]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree.c
2013-05-06 Marc Glisse <marc.glisse@inria.fr>
[thirdparty/gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file contains the low level primitives for operating on tree nodes,
21 including allocation, list operations, interning of identifiers,
22 construction of data type nodes and statement nodes,
23 and construction of type conversion nodes. It also contains
24 tables index by tree code that describe how to take apart
25 nodes of that code.
26
27 It is intended to be language-independent, but occasionally
28 calls language-dependent routines defined (for C) in typecheck.c. */
29
30 #include "config.h"
31 #include "system.h"
32 #include "coretypes.h"
33 #include "tm.h"
34 #include "flags.h"
35 #include "tree.h"
36 #include "tm_p.h"
37 #include "function.h"
38 #include "obstack.h"
39 #include "toplev.h" /* get_random_seed */
40 #include "ggc.h"
41 #include "hashtab.h"
42 #include "filenames.h"
43 #include "output.h"
44 #include "target.h"
45 #include "common/common-target.h"
46 #include "langhooks.h"
47 #include "tree-inline.h"
48 #include "tree-iterator.h"
49 #include "basic-block.h"
50 #include "tree-flow.h"
51 #include "params.h"
52 #include "pointer-set.h"
53 #include "tree-pass.h"
54 #include "langhooks-def.h"
55 #include "diagnostic.h"
56 #include "tree-diagnostic.h"
57 #include "tree-pretty-print.h"
58 #include "cgraph.h"
59 #include "except.h"
60 #include "debug.h"
61 #include "intl.h"
62
63 /* Tree code classes. */
64
65 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
66 #define END_OF_BASE_TREE_CODES tcc_exceptional,
67
68 const enum tree_code_class tree_code_type[] = {
69 #include "all-tree.def"
70 };
71
72 #undef DEFTREECODE
73 #undef END_OF_BASE_TREE_CODES
74
75 /* Table indexed by tree code giving number of expression
76 operands beyond the fixed part of the node structure.
77 Not used for types or decls. */
78
79 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
80 #define END_OF_BASE_TREE_CODES 0,
81
82 const unsigned char tree_code_length[] = {
83 #include "all-tree.def"
84 };
85
86 #undef DEFTREECODE
87 #undef END_OF_BASE_TREE_CODES
88
89 /* Names of tree components.
90 Used for printing out the tree and error messages. */
91 #define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
92 #define END_OF_BASE_TREE_CODES "@dummy",
93
94 const char *const tree_code_name[] = {
95 #include "all-tree.def"
96 };
97
98 #undef DEFTREECODE
99 #undef END_OF_BASE_TREE_CODES
100
101 /* Each tree code class has an associated string representation.
102 These must correspond to the tree_code_class entries. */
103
104 const char *const tree_code_class_strings[] =
105 {
106 "exceptional",
107 "constant",
108 "type",
109 "declaration",
110 "reference",
111 "comparison",
112 "unary",
113 "binary",
114 "statement",
115 "vl_exp",
116 "expression"
117 };
118
119 /* obstack.[ch] explicitly declined to prototype this. */
120 extern int _obstack_allocated_p (struct obstack *h, void *obj);
121
122 /* Statistics-gathering stuff. */
123
124 static int tree_code_counts[MAX_TREE_CODES];
125 int tree_node_counts[(int) all_kinds];
126 int tree_node_sizes[(int) all_kinds];
127
128 /* Keep in sync with tree.h:enum tree_node_kind. */
129 static const char * const tree_node_kind_names[] = {
130 "decls",
131 "types",
132 "blocks",
133 "stmts",
134 "refs",
135 "exprs",
136 "constants",
137 "identifiers",
138 "vecs",
139 "binfos",
140 "ssa names",
141 "constructors",
142 "random kinds",
143 "lang_decl kinds",
144 "lang_type kinds",
145 "omp clauses",
146 };
147
148 /* Unique id for next decl created. */
149 static GTY(()) int next_decl_uid;
150 /* Unique id for next type created. */
151 static GTY(()) int next_type_uid = 1;
152 /* Unique id for next debug decl created. Use negative numbers,
153 to catch erroneous uses. */
154 static GTY(()) int next_debug_decl_uid;
155
156 /* Since we cannot rehash a type after it is in the table, we have to
157 keep the hash code. */
158
159 struct GTY(()) type_hash {
160 unsigned long hash;
161 tree type;
162 };
163
164 /* Initial size of the hash table (rounded to next prime). */
165 #define TYPE_HASH_INITIAL_SIZE 1000
166
167 /* Now here is the hash table. When recording a type, it is added to
168 the slot whose index is the hash code. Note that the hash table is
169 used for several kinds of types (function types, array types and
170 array index range types, for now). While all these live in the
171 same table, they are completely independent, and the hash code is
172 computed differently for each of these. */
173
174 static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash)))
175 htab_t type_hash_table;
176
177 /* Hash table and temporary node for larger integer const values. */
178 static GTY (()) tree int_cst_node;
179 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
180 htab_t int_cst_hash_table;
181
182 /* Hash table for optimization flags and target option flags. Use the same
183 hash table for both sets of options. Nodes for building the current
184 optimization and target option nodes. The assumption is most of the time
185 the options created will already be in the hash table, so we avoid
186 allocating and freeing up a node repeatably. */
187 static GTY (()) tree cl_optimization_node;
188 static GTY (()) tree cl_target_option_node;
189 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
190 htab_t cl_option_hash_table;
191
192 /* General tree->tree mapping structure for use in hash tables. */
193
194
195 static GTY ((if_marked ("tree_decl_map_marked_p"), param_is (struct tree_decl_map)))
196 htab_t debug_expr_for_decl;
197
198 static GTY ((if_marked ("tree_decl_map_marked_p"), param_is (struct tree_decl_map)))
199 htab_t value_expr_for_decl;
200
201 static GTY ((if_marked ("tree_vec_map_marked_p"), param_is (struct tree_vec_map)))
202 htab_t debug_args_for_decl;
203
204 static GTY ((if_marked ("tree_priority_map_marked_p"),
205 param_is (struct tree_priority_map)))
206 htab_t init_priority_for_decl;
207
208 static void set_type_quals (tree, int);
209 static int type_hash_eq (const void *, const void *);
210 static hashval_t type_hash_hash (const void *);
211 static hashval_t int_cst_hash_hash (const void *);
212 static int int_cst_hash_eq (const void *, const void *);
213 static hashval_t cl_option_hash_hash (const void *);
214 static int cl_option_hash_eq (const void *, const void *);
215 static void print_type_hash_statistics (void);
216 static void print_debug_expr_statistics (void);
217 static void print_value_expr_statistics (void);
218 static int type_hash_marked_p (const void *);
219 static unsigned int type_hash_list (const_tree, hashval_t);
220 static unsigned int attribute_hash_list (const_tree, hashval_t);
221
222 tree global_trees[TI_MAX];
223 tree integer_types[itk_none];
224
225 unsigned char tree_contains_struct[MAX_TREE_CODES][64];
226
227 /* Number of operands for each OpenMP clause. */
228 unsigned const char omp_clause_num_ops[] =
229 {
230 0, /* OMP_CLAUSE_ERROR */
231 1, /* OMP_CLAUSE_PRIVATE */
232 1, /* OMP_CLAUSE_SHARED */
233 1, /* OMP_CLAUSE_FIRSTPRIVATE */
234 2, /* OMP_CLAUSE_LASTPRIVATE */
235 4, /* OMP_CLAUSE_REDUCTION */
236 1, /* OMP_CLAUSE_COPYIN */
237 1, /* OMP_CLAUSE_COPYPRIVATE */
238 1, /* OMP_CLAUSE_IF */
239 1, /* OMP_CLAUSE_NUM_THREADS */
240 1, /* OMP_CLAUSE_SCHEDULE */
241 0, /* OMP_CLAUSE_NOWAIT */
242 0, /* OMP_CLAUSE_ORDERED */
243 0, /* OMP_CLAUSE_DEFAULT */
244 3, /* OMP_CLAUSE_COLLAPSE */
245 0, /* OMP_CLAUSE_UNTIED */
246 1, /* OMP_CLAUSE_FINAL */
247 0 /* OMP_CLAUSE_MERGEABLE */
248 };
249
250 const char * const omp_clause_code_name[] =
251 {
252 "error_clause",
253 "private",
254 "shared",
255 "firstprivate",
256 "lastprivate",
257 "reduction",
258 "copyin",
259 "copyprivate",
260 "if",
261 "num_threads",
262 "schedule",
263 "nowait",
264 "ordered",
265 "default",
266 "collapse",
267 "untied",
268 "final",
269 "mergeable"
270 };
271
272
273 /* Return the tree node structure used by tree code CODE. */
274
275 static inline enum tree_node_structure_enum
276 tree_node_structure_for_code (enum tree_code code)
277 {
278 switch (TREE_CODE_CLASS (code))
279 {
280 case tcc_declaration:
281 {
282 switch (code)
283 {
284 case FIELD_DECL:
285 return TS_FIELD_DECL;
286 case PARM_DECL:
287 return TS_PARM_DECL;
288 case VAR_DECL:
289 return TS_VAR_DECL;
290 case LABEL_DECL:
291 return TS_LABEL_DECL;
292 case RESULT_DECL:
293 return TS_RESULT_DECL;
294 case DEBUG_EXPR_DECL:
295 return TS_DECL_WRTL;
296 case CONST_DECL:
297 return TS_CONST_DECL;
298 case TYPE_DECL:
299 return TS_TYPE_DECL;
300 case FUNCTION_DECL:
301 return TS_FUNCTION_DECL;
302 case TRANSLATION_UNIT_DECL:
303 return TS_TRANSLATION_UNIT_DECL;
304 default:
305 return TS_DECL_NON_COMMON;
306 }
307 }
308 case tcc_type:
309 return TS_TYPE_NON_COMMON;
310 case tcc_reference:
311 case tcc_comparison:
312 case tcc_unary:
313 case tcc_binary:
314 case tcc_expression:
315 case tcc_statement:
316 case tcc_vl_exp:
317 return TS_EXP;
318 default: /* tcc_constant and tcc_exceptional */
319 break;
320 }
321 switch (code)
322 {
323 /* tcc_constant cases. */
324 case INTEGER_CST: return TS_INT_CST;
325 case REAL_CST: return TS_REAL_CST;
326 case FIXED_CST: return TS_FIXED_CST;
327 case COMPLEX_CST: return TS_COMPLEX;
328 case VECTOR_CST: return TS_VECTOR;
329 case STRING_CST: return TS_STRING;
330 /* tcc_exceptional cases. */
331 case ERROR_MARK: return TS_COMMON;
332 case IDENTIFIER_NODE: return TS_IDENTIFIER;
333 case TREE_LIST: return TS_LIST;
334 case TREE_VEC: return TS_VEC;
335 case SSA_NAME: return TS_SSA_NAME;
336 case PLACEHOLDER_EXPR: return TS_COMMON;
337 case STATEMENT_LIST: return TS_STATEMENT_LIST;
338 case BLOCK: return TS_BLOCK;
339 case CONSTRUCTOR: return TS_CONSTRUCTOR;
340 case TREE_BINFO: return TS_BINFO;
341 case OMP_CLAUSE: return TS_OMP_CLAUSE;
342 case OPTIMIZATION_NODE: return TS_OPTIMIZATION;
343 case TARGET_OPTION_NODE: return TS_TARGET_OPTION;
344
345 default:
346 gcc_unreachable ();
347 }
348 }
349
350
351 /* Initialize tree_contains_struct to describe the hierarchy of tree
352 nodes. */
353
354 static void
355 initialize_tree_contains_struct (void)
356 {
357 unsigned i;
358
359 for (i = ERROR_MARK; i < LAST_AND_UNUSED_TREE_CODE; i++)
360 {
361 enum tree_code code;
362 enum tree_node_structure_enum ts_code;
363
364 code = (enum tree_code) i;
365 ts_code = tree_node_structure_for_code (code);
366
367 /* Mark the TS structure itself. */
368 tree_contains_struct[code][ts_code] = 1;
369
370 /* Mark all the structures that TS is derived from. */
371 switch (ts_code)
372 {
373 case TS_TYPED:
374 case TS_BLOCK:
375 MARK_TS_BASE (code);
376 break;
377
378 case TS_COMMON:
379 case TS_INT_CST:
380 case TS_REAL_CST:
381 case TS_FIXED_CST:
382 case TS_VECTOR:
383 case TS_STRING:
384 case TS_COMPLEX:
385 case TS_SSA_NAME:
386 case TS_CONSTRUCTOR:
387 case TS_EXP:
388 case TS_STATEMENT_LIST:
389 MARK_TS_TYPED (code);
390 break;
391
392 case TS_IDENTIFIER:
393 case TS_DECL_MINIMAL:
394 case TS_TYPE_COMMON:
395 case TS_LIST:
396 case TS_VEC:
397 case TS_BINFO:
398 case TS_OMP_CLAUSE:
399 case TS_OPTIMIZATION:
400 case TS_TARGET_OPTION:
401 MARK_TS_COMMON (code);
402 break;
403
404 case TS_TYPE_WITH_LANG_SPECIFIC:
405 MARK_TS_TYPE_COMMON (code);
406 break;
407
408 case TS_TYPE_NON_COMMON:
409 MARK_TS_TYPE_WITH_LANG_SPECIFIC (code);
410 break;
411
412 case TS_DECL_COMMON:
413 MARK_TS_DECL_MINIMAL (code);
414 break;
415
416 case TS_DECL_WRTL:
417 case TS_CONST_DECL:
418 MARK_TS_DECL_COMMON (code);
419 break;
420
421 case TS_DECL_NON_COMMON:
422 MARK_TS_DECL_WITH_VIS (code);
423 break;
424
425 case TS_DECL_WITH_VIS:
426 case TS_PARM_DECL:
427 case TS_LABEL_DECL:
428 case TS_RESULT_DECL:
429 MARK_TS_DECL_WRTL (code);
430 break;
431
432 case TS_FIELD_DECL:
433 MARK_TS_DECL_COMMON (code);
434 break;
435
436 case TS_VAR_DECL:
437 MARK_TS_DECL_WITH_VIS (code);
438 break;
439
440 case TS_TYPE_DECL:
441 case TS_FUNCTION_DECL:
442 MARK_TS_DECL_NON_COMMON (code);
443 break;
444
445 case TS_TRANSLATION_UNIT_DECL:
446 MARK_TS_DECL_COMMON (code);
447 break;
448
449 default:
450 gcc_unreachable ();
451 }
452 }
453
454 /* Basic consistency checks for attributes used in fold. */
455 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_NON_COMMON]);
456 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_NON_COMMON]);
457 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_COMMON]);
458 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_COMMON]);
459 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_COMMON]);
460 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_COMMON]);
461 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_COMMON]);
462 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_COMMON]);
463 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_COMMON]);
464 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_COMMON]);
465 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_COMMON]);
466 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WRTL]);
467 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_WRTL]);
468 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_WRTL]);
469 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WRTL]);
470 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_WRTL]);
471 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_MINIMAL]);
472 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_MINIMAL]);
473 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_MINIMAL]);
474 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_MINIMAL]);
475 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_MINIMAL]);
476 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_MINIMAL]);
477 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_MINIMAL]);
478 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_MINIMAL]);
479 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_MINIMAL]);
480 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WITH_VIS]);
481 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WITH_VIS]);
482 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_WITH_VIS]);
483 gcc_assert (tree_contains_struct[VAR_DECL][TS_VAR_DECL]);
484 gcc_assert (tree_contains_struct[FIELD_DECL][TS_FIELD_DECL]);
485 gcc_assert (tree_contains_struct[PARM_DECL][TS_PARM_DECL]);
486 gcc_assert (tree_contains_struct[LABEL_DECL][TS_LABEL_DECL]);
487 gcc_assert (tree_contains_struct[RESULT_DECL][TS_RESULT_DECL]);
488 gcc_assert (tree_contains_struct[CONST_DECL][TS_CONST_DECL]);
489 gcc_assert (tree_contains_struct[TYPE_DECL][TS_TYPE_DECL]);
490 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_FUNCTION_DECL]);
491 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_MINIMAL]);
492 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_COMMON]);
493 }
494
495
496 /* Init tree.c. */
497
498 void
499 init_ttree (void)
500 {
501 /* Initialize the hash table of types. */
502 type_hash_table = htab_create_ggc (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
503 type_hash_eq, 0);
504
505 debug_expr_for_decl = htab_create_ggc (512, tree_decl_map_hash,
506 tree_decl_map_eq, 0);
507
508 value_expr_for_decl = htab_create_ggc (512, tree_decl_map_hash,
509 tree_decl_map_eq, 0);
510 init_priority_for_decl = htab_create_ggc (512, tree_priority_map_hash,
511 tree_priority_map_eq, 0);
512
513 int_cst_hash_table = htab_create_ggc (1024, int_cst_hash_hash,
514 int_cst_hash_eq, NULL);
515
516 int_cst_node = make_node (INTEGER_CST);
517
518 cl_option_hash_table = htab_create_ggc (64, cl_option_hash_hash,
519 cl_option_hash_eq, NULL);
520
521 cl_optimization_node = make_node (OPTIMIZATION_NODE);
522 cl_target_option_node = make_node (TARGET_OPTION_NODE);
523
524 /* Initialize the tree_contains_struct array. */
525 initialize_tree_contains_struct ();
526 lang_hooks.init_ts ();
527 }
528
529 \f
530 /* The name of the object as the assembler will see it (but before any
531 translations made by ASM_OUTPUT_LABELREF). Often this is the same
532 as DECL_NAME. It is an IDENTIFIER_NODE. */
533 tree
534 decl_assembler_name (tree decl)
535 {
536 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
537 lang_hooks.set_decl_assembler_name (decl);
538 return DECL_WITH_VIS_CHECK (decl)->decl_with_vis.assembler_name;
539 }
540
541 /* Compare ASMNAME with the DECL_ASSEMBLER_NAME of DECL. */
542
543 bool
544 decl_assembler_name_equal (tree decl, const_tree asmname)
545 {
546 tree decl_asmname = DECL_ASSEMBLER_NAME (decl);
547 const char *decl_str;
548 const char *asmname_str;
549 bool test = false;
550
551 if (decl_asmname == asmname)
552 return true;
553
554 decl_str = IDENTIFIER_POINTER (decl_asmname);
555 asmname_str = IDENTIFIER_POINTER (asmname);
556
557
558 /* If the target assembler name was set by the user, things are trickier.
559 We have a leading '*' to begin with. After that, it's arguable what
560 is the correct thing to do with -fleading-underscore. Arguably, we've
561 historically been doing the wrong thing in assemble_alias by always
562 printing the leading underscore. Since we're not changing that, make
563 sure user_label_prefix follows the '*' before matching. */
564 if (decl_str[0] == '*')
565 {
566 size_t ulp_len = strlen (user_label_prefix);
567
568 decl_str ++;
569
570 if (ulp_len == 0)
571 test = true;
572 else if (strncmp (decl_str, user_label_prefix, ulp_len) == 0)
573 decl_str += ulp_len, test=true;
574 else
575 decl_str --;
576 }
577 if (asmname_str[0] == '*')
578 {
579 size_t ulp_len = strlen (user_label_prefix);
580
581 asmname_str ++;
582
583 if (ulp_len == 0)
584 test = true;
585 else if (strncmp (asmname_str, user_label_prefix, ulp_len) == 0)
586 asmname_str += ulp_len, test=true;
587 else
588 asmname_str --;
589 }
590
591 if (!test)
592 return false;
593 return strcmp (decl_str, asmname_str) == 0;
594 }
595
596 /* Hash asmnames ignoring the user specified marks. */
597
598 hashval_t
599 decl_assembler_name_hash (const_tree asmname)
600 {
601 if (IDENTIFIER_POINTER (asmname)[0] == '*')
602 {
603 const char *decl_str = IDENTIFIER_POINTER (asmname) + 1;
604 size_t ulp_len = strlen (user_label_prefix);
605
606 if (ulp_len == 0)
607 ;
608 else if (strncmp (decl_str, user_label_prefix, ulp_len) == 0)
609 decl_str += ulp_len;
610
611 return htab_hash_string (decl_str);
612 }
613
614 return htab_hash_string (IDENTIFIER_POINTER (asmname));
615 }
616
617 /* Compute the number of bytes occupied by a tree with code CODE.
618 This function cannot be used for nodes that have variable sizes,
619 including TREE_VEC, STRING_CST, and CALL_EXPR. */
620 size_t
621 tree_code_size (enum tree_code code)
622 {
623 switch (TREE_CODE_CLASS (code))
624 {
625 case tcc_declaration: /* A decl node */
626 {
627 switch (code)
628 {
629 case FIELD_DECL:
630 return sizeof (struct tree_field_decl);
631 case PARM_DECL:
632 return sizeof (struct tree_parm_decl);
633 case VAR_DECL:
634 return sizeof (struct tree_var_decl);
635 case LABEL_DECL:
636 return sizeof (struct tree_label_decl);
637 case RESULT_DECL:
638 return sizeof (struct tree_result_decl);
639 case CONST_DECL:
640 return sizeof (struct tree_const_decl);
641 case TYPE_DECL:
642 return sizeof (struct tree_type_decl);
643 case FUNCTION_DECL:
644 return sizeof (struct tree_function_decl);
645 case DEBUG_EXPR_DECL:
646 return sizeof (struct tree_decl_with_rtl);
647 default:
648 return sizeof (struct tree_decl_non_common);
649 }
650 }
651
652 case tcc_type: /* a type node */
653 return sizeof (struct tree_type_non_common);
654
655 case tcc_reference: /* a reference */
656 case tcc_expression: /* an expression */
657 case tcc_statement: /* an expression with side effects */
658 case tcc_comparison: /* a comparison expression */
659 case tcc_unary: /* a unary arithmetic expression */
660 case tcc_binary: /* a binary arithmetic expression */
661 return (sizeof (struct tree_exp)
662 + (TREE_CODE_LENGTH (code) - 1) * sizeof (tree));
663
664 case tcc_constant: /* a constant */
665 switch (code)
666 {
667 case INTEGER_CST: return sizeof (struct tree_int_cst);
668 case REAL_CST: return sizeof (struct tree_real_cst);
669 case FIXED_CST: return sizeof (struct tree_fixed_cst);
670 case COMPLEX_CST: return sizeof (struct tree_complex);
671 case VECTOR_CST: return sizeof (struct tree_vector);
672 case STRING_CST: gcc_unreachable ();
673 default:
674 return lang_hooks.tree_size (code);
675 }
676
677 case tcc_exceptional: /* something random, like an identifier. */
678 switch (code)
679 {
680 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
681 case TREE_LIST: return sizeof (struct tree_list);
682
683 case ERROR_MARK:
684 case PLACEHOLDER_EXPR: return sizeof (struct tree_common);
685
686 case TREE_VEC:
687 case OMP_CLAUSE: gcc_unreachable ();
688
689 case SSA_NAME: return sizeof (struct tree_ssa_name);
690
691 case STATEMENT_LIST: return sizeof (struct tree_statement_list);
692 case BLOCK: return sizeof (struct tree_block);
693 case CONSTRUCTOR: return sizeof (struct tree_constructor);
694 case OPTIMIZATION_NODE: return sizeof (struct tree_optimization_option);
695 case TARGET_OPTION_NODE: return sizeof (struct tree_target_option);
696
697 default:
698 return lang_hooks.tree_size (code);
699 }
700
701 default:
702 gcc_unreachable ();
703 }
704 }
705
706 /* Compute the number of bytes occupied by NODE. This routine only
707 looks at TREE_CODE, except for those nodes that have variable sizes. */
708 size_t
709 tree_size (const_tree node)
710 {
711 const enum tree_code code = TREE_CODE (node);
712 switch (code)
713 {
714 case TREE_BINFO:
715 return (offsetof (struct tree_binfo, base_binfos)
716 + vec<tree, va_gc>
717 ::embedded_size (BINFO_N_BASE_BINFOS (node)));
718
719 case TREE_VEC:
720 return (sizeof (struct tree_vec)
721 + (TREE_VEC_LENGTH (node) - 1) * sizeof (tree));
722
723 case VECTOR_CST:
724 return (sizeof (struct tree_vector)
725 + (TYPE_VECTOR_SUBPARTS (TREE_TYPE (node)) - 1) * sizeof (tree));
726
727 case STRING_CST:
728 return TREE_STRING_LENGTH (node) + offsetof (struct tree_string, str) + 1;
729
730 case OMP_CLAUSE:
731 return (sizeof (struct tree_omp_clause)
732 + (omp_clause_num_ops[OMP_CLAUSE_CODE (node)] - 1)
733 * sizeof (tree));
734
735 default:
736 if (TREE_CODE_CLASS (code) == tcc_vl_exp)
737 return (sizeof (struct tree_exp)
738 + (VL_EXP_OPERAND_LENGTH (node) - 1) * sizeof (tree));
739 else
740 return tree_code_size (code);
741 }
742 }
743
744 /* Record interesting allocation statistics for a tree node with CODE
745 and LENGTH. */
746
747 static void
748 record_node_allocation_statistics (enum tree_code code ATTRIBUTE_UNUSED,
749 size_t length ATTRIBUTE_UNUSED)
750 {
751 enum tree_code_class type = TREE_CODE_CLASS (code);
752 tree_node_kind kind;
753
754 if (!GATHER_STATISTICS)
755 return;
756
757 switch (type)
758 {
759 case tcc_declaration: /* A decl node */
760 kind = d_kind;
761 break;
762
763 case tcc_type: /* a type node */
764 kind = t_kind;
765 break;
766
767 case tcc_statement: /* an expression with side effects */
768 kind = s_kind;
769 break;
770
771 case tcc_reference: /* a reference */
772 kind = r_kind;
773 break;
774
775 case tcc_expression: /* an expression */
776 case tcc_comparison: /* a comparison expression */
777 case tcc_unary: /* a unary arithmetic expression */
778 case tcc_binary: /* a binary arithmetic expression */
779 kind = e_kind;
780 break;
781
782 case tcc_constant: /* a constant */
783 kind = c_kind;
784 break;
785
786 case tcc_exceptional: /* something random, like an identifier. */
787 switch (code)
788 {
789 case IDENTIFIER_NODE:
790 kind = id_kind;
791 break;
792
793 case TREE_VEC:
794 kind = vec_kind;
795 break;
796
797 case TREE_BINFO:
798 kind = binfo_kind;
799 break;
800
801 case SSA_NAME:
802 kind = ssa_name_kind;
803 break;
804
805 case BLOCK:
806 kind = b_kind;
807 break;
808
809 case CONSTRUCTOR:
810 kind = constr_kind;
811 break;
812
813 case OMP_CLAUSE:
814 kind = omp_clause_kind;
815 break;
816
817 default:
818 kind = x_kind;
819 break;
820 }
821 break;
822
823 case tcc_vl_exp:
824 kind = e_kind;
825 break;
826
827 default:
828 gcc_unreachable ();
829 }
830
831 tree_code_counts[(int) code]++;
832 tree_node_counts[(int) kind]++;
833 tree_node_sizes[(int) kind] += length;
834 }
835
836 /* Allocate and return a new UID from the DECL_UID namespace. */
837
838 int
839 allocate_decl_uid (void)
840 {
841 return next_decl_uid++;
842 }
843
844 /* Return a newly allocated node of code CODE. For decl and type
845 nodes, some other fields are initialized. The rest of the node is
846 initialized to zero. This function cannot be used for TREE_VEC or
847 OMP_CLAUSE nodes, which is enforced by asserts in tree_code_size.
848
849 Achoo! I got a code in the node. */
850
851 tree
852 make_node_stat (enum tree_code code MEM_STAT_DECL)
853 {
854 tree t;
855 enum tree_code_class type = TREE_CODE_CLASS (code);
856 size_t length = tree_code_size (code);
857
858 record_node_allocation_statistics (code, length);
859
860 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
861 TREE_SET_CODE (t, code);
862
863 switch (type)
864 {
865 case tcc_statement:
866 TREE_SIDE_EFFECTS (t) = 1;
867 break;
868
869 case tcc_declaration:
870 if (CODE_CONTAINS_STRUCT (code, TS_DECL_COMMON))
871 {
872 if (code == FUNCTION_DECL)
873 {
874 DECL_ALIGN (t) = FUNCTION_BOUNDARY;
875 DECL_MODE (t) = FUNCTION_MODE;
876 }
877 else
878 DECL_ALIGN (t) = 1;
879 }
880 DECL_SOURCE_LOCATION (t) = input_location;
881 if (TREE_CODE (t) == DEBUG_EXPR_DECL)
882 DECL_UID (t) = --next_debug_decl_uid;
883 else
884 {
885 DECL_UID (t) = allocate_decl_uid ();
886 SET_DECL_PT_UID (t, -1);
887 }
888 if (TREE_CODE (t) == LABEL_DECL)
889 LABEL_DECL_UID (t) = -1;
890
891 break;
892
893 case tcc_type:
894 TYPE_UID (t) = next_type_uid++;
895 TYPE_ALIGN (t) = BITS_PER_UNIT;
896 TYPE_USER_ALIGN (t) = 0;
897 TYPE_MAIN_VARIANT (t) = t;
898 TYPE_CANONICAL (t) = t;
899
900 /* Default to no attributes for type, but let target change that. */
901 TYPE_ATTRIBUTES (t) = NULL_TREE;
902 targetm.set_default_type_attributes (t);
903
904 /* We have not yet computed the alias set for this type. */
905 TYPE_ALIAS_SET (t) = -1;
906 break;
907
908 case tcc_constant:
909 TREE_CONSTANT (t) = 1;
910 break;
911
912 case tcc_expression:
913 switch (code)
914 {
915 case INIT_EXPR:
916 case MODIFY_EXPR:
917 case VA_ARG_EXPR:
918 case PREDECREMENT_EXPR:
919 case PREINCREMENT_EXPR:
920 case POSTDECREMENT_EXPR:
921 case POSTINCREMENT_EXPR:
922 /* All of these have side-effects, no matter what their
923 operands are. */
924 TREE_SIDE_EFFECTS (t) = 1;
925 break;
926
927 default:
928 break;
929 }
930 break;
931
932 default:
933 /* Other classes need no special treatment. */
934 break;
935 }
936
937 return t;
938 }
939 \f
940 /* Return a new node with the same contents as NODE except that its
941 TREE_CHAIN, if it has one, is zero and it has a fresh uid. */
942
943 tree
944 copy_node_stat (tree node MEM_STAT_DECL)
945 {
946 tree t;
947 enum tree_code code = TREE_CODE (node);
948 size_t length;
949
950 gcc_assert (code != STATEMENT_LIST);
951
952 length = tree_size (node);
953 record_node_allocation_statistics (code, length);
954 t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
955 memcpy (t, node, length);
956
957 if (CODE_CONTAINS_STRUCT (code, TS_COMMON))
958 TREE_CHAIN (t) = 0;
959 TREE_ASM_WRITTEN (t) = 0;
960 TREE_VISITED (t) = 0;
961
962 if (TREE_CODE_CLASS (code) == tcc_declaration)
963 {
964 if (code == DEBUG_EXPR_DECL)
965 DECL_UID (t) = --next_debug_decl_uid;
966 else
967 {
968 DECL_UID (t) = allocate_decl_uid ();
969 if (DECL_PT_UID_SET_P (node))
970 SET_DECL_PT_UID (t, DECL_PT_UID (node));
971 }
972 if ((TREE_CODE (node) == PARM_DECL || TREE_CODE (node) == VAR_DECL)
973 && DECL_HAS_VALUE_EXPR_P (node))
974 {
975 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (node));
976 DECL_HAS_VALUE_EXPR_P (t) = 1;
977 }
978 /* DECL_DEBUG_EXPR is copied explicitely by callers. */
979 if (TREE_CODE (node) == VAR_DECL)
980 DECL_HAS_DEBUG_EXPR_P (t) = 0;
981 if (TREE_CODE (node) == VAR_DECL && DECL_HAS_INIT_PRIORITY_P (node))
982 {
983 SET_DECL_INIT_PRIORITY (t, DECL_INIT_PRIORITY (node));
984 DECL_HAS_INIT_PRIORITY_P (t) = 1;
985 }
986 if (TREE_CODE (node) == FUNCTION_DECL)
987 DECL_STRUCT_FUNCTION (t) = NULL;
988 }
989 else if (TREE_CODE_CLASS (code) == tcc_type)
990 {
991 TYPE_UID (t) = next_type_uid++;
992 /* The following is so that the debug code for
993 the copy is different from the original type.
994 The two statements usually duplicate each other
995 (because they clear fields of the same union),
996 but the optimizer should catch that. */
997 TYPE_SYMTAB_POINTER (t) = 0;
998 TYPE_SYMTAB_ADDRESS (t) = 0;
999
1000 /* Do not copy the values cache. */
1001 if (TYPE_CACHED_VALUES_P(t))
1002 {
1003 TYPE_CACHED_VALUES_P (t) = 0;
1004 TYPE_CACHED_VALUES (t) = NULL_TREE;
1005 }
1006 }
1007
1008 return t;
1009 }
1010
1011 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
1012 For example, this can copy a list made of TREE_LIST nodes. */
1013
1014 tree
1015 copy_list (tree list)
1016 {
1017 tree head;
1018 tree prev, next;
1019
1020 if (list == 0)
1021 return 0;
1022
1023 head = prev = copy_node (list);
1024 next = TREE_CHAIN (list);
1025 while (next)
1026 {
1027 TREE_CHAIN (prev) = copy_node (next);
1028 prev = TREE_CHAIN (prev);
1029 next = TREE_CHAIN (next);
1030 }
1031 return head;
1032 }
1033
1034 \f
1035 /* Create an INT_CST node with a LOW value sign extended to TYPE. */
1036
1037 tree
1038 build_int_cst (tree type, HOST_WIDE_INT low)
1039 {
1040 /* Support legacy code. */
1041 if (!type)
1042 type = integer_type_node;
1043
1044 return double_int_to_tree (type, double_int::from_shwi (low));
1045 }
1046
1047 /* Create an INT_CST node with a LOW value sign extended to TYPE. */
1048
1049 tree
1050 build_int_cst_type (tree type, HOST_WIDE_INT low)
1051 {
1052 gcc_assert (type);
1053
1054 return double_int_to_tree (type, double_int::from_shwi (low));
1055 }
1056
1057 /* Constructs tree in type TYPE from with value given by CST. Signedness
1058 of CST is assumed to be the same as the signedness of TYPE. */
1059
1060 tree
1061 double_int_to_tree (tree type, double_int cst)
1062 {
1063 bool sign_extended_type = !TYPE_UNSIGNED (type);
1064
1065 cst = cst.ext (TYPE_PRECISION (type), !sign_extended_type);
1066
1067 return build_int_cst_wide (type, cst.low, cst.high);
1068 }
1069
1070 /* Returns true if CST fits into range of TYPE. Signedness of CST is assumed
1071 to be the same as the signedness of TYPE. */
1072
1073 bool
1074 double_int_fits_to_tree_p (const_tree type, double_int cst)
1075 {
1076 bool sign_extended_type = !TYPE_UNSIGNED (type);
1077
1078 double_int ext
1079 = cst.ext (TYPE_PRECISION (type), !sign_extended_type);
1080
1081 return cst == ext;
1082 }
1083
1084 /* We force the double_int CST to the range of the type TYPE by sign or
1085 zero extending it. OVERFLOWABLE indicates if we are interested in
1086 overflow of the value, when >0 we are only interested in signed
1087 overflow, for <0 we are interested in any overflow. OVERFLOWED
1088 indicates whether overflow has already occurred. CONST_OVERFLOWED
1089 indicates whether constant overflow has already occurred. We force
1090 T's value to be within range of T's type (by setting to 0 or 1 all
1091 the bits outside the type's range). We set TREE_OVERFLOWED if,
1092 OVERFLOWED is nonzero,
1093 or OVERFLOWABLE is >0 and signed overflow occurs
1094 or OVERFLOWABLE is <0 and any overflow occurs
1095 We return a new tree node for the extended double_int. The node
1096 is shared if no overflow flags are set. */
1097
1098
1099 tree
1100 force_fit_type_double (tree type, double_int cst, int overflowable,
1101 bool overflowed)
1102 {
1103 bool sign_extended_type = !TYPE_UNSIGNED (type);
1104
1105 /* If we need to set overflow flags, return a new unshared node. */
1106 if (overflowed || !double_int_fits_to_tree_p(type, cst))
1107 {
1108 if (overflowed
1109 || overflowable < 0
1110 || (overflowable > 0 && sign_extended_type))
1111 {
1112 tree t = make_node (INTEGER_CST);
1113 TREE_INT_CST (t)
1114 = cst.ext (TYPE_PRECISION (type), !sign_extended_type);
1115 TREE_TYPE (t) = type;
1116 TREE_OVERFLOW (t) = 1;
1117 return t;
1118 }
1119 }
1120
1121 /* Else build a shared node. */
1122 return double_int_to_tree (type, cst);
1123 }
1124
1125 /* These are the hash table functions for the hash table of INTEGER_CST
1126 nodes of a sizetype. */
1127
1128 /* Return the hash code code X, an INTEGER_CST. */
1129
1130 static hashval_t
1131 int_cst_hash_hash (const void *x)
1132 {
1133 const_tree const t = (const_tree) x;
1134
1135 return (TREE_INT_CST_HIGH (t) ^ TREE_INT_CST_LOW (t)
1136 ^ htab_hash_pointer (TREE_TYPE (t)));
1137 }
1138
1139 /* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
1140 is the same as that given by *Y, which is the same. */
1141
1142 static int
1143 int_cst_hash_eq (const void *x, const void *y)
1144 {
1145 const_tree const xt = (const_tree) x;
1146 const_tree const yt = (const_tree) y;
1147
1148 return (TREE_TYPE (xt) == TREE_TYPE (yt)
1149 && TREE_INT_CST_HIGH (xt) == TREE_INT_CST_HIGH (yt)
1150 && TREE_INT_CST_LOW (xt) == TREE_INT_CST_LOW (yt));
1151 }
1152
1153 /* Create an INT_CST node of TYPE and value HI:LOW.
1154 The returned node is always shared. For small integers we use a
1155 per-type vector cache, for larger ones we use a single hash table. */
1156
1157 tree
1158 build_int_cst_wide (tree type, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
1159 {
1160 tree t;
1161 int ix = -1;
1162 int limit = 0;
1163
1164 gcc_assert (type);
1165
1166 switch (TREE_CODE (type))
1167 {
1168 case NULLPTR_TYPE:
1169 gcc_assert (hi == 0 && low == 0);
1170 /* Fallthru. */
1171
1172 case POINTER_TYPE:
1173 case REFERENCE_TYPE:
1174 /* Cache NULL pointer. */
1175 if (!hi && !low)
1176 {
1177 limit = 1;
1178 ix = 0;
1179 }
1180 break;
1181
1182 case BOOLEAN_TYPE:
1183 /* Cache false or true. */
1184 limit = 2;
1185 if (!hi && low < 2)
1186 ix = low;
1187 break;
1188
1189 case INTEGER_TYPE:
1190 case OFFSET_TYPE:
1191 if (TYPE_UNSIGNED (type))
1192 {
1193 /* Cache 0..N */
1194 limit = INTEGER_SHARE_LIMIT;
1195 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
1196 ix = low;
1197 }
1198 else
1199 {
1200 /* Cache -1..N */
1201 limit = INTEGER_SHARE_LIMIT + 1;
1202 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
1203 ix = low + 1;
1204 else if (hi == -1 && low == -(unsigned HOST_WIDE_INT)1)
1205 ix = 0;
1206 }
1207 break;
1208
1209 case ENUMERAL_TYPE:
1210 break;
1211
1212 default:
1213 gcc_unreachable ();
1214 }
1215
1216 if (ix >= 0)
1217 {
1218 /* Look for it in the type's vector of small shared ints. */
1219 if (!TYPE_CACHED_VALUES_P (type))
1220 {
1221 TYPE_CACHED_VALUES_P (type) = 1;
1222 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
1223 }
1224
1225 t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix);
1226 if (t)
1227 {
1228 /* Make sure no one is clobbering the shared constant. */
1229 gcc_assert (TREE_TYPE (t) == type);
1230 gcc_assert (TREE_INT_CST_LOW (t) == low);
1231 gcc_assert (TREE_INT_CST_HIGH (t) == hi);
1232 }
1233 else
1234 {
1235 /* Create a new shared int. */
1236 t = make_node (INTEGER_CST);
1237
1238 TREE_INT_CST_LOW (t) = low;
1239 TREE_INT_CST_HIGH (t) = hi;
1240 TREE_TYPE (t) = type;
1241
1242 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
1243 }
1244 }
1245 else
1246 {
1247 /* Use the cache of larger shared ints. */
1248 void **slot;
1249
1250 TREE_INT_CST_LOW (int_cst_node) = low;
1251 TREE_INT_CST_HIGH (int_cst_node) = hi;
1252 TREE_TYPE (int_cst_node) = type;
1253
1254 slot = htab_find_slot (int_cst_hash_table, int_cst_node, INSERT);
1255 t = (tree) *slot;
1256 if (!t)
1257 {
1258 /* Insert this one into the hash table. */
1259 t = int_cst_node;
1260 *slot = t;
1261 /* Make a new node for next time round. */
1262 int_cst_node = make_node (INTEGER_CST);
1263 }
1264 }
1265
1266 return t;
1267 }
1268
1269 /* Builds an integer constant in TYPE such that lowest BITS bits are ones
1270 and the rest are zeros. */
1271
1272 tree
1273 build_low_bits_mask (tree type, unsigned bits)
1274 {
1275 double_int mask;
1276
1277 gcc_assert (bits <= TYPE_PRECISION (type));
1278
1279 if (bits == TYPE_PRECISION (type)
1280 && !TYPE_UNSIGNED (type))
1281 /* Sign extended all-ones mask. */
1282 mask = double_int_minus_one;
1283 else
1284 mask = double_int::mask (bits);
1285
1286 return build_int_cst_wide (type, mask.low, mask.high);
1287 }
1288
1289 /* Checks that X is integer constant that can be expressed in (unsigned)
1290 HOST_WIDE_INT without loss of precision. */
1291
1292 bool
1293 cst_and_fits_in_hwi (const_tree x)
1294 {
1295 if (TREE_CODE (x) != INTEGER_CST)
1296 return false;
1297
1298 if (TYPE_PRECISION (TREE_TYPE (x)) > HOST_BITS_PER_WIDE_INT)
1299 return false;
1300
1301 return (TREE_INT_CST_HIGH (x) == 0
1302 || TREE_INT_CST_HIGH (x) == -1);
1303 }
1304
1305 /* Build a newly constructed TREE_VEC node of length LEN. */
1306
1307 tree
1308 make_vector_stat (unsigned len MEM_STAT_DECL)
1309 {
1310 tree t;
1311 unsigned length = (len - 1) * sizeof (tree) + sizeof (struct tree_vector);
1312
1313 record_node_allocation_statistics (VECTOR_CST, length);
1314
1315 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
1316
1317 TREE_SET_CODE (t, VECTOR_CST);
1318 TREE_CONSTANT (t) = 1;
1319
1320 return t;
1321 }
1322
1323 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1324 are in a list pointed to by VALS. */
1325
1326 tree
1327 build_vector_stat (tree type, tree *vals MEM_STAT_DECL)
1328 {
1329 int over = 0;
1330 unsigned cnt = 0;
1331 tree v = make_vector (TYPE_VECTOR_SUBPARTS (type));
1332 TREE_TYPE (v) = type;
1333
1334 /* Iterate through elements and check for overflow. */
1335 for (cnt = 0; cnt < TYPE_VECTOR_SUBPARTS (type); ++cnt)
1336 {
1337 tree value = vals[cnt];
1338
1339 VECTOR_CST_ELT (v, cnt) = value;
1340
1341 /* Don't crash if we get an address constant. */
1342 if (!CONSTANT_CLASS_P (value))
1343 continue;
1344
1345 over |= TREE_OVERFLOW (value);
1346 }
1347
1348 TREE_OVERFLOW (v) = over;
1349 return v;
1350 }
1351
1352 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1353 are extracted from V, a vector of CONSTRUCTOR_ELT. */
1354
1355 tree
1356 build_vector_from_ctor (tree type, vec<constructor_elt, va_gc> *v)
1357 {
1358 tree *vec = XALLOCAVEC (tree, TYPE_VECTOR_SUBPARTS (type));
1359 unsigned HOST_WIDE_INT idx;
1360 tree value;
1361
1362 FOR_EACH_CONSTRUCTOR_VALUE (v, idx, value)
1363 vec[idx] = value;
1364 for (; idx < TYPE_VECTOR_SUBPARTS (type); ++idx)
1365 vec[idx] = build_zero_cst (TREE_TYPE (type));
1366
1367 return build_vector (type, vec);
1368 }
1369
1370 /* Build a vector of type VECTYPE where all the elements are SCs. */
1371 tree
1372 build_vector_from_val (tree vectype, tree sc)
1373 {
1374 int i, nunits = TYPE_VECTOR_SUBPARTS (vectype);
1375
1376 if (sc == error_mark_node)
1377 return sc;
1378
1379 /* Verify that the vector type is suitable for SC. Note that there
1380 is some inconsistency in the type-system with respect to restrict
1381 qualifications of pointers. Vector types always have a main-variant
1382 element type and the qualification is applied to the vector-type.
1383 So TREE_TYPE (vector-type) does not return a properly qualified
1384 vector element-type. */
1385 gcc_checking_assert (types_compatible_p (TYPE_MAIN_VARIANT (TREE_TYPE (sc)),
1386 TREE_TYPE (vectype)));
1387
1388 if (CONSTANT_CLASS_P (sc))
1389 {
1390 tree *v = XALLOCAVEC (tree, nunits);
1391 for (i = 0; i < nunits; ++i)
1392 v[i] = sc;
1393 return build_vector (vectype, v);
1394 }
1395 else
1396 {
1397 vec<constructor_elt, va_gc> *v;
1398 vec_alloc (v, nunits);
1399 for (i = 0; i < nunits; ++i)
1400 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, sc);
1401 return build_constructor (vectype, v);
1402 }
1403 }
1404
1405 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1406 are in the vec pointed to by VALS. */
1407 tree
1408 build_constructor (tree type, vec<constructor_elt, va_gc> *vals)
1409 {
1410 tree c = make_node (CONSTRUCTOR);
1411 unsigned int i;
1412 constructor_elt *elt;
1413 bool constant_p = true;
1414 bool side_effects_p = false;
1415
1416 TREE_TYPE (c) = type;
1417 CONSTRUCTOR_ELTS (c) = vals;
1418
1419 FOR_EACH_VEC_SAFE_ELT (vals, i, elt)
1420 {
1421 /* Mostly ctors will have elts that don't have side-effects, so
1422 the usual case is to scan all the elements. Hence a single
1423 loop for both const and side effects, rather than one loop
1424 each (with early outs). */
1425 if (!TREE_CONSTANT (elt->value))
1426 constant_p = false;
1427 if (TREE_SIDE_EFFECTS (elt->value))
1428 side_effects_p = true;
1429 }
1430
1431 TREE_SIDE_EFFECTS (c) = side_effects_p;
1432 TREE_CONSTANT (c) = constant_p;
1433
1434 return c;
1435 }
1436
1437 /* Build a CONSTRUCTOR node made of a single initializer, with the specified
1438 INDEX and VALUE. */
1439 tree
1440 build_constructor_single (tree type, tree index, tree value)
1441 {
1442 vec<constructor_elt, va_gc> *v;
1443 constructor_elt elt = {index, value};
1444
1445 vec_alloc (v, 1);
1446 v->quick_push (elt);
1447
1448 return build_constructor (type, v);
1449 }
1450
1451
1452 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1453 are in a list pointed to by VALS. */
1454 tree
1455 build_constructor_from_list (tree type, tree vals)
1456 {
1457 tree t;
1458 vec<constructor_elt, va_gc> *v = NULL;
1459
1460 if (vals)
1461 {
1462 vec_alloc (v, list_length (vals));
1463 for (t = vals; t; t = TREE_CHAIN (t))
1464 CONSTRUCTOR_APPEND_ELT (v, TREE_PURPOSE (t), TREE_VALUE (t));
1465 }
1466
1467 return build_constructor (type, v);
1468 }
1469
1470 /* Return a new FIXED_CST node whose type is TYPE and value is F. */
1471
1472 tree
1473 build_fixed (tree type, FIXED_VALUE_TYPE f)
1474 {
1475 tree v;
1476 FIXED_VALUE_TYPE *fp;
1477
1478 v = make_node (FIXED_CST);
1479 fp = ggc_alloc_fixed_value ();
1480 memcpy (fp, &f, sizeof (FIXED_VALUE_TYPE));
1481
1482 TREE_TYPE (v) = type;
1483 TREE_FIXED_CST_PTR (v) = fp;
1484 return v;
1485 }
1486
1487 /* Return a new REAL_CST node whose type is TYPE and value is D. */
1488
1489 tree
1490 build_real (tree type, REAL_VALUE_TYPE d)
1491 {
1492 tree v;
1493 REAL_VALUE_TYPE *dp;
1494 int overflow = 0;
1495
1496 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
1497 Consider doing it via real_convert now. */
1498
1499 v = make_node (REAL_CST);
1500 dp = ggc_alloc_real_value ();
1501 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
1502
1503 TREE_TYPE (v) = type;
1504 TREE_REAL_CST_PTR (v) = dp;
1505 TREE_OVERFLOW (v) = overflow;
1506 return v;
1507 }
1508
1509 /* Return a new REAL_CST node whose type is TYPE
1510 and whose value is the integer value of the INTEGER_CST node I. */
1511
1512 REAL_VALUE_TYPE
1513 real_value_from_int_cst (const_tree type, const_tree i)
1514 {
1515 REAL_VALUE_TYPE d;
1516
1517 /* Clear all bits of the real value type so that we can later do
1518 bitwise comparisons to see if two values are the same. */
1519 memset (&d, 0, sizeof d);
1520
1521 real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode,
1522 TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
1523 TYPE_UNSIGNED (TREE_TYPE (i)));
1524 return d;
1525 }
1526
1527 /* Given a tree representing an integer constant I, return a tree
1528 representing the same value as a floating-point constant of type TYPE. */
1529
1530 tree
1531 build_real_from_int_cst (tree type, const_tree i)
1532 {
1533 tree v;
1534 int overflow = TREE_OVERFLOW (i);
1535
1536 v = build_real (type, real_value_from_int_cst (type, i));
1537
1538 TREE_OVERFLOW (v) |= overflow;
1539 return v;
1540 }
1541
1542 /* Return a newly constructed STRING_CST node whose value is
1543 the LEN characters at STR.
