
1161 len--;
1162 TREE_INT_CST_ELT (nt, len)
1163 = zext_hwi (cst.elt (len),
1164 cst.get_precision () % HOST_BITS_PER_WIDE_INT);
1165 }
1166
1167 for (unsigned int i = 0; i < len; i++)
1168 TREE_INT_CST_ELT (nt, i) = cst.elt (i);
1169 TREE_TYPE (nt) = type;
1170 return nt;
1171 }
1172
1173 /* Create an INT_CST node with a LOW value sign extended to TYPE. */
1174
1175 tree
1176 build_int_cst (tree type, HOST_WIDE_INT low)
1177 {
1178 /* Support legacy code. */
1179 if (!type)
1180 type = integer_type_node;
1181
1182 return wide_int_to_tree (type, wi::shwi (low, TYPE_PRECISION (type)));
1183 }
1184
1185 tree
1186 build_int_cstu (tree type, unsigned HOST_WIDE_INT cst)
1187 {
1188 return wide_int_to_tree (type, wi::uhwi (cst, TYPE_PRECISION (type)));
1189 }
1190
1191 /* Create an INT_CST node with a LOW value sign extended to TYPE. */
1192
1193 tree
1194 build_int_cst_type (tree type, HOST_WIDE_INT low)
1195 {
1196 gcc_assert (type);
1197 return wide_int_to_tree (type, wi::shwi (low, TYPE_PRECISION (type)));
1198 }
1199
1200 /* Constructs tree in type TYPE from with value given by CST. Signedness
1201 of CST is assumed to be the same as the signedness of TYPE. */
1202
1203 tree
1204 double_int_to_tree (tree type, double_int cst)
1205 {
1206 return wide_int_to_tree (type, widest_int::from (cst, TYPE_SIGN (type)));
1207 }
1208
1209 /* We force the wide_int CST to the range of the type TYPE by sign or
1210 zero extending it. OVERFLOWABLE indicates if we are interested in
1211 overflow of the value, when >0 we are only interested in signed
1212 overflow, for <0 we are interested in any overflow. OVERFLOWED
1213 indicates whether overflow has already occurred. CONST_OVERFLOWED
1214 indicates whether constant overflow has already occurred. We force
1215 T's value to be within range of T's type (by setting to 0 or 1 all
1216 the bits outside the type's range). We set TREE_OVERFLOWED if,
1217 OVERFLOWED is nonzero,
1218 or OVERFLOWABLE is >0 and signed overflow occurs
1219 or OVERFLOWABLE is <0 and any overflow occurs
1220 We return a new tree node for the extended wide_int. The node
1221 is shared if no overflow flags are set. */
1222
1223
1224 tree
1225 force_fit_type (tree type, const wide_int_ref &cst,
1226 int overflowable, bool overflowed)
1227 {
1228 signop sign = TYPE_SIGN (type);
1229
1230 /* If we need to set overflow flags, return a new unshared node. */
1231 if (overflowed || !wi::fits_to_tree_p (cst, type))
1232 {
1233 if (overflowed
1234 || overflowable < 0
1235 || (overflowable > 0 && sign == SIGNED))
1236 {
1237 wide_int tmp = wide_int::from (cst, TYPE_PRECISION (type), sign);
1238 tree t = build_new_int_cst (type, tmp);
1239 TREE_OVERFLOW (t) = 1;
1240 return t;
1241 }
1242 }
1243
1244 /* Else build a shared node. */
1245 return wide_int_to_tree (type, cst);
1246 }
1247
1248 /* These are the hash table functions for the hash table of INTEGER_CST
1249 nodes of a sizetype. */
1250
1251 /* Return the hash code code X, an INTEGER_CST. */
1252
1253 static hashval_t
1254 int_cst_hash_hash (const void *x)
1255 {
1256 const_tree const t = (const_tree) x;
1257 hashval_t code = htab_hash_pointer (TREE_TYPE (t));
1258 int i;
1259
1260 for (i = 0; i < TREE_INT_CST_NUNITS (t); i++)
1261 code ^= TREE_INT_CST_ELT (t, i);
1262
1263 return code;
1264 }
1265
1266 /* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
1267 is the same as that given by *Y, which is the same. */
1268
1269 static int
1270 int_cst_hash_eq (const void *x, const void *y)
1271 {
1272 const_tree const xt = (const_tree) x;
1273 const_tree const yt = (const_tree) y;
1274
1275 if (TREE_TYPE (xt) != TREE_TYPE (yt)
1276 || TREE_INT_CST_NUNITS (xt) != TREE_INT_CST_NUNITS (yt)
1277 || TREE_INT_CST_EXT_NUNITS (xt) != TREE_INT_CST_EXT_NUNITS (yt))
1278 return false;
1279
1280 for (int i = 0; i < TREE_INT_CST_NUNITS (xt); i++)
1281 if (TREE_INT_CST_ELT (xt, i) != TREE_INT_CST_ELT (yt, i))
1282 return false;
1283
1284 return true;
1285 }
1286
1287 /* Create an INT_CST node of TYPE and value CST.
1288 The returned node is always shared. For small integers we use a
1289 per-type vector cache, for larger ones we use a single hash table.
1290 The value is extended from its precision according to the sign of
1291 the type to be a multiple of HOST_BITS_PER_WIDE_INT. This defines
1292 the upper bits and ensures that hashing and value equality based
1293 upon the underlying HOST_WIDE_INTs works without masking. */
1294
1295 tree
1296 wide_int_to_tree (tree type, const wide_int_ref &pcst)
1297 {
1298 tree t;
1299 int ix = -1;
1300 int limit = 0;
1301
1302 gcc_assert (type);
1303 unsigned int prec = TYPE_PRECISION (type);
1304 signop sgn = TYPE_SIGN (type);
1305
1306 /* Verify that everything is canonical. */
1307 int l = pcst.get_len ();
1308 if (l > 1)
1309 {
1310 if (pcst.elt (l - 1) == 0)
1311 gcc_checking_assert (pcst.elt (l - 2) < 0);
1312 if (pcst.elt (l - 1) == (HOST_WIDE_INT) -1)
1313 gcc_checking_assert (pcst.elt (l - 2) >= 0);
1314 }
1315
1316 wide_int cst = wide_int::from (pcst, prec, sgn);
1317 unsigned int ext_len = get_int_cst_ext_nunits (type, cst);
1318
1319 if (ext_len == 1)
1320 {
1321 /* We just need to store a single HOST_WIDE_INT. */
1322 HOST_WIDE_INT hwi;
1323 if (TYPE_UNSIGNED (type))
1324 hwi = cst.to_uhwi ();
1325 else
1326 hwi = cst.to_shwi ();
1327
1328 switch (TREE_CODE (type))
1329 {
1330 case NULLPTR_TYPE:
1331 gcc_assert (hwi == 0);
1332 /* Fallthru. */
1333
1334 case POINTER_TYPE:
1335 case REFERENCE_TYPE:
1336 /* Cache NULL pointer. */
1337 if (hwi == 0)
1338 {
1339 limit = 1;
1340 ix = 0;
1341 }
1342 break;
1343
1344 case BOOLEAN_TYPE:
1345 /* Cache false or true. */
1346 limit = 2;
1347 if (hwi < 2)
1348 ix = hwi;
1349 break;
1350
1351 case INTEGER_TYPE:
1352 case OFFSET_TYPE:
1353 if (TYPE_SIGN (type) == UNSIGNED)
1354 {
1355 /* Cache [0, N). */
1356 limit = INTEGER_SHARE_LIMIT;
1357 if (IN_RANGE (hwi, 0, INTEGER_SHARE_LIMIT - 1))
1358 ix = hwi;
1359 }
1360 else
1361 {
1362 /* Cache [-1, N). */
1363 limit = INTEGER_SHARE_LIMIT + 1;
1364 if (IN_RANGE (hwi, -1, INTEGER_SHARE_LIMIT - 1))
1365 ix = hwi + 1;
1366 }
1367 break;
1368
1369 case ENUMERAL_TYPE:
1370 break;
1371
1372 default:
1373 gcc_unreachable ();
1374 }
1375
1376 if (ix >= 0)
1377 {
1378 /* Look for it in the type's vector of small shared ints. */
1379 if (!TYPE_CACHED_VALUES_P (type))
1380 {
1381 TYPE_CACHED_VALUES_P (type) = 1;
1382 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
1383 }
1384
1385 t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix);
1386 if (t)
1387 /* Make sure no one is clobbering the shared constant. */
1388 gcc_checking_assert (TREE_TYPE (t) == type
1389 && TREE_INT_CST_NUNITS (t) == 1
1390 && TREE_INT_CST_OFFSET_NUNITS (t) == 1
1391 && TREE_INT_CST_EXT_NUNITS (t) == 1
1392 && TREE_INT_CST_ELT (t, 0) == hwi);
1393 else
1394 {
1395 /* Create a new shared int. */
1396 t = build_new_int_cst (type, cst);
1397 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
1398 }
1399 }
1400 else
1401 {
1402 /* Use the cache of larger shared ints, using int_cst_node as
1403 a temporary. */
1404 void **slot;
1405
1406 TREE_INT_CST_ELT (int_cst_node, 0) = hwi;
1407 TREE_TYPE (int_cst_node) = type;
1408
1409 slot = htab_find_slot (int_cst_hash_table, int_cst_node, INSERT);
1410 t = (tree) *slot;
1411 if (!t)
1412 {
1413 /* Insert this one into the hash table. */
1414 t = int_cst_node;
1415 *slot = t;
1416 /* Make a new node for next time round. */
1417 int_cst_node = make_int_cst (1, 1);
1418 }
1419 }
1420 }
1421 else
1422 {
1423 /* The value either hashes properly or we drop it on the floor
1424 for the gc to take care of. There will not be enough of them
1425 to worry about. */
1426 void **slot;
1427
1428 tree nt = build_new_int_cst (type, cst);
1429 slot = htab_find_slot (int_cst_hash_table, nt, INSERT);
1430 t = (tree) *slot;
1431 if (!t)
1432 {
1433 /* Insert this one into the hash table. */
1434 t = nt;
1435 *slot = t;
1436 }
1437 }
1438
1439 return t;
1440 }
1441
1442 void
1443 cache_integer_cst (tree t)
1444 {
1445 tree type = TREE_TYPE (t);
1446 int ix = -1;
1447 int limit = 0;
1448 int prec = TYPE_PRECISION (type);
1449
1450 gcc_assert (!TREE_OVERFLOW (t));
1451
1452 switch (TREE_CODE (type))
1453 {
1454 case NULLPTR_TYPE:
1455 gcc_assert (integer_zerop (t));
1456 /* Fallthru. */
1457
1458 case POINTER_TYPE:
1459 case REFERENCE_TYPE:
1460 /* Cache NULL pointer. */
1461 if (integer_zerop (t))
1462 {
1463 limit = 1;
1464 ix = 0;
1465 }
1466 break;
1467
1468 case BOOLEAN_TYPE:
1469 /* Cache false or true. */
1470 limit = 2;
1471 if (wi::ltu_p (t, 2))
1472 ix = TREE_INT_CST_ELT (t, 0);
1473 break;
1474
1475 case INTEGER_TYPE:
1476 case OFFSET_TYPE:
1477 if (TYPE_UNSIGNED (type))
1478 {
1479 /* Cache 0..N */
1480 limit = INTEGER_SHARE_LIMIT;
1481
1482 /* This is a little hokie, but if the prec is smaller than
1483 what is necessary to hold INTEGER_SHARE_LIMIT, then the
1484 obvious test will not get the correct answer. */
1485 if (prec < HOST_BITS_PER_WIDE_INT)
1486 {
1487 if (tree_to_uhwi (t) < (unsigned HOST_WIDE_INT) INTEGER_SHARE_LIMIT)
1488 ix = tree_to_uhwi (t);
1489 }
1490 else if (wi::ltu_p (t, INTEGER_SHARE_LIMIT))
1491 ix = tree_to_uhwi (t);
1492 }
1493 else
1494 {
1495 /* Cache -1..N */
1496 limit = INTEGER_SHARE_LIMIT + 1;
1497
1498 if (integer_minus_onep (t))
1499 ix = 0;
1500 else if (!wi::neg_p (t))
1501 {
1502 if (prec < HOST_BITS_PER_WIDE_INT)
1503 {
1504 if (tree_to_shwi (t) < INTEGER_SHARE_LIMIT)
1505 ix = tree_to_shwi (t) + 1;
1506 }
1507 else if (wi::ltu_p (t, INTEGER_SHARE_LIMIT))
1508 ix = tree_to_shwi (t) + 1;
1509 }
1510 }
1511 break;
1512
1513 case ENUMERAL_TYPE:
1514 break;
1515
1516 default:
1517 gcc_unreachable ();
1518 }
1519
1520 if (ix >= 0)
1521 {
1522 /* Look for it in the type's vector of small shared ints. */
1523 if (!TYPE_CACHED_VALUES_P (type))
1524 {
1525 TYPE_CACHED_VALUES_P (type) = 1;
1526 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
1527 }
1528
1529 gcc_assert (TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) == NULL_TREE);
1530 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
1531 }
1532 else
1533 {
1534 /* Use the cache of larger shared ints. */
1535 void **slot;
1536
1537 slot = htab_find_slot (int_cst_hash_table, t, INSERT);
1538 /* If there is already an entry for the number verify it's the
1539 same. */
1540 if (*slot)
1541 gcc_assert (wi::eq_p (tree (*slot), t));
1542 else
1543 /* Otherwise insert this one into the hash table. */
1544 *slot = t;
1545 }
1546 }
1547
1548
1549 /* Builds an integer constant in TYPE such that lowest BITS bits are ones
1550 and the rest are zeros. */
1551
1552 tree
1553 build_low_bits_mask (tree type, unsigned bits)
1554 {
1555 gcc_assert (bits <= TYPE_PRECISION (type));
1556
1557 return wide_int_to_tree (type, wi::mask (bits, false,
1558 TYPE_PRECISION (type)));
1559 }
1560
1561 /* Checks that X is integer constant that can be expressed in (unsigned)
1562 HOST_WIDE_INT without loss of precision. */
1563
1564 bool
1565 cst_and_fits_in_hwi (const_tree x)
1566 {
1567 if (TREE_CODE (x) != INTEGER_CST)
1568 return false;
1569
1570 if (TYPE_PRECISION (TREE_TYPE (x)) > HOST_BITS_PER_WIDE_INT)
1571 return false;
1572
1573 return TREE_INT_CST_NUNITS (x) == 1;
1574 }
1575
1576 /* Build a newly constructed TREE_VEC node of length LEN. */
1577
1578 tree
1579 make_vector_stat (unsigned len MEM_STAT_DECL)
1580 {
1581 tree t;
1582 unsigned length = (len - 1) * sizeof (tree) + sizeof (struct tree_vector);
1583
1584 record_node_allocation_statistics (VECTOR_CST, length);
1585
1586 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
1587
1588 TREE_SET_CODE (t, VECTOR_CST);
1589 TREE_CONSTANT (t) = 1;
1590
1591 return t;
1592 }
1593
1594 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1595 are in a list pointed to by VALS. */
1596
1597 tree
1598 build_vector_stat (tree type, tree *vals MEM_STAT_DECL)
1599 {
1600 int over = 0;
1601 unsigned cnt = 0;
1602 tree v = make_vector (TYPE_VECTOR_SUBPARTS (type));
1603 TREE_TYPE (v) = type;
1604
1605 /* Iterate through elements and check for overflow. */
1606 for (cnt = 0; cnt < TYPE_VECTOR_SUBPARTS (type); ++cnt)
1607 {
1608 tree value = vals[cnt];
1609
1610 VECTOR_CST_ELT (v, cnt) = value;
1611
1612 /* Don't crash if we get an address constant. */
1613 if (!CONSTANT_CLASS_P (value))
1614 continue;
1615
1616 over |= TREE_OVERFLOW (value);
1617 }
1618
1619 TREE_OVERFLOW (v) = over;
1620 return v;
1621 }
1622
1623 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1624 are extracted from V, a vector of CONSTRUCTOR_ELT. */
1625
1626 tree
1627 build_vector_from_ctor (tree type, vec<constructor_elt, va_gc> *v)
1628 {
1629 tree *vec = XALLOCAVEC (tree, TYPE_VECTOR_SUBPARTS (type));
1630 unsigned HOST_WIDE_INT idx;
1631 tree value;
1632
1633 FOR_EACH_CONSTRUCTOR_VALUE (v, idx, value)
1634 vec[idx] = value;
1635 for (; idx < TYPE_VECTOR_SUBPARTS (type); ++idx)
1636 vec[idx] = build_zero_cst (TREE_TYPE (type));
1637
1638 return build_vector (type, vec);
1639 }
1640
1641 /* Build a vector of type VECTYPE where all the elements are SCs. */
1642 tree
1643 build_vector_from_val (tree vectype, tree sc)
1644 {
1645 int i, nunits = TYPE_VECTOR_SUBPARTS (vectype);
1646
1647 if (sc == error_mark_node)
1648 return sc;
1649
1650 /* Verify that the vector type is suitable for SC. Note that there
1651 is some inconsistency in the type-system with respect to restrict
1652 qualifications of pointers. Vector types always have a main-variant
1653 element type and the qualification is applied to the vector-type.
1654 So TREE_TYPE (vector-type) does not return a properly qualified
1655 vector element-type. */
1656 gcc_checking_assert (types_compatible_p (TYPE_MAIN_VARIANT (TREE_TYPE (sc)),
1657 TREE_TYPE (vectype)));
1658
1659 if (CONSTANT_CLASS_P (sc))
1660 {
1661 tree *v = XALLOCAVEC (tree, nunits);
1662 for (i = 0; i < nunits; ++i)
1663 v[i] = sc;
1664 return build_vector (vectype, v);
1665 }
1666 else
1667 {
1668 vec<constructor_elt, va_gc> *v;
1669 vec_alloc (v, nunits);
1670 for (i = 0; i < nunits; ++i)
1671 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, sc);
1672 return build_constructor (vectype, v);
1673 }
1674 }
1675
1676 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1677 are in the vec pointed to by VALS. */
1678 tree
1679 build_constructor (tree type, vec<constructor_elt, va_gc> *vals)
1680 {
1681 tree c = make_node (CONSTRUCTOR);
1682 unsigned int i;
1683 constructor_elt *elt;
1684 bool constant_p = true;
1685 bool side_effects_p = false;
1686
1687 TREE_TYPE (c) = type;
1688 CONSTRUCTOR_ELTS (c) = vals;
1689
1690 FOR_EACH_VEC_SAFE_ELT (vals, i, elt)
1691 {
1692 /* Mostly ctors will have elts that don't have side-effects, so
1693 the usual case is to scan all the elements. Hence a single
1694 loop for both const and side effects, rather than one loop
1695 each (with early outs). */
1696 if (!TREE_CONSTANT (elt->value))
1697 constant_p = false;
1698 if (TREE_SIDE_EFFECTS (elt->value))
1699 side_effects_p = true;
1700 }
1701
1702 TREE_SIDE_EFFECTS (c) = side_effects_p;
1703 TREE_CONSTANT (c) = constant_p;
1704
1705 return c;
1706 }
1707
1708 /* Build a CONSTRUCTOR node made of a single initializer, with the specified
1709 INDEX and VALUE. */
1710 tree
1711 build_constructor_single (tree type, tree index, tree value)
1712 {
1713 vec<constructor_elt, va_gc> *v;
1714 constructor_elt elt = {index, value};
1715
1716 vec_alloc (v, 1);
1717 v->quick_push (elt);
1718
1719 return build_constructor (type, v);
1720 }
1721
1722
1723 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1724 are in a list pointed to by VALS. */
1725 tree
1726 build_constructor_from_list (tree type, tree vals)
1727 {
1728 tree t;
1729 vec<constructor_elt, va_gc> *v = NULL;
1730
1731 if (vals)
1732 {
1733 vec_alloc (v, list_length (vals));
1734 for (t = vals; t; t = TREE_CHAIN (t))
1735 CONSTRUCTOR_APPEND_ELT (v, TREE_PURPOSE (t), TREE_VALUE (t));
1736 }
1737
1738 return build_constructor (type, v);
1739 }
1740
1741 /* Return a new CONSTRUCTOR node whose type is TYPE. NELTS is the number
1742 of elements, provided as index/value pairs. */
1743
1744 tree
1745 build_constructor_va (tree type, int nelts, ...)
1746 {
1747 vec<constructor_elt, va_gc> *v = NULL;
1748 va_list p;
1749
1750 va_start (p, nelts);
1751 vec_alloc (v, nelts);
1752 while (nelts--)
1753 {
1754 tree index = va_arg (p, tree);
1755 tree value = va_arg (p, tree);
1756 CONSTRUCTOR_APPEND_ELT (v, index, value);
1757 }
1758 va_end (p);
1759 return build_constructor (type, v);
1760 }
1761
1762 /* Return a new FIXED_CST node whose type is TYPE and value is F. */
1763
1764 tree
1765 build_fixed (tree type, FIXED_VALUE_TYPE f)
1766 {
1767 tree v;
1768 FIXED_VALUE_TYPE *fp;
1769
1770 v = make_node (FIXED_CST);
1771 fp = ggc_alloc<fixed_value> ();
1772 memcpy (fp, &f, sizeof (FIXED_VALUE_TYPE));
1773
1774 TREE_TYPE (v) = type;
1775 TREE_FIXED_CST_PTR (v) = fp;
1776 return v;
1777 }
1778
1779 /* Return a new REAL_CST node whose type is TYPE and value is D. */
1780
1781 tree
1782 build_real (tree type, REAL_VALUE_TYPE d)
1783 {
1784 tree v;
1785 REAL_VALUE_TYPE *dp;
1786 int overflow = 0;
1787
1788 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
1789 Consider doing it via real_convert now. */
1790
1791 v = make_node (REAL_CST);
1792 dp = ggc_alloc<real_value> ();
1793 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
1794
1795 TREE_TYPE (v) = type;
1796 TREE_REAL_CST_PTR (v) = dp;
1797 TREE_OVERFLOW (v) = overflow;
1798 return v;
1799 }
1800
1801 /* Return a new REAL_CST node whose type is TYPE
1802 and whose value is the integer value of the INTEGER_CST node I. */
1803
1804 REAL_VALUE_TYPE
1805 real_value_from_int_cst (const_tree type, const_tree i)
1806 {
1807 REAL_VALUE_TYPE d;
1808
1809 /* Clear all bits of the real value type so that we can later do
1810 bitwise comparisons to see if two values are the same. */
1811 memset (&d, 0, sizeof d);
1812
1813 real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode, i,
1814 TYPE_SIGN (TREE_TYPE (i)));
1815 return d;
1816 }
1817
1818 /* Given a tree representing an integer constant I, return a tree
1819 representing the same value as a floating-point constant of type TYPE. */
1820
1821 tree
1822 build_real_from_int_cst (tree type, const_tree i)
1823 {
1824 tree v;
1825 int overflow = TREE_OVERFLOW (i);
1826
1827 v = build_real (type, real_value_from_int_cst (type, i));
1828
1829 TREE_OVERFLOW (v) |= overflow;
1830 return v;
1831 }
1832
1833 /* Return a newly constructed STRING_CST node whose value is
1834 the LEN characters at STR.
1835 Note that for a C string literal, LEN should include the trailing NUL.
1836 The TREE_TYPE is not initialized. */
1837
1838 tree
1839 build_string (int len, const char *str)
1840 {
1841 tree s;
1842 size_t length;
1843
1844 /* Do not waste bytes provided by padding of struct tree_string. */
1845 length = len + offsetof (struct tree_string, str) + 1;
1846
1847 record_node_allocation_statistics (STRING_CST, length);
1848
1849 s = (tree) ggc_internal_alloc (length);
1850
1851 memset (s, 0, sizeof (struct tree_typed));
1852 TREE_SET_CODE (s, STRING_CST);
1853 TREE_CONSTANT (s) = 1;
1854 TREE_STRING_LENGTH (s) = len;
1855 memcpy (s->string.str, str, len);
1856 s->string.str[len] = '\0';
1857
1858 return s;
1859 }
1860
1861 /* Return a newly constructed COMPLEX_CST node whose value is
1862 specified by the real and imaginary parts REAL and IMAG.
1863 Both REAL and IMAG should be constant nodes. TYPE, if specified,
1864 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
1865
1866 tree
1867 build_complex (tree type, tree real, tree imag)
1868 {
1869 tree t = make_node (COMPLEX_CST);
1870
1871 TREE_REALPART (t) = real;
1872 TREE_IMAGPART (t) = imag;
1873 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
1874 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
1875 return t;
1876 }
1877
1878 /* Return a constant of arithmetic type TYPE which is the
1879 multiplicative identity of the set TYPE. */
1880
1881 tree
1882 build_one_cst (tree type)
1883 {
1884 switch (TREE_CODE (type))
1885 {
1886 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1887 case POINTER_TYPE: case REFERENCE_TYPE:
1888 case OFFSET_TYPE:
1889 return build_int_cst (type, 1);
1890
1891 case REAL_TYPE:
1892 return build_real (type, dconst1);
1893
1894 case FIXED_POINT_TYPE:
1895 /* We can only generate 1 for accum types. */
1896 gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
1897 return build_fixed (type, FCONST1 (TYPE_MODE (type)));
1898
1899 case VECTOR_TYPE:
1900 {
1901 tree scalar = build_one_cst (TREE_TYPE (type));
1902
1903 return build_vector_from_val (type, scalar);
1904 }
1905
1906 case COMPLEX_TYPE:
1907 return build_complex (type,
1908 build_one_cst (TREE_TYPE (type)),
1909 build_zero_cst (TREE_TYPE (type)));
1910
1911 default:
1912 gcc_unreachable ();
1913 }
1914 }
1915
1916 /* Return an integer of type TYPE containing all 1's in as much precision as
1917 it contains, or a complex or vector whose subparts are such integers. */
1918
1919 tree
1920 build_all_ones_cst (tree type)
1921 {
1922 if (TREE_CODE (type) == COMPLEX_TYPE)
1923 {
1924 tree scalar = build_all_ones_cst (TREE_TYPE (type));
1925 return build_complex (type, scalar, scalar);
1926 }
1927 else
1928 return build_minus_one_cst (type);
1929 }
1930
1931 /* Return a constant of arithmetic type TYPE which is the
1932 opposite of the multiplicative identity of the set TYPE. */
1933
1934 tree
1935 build_minus_one_cst (tree type)
1936 {
1937 switch (TREE_CODE (type))
1938 {
1939 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1940 case POINTER_TYPE: case REFERENCE_TYPE:
1941 case OFFSET_TYPE:
1942 return build_int_cst (type, -1);
1943
1944 case REAL_TYPE:
1945 return build_real (type, dconstm1);
1946
1947 case FIXED_POINT_TYPE:
1948 /* We can only generate 1 for accum types. */
1949 gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
1950 return build_fixed (type, fixed_from_double_int (double_int_minus_one,
1951 TYPE_MODE (type)));
1952
1953 case VECTOR_TYPE:
1954 {
1955 tree scalar = build_minus_one_cst (TREE_TYPE (type));
1956
1957 return build_vector_from_val (type, scalar);
1958 }
1959
1960 case COMPLEX_TYPE:
1961 return build_complex (type,
1962 build_minus_one_cst (TREE_TYPE (type)),
1963 build_zero_cst (TREE_TYPE (type)));
1964
1965 default:
1966 gcc_unreachable ();
1967 }
1968 }
1969
1970 /* Build 0 constant of type TYPE. This is used by constructor folding
1971 and thus the constant should be represented in memory by
1972 zero(es). */
1973
1974 tree
1975 build_zero_cst (tree type)
1976 {
1977 switch (TREE_CODE (type))
1978 {
1979 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1980 case POINTER_TYPE: case REFERENCE_TYPE:
1981 case OFFSET_TYPE: case NULLPTR_TYPE:
1982 return build_int_cst (type, 0);
1983
1984 case REAL_TYPE:
1985 return build_real (type, dconst0);
1986
1987 case FIXED_POINT_TYPE:
1988 return build_fixed (type, FCONST0 (TYPE_MODE (type)));
1989
1990 case VECTOR_TYPE:
1991 {
1992 tree scalar = build_zero_cst (TREE_TYPE (type));
1993
1994 return build_vector_from_val (type, scalar);
1995 }
1996
1997 case COMPLEX_TYPE:
1998 {
1999 tree zero = build_zero_cst (TREE_TYPE (type));
2000
2001 return build_complex (type, zero, zero);
2002 }
2003
2004 default:
2005 if (!AGGREGATE_TYPE_P (type))
2006 return fold_convert (type, integer_zero_node);
2007 return build_constructor (type, NULL);
2008 }
2009 }
2010
2011
2012 /* Build a BINFO with LEN language slots. */
2013
2014 tree
2015 make_tree_binfo_stat (unsigned base_binfos MEM_STAT_DECL)
2016 {
2017 tree t;
2018 size_t length = (offsetof (struct tree_binfo, base_binfos)
2019 + vec<tree, va_gc>::embedded_size (base_binfos));
2020
2021 record_node_allocation_statistics (TREE_BINFO, length);
2022
2023 t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
2024
2025 memset (t, 0, offsetof (struct tree_binfo, base_binfos));
2026
2027 TREE_SET_CODE (t, TREE_BINFO);
2028
2029 BINFO_BASE_BINFOS (t)->embedded_init (base_binfos);
2030
2031 return t;
2032 }
2033
2034 /* Create a CASE_LABEL_EXPR tree node and return it. */
2035
2036 tree
2037 build_case_label (tree low_value, tree high_value, tree label_decl)
2038 {
2039 tree t = make_node (CASE_LABEL_EXPR);
2040
2041 TREE_TYPE (t) = void_type_node;
2042 SET_EXPR_LOCATION (t, DECL_SOURCE_LOCATION (label_decl));
2043
2044 CASE_LOW (t) = low_value;
2045 CASE_HIGH (t) = high_value;
2046 CASE_LABEL (t) = label_decl;
2047 CASE_CHAIN (t) = NULL_TREE;
2048
2049 return t;
2050 }
2051
2052 /* Build a newly constructed INTEGER_CST node. LEN and EXT_LEN are the
2053 values of TREE_INT_CST_NUNITS and TREE_INT_CST_EXT_NUNITS respectively.
2054 The latter determines the length of the HOST_WIDE_INT vector. */
2055
2056 tree
2057 make_int_cst_stat (int len, int ext_len MEM_STAT_DECL)
2058 {
2059 tree t;
2060 int length = ((ext_len - 1) * sizeof (HOST_WIDE_INT)
2061 + sizeof (struct tree_int_cst));
2062
2063 gcc_assert (len);
2064 record_node_allocation_statistics (INTEGER_CST, length);
2065
2066 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
2067
2068 TREE_SET_CODE (t, INTEGER_CST);
2069 TREE_INT_CST_NUNITS (t) = len;
2070 TREE_INT_CST_EXT_NUNITS (t) = ext_len;
2071 /* to_offset can only be applied to trees that are offset_int-sized
2072 or smaller. EXT_LEN is correct if it fits, otherwise the constant
2073 must be exactly the precision of offset_int and so LEN is correct. */
2074 if (ext_len <= OFFSET_INT_ELTS)
2075 TREE_INT_CST_OFFSET_NUNITS (t) = ext_len;
2076 else
2077 TREE_INT_CST_OFFSET_NUNITS (t) = len;
2078
2079 TREE_CONSTANT (t) = 1;
2080
2081 return t;
2082 }
2083
2084 /* Build a newly constructed TREE_VEC node of length LEN. */
2085
2086 tree
2087 make_tree_vec_stat (int len MEM_STAT_DECL)
2088 {
2089 tree t;
2090 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
2091
2092 record_node_allocation_statistics (TREE_VEC, length);
2093
2094 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
2095
2096 TREE_SET_CODE (t, TREE_VEC);
2097 TREE_VEC_LENGTH (t) = len;
2098
2099 return t;
2100 }
2101
2102 /* Grow a TREE_VEC node to new length LEN. */
2103
2104 tree
2105 grow_tree_vec_stat (tree v, int len MEM_STAT_DECL)
2106 {
2107 gcc_assert (TREE_CODE (v) == TREE_VEC);
2108
2109 int oldlen = TREE_VEC_LENGTH (v);
2110 gcc_assert (len > oldlen);
2111
2112 int oldlength = (oldlen - 1) * sizeof (tree) + sizeof (struct tree_vec);
2113 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
2114
2115 record_node_allocation_statistics (TREE_VEC, length - oldlength);
2116
2117 v = (tree) ggc_realloc (v, length PASS_MEM_STAT);
2118
2119 TREE_VEC_LENGTH (v) = len;
2120
2121 return v;
2122 }
2123 \f
2124 /* Return 1 if EXPR is the integer constant zero or a complex constant
2125 of zero. */
2126
2127 int
2128 integer_zerop (const_tree expr)
2129 {
2130 STRIP_NOPS (expr);
2131
2132 switch (TREE_CODE (expr))
2133 {
2134 case INTEGER_CST:
2135 return wi::eq_p (expr, 0);
2136 case COMPLEX_CST:
2137 return (integer_zerop (TREE_REALPART (expr))
2138 && integer_zerop (TREE_IMAGPART (expr)));
2139 case VECTOR_CST:
2140 {
2141 unsigned i;
2142 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
2143 if (!integer_zerop (VECTOR_CST_ELT (expr, i)))
2144 return false;
2145 return true;
2146 }
2147 default:
2148 return false;
2149 }
2150 }
2151
2152 /* Return 1 if EXPR is the integer constant one or the corresponding
2153 complex constant. */
2154
2155 int
2156 integer_onep (const_tree expr)
2157 {
2158 STRIP_NOPS (expr);
2159
2160 switch (TREE_CODE (expr))
2161 {
2162 case INTEGER_CST:
2163 return wi::eq_p (wi::to_widest (expr), 1);
2164 case COMPLEX_CST:
2165 return (integer_onep (TREE_REALPART (expr))
2166 && integer_zerop (TREE_IMAGPART (expr)));
2167 case VECTOR_CST:
2168 {
2169 unsigned i;
2170 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
2171 if (!integer_onep (VECTOR_CST_ELT (expr, i)))
2172 return false;
2173 return true;
2174 }
2175 default:
2176 return false;
2177 }
2178 }
2179
2180 /* Return 1 if EXPR is the integer constant one. For complex and vector,
2181 return 1 if every piece is the integer constant one. */
2182
2183 int
2184 integer_each_onep (const_tree expr)
2185 {
2186 STRIP_NOPS (expr);
2187
2188 if (TREE_CODE (expr) == COMPLEX_CST)
2189 return (integer_onep (TREE_REALPART (expr))
2190 && integer_onep (TREE_IMAGPART (expr)));
2191 else
2192 return integer_onep (expr);
2193 }
2194
2195 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
2196 it contains, or a complex or vector whose subparts are such integers. */
2197
2198 int
2199 integer_all_onesp (const_tree expr)
2200 {
2201 STRIP_NOPS (expr);
2202
2203 if (TREE_CODE (expr) == COMPLEX_CST
2204 && integer_all_onesp (TREE_REALPART (expr))
2205 && integer_all_onesp (TREE_IMAGPART (expr)))
2206 return 1;
2207
2208 else if (TREE_CODE (expr) == VECTOR_CST)
2209 {
2210 unsigned i;
2211 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
2212 if (!integer_all_onesp (VECTOR_CST_ELT (expr, i)))
2213 return 0;
2214 return 1;
2215 }
2216
2217 else if (TREE_CODE (expr) != INTEGER_CST)
2218 return 0;
2219
2220 return wi::max_value (TYPE_PRECISION (TREE_TYPE (expr)), UNSIGNED) == expr;
2221 }
2222
2223 /* Return 1 if EXPR is the integer constant minus one. */
2224
2225 int
2226 integer_minus_onep (const_tree expr)
2227 {
2228 STRIP_NOPS (expr);
2229
2230 if (TREE_CODE (expr) == COMPLEX_CST)
2231 return (integer_all_onesp (TREE_REALPART (expr))
2232 && integer_zerop (TREE_IMAGPART (expr)));
2233 else
2234 return integer_all_onesp (expr);
2235 }
2236
2237 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
2238 one bit on). */
2239
2240 int
2241 integer_pow2p (const_tree expr)
2242 {
2243 STRIP_NOPS (expr);
2244
2245 if (TREE_CODE (expr) == COMPLEX_CST
2246 && integer_pow2p (TREE_REALPART (expr))
2247 && integer_zerop (TREE_IMAGPART (expr)))
2248 return 1;
2249
2250 if (TREE_CODE (expr) != INTEGER_CST)
2251 return 0;
2252
2253 return wi::popcount (expr) == 1;
2254 }
2255
2256 /* Return 1 if EXPR is an integer constant other than zero or a
2257 complex constant other than zero. */
2258
2259 int
2260 integer_nonzerop (const_tree expr)
2261 {
2262 STRIP_NOPS (expr);
2263
2264 return ((TREE_CODE (expr) == INTEGER_CST
2265 && !wi::eq_p (expr, 0))
2266 || (TREE_CODE (expr) == COMPLEX_CST
2267 && (integer_nonzerop (TREE_REALPART (expr))
2268 || integer_nonzerop (TREE_IMAGPART (expr)))));
2269 }
2270
2271 /* Return 1 if EXPR is the fixed-point constant zero. */
2272
2273 int
2274 fixed_zerop (const_tree expr)
2275 {
2276 return (TREE_CODE (expr) == FIXED_CST
2277 && TREE_FIXED_CST (expr).data.is_zero ());
2278 }
2279
2280 /* Return the power of two represented by a tree node known to be a
2281 power of two. */
2282
2283 int
2284 tree_log2 (const_tree expr)
2285 {
2286 STRIP_NOPS (expr);
2287
2288 if (TREE_CODE (expr) == COMPLEX_CST)
2289 return tree_log2 (TREE_REALPART (expr));
2290
2291 return wi::exact_log2 (expr);
2292 }
2293
2294 /* Similar, but return the largest integer Y such that 2 ** Y is less
2295 than or equal to EXPR. */
2296
2297 int
2298 tree_floor_log2 (const_tree expr)
2299 {
2300 STRIP_NOPS (expr);
2301
2302 if (TREE_CODE (expr) == COMPLEX_CST)
2303 return tree_log2 (TREE_REALPART (expr));
2304
2305 return wi::floor_log2 (expr);
2306 }
2307
2308 /* Return number of known trailing zero bits in EXPR, or, if the value of
2309 EXPR is known to be zero, the precision of it's type. */
2310
2311 unsigned int
2312 tree_ctz (const_tree expr)
2313 {
2314 if (!INTEGRAL_TYPE_P (TREE_TYPE (expr))
2315 && !POINTER_TYPE_P (TREE_TYPE (expr)))
2316 return 0;
2317
2318 unsigned int ret1, ret2, prec = TYPE_PRECISION (TREE_TYPE (expr));
2319 switch (TREE_CODE (expr))
2320 {
2321 case INTEGER_CST:
2322 ret1 = wi::ctz (expr);
2323 return MIN (ret1, prec);
2324 case SSA_NAME:
2325 ret1 = wi::ctz (get_nonzero_bits (expr));
2326 return MIN (ret1, prec);
2327 case PLUS_EXPR:
2328 case MINUS_EXPR:
2329 case BIT_IOR_EXPR:
2330 case BIT_XOR_EXPR:
2331 case MIN_EXPR:
2332 case MAX_EXPR:
2333 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2334 if (ret1 == 0)
2335 return ret1;
2336 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2337 return MIN (ret1, ret2);
2338 case POINTER_PLUS_EXPR:
2339 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2340 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2341 /* Second operand is sizetype, which could be in theory
2342 wider than pointer's precision. Make sure we never
2343 return more than prec. */
2344 ret2 = MIN (ret2, prec);
2345 return MIN (ret1, ret2);
2346 case BIT_AND_EXPR:
2347 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2348 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2349 return MAX (ret1, ret2);
2350 case MULT_EXPR:
2351 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2352 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2353 return MIN (ret1 + ret2, prec);
2354 case LSHIFT_EXPR:
2355 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2356 if (tree_fits_uhwi_p (TREE_OPERAND (expr, 1))
2357 && (tree_to_uhwi (TREE_OPERAND (expr, 1)) < prec))
2358 {
2359 ret2 = tree_to_uhwi (TREE_OPERAND (expr, 1));
2360 return MIN (ret1 + ret2, prec);
2361 }
2362 return ret1;
2363 case RSHIFT_EXPR:
2364 if (tree_fits_uhwi_p (TREE_OPERAND (expr, 1))
2365 && (tree_to_uhwi (TREE_OPERAND (expr, 1)) < prec))
2366 {
2367 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2368 ret2 = tree_to_uhwi (TREE_OPERAND (expr, 1));
2369 if (ret1 > ret2)
2370 return ret1 - ret2;
2371 }
2372 return 0;
2373 case TRUNC_DIV_EXPR:
2374 case CEIL_DIV_EXPR:
2375 case FLOOR_DIV_EXPR:
2376 case ROUND_DIV_EXPR:
2377 case EXACT_DIV_EXPR:
2378 if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
2379 && tree_int_cst_sgn (TREE_OPERAND (expr, 1)) == 1)
2380 {
2381 int l = tree_log2 (TREE_OPERAND (expr, 1));
2382 if (l >= 0)
2383 {
2384 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2385 ret2 = l;
2386 if (ret1 > ret2)
2387 return ret1 - ret2;
2388 }
2389 }
2390 return 0;
2391 CASE_CONVERT:
2392 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2393 if (ret1 && ret1 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (expr, 0))))
2394 ret1 = prec;
2395 return MIN (ret1, prec);
2396 case SAVE_EXPR:
2397 return tree_ctz (TREE_OPERAND (expr, 0));
2398 case COND_EXPR:
2399 ret1 = tree_ctz (TREE_OPERAND (expr, 1));
2400 if (ret1 == 0)
2401 return 0;
2402 ret2 = tree_ctz (TREE_OPERAND (expr, 2));
2403 return MIN (ret1, ret2);
2404 case COMPOUND_EXPR:
2405 return tree_ctz (TREE_OPERAND (expr, 1));
2406 case ADDR_EXPR:
2407 ret1 = get_pointer_alignment (CONST_CAST_TREE (expr));
2408 if (ret1 > BITS_PER_UNIT)
2409 {
2410 ret1 = ctz_hwi (ret1 / BITS_PER_UNIT);
2411 return MIN (ret1, prec);
2412 }
2413 return 0;
2414 default:
2415 return 0;
2416 }
2417 }
2418
2419 /* Return 1 if EXPR is the real constant zero. Trailing zeroes matter for
2420 decimal float constants, so don't return 1 for them. */
2421
2422 int
2423 real_zerop (const_tree expr)
2424 {
2425 STRIP_NOPS (expr);
2426
2427 switch (TREE_CODE (expr))
2428 {
2429 case REAL_CST:
2430 return REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0)
2431 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2432 case COMPLEX_CST:
2433 return real_zerop (TREE_REALPART (expr))
2434 && real_zerop (TREE_IMAGPART (expr));
2435 case VECTOR_CST:
2436 {
2437 unsigned i;
2438 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
2439 if (!real_zerop (VECTOR_CST_ELT (expr, i)))
2440 return false;
2441 return true;
2442 }
2443 default:
2444 return false;
2445 }
2446 }
2447
2448 /* Return 1 if EXPR is the real constant one in real or complex form.
2449 Trailing zeroes matter for decimal float constants, so don't return
2450 1 for them. */
2451
2452 int
2453 real_onep (const_tree expr)
2454 {
2455 STRIP_NOPS (expr);
2456
2457 switch (TREE_CODE (expr))
2458 {
2459 case REAL_CST:
2460 return REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1)
2461 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2462 case COMPLEX_CST:
2463 return real_onep (TREE_REALPART (expr))
2464 && real_zerop (TREE_IMAGPART (expr));
2465 case VECTOR_CST:
2466 {
2467 unsigned i;
2468 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
2469 if (!real_onep (VECTOR_CST_ELT (expr, i)))
2470 return false;
2471 return true;
2472 }
2473 default:
2474 return false;
2475 }
2476 }
2477
2478 /* Return 1 if EXPR is the real constant minus one. Trailing zeroes
2479 matter for decimal float constants, so don't return 1 for them. */
2480
2481 int
2482 real_minus_onep (const_tree expr)
2483 {
2484 STRIP_NOPS (expr);
2485
2486 switch (TREE_CODE (expr))
2487 {
2488 case REAL_CST:
2489 return REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconstm1)
2490 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2491 case COMPLEX_CST:
2492 return real_minus_onep (TREE_REALPART (expr))
2493 && real_zerop (TREE_IMAGPART (expr));
2494 case VECTOR_CST:
2495 {
2496 unsigned i;
2497 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
2498 if (!real_minus_onep (VECTOR_CST_ELT (expr, i)))
2499 return false;
2500 return true;
2501 }
2502 default:
2503 return false;
2504 }
2505 }
2506
2507 /* Nonzero if EXP is a constant or a cast of a constant. */
2508
2509 int
2510 really_constant_p (const_tree exp)
2511 {
2512 /* This is not quite the same as STRIP_NOPS. It does more. */
2513 while (CONVERT_EXPR_P (exp)
2514 || TREE_CODE (exp) == NON_LVALUE_EXPR)
2515 exp = TREE_OPERAND (exp, 0);
2516 return TREE_CONSTANT (exp);
2517 }
2518 \f
2519 /* Return first list element whose TREE_VALUE is ELEM.
2520 Return 0 if ELEM is not in LIST. */
2521
2522 tree
2523 value_member (tree elem, tree list)
2524 {
2525 while (list)
2526 {
2527 if (elem == TREE_VALUE (list))
2528 return list;
2529 list = TREE_CHAIN (list);
2530 }
2531 return NULL_TREE;
2532 }
2533
2534 /* Return first list element whose TREE_PURPOSE is ELEM.
2535 Return 0 if ELEM is not in LIST. */
2536
2537 tree
2538 purpose_member (const_tree elem, tree list)
2539 {
2540 while (list)
2541 {
2542 if (elem == TREE_PURPOSE (list))
2543 return list;
2544 list = TREE_CHAIN (list);
2545 }
2546 return NULL_TREE;
2547 }
2548
2549 /* Return true if ELEM is in V. */
2550
2551 bool
2552 vec_member (const_tree elem, vec<tree, va_gc> *v)
2553 {
2554 unsigned ix;
2555 tree t;
2556 FOR_EACH_VEC_SAFE_ELT (v, ix, t)
2557 if (elem == t)
2558 return true;
2559 return false;
2560 }
2561
2562 /* Returns element number IDX (zero-origin) of chain CHAIN, or
2563 NULL_TREE. */
2564
2565 tree
2566 chain_index (int idx, tree chain)
2567 {
2568 for (; chain && idx > 0; --idx)
2569 chain = TREE_CHAIN (chain);
2570 return chain;
2571 }
2572
2573 /* Return nonzero if ELEM is part of the chain CHAIN. */
2574
2575 int
2576 chain_member (const_tree elem, const_tree chain)
2577 {
2578 while (chain)
2579 {
2580 if (elem == chain)
2581 return 1;
2582 chain = DECL_CHAIN (chain);
2583 }
2584
2585 return 0;
2586 }
2587
2588 /* Return the length of a chain of nodes chained through TREE_CHAIN.
2589 We expect a null pointer to mark the end of the chain.
2590 This is the Lisp primitive `length'. */
2591
2592 int
2593 list_length (const_tree t)
2594 {
2595 const_tree p = t;
2596 #ifdef ENABLE_TREE_CHECKING
2597 const_tree q = t;
2598 #endif
2599 int len = 0;
2600
2601 while (p)
2602 {
2603 p = TREE_CHAIN (p);
2604 #ifdef ENABLE_TREE_CHECKING
2605 if (len % 2)
2606 q = TREE_CHAIN (q);
2607 gcc_assert (p != q);
2608 #endif
2609 len++;
2610 }
2611
2612 return len;
2613 }
2614
2615 /* Returns the first FIELD_DECL in the TYPE_FIELDS of the RECORD_TYPE or
2616 UNION_TYPE TYPE, or NULL_TREE if none. */
2617
2618 tree
2619 first_field (const_tree type)
2620 {
2621 tree t = TYPE_FIELDS (type);
2622 while (t && TREE_CODE (t) != FIELD_DECL)
2623 t = TREE_CHAIN (t);
2624 return t;
2625 }
2626
2627 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
2628 by modifying the last node in chain 1 to point to chain 2.
