]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree.c
* Makefile.in (omp-low.o): Depend on $(TARGET_H).
[thirdparty/gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file contains the low level primitives for operating on tree nodes,
21 including allocation, list operations, interning of identifiers,
22 construction of data type nodes and statement nodes,
23 and construction of type conversion nodes. It also contains
24 tables index by tree code that describe how to take apart
25 nodes of that code.
26
27 It is intended to be language-independent, but occasionally
28 calls language-dependent routines defined (for C) in typecheck.c. */
29
30 #include "config.h"
31 #include "system.h"
32 #include "coretypes.h"
33 #include "tm.h"
34 #include "flags.h"
35 #include "tree.h"
36 #include "tm_p.h"
37 #include "function.h"
38 #include "obstack.h"
39 #include "toplev.h" /* get_random_seed */
40 #include "ggc.h"
41 #include "hashtab.h"
42 #include "filenames.h"
43 #include "output.h"
44 #include "target.h"
45 #include "common/common-target.h"
46 #include "langhooks.h"
47 #include "tree-inline.h"
48 #include "tree-iterator.h"
49 #include "basic-block.h"
50 #include "tree-flow.h"
51 #include "params.h"
52 #include "pointer-set.h"
53 #include "tree-pass.h"
54 #include "langhooks-def.h"
55 #include "diagnostic.h"
56 #include "tree-diagnostic.h"
57 #include "tree-pretty-print.h"
58 #include "cgraph.h"
59 #include "except.h"
60 #include "debug.h"
61 #include "intl.h"
62
63 /* Tree code classes. */
64
65 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
66 #define END_OF_BASE_TREE_CODES tcc_exceptional,
67
68 const enum tree_code_class tree_code_type[] = {
69 #include "all-tree.def"
70 };
71
72 #undef DEFTREECODE
73 #undef END_OF_BASE_TREE_CODES
74
75 /* Table indexed by tree code giving number of expression
76 operands beyond the fixed part of the node structure.
77 Not used for types or decls. */
78
79 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
80 #define END_OF_BASE_TREE_CODES 0,
81
82 const unsigned char tree_code_length[] = {
83 #include "all-tree.def"
84 };
85
86 #undef DEFTREECODE
87 #undef END_OF_BASE_TREE_CODES
88
89 /* Names of tree components.
90 Used for printing out the tree and error messages. */
91 #define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
92 #define END_OF_BASE_TREE_CODES "@dummy",
93
94 const char *const tree_code_name[] = {
95 #include "all-tree.def"
96 };
97
98 #undef DEFTREECODE
99 #undef END_OF_BASE_TREE_CODES
100
101 /* Each tree code class has an associated string representation.
102 These must correspond to the tree_code_class entries. */
103
104 const char *const tree_code_class_strings[] =
105 {
106 "exceptional",
107 "constant",
108 "type",
109 "declaration",
110 "reference",
111 "comparison",
112 "unary",
113 "binary",
114 "statement",
115 "vl_exp",
116 "expression"
117 };
118
119 /* obstack.[ch] explicitly declined to prototype this. */
120 extern int _obstack_allocated_p (struct obstack *h, void *obj);
121
122 /* Statistics-gathering stuff. */
123
124 static int tree_code_counts[MAX_TREE_CODES];
125 int tree_node_counts[(int) all_kinds];
126 int tree_node_sizes[(int) all_kinds];
127
128 /* Keep in sync with tree.h:enum tree_node_kind. */
129 static const char * const tree_node_kind_names[] = {
130 "decls",
131 "types",
132 "blocks",
133 "stmts",
134 "refs",
135 "exprs",
136 "constants",
137 "identifiers",
138 "vecs",
139 "binfos",
140 "ssa names",
141 "constructors",
142 "random kinds",
143 "lang_decl kinds",
144 "lang_type kinds",
145 "omp clauses",
146 };
147
148 /* Unique id for next decl created. */
149 static GTY(()) int next_decl_uid;
150 /* Unique id for next type created. */
151 static GTY(()) int next_type_uid = 1;
152 /* Unique id for next debug decl created. Use negative numbers,
153 to catch erroneous uses. */
154 static GTY(()) int next_debug_decl_uid;
155
156 /* Since we cannot rehash a type after it is in the table, we have to
157 keep the hash code. */
158
159 struct GTY(()) type_hash {
160 unsigned long hash;
161 tree type;
162 };
163
164 /* Initial size of the hash table (rounded to next prime). */
165 #define TYPE_HASH_INITIAL_SIZE 1000
166
167 /* Now here is the hash table. When recording a type, it is added to
168 the slot whose index is the hash code. Note that the hash table is
169 used for several kinds of types (function types, array types and
170 array index range types, for now). While all these live in the
171 same table, they are completely independent, and the hash code is
172 computed differently for each of these. */
173
174 static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash)))
175 htab_t type_hash_table;
176
177 /* Hash table and temporary node for larger integer const values. */
178 static GTY (()) tree int_cst_node;
179 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
180 htab_t int_cst_hash_table;
181
182 /* Hash table for optimization flags and target option flags. Use the same
183 hash table for both sets of options. Nodes for building the current
184 optimization and target option nodes. The assumption is most of the time
185 the options created will already be in the hash table, so we avoid
186 allocating and freeing up a node repeatably. */
187 static GTY (()) tree cl_optimization_node;
188 static GTY (()) tree cl_target_option_node;
189 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
190 htab_t cl_option_hash_table;
191
192 /* General tree->tree mapping structure for use in hash tables. */
193
194
195 static GTY ((if_marked ("tree_decl_map_marked_p"), param_is (struct tree_decl_map)))
196 htab_t debug_expr_for_decl;
197
198 static GTY ((if_marked ("tree_decl_map_marked_p"), param_is (struct tree_decl_map)))
199 htab_t value_expr_for_decl;
200
201 static GTY ((if_marked ("tree_vec_map_marked_p"), param_is (struct tree_vec_map)))
202 htab_t debug_args_for_decl;
203
204 static GTY ((if_marked ("tree_priority_map_marked_p"),
205 param_is (struct tree_priority_map)))
206 htab_t init_priority_for_decl;
207
208 static void set_type_quals (tree, int);
209 static int type_hash_eq (const void *, const void *);
210 static hashval_t type_hash_hash (const void *);
211 static hashval_t int_cst_hash_hash (const void *);
212 static int int_cst_hash_eq (const void *, const void *);
213 static hashval_t cl_option_hash_hash (const void *);
214 static int cl_option_hash_eq (const void *, const void *);
215 static void print_type_hash_statistics (void);
216 static void print_debug_expr_statistics (void);
217 static void print_value_expr_statistics (void);
218 static int type_hash_marked_p (const void *);
219 static unsigned int type_hash_list (const_tree, hashval_t);
220 static unsigned int attribute_hash_list (const_tree, hashval_t);
221 static bool decls_same_for_odr (tree decl1, tree decl2);
222
223 tree global_trees[TI_MAX];
224 tree integer_types[itk_none];
225
226 unsigned char tree_contains_struct[MAX_TREE_CODES][64];
227
228 /* Number of operands for each OpenMP clause. */
229 unsigned const char omp_clause_num_ops[] =
230 {
231 0, /* OMP_CLAUSE_ERROR */
232 1, /* OMP_CLAUSE_PRIVATE */
233 1, /* OMP_CLAUSE_SHARED */
234 1, /* OMP_CLAUSE_FIRSTPRIVATE */
235 2, /* OMP_CLAUSE_LASTPRIVATE */
236 4, /* OMP_CLAUSE_REDUCTION */
237 1, /* OMP_CLAUSE_COPYIN */
238 1, /* OMP_CLAUSE_COPYPRIVATE */
239 2, /* OMP_CLAUSE_LINEAR */
240 1, /* OMP_CLAUSE_UNIFORM */
241 1, /* OMP_CLAUSE_IF */
242 1, /* OMP_CLAUSE_NUM_THREADS */
243 1, /* OMP_CLAUSE_SCHEDULE */
244 0, /* OMP_CLAUSE_NOWAIT */
245 0, /* OMP_CLAUSE_ORDERED */
246 0, /* OMP_CLAUSE_DEFAULT */
247 3, /* OMP_CLAUSE_COLLAPSE */
248 0, /* OMP_CLAUSE_UNTIED */
249 1, /* OMP_CLAUSE_FINAL */
250 0, /* OMP_CLAUSE_MERGEABLE */
251 1, /* OMP_CLAUSE_SAFELEN */
252 1, /* OMP_CLAUSE__SIMDUID_ */
253 };
254
255 const char * const omp_clause_code_name[] =
256 {
257 "error_clause",
258 "private",
259 "shared",
260 "firstprivate",
261 "lastprivate",
262 "reduction",
263 "copyin",
264 "copyprivate",
265 "linear",
266 "uniform",
267 "if",
268 "num_threads",
269 "schedule",
270 "nowait",
271 "ordered",
272 "default",
273 "collapse",
274 "untied",
275 "final",
276 "mergeable",
277 "safelen",
278 "_simduid_"
279 };
280
281
282 /* Return the tree node structure used by tree code CODE. */
283
284 static inline enum tree_node_structure_enum
285 tree_node_structure_for_code (enum tree_code code)
286 {
287 switch (TREE_CODE_CLASS (code))
288 {
289 case tcc_declaration:
290 {
291 switch (code)
292 {
293 case FIELD_DECL:
294 return TS_FIELD_DECL;
295 case PARM_DECL:
296 return TS_PARM_DECL;
297 case VAR_DECL:
298 return TS_VAR_DECL;
299 case LABEL_DECL:
300 return TS_LABEL_DECL;
301 case RESULT_DECL:
302 return TS_RESULT_DECL;
303 case DEBUG_EXPR_DECL:
304 return TS_DECL_WRTL;
305 case CONST_DECL:
306 return TS_CONST_DECL;
307 case TYPE_DECL:
308 return TS_TYPE_DECL;
309 case FUNCTION_DECL:
310 return TS_FUNCTION_DECL;
311 case TRANSLATION_UNIT_DECL:
312 return TS_TRANSLATION_UNIT_DECL;
313 default:
314 return TS_DECL_NON_COMMON;
315 }
316 }
317 case tcc_type:
318 return TS_TYPE_NON_COMMON;
319 case tcc_reference:
320 case tcc_comparison:
321 case tcc_unary:
322 case tcc_binary:
323 case tcc_expression:
324 case tcc_statement:
325 case tcc_vl_exp:
326 return TS_EXP;
327 default: /* tcc_constant and tcc_exceptional */
328 break;
329 }
330 switch (code)
331 {
332 /* tcc_constant cases. */
333 case INTEGER_CST: return TS_INT_CST;
334 case REAL_CST: return TS_REAL_CST;
335 case FIXED_CST: return TS_FIXED_CST;
336 case COMPLEX_CST: return TS_COMPLEX;
337 case VECTOR_CST: return TS_VECTOR;
338 case STRING_CST: return TS_STRING;
339 /* tcc_exceptional cases. */
340 case ERROR_MARK: return TS_COMMON;
341 case IDENTIFIER_NODE: return TS_IDENTIFIER;
342 case TREE_LIST: return TS_LIST;
343 case TREE_VEC: return TS_VEC;
344 case SSA_NAME: return TS_SSA_NAME;
345 case PLACEHOLDER_EXPR: return TS_COMMON;
346 case STATEMENT_LIST: return TS_STATEMENT_LIST;
347 case BLOCK: return TS_BLOCK;
348 case CONSTRUCTOR: return TS_CONSTRUCTOR;
349 case TREE_BINFO: return TS_BINFO;
350 case OMP_CLAUSE: return TS_OMP_CLAUSE;
351 case OPTIMIZATION_NODE: return TS_OPTIMIZATION;
352 case TARGET_OPTION_NODE: return TS_TARGET_OPTION;
353
354 default:
355 gcc_unreachable ();
356 }
357 }
358
359
360 /* Initialize tree_contains_struct to describe the hierarchy of tree
361 nodes. */
362
363 static void
364 initialize_tree_contains_struct (void)
365 {
366 unsigned i;
367
368 for (i = ERROR_MARK; i < LAST_AND_UNUSED_TREE_CODE; i++)
369 {
370 enum tree_code code;
371 enum tree_node_structure_enum ts_code;
372
373 code = (enum tree_code) i;
374 ts_code = tree_node_structure_for_code (code);
375
376 /* Mark the TS structure itself. */
377 tree_contains_struct[code][ts_code] = 1;
378
379 /* Mark all the structures that TS is derived from. */
380 switch (ts_code)
381 {
382 case TS_TYPED:
383 case TS_BLOCK:
384 MARK_TS_BASE (code);
385 break;
386
387 case TS_COMMON:
388 case TS_INT_CST:
389 case TS_REAL_CST:
390 case TS_FIXED_CST:
391 case TS_VECTOR:
392 case TS_STRING:
393 case TS_COMPLEX:
394 case TS_SSA_NAME:
395 case TS_CONSTRUCTOR:
396 case TS_EXP:
397 case TS_STATEMENT_LIST:
398 MARK_TS_TYPED (code);
399 break;
400
401 case TS_IDENTIFIER:
402 case TS_DECL_MINIMAL:
403 case TS_TYPE_COMMON:
404 case TS_LIST:
405 case TS_VEC:
406 case TS_BINFO:
407 case TS_OMP_CLAUSE:
408 case TS_OPTIMIZATION:
409 case TS_TARGET_OPTION:
410 MARK_TS_COMMON (code);
411 break;
412
413 case TS_TYPE_WITH_LANG_SPECIFIC:
414 MARK_TS_TYPE_COMMON (code);
415 break;
416
417 case TS_TYPE_NON_COMMON:
418 MARK_TS_TYPE_WITH_LANG_SPECIFIC (code);
419 break;
420
421 case TS_DECL_COMMON:
422 MARK_TS_DECL_MINIMAL (code);
423 break;
424
425 case TS_DECL_WRTL:
426 case TS_CONST_DECL:
427 MARK_TS_DECL_COMMON (code);
428 break;
429
430 case TS_DECL_NON_COMMON:
431 MARK_TS_DECL_WITH_VIS (code);
432 break;
433
434 case TS_DECL_WITH_VIS:
435 case TS_PARM_DECL:
436 case TS_LABEL_DECL:
437 case TS_RESULT_DECL:
438 MARK_TS_DECL_WRTL (code);
439 break;
440
441 case TS_FIELD_DECL:
442 MARK_TS_DECL_COMMON (code);
443 break;
444
445 case TS_VAR_DECL:
446 MARK_TS_DECL_WITH_VIS (code);
447 break;
448
449 case TS_TYPE_DECL:
450 case TS_FUNCTION_DECL:
451 MARK_TS_DECL_NON_COMMON (code);
452 break;
453
454 case TS_TRANSLATION_UNIT_DECL:
455 MARK_TS_DECL_COMMON (code);
456 break;
457
458 default:
459 gcc_unreachable ();
460 }
461 }
462
463 /* Basic consistency checks for attributes used in fold. */
464 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_NON_COMMON]);
465 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_NON_COMMON]);
466 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_COMMON]);
467 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_COMMON]);
468 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_COMMON]);
469 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_COMMON]);
470 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_COMMON]);
471 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_COMMON]);
472 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_COMMON]);
473 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_COMMON]);
474 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_COMMON]);
475 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WRTL]);
476 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_WRTL]);
477 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_WRTL]);
478 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WRTL]);
479 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_WRTL]);
480 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_MINIMAL]);
481 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_MINIMAL]);
482 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_MINIMAL]);
483 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_MINIMAL]);
484 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_MINIMAL]);
485 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_MINIMAL]);
486 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_MINIMAL]);
487 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_MINIMAL]);
488 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_MINIMAL]);
489 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WITH_VIS]);
490 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WITH_VIS]);
491 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_WITH_VIS]);
492 gcc_assert (tree_contains_struct[VAR_DECL][TS_VAR_DECL]);
493 gcc_assert (tree_contains_struct[FIELD_DECL][TS_FIELD_DECL]);
494 gcc_assert (tree_contains_struct[PARM_DECL][TS_PARM_DECL]);
495 gcc_assert (tree_contains_struct[LABEL_DECL][TS_LABEL_DECL]);
496 gcc_assert (tree_contains_struct[RESULT_DECL][TS_RESULT_DECL]);
497 gcc_assert (tree_contains_struct[CONST_DECL][TS_CONST_DECL]);
498 gcc_assert (tree_contains_struct[TYPE_DECL][TS_TYPE_DECL]);
499 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_FUNCTION_DECL]);
500 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_MINIMAL]);
501 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_COMMON]);
502 }
503
504
505 /* Init tree.c. */
506
507 void
508 init_ttree (void)
509 {
510 /* Initialize the hash table of types. */
511 type_hash_table = htab_create_ggc (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
512 type_hash_eq, 0);
513
514 debug_expr_for_decl = htab_create_ggc (512, tree_decl_map_hash,
515 tree_decl_map_eq, 0);
516
517 value_expr_for_decl = htab_create_ggc (512, tree_decl_map_hash,
518 tree_decl_map_eq, 0);
519 init_priority_for_decl = htab_create_ggc (512, tree_priority_map_hash,
520 tree_priority_map_eq, 0);
521
522 int_cst_hash_table = htab_create_ggc (1024, int_cst_hash_hash,
523 int_cst_hash_eq, NULL);
524
525 int_cst_node = make_node (INTEGER_CST);
526
527 cl_option_hash_table = htab_create_ggc (64, cl_option_hash_hash,
528 cl_option_hash_eq, NULL);
529
530 cl_optimization_node = make_node (OPTIMIZATION_NODE);
531 cl_target_option_node = make_node (TARGET_OPTION_NODE);
532
533 /* Initialize the tree_contains_struct array. */
534 initialize_tree_contains_struct ();
535 lang_hooks.init_ts ();
536 }
537
538 \f
539 /* The name of the object as the assembler will see it (but before any
540 translations made by ASM_OUTPUT_LABELREF). Often this is the same
541 as DECL_NAME. It is an IDENTIFIER_NODE. */
542 tree
543 decl_assembler_name (tree decl)
544 {
545 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
546 lang_hooks.set_decl_assembler_name (decl);
547 return DECL_WITH_VIS_CHECK (decl)->decl_with_vis.assembler_name;
548 }
549
550 /* Compare ASMNAME with the DECL_ASSEMBLER_NAME of DECL. */
551
552 bool
553 decl_assembler_name_equal (tree decl, const_tree asmname)
554 {
555 tree decl_asmname = DECL_ASSEMBLER_NAME (decl);
556 const char *decl_str;
557 const char *asmname_str;
558 bool test = false;
559
560 if (decl_asmname == asmname)
561 return true;
562
563 decl_str = IDENTIFIER_POINTER (decl_asmname);
564 asmname_str = IDENTIFIER_POINTER (asmname);
565
566
567 /* If the target assembler name was set by the user, things are trickier.
568 We have a leading '*' to begin with. After that, it's arguable what
569 is the correct thing to do with -fleading-underscore. Arguably, we've
570 historically been doing the wrong thing in assemble_alias by always
571 printing the leading underscore. Since we're not changing that, make
572 sure user_label_prefix follows the '*' before matching. */
573 if (decl_str[0] == '*')
574 {
575 size_t ulp_len = strlen (user_label_prefix);
576
577 decl_str ++;
578
579 if (ulp_len == 0)
580 test = true;
581 else if (strncmp (decl_str, user_label_prefix, ulp_len) == 0)
582 decl_str += ulp_len, test=true;
583 else
584 decl_str --;
585 }
586 if (asmname_str[0] == '*')
587 {
588 size_t ulp_len = strlen (user_label_prefix);
589
590 asmname_str ++;
591
592 if (ulp_len == 0)
593 test = true;
594 else if (strncmp (asmname_str, user_label_prefix, ulp_len) == 0)
595 asmname_str += ulp_len, test=true;
596 else
597 asmname_str --;
598 }
599
600 if (!test)
601 return false;
602 return strcmp (decl_str, asmname_str) == 0;
603 }
604
605 /* Hash asmnames ignoring the user specified marks. */
606
607 hashval_t
608 decl_assembler_name_hash (const_tree asmname)
609 {
610 if (IDENTIFIER_POINTER (asmname)[0] == '*')
611 {
612 const char *decl_str = IDENTIFIER_POINTER (asmname) + 1;
613 size_t ulp_len = strlen (user_label_prefix);
614
615 if (ulp_len == 0)
616 ;
617 else if (strncmp (decl_str, user_label_prefix, ulp_len) == 0)
618 decl_str += ulp_len;
619
620 return htab_hash_string (decl_str);
621 }
622
623 return htab_hash_string (IDENTIFIER_POINTER (asmname));
624 }
625
626 /* Compute the number of bytes occupied by a tree with code CODE.
627 This function cannot be used for nodes that have variable sizes,
628 including TREE_VEC, STRING_CST, and CALL_EXPR. */
629 size_t
630 tree_code_size (enum tree_code code)
631 {
632 switch (TREE_CODE_CLASS (code))
633 {
634 case tcc_declaration: /* A decl node */
635 {
636 switch (code)
637 {
638 case FIELD_DECL:
639 return sizeof (struct tree_field_decl);
640 case PARM_DECL:
641 return sizeof (struct tree_parm_decl);
642 case VAR_DECL:
643 return sizeof (struct tree_var_decl);
644 case LABEL_DECL:
645 return sizeof (struct tree_label_decl);
646 case RESULT_DECL:
647 return sizeof (struct tree_result_decl);
648 case CONST_DECL:
649 return sizeof (struct tree_const_decl);
650 case TYPE_DECL:
651 return sizeof (struct tree_type_decl);
652 case FUNCTION_DECL:
653 return sizeof (struct tree_function_decl);
654 case DEBUG_EXPR_DECL:
655 return sizeof (struct tree_decl_with_rtl);
656 default:
657 return sizeof (struct tree_decl_non_common);
658 }
659 }
660
661 case tcc_type: /* a type node */
662 return sizeof (struct tree_type_non_common);
663
664 case tcc_reference: /* a reference */
665 case tcc_expression: /* an expression */
666 case tcc_statement: /* an expression with side effects */
667 case tcc_comparison: /* a comparison expression */
668 case tcc_unary: /* a unary arithmetic expression */
669 case tcc_binary: /* a binary arithmetic expression */
670 return (sizeof (struct tree_exp)
671 + (TREE_CODE_LENGTH (code) - 1) * sizeof (tree));
672
673 case tcc_constant: /* a constant */
674 switch (code)
675 {
676 case INTEGER_CST: return sizeof (struct tree_int_cst);
677 case REAL_CST: return sizeof (struct tree_real_cst);
678 case FIXED_CST: return sizeof (struct tree_fixed_cst);
679 case COMPLEX_CST: return sizeof (struct tree_complex);
680 case VECTOR_CST: return sizeof (struct tree_vector);
681 case STRING_CST: gcc_unreachable ();
682 default:
683 return lang_hooks.tree_size (code);
684 }
685
686 case tcc_exceptional: /* something random, like an identifier. */
687 switch (code)
688 {
689 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
690 case TREE_LIST: return sizeof (struct tree_list);
691
692 case ERROR_MARK:
693 case PLACEHOLDER_EXPR: return sizeof (struct tree_common);
694
695 case TREE_VEC:
696 case OMP_CLAUSE: gcc_unreachable ();
697
698 case SSA_NAME: return sizeof (struct tree_ssa_name);
699
700 case STATEMENT_LIST: return sizeof (struct tree_statement_list);
701 case BLOCK: return sizeof (struct tree_block);
702 case CONSTRUCTOR: return sizeof (struct tree_constructor);
703 case OPTIMIZATION_NODE: return sizeof (struct tree_optimization_option);
704 case TARGET_OPTION_NODE: return sizeof (struct tree_target_option);
705
706 default:
707 return lang_hooks.tree_size (code);
708 }
709
710 default:
711 gcc_unreachable ();
712 }
713 }
714
715 /* Compute the number of bytes occupied by NODE. This routine only
716 looks at TREE_CODE, except for those nodes that have variable sizes. */
717 size_t
718 tree_size (const_tree node)
719 {
720 const enum tree_code code = TREE_CODE (node);
721 switch (code)
722 {
723 case TREE_BINFO:
724 return (offsetof (struct tree_binfo, base_binfos)
725 + vec<tree, va_gc>
726 ::embedded_size (BINFO_N_BASE_BINFOS (node)));
727
728 case TREE_VEC:
729 return (sizeof (struct tree_vec)
730 + (TREE_VEC_LENGTH (node) - 1) * sizeof (tree));
731
732 case VECTOR_CST:
733 return (sizeof (struct tree_vector)
734 + (TYPE_VECTOR_SUBPARTS (TREE_TYPE (node)) - 1) * sizeof (tree));
735
736 case STRING_CST:
737 return TREE_STRING_LENGTH (node) + offsetof (struct tree_string, str) + 1;
738
739 case OMP_CLAUSE:
740 return (sizeof (struct tree_omp_clause)
741 + (omp_clause_num_ops[OMP_CLAUSE_CODE (node)] - 1)
742 * sizeof (tree));
743
744 default:
745 if (TREE_CODE_CLASS (code) == tcc_vl_exp)
746 return (sizeof (struct tree_exp)
747 + (VL_EXP_OPERAND_LENGTH (node) - 1) * sizeof (tree));
748 else
749 return tree_code_size (code);
750 }
751 }
752
753 /* Record interesting allocation statistics for a tree node with CODE
754 and LENGTH. */
755
756 static void
757 record_node_allocation_statistics (enum tree_code code ATTRIBUTE_UNUSED,
758 size_t length ATTRIBUTE_UNUSED)
759 {
760 enum tree_code_class type = TREE_CODE_CLASS (code);
761 tree_node_kind kind;
762
763 if (!GATHER_STATISTICS)
764 return;
765
766 switch (type)
767 {
768 case tcc_declaration: /* A decl node */
769 kind = d_kind;
770 break;
771
772 case tcc_type: /* a type node */
773 kind = t_kind;
774 break;
775
776 case tcc_statement: /* an expression with side effects */
777 kind = s_kind;
778 break;
779
780 case tcc_reference: /* a reference */
781 kind = r_kind;
782 break;
783
784 case tcc_expression: /* an expression */
785 case tcc_comparison: /* a comparison expression */
786 case tcc_unary: /* a unary arithmetic expression */
787 case tcc_binary: /* a binary arithmetic expression */
788 kind = e_kind;
789 break;
790
791 case tcc_constant: /* a constant */
792 kind = c_kind;
793 break;
794
795 case tcc_exceptional: /* something random, like an identifier. */
796 switch (code)
797 {
798 case IDENTIFIER_NODE:
799 kind = id_kind;
800 break;
801
802 case TREE_VEC:
803 kind = vec_kind;
804 break;
805
806 case TREE_BINFO:
807 kind = binfo_kind;
808 break;
809
810 case SSA_NAME:
811 kind = ssa_name_kind;
812 break;
813
814 case BLOCK:
815 kind = b_kind;
816 break;
817
818 case CONSTRUCTOR:
819 kind = constr_kind;
820 break;
821
822 case OMP_CLAUSE:
823 kind = omp_clause_kind;
824 break;
825
826 default:
827 kind = x_kind;
828 break;
829 }
830 break;
831
832 case tcc_vl_exp:
833 kind = e_kind;
834 break;
835
836 default:
837 gcc_unreachable ();
838 }
839
840 tree_code_counts[(int) code]++;
841 tree_node_counts[(int) kind]++;
842 tree_node_sizes[(int) kind] += length;
843 }
844
845 /* Allocate and return a new UID from the DECL_UID namespace. */
846
847 int
848 allocate_decl_uid (void)
849 {
850 return next_decl_uid++;
851 }
852
853 /* Return a newly allocated node of code CODE. For decl and type
854 nodes, some other fields are initialized. The rest of the node is
855 initialized to zero. This function cannot be used for TREE_VEC or
856 OMP_CLAUSE nodes, which is enforced by asserts in tree_code_size.
857
858 Achoo! I got a code in the node. */
859
860 tree
861 make_node_stat (enum tree_code code MEM_STAT_DECL)
862 {
863 tree t;
864 enum tree_code_class type = TREE_CODE_CLASS (code);
865 size_t length = tree_code_size (code);
866
867 record_node_allocation_statistics (code, length);
868
869 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
870 TREE_SET_CODE (t, code);
871
872 switch (type)
873 {
874 case tcc_statement:
875 TREE_SIDE_EFFECTS (t) = 1;
876 break;
877
878 case tcc_declaration:
879 if (CODE_CONTAINS_STRUCT (code, TS_DECL_COMMON))
880 {
881 if (code == FUNCTION_DECL)
882 {
883 DECL_ALIGN (t) = FUNCTION_BOUNDARY;
884 DECL_MODE (t) = FUNCTION_MODE;
885 }
886 else
887 DECL_ALIGN (t) = 1;
888 }
889 DECL_SOURCE_LOCATION (t) = input_location;
890 if (TREE_CODE (t) == DEBUG_EXPR_DECL)
891 DECL_UID (t) = --next_debug_decl_uid;
892 else
893 {
894 DECL_UID (t) = allocate_decl_uid ();
895 SET_DECL_PT_UID (t, -1);
896 }
897 if (TREE_CODE (t) == LABEL_DECL)
898 LABEL_DECL_UID (t) = -1;
899
900 break;
901
902 case tcc_type:
903 TYPE_UID (t) = next_type_uid++;
904 TYPE_ALIGN (t) = BITS_PER_UNIT;
905 TYPE_USER_ALIGN (t) = 0;
906 TYPE_MAIN_VARIANT (t) = t;
907 TYPE_CANONICAL (t) = t;
908
909 /* Default to no attributes for type, but let target change that. */
910 TYPE_ATTRIBUTES (t) = NULL_TREE;
911 targetm.set_default_type_attributes (t);
912
913 /* We have not yet computed the alias set for this type. */
914 TYPE_ALIAS_SET (t) = -1;
915 break;
916
917 case tcc_constant:
918 TREE_CONSTANT (t) = 1;
919 break;
920
921 case tcc_expression:
922 switch (code)
923 {
924 case INIT_EXPR:
925 case MODIFY_EXPR:
926 case VA_ARG_EXPR:
927 case PREDECREMENT_EXPR:
928 case PREINCREMENT_EXPR:
929 case POSTDECREMENT_EXPR:
930 case POSTINCREMENT_EXPR:
931 /* All of these have side-effects, no matter what their
932 operands are. */
933 TREE_SIDE_EFFECTS (t) = 1;
934 break;
935
936 default:
937 break;
938 }
939 break;
940
941 default:
942 /* Other classes need no special treatment. */
943 break;
944 }
945
946 return t;
947 }
948 \f
949 /* Return a new node with the same contents as NODE except that its
950 TREE_CHAIN, if it has one, is zero and it has a fresh uid. */
951
952 tree
953 copy_node_stat (tree node MEM_STAT_DECL)
954 {
955 tree t;
956 enum tree_code code = TREE_CODE (node);
957 size_t length;
958
959 gcc_assert (code != STATEMENT_LIST);
960
961 length = tree_size (node);
962 record_node_allocation_statistics (code, length);
963 t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
964 memcpy (t, node, length);
965
966 if (CODE_CONTAINS_STRUCT (code, TS_COMMON))
967 TREE_CHAIN (t) = 0;
968 TREE_ASM_WRITTEN (t) = 0;
969 TREE_VISITED (t) = 0;
970
971 if (TREE_CODE_CLASS (code) == tcc_declaration)
972 {
973 if (code == DEBUG_EXPR_DECL)
974 DECL_UID (t) = --next_debug_decl_uid;
975 else
976 {
977 DECL_UID (t) = allocate_decl_uid ();
978 if (DECL_PT_UID_SET_P (node))
979 SET_DECL_PT_UID (t, DECL_PT_UID (node));
980 }
981 if ((TREE_CODE (node) == PARM_DECL || TREE_CODE (node) == VAR_DECL)
982 && DECL_HAS_VALUE_EXPR_P (node))
983 {
984 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (node));
985 DECL_HAS_VALUE_EXPR_P (t) = 1;
986 }
987 /* DECL_DEBUG_EXPR is copied explicitely by callers. */
988 if (TREE_CODE (node) == VAR_DECL)
989 DECL_HAS_DEBUG_EXPR_P (t) = 0;
990 if (TREE_CODE (node) == VAR_DECL && DECL_HAS_INIT_PRIORITY_P (node))
991 {
992 SET_DECL_INIT_PRIORITY (t, DECL_INIT_PRIORITY (node));
993 DECL_HAS_INIT_PRIORITY_P (t) = 1;
994 }
995 if (TREE_CODE (node) == FUNCTION_DECL)
996 DECL_STRUCT_FUNCTION (t) = NULL;
997 }
998 else if (TREE_CODE_CLASS (code) == tcc_type)
999 {
1000 TYPE_UID (t) = next_type_uid++;
1001 /* The following is so that the debug code for
1002 the copy is different from the original type.
1003 The two statements usually duplicate each other
1004 (because they clear fields of the same union),
1005 but the optimizer should catch that. */
1006 TYPE_SYMTAB_POINTER (t) = 0;
1007 TYPE_SYMTAB_ADDRESS (t) = 0;
1008
1009 /* Do not copy the values cache. */
1010 if (TYPE_CACHED_VALUES_P(t))
1011 {
1012 TYPE_CACHED_VALUES_P (t) = 0;
1013 TYPE_CACHED_VALUES (t) = NULL_TREE;
1014 }
1015 }
1016
1017 return t;
1018 }
1019
1020 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
1021 For example, this can copy a list made of TREE_LIST nodes. */
1022
1023 tree
1024 copy_list (tree list)
1025 {
1026 tree head;
1027 tree prev, next;
1028
1029 if (list == 0)
1030 return 0;
1031
1032 head = prev = copy_node (list);
1033 next = TREE_CHAIN (list);
1034 while (next)
1035 {
1036 TREE_CHAIN (prev) = copy_node (next);
1037 prev = TREE_CHAIN (prev);
1038 next = TREE_CHAIN (next);
1039 }
1040 return head;
1041 }
1042
1043 \f
1044 /* Create an INT_CST node with a LOW value sign extended to TYPE. */
1045
1046 tree
1047 build_int_cst (tree type, HOST_WIDE_INT low)
1048 {
1049 /* Support legacy code. */
1050 if (!type)
1051 type = integer_type_node;
1052
1053 return double_int_to_tree (type, double_int::from_shwi (low));
1054 }
1055
1056 /* Create an INT_CST node with a LOW value sign extended to TYPE. */
1057
1058 tree
1059 build_int_cst_type (tree type, HOST_WIDE_INT low)
1060 {
1061 gcc_assert (type);
1062
1063 return double_int_to_tree (type, double_int::from_shwi (low));
1064 }
1065
1066 /* Constructs tree in type TYPE from with value given by CST. Signedness
1067 of CST is assumed to be the same as the signedness of TYPE. */
1068
1069 tree
1070 double_int_to_tree (tree type, double_int cst)
1071 {
1072 bool sign_extended_type = !TYPE_UNSIGNED (type);
1073
1074 cst = cst.ext (TYPE_PRECISION (type), !sign_extended_type);
1075
1076 return build_int_cst_wide (type, cst.low, cst.high);
1077 }
1078
1079 /* Returns true if CST fits into range of TYPE. Signedness of CST is assumed
1080 to be the same as the signedness of TYPE. */
1081
1082 bool
1083 double_int_fits_to_tree_p (const_tree type, double_int cst)
1084 {
1085 bool sign_extended_type = !TYPE_UNSIGNED (type);
1086
1087 double_int ext
1088 = cst.ext (TYPE_PRECISION (type), !sign_extended_type);
1089
1090 return cst == ext;
1091 }
1092
1093 /* We force the double_int CST to the range of the type TYPE by sign or
1094 zero extending it. OVERFLOWABLE indicates if we are interested in
1095 overflow of the value, when >0 we are only interested in signed
1096 overflow, for <0 we are interested in any overflow. OVERFLOWED
1097 indicates whether overflow has already occurred. CONST_OVERFLOWED
1098 indicates whether constant overflow has already occurred. We force
1099 T's value to be within range of T's type (by setting to 0 or 1 all
1100 the bits outside the type's range). We set TREE_OVERFLOWED if,
1101 OVERFLOWED is nonzero,
1102 or OVERFLOWABLE is >0 and signed overflow occurs
1103 or OVERFLOWABLE is <0 and any overflow occurs
1104 We return a new tree node for the extended double_int. The node
1105 is shared if no overflow flags are set. */
1106
1107
1108 tree
1109 force_fit_type_double (tree type, double_int cst, int overflowable,
1110 bool overflowed)
1111 {
1112 bool sign_extended_type = !TYPE_UNSIGNED (type);
1113
1114 /* If we need to set overflow flags, return a new unshared node. */
1115 if (overflowed || !double_int_fits_to_tree_p(type, cst))
1116 {
1117 if (overflowed
1118 || overflowable < 0
1119 || (overflowable > 0 && sign_extended_type))
1120 {
1121 tree t = make_node (INTEGER_CST);
1122 TREE_INT_CST (t)
1123 = cst.ext (TYPE_PRECISION (type), !sign_extended_type);
1124 TREE_TYPE (t) = type;
1125 TREE_OVERFLOW (t) = 1;
1126 return t;
1127 }
1128 }
1129
1130 /* Else build a shared node. */
1131 return double_int_to_tree (type, cst);
1132 }
1133
1134 /* These are the hash table functions for the hash table of INTEGER_CST
1135 nodes of a sizetype. */
1136
1137 /* Return the hash code code X, an INTEGER_CST. */
1138
1139 static hashval_t
1140 int_cst_hash_hash (const void *x)
1141 {
1142 const_tree const t = (const_tree) x;
1143
1144 return (TREE_INT_CST_HIGH (t) ^ TREE_INT_CST_LOW (t)
1145 ^ htab_hash_pointer (TREE_TYPE (t)));
1146 }
1147
1148 /* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
1149 is the same as that given by *Y, which is the same. */
1150
1151 static int
1152 int_cst_hash_eq (const void *x, const void *y)
1153 {
1154 const_tree const xt = (const_tree) x;
1155 const_tree const yt = (const_tree) y;
1156
1157 return (TREE_TYPE (xt) == TREE_TYPE (yt)
1158 && TREE_INT_CST_HIGH (xt) == TREE_INT_CST_HIGH (yt)
1159 && TREE_INT_CST_LOW (xt) == TREE_INT_CST_LOW (yt));
1160 }
1161
1162 /* Create an INT_CST node of TYPE and value HI:LOW.
1163 The returned node is always shared. For small integers we use a
1164 per-type vector cache, for larger ones we use a single hash table. */
1165
1166 tree
1167 build_int_cst_wide (tree type, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
1168 {
1169 tree t;
1170 int ix = -1;
1171 int limit = 0;
1172
1173 gcc_assert (type);
1174
1175 switch (TREE_CODE (type))
1176 {
1177 case NULLPTR_TYPE:
1178 gcc_assert (hi == 0 && low == 0);
1179 /* Fallthru. */
1180
1181 case POINTER_TYPE:
1182 case REFERENCE_TYPE:
1183 /* Cache NULL pointer. */
1184 if (!hi && !low)
1185 {
1186 limit = 1;
1187 ix = 0;
1188 }
1189 break;
1190
1191 case BOOLEAN_TYPE:
1192 /* Cache false or true. */
1193 limit = 2;
1194 if (!hi && low < 2)
1195 ix = low;
1196 break;
1197
1198 case INTEGER_TYPE:
1199 case OFFSET_TYPE:
1200 if (TYPE_UNSIGNED (type))
1201 {
1202 /* Cache 0..N */
1203 limit = INTEGER_SHARE_LIMIT;
1204 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
1205 ix = low;
1206 }
1207 else
1208 {
1209 /* Cache -1..N */
1210 limit = INTEGER_SHARE_LIMIT + 1;
1211 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
1212 ix = low + 1;
1213 else if (hi == -1 && low == -(unsigned HOST_WIDE_INT)1)
1214 ix = 0;
1215 }
1216 break;
1217
1218 case ENUMERAL_TYPE:
1219 break;
1220
1221 default:
1222 gcc_unreachable ();
1223 }
1224
1225 if (ix >= 0)
1226 {
1227 /* Look for it in the type's vector of small shared ints. */
1228 if (!TYPE_CACHED_VALUES_P (type))
1229 {
1230 TYPE_CACHED_VALUES_P (type) = 1;
1231 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
1232 }
1233
1234 t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix);
1235 if (t)
1236 {
1237 /* Make sure no one is clobbering the shared constant. */
1238 gcc_assert (TREE_TYPE (t) == type);
1239 gcc_assert (TREE_INT_CST_LOW (t) == low);
1240 gcc_assert (TREE_INT_CST_HIGH (t) == hi);
1241 }
1242 else
1243 {
1244 /* Create a new shared int. */
1245 t = make_node (INTEGER_CST);
1246
1247 TREE_INT_CST_LOW (t) = low;
1248 TREE_INT_CST_HIGH (t) = hi;
1249 TREE_TYPE (t) = type;
1250
1251 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
1252 }
1253 }
1254 else
1255 {
1256 /* Use the cache of larger shared ints. */
1257 void **slot;
1258
1259 TREE_INT_CST_LOW (int_cst_node) = low;
1260 TREE_INT_CST_HIGH (int_cst_node) = hi;
1261 TREE_TYPE (int_cst_node) = type;
1262
1263 slot = htab_find_slot (int_cst_hash_table, int_cst_node, INSERT);
1264 t = (tree) *slot;
1265 if (!t)
1266 {
1267 /* Insert this one into the hash table. */
1268 t = int_cst_node;
1269 *slot = t;
1270 /* Make a new node for next time round. */
1271 int_cst_node = make_node (INTEGER_CST);
1272 }
1273 }
1274
1275 return t;
1276 }
1277
1278 void
1279 cache_integer_cst (tree t)
1280 {
1281 tree type = TREE_TYPE (t);
1282 HOST_WIDE_INT hi = TREE_INT_CST_HIGH (t);
1283 unsigned HOST_WIDE_INT low = TREE_INT_CST_LOW (t);
1284 int ix = -1;
1285 int limit = 0;
1286
1287 gcc_assert (!TREE_OVERFLOW (t));
1288
1289 switch (TREE_CODE (type))
1290 {
1291 case NULLPTR_TYPE:
1292 gcc_assert (hi == 0 && low == 0);
1293 /* Fallthru. */
1294
1295 case POINTER_TYPE:
1296 case REFERENCE_TYPE:
1297 /* Cache NULL pointer. */
1298 if (!hi && !low)
1299 {
1300 limit = 1;
1301 ix = 0;
1302 }
1303 break;
1304
1305 case BOOLEAN_TYPE:
1306 /* Cache false or true. */
1307 limit = 2;
1308 if (!hi && low < 2)
1309 ix = low;
1310 break;
1311
1312 case INTEGER_TYPE:
1313 case OFFSET_TYPE:
1314 if (TYPE_UNSIGNED (type))
1315 {
1316 /* Cache 0..N */
1317 limit = INTEGER_SHARE_LIMIT;
1318 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
1319 ix = low;
1320 }
1321 else
1322 {
1323 /* Cache -1..N */
1324 limit = INTEGER_SHARE_LIMIT + 1;
1325 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
1326 ix = low + 1;
1327 else if (hi == -1 && low == -(unsigned HOST_WIDE_INT)1)
1328 ix = 0;
1329 }
1330 break;
1331
1332 case ENUMERAL_TYPE:
1333 break;
1334
1335 default:
1336 gcc_unreachable ();
1337 }
1338
1339 if (ix >= 0)
1340 {
1341 /* Look for it in the type's vector of small shared ints. */
1342 if (!TYPE_CACHED_VALUES_P (type))
1343 {
1344 TYPE_CACHED_VALUES_P (type) = 1;
1345 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
1346 }
1347
1348 gcc_assert (TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) == NULL_TREE);
1349 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
1350 }
1351 else
1352 {
1353 /* Use the cache of larger shared ints. */
1354 void **slot;
1355
1356 slot = htab_find_slot (int_cst_hash_table, t, INSERT);
1357 /* If there is already an entry for the number verify it's the
1358 same. */
1359 if (*slot)
1360 {
1361 gcc_assert (TREE_INT_CST_LOW ((tree)*slot) == low
1362 && TREE_INT_CST_HIGH ((tree)*slot) == hi);
1363 return;
1364 }
1365 /* Otherwise insert this one into the hash table. */
1366 *slot = t;
1367 }
1368 }
1369
1370
1371 /* Builds an integer constant in TYPE such that lowest BITS bits are ones
1372 and the rest are zeros. */
1373
1374 tree
1375 build_low_bits_mask (tree type, unsigned bits)
1376 {
1377 double_int mask;
1378
1379 gcc_assert (bits <= TYPE_PRECISION (type));
1380
1381 if (bits == TYPE_PRECISION (type)
1382 && !TYPE_UNSIGNED (type))
1383 /* Sign extended all-ones mask. */
1384 mask = double_int_minus_one;
1385 else
1386 mask = double_int::mask (bits);
1387
1388 return build_int_cst_wide (type, mask.low, mask.high);
1389 }
1390
1391 /* Checks that X is integer constant that can be expressed in (unsigned)
1392 HOST_WIDE_INT without loss of precision. */
1393
1394 bool
1395 cst_and_fits_in_hwi (const_tree x)
1396 {
1397 if (TREE_CODE (x) != INTEGER_CST)
1398 return false;
1399
1400 if (TYPE_PRECISION (TREE_TYPE (x)) > HOST_BITS_PER_WIDE_INT)
1401 return false;
1402
1403 return (TREE_INT_CST_HIGH (x) == 0
1404 || TREE_INT_CST_HIGH (x) == -1);
1405 }
1406
1407 /* Build a newly constructed TREE_VEC node of length LEN. */
1408
1409 tree
1410 make_vector_stat (unsigned len MEM_STAT_DECL)
1411 {
1412 tree t;
1413 unsigned length = (len - 1) * sizeof (tree) + sizeof (struct tree_vector);
1414
1415 record_node_allocation_statistics (VECTOR_CST, length);
1416
1417 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
1418
1419 TREE_SET_CODE (t, VECTOR_CST);
1420 TREE_CONSTANT (t) = 1;
1421
1422 return t;
1423 }
1424
1425 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1426 are in a list pointed to by VALS. */
1427
1428 tree
1429 build_vector_stat (tree type, tree *vals MEM_STAT_DECL)
1430 {
1431 int over = 0;
1432 unsigned cnt = 0;
1433 tree v = make_vector (TYPE_VECTOR_SUBPARTS (type));
1434 TREE_TYPE (v) = type;
1435
1436 /* Iterate through elements and check for overflow. */
1437 for (cnt = 0; cnt < TYPE_VECTOR_SUBPARTS (type); ++cnt)
1438 {
1439 tree value = vals[cnt];
1440
1441 VECTOR_CST_ELT (v, cnt) = value;
1442
1443 /* Don't crash if we get an address constant. */
1444 if (!CONSTANT_CLASS_P (value))
1445 continue;
1446
1447 over |= TREE_OVERFLOW (value);
1448 }
1449
1450 TREE_OVERFLOW (v) = over;
1451 return v;
1452 }
1453
1454 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1455 are extracted from V, a vector of CONSTRUCTOR_ELT. */
1456
1457 tree
1458 build_vector_from_ctor (tree type, vec<constructor_elt, va_gc> *v)
1459 {
1460 tree *vec = XALLOCAVEC (tree, TYPE_VECTOR_SUBPARTS (type));
1461 unsigned HOST_WIDE_INT idx;
1462 tree value;
1463
1464 FOR_EACH_CONSTRUCTOR_VALUE (v, idx, value)
1465 vec[idx] = value;
1466 for (; idx < TYPE_VECTOR_SUBPARTS (type); ++idx)
1467 vec[idx] = build_zero_cst (TREE_TYPE (type));
1468
1469 return build_vector (type, vec);
1470 }
1471
1472 /* Build a vector of type VECTYPE where all the elements are SCs. */
1473 tree
1474 build_vector_from_val (tree vectype, tree sc)
1475 {
1476 int i, nunits = TYPE_VECTOR_SUBPARTS (vectype);
1477
1478 if (sc == error_mark_node)
1479 return sc;
1480
1481 /* Verify that the vector type is suitable for SC. Note that there
1482 is some inconsistency in the type-system with respect to restrict
1483 qualifications of pointers. Vector types always have a main-variant
1484 element type and the qualification is applied to the vector-type.
1485 So TREE_TYPE (vector-type) does not return a properly qualified
1486 vector element-type. */
1487 gcc_checking_assert (types_compatible_p (TYPE_MAIN_VARIANT (TREE_TYPE (sc)),
1488 TREE_TYPE (vectype)));
1489
1490 if (CONSTANT_CLASS_P (sc))
1491 {
1492 tree *v = XALLOCAVEC (tree, nunits);
1493 for (i = 0; i < nunits; ++i)
1494 v[i] = sc;
1495 return build_vector (vectype, v);
1496 }
1497 else
1498 {
1499 vec<constructor_elt, va_gc> *v;
1500 vec_alloc (v, nunits);
1501 for (i = 0; i < nunits; ++i)
1502 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, sc);
1503 return build_constructor (vectype, v);
1504 }
1505 }
1506
1507 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1508 are in the vec pointed to by VALS. */
1509 tree
1510 build_constructor (tree type, vec<constructor_elt, va_gc> *vals)
1511 {
1512 tree c = make_node (CONSTRUCTOR);
1513 unsigned int i;
1514 constructor_elt *elt;
1515 bool constant_p = true;
1516 bool side_effects_p = false;
1517
1518 TREE_TYPE (c) = type;
1519 CONSTRUCTOR_ELTS (c) = vals;
1520
1521 FOR_EACH_VEC_SAFE_ELT (vals, i, elt)
1522 {
1523 /* Mostly ctors will have elts that don't have side-effects, so
1524 the usual case is to scan all the elements. Hence a single
1525 loop for both const and side effects, rather than one loop
1526 each (with early outs). */
1527 if (!TREE_CONSTANT (elt->value))
1528 constant_p = false;
1529 if (TREE_SIDE_EFFECTS (elt->value))
1530 side_effects_p = true;
1531 }
1532
1533 TREE_SIDE_EFFECTS (c) = side_effects_p;
1534 TREE_CONSTANT (c) = constant_p;
1535
1536 return c;
1537 }
1538
1539 /* Build a CONSTRUCTOR node made of a single initializer, with the specified
1540 INDEX and VALUE. */
1541 tree
1542 build_constructor_single (tree type, tree index, tree value)
1543 {
1544 vec<constructor_elt, va_gc> *v;
1545 constructor_elt elt = {index, value};
1546
1547 vec_alloc (v, 1);
1548 v->quick_push (elt);
1549
1550 return build_constructor (type, v);
1551 }
1552
1553
1554 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1555 are in a list pointed to by VALS. */
1556 tree
1557 build_constructor_from_list (tree type, tree vals)
1558 {
1559 tree t;
1560 vec<constructor_elt, va_gc> *v = NULL;
1561
1562 if (vals)
1563 {
1564 vec_alloc (v, list_length (vals));
1565 for (t = vals; t; t = TREE_CHAIN (t))
1566 CONSTRUCTOR_APPEND_ELT (v, TREE_PURPOSE (t), TREE_VALUE (t));
1567 }
1568
1569 return build_constructor (type, v);
1570 }
1571
1572 /* Return a new CONSTRUCTOR node whose type is TYPE. NELTS is the number
1573 of elements, provided as index/value pairs. */
1574
1575 tree
1576 build_constructor_va (tree type, int nelts, ...)