1544 Note that for a C string literal, LEN should include the trailing NUL.
1545 The TREE_TYPE is not initialized. */
1546
1547 tree
1548 build_string (int len, const char *str)
1549 {
1550 tree s;
1551 size_t length;
1552
1553 /* Do not waste bytes provided by padding of struct tree_string. */
1554 length = len + offsetof (struct tree_string, str) + 1;
1555
1556 record_node_allocation_statistics (STRING_CST, length);
1557
1558 s = ggc_alloc_tree_node (length);
1559
1560 memset (s, 0, sizeof (struct tree_typed));
1561 TREE_SET_CODE (s, STRING_CST);
1562 TREE_CONSTANT (s) = 1;
1563 TREE_STRING_LENGTH (s) = len;
1564 memcpy (s->string.str, str, len);
1565 s->string.str[len] = '\0';
1566
1567 return s;
1568 }
1569
1570 /* Return a newly constructed COMPLEX_CST node whose value is
1571 specified by the real and imaginary parts REAL and IMAG.
1572 Both REAL and IMAG should be constant nodes. TYPE, if specified,
1573 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
1574
1575 tree
1576 build_complex (tree type, tree real, tree imag)
1577 {
1578 tree t = make_node (COMPLEX_CST);
1579
1580 TREE_REALPART (t) = real;
1581 TREE_IMAGPART (t) = imag;
1582 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
1583 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
1584 return t;
1585 }
1586
1587 /* Return a constant of arithmetic type TYPE which is the
1588 multiplicative identity of the set TYPE. */
1589
1590 tree
1591 build_one_cst (tree type)
1592 {
1593 switch (TREE_CODE (type))
1594 {
1595 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1596 case POINTER_TYPE: case REFERENCE_TYPE:
1597 case OFFSET_TYPE:
1598 return build_int_cst (type, 1);
1599
1600 case REAL_TYPE:
1601 return build_real (type, dconst1);
1602
1603 case FIXED_POINT_TYPE:
1604 /* We can only generate 1 for accum types. */
1605 gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
1606 return build_fixed (type, FCONST1(TYPE_MODE (type)));
1607
1608 case VECTOR_TYPE:
1609 {
1610 tree scalar = build_one_cst (TREE_TYPE (type));
1611
1612 return build_vector_from_val (type, scalar);
1613 }
1614
1615 case COMPLEX_TYPE:
1616 return build_complex (type,
1617 build_one_cst (TREE_TYPE (type)),
1618 build_zero_cst (TREE_TYPE (type)));
1619
1620 default:
1621 gcc_unreachable ();
1622 }
1623 }
1624
1625 /* Build 0 constant of type TYPE. This is used by constructor folding
1626 and thus the constant should be represented in memory by
1627 zero(es). */
1628
1629 tree
1630 build_zero_cst (tree type)
1631 {
1632 switch (TREE_CODE (type))
1633 {
1634 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1635 case POINTER_TYPE: case REFERENCE_TYPE:
1636 case OFFSET_TYPE: case NULLPTR_TYPE:
1637 return build_int_cst (type, 0);
1638
1639 case REAL_TYPE:
1640 return build_real (type, dconst0);
1641
1642 case FIXED_POINT_TYPE:
1643 return build_fixed (type, FCONST0 (TYPE_MODE (type)));
1644
1645 case VECTOR_TYPE:
1646 {
1647 tree scalar = build_zero_cst (TREE_TYPE (type));
1648
1649 return build_vector_from_val (type, scalar);
1650 }
1651
1652 case COMPLEX_TYPE:
1653 {
1654 tree zero = build_zero_cst (TREE_TYPE (type));
1655
1656 return build_complex (type, zero, zero);
1657 }
1658
1659 default:
1660 if (!AGGREGATE_TYPE_P (type))
1661 return fold_convert (type, integer_zero_node);
1662 return build_constructor (type, NULL);
1663 }
1664 }
1665
1666
1667 /* Build a BINFO with LEN language slots. */
1668
1669 tree
1670 make_tree_binfo_stat (unsigned base_binfos MEM_STAT_DECL)
1671 {
1672 tree t;
1673 size_t length = (offsetof (struct tree_binfo, base_binfos)
1674 + vec<tree, va_gc>::embedded_size (base_binfos));
1675
1676 record_node_allocation_statistics (TREE_BINFO, length);
1677
1678 t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
1679
1680 memset (t, 0, offsetof (struct tree_binfo, base_binfos));
1681
1682 TREE_SET_CODE (t, TREE_BINFO);
1683
1684 BINFO_BASE_BINFOS (t)->embedded_init (base_binfos);
1685
1686 return t;
1687 }
1688
1689 /* Create a CASE_LABEL_EXPR tree node and return it. */
1690
1691 tree
1692 build_case_label (tree low_value, tree high_value, tree label_decl)
1693 {
1694 tree t = make_node (CASE_LABEL_EXPR);
1695
1696 TREE_TYPE (t) = void_type_node;
1697 SET_EXPR_LOCATION (t, DECL_SOURCE_LOCATION (label_decl));
1698
1699 CASE_LOW (t) = low_value;
1700 CASE_HIGH (t) = high_value;
1701 CASE_LABEL (t) = label_decl;
1702 CASE_CHAIN (t) = NULL_TREE;
1703
1704 return t;
1705 }
1706
1707 /* Build a newly constructed TREE_VEC node of length LEN. */
1708
1709 tree
1710 make_tree_vec_stat (int len MEM_STAT_DECL)
1711 {
1712 tree t;
1713 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
1714
1715 record_node_allocation_statistics (TREE_VEC, length);
1716
1717 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
1718
1719 TREE_SET_CODE (t, TREE_VEC);
1720 TREE_VEC_LENGTH (t) = len;
1721
1722 return t;
1723 }
1724 \f
1725 /* Return 1 if EXPR is the integer constant zero or a complex constant
1726 of zero. */
1727
1728 int
1729 integer_zerop (const_tree expr)
1730 {
1731 STRIP_NOPS (expr);
1732
1733 switch (TREE_CODE (expr))
1734 {
1735 case INTEGER_CST:
1736 return (TREE_INT_CST_LOW (expr) == 0
1737 && TREE_INT_CST_HIGH (expr) == 0);
1738 case COMPLEX_CST:
1739 return (integer_zerop (TREE_REALPART (expr))
1740 && integer_zerop (TREE_IMAGPART (expr)));
1741 case VECTOR_CST:
1742 {
1743 unsigned i;
1744 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
1745 if (!integer_zerop (VECTOR_CST_ELT (expr, i)))
1746 return false;
1747 return true;
1748 }
1749 default:
1750 return false;
1751 }
1752 }
1753
1754 /* Return 1 if EXPR is the integer constant one or the corresponding
1755 complex constant. */
1756
1757 int
1758 integer_onep (const_tree expr)
1759 {
1760 STRIP_NOPS (expr);
1761
1762 switch (TREE_CODE (expr))
1763 {
1764 case INTEGER_CST:
1765 return (TREE_INT_CST_LOW (expr) == 1
1766 && TREE_INT_CST_HIGH (expr) == 0);
1767 case COMPLEX_CST:
1768 return (integer_onep (TREE_REALPART (expr))
1769 && integer_zerop (TREE_IMAGPART (expr)));
1770 case VECTOR_CST:
1771 {
1772 unsigned i;
1773 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
1774 if (!integer_onep (VECTOR_CST_ELT (expr, i)))
1775 return false;
1776 return true;
1777 }
1778 default:
1779 return false;
1780 }
1781 }
1782
1783 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
1784 it contains, or a complex or vector whose subparts are such integers. */
1785
1786 int
1787 integer_all_onesp (const_tree expr)
1788 {
1789 int prec;
1790 int uns;
1791
1792 STRIP_NOPS (expr);
1793
1794 if (TREE_CODE (expr) == COMPLEX_CST
1795 && integer_all_onesp (TREE_REALPART (expr))
1796 && integer_all_onesp (TREE_IMAGPART (expr)))
1797 return 1;
1798
1799 else if (TREE_CODE (expr) == VECTOR_CST)
1800 {
1801 unsigned i;
1802 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
1803 if (!integer_all_onesp (VECTOR_CST_ELT (expr, i)))
1804 return 0;
1805 return 1;
1806 }
1807
1808 else if (TREE_CODE (expr) != INTEGER_CST)
1809 return 0;
1810
1811 uns = TYPE_UNSIGNED (TREE_TYPE (expr));
1812 if (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1813 && TREE_INT_CST_HIGH (expr) == -1)
1814 return 1;
1815 if (!uns)
1816 return 0;
1817
1818 prec = TYPE_PRECISION (TREE_TYPE (expr));
1819 if (prec >= HOST_BITS_PER_WIDE_INT)
1820 {
1821 HOST_WIDE_INT high_value;
1822 int shift_amount;
1823
1824 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
1825
1826 /* Can not handle precisions greater than twice the host int size. */
1827 gcc_assert (shift_amount <= HOST_BITS_PER_WIDE_INT);
1828 if (shift_amount == HOST_BITS_PER_WIDE_INT)
1829 /* Shifting by the host word size is undefined according to the ANSI
1830 standard, so we must handle this as a special case. */
1831 high_value = -1;
1832 else
1833 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
1834
1835 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1836 && TREE_INT_CST_HIGH (expr) == high_value);
1837 }
1838 else
1839 return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
1840 }
1841
1842 /* Return 1 if EXPR is the integer constant minus one. */
1843
1844 int
1845 integer_minus_onep (const_tree expr)
1846 {
1847 STRIP_NOPS (expr);
1848
1849 if (TREE_CODE (expr) == COMPLEX_CST)
1850 return (integer_all_onesp (TREE_REALPART (expr))
1851 && integer_zerop (TREE_IMAGPART (expr)));
1852 else
1853 return integer_all_onesp (expr);
1854 }
1855
1856 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
1857 one bit on). */
1858
1859 int
1860 integer_pow2p (const_tree expr)
1861 {
1862 int prec;
1863 unsigned HOST_WIDE_INT high, low;
1864
1865 STRIP_NOPS (expr);
1866
1867 if (TREE_CODE (expr) == COMPLEX_CST
1868 && integer_pow2p (TREE_REALPART (expr))
1869 && integer_zerop (TREE_IMAGPART (expr)))
1870 return 1;
1871
1872 if (TREE_CODE (expr) != INTEGER_CST)
1873 return 0;
1874
1875 prec = TYPE_PRECISION (TREE_TYPE (expr));
1876 high = TREE_INT_CST_HIGH (expr);
1877 low = TREE_INT_CST_LOW (expr);
1878
1879 /* First clear all bits that are beyond the type's precision in case
1880 we've been sign extended. */
1881
1882 if (prec == HOST_BITS_PER_DOUBLE_INT)
1883 ;
1884 else if (prec > HOST_BITS_PER_WIDE_INT)
1885 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1886 else
1887 {
1888 high = 0;
1889 if (prec < HOST_BITS_PER_WIDE_INT)
1890 low &= ~((HOST_WIDE_INT) (-1) << prec);
1891 }
1892
1893 if (high == 0 && low == 0)
1894 return 0;
1895
1896 return ((high == 0 && (low & (low - 1)) == 0)
1897 || (low == 0 && (high & (high - 1)) == 0));
1898 }
1899
1900 /* Return 1 if EXPR is an integer constant other than zero or a
1901 complex constant other than zero. */
1902
1903 int
1904 integer_nonzerop (const_tree expr)
1905 {
1906 STRIP_NOPS (expr);
1907
1908 return ((TREE_CODE (expr) == INTEGER_CST
1909 && (TREE_INT_CST_LOW (expr) != 0
1910 || TREE_INT_CST_HIGH (expr) != 0))
1911 || (TREE_CODE (expr) == COMPLEX_CST
1912 && (integer_nonzerop (TREE_REALPART (expr))
1913 || integer_nonzerop (TREE_IMAGPART (expr)))));
1914 }
1915
1916 /* Return 1 if EXPR is the fixed-point constant zero. */
1917
1918 int
1919 fixed_zerop (const_tree expr)
1920 {
1921 return (TREE_CODE (expr) == FIXED_CST
1922 && TREE_FIXED_CST (expr).data.is_zero ());
1923 }
1924
1925 /* Return the power of two represented by a tree node known to be a
1926 power of two. */
1927
1928 int
1929 tree_log2 (const_tree expr)
1930 {
1931 int prec;
1932 HOST_WIDE_INT high, low;
1933
1934 STRIP_NOPS (expr);
1935
1936 if (TREE_CODE (expr) == COMPLEX_CST)
1937 return tree_log2 (TREE_REALPART (expr));
1938
1939 prec = TYPE_PRECISION (TREE_TYPE (expr));
1940 high = TREE_INT_CST_HIGH (expr);
1941 low = TREE_INT_CST_LOW (expr);
1942
1943 /* First clear all bits that are beyond the type's precision in case
1944 we've been sign extended. */
1945
1946 if (prec == HOST_BITS_PER_DOUBLE_INT)
1947 ;
1948 else if (prec > HOST_BITS_PER_WIDE_INT)
1949 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1950 else
1951 {
1952 high = 0;
1953 if (prec < HOST_BITS_PER_WIDE_INT)
1954 low &= ~((HOST_WIDE_INT) (-1) << prec);
1955 }
1956
1957 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
1958 : exact_log2 (low));
1959 }
1960
1961 /* Similar, but return the largest integer Y such that 2 ** Y is less
1962 than or equal to EXPR. */
1963
1964 int
1965 tree_floor_log2 (const_tree expr)
1966 {
1967 int prec;
1968 HOST_WIDE_INT high, low;
1969
1970 STRIP_NOPS (expr);
1971
1972 if (TREE_CODE (expr) == COMPLEX_CST)
1973 return tree_log2 (TREE_REALPART (expr));
1974
1975 prec = TYPE_PRECISION (TREE_TYPE (expr));
1976 high = TREE_INT_CST_HIGH (expr);
1977 low = TREE_INT_CST_LOW (expr);
1978
1979 /* First clear all bits that are beyond the type's precision in case
1980 we've been sign extended. Ignore if type's precision hasn't been set
1981 since what we are doing is setting it. */
1982
1983 if (prec == HOST_BITS_PER_DOUBLE_INT || prec == 0)
1984 ;
1985 else if (prec > HOST_BITS_PER_WIDE_INT)
1986 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1987 else
1988 {
1989 high = 0;
1990 if (prec < HOST_BITS_PER_WIDE_INT)
1991 low &= ~((HOST_WIDE_INT) (-1) << prec);
1992 }
1993
1994 return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
1995 : floor_log2 (low));
1996 }
1997
1998 /* Return 1 if EXPR is the real constant zero. Trailing zeroes matter for
1999 decimal float constants, so don't return 1 for them. */
2000
2001 int
2002 real_zerop (const_tree expr)
2003 {
2004 STRIP_NOPS (expr);
2005
2006 switch (TREE_CODE (expr))
2007 {
2008 case REAL_CST:
2009 return REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0)
2010 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2011 case COMPLEX_CST:
2012 return real_zerop (TREE_REALPART (expr))
2013 && real_zerop (TREE_IMAGPART (expr));
2014 case VECTOR_CST:
2015 {
2016 unsigned i;
2017 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
2018 if (!real_zerop (VECTOR_CST_ELT (expr, i)))
2019 return false;
2020 return true;
2021 }
2022 default:
2023 return false;
2024 }
2025 }
2026
2027 /* Return 1 if EXPR is the real constant one in real or complex form.
2028 Trailing zeroes matter for decimal float constants, so don't return
2029 1 for them. */
2030
2031 int
2032 real_onep (const_tree expr)
2033 {
2034 STRIP_NOPS (expr);
2035
2036 switch (TREE_CODE (expr))
2037 {
2038 case REAL_CST:
2039 return REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1)
2040 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2041 case COMPLEX_CST:
2042 return real_onep (TREE_REALPART (expr))
2043 && real_zerop (TREE_IMAGPART (expr));
2044 case VECTOR_CST:
2045 {
2046 unsigned i;
2047 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
2048 if (!real_onep (VECTOR_CST_ELT (expr, i)))
2049 return false;
2050 return true;
2051 }
2052 default:
2053 return false;
2054 }
2055 }
2056
2057 /* Return 1 if EXPR is the real constant two. Trailing zeroes matter
2058 for decimal float constants, so don't return 1 for them. */
2059
2060 int
2061 real_twop (const_tree expr)
2062 {
2063 STRIP_NOPS (expr);
2064
2065 switch (TREE_CODE (expr))
2066 {
2067 case REAL_CST:
2068 return REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2)
2069 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2070 case COMPLEX_CST:
2071 return real_twop (TREE_REALPART (expr))
2072 && real_zerop (TREE_IMAGPART (expr));
2073 case VECTOR_CST:
2074 {
2075 unsigned i;
2076 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
2077 if (!real_twop (VECTOR_CST_ELT (expr, i)))
2078 return false;
2079 return true;
2080 }
2081 default:
2082 return false;
2083 }
2084 }
2085
2086 /* Return 1 if EXPR is the real constant minus one. Trailing zeroes
2087 matter for decimal float constants, so don't return 1 for them. */
2088
2089 int
2090 real_minus_onep (const_tree expr)
2091 {
2092 STRIP_NOPS (expr);
2093
2094 switch (TREE_CODE (expr))
2095 {
2096 case REAL_CST:
2097 return REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconstm1)
2098 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2099 case COMPLEX_CST:
2100 return real_minus_onep (TREE_REALPART (expr))
2101 && real_zerop (TREE_IMAGPART (expr));
2102 case VECTOR_CST:
2103 {
2104 unsigned i;
2105 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
2106 if (!real_minus_onep (VECTOR_CST_ELT (expr, i)))
2107 return false;
2108 return true;
2109 }
2110 default:
2111 return false;
2112 }
2113 }
2114
2115 /* Nonzero if EXP is a constant or a cast of a constant. */
2116
2117 int
2118 really_constant_p (const_tree exp)
2119 {
2120 /* This is not quite the same as STRIP_NOPS. It does more. */
2121 while (CONVERT_EXPR_P (exp)
2122 || TREE_CODE (exp) == NON_LVALUE_EXPR)
2123 exp = TREE_OPERAND (exp, 0);
2124 return TREE_CONSTANT (exp);
2125 }
2126 \f
2127 /* Return first list element whose TREE_VALUE is ELEM.
2128 Return 0 if ELEM is not in LIST. */
2129
2130 tree
2131 value_member (tree elem, tree list)
2132 {
2133 while (list)
2134 {
2135 if (elem == TREE_VALUE (list))
2136 return list;
2137 list = TREE_CHAIN (list);
2138 }
2139 return NULL_TREE;
2140 }
2141
2142 /* Return first list element whose TREE_PURPOSE is ELEM.
2143 Return 0 if ELEM is not in LIST. */
2144
2145 tree
2146 purpose_member (const_tree elem, tree list)
2147 {
2148 while (list)
2149 {
2150 if (elem == TREE_PURPOSE (list))
2151 return list;
2152 list = TREE_CHAIN (list);
2153 }
2154 return NULL_TREE;
2155 }
2156
2157 /* Return true if ELEM is in V. */
2158
2159 bool
2160 vec_member (const_tree elem, vec<tree, va_gc> *v)
2161 {
2162 unsigned ix;
2163 tree t;
2164 FOR_EACH_VEC_SAFE_ELT (v, ix, t)
2165 if (elem == t)
2166 return true;
2167 return false;
2168 }
2169
2170 /* Returns element number IDX (zero-origin) of chain CHAIN, or
2171 NULL_TREE. */
2172
2173 tree
2174 chain_index (int idx, tree chain)
2175 {
2176 for (; chain && idx > 0; --idx)
2177 chain = TREE_CHAIN (chain);
2178 return chain;
2179 }
2180
2181 /* Return nonzero if ELEM is part of the chain CHAIN. */
2182
2183 int
2184 chain_member (const_tree elem, const_tree chain)
2185 {
2186 while (chain)
2187 {
2188 if (elem == chain)
2189 return 1;
2190 chain = DECL_CHAIN (chain);
2191 }
2192
2193 return 0;
2194 }
2195
2196 /* Return the length of a chain of nodes chained through TREE_CHAIN.
2197 We expect a null pointer to mark the end of the chain.
2198 This is the Lisp primitive `length'. */
2199
2200 int
2201 list_length (const_tree t)
2202 {
2203 const_tree p = t;
2204 #ifdef ENABLE_TREE_CHECKING
2205 const_tree q = t;
2206 #endif
2207 int len = 0;
2208
2209 while (p)
2210 {
2211 p = TREE_CHAIN (p);
2212 #ifdef ENABLE_TREE_CHECKING
2213 if (len % 2)
2214 q = TREE_CHAIN (q);
2215 gcc_assert (p != q);
2216 #endif
2217 len++;
2218 }
2219
2220 return len;
2221 }
2222
2223 /* Returns the number of FIELD_DECLs in TYPE. */
2224
2225 int
2226 fields_length (const_tree type)
2227 {
2228 tree t = TYPE_FIELDS (type);
2229 int count = 0;
2230
2231 for (; t; t = DECL_CHAIN (t))
2232 if (TREE_CODE (t) == FIELD_DECL)
2233 ++count;
2234
2235 return count;
2236 }
2237
2238 /* Returns the first FIELD_DECL in the TYPE_FIELDS of the RECORD_TYPE or
2239 UNION_TYPE TYPE, or NULL_TREE if none. */
2240
2241 tree
2242 first_field (const_tree type)
2243 {
2244 tree t = TYPE_FIELDS (type);
2245 while (t && TREE_CODE (t) != FIELD_DECL)
2246 t = TREE_CHAIN (t);
2247 return t;
2248 }
2249
2250 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
2251 by modifying the last node in chain 1 to point to chain 2.
2252 This is the Lisp primitive `nconc'. */
2253
2254 tree
2255 chainon (tree op1, tree op2)
2256 {
2257 tree t1;
2258
2259 if (!op1)
2260 return op2;
2261 if (!op2)
2262 return op1;
2263
2264 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
2265 continue;
2266 TREE_CHAIN (t1) = op2;
2267
2268 #ifdef ENABLE_TREE_CHECKING
2269 {
2270 tree t2;
2271 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
2272 gcc_assert (t2 != t1);
2273 }
2274 #endif
2275
2276 return op1;
2277 }
2278
2279 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
2280
2281 tree
2282 tree_last (tree chain)
2283 {
2284 tree next;
2285 if (chain)
2286 while ((next = TREE_CHAIN (chain)))
2287 chain = next;
2288 return chain;
2289 }
2290
2291 /* Reverse the order of elements in the chain T,
2292 and return the new head of the chain (old last element). */
2293
2294 tree
2295 nreverse (tree t)
2296 {
2297 tree prev = 0, decl, next;
2298 for (decl = t; decl; decl = next)
2299 {
2300 /* We shouldn't be using this function to reverse BLOCK chains; we
2301 have blocks_nreverse for that. */
2302 gcc_checking_assert (TREE_CODE (decl) != BLOCK);
2303 next = TREE_CHAIN (decl);
2304 TREE_CHAIN (decl) = prev;
2305 prev = decl;
2306 }
2307 return prev;
2308 }
2309 \f
2310 /* Return a newly created TREE_LIST node whose
2311 purpose and value fields are PARM and VALUE. */
2312
2313 tree
2314 build_tree_list_stat (tree parm, tree value MEM_STAT_DECL)
2315 {
2316 tree t = make_node_stat (TREE_LIST PASS_MEM_STAT);
2317 TREE_PURPOSE (t) = parm;
2318 TREE_VALUE (t) = value;
2319 return t;
2320 }
2321
2322 /* Build a chain of TREE_LIST nodes from a vector. */
2323
2324 tree
2325 build_tree_list_vec_stat (const vec<tree, va_gc> *vec MEM_STAT_DECL)
2326 {
2327 tree ret = NULL_TREE;
2328 tree *pp = &ret;
2329 unsigned int i;
2330 tree t;
2331 FOR_EACH_VEC_SAFE_ELT (vec, i, t)
2332 {
2333 *pp = build_tree_list_stat (NULL, t PASS_MEM_STAT);
2334 pp = &TREE_CHAIN (*pp);
2335 }
2336 return ret;
2337 }
2338
2339 /* Return a newly created TREE_LIST node whose
2340 purpose and value fields are PURPOSE and VALUE
2341 and whose TREE_CHAIN is CHAIN. */
2342
2343 tree
2344 tree_cons_stat (tree purpose, tree value, tree chain MEM_STAT_DECL)
2345 {
2346 tree node;
2347
2348 node = ggc_alloc_tree_node_stat (sizeof (struct tree_list) PASS_MEM_STAT);
2349 memset (node, 0, sizeof (struct tree_common));
2350
2351 record_node_allocation_statistics (TREE_LIST, sizeof (struct tree_list));
2352
2353 TREE_SET_CODE (node, TREE_LIST);
2354 TREE_CHAIN (node) = chain;
2355 TREE_PURPOSE (node) = purpose;
2356 TREE_VALUE (node) = value;
2357 return node;
2358 }
2359
2360 /* Return the values of the elements of a CONSTRUCTOR as a vector of
2361 trees. */
2362
2363 vec<tree, va_gc> *
2364 ctor_to_vec (tree ctor)
2365 {
2366 vec<tree, va_gc> *vec;
2367 vec_alloc (vec, CONSTRUCTOR_NELTS (ctor));
2368 unsigned int ix;
2369 tree val;
2370
2371 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (ctor), ix, val)
2372 vec->quick_push (val);
2373
2374 return vec;
2375 }
2376 \f
2377 /* Return the size nominally occupied by an object of type TYPE
2378 when it resides in memory. The value is measured in units of bytes,
2379 and its data type is that normally used for type sizes
2380 (which is the first type created by make_signed_type or
2381 make_unsigned_type). */
2382
2383 tree
2384 size_in_bytes (const_tree type)
2385 {
2386 tree t;
2387
2388 if (type == error_mark_node)
2389 return integer_zero_node;
2390
2391 type = TYPE_MAIN_VARIANT (type);
2392 t = TYPE_SIZE_UNIT (type);
2393
2394 if (t == 0)
2395 {
2396 lang_hooks.types.incomplete_type_error (NULL_TREE, type);
2397 return size_zero_node;
2398 }
2399
2400 return t;
2401 }
2402
2403 /* Return the size of TYPE (in bytes) as a wide integer
2404 or return -1 if the size can vary or is larger than an integer. */
2405
2406 HOST_WIDE_INT
2407 int_size_in_bytes (const_tree type)
2408 {
2409 tree t;
2410
2411 if (type == error_mark_node)
2412 return 0;
2413
2414 type = TYPE_MAIN_VARIANT (type);
2415 t = TYPE_SIZE_UNIT (type);
2416 if (t == 0
2417 || TREE_CODE (t) != INTEGER_CST
2418 || TREE_INT_CST_HIGH (t) != 0
2419 /* If the result would appear negative, it's too big to represent. */
2420 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
2421 return -1;
2422
2423 return TREE_INT_CST_LOW (t);
2424 }
2425
2426 /* Return the maximum size of TYPE (in bytes) as a wide integer
2427 or return -1 if the size can vary or is larger than an integer. */
2428
2429 HOST_WIDE_INT
2430 max_int_size_in_bytes (const_tree type)
2431 {
2432 HOST_WIDE_INT size = -1;
2433 tree size_tree;
2434
2435 /* If this is an array type, check for a possible MAX_SIZE attached. */
2436
2437 if (TREE_CODE (type) == ARRAY_TYPE)
2438 {
2439 size_tree = TYPE_ARRAY_MAX_SIZE (type);
2440
2441 if (size_tree && host_integerp (size_tree, 1))
2442 size = tree_low_cst (size_tree, 1);
2443 }
2444
2445 /* If we still haven't been able to get a size, see if the language
2446 can compute a maximum size. */
2447
2448 if (size == -1)
2449 {
2450 size_tree = lang_hooks.types.max_size (type);
2451
2452 if (size_tree && host_integerp (size_tree, 1))
2453 size = tree_low_cst (size_tree, 1);
2454 }
2455
2456 return size;
2457 }
2458
2459 /* Returns a tree for the size of EXP in bytes. */
2460
2461 tree
2462 tree_expr_size (const_tree exp)
2463 {
2464 if (DECL_P (exp)
2465 && DECL_SIZE_UNIT (exp) != 0)
2466 return DECL_SIZE_UNIT (exp);
2467 else
2468 return size_in_bytes (TREE_TYPE (exp));
2469 }
2470 \f
2471 /* Return the bit position of FIELD, in bits from the start of the record.
2472 This is a tree of type bitsizetype. */
2473
2474 tree
2475 bit_position (const_tree field)
2476 {
2477 return bit_from_pos (DECL_FIELD_OFFSET (field),
2478 DECL_FIELD_BIT_OFFSET (field));
2479 }
2480
2481 /* Likewise, but return as an integer. It must be representable in
2482 that way (since it could be a signed value, we don't have the
2483 option of returning -1 like int_size_in_byte can. */
2484
2485 HOST_WIDE_INT
2486 int_bit_position (const_tree field)
2487 {
2488 return tree_low_cst (bit_position (field), 0);
2489 }
2490 \f
2491 /* Return the byte position of FIELD, in bytes from the start of the record.
2492 This is a tree of type sizetype. */
2493
2494 tree
2495 byte_position (const_tree field)
2496 {
2497 return byte_from_pos (DECL_FIELD_OFFSET (field),
2498 DECL_FIELD_BIT_OFFSET (field));
2499 }
2500
2501 /* Likewise, but return as an integer. It must be representable in
2502 that way (since it could be a signed value, we don't have the
2503 option of returning -1 like int_size_in_byte can. */
2504
2505 HOST_WIDE_INT
2506 int_byte_position (const_tree field)
2507 {
2508 return tree_low_cst (byte_position (field), 0);
2509 }
2510 \f
2511 /* Return the strictest alignment, in bits, that T is known to have. */
2512
2513 unsigned int
2514 expr_align (const_tree t)
2515 {
2516 unsigned int align0, align1;
2517
2518 switch (TREE_CODE (t))
2519 {
2520 CASE_CONVERT: case NON_LVALUE_EXPR:
2521 /* If we have conversions, we know that the alignment of the
2522 object must meet each of the alignments of the types. */
2523 align0 = expr_align (TREE_OPERAND (t, 0));
2524 align1 = TYPE_ALIGN (TREE_TYPE (t));
2525 return MAX (align0, align1);
2526
2527 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
2528 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
2529 case CLEANUP_POINT_EXPR:
2530 /* These don't change the alignment of an object. */
2531 return expr_align (TREE_OPERAND (t, 0));
2532
2533 case COND_EXPR:
2534 /* The best we can do is say that the alignment is the least aligned
2535 of the two arms. */
2536 align0 = expr_align (TREE_OPERAND (t, 1));
2537 align1 = expr_align (TREE_OPERAND (t, 2));
2538 return MIN (align0, align1);
2539
2540 /* FIXME: LABEL_DECL and CONST_DECL never have DECL_ALIGN set
2541 meaningfully, it's always 1. */
2542 case LABEL_DECL: case CONST_DECL:
2543 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
2544 case FUNCTION_DECL:
2545 gcc_assert (DECL_ALIGN (t) != 0);
2546 return DECL_ALIGN (t);
2547
2548 default:
2549 break;
2550 }
2551
2552 /* Otherwise take the alignment from that of the type. */
2553 return TYPE_ALIGN (TREE_TYPE (t));
2554 }
2555 \f
2556 /* Return, as a tree node, the number of elements for TYPE (which is an
2557 ARRAY_TYPE) minus one. This counts only elements of the top array. */
2558
2559 tree
2560 array_type_nelts (const_tree type)
2561 {
2562 tree index_type, min, max;
2563
2564 /* If they did it with unspecified bounds, then we should have already
2565 given an error about it before we got here. */
2566 if (! TYPE_DOMAIN (type))
2567 return error_mark_node;
2568
2569 index_type = TYPE_DOMAIN (type);
2570 min = TYPE_MIN_VALUE (index_type);
2571 max = TYPE_MAX_VALUE (index_type);
2572
2573 /* TYPE_MAX_VALUE may not be set if the array has unknown length. */
2574 if (!max)
2575 return error_mark_node;
2576
2577 return (integer_zerop (min)
2578 ? max
2579 : fold_build2 (MINUS_EXPR, TREE_TYPE (max), max, min));
2580 }
2581 \f
2582 /* If arg is static -- a reference to an object in static storage -- then
2583 return the object. This is not the same as the C meaning of `static'.
2584 If arg isn't static, return NULL. */
2585
2586 tree
2587 staticp (tree arg)
2588 {
2589 switch (TREE_CODE (arg))
2590 {
2591 case FUNCTION_DECL:
2592 /* Nested functions are static, even though taking their address will
2593 involve a trampoline as we unnest the nested function and create
2594 the trampoline on the tree level. */
2595 return arg;
2596
2597 case VAR_DECL:
2598 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2599 && ! DECL_THREAD_LOCAL_P (arg)
2600 && ! DECL_DLLIMPORT_P (arg)
2601 ? arg : NULL);
2602
2603 case CONST_DECL:
2604 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2605 ? arg : NULL);
2606
2607 case CONSTRUCTOR:
2608 return TREE_STATIC (arg) ? arg : NULL;
2609
2610 case LABEL_DECL:
2611 case STRING_CST:
2612 return arg;
2613
2614 case COMPONENT_REF:
2615 /* If the thing being referenced is not a field, then it is
2616 something language specific. */
2617 gcc_assert (TREE_CODE (TREE_OPERAND (arg, 1)) == FIELD_DECL);
2618
2619 /* If we are referencing a bitfield, we can't evaluate an
2620 ADDR_EXPR at compile time and so it isn't a constant. */
2621 if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
2622 return NULL;
2623
2624 return staticp (TREE_OPERAND (arg, 0));
2625
2626 case BIT_FIELD_REF:
2627 return NULL;
2628
2629 case INDIRECT_REF:
2630 return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;
2631
2632 case ARRAY_REF:
2633 case ARRAY_RANGE_REF:
2634 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
2635 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
2636 return staticp (TREE_OPERAND (arg, 0));
2637 else
2638 return NULL;
2639
2640 case COMPOUND_LITERAL_EXPR:
2641 return TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (arg)) ? arg : NULL;
2642
2643 default:
2644 return NULL;
2645 }
2646 }
2647
2648 \f
2649
2650
2651 /* Return whether OP is a DECL whose address is function-invariant. */
2652
2653 bool
2654 decl_address_invariant_p (const_tree op)
2655 {
2656 /* The conditions below are slightly less strict than the one in
2657 staticp. */
2658
2659 switch (TREE_CODE (op))
2660 {
2661 case PARM_DECL:
2662 case RESULT_DECL:
2663 case LABEL_DECL:
2664 case FUNCTION_DECL:
2665 return true;
2666
2667 case VAR_DECL:
2668 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
2669 || DECL_THREAD_LOCAL_P (op)
2670 || DECL_CONTEXT (op) == current_function_decl
2671 || decl_function_context (op) == current_function_decl)
2672 return true;
2673 break;
2674
2675 case CONST_DECL:
2676 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
2677 || decl_function_context (op) == current_function_decl)
2678 return true;
2679 break;
2680
2681 default:
2682 break;
2683 }
2684
2685 return false;
2686 }
2687
2688 /* Return whether OP is a DECL whose address is interprocedural-invariant. */
2689
2690 bool
2691 decl_address_ip_invariant_p (const_tree op)
2692 {
2693 /* The conditions below are slightly less strict than the one in
2694 staticp. */
2695
2696 switch (TREE_CODE (op))
2697 {
2698 case LABEL_DECL:
2699 case FUNCTION_DECL:
2700 case STRING_CST:
2701 return true;
2702
2703 case VAR_DECL:
2704 if (((TREE_STATIC (op) || DECL_EXTERNAL (op))
2705 && !DECL_DLLIMPORT_P (op))
2706 || DECL_THREAD_LOCAL_P (op))
2707 return true;
2708 break;
2709
2710 case CONST_DECL:
2711 if ((TREE_STATIC (op) || DECL_EXTERNAL (op)))
2712 return true;
2713 break;
2714
2715 default:
2716 break;
2717 }
2718
2719 return false;
2720 }
2721
2722
2723 /* Return true if T is function-invariant (internal function, does
2724 not handle arithmetic; that's handled in skip_simple_arithmetic and
2725 tree_invariant_p). */
2726
2727 static bool tree_invariant_p (tree t);
2728
2729 static bool
2730 tree_invariant_p_1 (tree t)
2731 {
2732 tree op;
2733
2734 if (TREE_CONSTANT (t)
2735 || (TREE_READONLY (t) && !TREE_SIDE_EFFECTS (t)))
2736 return true;
2737
2738 switch (TREE_CODE (t))
2739 {
2740 case SAVE_EXPR:
2741 return true;
2742
2743 case ADDR_EXPR:
2744 op = TREE_OPERAND (t, 0);
2745 while (handled_component_p (op))
2746 {
2747 switch (TREE_CODE (op))
2748 {
2749 case ARRAY_REF:
2750 case ARRAY_RANGE_REF:
2751 if (!tree_invariant_p (TREE_OPERAND (op, 1))
2752 || TREE_OPERAND (op, 2) != NULL_TREE
2753 || TREE_OPERAND (op, 3) != NULL_TREE)
2754 return false;
2755 break;
2756
2757 case COMPONENT_REF:
2758 if (TREE_OPERAND (op, 2) != NULL_TREE)
2759 return false;
2760 break;
2761
2762 default:;
2763 }
2764 op = TREE_OPERAND (op, 0);
2765 }
2766
2767 return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
2768
2769 default:
2770 break;
2771 }
2772
2773 return false;
2774 }
2775
2776 /* Return true if T is function-invariant. */
2777
2778 static bool
2779 tree_invariant_p (tree t)
2780 {
2781 tree inner = skip_simple_arithmetic (t);
2782 return tree_invariant_p_1 (inner);
2783 }
2784
2785 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
2786 Do this to any expression which may be used in more than one place,
2787 but must be evaluated only once.
2788
2789 Normally, expand_expr would reevaluate the expression each time.
2790 Calling save_expr produces something that is evaluated and recorded
2791 the first time expand_expr is called on it. Subsequent calls to
2792 expand_expr just reuse the recorded value.
2793
2794 The call to expand_expr that generates code that actually computes
2795 the value is the first call *at compile time*. Subsequent calls
2796 *at compile time* generate code to use the saved value.
2797 This produces correct result provided that *at run time* control
2798 always flows through the insns made by the first expand_expr
2799 before reaching the other places where the save_expr was evaluated.
2800 You, the caller of save_expr, must make sure this is so.
2801
2802 Constants, and certain read-only nodes, are returned with no
2803 SAVE_EXPR because that is safe. Expressions containing placeholders
2804 are not touched; see tree.def for an explanation of what these
2805 are used for. */
2806
2807 tree
2808 save_expr (tree expr)
2809 {
2810 tree t = fold (expr);
2811 tree inner;
2812
2813 /* If the tree evaluates to a constant, then we don't want to hide that
2814 fact (i.e. this allows further folding, and direct checks for constants).
2815 However, a read-only object that has side effects cannot be bypassed.
2816 Since it is no problem to reevaluate literals, we just return the
2817 literal node. */
2818 inner = skip_simple_arithmetic (t);
2819 if (TREE_CODE (inner) == ERROR_MARK)
2820 return inner;
2821
2822 if (tree_invariant_p_1 (inner))
2823 return t;
2824
2825 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
2826 it means that the size or offset of some field of an object depends on
2827 the value within another field.
2828
2829 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
2830 and some variable since it would then need to be both evaluated once and
2831 evaluated more than once. Front-ends must assure this case cannot
2832 happen by surrounding any such subexpressions in their own SAVE_EXPR
2833 and forcing evaluation at the proper time. */
2834 if (contains_placeholder_p (inner))
2835 return t;
2836
2837 t = build1 (SAVE_EXPR, TREE_TYPE (expr), t);
2838 SET_EXPR_LOCATION (t, EXPR_LOCATION (expr));
2839
2840 /* This expression might be placed ahead of a jump to ensure that the
2841 value was computed on both sides of the jump. So make sure it isn't
2842 eliminated as dead. */
2843 TREE_SIDE_EFFECTS (t) = 1;
2844 return t;
2845 }
2846
2847 /* Look inside EXPR into any simple arithmetic operations. Return the
2848 outermost non-arithmetic or non-invariant node. */
2849
2850 tree
2851 skip_simple_arithmetic (tree expr)
2852 {
2853 /* We don't care about whether this can be used as an lvalue in this
2854 context. */
2855 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
2856 expr = TREE_OPERAND (expr, 0);
2857
2858 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
2859 a constant, it will be more efficient to not make another SAVE_EXPR since
2860 it will allow better simplification and GCSE will be able to merge the
2861 computations if they actually occur. */
2862 while (true)
2863 {
2864 if (UNARY_CLASS_P (expr))
2865 expr = TREE_OPERAND (expr, 0);
2866 else if (BINARY_CLASS_P (expr))
2867 {
2868 if (tree_invariant_p (TREE_OPERAND (expr, 1)))
2869 expr = TREE_OPERAND (expr, 0);
2870 else if (tree_invariant_p (TREE_OPERAND (expr, 0)))
2871 expr = TREE_OPERAND (expr, 1);
2872 else
2873 break;
2874 }
2875 else
2876 break;
2877 }
2878
2879 return expr;
2880 }
2881
2882 /* Look inside EXPR into simple arithmetic operations involving constants.
2883 Return the outermost non-arithmetic or non-constant node. */
2884
2885 tree
2886 skip_simple_constant_arithmetic (tree expr)
2887 {
2888 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
2889 expr = TREE_OPERAND (expr, 0);
2890
2891 while (true)
2892 {
2893 if (UNARY_CLASS_P (expr))
2894 expr = TREE_OPERAND (expr, 0);
2895 else if (BINARY_CLASS_P (expr))
2896 {
2897 if (TREE_CONSTANT (TREE_OPERAND (expr, 1)))
2898 expr = TREE_OPERAND (expr, 0);
2899 else if (TREE_CONSTANT (TREE_OPERAND (expr, 0)))
2900 expr = TREE_OPERAND (expr, 1);
2901 else
2902 break;
2903 }
2904 else
2905 break;
2906 }
2907
2908 return expr;
2909 }
2910
2911 /* Return which tree structure is used by T. */
2912
2913 enum tree_node_structure_enum
2914 tree_node_structure (const_tree t)
2915 {
2916 const enum tree_code code = TREE_CODE (t);
2917 return tree_node_structure_for_code (code);
2918 }
2919
2920 /* Set various status flags when building a CALL_EXPR object T. */
2921
2922 static void
2923 process_call_operands (tree t)
2924 {
2925 bool side_effects = TREE_SIDE_EFFECTS (t);
2926 bool read_only = false;
2927 int i = call_expr_flags (t);
2928
2929 /* Calls have side-effects, except those to const or pure functions. */
2930 if ((i & ECF_LOOPING_CONST_OR_PURE) || !(i & (ECF_CONST | ECF_PURE)))
2931 side_effects = true;
2932 /* Propagate TREE_READONLY of arguments for const functions. */
2933 if (i & ECF_CONST)
2934 read_only = true;
2935
2936 if (!side_effects || read_only)
2937 for (i = 1; i < TREE_OPERAND_LENGTH (t); i++)
2938 {
2939 tree op = TREE_OPERAND (t, i);
2940 if (op && TREE_SIDE_EFFECTS (op))
2941 side_effects = true;
2942 if (op && !TREE_READONLY (op) && !CONSTANT_CLASS_P (op))
2943 read_only = false;
2944 }
2945
2946 TREE_SIDE_EFFECTS (t) = side_effects;
2947 TREE_READONLY (t) = read_only;
2948 }
2949 \f
2950 /* Return true if EXP contains a PLACEHOLDER_EXPR, i.e. if it represents a
2951 size or offset that depends on a field within a record. */
2952
2953 bool
2954 contains_placeholder_p (const_tree exp)
2955 {
2956 enum tree_code code;
2957
2958 if (!exp)
2959 return 0;
2960
2961 code = TREE_CODE (exp);
2962 if (code == PLACEHOLDER_EXPR)
2963 return 1;
2964
2965 switch (TREE_CODE_CLASS (code))
2966 {
2967 case tcc_reference:
2968 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
2969 position computations since they will be converted into a
2970 WITH_RECORD_EXPR involving the reference, which will assume
2971 here will be valid. */
2972 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
2973
2974 case tcc_exceptional:
2975 if (code == TREE_LIST)
2976 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
2977 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
2978 break;
2979
2980 case tcc_unary:
2981 case tcc_binary:
2982 case tcc_comparison:
2983 case tcc_expression:
2984 switch (code)
2985 {
2986 case COMPOUND_EXPR:
2987 /* Ignoring the first operand isn't quite right, but works best. */
2988 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
2989
2990 case COND_EXPR:
2991 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
2992 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
2993 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
2994
2995 case SAVE_EXPR:
2996 /* The save_expr function never wraps anything containing
2997 a PLACEHOLDER_EXPR. */
2998 return 0;
2999
3000 default:
3001 break;
3002 }
3003
3004 switch (TREE_CODE_LENGTH (code))
3005 {
3006 case 1:
3007 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
3008 case 2:
3009 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
3010 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
3011 default:
3012 return 0;
3013 }
3014
3015 case tcc_vl_exp:
3016 switch (code)
3017 {
3018 case CALL_EXPR:
3019 {
3020 const_tree arg;
3021 const_call_expr_arg_iterator iter;
3022 FOR_EACH_CONST_CALL_EXPR_ARG (arg, iter, exp)
3023 if (CONTAINS_PLACEHOLDER_P (arg))
3024 return 1;
3025 return 0;
3026 }
3027 default:
3028 return 0;
3029 }
3030
3031 default:
3032 return 0;
3033 }
3034 return 0;
3035 }
3036
3037 /* Return true if any part of the structure of TYPE involves a PLACEHOLDER_EXPR
3038 directly. This includes size, bounds, qualifiers (for QUAL_UNION_TYPE) and
3039 field positions. */
3040
3041 static bool
3042 type_contains_placeholder_1 (const_tree type)
3043 {
3044 /* If the size contains a placeholder or the parent type (component type in
3045 the case of arrays) type involves a placeholder, this type does. */
3046 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
3047 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
3048 || (!POINTER_TYPE_P (type)
3049 && TREE_TYPE (type)
3050 && type_contains_placeholder_p (TREE_TYPE (type))))
3051 return true;
3052
3053 /* Now do type-specific checks. Note that the last part of the check above
3054 greatly limits what we have to do below. */
3055 switch (TREE_CODE (type))
3056 {
3057 case VOID_TYPE:
3058 case COMPLEX_TYPE:
3059 case ENUMERAL_TYPE:
3060 case BOOLEAN_TYPE:
3061 case POINTER_TYPE:
3062 case OFFSET_TYPE:
3063 case REFERENCE_TYPE:
3064 case METHOD_TYPE:
3065 case FUNCTION_TYPE:
3066 case VECTOR_TYPE:
3067 case NULLPTR_TYPE:
3068 return false;
3069
3070 case INTEGER_TYPE:
3071 case REAL_TYPE:
3072 case FIXED_POINT_TYPE:
3073 /* Here we just check the bounds. */
3074 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
3075 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
3076
3077 case ARRAY_TYPE:
3078 /* We have already checked the component type above, so just check the
3079 domain type. */
3080 return type_contains_placeholder_p (TYPE_DOMAIN (type));
3081
3082 case RECORD_TYPE:
3083 case UNION_TYPE:
3084 case QUAL_UNION_TYPE:
3085 {
3086 tree field;
3087
3088 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
3089 if (TREE_CODE (field) == FIELD_DECL
3090 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
3091 || (TREE_CODE (type) == QUAL_UNION_TYPE
3092 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
3093 || type_contains_placeholder_p (TREE_TYPE (field))))
3094 return true;
3095
3096 return false;
3097 }
3098
3099 default:
3100 gcc_unreachable ();
3101 }
3102 }
3103
3104 /* Wrapper around above function used to cache its result. */
3105
3106 bool
3107 type_contains_placeholder_p (tree type)
3108 {
3109 bool result;
3110
3111 /* If the contains_placeholder_bits field has been initialized,
3112 then we know the answer. */
3113 if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0)
3114 return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1;
3115
3116 /* Indicate that we've seen this type node, and the answer is false.