2629 This is the Lisp primitive `nconc'. */
2630
2631 tree
2632 chainon (tree op1, tree op2)
2633 {
2634 tree t1;
2635
2636 if (!op1)
2637 return op2;
2638 if (!op2)
2639 return op1;
2640
2641 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
2642 continue;
2643 TREE_CHAIN (t1) = op2;
2644
2645 #ifdef ENABLE_TREE_CHECKING
2646 {
2647 tree t2;
2648 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
2649 gcc_assert (t2 != t1);
2650 }
2651 #endif
2652
2653 return op1;
2654 }
2655
2656 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
2657
2658 tree
2659 tree_last (tree chain)
2660 {
2661 tree next;
2662 if (chain)
2663 while ((next = TREE_CHAIN (chain)))
2664 chain = next;
2665 return chain;
2666 }
2667
2668 /* Reverse the order of elements in the chain T,
2669 and return the new head of the chain (old last element). */
2670
2671 tree
2672 nreverse (tree t)
2673 {
2674 tree prev = 0, decl, next;
2675 for (decl = t; decl; decl = next)
2676 {
2677 /* We shouldn't be using this function to reverse BLOCK chains; we
2678 have blocks_nreverse for that. */
2679 gcc_checking_assert (TREE_CODE (decl) != BLOCK);
2680 next = TREE_CHAIN (decl);
2681 TREE_CHAIN (decl) = prev;
2682 prev = decl;
2683 }
2684 return prev;
2685 }
2686 \f
2687 /* Return a newly created TREE_LIST node whose
2688 purpose and value fields are PARM and VALUE. */
2689
2690 tree
2691 build_tree_list_stat (tree parm, tree value MEM_STAT_DECL)
2692 {
2693 tree t = make_node_stat (TREE_LIST PASS_MEM_STAT);
2694 TREE_PURPOSE (t) = parm;
2695 TREE_VALUE (t) = value;
2696 return t;
2697 }
2698
2699 /* Build a chain of TREE_LIST nodes from a vector. */
2700
2701 tree
2702 build_tree_list_vec_stat (const vec<tree, va_gc> *vec MEM_STAT_DECL)
2703 {
2704 tree ret = NULL_TREE;
2705 tree *pp = &ret;
2706 unsigned int i;
2707 tree t;
2708 FOR_EACH_VEC_SAFE_ELT (vec, i, t)
2709 {
2710 *pp = build_tree_list_stat (NULL, t PASS_MEM_STAT);
2711 pp = &TREE_CHAIN (*pp);
2712 }
2713 return ret;
2714 }
2715
2716 /* Return a newly created TREE_LIST node whose
2717 purpose and value fields are PURPOSE and VALUE
2718 and whose TREE_CHAIN is CHAIN. */
2719
2720 tree
2721 tree_cons_stat (tree purpose, tree value, tree chain MEM_STAT_DECL)
2722 {
2723 tree node;
2724
2725 node = ggc_alloc_tree_node_stat (sizeof (struct tree_list) PASS_MEM_STAT);
2726 memset (node, 0, sizeof (struct tree_common));
2727
2728 record_node_allocation_statistics (TREE_LIST, sizeof (struct tree_list));
2729
2730 TREE_SET_CODE (node, TREE_LIST);
2731 TREE_CHAIN (node) = chain;
2732 TREE_PURPOSE (node) = purpose;
2733 TREE_VALUE (node) = value;
2734 return node;
2735 }
2736
2737 /* Return the values of the elements of a CONSTRUCTOR as a vector of
2738 trees. */
2739
2740 vec<tree, va_gc> *
2741 ctor_to_vec (tree ctor)
2742 {
2743 vec<tree, va_gc> *vec;
2744 vec_alloc (vec, CONSTRUCTOR_NELTS (ctor));
2745 unsigned int ix;
2746 tree val;
2747
2748 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (ctor), ix, val)
2749 vec->quick_push (val);
2750
2751 return vec;
2752 }
2753 \f
2754 /* Return the size nominally occupied by an object of type TYPE
2755 when it resides in memory. The value is measured in units of bytes,
2756 and its data type is that normally used for type sizes
2757 (which is the first type created by make_signed_type or
2758 make_unsigned_type). */
2759
2760 tree
2761 size_in_bytes (const_tree type)
2762 {
2763 tree t;
2764
2765 if (type == error_mark_node)
2766 return integer_zero_node;
2767
2768 type = TYPE_MAIN_VARIANT (type);
2769 t = TYPE_SIZE_UNIT (type);
2770
2771 if (t == 0)
2772 {
2773 lang_hooks.types.incomplete_type_error (NULL_TREE, type);
2774 return size_zero_node;
2775 }
2776
2777 return t;
2778 }
2779
2780 /* Return the size of TYPE (in bytes) as a wide integer
2781 or return -1 if the size can vary or is larger than an integer. */
2782
2783 HOST_WIDE_INT
2784 int_size_in_bytes (const_tree type)
2785 {
2786 tree t;
2787
2788 if (type == error_mark_node)
2789 return 0;
2790
2791 type = TYPE_MAIN_VARIANT (type);
2792 t = TYPE_SIZE_UNIT (type);
2793
2794 if (t && tree_fits_uhwi_p (t))
2795 return TREE_INT_CST_LOW (t);
2796 else
2797 return -1;
2798 }
2799
2800 /* Return the maximum size of TYPE (in bytes) as a wide integer
2801 or return -1 if the size can vary or is larger than an integer. */
2802
2803 HOST_WIDE_INT
2804 max_int_size_in_bytes (const_tree type)
2805 {
2806 HOST_WIDE_INT size = -1;
2807 tree size_tree;
2808
2809 /* If this is an array type, check for a possible MAX_SIZE attached. */
2810
2811 if (TREE_CODE (type) == ARRAY_TYPE)
2812 {
2813 size_tree = TYPE_ARRAY_MAX_SIZE (type);
2814
2815 if (size_tree && tree_fits_uhwi_p (size_tree))
2816 size = tree_to_uhwi (size_tree);
2817 }
2818
2819 /* If we still haven't been able to get a size, see if the language
2820 can compute a maximum size. */
2821
2822 if (size == -1)
2823 {
2824 size_tree = lang_hooks.types.max_size (type);
2825
2826 if (size_tree && tree_fits_uhwi_p (size_tree))
2827 size = tree_to_uhwi (size_tree);
2828 }
2829
2830 return size;
2831 }
2832 \f
2833 /* Return the bit position of FIELD, in bits from the start of the record.
2834 This is a tree of type bitsizetype. */
2835
2836 tree
2837 bit_position (const_tree field)
2838 {
2839 return bit_from_pos (DECL_FIELD_OFFSET (field),
2840 DECL_FIELD_BIT_OFFSET (field));
2841 }
2842 \f
2843 /* Return the byte position of FIELD, in bytes from the start of the record.
2844 This is a tree of type sizetype. */
2845
2846 tree
2847 byte_position (const_tree field)
2848 {
2849 return byte_from_pos (DECL_FIELD_OFFSET (field),
2850 DECL_FIELD_BIT_OFFSET (field));
2851 }
2852
2853 /* Likewise, but return as an integer. It must be representable in
2854 that way (since it could be a signed value, we don't have the
2855 option of returning -1 like int_size_in_byte can. */
2856
2857 HOST_WIDE_INT
2858 int_byte_position (const_tree field)
2859 {
2860 return tree_to_shwi (byte_position (field));
2861 }
2862 \f
2863 /* Return the strictest alignment, in bits, that T is known to have. */
2864
2865 unsigned int
2866 expr_align (const_tree t)
2867 {
2868 unsigned int align0, align1;
2869
2870 switch (TREE_CODE (t))
2871 {
2872 CASE_CONVERT: case NON_LVALUE_EXPR:
2873 /* If we have conversions, we know that the alignment of the
2874 object must meet each of the alignments of the types. */
2875 align0 = expr_align (TREE_OPERAND (t, 0));
2876 align1 = TYPE_ALIGN (TREE_TYPE (t));
2877 return MAX (align0, align1);
2878
2879 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
2880 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
2881 case CLEANUP_POINT_EXPR:
2882 /* These don't change the alignment of an object. */
2883 return expr_align (TREE_OPERAND (t, 0));
2884
2885 case COND_EXPR:
2886 /* The best we can do is say that the alignment is the least aligned
2887 of the two arms. */
2888 align0 = expr_align (TREE_OPERAND (t, 1));
2889 align1 = expr_align (TREE_OPERAND (t, 2));
2890 return MIN (align0, align1);
2891
2892 /* FIXME: LABEL_DECL and CONST_DECL never have DECL_ALIGN set
2893 meaningfully, it's always 1. */
2894 case LABEL_DECL: case CONST_DECL:
2895 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
2896 case FUNCTION_DECL:
2897 gcc_assert (DECL_ALIGN (t) != 0);
2898 return DECL_ALIGN (t);
2899
2900 default:
2901 break;
2902 }
2903
2904 /* Otherwise take the alignment from that of the type. */
2905 return TYPE_ALIGN (TREE_TYPE (t));
2906 }
2907 \f
2908 /* Return, as a tree node, the number of elements for TYPE (which is an
2909 ARRAY_TYPE) minus one. This counts only elements of the top array. */
2910
2911 tree
2912 array_type_nelts (const_tree type)
2913 {
2914 tree index_type, min, max;
2915
2916 /* If they did it with unspecified bounds, then we should have already
2917 given an error about it before we got here. */
2918 if (! TYPE_DOMAIN (type))
2919 return error_mark_node;
2920
2921 index_type = TYPE_DOMAIN (type);
2922 min = TYPE_MIN_VALUE (index_type);
2923 max = TYPE_MAX_VALUE (index_type);
2924
2925 /* TYPE_MAX_VALUE may not be set if the array has unknown length. */
2926 if (!max)
2927 return error_mark_node;
2928
2929 return (integer_zerop (min)
2930 ? max
2931 : fold_build2 (MINUS_EXPR, TREE_TYPE (max), max, min));
2932 }
2933 \f
2934 /* If arg is static -- a reference to an object in static storage -- then
2935 return the object. This is not the same as the C meaning of `static'.
2936 If arg isn't static, return NULL. */
2937
2938 tree
2939 staticp (tree arg)
2940 {
2941 switch (TREE_CODE (arg))
2942 {
2943 case FUNCTION_DECL:
2944 /* Nested functions are static, even though taking their address will
2945 involve a trampoline as we unnest the nested function and create
2946 the trampoline on the tree level. */
2947 return arg;
2948
2949 case VAR_DECL:
2950 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2951 && ! DECL_THREAD_LOCAL_P (arg)
2952 && ! DECL_DLLIMPORT_P (arg)
2953 ? arg : NULL);
2954
2955 case CONST_DECL:
2956 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2957 ? arg : NULL);
2958
2959 case CONSTRUCTOR:
2960 return TREE_STATIC (arg) ? arg : NULL;
2961
2962 case LABEL_DECL:
2963 case STRING_CST:
2964 return arg;
2965
2966 case COMPONENT_REF:
2967 /* If the thing being referenced is not a field, then it is
2968 something language specific. */
2969 gcc_assert (TREE_CODE (TREE_OPERAND (arg, 1)) == FIELD_DECL);
2970
2971 /* If we are referencing a bitfield, we can't evaluate an
2972 ADDR_EXPR at compile time and so it isn't a constant. */
2973 if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
2974 return NULL;
2975
2976 return staticp (TREE_OPERAND (arg, 0));
2977
2978 case BIT_FIELD_REF:
2979 return NULL;
2980
2981 case INDIRECT_REF:
2982 return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;
2983
2984 case ARRAY_REF:
2985 case ARRAY_RANGE_REF:
2986 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
2987 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
2988 return staticp (TREE_OPERAND (arg, 0));
2989 else
2990 return NULL;
2991
2992 case COMPOUND_LITERAL_EXPR:
2993 return TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (arg)) ? arg : NULL;
2994
2995 default:
2996 return NULL;
2997 }
2998 }
2999
3000 \f
3001
3002
3003 /* Return whether OP is a DECL whose address is function-invariant. */
3004
3005 bool
3006 decl_address_invariant_p (const_tree op)
3007 {
3008 /* The conditions below are slightly less strict than the one in
3009 staticp. */
3010
3011 switch (TREE_CODE (op))
3012 {
3013 case PARM_DECL:
3014 case RESULT_DECL:
3015 case LABEL_DECL:
3016 case FUNCTION_DECL:
3017 return true;
3018
3019 case VAR_DECL:
3020 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
3021 || DECL_THREAD_LOCAL_P (op)
3022 || DECL_CONTEXT (op) == current_function_decl
3023 || decl_function_context (op) == current_function_decl)
3024 return true;
3025 break;
3026
3027 case CONST_DECL:
3028 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
3029 || decl_function_context (op) == current_function_decl)
3030 return true;
3031 break;
3032
3033 default:
3034 break;
3035 }
3036
3037 return false;
3038 }
3039
3040 /* Return whether OP is a DECL whose address is interprocedural-invariant. */
3041
3042 bool
3043 decl_address_ip_invariant_p (const_tree op)
3044 {
3045 /* The conditions below are slightly less strict than the one in
3046 staticp. */
3047
3048 switch (TREE_CODE (op))
3049 {
3050 case LABEL_DECL:
3051 case FUNCTION_DECL:
3052 case STRING_CST:
3053 return true;
3054
3055 case VAR_DECL:
3056 if (((TREE_STATIC (op) || DECL_EXTERNAL (op))
3057 && !DECL_DLLIMPORT_P (op))
3058 || DECL_THREAD_LOCAL_P (op))
3059 return true;
3060 break;
3061
3062 case CONST_DECL:
3063 if ((TREE_STATIC (op) || DECL_EXTERNAL (op)))
3064 return true;
3065 break;
3066
3067 default:
3068 break;
3069 }
3070
3071 return false;
3072 }
3073
3074
3075 /* Return true if T is function-invariant (internal function, does
3076 not handle arithmetic; that's handled in skip_simple_arithmetic and
3077 tree_invariant_p). */
3078
3079 static bool tree_invariant_p (tree t);
3080
3081 static bool
3082 tree_invariant_p_1 (tree t)
3083 {
3084 tree op;
3085
3086 if (TREE_CONSTANT (t)
3087 || (TREE_READONLY (t) && !TREE_SIDE_EFFECTS (t)))
3088 return true;
3089
3090 switch (TREE_CODE (t))
3091 {
3092 case SAVE_EXPR:
3093 return true;
3094
3095 case ADDR_EXPR:
3096 op = TREE_OPERAND (t, 0);
3097 while (handled_component_p (op))
3098 {
3099 switch (TREE_CODE (op))
3100 {
3101 case ARRAY_REF:
3102 case ARRAY_RANGE_REF:
3103 if (!tree_invariant_p (TREE_OPERAND (op, 1))
3104 || TREE_OPERAND (op, 2) != NULL_TREE
3105 || TREE_OPERAND (op, 3) != NULL_TREE)
3106 return false;
3107 break;
3108
3109 case COMPONENT_REF:
3110 if (TREE_OPERAND (op, 2) != NULL_TREE)
3111 return false;
3112 break;
3113
3114 default:;
3115 }
3116 op = TREE_OPERAND (op, 0);
3117 }
3118
3119 return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
3120
3121 default:
3122 break;
3123 }
3124
3125 return false;
3126 }
3127
3128 /* Return true if T is function-invariant. */
3129
3130 static bool
3131 tree_invariant_p (tree t)
3132 {
3133 tree inner = skip_simple_arithmetic (t);
3134 return tree_invariant_p_1 (inner);
3135 }
3136
3137 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
3138 Do this to any expression which may be used in more than one place,
3139 but must be evaluated only once.
3140
3141 Normally, expand_expr would reevaluate the expression each time.
3142 Calling save_expr produces something that is evaluated and recorded
3143 the first time expand_expr is called on it. Subsequent calls to
3144 expand_expr just reuse the recorded value.
3145
3146 The call to expand_expr that generates code that actually computes
3147 the value is the first call *at compile time*. Subsequent calls
3148 *at compile time* generate code to use the saved value.
3149 This produces correct result provided that *at run time* control
3150 always flows through the insns made by the first expand_expr
3151 before reaching the other places where the save_expr was evaluated.
3152 You, the caller of save_expr, must make sure this is so.
3153
3154 Constants, and certain read-only nodes, are returned with no
3155 SAVE_EXPR because that is safe. Expressions containing placeholders
3156 are not touched; see tree.def for an explanation of what these
3157 are used for. */
3158
3159 tree
3160 save_expr (tree expr)
3161 {
3162 tree t = fold (expr);
3163 tree inner;
3164
3165 /* If the tree evaluates to a constant, then we don't want to hide that
3166 fact (i.e. this allows further folding, and direct checks for constants).
3167 However, a read-only object that has side effects cannot be bypassed.
3168 Since it is no problem to reevaluate literals, we just return the
3169 literal node. */
3170 inner = skip_simple_arithmetic (t);
3171 if (TREE_CODE (inner) == ERROR_MARK)
3172 return inner;
3173
3174 if (tree_invariant_p_1 (inner))
3175 return t;
3176
3177 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
3178 it means that the size or offset of some field of an object depends on
3179 the value within another field.
3180
3181 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
3182 and some variable since it would then need to be both evaluated once and
3183 evaluated more than once. Front-ends must assure this case cannot
3184 happen by surrounding any such subexpressions in their own SAVE_EXPR
3185 and forcing evaluation at the proper time. */
3186 if (contains_placeholder_p (inner))
3187 return t;
3188
3189 t = build1 (SAVE_EXPR, TREE_TYPE (expr), t);
3190 SET_EXPR_LOCATION (t, EXPR_LOCATION (expr));
3191
3192 /* This expression might be placed ahead of a jump to ensure that the
3193 value was computed on both sides of the jump. So make sure it isn't
3194 eliminated as dead. */
3195 TREE_SIDE_EFFECTS (t) = 1;
3196 return t;
3197 }
3198
3199 /* Look inside EXPR into any simple arithmetic operations. Return the
3200 outermost non-arithmetic or non-invariant node. */
3201
3202 tree
3203 skip_simple_arithmetic (tree expr)
3204 {
3205 /* We don't care about whether this can be used as an lvalue in this
3206 context. */
3207 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
3208 expr = TREE_OPERAND (expr, 0);
3209
3210 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
3211 a constant, it will be more efficient to not make another SAVE_EXPR since
3212 it will allow better simplification and GCSE will be able to merge the
3213 computations if they actually occur. */
3214 while (true)
3215 {
3216 if (UNARY_CLASS_P (expr))
3217 expr = TREE_OPERAND (expr, 0);
3218 else if (BINARY_CLASS_P (expr))
3219 {
3220 if (tree_invariant_p (TREE_OPERAND (expr, 1)))
3221 expr = TREE_OPERAND (expr, 0);
3222 else if (tree_invariant_p (TREE_OPERAND (expr, 0)))
3223 expr = TREE_OPERAND (expr, 1);
3224 else
3225 break;
3226 }
3227 else
3228 break;
3229 }
3230
3231 return expr;
3232 }
3233
3234 /* Look inside EXPR into simple arithmetic operations involving constants.
3235 Return the outermost non-arithmetic or non-constant node. */
3236
3237 tree
3238 skip_simple_constant_arithmetic (tree expr)
3239 {
3240 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
3241 expr = TREE_OPERAND (expr, 0);
3242
3243 while (true)
3244 {
3245 if (UNARY_CLASS_P (expr))
3246 expr = TREE_OPERAND (expr, 0);
3247 else if (BINARY_CLASS_P (expr))
3248 {
3249 if (TREE_CONSTANT (TREE_OPERAND (expr, 1)))
3250 expr = TREE_OPERAND (expr, 0);
3251 else if (TREE_CONSTANT (TREE_OPERAND (expr, 0)))
3252 expr = TREE_OPERAND (expr, 1);
3253 else
3254 break;
3255 }
3256 else
3257 break;
3258 }
3259
3260 return expr;
3261 }
3262
3263 /* Return which tree structure is used by T. */
3264
3265 enum tree_node_structure_enum
3266 tree_node_structure (const_tree t)
3267 {
3268 const enum tree_code code = TREE_CODE (t);
3269 return tree_node_structure_for_code (code);
3270 }
3271
3272 /* Set various status flags when building a CALL_EXPR object T. */
3273
3274 static void
3275 process_call_operands (tree t)
3276 {
3277 bool side_effects = TREE_SIDE_EFFECTS (t);
3278 bool read_only = false;
3279 int i = call_expr_flags (t);
3280
3281 /* Calls have side-effects, except those to const or pure functions. */
3282 if ((i & ECF_LOOPING_CONST_OR_PURE) || !(i & (ECF_CONST | ECF_PURE)))
3283 side_effects = true;
3284 /* Propagate TREE_READONLY of arguments for const functions. */
3285 if (i & ECF_CONST)
3286 read_only = true;
3287
3288 if (!side_effects || read_only)
3289 for (i = 1; i < TREE_OPERAND_LENGTH (t); i++)
3290 {
3291 tree op = TREE_OPERAND (t, i);
3292 if (op && TREE_SIDE_EFFECTS (op))
3293 side_effects = true;
3294 if (op && !TREE_READONLY (op) && !CONSTANT_CLASS_P (op))
3295 read_only = false;
3296 }
3297
3298 TREE_SIDE_EFFECTS (t) = side_effects;
3299 TREE_READONLY (t) = read_only;
3300 }
3301 \f
3302 /* Return true if EXP contains a PLACEHOLDER_EXPR, i.e. if it represents a
3303 size or offset that depends on a field within a record. */
3304
3305 bool
3306 contains_placeholder_p (const_tree exp)
3307 {
3308 enum tree_code code;
3309
3310 if (!exp)
3311 return 0;
3312
3313 code = TREE_CODE (exp);
3314 if (code == PLACEHOLDER_EXPR)
3315 return 1;
3316
3317 switch (TREE_CODE_CLASS (code))
3318 {
3319 case tcc_reference:
3320 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
3321 position computations since they will be converted into a
3322 WITH_RECORD_EXPR involving the reference, which will assume
3323 here will be valid. */
3324 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
3325
3326 case tcc_exceptional:
3327 if (code == TREE_LIST)
3328 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
3329 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
3330 break;
3331
3332 case tcc_unary:
3333 case tcc_binary:
3334 case tcc_comparison:
3335 case tcc_expression:
3336 switch (code)
3337 {
3338 case COMPOUND_EXPR:
3339 /* Ignoring the first operand isn't quite right, but works best. */
3340 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
3341
3342 case COND_EXPR:
3343 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
3344 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
3345 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
3346
3347 case SAVE_EXPR:
3348 /* The save_expr function never wraps anything containing
3349 a PLACEHOLDER_EXPR. */
3350 return 0;
3351
3352 default:
3353 break;
3354 }
3355
3356 switch (TREE_CODE_LENGTH (code))
3357 {
3358 case 1:
3359 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
3360 case 2:
3361 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
3362 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
3363 default:
3364 return 0;
3365 }
3366
3367 case tcc_vl_exp:
3368 switch (code)
3369 {
3370 case CALL_EXPR:
3371 {
3372 const_tree arg;
3373 const_call_expr_arg_iterator iter;
3374 FOR_EACH_CONST_CALL_EXPR_ARG (arg, iter, exp)
3375 if (CONTAINS_PLACEHOLDER_P (arg))
3376 return 1;
3377 return 0;
3378 }
3379 default:
3380 return 0;
3381 }
3382
3383 default:
3384 return 0;
3385 }
3386 return 0;
3387 }
3388
3389 /* Return true if any part of the structure of TYPE involves a PLACEHOLDER_EXPR
3390 directly. This includes size, bounds, qualifiers (for QUAL_UNION_TYPE) and
3391 field positions. */
3392
3393 static bool
3394 type_contains_placeholder_1 (const_tree type)
3395 {
3396 /* If the size contains a placeholder or the parent type (component type in
3397 the case of arrays) type involves a placeholder, this type does. */
3398 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
3399 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
3400 || (!POINTER_TYPE_P (type)
3401 && TREE_TYPE (type)
3402 && type_contains_placeholder_p (TREE_TYPE (type))))
3403 return true;
3404
3405 /* Now do type-specific checks. Note that the last part of the check above
3406 greatly limits what we have to do below. */
3407 switch (TREE_CODE (type))
3408 {
3409 case VOID_TYPE:
3410 case COMPLEX_TYPE:
3411 case ENUMERAL_TYPE:
3412 case BOOLEAN_TYPE:
3413 case POINTER_TYPE:
3414 case OFFSET_TYPE:
3415 case REFERENCE_TYPE:
3416 case METHOD_TYPE:
3417 case FUNCTION_TYPE:
3418 case VECTOR_TYPE:
3419 case NULLPTR_TYPE:
3420 return false;
3421
3422 case INTEGER_TYPE:
3423 case REAL_TYPE:
3424 case FIXED_POINT_TYPE:
3425 /* Here we just check the bounds. */
3426 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
3427 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
3428
3429 case ARRAY_TYPE:
3430 /* We have already checked the component type above, so just check the
3431 domain type. */
3432 return type_contains_placeholder_p (TYPE_DOMAIN (type));
3433
3434 case RECORD_TYPE:
3435 case UNION_TYPE:
3436 case QUAL_UNION_TYPE:
3437 {
3438 tree field;
3439
3440 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
3441 if (TREE_CODE (field) == FIELD_DECL
3442 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
3443 || (TREE_CODE (type) == QUAL_UNION_TYPE
3444 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
3445 || type_contains_placeholder_p (TREE_TYPE (field))))
3446 return true;
3447
3448 return false;
3449 }
3450
3451 default:
3452 gcc_unreachable ();
3453 }
3454 }
3455
3456 /* Wrapper around above function used to cache its result. */
3457
3458 bool
3459 type_contains_placeholder_p (tree type)
3460 {
3461 bool result;
3462
3463 /* If the contains_placeholder_bits field has been initialized,
3464 then we know the answer. */
3465 if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0)
3466 return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1;
3467
3468 /* Indicate that we've seen this type node, and the answer is false.
3469 This is what we want to return if we run into recursion via fields. */
3470 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1;
3471
3472 /* Compute the real value. */
3473 result = type_contains_placeholder_1 (type);
3474
3475 /* Store the real value. */
3476 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1;
3477
3478 return result;
3479 }
3480 \f
3481 /* Push tree EXP onto vector QUEUE if it is not already present. */
3482
3483 static void
3484 push_without_duplicates (tree exp, vec<tree> *queue)
3485 {
3486 unsigned int i;
3487 tree iter;
3488
3489 FOR_EACH_VEC_ELT (*queue, i, iter)
3490 if (simple_cst_equal (iter, exp) == 1)
3491 break;
3492
3493 if (!iter)
3494 queue->safe_push (exp);
3495 }
3496
3497 /* Given a tree EXP, find all occurrences of references to fields
3498 in a PLACEHOLDER_EXPR and place them in vector REFS without
3499 duplicates. Also record VAR_DECLs and CONST_DECLs. Note that
3500 we assume here that EXP contains only arithmetic expressions
3501 or CALL_EXPRs with PLACEHOLDER_EXPRs occurring only in their
3502 argument list. */
3503
3504 void
3505 find_placeholder_in_expr (tree exp, vec<tree> *refs)
3506 {
3507 enum tree_code code = TREE_CODE (exp);
3508 tree inner;
3509 int i;
3510
3511 /* We handle TREE_LIST and COMPONENT_REF separately. */
3512 if (code == TREE_LIST)
3513 {
3514 FIND_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), refs);
3515 FIND_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), refs);
3516 }
3517 else if (code == COMPONENT_REF)
3518 {
3519 for (inner = TREE_OPERAND (exp, 0);
3520 REFERENCE_CLASS_P (inner);
3521 inner = TREE_OPERAND (inner, 0))
3522 ;
3523
3524 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
3525 push_without_duplicates (exp, refs);
3526 else
3527 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), refs);
3528 }
3529 else
3530 switch (TREE_CODE_CLASS (code))
3531 {
3532 case tcc_constant:
3533 break;
3534
3535 case tcc_declaration:
3536 /* Variables allocated to static storage can stay. */
3537 if (!TREE_STATIC (exp))
3538 push_without_duplicates (exp, refs);
3539 break;
3540
3541 case tcc_expression:
3542 /* This is the pattern built in ada/make_aligning_type. */
3543 if (code == ADDR_EXPR
3544 && TREE_CODE (TREE_OPERAND (exp, 0)) == PLACEHOLDER_EXPR)
3545 {
3546 push_without_duplicates (exp, refs);
3547 break;
3548 }
3549
3550 /* Fall through... */
3551
3552 case tcc_exceptional:
3553 case tcc_unary:
3554 case tcc_binary:
3555 case tcc_comparison:
3556 case tcc_reference:
3557 for (i = 0; i < TREE_CODE_LENGTH (code); i++)
3558 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
3559 break;
3560
3561 case tcc_vl_exp:
3562 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3563 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
3564 break;
3565
3566 default:
3567 gcc_unreachable ();
3568 }
3569 }
3570
3571 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
3572 return a tree with all occurrences of references to F in a
3573 PLACEHOLDER_EXPR replaced by R. Also handle VAR_DECLs and
3574 CONST_DECLs. Note that we assume here that EXP contains only
3575 arithmetic expressions or CALL_EXPRs with PLACEHOLDER_EXPRs
3576 occurring only in their argument list. */
3577
3578 tree
3579 substitute_in_expr (tree exp, tree f, tree r)
3580 {
3581 enum tree_code code = TREE_CODE (exp);
3582 tree op0, op1, op2, op3;
3583 tree new_tree;
3584
3585 /* We handle TREE_LIST and COMPONENT_REF separately. */
3586 if (code == TREE_LIST)
3587 {
3588 op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
3589 op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
3590 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
3591 return exp;
3592
3593 return tree_cons (TREE_PURPOSE (exp), op1, op0);
3594 }
3595 else if (code == COMPONENT_REF)
3596 {
3597 tree inner;
3598
3599 /* If this expression is getting a value from a PLACEHOLDER_EXPR
3600 and it is the right field, replace it with R. */
3601 for (inner = TREE_OPERAND (exp, 0);
3602 REFERENCE_CLASS_P (inner);
3603 inner = TREE_OPERAND (inner, 0))
3604 ;
3605
3606 /* The field. */
3607 op1 = TREE_OPERAND (exp, 1);
3608
3609 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && op1 == f)
3610 return r;
3611
3612 /* If this expression hasn't been completed let, leave it alone. */
3613 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && !TREE_TYPE (inner))
3614 return exp;
3615
3616 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3617 if (op0 == TREE_OPERAND (exp, 0))
3618 return exp;
3619
3620 new_tree
3621 = fold_build3 (COMPONENT_REF, TREE_TYPE (exp), op0, op1, NULL_TREE);
3622 }
3623 else
3624 switch (TREE_CODE_CLASS (code))
3625 {
3626 case tcc_constant:
3627 return exp;
3628
3629 case tcc_declaration:
3630 if (exp == f)
3631 return r;
3632 else
3633 return exp;
3634
3635 case tcc_expression:
3636 if (exp == f)
3637 return r;
3638
3639 /* Fall through... */
3640
3641 case tcc_exceptional:
3642 case tcc_unary:
3643 case tcc_binary:
3644 case tcc_comparison:
3645 case tcc_reference:
3646 switch (TREE_CODE_LENGTH (code))
3647 {
3648 case 0:
3649 return exp;
3650
3651 case 1:
3652 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3653 if (op0 == TREE_OPERAND (exp, 0))
3654 return exp;
3655
3656 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
3657 break;
3658
3659 case 2:
3660 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3661 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3662
3663 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
3664 return exp;
3665
3666 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
3667 break;
3668
3669 case 3:
3670 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3671 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3672 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
3673
3674 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3675 && op2 == TREE_OPERAND (exp, 2))
3676 return exp;
3677
3678 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
3679 break;
3680
3681 case 4:
3682 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3683 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3684 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
3685 op3 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 3), f, r);
3686
3687 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3688 && op2 == TREE_OPERAND (exp, 2)
3689 && op3 == TREE_OPERAND (exp, 3))
3690 return exp;
3691
3692 new_tree
3693 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
3694 break;
3695
3696 default:
3697 gcc_unreachable ();
3698 }
3699 break;
3700
3701 case tcc_vl_exp:
3702 {
3703 int i;
3704
3705 new_tree = NULL_TREE;
3706
3707 /* If we are trying to replace F with a constant, inline back
3708 functions which do nothing else than computing a value from
3709 the arguments they are passed. This makes it possible to
3710 fold partially or entirely the replacement expression. */
3711 if (CONSTANT_CLASS_P (r) && code == CALL_EXPR)
3712 {
3713 tree t = maybe_inline_call_in_expr (exp);
3714 if (t)
3715 return SUBSTITUTE_IN_EXPR (t, f, r);
3716 }
3717
3718 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3719 {
3720 tree op = TREE_OPERAND (exp, i);
3721 tree new_op = SUBSTITUTE_IN_EXPR (op, f, r);
3722 if (new_op != op)
3723 {
3724 if (!new_tree)
3725 new_tree = copy_node (exp);
3726 TREE_OPERAND (new_tree, i) = new_op;
3727 }
3728 }
3729
3730 if (new_tree)
3731 {
3732 new_tree = fold (new_tree);
3733 if (TREE_CODE (new_tree) == CALL_EXPR)
3734 process_call_operands (new_tree);
3735 }
3736 else
3737 return exp;
3738 }
3739 break;
3740
3741 default:
3742 gcc_unreachable ();
3743 }
3744
3745 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
3746
3747 if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
3748 TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
3749
3750 return new_tree;
3751 }
3752
3753 /* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
3754 for it within OBJ, a tree that is an object or a chain of references. */
3755
3756 tree
3757 substitute_placeholder_in_expr (tree exp, tree obj)
3758 {
3759 enum tree_code code = TREE_CODE (exp);
3760 tree op0, op1, op2, op3;
3761 tree new_tree;
3762
3763 /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
3764 in the chain of OBJ. */
3765 if (code == PLACEHOLDER_EXPR)
3766 {
3767 tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
3768 tree elt;
3769
3770 for (elt = obj; elt != 0;
3771 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
3772 || TREE_CODE (elt) == COND_EXPR)
3773 ? TREE_OPERAND (elt, 1)
3774 : (REFERENCE_CLASS_P (elt)
3775 || UNARY_CLASS_P (elt)
3776 || BINARY_CLASS_P (elt)
3777 || VL_EXP_CLASS_P (elt)
3778 || EXPRESSION_CLASS_P (elt))
3779 ? TREE_OPERAND (elt, 0) : 0))
3780 if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
3781 return elt;
3782
3783 for (elt = obj; elt != 0;
3784 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
3785 || TREE_CODE (elt) == COND_EXPR)
3786 ? TREE_OPERAND (elt, 1)
3787 : (REFERENCE_CLASS_P (elt)
3788 || UNARY_CLASS_P (elt)
3789 || BINARY_CLASS_P (elt)
3790 || VL_EXP_CLASS_P (elt)
3791 || EXPRESSION_CLASS_P (elt))
3792 ? TREE_OPERAND (elt, 0) : 0))
3793 if (POINTER_TYPE_P (TREE_TYPE (elt))
3794 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
3795 == need_type))
3796 return fold_build1 (INDIRECT_REF, need_type, elt);
3797
3798 /* If we didn't find it, return the original PLACEHOLDER_EXPR. If it
3799 survives until RTL generation, there will be an error. */
3800 return exp;
3801 }
3802
3803 /* TREE_LIST is special because we need to look at TREE_VALUE
3804 and TREE_CHAIN, not TREE_OPERANDS. */
3805 else if (code == TREE_LIST)
3806 {
3807 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
3808 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
3809 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
3810 return exp;
3811
3812 return tree_cons (TREE_PURPOSE (exp), op1, op0);
3813 }
3814 else
3815 switch (TREE_CODE_CLASS (code))
3816 {
3817 case tcc_constant:
3818 case tcc_declaration:
3819 return exp;
3820
3821 case tcc_exceptional:
3822 case tcc_unary:
3823 case tcc_binary:
3824 case tcc_comparison:
3825 case tcc_expression:
3826 case tcc_reference:
3827 case tcc_statement:
3828 switch (TREE_CODE_LENGTH (code))
3829 {
3830 case 0:
3831 return exp;
3832
3833 case 1:
3834 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3835 if (op0 == TREE_OPERAND (exp, 0))
3836 return exp;
3837
3838 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
3839 break;
3840
3841 case 2:
3842 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3843 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3844
3845 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
3846 return exp;
3847
3848 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
3849 break;
3850
3851 case 3:
3852 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3853 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3854 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
3855
3856 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3857 && op2 == TREE_OPERAND (exp, 2))
3858 return exp;
3859
3860 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
3861 break;
3862
3863 case 4:
3864 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3865 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3866 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
3867 op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
3868
3869 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3870 && op2 == TREE_OPERAND (exp, 2)
3871 && op3 == TREE_OPERAND (exp, 3))
3872 return exp;
3873
3874 new_tree
3875 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
3876 break;
3877
3878 default:
3879 gcc_unreachable ();
3880 }
3881 break;
3882
3883 case tcc_vl_exp:
3884 {
3885 int i;
3886
3887 new_tree = NULL_TREE;
3888
3889 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3890 {
3891 tree op = TREE_OPERAND (exp, i);
3892 tree new_op = SUBSTITUTE_PLACEHOLDER_IN_EXPR (op, obj);
3893 if (new_op != op)
3894 {
3895 if (!new_tree)
3896 new_tree = copy_node (exp);
3897 TREE_OPERAND (new_tree, i) = new_op;
3898 }
3899 }
3900
3901 if (new_tree)
3902 {
3903 new_tree = fold (new_tree);
3904 if (TREE_CODE (new_tree) == CALL_EXPR)
3905 process_call_operands (new_tree);
3906 }
3907 else
3908 return exp;
3909 }
3910 break;
3911
3912 default:
3913 gcc_unreachable ();
3914 }
3915
3916 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
3917
3918 if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
3919 TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
3920
3921 return new_tree;
3922 }
3923 \f
3924
3925 /* Subroutine of stabilize_reference; this is called for subtrees of
3926 references. Any expression with side-effects must be put in a SAVE_EXPR
3927 to ensure that it is only evaluated once.
3928
3929 We don't put SAVE_EXPR nodes around everything, because assigning very
3930 simple expressions to temporaries causes us to miss good opportunities
3931 for optimizations. Among other things, the opportunity to fold in the
3932 addition of a constant into an addressing mode often gets lost, e.g.
3933 "y[i+1] += x;". In general, we take the approach that we should not make
3934 an assignment unless we are forced into it - i.e., that any non-side effect
3935 operator should be allowed, and that cse should take care of coalescing
3936 multiple utterances of the same expression should that prove fruitful. */
3937
3938 static tree
3939 stabilize_reference_1 (tree e)
3940 {
3941 tree result;
3942 enum tree_code code = TREE_CODE (e);
3943
3944 /* We cannot ignore const expressions because it might be a reference
3945 to a const array but whose index contains side-effects. But we can
3946 ignore things that are actual constant or that already have been
3947 handled by this function. */
3948
3949 if (tree_invariant_p (e))
3950 return e;
3951
3952 switch (TREE_CODE_CLASS (code))
3953 {
3954 case tcc_exceptional:
3955 case tcc_type:
3956 case tcc_declaration:
3957 case tcc_comparison:
3958 case tcc_statement:
3959 case tcc_expression:
3960 case tcc_reference:
3961 case tcc_vl_exp:
3962 /* If the expression has side-effects, then encase it in a SAVE_EXPR
3963 so that it will only be evaluated once. */
3964 /* The reference (r) and comparison (<) classes could be handled as
3965 below, but it is generally faster to only evaluate them once. */
3966 if (TREE_SIDE_EFFECTS (e))
3967 return save_expr (e);
3968 return e;
3969
3970 case tcc_constant:
3971 /* Constants need no processing. In fact, we should never reach
3972 here. */
3973 return e;
3974
3975 case tcc_binary:
3976 /* Division is slow and tends to be compiled with jumps,
3977 especially the division by powers of 2 that is often
3978 found inside of an array reference. So do it just once. */
3979 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
3980 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
3981 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
3982 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
3983 return save_expr (e);
3984 /* Recursively stabilize each operand. */
3985 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
3986 stabilize_reference_1 (TREE_OPERAND (e, 1)));
3987 break;
3988
3989 case tcc_unary:
3990 /* Recursively stabilize each operand. */
3991 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
3992 break;
3993
3994 default:
3995 gcc_unreachable ();
3996 }
3997
3998 TREE_TYPE (result) = TREE_TYPE (e);
3999 TREE_READONLY (result) = TREE_READONLY (e);
4000 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
4001 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
4002
4003 return result;
4004 }
4005
4006 /* Stabilize a reference so that we can use it any number of times
4007 without causing its operands to be evaluated more than once.
4008 Returns the stabilized reference. This works by means of save_expr,
4009 so see the caveats in the comments about save_expr.
4010
4011 Also allows conversion expressions whose operands are references.
4012 Any other kind of expression is returned unchanged. */
4013
4014 tree
4015 stabilize_reference (tree ref)
4016 {
4017 tree result;
4018 enum tree_code code = TREE_CODE (ref);
4019
4020 switch (code)
4021 {
4022 case VAR_DECL:
4023 case PARM_DECL:
4024 case RESULT_DECL:
4025 /* No action is needed in this case. */
4026 return ref;
4027
4028 CASE_CONVERT:
4029 case FLOAT_EXPR:
4030 case FIX_TRUNC_EXPR:
4031 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
4032 break;
4033
4034 case INDIRECT_REF:
4035 result = build_nt (INDIRECT_REF,
4036 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
4037 break;
4038
4039 case COMPONENT_REF:
4040 result = build_nt (COMPONENT_REF,
4041 stabilize_reference (TREE_OPERAND (ref, 0)),
4042 TREE_OPERAND (ref, 1), NULL_TREE);
4043 break;
4044
4045 case BIT_FIELD_REF:
4046 result = build_nt (BIT_FIELD_REF,
4047 stabilize_reference (TREE_OPERAND (ref, 0)),
4048 TREE_OPERAND (ref, 1), TREE_OPERAND (ref, 2));
4049 break;
4050
4051 case ARRAY_REF:
4052 result = build_nt (ARRAY_REF,
4053 stabilize_reference (TREE_OPERAND (ref, 0)),
4054 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
4055 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
4056 break;
4057
4058 case ARRAY_RANGE_REF:
4059 result = build_nt (ARRAY_RANGE_REF,
4060 stabilize_reference (TREE_OPERAND (ref, 0)),
4061 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
4062 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
4063 break;
4064
4065 case COMPOUND_EXPR:
4066 /* We cannot wrap the first expression in a SAVE_EXPR, as then
4067 it wouldn't be ignored. This matters when dealing with
4068 volatiles. */
4069 return stabilize_reference_1 (ref);
4070
4071 /* If arg isn't a kind of lvalue we recognize, make no change.
4072 Caller should recognize the error for an invalid lvalue. */
4073 default:
4074 return ref;
4075
4076 case ERROR_MARK:
4077 return error_mark_node;
4078 }
4079
4080 TREE_TYPE (result) = TREE_TYPE (ref);
4081 TREE_READONLY (result) = TREE_READONLY (ref);
4082 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
4083 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
4084
4085 return result;
4086 }
4087 \f
4088 /* Low-level constructors for expressions. */
4089
4090 /* A helper function for build1 and constant folders. Set TREE_CONSTANT,
4091 and TREE_SIDE_EFFECTS for an ADDR_EXPR. */
4092
4093 void
4094 recompute_tree_invariant_for_addr_expr (tree t)
4095 {
4096 tree node;
4097 bool tc = true, se = false;
4098
4099 /* We started out assuming this address is both invariant and constant, but
4100 does not have side effects. Now go down any handled components and see if
4101 any of them involve offsets that are either non-constant or non-invariant.
4102 Also check for side-effects.
4103
4104 ??? Note that this code makes no attempt to deal with the case where
4105 taking the address of something causes a copy due to misalignment. */
4106
4107 #define UPDATE_FLAGS(NODE) \
4108 do { tree _node = (NODE); \
4109 if (_node && !TREE_CONSTANT (_node)) tc = false; \
4110 if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
4111
4112 for (node = TREE_OPERAND (t, 0); handled_component_p (node);
4113 node = TREE_OPERAND (node, 0))
4114 {
4115 /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
4116 array reference (probably made temporarily by the G++ front end),
4117 so ignore all the operands. */
4118 if ((TREE_CODE (node) == ARRAY_REF
4119 || TREE_CODE (node) == ARRAY_RANGE_REF)
4120 && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
4121 {
4122 UPDATE_FLAGS (TREE_OPERAND (node, 1));
4123 if (TREE_OPERAND (node, 2))
4124 UPDATE_FLAGS (TREE_OPERAND (node, 2));
4125 if (TREE_OPERAND (node, 3))
4126 UPDATE_FLAGS (TREE_OPERAND (node, 3));
4127 }
4128 /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
4129 FIELD_DECL, apparently. The G++ front end can put something else
4130 there, at least temporarily. */
4131 else if (TREE_CODE (node) == COMPONENT_REF
4132 && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
4133 {
4134 if (TREE_OPERAND (node, 2))
4135 UPDATE_FLAGS (TREE_OPERAND (node, 2));
4136 }
4137 }
4138
4139 node = lang_hooks.expr_to_decl (node, &tc, &se);
4140
4141 /* Now see what's inside. If it's an INDIRECT_REF, copy our properties from
4142 the address, since &(*a)->b is a form of addition. If it's a constant, the
4143 address is constant too. If it's a decl, its address is constant if the
4144 decl is static. Everything else is not constant and, furthermore,
4145 taking the address of a volatile variable is not volatile. */
4146 if (TREE_CODE (node) == INDIRECT_REF
4147 || TREE_CODE (node) == MEM_REF)
4148 UPDATE_FLAGS (TREE_OPERAND (node, 0));
4149 else if (CONSTANT_CLASS_P (node))
4150 ;
4151 else if (DECL_P (node))
4152 tc &= (staticp (node) != NULL_TREE);
4153 else
4154 {
4155 tc = false;
4156 se |= TREE_SIDE_EFFECTS (node);
4157 }
4158
4159
4160 TREE_CONSTANT (t) = tc;
4161 TREE_SIDE_EFFECTS (t) = se;
4162 #undef UPDATE_FLAGS
4163 }
4164
4165 /* Build an expression of code CODE, data type TYPE, and operands as
4166 specified. Expressions and reference nodes can be created this way.