1577 {
1578 vec<constructor_elt, va_gc> *v = NULL;
1579 va_list p;
1580
1581 va_start (p, nelts);
1582 vec_alloc (v, nelts);
1583 while (nelts--)
1584 {
1585 tree index = va_arg (p, tree);
1586 tree value = va_arg (p, tree);
1587 CONSTRUCTOR_APPEND_ELT (v, index, value);
1588 }
1589 va_end (p);
1590 return build_constructor (type, v);
1591 }
1592
1593 /* Return a new FIXED_CST node whose type is TYPE and value is F. */
1594
1595 tree
1596 build_fixed (tree type, FIXED_VALUE_TYPE f)
1597 {
1598 tree v;
1599 FIXED_VALUE_TYPE *fp;
1600
1601 v = make_node (FIXED_CST);
1602 fp = ggc_alloc_fixed_value ();
1603 memcpy (fp, &f, sizeof (FIXED_VALUE_TYPE));
1604
1605 TREE_TYPE (v) = type;
1606 TREE_FIXED_CST_PTR (v) = fp;
1607 return v;
1608 }
1609
1610 /* Return a new REAL_CST node whose type is TYPE and value is D. */
1611
1612 tree
1613 build_real (tree type, REAL_VALUE_TYPE d)
1614 {
1615 tree v;
1616 REAL_VALUE_TYPE *dp;
1617 int overflow = 0;
1618
1619 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
1620 Consider doing it via real_convert now. */
1621
1622 v = make_node (REAL_CST);
1623 dp = ggc_alloc_real_value ();
1624 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
1625
1626 TREE_TYPE (v) = type;
1627 TREE_REAL_CST_PTR (v) = dp;
1628 TREE_OVERFLOW (v) = overflow;
1629 return v;
1630 }
1631
1632 /* Return a new REAL_CST node whose type is TYPE
1633 and whose value is the integer value of the INTEGER_CST node I. */
1634
1635 REAL_VALUE_TYPE
1636 real_value_from_int_cst (const_tree type, const_tree i)
1637 {
1638 REAL_VALUE_TYPE d;
1639
1640 /* Clear all bits of the real value type so that we can later do
1641 bitwise comparisons to see if two values are the same. */
1642 memset (&d, 0, sizeof d);
1643
1644 real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode,
1645 TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
1646 TYPE_UNSIGNED (TREE_TYPE (i)));
1647 return d;
1648 }
1649
1650 /* Given a tree representing an integer constant I, return a tree
1651 representing the same value as a floating-point constant of type TYPE. */
1652
1653 tree
1654 build_real_from_int_cst (tree type, const_tree i)
1655 {
1656 tree v;
1657 int overflow = TREE_OVERFLOW (i);
1658
1659 v = build_real (type, real_value_from_int_cst (type, i));
1660
1661 TREE_OVERFLOW (v) |= overflow;
1662 return v;
1663 }
1664
1665 /* Return a newly constructed STRING_CST node whose value is
1666 the LEN characters at STR.
1667 Note that for a C string literal, LEN should include the trailing NUL.
1668 The TREE_TYPE is not initialized. */
1669
1670 tree
1671 build_string (int len, const char *str)
1672 {
1673 tree s;
1674 size_t length;
1675
1676 /* Do not waste bytes provided by padding of struct tree_string. */
1677 length = len + offsetof (struct tree_string, str) + 1;
1678
1679 record_node_allocation_statistics (STRING_CST, length);
1680
1681 s = ggc_alloc_tree_node (length);
1682
1683 memset (s, 0, sizeof (struct tree_typed));
1684 TREE_SET_CODE (s, STRING_CST);
1685 TREE_CONSTANT (s) = 1;
1686 TREE_STRING_LENGTH (s) = len;
1687 memcpy (s->string.str, str, len);
1688 s->string.str[len] = '\0';
1689
1690 return s;
1691 }
1692
1693 /* Return a newly constructed COMPLEX_CST node whose value is
1694 specified by the real and imaginary parts REAL and IMAG.
1695 Both REAL and IMAG should be constant nodes. TYPE, if specified,
1696 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
1697
1698 tree
1699 build_complex (tree type, tree real, tree imag)
1700 {
1701 tree t = make_node (COMPLEX_CST);
1702
1703 TREE_REALPART (t) = real;
1704 TREE_IMAGPART (t) = imag;
1705 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
1706 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
1707 return t;
1708 }
1709
1710 /* Return a constant of arithmetic type TYPE which is the
1711 multiplicative identity of the set TYPE. */
1712
1713 tree
1714 build_one_cst (tree type)
1715 {
1716 switch (TREE_CODE (type))
1717 {
1718 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1719 case POINTER_TYPE: case REFERENCE_TYPE:
1720 case OFFSET_TYPE:
1721 return build_int_cst (type, 1);
1722
1723 case REAL_TYPE:
1724 return build_real (type, dconst1);
1725
1726 case FIXED_POINT_TYPE:
1727 /* We can only generate 1 for accum types. */
1728 gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
1729 return build_fixed (type, FCONST1(TYPE_MODE (type)));
1730
1731 case VECTOR_TYPE:
1732 {
1733 tree scalar = build_one_cst (TREE_TYPE (type));
1734
1735 return build_vector_from_val (type, scalar);
1736 }
1737
1738 case COMPLEX_TYPE:
1739 return build_complex (type,
1740 build_one_cst (TREE_TYPE (type)),
1741 build_zero_cst (TREE_TYPE (type)));
1742
1743 default:
1744 gcc_unreachable ();
1745 }
1746 }
1747
1748 /* Return an integer of type TYPE containing all 1's in as much precision as
1749 it contains, or a complex or vector whose subparts are such integers. */
1750
1751 tree
1752 build_all_ones_cst (tree type)
1753 {
1754 if (TREE_CODE (type) == COMPLEX_TYPE)
1755 {
1756 tree scalar = build_all_ones_cst (TREE_TYPE (type));
1757 return build_complex (type, scalar, scalar);
1758 }
1759 else
1760 return build_minus_one_cst (type);
1761 }
1762
1763 /* Return a constant of arithmetic type TYPE which is the
1764 opposite of the multiplicative identity of the set TYPE. */
1765
1766 tree
1767 build_minus_one_cst (tree type)
1768 {
1769 switch (TREE_CODE (type))
1770 {
1771 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1772 case POINTER_TYPE: case REFERENCE_TYPE:
1773 case OFFSET_TYPE:
1774 return build_int_cst (type, -1);
1775
1776 case REAL_TYPE:
1777 return build_real (type, dconstm1);
1778
1779 case FIXED_POINT_TYPE:
1780 /* We can only generate 1 for accum types. */
1781 gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
1782 return build_fixed (type, fixed_from_double_int (double_int_minus_one,
1783 TYPE_MODE (type)));
1784
1785 case VECTOR_TYPE:
1786 {
1787 tree scalar = build_minus_one_cst (TREE_TYPE (type));
1788
1789 return build_vector_from_val (type, scalar);
1790 }
1791
1792 case COMPLEX_TYPE:
1793 return build_complex (type,
1794 build_minus_one_cst (TREE_TYPE (type)),
1795 build_zero_cst (TREE_TYPE (type)));
1796
1797 default:
1798 gcc_unreachable ();
1799 }
1800 }
1801
1802 /* Build 0 constant of type TYPE. This is used by constructor folding
1803 and thus the constant should be represented in memory by
1804 zero(es). */
1805
1806 tree
1807 build_zero_cst (tree type)
1808 {
1809 switch (TREE_CODE (type))
1810 {
1811 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1812 case POINTER_TYPE: case REFERENCE_TYPE:
1813 case OFFSET_TYPE: case NULLPTR_TYPE:
1814 return build_int_cst (type, 0);
1815
1816 case REAL_TYPE:
1817 return build_real (type, dconst0);
1818
1819 case FIXED_POINT_TYPE:
1820 return build_fixed (type, FCONST0 (TYPE_MODE (type)));
1821
1822 case VECTOR_TYPE:
1823 {
1824 tree scalar = build_zero_cst (TREE_TYPE (type));
1825
1826 return build_vector_from_val (type, scalar);
1827 }
1828
1829 case COMPLEX_TYPE:
1830 {
1831 tree zero = build_zero_cst (TREE_TYPE (type));
1832
1833 return build_complex (type, zero, zero);
1834 }
1835
1836 default:
1837 if (!AGGREGATE_TYPE_P (type))
1838 return fold_convert (type, integer_zero_node);
1839 return build_constructor (type, NULL);
1840 }
1841 }
1842
1843
1844 /* Build a BINFO with LEN language slots. */
1845
1846 tree
1847 make_tree_binfo_stat (unsigned base_binfos MEM_STAT_DECL)
1848 {
1849 tree t;
1850 size_t length = (offsetof (struct tree_binfo, base_binfos)
1851 + vec<tree, va_gc>::embedded_size (base_binfos));
1852
1853 record_node_allocation_statistics (TREE_BINFO, length);
1854
1855 t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
1856
1857 memset (t, 0, offsetof (struct tree_binfo, base_binfos));
1858
1859 TREE_SET_CODE (t, TREE_BINFO);
1860
1861 BINFO_BASE_BINFOS (t)->embedded_init (base_binfos);
1862
1863 return t;
1864 }
1865
1866 /* Create a CASE_LABEL_EXPR tree node and return it. */
1867
1868 tree
1869 build_case_label (tree low_value, tree high_value, tree label_decl)
1870 {
1871 tree t = make_node (CASE_LABEL_EXPR);
1872
1873 TREE_TYPE (t) = void_type_node;
1874 SET_EXPR_LOCATION (t, DECL_SOURCE_LOCATION (label_decl));
1875
1876 CASE_LOW (t) = low_value;
1877 CASE_HIGH (t) = high_value;
1878 CASE_LABEL (t) = label_decl;
1879 CASE_CHAIN (t) = NULL_TREE;
1880
1881 return t;
1882 }
1883
1884 /* Build a newly constructed TREE_VEC node of length LEN. */
1885
1886 tree
1887 make_tree_vec_stat (int len MEM_STAT_DECL)
1888 {
1889 tree t;
1890 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
1891
1892 record_node_allocation_statistics (TREE_VEC, length);
1893
1894 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
1895
1896 TREE_SET_CODE (t, TREE_VEC);
1897 TREE_VEC_LENGTH (t) = len;
1898
1899 return t;
1900 }
1901 \f
1902 /* Return 1 if EXPR is the integer constant zero or a complex constant
1903 of zero. */
1904
1905 int
1906 integer_zerop (const_tree expr)
1907 {
1908 STRIP_NOPS (expr);
1909
1910 switch (TREE_CODE (expr))
1911 {
1912 case INTEGER_CST:
1913 return (TREE_INT_CST_LOW (expr) == 0
1914 && TREE_INT_CST_HIGH (expr) == 0);
1915 case COMPLEX_CST:
1916 return (integer_zerop (TREE_REALPART (expr))
1917 && integer_zerop (TREE_IMAGPART (expr)));
1918 case VECTOR_CST:
1919 {
1920 unsigned i;
1921 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
1922 if (!integer_zerop (VECTOR_CST_ELT (expr, i)))
1923 return false;
1924 return true;
1925 }
1926 default:
1927 return false;
1928 }
1929 }
1930
1931 /* Return 1 if EXPR is the integer constant one or the corresponding
1932 complex constant. */
1933
1934 int
1935 integer_onep (const_tree expr)
1936 {
1937 STRIP_NOPS (expr);
1938
1939 switch (TREE_CODE (expr))
1940 {
1941 case INTEGER_CST:
1942 return (TREE_INT_CST_LOW (expr) == 1
1943 && TREE_INT_CST_HIGH (expr) == 0);
1944 case COMPLEX_CST:
1945 return (integer_onep (TREE_REALPART (expr))
1946 && integer_zerop (TREE_IMAGPART (expr)));
1947 case VECTOR_CST:
1948 {
1949 unsigned i;
1950 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
1951 if (!integer_onep (VECTOR_CST_ELT (expr, i)))
1952 return false;
1953 return true;
1954 }
1955 default:
1956 return false;
1957 }
1958 }
1959
1960 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
1961 it contains, or a complex or vector whose subparts are such integers. */
1962
1963 int
1964 integer_all_onesp (const_tree expr)
1965 {
1966 int prec;
1967 int uns;
1968
1969 STRIP_NOPS (expr);
1970
1971 if (TREE_CODE (expr) == COMPLEX_CST
1972 && integer_all_onesp (TREE_REALPART (expr))
1973 && integer_all_onesp (TREE_IMAGPART (expr)))
1974 return 1;
1975
1976 else if (TREE_CODE (expr) == VECTOR_CST)
1977 {
1978 unsigned i;
1979 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
1980 if (!integer_all_onesp (VECTOR_CST_ELT (expr, i)))
1981 return 0;
1982 return 1;
1983 }
1984
1985 else if (TREE_CODE (expr) != INTEGER_CST)
1986 return 0;
1987
1988 uns = TYPE_UNSIGNED (TREE_TYPE (expr));
1989 if (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1990 && TREE_INT_CST_HIGH (expr) == -1)
1991 return 1;
1992 if (!uns)
1993 return 0;
1994
1995 prec = TYPE_PRECISION (TREE_TYPE (expr));
1996 if (prec >= HOST_BITS_PER_WIDE_INT)
1997 {
1998 HOST_WIDE_INT high_value;
1999 int shift_amount;
2000
2001 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
2002
2003 /* Can not handle precisions greater than twice the host int size. */
2004 gcc_assert (shift_amount <= HOST_BITS_PER_WIDE_INT);
2005 if (shift_amount == HOST_BITS_PER_WIDE_INT)
2006 /* Shifting by the host word size is undefined according to the ANSI
2007 standard, so we must handle this as a special case. */
2008 high_value = -1;
2009 else
2010 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
2011
2012 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
2013 && TREE_INT_CST_HIGH (expr) == high_value);
2014 }
2015 else
2016 return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
2017 }
2018
2019 /* Return 1 if EXPR is the integer constant minus one. */
2020
2021 int
2022 integer_minus_onep (const_tree expr)
2023 {
2024 STRIP_NOPS (expr);
2025
2026 if (TREE_CODE (expr) == COMPLEX_CST)
2027 return (integer_all_onesp (TREE_REALPART (expr))
2028 && integer_zerop (TREE_IMAGPART (expr)));
2029 else
2030 return integer_all_onesp (expr);
2031 }
2032
2033 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
2034 one bit on). */
2035
2036 int
2037 integer_pow2p (const_tree expr)
2038 {
2039 int prec;
2040 unsigned HOST_WIDE_INT high, low;
2041
2042 STRIP_NOPS (expr);
2043
2044 if (TREE_CODE (expr) == COMPLEX_CST
2045 && integer_pow2p (TREE_REALPART (expr))
2046 && integer_zerop (TREE_IMAGPART (expr)))
2047 return 1;
2048
2049 if (TREE_CODE (expr) != INTEGER_CST)
2050 return 0;
2051
2052 prec = TYPE_PRECISION (TREE_TYPE (expr));
2053 high = TREE_INT_CST_HIGH (expr);
2054 low = TREE_INT_CST_LOW (expr);
2055
2056 /* First clear all bits that are beyond the type's precision in case
2057 we've been sign extended. */
2058
2059 if (prec == HOST_BITS_PER_DOUBLE_INT)
2060 ;
2061 else if (prec > HOST_BITS_PER_WIDE_INT)
2062 high &= ~(HOST_WIDE_INT_M1U << (prec - HOST_BITS_PER_WIDE_INT));
2063 else
2064 {
2065 high = 0;
2066 if (prec < HOST_BITS_PER_WIDE_INT)
2067 low &= ~(HOST_WIDE_INT_M1U << prec);
2068 }
2069
2070 if (high == 0 && low == 0)
2071 return 0;
2072
2073 return ((high == 0 && (low & (low - 1)) == 0)
2074 || (low == 0 && (high & (high - 1)) == 0));
2075 }
2076
2077 /* Return 1 if EXPR is an integer constant other than zero or a
2078 complex constant other than zero. */
2079
2080 int
2081 integer_nonzerop (const_tree expr)
2082 {
2083 STRIP_NOPS (expr);
2084
2085 return ((TREE_CODE (expr) == INTEGER_CST
2086 && (TREE_INT_CST_LOW (expr) != 0
2087 || TREE_INT_CST_HIGH (expr) != 0))
2088 || (TREE_CODE (expr) == COMPLEX_CST
2089 && (integer_nonzerop (TREE_REALPART (expr))
2090 || integer_nonzerop (TREE_IMAGPART (expr)))));
2091 }
2092
2093 /* Return 1 if EXPR is the fixed-point constant zero. */
2094
2095 int
2096 fixed_zerop (const_tree expr)
2097 {
2098 return (TREE_CODE (expr) == FIXED_CST
2099 && TREE_FIXED_CST (expr).data.is_zero ());
2100 }
2101
2102 /* Return the power of two represented by a tree node known to be a
2103 power of two. */
2104
2105 int
2106 tree_log2 (const_tree expr)
2107 {
2108 int prec;
2109 HOST_WIDE_INT high, low;
2110
2111 STRIP_NOPS (expr);
2112
2113 if (TREE_CODE (expr) == COMPLEX_CST)
2114 return tree_log2 (TREE_REALPART (expr));
2115
2116 prec = TYPE_PRECISION (TREE_TYPE (expr));
2117 high = TREE_INT_CST_HIGH (expr);
2118 low = TREE_INT_CST_LOW (expr);
2119
2120 /* First clear all bits that are beyond the type's precision in case
2121 we've been sign extended. */
2122
2123 if (prec == HOST_BITS_PER_DOUBLE_INT)
2124 ;
2125 else if (prec > HOST_BITS_PER_WIDE_INT)
2126 high &= ~(HOST_WIDE_INT_M1U << (prec - HOST_BITS_PER_WIDE_INT));
2127 else
2128 {
2129 high = 0;
2130 if (prec < HOST_BITS_PER_WIDE_INT)
2131 low &= ~(HOST_WIDE_INT_M1U << prec);
2132 }
2133
2134 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
2135 : exact_log2 (low));
2136 }
2137
2138 /* Similar, but return the largest integer Y such that 2 ** Y is less
2139 than or equal to EXPR. */
2140
2141 int
2142 tree_floor_log2 (const_tree expr)
2143 {
2144 int prec;
2145 HOST_WIDE_INT high, low;
2146
2147 STRIP_NOPS (expr);
2148
2149 if (TREE_CODE (expr) == COMPLEX_CST)
2150 return tree_log2 (TREE_REALPART (expr));
2151
2152 prec = TYPE_PRECISION (TREE_TYPE (expr));
2153 high = TREE_INT_CST_HIGH (expr);
2154 low = TREE_INT_CST_LOW (expr);
2155
2156 /* First clear all bits that are beyond the type's precision in case
2157 we've been sign extended. Ignore if type's precision hasn't been set
2158 since what we are doing is setting it. */
2159
2160 if (prec == HOST_BITS_PER_DOUBLE_INT || prec == 0)
2161 ;
2162 else if (prec > HOST_BITS_PER_WIDE_INT)
2163 high &= ~(HOST_WIDE_INT_M1U << (prec - HOST_BITS_PER_WIDE_INT));
2164 else
2165 {
2166 high = 0;
2167 if (prec < HOST_BITS_PER_WIDE_INT)
2168 low &= ~(HOST_WIDE_INT_M1U << prec);
2169 }
2170
2171 return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
2172 : floor_log2 (low));
2173 }
2174
2175 /* Return 1 if EXPR is the real constant zero. Trailing zeroes matter for
2176 decimal float constants, so don't return 1 for them. */
2177
2178 int
2179 real_zerop (const_tree expr)
2180 {
2181 STRIP_NOPS (expr);
2182
2183 switch (TREE_CODE (expr))
2184 {
2185 case REAL_CST:
2186 return REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0)
2187 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2188 case COMPLEX_CST:
2189 return real_zerop (TREE_REALPART (expr))
2190 && real_zerop (TREE_IMAGPART (expr));
2191 case VECTOR_CST:
2192 {
2193 unsigned i;
2194 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
2195 if (!real_zerop (VECTOR_CST_ELT (expr, i)))
2196 return false;
2197 return true;
2198 }
2199 default:
2200 return false;
2201 }
2202 }
2203
2204 /* Return 1 if EXPR is the real constant one in real or complex form.
2205 Trailing zeroes matter for decimal float constants, so don't return
2206 1 for them. */
2207
2208 int
2209 real_onep (const_tree expr)
2210 {
2211 STRIP_NOPS (expr);
2212
2213 switch (TREE_CODE (expr))
2214 {
2215 case REAL_CST:
2216 return REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1)
2217 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2218 case COMPLEX_CST:
2219 return real_onep (TREE_REALPART (expr))
2220 && real_zerop (TREE_IMAGPART (expr));
2221 case VECTOR_CST:
2222 {
2223 unsigned i;
2224 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
2225 if (!real_onep (VECTOR_CST_ELT (expr, i)))
2226 return false;
2227 return true;
2228 }
2229 default:
2230 return false;
2231 }
2232 }
2233
2234 /* Return 1 if EXPR is the real constant two. Trailing zeroes matter
2235 for decimal float constants, so don't return 1 for them. */
2236
2237 int
2238 real_twop (const_tree expr)
2239 {
2240 STRIP_NOPS (expr);
2241
2242 switch (TREE_CODE (expr))
2243 {
2244 case REAL_CST:
2245 return REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2)
2246 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2247 case COMPLEX_CST:
2248 return real_twop (TREE_REALPART (expr))
2249 && real_zerop (TREE_IMAGPART (expr));
2250 case VECTOR_CST:
2251 {
2252 unsigned i;
2253 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
2254 if (!real_twop (VECTOR_CST_ELT (expr, i)))
2255 return false;
2256 return true;
2257 }
2258 default:
2259 return false;
2260 }
2261 }
2262
2263 /* Return 1 if EXPR is the real constant minus one. Trailing zeroes
2264 matter for decimal float constants, so don't return 1 for them. */
2265
2266 int
2267 real_minus_onep (const_tree expr)
2268 {
2269 STRIP_NOPS (expr);
2270
2271 switch (TREE_CODE (expr))
2272 {
2273 case REAL_CST:
2274 return REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconstm1)
2275 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2276 case COMPLEX_CST:
2277 return real_minus_onep (TREE_REALPART (expr))
2278 && real_zerop (TREE_IMAGPART (expr));
2279 case VECTOR_CST:
2280 {
2281 unsigned i;
2282 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
2283 if (!real_minus_onep (VECTOR_CST_ELT (expr, i)))
2284 return false;
2285 return true;
2286 }
2287 default:
2288 return false;
2289 }
2290 }
2291
2292 /* Nonzero if EXP is a constant or a cast of a constant. */
2293
2294 int
2295 really_constant_p (const_tree exp)
2296 {
2297 /* This is not quite the same as STRIP_NOPS. It does more. */
2298 while (CONVERT_EXPR_P (exp)
2299 || TREE_CODE (exp) == NON_LVALUE_EXPR)
2300 exp = TREE_OPERAND (exp, 0);
2301 return TREE_CONSTANT (exp);
2302 }
2303 \f
2304 /* Return first list element whose TREE_VALUE is ELEM.
2305 Return 0 if ELEM is not in LIST. */
2306
2307 tree
2308 value_member (tree elem, tree list)
2309 {
2310 while (list)
2311 {
2312 if (elem == TREE_VALUE (list))
2313 return list;
2314 list = TREE_CHAIN (list);
2315 }
2316 return NULL_TREE;
2317 }
2318
2319 /* Return first list element whose TREE_PURPOSE is ELEM.
2320 Return 0 if ELEM is not in LIST. */
2321
2322 tree
2323 purpose_member (const_tree elem, tree list)
2324 {
2325 while (list)
2326 {
2327 if (elem == TREE_PURPOSE (list))
2328 return list;
2329 list = TREE_CHAIN (list);
2330 }
2331 return NULL_TREE;
2332 }
2333
2334 /* Return true if ELEM is in V. */
2335
2336 bool
2337 vec_member (const_tree elem, vec<tree, va_gc> *v)
2338 {
2339 unsigned ix;
2340 tree t;
2341 FOR_EACH_VEC_SAFE_ELT (v, ix, t)
2342 if (elem == t)
2343 return true;
2344 return false;
2345 }
2346
2347 /* Returns element number IDX (zero-origin) of chain CHAIN, or
2348 NULL_TREE. */
2349
2350 tree
2351 chain_index (int idx, tree chain)
2352 {
2353 for (; chain && idx > 0; --idx)
2354 chain = TREE_CHAIN (chain);
2355 return chain;
2356 }
2357
2358 /* Return nonzero if ELEM is part of the chain CHAIN. */
2359
2360 int
2361 chain_member (const_tree elem, const_tree chain)
2362 {
2363 while (chain)
2364 {
2365 if (elem == chain)
2366 return 1;
2367 chain = DECL_CHAIN (chain);
2368 }
2369
2370 return 0;
2371 }
2372
2373 /* Return the length of a chain of nodes chained through TREE_CHAIN.
2374 We expect a null pointer to mark the end of the chain.
2375 This is the Lisp primitive `length'. */
2376
2377 int
2378 list_length (const_tree t)
2379 {
2380 const_tree p = t;
2381 #ifdef ENABLE_TREE_CHECKING
2382 const_tree q = t;
2383 #endif
2384 int len = 0;
2385
2386 while (p)
2387 {
2388 p = TREE_CHAIN (p);
2389 #ifdef ENABLE_TREE_CHECKING
2390 if (len % 2)
2391 q = TREE_CHAIN (q);
2392 gcc_assert (p != q);
2393 #endif
2394 len++;
2395 }
2396
2397 return len;
2398 }
2399
2400 /* Returns the number of FIELD_DECLs in TYPE. */
2401
2402 int
2403 fields_length (const_tree type)
2404 {
2405 tree t = TYPE_FIELDS (type);
2406 int count = 0;
2407
2408 for (; t; t = DECL_CHAIN (t))
2409 if (TREE_CODE (t) == FIELD_DECL)
2410 ++count;
2411
2412 return count;
2413 }
2414
2415 /* Returns the first FIELD_DECL in the TYPE_FIELDS of the RECORD_TYPE or
2416 UNION_TYPE TYPE, or NULL_TREE if none. */
2417
2418 tree
2419 first_field (const_tree type)
2420 {
2421 tree t = TYPE_FIELDS (type);
2422 while (t && TREE_CODE (t) != FIELD_DECL)
2423 t = TREE_CHAIN (t);
2424 return t;
2425 }
2426
2427 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
2428 by modifying the last node in chain 1 to point to chain 2.
2429 This is the Lisp primitive `nconc'. */
2430
2431 tree
2432 chainon (tree op1, tree op2)
2433 {
2434 tree t1;
2435
2436 if (!op1)
2437 return op2;
2438 if (!op2)
2439 return op1;
2440
2441 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
2442 continue;
2443 TREE_CHAIN (t1) = op2;
2444
2445 #ifdef ENABLE_TREE_CHECKING
2446 {
2447 tree t2;
2448 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
2449 gcc_assert (t2 != t1);
2450 }
2451 #endif
2452
2453 return op1;
2454 }
2455
2456 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
2457
2458 tree
2459 tree_last (tree chain)
2460 {
2461 tree next;
2462 if (chain)
2463 while ((next = TREE_CHAIN (chain)))
2464 chain = next;
2465 return chain;
2466 }
2467
2468 /* Reverse the order of elements in the chain T,
2469 and return the new head of the chain (old last element). */
2470
2471 tree
2472 nreverse (tree t)
2473 {
2474 tree prev = 0, decl, next;
2475 for (decl = t; decl; decl = next)
2476 {
2477 /* We shouldn't be using this function to reverse BLOCK chains; we
2478 have blocks_nreverse for that. */
2479 gcc_checking_assert (TREE_CODE (decl) != BLOCK);
2480 next = TREE_CHAIN (decl);
2481 TREE_CHAIN (decl) = prev;
2482 prev = decl;
2483 }
2484 return prev;
2485 }
2486 \f
2487 /* Return a newly created TREE_LIST node whose
2488 purpose and value fields are PARM and VALUE. */
2489
2490 tree
2491 build_tree_list_stat (tree parm, tree value MEM_STAT_DECL)
2492 {
2493 tree t = make_node_stat (TREE_LIST PASS_MEM_STAT);
2494 TREE_PURPOSE (t) = parm;
2495 TREE_VALUE (t) = value;
2496 return t;
2497 }
2498
2499 /* Build a chain of TREE_LIST nodes from a vector. */
2500
2501 tree
2502 build_tree_list_vec_stat (const vec<tree, va_gc> *vec MEM_STAT_DECL)
2503 {
2504 tree ret = NULL_TREE;
2505 tree *pp = &ret;
2506 unsigned int i;
2507 tree t;
2508 FOR_EACH_VEC_SAFE_ELT (vec, i, t)
2509 {
2510 *pp = build_tree_list_stat (NULL, t PASS_MEM_STAT);
2511 pp = &TREE_CHAIN (*pp);
2512 }
2513 return ret;
2514 }
2515
2516 /* Return a newly created TREE_LIST node whose
2517 purpose and value fields are PURPOSE and VALUE
2518 and whose TREE_CHAIN is CHAIN. */
2519
2520 tree
2521 tree_cons_stat (tree purpose, tree value, tree chain MEM_STAT_DECL)
2522 {
2523 tree node;
2524
2525 node = ggc_alloc_tree_node_stat (sizeof (struct tree_list) PASS_MEM_STAT);
2526 memset (node, 0, sizeof (struct tree_common));
2527
2528 record_node_allocation_statistics (TREE_LIST, sizeof (struct tree_list));
2529
2530 TREE_SET_CODE (node, TREE_LIST);
2531 TREE_CHAIN (node) = chain;
2532 TREE_PURPOSE (node) = purpose;
2533 TREE_VALUE (node) = value;
2534 return node;
2535 }
2536
2537 /* Return the values of the elements of a CONSTRUCTOR as a vector of
2538 trees. */
2539
2540 vec<tree, va_gc> *
2541 ctor_to_vec (tree ctor)
2542 {
2543 vec<tree, va_gc> *vec;
2544 vec_alloc (vec, CONSTRUCTOR_NELTS (ctor));
2545 unsigned int ix;
2546 tree val;
2547
2548 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (ctor), ix, val)
2549 vec->quick_push (val);
2550
2551 return vec;
2552 }
2553 \f
2554 /* Return the size nominally occupied by an object of type TYPE
2555 when it resides in memory. The value is measured in units of bytes,
2556 and its data type is that normally used for type sizes
2557 (which is the first type created by make_signed_type or
2558 make_unsigned_type). */
2559
2560 tree
2561 size_in_bytes (const_tree type)
2562 {
2563 tree t;
2564
2565 if (type == error_mark_node)
2566 return integer_zero_node;
2567
2568 type = TYPE_MAIN_VARIANT (type);
2569 t = TYPE_SIZE_UNIT (type);
2570
2571 if (t == 0)
2572 {
2573 lang_hooks.types.incomplete_type_error (NULL_TREE, type);
2574 return size_zero_node;
2575 }
2576
2577 return t;
2578 }
2579
2580 /* Return the size of TYPE (in bytes) as a wide integer
2581 or return -1 if the size can vary or is larger than an integer. */
2582
2583 HOST_WIDE_INT
2584 int_size_in_bytes (const_tree type)
2585 {
2586 tree t;
2587
2588 if (type == error_mark_node)
2589 return 0;
2590
2591 type = TYPE_MAIN_VARIANT (type);
2592 t = TYPE_SIZE_UNIT (type);
2593 if (t == 0
2594 || TREE_CODE (t) != INTEGER_CST
2595 || TREE_INT_CST_HIGH (t) != 0
2596 /* If the result would appear negative, it's too big to represent. */
2597 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
2598 return -1;
2599
2600 return TREE_INT_CST_LOW (t);
2601 }
2602
2603 /* Return the maximum size of TYPE (in bytes) as a wide integer
2604 or return -1 if the size can vary or is larger than an integer. */
2605
2606 HOST_WIDE_INT
2607 max_int_size_in_bytes (const_tree type)
2608 {
2609 HOST_WIDE_INT size = -1;
2610 tree size_tree;
2611
2612 /* If this is an array type, check for a possible MAX_SIZE attached. */
2613
2614 if (TREE_CODE (type) == ARRAY_TYPE)
2615 {
2616 size_tree = TYPE_ARRAY_MAX_SIZE (type);
2617
2618 if (size_tree && host_integerp (size_tree, 1))
2619 size = tree_low_cst (size_tree, 1);
2620 }
2621
2622 /* If we still haven't been able to get a size, see if the language
2623 can compute a maximum size. */
2624
2625 if (size == -1)
2626 {
2627 size_tree = lang_hooks.types.max_size (type);
2628
2629 if (size_tree && host_integerp (size_tree, 1))
2630 size = tree_low_cst (size_tree, 1);
2631 }
2632
2633 return size;
2634 }
2635
2636 /* Returns a tree for the size of EXP in bytes. */
2637
2638 tree
2639 tree_expr_size (const_tree exp)
2640 {
2641 if (DECL_P (exp)
2642 && DECL_SIZE_UNIT (exp) != 0)
2643 return DECL_SIZE_UNIT (exp);
2644 else
2645 return size_in_bytes (TREE_TYPE (exp));
2646 }
2647 \f
2648 /* Return the bit position of FIELD, in bits from the start of the record.
2649 This is a tree of type bitsizetype. */
2650
2651 tree
2652 bit_position (const_tree field)
2653 {
2654 return bit_from_pos (DECL_FIELD_OFFSET (field),
2655 DECL_FIELD_BIT_OFFSET (field));
2656 }
2657
2658 /* Likewise, but return as an integer. It must be representable in
2659 that way (since it could be a signed value, we don't have the
2660 option of returning -1 like int_size_in_byte can. */
2661
2662 HOST_WIDE_INT
2663 int_bit_position (const_tree field)
2664 {
2665 return tree_low_cst (bit_position (field), 0);
2666 }
2667 \f
2668 /* Return the byte position of FIELD, in bytes from the start of the record.
2669 This is a tree of type sizetype. */
2670
2671 tree
2672 byte_position (const_tree field)
2673 {
2674 return byte_from_pos (DECL_FIELD_OFFSET (field),
2675 DECL_FIELD_BIT_OFFSET (field));
2676 }
2677
2678 /* Likewise, but return as an integer. It must be representable in
2679 that way (since it could be a signed value, we don't have the
2680 option of returning -1 like int_size_in_byte can. */
2681
2682 HOST_WIDE_INT
2683 int_byte_position (const_tree field)
2684 {
2685 return tree_low_cst (byte_position (field), 0);
2686 }
2687 \f
2688 /* Return the strictest alignment, in bits, that T is known to have. */
2689
2690 unsigned int
2691 expr_align (const_tree t)
2692 {
2693 unsigned int align0, align1;
2694
2695 switch (TREE_CODE (t))
2696 {
2697 CASE_CONVERT: case NON_LVALUE_EXPR:
2698 /* If we have conversions, we know that the alignment of the
2699 object must meet each of the alignments of the types. */
2700 align0 = expr_align (TREE_OPERAND (t, 0));
2701 align1 = TYPE_ALIGN (TREE_TYPE (t));
2702 return MAX (align0, align1);
2703
2704 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
2705 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
2706 case CLEANUP_POINT_EXPR:
2707 /* These don't change the alignment of an object. */
2708 return expr_align (TREE_OPERAND (t, 0));
2709
2710 case COND_EXPR:
2711 /* The best we can do is say that the alignment is the least aligned
2712 of the two arms. */
2713 align0 = expr_align (TREE_OPERAND (t, 1));
2714 align1 = expr_align (TREE_OPERAND (t, 2));
2715 return MIN (align0, align1);
2716
2717 /* FIXME: LABEL_DECL and CONST_DECL never have DECL_ALIGN set
2718 meaningfully, it's always 1. */
2719 case LABEL_DECL: case CONST_DECL:
2720 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
2721 case FUNCTION_DECL:
2722 gcc_assert (DECL_ALIGN (t) != 0);
2723 return DECL_ALIGN (t);
2724
2725 default:
2726 break;
2727 }
2728
2729 /* Otherwise take the alignment from that of the type. */
2730 return TYPE_ALIGN (TREE_TYPE (t));
2731 }
2732 \f
2733 /* Return, as a tree node, the number of elements for TYPE (which is an
2734 ARRAY_TYPE) minus one. This counts only elements of the top array. */
2735
2736 tree
2737 array_type_nelts (const_tree type)
2738 {
2739 tree index_type, min, max;
2740
2741 /* If they did it with unspecified bounds, then we should have already
2742 given an error about it before we got here. */
2743 if (! TYPE_DOMAIN (type))
2744 return error_mark_node;
2745
2746 index_type = TYPE_DOMAIN (type);
2747 min = TYPE_MIN_VALUE (index_type);
2748 max = TYPE_MAX_VALUE (index_type);
2749
2750 /* TYPE_MAX_VALUE may not be set if the array has unknown length. */
2751 if (!max)
2752 return error_mark_node;
2753
2754 return (integer_zerop (min)
2755 ? max
2756 : fold_build2 (MINUS_EXPR, TREE_TYPE (max), max, min));
2757 }
2758 \f
2759 /* If arg is static -- a reference to an object in static storage -- then
2760 return the object. This is not the same as the C meaning of `static'.
2761 If arg isn't static, return NULL. */
2762
2763 tree
2764 staticp (tree arg)
2765 {
2766 switch (TREE_CODE (arg))
2767 {
2768 case FUNCTION_DECL:
2769 /* Nested functions are static, even though taking their address will
2770 involve a trampoline as we unnest the nested function and create
2771 the trampoline on the tree level. */
2772 return arg;
2773
2774 case VAR_DECL:
2775 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2776 && ! DECL_THREAD_LOCAL_P (arg)
2777 && ! DECL_DLLIMPORT_P (arg)
2778 ? arg : NULL);
2779
2780 case CONST_DECL:
2781 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2782 ? arg : NULL);
2783
2784 case CONSTRUCTOR:
2785 return TREE_STATIC (arg) ? arg : NULL;
2786
2787 case LABEL_DECL:
2788 case STRING_CST:
2789 return arg;
2790
2791 case COMPONENT_REF:
2792 /* If the thing being referenced is not a field, then it is
2793 something language specific. */
2794 gcc_assert (TREE_CODE (TREE_OPERAND (arg, 1)) == FIELD_DECL);
2795
2796 /* If we are referencing a bitfield, we can't evaluate an
2797 ADDR_EXPR at compile time and so it isn't a constant. */
2798 if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
2799 return NULL;
2800
2801 return staticp (TREE_OPERAND (arg, 0));
2802
2803 case BIT_FIELD_REF:
2804 return NULL;
2805
2806 case INDIRECT_REF:
2807 return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;
2808
2809 case ARRAY_REF:
2810 case ARRAY_RANGE_REF:
2811 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
2812 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
2813 return staticp (TREE_OPERAND (arg, 0));
2814 else
2815 return NULL;
2816
2817 case COMPOUND_LITERAL_EXPR:
2818 return TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (arg)) ? arg : NULL;
2819
2820 default:
2821 return NULL;
2822 }
2823 }
2824
2825 \f
2826
2827
2828 /* Return whether OP is a DECL whose address is function-invariant. */
2829
2830 bool
2831 decl_address_invariant_p (const_tree op)
2832 {
2833 /* The conditions below are slightly less strict than the one in
2834 staticp. */
2835
2836 switch (TREE_CODE (op))
2837 {
2838 case PARM_DECL:
2839 case RESULT_DECL:
2840 case LABEL_DECL:
2841 case FUNCTION_DECL:
2842 return true;
2843
2844 case VAR_DECL:
2845 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
2846 || DECL_THREAD_LOCAL_P (op)
2847 || DECL_CONTEXT (op) == current_function_decl
2848 || decl_function_context (op) == current_function_decl)
2849 return true;
2850 break;
2851
2852 case CONST_DECL:
2853 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
2854 || decl_function_context (op) == current_function_decl)
2855 return true;
2856 break;
2857
2858 default:
2859 break;
2860 }
2861
2862 return false;
2863 }
2864
2865 /* Return whether OP is a DECL whose address is interprocedural-invariant. */
2866
2867 bool
2868 decl_address_ip_invariant_p (const_tree op)
2869 {
2870 /* The conditions below are slightly less strict than the one in
2871 staticp. */
2872
2873 switch (TREE_CODE (op))
2874 {
2875 case LABEL_DECL:
2876 case FUNCTION_DECL:
2877 case STRING_CST:
2878 return true;
2879
2880 case VAR_DECL:
2881 if (((TREE_STATIC (op) || DECL_EXTERNAL (op))
2882 && !DECL_DLLIMPORT_P (op))
2883 || DECL_THREAD_LOCAL_P (op))
2884 return true;
2885 break;
2886
2887 case CONST_DECL:
2888 if ((TREE_STATIC (op) || DECL_EXTERNAL (op)))
2889 return true;
2890 break;
2891
2892 default:
2893 break;
2894 }
2895
2896 return false;
2897 }
2898
2899
2900 /* Return true if T is function-invariant (internal function, does
2901 not handle arithmetic; that's handled in skip_simple_arithmetic and
2902 tree_invariant_p). */
2903
2904 static bool tree_invariant_p (tree t);
2905
2906 static bool
2907 tree_invariant_p_1 (tree t)
2908 {
2909 tree op;
2910
2911 if (TREE_CONSTANT (t)
2912 || (TREE_READONLY (t) && !TREE_SIDE_EFFECTS (t)))
2913 return true;
2914
2915 switch (TREE_CODE (t))
2916 {
2917 case SAVE_EXPR:
2918 return true;
2919
2920 case ADDR_EXPR:
2921 op = TREE_OPERAND (t, 0);
2922 while (handled_component_p (op))
2923 {
2924 switch (TREE_CODE (op))
2925 {
2926 case ARRAY_REF:
2927 case ARRAY_RANGE_REF:
2928 if (!tree_invariant_p (TREE_OPERAND (op, 1))
2929 || TREE_OPERAND (op, 2) != NULL_TREE
2930 || TREE_OPERAND (op, 3) != NULL_TREE)
2931 return false;
2932 break;
2933
2934 case COMPONENT_REF:
2935 if (TREE_OPERAND (op, 2) != NULL_TREE)
2936 return false;
2937 break;
2938
2939 default:;
2940 }
2941 op = TREE_OPERAND (op, 0);
2942 }
2943
2944 return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
2945
2946 default:
2947 break;
2948 }
2949
2950 return false;
2951 }
2952
2953 /* Return true if T is function-invariant. */
2954
2955 static bool
2956 tree_invariant_p (tree t)
2957 {
2958 tree inner = skip_simple_arithmetic (t);
2959 return tree_invariant_p_1 (inner);
2960 }
2961
2962 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
2963 Do this to any expression which may be used in more than one place,
2964 but must be evaluated only once.
2965
2966 Normally, expand_expr would reevaluate the expression each time.
2967 Calling save_expr produces something that is evaluated and recorded
2968 the first time expand_expr is called on it. Subsequent calls to
2969 expand_expr just reuse the recorded value.
2970
2971 The call to expand_expr that generates code that actually computes
2972 the value is the first call *at compile time*. Subsequent calls
2973 *at compile time* generate code to use the saved value.
2974 This produces correct result provided that *at run time* control
2975 always flows through the insns made by the first expand_expr
2976 before reaching the other places where the save_expr was evaluated.
2977 You, the caller of save_expr, must make sure this is so.
2978
2979 Constants, and certain read-only nodes, are returned with no
2980 SAVE_EXPR because that is safe. Expressions containing placeholders
2981 are not touched; see tree.def for an explanation of what these
2982 are used for. */
2983
2984 tree
2985 save_expr (tree expr)
2986 {
2987 tree t = fold (expr);
2988 tree inner;
2989
2990 /* If the tree evaluates to a constant, then we don't want to hide that
2991 fact (i.e. this allows further folding, and direct checks for constants).
2992 However, a read-only object that has side effects cannot be bypassed.
2993 Since it is no problem to reevaluate literals, we just return the
2994 literal node. */
2995 inner = skip_simple_arithmetic (t);
2996 if (TREE_CODE (inner) == ERROR_MARK)
2997 return inner;
2998
2999 if (tree_invariant_p_1 (inner))
3000 return t;
3001
3002 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
3003 it means that the size or offset of some field of an object depends on
3004 the value within another field.
3005
3006 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
3007 and some variable since it would then need to be both evaluated once and
3008 evaluated more than once. Front-ends must assure this case cannot
3009 happen by surrounding any such subexpressions in their own SAVE_EXPR
3010 and forcing evaluation at the proper time. */
3011 if (contains_placeholder_p (inner))
3012 return t;
3013
3014 t = build1 (SAVE_EXPR, TREE_TYPE (expr), t);
3015 SET_EXPR_LOCATION (t, EXPR_LOCATION (expr));
3016
3017 /* This expression might be placed ahead of a jump to ensure that the
3018 value was computed on both sides of the jump. So make sure it isn't
3019 eliminated as dead. */
3020 TREE_SIDE_EFFECTS (t) = 1;
3021 return t;
3022 }
3023
3024 /* Look inside EXPR into any simple arithmetic operations. Return the
3025 outermost non-arithmetic or non-invariant node. */
3026
3027 tree
3028 skip_simple_arithmetic (tree expr)
3029 {
3030 /* We don't care about whether this can be used as an lvalue in this
3031 context. */
3032 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
3033 expr = TREE_OPERAND (expr, 0);
3034
3035 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
3036 a constant, it will be more efficient to not make another SAVE_EXPR since
3037 it will allow better simplification and GCSE will be able to merge the
3038 computations if they actually occur. */
3039 while (true)
3040 {
3041 if (UNARY_CLASS_P (expr))
3042 expr = TREE_OPERAND (expr, 0);
3043 else if (BINARY_CLASS_P (expr))
3044 {
3045 if (tree_invariant_p (TREE_OPERAND (expr, 1)))
3046 expr = TREE_OPERAND (expr, 0);
3047 else if (tree_invariant_p (TREE_OPERAND (expr, 0)))
3048 expr = TREE_OPERAND (expr, 1);
3049 else
3050 break;
3051 }
3052 else
3053 break;
3054 }
3055
3056 return expr;
3057 }
3058
3059 /* Look inside EXPR into simple arithmetic operations involving constants.
3060 Return the outermost non-arithmetic or non-constant node. */
3061
3062 tree
3063 skip_simple_constant_arithmetic (tree expr)
3064 {
3065 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
3066 expr = TREE_OPERAND (expr, 0);
3067
3068 while (true)
3069 {
3070 if (UNARY_CLASS_P (expr))
3071 expr = TREE_OPERAND (expr, 0);
3072 else if (BINARY_CLASS_P (expr))
3073 {
3074 if (TREE_CONSTANT (TREE_OPERAND (expr, 1)))
3075 expr = TREE_OPERAND (expr, 0);
3076 else if (TREE_CONSTANT (TREE_OPERAND (expr, 0)))
3077 expr = TREE_OPERAND (expr, 1);
3078 else
3079 break;
3080 }
3081 else
3082 break;
3083 }
3084
3085 return expr;
3086 }
3087
3088 /* Return which tree structure is used by T. */
3089
3090 enum tree_node_structure_enum
3091 tree_node_structure (const_tree t)
3092 {
3093 const enum tree_code code = TREE_CODE (t);
3094 return tree_node_structure_for_code (code);
3095 }
3096
3097 /* Set various status flags when building a CALL_EXPR object T. */
3098
3099 static void
3100 process_call_operands (tree t)
3101 {
3102 bool side_effects = TREE_SIDE_EFFECTS (t);
3103 bool read_only = false;
3104 int i = call_expr_flags (t);
3105
3106 /* Calls have side-effects, except those to const or pure functions. */
3107 if ((i & ECF_LOOPING_CONST_OR_PURE) || !(i & (ECF_CONST | ECF_PURE)))
3108 side_effects = true;
3109 /* Propagate TREE_READONLY of arguments for const functions. */
3110 if (i & ECF_CONST)
3111 read_only = true;
3112
3113 if (!side_effects || read_only)
3114 for (i = 1; i < TREE_OPERAND_LENGTH (t); i++)
3115 {
3116 tree op = TREE_OPERAND (t, i);
3117 if (op && TREE_SIDE_EFFECTS (op))
3118 side_effects = true;
3119 if (op && !TREE_READONLY (op) && !CONSTANT_CLASS_P (op))
3120 read_only = false;
3121 }
3122
3123 TREE_SIDE_EFFECTS (t) = side_effects;
3124 TREE_READONLY (t) = read_only;
3125 }
3126 \f
3127 /* Return true if EXP contains a PLACEHOLDER_EXPR, i.e. if it represents a
3128 size or offset that depends on a field within a record. */
3129
3130 bool
3131 contains_placeholder_p (const_tree exp)
3132 {
3133 enum tree_code code;
3134
3135 if (!exp)
3136 return 0;
3137
3138 code = TREE_CODE (exp);
3139 if (code == PLACEHOLDER_EXPR)
3140 return 1;
3141
3142 switch (TREE_CODE_CLASS (code))
3143 {
3144 case tcc_reference:
3145 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
3146 position computations since they will be converted into a
3147 WITH_RECORD_EXPR involving the reference, which will assume
3148 here will be valid. */
3149 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
3150
3151 case tcc_exceptional:
3152 if (code == TREE_LIST)
3153 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
3154 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
3155 break;
3156
3157 case tcc_unary:
3158 case tcc_binary:
3159 case tcc_comparison:
3160 case tcc_expression:
3161 switch (code)
3162 {
3163 case COMPOUND_EXPR:
3164 /* Ignoring the first operand isn't quite right, but works best. */
3165 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
3166
3167 case COND_EXPR:
3168 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
3169 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
3170 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
3171
3172 case SAVE_EXPR:
3173 /* The save_expr function never wraps anything containing
3174 a PLACEHOLDER_EXPR. */
3175 return 0;
3176
3177 default:
3178 break;
3179 }
3180
3181 switch (TREE_CODE_LENGTH (code))
3182 {
3183 case 1:
3184 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
3185 case 2:
3186 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
3187 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
3188 default:
3189 return 0;
3190 }
3191
3192 case tcc_vl_exp:
3193 switch (code)
3194 {
3195 case CALL_EXPR:
3196 {
3197 const_tree arg;
3198 const_call_expr_arg_iterator iter;
3199 FOR_EACH_CONST_CALL_EXPR_ARG (arg, iter, exp)
3200 if (CONTAINS_PLACEHOLDER_P (arg))
3201 return 1;
3202 return 0;
3203 }
3204 default:
3205 return 0;
3206 }
3207
3208 default:
3209 return 0;
3210 }
3211 return 0;
3212 }
3213
3214 /* Return true if any part of the structure of TYPE involves a PLACEHOLDER_EXPR
3215 directly. This includes size, bounds, qualifiers (for QUAL_UNION_TYPE) and
3216 field positions. */
3217
3218 static bool
3219 type_contains_placeholder_1 (const_tree type)
3220 {
3221 /* If the size contains a placeholder or the parent type (component type in
3222 the case of arrays) type involves a placeholder, this type does. */
3223 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
3224 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
3225 || (!POINTER_TYPE_P (type)
3226 && TREE_TYPE (type)
3227 && type_contains_placeholder_p (TREE_TYPE (type))))
3228 return true;
3229
3230 /* Now do type-specific checks. Note that the last part of the check above
3231 greatly limits what we have to do below. */
3232 switch (TREE_CODE (type))
3233 {
3234 case VOID_TYPE:
3235 case COMPLEX_TYPE:
3236 case ENUMERAL_TYPE:
3237 case BOOLEAN_TYPE:
3238 case POINTER_TYPE:
3239 case OFFSET_TYPE:
3240 case REFERENCE_TYPE:
3241 case METHOD_TYPE:
3242 case FUNCTION_TYPE:
3243 case VECTOR_TYPE:
3244 case NULLPTR_TYPE:
3245 return false;
3246
3247 case INTEGER_TYPE:
3248 case REAL_TYPE:
3249 case FIXED_POINT_TYPE:
3250 /* Here we just check the bounds. */
3251 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
3252 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
3253
3254 case ARRAY_TYPE:
3255 /* We have already checked the component type above, so just check the
3256 domain type. */
3257 return type_contains_placeholder_p (TYPE_DOMAIN (type));
3258
3259 case RECORD_TYPE:
3260 case UNION_TYPE:
3261 case QUAL_UNION_TYPE:
3262 {
3263 tree field;
3264
3265 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
3266 if (TREE_CODE (field) == FIELD_DECL
3267 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
3268 || (TREE_CODE (type) == QUAL_UNION_TYPE
3269 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
3270 || type_contains_placeholder_p (TREE_TYPE (field))))
3271 return true;
3272
3273 return false;
3274 }
3275
3276 default:
3277 gcc_unreachable ();
3278 }
3279 }
3280
3281 /* Wrapper around above function used to cache its result. */
3282
3283 bool
3284 type_contains_placeholder_p (tree type)
3285 {
3286 bool result;
3287
3288 /* If the contains_placeholder_bits field has been initialized,
3289 then we know the answer. */
3290 if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0)
3291 return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1;
3292
3293 /* Indicate that we've seen this type node, and the answer is false.