3117 This is what we want to return if we run into recursion via fields. */
3118 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1;
3119
3120 /* Compute the real value. */
3121 result = type_contains_placeholder_1 (type);
3122
3123 /* Store the real value. */
3124 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1;
3125
3126 return result;
3127 }
3128 \f
3129 /* Push tree EXP onto vector QUEUE if it is not already present. */
3130
3131 static void
3132 push_without_duplicates (tree exp, vec<tree> *queue)
3133 {
3134 unsigned int i;
3135 tree iter;
3136
3137 FOR_EACH_VEC_ELT (*queue, i, iter)
3138 if (simple_cst_equal (iter, exp) == 1)
3139 break;
3140
3141 if (!iter)
3142 queue->safe_push (exp);
3143 }
3144
3145 /* Given a tree EXP, find all occurrences of references to fields
3146 in a PLACEHOLDER_EXPR and place them in vector REFS without
3147 duplicates. Also record VAR_DECLs and CONST_DECLs. Note that
3148 we assume here that EXP contains only arithmetic expressions
3149 or CALL_EXPRs with PLACEHOLDER_EXPRs occurring only in their
3150 argument list. */
3151
3152 void
3153 find_placeholder_in_expr (tree exp, vec<tree> *refs)
3154 {
3155 enum tree_code code = TREE_CODE (exp);
3156 tree inner;
3157 int i;
3158
3159 /* We handle TREE_LIST and COMPONENT_REF separately. */
3160 if (code == TREE_LIST)
3161 {
3162 FIND_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), refs);
3163 FIND_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), refs);
3164 }
3165 else if (code == COMPONENT_REF)
3166 {
3167 for (inner = TREE_OPERAND (exp, 0);
3168 REFERENCE_CLASS_P (inner);
3169 inner = TREE_OPERAND (inner, 0))
3170 ;
3171
3172 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
3173 push_without_duplicates (exp, refs);
3174 else
3175 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), refs);
3176 }
3177 else
3178 switch (TREE_CODE_CLASS (code))
3179 {
3180 case tcc_constant:
3181 break;
3182
3183 case tcc_declaration:
3184 /* Variables allocated to static storage can stay. */
3185 if (!TREE_STATIC (exp))
3186 push_without_duplicates (exp, refs);
3187 break;
3188
3189 case tcc_expression:
3190 /* This is the pattern built in ada/make_aligning_type. */
3191 if (code == ADDR_EXPR
3192 && TREE_CODE (TREE_OPERAND (exp, 0)) == PLACEHOLDER_EXPR)
3193 {
3194 push_without_duplicates (exp, refs);
3195 break;
3196 }
3197
3198 /* Fall through... */
3199
3200 case tcc_exceptional:
3201 case tcc_unary:
3202 case tcc_binary:
3203 case tcc_comparison:
3204 case tcc_reference:
3205 for (i = 0; i < TREE_CODE_LENGTH (code); i++)
3206 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
3207 break;
3208
3209 case tcc_vl_exp:
3210 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3211 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
3212 break;
3213
3214 default:
3215 gcc_unreachable ();
3216 }
3217 }
3218
3219 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
3220 return a tree with all occurrences of references to F in a
3221 PLACEHOLDER_EXPR replaced by R. Also handle VAR_DECLs and
3222 CONST_DECLs. Note that we assume here that EXP contains only
3223 arithmetic expressions or CALL_EXPRs with PLACEHOLDER_EXPRs
3224 occurring only in their argument list. */
3225
3226 tree
3227 substitute_in_expr (tree exp, tree f, tree r)
3228 {
3229 enum tree_code code = TREE_CODE (exp);
3230 tree op0, op1, op2, op3;
3231 tree new_tree;
3232
3233 /* We handle TREE_LIST and COMPONENT_REF separately. */
3234 if (code == TREE_LIST)
3235 {
3236 op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
3237 op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
3238 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
3239 return exp;
3240
3241 return tree_cons (TREE_PURPOSE (exp), op1, op0);
3242 }
3243 else if (code == COMPONENT_REF)
3244 {
3245 tree inner;
3246
3247 /* If this expression is getting a value from a PLACEHOLDER_EXPR
3248 and it is the right field, replace it with R. */
3249 for (inner = TREE_OPERAND (exp, 0);
3250 REFERENCE_CLASS_P (inner);
3251 inner = TREE_OPERAND (inner, 0))
3252 ;
3253
3254 /* The field. */
3255 op1 = TREE_OPERAND (exp, 1);
3256
3257 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && op1 == f)
3258 return r;
3259
3260 /* If this expression hasn't been completed let, leave it alone. */
3261 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && !TREE_TYPE (inner))
3262 return exp;
3263
3264 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3265 if (op0 == TREE_OPERAND (exp, 0))
3266 return exp;
3267
3268 new_tree
3269 = fold_build3 (COMPONENT_REF, TREE_TYPE (exp), op0, op1, NULL_TREE);
3270 }
3271 else
3272 switch (TREE_CODE_CLASS (code))
3273 {
3274 case tcc_constant:
3275 return exp;
3276
3277 case tcc_declaration:
3278 if (exp == f)
3279 return r;
3280 else
3281 return exp;
3282
3283 case tcc_expression:
3284 if (exp == f)
3285 return r;
3286
3287 /* Fall through... */
3288
3289 case tcc_exceptional:
3290 case tcc_unary:
3291 case tcc_binary:
3292 case tcc_comparison:
3293 case tcc_reference:
3294 switch (TREE_CODE_LENGTH (code))
3295 {
3296 case 0:
3297 return exp;
3298
3299 case 1:
3300 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3301 if (op0 == TREE_OPERAND (exp, 0))
3302 return exp;
3303
3304 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
3305 break;
3306
3307 case 2:
3308 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3309 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3310
3311 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
3312 return exp;
3313
3314 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
3315 break;
3316
3317 case 3:
3318 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3319 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3320 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
3321
3322 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3323 && op2 == TREE_OPERAND (exp, 2))
3324 return exp;
3325
3326 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
3327 break;
3328
3329 case 4:
3330 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3331 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3332 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
3333 op3 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 3), f, r);
3334
3335 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3336 && op2 == TREE_OPERAND (exp, 2)
3337 && op3 == TREE_OPERAND (exp, 3))
3338 return exp;
3339
3340 new_tree
3341 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
3342 break;
3343
3344 default:
3345 gcc_unreachable ();
3346 }
3347 break;
3348
3349 case tcc_vl_exp:
3350 {
3351 int i;
3352
3353 new_tree = NULL_TREE;
3354
3355 /* If we are trying to replace F with a constant, inline back
3356 functions which do nothing else than computing a value from
3357 the arguments they are passed. This makes it possible to
3358 fold partially or entirely the replacement expression. */
3359 if (CONSTANT_CLASS_P (r) && code == CALL_EXPR)
3360 {
3361 tree t = maybe_inline_call_in_expr (exp);
3362 if (t)
3363 return SUBSTITUTE_IN_EXPR (t, f, r);
3364 }
3365
3366 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3367 {
3368 tree op = TREE_OPERAND (exp, i);
3369 tree new_op = SUBSTITUTE_IN_EXPR (op, f, r);
3370 if (new_op != op)
3371 {
3372 if (!new_tree)
3373 new_tree = copy_node (exp);
3374 TREE_OPERAND (new_tree, i) = new_op;
3375 }
3376 }
3377
3378 if (new_tree)
3379 {
3380 new_tree = fold (new_tree);
3381 if (TREE_CODE (new_tree) == CALL_EXPR)
3382 process_call_operands (new_tree);
3383 }
3384 else
3385 return exp;
3386 }
3387 break;
3388
3389 default:
3390 gcc_unreachable ();
3391 }
3392
3393 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
3394
3395 if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
3396 TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
3397
3398 return new_tree;
3399 }
3400
3401 /* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
3402 for it within OBJ, a tree that is an object or a chain of references. */
3403
3404 tree
3405 substitute_placeholder_in_expr (tree exp, tree obj)
3406 {
3407 enum tree_code code = TREE_CODE (exp);
3408 tree op0, op1, op2, op3;
3409 tree new_tree;
3410
3411 /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
3412 in the chain of OBJ. */
3413 if (code == PLACEHOLDER_EXPR)
3414 {
3415 tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
3416 tree elt;
3417
3418 for (elt = obj; elt != 0;
3419 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
3420 || TREE_CODE (elt) == COND_EXPR)
3421 ? TREE_OPERAND (elt, 1)
3422 : (REFERENCE_CLASS_P (elt)
3423 || UNARY_CLASS_P (elt)
3424 || BINARY_CLASS_P (elt)
3425 || VL_EXP_CLASS_P (elt)
3426 || EXPRESSION_CLASS_P (elt))
3427 ? TREE_OPERAND (elt, 0) : 0))
3428 if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
3429 return elt;
3430
3431 for (elt = obj; elt != 0;
3432 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
3433 || TREE_CODE (elt) == COND_EXPR)
3434 ? TREE_OPERAND (elt, 1)
3435 : (REFERENCE_CLASS_P (elt)
3436 || UNARY_CLASS_P (elt)
3437 || BINARY_CLASS_P (elt)
3438 || VL_EXP_CLASS_P (elt)
3439 || EXPRESSION_CLASS_P (elt))
3440 ? TREE_OPERAND (elt, 0) : 0))
3441 if (POINTER_TYPE_P (TREE_TYPE (elt))
3442 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
3443 == need_type))
3444 return fold_build1 (INDIRECT_REF, need_type, elt);
3445
3446 /* If we didn't find it, return the original PLACEHOLDER_EXPR. If it
3447 survives until RTL generation, there will be an error. */
3448 return exp;
3449 }
3450
3451 /* TREE_LIST is special because we need to look at TREE_VALUE
3452 and TREE_CHAIN, not TREE_OPERANDS. */
3453 else if (code == TREE_LIST)
3454 {
3455 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
3456 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
3457 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
3458 return exp;
3459
3460 return tree_cons (TREE_PURPOSE (exp), op1, op0);
3461 }
3462 else
3463 switch (TREE_CODE_CLASS (code))
3464 {
3465 case tcc_constant:
3466 case tcc_declaration:
3467 return exp;
3468
3469 case tcc_exceptional:
3470 case tcc_unary:
3471 case tcc_binary:
3472 case tcc_comparison:
3473 case tcc_expression:
3474 case tcc_reference:
3475 case tcc_statement:
3476 switch (TREE_CODE_LENGTH (code))
3477 {
3478 case 0:
3479 return exp;
3480
3481 case 1:
3482 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3483 if (op0 == TREE_OPERAND (exp, 0))
3484 return exp;
3485
3486 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
3487 break;
3488
3489 case 2:
3490 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3491 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3492
3493 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
3494 return exp;
3495
3496 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
3497 break;
3498
3499 case 3:
3500 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3501 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3502 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
3503
3504 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3505 && op2 == TREE_OPERAND (exp, 2))
3506 return exp;
3507
3508 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
3509 break;
3510
3511 case 4:
3512 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3513 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3514 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
3515 op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
3516
3517 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3518 && op2 == TREE_OPERAND (exp, 2)
3519 && op3 == TREE_OPERAND (exp, 3))
3520 return exp;
3521
3522 new_tree
3523 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
3524 break;
3525
3526 default:
3527 gcc_unreachable ();
3528 }
3529 break;
3530
3531 case tcc_vl_exp:
3532 {
3533 int i;
3534
3535 new_tree = NULL_TREE;
3536
3537 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3538 {
3539 tree op = TREE_OPERAND (exp, i);
3540 tree new_op = SUBSTITUTE_PLACEHOLDER_IN_EXPR (op, obj);
3541 if (new_op != op)
3542 {
3543 if (!new_tree)
3544 new_tree = copy_node (exp);
3545 TREE_OPERAND (new_tree, i) = new_op;
3546 }
3547 }
3548
3549 if (new_tree)
3550 {
3551 new_tree = fold (new_tree);
3552 if (TREE_CODE (new_tree) == CALL_EXPR)
3553 process_call_operands (new_tree);
3554 }
3555 else
3556 return exp;
3557 }
3558 break;
3559
3560 default:
3561 gcc_unreachable ();
3562 }
3563
3564 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
3565
3566 if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
3567 TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
3568
3569 return new_tree;
3570 }
3571 \f
3572 /* Stabilize a reference so that we can use it any number of times
3573 without causing its operands to be evaluated more than once.
3574 Returns the stabilized reference. This works by means of save_expr,
3575 so see the caveats in the comments about save_expr.
3576
3577 Also allows conversion expressions whose operands are references.
3578 Any other kind of expression is returned unchanged. */
3579
3580 tree
3581 stabilize_reference (tree ref)
3582 {
3583 tree result;
3584 enum tree_code code = TREE_CODE (ref);
3585
3586 switch (code)
3587 {
3588 case VAR_DECL:
3589 case PARM_DECL:
3590 case RESULT_DECL:
3591 /* No action is needed in this case. */
3592 return ref;
3593
3594 CASE_CONVERT:
3595 case FLOAT_EXPR:
3596 case FIX_TRUNC_EXPR:
3597 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
3598 break;
3599
3600 case INDIRECT_REF:
3601 result = build_nt (INDIRECT_REF,
3602 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
3603 break;
3604
3605 case COMPONENT_REF:
3606 result = build_nt (COMPONENT_REF,
3607 stabilize_reference (TREE_OPERAND (ref, 0)),
3608 TREE_OPERAND (ref, 1), NULL_TREE);
3609 break;
3610
3611 case BIT_FIELD_REF:
3612 result = build_nt (BIT_FIELD_REF,
3613 stabilize_reference (TREE_OPERAND (ref, 0)),
3614 TREE_OPERAND (ref, 1), TREE_OPERAND (ref, 2));
3615 break;
3616
3617 case ARRAY_REF:
3618 result = build_nt (ARRAY_REF,
3619 stabilize_reference (TREE_OPERAND (ref, 0)),
3620 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
3621 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
3622 break;
3623
3624 case ARRAY_RANGE_REF:
3625 result = build_nt (ARRAY_RANGE_REF,
3626 stabilize_reference (TREE_OPERAND (ref, 0)),
3627 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
3628 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
3629 break;
3630
3631 case COMPOUND_EXPR:
3632 /* We cannot wrap the first expression in a SAVE_EXPR, as then
3633 it wouldn't be ignored. This matters when dealing with
3634 volatiles. */
3635 return stabilize_reference_1 (ref);
3636
3637 /* If arg isn't a kind of lvalue we recognize, make no change.
3638 Caller should recognize the error for an invalid lvalue. */
3639 default:
3640 return ref;
3641
3642 case ERROR_MARK:
3643 return error_mark_node;
3644 }
3645
3646 TREE_TYPE (result) = TREE_TYPE (ref);
3647 TREE_READONLY (result) = TREE_READONLY (ref);
3648 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
3649 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
3650
3651 return result;
3652 }
3653
3654 /* Subroutine of stabilize_reference; this is called for subtrees of
3655 references. Any expression with side-effects must be put in a SAVE_EXPR
3656 to ensure that it is only evaluated once.
3657
3658 We don't put SAVE_EXPR nodes around everything, because assigning very
3659 simple expressions to temporaries causes us to miss good opportunities
3660 for optimizations. Among other things, the opportunity to fold in the
3661 addition of a constant into an addressing mode often gets lost, e.g.
3662 "y[i+1] += x;". In general, we take the approach that we should not make
3663 an assignment unless we are forced into it - i.e., that any non-side effect
3664 operator should be allowed, and that cse should take care of coalescing
3665 multiple utterances of the same expression should that prove fruitful. */
3666
3667 tree
3668 stabilize_reference_1 (tree e)
3669 {
3670 tree result;
3671 enum tree_code code = TREE_CODE (e);
3672
3673 /* We cannot ignore const expressions because it might be a reference
3674 to a const array but whose index contains side-effects. But we can
3675 ignore things that are actual constant or that already have been
3676 handled by this function. */
3677
3678 if (tree_invariant_p (e))
3679 return e;
3680
3681 switch (TREE_CODE_CLASS (code))
3682 {
3683 case tcc_exceptional:
3684 case tcc_type:
3685 case tcc_declaration:
3686 case tcc_comparison:
3687 case tcc_statement:
3688 case tcc_expression:
3689 case tcc_reference:
3690 case tcc_vl_exp:
3691 /* If the expression has side-effects, then encase it in a SAVE_EXPR
3692 so that it will only be evaluated once. */
3693 /* The reference (r) and comparison (<) classes could be handled as
3694 below, but it is generally faster to only evaluate them once. */
3695 if (TREE_SIDE_EFFECTS (e))
3696 return save_expr (e);
3697 return e;
3698
3699 case tcc_constant:
3700 /* Constants need no processing. In fact, we should never reach
3701 here. */
3702 return e;
3703
3704 case tcc_binary:
3705 /* Division is slow and tends to be compiled with jumps,
3706 especially the division by powers of 2 that is often
3707 found inside of an array reference. So do it just once. */
3708 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
3709 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
3710 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
3711 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
3712 return save_expr (e);
3713 /* Recursively stabilize each operand. */
3714 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
3715 stabilize_reference_1 (TREE_OPERAND (e, 1)));
3716 break;
3717
3718 case tcc_unary:
3719 /* Recursively stabilize each operand. */
3720 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
3721 break;
3722
3723 default:
3724 gcc_unreachable ();
3725 }
3726
3727 TREE_TYPE (result) = TREE_TYPE (e);
3728 TREE_READONLY (result) = TREE_READONLY (e);
3729 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
3730 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
3731
3732 return result;
3733 }
3734 \f
3735 /* Low-level constructors for expressions. */
3736
3737 /* A helper function for build1 and constant folders. Set TREE_CONSTANT,
3738 and TREE_SIDE_EFFECTS for an ADDR_EXPR. */
3739
3740 void
3741 recompute_tree_invariant_for_addr_expr (tree t)
3742 {
3743 tree node;
3744 bool tc = true, se = false;
3745
3746 /* We started out assuming this address is both invariant and constant, but
3747 does not have side effects. Now go down any handled components and see if
3748 any of them involve offsets that are either non-constant or non-invariant.
3749 Also check for side-effects.
3750
3751 ??? Note that this code makes no attempt to deal with the case where
3752 taking the address of something causes a copy due to misalignment. */
3753
3754 #define UPDATE_FLAGS(NODE) \
3755 do { tree _node = (NODE); \
3756 if (_node && !TREE_CONSTANT (_node)) tc = false; \
3757 if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
3758
3759 for (node = TREE_OPERAND (t, 0); handled_component_p (node);
3760 node = TREE_OPERAND (node, 0))
3761 {
3762 /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
3763 array reference (probably made temporarily by the G++ front end),
3764 so ignore all the operands. */
3765 if ((TREE_CODE (node) == ARRAY_REF
3766 || TREE_CODE (node) == ARRAY_RANGE_REF)
3767 && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
3768 {
3769 UPDATE_FLAGS (TREE_OPERAND (node, 1));
3770 if (TREE_OPERAND (node, 2))
3771 UPDATE_FLAGS (TREE_OPERAND (node, 2));
3772 if (TREE_OPERAND (node, 3))
3773 UPDATE_FLAGS (TREE_OPERAND (node, 3));
3774 }
3775 /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
3776 FIELD_DECL, apparently. The G++ front end can put something else
3777 there, at least temporarily. */
3778 else if (TREE_CODE (node) == COMPONENT_REF
3779 && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
3780 {
3781 if (TREE_OPERAND (node, 2))
3782 UPDATE_FLAGS (TREE_OPERAND (node, 2));
3783 }
3784 }
3785
3786 node = lang_hooks.expr_to_decl (node, &tc, &se);
3787
3788 /* Now see what's inside. If it's an INDIRECT_REF, copy our properties from
3789 the address, since &(*a)->b is a form of addition. If it's a constant, the
3790 address is constant too. If it's a decl, its address is constant if the
3791 decl is static. Everything else is not constant and, furthermore,
3792 taking the address of a volatile variable is not volatile. */
3793 if (TREE_CODE (node) == INDIRECT_REF
3794 || TREE_CODE (node) == MEM_REF)
3795 UPDATE_FLAGS (TREE_OPERAND (node, 0));
3796 else if (CONSTANT_CLASS_P (node))
3797 ;
3798 else if (DECL_P (node))
3799 tc &= (staticp (node) != NULL_TREE);
3800 else
3801 {
3802 tc = false;
3803 se |= TREE_SIDE_EFFECTS (node);
3804 }
3805
3806
3807 TREE_CONSTANT (t) = tc;
3808 TREE_SIDE_EFFECTS (t) = se;
3809 #undef UPDATE_FLAGS
3810 }
3811
3812 /* Build an expression of code CODE, data type TYPE, and operands as
3813 specified. Expressions and reference nodes can be created this way.
3814 Constants, decls, types and misc nodes cannot be.
3815
3816 We define 5 non-variadic functions, from 0 to 4 arguments. This is
3817 enough for all extant tree codes. */
3818
3819 tree
3820 build0_stat (enum tree_code code, tree tt MEM_STAT_DECL)
3821 {
3822 tree t;
3823
3824 gcc_assert (TREE_CODE_LENGTH (code) == 0);
3825
3826 t = make_node_stat (code PASS_MEM_STAT);
3827 TREE_TYPE (t) = tt;
3828
3829 return t;
3830 }
3831
3832 tree
3833 build1_stat (enum tree_code code, tree type, tree node MEM_STAT_DECL)
3834 {
3835 int length = sizeof (struct tree_exp);
3836 tree t;
3837
3838 record_node_allocation_statistics (code, length);
3839
3840 gcc_assert (TREE_CODE_LENGTH (code) == 1);
3841
3842 t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
3843
3844 memset (t, 0, sizeof (struct tree_common));
3845
3846 TREE_SET_CODE (t, code);
3847
3848 TREE_TYPE (t) = type;
3849 SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
3850 TREE_OPERAND (t, 0) = node;
3851 if (node && !TYPE_P (node))
3852 {
3853 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
3854 TREE_READONLY (t) = TREE_READONLY (node);
3855 }
3856
3857 if (TREE_CODE_CLASS (code) == tcc_statement)
3858 TREE_SIDE_EFFECTS (t) = 1;
3859 else switch (code)
3860 {
3861 case VA_ARG_EXPR:
3862 /* All of these have side-effects, no matter what their
3863 operands are. */
3864 TREE_SIDE_EFFECTS (t) = 1;
3865 TREE_READONLY (t) = 0;
3866 break;
3867
3868 case INDIRECT_REF:
3869 /* Whether a dereference is readonly has nothing to do with whether
3870 its operand is readonly. */
3871 TREE_READONLY (t) = 0;
3872 break;
3873
3874 case ADDR_EXPR:
3875 if (node)
3876 recompute_tree_invariant_for_addr_expr (t);
3877 break;
3878
3879 default:
3880 if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
3881 && node && !TYPE_P (node)
3882 && TREE_CONSTANT (node))
3883 TREE_CONSTANT (t) = 1;
3884 if (TREE_CODE_CLASS (code) == tcc_reference
3885 && node && TREE_THIS_VOLATILE (node))
3886 TREE_THIS_VOLATILE (t) = 1;
3887 break;
3888 }
3889
3890 return t;
3891 }
3892
3893 #define PROCESS_ARG(N) \
3894 do { \
3895 TREE_OPERAND (t, N) = arg##N; \
3896 if (arg##N &&!TYPE_P (arg##N)) \
3897 { \
3898 if (TREE_SIDE_EFFECTS (arg##N)) \
3899 side_effects = 1; \
3900 if (!TREE_READONLY (arg##N) \
3901 && !CONSTANT_CLASS_P (arg##N)) \
3902 (void) (read_only = 0); \
3903 if (!TREE_CONSTANT (arg##N)) \
3904 (void) (constant = 0); \
3905 } \
3906 } while (0)
3907
3908 tree
3909 build2_stat (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
3910 {
3911 bool constant, read_only, side_effects;
3912 tree t;
3913
3914 gcc_assert (TREE_CODE_LENGTH (code) == 2);
3915
3916 if ((code == MINUS_EXPR || code == PLUS_EXPR || code == MULT_EXPR)
3917 && arg0 && arg1 && tt && POINTER_TYPE_P (tt)
3918 /* When sizetype precision doesn't match that of pointers
3919 we need to be able to build explicit extensions or truncations
3920 of the offset argument. */
3921 && TYPE_PRECISION (sizetype) == TYPE_PRECISION (tt))
3922 gcc_assert (TREE_CODE (arg0) == INTEGER_CST
3923 && TREE_CODE (arg1) == INTEGER_CST);
3924
3925 if (code == POINTER_PLUS_EXPR && arg0 && arg1 && tt)
3926 gcc_assert (POINTER_TYPE_P (tt) && POINTER_TYPE_P (TREE_TYPE (arg0))
3927 && ptrofftype_p (TREE_TYPE (arg1)));
3928
3929 t = make_node_stat (code PASS_MEM_STAT);
3930 TREE_TYPE (t) = tt;
3931
3932 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
3933 result based on those same flags for the arguments. But if the
3934 arguments aren't really even `tree' expressions, we shouldn't be trying
3935 to do this. */
3936
3937 /* Expressions without side effects may be constant if their
3938 arguments are as well. */
3939 constant = (TREE_CODE_CLASS (code) == tcc_comparison
3940 || TREE_CODE_CLASS (code) == tcc_binary);
3941 read_only = 1;
3942 side_effects = TREE_SIDE_EFFECTS (t);
3943
3944 PROCESS_ARG(0);
3945 PROCESS_ARG(1);
3946
3947 TREE_READONLY (t) = read_only;
3948 TREE_CONSTANT (t) = constant;
3949 TREE_SIDE_EFFECTS (t) = side_effects;
3950 TREE_THIS_VOLATILE (t)
3951 = (TREE_CODE_CLASS (code) == tcc_reference
3952 && arg0 && TREE_THIS_VOLATILE (arg0));
3953
3954 return t;
3955 }
3956
3957
3958 tree
3959 build3_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3960 tree arg2 MEM_STAT_DECL)
3961 {
3962 bool constant, read_only, side_effects;
3963 tree t;
3964
3965 gcc_assert (TREE_CODE_LENGTH (code) == 3);
3966 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
3967
3968 t = make_node_stat (code PASS_MEM_STAT);
3969 TREE_TYPE (t) = tt;
3970
3971 read_only = 1;
3972
3973 /* As a special exception, if COND_EXPR has NULL branches, we
3974 assume that it is a gimple statement and always consider
3975 it to have side effects. */
3976 if (code == COND_EXPR
3977 && tt == void_type_node
3978 && arg1 == NULL_TREE
3979 && arg2 == NULL_TREE)
3980 side_effects = true;
3981 else
3982 side_effects = TREE_SIDE_EFFECTS (t);
3983
3984 PROCESS_ARG(0);
3985 PROCESS_ARG(1);
3986 PROCESS_ARG(2);
3987
3988 if (code == COND_EXPR)
3989 TREE_READONLY (t) = read_only;
3990
3991 TREE_SIDE_EFFECTS (t) = side_effects;
3992 TREE_THIS_VOLATILE (t)
3993 = (TREE_CODE_CLASS (code) == tcc_reference
3994 && arg0 && TREE_THIS_VOLATILE (arg0));
3995
3996 return t;
3997 }
3998
3999 tree
4000 build4_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
4001 tree arg2, tree arg3 MEM_STAT_DECL)
4002 {
4003 bool constant, read_only, side_effects;
4004 tree t;
4005
4006 gcc_assert (TREE_CODE_LENGTH (code) == 4);
4007
4008 t = make_node_stat (code PASS_MEM_STAT);
4009 TREE_TYPE (t) = tt;
4010
4011 side_effects = TREE_SIDE_EFFECTS (t);
4012
4013 PROCESS_ARG(0);
4014 PROCESS_ARG(1);
4015 PROCESS_ARG(2);
4016 PROCESS_ARG(3);
4017
4018 TREE_SIDE_EFFECTS (t) = side_effects;
4019 TREE_THIS_VOLATILE (t)
4020 = (TREE_CODE_CLASS (code) == tcc_reference
4021 && arg0 && TREE_THIS_VOLATILE (arg0));
4022
4023 return t;
4024 }
4025
4026 tree
4027 build5_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
4028 tree arg2, tree arg3, tree arg4 MEM_STAT_DECL)
4029 {
4030 bool constant, read_only, side_effects;
4031 tree t;
4032
4033 gcc_assert (TREE_CODE_LENGTH (code) == 5);
4034
4035 t = make_node_stat (code PASS_MEM_STAT);
4036 TREE_TYPE (t) = tt;
4037
4038 side_effects = TREE_SIDE_EFFECTS (t);
4039
4040 PROCESS_ARG(0);
4041 PROCESS_ARG(1);
4042 PROCESS_ARG(2);
4043 PROCESS_ARG(3);
4044 PROCESS_ARG(4);
4045
4046 TREE_SIDE_EFFECTS (t) = side_effects;
4047 TREE_THIS_VOLATILE (t)
4048 = (TREE_CODE_CLASS (code) == tcc_reference
4049 && arg0 && TREE_THIS_VOLATILE (arg0));
4050
4051 return t;
4052 }
4053
4054 /* Build a simple MEM_REF tree with the sematics of a plain INDIRECT_REF
4055 on the pointer PTR. */
4056
4057 tree
4058 build_simple_mem_ref_loc (location_t loc, tree ptr)
4059 {
4060 HOST_WIDE_INT offset = 0;
4061 tree ptype = TREE_TYPE (ptr);
4062 tree tem;
4063 /* For convenience allow addresses that collapse to a simple base
4064 and offset. */
4065 if (TREE_CODE (ptr) == ADDR_EXPR
4066 && (handled_component_p (TREE_OPERAND (ptr, 0))
4067 || TREE_CODE (TREE_OPERAND (ptr, 0)) == MEM_REF))
4068 {
4069 ptr = get_addr_base_and_unit_offset (TREE_OPERAND (ptr, 0), &offset);
4070 gcc_assert (ptr);
4071 ptr = build_fold_addr_expr (ptr);
4072 gcc_assert (is_gimple_reg (ptr) || is_gimple_min_invariant (ptr));
4073 }
4074 tem = build2 (MEM_REF, TREE_TYPE (ptype),
4075 ptr, build_int_cst (ptype, offset));
4076 SET_EXPR_LOCATION (tem, loc);
4077 return tem;
4078 }
4079
4080 /* Return the constant offset of a MEM_REF or TARGET_MEM_REF tree T. */
4081
4082 double_int
4083 mem_ref_offset (const_tree t)
4084 {
4085 tree toff = TREE_OPERAND (t, 1);
4086 return tree_to_double_int (toff).sext (TYPE_PRECISION (TREE_TYPE (toff)));
4087 }
4088
4089 /* Return the pointer-type relevant for TBAA purposes from the
4090 gimple memory reference tree T. This is the type to be used for
4091 the offset operand of MEM_REF or TARGET_MEM_REF replacements of T. */
4092
4093 tree
4094 reference_alias_ptr_type (const_tree t)
4095 {
4096 const_tree base = t;
4097 while (handled_component_p (base))
4098 base = TREE_OPERAND (base, 0);
4099 if (TREE_CODE (base) == MEM_REF)
4100 return TREE_TYPE (TREE_OPERAND (base, 1));
4101 else if (TREE_CODE (base) == TARGET_MEM_REF)
4102 return TREE_TYPE (TMR_OFFSET (base));
4103 else
4104 return build_pointer_type (TYPE_MAIN_VARIANT (TREE_TYPE (base)));
4105 }
4106
4107 /* Return an invariant ADDR_EXPR of type TYPE taking the address of BASE
4108 offsetted by OFFSET units. */
4109
4110 tree
4111 build_invariant_address (tree type, tree base, HOST_WIDE_INT offset)
4112 {
4113 tree ref = fold_build2 (MEM_REF, TREE_TYPE (type),
4114 build_fold_addr_expr (base),
4115 build_int_cst (ptr_type_node, offset));
4116 tree addr = build1 (ADDR_EXPR, type, ref);
4117 recompute_tree_invariant_for_addr_expr (addr);
4118 return addr;
4119 }
4120
4121 /* Similar except don't specify the TREE_TYPE
4122 and leave the TREE_SIDE_EFFECTS as 0.
4123 It is permissible for arguments to be null,
4124 or even garbage if their values do not matter. */
4125
4126 tree
4127 build_nt (enum tree_code code, ...)
4128 {
4129 tree t;
4130 int length;
4131 int i;
4132 va_list p;
4133
4134 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
4135
4136 va_start (p, code);
4137
4138 t = make_node (code);
4139 length = TREE_CODE_LENGTH (code);
4140
4141 for (i = 0; i < length; i++)
4142 TREE_OPERAND (t, i) = va_arg (p, tree);
4143
4144 va_end (p);
4145 return t;
4146 }
4147
4148 /* Similar to build_nt, but for creating a CALL_EXPR object with a
4149 tree vec. */
4150
4151 tree
4152 build_nt_call_vec (tree fn, vec<tree, va_gc> *args)
4153 {
4154 tree ret, t;
4155 unsigned int ix;
4156
4157 ret = build_vl_exp (CALL_EXPR, vec_safe_length (args) + 3);
4158 CALL_EXPR_FN (ret) = fn;
4159 CALL_EXPR_STATIC_CHAIN (ret) = NULL_TREE;
4160 FOR_EACH_VEC_SAFE_ELT (args, ix, t)
4161 CALL_EXPR_ARG (ret, ix) = t;
4162 return ret;
4163 }
4164 \f
4165 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
4166 We do NOT enter this node in any sort of symbol table.
4167
4168 LOC is the location of the decl.
4169
4170 layout_decl is used to set up the decl's storage layout.
4171 Other slots are initialized to 0 or null pointers. */
4172
4173 tree
4174 build_decl_stat (location_t loc, enum tree_code code, tree name,
4175 tree type MEM_STAT_DECL)
4176 {
4177 tree t;
4178
4179 t = make_node_stat (code PASS_MEM_STAT);
4180 DECL_SOURCE_LOCATION (t) = loc;
4181
4182 /* if (type == error_mark_node)
4183 type = integer_type_node; */
4184 /* That is not done, deliberately, so that having error_mark_node
4185 as the type can suppress useless errors in the use of this variable. */
4186
4187 DECL_NAME (t) = name;
4188 TREE_TYPE (t) = type;
4189
4190 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
4191 layout_decl (t, 0);
4192
4193 return t;
4194 }
4195
4196 /* Builds and returns function declaration with NAME and TYPE. */
4197
4198 tree
4199 build_fn_decl (const char *name, tree type)
4200 {
4201 tree id = get_identifier (name);
4202 tree decl = build_decl (input_location, FUNCTION_DECL, id, type);
4203
4204 DECL_EXTERNAL (decl) = 1;
4205 TREE_PUBLIC (decl) = 1;
4206 DECL_ARTIFICIAL (decl) = 1;
4207 TREE_NOTHROW (decl) = 1;
4208
4209 return decl;
4210 }
4211
4212 vec<tree, va_gc> *all_translation_units;
4213
4214 /* Builds a new translation-unit decl with name NAME, queues it in the
4215 global list of translation-unit decls and returns it. */
4216
4217 tree
4218 build_translation_unit_decl (tree name)
4219 {
4220 tree tu = build_decl (UNKNOWN_LOCATION, TRANSLATION_UNIT_DECL,
4221 name, NULL_TREE);
4222 TRANSLATION_UNIT_LANGUAGE (tu) = lang_hooks.name;
4223 vec_safe_push (all_translation_units, tu);
4224 return tu;
4225 }
4226
4227 \f
4228 /* BLOCK nodes are used to represent the structure of binding contours
4229 and declarations, once those contours have been exited and their contents
4230 compiled. This information is used for outputting debugging info. */
4231
4232 tree
4233 build_block (tree vars, tree subblocks, tree supercontext, tree chain)
4234 {
4235 tree block = make_node (BLOCK);
4236
4237 BLOCK_VARS (block) = vars;
4238 BLOCK_SUBBLOCKS (block) = subblocks;
4239 BLOCK_SUPERCONTEXT (block) = supercontext;
4240 BLOCK_CHAIN (block) = chain;
4241 return block;
4242 }
4243
4244 \f
4245 /* Like SET_EXPR_LOCATION, but make sure the tree can have a location.
4246
4247 LOC is the location to use in tree T. */
4248
4249 void
4250 protected_set_expr_location (tree t, location_t loc)
4251 {
4252 if (t && CAN_HAVE_LOCATION_P (t))
4253 SET_EXPR_LOCATION (t, loc);
4254 }
4255 \f
4256 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
4257 is ATTRIBUTE. */
4258
4259 tree
4260 build_decl_attribute_variant (tree ddecl, tree attribute)
4261 {
4262 DECL_ATTRIBUTES (ddecl) = attribute;
4263 return ddecl;
4264 }
4265
4266 /* Borrowed from hashtab.c iterative_hash implementation. */
4267 #define mix(a,b,c) \
4268 { \
4269 a -= b; a -= c; a ^= (c>>13); \
4270 b -= c; b -= a; b ^= (a<< 8); \
4271 c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
4272 a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
4273 b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
4274 c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
4275 a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
4276 b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
4277 c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
4278 }
4279
4280
4281 /* Produce good hash value combining VAL and VAL2. */
4282 hashval_t
4283 iterative_hash_hashval_t (hashval_t val, hashval_t val2)
4284 {
4285 /* the golden ratio; an arbitrary value. */
4286 hashval_t a = 0x9e3779b9;
4287
4288 mix (a, val, val2);
4289 return val2;
4290 }
4291
4292 /* Produce good hash value combining VAL and VAL2. */
4293 hashval_t
4294 iterative_hash_host_wide_int (HOST_WIDE_INT val, hashval_t val2)
4295 {
4296 if (sizeof (HOST_WIDE_INT) == sizeof (hashval_t))
4297 return iterative_hash_hashval_t (val, val2);
4298 else
4299 {
4300 hashval_t a = (hashval_t) val;
4301 /* Avoid warnings about shifting of more than the width of the type on
4302 hosts that won't execute this path. */
4303 int zero = 0;
4304 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 8 + zero));
4305 mix (a, b, val2);
4306 if (sizeof (HOST_WIDE_INT) > 2 * sizeof (hashval_t))
4307 {
4308 hashval_t a = (hashval_t) (val >> (sizeof (hashval_t) * 16 + zero));
4309 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 24 + zero));
4310 mix (a, b, val2);
4311 }
4312 return val2;
4313 }
4314 }
4315
4316 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
4317 is ATTRIBUTE and its qualifiers are QUALS.
4318
4319 Record such modified types already made so we don't make duplicates. */
4320
4321 tree
4322 build_type_attribute_qual_variant (tree ttype, tree attribute, int quals)
4323 {
4324 if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
4325 {
4326 hashval_t hashcode = 0;
4327 tree ntype;
4328 enum tree_code code = TREE_CODE (ttype);
4329
4330 /* Building a distinct copy of a tagged type is inappropriate; it
4331 causes breakage in code that expects there to be a one-to-one
4332 relationship between a struct and its fields.
4333 build_duplicate_type is another solution (as used in
4334 handle_transparent_union_attribute), but that doesn't play well
4335 with the stronger C++ type identity model. */
4336 if (TREE_CODE (ttype) == RECORD_TYPE
4337 || TREE_CODE (ttype) == UNION_TYPE
4338 || TREE_CODE (ttype) == QUAL_UNION_TYPE
4339 || TREE_CODE (ttype) == ENUMERAL_TYPE)
4340 {
4341 warning (OPT_Wattributes,
4342 "ignoring attributes applied to %qT after definition",
4343 TYPE_MAIN_VARIANT (ttype));
4344 return build_qualified_type (ttype, quals);
4345 }
4346
4347 ttype = build_qualified_type (ttype, TYPE_UNQUALIFIED);
4348 ntype = build_distinct_type_copy (ttype);
4349
4350 TYPE_ATTRIBUTES (ntype) = attribute;
4351
4352 hashcode = iterative_hash_object (code, hashcode);
4353 if (TREE_TYPE (ntype))
4354 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (ntype)),
4355 hashcode);
4356 hashcode = attribute_hash_list (attribute, hashcode);
4357
4358 switch (TREE_CODE (ntype))
4359 {
4360 case FUNCTION_TYPE:
4361 hashcode = type_hash_list (TYPE_ARG_TYPES (ntype), hashcode);
4362 break;
4363 case ARRAY_TYPE:
4364 if (TYPE_DOMAIN (ntype))
4365 hashcode = iterative_hash_object (TYPE_HASH (TYPE_DOMAIN (ntype)),
4366 hashcode);
4367 break;
4368 case INTEGER_TYPE:
4369 hashcode = iterative_hash_object
4370 (TREE_INT_CST_LOW (TYPE_MAX_VALUE (ntype)), hashcode);
4371 hashcode = iterative_hash_object
4372 (TREE_INT_CST_HIGH (TYPE_MAX_VALUE (ntype)), hashcode);
4373 break;
4374 case REAL_TYPE:
4375 case FIXED_POINT_TYPE:
4376 {
4377 unsigned int precision = TYPE_PRECISION (ntype);
4378 hashcode = iterative_hash_object (precision, hashcode);
4379 }
4380 break;
4381 default:
4382 break;
4383 }
4384
4385 ntype = type_hash_canon (hashcode, ntype);
4386
4387 /* If the target-dependent attributes make NTYPE different from
4388 its canonical type, we will need to use structural equality
4389 checks for this type. */
4390 if (TYPE_STRUCTURAL_EQUALITY_P (ttype)
4391 || !comp_type_attributes (ntype, ttype))
4392 SET_TYPE_STRUCTURAL_EQUALITY (ntype);
4393 else if (TYPE_CANONICAL (ntype) == ntype)
4394 TYPE_CANONICAL (ntype) = TYPE_CANONICAL (ttype);
4395
4396 ttype = build_qualified_type (ntype, quals);
4397 }
4398 else if (TYPE_QUALS (ttype) != quals)
4399 ttype = build_qualified_type (ttype, quals);
4400
4401 return ttype;
4402 }
4403
4404 /* Compare two attributes for their value identity. Return true if the
4405 attribute values are known to be equal; otherwise return false.
4406 */
4407
4408 static bool
4409 attribute_value_equal (const_tree attr1, const_tree attr2)
4410 {
4411 if (TREE_VALUE (attr1) == TREE_VALUE (attr2))
4412 return true;
4413
4414 if (TREE_VALUE (attr1) != NULL_TREE
4415 && TREE_CODE (TREE_VALUE (attr1)) == TREE_LIST
4416 && TREE_VALUE (attr2) != NULL
4417 && TREE_CODE (TREE_VALUE (attr2)) == TREE_LIST)
4418 return (simple_cst_list_equal (TREE_VALUE (attr1),
4419 TREE_VALUE (attr2)) == 1);
4420
4421 return (simple_cst_equal (TREE_VALUE (attr1), TREE_VALUE (attr2)) == 1);
4422 }
4423
4424 /* Return 0 if the attributes for two types are incompatible, 1 if they
4425 are compatible, and 2 if they are nearly compatible (which causes a
4426 warning to be generated). */
4427 int
4428 comp_type_attributes (const_tree type1, const_tree type2)
4429 {
4430 const_tree a1 = TYPE_ATTRIBUTES (type1);
4431 const_tree a2 = TYPE_ATTRIBUTES (type2);
4432 const_tree a;
4433
4434 if (a1 == a2)
4435 return 1;
4436 for (a = a1; a != NULL_TREE; a = TREE_CHAIN (a))
4437 {
4438 const struct attribute_spec *as;
4439 const_tree attr;
4440
4441 as = lookup_attribute_spec (get_attribute_name (a));
4442 if (!as || as->affects_type_identity == false)
4443 continue;
4444
4445 attr = lookup_attribute (as->name, CONST_CAST_TREE (a2));
4446 if (!attr || !attribute_value_equal (a, attr))
4447 break;
4448 }
4449 if (!a)
4450 {
4451 for (a = a2; a != NULL_TREE; a = TREE_CHAIN (a))
4452 {
4453 const struct attribute_spec *as;
4454
4455 as = lookup_attribute_spec (get_attribute_name (a));
4456 if (!as || as->affects_type_identity == false)
4457 continue;
4458
4459 if (!lookup_attribute (as->name, CONST_CAST_TREE (a1)))
4460 break;
4461 /* We don't need to compare trees again, as we did this
4462 already in first loop. */
4463 }
4464 /* All types - affecting identity - are equal, so
4465 there is no need to call target hook for comparison. */
4466 if (!a)
4467 return 1;
4468 }
4469 /* As some type combinations - like default calling-convention - might
4470 be compatible, we have to call the target hook to get the final result. */
4471 return targetm.comp_type_attributes (type1, type2);
4472 }
4473
4474 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
4475 is ATTRIBUTE.
4476
4477 Record such modified types already made so we don't make duplicates. */
4478
4479 tree
4480 build_type_attribute_variant (tree ttype, tree attribute)
4481 {
4482 return build_type_attribute_qual_variant (ttype, attribute,
4483 TYPE_QUALS (ttype));
4484 }
4485
4486
4487 /* Reset the expression *EXPR_P, a size or position.
4488
4489 ??? We could reset all non-constant sizes or positions. But it's cheap
4490 enough to not do so and refrain from adding workarounds to dwarf2out.c.
4491
4492 We need to reset self-referential sizes or positions because they cannot
4493 be gimplified and thus can contain a CALL_EXPR after the gimplification
4494 is finished, which will run afoul of LTO streaming. And they need to be
4495 reset to something essentially dummy but not constant, so as to preserve
4496 the properties of the object they are attached to. */
4497
4498 static inline void
4499 free_lang_data_in_one_sizepos (tree *expr_p)
4500 {
4501 tree expr = *expr_p;
4502 if (CONTAINS_PLACEHOLDER_P (expr))
4503 *expr_p = build0 (PLACEHOLDER_EXPR, TREE_TYPE (expr));
4504 }
4505
4506
4507 /* Reset all the fields in a binfo node BINFO. We only keep
4508 BINFO_VTABLE, which is used by gimple_fold_obj_type_ref. */
4509
4510 static void
4511 free_lang_data_in_binfo (tree binfo)
4512 {
4513 unsigned i;
4514 tree t;
4515
4516 gcc_assert (TREE_CODE (binfo) == TREE_BINFO);
4517
4518 BINFO_VIRTUALS (binfo) = NULL_TREE;
4519 BINFO_BASE_ACCESSES (binfo) = NULL;
4520 BINFO_INHERITANCE_CHAIN (binfo) = NULL_TREE;
4521 BINFO_SUBVTT_INDEX (binfo) = NULL_TREE;
4522
4523 FOR_EACH_VEC_ELT (*BINFO_BASE_BINFOS (binfo), i, t)
4524 free_lang_data_in_binfo (t);
4525 }
4526
4527
4528 /* Reset all language specific information still present in TYPE. */
4529
4530 static void
4531 free_lang_data_in_type (tree type)
4532 {
4533 gcc_assert (TYPE_P (type));
4534
4535 /* Give the FE a chance to remove its own data first. */
4536 lang_hooks.free_lang_data (type);
4537
4538 TREE_LANG_FLAG_0 (type) = 0;
4539 TREE_LANG_FLAG_1 (type) = 0;
4540 TREE_LANG_FLAG_2 (type) = 0;
4541 TREE_LANG_FLAG_3 (type) = 0;
4542 TREE_LANG_FLAG_4 (type) = 0;
4543 TREE_LANG_FLAG_5 (type) = 0;
4544 TREE_LANG_FLAG_6 (type) = 0;
4545
4546 if (TREE_CODE (type) == FUNCTION_TYPE)
4547 {
4548 /* Remove the const and volatile qualifiers from arguments. The
4549 C++ front end removes them, but the C front end does not,
4550 leading to false ODR violation errors when merging two
4551 instances of the same function signature compiled by
4552 different front ends. */
4553 tree p;
4554
4555 for (p = TYPE_ARG_TYPES (type); p; p = TREE_CHAIN (p))
4556 {
4557 tree arg_type = TREE_VALUE (p);
4558
4559 if (TYPE_READONLY (arg_type) || TYPE_VOLATILE (arg_type))
4560 {
4561 int quals = TYPE_QUALS (arg_type)
4562 & ~TYPE_QUAL_CONST
4563 & ~TYPE_QUAL_VOLATILE;
4564 TREE_VALUE (p) = build_qualified_type (arg_type, quals);
4565 free_lang_data_in_type (TREE_VALUE (p));
4566 }
4567 }
4568 }
4569
4570 /* Remove members that are not actually FIELD_DECLs from the field
4571 list of an aggregate. These occur in C++. */
4572 if (RECORD_OR_UNION_TYPE_P (type))
4573 {
4574 tree prev, member;
4575
4576 /* Note that TYPE_FIELDS can be shared across distinct
4577 TREE_TYPEs. Therefore, if the first field of TYPE_FIELDS is
4578 to be removed, we cannot set its TREE_CHAIN to NULL.
4579 Otherwise, we would not be able to find all the other fields
4580 in the other instances of this TREE_TYPE.
