]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree.c
Removal of HSA offloading from gcc and libgomp
[thirdparty/gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987-2020 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file contains the low level primitives for operating on tree nodes,
21 including allocation, list operations, interning of identifiers,
22 construction of data type nodes and statement nodes,
23 and construction of type conversion nodes. It also contains
24 tables index by tree code that describe how to take apart
25 nodes of that code.
26
27 It is intended to be language-independent but can occasionally
28 calls language-dependent routines. */
29
30 #include "config.h"
31 #include "system.h"
32 #include "coretypes.h"
33 #include "backend.h"
34 #include "target.h"
35 #include "tree.h"
36 #include "gimple.h"
37 #include "tree-pass.h"
38 #include "ssa.h"
39 #include "cgraph.h"
40 #include "diagnostic.h"
41 #include "flags.h"
42 #include "alias.h"
43 #include "fold-const.h"
44 #include "stor-layout.h"
45 #include "calls.h"
46 #include "attribs.h"
47 #include "toplev.h" /* get_random_seed */
48 #include "output.h"
49 #include "common/common-target.h"
50 #include "langhooks.h"
51 #include "tree-inline.h"
52 #include "tree-iterator.h"
53 #include "internal-fn.h"
54 #include "gimple-iterator.h"
55 #include "gimplify.h"
56 #include "tree-dfa.h"
57 #include "langhooks-def.h"
58 #include "tree-diagnostic.h"
59 #include "except.h"
60 #include "builtins.h"
61 #include "print-tree.h"
62 #include "ipa-utils.h"
63 #include "selftest.h"
64 #include "stringpool.h"
65 #include "attribs.h"
66 #include "rtl.h"
67 #include "regs.h"
68 #include "tree-vector-builder.h"
69 #include "gimple-fold.h"
70 #include "escaped_string.h"
71
72 /* Tree code classes. */
73
74 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
75 #define END_OF_BASE_TREE_CODES tcc_exceptional,
76
77 const enum tree_code_class tree_code_type[] = {
78 #include "all-tree.def"
79 };
80
81 #undef DEFTREECODE
82 #undef END_OF_BASE_TREE_CODES
83
84 /* Table indexed by tree code giving number of expression
85 operands beyond the fixed part of the node structure.
86 Not used for types or decls. */
87
88 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
89 #define END_OF_BASE_TREE_CODES 0,
90
91 const unsigned char tree_code_length[] = {
92 #include "all-tree.def"
93 };
94
95 #undef DEFTREECODE
96 #undef END_OF_BASE_TREE_CODES
97
98 /* Names of tree components.
99 Used for printing out the tree and error messages. */
100 #define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
101 #define END_OF_BASE_TREE_CODES "@dummy",
102
103 static const char *const tree_code_name[] = {
104 #include "all-tree.def"
105 };
106
107 #undef DEFTREECODE
108 #undef END_OF_BASE_TREE_CODES
109
110 /* Each tree code class has an associated string representation.
111 These must correspond to the tree_code_class entries. */
112
113 const char *const tree_code_class_strings[] =
114 {
115 "exceptional",
116 "constant",
117 "type",
118 "declaration",
119 "reference",
120 "comparison",
121 "unary",
122 "binary",
123 "statement",
124 "vl_exp",
125 "expression"
126 };
127
128 /* obstack.[ch] explicitly declined to prototype this. */
129 extern int _obstack_allocated_p (struct obstack *h, void *obj);
130
131 /* Statistics-gathering stuff. */
132
133 static uint64_t tree_code_counts[MAX_TREE_CODES];
134 uint64_t tree_node_counts[(int) all_kinds];
135 uint64_t tree_node_sizes[(int) all_kinds];
136
137 /* Keep in sync with tree.h:enum tree_node_kind. */
138 static const char * const tree_node_kind_names[] = {
139 "decls",
140 "types",
141 "blocks",
142 "stmts",
143 "refs",
144 "exprs",
145 "constants",
146 "identifiers",
147 "vecs",
148 "binfos",
149 "ssa names",
150 "constructors",
151 "random kinds",
152 "lang_decl kinds",
153 "lang_type kinds",
154 "omp clauses",
155 };
156
157 /* Unique id for next decl created. */
158 static GTY(()) int next_decl_uid;
159 /* Unique id for next type created. */
160 static GTY(()) unsigned next_type_uid = 1;
161 /* Unique id for next debug decl created. Use negative numbers,
162 to catch erroneous uses. */
163 static GTY(()) int next_debug_decl_uid;
164
165 /* Since we cannot rehash a type after it is in the table, we have to
166 keep the hash code. */
167
168 struct GTY((for_user)) type_hash {
169 unsigned long hash;
170 tree type;
171 };
172
173 /* Initial size of the hash table (rounded to next prime). */
174 #define TYPE_HASH_INITIAL_SIZE 1000
175
176 struct type_cache_hasher : ggc_cache_ptr_hash<type_hash>
177 {
178 static hashval_t hash (type_hash *t) { return t->hash; }
179 static bool equal (type_hash *a, type_hash *b);
180
181 static int
182 keep_cache_entry (type_hash *&t)
183 {
184 return ggc_marked_p (t->type);
185 }
186 };
187
188 /* Now here is the hash table. When recording a type, it is added to
189 the slot whose index is the hash code. Note that the hash table is
190 used for several kinds of types (function types, array types and
191 array index range types, for now). While all these live in the
192 same table, they are completely independent, and the hash code is
193 computed differently for each of these. */
194
195 static GTY ((cache)) hash_table<type_cache_hasher> *type_hash_table;
196
197 /* Hash table and temporary node for larger integer const values. */
198 static GTY (()) tree int_cst_node;
199
200 struct int_cst_hasher : ggc_cache_ptr_hash<tree_node>
201 {
202 static hashval_t hash (tree t);
203 static bool equal (tree x, tree y);
204 };
205
206 static GTY ((cache)) hash_table<int_cst_hasher> *int_cst_hash_table;
207
208 /* Class and variable for making sure that there is a single POLY_INT_CST
209 for a given value. */
210 struct poly_int_cst_hasher : ggc_cache_ptr_hash<tree_node>
211 {
212 typedef std::pair<tree, const poly_wide_int *> compare_type;
213 static hashval_t hash (tree t);
214 static bool equal (tree x, const compare_type &y);
215 };
216
217 static GTY ((cache)) hash_table<poly_int_cst_hasher> *poly_int_cst_hash_table;
218
219 /* Hash table for optimization flags and target option flags. Use the same
220 hash table for both sets of options. Nodes for building the current
221 optimization and target option nodes. The assumption is most of the time
222 the options created will already be in the hash table, so we avoid
223 allocating and freeing up a node repeatably. */
224 static GTY (()) tree cl_optimization_node;
225 static GTY (()) tree cl_target_option_node;
226
227 struct cl_option_hasher : ggc_cache_ptr_hash<tree_node>
228 {
229 static hashval_t hash (tree t);
230 static bool equal (tree x, tree y);
231 };
232
233 static GTY ((cache)) hash_table<cl_option_hasher> *cl_option_hash_table;
234
235 /* General tree->tree mapping structure for use in hash tables. */
236
237
238 static GTY ((cache))
239 hash_table<tree_decl_map_cache_hasher> *debug_expr_for_decl;
240
241 static GTY ((cache))
242 hash_table<tree_decl_map_cache_hasher> *value_expr_for_decl;
243
244 struct tree_vec_map_cache_hasher : ggc_cache_ptr_hash<tree_vec_map>
245 {
246 static hashval_t hash (tree_vec_map *m) { return DECL_UID (m->base.from); }
247
248 static bool
249 equal (tree_vec_map *a, tree_vec_map *b)
250 {
251 return a->base.from == b->base.from;
252 }
253
254 static int
255 keep_cache_entry (tree_vec_map *&m)
256 {
257 return ggc_marked_p (m->base.from);
258 }
259 };
260
261 static GTY ((cache))
262 hash_table<tree_vec_map_cache_hasher> *debug_args_for_decl;
263
264 static void set_type_quals (tree, int);
265 static void print_type_hash_statistics (void);
266 static void print_debug_expr_statistics (void);
267 static void print_value_expr_statistics (void);
268
269 static tree build_array_type_1 (tree, tree, bool, bool, bool);
270
271 tree global_trees[TI_MAX];
272 tree integer_types[itk_none];
273
274 bool int_n_enabled_p[NUM_INT_N_ENTS];
275 struct int_n_trees_t int_n_trees [NUM_INT_N_ENTS];
276
277 bool tree_contains_struct[MAX_TREE_CODES][64];
278
279 /* Number of operands for each OpenMP clause. */
280 unsigned const char omp_clause_num_ops[] =
281 {
282 0, /* OMP_CLAUSE_ERROR */
283 1, /* OMP_CLAUSE_PRIVATE */
284 1, /* OMP_CLAUSE_SHARED */
285 1, /* OMP_CLAUSE_FIRSTPRIVATE */
286 2, /* OMP_CLAUSE_LASTPRIVATE */
287 5, /* OMP_CLAUSE_REDUCTION */
288 5, /* OMP_CLAUSE_TASK_REDUCTION */
289 5, /* OMP_CLAUSE_IN_REDUCTION */
290 1, /* OMP_CLAUSE_COPYIN */
291 1, /* OMP_CLAUSE_COPYPRIVATE */
292 3, /* OMP_CLAUSE_LINEAR */
293 2, /* OMP_CLAUSE_ALIGNED */
294 1, /* OMP_CLAUSE_DEPEND */
295 1, /* OMP_CLAUSE_NONTEMPORAL */
296 1, /* OMP_CLAUSE_UNIFORM */
297 1, /* OMP_CLAUSE_TO_DECLARE */
298 1, /* OMP_CLAUSE_LINK */
299 2, /* OMP_CLAUSE_FROM */
300 2, /* OMP_CLAUSE_TO */
301 2, /* OMP_CLAUSE_MAP */
302 1, /* OMP_CLAUSE_USE_DEVICE_PTR */
303 1, /* OMP_CLAUSE_USE_DEVICE_ADDR */
304 1, /* OMP_CLAUSE_IS_DEVICE_PTR */
305 1, /* OMP_CLAUSE_INCLUSIVE */
306 1, /* OMP_CLAUSE_EXCLUSIVE */
307 2, /* OMP_CLAUSE__CACHE_ */
308 2, /* OMP_CLAUSE_GANG */
309 1, /* OMP_CLAUSE_ASYNC */
310 1, /* OMP_CLAUSE_WAIT */
311 0, /* OMP_CLAUSE_AUTO */
312 0, /* OMP_CLAUSE_SEQ */
313 1, /* OMP_CLAUSE__LOOPTEMP_ */
314 1, /* OMP_CLAUSE__REDUCTEMP_ */
315 1, /* OMP_CLAUSE__CONDTEMP_ */
316 1, /* OMP_CLAUSE__SCANTEMP_ */
317 1, /* OMP_CLAUSE_IF */
318 1, /* OMP_CLAUSE_NUM_THREADS */
319 1, /* OMP_CLAUSE_SCHEDULE */
320 0, /* OMP_CLAUSE_NOWAIT */
321 1, /* OMP_CLAUSE_ORDERED */
322 0, /* OMP_CLAUSE_DEFAULT */
323 3, /* OMP_CLAUSE_COLLAPSE */
324 0, /* OMP_CLAUSE_UNTIED */
325 1, /* OMP_CLAUSE_FINAL */
326 0, /* OMP_CLAUSE_MERGEABLE */
327 1, /* OMP_CLAUSE_DEVICE */
328 1, /* OMP_CLAUSE_DIST_SCHEDULE */
329 0, /* OMP_CLAUSE_INBRANCH */
330 0, /* OMP_CLAUSE_NOTINBRANCH */
331 1, /* OMP_CLAUSE_NUM_TEAMS */
332 1, /* OMP_CLAUSE_THREAD_LIMIT */
333 0, /* OMP_CLAUSE_PROC_BIND */
334 1, /* OMP_CLAUSE_SAFELEN */
335 1, /* OMP_CLAUSE_SIMDLEN */
336 0, /* OMP_CLAUSE_DEVICE_TYPE */
337 0, /* OMP_CLAUSE_FOR */
338 0, /* OMP_CLAUSE_PARALLEL */
339 0, /* OMP_CLAUSE_SECTIONS */
340 0, /* OMP_CLAUSE_TASKGROUP */
341 1, /* OMP_CLAUSE_PRIORITY */
342 1, /* OMP_CLAUSE_GRAINSIZE */
343 1, /* OMP_CLAUSE_NUM_TASKS */
344 0, /* OMP_CLAUSE_NOGROUP */
345 0, /* OMP_CLAUSE_THREADS */
346 0, /* OMP_CLAUSE_SIMD */
347 1, /* OMP_CLAUSE_HINT */
348 0, /* OMP_CLAUSE_DEFAULTMAP */
349 0, /* OMP_CLAUSE_ORDER */
350 0, /* OMP_CLAUSE_BIND */
351 1, /* OMP_CLAUSE__SIMDUID_ */
352 0, /* OMP_CLAUSE__SIMT_ */
353 0, /* OMP_CLAUSE_INDEPENDENT */
354 1, /* OMP_CLAUSE_WORKER */
355 1, /* OMP_CLAUSE_VECTOR */
356 1, /* OMP_CLAUSE_NUM_GANGS */
357 1, /* OMP_CLAUSE_NUM_WORKERS */
358 1, /* OMP_CLAUSE_VECTOR_LENGTH */
359 3, /* OMP_CLAUSE_TILE */
360 0, /* OMP_CLAUSE_IF_PRESENT */
361 0, /* OMP_CLAUSE_FINALIZE */
362 };
363
364 const char * const omp_clause_code_name[] =
365 {
366 "error_clause",
367 "private",
368 "shared",
369 "firstprivate",
370 "lastprivate",
371 "reduction",
372 "task_reduction",
373 "in_reduction",
374 "copyin",
375 "copyprivate",
376 "linear",
377 "aligned",
378 "depend",
379 "nontemporal",
380 "uniform",
381 "to",
382 "link",
383 "from",
384 "to",
385 "map",
386 "use_device_ptr",
387 "use_device_addr",
388 "is_device_ptr",
389 "inclusive",
390 "exclusive",
391 "_cache_",
392 "gang",
393 "async",
394 "wait",
395 "auto",
396 "seq",
397 "_looptemp_",
398 "_reductemp_",
399 "_condtemp_",
400 "_scantemp_",
401 "if",
402 "num_threads",
403 "schedule",
404 "nowait",
405 "ordered",
406 "default",
407 "collapse",
408 "untied",
409 "final",
410 "mergeable",
411 "device",
412 "dist_schedule",
413 "inbranch",
414 "notinbranch",
415 "num_teams",
416 "thread_limit",
417 "proc_bind",
418 "safelen",
419 "simdlen",
420 "device_type",
421 "for",
422 "parallel",
423 "sections",
424 "taskgroup",
425 "priority",
426 "grainsize",
427 "num_tasks",
428 "nogroup",
429 "threads",
430 "simd",
431 "hint",
432 "defaultmap",
433 "order",
434 "bind",
435 "_simduid_",
436 "_simt_",
437 "independent",
438 "worker",
439 "vector",
440 "num_gangs",
441 "num_workers",
442 "vector_length",
443 "tile",
444 "if_present",
445 "finalize",
446 };
447
448
449 /* Return the tree node structure used by tree code CODE. */
450
451 static inline enum tree_node_structure_enum
452 tree_node_structure_for_code (enum tree_code code)
453 {
454 switch (TREE_CODE_CLASS (code))
455 {
456 case tcc_declaration:
457 switch (code)
458 {
459 case CONST_DECL: return TS_CONST_DECL;
460 case DEBUG_EXPR_DECL: return TS_DECL_WRTL;
461 case FIELD_DECL: return TS_FIELD_DECL;
462 case FUNCTION_DECL: return TS_FUNCTION_DECL;
463 case LABEL_DECL: return TS_LABEL_DECL;
464 case PARM_DECL: return TS_PARM_DECL;
465 case RESULT_DECL: return TS_RESULT_DECL;
466 case TRANSLATION_UNIT_DECL: return TS_TRANSLATION_UNIT_DECL;
467 case TYPE_DECL: return TS_TYPE_DECL;
468 case VAR_DECL: return TS_VAR_DECL;
469 default: return TS_DECL_NON_COMMON;
470 }
471
472 case tcc_type: return TS_TYPE_NON_COMMON;
473
474 case tcc_binary:
475 case tcc_comparison:
476 case tcc_expression:
477 case tcc_reference:
478 case tcc_statement:
479 case tcc_unary:
480 case tcc_vl_exp: return TS_EXP;
481
482 default: /* tcc_constant and tcc_exceptional */
483 break;
484 }
485
486 switch (code)
487 {
488 /* tcc_constant cases. */
489 case COMPLEX_CST: return TS_COMPLEX;
490 case FIXED_CST: return TS_FIXED_CST;
491 case INTEGER_CST: return TS_INT_CST;
492 case POLY_INT_CST: return TS_POLY_INT_CST;
493 case REAL_CST: return TS_REAL_CST;
494 case STRING_CST: return TS_STRING;
495 case VECTOR_CST: return TS_VECTOR;
496 case VOID_CST: return TS_TYPED;
497
498 /* tcc_exceptional cases. */
499 case BLOCK: return TS_BLOCK;
500 case CONSTRUCTOR: return TS_CONSTRUCTOR;
501 case ERROR_MARK: return TS_COMMON;
502 case IDENTIFIER_NODE: return TS_IDENTIFIER;
503 case OMP_CLAUSE: return TS_OMP_CLAUSE;
504 case OPTIMIZATION_NODE: return TS_OPTIMIZATION;
505 case PLACEHOLDER_EXPR: return TS_COMMON;
506 case SSA_NAME: return TS_SSA_NAME;
507 case STATEMENT_LIST: return TS_STATEMENT_LIST;
508 case TARGET_OPTION_NODE: return TS_TARGET_OPTION;
509 case TREE_BINFO: return TS_BINFO;
510 case TREE_LIST: return TS_LIST;
511 case TREE_VEC: return TS_VEC;
512
513 default:
514 gcc_unreachable ();
515 }
516 }
517
518
519 /* Initialize tree_contains_struct to describe the hierarchy of tree
520 nodes. */
521
522 static void
523 initialize_tree_contains_struct (void)
524 {
525 unsigned i;
526
527 for (i = ERROR_MARK; i < LAST_AND_UNUSED_TREE_CODE; i++)
528 {
529 enum tree_code code;
530 enum tree_node_structure_enum ts_code;
531
532 code = (enum tree_code) i;
533 ts_code = tree_node_structure_for_code (code);
534
535 /* Mark the TS structure itself. */
536 tree_contains_struct[code][ts_code] = 1;
537
538 /* Mark all the structures that TS is derived from. */
539 switch (ts_code)
540 {
541 case TS_TYPED:
542 case TS_BLOCK:
543 case TS_OPTIMIZATION:
544 case TS_TARGET_OPTION:
545 MARK_TS_BASE (code);
546 break;
547
548 case TS_COMMON:
549 case TS_INT_CST:
550 case TS_POLY_INT_CST:
551 case TS_REAL_CST:
552 case TS_FIXED_CST:
553 case TS_VECTOR:
554 case TS_STRING:
555 case TS_COMPLEX:
556 case TS_SSA_NAME:
557 case TS_CONSTRUCTOR:
558 case TS_EXP:
559 case TS_STATEMENT_LIST:
560 MARK_TS_TYPED (code);
561 break;
562
563 case TS_IDENTIFIER:
564 case TS_DECL_MINIMAL:
565 case TS_TYPE_COMMON:
566 case TS_LIST:
567 case TS_VEC:
568 case TS_BINFO:
569 case TS_OMP_CLAUSE:
570 MARK_TS_COMMON (code);
571 break;
572
573 case TS_TYPE_WITH_LANG_SPECIFIC:
574 MARK_TS_TYPE_COMMON (code);
575 break;
576
577 case TS_TYPE_NON_COMMON:
578 MARK_TS_TYPE_WITH_LANG_SPECIFIC (code);
579 break;
580
581 case TS_DECL_COMMON:
582 MARK_TS_DECL_MINIMAL (code);
583 break;
584
585 case TS_DECL_WRTL:
586 case TS_CONST_DECL:
587 MARK_TS_DECL_COMMON (code);
588 break;
589
590 case TS_DECL_NON_COMMON:
591 MARK_TS_DECL_WITH_VIS (code);
592 break;
593
594 case TS_DECL_WITH_VIS:
595 case TS_PARM_DECL:
596 case TS_LABEL_DECL:
597 case TS_RESULT_DECL:
598 MARK_TS_DECL_WRTL (code);
599 break;
600
601 case TS_FIELD_DECL:
602 MARK_TS_DECL_COMMON (code);
603 break;
604
605 case TS_VAR_DECL:
606 MARK_TS_DECL_WITH_VIS (code);
607 break;
608
609 case TS_TYPE_DECL:
610 case TS_FUNCTION_DECL:
611 MARK_TS_DECL_NON_COMMON (code);
612 break;
613
614 case TS_TRANSLATION_UNIT_DECL:
615 MARK_TS_DECL_COMMON (code);
616 break;
617
618 default:
619 gcc_unreachable ();
620 }
621 }
622
623 /* Basic consistency checks for attributes used in fold. */
624 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_NON_COMMON]);
625 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_NON_COMMON]);
626 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_COMMON]);
627 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_COMMON]);
628 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_COMMON]);
629 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_COMMON]);
630 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_COMMON]);
631 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_COMMON]);
632 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_COMMON]);
633 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_COMMON]);
634 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_COMMON]);
635 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WRTL]);
636 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_WRTL]);
637 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_WRTL]);
638 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WRTL]);
639 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_WRTL]);
640 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_MINIMAL]);
641 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_MINIMAL]);
642 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_MINIMAL]);
643 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_MINIMAL]);
644 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_MINIMAL]);
645 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_MINIMAL]);
646 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_MINIMAL]);
647 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_MINIMAL]);
648 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_MINIMAL]);
649 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WITH_VIS]);
650 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WITH_VIS]);
651 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_WITH_VIS]);
652 gcc_assert (tree_contains_struct[VAR_DECL][TS_VAR_DECL]);
653 gcc_assert (tree_contains_struct[FIELD_DECL][TS_FIELD_DECL]);
654 gcc_assert (tree_contains_struct[PARM_DECL][TS_PARM_DECL]);
655 gcc_assert (tree_contains_struct[LABEL_DECL][TS_LABEL_DECL]);
656 gcc_assert (tree_contains_struct[RESULT_DECL][TS_RESULT_DECL]);
657 gcc_assert (tree_contains_struct[CONST_DECL][TS_CONST_DECL]);
658 gcc_assert (tree_contains_struct[TYPE_DECL][TS_TYPE_DECL]);
659 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_FUNCTION_DECL]);
660 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_MINIMAL]);
661 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_COMMON]);
662 gcc_assert (tree_contains_struct[NAMELIST_DECL][TS_DECL_MINIMAL]);
663 gcc_assert (tree_contains_struct[NAMELIST_DECL][TS_DECL_COMMON]);
664 }
665
666
667 /* Init tree.c. */
668
669 void
670 init_ttree (void)
671 {
672 /* Initialize the hash table of types. */
673 type_hash_table
674 = hash_table<type_cache_hasher>::create_ggc (TYPE_HASH_INITIAL_SIZE);
675
676 debug_expr_for_decl
677 = hash_table<tree_decl_map_cache_hasher>::create_ggc (512);
678
679 value_expr_for_decl
680 = hash_table<tree_decl_map_cache_hasher>::create_ggc (512);
681
682 int_cst_hash_table = hash_table<int_cst_hasher>::create_ggc (1024);
683
684 poly_int_cst_hash_table = hash_table<poly_int_cst_hasher>::create_ggc (64);
685
686 int_cst_node = make_int_cst (1, 1);
687
688 cl_option_hash_table = hash_table<cl_option_hasher>::create_ggc (64);
689
690 cl_optimization_node = make_node (OPTIMIZATION_NODE);
691 cl_target_option_node = make_node (TARGET_OPTION_NODE);
692
693 /* Initialize the tree_contains_struct array. */
694 initialize_tree_contains_struct ();
695 lang_hooks.init_ts ();
696 }
697
698 \f
699 /* The name of the object as the assembler will see it (but before any
700 translations made by ASM_OUTPUT_LABELREF). Often this is the same
701 as DECL_NAME. It is an IDENTIFIER_NODE. */
702 tree
703 decl_assembler_name (tree decl)
704 {
705 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
706 lang_hooks.set_decl_assembler_name (decl);
707 return DECL_ASSEMBLER_NAME_RAW (decl);
708 }
709
710 /* The DECL_ASSEMBLER_NAME_RAW of DECL is being explicitly set to NAME
711 (either of which may be NULL). Inform the FE, if this changes the
712 name. */
713
714 void
715 overwrite_decl_assembler_name (tree decl, tree name)
716 {
717 if (DECL_ASSEMBLER_NAME_RAW (decl) != name)
718 lang_hooks.overwrite_decl_assembler_name (decl, name);
719 }
720
721 /* When the target supports COMDAT groups, this indicates which group the
722 DECL is associated with. This can be either an IDENTIFIER_NODE or a
723 decl, in which case its DECL_ASSEMBLER_NAME identifies the group. */
724 tree
725 decl_comdat_group (const_tree node)
726 {
727 struct symtab_node *snode = symtab_node::get (node);
728 if (!snode)
729 return NULL;
730 return snode->get_comdat_group ();
731 }
732
733 /* Likewise, but make sure it's been reduced to an IDENTIFIER_NODE. */
734 tree
735 decl_comdat_group_id (const_tree node)
736 {
737 struct symtab_node *snode = symtab_node::get (node);
738 if (!snode)
739 return NULL;
740 return snode->get_comdat_group_id ();
741 }
742
743 /* When the target supports named section, return its name as IDENTIFIER_NODE
744 or NULL if it is in no section. */
745 const char *
746 decl_section_name (const_tree node)
747 {
748 struct symtab_node *snode = symtab_node::get (node);
749 if (!snode)
750 return NULL;
751 return snode->get_section ();
752 }
753
754 /* Set section name of NODE to VALUE (that is expected to be
755 identifier node) */
756 void
757 set_decl_section_name (tree node, const char *value)
758 {
759 struct symtab_node *snode;
760
761 if (value == NULL)
762 {
763 snode = symtab_node::get (node);
764 if (!snode)
765 return;
766 }
767 else if (VAR_P (node))
768 snode = varpool_node::get_create (node);
769 else
770 snode = cgraph_node::get_create (node);
771 snode->set_section (value);
772 }
773
774 /* Return TLS model of a variable NODE. */
775 enum tls_model
776 decl_tls_model (const_tree node)
777 {
778 struct varpool_node *snode = varpool_node::get (node);
779 if (!snode)
780 return TLS_MODEL_NONE;
781 return snode->tls_model;
782 }
783
784 /* Set TLS model of variable NODE to MODEL. */
785 void
786 set_decl_tls_model (tree node, enum tls_model model)
787 {
788 struct varpool_node *vnode;
789
790 if (model == TLS_MODEL_NONE)
791 {
792 vnode = varpool_node::get (node);
793 if (!vnode)
794 return;
795 }
796 else
797 vnode = varpool_node::get_create (node);
798 vnode->tls_model = model;
799 }
800
801 /* Compute the number of bytes occupied by a tree with code CODE.
802 This function cannot be used for nodes that have variable sizes,
803 including TREE_VEC, INTEGER_CST, STRING_CST, and CALL_EXPR. */
804 size_t
805 tree_code_size (enum tree_code code)
806 {
807 switch (TREE_CODE_CLASS (code))
808 {
809 case tcc_declaration: /* A decl node */
810 switch (code)
811 {
812 case FIELD_DECL: return sizeof (tree_field_decl);
813 case PARM_DECL: return sizeof (tree_parm_decl);
814 case VAR_DECL: return sizeof (tree_var_decl);
815 case LABEL_DECL: return sizeof (tree_label_decl);
816 case RESULT_DECL: return sizeof (tree_result_decl);
817 case CONST_DECL: return sizeof (tree_const_decl);
818 case TYPE_DECL: return sizeof (tree_type_decl);
819 case FUNCTION_DECL: return sizeof (tree_function_decl);
820 case DEBUG_EXPR_DECL: return sizeof (tree_decl_with_rtl);
821 case TRANSLATION_UNIT_DECL: return sizeof (tree_translation_unit_decl);
822 case NAMESPACE_DECL:
823 case IMPORTED_DECL:
824 case NAMELIST_DECL: return sizeof (tree_decl_non_common);
825 default:
826 gcc_checking_assert (code >= NUM_TREE_CODES);
827 return lang_hooks.tree_size (code);
828 }
829
830 case tcc_type: /* a type node */
831 switch (code)
832 {
833 case OFFSET_TYPE:
834 case ENUMERAL_TYPE:
835 case BOOLEAN_TYPE:
836 case INTEGER_TYPE:
837 case REAL_TYPE:
838 case POINTER_TYPE:
839 case REFERENCE_TYPE:
840 case NULLPTR_TYPE:
841 case FIXED_POINT_TYPE:
842 case COMPLEX_TYPE:
843 case VECTOR_TYPE:
844 case ARRAY_TYPE:
845 case RECORD_TYPE:
846 case UNION_TYPE:
847 case QUAL_UNION_TYPE:
848 case VOID_TYPE:
849 case FUNCTION_TYPE:
850 case METHOD_TYPE:
851 case LANG_TYPE: return sizeof (tree_type_non_common);
852 default:
853 gcc_checking_assert (code >= NUM_TREE_CODES);
854 return lang_hooks.tree_size (code);
855 }
856
857 case tcc_reference: /* a reference */
858 case tcc_expression: /* an expression */
859 case tcc_statement: /* an expression with side effects */
860 case tcc_comparison: /* a comparison expression */
861 case tcc_unary: /* a unary arithmetic expression */
862 case tcc_binary: /* a binary arithmetic expression */
863 return (sizeof (struct tree_exp)
864 + (TREE_CODE_LENGTH (code) - 1) * sizeof (tree));
865
866 case tcc_constant: /* a constant */
867 switch (code)
868 {
869 case VOID_CST: return sizeof (tree_typed);
870 case INTEGER_CST: gcc_unreachable ();
871 case POLY_INT_CST: return sizeof (tree_poly_int_cst);
872 case REAL_CST: return sizeof (tree_real_cst);
873 case FIXED_CST: return sizeof (tree_fixed_cst);
874 case COMPLEX_CST: return sizeof (tree_complex);
875 case VECTOR_CST: gcc_unreachable ();
876 case STRING_CST: gcc_unreachable ();
877 default:
878 gcc_checking_assert (code >= NUM_TREE_CODES);
879 return lang_hooks.tree_size (code);
880 }
881
882 case tcc_exceptional: /* something random, like an identifier. */
883 switch (code)
884 {
885 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
886 case TREE_LIST: return sizeof (tree_list);
887
888 case ERROR_MARK:
889 case PLACEHOLDER_EXPR: return sizeof (tree_common);
890
891 case TREE_VEC: gcc_unreachable ();
892 case OMP_CLAUSE: gcc_unreachable ();
893
894 case SSA_NAME: return sizeof (tree_ssa_name);
895
896 case STATEMENT_LIST: return sizeof (tree_statement_list);
897 case BLOCK: return sizeof (struct tree_block);
898 case CONSTRUCTOR: return sizeof (tree_constructor);
899 case OPTIMIZATION_NODE: return sizeof (tree_optimization_option);
900 case TARGET_OPTION_NODE: return sizeof (tree_target_option);
901
902 default:
903 gcc_checking_assert (code >= NUM_TREE_CODES);
904 return lang_hooks.tree_size (code);
905 }
906
907 default:
908 gcc_unreachable ();
909 }
910 }
911
912 /* Compute the number of bytes occupied by NODE. This routine only
913 looks at TREE_CODE, except for those nodes that have variable sizes. */
914 size_t
915 tree_size (const_tree node)
916 {
917 const enum tree_code code = TREE_CODE (node);
918 switch (code)
919 {
920 case INTEGER_CST:
921 return (sizeof (struct tree_int_cst)
922 + (TREE_INT_CST_EXT_NUNITS (node) - 1) * sizeof (HOST_WIDE_INT));
923
924 case TREE_BINFO:
925 return (offsetof (struct tree_binfo, base_binfos)
926 + vec<tree, va_gc>
927 ::embedded_size (BINFO_N_BASE_BINFOS (node)));
928
929 case TREE_VEC:
930 return (sizeof (struct tree_vec)
931 + (TREE_VEC_LENGTH (node) - 1) * sizeof (tree));
932
933 case VECTOR_CST:
934 return (sizeof (struct tree_vector)
935 + (vector_cst_encoded_nelts (node) - 1) * sizeof (tree));
936
937 case STRING_CST:
938 return TREE_STRING_LENGTH (node) + offsetof (struct tree_string, str) + 1;
939
940 case OMP_CLAUSE:
941 return (sizeof (struct tree_omp_clause)
942 + (omp_clause_num_ops[OMP_CLAUSE_CODE (node)] - 1)
943 * sizeof (tree));
944
945 default:
946 if (TREE_CODE_CLASS (code) == tcc_vl_exp)
947 return (sizeof (struct tree_exp)
948 + (VL_EXP_OPERAND_LENGTH (node) - 1) * sizeof (tree));
949 else
950 return tree_code_size (code);
951 }
952 }
953
954 /* Return tree node kind based on tree CODE. */
955
956 static tree_node_kind
957 get_stats_node_kind (enum tree_code code)
958 {
959 enum tree_code_class type = TREE_CODE_CLASS (code);
960
961 switch (type)
962 {
963 case tcc_declaration: /* A decl node */
964 return d_kind;
965 case tcc_type: /* a type node */
966 return t_kind;
967 case tcc_statement: /* an expression with side effects */
968 return s_kind;
969 case tcc_reference: /* a reference */
970 return r_kind;
971 case tcc_expression: /* an expression */
972 case tcc_comparison: /* a comparison expression */
973 case tcc_unary: /* a unary arithmetic expression */
974 case tcc_binary: /* a binary arithmetic expression */
975 return e_kind;
976 case tcc_constant: /* a constant */
977 return c_kind;
978 case tcc_exceptional: /* something random, like an identifier. */
979 switch (code)
980 {
981 case IDENTIFIER_NODE:
982 return id_kind;
983 case TREE_VEC:
984 return vec_kind;
985 case TREE_BINFO:
986 return binfo_kind;
987 case SSA_NAME:
988 return ssa_name_kind;
989 case BLOCK:
990 return b_kind;
991 case CONSTRUCTOR:
992 return constr_kind;
993 case OMP_CLAUSE:
994 return omp_clause_kind;
995 default:
996 return x_kind;
997 }
998 break;
999 case tcc_vl_exp:
1000 return e_kind;
1001 default:
1002 gcc_unreachable ();
1003 }
1004 }
1005
1006 /* Record interesting allocation statistics for a tree node with CODE
1007 and LENGTH. */
1008
1009 static void
1010 record_node_allocation_statistics (enum tree_code code, size_t length)
1011 {
1012 if (!GATHER_STATISTICS)
1013 return;
1014
1015 tree_node_kind kind = get_stats_node_kind (code);
1016
1017 tree_code_counts[(int) code]++;
1018 tree_node_counts[(int) kind]++;
1019 tree_node_sizes[(int) kind] += length;
1020 }
1021
1022 /* Allocate and return a new UID from the DECL_UID namespace. */
1023
1024 int
1025 allocate_decl_uid (void)
1026 {
1027 return next_decl_uid++;
1028 }
1029
1030 /* Return a newly allocated node of code CODE. For decl and type
1031 nodes, some other fields are initialized. The rest of the node is
1032 initialized to zero. This function cannot be used for TREE_VEC,
1033 INTEGER_CST or OMP_CLAUSE nodes, which is enforced by asserts in
1034 tree_code_size.
1035
1036 Achoo! I got a code in the node. */
1037
1038 tree
1039 make_node (enum tree_code code MEM_STAT_DECL)
1040 {
1041 tree t;
1042 enum tree_code_class type = TREE_CODE_CLASS (code);
1043 size_t length = tree_code_size (code);
1044
1045 record_node_allocation_statistics (code, length);
1046
1047 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
1048 TREE_SET_CODE (t, code);
1049
1050 switch (type)
1051 {
1052 case tcc_statement:
1053 if (code != DEBUG_BEGIN_STMT)
1054 TREE_SIDE_EFFECTS (t) = 1;
1055 break;
1056
1057 case tcc_declaration:
1058 if (CODE_CONTAINS_STRUCT (code, TS_DECL_COMMON))
1059 {
1060 if (code == FUNCTION_DECL)
1061 {
1062 SET_DECL_ALIGN (t, FUNCTION_ALIGNMENT (FUNCTION_BOUNDARY));
1063 SET_DECL_MODE (t, FUNCTION_MODE);
1064 }
1065 else
1066 SET_DECL_ALIGN (t, 1);
1067 }
1068 DECL_SOURCE_LOCATION (t) = input_location;
1069 if (TREE_CODE (t) == DEBUG_EXPR_DECL)
1070 DECL_UID (t) = --next_debug_decl_uid;
1071 else
1072 {
1073 DECL_UID (t) = allocate_decl_uid ();
1074 SET_DECL_PT_UID (t, -1);
1075 }
1076 if (TREE_CODE (t) == LABEL_DECL)
1077 LABEL_DECL_UID (t) = -1;
1078
1079 break;
1080
1081 case tcc_type:
1082 TYPE_UID (t) = next_type_uid++;
1083 SET_TYPE_ALIGN (t, BITS_PER_UNIT);
1084 TYPE_USER_ALIGN (t) = 0;
1085 TYPE_MAIN_VARIANT (t) = t;
1086 TYPE_CANONICAL (t) = t;
1087
1088 /* Default to no attributes for type, but let target change that. */
1089 TYPE_ATTRIBUTES (t) = NULL_TREE;
1090 targetm.set_default_type_attributes (t);
1091
1092 /* We have not yet computed the alias set for this type. */
1093 TYPE_ALIAS_SET (t) = -1;
1094 break;
1095
1096 case tcc_constant:
1097 TREE_CONSTANT (t) = 1;
1098 break;
1099
1100 case tcc_expression:
1101 switch (code)
1102 {
1103 case INIT_EXPR:
1104 case MODIFY_EXPR:
1105 case VA_ARG_EXPR:
1106 case PREDECREMENT_EXPR:
1107 case PREINCREMENT_EXPR:
1108 case POSTDECREMENT_EXPR:
1109 case POSTINCREMENT_EXPR:
1110 /* All of these have side-effects, no matter what their
1111 operands are. */
1112 TREE_SIDE_EFFECTS (t) = 1;
1113 break;
1114
1115 default:
1116 break;
1117 }
1118 break;
1119
1120 case tcc_exceptional:
1121 switch (code)
1122 {
1123 case TARGET_OPTION_NODE:
1124 TREE_TARGET_OPTION(t)
1125 = ggc_cleared_alloc<struct cl_target_option> ();
1126 break;
1127
1128 case OPTIMIZATION_NODE:
1129 TREE_OPTIMIZATION (t)
1130 = ggc_cleared_alloc<struct cl_optimization> ();
1131 break;
1132
1133 default:
1134 break;
1135 }
1136 break;
1137
1138 default:
1139 /* Other classes need no special treatment. */
1140 break;
1141 }
1142
1143 return t;
1144 }
1145
1146 /* Free tree node. */
1147
1148 void
1149 free_node (tree node)
1150 {
1151 enum tree_code code = TREE_CODE (node);
1152 if (GATHER_STATISTICS)
1153 {
1154 enum tree_node_kind kind = get_stats_node_kind (code);
1155
1156 gcc_checking_assert (tree_code_counts[(int) TREE_CODE (node)] != 0);
1157 gcc_checking_assert (tree_node_counts[(int) kind] != 0);
1158 gcc_checking_assert (tree_node_sizes[(int) kind] >= tree_size (node));
1159
1160 tree_code_counts[(int) TREE_CODE (node)]--;
1161 tree_node_counts[(int) kind]--;
1162 tree_node_sizes[(int) kind] -= tree_size (node);
1163 }
1164 if (CODE_CONTAINS_STRUCT (code, TS_CONSTRUCTOR))
1165 vec_free (CONSTRUCTOR_ELTS (node));
1166 else if (code == BLOCK)
1167 vec_free (BLOCK_NONLOCALIZED_VARS (node));
1168 else if (code == TREE_BINFO)
1169 vec_free (BINFO_BASE_ACCESSES (node));
1170 else if (code == OPTIMIZATION_NODE)
1171 cl_optimization_option_free (TREE_OPTIMIZATION (node));
1172 else if (code == TARGET_OPTION_NODE)
1173 cl_target_option_free (TREE_TARGET_OPTION (node));
1174 ggc_free (node);
1175 }
1176 \f
1177 /* Return a new node with the same contents as NODE except that its
1178 TREE_CHAIN, if it has one, is zero and it has a fresh uid. */
1179
1180 tree
1181 copy_node (tree node MEM_STAT_DECL)
1182 {
1183 tree t;
1184 enum tree_code code = TREE_CODE (node);
1185 size_t length;
1186
1187 gcc_assert (code != STATEMENT_LIST);
1188
1189 length = tree_size (node);
1190 record_node_allocation_statistics (code, length);
1191 t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
1192 memcpy (t, node, length);
1193
1194 if (CODE_CONTAINS_STRUCT (code, TS_COMMON))
1195 TREE_CHAIN (t) = 0;
1196 TREE_ASM_WRITTEN (t) = 0;
1197 TREE_VISITED (t) = 0;
1198
1199 if (TREE_CODE_CLASS (code) == tcc_declaration)
1200 {
1201 if (code == DEBUG_EXPR_DECL)
1202 DECL_UID (t) = --next_debug_decl_uid;
1203 else
1204 {
1205 DECL_UID (t) = allocate_decl_uid ();
1206 if (DECL_PT_UID_SET_P (node))
1207 SET_DECL_PT_UID (t, DECL_PT_UID (node));
1208 }
1209 if ((TREE_CODE (node) == PARM_DECL || VAR_P (node))
1210 && DECL_HAS_VALUE_EXPR_P (node))
1211 {
1212 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (node));
1213 DECL_HAS_VALUE_EXPR_P (t) = 1;
1214 }
1215 /* DECL_DEBUG_EXPR is copied explicitely by callers. */
1216 if (VAR_P (node))
1217 {
1218 DECL_HAS_DEBUG_EXPR_P (t) = 0;
1219 t->decl_with_vis.symtab_node = NULL;
1220 }
1221 if (VAR_P (node) && DECL_HAS_INIT_PRIORITY_P (node))
1222 {
1223 SET_DECL_INIT_PRIORITY (t, DECL_INIT_PRIORITY (node));
1224 DECL_HAS_INIT_PRIORITY_P (t) = 1;
1225 }
1226 if (TREE_CODE (node) == FUNCTION_DECL)
1227 {
1228 DECL_STRUCT_FUNCTION (t) = NULL;
1229 t->decl_with_vis.symtab_node = NULL;
1230 }
1231 }
1232 else if (TREE_CODE_CLASS (code) == tcc_type)
1233 {
1234 TYPE_UID (t) = next_type_uid++;
1235 /* The following is so that the debug code for
1236 the copy is different from the original type.