4167 Constants, decls, types and misc nodes cannot be.
4168
4169 We define 5 non-variadic functions, from 0 to 4 arguments. This is
4170 enough for all extant tree codes. */
4171
4172 tree
4173 build0_stat (enum tree_code code, tree tt MEM_STAT_DECL)
4174 {
4175 tree t;
4176
4177 gcc_assert (TREE_CODE_LENGTH (code) == 0);
4178
4179 t = make_node_stat (code PASS_MEM_STAT);
4180 TREE_TYPE (t) = tt;
4181
4182 return t;
4183 }
4184
4185 tree
4186 build1_stat (enum tree_code code, tree type, tree node MEM_STAT_DECL)
4187 {
4188 int length = sizeof (struct tree_exp);
4189 tree t;
4190
4191 record_node_allocation_statistics (code, length);
4192
4193 gcc_assert (TREE_CODE_LENGTH (code) == 1);
4194
4195 t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
4196
4197 memset (t, 0, sizeof (struct tree_common));
4198
4199 TREE_SET_CODE (t, code);
4200
4201 TREE_TYPE (t) = type;
4202 SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
4203 TREE_OPERAND (t, 0) = node;
4204 if (node && !TYPE_P (node))
4205 {
4206 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
4207 TREE_READONLY (t) = TREE_READONLY (node);
4208 }
4209
4210 if (TREE_CODE_CLASS (code) == tcc_statement)
4211 TREE_SIDE_EFFECTS (t) = 1;
4212 else switch (code)
4213 {
4214 case VA_ARG_EXPR:
4215 /* All of these have side-effects, no matter what their
4216 operands are. */
4217 TREE_SIDE_EFFECTS (t) = 1;
4218 TREE_READONLY (t) = 0;
4219 break;
4220
4221 case INDIRECT_REF:
4222 /* Whether a dereference is readonly has nothing to do with whether
4223 its operand is readonly. */
4224 TREE_READONLY (t) = 0;
4225 break;
4226
4227 case ADDR_EXPR:
4228 if (node)
4229 recompute_tree_invariant_for_addr_expr (t);
4230 break;
4231
4232 default:
4233 if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
4234 && node && !TYPE_P (node)
4235 && TREE_CONSTANT (node))
4236 TREE_CONSTANT (t) = 1;
4237 if (TREE_CODE_CLASS (code) == tcc_reference
4238 && node && TREE_THIS_VOLATILE (node))
4239 TREE_THIS_VOLATILE (t) = 1;
4240 break;
4241 }
4242
4243 return t;
4244 }
4245
4246 #define PROCESS_ARG(N) \
4247 do { \
4248 TREE_OPERAND (t, N) = arg##N; \
4249 if (arg##N &&!TYPE_P (arg##N)) \
4250 { \
4251 if (TREE_SIDE_EFFECTS (arg##N)) \
4252 side_effects = 1; \
4253 if (!TREE_READONLY (arg##N) \
4254 && !CONSTANT_CLASS_P (arg##N)) \
4255 (void) (read_only = 0); \
4256 if (!TREE_CONSTANT (arg##N)) \
4257 (void) (constant = 0); \
4258 } \
4259 } while (0)
4260
4261 tree
4262 build2_stat (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
4263 {
4264 bool constant, read_only, side_effects;
4265 tree t;
4266
4267 gcc_assert (TREE_CODE_LENGTH (code) == 2);
4268
4269 if ((code == MINUS_EXPR || code == PLUS_EXPR || code == MULT_EXPR)
4270 && arg0 && arg1 && tt && POINTER_TYPE_P (tt)
4271 /* When sizetype precision doesn't match that of pointers
4272 we need to be able to build explicit extensions or truncations
4273 of the offset argument. */
4274 && TYPE_PRECISION (sizetype) == TYPE_PRECISION (tt))
4275 gcc_assert (TREE_CODE (arg0) == INTEGER_CST
4276 && TREE_CODE (arg1) == INTEGER_CST);
4277
4278 if (code == POINTER_PLUS_EXPR && arg0 && arg1 && tt)
4279 gcc_assert (POINTER_TYPE_P (tt) && POINTER_TYPE_P (TREE_TYPE (arg0))
4280 && ptrofftype_p (TREE_TYPE (arg1)));
4281
4282 t = make_node_stat (code PASS_MEM_STAT);
4283 TREE_TYPE (t) = tt;
4284
4285 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
4286 result based on those same flags for the arguments. But if the
4287 arguments aren't really even `tree' expressions, we shouldn't be trying
4288 to do this. */
4289
4290 /* Expressions without side effects may be constant if their
4291 arguments are as well. */
4292 constant = (TREE_CODE_CLASS (code) == tcc_comparison
4293 || TREE_CODE_CLASS (code) == tcc_binary);
4294 read_only = 1;
4295 side_effects = TREE_SIDE_EFFECTS (t);
4296
4297 PROCESS_ARG (0);
4298 PROCESS_ARG (1);
4299
4300 TREE_READONLY (t) = read_only;
4301 TREE_CONSTANT (t) = constant;
4302 TREE_SIDE_EFFECTS (t) = side_effects;
4303 TREE_THIS_VOLATILE (t)
4304 = (TREE_CODE_CLASS (code) == tcc_reference
4305 && arg0 && TREE_THIS_VOLATILE (arg0));
4306
4307 return t;
4308 }
4309
4310
4311 tree
4312 build3_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
4313 tree arg2 MEM_STAT_DECL)
4314 {
4315 bool constant, read_only, side_effects;
4316 tree t;
4317
4318 gcc_assert (TREE_CODE_LENGTH (code) == 3);
4319 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
4320
4321 t = make_node_stat (code PASS_MEM_STAT);
4322 TREE_TYPE (t) = tt;
4323
4324 read_only = 1;
4325
4326 /* As a special exception, if COND_EXPR has NULL branches, we
4327 assume that it is a gimple statement and always consider
4328 it to have side effects. */
4329 if (code == COND_EXPR
4330 && tt == void_type_node
4331 && arg1 == NULL_TREE
4332 && arg2 == NULL_TREE)
4333 side_effects = true;
4334 else
4335 side_effects = TREE_SIDE_EFFECTS (t);
4336
4337 PROCESS_ARG (0);
4338 PROCESS_ARG (1);
4339 PROCESS_ARG (2);
4340
4341 if (code == COND_EXPR)
4342 TREE_READONLY (t) = read_only;
4343
4344 TREE_SIDE_EFFECTS (t) = side_effects;
4345 TREE_THIS_VOLATILE (t)
4346 = (TREE_CODE_CLASS (code) == tcc_reference
4347 && arg0 && TREE_THIS_VOLATILE (arg0));
4348
4349 return t;
4350 }
4351
4352 tree
4353 build4_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
4354 tree arg2, tree arg3 MEM_STAT_DECL)
4355 {
4356 bool constant, read_only, side_effects;
4357 tree t;
4358
4359 gcc_assert (TREE_CODE_LENGTH (code) == 4);
4360
4361 t = make_node_stat (code PASS_MEM_STAT);
4362 TREE_TYPE (t) = tt;
4363
4364 side_effects = TREE_SIDE_EFFECTS (t);
4365
4366 PROCESS_ARG (0);
4367 PROCESS_ARG (1);
4368 PROCESS_ARG (2);
4369 PROCESS_ARG (3);
4370
4371 TREE_SIDE_EFFECTS (t) = side_effects;
4372 TREE_THIS_VOLATILE (t)
4373 = (TREE_CODE_CLASS (code) == tcc_reference
4374 && arg0 && TREE_THIS_VOLATILE (arg0));
4375
4376 return t;
4377 }
4378
4379 tree
4380 build5_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
4381 tree arg2, tree arg3, tree arg4 MEM_STAT_DECL)
4382 {
4383 bool constant, read_only, side_effects;
4384 tree t;
4385
4386 gcc_assert (TREE_CODE_LENGTH (code) == 5);
4387
4388 t = make_node_stat (code PASS_MEM_STAT);
4389 TREE_TYPE (t) = tt;
4390
4391 side_effects = TREE_SIDE_EFFECTS (t);
4392
4393 PROCESS_ARG (0);
4394 PROCESS_ARG (1);
4395 PROCESS_ARG (2);
4396 PROCESS_ARG (3);
4397 PROCESS_ARG (4);
4398
4399 TREE_SIDE_EFFECTS (t) = side_effects;
4400 TREE_THIS_VOLATILE (t)
4401 = (TREE_CODE_CLASS (code) == tcc_reference
4402 && arg0 && TREE_THIS_VOLATILE (arg0));
4403
4404 return t;
4405 }
4406
4407 /* Build a simple MEM_REF tree with the sematics of a plain INDIRECT_REF
4408 on the pointer PTR. */
4409
4410 tree
4411 build_simple_mem_ref_loc (location_t loc, tree ptr)
4412 {
4413 HOST_WIDE_INT offset = 0;
4414 tree ptype = TREE_TYPE (ptr);
4415 tree tem;
4416 /* For convenience allow addresses that collapse to a simple base
4417 and offset. */
4418 if (TREE_CODE (ptr) == ADDR_EXPR
4419 && (handled_component_p (TREE_OPERAND (ptr, 0))
4420 || TREE_CODE (TREE_OPERAND (ptr, 0)) == MEM_REF))
4421 {
4422 ptr = get_addr_base_and_unit_offset (TREE_OPERAND (ptr, 0), &offset);
4423 gcc_assert (ptr);
4424 ptr = build_fold_addr_expr (ptr);
4425 gcc_assert (is_gimple_reg (ptr) || is_gimple_min_invariant (ptr));
4426 }
4427 tem = build2 (MEM_REF, TREE_TYPE (ptype),
4428 ptr, build_int_cst (ptype, offset));
4429 SET_EXPR_LOCATION (tem, loc);
4430 return tem;
4431 }
4432
4433 /* Return the constant offset of a MEM_REF or TARGET_MEM_REF tree T. */
4434
4435 offset_int
4436 mem_ref_offset (const_tree t)
4437 {
4438 return offset_int::from (TREE_OPERAND (t, 1), SIGNED);
4439 }
4440
4441 /* Return an invariant ADDR_EXPR of type TYPE taking the address of BASE
4442 offsetted by OFFSET units. */
4443
4444 tree
4445 build_invariant_address (tree type, tree base, HOST_WIDE_INT offset)
4446 {
4447 tree ref = fold_build2 (MEM_REF, TREE_TYPE (type),
4448 build_fold_addr_expr (base),
4449 build_int_cst (ptr_type_node, offset));
4450 tree addr = build1 (ADDR_EXPR, type, ref);
4451 recompute_tree_invariant_for_addr_expr (addr);
4452 return addr;
4453 }
4454
4455 /* Similar except don't specify the TREE_TYPE
4456 and leave the TREE_SIDE_EFFECTS as 0.
4457 It is permissible for arguments to be null,
4458 or even garbage if their values do not matter. */
4459
4460 tree
4461 build_nt (enum tree_code code, ...)
4462 {
4463 tree t;
4464 int length;
4465 int i;
4466 va_list p;
4467
4468 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
4469
4470 va_start (p, code);
4471
4472 t = make_node (code);
4473 length = TREE_CODE_LENGTH (code);
4474
4475 for (i = 0; i < length; i++)
4476 TREE_OPERAND (t, i) = va_arg (p, tree);
4477
4478 va_end (p);
4479 return t;
4480 }
4481
4482 /* Similar to build_nt, but for creating a CALL_EXPR object with a
4483 tree vec. */
4484
4485 tree
4486 build_nt_call_vec (tree fn, vec<tree, va_gc> *args)
4487 {
4488 tree ret, t;
4489 unsigned int ix;
4490
4491 ret = build_vl_exp (CALL_EXPR, vec_safe_length (args) + 3);
4492 CALL_EXPR_FN (ret) = fn;
4493 CALL_EXPR_STATIC_CHAIN (ret) = NULL_TREE;
4494 FOR_EACH_VEC_SAFE_ELT (args, ix, t)
4495 CALL_EXPR_ARG (ret, ix) = t;
4496 return ret;
4497 }
4498 \f
4499 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
4500 We do NOT enter this node in any sort of symbol table.
4501
4502 LOC is the location of the decl.
4503
4504 layout_decl is used to set up the decl's storage layout.
4505 Other slots are initialized to 0 or null pointers. */
4506
4507 tree
4508 build_decl_stat (location_t loc, enum tree_code code, tree name,
4509 tree type MEM_STAT_DECL)
4510 {
4511 tree t;
4512
4513 t = make_node_stat (code PASS_MEM_STAT);
4514 DECL_SOURCE_LOCATION (t) = loc;
4515
4516 /* if (type == error_mark_node)
4517 type = integer_type_node; */
4518 /* That is not done, deliberately, so that having error_mark_node
4519 as the type can suppress useless errors in the use of this variable. */
4520
4521 DECL_NAME (t) = name;
4522 TREE_TYPE (t) = type;
4523
4524 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
4525 layout_decl (t, 0);
4526
4527 return t;
4528 }
4529
4530 /* Builds and returns function declaration with NAME and TYPE. */
4531
4532 tree
4533 build_fn_decl (const char *name, tree type)
4534 {
4535 tree id = get_identifier (name);
4536 tree decl = build_decl (input_location, FUNCTION_DECL, id, type);
4537
4538 DECL_EXTERNAL (decl) = 1;
4539 TREE_PUBLIC (decl) = 1;
4540 DECL_ARTIFICIAL (decl) = 1;
4541 TREE_NOTHROW (decl) = 1;
4542
4543 return decl;
4544 }
4545
4546 vec<tree, va_gc> *all_translation_units;
4547
4548 /* Builds a new translation-unit decl with name NAME, queues it in the
4549 global list of translation-unit decls and returns it. */
4550
4551 tree
4552 build_translation_unit_decl (tree name)
4553 {
4554 tree tu = build_decl (UNKNOWN_LOCATION, TRANSLATION_UNIT_DECL,
4555 name, NULL_TREE);
4556 TRANSLATION_UNIT_LANGUAGE (tu) = lang_hooks.name;
4557 vec_safe_push (all_translation_units, tu);
4558 return tu;
4559 }
4560
4561 \f
4562 /* BLOCK nodes are used to represent the structure of binding contours
4563 and declarations, once those contours have been exited and their contents
4564 compiled. This information is used for outputting debugging info. */
4565
4566 tree
4567 build_block (tree vars, tree subblocks, tree supercontext, tree chain)
4568 {
4569 tree block = make_node (BLOCK);
4570
4571 BLOCK_VARS (block) = vars;
4572 BLOCK_SUBBLOCKS (block) = subblocks;
4573 BLOCK_SUPERCONTEXT (block) = supercontext;
4574 BLOCK_CHAIN (block) = chain;
4575 return block;
4576 }
4577
4578 \f
4579 /* Like SET_EXPR_LOCATION, but make sure the tree can have a location.
4580
4581 LOC is the location to use in tree T. */
4582
4583 void
4584 protected_set_expr_location (tree t, location_t loc)
4585 {
4586 if (CAN_HAVE_LOCATION_P (t))
4587 SET_EXPR_LOCATION (t, loc);
4588 }
4589 \f
4590 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
4591 is ATTRIBUTE. */
4592
4593 tree
4594 build_decl_attribute_variant (tree ddecl, tree attribute)
4595 {
4596 DECL_ATTRIBUTES (ddecl) = attribute;
4597 return ddecl;
4598 }
4599
4600 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
4601 is ATTRIBUTE and its qualifiers are QUALS.
4602
4603 Record such modified types already made so we don't make duplicates. */
4604
4605 tree
4606 build_type_attribute_qual_variant (tree ttype, tree attribute, int quals)
4607 {
4608 if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
4609 {
4610 inchash::hash hstate;
4611 tree ntype;
4612 int i;
4613 tree t;
4614 enum tree_code code = TREE_CODE (ttype);
4615
4616 /* Building a distinct copy of a tagged type is inappropriate; it
4617 causes breakage in code that expects there to be a one-to-one
4618 relationship between a struct and its fields.
4619 build_duplicate_type is another solution (as used in
4620 handle_transparent_union_attribute), but that doesn't play well
4621 with the stronger C++ type identity model. */
4622 if (TREE_CODE (ttype) == RECORD_TYPE
4623 || TREE_CODE (ttype) == UNION_TYPE
4624 || TREE_CODE (ttype) == QUAL_UNION_TYPE
4625 || TREE_CODE (ttype) == ENUMERAL_TYPE)
4626 {
4627 warning (OPT_Wattributes,
4628 "ignoring attributes applied to %qT after definition",
4629 TYPE_MAIN_VARIANT (ttype));
4630 return build_qualified_type (ttype, quals);
4631 }
4632
4633 ttype = build_qualified_type (ttype, TYPE_UNQUALIFIED);
4634 ntype = build_distinct_type_copy (ttype);
4635
4636 TYPE_ATTRIBUTES (ntype) = attribute;
4637
4638 hstate.add_int (code);
4639 if (TREE_TYPE (ntype))
4640 hstate.add_object (TYPE_HASH (TREE_TYPE (ntype)));
4641 attribute_hash_list (attribute, hstate);
4642
4643 switch (TREE_CODE (ntype))
4644 {
4645 case FUNCTION_TYPE:
4646 type_hash_list (TYPE_ARG_TYPES (ntype), hstate);
4647 break;
4648 case ARRAY_TYPE:
4649 if (TYPE_DOMAIN (ntype))
4650 hstate.add_object (TYPE_HASH (TYPE_DOMAIN (ntype)));
4651 break;
4652 case INTEGER_TYPE:
4653 t = TYPE_MAX_VALUE (ntype);
4654 for (i = 0; i < TREE_INT_CST_NUNITS (t); i++)
4655 hstate.add_object (TREE_INT_CST_ELT (t, i));
4656 break;
4657 case REAL_TYPE:
4658 case FIXED_POINT_TYPE:
4659 {
4660 unsigned int precision = TYPE_PRECISION (ntype);
4661 hstate.add_object (precision);
4662 }
4663 break;
4664 default:
4665 break;
4666 }
4667
4668 ntype = type_hash_canon (hstate.end(), ntype);
4669
4670 /* If the target-dependent attributes make NTYPE different from
4671 its canonical type, we will need to use structural equality
4672 checks for this type. */
4673 if (TYPE_STRUCTURAL_EQUALITY_P (ttype)
4674 || !comp_type_attributes (ntype, ttype))
4675 SET_TYPE_STRUCTURAL_EQUALITY (ntype);
4676 else if (TYPE_CANONICAL (ntype) == ntype)
4677 TYPE_CANONICAL (ntype) = TYPE_CANONICAL (ttype);
4678
4679 ttype = build_qualified_type (ntype, quals);
4680 }
4681 else if (TYPE_QUALS (ttype) != quals)
4682 ttype = build_qualified_type (ttype, quals);
4683
4684 return ttype;
4685 }
4686
4687 /* Check if "omp declare simd" attribute arguments, CLAUSES1 and CLAUSES2, are
4688 the same. */
4689
4690 static bool
4691 omp_declare_simd_clauses_equal (tree clauses1, tree clauses2)
4692 {
4693 tree cl1, cl2;
4694 for (cl1 = clauses1, cl2 = clauses2;
4695 cl1 && cl2;
4696 cl1 = OMP_CLAUSE_CHAIN (cl1), cl2 = OMP_CLAUSE_CHAIN (cl2))
4697 {
4698 if (OMP_CLAUSE_CODE (cl1) != OMP_CLAUSE_CODE (cl2))
4699 return false;
4700 if (OMP_CLAUSE_CODE (cl1) != OMP_CLAUSE_SIMDLEN)
4701 {
4702 if (simple_cst_equal (OMP_CLAUSE_DECL (cl1),
4703 OMP_CLAUSE_DECL (cl2)) != 1)
4704 return false;
4705 }
4706 switch (OMP_CLAUSE_CODE (cl1))
4707 {
4708 case OMP_CLAUSE_ALIGNED:
4709 if (simple_cst_equal (OMP_CLAUSE_ALIGNED_ALIGNMENT (cl1),
4710 OMP_CLAUSE_ALIGNED_ALIGNMENT (cl2)) != 1)
4711 return false;
4712 break;
4713 case OMP_CLAUSE_LINEAR:
4714 if (simple_cst_equal (OMP_CLAUSE_LINEAR_STEP (cl1),
4715 OMP_CLAUSE_LINEAR_STEP (cl2)) != 1)
4716 return false;
4717 break;
4718 case OMP_CLAUSE_SIMDLEN:
4719 if (simple_cst_equal (OMP_CLAUSE_SIMDLEN_EXPR (cl1),
4720 OMP_CLAUSE_SIMDLEN_EXPR (cl2)) != 1)
4721 return false;
4722 default:
4723 break;
4724 }
4725 }
4726 return true;
4727 }
4728
4729 /* Compare two constructor-element-type constants. Return 1 if the lists
4730 are known to be equal; otherwise return 0. */
4731
4732 static bool
4733 simple_cst_list_equal (const_tree l1, const_tree l2)
4734 {
4735 while (l1 != NULL_TREE && l2 != NULL_TREE)
4736 {
4737 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
4738 return false;
4739
4740 l1 = TREE_CHAIN (l1);
4741 l2 = TREE_CHAIN (l2);
4742 }
4743
4744 return l1 == l2;
4745 }
4746
4747 /* Compare two attributes for their value identity. Return true if the
4748 attribute values are known to be equal; otherwise return false.
4749 */
4750
4751 static bool
4752 attribute_value_equal (const_tree attr1, const_tree attr2)
4753 {
4754 if (TREE_VALUE (attr1) == TREE_VALUE (attr2))
4755 return true;
4756
4757 if (TREE_VALUE (attr1) != NULL_TREE
4758 && TREE_CODE (TREE_VALUE (attr1)) == TREE_LIST
4759 && TREE_VALUE (attr2) != NULL
4760 && TREE_CODE (TREE_VALUE (attr2)) == TREE_LIST)
4761 return (simple_cst_list_equal (TREE_VALUE (attr1),
4762 TREE_VALUE (attr2)) == 1);
4763
4764 if ((flag_openmp || flag_openmp_simd)
4765 && TREE_VALUE (attr1) && TREE_VALUE (attr2)
4766 && TREE_CODE (TREE_VALUE (attr1)) == OMP_CLAUSE
4767 && TREE_CODE (TREE_VALUE (attr2)) == OMP_CLAUSE)
4768 return omp_declare_simd_clauses_equal (TREE_VALUE (attr1),
4769 TREE_VALUE (attr2));
4770
4771 return (simple_cst_equal (TREE_VALUE (attr1), TREE_VALUE (attr2)) == 1);
4772 }
4773
4774 /* Return 0 if the attributes for two types are incompatible, 1 if they
4775 are compatible, and 2 if they are nearly compatible (which causes a
4776 warning to be generated). */
4777 int
4778 comp_type_attributes (const_tree type1, const_tree type2)
4779 {
4780 const_tree a1 = TYPE_ATTRIBUTES (type1);
4781 const_tree a2 = TYPE_ATTRIBUTES (type2);
4782 const_tree a;
4783
4784 if (a1 == a2)
4785 return 1;
4786 for (a = a1; a != NULL_TREE; a = TREE_CHAIN (a))
4787 {
4788 const struct attribute_spec *as;
4789 const_tree attr;
4790
4791 as = lookup_attribute_spec (get_attribute_name (a));
4792 if (!as || as->affects_type_identity == false)
4793 continue;
4794
4795 attr = lookup_attribute (as->name, CONST_CAST_TREE (a2));
4796 if (!attr || !attribute_value_equal (a, attr))
4797 break;
4798 }
4799 if (!a)
4800 {
4801 for (a = a2; a != NULL_TREE; a = TREE_CHAIN (a))
4802 {
4803 const struct attribute_spec *as;
4804
4805 as = lookup_attribute_spec (get_attribute_name (a));
4806 if (!as || as->affects_type_identity == false)
4807 continue;
4808
4809 if (!lookup_attribute (as->name, CONST_CAST_TREE (a1)))
4810 break;
4811 /* We don't need to compare trees again, as we did this
4812 already in first loop. */
4813 }
4814 /* All types - affecting identity - are equal, so
4815 there is no need to call target hook for comparison. */
4816 if (!a)
4817 return 1;
4818 }
4819 /* As some type combinations - like default calling-convention - might
4820 be compatible, we have to call the target hook to get the final result. */
4821 return targetm.comp_type_attributes (type1, type2);
4822 }
4823
4824 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
4825 is ATTRIBUTE.
4826
4827 Record such modified types already made so we don't make duplicates. */
4828
4829 tree
4830 build_type_attribute_variant (tree ttype, tree attribute)
4831 {
4832 return build_type_attribute_qual_variant (ttype, attribute,
4833 TYPE_QUALS (ttype));
4834 }
4835
4836
4837 /* Reset the expression *EXPR_P, a size or position.
4838
4839 ??? We could reset all non-constant sizes or positions. But it's cheap
4840 enough to not do so and refrain from adding workarounds to dwarf2out.c.
4841
4842 We need to reset self-referential sizes or positions because they cannot
4843 be gimplified and thus can contain a CALL_EXPR after the gimplification
4844 is finished, which will run afoul of LTO streaming. And they need to be
4845 reset to something essentially dummy but not constant, so as to preserve
4846 the properties of the object they are attached to. */
4847
4848 static inline void
4849 free_lang_data_in_one_sizepos (tree *expr_p)
4850 {
4851 tree expr = *expr_p;
4852 if (CONTAINS_PLACEHOLDER_P (expr))
4853 *expr_p = build0 (PLACEHOLDER_EXPR, TREE_TYPE (expr));
4854 }
4855
4856
4857 /* Reset all the fields in a binfo node BINFO. We only keep
4858 BINFO_VTABLE, which is used by gimple_fold_obj_type_ref. */
4859
4860 static void
4861 free_lang_data_in_binfo (tree binfo)
4862 {
4863 unsigned i;
4864 tree t;
4865
4866 gcc_assert (TREE_CODE (binfo) == TREE_BINFO);
4867
4868 BINFO_VIRTUALS (binfo) = NULL_TREE;
4869 BINFO_BASE_ACCESSES (binfo) = NULL;
4870 BINFO_INHERITANCE_CHAIN (binfo) = NULL_TREE;
4871 BINFO_SUBVTT_INDEX (binfo) = NULL_TREE;
4872
4873 FOR_EACH_VEC_ELT (*BINFO_BASE_BINFOS (binfo), i, t)
4874 free_lang_data_in_binfo (t);
4875 }
4876
4877
4878 /* Reset all language specific information still present in TYPE. */
4879
4880 static void
4881 free_lang_data_in_type (tree type)
4882 {
4883 gcc_assert (TYPE_P (type));
4884
4885 /* Give the FE a chance to remove its own data first. */
4886 lang_hooks.free_lang_data (type);
4887
4888 TREE_LANG_FLAG_0 (type) = 0;
4889 TREE_LANG_FLAG_1 (type) = 0;
4890 TREE_LANG_FLAG_2 (type) = 0;
4891 TREE_LANG_FLAG_3 (type) = 0;
4892 TREE_LANG_FLAG_4 (type) = 0;
4893 TREE_LANG_FLAG_5 (type) = 0;
4894 TREE_LANG_FLAG_6 (type) = 0;
4895
4896 if (TREE_CODE (type) == FUNCTION_TYPE)
4897 {
4898 /* Remove the const and volatile qualifiers from arguments. The
4899 C++ front end removes them, but the C front end does not,
4900 leading to false ODR violation errors when merging two
4901 instances of the same function signature compiled by
4902 different front ends. */
4903 tree p;
4904
4905 for (p = TYPE_ARG_TYPES (type); p; p = TREE_CHAIN (p))
4906 {
4907 tree arg_type = TREE_VALUE (p);
4908
4909 if (TYPE_READONLY (arg_type) || TYPE_VOLATILE (arg_type))
4910 {
4911 int quals = TYPE_QUALS (arg_type)
4912 & ~TYPE_QUAL_CONST
4913 & ~TYPE_QUAL_VOLATILE;
4914 TREE_VALUE (p) = build_qualified_type (arg_type, quals);
4915 free_lang_data_in_type (TREE_VALUE (p));
4916 }
4917 }
4918 }
4919
4920 /* Remove members that are not actually FIELD_DECLs from the field
4921 list of an aggregate. These occur in C++. */
4922 if (RECORD_OR_UNION_TYPE_P (type))
4923 {
4924 tree prev, member;
4925
4926 /* Note that TYPE_FIELDS can be shared across distinct
4927 TREE_TYPEs. Therefore, if the first field of TYPE_FIELDS is
4928 to be removed, we cannot set its TREE_CHAIN to NULL.
4929 Otherwise, we would not be able to find all the other fields
4930 in the other instances of this TREE_TYPE.
4931
4932 This was causing an ICE in testsuite/g++.dg/lto/20080915.C. */
4933 prev = NULL_TREE;
4934 member = TYPE_FIELDS (type);
4935 while (member)
4936 {
4937 if (TREE_CODE (member) == FIELD_DECL
4938 || TREE_CODE (member) == TYPE_DECL)
4939 {
4940 if (prev)
4941 TREE_CHAIN (prev) = member;
4942 else
4943 TYPE_FIELDS (type) = member;
4944 prev = member;
4945 }
4946
4947 member = TREE_CHAIN (member);
4948 }
4949
4950 if (prev)
4951 TREE_CHAIN (prev) = NULL_TREE;
4952 else
4953 TYPE_FIELDS (type) = NULL_TREE;
4954
4955 TYPE_METHODS (type) = NULL_TREE;
4956 if (TYPE_BINFO (type))
4957 free_lang_data_in_binfo (TYPE_BINFO (type));
4958 }
4959 else
4960 {
4961 /* For non-aggregate types, clear out the language slot (which
4962 overloads TYPE_BINFO). */
4963 TYPE_LANG_SLOT_1 (type) = NULL_TREE;
4964
4965 if (INTEGRAL_TYPE_P (type)
4966 || SCALAR_FLOAT_TYPE_P (type)
4967 || FIXED_POINT_TYPE_P (type))
4968 {
4969 free_lang_data_in_one_sizepos (&TYPE_MIN_VALUE (type));
4970 free_lang_data_in_one_sizepos (&TYPE_MAX_VALUE (type));
4971 }
4972 }
4973
4974 free_lang_data_in_one_sizepos (&TYPE_SIZE (type));
4975 free_lang_data_in_one_sizepos (&TYPE_SIZE_UNIT (type));
4976
4977 if (TYPE_CONTEXT (type)
4978 && TREE_CODE (TYPE_CONTEXT (type)) == BLOCK)
4979 {
4980 tree ctx = TYPE_CONTEXT (type);
4981 do
4982 {
4983 ctx = BLOCK_SUPERCONTEXT (ctx);
4984 }
4985 while (ctx && TREE_CODE (ctx) == BLOCK);
4986 TYPE_CONTEXT (type) = ctx;
4987 }
4988 }
4989
4990
4991 /* Return true if DECL may need an assembler name to be set. */
4992
4993 static inline bool
4994 need_assembler_name_p (tree decl)
4995 {
4996 /* We use DECL_ASSEMBLER_NAME to hold mangled type names for One Definition Rule
4997 merging. */
4998 if (flag_lto_odr_type_mering
4999 && TREE_CODE (decl) == TYPE_DECL
5000 && DECL_NAME (decl)
5001 && decl == TYPE_NAME (TREE_TYPE (decl))
5002 && !is_lang_specific (TREE_TYPE (decl))
5003 && AGGREGATE_TYPE_P (TREE_TYPE (decl))
5004 && !variably_modified_type_p (TREE_TYPE (decl), NULL_TREE)
5005 && !type_in_anonymous_namespace_p (TREE_TYPE (decl)))
5006 return !DECL_ASSEMBLER_NAME_SET_P (decl);
5007 /* Only FUNCTION_DECLs and VAR_DECLs are considered. */
5008 if (TREE_CODE (decl) != FUNCTION_DECL
5009 && TREE_CODE (decl) != VAR_DECL)
5010 return false;
5011
5012 /* If DECL already has its assembler name set, it does not need a
5013 new one. */
5014 if (!HAS_DECL_ASSEMBLER_NAME_P (decl)
5015 || DECL_ASSEMBLER_NAME_SET_P (decl))
5016 return false;
5017
5018 /* Abstract decls do not need an assembler name. */
5019 if (DECL_ABSTRACT_P (decl))
5020 return false;
5021
5022 /* For VAR_DECLs, only static, public and external symbols need an
5023 assembler name. */
5024 if (TREE_CODE (decl) == VAR_DECL
5025 && !TREE_STATIC (decl)
5026 && !TREE_PUBLIC (decl)
5027 && !DECL_EXTERNAL (decl))
5028 return false;
5029
5030 if (TREE_CODE (decl) == FUNCTION_DECL)
5031 {
5032 /* Do not set assembler name on builtins. Allow RTL expansion to
5033 decide whether to expand inline or via a regular call. */
5034 if (DECL_BUILT_IN (decl)
5035 && DECL_BUILT_IN_CLASS (decl) != BUILT_IN_FRONTEND)
5036 return false;
5037
5038 /* Functions represented in the callgraph need an assembler name. */
5039 if (cgraph_node::get (decl) != NULL)
5040 return true;
5041
5042 /* Unused and not public functions don't need an assembler name. */
5043 if (!TREE_USED (decl) && !TREE_PUBLIC (decl))
5044 return false;
5045 }
5046
5047 return true;
5048 }
5049
5050
5051 /* Reset all language specific information still present in symbol
5052 DECL. */
5053
5054 static void
5055 free_lang_data_in_decl (tree decl)
5056 {
5057 gcc_assert (DECL_P (decl));
5058
5059 /* Give the FE a chance to remove its own data first. */
5060 lang_hooks.free_lang_data (decl);
5061
5062 TREE_LANG_FLAG_0 (decl) = 0;
5063 TREE_LANG_FLAG_1 (decl) = 0;
5064 TREE_LANG_FLAG_2 (decl) = 0;
5065 TREE_LANG_FLAG_3 (decl) = 0;
5066 TREE_LANG_FLAG_4 (decl) = 0;
5067 TREE_LANG_FLAG_5 (decl) = 0;
5068 TREE_LANG_FLAG_6 (decl) = 0;
5069
5070 free_lang_data_in_one_sizepos (&DECL_SIZE (decl));
5071 free_lang_data_in_one_sizepos (&DECL_SIZE_UNIT (decl));
5072 if (TREE_CODE (decl) == FIELD_DECL)
5073 {
5074 free_lang_data_in_one_sizepos (&DECL_FIELD_OFFSET (decl));
5075 if (TREE_CODE (DECL_CONTEXT (decl)) == QUAL_UNION_TYPE)
5076 DECL_QUALIFIER (decl) = NULL_TREE;
5077 }
5078
5079 if (TREE_CODE (decl) == FUNCTION_DECL)
5080 {
5081 struct cgraph_node *node;
5082 if (!(node = cgraph_node::get (decl))
5083 || (!node->definition && !node->clones))
5084 {
5085 if (node)
5086 node->release_body ();
5087 else
5088 {
5089 release_function_body (decl);
5090 DECL_ARGUMENTS (decl) = NULL;
5091 DECL_RESULT (decl) = NULL;
5092 DECL_INITIAL (decl) = error_mark_node;
5093 }
5094 }
5095 if (gimple_has_body_p (decl))
5096 {
5097 tree t;
5098
5099 /* If DECL has a gimple body, then the context for its
5100 arguments must be DECL. Otherwise, it doesn't really
5101 matter, as we will not be emitting any code for DECL. In
5102 general, there may be other instances of DECL created by
5103 the front end and since PARM_DECLs are generally shared,
5104 their DECL_CONTEXT changes as the replicas of DECL are
5105 created. The only time where DECL_CONTEXT is important
5106 is for the FUNCTION_DECLs that have a gimple body (since
5107 the PARM_DECL will be used in the function's body). */
5108 for (t = DECL_ARGUMENTS (decl); t; t = TREE_CHAIN (t))
5109 DECL_CONTEXT (t) = decl;
5110 }
5111
5112 /* DECL_SAVED_TREE holds the GENERIC representation for DECL.
5113 At this point, it is not needed anymore. */
5114 DECL_SAVED_TREE (decl) = NULL_TREE;
5115
5116 /* Clear the abstract origin if it refers to a method. Otherwise
5117 dwarf2out.c will ICE as we clear TYPE_METHODS and thus the
5118 origin will not be output correctly. */
5119 if (DECL_ABSTRACT_ORIGIN (decl)
5120 && DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))
5121 && RECORD_OR_UNION_TYPE_P
5122 (DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))))
5123 DECL_ABSTRACT_ORIGIN (decl) = NULL_TREE;
5124
5125 /* Sometimes the C++ frontend doesn't manage to transform a temporary
5126 DECL_VINDEX referring to itself into a vtable slot number as it
5127 should. Happens with functions that are copied and then forgotten
5128 about. Just clear it, it won't matter anymore. */
5129 if (DECL_VINDEX (decl) && !tree_fits_shwi_p (DECL_VINDEX (decl)))
5130 DECL_VINDEX (decl) = NULL_TREE;
5131 }
5132 else if (TREE_CODE (decl) == VAR_DECL)
5133 {
5134 if ((DECL_EXTERNAL (decl)
5135 && (!TREE_STATIC (decl) || !TREE_READONLY (decl)))
5136 || (decl_function_context (decl) && !TREE_STATIC (decl)))
5137 DECL_INITIAL (decl) = NULL_TREE;
5138 }
5139 else if (TREE_CODE (decl) == TYPE_DECL
5140 || TREE_CODE (decl) == FIELD_DECL)
5141 DECL_INITIAL (decl) = NULL_TREE;
5142 else if (TREE_CODE (decl) == TRANSLATION_UNIT_DECL
5143 && DECL_INITIAL (decl)
5144 && TREE_CODE (DECL_INITIAL (decl)) == BLOCK)
5145 {
5146 /* Strip builtins from the translation-unit BLOCK. We still have targets
5147 without builtin_decl_explicit support and also builtins are shared
5148 nodes and thus we can't use TREE_CHAIN in multiple lists. */
5149 tree *nextp = &BLOCK_VARS (DECL_INITIAL (decl));
5150 while (*nextp)
5151 {
5152 tree var = *nextp;
5153 if (TREE_CODE (var) == FUNCTION_DECL
5154 && DECL_BUILT_IN (var))
5155 *nextp = TREE_CHAIN (var);
5156 else
5157 nextp = &TREE_CHAIN (var);
5158 }
5159 }
5160 }
5161
5162
5163 /* Data used when collecting DECLs and TYPEs for language data removal. */
5164
5165 struct free_lang_data_d
5166 {
5167 /* Worklist to avoid excessive recursion. */
5168 vec<tree> worklist;
5169
5170 /* Set of traversed objects. Used to avoid duplicate visits. */
5171 hash_set<tree> *pset;
5172
5173 /* Array of symbols to process with free_lang_data_in_decl. */
5174 vec<tree> decls;
5175
5176 /* Array of types to process with free_lang_data_in_type. */
5177 vec<tree> types;
5178 };
5179
5180
5181 /* Save all language fields needed to generate proper debug information
5182 for DECL. This saves most fields cleared out by free_lang_data_in_decl. */
5183
5184 static void
5185 save_debug_info_for_decl (tree t)
5186 {
5187 /*struct saved_debug_info_d *sdi;*/
5188
5189 gcc_assert (debug_info_level > DINFO_LEVEL_TERSE && t && DECL_P (t));
5190
5191 /* FIXME. Partial implementation for saving debug info removed. */
5192 }
5193
5194
5195 /* Save all language fields needed to generate proper debug information
5196 for TYPE. This saves most fields cleared out by free_lang_data_in_type. */
5197
5198 static void
5199 save_debug_info_for_type (tree t)
5200 {
5201 /*struct saved_debug_info_d *sdi;*/
5202
5203 gcc_assert (debug_info_level > DINFO_LEVEL_TERSE && t && TYPE_P (t));
5204
5205 /* FIXME. Partial implementation for saving debug info removed. */
5206 }
5207
5208
5209 /* Add type or decl T to one of the list of tree nodes that need their
5210 language data removed. The lists are held inside FLD. */
5211
5212 static void
5213 add_tree_to_fld_list (tree t, struct free_lang_data_d *fld)
5214 {
5215 if (DECL_P (t))
5216 {
5217 fld->decls.safe_push (t);
5218 if (debug_info_level > DINFO_LEVEL_TERSE)
5219 save_debug_info_for_decl (t);
5220 }
5221 else if (TYPE_P (t))
5222 {
5223 fld->types.safe_push (t);
5224 if (debug_info_level > DINFO_LEVEL_TERSE)
5225 save_debug_info_for_type (t);
5226 }
5227 else
5228 gcc_unreachable ();
5229 }
5230
5231 /* Push tree node T into FLD->WORKLIST. */
5232
5233 static inline void
5234 fld_worklist_push (tree t, struct free_lang_data_d *fld)
5235 {
5236 if (t && !is_lang_specific (t) && !fld->pset->contains (t))
5237 fld->worklist.safe_push ((t));
5238 }
5239
5240
5241 /* Operand callback helper for free_lang_data_in_node. *TP is the
5242 subtree operand being considered. */
5243
5244 static tree
5245 find_decls_types_r (tree *tp, int *ws, void *data)
5246 {
5247 tree t = *tp;
5248 struct free_lang_data_d *fld = (struct free_lang_data_d *) data;
5249
5250 if (TREE_CODE (t) == TREE_LIST)
5251 return NULL_TREE;
5252
5253 /* Language specific nodes will be removed, so there is no need
5254 to gather anything under them. */
5255 if (is_lang_specific (t))
5256 {
5257 *ws = 0;
5258 return NULL_TREE;
5259 }
5260
5261 if (DECL_P (t))
5262 {
5263 /* Note that walk_tree does not traverse every possible field in
5264 decls, so we have to do our own traversals here. */
5265 add_tree_to_fld_list (t, fld);
5266
5267 fld_worklist_push (DECL_NAME (t), fld);
5268 fld_worklist_push (DECL_CONTEXT (t), fld);
5269 fld_worklist_push (DECL_SIZE (t), fld);
5270 fld_worklist_push (DECL_SIZE_UNIT (t), fld);
5271
5272 /* We are going to remove everything under DECL_INITIAL for
5273 TYPE_DECLs. No point walking them. */
5274 if (TREE_CODE (t) != TYPE_DECL)
5275 fld_worklist_push (DECL_INITIAL (t), fld);
5276
5277 fld_worklist_push (DECL_ATTRIBUTES (t), fld);
5278 fld_worklist_push (DECL_ABSTRACT_ORIGIN (t), fld);
5279
5280 if (TREE_CODE (t) == FUNCTION_DECL)
5281 {
5282 fld_worklist_push (DECL_ARGUMENTS (t), fld);
5283 fld_worklist_push (DECL_RESULT (t), fld);
5284 }
5285 else if (TREE_CODE (t) == TYPE_DECL)
5286 {
5287 fld_worklist_push (DECL_ORIGINAL_TYPE (t), fld);
5288 }
5289 else if (TREE_CODE (t) == FIELD_DECL)
5290 {
5291 fld_worklist_push (DECL_FIELD_OFFSET (t), fld);
5292 fld_worklist_push (DECL_BIT_FIELD_TYPE (t), fld);
5293 fld_worklist_push (DECL_FIELD_BIT_OFFSET (t), fld);
5294 fld_worklist_push (DECL_FCONTEXT (t), fld);
5295 }
5296
5297 if ((TREE_CODE (t) == VAR_DECL || TREE_CODE (t) == PARM_DECL)
5298 && DECL_HAS_VALUE_EXPR_P (t))
5299 fld_worklist_push (DECL_VALUE_EXPR (t), fld);
5300
5301 if (TREE_CODE (t) != FIELD_DECL
5302 && TREE_CODE (t) != TYPE_DECL)
5303 fld_worklist_push (TREE_CHAIN (t), fld);
5304 *ws = 0;
5305 }
5306 else if (TYPE_P (t))
5307 {
5308 /* Note that walk_tree does not traverse every possible field in
5309 types, so we have to do our own traversals here. */
5310 add_tree_to_fld_list (t, fld);
5311
5312 if (!RECORD_OR_UNION_TYPE_P (t))
5313 fld_worklist_push (TYPE_CACHED_VALUES (t), fld);
5314 fld_worklist_push (TYPE_SIZE (t), fld);
5315 fld_worklist_push (TYPE_SIZE_UNIT (t), fld);
5316 fld_worklist_push (TYPE_ATTRIBUTES (t), fld);
5317 fld_worklist_push (TYPE_POINTER_TO (t), fld);
5318 fld_worklist_push (TYPE_REFERENCE_TO (t), fld);
5319 fld_worklist_push (TYPE_NAME (t), fld);
5320 /* Do not walk TYPE_NEXT_PTR_TO or TYPE_NEXT_REF_TO. We do not stream
5321 them and thus do not and want not to reach unused pointer types
5322 this way. */
5323 if (!POINTER_TYPE_P (t))
5324 fld_worklist_push (TYPE_MINVAL (t), fld);
5325 if (!RECORD_OR_UNION_TYPE_P (t))
5326 fld_worklist_push (TYPE_MAXVAL (t), fld);
5327 fld_worklist_push (TYPE_MAIN_VARIANT (t), fld);
5328 /* Do not walk TYPE_NEXT_VARIANT. We do not stream it and thus
5329 do not and want not to reach unused variants this way. */
5330 if (TYPE_CONTEXT (t))
5331 {
5332 tree ctx = TYPE_CONTEXT (t);
5333 /* We adjust BLOCK TYPE_CONTEXTs to the innermost non-BLOCK one.
5334 So push that instead. */
5335 while (ctx && TREE_CODE (ctx) == BLOCK)
5336 ctx = BLOCK_SUPERCONTEXT (ctx);
5337 fld_worklist_push (ctx, fld);
5338 }
5339 /* Do not walk TYPE_CANONICAL. We do not stream it and thus do not
5340 and want not to reach unused types this way. */
5341
5342 if (RECORD_OR_UNION_TYPE_P (t) && TYPE_BINFO (t))
5343 {
5344 unsigned i;
5345 tree tem;
5346 FOR_EACH_VEC_ELT (*BINFO_BASE_BINFOS (TYPE_BINFO (t)), i, tem)
5347 fld_worklist_push (TREE_TYPE (tem), fld);
5348 tem = BINFO_VIRTUALS (TYPE_BINFO (t));
5349 if (tem
5350 /* The Java FE overloads BINFO_VIRTUALS for its own purpose. */
5351 && TREE_CODE (tem) == TREE_LIST)
5352 do
5353 {
5354 fld_worklist_push (TREE_VALUE (tem), fld);
5355 tem = TREE_CHAIN (tem);
5356 }
5357 while (tem);
5358 }
5359 if (RECORD_OR_UNION_TYPE_P (t))
5360 {
5361 tree tem;
5362 /* Push all TYPE_FIELDS - there can be interleaving interesting
5363 and non-interesting things. */
5364 tem = TYPE_FIELDS (t);
5365 while (tem)
5366 {
5367 if (TREE_CODE (tem) == FIELD_DECL
5368 || TREE_CODE (tem) == TYPE_DECL)
5369 fld_worklist_push (tem, fld);
5370 tem = TREE_CHAIN (tem);
5371 }
5372 }
5373
5374 fld_worklist_push (TYPE_STUB_DECL (t), fld);
5375 *ws = 0;
5376 }
5377 else if (TREE_CODE (t) == BLOCK)
5378 {
5379 tree tem;
5380 for (tem = BLOCK_VARS (t); tem; tem = TREE_CHAIN (tem))
5381 fld_worklist_push (tem, fld);
5382 for (tem = BLOCK_SUBBLOCKS (t); tem; tem = BLOCK_CHAIN (tem))
5383 fld_worklist_push (tem, fld);
5384 fld_worklist_push (BLOCK_ABSTRACT_ORIGIN (t), fld);
5385 }
5386
5387 if (TREE_CODE (t) != IDENTIFIER_NODE
5388 && CODE_CONTAINS_STRUCT (TREE_CODE (t), TS_TYPED))
5389 fld_worklist_push (TREE_TYPE (t), fld);
5390
5391 return NULL_TREE;
5392 }
5393
5394
5395 /* Find decls and types in T. */
5396
5397 static void
5398 find_decls_types (tree t, struct free_lang_data_d *fld)
5399 {
5400 while (1)
5401 {
5402 if (!fld->pset->contains (t))
5403 walk_tree (&t, find_decls_types_r, fld, fld->pset);
5404 if (fld->worklist.is_empty ())
5405 break;
5406 t = fld->worklist.pop ();
5407 }
5408 }
5409
5410 /* Translate all the types in LIST with the corresponding runtime
5411 types. */
5412
5413 static tree
5414 get_eh_types_for_runtime (tree list)
5415 {
5416 tree head, prev;
5417
5418 if (list == NULL_TREE)
5419 return NULL_TREE;
5420
5421 head = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
5422 prev = head;
5423 list = TREE_CHAIN (list);
5424 while (list)
5425 {
5426 tree n = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
5427 TREE_CHAIN (prev) = n;
5428 prev = TREE_CHAIN (prev);
5429 list = TREE_CHAIN (list);
5430 }
5431
5432 return head;
5433 }
5434
5435
5436 /* Find decls and types referenced in EH region R and store them in
5437 FLD->DECLS and FLD->TYPES. */
5438
5439 static void
5440 find_decls_types_in_eh_region (eh_region r, struct free_lang_data_d *fld)
5441 {
5442 switch (r->type)
5443 {
5444 case ERT_CLEANUP:
5445 break;
5446
5447 case ERT_TRY:
5448 {
5449 eh_catch c;
5450
5451 /* The types referenced in each catch must first be changed to the
5452 EH types used at runtime. This removes references to FE types
5453 in the region. */
5454 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
5455 {
5456 c->type_list = get_eh_types_for_runtime (c->type_list);
5457 walk_tree (&c->type_list, find_decls_types_r, fld, fld->pset);
5458 }
5459 }
5460 break;
5461
5462 case ERT_ALLOWED_EXCEPTIONS:
5463 r->u.allowed.type_list
5464 = get_eh_types_for_runtime (r->u.allowed.type_list);
5465 walk_tree (&r->u.allowed.type_list, find_decls_types_r, fld, fld->pset);
5466 break;
5467
5468 case ERT_MUST_NOT_THROW:
5469 walk_tree (&r->u.must_not_throw.failure_decl,
5470 find_decls_types_r, fld, fld->pset);
5471 break;
5472 }
5473 }
5474
5475
5476 /* Find decls and types referenced in cgraph node N and store them in
5477 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
5478 look for *every* kind of DECL and TYPE node reachable from N,
5479 including those embedded inside types and decls (i.e,, TYPE_DECLs,
5480 NAMESPACE_DECLs, etc). */
5481
5482 static void
5483 find_decls_types_in_node (struct cgraph_node *n, struct free_lang_data_d *fld)
5484 {
5485 basic_block bb;
5486 struct function *fn;
5487 unsigned ix;
5488 tree t;
5489
5490 find_decls_types (n->decl, fld);
5491
5492 if (!gimple_has_body_p (n->decl))
5493 return;
5494
5495 gcc_assert (current_function_decl == NULL_TREE && cfun == NULL);
5496
5497 fn = DECL_STRUCT_FUNCTION (n->decl);
5498
5499 /* Traverse locals. */
5500 FOR_EACH_LOCAL_DECL (fn, ix, t)
5501 find_decls_types (t, fld);
5502
5503 /* Traverse EH regions in FN. */
5504 {
5505 eh_region r;
5506 FOR_ALL_EH_REGION_FN (r, fn)
5507 find_decls_types_in_eh_region (r, fld);
5508 }
5509
5510 /* Traverse every statement in FN. */
5511 FOR_EACH_BB_FN (bb, fn)
5512 {
5513 gimple_stmt_iterator si;
5514 unsigned i;
5515
5516 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
5517 {
5518 gimple phi = gsi_stmt (si);
5519
5520 for (i = 0; i < gimple_phi_num_args (phi); i++)
5521 {
5522 tree *arg_p = gimple_phi_arg_def_ptr (phi, i);
5523 find_decls_types (*arg_p, fld);
5524 }
5525 }
5526
5527 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5528 {
5529 gimple stmt = gsi_stmt (si);
5530
5531 if (is_gimple_call (stmt))
5532 find_decls_types (gimple_call_fntype (stmt), fld);
5533
5534 for (i = 0; i < gimple_num_ops (stmt); i++)
5535 {
5536 tree arg = gimple_op (stmt, i);
5537 find_decls_types (arg, fld);
5538 }
5539 }
5540 }
5541 }
5542
5543
5544 /* Find decls and types referenced in varpool node N and store them in
5545 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
5546 look for *every* kind of DECL and TYPE node reachable from N,
5547 including those embedded inside types and decls (i.e,, TYPE_DECLs,
5548 NAMESPACE_DECLs, etc). */
5549
5550 static void
5551 find_decls_types_in_var (varpool_node *v, struct free_lang_data_d *fld)
5552 {
5553 find_decls_types (v->decl, fld);
5554 }
5555
5556 /* If T needs an assembler name, have one created for it. */
5557
5558 void
5559 assign_assembler_name_if_neeeded (tree t)
5560 {
5561 if (need_assembler_name_p (t))
5562 {
5563 /* When setting DECL_ASSEMBLER_NAME, the C++ mangler may emit
5564 diagnostics that use input_location to show locus
5565 information. The problem here is that, at this point,
5566 input_location is generally anchored to the end of the file
5567 (since the parser is long gone), so we don't have a good
5568 position to pin it to.