4581
4582 This was causing an ICE in testsuite/g++.dg/lto/20080915.C. */
4583 prev = NULL_TREE;
4584 member = TYPE_FIELDS (type);
4585 while (member)
4586 {
4587 if (TREE_CODE (member) == FIELD_DECL
4588 || TREE_CODE (member) == TYPE_DECL)
4589 {
4590 if (prev)
4591 TREE_CHAIN (prev) = member;
4592 else
4593 TYPE_FIELDS (type) = member;
4594 prev = member;
4595 }
4596
4597 member = TREE_CHAIN (member);
4598 }
4599
4600 if (prev)
4601 TREE_CHAIN (prev) = NULL_TREE;
4602 else
4603 TYPE_FIELDS (type) = NULL_TREE;
4604
4605 TYPE_METHODS (type) = NULL_TREE;
4606 if (TYPE_BINFO (type))
4607 free_lang_data_in_binfo (TYPE_BINFO (type));
4608 }
4609 else
4610 {
4611 /* For non-aggregate types, clear out the language slot (which
4612 overloads TYPE_BINFO). */
4613 TYPE_LANG_SLOT_1 (type) = NULL_TREE;
4614
4615 if (INTEGRAL_TYPE_P (type)
4616 || SCALAR_FLOAT_TYPE_P (type)
4617 || FIXED_POINT_TYPE_P (type))
4618 {
4619 free_lang_data_in_one_sizepos (&TYPE_MIN_VALUE (type));
4620 free_lang_data_in_one_sizepos (&TYPE_MAX_VALUE (type));
4621 }
4622 }
4623
4624 free_lang_data_in_one_sizepos (&TYPE_SIZE (type));
4625 free_lang_data_in_one_sizepos (&TYPE_SIZE_UNIT (type));
4626
4627 if (TYPE_CONTEXT (type)
4628 && TREE_CODE (TYPE_CONTEXT (type)) == BLOCK)
4629 {
4630 tree ctx = TYPE_CONTEXT (type);
4631 do
4632 {
4633 ctx = BLOCK_SUPERCONTEXT (ctx);
4634 }
4635 while (ctx && TREE_CODE (ctx) == BLOCK);
4636 TYPE_CONTEXT (type) = ctx;
4637 }
4638 }
4639
4640
4641 /* Return true if DECL may need an assembler name to be set. */
4642
4643 static inline bool
4644 need_assembler_name_p (tree decl)
4645 {
4646 /* Only FUNCTION_DECLs and VAR_DECLs are considered. */
4647 if (TREE_CODE (decl) != FUNCTION_DECL
4648 && TREE_CODE (decl) != VAR_DECL)
4649 return false;
4650
4651 /* If DECL already has its assembler name set, it does not need a
4652 new one. */
4653 if (!HAS_DECL_ASSEMBLER_NAME_P (decl)
4654 || DECL_ASSEMBLER_NAME_SET_P (decl))
4655 return false;
4656
4657 /* Abstract decls do not need an assembler name. */
4658 if (DECL_ABSTRACT (decl))
4659 return false;
4660
4661 /* For VAR_DECLs, only static, public and external symbols need an
4662 assembler name. */
4663 if (TREE_CODE (decl) == VAR_DECL
4664 && !TREE_STATIC (decl)
4665 && !TREE_PUBLIC (decl)
4666 && !DECL_EXTERNAL (decl))
4667 return false;
4668
4669 if (TREE_CODE (decl) == FUNCTION_DECL)
4670 {
4671 /* Do not set assembler name on builtins. Allow RTL expansion to
4672 decide whether to expand inline or via a regular call. */
4673 if (DECL_BUILT_IN (decl)
4674 && DECL_BUILT_IN_CLASS (decl) != BUILT_IN_FRONTEND)
4675 return false;
4676
4677 /* Functions represented in the callgraph need an assembler name. */
4678 if (cgraph_get_node (decl) != NULL)
4679 return true;
4680
4681 /* Unused and not public functions don't need an assembler name. */
4682 if (!TREE_USED (decl) && !TREE_PUBLIC (decl))
4683 return false;
4684 }
4685
4686 return true;
4687 }
4688
4689
4690 /* Reset all language specific information still present in symbol
4691 DECL. */
4692
4693 static void
4694 free_lang_data_in_decl (tree decl)
4695 {
4696 gcc_assert (DECL_P (decl));
4697
4698 /* Give the FE a chance to remove its own data first. */
4699 lang_hooks.free_lang_data (decl);
4700
4701 TREE_LANG_FLAG_0 (decl) = 0;
4702 TREE_LANG_FLAG_1 (decl) = 0;
4703 TREE_LANG_FLAG_2 (decl) = 0;
4704 TREE_LANG_FLAG_3 (decl) = 0;
4705 TREE_LANG_FLAG_4 (decl) = 0;
4706 TREE_LANG_FLAG_5 (decl) = 0;
4707 TREE_LANG_FLAG_6 (decl) = 0;
4708
4709 free_lang_data_in_one_sizepos (&DECL_SIZE (decl));
4710 free_lang_data_in_one_sizepos (&DECL_SIZE_UNIT (decl));
4711 if (TREE_CODE (decl) == FIELD_DECL)
4712 {
4713 free_lang_data_in_one_sizepos (&DECL_FIELD_OFFSET (decl));
4714 if (TREE_CODE (DECL_CONTEXT (decl)) == QUAL_UNION_TYPE)
4715 DECL_QUALIFIER (decl) = NULL_TREE;
4716 }
4717
4718 if (TREE_CODE (decl) == FUNCTION_DECL)
4719 {
4720 if (gimple_has_body_p (decl))
4721 {
4722 tree t;
4723
4724 /* If DECL has a gimple body, then the context for its
4725 arguments must be DECL. Otherwise, it doesn't really
4726 matter, as we will not be emitting any code for DECL. In
4727 general, there may be other instances of DECL created by
4728 the front end and since PARM_DECLs are generally shared,
4729 their DECL_CONTEXT changes as the replicas of DECL are
4730 created. The only time where DECL_CONTEXT is important
4731 is for the FUNCTION_DECLs that have a gimple body (since
4732 the PARM_DECL will be used in the function's body). */
4733 for (t = DECL_ARGUMENTS (decl); t; t = TREE_CHAIN (t))
4734 DECL_CONTEXT (t) = decl;
4735 }
4736
4737 /* DECL_SAVED_TREE holds the GENERIC representation for DECL.
4738 At this point, it is not needed anymore. */
4739 DECL_SAVED_TREE (decl) = NULL_TREE;
4740
4741 /* Clear the abstract origin if it refers to a method. Otherwise
4742 dwarf2out.c will ICE as we clear TYPE_METHODS and thus the
4743 origin will not be output correctly. */
4744 if (DECL_ABSTRACT_ORIGIN (decl)
4745 && DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))
4746 && RECORD_OR_UNION_TYPE_P
4747 (DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))))
4748 DECL_ABSTRACT_ORIGIN (decl) = NULL_TREE;
4749
4750 /* Sometimes the C++ frontend doesn't manage to transform a temporary
4751 DECL_VINDEX referring to itself into a vtable slot number as it
4752 should. Happens with functions that are copied and then forgotten
4753 about. Just clear it, it won't matter anymore. */
4754 if (DECL_VINDEX (decl) && !host_integerp (DECL_VINDEX (decl), 0))
4755 DECL_VINDEX (decl) = NULL_TREE;
4756 }
4757 else if (TREE_CODE (decl) == VAR_DECL)
4758 {
4759 if ((DECL_EXTERNAL (decl)
4760 && (!TREE_STATIC (decl) || !TREE_READONLY (decl)))
4761 || (decl_function_context (decl) && !TREE_STATIC (decl)))
4762 DECL_INITIAL (decl) = NULL_TREE;
4763 }
4764 else if (TREE_CODE (decl) == TYPE_DECL
4765 || TREE_CODE (decl) == FIELD_DECL)
4766 DECL_INITIAL (decl) = NULL_TREE;
4767 else if (TREE_CODE (decl) == TRANSLATION_UNIT_DECL
4768 && DECL_INITIAL (decl)
4769 && TREE_CODE (DECL_INITIAL (decl)) == BLOCK)
4770 {
4771 /* Strip builtins from the translation-unit BLOCK. We still have targets
4772 without builtin_decl_explicit support and also builtins are shared
4773 nodes and thus we can't use TREE_CHAIN in multiple lists. */
4774 tree *nextp = &BLOCK_VARS (DECL_INITIAL (decl));
4775 while (*nextp)
4776 {
4777 tree var = *nextp;
4778 if (TREE_CODE (var) == FUNCTION_DECL
4779 && DECL_BUILT_IN (var))
4780 *nextp = TREE_CHAIN (var);
4781 else
4782 nextp = &TREE_CHAIN (var);
4783 }
4784 }
4785 }
4786
4787
4788 /* Data used when collecting DECLs and TYPEs for language data removal. */
4789
4790 struct free_lang_data_d
4791 {
4792 /* Worklist to avoid excessive recursion. */
4793 vec<tree> worklist;
4794
4795 /* Set of traversed objects. Used to avoid duplicate visits. */
4796 struct pointer_set_t *pset;
4797
4798 /* Array of symbols to process with free_lang_data_in_decl. */
4799 vec<tree> decls;
4800
4801 /* Array of types to process with free_lang_data_in_type. */
4802 vec<tree> types;
4803 };
4804
4805
4806 /* Save all language fields needed to generate proper debug information
4807 for DECL. This saves most fields cleared out by free_lang_data_in_decl. */
4808
4809 static void
4810 save_debug_info_for_decl (tree t)
4811 {
4812 /*struct saved_debug_info_d *sdi;*/
4813
4814 gcc_assert (debug_info_level > DINFO_LEVEL_TERSE && t && DECL_P (t));
4815
4816 /* FIXME. Partial implementation for saving debug info removed. */
4817 }
4818
4819
4820 /* Save all language fields needed to generate proper debug information
4821 for TYPE. This saves most fields cleared out by free_lang_data_in_type. */
4822
4823 static void
4824 save_debug_info_for_type (tree t)
4825 {
4826 /*struct saved_debug_info_d *sdi;*/
4827
4828 gcc_assert (debug_info_level > DINFO_LEVEL_TERSE && t && TYPE_P (t));
4829
4830 /* FIXME. Partial implementation for saving debug info removed. */
4831 }
4832
4833
4834 /* Add type or decl T to one of the list of tree nodes that need their
4835 language data removed. The lists are held inside FLD. */
4836
4837 static void
4838 add_tree_to_fld_list (tree t, struct free_lang_data_d *fld)
4839 {
4840 if (DECL_P (t))
4841 {
4842 fld->decls.safe_push (t);
4843 if (debug_info_level > DINFO_LEVEL_TERSE)
4844 save_debug_info_for_decl (t);
4845 }
4846 else if (TYPE_P (t))
4847 {
4848 fld->types.safe_push (t);
4849 if (debug_info_level > DINFO_LEVEL_TERSE)
4850 save_debug_info_for_type (t);
4851 }
4852 else
4853 gcc_unreachable ();
4854 }
4855
4856 /* Push tree node T into FLD->WORKLIST. */
4857
4858 static inline void
4859 fld_worklist_push (tree t, struct free_lang_data_d *fld)
4860 {
4861 if (t && !is_lang_specific (t) && !pointer_set_contains (fld->pset, t))
4862 fld->worklist.safe_push ((t));
4863 }
4864
4865
4866 /* Operand callback helper for free_lang_data_in_node. *TP is the
4867 subtree operand being considered. */
4868
4869 static tree
4870 find_decls_types_r (tree *tp, int *ws, void *data)
4871 {
4872 tree t = *tp;
4873 struct free_lang_data_d *fld = (struct free_lang_data_d *) data;
4874
4875 if (TREE_CODE (t) == TREE_LIST)
4876 return NULL_TREE;
4877
4878 /* Language specific nodes will be removed, so there is no need
4879 to gather anything under them. */
4880 if (is_lang_specific (t))
4881 {
4882 *ws = 0;
4883 return NULL_TREE;
4884 }
4885
4886 if (DECL_P (t))
4887 {
4888 /* Note that walk_tree does not traverse every possible field in
4889 decls, so we have to do our own traversals here. */
4890 add_tree_to_fld_list (t, fld);
4891
4892 fld_worklist_push (DECL_NAME (t), fld);
4893 fld_worklist_push (DECL_CONTEXT (t), fld);
4894 fld_worklist_push (DECL_SIZE (t), fld);
4895 fld_worklist_push (DECL_SIZE_UNIT (t), fld);
4896
4897 /* We are going to remove everything under DECL_INITIAL for
4898 TYPE_DECLs. No point walking them. */
4899 if (TREE_CODE (t) != TYPE_DECL)
4900 fld_worklist_push (DECL_INITIAL (t), fld);
4901
4902 fld_worklist_push (DECL_ATTRIBUTES (t), fld);
4903 fld_worklist_push (DECL_ABSTRACT_ORIGIN (t), fld);
4904
4905 if (TREE_CODE (t) == FUNCTION_DECL)
4906 {
4907 fld_worklist_push (DECL_ARGUMENTS (t), fld);
4908 fld_worklist_push (DECL_RESULT (t), fld);
4909 }
4910 else if (TREE_CODE (t) == TYPE_DECL)
4911 {
4912 fld_worklist_push (DECL_ARGUMENT_FLD (t), fld);
4913 fld_worklist_push (DECL_VINDEX (t), fld);
4914 fld_worklist_push (DECL_ORIGINAL_TYPE (t), fld);
4915 }
4916 else if (TREE_CODE (t) == FIELD_DECL)
4917 {
4918 fld_worklist_push (DECL_FIELD_OFFSET (t), fld);
4919 fld_worklist_push (DECL_BIT_FIELD_TYPE (t), fld);
4920 fld_worklist_push (DECL_FIELD_BIT_OFFSET (t), fld);
4921 fld_worklist_push (DECL_FCONTEXT (t), fld);
4922 }
4923 else if (TREE_CODE (t) == VAR_DECL)
4924 {
4925 fld_worklist_push (DECL_SECTION_NAME (t), fld);
4926 fld_worklist_push (DECL_COMDAT_GROUP (t), fld);
4927 }
4928
4929 if ((TREE_CODE (t) == VAR_DECL || TREE_CODE (t) == PARM_DECL)
4930 && DECL_HAS_VALUE_EXPR_P (t))
4931 fld_worklist_push (DECL_VALUE_EXPR (t), fld);
4932
4933 if (TREE_CODE (t) != FIELD_DECL
4934 && TREE_CODE (t) != TYPE_DECL)
4935 fld_worklist_push (TREE_CHAIN (t), fld);
4936 *ws = 0;
4937 }
4938 else if (TYPE_P (t))
4939 {
4940 /* Note that walk_tree does not traverse every possible field in
4941 types, so we have to do our own traversals here. */
4942 add_tree_to_fld_list (t, fld);
4943
4944 if (!RECORD_OR_UNION_TYPE_P (t))
4945 fld_worklist_push (TYPE_CACHED_VALUES (t), fld);
4946 fld_worklist_push (TYPE_SIZE (t), fld);
4947 fld_worklist_push (TYPE_SIZE_UNIT (t), fld);
4948 fld_worklist_push (TYPE_ATTRIBUTES (t), fld);
4949 fld_worklist_push (TYPE_POINTER_TO (t), fld);
4950 fld_worklist_push (TYPE_REFERENCE_TO (t), fld);
4951 fld_worklist_push (TYPE_NAME (t), fld);
4952 /* Do not walk TYPE_NEXT_PTR_TO or TYPE_NEXT_REF_TO. We do not stream
4953 them and thus do not and want not to reach unused pointer types
4954 this way. */
4955 if (!POINTER_TYPE_P (t))
4956 fld_worklist_push (TYPE_MINVAL (t), fld);
4957 if (!RECORD_OR_UNION_TYPE_P (t))
4958 fld_worklist_push (TYPE_MAXVAL (t), fld);
4959 fld_worklist_push (TYPE_MAIN_VARIANT (t), fld);
4960 /* Do not walk TYPE_NEXT_VARIANT. We do not stream it and thus
4961 do not and want not to reach unused variants this way. */
4962 if (TYPE_CONTEXT (t))
4963 {
4964 tree ctx = TYPE_CONTEXT (t);
4965 /* We adjust BLOCK TYPE_CONTEXTs to the innermost non-BLOCK one.
4966 So push that instead. */
4967 while (ctx && TREE_CODE (ctx) == BLOCK)
4968 ctx = BLOCK_SUPERCONTEXT (ctx);
4969 fld_worklist_push (ctx, fld);
4970 }
4971 /* Do not walk TYPE_CANONICAL. We do not stream it and thus do not
4972 and want not to reach unused types this way. */
4973
4974 if (RECORD_OR_UNION_TYPE_P (t) && TYPE_BINFO (t))
4975 {
4976 unsigned i;
4977 tree tem;
4978 FOR_EACH_VEC_ELT (*BINFO_BASE_BINFOS (TYPE_BINFO (t)), i, tem)
4979 fld_worklist_push (TREE_TYPE (tem), fld);
4980 tem = BINFO_VIRTUALS (TYPE_BINFO (t));
4981 if (tem
4982 /* The Java FE overloads BINFO_VIRTUALS for its own purpose. */
4983 && TREE_CODE (tem) == TREE_LIST)
4984 do
4985 {
4986 fld_worklist_push (TREE_VALUE (tem), fld);
4987 tem = TREE_CHAIN (tem);
4988 }
4989 while (tem);
4990 }
4991 if (RECORD_OR_UNION_TYPE_P (t))
4992 {
4993 tree tem;
4994 /* Push all TYPE_FIELDS - there can be interleaving interesting
4995 and non-interesting things. */
4996 tem = TYPE_FIELDS (t);
4997 while (tem)
4998 {
4999 if (TREE_CODE (tem) == FIELD_DECL
5000 || TREE_CODE (tem) == TYPE_DECL)
5001 fld_worklist_push (tem, fld);
5002 tem = TREE_CHAIN (tem);
5003 }
5004 }
5005
5006 fld_worklist_push (TYPE_STUB_DECL (t), fld);
5007 *ws = 0;
5008 }
5009 else if (TREE_CODE (t) == BLOCK)
5010 {
5011 tree tem;
5012 for (tem = BLOCK_VARS (t); tem; tem = TREE_CHAIN (tem))
5013 fld_worklist_push (tem, fld);
5014 for (tem = BLOCK_SUBBLOCKS (t); tem; tem = BLOCK_CHAIN (tem))
5015 fld_worklist_push (tem, fld);
5016 fld_worklist_push (BLOCK_ABSTRACT_ORIGIN (t), fld);
5017 }
5018
5019 if (TREE_CODE (t) != IDENTIFIER_NODE
5020 && CODE_CONTAINS_STRUCT (TREE_CODE (t), TS_TYPED))
5021 fld_worklist_push (TREE_TYPE (t), fld);
5022
5023 return NULL_TREE;
5024 }
5025
5026
5027 /* Find decls and types in T. */
5028
5029 static void
5030 find_decls_types (tree t, struct free_lang_data_d *fld)
5031 {
5032 while (1)
5033 {
5034 if (!pointer_set_contains (fld->pset, t))
5035 walk_tree (&t, find_decls_types_r, fld, fld->pset);
5036 if (fld->worklist.is_empty ())
5037 break;
5038 t = fld->worklist.pop ();
5039 }
5040 }
5041
5042 /* Translate all the types in LIST with the corresponding runtime
5043 types. */
5044
5045 static tree
5046 get_eh_types_for_runtime (tree list)
5047 {
5048 tree head, prev;
5049
5050 if (list == NULL_TREE)
5051 return NULL_TREE;
5052
5053 head = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
5054 prev = head;
5055 list = TREE_CHAIN (list);
5056 while (list)
5057 {
5058 tree n = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
5059 TREE_CHAIN (prev) = n;
5060 prev = TREE_CHAIN (prev);
5061 list = TREE_CHAIN (list);
5062 }
5063
5064 return head;
5065 }
5066
5067
5068 /* Find decls and types referenced in EH region R and store them in
5069 FLD->DECLS and FLD->TYPES. */
5070
5071 static void
5072 find_decls_types_in_eh_region (eh_region r, struct free_lang_data_d *fld)
5073 {
5074 switch (r->type)
5075 {
5076 case ERT_CLEANUP:
5077 break;
5078
5079 case ERT_TRY:
5080 {
5081 eh_catch c;
5082
5083 /* The types referenced in each catch must first be changed to the
5084 EH types used at runtime. This removes references to FE types
5085 in the region. */
5086 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
5087 {
5088 c->type_list = get_eh_types_for_runtime (c->type_list);
5089 walk_tree (&c->type_list, find_decls_types_r, fld, fld->pset);
5090 }
5091 }
5092 break;
5093
5094 case ERT_ALLOWED_EXCEPTIONS:
5095 r->u.allowed.type_list
5096 = get_eh_types_for_runtime (r->u.allowed.type_list);
5097 walk_tree (&r->u.allowed.type_list, find_decls_types_r, fld, fld->pset);
5098 break;
5099
5100 case ERT_MUST_NOT_THROW:
5101 walk_tree (&r->u.must_not_throw.failure_decl,
5102 find_decls_types_r, fld, fld->pset);
5103 break;
5104 }
5105 }
5106
5107
5108 /* Find decls and types referenced in cgraph node N and store them in
5109 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
5110 look for *every* kind of DECL and TYPE node reachable from N,
5111 including those embedded inside types and decls (i.e,, TYPE_DECLs,
5112 NAMESPACE_DECLs, etc). */
5113
5114 static void
5115 find_decls_types_in_node (struct cgraph_node *n, struct free_lang_data_d *fld)
5116 {
5117 basic_block bb;
5118 struct function *fn;
5119 unsigned ix;
5120 tree t;
5121
5122 find_decls_types (n->symbol.decl, fld);
5123
5124 if (!gimple_has_body_p (n->symbol.decl))
5125 return;
5126
5127 gcc_assert (current_function_decl == NULL_TREE && cfun == NULL);
5128
5129 fn = DECL_STRUCT_FUNCTION (n->symbol.decl);
5130
5131 /* Traverse locals. */
5132 FOR_EACH_LOCAL_DECL (fn, ix, t)
5133 find_decls_types (t, fld);
5134
5135 /* Traverse EH regions in FN. */
5136 {
5137 eh_region r;
5138 FOR_ALL_EH_REGION_FN (r, fn)
5139 find_decls_types_in_eh_region (r, fld);
5140 }
5141
5142 /* Traverse every statement in FN. */
5143 FOR_EACH_BB_FN (bb, fn)
5144 {
5145 gimple_stmt_iterator si;
5146 unsigned i;
5147
5148 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
5149 {
5150 gimple phi = gsi_stmt (si);
5151
5152 for (i = 0; i < gimple_phi_num_args (phi); i++)
5153 {
5154 tree *arg_p = gimple_phi_arg_def_ptr (phi, i);
5155 find_decls_types (*arg_p, fld);
5156 }
5157 }
5158
5159 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5160 {
5161 gimple stmt = gsi_stmt (si);
5162
5163 if (is_gimple_call (stmt))
5164 find_decls_types (gimple_call_fntype (stmt), fld);
5165
5166 for (i = 0; i < gimple_num_ops (stmt); i++)
5167 {
5168 tree arg = gimple_op (stmt, i);
5169 find_decls_types (arg, fld);
5170 }
5171 }
5172 }
5173 }
5174
5175
5176 /* Find decls and types referenced in varpool node N and store them in
5177 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
5178 look for *every* kind of DECL and TYPE node reachable from N,
5179 including those embedded inside types and decls (i.e,, TYPE_DECLs,
5180 NAMESPACE_DECLs, etc). */
5181
5182 static void
5183 find_decls_types_in_var (struct varpool_node *v, struct free_lang_data_d *fld)
5184 {
5185 find_decls_types (v->symbol.decl, fld);
5186 }
5187
5188 /* If T needs an assembler name, have one created for it. */
5189
5190 void
5191 assign_assembler_name_if_neeeded (tree t)
5192 {
5193 if (need_assembler_name_p (t))
5194 {
5195 /* When setting DECL_ASSEMBLER_NAME, the C++ mangler may emit
5196 diagnostics that use input_location to show locus
5197 information. The problem here is that, at this point,
5198 input_location is generally anchored to the end of the file
5199 (since the parser is long gone), so we don't have a good
5200 position to pin it to.
5201
5202 To alleviate this problem, this uses the location of T's
5203 declaration. Examples of this are
5204 testsuite/g++.dg/template/cond2.C and
5205 testsuite/g++.dg/template/pr35240.C. */
5206 location_t saved_location = input_location;
5207 input_location = DECL_SOURCE_LOCATION (t);
5208
5209 decl_assembler_name (t);
5210
5211 input_location = saved_location;
5212 }
5213 }
5214
5215
5216 /* Free language specific information for every operand and expression
5217 in every node of the call graph. This process operates in three stages:
5218
5219 1- Every callgraph node and varpool node is traversed looking for
5220 decls and types embedded in them. This is a more exhaustive
5221 search than that done by find_referenced_vars, because it will
5222 also collect individual fields, decls embedded in types, etc.
5223
5224 2- All the decls found are sent to free_lang_data_in_decl.
5225
5226 3- All the types found are sent to free_lang_data_in_type.
5227
5228 The ordering between decls and types is important because
5229 free_lang_data_in_decl sets assembler names, which includes
5230 mangling. So types cannot be freed up until assembler names have
5231 been set up. */
5232
5233 static void
5234 free_lang_data_in_cgraph (void)
5235 {
5236 struct cgraph_node *n;
5237 struct varpool_node *v;
5238 struct free_lang_data_d fld;
5239 tree t;
5240 unsigned i;
5241 alias_pair *p;
5242
5243 /* Initialize sets and arrays to store referenced decls and types. */
5244 fld.pset = pointer_set_create ();
5245 fld.worklist.create (0);
5246 fld.decls.create (100);
5247 fld.types.create (100);
5248
5249 /* Find decls and types in the body of every function in the callgraph. */
5250 FOR_EACH_FUNCTION (n)
5251 find_decls_types_in_node (n, &fld);
5252
5253 FOR_EACH_VEC_SAFE_ELT (alias_pairs, i, p)
5254 find_decls_types (p->decl, &fld);
5255
5256 /* Find decls and types in every varpool symbol. */
5257 FOR_EACH_VARIABLE (v)
5258 find_decls_types_in_var (v, &fld);
5259
5260 /* Set the assembler name on every decl found. We need to do this
5261 now because free_lang_data_in_decl will invalidate data needed
5262 for mangling. This breaks mangling on interdependent decls. */
5263 FOR_EACH_VEC_ELT (fld.decls, i, t)
5264 assign_assembler_name_if_neeeded (t);
5265
5266 /* Traverse every decl found freeing its language data. */
5267 FOR_EACH_VEC_ELT (fld.decls, i, t)
5268 free_lang_data_in_decl (t);
5269
5270 /* Traverse every type found freeing its language data. */
5271 FOR_EACH_VEC_ELT (fld.types, i, t)
5272 free_lang_data_in_type (t);
5273
5274 pointer_set_destroy (fld.pset);
5275 fld.worklist.release ();
5276 fld.decls.release ();
5277 fld.types.release ();
5278 }
5279
5280
5281 /* Free resources that are used by FE but are not needed once they are done. */
5282
5283 static unsigned
5284 free_lang_data (void)
5285 {
5286 unsigned i;
5287
5288 /* If we are the LTO frontend we have freed lang-specific data already. */
5289 if (in_lto_p
5290 || !flag_generate_lto)
5291 return 0;
5292
5293 /* Allocate and assign alias sets to the standard integer types
5294 while the slots are still in the way the frontends generated them. */
5295 for (i = 0; i < itk_none; ++i)
5296 if (integer_types[i])
5297 TYPE_ALIAS_SET (integer_types[i]) = get_alias_set (integer_types[i]);
5298
5299 /* Traverse the IL resetting language specific information for
5300 operands, expressions, etc. */
5301 free_lang_data_in_cgraph ();
5302
5303 /* Create gimple variants for common types. */
5304 ptrdiff_type_node = integer_type_node;
5305 fileptr_type_node = ptr_type_node;
5306
5307 /* Reset some langhooks. Do not reset types_compatible_p, it may
5308 still be used indirectly via the get_alias_set langhook. */
5309 lang_hooks.dwarf_name = lhd_dwarf_name;
5310 lang_hooks.decl_printable_name = gimple_decl_printable_name;
5311 /* We do not want the default decl_assembler_name implementation,
5312 rather if we have fixed everything we want a wrapper around it
5313 asserting that all non-local symbols already got their assembler
5314 name and only produce assembler names for local symbols. Or rather
5315 make sure we never call decl_assembler_name on local symbols and
5316 devise a separate, middle-end private scheme for it. */
5317
5318 /* Reset diagnostic machinery. */
5319 tree_diagnostics_defaults (global_dc);
5320
5321 return 0;
5322 }
5323
5324
5325 struct simple_ipa_opt_pass pass_ipa_free_lang_data =
5326 {
5327 {
5328 SIMPLE_IPA_PASS,
5329 "*free_lang_data", /* name */
5330 OPTGROUP_NONE, /* optinfo_flags */
5331 NULL, /* gate */
5332 free_lang_data, /* execute */
5333 NULL, /* sub */
5334 NULL, /* next */
5335 0, /* static_pass_number */
5336 TV_IPA_FREE_LANG_DATA, /* tv_id */
5337 0, /* properties_required */
5338 0, /* properties_provided */
5339 0, /* properties_destroyed */
5340 0, /* todo_flags_start */
5341 0 /* todo_flags_finish */
5342 }
5343 };
5344
5345 /* The backbone of is_attribute_p(). ATTR_LEN is the string length of
5346 ATTR_NAME. Also used internally by remove_attribute(). */
5347 bool
5348 private_is_attribute_p (const char *attr_name, size_t attr_len, const_tree ident)
5349 {
5350 size_t ident_len = IDENTIFIER_LENGTH (ident);
5351
5352 if (ident_len == attr_len)
5353 {
5354 if (strcmp (attr_name, IDENTIFIER_POINTER (ident)) == 0)
5355 return true;
5356 }
5357 else if (ident_len == attr_len + 4)
5358 {
5359 /* There is the possibility that ATTR is 'text' and IDENT is
5360 '__text__'. */
5361 const char *p = IDENTIFIER_POINTER (ident);
5362 if (p[0] == '_' && p[1] == '_'
5363 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
5364 && strncmp (attr_name, p + 2, attr_len) == 0)
5365 return true;
5366 }
5367
5368 return false;
5369 }
5370
5371 /* The backbone of lookup_attribute(). ATTR_LEN is the string length
5372 of ATTR_NAME, and LIST is not NULL_TREE. */
5373 tree
5374 private_lookup_attribute (const char *attr_name, size_t attr_len, tree list)
5375 {
5376 while (list)
5377 {
5378 size_t ident_len = IDENTIFIER_LENGTH (get_attribute_name (list));
5379
5380 if (ident_len == attr_len)
5381 {
5382 if (!strcmp (attr_name,
5383 IDENTIFIER_POINTER (get_attribute_name (list))))
5384 break;
5385 }
5386 /* TODO: If we made sure that attributes were stored in the
5387 canonical form without '__...__' (ie, as in 'text' as opposed
5388 to '__text__') then we could avoid the following case. */
5389 else if (ident_len == attr_len + 4)
5390 {
5391 const char *p = IDENTIFIER_POINTER (get_attribute_name (list));
5392 if (p[0] == '_' && p[1] == '_'
5393 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
5394 && strncmp (attr_name, p + 2, attr_len) == 0)
5395 break;
5396 }
5397 list = TREE_CHAIN (list);
5398 }
5399
5400 return list;
5401 }
5402
5403 /* A variant of lookup_attribute() that can be used with an identifier
5404 as the first argument, and where the identifier can be either
5405 'text' or '__text__'.
5406
5407 Given an attribute ATTR_IDENTIFIER, and a list of attributes LIST,
5408 return a pointer to the attribute's list element if the attribute
5409 is part of the list, or NULL_TREE if not found. If the attribute
5410 appears more than once, this only returns the first occurrence; the
5411 TREE_CHAIN of the return value should be passed back in if further
5412 occurrences are wanted. ATTR_IDENTIFIER must be an identifier but
5413 can be in the form 'text' or '__text__'. */
5414 static tree
5415 lookup_ident_attribute (tree attr_identifier, tree list)
5416 {
5417 gcc_checking_assert (TREE_CODE (attr_identifier) == IDENTIFIER_NODE);
5418
5419 while (list)
5420 {
5421 gcc_checking_assert (TREE_CODE (get_attribute_name (list))
5422 == IDENTIFIER_NODE);
5423
5424 /* Identifiers can be compared directly for equality. */
5425 if (attr_identifier == get_attribute_name (list))
5426 break;
5427
5428 /* If they are not equal, they may still be one in the form
5429 'text' while the other one is in the form '__text__'. TODO:
5430 If we were storing attributes in normalized 'text' form, then
5431 this could all go away and we could take full advantage of
5432 the fact that we're comparing identifiers. :-) */
5433 {
5434 size_t attr_len = IDENTIFIER_LENGTH (attr_identifier);
5435 size_t ident_len = IDENTIFIER_LENGTH (get_attribute_name (list));
5436
5437 if (ident_len == attr_len + 4)
5438 {
5439 const char *p = IDENTIFIER_POINTER (get_attribute_name (list));
5440 const char *q = IDENTIFIER_POINTER (attr_identifier);
5441 if (p[0] == '_' && p[1] == '_'
5442 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
5443 && strncmp (q, p + 2, attr_len) == 0)
5444 break;
5445 }
5446 else if (ident_len + 4 == attr_len)
5447 {
5448 const char *p = IDENTIFIER_POINTER (get_attribute_name (list));
5449 const char *q = IDENTIFIER_POINTER (attr_identifier);
5450 if (q[0] == '_' && q[1] == '_'
5451 && q[attr_len - 2] == '_' && q[attr_len - 1] == '_'
5452 && strncmp (q + 2, p, ident_len) == 0)
5453 break;
5454 }
5455 }
5456 list = TREE_CHAIN (list);
5457 }
5458
5459 return list;
5460 }
5461
5462 /* Remove any instances of attribute ATTR_NAME in LIST and return the
5463 modified list. */
5464
5465 tree
5466 remove_attribute (const char *attr_name, tree list)
5467 {
5468 tree *p;
5469 size_t attr_len = strlen (attr_name);
5470
5471 gcc_checking_assert (attr_name[0] != '_');
5472
5473 for (p = &list; *p; )
5474 {
5475 tree l = *p;
5476 /* TODO: If we were storing attributes in normalized form, here
5477 we could use a simple strcmp(). */
5478 if (private_is_attribute_p (attr_name, attr_len, get_attribute_name (l)))
5479 *p = TREE_CHAIN (l);
5480 else
5481 p = &TREE_CHAIN (l);
5482 }
5483
5484 return list;
5485 }
5486
5487 /* Return an attribute list that is the union of a1 and a2. */
5488
5489 tree
5490 merge_attributes (tree a1, tree a2)
5491 {
5492 tree attributes;
5493
5494 /* Either one unset? Take the set one. */
5495
5496 if ((attributes = a1) == 0)
5497 attributes = a2;
5498
5499 /* One that completely contains the other? Take it. */
5500
5501 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
5502 {
5503 if (attribute_list_contained (a2, a1))
5504 attributes = a2;
5505 else
5506 {
5507 /* Pick the longest list, and hang on the other list. */
5508
5509 if (list_length (a1) < list_length (a2))
5510 attributes = a2, a2 = a1;
5511
5512 for (; a2 != 0; a2 = TREE_CHAIN (a2))
5513 {
5514 tree a;
5515 for (a = lookup_ident_attribute (get_attribute_name (a2),
5516 attributes);
5517 a != NULL_TREE && !attribute_value_equal (a, a2);
5518 a = lookup_ident_attribute (get_attribute_name (a2),
5519 TREE_CHAIN (a)))
5520 ;
5521 if (a == NULL_TREE)
5522 {
5523 a1 = copy_node (a2);
5524 TREE_CHAIN (a1) = attributes;
5525 attributes = a1;
5526 }
5527 }
5528 }
5529 }
5530 return attributes;
5531 }
5532
5533 /* Given types T1 and T2, merge their attributes and return
5534 the result. */
5535
5536 tree
5537 merge_type_attributes (tree t1, tree t2)
5538 {
5539 return merge_attributes (TYPE_ATTRIBUTES (t1),
5540 TYPE_ATTRIBUTES (t2));
5541 }
5542
5543 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
5544 the result. */
5545
5546 tree
5547 merge_decl_attributes (tree olddecl, tree newdecl)
5548 {
5549 return merge_attributes (DECL_ATTRIBUTES (olddecl),
5550 DECL_ATTRIBUTES (newdecl));
5551 }
5552
5553 #if TARGET_DLLIMPORT_DECL_ATTRIBUTES
5554
5555 /* Specialization of merge_decl_attributes for various Windows targets.
5556
5557 This handles the following situation:
5558
5559 __declspec (dllimport) int foo;
5560 int foo;
5561
5562 The second instance of `foo' nullifies the dllimport. */
5563
5564 tree
5565 merge_dllimport_decl_attributes (tree old, tree new_tree)
5566 {
5567 tree a;
5568 int delete_dllimport_p = 1;
5569
5570 /* What we need to do here is remove from `old' dllimport if it doesn't
5571 appear in `new'. dllimport behaves like extern: if a declaration is
5572 marked dllimport and a definition appears later, then the object
5573 is not dllimport'd. We also remove a `new' dllimport if the old list
5574 contains dllexport: dllexport always overrides dllimport, regardless
5575 of the order of declaration. */
5576 if (!VAR_OR_FUNCTION_DECL_P (new_tree))
5577 delete_dllimport_p = 0;
5578 else if (DECL_DLLIMPORT_P (new_tree)
5579 && lookup_attribute ("dllexport", DECL_ATTRIBUTES (old)))
5580 {
5581 DECL_DLLIMPORT_P (new_tree) = 0;
5582 warning (OPT_Wattributes, "%q+D already declared with dllexport attribute: "
5583 "dllimport ignored", new_tree);
5584 }
5585 else if (DECL_DLLIMPORT_P (old) && !DECL_DLLIMPORT_P (new_tree))
5586 {
5587 /* Warn about overriding a symbol that has already been used, e.g.:
5588 extern int __attribute__ ((dllimport)) foo;
5589 int* bar () {return &foo;}
5590 int foo;
5591 */
5592 if (TREE_USED (old))
5593 {
5594 warning (0, "%q+D redeclared without dllimport attribute "
5595 "after being referenced with dll linkage", new_tree);
5596 /* If we have used a variable's address with dllimport linkage,
5597 keep the old DECL_DLLIMPORT_P flag: the ADDR_EXPR using the
5598 decl may already have had TREE_CONSTANT computed.
5599 We still remove the attribute so that assembler code refers
5600 to '&foo rather than '_imp__foo'. */
5601 if (TREE_CODE (old) == VAR_DECL && TREE_ADDRESSABLE (old))
5602 DECL_DLLIMPORT_P (new_tree) = 1;
5603 }
5604
5605 /* Let an inline definition silently override the external reference,
5606 but otherwise warn about attribute inconsistency. */
5607 else if (TREE_CODE (new_tree) == VAR_DECL
5608 || !DECL_DECLARED_INLINE_P (new_tree))
5609 warning (OPT_Wattributes, "%q+D redeclared without dllimport attribute: "
5610 "previous dllimport ignored", new_tree);
5611 }
5612 else
5613 delete_dllimport_p = 0;
5614
5615 a = merge_attributes (DECL_ATTRIBUTES (old), DECL_ATTRIBUTES (new_tree));
5616
5617 if (delete_dllimport_p)
5618 a = remove_attribute ("dllimport", a);
5619
5620 return a;
5621 }
5622
5623 /* Handle a "dllimport" or "dllexport" attribute; arguments as in
5624 struct attribute_spec.handler. */
5625
5626 tree
5627 handle_dll_attribute (tree * pnode, tree name, tree args, int flags,
5628 bool *no_add_attrs)
5629 {
5630 tree node = *pnode;
5631 bool is_dllimport;
5632
5633 /* These attributes may apply to structure and union types being created,
5634 but otherwise should pass to the declaration involved. */
5635 if (!DECL_P (node))
5636 {
5637 if (flags & ((int) ATTR_FLAG_DECL_NEXT | (int) ATTR_FLAG_FUNCTION_NEXT
5638 | (int) ATTR_FLAG_ARRAY_NEXT))
5639 {
5640 *no_add_attrs = true;
5641 return tree_cons (name, args, NULL_TREE);
5642 }
5643 if (TREE_CODE (node) == RECORD_TYPE
5644 || TREE_CODE (node) == UNION_TYPE)
5645 {
5646 node = TYPE_NAME (node);
5647 if (!node)
5648 return NULL_TREE;
5649 }
5650 else
5651 {
5652 warning (OPT_Wattributes, "%qE attribute ignored",
5653 name);
5654 *no_add_attrs = true;
5655 return NULL_TREE;
5656 }
5657 }
5658
5659 if (TREE_CODE (node) != FUNCTION_DECL
5660 && TREE_CODE (node) != VAR_DECL
5661 && TREE_CODE (node) != TYPE_DECL)
5662 {
5663 *no_add_attrs = true;
5664 warning (OPT_Wattributes, "%qE attribute ignored",
5665 name);
5666 return NULL_TREE;
5667 }
5668
5669 if (TREE_CODE (node) == TYPE_DECL
5670 && TREE_CODE (TREE_TYPE (node)) != RECORD_TYPE
5671 && TREE_CODE (TREE_TYPE (node)) != UNION_TYPE)
5672 {
5673 *no_add_attrs = true;
5674 warning (OPT_Wattributes, "%qE attribute ignored",
5675 name);
5676 return NULL_TREE;
5677 }
5678
5679 is_dllimport = is_attribute_p ("dllimport", name);
5680
5681 /* Report error on dllimport ambiguities seen now before they cause
5682 any damage. */
5683 if (is_dllimport)
5684 {
5685 /* Honor any target-specific overrides. */
5686 if (!targetm.valid_dllimport_attribute_p (node))
5687 *no_add_attrs = true;
5688
5689 else if (TREE_CODE (node) == FUNCTION_DECL
5690 && DECL_DECLARED_INLINE_P (node))
5691 {
5692 warning (OPT_Wattributes, "inline function %q+D declared as "
5693 " dllimport: attribute ignored", node);
5694 *no_add_attrs = true;
5695 }
5696 /* Like MS, treat definition of dllimported variables and
5697 non-inlined functions on declaration as syntax errors. */
5698 else if (TREE_CODE (node) == FUNCTION_DECL && DECL_INITIAL (node))
5699 {
5700 error ("function %q+D definition is marked dllimport", node);
5701 *no_add_attrs = true;
5702 }
5703
5704 else if (TREE_CODE (node) == VAR_DECL)
5705 {
5706 if (DECL_INITIAL (node))
5707 {
5708 error ("variable %q+D definition is marked dllimport",
5709 node);
5710 *no_add_attrs = true;
5711 }
5712
5713 /* `extern' needn't be specified with dllimport.
5714 Specify `extern' now and hope for the best. Sigh. */
5715 DECL_EXTERNAL (node) = 1;
5716 /* Also, implicitly give dllimport'd variables declared within
5717 a function global scope, unless declared static. */
5718 if (current_function_decl != NULL_TREE && !TREE_STATIC (node))
5719 TREE_PUBLIC (node) = 1;
5720 }
5721
5722 if (*no_add_attrs == false)
5723 DECL_DLLIMPORT_P (node) = 1;
5724 }
5725 else if (TREE_CODE (node) == FUNCTION_DECL
5726 && DECL_DECLARED_INLINE_P (node)
5727 && flag_keep_inline_dllexport)
5728 /* An exported function, even if inline, must be emitted. */
5729 DECL_EXTERNAL (node) = 0;
5730
5731 /* Report error if symbol is not accessible at global scope. */
5732 if (!TREE_PUBLIC (node)
5733 && (TREE_CODE (node) == VAR_DECL
5734 || TREE_CODE (node) == FUNCTION_DECL))
5735 {
5736 error ("external linkage required for symbol %q+D because of "
5737 "%qE attribute", node, name);
5738 *no_add_attrs = true;
5739 }
5740
5741 /* A dllexport'd entity must have default visibility so that other
5742 program units (shared libraries or the main executable) can see
5743 it. A dllimport'd entity must have default visibility so that
5744 the linker knows that undefined references within this program
5745 unit can be resolved by the dynamic linker. */
5746 if (!*no_add_attrs)
5747 {
5748 if (DECL_VISIBILITY_SPECIFIED (node)
5749 && DECL_VISIBILITY (node) != VISIBILITY_DEFAULT)
5750 error ("%qE implies default visibility, but %qD has already "
5751 "been declared with a different visibility",
5752 name, node);
5753 DECL_VISIBILITY (node) = VISIBILITY_DEFAULT;
5754 DECL_VISIBILITY_SPECIFIED (node) = 1;
5755 }
5756
5757 return NULL_TREE;
5758 }
5759
5760 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
5761 \f
5762 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
5763 of the various TYPE_QUAL values. */
5764
5765 static void
5766 set_type_quals (tree type, int type_quals)
5767 {
5768 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
5769 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
5770 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
5771 TYPE_ADDR_SPACE (type) = DECODE_QUAL_ADDR_SPACE (type_quals);
5772 }
5773
5774 /* Returns true iff CAND is equivalent to BASE with TYPE_QUALS. */
5775
5776 bool
5777 check_qualified_type (const_tree cand, const_tree base, int type_quals)
5778 {
5779 return (TYPE_QUALS (cand) == type_quals
5780 && TYPE_NAME (cand) == TYPE_NAME (base)
5781 /* Apparently this is needed for Objective-C. */
5782 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
5783 /* Check alignment. */
5784 && TYPE_ALIGN (cand) == TYPE_ALIGN (base)
5785 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
5786 TYPE_ATTRIBUTES (base)));
5787 }
5788
5789 /* Returns true iff CAND is equivalent to BASE with ALIGN. */
5790
5791 static bool
5792 check_aligned_type (const_tree cand, const_tree base, unsigned int align)
5793 {
5794 return (TYPE_QUALS (cand) == TYPE_QUALS (base)
5795 && TYPE_NAME (cand) == TYPE_NAME (base)
5796 /* Apparently this is needed for Objective-C. */
5797 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
5798 /* Check alignment. */
5799 && TYPE_ALIGN (cand) == align
5800 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
5801 TYPE_ATTRIBUTES (base)));
5802 }
5803
5804 /* Return a version of the TYPE, qualified as indicated by the
5805 TYPE_QUALS, if one exists. If no qualified version exists yet,
5806 return NULL_TREE. */
5807
5808 tree
5809 get_qualified_type (tree type, int type_quals)
5810 {
5811 tree t;
5812
5813 if (TYPE_QUALS (type) == type_quals)
5814 return type;
5815
5816 /* Search the chain of variants to see if there is already one there just
5817 like the one we need to have. If so, use that existing one. We must
5818 preserve the TYPE_NAME, since there is code that depends on this. */
5819 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
5820 if (check_qualified_type (t, type, type_quals))
5821 return t;
5822
5823 return NULL_TREE;
5824 }
5825
5826 /* Like get_qualified_type, but creates the type if it does not
5827 exist. This function never returns NULL_TREE. */
5828
5829 tree
5830 build_qualified_type (tree type, int type_quals)
5831 {
5832 tree t;
5833
5834 /* See if we already have the appropriate qualified variant. */
5835 t = get_qualified_type (type, type_quals);
5836
5837 /* If not, build it. */
5838 if (!t)
5839 {
5840 t = build_variant_type_copy (type);
5841 set_type_quals (t, type_quals);
5842
5843 if (TYPE_STRUCTURAL_EQUALITY_P (type))
5844 /* Propagate structural equality. */
5845 SET_TYPE_STRUCTURAL_EQUALITY (t);
5846 else if (TYPE_CANONICAL (type) != type)
5847 /* Build the underlying canonical type, since it is different
5848 from TYPE. */
5849 TYPE_CANONICAL (t) = build_qualified_type (TYPE_CANONICAL (type),
5850 type_quals);
5851 else
5852 /* T is its own canonical type. */
5853 TYPE_CANONICAL (t) = t;
5854
5855 }
5856
5857 return t;
5858 }
5859
5860 /* Create a variant of type T with alignment ALIGN. */
5861
5862 tree
5863 build_aligned_type (tree type, unsigned int align)
5864 {
5865 tree t;
5866
5867 if (TYPE_PACKED (type)
5868 || TYPE_ALIGN (type) == align)
5869 return type;
5870
5871 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
5872 if (check_aligned_type (t, type, align))
5873 return t;
5874
5875 t = build_variant_type_copy (type);
5876 TYPE_ALIGN (t) = align;
5877
5878 return t;
5879 }
5880
5881 /* Create a new distinct copy of TYPE. The new type is made its own
5882 MAIN_VARIANT. If TYPE requires structural equality checks, the
5883 resulting type requires structural equality checks; otherwise, its
5884 TYPE_CANONICAL points to itself. */
5885
5886 tree
5887 build_distinct_type_copy (tree type)
5888 {
5889 tree t = copy_node (type);
5890
5891 TYPE_POINTER_TO (t) = 0;
5892 TYPE_REFERENCE_TO (t) = 0;
5893
5894 /* Set the canonical type either to a new equivalence class, or
5895 propagate the need for structural equality checks. */
5896 if (TYPE_STRUCTURAL_EQUALITY_P (type))
5897 SET_TYPE_STRUCTURAL_EQUALITY (t);
5898 else
5899 TYPE_CANONICAL (t) = t;
5900
5901 /* Make it its own variant. */
5902 TYPE_MAIN_VARIANT (t) = t;
5903 TYPE_NEXT_VARIANT (t) = 0;
5904
5905 /* Note that it is now possible for TYPE_MIN_VALUE to be a value
5906 whose TREE_TYPE is not t. This can also happen in the Ada
5907 frontend when using subtypes. */
5908
5909 return t;
5910 }
5911
5912 /* Create a new variant of TYPE, equivalent but distinct. This is so
5913 the caller can modify it. TYPE_CANONICAL for the return type will
5914 be equivalent to TYPE_CANONICAL of TYPE, indicating that the types
5915 are considered equal by the language itself (or that both types
5916 require structural equality checks). */
5917
5918 tree
5919 build_variant_type_copy (tree type)
5920 {
5921 tree t, m = TYPE_MAIN_VARIANT (type);
5922
5923 t = build_distinct_type_copy (type);
5924
5925 /* Since we're building a variant, assume that it is a non-semantic
5926 variant. This also propagates TYPE_STRUCTURAL_EQUALITY_P. */
5927 TYPE_CANONICAL (t) = TYPE_CANONICAL (type);
5928
5929 /* Add the new type to the chain of variants of TYPE. */
5930 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
5931 TYPE_NEXT_VARIANT (m) = t;
5932 TYPE_MAIN_VARIANT (t) = m;
5933
5934 return t;
5935 }
5936 \f
5937 /* Return true if the from tree in both tree maps are equal. */
5938
5939 int
5940 tree_map_base_eq (const void *va, const void *vb)
5941 {
5942 const struct tree_map_base *const a = (const struct tree_map_base *) va,
5943 *const b = (const struct tree_map_base *) vb;
5944 return (a->from == b->from);
5945 }
5946
5947 /* Hash a from tree in a tree_base_map. */
5948
5949 unsigned int
5950 tree_map_base_hash (const void *item)
5951 {
5952 return htab_hash_pointer (((const struct tree_map_base *)item)->from);
5953 }
5954
5955 /* Return true if this tree map structure is marked for garbage collection
5956 purposes. We simply return true if the from tree is marked, so that this
5957 structure goes away when the from tree goes away. */
5958
5959 int
5960 tree_map_base_marked_p (const void *p)
5961 {
5962 return ggc_marked_p (((const struct tree_map_base *) p)->from);
5963 }
5964
5965 /* Hash a from tree in a tree_map. */
5966
5967 unsigned int
5968 tree_map_hash (const void *item)
5969 {
5970 return (((const struct tree_map *) item)->hash);
5971 }
5972
5973 /* Hash a from tree in a tree_decl_map. */
5974
5975 unsigned int
5976 tree_decl_map_hash (const void *item)
5977 {
5978 return DECL_UID (((const struct tree_decl_map *) item)->base.from);
5979 }
5980
5981 /* Return the initialization priority for DECL. */
5982
5983 priority_type
5984 decl_init_priority_lookup (tree decl)
5985 {
5986 struct tree_priority_map *h;
5987 struct tree_map_base in;
5988
5989 gcc_assert (VAR_OR_FUNCTION_DECL_P (decl));
5990 in.from = decl;
5991 h = (struct tree_priority_map *) htab_find (init_priority_for_decl, &in);
5992 return h ? h->init : DEFAULT_INIT_PRIORITY;
5993 }
5994
5995 /* Return the finalization priority for DECL. */
5996
5997 priority_type
5998 decl_fini_priority_lookup (tree decl)
5999 {
6000 struct tree_priority_map *h;
6001 struct tree_map_base in;
6002
6003 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
6004 in.from = decl;
6005 h = (struct tree_priority_map *) htab_find (init_priority_for_decl, &in);
6006 return h ? h->fini : DEFAULT_INIT_PRIORITY;
6007 }
6008
6009 /* Return the initialization and finalization priority information for
6010 DECL. If there is no previous priority information, a freshly
6011 allocated structure is returned. */
6012
6013 static struct tree_priority_map *
6014 decl_priority_info (tree decl)
6015 {
6016 struct tree_priority_map in;
6017 struct tree_priority_map *h;
6018 void **loc;
6019
6020 in.base.from = decl;
6021 loc = htab_find_slot (init_priority_for_decl, &in, INSERT);
6022 h = (struct tree_priority_map *) *loc;
6023 if (!h)
6024 {
6025 h = ggc_alloc_cleared_tree_priority_map ();
6026 *loc = h;
6027 h->base.from = decl;
6028 h->init = DEFAULT_INIT_PRIORITY;
6029 h->fini = DEFAULT_INIT_PRIORITY;
6030 }
6031
6032 return h;
6033 }
6034
6035 /* Set the initialization priority for DECL to PRIORITY. */
6036
6037 void
6038 decl_init_priority_insert (tree decl, priority_type priority)
6039 {
6040 struct tree_priority_map *h;
6041
6042 gcc_assert (VAR_OR_FUNCTION_DECL_P (decl));
6043 if (priority == DEFAULT_INIT_PRIORITY)
6044 return;
6045 h = decl_priority_info (decl);
6046 h->init = priority;
6047 }
6048
6049 /* Set the finalization priority for DECL to PRIORITY. */
6050
6051 void
6052 decl_fini_priority_insert (tree decl, priority_type priority)
6053 {
6054 struct tree_priority_map *h;
6055
6056 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
6057 if (priority == DEFAULT_INIT_PRIORITY)
6058 return;
6059 h = decl_priority_info (decl);
6060 h->fini = priority;
6061 }
6062
6063 /* Print out the statistics for the DECL_DEBUG_EXPR hash table. */
6064
6065 static void
6066 print_debug_expr_statistics (void)
6067 {
6068 fprintf (stderr, "DECL_DEBUG_EXPR hash: size %ld, %ld elements, %f collisions\n",
6069 (long) htab_size (debug_expr_for_decl),
6070 (long) htab_elements (debug_expr_for_decl),
6071 htab_collisions (debug_expr_for_decl));
6072 }
6073
6074 /* Print out the statistics for the DECL_VALUE_EXPR hash table. */
6075
6076 static void
6077 print_value_expr_statistics (void)
6078 {
6079 fprintf (stderr, "DECL_VALUE_EXPR hash: size %ld, %ld elements, %f collisions\n",
6080 (long) htab_size (value_expr_for_decl),
6081 (long) htab_elements (value_expr_for_decl),
6082 htab_collisions (value_expr_for_decl));
6083 }
6084
6085 /* Lookup a debug expression for FROM, and return it if we find one. */
6086
6087 tree
6088 decl_debug_expr_lookup (tree from)
6089 {
6090 struct tree_decl_map *h, in;
6091 in.base.from = from;
6092
6093 h = (struct tree_decl_map *)
6094 htab_find_with_hash (debug_expr_for_decl, &in, DECL_UID (from));
6095 if (h)
6096 return h->to;
6097 return NULL_TREE;
6098 }
6099
6100 /* Insert a mapping FROM->TO in the debug expression hashtable. */
6101
6102 void
6103 decl_debug_expr_insert (tree from, tree to)
6104 {
6105 struct tree_decl_map *h;
6106 void **loc;
6107
6108 h = ggc_alloc_tree_decl_map ();
6109 h->base.from = from;
6110 h->to = to;
6111 loc = htab_find_slot_with_hash (debug_expr_for_decl, h, DECL_UID (from),
6112 INSERT);
6113 *(struct tree_decl_map **) loc = h;
6114 }
6115
6116 /* Lookup a value expression for FROM, and return it if we find one. */
6117
6118 tree
6119 decl_value_expr_lookup (tree from)
6120 {
6121 struct tree_decl_map *h, in;
6122 in.base.from = from;
6123
6124 h = (struct tree_decl_map *)
6125 htab_find_with_hash (value_expr_for_decl, &in, DECL_UID (from));
6126 if (h)
6127 return h->to;
6128 return NULL_TREE;
6129 }
6130
6131 /* Insert a mapping FROM->TO in the value expression hashtable. */
6132
6133 void
6134 decl_value_expr_insert (tree from, tree to)
6135 {
6136 struct tree_decl_map *h;
6137 void **loc;
6138
6139 h = ggc_alloc_tree_decl_map ();
6140 h->base.from = from;
6141 h->to = to;
6142 loc = htab_find_slot_with_hash (value_expr_for_decl, h, DECL_UID (from),
6143 INSERT);
6144 *(struct tree_decl_map **) loc = h;
6145 }
6146
6147 /* Lookup a vector of debug arguments for FROM, and return it if we
6148 find one. */
6149
6150 vec<tree, va_gc> **
6151 decl_debug_args_lookup (tree from)
6152 {
6153 struct tree_vec_map *h, in;
6154
6155 if (!DECL_HAS_DEBUG_ARGS_P (from))
6156 return NULL;
6157 gcc_checking_assert (debug_args_for_decl != NULL);
6158 in.base.from = from;
6159 h = (struct tree_vec_map *)
6160 htab_find_with_hash (debug_args_for_decl, &in, DECL_UID (from));
6161 if (h)
6162 return &h->to;
6163 return NULL;
6164 }
6165
6166 /* Insert a mapping FROM->empty vector of debug arguments in the value
6167 expression hashtable. */
6168
6169 vec<tree, va_gc> **
6170 decl_debug_args_insert (tree from)
6171 {
6172 struct tree_vec_map *h;
6173 void **loc;
6174
6175 if (DECL_HAS_DEBUG_ARGS_P (from))
6176 return decl_debug_args_lookup (from);
6177 if (debug_args_for_decl == NULL)
6178 debug_args_for_decl = htab_create_ggc (64, tree_vec_map_hash,
6179 tree_vec_map_eq, 0);
6180 h = ggc_alloc_tree_vec_map ();
6181 h->base.from = from;
6182 h->to = NULL;
6183 loc = htab_find_slot_with_hash (debug_args_for_decl, h, DECL_UID (from),
6184 INSERT);
6185 *(struct tree_vec_map **) loc = h;
6186 DECL_HAS_DEBUG_ARGS_P (from) = 1;
6187 return &h->to;
6188 }
6189
6190 /* Hashing of types so that we don't make duplicates.