1237 The two statements usually duplicate each other
1238 (because they clear fields of the same union),
1239 but the optimizer should catch that. */
1240 TYPE_SYMTAB_ADDRESS (t) = 0;
1241 TYPE_SYMTAB_DIE (t) = 0;
1242
1243 /* Do not copy the values cache. */
1244 if (TYPE_CACHED_VALUES_P (t))
1245 {
1246 TYPE_CACHED_VALUES_P (t) = 0;
1247 TYPE_CACHED_VALUES (t) = NULL_TREE;
1248 }
1249 }
1250 else if (code == TARGET_OPTION_NODE)
1251 {
1252 TREE_TARGET_OPTION (t) = ggc_alloc<struct cl_target_option>();
1253 memcpy (TREE_TARGET_OPTION (t), TREE_TARGET_OPTION (node),
1254 sizeof (struct cl_target_option));
1255 }
1256 else if (code == OPTIMIZATION_NODE)
1257 {
1258 TREE_OPTIMIZATION (t) = ggc_alloc<struct cl_optimization>();
1259 memcpy (TREE_OPTIMIZATION (t), TREE_OPTIMIZATION (node),
1260 sizeof (struct cl_optimization));
1261 }
1262
1263 return t;
1264 }
1265
1266 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
1267 For example, this can copy a list made of TREE_LIST nodes. */
1268
1269 tree
1270 copy_list (tree list)
1271 {
1272 tree head;
1273 tree prev, next;
1274
1275 if (list == 0)
1276 return 0;
1277
1278 head = prev = copy_node (list);
1279 next = TREE_CHAIN (list);
1280 while (next)
1281 {
1282 TREE_CHAIN (prev) = copy_node (next);
1283 prev = TREE_CHAIN (prev);
1284 next = TREE_CHAIN (next);
1285 }
1286 return head;
1287 }
1288
1289 \f
1290 /* Return the value that TREE_INT_CST_EXT_NUNITS should have for an
1291 INTEGER_CST with value CST and type TYPE. */
1292
1293 static unsigned int
1294 get_int_cst_ext_nunits (tree type, const wide_int &cst)
1295 {
1296 gcc_checking_assert (cst.get_precision () == TYPE_PRECISION (type));
1297 /* We need extra HWIs if CST is an unsigned integer with its
1298 upper bit set. */
1299 if (TYPE_UNSIGNED (type) && wi::neg_p (cst))
1300 return cst.get_precision () / HOST_BITS_PER_WIDE_INT + 1;
1301 return cst.get_len ();
1302 }
1303
1304 /* Return a new INTEGER_CST with value CST and type TYPE. */
1305
1306 static tree
1307 build_new_int_cst (tree type, const wide_int &cst)
1308 {
1309 unsigned int len = cst.get_len ();
1310 unsigned int ext_len = get_int_cst_ext_nunits (type, cst);
1311 tree nt = make_int_cst (len, ext_len);
1312
1313 if (len < ext_len)
1314 {
1315 --ext_len;
1316 TREE_INT_CST_ELT (nt, ext_len)
1317 = zext_hwi (-1, cst.get_precision () % HOST_BITS_PER_WIDE_INT);
1318 for (unsigned int i = len; i < ext_len; ++i)
1319 TREE_INT_CST_ELT (nt, i) = -1;
1320 }
1321 else if (TYPE_UNSIGNED (type)
1322 && cst.get_precision () < len * HOST_BITS_PER_WIDE_INT)
1323 {
1324 len--;
1325 TREE_INT_CST_ELT (nt, len)
1326 = zext_hwi (cst.elt (len),
1327 cst.get_precision () % HOST_BITS_PER_WIDE_INT);
1328 }
1329
1330 for (unsigned int i = 0; i < len; i++)
1331 TREE_INT_CST_ELT (nt, i) = cst.elt (i);
1332 TREE_TYPE (nt) = type;
1333 return nt;
1334 }
1335
1336 /* Return a new POLY_INT_CST with coefficients COEFFS and type TYPE. */
1337
1338 static tree
1339 build_new_poly_int_cst (tree type, tree (&coeffs)[NUM_POLY_INT_COEFFS]
1340 CXX_MEM_STAT_INFO)
1341 {
1342 size_t length = sizeof (struct tree_poly_int_cst);
1343 record_node_allocation_statistics (POLY_INT_CST, length);
1344
1345 tree t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
1346
1347 TREE_SET_CODE (t, POLY_INT_CST);
1348 TREE_CONSTANT (t) = 1;
1349 TREE_TYPE (t) = type;
1350 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1351 POLY_INT_CST_COEFF (t, i) = coeffs[i];
1352 return t;
1353 }
1354
1355 /* Create a constant tree that contains CST sign-extended to TYPE. */
1356
1357 tree
1358 build_int_cst (tree type, poly_int64 cst)
1359 {
1360 /* Support legacy code. */
1361 if (!type)
1362 type = integer_type_node;
1363
1364 return wide_int_to_tree (type, wi::shwi (cst, TYPE_PRECISION (type)));
1365 }
1366
1367 /* Create a constant tree that contains CST zero-extended to TYPE. */
1368
1369 tree
1370 build_int_cstu (tree type, poly_uint64 cst)
1371 {
1372 return wide_int_to_tree (type, wi::uhwi (cst, TYPE_PRECISION (type)));
1373 }
1374
1375 /* Create a constant tree that contains CST sign-extended to TYPE. */
1376
1377 tree
1378 build_int_cst_type (tree type, poly_int64 cst)
1379 {
1380 gcc_assert (type);
1381 return wide_int_to_tree (type, wi::shwi (cst, TYPE_PRECISION (type)));
1382 }
1383
1384 /* Constructs tree in type TYPE from with value given by CST. Signedness
1385 of CST is assumed to be the same as the signedness of TYPE. */
1386
1387 tree
1388 double_int_to_tree (tree type, double_int cst)
1389 {
1390 return wide_int_to_tree (type, widest_int::from (cst, TYPE_SIGN (type)));
1391 }
1392
1393 /* We force the wide_int CST to the range of the type TYPE by sign or
1394 zero extending it. OVERFLOWABLE indicates if we are interested in
1395 overflow of the value, when >0 we are only interested in signed
1396 overflow, for <0 we are interested in any overflow. OVERFLOWED
1397 indicates whether overflow has already occurred. CONST_OVERFLOWED
1398 indicates whether constant overflow has already occurred. We force
1399 T's value to be within range of T's type (by setting to 0 or 1 all
1400 the bits outside the type's range). We set TREE_OVERFLOWED if,
1401 OVERFLOWED is nonzero,
1402 or OVERFLOWABLE is >0 and signed overflow occurs
1403 or OVERFLOWABLE is <0 and any overflow occurs
1404 We return a new tree node for the extended wide_int. The node
1405 is shared if no overflow flags are set. */
1406
1407
1408 tree
1409 force_fit_type (tree type, const poly_wide_int_ref &cst,
1410 int overflowable, bool overflowed)
1411 {
1412 signop sign = TYPE_SIGN (type);
1413
1414 /* If we need to set overflow flags, return a new unshared node. */
1415 if (overflowed || !wi::fits_to_tree_p (cst, type))
1416 {
1417 if (overflowed
1418 || overflowable < 0
1419 || (overflowable > 0 && sign == SIGNED))
1420 {
1421 poly_wide_int tmp = poly_wide_int::from (cst, TYPE_PRECISION (type),
1422 sign);
1423 tree t;
1424 if (tmp.is_constant ())
1425 t = build_new_int_cst (type, tmp.coeffs[0]);
1426 else
1427 {
1428 tree coeffs[NUM_POLY_INT_COEFFS];
1429 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1430 {
1431 coeffs[i] = build_new_int_cst (type, tmp.coeffs[i]);
1432 TREE_OVERFLOW (coeffs[i]) = 1;
1433 }
1434 t = build_new_poly_int_cst (type, coeffs);
1435 }
1436 TREE_OVERFLOW (t) = 1;
1437 return t;
1438 }
1439 }
1440
1441 /* Else build a shared node. */
1442 return wide_int_to_tree (type, cst);
1443 }
1444
1445 /* These are the hash table functions for the hash table of INTEGER_CST
1446 nodes of a sizetype. */
1447
1448 /* Return the hash code X, an INTEGER_CST. */
1449
1450 hashval_t
1451 int_cst_hasher::hash (tree x)
1452 {
1453 const_tree const t = x;
1454 hashval_t code = TYPE_UID (TREE_TYPE (t));
1455 int i;
1456
1457 for (i = 0; i < TREE_INT_CST_NUNITS (t); i++)
1458 code = iterative_hash_host_wide_int (TREE_INT_CST_ELT(t, i), code);
1459
1460 return code;
1461 }
1462
1463 /* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
1464 is the same as that given by *Y, which is the same. */
1465
1466 bool
1467 int_cst_hasher::equal (tree x, tree y)
1468 {
1469 const_tree const xt = x;
1470 const_tree const yt = y;
1471
1472 if (TREE_TYPE (xt) != TREE_TYPE (yt)
1473 || TREE_INT_CST_NUNITS (xt) != TREE_INT_CST_NUNITS (yt)
1474 || TREE_INT_CST_EXT_NUNITS (xt) != TREE_INT_CST_EXT_NUNITS (yt))
1475 return false;
1476
1477 for (int i = 0; i < TREE_INT_CST_NUNITS (xt); i++)
1478 if (TREE_INT_CST_ELT (xt, i) != TREE_INT_CST_ELT (yt, i))
1479 return false;
1480
1481 return true;
1482 }
1483
1484 /* Cache wide_int CST into the TYPE_CACHED_VALUES cache for TYPE.
1485 SLOT is the slot entry to store it in, and MAX_SLOTS is the maximum
1486 number of slots that can be cached for the type. */
1487
1488 static inline tree
1489 cache_wide_int_in_type_cache (tree type, const wide_int &cst,
1490 int slot, int max_slots)
1491 {
1492 gcc_checking_assert (slot >= 0);
1493 /* Initialize cache. */
1494 if (!TYPE_CACHED_VALUES_P (type))
1495 {
1496 TYPE_CACHED_VALUES_P (type) = 1;
1497 TYPE_CACHED_VALUES (type) = make_tree_vec (max_slots);
1498 }
1499 tree t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), slot);
1500 if (!t)
1501 {
1502 /* Create a new shared int. */
1503 t = build_new_int_cst (type, cst);
1504 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), slot) = t;
1505 }
1506 return t;
1507 }
1508
1509 /* Create an INT_CST node of TYPE and value CST.
1510 The returned node is always shared. For small integers we use a
1511 per-type vector cache, for larger ones we use a single hash table.
1512 The value is extended from its precision according to the sign of
1513 the type to be a multiple of HOST_BITS_PER_WIDE_INT. This defines
1514 the upper bits and ensures that hashing and value equality based
1515 upon the underlying HOST_WIDE_INTs works without masking. */
1516
1517 static tree
1518 wide_int_to_tree_1 (tree type, const wide_int_ref &pcst)
1519 {
1520 tree t;
1521 int ix = -1;
1522 int limit = 0;
1523
1524 gcc_assert (type);
1525 unsigned int prec = TYPE_PRECISION (type);
1526 signop sgn = TYPE_SIGN (type);
1527
1528 /* Verify that everything is canonical. */
1529 int l = pcst.get_len ();
1530 if (l > 1)
1531 {
1532 if (pcst.elt (l - 1) == 0)
1533 gcc_checking_assert (pcst.elt (l - 2) < 0);
1534 if (pcst.elt (l - 1) == HOST_WIDE_INT_M1)
1535 gcc_checking_assert (pcst.elt (l - 2) >= 0);
1536 }
1537
1538 wide_int cst = wide_int::from (pcst, prec, sgn);
1539 unsigned int ext_len = get_int_cst_ext_nunits (type, cst);
1540
1541 enum tree_code code = TREE_CODE (type);
1542 if (code == POINTER_TYPE || code == REFERENCE_TYPE)
1543 {
1544 /* Cache NULL pointer and zero bounds. */
1545 if (cst == 0)
1546 ix = 0;
1547 /* Cache upper bounds of pointers. */
1548 else if (cst == wi::max_value (prec, sgn))
1549 ix = 1;
1550 /* Cache 1 which is used for a non-zero range. */
1551 else if (cst == 1)
1552 ix = 2;
1553
1554 if (ix >= 0)
1555 {
1556 t = cache_wide_int_in_type_cache (type, cst, ix, 3);
1557 /* Make sure no one is clobbering the shared constant. */
1558 gcc_checking_assert (TREE_TYPE (t) == type
1559 && cst == wi::to_wide (t));
1560 return t;
1561 }
1562 }
1563 if (ext_len == 1)
1564 {
1565 /* We just need to store a single HOST_WIDE_INT. */
1566 HOST_WIDE_INT hwi;
1567 if (TYPE_UNSIGNED (type))
1568 hwi = cst.to_uhwi ();
1569 else
1570 hwi = cst.to_shwi ();
1571
1572 switch (code)
1573 {
1574 case NULLPTR_TYPE:
1575 gcc_assert (hwi == 0);
1576 /* Fallthru. */
1577
1578 case POINTER_TYPE:
1579 case REFERENCE_TYPE:
1580 /* Ignore pointers, as they were already handled above. */
1581 break;
1582
1583 case BOOLEAN_TYPE:
1584 /* Cache false or true. */
1585 limit = 2;
1586 if (IN_RANGE (hwi, 0, 1))
1587 ix = hwi;
1588 break;
1589
1590 case INTEGER_TYPE:
1591 case OFFSET_TYPE:
1592 if (TYPE_SIGN (type) == UNSIGNED)
1593 {
1594 /* Cache [0, N). */
1595 limit = param_integer_share_limit;
1596 if (IN_RANGE (hwi, 0, param_integer_share_limit - 1))
1597 ix = hwi;
1598 }
1599 else
1600 {
1601 /* Cache [-1, N). */
1602 limit = param_integer_share_limit + 1;
1603 if (IN_RANGE (hwi, -1, param_integer_share_limit - 1))
1604 ix = hwi + 1;
1605 }
1606 break;
1607
1608 case ENUMERAL_TYPE:
1609 break;
1610
1611 default:
1612 gcc_unreachable ();
1613 }
1614
1615 if (ix >= 0)
1616 {
1617 t = cache_wide_int_in_type_cache (type, cst, ix, limit);
1618 /* Make sure no one is clobbering the shared constant. */
1619 gcc_checking_assert (TREE_TYPE (t) == type
1620 && TREE_INT_CST_NUNITS (t) == 1
1621 && TREE_INT_CST_OFFSET_NUNITS (t) == 1
1622 && TREE_INT_CST_EXT_NUNITS (t) == 1
1623 && TREE_INT_CST_ELT (t, 0) == hwi);
1624 return t;
1625 }
1626 else
1627 {
1628 /* Use the cache of larger shared ints, using int_cst_node as
1629 a temporary. */
1630
1631 TREE_INT_CST_ELT (int_cst_node, 0) = hwi;
1632 TREE_TYPE (int_cst_node) = type;
1633
1634 tree *slot = int_cst_hash_table->find_slot (int_cst_node, INSERT);
1635 t = *slot;
1636 if (!t)
1637 {
1638 /* Insert this one into the hash table. */
1639 t = int_cst_node;
1640 *slot = t;
1641 /* Make a new node for next time round. */
1642 int_cst_node = make_int_cst (1, 1);
1643 }
1644 }
1645 }
1646 else
1647 {
1648 /* The value either hashes properly or we drop it on the floor
1649 for the gc to take care of. There will not be enough of them
1650 to worry about. */
1651
1652 tree nt = build_new_int_cst (type, cst);
1653 tree *slot = int_cst_hash_table->find_slot (nt, INSERT);
1654 t = *slot;
1655 if (!t)
1656 {
1657 /* Insert this one into the hash table. */
1658 t = nt;
1659 *slot = t;
1660 }
1661 else
1662 ggc_free (nt);
1663 }
1664
1665 return t;
1666 }
1667
1668 hashval_t
1669 poly_int_cst_hasher::hash (tree t)
1670 {
1671 inchash::hash hstate;
1672
1673 hstate.add_int (TYPE_UID (TREE_TYPE (t)));
1674 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1675 hstate.add_wide_int (wi::to_wide (POLY_INT_CST_COEFF (t, i)));
1676
1677 return hstate.end ();
1678 }
1679
1680 bool
1681 poly_int_cst_hasher::equal (tree x, const compare_type &y)
1682 {
1683 if (TREE_TYPE (x) != y.first)
1684 return false;
1685 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1686 if (wi::to_wide (POLY_INT_CST_COEFF (x, i)) != y.second->coeffs[i])
1687 return false;
1688 return true;
1689 }
1690
1691 /* Build a POLY_INT_CST node with type TYPE and with the elements in VALUES.
1692 The elements must also have type TYPE. */
1693
1694 tree
1695 build_poly_int_cst (tree type, const poly_wide_int_ref &values)
1696 {
1697 unsigned int prec = TYPE_PRECISION (type);
1698 gcc_assert (prec <= values.coeffs[0].get_precision ());
1699 poly_wide_int c = poly_wide_int::from (values, prec, SIGNED);
1700
1701 inchash::hash h;
1702 h.add_int (TYPE_UID (type));
1703 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1704 h.add_wide_int (c.coeffs[i]);
1705 poly_int_cst_hasher::compare_type comp (type, &c);
1706 tree *slot = poly_int_cst_hash_table->find_slot_with_hash (comp, h.end (),
1707 INSERT);
1708 if (*slot == NULL_TREE)
1709 {
1710 tree coeffs[NUM_POLY_INT_COEFFS];
1711 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1712 coeffs[i] = wide_int_to_tree_1 (type, c.coeffs[i]);
1713 *slot = build_new_poly_int_cst (type, coeffs);
1714 }
1715 return *slot;
1716 }
1717
1718 /* Create a constant tree with value VALUE in type TYPE. */
1719
1720 tree
1721 wide_int_to_tree (tree type, const poly_wide_int_ref &value)
1722 {
1723 if (value.is_constant ())
1724 return wide_int_to_tree_1 (type, value.coeffs[0]);
1725 return build_poly_int_cst (type, value);
1726 }
1727
1728 void
1729 cache_integer_cst (tree t)
1730 {
1731 tree type = TREE_TYPE (t);
1732 int ix = -1;
1733 int limit = 0;
1734 int prec = TYPE_PRECISION (type);
1735
1736 gcc_assert (!TREE_OVERFLOW (t));
1737
1738 switch (TREE_CODE (type))
1739 {
1740 case NULLPTR_TYPE:
1741 gcc_assert (integer_zerop (t));
1742 /* Fallthru. */
1743
1744 case POINTER_TYPE:
1745 case REFERENCE_TYPE:
1746 /* Cache NULL pointer. */
1747 if (integer_zerop (t))
1748 {
1749 limit = 1;
1750 ix = 0;
1751 }
1752 break;
1753
1754 case BOOLEAN_TYPE:
1755 /* Cache false or true. */
1756 limit = 2;
1757 if (wi::ltu_p (wi::to_wide (t), 2))
1758 ix = TREE_INT_CST_ELT (t, 0);
1759 break;
1760
1761 case INTEGER_TYPE:
1762 case OFFSET_TYPE:
1763 if (TYPE_UNSIGNED (type))
1764 {
1765 /* Cache 0..N */
1766 limit = param_integer_share_limit;
1767
1768 /* This is a little hokie, but if the prec is smaller than
1769 what is necessary to hold param_integer_share_limit, then the
1770 obvious test will not get the correct answer. */
1771 if (prec < HOST_BITS_PER_WIDE_INT)
1772 {
1773 if (tree_to_uhwi (t)
1774 < (unsigned HOST_WIDE_INT) param_integer_share_limit)
1775 ix = tree_to_uhwi (t);
1776 }
1777 else if (wi::ltu_p (wi::to_wide (t), param_integer_share_limit))
1778 ix = tree_to_uhwi (t);
1779 }
1780 else
1781 {
1782 /* Cache -1..N */
1783 limit = param_integer_share_limit + 1;
1784
1785 if (integer_minus_onep (t))
1786 ix = 0;
1787 else if (!wi::neg_p (wi::to_wide (t)))
1788 {
1789 if (prec < HOST_BITS_PER_WIDE_INT)
1790 {
1791 if (tree_to_shwi (t) < param_integer_share_limit)
1792 ix = tree_to_shwi (t) + 1;
1793 }
1794 else if (wi::ltu_p (wi::to_wide (t), param_integer_share_limit))
1795 ix = tree_to_shwi (t) + 1;
1796 }
1797 }
1798 break;
1799
1800 case ENUMERAL_TYPE:
1801 /* The slot used by TYPE_CACHED_VALUES is used for the enum
1802 members. */
1803 break;
1804
1805 default:
1806 gcc_unreachable ();
1807 }
1808
1809 if (ix >= 0)
1810 {
1811 /* Look for it in the type's vector of small shared ints. */
1812 if (!TYPE_CACHED_VALUES_P (type))
1813 {
1814 TYPE_CACHED_VALUES_P (type) = 1;
1815 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
1816 }
1817
1818 gcc_assert (TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) == NULL_TREE);
1819 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
1820 }
1821 else
1822 {
1823 /* Use the cache of larger shared ints. */
1824 tree *slot = int_cst_hash_table->find_slot (t, INSERT);
1825 /* If there is already an entry for the number verify it's the
1826 same. */
1827 if (*slot)
1828 gcc_assert (wi::to_wide (tree (*slot)) == wi::to_wide (t));
1829 else
1830 /* Otherwise insert this one into the hash table. */
1831 *slot = t;
1832 }
1833 }
1834
1835
1836 /* Builds an integer constant in TYPE such that lowest BITS bits are ones
1837 and the rest are zeros. */
1838
1839 tree
1840 build_low_bits_mask (tree type, unsigned bits)
1841 {
1842 gcc_assert (bits <= TYPE_PRECISION (type));
1843
1844 return wide_int_to_tree (type, wi::mask (bits, false,
1845 TYPE_PRECISION (type)));
1846 }
1847
1848 /* Checks that X is integer constant that can be expressed in (unsigned)
1849 HOST_WIDE_INT without loss of precision. */
1850
1851 bool
1852 cst_and_fits_in_hwi (const_tree x)
1853 {
1854 return (TREE_CODE (x) == INTEGER_CST
1855 && (tree_fits_shwi_p (x) || tree_fits_uhwi_p (x)));
1856 }
1857
1858 /* Build a newly constructed VECTOR_CST with the given values of
1859 (VECTOR_CST_)LOG2_NPATTERNS and (VECTOR_CST_)NELTS_PER_PATTERN. */
1860
1861 tree
1862 make_vector (unsigned log2_npatterns,
1863 unsigned int nelts_per_pattern MEM_STAT_DECL)
1864 {
1865 gcc_assert (IN_RANGE (nelts_per_pattern, 1, 3));
1866 tree t;
1867 unsigned npatterns = 1 << log2_npatterns;
1868 unsigned encoded_nelts = npatterns * nelts_per_pattern;
1869 unsigned length = (sizeof (struct tree_vector)
1870 + (encoded_nelts - 1) * sizeof (tree));
1871
1872 record_node_allocation_statistics (VECTOR_CST, length);
1873
1874 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
1875
1876 TREE_SET_CODE (t, VECTOR_CST);
1877 TREE_CONSTANT (t) = 1;
1878 VECTOR_CST_LOG2_NPATTERNS (t) = log2_npatterns;
1879 VECTOR_CST_NELTS_PER_PATTERN (t) = nelts_per_pattern;
1880
1881 return t;
1882 }
1883
1884 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1885 are extracted from V, a vector of CONSTRUCTOR_ELT. */
1886
1887 tree
1888 build_vector_from_ctor (tree type, vec<constructor_elt, va_gc> *v)
1889 {
1890 if (vec_safe_length (v) == 0)
1891 return build_zero_cst (type);
1892
1893 unsigned HOST_WIDE_INT idx, nelts;
1894 tree value;
1895
1896 /* We can't construct a VECTOR_CST for a variable number of elements. */
1897 nelts = TYPE_VECTOR_SUBPARTS (type).to_constant ();
1898 tree_vector_builder vec (type, nelts, 1);
1899 FOR_EACH_CONSTRUCTOR_VALUE (v, idx, value)
1900 {
1901 if (TREE_CODE (value) == VECTOR_CST)
1902 {
1903 /* If NELTS is constant then this must be too. */
1904 unsigned int sub_nelts = VECTOR_CST_NELTS (value).to_constant ();
1905 for (unsigned i = 0; i < sub_nelts; ++i)
1906 vec.quick_push (VECTOR_CST_ELT (value, i));
1907 }
1908 else
1909 vec.quick_push (value);
1910 }
1911 while (vec.length () < nelts)
1912 vec.quick_push (build_zero_cst (TREE_TYPE (type)));
1913
1914 return vec.build ();
1915 }
1916
1917 /* Build a vector of type VECTYPE where all the elements are SCs. */
1918 tree
1919 build_vector_from_val (tree vectype, tree sc)
1920 {
1921 unsigned HOST_WIDE_INT i, nunits;
1922
1923 if (sc == error_mark_node)
1924 return sc;
1925
1926 /* Verify that the vector type is suitable for SC. Note that there
1927 is some inconsistency in the type-system with respect to restrict
1928 qualifications of pointers. Vector types always have a main-variant
1929 element type and the qualification is applied to the vector-type.
1930 So TREE_TYPE (vector-type) does not return a properly qualified
1931 vector element-type. */
1932 gcc_checking_assert (types_compatible_p (TYPE_MAIN_VARIANT (TREE_TYPE (sc)),
1933 TREE_TYPE (vectype)));
1934
1935 if (CONSTANT_CLASS_P (sc))
1936 {
1937 tree_vector_builder v (vectype, 1, 1);
1938 v.quick_push (sc);
1939 return v.build ();
1940 }
1941 else if (!TYPE_VECTOR_SUBPARTS (vectype).is_constant (&nunits))
1942 return fold_build1 (VEC_DUPLICATE_EXPR, vectype, sc);
1943 else
1944 {
1945 vec<constructor_elt, va_gc> *v;
1946 vec_alloc (v, nunits);
1947 for (i = 0; i < nunits; ++i)
1948 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, sc);
1949 return build_constructor (vectype, v);
1950 }
1951 }
1952
1953 /* If TYPE is not a vector type, just return SC, otherwise return
1954 build_vector_from_val (TYPE, SC). */
1955
1956 tree
1957 build_uniform_cst (tree type, tree sc)
1958 {
1959 if (!VECTOR_TYPE_P (type))
1960 return sc;
1961
1962 return build_vector_from_val (type, sc);
1963 }
1964
1965 /* Build a vector series of type TYPE in which element I has the value
1966 BASE + I * STEP. The result is a constant if BASE and STEP are constant
1967 and a VEC_SERIES_EXPR otherwise. */
1968
1969 tree
1970 build_vec_series (tree type, tree base, tree step)
1971 {
1972 if (integer_zerop (step))
1973 return build_vector_from_val (type, base);
1974 if (TREE_CODE (base) == INTEGER_CST && TREE_CODE (step) == INTEGER_CST)
1975 {
1976 tree_vector_builder builder (type, 1, 3);
1977 tree elt1 = wide_int_to_tree (TREE_TYPE (base),
1978 wi::to_wide (base) + wi::to_wide (step));
1979 tree elt2 = wide_int_to_tree (TREE_TYPE (base),
1980 wi::to_wide (elt1) + wi::to_wide (step));
1981 builder.quick_push (base);
1982 builder.quick_push (elt1);
1983 builder.quick_push (elt2);
1984 return builder.build ();
1985 }
1986 return build2 (VEC_SERIES_EXPR, type, base, step);
1987 }
1988
1989 /* Return a vector with the same number of units and number of bits
1990 as VEC_TYPE, but in which the elements are a linear series of unsigned
1991 integers { BASE, BASE + STEP, BASE + STEP * 2, ... }. */
1992
1993 tree
1994 build_index_vector (tree vec_type, poly_uint64 base, poly_uint64 step)
1995 {
1996 tree index_vec_type = vec_type;
1997 tree index_elt_type = TREE_TYPE (vec_type);
1998 poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (vec_type);
1999 if (!INTEGRAL_TYPE_P (index_elt_type) || !TYPE_UNSIGNED (index_elt_type))
2000 {
2001 index_elt_type = build_nonstandard_integer_type
2002 (GET_MODE_BITSIZE (SCALAR_TYPE_MODE (index_elt_type)), true);
2003 index_vec_type = build_vector_type (index_elt_type, nunits);
2004 }
2005
2006 tree_vector_builder v (index_vec_type, 1, 3);
2007 for (unsigned int i = 0; i < 3; ++i)
2008 v.quick_push (build_int_cstu (index_elt_type, base + i * step));
2009 return v.build ();
2010 }
2011
2012 /* Return a VECTOR_CST of type VEC_TYPE in which the first NUM_A
2013 elements are A and the rest are B. */
2014
2015 tree
2016 build_vector_a_then_b (tree vec_type, unsigned int num_a, tree a, tree b)
2017 {
2018 gcc_assert (known_le (num_a, TYPE_VECTOR_SUBPARTS (vec_type)));
2019 unsigned int count = constant_lower_bound (TYPE_VECTOR_SUBPARTS (vec_type));
2020 /* Optimize the constant case. */
2021 if ((count & 1) == 0 && TYPE_VECTOR_SUBPARTS (vec_type).is_constant ())
2022 count /= 2;
2023 tree_vector_builder builder (vec_type, count, 2);
2024 for (unsigned int i = 0; i < count * 2; ++i)
2025 builder.quick_push (i < num_a ? a : b);
2026 return builder.build ();
2027 }
2028
2029 /* Something has messed with the elements of CONSTRUCTOR C after it was built;
2030 calculate TREE_CONSTANT and TREE_SIDE_EFFECTS. */
2031
2032 void
2033 recompute_constructor_flags (tree c)
2034 {
2035 unsigned int i;
2036 tree val;
2037 bool constant_p = true;
2038 bool side_effects_p = false;
2039 vec<constructor_elt, va_gc> *vals = CONSTRUCTOR_ELTS (c);
2040
2041 FOR_EACH_CONSTRUCTOR_VALUE (vals, i, val)
2042 {
2043 /* Mostly ctors will have elts that don't have side-effects, so
2044 the usual case is to scan all the elements. Hence a single
2045 loop for both const and side effects, rather than one loop
2046 each (with early outs). */
2047 if (!TREE_CONSTANT (val))
2048 constant_p = false;
2049 if (TREE_SIDE_EFFECTS (val))
2050 side_effects_p = true;
2051 }
2052
2053 TREE_SIDE_EFFECTS (c) = side_effects_p;
2054 TREE_CONSTANT (c) = constant_p;
2055 }
2056
2057 /* Make sure that TREE_CONSTANT and TREE_SIDE_EFFECTS are correct for
2058 CONSTRUCTOR C. */
2059
2060 void
2061 verify_constructor_flags (tree c)
2062 {
2063 unsigned int i;
2064 tree val;
2065 bool constant_p = TREE_CONSTANT (c);
2066 bool side_effects_p = TREE_SIDE_EFFECTS (c);
2067 vec<constructor_elt, va_gc> *vals = CONSTRUCTOR_ELTS (c);
2068
2069 FOR_EACH_CONSTRUCTOR_VALUE (vals, i, val)
2070 {
2071 if (constant_p && !TREE_CONSTANT (val))
2072 internal_error ("non-constant element in constant CONSTRUCTOR");
2073 if (!side_effects_p && TREE_SIDE_EFFECTS (val))
2074 internal_error ("side-effects element in no-side-effects CONSTRUCTOR");
2075 }
2076 }
2077
2078 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
2079 are in the vec pointed to by VALS. */
2080 tree
2081 build_constructor (tree type, vec<constructor_elt, va_gc> *vals MEM_STAT_DECL)
2082 {
2083 tree c = make_node (CONSTRUCTOR PASS_MEM_STAT);
2084
2085 TREE_TYPE (c) = type;
2086 CONSTRUCTOR_ELTS (c) = vals;
2087
2088 recompute_constructor_flags (c);
2089
2090 return c;
2091 }
2092
2093 /* Build a CONSTRUCTOR node made of a single initializer, with the specified
2094 INDEX and VALUE. */
2095 tree
2096 build_constructor_single (tree type, tree index, tree value)
2097 {
2098 vec<constructor_elt, va_gc> *v;
2099 constructor_elt elt = {index, value};
2100
2101 vec_alloc (v, 1);
2102 v->quick_push (elt);
2103
2104 return build_constructor (type, v);
2105 }
2106
2107
2108 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
2109 are in a list pointed to by VALS. */
2110 tree
2111 build_constructor_from_list (tree type, tree vals)
2112 {
2113 tree t;
2114 vec<constructor_elt, va_gc> *v = NULL;
2115
2116 if (vals)
2117 {
2118 vec_alloc (v, list_length (vals));
2119 for (t = vals; t; t = TREE_CHAIN (t))
2120 CONSTRUCTOR_APPEND_ELT (v, TREE_PURPOSE (t), TREE_VALUE (t));
2121 }
2122
2123 return build_constructor (type, v);
2124 }
2125
2126 /* Return a new CONSTRUCTOR node whose type is TYPE. NELTS is the number
2127 of elements, provided as index/value pairs. */
2128
2129 tree
2130 build_constructor_va (tree type, int nelts, ...)
2131 {
2132 vec<constructor_elt, va_gc> *v = NULL;
2133 va_list p;
2134
2135 va_start (p, nelts);
2136 vec_alloc (v, nelts);
2137 while (nelts--)
2138 {
2139 tree index = va_arg (p, tree);
2140 tree value = va_arg (p, tree);
2141 CONSTRUCTOR_APPEND_ELT (v, index, value);
2142 }
2143 va_end (p);
2144 return build_constructor (type, v);
2145 }
2146
2147 /* Return a node of type TYPE for which TREE_CLOBBER_P is true. */
2148
2149 tree
2150 build_clobber (tree type)
2151 {
2152 tree clobber = build_constructor (type, NULL);
2153 TREE_THIS_VOLATILE (clobber) = true;
2154 return clobber;
2155 }
2156
2157 /* Return a new FIXED_CST node whose type is TYPE and value is F. */
2158
2159 tree
2160 build_fixed (tree type, FIXED_VALUE_TYPE f)
2161 {
2162 tree v;
2163 FIXED_VALUE_TYPE *fp;
2164
2165 v = make_node (FIXED_CST);
2166 fp = ggc_alloc<fixed_value> ();
2167 memcpy (fp, &f, sizeof (FIXED_VALUE_TYPE));
2168
2169 TREE_TYPE (v) = type;
2170 TREE_FIXED_CST_PTR (v) = fp;
2171 return v;
2172 }
2173
2174 /* Return a new REAL_CST node whose type is TYPE and value is D. */
2175
2176 tree
2177 build_real (tree type, REAL_VALUE_TYPE d)
2178 {
2179 tree v;
2180 REAL_VALUE_TYPE *dp;
2181 int overflow = 0;
2182
2183 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
2184 Consider doing it via real_convert now. */
2185
2186 v = make_node (REAL_CST);
2187 dp = ggc_alloc<real_value> ();
2188 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
2189
2190 TREE_TYPE (v) = type;
2191 TREE_REAL_CST_PTR (v) = dp;
2192 TREE_OVERFLOW (v) = overflow;
2193 return v;
2194 }
2195
2196 /* Like build_real, but first truncate D to the type. */
2197
2198 tree
2199 build_real_truncate (tree type, REAL_VALUE_TYPE d)
2200 {
2201 return build_real (type, real_value_truncate (TYPE_MODE (type), d));
2202 }
2203
2204 /* Return a new REAL_CST node whose type is TYPE
2205 and whose value is the integer value of the INTEGER_CST node I. */
2206
2207 REAL_VALUE_TYPE
2208 real_value_from_int_cst (const_tree type, const_tree i)
2209 {
2210 REAL_VALUE_TYPE d;
2211
2212 /* Clear all bits of the real value type so that we can later do
2213 bitwise comparisons to see if two values are the same. */
2214 memset (&d, 0, sizeof d);
2215
2216 real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode, wi::to_wide (i),
2217 TYPE_SIGN (TREE_TYPE (i)));
2218 return d;
2219 }
2220
2221 /* Given a tree representing an integer constant I, return a tree
2222 representing the same value as a floating-point constant of type TYPE. */
2223
2224 tree
2225 build_real_from_int_cst (tree type, const_tree i)
2226 {
2227 tree v;
2228 int overflow = TREE_OVERFLOW (i);
2229
2230 v = build_real (type, real_value_from_int_cst (type, i));
2231
2232 TREE_OVERFLOW (v) |= overflow;
2233 return v;
2234 }
2235
2236 /* Return a newly constructed STRING_CST node whose value is the LEN
2237 characters at STR when STR is nonnull, or all zeros otherwise.
2238 Note that for a C string literal, LEN should include the trailing NUL.
2239 The TREE_TYPE is not initialized. */
2240
2241 tree
2242 build_string (unsigned len, const char *str /*= NULL */)
2243 {
2244 /* Do not waste bytes provided by padding of struct tree_string. */
2245 unsigned size = len + offsetof (struct tree_string, str) + 1;
2246
2247 record_node_allocation_statistics (STRING_CST, size);
2248
2249 tree s = (tree) ggc_internal_alloc (size);
2250
2251 memset (s, 0, sizeof (struct tree_typed));
2252 TREE_SET_CODE (s, STRING_CST);
2253 TREE_CONSTANT (s) = 1;
2254 TREE_STRING_LENGTH (s) = len;
2255 if (str)
2256 memcpy (s->string.str, str, len);
2257 else
2258 memset (s->string.str, 0, len);
2259 s->string.str[len] = '\0';
2260
2261 return s;
2262 }
2263
2264 /* Return a newly constructed COMPLEX_CST node whose value is
2265 specified by the real and imaginary parts REAL and IMAG.
2266 Both REAL and IMAG should be constant nodes. TYPE, if specified,
2267 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
2268
2269 tree
2270 build_complex (tree type, tree real, tree imag)
2271 {
2272 gcc_assert (CONSTANT_CLASS_P (real));
2273 gcc_assert (CONSTANT_CLASS_P (imag));
2274
2275 tree t = make_node (COMPLEX_CST);
2276
2277 TREE_REALPART (t) = real;
2278 TREE_IMAGPART (t) = imag;
2279 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
2280 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
2281 return t;
2282 }
2283
2284 /* Build a complex (inf +- 0i), such as for the result of cproj.
2285 TYPE is the complex tree type of the result. If NEG is true, the
2286 imaginary zero is negative. */
2287
2288 tree
2289 build_complex_inf (tree type, bool neg)
2290 {
2291 REAL_VALUE_TYPE rinf, rzero = dconst0;
2292
2293 real_inf (&rinf);
2294 rzero.sign = neg;
2295 return build_complex (type, build_real (TREE_TYPE (type), rinf),
2296 build_real (TREE_TYPE (type), rzero));
2297 }
2298
2299 /* Return the constant 1 in type TYPE. If TYPE has several elements, each
2300 element is set to 1. In particular, this is 1 + i for complex types. */
2301
2302 tree
2303 build_each_one_cst (tree type)
2304 {
2305 if (TREE_CODE (type) == COMPLEX_TYPE)
2306 {
2307 tree scalar = build_one_cst (TREE_TYPE (type));
2308 return build_complex (type, scalar, scalar);
2309 }
2310 else
2311 return build_one_cst (type);
2312 }
2313
2314 /* Return a constant of arithmetic type TYPE which is the
2315 multiplicative identity of the set TYPE. */
2316
2317 tree
2318 build_one_cst (tree type)
2319 {
2320 switch (TREE_CODE (type))
2321 {
2322 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2323 case POINTER_TYPE: case REFERENCE_TYPE:
2324 case OFFSET_TYPE:
2325 return build_int_cst (type, 1);
2326
2327 case REAL_TYPE:
2328 return build_real (type, dconst1);
2329
2330 case FIXED_POINT_TYPE:
2331 /* We can only generate 1 for accum types. */
2332 gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
2333 return build_fixed (type, FCONST1 (TYPE_MODE (type)));
2334
2335 case VECTOR_TYPE:
2336 {
2337 tree scalar = build_one_cst (TREE_TYPE (type));
2338
2339 return build_vector_from_val (type, scalar);
2340 }
2341
2342 case COMPLEX_TYPE:
2343 return build_complex (type,
2344 build_one_cst (TREE_TYPE (type)),
2345 build_zero_cst (TREE_TYPE (type)));
2346
2347 default:
2348 gcc_unreachable ();
2349 }
2350 }
2351
2352 /* Return an integer of type TYPE containing all 1's in as much precision as
2353 it contains, or a complex or vector whose subparts are such integers. */
2354
2355 tree
2356 build_all_ones_cst (tree type)
2357 {
2358 if (TREE_CODE (type) == COMPLEX_TYPE)
2359 {
2360 tree scalar = build_all_ones_cst (TREE_TYPE (type));
2361 return build_complex (type, scalar, scalar);
2362 }
2363 else
2364 return build_minus_one_cst (type);
2365 }
2366
2367 /* Return a constant of arithmetic type TYPE which is the
2368 opposite of the multiplicative identity of the set TYPE. */
2369
2370 tree
2371 build_minus_one_cst (tree type)
2372 {
2373 switch (TREE_CODE (type))
2374 {
2375 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2376 case POINTER_TYPE: case REFERENCE_TYPE:
2377 case OFFSET_TYPE:
2378 return build_int_cst (type, -1);
2379
2380 case REAL_TYPE:
2381 return build_real (type, dconstm1);
2382
2383 case FIXED_POINT_TYPE:
2384 /* We can only generate 1 for accum types. */
2385 gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
2386 return build_fixed (type,
2387 fixed_from_double_int (double_int_minus_one,
2388 SCALAR_TYPE_MODE (type)));
2389
2390 case VECTOR_TYPE:
2391 {
2392 tree scalar = build_minus_one_cst (TREE_TYPE (type));
2393
2394 return build_vector_from_val (type, scalar);
2395 }
2396
2397 case COMPLEX_TYPE:
2398 return build_complex (type,
2399 build_minus_one_cst (TREE_TYPE (type)),
2400 build_zero_cst (TREE_TYPE (type)));
2401
2402 default:
2403 gcc_unreachable ();
2404 }
2405 }
2406
2407 /* Build 0 constant of type TYPE. This is used by constructor folding
2408 and thus the constant should be represented in memory by
2409 zero(es). */
2410
2411 tree
2412 build_zero_cst (tree type)
2413 {
2414 switch (TREE_CODE (type))
2415 {
2416 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2417 case POINTER_TYPE: case REFERENCE_TYPE:
2418 case OFFSET_TYPE: case NULLPTR_TYPE:
2419 return build_int_cst (type, 0);
2420
2421 case REAL_TYPE:
2422 return build_real (type, dconst0);
2423
2424 case FIXED_POINT_TYPE:
2425 return build_fixed (type, FCONST0 (TYPE_MODE (type)));
2426
2427 case VECTOR_TYPE:
2428 {
2429 tree scalar = build_zero_cst (TREE_TYPE (type));
2430
2431 return build_vector_from_val (type, scalar);
2432 }
2433
2434 case COMPLEX_TYPE:
2435 {
2436 tree zero = build_zero_cst (TREE_TYPE (type));
2437
2438 return build_complex (type, zero, zero);
2439 }
2440
2441 default:
2442 if (!AGGREGATE_TYPE_P (type))
2443 return fold_convert (type, integer_zero_node);
2444 return build_constructor (type, NULL);
2445 }
2446 }
2447
2448
2449 /* Build a BINFO with LEN language slots. */
2450
2451 tree
2452 make_tree_binfo (unsigned base_binfos MEM_STAT_DECL)
2453 {
2454 tree t;
2455 size_t length = (offsetof (struct tree_binfo, base_binfos)
2456 + vec<tree, va_gc>::embedded_size (base_binfos));
2457
2458 record_node_allocation_statistics (TREE_BINFO, length);
2459
2460 t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
2461
2462 memset (t, 0, offsetof (struct tree_binfo, base_binfos));
2463
2464 TREE_SET_CODE (t, TREE_BINFO);
2465
2466 BINFO_BASE_BINFOS (t)->embedded_init (base_binfos);
2467
2468 return t;
2469 }
2470
2471 /* Create a CASE_LABEL_EXPR tree node and return it. */
2472
2473 tree
2474 build_case_label (tree low_value, tree high_value, tree label_decl)
2475 {
2476 tree t = make_node (CASE_LABEL_EXPR);
2477
2478 TREE_TYPE (t) = void_type_node;
2479 SET_EXPR_LOCATION (t, DECL_SOURCE_LOCATION (label_decl));
2480
2481 CASE_LOW (t) = low_value;
2482 CASE_HIGH (t) = high_value;
2483 CASE_LABEL (t) = label_decl;
2484 CASE_CHAIN (t) = NULL_TREE;
2485
2486 return t;
2487 }
2488
2489 /* Build a newly constructed INTEGER_CST node. LEN and EXT_LEN are the
2490 values of TREE_INT_CST_NUNITS and TREE_INT_CST_EXT_NUNITS respectively.
2491 The latter determines the length of the HOST_WIDE_INT vector. */
2492
2493 tree
2494 make_int_cst (int len, int ext_len MEM_STAT_DECL)
2495 {
2496 tree t;
2497 int length = ((ext_len - 1) * sizeof (HOST_WIDE_INT)
2498 + sizeof (struct tree_int_cst));
2499
2500 gcc_assert (len);
2501 record_node_allocation_statistics (INTEGER_CST, length);
2502
2503 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
2504
2505 TREE_SET_CODE (t, INTEGER_CST);
2506 TREE_INT_CST_NUNITS (t) = len;
2507 TREE_INT_CST_EXT_NUNITS (t) = ext_len;
2508 /* to_offset can only be applied to trees that are offset_int-sized
2509 or smaller. EXT_LEN is correct if it fits, otherwise the constant
2510 must be exactly the precision of offset_int and so LEN is correct. */
2511 if (ext_len <= OFFSET_INT_ELTS)
2512 TREE_INT_CST_OFFSET_NUNITS (t) = ext_len;
2513 else
2514 TREE_INT_CST_OFFSET_NUNITS (t) = len;
2515
2516 TREE_CONSTANT (t) = 1;
2517
2518 return t;
2519 }
2520
2521 /* Build a newly constructed TREE_VEC node of length LEN. */
2522
2523 tree
2524 make_tree_vec (int len MEM_STAT_DECL)
2525 {
2526 tree t;
2527 size_t length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
2528
2529 record_node_allocation_statistics (TREE_VEC, length);
2530
2531 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
2532
2533 TREE_SET_CODE (t, TREE_VEC);
2534 TREE_VEC_LENGTH (t) = len;
2535
2536 return t;
2537 }
2538
2539 /* Grow a TREE_VEC node to new length LEN. */
2540
2541 tree
2542 grow_tree_vec (tree v, int len MEM_STAT_DECL)
2543 {
2544 gcc_assert (TREE_CODE (v) == TREE_VEC);
2545
2546 int oldlen = TREE_VEC_LENGTH (v);
2547 gcc_assert (len > oldlen);
2548
2549 size_t oldlength = (oldlen - 1) * sizeof (tree) + sizeof (struct tree_vec);
2550 size_t length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
2551
2552 record_node_allocation_statistics (TREE_VEC, length - oldlength);
2553
2554 v = (tree) ggc_realloc (v, length PASS_MEM_STAT);
2555
2556 TREE_VEC_LENGTH (v) = len;
2557
2558 return v;
2559 }
2560 \f
2561 /* Return 1 if EXPR is the constant zero, whether it is integral, float or
2562 fixed, and scalar, complex or vector. */
2563
2564 bool
2565 zerop (const_tree expr)
2566 {
2567 return (integer_zerop (expr)
2568 || real_zerop (expr)
2569 || fixed_zerop (expr));
2570 }
2571
2572 /* Return 1 if EXPR is the integer constant zero or a complex constant
2573 of zero, or a location wrapper for such a constant. */
2574
2575 bool
2576 integer_zerop (const_tree expr)
2577 {
2578 STRIP_ANY_LOCATION_WRAPPER (expr);
2579
2580 switch (TREE_CODE (expr))
2581 {
2582 case INTEGER_CST:
2583 return wi::to_wide (expr) == 0;
2584 case COMPLEX_CST:
2585 return (integer_zerop (TREE_REALPART (expr))
2586 && integer_zerop (TREE_IMAGPART (expr)));
2587 case VECTOR_CST:
2588 return (VECTOR_CST_NPATTERNS (expr) == 1
2589 && VECTOR_CST_DUPLICATE_P (expr)
2590 && integer_zerop (VECTOR_CST_ENCODED_ELT (expr, 0)));
2591 default:
2592 return false;
2593 }
2594 }
2595
2596 /* Return 1 if EXPR is the integer constant one or the corresponding
2597 complex constant, or a location wrapper for such a constant. */
2598
2599 bool
2600 integer_onep (const_tree expr)
2601 {
2602 STRIP_ANY_LOCATION_WRAPPER (expr);
2603
2604 switch (TREE_CODE (expr))
2605 {
2606 case INTEGER_CST:
2607 return wi::eq_p (wi::to_widest (expr), 1);
2608 case COMPLEX_CST:
2609 return (integer_onep (TREE_REALPART (expr))
2610 && integer_zerop (TREE_IMAGPART (expr)));
2611 case VECTOR_CST:
2612 return (VECTOR_CST_NPATTERNS (expr) == 1
2613 && VECTOR_CST_DUPLICATE_P (expr)
2614 && integer_onep (VECTOR_CST_ENCODED_ELT (expr, 0)));
2615 default:
2616 return false;
2617 }
2618 }
2619
2620 /* Return 1 if EXPR is the integer constant one. For complex and vector,
2621 return 1 if every piece is the integer constant one.