3294 This is what we want to return if we run into recursion via fields. */
3295 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1;
3296
3297 /* Compute the real value. */
3298 result = type_contains_placeholder_1 (type);
3299
3300 /* Store the real value. */
3301 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1;
3302
3303 return result;
3304 }
3305 \f
3306 /* Push tree EXP onto vector QUEUE if it is not already present. */
3307
3308 static void
3309 push_without_duplicates (tree exp, vec<tree> *queue)
3310 {
3311 unsigned int i;
3312 tree iter;
3313
3314 FOR_EACH_VEC_ELT (*queue, i, iter)
3315 if (simple_cst_equal (iter, exp) == 1)
3316 break;
3317
3318 if (!iter)
3319 queue->safe_push (exp);
3320 }
3321
3322 /* Given a tree EXP, find all occurrences of references to fields
3323 in a PLACEHOLDER_EXPR and place them in vector REFS without
3324 duplicates. Also record VAR_DECLs and CONST_DECLs. Note that
3325 we assume here that EXP contains only arithmetic expressions
3326 or CALL_EXPRs with PLACEHOLDER_EXPRs occurring only in their
3327 argument list. */
3328
3329 void
3330 find_placeholder_in_expr (tree exp, vec<tree> *refs)
3331 {
3332 enum tree_code code = TREE_CODE (exp);
3333 tree inner;
3334 int i;
3335
3336 /* We handle TREE_LIST and COMPONENT_REF separately. */
3337 if (code == TREE_LIST)
3338 {
3339 FIND_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), refs);
3340 FIND_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), refs);
3341 }
3342 else if (code == COMPONENT_REF)
3343 {
3344 for (inner = TREE_OPERAND (exp, 0);
3345 REFERENCE_CLASS_P (inner);
3346 inner = TREE_OPERAND (inner, 0))
3347 ;
3348
3349 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
3350 push_without_duplicates (exp, refs);
3351 else
3352 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), refs);
3353 }
3354 else
3355 switch (TREE_CODE_CLASS (code))
3356 {
3357 case tcc_constant:
3358 break;
3359
3360 case tcc_declaration:
3361 /* Variables allocated to static storage can stay. */
3362 if (!TREE_STATIC (exp))
3363 push_without_duplicates (exp, refs);
3364 break;
3365
3366 case tcc_expression:
3367 /* This is the pattern built in ada/make_aligning_type. */
3368 if (code == ADDR_EXPR
3369 && TREE_CODE (TREE_OPERAND (exp, 0)) == PLACEHOLDER_EXPR)
3370 {
3371 push_without_duplicates (exp, refs);
3372 break;
3373 }
3374
3375 /* Fall through... */
3376
3377 case tcc_exceptional:
3378 case tcc_unary:
3379 case tcc_binary:
3380 case tcc_comparison:
3381 case tcc_reference:
3382 for (i = 0; i < TREE_CODE_LENGTH (code); i++)
3383 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
3384 break;
3385
3386 case tcc_vl_exp:
3387 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3388 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
3389 break;
3390
3391 default:
3392 gcc_unreachable ();
3393 }
3394 }
3395
3396 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
3397 return a tree with all occurrences of references to F in a
3398 PLACEHOLDER_EXPR replaced by R. Also handle VAR_DECLs and
3399 CONST_DECLs. Note that we assume here that EXP contains only
3400 arithmetic expressions or CALL_EXPRs with PLACEHOLDER_EXPRs
3401 occurring only in their argument list. */
3402
3403 tree
3404 substitute_in_expr (tree exp, tree f, tree r)
3405 {
3406 enum tree_code code = TREE_CODE (exp);
3407 tree op0, op1, op2, op3;
3408 tree new_tree;
3409
3410 /* We handle TREE_LIST and COMPONENT_REF separately. */
3411 if (code == TREE_LIST)
3412 {
3413 op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
3414 op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
3415 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
3416 return exp;
3417
3418 return tree_cons (TREE_PURPOSE (exp), op1, op0);
3419 }
3420 else if (code == COMPONENT_REF)
3421 {
3422 tree inner;
3423
3424 /* If this expression is getting a value from a PLACEHOLDER_EXPR
3425 and it is the right field, replace it with R. */
3426 for (inner = TREE_OPERAND (exp, 0);
3427 REFERENCE_CLASS_P (inner);
3428 inner = TREE_OPERAND (inner, 0))
3429 ;
3430
3431 /* The field. */
3432 op1 = TREE_OPERAND (exp, 1);
3433
3434 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && op1 == f)
3435 return r;
3436
3437 /* If this expression hasn't been completed let, leave it alone. */
3438 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && !TREE_TYPE (inner))
3439 return exp;
3440
3441 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3442 if (op0 == TREE_OPERAND (exp, 0))
3443 return exp;
3444
3445 new_tree
3446 = fold_build3 (COMPONENT_REF, TREE_TYPE (exp), op0, op1, NULL_TREE);
3447 }
3448 else
3449 switch (TREE_CODE_CLASS (code))
3450 {
3451 case tcc_constant:
3452 return exp;
3453
3454 case tcc_declaration:
3455 if (exp == f)
3456 return r;
3457 else
3458 return exp;
3459
3460 case tcc_expression:
3461 if (exp == f)
3462 return r;
3463
3464 /* Fall through... */
3465
3466 case tcc_exceptional:
3467 case tcc_unary:
3468 case tcc_binary:
3469 case tcc_comparison:
3470 case tcc_reference:
3471 switch (TREE_CODE_LENGTH (code))
3472 {
3473 case 0:
3474 return exp;
3475
3476 case 1:
3477 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3478 if (op0 == TREE_OPERAND (exp, 0))
3479 return exp;
3480
3481 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
3482 break;
3483
3484 case 2:
3485 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3486 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3487
3488 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
3489 return exp;
3490
3491 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
3492 break;
3493
3494 case 3:
3495 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3496 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3497 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
3498
3499 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3500 && op2 == TREE_OPERAND (exp, 2))
3501 return exp;
3502
3503 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
3504 break;
3505
3506 case 4:
3507 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3508 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3509 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
3510 op3 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 3), f, r);
3511
3512 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3513 && op2 == TREE_OPERAND (exp, 2)
3514 && op3 == TREE_OPERAND (exp, 3))
3515 return exp;
3516
3517 new_tree
3518 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
3519 break;
3520
3521 default:
3522 gcc_unreachable ();
3523 }
3524 break;
3525
3526 case tcc_vl_exp:
3527 {
3528 int i;
3529
3530 new_tree = NULL_TREE;
3531
3532 /* If we are trying to replace F with a constant, inline back
3533 functions which do nothing else than computing a value from
3534 the arguments they are passed. This makes it possible to
3535 fold partially or entirely the replacement expression. */
3536 if (CONSTANT_CLASS_P (r) && code == CALL_EXPR)
3537 {
3538 tree t = maybe_inline_call_in_expr (exp);
3539 if (t)
3540 return SUBSTITUTE_IN_EXPR (t, f, r);
3541 }
3542
3543 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3544 {
3545 tree op = TREE_OPERAND (exp, i);
3546 tree new_op = SUBSTITUTE_IN_EXPR (op, f, r);
3547 if (new_op != op)
3548 {
3549 if (!new_tree)
3550 new_tree = copy_node (exp);
3551 TREE_OPERAND (new_tree, i) = new_op;
3552 }
3553 }
3554
3555 if (new_tree)
3556 {
3557 new_tree = fold (new_tree);
3558 if (TREE_CODE (new_tree) == CALL_EXPR)
3559 process_call_operands (new_tree);
3560 }
3561 else
3562 return exp;
3563 }
3564 break;
3565
3566 default:
3567 gcc_unreachable ();
3568 }
3569
3570 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
3571
3572 if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
3573 TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
3574
3575 return new_tree;
3576 }
3577
3578 /* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
3579 for it within OBJ, a tree that is an object or a chain of references. */
3580
3581 tree
3582 substitute_placeholder_in_expr (tree exp, tree obj)
3583 {
3584 enum tree_code code = TREE_CODE (exp);
3585 tree op0, op1, op2, op3;
3586 tree new_tree;
3587
3588 /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
3589 in the chain of OBJ. */
3590 if (code == PLACEHOLDER_EXPR)
3591 {
3592 tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
3593 tree elt;
3594
3595 for (elt = obj; elt != 0;
3596 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
3597 || TREE_CODE (elt) == COND_EXPR)
3598 ? TREE_OPERAND (elt, 1)
3599 : (REFERENCE_CLASS_P (elt)
3600 || UNARY_CLASS_P (elt)
3601 || BINARY_CLASS_P (elt)
3602 || VL_EXP_CLASS_P (elt)
3603 || EXPRESSION_CLASS_P (elt))
3604 ? TREE_OPERAND (elt, 0) : 0))
3605 if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
3606 return elt;
3607
3608 for (elt = obj; elt != 0;
3609 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
3610 || TREE_CODE (elt) == COND_EXPR)
3611 ? TREE_OPERAND (elt, 1)
3612 : (REFERENCE_CLASS_P (elt)
3613 || UNARY_CLASS_P (elt)
3614 || BINARY_CLASS_P (elt)
3615 || VL_EXP_CLASS_P (elt)
3616 || EXPRESSION_CLASS_P (elt))
3617 ? TREE_OPERAND (elt, 0) : 0))
3618 if (POINTER_TYPE_P (TREE_TYPE (elt))
3619 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
3620 == need_type))
3621 return fold_build1 (INDIRECT_REF, need_type, elt);
3622
3623 /* If we didn't find it, return the original PLACEHOLDER_EXPR. If it
3624 survives until RTL generation, there will be an error. */
3625 return exp;
3626 }
3627
3628 /* TREE_LIST is special because we need to look at TREE_VALUE
3629 and TREE_CHAIN, not TREE_OPERANDS. */
3630 else if (code == TREE_LIST)
3631 {
3632 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
3633 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
3634 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
3635 return exp;
3636
3637 return tree_cons (TREE_PURPOSE (exp), op1, op0);
3638 }
3639 else
3640 switch (TREE_CODE_CLASS (code))
3641 {
3642 case tcc_constant:
3643 case tcc_declaration:
3644 return exp;
3645
3646 case tcc_exceptional:
3647 case tcc_unary:
3648 case tcc_binary:
3649 case tcc_comparison:
3650 case tcc_expression:
3651 case tcc_reference:
3652 case tcc_statement:
3653 switch (TREE_CODE_LENGTH (code))
3654 {
3655 case 0:
3656 return exp;
3657
3658 case 1:
3659 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3660 if (op0 == TREE_OPERAND (exp, 0))
3661 return exp;
3662
3663 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
3664 break;
3665
3666 case 2:
3667 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3668 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3669
3670 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
3671 return exp;
3672
3673 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
3674 break;
3675
3676 case 3:
3677 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3678 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3679 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
3680
3681 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3682 && op2 == TREE_OPERAND (exp, 2))
3683 return exp;
3684
3685 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
3686 break;
3687
3688 case 4:
3689 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3690 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3691 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
3692 op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
3693
3694 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3695 && op2 == TREE_OPERAND (exp, 2)
3696 && op3 == TREE_OPERAND (exp, 3))
3697 return exp;
3698
3699 new_tree
3700 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
3701 break;
3702
3703 default:
3704 gcc_unreachable ();
3705 }
3706 break;
3707
3708 case tcc_vl_exp:
3709 {
3710 int i;
3711
3712 new_tree = NULL_TREE;
3713
3714 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3715 {
3716 tree op = TREE_OPERAND (exp, i);
3717 tree new_op = SUBSTITUTE_PLACEHOLDER_IN_EXPR (op, obj);
3718 if (new_op != op)
3719 {
3720 if (!new_tree)
3721 new_tree = copy_node (exp);
3722 TREE_OPERAND (new_tree, i) = new_op;
3723 }
3724 }
3725
3726 if (new_tree)
3727 {
3728 new_tree = fold (new_tree);
3729 if (TREE_CODE (new_tree) == CALL_EXPR)
3730 process_call_operands (new_tree);
3731 }
3732 else
3733 return exp;
3734 }
3735 break;
3736
3737 default:
3738 gcc_unreachable ();
3739 }
3740
3741 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
3742
3743 if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
3744 TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
3745
3746 return new_tree;
3747 }
3748 \f
3749 /* Stabilize a reference so that we can use it any number of times
3750 without causing its operands to be evaluated more than once.
3751 Returns the stabilized reference. This works by means of save_expr,
3752 so see the caveats in the comments about save_expr.
3753
3754 Also allows conversion expressions whose operands are references.
3755 Any other kind of expression is returned unchanged. */
3756
3757 tree
3758 stabilize_reference (tree ref)
3759 {
3760 tree result;
3761 enum tree_code code = TREE_CODE (ref);
3762
3763 switch (code)
3764 {
3765 case VAR_DECL:
3766 case PARM_DECL:
3767 case RESULT_DECL:
3768 /* No action is needed in this case. */
3769 return ref;
3770
3771 CASE_CONVERT:
3772 case FLOAT_EXPR:
3773 case FIX_TRUNC_EXPR:
3774 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
3775 break;
3776
3777 case INDIRECT_REF:
3778 result = build_nt (INDIRECT_REF,
3779 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
3780 break;
3781
3782 case COMPONENT_REF:
3783 result = build_nt (COMPONENT_REF,
3784 stabilize_reference (TREE_OPERAND (ref, 0)),
3785 TREE_OPERAND (ref, 1), NULL_TREE);
3786 break;
3787
3788 case BIT_FIELD_REF:
3789 result = build_nt (BIT_FIELD_REF,
3790 stabilize_reference (TREE_OPERAND (ref, 0)),
3791 TREE_OPERAND (ref, 1), TREE_OPERAND (ref, 2));
3792 break;
3793
3794 case ARRAY_REF:
3795 result = build_nt (ARRAY_REF,
3796 stabilize_reference (TREE_OPERAND (ref, 0)),
3797 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
3798 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
3799 break;
3800
3801 case ARRAY_RANGE_REF:
3802 result = build_nt (ARRAY_RANGE_REF,
3803 stabilize_reference (TREE_OPERAND (ref, 0)),
3804 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
3805 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
3806 break;
3807
3808 case COMPOUND_EXPR:
3809 /* We cannot wrap the first expression in a SAVE_EXPR, as then
3810 it wouldn't be ignored. This matters when dealing with
3811 volatiles. */
3812 return stabilize_reference_1 (ref);
3813
3814 /* If arg isn't a kind of lvalue we recognize, make no change.
3815 Caller should recognize the error for an invalid lvalue. */
3816 default:
3817 return ref;
3818
3819 case ERROR_MARK:
3820 return error_mark_node;
3821 }
3822
3823 TREE_TYPE (result) = TREE_TYPE (ref);
3824 TREE_READONLY (result) = TREE_READONLY (ref);
3825 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
3826 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
3827
3828 return result;
3829 }
3830
3831 /* Subroutine of stabilize_reference; this is called for subtrees of
3832 references. Any expression with side-effects must be put in a SAVE_EXPR
3833 to ensure that it is only evaluated once.
3834
3835 We don't put SAVE_EXPR nodes around everything, because assigning very
3836 simple expressions to temporaries causes us to miss good opportunities
3837 for optimizations. Among other things, the opportunity to fold in the
3838 addition of a constant into an addressing mode often gets lost, e.g.
3839 "y[i+1] += x;". In general, we take the approach that we should not make
3840 an assignment unless we are forced into it - i.e., that any non-side effect
3841 operator should be allowed, and that cse should take care of coalescing
3842 multiple utterances of the same expression should that prove fruitful. */
3843
3844 tree
3845 stabilize_reference_1 (tree e)
3846 {
3847 tree result;
3848 enum tree_code code = TREE_CODE (e);
3849
3850 /* We cannot ignore const expressions because it might be a reference
3851 to a const array but whose index contains side-effects. But we can
3852 ignore things that are actual constant or that already have been
3853 handled by this function. */
3854
3855 if (tree_invariant_p (e))
3856 return e;
3857
3858 switch (TREE_CODE_CLASS (code))
3859 {
3860 case tcc_exceptional:
3861 case tcc_type:
3862 case tcc_declaration:
3863 case tcc_comparison:
3864 case tcc_statement:
3865 case tcc_expression:
3866 case tcc_reference:
3867 case tcc_vl_exp:
3868 /* If the expression has side-effects, then encase it in a SAVE_EXPR
3869 so that it will only be evaluated once. */
3870 /* The reference (r) and comparison (<) classes could be handled as
3871 below, but it is generally faster to only evaluate them once. */
3872 if (TREE_SIDE_EFFECTS (e))
3873 return save_expr (e);
3874 return e;
3875
3876 case tcc_constant:
3877 /* Constants need no processing. In fact, we should never reach
3878 here. */
3879 return e;
3880
3881 case tcc_binary:
3882 /* Division is slow and tends to be compiled with jumps,
3883 especially the division by powers of 2 that is often
3884 found inside of an array reference. So do it just once. */
3885 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
3886 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
3887 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
3888 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
3889 return save_expr (e);
3890 /* Recursively stabilize each operand. */
3891 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
3892 stabilize_reference_1 (TREE_OPERAND (e, 1)));
3893 break;
3894
3895 case tcc_unary:
3896 /* Recursively stabilize each operand. */
3897 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
3898 break;
3899
3900 default:
3901 gcc_unreachable ();
3902 }
3903
3904 TREE_TYPE (result) = TREE_TYPE (e);
3905 TREE_READONLY (result) = TREE_READONLY (e);
3906 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
3907 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
3908
3909 return result;
3910 }
3911 \f
3912 /* Low-level constructors for expressions. */
3913
3914 /* A helper function for build1 and constant folders. Set TREE_CONSTANT,
3915 and TREE_SIDE_EFFECTS for an ADDR_EXPR. */
3916
3917 void
3918 recompute_tree_invariant_for_addr_expr (tree t)
3919 {
3920 tree node;
3921 bool tc = true, se = false;
3922
3923 /* We started out assuming this address is both invariant and constant, but
3924 does not have side effects. Now go down any handled components and see if
3925 any of them involve offsets that are either non-constant or non-invariant.
3926 Also check for side-effects.
3927
3928 ??? Note that this code makes no attempt to deal with the case where
3929 taking the address of something causes a copy due to misalignment. */
3930
3931 #define UPDATE_FLAGS(NODE) \
3932 do { tree _node = (NODE); \
3933 if (_node && !TREE_CONSTANT (_node)) tc = false; \
3934 if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
3935
3936 for (node = TREE_OPERAND (t, 0); handled_component_p (node);
3937 node = TREE_OPERAND (node, 0))
3938 {
3939 /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
3940 array reference (probably made temporarily by the G++ front end),
3941 so ignore all the operands. */
3942 if ((TREE_CODE (node) == ARRAY_REF
3943 || TREE_CODE (node) == ARRAY_RANGE_REF)
3944 && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
3945 {
3946 UPDATE_FLAGS (TREE_OPERAND (node, 1));
3947 if (TREE_OPERAND (node, 2))
3948 UPDATE_FLAGS (TREE_OPERAND (node, 2));
3949 if (TREE_OPERAND (node, 3))
3950 UPDATE_FLAGS (TREE_OPERAND (node, 3));
3951 }
3952 /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
3953 FIELD_DECL, apparently. The G++ front end can put something else
3954 there, at least temporarily. */
3955 else if (TREE_CODE (node) == COMPONENT_REF
3956 && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
3957 {
3958 if (TREE_OPERAND (node, 2))
3959 UPDATE_FLAGS (TREE_OPERAND (node, 2));
3960 }
3961 }
3962
3963 node = lang_hooks.expr_to_decl (node, &tc, &se);
3964
3965 /* Now see what's inside. If it's an INDIRECT_REF, copy our properties from
3966 the address, since &(*a)->b is a form of addition. If it's a constant, the
3967 address is constant too. If it's a decl, its address is constant if the
3968 decl is static. Everything else is not constant and, furthermore,
3969 taking the address of a volatile variable is not volatile. */
3970 if (TREE_CODE (node) == INDIRECT_REF
3971 || TREE_CODE (node) == MEM_REF)
3972 UPDATE_FLAGS (TREE_OPERAND (node, 0));
3973 else if (CONSTANT_CLASS_P (node))
3974 ;
3975 else if (DECL_P (node))
3976 tc &= (staticp (node) != NULL_TREE);
3977 else
3978 {
3979 tc = false;
3980 se |= TREE_SIDE_EFFECTS (node);
3981 }
3982
3983
3984 TREE_CONSTANT (t) = tc;
3985 TREE_SIDE_EFFECTS (t) = se;
3986 #undef UPDATE_FLAGS
3987 }
3988
3989 /* Build an expression of code CODE, data type TYPE, and operands as
3990 specified. Expressions and reference nodes can be created this way.
3991 Constants, decls, types and misc nodes cannot be.
3992
3993 We define 5 non-variadic functions, from 0 to 4 arguments. This is
3994 enough for all extant tree codes. */
3995
3996 tree
3997 build0_stat (enum tree_code code, tree tt MEM_STAT_DECL)
3998 {
3999 tree t;
4000
4001 gcc_assert (TREE_CODE_LENGTH (code) == 0);
4002
4003 t = make_node_stat (code PASS_MEM_STAT);
4004 TREE_TYPE (t) = tt;
4005
4006 return t;
4007 }
4008
4009 tree
4010 build1_stat (enum tree_code code, tree type, tree node MEM_STAT_DECL)
4011 {
4012 int length = sizeof (struct tree_exp);
4013 tree t;
4014
4015 record_node_allocation_statistics (code, length);
4016
4017 gcc_assert (TREE_CODE_LENGTH (code) == 1);
4018
4019 t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
4020
4021 memset (t, 0, sizeof (struct tree_common));
4022
4023 TREE_SET_CODE (t, code);
4024
4025 TREE_TYPE (t) = type;
4026 SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
4027 TREE_OPERAND (t, 0) = node;
4028 if (node && !TYPE_P (node))
4029 {
4030 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
4031 TREE_READONLY (t) = TREE_READONLY (node);
4032 }
4033
4034 if (TREE_CODE_CLASS (code) == tcc_statement)
4035 TREE_SIDE_EFFECTS (t) = 1;
4036 else switch (code)
4037 {
4038 case VA_ARG_EXPR:
4039 /* All of these have side-effects, no matter what their
4040 operands are. */
4041 TREE_SIDE_EFFECTS (t) = 1;
4042 TREE_READONLY (t) = 0;
4043 break;
4044
4045 case INDIRECT_REF:
4046 /* Whether a dereference is readonly has nothing to do with whether
4047 its operand is readonly. */
4048 TREE_READONLY (t) = 0;
4049 break;
4050
4051 case ADDR_EXPR:
4052 if (node)
4053 recompute_tree_invariant_for_addr_expr (t);
4054 break;
4055
4056 default:
4057 if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
4058 && node && !TYPE_P (node)
4059 && TREE_CONSTANT (node))
4060 TREE_CONSTANT (t) = 1;
4061 if (TREE_CODE_CLASS (code) == tcc_reference
4062 && node && TREE_THIS_VOLATILE (node))
4063 TREE_THIS_VOLATILE (t) = 1;
4064 break;
4065 }
4066
4067 return t;
4068 }
4069
4070 #define PROCESS_ARG(N) \
4071 do { \
4072 TREE_OPERAND (t, N) = arg##N; \
4073 if (arg##N &&!TYPE_P (arg##N)) \
4074 { \
4075 if (TREE_SIDE_EFFECTS (arg##N)) \
4076 side_effects = 1; \
4077 if (!TREE_READONLY (arg##N) \
4078 && !CONSTANT_CLASS_P (arg##N)) \
4079 (void) (read_only = 0); \
4080 if (!TREE_CONSTANT (arg##N)) \
4081 (void) (constant = 0); \
4082 } \
4083 } while (0)
4084
4085 tree
4086 build2_stat (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
4087 {
4088 bool constant, read_only, side_effects;
4089 tree t;
4090
4091 gcc_assert (TREE_CODE_LENGTH (code) == 2);
4092
4093 if ((code == MINUS_EXPR || code == PLUS_EXPR || code == MULT_EXPR)
4094 && arg0 && arg1 && tt && POINTER_TYPE_P (tt)
4095 /* When sizetype precision doesn't match that of pointers
4096 we need to be able to build explicit extensions or truncations
4097 of the offset argument. */
4098 && TYPE_PRECISION (sizetype) == TYPE_PRECISION (tt))
4099 gcc_assert (TREE_CODE (arg0) == INTEGER_CST
4100 && TREE_CODE (arg1) == INTEGER_CST);
4101
4102 if (code == POINTER_PLUS_EXPR && arg0 && arg1 && tt)
4103 gcc_assert (POINTER_TYPE_P (tt) && POINTER_TYPE_P (TREE_TYPE (arg0))
4104 && ptrofftype_p (TREE_TYPE (arg1)));
4105
4106 t = make_node_stat (code PASS_MEM_STAT);
4107 TREE_TYPE (t) = tt;
4108
4109 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
4110 result based on those same flags for the arguments. But if the
4111 arguments aren't really even `tree' expressions, we shouldn't be trying
4112 to do this. */
4113
4114 /* Expressions without side effects may be constant if their
4115 arguments are as well. */
4116 constant = (TREE_CODE_CLASS (code) == tcc_comparison
4117 || TREE_CODE_CLASS (code) == tcc_binary);
4118 read_only = 1;
4119 side_effects = TREE_SIDE_EFFECTS (t);
4120
4121 PROCESS_ARG(0);
4122 PROCESS_ARG(1);
4123
4124 TREE_READONLY (t) = read_only;
4125 TREE_CONSTANT (t) = constant;
4126 TREE_SIDE_EFFECTS (t) = side_effects;
4127 TREE_THIS_VOLATILE (t)
4128 = (TREE_CODE_CLASS (code) == tcc_reference
4129 && arg0 && TREE_THIS_VOLATILE (arg0));
4130
4131 return t;
4132 }
4133
4134
4135 tree
4136 build3_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
4137 tree arg2 MEM_STAT_DECL)
4138 {
4139 bool constant, read_only, side_effects;
4140 tree t;
4141
4142 gcc_assert (TREE_CODE_LENGTH (code) == 3);
4143 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
4144
4145 t = make_node_stat (code PASS_MEM_STAT);
4146 TREE_TYPE (t) = tt;
4147
4148 read_only = 1;
4149
4150 /* As a special exception, if COND_EXPR has NULL branches, we
4151 assume that it is a gimple statement and always consider
4152 it to have side effects. */
4153 if (code == COND_EXPR
4154 && tt == void_type_node
4155 && arg1 == NULL_TREE
4156 && arg2 == NULL_TREE)
4157 side_effects = true;
4158 else
4159 side_effects = TREE_SIDE_EFFECTS (t);
4160
4161 PROCESS_ARG(0);
4162 PROCESS_ARG(1);
4163 PROCESS_ARG(2);
4164
4165 if (code == COND_EXPR)
4166 TREE_READONLY (t) = read_only;
4167
4168 TREE_SIDE_EFFECTS (t) = side_effects;
4169 TREE_THIS_VOLATILE (t)
4170 = (TREE_CODE_CLASS (code) == tcc_reference
4171 && arg0 && TREE_THIS_VOLATILE (arg0));
4172
4173 return t;
4174 }
4175
4176 tree
4177 build4_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
4178 tree arg2, tree arg3 MEM_STAT_DECL)
4179 {
4180 bool constant, read_only, side_effects;
4181 tree t;
4182
4183 gcc_assert (TREE_CODE_LENGTH (code) == 4);
4184
4185 t = make_node_stat (code PASS_MEM_STAT);
4186 TREE_TYPE (t) = tt;
4187
4188 side_effects = TREE_SIDE_EFFECTS (t);
4189
4190 PROCESS_ARG(0);
4191 PROCESS_ARG(1);
4192 PROCESS_ARG(2);
4193 PROCESS_ARG(3);
4194
4195 TREE_SIDE_EFFECTS (t) = side_effects;
4196 TREE_THIS_VOLATILE (t)
4197 = (TREE_CODE_CLASS (code) == tcc_reference
4198 && arg0 && TREE_THIS_VOLATILE (arg0));
4199
4200 return t;
4201 }
4202
4203 tree
4204 build5_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
4205 tree arg2, tree arg3, tree arg4 MEM_STAT_DECL)
4206 {
4207 bool constant, read_only, side_effects;
4208 tree t;
4209
4210 gcc_assert (TREE_CODE_LENGTH (code) == 5);
4211
4212 t = make_node_stat (code PASS_MEM_STAT);
4213 TREE_TYPE (t) = tt;
4214
4215 side_effects = TREE_SIDE_EFFECTS (t);
4216
4217 PROCESS_ARG(0);
4218 PROCESS_ARG(1);
4219 PROCESS_ARG(2);
4220 PROCESS_ARG(3);
4221 PROCESS_ARG(4);
4222
4223 TREE_SIDE_EFFECTS (t) = side_effects;
4224 TREE_THIS_VOLATILE (t)
4225 = (TREE_CODE_CLASS (code) == tcc_reference
4226 && arg0 && TREE_THIS_VOLATILE (arg0));
4227
4228 return t;
4229 }
4230
4231 /* Build a simple MEM_REF tree with the sematics of a plain INDIRECT_REF
4232 on the pointer PTR. */
4233
4234 tree
4235 build_simple_mem_ref_loc (location_t loc, tree ptr)
4236 {
4237 HOST_WIDE_INT offset = 0;
4238 tree ptype = TREE_TYPE (ptr);
4239 tree tem;
4240 /* For convenience allow addresses that collapse to a simple base
4241 and offset. */
4242 if (TREE_CODE (ptr) == ADDR_EXPR
4243 && (handled_component_p (TREE_OPERAND (ptr, 0))
4244 || TREE_CODE (TREE_OPERAND (ptr, 0)) == MEM_REF))
4245 {
4246 ptr = get_addr_base_and_unit_offset (TREE_OPERAND (ptr, 0), &offset);
4247 gcc_assert (ptr);
4248 ptr = build_fold_addr_expr (ptr);
4249 gcc_assert (is_gimple_reg (ptr) || is_gimple_min_invariant (ptr));
4250 }
4251 tem = build2 (MEM_REF, TREE_TYPE (ptype),
4252 ptr, build_int_cst (ptype, offset));
4253 SET_EXPR_LOCATION (tem, loc);
4254 return tem;
4255 }
4256
4257 /* Return the constant offset of a MEM_REF or TARGET_MEM_REF tree T. */
4258
4259 double_int
4260 mem_ref_offset (const_tree t)
4261 {
4262 tree toff = TREE_OPERAND (t, 1);
4263 return tree_to_double_int (toff).sext (TYPE_PRECISION (TREE_TYPE (toff)));
4264 }
4265
4266 /* Return the pointer-type relevant for TBAA purposes from the
4267 gimple memory reference tree T. This is the type to be used for
4268 the offset operand of MEM_REF or TARGET_MEM_REF replacements of T. */
4269
4270 tree
4271 reference_alias_ptr_type (const_tree t)
4272 {
4273 const_tree base = t;
4274 while (handled_component_p (base))
4275 base = TREE_OPERAND (base, 0);
4276 if (TREE_CODE (base) == MEM_REF)
4277 return TREE_TYPE (TREE_OPERAND (base, 1));
4278 else if (TREE_CODE (base) == TARGET_MEM_REF)
4279 return TREE_TYPE (TMR_OFFSET (base));
4280 else
4281 return build_pointer_type (TYPE_MAIN_VARIANT (TREE_TYPE (base)));
4282 }
4283
4284 /* Return an invariant ADDR_EXPR of type TYPE taking the address of BASE
4285 offsetted by OFFSET units. */
4286
4287 tree
4288 build_invariant_address (tree type, tree base, HOST_WIDE_INT offset)
4289 {
4290 tree ref = fold_build2 (MEM_REF, TREE_TYPE (type),
4291 build_fold_addr_expr (base),
4292 build_int_cst (ptr_type_node, offset));
4293 tree addr = build1 (ADDR_EXPR, type, ref);
4294 recompute_tree_invariant_for_addr_expr (addr);
4295 return addr;
4296 }
4297
4298 /* Similar except don't specify the TREE_TYPE
4299 and leave the TREE_SIDE_EFFECTS as 0.
4300 It is permissible for arguments to be null,
4301 or even garbage if their values do not matter. */
4302
4303 tree
4304 build_nt (enum tree_code code, ...)
4305 {
4306 tree t;
4307 int length;
4308 int i;
4309 va_list p;
4310
4311 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
4312
4313 va_start (p, code);
4314
4315 t = make_node (code);
4316 length = TREE_CODE_LENGTH (code);
4317
4318 for (i = 0; i < length; i++)
4319 TREE_OPERAND (t, i) = va_arg (p, tree);
4320
4321 va_end (p);
4322 return t;
4323 }
4324
4325 /* Similar to build_nt, but for creating a CALL_EXPR object with a
4326 tree vec. */
4327
4328 tree
4329 build_nt_call_vec (tree fn, vec<tree, va_gc> *args)
4330 {
4331 tree ret, t;
4332 unsigned int ix;
4333
4334 ret = build_vl_exp (CALL_EXPR, vec_safe_length (args) + 3);
4335 CALL_EXPR_FN (ret) = fn;
4336 CALL_EXPR_STATIC_CHAIN (ret) = NULL_TREE;
4337 FOR_EACH_VEC_SAFE_ELT (args, ix, t)
4338 CALL_EXPR_ARG (ret, ix) = t;
4339 return ret;
4340 }
4341 \f
4342 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
4343 We do NOT enter this node in any sort of symbol table.
4344
4345 LOC is the location of the decl.
4346
4347 layout_decl is used to set up the decl's storage layout.
4348 Other slots are initialized to 0 or null pointers. */
4349
4350 tree
4351 build_decl_stat (location_t loc, enum tree_code code, tree name,
4352 tree type MEM_STAT_DECL)
4353 {
4354 tree t;
4355
4356 t = make_node_stat (code PASS_MEM_STAT);
4357 DECL_SOURCE_LOCATION (t) = loc;
4358
4359 /* if (type == error_mark_node)
4360 type = integer_type_node; */
4361 /* That is not done, deliberately, so that having error_mark_node
4362 as the type can suppress useless errors in the use of this variable. */
4363
4364 DECL_NAME (t) = name;
4365 TREE_TYPE (t) = type;
4366
4367 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
4368 layout_decl (t, 0);
4369
4370 return t;
4371 }
4372
4373 /* Builds and returns function declaration with NAME and TYPE. */
4374
4375 tree
4376 build_fn_decl (const char *name, tree type)
4377 {
4378 tree id = get_identifier (name);
4379 tree decl = build_decl (input_location, FUNCTION_DECL, id, type);
4380
4381 DECL_EXTERNAL (decl) = 1;
4382 TREE_PUBLIC (decl) = 1;
4383 DECL_ARTIFICIAL (decl) = 1;
4384 TREE_NOTHROW (decl) = 1;
4385
4386 return decl;
4387 }
4388
4389 vec<tree, va_gc> *all_translation_units;
4390
4391 /* Builds a new translation-unit decl with name NAME, queues it in the
4392 global list of translation-unit decls and returns it. */
4393
4394 tree
4395 build_translation_unit_decl (tree name)
4396 {
4397 tree tu = build_decl (UNKNOWN_LOCATION, TRANSLATION_UNIT_DECL,
4398 name, NULL_TREE);
4399 TRANSLATION_UNIT_LANGUAGE (tu) = lang_hooks.name;
4400 vec_safe_push (all_translation_units, tu);
4401 return tu;
4402 }
4403
4404 \f
4405 /* BLOCK nodes are used to represent the structure of binding contours
4406 and declarations, once those contours have been exited and their contents
4407 compiled. This information is used for outputting debugging info. */
4408
4409 tree
4410 build_block (tree vars, tree subblocks, tree supercontext, tree chain)
4411 {
4412 tree block = make_node (BLOCK);
4413
4414 BLOCK_VARS (block) = vars;
4415 BLOCK_SUBBLOCKS (block) = subblocks;
4416 BLOCK_SUPERCONTEXT (block) = supercontext;
4417 BLOCK_CHAIN (block) = chain;
4418 return block;
4419 }
4420
4421 \f
4422 /* Like SET_EXPR_LOCATION, but make sure the tree can have a location.
4423
4424 LOC is the location to use in tree T. */
4425
4426 void
4427 protected_set_expr_location (tree t, location_t loc)
4428 {
4429 if (t && CAN_HAVE_LOCATION_P (t))
4430 SET_EXPR_LOCATION (t, loc);
4431 }
4432 \f
4433 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
4434 is ATTRIBUTE. */
4435
4436 tree
4437 build_decl_attribute_variant (tree ddecl, tree attribute)
4438 {
4439 DECL_ATTRIBUTES (ddecl) = attribute;
4440 return ddecl;
4441 }
4442
4443 /* Borrowed from hashtab.c iterative_hash implementation. */
4444 #define mix(a,b,c) \
4445 { \
4446 a -= b; a -= c; a ^= (c>>13); \
4447 b -= c; b -= a; b ^= (a<< 8); \
4448 c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
4449 a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
4450 b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
4451 c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
4452 a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
4453 b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
4454 c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
4455 }
4456
4457
4458 /* Produce good hash value combining VAL and VAL2. */
4459 hashval_t
4460 iterative_hash_hashval_t (hashval_t val, hashval_t val2)
4461 {
4462 /* the golden ratio; an arbitrary value. */
4463 hashval_t a = 0x9e3779b9;
4464
4465 mix (a, val, val2);
4466 return val2;
4467 }
4468
4469 /* Produce good hash value combining VAL and VAL2. */
4470 hashval_t
4471 iterative_hash_host_wide_int (HOST_WIDE_INT val, hashval_t val2)
4472 {
4473 if (sizeof (HOST_WIDE_INT) == sizeof (hashval_t))
4474 return iterative_hash_hashval_t (val, val2);
4475 else
4476 {
4477 hashval_t a = (hashval_t) val;
4478 /* Avoid warnings about shifting of more than the width of the type on
4479 hosts that won't execute this path. */
4480 int zero = 0;
4481 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 8 + zero));
4482 mix (a, b, val2);
4483 if (sizeof (HOST_WIDE_INT) > 2 * sizeof (hashval_t))
4484 {
4485 hashval_t a = (hashval_t) (val >> (sizeof (hashval_t) * 16 + zero));
4486 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 24 + zero));
4487 mix (a, b, val2);
4488 }
4489 return val2;
4490 }
4491 }
4492
4493 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
4494 is ATTRIBUTE and its qualifiers are QUALS.
4495
4496 Record such modified types already made so we don't make duplicates. */
4497
4498 tree
4499 build_type_attribute_qual_variant (tree ttype, tree attribute, int quals)
4500 {
4501 if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
4502 {
4503 hashval_t hashcode = 0;
4504 tree ntype;
4505 enum tree_code code = TREE_CODE (ttype);
4506
4507 /* Building a distinct copy of a tagged type is inappropriate; it
4508 causes breakage in code that expects there to be a one-to-one
4509 relationship between a struct and its fields.
4510 build_duplicate_type is another solution (as used in
4511 handle_transparent_union_attribute), but that doesn't play well
4512 with the stronger C++ type identity model. */
4513 if (TREE_CODE (ttype) == RECORD_TYPE
4514 || TREE_CODE (ttype) == UNION_TYPE
4515 || TREE_CODE (ttype) == QUAL_UNION_TYPE
4516 || TREE_CODE (ttype) == ENUMERAL_TYPE)
4517 {
4518 warning (OPT_Wattributes,
4519 "ignoring attributes applied to %qT after definition",
4520 TYPE_MAIN_VARIANT (ttype));
4521 return build_qualified_type (ttype, quals);
4522 }
4523
4524 ttype = build_qualified_type (ttype, TYPE_UNQUALIFIED);
4525 ntype = build_distinct_type_copy (ttype);
4526
4527 TYPE_ATTRIBUTES (ntype) = attribute;
4528
4529 hashcode = iterative_hash_object (code, hashcode);
4530 if (TREE_TYPE (ntype))
4531 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (ntype)),
4532 hashcode);
4533 hashcode = attribute_hash_list (attribute, hashcode);
4534
4535 switch (TREE_CODE (ntype))
4536 {
4537 case FUNCTION_TYPE:
4538 hashcode = type_hash_list (TYPE_ARG_TYPES (ntype), hashcode);
4539 break;
4540 case ARRAY_TYPE:
4541 if (TYPE_DOMAIN (ntype))
4542 hashcode = iterative_hash_object (TYPE_HASH (TYPE_DOMAIN (ntype)),
4543 hashcode);
4544 break;
4545 case INTEGER_TYPE:
4546 hashcode = iterative_hash_object
4547 (TREE_INT_CST_LOW (TYPE_MAX_VALUE (ntype)), hashcode);
4548 hashcode = iterative_hash_object
4549 (TREE_INT_CST_HIGH (TYPE_MAX_VALUE (ntype)), hashcode);
4550 break;
4551 case REAL_TYPE:
4552 case FIXED_POINT_TYPE:
4553 {
4554 unsigned int precision = TYPE_PRECISION (ntype);
4555 hashcode = iterative_hash_object (precision, hashcode);
4556 }
4557 break;
4558 default:
4559 break;
4560 }
4561
4562 ntype = type_hash_canon (hashcode, ntype);
4563
4564 /* If the target-dependent attributes make NTYPE different from
4565 its canonical type, we will need to use structural equality
4566 checks for this type. */
4567 if (TYPE_STRUCTURAL_EQUALITY_P (ttype)
4568 || !comp_type_attributes (ntype, ttype))
4569 SET_TYPE_STRUCTURAL_EQUALITY (ntype);
4570 else if (TYPE_CANONICAL (ntype) == ntype)
4571 TYPE_CANONICAL (ntype) = TYPE_CANONICAL (ttype);
4572
4573 ttype = build_qualified_type (ntype, quals);
4574 }
4575 else if (TYPE_QUALS (ttype) != quals)
4576 ttype = build_qualified_type (ttype, quals);
4577
4578 return ttype;
4579 }
4580
4581 /* Compare two attributes for their value identity. Return true if the
4582 attribute values are known to be equal; otherwise return false.
4583 */
4584
4585 static bool
4586 attribute_value_equal (const_tree attr1, const_tree attr2)
4587 {
4588 if (TREE_VALUE (attr1) == TREE_VALUE (attr2))
4589 return true;
4590
4591 if (TREE_VALUE (attr1) != NULL_TREE
4592 && TREE_CODE (TREE_VALUE (attr1)) == TREE_LIST
4593 && TREE_VALUE (attr2) != NULL
4594 && TREE_CODE (TREE_VALUE (attr2)) == TREE_LIST)
4595 return (simple_cst_list_equal (TREE_VALUE (attr1),
4596 TREE_VALUE (attr2)) == 1);
4597
4598 return (simple_cst_equal (TREE_VALUE (attr1), TREE_VALUE (attr2)) == 1);
4599 }
4600
4601 /* Return 0 if the attributes for two types are incompatible, 1 if they
4602 are compatible, and 2 if they are nearly compatible (which causes a
4603 warning to be generated). */
4604 int
4605 comp_type_attributes (const_tree type1, const_tree type2)
4606 {
4607 const_tree a1 = TYPE_ATTRIBUTES (type1);
4608 const_tree a2 = TYPE_ATTRIBUTES (type2);
4609 const_tree a;
4610
4611 if (a1 == a2)
4612 return 1;
4613 for (a = a1; a != NULL_TREE; a = TREE_CHAIN (a))
4614 {
4615 const struct attribute_spec *as;
4616 const_tree attr;
4617
4618 as = lookup_attribute_spec (get_attribute_name (a));
4619 if (!as || as->affects_type_identity == false)
4620 continue;
4621
4622 attr = lookup_attribute (as->name, CONST_CAST_TREE (a2));
4623 if (!attr || !attribute_value_equal (a, attr))
4624 break;
4625 }
4626 if (!a)
4627 {
4628 for (a = a2; a != NULL_TREE; a = TREE_CHAIN (a))
4629 {
4630 const struct attribute_spec *as;
4631
4632 as = lookup_attribute_spec (get_attribute_name (a));
4633 if (!as || as->affects_type_identity == false)
4634 continue;
4635
4636 if (!lookup_attribute (as->name, CONST_CAST_TREE (a1)))
4637 break;
4638 /* We don't need to compare trees again, as we did this
4639 already in first loop. */
4640 }
4641 /* All types - affecting identity - are equal, so
4642 there is no need to call target hook for comparison. */
4643 if (!a)
4644 return 1;
4645 }
4646 /* As some type combinations - like default calling-convention - might
4647 be compatible, we have to call the target hook to get the final result. */
4648 return targetm.comp_type_attributes (type1, type2);
4649 }
4650
4651 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
4652 is ATTRIBUTE.
4653
4654 Record such modified types already made so we don't make duplicates. */
4655
4656 tree
4657 build_type_attribute_variant (tree ttype, tree attribute)
4658 {
4659 return build_type_attribute_qual_variant (ttype, attribute,
4660 TYPE_QUALS (ttype));
4661 }
4662
4663
4664 /* Reset the expression *EXPR_P, a size or position.
4665
4666 ??? We could reset all non-constant sizes or positions. But it's cheap
4667 enough to not do so and refrain from adding workarounds to dwarf2out.c.
4668
4669 We need to reset self-referential sizes or positions because they cannot
4670 be gimplified and thus can contain a CALL_EXPR after the gimplification
4671 is finished, which will run afoul of LTO streaming. And they need to be
4672 reset to something essentially dummy but not constant, so as to preserve
4673 the properties of the object they are attached to. */
4674
4675 static inline void
4676 free_lang_data_in_one_sizepos (tree *expr_p)
4677 {
4678 tree expr = *expr_p;
4679 if (CONTAINS_PLACEHOLDER_P (expr))
4680 *expr_p = build0 (PLACEHOLDER_EXPR, TREE_TYPE (expr));
4681 }
4682
4683
4684 /* Reset all the fields in a binfo node BINFO. We only keep
4685 BINFO_VTABLE, which is used by gimple_fold_obj_type_ref. */
4686
4687 static void
4688 free_lang_data_in_binfo (tree binfo)
4689 {
4690 unsigned i;
4691 tree t;
4692
4693 gcc_assert (TREE_CODE (binfo) == TREE_BINFO);
4694
4695 BINFO_VIRTUALS (binfo) = NULL_TREE;
4696 BINFO_BASE_ACCESSES (binfo) = NULL;
4697 BINFO_INHERITANCE_CHAIN (binfo) = NULL_TREE;
4698 BINFO_SUBVTT_INDEX (binfo) = NULL_TREE;
4699
4700 FOR_EACH_VEC_ELT (*BINFO_BASE_BINFOS (binfo), i, t)
4701 free_lang_data_in_binfo (t);
4702 }
4703
4704
4705 /* Reset all language specific information still present in TYPE. */
4706
4707 static void
4708 free_lang_data_in_type (tree type)
4709 {
4710 gcc_assert (TYPE_P (type));
4711
4712 /* Give the FE a chance to remove its own data first. */
4713 lang_hooks.free_lang_data (type);
4714
4715 TREE_LANG_FLAG_0 (type) = 0;
4716 TREE_LANG_FLAG_1 (type) = 0;
4717 TREE_LANG_FLAG_2 (type) = 0;
4718 TREE_LANG_FLAG_3 (type) = 0;
4719 TREE_LANG_FLAG_4 (type) = 0;
4720 TREE_LANG_FLAG_5 (type) = 0;
4721 TREE_LANG_FLAG_6 (type) = 0;
4722
4723 if (TREE_CODE (type) == FUNCTION_TYPE)
4724 {
4725 /* Remove the const and volatile qualifiers from arguments. The
4726 C++ front end removes them, but the C front end does not,
4727 leading to false ODR violation errors when merging two
4728 instances of the same function signature compiled by
4729 different front ends. */
4730 tree p;
4731
4732 for (p = TYPE_ARG_TYPES (type); p; p = TREE_CHAIN (p))
4733 {
4734 tree arg_type = TREE_VALUE (p);
4735
4736 if (TYPE_READONLY (arg_type) || TYPE_VOLATILE (arg_type))
4737 {
4738 int quals = TYPE_QUALS (arg_type)
4739 & ~TYPE_QUAL_CONST
4740 & ~TYPE_QUAL_VOLATILE;
4741 TREE_VALUE (p) = build_qualified_type (arg_type, quals);
4742 free_lang_data_in_type (TREE_VALUE (p));
4743 }
4744 }
4745 }
4746
4747 /* Remove members that are not actually FIELD_DECLs from the field
4748 list of an aggregate. These occur in C++. */
4749 if (RECORD_OR_UNION_TYPE_P (type))
4750 {
4751 tree prev, member;
4752
4753 /* Note that TYPE_FIELDS can be shared across distinct
4754 TREE_TYPEs. Therefore, if the first field of TYPE_FIELDS is
4755 to be removed, we cannot set its TREE_CHAIN to NULL.
4756 Otherwise, we would not be able to find all the other fields
4757 in the other instances of this TREE_TYPE.