6191 The entry point is `type_hash_canon'. */
6192
6193 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
6194 with types in the TREE_VALUE slots), by adding the hash codes
6195 of the individual types. */
6196
6197 static unsigned int
6198 type_hash_list (const_tree list, hashval_t hashcode)
6199 {
6200 const_tree tail;
6201
6202 for (tail = list; tail; tail = TREE_CHAIN (tail))
6203 if (TREE_VALUE (tail) != error_mark_node)
6204 hashcode = iterative_hash_object (TYPE_HASH (TREE_VALUE (tail)),
6205 hashcode);
6206
6207 return hashcode;
6208 }
6209
6210 /* These are the Hashtable callback functions. */
6211
6212 /* Returns true iff the types are equivalent. */
6213
6214 static int
6215 type_hash_eq (const void *va, const void *vb)
6216 {
6217 const struct type_hash *const a = (const struct type_hash *) va,
6218 *const b = (const struct type_hash *) vb;
6219
6220 /* First test the things that are the same for all types. */
6221 if (a->hash != b->hash
6222 || TREE_CODE (a->type) != TREE_CODE (b->type)
6223 || TREE_TYPE (a->type) != TREE_TYPE (b->type)
6224 || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
6225 TYPE_ATTRIBUTES (b->type))
6226 || (TREE_CODE (a->type) != COMPLEX_TYPE
6227 && TYPE_NAME (a->type) != TYPE_NAME (b->type)))
6228 return 0;
6229
6230 /* Be careful about comparing arrays before and after the element type
6231 has been completed; don't compare TYPE_ALIGN unless both types are
6232 complete. */
6233 if (COMPLETE_TYPE_P (a->type) && COMPLETE_TYPE_P (b->type)
6234 && (TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
6235 || TYPE_MODE (a->type) != TYPE_MODE (b->type)))
6236 return 0;
6237
6238 switch (TREE_CODE (a->type))
6239 {
6240 case VOID_TYPE:
6241 case COMPLEX_TYPE:
6242 case POINTER_TYPE:
6243 case REFERENCE_TYPE:
6244 case NULLPTR_TYPE:
6245 return 1;
6246
6247 case VECTOR_TYPE:
6248 return TYPE_VECTOR_SUBPARTS (a->type) == TYPE_VECTOR_SUBPARTS (b->type);
6249
6250 case ENUMERAL_TYPE:
6251 if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
6252 && !(TYPE_VALUES (a->type)
6253 && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
6254 && TYPE_VALUES (b->type)
6255 && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
6256 && type_list_equal (TYPE_VALUES (a->type),
6257 TYPE_VALUES (b->type))))
6258 return 0;
6259
6260 /* ... fall through ... */
6261
6262 case INTEGER_TYPE:
6263 case REAL_TYPE:
6264 case BOOLEAN_TYPE:
6265 return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
6266 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
6267 TYPE_MAX_VALUE (b->type)))
6268 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
6269 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
6270 TYPE_MIN_VALUE (b->type))));
6271
6272 case FIXED_POINT_TYPE:
6273 return TYPE_SATURATING (a->type) == TYPE_SATURATING (b->type);
6274
6275 case OFFSET_TYPE:
6276 return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
6277
6278 case METHOD_TYPE:
6279 if (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
6280 && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
6281 || (TYPE_ARG_TYPES (a->type)
6282 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
6283 && TYPE_ARG_TYPES (b->type)
6284 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
6285 && type_list_equal (TYPE_ARG_TYPES (a->type),
6286 TYPE_ARG_TYPES (b->type)))))
6287 break;
6288 return 0;
6289 case ARRAY_TYPE:
6290 return TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type);
6291
6292 case RECORD_TYPE:
6293 case UNION_TYPE:
6294 case QUAL_UNION_TYPE:
6295 return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
6296 || (TYPE_FIELDS (a->type)
6297 && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
6298 && TYPE_FIELDS (b->type)
6299 && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
6300 && type_list_equal (TYPE_FIELDS (a->type),
6301 TYPE_FIELDS (b->type))));
6302
6303 case FUNCTION_TYPE:
6304 if (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
6305 || (TYPE_ARG_TYPES (a->type)
6306 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
6307 && TYPE_ARG_TYPES (b->type)
6308 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
6309 && type_list_equal (TYPE_ARG_TYPES (a->type),
6310 TYPE_ARG_TYPES (b->type))))
6311 break;
6312 return 0;
6313
6314 default:
6315 return 0;
6316 }
6317
6318 if (lang_hooks.types.type_hash_eq != NULL)
6319 return lang_hooks.types.type_hash_eq (a->type, b->type);
6320
6321 return 1;
6322 }
6323
6324 /* Return the cached hash value. */
6325
6326 static hashval_t
6327 type_hash_hash (const void *item)
6328 {
6329 return ((const struct type_hash *) item)->hash;
6330 }
6331
6332 /* Look in the type hash table for a type isomorphic to TYPE.
6333 If one is found, return it. Otherwise return 0. */
6334
6335 static tree
6336 type_hash_lookup (hashval_t hashcode, tree type)
6337 {
6338 struct type_hash *h, in;
6339
6340 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
6341 must call that routine before comparing TYPE_ALIGNs. */
6342 layout_type (type);
6343
6344 in.hash = hashcode;
6345 in.type = type;
6346
6347 h = (struct type_hash *) htab_find_with_hash (type_hash_table, &in,
6348 hashcode);
6349 if (h)
6350 return h->type;
6351 return NULL_TREE;
6352 }
6353
6354 /* Add an entry to the type-hash-table
6355 for a type TYPE whose hash code is HASHCODE. */
6356
6357 static void
6358 type_hash_add (hashval_t hashcode, tree type)
6359 {
6360 struct type_hash *h;
6361 void **loc;
6362
6363 h = ggc_alloc_type_hash ();
6364 h->hash = hashcode;
6365 h->type = type;
6366 loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
6367 *loc = (void *)h;
6368 }
6369
6370 /* Given TYPE, and HASHCODE its hash code, return the canonical
6371 object for an identical type if one already exists.
6372 Otherwise, return TYPE, and record it as the canonical object.
6373
6374 To use this function, first create a type of the sort you want.
6375 Then compute its hash code from the fields of the type that
6376 make it different from other similar types.
6377 Then call this function and use the value. */
6378
6379 tree
6380 type_hash_canon (unsigned int hashcode, tree type)
6381 {
6382 tree t1;
6383
6384 /* The hash table only contains main variants, so ensure that's what we're
6385 being passed. */
6386 gcc_assert (TYPE_MAIN_VARIANT (type) == type);
6387
6388 /* See if the type is in the hash table already. If so, return it.
6389 Otherwise, add the type. */
6390 t1 = type_hash_lookup (hashcode, type);
6391 if (t1 != 0)
6392 {
6393 if (GATHER_STATISTICS)
6394 {
6395 tree_code_counts[(int) TREE_CODE (type)]--;
6396 tree_node_counts[(int) t_kind]--;
6397 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type_non_common);
6398 }
6399 return t1;
6400 }
6401 else
6402 {
6403 type_hash_add (hashcode, type);
6404 return type;
6405 }
6406 }
6407
6408 /* See if the data pointed to by the type hash table is marked. We consider
6409 it marked if the type is marked or if a debug type number or symbol
6410 table entry has been made for the type. */
6411
6412 static int
6413 type_hash_marked_p (const void *p)
6414 {
6415 const_tree const type = ((const struct type_hash *) p)->type;
6416
6417 return ggc_marked_p (type);
6418 }
6419
6420 static void
6421 print_type_hash_statistics (void)
6422 {
6423 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
6424 (long) htab_size (type_hash_table),
6425 (long) htab_elements (type_hash_table),
6426 htab_collisions (type_hash_table));
6427 }
6428
6429 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
6430 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
6431 by adding the hash codes of the individual attributes. */
6432
6433 static unsigned int
6434 attribute_hash_list (const_tree list, hashval_t hashcode)
6435 {
6436 const_tree tail;
6437
6438 for (tail = list; tail; tail = TREE_CHAIN (tail))
6439 /* ??? Do we want to add in TREE_VALUE too? */
6440 hashcode = iterative_hash_object
6441 (IDENTIFIER_HASH_VALUE (get_attribute_name (tail)), hashcode);
6442 return hashcode;
6443 }
6444
6445 /* Given two lists of attributes, return true if list l2 is
6446 equivalent to l1. */
6447
6448 int
6449 attribute_list_equal (const_tree l1, const_tree l2)
6450 {
6451 if (l1 == l2)
6452 return 1;
6453
6454 return attribute_list_contained (l1, l2)
6455 && attribute_list_contained (l2, l1);
6456 }
6457
6458 /* Given two lists of attributes, return true if list L2 is
6459 completely contained within L1. */
6460 /* ??? This would be faster if attribute names were stored in a canonicalized
6461 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
6462 must be used to show these elements are equivalent (which they are). */
6463 /* ??? It's not clear that attributes with arguments will always be handled
6464 correctly. */
6465
6466 int
6467 attribute_list_contained (const_tree l1, const_tree l2)
6468 {
6469 const_tree t1, t2;
6470
6471 /* First check the obvious, maybe the lists are identical. */
6472 if (l1 == l2)
6473 return 1;
6474
6475 /* Maybe the lists are similar. */
6476 for (t1 = l1, t2 = l2;
6477 t1 != 0 && t2 != 0
6478 && get_attribute_name (t1) == get_attribute_name (t2)
6479 && TREE_VALUE (t1) == TREE_VALUE (t2);
6480 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
6481 ;
6482
6483 /* Maybe the lists are equal. */
6484 if (t1 == 0 && t2 == 0)
6485 return 1;
6486
6487 for (; t2 != 0; t2 = TREE_CHAIN (t2))
6488 {
6489 const_tree attr;
6490 /* This CONST_CAST is okay because lookup_attribute does not
6491 modify its argument and the return value is assigned to a
6492 const_tree. */
6493 for (attr = lookup_ident_attribute (get_attribute_name (t2), CONST_CAST_TREE(l1));
6494 attr != NULL_TREE && !attribute_value_equal (t2, attr);
6495 attr = lookup_ident_attribute (get_attribute_name (t2), TREE_CHAIN (attr)))
6496 ;
6497
6498 if (attr == NULL_TREE)
6499 return 0;
6500 }
6501
6502 return 1;
6503 }
6504
6505 /* Given two lists of types
6506 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
6507 return 1 if the lists contain the same types in the same order.
6508 Also, the TREE_PURPOSEs must match. */
6509
6510 int
6511 type_list_equal (const_tree l1, const_tree l2)
6512 {
6513 const_tree t1, t2;
6514
6515 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
6516 if (TREE_VALUE (t1) != TREE_VALUE (t2)
6517 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
6518 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
6519 && (TREE_TYPE (TREE_PURPOSE (t1))
6520 == TREE_TYPE (TREE_PURPOSE (t2))))))
6521 return 0;
6522
6523 return t1 == t2;
6524 }
6525
6526 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
6527 given by TYPE. If the argument list accepts variable arguments,
6528 then this function counts only the ordinary arguments. */
6529
6530 int
6531 type_num_arguments (const_tree type)
6532 {
6533 int i = 0;
6534 tree t;
6535
6536 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
6537 /* If the function does not take a variable number of arguments,
6538 the last element in the list will have type `void'. */
6539 if (VOID_TYPE_P (TREE_VALUE (t)))
6540 break;
6541 else
6542 ++i;
6543
6544 return i;
6545 }
6546
6547 /* Nonzero if integer constants T1 and T2
6548 represent the same constant value. */
6549
6550 int
6551 tree_int_cst_equal (const_tree t1, const_tree t2)
6552 {
6553 if (t1 == t2)
6554 return 1;
6555
6556 if (t1 == 0 || t2 == 0)
6557 return 0;
6558
6559 if (TREE_CODE (t1) == INTEGER_CST
6560 && TREE_CODE (t2) == INTEGER_CST
6561 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
6562 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
6563 return 1;
6564
6565 return 0;
6566 }
6567
6568 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
6569 The precise way of comparison depends on their data type. */
6570
6571 int
6572 tree_int_cst_lt (const_tree t1, const_tree t2)
6573 {
6574 if (t1 == t2)
6575 return 0;
6576
6577 if (TYPE_UNSIGNED (TREE_TYPE (t1)) != TYPE_UNSIGNED (TREE_TYPE (t2)))
6578 {
6579 int t1_sgn = tree_int_cst_sgn (t1);
6580 int t2_sgn = tree_int_cst_sgn (t2);
6581
6582 if (t1_sgn < t2_sgn)
6583 return 1;
6584 else if (t1_sgn > t2_sgn)
6585 return 0;
6586 /* Otherwise, both are non-negative, so we compare them as
6587 unsigned just in case one of them would overflow a signed
6588 type. */
6589 }
6590 else if (!TYPE_UNSIGNED (TREE_TYPE (t1)))
6591 return INT_CST_LT (t1, t2);
6592
6593 return INT_CST_LT_UNSIGNED (t1, t2);
6594 }
6595
6596 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
6597
6598 int
6599 tree_int_cst_compare (const_tree t1, const_tree t2)
6600 {
6601 if (tree_int_cst_lt (t1, t2))
6602 return -1;
6603 else if (tree_int_cst_lt (t2, t1))
6604 return 1;
6605 else
6606 return 0;
6607 }
6608
6609 /* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
6610 the host. If POS is zero, the value can be represented in a single
6611 HOST_WIDE_INT. If POS is nonzero, the value must be non-negative and can
6612 be represented in a single unsigned HOST_WIDE_INT. */
6613
6614 int
6615 host_integerp (const_tree t, int pos)
6616 {
6617 if (t == NULL_TREE)
6618 return 0;
6619
6620 return (TREE_CODE (t) == INTEGER_CST
6621 && ((TREE_INT_CST_HIGH (t) == 0
6622 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
6623 || (! pos && TREE_INT_CST_HIGH (t) == -1
6624 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0
6625 && !TYPE_UNSIGNED (TREE_TYPE (t)))
6626 || (pos && TREE_INT_CST_HIGH (t) == 0)));
6627 }
6628
6629 /* Return the HOST_WIDE_INT least significant bits of T if it is an
6630 INTEGER_CST and there is no overflow. POS is nonzero if the result must
6631 be non-negative. We must be able to satisfy the above conditions. */
6632
6633 HOST_WIDE_INT
6634 tree_low_cst (const_tree t, int pos)
6635 {
6636 gcc_assert (host_integerp (t, pos));
6637 return TREE_INT_CST_LOW (t);
6638 }
6639
6640 /* Return the HOST_WIDE_INT least significant bits of T, a sizetype
6641 kind INTEGER_CST. This makes sure to properly sign-extend the
6642 constant. */
6643
6644 HOST_WIDE_INT
6645 size_low_cst (const_tree t)
6646 {
6647 double_int d = tree_to_double_int (t);
6648 return d.sext (TYPE_PRECISION (TREE_TYPE (t))).low;
6649 }
6650
6651 /* Return the most significant (sign) bit of T. */
6652
6653 int
6654 tree_int_cst_sign_bit (const_tree t)
6655 {
6656 unsigned bitno = TYPE_PRECISION (TREE_TYPE (t)) - 1;
6657 unsigned HOST_WIDE_INT w;
6658
6659 if (bitno < HOST_BITS_PER_WIDE_INT)
6660 w = TREE_INT_CST_LOW (t);
6661 else
6662 {
6663 w = TREE_INT_CST_HIGH (t);
6664 bitno -= HOST_BITS_PER_WIDE_INT;
6665 }
6666
6667 return (w >> bitno) & 1;
6668 }
6669
6670 /* Return an indication of the sign of the integer constant T.
6671 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
6672 Note that -1 will never be returned if T's type is unsigned. */
6673
6674 int
6675 tree_int_cst_sgn (const_tree t)
6676 {
6677 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
6678 return 0;
6679 else if (TYPE_UNSIGNED (TREE_TYPE (t)))
6680 return 1;
6681 else if (TREE_INT_CST_HIGH (t) < 0)
6682 return -1;
6683 else
6684 return 1;
6685 }
6686
6687 /* Return the minimum number of bits needed to represent VALUE in a
6688 signed or unsigned type, UNSIGNEDP says which. */
6689
6690 unsigned int
6691 tree_int_cst_min_precision (tree value, bool unsignedp)
6692 {
6693 /* If the value is negative, compute its negative minus 1. The latter
6694 adjustment is because the absolute value of the largest negative value
6695 is one larger than the largest positive value. This is equivalent to
6696 a bit-wise negation, so use that operation instead. */
6697
6698 if (tree_int_cst_sgn (value) < 0)
6699 value = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (value), value);
6700
6701 /* Return the number of bits needed, taking into account the fact
6702 that we need one more bit for a signed than unsigned type.
6703 If value is 0 or -1, the minimum precision is 1 no matter
6704 whether unsignedp is true or false. */
6705
6706 if (integer_zerop (value))
6707 return 1;
6708 else
6709 return tree_floor_log2 (value) + 1 + !unsignedp;
6710 }
6711
6712 /* Compare two constructor-element-type constants. Return 1 if the lists
6713 are known to be equal; otherwise return 0. */
6714
6715 int
6716 simple_cst_list_equal (const_tree l1, const_tree l2)
6717 {
6718 while (l1 != NULL_TREE && l2 != NULL_TREE)
6719 {
6720 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
6721 return 0;
6722
6723 l1 = TREE_CHAIN (l1);
6724 l2 = TREE_CHAIN (l2);
6725 }
6726
6727 return l1 == l2;
6728 }
6729
6730 /* Return truthvalue of whether T1 is the same tree structure as T2.
6731 Return 1 if they are the same.
6732 Return 0 if they are understandably different.
6733 Return -1 if either contains tree structure not understood by
6734 this function. */
6735
6736 int
6737 simple_cst_equal (const_tree t1, const_tree t2)
6738 {
6739 enum tree_code code1, code2;
6740 int cmp;
6741 int i;
6742
6743 if (t1 == t2)
6744 return 1;
6745 if (t1 == 0 || t2 == 0)
6746 return 0;
6747
6748 code1 = TREE_CODE (t1);
6749 code2 = TREE_CODE (t2);
6750
6751 if (CONVERT_EXPR_CODE_P (code1) || code1 == NON_LVALUE_EXPR)
6752 {
6753 if (CONVERT_EXPR_CODE_P (code2)
6754 || code2 == NON_LVALUE_EXPR)
6755 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6756 else
6757 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
6758 }
6759
6760 else if (CONVERT_EXPR_CODE_P (code2)
6761 || code2 == NON_LVALUE_EXPR)
6762 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
6763
6764 if (code1 != code2)
6765 return 0;
6766
6767 switch (code1)
6768 {
6769 case INTEGER_CST:
6770 return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
6771 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
6772
6773 case REAL_CST:
6774 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
6775
6776 case FIXED_CST:
6777 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1), TREE_FIXED_CST (t2));
6778
6779 case STRING_CST:
6780 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
6781 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
6782 TREE_STRING_LENGTH (t1)));
6783
6784 case CONSTRUCTOR:
6785 {
6786 unsigned HOST_WIDE_INT idx;
6787 vec<constructor_elt, va_gc> *v1 = CONSTRUCTOR_ELTS (t1);
6788 vec<constructor_elt, va_gc> *v2 = CONSTRUCTOR_ELTS (t2);
6789
6790 if (vec_safe_length (v1) != vec_safe_length (v2))
6791 return false;
6792
6793 for (idx = 0; idx < vec_safe_length (v1); ++idx)
6794 /* ??? Should we handle also fields here? */
6795 if (!simple_cst_equal ((*v1)[idx].value, (*v2)[idx].value))
6796 return false;
6797 return true;
6798 }
6799
6800 case SAVE_EXPR:
6801 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6802
6803 case CALL_EXPR:
6804 cmp = simple_cst_equal (CALL_EXPR_FN (t1), CALL_EXPR_FN (t2));
6805 if (cmp <= 0)
6806 return cmp;
6807 if (call_expr_nargs (t1) != call_expr_nargs (t2))
6808 return 0;
6809 {
6810 const_tree arg1, arg2;
6811 const_call_expr_arg_iterator iter1, iter2;
6812 for (arg1 = first_const_call_expr_arg (t1, &iter1),
6813 arg2 = first_const_call_expr_arg (t2, &iter2);
6814 arg1 && arg2;
6815 arg1 = next_const_call_expr_arg (&iter1),
6816 arg2 = next_const_call_expr_arg (&iter2))
6817 {
6818 cmp = simple_cst_equal (arg1, arg2);
6819 if (cmp <= 0)
6820 return cmp;
6821 }
6822 return arg1 == arg2;
6823 }
6824
6825 case TARGET_EXPR:
6826 /* Special case: if either target is an unallocated VAR_DECL,
6827 it means that it's going to be unified with whatever the
6828 TARGET_EXPR is really supposed to initialize, so treat it
6829 as being equivalent to anything. */
6830 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
6831 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
6832 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
6833 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
6834 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
6835 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
6836 cmp = 1;
6837 else
6838 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6839
6840 if (cmp <= 0)
6841 return cmp;
6842
6843 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
6844
6845 case WITH_CLEANUP_EXPR:
6846 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6847 if (cmp <= 0)
6848 return cmp;
6849
6850 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
6851
6852 case COMPONENT_REF:
6853 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
6854 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6855
6856 return 0;
6857
6858 case VAR_DECL:
6859 case PARM_DECL:
6860 case CONST_DECL:
6861 case FUNCTION_DECL:
6862 return 0;
6863
6864 default:
6865 break;
6866 }
6867
6868 /* This general rule works for most tree codes. All exceptions should be
6869 handled above. If this is a language-specific tree code, we can't
6870 trust what might be in the operand, so say we don't know
6871 the situation. */
6872 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
6873 return -1;
6874
6875 switch (TREE_CODE_CLASS (code1))
6876 {
6877 case tcc_unary:
6878 case tcc_binary:
6879 case tcc_comparison:
6880 case tcc_expression:
6881 case tcc_reference:
6882 case tcc_statement:
6883 cmp = 1;
6884 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
6885 {
6886 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
6887 if (cmp <= 0)
6888 return cmp;
6889 }
6890
6891 return cmp;
6892
6893 default:
6894 return -1;
6895 }
6896 }
6897
6898 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
6899 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
6900 than U, respectively. */
6901
6902 int
6903 compare_tree_int (const_tree t, unsigned HOST_WIDE_INT u)
6904 {
6905 if (tree_int_cst_sgn (t) < 0)
6906 return -1;
6907 else if (TREE_INT_CST_HIGH (t) != 0)
6908 return 1;
6909 else if (TREE_INT_CST_LOW (t) == u)
6910 return 0;
6911 else if (TREE_INT_CST_LOW (t) < u)
6912 return -1;
6913 else
6914 return 1;
6915 }
6916
6917 /* Return true if SIZE represents a constant size that is in bounds of
6918 what the middle-end and the backend accepts (covering not more than
6919 half of the address-space). */
6920
6921 bool
6922 valid_constant_size_p (const_tree size)
6923 {
6924 if (! host_integerp (size, 1)
6925 || TREE_OVERFLOW (size)
6926 || tree_int_cst_sign_bit (size) != 0)
6927 return false;
6928 return true;
6929 }
6930
6931 /* Return true if CODE represents an associative tree code. Otherwise
6932 return false. */
6933 bool
6934 associative_tree_code (enum tree_code code)
6935 {
6936 switch (code)
6937 {
6938 case BIT_IOR_EXPR:
6939 case BIT_AND_EXPR:
6940 case BIT_XOR_EXPR:
6941 case PLUS_EXPR:
6942 case MULT_EXPR:
6943 case MIN_EXPR:
6944 case MAX_EXPR:
6945 return true;
6946
6947 default:
6948 break;
6949 }
6950 return false;
6951 }
6952
6953 /* Return true if CODE represents a commutative tree code. Otherwise
6954 return false. */
6955 bool
6956 commutative_tree_code (enum tree_code code)
6957 {
6958 switch (code)
6959 {
6960 case PLUS_EXPR:
6961 case MULT_EXPR:
6962 case MULT_HIGHPART_EXPR:
6963 case MIN_EXPR:
6964 case MAX_EXPR:
6965 case BIT_IOR_EXPR:
6966 case BIT_XOR_EXPR:
6967 case BIT_AND_EXPR:
6968 case NE_EXPR:
6969 case EQ_EXPR:
6970 case UNORDERED_EXPR:
6971 case ORDERED_EXPR:
6972 case UNEQ_EXPR:
6973 case LTGT_EXPR:
6974 case TRUTH_AND_EXPR:
6975 case TRUTH_XOR_EXPR:
6976 case TRUTH_OR_EXPR:
6977 case WIDEN_MULT_EXPR:
6978 case VEC_WIDEN_MULT_HI_EXPR:
6979 case VEC_WIDEN_MULT_LO_EXPR:
6980 case VEC_WIDEN_MULT_EVEN_EXPR:
6981 case VEC_WIDEN_MULT_ODD_EXPR:
6982 return true;
6983
6984 default:
6985 break;
6986 }
6987 return false;
6988 }
6989
6990 /* Return true if CODE represents a ternary tree code for which the
6991 first two operands are commutative. Otherwise return false. */
6992 bool
6993 commutative_ternary_tree_code (enum tree_code code)
6994 {
6995 switch (code)
6996 {
6997 case WIDEN_MULT_PLUS_EXPR:
6998 case WIDEN_MULT_MINUS_EXPR:
6999 return true;
7000
7001 default:
7002 break;
7003 }
7004 return false;
7005 }
7006
7007 /* Generate a hash value for an expression. This can be used iteratively
7008 by passing a previous result as the VAL argument.
7009
7010 This function is intended to produce the same hash for expressions which
7011 would compare equal using operand_equal_p. */
7012
7013 hashval_t
7014 iterative_hash_expr (const_tree t, hashval_t val)
7015 {
7016 int i;
7017 enum tree_code code;
7018 char tclass;
7019
7020 if (t == NULL_TREE)
7021 return iterative_hash_hashval_t (0, val);
7022
7023 code = TREE_CODE (t);
7024
7025 switch (code)
7026 {
7027 /* Alas, constants aren't shared, so we can't rely on pointer
7028 identity. */
7029 case INTEGER_CST:
7030 val = iterative_hash_host_wide_int (TREE_INT_CST_LOW (t), val);
7031 return iterative_hash_host_wide_int (TREE_INT_CST_HIGH (t), val);
7032 case REAL_CST:
7033 {
7034 unsigned int val2 = real_hash (TREE_REAL_CST_PTR (t));
7035
7036 return iterative_hash_hashval_t (val2, val);
7037 }
7038 case FIXED_CST:
7039 {
7040 unsigned int val2 = fixed_hash (TREE_FIXED_CST_PTR (t));
7041
7042 return iterative_hash_hashval_t (val2, val);
7043 }
7044 case STRING_CST:
7045 return iterative_hash (TREE_STRING_POINTER (t),
7046 TREE_STRING_LENGTH (t), val);
7047 case COMPLEX_CST:
7048 val = iterative_hash_expr (TREE_REALPART (t), val);
7049 return iterative_hash_expr (TREE_IMAGPART (t), val);
7050 case VECTOR_CST:
7051 {
7052 unsigned i;
7053 for (i = 0; i < VECTOR_CST_NELTS (t); ++i)
7054 val = iterative_hash_expr (VECTOR_CST_ELT (t, i), val);
7055 return val;
7056 }
7057 case SSA_NAME:
7058 /* We can just compare by pointer. */
7059 return iterative_hash_host_wide_int (SSA_NAME_VERSION (t), val);
7060 case PLACEHOLDER_EXPR:
7061 /* The node itself doesn't matter. */
7062 return val;
7063 case TREE_LIST:
7064 /* A list of expressions, for a CALL_EXPR or as the elements of a
7065 VECTOR_CST. */
7066 for (; t; t = TREE_CHAIN (t))
7067 val = iterative_hash_expr (TREE_VALUE (t), val);
7068 return val;
7069 case CONSTRUCTOR:
7070 {
7071 unsigned HOST_WIDE_INT idx;
7072 tree field, value;
7073 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t), idx, field, value)
7074 {
7075 val = iterative_hash_expr (field, val);
7076 val = iterative_hash_expr (value, val);
7077 }
7078 return val;
7079 }
7080 case MEM_REF:
7081 {
7082 /* The type of the second operand is relevant, except for
7083 its top-level qualifiers. */
7084 tree type = TYPE_MAIN_VARIANT (TREE_TYPE (TREE_OPERAND (t, 1)));
7085
7086 val = iterative_hash_object (TYPE_HASH (type), val);
7087
7088 /* We could use the standard hash computation from this point
7089 on. */
7090 val = iterative_hash_object (code, val);
7091 val = iterative_hash_expr (TREE_OPERAND (t, 1), val);
7092 val = iterative_hash_expr (TREE_OPERAND (t, 0), val);
7093 return val;
7094 }
7095 case FUNCTION_DECL:
7096 /* When referring to a built-in FUNCTION_DECL, use the __builtin__ form.
7097 Otherwise nodes that compare equal according to operand_equal_p might
7098 get different hash codes. However, don't do this for machine specific
7099 or front end builtins, since the function code is overloaded in those
7100 cases. */
7101 if (DECL_BUILT_IN_CLASS (t) == BUILT_IN_NORMAL
7102 && builtin_decl_explicit_p (DECL_FUNCTION_CODE (t)))
7103 {
7104 t = builtin_decl_explicit (DECL_FUNCTION_CODE (t));
7105 code = TREE_CODE (t);
7106 }
7107 /* FALL THROUGH */
7108 default:
7109 tclass = TREE_CODE_CLASS (code);
7110
7111 if (tclass == tcc_declaration)
7112 {
7113 /* DECL's have a unique ID */
7114 val = iterative_hash_host_wide_int (DECL_UID (t), val);
7115 }
7116 else
7117 {
7118 gcc_assert (IS_EXPR_CODE_CLASS (tclass));
7119
7120 val = iterative_hash_object (code, val);
7121
7122 /* Don't hash the type, that can lead to having nodes which
7123 compare equal according to operand_equal_p, but which
7124 have different hash codes. */
7125 if (CONVERT_EXPR_CODE_P (code)
7126 || code == NON_LVALUE_EXPR)
7127 {
7128 /* Make sure to include signness in the hash computation. */
7129 val += TYPE_UNSIGNED (TREE_TYPE (t));
7130 val = iterative_hash_expr (TREE_OPERAND (t, 0), val);
7131 }
7132
7133 else if (commutative_tree_code (code))
7134 {
7135 /* It's a commutative expression. We want to hash it the same
7136 however it appears. We do this by first hashing both operands
7137 and then rehashing based on the order of their independent
7138 hashes. */
7139 hashval_t one = iterative_hash_expr (TREE_OPERAND (t, 0), 0);
7140 hashval_t two = iterative_hash_expr (TREE_OPERAND (t, 1), 0);
7141 hashval_t t;
7142
7143 if (one > two)
7144 t = one, one = two, two = t;
7145
7146 val = iterative_hash_hashval_t (one, val);
7147 val = iterative_hash_hashval_t (two, val);
7148 }
7149 else
7150 for (i = TREE_OPERAND_LENGTH (t) - 1; i >= 0; --i)
7151 val = iterative_hash_expr (TREE_OPERAND (t, i), val);
7152 }
7153 return val;
7154 }
7155 }
7156
7157 /* Generate a hash value for a pair of expressions. This can be used
7158 iteratively by passing a previous result as the VAL argument.
7159
7160 The same hash value is always returned for a given pair of expressions,
7161 regardless of the order in which they are presented. This is useful in
7162 hashing the operands of commutative functions. */
7163
7164 hashval_t
7165 iterative_hash_exprs_commutative (const_tree t1,
7166 const_tree t2, hashval_t val)
7167 {
7168 hashval_t one = iterative_hash_expr (t1, 0);
7169 hashval_t two = iterative_hash_expr (t2, 0);
7170 hashval_t t;
7171
7172 if (one > two)
7173 t = one, one = two, two = t;
7174 val = iterative_hash_hashval_t (one, val);
7175 val = iterative_hash_hashval_t (two, val);
7176
7177 return val;
7178 }
7179 \f
7180 /* Constructors for pointer, array and function types.
7181 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
7182 constructed by language-dependent code, not here.) */
7183
7184 /* Construct, lay out and return the type of pointers to TO_TYPE with
7185 mode MODE. If CAN_ALIAS_ALL is TRUE, indicate this type can
7186 reference all of memory. If such a type has already been
7187 constructed, reuse it. */
7188
7189 tree
7190 build_pointer_type_for_mode (tree to_type, enum machine_mode mode,
7191 bool can_alias_all)
7192 {
7193 tree t;
7194
7195 if (to_type == error_mark_node)
7196 return error_mark_node;
7197
7198 /* If the pointed-to type has the may_alias attribute set, force
7199 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
7200 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
7201 can_alias_all = true;
7202
7203 /* In some cases, languages will have things that aren't a POINTER_TYPE
7204 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
7205 In that case, return that type without regard to the rest of our
7206 operands.
7207
7208 ??? This is a kludge, but consistent with the way this function has
7209 always operated and there doesn't seem to be a good way to avoid this
7210 at the moment. */
7211 if (TYPE_POINTER_TO (to_type) != 0
7212 && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
7213 return TYPE_POINTER_TO (to_type);
7214
7215 /* First, if we already have a type for pointers to TO_TYPE and it's
7216 the proper mode, use it. */
7217 for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
7218 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
7219 return t;
7220
7221 t = make_node (POINTER_TYPE);
7222
7223 TREE_TYPE (t) = to_type;
7224 SET_TYPE_MODE (t, mode);
7225 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
7226 TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
7227 TYPE_POINTER_TO (to_type) = t;
7228
7229 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
7230 SET_TYPE_STRUCTURAL_EQUALITY (t);
7231 else if (TYPE_CANONICAL (to_type) != to_type)
7232 TYPE_CANONICAL (t)
7233 = build_pointer_type_for_mode (TYPE_CANONICAL (to_type),
7234 mode, can_alias_all);
7235
7236 /* Lay out the type. This function has many callers that are concerned
7237 with expression-construction, and this simplifies them all. */
7238 layout_type (t);
7239
7240 return t;
7241 }
7242
7243 /* By default build pointers in ptr_mode. */
7244
7245 tree
7246 build_pointer_type (tree to_type)
7247 {
7248 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
7249 : TYPE_ADDR_SPACE (to_type);
7250 enum machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
7251 return build_pointer_type_for_mode (to_type, pointer_mode, false);
7252 }
7253
7254 /* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE. */
7255
7256 tree
7257 build_reference_type_for_mode (tree to_type, enum machine_mode mode,
7258 bool can_alias_all)
7259 {
7260 tree t;
7261
7262 if (to_type == error_mark_node)
7263 return error_mark_node;
7264
7265 /* If the pointed-to type has the may_alias attribute set, force
7266 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
7267 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
7268 can_alias_all = true;
7269
7270 /* In some cases, languages will have things that aren't a REFERENCE_TYPE
7271 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
7272 In that case, return that type without regard to the rest of our
7273 operands.
7274
7275 ??? This is a kludge, but consistent with the way this function has
7276 always operated and there doesn't seem to be a good way to avoid this
7277 at the moment. */
7278 if (TYPE_REFERENCE_TO (to_type) != 0
7279 && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
7280 return TYPE_REFERENCE_TO (to_type);
7281
7282 /* First, if we already have a type for pointers to TO_TYPE and it's
7283 the proper mode, use it. */
7284 for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
7285 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
7286 return t;
7287
7288 t = make_node (REFERENCE_TYPE);
7289
7290 TREE_TYPE (t) = to_type;
7291 SET_TYPE_MODE (t, mode);
7292 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
7293 TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
7294 TYPE_REFERENCE_TO (to_type) = t;
7295
7296 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
7297 SET_TYPE_STRUCTURAL_EQUALITY (t);
7298 else if (TYPE_CANONICAL (to_type) != to_type)
7299 TYPE_CANONICAL (t)
7300 = build_reference_type_for_mode (TYPE_CANONICAL (to_type),
7301 mode, can_alias_all);
7302
7303 layout_type (t);
7304
7305 return t;
7306 }
7307
7308
7309 /* Build the node for the type of references-to-TO_TYPE by default
7310 in ptr_mode. */
7311
7312 tree
7313 build_reference_type (tree to_type)
7314 {
7315 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
7316 : TYPE_ADDR_SPACE (to_type);
7317 enum machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
7318 return build_reference_type_for_mode (to_type, pointer_mode, false);
7319 }
7320
7321 /* Build a type that is compatible with t but has no cv quals anywhere
7322 in its type, thus
7323
7324 const char *const *const * -> char ***. */
7325
7326 tree
7327 build_type_no_quals (tree t)
7328 {
7329 switch (TREE_CODE (t))
7330 {
7331 case POINTER_TYPE:
7332 return build_pointer_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
7333 TYPE_MODE (t),
7334 TYPE_REF_CAN_ALIAS_ALL (t));
7335 case REFERENCE_TYPE:
7336 return
7337 build_reference_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
7338 TYPE_MODE (t),
7339 TYPE_REF_CAN_ALIAS_ALL (t));
7340 default:
7341 return TYPE_MAIN_VARIANT (t);
7342 }
7343 }
7344
7345 #define MAX_INT_CACHED_PREC \
7346 (HOST_BITS_PER_WIDE_INT > 64 ? HOST_BITS_PER_WIDE_INT : 64)
7347 static GTY(()) tree nonstandard_integer_type_cache[2 * MAX_INT_CACHED_PREC + 2];
7348
7349 /* Builds a signed or unsigned integer type of precision PRECISION.
7350 Used for C bitfields whose precision does not match that of
7351 built-in target types. */
7352 tree
7353 build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
7354 int unsignedp)
7355 {
7356 tree itype, ret;
7357
7358 if (unsignedp)
7359 unsignedp = MAX_INT_CACHED_PREC + 1;
7360
7361 if (precision <= MAX_INT_CACHED_PREC)
7362 {
7363 itype = nonstandard_integer_type_cache[precision + unsignedp];
7364 if (itype)
7365 return itype;
7366 }
7367
7368 itype = make_node (INTEGER_TYPE);
7369 TYPE_PRECISION (itype) = precision;
7370
7371 if (unsignedp)
7372 fixup_unsigned_type (itype);
7373 else
7374 fixup_signed_type (itype);
7375
7376 ret = itype;
7377 if (host_integerp (TYPE_MAX_VALUE (itype), 1))
7378 ret = type_hash_canon (tree_low_cst (TYPE_MAX_VALUE (itype), 1), itype);
7379 if (precision <= MAX_INT_CACHED_PREC)
7380 nonstandard_integer_type_cache[precision + unsignedp] = ret;
7381
7382 return ret;
7383 }
7384
7385 /* Create a range of some discrete type TYPE (an INTEGER_TYPE, ENUMERAL_TYPE
7386 or BOOLEAN_TYPE) with low bound LOWVAL and high bound HIGHVAL. If SHARED
7387 is true, reuse such a type that has already been constructed. */
7388
7389 static tree
7390 build_range_type_1 (tree type, tree lowval, tree highval, bool shared)
7391 {
7392 tree itype = make_node (INTEGER_TYPE);
7393 hashval_t hashcode = 0;
7394
7395 TREE_TYPE (itype) = type;
7396
7397 TYPE_MIN_VALUE (itype) = fold_convert (type, lowval);
7398 TYPE_MAX_VALUE (itype) = highval ? fold_convert (type, highval) : NULL;
7399
7400 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
7401 SET_TYPE_MODE (itype, TYPE_MODE (type));
7402 TYPE_SIZE (itype) = TYPE_SIZE (type);
7403 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
7404 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
7405 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
7406
7407 if (!shared)
7408 return itype;
7409
7410 if ((TYPE_MIN_VALUE (itype)
7411 && TREE_CODE (TYPE_MIN_VALUE (itype)) != INTEGER_CST)
7412 || (TYPE_MAX_VALUE (itype)
7413 && TREE_CODE (TYPE_MAX_VALUE (itype)) != INTEGER_CST))
7414 {
7415 /* Since we cannot reliably merge this type, we need to compare it using
7416 structural equality checks. */
7417 SET_TYPE_STRUCTURAL_EQUALITY (itype);
7418 return itype;
7419 }
7420
7421 hashcode = iterative_hash_expr (TYPE_MIN_VALUE (itype), hashcode);
7422 hashcode = iterative_hash_expr (TYPE_MAX_VALUE (itype), hashcode);
7423 hashcode = iterative_hash_hashval_t (TYPE_HASH (type), hashcode);
7424 itype = type_hash_canon (hashcode, itype);
7425
7426 return itype;
7427 }
7428
7429 /* Wrapper around build_range_type_1 with SHARED set to true. */
7430
7431 tree
7432 build_range_type (tree type, tree lowval, tree highval)
7433 {
7434 return build_range_type_1 (type, lowval, highval, true);
7435 }
7436
7437 /* Wrapper around build_range_type_1 with SHARED set to false. */
7438
7439 tree
7440 build_nonshared_range_type (tree type, tree lowval, tree highval)
7441 {
7442 return build_range_type_1 (type, lowval, highval, false);
7443 }
7444
7445 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
7446 MAXVAL should be the maximum value in the domain
7447 (one less than the length of the array).
7448
7449 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
7450 We don't enforce this limit, that is up to caller (e.g. language front end).
7451 The limit exists because the result is a signed type and we don't handle
7452 sizes that use more than one HOST_WIDE_INT. */
7453
7454 tree
7455 build_index_type (tree maxval)
7456 {
7457 return build_range_type (sizetype, size_zero_node, maxval);
7458 }
7459
7460 /* Return true if the debug information for TYPE, a subtype, should be emitted
7461 as a subrange type. If so, set LOWVAL to the low bound and HIGHVAL to the
7462 high bound, respectively. Sometimes doing so unnecessarily obfuscates the
7463 debug info and doesn't reflect the source code. */
7464
7465 bool
7466 subrange_type_for_debug_p (const_tree type, tree *lowval, tree *highval)
7467 {
7468 tree base_type = TREE_TYPE (type), low, high;
7469
7470 /* Subrange types have a base type which is an integral type. */
7471 if (!INTEGRAL_TYPE_P (base_type))
7472 return false;
7473
7474 /* Get the real bounds of the subtype. */
7475 if (lang_hooks.types.get_subrange_bounds)
7476 lang_hooks.types.get_subrange_bounds (type, &low, &high);
7477 else
7478 {
7479 low = TYPE_MIN_VALUE (type);
7480 high = TYPE_MAX_VALUE (type);
7481 }
7482
7483 /* If the type and its base type have the same representation and the same
7484 name, then the type is not a subrange but a copy of the base type. */
7485 if ((TREE_CODE (base_type) == INTEGER_TYPE
7486 || TREE_CODE (base_type) == BOOLEAN_TYPE)
7487 && int_size_in_bytes (type) == int_size_in_bytes (base_type)
7488 && tree_int_cst_equal (low, TYPE_MIN_VALUE (base_type))
7489 && tree_int_cst_equal (high, TYPE_MAX_VALUE (base_type)))
7490 {
7491 tree type_name = TYPE_NAME (type);
7492 tree base_type_name = TYPE_NAME (base_type);
7493
7494 if (type_name && TREE_CODE (type_name) == TYPE_DECL)
7495 type_name = DECL_NAME (type_name);
7496
7497 if (base_type_name && TREE_CODE (base_type_name) == TYPE_DECL)
7498 base_type_name = DECL_NAME (base_type_name);
7499
7500 if (type_name == base_type_name)
7501 return false;
7502 }
7503
7504 if (lowval)
7505 *lowval = low;
7506 if (highval)
7507 *highval = high;
7508 return true;
7509 }
7510
7511 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
7512 and number of elements specified by the range of values of INDEX_TYPE.