5569
5570 To alleviate this problem, this uses the location of T's
5571 declaration. Examples of this are
5572 testsuite/g++.dg/template/cond2.C and
5573 testsuite/g++.dg/template/pr35240.C. */
5574 location_t saved_location = input_location;
5575 input_location = DECL_SOURCE_LOCATION (t);
5576
5577 decl_assembler_name (t);
5578
5579 input_location = saved_location;
5580 }
5581 }
5582
5583
5584 /* Free language specific information for every operand and expression
5585 in every node of the call graph. This process operates in three stages:
5586
5587 1- Every callgraph node and varpool node is traversed looking for
5588 decls and types embedded in them. This is a more exhaustive
5589 search than that done by find_referenced_vars, because it will
5590 also collect individual fields, decls embedded in types, etc.
5591
5592 2- All the decls found are sent to free_lang_data_in_decl.
5593
5594 3- All the types found are sent to free_lang_data_in_type.
5595
5596 The ordering between decls and types is important because
5597 free_lang_data_in_decl sets assembler names, which includes
5598 mangling. So types cannot be freed up until assembler names have
5599 been set up. */
5600
5601 static void
5602 free_lang_data_in_cgraph (void)
5603 {
5604 struct cgraph_node *n;
5605 varpool_node *v;
5606 struct free_lang_data_d fld;
5607 tree t;
5608 unsigned i;
5609 alias_pair *p;
5610
5611 /* Initialize sets and arrays to store referenced decls and types. */
5612 fld.pset = new hash_set<tree>;
5613 fld.worklist.create (0);
5614 fld.decls.create (100);
5615 fld.types.create (100);
5616
5617 /* Find decls and types in the body of every function in the callgraph. */
5618 FOR_EACH_FUNCTION (n)
5619 find_decls_types_in_node (n, &fld);
5620
5621 FOR_EACH_VEC_SAFE_ELT (alias_pairs, i, p)
5622 find_decls_types (p->decl, &fld);
5623
5624 /* Find decls and types in every varpool symbol. */
5625 FOR_EACH_VARIABLE (v)
5626 find_decls_types_in_var (v, &fld);
5627
5628 /* Set the assembler name on every decl found. We need to do this
5629 now because free_lang_data_in_decl will invalidate data needed
5630 for mangling. This breaks mangling on interdependent decls. */
5631 FOR_EACH_VEC_ELT (fld.decls, i, t)
5632 assign_assembler_name_if_neeeded (t);
5633
5634 /* Traverse every decl found freeing its language data. */
5635 FOR_EACH_VEC_ELT (fld.decls, i, t)
5636 free_lang_data_in_decl (t);
5637
5638 /* Traverse every type found freeing its language data. */
5639 FOR_EACH_VEC_ELT (fld.types, i, t)
5640 free_lang_data_in_type (t);
5641
5642 delete fld.pset;
5643 fld.worklist.release ();
5644 fld.decls.release ();
5645 fld.types.release ();
5646 }
5647
5648
5649 /* Free resources that are used by FE but are not needed once they are done. */
5650
5651 static unsigned
5652 free_lang_data (void)
5653 {
5654 unsigned i;
5655
5656 /* If we are the LTO frontend we have freed lang-specific data already. */
5657 if (in_lto_p
5658 || !flag_generate_lto)
5659 return 0;
5660
5661 /* Allocate and assign alias sets to the standard integer types
5662 while the slots are still in the way the frontends generated them. */
5663 for (i = 0; i < itk_none; ++i)
5664 if (integer_types[i])
5665 TYPE_ALIAS_SET (integer_types[i]) = get_alias_set (integer_types[i]);
5666
5667 /* Traverse the IL resetting language specific information for
5668 operands, expressions, etc. */
5669 free_lang_data_in_cgraph ();
5670
5671 /* Create gimple variants for common types. */
5672 ptrdiff_type_node = integer_type_node;
5673 fileptr_type_node = ptr_type_node;
5674
5675 /* Reset some langhooks. Do not reset types_compatible_p, it may
5676 still be used indirectly via the get_alias_set langhook. */
5677 lang_hooks.dwarf_name = lhd_dwarf_name;
5678 lang_hooks.decl_printable_name = gimple_decl_printable_name;
5679 /* We do not want the default decl_assembler_name implementation,
5680 rather if we have fixed everything we want a wrapper around it
5681 asserting that all non-local symbols already got their assembler
5682 name and only produce assembler names for local symbols. Or rather
5683 make sure we never call decl_assembler_name on local symbols and
5684 devise a separate, middle-end private scheme for it. */
5685
5686 /* Reset diagnostic machinery. */
5687 tree_diagnostics_defaults (global_dc);
5688
5689 return 0;
5690 }
5691
5692
5693 namespace {
5694
5695 const pass_data pass_data_ipa_free_lang_data =
5696 {
5697 SIMPLE_IPA_PASS, /* type */
5698 "*free_lang_data", /* name */
5699 OPTGROUP_NONE, /* optinfo_flags */
5700 TV_IPA_FREE_LANG_DATA, /* tv_id */
5701 0, /* properties_required */
5702 0, /* properties_provided */
5703 0, /* properties_destroyed */
5704 0, /* todo_flags_start */
5705 0, /* todo_flags_finish */
5706 };
5707
5708 class pass_ipa_free_lang_data : public simple_ipa_opt_pass
5709 {
5710 public:
5711 pass_ipa_free_lang_data (gcc::context *ctxt)
5712 : simple_ipa_opt_pass (pass_data_ipa_free_lang_data, ctxt)
5713 {}
5714
5715 /* opt_pass methods: */
5716 virtual unsigned int execute (function *) { return free_lang_data (); }
5717
5718 }; // class pass_ipa_free_lang_data
5719
5720 } // anon namespace
5721
5722 simple_ipa_opt_pass *
5723 make_pass_ipa_free_lang_data (gcc::context *ctxt)
5724 {
5725 return new pass_ipa_free_lang_data (ctxt);
5726 }
5727
5728 /* The backbone of is_attribute_p(). ATTR_LEN is the string length of
5729 ATTR_NAME. Also used internally by remove_attribute(). */
5730 bool
5731 private_is_attribute_p (const char *attr_name, size_t attr_len, const_tree ident)
5732 {
5733 size_t ident_len = IDENTIFIER_LENGTH (ident);
5734
5735 if (ident_len == attr_len)
5736 {
5737 if (strcmp (attr_name, IDENTIFIER_POINTER (ident)) == 0)
5738 return true;
5739 }
5740 else if (ident_len == attr_len + 4)
5741 {
5742 /* There is the possibility that ATTR is 'text' and IDENT is
5743 '__text__'. */
5744 const char *p = IDENTIFIER_POINTER (ident);
5745 if (p[0] == '_' && p[1] == '_'
5746 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
5747 && strncmp (attr_name, p + 2, attr_len) == 0)
5748 return true;
5749 }
5750
5751 return false;
5752 }
5753
5754 /* The backbone of lookup_attribute(). ATTR_LEN is the string length
5755 of ATTR_NAME, and LIST is not NULL_TREE. */
5756 tree
5757 private_lookup_attribute (const char *attr_name, size_t attr_len, tree list)
5758 {
5759 while (list)
5760 {
5761 size_t ident_len = IDENTIFIER_LENGTH (get_attribute_name (list));
5762
5763 if (ident_len == attr_len)
5764 {
5765 if (!strcmp (attr_name,
5766 IDENTIFIER_POINTER (get_attribute_name (list))))
5767 break;
5768 }
5769 /* TODO: If we made sure that attributes were stored in the
5770 canonical form without '__...__' (ie, as in 'text' as opposed
5771 to '__text__') then we could avoid the following case. */
5772 else if (ident_len == attr_len + 4)
5773 {
5774 const char *p = IDENTIFIER_POINTER (get_attribute_name (list));
5775 if (p[0] == '_' && p[1] == '_'
5776 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
5777 && strncmp (attr_name, p + 2, attr_len) == 0)
5778 break;
5779 }
5780 list = TREE_CHAIN (list);
5781 }
5782
5783 return list;
5784 }
5785
5786 /* Given an attribute name ATTR_NAME and a list of attributes LIST,
5787 return a pointer to the attribute's list first element if the attribute
5788 starts with ATTR_NAME. ATTR_NAME must be in the form 'text' (not
5789 '__text__'). */
5790
5791 tree
5792 private_lookup_attribute_by_prefix (const char *attr_name, size_t attr_len,
5793 tree list)
5794 {
5795 while (list)
5796 {
5797 size_t ident_len = IDENTIFIER_LENGTH (get_attribute_name (list));
5798
5799 if (attr_len > ident_len)
5800 {
5801 list = TREE_CHAIN (list);
5802 continue;
5803 }
5804
5805 const char *p = IDENTIFIER_POINTER (get_attribute_name (list));
5806
5807 if (strncmp (attr_name, p, attr_len) == 0)
5808 break;
5809
5810 /* TODO: If we made sure that attributes were stored in the
5811 canonical form without '__...__' (ie, as in 'text' as opposed
5812 to '__text__') then we could avoid the following case. */
5813 if (p[0] == '_' && p[1] == '_' &&
5814 strncmp (attr_name, p + 2, attr_len) == 0)
5815 break;
5816
5817 list = TREE_CHAIN (list);
5818 }
5819
5820 return list;
5821 }
5822
5823
5824 /* A variant of lookup_attribute() that can be used with an identifier
5825 as the first argument, and where the identifier can be either
5826 'text' or '__text__'.
5827
5828 Given an attribute ATTR_IDENTIFIER, and a list of attributes LIST,
5829 return a pointer to the attribute's list element if the attribute
5830 is part of the list, or NULL_TREE if not found. If the attribute
5831 appears more than once, this only returns the first occurrence; the
5832 TREE_CHAIN of the return value should be passed back in if further
5833 occurrences are wanted. ATTR_IDENTIFIER must be an identifier but
5834 can be in the form 'text' or '__text__'. */
5835 static tree
5836 lookup_ident_attribute (tree attr_identifier, tree list)
5837 {
5838 gcc_checking_assert (TREE_CODE (attr_identifier) == IDENTIFIER_NODE);
5839
5840 while (list)
5841 {
5842 gcc_checking_assert (TREE_CODE (get_attribute_name (list))
5843 == IDENTIFIER_NODE);
5844
5845 /* Identifiers can be compared directly for equality. */
5846 if (attr_identifier == get_attribute_name (list))
5847 break;
5848
5849 /* If they are not equal, they may still be one in the form
5850 'text' while the other one is in the form '__text__'. TODO:
5851 If we were storing attributes in normalized 'text' form, then
5852 this could all go away and we could take full advantage of
5853 the fact that we're comparing identifiers. :-) */
5854 {
5855 size_t attr_len = IDENTIFIER_LENGTH (attr_identifier);
5856 size_t ident_len = IDENTIFIER_LENGTH (get_attribute_name (list));
5857
5858 if (ident_len == attr_len + 4)
5859 {
5860 const char *p = IDENTIFIER_POINTER (get_attribute_name (list));
5861 const char *q = IDENTIFIER_POINTER (attr_identifier);
5862 if (p[0] == '_' && p[1] == '_'
5863 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
5864 && strncmp (q, p + 2, attr_len) == 0)
5865 break;
5866 }
5867 else if (ident_len + 4 == attr_len)
5868 {
5869 const char *p = IDENTIFIER_POINTER (get_attribute_name (list));
5870 const char *q = IDENTIFIER_POINTER (attr_identifier);
5871 if (q[0] == '_' && q[1] == '_'
5872 && q[attr_len - 2] == '_' && q[attr_len - 1] == '_'
5873 && strncmp (q + 2, p, ident_len) == 0)
5874 break;
5875 }
5876 }
5877 list = TREE_CHAIN (list);
5878 }
5879
5880 return list;
5881 }
5882
5883 /* Remove any instances of attribute ATTR_NAME in LIST and return the
5884 modified list. */
5885
5886 tree
5887 remove_attribute (const char *attr_name, tree list)
5888 {
5889 tree *p;
5890 size_t attr_len = strlen (attr_name);
5891
5892 gcc_checking_assert (attr_name[0] != '_');
5893
5894 for (p = &list; *p; )
5895 {
5896 tree l = *p;
5897 /* TODO: If we were storing attributes in normalized form, here
5898 we could use a simple strcmp(). */
5899 if (private_is_attribute_p (attr_name, attr_len, get_attribute_name (l)))
5900 *p = TREE_CHAIN (l);
5901 else
5902 p = &TREE_CHAIN (l);
5903 }
5904
5905 return list;
5906 }
5907
5908 /* Return an attribute list that is the union of a1 and a2. */
5909
5910 tree
5911 merge_attributes (tree a1, tree a2)
5912 {
5913 tree attributes;
5914
5915 /* Either one unset? Take the set one. */
5916
5917 if ((attributes = a1) == 0)
5918 attributes = a2;
5919
5920 /* One that completely contains the other? Take it. */
5921
5922 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
5923 {
5924 if (attribute_list_contained (a2, a1))
5925 attributes = a2;
5926 else
5927 {
5928 /* Pick the longest list, and hang on the other list. */
5929
5930 if (list_length (a1) < list_length (a2))
5931 attributes = a2, a2 = a1;
5932
5933 for (; a2 != 0; a2 = TREE_CHAIN (a2))
5934 {
5935 tree a;
5936 for (a = lookup_ident_attribute (get_attribute_name (a2),
5937 attributes);
5938 a != NULL_TREE && !attribute_value_equal (a, a2);
5939 a = lookup_ident_attribute (get_attribute_name (a2),
5940 TREE_CHAIN (a)))
5941 ;
5942 if (a == NULL_TREE)
5943 {
5944 a1 = copy_node (a2);
5945 TREE_CHAIN (a1) = attributes;
5946 attributes = a1;
5947 }
5948 }
5949 }
5950 }
5951 return attributes;
5952 }
5953
5954 /* Given types T1 and T2, merge their attributes and return
5955 the result. */
5956
5957 tree
5958 merge_type_attributes (tree t1, tree t2)
5959 {
5960 return merge_attributes (TYPE_ATTRIBUTES (t1),
5961 TYPE_ATTRIBUTES (t2));
5962 }
5963
5964 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
5965 the result. */
5966
5967 tree
5968 merge_decl_attributes (tree olddecl, tree newdecl)
5969 {
5970 return merge_attributes (DECL_ATTRIBUTES (olddecl),
5971 DECL_ATTRIBUTES (newdecl));
5972 }
5973
5974 #if TARGET_DLLIMPORT_DECL_ATTRIBUTES
5975
5976 /* Specialization of merge_decl_attributes for various Windows targets.
5977
5978 This handles the following situation:
5979
5980 __declspec (dllimport) int foo;
5981 int foo;
5982
5983 The second instance of `foo' nullifies the dllimport. */
5984
5985 tree
5986 merge_dllimport_decl_attributes (tree old, tree new_tree)
5987 {
5988 tree a;
5989 int delete_dllimport_p = 1;
5990
5991 /* What we need to do here is remove from `old' dllimport if it doesn't
5992 appear in `new'. dllimport behaves like extern: if a declaration is
5993 marked dllimport and a definition appears later, then the object
5994 is not dllimport'd. We also remove a `new' dllimport if the old list
5995 contains dllexport: dllexport always overrides dllimport, regardless
5996 of the order of declaration. */
5997 if (!VAR_OR_FUNCTION_DECL_P (new_tree))
5998 delete_dllimport_p = 0;
5999 else if (DECL_DLLIMPORT_P (new_tree)
6000 && lookup_attribute ("dllexport", DECL_ATTRIBUTES (old)))
6001 {
6002 DECL_DLLIMPORT_P (new_tree) = 0;
6003 warning (OPT_Wattributes, "%q+D already declared with dllexport attribute: "
6004 "dllimport ignored", new_tree);
6005 }
6006 else if (DECL_DLLIMPORT_P (old) && !DECL_DLLIMPORT_P (new_tree))
6007 {
6008 /* Warn about overriding a symbol that has already been used, e.g.:
6009 extern int __attribute__ ((dllimport)) foo;
6010 int* bar () {return &foo;}
6011 int foo;
6012 */
6013 if (TREE_USED (old))
6014 {
6015 warning (0, "%q+D redeclared without dllimport attribute "
6016 "after being referenced with dll linkage", new_tree);
6017 /* If we have used a variable's address with dllimport linkage,
6018 keep the old DECL_DLLIMPORT_P flag: the ADDR_EXPR using the
6019 decl may already have had TREE_CONSTANT computed.
6020 We still remove the attribute so that assembler code refers
6021 to '&foo rather than '_imp__foo'. */
6022 if (TREE_CODE (old) == VAR_DECL && TREE_ADDRESSABLE (old))
6023 DECL_DLLIMPORT_P (new_tree) = 1;
6024 }
6025
6026 /* Let an inline definition silently override the external reference,
6027 but otherwise warn about attribute inconsistency. */
6028 else if (TREE_CODE (new_tree) == VAR_DECL
6029 || !DECL_DECLARED_INLINE_P (new_tree))
6030 warning (OPT_Wattributes, "%q+D redeclared without dllimport attribute: "
6031 "previous dllimport ignored", new_tree);
6032 }
6033 else
6034 delete_dllimport_p = 0;
6035
6036 a = merge_attributes (DECL_ATTRIBUTES (old), DECL_ATTRIBUTES (new_tree));
6037
6038 if (delete_dllimport_p)
6039 a = remove_attribute ("dllimport", a);
6040
6041 return a;
6042 }
6043
6044 /* Handle a "dllimport" or "dllexport" attribute; arguments as in
6045 struct attribute_spec.handler. */
6046
6047 tree
6048 handle_dll_attribute (tree * pnode, tree name, tree args, int flags,
6049 bool *no_add_attrs)
6050 {
6051 tree node = *pnode;
6052 bool is_dllimport;
6053
6054 /* These attributes may apply to structure and union types being created,
6055 but otherwise should pass to the declaration involved. */
6056 if (!DECL_P (node))
6057 {
6058 if (flags & ((int) ATTR_FLAG_DECL_NEXT | (int) ATTR_FLAG_FUNCTION_NEXT
6059 | (int) ATTR_FLAG_ARRAY_NEXT))
6060 {
6061 *no_add_attrs = true;
6062 return tree_cons (name, args, NULL_TREE);
6063 }
6064 if (TREE_CODE (node) == RECORD_TYPE
6065 || TREE_CODE (node) == UNION_TYPE)
6066 {
6067 node = TYPE_NAME (node);
6068 if (!node)
6069 return NULL_TREE;
6070 }
6071 else
6072 {
6073 warning (OPT_Wattributes, "%qE attribute ignored",
6074 name);
6075 *no_add_attrs = true;
6076 return NULL_TREE;
6077 }
6078 }
6079
6080 if (TREE_CODE (node) != FUNCTION_DECL
6081 && TREE_CODE (node) != VAR_DECL
6082 && TREE_CODE (node) != TYPE_DECL)
6083 {
6084 *no_add_attrs = true;
6085 warning (OPT_Wattributes, "%qE attribute ignored",
6086 name);
6087 return NULL_TREE;
6088 }
6089
6090 if (TREE_CODE (node) == TYPE_DECL
6091 && TREE_CODE (TREE_TYPE (node)) != RECORD_TYPE
6092 && TREE_CODE (TREE_TYPE (node)) != UNION_TYPE)
6093 {
6094 *no_add_attrs = true;
6095 warning (OPT_Wattributes, "%qE attribute ignored",
6096 name);
6097 return NULL_TREE;
6098 }
6099
6100 is_dllimport = is_attribute_p ("dllimport", name);
6101
6102 /* Report error on dllimport ambiguities seen now before they cause
6103 any damage. */
6104 if (is_dllimport)
6105 {
6106 /* Honor any target-specific overrides. */
6107 if (!targetm.valid_dllimport_attribute_p (node))
6108 *no_add_attrs = true;
6109
6110 else if (TREE_CODE (node) == FUNCTION_DECL
6111 && DECL_DECLARED_INLINE_P (node))
6112 {
6113 warning (OPT_Wattributes, "inline function %q+D declared as "
6114 " dllimport: attribute ignored", node);
6115 *no_add_attrs = true;
6116 }
6117 /* Like MS, treat definition of dllimported variables and
6118 non-inlined functions on declaration as syntax errors. */
6119 else if (TREE_CODE (node) == FUNCTION_DECL && DECL_INITIAL (node))
6120 {
6121 error ("function %q+D definition is marked dllimport", node);
6122 *no_add_attrs = true;
6123 }
6124
6125 else if (TREE_CODE (node) == VAR_DECL)
6126 {
6127 if (DECL_INITIAL (node))
6128 {
6129 error ("variable %q+D definition is marked dllimport",
6130 node);
6131 *no_add_attrs = true;
6132 }
6133
6134 /* `extern' needn't be specified with dllimport.
6135 Specify `extern' now and hope for the best. Sigh. */
6136 DECL_EXTERNAL (node) = 1;
6137 /* Also, implicitly give dllimport'd variables declared within
6138 a function global scope, unless declared static. */
6139 if (current_function_decl != NULL_TREE && !TREE_STATIC (node))
6140 TREE_PUBLIC (node) = 1;
6141 }
6142
6143 if (*no_add_attrs == false)
6144 DECL_DLLIMPORT_P (node) = 1;
6145 }
6146 else if (TREE_CODE (node) == FUNCTION_DECL
6147 && DECL_DECLARED_INLINE_P (node)
6148 && flag_keep_inline_dllexport)
6149 /* An exported function, even if inline, must be emitted. */
6150 DECL_EXTERNAL (node) = 0;
6151
6152 /* Report error if symbol is not accessible at global scope. */
6153 if (!TREE_PUBLIC (node)
6154 && (TREE_CODE (node) == VAR_DECL
6155 || TREE_CODE (node) == FUNCTION_DECL))
6156 {
6157 error ("external linkage required for symbol %q+D because of "
6158 "%qE attribute", node, name);
6159 *no_add_attrs = true;
6160 }
6161
6162 /* A dllexport'd entity must have default visibility so that other
6163 program units (shared libraries or the main executable) can see
6164 it. A dllimport'd entity must have default visibility so that
6165 the linker knows that undefined references within this program
6166 unit can be resolved by the dynamic linker. */
6167 if (!*no_add_attrs)
6168 {
6169 if (DECL_VISIBILITY_SPECIFIED (node)
6170 && DECL_VISIBILITY (node) != VISIBILITY_DEFAULT)
6171 error ("%qE implies default visibility, but %qD has already "
6172 "been declared with a different visibility",
6173 name, node);
6174 DECL_VISIBILITY (node) = VISIBILITY_DEFAULT;
6175 DECL_VISIBILITY_SPECIFIED (node) = 1;
6176 }
6177
6178 return NULL_TREE;
6179 }
6180
6181 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
6182 \f
6183 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
6184 of the various TYPE_QUAL values. */
6185
6186 static void
6187 set_type_quals (tree type, int type_quals)
6188 {
6189 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
6190 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
6191 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
6192 TYPE_ATOMIC (type) = (type_quals & TYPE_QUAL_ATOMIC) != 0;
6193 TYPE_ADDR_SPACE (type) = DECODE_QUAL_ADDR_SPACE (type_quals);
6194 }
6195
6196 /* Returns true iff unqualified CAND and BASE are equivalent. */
6197
6198 bool
6199 check_base_type (const_tree cand, const_tree base)
6200 {
6201 return (TYPE_NAME (cand) == TYPE_NAME (base)
6202 /* Apparently this is needed for Objective-C. */
6203 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
6204 /* Check alignment. */
6205 && TYPE_ALIGN (cand) == TYPE_ALIGN (base)
6206 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
6207 TYPE_ATTRIBUTES (base)));
6208 }
6209
6210 /* Returns true iff CAND is equivalent to BASE with TYPE_QUALS. */
6211
6212 bool
6213 check_qualified_type (const_tree cand, const_tree base, int type_quals)
6214 {
6215 return (TYPE_QUALS (cand) == type_quals
6216 && check_base_type (cand, base));
6217 }
6218
6219 /* Returns true iff CAND is equivalent to BASE with ALIGN. */
6220
6221 static bool
6222 check_aligned_type (const_tree cand, const_tree base, unsigned int align)
6223 {
6224 return (TYPE_QUALS (cand) == TYPE_QUALS (base)
6225 && TYPE_NAME (cand) == TYPE_NAME (base)
6226 /* Apparently this is needed for Objective-C. */
6227 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
6228 /* Check alignment. */
6229 && TYPE_ALIGN (cand) == align
6230 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
6231 TYPE_ATTRIBUTES (base)));
6232 }
6233
6234 /* This function checks to see if TYPE matches the size one of the built-in
6235 atomic types, and returns that core atomic type. */
6236
6237 static tree
6238 find_atomic_core_type (tree type)
6239 {
6240 tree base_atomic_type;
6241
6242 /* Only handle complete types. */
6243 if (TYPE_SIZE (type) == NULL_TREE)
6244 return NULL_TREE;
6245
6246 HOST_WIDE_INT type_size = tree_to_uhwi (TYPE_SIZE (type));
6247 switch (type_size)
6248 {
6249 case 8:
6250 base_atomic_type = atomicQI_type_node;
6251 break;
6252
6253 case 16:
6254 base_atomic_type = atomicHI_type_node;
6255 break;
6256
6257 case 32:
6258 base_atomic_type = atomicSI_type_node;
6259 break;
6260
6261 case 64:
6262 base_atomic_type = atomicDI_type_node;
6263 break;
6264
6265 case 128:
6266 base_atomic_type = atomicTI_type_node;
6267 break;
6268
6269 default:
6270 base_atomic_type = NULL_TREE;
6271 }
6272
6273 return base_atomic_type;
6274 }
6275
6276 /* Return a version of the TYPE, qualified as indicated by the
6277 TYPE_QUALS, if one exists. If no qualified version exists yet,
6278 return NULL_TREE. */
6279
6280 tree
6281 get_qualified_type (tree type, int type_quals)
6282 {
6283 tree t;
6284
6285 if (TYPE_QUALS (type) == type_quals)
6286 return type;
6287
6288 /* Search the chain of variants to see if there is already one there just
6289 like the one we need to have. If so, use that existing one. We must
6290 preserve the TYPE_NAME, since there is code that depends on this. */
6291 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
6292 if (check_qualified_type (t, type, type_quals))
6293 return t;
6294
6295 return NULL_TREE;
6296 }
6297
6298 /* Like get_qualified_type, but creates the type if it does not
6299 exist. This function never returns NULL_TREE. */
6300
6301 tree
6302 build_qualified_type (tree type, int type_quals)
6303 {
6304 tree t;
6305
6306 /* See if we already have the appropriate qualified variant. */
6307 t = get_qualified_type (type, type_quals);
6308
6309 /* If not, build it. */
6310 if (!t)
6311 {
6312 t = build_variant_type_copy (type);
6313 set_type_quals (t, type_quals);
6314
6315 if (((type_quals & TYPE_QUAL_ATOMIC) == TYPE_QUAL_ATOMIC))
6316 {
6317 /* See if this object can map to a basic atomic type. */
6318 tree atomic_type = find_atomic_core_type (type);
6319 if (atomic_type)
6320 {
6321 /* Ensure the alignment of this type is compatible with
6322 the required alignment of the atomic type. */
6323 if (TYPE_ALIGN (atomic_type) > TYPE_ALIGN (t))
6324 TYPE_ALIGN (t) = TYPE_ALIGN (atomic_type);
6325 }
6326 }
6327
6328 if (TYPE_STRUCTURAL_EQUALITY_P (type))
6329 /* Propagate structural equality. */
6330 SET_TYPE_STRUCTURAL_EQUALITY (t);
6331 else if (TYPE_CANONICAL (type) != type)
6332 /* Build the underlying canonical type, since it is different
6333 from TYPE. */
6334 {
6335 tree c = build_qualified_type (TYPE_CANONICAL (type), type_quals);
6336 TYPE_CANONICAL (t) = TYPE_CANONICAL (c);
6337 }
6338 else
6339 /* T is its own canonical type. */
6340 TYPE_CANONICAL (t) = t;
6341
6342 }
6343
6344 return t;
6345 }
6346
6347 /* Create a variant of type T with alignment ALIGN. */
6348
6349 tree
6350 build_aligned_type (tree type, unsigned int align)
6351 {
6352 tree t;
6353
6354 if (TYPE_PACKED (type)
6355 || TYPE_ALIGN (type) == align)
6356 return type;
6357
6358 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
6359 if (check_aligned_type (t, type, align))
6360 return t;
6361
6362 t = build_variant_type_copy (type);
6363 TYPE_ALIGN (t) = align;
6364
6365 return t;
6366 }
6367
6368 /* Create a new distinct copy of TYPE. The new type is made its own
6369 MAIN_VARIANT. If TYPE requires structural equality checks, the
6370 resulting type requires structural equality checks; otherwise, its
6371 TYPE_CANONICAL points to itself. */
6372
6373 tree
6374 build_distinct_type_copy (tree type)
6375 {
6376 tree t = copy_node (type);
6377
6378 TYPE_POINTER_TO (t) = 0;
6379 TYPE_REFERENCE_TO (t) = 0;
6380
6381 /* Set the canonical type either to a new equivalence class, or
6382 propagate the need for structural equality checks. */
6383 if (TYPE_STRUCTURAL_EQUALITY_P (type))
6384 SET_TYPE_STRUCTURAL_EQUALITY (t);
6385 else
6386 TYPE_CANONICAL (t) = t;
6387
6388 /* Make it its own variant. */
6389 TYPE_MAIN_VARIANT (t) = t;
6390 TYPE_NEXT_VARIANT (t) = 0;
6391
6392 /* Note that it is now possible for TYPE_MIN_VALUE to be a value
6393 whose TREE_TYPE is not t. This can also happen in the Ada
6394 frontend when using subtypes. */
6395
6396 return t;
6397 }
6398
6399 /* Create a new variant of TYPE, equivalent but distinct. This is so
6400 the caller can modify it. TYPE_CANONICAL for the return type will
6401 be equivalent to TYPE_CANONICAL of TYPE, indicating that the types
6402 are considered equal by the language itself (or that both types
6403 require structural equality checks). */
6404
6405 tree
6406 build_variant_type_copy (tree type)
6407 {
6408 tree t, m = TYPE_MAIN_VARIANT (type);
6409
6410 t = build_distinct_type_copy (type);
6411
6412 /* Since we're building a variant, assume that it is a non-semantic
6413 variant. This also propagates TYPE_STRUCTURAL_EQUALITY_P. */
6414 TYPE_CANONICAL (t) = TYPE_CANONICAL (type);
6415
6416 /* Add the new type to the chain of variants of TYPE. */
6417 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
6418 TYPE_NEXT_VARIANT (m) = t;
6419 TYPE_MAIN_VARIANT (t) = m;
6420
6421 return t;
6422 }
6423 \f
6424 /* Return true if the from tree in both tree maps are equal. */
6425
6426 int
6427 tree_map_base_eq (const void *va, const void *vb)
6428 {
6429 const struct tree_map_base *const a = (const struct tree_map_base *) va,
6430 *const b = (const struct tree_map_base *) vb;
6431 return (a->from == b->from);
6432 }
6433
6434 /* Hash a from tree in a tree_base_map. */
6435
6436 unsigned int
6437 tree_map_base_hash (const void *item)
6438 {
6439 return htab_hash_pointer (((const struct tree_map_base *)item)->from);
6440 }
6441
6442 /* Return true if this tree map structure is marked for garbage collection
6443 purposes. We simply return true if the from tree is marked, so that this
6444 structure goes away when the from tree goes away. */
6445
6446 int
6447 tree_map_base_marked_p (const void *p)
6448 {
6449 return ggc_marked_p (((const struct tree_map_base *) p)->from);
6450 }
6451
6452 /* Hash a from tree in a tree_map. */
6453
6454 unsigned int
6455 tree_map_hash (const void *item)
6456 {
6457 return (((const struct tree_map *) item)->hash);
6458 }
6459
6460 /* Hash a from tree in a tree_decl_map. */
6461
6462 unsigned int
6463 tree_decl_map_hash (const void *item)
6464 {
6465 return DECL_UID (((const struct tree_decl_map *) item)->base.from);
6466 }
6467
6468 /* Return the initialization priority for DECL. */
6469
6470 priority_type
6471 decl_init_priority_lookup (tree decl)
6472 {
6473 symtab_node *snode = symtab_node::get (decl);
6474
6475 if (!snode)
6476 return DEFAULT_INIT_PRIORITY;
6477 return
6478 snode->get_init_priority ();
6479 }
6480
6481 /* Return the finalization priority for DECL. */
6482
6483 priority_type
6484 decl_fini_priority_lookup (tree decl)
6485 {
6486 cgraph_node *node = cgraph_node::get (decl);
6487
6488 if (!node)
6489 return DEFAULT_INIT_PRIORITY;
6490 return
6491 node->get_fini_priority ();
6492 }
6493
6494 /* Set the initialization priority for DECL to PRIORITY. */
6495
6496 void
6497 decl_init_priority_insert (tree decl, priority_type priority)
6498 {
6499 struct symtab_node *snode;
6500
6501 if (priority == DEFAULT_INIT_PRIORITY)
6502 {
6503 snode = symtab_node::get (decl);
6504 if (!snode)
6505 return;
6506 }
6507 else if (TREE_CODE (decl) == VAR_DECL)
6508 snode = varpool_node::get_create (decl);
6509 else
6510 snode = cgraph_node::get_create (decl);
6511 snode->set_init_priority (priority);
6512 }
6513
6514 /* Set the finalization priority for DECL to PRIORITY. */
6515
6516 void
6517 decl_fini_priority_insert (tree decl, priority_type priority)
6518 {
6519 struct cgraph_node *node;
6520
6521 if (priority == DEFAULT_INIT_PRIORITY)
6522 {
6523 node = cgraph_node::get (decl);
6524 if (!node)
6525 return;
6526 }
6527 else
6528 node = cgraph_node::get_create (decl);
6529 node->set_fini_priority (priority);
6530 }
6531
6532 /* Print out the statistics for the DECL_DEBUG_EXPR hash table. */
6533
6534 static void
6535 print_debug_expr_statistics (void)
6536 {
6537 fprintf (stderr, "DECL_DEBUG_EXPR hash: size %ld, %ld elements, %f collisions\n",
6538 (long) htab_size (debug_expr_for_decl),
6539 (long) htab_elements (debug_expr_for_decl),
6540 htab_collisions (debug_expr_for_decl));
6541 }
6542
6543 /* Print out the statistics for the DECL_VALUE_EXPR hash table. */
6544
6545 static void
6546 print_value_expr_statistics (void)
6547 {
6548 fprintf (stderr, "DECL_VALUE_EXPR hash: size %ld, %ld elements, %f collisions\n",
6549 (long) htab_size (value_expr_for_decl),
6550 (long) htab_elements (value_expr_for_decl),
6551 htab_collisions (value_expr_for_decl));
6552 }
6553
6554 /* Lookup a debug expression for FROM, and return it if we find one. */
6555
6556 tree
6557 decl_debug_expr_lookup (tree from)
6558 {
6559 struct tree_decl_map *h, in;
6560 in.base.from = from;
6561
6562 h = (struct tree_decl_map *)
6563 htab_find_with_hash (debug_expr_for_decl, &in, DECL_UID (from));
6564 if (h)
6565 return h->to;
6566 return NULL_TREE;
6567 }
6568
6569 /* Insert a mapping FROM->TO in the debug expression hashtable. */
6570
6571 void
6572 decl_debug_expr_insert (tree from, tree to)
6573 {
6574 struct tree_decl_map *h;
6575 void **loc;
6576
6577 h = ggc_alloc<tree_decl_map> ();
6578 h->base.from = from;
6579 h->to = to;
6580 loc = htab_find_slot_with_hash (debug_expr_for_decl, h, DECL_UID (from),
6581 INSERT);
6582 *(struct tree_decl_map **) loc = h;
6583 }
6584
6585 /* Lookup a value expression for FROM, and return it if we find one. */
6586
6587 tree
6588 decl_value_expr_lookup (tree from)
6589 {
6590 struct tree_decl_map *h, in;
6591 in.base.from = from;
6592
6593 h = (struct tree_decl_map *)
6594 htab_find_with_hash (value_expr_for_decl, &in, DECL_UID (from));
6595 if (h)
6596 return h->to;
6597 return NULL_TREE;
6598 }
6599
6600 /* Insert a mapping FROM->TO in the value expression hashtable. */
6601
6602 void
6603 decl_value_expr_insert (tree from, tree to)
6604 {
6605 struct tree_decl_map *h;
6606 void **loc;
6607
6608 h = ggc_alloc<tree_decl_map> ();
6609 h->base.from = from;
6610 h->to = to;
6611 loc = htab_find_slot_with_hash (value_expr_for_decl, h, DECL_UID (from),
6612 INSERT);
6613 *(struct tree_decl_map **) loc = h;
6614 }
6615
6616 /* Lookup a vector of debug arguments for FROM, and return it if we
6617 find one. */
6618
6619 vec<tree, va_gc> **
6620 decl_debug_args_lookup (tree from)
6621 {
6622 struct tree_vec_map *h, in;
6623
6624 if (!DECL_HAS_DEBUG_ARGS_P (from))
6625 return NULL;
6626 gcc_checking_assert (debug_args_for_decl != NULL);
6627 in.base.from = from;
6628 h = (struct tree_vec_map *)
6629 htab_find_with_hash (debug_args_for_decl, &in, DECL_UID (from));
6630 if (h)
6631 return &h->to;
6632 return NULL;
6633 }
6634
6635 /* Insert a mapping FROM->empty vector of debug arguments in the value
6636 expression hashtable. */
6637
6638 vec<tree, va_gc> **
6639 decl_debug_args_insert (tree from)
6640 {
6641 struct tree_vec_map *h;
6642 void **loc;
6643
6644 if (DECL_HAS_DEBUG_ARGS_P (from))
6645 return decl_debug_args_lookup (from);
6646 if (debug_args_for_decl == NULL)
6647 debug_args_for_decl = htab_create_ggc (64, tree_vec_map_hash,
6648 tree_vec_map_eq, 0);
6649 h = ggc_alloc<tree_vec_map> ();
6650 h->base.from = from;
6651 h->to = NULL;
6652 loc = htab_find_slot_with_hash (debug_args_for_decl, h, DECL_UID (from),
6653 INSERT);
6654 *(struct tree_vec_map **) loc = h;
6655 DECL_HAS_DEBUG_ARGS_P (from) = 1;
6656 return &h->to;
6657 }
6658
6659 /* Hashing of types so that we don't make duplicates.
6660 The entry point is `type_hash_canon'. */
6661
6662 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
6663 with types in the TREE_VALUE slots), by adding the hash codes
6664 of the individual types. */
6665
6666 static void
6667 type_hash_list (const_tree list, inchash::hash &hstate)
6668 {
6669 const_tree tail;
6670
6671 for (tail = list; tail; tail = TREE_CHAIN (tail))
6672 if (TREE_VALUE (tail) != error_mark_node)
6673 hstate.add_object (TYPE_HASH (TREE_VALUE (tail)));
6674 }
6675
6676 /* These are the Hashtable callback functions. */
6677
6678 /* Returns true iff the types are equivalent. */
6679
6680 static int
6681 type_hash_eq (const void *va, const void *vb)
6682 {
6683 const struct type_hash *const a = (const struct type_hash *) va,
6684 *const b = (const struct type_hash *) vb;
6685
6686 /* First test the things that are the same for all types. */
6687 if (a->hash != b->hash
6688 || TREE_CODE (a->type) != TREE_CODE (b->type)
6689 || TREE_TYPE (a->type) != TREE_TYPE (b->type)
6690 || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
6691 TYPE_ATTRIBUTES (b->type))
6692 || (TREE_CODE (a->type) != COMPLEX_TYPE
6693 && TYPE_NAME (a->type) != TYPE_NAME (b->type)))
6694 return 0;
6695
6696 /* Be careful about comparing arrays before and after the element type
6697 has been completed; don't compare TYPE_ALIGN unless both types are
6698 complete. */
6699 if (COMPLETE_TYPE_P (a->type) && COMPLETE_TYPE_P (b->type)
6700 && (TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
6701 || TYPE_MODE (a->type) != TYPE_MODE (b->type)))
6702 return 0;
6703
6704 switch (TREE_CODE (a->type))
6705 {
6706 case VOID_TYPE:
6707 case COMPLEX_TYPE:
6708 case POINTER_TYPE:
6709 case REFERENCE_TYPE:
6710 case NULLPTR_TYPE:
6711 return 1;
6712
6713 case VECTOR_TYPE:
6714 return TYPE_VECTOR_SUBPARTS (a->type) == TYPE_VECTOR_SUBPARTS (b->type);
6715
6716 case ENUMERAL_TYPE:
6717 if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
6718 && !(TYPE_VALUES (a->type)
6719 && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
6720 && TYPE_VALUES (b->type)
6721 && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
6722 && type_list_equal (TYPE_VALUES (a->type),
6723 TYPE_VALUES (b->type))))
6724 return 0;
6725
6726 /* ... fall through ... */
6727
6728 case INTEGER_TYPE:
6729 case REAL_TYPE:
6730 case BOOLEAN_TYPE:
6731 if (TYPE_PRECISION (a->type) != TYPE_PRECISION (b->type))
6732 return false;
6733 return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
6734 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
6735 TYPE_MAX_VALUE (b->type)))
6736 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
6737 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
6738 TYPE_MIN_VALUE (b->type))));
6739
6740 case FIXED_POINT_TYPE:
6741 return TYPE_SATURATING (a->type) == TYPE_SATURATING (b->type);
6742
6743 case OFFSET_TYPE:
6744 return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
6745
6746 case METHOD_TYPE:
6747 if (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
6748 && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
6749 || (TYPE_ARG_TYPES (a->type)
6750 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
6751 && TYPE_ARG_TYPES (b->type)
6752 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
6753 && type_list_equal (TYPE_ARG_TYPES (a->type),
6754 TYPE_ARG_TYPES (b->type)))))
6755 break;
6756 return 0;
6757 case ARRAY_TYPE:
6758 return TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type);
6759
6760 case RECORD_TYPE:
6761 case UNION_TYPE:
6762 case QUAL_UNION_TYPE:
6763 return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
6764 || (TYPE_FIELDS (a->type)
6765 && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
6766 && TYPE_FIELDS (b->type)
6767 && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
6768 && type_list_equal (TYPE_FIELDS (a->type),
6769 TYPE_FIELDS (b->type))));
6770
6771 case FUNCTION_TYPE:
6772 if (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
6773 || (TYPE_ARG_TYPES (a->type)
6774 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
6775 && TYPE_ARG_TYPES (b->type)
6776 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
6777 && type_list_equal (TYPE_ARG_TYPES (a->type),
6778 TYPE_ARG_TYPES (b->type))))
6779 break;
6780 return 0;
6781
6782 default:
6783 return 0;
6784 }
6785
6786 if (lang_hooks.types.type_hash_eq != NULL)
6787 return lang_hooks.types.type_hash_eq (a->type, b->type);
6788
6789 return 1;
6790 }
6791
6792 /* Return the cached hash value. */
6793
6794 static hashval_t
6795 type_hash_hash (const void *item)
6796 {
6797 return ((const struct type_hash *) item)->hash;
6798 }
6799
6800 /* Given TYPE, and HASHCODE its hash code, return the canonical
6801 object for an identical type if one already exists.
6802 Otherwise, return TYPE, and record it as the canonical object.
6803
6804 To use this function, first create a type of the sort you want.
6805 Then compute its hash code from the fields of the type that
6806 make it different from other similar types.