4758
4759 This was causing an ICE in testsuite/g++.dg/lto/20080915.C. */
4760 prev = NULL_TREE;
4761 member = TYPE_FIELDS (type);
4762 while (member)
4763 {
4764 if (TREE_CODE (member) == FIELD_DECL
4765 || TREE_CODE (member) == TYPE_DECL)
4766 {
4767 if (prev)
4768 TREE_CHAIN (prev) = member;
4769 else
4770 TYPE_FIELDS (type) = member;
4771 prev = member;
4772 }
4773
4774 member = TREE_CHAIN (member);
4775 }
4776
4777 if (prev)
4778 TREE_CHAIN (prev) = NULL_TREE;
4779 else
4780 TYPE_FIELDS (type) = NULL_TREE;
4781
4782 TYPE_METHODS (type) = NULL_TREE;
4783 if (TYPE_BINFO (type))
4784 free_lang_data_in_binfo (TYPE_BINFO (type));
4785 }
4786 else
4787 {
4788 /* For non-aggregate types, clear out the language slot (which
4789 overloads TYPE_BINFO). */
4790 TYPE_LANG_SLOT_1 (type) = NULL_TREE;
4791
4792 if (INTEGRAL_TYPE_P (type)
4793 || SCALAR_FLOAT_TYPE_P (type)
4794 || FIXED_POINT_TYPE_P (type))
4795 {
4796 free_lang_data_in_one_sizepos (&TYPE_MIN_VALUE (type));
4797 free_lang_data_in_one_sizepos (&TYPE_MAX_VALUE (type));
4798 }
4799 }
4800
4801 free_lang_data_in_one_sizepos (&TYPE_SIZE (type));
4802 free_lang_data_in_one_sizepos (&TYPE_SIZE_UNIT (type));
4803
4804 if (TYPE_CONTEXT (type)
4805 && TREE_CODE (TYPE_CONTEXT (type)) == BLOCK)
4806 {
4807 tree ctx = TYPE_CONTEXT (type);
4808 do
4809 {
4810 ctx = BLOCK_SUPERCONTEXT (ctx);
4811 }
4812 while (ctx && TREE_CODE (ctx) == BLOCK);
4813 TYPE_CONTEXT (type) = ctx;
4814 }
4815 }
4816
4817
4818 /* Return true if DECL may need an assembler name to be set. */
4819
4820 static inline bool
4821 need_assembler_name_p (tree decl)
4822 {
4823 /* Only FUNCTION_DECLs and VAR_DECLs are considered. */
4824 if (TREE_CODE (decl) != FUNCTION_DECL
4825 && TREE_CODE (decl) != VAR_DECL)
4826 return false;
4827
4828 /* If DECL already has its assembler name set, it does not need a
4829 new one. */
4830 if (!HAS_DECL_ASSEMBLER_NAME_P (decl)
4831 || DECL_ASSEMBLER_NAME_SET_P (decl))
4832 return false;
4833
4834 /* Abstract decls do not need an assembler name. */
4835 if (DECL_ABSTRACT (decl))
4836 return false;
4837
4838 /* For VAR_DECLs, only static, public and external symbols need an
4839 assembler name. */
4840 if (TREE_CODE (decl) == VAR_DECL
4841 && !TREE_STATIC (decl)
4842 && !TREE_PUBLIC (decl)
4843 && !DECL_EXTERNAL (decl))
4844 return false;
4845
4846 if (TREE_CODE (decl) == FUNCTION_DECL)
4847 {
4848 /* Do not set assembler name on builtins. Allow RTL expansion to
4849 decide whether to expand inline or via a regular call. */
4850 if (DECL_BUILT_IN (decl)
4851 && DECL_BUILT_IN_CLASS (decl) != BUILT_IN_FRONTEND)
4852 return false;
4853
4854 /* Functions represented in the callgraph need an assembler name. */
4855 if (cgraph_get_node (decl) != NULL)
4856 return true;
4857
4858 /* Unused and not public functions don't need an assembler name. */
4859 if (!TREE_USED (decl) && !TREE_PUBLIC (decl))
4860 return false;
4861 }
4862
4863 return true;
4864 }
4865
4866
4867 /* Reset all language specific information still present in symbol
4868 DECL. */
4869
4870 static void
4871 free_lang_data_in_decl (tree decl)
4872 {
4873 gcc_assert (DECL_P (decl));
4874
4875 /* Give the FE a chance to remove its own data first. */
4876 lang_hooks.free_lang_data (decl);
4877
4878 TREE_LANG_FLAG_0 (decl) = 0;
4879 TREE_LANG_FLAG_1 (decl) = 0;
4880 TREE_LANG_FLAG_2 (decl) = 0;
4881 TREE_LANG_FLAG_3 (decl) = 0;
4882 TREE_LANG_FLAG_4 (decl) = 0;
4883 TREE_LANG_FLAG_5 (decl) = 0;
4884 TREE_LANG_FLAG_6 (decl) = 0;
4885
4886 free_lang_data_in_one_sizepos (&DECL_SIZE (decl));
4887 free_lang_data_in_one_sizepos (&DECL_SIZE_UNIT (decl));
4888 if (TREE_CODE (decl) == FIELD_DECL)
4889 {
4890 free_lang_data_in_one_sizepos (&DECL_FIELD_OFFSET (decl));
4891 if (TREE_CODE (DECL_CONTEXT (decl)) == QUAL_UNION_TYPE)
4892 DECL_QUALIFIER (decl) = NULL_TREE;
4893 }
4894
4895 if (TREE_CODE (decl) == FUNCTION_DECL)
4896 {
4897 struct cgraph_node *node;
4898 if (!(node = cgraph_get_node (decl))
4899 || (!node->symbol.definition && !node->clones))
4900 {
4901 if (node)
4902 cgraph_release_function_body (node);
4903 else
4904 {
4905 release_function_body (decl);
4906 DECL_ARGUMENTS (decl) = NULL;
4907 DECL_RESULT (decl) = NULL;
4908 DECL_INITIAL (decl) = error_mark_node;
4909 }
4910 }
4911 if (gimple_has_body_p (decl))
4912 {
4913 tree t;
4914
4915 /* If DECL has a gimple body, then the context for its
4916 arguments must be DECL. Otherwise, it doesn't really
4917 matter, as we will not be emitting any code for DECL. In
4918 general, there may be other instances of DECL created by
4919 the front end and since PARM_DECLs are generally shared,
4920 their DECL_CONTEXT changes as the replicas of DECL are
4921 created. The only time where DECL_CONTEXT is important
4922 is for the FUNCTION_DECLs that have a gimple body (since
4923 the PARM_DECL will be used in the function's body). */
4924 for (t = DECL_ARGUMENTS (decl); t; t = TREE_CHAIN (t))
4925 DECL_CONTEXT (t) = decl;
4926 }
4927
4928 /* DECL_SAVED_TREE holds the GENERIC representation for DECL.
4929 At this point, it is not needed anymore. */
4930 DECL_SAVED_TREE (decl) = NULL_TREE;
4931
4932 /* Clear the abstract origin if it refers to a method. Otherwise
4933 dwarf2out.c will ICE as we clear TYPE_METHODS and thus the
4934 origin will not be output correctly. */
4935 if (DECL_ABSTRACT_ORIGIN (decl)
4936 && DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))
4937 && RECORD_OR_UNION_TYPE_P
4938 (DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))))
4939 DECL_ABSTRACT_ORIGIN (decl) = NULL_TREE;
4940
4941 /* Sometimes the C++ frontend doesn't manage to transform a temporary
4942 DECL_VINDEX referring to itself into a vtable slot number as it
4943 should. Happens with functions that are copied and then forgotten
4944 about. Just clear it, it won't matter anymore. */
4945 if (DECL_VINDEX (decl) && !host_integerp (DECL_VINDEX (decl), 0))
4946 DECL_VINDEX (decl) = NULL_TREE;
4947 }
4948 else if (TREE_CODE (decl) == VAR_DECL)
4949 {
4950 if ((DECL_EXTERNAL (decl)
4951 && (!TREE_STATIC (decl) || !TREE_READONLY (decl)))
4952 || (decl_function_context (decl) && !TREE_STATIC (decl)))
4953 DECL_INITIAL (decl) = NULL_TREE;
4954 }
4955 else if (TREE_CODE (decl) == TYPE_DECL
4956 || TREE_CODE (decl) == FIELD_DECL)
4957 DECL_INITIAL (decl) = NULL_TREE;
4958 else if (TREE_CODE (decl) == TRANSLATION_UNIT_DECL
4959 && DECL_INITIAL (decl)
4960 && TREE_CODE (DECL_INITIAL (decl)) == BLOCK)
4961 {
4962 /* Strip builtins from the translation-unit BLOCK. We still have targets
4963 without builtin_decl_explicit support and also builtins are shared
4964 nodes and thus we can't use TREE_CHAIN in multiple lists. */
4965 tree *nextp = &BLOCK_VARS (DECL_INITIAL (decl));
4966 while (*nextp)
4967 {
4968 tree var = *nextp;
4969 if (TREE_CODE (var) == FUNCTION_DECL
4970 && DECL_BUILT_IN (var))
4971 *nextp = TREE_CHAIN (var);
4972 else
4973 nextp = &TREE_CHAIN (var);
4974 }
4975 }
4976 }
4977
4978
4979 /* Data used when collecting DECLs and TYPEs for language data removal. */
4980
4981 struct free_lang_data_d
4982 {
4983 /* Worklist to avoid excessive recursion. */
4984 vec<tree> worklist;
4985
4986 /* Set of traversed objects. Used to avoid duplicate visits. */
4987 struct pointer_set_t *pset;
4988
4989 /* Array of symbols to process with free_lang_data_in_decl. */
4990 vec<tree> decls;
4991
4992 /* Array of types to process with free_lang_data_in_type. */
4993 vec<tree> types;
4994 };
4995
4996
4997 /* Save all language fields needed to generate proper debug information
4998 for DECL. This saves most fields cleared out by free_lang_data_in_decl. */
4999
5000 static void
5001 save_debug_info_for_decl (tree t)
5002 {
5003 /*struct saved_debug_info_d *sdi;*/
5004
5005 gcc_assert (debug_info_level > DINFO_LEVEL_TERSE && t && DECL_P (t));
5006
5007 /* FIXME. Partial implementation for saving debug info removed. */
5008 }
5009
5010
5011 /* Save all language fields needed to generate proper debug information
5012 for TYPE. This saves most fields cleared out by free_lang_data_in_type. */
5013
5014 static void
5015 save_debug_info_for_type (tree t)
5016 {
5017 /*struct saved_debug_info_d *sdi;*/
5018
5019 gcc_assert (debug_info_level > DINFO_LEVEL_TERSE && t && TYPE_P (t));
5020
5021 /* FIXME. Partial implementation for saving debug info removed. */
5022 }
5023
5024
5025 /* Add type or decl T to one of the list of tree nodes that need their
5026 language data removed. The lists are held inside FLD. */
5027
5028 static void
5029 add_tree_to_fld_list (tree t, struct free_lang_data_d *fld)
5030 {
5031 if (DECL_P (t))
5032 {
5033 fld->decls.safe_push (t);
5034 if (debug_info_level > DINFO_LEVEL_TERSE)
5035 save_debug_info_for_decl (t);
5036 }
5037 else if (TYPE_P (t))
5038 {
5039 fld->types.safe_push (t);
5040 if (debug_info_level > DINFO_LEVEL_TERSE)
5041 save_debug_info_for_type (t);
5042 }
5043 else
5044 gcc_unreachable ();
5045 }
5046
5047 /* Push tree node T into FLD->WORKLIST. */
5048
5049 static inline void
5050 fld_worklist_push (tree t, struct free_lang_data_d *fld)
5051 {
5052 if (t && !is_lang_specific (t) && !pointer_set_contains (fld->pset, t))
5053 fld->worklist.safe_push ((t));
5054 }
5055
5056
5057 /* Operand callback helper for free_lang_data_in_node. *TP is the
5058 subtree operand being considered. */
5059
5060 static tree
5061 find_decls_types_r (tree *tp, int *ws, void *data)
5062 {
5063 tree t = *tp;
5064 struct free_lang_data_d *fld = (struct free_lang_data_d *) data;
5065
5066 if (TREE_CODE (t) == TREE_LIST)
5067 return NULL_TREE;
5068
5069 /* Language specific nodes will be removed, so there is no need
5070 to gather anything under them. */
5071 if (is_lang_specific (t))
5072 {
5073 *ws = 0;
5074 return NULL_TREE;
5075 }
5076
5077 if (DECL_P (t))
5078 {
5079 /* Note that walk_tree does not traverse every possible field in
5080 decls, so we have to do our own traversals here. */
5081 add_tree_to_fld_list (t, fld);
5082
5083 fld_worklist_push (DECL_NAME (t), fld);
5084 fld_worklist_push (DECL_CONTEXT (t), fld);
5085 fld_worklist_push (DECL_SIZE (t), fld);
5086 fld_worklist_push (DECL_SIZE_UNIT (t), fld);
5087
5088 /* We are going to remove everything under DECL_INITIAL for
5089 TYPE_DECLs. No point walking them. */
5090 if (TREE_CODE (t) != TYPE_DECL)
5091 fld_worklist_push (DECL_INITIAL (t), fld);
5092
5093 fld_worklist_push (DECL_ATTRIBUTES (t), fld);
5094 fld_worklist_push (DECL_ABSTRACT_ORIGIN (t), fld);
5095
5096 if (TREE_CODE (t) == FUNCTION_DECL)
5097 {
5098 fld_worklist_push (DECL_ARGUMENTS (t), fld);
5099 fld_worklist_push (DECL_RESULT (t), fld);
5100 }
5101 else if (TREE_CODE (t) == TYPE_DECL)
5102 {
5103 fld_worklist_push (DECL_ARGUMENT_FLD (t), fld);
5104 fld_worklist_push (DECL_VINDEX (t), fld);
5105 fld_worklist_push (DECL_ORIGINAL_TYPE (t), fld);
5106 }
5107 else if (TREE_CODE (t) == FIELD_DECL)
5108 {
5109 fld_worklist_push (DECL_FIELD_OFFSET (t), fld);
5110 fld_worklist_push (DECL_BIT_FIELD_TYPE (t), fld);
5111 fld_worklist_push (DECL_FIELD_BIT_OFFSET (t), fld);
5112 fld_worklist_push (DECL_FCONTEXT (t), fld);
5113 }
5114 else if (TREE_CODE (t) == VAR_DECL)
5115 {
5116 fld_worklist_push (DECL_SECTION_NAME (t), fld);
5117 fld_worklist_push (DECL_COMDAT_GROUP (t), fld);
5118 }
5119
5120 if ((TREE_CODE (t) == VAR_DECL || TREE_CODE (t) == PARM_DECL)
5121 && DECL_HAS_VALUE_EXPR_P (t))
5122 fld_worklist_push (DECL_VALUE_EXPR (t), fld);
5123
5124 if (TREE_CODE (t) != FIELD_DECL
5125 && TREE_CODE (t) != TYPE_DECL)
5126 fld_worklist_push (TREE_CHAIN (t), fld);
5127 *ws = 0;
5128 }
5129 else if (TYPE_P (t))
5130 {
5131 /* Note that walk_tree does not traverse every possible field in
5132 types, so we have to do our own traversals here. */
5133 add_tree_to_fld_list (t, fld);
5134
5135 if (!RECORD_OR_UNION_TYPE_P (t))
5136 fld_worklist_push (TYPE_CACHED_VALUES (t), fld);
5137 fld_worklist_push (TYPE_SIZE (t), fld);
5138 fld_worklist_push (TYPE_SIZE_UNIT (t), fld);
5139 fld_worklist_push (TYPE_ATTRIBUTES (t), fld);
5140 fld_worklist_push (TYPE_POINTER_TO (t), fld);
5141 fld_worklist_push (TYPE_REFERENCE_TO (t), fld);
5142 fld_worklist_push (TYPE_NAME (t), fld);
5143 /* Do not walk TYPE_NEXT_PTR_TO or TYPE_NEXT_REF_TO. We do not stream
5144 them and thus do not and want not to reach unused pointer types
5145 this way. */
5146 if (!POINTER_TYPE_P (t))
5147 fld_worklist_push (TYPE_MINVAL (t), fld);
5148 if (!RECORD_OR_UNION_TYPE_P (t))
5149 fld_worklist_push (TYPE_MAXVAL (t), fld);
5150 fld_worklist_push (TYPE_MAIN_VARIANT (t), fld);
5151 /* Do not walk TYPE_NEXT_VARIANT. We do not stream it and thus
5152 do not and want not to reach unused variants this way. */
5153 if (TYPE_CONTEXT (t))
5154 {
5155 tree ctx = TYPE_CONTEXT (t);
5156 /* We adjust BLOCK TYPE_CONTEXTs to the innermost non-BLOCK one.
5157 So push that instead. */
5158 while (ctx && TREE_CODE (ctx) == BLOCK)
5159 ctx = BLOCK_SUPERCONTEXT (ctx);
5160 fld_worklist_push (ctx, fld);
5161 }
5162 /* Do not walk TYPE_CANONICAL. We do not stream it and thus do not
5163 and want not to reach unused types this way. */
5164
5165 if (RECORD_OR_UNION_TYPE_P (t) && TYPE_BINFO (t))
5166 {
5167 unsigned i;
5168 tree tem;
5169 FOR_EACH_VEC_ELT (*BINFO_BASE_BINFOS (TYPE_BINFO (t)), i, tem)
5170 fld_worklist_push (TREE_TYPE (tem), fld);
5171 tem = BINFO_VIRTUALS (TYPE_BINFO (t));
5172 if (tem
5173 /* The Java FE overloads BINFO_VIRTUALS for its own purpose. */
5174 && TREE_CODE (tem) == TREE_LIST)
5175 do
5176 {
5177 fld_worklist_push (TREE_VALUE (tem), fld);
5178 tem = TREE_CHAIN (tem);
5179 }
5180 while (tem);
5181 }
5182 if (RECORD_OR_UNION_TYPE_P (t))
5183 {
5184 tree tem;
5185 /* Push all TYPE_FIELDS - there can be interleaving interesting
5186 and non-interesting things. */
5187 tem = TYPE_FIELDS (t);
5188 while (tem)
5189 {
5190 if (TREE_CODE (tem) == FIELD_DECL
5191 || TREE_CODE (tem) == TYPE_DECL)
5192 fld_worklist_push (tem, fld);
5193 tem = TREE_CHAIN (tem);
5194 }
5195 }
5196
5197 fld_worklist_push (TYPE_STUB_DECL (t), fld);
5198 *ws = 0;
5199 }
5200 else if (TREE_CODE (t) == BLOCK)
5201 {
5202 tree tem;
5203 for (tem = BLOCK_VARS (t); tem; tem = TREE_CHAIN (tem))
5204 fld_worklist_push (tem, fld);
5205 for (tem = BLOCK_SUBBLOCKS (t); tem; tem = BLOCK_CHAIN (tem))
5206 fld_worklist_push (tem, fld);
5207 fld_worklist_push (BLOCK_ABSTRACT_ORIGIN (t), fld);
5208 }
5209
5210 if (TREE_CODE (t) != IDENTIFIER_NODE
5211 && CODE_CONTAINS_STRUCT (TREE_CODE (t), TS_TYPED))
5212 fld_worklist_push (TREE_TYPE (t), fld);
5213
5214 return NULL_TREE;
5215 }
5216
5217
5218 /* Find decls and types in T. */
5219
5220 static void
5221 find_decls_types (tree t, struct free_lang_data_d *fld)
5222 {
5223 while (1)
5224 {
5225 if (!pointer_set_contains (fld->pset, t))
5226 walk_tree (&t, find_decls_types_r, fld, fld->pset);
5227 if (fld->worklist.is_empty ())
5228 break;
5229 t = fld->worklist.pop ();
5230 }
5231 }
5232
5233 /* Translate all the types in LIST with the corresponding runtime
5234 types. */
5235
5236 static tree
5237 get_eh_types_for_runtime (tree list)
5238 {
5239 tree head, prev;
5240
5241 if (list == NULL_TREE)
5242 return NULL_TREE;
5243
5244 head = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
5245 prev = head;
5246 list = TREE_CHAIN (list);
5247 while (list)
5248 {
5249 tree n = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
5250 TREE_CHAIN (prev) = n;
5251 prev = TREE_CHAIN (prev);
5252 list = TREE_CHAIN (list);
5253 }
5254
5255 return head;
5256 }
5257
5258
5259 /* Find decls and types referenced in EH region R and store them in
5260 FLD->DECLS and FLD->TYPES. */
5261
5262 static void
5263 find_decls_types_in_eh_region (eh_region r, struct free_lang_data_d *fld)
5264 {
5265 switch (r->type)
5266 {
5267 case ERT_CLEANUP:
5268 break;
5269
5270 case ERT_TRY:
5271 {
5272 eh_catch c;
5273
5274 /* The types referenced in each catch must first be changed to the
5275 EH types used at runtime. This removes references to FE types
5276 in the region. */
5277 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
5278 {
5279 c->type_list = get_eh_types_for_runtime (c->type_list);
5280 walk_tree (&c->type_list, find_decls_types_r, fld, fld->pset);
5281 }
5282 }
5283 break;
5284
5285 case ERT_ALLOWED_EXCEPTIONS:
5286 r->u.allowed.type_list
5287 = get_eh_types_for_runtime (r->u.allowed.type_list);
5288 walk_tree (&r->u.allowed.type_list, find_decls_types_r, fld, fld->pset);
5289 break;
5290
5291 case ERT_MUST_NOT_THROW:
5292 walk_tree (&r->u.must_not_throw.failure_decl,
5293 find_decls_types_r, fld, fld->pset);
5294 break;
5295 }
5296 }
5297
5298
5299 /* Find decls and types referenced in cgraph node N and store them in
5300 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
5301 look for *every* kind of DECL and TYPE node reachable from N,
5302 including those embedded inside types and decls (i.e,, TYPE_DECLs,
5303 NAMESPACE_DECLs, etc). */
5304
5305 static void
5306 find_decls_types_in_node (struct cgraph_node *n, struct free_lang_data_d *fld)
5307 {
5308 basic_block bb;
5309 struct function *fn;
5310 unsigned ix;
5311 tree t;
5312
5313 find_decls_types (n->symbol.decl, fld);
5314
5315 if (!gimple_has_body_p (n->symbol.decl))
5316 return;
5317
5318 gcc_assert (current_function_decl == NULL_TREE && cfun == NULL);
5319
5320 fn = DECL_STRUCT_FUNCTION (n->symbol.decl);
5321
5322 /* Traverse locals. */
5323 FOR_EACH_LOCAL_DECL (fn, ix, t)
5324 find_decls_types (t, fld);
5325
5326 /* Traverse EH regions in FN. */
5327 {
5328 eh_region r;
5329 FOR_ALL_EH_REGION_FN (r, fn)
5330 find_decls_types_in_eh_region (r, fld);
5331 }
5332
5333 /* Traverse every statement in FN. */
5334 FOR_EACH_BB_FN (bb, fn)
5335 {
5336 gimple_stmt_iterator si;
5337 unsigned i;
5338
5339 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
5340 {
5341 gimple phi = gsi_stmt (si);
5342
5343 for (i = 0; i < gimple_phi_num_args (phi); i++)
5344 {
5345 tree *arg_p = gimple_phi_arg_def_ptr (phi, i);
5346 find_decls_types (*arg_p, fld);
5347 }
5348 }
5349
5350 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5351 {
5352 gimple stmt = gsi_stmt (si);
5353
5354 if (is_gimple_call (stmt))
5355 find_decls_types (gimple_call_fntype (stmt), fld);
5356
5357 for (i = 0; i < gimple_num_ops (stmt); i++)
5358 {
5359 tree arg = gimple_op (stmt, i);
5360 find_decls_types (arg, fld);
5361 }
5362 }
5363 }
5364 }
5365
5366
5367 /* Find decls and types referenced in varpool node N and store them in
5368 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
5369 look for *every* kind of DECL and TYPE node reachable from N,
5370 including those embedded inside types and decls (i.e,, TYPE_DECLs,
5371 NAMESPACE_DECLs, etc). */
5372
5373 static void
5374 find_decls_types_in_var (struct varpool_node *v, struct free_lang_data_d *fld)
5375 {
5376 find_decls_types (v->symbol.decl, fld);
5377 }
5378
5379 /* If T needs an assembler name, have one created for it. */
5380
5381 void
5382 assign_assembler_name_if_neeeded (tree t)
5383 {
5384 if (need_assembler_name_p (t))
5385 {
5386 /* When setting DECL_ASSEMBLER_NAME, the C++ mangler may emit
5387 diagnostics that use input_location to show locus
5388 information. The problem here is that, at this point,
5389 input_location is generally anchored to the end of the file
5390 (since the parser is long gone), so we don't have a good
5391 position to pin it to.
5392
5393 To alleviate this problem, this uses the location of T's
5394 declaration. Examples of this are
5395 testsuite/g++.dg/template/cond2.C and
5396 testsuite/g++.dg/template/pr35240.C. */
5397 location_t saved_location = input_location;
5398 input_location = DECL_SOURCE_LOCATION (t);
5399
5400 decl_assembler_name (t);
5401
5402 input_location = saved_location;
5403 }
5404 }
5405
5406
5407 /* Free language specific information for every operand and expression
5408 in every node of the call graph. This process operates in three stages:
5409
5410 1- Every callgraph node and varpool node is traversed looking for
5411 decls and types embedded in them. This is a more exhaustive
5412 search than that done by find_referenced_vars, because it will
5413 also collect individual fields, decls embedded in types, etc.
5414
5415 2- All the decls found are sent to free_lang_data_in_decl.
5416
5417 3- All the types found are sent to free_lang_data_in_type.
5418
5419 The ordering between decls and types is important because
5420 free_lang_data_in_decl sets assembler names, which includes
5421 mangling. So types cannot be freed up until assembler names have
5422 been set up. */
5423
5424 static void
5425 free_lang_data_in_cgraph (void)
5426 {
5427 struct cgraph_node *n;
5428 struct varpool_node *v;
5429 struct free_lang_data_d fld;
5430 tree t;
5431 unsigned i;
5432 alias_pair *p;
5433
5434 /* Initialize sets and arrays to store referenced decls and types. */
5435 fld.pset = pointer_set_create ();
5436 fld.worklist.create (0);
5437 fld.decls.create (100);
5438 fld.types.create (100);
5439
5440 /* Find decls and types in the body of every function in the callgraph. */
5441 FOR_EACH_FUNCTION (n)
5442 find_decls_types_in_node (n, &fld);
5443
5444 FOR_EACH_VEC_SAFE_ELT (alias_pairs, i, p)
5445 find_decls_types (p->decl, &fld);
5446
5447 /* Find decls and types in every varpool symbol. */
5448 FOR_EACH_VARIABLE (v)
5449 find_decls_types_in_var (v, &fld);
5450
5451 /* Set the assembler name on every decl found. We need to do this
5452 now because free_lang_data_in_decl will invalidate data needed
5453 for mangling. This breaks mangling on interdependent decls. */
5454 FOR_EACH_VEC_ELT (fld.decls, i, t)
5455 assign_assembler_name_if_neeeded (t);
5456
5457 /* Traverse every decl found freeing its language data. */
5458 FOR_EACH_VEC_ELT (fld.decls, i, t)
5459 free_lang_data_in_decl (t);
5460
5461 /* Traverse every type found freeing its language data. */
5462 FOR_EACH_VEC_ELT (fld.types, i, t)
5463 free_lang_data_in_type (t);
5464
5465 pointer_set_destroy (fld.pset);
5466 fld.worklist.release ();
5467 fld.decls.release ();
5468 fld.types.release ();
5469 }
5470
5471
5472 /* Free resources that are used by FE but are not needed once they are done. */
5473
5474 static unsigned
5475 free_lang_data (void)
5476 {
5477 unsigned i;
5478
5479 /* If we are the LTO frontend we have freed lang-specific data already. */
5480 if (in_lto_p
5481 || !flag_generate_lto)
5482 return 0;
5483
5484 /* Allocate and assign alias sets to the standard integer types
5485 while the slots are still in the way the frontends generated them. */
5486 for (i = 0; i < itk_none; ++i)
5487 if (integer_types[i])
5488 TYPE_ALIAS_SET (integer_types[i]) = get_alias_set (integer_types[i]);
5489
5490 /* Traverse the IL resetting language specific information for
5491 operands, expressions, etc. */
5492 free_lang_data_in_cgraph ();
5493
5494 /* Create gimple variants for common types. */
5495 ptrdiff_type_node = integer_type_node;
5496 fileptr_type_node = ptr_type_node;
5497
5498 /* Reset some langhooks. Do not reset types_compatible_p, it may
5499 still be used indirectly via the get_alias_set langhook. */
5500 lang_hooks.dwarf_name = lhd_dwarf_name;
5501 lang_hooks.decl_printable_name = gimple_decl_printable_name;
5502 /* We do not want the default decl_assembler_name implementation,
5503 rather if we have fixed everything we want a wrapper around it
5504 asserting that all non-local symbols already got their assembler
5505 name and only produce assembler names for local symbols. Or rather
5506 make sure we never call decl_assembler_name on local symbols and
5507 devise a separate, middle-end private scheme for it. */
5508
5509 /* Reset diagnostic machinery. */
5510 tree_diagnostics_defaults (global_dc);
5511
5512 return 0;
5513 }
5514
5515
5516 namespace {
5517
5518 const pass_data pass_data_ipa_free_lang_data =
5519 {
5520 SIMPLE_IPA_PASS, /* type */
5521 "*free_lang_data", /* name */
5522 OPTGROUP_NONE, /* optinfo_flags */
5523 false, /* has_gate */
5524 true, /* has_execute */
5525 TV_IPA_FREE_LANG_DATA, /* tv_id */
5526 0, /* properties_required */
5527 0, /* properties_provided */
5528 0, /* properties_destroyed */
5529 0, /* todo_flags_start */
5530 0, /* todo_flags_finish */
5531 };
5532
5533 class pass_ipa_free_lang_data : public simple_ipa_opt_pass
5534 {
5535 public:
5536 pass_ipa_free_lang_data(gcc::context *ctxt)
5537 : simple_ipa_opt_pass(pass_data_ipa_free_lang_data, ctxt)
5538 {}
5539
5540 /* opt_pass methods: */
5541 unsigned int execute () { return free_lang_data (); }
5542
5543 }; // class pass_ipa_free_lang_data
5544
5545 } // anon namespace
5546
5547 simple_ipa_opt_pass *
5548 make_pass_ipa_free_lang_data (gcc::context *ctxt)
5549 {
5550 return new pass_ipa_free_lang_data (ctxt);
5551 }
5552
5553 /* The backbone of is_attribute_p(). ATTR_LEN is the string length of
5554 ATTR_NAME. Also used internally by remove_attribute(). */
5555 bool
5556 private_is_attribute_p (const char *attr_name, size_t attr_len, const_tree ident)
5557 {
5558 size_t ident_len = IDENTIFIER_LENGTH (ident);
5559
5560 if (ident_len == attr_len)
5561 {
5562 if (strcmp (attr_name, IDENTIFIER_POINTER (ident)) == 0)
5563 return true;
5564 }
5565 else if (ident_len == attr_len + 4)
5566 {
5567 /* There is the possibility that ATTR is 'text' and IDENT is
5568 '__text__'. */
5569 const char *p = IDENTIFIER_POINTER (ident);
5570 if (p[0] == '_' && p[1] == '_'
5571 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
5572 && strncmp (attr_name, p + 2, attr_len) == 0)
5573 return true;
5574 }
5575
5576 return false;
5577 }
5578
5579 /* The backbone of lookup_attribute(). ATTR_LEN is the string length
5580 of ATTR_NAME, and LIST is not NULL_TREE. */
5581 tree
5582 private_lookup_attribute (const char *attr_name, size_t attr_len, tree list)
5583 {
5584 while (list)
5585 {
5586 size_t ident_len = IDENTIFIER_LENGTH (get_attribute_name (list));
5587
5588 if (ident_len == attr_len)
5589 {
5590 if (!strcmp (attr_name,
5591 IDENTIFIER_POINTER (get_attribute_name (list))))
5592 break;
5593 }
5594 /* TODO: If we made sure that attributes were stored in the
5595 canonical form without '__...__' (ie, as in 'text' as opposed
5596 to '__text__') then we could avoid the following case. */
5597 else if (ident_len == attr_len + 4)
5598 {
5599 const char *p = IDENTIFIER_POINTER (get_attribute_name (list));
5600 if (p[0] == '_' && p[1] == '_'
5601 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
5602 && strncmp (attr_name, p + 2, attr_len) == 0)
5603 break;
5604 }
5605 list = TREE_CHAIN (list);
5606 }
5607
5608 return list;
5609 }
5610
5611 /* A variant of lookup_attribute() that can be used with an identifier
5612 as the first argument, and where the identifier can be either
5613 'text' or '__text__'.
5614
5615 Given an attribute ATTR_IDENTIFIER, and a list of attributes LIST,
5616 return a pointer to the attribute's list element if the attribute
5617 is part of the list, or NULL_TREE if not found. If the attribute
5618 appears more than once, this only returns the first occurrence; the
5619 TREE_CHAIN of the return value should be passed back in if further
5620 occurrences are wanted. ATTR_IDENTIFIER must be an identifier but
5621 can be in the form 'text' or '__text__'. */
5622 static tree
5623 lookup_ident_attribute (tree attr_identifier, tree list)
5624 {
5625 gcc_checking_assert (TREE_CODE (attr_identifier) == IDENTIFIER_NODE);
5626
5627 while (list)
5628 {
5629 gcc_checking_assert (TREE_CODE (get_attribute_name (list))
5630 == IDENTIFIER_NODE);
5631
5632 /* Identifiers can be compared directly for equality. */
5633 if (attr_identifier == get_attribute_name (list))
5634 break;
5635
5636 /* If they are not equal, they may still be one in the form
5637 'text' while the other one is in the form '__text__'. TODO:
5638 If we were storing attributes in normalized 'text' form, then
5639 this could all go away and we could take full advantage of
5640 the fact that we're comparing identifiers. :-) */
5641 {
5642 size_t attr_len = IDENTIFIER_LENGTH (attr_identifier);
5643 size_t ident_len = IDENTIFIER_LENGTH (get_attribute_name (list));
5644
5645 if (ident_len == attr_len + 4)
5646 {
5647 const char *p = IDENTIFIER_POINTER (get_attribute_name (list));
5648 const char *q = IDENTIFIER_POINTER (attr_identifier);
5649 if (p[0] == '_' && p[1] == '_'
5650 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
5651 && strncmp (q, p + 2, attr_len) == 0)
5652 break;
5653 }
5654 else if (ident_len + 4 == attr_len)
5655 {
5656 const char *p = IDENTIFIER_POINTER (get_attribute_name (list));
5657 const char *q = IDENTIFIER_POINTER (attr_identifier);
5658 if (q[0] == '_' && q[1] == '_'
5659 && q[attr_len - 2] == '_' && q[attr_len - 1] == '_'
5660 && strncmp (q + 2, p, ident_len) == 0)
5661 break;
5662 }
5663 }
5664 list = TREE_CHAIN (list);
5665 }
5666
5667 return list;
5668 }
5669
5670 /* Remove any instances of attribute ATTR_NAME in LIST and return the
5671 modified list. */
5672
5673 tree
5674 remove_attribute (const char *attr_name, tree list)
5675 {
5676 tree *p;
5677 size_t attr_len = strlen (attr_name);
5678
5679 gcc_checking_assert (attr_name[0] != '_');
5680
5681 for (p = &list; *p; )
5682 {
5683 tree l = *p;
5684 /* TODO: If we were storing attributes in normalized form, here
5685 we could use a simple strcmp(). */
5686 if (private_is_attribute_p (attr_name, attr_len, get_attribute_name (l)))
5687 *p = TREE_CHAIN (l);
5688 else
5689 p = &TREE_CHAIN (l);
5690 }
5691
5692 return list;
5693 }
5694
5695 /* Return an attribute list that is the union of a1 and a2. */
5696
5697 tree
5698 merge_attributes (tree a1, tree a2)
5699 {
5700 tree attributes;
5701
5702 /* Either one unset? Take the set one. */
5703
5704 if ((attributes = a1) == 0)
5705 attributes = a2;
5706
5707 /* One that completely contains the other? Take it. */
5708
5709 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
5710 {
5711 if (attribute_list_contained (a2, a1))
5712 attributes = a2;
5713 else
5714 {
5715 /* Pick the longest list, and hang on the other list. */
5716
5717 if (list_length (a1) < list_length (a2))
5718 attributes = a2, a2 = a1;
5719
5720 for (; a2 != 0; a2 = TREE_CHAIN (a2))
5721 {
5722 tree a;
5723 for (a = lookup_ident_attribute (get_attribute_name (a2),
5724 attributes);
5725 a != NULL_TREE && !attribute_value_equal (a, a2);
5726 a = lookup_ident_attribute (get_attribute_name (a2),
5727 TREE_CHAIN (a)))
5728 ;
5729 if (a == NULL_TREE)
5730 {
5731 a1 = copy_node (a2);
5732 TREE_CHAIN (a1) = attributes;
5733 attributes = a1;
5734 }
5735 }
5736 }
5737 }
5738 return attributes;
5739 }
5740
5741 /* Given types T1 and T2, merge their attributes and return
5742 the result. */
5743
5744 tree
5745 merge_type_attributes (tree t1, tree t2)
5746 {
5747 return merge_attributes (TYPE_ATTRIBUTES (t1),
5748 TYPE_ATTRIBUTES (t2));
5749 }
5750
5751 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
5752 the result. */
5753
5754 tree
5755 merge_decl_attributes (tree olddecl, tree newdecl)
5756 {
5757 return merge_attributes (DECL_ATTRIBUTES (olddecl),
5758 DECL_ATTRIBUTES (newdecl));
5759 }
5760
5761 #if TARGET_DLLIMPORT_DECL_ATTRIBUTES
5762
5763 /* Specialization of merge_decl_attributes for various Windows targets.
5764
5765 This handles the following situation:
5766
5767 __declspec (dllimport) int foo;
5768 int foo;
5769
5770 The second instance of `foo' nullifies the dllimport. */
5771
5772 tree
5773 merge_dllimport_decl_attributes (tree old, tree new_tree)
5774 {
5775 tree a;
5776 int delete_dllimport_p = 1;
5777
5778 /* What we need to do here is remove from `old' dllimport if it doesn't
5779 appear in `new'. dllimport behaves like extern: if a declaration is
5780 marked dllimport and a definition appears later, then the object
5781 is not dllimport'd. We also remove a `new' dllimport if the old list
5782 contains dllexport: dllexport always overrides dllimport, regardless
5783 of the order of declaration. */
5784 if (!VAR_OR_FUNCTION_DECL_P (new_tree))
5785 delete_dllimport_p = 0;
5786 else if (DECL_DLLIMPORT_P (new_tree)
5787 && lookup_attribute ("dllexport", DECL_ATTRIBUTES (old)))
5788 {
5789 DECL_DLLIMPORT_P (new_tree) = 0;
5790 warning (OPT_Wattributes, "%q+D already declared with dllexport attribute: "
5791 "dllimport ignored", new_tree);
5792 }
5793 else if (DECL_DLLIMPORT_P (old) && !DECL_DLLIMPORT_P (new_tree))
5794 {
5795 /* Warn about overriding a symbol that has already been used, e.g.:
5796 extern int __attribute__ ((dllimport)) foo;
5797 int* bar () {return &foo;}
5798 int foo;
5799 */
5800 if (TREE_USED (old))
5801 {
5802 warning (0, "%q+D redeclared without dllimport attribute "
5803 "after being referenced with dll linkage", new_tree);
5804 /* If we have used a variable's address with dllimport linkage,
5805 keep the old DECL_DLLIMPORT_P flag: the ADDR_EXPR using the
5806 decl may already have had TREE_CONSTANT computed.
5807 We still remove the attribute so that assembler code refers
5808 to '&foo rather than '_imp__foo'. */
5809 if (TREE_CODE (old) == VAR_DECL && TREE_ADDRESSABLE (old))
5810 DECL_DLLIMPORT_P (new_tree) = 1;
5811 }
5812
5813 /* Let an inline definition silently override the external reference,
5814 but otherwise warn about attribute inconsistency. */
5815 else if (TREE_CODE (new_tree) == VAR_DECL
5816 || !DECL_DECLARED_INLINE_P (new_tree))
5817 warning (OPT_Wattributes, "%q+D redeclared without dllimport attribute: "
5818 "previous dllimport ignored", new_tree);
5819 }
5820 else
5821 delete_dllimport_p = 0;
5822
5823 a = merge_attributes (DECL_ATTRIBUTES (old), DECL_ATTRIBUTES (new_tree));
5824
5825 if (delete_dllimport_p)
5826 a = remove_attribute ("dllimport", a);
5827
5828 return a;
5829 }
5830
5831 /* Handle a "dllimport" or "dllexport" attribute; arguments as in
5832 struct attribute_spec.handler. */
5833
5834 tree
5835 handle_dll_attribute (tree * pnode, tree name, tree args, int flags,
5836 bool *no_add_attrs)
5837 {
5838 tree node = *pnode;
5839 bool is_dllimport;
5840
5841 /* These attributes may apply to structure and union types being created,
5842 but otherwise should pass to the declaration involved. */
5843 if (!DECL_P (node))
5844 {
5845 if (flags & ((int) ATTR_FLAG_DECL_NEXT | (int) ATTR_FLAG_FUNCTION_NEXT
5846 | (int) ATTR_FLAG_ARRAY_NEXT))
5847 {
5848 *no_add_attrs = true;
5849 return tree_cons (name, args, NULL_TREE);
5850 }
5851 if (TREE_CODE (node) == RECORD_TYPE
5852 || TREE_CODE (node) == UNION_TYPE)
5853 {
5854 node = TYPE_NAME (node);
5855 if (!node)
5856 return NULL_TREE;
5857 }
5858 else
5859 {
5860 warning (OPT_Wattributes, "%qE attribute ignored",
5861 name);
5862 *no_add_attrs = true;
5863 return NULL_TREE;
5864 }
5865 }
5866
5867 if (TREE_CODE (node) != FUNCTION_DECL
5868 && TREE_CODE (node) != VAR_DECL
5869 && TREE_CODE (node) != TYPE_DECL)
5870 {
5871 *no_add_attrs = true;
5872 warning (OPT_Wattributes, "%qE attribute ignored",
5873 name);
5874 return NULL_TREE;
5875 }
5876
5877 if (TREE_CODE (node) == TYPE_DECL
5878 && TREE_CODE (TREE_TYPE (node)) != RECORD_TYPE
5879 && TREE_CODE (TREE_TYPE (node)) != UNION_TYPE)
5880 {
5881 *no_add_attrs = true;
5882 warning (OPT_Wattributes, "%qE attribute ignored",
5883 name);
5884 return NULL_TREE;
5885 }
5886
5887 is_dllimport = is_attribute_p ("dllimport", name);
5888
5889 /* Report error on dllimport ambiguities seen now before they cause
5890 any damage. */
5891 if (is_dllimport)
5892 {
5893 /* Honor any target-specific overrides. */
5894 if (!targetm.valid_dllimport_attribute_p (node))
5895 *no_add_attrs = true;
5896
5897 else if (TREE_CODE (node) == FUNCTION_DECL
5898 && DECL_DECLARED_INLINE_P (node))
5899 {
5900 warning (OPT_Wattributes, "inline function %q+D declared as "
5901 " dllimport: attribute ignored", node);
5902 *no_add_attrs = true;
5903 }
5904 /* Like MS, treat definition of dllimported variables and
5905 non-inlined functions on declaration as syntax errors. */
5906 else if (TREE_CODE (node) == FUNCTION_DECL && DECL_INITIAL (node))
5907 {
5908 error ("function %q+D definition is marked dllimport", node);
5909 *no_add_attrs = true;
5910 }
5911
5912 else if (TREE_CODE (node) == VAR_DECL)
5913 {
5914 if (DECL_INITIAL (node))
5915 {
5916 error ("variable %q+D definition is marked dllimport",
5917 node);
5918 *no_add_attrs = true;
5919 }
5920
5921 /* `extern' needn't be specified with dllimport.
5922 Specify `extern' now and hope for the best. Sigh. */
5923 DECL_EXTERNAL (node) = 1;
5924 /* Also, implicitly give dllimport'd variables declared within
5925 a function global scope, unless declared static. */
5926 if (current_function_decl != NULL_TREE && !TREE_STATIC (node))
5927 TREE_PUBLIC (node) = 1;
5928 }
5929
5930 if (*no_add_attrs == false)
5931 DECL_DLLIMPORT_P (node) = 1;
5932 }
5933 else if (TREE_CODE (node) == FUNCTION_DECL
5934 && DECL_DECLARED_INLINE_P (node)
5935 && flag_keep_inline_dllexport)
5936 /* An exported function, even if inline, must be emitted. */
5937 DECL_EXTERNAL (node) = 0;
5938
5939 /* Report error if symbol is not accessible at global scope. */
5940 if (!TREE_PUBLIC (node)
5941 && (TREE_CODE (node) == VAR_DECL
5942 || TREE_CODE (node) == FUNCTION_DECL))
5943 {
5944 error ("external linkage required for symbol %q+D because of "
5945 "%qE attribute", node, name);
5946 *no_add_attrs = true;
5947 }
5948
5949 /* A dllexport'd entity must have default visibility so that other
5950 program units (shared libraries or the main executable) can see
5951 it. A dllimport'd entity must have default visibility so that
5952 the linker knows that undefined references within this program
5953 unit can be resolved by the dynamic linker. */
5954 if (!*no_add_attrs)
5955 {
5956 if (DECL_VISIBILITY_SPECIFIED (node)
5957 && DECL_VISIBILITY (node) != VISIBILITY_DEFAULT)
5958 error ("%qE implies default visibility, but %qD has already "
5959 "been declared with a different visibility",
5960 name, node);
5961 DECL_VISIBILITY (node) = VISIBILITY_DEFAULT;
5962 DECL_VISIBILITY_SPECIFIED (node) = 1;
5963 }
5964
5965 return NULL_TREE;
5966 }
5967
5968 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
5969 \f
5970 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
5971 of the various TYPE_QUAL values. */
5972
5973 static void
5974 set_type_quals (tree type, int type_quals)
5975 {
5976 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
5977 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
5978 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
5979 TYPE_ADDR_SPACE (type) = DECODE_QUAL_ADDR_SPACE (type_quals);
5980 }
5981
5982 /* Returns true iff CAND is equivalent to BASE with TYPE_QUALS. */
5983
5984 bool
5985 check_qualified_type (const_tree cand, const_tree base, int type_quals)
5986 {
5987 return (TYPE_QUALS (cand) == type_quals
5988 && TYPE_NAME (cand) == TYPE_NAME (base)
5989 /* Apparently this is needed for Objective-C. */
5990 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
5991 /* Check alignment. */
5992 && TYPE_ALIGN (cand) == TYPE_ALIGN (base)
5993 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
5994 TYPE_ATTRIBUTES (base)));
5995 }
5996
5997 /* Returns true iff CAND is equivalent to BASE with ALIGN. */
5998
5999 static bool
6000 check_aligned_type (const_tree cand, const_tree base, unsigned int align)
6001 {
6002 return (TYPE_QUALS (cand) == TYPE_QUALS (base)
6003 && TYPE_NAME (cand) == TYPE_NAME (base)
6004 /* Apparently this is needed for Objective-C. */
6005 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
6006 /* Check alignment. */
6007 && TYPE_ALIGN (cand) == align
6008 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
6009 TYPE_ATTRIBUTES (base)));
6010 }
6011
6012 /* Return a version of the TYPE, qualified as indicated by the
6013 TYPE_QUALS, if one exists. If no qualified version exists yet,
6014 return NULL_TREE. */
6015
6016 tree
6017 get_qualified_type (tree type, int type_quals)
6018 {
6019 tree t;
6020
6021 if (TYPE_QUALS (type) == type_quals)
6022 return type;
6023
6024 /* Search the chain of variants to see if there is already one there just
6025 like the one we need to have. If so, use that existing one. We must
6026 preserve the TYPE_NAME, since there is code that depends on this. */
6027 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
6028 if (check_qualified_type (t, type, type_quals))
6029 return t;
6030
6031 return NULL_TREE;
6032 }
6033
6034 /* Like get_qualified_type, but creates the type if it does not
6035 exist. This function never returns NULL_TREE. */
6036
6037 tree
6038 build_qualified_type (tree type, int type_quals)
6039 {
6040 tree t;
6041
6042 /* See if we already have the appropriate qualified variant. */
6043 t = get_qualified_type (type, type_quals);
6044
6045 /* If not, build it. */
6046 if (!t)
6047 {
6048 t = build_variant_type_copy (type);
6049 set_type_quals (t, type_quals);
6050
6051 if (TYPE_STRUCTURAL_EQUALITY_P (type))
6052 /* Propagate structural equality. */
6053 SET_TYPE_STRUCTURAL_EQUALITY (t);
6054 else if (TYPE_CANONICAL (type) != type)
6055 /* Build the underlying canonical type, since it is different
6056 from TYPE. */
6057 TYPE_CANONICAL (t) = build_qualified_type (TYPE_CANONICAL (type),
6058 type_quals);
6059 else
6060 /* T is its own canonical type. */
6061 TYPE_CANONICAL (t) = t;
6062
6063 }
6064
6065 return t;
6066 }
6067
6068 /* Create a variant of type T with alignment ALIGN. */
6069
6070 tree
6071 build_aligned_type (tree type, unsigned int align)
6072 {
6073 tree t;
6074
6075 if (TYPE_PACKED (type)
6076 || TYPE_ALIGN (type) == align)
6077 return type;
6078
6079 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
6080 if (check_aligned_type (t, type, align))
6081 return t;
6082
6083 t = build_variant_type_copy (type);
6084 TYPE_ALIGN (t) = align;
6085
6086 return t;
6087 }
6088
6089 /* Create a new distinct copy of TYPE. The new type is made its own
6090 MAIN_VARIANT. If TYPE requires structural equality checks, the
6091 resulting type requires structural equality checks; otherwise, its
6092 TYPE_CANONICAL points to itself. */
6093
6094 tree
6095 build_distinct_type_copy (tree type)
6096 {
6097 tree t = copy_node (type);
6098
6099 TYPE_POINTER_TO (t) = 0;
6100 TYPE_REFERENCE_TO (t) = 0;
6101
6102 /* Set the canonical type either to a new equivalence class, or
6103 propagate the need for structural equality checks. */
6104 if (TYPE_STRUCTURAL_EQUALITY_P (type))
6105 SET_TYPE_STRUCTURAL_EQUALITY (t);
6106 else
6107 TYPE_CANONICAL (t) = t;
6108
6109 /* Make it its own variant. */
6110 TYPE_MAIN_VARIANT (t) = t;
6111 TYPE_NEXT_VARIANT (t) = 0;
6112
6113 /* Note that it is now possible for TYPE_MIN_VALUE to be a value
6114 whose TREE_TYPE is not t. This can also happen in the Ada
6115 frontend when using subtypes. */
6116
6117 return t;
6118 }
6119
6120 /* Create a new variant of TYPE, equivalent but distinct. This is so
6121 the caller can modify it. TYPE_CANONICAL for the return type will
6122 be equivalent to TYPE_CANONICAL of TYPE, indicating that the types
6123 are considered equal by the language itself (or that both types
6124 require structural equality checks). */
6125
6126 tree
6127 build_variant_type_copy (tree type)
6128 {
6129 tree t, m = TYPE_MAIN_VARIANT (type);
6130
6131 t = build_distinct_type_copy (type);
6132
6133 /* Since we're building a variant, assume that it is a non-semantic
6134 variant. This also propagates TYPE_STRUCTURAL_EQUALITY_P. */
6135 TYPE_CANONICAL (t) = TYPE_CANONICAL (type);
6136
6137 /* Add the new type to the chain of variants of TYPE. */
6138 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
6139 TYPE_NEXT_VARIANT (m) = t;
6140 TYPE_MAIN_VARIANT (t) = m;
6141
6142 return t;
6143 }
6144 \f
6145 /* Return true if the from tree in both tree maps are equal. */
6146
6147 int
6148 tree_map_base_eq (const void *va, const void *vb)
6149 {
6150 const struct tree_map_base *const a = (const struct tree_map_base *) va,
6151 *const b = (const struct tree_map_base *) vb;
6152 return (a->from == b->from);
6153 }
6154
6155 /* Hash a from tree in a tree_base_map. */
6156
6157 unsigned int
6158 tree_map_base_hash (const void *item)
6159 {
6160 return htab_hash_pointer (((const struct tree_map_base *)item)->from);
6161 }
6162
6163 /* Return true if this tree map structure is marked for garbage collection
6164 purposes. We simply return true if the from tree is marked, so that this
6165 structure goes away when the from tree goes away. */
6166
6167 int
6168 tree_map_base_marked_p (const void *p)
6169 {
6170 return ggc_marked_p (((const struct tree_map_base *) p)->from);
6171 }
6172
6173 /* Hash a from tree in a tree_map. */
6174
6175 unsigned int
6176 tree_map_hash (const void *item)
6177 {
6178 return (((const struct tree_map *) item)->hash);
6179 }
6180
6181 /* Hash a from tree in a tree_decl_map. */
6182
6183 unsigned int
6184 tree_decl_map_hash (const void *item)
6185 {
6186 return DECL_UID (((const struct tree_decl_map *) item)->base.from);
6187 }
6188
6189 /* Return the initialization priority for DECL. */
6190
6191 priority_type
6192 decl_init_priority_lookup (tree decl)
6193 {
6194 struct tree_priority_map *h;
6195 struct tree_map_base in;
6196
6197 gcc_assert (VAR_OR_FUNCTION_DECL_P (decl));
6198 in.from = decl;
6199 h = (struct tree_priority_map *) htab_find (init_priority_for_decl, &in);
6200 return h ? h->init : DEFAULT_INIT_PRIORITY;
6201 }
6202
6203 /* Return the finalization priority for DECL. */
6204
6205 priority_type
6206 decl_fini_priority_lookup (tree decl)
6207 {
6208 struct tree_priority_map *h;
6209 struct tree_map_base in;
6210
6211 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
6212 in.from = decl;
6213 h = (struct tree_priority_map *) htab_find (init_priority_for_decl, &in);
6214 return h ? h->fini : DEFAULT_INIT_PRIORITY;
6215 }
6216
6217 /* Return the initialization and finalization priority information for
6218 DECL. If there is no previous priority information, a freshly
6219 allocated structure is returned. */
6220
6221 static struct tree_priority_map *
6222 decl_priority_info (tree decl)
6223 {
6224 struct tree_priority_map in;
6225 struct tree_priority_map *h;
6226 void **loc;
6227
6228 in.base.from = decl;
6229 loc = htab_find_slot (init_priority_for_decl, &in, INSERT);
6230 h = (struct tree_priority_map *) *loc;
6231 if (!h)
6232 {
6233 h = ggc_alloc_cleared_tree_priority_map ();
6234 *loc = h;
6235 h->base.from = decl;
6236 h->init = DEFAULT_INIT_PRIORITY;
6237 h->fini = DEFAULT_INIT_PRIORITY;
6238 }
6239
6240 return h;
6241 }
6242
6243 /* Set the initialization priority for DECL to PRIORITY. */
6244
6245 void
6246 decl_init_priority_insert (tree decl, priority_type priority)
6247 {
6248 struct tree_priority_map *h;
6249
6250 gcc_assert (VAR_OR_FUNCTION_DECL_P (decl));
6251 if (priority == DEFAULT_INIT_PRIORITY)
6252 return;
6253 h = decl_priority_info (decl);
6254 h->init = priority;
6255 }
6256
6257 /* Set the finalization priority for DECL to PRIORITY. */
6258
6259 void
6260 decl_fini_priority_insert (tree decl, priority_type priority)
6261 {
6262 struct tree_priority_map *h;
6263
6264 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
6265 if (priority == DEFAULT_INIT_PRIORITY)
6266 return;
6267 h = decl_priority_info (decl);
6268 h->fini = priority;
6269 }
6270
6271 /* Print out the statistics for the DECL_DEBUG_EXPR hash table. */
6272
6273 static void
6274 print_debug_expr_statistics (void)
6275 {
6276 fprintf (stderr, "DECL_DEBUG_EXPR hash: size %ld, %ld elements, %f collisions\n",
6277 (long) htab_size (debug_expr_for_decl),
6278 (long) htab_elements (debug_expr_for_decl),
6279 htab_collisions (debug_expr_for_decl));
6280 }
6281
6282 /* Print out the statistics for the DECL_VALUE_EXPR hash table. */
6283
6284 static void
6285 print_value_expr_statistics (void)
6286 {
6287 fprintf (stderr, "DECL_VALUE_EXPR hash: size %ld, %ld elements, %f collisions\n",
6288 (long) htab_size (value_expr_for_decl),
6289 (long) htab_elements (value_expr_for_decl),
6290 htab_collisions (value_expr_for_decl));
6291 }
6292
6293 /* Lookup a debug expression for FROM, and return it if we find one. */
6294
6295 tree
6296 decl_debug_expr_lookup (tree from)
6297 {
6298 struct tree_decl_map *h, in;
6299 in.base.from = from;
6300
6301 h = (struct tree_decl_map *)
6302 htab_find_with_hash (debug_expr_for_decl, &in, DECL_UID (from));
6303 if (h)
6304 return h->to;
6305 return NULL_TREE;
6306 }
6307
6308 /* Insert a mapping FROM->TO in the debug expression hashtable. */
6309
6310 void
6311 decl_debug_expr_insert (tree from, tree to)
6312 {
6313 struct tree_decl_map *h;
6314 void **loc;
6315
6316 h = ggc_alloc_tree_decl_map ();
6317 h->base.from = from;
6318 h->to = to;
6319 loc = htab_find_slot_with_hash (debug_expr_for_decl, h, DECL_UID (from),
6320 INSERT);
6321 *(struct tree_decl_map **) loc = h;
6322 }
6323
6324 /* Lookup a value expression for FROM, and return it if we find one. */
6325
6326 tree
6327 decl_value_expr_lookup (tree from)
6328 {
6329 struct tree_decl_map *h, in;
6330 in.base.from = from;
6331
6332 h = (struct tree_decl_map *)
6333 htab_find_with_hash (value_expr_for_decl, &in, DECL_UID (from));
6334 if (h)
6335 return h->to;
6336 return NULL_TREE;
6337 }
6338
6339 /* Insert a mapping FROM->TO in the value expression hashtable. */
6340
6341 void
6342 decl_value_expr_insert (tree from, tree to)
6343 {
6344 struct tree_decl_map *h;
6345 void **loc;
6346
6347 h = ggc_alloc_tree_decl_map ();
6348 h->base.from = from;
6349 h->to = to;
6350 loc = htab_find_slot_with_hash (value_expr_for_decl, h, DECL_UID (from),
6351 INSERT);
6352 *(struct tree_decl_map **) loc = h;
6353 }
6354
6355 /* Lookup a vector of debug arguments for FROM, and return it if we
6356 find one. */
6357
6358 vec<tree, va_gc> **
6359 decl_debug_args_lookup (tree from)
6360 {
6361 struct tree_vec_map *h, in;
6362
6363 if (!DECL_HAS_DEBUG_ARGS_P (from))
6364 return NULL;
6365 gcc_checking_assert (debug_args_for_decl != NULL);
6366 in.base.from = from;
6367 h = (struct tree_vec_map *)
6368 htab_find_with_hash (debug_args_for_decl, &in, DECL_UID (from));
6369 if (h)
6370 return &h->to;
6371 return NULL;
6372 }
6373
6374 /* Insert a mapping FROM->empty vector of debug arguments in the value
6375 expression hashtable. */
6376
6377 vec<tree, va_gc> **
6378 decl_debug_args_insert (tree from)
6379 {
6380 struct tree_vec_map *h;
6381 void **loc;
6382
6383 if (DECL_HAS_DEBUG_ARGS_P (from))
6384 return decl_debug_args_lookup (from);
6385 if (debug_args_for_decl == NULL)
6386 debug_args_for_decl = htab_create_ggc (64, tree_vec_map_hash,
6387 tree_vec_map_eq, 0);
6388 h = ggc_alloc_tree_vec_map ();
6389 h->base.from = from;
6390 h->to = NULL;
6391 loc = htab_find_slot_with_hash (debug_args_for_decl, h, DECL_UID (from),
6392 INSERT);
6393 *(struct tree_vec_map **) loc = h;
6394 DECL_HAS_DEBUG_ARGS_P (from) = 1;
6395 return &h->to;
6396 }
6397
6398 /* Hashing of types so that we don't make duplicates.