7513 If SHARED is true, reuse such a type that has already been constructed. */
7514
7515 static tree
7516 build_array_type_1 (tree elt_type, tree index_type, bool shared)
7517 {
7518 tree t;
7519
7520 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
7521 {
7522 error ("arrays of functions are not meaningful");
7523 elt_type = integer_type_node;
7524 }
7525
7526 t = make_node (ARRAY_TYPE);
7527 TREE_TYPE (t) = elt_type;
7528 TYPE_DOMAIN (t) = index_type;
7529 TYPE_ADDR_SPACE (t) = TYPE_ADDR_SPACE (elt_type);
7530 layout_type (t);
7531
7532 /* If the element type is incomplete at this point we get marked for
7533 structural equality. Do not record these types in the canonical
7534 type hashtable. */
7535 if (TYPE_STRUCTURAL_EQUALITY_P (t))
7536 return t;
7537
7538 if (shared)
7539 {
7540 hashval_t hashcode = iterative_hash_object (TYPE_HASH (elt_type), 0);
7541 if (index_type)
7542 hashcode = iterative_hash_object (TYPE_HASH (index_type), hashcode);
7543 t = type_hash_canon (hashcode, t);
7544 }
7545
7546 if (TYPE_CANONICAL (t) == t)
7547 {
7548 if (TYPE_STRUCTURAL_EQUALITY_P (elt_type)
7549 || (index_type && TYPE_STRUCTURAL_EQUALITY_P (index_type)))
7550 SET_TYPE_STRUCTURAL_EQUALITY (t);
7551 else if (TYPE_CANONICAL (elt_type) != elt_type
7552 || (index_type && TYPE_CANONICAL (index_type) != index_type))
7553 TYPE_CANONICAL (t)
7554 = build_array_type_1 (TYPE_CANONICAL (elt_type),
7555 index_type
7556 ? TYPE_CANONICAL (index_type) : NULL_TREE,
7557 shared);
7558 }
7559
7560 return t;
7561 }
7562
7563 /* Wrapper around build_array_type_1 with SHARED set to true. */
7564
7565 tree
7566 build_array_type (tree elt_type, tree index_type)
7567 {
7568 return build_array_type_1 (elt_type, index_type, true);
7569 }
7570
7571 /* Wrapper around build_array_type_1 with SHARED set to false. */
7572
7573 tree
7574 build_nonshared_array_type (tree elt_type, tree index_type)
7575 {
7576 return build_array_type_1 (elt_type, index_type, false);
7577 }
7578
7579 /* Return a representation of ELT_TYPE[NELTS], using indices of type
7580 sizetype. */
7581
7582 tree
7583 build_array_type_nelts (tree elt_type, unsigned HOST_WIDE_INT nelts)
7584 {
7585 return build_array_type (elt_type, build_index_type (size_int (nelts - 1)));
7586 }
7587
7588 /* Recursively examines the array elements of TYPE, until a non-array
7589 element type is found. */
7590
7591 tree
7592 strip_array_types (tree type)
7593 {
7594 while (TREE_CODE (type) == ARRAY_TYPE)
7595 type = TREE_TYPE (type);
7596
7597 return type;
7598 }
7599
7600 /* Computes the canonical argument types from the argument type list
7601 ARGTYPES.
7602
7603 Upon return, *ANY_STRUCTURAL_P will be true iff either it was true
7604 on entry to this function, or if any of the ARGTYPES are
7605 structural.
7606
7607 Upon return, *ANY_NONCANONICAL_P will be true iff either it was
7608 true on entry to this function, or if any of the ARGTYPES are
7609 non-canonical.
7610
7611 Returns a canonical argument list, which may be ARGTYPES when the
7612 canonical argument list is unneeded (i.e., *ANY_STRUCTURAL_P is
7613 true) or would not differ from ARGTYPES. */
7614
7615 static tree
7616 maybe_canonicalize_argtypes(tree argtypes,
7617 bool *any_structural_p,
7618 bool *any_noncanonical_p)
7619 {
7620 tree arg;
7621 bool any_noncanonical_argtypes_p = false;
7622
7623 for (arg = argtypes; arg && !(*any_structural_p); arg = TREE_CHAIN (arg))
7624 {
7625 if (!TREE_VALUE (arg) || TREE_VALUE (arg) == error_mark_node)
7626 /* Fail gracefully by stating that the type is structural. */
7627 *any_structural_p = true;
7628 else if (TYPE_STRUCTURAL_EQUALITY_P (TREE_VALUE (arg)))
7629 *any_structural_p = true;
7630 else if (TYPE_CANONICAL (TREE_VALUE (arg)) != TREE_VALUE (arg)
7631 || TREE_PURPOSE (arg))
7632 /* If the argument has a default argument, we consider it
7633 non-canonical even though the type itself is canonical.
7634 That way, different variants of function and method types
7635 with default arguments will all point to the variant with
7636 no defaults as their canonical type. */
7637 any_noncanonical_argtypes_p = true;
7638 }
7639
7640 if (*any_structural_p)
7641 return argtypes;
7642
7643 if (any_noncanonical_argtypes_p)
7644 {
7645 /* Build the canonical list of argument types. */
7646 tree canon_argtypes = NULL_TREE;
7647 bool is_void = false;
7648
7649 for (arg = argtypes; arg; arg = TREE_CHAIN (arg))
7650 {
7651 if (arg == void_list_node)
7652 is_void = true;
7653 else
7654 canon_argtypes = tree_cons (NULL_TREE,
7655 TYPE_CANONICAL (TREE_VALUE (arg)),
7656 canon_argtypes);
7657 }
7658
7659 canon_argtypes = nreverse (canon_argtypes);
7660 if (is_void)
7661 canon_argtypes = chainon (canon_argtypes, void_list_node);
7662
7663 /* There is a non-canonical type. */
7664 *any_noncanonical_p = true;
7665 return canon_argtypes;
7666 }
7667
7668 /* The canonical argument types are the same as ARGTYPES. */
7669 return argtypes;
7670 }
7671
7672 /* Construct, lay out and return
7673 the type of functions returning type VALUE_TYPE
7674 given arguments of types ARG_TYPES.
7675 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
7676 are data type nodes for the arguments of the function.
7677 If such a type has already been constructed, reuse it. */
7678
7679 tree
7680 build_function_type (tree value_type, tree arg_types)
7681 {
7682 tree t;
7683 hashval_t hashcode = 0;
7684 bool any_structural_p, any_noncanonical_p;
7685 tree canon_argtypes;
7686
7687 if (TREE_CODE (value_type) == FUNCTION_TYPE)
7688 {
7689 error ("function return type cannot be function");
7690 value_type = integer_type_node;
7691 }
7692
7693 /* Make a node of the sort we want. */
7694 t = make_node (FUNCTION_TYPE);
7695 TREE_TYPE (t) = value_type;
7696 TYPE_ARG_TYPES (t) = arg_types;
7697
7698 /* If we already have such a type, use the old one. */
7699 hashcode = iterative_hash_object (TYPE_HASH (value_type), hashcode);
7700 hashcode = type_hash_list (arg_types, hashcode);
7701 t = type_hash_canon (hashcode, t);
7702
7703 /* Set up the canonical type. */
7704 any_structural_p = TYPE_STRUCTURAL_EQUALITY_P (value_type);
7705 any_noncanonical_p = TYPE_CANONICAL (value_type) != value_type;
7706 canon_argtypes = maybe_canonicalize_argtypes (arg_types,
7707 &any_structural_p,
7708 &any_noncanonical_p);
7709 if (any_structural_p)
7710 SET_TYPE_STRUCTURAL_EQUALITY (t);
7711 else if (any_noncanonical_p)
7712 TYPE_CANONICAL (t) = build_function_type (TYPE_CANONICAL (value_type),
7713 canon_argtypes);
7714
7715 if (!COMPLETE_TYPE_P (t))
7716 layout_type (t);
7717 return t;
7718 }
7719
7720 /* Build variant of function type ORIG_TYPE skipping ARGS_TO_SKIP and the
7721 return value if SKIP_RETURN is true. */
7722
7723 static tree
7724 build_function_type_skip_args (tree orig_type, bitmap args_to_skip,
7725 bool skip_return)
7726 {
7727 tree new_type = NULL;
7728 tree args, new_args = NULL, t;
7729 tree new_reversed;
7730 int i = 0;
7731
7732 for (args = TYPE_ARG_TYPES (orig_type); args && args != void_list_node;
7733 args = TREE_CHAIN (args), i++)
7734 if (!args_to_skip || !bitmap_bit_p (args_to_skip, i))
7735 new_args = tree_cons (NULL_TREE, TREE_VALUE (args), new_args);
7736
7737 new_reversed = nreverse (new_args);
7738 if (args)
7739 {
7740 if (new_reversed)
7741 TREE_CHAIN (new_args) = void_list_node;
7742 else
7743 new_reversed = void_list_node;
7744 }
7745
7746 /* Use copy_node to preserve as much as possible from original type
7747 (debug info, attribute lists etc.)
7748 Exception is METHOD_TYPEs must have THIS argument.
7749 When we are asked to remove it, we need to build new FUNCTION_TYPE
7750 instead. */
7751 if (TREE_CODE (orig_type) != METHOD_TYPE
7752 || !args_to_skip
7753 || !bitmap_bit_p (args_to_skip, 0))
7754 {
7755 new_type = build_distinct_type_copy (orig_type);
7756 TYPE_ARG_TYPES (new_type) = new_reversed;
7757 }
7758 else
7759 {
7760 new_type
7761 = build_distinct_type_copy (build_function_type (TREE_TYPE (orig_type),
7762 new_reversed));
7763 TYPE_CONTEXT (new_type) = TYPE_CONTEXT (orig_type);
7764 }
7765
7766 if (skip_return)
7767 TREE_TYPE (new_type) = void_type_node;
7768
7769 /* This is a new type, not a copy of an old type. Need to reassociate
7770 variants. We can handle everything except the main variant lazily. */
7771 t = TYPE_MAIN_VARIANT (orig_type);
7772 if (t != orig_type)
7773 {
7774 t = build_function_type_skip_args (t, args_to_skip, skip_return);
7775 TYPE_MAIN_VARIANT (new_type) = t;
7776 TYPE_NEXT_VARIANT (new_type) = TYPE_NEXT_VARIANT (t);
7777 TYPE_NEXT_VARIANT (t) = new_type;
7778 }
7779 else
7780 {
7781 TYPE_MAIN_VARIANT (new_type) = new_type;
7782 TYPE_NEXT_VARIANT (new_type) = NULL;
7783 }
7784
7785 return new_type;
7786 }
7787
7788 /* Build variant of function decl ORIG_DECL skipping ARGS_TO_SKIP and the
7789 return value if SKIP_RETURN is true.
7790
7791 Arguments from DECL_ARGUMENTS list can't be removed now, since they are
7792 linked by TREE_CHAIN directly. The caller is responsible for eliminating
7793 them when they are being duplicated (i.e. copy_arguments_for_versioning). */
7794
7795 tree
7796 build_function_decl_skip_args (tree orig_decl, bitmap args_to_skip,
7797 bool skip_return)
7798 {
7799 tree new_decl = copy_node (orig_decl);
7800 tree new_type;
7801
7802 new_type = TREE_TYPE (orig_decl);
7803 if (prototype_p (new_type)
7804 || (skip_return && !VOID_TYPE_P (TREE_TYPE (new_type))))
7805 new_type
7806 = build_function_type_skip_args (new_type, args_to_skip, skip_return);
7807 TREE_TYPE (new_decl) = new_type;
7808
7809 /* For declarations setting DECL_VINDEX (i.e. methods)
7810 we expect first argument to be THIS pointer. */
7811 if (args_to_skip && bitmap_bit_p (args_to_skip, 0))
7812 DECL_VINDEX (new_decl) = NULL_TREE;
7813
7814 /* When signature changes, we need to clear builtin info. */
7815 if (DECL_BUILT_IN (new_decl)
7816 && args_to_skip
7817 && !bitmap_empty_p (args_to_skip))
7818 {
7819 DECL_BUILT_IN_CLASS (new_decl) = NOT_BUILT_IN;
7820 DECL_FUNCTION_CODE (new_decl) = (enum built_in_function) 0;
7821 }
7822 return new_decl;
7823 }
7824
7825 /* Build a function type. The RETURN_TYPE is the type returned by the
7826 function. If VAARGS is set, no void_type_node is appended to the
7827 the list. ARGP must be always be terminated be a NULL_TREE. */
7828
7829 static tree
7830 build_function_type_list_1 (bool vaargs, tree return_type, va_list argp)
7831 {
7832 tree t, args, last;
7833
7834 t = va_arg (argp, tree);
7835 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (argp, tree))
7836 args = tree_cons (NULL_TREE, t, args);
7837
7838 if (vaargs)
7839 {
7840 last = args;
7841 if (args != NULL_TREE)
7842 args = nreverse (args);
7843 gcc_assert (last != void_list_node);
7844 }
7845 else if (args == NULL_TREE)
7846 args = void_list_node;
7847 else
7848 {
7849 last = args;
7850 args = nreverse (args);
7851 TREE_CHAIN (last) = void_list_node;
7852 }
7853 args = build_function_type (return_type, args);
7854
7855 return args;
7856 }
7857
7858 /* Build a function type. The RETURN_TYPE is the type returned by the
7859 function. If additional arguments are provided, they are
7860 additional argument types. The list of argument types must always
7861 be terminated by NULL_TREE. */
7862
7863 tree
7864 build_function_type_list (tree return_type, ...)
7865 {
7866 tree args;
7867 va_list p;
7868
7869 va_start (p, return_type);
7870 args = build_function_type_list_1 (false, return_type, p);
7871 va_end (p);
7872 return args;
7873 }
7874
7875 /* Build a variable argument function type. The RETURN_TYPE is the
7876 type returned by the function. If additional arguments are provided,
7877 they are additional argument types. The list of argument types must
7878 always be terminated by NULL_TREE. */
7879
7880 tree
7881 build_varargs_function_type_list (tree return_type, ...)
7882 {
7883 tree args;
7884 va_list p;
7885
7886 va_start (p, return_type);
7887 args = build_function_type_list_1 (true, return_type, p);
7888 va_end (p);
7889
7890 return args;
7891 }
7892
7893 /* Build a function type. RETURN_TYPE is the type returned by the
7894 function; VAARGS indicates whether the function takes varargs. The
7895 function takes N named arguments, the types of which are provided in
7896 ARG_TYPES. */
7897
7898 static tree
7899 build_function_type_array_1 (bool vaargs, tree return_type, int n,
7900 tree *arg_types)
7901 {
7902 int i;
7903 tree t = vaargs ? NULL_TREE : void_list_node;
7904
7905 for (i = n - 1; i >= 0; i--)
7906 t = tree_cons (NULL_TREE, arg_types[i], t);
7907
7908 return build_function_type (return_type, t);
7909 }
7910
7911 /* Build a function type. RETURN_TYPE is the type returned by the
7912 function. The function takes N named arguments, the types of which
7913 are provided in ARG_TYPES. */
7914
7915 tree
7916 build_function_type_array (tree return_type, int n, tree *arg_types)
7917 {
7918 return build_function_type_array_1 (false, return_type, n, arg_types);
7919 }
7920
7921 /* Build a variable argument function type. RETURN_TYPE is the type
7922 returned by the function. The function takes N named arguments, the
7923 types of which are provided in ARG_TYPES. */
7924
7925 tree
7926 build_varargs_function_type_array (tree return_type, int n, tree *arg_types)
7927 {
7928 return build_function_type_array_1 (true, return_type, n, arg_types);
7929 }
7930
7931 /* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
7932 and ARGTYPES (a TREE_LIST) are the return type and arguments types
7933 for the method. An implicit additional parameter (of type
7934 pointer-to-BASETYPE) is added to the ARGTYPES. */
7935
7936 tree
7937 build_method_type_directly (tree basetype,
7938 tree rettype,
7939 tree argtypes)
7940 {
7941 tree t;
7942 tree ptype;
7943 int hashcode = 0;
7944 bool any_structural_p, any_noncanonical_p;
7945 tree canon_argtypes;
7946
7947 /* Make a node of the sort we want. */
7948 t = make_node (METHOD_TYPE);
7949
7950 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
7951 TREE_TYPE (t) = rettype;
7952 ptype = build_pointer_type (basetype);
7953
7954 /* The actual arglist for this function includes a "hidden" argument
7955 which is "this". Put it into the list of argument types. */
7956 argtypes = tree_cons (NULL_TREE, ptype, argtypes);
7957 TYPE_ARG_TYPES (t) = argtypes;
7958
7959 /* If we already have such a type, use the old one. */
7960 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
7961 hashcode = iterative_hash_object (TYPE_HASH (rettype), hashcode);
7962 hashcode = type_hash_list (argtypes, hashcode);
7963 t = type_hash_canon (hashcode, t);
7964
7965 /* Set up the canonical type. */
7966 any_structural_p
7967 = (TYPE_STRUCTURAL_EQUALITY_P (basetype)
7968 || TYPE_STRUCTURAL_EQUALITY_P (rettype));
7969 any_noncanonical_p
7970 = (TYPE_CANONICAL (basetype) != basetype
7971 || TYPE_CANONICAL (rettype) != rettype);
7972 canon_argtypes = maybe_canonicalize_argtypes (TREE_CHAIN (argtypes),
7973 &any_structural_p,
7974 &any_noncanonical_p);
7975 if (any_structural_p)
7976 SET_TYPE_STRUCTURAL_EQUALITY (t);
7977 else if (any_noncanonical_p)
7978 TYPE_CANONICAL (t)
7979 = build_method_type_directly (TYPE_CANONICAL (basetype),
7980 TYPE_CANONICAL (rettype),
7981 canon_argtypes);
7982 if (!COMPLETE_TYPE_P (t))
7983 layout_type (t);
7984
7985 return t;
7986 }
7987
7988 /* Construct, lay out and return the type of methods belonging to class
7989 BASETYPE and whose arguments and values are described by TYPE.
7990 If that type exists already, reuse it.
7991 TYPE must be a FUNCTION_TYPE node. */
7992
7993 tree
7994 build_method_type (tree basetype, tree type)
7995 {
7996 gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
7997
7998 return build_method_type_directly (basetype,
7999 TREE_TYPE (type),
8000 TYPE_ARG_TYPES (type));
8001 }
8002
8003 /* Construct, lay out and return the type of offsets to a value
8004 of type TYPE, within an object of type BASETYPE.
8005 If a suitable offset type exists already, reuse it. */
8006
8007 tree
8008 build_offset_type (tree basetype, tree type)
8009 {
8010 tree t;
8011 hashval_t hashcode = 0;
8012
8013 /* Make a node of the sort we want. */
8014 t = make_node (OFFSET_TYPE);
8015
8016 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
8017 TREE_TYPE (t) = type;
8018
8019 /* If we already have such a type, use the old one. */
8020 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
8021 hashcode = iterative_hash_object (TYPE_HASH (type), hashcode);
8022 t = type_hash_canon (hashcode, t);
8023
8024 if (!COMPLETE_TYPE_P (t))
8025 layout_type (t);
8026
8027 if (TYPE_CANONICAL (t) == t)
8028 {
8029 if (TYPE_STRUCTURAL_EQUALITY_P (basetype)
8030 || TYPE_STRUCTURAL_EQUALITY_P (type))
8031 SET_TYPE_STRUCTURAL_EQUALITY (t);
8032 else if (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)) != basetype
8033 || TYPE_CANONICAL (type) != type)
8034 TYPE_CANONICAL (t)
8035 = build_offset_type (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)),
8036 TYPE_CANONICAL (type));
8037 }
8038
8039 return t;
8040 }
8041
8042 /* Create a complex type whose components are COMPONENT_TYPE. */
8043
8044 tree
8045 build_complex_type (tree component_type)
8046 {
8047 tree t;
8048 hashval_t hashcode;
8049
8050 gcc_assert (INTEGRAL_TYPE_P (component_type)
8051 || SCALAR_FLOAT_TYPE_P (component_type)
8052 || FIXED_POINT_TYPE_P (component_type));
8053
8054 /* Make a node of the sort we want. */
8055 t = make_node (COMPLEX_TYPE);
8056
8057 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
8058
8059 /* If we already have such a type, use the old one. */
8060 hashcode = iterative_hash_object (TYPE_HASH (component_type), 0);
8061 t = type_hash_canon (hashcode, t);
8062
8063 if (!COMPLETE_TYPE_P (t))
8064 layout_type (t);
8065
8066 if (TYPE_CANONICAL (t) == t)
8067 {
8068 if (TYPE_STRUCTURAL_EQUALITY_P (component_type))
8069 SET_TYPE_STRUCTURAL_EQUALITY (t);
8070 else if (TYPE_CANONICAL (component_type) != component_type)
8071 TYPE_CANONICAL (t)
8072 = build_complex_type (TYPE_CANONICAL (component_type));
8073 }
8074
8075 /* We need to create a name, since complex is a fundamental type. */
8076 if (! TYPE_NAME (t))
8077 {
8078 const char *name;
8079 if (component_type == char_type_node)
8080 name = "complex char";
8081 else if (component_type == signed_char_type_node)
8082 name = "complex signed char";
8083 else if (component_type == unsigned_char_type_node)
8084 name = "complex unsigned char";
8085 else if (component_type == short_integer_type_node)
8086 name = "complex short int";
8087 else if (component_type == short_unsigned_type_node)
8088 name = "complex short unsigned int";
8089 else if (component_type == integer_type_node)
8090 name = "complex int";
8091 else if (component_type == unsigned_type_node)
8092 name = "complex unsigned int";
8093 else if (component_type == long_integer_type_node)
8094 name = "complex long int";
8095 else if (component_type == long_unsigned_type_node)
8096 name = "complex long unsigned int";
8097 else if (component_type == long_long_integer_type_node)
8098 name = "complex long long int";
8099 else if (component_type == long_long_unsigned_type_node)
8100 name = "complex long long unsigned int";
8101 else
8102 name = 0;
8103
8104 if (name != 0)
8105 TYPE_NAME (t) = build_decl (UNKNOWN_LOCATION, TYPE_DECL,
8106 get_identifier (name), t);
8107 }
8108
8109 return build_qualified_type (t, TYPE_QUALS (component_type));
8110 }
8111
8112 /* If TYPE is a real or complex floating-point type and the target
8113 does not directly support arithmetic on TYPE then return the wider
8114 type to be used for arithmetic on TYPE. Otherwise, return
8115 NULL_TREE. */
8116
8117 tree
8118 excess_precision_type (tree type)
8119 {
8120 if (flag_excess_precision != EXCESS_PRECISION_FAST)
8121 {
8122 int flt_eval_method = TARGET_FLT_EVAL_METHOD;
8123 switch (TREE_CODE (type))
8124 {
8125 case REAL_TYPE:
8126 switch (flt_eval_method)
8127 {
8128 case 1:
8129 if (TYPE_MODE (type) == TYPE_MODE (float_type_node))
8130 return double_type_node;
8131 break;
8132 case 2:
8133 if (TYPE_MODE (type) == TYPE_MODE (float_type_node)
8134 || TYPE_MODE (type) == TYPE_MODE (double_type_node))
8135 return long_double_type_node;
8136 break;
8137 default:
8138 gcc_unreachable ();
8139 }
8140 break;
8141 case COMPLEX_TYPE:
8142 if (TREE_CODE (TREE_TYPE (type)) != REAL_TYPE)
8143 return NULL_TREE;
8144 switch (flt_eval_method)
8145 {
8146 case 1:
8147 if (TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (float_type_node))
8148 return complex_double_type_node;
8149 break;
8150 case 2:
8151 if (TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (float_type_node)
8152 || (TYPE_MODE (TREE_TYPE (type))
8153 == TYPE_MODE (double_type_node)))
8154 return complex_long_double_type_node;
8155 break;
8156 default:
8157 gcc_unreachable ();
8158 }
8159 break;
8160 default:
8161 break;
8162 }
8163 }
8164 return NULL_TREE;
8165 }
8166 \f
8167 /* Return OP, stripped of any conversions to wider types as much as is safe.
8168 Converting the value back to OP's type makes a value equivalent to OP.
8169
8170 If FOR_TYPE is nonzero, we return a value which, if converted to
8171 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
8172
8173 OP must have integer, real or enumeral type. Pointers are not allowed!
8174
8175 There are some cases where the obvious value we could return
8176 would regenerate to OP if converted to OP's type,
8177 but would not extend like OP to wider types.
8178 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
8179 For example, if OP is (unsigned short)(signed char)-1,
8180 we avoid returning (signed char)-1 if FOR_TYPE is int,
8181 even though extending that to an unsigned short would regenerate OP,
8182 since the result of extending (signed char)-1 to (int)
8183 is different from (int) OP. */
8184
8185 tree
8186 get_unwidened (tree op, tree for_type)
8187 {
8188 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
8189 tree type = TREE_TYPE (op);
8190 unsigned final_prec
8191 = TYPE_PRECISION (for_type != 0 ? for_type : type);
8192 int uns
8193 = (for_type != 0 && for_type != type
8194 && final_prec > TYPE_PRECISION (type)
8195 && TYPE_UNSIGNED (type));
8196 tree win = op;
8197
8198 while (CONVERT_EXPR_P (op))
8199 {
8200 int bitschange;
8201
8202 /* TYPE_PRECISION on vector types has different meaning
8203 (TYPE_VECTOR_SUBPARTS) and casts from vectors are view conversions,
8204 so avoid them here. */
8205 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == VECTOR_TYPE)
8206 break;
8207
8208 bitschange = TYPE_PRECISION (TREE_TYPE (op))
8209 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
8210
8211 /* Truncations are many-one so cannot be removed.
8212 Unless we are later going to truncate down even farther. */
8213 if (bitschange < 0
8214 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
8215 break;
8216
8217 /* See what's inside this conversion. If we decide to strip it,
8218 we will set WIN. */
8219 op = TREE_OPERAND (op, 0);
8220
8221 /* If we have not stripped any zero-extensions (uns is 0),
8222 we can strip any kind of extension.
8223 If we have previously stripped a zero-extension,
8224 only zero-extensions can safely be stripped.
8225 Any extension can be stripped if the bits it would produce
8226 are all going to be discarded later by truncating to FOR_TYPE. */
8227
8228 if (bitschange > 0)
8229 {
8230 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
8231 win = op;
8232 /* TYPE_UNSIGNED says whether this is a zero-extension.
8233 Let's avoid computing it if it does not affect WIN
8234 and if UNS will not be needed again. */
8235 if ((uns
8236 || CONVERT_EXPR_P (op))
8237 && TYPE_UNSIGNED (TREE_TYPE (op)))
8238 {
8239 uns = 1;
8240 win = op;
8241 }
8242 }
8243 }
8244
8245 /* If we finally reach a constant see if it fits in for_type and
8246 in that case convert it. */
8247 if (for_type
8248 && TREE_CODE (win) == INTEGER_CST
8249 && TREE_TYPE (win) != for_type
8250 && int_fits_type_p (win, for_type))
8251 win = fold_convert (for_type, win);
8252
8253 return win;
8254 }
8255 \f
8256 /* Return OP or a simpler expression for a narrower value
8257 which can be sign-extended or zero-extended to give back OP.
8258 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
8259 or 0 if the value should be sign-extended. */
8260
8261 tree
8262 get_narrower (tree op, int *unsignedp_ptr)
8263 {
8264 int uns = 0;
8265 int first = 1;
8266 tree win = op;
8267 bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));
8268
8269 while (TREE_CODE (op) == NOP_EXPR)
8270 {
8271 int bitschange
8272 = (TYPE_PRECISION (TREE_TYPE (op))
8273 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
8274
8275 /* Truncations are many-one so cannot be removed. */
8276 if (bitschange < 0)
8277 break;
8278
8279 /* See what's inside this conversion. If we decide to strip it,
8280 we will set WIN. */
8281
8282 if (bitschange > 0)
8283 {
8284 op = TREE_OPERAND (op, 0);
8285 /* An extension: the outermost one can be stripped,
8286 but remember whether it is zero or sign extension. */
8287 if (first)
8288 uns = TYPE_UNSIGNED (TREE_TYPE (op));
8289 /* Otherwise, if a sign extension has been stripped,
8290 only sign extensions can now be stripped;
8291 if a zero extension has been stripped, only zero-extensions. */
8292 else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
8293 break;
8294 first = 0;
8295 }
8296 else /* bitschange == 0 */
8297 {
8298 /* A change in nominal type can always be stripped, but we must
8299 preserve the unsignedness. */
8300 if (first)
8301 uns = TYPE_UNSIGNED (TREE_TYPE (op));
8302 first = 0;
8303 op = TREE_OPERAND (op, 0);
8304 /* Keep trying to narrow, but don't assign op to win if it
8305 would turn an integral type into something else. */
8306 if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
8307 continue;
8308 }
8309
8310 win = op;
8311 }
8312
8313 if (TREE_CODE (op) == COMPONENT_REF
8314 /* Since type_for_size always gives an integer type. */
8315 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
8316 && TREE_CODE (TREE_TYPE (op)) != FIXED_POINT_TYPE
8317 /* Ensure field is laid out already. */
8318 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
8319 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
8320 {
8321 unsigned HOST_WIDE_INT innerprec
8322 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
8323 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
8324 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
8325 tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
8326
8327 /* We can get this structure field in a narrower type that fits it,
8328 but the resulting extension to its nominal type (a fullword type)
8329 must satisfy the same conditions as for other extensions.
8330
8331 Do this only for fields that are aligned (not bit-fields),
8332 because when bit-field insns will be used there is no
8333 advantage in doing this. */
8334
8335 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
8336 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
8337 && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
8338 && type != 0)
8339 {
8340 if (first)
8341 uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
8342 win = fold_convert (type, op);
8343 }
8344 }
8345
8346 *unsignedp_ptr = uns;
8347 return win;
8348 }
8349 \f
8350 /* Returns true if integer constant C has a value that is permissible
8351 for type TYPE (an INTEGER_TYPE). */
8352
8353 bool
8354 int_fits_type_p (const_tree c, const_tree type)
8355 {
8356 tree type_low_bound, type_high_bound;
8357 bool ok_for_low_bound, ok_for_high_bound, unsc;
8358 double_int dc, dd;
8359
8360 dc = tree_to_double_int (c);
8361 unsc = TYPE_UNSIGNED (TREE_TYPE (c));
8362
8363 retry:
8364 type_low_bound = TYPE_MIN_VALUE (type);
8365 type_high_bound = TYPE_MAX_VALUE (type);
8366
8367 /* If at least one bound of the type is a constant integer, we can check
8368 ourselves and maybe make a decision. If no such decision is possible, but
8369 this type is a subtype, try checking against that. Otherwise, use
8370 double_int_fits_to_tree_p, which checks against the precision.
8371
8372 Compute the status for each possibly constant bound, and return if we see
8373 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
8374 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
8375 for "constant known to fit". */
8376
8377 /* Check if c >= type_low_bound. */
8378 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
8379 {
8380 dd = tree_to_double_int (type_low_bound);
8381 if (unsc != TYPE_UNSIGNED (TREE_TYPE (type_low_bound)))
8382 {
8383 int c_neg = (!unsc && dc.is_negative ());
8384 int t_neg = (unsc && dd.is_negative ());
8385
8386 if (c_neg && !t_neg)
8387 return false;
8388 if ((c_neg || !t_neg) && dc.ult (dd))
8389 return false;
8390 }
8391 else if (dc.cmp (dd, unsc) < 0)
8392 return false;
8393 ok_for_low_bound = true;
8394 }
8395 else
8396 ok_for_low_bound = false;
8397
8398 /* Check if c <= type_high_bound. */
8399 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
8400 {
8401 dd = tree_to_double_int (type_high_bound);
8402 if (unsc != TYPE_UNSIGNED (TREE_TYPE (type_high_bound)))
8403 {
8404 int c_neg = (!unsc && dc.is_negative ());
8405 int t_neg = (unsc && dd.is_negative ());
8406
8407 if (t_neg && !c_neg)
8408 return false;
8409 if ((t_neg || !c_neg) && dc.ugt (dd))
8410 return false;
8411 }
8412 else if (dc.cmp (dd, unsc) > 0)
8413 return false;
8414 ok_for_high_bound = true;
8415 }
8416 else
8417 ok_for_high_bound = false;
8418
8419 /* If the constant fits both bounds, the result is known. */
8420 if (ok_for_low_bound && ok_for_high_bound)
8421 return true;
8422
8423 /* Perform some generic filtering which may allow making a decision
8424 even if the bounds are not constant. First, negative integers
8425 never fit in unsigned types, */
8426 if (TYPE_UNSIGNED (type) && !unsc && dc.is_negative ())
8427 return false;
8428
8429 /* Second, narrower types always fit in wider ones. */
8430 if (TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (c)))
8431 return true;
8432
8433 /* Third, unsigned integers with top bit set never fit signed types. */
8434 if (! TYPE_UNSIGNED (type) && unsc)
8435 {
8436 int prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (c))) - 1;
8437 if (prec < HOST_BITS_PER_WIDE_INT)
8438 {
8439 if (((((unsigned HOST_WIDE_INT) 1) << prec) & dc.low) != 0)
8440 return false;
8441 }
8442 else if (((((unsigned HOST_WIDE_INT) 1)
8443 << (prec - HOST_BITS_PER_WIDE_INT)) & dc.high) != 0)
8444 return false;
8445 }
8446
8447 /* If we haven't been able to decide at this point, there nothing more we
8448 can check ourselves here. Look at the base type if we have one and it
8449 has the same precision. */
8450 if (TREE_CODE (type) == INTEGER_TYPE
8451 && TREE_TYPE (type) != 0
8452 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (type)))
8453 {
8454 type = TREE_TYPE (type);
8455 goto retry;
8456 }
8457
8458 /* Or to double_int_fits_to_tree_p, if nothing else. */
8459 return double_int_fits_to_tree_p (type, dc);
8460 }
8461
8462 /* Stores bounds of an integer TYPE in MIN and MAX. If TYPE has non-constant
8463 bounds or is a POINTER_TYPE, the maximum and/or minimum values that can be
8464 represented (assuming two's-complement arithmetic) within the bit
8465 precision of the type are returned instead. */
8466
8467 void
8468 get_type_static_bounds (const_tree type, mpz_t min, mpz_t max)
8469 {
8470 if (!POINTER_TYPE_P (type) && TYPE_MIN_VALUE (type)
8471 && TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST)
8472 mpz_set_double_int (min, tree_to_double_int (TYPE_MIN_VALUE (type)),
8473 TYPE_UNSIGNED (type));
8474 else
8475 {
8476 if (TYPE_UNSIGNED (type))
8477 mpz_set_ui (min, 0);
8478 else
8479 {
8480 double_int mn;
8481 mn = double_int::mask (TYPE_PRECISION (type) - 1);
8482 mn = (mn + double_int_one).sext (TYPE_PRECISION (type));
8483 mpz_set_double_int (min, mn, false);
8484 }
8485 }
8486
8487 if (!POINTER_TYPE_P (type) && TYPE_MAX_VALUE (type)
8488 && TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST)
8489 mpz_set_double_int (max, tree_to_double_int (TYPE_MAX_VALUE (type)),
8490 TYPE_UNSIGNED (type));
8491 else
8492 {
8493 if (TYPE_UNSIGNED (type))
8494 mpz_set_double_int (max, double_int::mask (TYPE_PRECISION (type)),
8495 true);
8496 else
8497 mpz_set_double_int (max, double_int::mask (TYPE_PRECISION (type) - 1),
8498 true);
8499 }
8500 }
8501
8502 /* Return true if VAR is an automatic variable defined in function FN. */
8503
8504 bool
8505 auto_var_in_fn_p (const_tree var, const_tree fn)
8506 {
8507 return (DECL_P (var) && DECL_CONTEXT (var) == fn
8508 && ((((TREE_CODE (var) == VAR_DECL && ! DECL_EXTERNAL (var))
8509 || TREE_CODE (var) == PARM_DECL)
8510 && ! TREE_STATIC (var))
8511 || TREE_CODE (var) == LABEL_DECL
8512 || TREE_CODE (var) == RESULT_DECL));
8513 }
8514
8515 /* Subprogram of following function. Called by walk_tree.
8516
8517 Return *TP if it is an automatic variable or parameter of the
8518 function passed in as DATA. */
8519
8520 static tree
8521 find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
8522 {
8523 tree fn = (tree) data;
8524
8525 if (TYPE_P (*tp))
8526 *walk_subtrees = 0;
8527
8528 else if (DECL_P (*tp)
8529 && auto_var_in_fn_p (*tp, fn))
8530 return *tp;
8531
8532 return NULL_TREE;
8533 }
8534
8535 /* Returns true if T is, contains, or refers to a type with variable
8536 size. For METHOD_TYPEs and FUNCTION_TYPEs we exclude the
8537 arguments, but not the return type. If FN is nonzero, only return
8538 true if a modifier of the type or position of FN is a variable or
8539 parameter inside FN.
8540
8541 This concept is more general than that of C99 'variably modified types':
8542 in C99, a struct type is never variably modified because a VLA may not
8543 appear as a structure member. However, in GNU C code like:
8544
8545 struct S { int i[f()]; };
8546
8547 is valid, and other languages may define similar constructs. */
8548
8549 bool
8550 variably_modified_type_p (tree type, tree fn)
8551 {
8552 tree t;
8553
8554 /* Test if T is either variable (if FN is zero) or an expression containing
8555 a variable in FN. If TYPE isn't gimplified, return true also if
8556 gimplify_one_sizepos would gimplify the expression into a local
8557 variable. */
8558 #define RETURN_TRUE_IF_VAR(T) \
8559 do { tree _t = (T); \
8560 if (_t != NULL_TREE \
8561 && _t != error_mark_node \
8562 && TREE_CODE (_t) != INTEGER_CST \
8563 && TREE_CODE (_t) != PLACEHOLDER_EXPR \
8564 && (!fn \
8565 || (!TYPE_SIZES_GIMPLIFIED (type) \
8566 && !is_gimple_sizepos (_t)) \
8567 || walk_tree (&_t, find_var_from_fn, fn, NULL))) \
8568 return true; } while (0)
8569
8570 if (type == error_mark_node)
8571 return false;
8572
8573 /* If TYPE itself has variable size, it is variably modified. */
8574 RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
8575 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (type));
8576
8577 switch (TREE_CODE (type))
8578 {
8579 case POINTER_TYPE:
8580 case REFERENCE_TYPE:
8581 case VECTOR_TYPE:
8582 if (variably_modified_type_p (TREE_TYPE (type), fn))
8583 return true;
8584 break;
8585
8586 case FUNCTION_TYPE:
8587 case METHOD_TYPE:
8588 /* If TYPE is a function type, it is variably modified if the
8589 return type is variably modified. */
8590 if (variably_modified_type_p (TREE_TYPE (type), fn))
8591 return true;
8592 break;
8593
8594 case INTEGER_TYPE:
8595 case REAL_TYPE:
8596 case FIXED_POINT_TYPE:
8597 case ENUMERAL_TYPE:
8598 case BOOLEAN_TYPE:
8599 /* Scalar types are variably modified if their end points
8600 aren't constant. */
8601 RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
8602 RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
8603 break;
8604
8605 case RECORD_TYPE:
8606 case UNION_TYPE:
8607 case QUAL_UNION_TYPE:
8608 /* We can't see if any of the fields are variably-modified by the
8609 definition we normally use, since that would produce infinite
8610 recursion via pointers. */
8611 /* This is variably modified if some field's type is. */
8612 for (t = TYPE_FIELDS (type); t; t = DECL_CHAIN (t))
8613 if (TREE_CODE (t) == FIELD_DECL)
8614 {
8615 RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
8616 RETURN_TRUE_IF_VAR (DECL_SIZE (t));
8617 RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));
8618
8619 if (TREE_CODE (type) == QUAL_UNION_TYPE)
8620 RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));
8621 }
8622 break;
8623
8624 case ARRAY_TYPE:
8625 /* Do not call ourselves to avoid infinite recursion. This is
8626 variably modified if the element type is. */
8627 RETURN_TRUE_IF_VAR (TYPE_SIZE (TREE_TYPE (type)));
8628 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (TREE_TYPE (type)));
8629 break;
8630
8631 default:
8632 break;
8633 }
8634
8635 /* The current language may have other cases to check, but in general,
8636 all other types are not variably modified. */
8637 return lang_hooks.tree_inlining.var_mod_type_p (type, fn);
8638
8639 #undef RETURN_TRUE_IF_VAR
8640 }
8641
8642 /* Given a DECL or TYPE, return the scope in which it was declared, or
8643 NULL_TREE if there is no containing scope. */
8644
8645 tree
8646 get_containing_scope (const_tree t)
8647 {
8648 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
8649 }
8650
8651 /* Return the innermost context enclosing DECL that is
8652 a FUNCTION_DECL, or zero if none. */
8653
8654 tree
8655 decl_function_context (const_tree decl)
8656 {
8657 tree context;
8658
8659 if (TREE_CODE (decl) == ERROR_MARK)
8660 return 0;
8661
8662 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
8663 where we look up the function at runtime. Such functions always take
8664 a first argument of type 'pointer to real context'.
8665
8666 C++ should really be fixed to use DECL_CONTEXT for the real context,
8667 and use something else for the "virtual context". */
8668 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
8669 context
8670 = TYPE_MAIN_VARIANT
8671 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
8672 else
8673 context = DECL_CONTEXT (decl);
8674
8675 while (context && TREE_CODE (context) != FUNCTION_DECL)
8676 {
8677 if (TREE_CODE (context) == BLOCK)
8678 context = BLOCK_SUPERCONTEXT (context);
8679 else
8680 context = get_containing_scope (context);
8681 }
8682
8683 return context;
8684 }
8685
8686 /* Return the innermost context enclosing DECL that is
8687 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
8688 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
8689
8690 tree
8691 decl_type_context (const_tree decl)
8692 {
8693 tree context = DECL_CONTEXT (decl);
8694
8695 while (context)
8696 switch (TREE_CODE (context))
8697 {
8698 case NAMESPACE_DECL:
8699 case TRANSLATION_UNIT_DECL:
8700 return NULL_TREE;
8701
8702 case RECORD_TYPE:
8703 case UNION_TYPE:
8704 case QUAL_UNION_TYPE:
8705 return context;
8706
8707 case TYPE_DECL:
8708 case FUNCTION_DECL:
8709 context = DECL_CONTEXT (context);
8710 break;
8711
8712 case BLOCK:
8713 context = BLOCK_SUPERCONTEXT (context);
8714 break;
8715
8716 default:
8717 gcc_unreachable ();
8718 }
8719
8720 return NULL_TREE;
8721 }
8722
8723 /* CALL is a CALL_EXPR. Return the declaration for the function
8724 called, or NULL_TREE if the called function cannot be
8725 determined. */
8726
8727 tree
8728 get_callee_fndecl (const_tree call)
8729 {
8730 tree addr;
8731
8732 if (call == error_mark_node)
8733 return error_mark_node;
8734
8735 /* It's invalid to call this function with anything but a
8736 CALL_EXPR. */
8737 gcc_assert (TREE_CODE (call) == CALL_EXPR);
8738
8739 /* The first operand to the CALL is the address of the function
8740 called. */
8741 addr = CALL_EXPR_FN (call);
8742
8743 STRIP_NOPS (addr);
8744
8745 /* If this is a readonly function pointer, extract its initial value. */
8746 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
8747 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
8748 && DECL_INITIAL (addr))
8749 addr = DECL_INITIAL (addr);
8750
8751 /* If the address is just `&f' for some function `f', then we know
8752 that `f' is being called. */
8753 if (TREE_CODE (addr) == ADDR_EXPR
8754 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
8755 return TREE_OPERAND (addr, 0);
8756
8757 /* We couldn't figure out what was being called. */
8758 return NULL_TREE;
8759 }
8760
8761 /* Print debugging information about tree nodes generated during the compile,
8762 and any language-specific information. */
8763
8764 void
8765 dump_tree_statistics (void)
8766 {
8767 if (GATHER_STATISTICS)
8768 {
8769 int i;
8770 int total_nodes, total_bytes;
8771 fprintf (stderr, "Kind Nodes Bytes\n");
8772 fprintf (stderr, "---------------------------------------\n");
8773 total_nodes = total_bytes = 0;
8774 for (i = 0; i < (int) all_kinds; i++)
8775 {
8776 fprintf (stderr, "%-20s %7d %10d\n", tree_node_kind_names[i],
8777 tree_node_counts[i], tree_node_sizes[i]);
8778 total_nodes += tree_node_counts[i];
8779 total_bytes += tree_node_sizes[i];
8780 }
8781 fprintf (stderr, "---------------------------------------\n");
8782 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_nodes, total_bytes);
8783 fprintf (stderr, "---------------------------------------\n");
8784 fprintf (stderr, "Code Nodes\n");
8785 fprintf (stderr, "----------------------------\n");
8786 for (i = 0; i < (int) MAX_TREE_CODES; i++)
8787 fprintf (stderr, "%-20s %7d\n", tree_code_name[i], tree_code_counts[i]);
8788 fprintf (stderr, "----------------------------\n");
8789 ssanames_print_statistics ();
8790 phinodes_print_statistics ();
8791 }
8792 else
8793 fprintf (stderr, "(No per-node statistics)\n");
8794
8795 print_type_hash_statistics ();
8796 print_debug_expr_statistics ();
8797 print_value_expr_statistics ();
8798 lang_hooks.print_statistics ();
8799 }
8800 \f
8801 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
8802
8803 /* Generate a crc32 of a byte. */
8804
8805 static unsigned
8806 crc32_unsigned_bits (unsigned chksum, unsigned value, unsigned bits)
8807 {
8808 unsigned ix;
8809
8810 for (ix = bits; ix--; value <<= 1)
8811 {
8812 unsigned feedback;
8813
8814 feedback = (value ^ chksum) & 0x80000000 ? 0x04c11db7 : 0;
8815 chksum <<= 1;
8816 chksum ^= feedback;
8817 }
8818 return chksum;
8819 }
8820
8821 /* Generate a crc32 of a 32-bit unsigned. */
8822
8823 unsigned
8824 crc32_unsigned (unsigned chksum, unsigned value)
8825 {
8826 return crc32_unsigned_bits (chksum, value, 32);
8827 }
8828
8829 /* Generate a crc32 of a byte. */
8830
8831 unsigned
8832 crc32_byte (unsigned chksum, char byte)
8833 {
8834 return crc32_unsigned_bits (chksum, (unsigned) byte << 24, 8);
8835 }
8836
8837 /* Generate a crc32 of a string. */
8838
8839 unsigned
8840 crc32_string (unsigned chksum, const char *string)
8841 {
8842 do
8843 {
8844 chksum = crc32_byte (chksum, *string);
8845 }
8846 while (*string++);
8847 return chksum;
8848 }
8849
8850 /* P is a string that will be used in a symbol. Mask out any characters
8851 that are not valid in that context. */
8852
8853 void
8854 clean_symbol_name (char *p)
8855 {
8856 for (; *p; p++)
8857 if (! (ISALNUM (*p)
8858 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
8859 || *p == '$'
8860 #endif
8861 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
8862 || *p == '.'
8863 #endif
8864 ))
8865 *p = '_';
8866 }
8867
8868 /* Generate a name for a special-purpose function.
8869 The generated name may need to be unique across the whole link.
8870 Changes to this function may also require corresponding changes to
8871 xstrdup_mask_random.
8872 TYPE is some string to identify the purpose of this function to the
8873 linker or collect2; it must start with an uppercase letter,
8874 one of:
8875 I - for constructors
8876 D - for destructors
8877 N - for C++ anonymous namespaces
8878 F - for DWARF unwind frame information. */
8879
8880 tree
8881 get_file_function_name (const char *type)
8882 {
8883 char *buf;
8884 const char *p;
8885 char *q;
8886
8887 /* If we already have a name we know to be unique, just use that. */
8888 if (first_global_object_name)
8889 p = q = ASTRDUP (first_global_object_name);
8890 /* If the target is handling the constructors/destructors, they
8891 will be local to this file and the name is only necessary for
8892 debugging purposes.
8893 We also assign sub_I and sub_D sufixes to constructors called from
8894 the global static constructors. These are always local. */
8895 else if (((type[0] == 'I' || type[0] == 'D') && targetm.have_ctors_dtors)
8896 || (strncmp (type, "sub_", 4) == 0
8897 && (type[4] == 'I' || type[4] == 'D')))
8898 {
8899 const char *file = main_input_filename;
8900 if (! file)
8901 file = input_filename;
8902 /* Just use the file's basename, because the full pathname
8903 might be quite long. */
8904 p = q = ASTRDUP (lbasename (file));
8905 }
8906 else
8907 {
8908 /* Otherwise, the name must be unique across the entire link.
8909 We don't have anything that we know to be unique to this translation
8910 unit, so use what we do have and throw in some randomness. */
8911 unsigned len;
8912 const char *name = weak_global_object_name;
8913 const char *file = main_input_filename;
8914
8915 if (! name)
8916 name = "";
8917 if (! file)
8918 file = input_filename;
8919
8920 len = strlen (file);
8921 q = (char *) alloca (9 + 17 + len + 1);
8922 memcpy (q, file, len + 1);
8923
8924 snprintf (q + len, 9 + 17 + 1, "_%08X_" HOST_WIDE_INT_PRINT_HEX,
8925 crc32_string (0, name), get_random_seed (false));
8926
8927 p = q;
8928 }
8929
8930 clean_symbol_name (q);
8931 buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
8932 + strlen (type));
8933
8934 /* Set up the name of the file-level functions we may need.