6807 Then call this function and use the value. */
6808
6809 tree
6810 type_hash_canon (unsigned int hashcode, tree type)
6811 {
6812 type_hash in;
6813 void **loc;
6814
6815 /* The hash table only contains main variants, so ensure that's what we're
6816 being passed. */
6817 gcc_assert (TYPE_MAIN_VARIANT (type) == type);
6818
6819 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
6820 must call that routine before comparing TYPE_ALIGNs. */
6821 layout_type (type);
6822
6823 in.hash = hashcode;
6824 in.type = type;
6825
6826 loc = htab_find_slot_with_hash (type_hash_table, &in, hashcode, INSERT);
6827 if (*loc)
6828 {
6829 tree t1 = ((type_hash *) *loc)->type;
6830 gcc_assert (TYPE_MAIN_VARIANT (t1) == t1);
6831 if (GATHER_STATISTICS)
6832 {
6833 tree_code_counts[(int) TREE_CODE (type)]--;
6834 tree_node_counts[(int) t_kind]--;
6835 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type_non_common);
6836 }
6837 return t1;
6838 }
6839 else
6840 {
6841 struct type_hash *h;
6842
6843 h = ggc_alloc<type_hash> ();
6844 h->hash = hashcode;
6845 h->type = type;
6846 *loc = (void *)h;
6847
6848 return type;
6849 }
6850 }
6851
6852 /* See if the data pointed to by the type hash table is marked. We consider
6853 it marked if the type is marked or if a debug type number or symbol
6854 table entry has been made for the type. */
6855
6856 static int
6857 type_hash_marked_p (const void *p)
6858 {
6859 const_tree const type = ((const struct type_hash *) p)->type;
6860
6861 return ggc_marked_p (type);
6862 }
6863
6864 static void
6865 print_type_hash_statistics (void)
6866 {
6867 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
6868 (long) htab_size (type_hash_table),
6869 (long) htab_elements (type_hash_table),
6870 htab_collisions (type_hash_table));
6871 }
6872
6873 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
6874 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
6875 by adding the hash codes of the individual attributes. */
6876
6877 static void
6878 attribute_hash_list (const_tree list, inchash::hash &hstate)
6879 {
6880 const_tree tail;
6881
6882 for (tail = list; tail; tail = TREE_CHAIN (tail))
6883 /* ??? Do we want to add in TREE_VALUE too? */
6884 hstate.add_object (IDENTIFIER_HASH_VALUE (get_attribute_name (tail)));
6885 }
6886
6887 /* Given two lists of attributes, return true if list l2 is
6888 equivalent to l1. */
6889
6890 int
6891 attribute_list_equal (const_tree l1, const_tree l2)
6892 {
6893 if (l1 == l2)
6894 return 1;
6895
6896 return attribute_list_contained (l1, l2)
6897 && attribute_list_contained (l2, l1);
6898 }
6899
6900 /* Given two lists of attributes, return true if list L2 is
6901 completely contained within L1. */
6902 /* ??? This would be faster if attribute names were stored in a canonicalized
6903 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
6904 must be used to show these elements are equivalent (which they are). */
6905 /* ??? It's not clear that attributes with arguments will always be handled
6906 correctly. */
6907
6908 int
6909 attribute_list_contained (const_tree l1, const_tree l2)
6910 {
6911 const_tree t1, t2;
6912
6913 /* First check the obvious, maybe the lists are identical. */
6914 if (l1 == l2)
6915 return 1;
6916
6917 /* Maybe the lists are similar. */
6918 for (t1 = l1, t2 = l2;
6919 t1 != 0 && t2 != 0
6920 && get_attribute_name (t1) == get_attribute_name (t2)
6921 && TREE_VALUE (t1) == TREE_VALUE (t2);
6922 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
6923 ;
6924
6925 /* Maybe the lists are equal. */
6926 if (t1 == 0 && t2 == 0)
6927 return 1;
6928
6929 for (; t2 != 0; t2 = TREE_CHAIN (t2))
6930 {
6931 const_tree attr;
6932 /* This CONST_CAST is okay because lookup_attribute does not
6933 modify its argument and the return value is assigned to a
6934 const_tree. */
6935 for (attr = lookup_ident_attribute (get_attribute_name (t2),
6936 CONST_CAST_TREE (l1));
6937 attr != NULL_TREE && !attribute_value_equal (t2, attr);
6938 attr = lookup_ident_attribute (get_attribute_name (t2),
6939 TREE_CHAIN (attr)))
6940 ;
6941
6942 if (attr == NULL_TREE)
6943 return 0;
6944 }
6945
6946 return 1;
6947 }
6948
6949 /* Given two lists of types
6950 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
6951 return 1 if the lists contain the same types in the same order.
6952 Also, the TREE_PURPOSEs must match. */
6953
6954 int
6955 type_list_equal (const_tree l1, const_tree l2)
6956 {
6957 const_tree t1, t2;
6958
6959 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
6960 if (TREE_VALUE (t1) != TREE_VALUE (t2)
6961 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
6962 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
6963 && (TREE_TYPE (TREE_PURPOSE (t1))
6964 == TREE_TYPE (TREE_PURPOSE (t2))))))
6965 return 0;
6966
6967 return t1 == t2;
6968 }
6969
6970 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
6971 given by TYPE. If the argument list accepts variable arguments,
6972 then this function counts only the ordinary arguments. */
6973
6974 int
6975 type_num_arguments (const_tree type)
6976 {
6977 int i = 0;
6978 tree t;
6979
6980 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
6981 /* If the function does not take a variable number of arguments,
6982 the last element in the list will have type `void'. */
6983 if (VOID_TYPE_P (TREE_VALUE (t)))
6984 break;
6985 else
6986 ++i;
6987
6988 return i;
6989 }
6990
6991 /* Nonzero if integer constants T1 and T2
6992 represent the same constant value. */
6993
6994 int
6995 tree_int_cst_equal (const_tree t1, const_tree t2)
6996 {
6997 if (t1 == t2)
6998 return 1;
6999
7000 if (t1 == 0 || t2 == 0)
7001 return 0;
7002
7003 if (TREE_CODE (t1) == INTEGER_CST
7004 && TREE_CODE (t2) == INTEGER_CST
7005 && wi::to_widest (t1) == wi::to_widest (t2))
7006 return 1;
7007
7008 return 0;
7009 }
7010
7011 /* Return true if T is an INTEGER_CST whose numerical value (extended
7012 according to TYPE_UNSIGNED) fits in a signed HOST_WIDE_INT. */
7013
7014 bool
7015 tree_fits_shwi_p (const_tree t)
7016 {
7017 return (t != NULL_TREE
7018 && TREE_CODE (t) == INTEGER_CST
7019 && wi::fits_shwi_p (wi::to_widest (t)));
7020 }
7021
7022 /* Return true if T is an INTEGER_CST whose numerical value (extended
7023 according to TYPE_UNSIGNED) fits in an unsigned HOST_WIDE_INT. */
7024
7025 bool
7026 tree_fits_uhwi_p (const_tree t)
7027 {
7028 return (t != NULL_TREE
7029 && TREE_CODE (t) == INTEGER_CST
7030 && wi::fits_uhwi_p (wi::to_widest (t)));
7031 }
7032
7033 /* T is an INTEGER_CST whose numerical value (extended according to
7034 TYPE_UNSIGNED) fits in a signed HOST_WIDE_INT. Return that
7035 HOST_WIDE_INT. */
7036
7037 HOST_WIDE_INT
7038 tree_to_shwi (const_tree t)
7039 {
7040 gcc_assert (tree_fits_shwi_p (t));
7041 return TREE_INT_CST_LOW (t);
7042 }
7043
7044 /* T is an INTEGER_CST whose numerical value (extended according to
7045 TYPE_UNSIGNED) fits in an unsigned HOST_WIDE_INT. Return that
7046 HOST_WIDE_INT. */
7047
7048 unsigned HOST_WIDE_INT
7049 tree_to_uhwi (const_tree t)
7050 {
7051 gcc_assert (tree_fits_uhwi_p (t));
7052 return TREE_INT_CST_LOW (t);
7053 }
7054
7055 /* Return the most significant (sign) bit of T. */
7056
7057 int
7058 tree_int_cst_sign_bit (const_tree t)
7059 {
7060 unsigned bitno = TYPE_PRECISION (TREE_TYPE (t)) - 1;
7061
7062 return wi::extract_uhwi (t, bitno, 1);
7063 }
7064
7065 /* Return an indication of the sign of the integer constant T.
7066 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
7067 Note that -1 will never be returned if T's type is unsigned. */
7068
7069 int
7070 tree_int_cst_sgn (const_tree t)
7071 {
7072 if (wi::eq_p (t, 0))
7073 return 0;
7074 else if (TYPE_UNSIGNED (TREE_TYPE (t)))
7075 return 1;
7076 else if (wi::neg_p (t))
7077 return -1;
7078 else
7079 return 1;
7080 }
7081
7082 /* Return the minimum number of bits needed to represent VALUE in a
7083 signed or unsigned type, UNSIGNEDP says which. */
7084
7085 unsigned int
7086 tree_int_cst_min_precision (tree value, signop sgn)
7087 {
7088 /* If the value is negative, compute its negative minus 1. The latter
7089 adjustment is because the absolute value of the largest negative value
7090 is one larger than the largest positive value. This is equivalent to
7091 a bit-wise negation, so use that operation instead. */
7092
7093 if (tree_int_cst_sgn (value) < 0)
7094 value = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (value), value);
7095
7096 /* Return the number of bits needed, taking into account the fact
7097 that we need one more bit for a signed than unsigned type.
7098 If value is 0 or -1, the minimum precision is 1 no matter
7099 whether unsignedp is true or false. */
7100
7101 if (integer_zerop (value))
7102 return 1;
7103 else
7104 return tree_floor_log2 (value) + 1 + (sgn == SIGNED ? 1 : 0) ;
7105 }
7106
7107 /* Return truthvalue of whether T1 is the same tree structure as T2.
7108 Return 1 if they are the same.
7109 Return 0 if they are understandably different.
7110 Return -1 if either contains tree structure not understood by
7111 this function. */
7112
7113 int
7114 simple_cst_equal (const_tree t1, const_tree t2)
7115 {
7116 enum tree_code code1, code2;
7117 int cmp;
7118 int i;
7119
7120 if (t1 == t2)
7121 return 1;
7122 if (t1 == 0 || t2 == 0)
7123 return 0;
7124
7125 code1 = TREE_CODE (t1);
7126 code2 = TREE_CODE (t2);
7127
7128 if (CONVERT_EXPR_CODE_P (code1) || code1 == NON_LVALUE_EXPR)
7129 {
7130 if (CONVERT_EXPR_CODE_P (code2)
7131 || code2 == NON_LVALUE_EXPR)
7132 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7133 else
7134 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
7135 }
7136
7137 else if (CONVERT_EXPR_CODE_P (code2)
7138 || code2 == NON_LVALUE_EXPR)
7139 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
7140
7141 if (code1 != code2)
7142 return 0;
7143
7144 switch (code1)
7145 {
7146 case INTEGER_CST:
7147 return wi::to_widest (t1) == wi::to_widest (t2);
7148
7149 case REAL_CST:
7150 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
7151
7152 case FIXED_CST:
7153 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1), TREE_FIXED_CST (t2));
7154
7155 case STRING_CST:
7156 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
7157 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
7158 TREE_STRING_LENGTH (t1)));
7159
7160 case CONSTRUCTOR:
7161 {
7162 unsigned HOST_WIDE_INT idx;
7163 vec<constructor_elt, va_gc> *v1 = CONSTRUCTOR_ELTS (t1);
7164 vec<constructor_elt, va_gc> *v2 = CONSTRUCTOR_ELTS (t2);
7165
7166 if (vec_safe_length (v1) != vec_safe_length (v2))
7167 return false;
7168
7169 for (idx = 0; idx < vec_safe_length (v1); ++idx)
7170 /* ??? Should we handle also fields here? */
7171 if (!simple_cst_equal ((*v1)[idx].value, (*v2)[idx].value))
7172 return false;
7173 return true;
7174 }
7175
7176 case SAVE_EXPR:
7177 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7178
7179 case CALL_EXPR:
7180 cmp = simple_cst_equal (CALL_EXPR_FN (t1), CALL_EXPR_FN (t2));
7181 if (cmp <= 0)
7182 return cmp;
7183 if (call_expr_nargs (t1) != call_expr_nargs (t2))
7184 return 0;
7185 {
7186 const_tree arg1, arg2;
7187 const_call_expr_arg_iterator iter1, iter2;
7188 for (arg1 = first_const_call_expr_arg (t1, &iter1),
7189 arg2 = first_const_call_expr_arg (t2, &iter2);
7190 arg1 && arg2;
7191 arg1 = next_const_call_expr_arg (&iter1),
7192 arg2 = next_const_call_expr_arg (&iter2))
7193 {
7194 cmp = simple_cst_equal (arg1, arg2);
7195 if (cmp <= 0)
7196 return cmp;
7197 }
7198 return arg1 == arg2;
7199 }
7200
7201 case TARGET_EXPR:
7202 /* Special case: if either target is an unallocated VAR_DECL,
7203 it means that it's going to be unified with whatever the
7204 TARGET_EXPR is really supposed to initialize, so treat it
7205 as being equivalent to anything. */
7206 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
7207 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
7208 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
7209 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
7210 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
7211 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
7212 cmp = 1;
7213 else
7214 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7215
7216 if (cmp <= 0)
7217 return cmp;
7218
7219 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
7220
7221 case WITH_CLEANUP_EXPR:
7222 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7223 if (cmp <= 0)
7224 return cmp;
7225
7226 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
7227
7228 case COMPONENT_REF:
7229 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
7230 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7231
7232 return 0;
7233
7234 case VAR_DECL:
7235 case PARM_DECL:
7236 case CONST_DECL:
7237 case FUNCTION_DECL:
7238 return 0;
7239
7240 default:
7241 break;
7242 }
7243
7244 /* This general rule works for most tree codes. All exceptions should be
7245 handled above. If this is a language-specific tree code, we can't
7246 trust what might be in the operand, so say we don't know
7247 the situation. */
7248 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
7249 return -1;
7250
7251 switch (TREE_CODE_CLASS (code1))
7252 {
7253 case tcc_unary:
7254 case tcc_binary:
7255 case tcc_comparison:
7256 case tcc_expression:
7257 case tcc_reference:
7258 case tcc_statement:
7259 cmp = 1;
7260 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
7261 {
7262 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
7263 if (cmp <= 0)
7264 return cmp;
7265 }
7266
7267 return cmp;
7268
7269 default:
7270 return -1;
7271 }
7272 }
7273
7274 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
7275 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
7276 than U, respectively. */
7277
7278 int
7279 compare_tree_int (const_tree t, unsigned HOST_WIDE_INT u)
7280 {
7281 if (tree_int_cst_sgn (t) < 0)
7282 return -1;
7283 else if (!tree_fits_uhwi_p (t))
7284 return 1;
7285 else if (TREE_INT_CST_LOW (t) == u)
7286 return 0;
7287 else if (TREE_INT_CST_LOW (t) < u)
7288 return -1;
7289 else
7290 return 1;
7291 }
7292
7293 /* Return true if SIZE represents a constant size that is in bounds of
7294 what the middle-end and the backend accepts (covering not more than
7295 half of the address-space). */
7296
7297 bool
7298 valid_constant_size_p (const_tree size)
7299 {
7300 if (! tree_fits_uhwi_p (size)
7301 || TREE_OVERFLOW (size)
7302 || tree_int_cst_sign_bit (size) != 0)
7303 return false;
7304 return true;
7305 }
7306
7307 /* Return the precision of the type, or for a complex or vector type the
7308 precision of the type of its elements. */
7309
7310 unsigned int
7311 element_precision (const_tree type)
7312 {
7313 enum tree_code code = TREE_CODE (type);
7314 if (code == COMPLEX_TYPE || code == VECTOR_TYPE)
7315 type = TREE_TYPE (type);
7316
7317 return TYPE_PRECISION (type);
7318 }
7319
7320 /* Return true if CODE represents an associative tree code. Otherwise
7321 return false. */
7322 bool
7323 associative_tree_code (enum tree_code code)
7324 {
7325 switch (code)
7326 {
7327 case BIT_IOR_EXPR:
7328 case BIT_AND_EXPR:
7329 case BIT_XOR_EXPR:
7330 case PLUS_EXPR:
7331 case MULT_EXPR:
7332 case MIN_EXPR:
7333 case MAX_EXPR:
7334 return true;
7335
7336 default:
7337 break;
7338 }
7339 return false;
7340 }
7341
7342 /* Return true if CODE represents a commutative tree code. Otherwise
7343 return false. */
7344 bool
7345 commutative_tree_code (enum tree_code code)
7346 {
7347 switch (code)
7348 {
7349 case PLUS_EXPR:
7350 case MULT_EXPR:
7351 case MULT_HIGHPART_EXPR:
7352 case MIN_EXPR:
7353 case MAX_EXPR:
7354 case BIT_IOR_EXPR:
7355 case BIT_XOR_EXPR:
7356 case BIT_AND_EXPR:
7357 case NE_EXPR:
7358 case EQ_EXPR:
7359 case UNORDERED_EXPR:
7360 case ORDERED_EXPR:
7361 case UNEQ_EXPR:
7362 case LTGT_EXPR:
7363 case TRUTH_AND_EXPR:
7364 case TRUTH_XOR_EXPR:
7365 case TRUTH_OR_EXPR:
7366 case WIDEN_MULT_EXPR:
7367 case VEC_WIDEN_MULT_HI_EXPR:
7368 case VEC_WIDEN_MULT_LO_EXPR:
7369 case VEC_WIDEN_MULT_EVEN_EXPR:
7370 case VEC_WIDEN_MULT_ODD_EXPR:
7371 return true;
7372
7373 default:
7374 break;
7375 }
7376 return false;
7377 }
7378
7379 /* Return true if CODE represents a ternary tree code for which the
7380 first two operands are commutative. Otherwise return false. */
7381 bool
7382 commutative_ternary_tree_code (enum tree_code code)
7383 {
7384 switch (code)
7385 {
7386 case WIDEN_MULT_PLUS_EXPR:
7387 case WIDEN_MULT_MINUS_EXPR:
7388 return true;
7389
7390 default:
7391 break;
7392 }
7393 return false;
7394 }
7395
7396 namespace inchash
7397 {
7398
7399 /* Generate a hash value for an expression. This can be used iteratively
7400 by passing a previous result as the HSTATE argument.
7401
7402 This function is intended to produce the same hash for expressions which
7403 would compare equal using operand_equal_p. */
7404 void
7405 add_expr (const_tree t, inchash::hash &hstate)
7406 {
7407 int i;
7408 enum tree_code code;
7409 enum tree_code_class tclass;
7410
7411 if (t == NULL_TREE)
7412 {
7413 hstate.merge_hash (0);
7414 return;
7415 }
7416
7417 code = TREE_CODE (t);
7418
7419 switch (code)
7420 {
7421 /* Alas, constants aren't shared, so we can't rely on pointer
7422 identity. */
7423 case VOID_CST:
7424 hstate.merge_hash (0);
7425 return;
7426 case INTEGER_CST:
7427 for (i = 0; i < TREE_INT_CST_NUNITS (t); i++)
7428 hstate.add_wide_int (TREE_INT_CST_ELT (t, i));
7429 return;
7430 case REAL_CST:
7431 {
7432 unsigned int val2 = real_hash (TREE_REAL_CST_PTR (t));
7433 hstate.merge_hash (val2);
7434 return;
7435 }
7436 case FIXED_CST:
7437 {
7438 unsigned int val2 = fixed_hash (TREE_FIXED_CST_PTR (t));
7439 hstate.merge_hash (val2);
7440 return;
7441 }
7442 case STRING_CST:
7443 hstate.add ((const void *) TREE_STRING_POINTER (t), TREE_STRING_LENGTH (t));
7444 return;
7445 case COMPLEX_CST:
7446 inchash::add_expr (TREE_REALPART (t), hstate);
7447 inchash::add_expr (TREE_IMAGPART (t), hstate);
7448 return;
7449 case VECTOR_CST:
7450 {
7451 unsigned i;
7452 for (i = 0; i < VECTOR_CST_NELTS (t); ++i)
7453 inchash::add_expr (VECTOR_CST_ELT (t, i), hstate);
7454 return;
7455 }
7456 case SSA_NAME:
7457 /* We can just compare by pointer. */
7458 hstate.add_wide_int (SSA_NAME_VERSION (t));
7459 return;
7460 case PLACEHOLDER_EXPR:
7461 /* The node itself doesn't matter. */
7462 return;
7463 case TREE_LIST:
7464 /* A list of expressions, for a CALL_EXPR or as the elements of a
7465 VECTOR_CST. */
7466 for (; t; t = TREE_CHAIN (t))
7467 inchash::add_expr (TREE_VALUE (t), hstate);
7468 return;
7469 case CONSTRUCTOR:
7470 {
7471 unsigned HOST_WIDE_INT idx;
7472 tree field, value;
7473 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t), idx, field, value)
7474 {
7475 inchash::add_expr (field, hstate);
7476 inchash::add_expr (value, hstate);
7477 }
7478 return;
7479 }
7480 case FUNCTION_DECL:
7481 /* When referring to a built-in FUNCTION_DECL, use the __builtin__ form.
7482 Otherwise nodes that compare equal according to operand_equal_p might
7483 get different hash codes. However, don't do this for machine specific
7484 or front end builtins, since the function code is overloaded in those
7485 cases. */
7486 if (DECL_BUILT_IN_CLASS (t) == BUILT_IN_NORMAL
7487 && builtin_decl_explicit_p (DECL_FUNCTION_CODE (t)))
7488 {
7489 t = builtin_decl_explicit (DECL_FUNCTION_CODE (t));
7490 code = TREE_CODE (t);
7491 }
7492 /* FALL THROUGH */
7493 default:
7494 tclass = TREE_CODE_CLASS (code);
7495
7496 if (tclass == tcc_declaration)
7497 {
7498 /* DECL's have a unique ID */
7499 hstate.add_wide_int (DECL_UID (t));
7500 }
7501 else
7502 {
7503 gcc_assert (IS_EXPR_CODE_CLASS (tclass));
7504
7505 hstate.add_object (code);
7506
7507 /* Don't hash the type, that can lead to having nodes which
7508 compare equal according to operand_equal_p, but which
7509 have different hash codes. */
7510 if (CONVERT_EXPR_CODE_P (code)
7511 || code == NON_LVALUE_EXPR)
7512 {
7513 /* Make sure to include signness in the hash computation. */
7514 hstate.add_int (TYPE_UNSIGNED (TREE_TYPE (t)));
7515 inchash::add_expr (TREE_OPERAND (t, 0), hstate);
7516 }
7517
7518 else if (commutative_tree_code (code))
7519 {
7520 /* It's a commutative expression. We want to hash it the same
7521 however it appears. We do this by first hashing both operands
7522 and then rehashing based on the order of their independent
7523 hashes. */
7524 inchash::hash one, two;
7525 inchash::add_expr (TREE_OPERAND (t, 0), one);
7526 inchash::add_expr (TREE_OPERAND (t, 1), two);
7527 hstate.add_commutative (one, two);
7528 }
7529 else
7530 for (i = TREE_OPERAND_LENGTH (t) - 1; i >= 0; --i)
7531 inchash::add_expr (TREE_OPERAND (t, i), hstate);
7532 }
7533 return;
7534 }
7535 }
7536
7537 }
7538
7539 /* Constructors for pointer, array and function types.
7540 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
7541 constructed by language-dependent code, not here.) */
7542
7543 /* Construct, lay out and return the type of pointers to TO_TYPE with
7544 mode MODE. If CAN_ALIAS_ALL is TRUE, indicate this type can
7545 reference all of memory. If such a type has already been
7546 constructed, reuse it. */
7547
7548 tree
7549 build_pointer_type_for_mode (tree to_type, enum machine_mode mode,
7550 bool can_alias_all)
7551 {
7552 tree t;
7553
7554 if (to_type == error_mark_node)
7555 return error_mark_node;
7556
7557 /* If the pointed-to type has the may_alias attribute set, force
7558 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
7559 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
7560 can_alias_all = true;
7561
7562 /* In some cases, languages will have things that aren't a POINTER_TYPE
7563 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
7564 In that case, return that type without regard to the rest of our
7565 operands.
7566
7567 ??? This is a kludge, but consistent with the way this function has
7568 always operated and there doesn't seem to be a good way to avoid this
7569 at the moment. */
7570 if (TYPE_POINTER_TO (to_type) != 0
7571 && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
7572 return TYPE_POINTER_TO (to_type);
7573
7574 /* First, if we already have a type for pointers to TO_TYPE and it's
7575 the proper mode, use it. */
7576 for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
7577 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
7578 return t;
7579
7580 t = make_node (POINTER_TYPE);
7581
7582 TREE_TYPE (t) = to_type;
7583 SET_TYPE_MODE (t, mode);
7584 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
7585 TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
7586 TYPE_POINTER_TO (to_type) = t;
7587
7588 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
7589 SET_TYPE_STRUCTURAL_EQUALITY (t);
7590 else if (TYPE_CANONICAL (to_type) != to_type)
7591 TYPE_CANONICAL (t)
7592 = build_pointer_type_for_mode (TYPE_CANONICAL (to_type),
7593 mode, can_alias_all);
7594
7595 /* Lay out the type. This function has many callers that are concerned
7596 with expression-construction, and this simplifies them all. */
7597 layout_type (t);
7598
7599 return t;
7600 }
7601
7602 /* By default build pointers in ptr_mode. */
7603
7604 tree
7605 build_pointer_type (tree to_type)
7606 {
7607 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
7608 : TYPE_ADDR_SPACE (to_type);
7609 enum machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
7610 return build_pointer_type_for_mode (to_type, pointer_mode, false);
7611 }
7612
7613 /* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE. */
7614
7615 tree
7616 build_reference_type_for_mode (tree to_type, enum machine_mode mode,
7617 bool can_alias_all)
7618 {
7619 tree t;
7620
7621 if (to_type == error_mark_node)
7622 return error_mark_node;
7623
7624 /* If the pointed-to type has the may_alias attribute set, force
7625 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
7626 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
7627 can_alias_all = true;
7628
7629 /* In some cases, languages will have things that aren't a REFERENCE_TYPE
7630 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
7631 In that case, return that type without regard to the rest of our
7632 operands.
7633
7634 ??? This is a kludge, but consistent with the way this function has
7635 always operated and there doesn't seem to be a good way to avoid this
7636 at the moment. */
7637 if (TYPE_REFERENCE_TO (to_type) != 0
7638 && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
7639 return TYPE_REFERENCE_TO (to_type);
7640
7641 /* First, if we already have a type for pointers to TO_TYPE and it's
7642 the proper mode, use it. */
7643 for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
7644 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
7645 return t;
7646
7647 t = make_node (REFERENCE_TYPE);
7648
7649 TREE_TYPE (t) = to_type;
7650 SET_TYPE_MODE (t, mode);
7651 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
7652 TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
7653 TYPE_REFERENCE_TO (to_type) = t;
7654
7655 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
7656 SET_TYPE_STRUCTURAL_EQUALITY (t);
7657 else if (TYPE_CANONICAL (to_type) != to_type)
7658 TYPE_CANONICAL (t)
7659 = build_reference_type_for_mode (TYPE_CANONICAL (to_type),
7660 mode, can_alias_all);
7661
7662 layout_type (t);
7663
7664 return t;
7665 }
7666
7667
7668 /* Build the node for the type of references-to-TO_TYPE by default
7669 in ptr_mode. */
7670
7671 tree
7672 build_reference_type (tree to_type)
7673 {
7674 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
7675 : TYPE_ADDR_SPACE (to_type);
7676 enum machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
7677 return build_reference_type_for_mode (to_type, pointer_mode, false);
7678 }
7679
7680 #define MAX_INT_CACHED_PREC \
7681 (HOST_BITS_PER_WIDE_INT > 64 ? HOST_BITS_PER_WIDE_INT : 64)
7682 static GTY(()) tree nonstandard_integer_type_cache[2 * MAX_INT_CACHED_PREC + 2];
7683
7684 /* Builds a signed or unsigned integer type of precision PRECISION.
7685 Used for C bitfields whose precision does not match that of
7686 built-in target types. */
7687 tree
7688 build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
7689 int unsignedp)
7690 {
7691 tree itype, ret;
7692
7693 if (unsignedp)
7694 unsignedp = MAX_INT_CACHED_PREC + 1;
7695
7696 if (precision <= MAX_INT_CACHED_PREC)
7697 {
7698 itype = nonstandard_integer_type_cache[precision + unsignedp];
7699 if (itype)
7700 return itype;
7701 }
7702
7703 itype = make_node (INTEGER_TYPE);
7704 TYPE_PRECISION (itype) = precision;
7705
7706 if (unsignedp)
7707 fixup_unsigned_type (itype);
7708 else
7709 fixup_signed_type (itype);
7710
7711 ret = itype;
7712 if (tree_fits_uhwi_p (TYPE_MAX_VALUE (itype)))
7713 ret = type_hash_canon (tree_to_uhwi (TYPE_MAX_VALUE (itype)), itype);
7714 if (precision <= MAX_INT_CACHED_PREC)
7715 nonstandard_integer_type_cache[precision + unsignedp] = ret;
7716
7717 return ret;
7718 }
7719
7720 /* Create a range of some discrete type TYPE (an INTEGER_TYPE, ENUMERAL_TYPE
7721 or BOOLEAN_TYPE) with low bound LOWVAL and high bound HIGHVAL. If SHARED
7722 is true, reuse such a type that has already been constructed. */
7723
7724 static tree
7725 build_range_type_1 (tree type, tree lowval, tree highval, bool shared)
7726 {
7727 tree itype = make_node (INTEGER_TYPE);
7728 inchash::hash hstate;
7729
7730 TREE_TYPE (itype) = type;
7731
7732 TYPE_MIN_VALUE (itype) = fold_convert (type, lowval);
7733 TYPE_MAX_VALUE (itype) = highval ? fold_convert (type, highval) : NULL;
7734
7735 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
7736 SET_TYPE_MODE (itype, TYPE_MODE (type));
7737 TYPE_SIZE (itype) = TYPE_SIZE (type);
7738 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
7739 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
7740 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
7741
7742 if (!shared)
7743 return itype;
7744
7745 if ((TYPE_MIN_VALUE (itype)
7746 && TREE_CODE (TYPE_MIN_VALUE (itype)) != INTEGER_CST)
7747 || (TYPE_MAX_VALUE (itype)
7748 && TREE_CODE (TYPE_MAX_VALUE (itype)) != INTEGER_CST))
7749 {
7750 /* Since we cannot reliably merge this type, we need to compare it using
7751 structural equality checks. */
7752 SET_TYPE_STRUCTURAL_EQUALITY (itype);
7753 return itype;
7754 }
7755
7756 inchash::add_expr (TYPE_MIN_VALUE (itype), hstate);
7757 inchash::add_expr (TYPE_MAX_VALUE (itype), hstate);
7758 hstate.merge_hash (TYPE_HASH (type));
7759 itype = type_hash_canon (hstate.end (), itype);
7760
7761 return itype;
7762 }
7763
7764 /* Wrapper around build_range_type_1 with SHARED set to true. */
7765
7766 tree
7767 build_range_type (tree type, tree lowval, tree highval)
7768 {
7769 return build_range_type_1 (type, lowval, highval, true);
7770 }
7771
7772 /* Wrapper around build_range_type_1 with SHARED set to false. */
7773
7774 tree
7775 build_nonshared_range_type (tree type, tree lowval, tree highval)
7776 {
7777 return build_range_type_1 (type, lowval, highval, false);
7778 }
7779
7780 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
7781 MAXVAL should be the maximum value in the domain
7782 (one less than the length of the array).
7783
7784 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
7785 We don't enforce this limit, that is up to caller (e.g. language front end).
7786 The limit exists because the result is a signed type and we don't handle
7787 sizes that use more than one HOST_WIDE_INT. */
7788
7789 tree
7790 build_index_type (tree maxval)
7791 {
7792 return build_range_type (sizetype, size_zero_node, maxval);
7793 }
7794
7795 /* Return true if the debug information for TYPE, a subtype, should be emitted
7796 as a subrange type. If so, set LOWVAL to the low bound and HIGHVAL to the
7797 high bound, respectively. Sometimes doing so unnecessarily obfuscates the
7798 debug info and doesn't reflect the source code. */
7799
7800 bool
7801 subrange_type_for_debug_p (const_tree type, tree *lowval, tree *highval)
7802 {
7803 tree base_type = TREE_TYPE (type), low, high;
7804
7805 /* Subrange types have a base type which is an integral type. */
7806 if (!INTEGRAL_TYPE_P (base_type))
7807 return false;
7808
7809 /* Get the real bounds of the subtype. */
7810 if (lang_hooks.types.get_subrange_bounds)
7811 lang_hooks.types.get_subrange_bounds (type, &low, &high);
7812 else
7813 {
7814 low = TYPE_MIN_VALUE (type);
7815 high = TYPE_MAX_VALUE (type);
7816 }
7817
7818 /* If the type and its base type have the same representation and the same
7819 name, then the type is not a subrange but a copy of the base type. */
7820 if ((TREE_CODE (base_type) == INTEGER_TYPE
7821 || TREE_CODE (base_type) == BOOLEAN_TYPE)
7822 && int_size_in_bytes (type) == int_size_in_bytes (base_type)
7823 && tree_int_cst_equal (low, TYPE_MIN_VALUE (base_type))
7824 && tree_int_cst_equal (high, TYPE_MAX_VALUE (base_type))
7825 && TYPE_IDENTIFIER (type) == TYPE_IDENTIFIER (base_type))
7826 return false;
7827
7828 if (lowval)
7829 *lowval = low;
7830 if (highval)
7831 *highval = high;
7832 return true;
7833 }
7834
7835 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
7836 and number of elements specified by the range of values of INDEX_TYPE.
7837 If SHARED is true, reuse such a type that has already been constructed. */
7838
7839 static tree
7840 build_array_type_1 (tree elt_type, tree index_type, bool shared)
7841 {
7842 tree t;
7843
7844 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
7845 {
7846 error ("arrays of functions are not meaningful");
7847 elt_type = integer_type_node;
7848 }
7849
7850 t = make_node (ARRAY_TYPE);
7851 TREE_TYPE (t) = elt_type;
7852 TYPE_DOMAIN (t) = index_type;
7853 TYPE_ADDR_SPACE (t) = TYPE_ADDR_SPACE (elt_type);
7854 layout_type (t);
7855
7856 /* If the element type is incomplete at this point we get marked for
7857 structural equality. Do not record these types in the canonical
7858 type hashtable. */
7859 if (TYPE_STRUCTURAL_EQUALITY_P (t))
7860 return t;
7861
7862 if (shared)
7863 {
7864 inchash::hash hstate;
7865 hstate.add_object (TYPE_HASH (elt_type));
7866 if (index_type)
7867 hstate.add_object (TYPE_HASH (index_type));
7868 t = type_hash_canon (hstate.end (), t);
7869 }
7870
7871 if (TYPE_CANONICAL (t) == t)
7872 {
7873 if (TYPE_STRUCTURAL_EQUALITY_P (elt_type)
7874 || (index_type && TYPE_STRUCTURAL_EQUALITY_P (index_type)))
7875 SET_TYPE_STRUCTURAL_EQUALITY (t);
7876 else if (TYPE_CANONICAL (elt_type) != elt_type
7877 || (index_type && TYPE_CANONICAL (index_type) != index_type))
7878 TYPE_CANONICAL (t)
7879 = build_array_type_1 (TYPE_CANONICAL (elt_type),
7880 index_type
7881 ? TYPE_CANONICAL (index_type) : NULL_TREE,
7882 shared);
7883 }
7884
7885 return t;
7886 }
7887
7888 /* Wrapper around build_array_type_1 with SHARED set to true. */
7889
7890 tree
7891 build_array_type (tree elt_type, tree index_type)
7892 {
7893 return build_array_type_1 (elt_type, index_type, true);
7894 }
7895
7896 /* Wrapper around build_array_type_1 with SHARED set to false. */
7897
7898 tree
7899 build_nonshared_array_type (tree elt_type, tree index_type)
7900 {
7901 return build_array_type_1 (elt_type, index_type, false);
7902 }
7903
7904 /* Return a representation of ELT_TYPE[NELTS], using indices of type
7905 sizetype. */
7906
7907 tree
7908 build_array_type_nelts (tree elt_type, unsigned HOST_WIDE_INT nelts)
7909 {
7910 return build_array_type (elt_type, build_index_type (size_int (nelts - 1)));
7911 }
7912
7913 /* Recursively examines the array elements of TYPE, until a non-array
7914 element type is found. */
7915
7916 tree
7917 strip_array_types (tree type)
7918 {
7919 while (TREE_CODE (type) == ARRAY_TYPE)
7920 type = TREE_TYPE (type);
7921
7922 return type;
7923 }
7924
7925 /* Computes the canonical argument types from the argument type list
7926 ARGTYPES.
7927
7928 Upon return, *ANY_STRUCTURAL_P will be true iff either it was true
7929 on entry to this function, or if any of the ARGTYPES are
7930 structural.
7931
7932 Upon return, *ANY_NONCANONICAL_P will be true iff either it was
7933 true on entry to this function, or if any of the ARGTYPES are
7934 non-canonical.
7935
7936 Returns a canonical argument list, which may be ARGTYPES when the
7937 canonical argument list is unneeded (i.e., *ANY_STRUCTURAL_P is
7938 true) or would not differ from ARGTYPES. */
7939
7940 static tree
7941 maybe_canonicalize_argtypes (tree argtypes,
7942 bool *any_structural_p,
7943 bool *any_noncanonical_p)
7944 {
7945 tree arg;
7946 bool any_noncanonical_argtypes_p = false;
7947
7948 for (arg = argtypes; arg && !(*any_structural_p); arg = TREE_CHAIN (arg))
7949 {
7950 if (!TREE_VALUE (arg) || TREE_VALUE (arg) == error_mark_node)
7951 /* Fail gracefully by stating that the type is structural. */
7952 *any_structural_p = true;
7953 else if (TYPE_STRUCTURAL_EQUALITY_P (TREE_VALUE (arg)))
7954 *any_structural_p = true;
7955 else if (TYPE_CANONICAL (TREE_VALUE (arg)) != TREE_VALUE (arg)
7956 || TREE_PURPOSE (arg))
7957 /* If the argument has a default argument, we consider it
7958 non-canonical even though the type itself is canonical.
7959 That way, different variants of function and method types
7960 with default arguments will all point to the variant with
7961 no defaults as their canonical type. */
7962 any_noncanonical_argtypes_p = true;
7963 }
7964
7965 if (*any_structural_p)
7966 return argtypes;
7967
7968 if (any_noncanonical_argtypes_p)
7969 {
7970 /* Build the canonical list of argument types. */
7971 tree canon_argtypes = NULL_TREE;
7972 bool is_void = false;
7973
7974 for (arg = argtypes; arg; arg = TREE_CHAIN (arg))
7975 {
7976 if (arg == void_list_node)
7977 is_void = true;
7978 else
7979 canon_argtypes = tree_cons (NULL_TREE,
7980 TYPE_CANONICAL (TREE_VALUE (arg)),
7981 canon_argtypes);
7982 }
7983
7984 canon_argtypes = nreverse (canon_argtypes);
7985 if (is_void)
7986 canon_argtypes = chainon (canon_argtypes, void_list_node);
7987
7988 /* There is a non-canonical type. */
7989 *any_noncanonical_p = true;
7990 return canon_argtypes;
7991 }
7992
7993 /* The canonical argument types are the same as ARGTYPES. */
7994 return argtypes;
7995 }
7996
7997 /* Construct, lay out and return
7998 the type of functions returning type VALUE_TYPE
7999 given arguments of types ARG_TYPES.
8000 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
8001 are data type nodes for the arguments of the function.
8002 If such a type has already been constructed, reuse it. */
8003
8004 tree
8005 build_function_type (tree value_type, tree arg_types)
8006 {
8007 tree t;
8008 inchash::hash hstate;
8009 bool any_structural_p, any_noncanonical_p;
8010 tree canon_argtypes;
8011
8012 if (TREE_CODE (value_type) == FUNCTION_TYPE)
8013 {
8014 error ("function return type cannot be function");
8015 value_type = integer_type_node;
8016 }
8017
8018 /* Make a node of the sort we want. */
8019 t = make_node (FUNCTION_TYPE);
8020 TREE_TYPE (t) = value_type;
8021 TYPE_ARG_TYPES (t) = arg_types;
8022
8023 /* If we already have such a type, use the old one. */
8024 hstate.add_object (TYPE_HASH (value_type));
8025 type_hash_list (arg_types, hstate);
8026 t = type_hash_canon (hstate.end (), t);
8027
8028 /* Set up the canonical type. */
8029 any_structural_p = TYPE_STRUCTURAL_EQUALITY_P (value_type);
8030 any_noncanonical_p = TYPE_CANONICAL (value_type) != value_type;
8031 canon_argtypes = maybe_canonicalize_argtypes (arg_types,
8032 &any_structural_p,
8033 &any_noncanonical_p);
8034 if (any_structural_p)
8035 SET_TYPE_STRUCTURAL_EQUALITY (t);
8036 else if (any_noncanonical_p)
8037 TYPE_CANONICAL (t) = build_function_type (TYPE_CANONICAL (value_type),
8038 canon_argtypes);
8039
8040 if (!COMPLETE_TYPE_P (t))
8041 layout_type (t);
8042 return t;
8043 }
8044
8045 /* Build a function type. The RETURN_TYPE is the type returned by the
8046 function. If VAARGS is set, no void_type_node is appended to the
8047 the list. ARGP must be always be terminated be a NULL_TREE. */
8048
8049 static tree
8050 build_function_type_list_1 (bool vaargs, tree return_type, va_list argp)
8051 {
8052 tree t, args, last;
8053
8054 t = va_arg (argp, tree);
8055 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (argp, tree))
8056 args = tree_cons (NULL_TREE, t, args);
8057
8058 if (vaargs)
8059 {
8060 last = args;
8061 if (args != NULL_TREE)
8062 args = nreverse (args);
8063 gcc_assert (last != void_list_node);
8064 }
8065 else if (args == NULL_TREE)
8066 args = void_list_node;
8067 else
8068 {
8069 last = args;
8070 args = nreverse (args);
8071 TREE_CHAIN (last) = void_list_node;
8072 }
8073 args = build_function_type (return_type, args);
8074
8075 return args;
8076 }
8077
8078 /* Build a function type. The RETURN_TYPE is the type returned by the
8079 function. If additional arguments are provided, they are
8080 additional argument types. The list of argument types must always
8081 be terminated by NULL_TREE. */
8082
8083 tree
8084 build_function_type_list (tree return_type, ...)
8085 {
8086 tree args;
8087 va_list p;
8088
8089 va_start (p, return_type);
8090 args = build_function_type_list_1 (false, return_type, p);
8091 va_end (p);
8092 return args;
8093 }
8094
8095 /* Build a variable argument function type. The RETURN_TYPE is the
8096 type returned by the function. If additional arguments are provided,
8097 they are additional argument types. The list of argument types must
8098 always be terminated by NULL_TREE. */
8099
8100 tree
8101 build_varargs_function_type_list (tree return_type, ...)
8102 {
8103 tree args;
8104 va_list p;
8105
8106 va_start (p, return_type);
8107 args = build_function_type_list_1 (true, return_type, p);
8108 va_end (p);
8109
8110 return args;
8111 }
8112
8113 /* Build a function type. RETURN_TYPE is the type returned by the
8114 function; VAARGS indicates whether the function takes varargs. The
8115 function takes N named arguments, the types of which are provided in
8116 ARG_TYPES. */
8117
8118 static tree
8119 build_function_type_array_1 (bool vaargs, tree return_type, int n,
8120 tree *arg_types)
8121 {
8122 int i;
8123 tree t = vaargs ? NULL_TREE : void_list_node;
8124
8125 for (i = n - 1; i >= 0; i--)
8126 t = tree_cons (NULL_TREE, arg_types[i], t);
8127
8128 return build_function_type (return_type, t);
8129 }
8130
8131 /* Build a function type. RETURN_TYPE is the type returned by the
8132 function. The function takes N named arguments, the types of which
8133 are provided in ARG_TYPES. */
8134
8135 tree
8136 build_function_type_array (tree return_type, int n, tree *arg_types)
8137 {
8138 return build_function_type_array_1 (false, return_type, n, arg_types);
8139 }
8140
8141 /* Build a variable argument function type. RETURN_TYPE is the type
8142 returned by the function. The function takes N named arguments, the
8143 types of which are provided in ARG_TYPES. */
8144
8145 tree
8146 build_varargs_function_type_array (tree return_type, int n, tree *arg_types)
8147 {
8148 return build_function_type_array_1 (true, return_type, n, arg_types);
8149 }
8150
8151 /* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
8152 and ARGTYPES (a TREE_LIST) are the return type and arguments types
8153 for the method. An implicit additional parameter (of type
8154 pointer-to-BASETYPE) is added to the ARGTYPES. */
8155
8156 tree
8157 build_method_type_directly (tree basetype,
8158 tree rettype,
8159 tree argtypes)
8160 {
8161 tree t;
8162 tree ptype;
8163 inchash::hash hstate;
8164 bool any_structural_p, any_noncanonical_p;
8165 tree canon_argtypes;
8166
8167 /* Make a node of the sort we want. */
8168 t = make_node (METHOD_TYPE);
8169
8170 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
8171 TREE_TYPE (t) = rettype;
8172 ptype = build_pointer_type (basetype);
8173
8174 /* The actual arglist for this function includes a "hidden" argument
8175 which is "this". Put it into the list of argument types. */
8176 argtypes = tree_cons (NULL_TREE, ptype, argtypes);
8177 TYPE_ARG_TYPES (t) = argtypes;
8178
8179 /* If we already have such a type, use the old one. */
8180 hstate.add_object (TYPE_HASH (basetype));
8181 hstate.add_object (TYPE_HASH (rettype));
8182 type_hash_list (argtypes, hstate);
8183 t = type_hash_canon (hstate.end (), t);
8184
8185 /* Set up the canonical type. */
8186 any_structural_p
8187 = (TYPE_STRUCTURAL_EQUALITY_P (basetype)
8188 || TYPE_STRUCTURAL_EQUALITY_P (rettype));
8189 any_noncanonical_p
8190 = (TYPE_CANONICAL (basetype) != basetype
8191 || TYPE_CANONICAL (rettype) != rettype);
8192 canon_argtypes = maybe_canonicalize_argtypes (TREE_CHAIN (argtypes),
8193 &any_structural_p,
8194 &any_noncanonical_p);
8195 if (any_structural_p)
8196 SET_TYPE_STRUCTURAL_EQUALITY (t);
8197 else if (any_noncanonical_p)
8198 TYPE_CANONICAL (t)
8199 = build_method_type_directly (TYPE_CANONICAL (basetype),
8200 TYPE_CANONICAL (rettype),
8201 canon_argtypes);
8202 if (!COMPLETE_TYPE_P (t))
8203 layout_type (t);
8204
8205 return t;
8206 }
8207
8208 /* Construct, lay out and return the type of methods belonging to class
8209 BASETYPE and whose arguments and values are described by TYPE.
8210 If that type exists already, reuse it.
8211 TYPE must be a FUNCTION_TYPE node. */
8212
8213 tree
8214 build_method_type (tree basetype, tree type)
8215 {
8216 gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
8217
8218 return build_method_type_directly (basetype,
8219 TREE_TYPE (type),
8220 TYPE_ARG_TYPES (type));
8221 }
8222
8223 /* Construct, lay out and return the type of offsets to a value
8224 of type TYPE, within an object of type BASETYPE.