2622 Also return 1 for location wrappers for such a constant. */
2623
2624 bool
2625 integer_each_onep (const_tree expr)
2626 {
2627 STRIP_ANY_LOCATION_WRAPPER (expr);
2628
2629 if (TREE_CODE (expr) == COMPLEX_CST)
2630 return (integer_onep (TREE_REALPART (expr))
2631 && integer_onep (TREE_IMAGPART (expr)));
2632 else
2633 return integer_onep (expr);
2634 }
2635
2636 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
2637 it contains, or a complex or vector whose subparts are such integers,
2638 or a location wrapper for such a constant. */
2639
2640 bool
2641 integer_all_onesp (const_tree expr)
2642 {
2643 STRIP_ANY_LOCATION_WRAPPER (expr);
2644
2645 if (TREE_CODE (expr) == COMPLEX_CST
2646 && integer_all_onesp (TREE_REALPART (expr))
2647 && integer_all_onesp (TREE_IMAGPART (expr)))
2648 return true;
2649
2650 else if (TREE_CODE (expr) == VECTOR_CST)
2651 return (VECTOR_CST_NPATTERNS (expr) == 1
2652 && VECTOR_CST_DUPLICATE_P (expr)
2653 && integer_all_onesp (VECTOR_CST_ENCODED_ELT (expr, 0)));
2654
2655 else if (TREE_CODE (expr) != INTEGER_CST)
2656 return false;
2657
2658 return (wi::max_value (TYPE_PRECISION (TREE_TYPE (expr)), UNSIGNED)
2659 == wi::to_wide (expr));
2660 }
2661
2662 /* Return 1 if EXPR is the integer constant minus one, or a location wrapper
2663 for such a constant. */
2664
2665 bool
2666 integer_minus_onep (const_tree expr)
2667 {
2668 STRIP_ANY_LOCATION_WRAPPER (expr);
2669
2670 if (TREE_CODE (expr) == COMPLEX_CST)
2671 return (integer_all_onesp (TREE_REALPART (expr))
2672 && integer_zerop (TREE_IMAGPART (expr)));
2673 else
2674 return integer_all_onesp (expr);
2675 }
2676
2677 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
2678 one bit on), or a location wrapper for such a constant. */
2679
2680 bool
2681 integer_pow2p (const_tree expr)
2682 {
2683 STRIP_ANY_LOCATION_WRAPPER (expr);
2684
2685 if (TREE_CODE (expr) == COMPLEX_CST
2686 && integer_pow2p (TREE_REALPART (expr))
2687 && integer_zerop (TREE_IMAGPART (expr)))
2688 return true;
2689
2690 if (TREE_CODE (expr) != INTEGER_CST)
2691 return false;
2692
2693 return wi::popcount (wi::to_wide (expr)) == 1;
2694 }
2695
2696 /* Return 1 if EXPR is an integer constant other than zero or a
2697 complex constant other than zero, or a location wrapper for such a
2698 constant. */
2699
2700 bool
2701 integer_nonzerop (const_tree expr)
2702 {
2703 STRIP_ANY_LOCATION_WRAPPER (expr);
2704
2705 return ((TREE_CODE (expr) == INTEGER_CST
2706 && wi::to_wide (expr) != 0)
2707 || (TREE_CODE (expr) == COMPLEX_CST
2708 && (integer_nonzerop (TREE_REALPART (expr))
2709 || integer_nonzerop (TREE_IMAGPART (expr)))));
2710 }
2711
2712 /* Return 1 if EXPR is the integer constant one. For vector,
2713 return 1 if every piece is the integer constant minus one
2714 (representing the value TRUE).
2715 Also return 1 for location wrappers for such a constant. */
2716
2717 bool
2718 integer_truep (const_tree expr)
2719 {
2720 STRIP_ANY_LOCATION_WRAPPER (expr);
2721
2722 if (TREE_CODE (expr) == VECTOR_CST)
2723 return integer_all_onesp (expr);
2724 return integer_onep (expr);
2725 }
2726
2727 /* Return 1 if EXPR is the fixed-point constant zero, or a location wrapper
2728 for such a constant. */
2729
2730 bool
2731 fixed_zerop (const_tree expr)
2732 {
2733 STRIP_ANY_LOCATION_WRAPPER (expr);
2734
2735 return (TREE_CODE (expr) == FIXED_CST
2736 && TREE_FIXED_CST (expr).data.is_zero ());
2737 }
2738
2739 /* Return the power of two represented by a tree node known to be a
2740 power of two. */
2741
2742 int
2743 tree_log2 (const_tree expr)
2744 {
2745 if (TREE_CODE (expr) == COMPLEX_CST)
2746 return tree_log2 (TREE_REALPART (expr));
2747
2748 return wi::exact_log2 (wi::to_wide (expr));
2749 }
2750
2751 /* Similar, but return the largest integer Y such that 2 ** Y is less
2752 than or equal to EXPR. */
2753
2754 int
2755 tree_floor_log2 (const_tree expr)
2756 {
2757 if (TREE_CODE (expr) == COMPLEX_CST)
2758 return tree_log2 (TREE_REALPART (expr));
2759
2760 return wi::floor_log2 (wi::to_wide (expr));
2761 }
2762
2763 /* Return number of known trailing zero bits in EXPR, or, if the value of
2764 EXPR is known to be zero, the precision of it's type. */
2765
2766 unsigned int
2767 tree_ctz (const_tree expr)
2768 {
2769 if (!INTEGRAL_TYPE_P (TREE_TYPE (expr))
2770 && !POINTER_TYPE_P (TREE_TYPE (expr)))
2771 return 0;
2772
2773 unsigned int ret1, ret2, prec = TYPE_PRECISION (TREE_TYPE (expr));
2774 switch (TREE_CODE (expr))
2775 {
2776 case INTEGER_CST:
2777 ret1 = wi::ctz (wi::to_wide (expr));
2778 return MIN (ret1, prec);
2779 case SSA_NAME:
2780 ret1 = wi::ctz (get_nonzero_bits (expr));
2781 return MIN (ret1, prec);
2782 case PLUS_EXPR:
2783 case MINUS_EXPR:
2784 case BIT_IOR_EXPR:
2785 case BIT_XOR_EXPR:
2786 case MIN_EXPR:
2787 case MAX_EXPR:
2788 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2789 if (ret1 == 0)
2790 return ret1;
2791 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2792 return MIN (ret1, ret2);
2793 case POINTER_PLUS_EXPR:
2794 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2795 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2796 /* Second operand is sizetype, which could be in theory
2797 wider than pointer's precision. Make sure we never
2798 return more than prec. */
2799 ret2 = MIN (ret2, prec);
2800 return MIN (ret1, ret2);
2801 case BIT_AND_EXPR:
2802 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2803 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2804 return MAX (ret1, ret2);
2805 case MULT_EXPR:
2806 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2807 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2808 return MIN (ret1 + ret2, prec);
2809 case LSHIFT_EXPR:
2810 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2811 if (tree_fits_uhwi_p (TREE_OPERAND (expr, 1))
2812 && (tree_to_uhwi (TREE_OPERAND (expr, 1)) < prec))
2813 {
2814 ret2 = tree_to_uhwi (TREE_OPERAND (expr, 1));
2815 return MIN (ret1 + ret2, prec);
2816 }
2817 return ret1;
2818 case RSHIFT_EXPR:
2819 if (tree_fits_uhwi_p (TREE_OPERAND (expr, 1))
2820 && (tree_to_uhwi (TREE_OPERAND (expr, 1)) < prec))
2821 {
2822 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2823 ret2 = tree_to_uhwi (TREE_OPERAND (expr, 1));
2824 if (ret1 > ret2)
2825 return ret1 - ret2;
2826 }
2827 return 0;
2828 case TRUNC_DIV_EXPR:
2829 case CEIL_DIV_EXPR:
2830 case FLOOR_DIV_EXPR:
2831 case ROUND_DIV_EXPR:
2832 case EXACT_DIV_EXPR:
2833 if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
2834 && tree_int_cst_sgn (TREE_OPERAND (expr, 1)) == 1)
2835 {
2836 int l = tree_log2 (TREE_OPERAND (expr, 1));
2837 if (l >= 0)
2838 {
2839 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2840 ret2 = l;
2841 if (ret1 > ret2)
2842 return ret1 - ret2;
2843 }
2844 }
2845 return 0;
2846 CASE_CONVERT:
2847 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2848 if (ret1 && ret1 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (expr, 0))))
2849 ret1 = prec;
2850 return MIN (ret1, prec);
2851 case SAVE_EXPR:
2852 return tree_ctz (TREE_OPERAND (expr, 0));
2853 case COND_EXPR:
2854 ret1 = tree_ctz (TREE_OPERAND (expr, 1));
2855 if (ret1 == 0)
2856 return 0;
2857 ret2 = tree_ctz (TREE_OPERAND (expr, 2));
2858 return MIN (ret1, ret2);
2859 case COMPOUND_EXPR:
2860 return tree_ctz (TREE_OPERAND (expr, 1));
2861 case ADDR_EXPR:
2862 ret1 = get_pointer_alignment (CONST_CAST_TREE (expr));
2863 if (ret1 > BITS_PER_UNIT)
2864 {
2865 ret1 = ctz_hwi (ret1 / BITS_PER_UNIT);
2866 return MIN (ret1, prec);
2867 }
2868 return 0;
2869 default:
2870 return 0;
2871 }
2872 }
2873
2874 /* Return 1 if EXPR is the real constant zero. Trailing zeroes matter for
2875 decimal float constants, so don't return 1 for them.
2876 Also return 1 for location wrappers around such a constant. */
2877
2878 bool
2879 real_zerop (const_tree expr)
2880 {
2881 STRIP_ANY_LOCATION_WRAPPER (expr);
2882
2883 switch (TREE_CODE (expr))
2884 {
2885 case REAL_CST:
2886 return real_equal (&TREE_REAL_CST (expr), &dconst0)
2887 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2888 case COMPLEX_CST:
2889 return real_zerop (TREE_REALPART (expr))
2890 && real_zerop (TREE_IMAGPART (expr));
2891 case VECTOR_CST:
2892 {
2893 /* Don't simply check for a duplicate because the predicate
2894 accepts both +0.0 and -0.0. */
2895 unsigned count = vector_cst_encoded_nelts (expr);
2896 for (unsigned int i = 0; i < count; ++i)
2897 if (!real_zerop (VECTOR_CST_ENCODED_ELT (expr, i)))
2898 return false;
2899 return true;
2900 }
2901 default:
2902 return false;
2903 }
2904 }
2905
2906 /* Return 1 if EXPR is the real constant one in real or complex form.
2907 Trailing zeroes matter for decimal float constants, so don't return
2908 1 for them.
2909 Also return 1 for location wrappers around such a constant. */
2910
2911 bool
2912 real_onep (const_tree expr)
2913 {
2914 STRIP_ANY_LOCATION_WRAPPER (expr);
2915
2916 switch (TREE_CODE (expr))
2917 {
2918 case REAL_CST:
2919 return real_equal (&TREE_REAL_CST (expr), &dconst1)
2920 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2921 case COMPLEX_CST:
2922 return real_onep (TREE_REALPART (expr))
2923 && real_zerop (TREE_IMAGPART (expr));
2924 case VECTOR_CST:
2925 return (VECTOR_CST_NPATTERNS (expr) == 1
2926 && VECTOR_CST_DUPLICATE_P (expr)
2927 && real_onep (VECTOR_CST_ENCODED_ELT (expr, 0)));
2928 default:
2929 return false;
2930 }
2931 }
2932
2933 /* Return 1 if EXPR is the real constant minus one. Trailing zeroes
2934 matter for decimal float constants, so don't return 1 for them.
2935 Also return 1 for location wrappers around such a constant. */
2936
2937 bool
2938 real_minus_onep (const_tree expr)
2939 {
2940 STRIP_ANY_LOCATION_WRAPPER (expr);
2941
2942 switch (TREE_CODE (expr))
2943 {
2944 case REAL_CST:
2945 return real_equal (&TREE_REAL_CST (expr), &dconstm1)
2946 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2947 case COMPLEX_CST:
2948 return real_minus_onep (TREE_REALPART (expr))
2949 && real_zerop (TREE_IMAGPART (expr));
2950 case VECTOR_CST:
2951 return (VECTOR_CST_NPATTERNS (expr) == 1
2952 && VECTOR_CST_DUPLICATE_P (expr)
2953 && real_minus_onep (VECTOR_CST_ENCODED_ELT (expr, 0)));
2954 default:
2955 return false;
2956 }
2957 }
2958
2959 /* Nonzero if EXP is a constant or a cast of a constant. */
2960
2961 bool
2962 really_constant_p (const_tree exp)
2963 {
2964 /* This is not quite the same as STRIP_NOPS. It does more. */
2965 while (CONVERT_EXPR_P (exp)
2966 || TREE_CODE (exp) == NON_LVALUE_EXPR)
2967 exp = TREE_OPERAND (exp, 0);
2968 return TREE_CONSTANT (exp);
2969 }
2970
2971 /* Return true if T holds a polynomial pointer difference, storing it in
2972 *VALUE if so. A true return means that T's precision is no greater
2973 than 64 bits, which is the largest address space we support, so *VALUE
2974 never loses precision. However, the signedness of the result does
2975 not necessarily match the signedness of T: sometimes an unsigned type
2976 like sizetype is used to encode a value that is actually negative. */
2977
2978 bool
2979 ptrdiff_tree_p (const_tree t, poly_int64_pod *value)
2980 {
2981 if (!t)
2982 return false;
2983 if (TREE_CODE (t) == INTEGER_CST)
2984 {
2985 if (!cst_and_fits_in_hwi (t))
2986 return false;
2987 *value = int_cst_value (t);
2988 return true;
2989 }
2990 if (POLY_INT_CST_P (t))
2991 {
2992 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2993 if (!cst_and_fits_in_hwi (POLY_INT_CST_COEFF (t, i)))
2994 return false;
2995 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2996 value->coeffs[i] = int_cst_value (POLY_INT_CST_COEFF (t, i));
2997 return true;
2998 }
2999 return false;
3000 }
3001
3002 poly_int64
3003 tree_to_poly_int64 (const_tree t)
3004 {
3005 gcc_assert (tree_fits_poly_int64_p (t));
3006 if (POLY_INT_CST_P (t))
3007 return poly_int_cst_value (t).force_shwi ();
3008 return TREE_INT_CST_LOW (t);
3009 }
3010
3011 poly_uint64
3012 tree_to_poly_uint64 (const_tree t)
3013 {
3014 gcc_assert (tree_fits_poly_uint64_p (t));
3015 if (POLY_INT_CST_P (t))
3016 return poly_int_cst_value (t).force_uhwi ();
3017 return TREE_INT_CST_LOW (t);
3018 }
3019 \f
3020 /* Return first list element whose TREE_VALUE is ELEM.
3021 Return 0 if ELEM is not in LIST. */
3022
3023 tree
3024 value_member (tree elem, tree list)
3025 {
3026 while (list)
3027 {
3028 if (elem == TREE_VALUE (list))
3029 return list;
3030 list = TREE_CHAIN (list);
3031 }
3032 return NULL_TREE;
3033 }
3034
3035 /* Return first list element whose TREE_PURPOSE is ELEM.
3036 Return 0 if ELEM is not in LIST. */
3037
3038 tree
3039 purpose_member (const_tree elem, tree list)
3040 {
3041 while (list)
3042 {
3043 if (elem == TREE_PURPOSE (list))
3044 return list;
3045 list = TREE_CHAIN (list);
3046 }
3047 return NULL_TREE;
3048 }
3049
3050 /* Return true if ELEM is in V. */
3051
3052 bool
3053 vec_member (const_tree elem, vec<tree, va_gc> *v)
3054 {
3055 unsigned ix;
3056 tree t;
3057 FOR_EACH_VEC_SAFE_ELT (v, ix, t)
3058 if (elem == t)
3059 return true;
3060 return false;
3061 }
3062
3063 /* Returns element number IDX (zero-origin) of chain CHAIN, or
3064 NULL_TREE. */
3065
3066 tree
3067 chain_index (int idx, tree chain)
3068 {
3069 for (; chain && idx > 0; --idx)
3070 chain = TREE_CHAIN (chain);
3071 return chain;
3072 }
3073
3074 /* Return nonzero if ELEM is part of the chain CHAIN. */
3075
3076 bool
3077 chain_member (const_tree elem, const_tree chain)
3078 {
3079 while (chain)
3080 {
3081 if (elem == chain)
3082 return true;
3083 chain = DECL_CHAIN (chain);
3084 }
3085
3086 return false;
3087 }
3088
3089 /* Return the length of a chain of nodes chained through TREE_CHAIN.
3090 We expect a null pointer to mark the end of the chain.
3091 This is the Lisp primitive `length'. */
3092
3093 int
3094 list_length (const_tree t)
3095 {
3096 const_tree p = t;
3097 #ifdef ENABLE_TREE_CHECKING
3098 const_tree q = t;
3099 #endif
3100 int len = 0;
3101
3102 while (p)
3103 {
3104 p = TREE_CHAIN (p);
3105 #ifdef ENABLE_TREE_CHECKING
3106 if (len % 2)
3107 q = TREE_CHAIN (q);
3108 gcc_assert (p != q);
3109 #endif
3110 len++;
3111 }
3112
3113 return len;
3114 }
3115
3116 /* Returns the first FIELD_DECL in the TYPE_FIELDS of the RECORD_TYPE or
3117 UNION_TYPE TYPE, or NULL_TREE if none. */
3118
3119 tree
3120 first_field (const_tree type)
3121 {
3122 tree t = TYPE_FIELDS (type);
3123 while (t && TREE_CODE (t) != FIELD_DECL)
3124 t = TREE_CHAIN (t);
3125 return t;
3126 }
3127
3128 /* Returns the last FIELD_DECL in the TYPE_FIELDS of the RECORD_TYPE or
3129 UNION_TYPE TYPE, or NULL_TREE if none. */
3130
3131 tree
3132 last_field (const_tree type)
3133 {
3134 tree last = NULL_TREE;
3135
3136 for (tree fld = TYPE_FIELDS (type); fld; fld = TREE_CHAIN (fld))
3137 {
3138 if (TREE_CODE (fld) != FIELD_DECL)
3139 continue;
3140
3141 last = fld;
3142 }
3143
3144 return last;
3145 }
3146
3147 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
3148 by modifying the last node in chain 1 to point to chain 2.
3149 This is the Lisp primitive `nconc'. */
3150
3151 tree
3152 chainon (tree op1, tree op2)
3153 {
3154 tree t1;
3155
3156 if (!op1)
3157 return op2;
3158 if (!op2)
3159 return op1;
3160
3161 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
3162 continue;
3163 TREE_CHAIN (t1) = op2;
3164
3165 #ifdef ENABLE_TREE_CHECKING
3166 {
3167 tree t2;
3168 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
3169 gcc_assert (t2 != t1);
3170 }
3171 #endif
3172
3173 return op1;
3174 }
3175
3176 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
3177
3178 tree
3179 tree_last (tree chain)
3180 {
3181 tree next;
3182 if (chain)
3183 while ((next = TREE_CHAIN (chain)))
3184 chain = next;
3185 return chain;
3186 }
3187
3188 /* Reverse the order of elements in the chain T,
3189 and return the new head of the chain (old last element). */
3190
3191 tree
3192 nreverse (tree t)
3193 {
3194 tree prev = 0, decl, next;
3195 for (decl = t; decl; decl = next)
3196 {
3197 /* We shouldn't be using this function to reverse BLOCK chains; we
3198 have blocks_nreverse for that. */
3199 gcc_checking_assert (TREE_CODE (decl) != BLOCK);
3200 next = TREE_CHAIN (decl);
3201 TREE_CHAIN (decl) = prev;
3202 prev = decl;
3203 }
3204 return prev;
3205 }
3206 \f
3207 /* Return a newly created TREE_LIST node whose
3208 purpose and value fields are PARM and VALUE. */
3209
3210 tree
3211 build_tree_list (tree parm, tree value MEM_STAT_DECL)
3212 {
3213 tree t = make_node (TREE_LIST PASS_MEM_STAT);
3214 TREE_PURPOSE (t) = parm;
3215 TREE_VALUE (t) = value;
3216 return t;
3217 }
3218
3219 /* Build a chain of TREE_LIST nodes from a vector. */
3220
3221 tree
3222 build_tree_list_vec (const vec<tree, va_gc> *vec MEM_STAT_DECL)
3223 {
3224 tree ret = NULL_TREE;
3225 tree *pp = &ret;
3226 unsigned int i;
3227 tree t;
3228 FOR_EACH_VEC_SAFE_ELT (vec, i, t)
3229 {
3230 *pp = build_tree_list (NULL, t PASS_MEM_STAT);
3231 pp = &TREE_CHAIN (*pp);
3232 }
3233 return ret;
3234 }
3235
3236 /* Return a newly created TREE_LIST node whose
3237 purpose and value fields are PURPOSE and VALUE
3238 and whose TREE_CHAIN is CHAIN. */
3239
3240 tree
3241 tree_cons (tree purpose, tree value, tree chain MEM_STAT_DECL)
3242 {
3243 tree node;
3244
3245 node = ggc_alloc_tree_node_stat (sizeof (struct tree_list) PASS_MEM_STAT);
3246 memset (node, 0, sizeof (struct tree_common));
3247
3248 record_node_allocation_statistics (TREE_LIST, sizeof (struct tree_list));
3249
3250 TREE_SET_CODE (node, TREE_LIST);
3251 TREE_CHAIN (node) = chain;
3252 TREE_PURPOSE (node) = purpose;
3253 TREE_VALUE (node) = value;
3254 return node;
3255 }
3256
3257 /* Return the values of the elements of a CONSTRUCTOR as a vector of
3258 trees. */
3259
3260 vec<tree, va_gc> *
3261 ctor_to_vec (tree ctor)
3262 {
3263 vec<tree, va_gc> *vec;
3264 vec_alloc (vec, CONSTRUCTOR_NELTS (ctor));
3265 unsigned int ix;
3266 tree val;
3267
3268 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (ctor), ix, val)
3269 vec->quick_push (val);
3270
3271 return vec;
3272 }
3273 \f
3274 /* Return the size nominally occupied by an object of type TYPE
3275 when it resides in memory. The value is measured in units of bytes,
3276 and its data type is that normally used for type sizes
3277 (which is the first type created by make_signed_type or
3278 make_unsigned_type). */
3279
3280 tree
3281 size_in_bytes_loc (location_t loc, const_tree type)
3282 {
3283 tree t;
3284
3285 if (type == error_mark_node)
3286 return integer_zero_node;
3287
3288 type = TYPE_MAIN_VARIANT (type);
3289 t = TYPE_SIZE_UNIT (type);
3290
3291 if (t == 0)
3292 {
3293 lang_hooks.types.incomplete_type_error (loc, NULL_TREE, type);
3294 return size_zero_node;
3295 }
3296
3297 return t;
3298 }
3299
3300 /* Return the size of TYPE (in bytes) as a wide integer
3301 or return -1 if the size can vary or is larger than an integer. */
3302
3303 HOST_WIDE_INT
3304 int_size_in_bytes (const_tree type)
3305 {
3306 tree t;
3307
3308 if (type == error_mark_node)
3309 return 0;
3310
3311 type = TYPE_MAIN_VARIANT (type);
3312 t = TYPE_SIZE_UNIT (type);
3313
3314 if (t && tree_fits_uhwi_p (t))
3315 return TREE_INT_CST_LOW (t);
3316 else
3317 return -1;
3318 }
3319
3320 /* Return the maximum size of TYPE (in bytes) as a wide integer
3321 or return -1 if the size can vary or is larger than an integer. */
3322
3323 HOST_WIDE_INT
3324 max_int_size_in_bytes (const_tree type)
3325 {
3326 HOST_WIDE_INT size = -1;
3327 tree size_tree;
3328
3329 /* If this is an array type, check for a possible MAX_SIZE attached. */
3330
3331 if (TREE_CODE (type) == ARRAY_TYPE)
3332 {
3333 size_tree = TYPE_ARRAY_MAX_SIZE (type);
3334
3335 if (size_tree && tree_fits_uhwi_p (size_tree))
3336 size = tree_to_uhwi (size_tree);
3337 }
3338
3339 /* If we still haven't been able to get a size, see if the language
3340 can compute a maximum size. */
3341
3342 if (size == -1)
3343 {
3344 size_tree = lang_hooks.types.max_size (type);
3345
3346 if (size_tree && tree_fits_uhwi_p (size_tree))
3347 size = tree_to_uhwi (size_tree);
3348 }
3349
3350 return size;
3351 }
3352 \f
3353 /* Return the bit position of FIELD, in bits from the start of the record.
3354 This is a tree of type bitsizetype. */
3355
3356 tree
3357 bit_position (const_tree field)
3358 {
3359 return bit_from_pos (DECL_FIELD_OFFSET (field),
3360 DECL_FIELD_BIT_OFFSET (field));
3361 }
3362 \f
3363 /* Return the byte position of FIELD, in bytes from the start of the record.
3364 This is a tree of type sizetype. */
3365
3366 tree
3367 byte_position (const_tree field)
3368 {
3369 return byte_from_pos (DECL_FIELD_OFFSET (field),
3370 DECL_FIELD_BIT_OFFSET (field));
3371 }
3372
3373 /* Likewise, but return as an integer. It must be representable in
3374 that way (since it could be a signed value, we don't have the
3375 option of returning -1 like int_size_in_byte can. */
3376
3377 HOST_WIDE_INT
3378 int_byte_position (const_tree field)
3379 {
3380 return tree_to_shwi (byte_position (field));
3381 }
3382 \f
3383 /* Return, as a tree node, the number of elements for TYPE (which is an
3384 ARRAY_TYPE) minus one. This counts only elements of the top array. */
3385
3386 tree
3387 array_type_nelts (const_tree type)
3388 {
3389 tree index_type, min, max;
3390
3391 /* If they did it with unspecified bounds, then we should have already
3392 given an error about it before we got here. */
3393 if (! TYPE_DOMAIN (type))
3394 return error_mark_node;
3395
3396 index_type = TYPE_DOMAIN (type);
3397 min = TYPE_MIN_VALUE (index_type);
3398 max = TYPE_MAX_VALUE (index_type);
3399
3400 /* TYPE_MAX_VALUE may not be set if the array has unknown length. */
3401 if (!max)
3402 return error_mark_node;
3403
3404 return (integer_zerop (min)
3405 ? max
3406 : fold_build2 (MINUS_EXPR, TREE_TYPE (max), max, min));
3407 }
3408 \f
3409 /* If arg is static -- a reference to an object in static storage -- then
3410 return the object. This is not the same as the C meaning of `static'.
3411 If arg isn't static, return NULL. */
3412
3413 tree
3414 staticp (tree arg)
3415 {
3416 switch (TREE_CODE (arg))
3417 {
3418 case FUNCTION_DECL:
3419 /* Nested functions are static, even though taking their address will
3420 involve a trampoline as we unnest the nested function and create
3421 the trampoline on the tree level. */
3422 return arg;
3423
3424 case VAR_DECL:
3425 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
3426 && ! DECL_THREAD_LOCAL_P (arg)
3427 && ! DECL_DLLIMPORT_P (arg)
3428 ? arg : NULL);
3429
3430 case CONST_DECL:
3431 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
3432 ? arg : NULL);
3433
3434 case CONSTRUCTOR:
3435 return TREE_STATIC (arg) ? arg : NULL;
3436
3437 case LABEL_DECL:
3438 case STRING_CST:
3439 return arg;
3440
3441 case COMPONENT_REF:
3442 /* If the thing being referenced is not a field, then it is
3443 something language specific. */
3444 gcc_assert (TREE_CODE (TREE_OPERAND (arg, 1)) == FIELD_DECL);
3445
3446 /* If we are referencing a bitfield, we can't evaluate an
3447 ADDR_EXPR at compile time and so it isn't a constant. */
3448 if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
3449 return NULL;
3450
3451 return staticp (TREE_OPERAND (arg, 0));
3452
3453 case BIT_FIELD_REF:
3454 return NULL;
3455
3456 case INDIRECT_REF:
3457 return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;
3458
3459 case ARRAY_REF:
3460 case ARRAY_RANGE_REF:
3461 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
3462 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
3463 return staticp (TREE_OPERAND (arg, 0));
3464 else
3465 return NULL;
3466
3467 case COMPOUND_LITERAL_EXPR:
3468 return TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (arg)) ? arg : NULL;
3469
3470 default:
3471 return NULL;
3472 }
3473 }
3474
3475 \f
3476
3477
3478 /* Return whether OP is a DECL whose address is function-invariant. */
3479
3480 bool
3481 decl_address_invariant_p (const_tree op)
3482 {
3483 /* The conditions below are slightly less strict than the one in
3484 staticp. */
3485
3486 switch (TREE_CODE (op))
3487 {
3488 case PARM_DECL:
3489 case RESULT_DECL:
3490 case LABEL_DECL:
3491 case FUNCTION_DECL:
3492 return true;
3493
3494 case VAR_DECL:
3495 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
3496 || DECL_THREAD_LOCAL_P (op)
3497 || DECL_CONTEXT (op) == current_function_decl
3498 || decl_function_context (op) == current_function_decl)
3499 return true;
3500 break;
3501
3502 case CONST_DECL:
3503 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
3504 || decl_function_context (op) == current_function_decl)
3505 return true;
3506 break;
3507
3508 default:
3509 break;
3510 }
3511
3512 return false;
3513 }
3514
3515 /* Return whether OP is a DECL whose address is interprocedural-invariant. */
3516
3517 bool
3518 decl_address_ip_invariant_p (const_tree op)
3519 {
3520 /* The conditions below are slightly less strict than the one in
3521 staticp. */
3522
3523 switch (TREE_CODE (op))
3524 {
3525 case LABEL_DECL:
3526 case FUNCTION_DECL:
3527 case STRING_CST:
3528 return true;
3529
3530 case VAR_DECL:
3531 if (((TREE_STATIC (op) || DECL_EXTERNAL (op))
3532 && !DECL_DLLIMPORT_P (op))
3533 || DECL_THREAD_LOCAL_P (op))
3534 return true;
3535 break;
3536
3537 case CONST_DECL:
3538 if ((TREE_STATIC (op) || DECL_EXTERNAL (op)))
3539 return true;
3540 break;
3541
3542 default:
3543 break;
3544 }
3545
3546 return false;
3547 }
3548
3549
3550 /* Return true if T is function-invariant (internal function, does
3551 not handle arithmetic; that's handled in skip_simple_arithmetic and
3552 tree_invariant_p). */
3553
3554 static bool
3555 tree_invariant_p_1 (tree t)
3556 {
3557 tree op;
3558
3559 if (TREE_CONSTANT (t)
3560 || (TREE_READONLY (t) && !TREE_SIDE_EFFECTS (t)))
3561 return true;
3562
3563 switch (TREE_CODE (t))
3564 {
3565 case SAVE_EXPR:
3566 return true;
3567
3568 case ADDR_EXPR:
3569 op = TREE_OPERAND (t, 0);
3570 while (handled_component_p (op))
3571 {
3572 switch (TREE_CODE (op))
3573 {
3574 case ARRAY_REF:
3575 case ARRAY_RANGE_REF:
3576 if (!tree_invariant_p (TREE_OPERAND (op, 1))
3577 || TREE_OPERAND (op, 2) != NULL_TREE
3578 || TREE_OPERAND (op, 3) != NULL_TREE)
3579 return false;
3580 break;
3581
3582 case COMPONENT_REF:
3583 if (TREE_OPERAND (op, 2) != NULL_TREE)
3584 return false;
3585 break;
3586
3587 default:;
3588 }
3589 op = TREE_OPERAND (op, 0);
3590 }
3591
3592 return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
3593
3594 default:
3595 break;
3596 }
3597
3598 return false;
3599 }
3600
3601 /* Return true if T is function-invariant. */
3602
3603 bool
3604 tree_invariant_p (tree t)
3605 {
3606 tree inner = skip_simple_arithmetic (t);
3607 return tree_invariant_p_1 (inner);
3608 }
3609
3610 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
3611 Do this to any expression which may be used in more than one place,
3612 but must be evaluated only once.
3613
3614 Normally, expand_expr would reevaluate the expression each time.
3615 Calling save_expr produces something that is evaluated and recorded
3616 the first time expand_expr is called on it. Subsequent calls to
3617 expand_expr just reuse the recorded value.
3618
3619 The call to expand_expr that generates code that actually computes
3620 the value is the first call *at compile time*. Subsequent calls
3621 *at compile time* generate code to use the saved value.
3622 This produces correct result provided that *at run time* control
3623 always flows through the insns made by the first expand_expr
3624 before reaching the other places where the save_expr was evaluated.
3625 You, the caller of save_expr, must make sure this is so.
3626
3627 Constants, and certain read-only nodes, are returned with no
3628 SAVE_EXPR because that is safe. Expressions containing placeholders
3629 are not touched; see tree.def for an explanation of what these
3630 are used for. */
3631
3632 tree
3633 save_expr (tree expr)
3634 {
3635 tree inner;
3636
3637 /* If the tree evaluates to a constant, then we don't want to hide that
3638 fact (i.e. this allows further folding, and direct checks for constants).
3639 However, a read-only object that has side effects cannot be bypassed.
3640 Since it is no problem to reevaluate literals, we just return the
3641 literal node. */
3642 inner = skip_simple_arithmetic (expr);
3643 if (TREE_CODE (inner) == ERROR_MARK)
3644 return inner;
3645
3646 if (tree_invariant_p_1 (inner))
3647 return expr;
3648
3649 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
3650 it means that the size or offset of some field of an object depends on
3651 the value within another field.
3652
3653 Note that it must not be the case that EXPR contains both a PLACEHOLDER_EXPR
3654 and some variable since it would then need to be both evaluated once and
3655 evaluated more than once. Front-ends must assure this case cannot
3656 happen by surrounding any such subexpressions in their own SAVE_EXPR
3657 and forcing evaluation at the proper time. */
3658 if (contains_placeholder_p (inner))
3659 return expr;
3660
3661 expr = build1_loc (EXPR_LOCATION (expr), SAVE_EXPR, TREE_TYPE (expr), expr);
3662
3663 /* This expression might be placed ahead of a jump to ensure that the
3664 value was computed on both sides of the jump. So make sure it isn't
3665 eliminated as dead. */
3666 TREE_SIDE_EFFECTS (expr) = 1;
3667 return expr;
3668 }
3669
3670 /* Look inside EXPR into any simple arithmetic operations. Return the
3671 outermost non-arithmetic or non-invariant node. */
3672
3673 tree
3674 skip_simple_arithmetic (tree expr)
3675 {
3676 /* We don't care about whether this can be used as an lvalue in this
3677 context. */
3678 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
3679 expr = TREE_OPERAND (expr, 0);
3680
3681 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
3682 a constant, it will be more efficient to not make another SAVE_EXPR since
3683 it will allow better simplification and GCSE will be able to merge the
3684 computations if they actually occur. */
3685 while (true)
3686 {
3687 if (UNARY_CLASS_P (expr))
3688 expr = TREE_OPERAND (expr, 0);
3689 else if (BINARY_CLASS_P (expr))
3690 {
3691 if (tree_invariant_p (TREE_OPERAND (expr, 1)))
3692 expr = TREE_OPERAND (expr, 0);
3693 else if (tree_invariant_p (TREE_OPERAND (expr, 0)))
3694 expr = TREE_OPERAND (expr, 1);
3695 else
3696 break;
3697 }
3698 else
3699 break;
3700 }
3701
3702 return expr;
3703 }
3704
3705 /* Look inside EXPR into simple arithmetic operations involving constants.
3706 Return the outermost non-arithmetic or non-constant node. */
3707
3708 tree
3709 skip_simple_constant_arithmetic (tree expr)
3710 {
3711 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
3712 expr = TREE_OPERAND (expr, 0);
3713
3714 while (true)
3715 {
3716 if (UNARY_CLASS_P (expr))
3717 expr = TREE_OPERAND (expr, 0);
3718 else if (BINARY_CLASS_P (expr))
3719 {
3720 if (TREE_CONSTANT (TREE_OPERAND (expr, 1)))
3721 expr = TREE_OPERAND (expr, 0);
3722 else if (TREE_CONSTANT (TREE_OPERAND (expr, 0)))
3723 expr = TREE_OPERAND (expr, 1);
3724 else
3725 break;
3726 }
3727 else
3728 break;
3729 }
3730
3731 return expr;
3732 }
3733
3734 /* Return which tree structure is used by T. */
3735
3736 enum tree_node_structure_enum
3737 tree_node_structure (const_tree t)
3738 {
3739 const enum tree_code code = TREE_CODE (t);
3740 return tree_node_structure_for_code (code);
3741 }
3742
3743 /* Set various status flags when building a CALL_EXPR object T. */
3744
3745 static void
3746 process_call_operands (tree t)
3747 {
3748 bool side_effects = TREE_SIDE_EFFECTS (t);
3749 bool read_only = false;
3750 int i = call_expr_flags (t);
3751
3752 /* Calls have side-effects, except those to const or pure functions. */
3753 if ((i & ECF_LOOPING_CONST_OR_PURE) || !(i & (ECF_CONST | ECF_PURE)))
3754 side_effects = true;
3755 /* Propagate TREE_READONLY of arguments for const functions. */
3756 if (i & ECF_CONST)
3757 read_only = true;
3758
3759 if (!side_effects || read_only)
3760 for (i = 1; i < TREE_OPERAND_LENGTH (t); i++)
3761 {
3762 tree op = TREE_OPERAND (t, i);
3763 if (op && TREE_SIDE_EFFECTS (op))
3764 side_effects = true;
3765 if (op && !TREE_READONLY (op) && !CONSTANT_CLASS_P (op))
3766 read_only = false;
3767 }
3768
3769 TREE_SIDE_EFFECTS (t) = side_effects;
3770 TREE_READONLY (t) = read_only;
3771 }
3772 \f
3773 /* Return true if EXP contains a PLACEHOLDER_EXPR, i.e. if it represents a
3774 size or offset that depends on a field within a record. */
3775
3776 bool
3777 contains_placeholder_p (const_tree exp)
3778 {
3779 enum tree_code code;
3780
3781 if (!exp)
3782 return 0;
3783
3784 code = TREE_CODE (exp);
3785 if (code == PLACEHOLDER_EXPR)
3786 return 1;
3787
3788 switch (TREE_CODE_CLASS (code))
3789 {
3790 case tcc_reference:
3791 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
3792 position computations since they will be converted into a
3793 WITH_RECORD_EXPR involving the reference, which will assume
3794 here will be valid. */
3795 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
3796
3797 case tcc_exceptional:
3798 if (code == TREE_LIST)
3799 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
3800 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
3801 break;
3802
3803 case tcc_unary:
3804 case tcc_binary:
3805 case tcc_comparison:
3806 case tcc_expression:
3807 switch (code)
3808 {
3809 case COMPOUND_EXPR:
3810 /* Ignoring the first operand isn't quite right, but works best. */
3811 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
3812
3813 case COND_EXPR:
3814 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
3815 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
3816 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
3817
3818 case SAVE_EXPR:
3819 /* The save_expr function never wraps anything containing
3820 a PLACEHOLDER_EXPR. */
3821 return 0;
3822
3823 default:
3824 break;
3825 }
3826
3827 switch (TREE_CODE_LENGTH (code))
3828 {
3829 case 1:
3830 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
3831 case 2:
3832 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
3833 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
3834 default:
3835 return 0;
3836 }
3837
3838 case tcc_vl_exp:
3839 switch (code)
3840 {
3841 case CALL_EXPR:
3842 {
3843 const_tree arg;
3844 const_call_expr_arg_iterator iter;
3845 FOR_EACH_CONST_CALL_EXPR_ARG (arg, iter, exp)
3846 if (CONTAINS_PLACEHOLDER_P (arg))
3847 return 1;
3848 return 0;
3849 }
3850 default:
3851 return 0;
3852 }
3853
3854 default:
3855 return 0;
3856 }
3857 return 0;
3858 }
3859
3860 /* Return true if any part of the structure of TYPE involves a PLACEHOLDER_EXPR
3861 directly. This includes size, bounds, qualifiers (for QUAL_UNION_TYPE) and
3862 field positions. */
3863
3864 static bool
3865 type_contains_placeholder_1 (const_tree type)
3866 {
3867 /* If the size contains a placeholder or the parent type (component type in
3868 the case of arrays) type involves a placeholder, this type does. */
3869 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
3870 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
3871 || (!POINTER_TYPE_P (type)
3872 && TREE_TYPE (type)
3873 && type_contains_placeholder_p (TREE_TYPE (type))))
3874 return true;
3875
3876 /* Now do type-specific checks. Note that the last part of the check above
3877 greatly limits what we have to do below. */
3878 switch (TREE_CODE (type))
3879 {
3880 case VOID_TYPE:
3881 case COMPLEX_TYPE:
3882 case ENUMERAL_TYPE:
3883 case BOOLEAN_TYPE:
3884 case POINTER_TYPE:
3885 case OFFSET_TYPE:
3886 case REFERENCE_TYPE:
3887 case METHOD_TYPE:
3888 case FUNCTION_TYPE:
3889 case VECTOR_TYPE:
3890 case NULLPTR_TYPE:
3891 return false;
3892
3893 case INTEGER_TYPE:
3894 case REAL_TYPE:
3895 case FIXED_POINT_TYPE:
3896 /* Here we just check the bounds. */
3897 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
3898 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
3899
3900 case ARRAY_TYPE:
3901 /* We have already checked the component type above, so just check
3902 the domain type. Flexible array members have a null domain. */
3903 return TYPE_DOMAIN (type) ?
3904 type_contains_placeholder_p (TYPE_DOMAIN (type)) : false;
3905
3906 case RECORD_TYPE:
3907 case UNION_TYPE:
3908 case QUAL_UNION_TYPE:
3909 {
3910 tree field;
3911
3912 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
3913 if (TREE_CODE (field) == FIELD_DECL
3914 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
3915 || (TREE_CODE (type) == QUAL_UNION_TYPE
3916 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
3917 || type_contains_placeholder_p (TREE_TYPE (field))))
3918 return true;
3919
3920 return false;
3921 }
3922
3923 default:
3924 gcc_unreachable ();
3925 }
3926 }
3927
3928 /* Wrapper around above function used to cache its result. */
3929
3930 bool
3931 type_contains_placeholder_p (tree type)
3932 {
3933 bool result;
3934
3935 /* If the contains_placeholder_bits field has been initialized,
3936 then we know the answer. */
3937 if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0)
3938 return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1;
3939
3940 /* Indicate that we've seen this type node, and the answer is false.