8935 Use a global object (which is already required to be unique over
8936 the program) rather than the file name (which imposes extra
8937 constraints). */
8938 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
8939
8940 return get_identifier (buf);
8941 }
8942 \f
8943 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
8944
8945 /* Complain that the tree code of NODE does not match the expected 0
8946 terminated list of trailing codes. The trailing code list can be
8947 empty, for a more vague error message. FILE, LINE, and FUNCTION
8948 are of the caller. */
8949
8950 void
8951 tree_check_failed (const_tree node, const char *file,
8952 int line, const char *function, ...)
8953 {
8954 va_list args;
8955 const char *buffer;
8956 unsigned length = 0;
8957 int code;
8958
8959 va_start (args, function);
8960 while ((code = va_arg (args, int)))
8961 length += 4 + strlen (tree_code_name[code]);
8962 va_end (args);
8963 if (length)
8964 {
8965 char *tmp;
8966 va_start (args, function);
8967 length += strlen ("expected ");
8968 buffer = tmp = (char *) alloca (length);
8969 length = 0;
8970 while ((code = va_arg (args, int)))
8971 {
8972 const char *prefix = length ? " or " : "expected ";
8973
8974 strcpy (tmp + length, prefix);
8975 length += strlen (prefix);
8976 strcpy (tmp + length, tree_code_name[code]);
8977 length += strlen (tree_code_name[code]);
8978 }
8979 va_end (args);
8980 }
8981 else
8982 buffer = "unexpected node";
8983
8984 internal_error ("tree check: %s, have %s in %s, at %s:%d",
8985 buffer, tree_code_name[TREE_CODE (node)],
8986 function, trim_filename (file), line);
8987 }
8988
8989 /* Complain that the tree code of NODE does match the expected 0
8990 terminated list of trailing codes. FILE, LINE, and FUNCTION are of
8991 the caller. */
8992
8993 void
8994 tree_not_check_failed (const_tree node, const char *file,
8995 int line, const char *function, ...)
8996 {
8997 va_list args;
8998 char *buffer;
8999 unsigned length = 0;
9000 int code;
9001
9002 va_start (args, function);
9003 while ((code = va_arg (args, int)))
9004 length += 4 + strlen (tree_code_name[code]);
9005 va_end (args);
9006 va_start (args, function);
9007 buffer = (char *) alloca (length);
9008 length = 0;
9009 while ((code = va_arg (args, int)))
9010 {
9011 if (length)
9012 {
9013 strcpy (buffer + length, " or ");
9014 length += 4;
9015 }
9016 strcpy (buffer + length, tree_code_name[code]);
9017 length += strlen (tree_code_name[code]);
9018 }
9019 va_end (args);
9020
9021 internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
9022 buffer, tree_code_name[TREE_CODE (node)],
9023 function, trim_filename (file), line);
9024 }
9025
9026 /* Similar to tree_check_failed, except that we check for a class of tree
9027 code, given in CL. */
9028
9029 void
9030 tree_class_check_failed (const_tree node, const enum tree_code_class cl,
9031 const char *file, int line, const char *function)
9032 {
9033 internal_error
9034 ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
9035 TREE_CODE_CLASS_STRING (cl),
9036 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
9037 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
9038 }
9039
9040 /* Similar to tree_check_failed, except that instead of specifying a
9041 dozen codes, use the knowledge that they're all sequential. */
9042
9043 void
9044 tree_range_check_failed (const_tree node, const char *file, int line,
9045 const char *function, enum tree_code c1,
9046 enum tree_code c2)
9047 {
9048 char *buffer;
9049 unsigned length = 0;
9050 unsigned int c;
9051
9052 for (c = c1; c <= c2; ++c)
9053 length += 4 + strlen (tree_code_name[c]);
9054
9055 length += strlen ("expected ");
9056 buffer = (char *) alloca (length);
9057 length = 0;
9058
9059 for (c = c1; c <= c2; ++c)
9060 {
9061 const char *prefix = length ? " or " : "expected ";
9062
9063 strcpy (buffer + length, prefix);
9064 length += strlen (prefix);
9065 strcpy (buffer + length, tree_code_name[c]);
9066 length += strlen (tree_code_name[c]);
9067 }
9068
9069 internal_error ("tree check: %s, have %s in %s, at %s:%d",
9070 buffer, tree_code_name[TREE_CODE (node)],
9071 function, trim_filename (file), line);
9072 }
9073
9074
9075 /* Similar to tree_check_failed, except that we check that a tree does
9076 not have the specified code, given in CL. */
9077
9078 void
9079 tree_not_class_check_failed (const_tree node, const enum tree_code_class cl,
9080 const char *file, int line, const char *function)
9081 {
9082 internal_error
9083 ("tree check: did not expect class %qs, have %qs (%s) in %s, at %s:%d",
9084 TREE_CODE_CLASS_STRING (cl),
9085 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
9086 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
9087 }
9088
9089
9090 /* Similar to tree_check_failed but applied to OMP_CLAUSE codes. */
9091
9092 void
9093 omp_clause_check_failed (const_tree node, const char *file, int line,
9094 const char *function, enum omp_clause_code code)
9095 {
9096 internal_error ("tree check: expected omp_clause %s, have %s in %s, at %s:%d",
9097 omp_clause_code_name[code], tree_code_name[TREE_CODE (node)],
9098 function, trim_filename (file), line);
9099 }
9100
9101
9102 /* Similar to tree_range_check_failed but applied to OMP_CLAUSE codes. */
9103
9104 void
9105 omp_clause_range_check_failed (const_tree node, const char *file, int line,
9106 const char *function, enum omp_clause_code c1,
9107 enum omp_clause_code c2)
9108 {
9109 char *buffer;
9110 unsigned length = 0;
9111 unsigned int c;
9112
9113 for (c = c1; c <= c2; ++c)
9114 length += 4 + strlen (omp_clause_code_name[c]);
9115
9116 length += strlen ("expected ");
9117 buffer = (char *) alloca (length);
9118 length = 0;
9119
9120 for (c = c1; c <= c2; ++c)
9121 {
9122 const char *prefix = length ? " or " : "expected ";
9123
9124 strcpy (buffer + length, prefix);
9125 length += strlen (prefix);
9126 strcpy (buffer + length, omp_clause_code_name[c]);
9127 length += strlen (omp_clause_code_name[c]);
9128 }
9129
9130 internal_error ("tree check: %s, have %s in %s, at %s:%d",
9131 buffer, omp_clause_code_name[TREE_CODE (node)],
9132 function, trim_filename (file), line);
9133 }
9134
9135
9136 #undef DEFTREESTRUCT
9137 #define DEFTREESTRUCT(VAL, NAME) NAME,
9138
9139 static const char *ts_enum_names[] = {
9140 #include "treestruct.def"
9141 };
9142 #undef DEFTREESTRUCT
9143
9144 #define TS_ENUM_NAME(EN) (ts_enum_names[(EN)])
9145
9146 /* Similar to tree_class_check_failed, except that we check for
9147 whether CODE contains the tree structure identified by EN. */
9148
9149 void
9150 tree_contains_struct_check_failed (const_tree node,
9151 const enum tree_node_structure_enum en,
9152 const char *file, int line,
9153 const char *function)
9154 {
9155 internal_error
9156 ("tree check: expected tree that contains %qs structure, have %qs in %s, at %s:%d",
9157 TS_ENUM_NAME(en),
9158 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
9159 }
9160
9161
9162 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
9163 (dynamically sized) vector. */
9164
9165 void
9166 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
9167 const char *function)
9168 {
9169 internal_error
9170 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
9171 idx + 1, len, function, trim_filename (file), line);
9172 }
9173
9174 /* Similar to above, except that the check is for the bounds of the operand
9175 vector of an expression node EXP. */
9176
9177 void
9178 tree_operand_check_failed (int idx, const_tree exp, const char *file,
9179 int line, const char *function)
9180 {
9181 int code = TREE_CODE (exp);
9182 internal_error
9183 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
9184 idx + 1, tree_code_name[code], TREE_OPERAND_LENGTH (exp),
9185 function, trim_filename (file), line);
9186 }
9187
9188 /* Similar to above, except that the check is for the number of
9189 operands of an OMP_CLAUSE node. */
9190
9191 void
9192 omp_clause_operand_check_failed (int idx, const_tree t, const char *file,
9193 int line, const char *function)
9194 {
9195 internal_error
9196 ("tree check: accessed operand %d of omp_clause %s with %d operands "
9197 "in %s, at %s:%d", idx + 1, omp_clause_code_name[OMP_CLAUSE_CODE (t)],
9198 omp_clause_num_ops [OMP_CLAUSE_CODE (t)], function,
9199 trim_filename (file), line);
9200 }
9201 #endif /* ENABLE_TREE_CHECKING */
9202 \f
9203 /* Create a new vector type node holding SUBPARTS units of type INNERTYPE,
9204 and mapped to the machine mode MODE. Initialize its fields and build
9205 the information necessary for debugging output. */
9206
9207 static tree
9208 make_vector_type (tree innertype, int nunits, enum machine_mode mode)
9209 {
9210 tree t;
9211 hashval_t hashcode = 0;
9212
9213 t = make_node (VECTOR_TYPE);
9214 TREE_TYPE (t) = TYPE_MAIN_VARIANT (innertype);
9215 SET_TYPE_VECTOR_SUBPARTS (t, nunits);
9216 SET_TYPE_MODE (t, mode);
9217
9218 if (TYPE_STRUCTURAL_EQUALITY_P (innertype))
9219 SET_TYPE_STRUCTURAL_EQUALITY (t);
9220 else if (TYPE_CANONICAL (innertype) != innertype
9221 || mode != VOIDmode)
9222 TYPE_CANONICAL (t)
9223 = make_vector_type (TYPE_CANONICAL (innertype), nunits, VOIDmode);
9224
9225 layout_type (t);
9226
9227 hashcode = iterative_hash_host_wide_int (VECTOR_TYPE, hashcode);
9228 hashcode = iterative_hash_host_wide_int (nunits, hashcode);
9229 hashcode = iterative_hash_host_wide_int (mode, hashcode);
9230 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (t)), hashcode);
9231 t = type_hash_canon (hashcode, t);
9232
9233 /* We have built a main variant, based on the main variant of the
9234 inner type. Use it to build the variant we return. */
9235 if ((TYPE_ATTRIBUTES (innertype) || TYPE_QUALS (innertype))
9236 && TREE_TYPE (t) != innertype)
9237 return build_type_attribute_qual_variant (t,
9238 TYPE_ATTRIBUTES (innertype),
9239 TYPE_QUALS (innertype));
9240
9241 return t;
9242 }
9243
9244 static tree
9245 make_or_reuse_type (unsigned size, int unsignedp)
9246 {
9247 if (size == INT_TYPE_SIZE)
9248 return unsignedp ? unsigned_type_node : integer_type_node;
9249 if (size == CHAR_TYPE_SIZE)
9250 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
9251 if (size == SHORT_TYPE_SIZE)
9252 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
9253 if (size == LONG_TYPE_SIZE)
9254 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
9255 if (size == LONG_LONG_TYPE_SIZE)
9256 return (unsignedp ? long_long_unsigned_type_node
9257 : long_long_integer_type_node);
9258 if (size == 128 && int128_integer_type_node)
9259 return (unsignedp ? int128_unsigned_type_node
9260 : int128_integer_type_node);
9261
9262 if (unsignedp)
9263 return make_unsigned_type (size);
9264 else
9265 return make_signed_type (size);
9266 }
9267
9268 /* Create or reuse a fract type by SIZE, UNSIGNEDP, and SATP. */
9269
9270 static tree
9271 make_or_reuse_fract_type (unsigned size, int unsignedp, int satp)
9272 {
9273 if (satp)
9274 {
9275 if (size == SHORT_FRACT_TYPE_SIZE)
9276 return unsignedp ? sat_unsigned_short_fract_type_node
9277 : sat_short_fract_type_node;
9278 if (size == FRACT_TYPE_SIZE)
9279 return unsignedp ? sat_unsigned_fract_type_node : sat_fract_type_node;
9280 if (size == LONG_FRACT_TYPE_SIZE)
9281 return unsignedp ? sat_unsigned_long_fract_type_node
9282 : sat_long_fract_type_node;
9283 if (size == LONG_LONG_FRACT_TYPE_SIZE)
9284 return unsignedp ? sat_unsigned_long_long_fract_type_node
9285 : sat_long_long_fract_type_node;
9286 }
9287 else
9288 {
9289 if (size == SHORT_FRACT_TYPE_SIZE)
9290 return unsignedp ? unsigned_short_fract_type_node
9291 : short_fract_type_node;
9292 if (size == FRACT_TYPE_SIZE)
9293 return unsignedp ? unsigned_fract_type_node : fract_type_node;
9294 if (size == LONG_FRACT_TYPE_SIZE)
9295 return unsignedp ? unsigned_long_fract_type_node
9296 : long_fract_type_node;
9297 if (size == LONG_LONG_FRACT_TYPE_SIZE)
9298 return unsignedp ? unsigned_long_long_fract_type_node
9299 : long_long_fract_type_node;
9300 }
9301
9302 return make_fract_type (size, unsignedp, satp);
9303 }
9304
9305 /* Create or reuse an accum type by SIZE, UNSIGNEDP, and SATP. */
9306
9307 static tree
9308 make_or_reuse_accum_type (unsigned size, int unsignedp, int satp)
9309 {
9310 if (satp)
9311 {
9312 if (size == SHORT_ACCUM_TYPE_SIZE)
9313 return unsignedp ? sat_unsigned_short_accum_type_node
9314 : sat_short_accum_type_node;
9315 if (size == ACCUM_TYPE_SIZE)
9316 return unsignedp ? sat_unsigned_accum_type_node : sat_accum_type_node;
9317 if (size == LONG_ACCUM_TYPE_SIZE)
9318 return unsignedp ? sat_unsigned_long_accum_type_node
9319 : sat_long_accum_type_node;
9320 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
9321 return unsignedp ? sat_unsigned_long_long_accum_type_node
9322 : sat_long_long_accum_type_node;
9323 }
9324 else
9325 {
9326 if (size == SHORT_ACCUM_TYPE_SIZE)
9327 return unsignedp ? unsigned_short_accum_type_node
9328 : short_accum_type_node;
9329 if (size == ACCUM_TYPE_SIZE)
9330 return unsignedp ? unsigned_accum_type_node : accum_type_node;
9331 if (size == LONG_ACCUM_TYPE_SIZE)
9332 return unsignedp ? unsigned_long_accum_type_node
9333 : long_accum_type_node;
9334 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
9335 return unsignedp ? unsigned_long_long_accum_type_node
9336 : long_long_accum_type_node;
9337 }
9338
9339 return make_accum_type (size, unsignedp, satp);
9340 }
9341
9342 /* Create nodes for all integer types (and error_mark_node) using the sizes
9343 of C datatypes. SIGNED_CHAR specifies whether char is signed,
9344 SHORT_DOUBLE specifies whether double should be of the same precision
9345 as float. */
9346
9347 void
9348 build_common_tree_nodes (bool signed_char, bool short_double)
9349 {
9350 error_mark_node = make_node (ERROR_MARK);
9351 TREE_TYPE (error_mark_node) = error_mark_node;
9352
9353 initialize_sizetypes ();
9354
9355 /* Define both `signed char' and `unsigned char'. */
9356 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
9357 TYPE_STRING_FLAG (signed_char_type_node) = 1;
9358 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
9359 TYPE_STRING_FLAG (unsigned_char_type_node) = 1;
9360
9361 /* Define `char', which is like either `signed char' or `unsigned char'
9362 but not the same as either. */
9363 char_type_node
9364 = (signed_char
9365 ? make_signed_type (CHAR_TYPE_SIZE)
9366 : make_unsigned_type (CHAR_TYPE_SIZE));
9367 TYPE_STRING_FLAG (char_type_node) = 1;
9368
9369 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
9370 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
9371 integer_type_node = make_signed_type (INT_TYPE_SIZE);
9372 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
9373 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
9374 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
9375 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
9376 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
9377 #if HOST_BITS_PER_WIDE_INT >= 64
9378 /* TODO: This isn't correct, but as logic depends at the moment on
9379 host's instead of target's wide-integer.
9380 If there is a target not supporting TImode, but has an 128-bit
9381 integer-scalar register, this target check needs to be adjusted. */
9382 if (targetm.scalar_mode_supported_p (TImode))
9383 {
9384 int128_integer_type_node = make_signed_type (128);
9385 int128_unsigned_type_node = make_unsigned_type (128);
9386 }
9387 #endif
9388
9389 /* Define a boolean type. This type only represents boolean values but
9390 may be larger than char depending on the value of BOOL_TYPE_SIZE.
9391 Front ends which want to override this size (i.e. Java) can redefine
9392 boolean_type_node before calling build_common_tree_nodes_2. */
9393 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
9394 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
9395 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
9396 TYPE_PRECISION (boolean_type_node) = 1;
9397
9398 /* Define what type to use for size_t. */
9399 if (strcmp (SIZE_TYPE, "unsigned int") == 0)
9400 size_type_node = unsigned_type_node;
9401 else if (strcmp (SIZE_TYPE, "long unsigned int") == 0)
9402 size_type_node = long_unsigned_type_node;
9403 else if (strcmp (SIZE_TYPE, "long long unsigned int") == 0)
9404 size_type_node = long_long_unsigned_type_node;
9405 else if (strcmp (SIZE_TYPE, "short unsigned int") == 0)
9406 size_type_node = short_unsigned_type_node;
9407 else
9408 gcc_unreachable ();
9409
9410 /* Fill in the rest of the sized types. Reuse existing type nodes
9411 when possible. */
9412 intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
9413 intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
9414 intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
9415 intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
9416 intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);
9417
9418 unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
9419 unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
9420 unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
9421 unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
9422 unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);
9423
9424 access_public_node = get_identifier ("public");
9425 access_protected_node = get_identifier ("protected");
9426 access_private_node = get_identifier ("private");
9427
9428 /* Define these next since types below may used them. */
9429 integer_zero_node = build_int_cst (integer_type_node, 0);
9430 integer_one_node = build_int_cst (integer_type_node, 1);
9431 integer_three_node = build_int_cst (integer_type_node, 3);
9432 integer_minus_one_node = build_int_cst (integer_type_node, -1);
9433
9434 size_zero_node = size_int (0);
9435 size_one_node = size_int (1);
9436 bitsize_zero_node = bitsize_int (0);
9437 bitsize_one_node = bitsize_int (1);
9438 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
9439
9440 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
9441 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
9442
9443 void_type_node = make_node (VOID_TYPE);
9444 layout_type (void_type_node);
9445
9446 /* We are not going to have real types in C with less than byte alignment,
9447 so we might as well not have any types that claim to have it. */
9448 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
9449 TYPE_USER_ALIGN (void_type_node) = 0;
9450
9451 null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
9452 layout_type (TREE_TYPE (null_pointer_node));
9453
9454 ptr_type_node = build_pointer_type (void_type_node);
9455 const_ptr_type_node
9456 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
9457 fileptr_type_node = ptr_type_node;
9458
9459 float_type_node = make_node (REAL_TYPE);
9460 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
9461 layout_type (float_type_node);
9462
9463 double_type_node = make_node (REAL_TYPE);
9464 if (short_double)
9465 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
9466 else
9467 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
9468 layout_type (double_type_node);
9469
9470 long_double_type_node = make_node (REAL_TYPE);
9471 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
9472 layout_type (long_double_type_node);
9473
9474 float_ptr_type_node = build_pointer_type (float_type_node);
9475 double_ptr_type_node = build_pointer_type (double_type_node);
9476 long_double_ptr_type_node = build_pointer_type (long_double_type_node);
9477 integer_ptr_type_node = build_pointer_type (integer_type_node);
9478
9479 /* Fixed size integer types. */
9480 uint16_type_node = build_nonstandard_integer_type (16, true);
9481 uint32_type_node = build_nonstandard_integer_type (32, true);
9482 uint64_type_node = build_nonstandard_integer_type (64, true);
9483
9484 /* Decimal float types. */
9485 dfloat32_type_node = make_node (REAL_TYPE);
9486 TYPE_PRECISION (dfloat32_type_node) = DECIMAL32_TYPE_SIZE;
9487 layout_type (dfloat32_type_node);
9488 SET_TYPE_MODE (dfloat32_type_node, SDmode);
9489 dfloat32_ptr_type_node = build_pointer_type (dfloat32_type_node);
9490
9491 dfloat64_type_node = make_node (REAL_TYPE);
9492 TYPE_PRECISION (dfloat64_type_node) = DECIMAL64_TYPE_SIZE;
9493 layout_type (dfloat64_type_node);
9494 SET_TYPE_MODE (dfloat64_type_node, DDmode);
9495 dfloat64_ptr_type_node = build_pointer_type (dfloat64_type_node);
9496
9497 dfloat128_type_node = make_node (REAL_TYPE);
9498 TYPE_PRECISION (dfloat128_type_node) = DECIMAL128_TYPE_SIZE;
9499 layout_type (dfloat128_type_node);
9500 SET_TYPE_MODE (dfloat128_type_node, TDmode);
9501 dfloat128_ptr_type_node = build_pointer_type (dfloat128_type_node);
9502
9503 complex_integer_type_node = build_complex_type (integer_type_node);
9504 complex_float_type_node = build_complex_type (float_type_node);
9505 complex_double_type_node = build_complex_type (double_type_node);
9506 complex_long_double_type_node = build_complex_type (long_double_type_node);
9507
9508 /* Make fixed-point nodes based on sat/non-sat and signed/unsigned. */
9509 #define MAKE_FIXED_TYPE_NODE(KIND,SIZE) \
9510 sat_ ## KIND ## _type_node = \
9511 make_sat_signed_ ## KIND ## _type (SIZE); \
9512 sat_unsigned_ ## KIND ## _type_node = \
9513 make_sat_unsigned_ ## KIND ## _type (SIZE); \
9514 KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
9515 unsigned_ ## KIND ## _type_node = \
9516 make_unsigned_ ## KIND ## _type (SIZE);
9517
9518 #define MAKE_FIXED_TYPE_NODE_WIDTH(KIND,WIDTH,SIZE) \
9519 sat_ ## WIDTH ## KIND ## _type_node = \
9520 make_sat_signed_ ## KIND ## _type (SIZE); \
9521 sat_unsigned_ ## WIDTH ## KIND ## _type_node = \
9522 make_sat_unsigned_ ## KIND ## _type (SIZE); \
9523 WIDTH ## KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
9524 unsigned_ ## WIDTH ## KIND ## _type_node = \
9525 make_unsigned_ ## KIND ## _type (SIZE);
9526
9527 /* Make fixed-point type nodes based on four different widths. */
9528 #define MAKE_FIXED_TYPE_NODE_FAMILY(N1,N2) \
9529 MAKE_FIXED_TYPE_NODE_WIDTH (N1, short_, SHORT_ ## N2 ## _TYPE_SIZE) \
9530 MAKE_FIXED_TYPE_NODE (N1, N2 ## _TYPE_SIZE) \
9531 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_, LONG_ ## N2 ## _TYPE_SIZE) \
9532 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_long_, LONG_LONG_ ## N2 ## _TYPE_SIZE)
9533
9534 /* Make fixed-point mode nodes based on sat/non-sat and signed/unsigned. */
9535 #define MAKE_FIXED_MODE_NODE(KIND,NAME,MODE) \
9536 NAME ## _type_node = \
9537 make_or_reuse_signed_ ## KIND ## _type (GET_MODE_BITSIZE (MODE ## mode)); \
9538 u ## NAME ## _type_node = \
9539 make_or_reuse_unsigned_ ## KIND ## _type \
9540 (GET_MODE_BITSIZE (U ## MODE ## mode)); \
9541 sat_ ## NAME ## _type_node = \
9542 make_or_reuse_sat_signed_ ## KIND ## _type \
9543 (GET_MODE_BITSIZE (MODE ## mode)); \
9544 sat_u ## NAME ## _type_node = \
9545 make_or_reuse_sat_unsigned_ ## KIND ## _type \
9546 (GET_MODE_BITSIZE (U ## MODE ## mode));
9547
9548 /* Fixed-point type and mode nodes. */
9549 MAKE_FIXED_TYPE_NODE_FAMILY (fract, FRACT)
9550 MAKE_FIXED_TYPE_NODE_FAMILY (accum, ACCUM)
9551 MAKE_FIXED_MODE_NODE (fract, qq, QQ)
9552 MAKE_FIXED_MODE_NODE (fract, hq, HQ)
9553 MAKE_FIXED_MODE_NODE (fract, sq, SQ)
9554 MAKE_FIXED_MODE_NODE (fract, dq, DQ)
9555 MAKE_FIXED_MODE_NODE (fract, tq, TQ)
9556 MAKE_FIXED_MODE_NODE (accum, ha, HA)
9557 MAKE_FIXED_MODE_NODE (accum, sa, SA)
9558 MAKE_FIXED_MODE_NODE (accum, da, DA)
9559 MAKE_FIXED_MODE_NODE (accum, ta, TA)
9560
9561 {
9562 tree t = targetm.build_builtin_va_list ();
9563
9564 /* Many back-ends define record types without setting TYPE_NAME.
9565 If we copied the record type here, we'd keep the original
9566 record type without a name. This breaks name mangling. So,
9567 don't copy record types and let c_common_nodes_and_builtins()
9568 declare the type to be __builtin_va_list. */
9569 if (TREE_CODE (t) != RECORD_TYPE)
9570 t = build_variant_type_copy (t);
9571
9572 va_list_type_node = t;
9573 }
9574 }
9575
9576 /* Modify DECL for given flags. */
9577 void
9578 set_call_expr_flags (tree decl, int flags)
9579 {
9580 if (flags & ECF_NOTHROW)
9581 TREE_NOTHROW (decl) = 1;
9582 if (flags & ECF_CONST)
9583 TREE_READONLY (decl) = 1;
9584 if (flags & ECF_PURE)
9585 DECL_PURE_P (decl) = 1;
9586 if (flags & ECF_LOOPING_CONST_OR_PURE)
9587 DECL_LOOPING_CONST_OR_PURE_P (decl) = 1;
9588 if (flags & ECF_NOVOPS)
9589 DECL_IS_NOVOPS (decl) = 1;
9590 if (flags & ECF_NORETURN)
9591 TREE_THIS_VOLATILE (decl) = 1;
9592 if (flags & ECF_MALLOC)
9593 DECL_IS_MALLOC (decl) = 1;
9594 if (flags & ECF_RETURNS_TWICE)
9595 DECL_IS_RETURNS_TWICE (decl) = 1;
9596 if (flags & ECF_LEAF)
9597 DECL_ATTRIBUTES (decl) = tree_cons (get_identifier ("leaf"),
9598 NULL, DECL_ATTRIBUTES (decl));
9599 if ((flags & ECF_TM_PURE) && flag_tm)
9600 DECL_ATTRIBUTES (decl) = tree_cons (get_identifier ("transaction_pure"),
9601 NULL, DECL_ATTRIBUTES (decl));
9602 /* Looping const or pure is implied by noreturn.
9603 There is currently no way to declare looping const or looping pure alone. */
9604 gcc_assert (!(flags & ECF_LOOPING_CONST_OR_PURE)
9605 || ((flags & ECF_NORETURN) && (flags & (ECF_CONST | ECF_PURE))));
9606 }
9607
9608
9609 /* A subroutine of build_common_builtin_nodes. Define a builtin function. */
9610
9611 static void
9612 local_define_builtin (const char *name, tree type, enum built_in_function code,
9613 const char *library_name, int ecf_flags)
9614 {
9615 tree decl;
9616
9617 decl = add_builtin_function (name, type, code, BUILT_IN_NORMAL,
9618 library_name, NULL_TREE);
9619 set_call_expr_flags (decl, ecf_flags);
9620
9621 set_builtin_decl (code, decl, true);
9622 }
9623
9624 /* Call this function after instantiating all builtins that the language
9625 front end cares about. This will build the rest of the builtins that
9626 are relied upon by the tree optimizers and the middle-end. */
9627
9628 void
9629 build_common_builtin_nodes (void)
9630 {
9631 tree tmp, ftype;
9632 int ecf_flags;
9633
9634 if (!builtin_decl_explicit_p (BUILT_IN_UNREACHABLE))
9635 {
9636 ftype = build_function_type (void_type_node, void_list_node);
9637 local_define_builtin ("__builtin_unreachable", ftype, BUILT_IN_UNREACHABLE,
9638 "__builtin_unreachable",
9639 ECF_NOTHROW | ECF_LEAF | ECF_NORETURN
9640 | ECF_CONST | ECF_LEAF);
9641 }
9642
9643 if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY)
9644 || !builtin_decl_explicit_p (BUILT_IN_MEMMOVE))
9645 {
9646 ftype = build_function_type_list (ptr_type_node,
9647 ptr_type_node, const_ptr_type_node,
9648 size_type_node, NULL_TREE);
9649
9650 if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY))
9651 local_define_builtin ("__builtin_memcpy", ftype, BUILT_IN_MEMCPY,
9652 "memcpy", ECF_NOTHROW | ECF_LEAF);
9653 if (!builtin_decl_explicit_p (BUILT_IN_MEMMOVE))
9654 local_define_builtin ("__builtin_memmove", ftype, BUILT_IN_MEMMOVE,
9655 "memmove", ECF_NOTHROW | ECF_LEAF);
9656 }
9657
9658 if (!builtin_decl_explicit_p (BUILT_IN_MEMCMP))
9659 {
9660 ftype = build_function_type_list (integer_type_node, const_ptr_type_node,
9661 const_ptr_type_node, size_type_node,
9662 NULL_TREE);
9663 local_define_builtin ("__builtin_memcmp", ftype, BUILT_IN_MEMCMP,
9664 "memcmp", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
9665 }
9666
9667 if (!builtin_decl_explicit_p (BUILT_IN_MEMSET))
9668 {
9669 ftype = build_function_type_list (ptr_type_node,
9670 ptr_type_node, integer_type_node,
9671 size_type_node, NULL_TREE);
9672 local_define_builtin ("__builtin_memset", ftype, BUILT_IN_MEMSET,
9673 "memset", ECF_NOTHROW | ECF_LEAF);
9674 }
9675
9676 if (!builtin_decl_explicit_p (BUILT_IN_ALLOCA))
9677 {
9678 ftype = build_function_type_list (ptr_type_node,
9679 size_type_node, NULL_TREE);
9680 local_define_builtin ("__builtin_alloca", ftype, BUILT_IN_ALLOCA,
9681 "alloca", ECF_MALLOC | ECF_NOTHROW | ECF_LEAF);
9682 }
9683
9684 ftype = build_function_type_list (ptr_type_node, size_type_node,
9685 size_type_node, NULL_TREE);
9686 local_define_builtin ("__builtin_alloca_with_align", ftype,
9687 BUILT_IN_ALLOCA_WITH_ALIGN, "alloca",
9688 ECF_MALLOC | ECF_NOTHROW | ECF_LEAF);
9689
9690 /* If we're checking the stack, `alloca' can throw. */
9691 if (flag_stack_check)
9692 {
9693 TREE_NOTHROW (builtin_decl_explicit (BUILT_IN_ALLOCA)) = 0;
9694 TREE_NOTHROW (builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN)) = 0;
9695 }
9696
9697 ftype = build_function_type_list (void_type_node,
9698 ptr_type_node, ptr_type_node,
9699 ptr_type_node, NULL_TREE);
9700 local_define_builtin ("__builtin_init_trampoline", ftype,
9701 BUILT_IN_INIT_TRAMPOLINE,
9702 "__builtin_init_trampoline", ECF_NOTHROW | ECF_LEAF);
9703 local_define_builtin ("__builtin_init_heap_trampoline", ftype,
9704 BUILT_IN_INIT_HEAP_TRAMPOLINE,
9705 "__builtin_init_heap_trampoline",
9706 ECF_NOTHROW | ECF_LEAF);
9707
9708 ftype = build_function_type_list (ptr_type_node, ptr_type_node, NULL_TREE);
9709 local_define_builtin ("__builtin_adjust_trampoline", ftype,
9710 BUILT_IN_ADJUST_TRAMPOLINE,
9711 "__builtin_adjust_trampoline",
9712 ECF_CONST | ECF_NOTHROW);
9713
9714 ftype = build_function_type_list (void_type_node,
9715 ptr_type_node, ptr_type_node, NULL_TREE);
9716 local_define_builtin ("__builtin_nonlocal_goto", ftype,
9717 BUILT_IN_NONLOCAL_GOTO,
9718 "__builtin_nonlocal_goto",
9719 ECF_NORETURN | ECF_NOTHROW);
9720
9721 ftype = build_function_type_list (void_type_node,
9722 ptr_type_node, ptr_type_node, NULL_TREE);
9723 local_define_builtin ("__builtin_setjmp_setup", ftype,
9724 BUILT_IN_SETJMP_SETUP,
9725 "__builtin_setjmp_setup", ECF_NOTHROW);
9726
9727 ftype = build_function_type_list (ptr_type_node, ptr_type_node, NULL_TREE);
9728 local_define_builtin ("__builtin_setjmp_dispatcher", ftype,
9729 BUILT_IN_SETJMP_DISPATCHER,
9730 "__builtin_setjmp_dispatcher",
9731 ECF_PURE | ECF_NOTHROW);
9732
9733 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
9734 local_define_builtin ("__builtin_setjmp_receiver", ftype,
9735 BUILT_IN_SETJMP_RECEIVER,
9736 "__builtin_setjmp_receiver", ECF_NOTHROW);
9737
9738 ftype = build_function_type_list (ptr_type_node, NULL_TREE);
9739 local_define_builtin ("__builtin_stack_save", ftype, BUILT_IN_STACK_SAVE,
9740 "__builtin_stack_save", ECF_NOTHROW | ECF_LEAF);
9741
9742 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
9743 local_define_builtin ("__builtin_stack_restore", ftype,
9744 BUILT_IN_STACK_RESTORE,
9745 "__builtin_stack_restore", ECF_NOTHROW | ECF_LEAF);
9746
9747 /* If there's a possibility that we might use the ARM EABI, build the
9748 alternate __cxa_end_cleanup node used to resume from C++ and Java. */
9749 if (targetm.arm_eabi_unwinder)
9750 {
9751 ftype = build_function_type_list (void_type_node, NULL_TREE);
9752 local_define_builtin ("__builtin_cxa_end_cleanup", ftype,
9753 BUILT_IN_CXA_END_CLEANUP,
9754 "__cxa_end_cleanup", ECF_NORETURN | ECF_LEAF);
9755 }
9756
9757 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
9758 local_define_builtin ("__builtin_unwind_resume", ftype,
9759 BUILT_IN_UNWIND_RESUME,
9760 ((targetm_common.except_unwind_info (&global_options)
9761 == UI_SJLJ)
9762 ? "_Unwind_SjLj_Resume" : "_Unwind_Resume"),
9763 ECF_NORETURN);
9764
9765 if (builtin_decl_explicit (BUILT_IN_RETURN_ADDRESS) == NULL_TREE)
9766 {
9767 ftype = build_function_type_list (ptr_type_node, integer_type_node,
9768 NULL_TREE);
9769 local_define_builtin ("__builtin_return_address", ftype,
9770 BUILT_IN_RETURN_ADDRESS,
9771 "__builtin_return_address",
9772 ECF_NOTHROW);
9773 }
9774
9775 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER)
9776 || !builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT))
9777 {
9778 ftype = build_function_type_list (void_type_node, ptr_type_node,
9779 ptr_type_node, NULL_TREE);
9780 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER))
9781 local_define_builtin ("__cyg_profile_func_enter", ftype,
9782 BUILT_IN_PROFILE_FUNC_ENTER,
9783 "__cyg_profile_func_enter", 0);
9784 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT))
9785 local_define_builtin ("__cyg_profile_func_exit", ftype,
9786 BUILT_IN_PROFILE_FUNC_EXIT,
9787 "__cyg_profile_func_exit", 0);
9788 }
9789
9790 /* The exception object and filter values from the runtime. The argument
9791 must be zero before exception lowering, i.e. from the front end. After
9792 exception lowering, it will be the region number for the exception
9793 landing pad. These functions are PURE instead of CONST to prevent
9794 them from being hoisted past the exception edge that will initialize
9795 its value in the landing pad. */
9796 ftype = build_function_type_list (ptr_type_node,
9797 integer_type_node, NULL_TREE);
9798 ecf_flags = ECF_PURE | ECF_NOTHROW | ECF_LEAF;
9799 /* Only use TM_PURE if we we have TM language support. */
9800 if (builtin_decl_explicit_p (BUILT_IN_TM_LOAD_1))
9801 ecf_flags |= ECF_TM_PURE;
9802 local_define_builtin ("__builtin_eh_pointer", ftype, BUILT_IN_EH_POINTER,
9803 "__builtin_eh_pointer", ecf_flags);
9804
9805 tmp = lang_hooks.types.type_for_mode (targetm.eh_return_filter_mode (), 0);
9806 ftype = build_function_type_list (tmp, integer_type_node, NULL_TREE);
9807 local_define_builtin ("__builtin_eh_filter", ftype, BUILT_IN_EH_FILTER,
9808 "__builtin_eh_filter", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
9809
9810 ftype = build_function_type_list (void_type_node,
9811 integer_type_node, integer_type_node,
9812 NULL_TREE);
9813 local_define_builtin ("__builtin_eh_copy_values", ftype,
9814 BUILT_IN_EH_COPY_VALUES,
9815 "__builtin_eh_copy_values", ECF_NOTHROW);
9816
9817 /* Complex multiplication and division. These are handled as builtins
9818 rather than optabs because emit_library_call_value doesn't support
9819 complex. Further, we can do slightly better with folding these
9820 beasties if the real and complex parts of the arguments are separate. */
9821 {
9822 int mode;
9823
9824 for (mode = MIN_MODE_COMPLEX_FLOAT; mode <= MAX_MODE_COMPLEX_FLOAT; ++mode)
9825 {
9826 char mode_name_buf[4], *q;
9827 const char *p;
9828 enum built_in_function mcode, dcode;
9829 tree type, inner_type;
9830 const char *prefix = "__";
9831
9832 if (targetm.libfunc_gnu_prefix)
9833 prefix = "__gnu_";
9834
9835 type = lang_hooks.types.type_for_mode ((enum machine_mode) mode, 0);
9836 if (type == NULL)
9837 continue;
9838 inner_type = TREE_TYPE (type);
9839
9840 ftype = build_function_type_list (type, inner_type, inner_type,
9841 inner_type, inner_type, NULL_TREE);
9842
9843 mcode = ((enum built_in_function)
9844 (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
9845 dcode = ((enum built_in_function)
9846 (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
9847
9848 for (p = GET_MODE_NAME (mode), q = mode_name_buf; *p; p++, q++)
9849 *q = TOLOWER (*p);
9850 *q = '\0';
9851
9852 built_in_names[mcode] = concat (prefix, "mul", mode_name_buf, "3",
9853 NULL);
9854 local_define_builtin (built_in_names[mcode], ftype, mcode,
9855 built_in_names[mcode],
9856 ECF_CONST | ECF_NOTHROW | ECF_LEAF);
9857
9858 built_in_names[dcode] = concat (prefix, "div", mode_name_buf, "3",
9859 NULL);
9860 local_define_builtin (built_in_names[dcode], ftype, dcode,
9861 built_in_names[dcode],
9862 ECF_CONST | ECF_NOTHROW | ECF_LEAF);
9863 }
9864 }
9865 }
9866
9867 /* HACK. GROSS. This is absolutely disgusting. I wish there was a
9868 better way.
9869
9870 If we requested a pointer to a vector, build up the pointers that
9871 we stripped off while looking for the inner type. Similarly for
9872 return values from functions.
9873
9874 The argument TYPE is the top of the chain, and BOTTOM is the
9875 new type which we will point to. */
9876
9877 tree
9878 reconstruct_complex_type (tree type, tree bottom)
9879 {
9880 tree inner, outer;
9881
9882 if (TREE_CODE (type) == POINTER_TYPE)
9883 {
9884 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9885 outer = build_pointer_type_for_mode (inner, TYPE_MODE (type),
9886 TYPE_REF_CAN_ALIAS_ALL (type));
9887 }
9888 else if (TREE_CODE (type) == REFERENCE_TYPE)
9889 {
9890 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9891 outer = build_reference_type_for_mode (inner, TYPE_MODE (type),
9892 TYPE_REF_CAN_ALIAS_ALL (type));
9893 }
9894 else if (TREE_CODE (type) == ARRAY_TYPE)
9895 {
9896 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9897 outer = build_array_type (inner, TYPE_DOMAIN (type));
9898 }
9899 else if (TREE_CODE (type) == FUNCTION_TYPE)
9900 {
9901 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9902 outer = build_function_type (inner, TYPE_ARG_TYPES (type));
9903 }
9904 else if (TREE_CODE (type) == METHOD_TYPE)
9905 {
9906 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9907 /* The build_method_type_directly() routine prepends 'this' to argument list,
9908 so we must compensate by getting rid of it. */
9909 outer
9910 = build_method_type_directly
9911 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (type))),
9912 inner,
9913 TREE_CHAIN (TYPE_ARG_TYPES (type)));
9914 }
9915 else if (TREE_CODE (type) == OFFSET_TYPE)
9916 {
9917 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9918 outer = build_offset_type (TYPE_OFFSET_BASETYPE (type), inner);
9919 }
9920 else
9921 return bottom;
9922
9923 return build_type_attribute_qual_variant (outer, TYPE_ATTRIBUTES (type),
9924 TYPE_QUALS (type));
9925 }
9926
9927 /* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
9928 the inner type. */
9929 tree
9930 build_vector_type_for_mode (tree innertype, enum machine_mode mode)
9931 {
9932 int nunits;
9933
9934 switch (GET_MODE_CLASS (mode))
9935 {
9936 case MODE_VECTOR_INT:
9937 case MODE_VECTOR_FLOAT:
9938 case MODE_VECTOR_FRACT:
9939 case MODE_VECTOR_UFRACT:
9940 case MODE_VECTOR_ACCUM:
9941 case MODE_VECTOR_UACCUM:
9942 nunits = GET_MODE_NUNITS (mode);
9943 break;
9944
9945 case MODE_INT:
9946 /* Check that there are no leftover bits. */
9947 gcc_assert (GET_MODE_BITSIZE (mode)
9948 % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0);
9949
9950 nunits = GET_MODE_BITSIZE (mode)
9951 / TREE_INT_CST_LOW (TYPE_SIZE (innertype));
9952 break;
9953
9954 default:
9955 gcc_unreachable ();
9956 }
9957
9958 return make_vector_type (innertype, nunits, mode);
9959 }
9960
9961 /* Similarly, but takes the inner type and number of units, which must be
9962 a power of two. */
9963
9964 tree
9965 build_vector_type (tree innertype, int nunits)
9966 {
9967 return make_vector_type (innertype, nunits, VOIDmode);
9968 }
9969
9970 /* Similarly, but builds a variant type with TYPE_VECTOR_OPAQUE set. */
9971
9972 tree
9973 build_opaque_vector_type (tree innertype, int nunits)
9974 {
9975 tree t = make_vector_type (innertype, nunits, VOIDmode);
9976 tree cand;
9977 /* We always build the non-opaque variant before the opaque one,
9978 so if it already exists, it is TYPE_NEXT_VARIANT of this one. */
9979 cand = TYPE_NEXT_VARIANT (t);
9980 if (cand
9981 && TYPE_VECTOR_OPAQUE (cand)
9982 && check_qualified_type (cand, t, TYPE_QUALS (t)))
9983 return cand;
9984 /* Othewise build a variant type and make sure to queue it after
9985 the non-opaque type. */
9986 cand = build_distinct_type_copy (t);
9987 TYPE_VECTOR_OPAQUE (cand) = true;
9988 TYPE_CANONICAL (cand) = TYPE_CANONICAL (t);
9989 TYPE_NEXT_VARIANT (cand) = TYPE_NEXT_VARIANT (t);
9990 TYPE_NEXT_VARIANT (t) = cand;
9991 TYPE_MAIN_VARIANT (cand) = TYPE_MAIN_VARIANT (t);
9992 return cand;
9993 }
9994
9995
9996 /* Given an initializer INIT, return TRUE if INIT is zero or some
9997 aggregate of zeros. Otherwise return FALSE. */
9998 bool
9999 initializer_zerop (const_tree init)
10000 {
10001 tree elt;
10002
10003 STRIP_NOPS (init);
10004
10005 switch (TREE_CODE (init))
10006 {
10007 case INTEGER_CST:
10008 return integer_zerop (init);
10009
10010 case REAL_CST:
10011 /* ??? Note that this is not correct for C4X float formats. There,
10012 a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
10013 negative exponent. */
10014 return real_zerop (init)
10015 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
10016
10017 case FIXED_CST:
10018 return fixed_zerop (init);
10019
10020 case COMPLEX_CST:
10021 return integer_zerop (init)
10022 || (real_zerop (init)
10023 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
10024 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
10025
10026 case VECTOR_CST:
10027 {
10028 unsigned i;
10029 for (i = 0; i < VECTOR_CST_NELTS (init); ++i)
10030 if (!initializer_zerop (VECTOR_CST_ELT (init, i)))
10031 return false;
10032 return true;
10033 }
10034
10035 case CONSTRUCTOR:
10036 {
10037 unsigned HOST_WIDE_INT idx;
10038
10039 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
10040 if (!initializer_zerop (elt))
10041 return false;
10042 return true;
10043 }
10044
10045 case STRING_CST:
10046 {
10047 int i;
10048
10049 /* We need to loop through all elements to handle cases like
10050 "\0" and "\0foobar". */
10051 for (i = 0; i < TREE_STRING_LENGTH (init); ++i)
10052 if (TREE_STRING_POINTER (init)[i] != '\0')
10053 return false;
10054
10055 return true;
10056 }
10057
10058 default:
10059 return false;
10060 }
10061 }
10062
10063 /* Build an empty statement at location LOC. */
10064
10065 tree
10066 build_empty_stmt (location_t loc)
10067 {
10068 tree t = build1 (NOP_EXPR, void_type_node, size_zero_node);
10069 SET_EXPR_LOCATION (t, loc);
10070 return t;
10071 }
10072
10073
10074 /* Build an OpenMP clause with code CODE. LOC is the location of the
10075 clause. */
10076
10077 tree
10078 build_omp_clause (location_t loc, enum omp_clause_code code)
10079 {
10080 tree t;
10081 int size, length;
10082
10083 length = omp_clause_num_ops[code];
10084 size = (sizeof (struct tree_omp_clause) + (length - 1) * sizeof (tree));
10085
10086 record_node_allocation_statistics (OMP_CLAUSE, size);
10087
10088 t = ggc_alloc_tree_node (size);
10089 memset (t, 0, size);
10090 TREE_SET_CODE (t, OMP_CLAUSE);
10091 OMP_CLAUSE_SET_CODE (t, code);
10092 OMP_CLAUSE_LOCATION (t) = loc;
10093
10094 return t;
10095 }
10096
10097 /* Build a tcc_vl_exp object with code CODE and room for LEN operands. LEN
10098 includes the implicit operand count in TREE_OPERAND 0, and so must be >= 1.
10099 Except for the CODE and operand count field, other storage for the
10100 object is initialized to zeros. */
10101
10102 tree
10103 build_vl_exp_stat (enum tree_code code, int len MEM_STAT_DECL)
10104 {
10105 tree t;
10106 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_exp);
10107
10108 gcc_assert (TREE_CODE_CLASS (code) == tcc_vl_exp);
10109 gcc_assert (len >= 1);
10110
10111 record_node_allocation_statistics (code, length);
10112
10113 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
10114
10115 TREE_SET_CODE (t, code);
10116
10117 /* Can't use TREE_OPERAND to store the length because if checking is
10118 enabled, it will try to check the length before we store it. :-P */
10119 t->exp.operands[0] = build_int_cst (sizetype, len);
10120
10121 return t;
10122 }
10123
10124 /* Helper function for build_call_* functions; build a CALL_EXPR with
10125 indicated RETURN_TYPE, FN, and NARGS, but do not initialize any of
10126 the argument slots. */
10127
10128 static tree
10129 build_call_1 (tree return_type, tree fn, int nargs)
10130 {
10131 tree t;
10132
10133 t = build_vl_exp (CALL_EXPR, nargs + 3);
10134 TREE_TYPE (t) = return_type;
10135 CALL_EXPR_FN (t) = fn;
10136 CALL_EXPR_STATIC_CHAIN (t) = NULL;
10137
10138 return t;
10139 }
10140
10141 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
10142 FN and a null static chain slot. NARGS is the number of call arguments
10143 which are specified as "..." arguments. */
10144
10145 tree
10146 build_call_nary (tree return_type, tree fn, int nargs, ...)