8225 If a suitable offset type exists already, reuse it. */
8226
8227 tree
8228 build_offset_type (tree basetype, tree type)
8229 {
8230 tree t;
8231 inchash::hash hstate;
8232
8233 /* Make a node of the sort we want. */
8234 t = make_node (OFFSET_TYPE);
8235
8236 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
8237 TREE_TYPE (t) = type;
8238
8239 /* If we already have such a type, use the old one. */
8240 hstate.add_object (TYPE_HASH (basetype));
8241 hstate.add_object (TYPE_HASH (type));
8242 t = type_hash_canon (hstate.end (), t);
8243
8244 if (!COMPLETE_TYPE_P (t))
8245 layout_type (t);
8246
8247 if (TYPE_CANONICAL (t) == t)
8248 {
8249 if (TYPE_STRUCTURAL_EQUALITY_P (basetype)
8250 || TYPE_STRUCTURAL_EQUALITY_P (type))
8251 SET_TYPE_STRUCTURAL_EQUALITY (t);
8252 else if (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)) != basetype
8253 || TYPE_CANONICAL (type) != type)
8254 TYPE_CANONICAL (t)
8255 = build_offset_type (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)),
8256 TYPE_CANONICAL (type));
8257 }
8258
8259 return t;
8260 }
8261
8262 /* Create a complex type whose components are COMPONENT_TYPE. */
8263
8264 tree
8265 build_complex_type (tree component_type)
8266 {
8267 tree t;
8268 inchash::hash hstate;
8269
8270 gcc_assert (INTEGRAL_TYPE_P (component_type)
8271 || SCALAR_FLOAT_TYPE_P (component_type)
8272 || FIXED_POINT_TYPE_P (component_type));
8273
8274 /* Make a node of the sort we want. */
8275 t = make_node (COMPLEX_TYPE);
8276
8277 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
8278
8279 /* If we already have such a type, use the old one. */
8280 hstate.add_object (TYPE_HASH (component_type));
8281 t = type_hash_canon (hstate.end (), t);
8282
8283 if (!COMPLETE_TYPE_P (t))
8284 layout_type (t);
8285
8286 if (TYPE_CANONICAL (t) == t)
8287 {
8288 if (TYPE_STRUCTURAL_EQUALITY_P (component_type))
8289 SET_TYPE_STRUCTURAL_EQUALITY (t);
8290 else if (TYPE_CANONICAL (component_type) != component_type)
8291 TYPE_CANONICAL (t)
8292 = build_complex_type (TYPE_CANONICAL (component_type));
8293 }
8294
8295 /* We need to create a name, since complex is a fundamental type. */
8296 if (! TYPE_NAME (t))
8297 {
8298 const char *name;
8299 if (component_type == char_type_node)
8300 name = "complex char";
8301 else if (component_type == signed_char_type_node)
8302 name = "complex signed char";
8303 else if (component_type == unsigned_char_type_node)
8304 name = "complex unsigned char";
8305 else if (component_type == short_integer_type_node)
8306 name = "complex short int";
8307 else if (component_type == short_unsigned_type_node)
8308 name = "complex short unsigned int";
8309 else if (component_type == integer_type_node)
8310 name = "complex int";
8311 else if (component_type == unsigned_type_node)
8312 name = "complex unsigned int";
8313 else if (component_type == long_integer_type_node)
8314 name = "complex long int";
8315 else if (component_type == long_unsigned_type_node)
8316 name = "complex long unsigned int";
8317 else if (component_type == long_long_integer_type_node)
8318 name = "complex long long int";
8319 else if (component_type == long_long_unsigned_type_node)
8320 name = "complex long long unsigned int";
8321 else
8322 name = 0;
8323
8324 if (name != 0)
8325 TYPE_NAME (t) = build_decl (UNKNOWN_LOCATION, TYPE_DECL,
8326 get_identifier (name), t);
8327 }
8328
8329 return build_qualified_type (t, TYPE_QUALS (component_type));
8330 }
8331
8332 /* If TYPE is a real or complex floating-point type and the target
8333 does not directly support arithmetic on TYPE then return the wider
8334 type to be used for arithmetic on TYPE. Otherwise, return
8335 NULL_TREE. */
8336
8337 tree
8338 excess_precision_type (tree type)
8339 {
8340 if (flag_excess_precision != EXCESS_PRECISION_FAST)
8341 {
8342 int flt_eval_method = TARGET_FLT_EVAL_METHOD;
8343 switch (TREE_CODE (type))
8344 {
8345 case REAL_TYPE:
8346 switch (flt_eval_method)
8347 {
8348 case 1:
8349 if (TYPE_MODE (type) == TYPE_MODE (float_type_node))
8350 return double_type_node;
8351 break;
8352 case 2:
8353 if (TYPE_MODE (type) == TYPE_MODE (float_type_node)
8354 || TYPE_MODE (type) == TYPE_MODE (double_type_node))
8355 return long_double_type_node;
8356 break;
8357 default:
8358 gcc_unreachable ();
8359 }
8360 break;
8361 case COMPLEX_TYPE:
8362 if (TREE_CODE (TREE_TYPE (type)) != REAL_TYPE)
8363 return NULL_TREE;
8364 switch (flt_eval_method)
8365 {
8366 case 1:
8367 if (TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (float_type_node))
8368 return complex_double_type_node;
8369 break;
8370 case 2:
8371 if (TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (float_type_node)
8372 || (TYPE_MODE (TREE_TYPE (type))
8373 == TYPE_MODE (double_type_node)))
8374 return complex_long_double_type_node;
8375 break;
8376 default:
8377 gcc_unreachable ();
8378 }
8379 break;
8380 default:
8381 break;
8382 }
8383 }
8384 return NULL_TREE;
8385 }
8386 \f
8387 /* Return OP, stripped of any conversions to wider types as much as is safe.
8388 Converting the value back to OP's type makes a value equivalent to OP.
8389
8390 If FOR_TYPE is nonzero, we return a value which, if converted to
8391 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
8392
8393 OP must have integer, real or enumeral type. Pointers are not allowed!
8394
8395 There are some cases where the obvious value we could return
8396 would regenerate to OP if converted to OP's type,
8397 but would not extend like OP to wider types.
8398 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
8399 For example, if OP is (unsigned short)(signed char)-1,
8400 we avoid returning (signed char)-1 if FOR_TYPE is int,
8401 even though extending that to an unsigned short would regenerate OP,
8402 since the result of extending (signed char)-1 to (int)
8403 is different from (int) OP. */
8404
8405 tree
8406 get_unwidened (tree op, tree for_type)
8407 {
8408 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
8409 tree type = TREE_TYPE (op);
8410 unsigned final_prec
8411 = TYPE_PRECISION (for_type != 0 ? for_type : type);
8412 int uns
8413 = (for_type != 0 && for_type != type
8414 && final_prec > TYPE_PRECISION (type)
8415 && TYPE_UNSIGNED (type));
8416 tree win = op;
8417
8418 while (CONVERT_EXPR_P (op))
8419 {
8420 int bitschange;
8421
8422 /* TYPE_PRECISION on vector types has different meaning
8423 (TYPE_VECTOR_SUBPARTS) and casts from vectors are view conversions,
8424 so avoid them here. */
8425 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == VECTOR_TYPE)
8426 break;
8427
8428 bitschange = TYPE_PRECISION (TREE_TYPE (op))
8429 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
8430
8431 /* Truncations are many-one so cannot be removed.
8432 Unless we are later going to truncate down even farther. */
8433 if (bitschange < 0
8434 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
8435 break;
8436
8437 /* See what's inside this conversion. If we decide to strip it,
8438 we will set WIN. */
8439 op = TREE_OPERAND (op, 0);
8440
8441 /* If we have not stripped any zero-extensions (uns is 0),
8442 we can strip any kind of extension.
8443 If we have previously stripped a zero-extension,
8444 only zero-extensions can safely be stripped.
8445 Any extension can be stripped if the bits it would produce
8446 are all going to be discarded later by truncating to FOR_TYPE. */
8447
8448 if (bitschange > 0)
8449 {
8450 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
8451 win = op;
8452 /* TYPE_UNSIGNED says whether this is a zero-extension.
8453 Let's avoid computing it if it does not affect WIN
8454 and if UNS will not be needed again. */
8455 if ((uns
8456 || CONVERT_EXPR_P (op))
8457 && TYPE_UNSIGNED (TREE_TYPE (op)))
8458 {
8459 uns = 1;
8460 win = op;
8461 }
8462 }
8463 }
8464
8465 /* If we finally reach a constant see if it fits in for_type and
8466 in that case convert it. */
8467 if (for_type
8468 && TREE_CODE (win) == INTEGER_CST
8469 && TREE_TYPE (win) != for_type
8470 && int_fits_type_p (win, for_type))
8471 win = fold_convert (for_type, win);
8472
8473 return win;
8474 }
8475 \f
8476 /* Return OP or a simpler expression for a narrower value
8477 which can be sign-extended or zero-extended to give back OP.
8478 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
8479 or 0 if the value should be sign-extended. */
8480
8481 tree
8482 get_narrower (tree op, int *unsignedp_ptr)
8483 {
8484 int uns = 0;
8485 int first = 1;
8486 tree win = op;
8487 bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));
8488
8489 while (TREE_CODE (op) == NOP_EXPR)
8490 {
8491 int bitschange
8492 = (TYPE_PRECISION (TREE_TYPE (op))
8493 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
8494
8495 /* Truncations are many-one so cannot be removed. */
8496 if (bitschange < 0)
8497 break;
8498
8499 /* See what's inside this conversion. If we decide to strip it,
8500 we will set WIN. */
8501
8502 if (bitschange > 0)
8503 {
8504 op = TREE_OPERAND (op, 0);
8505 /* An extension: the outermost one can be stripped,
8506 but remember whether it is zero or sign extension. */
8507 if (first)
8508 uns = TYPE_UNSIGNED (TREE_TYPE (op));
8509 /* Otherwise, if a sign extension has been stripped,
8510 only sign extensions can now be stripped;
8511 if a zero extension has been stripped, only zero-extensions. */
8512 else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
8513 break;
8514 first = 0;
8515 }
8516 else /* bitschange == 0 */
8517 {
8518 /* A change in nominal type can always be stripped, but we must
8519 preserve the unsignedness. */
8520 if (first)
8521 uns = TYPE_UNSIGNED (TREE_TYPE (op));
8522 first = 0;
8523 op = TREE_OPERAND (op, 0);
8524 /* Keep trying to narrow, but don't assign op to win if it
8525 would turn an integral type into something else. */
8526 if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
8527 continue;
8528 }
8529
8530 win = op;
8531 }
8532
8533 if (TREE_CODE (op) == COMPONENT_REF
8534 /* Since type_for_size always gives an integer type. */
8535 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
8536 && TREE_CODE (TREE_TYPE (op)) != FIXED_POINT_TYPE
8537 /* Ensure field is laid out already. */
8538 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
8539 && tree_fits_uhwi_p (DECL_SIZE (TREE_OPERAND (op, 1))))
8540 {
8541 unsigned HOST_WIDE_INT innerprec
8542 = tree_to_uhwi (DECL_SIZE (TREE_OPERAND (op, 1)));
8543 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
8544 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
8545 tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
8546
8547 /* We can get this structure field in a narrower type that fits it,
8548 but the resulting extension to its nominal type (a fullword type)
8549 must satisfy the same conditions as for other extensions.
8550
8551 Do this only for fields that are aligned (not bit-fields),
8552 because when bit-field insns will be used there is no
8553 advantage in doing this. */
8554
8555 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
8556 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
8557 && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
8558 && type != 0)
8559 {
8560 if (first)
8561 uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
8562 win = fold_convert (type, op);
8563 }
8564 }
8565
8566 *unsignedp_ptr = uns;
8567 return win;
8568 }
8569 \f
8570 /* Returns true if integer constant C has a value that is permissible
8571 for type TYPE (an INTEGER_TYPE). */
8572
8573 bool
8574 int_fits_type_p (const_tree c, const_tree type)
8575 {
8576 tree type_low_bound, type_high_bound;
8577 bool ok_for_low_bound, ok_for_high_bound;
8578 signop sgn_c = TYPE_SIGN (TREE_TYPE (c));
8579
8580 retry:
8581 type_low_bound = TYPE_MIN_VALUE (type);
8582 type_high_bound = TYPE_MAX_VALUE (type);
8583
8584 /* If at least one bound of the type is a constant integer, we can check
8585 ourselves and maybe make a decision. If no such decision is possible, but
8586 this type is a subtype, try checking against that. Otherwise, use
8587 fits_to_tree_p, which checks against the precision.
8588
8589 Compute the status for each possibly constant bound, and return if we see
8590 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
8591 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
8592 for "constant known to fit". */
8593
8594 /* Check if c >= type_low_bound. */
8595 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
8596 {
8597 if (tree_int_cst_lt (c, type_low_bound))
8598 return false;
8599 ok_for_low_bound = true;
8600 }
8601 else
8602 ok_for_low_bound = false;
8603
8604 /* Check if c <= type_high_bound. */
8605 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
8606 {
8607 if (tree_int_cst_lt (type_high_bound, c))
8608 return false;
8609 ok_for_high_bound = true;
8610 }
8611 else
8612 ok_for_high_bound = false;
8613
8614 /* If the constant fits both bounds, the result is known. */
8615 if (ok_for_low_bound && ok_for_high_bound)
8616 return true;
8617
8618 /* Perform some generic filtering which may allow making a decision
8619 even if the bounds are not constant. First, negative integers
8620 never fit in unsigned types, */
8621 if (TYPE_UNSIGNED (type) && sgn_c == SIGNED && wi::neg_p (c))
8622 return false;
8623
8624 /* Second, narrower types always fit in wider ones. */
8625 if (TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (c)))
8626 return true;
8627
8628 /* Third, unsigned integers with top bit set never fit signed types. */
8629 if (!TYPE_UNSIGNED (type) && sgn_c == UNSIGNED)
8630 {
8631 int prec = GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (c))) - 1;
8632 if (prec < TYPE_PRECISION (TREE_TYPE (c)))
8633 {
8634 /* When a tree_cst is converted to a wide-int, the precision
8635 is taken from the type. However, if the precision of the
8636 mode underneath the type is smaller than that, it is
8637 possible that the value will not fit. The test below
8638 fails if any bit is set between the sign bit of the
8639 underlying mode and the top bit of the type. */
8640 if (wi::ne_p (wi::zext (c, prec - 1), c))
8641 return false;
8642 }
8643 else if (wi::neg_p (c))
8644 return false;
8645 }
8646
8647 /* If we haven't been able to decide at this point, there nothing more we
8648 can check ourselves here. Look at the base type if we have one and it
8649 has the same precision. */
8650 if (TREE_CODE (type) == INTEGER_TYPE
8651 && TREE_TYPE (type) != 0
8652 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (type)))
8653 {
8654 type = TREE_TYPE (type);
8655 goto retry;
8656 }
8657
8658 /* Or to fits_to_tree_p, if nothing else. */
8659 return wi::fits_to_tree_p (c, type);
8660 }
8661
8662 /* Stores bounds of an integer TYPE in MIN and MAX. If TYPE has non-constant
8663 bounds or is a POINTER_TYPE, the maximum and/or minimum values that can be
8664 represented (assuming two's-complement arithmetic) within the bit
8665 precision of the type are returned instead. */
8666
8667 void
8668 get_type_static_bounds (const_tree type, mpz_t min, mpz_t max)
8669 {
8670 if (!POINTER_TYPE_P (type) && TYPE_MIN_VALUE (type)
8671 && TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST)
8672 wi::to_mpz (TYPE_MIN_VALUE (type), min, TYPE_SIGN (type));
8673 else
8674 {
8675 if (TYPE_UNSIGNED (type))
8676 mpz_set_ui (min, 0);
8677 else
8678 {
8679 wide_int mn = wi::min_value (TYPE_PRECISION (type), SIGNED);
8680 wi::to_mpz (mn, min, SIGNED);
8681 }
8682 }
8683
8684 if (!POINTER_TYPE_P (type) && TYPE_MAX_VALUE (type)
8685 && TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST)
8686 wi::to_mpz (TYPE_MAX_VALUE (type), max, TYPE_SIGN (type));
8687 else
8688 {
8689 wide_int mn = wi::max_value (TYPE_PRECISION (type), TYPE_SIGN (type));
8690 wi::to_mpz (mn, max, TYPE_SIGN (type));
8691 }
8692 }
8693
8694 /* Return true if VAR is an automatic variable defined in function FN. */
8695
8696 bool
8697 auto_var_in_fn_p (const_tree var, const_tree fn)
8698 {
8699 return (DECL_P (var) && DECL_CONTEXT (var) == fn
8700 && ((((TREE_CODE (var) == VAR_DECL && ! DECL_EXTERNAL (var))
8701 || TREE_CODE (var) == PARM_DECL)
8702 && ! TREE_STATIC (var))
8703 || TREE_CODE (var) == LABEL_DECL
8704 || TREE_CODE (var) == RESULT_DECL));
8705 }
8706
8707 /* Subprogram of following function. Called by walk_tree.
8708
8709 Return *TP if it is an automatic variable or parameter of the
8710 function passed in as DATA. */
8711
8712 static tree
8713 find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
8714 {
8715 tree fn = (tree) data;
8716
8717 if (TYPE_P (*tp))
8718 *walk_subtrees = 0;
8719
8720 else if (DECL_P (*tp)
8721 && auto_var_in_fn_p (*tp, fn))
8722 return *tp;
8723
8724 return NULL_TREE;
8725 }
8726
8727 /* Returns true if T is, contains, or refers to a type with variable
8728 size. For METHOD_TYPEs and FUNCTION_TYPEs we exclude the
8729 arguments, but not the return type. If FN is nonzero, only return
8730 true if a modifier of the type or position of FN is a variable or
8731 parameter inside FN.
8732
8733 This concept is more general than that of C99 'variably modified types':
8734 in C99, a struct type is never variably modified because a VLA may not
8735 appear as a structure member. However, in GNU C code like:
8736
8737 struct S { int i[f()]; };
8738
8739 is valid, and other languages may define similar constructs. */
8740
8741 bool
8742 variably_modified_type_p (tree type, tree fn)
8743 {
8744 tree t;
8745
8746 /* Test if T is either variable (if FN is zero) or an expression containing
8747 a variable in FN. If TYPE isn't gimplified, return true also if
8748 gimplify_one_sizepos would gimplify the expression into a local
8749 variable. */
8750 #define RETURN_TRUE_IF_VAR(T) \
8751 do { tree _t = (T); \
8752 if (_t != NULL_TREE \
8753 && _t != error_mark_node \
8754 && TREE_CODE (_t) != INTEGER_CST \
8755 && TREE_CODE (_t) != PLACEHOLDER_EXPR \
8756 && (!fn \
8757 || (!TYPE_SIZES_GIMPLIFIED (type) \
8758 && !is_gimple_sizepos (_t)) \
8759 || walk_tree (&_t, find_var_from_fn, fn, NULL))) \
8760 return true; } while (0)
8761
8762 if (type == error_mark_node)
8763 return false;
8764
8765 /* If TYPE itself has variable size, it is variably modified. */
8766 RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
8767 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (type));
8768
8769 switch (TREE_CODE (type))
8770 {
8771 case POINTER_TYPE:
8772 case REFERENCE_TYPE:
8773 case VECTOR_TYPE:
8774 if (variably_modified_type_p (TREE_TYPE (type), fn))
8775 return true;
8776 break;
8777
8778 case FUNCTION_TYPE:
8779 case METHOD_TYPE:
8780 /* If TYPE is a function type, it is variably modified if the
8781 return type is variably modified. */
8782 if (variably_modified_type_p (TREE_TYPE (type), fn))
8783 return true;
8784 break;
8785
8786 case INTEGER_TYPE:
8787 case REAL_TYPE:
8788 case FIXED_POINT_TYPE:
8789 case ENUMERAL_TYPE:
8790 case BOOLEAN_TYPE:
8791 /* Scalar types are variably modified if their end points
8792 aren't constant. */
8793 RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
8794 RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
8795 break;
8796
8797 case RECORD_TYPE:
8798 case UNION_TYPE:
8799 case QUAL_UNION_TYPE:
8800 /* We can't see if any of the fields are variably-modified by the
8801 definition we normally use, since that would produce infinite
8802 recursion via pointers. */
8803 /* This is variably modified if some field's type is. */
8804 for (t = TYPE_FIELDS (type); t; t = DECL_CHAIN (t))
8805 if (TREE_CODE (t) == FIELD_DECL)
8806 {
8807 RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
8808 RETURN_TRUE_IF_VAR (DECL_SIZE (t));
8809 RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));
8810
8811 if (TREE_CODE (type) == QUAL_UNION_TYPE)
8812 RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));
8813 }
8814 break;
8815
8816 case ARRAY_TYPE:
8817 /* Do not call ourselves to avoid infinite recursion. This is
8818 variably modified if the element type is. */
8819 RETURN_TRUE_IF_VAR (TYPE_SIZE (TREE_TYPE (type)));
8820 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (TREE_TYPE (type)));
8821 break;
8822
8823 default:
8824 break;
8825 }
8826
8827 /* The current language may have other cases to check, but in general,
8828 all other types are not variably modified. */
8829 return lang_hooks.tree_inlining.var_mod_type_p (type, fn);
8830
8831 #undef RETURN_TRUE_IF_VAR
8832 }
8833
8834 /* Given a DECL or TYPE, return the scope in which it was declared, or
8835 NULL_TREE if there is no containing scope. */
8836
8837 tree
8838 get_containing_scope (const_tree t)
8839 {
8840 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
8841 }
8842
8843 /* Return the innermost context enclosing DECL that is
8844 a FUNCTION_DECL, or zero if none. */
8845
8846 tree
8847 decl_function_context (const_tree decl)
8848 {
8849 tree context;
8850
8851 if (TREE_CODE (decl) == ERROR_MARK)
8852 return 0;
8853
8854 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
8855 where we look up the function at runtime. Such functions always take
8856 a first argument of type 'pointer to real context'.
8857
8858 C++ should really be fixed to use DECL_CONTEXT for the real context,
8859 and use something else for the "virtual context". */
8860 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
8861 context
8862 = TYPE_MAIN_VARIANT
8863 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
8864 else
8865 context = DECL_CONTEXT (decl);
8866
8867 while (context && TREE_CODE (context) != FUNCTION_DECL)
8868 {
8869 if (TREE_CODE (context) == BLOCK)
8870 context = BLOCK_SUPERCONTEXT (context);
8871 else
8872 context = get_containing_scope (context);
8873 }
8874
8875 return context;
8876 }
8877
8878 /* Return the innermost context enclosing DECL that is
8879 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
8880 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
8881
8882 tree
8883 decl_type_context (const_tree decl)
8884 {
8885 tree context = DECL_CONTEXT (decl);
8886
8887 while (context)
8888 switch (TREE_CODE (context))
8889 {
8890 case NAMESPACE_DECL:
8891 case TRANSLATION_UNIT_DECL:
8892 return NULL_TREE;
8893
8894 case RECORD_TYPE:
8895 case UNION_TYPE:
8896 case QUAL_UNION_TYPE:
8897 return context;
8898
8899 case TYPE_DECL:
8900 case FUNCTION_DECL:
8901 context = DECL_CONTEXT (context);
8902 break;
8903
8904 case BLOCK:
8905 context = BLOCK_SUPERCONTEXT (context);
8906 break;
8907
8908 default:
8909 gcc_unreachable ();
8910 }
8911
8912 return NULL_TREE;
8913 }
8914
8915 /* CALL is a CALL_EXPR. Return the declaration for the function
8916 called, or NULL_TREE if the called function cannot be
8917 determined. */
8918
8919 tree
8920 get_callee_fndecl (const_tree call)
8921 {
8922 tree addr;
8923
8924 if (call == error_mark_node)
8925 return error_mark_node;
8926
8927 /* It's invalid to call this function with anything but a
8928 CALL_EXPR. */
8929 gcc_assert (TREE_CODE (call) == CALL_EXPR);
8930
8931 /* The first operand to the CALL is the address of the function
8932 called. */
8933 addr = CALL_EXPR_FN (call);
8934
8935 /* If there is no function, return early. */
8936 if (addr == NULL_TREE)
8937 return NULL_TREE;
8938
8939 STRIP_NOPS (addr);
8940
8941 /* If this is a readonly function pointer, extract its initial value. */
8942 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
8943 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
8944 && DECL_INITIAL (addr))
8945 addr = DECL_INITIAL (addr);
8946
8947 /* If the address is just `&f' for some function `f', then we know
8948 that `f' is being called. */
8949 if (TREE_CODE (addr) == ADDR_EXPR
8950 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
8951 return TREE_OPERAND (addr, 0);
8952
8953 /* We couldn't figure out what was being called. */
8954 return NULL_TREE;
8955 }
8956
8957 /* Print debugging information about tree nodes generated during the compile,
8958 and any language-specific information. */
8959
8960 void
8961 dump_tree_statistics (void)
8962 {
8963 if (GATHER_STATISTICS)
8964 {
8965 int i;
8966 int total_nodes, total_bytes;
8967 fprintf (stderr, "Kind Nodes Bytes\n");
8968 fprintf (stderr, "---------------------------------------\n");
8969 total_nodes = total_bytes = 0;
8970 for (i = 0; i < (int) all_kinds; i++)
8971 {
8972 fprintf (stderr, "%-20s %7d %10d\n", tree_node_kind_names[i],
8973 tree_node_counts[i], tree_node_sizes[i]);
8974 total_nodes += tree_node_counts[i];
8975 total_bytes += tree_node_sizes[i];
8976 }
8977 fprintf (stderr, "---------------------------------------\n");
8978 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_nodes, total_bytes);
8979 fprintf (stderr, "---------------------------------------\n");
8980 fprintf (stderr, "Code Nodes\n");
8981 fprintf (stderr, "----------------------------\n");
8982 for (i = 0; i < (int) MAX_TREE_CODES; i++)
8983 fprintf (stderr, "%-20s %7d\n", get_tree_code_name ((enum tree_code) i),
8984 tree_code_counts[i]);
8985 fprintf (stderr, "----------------------------\n");
8986 ssanames_print_statistics ();
8987 phinodes_print_statistics ();
8988 }
8989 else
8990 fprintf (stderr, "(No per-node statistics)\n");
8991
8992 print_type_hash_statistics ();
8993 print_debug_expr_statistics ();
8994 print_value_expr_statistics ();
8995 lang_hooks.print_statistics ();
8996 }
8997 \f
8998 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
8999
9000 /* Generate a crc32 of a byte. */
9001
9002 static unsigned
9003 crc32_unsigned_bits (unsigned chksum, unsigned value, unsigned bits)
9004 {
9005 unsigned ix;
9006
9007 for (ix = bits; ix--; value <<= 1)
9008 {
9009 unsigned feedback;
9010
9011 feedback = (value ^ chksum) & 0x80000000 ? 0x04c11db7 : 0;
9012 chksum <<= 1;
9013 chksum ^= feedback;
9014 }
9015 return chksum;
9016 }
9017
9018 /* Generate a crc32 of a 32-bit unsigned. */
9019
9020 unsigned
9021 crc32_unsigned (unsigned chksum, unsigned value)
9022 {
9023 return crc32_unsigned_bits (chksum, value, 32);
9024 }
9025
9026 /* Generate a crc32 of a byte. */
9027
9028 unsigned
9029 crc32_byte (unsigned chksum, char byte)
9030 {
9031 return crc32_unsigned_bits (chksum, (unsigned) byte << 24, 8);
9032 }
9033
9034 /* Generate a crc32 of a string. */
9035
9036 unsigned
9037 crc32_string (unsigned chksum, const char *string)
9038 {
9039 do
9040 {
9041 chksum = crc32_byte (chksum, *string);
9042 }
9043 while (*string++);
9044 return chksum;
9045 }
9046
9047 /* P is a string that will be used in a symbol. Mask out any characters
9048 that are not valid in that context. */
9049
9050 void
9051 clean_symbol_name (char *p)
9052 {
9053 for (; *p; p++)
9054 if (! (ISALNUM (*p)
9055 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
9056 || *p == '$'
9057 #endif
9058 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
9059 || *p == '.'
9060 #endif
9061 ))
9062 *p = '_';
9063 }
9064
9065 /* Generate a name for a special-purpose function.
9066 The generated name may need to be unique across the whole link.
9067 Changes to this function may also require corresponding changes to
9068 xstrdup_mask_random.
9069 TYPE is some string to identify the purpose of this function to the
9070 linker or collect2; it must start with an uppercase letter,
9071 one of:
9072 I - for constructors
9073 D - for destructors
9074 N - for C++ anonymous namespaces
9075 F - for DWARF unwind frame information. */
9076
9077 tree
9078 get_file_function_name (const char *type)
9079 {
9080 char *buf;
9081 const char *p;
9082 char *q;
9083
9084 /* If we already have a name we know to be unique, just use that. */
9085 if (first_global_object_name)
9086 p = q = ASTRDUP (first_global_object_name);
9087 /* If the target is handling the constructors/destructors, they
9088 will be local to this file and the name is only necessary for
9089 debugging purposes.
9090 We also assign sub_I and sub_D sufixes to constructors called from
9091 the global static constructors. These are always local. */
9092 else if (((type[0] == 'I' || type[0] == 'D') && targetm.have_ctors_dtors)
9093 || (strncmp (type, "sub_", 4) == 0
9094 && (type[4] == 'I' || type[4] == 'D')))
9095 {
9096 const char *file = main_input_filename;
9097 if (! file)
9098 file = LOCATION_FILE (input_location);
9099 /* Just use the file's basename, because the full pathname
9100 might be quite long. */
9101 p = q = ASTRDUP (lbasename (file));
9102 }
9103 else
9104 {
9105 /* Otherwise, the name must be unique across the entire link.
9106 We don't have anything that we know to be unique to this translation
9107 unit, so use what we do have and throw in some randomness. */
9108 unsigned len;
9109 const char *name = weak_global_object_name;
9110 const char *file = main_input_filename;
9111
9112 if (! name)
9113 name = "";
9114 if (! file)
9115 file = LOCATION_FILE (input_location);
9116
9117 len = strlen (file);
9118 q = (char *) alloca (9 + 17 + len + 1);
9119 memcpy (q, file, len + 1);
9120
9121 snprintf (q + len, 9 + 17 + 1, "_%08X_" HOST_WIDE_INT_PRINT_HEX,
9122 crc32_string (0, name), get_random_seed (false));
9123
9124 p = q;
9125 }
9126
9127 clean_symbol_name (q);
9128 buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
9129 + strlen (type));
9130
9131 /* Set up the name of the file-level functions we may need.
9132 Use a global object (which is already required to be unique over
9133 the program) rather than the file name (which imposes extra
9134 constraints). */
9135 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
9136
9137 return get_identifier (buf);
9138 }
9139 \f
9140 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
9141
9142 /* Complain that the tree code of NODE does not match the expected 0
9143 terminated list of trailing codes. The trailing code list can be
9144 empty, for a more vague error message. FILE, LINE, and FUNCTION
9145 are of the caller. */
9146
9147 void
9148 tree_check_failed (const_tree node, const char *file,
9149 int line, const char *function, ...)
9150 {
9151 va_list args;
9152 const char *buffer;
9153 unsigned length = 0;
9154 enum tree_code code;
9155
9156 va_start (args, function);
9157 while ((code = (enum tree_code) va_arg (args, int)))
9158 length += 4 + strlen (get_tree_code_name (code));
9159 va_end (args);
9160 if (length)
9161 {
9162 char *tmp;
9163 va_start (args, function);
9164 length += strlen ("expected ");
9165 buffer = tmp = (char *) alloca (length);
9166 length = 0;
9167 while ((code = (enum tree_code) va_arg (args, int)))
9168 {
9169 const char *prefix = length ? " or " : "expected ";
9170
9171 strcpy (tmp + length, prefix);
9172 length += strlen (prefix);
9173 strcpy (tmp + length, get_tree_code_name (code));
9174 length += strlen (get_tree_code_name (code));
9175 }
9176 va_end (args);
9177 }
9178 else
9179 buffer = "unexpected node";
9180
9181 internal_error ("tree check: %s, have %s in %s, at %s:%d",
9182 buffer, get_tree_code_name (TREE_CODE (node)),
9183 function, trim_filename (file), line);
9184 }
9185
9186 /* Complain that the tree code of NODE does match the expected 0
9187 terminated list of trailing codes. FILE, LINE, and FUNCTION are of
9188 the caller. */
9189
9190 void
9191 tree_not_check_failed (const_tree node, const char *file,
9192 int line, const char *function, ...)
9193 {
9194 va_list args;
9195 char *buffer;
9196 unsigned length = 0;
9197 enum tree_code code;
9198
9199 va_start (args, function);
9200 while ((code = (enum tree_code) va_arg (args, int)))
9201 length += 4 + strlen (get_tree_code_name (code));
9202 va_end (args);
9203 va_start (args, function);
9204 buffer = (char *) alloca (length);
9205 length = 0;
9206 while ((code = (enum tree_code) va_arg (args, int)))
9207 {
9208 if (length)
9209 {
9210 strcpy (buffer + length, " or ");
9211 length += 4;
9212 }
9213 strcpy (buffer + length, get_tree_code_name (code));
9214 length += strlen (get_tree_code_name (code));
9215 }
9216 va_end (args);
9217
9218 internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
9219 buffer, get_tree_code_name (TREE_CODE (node)),
9220 function, trim_filename (file), line);
9221 }
9222
9223 /* Similar to tree_check_failed, except that we check for a class of tree
9224 code, given in CL. */
9225
9226 void
9227 tree_class_check_failed (const_tree node, const enum tree_code_class cl,
9228 const char *file, int line, const char *function)
9229 {
9230 internal_error
9231 ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
9232 TREE_CODE_CLASS_STRING (cl),
9233 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
9234 get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
9235 }
9236
9237 /* Similar to tree_check_failed, except that instead of specifying a
9238 dozen codes, use the knowledge that they're all sequential. */
9239
9240 void
9241 tree_range_check_failed (const_tree node, const char *file, int line,
9242 const char *function, enum tree_code c1,
9243 enum tree_code c2)
9244 {
9245 char *buffer;
9246 unsigned length = 0;
9247 unsigned int c;
9248
9249 for (c = c1; c <= c2; ++c)
9250 length += 4 + strlen (get_tree_code_name ((enum tree_code) c));
9251
9252 length += strlen ("expected ");
9253 buffer = (char *) alloca (length);
9254 length = 0;
9255
9256 for (c = c1; c <= c2; ++c)
9257 {
9258 const char *prefix = length ? " or " : "expected ";
9259
9260 strcpy (buffer + length, prefix);
9261 length += strlen (prefix);
9262 strcpy (buffer + length, get_tree_code_name ((enum tree_code) c));
9263 length += strlen (get_tree_code_name ((enum tree_code) c));
9264 }
9265
9266 internal_error ("tree check: %s, have %s in %s, at %s:%d",
9267 buffer, get_tree_code_name (TREE_CODE (node)),
9268 function, trim_filename (file), line);
9269 }
9270
9271
9272 /* Similar to tree_check_failed, except that we check that a tree does
9273 not have the specified code, given in CL. */
9274
9275 void
9276 tree_not_class_check_failed (const_tree node, const enum tree_code_class cl,
9277 const char *file, int line, const char *function)
9278 {
9279 internal_error
9280 ("tree check: did not expect class %qs, have %qs (%s) in %s, at %s:%d",
9281 TREE_CODE_CLASS_STRING (cl),
9282 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
9283 get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
9284 }
9285
9286
9287 /* Similar to tree_check_failed but applied to OMP_CLAUSE codes. */
9288
9289 void
9290 omp_clause_check_failed (const_tree node, const char *file, int line,
9291 const char *function, enum omp_clause_code code)
9292 {
9293 internal_error ("tree check: expected omp_clause %s, have %s in %s, at %s:%d",
9294 omp_clause_code_name[code], get_tree_code_name (TREE_CODE (node)),
9295 function, trim_filename (file), line);
9296 }
9297
9298
9299 /* Similar to tree_range_check_failed but applied to OMP_CLAUSE codes. */
9300
9301 void
9302 omp_clause_range_check_failed (const_tree node, const char *file, int line,
9303 const char *function, enum omp_clause_code c1,
9304 enum omp_clause_code c2)
9305 {
9306 char *buffer;
9307 unsigned length = 0;
9308 unsigned int c;
9309
9310 for (c = c1; c <= c2; ++c)
9311 length += 4 + strlen (omp_clause_code_name[c]);
9312
9313 length += strlen ("expected ");
9314 buffer = (char *) alloca (length);
9315 length = 0;
9316
9317 for (c = c1; c <= c2; ++c)
9318 {
9319 const char *prefix = length ? " or " : "expected ";
9320
9321 strcpy (buffer + length, prefix);
9322 length += strlen (prefix);
9323 strcpy (buffer + length, omp_clause_code_name[c]);
9324 length += strlen (omp_clause_code_name[c]);
9325 }
9326
9327 internal_error ("tree check: %s, have %s in %s, at %s:%d",
9328 buffer, omp_clause_code_name[TREE_CODE (node)],
9329 function, trim_filename (file), line);
9330 }
9331
9332
9333 #undef DEFTREESTRUCT
9334 #define DEFTREESTRUCT(VAL, NAME) NAME,
9335
9336 static const char *ts_enum_names[] = {
9337 #include "treestruct.def"
9338 };
9339 #undef DEFTREESTRUCT
9340
9341 #define TS_ENUM_NAME(EN) (ts_enum_names[(EN)])
9342
9343 /* Similar to tree_class_check_failed, except that we check for
9344 whether CODE contains the tree structure identified by EN. */
9345
9346 void
9347 tree_contains_struct_check_failed (const_tree node,
9348 const enum tree_node_structure_enum en,
9349 const char *file, int line,
9350 const char *function)
9351 {
9352 internal_error
9353 ("tree check: expected tree that contains %qs structure, have %qs in %s, at %s:%d",
9354 TS_ENUM_NAME (en),
9355 get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
9356 }
9357
9358
9359 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
9360 (dynamically sized) vector. */
9361
9362 void
9363 tree_int_cst_elt_check_failed (int idx, int len, const char *file, int line,
9364 const char *function)
9365 {
9366 internal_error
9367 ("tree check: accessed elt %d of tree_int_cst with %d elts in %s, at %s:%d",
9368 idx + 1, len, function, trim_filename (file), line);
9369 }
9370
9371 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
9372 (dynamically sized) vector. */
9373
9374 void
9375 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
9376 const char *function)
9377 {
9378 internal_error
9379 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
9380 idx + 1, len, function, trim_filename (file), line);
9381 }
9382
9383 /* Similar to above, except that the check is for the bounds of the operand
9384 vector of an expression node EXP. */
9385
9386 void
9387 tree_operand_check_failed (int idx, const_tree exp, const char *file,
9388 int line, const char *function)
9389 {
9390 enum tree_code code = TREE_CODE (exp);
9391 internal_error
9392 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
9393 idx + 1, get_tree_code_name (code), TREE_OPERAND_LENGTH (exp),
9394 function, trim_filename (file), line);
9395 }
9396
9397 /* Similar to above, except that the check is for the number of
9398 operands of an OMP_CLAUSE node. */
9399
9400 void
9401 omp_clause_operand_check_failed (int idx, const_tree t, const char *file,
9402 int line, const char *function)
9403 {
9404 internal_error
9405 ("tree check: accessed operand %d of omp_clause %s with %d operands "
9406 "in %s, at %s:%d", idx + 1, omp_clause_code_name[OMP_CLAUSE_CODE (t)],
9407 omp_clause_num_ops [OMP_CLAUSE_CODE (t)], function,
9408 trim_filename (file), line);
9409 }
9410 #endif /* ENABLE_TREE_CHECKING */
9411 \f
9412 /* Create a new vector type node holding SUBPARTS units of type INNERTYPE,
9413 and mapped to the machine mode MODE. Initialize its fields and build
9414 the information necessary for debugging output. */
9415
9416 static tree
9417 make_vector_type (tree innertype, int nunits, enum machine_mode mode)
9418 {
9419 tree t;
9420 inchash::hash hstate;
9421
9422 t = make_node (VECTOR_TYPE);
9423 TREE_TYPE (t) = TYPE_MAIN_VARIANT (innertype);
9424 SET_TYPE_VECTOR_SUBPARTS (t, nunits);
9425 SET_TYPE_MODE (t, mode);
9426
9427 if (TYPE_STRUCTURAL_EQUALITY_P (innertype))
9428 SET_TYPE_STRUCTURAL_EQUALITY (t);
9429 else if (TYPE_CANONICAL (innertype) != innertype
9430 || mode != VOIDmode)
9431 TYPE_CANONICAL (t)
9432 = make_vector_type (TYPE_CANONICAL (innertype), nunits, VOIDmode);
9433
9434 layout_type (t);
9435
9436 hstate.add_wide_int (VECTOR_TYPE);
9437 hstate.add_wide_int (nunits);
9438 hstate.add_wide_int (mode);
9439 hstate.add_object (TYPE_HASH (TREE_TYPE (t)));
9440 t = type_hash_canon (hstate.end (), t);
9441
9442 /* We have built a main variant, based on the main variant of the
9443 inner type. Use it to build the variant we return. */
9444 if ((TYPE_ATTRIBUTES (innertype) || TYPE_QUALS (innertype))
9445 && TREE_TYPE (t) != innertype)
9446 return build_type_attribute_qual_variant (t,
9447 TYPE_ATTRIBUTES (innertype),
9448 TYPE_QUALS (innertype));
9449
9450 return t;
9451 }
9452
9453 static tree
9454 make_or_reuse_type (unsigned size, int unsignedp)
9455 {
9456 int i;
9457
9458 if (size == INT_TYPE_SIZE)
9459 return unsignedp ? unsigned_type_node : integer_type_node;
9460 if (size == CHAR_TYPE_SIZE)
9461 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
9462 if (size == SHORT_TYPE_SIZE)
9463 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
9464 if (size == LONG_TYPE_SIZE)
9465 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
9466 if (size == LONG_LONG_TYPE_SIZE)
9467 return (unsignedp ? long_long_unsigned_type_node
9468 : long_long_integer_type_node);
9469
9470 for (i = 0; i < NUM_INT_N_ENTS; i ++)
9471 if (size == int_n_data[i].bitsize
9472 && int_n_enabled_p[i])
9473 return (unsignedp ? int_n_trees[i].unsigned_type
9474 : int_n_trees[i].signed_type);
9475
9476 if (unsignedp)
9477 return make_unsigned_type (size);
9478 else
9479 return make_signed_type (size);
9480 }
9481
9482 /* Create or reuse a fract type by SIZE, UNSIGNEDP, and SATP. */
9483
9484 static tree
9485 make_or_reuse_fract_type (unsigned size, int unsignedp, int satp)
9486 {
9487 if (satp)
9488 {
9489 if (size == SHORT_FRACT_TYPE_SIZE)
9490 return unsignedp ? sat_unsigned_short_fract_type_node
9491 : sat_short_fract_type_node;
9492 if (size == FRACT_TYPE_SIZE)
9493 return unsignedp ? sat_unsigned_fract_type_node : sat_fract_type_node;
9494 if (size == LONG_FRACT_TYPE_SIZE)
9495 return unsignedp ? sat_unsigned_long_fract_type_node
9496 : sat_long_fract_type_node;
9497 if (size == LONG_LONG_FRACT_TYPE_SIZE)
9498 return unsignedp ? sat_unsigned_long_long_fract_type_node
9499 : sat_long_long_fract_type_node;
9500 }
9501 else
9502 {
9503 if (size == SHORT_FRACT_TYPE_SIZE)
9504 return unsignedp ? unsigned_short_fract_type_node
9505 : short_fract_type_node;
9506 if (size == FRACT_TYPE_SIZE)
9507 return unsignedp ? unsigned_fract_type_node : fract_type_node;
9508 if (size == LONG_FRACT_TYPE_SIZE)
9509 return unsignedp ? unsigned_long_fract_type_node
9510 : long_fract_type_node;
9511 if (size == LONG_LONG_FRACT_TYPE_SIZE)
9512 return unsignedp ? unsigned_long_long_fract_type_node
9513 : long_long_fract_type_node;
9514 }
9515
9516 return make_fract_type (size, unsignedp, satp);
9517 }
9518
9519 /* Create or reuse an accum type by SIZE, UNSIGNEDP, and SATP. */
9520
9521 static tree
9522 make_or_reuse_accum_type (unsigned size, int unsignedp, int satp)
9523 {
9524 if (satp)
9525 {
9526 if (size == SHORT_ACCUM_TYPE_SIZE)
9527 return unsignedp ? sat_unsigned_short_accum_type_node
9528 : sat_short_accum_type_node;
9529 if (size == ACCUM_TYPE_SIZE)
9530 return unsignedp ? sat_unsigned_accum_type_node : sat_accum_type_node;
9531 if (size == LONG_ACCUM_TYPE_SIZE)
9532 return unsignedp ? sat_unsigned_long_accum_type_node
9533 : sat_long_accum_type_node;
9534 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
9535 return unsignedp ? sat_unsigned_long_long_accum_type_node
9536 : sat_long_long_accum_type_node;
9537 }
9538 else
9539 {
9540 if (size == SHORT_ACCUM_TYPE_SIZE)
9541 return unsignedp ? unsigned_short_accum_type_node
9542 : short_accum_type_node;
9543 if (size == ACCUM_TYPE_SIZE)
9544 return unsignedp ? unsigned_accum_type_node : accum_type_node;
9545 if (size == LONG_ACCUM_TYPE_SIZE)
9546 return unsignedp ? unsigned_long_accum_type_node
9547 : long_accum_type_node;
9548 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
9549 return unsignedp ? unsigned_long_long_accum_type_node
9550 : long_long_accum_type_node;
9551 }
9552
9553 return make_accum_type (size, unsignedp, satp);
9554 }
9555
9556
9557 /* Create an atomic variant node for TYPE. This routine is called
9558 during initialization of data types to create the 5 basic atomic
9559 types. The generic build_variant_type function requires these to
9560 already be set up in order to function properly, so cannot be
9561 called from there. If ALIGN is non-zero, then ensure alignment is
9562 overridden to this value. */
9563
9564 static tree
9565 build_atomic_base (tree type, unsigned int align)
9566 {
9567 tree t;
9568
9569 /* Make sure its not already registered. */
9570 if ((t = get_qualified_type (type, TYPE_QUAL_ATOMIC)))
9571 return t;
9572
9573 t = build_variant_type_copy (type);
9574 set_type_quals (t, TYPE_QUAL_ATOMIC);
9575
9576 if (align)
9577 TYPE_ALIGN (t) = align;
9578
9579 return t;
9580 }
9581
9582 /* Create nodes for all integer types (and error_mark_node) using the sizes
9583 of C datatypes. SIGNED_CHAR specifies whether char is signed,
9584 SHORT_DOUBLE specifies whether double should be of the same precision
9585 as float. */
9586
9587 void
9588 build_common_tree_nodes (bool signed_char, bool short_double)
9589 {
9590 int i;
9591
9592 error_mark_node = make_node (ERROR_MARK);
9593 TREE_TYPE (error_mark_node) = error_mark_node;
9594
9595 initialize_sizetypes ();
9596
9597 /* Define both `signed char' and `unsigned char'. */
9598 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
9599 TYPE_STRING_FLAG (signed_char_type_node) = 1;
9600 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
9601 TYPE_STRING_FLAG (unsigned_char_type_node) = 1;
9602
9603 /* Define `char', which is like either `signed char' or `unsigned char'
9604 but not the same as either. */
9605 char_type_node
9606 = (signed_char
9607 ? make_signed_type (CHAR_TYPE_SIZE)
9608 : make_unsigned_type (CHAR_TYPE_SIZE));
9609 TYPE_STRING_FLAG (char_type_node) = 1;
9610
9611 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
9612 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
9613 integer_type_node = make_signed_type (INT_TYPE_SIZE);
9614 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
9615 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
9616 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
9617 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
9618 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
9619
9620 for (i = 0; i < NUM_INT_N_ENTS; i ++)
9621 {
9622 int_n_trees[i].signed_type = make_signed_type (int_n_data[i].bitsize);
9623 int_n_trees[i].unsigned_type = make_unsigned_type (int_n_data[i].bitsize);
9624 TYPE_SIZE (int_n_trees[i].signed_type) = bitsize_int (int_n_data[i].bitsize);
9625 TYPE_SIZE (int_n_trees[i].unsigned_type) = bitsize_int (int_n_data[i].bitsize);
9626
9627 if (int_n_data[i].bitsize > LONG_LONG_TYPE_SIZE)
9628 {
9629 integer_types[itk_intN_0 + i * 2] = int_n_trees[i].signed_type;
9630 integer_types[itk_unsigned_intN_0 + i * 2] = int_n_trees[i].unsigned_type;
9631 }
9632 }
9633
9634 /* Define a boolean type. This type only represents boolean values but
9635 may be larger than char depending on the value of BOOL_TYPE_SIZE. */
9636 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
9637 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
9638 TYPE_PRECISION (boolean_type_node) = 1;
9639 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
9640
9641 /* Define what type to use for size_t. */
9642 if (strcmp (SIZE_TYPE, "unsigned int") == 0)
9643 size_type_node = unsigned_type_node;
9644 else if (strcmp (SIZE_TYPE, "long unsigned int") == 0)
9645 size_type_node = long_unsigned_type_node;
9646 else if (strcmp (SIZE_TYPE, "long long unsigned int") == 0)
9647 size_type_node = long_long_unsigned_type_node;
9648 else if (strcmp (SIZE_TYPE, "short unsigned int") == 0)
9649 size_type_node = short_unsigned_type_node;
9650 else
9651 {
9652 int i;
9653
9654 size_type_node = NULL_TREE;
9655 for (i = 0; i < NUM_INT_N_ENTS; i++)
9656 if (int_n_enabled_p[i])
9657 {
9658 char name[50];
9659 sprintf (name, "__int%d unsigned", int_n_data[i].bitsize);
9660
9661 if (strcmp (name, SIZE_TYPE) == 0)
9662 {
9663 size_type_node = int_n_trees[i].unsigned_type;
9664 }
9665 }
9666 if (size_type_node == NULL_TREE)
9667 gcc_unreachable ();
9668 }
9669
9670 /* Fill in the rest of the sized types. Reuse existing type nodes
9671 when possible. */
9672 intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
9673 intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
9674 intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
9675 intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
9676 intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);
9677
9678 unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
9679 unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
9680 unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
9681 unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
9682 unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);
9683
9684 /* Don't call build_qualified type for atomics. That routine does
9685 special processing for atomics, and until they are initialized
9686 it's better not to make that call.