3941 This is what we want to return if we run into recursion via fields. */
3942 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1;
3943
3944 /* Compute the real value. */
3945 result = type_contains_placeholder_1 (type);
3946
3947 /* Store the real value. */
3948 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1;
3949
3950 return result;
3951 }
3952 \f
3953 /* Push tree EXP onto vector QUEUE if it is not already present. */
3954
3955 static void
3956 push_without_duplicates (tree exp, vec<tree> *queue)
3957 {
3958 unsigned int i;
3959 tree iter;
3960
3961 FOR_EACH_VEC_ELT (*queue, i, iter)
3962 if (simple_cst_equal (iter, exp) == 1)
3963 break;
3964
3965 if (!iter)
3966 queue->safe_push (exp);
3967 }
3968
3969 /* Given a tree EXP, find all occurrences of references to fields
3970 in a PLACEHOLDER_EXPR and place them in vector REFS without
3971 duplicates. Also record VAR_DECLs and CONST_DECLs. Note that
3972 we assume here that EXP contains only arithmetic expressions
3973 or CALL_EXPRs with PLACEHOLDER_EXPRs occurring only in their
3974 argument list. */
3975
3976 void
3977 find_placeholder_in_expr (tree exp, vec<tree> *refs)
3978 {
3979 enum tree_code code = TREE_CODE (exp);
3980 tree inner;
3981 int i;
3982
3983 /* We handle TREE_LIST and COMPONENT_REF separately. */
3984 if (code == TREE_LIST)
3985 {
3986 FIND_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), refs);
3987 FIND_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), refs);
3988 }
3989 else if (code == COMPONENT_REF)
3990 {
3991 for (inner = TREE_OPERAND (exp, 0);
3992 REFERENCE_CLASS_P (inner);
3993 inner = TREE_OPERAND (inner, 0))
3994 ;
3995
3996 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
3997 push_without_duplicates (exp, refs);
3998 else
3999 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), refs);
4000 }
4001 else
4002 switch (TREE_CODE_CLASS (code))
4003 {
4004 case tcc_constant:
4005 break;
4006
4007 case tcc_declaration:
4008 /* Variables allocated to static storage can stay. */
4009 if (!TREE_STATIC (exp))
4010 push_without_duplicates (exp, refs);
4011 break;
4012
4013 case tcc_expression:
4014 /* This is the pattern built in ada/make_aligning_type. */
4015 if (code == ADDR_EXPR
4016 && TREE_CODE (TREE_OPERAND (exp, 0)) == PLACEHOLDER_EXPR)
4017 {
4018 push_without_duplicates (exp, refs);
4019 break;
4020 }
4021
4022 /* Fall through. */
4023
4024 case tcc_exceptional:
4025 case tcc_unary:
4026 case tcc_binary:
4027 case tcc_comparison:
4028 case tcc_reference:
4029 for (i = 0; i < TREE_CODE_LENGTH (code); i++)
4030 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
4031 break;
4032
4033 case tcc_vl_exp:
4034 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
4035 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
4036 break;
4037
4038 default:
4039 gcc_unreachable ();
4040 }
4041 }
4042
4043 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
4044 return a tree with all occurrences of references to F in a
4045 PLACEHOLDER_EXPR replaced by R. Also handle VAR_DECLs and
4046 CONST_DECLs. Note that we assume here that EXP contains only
4047 arithmetic expressions or CALL_EXPRs with PLACEHOLDER_EXPRs
4048 occurring only in their argument list. */
4049
4050 tree
4051 substitute_in_expr (tree exp, tree f, tree r)
4052 {
4053 enum tree_code code = TREE_CODE (exp);
4054 tree op0, op1, op2, op3;
4055 tree new_tree;
4056
4057 /* We handle TREE_LIST and COMPONENT_REF separately. */
4058 if (code == TREE_LIST)
4059 {
4060 op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
4061 op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
4062 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
4063 return exp;
4064
4065 return tree_cons (TREE_PURPOSE (exp), op1, op0);
4066 }
4067 else if (code == COMPONENT_REF)
4068 {
4069 tree inner;
4070
4071 /* If this expression is getting a value from a PLACEHOLDER_EXPR
4072 and it is the right field, replace it with R. */
4073 for (inner = TREE_OPERAND (exp, 0);
4074 REFERENCE_CLASS_P (inner);
4075 inner = TREE_OPERAND (inner, 0))
4076 ;
4077
4078 /* The field. */
4079 op1 = TREE_OPERAND (exp, 1);
4080
4081 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && op1 == f)
4082 return r;
4083
4084 /* If this expression hasn't been completed let, leave it alone. */
4085 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && !TREE_TYPE (inner))
4086 return exp;
4087
4088 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
4089 if (op0 == TREE_OPERAND (exp, 0))
4090 return exp;
4091
4092 new_tree
4093 = fold_build3 (COMPONENT_REF, TREE_TYPE (exp), op0, op1, NULL_TREE);
4094 }
4095 else
4096 switch (TREE_CODE_CLASS (code))
4097 {
4098 case tcc_constant:
4099 return exp;
4100
4101 case tcc_declaration:
4102 if (exp == f)
4103 return r;
4104 else
4105 return exp;
4106
4107 case tcc_expression:
4108 if (exp == f)
4109 return r;
4110
4111 /* Fall through. */
4112
4113 case tcc_exceptional:
4114 case tcc_unary:
4115 case tcc_binary:
4116 case tcc_comparison:
4117 case tcc_reference:
4118 switch (TREE_CODE_LENGTH (code))
4119 {
4120 case 0:
4121 return exp;
4122
4123 case 1:
4124 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
4125 if (op0 == TREE_OPERAND (exp, 0))
4126 return exp;
4127
4128 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
4129 break;
4130
4131 case 2:
4132 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
4133 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
4134
4135 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
4136 return exp;
4137
4138 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
4139 break;
4140
4141 case 3:
4142 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
4143 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
4144 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
4145
4146 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
4147 && op2 == TREE_OPERAND (exp, 2))
4148 return exp;
4149
4150 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
4151 break;
4152
4153 case 4:
4154 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
4155 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
4156 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
4157 op3 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 3), f, r);
4158
4159 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
4160 && op2 == TREE_OPERAND (exp, 2)
4161 && op3 == TREE_OPERAND (exp, 3))
4162 return exp;
4163
4164 new_tree
4165 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
4166 break;
4167
4168 default:
4169 gcc_unreachable ();
4170 }
4171 break;
4172
4173 case tcc_vl_exp:
4174 {
4175 int i;
4176
4177 new_tree = NULL_TREE;
4178
4179 /* If we are trying to replace F with a constant or with another
4180 instance of one of the arguments of the call, inline back
4181 functions which do nothing else than computing a value from
4182 the arguments they are passed. This makes it possible to
4183 fold partially or entirely the replacement expression. */
4184 if (code == CALL_EXPR)
4185 {
4186 bool maybe_inline = false;
4187 if (CONSTANT_CLASS_P (r))
4188 maybe_inline = true;
4189 else
4190 for (i = 3; i < TREE_OPERAND_LENGTH (exp); i++)
4191 if (operand_equal_p (TREE_OPERAND (exp, i), r, 0))
4192 {
4193 maybe_inline = true;
4194 break;
4195 }
4196 if (maybe_inline)
4197 {
4198 tree t = maybe_inline_call_in_expr (exp);
4199 if (t)
4200 return SUBSTITUTE_IN_EXPR (t, f, r);
4201 }
4202 }
4203
4204 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
4205 {
4206 tree op = TREE_OPERAND (exp, i);
4207 tree new_op = SUBSTITUTE_IN_EXPR (op, f, r);
4208 if (new_op != op)
4209 {
4210 if (!new_tree)
4211 new_tree = copy_node (exp);
4212 TREE_OPERAND (new_tree, i) = new_op;
4213 }
4214 }
4215
4216 if (new_tree)
4217 {
4218 new_tree = fold (new_tree);
4219 if (TREE_CODE (new_tree) == CALL_EXPR)
4220 process_call_operands (new_tree);
4221 }
4222 else
4223 return exp;
4224 }
4225 break;
4226
4227 default:
4228 gcc_unreachable ();
4229 }
4230
4231 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
4232
4233 if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
4234 TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
4235
4236 return new_tree;
4237 }
4238
4239 /* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
4240 for it within OBJ, a tree that is an object or a chain of references. */
4241
4242 tree
4243 substitute_placeholder_in_expr (tree exp, tree obj)
4244 {
4245 enum tree_code code = TREE_CODE (exp);
4246 tree op0, op1, op2, op3;
4247 tree new_tree;
4248
4249 /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
4250 in the chain of OBJ. */
4251 if (code == PLACEHOLDER_EXPR)
4252 {
4253 tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
4254 tree elt;
4255
4256 for (elt = obj; elt != 0;
4257 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
4258 || TREE_CODE (elt) == COND_EXPR)
4259 ? TREE_OPERAND (elt, 1)
4260 : (REFERENCE_CLASS_P (elt)
4261 || UNARY_CLASS_P (elt)
4262 || BINARY_CLASS_P (elt)
4263 || VL_EXP_CLASS_P (elt)
4264 || EXPRESSION_CLASS_P (elt))
4265 ? TREE_OPERAND (elt, 0) : 0))
4266 if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
4267 return elt;
4268
4269 for (elt = obj; elt != 0;
4270 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
4271 || TREE_CODE (elt) == COND_EXPR)
4272 ? TREE_OPERAND (elt, 1)
4273 : (REFERENCE_CLASS_P (elt)
4274 || UNARY_CLASS_P (elt)
4275 || BINARY_CLASS_P (elt)
4276 || VL_EXP_CLASS_P (elt)
4277 || EXPRESSION_CLASS_P (elt))
4278 ? TREE_OPERAND (elt, 0) : 0))
4279 if (POINTER_TYPE_P (TREE_TYPE (elt))
4280 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
4281 == need_type))
4282 return fold_build1 (INDIRECT_REF, need_type, elt);
4283
4284 /* If we didn't find it, return the original PLACEHOLDER_EXPR. If it
4285 survives until RTL generation, there will be an error. */
4286 return exp;
4287 }
4288
4289 /* TREE_LIST is special because we need to look at TREE_VALUE
4290 and TREE_CHAIN, not TREE_OPERANDS. */
4291 else if (code == TREE_LIST)
4292 {
4293 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
4294 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
4295 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
4296 return exp;
4297
4298 return tree_cons (TREE_PURPOSE (exp), op1, op0);
4299 }
4300 else
4301 switch (TREE_CODE_CLASS (code))
4302 {
4303 case tcc_constant:
4304 case tcc_declaration:
4305 return exp;
4306
4307 case tcc_exceptional:
4308 case tcc_unary:
4309 case tcc_binary:
4310 case tcc_comparison:
4311 case tcc_expression:
4312 case tcc_reference:
4313 case tcc_statement:
4314 switch (TREE_CODE_LENGTH (code))
4315 {
4316 case 0:
4317 return exp;
4318
4319 case 1:
4320 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
4321 if (op0 == TREE_OPERAND (exp, 0))
4322 return exp;
4323
4324 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
4325 break;
4326
4327 case 2:
4328 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
4329 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
4330
4331 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
4332 return exp;
4333
4334 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
4335 break;
4336
4337 case 3:
4338 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
4339 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
4340 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
4341
4342 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
4343 && op2 == TREE_OPERAND (exp, 2))
4344 return exp;
4345
4346 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
4347 break;
4348
4349 case 4:
4350 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
4351 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
4352 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
4353 op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
4354
4355 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
4356 && op2 == TREE_OPERAND (exp, 2)
4357 && op3 == TREE_OPERAND (exp, 3))
4358 return exp;
4359
4360 new_tree
4361 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
4362 break;
4363
4364 default:
4365 gcc_unreachable ();
4366 }
4367 break;
4368
4369 case tcc_vl_exp:
4370 {
4371 int i;
4372
4373 new_tree = NULL_TREE;
4374
4375 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
4376 {
4377 tree op = TREE_OPERAND (exp, i);
4378 tree new_op = SUBSTITUTE_PLACEHOLDER_IN_EXPR (op, obj);
4379 if (new_op != op)
4380 {
4381 if (!new_tree)
4382 new_tree = copy_node (exp);
4383 TREE_OPERAND (new_tree, i) = new_op;
4384 }
4385 }
4386
4387 if (new_tree)
4388 {
4389 new_tree = fold (new_tree);
4390 if (TREE_CODE (new_tree) == CALL_EXPR)
4391 process_call_operands (new_tree);
4392 }
4393 else
4394 return exp;
4395 }
4396 break;
4397
4398 default:
4399 gcc_unreachable ();
4400 }
4401
4402 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
4403
4404 if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
4405 TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
4406
4407 return new_tree;
4408 }
4409 \f
4410
4411 /* Subroutine of stabilize_reference; this is called for subtrees of
4412 references. Any expression with side-effects must be put in a SAVE_EXPR
4413 to ensure that it is only evaluated once.
4414
4415 We don't put SAVE_EXPR nodes around everything, because assigning very
4416 simple expressions to temporaries causes us to miss good opportunities
4417 for optimizations. Among other things, the opportunity to fold in the
4418 addition of a constant into an addressing mode often gets lost, e.g.
4419 "y[i+1] += x;". In general, we take the approach that we should not make
4420 an assignment unless we are forced into it - i.e., that any non-side effect
4421 operator should be allowed, and that cse should take care of coalescing
4422 multiple utterances of the same expression should that prove fruitful. */
4423
4424 static tree
4425 stabilize_reference_1 (tree e)
4426 {
4427 tree result;
4428 enum tree_code code = TREE_CODE (e);
4429
4430 /* We cannot ignore const expressions because it might be a reference
4431 to a const array but whose index contains side-effects. But we can
4432 ignore things that are actual constant or that already have been
4433 handled by this function. */
4434
4435 if (tree_invariant_p (e))
4436 return e;
4437
4438 switch (TREE_CODE_CLASS (code))
4439 {
4440 case tcc_exceptional:
4441 /* Always wrap STATEMENT_LIST into SAVE_EXPR, even if it doesn't
4442 have side-effects. */
4443 if (code == STATEMENT_LIST)
4444 return save_expr (e);
4445 /* FALLTHRU */
4446 case tcc_type:
4447 case tcc_declaration:
4448 case tcc_comparison:
4449 case tcc_statement:
4450 case tcc_expression:
4451 case tcc_reference:
4452 case tcc_vl_exp:
4453 /* If the expression has side-effects, then encase it in a SAVE_EXPR
4454 so that it will only be evaluated once. */
4455 /* The reference (r) and comparison (<) classes could be handled as
4456 below, but it is generally faster to only evaluate them once. */
4457 if (TREE_SIDE_EFFECTS (e))
4458 return save_expr (e);
4459 return e;
4460
4461 case tcc_constant:
4462 /* Constants need no processing. In fact, we should never reach
4463 here. */
4464 return e;
4465
4466 case tcc_binary:
4467 /* Division is slow and tends to be compiled with jumps,
4468 especially the division by powers of 2 that is often
4469 found inside of an array reference. So do it just once. */
4470 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
4471 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
4472 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
4473 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
4474 return save_expr (e);
4475 /* Recursively stabilize each operand. */
4476 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
4477 stabilize_reference_1 (TREE_OPERAND (e, 1)));
4478 break;
4479
4480 case tcc_unary:
4481 /* Recursively stabilize each operand. */
4482 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
4483 break;
4484
4485 default:
4486 gcc_unreachable ();
4487 }
4488
4489 TREE_TYPE (result) = TREE_TYPE (e);
4490 TREE_READONLY (result) = TREE_READONLY (e);
4491 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
4492 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
4493
4494 return result;
4495 }
4496
4497 /* Stabilize a reference so that we can use it any number of times
4498 without causing its operands to be evaluated more than once.
4499 Returns the stabilized reference. This works by means of save_expr,
4500 so see the caveats in the comments about save_expr.
4501
4502 Also allows conversion expressions whose operands are references.
4503 Any other kind of expression is returned unchanged. */
4504
4505 tree
4506 stabilize_reference (tree ref)
4507 {
4508 tree result;
4509 enum tree_code code = TREE_CODE (ref);
4510
4511 switch (code)
4512 {
4513 case VAR_DECL:
4514 case PARM_DECL:
4515 case RESULT_DECL:
4516 /* No action is needed in this case. */
4517 return ref;
4518
4519 CASE_CONVERT:
4520 case FLOAT_EXPR:
4521 case FIX_TRUNC_EXPR:
4522 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
4523 break;
4524
4525 case INDIRECT_REF:
4526 result = build_nt (INDIRECT_REF,
4527 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
4528 break;
4529
4530 case COMPONENT_REF:
4531 result = build_nt (COMPONENT_REF,
4532 stabilize_reference (TREE_OPERAND (ref, 0)),
4533 TREE_OPERAND (ref, 1), NULL_TREE);
4534 break;
4535
4536 case BIT_FIELD_REF:
4537 result = build_nt (BIT_FIELD_REF,
4538 stabilize_reference (TREE_OPERAND (ref, 0)),
4539 TREE_OPERAND (ref, 1), TREE_OPERAND (ref, 2));
4540 REF_REVERSE_STORAGE_ORDER (result) = REF_REVERSE_STORAGE_ORDER (ref);
4541 break;
4542
4543 case ARRAY_REF:
4544 result = build_nt (ARRAY_REF,
4545 stabilize_reference (TREE_OPERAND (ref, 0)),
4546 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
4547 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
4548 break;
4549
4550 case ARRAY_RANGE_REF:
4551 result = build_nt (ARRAY_RANGE_REF,
4552 stabilize_reference (TREE_OPERAND (ref, 0)),
4553 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
4554 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
4555 break;
4556
4557 case COMPOUND_EXPR:
4558 /* We cannot wrap the first expression in a SAVE_EXPR, as then
4559 it wouldn't be ignored. This matters when dealing with
4560 volatiles. */
4561 return stabilize_reference_1 (ref);
4562
4563 /* If arg isn't a kind of lvalue we recognize, make no change.
4564 Caller should recognize the error for an invalid lvalue. */
4565 default:
4566 return ref;
4567
4568 case ERROR_MARK:
4569 return error_mark_node;
4570 }
4571
4572 TREE_TYPE (result) = TREE_TYPE (ref);
4573 TREE_READONLY (result) = TREE_READONLY (ref);
4574 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
4575 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
4576
4577 return result;
4578 }
4579 \f
4580 /* Low-level constructors for expressions. */
4581
4582 /* A helper function for build1 and constant folders. Set TREE_CONSTANT,
4583 and TREE_SIDE_EFFECTS for an ADDR_EXPR. */
4584
4585 void
4586 recompute_tree_invariant_for_addr_expr (tree t)
4587 {
4588 tree node;
4589 bool tc = true, se = false;
4590
4591 gcc_assert (TREE_CODE (t) == ADDR_EXPR);
4592
4593 /* We started out assuming this address is both invariant and constant, but
4594 does not have side effects. Now go down any handled components and see if
4595 any of them involve offsets that are either non-constant or non-invariant.
4596 Also check for side-effects.
4597
4598 ??? Note that this code makes no attempt to deal with the case where
4599 taking the address of something causes a copy due to misalignment. */
4600
4601 #define UPDATE_FLAGS(NODE) \
4602 do { tree _node = (NODE); \
4603 if (_node && !TREE_CONSTANT (_node)) tc = false; \
4604 if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
4605
4606 for (node = TREE_OPERAND (t, 0); handled_component_p (node);
4607 node = TREE_OPERAND (node, 0))
4608 {
4609 /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
4610 array reference (probably made temporarily by the G++ front end),
4611 so ignore all the operands. */
4612 if ((TREE_CODE (node) == ARRAY_REF
4613 || TREE_CODE (node) == ARRAY_RANGE_REF)
4614 && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
4615 {
4616 UPDATE_FLAGS (TREE_OPERAND (node, 1));
4617 if (TREE_OPERAND (node, 2))
4618 UPDATE_FLAGS (TREE_OPERAND (node, 2));
4619 if (TREE_OPERAND (node, 3))
4620 UPDATE_FLAGS (TREE_OPERAND (node, 3));
4621 }
4622 /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
4623 FIELD_DECL, apparently. The G++ front end can put something else
4624 there, at least temporarily. */
4625 else if (TREE_CODE (node) == COMPONENT_REF
4626 && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
4627 {
4628 if (TREE_OPERAND (node, 2))
4629 UPDATE_FLAGS (TREE_OPERAND (node, 2));
4630 }
4631 }
4632
4633 node = lang_hooks.expr_to_decl (node, &tc, &se);
4634
4635 /* Now see what's inside. If it's an INDIRECT_REF, copy our properties from
4636 the address, since &(*a)->b is a form of addition. If it's a constant, the
4637 address is constant too. If it's a decl, its address is constant if the
4638 decl is static. Everything else is not constant and, furthermore,
4639 taking the address of a volatile variable is not volatile. */
4640 if (TREE_CODE (node) == INDIRECT_REF
4641 || TREE_CODE (node) == MEM_REF)
4642 UPDATE_FLAGS (TREE_OPERAND (node, 0));
4643 else if (CONSTANT_CLASS_P (node))
4644 ;
4645 else if (DECL_P (node))
4646 tc &= (staticp (node) != NULL_TREE);
4647 else
4648 {
4649 tc = false;
4650 se |= TREE_SIDE_EFFECTS (node);
4651 }
4652
4653
4654 TREE_CONSTANT (t) = tc;
4655 TREE_SIDE_EFFECTS (t) = se;
4656 #undef UPDATE_FLAGS
4657 }
4658
4659 /* Build an expression of code CODE, data type TYPE, and operands as
4660 specified. Expressions and reference nodes can be created this way.
4661 Constants, decls, types and misc nodes cannot be.
4662
4663 We define 5 non-variadic functions, from 0 to 4 arguments. This is
4664 enough for all extant tree codes. */
4665
4666 tree
4667 build0 (enum tree_code code, tree tt MEM_STAT_DECL)
4668 {
4669 tree t;
4670
4671 gcc_assert (TREE_CODE_LENGTH (code) == 0);
4672
4673 t = make_node (code PASS_MEM_STAT);
4674 TREE_TYPE (t) = tt;
4675
4676 return t;
4677 }
4678
4679 tree
4680 build1 (enum tree_code code, tree type, tree node MEM_STAT_DECL)
4681 {
4682 int length = sizeof (struct tree_exp);
4683 tree t;
4684
4685 record_node_allocation_statistics (code, length);
4686
4687 gcc_assert (TREE_CODE_LENGTH (code) == 1);
4688
4689 t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
4690
4691 memset (t, 0, sizeof (struct tree_common));
4692
4693 TREE_SET_CODE (t, code);
4694
4695 TREE_TYPE (t) = type;
4696 SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
4697 TREE_OPERAND (t, 0) = node;
4698 if (node && !TYPE_P (node))
4699 {
4700 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
4701 TREE_READONLY (t) = TREE_READONLY (node);
4702 }
4703
4704 if (TREE_CODE_CLASS (code) == tcc_statement)
4705 {
4706 if (code != DEBUG_BEGIN_STMT)
4707 TREE_SIDE_EFFECTS (t) = 1;
4708 }
4709 else switch (code)
4710 {
4711 case VA_ARG_EXPR:
4712 /* All of these have side-effects, no matter what their
4713 operands are. */
4714 TREE_SIDE_EFFECTS (t) = 1;
4715 TREE_READONLY (t) = 0;
4716 break;
4717
4718 case INDIRECT_REF:
4719 /* Whether a dereference is readonly has nothing to do with whether
4720 its operand is readonly. */
4721 TREE_READONLY (t) = 0;
4722 break;
4723
4724 case ADDR_EXPR:
4725 if (node)
4726 recompute_tree_invariant_for_addr_expr (t);
4727 break;
4728
4729 default:
4730 if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
4731 && node && !TYPE_P (node)
4732 && TREE_CONSTANT (node))
4733 TREE_CONSTANT (t) = 1;
4734 if (TREE_CODE_CLASS (code) == tcc_reference
4735 && node && TREE_THIS_VOLATILE (node))
4736 TREE_THIS_VOLATILE (t) = 1;
4737 break;
4738 }
4739
4740 return t;
4741 }
4742
4743 #define PROCESS_ARG(N) \
4744 do { \
4745 TREE_OPERAND (t, N) = arg##N; \
4746 if (arg##N &&!TYPE_P (arg##N)) \
4747 { \
4748 if (TREE_SIDE_EFFECTS (arg##N)) \
4749 side_effects = 1; \
4750 if (!TREE_READONLY (arg##N) \
4751 && !CONSTANT_CLASS_P (arg##N)) \
4752 (void) (read_only = 0); \
4753 if (!TREE_CONSTANT (arg##N)) \
4754 (void) (constant = 0); \
4755 } \
4756 } while (0)
4757
4758 tree
4759 build2 (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
4760 {
4761 bool constant, read_only, side_effects, div_by_zero;
4762 tree t;
4763
4764 gcc_assert (TREE_CODE_LENGTH (code) == 2);
4765
4766 if ((code == MINUS_EXPR || code == PLUS_EXPR || code == MULT_EXPR)
4767 && arg0 && arg1 && tt && POINTER_TYPE_P (tt)
4768 /* When sizetype precision doesn't match that of pointers
4769 we need to be able to build explicit extensions or truncations
4770 of the offset argument. */
4771 && TYPE_PRECISION (sizetype) == TYPE_PRECISION (tt))
4772 gcc_assert (TREE_CODE (arg0) == INTEGER_CST
4773 && TREE_CODE (arg1) == INTEGER_CST);
4774
4775 if (code == POINTER_PLUS_EXPR && arg0 && arg1 && tt)
4776 gcc_assert (POINTER_TYPE_P (tt) && POINTER_TYPE_P (TREE_TYPE (arg0))
4777 && ptrofftype_p (TREE_TYPE (arg1)));
4778
4779 t = make_node (code PASS_MEM_STAT);
4780 TREE_TYPE (t) = tt;
4781
4782 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
4783 result based on those same flags for the arguments. But if the
4784 arguments aren't really even `tree' expressions, we shouldn't be trying
4785 to do this. */
4786
4787 /* Expressions without side effects may be constant if their
4788 arguments are as well. */
4789 constant = (TREE_CODE_CLASS (code) == tcc_comparison
4790 || TREE_CODE_CLASS (code) == tcc_binary);
4791 read_only = 1;
4792 side_effects = TREE_SIDE_EFFECTS (t);
4793
4794 switch (code)
4795 {
4796 case TRUNC_DIV_EXPR:
4797 case CEIL_DIV_EXPR:
4798 case FLOOR_DIV_EXPR:
4799 case ROUND_DIV_EXPR:
4800 case EXACT_DIV_EXPR:
4801 case CEIL_MOD_EXPR:
4802 case FLOOR_MOD_EXPR:
4803 case ROUND_MOD_EXPR:
4804 case TRUNC_MOD_EXPR:
4805 div_by_zero = integer_zerop (arg1);
4806 break;
4807 default:
4808 div_by_zero = false;
4809 }
4810
4811 PROCESS_ARG (0);
4812 PROCESS_ARG (1);
4813
4814 TREE_SIDE_EFFECTS (t) = side_effects;
4815 if (code == MEM_REF)
4816 {
4817 if (arg0 && TREE_CODE (arg0) == ADDR_EXPR)
4818 {
4819 tree o = TREE_OPERAND (arg0, 0);
4820 TREE_READONLY (t) = TREE_READONLY (o);
4821 TREE_THIS_VOLATILE (t) = TREE_THIS_VOLATILE (o);
4822 }
4823 }
4824 else
4825 {
4826 TREE_READONLY (t) = read_only;
4827 /* Don't mark X / 0 as constant. */
4828 TREE_CONSTANT (t) = constant && !div_by_zero;
4829 TREE_THIS_VOLATILE (t)
4830 = (TREE_CODE_CLASS (code) == tcc_reference
4831 && arg0 && TREE_THIS_VOLATILE (arg0));
4832 }
4833
4834 return t;
4835 }
4836
4837
4838 tree
4839 build3 (enum tree_code code, tree tt, tree arg0, tree arg1,
4840 tree arg2 MEM_STAT_DECL)
4841 {
4842 bool constant, read_only, side_effects;
4843 tree t;
4844
4845 gcc_assert (TREE_CODE_LENGTH (code) == 3);
4846 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
4847
4848 t = make_node (code PASS_MEM_STAT);
4849 TREE_TYPE (t) = tt;
4850
4851 read_only = 1;
4852
4853 /* As a special exception, if COND_EXPR has NULL branches, we
4854 assume that it is a gimple statement and always consider
4855 it to have side effects. */
4856 if (code == COND_EXPR
4857 && tt == void_type_node
4858 && arg1 == NULL_TREE
4859 && arg2 == NULL_TREE)
4860 side_effects = true;
4861 else
4862 side_effects = TREE_SIDE_EFFECTS (t);
4863
4864 PROCESS_ARG (0);
4865 PROCESS_ARG (1);
4866 PROCESS_ARG (2);
4867
4868 if (code == COND_EXPR)
4869 TREE_READONLY (t) = read_only;
4870
4871 TREE_SIDE_EFFECTS (t) = side_effects;
4872 TREE_THIS_VOLATILE (t)
4873 = (TREE_CODE_CLASS (code) == tcc_reference
4874 && arg0 && TREE_THIS_VOLATILE (arg0));
4875
4876 return t;
4877 }
4878
4879 tree
4880 build4 (enum tree_code code, tree tt, tree arg0, tree arg1,
4881 tree arg2, tree arg3 MEM_STAT_DECL)
4882 {
4883 bool constant, read_only, side_effects;
4884 tree t;
4885
4886 gcc_assert (TREE_CODE_LENGTH (code) == 4);
4887
4888 t = make_node (code PASS_MEM_STAT);
4889 TREE_TYPE (t) = tt;
4890
4891 side_effects = TREE_SIDE_EFFECTS (t);
4892
4893 PROCESS_ARG (0);
4894 PROCESS_ARG (1);
4895 PROCESS_ARG (2);
4896 PROCESS_ARG (3);
4897
4898 TREE_SIDE_EFFECTS (t) = side_effects;
4899 TREE_THIS_VOLATILE (t)
4900 = (TREE_CODE_CLASS (code) == tcc_reference
4901 && arg0 && TREE_THIS_VOLATILE (arg0));
4902
4903 return t;
4904 }
4905
4906 tree
4907 build5 (enum tree_code code, tree tt, tree arg0, tree arg1,
4908 tree arg2, tree arg3, tree arg4 MEM_STAT_DECL)
4909 {
4910 bool constant, read_only, side_effects;
4911 tree t;
4912
4913 gcc_assert (TREE_CODE_LENGTH (code) == 5);
4914
4915 t = make_node (code PASS_MEM_STAT);
4916 TREE_TYPE (t) = tt;
4917
4918 side_effects = TREE_SIDE_EFFECTS (t);
4919
4920 PROCESS_ARG (0);
4921 PROCESS_ARG (1);
4922 PROCESS_ARG (2);
4923 PROCESS_ARG (3);
4924 PROCESS_ARG (4);
4925
4926 TREE_SIDE_EFFECTS (t) = side_effects;
4927 if (code == TARGET_MEM_REF)
4928 {
4929 if (arg0 && TREE_CODE (arg0) == ADDR_EXPR)
4930 {
4931 tree o = TREE_OPERAND (arg0, 0);
4932 TREE_READONLY (t) = TREE_READONLY (o);
4933 TREE_THIS_VOLATILE (t) = TREE_THIS_VOLATILE (o);
4934 }
4935 }
4936 else
4937 TREE_THIS_VOLATILE (t)
4938 = (TREE_CODE_CLASS (code) == tcc_reference
4939 && arg0 && TREE_THIS_VOLATILE (arg0));
4940
4941 return t;
4942 }
4943
4944 /* Build a simple MEM_REF tree with the sematics of a plain INDIRECT_REF
4945 on the pointer PTR. */
4946
4947 tree
4948 build_simple_mem_ref_loc (location_t loc, tree ptr)
4949 {
4950 poly_int64 offset = 0;
4951 tree ptype = TREE_TYPE (ptr);
4952 tree tem;
4953 /* For convenience allow addresses that collapse to a simple base
4954 and offset. */
4955 if (TREE_CODE (ptr) == ADDR_EXPR
4956 && (handled_component_p (TREE_OPERAND (ptr, 0))
4957 || TREE_CODE (TREE_OPERAND (ptr, 0)) == MEM_REF))
4958 {
4959 ptr = get_addr_base_and_unit_offset (TREE_OPERAND (ptr, 0), &offset);
4960 gcc_assert (ptr);
4961 if (TREE_CODE (ptr) == MEM_REF)
4962 {
4963 offset += mem_ref_offset (ptr).force_shwi ();
4964 ptr = TREE_OPERAND (ptr, 0);
4965 }
4966 else
4967 ptr = build_fold_addr_expr (ptr);
4968 gcc_assert (is_gimple_reg (ptr) || is_gimple_min_invariant (ptr));
4969 }
4970 tem = build2 (MEM_REF, TREE_TYPE (ptype),
4971 ptr, build_int_cst (ptype, offset));
4972 SET_EXPR_LOCATION (tem, loc);
4973 return tem;
4974 }
4975
4976 /* Return the constant offset of a MEM_REF or TARGET_MEM_REF tree T. */
4977
4978 poly_offset_int
4979 mem_ref_offset (const_tree t)
4980 {
4981 return poly_offset_int::from (wi::to_poly_wide (TREE_OPERAND (t, 1)),
4982 SIGNED);
4983 }
4984
4985 /* Return an invariant ADDR_EXPR of type TYPE taking the address of BASE
4986 offsetted by OFFSET units. */
4987
4988 tree
4989 build_invariant_address (tree type, tree base, poly_int64 offset)
4990 {
4991 tree ref = fold_build2 (MEM_REF, TREE_TYPE (type),
4992 build_fold_addr_expr (base),
4993 build_int_cst (ptr_type_node, offset));
4994 tree addr = build1 (ADDR_EXPR, type, ref);
4995 recompute_tree_invariant_for_addr_expr (addr);
4996 return addr;
4997 }
4998
4999 /* Similar except don't specify the TREE_TYPE
5000 and leave the TREE_SIDE_EFFECTS as 0.
5001 It is permissible for arguments to be null,
5002 or even garbage if their values do not matter. */
5003
5004 tree
5005 build_nt (enum tree_code code, ...)
5006 {
5007 tree t;
5008 int length;
5009 int i;
5010 va_list p;
5011
5012 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
5013
5014 va_start (p, code);
5015
5016 t = make_node (code);
5017 length = TREE_CODE_LENGTH (code);
5018
5019 for (i = 0; i < length; i++)
5020 TREE_OPERAND (t, i) = va_arg (p, tree);
5021
5022 va_end (p);
5023 return t;
5024 }
5025
5026 /* Similar to build_nt, but for creating a CALL_EXPR object with a
5027 tree vec. */
5028
5029 tree
5030 build_nt_call_vec (tree fn, vec<tree, va_gc> *args)
5031 {
5032 tree ret, t;
5033 unsigned int ix;
5034
5035 ret = build_vl_exp (CALL_EXPR, vec_safe_length (args) + 3);
5036 CALL_EXPR_FN (ret) = fn;
5037 CALL_EXPR_STATIC_CHAIN (ret) = NULL_TREE;
5038 FOR_EACH_VEC_SAFE_ELT (args, ix, t)
5039 CALL_EXPR_ARG (ret, ix) = t;
5040 return ret;
5041 }
5042 \f
5043 /* Create a DECL_... node of code CODE, name NAME (if non-null)
5044 and data type TYPE.
5045 We do NOT enter this node in any sort of symbol table.
5046
5047 LOC is the location of the decl.
5048
5049 layout_decl is used to set up the decl's storage layout.
5050 Other slots are initialized to 0 or null pointers. */
5051
5052 tree
5053 build_decl (location_t loc, enum tree_code code, tree name,
5054 tree type MEM_STAT_DECL)
5055 {
5056 tree t;
5057
5058 t = make_node (code PASS_MEM_STAT);
5059 DECL_SOURCE_LOCATION (t) = loc;
5060
5061 /* if (type == error_mark_node)
5062 type = integer_type_node; */
5063 /* That is not done, deliberately, so that having error_mark_node
5064 as the type can suppress useless errors in the use of this variable. */
5065
5066 DECL_NAME (t) = name;
5067 TREE_TYPE (t) = type;
5068
5069 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
5070 layout_decl (t, 0);
5071
5072 return t;
5073 }
5074
5075 /* Builds and returns function declaration with NAME and TYPE. */
5076
5077 tree
5078 build_fn_decl (const char *name, tree type)
5079 {
5080 tree id = get_identifier (name);
5081 tree decl = build_decl (input_location, FUNCTION_DECL, id, type);
5082
5083 DECL_EXTERNAL (decl) = 1;
5084 TREE_PUBLIC (decl) = 1;
5085 DECL_ARTIFICIAL (decl) = 1;
5086 TREE_NOTHROW (decl) = 1;
5087
5088 return decl;
5089 }
5090
5091 vec<tree, va_gc> *all_translation_units;
5092
5093 /* Builds a new translation-unit decl with name NAME, queues it in the
5094 global list of translation-unit decls and returns it. */
5095
5096 tree
5097 build_translation_unit_decl (tree name)
5098 {
5099 tree tu = build_decl (UNKNOWN_LOCATION, TRANSLATION_UNIT_DECL,
5100 name, NULL_TREE);
5101 TRANSLATION_UNIT_LANGUAGE (tu) = lang_hooks.name;
5102 vec_safe_push (all_translation_units, tu);
5103 return tu;
5104 }
5105
5106 \f
5107 /* BLOCK nodes are used to represent the structure of binding contours
5108 and declarations, once those contours have been exited and their contents
5109 compiled. This information is used for outputting debugging info. */
5110
5111 tree
5112 build_block (tree vars, tree subblocks, tree supercontext, tree chain)
5113 {
5114 tree block = make_node (BLOCK);
5115
5116 BLOCK_VARS (block) = vars;
5117 BLOCK_SUBBLOCKS (block) = subblocks;
5118 BLOCK_SUPERCONTEXT (block) = supercontext;
5119 BLOCK_CHAIN (block) = chain;
5120 return block;
5121 }
5122
5123 \f
5124 /* Like SET_EXPR_LOCATION, but make sure the tree can have a location.
5125
5126 LOC is the location to use in tree T. */
5127
5128 void
5129 protected_set_expr_location (tree t, location_t loc)
5130 {
5131 if (CAN_HAVE_LOCATION_P (t))
5132 SET_EXPR_LOCATION (t, loc);
5133 else if (t && TREE_CODE (t) == STATEMENT_LIST)
5134 {
5135 t = expr_single (t);
5136 if (t && CAN_HAVE_LOCATION_P (t))
5137 SET_EXPR_LOCATION (t, loc);
5138 }
5139 }
5140
5141 /* Like PROTECTED_SET_EXPR_LOCATION, but only do that if T has
5142 UNKNOWN_LOCATION. */
5143
5144 void
5145 protected_set_expr_location_if_unset (tree t, location_t loc)
5146 {
5147 t = expr_single (t);
5148 if (t && !EXPR_HAS_LOCATION (t))
5149 protected_set_expr_location (t, loc);
5150 }
5151
5152 /* Data used when collecting DECLs and TYPEs for language data removal. */
5153
5154 class free_lang_data_d
5155 {
5156 public:
5157 free_lang_data_d () : decls (100), types (100) {}
5158
5159 /* Worklist to avoid excessive recursion. */
5160 auto_vec<tree> worklist;
5161
5162 /* Set of traversed objects. Used to avoid duplicate visits. */
5163 hash_set<tree> pset;
5164
5165 /* Array of symbols to process with free_lang_data_in_decl. */
5166 auto_vec<tree> decls;
5167
5168 /* Array of types to process with free_lang_data_in_type. */
5169 auto_vec<tree> types;
5170 };
5171
5172
5173 /* Add type or decl T to one of the list of tree nodes that need their
5174 language data removed. The lists are held inside FLD. */
5175
5176 static void
5177 add_tree_to_fld_list (tree t, class free_lang_data_d *fld)
5178 {
5179 if (DECL_P (t))
5180 fld->decls.safe_push (t);
5181 else if (TYPE_P (t))
5182 fld->types.safe_push (t);
5183 else
5184 gcc_unreachable ();
5185 }
5186
5187 /* Push tree node T into FLD->WORKLIST. */
5188
5189 static inline void
5190 fld_worklist_push (tree t, class free_lang_data_d *fld)
5191 {
5192 if (t && !is_lang_specific (t) && !fld->pset.contains (t))
5193 fld->worklist.safe_push ((t));
5194 }
5195
5196
5197 \f
5198 /* Return simplified TYPE_NAME of TYPE. */
5199
5200 static tree
5201 fld_simplified_type_name (tree type)
5202 {
5203 if (!TYPE_NAME (type) || TREE_CODE (TYPE_NAME (type)) != TYPE_DECL)
5204 return TYPE_NAME (type);
5205 /* Drop TYPE_DECLs in TYPE_NAME in favor of the identifier in the
5206 TYPE_DECL if the type doesn't have linkage.
5207 this must match fld_ */
5208 if (type != TYPE_MAIN_VARIANT (type)
5209 || (!DECL_ASSEMBLER_NAME_SET_P (TYPE_NAME (type))
5210 && (TREE_CODE (type) != RECORD_TYPE
5211 || !TYPE_BINFO (type)
5212 || !BINFO_VTABLE (TYPE_BINFO (type)))))
5213 return DECL_NAME (TYPE_NAME (type));
5214 return TYPE_NAME (type);
5215 }
5216
5217 /* Do same comparsion as check_qualified_type skipping lang part of type
5218 and be more permissive about type names: we only care that names are
5219 same (for diagnostics) and that ODR names are the same.
5220 If INNER_TYPE is non-NULL, be sure that TREE_TYPE match it. */
5221
5222 static bool
5223 fld_type_variant_equal_p (tree t, tree v, tree inner_type)
5224 {
5225 if (TYPE_QUALS (t) != TYPE_QUALS (v)
5226 /* We want to match incomplete variants with complete types.
5227 In this case we need to ignore alignment. */
5228 || ((!RECORD_OR_UNION_TYPE_P (t) || COMPLETE_TYPE_P (v))
5229 && (TYPE_ALIGN (t) != TYPE_ALIGN (v)
5230 || TYPE_USER_ALIGN (t) != TYPE_USER_ALIGN (v)))
5231 || fld_simplified_type_name (t) != fld_simplified_type_name (v)
5232 || !attribute_list_equal (TYPE_ATTRIBUTES (t),
5233 TYPE_ATTRIBUTES (v))
5234 || (inner_type && TREE_TYPE (v) != inner_type))
5235 return false;
5236
5237 return true;
5238 }
5239
5240 /* Find variant of FIRST that match T and create new one if necessary.
5241 Set TREE_TYPE to INNER_TYPE if non-NULL. */
5242
5243 static tree
5244 fld_type_variant (tree first, tree t, class free_lang_data_d *fld,
5245 tree inner_type = NULL)
5246 {
5247 if (first == TYPE_MAIN_VARIANT (t))
5248 return t;
5249 for (tree v = first; v; v = TYPE_NEXT_VARIANT (v))
5250 if (fld_type_variant_equal_p (t, v, inner_type))
5251 return v;
5252 tree v = build_variant_type_copy (first);
5253 TYPE_READONLY (v) = TYPE_READONLY (t);
5254 TYPE_VOLATILE (v) = TYPE_VOLATILE (t);
5255 TYPE_ATOMIC (v) = TYPE_ATOMIC (t);
5256 TYPE_RESTRICT (v) = TYPE_RESTRICT (t);
5257 TYPE_ADDR_SPACE (v) = TYPE_ADDR_SPACE (t);
5258 TYPE_NAME (v) = TYPE_NAME (t);
5259 TYPE_ATTRIBUTES (v) = TYPE_ATTRIBUTES (t);
5260 TYPE_CANONICAL (v) = TYPE_CANONICAL (t);
5261 /* Variants of incomplete types should have alignment
5262 set to BITS_PER_UNIT. Do not copy the actual alignment. */
5263 if (!RECORD_OR_UNION_TYPE_P (v) || COMPLETE_TYPE_P (v))
5264 {
5265 SET_TYPE_ALIGN (v, TYPE_ALIGN (t));
5266 TYPE_USER_ALIGN (v) = TYPE_USER_ALIGN (t);
5267 }
5268 if (inner_type)
5269 TREE_TYPE (v) = inner_type;
5270 gcc_checking_assert (fld_type_variant_equal_p (t,v, inner_type));
5271 if (!fld->pset.add (v))
5272 add_tree_to_fld_list (v, fld);
5273 return v;
5274 }
5275
5276 /* Map complete types to incomplete types. */
5277
5278 static hash_map<tree, tree> *fld_incomplete_types;
5279
5280 /* Map types to simplified types. */
5281
5282 static hash_map<tree, tree> *fld_simplified_types;
5283
5284 /* Produce variant of T whose TREE_TYPE is T2. If it is main variant,
5285 use MAP to prevent duplicates. */
5286
5287 static tree
5288 fld_process_array_type (tree t, tree t2, hash_map<tree, tree> *map,
5289 class free_lang_data_d *fld)
5290 {
5291 if (TREE_TYPE (t) == t2)
5292 return t;
5293
5294 if (TYPE_MAIN_VARIANT (t) != t)
5295 {
5296 return fld_type_variant
5297 (fld_process_array_type (TYPE_MAIN_VARIANT (t),
5298 TYPE_MAIN_VARIANT (t2), map, fld),
5299 t, fld, t2);
5300 }
5301
5302 bool existed;
5303 tree &array
5304 = map->get_or_insert (t, &existed);
5305 if (!existed)
5306 {
5307 array
5308 = build_array_type_1 (t2, TYPE_DOMAIN (t), TYPE_TYPELESS_STORAGE (t),
5309 false, false);
5310 TYPE_CANONICAL (array) = TYPE_CANONICAL (t);
5311 if (!fld->pset.add (array))
5312 add_tree_to_fld_list (array, fld);
5313 }
5314 return array;
5315 }
5316
5317 /* Return CTX after removal of contexts that are not relevant */
5318
5319 static tree
5320 fld_decl_context (tree ctx)
5321 {
5322 /* Variably modified types are needed for tree_is_indexable to decide
5323 whether the type needs to go to local or global section.
5324 This code is semi-broken but for now it is easiest to keep contexts
5325 as expected. */
5326 if (ctx && TYPE_P (ctx)
5327 && !variably_modified_type_p (ctx, NULL_TREE))
5328 {
5329 while (ctx && TYPE_P (ctx))
5330 ctx = TYPE_CONTEXT (ctx);
5331 }
5332 return ctx;
5333 }
5334
5335 /* For T being aggregate type try to turn it into a incomplete variant.
5336 Return T if no simplification is possible. */
5337
5338 static tree
5339 fld_incomplete_type_of (tree t, class free_lang_data_d *fld)
5340 {
5341 if (!t)
5342 return NULL;
5343 if (POINTER_TYPE_P (t))
5344 {
5345 tree t2 = fld_incomplete_type_of (TREE_TYPE (t), fld);
5346 if (t2 != TREE_TYPE (t))
5347 {
5348 tree first;
5349 if (TREE_CODE (t) == POINTER_TYPE)
5350 first = build_pointer_type_for_mode (t2, TYPE_MODE (t),
5351 TYPE_REF_CAN_ALIAS_ALL (t));
5352 else
5353 first = build_reference_type_for_mode (t2, TYPE_MODE (t),
5354 TYPE_REF_CAN_ALIAS_ALL (t));
5355 gcc_assert (TYPE_CANONICAL (t2) != t2
5356 && TYPE_CANONICAL (t2) == TYPE_CANONICAL (TREE_TYPE (t)));
5357 if (!fld->pset.add (first))
5358 add_tree_to_fld_list (first, fld);
5359 return fld_type_variant (first, t, fld);
5360 }
5361 return t;
5362 }
5363 if (TREE_CODE (t) == ARRAY_TYPE)
5364 return fld_process_array_type (t,
5365 fld_incomplete_type_of (TREE_TYPE (t), fld),
5366 fld_incomplete_types, fld);
5367 if ((!RECORD_OR_UNION_TYPE_P (t) && TREE_CODE (t) != ENUMERAL_TYPE)
5368 || !COMPLETE_TYPE_P (t))
5369 return t;
5370 if (TYPE_MAIN_VARIANT (t) == t)
5371 {
5372 bool existed;
5373 tree &copy
5374 = fld_incomplete_types->get_or_insert (t, &existed);
5375
5376 if (!existed)
5377 {
5378 copy = build_distinct_type_copy (t);
5379
5380 /* It is possible that type was not seen by free_lang_data yet. */
5381 if (!fld->pset.add (copy))
5382 add_tree_to_fld_list (copy, fld);
5383 TYPE_SIZE (copy) = NULL;
5384 TYPE_USER_ALIGN (copy) = 0;
5385 TYPE_SIZE_UNIT (copy) = NULL;
5386 TYPE_CANONICAL (copy) = TYPE_CANONICAL (t);
5387 TREE_ADDRESSABLE (copy) = 0;
5388 if (AGGREGATE_TYPE_P (t))
5389 {
5390 SET_TYPE_MODE (copy, VOIDmode);
5391 SET_TYPE_ALIGN (copy, BITS_PER_UNIT);
5392 TYPE_TYPELESS_STORAGE (copy) = 0;
5393 TYPE_FIELDS (copy) = NULL;
5394 TYPE_BINFO (copy) = NULL;
5395 TYPE_FINAL_P (copy) = 0;
5396 TYPE_EMPTY_P (copy) = 0;
5397 }
5398 else
5399 {
5400 TYPE_VALUES (copy) = NULL;
5401 ENUM_IS_OPAQUE (copy) = 0;
5402 ENUM_IS_SCOPED (copy) = 0;
5403 }
5404
5405 /* Build copy of TYPE_DECL in TYPE_NAME if necessary.
5406 This is needed for ODR violation warnings to come out right (we
5407 want duplicate TYPE_DECLs whenever the type is duplicated because
5408 of ODR violation. Because lang data in the TYPE_DECL may not
5409 have been freed yet, rebuild it from scratch and copy relevant
5410 fields. */
5411 TYPE_NAME (copy) = fld_simplified_type_name (copy);
5412 tree name = TYPE_NAME (copy);
5413
5414 if (name && TREE_CODE (name) == TYPE_DECL)
5415 {
5416 gcc_checking_assert (TREE_TYPE (name) == t);
5417 tree name2 = build_decl (DECL_SOURCE_LOCATION (name), TYPE_DECL,
5418 DECL_NAME (name), copy);
5419 if (DECL_ASSEMBLER_NAME_SET_P (name))
5420 SET_DECL_ASSEMBLER_NAME (name2, DECL_ASSEMBLER_NAME (name));
5421 SET_DECL_ALIGN (name2, 0);
5422 DECL_CONTEXT (name2) = fld_decl_context
5423 (DECL_CONTEXT (name));
5424 TYPE_NAME (copy) = name2;
5425 }
5426 }
5427 return copy;
5428 }
5429 return (fld_type_variant
5430 (fld_incomplete_type_of (TYPE_MAIN_VARIANT (t), fld), t, fld));
5431 }
5432
5433 /* Simplify type T for scenarios where we do not need complete pointer
5434 types. */
5435
5436 static tree
5437 fld_simplified_type (tree t, class free_lang_data_d *fld)
5438 {
5439 if (!t)
5440 return t;
5441 if (POINTER_TYPE_P (t))
5442 return fld_incomplete_type_of (t, fld);
5443 /* FIXME: This triggers verification error, see PR88140. */
5444 if (TREE_CODE (t) == ARRAY_TYPE && 0)
5445 return fld_process_array_type (t, fld_simplified_type (TREE_TYPE (t), fld),
5446 fld_simplified_types, fld);
5447 return t;
5448 }
5449
5450 /* Reset the expression *EXPR_P, a size or position.
5451
5452 ??? We could reset all non-constant sizes or positions. But it's cheap
5453 enough to not do so and refrain from adding workarounds to dwarf2out.c.