6399 The entry point is `type_hash_canon'. */
6400
6401 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
6402 with types in the TREE_VALUE slots), by adding the hash codes
6403 of the individual types. */
6404
6405 static unsigned int
6406 type_hash_list (const_tree list, hashval_t hashcode)
6407 {
6408 const_tree tail;
6409
6410 for (tail = list; tail; tail = TREE_CHAIN (tail))
6411 if (TREE_VALUE (tail) != error_mark_node)
6412 hashcode = iterative_hash_object (TYPE_HASH (TREE_VALUE (tail)),
6413 hashcode);
6414
6415 return hashcode;
6416 }
6417
6418 /* These are the Hashtable callback functions. */
6419
6420 /* Returns true iff the types are equivalent. */
6421
6422 static int
6423 type_hash_eq (const void *va, const void *vb)
6424 {
6425 const struct type_hash *const a = (const struct type_hash *) va,
6426 *const b = (const struct type_hash *) vb;
6427
6428 /* First test the things that are the same for all types. */
6429 if (a->hash != b->hash
6430 || TREE_CODE (a->type) != TREE_CODE (b->type)
6431 || TREE_TYPE (a->type) != TREE_TYPE (b->type)
6432 || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
6433 TYPE_ATTRIBUTES (b->type))
6434 || (TREE_CODE (a->type) != COMPLEX_TYPE
6435 && TYPE_NAME (a->type) != TYPE_NAME (b->type)))
6436 return 0;
6437
6438 /* Be careful about comparing arrays before and after the element type
6439 has been completed; don't compare TYPE_ALIGN unless both types are
6440 complete. */
6441 if (COMPLETE_TYPE_P (a->type) && COMPLETE_TYPE_P (b->type)
6442 && (TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
6443 || TYPE_MODE (a->type) != TYPE_MODE (b->type)))
6444 return 0;
6445
6446 switch (TREE_CODE (a->type))
6447 {
6448 case VOID_TYPE:
6449 case COMPLEX_TYPE:
6450 case POINTER_TYPE:
6451 case REFERENCE_TYPE:
6452 case NULLPTR_TYPE:
6453 return 1;
6454
6455 case VECTOR_TYPE:
6456 return TYPE_VECTOR_SUBPARTS (a->type) == TYPE_VECTOR_SUBPARTS (b->type);
6457
6458 case ENUMERAL_TYPE:
6459 if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
6460 && !(TYPE_VALUES (a->type)
6461 && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
6462 && TYPE_VALUES (b->type)
6463 && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
6464 && type_list_equal (TYPE_VALUES (a->type),
6465 TYPE_VALUES (b->type))))
6466 return 0;
6467
6468 /* ... fall through ... */
6469
6470 case INTEGER_TYPE:
6471 case REAL_TYPE:
6472 case BOOLEAN_TYPE:
6473 return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
6474 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
6475 TYPE_MAX_VALUE (b->type)))
6476 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
6477 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
6478 TYPE_MIN_VALUE (b->type))));
6479
6480 case FIXED_POINT_TYPE:
6481 return TYPE_SATURATING (a->type) == TYPE_SATURATING (b->type);
6482
6483 case OFFSET_TYPE:
6484 return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
6485
6486 case METHOD_TYPE:
6487 if (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
6488 && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
6489 || (TYPE_ARG_TYPES (a->type)
6490 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
6491 && TYPE_ARG_TYPES (b->type)
6492 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
6493 && type_list_equal (TYPE_ARG_TYPES (a->type),
6494 TYPE_ARG_TYPES (b->type)))))
6495 break;
6496 return 0;
6497 case ARRAY_TYPE:
6498 return TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type);
6499
6500 case RECORD_TYPE:
6501 case UNION_TYPE:
6502 case QUAL_UNION_TYPE:
6503 return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
6504 || (TYPE_FIELDS (a->type)
6505 && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
6506 && TYPE_FIELDS (b->type)
6507 && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
6508 && type_list_equal (TYPE_FIELDS (a->type),
6509 TYPE_FIELDS (b->type))));
6510
6511 case FUNCTION_TYPE:
6512 if (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
6513 || (TYPE_ARG_TYPES (a->type)
6514 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
6515 && TYPE_ARG_TYPES (b->type)
6516 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
6517 && type_list_equal (TYPE_ARG_TYPES (a->type),
6518 TYPE_ARG_TYPES (b->type))))
6519 break;
6520 return 0;
6521
6522 default:
6523 return 0;
6524 }
6525
6526 if (lang_hooks.types.type_hash_eq != NULL)
6527 return lang_hooks.types.type_hash_eq (a->type, b->type);
6528
6529 return 1;
6530 }
6531
6532 /* Return the cached hash value. */
6533
6534 static hashval_t
6535 type_hash_hash (const void *item)
6536 {
6537 return ((const struct type_hash *) item)->hash;
6538 }
6539
6540 /* Look in the type hash table for a type isomorphic to TYPE.
6541 If one is found, return it. Otherwise return 0. */
6542
6543 static tree
6544 type_hash_lookup (hashval_t hashcode, tree type)
6545 {
6546 struct type_hash *h, in;
6547
6548 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
6549 must call that routine before comparing TYPE_ALIGNs. */
6550 layout_type (type);
6551
6552 in.hash = hashcode;
6553 in.type = type;
6554
6555 h = (struct type_hash *) htab_find_with_hash (type_hash_table, &in,
6556 hashcode);
6557 if (h)
6558 return h->type;
6559 return NULL_TREE;
6560 }
6561
6562 /* Add an entry to the type-hash-table
6563 for a type TYPE whose hash code is HASHCODE. */
6564
6565 static void
6566 type_hash_add (hashval_t hashcode, tree type)
6567 {
6568 struct type_hash *h;
6569 void **loc;
6570
6571 h = ggc_alloc_type_hash ();
6572 h->hash = hashcode;
6573 h->type = type;
6574 loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
6575 *loc = (void *)h;
6576 }
6577
6578 /* Given TYPE, and HASHCODE its hash code, return the canonical
6579 object for an identical type if one already exists.
6580 Otherwise, return TYPE, and record it as the canonical object.
6581
6582 To use this function, first create a type of the sort you want.
6583 Then compute its hash code from the fields of the type that
6584 make it different from other similar types.
6585 Then call this function and use the value. */
6586
6587 tree
6588 type_hash_canon (unsigned int hashcode, tree type)
6589 {
6590 tree t1;
6591
6592 /* The hash table only contains main variants, so ensure that's what we're
6593 being passed. */
6594 gcc_assert (TYPE_MAIN_VARIANT (type) == type);
6595
6596 /* See if the type is in the hash table already. If so, return it.
6597 Otherwise, add the type. */
6598 t1 = type_hash_lookup (hashcode, type);
6599 if (t1 != 0)
6600 {
6601 if (GATHER_STATISTICS)
6602 {
6603 tree_code_counts[(int) TREE_CODE (type)]--;
6604 tree_node_counts[(int) t_kind]--;
6605 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type_non_common);
6606 }
6607 return t1;
6608 }
6609 else
6610 {
6611 type_hash_add (hashcode, type);
6612 return type;
6613 }
6614 }
6615
6616 /* See if the data pointed to by the type hash table is marked. We consider
6617 it marked if the type is marked or if a debug type number or symbol
6618 table entry has been made for the type. */
6619
6620 static int
6621 type_hash_marked_p (const void *p)
6622 {
6623 const_tree const type = ((const struct type_hash *) p)->type;
6624
6625 return ggc_marked_p (type);
6626 }
6627
6628 static void
6629 print_type_hash_statistics (void)
6630 {
6631 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
6632 (long) htab_size (type_hash_table),
6633 (long) htab_elements (type_hash_table),
6634 htab_collisions (type_hash_table));
6635 }
6636
6637 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
6638 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
6639 by adding the hash codes of the individual attributes. */
6640
6641 static unsigned int
6642 attribute_hash_list (const_tree list, hashval_t hashcode)
6643 {
6644 const_tree tail;
6645
6646 for (tail = list; tail; tail = TREE_CHAIN (tail))
6647 /* ??? Do we want to add in TREE_VALUE too? */
6648 hashcode = iterative_hash_object
6649 (IDENTIFIER_HASH_VALUE (get_attribute_name (tail)), hashcode);
6650 return hashcode;
6651 }
6652
6653 /* Given two lists of attributes, return true if list l2 is
6654 equivalent to l1. */
6655
6656 int
6657 attribute_list_equal (const_tree l1, const_tree l2)
6658 {
6659 if (l1 == l2)
6660 return 1;
6661
6662 return attribute_list_contained (l1, l2)
6663 && attribute_list_contained (l2, l1);
6664 }
6665
6666 /* Given two lists of attributes, return true if list L2 is
6667 completely contained within L1. */
6668 /* ??? This would be faster if attribute names were stored in a canonicalized
6669 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
6670 must be used to show these elements are equivalent (which they are). */
6671 /* ??? It's not clear that attributes with arguments will always be handled
6672 correctly. */
6673
6674 int
6675 attribute_list_contained (const_tree l1, const_tree l2)
6676 {
6677 const_tree t1, t2;
6678
6679 /* First check the obvious, maybe the lists are identical. */
6680 if (l1 == l2)
6681 return 1;
6682
6683 /* Maybe the lists are similar. */
6684 for (t1 = l1, t2 = l2;
6685 t1 != 0 && t2 != 0
6686 && get_attribute_name (t1) == get_attribute_name (t2)
6687 && TREE_VALUE (t1) == TREE_VALUE (t2);
6688 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
6689 ;
6690
6691 /* Maybe the lists are equal. */
6692 if (t1 == 0 && t2 == 0)
6693 return 1;
6694
6695 for (; t2 != 0; t2 = TREE_CHAIN (t2))
6696 {
6697 const_tree attr;
6698 /* This CONST_CAST is okay because lookup_attribute does not
6699 modify its argument and the return value is assigned to a
6700 const_tree. */
6701 for (attr = lookup_ident_attribute (get_attribute_name (t2), CONST_CAST_TREE(l1));
6702 attr != NULL_TREE && !attribute_value_equal (t2, attr);
6703 attr = lookup_ident_attribute (get_attribute_name (t2), TREE_CHAIN (attr)))
6704 ;
6705
6706 if (attr == NULL_TREE)
6707 return 0;
6708 }
6709
6710 return 1;
6711 }
6712
6713 /* Given two lists of types
6714 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
6715 return 1 if the lists contain the same types in the same order.
6716 Also, the TREE_PURPOSEs must match. */
6717
6718 int
6719 type_list_equal (const_tree l1, const_tree l2)
6720 {
6721 const_tree t1, t2;
6722
6723 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
6724 if (TREE_VALUE (t1) != TREE_VALUE (t2)
6725 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
6726 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
6727 && (TREE_TYPE (TREE_PURPOSE (t1))
6728 == TREE_TYPE (TREE_PURPOSE (t2))))))
6729 return 0;
6730
6731 return t1 == t2;
6732 }
6733
6734 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
6735 given by TYPE. If the argument list accepts variable arguments,
6736 then this function counts only the ordinary arguments. */
6737
6738 int
6739 type_num_arguments (const_tree type)
6740 {
6741 int i = 0;
6742 tree t;
6743
6744 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
6745 /* If the function does not take a variable number of arguments,
6746 the last element in the list will have type `void'. */
6747 if (VOID_TYPE_P (TREE_VALUE (t)))
6748 break;
6749 else
6750 ++i;
6751
6752 return i;
6753 }
6754
6755 /* Nonzero if integer constants T1 and T2
6756 represent the same constant value. */
6757
6758 int
6759 tree_int_cst_equal (const_tree t1, const_tree t2)
6760 {
6761 if (t1 == t2)
6762 return 1;
6763
6764 if (t1 == 0 || t2 == 0)
6765 return 0;
6766
6767 if (TREE_CODE (t1) == INTEGER_CST
6768 && TREE_CODE (t2) == INTEGER_CST
6769 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
6770 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
6771 return 1;
6772
6773 return 0;
6774 }
6775
6776 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
6777 The precise way of comparison depends on their data type. */
6778
6779 int
6780 tree_int_cst_lt (const_tree t1, const_tree t2)
6781 {
6782 if (t1 == t2)
6783 return 0;
6784
6785 if (TYPE_UNSIGNED (TREE_TYPE (t1)) != TYPE_UNSIGNED (TREE_TYPE (t2)))
6786 {
6787 int t1_sgn = tree_int_cst_sgn (t1);
6788 int t2_sgn = tree_int_cst_sgn (t2);
6789
6790 if (t1_sgn < t2_sgn)
6791 return 1;
6792 else if (t1_sgn > t2_sgn)
6793 return 0;
6794 /* Otherwise, both are non-negative, so we compare them as
6795 unsigned just in case one of them would overflow a signed
6796 type. */
6797 }
6798 else if (!TYPE_UNSIGNED (TREE_TYPE (t1)))
6799 return INT_CST_LT (t1, t2);
6800
6801 return INT_CST_LT_UNSIGNED (t1, t2);
6802 }
6803
6804 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
6805
6806 int
6807 tree_int_cst_compare (const_tree t1, const_tree t2)
6808 {
6809 if (tree_int_cst_lt (t1, t2))
6810 return -1;
6811 else if (tree_int_cst_lt (t2, t1))
6812 return 1;
6813 else
6814 return 0;
6815 }
6816
6817 /* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
6818 the host. If POS is zero, the value can be represented in a single
6819 HOST_WIDE_INT. If POS is nonzero, the value must be non-negative and can
6820 be represented in a single unsigned HOST_WIDE_INT. */
6821
6822 int
6823 host_integerp (const_tree t, int pos)
6824 {
6825 if (t == NULL_TREE)
6826 return 0;
6827
6828 return (TREE_CODE (t) == INTEGER_CST
6829 && ((TREE_INT_CST_HIGH (t) == 0
6830 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
6831 || (! pos && TREE_INT_CST_HIGH (t) == -1
6832 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0
6833 && !TYPE_UNSIGNED (TREE_TYPE (t)))
6834 || (pos && TREE_INT_CST_HIGH (t) == 0)));
6835 }
6836
6837 /* Return the HOST_WIDE_INT least significant bits of T if it is an
6838 INTEGER_CST and there is no overflow. POS is nonzero if the result must
6839 be non-negative. We must be able to satisfy the above conditions. */
6840
6841 HOST_WIDE_INT
6842 tree_low_cst (const_tree t, int pos)
6843 {
6844 gcc_assert (host_integerp (t, pos));
6845 return TREE_INT_CST_LOW (t);
6846 }
6847
6848 /* Return the HOST_WIDE_INT least significant bits of T, a sizetype
6849 kind INTEGER_CST. This makes sure to properly sign-extend the
6850 constant. */
6851
6852 HOST_WIDE_INT
6853 size_low_cst (const_tree t)
6854 {
6855 double_int d = tree_to_double_int (t);
6856 return d.sext (TYPE_PRECISION (TREE_TYPE (t))).low;
6857 }
6858
6859 /* Return the most significant (sign) bit of T. */
6860
6861 int
6862 tree_int_cst_sign_bit (const_tree t)
6863 {
6864 unsigned bitno = TYPE_PRECISION (TREE_TYPE (t)) - 1;
6865 unsigned HOST_WIDE_INT w;
6866
6867 if (bitno < HOST_BITS_PER_WIDE_INT)
6868 w = TREE_INT_CST_LOW (t);
6869 else
6870 {
6871 w = TREE_INT_CST_HIGH (t);
6872 bitno -= HOST_BITS_PER_WIDE_INT;
6873 }
6874
6875 return (w >> bitno) & 1;
6876 }
6877
6878 /* Return an indication of the sign of the integer constant T.
6879 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
6880 Note that -1 will never be returned if T's type is unsigned. */
6881
6882 int
6883 tree_int_cst_sgn (const_tree t)
6884 {
6885 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
6886 return 0;
6887 else if (TYPE_UNSIGNED (TREE_TYPE (t)))
6888 return 1;
6889 else if (TREE_INT_CST_HIGH (t) < 0)
6890 return -1;
6891 else
6892 return 1;
6893 }
6894
6895 /* Return the minimum number of bits needed to represent VALUE in a
6896 signed or unsigned type, UNSIGNEDP says which. */
6897
6898 unsigned int
6899 tree_int_cst_min_precision (tree value, bool unsignedp)
6900 {
6901 /* If the value is negative, compute its negative minus 1. The latter
6902 adjustment is because the absolute value of the largest negative value
6903 is one larger than the largest positive value. This is equivalent to
6904 a bit-wise negation, so use that operation instead. */
6905
6906 if (tree_int_cst_sgn (value) < 0)
6907 value = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (value), value);
6908
6909 /* Return the number of bits needed, taking into account the fact
6910 that we need one more bit for a signed than unsigned type.
6911 If value is 0 or -1, the minimum precision is 1 no matter
6912 whether unsignedp is true or false. */
6913
6914 if (integer_zerop (value))
6915 return 1;
6916 else
6917 return tree_floor_log2 (value) + 1 + !unsignedp;
6918 }
6919
6920 /* Compare two constructor-element-type constants. Return 1 if the lists
6921 are known to be equal; otherwise return 0. */
6922
6923 int
6924 simple_cst_list_equal (const_tree l1, const_tree l2)
6925 {
6926 while (l1 != NULL_TREE && l2 != NULL_TREE)
6927 {
6928 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
6929 return 0;
6930
6931 l1 = TREE_CHAIN (l1);
6932 l2 = TREE_CHAIN (l2);
6933 }
6934
6935 return l1 == l2;
6936 }
6937
6938 /* Return truthvalue of whether T1 is the same tree structure as T2.
6939 Return 1 if they are the same.
6940 Return 0 if they are understandably different.
6941 Return -1 if either contains tree structure not understood by
6942 this function. */
6943
6944 int
6945 simple_cst_equal (const_tree t1, const_tree t2)
6946 {
6947 enum tree_code code1, code2;
6948 int cmp;
6949 int i;
6950
6951 if (t1 == t2)
6952 return 1;
6953 if (t1 == 0 || t2 == 0)
6954 return 0;
6955
6956 code1 = TREE_CODE (t1);
6957 code2 = TREE_CODE (t2);
6958
6959 if (CONVERT_EXPR_CODE_P (code1) || code1 == NON_LVALUE_EXPR)
6960 {
6961 if (CONVERT_EXPR_CODE_P (code2)
6962 || code2 == NON_LVALUE_EXPR)
6963 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6964 else
6965 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
6966 }
6967
6968 else if (CONVERT_EXPR_CODE_P (code2)
6969 || code2 == NON_LVALUE_EXPR)
6970 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
6971
6972 if (code1 != code2)
6973 return 0;
6974
6975 switch (code1)
6976 {
6977 case INTEGER_CST:
6978 return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
6979 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
6980
6981 case REAL_CST:
6982 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
6983
6984 case FIXED_CST:
6985 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1), TREE_FIXED_CST (t2));
6986
6987 case STRING_CST:
6988 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
6989 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
6990 TREE_STRING_LENGTH (t1)));
6991
6992 case CONSTRUCTOR:
6993 {
6994 unsigned HOST_WIDE_INT idx;
6995 vec<constructor_elt, va_gc> *v1 = CONSTRUCTOR_ELTS (t1);
6996 vec<constructor_elt, va_gc> *v2 = CONSTRUCTOR_ELTS (t2);
6997
6998 if (vec_safe_length (v1) != vec_safe_length (v2))
6999 return false;
7000
7001 for (idx = 0; idx < vec_safe_length (v1); ++idx)
7002 /* ??? Should we handle also fields here? */
7003 if (!simple_cst_equal ((*v1)[idx].value, (*v2)[idx].value))
7004 return false;
7005 return true;
7006 }
7007
7008 case SAVE_EXPR:
7009 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7010
7011 case CALL_EXPR:
7012 cmp = simple_cst_equal (CALL_EXPR_FN (t1), CALL_EXPR_FN (t2));
7013 if (cmp <= 0)
7014 return cmp;
7015 if (call_expr_nargs (t1) != call_expr_nargs (t2))
7016 return 0;
7017 {
7018 const_tree arg1, arg2;
7019 const_call_expr_arg_iterator iter1, iter2;
7020 for (arg1 = first_const_call_expr_arg (t1, &iter1),
7021 arg2 = first_const_call_expr_arg (t2, &iter2);
7022 arg1 && arg2;
7023 arg1 = next_const_call_expr_arg (&iter1),
7024 arg2 = next_const_call_expr_arg (&iter2))
7025 {
7026 cmp = simple_cst_equal (arg1, arg2);
7027 if (cmp <= 0)
7028 return cmp;
7029 }
7030 return arg1 == arg2;
7031 }
7032
7033 case TARGET_EXPR:
7034 /* Special case: if either target is an unallocated VAR_DECL,
7035 it means that it's going to be unified with whatever the
7036 TARGET_EXPR is really supposed to initialize, so treat it
7037 as being equivalent to anything. */
7038 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
7039 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
7040 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
7041 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
7042 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
7043 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
7044 cmp = 1;
7045 else
7046 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7047
7048 if (cmp <= 0)
7049 return cmp;
7050
7051 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
7052
7053 case WITH_CLEANUP_EXPR:
7054 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7055 if (cmp <= 0)
7056 return cmp;
7057
7058 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
7059
7060 case COMPONENT_REF:
7061 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
7062 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7063
7064 return 0;
7065
7066 case VAR_DECL:
7067 case PARM_DECL:
7068 case CONST_DECL:
7069 case FUNCTION_DECL:
7070 return 0;
7071
7072 default:
7073 break;
7074 }
7075
7076 /* This general rule works for most tree codes. All exceptions should be
7077 handled above. If this is a language-specific tree code, we can't
7078 trust what might be in the operand, so say we don't know
7079 the situation. */
7080 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
7081 return -1;
7082
7083 switch (TREE_CODE_CLASS (code1))
7084 {
7085 case tcc_unary:
7086 case tcc_binary:
7087 case tcc_comparison:
7088 case tcc_expression:
7089 case tcc_reference:
7090 case tcc_statement:
7091 cmp = 1;
7092 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
7093 {
7094 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
7095 if (cmp <= 0)
7096 return cmp;
7097 }
7098
7099 return cmp;
7100
7101 default:
7102 return -1;
7103 }
7104 }
7105
7106 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
7107 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
7108 than U, respectively. */
7109
7110 int
7111 compare_tree_int (const_tree t, unsigned HOST_WIDE_INT u)
7112 {
7113 if (tree_int_cst_sgn (t) < 0)
7114 return -1;
7115 else if (TREE_INT_CST_HIGH (t) != 0)
7116 return 1;
7117 else if (TREE_INT_CST_LOW (t) == u)
7118 return 0;
7119 else if (TREE_INT_CST_LOW (t) < u)
7120 return -1;
7121 else
7122 return 1;
7123 }
7124
7125 /* Return true if SIZE represents a constant size that is in bounds of
7126 what the middle-end and the backend accepts (covering not more than
7127 half of the address-space). */
7128
7129 bool
7130 valid_constant_size_p (const_tree size)
7131 {
7132 if (! host_integerp (size, 1)
7133 || TREE_OVERFLOW (size)
7134 || tree_int_cst_sign_bit (size) != 0)
7135 return false;
7136 return true;
7137 }
7138
7139 /* Return the precision of the type, or for a complex or vector type the
7140 precision of the type of its elements. */
7141
7142 unsigned int
7143 element_precision (const_tree type)
7144 {
7145 enum tree_code code = TREE_CODE (type);
7146 if (code == COMPLEX_TYPE || code == VECTOR_TYPE)
7147 type = TREE_TYPE (type);
7148
7149 return TYPE_PRECISION (type);
7150 }
7151
7152 /* Return true if CODE represents an associative tree code. Otherwise
7153 return false. */
7154 bool
7155 associative_tree_code (enum tree_code code)
7156 {
7157 switch (code)
7158 {
7159 case BIT_IOR_EXPR:
7160 case BIT_AND_EXPR:
7161 case BIT_XOR_EXPR:
7162 case PLUS_EXPR:
7163 case MULT_EXPR:
7164 case MIN_EXPR:
7165 case MAX_EXPR:
7166 return true;
7167
7168 default:
7169 break;
7170 }
7171 return false;
7172 }
7173
7174 /* Return true if CODE represents a commutative tree code. Otherwise
7175 return false. */
7176 bool
7177 commutative_tree_code (enum tree_code code)
7178 {
7179 switch (code)
7180 {
7181 case PLUS_EXPR:
7182 case MULT_EXPR:
7183 case MULT_HIGHPART_EXPR:
7184 case MIN_EXPR:
7185 case MAX_EXPR:
7186 case BIT_IOR_EXPR:
7187 case BIT_XOR_EXPR:
7188 case BIT_AND_EXPR:
7189 case NE_EXPR:
7190 case EQ_EXPR:
7191 case UNORDERED_EXPR:
7192 case ORDERED_EXPR:
7193 case UNEQ_EXPR:
7194 case LTGT_EXPR:
7195 case TRUTH_AND_EXPR:
7196 case TRUTH_XOR_EXPR:
7197 case TRUTH_OR_EXPR:
7198 case WIDEN_MULT_EXPR:
7199 case VEC_WIDEN_MULT_HI_EXPR:
7200 case VEC_WIDEN_MULT_LO_EXPR:
7201 case VEC_WIDEN_MULT_EVEN_EXPR:
7202 case VEC_WIDEN_MULT_ODD_EXPR:
7203 return true;
7204
7205 default:
7206 break;
7207 }
7208 return false;
7209 }
7210
7211 /* Return true if CODE represents a ternary tree code for which the
7212 first two operands are commutative. Otherwise return false. */
7213 bool
7214 commutative_ternary_tree_code (enum tree_code code)
7215 {
7216 switch (code)
7217 {
7218 case WIDEN_MULT_PLUS_EXPR:
7219 case WIDEN_MULT_MINUS_EXPR:
7220 return true;
7221
7222 default:
7223 break;
7224 }
7225 return false;
7226 }
7227
7228 /* Generate a hash value for an expression. This can be used iteratively
7229 by passing a previous result as the VAL argument.
7230
7231 This function is intended to produce the same hash for expressions which
7232 would compare equal using operand_equal_p. */
7233
7234 hashval_t
7235 iterative_hash_expr (const_tree t, hashval_t val)
7236 {
7237 int i;
7238 enum tree_code code;
7239 char tclass;
7240
7241 if (t == NULL_TREE)
7242 return iterative_hash_hashval_t (0, val);
7243
7244 code = TREE_CODE (t);
7245
7246 switch (code)
7247 {
7248 /* Alas, constants aren't shared, so we can't rely on pointer
7249 identity. */
7250 case INTEGER_CST:
7251 val = iterative_hash_host_wide_int (TREE_INT_CST_LOW (t), val);
7252 return iterative_hash_host_wide_int (TREE_INT_CST_HIGH (t), val);
7253 case REAL_CST:
7254 {
7255 unsigned int val2 = real_hash (TREE_REAL_CST_PTR (t));
7256
7257 return iterative_hash_hashval_t (val2, val);
7258 }
7259 case FIXED_CST:
7260 {
7261 unsigned int val2 = fixed_hash (TREE_FIXED_CST_PTR (t));
7262
7263 return iterative_hash_hashval_t (val2, val);
7264 }
7265 case STRING_CST:
7266 return iterative_hash (TREE_STRING_POINTER (t),
7267 TREE_STRING_LENGTH (t), val);
7268 case COMPLEX_CST:
7269 val = iterative_hash_expr (TREE_REALPART (t), val);
7270 return iterative_hash_expr (TREE_IMAGPART (t), val);
7271 case VECTOR_CST:
7272 {
7273 unsigned i;
7274 for (i = 0; i < VECTOR_CST_NELTS (t); ++i)
7275 val = iterative_hash_expr (VECTOR_CST_ELT (t, i), val);
7276 return val;
7277 }
7278 case SSA_NAME:
7279 /* We can just compare by pointer. */
7280 return iterative_hash_host_wide_int (SSA_NAME_VERSION (t), val);
7281 case PLACEHOLDER_EXPR:
7282 /* The node itself doesn't matter. */
7283 return val;
7284 case TREE_LIST:
7285 /* A list of expressions, for a CALL_EXPR or as the elements of a
7286 VECTOR_CST. */
7287 for (; t; t = TREE_CHAIN (t))
7288 val = iterative_hash_expr (TREE_VALUE (t), val);
7289 return val;
7290 case CONSTRUCTOR:
7291 {
7292 unsigned HOST_WIDE_INT idx;
7293 tree field, value;
7294 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t), idx, field, value)
7295 {
7296 val = iterative_hash_expr (field, val);
7297 val = iterative_hash_expr (value, val);
7298 }
7299 return val;
7300 }
7301 case MEM_REF:
7302 {
7303 /* The type of the second operand is relevant, except for
7304 its top-level qualifiers. */
7305 tree type = TYPE_MAIN_VARIANT (TREE_TYPE (TREE_OPERAND (t, 1)));
7306
7307 val = iterative_hash_object (TYPE_HASH (type), val);
7308
7309 /* We could use the standard hash computation from this point
7310 on. */
7311 val = iterative_hash_object (code, val);
7312 val = iterative_hash_expr (TREE_OPERAND (t, 1), val);
7313 val = iterative_hash_expr (TREE_OPERAND (t, 0), val);
7314 return val;
7315 }
7316 case FUNCTION_DECL:
7317 /* When referring to a built-in FUNCTION_DECL, use the __builtin__ form.
7318 Otherwise nodes that compare equal according to operand_equal_p might
7319 get different hash codes. However, don't do this for machine specific
7320 or front end builtins, since the function code is overloaded in those
7321 cases. */
7322 if (DECL_BUILT_IN_CLASS (t) == BUILT_IN_NORMAL
7323 && builtin_decl_explicit_p (DECL_FUNCTION_CODE (t)))
7324 {
7325 t = builtin_decl_explicit (DECL_FUNCTION_CODE (t));
7326 code = TREE_CODE (t);
7327 }
7328 /* FALL THROUGH */
7329 default:
7330 tclass = TREE_CODE_CLASS (code);
7331
7332 if (tclass == tcc_declaration)
7333 {
7334 /* DECL's have a unique ID */
7335 val = iterative_hash_host_wide_int (DECL_UID (t), val);
7336 }
7337 else
7338 {
7339 gcc_assert (IS_EXPR_CODE_CLASS (tclass));
7340
7341 val = iterative_hash_object (code, val);
7342
7343 /* Don't hash the type, that can lead to having nodes which
7344 compare equal according to operand_equal_p, but which
7345 have different hash codes. */
7346 if (CONVERT_EXPR_CODE_P (code)
7347 || code == NON_LVALUE_EXPR)
7348 {
7349 /* Make sure to include signness in the hash computation. */
7350 val += TYPE_UNSIGNED (TREE_TYPE (t));
7351 val = iterative_hash_expr (TREE_OPERAND (t, 0), val);
7352 }
7353
7354 else if (commutative_tree_code (code))
7355 {
7356 /* It's a commutative expression. We want to hash it the same
7357 however it appears. We do this by first hashing both operands
7358 and then rehashing based on the order of their independent
7359 hashes. */
7360 hashval_t one = iterative_hash_expr (TREE_OPERAND (t, 0), 0);
7361 hashval_t two = iterative_hash_expr (TREE_OPERAND (t, 1), 0);
7362 hashval_t t;
7363
7364 if (one > two)
7365 t = one, one = two, two = t;
7366
7367 val = iterative_hash_hashval_t (one, val);
7368 val = iterative_hash_hashval_t (two, val);
7369 }
7370 else
7371 for (i = TREE_OPERAND_LENGTH (t) - 1; i >= 0; --i)
7372 val = iterative_hash_expr (TREE_OPERAND (t, i), val);
7373 }
7374 return val;
7375 }
7376 }
7377
7378 /* Generate a hash value for a pair of expressions. This can be used
7379 iteratively by passing a previous result as the VAL argument.
7380
7381 The same hash value is always returned for a given pair of expressions,
7382 regardless of the order in which they are presented. This is useful in
7383 hashing the operands of commutative functions. */
7384
7385 hashval_t
7386 iterative_hash_exprs_commutative (const_tree t1,
7387 const_tree t2, hashval_t val)
7388 {
7389 hashval_t one = iterative_hash_expr (t1, 0);
7390 hashval_t two = iterative_hash_expr (t2, 0);
7391 hashval_t t;
7392
7393 if (one > two)
7394 t = one, one = two, two = t;
7395 val = iterative_hash_hashval_t (one, val);
7396 val = iterative_hash_hashval_t (two, val);
7397
7398 return val;
7399 }
7400 \f
7401 /* Constructors for pointer, array and function types.
7402 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
7403 constructed by language-dependent code, not here.) */
7404
7405 /* Construct, lay out and return the type of pointers to TO_TYPE with
7406 mode MODE. If CAN_ALIAS_ALL is TRUE, indicate this type can
7407 reference all of memory. If such a type has already been
7408 constructed, reuse it. */
7409
7410 tree
7411 build_pointer_type_for_mode (tree to_type, enum machine_mode mode,
7412 bool can_alias_all)
7413 {
7414 tree t;
7415
7416 if (to_type == error_mark_node)
7417 return error_mark_node;
7418
7419 /* If the pointed-to type has the may_alias attribute set, force
7420 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
7421 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
7422 can_alias_all = true;
7423
7424 /* In some cases, languages will have things that aren't a POINTER_TYPE
7425 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
7426 In that case, return that type without regard to the rest of our
7427 operands.
7428
7429 ??? This is a kludge, but consistent with the way this function has
7430 always operated and there doesn't seem to be a good way to avoid this
7431 at the moment. */
7432 if (TYPE_POINTER_TO (to_type) != 0
7433 && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
7434 return TYPE_POINTER_TO (to_type);
7435
7436 /* First, if we already have a type for pointers to TO_TYPE and it's
7437 the proper mode, use it. */
7438 for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
7439 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
7440 return t;
7441
7442 t = make_node (POINTER_TYPE);
7443
7444 TREE_TYPE (t) = to_type;
7445 SET_TYPE_MODE (t, mode);
7446 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
7447 TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
7448 TYPE_POINTER_TO (to_type) = t;
7449
7450 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
7451 SET_TYPE_STRUCTURAL_EQUALITY (t);
7452 else if (TYPE_CANONICAL (to_type) != to_type)
7453 TYPE_CANONICAL (t)
7454 = build_pointer_type_for_mode (TYPE_CANONICAL (to_type),
7455 mode, can_alias_all);
7456
7457 /* Lay out the type. This function has many callers that are concerned
7458 with expression-construction, and this simplifies them all. */
7459 layout_type (t);
7460
7461 return t;
7462 }
7463
7464 /* By default build pointers in ptr_mode. */
7465
7466 tree
7467 build_pointer_type (tree to_type)
7468 {
7469 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
7470 : TYPE_ADDR_SPACE (to_type);
7471 enum machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
7472 return build_pointer_type_for_mode (to_type, pointer_mode, false);
7473 }
7474
7475 /* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE. */
7476
7477 tree
7478 build_reference_type_for_mode (tree to_type, enum machine_mode mode,
7479 bool can_alias_all)
7480 {
7481 tree t;
7482
7483 if (to_type == error_mark_node)
7484 return error_mark_node;
7485
7486 /* If the pointed-to type has the may_alias attribute set, force
7487 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
7488 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
7489 can_alias_all = true;
7490
7491 /* In some cases, languages will have things that aren't a REFERENCE_TYPE
7492 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
7493 In that case, return that type without regard to the rest of our
7494 operands.
7495
7496 ??? This is a kludge, but consistent with the way this function has
7497 always operated and there doesn't seem to be a good way to avoid this
7498 at the moment. */
7499 if (TYPE_REFERENCE_TO (to_type) != 0
7500 && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
7501 return TYPE_REFERENCE_TO (to_type);
7502
7503 /* First, if we already have a type for pointers to TO_TYPE and it's
7504 the proper mode, use it. */
7505 for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
7506 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
7507 return t;
7508
7509 t = make_node (REFERENCE_TYPE);
7510
7511 TREE_TYPE (t) = to_type;
7512 SET_TYPE_MODE (t, mode);
7513 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
7514 TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
7515 TYPE_REFERENCE_TO (to_type) = t;
7516
7517 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
7518 SET_TYPE_STRUCTURAL_EQUALITY (t);
7519 else if (TYPE_CANONICAL (to_type) != to_type)
7520 TYPE_CANONICAL (t)
7521 = build_reference_type_for_mode (TYPE_CANONICAL (to_type),
7522 mode, can_alias_all);
7523
7524 layout_type (t);
7525
7526 return t;
7527 }
7528
7529
7530 /* Build the node for the type of references-to-TO_TYPE by default
7531 in ptr_mode. */
7532
7533 tree
7534 build_reference_type (tree to_type)
7535 {
7536 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
7537 : TYPE_ADDR_SPACE (to_type);
7538 enum machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
7539 return build_reference_type_for_mode (to_type, pointer_mode, false);
7540 }
7541
7542 /* Build a type that is compatible with t but has no cv quals anywhere
7543 in its type, thus
7544
7545 const char *const *const * -> char ***. */
7546
7547 tree
7548 build_type_no_quals (tree t)
7549 {
7550 switch (TREE_CODE (t))
7551 {
7552 case POINTER_TYPE:
7553 return build_pointer_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
7554 TYPE_MODE (t),
7555 TYPE_REF_CAN_ALIAS_ALL (t));
7556 case REFERENCE_TYPE:
7557 return
7558 build_reference_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
7559 TYPE_MODE (t),
7560 TYPE_REF_CAN_ALIAS_ALL (t));
7561 default:
7562 return TYPE_MAIN_VARIANT (t);
7563 }
7564 }
7565
7566 #define MAX_INT_CACHED_PREC \
7567 (HOST_BITS_PER_WIDE_INT > 64 ? HOST_BITS_PER_WIDE_INT : 64)
7568 static GTY(()) tree nonstandard_integer_type_cache[2 * MAX_INT_CACHED_PREC + 2];
7569
7570 /* Builds a signed or unsigned integer type of precision PRECISION.
7571 Used for C bitfields whose precision does not match that of
7572 built-in target types. */
7573 tree
7574 build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
7575 int unsignedp)
7576 {
7577 tree itype, ret;
7578
7579 if (unsignedp)
7580 unsignedp = MAX_INT_CACHED_PREC + 1;
7581
7582 if (precision <= MAX_INT_CACHED_PREC)
7583 {
7584 itype = nonstandard_integer_type_cache[precision + unsignedp];
7585 if (itype)
7586 return itype;
7587 }
7588
7589 itype = make_node (INTEGER_TYPE);
7590 TYPE_PRECISION (itype) = precision;
7591
7592 if (unsignedp)
7593 fixup_unsigned_type (itype);
7594 else
7595 fixup_signed_type (itype);
7596
7597 ret = itype;
7598 if (host_integerp (TYPE_MAX_VALUE (itype), 1))
7599 ret = type_hash_canon (tree_low_cst (TYPE_MAX_VALUE (itype), 1), itype);
7600 if (precision <= MAX_INT_CACHED_PREC)
7601 nonstandard_integer_type_cache[precision + unsignedp] = ret;
7602
7603 return ret;
7604 }
7605
7606 /* Create a range of some discrete type TYPE (an INTEGER_TYPE, ENUMERAL_TYPE
7607 or BOOLEAN_TYPE) with low bound LOWVAL and high bound HIGHVAL. If SHARED
7608 is true, reuse such a type that has already been constructed. */
7609
7610 static tree
7611 build_range_type_1 (tree type, tree lowval, tree highval, bool shared)
7612 {
7613 tree itype = make_node (INTEGER_TYPE);
7614 hashval_t hashcode = 0;
7615
7616 TREE_TYPE (itype) = type;
7617
7618 TYPE_MIN_VALUE (itype) = fold_convert (type, lowval);
7619 TYPE_MAX_VALUE (itype) = highval ? fold_convert (type, highval) : NULL;
7620
7621 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
7622 SET_TYPE_MODE (itype, TYPE_MODE (type));
7623 TYPE_SIZE (itype) = TYPE_SIZE (type);
7624 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
7625 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
7626 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
7627
7628 if (!shared)
7629 return itype;
7630
7631 if ((TYPE_MIN_VALUE (itype)
7632 && TREE_CODE (TYPE_MIN_VALUE (itype)) != INTEGER_CST)
7633 || (TYPE_MAX_VALUE (itype)
7634 && TREE_CODE (TYPE_MAX_VALUE (itype)) != INTEGER_CST))
7635 {
7636 /* Since we cannot reliably merge this type, we need to compare it using
7637 structural equality checks. */
7638 SET_TYPE_STRUCTURAL_EQUALITY (itype);
7639 return itype;
7640 }
7641
7642 hashcode = iterative_hash_expr (TYPE_MIN_VALUE (itype), hashcode);
7643 hashcode = iterative_hash_expr (TYPE_MAX_VALUE (itype), hashcode);
7644 hashcode = iterative_hash_hashval_t (TYPE_HASH (type), hashcode);
7645 itype = type_hash_canon (hashcode, itype);
7646
7647 return itype;
7648 }
7649
7650 /* Wrapper around build_range_type_1 with SHARED set to true. */
7651
7652 tree
7653 build_range_type (tree type, tree lowval, tree highval)
7654 {
7655 return build_range_type_1 (type, lowval, highval, true);
7656 }
7657
7658 /* Wrapper around build_range_type_1 with SHARED set to false. */
7659
7660 tree
7661 build_nonshared_range_type (tree type, tree lowval, tree highval)
7662 {
7663 return build_range_type_1 (type, lowval, highval, false);
7664 }
7665
7666 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
7667 MAXVAL should be the maximum value in the domain
7668 (one less than the length of the array).
7669
7670 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
7671 We don't enforce this limit, that is up to caller (e.g. language front end).
7672 The limit exists because the result is a signed type and we don't handle
7673 sizes that use more than one HOST_WIDE_INT. */
7674
7675 tree
7676 build_index_type (tree maxval)
7677 {
7678 return build_range_type (sizetype, size_zero_node, maxval);
7679 }
7680
7681 /* Return true if the debug information for TYPE, a subtype, should be emitted
7682 as a subrange type. If so, set LOWVAL to the low bound and HIGHVAL to the
7683 high bound, respectively. Sometimes doing so unnecessarily obfuscates the
7684 debug info and doesn't reflect the source code. */
7685
7686 bool
7687 subrange_type_for_debug_p (const_tree type, tree *lowval, tree *highval)
7688 {
7689 tree base_type = TREE_TYPE (type), low, high;
7690
7691 /* Subrange types have a base type which is an integral type. */
7692 if (!INTEGRAL_TYPE_P (base_type))
7693 return false;
7694
7695 /* Get the real bounds of the subtype. */
7696 if (lang_hooks.types.get_subrange_bounds)
7697 lang_hooks.types.get_subrange_bounds (type, &low, &high);
7698 else
7699 {
7700 low = TYPE_MIN_VALUE (type);
7701 high = TYPE_MAX_VALUE (type);
7702 }
7703
7704 /* If the type and its base type have the same representation and the same
7705 name, then the type is not a subrange but a copy of the base type. */
7706 if ((TREE_CODE (base_type) == INTEGER_TYPE
7707 || TREE_CODE (base_type) == BOOLEAN_TYPE)
7708 && int_size_in_bytes (type) == int_size_in_bytes (base_type)
7709 && tree_int_cst_equal (low, TYPE_MIN_VALUE (base_type))
7710 && tree_int_cst_equal (high, TYPE_MAX_VALUE (base_type)))
7711 {
7712 tree type_name = TYPE_NAME (type);
7713 tree base_type_name = TYPE_NAME (base_type);
7714
7715 if (type_name && TREE_CODE (type_name) == TYPE_DECL)
7716 type_name = DECL_NAME (type_name);
7717
7718 if (base_type_name && TREE_CODE (base_type_name) == TYPE_DECL)
7719 base_type_name = DECL_NAME (base_type_name);
7720
7721 if (type_name == base_type_name)
7722 return false;
7723 }
7724
7725 if (lowval)
7726 *lowval = low;
7727 if (highval)
7728 *highval = high;
7729 return true;
7730 }
7731
7732 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
7733 and number of elements specified by the range of values of INDEX_TYPE.
7734 If SHARED is true, reuse such a type that has already been constructed. */
7735
7736 static tree
7737 build_array_type_1 (tree elt_type, tree index_type, bool shared)
7738 {
7739 tree t;
7740
7741 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
7742 {
7743 error ("arrays of functions are not meaningful");
7744 elt_type = integer_type_node;
7745 }
7746
7747 t = make_node (ARRAY_TYPE);
7748 TREE_TYPE (t) = elt_type;
7749 TYPE_DOMAIN (t) = index_type;
7750 TYPE_ADDR_SPACE (t) = TYPE_ADDR_SPACE (elt_type);
7751 layout_type (t);
7752
7753 /* If the element type is incomplete at this point we get marked for
7754 structural equality. Do not record these types in the canonical
7755 type hashtable. */
7756 if (TYPE_STRUCTURAL_EQUALITY_P (t))
7757 return t;
7758
7759 if (shared)
7760 {
7761 hashval_t hashcode = iterative_hash_object (TYPE_HASH (elt_type), 0);
7762 if (index_type)
7763 hashcode = iterative_hash_object (TYPE_HASH (index_type), hashcode);
7764 t = type_hash_canon (hashcode, t);
7765 }
7766
7767 if (TYPE_CANONICAL (t) == t)
7768 {
7769 if (TYPE_STRUCTURAL_EQUALITY_P (elt_type)
7770 || (index_type && TYPE_STRUCTURAL_EQUALITY_P (index_type)))
7771 SET_TYPE_STRUCTURAL_EQUALITY (t);
7772 else if (TYPE_CANONICAL (elt_type) != elt_type
7773 || (index_type && TYPE_CANONICAL (index_type) != index_type))
7774 TYPE_CANONICAL (t)
7775 = build_array_type_1 (TYPE_CANONICAL (elt_type),
7776 index_type
7777 ? TYPE_CANONICAL (index_type) : NULL_TREE,
7778 shared);
7779 }
7780
7781 return t;
7782 }
7783
7784 /* Wrapper around build_array_type_1 with SHARED set to true. */
7785
7786 tree
7787 build_array_type (tree elt_type, tree index_type)
7788 {
7789 return build_array_type_1 (elt_type, index_type, true);
7790 }
7791
7792 /* Wrapper around build_array_type_1 with SHARED set to false. */
7793
7794 tree
7795 build_nonshared_array_type (tree elt_type, tree index_type)
7796 {
7797 return build_array_type_1 (elt_type, index_type, false);
7798 }
7799
7800 /* Return a representation of ELT_TYPE[NELTS], using indices of type
7801 sizetype. */
7802
7803 tree
7804 build_array_type_nelts (tree elt_type, unsigned HOST_WIDE_INT nelts)
7805 {
7806 return build_array_type (elt_type, build_index_type (size_int (nelts - 1)));
7807 }
7808
7809 /* Recursively examines the array elements of TYPE, until a non-array
7810 element type is found. */
7811
7812 tree
7813 strip_array_types (tree type)
7814 {
7815 while (TREE_CODE (type) == ARRAY_TYPE)
7816 type = TREE_TYPE (type);
7817
7818 return type;
7819 }
7820
7821 /* Computes the canonical argument types from the argument type list
7822 ARGTYPES.
7823
7824 Upon return, *ANY_STRUCTURAL_P will be true iff either it was true
7825 on entry to this function, or if any of the ARGTYPES are
7826 structural.