9687
9688 Check to see if there is a target override for atomic types. */
9689
9690 atomicQI_type_node = build_atomic_base (unsigned_intQI_type_node,
9691 targetm.atomic_align_for_mode (QImode));
9692 atomicHI_type_node = build_atomic_base (unsigned_intHI_type_node,
9693 targetm.atomic_align_for_mode (HImode));
9694 atomicSI_type_node = build_atomic_base (unsigned_intSI_type_node,
9695 targetm.atomic_align_for_mode (SImode));
9696 atomicDI_type_node = build_atomic_base (unsigned_intDI_type_node,
9697 targetm.atomic_align_for_mode (DImode));
9698 atomicTI_type_node = build_atomic_base (unsigned_intTI_type_node,
9699 targetm.atomic_align_for_mode (TImode));
9700
9701 access_public_node = get_identifier ("public");
9702 access_protected_node = get_identifier ("protected");
9703 access_private_node = get_identifier ("private");
9704
9705 /* Define these next since types below may used them. */
9706 integer_zero_node = build_int_cst (integer_type_node, 0);
9707 integer_one_node = build_int_cst (integer_type_node, 1);
9708 integer_three_node = build_int_cst (integer_type_node, 3);
9709 integer_minus_one_node = build_int_cst (integer_type_node, -1);
9710
9711 size_zero_node = size_int (0);
9712 size_one_node = size_int (1);
9713 bitsize_zero_node = bitsize_int (0);
9714 bitsize_one_node = bitsize_int (1);
9715 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
9716
9717 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
9718 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
9719
9720 void_type_node = make_node (VOID_TYPE);
9721 layout_type (void_type_node);
9722
9723 /* We are not going to have real types in C with less than byte alignment,
9724 so we might as well not have any types that claim to have it. */
9725 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
9726 TYPE_USER_ALIGN (void_type_node) = 0;
9727
9728 void_node = make_node (VOID_CST);
9729 TREE_TYPE (void_node) = void_type_node;
9730
9731 null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
9732 layout_type (TREE_TYPE (null_pointer_node));
9733
9734 ptr_type_node = build_pointer_type (void_type_node);
9735 const_ptr_type_node
9736 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
9737 fileptr_type_node = ptr_type_node;
9738
9739 pointer_sized_int_node = build_nonstandard_integer_type (POINTER_SIZE, 1);
9740
9741 float_type_node = make_node (REAL_TYPE);
9742 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
9743 layout_type (float_type_node);
9744
9745 double_type_node = make_node (REAL_TYPE);
9746 if (short_double)
9747 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
9748 else
9749 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
9750 layout_type (double_type_node);
9751
9752 long_double_type_node = make_node (REAL_TYPE);
9753 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
9754 layout_type (long_double_type_node);
9755
9756 float_ptr_type_node = build_pointer_type (float_type_node);
9757 double_ptr_type_node = build_pointer_type (double_type_node);
9758 long_double_ptr_type_node = build_pointer_type (long_double_type_node);
9759 integer_ptr_type_node = build_pointer_type (integer_type_node);
9760
9761 /* Fixed size integer types. */
9762 uint16_type_node = make_or_reuse_type (16, 1);
9763 uint32_type_node = make_or_reuse_type (32, 1);
9764 uint64_type_node = make_or_reuse_type (64, 1);
9765
9766 /* Decimal float types. */
9767 dfloat32_type_node = make_node (REAL_TYPE);
9768 TYPE_PRECISION (dfloat32_type_node) = DECIMAL32_TYPE_SIZE;
9769 layout_type (dfloat32_type_node);
9770 SET_TYPE_MODE (dfloat32_type_node, SDmode);
9771 dfloat32_ptr_type_node = build_pointer_type (dfloat32_type_node);
9772
9773 dfloat64_type_node = make_node (REAL_TYPE);
9774 TYPE_PRECISION (dfloat64_type_node) = DECIMAL64_TYPE_SIZE;
9775 layout_type (dfloat64_type_node);
9776 SET_TYPE_MODE (dfloat64_type_node, DDmode);
9777 dfloat64_ptr_type_node = build_pointer_type (dfloat64_type_node);
9778
9779 dfloat128_type_node = make_node (REAL_TYPE);
9780 TYPE_PRECISION (dfloat128_type_node) = DECIMAL128_TYPE_SIZE;
9781 layout_type (dfloat128_type_node);
9782 SET_TYPE_MODE (dfloat128_type_node, TDmode);
9783 dfloat128_ptr_type_node = build_pointer_type (dfloat128_type_node);
9784
9785 complex_integer_type_node = build_complex_type (integer_type_node);
9786 complex_float_type_node = build_complex_type (float_type_node);
9787 complex_double_type_node = build_complex_type (double_type_node);
9788 complex_long_double_type_node = build_complex_type (long_double_type_node);
9789
9790 /* Make fixed-point nodes based on sat/non-sat and signed/unsigned. */
9791 #define MAKE_FIXED_TYPE_NODE(KIND,SIZE) \
9792 sat_ ## KIND ## _type_node = \
9793 make_sat_signed_ ## KIND ## _type (SIZE); \
9794 sat_unsigned_ ## KIND ## _type_node = \
9795 make_sat_unsigned_ ## KIND ## _type (SIZE); \
9796 KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
9797 unsigned_ ## KIND ## _type_node = \
9798 make_unsigned_ ## KIND ## _type (SIZE);
9799
9800 #define MAKE_FIXED_TYPE_NODE_WIDTH(KIND,WIDTH,SIZE) \
9801 sat_ ## WIDTH ## KIND ## _type_node = \
9802 make_sat_signed_ ## KIND ## _type (SIZE); \
9803 sat_unsigned_ ## WIDTH ## KIND ## _type_node = \
9804 make_sat_unsigned_ ## KIND ## _type (SIZE); \
9805 WIDTH ## KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
9806 unsigned_ ## WIDTH ## KIND ## _type_node = \
9807 make_unsigned_ ## KIND ## _type (SIZE);
9808
9809 /* Make fixed-point type nodes based on four different widths. */
9810 #define MAKE_FIXED_TYPE_NODE_FAMILY(N1,N2) \
9811 MAKE_FIXED_TYPE_NODE_WIDTH (N1, short_, SHORT_ ## N2 ## _TYPE_SIZE) \
9812 MAKE_FIXED_TYPE_NODE (N1, N2 ## _TYPE_SIZE) \
9813 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_, LONG_ ## N2 ## _TYPE_SIZE) \
9814 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_long_, LONG_LONG_ ## N2 ## _TYPE_SIZE)
9815
9816 /* Make fixed-point mode nodes based on sat/non-sat and signed/unsigned. */
9817 #define MAKE_FIXED_MODE_NODE(KIND,NAME,MODE) \
9818 NAME ## _type_node = \
9819 make_or_reuse_signed_ ## KIND ## _type (GET_MODE_BITSIZE (MODE ## mode)); \
9820 u ## NAME ## _type_node = \
9821 make_or_reuse_unsigned_ ## KIND ## _type \
9822 (GET_MODE_BITSIZE (U ## MODE ## mode)); \
9823 sat_ ## NAME ## _type_node = \
9824 make_or_reuse_sat_signed_ ## KIND ## _type \
9825 (GET_MODE_BITSIZE (MODE ## mode)); \
9826 sat_u ## NAME ## _type_node = \
9827 make_or_reuse_sat_unsigned_ ## KIND ## _type \
9828 (GET_MODE_BITSIZE (U ## MODE ## mode));
9829
9830 /* Fixed-point type and mode nodes. */
9831 MAKE_FIXED_TYPE_NODE_FAMILY (fract, FRACT)
9832 MAKE_FIXED_TYPE_NODE_FAMILY (accum, ACCUM)
9833 MAKE_FIXED_MODE_NODE (fract, qq, QQ)
9834 MAKE_FIXED_MODE_NODE (fract, hq, HQ)
9835 MAKE_FIXED_MODE_NODE (fract, sq, SQ)
9836 MAKE_FIXED_MODE_NODE (fract, dq, DQ)
9837 MAKE_FIXED_MODE_NODE (fract, tq, TQ)
9838 MAKE_FIXED_MODE_NODE (accum, ha, HA)
9839 MAKE_FIXED_MODE_NODE (accum, sa, SA)
9840 MAKE_FIXED_MODE_NODE (accum, da, DA)
9841 MAKE_FIXED_MODE_NODE (accum, ta, TA)
9842
9843 {
9844 tree t = targetm.build_builtin_va_list ();
9845
9846 /* Many back-ends define record types without setting TYPE_NAME.
9847 If we copied the record type here, we'd keep the original
9848 record type without a name. This breaks name mangling. So,
9849 don't copy record types and let c_common_nodes_and_builtins()
9850 declare the type to be __builtin_va_list. */
9851 if (TREE_CODE (t) != RECORD_TYPE)
9852 t = build_variant_type_copy (t);
9853
9854 va_list_type_node = t;
9855 }
9856 }
9857
9858 /* Modify DECL for given flags.
9859 TM_PURE attribute is set only on types, so the function will modify
9860 DECL's type when ECF_TM_PURE is used. */
9861
9862 void
9863 set_call_expr_flags (tree decl, int flags)
9864 {
9865 if (flags & ECF_NOTHROW)
9866 TREE_NOTHROW (decl) = 1;
9867 if (flags & ECF_CONST)
9868 TREE_READONLY (decl) = 1;
9869 if (flags & ECF_PURE)
9870 DECL_PURE_P (decl) = 1;
9871 if (flags & ECF_LOOPING_CONST_OR_PURE)
9872 DECL_LOOPING_CONST_OR_PURE_P (decl) = 1;
9873 if (flags & ECF_NOVOPS)
9874 DECL_IS_NOVOPS (decl) = 1;
9875 if (flags & ECF_NORETURN)
9876 TREE_THIS_VOLATILE (decl) = 1;
9877 if (flags & ECF_MALLOC)
9878 DECL_IS_MALLOC (decl) = 1;
9879 if (flags & ECF_RETURNS_TWICE)
9880 DECL_IS_RETURNS_TWICE (decl) = 1;
9881 if (flags & ECF_LEAF)
9882 DECL_ATTRIBUTES (decl) = tree_cons (get_identifier ("leaf"),
9883 NULL, DECL_ATTRIBUTES (decl));
9884 if ((flags & ECF_TM_PURE) && flag_tm)
9885 apply_tm_attr (decl, get_identifier ("transaction_pure"));
9886 /* Looping const or pure is implied by noreturn.
9887 There is currently no way to declare looping const or looping pure alone. */
9888 gcc_assert (!(flags & ECF_LOOPING_CONST_OR_PURE)
9889 || ((flags & ECF_NORETURN) && (flags & (ECF_CONST | ECF_PURE))));
9890 }
9891
9892
9893 /* A subroutine of build_common_builtin_nodes. Define a builtin function. */
9894
9895 static void
9896 local_define_builtin (const char *name, tree type, enum built_in_function code,
9897 const char *library_name, int ecf_flags)
9898 {
9899 tree decl;
9900
9901 decl = add_builtin_function (name, type, code, BUILT_IN_NORMAL,
9902 library_name, NULL_TREE);
9903 set_call_expr_flags (decl, ecf_flags);
9904
9905 set_builtin_decl (code, decl, true);
9906 }
9907
9908 /* Call this function after instantiating all builtins that the language
9909 front end cares about. This will build the rest of the builtins
9910 and internal functions that are relied upon by the tree optimizers and
9911 the middle-end. */
9912
9913 void
9914 build_common_builtin_nodes (void)
9915 {
9916 tree tmp, ftype;
9917 int ecf_flags;
9918
9919 if (!builtin_decl_explicit_p (BUILT_IN_UNREACHABLE))
9920 {
9921 ftype = build_function_type (void_type_node, void_list_node);
9922 local_define_builtin ("__builtin_unreachable", ftype, BUILT_IN_UNREACHABLE,
9923 "__builtin_unreachable",
9924 ECF_NOTHROW | ECF_LEAF | ECF_NORETURN
9925 | ECF_CONST | ECF_LEAF);
9926 }
9927
9928 if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY)
9929 || !builtin_decl_explicit_p (BUILT_IN_MEMMOVE))
9930 {
9931 ftype = build_function_type_list (ptr_type_node,
9932 ptr_type_node, const_ptr_type_node,
9933 size_type_node, NULL_TREE);
9934
9935 if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY))
9936 local_define_builtin ("__builtin_memcpy", ftype, BUILT_IN_MEMCPY,
9937 "memcpy", ECF_NOTHROW | ECF_LEAF);
9938 if (!builtin_decl_explicit_p (BUILT_IN_MEMMOVE))
9939 local_define_builtin ("__builtin_memmove", ftype, BUILT_IN_MEMMOVE,
9940 "memmove", ECF_NOTHROW | ECF_LEAF);
9941 }
9942
9943 if (!builtin_decl_explicit_p (BUILT_IN_MEMCMP))
9944 {
9945 ftype = build_function_type_list (integer_type_node, const_ptr_type_node,
9946 const_ptr_type_node, size_type_node,
9947 NULL_TREE);
9948 local_define_builtin ("__builtin_memcmp", ftype, BUILT_IN_MEMCMP,
9949 "memcmp", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
9950 }
9951
9952 if (!builtin_decl_explicit_p (BUILT_IN_MEMSET))
9953 {
9954 ftype = build_function_type_list (ptr_type_node,
9955 ptr_type_node, integer_type_node,
9956 size_type_node, NULL_TREE);
9957 local_define_builtin ("__builtin_memset", ftype, BUILT_IN_MEMSET,
9958 "memset", ECF_NOTHROW | ECF_LEAF);
9959 }
9960
9961 if (!builtin_decl_explicit_p (BUILT_IN_ALLOCA))
9962 {
9963 ftype = build_function_type_list (ptr_type_node,
9964 size_type_node, NULL_TREE);
9965 local_define_builtin ("__builtin_alloca", ftype, BUILT_IN_ALLOCA,
9966 "alloca", ECF_MALLOC | ECF_NOTHROW | ECF_LEAF);
9967 }
9968
9969 ftype = build_function_type_list (ptr_type_node, size_type_node,
9970 size_type_node, NULL_TREE);
9971 local_define_builtin ("__builtin_alloca_with_align", ftype,
9972 BUILT_IN_ALLOCA_WITH_ALIGN, "alloca",
9973 ECF_MALLOC | ECF_NOTHROW | ECF_LEAF);
9974
9975 /* If we're checking the stack, `alloca' can throw. */
9976 if (flag_stack_check)
9977 {
9978 TREE_NOTHROW (builtin_decl_explicit (BUILT_IN_ALLOCA)) = 0;
9979 TREE_NOTHROW (builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN)) = 0;
9980 }
9981
9982 ftype = build_function_type_list (void_type_node,
9983 ptr_type_node, ptr_type_node,
9984 ptr_type_node, NULL_TREE);
9985 local_define_builtin ("__builtin_init_trampoline", ftype,
9986 BUILT_IN_INIT_TRAMPOLINE,
9987 "__builtin_init_trampoline", ECF_NOTHROW | ECF_LEAF);
9988 local_define_builtin ("__builtin_init_heap_trampoline", ftype,
9989 BUILT_IN_INIT_HEAP_TRAMPOLINE,
9990 "__builtin_init_heap_trampoline",
9991 ECF_NOTHROW | ECF_LEAF);
9992
9993 ftype = build_function_type_list (ptr_type_node, ptr_type_node, NULL_TREE);
9994 local_define_builtin ("__builtin_adjust_trampoline", ftype,
9995 BUILT_IN_ADJUST_TRAMPOLINE,
9996 "__builtin_adjust_trampoline",
9997 ECF_CONST | ECF_NOTHROW);
9998
9999 ftype = build_function_type_list (void_type_node,
10000 ptr_type_node, ptr_type_node, NULL_TREE);
10001 local_define_builtin ("__builtin_nonlocal_goto", ftype,
10002 BUILT_IN_NONLOCAL_GOTO,
10003 "__builtin_nonlocal_goto",
10004 ECF_NORETURN | ECF_NOTHROW);
10005
10006 ftype = build_function_type_list (void_type_node,
10007 ptr_type_node, ptr_type_node, NULL_TREE);
10008 local_define_builtin ("__builtin_setjmp_setup", ftype,
10009 BUILT_IN_SETJMP_SETUP,
10010 "__builtin_setjmp_setup", ECF_NOTHROW);
10011
10012 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
10013 local_define_builtin ("__builtin_setjmp_receiver", ftype,
10014 BUILT_IN_SETJMP_RECEIVER,
10015 "__builtin_setjmp_receiver", ECF_NOTHROW | ECF_LEAF);
10016
10017 ftype = build_function_type_list (ptr_type_node, NULL_TREE);
10018 local_define_builtin ("__builtin_stack_save", ftype, BUILT_IN_STACK_SAVE,
10019 "__builtin_stack_save", ECF_NOTHROW | ECF_LEAF);
10020
10021 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
10022 local_define_builtin ("__builtin_stack_restore", ftype,
10023 BUILT_IN_STACK_RESTORE,
10024 "__builtin_stack_restore", ECF_NOTHROW | ECF_LEAF);
10025
10026 /* If there's a possibility that we might use the ARM EABI, build the
10027 alternate __cxa_end_cleanup node used to resume from C++ and Java. */
10028 if (targetm.arm_eabi_unwinder)
10029 {
10030 ftype = build_function_type_list (void_type_node, NULL_TREE);
10031 local_define_builtin ("__builtin_cxa_end_cleanup", ftype,
10032 BUILT_IN_CXA_END_CLEANUP,
10033 "__cxa_end_cleanup", ECF_NORETURN | ECF_LEAF);
10034 }
10035
10036 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
10037 local_define_builtin ("__builtin_unwind_resume", ftype,
10038 BUILT_IN_UNWIND_RESUME,
10039 ((targetm_common.except_unwind_info (&global_options)
10040 == UI_SJLJ)
10041 ? "_Unwind_SjLj_Resume" : "_Unwind_Resume"),
10042 ECF_NORETURN);
10043
10044 if (builtin_decl_explicit (BUILT_IN_RETURN_ADDRESS) == NULL_TREE)
10045 {
10046 ftype = build_function_type_list (ptr_type_node, integer_type_node,
10047 NULL_TREE);
10048 local_define_builtin ("__builtin_return_address", ftype,
10049 BUILT_IN_RETURN_ADDRESS,
10050 "__builtin_return_address",
10051 ECF_NOTHROW);
10052 }
10053
10054 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER)
10055 || !builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT))
10056 {
10057 ftype = build_function_type_list (void_type_node, ptr_type_node,
10058 ptr_type_node, NULL_TREE);
10059 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER))
10060 local_define_builtin ("__cyg_profile_func_enter", ftype,
10061 BUILT_IN_PROFILE_FUNC_ENTER,
10062 "__cyg_profile_func_enter", 0);
10063 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT))
10064 local_define_builtin ("__cyg_profile_func_exit", ftype,
10065 BUILT_IN_PROFILE_FUNC_EXIT,
10066 "__cyg_profile_func_exit", 0);
10067 }
10068
10069 /* The exception object and filter values from the runtime. The argument
10070 must be zero before exception lowering, i.e. from the front end. After
10071 exception lowering, it will be the region number for the exception
10072 landing pad. These functions are PURE instead of CONST to prevent
10073 them from being hoisted past the exception edge that will initialize
10074 its value in the landing pad. */
10075 ftype = build_function_type_list (ptr_type_node,
10076 integer_type_node, NULL_TREE);
10077 ecf_flags = ECF_PURE | ECF_NOTHROW | ECF_LEAF;
10078 /* Only use TM_PURE if we we have TM language support. */
10079 if (builtin_decl_explicit_p (BUILT_IN_TM_LOAD_1))
10080 ecf_flags |= ECF_TM_PURE;
10081 local_define_builtin ("__builtin_eh_pointer", ftype, BUILT_IN_EH_POINTER,
10082 "__builtin_eh_pointer", ecf_flags);
10083
10084 tmp = lang_hooks.types.type_for_mode (targetm.eh_return_filter_mode (), 0);
10085 ftype = build_function_type_list (tmp, integer_type_node, NULL_TREE);
10086 local_define_builtin ("__builtin_eh_filter", ftype, BUILT_IN_EH_FILTER,
10087 "__builtin_eh_filter", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10088
10089 ftype = build_function_type_list (void_type_node,
10090 integer_type_node, integer_type_node,
10091 NULL_TREE);
10092 local_define_builtin ("__builtin_eh_copy_values", ftype,
10093 BUILT_IN_EH_COPY_VALUES,
10094 "__builtin_eh_copy_values", ECF_NOTHROW);
10095
10096 /* Complex multiplication and division. These are handled as builtins
10097 rather than optabs because emit_library_call_value doesn't support
10098 complex. Further, we can do slightly better with folding these
10099 beasties if the real and complex parts of the arguments are separate. */
10100 {
10101 int mode;
10102
10103 for (mode = MIN_MODE_COMPLEX_FLOAT; mode <= MAX_MODE_COMPLEX_FLOAT; ++mode)
10104 {
10105 char mode_name_buf[4], *q;
10106 const char *p;
10107 enum built_in_function mcode, dcode;
10108 tree type, inner_type;
10109 const char *prefix = "__";
10110
10111 if (targetm.libfunc_gnu_prefix)
10112 prefix = "__gnu_";
10113
10114 type = lang_hooks.types.type_for_mode ((enum machine_mode) mode, 0);
10115 if (type == NULL)
10116 continue;
10117 inner_type = TREE_TYPE (type);
10118
10119 ftype = build_function_type_list (type, inner_type, inner_type,
10120 inner_type, inner_type, NULL_TREE);
10121
10122 mcode = ((enum built_in_function)
10123 (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
10124 dcode = ((enum built_in_function)
10125 (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
10126
10127 for (p = GET_MODE_NAME (mode), q = mode_name_buf; *p; p++, q++)
10128 *q = TOLOWER (*p);
10129 *q = '\0';
10130
10131 built_in_names[mcode] = concat (prefix, "mul", mode_name_buf, "3",
10132 NULL);
10133 local_define_builtin (built_in_names[mcode], ftype, mcode,
10134 built_in_names[mcode],
10135 ECF_CONST | ECF_NOTHROW | ECF_LEAF);
10136
10137 built_in_names[dcode] = concat (prefix, "div", mode_name_buf, "3",
10138 NULL);
10139 local_define_builtin (built_in_names[dcode], ftype, dcode,
10140 built_in_names[dcode],
10141 ECF_CONST | ECF_NOTHROW | ECF_LEAF);
10142 }
10143 }
10144
10145 init_internal_fns ();
10146 }
10147
10148 /* HACK. GROSS. This is absolutely disgusting. I wish there was a
10149 better way.
10150
10151 If we requested a pointer to a vector, build up the pointers that
10152 we stripped off while looking for the inner type. Similarly for
10153 return values from functions.
10154
10155 The argument TYPE is the top of the chain, and BOTTOM is the
10156 new type which we will point to. */
10157
10158 tree
10159 reconstruct_complex_type (tree type, tree bottom)
10160 {
10161 tree inner, outer;
10162
10163 if (TREE_CODE (type) == POINTER_TYPE)
10164 {
10165 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10166 outer = build_pointer_type_for_mode (inner, TYPE_MODE (type),
10167 TYPE_REF_CAN_ALIAS_ALL (type));
10168 }
10169 else if (TREE_CODE (type) == REFERENCE_TYPE)
10170 {
10171 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10172 outer = build_reference_type_for_mode (inner, TYPE_MODE (type),
10173 TYPE_REF_CAN_ALIAS_ALL (type));
10174 }
10175 else if (TREE_CODE (type) == ARRAY_TYPE)
10176 {
10177 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10178 outer = build_array_type (inner, TYPE_DOMAIN (type));
10179 }
10180 else if (TREE_CODE (type) == FUNCTION_TYPE)
10181 {
10182 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10183 outer = build_function_type (inner, TYPE_ARG_TYPES (type));
10184 }
10185 else if (TREE_CODE (type) == METHOD_TYPE)
10186 {
10187 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10188 /* The build_method_type_directly() routine prepends 'this' to argument list,
10189 so we must compensate by getting rid of it. */
10190 outer
10191 = build_method_type_directly
10192 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (type))),
10193 inner,
10194 TREE_CHAIN (TYPE_ARG_TYPES (type)));
10195 }
10196 else if (TREE_CODE (type) == OFFSET_TYPE)
10197 {
10198 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10199 outer = build_offset_type (TYPE_OFFSET_BASETYPE (type), inner);
10200 }
10201 else
10202 return bottom;
10203
10204 return build_type_attribute_qual_variant (outer, TYPE_ATTRIBUTES (type),
10205 TYPE_QUALS (type));
10206 }
10207
10208 /* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
10209 the inner type. */
10210 tree
10211 build_vector_type_for_mode (tree innertype, enum machine_mode mode)
10212 {
10213 int nunits;
10214
10215 switch (GET_MODE_CLASS (mode))
10216 {
10217 case MODE_VECTOR_INT:
10218 case MODE_VECTOR_FLOAT:
10219 case MODE_VECTOR_FRACT:
10220 case MODE_VECTOR_UFRACT:
10221 case MODE_VECTOR_ACCUM:
10222 case MODE_VECTOR_UACCUM:
10223 nunits = GET_MODE_NUNITS (mode);
10224 break;
10225
10226 case MODE_INT:
10227 /* Check that there are no leftover bits. */
10228 gcc_assert (GET_MODE_BITSIZE (mode)
10229 % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0);
10230
10231 nunits = GET_MODE_BITSIZE (mode)
10232 / TREE_INT_CST_LOW (TYPE_SIZE (innertype));
10233 break;
10234
10235 default:
10236 gcc_unreachable ();
10237 }
10238
10239 return make_vector_type (innertype, nunits, mode);
10240 }
10241
10242 /* Similarly, but takes the inner type and number of units, which must be
10243 a power of two. */
10244
10245 tree
10246 build_vector_type (tree innertype, int nunits)
10247 {
10248 return make_vector_type (innertype, nunits, VOIDmode);
10249 }
10250
10251 /* Similarly, but builds a variant type with TYPE_VECTOR_OPAQUE set. */
10252
10253 tree
10254 build_opaque_vector_type (tree innertype, int nunits)
10255 {
10256 tree t = make_vector_type (innertype, nunits, VOIDmode);
10257 tree cand;
10258 /* We always build the non-opaque variant before the opaque one,
10259 so if it already exists, it is TYPE_NEXT_VARIANT of this one. */
10260 cand = TYPE_NEXT_VARIANT (t);
10261 if (cand
10262 && TYPE_VECTOR_OPAQUE (cand)
10263 && check_qualified_type (cand, t, TYPE_QUALS (t)))
10264 return cand;
10265 /* Othewise build a variant type and make sure to queue it after
10266 the non-opaque type. */
10267 cand = build_distinct_type_copy (t);
10268 TYPE_VECTOR_OPAQUE (cand) = true;
10269 TYPE_CANONICAL (cand) = TYPE_CANONICAL (t);
10270 TYPE_NEXT_VARIANT (cand) = TYPE_NEXT_VARIANT (t);
10271 TYPE_NEXT_VARIANT (t) = cand;
10272 TYPE_MAIN_VARIANT (cand) = TYPE_MAIN_VARIANT (t);
10273 return cand;
10274 }
10275
10276
10277 /* Given an initializer INIT, return TRUE if INIT is zero or some
10278 aggregate of zeros. Otherwise return FALSE. */
10279 bool
10280 initializer_zerop (const_tree init)
10281 {
10282 tree elt;
10283
10284 STRIP_NOPS (init);
10285
10286 switch (TREE_CODE (init))
10287 {
10288 case INTEGER_CST:
10289 return integer_zerop (init);
10290
10291 case REAL_CST:
10292 /* ??? Note that this is not correct for C4X float formats. There,
10293 a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
10294 negative exponent. */
10295 return real_zerop (init)
10296 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
10297
10298 case FIXED_CST:
10299 return fixed_zerop (init);
10300
10301 case COMPLEX_CST:
10302 return integer_zerop (init)
10303 || (real_zerop (init)
10304 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
10305 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
10306
10307 case VECTOR_CST:
10308 {
10309 unsigned i;
10310 for (i = 0; i < VECTOR_CST_NELTS (init); ++i)
10311 if (!initializer_zerop (VECTOR_CST_ELT (init, i)))
10312 return false;
10313 return true;
10314 }
10315
10316 case CONSTRUCTOR:
10317 {
10318 unsigned HOST_WIDE_INT idx;
10319
10320 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
10321 if (!initializer_zerop (elt))
10322 return false;
10323 return true;
10324 }
10325
10326 case STRING_CST:
10327 {
10328 int i;
10329
10330 /* We need to loop through all elements to handle cases like
10331 "\0" and "\0foobar". */
10332 for (i = 0; i < TREE_STRING_LENGTH (init); ++i)
10333 if (TREE_STRING_POINTER (init)[i] != '\0')
10334 return false;
10335
10336 return true;
10337 }
10338
10339 default:
10340 return false;
10341 }
10342 }
10343
10344 /* Check if vector VEC consists of all the equal elements and
10345 that the number of elements corresponds to the type of VEC.
10346 The function returns first element of the vector
10347 or NULL_TREE if the vector is not uniform. */
10348 tree
10349 uniform_vector_p (const_tree vec)
10350 {
10351 tree first, t;
10352 unsigned i;
10353
10354 if (vec == NULL_TREE)
10355 return NULL_TREE;
10356
10357 gcc_assert (VECTOR_TYPE_P (TREE_TYPE (vec)));
10358
10359 if (TREE_CODE (vec) == VECTOR_CST)
10360 {
10361 first = VECTOR_CST_ELT (vec, 0);
10362 for (i = 1; i < VECTOR_CST_NELTS (vec); ++i)
10363 if (!operand_equal_p (first, VECTOR_CST_ELT (vec, i), 0))
10364 return NULL_TREE;
10365
10366 return first;
10367 }
10368
10369 else if (TREE_CODE (vec) == CONSTRUCTOR)
10370 {
10371 first = error_mark_node;
10372
10373 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (vec), i, t)
10374 {
10375 if (i == 0)
10376 {
10377 first = t;
10378 continue;
10379 }
10380 if (!operand_equal_p (first, t, 0))
10381 return NULL_TREE;
10382 }
10383 if (i != TYPE_VECTOR_SUBPARTS (TREE_TYPE (vec)))
10384 return NULL_TREE;
10385
10386 return first;
10387 }
10388
10389 return NULL_TREE;
10390 }
10391
10392 /* Build an empty statement at location LOC. */
10393
10394 tree
10395 build_empty_stmt (location_t loc)
10396 {
10397 tree t = build1 (NOP_EXPR, void_type_node, size_zero_node);
10398 SET_EXPR_LOCATION (t, loc);
10399 return t;
10400 }
10401
10402
10403 /* Build an OpenMP clause with code CODE. LOC is the location of the
10404 clause. */
10405
10406 tree
10407 build_omp_clause (location_t loc, enum omp_clause_code code)
10408 {
10409 tree t;
10410 int size, length;
10411
10412 length = omp_clause_num_ops[code];
10413 size = (sizeof (struct tree_omp_clause) + (length - 1) * sizeof (tree));
10414
10415 record_node_allocation_statistics (OMP_CLAUSE, size);
10416
10417 t = (tree) ggc_internal_alloc (size);
10418 memset (t, 0, size);
10419 TREE_SET_CODE (t, OMP_CLAUSE);
10420 OMP_CLAUSE_SET_CODE (t, code);
10421 OMP_CLAUSE_LOCATION (t) = loc;
10422
10423 return t;
10424 }
10425
10426 /* Build a tcc_vl_exp object with code CODE and room for LEN operands. LEN
10427 includes the implicit operand count in TREE_OPERAND 0, and so must be >= 1.
10428 Except for the CODE and operand count field, other storage for the
10429 object is initialized to zeros. */
10430
10431 tree
10432 build_vl_exp_stat (enum tree_code code, int len MEM_STAT_DECL)
10433 {
10434 tree t;
10435 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_exp);
10436
10437 gcc_assert (TREE_CODE_CLASS (code) == tcc_vl_exp);
10438 gcc_assert (len >= 1);
10439
10440 record_node_allocation_statistics (code, length);
10441
10442 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
10443
10444 TREE_SET_CODE (t, code);
10445
10446 /* Can't use TREE_OPERAND to store the length because if checking is
10447 enabled, it will try to check the length before we store it. :-P */
10448 t->exp.operands[0] = build_int_cst (sizetype, len);
10449
10450 return t;
10451 }
10452
10453 /* Helper function for build_call_* functions; build a CALL_EXPR with
10454 indicated RETURN_TYPE, FN, and NARGS, but do not initialize any of
10455 the argument slots. */
10456
10457 static tree
10458 build_call_1 (tree return_type, tree fn, int nargs)
10459 {
10460 tree t;
10461
10462 t = build_vl_exp (CALL_EXPR, nargs + 3);
10463 TREE_TYPE (t) = return_type;
10464 CALL_EXPR_FN (t) = fn;
10465 CALL_EXPR_STATIC_CHAIN (t) = NULL;
10466
10467 return t;
10468 }
10469
10470 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
10471 FN and a null static chain slot. NARGS is the number of call arguments
10472 which are specified as "..." arguments. */
10473
10474 tree
10475 build_call_nary (tree return_type, tree fn, int nargs, ...)
10476 {
10477 tree ret;
10478 va_list args;
10479 va_start (args, nargs);
10480 ret = build_call_valist (return_type, fn, nargs, args);
10481 va_end (args);
10482 return ret;
10483 }
10484
10485 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
10486 FN and a null static chain slot. NARGS is the number of call arguments
10487 which are specified as a va_list ARGS. */
10488
10489 tree
10490 build_call_valist (tree return_type, tree fn, int nargs, va_list args)
10491 {
10492 tree t;
10493 int i;
10494
10495 t = build_call_1 (return_type, fn, nargs);
10496 for (i = 0; i < nargs; i++)
10497 CALL_EXPR_ARG (t, i) = va_arg (args, tree);
10498 process_call_operands (t);
10499 return t;
10500 }
10501
10502 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
10503 FN and a null static chain slot. NARGS is the number of call arguments
10504 which are specified as a tree array ARGS. */
10505
10506 tree
10507 build_call_array_loc (location_t loc, tree return_type, tree fn,
10508 int nargs, const tree *args)
10509 {
10510 tree t;
10511 int i;
10512
10513 t = build_call_1 (return_type, fn, nargs);
10514 for (i = 0; i < nargs; i++)
10515 CALL_EXPR_ARG (t, i) = args[i];
10516 process_call_operands (t);
10517 SET_EXPR_LOCATION (t, loc);
10518 return t;
10519 }
10520
10521 /* Like build_call_array, but takes a vec. */
10522
10523 tree
10524 build_call_vec (tree return_type, tree fn, vec<tree, va_gc> *args)
10525 {
10526 tree ret, t;
10527 unsigned int ix;
10528
10529 ret = build_call_1 (return_type, fn, vec_safe_length (args));
10530 FOR_EACH_VEC_SAFE_ELT (args, ix, t)
10531 CALL_EXPR_ARG (ret, ix) = t;
10532 process_call_operands (ret);
10533 return ret;
10534 }
10535
10536 /* Conveniently construct a function call expression. FNDECL names the
10537 function to be called and N arguments are passed in the array
10538 ARGARRAY. */
10539
10540 tree
10541 build_call_expr_loc_array (location_t loc, tree fndecl, int n, tree *argarray)
10542 {
10543 tree fntype = TREE_TYPE (fndecl);
10544 tree fn = build1 (ADDR_EXPR, build_pointer_type (fntype), fndecl);
10545
10546 return fold_builtin_call_array (loc, TREE_TYPE (fntype), fn, n, argarray);
10547 }
10548
10549 /* Conveniently construct a function call expression. FNDECL names the
10550 function to be called and the arguments are passed in the vector
10551 VEC. */
10552
10553 tree
10554 build_call_expr_loc_vec (location_t loc, tree fndecl, vec<tree, va_gc> *vec)
10555 {
10556 return build_call_expr_loc_array (loc, fndecl, vec_safe_length (vec),
10557 vec_safe_address (vec));
10558 }
10559
10560
10561 /* Conveniently construct a function call expression. FNDECL names the
10562 function to be called, N is the number of arguments, and the "..."
10563 parameters are the argument expressions. */
10564
10565 tree
10566 build_call_expr_loc (location_t loc, tree fndecl, int n, ...)
10567 {
10568 va_list ap;
10569 tree *argarray = XALLOCAVEC (tree, n);
10570 int i;
10571
10572 va_start (ap, n);
10573 for (i = 0; i < n; i++)
10574 argarray[i] = va_arg (ap, tree);
10575 va_end (ap);
10576 return build_call_expr_loc_array (loc, fndecl, n, argarray);
10577 }
10578
10579 /* Like build_call_expr_loc (UNKNOWN_LOCATION, ...). Duplicated because
10580 varargs macros aren't supported by all bootstrap compilers. */
10581
10582 tree
10583 build_call_expr (tree fndecl, int n, ...)
10584 {
10585 va_list ap;
10586 tree *argarray = XALLOCAVEC (tree, n);
10587 int i;
10588
10589 va_start (ap, n);
10590 for (i = 0; i < n; i++)
10591 argarray[i] = va_arg (ap, tree);
10592 va_end (ap);
10593 return build_call_expr_loc_array (UNKNOWN_LOCATION, fndecl, n, argarray);
10594 }
10595
10596 /* Build internal call expression. This is just like CALL_EXPR, except
10597 its CALL_EXPR_FN is NULL. It will get gimplified later into ordinary
10598 internal function. */
10599
10600 tree
10601 build_call_expr_internal_loc (location_t loc, enum internal_fn ifn,
10602 tree type, int n, ...)
10603 {
10604 va_list ap;
10605 int i;
10606
10607 tree fn = build_call_1 (type, NULL_TREE, n);
10608 va_start (ap, n);
10609 for (i = 0; i < n; i++)
10610 CALL_EXPR_ARG (fn, i) = va_arg (ap, tree);
10611 va_end (ap);
10612 SET_EXPR_LOCATION (fn, loc);
10613 CALL_EXPR_IFN (fn) = ifn;
10614 return fn;
10615 }
10616
10617 /* Create a new constant string literal and return a char* pointer to it.
10618 The STRING_CST value is the LEN characters at STR. */
10619 tree
10620 build_string_literal (int len, const char *str)
10621 {
10622 tree t, elem, index, type;
10623
10624 t = build_string (len, str);
10625 elem = build_type_variant (char_type_node, 1, 0);
10626 index = build_index_type (size_int (len - 1));
10627 type = build_array_type (elem, index);
10628 TREE_TYPE (t) = type;
10629 TREE_CONSTANT (t) = 1;
10630 TREE_READONLY (t) = 1;
10631 TREE_STATIC (t) = 1;
10632
10633 type = build_pointer_type (elem);
10634 t = build1 (ADDR_EXPR, type,
10635 build4 (ARRAY_REF, elem,
10636 t, integer_zero_node, NULL_TREE, NULL_TREE));
10637 return t;
10638 }
10639
10640
10641
10642 /* Return true if T (assumed to be a DECL) must be assigned a memory
10643 location. */
10644
10645 bool
10646 needs_to_live_in_memory (const_tree t)
10647 {
10648 return (TREE_ADDRESSABLE (t)
10649 || is_global_var (t)
10650 || (TREE_CODE (t) == RESULT_DECL
10651 && !DECL_BY_REFERENCE (t)
10652 && aggregate_value_p (t, current_function_decl)));
10653 }
10654
10655 /* Return value of a constant X and sign-extend it. */
10656
10657 HOST_WIDE_INT
10658 int_cst_value (const_tree x)
10659 {
10660 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
10661 unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
10662
10663 /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
10664 gcc_assert (cst_and_fits_in_hwi (x));
10665
10666 if (bits < HOST_BITS_PER_WIDE_INT)
10667 {
10668 bool negative = ((val >> (bits - 1)) & 1) != 0;
10669 if (negative)
10670 val |= (~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1;
10671 else
10672 val &= ~((~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1);
10673 }
10674
10675 return val;
10676 }
10677
10678 /* If TYPE is an integral or pointer type, return an integer type with
10679 the same precision which is unsigned iff UNSIGNEDP is true, or itself
10680 if TYPE is already an integer type of signedness UNSIGNEDP. */
10681
10682 tree
10683 signed_or_unsigned_type_for (int unsignedp, tree type)
10684 {
10685 if (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type) == unsignedp)
10686 return type;
10687
10688 if (TREE_CODE (type) == VECTOR_TYPE)
10689 {
10690 tree inner = TREE_TYPE (type);
10691 tree inner2 = signed_or_unsigned_type_for (unsignedp, inner);
10692 if (!inner2)
10693 return NULL_TREE;
10694 if (inner == inner2)
10695 return type;
10696 return build_vector_type (inner2, TYPE_VECTOR_SUBPARTS (type));
10697 }
10698
10699 if (!INTEGRAL_TYPE_P (type)
10700 && !POINTER_TYPE_P (type)
10701 && TREE_CODE (type) != OFFSET_TYPE)
10702 return NULL_TREE;
10703
10704 return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp);
10705 }
10706
10707 /* If TYPE is an integral or pointer type, return an integer type with
10708 the same precision which is unsigned, or itself if TYPE is already an
10709 unsigned integer type. */
10710
10711 tree
10712 unsigned_type_for (tree type)
10713 {
10714 return signed_or_unsigned_type_for (1, type);
10715 }
10716
10717 /* If TYPE is an integral or pointer type, return an integer type with
10718 the same precision which is signed, or itself if TYPE is already a
10719 signed integer type. */
10720
10721 tree
10722 signed_type_for (tree type)
10723 {
10724 return signed_or_unsigned_type_for (0, type);
10725 }
10726
10727 /* If TYPE is a vector type, return a signed integer vector type with the
10728 same width and number of subparts. Otherwise return boolean_type_node. */
10729
10730 tree
10731 truth_type_for (tree type)
10732 {
10733 if (TREE_CODE (type) == VECTOR_TYPE)
10734 {
10735 tree elem = lang_hooks.types.type_for_size
10736 (GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (type))), 0);
10737 return build_opaque_vector_type (elem, TYPE_VECTOR_SUBPARTS (type));
10738 }
10739 else
10740 return boolean_type_node;
10741 }
10742
10743 /* Returns the largest value obtainable by casting something in INNER type to
10744 OUTER type. */
10745
10746 tree
10747 upper_bound_in_type (tree outer, tree inner)
10748 {
10749 unsigned int det = 0;
10750 unsigned oprec = TYPE_PRECISION (outer);
10751 unsigned iprec = TYPE_PRECISION (inner);
10752 unsigned prec;
10753
10754 /* Compute a unique number for every combination. */
10755 det |= (oprec > iprec) ? 4 : 0;
10756 det |= TYPE_UNSIGNED (outer) ? 2 : 0;
10757 det |= TYPE_UNSIGNED (inner) ? 1 : 0;
10758
10759 /* Determine the exponent to use. */
10760 switch (det)
10761 {
10762 case 0:
10763 case 1:
10764 /* oprec <= iprec, outer: signed, inner: don't care. */
10765 prec = oprec - 1;
10766 break;
10767 case 2:
10768 case 3:
10769 /* oprec <= iprec, outer: unsigned, inner: don't care. */
10770 prec = oprec;
10771 break;
10772 case 4:
10773 /* oprec > iprec, outer: signed, inner: signed. */
10774 prec = iprec - 1;
10775 break;
10776 case 5:
10777 /* oprec > iprec, outer: signed, inner: unsigned. */
10778 prec = iprec;
10779 break;
10780 case 6:
10781 /* oprec > iprec, outer: unsigned, inner: signed. */
10782 prec = oprec;
10783 break;
10784 case 7:
10785 /* oprec > iprec, outer: unsigned, inner: unsigned. */
10786 prec = iprec;
10787 break;
10788 default:
10789 gcc_unreachable ();
10790 }
10791
10792 return wide_int_to_tree (outer,
10793 wi::mask (prec, false, TYPE_PRECISION (outer)));
10794 }
10795
10796 /* Returns the smallest value obtainable by casting something in INNER type to
10797 OUTER type. */
10798
10799 tree
10800 lower_bound_in_type (tree outer, tree inner)
10801 {
10802 unsigned oprec = TYPE_PRECISION (outer);
10803 unsigned iprec = TYPE_PRECISION (inner);
10804
10805 /* If OUTER type is unsigned, we can definitely cast 0 to OUTER type
10806 and obtain 0. */
10807 if (TYPE_UNSIGNED (outer)
10808 /* If we are widening something of an unsigned type, OUTER type
10809 contains all values of INNER type. In particular, both INNER
10810 and OUTER types have zero in common. */
10811 || (oprec > iprec && TYPE_UNSIGNED (inner)))
10812 return build_int_cst (outer, 0);
10813 else
10814 {
10815 /* If we are widening a signed type to another signed type, we
10816 want to obtain -2^^(iprec-1). If we are keeping the
10817 precision or narrowing to a signed type, we want to obtain
10818 -2^(oprec-1). */
10819 unsigned prec = oprec > iprec ? iprec : oprec;
10820 return wide_int_to_tree (outer,
10821 wi::mask (prec - 1, true,
10822 TYPE_PRECISION (outer)));
10823 }
10824 }
10825
10826 /* Return nonzero if two operands that are suitable for PHI nodes are
10827 necessarily equal. Specifically, both ARG0 and ARG1 must be either
10828 SSA_NAME or invariant. Note that this is strictly an optimization.
10829 That is, callers of this function can directly call operand_equal_p
10830 and get the same result, only slower. */
10831
10832 int
10833 operand_equal_for_phi_arg_p (const_tree arg0, const_tree arg1)
10834 {
10835 if (arg0 == arg1)
10836 return 1;
10837 if (TREE_CODE (arg0) == SSA_NAME || TREE_CODE (arg1) == SSA_NAME)
10838 return 0;
10839 return operand_equal_p (arg0, arg1, 0);
10840 }
10841
10842 /* Returns number of zeros at the end of binary representation of X. */
10843
10844 tree
10845 num_ending_zeros (const_tree x)
10846 {
10847 return build_int_cst (TREE_TYPE (x), wi::ctz (x));
10848 }
10849
10850
10851 #define WALK_SUBTREE(NODE) \
10852 do \
10853 { \
10854 result = walk_tree_1 (&(NODE), func, data, pset, lh); \
10855 if (result) \
10856 return result; \
10857 } \
10858 while (0)
10859
10860 /* This is a subroutine of walk_tree that walks field of TYPE that are to
10861 be walked whenever a type is seen in the tree. Rest of operands and return
10862 value are as for walk_tree. */
10863
10864 static tree
10865 walk_type_fields (tree type, walk_tree_fn func, void *data,
10866 hash_set<tree> *pset, walk_tree_lh lh)
10867 {
10868 tree result = NULL_TREE;
10869
10870 switch (TREE_CODE (type))
10871 {
10872 case POINTER_TYPE:
10873 case REFERENCE_TYPE:
10874 case VECTOR_TYPE:
10875 /* We have to worry about mutually recursive pointers. These can't
10876 be written in C. They can in Ada. It's pathological, but
10877 there's an ACATS test (c38102a) that checks it. Deal with this
10878 by checking if we're pointing to another pointer, that one
10879 points to another pointer, that one does too, and we have no htab.