5454
5455 We need to reset self-referential sizes or positions because they cannot
5456 be gimplified and thus can contain a CALL_EXPR after the gimplification
5457 is finished, which will run afoul of LTO streaming. And they need to be
5458 reset to something essentially dummy but not constant, so as to preserve
5459 the properties of the object they are attached to. */
5460
5461 static inline void
5462 free_lang_data_in_one_sizepos (tree *expr_p)
5463 {
5464 tree expr = *expr_p;
5465 if (CONTAINS_PLACEHOLDER_P (expr))
5466 *expr_p = build0 (PLACEHOLDER_EXPR, TREE_TYPE (expr));
5467 }
5468
5469
5470 /* Reset all the fields in a binfo node BINFO. We only keep
5471 BINFO_VTABLE, which is used by gimple_fold_obj_type_ref. */
5472
5473 static void
5474 free_lang_data_in_binfo (tree binfo)
5475 {
5476 unsigned i;
5477 tree t;
5478
5479 gcc_assert (TREE_CODE (binfo) == TREE_BINFO);
5480
5481 BINFO_VIRTUALS (binfo) = NULL_TREE;
5482 BINFO_BASE_ACCESSES (binfo) = NULL;
5483 BINFO_INHERITANCE_CHAIN (binfo) = NULL_TREE;
5484 BINFO_SUBVTT_INDEX (binfo) = NULL_TREE;
5485 BINFO_VPTR_FIELD (binfo) = NULL_TREE;
5486 TREE_PUBLIC (binfo) = 0;
5487
5488 FOR_EACH_VEC_ELT (*BINFO_BASE_BINFOS (binfo), i, t)
5489 free_lang_data_in_binfo (t);
5490 }
5491
5492
5493 /* Reset all language specific information still present in TYPE. */
5494
5495 static void
5496 free_lang_data_in_type (tree type, class free_lang_data_d *fld)
5497 {
5498 gcc_assert (TYPE_P (type));
5499
5500 /* Give the FE a chance to remove its own data first. */
5501 lang_hooks.free_lang_data (type);
5502
5503 TREE_LANG_FLAG_0 (type) = 0;
5504 TREE_LANG_FLAG_1 (type) = 0;
5505 TREE_LANG_FLAG_2 (type) = 0;
5506 TREE_LANG_FLAG_3 (type) = 0;
5507 TREE_LANG_FLAG_4 (type) = 0;
5508 TREE_LANG_FLAG_5 (type) = 0;
5509 TREE_LANG_FLAG_6 (type) = 0;
5510
5511 TYPE_NEEDS_CONSTRUCTING (type) = 0;
5512
5513 /* Purge non-marked variants from the variants chain, so that they
5514 don't reappear in the IL after free_lang_data. */
5515 while (TYPE_NEXT_VARIANT (type)
5516 && !fld->pset.contains (TYPE_NEXT_VARIANT (type)))
5517 {
5518 tree t = TYPE_NEXT_VARIANT (type);
5519 TYPE_NEXT_VARIANT (type) = TYPE_NEXT_VARIANT (t);
5520 /* Turn the removed types into distinct types. */
5521 TYPE_MAIN_VARIANT (t) = t;
5522 TYPE_NEXT_VARIANT (t) = NULL_TREE;
5523 }
5524
5525 if (TREE_CODE (type) == FUNCTION_TYPE)
5526 {
5527 TREE_TYPE (type) = fld_simplified_type (TREE_TYPE (type), fld);
5528 /* Remove the const and volatile qualifiers from arguments. The
5529 C++ front end removes them, but the C front end does not,
5530 leading to false ODR violation errors when merging two
5531 instances of the same function signature compiled by
5532 different front ends. */
5533 for (tree p = TYPE_ARG_TYPES (type); p; p = TREE_CHAIN (p))
5534 {
5535 TREE_VALUE (p) = fld_simplified_type (TREE_VALUE (p), fld);
5536 tree arg_type = TREE_VALUE (p);
5537
5538 if (TYPE_READONLY (arg_type) || TYPE_VOLATILE (arg_type))
5539 {
5540 int quals = TYPE_QUALS (arg_type)
5541 & ~TYPE_QUAL_CONST
5542 & ~TYPE_QUAL_VOLATILE;
5543 TREE_VALUE (p) = build_qualified_type (arg_type, quals);
5544 if (!fld->pset.add (TREE_VALUE (p)))
5545 free_lang_data_in_type (TREE_VALUE (p), fld);
5546 }
5547 /* C++ FE uses TREE_PURPOSE to store initial values. */
5548 TREE_PURPOSE (p) = NULL;
5549 }
5550 }
5551 else if (TREE_CODE (type) == METHOD_TYPE)
5552 {
5553 TREE_TYPE (type) = fld_simplified_type (TREE_TYPE (type), fld);
5554 for (tree p = TYPE_ARG_TYPES (type); p; p = TREE_CHAIN (p))
5555 {
5556 /* C++ FE uses TREE_PURPOSE to store initial values. */
5557 TREE_VALUE (p) = fld_simplified_type (TREE_VALUE (p), fld);
5558 TREE_PURPOSE (p) = NULL;
5559 }
5560 }
5561 else if (RECORD_OR_UNION_TYPE_P (type))
5562 {
5563 /* Remove members that are not FIELD_DECLs from the field list
5564 of an aggregate. These occur in C++. */
5565 for (tree *prev = &TYPE_FIELDS (type), member; (member = *prev);)
5566 if (TREE_CODE (member) == FIELD_DECL)
5567 prev = &DECL_CHAIN (member);
5568 else
5569 *prev = DECL_CHAIN (member);
5570
5571 TYPE_VFIELD (type) = NULL_TREE;
5572
5573 if (TYPE_BINFO (type))
5574 {
5575 free_lang_data_in_binfo (TYPE_BINFO (type));
5576 /* We need to preserve link to bases and virtual table for all
5577 polymorphic types to make devirtualization machinery working. */
5578 if (!BINFO_VTABLE (TYPE_BINFO (type)))
5579 TYPE_BINFO (type) = NULL;
5580 }
5581 }
5582 else if (INTEGRAL_TYPE_P (type)
5583 || SCALAR_FLOAT_TYPE_P (type)
5584 || FIXED_POINT_TYPE_P (type))
5585 {
5586 if (TREE_CODE (type) == ENUMERAL_TYPE)
5587 {
5588 ENUM_IS_OPAQUE (type) = 0;
5589 ENUM_IS_SCOPED (type) = 0;
5590 /* Type values are used only for C++ ODR checking. Drop them
5591 for all type variants and non-ODR types.
5592 For ODR types the data is freed in free_odr_warning_data. */
5593 if (!TYPE_VALUES (type))
5594 ;
5595 else if (TYPE_MAIN_VARIANT (type) != type
5596 || !type_with_linkage_p (type)
5597 || type_in_anonymous_namespace_p (type))
5598 TYPE_VALUES (type) = NULL;
5599 else
5600 register_odr_enum (type);
5601 }
5602 free_lang_data_in_one_sizepos (&TYPE_MIN_VALUE (type));
5603 free_lang_data_in_one_sizepos (&TYPE_MAX_VALUE (type));
5604 }
5605
5606 TYPE_LANG_SLOT_1 (type) = NULL_TREE;
5607
5608 free_lang_data_in_one_sizepos (&TYPE_SIZE (type));
5609 free_lang_data_in_one_sizepos (&TYPE_SIZE_UNIT (type));
5610
5611 if (TYPE_CONTEXT (type)
5612 && TREE_CODE (TYPE_CONTEXT (type)) == BLOCK)
5613 {
5614 tree ctx = TYPE_CONTEXT (type);
5615 do
5616 {
5617 ctx = BLOCK_SUPERCONTEXT (ctx);
5618 }
5619 while (ctx && TREE_CODE (ctx) == BLOCK);
5620 TYPE_CONTEXT (type) = ctx;
5621 }
5622
5623 TYPE_STUB_DECL (type) = NULL;
5624 TYPE_NAME (type) = fld_simplified_type_name (type);
5625 }
5626
5627
5628 /* Return true if DECL may need an assembler name to be set. */
5629
5630 static inline bool
5631 need_assembler_name_p (tree decl)
5632 {
5633 /* We use DECL_ASSEMBLER_NAME to hold mangled type names for One Definition
5634 Rule merging. This makes type_odr_p to return true on those types during
5635 LTO and by comparing the mangled name, we can say what types are intended
5636 to be equivalent across compilation unit.
5637
5638 We do not store names of type_in_anonymous_namespace_p.
5639
5640 Record, union and enumeration type have linkage that allows use
5641 to check type_in_anonymous_namespace_p. We do not mangle compound types
5642 that always can be compared structurally.
5643
5644 Similarly for builtin types, we compare properties of their main variant.
5645 A special case are integer types where mangling do make differences
5646 between char/signed char/unsigned char etc. Storing name for these makes
5647 e.g. -fno-signed-char/-fsigned-char mismatches to be handled well.
5648 See cp/mangle.c:write_builtin_type for details. */
5649
5650 if (TREE_CODE (decl) == TYPE_DECL)
5651 {
5652 if (DECL_NAME (decl)
5653 && decl == TYPE_NAME (TREE_TYPE (decl))
5654 && TYPE_MAIN_VARIANT (TREE_TYPE (decl)) == TREE_TYPE (decl)
5655 && !TYPE_ARTIFICIAL (TREE_TYPE (decl))
5656 && ((TREE_CODE (TREE_TYPE (decl)) != RECORD_TYPE
5657 && TREE_CODE (TREE_TYPE (decl)) != UNION_TYPE)
5658 || TYPE_CXX_ODR_P (TREE_TYPE (decl)))
5659 && (type_with_linkage_p (TREE_TYPE (decl))
5660 || TREE_CODE (TREE_TYPE (decl)) == INTEGER_TYPE)
5661 && !variably_modified_type_p (TREE_TYPE (decl), NULL_TREE))
5662 return !DECL_ASSEMBLER_NAME_SET_P (decl);
5663 return false;
5664 }
5665 /* Only FUNCTION_DECLs and VAR_DECLs are considered. */
5666 if (!VAR_OR_FUNCTION_DECL_P (decl))
5667 return false;
5668
5669 /* If DECL already has its assembler name set, it does not need a
5670 new one. */
5671 if (!HAS_DECL_ASSEMBLER_NAME_P (decl)
5672 || DECL_ASSEMBLER_NAME_SET_P (decl))
5673 return false;
5674
5675 /* Abstract decls do not need an assembler name. */
5676 if (DECL_ABSTRACT_P (decl))
5677 return false;
5678
5679 /* For VAR_DECLs, only static, public and external symbols need an
5680 assembler name. */
5681 if (VAR_P (decl)
5682 && !TREE_STATIC (decl)
5683 && !TREE_PUBLIC (decl)
5684 && !DECL_EXTERNAL (decl))
5685 return false;
5686
5687 if (TREE_CODE (decl) == FUNCTION_DECL)
5688 {
5689 /* Do not set assembler name on builtins. Allow RTL expansion to
5690 decide whether to expand inline or via a regular call. */
5691 if (fndecl_built_in_p (decl)
5692 && DECL_BUILT_IN_CLASS (decl) != BUILT_IN_FRONTEND)
5693 return false;
5694
5695 /* Functions represented in the callgraph need an assembler name. */
5696 if (cgraph_node::get (decl) != NULL)
5697 return true;
5698
5699 /* Unused and not public functions don't need an assembler name. */
5700 if (!TREE_USED (decl) && !TREE_PUBLIC (decl))
5701 return false;
5702 }
5703
5704 return true;
5705 }
5706
5707
5708 /* Reset all language specific information still present in symbol
5709 DECL. */
5710
5711 static void
5712 free_lang_data_in_decl (tree decl, class free_lang_data_d *fld)
5713 {
5714 gcc_assert (DECL_P (decl));
5715
5716 /* Give the FE a chance to remove its own data first. */
5717 lang_hooks.free_lang_data (decl);
5718
5719 TREE_LANG_FLAG_0 (decl) = 0;
5720 TREE_LANG_FLAG_1 (decl) = 0;
5721 TREE_LANG_FLAG_2 (decl) = 0;
5722 TREE_LANG_FLAG_3 (decl) = 0;
5723 TREE_LANG_FLAG_4 (decl) = 0;
5724 TREE_LANG_FLAG_5 (decl) = 0;
5725 TREE_LANG_FLAG_6 (decl) = 0;
5726
5727 free_lang_data_in_one_sizepos (&DECL_SIZE (decl));
5728 free_lang_data_in_one_sizepos (&DECL_SIZE_UNIT (decl));
5729 if (TREE_CODE (decl) == FIELD_DECL)
5730 {
5731 DECL_FCONTEXT (decl) = NULL;
5732 free_lang_data_in_one_sizepos (&DECL_FIELD_OFFSET (decl));
5733 if (TREE_CODE (DECL_CONTEXT (decl)) == QUAL_UNION_TYPE)
5734 DECL_QUALIFIER (decl) = NULL_TREE;
5735 }
5736
5737 if (TREE_CODE (decl) == FUNCTION_DECL)
5738 {
5739 struct cgraph_node *node;
5740 /* Frontends do not set TREE_ADDRESSABLE on public variables even though
5741 the address may be taken in other unit, so this flag has no practical
5742 use for middle-end.
5743
5744 It would make more sense if frontends set TREE_ADDRESSABLE to 0 only
5745 for public objects that indeed cannot be adressed, but it is not
5746 the case. Set the flag to true so we do not get merge failures for
5747 i.e. virtual tables between units that take address of it and
5748 units that don't. */
5749 if (TREE_PUBLIC (decl))
5750 TREE_ADDRESSABLE (decl) = true;
5751 TREE_TYPE (decl) = fld_simplified_type (TREE_TYPE (decl), fld);
5752 if (!(node = cgraph_node::get (decl))
5753 || (!node->definition && !node->clones))
5754 {
5755 if (node)
5756 node->release_body ();
5757 else
5758 {
5759 release_function_body (decl);
5760 DECL_ARGUMENTS (decl) = NULL;
5761 DECL_RESULT (decl) = NULL;
5762 DECL_INITIAL (decl) = error_mark_node;
5763 }
5764 }
5765 if (gimple_has_body_p (decl) || (node && node->thunk.thunk_p))
5766 {
5767 tree t;
5768
5769 /* If DECL has a gimple body, then the context for its
5770 arguments must be DECL. Otherwise, it doesn't really
5771 matter, as we will not be emitting any code for DECL. In
5772 general, there may be other instances of DECL created by
5773 the front end and since PARM_DECLs are generally shared,
5774 their DECL_CONTEXT changes as the replicas of DECL are
5775 created. The only time where DECL_CONTEXT is important
5776 is for the FUNCTION_DECLs that have a gimple body (since
5777 the PARM_DECL will be used in the function's body). */
5778 for (t = DECL_ARGUMENTS (decl); t; t = TREE_CHAIN (t))
5779 DECL_CONTEXT (t) = decl;
5780 if (!DECL_FUNCTION_SPECIFIC_TARGET (decl))
5781 DECL_FUNCTION_SPECIFIC_TARGET (decl)
5782 = target_option_default_node;
5783 if (!DECL_FUNCTION_SPECIFIC_OPTIMIZATION (decl))
5784 DECL_FUNCTION_SPECIFIC_OPTIMIZATION (decl)
5785 = optimization_default_node;
5786 }
5787
5788 /* DECL_SAVED_TREE holds the GENERIC representation for DECL.
5789 At this point, it is not needed anymore. */
5790 DECL_SAVED_TREE (decl) = NULL_TREE;
5791
5792 /* Clear the abstract origin if it refers to a method.
5793 Otherwise dwarf2out.c will ICE as we splice functions out of
5794 TYPE_FIELDS and thus the origin will not be output
5795 correctly. */
5796 if (DECL_ABSTRACT_ORIGIN (decl)
5797 && DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))
5798 && RECORD_OR_UNION_TYPE_P
5799 (DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))))
5800 DECL_ABSTRACT_ORIGIN (decl) = NULL_TREE;
5801
5802 DECL_VINDEX (decl) = NULL_TREE;
5803 }
5804 else if (VAR_P (decl))
5805 {
5806 /* See comment above why we set the flag for functions. */
5807 if (TREE_PUBLIC (decl))
5808 TREE_ADDRESSABLE (decl) = true;
5809 if ((DECL_EXTERNAL (decl)
5810 && (!TREE_STATIC (decl) || !TREE_READONLY (decl)))
5811 || (decl_function_context (decl) && !TREE_STATIC (decl)))
5812 DECL_INITIAL (decl) = NULL_TREE;
5813 }
5814 else if (TREE_CODE (decl) == TYPE_DECL)
5815 {
5816 DECL_VISIBILITY (decl) = VISIBILITY_DEFAULT;
5817 DECL_VISIBILITY_SPECIFIED (decl) = 0;
5818 TREE_PUBLIC (decl) = 0;
5819 TREE_PRIVATE (decl) = 0;
5820 DECL_ARTIFICIAL (decl) = 0;
5821 TYPE_DECL_SUPPRESS_DEBUG (decl) = 0;
5822 DECL_INITIAL (decl) = NULL_TREE;
5823 DECL_ORIGINAL_TYPE (decl) = NULL_TREE;
5824 DECL_MODE (decl) = VOIDmode;
5825 SET_DECL_ALIGN (decl, 0);
5826 /* TREE_TYPE is cleared at WPA time in free_odr_warning_data. */
5827 }
5828 else if (TREE_CODE (decl) == FIELD_DECL)
5829 {
5830 TREE_TYPE (decl) = fld_simplified_type (TREE_TYPE (decl), fld);
5831 DECL_INITIAL (decl) = NULL_TREE;
5832 }
5833 else if (TREE_CODE (decl) == TRANSLATION_UNIT_DECL
5834 && DECL_INITIAL (decl)
5835 && TREE_CODE (DECL_INITIAL (decl)) == BLOCK)
5836 {
5837 /* Strip builtins from the translation-unit BLOCK. We still have targets
5838 without builtin_decl_explicit support and also builtins are shared
5839 nodes and thus we can't use TREE_CHAIN in multiple lists. */
5840 tree *nextp = &BLOCK_VARS (DECL_INITIAL (decl));
5841 while (*nextp)
5842 {
5843 tree var = *nextp;
5844 if (TREE_CODE (var) == FUNCTION_DECL
5845 && fndecl_built_in_p (var))
5846 *nextp = TREE_CHAIN (var);
5847 else
5848 nextp = &TREE_CHAIN (var);
5849 }
5850 }
5851 /* We need to keep field decls associated with their trees. Otherwise tree
5852 merging may merge some fileds and keep others disjoint wich in turn will
5853 not do well with TREE_CHAIN pointers linking them.
5854
5855 Also do not drop containing types for virtual methods and tables because
5856 these are needed by devirtualization.
5857 C++ destructors are special because C++ frontends sometimes produces
5858 virtual destructor as an alias of non-virtual destructor. In
5859 devirutalization code we always walk through aliases and we need
5860 context to be preserved too. See PR89335 */
5861 if (TREE_CODE (decl) != FIELD_DECL
5862 && ((TREE_CODE (decl) != VAR_DECL && TREE_CODE (decl) != FUNCTION_DECL)
5863 || (!DECL_VIRTUAL_P (decl)
5864 && (TREE_CODE (decl) != FUNCTION_DECL
5865 || !DECL_CXX_DESTRUCTOR_P (decl)))))
5866 DECL_CONTEXT (decl) = fld_decl_context (DECL_CONTEXT (decl));
5867 }
5868
5869
5870 /* Operand callback helper for free_lang_data_in_node. *TP is the
5871 subtree operand being considered. */
5872
5873 static tree
5874 find_decls_types_r (tree *tp, int *ws, void *data)
5875 {
5876 tree t = *tp;
5877 class free_lang_data_d *fld = (class free_lang_data_d *) data;
5878
5879 if (TREE_CODE (t) == TREE_LIST)
5880 return NULL_TREE;
5881
5882 /* Language specific nodes will be removed, so there is no need
5883 to gather anything under them. */
5884 if (is_lang_specific (t))
5885 {
5886 *ws = 0;
5887 return NULL_TREE;
5888 }
5889
5890 if (DECL_P (t))
5891 {
5892 /* Note that walk_tree does not traverse every possible field in
5893 decls, so we have to do our own traversals here. */
5894 add_tree_to_fld_list (t, fld);
5895
5896 fld_worklist_push (DECL_NAME (t), fld);
5897 fld_worklist_push (DECL_CONTEXT (t), fld);
5898 fld_worklist_push (DECL_SIZE (t), fld);
5899 fld_worklist_push (DECL_SIZE_UNIT (t), fld);
5900
5901 /* We are going to remove everything under DECL_INITIAL for
5902 TYPE_DECLs. No point walking them. */
5903 if (TREE_CODE (t) != TYPE_DECL)
5904 fld_worklist_push (DECL_INITIAL (t), fld);
5905
5906 fld_worklist_push (DECL_ATTRIBUTES (t), fld);
5907 fld_worklist_push (DECL_ABSTRACT_ORIGIN (t), fld);
5908
5909 if (TREE_CODE (t) == FUNCTION_DECL)
5910 {
5911 fld_worklist_push (DECL_ARGUMENTS (t), fld);
5912 fld_worklist_push (DECL_RESULT (t), fld);
5913 }
5914 else if (TREE_CODE (t) == FIELD_DECL)
5915 {
5916 fld_worklist_push (DECL_FIELD_OFFSET (t), fld);
5917 fld_worklist_push (DECL_BIT_FIELD_TYPE (t), fld);
5918 fld_worklist_push (DECL_FIELD_BIT_OFFSET (t), fld);
5919 fld_worklist_push (DECL_FCONTEXT (t), fld);
5920 }
5921
5922 if ((VAR_P (t) || TREE_CODE (t) == PARM_DECL)
5923 && DECL_HAS_VALUE_EXPR_P (t))
5924 fld_worklist_push (DECL_VALUE_EXPR (t), fld);
5925
5926 if (TREE_CODE (t) != FIELD_DECL
5927 && TREE_CODE (t) != TYPE_DECL)
5928 fld_worklist_push (TREE_CHAIN (t), fld);
5929 *ws = 0;
5930 }
5931 else if (TYPE_P (t))
5932 {
5933 /* Note that walk_tree does not traverse every possible field in
5934 types, so we have to do our own traversals here. */
5935 add_tree_to_fld_list (t, fld);
5936
5937 if (!RECORD_OR_UNION_TYPE_P (t))
5938 fld_worklist_push (TYPE_CACHED_VALUES (t), fld);
5939 fld_worklist_push (TYPE_SIZE (t), fld);
5940 fld_worklist_push (TYPE_SIZE_UNIT (t), fld);
5941 fld_worklist_push (TYPE_ATTRIBUTES (t), fld);
5942 fld_worklist_push (TYPE_POINTER_TO (t), fld);
5943 fld_worklist_push (TYPE_REFERENCE_TO (t), fld);
5944 fld_worklist_push (TYPE_NAME (t), fld);
5945 /* While we do not stream TYPE_POINTER_TO and TYPE_REFERENCE_TO
5946 lists, we may look types up in these lists and use them while
5947 optimizing the function body. Thus we need to free lang data
5948 in them. */
5949 if (TREE_CODE (t) == POINTER_TYPE)
5950 fld_worklist_push (TYPE_NEXT_PTR_TO (t), fld);
5951 if (TREE_CODE (t) == REFERENCE_TYPE)
5952 fld_worklist_push (TYPE_NEXT_REF_TO (t), fld);
5953 if (!POINTER_TYPE_P (t))
5954 fld_worklist_push (TYPE_MIN_VALUE_RAW (t), fld);
5955 /* TYPE_MAX_VALUE_RAW is TYPE_BINFO for record types. */
5956 if (!RECORD_OR_UNION_TYPE_P (t))
5957 fld_worklist_push (TYPE_MAX_VALUE_RAW (t), fld);
5958 fld_worklist_push (TYPE_MAIN_VARIANT (t), fld);
5959 /* Do not walk TYPE_NEXT_VARIANT. We do not stream it and thus
5960 do not and want not to reach unused variants this way. */
5961 if (TYPE_CONTEXT (t))
5962 {
5963 tree ctx = TYPE_CONTEXT (t);
5964 /* We adjust BLOCK TYPE_CONTEXTs to the innermost non-BLOCK one.
5965 So push that instead. */
5966 while (ctx && TREE_CODE (ctx) == BLOCK)
5967 ctx = BLOCK_SUPERCONTEXT (ctx);
5968 fld_worklist_push (ctx, fld);
5969 }
5970 fld_worklist_push (TYPE_CANONICAL (t), fld);
5971
5972 if (RECORD_OR_UNION_TYPE_P (t) && TYPE_BINFO (t))
5973 {
5974 unsigned i;
5975 tree tem;
5976 FOR_EACH_VEC_ELT (*BINFO_BASE_BINFOS (TYPE_BINFO (t)), i, tem)
5977 fld_worklist_push (TREE_TYPE (tem), fld);
5978 fld_worklist_push (BINFO_TYPE (TYPE_BINFO (t)), fld);
5979 fld_worklist_push (BINFO_VTABLE (TYPE_BINFO (t)), fld);
5980 }
5981 if (RECORD_OR_UNION_TYPE_P (t))
5982 {
5983 tree tem;
5984 /* Push all TYPE_FIELDS - there can be interleaving interesting
5985 and non-interesting things. */
5986 tem = TYPE_FIELDS (t);
5987 while (tem)
5988 {
5989 if (TREE_CODE (tem) == FIELD_DECL)
5990 fld_worklist_push (tem, fld);
5991 tem = TREE_CHAIN (tem);
5992 }
5993 }
5994 if (FUNC_OR_METHOD_TYPE_P (t))
5995 fld_worklist_push (TYPE_METHOD_BASETYPE (t), fld);
5996
5997 fld_worklist_push (TYPE_STUB_DECL (t), fld);
5998 *ws = 0;
5999 }
6000 else if (TREE_CODE (t) == BLOCK)
6001 {
6002 for (tree *tem = &BLOCK_VARS (t); *tem; )
6003 {
6004 if (TREE_CODE (*tem) != LABEL_DECL
6005 && (TREE_CODE (*tem) != VAR_DECL
6006 || !auto_var_in_fn_p (*tem, DECL_CONTEXT (*tem))))
6007 {
6008 gcc_assert (TREE_CODE (*tem) != RESULT_DECL
6009 && TREE_CODE (*tem) != PARM_DECL);
6010 *tem = TREE_CHAIN (*tem);
6011 }
6012 else
6013 {
6014 fld_worklist_push (*tem, fld);
6015 tem = &TREE_CHAIN (*tem);
6016 }
6017 }
6018 for (tree tem = BLOCK_SUBBLOCKS (t); tem; tem = BLOCK_CHAIN (tem))
6019 fld_worklist_push (tem, fld);
6020 fld_worklist_push (BLOCK_ABSTRACT_ORIGIN (t), fld);
6021 }
6022
6023 if (TREE_CODE (t) != IDENTIFIER_NODE
6024 && CODE_CONTAINS_STRUCT (TREE_CODE (t), TS_TYPED))
6025 fld_worklist_push (TREE_TYPE (t), fld);
6026
6027 return NULL_TREE;
6028 }
6029
6030
6031 /* Find decls and types in T. */
6032
6033 static void
6034 find_decls_types (tree t, class free_lang_data_d *fld)
6035 {
6036 while (1)
6037 {
6038 if (!fld->pset.contains (t))
6039 walk_tree (&t, find_decls_types_r, fld, &fld->pset);
6040 if (fld->worklist.is_empty ())
6041 break;
6042 t = fld->worklist.pop ();
6043 }
6044 }
6045
6046 /* Translate all the types in LIST with the corresponding runtime
6047 types. */
6048
6049 static tree
6050 get_eh_types_for_runtime (tree list)
6051 {
6052 tree head, prev;
6053
6054 if (list == NULL_TREE)
6055 return NULL_TREE;
6056
6057 head = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
6058 prev = head;
6059 list = TREE_CHAIN (list);
6060 while (list)
6061 {
6062 tree n = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
6063 TREE_CHAIN (prev) = n;
6064 prev = TREE_CHAIN (prev);
6065 list = TREE_CHAIN (list);
6066 }
6067
6068 return head;
6069 }
6070
6071
6072 /* Find decls and types referenced in EH region R and store them in
6073 FLD->DECLS and FLD->TYPES. */
6074
6075 static void
6076 find_decls_types_in_eh_region (eh_region r, class free_lang_data_d *fld)
6077 {
6078 switch (r->type)
6079 {
6080 case ERT_CLEANUP:
6081 break;
6082
6083 case ERT_TRY:
6084 {
6085 eh_catch c;
6086
6087 /* The types referenced in each catch must first be changed to the
6088 EH types used at runtime. This removes references to FE types
6089 in the region. */
6090 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
6091 {
6092 c->type_list = get_eh_types_for_runtime (c->type_list);
6093 walk_tree (&c->type_list, find_decls_types_r, fld, &fld->pset);
6094 }
6095 }
6096 break;
6097
6098 case ERT_ALLOWED_EXCEPTIONS:
6099 r->u.allowed.type_list
6100 = get_eh_types_for_runtime (r->u.allowed.type_list);
6101 walk_tree (&r->u.allowed.type_list, find_decls_types_r, fld, &fld->pset);
6102 break;
6103
6104 case ERT_MUST_NOT_THROW:
6105 walk_tree (&r->u.must_not_throw.failure_decl,
6106 find_decls_types_r, fld, &fld->pset);
6107 break;
6108 }
6109 }
6110
6111
6112 /* Find decls and types referenced in cgraph node N and store them in
6113 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
6114 look for *every* kind of DECL and TYPE node reachable from N,
6115 including those embedded inside types and decls (i.e,, TYPE_DECLs,
6116 NAMESPACE_DECLs, etc). */
6117
6118 static void
6119 find_decls_types_in_node (struct cgraph_node *n, class free_lang_data_d *fld)
6120 {
6121 basic_block bb;
6122 struct function *fn;
6123 unsigned ix;
6124 tree t;
6125
6126 find_decls_types (n->decl, fld);
6127
6128 if (!gimple_has_body_p (n->decl))
6129 return;
6130
6131 gcc_assert (current_function_decl == NULL_TREE && cfun == NULL);
6132
6133 fn = DECL_STRUCT_FUNCTION (n->decl);
6134
6135 /* Traverse locals. */
6136 FOR_EACH_LOCAL_DECL (fn, ix, t)
6137 find_decls_types (t, fld);
6138
6139 /* Traverse EH regions in FN. */
6140 {
6141 eh_region r;
6142 FOR_ALL_EH_REGION_FN (r, fn)
6143 find_decls_types_in_eh_region (r, fld);
6144 }
6145
6146 /* Traverse every statement in FN. */
6147 FOR_EACH_BB_FN (bb, fn)
6148 {
6149 gphi_iterator psi;
6150 gimple_stmt_iterator si;
6151 unsigned i;
6152
6153 for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
6154 {
6155 gphi *phi = psi.phi ();
6156
6157 for (i = 0; i < gimple_phi_num_args (phi); i++)
6158 {
6159 tree *arg_p = gimple_phi_arg_def_ptr (phi, i);
6160 find_decls_types (*arg_p, fld);
6161 }
6162 }
6163
6164 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6165 {
6166 gimple *stmt = gsi_stmt (si);
6167
6168 if (is_gimple_call (stmt))
6169 find_decls_types (gimple_call_fntype (stmt), fld);
6170
6171 for (i = 0; i < gimple_num_ops (stmt); i++)
6172 {
6173 tree arg = gimple_op (stmt, i);
6174 find_decls_types (arg, fld);
6175 /* find_decls_types doesn't walk TREE_PURPOSE of TREE_LISTs,
6176 which we need for asm stmts. */
6177 if (arg
6178 && TREE_CODE (arg) == TREE_LIST
6179 && TREE_PURPOSE (arg)
6180 && gimple_code (stmt) == GIMPLE_ASM)
6181 find_decls_types (TREE_PURPOSE (arg), fld);
6182 }
6183 }
6184 }
6185 }
6186
6187
6188 /* Find decls and types referenced in varpool node N and store them in
6189 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
6190 look for *every* kind of DECL and TYPE node reachable from N,
6191 including those embedded inside types and decls (i.e,, TYPE_DECLs,
6192 NAMESPACE_DECLs, etc). */
6193
6194 static void
6195 find_decls_types_in_var (varpool_node *v, class free_lang_data_d *fld)
6196 {
6197 find_decls_types (v->decl, fld);
6198 }
6199
6200 /* If T needs an assembler name, have one created for it. */
6201
6202 void
6203 assign_assembler_name_if_needed (tree t)
6204 {
6205 if (need_assembler_name_p (t))
6206 {
6207 /* When setting DECL_ASSEMBLER_NAME, the C++ mangler may emit
6208 diagnostics that use input_location to show locus
6209 information. The problem here is that, at this point,
6210 input_location is generally anchored to the end of the file
6211 (since the parser is long gone), so we don't have a good
6212 position to pin it to.
6213
6214 To alleviate this problem, this uses the location of T's
6215 declaration. Examples of this are
6216 testsuite/g++.dg/template/cond2.C and
6217 testsuite/g++.dg/template/pr35240.C. */
6218 location_t saved_location = input_location;
6219 input_location = DECL_SOURCE_LOCATION (t);
6220
6221 decl_assembler_name (t);
6222
6223 input_location = saved_location;
6224 }
6225 }
6226
6227
6228 /* Free language specific information for every operand and expression
6229 in every node of the call graph. This process operates in three stages:
6230
6231 1- Every callgraph node and varpool node is traversed looking for
6232 decls and types embedded in them. This is a more exhaustive
6233 search than that done by find_referenced_vars, because it will
6234 also collect individual fields, decls embedded in types, etc.
6235
6236 2- All the decls found are sent to free_lang_data_in_decl.
6237
6238 3- All the types found are sent to free_lang_data_in_type.
6239
6240 The ordering between decls and types is important because
6241 free_lang_data_in_decl sets assembler names, which includes
6242 mangling. So types cannot be freed up until assembler names have
6243 been set up. */
6244
6245 static void
6246 free_lang_data_in_cgraph (class free_lang_data_d *fld)
6247 {
6248 struct cgraph_node *n;
6249 varpool_node *v;
6250 tree t;
6251 unsigned i;
6252 alias_pair *p;
6253
6254 /* Find decls and types in the body of every function in the callgraph. */
6255 FOR_EACH_FUNCTION (n)
6256 find_decls_types_in_node (n, fld);
6257
6258 FOR_EACH_VEC_SAFE_ELT (alias_pairs, i, p)
6259 find_decls_types (p->decl, fld);
6260
6261 /* Find decls and types in every varpool symbol. */
6262 FOR_EACH_VARIABLE (v)
6263 find_decls_types_in_var (v, fld);
6264
6265 /* Set the assembler name on every decl found. We need to do this
6266 now because free_lang_data_in_decl will invalidate data needed
6267 for mangling. This breaks mangling on interdependent decls. */
6268 FOR_EACH_VEC_ELT (fld->decls, i, t)
6269 assign_assembler_name_if_needed (t);
6270
6271 /* Traverse every decl found freeing its language data. */
6272 FOR_EACH_VEC_ELT (fld->decls, i, t)
6273 free_lang_data_in_decl (t, fld);
6274
6275 /* Traverse every type found freeing its language data. */
6276 FOR_EACH_VEC_ELT (fld->types, i, t)
6277 free_lang_data_in_type (t, fld);
6278 }
6279
6280
6281 /* Free resources that are used by FE but are not needed once they are done. */
6282
6283 static unsigned
6284 free_lang_data (void)
6285 {
6286 unsigned i;
6287 class free_lang_data_d fld;
6288
6289 /* If we are the LTO frontend we have freed lang-specific data already. */
6290 if (in_lto_p
6291 || (!flag_generate_lto && !flag_generate_offload))
6292 {
6293 /* Rebuild type inheritance graph even when not doing LTO to get
6294 consistent profile data. */
6295 rebuild_type_inheritance_graph ();
6296 return 0;
6297 }
6298
6299 fld_incomplete_types = new hash_map<tree, tree>;
6300 fld_simplified_types = new hash_map<tree, tree>;
6301
6302 /* Provide a dummy TRANSLATION_UNIT_DECL if the FE failed to provide one. */
6303 if (vec_safe_is_empty (all_translation_units))
6304 build_translation_unit_decl (NULL_TREE);
6305
6306 /* Allocate and assign alias sets to the standard integer types
6307 while the slots are still in the way the frontends generated them. */
6308 for (i = 0; i < itk_none; ++i)
6309 if (integer_types[i])
6310 TYPE_ALIAS_SET (integer_types[i]) = get_alias_set (integer_types[i]);
6311
6312 /* Traverse the IL resetting language specific information for
6313 operands, expressions, etc. */
6314 free_lang_data_in_cgraph (&fld);
6315
6316 /* Create gimple variants for common types. */
6317 for (unsigned i = 0;
6318 i < sizeof (builtin_structptr_types) / sizeof (builtin_structptr_type);
6319 ++i)
6320 builtin_structptr_types[i].node = builtin_structptr_types[i].base;
6321
6322 /* Reset some langhooks. Do not reset types_compatible_p, it may
6323 still be used indirectly via the get_alias_set langhook. */
6324 lang_hooks.dwarf_name = lhd_dwarf_name;
6325 lang_hooks.decl_printable_name = gimple_decl_printable_name;
6326 lang_hooks.gimplify_expr = lhd_gimplify_expr;
6327 lang_hooks.overwrite_decl_assembler_name = lhd_overwrite_decl_assembler_name;
6328 lang_hooks.print_xnode = lhd_print_tree_nothing;
6329 lang_hooks.print_decl = lhd_print_tree_nothing;
6330 lang_hooks.print_type = lhd_print_tree_nothing;
6331 lang_hooks.print_identifier = lhd_print_tree_nothing;
6332
6333 lang_hooks.tree_inlining.var_mod_type_p = hook_bool_tree_tree_false;
6334
6335 if (flag_checking)
6336 {
6337 int i;
6338 tree t;
6339
6340 FOR_EACH_VEC_ELT (fld.types, i, t)
6341 verify_type (t);
6342 }
6343
6344 /* We do not want the default decl_assembler_name implementation,
6345 rather if we have fixed everything we want a wrapper around it
6346 asserting that all non-local symbols already got their assembler
6347 name and only produce assembler names for local symbols. Or rather
6348 make sure we never call decl_assembler_name on local symbols and
6349 devise a separate, middle-end private scheme for it. */
6350
6351 /* Reset diagnostic machinery. */
6352 tree_diagnostics_defaults (global_dc);
6353
6354 rebuild_type_inheritance_graph ();
6355
6356 delete fld_incomplete_types;
6357 delete fld_simplified_types;
6358
6359 return 0;
6360 }
6361
6362
6363 namespace {
6364
6365 const pass_data pass_data_ipa_free_lang_data =
6366 {
6367 SIMPLE_IPA_PASS, /* type */
6368 "*free_lang_data", /* name */
6369 OPTGROUP_NONE, /* optinfo_flags */
6370 TV_IPA_FREE_LANG_DATA, /* tv_id */
6371 0, /* properties_required */
6372 0, /* properties_provided */
6373 0, /* properties_destroyed */
6374 0, /* todo_flags_start */
6375 0, /* todo_flags_finish */
6376 };
6377
6378 class pass_ipa_free_lang_data : public simple_ipa_opt_pass
6379 {
6380 public:
6381 pass_ipa_free_lang_data (gcc::context *ctxt)
6382 : simple_ipa_opt_pass (pass_data_ipa_free_lang_data, ctxt)
6383 {}
6384
6385 /* opt_pass methods: */
6386 virtual unsigned int execute (function *) { return free_lang_data (); }
6387
6388 }; // class pass_ipa_free_lang_data
6389
6390 } // anon namespace
6391
6392 simple_ipa_opt_pass *
6393 make_pass_ipa_free_lang_data (gcc::context *ctxt)
6394 {
6395 return new pass_ipa_free_lang_data (ctxt);
6396 }
6397 \f
6398 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
6399 of the various TYPE_QUAL values. */
6400
6401 static void
6402 set_type_quals (tree type, int type_quals)
6403 {
6404 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
6405 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
6406 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
6407 TYPE_ATOMIC (type) = (type_quals & TYPE_QUAL_ATOMIC) != 0;
6408 TYPE_ADDR_SPACE (type) = DECODE_QUAL_ADDR_SPACE (type_quals);
6409 }
6410
6411 /* Returns true iff CAND and BASE have equivalent language-specific
6412 qualifiers. */
6413
6414 bool
6415 check_lang_type (const_tree cand, const_tree base)
6416 {
6417 if (lang_hooks.types.type_hash_eq == NULL)
6418 return true;
6419 /* type_hash_eq currently only applies to these types. */
6420 if (TREE_CODE (cand) != FUNCTION_TYPE
6421 && TREE_CODE (cand) != METHOD_TYPE)
6422 return true;
6423 return lang_hooks.types.type_hash_eq (cand, base);
6424 }
6425
6426 /* This function checks to see if TYPE matches the size one of the built-in
6427 atomic types, and returns that core atomic type. */
6428
6429 static tree
6430 find_atomic_core_type (const_tree type)
6431 {
6432 tree base_atomic_type;
6433
6434 /* Only handle complete types. */
6435 if (!tree_fits_uhwi_p (TYPE_SIZE (type)))
6436 return NULL_TREE;
6437
6438 switch (tree_to_uhwi (TYPE_SIZE (type)))
6439 {
6440 case 8:
6441 base_atomic_type = atomicQI_type_node;
6442 break;
6443
6444 case 16:
6445 base_atomic_type = atomicHI_type_node;
6446 break;
6447
6448 case 32:
6449 base_atomic_type = atomicSI_type_node;
6450 break;
6451
6452 case 64:
6453 base_atomic_type = atomicDI_type_node;
6454 break;
6455
6456 case 128:
6457 base_atomic_type = atomicTI_type_node;
6458 break;
6459
6460 default:
6461 base_atomic_type = NULL_TREE;
6462 }
6463
6464 return base_atomic_type;
6465 }
6466
6467 /* Returns true iff unqualified CAND and BASE are equivalent. */
6468
6469 bool
6470 check_base_type (const_tree cand, const_tree base)
6471 {
6472 if (TYPE_NAME (cand) != TYPE_NAME (base)
6473 /* Apparently this is needed for Objective-C. */
6474 || TYPE_CONTEXT (cand) != TYPE_CONTEXT (base)
6475 || !attribute_list_equal (TYPE_ATTRIBUTES (cand),
6476 TYPE_ATTRIBUTES (base)))
6477 return false;
6478 /* Check alignment. */
6479 if (TYPE_ALIGN (cand) == TYPE_ALIGN (base))
6480 return true;
6481 /* Atomic types increase minimal alignment. We must to do so as well
6482 or we get duplicated canonical types. See PR88686. */
6483 if ((TYPE_QUALS (cand) & TYPE_QUAL_ATOMIC))
6484 {
6485 /* See if this object can map to a basic atomic type. */
6486 tree atomic_type = find_atomic_core_type (cand);
6487 if (atomic_type && TYPE_ALIGN (atomic_type) == TYPE_ALIGN (cand))
6488 return true;
6489 }
6490 return false;
6491 }
6492
6493 /* Returns true iff CAND is equivalent to BASE with TYPE_QUALS. */
6494
6495 bool
6496 check_qualified_type (const_tree cand, const_tree base, int type_quals)
6497 {
6498 return (TYPE_QUALS (cand) == type_quals
6499 && check_base_type (cand, base)
6500 && check_lang_type (cand, base));
6501 }
6502
6503 /* Returns true iff CAND is equivalent to BASE with ALIGN. */
6504
6505 static bool
6506 check_aligned_type (const_tree cand, const_tree base, unsigned int align)
6507 {
6508 return (TYPE_QUALS (cand) == TYPE_QUALS (base)
6509 && TYPE_NAME (cand) == TYPE_NAME (base)
6510 /* Apparently this is needed for Objective-C. */
6511 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
6512 /* Check alignment. */
6513 && TYPE_ALIGN (cand) == align
6514 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
6515 TYPE_ATTRIBUTES (base))
6516 && check_lang_type (cand, base));
6517 }
6518
6519 /* Return a version of the TYPE, qualified as indicated by the
6520 TYPE_QUALS, if one exists. If no qualified version exists yet,
6521 return NULL_TREE. */
6522
6523 tree
6524 get_qualified_type (tree type, int type_quals)
6525 {
6526 if (TYPE_QUALS (type) == type_quals)
6527 return type;
6528
6529 tree mv = TYPE_MAIN_VARIANT (type);
6530 if (check_qualified_type (mv, type, type_quals))
6531 return mv;
6532
6533 /* Search the chain of variants to see if there is already one there just
6534 like the one we need to have. If so, use that existing one. We must
6535 preserve the TYPE_NAME, since there is code that depends on this. */
6536 for (tree *tp = &TYPE_NEXT_VARIANT (mv); *tp; tp = &TYPE_NEXT_VARIANT (*tp))
6537 if (check_qualified_type (*tp, type, type_quals))
6538 {
6539 /* Put the found variant at the head of the variant list so
6540 frequently searched variants get found faster. The C++ FE
6541 benefits greatly from this. */
6542 tree t = *tp;
6543 *tp = TYPE_NEXT_VARIANT (t);
6544 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (mv);
6545 TYPE_NEXT_VARIANT (mv) = t;
6546 return t;
6547 }
6548
6549 return NULL_TREE;
6550 }
6551
6552 /* Like get_qualified_type, but creates the type if it does not
6553 exist. This function never returns NULL_TREE. */
6554
6555 tree
6556 build_qualified_type (tree type, int type_quals MEM_STAT_DECL)
6557 {
6558 tree t;
6559
6560 /* See if we already have the appropriate qualified variant. */
6561 t = get_qualified_type (type, type_quals);
6562
6563 /* If not, build it. */
6564 if (!t)
6565 {
6566 t = build_variant_type_copy (type PASS_MEM_STAT);
6567 set_type_quals (t, type_quals);
6568
6569 if (((type_quals & TYPE_QUAL_ATOMIC) == TYPE_QUAL_ATOMIC))
6570 {
6571 /* See if this object can map to a basic atomic type. */
6572 tree atomic_type = find_atomic_core_type (type);
6573 if (atomic_type)
6574 {
6575 /* Ensure the alignment of this type is compatible with
6576 the required alignment of the atomic type. */
6577 if (TYPE_ALIGN (atomic_type) > TYPE_ALIGN (t))
6578 SET_TYPE_ALIGN (t, TYPE_ALIGN (atomic_type));
6579 }
6580 }
6581
6582 if (TYPE_STRUCTURAL_EQUALITY_P (type))
6583 /* Propagate structural equality. */
6584 SET_TYPE_STRUCTURAL_EQUALITY (t);
6585 else if (TYPE_CANONICAL (type) != type)
6586 /* Build the underlying canonical type, since it is different
6587 from TYPE. */
6588 {
6589 tree c = build_qualified_type (TYPE_CANONICAL (type), type_quals);
6590 TYPE_CANONICAL (t) = TYPE_CANONICAL (c);
6591 }
6592 else
6593 /* T is its own canonical type. */
6594 TYPE_CANONICAL (t) = t;
6595
6596 }
6597
6598 return t;
6599 }
6600
6601 /* Create a variant of type T with alignment ALIGN. */
6602
6603 tree
6604 build_aligned_type (tree type, unsigned int align)
6605 {
6606 tree t;
6607
6608 if (TYPE_PACKED (type)
6609 || TYPE_ALIGN (type) == align)
6610 return type;
6611
6612 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
6613 if (check_aligned_type (t, type, align))
6614 return t;
6615
6616 t = build_variant_type_copy (type);
6617 SET_TYPE_ALIGN (t, align);
6618 TYPE_USER_ALIGN (t) = 1;
6619
6620 return t;
6621 }
6622
6623 /* Create a new distinct copy of TYPE. The new type is made its own
6624 MAIN_VARIANT. If TYPE requires structural equality checks, the
6625 resulting type requires structural equality checks; otherwise, its
6626 TYPE_CANONICAL points to itself. */
6627
6628 tree
6629 build_distinct_type_copy (tree type MEM_STAT_DECL)
6630 {
6631 tree t = copy_node (type PASS_MEM_STAT);
6632
6633 TYPE_POINTER_TO (t) = 0;
6634 TYPE_REFERENCE_TO (t) = 0;
6635
6636 /* Set the canonical type either to a new equivalence class, or
6637 propagate the need for structural equality checks. */
6638 if (TYPE_STRUCTURAL_EQUALITY_P (type))
6639 SET_TYPE_STRUCTURAL_EQUALITY (t);
6640 else
6641 TYPE_CANONICAL (t) = t;
6642
6643 /* Make it its own variant. */
6644 TYPE_MAIN_VARIANT (t) = t;
6645 TYPE_NEXT_VARIANT (t) = 0;
6646
6647 /* Note that it is now possible for TYPE_MIN_VALUE to be a value
6648 whose TREE_TYPE is not t. This can also happen in the Ada
6649 frontend when using subtypes. */
6650
6651 return t;
6652 }
6653
6654 /* Create a new variant of TYPE, equivalent but distinct. This is so
6655 the caller can modify it. TYPE_CANONICAL for the return type will
6656 be equivalent to TYPE_CANONICAL of TYPE, indicating that the types
6657 are considered equal by the language itself (or that both types
6658 require structural equality checks). */
6659
6660 tree
6661 build_variant_type_copy (tree type MEM_STAT_DECL)
6662 {
6663 tree t, m = TYPE_MAIN_VARIANT (type);
6664
6665 t = build_distinct_type_copy (type PASS_MEM_STAT);
6666
6667 /* Since we're building a variant, assume that it is a non-semantic
6668 variant. This also propagates TYPE_STRUCTURAL_EQUALITY_P. */
6669 TYPE_CANONICAL (t) = TYPE_CANONICAL (type);
6670 /* Type variants have no alias set defined. */
6671 TYPE_ALIAS_SET (t) = -1;
6672
6673 /* Add the new type to the chain of variants of TYPE. */
6674 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
6675 TYPE_NEXT_VARIANT (m) = t;
6676 TYPE_MAIN_VARIANT (t) = m;
6677
6678 return t;
6679 }
6680 \f
6681 /* Return true if the from tree in both tree maps are equal. */
6682
6683 int
6684 tree_map_base_eq (const void *va, const void *vb)
6685 {
6686 const struct tree_map_base *const a = (const struct tree_map_base *) va,
6687 *const b = (const struct tree_map_base *) vb;
6688 return (a->from == b->from);
6689 }
6690
6691 /* Hash a from tree in a tree_base_map. */
6692
6693 unsigned int
6694 tree_map_base_hash (const void *item)
6695 {
6696 return htab_hash_pointer (((const struct tree_map_base *)item)->from);
6697 }
6698
6699 /* Return true if this tree map structure is marked for garbage collection
6700 purposes. We simply return true if the from tree is marked, so that this
6701 structure goes away when the from tree goes away. */
6702
6703 int
6704 tree_map_base_marked_p (const void *p)
6705 {
6706 return ggc_marked_p (((const struct tree_map_base *) p)->from);
6707 }
6708
6709 /* Hash a from tree in a tree_map. */
6710
6711 unsigned int
6712 tree_map_hash (const void *item)
6713 {
6714 return (((const struct tree_map *) item)->hash);
6715 }
6716
6717 /* Hash a from tree in a tree_decl_map. */
6718
6719 unsigned int
6720 tree_decl_map_hash (const void *item)
6721 {
6722 return DECL_UID (((const struct tree_decl_map *) item)->base.from);
6723 }
6724
6725 /* Return the initialization priority for DECL. */
6726
6727 priority_type
6728 decl_init_priority_lookup (tree decl)
6729 {
6730 symtab_node *snode = symtab_node::get (decl);
6731
6732 if (!snode)
6733 return DEFAULT_INIT_PRIORITY;
6734 return
6735 snode->get_init_priority ();
6736 }
6737
6738 /* Return the finalization priority for DECL. */
6739
6740 priority_type
6741 decl_fini_priority_lookup (tree decl)
6742 {
6743 cgraph_node *node = cgraph_node::get (decl);
6744
6745 if (!node)
6746 return DEFAULT_INIT_PRIORITY;
6747 return
6748 node->get_fini_priority ();
6749 }
6750
6751 /* Set the initialization priority for DECL to PRIORITY. */
6752
6753 void
6754 decl_init_priority_insert (tree decl, priority_type priority)
6755 {
6756 struct symtab_node *snode;
6757
6758 if (priority == DEFAULT_INIT_PRIORITY)
6759 {
6760 snode = symtab_node::get (decl);
6761 if (!snode)
6762 return;
6763 }
6764 else if (VAR_P (decl))
6765 snode = varpool_node::get_create (decl);
6766 else
6767 snode = cgraph_node::get_create (decl);
6768 snode->set_init_priority (priority);
6769 }
6770
6771 /* Set the finalization priority for DECL to PRIORITY. */
6772
6773 void
6774 decl_fini_priority_insert (tree decl, priority_type priority)
6775 {
6776 struct cgraph_node *node;
6777
6778 if (priority == DEFAULT_INIT_PRIORITY)
6779 {
6780 node = cgraph_node::get (decl);
6781 if (!node)
6782 return;
6783 }
6784 else
6785 node = cgraph_node::get_create (decl);
6786 node->set_fini_priority (priority);
6787 }
6788
6789 /* Print out the statistics for the DECL_DEBUG_EXPR hash table. */
6790
6791 static void
6792 print_debug_expr_statistics (void)
6793 {
6794 fprintf (stderr, "DECL_DEBUG_EXPR hash: size %ld, %ld elements, %f collisions\n",
6795 (long) debug_expr_for_decl->size (),
6796 (long) debug_expr_for_decl->elements (),
6797 debug_expr_for_decl->collisions ());
6798 }
6799
6800 /* Print out the statistics for the DECL_VALUE_EXPR hash table. */
6801
6802 static void
6803 print_value_expr_statistics (void)
6804 {
6805 fprintf (stderr, "DECL_VALUE_EXPR hash: size %ld, %ld elements, %f collisions\n",
6806 (long) value_expr_for_decl->size (),
6807 (long) value_expr_for_decl->elements (),
6808 value_expr_for_decl->collisions ());
6809 }
6810
6811 /* Lookup a debug expression for FROM, and return it if we find one. */
6812
6813 tree
6814 decl_debug_expr_lookup (tree from)
6815 {
6816 struct tree_decl_map *h, in;
6817 in.base.from = from;
6818
6819 h = debug_expr_for_decl->find_with_hash (&in, DECL_UID (from));
6820 if (h)
6821 return h->to;
6822 return NULL_TREE;
6823 }
6824
6825 /* Insert a mapping FROM->TO in the debug expression hashtable. */
6826
6827 void
6828 decl_debug_expr_insert (tree from, tree to)
6829 {
6830 struct tree_decl_map *h;
6831
6832 h = ggc_alloc<tree_decl_map> ();
6833 h->base.from = from;
6834 h->to = to;
6835 *debug_expr_for_decl->find_slot_with_hash (h, DECL_UID (from), INSERT) = h;
6836 }
6837
6838 /* Lookup a value expression for FROM, and return it if we find one. */
6839
6840 tree
6841 decl_value_expr_lookup (tree from)
6842 {
6843 struct tree_decl_map *h, in;
6844 in.base.from = from;
6845
6846 h = value_expr_for_decl->find_with_hash (&in, DECL_UID (from));
6847 if (h)
6848 return h->to;
6849 return NULL_TREE;
6850 }
6851
6852 /* Insert a mapping FROM->TO in the value expression hashtable. */
6853
6854 void
6855 decl_value_expr_insert (tree from, tree to)
6856 {
6857 struct tree_decl_map *h;
6858
6859 h = ggc_alloc<tree_decl_map> ();
6860 h->base.from = from;
6861 h->to = to;
6862 *value_expr_for_decl->find_slot_with_hash (h, DECL_UID (from), INSERT) = h;
6863 }
6864
6865 /* Lookup a vector of debug arguments for FROM, and return it if we
6866 find one. */
6867
6868 vec<tree, va_gc> **
6869 decl_debug_args_lookup (tree from)
6870 {
6871 struct tree_vec_map *h, in;
6872
6873 if (!DECL_HAS_DEBUG_ARGS_P (from))
6874 return NULL;
6875 gcc_checking_assert (debug_args_for_decl != NULL);
6876 in.base.from = from;
6877 h = debug_args_for_decl->find_with_hash (&in, DECL_UID (from));
6878 if (h)
6879 return &h->to;
6880 return NULL;
6881 }
6882
6883 /* Insert a mapping FROM->empty vector of debug arguments in the value
6884 expression hashtable. */
6885
6886 vec<tree, va_gc> **
6887 decl_debug_args_insert (tree from)
6888 {
6889 struct tree_vec_map *h;
6890 tree_vec_map **loc;
6891
6892 if (DECL_HAS_DEBUG_ARGS_P (from))
6893 return decl_debug_args_lookup (from);
6894 if (debug_args_for_decl == NULL)
6895 debug_args_for_decl = hash_table<tree_vec_map_cache_hasher>::create_ggc (64);
6896 h = ggc_alloc<tree_vec_map> ();
6897 h->base.from = from;
6898 h->to = NULL;
6899 loc = debug_args_for_decl->find_slot_with_hash (h, DECL_UID (from), INSERT);
6900 *loc = h;
6901 DECL_HAS_DEBUG_ARGS_P (from) = 1;
6902 return &h->to;
6903 }
6904
6905 /* Hashing of types so that we don't make duplicates.