7827
7828 Upon return, *ANY_NONCANONICAL_P will be true iff either it was
7829 true on entry to this function, or if any of the ARGTYPES are
7830 non-canonical.
7831
7832 Returns a canonical argument list, which may be ARGTYPES when the
7833 canonical argument list is unneeded (i.e., *ANY_STRUCTURAL_P is
7834 true) or would not differ from ARGTYPES. */
7835
7836 static tree
7837 maybe_canonicalize_argtypes(tree argtypes,
7838 bool *any_structural_p,
7839 bool *any_noncanonical_p)
7840 {
7841 tree arg;
7842 bool any_noncanonical_argtypes_p = false;
7843
7844 for (arg = argtypes; arg && !(*any_structural_p); arg = TREE_CHAIN (arg))
7845 {
7846 if (!TREE_VALUE (arg) || TREE_VALUE (arg) == error_mark_node)
7847 /* Fail gracefully by stating that the type is structural. */
7848 *any_structural_p = true;
7849 else if (TYPE_STRUCTURAL_EQUALITY_P (TREE_VALUE (arg)))
7850 *any_structural_p = true;
7851 else if (TYPE_CANONICAL (TREE_VALUE (arg)) != TREE_VALUE (arg)
7852 || TREE_PURPOSE (arg))
7853 /* If the argument has a default argument, we consider it
7854 non-canonical even though the type itself is canonical.
7855 That way, different variants of function and method types
7856 with default arguments will all point to the variant with
7857 no defaults as their canonical type. */
7858 any_noncanonical_argtypes_p = true;
7859 }
7860
7861 if (*any_structural_p)
7862 return argtypes;
7863
7864 if (any_noncanonical_argtypes_p)
7865 {
7866 /* Build the canonical list of argument types. */
7867 tree canon_argtypes = NULL_TREE;
7868 bool is_void = false;
7869
7870 for (arg = argtypes; arg; arg = TREE_CHAIN (arg))
7871 {
7872 if (arg == void_list_node)
7873 is_void = true;
7874 else
7875 canon_argtypes = tree_cons (NULL_TREE,
7876 TYPE_CANONICAL (TREE_VALUE (arg)),
7877 canon_argtypes);
7878 }
7879
7880 canon_argtypes = nreverse (canon_argtypes);
7881 if (is_void)
7882 canon_argtypes = chainon (canon_argtypes, void_list_node);
7883
7884 /* There is a non-canonical type. */
7885 *any_noncanonical_p = true;
7886 return canon_argtypes;
7887 }
7888
7889 /* The canonical argument types are the same as ARGTYPES. */
7890 return argtypes;
7891 }
7892
7893 /* Construct, lay out and return
7894 the type of functions returning type VALUE_TYPE
7895 given arguments of types ARG_TYPES.
7896 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
7897 are data type nodes for the arguments of the function.
7898 If such a type has already been constructed, reuse it. */
7899
7900 tree
7901 build_function_type (tree value_type, tree arg_types)
7902 {
7903 tree t;
7904 hashval_t hashcode = 0;
7905 bool any_structural_p, any_noncanonical_p;
7906 tree canon_argtypes;
7907
7908 if (TREE_CODE (value_type) == FUNCTION_TYPE)
7909 {
7910 error ("function return type cannot be function");
7911 value_type = integer_type_node;
7912 }
7913
7914 /* Make a node of the sort we want. */
7915 t = make_node (FUNCTION_TYPE);
7916 TREE_TYPE (t) = value_type;
7917 TYPE_ARG_TYPES (t) = arg_types;
7918
7919 /* If we already have such a type, use the old one. */
7920 hashcode = iterative_hash_object (TYPE_HASH (value_type), hashcode);
7921 hashcode = type_hash_list (arg_types, hashcode);
7922 t = type_hash_canon (hashcode, t);
7923
7924 /* Set up the canonical type. */
7925 any_structural_p = TYPE_STRUCTURAL_EQUALITY_P (value_type);
7926 any_noncanonical_p = TYPE_CANONICAL (value_type) != value_type;
7927 canon_argtypes = maybe_canonicalize_argtypes (arg_types,
7928 &any_structural_p,
7929 &any_noncanonical_p);
7930 if (any_structural_p)
7931 SET_TYPE_STRUCTURAL_EQUALITY (t);
7932 else if (any_noncanonical_p)
7933 TYPE_CANONICAL (t) = build_function_type (TYPE_CANONICAL (value_type),
7934 canon_argtypes);
7935
7936 if (!COMPLETE_TYPE_P (t))
7937 layout_type (t);
7938 return t;
7939 }
7940
7941 /* Build variant of function type ORIG_TYPE skipping ARGS_TO_SKIP and the
7942 return value if SKIP_RETURN is true. */
7943
7944 static tree
7945 build_function_type_skip_args (tree orig_type, bitmap args_to_skip,
7946 bool skip_return)
7947 {
7948 tree new_type = NULL;
7949 tree args, new_args = NULL, t;
7950 tree new_reversed;
7951 int i = 0;
7952
7953 for (args = TYPE_ARG_TYPES (orig_type); args && args != void_list_node;
7954 args = TREE_CHAIN (args), i++)
7955 if (!args_to_skip || !bitmap_bit_p (args_to_skip, i))
7956 new_args = tree_cons (NULL_TREE, TREE_VALUE (args), new_args);
7957
7958 new_reversed = nreverse (new_args);
7959 if (args)
7960 {
7961 if (new_reversed)
7962 TREE_CHAIN (new_args) = void_list_node;
7963 else
7964 new_reversed = void_list_node;
7965 }
7966
7967 /* Use copy_node to preserve as much as possible from original type
7968 (debug info, attribute lists etc.)
7969 Exception is METHOD_TYPEs must have THIS argument.
7970 When we are asked to remove it, we need to build new FUNCTION_TYPE
7971 instead. */
7972 if (TREE_CODE (orig_type) != METHOD_TYPE
7973 || !args_to_skip
7974 || !bitmap_bit_p (args_to_skip, 0))
7975 {
7976 new_type = build_distinct_type_copy (orig_type);
7977 TYPE_ARG_TYPES (new_type) = new_reversed;
7978 }
7979 else
7980 {
7981 new_type
7982 = build_distinct_type_copy (build_function_type (TREE_TYPE (orig_type),
7983 new_reversed));
7984 TYPE_CONTEXT (new_type) = TYPE_CONTEXT (orig_type);
7985 }
7986
7987 if (skip_return)
7988 TREE_TYPE (new_type) = void_type_node;
7989
7990 /* This is a new type, not a copy of an old type. Need to reassociate
7991 variants. We can handle everything except the main variant lazily. */
7992 t = TYPE_MAIN_VARIANT (orig_type);
7993 if (t != orig_type)
7994 {
7995 t = build_function_type_skip_args (t, args_to_skip, skip_return);
7996 TYPE_MAIN_VARIANT (new_type) = t;
7997 TYPE_NEXT_VARIANT (new_type) = TYPE_NEXT_VARIANT (t);
7998 TYPE_NEXT_VARIANT (t) = new_type;
7999 }
8000 else
8001 {
8002 TYPE_MAIN_VARIANT (new_type) = new_type;
8003 TYPE_NEXT_VARIANT (new_type) = NULL;
8004 }
8005
8006 return new_type;
8007 }
8008
8009 /* Build variant of function decl ORIG_DECL skipping ARGS_TO_SKIP and the
8010 return value if SKIP_RETURN is true.
8011
8012 Arguments from DECL_ARGUMENTS list can't be removed now, since they are
8013 linked by TREE_CHAIN directly. The caller is responsible for eliminating
8014 them when they are being duplicated (i.e. copy_arguments_for_versioning). */
8015
8016 tree
8017 build_function_decl_skip_args (tree orig_decl, bitmap args_to_skip,
8018 bool skip_return)
8019 {
8020 tree new_decl = copy_node (orig_decl);
8021 tree new_type;
8022
8023 new_type = TREE_TYPE (orig_decl);
8024 if (prototype_p (new_type)
8025 || (skip_return && !VOID_TYPE_P (TREE_TYPE (new_type))))
8026 new_type
8027 = build_function_type_skip_args (new_type, args_to_skip, skip_return);
8028 TREE_TYPE (new_decl) = new_type;
8029
8030 /* For declarations setting DECL_VINDEX (i.e. methods)
8031 we expect first argument to be THIS pointer. */
8032 if (args_to_skip && bitmap_bit_p (args_to_skip, 0))
8033 DECL_VINDEX (new_decl) = NULL_TREE;
8034
8035 /* When signature changes, we need to clear builtin info. */
8036 if (DECL_BUILT_IN (new_decl)
8037 && args_to_skip
8038 && !bitmap_empty_p (args_to_skip))
8039 {
8040 DECL_BUILT_IN_CLASS (new_decl) = NOT_BUILT_IN;
8041 DECL_FUNCTION_CODE (new_decl) = (enum built_in_function) 0;
8042 }
8043 return new_decl;
8044 }
8045
8046 /* Build a function type. The RETURN_TYPE is the type returned by the
8047 function. If VAARGS is set, no void_type_node is appended to the
8048 the list. ARGP must be always be terminated be a NULL_TREE. */
8049
8050 static tree
8051 build_function_type_list_1 (bool vaargs, tree return_type, va_list argp)
8052 {
8053 tree t, args, last;
8054
8055 t = va_arg (argp, tree);
8056 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (argp, tree))
8057 args = tree_cons (NULL_TREE, t, args);
8058
8059 if (vaargs)
8060 {
8061 last = args;
8062 if (args != NULL_TREE)
8063 args = nreverse (args);
8064 gcc_assert (last != void_list_node);
8065 }
8066 else if (args == NULL_TREE)
8067 args = void_list_node;
8068 else
8069 {
8070 last = args;
8071 args = nreverse (args);
8072 TREE_CHAIN (last) = void_list_node;
8073 }
8074 args = build_function_type (return_type, args);
8075
8076 return args;
8077 }
8078
8079 /* Build a function type. The RETURN_TYPE is the type returned by the
8080 function. If additional arguments are provided, they are
8081 additional argument types. The list of argument types must always
8082 be terminated by NULL_TREE. */
8083
8084 tree
8085 build_function_type_list (tree return_type, ...)
8086 {
8087 tree args;
8088 va_list p;
8089
8090 va_start (p, return_type);
8091 args = build_function_type_list_1 (false, return_type, p);
8092 va_end (p);
8093 return args;
8094 }
8095
8096 /* Build a variable argument function type. The RETURN_TYPE is the
8097 type returned by the function. If additional arguments are provided,
8098 they are additional argument types. The list of argument types must
8099 always be terminated by NULL_TREE. */
8100
8101 tree
8102 build_varargs_function_type_list (tree return_type, ...)
8103 {
8104 tree args;
8105 va_list p;
8106
8107 va_start (p, return_type);
8108 args = build_function_type_list_1 (true, return_type, p);
8109 va_end (p);
8110
8111 return args;
8112 }
8113
8114 /* Build a function type. RETURN_TYPE is the type returned by the
8115 function; VAARGS indicates whether the function takes varargs. The
8116 function takes N named arguments, the types of which are provided in
8117 ARG_TYPES. */
8118
8119 static tree
8120 build_function_type_array_1 (bool vaargs, tree return_type, int n,
8121 tree *arg_types)
8122 {
8123 int i;
8124 tree t = vaargs ? NULL_TREE : void_list_node;
8125
8126 for (i = n - 1; i >= 0; i--)
8127 t = tree_cons (NULL_TREE, arg_types[i], t);
8128
8129 return build_function_type (return_type, t);
8130 }
8131
8132 /* Build a function type. RETURN_TYPE is the type returned by the
8133 function. The function takes N named arguments, the types of which
8134 are provided in ARG_TYPES. */
8135
8136 tree
8137 build_function_type_array (tree return_type, int n, tree *arg_types)
8138 {
8139 return build_function_type_array_1 (false, return_type, n, arg_types);
8140 }
8141
8142 /* Build a variable argument function type. RETURN_TYPE is the type
8143 returned by the function. The function takes N named arguments, the
8144 types of which are provided in ARG_TYPES. */
8145
8146 tree
8147 build_varargs_function_type_array (tree return_type, int n, tree *arg_types)
8148 {
8149 return build_function_type_array_1 (true, return_type, n, arg_types);
8150 }
8151
8152 /* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
8153 and ARGTYPES (a TREE_LIST) are the return type and arguments types
8154 for the method. An implicit additional parameter (of type
8155 pointer-to-BASETYPE) is added to the ARGTYPES. */
8156
8157 tree
8158 build_method_type_directly (tree basetype,
8159 tree rettype,
8160 tree argtypes)
8161 {
8162 tree t;
8163 tree ptype;
8164 int hashcode = 0;
8165 bool any_structural_p, any_noncanonical_p;
8166 tree canon_argtypes;
8167
8168 /* Make a node of the sort we want. */
8169 t = make_node (METHOD_TYPE);
8170
8171 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
8172 TREE_TYPE (t) = rettype;
8173 ptype = build_pointer_type (basetype);
8174
8175 /* The actual arglist for this function includes a "hidden" argument
8176 which is "this". Put it into the list of argument types. */
8177 argtypes = tree_cons (NULL_TREE, ptype, argtypes);
8178 TYPE_ARG_TYPES (t) = argtypes;
8179
8180 /* If we already have such a type, use the old one. */
8181 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
8182 hashcode = iterative_hash_object (TYPE_HASH (rettype), hashcode);
8183 hashcode = type_hash_list (argtypes, hashcode);
8184 t = type_hash_canon (hashcode, t);
8185
8186 /* Set up the canonical type. */
8187 any_structural_p
8188 = (TYPE_STRUCTURAL_EQUALITY_P (basetype)
8189 || TYPE_STRUCTURAL_EQUALITY_P (rettype));
8190 any_noncanonical_p
8191 = (TYPE_CANONICAL (basetype) != basetype
8192 || TYPE_CANONICAL (rettype) != rettype);
8193 canon_argtypes = maybe_canonicalize_argtypes (TREE_CHAIN (argtypes),
8194 &any_structural_p,
8195 &any_noncanonical_p);
8196 if (any_structural_p)
8197 SET_TYPE_STRUCTURAL_EQUALITY (t);
8198 else if (any_noncanonical_p)
8199 TYPE_CANONICAL (t)
8200 = build_method_type_directly (TYPE_CANONICAL (basetype),
8201 TYPE_CANONICAL (rettype),
8202 canon_argtypes);
8203 if (!COMPLETE_TYPE_P (t))
8204 layout_type (t);
8205
8206 return t;
8207 }
8208
8209 /* Construct, lay out and return the type of methods belonging to class
8210 BASETYPE and whose arguments and values are described by TYPE.
8211 If that type exists already, reuse it.
8212 TYPE must be a FUNCTION_TYPE node. */
8213
8214 tree
8215 build_method_type (tree basetype, tree type)
8216 {
8217 gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
8218
8219 return build_method_type_directly (basetype,
8220 TREE_TYPE (type),
8221 TYPE_ARG_TYPES (type));
8222 }
8223
8224 /* Construct, lay out and return the type of offsets to a value
8225 of type TYPE, within an object of type BASETYPE.
8226 If a suitable offset type exists already, reuse it. */
8227
8228 tree
8229 build_offset_type (tree basetype, tree type)
8230 {
8231 tree t;
8232 hashval_t hashcode = 0;
8233
8234 /* Make a node of the sort we want. */
8235 t = make_node (OFFSET_TYPE);
8236
8237 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
8238 TREE_TYPE (t) = type;
8239
8240 /* If we already have such a type, use the old one. */
8241 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
8242 hashcode = iterative_hash_object (TYPE_HASH (type), hashcode);
8243 t = type_hash_canon (hashcode, t);
8244
8245 if (!COMPLETE_TYPE_P (t))
8246 layout_type (t);
8247
8248 if (TYPE_CANONICAL (t) == t)
8249 {
8250 if (TYPE_STRUCTURAL_EQUALITY_P (basetype)
8251 || TYPE_STRUCTURAL_EQUALITY_P (type))
8252 SET_TYPE_STRUCTURAL_EQUALITY (t);
8253 else if (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)) != basetype
8254 || TYPE_CANONICAL (type) != type)
8255 TYPE_CANONICAL (t)
8256 = build_offset_type (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)),
8257 TYPE_CANONICAL (type));
8258 }
8259
8260 return t;
8261 }
8262
8263 /* Create a complex type whose components are COMPONENT_TYPE. */
8264
8265 tree
8266 build_complex_type (tree component_type)
8267 {
8268 tree t;
8269 hashval_t hashcode;
8270
8271 gcc_assert (INTEGRAL_TYPE_P (component_type)
8272 || SCALAR_FLOAT_TYPE_P (component_type)
8273 || FIXED_POINT_TYPE_P (component_type));
8274
8275 /* Make a node of the sort we want. */
8276 t = make_node (COMPLEX_TYPE);
8277
8278 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
8279
8280 /* If we already have such a type, use the old one. */
8281 hashcode = iterative_hash_object (TYPE_HASH (component_type), 0);
8282 t = type_hash_canon (hashcode, t);
8283
8284 if (!COMPLETE_TYPE_P (t))
8285 layout_type (t);
8286
8287 if (TYPE_CANONICAL (t) == t)
8288 {
8289 if (TYPE_STRUCTURAL_EQUALITY_P (component_type))
8290 SET_TYPE_STRUCTURAL_EQUALITY (t);
8291 else if (TYPE_CANONICAL (component_type) != component_type)
8292 TYPE_CANONICAL (t)
8293 = build_complex_type (TYPE_CANONICAL (component_type));
8294 }
8295
8296 /* We need to create a name, since complex is a fundamental type. */
8297 if (! TYPE_NAME (t))
8298 {
8299 const char *name;
8300 if (component_type == char_type_node)
8301 name = "complex char";
8302 else if (component_type == signed_char_type_node)
8303 name = "complex signed char";
8304 else if (component_type == unsigned_char_type_node)
8305 name = "complex unsigned char";
8306 else if (component_type == short_integer_type_node)
8307 name = "complex short int";
8308 else if (component_type == short_unsigned_type_node)
8309 name = "complex short unsigned int";
8310 else if (component_type == integer_type_node)
8311 name = "complex int";
8312 else if (component_type == unsigned_type_node)
8313 name = "complex unsigned int";
8314 else if (component_type == long_integer_type_node)
8315 name = "complex long int";
8316 else if (component_type == long_unsigned_type_node)
8317 name = "complex long unsigned int";
8318 else if (component_type == long_long_integer_type_node)
8319 name = "complex long long int";
8320 else if (component_type == long_long_unsigned_type_node)
8321 name = "complex long long unsigned int";
8322 else
8323 name = 0;
8324
8325 if (name != 0)
8326 TYPE_NAME (t) = build_decl (UNKNOWN_LOCATION, TYPE_DECL,
8327 get_identifier (name), t);
8328 }
8329
8330 return build_qualified_type (t, TYPE_QUALS (component_type));
8331 }
8332
8333 /* If TYPE is a real or complex floating-point type and the target
8334 does not directly support arithmetic on TYPE then return the wider
8335 type to be used for arithmetic on TYPE. Otherwise, return
8336 NULL_TREE. */
8337
8338 tree
8339 excess_precision_type (tree type)
8340 {
8341 if (flag_excess_precision != EXCESS_PRECISION_FAST)
8342 {
8343 int flt_eval_method = TARGET_FLT_EVAL_METHOD;
8344 switch (TREE_CODE (type))
8345 {
8346 case REAL_TYPE:
8347 switch (flt_eval_method)
8348 {
8349 case 1:
8350 if (TYPE_MODE (type) == TYPE_MODE (float_type_node))
8351 return double_type_node;
8352 break;
8353 case 2:
8354 if (TYPE_MODE (type) == TYPE_MODE (float_type_node)
8355 || TYPE_MODE (type) == TYPE_MODE (double_type_node))
8356 return long_double_type_node;
8357 break;
8358 default:
8359 gcc_unreachable ();
8360 }
8361 break;
8362 case COMPLEX_TYPE:
8363 if (TREE_CODE (TREE_TYPE (type)) != REAL_TYPE)
8364 return NULL_TREE;
8365 switch (flt_eval_method)
8366 {
8367 case 1:
8368 if (TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (float_type_node))
8369 return complex_double_type_node;
8370 break;
8371 case 2:
8372 if (TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (float_type_node)
8373 || (TYPE_MODE (TREE_TYPE (type))
8374 == TYPE_MODE (double_type_node)))
8375 return complex_long_double_type_node;
8376 break;
8377 default:
8378 gcc_unreachable ();
8379 }
8380 break;
8381 default:
8382 break;
8383 }
8384 }
8385 return NULL_TREE;
8386 }
8387 \f
8388 /* Return OP, stripped of any conversions to wider types as much as is safe.
8389 Converting the value back to OP's type makes a value equivalent to OP.
8390
8391 If FOR_TYPE is nonzero, we return a value which, if converted to
8392 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
8393
8394 OP must have integer, real or enumeral type. Pointers are not allowed!
8395
8396 There are some cases where the obvious value we could return
8397 would regenerate to OP if converted to OP's type,
8398 but would not extend like OP to wider types.
8399 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
8400 For example, if OP is (unsigned short)(signed char)-1,
8401 we avoid returning (signed char)-1 if FOR_TYPE is int,
8402 even though extending that to an unsigned short would regenerate OP,
8403 since the result of extending (signed char)-1 to (int)
8404 is different from (int) OP. */
8405
8406 tree
8407 get_unwidened (tree op, tree for_type)
8408 {
8409 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
8410 tree type = TREE_TYPE (op);
8411 unsigned final_prec
8412 = TYPE_PRECISION (for_type != 0 ? for_type : type);
8413 int uns
8414 = (for_type != 0 && for_type != type
8415 && final_prec > TYPE_PRECISION (type)
8416 && TYPE_UNSIGNED (type));
8417 tree win = op;
8418
8419 while (CONVERT_EXPR_P (op))
8420 {
8421 int bitschange;
8422
8423 /* TYPE_PRECISION on vector types has different meaning
8424 (TYPE_VECTOR_SUBPARTS) and casts from vectors are view conversions,
8425 so avoid them here. */
8426 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == VECTOR_TYPE)
8427 break;
8428
8429 bitschange = TYPE_PRECISION (TREE_TYPE (op))
8430 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
8431
8432 /* Truncations are many-one so cannot be removed.
8433 Unless we are later going to truncate down even farther. */
8434 if (bitschange < 0
8435 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
8436 break;
8437
8438 /* See what's inside this conversion. If we decide to strip it,
8439 we will set WIN. */
8440 op = TREE_OPERAND (op, 0);
8441
8442 /* If we have not stripped any zero-extensions (uns is 0),
8443 we can strip any kind of extension.
8444 If we have previously stripped a zero-extension,
8445 only zero-extensions can safely be stripped.
8446 Any extension can be stripped if the bits it would produce
8447 are all going to be discarded later by truncating to FOR_TYPE. */
8448
8449 if (bitschange > 0)
8450 {
8451 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
8452 win = op;
8453 /* TYPE_UNSIGNED says whether this is a zero-extension.
8454 Let's avoid computing it if it does not affect WIN
8455 and if UNS will not be needed again. */
8456 if ((uns
8457 || CONVERT_EXPR_P (op))
8458 && TYPE_UNSIGNED (TREE_TYPE (op)))
8459 {
8460 uns = 1;
8461 win = op;
8462 }
8463 }
8464 }
8465
8466 /* If we finally reach a constant see if it fits in for_type and
8467 in that case convert it. */
8468 if (for_type
8469 && TREE_CODE (win) == INTEGER_CST
8470 && TREE_TYPE (win) != for_type
8471 && int_fits_type_p (win, for_type))
8472 win = fold_convert (for_type, win);
8473
8474 return win;
8475 }
8476 \f
8477 /* Return OP or a simpler expression for a narrower value
8478 which can be sign-extended or zero-extended to give back OP.
8479 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
8480 or 0 if the value should be sign-extended. */
8481
8482 tree
8483 get_narrower (tree op, int *unsignedp_ptr)
8484 {
8485 int uns = 0;
8486 int first = 1;
8487 tree win = op;
8488 bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));
8489
8490 while (TREE_CODE (op) == NOP_EXPR)
8491 {
8492 int bitschange
8493 = (TYPE_PRECISION (TREE_TYPE (op))
8494 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
8495
8496 /* Truncations are many-one so cannot be removed. */
8497 if (bitschange < 0)
8498 break;
8499
8500 /* See what's inside this conversion. If we decide to strip it,
8501 we will set WIN. */
8502
8503 if (bitschange > 0)
8504 {
8505 op = TREE_OPERAND (op, 0);
8506 /* An extension: the outermost one can be stripped,
8507 but remember whether it is zero or sign extension. */
8508 if (first)
8509 uns = TYPE_UNSIGNED (TREE_TYPE (op));
8510 /* Otherwise, if a sign extension has been stripped,
8511 only sign extensions can now be stripped;
8512 if a zero extension has been stripped, only zero-extensions. */
8513 else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
8514 break;
8515 first = 0;
8516 }
8517 else /* bitschange == 0 */
8518 {
8519 /* A change in nominal type can always be stripped, but we must
8520 preserve the unsignedness. */
8521 if (first)
8522 uns = TYPE_UNSIGNED (TREE_TYPE (op));
8523 first = 0;
8524 op = TREE_OPERAND (op, 0);
8525 /* Keep trying to narrow, but don't assign op to win if it
8526 would turn an integral type into something else. */
8527 if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
8528 continue;
8529 }
8530
8531 win = op;
8532 }
8533
8534 if (TREE_CODE (op) == COMPONENT_REF
8535 /* Since type_for_size always gives an integer type. */
8536 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
8537 && TREE_CODE (TREE_TYPE (op)) != FIXED_POINT_TYPE
8538 /* Ensure field is laid out already. */
8539 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
8540 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
8541 {
8542 unsigned HOST_WIDE_INT innerprec
8543 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
8544 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
8545 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
8546 tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
8547
8548 /* We can get this structure field in a narrower type that fits it,
8549 but the resulting extension to its nominal type (a fullword type)
8550 must satisfy the same conditions as for other extensions.
8551
8552 Do this only for fields that are aligned (not bit-fields),
8553 because when bit-field insns will be used there is no
8554 advantage in doing this. */
8555
8556 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
8557 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
8558 && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
8559 && type != 0)
8560 {
8561 if (first)
8562 uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
8563 win = fold_convert (type, op);
8564 }
8565 }
8566
8567 *unsignedp_ptr = uns;
8568 return win;
8569 }
8570 \f
8571 /* Returns true if integer constant C has a value that is permissible
8572 for type TYPE (an INTEGER_TYPE). */
8573
8574 bool
8575 int_fits_type_p (const_tree c, const_tree type)
8576 {
8577 tree type_low_bound, type_high_bound;
8578 bool ok_for_low_bound, ok_for_high_bound, unsc;
8579 double_int dc, dd;
8580
8581 dc = tree_to_double_int (c);
8582 unsc = TYPE_UNSIGNED (TREE_TYPE (c));
8583
8584 retry:
8585 type_low_bound = TYPE_MIN_VALUE (type);
8586 type_high_bound = TYPE_MAX_VALUE (type);
8587
8588 /* If at least one bound of the type is a constant integer, we can check
8589 ourselves and maybe make a decision. If no such decision is possible, but
8590 this type is a subtype, try checking against that. Otherwise, use
8591 double_int_fits_to_tree_p, which checks against the precision.
8592
8593 Compute the status for each possibly constant bound, and return if we see
8594 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
8595 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
8596 for "constant known to fit". */
8597
8598 /* Check if c >= type_low_bound. */
8599 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
8600 {
8601 dd = tree_to_double_int (type_low_bound);
8602 if (unsc != TYPE_UNSIGNED (TREE_TYPE (type_low_bound)))
8603 {
8604 int c_neg = (!unsc && dc.is_negative ());
8605 int t_neg = (unsc && dd.is_negative ());
8606
8607 if (c_neg && !t_neg)
8608 return false;
8609 if ((c_neg || !t_neg) && dc.ult (dd))
8610 return false;
8611 }
8612 else if (dc.cmp (dd, unsc) < 0)
8613 return false;
8614 ok_for_low_bound = true;
8615 }
8616 else
8617 ok_for_low_bound = false;
8618
8619 /* Check if c <= type_high_bound. */
8620 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
8621 {
8622 dd = tree_to_double_int (type_high_bound);
8623 if (unsc != TYPE_UNSIGNED (TREE_TYPE (type_high_bound)))
8624 {
8625 int c_neg = (!unsc && dc.is_negative ());
8626 int t_neg = (unsc && dd.is_negative ());
8627
8628 if (t_neg && !c_neg)
8629 return false;
8630 if ((t_neg || !c_neg) && dc.ugt (dd))
8631 return false;
8632 }
8633 else if (dc.cmp (dd, unsc) > 0)
8634 return false;
8635 ok_for_high_bound = true;
8636 }
8637 else
8638 ok_for_high_bound = false;
8639
8640 /* If the constant fits both bounds, the result is known. */
8641 if (ok_for_low_bound && ok_for_high_bound)
8642 return true;
8643
8644 /* Perform some generic filtering which may allow making a decision
8645 even if the bounds are not constant. First, negative integers
8646 never fit in unsigned types, */
8647 if (TYPE_UNSIGNED (type) && !unsc && dc.is_negative ())
8648 return false;
8649
8650 /* Second, narrower types always fit in wider ones. */
8651 if (TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (c)))
8652 return true;
8653
8654 /* Third, unsigned integers with top bit set never fit signed types. */
8655 if (! TYPE_UNSIGNED (type) && unsc)
8656 {
8657 int prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (c))) - 1;
8658 if (prec < HOST_BITS_PER_WIDE_INT)
8659 {
8660 if (((((unsigned HOST_WIDE_INT) 1) << prec) & dc.low) != 0)
8661 return false;
8662 }
8663 else if (((((unsigned HOST_WIDE_INT) 1)
8664 << (prec - HOST_BITS_PER_WIDE_INT)) & dc.high) != 0)
8665 return false;
8666 }
8667
8668 /* If we haven't been able to decide at this point, there nothing more we
8669 can check ourselves here. Look at the base type if we have one and it
8670 has the same precision. */
8671 if (TREE_CODE (type) == INTEGER_TYPE
8672 && TREE_TYPE (type) != 0
8673 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (type)))
8674 {
8675 type = TREE_TYPE (type);
8676 goto retry;
8677 }
8678
8679 /* Or to double_int_fits_to_tree_p, if nothing else. */
8680 return double_int_fits_to_tree_p (type, dc);
8681 }
8682
8683 /* Stores bounds of an integer TYPE in MIN and MAX. If TYPE has non-constant
8684 bounds or is a POINTER_TYPE, the maximum and/or minimum values that can be
8685 represented (assuming two's-complement arithmetic) within the bit
8686 precision of the type are returned instead. */
8687
8688 void
8689 get_type_static_bounds (const_tree type, mpz_t min, mpz_t max)
8690 {
8691 if (!POINTER_TYPE_P (type) && TYPE_MIN_VALUE (type)
8692 && TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST)
8693 mpz_set_double_int (min, tree_to_double_int (TYPE_MIN_VALUE (type)),
8694 TYPE_UNSIGNED (type));
8695 else
8696 {
8697 if (TYPE_UNSIGNED (type))
8698 mpz_set_ui (min, 0);
8699 else
8700 {
8701 double_int mn;
8702 mn = double_int::mask (TYPE_PRECISION (type) - 1);
8703 mn = (mn + double_int_one).sext (TYPE_PRECISION (type));
8704 mpz_set_double_int (min, mn, false);
8705 }
8706 }
8707
8708 if (!POINTER_TYPE_P (type) && TYPE_MAX_VALUE (type)
8709 && TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST)
8710 mpz_set_double_int (max, tree_to_double_int (TYPE_MAX_VALUE (type)),
8711 TYPE_UNSIGNED (type));
8712 else
8713 {
8714 if (TYPE_UNSIGNED (type))
8715 mpz_set_double_int (max, double_int::mask (TYPE_PRECISION (type)),
8716 true);
8717 else
8718 mpz_set_double_int (max, double_int::mask (TYPE_PRECISION (type) - 1),
8719 true);
8720 }
8721 }
8722
8723 /* Return true if VAR is an automatic variable defined in function FN. */
8724
8725 bool
8726 auto_var_in_fn_p (const_tree var, const_tree fn)
8727 {
8728 return (DECL_P (var) && DECL_CONTEXT (var) == fn
8729 && ((((TREE_CODE (var) == VAR_DECL && ! DECL_EXTERNAL (var))
8730 || TREE_CODE (var) == PARM_DECL)
8731 && ! TREE_STATIC (var))
8732 || TREE_CODE (var) == LABEL_DECL
8733 || TREE_CODE (var) == RESULT_DECL));
8734 }
8735
8736 /* Subprogram of following function. Called by walk_tree.
8737
8738 Return *TP if it is an automatic variable or parameter of the
8739 function passed in as DATA. */
8740
8741 static tree
8742 find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
8743 {
8744 tree fn = (tree) data;
8745
8746 if (TYPE_P (*tp))
8747 *walk_subtrees = 0;
8748
8749 else if (DECL_P (*tp)
8750 && auto_var_in_fn_p (*tp, fn))
8751 return *tp;
8752
8753 return NULL_TREE;
8754 }
8755
8756 /* Returns true if T is, contains, or refers to a type with variable
8757 size. For METHOD_TYPEs and FUNCTION_TYPEs we exclude the
8758 arguments, but not the return type. If FN is nonzero, only return
8759 true if a modifier of the type or position of FN is a variable or
8760 parameter inside FN.
8761
8762 This concept is more general than that of C99 'variably modified types':
8763 in C99, a struct type is never variably modified because a VLA may not
8764 appear as a structure member. However, in GNU C code like:
8765
8766 struct S { int i[f()]; };
8767
8768 is valid, and other languages may define similar constructs. */
8769
8770 bool
8771 variably_modified_type_p (tree type, tree fn)
8772 {
8773 tree t;
8774
8775 /* Test if T is either variable (if FN is zero) or an expression containing
8776 a variable in FN. If TYPE isn't gimplified, return true also if
8777 gimplify_one_sizepos would gimplify the expression into a local
8778 variable. */
8779 #define RETURN_TRUE_IF_VAR(T) \
8780 do { tree _t = (T); \
8781 if (_t != NULL_TREE \
8782 && _t != error_mark_node \
8783 && TREE_CODE (_t) != INTEGER_CST \
8784 && TREE_CODE (_t) != PLACEHOLDER_EXPR \
8785 && (!fn \
8786 || (!TYPE_SIZES_GIMPLIFIED (type) \
8787 && !is_gimple_sizepos (_t)) \
8788 || walk_tree (&_t, find_var_from_fn, fn, NULL))) \
8789 return true; } while (0)
8790
8791 if (type == error_mark_node)
8792 return false;
8793
8794 /* If TYPE itself has variable size, it is variably modified. */
8795 RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
8796 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (type));
8797
8798 switch (TREE_CODE (type))
8799 {
8800 case POINTER_TYPE:
8801 case REFERENCE_TYPE:
8802 case VECTOR_TYPE:
8803 if (variably_modified_type_p (TREE_TYPE (type), fn))
8804 return true;
8805 break;
8806
8807 case FUNCTION_TYPE:
8808 case METHOD_TYPE:
8809 /* If TYPE is a function type, it is variably modified if the
8810 return type is variably modified. */
8811 if (variably_modified_type_p (TREE_TYPE (type), fn))
8812 return true;
8813 break;
8814
8815 case INTEGER_TYPE:
8816 case REAL_TYPE:
8817 case FIXED_POINT_TYPE:
8818 case ENUMERAL_TYPE:
8819 case BOOLEAN_TYPE:
8820 /* Scalar types are variably modified if their end points
8821 aren't constant. */
8822 RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
8823 RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
8824 break;
8825
8826 case RECORD_TYPE:
8827 case UNION_TYPE:
8828 case QUAL_UNION_TYPE:
8829 /* We can't see if any of the fields are variably-modified by the
8830 definition we normally use, since that would produce infinite
8831 recursion via pointers. */
8832 /* This is variably modified if some field's type is. */
8833 for (t = TYPE_FIELDS (type); t; t = DECL_CHAIN (t))
8834 if (TREE_CODE (t) == FIELD_DECL)
8835 {
8836 RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
8837 RETURN_TRUE_IF_VAR (DECL_SIZE (t));
8838 RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));
8839
8840 if (TREE_CODE (type) == QUAL_UNION_TYPE)
8841 RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));
8842 }
8843 break;
8844
8845 case ARRAY_TYPE:
8846 /* Do not call ourselves to avoid infinite recursion. This is
8847 variably modified if the element type is. */
8848 RETURN_TRUE_IF_VAR (TYPE_SIZE (TREE_TYPE (type)));
8849 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (TREE_TYPE (type)));
8850 break;
8851
8852 default:
8853 break;
8854 }
8855
8856 /* The current language may have other cases to check, but in general,
8857 all other types are not variably modified. */
8858 return lang_hooks.tree_inlining.var_mod_type_p (type, fn);
8859
8860 #undef RETURN_TRUE_IF_VAR
8861 }
8862
8863 /* Given a DECL or TYPE, return the scope in which it was declared, or
8864 NULL_TREE if there is no containing scope. */
8865
8866 tree
8867 get_containing_scope (const_tree t)
8868 {
8869 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
8870 }
8871
8872 /* Return the innermost context enclosing DECL that is
8873 a FUNCTION_DECL, or zero if none. */
8874
8875 tree
8876 decl_function_context (const_tree decl)
8877 {
8878 tree context;
8879
8880 if (TREE_CODE (decl) == ERROR_MARK)
8881 return 0;
8882
8883 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
8884 where we look up the function at runtime. Such functions always take
8885 a first argument of type 'pointer to real context'.
8886
8887 C++ should really be fixed to use DECL_CONTEXT for the real context,
8888 and use something else for the "virtual context". */
8889 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
8890 context
8891 = TYPE_MAIN_VARIANT
8892 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
8893 else
8894 context = DECL_CONTEXT (decl);
8895
8896 while (context && TREE_CODE (context) != FUNCTION_DECL)
8897 {
8898 if (TREE_CODE (context) == BLOCK)
8899 context = BLOCK_SUPERCONTEXT (context);
8900 else
8901 context = get_containing_scope (context);
8902 }
8903
8904 return context;
8905 }
8906
8907 /* Return the innermost context enclosing DECL that is
8908 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
8909 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
8910
8911 tree
8912 decl_type_context (const_tree decl)
8913 {
8914 tree context = DECL_CONTEXT (decl);
8915
8916 while (context)
8917 switch (TREE_CODE (context))
8918 {
8919 case NAMESPACE_DECL:
8920 case TRANSLATION_UNIT_DECL:
8921 return NULL_TREE;
8922
8923 case RECORD_TYPE:
8924 case UNION_TYPE:
8925 case QUAL_UNION_TYPE:
8926 return context;
8927
8928 case TYPE_DECL:
8929 case FUNCTION_DECL:
8930 context = DECL_CONTEXT (context);
8931 break;
8932
8933 case BLOCK:
8934 context = BLOCK_SUPERCONTEXT (context);
8935 break;
8936
8937 default:
8938 gcc_unreachable ();
8939 }
8940
8941 return NULL_TREE;
8942 }
8943
8944 /* CALL is a CALL_EXPR. Return the declaration for the function
8945 called, or NULL_TREE if the called function cannot be
8946 determined. */
8947
8948 tree
8949 get_callee_fndecl (const_tree call)
8950 {
8951 tree addr;
8952
8953 if (call == error_mark_node)
8954 return error_mark_node;
8955
8956 /* It's invalid to call this function with anything but a
8957 CALL_EXPR. */
8958 gcc_assert (TREE_CODE (call) == CALL_EXPR);
8959
8960 /* The first operand to the CALL is the address of the function
8961 called. */
8962 addr = CALL_EXPR_FN (call);
8963
8964 STRIP_NOPS (addr);
8965
8966 /* If this is a readonly function pointer, extract its initial value. */
8967 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
8968 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
8969 && DECL_INITIAL (addr))
8970 addr = DECL_INITIAL (addr);
8971
8972 /* If the address is just `&f' for some function `f', then we know
8973 that `f' is being called. */
8974 if (TREE_CODE (addr) == ADDR_EXPR
8975 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
8976 return TREE_OPERAND (addr, 0);
8977
8978 /* We couldn't figure out what was being called. */
8979 return NULL_TREE;
8980 }
8981
8982 /* Print debugging information about tree nodes generated during the compile,
8983 and any language-specific information. */
8984
8985 void
8986 dump_tree_statistics (void)
8987 {
8988 if (GATHER_STATISTICS)
8989 {
8990 int i;
8991 int total_nodes, total_bytes;
8992 fprintf (stderr, "Kind Nodes Bytes\n");
8993 fprintf (stderr, "---------------------------------------\n");
8994 total_nodes = total_bytes = 0;
8995 for (i = 0; i < (int) all_kinds; i++)
8996 {
8997 fprintf (stderr, "%-20s %7d %10d\n", tree_node_kind_names[i],
8998 tree_node_counts[i], tree_node_sizes[i]);
8999 total_nodes += tree_node_counts[i];
9000 total_bytes += tree_node_sizes[i];
9001 }
9002 fprintf (stderr, "---------------------------------------\n");
9003 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_nodes, total_bytes);
9004 fprintf (stderr, "---------------------------------------\n");
9005 fprintf (stderr, "Code Nodes\n");
9006 fprintf (stderr, "----------------------------\n");
9007 for (i = 0; i < (int) MAX_TREE_CODES; i++)
9008 fprintf (stderr, "%-20s %7d\n", tree_code_name[i], tree_code_counts[i]);
9009 fprintf (stderr, "----------------------------\n");
9010 ssanames_print_statistics ();
9011 phinodes_print_statistics ();
9012 }
9013 else
9014 fprintf (stderr, "(No per-node statistics)\n");
9015
9016 print_type_hash_statistics ();
9017 print_debug_expr_statistics ();
9018 print_value_expr_statistics ();
9019 lang_hooks.print_statistics ();
9020 }
9021 \f
9022 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
9023
9024 /* Generate a crc32 of a byte. */
9025
9026 static unsigned
9027 crc32_unsigned_bits (unsigned chksum, unsigned value, unsigned bits)
9028 {
9029 unsigned ix;
9030
9031 for (ix = bits; ix--; value <<= 1)
9032 {
9033 unsigned feedback;
9034
9035 feedback = (value ^ chksum) & 0x80000000 ? 0x04c11db7 : 0;
9036 chksum <<= 1;
9037 chksum ^= feedback;
9038 }
9039 return chksum;
9040 }
9041
9042 /* Generate a crc32 of a 32-bit unsigned. */
9043
9044 unsigned
9045 crc32_unsigned (unsigned chksum, unsigned value)
9046 {
9047 return crc32_unsigned_bits (chksum, value, 32);
9048 }
9049
9050 /* Generate a crc32 of a byte. */
9051
9052 unsigned
9053 crc32_byte (unsigned chksum, char byte)
9054 {
9055 return crc32_unsigned_bits (chksum, (unsigned) byte << 24, 8);
9056 }
9057
9058 /* Generate a crc32 of a string. */
9059
9060 unsigned
9061 crc32_string (unsigned chksum, const char *string)
9062 {
9063 do
9064 {
9065 chksum = crc32_byte (chksum, *string);
9066 }
9067 while (*string++);
9068 return chksum;
9069 }
9070
9071 /* P is a string that will be used in a symbol. Mask out any characters
9072 that are not valid in that context. */
9073
9074 void
9075 clean_symbol_name (char *p)
9076 {
9077 for (; *p; p++)
9078 if (! (ISALNUM (*p)
9079 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
9080 || *p == '$'
9081 #endif
9082 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
9083 || *p == '.'
9084 #endif
9085 ))
9086 *p = '_';
9087 }
9088
9089 /* Generate a name for a special-purpose function.
9090 The generated name may need to be unique across the whole link.
9091 Changes to this function may also require corresponding changes to
9092 xstrdup_mask_random.
9093 TYPE is some string to identify the purpose of this function to the
9094 linker or collect2; it must start with an uppercase letter,
9095 one of:
9096 I - for constructors
9097 D - for destructors
9098 N - for C++ anonymous namespaces
9099 F - for DWARF unwind frame information. */
9100
9101 tree
9102 get_file_function_name (const char *type)
9103 {
9104 char *buf;
9105 const char *p;
9106 char *q;
9107
9108 /* If we already have a name we know to be unique, just use that. */
9109 if (first_global_object_name)
9110 p = q = ASTRDUP (first_global_object_name);
9111 /* If the target is handling the constructors/destructors, they
9112 will be local to this file and the name is only necessary for
9113 debugging purposes.
9114 We also assign sub_I and sub_D sufixes to constructors called from
9115 the global static constructors. These are always local. */
9116 else if (((type[0] == 'I' || type[0] == 'D') && targetm.have_ctors_dtors)
9117 || (strncmp (type, "sub_", 4) == 0
9118 && (type[4] == 'I' || type[4] == 'D')))
9119 {
9120 const char *file = main_input_filename;
9121 if (! file)
9122 file = input_filename;
9123 /* Just use the file's basename, because the full pathname
9124 might be quite long. */
9125 p = q = ASTRDUP (lbasename (file));
9126 }
9127 else
9128 {
9129 /* Otherwise, the name must be unique across the entire link.
9130 We don't have anything that we know to be unique to this translation
9131 unit, so use what we do have and throw in some randomness. */
9132 unsigned len;
9133 const char *name = weak_global_object_name;
9134 const char *file = main_input_filename;
9135
9136 if (! name)
9137 name = "";
9138 if (! file)
9139 file = input_filename;
9140
9141 len = strlen (file);
9142 q = (char *) alloca (9 + 17 + len + 1);
9143 memcpy (q, file, len + 1);
9144
9145 snprintf (q + len, 9 + 17 + 1, "_%08X_" HOST_WIDE_INT_PRINT_HEX,
9146 crc32_string (0, name), get_random_seed (false));
9147
9148 p = q;
9149 }
9150
9151 clean_symbol_name (q);
9152 buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
9153 + strlen (type));
9154
9155 /* Set up the name of the file-level functions we may need.
9156 Use a global object (which is already required to be unique over
9157 the program) rather than the file name (which imposes extra
9158 constraints). */
9159 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
9160
9161 return get_identifier (buf);
9162 }
9163 \f
9164 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
9165
9166 /* Complain that the tree code of NODE does not match the expected 0
9167 terminated list of trailing codes. The trailing code list can be
9168 empty, for a more vague error message. FILE, LINE, and FUNCTION
9169 are of the caller. */
9170
9171 void
9172 tree_check_failed (const_tree node, const char *file,
9173 int line, const char *function, ...)
9174 {
9175 va_list args;
9176 const char *buffer;
9177 unsigned length = 0;
9178 int code;
9179
9180 va_start (args, function);
9181 while ((code = va_arg (args, int)))
9182 length += 4 + strlen (tree_code_name[code]);
9183 va_end (args);
9184 if (length)
9185 {
9186 char *tmp;
9187 va_start (args, function);
9188 length += strlen ("expected ");
9189 buffer = tmp = (char *) alloca (length);
9190 length = 0;
9191 while ((code = va_arg (args, int)))
9192 {
9193 const char *prefix = length ? " or " : "expected ";
9194
9195 strcpy (tmp + length, prefix);
9196 length += strlen (prefix);
9197 strcpy (tmp + length, tree_code_name[code]);
9198 length += strlen (tree_code_name[code]);
9199 }
9200 va_end (args);
9201 }
9202 else
9203 buffer = "unexpected node";
9204
9205 internal_error ("tree check: %s, have %s in %s, at %s:%d",
9206 buffer, tree_code_name[TREE_CODE (node)],
9207 function, trim_filename (file), line);
9208 }
9209
9210 /* Complain that the tree code of NODE does match the expected 0
9211 terminated list of trailing codes. FILE, LINE, and FUNCTION are of
9212 the caller. */
9213
9214 void
9215 tree_not_check_failed (const_tree node, const char *file,
9216 int line, const char *function, ...)