10880 If so, get a hash table. We check three levels deep to avoid
10881 the cost of the hash table if we don't need one. */
10882 if (POINTER_TYPE_P (TREE_TYPE (type))
10883 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (type)))
10884 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (TREE_TYPE (type))))
10885 && !pset)
10886 {
10887 result = walk_tree_without_duplicates (&TREE_TYPE (type),
10888 func, data);
10889 if (result)
10890 return result;
10891
10892 break;
10893 }
10894
10895 /* ... fall through ... */
10896
10897 case COMPLEX_TYPE:
10898 WALK_SUBTREE (TREE_TYPE (type));
10899 break;
10900
10901 case METHOD_TYPE:
10902 WALK_SUBTREE (TYPE_METHOD_BASETYPE (type));
10903
10904 /* Fall through. */
10905
10906 case FUNCTION_TYPE:
10907 WALK_SUBTREE (TREE_TYPE (type));
10908 {
10909 tree arg;
10910
10911 /* We never want to walk into default arguments. */
10912 for (arg = TYPE_ARG_TYPES (type); arg; arg = TREE_CHAIN (arg))
10913 WALK_SUBTREE (TREE_VALUE (arg));
10914 }
10915 break;
10916
10917 case ARRAY_TYPE:
10918 /* Don't follow this nodes's type if a pointer for fear that
10919 we'll have infinite recursion. If we have a PSET, then we
10920 need not fear. */
10921 if (pset
10922 || (!POINTER_TYPE_P (TREE_TYPE (type))
10923 && TREE_CODE (TREE_TYPE (type)) != OFFSET_TYPE))
10924 WALK_SUBTREE (TREE_TYPE (type));
10925 WALK_SUBTREE (TYPE_DOMAIN (type));
10926 break;
10927
10928 case OFFSET_TYPE:
10929 WALK_SUBTREE (TREE_TYPE (type));
10930 WALK_SUBTREE (TYPE_OFFSET_BASETYPE (type));
10931 break;
10932
10933 default:
10934 break;
10935 }
10936
10937 return NULL_TREE;
10938 }
10939
10940 /* Apply FUNC to all the sub-trees of TP in a pre-order traversal. FUNC is
10941 called with the DATA and the address of each sub-tree. If FUNC returns a
10942 non-NULL value, the traversal is stopped, and the value returned by FUNC
10943 is returned. If PSET is non-NULL it is used to record the nodes visited,
10944 and to avoid visiting a node more than once. */
10945
10946 tree
10947 walk_tree_1 (tree *tp, walk_tree_fn func, void *data,
10948 hash_set<tree> *pset, walk_tree_lh lh)
10949 {
10950 enum tree_code code;
10951 int walk_subtrees;
10952 tree result;
10953
10954 #define WALK_SUBTREE_TAIL(NODE) \
10955 do \
10956 { \
10957 tp = & (NODE); \
10958 goto tail_recurse; \
10959 } \
10960 while (0)
10961
10962 tail_recurse:
10963 /* Skip empty subtrees. */
10964 if (!*tp)
10965 return NULL_TREE;
10966
10967 /* Don't walk the same tree twice, if the user has requested
10968 that we avoid doing so. */
10969 if (pset && pset->add (*tp))
10970 return NULL_TREE;
10971
10972 /* Call the function. */
10973 walk_subtrees = 1;
10974 result = (*func) (tp, &walk_subtrees, data);
10975
10976 /* If we found something, return it. */
10977 if (result)
10978 return result;
10979
10980 code = TREE_CODE (*tp);
10981
10982 /* Even if we didn't, FUNC may have decided that there was nothing
10983 interesting below this point in the tree. */
10984 if (!walk_subtrees)
10985 {
10986 /* But we still need to check our siblings. */
10987 if (code == TREE_LIST)
10988 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
10989 else if (code == OMP_CLAUSE)
10990 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10991 else
10992 return NULL_TREE;
10993 }
10994
10995 if (lh)
10996 {
10997 result = (*lh) (tp, &walk_subtrees, func, data, pset);
10998 if (result || !walk_subtrees)
10999 return result;
11000 }
11001
11002 switch (code)
11003 {
11004 case ERROR_MARK:
11005 case IDENTIFIER_NODE:
11006 case INTEGER_CST:
11007 case REAL_CST:
11008 case FIXED_CST:
11009 case VECTOR_CST:
11010 case STRING_CST:
11011 case BLOCK:
11012 case PLACEHOLDER_EXPR:
11013 case SSA_NAME:
11014 case FIELD_DECL:
11015 case RESULT_DECL:
11016 /* None of these have subtrees other than those already walked
11017 above. */
11018 break;
11019
11020 case TREE_LIST:
11021 WALK_SUBTREE (TREE_VALUE (*tp));
11022 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
11023 break;
11024
11025 case TREE_VEC:
11026 {
11027 int len = TREE_VEC_LENGTH (*tp);
11028
11029 if (len == 0)
11030 break;
11031
11032 /* Walk all elements but the first. */
11033 while (--len)
11034 WALK_SUBTREE (TREE_VEC_ELT (*tp, len));
11035
11036 /* Now walk the first one as a tail call. */
11037 WALK_SUBTREE_TAIL (TREE_VEC_ELT (*tp, 0));
11038 }
11039
11040 case COMPLEX_CST:
11041 WALK_SUBTREE (TREE_REALPART (*tp));
11042 WALK_SUBTREE_TAIL (TREE_IMAGPART (*tp));
11043
11044 case CONSTRUCTOR:
11045 {
11046 unsigned HOST_WIDE_INT idx;
11047 constructor_elt *ce;
11048
11049 for (idx = 0; vec_safe_iterate (CONSTRUCTOR_ELTS (*tp), idx, &ce);
11050 idx++)
11051 WALK_SUBTREE (ce->value);
11052 }
11053 break;
11054
11055 case SAVE_EXPR:
11056 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, 0));
11057
11058 case BIND_EXPR:
11059 {
11060 tree decl;
11061 for (decl = BIND_EXPR_VARS (*tp); decl; decl = DECL_CHAIN (decl))
11062 {
11063 /* Walk the DECL_INITIAL and DECL_SIZE. We don't want to walk
11064 into declarations that are just mentioned, rather than
11065 declared; they don't really belong to this part of the tree.
11066 And, we can see cycles: the initializer for a declaration
11067 can refer to the declaration itself. */
11068 WALK_SUBTREE (DECL_INITIAL (decl));
11069 WALK_SUBTREE (DECL_SIZE (decl));
11070 WALK_SUBTREE (DECL_SIZE_UNIT (decl));
11071 }
11072 WALK_SUBTREE_TAIL (BIND_EXPR_BODY (*tp));
11073 }
11074
11075 case STATEMENT_LIST:
11076 {
11077 tree_stmt_iterator i;
11078 for (i = tsi_start (*tp); !tsi_end_p (i); tsi_next (&i))
11079 WALK_SUBTREE (*tsi_stmt_ptr (i));
11080 }
11081 break;
11082
11083 case OMP_CLAUSE:
11084 switch (OMP_CLAUSE_CODE (*tp))
11085 {
11086 case OMP_CLAUSE_PRIVATE:
11087 case OMP_CLAUSE_SHARED:
11088 case OMP_CLAUSE_FIRSTPRIVATE:
11089 case OMP_CLAUSE_COPYIN:
11090 case OMP_CLAUSE_COPYPRIVATE:
11091 case OMP_CLAUSE_FINAL:
11092 case OMP_CLAUSE_IF:
11093 case OMP_CLAUSE_NUM_THREADS:
11094 case OMP_CLAUSE_SCHEDULE:
11095 case OMP_CLAUSE_UNIFORM:
11096 case OMP_CLAUSE_DEPEND:
11097 case OMP_CLAUSE_NUM_TEAMS:
11098 case OMP_CLAUSE_THREAD_LIMIT:
11099 case OMP_CLAUSE_DEVICE:
11100 case OMP_CLAUSE_DIST_SCHEDULE:
11101 case OMP_CLAUSE_SAFELEN:
11102 case OMP_CLAUSE_SIMDLEN:
11103 case OMP_CLAUSE__LOOPTEMP_:
11104 case OMP_CLAUSE__SIMDUID_:
11105 case OMP_CLAUSE__CILK_FOR_COUNT_:
11106 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 0));
11107 /* FALLTHRU */
11108
11109 case OMP_CLAUSE_NOWAIT:
11110 case OMP_CLAUSE_ORDERED:
11111 case OMP_CLAUSE_DEFAULT:
11112 case OMP_CLAUSE_UNTIED:
11113 case OMP_CLAUSE_MERGEABLE:
11114 case OMP_CLAUSE_PROC_BIND:
11115 case OMP_CLAUSE_INBRANCH:
11116 case OMP_CLAUSE_NOTINBRANCH:
11117 case OMP_CLAUSE_FOR:
11118 case OMP_CLAUSE_PARALLEL:
11119 case OMP_CLAUSE_SECTIONS:
11120 case OMP_CLAUSE_TASKGROUP:
11121 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11122
11123 case OMP_CLAUSE_LASTPRIVATE:
11124 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
11125 WALK_SUBTREE (OMP_CLAUSE_LASTPRIVATE_STMT (*tp));
11126 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11127
11128 case OMP_CLAUSE_COLLAPSE:
11129 {
11130 int i;
11131 for (i = 0; i < 3; i++)
11132 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
11133 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11134 }
11135
11136 case OMP_CLAUSE_LINEAR:
11137 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
11138 WALK_SUBTREE (OMP_CLAUSE_LINEAR_STEP (*tp));
11139 WALK_SUBTREE (OMP_CLAUSE_LINEAR_STMT (*tp));
11140 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11141
11142 case OMP_CLAUSE_ALIGNED:
11143 case OMP_CLAUSE_FROM:
11144 case OMP_CLAUSE_TO:
11145 case OMP_CLAUSE_MAP:
11146 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
11147 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 1));
11148 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11149
11150 case OMP_CLAUSE_REDUCTION:
11151 {
11152 int i;
11153 for (i = 0; i < 4; i++)
11154 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
11155 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11156 }
11157
11158 default:
11159 gcc_unreachable ();
11160 }
11161 break;
11162
11163 case TARGET_EXPR:
11164 {
11165 int i, len;
11166
11167 /* TARGET_EXPRs are peculiar: operands 1 and 3 can be the same.
11168 But, we only want to walk once. */
11169 len = (TREE_OPERAND (*tp, 3) == TREE_OPERAND (*tp, 1)) ? 2 : 3;
11170 for (i = 0; i < len; ++i)
11171 WALK_SUBTREE (TREE_OPERAND (*tp, i));
11172 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len));
11173 }
11174
11175 case DECL_EXPR:
11176 /* If this is a TYPE_DECL, walk into the fields of the type that it's
11177 defining. We only want to walk into these fields of a type in this
11178 case and not in the general case of a mere reference to the type.
11179
11180 The criterion is as follows: if the field can be an expression, it
11181 must be walked only here. This should be in keeping with the fields
11182 that are directly gimplified in gimplify_type_sizes in order for the
11183 mark/copy-if-shared/unmark machinery of the gimplifier to work with
11184 variable-sized types.
11185
11186 Note that DECLs get walked as part of processing the BIND_EXPR. */
11187 if (TREE_CODE (DECL_EXPR_DECL (*tp)) == TYPE_DECL)
11188 {
11189 tree *type_p = &TREE_TYPE (DECL_EXPR_DECL (*tp));
11190 if (TREE_CODE (*type_p) == ERROR_MARK)
11191 return NULL_TREE;
11192
11193 /* Call the function for the type. See if it returns anything or
11194 doesn't want us to continue. If we are to continue, walk both
11195 the normal fields and those for the declaration case. */
11196 result = (*func) (type_p, &walk_subtrees, data);
11197 if (result || !walk_subtrees)
11198 return result;
11199
11200 /* But do not walk a pointed-to type since it may itself need to
11201 be walked in the declaration case if it isn't anonymous. */
11202 if (!POINTER_TYPE_P (*type_p))
11203 {
11204 result = walk_type_fields (*type_p, func, data, pset, lh);
11205 if (result)
11206 return result;
11207 }
11208
11209 /* If this is a record type, also walk the fields. */
11210 if (RECORD_OR_UNION_TYPE_P (*type_p))
11211 {
11212 tree field;
11213
11214 for (field = TYPE_FIELDS (*type_p); field;
11215 field = DECL_CHAIN (field))
11216 {
11217 /* We'd like to look at the type of the field, but we can
11218 easily get infinite recursion. So assume it's pointed
11219 to elsewhere in the tree. Also, ignore things that
11220 aren't fields. */
11221 if (TREE_CODE (field) != FIELD_DECL)
11222 continue;
11223
11224 WALK_SUBTREE (DECL_FIELD_OFFSET (field));
11225 WALK_SUBTREE (DECL_SIZE (field));
11226 WALK_SUBTREE (DECL_SIZE_UNIT (field));
11227 if (TREE_CODE (*type_p) == QUAL_UNION_TYPE)
11228 WALK_SUBTREE (DECL_QUALIFIER (field));
11229 }
11230 }
11231
11232 /* Same for scalar types. */
11233 else if (TREE_CODE (*type_p) == BOOLEAN_TYPE
11234 || TREE_CODE (*type_p) == ENUMERAL_TYPE
11235 || TREE_CODE (*type_p) == INTEGER_TYPE
11236 || TREE_CODE (*type_p) == FIXED_POINT_TYPE
11237 || TREE_CODE (*type_p) == REAL_TYPE)
11238 {
11239 WALK_SUBTREE (TYPE_MIN_VALUE (*type_p));
11240 WALK_SUBTREE (TYPE_MAX_VALUE (*type_p));
11241 }
11242
11243 WALK_SUBTREE (TYPE_SIZE (*type_p));
11244 WALK_SUBTREE_TAIL (TYPE_SIZE_UNIT (*type_p));
11245 }
11246 /* FALLTHRU */
11247
11248 default:
11249 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
11250 {
11251 int i, len;
11252
11253 /* Walk over all the sub-trees of this operand. */
11254 len = TREE_OPERAND_LENGTH (*tp);
11255
11256 /* Go through the subtrees. We need to do this in forward order so
11257 that the scope of a FOR_EXPR is handled properly. */
11258 if (len)
11259 {
11260 for (i = 0; i < len - 1; ++i)
11261 WALK_SUBTREE (TREE_OPERAND (*tp, i));
11262 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len - 1));
11263 }
11264 }
11265 /* If this is a type, walk the needed fields in the type. */
11266 else if (TYPE_P (*tp))
11267 return walk_type_fields (*tp, func, data, pset, lh);
11268 break;
11269 }
11270
11271 /* We didn't find what we were looking for. */
11272 return NULL_TREE;
11273
11274 #undef WALK_SUBTREE_TAIL
11275 }
11276 #undef WALK_SUBTREE
11277
11278 /* Like walk_tree, but does not walk duplicate nodes more than once. */
11279
11280 tree
11281 walk_tree_without_duplicates_1 (tree *tp, walk_tree_fn func, void *data,
11282 walk_tree_lh lh)
11283 {
11284 tree result;
11285
11286 hash_set<tree> pset;
11287 result = walk_tree_1 (tp, func, data, &pset, lh);
11288 return result;
11289 }
11290
11291
11292 tree
11293 tree_block (tree t)
11294 {
11295 const enum tree_code_class c = TREE_CODE_CLASS (TREE_CODE (t));
11296
11297 if (IS_EXPR_CODE_CLASS (c))
11298 return LOCATION_BLOCK (t->exp.locus);
11299 gcc_unreachable ();
11300 return NULL;
11301 }
11302
11303 void
11304 tree_set_block (tree t, tree b)
11305 {
11306 const enum tree_code_class c = TREE_CODE_CLASS (TREE_CODE (t));
11307
11308 if (IS_EXPR_CODE_CLASS (c))
11309 {
11310 if (b)
11311 t->exp.locus = COMBINE_LOCATION_DATA (line_table, t->exp.locus, b);
11312 else
11313 t->exp.locus = LOCATION_LOCUS (t->exp.locus);
11314 }
11315 else
11316 gcc_unreachable ();
11317 }
11318
11319 /* Create a nameless artificial label and put it in the current
11320 function context. The label has a location of LOC. Returns the
11321 newly created label. */
11322
11323 tree
11324 create_artificial_label (location_t loc)
11325 {
11326 tree lab = build_decl (loc,
11327 LABEL_DECL, NULL_TREE, void_type_node);
11328
11329 DECL_ARTIFICIAL (lab) = 1;
11330 DECL_IGNORED_P (lab) = 1;
11331 DECL_CONTEXT (lab) = current_function_decl;
11332 return lab;
11333 }
11334
11335 /* Given a tree, try to return a useful variable name that we can use
11336 to prefix a temporary that is being assigned the value of the tree.
11337 I.E. given <temp> = &A, return A. */
11338
11339 const char *
11340 get_name (tree t)
11341 {
11342 tree stripped_decl;
11343
11344 stripped_decl = t;
11345 STRIP_NOPS (stripped_decl);
11346 if (DECL_P (stripped_decl) && DECL_NAME (stripped_decl))
11347 return IDENTIFIER_POINTER (DECL_NAME (stripped_decl));
11348 else if (TREE_CODE (stripped_decl) == SSA_NAME)
11349 {
11350 tree name = SSA_NAME_IDENTIFIER (stripped_decl);
11351 if (!name)
11352 return NULL;
11353 return IDENTIFIER_POINTER (name);
11354 }
11355 else
11356 {
11357 switch (TREE_CODE (stripped_decl))
11358 {
11359 case ADDR_EXPR:
11360 return get_name (TREE_OPERAND (stripped_decl, 0));
11361 default:
11362 return NULL;
11363 }
11364 }
11365 }
11366
11367 /* Return true if TYPE has a variable argument list. */
11368
11369 bool
11370 stdarg_p (const_tree fntype)
11371 {
11372 function_args_iterator args_iter;
11373 tree n = NULL_TREE, t;
11374
11375 if (!fntype)
11376 return false;
11377
11378 FOREACH_FUNCTION_ARGS (fntype, t, args_iter)
11379 {
11380 n = t;
11381 }
11382
11383 return n != NULL_TREE && n != void_type_node;
11384 }
11385
11386 /* Return true if TYPE has a prototype. */
11387
11388 bool
11389 prototype_p (tree fntype)
11390 {
11391 tree t;
11392
11393 gcc_assert (fntype != NULL_TREE);
11394
11395 t = TYPE_ARG_TYPES (fntype);
11396 return (t != NULL_TREE);
11397 }
11398
11399 /* If BLOCK is inlined from an __attribute__((__artificial__))
11400 routine, return pointer to location from where it has been
11401 called. */
11402 location_t *
11403 block_nonartificial_location (tree block)
11404 {
11405 location_t *ret = NULL;
11406
11407 while (block && TREE_CODE (block) == BLOCK
11408 && BLOCK_ABSTRACT_ORIGIN (block))
11409 {
11410 tree ao = BLOCK_ABSTRACT_ORIGIN (block);
11411
11412 while (TREE_CODE (ao) == BLOCK
11413 && BLOCK_ABSTRACT_ORIGIN (ao)
11414 && BLOCK_ABSTRACT_ORIGIN (ao) != ao)
11415 ao = BLOCK_ABSTRACT_ORIGIN (ao);
11416
11417 if (TREE_CODE (ao) == FUNCTION_DECL)
11418 {
11419 /* If AO is an artificial inline, point RET to the
11420 call site locus at which it has been inlined and continue
11421 the loop, in case AO's caller is also an artificial
11422 inline. */
11423 if (DECL_DECLARED_INLINE_P (ao)
11424 && lookup_attribute ("artificial", DECL_ATTRIBUTES (ao)))
11425 ret = &BLOCK_SOURCE_LOCATION (block);
11426 else
11427 break;
11428 }
11429 else if (TREE_CODE (ao) != BLOCK)
11430 break;
11431
11432 block = BLOCK_SUPERCONTEXT (block);
11433 }
11434 return ret;
11435 }
11436
11437
11438 /* If EXP is inlined from an __attribute__((__artificial__))
11439 function, return the location of the original call expression. */
11440
11441 location_t
11442 tree_nonartificial_location (tree exp)
11443 {
11444 location_t *loc = block_nonartificial_location (TREE_BLOCK (exp));
11445
11446 if (loc)
11447 return *loc;
11448 else
11449 return EXPR_LOCATION (exp);
11450 }
11451
11452
11453 /* These are the hash table functions for the hash table of OPTIMIZATION_NODEq
11454 nodes. */
11455
11456 /* Return the hash code code X, an OPTIMIZATION_NODE or TARGET_OPTION code. */
11457
11458 static hashval_t
11459 cl_option_hash_hash (const void *x)
11460 {
11461 const_tree const t = (const_tree) x;
11462 const char *p;
11463 size_t i;
11464 size_t len = 0;
11465 hashval_t hash = 0;
11466
11467 if (TREE_CODE (t) == OPTIMIZATION_NODE)
11468 {
11469 p = (const char *)TREE_OPTIMIZATION (t);
11470 len = sizeof (struct cl_optimization);
11471 }
11472
11473 else if (TREE_CODE (t) == TARGET_OPTION_NODE)
11474 {
11475 p = (const char *)TREE_TARGET_OPTION (t);
11476 len = sizeof (struct cl_target_option);
11477 }
11478
11479 else
11480 gcc_unreachable ();
11481
11482 /* assume most opt flags are just 0/1, some are 2-3, and a few might be
11483 something else. */
11484 for (i = 0; i < len; i++)
11485 if (p[i])
11486 hash = (hash << 4) ^ ((i << 2) | p[i]);
11487
11488 return hash;
11489 }
11490
11491 /* Return nonzero if the value represented by *X (an OPTIMIZATION or
11492 TARGET_OPTION tree node) is the same as that given by *Y, which is the
11493 same. */
11494
11495 static int
11496 cl_option_hash_eq (const void *x, const void *y)
11497 {
11498 const_tree const xt = (const_tree) x;
11499 const_tree const yt = (const_tree) y;
11500 const char *xp;
11501 const char *yp;
11502 size_t len;
11503
11504 if (TREE_CODE (xt) != TREE_CODE (yt))
11505 return 0;
11506
11507 if (TREE_CODE (xt) == OPTIMIZATION_NODE)
11508 {
11509 xp = (const char *)TREE_OPTIMIZATION (xt);
11510 yp = (const char *)TREE_OPTIMIZATION (yt);
11511 len = sizeof (struct cl_optimization);
11512 }
11513
11514 else if (TREE_CODE (xt) == TARGET_OPTION_NODE)
11515 {
11516 xp = (const char *)TREE_TARGET_OPTION (xt);
11517 yp = (const char *)TREE_TARGET_OPTION (yt);
11518 len = sizeof (struct cl_target_option);
11519 }
11520
11521 else
11522 gcc_unreachable ();
11523
11524 return (memcmp (xp, yp, len) == 0);
11525 }
11526
11527 /* Build an OPTIMIZATION_NODE based on the options in OPTS. */
11528
11529 tree
11530 build_optimization_node (struct gcc_options *opts)
11531 {
11532 tree t;
11533 void **slot;
11534
11535 /* Use the cache of optimization nodes. */
11536
11537 cl_optimization_save (TREE_OPTIMIZATION (cl_optimization_node),
11538 opts);
11539
11540 slot = htab_find_slot (cl_option_hash_table, cl_optimization_node, INSERT);
11541 t = (tree) *slot;
11542 if (!t)
11543 {
11544 /* Insert this one into the hash table. */
11545 t = cl_optimization_node;
11546 *slot = t;
11547
11548 /* Make a new node for next time round. */
11549 cl_optimization_node = make_node (OPTIMIZATION_NODE);
11550 }
11551
11552 return t;
11553 }
11554
11555 /* Build a TARGET_OPTION_NODE based on the options in OPTS. */
11556
11557 tree
11558 build_target_option_node (struct gcc_options *opts)
11559 {
11560 tree t;
11561 void **slot;
11562
11563 /* Use the cache of optimization nodes. */
11564
11565 cl_target_option_save (TREE_TARGET_OPTION (cl_target_option_node),
11566 opts);
11567
11568 slot = htab_find_slot (cl_option_hash_table, cl_target_option_node, INSERT);
11569 t = (tree) *slot;
11570 if (!t)
11571 {
11572 /* Insert this one into the hash table. */
11573 t = cl_target_option_node;
11574 *slot = t;
11575
11576 /* Make a new node for next time round. */
11577 cl_target_option_node = make_node (TARGET_OPTION_NODE);
11578 }
11579
11580 return t;
11581 }
11582
11583 /* Reset TREE_TARGET_GLOBALS cache for TARGET_OPTION_NODE.
11584 Called through htab_traverse. */
11585
11586 static int
11587 prepare_target_option_node_for_pch (void **slot, void *)
11588 {
11589 tree node = (tree) *slot;
11590 if (TREE_CODE (node) == TARGET_OPTION_NODE)
11591 TREE_TARGET_GLOBALS (node) = NULL;
11592 return 1;
11593 }
11594
11595 /* Clear TREE_TARGET_GLOBALS of all TARGET_OPTION_NODE trees,
11596 so that they aren't saved during PCH writing. */
11597
11598 void
11599 prepare_target_option_nodes_for_pch (void)
11600 {
11601 htab_traverse (cl_option_hash_table, prepare_target_option_node_for_pch,
11602 NULL);
11603 }
11604
11605 /* Determine the "ultimate origin" of a block. The block may be an inlined
11606 instance of an inlined instance of a block which is local to an inline
11607 function, so we have to trace all of the way back through the origin chain
11608 to find out what sort of node actually served as the original seed for the
11609 given block. */
11610
11611 tree
11612 block_ultimate_origin (const_tree block)
11613 {
11614 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
11615
11616 /* BLOCK_ABSTRACT_ORIGIN can point to itself; ignore that if
11617 we're trying to output the abstract instance of this function. */
11618 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
11619 return NULL_TREE;
11620
11621 if (immediate_origin == NULL_TREE)
11622 return NULL_TREE;
11623 else
11624 {
11625 tree ret_val;
11626 tree lookahead = immediate_origin;
11627
11628 do
11629 {
11630 ret_val = lookahead;
11631 lookahead = (TREE_CODE (ret_val) == BLOCK
11632 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
11633 }
11634 while (lookahead != NULL && lookahead != ret_val);
11635
11636 /* The block's abstract origin chain may not be the *ultimate* origin of
11637 the block. It could lead to a DECL that has an abstract origin set.
11638 If so, we want that DECL's abstract origin (which is what DECL_ORIGIN
11639 will give us if it has one). Note that DECL's abstract origins are
11640 supposed to be the most distant ancestor (or so decl_ultimate_origin
11641 claims), so we don't need to loop following the DECL origins. */
11642 if (DECL_P (ret_val))
11643 return DECL_ORIGIN (ret_val);
11644
11645 return ret_val;
11646 }
11647 }
11648
11649 /* Return true iff conversion in EXP generates no instruction. Mark
11650 it inline so that we fully inline into the stripping functions even
11651 though we have two uses of this function. */
11652
11653 static inline bool
11654 tree_nop_conversion (const_tree exp)
11655 {
11656 tree outer_type, inner_type;
11657
11658 if (!CONVERT_EXPR_P (exp)
11659 && TREE_CODE (exp) != NON_LVALUE_EXPR)
11660 return false;
11661 if (TREE_OPERAND (exp, 0) == error_mark_node)
11662 return false;
11663
11664 outer_type = TREE_TYPE (exp);
11665 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
11666
11667 if (!inner_type)
11668 return false;
11669
11670 /* Use precision rather then machine mode when we can, which gives
11671 the correct answer even for submode (bit-field) types. */
11672 if ((INTEGRAL_TYPE_P (outer_type)
11673 || POINTER_TYPE_P (outer_type)
11674 || TREE_CODE (outer_type) == OFFSET_TYPE)
11675 && (INTEGRAL_TYPE_P (inner_type)
11676 || POINTER_TYPE_P (inner_type)
11677 || TREE_CODE (inner_type) == OFFSET_TYPE))
11678 return TYPE_PRECISION (outer_type) == TYPE_PRECISION (inner_type);
11679
11680 /* Otherwise fall back on comparing machine modes (e.g. for
11681 aggregate types, floats). */
11682 return TYPE_MODE (outer_type) == TYPE_MODE (inner_type);
11683 }
11684
11685 /* Return true iff conversion in EXP generates no instruction. Don't
11686 consider conversions changing the signedness. */
11687
11688 static bool
11689 tree_sign_nop_conversion (const_tree exp)
11690 {
11691 tree outer_type, inner_type;
11692
11693 if (!tree_nop_conversion (exp))
11694 return false;
11695
11696 outer_type = TREE_TYPE (exp);
11697 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
11698
11699 return (TYPE_UNSIGNED (outer_type) == TYPE_UNSIGNED (inner_type)
11700 && POINTER_TYPE_P (outer_type) == POINTER_TYPE_P (inner_type));
11701 }
11702
11703 /* Strip conversions from EXP according to tree_nop_conversion and
11704 return the resulting expression. */
11705
11706 tree
11707 tree_strip_nop_conversions (tree exp)
11708 {
11709 while (tree_nop_conversion (exp))
11710 exp = TREE_OPERAND (exp, 0);
11711 return exp;
11712 }
11713
11714 /* Strip conversions from EXP according to tree_sign_nop_conversion
11715 and return the resulting expression. */
11716
11717 tree
11718 tree_strip_sign_nop_conversions (tree exp)
11719 {
11720 while (tree_sign_nop_conversion (exp))
11721 exp = TREE_OPERAND (exp, 0);
11722 return exp;
11723 }
11724
11725 /* Avoid any floating point extensions from EXP. */
11726 tree
11727 strip_float_extensions (tree exp)
11728 {
11729 tree sub, expt, subt;
11730
11731 /* For floating point constant look up the narrowest type that can hold
11732 it properly and handle it like (type)(narrowest_type)constant.
11733 This way we can optimize for instance a=a*2.0 where "a" is float
11734 but 2.0 is double constant. */
11735 if (TREE_CODE (exp) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (TREE_TYPE (exp)))
11736 {
11737 REAL_VALUE_TYPE orig;
11738 tree type = NULL;
11739
11740 orig = TREE_REAL_CST (exp);
11741 if (TYPE_PRECISION (TREE_TYPE (exp)) > TYPE_PRECISION (float_type_node)
11742 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
11743 type = float_type_node;
11744 else if (TYPE_PRECISION (TREE_TYPE (exp))
11745 > TYPE_PRECISION (double_type_node)
11746 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
11747 type = double_type_node;
11748 if (type)
11749 return build_real (type, real_value_truncate (TYPE_MODE (type), orig));
11750 }
11751
11752 if (!CONVERT_EXPR_P (exp))
11753 return exp;
11754
11755 sub = TREE_OPERAND (exp, 0);
11756 subt = TREE_TYPE (sub);
11757 expt = TREE_TYPE (exp);
11758
11759 if (!FLOAT_TYPE_P (subt))
11760 return exp;
11761
11762 if (DECIMAL_FLOAT_TYPE_P (expt) != DECIMAL_FLOAT_TYPE_P (subt))
11763 return exp;
11764
11765 if (TYPE_PRECISION (subt) > TYPE_PRECISION (expt))
11766 return exp;
11767
11768 return strip_float_extensions (sub);
11769 }
11770
11771 /* Strip out all handled components that produce invariant
11772 offsets. */
11773
11774 const_tree
11775 strip_invariant_refs (const_tree op)
11776 {
11777 while (handled_component_p (op))
11778 {
11779 switch (TREE_CODE (op))
11780 {
11781 case ARRAY_REF:
11782 case ARRAY_RANGE_REF:
11783 if (!is_gimple_constant (TREE_OPERAND (op, 1))
11784 || TREE_OPERAND (op, 2) != NULL_TREE
11785 || TREE_OPERAND (op, 3) != NULL_TREE)
11786 return NULL;
11787 break;
11788
11789 case COMPONENT_REF:
11790 if (TREE_OPERAND (op, 2) != NULL_TREE)
11791 return NULL;
11792 break;
11793
11794 default:;
11795 }
11796 op = TREE_OPERAND (op, 0);
11797 }
11798
11799 return op;
11800 }
11801
11802 static GTY(()) tree gcc_eh_personality_decl;
11803
11804 /* Return the GCC personality function decl. */
11805
11806 tree
11807 lhd_gcc_personality (void)
11808 {
11809 if (!gcc_eh_personality_decl)
11810 gcc_eh_personality_decl = build_personality_function ("gcc");
11811 return gcc_eh_personality_decl;
11812 }
11813
11814 /* TARGET is a call target of GIMPLE call statement
11815 (obtained by gimple_call_fn). Return true if it is
11816 OBJ_TYPE_REF representing an virtual call of C++ method.
11817 (As opposed to OBJ_TYPE_REF representing objc calls
11818 through a cast where middle-end devirtualization machinery
11819 can't apply.) */
11820
11821 bool
11822 virtual_method_call_p (tree target)
11823 {
11824 if (TREE_CODE (target) != OBJ_TYPE_REF)
11825 return false;
11826 target = TREE_TYPE (target);
11827 gcc_checking_assert (TREE_CODE (target) == POINTER_TYPE);
11828 target = TREE_TYPE (target);
11829 if (TREE_CODE (target) == FUNCTION_TYPE)
11830 return false;
11831 gcc_checking_assert (TREE_CODE (target) == METHOD_TYPE);
11832 return true;
11833 }
11834
11835 /* REF is OBJ_TYPE_REF, return the class the ref corresponds to. */
11836
11837 tree
11838 obj_type_ref_class (tree ref)
11839 {
11840 gcc_checking_assert (TREE_CODE (ref) == OBJ_TYPE_REF);
11841 ref = TREE_TYPE (ref);
11842 gcc_checking_assert (TREE_CODE (ref) == POINTER_TYPE);
11843 ref = TREE_TYPE (ref);
11844 /* We look for type THIS points to. ObjC also builds
11845 OBJ_TYPE_REF with non-method calls, Their first parameter
11846 ID however also corresponds to class type. */
11847 gcc_checking_assert (TREE_CODE (ref) == METHOD_TYPE
11848 || TREE_CODE (ref) == FUNCTION_TYPE);
11849 ref = TREE_VALUE (TYPE_ARG_TYPES (ref));
11850 gcc_checking_assert (TREE_CODE (ref) == POINTER_TYPE);
11851 return TREE_TYPE (ref);
11852 }
11853
11854 /* Return true if T is in anonymous namespace. */
11855
11856 bool
11857 type_in_anonymous_namespace_p (const_tree t)
11858 {
11859 /* TREE_PUBLIC of TYPE_STUB_DECL may not be properly set for
11860 bulitin types; those have CONTEXT NULL. */
11861 if (!TYPE_CONTEXT (t))
11862 return false;
11863 return (TYPE_STUB_DECL (t) && !TREE_PUBLIC (TYPE_STUB_DECL (t)));
11864 }
11865
11866 /* Try to find a base info of BINFO that would have its field decl at offset
11867 OFFSET within the BINFO type and which is of EXPECTED_TYPE. If it can be
11868 found, return, otherwise return NULL_TREE. */
11869
11870 tree
11871 get_binfo_at_offset (tree binfo, HOST_WIDE_INT offset, tree expected_type)
11872 {
11873 tree type = BINFO_TYPE (binfo);
11874
11875 while (true)
11876 {
11877 HOST_WIDE_INT pos, size;
11878 tree fld;
11879 int i;
11880
11881 if (types_same_for_odr (type, expected_type))
11882 return binfo;
11883 if (offset < 0)
11884 return NULL_TREE;
11885
11886 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
11887 {
11888 if (TREE_CODE (fld) != FIELD_DECL)
11889 continue;
11890
11891 pos = int_bit_position (fld);
11892 size = tree_to_uhwi (DECL_SIZE (fld));
11893 if (pos <= offset && (pos + size) > offset)
11894 break;
11895 }
11896 if (!fld || TREE_CODE (TREE_TYPE (fld)) != RECORD_TYPE)
11897 return NULL_TREE;
11898
11899 if (!DECL_ARTIFICIAL (fld))
11900 {
11901 binfo = TYPE_BINFO (TREE_TYPE (fld));
11902 if (!binfo)
11903 return NULL_TREE;
11904 }
11905 /* Offset 0 indicates the primary base, whose vtable contents are
11906 represented in the binfo for the derived class. */
11907 else if (offset != 0)
11908 {
11909 tree base_binfo, binfo2 = binfo;
11910
11911 /* Find BINFO corresponding to FLD. This is bit harder
11912 by a fact that in virtual inheritance we may need to walk down
11913 the non-virtual inheritance chain. */
11914 while (true)
11915 {
11916 tree containing_binfo = NULL, found_binfo = NULL;
11917 for (i = 0; BINFO_BASE_ITERATE (binfo2, i, base_binfo); i++)
11918 if (types_same_for_odr (TREE_TYPE (base_binfo), TREE_TYPE (fld)))
11919 {
11920 found_binfo = base_binfo;
11921 break;
11922 }
11923 else
11924 if ((tree_to_shwi (BINFO_OFFSET (base_binfo))
11925 - tree_to_shwi (BINFO_OFFSET (binfo)))
11926 * BITS_PER_UNIT < pos
11927 /* Rule out types with no virtual methods or we can get confused
11928 here by zero sized bases. */
11929 && BINFO_VTABLE (TYPE_BINFO (BINFO_TYPE (base_binfo)))
11930 && (!containing_binfo
11931 || (tree_to_shwi (BINFO_OFFSET (containing_binfo))
11932 < tree_to_shwi (BINFO_OFFSET (base_binfo)))))
11933 containing_binfo = base_binfo;
11934 if (found_binfo)
11935 {
11936 binfo = found_binfo;
11937 break;
11938 }
11939 if (!containing_binfo)
11940 return NULL_TREE;
11941 binfo2 = containing_binfo;
11942 }
11943 }
11944
11945 type = TREE_TYPE (fld);
11946 offset -= pos;
11947 }
11948 }
11949
11950 /* Returns true if X is a typedef decl. */
11951
11952 bool
11953 is_typedef_decl (tree x)
11954 {
11955 return (x && TREE_CODE (x) == TYPE_DECL
11956 && DECL_ORIGINAL_TYPE (x) != NULL_TREE);
11957 }
11958
11959 /* Returns true iff TYPE is a type variant created for a typedef. */
11960
11961 bool
11962 typedef_variant_p (tree type)
11963 {
11964 return is_typedef_decl (TYPE_NAME (type));
11965 }
11966
11967 /* Warn about a use of an identifier which was marked deprecated. */
11968 void
11969 warn_deprecated_use (tree node, tree attr)
11970 {
11971 const char *msg;
11972
11973 if (node == 0 || !warn_deprecated_decl)
11974 return;
11975
11976 if (!attr)
11977 {
11978 if (DECL_P (node))
11979 attr = DECL_ATTRIBUTES (node);
11980 else if (TYPE_P (node))
11981 {
11982 tree decl = TYPE_STUB_DECL (node);
11983 if (decl)
11984 attr = lookup_attribute ("deprecated",
11985 TYPE_ATTRIBUTES (TREE_TYPE (decl)));
11986 }
11987 }
11988
11989 if (attr)
11990 attr = lookup_attribute ("deprecated", attr);
11991
11992 if (attr)
11993 msg = TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr)));
11994 else
11995 msg = NULL;
11996
11997 if (DECL_P (node))
11998 {
11999 expanded_location xloc = expand_location (DECL_SOURCE_LOCATION (node));
12000 if (msg)
12001 warning (OPT_Wdeprecated_declarations,
12002 "%qD is deprecated (declared at %r%s:%d%R): %s",
12003 node, "locus", xloc.file, xloc.line, msg);
12004 else
12005 warning (OPT_Wdeprecated_declarations,
12006 "%qD is deprecated (declared at %r%s:%d%R)",
12007 node, "locus", xloc.file, xloc.line);
12008 }
12009 else if (TYPE_P (node))
12010 {
12011 tree what = NULL_TREE;
12012 tree decl = TYPE_STUB_DECL (node);
12013
12014 if (TYPE_NAME (node))
12015 {
12016 if (TREE_CODE (TYPE_NAME (node)) == IDENTIFIER_NODE)
12017 what = TYPE_NAME (node);
12018 else if (TREE_CODE (TYPE_NAME (node)) == TYPE_DECL
12019 && DECL_NAME (TYPE_NAME (node)))
12020 what = DECL_NAME (TYPE_NAME (node));
12021 }
12022
12023 if (decl)
12024 {
12025 expanded_location xloc
12026 = expand_location (DECL_SOURCE_LOCATION (decl));
12027 if (what)
12028 {
12029 if (msg)
12030 warning (OPT_Wdeprecated_declarations,
12031 "%qE is deprecated (declared at %r%s:%d%R): %s",
12032 what, "locus", xloc.file, xloc.line, msg);
12033 else
12034 warning (OPT_Wdeprecated_declarations,
12035 "%qE is deprecated (declared at %r%s:%d%R)",
12036 what, "locus", xloc.file, xloc.line);
12037 }
12038 else
12039 {
12040 if (msg)
12041 warning (OPT_Wdeprecated_declarations,
12042 "type is deprecated (declared at %r%s:%d%R): %s",
12043 "locus", xloc.file, xloc.line, msg);
12044 else
12045 warning (OPT_Wdeprecated_declarations,
12046 "type is deprecated (declared at %r%s:%d%R)",
12047 "locus", xloc.file, xloc.line);
12048 }
12049 }
12050 else
12051 {
12052 if (what)
12053 {
12054 if (msg)
12055 warning (OPT_Wdeprecated_declarations, "%qE is deprecated: %s",
12056 what, msg);
12057 else
12058 warning (OPT_Wdeprecated_declarations, "%qE is deprecated", what);
12059 }
12060 else
12061 {
12062 if (msg)
12063 warning (OPT_Wdeprecated_declarations, "type is deprecated: %s",
12064 msg);
12065 else
12066 warning (OPT_Wdeprecated_declarations, "type is deprecated");
12067 }
12068 }
12069 }
12070 }
12071
12072 /* Return true if REF has a COMPONENT_REF with a bit-field field declaration
12073 somewhere in it. */
12074
12075 bool
12076 contains_bitfld_component_ref_p (const_tree ref)
12077 {
12078 while (handled_component_p (ref))
12079 {
12080 if (TREE_CODE (ref) == COMPONENT_REF
12081 && DECL_BIT_FIELD (TREE_OPERAND (ref, 1)))
12082 return true;
12083 ref = TREE_OPERAND (ref, 0);
12084 }
12085
12086 return false;
12087 }
12088
12089 /* Try to determine whether a TRY_CATCH expression can fall through.
12090 This is a subroutine of block_may_fallthru. */
12091
12092 static bool
12093 try_catch_may_fallthru (const_tree stmt)
12094 {
12095 tree_stmt_iterator i;
12096
12097 /* If the TRY block can fall through, the whole TRY_CATCH can
12098 fall through. */
12099 if (block_may_fallthru (TREE_OPERAND (stmt, 0)))
12100 return true;
12101
12102 i = tsi_start (TREE_OPERAND (stmt, 1));
12103 switch (TREE_CODE (tsi_stmt (i)))
12104 {
12105 case CATCH_EXPR:
12106 /* We expect to see a sequence of CATCH_EXPR trees, each with a
12107 catch expression and a body. The whole TRY_CATCH may fall
12108 through iff any of the catch bodies falls through. */
12109 for (; !tsi_end_p (i); tsi_next (&i))
12110 {
12111 if (block_may_fallthru (CATCH_BODY (tsi_stmt (i))))
12112 return true;
12113 }
12114 return false;
12115
12116 case EH_FILTER_EXPR:
12117 /* The exception filter expression only matters if there is an
12118 exception. If the exception does not match EH_FILTER_TYPES,
12119 we will execute EH_FILTER_FAILURE, and we will fall through
12120 if that falls through. If the exception does match
12121 EH_FILTER_TYPES, the stack unwinder will continue up the
12122 stack, so we will not fall through. We don't know whether we
12123 will throw an exception which matches EH_FILTER_TYPES or not,
12124 so we just ignore EH_FILTER_TYPES and assume that we might
12125 throw an exception which doesn't match. */
12126 return block_may_fallthru (EH_FILTER_FAILURE (tsi_stmt (i)));
12127
12128 default:
12129 /* This case represents statements to be executed when an
12130 exception occurs. Those statements are implicitly followed
12131 by a RESX statement to resume execution after the exception.
12132 So in this case the TRY_CATCH never falls through. */
12133 return false;
12134 }
12135 }
12136
12137 /* Try to determine if we can fall out of the bottom of BLOCK. This guess
12138 need not be 100% accurate; simply be conservative and return true if we
12139 don't know. This is used only to avoid stupidly generating extra code.
12140 If we're wrong, we'll just delete the extra code later. */
12141
12142 bool
12143 block_may_fallthru (const_tree block)
12144 {
12145 /* This CONST_CAST is okay because expr_last returns its argument
12146 unmodified and we assign it to a const_tree. */
12147 const_tree stmt = expr_last (CONST_CAST_TREE (block));
12148
12149 switch (stmt ? TREE_CODE (stmt) : ERROR_MARK)
12150 {
12151 case GOTO_EXPR:
12152 case RETURN_EXPR:
12153 /* Easy cases. If the last statement of the block implies
12154 control transfer, then we can't fall through. */
12155 return false;
12156
12157 case SWITCH_EXPR:
12158 /* If SWITCH_LABELS is set, this is lowered, and represents a
12159 branch to a selected label and hence can not fall through.
12160 Otherwise SWITCH_BODY is set, and the switch can fall
12161 through. */
12162 return SWITCH_LABELS (stmt) == NULL_TREE;
12163
12164 case COND_EXPR:
12165 if (block_may_fallthru (COND_EXPR_THEN (stmt)))
12166 return true;
12167 return block_may_fallthru (COND_EXPR_ELSE (stmt));
12168
12169 case BIND_EXPR:
12170 return block_may_fallthru (BIND_EXPR_BODY (stmt));
12171
12172 case TRY_CATCH_EXPR:
12173 return try_catch_may_fallthru (stmt);
12174
12175 case TRY_FINALLY_EXPR:
12176 /* The finally clause is always executed after the try clause,
12177 so if it does not fall through, then the try-finally will not
12178 fall through. Otherwise, if the try clause does not fall
12179 through, then when the finally clause falls through it will
12180 resume execution wherever the try clause was going. So the
12181 whole try-finally will only fall through if both the try
12182 clause and the finally clause fall through. */
12183 return (block_may_fallthru (TREE_OPERAND (stmt, 0))
12184 && block_may_fallthru (TREE_OPERAND (stmt, 1)));
12185
12186 case MODIFY_EXPR:
12187 if (TREE_CODE (TREE_OPERAND (stmt, 1)) == CALL_EXPR)
12188 stmt = TREE_OPERAND (stmt, 1);
12189 else
12190 return true;
12191 /* FALLTHRU */
12192
12193 case CALL_EXPR:
12194 /* Functions that do not return do not fall through. */
12195 return (call_expr_flags (stmt) & ECF_NORETURN) == 0;
12196
12197 case CLEANUP_POINT_EXPR:
12198 return block_may_fallthru (TREE_OPERAND (stmt, 0));
12199
12200 case TARGET_EXPR:
12201 return block_may_fallthru (TREE_OPERAND (stmt, 1));
12202
12203 case ERROR_MARK:
12204 return true;
12205
12206 default:
12207 return lang_hooks.block_may_fallthru (stmt);
12208 }
12209 }
12210
12211 /* True if we are using EH to handle cleanups. */
12212 static bool using_eh_for_cleanups_flag = false;
12213
12214 /* This routine is called from front ends to indicate eh should be used for
12215 cleanups. */
12216 void
12217 using_eh_for_cleanups (void)
12218 {
12219 using_eh_for_cleanups_flag = true;
12220 }
12221
12222 /* Query whether EH is used for cleanups. */
12223 bool
12224 using_eh_for_cleanups_p (void)
12225 {
12226 return using_eh_for_cleanups_flag;
12227 }
12228
12229 /* Wrapper for tree_code_name to ensure that tree code is valid */
12230 const char *
12231 get_tree_code_name (enum tree_code code)
12232 {
12233 const char *invalid = "<invalid tree code>";
12234
12235 if (code >= MAX_TREE_CODES)
12236 return invalid;
12237
12238 return tree_code_name[code];
12239 }
12240
12241 /* Drops the TREE_OVERFLOW flag from T. */
12242
12243 tree
12244 drop_tree_overflow (tree t)
12245 {
12246 gcc_checking_assert (TREE_OVERFLOW (t));
12247
12248 /* For tree codes with a sharing machinery re-build the result. */
12249 if (TREE_CODE (t) == INTEGER_CST)
12250 return wide_int_to_tree (TREE_TYPE (t), t);
12251
12252 /* Otherwise, as all tcc_constants are possibly shared, copy the node
12253 and drop the flag. */
12254 t = copy_node (t);
12255 TREE_OVERFLOW (t) = 0;
12256 return t;
12257 }
12258
12259 /* Given a memory reference expression T, return its base address.
12260 The base address of a memory reference expression is the main
12261 object being referenced. For instance, the base address for
12262 'array[i].fld[j]' is 'array'. You can think of this as stripping
12263 away the offset part from a memory address.
12264
12265 This function calls handled_component_p to strip away all the inner
12266 parts of the memory reference until it reaches the base object. */
12267
12268 tree
12269 get_base_address (tree t)
12270 {
12271 while (handled_component_p (t))
12272 t = TREE_OPERAND (t, 0);
12273
12274 if ((TREE_CODE (t) == MEM_REF
12275 || TREE_CODE (t) == TARGET_MEM_REF)
12276 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR)
12277 t = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
12278
12279 /* ??? Either the alias oracle or all callers need to properly deal
12280 with WITH_SIZE_EXPRs before we can look through those. */
12281 if (TREE_CODE (t) == WITH_SIZE_EXPR)
12282 return NULL_TREE;
12283
12284 return t;
12285 }
12286
12287 #include "gt-tree.h"