6906 The entry point is `type_hash_canon'. */
6907
6908 /* Generate the default hash code for TYPE. This is designed for
6909 speed, rather than maximum entropy. */
6910
6911 hashval_t
6912 type_hash_canon_hash (tree type)
6913 {
6914 inchash::hash hstate;
6915
6916 hstate.add_int (TREE_CODE (type));
6917
6918 if (TREE_TYPE (type))
6919 hstate.add_object (TYPE_HASH (TREE_TYPE (type)));
6920
6921 for (tree t = TYPE_ATTRIBUTES (type); t; t = TREE_CHAIN (t))
6922 /* Just the identifier is adequate to distinguish. */
6923 hstate.add_object (IDENTIFIER_HASH_VALUE (get_attribute_name (t)));
6924
6925 switch (TREE_CODE (type))
6926 {
6927 case METHOD_TYPE:
6928 hstate.add_object (TYPE_HASH (TYPE_METHOD_BASETYPE (type)));
6929 /* FALLTHROUGH. */
6930 case FUNCTION_TYPE:
6931 for (tree t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
6932 if (TREE_VALUE (t) != error_mark_node)
6933 hstate.add_object (TYPE_HASH (TREE_VALUE (t)));
6934 break;
6935
6936 case OFFSET_TYPE:
6937 hstate.add_object (TYPE_HASH (TYPE_OFFSET_BASETYPE (type)));
6938 break;
6939
6940 case ARRAY_TYPE:
6941 {
6942 if (TYPE_DOMAIN (type))
6943 hstate.add_object (TYPE_HASH (TYPE_DOMAIN (type)));
6944 if (!AGGREGATE_TYPE_P (TREE_TYPE (type)))
6945 {
6946 unsigned typeless = TYPE_TYPELESS_STORAGE (type);
6947 hstate.add_object (typeless);
6948 }
6949 }
6950 break;
6951
6952 case INTEGER_TYPE:
6953 {
6954 tree t = TYPE_MAX_VALUE (type);
6955 if (!t)
6956 t = TYPE_MIN_VALUE (type);
6957 for (int i = 0; i < TREE_INT_CST_NUNITS (t); i++)
6958 hstate.add_object (TREE_INT_CST_ELT (t, i));
6959 break;
6960 }
6961
6962 case REAL_TYPE:
6963 case FIXED_POINT_TYPE:
6964 {
6965 unsigned prec = TYPE_PRECISION (type);
6966 hstate.add_object (prec);
6967 break;
6968 }
6969
6970 case VECTOR_TYPE:
6971 hstate.add_poly_int (TYPE_VECTOR_SUBPARTS (type));
6972 break;
6973
6974 default:
6975 break;
6976 }
6977
6978 return hstate.end ();
6979 }
6980
6981 /* These are the Hashtable callback functions. */
6982
6983 /* Returns true iff the types are equivalent. */
6984
6985 bool
6986 type_cache_hasher::equal (type_hash *a, type_hash *b)
6987 {
6988 /* First test the things that are the same for all types. */
6989 if (a->hash != b->hash
6990 || TREE_CODE (a->type) != TREE_CODE (b->type)
6991 || TREE_TYPE (a->type) != TREE_TYPE (b->type)
6992 || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
6993 TYPE_ATTRIBUTES (b->type))
6994 || (TREE_CODE (a->type) != COMPLEX_TYPE
6995 && TYPE_NAME (a->type) != TYPE_NAME (b->type)))
6996 return 0;
6997
6998 /* Be careful about comparing arrays before and after the element type
6999 has been completed; don't compare TYPE_ALIGN unless both types are
7000 complete. */
7001 if (COMPLETE_TYPE_P (a->type) && COMPLETE_TYPE_P (b->type)
7002 && (TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
7003 || TYPE_MODE (a->type) != TYPE_MODE (b->type)))
7004 return 0;
7005
7006 switch (TREE_CODE (a->type))
7007 {
7008 case VOID_TYPE:
7009 case COMPLEX_TYPE:
7010 case POINTER_TYPE:
7011 case REFERENCE_TYPE:
7012 case NULLPTR_TYPE:
7013 return 1;
7014
7015 case VECTOR_TYPE:
7016 return known_eq (TYPE_VECTOR_SUBPARTS (a->type),
7017 TYPE_VECTOR_SUBPARTS (b->type));
7018
7019 case ENUMERAL_TYPE:
7020 if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
7021 && !(TYPE_VALUES (a->type)
7022 && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
7023 && TYPE_VALUES (b->type)
7024 && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
7025 && type_list_equal (TYPE_VALUES (a->type),
7026 TYPE_VALUES (b->type))))
7027 return 0;
7028
7029 /* fall through */
7030
7031 case INTEGER_TYPE:
7032 case REAL_TYPE:
7033 case BOOLEAN_TYPE:
7034 if (TYPE_PRECISION (a->type) != TYPE_PRECISION (b->type))
7035 return false;
7036 return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
7037 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
7038 TYPE_MAX_VALUE (b->type)))
7039 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
7040 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
7041 TYPE_MIN_VALUE (b->type))));
7042
7043 case FIXED_POINT_TYPE:
7044 return TYPE_SATURATING (a->type) == TYPE_SATURATING (b->type);
7045
7046 case OFFSET_TYPE:
7047 return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
7048
7049 case METHOD_TYPE:
7050 if (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
7051 && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
7052 || (TYPE_ARG_TYPES (a->type)
7053 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
7054 && TYPE_ARG_TYPES (b->type)
7055 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
7056 && type_list_equal (TYPE_ARG_TYPES (a->type),
7057 TYPE_ARG_TYPES (b->type)))))
7058 break;
7059 return 0;
7060 case ARRAY_TYPE:
7061 /* Don't compare TYPE_TYPELESS_STORAGE flag on aggregates,
7062 where the flag should be inherited from the element type
7063 and can change after ARRAY_TYPEs are created; on non-aggregates
7064 compare it and hash it, scalars will never have that flag set
7065 and we need to differentiate between arrays created by different
7066 front-ends or middle-end created arrays. */
7067 return (TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type)
7068 && (AGGREGATE_TYPE_P (TREE_TYPE (a->type))
7069 || (TYPE_TYPELESS_STORAGE (a->type)
7070 == TYPE_TYPELESS_STORAGE (b->type))));
7071
7072 case RECORD_TYPE:
7073 case UNION_TYPE:
7074 case QUAL_UNION_TYPE:
7075 return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
7076 || (TYPE_FIELDS (a->type)
7077 && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
7078 && TYPE_FIELDS (b->type)
7079 && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
7080 && type_list_equal (TYPE_FIELDS (a->type),
7081 TYPE_FIELDS (b->type))));
7082
7083 case FUNCTION_TYPE:
7084 if (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
7085 || (TYPE_ARG_TYPES (a->type)
7086 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
7087 && TYPE_ARG_TYPES (b->type)
7088 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
7089 && type_list_equal (TYPE_ARG_TYPES (a->type),
7090 TYPE_ARG_TYPES (b->type))))
7091 break;
7092 return 0;
7093
7094 default:
7095 return 0;
7096 }
7097
7098 if (lang_hooks.types.type_hash_eq != NULL)
7099 return lang_hooks.types.type_hash_eq (a->type, b->type);
7100
7101 return 1;
7102 }
7103
7104 /* Given TYPE, and HASHCODE its hash code, return the canonical
7105 object for an identical type if one already exists.
7106 Otherwise, return TYPE, and record it as the canonical object.
7107
7108 To use this function, first create a type of the sort you want.
7109 Then compute its hash code from the fields of the type that
7110 make it different from other similar types.
7111 Then call this function and use the value. */
7112
7113 tree
7114 type_hash_canon (unsigned int hashcode, tree type)
7115 {
7116 type_hash in;
7117 type_hash **loc;
7118
7119 /* The hash table only contains main variants, so ensure that's what we're
7120 being passed. */
7121 gcc_assert (TYPE_MAIN_VARIANT (type) == type);
7122
7123 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
7124 must call that routine before comparing TYPE_ALIGNs. */
7125 layout_type (type);
7126
7127 in.hash = hashcode;
7128 in.type = type;
7129
7130 loc = type_hash_table->find_slot_with_hash (&in, hashcode, INSERT);
7131 if (*loc)
7132 {
7133 tree t1 = ((type_hash *) *loc)->type;
7134 gcc_assert (TYPE_MAIN_VARIANT (t1) == t1
7135 && t1 != type);
7136 if (TYPE_UID (type) + 1 == next_type_uid)
7137 --next_type_uid;
7138 /* Free also min/max values and the cache for integer
7139 types. This can't be done in free_node, as LTO frees
7140 those on its own. */
7141 if (TREE_CODE (type) == INTEGER_TYPE)
7142 {
7143 if (TYPE_MIN_VALUE (type)
7144 && TREE_TYPE (TYPE_MIN_VALUE (type)) == type)
7145 {
7146 /* Zero is always in TYPE_CACHED_VALUES. */
7147 if (! TYPE_UNSIGNED (type))
7148 int_cst_hash_table->remove_elt (TYPE_MIN_VALUE (type));
7149 ggc_free (TYPE_MIN_VALUE (type));
7150 }
7151 if (TYPE_MAX_VALUE (type)
7152 && TREE_TYPE (TYPE_MAX_VALUE (type)) == type)
7153 {
7154 int_cst_hash_table->remove_elt (TYPE_MAX_VALUE (type));
7155 ggc_free (TYPE_MAX_VALUE (type));
7156 }
7157 if (TYPE_CACHED_VALUES_P (type))
7158 ggc_free (TYPE_CACHED_VALUES (type));
7159 }
7160 free_node (type);
7161 return t1;
7162 }
7163 else
7164 {
7165 struct type_hash *h;
7166
7167 h = ggc_alloc<type_hash> ();
7168 h->hash = hashcode;
7169 h->type = type;
7170 *loc = h;
7171
7172 return type;
7173 }
7174 }
7175
7176 static void
7177 print_type_hash_statistics (void)
7178 {
7179 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
7180 (long) type_hash_table->size (),
7181 (long) type_hash_table->elements (),
7182 type_hash_table->collisions ());
7183 }
7184
7185 /* Given two lists of types
7186 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
7187 return 1 if the lists contain the same types in the same order.
7188 Also, the TREE_PURPOSEs must match. */
7189
7190 bool
7191 type_list_equal (const_tree l1, const_tree l2)
7192 {
7193 const_tree t1, t2;
7194
7195 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
7196 if (TREE_VALUE (t1) != TREE_VALUE (t2)
7197 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
7198 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
7199 && (TREE_TYPE (TREE_PURPOSE (t1))
7200 == TREE_TYPE (TREE_PURPOSE (t2))))))
7201 return false;
7202
7203 return t1 == t2;
7204 }
7205
7206 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
7207 given by TYPE. If the argument list accepts variable arguments,
7208 then this function counts only the ordinary arguments. */
7209
7210 int
7211 type_num_arguments (const_tree fntype)
7212 {
7213 int i = 0;
7214
7215 for (tree t = TYPE_ARG_TYPES (fntype); t; t = TREE_CHAIN (t))
7216 /* If the function does not take a variable number of arguments,
7217 the last element in the list will have type `void'. */
7218 if (VOID_TYPE_P (TREE_VALUE (t)))
7219 break;
7220 else
7221 ++i;
7222
7223 return i;
7224 }
7225
7226 /* Return the type of the function TYPE's argument ARGNO if known.
7227 For vararg function's where ARGNO refers to one of the variadic
7228 arguments return null. Otherwise, return a void_type_node for
7229 out-of-bounds ARGNO. */
7230
7231 tree
7232 type_argument_type (const_tree fntype, unsigned argno)
7233 {
7234 /* Treat zero the same as an out-of-bounds argument number. */
7235 if (!argno)
7236 return void_type_node;
7237
7238 function_args_iterator iter;
7239
7240 tree argtype;
7241 unsigned i = 1;
7242 FOREACH_FUNCTION_ARGS (fntype, argtype, iter)
7243 {
7244 /* A vararg function's argument list ends in a null. Otherwise,
7245 an ordinary function's argument list ends with void. Return
7246 null if ARGNO refers to a vararg argument, void_type_node if
7247 it's out of bounds, and the formal argument type otherwise. */
7248 if (!argtype)
7249 break;
7250
7251 if (i == argno || VOID_TYPE_P (argtype))
7252 return argtype;
7253
7254 ++i;
7255 }
7256
7257 return NULL_TREE;
7258 }
7259
7260 /* Nonzero if integer constants T1 and T2
7261 represent the same constant value. */
7262
7263 int
7264 tree_int_cst_equal (const_tree t1, const_tree t2)
7265 {
7266 if (t1 == t2)
7267 return 1;
7268
7269 if (t1 == 0 || t2 == 0)
7270 return 0;
7271
7272 STRIP_ANY_LOCATION_WRAPPER (t1);
7273 STRIP_ANY_LOCATION_WRAPPER (t2);
7274
7275 if (TREE_CODE (t1) == INTEGER_CST
7276 && TREE_CODE (t2) == INTEGER_CST
7277 && wi::to_widest (t1) == wi::to_widest (t2))
7278 return 1;
7279
7280 return 0;
7281 }
7282
7283 /* Return true if T is an INTEGER_CST whose numerical value (extended
7284 according to TYPE_UNSIGNED) fits in a signed HOST_WIDE_INT. */
7285
7286 bool
7287 tree_fits_shwi_p (const_tree t)
7288 {
7289 return (t != NULL_TREE
7290 && TREE_CODE (t) == INTEGER_CST
7291 && wi::fits_shwi_p (wi::to_widest (t)));
7292 }
7293
7294 /* Return true if T is an INTEGER_CST or POLY_INT_CST whose numerical
7295 value (extended according to TYPE_UNSIGNED) fits in a poly_int64. */
7296
7297 bool
7298 tree_fits_poly_int64_p (const_tree t)
7299 {
7300 if (t == NULL_TREE)
7301 return false;
7302 if (POLY_INT_CST_P (t))
7303 {
7304 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; i++)
7305 if (!wi::fits_shwi_p (wi::to_wide (POLY_INT_CST_COEFF (t, i))))
7306 return false;
7307 return true;
7308 }
7309 return (TREE_CODE (t) == INTEGER_CST
7310 && wi::fits_shwi_p (wi::to_widest (t)));
7311 }
7312
7313 /* Return true if T is an INTEGER_CST whose numerical value (extended
7314 according to TYPE_UNSIGNED) fits in an unsigned HOST_WIDE_INT. */
7315
7316 bool
7317 tree_fits_uhwi_p (const_tree t)
7318 {
7319 return (t != NULL_TREE
7320 && TREE_CODE (t) == INTEGER_CST
7321 && wi::fits_uhwi_p (wi::to_widest (t)));
7322 }
7323
7324 /* Return true if T is an INTEGER_CST or POLY_INT_CST whose numerical
7325 value (extended according to TYPE_UNSIGNED) fits in a poly_uint64. */
7326
7327 bool
7328 tree_fits_poly_uint64_p (const_tree t)
7329 {
7330 if (t == NULL_TREE)
7331 return false;
7332 if (POLY_INT_CST_P (t))
7333 {
7334 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; i++)
7335 if (!wi::fits_uhwi_p (wi::to_widest (POLY_INT_CST_COEFF (t, i))))
7336 return false;
7337 return true;
7338 }
7339 return (TREE_CODE (t) == INTEGER_CST
7340 && wi::fits_uhwi_p (wi::to_widest (t)));
7341 }
7342
7343 /* T is an INTEGER_CST whose numerical value (extended according to
7344 TYPE_UNSIGNED) fits in a signed HOST_WIDE_INT. Return that
7345 HOST_WIDE_INT. */
7346
7347 HOST_WIDE_INT
7348 tree_to_shwi (const_tree t)
7349 {
7350 gcc_assert (tree_fits_shwi_p (t));
7351 return TREE_INT_CST_LOW (t);
7352 }
7353
7354 /* T is an INTEGER_CST whose numerical value (extended according to
7355 TYPE_UNSIGNED) fits in an unsigned HOST_WIDE_INT. Return that
7356 HOST_WIDE_INT. */
7357
7358 unsigned HOST_WIDE_INT
7359 tree_to_uhwi (const_tree t)
7360 {
7361 gcc_assert (tree_fits_uhwi_p (t));
7362 return TREE_INT_CST_LOW (t);
7363 }
7364
7365 /* Return the most significant (sign) bit of T. */
7366
7367 int
7368 tree_int_cst_sign_bit (const_tree t)
7369 {
7370 unsigned bitno = TYPE_PRECISION (TREE_TYPE (t)) - 1;
7371
7372 return wi::extract_uhwi (wi::to_wide (t), bitno, 1);
7373 }
7374
7375 /* Return an indication of the sign of the integer constant T.
7376 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
7377 Note that -1 will never be returned if T's type is unsigned. */
7378
7379 int
7380 tree_int_cst_sgn (const_tree t)
7381 {
7382 if (wi::to_wide (t) == 0)
7383 return 0;
7384 else if (TYPE_UNSIGNED (TREE_TYPE (t)))
7385 return 1;
7386 else if (wi::neg_p (wi::to_wide (t)))
7387 return -1;
7388 else
7389 return 1;
7390 }
7391
7392 /* Return the minimum number of bits needed to represent VALUE in a
7393 signed or unsigned type, UNSIGNEDP says which. */
7394
7395 unsigned int
7396 tree_int_cst_min_precision (tree value, signop sgn)
7397 {
7398 /* If the value is negative, compute its negative minus 1. The latter
7399 adjustment is because the absolute value of the largest negative value
7400 is one larger than the largest positive value. This is equivalent to
7401 a bit-wise negation, so use that operation instead. */
7402
7403 if (tree_int_cst_sgn (value) < 0)
7404 value = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (value), value);
7405
7406 /* Return the number of bits needed, taking into account the fact
7407 that we need one more bit for a signed than unsigned type.
7408 If value is 0 or -1, the minimum precision is 1 no matter
7409 whether unsignedp is true or false. */
7410
7411 if (integer_zerop (value))
7412 return 1;
7413 else
7414 return tree_floor_log2 (value) + 1 + (sgn == SIGNED ? 1 : 0) ;
7415 }
7416
7417 /* Return truthvalue of whether T1 is the same tree structure as T2.
7418 Return 1 if they are the same.
7419 Return 0 if they are understandably different.
7420 Return -1 if either contains tree structure not understood by
7421 this function. */
7422
7423 int
7424 simple_cst_equal (const_tree t1, const_tree t2)
7425 {
7426 enum tree_code code1, code2;
7427 int cmp;
7428 int i;
7429
7430 if (t1 == t2)
7431 return 1;
7432 if (t1 == 0 || t2 == 0)
7433 return 0;
7434
7435 /* For location wrappers to be the same, they must be at the same
7436 source location (and wrap the same thing). */
7437 if (location_wrapper_p (t1) && location_wrapper_p (t2))
7438 {
7439 if (EXPR_LOCATION (t1) != EXPR_LOCATION (t2))
7440 return 0;
7441 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7442 }
7443
7444 code1 = TREE_CODE (t1);
7445 code2 = TREE_CODE (t2);
7446
7447 if (CONVERT_EXPR_CODE_P (code1) || code1 == NON_LVALUE_EXPR)
7448 {
7449 if (CONVERT_EXPR_CODE_P (code2)
7450 || code2 == NON_LVALUE_EXPR)
7451 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7452 else
7453 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
7454 }
7455
7456 else if (CONVERT_EXPR_CODE_P (code2)
7457 || code2 == NON_LVALUE_EXPR)
7458 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
7459
7460 if (code1 != code2)
7461 return 0;
7462
7463 switch (code1)
7464 {
7465 case INTEGER_CST:
7466 return wi::to_widest (t1) == wi::to_widest (t2);
7467
7468 case REAL_CST:
7469 return real_identical (&TREE_REAL_CST (t1), &TREE_REAL_CST (t2));
7470
7471 case FIXED_CST:
7472 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1), TREE_FIXED_CST (t2));
7473
7474 case STRING_CST:
7475 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
7476 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
7477 TREE_STRING_LENGTH (t1)));
7478
7479 case CONSTRUCTOR:
7480 {
7481 unsigned HOST_WIDE_INT idx;
7482 vec<constructor_elt, va_gc> *v1 = CONSTRUCTOR_ELTS (t1);
7483 vec<constructor_elt, va_gc> *v2 = CONSTRUCTOR_ELTS (t2);
7484
7485 if (vec_safe_length (v1) != vec_safe_length (v2))
7486 return false;
7487
7488 for (idx = 0; idx < vec_safe_length (v1); ++idx)
7489 /* ??? Should we handle also fields here? */
7490 if (!simple_cst_equal ((*v1)[idx].value, (*v2)[idx].value))
7491 return false;
7492 return true;
7493 }
7494
7495 case SAVE_EXPR:
7496 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7497
7498 case CALL_EXPR:
7499 cmp = simple_cst_equal (CALL_EXPR_FN (t1), CALL_EXPR_FN (t2));
7500 if (cmp <= 0)
7501 return cmp;
7502 if (call_expr_nargs (t1) != call_expr_nargs (t2))
7503 return 0;
7504 {
7505 const_tree arg1, arg2;
7506 const_call_expr_arg_iterator iter1, iter2;
7507 for (arg1 = first_const_call_expr_arg (t1, &iter1),
7508 arg2 = first_const_call_expr_arg (t2, &iter2);
7509 arg1 && arg2;
7510 arg1 = next_const_call_expr_arg (&iter1),
7511 arg2 = next_const_call_expr_arg (&iter2))
7512 {
7513 cmp = simple_cst_equal (arg1, arg2);
7514 if (cmp <= 0)
7515 return cmp;
7516 }
7517 return arg1 == arg2;
7518 }
7519
7520 case TARGET_EXPR:
7521 /* Special case: if either target is an unallocated VAR_DECL,
7522 it means that it's going to be unified with whatever the
7523 TARGET_EXPR is really supposed to initialize, so treat it
7524 as being equivalent to anything. */
7525 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
7526 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
7527 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
7528 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
7529 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
7530 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
7531 cmp = 1;
7532 else
7533 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7534
7535 if (cmp <= 0)
7536 return cmp;
7537
7538 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
7539
7540 case WITH_CLEANUP_EXPR:
7541 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7542 if (cmp <= 0)
7543 return cmp;
7544
7545 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
7546
7547 case COMPONENT_REF:
7548 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
7549 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7550
7551 return 0;
7552
7553 case VAR_DECL:
7554 case PARM_DECL:
7555 case CONST_DECL:
7556 case FUNCTION_DECL:
7557 return 0;
7558
7559 default:
7560 if (POLY_INT_CST_P (t1))
7561 /* A false return means maybe_ne rather than known_ne. */
7562 return known_eq (poly_widest_int::from (poly_int_cst_value (t1),
7563 TYPE_SIGN (TREE_TYPE (t1))),
7564 poly_widest_int::from (poly_int_cst_value (t2),
7565 TYPE_SIGN (TREE_TYPE (t2))));
7566 break;
7567 }
7568
7569 /* This general rule works for most tree codes. All exceptions should be
7570 handled above. If this is a language-specific tree code, we can't
7571 trust what might be in the operand, so say we don't know
7572 the situation. */
7573 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
7574 return -1;
7575
7576 switch (TREE_CODE_CLASS (code1))
7577 {
7578 case tcc_unary:
7579 case tcc_binary:
7580 case tcc_comparison:
7581 case tcc_expression:
7582 case tcc_reference:
7583 case tcc_statement:
7584 cmp = 1;
7585 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
7586 {
7587 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
7588 if (cmp <= 0)
7589 return cmp;
7590 }
7591
7592 return cmp;
7593
7594 default:
7595 return -1;
7596 }
7597 }
7598
7599 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
7600 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
7601 than U, respectively. */
7602
7603 int
7604 compare_tree_int (const_tree t, unsigned HOST_WIDE_INT u)
7605 {
7606 if (tree_int_cst_sgn (t) < 0)
7607 return -1;
7608 else if (!tree_fits_uhwi_p (t))
7609 return 1;
7610 else if (TREE_INT_CST_LOW (t) == u)
7611 return 0;
7612 else if (TREE_INT_CST_LOW (t) < u)
7613 return -1;
7614 else
7615 return 1;
7616 }
7617
7618 /* Return true if SIZE represents a constant size that is in bounds of
7619 what the middle-end and the backend accepts (covering not more than
7620 half of the address-space).
7621 When PERR is non-null, set *PERR on failure to the description of
7622 why SIZE is not valid. */
7623
7624 bool
7625 valid_constant_size_p (const_tree size, cst_size_error *perr /* = NULL */)
7626 {
7627 if (POLY_INT_CST_P (size))
7628 {
7629 if (TREE_OVERFLOW (size))
7630 return false;
7631 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
7632 if (!valid_constant_size_p (POLY_INT_CST_COEFF (size, i)))
7633 return false;
7634 return true;
7635 }
7636
7637 cst_size_error error;
7638 if (!perr)
7639 perr = &error;
7640
7641 if (TREE_CODE (size) != INTEGER_CST)
7642 {
7643 *perr = cst_size_not_constant;
7644 return false;
7645 }
7646
7647 if (TREE_OVERFLOW_P (size))
7648 {
7649 *perr = cst_size_overflow;
7650 return false;
7651 }
7652
7653 if (tree_int_cst_sgn (size) < 0)
7654 {
7655 *perr = cst_size_negative;
7656 return false;
7657 }
7658 if (!tree_fits_uhwi_p (size)
7659 || (wi::to_widest (TYPE_MAX_VALUE (sizetype))
7660 < wi::to_widest (size) * 2))
7661 {
7662 *perr = cst_size_too_big;
7663 return false;
7664 }
7665
7666 return true;
7667 }
7668
7669 /* Return the precision of the type, or for a complex or vector type the
7670 precision of the type of its elements. */
7671
7672 unsigned int
7673 element_precision (const_tree type)
7674 {
7675 if (!TYPE_P (type))
7676 type = TREE_TYPE (type);
7677 enum tree_code code = TREE_CODE (type);
7678 if (code == COMPLEX_TYPE || code == VECTOR_TYPE)
7679 type = TREE_TYPE (type);
7680
7681 return TYPE_PRECISION (type);
7682 }
7683
7684 /* Return true if CODE represents an associative tree code. Otherwise
7685 return false. */
7686 bool
7687 associative_tree_code (enum tree_code code)
7688 {
7689 switch (code)
7690 {
7691 case BIT_IOR_EXPR:
7692 case BIT_AND_EXPR:
7693 case BIT_XOR_EXPR:
7694 case PLUS_EXPR:
7695 case MULT_EXPR:
7696 case MIN_EXPR:
7697 case MAX_EXPR:
7698 return true;
7699
7700 default:
7701 break;
7702 }
7703 return false;
7704 }
7705
7706 /* Return true if CODE represents a commutative tree code. Otherwise
7707 return false. */
7708 bool
7709 commutative_tree_code (enum tree_code code)
7710 {
7711 switch (code)
7712 {
7713 case PLUS_EXPR:
7714 case MULT_EXPR:
7715 case MULT_HIGHPART_EXPR:
7716 case MIN_EXPR:
7717 case MAX_EXPR:
7718 case BIT_IOR_EXPR:
7719 case BIT_XOR_EXPR:
7720 case BIT_AND_EXPR:
7721 case NE_EXPR:
7722 case EQ_EXPR:
7723 case UNORDERED_EXPR:
7724 case ORDERED_EXPR:
7725 case UNEQ_EXPR:
7726 case LTGT_EXPR:
7727 case TRUTH_AND_EXPR:
7728 case TRUTH_XOR_EXPR:
7729 case TRUTH_OR_EXPR:
7730 case WIDEN_MULT_EXPR:
7731 case VEC_WIDEN_MULT_HI_EXPR:
7732 case VEC_WIDEN_MULT_LO_EXPR:
7733 case VEC_WIDEN_MULT_EVEN_EXPR:
7734 case VEC_WIDEN_MULT_ODD_EXPR:
7735 return true;
7736
7737 default:
7738 break;
7739 }
7740 return false;
7741 }
7742
7743 /* Return true if CODE represents a ternary tree code for which the
7744 first two operands are commutative. Otherwise return false. */
7745 bool
7746 commutative_ternary_tree_code (enum tree_code code)
7747 {
7748 switch (code)
7749 {
7750 case WIDEN_MULT_PLUS_EXPR:
7751 case WIDEN_MULT_MINUS_EXPR:
7752 case DOT_PROD_EXPR:
7753 return true;
7754
7755 default:
7756 break;
7757 }
7758 return false;
7759 }
7760
7761 /* Returns true if CODE can overflow. */
7762
7763 bool
7764 operation_can_overflow (enum tree_code code)
7765 {
7766 switch (code)
7767 {
7768 case PLUS_EXPR:
7769 case MINUS_EXPR:
7770 case MULT_EXPR:
7771 case LSHIFT_EXPR:
7772 /* Can overflow in various ways. */
7773 return true;
7774 case TRUNC_DIV_EXPR:
7775 case EXACT_DIV_EXPR:
7776 case FLOOR_DIV_EXPR:
7777 case CEIL_DIV_EXPR:
7778 /* For INT_MIN / -1. */
7779 return true;
7780 case NEGATE_EXPR:
7781 case ABS_EXPR:
7782 /* For -INT_MIN. */
7783 return true;
7784 default:
7785 /* These operators cannot overflow. */
7786 return false;
7787 }
7788 }
7789
7790 /* Returns true if CODE operating on operands of type TYPE doesn't overflow, or
7791 ftrapv doesn't generate trapping insns for CODE. */
7792
7793 bool
7794 operation_no_trapping_overflow (tree type, enum tree_code code)
7795 {
7796 gcc_checking_assert (ANY_INTEGRAL_TYPE_P (type));
7797
7798 /* We don't generate instructions that trap on overflow for complex or vector
7799 types. */
7800 if (!INTEGRAL_TYPE_P (type))
7801 return true;
7802
7803 if (!TYPE_OVERFLOW_TRAPS (type))
7804 return true;
7805
7806 switch (code)
7807 {
7808 case PLUS_EXPR:
7809 case MINUS_EXPR:
7810 case MULT_EXPR:
7811 case NEGATE_EXPR:
7812 case ABS_EXPR:
7813 /* These operators can overflow, and -ftrapv generates trapping code for
7814 these. */
7815 return false;
7816 case TRUNC_DIV_EXPR:
7817 case EXACT_DIV_EXPR:
7818 case FLOOR_DIV_EXPR:
7819 case CEIL_DIV_EXPR:
7820 case LSHIFT_EXPR:
7821 /* These operators can overflow, but -ftrapv does not generate trapping
7822 code for these. */
7823 return true;
7824 default:
7825 /* These operators cannot overflow. */
7826 return true;
7827 }
7828 }
7829
7830 /* Constructors for pointer, array and function types.
7831 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
7832 constructed by language-dependent code, not here.) */
7833
7834 /* Construct, lay out and return the type of pointers to TO_TYPE with
7835 mode MODE. If CAN_ALIAS_ALL is TRUE, indicate this type can
7836 reference all of memory. If such a type has already been
7837 constructed, reuse it. */
7838
7839 tree
7840 build_pointer_type_for_mode (tree to_type, machine_mode mode,
7841 bool can_alias_all)
7842 {
7843 tree t;
7844 bool could_alias = can_alias_all;
7845
7846 if (to_type == error_mark_node)
7847 return error_mark_node;
7848
7849 /* If the pointed-to type has the may_alias attribute set, force
7850 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
7851 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
7852 can_alias_all = true;
7853
7854 /* In some cases, languages will have things that aren't a POINTER_TYPE
7855 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
7856 In that case, return that type without regard to the rest of our
7857 operands.
7858
7859 ??? This is a kludge, but consistent with the way this function has
7860 always operated and there doesn't seem to be a good way to avoid this
7861 at the moment. */
7862 if (TYPE_POINTER_TO (to_type) != 0
7863 && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
7864 return TYPE_POINTER_TO (to_type);
7865
7866 /* First, if we already have a type for pointers to TO_TYPE and it's
7867 the proper mode, use it. */
7868 for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
7869 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
7870 return t;
7871
7872 t = make_node (POINTER_TYPE);
7873
7874 TREE_TYPE (t) = to_type;
7875 SET_TYPE_MODE (t, mode);
7876 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
7877 TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
7878 TYPE_POINTER_TO (to_type) = t;
7879
7880 /* During LTO we do not set TYPE_CANONICAL of pointers and references. */
7881 if (TYPE_STRUCTURAL_EQUALITY_P (to_type) || in_lto_p)
7882 SET_TYPE_STRUCTURAL_EQUALITY (t);
7883 else if (TYPE_CANONICAL (to_type) != to_type || could_alias)
7884 TYPE_CANONICAL (t)
7885 = build_pointer_type_for_mode (TYPE_CANONICAL (to_type),
7886 mode, false);
7887
7888 /* Lay out the type. This function has many callers that are concerned
7889 with expression-construction, and this simplifies them all. */
7890 layout_type (t);
7891
7892 return t;
7893 }
7894
7895 /* By default build pointers in ptr_mode. */
7896
7897 tree
7898 build_pointer_type (tree to_type)
7899 {
7900 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
7901 : TYPE_ADDR_SPACE (to_type);
7902 machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
7903 return build_pointer_type_for_mode (to_type, pointer_mode, false);
7904 }
7905
7906 /* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE. */
7907
7908 tree
7909 build_reference_type_for_mode (tree to_type, machine_mode mode,
7910 bool can_alias_all)
7911 {
7912 tree t;
7913 bool could_alias = can_alias_all;
7914
7915 if (to_type == error_mark_node)
7916 return error_mark_node;
7917
7918 /* If the pointed-to type has the may_alias attribute set, force
7919 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
7920 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
7921 can_alias_all = true;
7922
7923 /* In some cases, languages will have things that aren't a REFERENCE_TYPE
7924 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
7925 In that case, return that type without regard to the rest of our
7926 operands.
7927
7928 ??? This is a kludge, but consistent with the way this function has
7929 always operated and there doesn't seem to be a good way to avoid this
7930 at the moment. */
7931 if (TYPE_REFERENCE_TO (to_type) != 0
7932 && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
7933 return TYPE_REFERENCE_TO (to_type);
7934
7935 /* First, if we already have a type for pointers to TO_TYPE and it's
7936 the proper mode, use it. */
7937 for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
7938 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
7939 return t;
7940
7941 t = make_node (REFERENCE_TYPE);
7942
7943 TREE_TYPE (t) = to_type;
7944 SET_TYPE_MODE (t, mode);
7945 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
7946 TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
7947 TYPE_REFERENCE_TO (to_type) = t;
7948
7949 /* During LTO we do not set TYPE_CANONICAL of pointers and references. */
7950 if (TYPE_STRUCTURAL_EQUALITY_P (to_type) || in_lto_p)
7951 SET_TYPE_STRUCTURAL_EQUALITY (t);
7952 else if (TYPE_CANONICAL (to_type) != to_type || could_alias)
7953 TYPE_CANONICAL (t)
7954 = build_reference_type_for_mode (TYPE_CANONICAL (to_type),
7955 mode, false);
7956
7957 layout_type (t);
7958
7959 return t;
7960 }
7961
7962
7963 /* Build the node for the type of references-to-TO_TYPE by default
7964 in ptr_mode. */
7965
7966 tree
7967 build_reference_type (tree to_type)
7968 {
7969 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
7970 : TYPE_ADDR_SPACE (to_type);
7971 machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
7972 return build_reference_type_for_mode (to_type, pointer_mode, false);
7973 }
7974
7975 #define MAX_INT_CACHED_PREC \
7976 (HOST_BITS_PER_WIDE_INT > 64 ? HOST_BITS_PER_WIDE_INT : 64)
7977 static GTY(()) tree nonstandard_integer_type_cache[2 * MAX_INT_CACHED_PREC + 2];
7978
7979 /* Builds a signed or unsigned integer type of precision PRECISION.
7980 Used for C bitfields whose precision does not match that of
7981 built-in target types. */
7982 tree
7983 build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
7984 int unsignedp)
7985 {
7986 tree itype, ret;
7987
7988 if (unsignedp)
7989 unsignedp = MAX_INT_CACHED_PREC + 1;
7990
7991 if (precision <= MAX_INT_CACHED_PREC)
7992 {
7993 itype = nonstandard_integer_type_cache[precision + unsignedp];
7994 if (itype)
7995 return itype;
7996 }
7997
7998 itype = make_node (INTEGER_TYPE);
7999 TYPE_PRECISION (itype) = precision;
8000
8001 if (unsignedp)
8002 fixup_unsigned_type (itype);
8003 else
8004 fixup_signed_type (itype);
8005
8006 inchash::hash hstate;
8007 inchash::add_expr (TYPE_MAX_VALUE (itype), hstate);
8008 ret = type_hash_canon (hstate.end (), itype);
8009 if (precision <= MAX_INT_CACHED_PREC)
8010 nonstandard_integer_type_cache[precision + unsignedp] = ret;
8011
8012 return ret;
8013 }
8014
8015 #define MAX_BOOL_CACHED_PREC \
8016 (HOST_BITS_PER_WIDE_INT > 64 ? HOST_BITS_PER_WIDE_INT : 64)
8017 static GTY(()) tree nonstandard_boolean_type_cache[MAX_BOOL_CACHED_PREC + 1];
8018
8019 /* Builds a boolean type of precision PRECISION.