9217 {
9218 va_list args;
9219 char *buffer;
9220 unsigned length = 0;
9221 int code;
9222
9223 va_start (args, function);
9224 while ((code = va_arg (args, int)))
9225 length += 4 + strlen (tree_code_name[code]);
9226 va_end (args);
9227 va_start (args, function);
9228 buffer = (char *) alloca (length);
9229 length = 0;
9230 while ((code = va_arg (args, int)))
9231 {
9232 if (length)
9233 {
9234 strcpy (buffer + length, " or ");
9235 length += 4;
9236 }
9237 strcpy (buffer + length, tree_code_name[code]);
9238 length += strlen (tree_code_name[code]);
9239 }
9240 va_end (args);
9241
9242 internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
9243 buffer, tree_code_name[TREE_CODE (node)],
9244 function, trim_filename (file), line);
9245 }
9246
9247 /* Similar to tree_check_failed, except that we check for a class of tree
9248 code, given in CL. */
9249
9250 void
9251 tree_class_check_failed (const_tree node, const enum tree_code_class cl,
9252 const char *file, int line, const char *function)
9253 {
9254 internal_error
9255 ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
9256 TREE_CODE_CLASS_STRING (cl),
9257 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
9258 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
9259 }
9260
9261 /* Similar to tree_check_failed, except that instead of specifying a
9262 dozen codes, use the knowledge that they're all sequential. */
9263
9264 void
9265 tree_range_check_failed (const_tree node, const char *file, int line,
9266 const char *function, enum tree_code c1,
9267 enum tree_code c2)
9268 {
9269 char *buffer;
9270 unsigned length = 0;
9271 unsigned int c;
9272
9273 for (c = c1; c <= c2; ++c)
9274 length += 4 + strlen (tree_code_name[c]);
9275
9276 length += strlen ("expected ");
9277 buffer = (char *) alloca (length);
9278 length = 0;
9279
9280 for (c = c1; c <= c2; ++c)
9281 {
9282 const char *prefix = length ? " or " : "expected ";
9283
9284 strcpy (buffer + length, prefix);
9285 length += strlen (prefix);
9286 strcpy (buffer + length, tree_code_name[c]);
9287 length += strlen (tree_code_name[c]);
9288 }
9289
9290 internal_error ("tree check: %s, have %s in %s, at %s:%d",
9291 buffer, tree_code_name[TREE_CODE (node)],
9292 function, trim_filename (file), line);
9293 }
9294
9295
9296 /* Similar to tree_check_failed, except that we check that a tree does
9297 not have the specified code, given in CL. */
9298
9299 void
9300 tree_not_class_check_failed (const_tree node, const enum tree_code_class cl,
9301 const char *file, int line, const char *function)
9302 {
9303 internal_error
9304 ("tree check: did not expect class %qs, have %qs (%s) in %s, at %s:%d",
9305 TREE_CODE_CLASS_STRING (cl),
9306 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
9307 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
9308 }
9309
9310
9311 /* Similar to tree_check_failed but applied to OMP_CLAUSE codes. */
9312
9313 void
9314 omp_clause_check_failed (const_tree node, const char *file, int line,
9315 const char *function, enum omp_clause_code code)
9316 {
9317 internal_error ("tree check: expected omp_clause %s, have %s in %s, at %s:%d",
9318 omp_clause_code_name[code], tree_code_name[TREE_CODE (node)],
9319 function, trim_filename (file), line);
9320 }
9321
9322
9323 /* Similar to tree_range_check_failed but applied to OMP_CLAUSE codes. */
9324
9325 void
9326 omp_clause_range_check_failed (const_tree node, const char *file, int line,
9327 const char *function, enum omp_clause_code c1,
9328 enum omp_clause_code c2)
9329 {
9330 char *buffer;
9331 unsigned length = 0;
9332 unsigned int c;
9333
9334 for (c = c1; c <= c2; ++c)
9335 length += 4 + strlen (omp_clause_code_name[c]);
9336
9337 length += strlen ("expected ");
9338 buffer = (char *) alloca (length);
9339 length = 0;
9340
9341 for (c = c1; c <= c2; ++c)
9342 {
9343 const char *prefix = length ? " or " : "expected ";
9344
9345 strcpy (buffer + length, prefix);
9346 length += strlen (prefix);
9347 strcpy (buffer + length, omp_clause_code_name[c]);
9348 length += strlen (omp_clause_code_name[c]);
9349 }
9350
9351 internal_error ("tree check: %s, have %s in %s, at %s:%d",
9352 buffer, omp_clause_code_name[TREE_CODE (node)],
9353 function, trim_filename (file), line);
9354 }
9355
9356
9357 #undef DEFTREESTRUCT
9358 #define DEFTREESTRUCT(VAL, NAME) NAME,
9359
9360 static const char *ts_enum_names[] = {
9361 #include "treestruct.def"
9362 };
9363 #undef DEFTREESTRUCT
9364
9365 #define TS_ENUM_NAME(EN) (ts_enum_names[(EN)])
9366
9367 /* Similar to tree_class_check_failed, except that we check for
9368 whether CODE contains the tree structure identified by EN. */
9369
9370 void
9371 tree_contains_struct_check_failed (const_tree node,
9372 const enum tree_node_structure_enum en,
9373 const char *file, int line,
9374 const char *function)
9375 {
9376 internal_error
9377 ("tree check: expected tree that contains %qs structure, have %qs in %s, at %s:%d",
9378 TS_ENUM_NAME(en),
9379 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
9380 }
9381
9382
9383 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
9384 (dynamically sized) vector. */
9385
9386 void
9387 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
9388 const char *function)
9389 {
9390 internal_error
9391 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
9392 idx + 1, len, function, trim_filename (file), line);
9393 }
9394
9395 /* Similar to above, except that the check is for the bounds of the operand
9396 vector of an expression node EXP. */
9397
9398 void
9399 tree_operand_check_failed (int idx, const_tree exp, const char *file,
9400 int line, const char *function)
9401 {
9402 int code = TREE_CODE (exp);
9403 internal_error
9404 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
9405 idx + 1, tree_code_name[code], TREE_OPERAND_LENGTH (exp),
9406 function, trim_filename (file), line);
9407 }
9408
9409 /* Similar to above, except that the check is for the number of
9410 operands of an OMP_CLAUSE node. */
9411
9412 void
9413 omp_clause_operand_check_failed (int idx, const_tree t, const char *file,
9414 int line, const char *function)
9415 {
9416 internal_error
9417 ("tree check: accessed operand %d of omp_clause %s with %d operands "
9418 "in %s, at %s:%d", idx + 1, omp_clause_code_name[OMP_CLAUSE_CODE (t)],
9419 omp_clause_num_ops [OMP_CLAUSE_CODE (t)], function,
9420 trim_filename (file), line);
9421 }
9422 #endif /* ENABLE_TREE_CHECKING */
9423 \f
9424 /* Create a new vector type node holding SUBPARTS units of type INNERTYPE,
9425 and mapped to the machine mode MODE. Initialize its fields and build
9426 the information necessary for debugging output. */
9427
9428 static tree
9429 make_vector_type (tree innertype, int nunits, enum machine_mode mode)
9430 {
9431 tree t;
9432 hashval_t hashcode = 0;
9433
9434 t = make_node (VECTOR_TYPE);
9435 TREE_TYPE (t) = TYPE_MAIN_VARIANT (innertype);
9436 SET_TYPE_VECTOR_SUBPARTS (t, nunits);
9437 SET_TYPE_MODE (t, mode);
9438
9439 if (TYPE_STRUCTURAL_EQUALITY_P (innertype))
9440 SET_TYPE_STRUCTURAL_EQUALITY (t);
9441 else if (TYPE_CANONICAL (innertype) != innertype
9442 || mode != VOIDmode)
9443 TYPE_CANONICAL (t)
9444 = make_vector_type (TYPE_CANONICAL (innertype), nunits, VOIDmode);
9445
9446 layout_type (t);
9447
9448 hashcode = iterative_hash_host_wide_int (VECTOR_TYPE, hashcode);
9449 hashcode = iterative_hash_host_wide_int (nunits, hashcode);
9450 hashcode = iterative_hash_host_wide_int (mode, hashcode);
9451 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (t)), hashcode);
9452 t = type_hash_canon (hashcode, t);
9453
9454 /* We have built a main variant, based on the main variant of the
9455 inner type. Use it to build the variant we return. */
9456 if ((TYPE_ATTRIBUTES (innertype) || TYPE_QUALS (innertype))
9457 && TREE_TYPE (t) != innertype)
9458 return build_type_attribute_qual_variant (t,
9459 TYPE_ATTRIBUTES (innertype),
9460 TYPE_QUALS (innertype));
9461
9462 return t;
9463 }
9464
9465 static tree
9466 make_or_reuse_type (unsigned size, int unsignedp)
9467 {
9468 if (size == INT_TYPE_SIZE)
9469 return unsignedp ? unsigned_type_node : integer_type_node;
9470 if (size == CHAR_TYPE_SIZE)
9471 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
9472 if (size == SHORT_TYPE_SIZE)
9473 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
9474 if (size == LONG_TYPE_SIZE)
9475 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
9476 if (size == LONG_LONG_TYPE_SIZE)
9477 return (unsignedp ? long_long_unsigned_type_node
9478 : long_long_integer_type_node);
9479 if (size == 128 && int128_integer_type_node)
9480 return (unsignedp ? int128_unsigned_type_node
9481 : int128_integer_type_node);
9482
9483 if (unsignedp)
9484 return make_unsigned_type (size);
9485 else
9486 return make_signed_type (size);
9487 }
9488
9489 /* Create or reuse a fract type by SIZE, UNSIGNEDP, and SATP. */
9490
9491 static tree
9492 make_or_reuse_fract_type (unsigned size, int unsignedp, int satp)
9493 {
9494 if (satp)
9495 {
9496 if (size == SHORT_FRACT_TYPE_SIZE)
9497 return unsignedp ? sat_unsigned_short_fract_type_node
9498 : sat_short_fract_type_node;
9499 if (size == FRACT_TYPE_SIZE)
9500 return unsignedp ? sat_unsigned_fract_type_node : sat_fract_type_node;
9501 if (size == LONG_FRACT_TYPE_SIZE)
9502 return unsignedp ? sat_unsigned_long_fract_type_node
9503 : sat_long_fract_type_node;
9504 if (size == LONG_LONG_FRACT_TYPE_SIZE)
9505 return unsignedp ? sat_unsigned_long_long_fract_type_node
9506 : sat_long_long_fract_type_node;
9507 }
9508 else
9509 {
9510 if (size == SHORT_FRACT_TYPE_SIZE)
9511 return unsignedp ? unsigned_short_fract_type_node
9512 : short_fract_type_node;
9513 if (size == FRACT_TYPE_SIZE)
9514 return unsignedp ? unsigned_fract_type_node : fract_type_node;
9515 if (size == LONG_FRACT_TYPE_SIZE)
9516 return unsignedp ? unsigned_long_fract_type_node
9517 : long_fract_type_node;
9518 if (size == LONG_LONG_FRACT_TYPE_SIZE)
9519 return unsignedp ? unsigned_long_long_fract_type_node
9520 : long_long_fract_type_node;
9521 }
9522
9523 return make_fract_type (size, unsignedp, satp);
9524 }
9525
9526 /* Create or reuse an accum type by SIZE, UNSIGNEDP, and SATP. */
9527
9528 static tree
9529 make_or_reuse_accum_type (unsigned size, int unsignedp, int satp)
9530 {
9531 if (satp)
9532 {
9533 if (size == SHORT_ACCUM_TYPE_SIZE)
9534 return unsignedp ? sat_unsigned_short_accum_type_node
9535 : sat_short_accum_type_node;
9536 if (size == ACCUM_TYPE_SIZE)
9537 return unsignedp ? sat_unsigned_accum_type_node : sat_accum_type_node;
9538 if (size == LONG_ACCUM_TYPE_SIZE)
9539 return unsignedp ? sat_unsigned_long_accum_type_node
9540 : sat_long_accum_type_node;
9541 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
9542 return unsignedp ? sat_unsigned_long_long_accum_type_node
9543 : sat_long_long_accum_type_node;
9544 }
9545 else
9546 {
9547 if (size == SHORT_ACCUM_TYPE_SIZE)
9548 return unsignedp ? unsigned_short_accum_type_node
9549 : short_accum_type_node;
9550 if (size == ACCUM_TYPE_SIZE)
9551 return unsignedp ? unsigned_accum_type_node : accum_type_node;
9552 if (size == LONG_ACCUM_TYPE_SIZE)
9553 return unsignedp ? unsigned_long_accum_type_node
9554 : long_accum_type_node;
9555 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
9556 return unsignedp ? unsigned_long_long_accum_type_node
9557 : long_long_accum_type_node;
9558 }
9559
9560 return make_accum_type (size, unsignedp, satp);
9561 }
9562
9563 /* Create nodes for all integer types (and error_mark_node) using the sizes
9564 of C datatypes. SIGNED_CHAR specifies whether char is signed,
9565 SHORT_DOUBLE specifies whether double should be of the same precision
9566 as float. */
9567
9568 void
9569 build_common_tree_nodes (bool signed_char, bool short_double)
9570 {
9571 error_mark_node = make_node (ERROR_MARK);
9572 TREE_TYPE (error_mark_node) = error_mark_node;
9573
9574 initialize_sizetypes ();
9575
9576 /* Define both `signed char' and `unsigned char'. */
9577 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
9578 TYPE_STRING_FLAG (signed_char_type_node) = 1;
9579 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
9580 TYPE_STRING_FLAG (unsigned_char_type_node) = 1;
9581
9582 /* Define `char', which is like either `signed char' or `unsigned char'
9583 but not the same as either. */
9584 char_type_node
9585 = (signed_char
9586 ? make_signed_type (CHAR_TYPE_SIZE)
9587 : make_unsigned_type (CHAR_TYPE_SIZE));
9588 TYPE_STRING_FLAG (char_type_node) = 1;
9589
9590 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
9591 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
9592 integer_type_node = make_signed_type (INT_TYPE_SIZE);
9593 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
9594 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
9595 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
9596 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
9597 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
9598 #if HOST_BITS_PER_WIDE_INT >= 64
9599 /* TODO: This isn't correct, but as logic depends at the moment on
9600 host's instead of target's wide-integer.
9601 If there is a target not supporting TImode, but has an 128-bit
9602 integer-scalar register, this target check needs to be adjusted. */
9603 if (targetm.scalar_mode_supported_p (TImode))
9604 {
9605 int128_integer_type_node = make_signed_type (128);
9606 int128_unsigned_type_node = make_unsigned_type (128);
9607 }
9608 #endif
9609
9610 /* Define a boolean type. This type only represents boolean values but
9611 may be larger than char depending on the value of BOOL_TYPE_SIZE.
9612 Front ends which want to override this size (i.e. Java) can redefine
9613 boolean_type_node before calling build_common_tree_nodes_2. */
9614 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
9615 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
9616 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
9617 TYPE_PRECISION (boolean_type_node) = 1;
9618
9619 /* Define what type to use for size_t. */
9620 if (strcmp (SIZE_TYPE, "unsigned int") == 0)
9621 size_type_node = unsigned_type_node;
9622 else if (strcmp (SIZE_TYPE, "long unsigned int") == 0)
9623 size_type_node = long_unsigned_type_node;
9624 else if (strcmp (SIZE_TYPE, "long long unsigned int") == 0)
9625 size_type_node = long_long_unsigned_type_node;
9626 else if (strcmp (SIZE_TYPE, "short unsigned int") == 0)
9627 size_type_node = short_unsigned_type_node;
9628 else
9629 gcc_unreachable ();
9630
9631 /* Fill in the rest of the sized types. Reuse existing type nodes
9632 when possible. */
9633 intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
9634 intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
9635 intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
9636 intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
9637 intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);
9638
9639 unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
9640 unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
9641 unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
9642 unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
9643 unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);
9644
9645 access_public_node = get_identifier ("public");
9646 access_protected_node = get_identifier ("protected");
9647 access_private_node = get_identifier ("private");
9648
9649 /* Define these next since types below may used them. */
9650 integer_zero_node = build_int_cst (integer_type_node, 0);
9651 integer_one_node = build_int_cst (integer_type_node, 1);
9652 integer_three_node = build_int_cst (integer_type_node, 3);
9653 integer_minus_one_node = build_int_cst (integer_type_node, -1);
9654
9655 size_zero_node = size_int (0);
9656 size_one_node = size_int (1);
9657 bitsize_zero_node = bitsize_int (0);
9658 bitsize_one_node = bitsize_int (1);
9659 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
9660
9661 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
9662 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
9663
9664 void_type_node = make_node (VOID_TYPE);
9665 layout_type (void_type_node);
9666
9667 /* We are not going to have real types in C with less than byte alignment,
9668 so we might as well not have any types that claim to have it. */
9669 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
9670 TYPE_USER_ALIGN (void_type_node) = 0;
9671
9672 null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
9673 layout_type (TREE_TYPE (null_pointer_node));
9674
9675 ptr_type_node = build_pointer_type (void_type_node);
9676 const_ptr_type_node
9677 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
9678 fileptr_type_node = ptr_type_node;
9679
9680 float_type_node = make_node (REAL_TYPE);
9681 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
9682 layout_type (float_type_node);
9683
9684 double_type_node = make_node (REAL_TYPE);
9685 if (short_double)
9686 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
9687 else
9688 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
9689 layout_type (double_type_node);
9690
9691 long_double_type_node = make_node (REAL_TYPE);
9692 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
9693 layout_type (long_double_type_node);
9694
9695 float_ptr_type_node = build_pointer_type (float_type_node);
9696 double_ptr_type_node = build_pointer_type (double_type_node);
9697 long_double_ptr_type_node = build_pointer_type (long_double_type_node);
9698 integer_ptr_type_node = build_pointer_type (integer_type_node);
9699
9700 /* Fixed size integer types. */
9701 uint16_type_node = build_nonstandard_integer_type (16, true);
9702 uint32_type_node = build_nonstandard_integer_type (32, true);
9703 uint64_type_node = build_nonstandard_integer_type (64, true);
9704
9705 /* Decimal float types. */
9706 dfloat32_type_node = make_node (REAL_TYPE);
9707 TYPE_PRECISION (dfloat32_type_node) = DECIMAL32_TYPE_SIZE;
9708 layout_type (dfloat32_type_node);
9709 SET_TYPE_MODE (dfloat32_type_node, SDmode);
9710 dfloat32_ptr_type_node = build_pointer_type (dfloat32_type_node);
9711
9712 dfloat64_type_node = make_node (REAL_TYPE);
9713 TYPE_PRECISION (dfloat64_type_node) = DECIMAL64_TYPE_SIZE;
9714 layout_type (dfloat64_type_node);
9715 SET_TYPE_MODE (dfloat64_type_node, DDmode);
9716 dfloat64_ptr_type_node = build_pointer_type (dfloat64_type_node);
9717
9718 dfloat128_type_node = make_node (REAL_TYPE);
9719 TYPE_PRECISION (dfloat128_type_node) = DECIMAL128_TYPE_SIZE;
9720 layout_type (dfloat128_type_node);
9721 SET_TYPE_MODE (dfloat128_type_node, TDmode);
9722 dfloat128_ptr_type_node = build_pointer_type (dfloat128_type_node);
9723
9724 complex_integer_type_node = build_complex_type (integer_type_node);
9725 complex_float_type_node = build_complex_type (float_type_node);
9726 complex_double_type_node = build_complex_type (double_type_node);
9727 complex_long_double_type_node = build_complex_type (long_double_type_node);
9728
9729 /* Make fixed-point nodes based on sat/non-sat and signed/unsigned. */
9730 #define MAKE_FIXED_TYPE_NODE(KIND,SIZE) \
9731 sat_ ## KIND ## _type_node = \
9732 make_sat_signed_ ## KIND ## _type (SIZE); \
9733 sat_unsigned_ ## KIND ## _type_node = \
9734 make_sat_unsigned_ ## KIND ## _type (SIZE); \
9735 KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
9736 unsigned_ ## KIND ## _type_node = \
9737 make_unsigned_ ## KIND ## _type (SIZE);
9738
9739 #define MAKE_FIXED_TYPE_NODE_WIDTH(KIND,WIDTH,SIZE) \
9740 sat_ ## WIDTH ## KIND ## _type_node = \
9741 make_sat_signed_ ## KIND ## _type (SIZE); \
9742 sat_unsigned_ ## WIDTH ## KIND ## _type_node = \
9743 make_sat_unsigned_ ## KIND ## _type (SIZE); \
9744 WIDTH ## KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
9745 unsigned_ ## WIDTH ## KIND ## _type_node = \
9746 make_unsigned_ ## KIND ## _type (SIZE);
9747
9748 /* Make fixed-point type nodes based on four different widths. */
9749 #define MAKE_FIXED_TYPE_NODE_FAMILY(N1,N2) \
9750 MAKE_FIXED_TYPE_NODE_WIDTH (N1, short_, SHORT_ ## N2 ## _TYPE_SIZE) \
9751 MAKE_FIXED_TYPE_NODE (N1, N2 ## _TYPE_SIZE) \
9752 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_, LONG_ ## N2 ## _TYPE_SIZE) \
9753 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_long_, LONG_LONG_ ## N2 ## _TYPE_SIZE)
9754
9755 /* Make fixed-point mode nodes based on sat/non-sat and signed/unsigned. */
9756 #define MAKE_FIXED_MODE_NODE(KIND,NAME,MODE) \
9757 NAME ## _type_node = \
9758 make_or_reuse_signed_ ## KIND ## _type (GET_MODE_BITSIZE (MODE ## mode)); \
9759 u ## NAME ## _type_node = \
9760 make_or_reuse_unsigned_ ## KIND ## _type \
9761 (GET_MODE_BITSIZE (U ## MODE ## mode)); \
9762 sat_ ## NAME ## _type_node = \
9763 make_or_reuse_sat_signed_ ## KIND ## _type \
9764 (GET_MODE_BITSIZE (MODE ## mode)); \
9765 sat_u ## NAME ## _type_node = \
9766 make_or_reuse_sat_unsigned_ ## KIND ## _type \
9767 (GET_MODE_BITSIZE (U ## MODE ## mode));
9768
9769 /* Fixed-point type and mode nodes. */
9770 MAKE_FIXED_TYPE_NODE_FAMILY (fract, FRACT)
9771 MAKE_FIXED_TYPE_NODE_FAMILY (accum, ACCUM)
9772 MAKE_FIXED_MODE_NODE (fract, qq, QQ)
9773 MAKE_FIXED_MODE_NODE (fract, hq, HQ)
9774 MAKE_FIXED_MODE_NODE (fract, sq, SQ)
9775 MAKE_FIXED_MODE_NODE (fract, dq, DQ)
9776 MAKE_FIXED_MODE_NODE (fract, tq, TQ)
9777 MAKE_FIXED_MODE_NODE (accum, ha, HA)
9778 MAKE_FIXED_MODE_NODE (accum, sa, SA)
9779 MAKE_FIXED_MODE_NODE (accum, da, DA)
9780 MAKE_FIXED_MODE_NODE (accum, ta, TA)
9781
9782 {
9783 tree t = targetm.build_builtin_va_list ();
9784
9785 /* Many back-ends define record types without setting TYPE_NAME.
9786 If we copied the record type here, we'd keep the original
9787 record type without a name. This breaks name mangling. So,
9788 don't copy record types and let c_common_nodes_and_builtins()
9789 declare the type to be __builtin_va_list. */
9790 if (TREE_CODE (t) != RECORD_TYPE)
9791 t = build_variant_type_copy (t);
9792
9793 va_list_type_node = t;
9794 }
9795 }
9796
9797 /* Modify DECL for given flags. */
9798 void
9799 set_call_expr_flags (tree decl, int flags)
9800 {
9801 if (flags & ECF_NOTHROW)
9802 TREE_NOTHROW (decl) = 1;
9803 if (flags & ECF_CONST)
9804 TREE_READONLY (decl) = 1;
9805 if (flags & ECF_PURE)
9806 DECL_PURE_P (decl) = 1;
9807 if (flags & ECF_LOOPING_CONST_OR_PURE)
9808 DECL_LOOPING_CONST_OR_PURE_P (decl) = 1;
9809 if (flags & ECF_NOVOPS)
9810 DECL_IS_NOVOPS (decl) = 1;
9811 if (flags & ECF_NORETURN)
9812 TREE_THIS_VOLATILE (decl) = 1;
9813 if (flags & ECF_MALLOC)
9814 DECL_IS_MALLOC (decl) = 1;
9815 if (flags & ECF_RETURNS_TWICE)
9816 DECL_IS_RETURNS_TWICE (decl) = 1;
9817 if (flags & ECF_LEAF)
9818 DECL_ATTRIBUTES (decl) = tree_cons (get_identifier ("leaf"),
9819 NULL, DECL_ATTRIBUTES (decl));
9820 if ((flags & ECF_TM_PURE) && flag_tm)
9821 DECL_ATTRIBUTES (decl) = tree_cons (get_identifier ("transaction_pure"),
9822 NULL, DECL_ATTRIBUTES (decl));
9823 /* Looping const or pure is implied by noreturn.
9824 There is currently no way to declare looping const or looping pure alone. */
9825 gcc_assert (!(flags & ECF_LOOPING_CONST_OR_PURE)
9826 || ((flags & ECF_NORETURN) && (flags & (ECF_CONST | ECF_PURE))));
9827 }
9828
9829
9830 /* A subroutine of build_common_builtin_nodes. Define a builtin function. */
9831
9832 static void
9833 local_define_builtin (const char *name, tree type, enum built_in_function code,
9834 const char *library_name, int ecf_flags)
9835 {
9836 tree decl;
9837
9838 decl = add_builtin_function (name, type, code, BUILT_IN_NORMAL,
9839 library_name, NULL_TREE);
9840 set_call_expr_flags (decl, ecf_flags);
9841
9842 set_builtin_decl (code, decl, true);
9843 }
9844
9845 /* Call this function after instantiating all builtins that the language
9846 front end cares about. This will build the rest of the builtins that
9847 are relied upon by the tree optimizers and the middle-end. */
9848
9849 void
9850 build_common_builtin_nodes (void)
9851 {
9852 tree tmp, ftype;
9853 int ecf_flags;
9854
9855 if (!builtin_decl_explicit_p (BUILT_IN_UNREACHABLE))
9856 {
9857 ftype = build_function_type (void_type_node, void_list_node);
9858 local_define_builtin ("__builtin_unreachable", ftype, BUILT_IN_UNREACHABLE,
9859 "__builtin_unreachable",
9860 ECF_NOTHROW | ECF_LEAF | ECF_NORETURN
9861 | ECF_CONST | ECF_LEAF);
9862 }
9863
9864 if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY)
9865 || !builtin_decl_explicit_p (BUILT_IN_MEMMOVE))
9866 {
9867 ftype = build_function_type_list (ptr_type_node,
9868 ptr_type_node, const_ptr_type_node,
9869 size_type_node, NULL_TREE);
9870
9871 if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY))
9872 local_define_builtin ("__builtin_memcpy", ftype, BUILT_IN_MEMCPY,
9873 "memcpy", ECF_NOTHROW | ECF_LEAF);
9874 if (!builtin_decl_explicit_p (BUILT_IN_MEMMOVE))
9875 local_define_builtin ("__builtin_memmove", ftype, BUILT_IN_MEMMOVE,
9876 "memmove", ECF_NOTHROW | ECF_LEAF);
9877 }
9878
9879 if (!builtin_decl_explicit_p (BUILT_IN_MEMCMP))
9880 {
9881 ftype = build_function_type_list (integer_type_node, const_ptr_type_node,
9882 const_ptr_type_node, size_type_node,
9883 NULL_TREE);
9884 local_define_builtin ("__builtin_memcmp", ftype, BUILT_IN_MEMCMP,
9885 "memcmp", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
9886 }
9887
9888 if (!builtin_decl_explicit_p (BUILT_IN_MEMSET))
9889 {
9890 ftype = build_function_type_list (ptr_type_node,
9891 ptr_type_node, integer_type_node,
9892 size_type_node, NULL_TREE);
9893 local_define_builtin ("__builtin_memset", ftype, BUILT_IN_MEMSET,
9894 "memset", ECF_NOTHROW | ECF_LEAF);
9895 }
9896
9897 if (!builtin_decl_explicit_p (BUILT_IN_ALLOCA))
9898 {
9899 ftype = build_function_type_list (ptr_type_node,
9900 size_type_node, NULL_TREE);
9901 local_define_builtin ("__builtin_alloca", ftype, BUILT_IN_ALLOCA,
9902 "alloca", ECF_MALLOC | ECF_NOTHROW | ECF_LEAF);
9903 }
9904
9905 ftype = build_function_type_list (ptr_type_node, size_type_node,
9906 size_type_node, NULL_TREE);
9907 local_define_builtin ("__builtin_alloca_with_align", ftype,
9908 BUILT_IN_ALLOCA_WITH_ALIGN, "alloca",
9909 ECF_MALLOC | ECF_NOTHROW | ECF_LEAF);
9910
9911 /* If we're checking the stack, `alloca' can throw. */
9912 if (flag_stack_check)
9913 {
9914 TREE_NOTHROW (builtin_decl_explicit (BUILT_IN_ALLOCA)) = 0;
9915 TREE_NOTHROW (builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN)) = 0;
9916 }
9917
9918 ftype = build_function_type_list (void_type_node,
9919 ptr_type_node, ptr_type_node,
9920 ptr_type_node, NULL_TREE);
9921 local_define_builtin ("__builtin_init_trampoline", ftype,
9922 BUILT_IN_INIT_TRAMPOLINE,
9923 "__builtin_init_trampoline", ECF_NOTHROW | ECF_LEAF);
9924 local_define_builtin ("__builtin_init_heap_trampoline", ftype,
9925 BUILT_IN_INIT_HEAP_TRAMPOLINE,
9926 "__builtin_init_heap_trampoline",
9927 ECF_NOTHROW | ECF_LEAF);
9928
9929 ftype = build_function_type_list (ptr_type_node, ptr_type_node, NULL_TREE);
9930 local_define_builtin ("__builtin_adjust_trampoline", ftype,
9931 BUILT_IN_ADJUST_TRAMPOLINE,
9932 "__builtin_adjust_trampoline",
9933 ECF_CONST | ECF_NOTHROW);
9934
9935 ftype = build_function_type_list (void_type_node,
9936 ptr_type_node, ptr_type_node, NULL_TREE);
9937 local_define_builtin ("__builtin_nonlocal_goto", ftype,
9938 BUILT_IN_NONLOCAL_GOTO,
9939 "__builtin_nonlocal_goto",
9940 ECF_NORETURN | ECF_NOTHROW);
9941
9942 ftype = build_function_type_list (void_type_node,
9943 ptr_type_node, ptr_type_node, NULL_TREE);
9944 local_define_builtin ("__builtin_setjmp_setup", ftype,
9945 BUILT_IN_SETJMP_SETUP,
9946 "__builtin_setjmp_setup", ECF_NOTHROW);
9947
9948 ftype = build_function_type_list (ptr_type_node, ptr_type_node, NULL_TREE);
9949 local_define_builtin ("__builtin_setjmp_dispatcher", ftype,
9950 BUILT_IN_SETJMP_DISPATCHER,
9951 "__builtin_setjmp_dispatcher",
9952 ECF_PURE | ECF_NOTHROW);
9953
9954 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
9955 local_define_builtin ("__builtin_setjmp_receiver", ftype,
9956 BUILT_IN_SETJMP_RECEIVER,
9957 "__builtin_setjmp_receiver", ECF_NOTHROW);
9958
9959 ftype = build_function_type_list (ptr_type_node, NULL_TREE);
9960 local_define_builtin ("__builtin_stack_save", ftype, BUILT_IN_STACK_SAVE,
9961 "__builtin_stack_save", ECF_NOTHROW | ECF_LEAF);
9962
9963 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
9964 local_define_builtin ("__builtin_stack_restore", ftype,
9965 BUILT_IN_STACK_RESTORE,
9966 "__builtin_stack_restore", ECF_NOTHROW | ECF_LEAF);
9967
9968 /* If there's a possibility that we might use the ARM EABI, build the
9969 alternate __cxa_end_cleanup node used to resume from C++ and Java. */
9970 if (targetm.arm_eabi_unwinder)
9971 {
9972 ftype = build_function_type_list (void_type_node, NULL_TREE);
9973 local_define_builtin ("__builtin_cxa_end_cleanup", ftype,
9974 BUILT_IN_CXA_END_CLEANUP,
9975 "__cxa_end_cleanup", ECF_NORETURN | ECF_LEAF);
9976 }
9977
9978 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
9979 local_define_builtin ("__builtin_unwind_resume", ftype,
9980 BUILT_IN_UNWIND_RESUME,
9981 ((targetm_common.except_unwind_info (&global_options)
9982 == UI_SJLJ)
9983 ? "_Unwind_SjLj_Resume" : "_Unwind_Resume"),
9984 ECF_NORETURN);
9985
9986 if (builtin_decl_explicit (BUILT_IN_RETURN_ADDRESS) == NULL_TREE)
9987 {
9988 ftype = build_function_type_list (ptr_type_node, integer_type_node,
9989 NULL_TREE);
9990 local_define_builtin ("__builtin_return_address", ftype,
9991 BUILT_IN_RETURN_ADDRESS,
9992 "__builtin_return_address",
9993 ECF_NOTHROW);
9994 }
9995
9996 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER)
9997 || !builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT))
9998 {
9999 ftype = build_function_type_list (void_type_node, ptr_type_node,
10000 ptr_type_node, NULL_TREE);
10001 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER))
10002 local_define_builtin ("__cyg_profile_func_enter", ftype,
10003 BUILT_IN_PROFILE_FUNC_ENTER,
10004 "__cyg_profile_func_enter", 0);
10005 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT))
10006 local_define_builtin ("__cyg_profile_func_exit", ftype,
10007 BUILT_IN_PROFILE_FUNC_EXIT,
10008 "__cyg_profile_func_exit", 0);
10009 }
10010
10011 /* The exception object and filter values from the runtime. The argument
10012 must be zero before exception lowering, i.e. from the front end. After
10013 exception lowering, it will be the region number for the exception
10014 landing pad. These functions are PURE instead of CONST to prevent
10015 them from being hoisted past the exception edge that will initialize
10016 its value in the landing pad. */
10017 ftype = build_function_type_list (ptr_type_node,
10018 integer_type_node, NULL_TREE);
10019 ecf_flags = ECF_PURE | ECF_NOTHROW | ECF_LEAF;
10020 /* Only use TM_PURE if we we have TM language support. */
10021 if (builtin_decl_explicit_p (BUILT_IN_TM_LOAD_1))
10022 ecf_flags |= ECF_TM_PURE;
10023 local_define_builtin ("__builtin_eh_pointer", ftype, BUILT_IN_EH_POINTER,
10024 "__builtin_eh_pointer", ecf_flags);
10025
10026 tmp = lang_hooks.types.type_for_mode (targetm.eh_return_filter_mode (), 0);
10027 ftype = build_function_type_list (tmp, integer_type_node, NULL_TREE);
10028 local_define_builtin ("__builtin_eh_filter", ftype, BUILT_IN_EH_FILTER,
10029 "__builtin_eh_filter", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10030
10031 ftype = build_function_type_list (void_type_node,
10032 integer_type_node, integer_type_node,
10033 NULL_TREE);
10034 local_define_builtin ("__builtin_eh_copy_values", ftype,
10035 BUILT_IN_EH_COPY_VALUES,
10036 "__builtin_eh_copy_values", ECF_NOTHROW);
10037
10038 /* Complex multiplication and division. These are handled as builtins
10039 rather than optabs because emit_library_call_value doesn't support
10040 complex. Further, we can do slightly better with folding these
10041 beasties if the real and complex parts of the arguments are separate. */
10042 {
10043 int mode;
10044
10045 for (mode = MIN_MODE_COMPLEX_FLOAT; mode <= MAX_MODE_COMPLEX_FLOAT; ++mode)
10046 {
10047 char mode_name_buf[4], *q;
10048 const char *p;
10049 enum built_in_function mcode, dcode;
10050 tree type, inner_type;
10051 const char *prefix = "__";
10052
10053 if (targetm.libfunc_gnu_prefix)
10054 prefix = "__gnu_";
10055
10056 type = lang_hooks.types.type_for_mode ((enum machine_mode) mode, 0);
10057 if (type == NULL)
10058 continue;
10059 inner_type = TREE_TYPE (type);
10060
10061 ftype = build_function_type_list (type, inner_type, inner_type,
10062 inner_type, inner_type, NULL_TREE);
10063
10064 mcode = ((enum built_in_function)
10065 (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
10066 dcode = ((enum built_in_function)
10067 (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
10068
10069 for (p = GET_MODE_NAME (mode), q = mode_name_buf; *p; p++, q++)
10070 *q = TOLOWER (*p);
10071 *q = '\0';
10072
10073 built_in_names[mcode] = concat (prefix, "mul", mode_name_buf, "3",
10074 NULL);
10075 local_define_builtin (built_in_names[mcode], ftype, mcode,
10076 built_in_names[mcode],
10077 ECF_CONST | ECF_NOTHROW | ECF_LEAF);
10078
10079 built_in_names[dcode] = concat (prefix, "div", mode_name_buf, "3",
10080 NULL);
10081 local_define_builtin (built_in_names[dcode], ftype, dcode,
10082 built_in_names[dcode],
10083 ECF_CONST | ECF_NOTHROW | ECF_LEAF);
10084 }
10085 }
10086 }
10087
10088 /* HACK. GROSS. This is absolutely disgusting. I wish there was a
10089 better way.
10090
10091 If we requested a pointer to a vector, build up the pointers that
10092 we stripped off while looking for the inner type. Similarly for
10093 return values from functions.
10094
10095 The argument TYPE is the top of the chain, and BOTTOM is the
10096 new type which we will point to. */
10097
10098 tree
10099 reconstruct_complex_type (tree type, tree bottom)
10100 {
10101 tree inner, outer;
10102
10103 if (TREE_CODE (type) == POINTER_TYPE)
10104 {
10105 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10106 outer = build_pointer_type_for_mode (inner, TYPE_MODE (type),
10107 TYPE_REF_CAN_ALIAS_ALL (type));
10108 }
10109 else if (TREE_CODE (type) == REFERENCE_TYPE)
10110 {
10111 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10112 outer = build_reference_type_for_mode (inner, TYPE_MODE (type),
10113 TYPE_REF_CAN_ALIAS_ALL (type));
10114 }
10115 else if (TREE_CODE (type) == ARRAY_TYPE)
10116 {
10117 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10118 outer = build_array_type (inner, TYPE_DOMAIN (type));
10119 }
10120 else if (TREE_CODE (type) == FUNCTION_TYPE)
10121 {
10122 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10123 outer = build_function_type (inner, TYPE_ARG_TYPES (type));
10124 }
10125 else if (TREE_CODE (type) == METHOD_TYPE)
10126 {
10127 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10128 /* The build_method_type_directly() routine prepends 'this' to argument list,
10129 so we must compensate by getting rid of it. */
10130 outer
10131 = build_method_type_directly
10132 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (type))),
10133 inner,
10134 TREE_CHAIN (TYPE_ARG_TYPES (type)));
10135 }
10136 else if (TREE_CODE (type) == OFFSET_TYPE)
10137 {
10138 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10139 outer = build_offset_type (TYPE_OFFSET_BASETYPE (type), inner);
10140 }
10141 else
10142 return bottom;
10143
10144 return build_type_attribute_qual_variant (outer, TYPE_ATTRIBUTES (type),
10145 TYPE_QUALS (type));
10146 }
10147
10148 /* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
10149 the inner type. */
10150 tree
10151 build_vector_type_for_mode (tree innertype, enum machine_mode mode)
10152 {
10153 int nunits;
10154
10155 switch (GET_MODE_CLASS (mode))
10156 {
10157 case MODE_VECTOR_INT:
10158 case MODE_VECTOR_FLOAT:
10159 case MODE_VECTOR_FRACT:
10160 case MODE_VECTOR_UFRACT:
10161 case MODE_VECTOR_ACCUM:
10162 case MODE_VECTOR_UACCUM:
10163 nunits = GET_MODE_NUNITS (mode);
10164 break;
10165
10166 case MODE_INT:
10167 /* Check that there are no leftover bits. */
10168 gcc_assert (GET_MODE_BITSIZE (mode)
10169 % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0);
10170
10171 nunits = GET_MODE_BITSIZE (mode)
10172 / TREE_INT_CST_LOW (TYPE_SIZE (innertype));
10173 break;
10174
10175 default:
10176 gcc_unreachable ();
10177 }
10178
10179 return make_vector_type (innertype, nunits, mode);
10180 }
10181
10182 /* Similarly, but takes the inner type and number of units, which must be
10183 a power of two. */
10184
10185 tree
10186 build_vector_type (tree innertype, int nunits)
10187 {
10188 return make_vector_type (innertype, nunits, VOIDmode);
10189 }
10190
10191 /* Similarly, but builds a variant type with TYPE_VECTOR_OPAQUE set. */
10192
10193 tree
10194 build_opaque_vector_type (tree innertype, int nunits)
10195 {
10196 tree t = make_vector_type (innertype, nunits, VOIDmode);
10197 tree cand;
10198 /* We always build the non-opaque variant before the opaque one,
10199 so if it already exists, it is TYPE_NEXT_VARIANT of this one. */
10200 cand = TYPE_NEXT_VARIANT (t);
10201 if (cand
10202 && TYPE_VECTOR_OPAQUE (cand)
10203 && check_qualified_type (cand, t, TYPE_QUALS (t)))
10204 return cand;
10205 /* Othewise build a variant type and make sure to queue it after
10206 the non-opaque type. */
10207 cand = build_distinct_type_copy (t);
10208 TYPE_VECTOR_OPAQUE (cand) = true;
10209 TYPE_CANONICAL (cand) = TYPE_CANONICAL (t);
10210 TYPE_NEXT_VARIANT (cand) = TYPE_NEXT_VARIANT (t);
10211 TYPE_NEXT_VARIANT (t) = cand;
10212 TYPE_MAIN_VARIANT (cand) = TYPE_MAIN_VARIANT (t);
10213 return cand;
10214 }
10215
10216
10217 /* Given an initializer INIT, return TRUE if INIT is zero or some
10218 aggregate of zeros. Otherwise return FALSE. */
10219 bool
10220 initializer_zerop (const_tree init)
10221 {
10222 tree elt;
10223
10224 STRIP_NOPS (init);
10225
10226 switch (TREE_CODE (init))
10227 {
10228 case INTEGER_CST:
10229 return integer_zerop (init);
10230
10231 case REAL_CST:
10232 /* ??? Note that this is not correct for C4X float formats. There,
10233 a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
10234 negative exponent. */
10235 return real_zerop (init)
10236 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
10237
10238 case FIXED_CST:
10239 return fixed_zerop (init);
10240
10241 case COMPLEX_CST:
10242 return integer_zerop (init)
10243 || (real_zerop (init)
10244 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
10245 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
10246
10247 case VECTOR_CST:
10248 {
10249 unsigned i;
10250 for (i = 0; i < VECTOR_CST_NELTS (init); ++i)
10251 if (!initializer_zerop (VECTOR_CST_ELT (init, i)))
10252 return false;
10253 return true;
10254 }
10255
10256 case CONSTRUCTOR:
10257 {
10258 unsigned HOST_WIDE_INT idx;
10259
10260 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
10261 if (!initializer_zerop (elt))
10262 return false;
10263 return true;
10264 }
10265
10266 case STRING_CST:
10267 {
10268 int i;
10269
10270 /* We need to loop through all elements to handle cases like
10271 "\0" and "\0foobar". */
10272 for (i = 0; i < TREE_STRING_LENGTH (init); ++i)
10273 if (TREE_STRING_POINTER (init)[i] != '\0')
10274 return false;
10275
10276 return true;
10277 }
10278
10279 default:
10280 return false;
10281 }
10282 }
10283
10284 /* Check if vector VEC consists of all the equal elements and
10285 that the number of elements corresponds to the type of VEC.
10286 The function returns first element of the vector
10287 or NULL_TREE if the vector is not uniform. */
10288 tree
10289 uniform_vector_p (const_tree vec)
10290 {
10291 tree first, t;
10292 unsigned i;
10293
10294 if (vec == NULL_TREE)
10295 return NULL_TREE;
10296
10297 gcc_assert (VECTOR_TYPE_P (TREE_TYPE (vec)));
10298
10299 if (TREE_CODE (vec) == VECTOR_CST)
10300 {
10301 first = VECTOR_CST_ELT (vec, 0);
10302 for (i = 1; i < VECTOR_CST_NELTS (vec); ++i)
10303 if (!operand_equal_p (first, VECTOR_CST_ELT (vec, i), 0))
10304 return NULL_TREE;
10305
10306 return first;
10307 }
10308
10309 else if (TREE_CODE (vec) == CONSTRUCTOR)
10310 {
10311 first = error_mark_node;
10312
10313 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (vec), i, t)
10314 {
10315 if (i == 0)
10316 {
10317 first = t;
10318 continue;
10319 }
10320 if (!operand_equal_p (first, t, 0))
10321 return NULL_TREE;
10322 }
10323 if (i != TYPE_VECTOR_SUBPARTS (TREE_TYPE (vec)))
10324 return NULL_TREE;
10325
10326 return first;
10327 }
10328
10329 return NULL_TREE;
10330 }
10331
10332 /* Build an empty statement at location LOC. */
10333
10334 tree
10335 build_empty_stmt (location_t loc)
10336 {
10337 tree t = build1 (NOP_EXPR, void_type_node, size_zero_node);
10338 SET_EXPR_LOCATION (t, loc);
10339 return t;
10340 }
10341
10342
10343 /* Build an OpenMP clause with code CODE. LOC is the location of the
10344 clause. */
10345
10346 tree
10347 build_omp_clause (location_t loc, enum omp_clause_code code)
10348 {
10349 tree t;
10350 int size, length;
10351
10352 length = omp_clause_num_ops[code];
10353 size = (sizeof (struct tree_omp_clause) + (length - 1) * sizeof (tree));
10354
10355 record_node_allocation_statistics (OMP_CLAUSE, size);
10356
10357 t = ggc_alloc_tree_node (size);
10358 memset (t, 0, size);
10359 TREE_SET_CODE (t, OMP_CLAUSE);
10360 OMP_CLAUSE_SET_CODE (t, code);
10361 OMP_CLAUSE_LOCATION (t) = loc;
10362
10363 return t;
10364 }
10365
10366 /* Build a tcc_vl_exp object with code CODE and room for LEN operands. LEN
10367 includes the implicit operand count in TREE_OPERAND 0, and so must be >= 1.
10368 Except for the CODE and operand count field, other storage for the
10369 object is initialized to zeros. */
10370
10371 tree
10372 build_vl_exp_stat (enum tree_code code, int len MEM_STAT_DECL)
10373 {
10374 tree t;
10375 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_exp);
10376
10377 gcc_assert (TREE_CODE_CLASS (code) == tcc_vl_exp);
10378 gcc_assert (len >= 1);
10379
10380 record_node_allocation_statistics (code, length);
10381
10382 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
10383
10384 TREE_SET_CODE (t, code);
10385
10386 /* Can't use TREE_OPERAND to store the length because if checking is
10387 enabled, it will try to check the length before we store it. :-P */
10388 t->exp.operands[0] = build_int_cst (sizetype, len);
10389
10390 return t;
10391 }
10392
10393 /* Helper function for build_call_* functions; build a CALL_EXPR with
10394 indicated RETURN_TYPE, FN, and NARGS, but do not initialize any of
10395 the argument slots. */
10396
10397 static tree
10398 build_call_1 (tree return_type, tree fn, int nargs)
10399 {
10400 tree t;
10401
10402 t = build_vl_exp (CALL_EXPR, nargs + 3);
10403 TREE_TYPE (t) = return_type;
10404 CALL_EXPR_FN (t) = fn;
10405 CALL_EXPR_STATIC_CHAIN (t) = NULL;
10406
10407 return t;
10408 }
10409
10410 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
10411 FN and a null static chain slot. NARGS is the number of call arguments
10412 which are specified as "..." arguments. */
10413
10414 tree
10415 build_call_nary (tree return_type, tree fn, int nargs, ...)
10416 {
10417 tree ret;
10418 va_list args;
10419 va_start (args, nargs);
10420 ret = build_call_valist (return_type, fn, nargs, args);
10421 va_end (args);
10422 return ret;
10423 }
10424
10425 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
10426 FN and a null static chain slot. NARGS is the number of call arguments
10427 which are specified as a va_list ARGS. */
10428
10429 tree
10430 build_call_valist (tree return_type, tree fn, int nargs, va_list args)
10431 {
10432 tree t;
10433 int i;
10434
10435 t = build_call_1 (return_type, fn, nargs);
10436 for (i = 0; i < nargs; i++)
10437 CALL_EXPR_ARG (t, i) = va_arg (args, tree);
10438 process_call_operands (t);
10439 return t;
10440 }
10441
10442 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
10443 FN and a null static chain slot. NARGS is the number of call arguments
10444 which are specified as a tree array ARGS. */
10445
10446 tree
10447 build_call_array_loc (location_t loc, tree return_type, tree fn,
10448 int nargs, const tree *args)
10449 {
10450 tree t;
10451 int i;
10452
10453 t = build_call_1 (return_type, fn, nargs);
10454 for (i = 0; i < nargs; i++)
10455 CALL_EXPR_ARG (t, i) = args[i];
10456 process_call_operands (t);
10457 SET_EXPR_LOCATION (t, loc);
10458 return t;
10459 }
10460
10461 /* Like build_call_array, but takes a vec. */
10462
10463 tree
10464 build_call_vec (tree return_type, tree fn, vec<tree, va_gc> *args)
10465 {
10466 tree ret, t;
10467 unsigned int ix;
10468
10469 ret = build_call_1 (return_type, fn, vec_safe_length (args));
10470 FOR_EACH_VEC_SAFE_ELT (args, ix, t)
10471 CALL_EXPR_ARG (ret, ix) = t;
10472 process_call_operands (ret);
10473 return ret;
10474 }
10475
10476
10477 /* Returns true if it is possible to prove that the index of
10478 an array access REF (an ARRAY_REF expression) falls into the
10479 array bounds. */
10480
10481 bool
10482 in_array_bounds_p (tree ref)
10483 {
10484 tree idx = TREE_OPERAND (ref, 1);
10485 tree min, max;
10486
10487 if (TREE_CODE (idx) != INTEGER_CST)
10488 return false;
10489
10490 min = array_ref_low_bound (ref);
10491 max = array_ref_up_bound (ref);
10492 if (!min
10493 || !max
10494 || TREE_CODE (min) != INTEGER_CST
10495 || TREE_CODE (max) != INTEGER_CST)
10496 return false;
10497
10498 if (tree_int_cst_lt (idx, min)
10499 || tree_int_cst_lt (max, idx))
10500 return false;
10501
10502 return true;
10503 }
10504
10505 /* Returns true if it is possible to prove that the range of
10506 an array access REF (an ARRAY_RANGE_REF expression) falls
10507 into the array bounds. */
10508
10509 bool
10510 range_in_array_bounds_p (tree ref)
10511 {
10512 tree domain_type = TYPE_DOMAIN (TREE_TYPE (ref));
10513 tree range_min, range_max, min, max;
10514
10515 range_min = TYPE_MIN_VALUE (domain_type);
10516 range_max = TYPE_MAX_VALUE (domain_type);
10517 if (!range_min
10518 || !range_max
10519 || TREE_CODE (range_min) != INTEGER_CST
10520 || TREE_CODE (range_max) != INTEGER_CST)
10521 return false;
10522
10523 min = array_ref_low_bound (ref);
10524 max = array_ref_up_bound (ref);
10525 if (!min
10526 || !max
10527 || TREE_CODE (min) != INTEGER_CST
10528 || TREE_CODE (max) != INTEGER_CST)
10529 return false;
10530
10531 if (tree_int_cst_lt (range_min, min)
10532 || tree_int_cst_lt (max, range_max))
10533 return false;
10534
10535 return true;
10536 }
10537
10538 /* Return true if T (assumed to be a DECL) must be assigned a memory
10539 location. */
10540
10541 bool
10542 needs_to_live_in_memory (const_tree t)
10543 {
10544 return (TREE_ADDRESSABLE (t)
10545 || is_global_var (t)
10546 || (TREE_CODE (t) == RESULT_DECL
10547 && !DECL_BY_REFERENCE (t)
10548 && aggregate_value_p (t, current_function_decl)));
10549 }
10550
10551 /* Return value of a constant X and sign-extend it. */
10552
10553 HOST_WIDE_INT
10554 int_cst_value (const_tree x)
10555 {
10556 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
10557 unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
10558
10559 /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
10560 gcc_assert (TREE_INT_CST_HIGH (x) == 0
10561 || TREE_INT_CST_HIGH (x) == -1);
10562
10563 if (bits < HOST_BITS_PER_WIDE_INT)
10564 {
10565 bool negative = ((val >> (bits - 1)) & 1) != 0;
10566 if (negative)
10567 val |= (~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1;
10568 else
10569 val &= ~((~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1);
10570 }
10571
10572 return val;
10573 }
10574
10575 /* Return value of a constant X and sign-extend it. */
10576
10577 HOST_WIDEST_INT
10578 widest_int_cst_value (const_tree x)
10579 {
10580 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
10581 unsigned HOST_WIDEST_INT val = TREE_INT_CST_LOW (x);
10582
10583 #if HOST_BITS_PER_WIDEST_INT > HOST_BITS_PER_WIDE_INT
10584 gcc_assert (HOST_BITS_PER_WIDEST_INT >= HOST_BITS_PER_DOUBLE_INT);
10585 val |= (((unsigned HOST_WIDEST_INT) TREE_INT_CST_HIGH (x))
10586 << HOST_BITS_PER_WIDE_INT);
10587 #else
10588 /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
10589 gcc_assert (TREE_INT_CST_HIGH (x) == 0
10590 || TREE_INT_CST_HIGH (x) == -1);
10591 #endif
10592
10593 if (bits < HOST_BITS_PER_WIDEST_INT)
10594 {
10595 bool negative = ((val >> (bits - 1)) & 1) != 0;
10596 if (negative)
10597 val |= (~(unsigned HOST_WIDEST_INT) 0) << (bits - 1) << 1;
10598 else
10599 val &= ~((~(unsigned HOST_WIDEST_INT) 0) << (bits - 1) << 1);
10600 }
10601
10602 return val;
10603 }
10604
10605 /* If TYPE is an integral or pointer type, return an integer type with
10606 the same precision which is unsigned iff UNSIGNEDP is true, or itself
10607 if TYPE is already an integer type of signedness UNSIGNEDP. */
10608
10609 tree
10610 signed_or_unsigned_type_for (int unsignedp, tree type)
10611 {
10612 if (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type) == unsignedp)
10613 return type;
10614
10615 if (TREE_CODE (type) == VECTOR_TYPE)
10616 {
10617 tree inner = TREE_TYPE (type);
10618 tree inner2 = signed_or_unsigned_type_for (unsignedp, inner);
10619 if (!inner2)
10620 return NULL_TREE;
10621 if (inner == inner2)
10622 return type;
10623 return build_vector_type (inner2, TYPE_VECTOR_SUBPARTS (type));
10624 }
10625
10626 if (!INTEGRAL_TYPE_P (type)
10627 && !POINTER_TYPE_P (type))
10628 return NULL_TREE;
10629
10630 return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp);
10631 }
10632
10633 /* If TYPE is an integral or pointer type, return an integer type with
10634 the same precision which is unsigned, or itself if TYPE is already an
10635 unsigned integer type. */
10636
10637 tree
10638 unsigned_type_for (tree type)
10639 {
10640 return signed_or_unsigned_type_for (1, type);
10641 }
10642
10643 /* If TYPE is an integral or pointer type, return an integer type with
10644 the same precision which is signed, or itself if TYPE is already a
10645 signed integer type. */
10646
10647 tree
10648 signed_type_for (tree type)
10649 {
10650 return signed_or_unsigned_type_for (0, type);
10651 }
10652
10653 /* If TYPE is a vector type, return a signed integer vector type with the
10654 same width and number of subparts. Otherwise return boolean_type_node. */
10655
10656 tree
10657 truth_type_for (tree type)
10658 {
10659 if (TREE_CODE (type) == VECTOR_TYPE)
10660 {
10661 tree elem = lang_hooks.types.type_for_size
10662 (GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (type))), 0);
10663 return build_opaque_vector_type (elem, TYPE_VECTOR_SUBPARTS (type));
10664 }
10665 else
10666 return boolean_type_node;
10667 }
10668
10669 /* Returns the largest value obtainable by casting something in INNER type to
10670 OUTER type. */
10671
10672 tree
10673 upper_bound_in_type (tree outer, tree inner)
10674 {
10675 double_int high;
10676 unsigned int det = 0;
10677 unsigned oprec = TYPE_PRECISION (outer);
10678 unsigned iprec = TYPE_PRECISION (inner);
10679 unsigned prec;
10680
10681 /* Compute a unique number for every combination. */
10682 det |= (oprec > iprec) ? 4 : 0;
10683 det |= TYPE_UNSIGNED (outer) ? 2 : 0;
10684 det |= TYPE_UNSIGNED (inner) ? 1 : 0;
10685
10686 /* Determine the exponent to use. */
10687 switch (det)
10688 {
10689 case 0:
10690 case 1:
10691 /* oprec <= iprec, outer: signed, inner: don't care. */
10692 prec = oprec - 1;
10693 break;
10694 case 2:
10695 case 3:
10696 /* oprec <= iprec, outer: unsigned, inner: don't care. */
10697 prec = oprec;
10698 break;
10699 case 4:
10700 /* oprec > iprec, outer: signed, inner: signed. */
10701 prec = iprec - 1;
10702 break;
10703 case 5:
10704 /* oprec > iprec, outer: signed, inner: unsigned. */
10705 prec = iprec;
10706 break;
10707 case 6:
10708 /* oprec > iprec, outer: unsigned, inner: signed. */
10709 prec = oprec;
10710 break;
10711 case 7:
10712 /* oprec > iprec, outer: unsigned, inner: unsigned. */
10713 prec = iprec;
10714 break;
10715 default:
10716 gcc_unreachable ();
10717 }
10718
10719 /* Compute 2^^prec - 1. */
10720 if (prec <= HOST_BITS_PER_WIDE_INT)
10721 {
10722 high.high = 0;
10723 high.low = ((~(unsigned HOST_WIDE_INT) 0)
10724 >> (HOST_BITS_PER_WIDE_INT - prec));
10725 }
10726 else
10727 {
10728 high.high = ((~(unsigned HOST_WIDE_INT) 0)
10729 >> (HOST_BITS_PER_DOUBLE_INT - prec));
10730 high.low = ~(unsigned HOST_WIDE_INT) 0;
10731 }
10732
10733 return double_int_to_tree (outer, high);
10734 }
10735
10736 /* Returns the smallest value obtainable by casting something in INNER type to
10737 OUTER type. */
10738
10739 tree
10740 lower_bound_in_type (tree outer, tree inner)
10741 {
10742 double_int low;
10743 unsigned oprec = TYPE_PRECISION (outer);
10744 unsigned iprec = TYPE_PRECISION (inner);
10745
10746 /* If OUTER type is unsigned, we can definitely cast 0 to OUTER type
10747 and obtain 0. */
10748 if (TYPE_UNSIGNED (outer)
10749 /* If we are widening something of an unsigned type, OUTER type
10750 contains all values of INNER type. In particular, both INNER
10751 and OUTER types have zero in common. */
10752 || (oprec > iprec && TYPE_UNSIGNED (inner)))
10753 low.low = low.high = 0;
10754 else
10755 {
10756 /* If we are widening a signed type to another signed type, we
10757 want to obtain -2^^(iprec-1). If we are keeping the
10758 precision or narrowing to a signed type, we want to obtain
10759 -2^(oprec-1). */
10760 unsigned prec = oprec > iprec ? iprec : oprec;
10761
10762 if (prec <= HOST_BITS_PER_WIDE_INT)
10763 {
10764 low.high = ~(unsigned HOST_WIDE_INT) 0;
10765 low.low = (~(unsigned HOST_WIDE_INT) 0) << (prec - 1);
10766 }
10767 else
10768 {
10769 low.high = ((~(unsigned HOST_WIDE_INT) 0)
10770 << (prec - HOST_BITS_PER_WIDE_INT - 1));
10771 low.low = 0;
10772 }
10773 }
10774
10775 return double_int_to_tree (outer, low);
10776 }
10777
10778 /* Return nonzero if two operands that are suitable for PHI nodes are
10779 necessarily equal. Specifically, both ARG0 and ARG1 must be either
10780 SSA_NAME or invariant. Note that this is strictly an optimization.
10781 That is, callers of this function can directly call operand_equal_p
10782 and get the same result, only slower. */
10783
10784 int
10785 operand_equal_for_phi_arg_p (const_tree arg0, const_tree arg1)
10786 {
10787 if (arg0 == arg1)
10788 return 1;
10789 if (TREE_CODE (arg0) == SSA_NAME || TREE_CODE (arg1) == SSA_NAME)
10790 return 0;
10791 return operand_equal_p (arg0, arg1, 0);
10792 }
10793
10794 /* Returns number of zeros at the end of binary representation of X.