10147 {
10148 tree ret;
10149 va_list args;
10150 va_start (args, nargs);
10151 ret = build_call_valist (return_type, fn, nargs, args);
10152 va_end (args);
10153 return ret;
10154 }
10155
10156 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
10157 FN and a null static chain slot. NARGS is the number of call arguments
10158 which are specified as a va_list ARGS. */
10159
10160 tree
10161 build_call_valist (tree return_type, tree fn, int nargs, va_list args)
10162 {
10163 tree t;
10164 int i;
10165
10166 t = build_call_1 (return_type, fn, nargs);
10167 for (i = 0; i < nargs; i++)
10168 CALL_EXPR_ARG (t, i) = va_arg (args, tree);
10169 process_call_operands (t);
10170 return t;
10171 }
10172
10173 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
10174 FN and a null static chain slot. NARGS is the number of call arguments
10175 which are specified as a tree array ARGS. */
10176
10177 tree
10178 build_call_array_loc (location_t loc, tree return_type, tree fn,
10179 int nargs, const tree *args)
10180 {
10181 tree t;
10182 int i;
10183
10184 t = build_call_1 (return_type, fn, nargs);
10185 for (i = 0; i < nargs; i++)
10186 CALL_EXPR_ARG (t, i) = args[i];
10187 process_call_operands (t);
10188 SET_EXPR_LOCATION (t, loc);
10189 return t;
10190 }
10191
10192 /* Like build_call_array, but takes a vec. */
10193
10194 tree
10195 build_call_vec (tree return_type, tree fn, vec<tree, va_gc> *args)
10196 {
10197 tree ret, t;
10198 unsigned int ix;
10199
10200 ret = build_call_1 (return_type, fn, vec_safe_length (args));
10201 FOR_EACH_VEC_SAFE_ELT (args, ix, t)
10202 CALL_EXPR_ARG (ret, ix) = t;
10203 process_call_operands (ret);
10204 return ret;
10205 }
10206
10207
10208 /* Returns true if it is possible to prove that the index of
10209 an array access REF (an ARRAY_REF expression) falls into the
10210 array bounds. */
10211
10212 bool
10213 in_array_bounds_p (tree ref)
10214 {
10215 tree idx = TREE_OPERAND (ref, 1);
10216 tree min, max;
10217
10218 if (TREE_CODE (idx) != INTEGER_CST)
10219 return false;
10220
10221 min = array_ref_low_bound (ref);
10222 max = array_ref_up_bound (ref);
10223 if (!min
10224 || !max
10225 || TREE_CODE (min) != INTEGER_CST
10226 || TREE_CODE (max) != INTEGER_CST)
10227 return false;
10228
10229 if (tree_int_cst_lt (idx, min)
10230 || tree_int_cst_lt (max, idx))
10231 return false;
10232
10233 return true;
10234 }
10235
10236 /* Returns true if it is possible to prove that the range of
10237 an array access REF (an ARRAY_RANGE_REF expression) falls
10238 into the array bounds. */
10239
10240 bool
10241 range_in_array_bounds_p (tree ref)
10242 {
10243 tree domain_type = TYPE_DOMAIN (TREE_TYPE (ref));
10244 tree range_min, range_max, min, max;
10245
10246 range_min = TYPE_MIN_VALUE (domain_type);
10247 range_max = TYPE_MAX_VALUE (domain_type);
10248 if (!range_min
10249 || !range_max
10250 || TREE_CODE (range_min) != INTEGER_CST
10251 || TREE_CODE (range_max) != INTEGER_CST)
10252 return false;
10253
10254 min = array_ref_low_bound (ref);
10255 max = array_ref_up_bound (ref);
10256 if (!min
10257 || !max
10258 || TREE_CODE (min) != INTEGER_CST
10259 || TREE_CODE (max) != INTEGER_CST)
10260 return false;
10261
10262 if (tree_int_cst_lt (range_min, min)
10263 || tree_int_cst_lt (max, range_max))
10264 return false;
10265
10266 return true;
10267 }
10268
10269 /* Return true if T (assumed to be a DECL) must be assigned a memory
10270 location. */
10271
10272 bool
10273 needs_to_live_in_memory (const_tree t)
10274 {
10275 return (TREE_ADDRESSABLE (t)
10276 || is_global_var (t)
10277 || (TREE_CODE (t) == RESULT_DECL
10278 && !DECL_BY_REFERENCE (t)
10279 && aggregate_value_p (t, current_function_decl)));
10280 }
10281
10282 /* Return value of a constant X and sign-extend it. */
10283
10284 HOST_WIDE_INT
10285 int_cst_value (const_tree x)
10286 {
10287 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
10288 unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
10289
10290 /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
10291 gcc_assert (TREE_INT_CST_HIGH (x) == 0
10292 || TREE_INT_CST_HIGH (x) == -1);
10293
10294 if (bits < HOST_BITS_PER_WIDE_INT)
10295 {
10296 bool negative = ((val >> (bits - 1)) & 1) != 0;
10297 if (negative)
10298 val |= (~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1;
10299 else
10300 val &= ~((~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1);
10301 }
10302
10303 return val;
10304 }
10305
10306 /* Return value of a constant X and sign-extend it. */
10307
10308 HOST_WIDEST_INT
10309 widest_int_cst_value (const_tree x)
10310 {
10311 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
10312 unsigned HOST_WIDEST_INT val = TREE_INT_CST_LOW (x);
10313
10314 #if HOST_BITS_PER_WIDEST_INT > HOST_BITS_PER_WIDE_INT
10315 gcc_assert (HOST_BITS_PER_WIDEST_INT >= HOST_BITS_PER_DOUBLE_INT);
10316 val |= (((unsigned HOST_WIDEST_INT) TREE_INT_CST_HIGH (x))
10317 << HOST_BITS_PER_WIDE_INT);
10318 #else
10319 /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
10320 gcc_assert (TREE_INT_CST_HIGH (x) == 0
10321 || TREE_INT_CST_HIGH (x) == -1);
10322 #endif
10323
10324 if (bits < HOST_BITS_PER_WIDEST_INT)
10325 {
10326 bool negative = ((val >> (bits - 1)) & 1) != 0;
10327 if (negative)
10328 val |= (~(unsigned HOST_WIDEST_INT) 0) << (bits - 1) << 1;
10329 else
10330 val &= ~((~(unsigned HOST_WIDEST_INT) 0) << (bits - 1) << 1);
10331 }
10332
10333 return val;
10334 }
10335
10336 /* If TYPE is an integral or pointer type, return an integer type with
10337 the same precision which is unsigned iff UNSIGNEDP is true, or itself
10338 if TYPE is already an integer type of signedness UNSIGNEDP. */
10339
10340 tree
10341 signed_or_unsigned_type_for (int unsignedp, tree type)
10342 {
10343 if (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type) == unsignedp)
10344 return type;
10345
10346 if (TREE_CODE (type) == VECTOR_TYPE)
10347 {
10348 tree inner = TREE_TYPE (type);
10349 tree inner2 = signed_or_unsigned_type_for (unsignedp, inner);
10350 if (!inner2)
10351 return NULL_TREE;
10352 if (inner == inner2)
10353 return type;
10354 return build_vector_type (inner2, TYPE_VECTOR_SUBPARTS (type));
10355 }
10356
10357 if (!INTEGRAL_TYPE_P (type)
10358 && !POINTER_TYPE_P (type))
10359 return NULL_TREE;
10360
10361 return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp);
10362 }
10363
10364 /* If TYPE is an integral or pointer type, return an integer type with
10365 the same precision which is unsigned, or itself if TYPE is already an
10366 unsigned integer type. */
10367
10368 tree
10369 unsigned_type_for (tree type)
10370 {
10371 return signed_or_unsigned_type_for (1, type);
10372 }
10373
10374 /* If TYPE is an integral or pointer type, return an integer type with
10375 the same precision which is signed, or itself if TYPE is already a
10376 signed integer type. */
10377
10378 tree
10379 signed_type_for (tree type)
10380 {
10381 return signed_or_unsigned_type_for (0, type);
10382 }
10383
10384 /* If TYPE is a vector type, return a signed integer vector type with the
10385 same width and number of subparts. Otherwise return boolean_type_node. */
10386
10387 tree
10388 truth_type_for (tree type)
10389 {
10390 if (TREE_CODE (type) == VECTOR_TYPE)
10391 {
10392 tree elem = lang_hooks.types.type_for_size
10393 (GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (type))), 0);
10394 return build_opaque_vector_type (elem, TYPE_VECTOR_SUBPARTS (type));
10395 }
10396 else
10397 return boolean_type_node;
10398 }
10399
10400 /* Returns the largest value obtainable by casting something in INNER type to
10401 OUTER type. */
10402
10403 tree
10404 upper_bound_in_type (tree outer, tree inner)
10405 {
10406 double_int high;
10407 unsigned int det = 0;
10408 unsigned oprec = TYPE_PRECISION (outer);
10409 unsigned iprec = TYPE_PRECISION (inner);
10410 unsigned prec;
10411
10412 /* Compute a unique number for every combination. */
10413 det |= (oprec > iprec) ? 4 : 0;
10414 det |= TYPE_UNSIGNED (outer) ? 2 : 0;
10415 det |= TYPE_UNSIGNED (inner) ? 1 : 0;
10416
10417 /* Determine the exponent to use. */
10418 switch (det)
10419 {
10420 case 0:
10421 case 1:
10422 /* oprec <= iprec, outer: signed, inner: don't care. */
10423 prec = oprec - 1;
10424 break;
10425 case 2:
10426 case 3:
10427 /* oprec <= iprec, outer: unsigned, inner: don't care. */
10428 prec = oprec;
10429 break;
10430 case 4:
10431 /* oprec > iprec, outer: signed, inner: signed. */
10432 prec = iprec - 1;
10433 break;
10434 case 5:
10435 /* oprec > iprec, outer: signed, inner: unsigned. */
10436 prec = iprec;
10437 break;
10438 case 6:
10439 /* oprec > iprec, outer: unsigned, inner: signed. */
10440 prec = oprec;
10441 break;
10442 case 7:
10443 /* oprec > iprec, outer: unsigned, inner: unsigned. */
10444 prec = iprec;
10445 break;
10446 default:
10447 gcc_unreachable ();
10448 }
10449
10450 /* Compute 2^^prec - 1. */
10451 if (prec <= HOST_BITS_PER_WIDE_INT)
10452 {
10453 high.high = 0;
10454 high.low = ((~(unsigned HOST_WIDE_INT) 0)
10455 >> (HOST_BITS_PER_WIDE_INT - prec));
10456 }
10457 else
10458 {
10459 high.high = ((~(unsigned HOST_WIDE_INT) 0)
10460 >> (HOST_BITS_PER_DOUBLE_INT - prec));
10461 high.low = ~(unsigned HOST_WIDE_INT) 0;
10462 }
10463
10464 return double_int_to_tree (outer, high);
10465 }
10466
10467 /* Returns the smallest value obtainable by casting something in INNER type to
10468 OUTER type. */
10469
10470 tree
10471 lower_bound_in_type (tree outer, tree inner)
10472 {
10473 double_int low;
10474 unsigned oprec = TYPE_PRECISION (outer);
10475 unsigned iprec = TYPE_PRECISION (inner);
10476
10477 /* If OUTER type is unsigned, we can definitely cast 0 to OUTER type
10478 and obtain 0. */
10479 if (TYPE_UNSIGNED (outer)
10480 /* If we are widening something of an unsigned type, OUTER type
10481 contains all values of INNER type. In particular, both INNER
10482 and OUTER types have zero in common. */
10483 || (oprec > iprec && TYPE_UNSIGNED (inner)))
10484 low.low = low.high = 0;
10485 else
10486 {
10487 /* If we are widening a signed type to another signed type, we
10488 want to obtain -2^^(iprec-1). If we are keeping the
10489 precision or narrowing to a signed type, we want to obtain
10490 -2^(oprec-1). */
10491 unsigned prec = oprec > iprec ? iprec : oprec;
10492
10493 if (prec <= HOST_BITS_PER_WIDE_INT)
10494 {
10495 low.high = ~(unsigned HOST_WIDE_INT) 0;
10496 low.low = (~(unsigned HOST_WIDE_INT) 0) << (prec - 1);
10497 }
10498 else
10499 {
10500 low.high = ((~(unsigned HOST_WIDE_INT) 0)
10501 << (prec - HOST_BITS_PER_WIDE_INT - 1));
10502 low.low = 0;
10503 }
10504 }
10505
10506 return double_int_to_tree (outer, low);
10507 }
10508
10509 /* Return nonzero if two operands that are suitable for PHI nodes are
10510 necessarily equal. Specifically, both ARG0 and ARG1 must be either
10511 SSA_NAME or invariant. Note that this is strictly an optimization.
10512 That is, callers of this function can directly call operand_equal_p
10513 and get the same result, only slower. */
10514
10515 int
10516 operand_equal_for_phi_arg_p (const_tree arg0, const_tree arg1)
10517 {
10518 if (arg0 == arg1)
10519 return 1;
10520 if (TREE_CODE (arg0) == SSA_NAME || TREE_CODE (arg1) == SSA_NAME)
10521 return 0;
10522 return operand_equal_p (arg0, arg1, 0);
10523 }
10524
10525 /* Returns number of zeros at the end of binary representation of X.
10526
10527 ??? Use ffs if available? */
10528
10529 tree
10530 num_ending_zeros (const_tree x)
10531 {
10532 unsigned HOST_WIDE_INT fr, nfr;
10533 unsigned num, abits;
10534 tree type = TREE_TYPE (x);
10535
10536 if (TREE_INT_CST_LOW (x) == 0)
10537 {
10538 num = HOST_BITS_PER_WIDE_INT;
10539 fr = TREE_INT_CST_HIGH (x);
10540 }
10541 else
10542 {
10543 num = 0;
10544 fr = TREE_INT_CST_LOW (x);
10545 }
10546
10547 for (abits = HOST_BITS_PER_WIDE_INT / 2; abits; abits /= 2)
10548 {
10549 nfr = fr >> abits;
10550 if (nfr << abits == fr)
10551 {
10552 num += abits;
10553 fr = nfr;
10554 }
10555 }
10556
10557 if (num > TYPE_PRECISION (type))
10558 num = TYPE_PRECISION (type);
10559
10560 return build_int_cst_type (type, num);
10561 }
10562
10563
10564 #define WALK_SUBTREE(NODE) \
10565 do \
10566 { \
10567 result = walk_tree_1 (&(NODE), func, data, pset, lh); \
10568 if (result) \
10569 return result; \
10570 } \
10571 while (0)
10572
10573 /* This is a subroutine of walk_tree that walks field of TYPE that are to
10574 be walked whenever a type is seen in the tree. Rest of operands and return
10575 value are as for walk_tree. */
10576
10577 static tree
10578 walk_type_fields (tree type, walk_tree_fn func, void *data,
10579 struct pointer_set_t *pset, walk_tree_lh lh)
10580 {
10581 tree result = NULL_TREE;
10582
10583 switch (TREE_CODE (type))
10584 {
10585 case POINTER_TYPE:
10586 case REFERENCE_TYPE:
10587 /* We have to worry about mutually recursive pointers. These can't
10588 be written in C. They can in Ada. It's pathological, but
10589 there's an ACATS test (c38102a) that checks it. Deal with this
10590 by checking if we're pointing to another pointer, that one
10591 points to another pointer, that one does too, and we have no htab.
10592 If so, get a hash table. We check three levels deep to avoid
10593 the cost of the hash table if we don't need one. */
10594 if (POINTER_TYPE_P (TREE_TYPE (type))
10595 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (type)))
10596 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (TREE_TYPE (type))))
10597 && !pset)
10598 {
10599 result = walk_tree_without_duplicates (&TREE_TYPE (type),
10600 func, data);
10601 if (result)
10602 return result;
10603
10604 break;
10605 }
10606
10607 /* ... fall through ... */
10608
10609 case COMPLEX_TYPE:
10610 WALK_SUBTREE (TREE_TYPE (type));
10611 break;
10612
10613 case METHOD_TYPE:
10614 WALK_SUBTREE (TYPE_METHOD_BASETYPE (type));
10615
10616 /* Fall through. */
10617
10618 case FUNCTION_TYPE:
10619 WALK_SUBTREE (TREE_TYPE (type));
10620 {
10621 tree arg;
10622
10623 /* We never want to walk into default arguments. */
10624 for (arg = TYPE_ARG_TYPES (type); arg; arg = TREE_CHAIN (arg))
10625 WALK_SUBTREE (TREE_VALUE (arg));
10626 }
10627 break;
10628
10629 case ARRAY_TYPE:
10630 /* Don't follow this nodes's type if a pointer for fear that
10631 we'll have infinite recursion. If we have a PSET, then we
10632 need not fear. */
10633 if (pset
10634 || (!POINTER_TYPE_P (TREE_TYPE (type))
10635 && TREE_CODE (TREE_TYPE (type)) != OFFSET_TYPE))
10636 WALK_SUBTREE (TREE_TYPE (type));
10637 WALK_SUBTREE (TYPE_DOMAIN (type));
10638 break;
10639
10640 case OFFSET_TYPE:
10641 WALK_SUBTREE (TREE_TYPE (type));
10642 WALK_SUBTREE (TYPE_OFFSET_BASETYPE (type));
10643 break;
10644
10645 default:
10646 break;
10647 }
10648
10649 return NULL_TREE;
10650 }
10651
10652 /* Apply FUNC to all the sub-trees of TP in a pre-order traversal. FUNC is
10653 called with the DATA and the address of each sub-tree. If FUNC returns a
10654 non-NULL value, the traversal is stopped, and the value returned by FUNC
10655 is returned. If PSET is non-NULL it is used to record the nodes visited,
10656 and to avoid visiting a node more than once. */
10657
10658 tree
10659 walk_tree_1 (tree *tp, walk_tree_fn func, void *data,
10660 struct pointer_set_t *pset, walk_tree_lh lh)
10661 {
10662 enum tree_code code;
10663 int walk_subtrees;
10664 tree result;
10665
10666 #define WALK_SUBTREE_TAIL(NODE) \
10667 do \
10668 { \
10669 tp = & (NODE); \
10670 goto tail_recurse; \
10671 } \
10672 while (0)
10673
10674 tail_recurse:
10675 /* Skip empty subtrees. */
10676 if (!*tp)
10677 return NULL_TREE;
10678
10679 /* Don't walk the same tree twice, if the user has requested
10680 that we avoid doing so. */
10681 if (pset && pointer_set_insert (pset, *tp))
10682 return NULL_TREE;
10683
10684 /* Call the function. */
10685 walk_subtrees = 1;
10686 result = (*func) (tp, &walk_subtrees, data);
10687
10688 /* If we found something, return it. */
10689 if (result)
10690 return result;
10691
10692 code = TREE_CODE (*tp);
10693
10694 /* Even if we didn't, FUNC may have decided that there was nothing
10695 interesting below this point in the tree. */
10696 if (!walk_subtrees)
10697 {
10698 /* But we still need to check our siblings. */
10699 if (code == TREE_LIST)
10700 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
10701 else if (code == OMP_CLAUSE)
10702 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10703 else
10704 return NULL_TREE;
10705 }
10706
10707 if (lh)
10708 {
10709 result = (*lh) (tp, &walk_subtrees, func, data, pset);
10710 if (result || !walk_subtrees)
10711 return result;
10712 }
10713
10714 switch (code)
10715 {
10716 case ERROR_MARK:
10717 case IDENTIFIER_NODE:
10718 case INTEGER_CST:
10719 case REAL_CST:
10720 case FIXED_CST:
10721 case VECTOR_CST:
10722 case STRING_CST:
10723 case BLOCK:
10724 case PLACEHOLDER_EXPR:
10725 case SSA_NAME:
10726 case FIELD_DECL:
10727 case RESULT_DECL:
10728 /* None of these have subtrees other than those already walked
10729 above. */
10730 break;
10731
10732 case TREE_LIST:
10733 WALK_SUBTREE (TREE_VALUE (*tp));
10734 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
10735 break;
10736
10737 case TREE_VEC:
10738 {
10739 int len = TREE_VEC_LENGTH (*tp);
10740
10741 if (len == 0)
10742 break;
10743
10744 /* Walk all elements but the first. */
10745 while (--len)
10746 WALK_SUBTREE (TREE_VEC_ELT (*tp, len));
10747
10748 /* Now walk the first one as a tail call. */
10749 WALK_SUBTREE_TAIL (TREE_VEC_ELT (*tp, 0));
10750 }
10751
10752 case COMPLEX_CST:
10753 WALK_SUBTREE (TREE_REALPART (*tp));
10754 WALK_SUBTREE_TAIL (TREE_IMAGPART (*tp));
10755
10756 case CONSTRUCTOR:
10757 {
10758 unsigned HOST_WIDE_INT idx;
10759 constructor_elt *ce;
10760
10761 for (idx = 0; vec_safe_iterate(CONSTRUCTOR_ELTS (*tp), idx, &ce); idx++)
10762 WALK_SUBTREE (ce->value);
10763 }
10764 break;
10765
10766 case SAVE_EXPR:
10767 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, 0));
10768
10769 case BIND_EXPR:
10770 {
10771 tree decl;
10772 for (decl = BIND_EXPR_VARS (*tp); decl; decl = DECL_CHAIN (decl))
10773 {
10774 /* Walk the DECL_INITIAL and DECL_SIZE. We don't want to walk
10775 into declarations that are just mentioned, rather than
10776 declared; they don't really belong to this part of the tree.
10777 And, we can see cycles: the initializer for a declaration
10778 can refer to the declaration itself. */
10779 WALK_SUBTREE (DECL_INITIAL (decl));
10780 WALK_SUBTREE (DECL_SIZE (decl));
10781 WALK_SUBTREE (DECL_SIZE_UNIT (decl));
10782 }
10783 WALK_SUBTREE_TAIL (BIND_EXPR_BODY (*tp));
10784 }
10785
10786 case STATEMENT_LIST:
10787 {
10788 tree_stmt_iterator i;
10789 for (i = tsi_start (*tp); !tsi_end_p (i); tsi_next (&i))
10790 WALK_SUBTREE (*tsi_stmt_ptr (i));
10791 }
10792 break;
10793
10794 case OMP_CLAUSE:
10795 switch (OMP_CLAUSE_CODE (*tp))
10796 {
10797 case OMP_CLAUSE_PRIVATE:
10798 case OMP_CLAUSE_SHARED:
10799 case OMP_CLAUSE_FIRSTPRIVATE:
10800 case OMP_CLAUSE_COPYIN:
10801 case OMP_CLAUSE_COPYPRIVATE:
10802 case OMP_CLAUSE_FINAL:
10803 case OMP_CLAUSE_IF:
10804 case OMP_CLAUSE_NUM_THREADS:
10805 case OMP_CLAUSE_SCHEDULE:
10806 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 0));
10807 /* FALLTHRU */
10808
10809 case OMP_CLAUSE_NOWAIT:
10810 case OMP_CLAUSE_ORDERED:
10811 case OMP_CLAUSE_DEFAULT:
10812 case OMP_CLAUSE_UNTIED:
10813 case OMP_CLAUSE_MERGEABLE:
10814 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10815
10816 case OMP_CLAUSE_LASTPRIVATE:
10817 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
10818 WALK_SUBTREE (OMP_CLAUSE_LASTPRIVATE_STMT (*tp));
10819 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10820
10821 case OMP_CLAUSE_COLLAPSE:
10822 {
10823 int i;
10824 for (i = 0; i < 3; i++)
10825 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
10826 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10827 }
10828
10829 case OMP_CLAUSE_REDUCTION:
10830 {
10831 int i;
10832 for (i = 0; i < 4; i++)
10833 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
10834 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10835 }
10836
10837 default:
10838 gcc_unreachable ();
10839 }
10840 break;
10841
10842 case TARGET_EXPR:
10843 {
10844 int i, len;
10845
10846 /* TARGET_EXPRs are peculiar: operands 1 and 3 can be the same.
10847 But, we only want to walk once. */
10848 len = (TREE_OPERAND (*tp, 3) == TREE_OPERAND (*tp, 1)) ? 2 : 3;
10849 for (i = 0; i < len; ++i)
10850 WALK_SUBTREE (TREE_OPERAND (*tp, i));
10851 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len));
10852 }
10853
10854 case DECL_EXPR:
10855 /* If this is a TYPE_DECL, walk into the fields of the type that it's
10856 defining. We only want to walk into these fields of a type in this
10857 case and not in the general case of a mere reference to the type.
10858
10859 The criterion is as follows: if the field can be an expression, it
10860 must be walked only here. This should be in keeping with the fields
10861 that are directly gimplified in gimplify_type_sizes in order for the
10862 mark/copy-if-shared/unmark machinery of the gimplifier to work with
10863 variable-sized types.
10864
10865 Note that DECLs get walked as part of processing the BIND_EXPR. */
10866 if (TREE_CODE (DECL_EXPR_DECL (*tp)) == TYPE_DECL)
10867 {
10868 tree *type_p = &TREE_TYPE (DECL_EXPR_DECL (*tp));
10869 if (TREE_CODE (*type_p) == ERROR_MARK)
10870 return NULL_TREE;
10871
10872 /* Call the function for the type. See if it returns anything or
10873 doesn't want us to continue. If we are to continue, walk both
10874 the normal fields and those for the declaration case. */
10875 result = (*func) (type_p, &walk_subtrees, data);
10876 if (result || !walk_subtrees)
10877 return result;
10878
10879 /* But do not walk a pointed-to type since it may itself need to
10880 be walked in the declaration case if it isn't anonymous. */
10881 if (!POINTER_TYPE_P (*type_p))
10882 {
10883 result = walk_type_fields (*type_p, func, data, pset, lh);
10884 if (result)
10885 return result;
10886 }
10887
10888 /* If this is a record type, also walk the fields. */
10889 if (RECORD_OR_UNION_TYPE_P (*type_p))
10890 {
10891 tree field;
10892
10893 for (field = TYPE_FIELDS (*type_p); field;
10894 field = DECL_CHAIN (field))
10895 {
10896 /* We'd like to look at the type of the field, but we can
10897 easily get infinite recursion. So assume it's pointed
10898 to elsewhere in the tree. Also, ignore things that
10899 aren't fields. */
10900 if (TREE_CODE (field) != FIELD_DECL)
10901 continue;
10902
10903 WALK_SUBTREE (DECL_FIELD_OFFSET (field));
10904 WALK_SUBTREE (DECL_SIZE (field));
10905 WALK_SUBTREE (DECL_SIZE_UNIT (field));
10906 if (TREE_CODE (*type_p) == QUAL_UNION_TYPE)
10907 WALK_SUBTREE (DECL_QUALIFIER (field));
10908 }
10909 }
10910
10911 /* Same for scalar types. */
10912 else if (TREE_CODE (*type_p) == BOOLEAN_TYPE
10913 || TREE_CODE (*type_p) == ENUMERAL_TYPE
10914 || TREE_CODE (*type_p) == INTEGER_TYPE
10915 || TREE_CODE (*type_p) == FIXED_POINT_TYPE
10916 || TREE_CODE (*type_p) == REAL_TYPE)
10917 {
10918 WALK_SUBTREE (TYPE_MIN_VALUE (*type_p));
10919 WALK_SUBTREE (TYPE_MAX_VALUE (*type_p));
10920 }
10921
10922 WALK_SUBTREE (TYPE_SIZE (*type_p));
10923 WALK_SUBTREE_TAIL (TYPE_SIZE_UNIT (*type_p));
10924 }
10925 /* FALLTHRU */
10926
10927 default:
10928 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
10929 {
10930 int i, len;
10931
10932 /* Walk over all the sub-trees of this operand. */
10933 len = TREE_OPERAND_LENGTH (*tp);
10934
10935 /* Go through the subtrees. We need to do this in forward order so
10936 that the scope of a FOR_EXPR is handled properly. */
10937 if (len)
10938 {
10939 for (i = 0; i < len - 1; ++i)
10940 WALK_SUBTREE (TREE_OPERAND (*tp, i));
10941 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len - 1));
10942 }
10943 }
10944 /* If this is a type, walk the needed fields in the type. */
10945 else if (TYPE_P (*tp))
10946 return walk_type_fields (*tp, func, data, pset, lh);
10947 break;
10948 }
10949
10950 /* We didn't find what we were looking for. */
10951 return NULL_TREE;
10952
10953 #undef WALK_SUBTREE_TAIL
10954 }
10955 #undef WALK_SUBTREE
10956
10957 /* Like walk_tree, but does not walk duplicate nodes more than once. */
10958
10959 tree
10960 walk_tree_without_duplicates_1 (tree *tp, walk_tree_fn func, void *data,
10961 walk_tree_lh lh)
10962 {
10963 tree result;
10964 struct pointer_set_t *pset;
10965
10966 pset = pointer_set_create ();
10967 result = walk_tree_1 (tp, func, data, pset, lh);
10968 pointer_set_destroy (pset);
10969 return result;
10970 }
10971
10972
10973 tree
10974 tree_block (tree t)
10975 {
10976 char const c = TREE_CODE_CLASS (TREE_CODE (t));
10977
10978 if (IS_EXPR_CODE_CLASS (c))
10979 return LOCATION_BLOCK (t->exp.locus);
10980 gcc_unreachable ();
10981 return NULL;
10982 }
10983
10984 void
10985 tree_set_block (tree t, tree b)
10986 {
10987 char const c = TREE_CODE_CLASS (TREE_CODE (t));
10988
10989 if (IS_EXPR_CODE_CLASS (c))
10990 {
10991 if (b)
10992 t->exp.locus = COMBINE_LOCATION_DATA (line_table, t->exp.locus, b);
10993 else
10994 t->exp.locus = LOCATION_LOCUS (t->exp.locus);
10995 }
10996 else
10997 gcc_unreachable ();
10998 }
10999
11000 /* Create a nameless artificial label and put it in the current
11001 function context. The label has a location of LOC. Returns the
11002 newly created label. */
11003
11004 tree
11005 create_artificial_label (location_t loc)
11006 {
11007 tree lab = build_decl (loc,
11008 LABEL_DECL, NULL_TREE, void_type_node);
11009
11010 DECL_ARTIFICIAL (lab) = 1;
11011 DECL_IGNORED_P (lab) = 1;
11012 DECL_CONTEXT (lab) = current_function_decl;
11013 return lab;
11014 }
11015
11016 /* Given a tree, try to return a useful variable name that we can use
11017 to prefix a temporary that is being assigned the value of the tree.
11018 I.E. given <temp> = &A, return A. */
11019
11020 const char *
11021 get_name (tree t)
11022 {
11023 tree stripped_decl;
11024
11025 stripped_decl = t;
11026 STRIP_NOPS (stripped_decl);
11027 if (DECL_P (stripped_decl) && DECL_NAME (stripped_decl))
11028 return IDENTIFIER_POINTER (DECL_NAME (stripped_decl));
11029 else if (TREE_CODE (stripped_decl) == SSA_NAME)
11030 {
11031 tree name = SSA_NAME_IDENTIFIER (stripped_decl);
11032 if (!name)
11033 return NULL;
11034 return IDENTIFIER_POINTER (name);
11035 }
11036 else
11037 {
11038 switch (TREE_CODE (stripped_decl))
11039 {
11040 case ADDR_EXPR:
11041 return get_name (TREE_OPERAND (stripped_decl, 0));
11042 default:
11043 return NULL;
11044 }
11045 }
11046 }
11047
11048 /* Return true if TYPE has a variable argument list. */
11049
11050 bool
11051 stdarg_p (const_tree fntype)
11052 {
11053 function_args_iterator args_iter;
11054 tree n = NULL_TREE, t;
11055
11056 if (!fntype)
11057 return false;
11058
11059 FOREACH_FUNCTION_ARGS(fntype, t, args_iter)
11060 {
11061 n = t;
11062 }
11063
11064 return n != NULL_TREE && n != void_type_node;
11065 }
11066
11067 /* Return true if TYPE has a prototype. */
11068
11069 bool
11070 prototype_p (tree fntype)
11071 {
11072 tree t;
11073
11074 gcc_assert (fntype != NULL_TREE);
11075
11076 t = TYPE_ARG_TYPES (fntype);
11077 return (t != NULL_TREE);
11078 }
11079
11080 /* If BLOCK is inlined from an __attribute__((__artificial__))
11081 routine, return pointer to location from where it has been
11082 called. */
11083 location_t *
11084 block_nonartificial_location (tree block)
11085 {
11086 location_t *ret = NULL;
11087
11088 while (block && TREE_CODE (block) == BLOCK
11089 && BLOCK_ABSTRACT_ORIGIN (block))
11090 {
11091 tree ao = BLOCK_ABSTRACT_ORIGIN (block);
11092
11093 while (TREE_CODE (ao) == BLOCK
11094 && BLOCK_ABSTRACT_ORIGIN (ao)
11095 && BLOCK_ABSTRACT_ORIGIN (ao) != ao)
11096 ao = BLOCK_ABSTRACT_ORIGIN (ao);
11097
11098 if (TREE_CODE (ao) == FUNCTION_DECL)
11099 {
11100 /* If AO is an artificial inline, point RET to the
11101 call site locus at which it has been inlined and continue
11102 the loop, in case AO's caller is also an artificial
11103 inline. */
11104 if (DECL_DECLARED_INLINE_P (ao)
11105 && lookup_attribute ("artificial", DECL_ATTRIBUTES (ao)))
11106 ret = &BLOCK_SOURCE_LOCATION (block);
11107 else
11108 break;
11109 }
11110 else if (TREE_CODE (ao) != BLOCK)
11111 break;
11112
11113 block = BLOCK_SUPERCONTEXT (block);
11114 }
11115 return ret;
11116 }
11117
11118
11119 /* If EXP is inlined from an __attribute__((__artificial__))
11120 function, return the location of the original call expression. */
11121
11122 location_t
11123 tree_nonartificial_location (tree exp)
11124 {
11125 location_t *loc = block_nonartificial_location (TREE_BLOCK (exp));
11126
11127 if (loc)
11128 return *loc;
11129 else
11130 return EXPR_LOCATION (exp);
11131 }
11132
11133
11134 /* These are the hash table functions for the hash table of OPTIMIZATION_NODEq
11135 nodes. */
11136
11137 /* Return the hash code code X, an OPTIMIZATION_NODE or TARGET_OPTION code. */
11138
11139 static hashval_t
11140 cl_option_hash_hash (const void *x)
11141 {
11142 const_tree const t = (const_tree) x;
11143 const char *p;
11144 size_t i;
11145 size_t len = 0;
11146 hashval_t hash = 0;
11147
11148 if (TREE_CODE (t) == OPTIMIZATION_NODE)
11149 {
11150 p = (const char *)TREE_OPTIMIZATION (t);
11151 len = sizeof (struct cl_optimization);
11152 }
11153
11154 else if (TREE_CODE (t) == TARGET_OPTION_NODE)
11155 {
11156 p = (const char *)TREE_TARGET_OPTION (t);
11157 len = sizeof (struct cl_target_option);
11158 }
11159
11160 else
11161 gcc_unreachable ();
11162
11163 /* assume most opt flags are just 0/1, some are 2-3, and a few might be
11164 something else. */
11165 for (i = 0; i < len; i++)
11166 if (p[i])
11167 hash = (hash << 4) ^ ((i << 2) | p[i]);
11168
11169 return hash;
11170 }
11171
11172 /* Return nonzero if the value represented by *X (an OPTIMIZATION or
11173 TARGET_OPTION tree node) is the same as that given by *Y, which is the
11174 same. */
11175
11176 static int
11177 cl_option_hash_eq (const void *x, const void *y)
11178 {
11179 const_tree const xt = (const_tree) x;
11180 const_tree const yt = (const_tree) y;
11181 const char *xp;
11182 const char *yp;
11183 size_t len;
11184
11185 if (TREE_CODE (xt) != TREE_CODE (yt))
11186 return 0;
11187
11188 if (TREE_CODE (xt) == OPTIMIZATION_NODE)
11189 {
11190 xp = (const char *)TREE_OPTIMIZATION (xt);
11191 yp = (const char *)TREE_OPTIMIZATION (yt);
11192 len = sizeof (struct cl_optimization);
11193 }
11194
11195 else if (TREE_CODE (xt) == TARGET_OPTION_NODE)
11196 {
11197 xp = (const char *)TREE_TARGET_OPTION (xt);
11198 yp = (const char *)TREE_TARGET_OPTION (yt);
11199 len = sizeof (struct cl_target_option);
11200 }
11201
11202 else
11203 gcc_unreachable ();
11204
11205 return (memcmp (xp, yp, len) == 0);
11206 }
11207
11208 /* Build an OPTIMIZATION_NODE based on the current options. */
11209
11210 tree
11211 build_optimization_node (void)
11212 {
11213 tree t;
11214 void **slot;
11215
11216 /* Use the cache of optimization nodes. */
11217
11218 cl_optimization_save (TREE_OPTIMIZATION (cl_optimization_node),
11219 &global_options);
11220
11221 slot = htab_find_slot (cl_option_hash_table, cl_optimization_node, INSERT);
11222 t = (tree) *slot;
11223 if (!t)
11224 {
11225 /* Insert this one into the hash table. */
11226 t = cl_optimization_node;
11227 *slot = t;
11228
11229 /* Make a new node for next time round. */
11230 cl_optimization_node = make_node (OPTIMIZATION_NODE);
11231 }
11232
11233 return t;
11234 }
11235
11236 /* Build a TARGET_OPTION_NODE based on the current options. */
11237
11238 tree
11239 build_target_option_node (void)
11240 {
11241 tree t;
11242 void **slot;
11243
11244 /* Use the cache of optimization nodes. */
11245
11246 cl_target_option_save (TREE_TARGET_OPTION (cl_target_option_node),
11247 &global_options);
11248
11249 slot = htab_find_slot (cl_option_hash_table, cl_target_option_node, INSERT);
11250 t = (tree) *slot;
11251 if (!t)
11252 {
11253 /* Insert this one into the hash table. */
11254 t = cl_target_option_node;
11255 *slot = t;
11256
11257 /* Make a new node for next time round. */
11258 cl_target_option_node = make_node (TARGET_OPTION_NODE);
11259 }
11260
11261 return t;
11262 }
11263
11264 /* Determine the "ultimate origin" of a block. The block may be an inlined
11265 instance of an inlined instance of a block which is local to an inline
11266 function, so we have to trace all of the way back through the origin chain
11267 to find out what sort of node actually served as the original seed for the
11268 given block. */
11269
11270 tree
11271 block_ultimate_origin (const_tree block)
11272 {
11273 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
11274
11275 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
11276 nodes in the function to point to themselves; ignore that if
11277 we're trying to output the abstract instance of this function. */
11278 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
11279 return NULL_TREE;
11280
11281 if (immediate_origin == NULL_TREE)
11282 return NULL_TREE;
11283 else
11284 {
11285 tree ret_val;
11286 tree lookahead = immediate_origin;
11287
11288 do
11289 {
11290 ret_val = lookahead;
11291 lookahead = (TREE_CODE (ret_val) == BLOCK
11292 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
11293 }
11294 while (lookahead != NULL && lookahead != ret_val);
11295
11296 /* The block's abstract origin chain may not be the *ultimate* origin of
11297 the block. It could lead to a DECL that has an abstract origin set.
11298 If so, we want that DECL's abstract origin (which is what DECL_ORIGIN
11299 will give us if it has one). Note that DECL's abstract origins are
11300 supposed to be the most distant ancestor (or so decl_ultimate_origin
11301 claims), so we don't need to loop following the DECL origins. */
11302 if (DECL_P (ret_val))
11303 return DECL_ORIGIN (ret_val);
11304
11305 return ret_val;
11306 }
11307 }
11308
11309 /* Return true if T1 and T2 are equivalent lists. */
11310
11311 bool
11312 list_equal_p (const_tree t1, const_tree t2)
11313 {
11314 for (; t1 && t2; t1 = TREE_CHAIN (t1) , t2 = TREE_CHAIN (t2))
11315 if (TREE_VALUE (t1) != TREE_VALUE (t2))
11316 return false;
11317 return !t1 && !t2;
11318 }
11319
11320 /* Return true iff conversion in EXP generates no instruction. Mark
11321 it inline so that we fully inline into the stripping functions even
11322 though we have two uses of this function. */
11323
11324 static inline bool
11325 tree_nop_conversion (const_tree exp)
11326 {
11327 tree outer_type, inner_type;
11328
11329 if (!CONVERT_EXPR_P (exp)
11330 && TREE_CODE (exp) != NON_LVALUE_EXPR)
11331 return false;
11332 if (TREE_OPERAND (exp, 0) == error_mark_node)
11333 return false;
11334
11335 outer_type = TREE_TYPE (exp);
11336 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
11337
11338 if (!inner_type)
11339 return false;
11340
11341 /* Use precision rather then machine mode when we can, which gives
11342 the correct answer even for submode (bit-field) types. */
11343 if ((INTEGRAL_TYPE_P (outer_type)
11344 || POINTER_TYPE_P (outer_type)
11345 || TREE_CODE (outer_type) == OFFSET_TYPE)
11346 && (INTEGRAL_TYPE_P (inner_type)
11347 || POINTER_TYPE_P (inner_type)
11348 || TREE_CODE (inner_type) == OFFSET_TYPE))
11349 return TYPE_PRECISION (outer_type) == TYPE_PRECISION (inner_type);
11350
11351 /* Otherwise fall back on comparing machine modes (e.g. for
11352 aggregate types, floats). */
11353 return TYPE_MODE (outer_type) == TYPE_MODE (inner_type);
11354 }
11355
11356 /* Return true iff conversion in EXP generates no instruction. Don't
11357 consider conversions changing the signedness. */
11358
11359 static bool
11360 tree_sign_nop_conversion (const_tree exp)
11361 {
11362 tree outer_type, inner_type;
11363
11364 if (!tree_nop_conversion (exp))
11365 return false;
11366
11367 outer_type = TREE_TYPE (exp);
11368 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
11369
11370 return (TYPE_UNSIGNED (outer_type) == TYPE_UNSIGNED (inner_type)
11371 && POINTER_TYPE_P (outer_type) == POINTER_TYPE_P (inner_type));
11372 }
11373
11374 /* Strip conversions from EXP according to tree_nop_conversion and
11375 return the resulting expression. */
11376
11377 tree
11378 tree_strip_nop_conversions (tree exp)
11379 {
11380 while (tree_nop_conversion (exp))
11381 exp = TREE_OPERAND (exp, 0);
11382 return exp;
11383 }
11384
11385 /* Strip conversions from EXP according to tree_sign_nop_conversion
11386 and return the resulting expression. */
11387
11388 tree
11389 tree_strip_sign_nop_conversions (tree exp)
11390 {
11391 while (tree_sign_nop_conversion (exp))
11392 exp = TREE_OPERAND (exp, 0);
11393 return exp;
11394 }
11395
11396 /* Avoid any floating point extensions from EXP. */
11397 tree
11398 strip_float_extensions (tree exp)
11399 {
11400 tree sub, expt, subt;
11401
11402 /* For floating point constant look up the narrowest type that can hold
11403 it properly and handle it like (type)(narrowest_type)constant.
11404 This way we can optimize for instance a=a*2.0 where "a" is float
11405 but 2.0 is double constant. */
11406 if (TREE_CODE (exp) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (TREE_TYPE (exp)))
11407 {
11408 REAL_VALUE_TYPE orig;
11409 tree type = NULL;
11410
11411 orig = TREE_REAL_CST (exp);
11412 if (TYPE_PRECISION (TREE_TYPE (exp)) > TYPE_PRECISION (float_type_node)
11413 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
11414 type = float_type_node;
11415 else if (TYPE_PRECISION (TREE_TYPE (exp))
11416 > TYPE_PRECISION (double_type_node)
11417 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
11418 type = double_type_node;
11419 if (type)
11420 return build_real (type, real_value_truncate (TYPE_MODE (type), orig));
11421 }
11422
11423 if (!CONVERT_EXPR_P (exp))
11424 return exp;
11425
11426 sub = TREE_OPERAND (exp, 0);
11427 subt = TREE_TYPE (sub);
11428 expt = TREE_TYPE (exp);
11429
11430 if (!FLOAT_TYPE_P (subt))
11431 return exp;
11432
11433 if (DECIMAL_FLOAT_TYPE_P (expt) != DECIMAL_FLOAT_TYPE_P (subt))
11434 return exp;
11435
11436 if (TYPE_PRECISION (subt) > TYPE_PRECISION (expt))
11437 return exp;
11438
11439 return strip_float_extensions (sub);
11440 }
11441
11442 /* Strip out all handled components that produce invariant
11443 offsets. */
11444
11445 const_tree
11446 strip_invariant_refs (const_tree op)
11447 {
11448 while (handled_component_p (op))
11449 {
11450 switch (TREE_CODE (op))
11451 {
11452 case ARRAY_REF:
11453 case ARRAY_RANGE_REF:
11454 if (!is_gimple_constant (TREE_OPERAND (op, 1))
11455 || TREE_OPERAND (op, 2) != NULL_TREE
11456 || TREE_OPERAND (op, 3) != NULL_TREE)
11457 return NULL;
11458 break;
11459
11460 case COMPONENT_REF:
11461 if (TREE_OPERAND (op, 2) != NULL_TREE)
11462 return NULL;
11463 break;
11464
11465 default:;
11466 }
11467 op = TREE_OPERAND (op, 0);
11468 }
11469
11470 return op;
11471 }
11472
11473 static GTY(()) tree gcc_eh_personality_decl;
11474
11475 /* Return the GCC personality function decl. */
11476
11477 tree
11478 lhd_gcc_personality (void)
11479 {
11480 if (!gcc_eh_personality_decl)
11481 gcc_eh_personality_decl = build_personality_function ("gcc");
11482 return gcc_eh_personality_decl;
11483 }
11484
11485 /* Try to find a base info of BINFO that would have its field decl at offset
11486 OFFSET within the BINFO type and which is of EXPECTED_TYPE. If it can be
11487 found, return, otherwise return NULL_TREE. */
11488
11489 tree
11490 get_binfo_at_offset (tree binfo, HOST_WIDE_INT offset, tree expected_type)
11491 {
11492 tree type = BINFO_TYPE (binfo);
11493
11494 while (true)
11495 {
11496 HOST_WIDE_INT pos, size;
11497 tree fld;
11498 int i;
11499
11500 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (expected_type))
11501 return binfo;
11502 if (offset < 0)
11503 return NULL_TREE;
11504
11505 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
11506 {
11507 if (TREE_CODE (fld) != FIELD_DECL)
11508 continue;
11509
11510 pos = int_bit_position (fld);
11511 size = tree_low_cst (DECL_SIZE (fld), 1);
11512 if (pos <= offset && (pos + size) > offset)
11513 break;
11514 }
11515 if (!fld || TREE_CODE (TREE_TYPE (fld)) != RECORD_TYPE)
11516 return NULL_TREE;
11517
11518 if (!DECL_ARTIFICIAL (fld))
11519 {
11520 binfo = TYPE_BINFO (TREE_TYPE (fld));
11521 if (!binfo)
11522 return NULL_TREE;
11523 }
11524 /* Offset 0 indicates the primary base, whose vtable contents are
11525 represented in the binfo for the derived class. */
11526 else if (offset != 0)
11527 {
11528 tree base_binfo, found_binfo = NULL_TREE;
11529 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
11530 if (TREE_TYPE (base_binfo) == TREE_TYPE (fld))
11531 {
11532 found_binfo = base_binfo;
11533 break;
11534 }
11535 if (!found_binfo)
11536 return NULL_TREE;
11537 binfo = found_binfo;
11538 }
11539
11540 type = TREE_TYPE (fld);
11541 offset -= pos;
11542 }
11543 }
11544
11545 /* Returns true if X is a typedef decl. */
11546
11547 bool
11548 is_typedef_decl (tree x)
11549 {
11550 return (x && TREE_CODE (x) == TYPE_DECL
11551 && DECL_ORIGINAL_TYPE (x) != NULL_TREE);
11552 }
11553
11554 /* Returns true iff TYPE is a type variant created for a typedef. */
11555
11556 bool
11557 typedef_variant_p (tree type)
11558 {
11559 return is_typedef_decl (TYPE_NAME (type));
11560 }
11561
11562 /* Warn about a use of an identifier which was marked deprecated. */
11563 void
11564 warn_deprecated_use (tree node, tree attr)
11565 {
11566 const char *msg;
11567
11568 if (node == 0 || !warn_deprecated_decl)
11569 return;
11570
11571 if (!attr)
11572 {
11573 if (DECL_P (node))
11574 attr = DECL_ATTRIBUTES (node);
11575 else if (TYPE_P (node))
11576 {
11577 tree decl = TYPE_STUB_DECL (node);
11578 if (decl)
11579 attr = lookup_attribute ("deprecated",
11580 TYPE_ATTRIBUTES (TREE_TYPE (decl)));
11581 }
11582 }
11583
11584 if (attr)
11585 attr = lookup_attribute ("deprecated", attr);
11586
11587 if (attr)
11588 msg = TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr)));
11589 else
11590 msg = NULL;
11591
11592 if (DECL_P (node))
11593 {
11594 expanded_location xloc = expand_location (DECL_SOURCE_LOCATION (node));
11595 if (msg)
11596 warning (OPT_Wdeprecated_declarations,
11597 "%qD is deprecated (declared at %s:%d): %s",
11598 node, xloc.file, xloc.line, msg);
11599 else
11600 warning (OPT_Wdeprecated_declarations,
11601 "%qD is deprecated (declared at %s:%d)",
11602 node, xloc.file, xloc.line);
11603 }
11604 else if (TYPE_P (node))
11605 {
11606 tree what = NULL_TREE;
11607 tree decl = TYPE_STUB_DECL (node);
11608
11609 if (TYPE_NAME (node))
11610 {
11611 if (TREE_CODE (TYPE_NAME (node)) == IDENTIFIER_NODE)
11612 what = TYPE_NAME (node);
11613 else if (TREE_CODE (TYPE_NAME (node)) == TYPE_DECL
11614 && DECL_NAME (TYPE_NAME (node)))
11615 what = DECL_NAME (TYPE_NAME (node));
11616 }
11617
11618 if (decl)
11619 {
11620 expanded_location xloc
11621 = expand_location (DECL_SOURCE_LOCATION (decl));
11622 if (what)
11623 {
11624 if (msg)
11625 warning (OPT_Wdeprecated_declarations,
11626 "%qE is deprecated (declared at %s:%d): %s",
11627 what, xloc.file, xloc.line, msg);
11628 else
11629 warning (OPT_Wdeprecated_declarations,
11630 "%qE is deprecated (declared at %s:%d)", what,
11631 xloc.file, xloc.line);
11632 }
11633 else
11634 {
11635 if (msg)
11636 warning (OPT_Wdeprecated_declarations,
11637 "type is deprecated (declared at %s:%d): %s",
11638 xloc.file, xloc.line, msg);
11639 else
11640 warning (OPT_Wdeprecated_declarations,
11641 "type is deprecated (declared at %s:%d)",
11642 xloc.file, xloc.line);
11643 }
11644 }
11645 else
11646 {
11647 if (what)
11648 {
11649 if (msg)
11650 warning (OPT_Wdeprecated_declarations, "%qE is deprecated: %s",
11651 what, msg);
11652 else
11653 warning (OPT_Wdeprecated_declarations, "%qE is deprecated", what);
11654 }
11655 else
11656 {
11657 if (msg)
11658 warning (OPT_Wdeprecated_declarations, "type is deprecated: %s",
11659 msg);
11660 else
11661 warning (OPT_Wdeprecated_declarations, "type is deprecated");
11662 }
11663 }
11664 }
11665 }
11666
11667 #include "gt-tree.h"