8020 Used for boolean vectors to choose proper vector element size. */
8021 tree
8022 build_nonstandard_boolean_type (unsigned HOST_WIDE_INT precision)
8023 {
8024 tree type;
8025
8026 if (precision <= MAX_BOOL_CACHED_PREC)
8027 {
8028 type = nonstandard_boolean_type_cache[precision];
8029 if (type)
8030 return type;
8031 }
8032
8033 type = make_node (BOOLEAN_TYPE);
8034 TYPE_PRECISION (type) = precision;
8035 fixup_signed_type (type);
8036
8037 if (precision <= MAX_INT_CACHED_PREC)
8038 nonstandard_boolean_type_cache[precision] = type;
8039
8040 return type;
8041 }
8042
8043 /* Create a range of some discrete type TYPE (an INTEGER_TYPE, ENUMERAL_TYPE
8044 or BOOLEAN_TYPE) with low bound LOWVAL and high bound HIGHVAL. If SHARED
8045 is true, reuse such a type that has already been constructed. */
8046
8047 static tree
8048 build_range_type_1 (tree type, tree lowval, tree highval, bool shared)
8049 {
8050 tree itype = make_node (INTEGER_TYPE);
8051
8052 TREE_TYPE (itype) = type;
8053
8054 TYPE_MIN_VALUE (itype) = fold_convert (type, lowval);
8055 TYPE_MAX_VALUE (itype) = highval ? fold_convert (type, highval) : NULL;
8056
8057 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
8058 SET_TYPE_MODE (itype, TYPE_MODE (type));
8059 TYPE_SIZE (itype) = TYPE_SIZE (type);
8060 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
8061 SET_TYPE_ALIGN (itype, TYPE_ALIGN (type));
8062 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
8063 SET_TYPE_WARN_IF_NOT_ALIGN (itype, TYPE_WARN_IF_NOT_ALIGN (type));
8064
8065 if (!shared)
8066 return itype;
8067
8068 if ((TYPE_MIN_VALUE (itype)
8069 && TREE_CODE (TYPE_MIN_VALUE (itype)) != INTEGER_CST)
8070 || (TYPE_MAX_VALUE (itype)
8071 && TREE_CODE (TYPE_MAX_VALUE (itype)) != INTEGER_CST))
8072 {
8073 /* Since we cannot reliably merge this type, we need to compare it using
8074 structural equality checks. */
8075 SET_TYPE_STRUCTURAL_EQUALITY (itype);
8076 return itype;
8077 }
8078
8079 hashval_t hash = type_hash_canon_hash (itype);
8080 itype = type_hash_canon (hash, itype);
8081
8082 return itype;
8083 }
8084
8085 /* Wrapper around build_range_type_1 with SHARED set to true. */
8086
8087 tree
8088 build_range_type (tree type, tree lowval, tree highval)
8089 {
8090 return build_range_type_1 (type, lowval, highval, true);
8091 }
8092
8093 /* Wrapper around build_range_type_1 with SHARED set to false. */
8094
8095 tree
8096 build_nonshared_range_type (tree type, tree lowval, tree highval)
8097 {
8098 return build_range_type_1 (type, lowval, highval, false);
8099 }
8100
8101 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
8102 MAXVAL should be the maximum value in the domain
8103 (one less than the length of the array).
8104
8105 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
8106 We don't enforce this limit, that is up to caller (e.g. language front end).
8107 The limit exists because the result is a signed type and we don't handle
8108 sizes that use more than one HOST_WIDE_INT. */
8109
8110 tree
8111 build_index_type (tree maxval)
8112 {
8113 return build_range_type (sizetype, size_zero_node, maxval);
8114 }
8115
8116 /* Return true if the debug information for TYPE, a subtype, should be emitted
8117 as a subrange type. If so, set LOWVAL to the low bound and HIGHVAL to the
8118 high bound, respectively. Sometimes doing so unnecessarily obfuscates the
8119 debug info and doesn't reflect the source code. */
8120
8121 bool
8122 subrange_type_for_debug_p (const_tree type, tree *lowval, tree *highval)
8123 {
8124 tree base_type = TREE_TYPE (type), low, high;
8125
8126 /* Subrange types have a base type which is an integral type. */
8127 if (!INTEGRAL_TYPE_P (base_type))
8128 return false;
8129
8130 /* Get the real bounds of the subtype. */
8131 if (lang_hooks.types.get_subrange_bounds)
8132 lang_hooks.types.get_subrange_bounds (type, &low, &high);
8133 else
8134 {
8135 low = TYPE_MIN_VALUE (type);
8136 high = TYPE_MAX_VALUE (type);
8137 }
8138
8139 /* If the type and its base type have the same representation and the same
8140 name, then the type is not a subrange but a copy of the base type. */
8141 if ((TREE_CODE (base_type) == INTEGER_TYPE
8142 || TREE_CODE (base_type) == BOOLEAN_TYPE)
8143 && int_size_in_bytes (type) == int_size_in_bytes (base_type)
8144 && tree_int_cst_equal (low, TYPE_MIN_VALUE (base_type))
8145 && tree_int_cst_equal (high, TYPE_MAX_VALUE (base_type))
8146 && TYPE_IDENTIFIER (type) == TYPE_IDENTIFIER (base_type))
8147 return false;
8148
8149 if (lowval)
8150 *lowval = low;
8151 if (highval)
8152 *highval = high;
8153 return true;
8154 }
8155
8156 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
8157 and number of elements specified by the range of values of INDEX_TYPE.
8158 If TYPELESS_STORAGE is true, TYPE_TYPELESS_STORAGE flag is set on the type.
8159 If SHARED is true, reuse such a type that has already been constructed.
8160 If SET_CANONICAL is true, compute TYPE_CANONICAL from the element type. */
8161
8162 static tree
8163 build_array_type_1 (tree elt_type, tree index_type, bool typeless_storage,
8164 bool shared, bool set_canonical)
8165 {
8166 tree t;
8167
8168 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
8169 {
8170 error ("arrays of functions are not meaningful");
8171 elt_type = integer_type_node;
8172 }
8173
8174 t = make_node (ARRAY_TYPE);
8175 TREE_TYPE (t) = elt_type;
8176 TYPE_DOMAIN (t) = index_type;
8177 TYPE_ADDR_SPACE (t) = TYPE_ADDR_SPACE (elt_type);
8178 TYPE_TYPELESS_STORAGE (t) = typeless_storage;
8179 layout_type (t);
8180
8181 if (shared)
8182 {
8183 hashval_t hash = type_hash_canon_hash (t);
8184 t = type_hash_canon (hash, t);
8185 }
8186
8187 if (TYPE_CANONICAL (t) == t && set_canonical)
8188 {
8189 if (TYPE_STRUCTURAL_EQUALITY_P (elt_type)
8190 || (index_type && TYPE_STRUCTURAL_EQUALITY_P (index_type))
8191 || in_lto_p)
8192 SET_TYPE_STRUCTURAL_EQUALITY (t);
8193 else if (TYPE_CANONICAL (elt_type) != elt_type
8194 || (index_type && TYPE_CANONICAL (index_type) != index_type))
8195 TYPE_CANONICAL (t)
8196 = build_array_type_1 (TYPE_CANONICAL (elt_type),
8197 index_type
8198 ? TYPE_CANONICAL (index_type) : NULL_TREE,
8199 typeless_storage, shared, set_canonical);
8200 }
8201
8202 return t;
8203 }
8204
8205 /* Wrapper around build_array_type_1 with SHARED set to true. */
8206
8207 tree
8208 build_array_type (tree elt_type, tree index_type, bool typeless_storage)
8209 {
8210 return
8211 build_array_type_1 (elt_type, index_type, typeless_storage, true, true);
8212 }
8213
8214 /* Wrapper around build_array_type_1 with SHARED set to false. */
8215
8216 tree
8217 build_nonshared_array_type (tree elt_type, tree index_type)
8218 {
8219 return build_array_type_1 (elt_type, index_type, false, false, true);
8220 }
8221
8222 /* Return a representation of ELT_TYPE[NELTS], using indices of type
8223 sizetype. */
8224
8225 tree
8226 build_array_type_nelts (tree elt_type, poly_uint64 nelts)
8227 {
8228 return build_array_type (elt_type, build_index_type (size_int (nelts - 1)));
8229 }
8230
8231 /* Recursively examines the array elements of TYPE, until a non-array
8232 element type is found. */
8233
8234 tree
8235 strip_array_types (tree type)
8236 {
8237 while (TREE_CODE (type) == ARRAY_TYPE)
8238 type = TREE_TYPE (type);
8239
8240 return type;
8241 }
8242
8243 /* Computes the canonical argument types from the argument type list
8244 ARGTYPES.
8245
8246 Upon return, *ANY_STRUCTURAL_P will be true iff either it was true
8247 on entry to this function, or if any of the ARGTYPES are
8248 structural.
8249
8250 Upon return, *ANY_NONCANONICAL_P will be true iff either it was
8251 true on entry to this function, or if any of the ARGTYPES are
8252 non-canonical.
8253
8254 Returns a canonical argument list, which may be ARGTYPES when the
8255 canonical argument list is unneeded (i.e., *ANY_STRUCTURAL_P is
8256 true) or would not differ from ARGTYPES. */
8257
8258 static tree
8259 maybe_canonicalize_argtypes (tree argtypes,
8260 bool *any_structural_p,
8261 bool *any_noncanonical_p)
8262 {
8263 tree arg;
8264 bool any_noncanonical_argtypes_p = false;
8265
8266 for (arg = argtypes; arg && !(*any_structural_p); arg = TREE_CHAIN (arg))
8267 {
8268 if (!TREE_VALUE (arg) || TREE_VALUE (arg) == error_mark_node)
8269 /* Fail gracefully by stating that the type is structural. */
8270 *any_structural_p = true;
8271 else if (TYPE_STRUCTURAL_EQUALITY_P (TREE_VALUE (arg)))
8272 *any_structural_p = true;
8273 else if (TYPE_CANONICAL (TREE_VALUE (arg)) != TREE_VALUE (arg)
8274 || TREE_PURPOSE (arg))
8275 /* If the argument has a default argument, we consider it
8276 non-canonical even though the type itself is canonical.
8277 That way, different variants of function and method types
8278 with default arguments will all point to the variant with
8279 no defaults as their canonical type. */
8280 any_noncanonical_argtypes_p = true;
8281 }
8282
8283 if (*any_structural_p)
8284 return argtypes;
8285
8286 if (any_noncanonical_argtypes_p)
8287 {
8288 /* Build the canonical list of argument types. */
8289 tree canon_argtypes = NULL_TREE;
8290 bool is_void = false;
8291
8292 for (arg = argtypes; arg; arg = TREE_CHAIN (arg))
8293 {
8294 if (arg == void_list_node)
8295 is_void = true;
8296 else
8297 canon_argtypes = tree_cons (NULL_TREE,
8298 TYPE_CANONICAL (TREE_VALUE (arg)),
8299 canon_argtypes);
8300 }
8301
8302 canon_argtypes = nreverse (canon_argtypes);
8303 if (is_void)
8304 canon_argtypes = chainon (canon_argtypes, void_list_node);
8305
8306 /* There is a non-canonical type. */
8307 *any_noncanonical_p = true;
8308 return canon_argtypes;
8309 }
8310
8311 /* The canonical argument types are the same as ARGTYPES. */
8312 return argtypes;
8313 }
8314
8315 /* Construct, lay out and return
8316 the type of functions returning type VALUE_TYPE
8317 given arguments of types ARG_TYPES.
8318 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
8319 are data type nodes for the arguments of the function.
8320 If such a type has already been constructed, reuse it. */
8321
8322 tree
8323 build_function_type (tree value_type, tree arg_types)
8324 {
8325 tree t;
8326 inchash::hash hstate;
8327 bool any_structural_p, any_noncanonical_p;
8328 tree canon_argtypes;
8329
8330 gcc_assert (arg_types != error_mark_node);
8331
8332 if (TREE_CODE (value_type) == FUNCTION_TYPE)
8333 {
8334 error ("function return type cannot be function");
8335 value_type = integer_type_node;
8336 }
8337
8338 /* Make a node of the sort we want. */
8339 t = make_node (FUNCTION_TYPE);
8340 TREE_TYPE (t) = value_type;
8341 TYPE_ARG_TYPES (t) = arg_types;
8342
8343 /* If we already have such a type, use the old one. */
8344 hashval_t hash = type_hash_canon_hash (t);
8345 t = type_hash_canon (hash, t);
8346
8347 /* Set up the canonical type. */
8348 any_structural_p = TYPE_STRUCTURAL_EQUALITY_P (value_type);
8349 any_noncanonical_p = TYPE_CANONICAL (value_type) != value_type;
8350 canon_argtypes = maybe_canonicalize_argtypes (arg_types,
8351 &any_structural_p,
8352 &any_noncanonical_p);
8353 if (any_structural_p)
8354 SET_TYPE_STRUCTURAL_EQUALITY (t);
8355 else if (any_noncanonical_p)
8356 TYPE_CANONICAL (t) = build_function_type (TYPE_CANONICAL (value_type),
8357 canon_argtypes);
8358
8359 if (!COMPLETE_TYPE_P (t))
8360 layout_type (t);
8361 return t;
8362 }
8363
8364 /* Build a function type. The RETURN_TYPE is the type returned by the
8365 function. If VAARGS is set, no void_type_node is appended to the
8366 list. ARGP must be always be terminated be a NULL_TREE. */
8367
8368 static tree
8369 build_function_type_list_1 (bool vaargs, tree return_type, va_list argp)
8370 {
8371 tree t, args, last;
8372
8373 t = va_arg (argp, tree);
8374 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (argp, tree))
8375 args = tree_cons (NULL_TREE, t, args);
8376
8377 if (vaargs)
8378 {
8379 last = args;
8380 if (args != NULL_TREE)
8381 args = nreverse (args);
8382 gcc_assert (last != void_list_node);
8383 }
8384 else if (args == NULL_TREE)
8385 args = void_list_node;
8386 else
8387 {
8388 last = args;
8389 args = nreverse (args);
8390 TREE_CHAIN (last) = void_list_node;
8391 }
8392 args = build_function_type (return_type, args);
8393
8394 return args;
8395 }
8396
8397 /* Build a function type. The RETURN_TYPE is the type returned by the
8398 function. If additional arguments are provided, they are
8399 additional argument types. The list of argument types must always
8400 be terminated by NULL_TREE. */
8401
8402 tree
8403 build_function_type_list (tree return_type, ...)
8404 {
8405 tree args;
8406 va_list p;
8407
8408 va_start (p, return_type);
8409 args = build_function_type_list_1 (false, return_type, p);
8410 va_end (p);
8411 return args;
8412 }
8413
8414 /* Build a variable argument function type. The RETURN_TYPE is the
8415 type returned by the function. If additional arguments are provided,
8416 they are additional argument types. The list of argument types must
8417 always be terminated by NULL_TREE. */
8418
8419 tree
8420 build_varargs_function_type_list (tree return_type, ...)
8421 {
8422 tree args;
8423 va_list p;
8424
8425 va_start (p, return_type);
8426 args = build_function_type_list_1 (true, return_type, p);
8427 va_end (p);
8428
8429 return args;
8430 }
8431
8432 /* Build a function type. RETURN_TYPE is the type returned by the
8433 function; VAARGS indicates whether the function takes varargs. The
8434 function takes N named arguments, the types of which are provided in
8435 ARG_TYPES. */
8436
8437 static tree
8438 build_function_type_array_1 (bool vaargs, tree return_type, int n,
8439 tree *arg_types)
8440 {
8441 int i;
8442 tree t = vaargs ? NULL_TREE : void_list_node;
8443
8444 for (i = n - 1; i >= 0; i--)
8445 t = tree_cons (NULL_TREE, arg_types[i], t);
8446
8447 return build_function_type (return_type, t);
8448 }
8449
8450 /* Build a function type. RETURN_TYPE is the type returned by the
8451 function. The function takes N named arguments, the types of which
8452 are provided in ARG_TYPES. */
8453
8454 tree
8455 build_function_type_array (tree return_type, int n, tree *arg_types)
8456 {
8457 return build_function_type_array_1 (false, return_type, n, arg_types);
8458 }
8459
8460 /* Build a variable argument function type. RETURN_TYPE is the type
8461 returned by the function. The function takes N named arguments, the
8462 types of which are provided in ARG_TYPES. */
8463
8464 tree
8465 build_varargs_function_type_array (tree return_type, int n, tree *arg_types)
8466 {
8467 return build_function_type_array_1 (true, return_type, n, arg_types);
8468 }
8469
8470 /* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
8471 and ARGTYPES (a TREE_LIST) are the return type and arguments types
8472 for the method. An implicit additional parameter (of type
8473 pointer-to-BASETYPE) is added to the ARGTYPES. */
8474
8475 tree
8476 build_method_type_directly (tree basetype,
8477 tree rettype,
8478 tree argtypes)
8479 {
8480 tree t;
8481 tree ptype;
8482 bool any_structural_p, any_noncanonical_p;
8483 tree canon_argtypes;
8484
8485 /* Make a node of the sort we want. */
8486 t = make_node (METHOD_TYPE);
8487
8488 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
8489 TREE_TYPE (t) = rettype;
8490 ptype = build_pointer_type (basetype);
8491
8492 /* The actual arglist for this function includes a "hidden" argument
8493 which is "this". Put it into the list of argument types. */
8494 argtypes = tree_cons (NULL_TREE, ptype, argtypes);
8495 TYPE_ARG_TYPES (t) = argtypes;
8496
8497 /* If we already have such a type, use the old one. */
8498 hashval_t hash = type_hash_canon_hash (t);
8499 t = type_hash_canon (hash, t);
8500
8501 /* Set up the canonical type. */
8502 any_structural_p
8503 = (TYPE_STRUCTURAL_EQUALITY_P (basetype)
8504 || TYPE_STRUCTURAL_EQUALITY_P (rettype));
8505 any_noncanonical_p
8506 = (TYPE_CANONICAL (basetype) != basetype
8507 || TYPE_CANONICAL (rettype) != rettype);
8508 canon_argtypes = maybe_canonicalize_argtypes (TREE_CHAIN (argtypes),
8509 &any_structural_p,
8510 &any_noncanonical_p);
8511 if (any_structural_p)
8512 SET_TYPE_STRUCTURAL_EQUALITY (t);
8513 else if (any_noncanonical_p)
8514 TYPE_CANONICAL (t)
8515 = build_method_type_directly (TYPE_CANONICAL (basetype),
8516 TYPE_CANONICAL (rettype),
8517 canon_argtypes);
8518 if (!COMPLETE_TYPE_P (t))
8519 layout_type (t);
8520
8521 return t;
8522 }
8523
8524 /* Construct, lay out and return the type of methods belonging to class
8525 BASETYPE and whose arguments and values are described by TYPE.
8526 If that type exists already, reuse it.
8527 TYPE must be a FUNCTION_TYPE node. */
8528
8529 tree
8530 build_method_type (tree basetype, tree type)
8531 {
8532 gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
8533
8534 return build_method_type_directly (basetype,
8535 TREE_TYPE (type),
8536 TYPE_ARG_TYPES (type));
8537 }
8538
8539 /* Construct, lay out and return the type of offsets to a value
8540 of type TYPE, within an object of type BASETYPE.
8541 If a suitable offset type exists already, reuse it. */
8542
8543 tree
8544 build_offset_type (tree basetype, tree type)
8545 {
8546 tree t;
8547
8548 /* Make a node of the sort we want. */
8549 t = make_node (OFFSET_TYPE);
8550
8551 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
8552 TREE_TYPE (t) = type;
8553
8554 /* If we already have such a type, use the old one. */
8555 hashval_t hash = type_hash_canon_hash (t);
8556 t = type_hash_canon (hash, t);
8557
8558 if (!COMPLETE_TYPE_P (t))
8559 layout_type (t);
8560
8561 if (TYPE_CANONICAL (t) == t)
8562 {
8563 if (TYPE_STRUCTURAL_EQUALITY_P (basetype)
8564 || TYPE_STRUCTURAL_EQUALITY_P (type))
8565 SET_TYPE_STRUCTURAL_EQUALITY (t);
8566 else if (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)) != basetype
8567 || TYPE_CANONICAL (type) != type)
8568 TYPE_CANONICAL (t)
8569 = build_offset_type (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)),
8570 TYPE_CANONICAL (type));
8571 }
8572
8573 return t;
8574 }
8575
8576 /* Create a complex type whose components are COMPONENT_TYPE.
8577
8578 If NAMED is true, the type is given a TYPE_NAME. We do not always
8579 do so because this creates a DECL node and thus make the DECL_UIDs
8580 dependent on the type canonicalization hashtable, which is GC-ed,
8581 so the DECL_UIDs would not be stable wrt garbage collection. */
8582
8583 tree
8584 build_complex_type (tree component_type, bool named)
8585 {
8586 gcc_assert (INTEGRAL_TYPE_P (component_type)
8587 || SCALAR_FLOAT_TYPE_P (component_type)
8588 || FIXED_POINT_TYPE_P (component_type));
8589
8590 /* Make a node of the sort we want. */
8591 tree probe = make_node (COMPLEX_TYPE);
8592
8593 TREE_TYPE (probe) = TYPE_MAIN_VARIANT (component_type);
8594
8595 /* If we already have such a type, use the old one. */
8596 hashval_t hash = type_hash_canon_hash (probe);
8597 tree t = type_hash_canon (hash, probe);
8598
8599 if (t == probe)
8600 {
8601 /* We created a new type. The hash insertion will have laid
8602 out the type. We need to check the canonicalization and
8603 maybe set the name. */
8604 gcc_checking_assert (COMPLETE_TYPE_P (t)
8605 && !TYPE_NAME (t)
8606 && TYPE_CANONICAL (t) == t);
8607
8608 if (TYPE_STRUCTURAL_EQUALITY_P (TREE_TYPE (t)))
8609 SET_TYPE_STRUCTURAL_EQUALITY (t);
8610 else if (TYPE_CANONICAL (TREE_TYPE (t)) != TREE_TYPE (t))
8611 TYPE_CANONICAL (t)
8612 = build_complex_type (TYPE_CANONICAL (TREE_TYPE (t)), named);
8613
8614 /* We need to create a name, since complex is a fundamental type. */
8615 if (named)
8616 {
8617 const char *name = NULL;
8618
8619 if (TREE_TYPE (t) == char_type_node)
8620 name = "complex char";
8621 else if (TREE_TYPE (t) == signed_char_type_node)
8622 name = "complex signed char";
8623 else if (TREE_TYPE (t) == unsigned_char_type_node)
8624 name = "complex unsigned char";
8625 else if (TREE_TYPE (t) == short_integer_type_node)
8626 name = "complex short int";
8627 else if (TREE_TYPE (t) == short_unsigned_type_node)
8628 name = "complex short unsigned int";
8629 else if (TREE_TYPE (t) == integer_type_node)
8630 name = "complex int";
8631 else if (TREE_TYPE (t) == unsigned_type_node)
8632 name = "complex unsigned int";
8633 else if (TREE_TYPE (t) == long_integer_type_node)
8634 name = "complex long int";
8635 else if (TREE_TYPE (t) == long_unsigned_type_node)
8636 name = "complex long unsigned int";
8637 else if (TREE_TYPE (t) == long_long_integer_type_node)
8638 name = "complex long long int";
8639 else if (TREE_TYPE (t) == long_long_unsigned_type_node)
8640 name = "complex long long unsigned int";
8641
8642 if (name != NULL)
8643 TYPE_NAME (t) = build_decl (UNKNOWN_LOCATION, TYPE_DECL,
8644 get_identifier (name), t);
8645 }
8646 }
8647
8648 return build_qualified_type (t, TYPE_QUALS (component_type));
8649 }
8650
8651 /* If TYPE is a real or complex floating-point type and the target
8652 does not directly support arithmetic on TYPE then return the wider
8653 type to be used for arithmetic on TYPE. Otherwise, return
8654 NULL_TREE. */
8655
8656 tree
8657 excess_precision_type (tree type)
8658 {
8659 /* The target can give two different responses to the question of
8660 which excess precision mode it would like depending on whether we
8661 are in -fexcess-precision=standard or -fexcess-precision=fast. */
8662
8663 enum excess_precision_type requested_type
8664 = (flag_excess_precision == EXCESS_PRECISION_FAST
8665 ? EXCESS_PRECISION_TYPE_FAST
8666 : EXCESS_PRECISION_TYPE_STANDARD);
8667
8668 enum flt_eval_method target_flt_eval_method
8669 = targetm.c.excess_precision (requested_type);
8670
8671 /* The target should not ask for unpredictable float evaluation (though
8672 it might advertise that implicitly the evaluation is unpredictable,
8673 but we don't care about that here, it will have been reported
8674 elsewhere). If it does ask for unpredictable evaluation, we have
8675 nothing to do here. */
8676 gcc_assert (target_flt_eval_method != FLT_EVAL_METHOD_UNPREDICTABLE);
8677
8678 /* Nothing to do. The target has asked for all types we know about
8679 to be computed with their native precision and range. */
8680 if (target_flt_eval_method == FLT_EVAL_METHOD_PROMOTE_TO_FLOAT16)
8681 return NULL_TREE;
8682
8683 /* The target will promote this type in a target-dependent way, so excess
8684 precision ought to leave it alone. */
8685 if (targetm.promoted_type (type) != NULL_TREE)
8686 return NULL_TREE;
8687
8688 machine_mode float16_type_mode = (float16_type_node
8689 ? TYPE_MODE (float16_type_node)
8690 : VOIDmode);
8691 machine_mode float_type_mode = TYPE_MODE (float_type_node);
8692 machine_mode double_type_mode = TYPE_MODE (double_type_node);
8693
8694 switch (TREE_CODE (type))
8695 {
8696 case REAL_TYPE:
8697 {
8698 machine_mode type_mode = TYPE_MODE (type);
8699 switch (target_flt_eval_method)
8700 {
8701 case FLT_EVAL_METHOD_PROMOTE_TO_FLOAT:
8702 if (type_mode == float16_type_mode)
8703 return float_type_node;
8704 break;
8705 case FLT_EVAL_METHOD_PROMOTE_TO_DOUBLE:
8706 if (type_mode == float16_type_mode
8707 || type_mode == float_type_mode)
8708 return double_type_node;
8709 break;
8710 case FLT_EVAL_METHOD_PROMOTE_TO_LONG_DOUBLE:
8711 if (type_mode == float16_type_mode
8712 || type_mode == float_type_mode
8713 || type_mode == double_type_mode)
8714 return long_double_type_node;
8715 break;
8716 default:
8717 gcc_unreachable ();
8718 }
8719 break;
8720 }
8721 case COMPLEX_TYPE:
8722 {
8723 if (TREE_CODE (TREE_TYPE (type)) != REAL_TYPE)
8724 return NULL_TREE;
8725 machine_mode type_mode = TYPE_MODE (TREE_TYPE (type));
8726 switch (target_flt_eval_method)
8727 {
8728 case FLT_EVAL_METHOD_PROMOTE_TO_FLOAT:
8729 if (type_mode == float16_type_mode)
8730 return complex_float_type_node;
8731 break;
8732 case FLT_EVAL_METHOD_PROMOTE_TO_DOUBLE:
8733 if (type_mode == float16_type_mode
8734 || type_mode == float_type_mode)
8735 return complex_double_type_node;
8736 break;
8737 case FLT_EVAL_METHOD_PROMOTE_TO_LONG_DOUBLE:
8738 if (type_mode == float16_type_mode
8739 || type_mode == float_type_mode
8740 || type_mode == double_type_mode)
8741 return complex_long_double_type_node;
8742 break;
8743 default:
8744 gcc_unreachable ();
8745 }
8746 break;
8747 }
8748 default:
8749 break;
8750 }
8751
8752 return NULL_TREE;
8753 }
8754 \f
8755 /* Return OP, stripped of any conversions to wider types as much as is safe.
8756 Converting the value back to OP's type makes a value equivalent to OP.
8757
8758 If FOR_TYPE is nonzero, we return a value which, if converted to
8759 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
8760
8761 OP must have integer, real or enumeral type. Pointers are not allowed!
8762
8763 There are some cases where the obvious value we could return
8764 would regenerate to OP if converted to OP's type,
8765 but would not extend like OP to wider types.
8766 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
8767 For example, if OP is (unsigned short)(signed char)-1,
8768 we avoid returning (signed char)-1 if FOR_TYPE is int,
8769 even though extending that to an unsigned short would regenerate OP,
8770 since the result of extending (signed char)-1 to (int)
8771 is different from (int) OP. */
8772
8773 tree
8774 get_unwidened (tree op, tree for_type)
8775 {
8776 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
8777 tree type = TREE_TYPE (op);
8778 unsigned final_prec
8779 = TYPE_PRECISION (for_type != 0 ? for_type : type);
8780 int uns
8781 = (for_type != 0 && for_type != type
8782 && final_prec > TYPE_PRECISION (type)
8783 && TYPE_UNSIGNED (type));
8784 tree win = op;
8785
8786 while (CONVERT_EXPR_P (op))
8787 {
8788 int bitschange;
8789
8790 /* TYPE_PRECISION on vector types has different meaning
8791 (TYPE_VECTOR_SUBPARTS) and casts from vectors are view conversions,
8792 so avoid them here. */
8793 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == VECTOR_TYPE)
8794 break;
8795
8796 bitschange = TYPE_PRECISION (TREE_TYPE (op))
8797 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
8798
8799 /* Truncations are many-one so cannot be removed.
8800 Unless we are later going to truncate down even farther. */
8801 if (bitschange < 0
8802 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
8803 break;
8804
8805 /* See what's inside this conversion. If we decide to strip it,
8806 we will set WIN. */
8807 op = TREE_OPERAND (op, 0);
8808
8809 /* If we have not stripped any zero-extensions (uns is 0),
8810 we can strip any kind of extension.
8811 If we have previously stripped a zero-extension,
8812 only zero-extensions can safely be stripped.
8813 Any extension can be stripped if the bits it would produce
8814 are all going to be discarded later by truncating to FOR_TYPE. */
8815
8816 if (bitschange > 0)
8817 {
8818 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
8819 win = op;
8820 /* TYPE_UNSIGNED says whether this is a zero-extension.
8821 Let's avoid computing it if it does not affect WIN
8822 and if UNS will not be needed again. */
8823 if ((uns
8824 || CONVERT_EXPR_P (op))
8825 && TYPE_UNSIGNED (TREE_TYPE (op)))
8826 {
8827 uns = 1;
8828 win = op;
8829 }
8830 }
8831 }
8832
8833 /* If we finally reach a constant see if it fits in sth smaller and
8834 in that case convert it. */
8835 if (TREE_CODE (win) == INTEGER_CST)
8836 {
8837 tree wtype = TREE_TYPE (win);
8838 unsigned prec = wi::min_precision (wi::to_wide (win), TYPE_SIGN (wtype));
8839 if (for_type)
8840 prec = MAX (prec, final_prec);
8841 if (prec < TYPE_PRECISION (wtype))
8842 {
8843 tree t = lang_hooks.types.type_for_size (prec, TYPE_UNSIGNED (wtype));
8844 if (t && TYPE_PRECISION (t) < TYPE_PRECISION (wtype))
8845 win = fold_convert (t, win);
8846 }
8847 }
8848
8849 return win;
8850 }
8851 \f
8852 /* Return OP or a simpler expression for a narrower value
8853 which can be sign-extended or zero-extended to give back OP.
8854 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
8855 or 0 if the value should be sign-extended. */
8856
8857 tree
8858 get_narrower (tree op, int *unsignedp_ptr)
8859 {
8860 int uns = 0;
8861 int first = 1;
8862 tree win = op;
8863 bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));
8864
8865 if (TREE_CODE (op) == COMPOUND_EXPR)
8866 {
8867 do
8868 op = TREE_OPERAND (op, 1);
8869 while (TREE_CODE (op) == COMPOUND_EXPR);
8870 tree ret = get_narrower (op, unsignedp_ptr);
8871 if (ret == op)
8872 return win;
8873 auto_vec <tree, 16> v;
8874 unsigned int i;
8875 for (op = win; TREE_CODE (op) == COMPOUND_EXPR;
8876 op = TREE_OPERAND (op, 1))
8877 v.safe_push (op);
8878 FOR_EACH_VEC_ELT_REVERSE (v, i, op)
8879 ret = build2_loc (EXPR_LOCATION (op), COMPOUND_EXPR,
8880 TREE_TYPE (win), TREE_OPERAND (op, 0),
8881 ret);
8882 return ret;
8883 }
8884 while (TREE_CODE (op) == NOP_EXPR)
8885 {
8886 int bitschange
8887 = (TYPE_PRECISION (TREE_TYPE (op))
8888 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
8889
8890 /* Truncations are many-one so cannot be removed. */
8891 if (bitschange < 0)
8892 break;
8893
8894 /* See what's inside this conversion. If we decide to strip it,
8895 we will set WIN. */
8896
8897 if (bitschange > 0)
8898 {
8899 op = TREE_OPERAND (op, 0);
8900 /* An extension: the outermost one can be stripped,
8901 but remember whether it is zero or sign extension. */
8902 if (first)
8903 uns = TYPE_UNSIGNED (TREE_TYPE (op));
8904 /* Otherwise, if a sign extension has been stripped,
8905 only sign extensions can now be stripped;
8906 if a zero extension has been stripped, only zero-extensions. */
8907 else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
8908 break;
8909 first = 0;
8910 }
8911 else /* bitschange == 0 */
8912 {
8913 /* A change in nominal type can always be stripped, but we must
8914 preserve the unsignedness. */
8915 if (first)
8916 uns = TYPE_UNSIGNED (TREE_TYPE (op));
8917 first = 0;
8918 op = TREE_OPERAND (op, 0);
8919 /* Keep trying to narrow, but don't assign op to win if it
8920 would turn an integral type into something else. */
8921 if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
8922 continue;
8923 }
8924
8925 win = op;
8926 }
8927
8928 if (TREE_CODE (op) == COMPONENT_REF
8929 /* Since type_for_size always gives an integer type. */
8930 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
8931 && TREE_CODE (TREE_TYPE (op)) != FIXED_POINT_TYPE
8932 /* Ensure field is laid out already. */
8933 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
8934 && tree_fits_uhwi_p (DECL_SIZE (TREE_OPERAND (op, 1))))
8935 {
8936 unsigned HOST_WIDE_INT innerprec
8937 = tree_to_uhwi (DECL_SIZE (TREE_OPERAND (op, 1)));
8938 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
8939 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
8940 tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
8941
8942 /* We can get this structure field in a narrower type that fits it,
8943 but the resulting extension to its nominal type (a fullword type)
8944 must satisfy the same conditions as for other extensions.
8945
8946 Do this only for fields that are aligned (not bit-fields),
8947 because when bit-field insns will be used there is no
8948 advantage in doing this. */
8949
8950 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
8951 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
8952 && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
8953 && type != 0)
8954 {
8955 if (first)
8956 uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
8957 win = fold_convert (type, op);
8958 }
8959 }
8960
8961 *unsignedp_ptr = uns;
8962 return win;
8963 }
8964 \f
8965 /* Return true if integer constant C has a value that is permissible
8966 for TYPE, an integral type. */
8967
8968 bool
8969 int_fits_type_p (const_tree c, const_tree type)
8970 {
8971 tree type_low_bound, type_high_bound;
8972 bool ok_for_low_bound, ok_for_high_bound;
8973 signop sgn_c = TYPE_SIGN (TREE_TYPE (c));
8974
8975 /* Non-standard boolean types can have arbitrary precision but various
8976 transformations assume that they can only take values 0 and +/-1. */
8977 if (TREE_CODE (type) == BOOLEAN_TYPE)
8978 return wi::fits_to_boolean_p (wi::to_wide (c), type);
8979
8980 retry:
8981 type_low_bound = TYPE_MIN_VALUE (type);
8982 type_high_bound = TYPE_MAX_VALUE (type);
8983
8984 /* If at least one bound of the type is a constant integer, we can check
8985 ourselves and maybe make a decision. If no such decision is possible, but
8986 this type is a subtype, try checking against that. Otherwise, use
8987 fits_to_tree_p, which checks against the precision.
8988
8989 Compute the status for each possibly constant bound, and return if we see
8990 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
8991 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
8992 for "constant known to fit". */
8993
8994 /* Check if c >= type_low_bound. */
8995 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
8996 {
8997 if (tree_int_cst_lt (c, type_low_bound))
8998 return false;
8999 ok_for_low_bound = true;
9000 }
9001 else
9002 ok_for_low_bound = false;
9003
9004 /* Check if c <= type_high_bound. */
9005 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
9006 {
9007 if (tree_int_cst_lt (type_high_bound, c))
9008 return false;
9009 ok_for_high_bound = true;
9010 }
9011 else
9012 ok_for_high_bound = false;
9013
9014 /* If the constant fits both bounds, the result is known. */
9015 if (ok_for_low_bound && ok_for_high_bound)
9016 return true;
9017
9018 /* Perform some generic filtering which may allow making a decision
9019 even if the bounds are not constant. First, negative integers
9020 never fit in unsigned types, */
9021 if (TYPE_UNSIGNED (type) && sgn_c == SIGNED && wi::neg_p (wi::to_wide (c)))
9022 return false;
9023
9024 /* Second, narrower types always fit in wider ones. */
9025 if (TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (c)))
9026 return true;
9027
9028 /* Third, unsigned integers with top bit set never fit signed types. */
9029 if (!TYPE_UNSIGNED (type) && sgn_c == UNSIGNED)
9030 {
9031 int prec = GET_MODE_PRECISION (SCALAR_INT_TYPE_MODE (TREE_TYPE (c))) - 1;
9032 if (prec < TYPE_PRECISION (TREE_TYPE (c)))
9033 {
9034 /* When a tree_cst is converted to a wide-int, the precision
9035 is taken from the type. However, if the precision of the
9036 mode underneath the type is smaller than that, it is
9037 possible that the value will not fit. The test below
9038 fails if any bit is set between the sign bit of the
9039 underlying mode and the top bit of the type. */
9040 if (wi::zext (wi::to_wide (c), prec - 1) != wi::to_wide (c))
9041 return false;
9042 }
9043 else if (wi::neg_p (wi::to_wide (c)))
9044 return false;
9045 }
9046
9047 /* If we haven't been able to decide at this point, there nothing more we
9048 can check ourselves here. Look at the base type if we have one and it
9049 has the same precision. */
9050 if (TREE_CODE (type) == INTEGER_TYPE
9051 && TREE_TYPE (type) != 0
9052 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (type)))
9053 {
9054 type = TREE_TYPE (type);
9055 goto retry;
9056 }
9057
9058 /* Or to fits_to_tree_p, if nothing else. */
9059 return wi::fits_to_tree_p (wi::to_wide (c), type);
9060 }
9061
9062 /* Stores bounds of an integer TYPE in MIN and MAX. If TYPE has non-constant
9063 bounds or is a POINTER_TYPE, the maximum and/or minimum values that can be
9064 represented (assuming two's-complement arithmetic) within the bit
9065 precision of the type are returned instead. */
9066
9067 void
9068 get_type_static_bounds (const_tree type, mpz_t min, mpz_t max)
9069 {
9070 if (!POINTER_TYPE_P (type) && TYPE_MIN_VALUE (type)
9071 && TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST)
9072 wi::to_mpz (wi::to_wide (TYPE_MIN_VALUE (type)), min, TYPE_SIGN (type));
9073 else
9074 {
9075 if (TYPE_UNSIGNED (type))
9076 mpz_set_ui (min, 0);
9077 else
9078 {
9079 wide_int mn = wi::min_value (TYPE_PRECISION (type), SIGNED);
9080 wi::to_mpz (mn, min, SIGNED);
9081 }
9082 }
9083
9084 if (!POINTER_TYPE_P (type) && TYPE_MAX_VALUE (type)
9085 && TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST)
9086 wi::to_mpz (wi::to_wide (TYPE_MAX_VALUE (type)), max, TYPE_SIGN (type));
9087 else
9088 {
9089 wide_int mn = wi::max_value (TYPE_PRECISION (type), TYPE_SIGN (type));
9090 wi::to_mpz (mn, max, TYPE_SIGN (type));
9091 }
9092 }
9093
9094 /* Return true if VAR is an automatic variable. */
9095
9096 bool
9097 auto_var_p (const_tree var)
9098 {
9099 return ((((VAR_P (var) && ! DECL_EXTERNAL (var))
9100 || TREE_CODE (var) == PARM_DECL)
9101 && ! TREE_STATIC (var))
9102 || TREE_CODE (var) == RESULT_DECL);
9103 }
9104
9105 /* Return true if VAR is an automatic variable defined in function FN. */
9106
9107 bool
9108 auto_var_in_fn_p (const_tree var, const_tree fn)
9109 {
9110 return (DECL_P (var) && DECL_CONTEXT (var) == fn
9111 && (auto_var_p (var)
9112 || TREE_CODE (var) == LABEL_DECL));
9113 }
9114
9115 /* Subprogram of following function. Called by walk_tree.
9116
9117 Return *TP if it is an automatic variable or parameter of the
9118 function passed in as DATA. */
9119
9120 static tree
9121 find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
9122 {
9123 tree fn = (tree) data;
9124
9125 if (TYPE_P (*tp))
9126 *walk_subtrees = 0;
9127
9128 else if (DECL_P (*tp)
9129 && auto_var_in_fn_p (*tp, fn))
9130 return *tp;
9131
9132 return NULL_TREE;
9133 }
9134
9135 /* Returns true if T is, contains, or refers to a type with variable
9136 size. For METHOD_TYPEs and FUNCTION_TYPEs we exclude the
9137 arguments, but not the return type. If FN is nonzero, only return
9138 true if a modifier of the type or position of FN is a variable or
9139 parameter inside FN.
9140
9141 This concept is more general than that of C99 'variably modified types':
9142 in C99, a struct type is never variably modified because a VLA may not
9143 appear as a structure member. However, in GNU C code like:
9144
9145 struct S { int i[f()]; };
9146
9147 is valid, and other languages may define similar constructs. */
9148
9149 bool
9150 variably_modified_type_p (tree type, tree fn)
9151 {
9152 tree t;
9153
9154 /* Test if T is either variable (if FN is zero) or an expression containing
9155 a variable in FN. If TYPE isn't gimplified, return true also if
9156 gimplify_one_sizepos would gimplify the expression into a local
9157 variable. */
9158 #define RETURN_TRUE_IF_VAR(T) \
9159 do { tree _t = (T); \
9160 if (_t != NULL_TREE \
9161 && _t != error_mark_node \
9162 && !CONSTANT_CLASS_P (_t) \
9163 && TREE_CODE (_t) != PLACEHOLDER_EXPR \
9164 && (!fn \
9165 || (!TYPE_SIZES_GIMPLIFIED (type) \
9166 && (TREE_CODE (_t) != VAR_DECL \
9167 && !CONTAINS_PLACEHOLDER_P (_t))) \
9168 || walk_tree (&_t, find_var_from_fn, fn, NULL))) \
9169 return true; } while (0)
9170
9171 if (type == error_mark_node)
9172 return false;
9173
9174 /* If TYPE itself has variable size, it is variably modified. */
9175 RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
9176 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (type));
9177
9178 switch (TREE_CODE (type))
9179 {
9180 case POINTER_TYPE:
9181 case REFERENCE_TYPE:
9182 case VECTOR_TYPE:
9183 /* Ada can have pointer types refering to themselves indirectly. */
9184 if (TREE_VISITED (type))
9185 return false;
9186 TREE_VISITED (type) = true;
9187 if (variably_modified_type_p (TREE_TYPE (type), fn))
9188 {
9189 TREE_VISITED (type) = false;
9190 return true;
9191 }
9192 TREE_VISITED (type) = false;
9193 break;
9194
9195 case FUNCTION_TYPE:
9196 case METHOD_TYPE:
9197 /* If TYPE is a function type, it is variably modified if the
9198 return type is variably modified. */
9199 if (variably_modified_type_p (TREE_TYPE (type), fn))
9200 return true;
9201 break;
9202
9203 case INTEGER_TYPE:
9204 case REAL_TYPE:
9205 case FIXED_POINT_TYPE:
9206 case ENUMERAL_TYPE:
9207 case BOOLEAN_TYPE:
9208 /* Scalar types are variably modified if their end points
9209 aren't constant. */
9210 RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
9211 RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
9212 break;
9213
9214 case RECORD_TYPE:
9215 case UNION_TYPE:
9216 case QUAL_UNION_TYPE:
9217 /* We can't see if any of the fields are variably-modified by the
9218 definition we normally use, since that would produce infinite
9219 recursion via pointers. */
9220 /* This is variably modified if some field's type is. */
9221 for (t = TYPE_FIELDS (type); t; t = DECL_CHAIN (t))
9222 if (TREE_CODE (t) == FIELD_DECL)
9223 {
9224 RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
9225 RETURN_TRUE_IF_VAR (DECL_SIZE (t));
9226 RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));
9227
9228 /* If the type is a qualified union, then the DECL_QUALIFIER
9229 of fields can also be an expression containing a variable. */
9230 if (TREE_CODE (type) == QUAL_UNION_TYPE)
9231 RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));
9232
9233 /* If the field is a qualified union, then it's only a container
9234 for what's inside so we look into it. That's necessary in LTO
9235 mode because the sizes of the field tested above have been set
9236 to PLACEHOLDER_EXPRs by free_lang_data. */
9237 if (TREE_CODE (TREE_TYPE (t)) == QUAL_UNION_TYPE
9238 && variably_modified_type_p (TREE_TYPE (t), fn))
9239 return true;
9240 }
9241 break;
9242
9243 case ARRAY_TYPE:
9244 /* Do not call ourselves to avoid infinite recursion. This is
9245 variably modified if the element type is. */
9246 RETURN_TRUE_IF_VAR (TYPE_SIZE (TREE_TYPE (type)));
9247 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (TREE_TYPE (type)));
9248 break;
9249
9250 default:
9251 break;
9252 }
9253
9254 /* The current language may have other cases to check, but in general,
9255 all other types are not variably modified. */
9256 return lang_hooks.tree_inlining.var_mod_type_p (type, fn);
9257
9258 #undef RETURN_TRUE_IF_VAR
9259 }
9260
9261 /* Given a DECL or TYPE, return the scope in which it was declared, or
9262 NULL_TREE if there is no containing scope. */
9263
9264 tree
9265 get_containing_scope (const_tree t)
9266 {
9267 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
9268 }
9269
9270 /* Returns the ultimate TRANSLATION_UNIT_DECL context of DECL or NULL. */
9271
9272 const_tree
9273 get_ultimate_context (const_tree decl)
9274 {
9275 while (decl && TREE_CODE (decl) != TRANSLATION_UNIT_DECL)
9276 {
9277 if (TREE_CODE (decl) == BLOCK)
9278 decl = BLOCK_SUPERCONTEXT (decl);
9279 else
9280 decl = get_containing_scope (decl);
9281 }
9282 return decl;
9283 }
9284
9285 /* Return the innermost context enclosing DECL that is
9286 a FUNCTION_DECL, or zero if none. */
9287
9288 tree
9289 decl_function_context (const_tree decl)
9290 {
9291 tree context;
9292
9293 if (TREE_CODE (decl) == ERROR_MARK)
9294 return 0;
9295
9296 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
9297 where we look up the function at runtime. Such functions always take
9298 a first argument of type 'pointer to real context'.