10795
10796 ??? Use ffs if available? */
10797
10798 tree
10799 num_ending_zeros (const_tree x)
10800 {
10801 unsigned HOST_WIDE_INT fr, nfr;
10802 unsigned num, abits;
10803 tree type = TREE_TYPE (x);
10804
10805 if (TREE_INT_CST_LOW (x) == 0)
10806 {
10807 num = HOST_BITS_PER_WIDE_INT;
10808 fr = TREE_INT_CST_HIGH (x);
10809 }
10810 else
10811 {
10812 num = 0;
10813 fr = TREE_INT_CST_LOW (x);
10814 }
10815
10816 for (abits = HOST_BITS_PER_WIDE_INT / 2; abits; abits /= 2)
10817 {
10818 nfr = fr >> abits;
10819 if (nfr << abits == fr)
10820 {
10821 num += abits;
10822 fr = nfr;
10823 }
10824 }
10825
10826 if (num > TYPE_PRECISION (type))
10827 num = TYPE_PRECISION (type);
10828
10829 return build_int_cst_type (type, num);
10830 }
10831
10832
10833 #define WALK_SUBTREE(NODE) \
10834 do \
10835 { \
10836 result = walk_tree_1 (&(NODE), func, data, pset, lh); \
10837 if (result) \
10838 return result; \
10839 } \
10840 while (0)
10841
10842 /* This is a subroutine of walk_tree that walks field of TYPE that are to
10843 be walked whenever a type is seen in the tree. Rest of operands and return
10844 value are as for walk_tree. */
10845
10846 static tree
10847 walk_type_fields (tree type, walk_tree_fn func, void *data,
10848 struct pointer_set_t *pset, walk_tree_lh lh)
10849 {
10850 tree result = NULL_TREE;
10851
10852 switch (TREE_CODE (type))
10853 {
10854 case POINTER_TYPE:
10855 case REFERENCE_TYPE:
10856 /* We have to worry about mutually recursive pointers. These can't
10857 be written in C. They can in Ada. It's pathological, but
10858 there's an ACATS test (c38102a) that checks it. Deal with this
10859 by checking if we're pointing to another pointer, that one
10860 points to another pointer, that one does too, and we have no htab.
10861 If so, get a hash table. We check three levels deep to avoid
10862 the cost of the hash table if we don't need one. */
10863 if (POINTER_TYPE_P (TREE_TYPE (type))
10864 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (type)))
10865 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (TREE_TYPE (type))))
10866 && !pset)
10867 {
10868 result = walk_tree_without_duplicates (&TREE_TYPE (type),
10869 func, data);
10870 if (result)
10871 return result;
10872
10873 break;
10874 }
10875
10876 /* ... fall through ... */
10877
10878 case COMPLEX_TYPE:
10879 WALK_SUBTREE (TREE_TYPE (type));
10880 break;
10881
10882 case METHOD_TYPE:
10883 WALK_SUBTREE (TYPE_METHOD_BASETYPE (type));
10884
10885 /* Fall through. */
10886
10887 case FUNCTION_TYPE:
10888 WALK_SUBTREE (TREE_TYPE (type));
10889 {
10890 tree arg;
10891
10892 /* We never want to walk into default arguments. */
10893 for (arg = TYPE_ARG_TYPES (type); arg; arg = TREE_CHAIN (arg))
10894 WALK_SUBTREE (TREE_VALUE (arg));
10895 }
10896 break;
10897
10898 case ARRAY_TYPE:
10899 /* Don't follow this nodes's type if a pointer for fear that
10900 we'll have infinite recursion. If we have a PSET, then we
10901 need not fear. */
10902 if (pset
10903 || (!POINTER_TYPE_P (TREE_TYPE (type))
10904 && TREE_CODE (TREE_TYPE (type)) != OFFSET_TYPE))
10905 WALK_SUBTREE (TREE_TYPE (type));
10906 WALK_SUBTREE (TYPE_DOMAIN (type));
10907 break;
10908
10909 case OFFSET_TYPE:
10910 WALK_SUBTREE (TREE_TYPE (type));
10911 WALK_SUBTREE (TYPE_OFFSET_BASETYPE (type));
10912 break;
10913
10914 default:
10915 break;
10916 }
10917
10918 return NULL_TREE;
10919 }
10920
10921 /* Apply FUNC to all the sub-trees of TP in a pre-order traversal. FUNC is
10922 called with the DATA and the address of each sub-tree. If FUNC returns a
10923 non-NULL value, the traversal is stopped, and the value returned by FUNC
10924 is returned. If PSET is non-NULL it is used to record the nodes visited,
10925 and to avoid visiting a node more than once. */
10926
10927 tree
10928 walk_tree_1 (tree *tp, walk_tree_fn func, void *data,
10929 struct pointer_set_t *pset, walk_tree_lh lh)
10930 {
10931 enum tree_code code;
10932 int walk_subtrees;
10933 tree result;
10934
10935 #define WALK_SUBTREE_TAIL(NODE) \
10936 do \
10937 { \
10938 tp = & (NODE); \
10939 goto tail_recurse; \
10940 } \
10941 while (0)
10942
10943 tail_recurse:
10944 /* Skip empty subtrees. */
10945 if (!*tp)
10946 return NULL_TREE;
10947
10948 /* Don't walk the same tree twice, if the user has requested
10949 that we avoid doing so. */
10950 if (pset && pointer_set_insert (pset, *tp))
10951 return NULL_TREE;
10952
10953 /* Call the function. */
10954 walk_subtrees = 1;
10955 result = (*func) (tp, &walk_subtrees, data);
10956
10957 /* If we found something, return it. */
10958 if (result)
10959 return result;
10960
10961 code = TREE_CODE (*tp);
10962
10963 /* Even if we didn't, FUNC may have decided that there was nothing
10964 interesting below this point in the tree. */
10965 if (!walk_subtrees)
10966 {
10967 /* But we still need to check our siblings. */
10968 if (code == TREE_LIST)
10969 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
10970 else if (code == OMP_CLAUSE)
10971 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10972 else
10973 return NULL_TREE;
10974 }
10975
10976 if (lh)
10977 {
10978 result = (*lh) (tp, &walk_subtrees, func, data, pset);
10979 if (result || !walk_subtrees)
10980 return result;
10981 }
10982
10983 switch (code)
10984 {
10985 case ERROR_MARK:
10986 case IDENTIFIER_NODE:
10987 case INTEGER_CST:
10988 case REAL_CST:
10989 case FIXED_CST:
10990 case VECTOR_CST:
10991 case STRING_CST:
10992 case BLOCK:
10993 case PLACEHOLDER_EXPR:
10994 case SSA_NAME:
10995 case FIELD_DECL:
10996 case RESULT_DECL:
10997 /* None of these have subtrees other than those already walked
10998 above. */
10999 break;
11000
11001 case TREE_LIST:
11002 WALK_SUBTREE (TREE_VALUE (*tp));
11003 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
11004 break;
11005
11006 case TREE_VEC:
11007 {
11008 int len = TREE_VEC_LENGTH (*tp);
11009
11010 if (len == 0)
11011 break;
11012
11013 /* Walk all elements but the first. */
11014 while (--len)
11015 WALK_SUBTREE (TREE_VEC_ELT (*tp, len));
11016
11017 /* Now walk the first one as a tail call. */
11018 WALK_SUBTREE_TAIL (TREE_VEC_ELT (*tp, 0));
11019 }
11020
11021 case COMPLEX_CST:
11022 WALK_SUBTREE (TREE_REALPART (*tp));
11023 WALK_SUBTREE_TAIL (TREE_IMAGPART (*tp));
11024
11025 case CONSTRUCTOR:
11026 {
11027 unsigned HOST_WIDE_INT idx;
11028 constructor_elt *ce;
11029
11030 for (idx = 0; vec_safe_iterate(CONSTRUCTOR_ELTS (*tp), idx, &ce); idx++)
11031 WALK_SUBTREE (ce->value);
11032 }
11033 break;
11034
11035 case SAVE_EXPR:
11036 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, 0));
11037
11038 case BIND_EXPR:
11039 {
11040 tree decl;
11041 for (decl = BIND_EXPR_VARS (*tp); decl; decl = DECL_CHAIN (decl))
11042 {
11043 /* Walk the DECL_INITIAL and DECL_SIZE. We don't want to walk
11044 into declarations that are just mentioned, rather than
11045 declared; they don't really belong to this part of the tree.
11046 And, we can see cycles: the initializer for a declaration
11047 can refer to the declaration itself. */
11048 WALK_SUBTREE (DECL_INITIAL (decl));
11049 WALK_SUBTREE (DECL_SIZE (decl));
11050 WALK_SUBTREE (DECL_SIZE_UNIT (decl));
11051 }
11052 WALK_SUBTREE_TAIL (BIND_EXPR_BODY (*tp));
11053 }
11054
11055 case STATEMENT_LIST:
11056 {
11057 tree_stmt_iterator i;
11058 for (i = tsi_start (*tp); !tsi_end_p (i); tsi_next (&i))
11059 WALK_SUBTREE (*tsi_stmt_ptr (i));
11060 }
11061 break;
11062
11063 case OMP_CLAUSE:
11064 switch (OMP_CLAUSE_CODE (*tp))
11065 {
11066 case OMP_CLAUSE_PRIVATE:
11067 case OMP_CLAUSE_SHARED:
11068 case OMP_CLAUSE_FIRSTPRIVATE:
11069 case OMP_CLAUSE_COPYIN:
11070 case OMP_CLAUSE_COPYPRIVATE:
11071 case OMP_CLAUSE_FINAL:
11072 case OMP_CLAUSE_IF:
11073 case OMP_CLAUSE_NUM_THREADS:
11074 case OMP_CLAUSE_SCHEDULE:
11075 case OMP_CLAUSE_UNIFORM:
11076 case OMP_CLAUSE_SAFELEN:
11077 case OMP_CLAUSE__SIMDUID_:
11078 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 0));
11079 /* FALLTHRU */
11080
11081 case OMP_CLAUSE_NOWAIT:
11082 case OMP_CLAUSE_ORDERED:
11083 case OMP_CLAUSE_DEFAULT:
11084 case OMP_CLAUSE_UNTIED:
11085 case OMP_CLAUSE_MERGEABLE:
11086 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11087
11088 case OMP_CLAUSE_LASTPRIVATE:
11089 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
11090 WALK_SUBTREE (OMP_CLAUSE_LASTPRIVATE_STMT (*tp));
11091 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11092
11093 case OMP_CLAUSE_COLLAPSE:
11094 {
11095 int i;
11096 for (i = 0; i < 3; i++)
11097 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
11098 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11099 }
11100
11101 case OMP_CLAUSE_LINEAR:
11102 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
11103 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 1));
11104 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11105
11106 case OMP_CLAUSE_REDUCTION:
11107 {
11108 int i;
11109 for (i = 0; i < 4; i++)
11110 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
11111 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11112 }
11113
11114 default:
11115 gcc_unreachable ();
11116 }
11117 break;
11118
11119 case TARGET_EXPR:
11120 {
11121 int i, len;
11122
11123 /* TARGET_EXPRs are peculiar: operands 1 and 3 can be the same.
11124 But, we only want to walk once. */
11125 len = (TREE_OPERAND (*tp, 3) == TREE_OPERAND (*tp, 1)) ? 2 : 3;
11126 for (i = 0; i < len; ++i)
11127 WALK_SUBTREE (TREE_OPERAND (*tp, i));
11128 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len));
11129 }
11130
11131 case DECL_EXPR:
11132 /* If this is a TYPE_DECL, walk into the fields of the type that it's
11133 defining. We only want to walk into these fields of a type in this
11134 case and not in the general case of a mere reference to the type.
11135
11136 The criterion is as follows: if the field can be an expression, it
11137 must be walked only here. This should be in keeping with the fields
11138 that are directly gimplified in gimplify_type_sizes in order for the
11139 mark/copy-if-shared/unmark machinery of the gimplifier to work with
11140 variable-sized types.
11141
11142 Note that DECLs get walked as part of processing the BIND_EXPR. */
11143 if (TREE_CODE (DECL_EXPR_DECL (*tp)) == TYPE_DECL)
11144 {
11145 tree *type_p = &TREE_TYPE (DECL_EXPR_DECL (*tp));
11146 if (TREE_CODE (*type_p) == ERROR_MARK)
11147 return NULL_TREE;
11148
11149 /* Call the function for the type. See if it returns anything or
11150 doesn't want us to continue. If we are to continue, walk both
11151 the normal fields and those for the declaration case. */
11152 result = (*func) (type_p, &walk_subtrees, data);
11153 if (result || !walk_subtrees)
11154 return result;
11155
11156 /* But do not walk a pointed-to type since it may itself need to
11157 be walked in the declaration case if it isn't anonymous. */
11158 if (!POINTER_TYPE_P (*type_p))
11159 {
11160 result = walk_type_fields (*type_p, func, data, pset, lh);
11161 if (result)
11162 return result;
11163 }
11164
11165 /* If this is a record type, also walk the fields. */
11166 if (RECORD_OR_UNION_TYPE_P (*type_p))
11167 {
11168 tree field;
11169
11170 for (field = TYPE_FIELDS (*type_p); field;
11171 field = DECL_CHAIN (field))
11172 {
11173 /* We'd like to look at the type of the field, but we can
11174 easily get infinite recursion. So assume it's pointed
11175 to elsewhere in the tree. Also, ignore things that
11176 aren't fields. */
11177 if (TREE_CODE (field) != FIELD_DECL)
11178 continue;
11179
11180 WALK_SUBTREE (DECL_FIELD_OFFSET (field));
11181 WALK_SUBTREE (DECL_SIZE (field));
11182 WALK_SUBTREE (DECL_SIZE_UNIT (field));
11183 if (TREE_CODE (*type_p) == QUAL_UNION_TYPE)
11184 WALK_SUBTREE (DECL_QUALIFIER (field));
11185 }
11186 }
11187
11188 /* Same for scalar types. */
11189 else if (TREE_CODE (*type_p) == BOOLEAN_TYPE
11190 || TREE_CODE (*type_p) == ENUMERAL_TYPE
11191 || TREE_CODE (*type_p) == INTEGER_TYPE
11192 || TREE_CODE (*type_p) == FIXED_POINT_TYPE
11193 || TREE_CODE (*type_p) == REAL_TYPE)
11194 {
11195 WALK_SUBTREE (TYPE_MIN_VALUE (*type_p));
11196 WALK_SUBTREE (TYPE_MAX_VALUE (*type_p));
11197 }
11198
11199 WALK_SUBTREE (TYPE_SIZE (*type_p));
11200 WALK_SUBTREE_TAIL (TYPE_SIZE_UNIT (*type_p));
11201 }
11202 /* FALLTHRU */
11203
11204 default:
11205 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
11206 {
11207 int i, len;
11208
11209 /* Walk over all the sub-trees of this operand. */
11210 len = TREE_OPERAND_LENGTH (*tp);
11211
11212 /* Go through the subtrees. We need to do this in forward order so
11213 that the scope of a FOR_EXPR is handled properly. */
11214 if (len)
11215 {
11216 for (i = 0; i < len - 1; ++i)
11217 WALK_SUBTREE (TREE_OPERAND (*tp, i));
11218 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len - 1));
11219 }
11220 }
11221 /* If this is a type, walk the needed fields in the type. */
11222 else if (TYPE_P (*tp))
11223 return walk_type_fields (*tp, func, data, pset, lh);
11224 break;
11225 }
11226
11227 /* We didn't find what we were looking for. */
11228 return NULL_TREE;
11229
11230 #undef WALK_SUBTREE_TAIL
11231 }
11232 #undef WALK_SUBTREE
11233
11234 /* Like walk_tree, but does not walk duplicate nodes more than once. */
11235
11236 tree
11237 walk_tree_without_duplicates_1 (tree *tp, walk_tree_fn func, void *data,
11238 walk_tree_lh lh)
11239 {
11240 tree result;
11241 struct pointer_set_t *pset;
11242
11243 pset = pointer_set_create ();
11244 result = walk_tree_1 (tp, func, data, pset, lh);
11245 pointer_set_destroy (pset);
11246 return result;
11247 }
11248
11249
11250 tree
11251 tree_block (tree t)
11252 {
11253 char const c = TREE_CODE_CLASS (TREE_CODE (t));
11254
11255 if (IS_EXPR_CODE_CLASS (c))
11256 return LOCATION_BLOCK (t->exp.locus);
11257 gcc_unreachable ();
11258 return NULL;
11259 }
11260
11261 void
11262 tree_set_block (tree t, tree b)
11263 {
11264 char const c = TREE_CODE_CLASS (TREE_CODE (t));
11265
11266 if (IS_EXPR_CODE_CLASS (c))
11267 {
11268 if (b)
11269 t->exp.locus = COMBINE_LOCATION_DATA (line_table, t->exp.locus, b);
11270 else
11271 t->exp.locus = LOCATION_LOCUS (t->exp.locus);
11272 }
11273 else
11274 gcc_unreachable ();
11275 }
11276
11277 /* Create a nameless artificial label and put it in the current
11278 function context. The label has a location of LOC. Returns the
11279 newly created label. */
11280
11281 tree
11282 create_artificial_label (location_t loc)
11283 {
11284 tree lab = build_decl (loc,
11285 LABEL_DECL, NULL_TREE, void_type_node);
11286
11287 DECL_ARTIFICIAL (lab) = 1;
11288 DECL_IGNORED_P (lab) = 1;
11289 DECL_CONTEXT (lab) = current_function_decl;
11290 return lab;
11291 }
11292
11293 /* Given a tree, try to return a useful variable name that we can use
11294 to prefix a temporary that is being assigned the value of the tree.
11295 I.E. given <temp> = &A, return A. */
11296
11297 const char *
11298 get_name (tree t)
11299 {
11300 tree stripped_decl;
11301
11302 stripped_decl = t;
11303 STRIP_NOPS (stripped_decl);
11304 if (DECL_P (stripped_decl) && DECL_NAME (stripped_decl))
11305 return IDENTIFIER_POINTER (DECL_NAME (stripped_decl));
11306 else if (TREE_CODE (stripped_decl) == SSA_NAME)
11307 {
11308 tree name = SSA_NAME_IDENTIFIER (stripped_decl);
11309 if (!name)
11310 return NULL;
11311 return IDENTIFIER_POINTER (name);
11312 }
11313 else
11314 {
11315 switch (TREE_CODE (stripped_decl))
11316 {
11317 case ADDR_EXPR:
11318 return get_name (TREE_OPERAND (stripped_decl, 0));
11319 default:
11320 return NULL;
11321 }
11322 }
11323 }
11324
11325 /* Return true if TYPE has a variable argument list. */
11326
11327 bool
11328 stdarg_p (const_tree fntype)
11329 {
11330 function_args_iterator args_iter;
11331 tree n = NULL_TREE, t;
11332
11333 if (!fntype)
11334 return false;
11335
11336 FOREACH_FUNCTION_ARGS(fntype, t, args_iter)
11337 {
11338 n = t;
11339 }
11340
11341 return n != NULL_TREE && n != void_type_node;
11342 }
11343
11344 /* Return true if TYPE has a prototype. */
11345
11346 bool
11347 prototype_p (tree fntype)
11348 {
11349 tree t;
11350
11351 gcc_assert (fntype != NULL_TREE);
11352
11353 t = TYPE_ARG_TYPES (fntype);
11354 return (t != NULL_TREE);
11355 }
11356
11357 /* If BLOCK is inlined from an __attribute__((__artificial__))
11358 routine, return pointer to location from where it has been
11359 called. */
11360 location_t *
11361 block_nonartificial_location (tree block)
11362 {
11363 location_t *ret = NULL;
11364
11365 while (block && TREE_CODE (block) == BLOCK
11366 && BLOCK_ABSTRACT_ORIGIN (block))
11367 {
11368 tree ao = BLOCK_ABSTRACT_ORIGIN (block);
11369
11370 while (TREE_CODE (ao) == BLOCK
11371 && BLOCK_ABSTRACT_ORIGIN (ao)
11372 && BLOCK_ABSTRACT_ORIGIN (ao) != ao)
11373 ao = BLOCK_ABSTRACT_ORIGIN (ao);
11374
11375 if (TREE_CODE (ao) == FUNCTION_DECL)
11376 {
11377 /* If AO is an artificial inline, point RET to the
11378 call site locus at which it has been inlined and continue
11379 the loop, in case AO's caller is also an artificial
11380 inline. */
11381 if (DECL_DECLARED_INLINE_P (ao)
11382 && lookup_attribute ("artificial", DECL_ATTRIBUTES (ao)))
11383 ret = &BLOCK_SOURCE_LOCATION (block);
11384 else
11385 break;
11386 }
11387 else if (TREE_CODE (ao) != BLOCK)
11388 break;
11389
11390 block = BLOCK_SUPERCONTEXT (block);
11391 }
11392 return ret;
11393 }
11394
11395
11396 /* If EXP is inlined from an __attribute__((__artificial__))
11397 function, return the location of the original call expression. */
11398
11399 location_t
11400 tree_nonartificial_location (tree exp)
11401 {
11402 location_t *loc = block_nonartificial_location (TREE_BLOCK (exp));
11403
11404 if (loc)
11405 return *loc;
11406 else
11407 return EXPR_LOCATION (exp);
11408 }
11409
11410
11411 /* These are the hash table functions for the hash table of OPTIMIZATION_NODEq
11412 nodes. */
11413
11414 /* Return the hash code code X, an OPTIMIZATION_NODE or TARGET_OPTION code. */
11415
11416 static hashval_t
11417 cl_option_hash_hash (const void *x)
11418 {
11419 const_tree const t = (const_tree) x;
11420 const char *p;
11421 size_t i;
11422 size_t len = 0;
11423 hashval_t hash = 0;
11424
11425 if (TREE_CODE (t) == OPTIMIZATION_NODE)
11426 {
11427 p = (const char *)TREE_OPTIMIZATION (t);
11428 len = sizeof (struct cl_optimization);
11429 }
11430
11431 else if (TREE_CODE (t) == TARGET_OPTION_NODE)
11432 {
11433 p = (const char *)TREE_TARGET_OPTION (t);
11434 len = sizeof (struct cl_target_option);
11435 }
11436
11437 else
11438 gcc_unreachable ();
11439
11440 /* assume most opt flags are just 0/1, some are 2-3, and a few might be
11441 something else. */
11442 for (i = 0; i < len; i++)
11443 if (p[i])
11444 hash = (hash << 4) ^ ((i << 2) | p[i]);
11445
11446 return hash;
11447 }
11448
11449 /* Return nonzero if the value represented by *X (an OPTIMIZATION or
11450 TARGET_OPTION tree node) is the same as that given by *Y, which is the
11451 same. */
11452
11453 static int
11454 cl_option_hash_eq (const void *x, const void *y)
11455 {
11456 const_tree const xt = (const_tree) x;
11457 const_tree const yt = (const_tree) y;
11458 const char *xp;
11459 const char *yp;
11460 size_t len;
11461
11462 if (TREE_CODE (xt) != TREE_CODE (yt))
11463 return 0;
11464
11465 if (TREE_CODE (xt) == OPTIMIZATION_NODE)
11466 {
11467 xp = (const char *)TREE_OPTIMIZATION (xt);
11468 yp = (const char *)TREE_OPTIMIZATION (yt);
11469 len = sizeof (struct cl_optimization);
11470 }
11471
11472 else if (TREE_CODE (xt) == TARGET_OPTION_NODE)
11473 {
11474 xp = (const char *)TREE_TARGET_OPTION (xt);
11475 yp = (const char *)TREE_TARGET_OPTION (yt);
11476 len = sizeof (struct cl_target_option);
11477 }
11478
11479 else
11480 gcc_unreachable ();
11481
11482 return (memcmp (xp, yp, len) == 0);
11483 }
11484
11485 /* Build an OPTIMIZATION_NODE based on the current options. */
11486
11487 tree
11488 build_optimization_node (void)
11489 {
11490 tree t;
11491 void **slot;
11492
11493 /* Use the cache of optimization nodes. */
11494
11495 cl_optimization_save (TREE_OPTIMIZATION (cl_optimization_node),
11496 &global_options);
11497
11498 slot = htab_find_slot (cl_option_hash_table, cl_optimization_node, INSERT);
11499 t = (tree) *slot;
11500 if (!t)
11501 {
11502 /* Insert this one into the hash table. */
11503 t = cl_optimization_node;
11504 *slot = t;
11505
11506 /* Make a new node for next time round. */
11507 cl_optimization_node = make_node (OPTIMIZATION_NODE);
11508 }
11509
11510 return t;
11511 }
11512
11513 /* Build a TARGET_OPTION_NODE based on the current options. */
11514
11515 tree
11516 build_target_option_node (void)
11517 {
11518 tree t;
11519 void **slot;
11520
11521 /* Use the cache of optimization nodes. */
11522
11523 cl_target_option_save (TREE_TARGET_OPTION (cl_target_option_node),
11524 &global_options);
11525
11526 slot = htab_find_slot (cl_option_hash_table, cl_target_option_node, INSERT);
11527 t = (tree) *slot;
11528 if (!t)
11529 {
11530 /* Insert this one into the hash table. */
11531 t = cl_target_option_node;
11532 *slot = t;
11533
11534 /* Make a new node for next time round. */
11535 cl_target_option_node = make_node (TARGET_OPTION_NODE);
11536 }
11537
11538 return t;
11539 }
11540
11541 /* Determine the "ultimate origin" of a block. The block may be an inlined
11542 instance of an inlined instance of a block which is local to an inline
11543 function, so we have to trace all of the way back through the origin chain
11544 to find out what sort of node actually served as the original seed for the
11545 given block. */
11546
11547 tree
11548 block_ultimate_origin (const_tree block)
11549 {
11550 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
11551
11552 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
11553 nodes in the function to point to themselves; ignore that if
11554 we're trying to output the abstract instance of this function. */
11555 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
11556 return NULL_TREE;
11557
11558 if (immediate_origin == NULL_TREE)
11559 return NULL_TREE;
11560 else
11561 {
11562 tree ret_val;
11563 tree lookahead = immediate_origin;
11564
11565 do
11566 {
11567 ret_val = lookahead;
11568 lookahead = (TREE_CODE (ret_val) == BLOCK
11569 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
11570 }
11571 while (lookahead != NULL && lookahead != ret_val);
11572
11573 /* The block's abstract origin chain may not be the *ultimate* origin of
11574 the block. It could lead to a DECL that has an abstract origin set.
11575 If so, we want that DECL's abstract origin (which is what DECL_ORIGIN
11576 will give us if it has one). Note that DECL's abstract origins are
11577 supposed to be the most distant ancestor (or so decl_ultimate_origin
11578 claims), so we don't need to loop following the DECL origins. */
11579 if (DECL_P (ret_val))
11580 return DECL_ORIGIN (ret_val);
11581
11582 return ret_val;
11583 }
11584 }
11585
11586 /* Return true if T1 and T2 are equivalent lists. */
11587
11588 bool
11589 list_equal_p (const_tree t1, const_tree t2)
11590 {
11591 for (; t1 && t2; t1 = TREE_CHAIN (t1) , t2 = TREE_CHAIN (t2))
11592 if (TREE_VALUE (t1) != TREE_VALUE (t2))
11593 return false;
11594 return !t1 && !t2;
11595 }
11596
11597 /* Return true iff conversion in EXP generates no instruction. Mark
11598 it inline so that we fully inline into the stripping functions even
11599 though we have two uses of this function. */
11600
11601 static inline bool
11602 tree_nop_conversion (const_tree exp)
11603 {
11604 tree outer_type, inner_type;
11605
11606 if (!CONVERT_EXPR_P (exp)
11607 && TREE_CODE (exp) != NON_LVALUE_EXPR)
11608 return false;
11609 if (TREE_OPERAND (exp, 0) == error_mark_node)
11610 return false;
11611
11612 outer_type = TREE_TYPE (exp);
11613 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
11614
11615 if (!inner_type)
11616 return false;
11617
11618 /* Use precision rather then machine mode when we can, which gives
11619 the correct answer even for submode (bit-field) types. */
11620 if ((INTEGRAL_TYPE_P (outer_type)
11621 || POINTER_TYPE_P (outer_type)
11622 || TREE_CODE (outer_type) == OFFSET_TYPE)
11623 && (INTEGRAL_TYPE_P (inner_type)
11624 || POINTER_TYPE_P (inner_type)
11625 || TREE_CODE (inner_type) == OFFSET_TYPE))
11626 return TYPE_PRECISION (outer_type) == TYPE_PRECISION (inner_type);
11627
11628 /* Otherwise fall back on comparing machine modes (e.g. for
11629 aggregate types, floats). */
11630 return TYPE_MODE (outer_type) == TYPE_MODE (inner_type);
11631 }
11632
11633 /* Return true iff conversion in EXP generates no instruction. Don't
11634 consider conversions changing the signedness. */
11635
11636 static bool
11637 tree_sign_nop_conversion (const_tree exp)
11638 {
11639 tree outer_type, inner_type;
11640
11641 if (!tree_nop_conversion (exp))
11642 return false;
11643
11644 outer_type = TREE_TYPE (exp);
11645 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
11646
11647 return (TYPE_UNSIGNED (outer_type) == TYPE_UNSIGNED (inner_type)
11648 && POINTER_TYPE_P (outer_type) == POINTER_TYPE_P (inner_type));
11649 }
11650
11651 /* Strip conversions from EXP according to tree_nop_conversion and
11652 return the resulting expression. */
11653
11654 tree
11655 tree_strip_nop_conversions (tree exp)
11656 {
11657 while (tree_nop_conversion (exp))
11658 exp = TREE_OPERAND (exp, 0);
11659 return exp;
11660 }
11661
11662 /* Strip conversions from EXP according to tree_sign_nop_conversion
11663 and return the resulting expression. */
11664
11665 tree
11666 tree_strip_sign_nop_conversions (tree exp)
11667 {
11668 while (tree_sign_nop_conversion (exp))
11669 exp = TREE_OPERAND (exp, 0);
11670 return exp;
11671 }
11672
11673 /* Avoid any floating point extensions from EXP. */
11674 tree
11675 strip_float_extensions (tree exp)
11676 {
11677 tree sub, expt, subt;
11678
11679 /* For floating point constant look up the narrowest type that can hold
11680 it properly and handle it like (type)(narrowest_type)constant.
11681 This way we can optimize for instance a=a*2.0 where "a" is float
11682 but 2.0 is double constant. */
11683 if (TREE_CODE (exp) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (TREE_TYPE (exp)))
11684 {
11685 REAL_VALUE_TYPE orig;
11686 tree type = NULL;
11687
11688 orig = TREE_REAL_CST (exp);
11689 if (TYPE_PRECISION (TREE_TYPE (exp)) > TYPE_PRECISION (float_type_node)
11690 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
11691 type = float_type_node;
11692 else if (TYPE_PRECISION (TREE_TYPE (exp))
11693 > TYPE_PRECISION (double_type_node)
11694 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
11695 type = double_type_node;
11696 if (type)
11697 return build_real (type, real_value_truncate (TYPE_MODE (type), orig));
11698 }
11699
11700 if (!CONVERT_EXPR_P (exp))
11701 return exp;
11702
11703 sub = TREE_OPERAND (exp, 0);
11704 subt = TREE_TYPE (sub);
11705 expt = TREE_TYPE (exp);
11706
11707 if (!FLOAT_TYPE_P (subt))
11708 return exp;
11709
11710 if (DECIMAL_FLOAT_TYPE_P (expt) != DECIMAL_FLOAT_TYPE_P (subt))
11711 return exp;
11712
11713 if (TYPE_PRECISION (subt) > TYPE_PRECISION (expt))
11714 return exp;
11715
11716 return strip_float_extensions (sub);
11717 }
11718
11719 /* Strip out all handled components that produce invariant
11720 offsets. */
11721
11722 const_tree
11723 strip_invariant_refs (const_tree op)
11724 {
11725 while (handled_component_p (op))
11726 {
11727 switch (TREE_CODE (op))
11728 {
11729 case ARRAY_REF:
11730 case ARRAY_RANGE_REF:
11731 if (!is_gimple_constant (TREE_OPERAND (op, 1))
11732 || TREE_OPERAND (op, 2) != NULL_TREE
11733 || TREE_OPERAND (op, 3) != NULL_TREE)
11734 return NULL;
11735 break;
11736
11737 case COMPONENT_REF:
11738 if (TREE_OPERAND (op, 2) != NULL_TREE)
11739 return NULL;
11740 break;
11741
11742 default:;
11743 }
11744 op = TREE_OPERAND (op, 0);
11745 }
11746
11747 return op;
11748 }
11749
11750 static GTY(()) tree gcc_eh_personality_decl;
11751
11752 /* Return the GCC personality function decl. */
11753
11754 tree
11755 lhd_gcc_personality (void)
11756 {
11757 if (!gcc_eh_personality_decl)
11758 gcc_eh_personality_decl = build_personality_function ("gcc");
11759 return gcc_eh_personality_decl;
11760 }
11761
11762 /* For languages with One Definition Rule, work out if
11763 trees are actually the same even if the tree representation
11764 differs. This handles only decls appearing in TYPE_NAME
11765 and TYPE_CONTEXT. That is NAMESPACE_DECL, TYPE_DECL,
11766 RECORD_TYPE and IDENTIFIER_NODE. */
11767
11768 static bool
11769 same_for_odr (tree t1, tree t2)
11770 {
11771 if (t1 == t2)
11772 return true;
11773 if (!t1 || !t2)
11774 return false;
11775 /* C and C++ FEs differ by using IDENTIFIER_NODE and TYPE_DECL. */
11776 if (TREE_CODE (t1) == IDENTIFIER_NODE
11777 && TREE_CODE (t2) == TYPE_DECL
11778 && DECL_FILE_SCOPE_P (t1))
11779 {
11780 t2 = DECL_NAME (t2);
11781 gcc_assert (TREE_CODE (t2) == IDENTIFIER_NODE);
11782 }
11783 if (TREE_CODE (t2) == IDENTIFIER_NODE
11784 && TREE_CODE (t1) == TYPE_DECL
11785 && DECL_FILE_SCOPE_P (t2))
11786 {
11787 t1 = DECL_NAME (t1);
11788 gcc_assert (TREE_CODE (t1) == IDENTIFIER_NODE);
11789 }
11790 if (TREE_CODE (t1) != TREE_CODE (t2))
11791 return false;
11792 if (TYPE_P (t1))
11793 return types_same_for_odr (t1, t2);
11794 if (DECL_P (t1))
11795 return decls_same_for_odr (t1, t2);
11796 return false;
11797 }
11798
11799 /* For languages with One Definition Rule, work out if
11800 decls are actually the same even if the tree representation
11801 differs. This handles only decls appearing in TYPE_NAME
11802 and TYPE_CONTEXT. That is NAMESPACE_DECL, TYPE_DECL,
11803 RECORD_TYPE and IDENTIFIER_NODE. */
11804
11805 static bool
11806 decls_same_for_odr (tree decl1, tree decl2)
11807 {
11808 if (decl1 && TREE_CODE (decl1) == TYPE_DECL
11809 && DECL_ORIGINAL_TYPE (decl1))
11810 decl1 = DECL_ORIGINAL_TYPE (decl1);
11811 if (decl2 && TREE_CODE (decl2) == TYPE_DECL
11812 && DECL_ORIGINAL_TYPE (decl2))
11813 decl2 = DECL_ORIGINAL_TYPE (decl2);
11814 if (decl1 == decl2)
11815 return true;
11816 if (!decl1 || !decl2)
11817 return false;
11818 gcc_checking_assert (DECL_P (decl1) && DECL_P (decl2));
11819 if (TREE_CODE (decl1) != TREE_CODE (decl2))
11820 return false;
11821 if (TREE_CODE (decl1) == TRANSLATION_UNIT_DECL)
11822 return true;
11823 if (TREE_CODE (decl1) != NAMESPACE_DECL
11824 && TREE_CODE (decl1) != TYPE_DECL)
11825 return false;
11826 if (!DECL_NAME (decl1))
11827 return false;
11828 gcc_checking_assert (TREE_CODE (DECL_NAME (decl1)) == IDENTIFIER_NODE);
11829 gcc_checking_assert (!DECL_NAME (decl2)
11830 || TREE_CODE (DECL_NAME (decl2)) == IDENTIFIER_NODE);
11831 if (DECL_NAME (decl1) != DECL_NAME (decl2))
11832 return false;
11833 return same_for_odr (DECL_CONTEXT (decl1),
11834 DECL_CONTEXT (decl2));
11835 }
11836
11837 /* For languages with One Definition Rule, work out if
11838 types are same even if the tree representation differs.
11839 This is non-trivial for LTO where minnor differences in
11840 the type representation may have prevented type merging
11841 to merge two copies of otherwise equivalent type. */
11842
11843 bool
11844 types_same_for_odr (tree type1, tree type2)
11845 {
11846 gcc_checking_assert (TYPE_P (type1) && TYPE_P (type2));
11847 type1 = TYPE_MAIN_VARIANT (type1);
11848 type2 = TYPE_MAIN_VARIANT (type2);
11849 if (type1 == type2)
11850 return true;
11851
11852 /* If types are not structuraly same, do not bother to contnue.
11853 Match in the remainder of code would mean ODR violation. */
11854 if (!types_compatible_p (type1, type2))
11855 return false;
11856
11857 #ifndef ENABLE_CHECKING
11858 if (!in_lto_p)
11859 return false;
11860 #endif
11861
11862 /* Check for anonymous namespaces. Those have !TREE_PUBLIC
11863 on the corresponding TYPE_STUB_DECL. */
11864 if (type_in_anonymous_namespace_p (type1)
11865 || type_in_anonymous_namespace_p (type2))
11866 return false;
11867
11868 if (!TYPE_NAME (type1))
11869 return false;
11870 if (!decls_same_for_odr (TYPE_NAME (type1), TYPE_NAME (type2)))
11871 return false;
11872 if (!same_for_odr (TYPE_CONTEXT (type1), TYPE_CONTEXT (type2)))
11873 return false;
11874 /* When not in LTO the MAIN_VARIANT check should be the same. */
11875 gcc_assert (in_lto_p);
11876
11877 return true;
11878 }
11879
11880 /* TARGET is a call target of GIMPLE call statement
11881 (obtained by gimple_call_fn). Return true if it is
11882 OBJ_TYPE_REF representing an virtual call of C++ method.
11883 (As opposed to OBJ_TYPE_REF representing objc calls
11884 through a cast where middle-end devirtualization machinery
11885 can't apply.) */
11886
11887 bool
11888 virtual_method_call_p (tree target)
11889 {
11890 if (TREE_CODE (target) != OBJ_TYPE_REF)
11891 return false;
11892 target = TREE_TYPE (target);
11893 gcc_checking_assert (TREE_CODE (target) == POINTER_TYPE);
11894 target = TREE_TYPE (target);
11895 if (TREE_CODE (target) == FUNCTION_TYPE)
11896 return false;
11897 gcc_checking_assert (TREE_CODE (target) == METHOD_TYPE);
11898 return true;
11899 }
11900
11901 /* REF is OBJ_TYPE_REF, return the class the ref corresponds to. */
11902
11903 tree
11904 obj_type_ref_class (tree ref)
11905 {
11906 gcc_checking_assert (TREE_CODE (ref) == OBJ_TYPE_REF);
11907 ref = TREE_TYPE (ref);
11908 gcc_checking_assert (TREE_CODE (ref) == POINTER_TYPE);
11909 ref = TREE_TYPE (ref);
11910 /* We look for type THIS points to. ObjC also builds
11911 OBJ_TYPE_REF with non-method calls, Their first parameter
11912 ID however also corresponds to class type. */
11913 gcc_checking_assert (TREE_CODE (ref) == METHOD_TYPE
11914 || TREE_CODE (ref) == FUNCTION_TYPE);
11915 ref = TREE_VALUE (TYPE_ARG_TYPES (ref));
11916 gcc_checking_assert (TREE_CODE (ref) == POINTER_TYPE);
11917 return TREE_TYPE (ref);
11918 }
11919
11920 /* Return true if T is in anonymous namespace. */
11921
11922 bool
11923 type_in_anonymous_namespace_p (tree t)
11924 {
11925 return (TYPE_STUB_DECL (t) && !TREE_PUBLIC (TYPE_STUB_DECL (t)));
11926 }
11927
11928 /* Try to find a base info of BINFO that would have its field decl at offset
11929 OFFSET within the BINFO type and which is of EXPECTED_TYPE. If it can be
11930 found, return, otherwise return NULL_TREE. */
11931
11932 tree
11933 get_binfo_at_offset (tree binfo, HOST_WIDE_INT offset, tree expected_type)
11934 {
11935 tree type = BINFO_TYPE (binfo);
11936
11937 while (true)
11938 {
11939 HOST_WIDE_INT pos, size;
11940 tree fld;
11941 int i;
11942
11943 if (types_same_for_odr (type, expected_type))
11944 return binfo;
11945 if (offset < 0)
11946 return NULL_TREE;
11947
11948 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
11949 {
11950 if (TREE_CODE (fld) != FIELD_DECL)
11951 continue;
11952
11953 pos = int_bit_position (fld);
11954 size = tree_low_cst (DECL_SIZE (fld), 1);
11955 if (pos <= offset && (pos + size) > offset)
11956 break;
11957 }
11958 if (!fld || TREE_CODE (TREE_TYPE (fld)) != RECORD_TYPE)
11959 return NULL_TREE;
11960
11961 if (!DECL_ARTIFICIAL (fld))
11962 {
11963 binfo = TYPE_BINFO (TREE_TYPE (fld));
11964 if (!binfo)
11965 return NULL_TREE;
11966 }
11967 /* Offset 0 indicates the primary base, whose vtable contents are
11968 represented in the binfo for the derived class. */
11969 else if (offset != 0)
11970 {
11971 tree base_binfo, found_binfo = NULL_TREE;
11972 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
11973 if (types_same_for_odr (TREE_TYPE (base_binfo), TREE_TYPE (fld)))
11974 {
11975 found_binfo = base_binfo;
11976 break;
11977 }
11978 if (!found_binfo)
11979 return NULL_TREE;
11980 binfo = found_binfo;
11981 }
11982
11983 type = TREE_TYPE (fld);
11984 offset -= pos;
11985 }
11986 }
11987
11988 /* Returns true if X is a typedef decl. */
11989
11990 bool
11991 is_typedef_decl (tree x)
11992 {
11993 return (x && TREE_CODE (x) == TYPE_DECL
11994 && DECL_ORIGINAL_TYPE (x) != NULL_TREE);
11995 }
11996
11997 /* Returns true iff TYPE is a type variant created for a typedef. */
11998
11999 bool
12000 typedef_variant_p (tree type)
12001 {
12002 return is_typedef_decl (TYPE_NAME (type));
12003 }
12004
12005 /* Warn about a use of an identifier which was marked deprecated. */
12006 void
12007 warn_deprecated_use (tree node, tree attr)
12008 {
12009 const char *msg;
12010
12011 if (node == 0 || !warn_deprecated_decl)
12012 return;
12013
12014 if (!attr)
12015 {
12016 if (DECL_P (node))
12017 attr = DECL_ATTRIBUTES (node);
12018 else if (TYPE_P (node))
12019 {
12020 tree decl = TYPE_STUB_DECL (node);
12021 if (decl)
12022 attr = lookup_attribute ("deprecated",
12023 TYPE_ATTRIBUTES (TREE_TYPE (decl)));
12024 }
12025 }
12026
12027 if (attr)
12028 attr = lookup_attribute ("deprecated", attr);
12029
12030 if (attr)
12031 msg = TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr)));
12032 else
12033 msg = NULL;
12034
12035 if (DECL_P (node))
12036 {
12037 expanded_location xloc = expand_location (DECL_SOURCE_LOCATION (node));
12038 if (msg)
12039 warning (OPT_Wdeprecated_declarations,
12040 "%qD is deprecated (declared at %r%s:%d%R): %s",
12041 node, "locus", xloc.file, xloc.line, msg);
12042 else
12043 warning (OPT_Wdeprecated_declarations,
12044 "%qD is deprecated (declared at %r%s:%d%R)",
12045 node, "locus", xloc.file, xloc.line);
12046 }
12047 else if (TYPE_P (node))
12048 {
12049 tree what = NULL_TREE;
12050 tree decl = TYPE_STUB_DECL (node);
12051
12052 if (TYPE_NAME (node))
12053 {
12054 if (TREE_CODE (TYPE_NAME (node)) == IDENTIFIER_NODE)
12055 what = TYPE_NAME (node);
12056 else if (TREE_CODE (TYPE_NAME (node)) == TYPE_DECL
12057 && DECL_NAME (TYPE_NAME (node)))
12058 what = DECL_NAME (TYPE_NAME (node));
12059 }
12060
12061 if (decl)
12062 {
12063 expanded_location xloc
12064 = expand_location (DECL_SOURCE_LOCATION (decl));
12065 if (what)
12066 {
12067 if (msg)
12068 warning (OPT_Wdeprecated_declarations,
12069 "%qE is deprecated (declared at %r%s:%d%R): %s",
12070 what, "locus", xloc.file, xloc.line, msg);
12071 else
12072 warning (OPT_Wdeprecated_declarations,
12073 "%qE is deprecated (declared at %r%s:%d%R)",
12074 what, "locus", xloc.file, xloc.line);
12075 }
12076 else
12077 {
12078 if (msg)
12079 warning (OPT_Wdeprecated_declarations,
12080 "type is deprecated (declared at %r%s:%d%R): %s",
12081 "locus", xloc.file, xloc.line, msg);
12082 else
12083 warning (OPT_Wdeprecated_declarations,
12084 "type is deprecated (declared at %r%s:%d%R)",
12085 "locus", xloc.file, xloc.line);
12086 }
12087 }
12088 else
12089 {
12090 if (what)
12091 {
12092 if (msg)
12093 warning (OPT_Wdeprecated_declarations, "%qE is deprecated: %s",
12094 what, msg);
12095 else
12096 warning (OPT_Wdeprecated_declarations, "%qE is deprecated", what);
12097 }
12098 else
12099 {
12100 if (msg)
12101 warning (OPT_Wdeprecated_declarations, "type is deprecated: %s",
12102 msg);
12103 else
12104 warning (OPT_Wdeprecated_declarations, "type is deprecated");
12105 }
12106 }
12107 }
12108 }
12109
12110 /* Return true if REF has a COMPONENT_REF with a bit-field field declaration
12111 somewhere in it. */
12112
12113 bool
12114 contains_bitfld_component_ref_p (const_tree ref)
12115 {
12116 while (handled_component_p (ref))
12117 {
12118 if (TREE_CODE (ref) == COMPONENT_REF
12119 && DECL_BIT_FIELD (TREE_OPERAND (ref, 1)))
12120 return true;
12121 ref = TREE_OPERAND (ref, 0);
12122 }
12123
12124 return false;
12125 }
12126
12127 #include "gt-tree.h"