9299
9300 C++ should really be fixed to use DECL_CONTEXT for the real context,
9301 and use something else for the "virtual context". */
9302 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VIRTUAL_P (decl))
9303 context
9304 = TYPE_MAIN_VARIANT
9305 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
9306 else
9307 context = DECL_CONTEXT (decl);
9308
9309 while (context && TREE_CODE (context) != FUNCTION_DECL)
9310 {
9311 if (TREE_CODE (context) == BLOCK)
9312 context = BLOCK_SUPERCONTEXT (context);
9313 else
9314 context = get_containing_scope (context);
9315 }
9316
9317 return context;
9318 }
9319
9320 /* Return the innermost context enclosing DECL that is
9321 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
9322 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
9323
9324 tree
9325 decl_type_context (const_tree decl)
9326 {
9327 tree context = DECL_CONTEXT (decl);
9328
9329 while (context)
9330 switch (TREE_CODE (context))
9331 {
9332 case NAMESPACE_DECL:
9333 case TRANSLATION_UNIT_DECL:
9334 return NULL_TREE;
9335
9336 case RECORD_TYPE:
9337 case UNION_TYPE:
9338 case QUAL_UNION_TYPE:
9339 return context;
9340
9341 case TYPE_DECL:
9342 case FUNCTION_DECL:
9343 context = DECL_CONTEXT (context);
9344 break;
9345
9346 case BLOCK:
9347 context = BLOCK_SUPERCONTEXT (context);
9348 break;
9349
9350 default:
9351 gcc_unreachable ();
9352 }
9353
9354 return NULL_TREE;
9355 }
9356
9357 /* CALL is a CALL_EXPR. Return the declaration for the function
9358 called, or NULL_TREE if the called function cannot be
9359 determined. */
9360
9361 tree
9362 get_callee_fndecl (const_tree call)
9363 {
9364 tree addr;
9365
9366 if (call == error_mark_node)
9367 return error_mark_node;
9368
9369 /* It's invalid to call this function with anything but a
9370 CALL_EXPR. */
9371 gcc_assert (TREE_CODE (call) == CALL_EXPR);
9372
9373 /* The first operand to the CALL is the address of the function
9374 called. */
9375 addr = CALL_EXPR_FN (call);
9376
9377 /* If there is no function, return early. */
9378 if (addr == NULL_TREE)
9379 return NULL_TREE;
9380
9381 STRIP_NOPS (addr);
9382
9383 /* If this is a readonly function pointer, extract its initial value. */
9384 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
9385 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
9386 && DECL_INITIAL (addr))
9387 addr = DECL_INITIAL (addr);
9388
9389 /* If the address is just `&f' for some function `f', then we know
9390 that `f' is being called. */
9391 if (TREE_CODE (addr) == ADDR_EXPR
9392 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
9393 return TREE_OPERAND (addr, 0);
9394
9395 /* We couldn't figure out what was being called. */
9396 return NULL_TREE;
9397 }
9398
9399 /* If CALL_EXPR CALL calls a normal built-in function or an internal function,
9400 return the associated function code, otherwise return CFN_LAST. */
9401
9402 combined_fn
9403 get_call_combined_fn (const_tree call)
9404 {
9405 /* It's invalid to call this function with anything but a CALL_EXPR. */
9406 gcc_assert (TREE_CODE (call) == CALL_EXPR);
9407
9408 if (!CALL_EXPR_FN (call))
9409 return as_combined_fn (CALL_EXPR_IFN (call));
9410
9411 tree fndecl = get_callee_fndecl (call);
9412 if (fndecl && fndecl_built_in_p (fndecl, BUILT_IN_NORMAL))
9413 return as_combined_fn (DECL_FUNCTION_CODE (fndecl));
9414
9415 return CFN_LAST;
9416 }
9417
9418 /* Comparator of indices based on tree_node_counts. */
9419
9420 static int
9421 tree_nodes_cmp (const void *p1, const void *p2)
9422 {
9423 const unsigned *n1 = (const unsigned *)p1;
9424 const unsigned *n2 = (const unsigned *)p2;
9425
9426 return tree_node_counts[*n1] - tree_node_counts[*n2];
9427 }
9428
9429 /* Comparator of indices based on tree_code_counts. */
9430
9431 static int
9432 tree_codes_cmp (const void *p1, const void *p2)
9433 {
9434 const unsigned *n1 = (const unsigned *)p1;
9435 const unsigned *n2 = (const unsigned *)p2;
9436
9437 return tree_code_counts[*n1] - tree_code_counts[*n2];
9438 }
9439
9440 #define TREE_MEM_USAGE_SPACES 40
9441
9442 /* Print debugging information about tree nodes generated during the compile,
9443 and any language-specific information. */
9444
9445 void
9446 dump_tree_statistics (void)
9447 {
9448 if (GATHER_STATISTICS)
9449 {
9450 uint64_t total_nodes, total_bytes;
9451 fprintf (stderr, "\nKind Nodes Bytes\n");
9452 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
9453 total_nodes = total_bytes = 0;
9454
9455 {
9456 auto_vec<unsigned> indices (all_kinds);
9457 for (unsigned i = 0; i < all_kinds; i++)
9458 indices.quick_push (i);
9459 indices.qsort (tree_nodes_cmp);
9460
9461 for (unsigned i = 0; i < (int) all_kinds; i++)
9462 {
9463 unsigned j = indices[i];
9464 fprintf (stderr, "%-20s %6" PRIu64 "%c %9" PRIu64 "%c\n",
9465 tree_node_kind_names[j], SIZE_AMOUNT (tree_node_counts[j]),
9466 SIZE_AMOUNT (tree_node_sizes[j]));
9467 total_nodes += tree_node_counts[j];
9468 total_bytes += tree_node_sizes[j];
9469 }
9470 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
9471 fprintf (stderr, "%-20s %6" PRIu64 "%c %9" PRIu64 "%c\n", "Total",
9472 SIZE_AMOUNT (total_nodes), SIZE_AMOUNT (total_bytes));
9473 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
9474 }
9475
9476 {
9477 fprintf (stderr, "Code Nodes\n");
9478 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
9479
9480 auto_vec<unsigned> indices (MAX_TREE_CODES);
9481 for (unsigned i = 0; i < MAX_TREE_CODES; i++)
9482 indices.quick_push (i);
9483 indices.qsort (tree_codes_cmp);
9484
9485 for (unsigned i = 0; i < MAX_TREE_CODES; i++)
9486 {
9487 unsigned j = indices[i];
9488 fprintf (stderr, "%-32s %6" PRIu64 "%c\n",
9489 get_tree_code_name ((enum tree_code) j),
9490 SIZE_AMOUNT (tree_code_counts[j]));
9491 }
9492 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
9493 fprintf (stderr, "\n");
9494 ssanames_print_statistics ();
9495 fprintf (stderr, "\n");
9496 phinodes_print_statistics ();
9497 fprintf (stderr, "\n");
9498 }
9499 }
9500 else
9501 fprintf (stderr, "(No per-node statistics)\n");
9502
9503 print_type_hash_statistics ();
9504 print_debug_expr_statistics ();
9505 print_value_expr_statistics ();
9506 lang_hooks.print_statistics ();
9507 }
9508 \f
9509 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
9510
9511 /* Generate a crc32 of the low BYTES bytes of VALUE. */
9512
9513 unsigned
9514 crc32_unsigned_n (unsigned chksum, unsigned value, unsigned bytes)
9515 {
9516 /* This relies on the raw feedback's top 4 bits being zero. */
9517 #define FEEDBACK(X) ((X) * 0x04c11db7)
9518 #define SYNDROME(X) (FEEDBACK ((X) & 1) ^ FEEDBACK ((X) & 2) \
9519 ^ FEEDBACK ((X) & 4) ^ FEEDBACK ((X) & 8))
9520 static const unsigned syndromes[16] =
9521 {
9522 SYNDROME(0x0), SYNDROME(0x1), SYNDROME(0x2), SYNDROME(0x3),
9523 SYNDROME(0x4), SYNDROME(0x5), SYNDROME(0x6), SYNDROME(0x7),
9524 SYNDROME(0x8), SYNDROME(0x9), SYNDROME(0xa), SYNDROME(0xb),
9525 SYNDROME(0xc), SYNDROME(0xd), SYNDROME(0xe), SYNDROME(0xf),
9526 };
9527 #undef FEEDBACK
9528 #undef SYNDROME
9529
9530 value <<= (32 - bytes * 8);
9531 for (unsigned ix = bytes * 2; ix--; value <<= 4)
9532 {
9533 unsigned feedback = syndromes[((value ^ chksum) >> 28) & 0xf];
9534
9535 chksum = (chksum << 4) ^ feedback;
9536 }
9537
9538 return chksum;
9539 }
9540
9541 /* Generate a crc32 of a string. */
9542
9543 unsigned
9544 crc32_string (unsigned chksum, const char *string)
9545 {
9546 do
9547 chksum = crc32_byte (chksum, *string);
9548 while (*string++);
9549 return chksum;
9550 }
9551
9552 /* P is a string that will be used in a symbol. Mask out any characters
9553 that are not valid in that context. */
9554
9555 void
9556 clean_symbol_name (char *p)
9557 {
9558 for (; *p; p++)
9559 if (! (ISALNUM (*p)
9560 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
9561 || *p == '$'
9562 #endif
9563 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
9564 || *p == '.'
9565 #endif
9566 ))
9567 *p = '_';
9568 }
9569
9570 static GTY(()) unsigned anon_cnt = 0; /* Saved for PCH. */
9571
9572 /* Create a unique anonymous identifier. The identifier is still a
9573 valid assembly label. */
9574
9575 tree
9576 make_anon_name ()
9577 {
9578 const char *fmt =
9579 #if !defined (NO_DOT_IN_LABEL)
9580 "."
9581 #elif !defined (NO_DOLLAR_IN_LABEL)
9582 "$"
9583 #else
9584 "_"
9585 #endif
9586 "_anon_%d";
9587
9588 char buf[24];
9589 int len = snprintf (buf, sizeof (buf), fmt, anon_cnt++);
9590 gcc_checking_assert (len < int (sizeof (buf)));
9591
9592 tree id = get_identifier_with_length (buf, len);
9593 IDENTIFIER_ANON_P (id) = true;
9594
9595 return id;
9596 }
9597
9598 /* Generate a name for a special-purpose function.
9599 The generated name may need to be unique across the whole link.
9600 Changes to this function may also require corresponding changes to
9601 xstrdup_mask_random.
9602 TYPE is some string to identify the purpose of this function to the
9603 linker or collect2; it must start with an uppercase letter,
9604 one of:
9605 I - for constructors
9606 D - for destructors
9607 N - for C++ anonymous namespaces
9608 F - for DWARF unwind frame information. */
9609
9610 tree
9611 get_file_function_name (const char *type)
9612 {
9613 char *buf;
9614 const char *p;
9615 char *q;
9616
9617 /* If we already have a name we know to be unique, just use that. */
9618 if (first_global_object_name)
9619 p = q = ASTRDUP (first_global_object_name);
9620 /* If the target is handling the constructors/destructors, they
9621 will be local to this file and the name is only necessary for
9622 debugging purposes.
9623 We also assign sub_I and sub_D sufixes to constructors called from
9624 the global static constructors. These are always local. */
9625 else if (((type[0] == 'I' || type[0] == 'D') && targetm.have_ctors_dtors)
9626 || (strncmp (type, "sub_", 4) == 0
9627 && (type[4] == 'I' || type[4] == 'D')))
9628 {
9629 const char *file = main_input_filename;
9630 if (! file)
9631 file = LOCATION_FILE (input_location);
9632 /* Just use the file's basename, because the full pathname
9633 might be quite long. */
9634 p = q = ASTRDUP (lbasename (file));
9635 }
9636 else
9637 {
9638 /* Otherwise, the name must be unique across the entire link.
9639 We don't have anything that we know to be unique to this translation
9640 unit, so use what we do have and throw in some randomness. */
9641 unsigned len;
9642 const char *name = weak_global_object_name;
9643 const char *file = main_input_filename;
9644
9645 if (! name)
9646 name = "";
9647 if (! file)
9648 file = LOCATION_FILE (input_location);
9649
9650 len = strlen (file);
9651 q = (char *) alloca (9 + 19 + len + 1);
9652 memcpy (q, file, len + 1);
9653
9654 snprintf (q + len, 9 + 19 + 1, "_%08X_" HOST_WIDE_INT_PRINT_HEX,
9655 crc32_string (0, name), get_random_seed (false));
9656
9657 p = q;
9658 }
9659
9660 clean_symbol_name (q);
9661 buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
9662 + strlen (type));
9663
9664 /* Set up the name of the file-level functions we may need.
9665 Use a global object (which is already required to be unique over
9666 the program) rather than the file name (which imposes extra
9667 constraints). */
9668 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
9669
9670 return get_identifier (buf);
9671 }
9672 \f
9673 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
9674
9675 /* Complain that the tree code of NODE does not match the expected 0
9676 terminated list of trailing codes. The trailing code list can be
9677 empty, for a more vague error message. FILE, LINE, and FUNCTION
9678 are of the caller. */
9679
9680 void
9681 tree_check_failed (const_tree node, const char *file,
9682 int line, const char *function, ...)
9683 {
9684 va_list args;
9685 const char *buffer;
9686 unsigned length = 0;
9687 enum tree_code code;
9688
9689 va_start (args, function);
9690 while ((code = (enum tree_code) va_arg (args, int)))
9691 length += 4 + strlen (get_tree_code_name (code));
9692 va_end (args);
9693 if (length)
9694 {
9695 char *tmp;
9696 va_start (args, function);
9697 length += strlen ("expected ");
9698 buffer = tmp = (char *) alloca (length);
9699 length = 0;
9700 while ((code = (enum tree_code) va_arg (args, int)))
9701 {
9702 const char *prefix = length ? " or " : "expected ";
9703
9704 strcpy (tmp + length, prefix);
9705 length += strlen (prefix);
9706 strcpy (tmp + length, get_tree_code_name (code));
9707 length += strlen (get_tree_code_name (code));
9708 }
9709 va_end (args);
9710 }
9711 else
9712 buffer = "unexpected node";
9713
9714 internal_error ("tree check: %s, have %s in %s, at %s:%d",
9715 buffer, get_tree_code_name (TREE_CODE (node)),
9716 function, trim_filename (file), line);
9717 }
9718
9719 /* Complain that the tree code of NODE does match the expected 0
9720 terminated list of trailing codes. FILE, LINE, and FUNCTION are of
9721 the caller. */
9722
9723 void
9724 tree_not_check_failed (const_tree node, const char *file,
9725 int line, const char *function, ...)
9726 {
9727 va_list args;
9728 char *buffer;
9729 unsigned length = 0;
9730 enum tree_code code;
9731
9732 va_start (args, function);
9733 while ((code = (enum tree_code) va_arg (args, int)))
9734 length += 4 + strlen (get_tree_code_name (code));
9735 va_end (args);
9736 va_start (args, function);
9737 buffer = (char *) alloca (length);
9738 length = 0;
9739 while ((code = (enum tree_code) va_arg (args, int)))
9740 {
9741 if (length)
9742 {
9743 strcpy (buffer + length, " or ");
9744 length += 4;
9745 }
9746 strcpy (buffer + length, get_tree_code_name (code));
9747 length += strlen (get_tree_code_name (code));
9748 }
9749 va_end (args);
9750
9751 internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
9752 buffer, get_tree_code_name (TREE_CODE (node)),
9753 function, trim_filename (file), line);
9754 }
9755
9756 /* Similar to tree_check_failed, except that we check for a class of tree
9757 code, given in CL. */
9758
9759 void
9760 tree_class_check_failed (const_tree node, const enum tree_code_class cl,
9761 const char *file, int line, const char *function)
9762 {
9763 internal_error
9764 ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
9765 TREE_CODE_CLASS_STRING (cl),
9766 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
9767 get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
9768 }
9769
9770 /* Similar to tree_check_failed, except that instead of specifying a
9771 dozen codes, use the knowledge that they're all sequential. */
9772
9773 void
9774 tree_range_check_failed (const_tree node, const char *file, int line,
9775 const char *function, enum tree_code c1,
9776 enum tree_code c2)
9777 {
9778 char *buffer;
9779 unsigned length = 0;
9780 unsigned int c;
9781
9782 for (c = c1; c <= c2; ++c)
9783 length += 4 + strlen (get_tree_code_name ((enum tree_code) c));
9784
9785 length += strlen ("expected ");
9786 buffer = (char *) alloca (length);
9787 length = 0;
9788
9789 for (c = c1; c <= c2; ++c)
9790 {
9791 const char *prefix = length ? " or " : "expected ";
9792
9793 strcpy (buffer + length, prefix);
9794 length += strlen (prefix);
9795 strcpy (buffer + length, get_tree_code_name ((enum tree_code) c));
9796 length += strlen (get_tree_code_name ((enum tree_code) c));
9797 }
9798
9799 internal_error ("tree check: %s, have %s in %s, at %s:%d",
9800 buffer, get_tree_code_name (TREE_CODE (node)),
9801 function, trim_filename (file), line);
9802 }
9803
9804
9805 /* Similar to tree_check_failed, except that we check that a tree does
9806 not have the specified code, given in CL. */
9807
9808 void
9809 tree_not_class_check_failed (const_tree node, const enum tree_code_class cl,
9810 const char *file, int line, const char *function)
9811 {
9812 internal_error
9813 ("tree check: did not expect class %qs, have %qs (%s) in %s, at %s:%d",
9814 TREE_CODE_CLASS_STRING (cl),
9815 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
9816 get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
9817 }
9818
9819
9820 /* Similar to tree_check_failed but applied to OMP_CLAUSE codes. */
9821
9822 void
9823 omp_clause_check_failed (const_tree node, const char *file, int line,
9824 const char *function, enum omp_clause_code code)
9825 {
9826 internal_error ("tree check: expected %<omp_clause %s%>, have %qs "
9827 "in %s, at %s:%d",
9828 omp_clause_code_name[code],
9829 get_tree_code_name (TREE_CODE (node)),
9830 function, trim_filename (file), line);
9831 }
9832
9833
9834 /* Similar to tree_range_check_failed but applied to OMP_CLAUSE codes. */
9835
9836 void
9837 omp_clause_range_check_failed (const_tree node, const char *file, int line,
9838 const char *function, enum omp_clause_code c1,
9839 enum omp_clause_code c2)
9840 {
9841 char *buffer;
9842 unsigned length = 0;
9843 unsigned int c;
9844
9845 for (c = c1; c <= c2; ++c)
9846 length += 4 + strlen (omp_clause_code_name[c]);
9847
9848 length += strlen ("expected ");
9849 buffer = (char *) alloca (length);
9850 length = 0;
9851
9852 for (c = c1; c <= c2; ++c)
9853 {
9854 const char *prefix = length ? " or " : "expected ";
9855
9856 strcpy (buffer + length, prefix);
9857 length += strlen (prefix);
9858 strcpy (buffer + length, omp_clause_code_name[c]);
9859 length += strlen (omp_clause_code_name[c]);
9860 }
9861
9862 internal_error ("tree check: %s, have %s in %s, at %s:%d",
9863 buffer, omp_clause_code_name[TREE_CODE (node)],
9864 function, trim_filename (file), line);
9865 }
9866
9867
9868 #undef DEFTREESTRUCT
9869 #define DEFTREESTRUCT(VAL, NAME) NAME,
9870
9871 static const char *ts_enum_names[] = {
9872 #include "treestruct.def"
9873 };
9874 #undef DEFTREESTRUCT
9875
9876 #define TS_ENUM_NAME(EN) (ts_enum_names[(EN)])
9877
9878 /* Similar to tree_class_check_failed, except that we check for
9879 whether CODE contains the tree structure identified by EN. */
9880
9881 void
9882 tree_contains_struct_check_failed (const_tree node,
9883 const enum tree_node_structure_enum en,
9884 const char *file, int line,
9885 const char *function)
9886 {
9887 internal_error
9888 ("tree check: expected tree that contains %qs structure, have %qs in %s, at %s:%d",
9889 TS_ENUM_NAME (en),
9890 get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
9891 }
9892
9893
9894 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
9895 (dynamically sized) vector. */
9896
9897 void
9898 tree_int_cst_elt_check_failed (int idx, int len, const char *file, int line,
9899 const char *function)
9900 {
9901 internal_error
9902 ("tree check: accessed elt %d of %<tree_int_cst%> with %d elts in %s, "
9903 "at %s:%d",
9904 idx + 1, len, function, trim_filename (file), line);
9905 }
9906
9907 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
9908 (dynamically sized) vector. */
9909
9910 void
9911 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
9912 const char *function)
9913 {
9914 internal_error
9915 ("tree check: accessed elt %d of %<tree_vec%> with %d elts in %s, at %s:%d",
9916 idx + 1, len, function, trim_filename (file), line);
9917 }
9918
9919 /* Similar to above, except that the check is for the bounds of the operand
9920 vector of an expression node EXP. */
9921
9922 void
9923 tree_operand_check_failed (int idx, const_tree exp, const char *file,
9924 int line, const char *function)
9925 {
9926 enum tree_code code = TREE_CODE (exp);
9927 internal_error
9928 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
9929 idx + 1, get_tree_code_name (code), TREE_OPERAND_LENGTH (exp),
9930 function, trim_filename (file), line);
9931 }
9932
9933 /* Similar to above, except that the check is for the number of
9934 operands of an OMP_CLAUSE node. */
9935
9936 void
9937 omp_clause_operand_check_failed (int idx, const_tree t, const char *file,
9938 int line, const char *function)
9939 {
9940 internal_error
9941 ("tree check: accessed operand %d of %<omp_clause %s%> with %d operands "
9942 "in %s, at %s:%d", idx + 1, omp_clause_code_name[OMP_CLAUSE_CODE (t)],
9943 omp_clause_num_ops [OMP_CLAUSE_CODE (t)], function,
9944 trim_filename (file), line);
9945 }
9946 #endif /* ENABLE_TREE_CHECKING */
9947 \f
9948 /* Create a new vector type node holding NUNITS units of type INNERTYPE,
9949 and mapped to the machine mode MODE. Initialize its fields and build
9950 the information necessary for debugging output. */
9951
9952 static tree
9953 make_vector_type (tree innertype, poly_int64 nunits, machine_mode mode)
9954 {
9955 tree t;
9956 tree mv_innertype = TYPE_MAIN_VARIANT (innertype);
9957
9958 t = make_node (VECTOR_TYPE);
9959 TREE_TYPE (t) = mv_innertype;
9960 SET_TYPE_VECTOR_SUBPARTS (t, nunits);
9961 SET_TYPE_MODE (t, mode);
9962
9963 if (TYPE_STRUCTURAL_EQUALITY_P (mv_innertype) || in_lto_p)
9964 SET_TYPE_STRUCTURAL_EQUALITY (t);
9965 else if ((TYPE_CANONICAL (mv_innertype) != innertype
9966 || mode != VOIDmode)
9967 && !VECTOR_BOOLEAN_TYPE_P (t))
9968 TYPE_CANONICAL (t)
9969 = make_vector_type (TYPE_CANONICAL (mv_innertype), nunits, VOIDmode);
9970
9971 layout_type (t);
9972
9973 hashval_t hash = type_hash_canon_hash (t);
9974 t = type_hash_canon (hash, t);
9975
9976 /* We have built a main variant, based on the main variant of the
9977 inner type. Use it to build the variant we return. */
9978 if ((TYPE_ATTRIBUTES (innertype) || TYPE_QUALS (innertype))
9979 && TREE_TYPE (t) != innertype)
9980 return build_type_attribute_qual_variant (t,
9981 TYPE_ATTRIBUTES (innertype),
9982 TYPE_QUALS (innertype));
9983
9984 return t;
9985 }
9986
9987 static tree
9988 make_or_reuse_type (unsigned size, int unsignedp)
9989 {
9990 int i;
9991
9992 if (size == INT_TYPE_SIZE)
9993 return unsignedp ? unsigned_type_node : integer_type_node;
9994 if (size == CHAR_TYPE_SIZE)
9995 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
9996 if (size == SHORT_TYPE_SIZE)
9997 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
9998 if (size == LONG_TYPE_SIZE)
9999 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
10000 if (size == LONG_LONG_TYPE_SIZE)
10001 return (unsignedp ? long_long_unsigned_type_node
10002 : long_long_integer_type_node);
10003
10004 for (i = 0; i < NUM_INT_N_ENTS; i ++)
10005 if (size == int_n_data[i].bitsize
10006 && int_n_enabled_p[i])
10007 return (unsignedp ? int_n_trees[i].unsigned_type
10008 : int_n_trees[i].signed_type);
10009
10010 if (unsignedp)
10011 return make_unsigned_type (size);
10012 else
10013 return make_signed_type (size);
10014 }
10015
10016 /* Create or reuse a fract type by SIZE, UNSIGNEDP, and SATP. */
10017
10018 static tree
10019 make_or_reuse_fract_type (unsigned size, int unsignedp, int satp)
10020 {
10021 if (satp)
10022 {
10023 if (size == SHORT_FRACT_TYPE_SIZE)
10024 return unsignedp ? sat_unsigned_short_fract_type_node
10025 : sat_short_fract_type_node;
10026 if (size == FRACT_TYPE_SIZE)
10027 return unsignedp ? sat_unsigned_fract_type_node : sat_fract_type_node;
10028 if (size == LONG_FRACT_TYPE_SIZE)
10029 return unsignedp ? sat_unsigned_long_fract_type_node
10030 : sat_long_fract_type_node;
10031 if (size == LONG_LONG_FRACT_TYPE_SIZE)
10032 return unsignedp ? sat_unsigned_long_long_fract_type_node
10033 : sat_long_long_fract_type_node;
10034 }
10035 else
10036 {
10037 if (size == SHORT_FRACT_TYPE_SIZE)
10038 return unsignedp ? unsigned_short_fract_type_node
10039 : short_fract_type_node;
10040 if (size == FRACT_TYPE_SIZE)
10041 return unsignedp ? unsigned_fract_type_node : fract_type_node;
10042 if (size == LONG_FRACT_TYPE_SIZE)
10043 return unsignedp ? unsigned_long_fract_type_node
10044 : long_fract_type_node;
10045 if (size == LONG_LONG_FRACT_TYPE_SIZE)
10046 return unsignedp ? unsigned_long_long_fract_type_node
10047 : long_long_fract_type_node;
10048 }
10049
10050 return make_fract_type (size, unsignedp, satp);
10051 }
10052
10053 /* Create or reuse an accum type by SIZE, UNSIGNEDP, and SATP. */
10054
10055 static tree
10056 make_or_reuse_accum_type (unsigned size, int unsignedp, int satp)
10057 {
10058 if (satp)
10059 {
10060 if (size == SHORT_ACCUM_TYPE_SIZE)
10061 return unsignedp ? sat_unsigned_short_accum_type_node
10062 : sat_short_accum_type_node;
10063 if (size == ACCUM_TYPE_SIZE)
10064 return unsignedp ? sat_unsigned_accum_type_node : sat_accum_type_node;
10065 if (size == LONG_ACCUM_TYPE_SIZE)
10066 return unsignedp ? sat_unsigned_long_accum_type_node
10067 : sat_long_accum_type_node;
10068 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
10069 return unsignedp ? sat_unsigned_long_long_accum_type_node
10070 : sat_long_long_accum_type_node;
10071 }
10072 else
10073 {
10074 if (size == SHORT_ACCUM_TYPE_SIZE)
10075 return unsignedp ? unsigned_short_accum_type_node
10076 : short_accum_type_node;
10077 if (size == ACCUM_TYPE_SIZE)
10078 return unsignedp ? unsigned_accum_type_node : accum_type_node;
10079 if (size == LONG_ACCUM_TYPE_SIZE)
10080 return unsignedp ? unsigned_long_accum_type_node
10081 : long_accum_type_node;
10082 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
10083 return unsignedp ? unsigned_long_long_accum_type_node
10084 : long_long_accum_type_node;
10085 }
10086
10087 return make_accum_type (size, unsignedp, satp);
10088 }
10089
10090
10091 /* Create an atomic variant node for TYPE. This routine is called
10092 during initialization of data types to create the 5 basic atomic
10093 types. The generic build_variant_type function requires these to
10094 already be set up in order to function properly, so cannot be
10095 called from there. If ALIGN is non-zero, then ensure alignment is
10096 overridden to this value. */
10097
10098 static tree
10099 build_atomic_base (tree type, unsigned int align)
10100 {
10101 tree t;
10102
10103 /* Make sure its not already registered. */
10104 if ((t = get_qualified_type (type, TYPE_QUAL_ATOMIC)))
10105 return t;
10106
10107 t = build_variant_type_copy (type);
10108 set_type_quals (t, TYPE_QUAL_ATOMIC);
10109
10110 if (align)
10111 SET_TYPE_ALIGN (t, align);
10112
10113 return t;
10114 }
10115
10116 /* Information about the _FloatN and _FloatNx types. This must be in
10117 the same order as the corresponding TI_* enum values. */
10118 const floatn_type_info floatn_nx_types[NUM_FLOATN_NX_TYPES] =
10119 {
10120 { 16, false },
10121 { 32, false },
10122 { 64, false },
10123 { 128, false },
10124 { 32, true },
10125 { 64, true },
10126 { 128, true },
10127 };
10128
10129
10130 /* Create nodes for all integer types (and error_mark_node) using the sizes
10131 of C datatypes. SIGNED_CHAR specifies whether char is signed. */
10132
10133 void
10134 build_common_tree_nodes (bool signed_char)
10135 {
10136 int i;
10137
10138 error_mark_node = make_node (ERROR_MARK);
10139 TREE_TYPE (error_mark_node) = error_mark_node;
10140
10141 initialize_sizetypes ();
10142
10143 /* Define both `signed char' and `unsigned char'. */
10144 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
10145 TYPE_STRING_FLAG (signed_char_type_node) = 1;
10146 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
10147 TYPE_STRING_FLAG (unsigned_char_type_node) = 1;
10148
10149 /* Define `char', which is like either `signed char' or `unsigned char'
10150 but not the same as either. */
10151 char_type_node
10152 = (signed_char
10153 ? make_signed_type (CHAR_TYPE_SIZE)
10154 : make_unsigned_type (CHAR_TYPE_SIZE));
10155 TYPE_STRING_FLAG (char_type_node) = 1;
10156
10157 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
10158 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
10159 integer_type_node = make_signed_type (INT_TYPE_SIZE);
10160 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
10161 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
10162 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
10163 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
10164 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
10165
10166 for (i = 0; i < NUM_INT_N_ENTS; i ++)
10167 {
10168 int_n_trees[i].signed_type = make_signed_type (int_n_data[i].bitsize);
10169 int_n_trees[i].unsigned_type = make_unsigned_type (int_n_data[i].bitsize);
10170
10171 if (int_n_enabled_p[i])
10172 {
10173 integer_types[itk_intN_0 + i * 2] = int_n_trees[i].signed_type;
10174 integer_types[itk_unsigned_intN_0 + i * 2] = int_n_trees[i].unsigned_type;
10175 }
10176 }
10177
10178 /* Define a boolean type. This type only represents boolean values but
10179 may be larger than char depending on the value of BOOL_TYPE_SIZE. */
10180 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
10181 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
10182 TYPE_PRECISION (boolean_type_node) = 1;
10183 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
10184
10185 /* Define what type to use for size_t. */
10186 if (strcmp (SIZE_TYPE, "unsigned int") == 0)
10187 size_type_node = unsigned_type_node;
10188 else if (strcmp (SIZE_TYPE, "long unsigned int") == 0)
10189 size_type_node = long_unsigned_type_node;
10190 else if (strcmp (SIZE_TYPE, "long long unsigned int") == 0)
10191 size_type_node = long_long_unsigned_type_node;
10192 else if (strcmp (SIZE_TYPE, "short unsigned int") == 0)
10193 size_type_node = short_unsigned_type_node;
10194 else
10195 {
10196 int i;
10197
10198 size_type_node = NULL_TREE;
10199 for (i = 0; i < NUM_INT_N_ENTS; i++)
10200 if (int_n_enabled_p[i])
10201 {
10202 char name[50], altname[50];
10203 sprintf (name, "__int%d unsigned", int_n_data[i].bitsize);
10204 sprintf (altname, "__int%d__ unsigned", int_n_data[i].bitsize);
10205
10206 if (strcmp (name, SIZE_TYPE) == 0
10207 || strcmp (altname, SIZE_TYPE) == 0)
10208 {
10209 size_type_node = int_n_trees[i].unsigned_type;
10210 }
10211 }
10212 if (size_type_node == NULL_TREE)
10213 gcc_unreachable ();
10214 }
10215
10216 /* Define what type to use for ptrdiff_t. */
10217 if (strcmp (PTRDIFF_TYPE, "int") == 0)
10218 ptrdiff_type_node = integer_type_node;
10219 else if (strcmp (PTRDIFF_TYPE, "long int") == 0)
10220 ptrdiff_type_node = long_integer_type_node;
10221 else if (strcmp (PTRDIFF_TYPE, "long long int") == 0)
10222 ptrdiff_type_node = long_long_integer_type_node;
10223 else if (strcmp (PTRDIFF_TYPE, "short int") == 0)
10224 ptrdiff_type_node = short_integer_type_node;
10225 else
10226 {
10227 ptrdiff_type_node = NULL_TREE;
10228 for (int i = 0; i < NUM_INT_N_ENTS; i++)
10229 if (int_n_enabled_p[i])
10230 {
10231 char name[50], altname[50];
10232 sprintf (name, "__int%d", int_n_data[i].bitsize);
10233 sprintf (altname, "__int%d__", int_n_data[i].bitsize);
10234
10235 if (strcmp (name, PTRDIFF_TYPE) == 0
10236 || strcmp (altname, PTRDIFF_TYPE) == 0)
10237 ptrdiff_type_node = int_n_trees[i].signed_type;
10238 }
10239 if (ptrdiff_type_node == NULL_TREE)
10240 gcc_unreachable ();
10241 }
10242
10243 /* Fill in the rest of the sized types. Reuse existing type nodes
10244 when possible. */
10245 intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
10246 intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
10247 intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
10248 intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
10249 intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);
10250
10251 unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
10252 unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
10253 unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
10254 unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
10255 unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);
10256
10257 /* Don't call build_qualified type for atomics. That routine does
10258 special processing for atomics, and until they are initialized
10259 it's better not to make that call.
10260
10261 Check to see if there is a target override for atomic types. */
10262
10263 atomicQI_type_node = build_atomic_base (unsigned_intQI_type_node,
10264 targetm.atomic_align_for_mode (QImode));
10265 atomicHI_type_node = build_atomic_base (unsigned_intHI_type_node,
10266 targetm.atomic_align_for_mode (HImode));
10267 atomicSI_type_node = build_atomic_base (unsigned_intSI_type_node,
10268 targetm.atomic_align_for_mode (SImode));
10269 atomicDI_type_node = build_atomic_base (unsigned_intDI_type_node,
10270 targetm.atomic_align_for_mode (DImode));
10271 atomicTI_type_node = build_atomic_base (unsigned_intTI_type_node,
10272 targetm.atomic_align_for_mode (TImode));
10273
10274 access_public_node = get_identifier ("public");
10275 access_protected_node = get_identifier ("protected");
10276 access_private_node = get_identifier ("private");
10277
10278 /* Define these next since types below may used them. */
10279 integer_zero_node = build_int_cst (integer_type_node, 0);
10280 integer_one_node = build_int_cst (integer_type_node, 1);
10281 integer_three_node = build_int_cst (integer_type_node, 3);
10282 integer_minus_one_node = build_int_cst (integer_type_node, -1);
10283
10284 size_zero_node = size_int (0);
10285 size_one_node = size_int (1);
10286 bitsize_zero_node = bitsize_int (0);
10287 bitsize_one_node = bitsize_int (1);
10288 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
10289
10290 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
10291 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
10292
10293 void_type_node = make_node (VOID_TYPE);
10294 layout_type (void_type_node);
10295
10296 /* We are not going to have real types in C with less than byte alignment,
10297 so we might as well not have any types that claim to have it. */
10298 SET_TYPE_ALIGN (void_type_node, BITS_PER_UNIT);
10299 TYPE_USER_ALIGN (void_type_node) = 0;
10300
10301 void_node = make_node (VOID_CST);
10302 TREE_TYPE (void_node) = void_type_node;
10303
10304 null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
10305 layout_type (TREE_TYPE (null_pointer_node));
10306
10307 ptr_type_node = build_pointer_type (void_type_node);
10308 const_ptr_type_node
10309 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
10310 for (unsigned i = 0;
10311 i < sizeof (builtin_structptr_types) / sizeof (builtin_structptr_type);
10312 ++i)
10313 builtin_structptr_types[i].node = builtin_structptr_types[i].base;
10314
10315 pointer_sized_int_node = build_nonstandard_integer_type (POINTER_SIZE, 1);
10316
10317 float_type_node = make_node (REAL_TYPE);
10318 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
10319 layout_type (float_type_node);
10320
10321 double_type_node = make_node (REAL_TYPE);
10322 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
10323 layout_type (double_type_node);
10324
10325 long_double_type_node = make_node (REAL_TYPE);
10326 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
10327 layout_type (long_double_type_node);
10328
10329 for (i = 0; i < NUM_FLOATN_NX_TYPES; i++)
10330 {
10331 int n = floatn_nx_types[i].n;
10332 bool extended = floatn_nx_types[i].extended;
10333 scalar_float_mode mode;
10334 if (!targetm.floatn_mode (n, extended).exists (&mode))
10335 continue;
10336 int precision = GET_MODE_PRECISION (mode);
10337 /* Work around the rs6000 KFmode having precision 113 not
10338 128. */
10339 const struct real_format *fmt = REAL_MODE_FORMAT (mode);
10340 gcc_assert (fmt->b == 2 && fmt->emin + fmt->emax == 3);
10341 int min_precision = fmt->p + ceil_log2 (fmt->emax - fmt->emin);
10342 if (!extended)
10343 gcc_assert (min_precision == n);
10344 if (precision < min_precision)
10345 precision = min_precision;
10346 FLOATN_NX_TYPE_NODE (i) = make_node (REAL_TYPE);
10347 TYPE_PRECISION (FLOATN_NX_TYPE_NODE (i)) = precision;
10348 layout_type (FLOATN_NX_TYPE_NODE (i));
10349 SET_TYPE_MODE (FLOATN_NX_TYPE_NODE (i), mode);
10350 }
10351
10352 float_ptr_type_node = build_pointer_type (float_type_node);
10353 double_ptr_type_node = build_pointer_type (double_type_node);
10354 long_double_ptr_type_node = build_pointer_type (long_double_type_node);
10355 integer_ptr_type_node = build_pointer_type (integer_type_node);
10356
10357 /* Fixed size integer types. */
10358 uint16_type_node = make_or_reuse_type (16, 1);
10359 uint32_type_node = make_or_reuse_type (32, 1);
10360 uint64_type_node = make_or_reuse_type (64, 1);
10361 if (targetm.scalar_mode_supported_p (TImode))
10362 uint128_type_node = make_or_reuse_type (128, 1);
10363
10364 /* Decimal float types. */
10365 if (targetm.decimal_float_supported_p ())
10366 {
10367 dfloat32_type_node = make_node (REAL_TYPE);
10368 TYPE_PRECISION (dfloat32_type_node) = DECIMAL32_TYPE_SIZE;
10369 SET_TYPE_MODE (dfloat32_type_node, SDmode);
10370 layout_type (dfloat32_type_node);
10371
10372 dfloat64_type_node = make_node (REAL_TYPE);
10373 TYPE_PRECISION (dfloat64_type_node) = DECIMAL64_TYPE_SIZE;
10374 SET_TYPE_MODE (dfloat64_type_node, DDmode);
10375 layout_type (dfloat64_type_node);
10376
10377 dfloat128_type_node = make_node (REAL_TYPE);
10378 TYPE_PRECISION (dfloat128_type_node) = DECIMAL128_TYPE_SIZE;
10379 SET_TYPE_MODE (dfloat128_type_node, TDmode);
10380 layout_type (dfloat128_type_node);
10381 }
10382
10383 complex_integer_type_node = build_complex_type (integer_type_node, true);
10384 complex_float_type_node = build_complex_type (float_type_node, true);
10385 complex_double_type_node = build_complex_type (double_type_node, true);
10386 complex_long_double_type_node = build_complex_type (long_double_type_node,
10387 true);
10388
10389 for (i = 0; i < NUM_FLOATN_NX_TYPES; i++)
10390 {
10391 if (FLOATN_NX_TYPE_NODE (i) != NULL_TREE)
10392 COMPLEX_FLOATN_NX_TYPE_NODE (i)
10393 = build_complex_type (FLOATN_NX_TYPE_NODE (i));
10394 }
10395
10396 /* Make fixed-point nodes based on sat/non-sat and signed/unsigned. */
10397 #define MAKE_FIXED_TYPE_NODE(KIND,SIZE) \
10398 sat_ ## KIND ## _type_node = \
10399 make_sat_signed_ ## KIND ## _type (SIZE); \
10400 sat_unsigned_ ## KIND ## _type_node = \
10401 make_sat_unsigned_ ## KIND ## _type (SIZE); \
10402 KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
10403 unsigned_ ## KIND ## _type_node = \
10404 make_unsigned_ ## KIND ## _type (SIZE);
10405
10406 #define MAKE_FIXED_TYPE_NODE_WIDTH(KIND,WIDTH,SIZE) \
10407 sat_ ## WIDTH ## KIND ## _type_node = \
10408 make_sat_signed_ ## KIND ## _type (SIZE); \
10409 sat_unsigned_ ## WIDTH ## KIND ## _type_node = \
10410 make_sat_unsigned_ ## KIND ## _type (SIZE); \
10411 WIDTH ## KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
10412 unsigned_ ## WIDTH ## KIND ## _type_node = \
10413 make_unsigned_ ## KIND ## _type (SIZE);
10414
10415 /* Make fixed-point type nodes based on four different widths. */
10416 #define MAKE_FIXED_TYPE_NODE_FAMILY(N1,N2) \
10417 MAKE_FIXED_TYPE_NODE_WIDTH (N1, short_, SHORT_ ## N2 ## _TYPE_SIZE) \
10418 MAKE_FIXED_TYPE_NODE (N1, N2 ## _TYPE_SIZE) \
10419 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_, LONG_ ## N2 ## _TYPE_SIZE) \
10420 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_long_, LONG_LONG_ ## N2 ## _TYPE_SIZE)
10421
10422 /* Make fixed-point mode nodes based on sat/non-sat and signed/unsigned. */
10423 #define MAKE_FIXED_MODE_NODE(KIND,NAME,MODE) \
10424 NAME ## _type_node = \
10425 make_or_reuse_signed_ ## KIND ## _type (GET_MODE_BITSIZE (MODE ## mode)); \
10426 u ## NAME ## _type_node = \
10427 make_or_reuse_unsigned_ ## KIND ## _type \
10428 (GET_MODE_BITSIZE (U ## MODE ## mode)); \
10429 sat_ ## NAME ## _type_node = \
10430 make_or_reuse_sat_signed_ ## KIND ## _type \
10431 (GET_MODE_BITSIZE (MODE ## mode)); \
10432 sat_u ## NAME ## _type_node = \
10433 make_or_reuse_sat_unsigned_ ## KIND ## _type \
10434 (GET_MODE_BITSIZE (U ## MODE ## mode));
10435
10436 /* Fixed-point type and mode nodes. */
10437 MAKE_FIXED_TYPE_NODE_FAMILY (fract, FRACT)
10438 MAKE_FIXED_TYPE_NODE_FAMILY (accum, ACCUM)
10439 MAKE_FIXED_MODE_NODE (fract, qq, QQ)
10440 MAKE_FIXED_MODE_NODE (fract, hq, HQ)
10441 MAKE_FIXED_MODE_NODE (fract, sq, SQ)
10442 MAKE_FIXED_MODE_NODE (fract, dq, DQ)
10443 MAKE_FIXED_MODE_NODE (fract, tq, TQ)
10444 MAKE_FIXED_MODE_NODE (accum, ha, HA)
10445 MAKE_FIXED_MODE_NODE (accum, sa, SA)
10446 MAKE_FIXED_MODE_NODE (accum, da, DA)
10447 MAKE_FIXED_MODE_NODE (accum, ta, TA)
10448
10449 {
10450 tree t = targetm.build_builtin_va_list ();
10451
10452 /* Many back-ends define record types without setting TYPE_NAME.
10453 If we copied the record type here, we'd keep the original
10454 record type without a name. This breaks name mangling. So,
10455 don't copy record types and let c_common_nodes_and_builtins()
10456 declare the type to be __builtin_va_list. */
10457 if (TREE_CODE (t) != RECORD_TYPE)
10458 t = build_variant_type_copy (t);
10459
10460 va_list_type_node = t;
10461 }
10462
10463 /* SCEV analyzer global shared trees. */
10464 chrec_dont_know = make_node (SCEV_NOT_KNOWN);
10465 TREE_TYPE (chrec_dont_know) = void_type_node;
10466 chrec_known = make_node (SCEV_KNOWN);
10467 TREE_TYPE (chrec_known) = void_type_node;
10468 }
10469
10470 /* Modify DECL for given flags.
10471 TM_PURE attribute is set only on types, so the function will modify
10472 DECL's type when ECF_TM_PURE is used. */
10473
10474 void
10475 set_call_expr_flags (tree decl, int flags)
10476 {
10477 if (flags & ECF_NOTHROW)
10478 TREE_NOTHROW (decl) = 1;
10479 if (flags & ECF_CONST)
10480 TREE_READONLY (decl) = 1;
10481 if (flags & ECF_PURE)
10482 DECL_PURE_P (decl) = 1;
10483 if (flags & ECF_LOOPING_CONST_OR_PURE)
10484 DECL_LOOPING_CONST_OR_PURE_P (decl) = 1;
10485 if (flags & ECF_NOVOPS)
10486 DECL_IS_NOVOPS (decl) = 1;
10487 if (flags & ECF_NORETURN)
10488 TREE_THIS_VOLATILE (decl) = 1;
10489 if (flags & ECF_MALLOC)
10490 DECL_IS_MALLOC (decl) = 1;
10491 if (flags & ECF_RETURNS_TWICE)
10492 DECL_IS_RETURNS_TWICE (decl) = 1;
10493 if (flags & ECF_LEAF)
10494 DECL_ATTRIBUTES (decl) = tree_cons (get_identifier ("leaf"),
10495 NULL, DECL_ATTRIBUTES (decl));
10496 if (flags & ECF_COLD)
10497 DECL_ATTRIBUTES (decl) = tree_cons (get_identifier ("cold"),
10498 NULL, DECL_ATTRIBUTES (decl));
10499 if (flags & ECF_RET1)
10500 DECL_ATTRIBUTES (decl)
10501 = tree_cons (get_identifier ("fn spec"),
10502 build_tree_list (NULL_TREE, build_string (1, "1")),
10503 DECL_ATTRIBUTES (decl));
10504 if ((flags & ECF_TM_PURE) && flag_tm)
10505 apply_tm_attr (decl, get_identifier ("transaction_pure"));
10506 /* Looping const or pure is implied by noreturn.
10507 There is currently no way to declare looping const or looping pure alone. */
10508 gcc_assert (!(flags & ECF_LOOPING_CONST_OR_PURE)
10509 || ((flags & ECF_NORETURN) && (flags & (ECF_CONST | ECF_PURE))));
10510 }
10511
10512
10513 /* A subroutine of build_common_builtin_nodes. Define a builtin function. */
10514
10515 static void
10516 local_define_builtin (const char *name, tree type, enum built_in_function code,
10517 const char *library_name, int ecf_flags)
10518 {
10519 tree decl;
10520
10521 decl = add_builtin_function (name, type, code, BUILT_IN_NORMAL,
10522 library_name, NULL_TREE);
10523 set_call_expr_flags (decl, ecf_flags);
10524
10525 set_builtin_decl (code, decl, true);
10526 }
10527
10528 /* Call this function after instantiating all builtins that the language
10529 front end cares about. This will build the rest of the builtins
10530 and internal functions that are relied upon by the tree optimizers and
10531 the middle-end. */
10532
10533 void
10534 build_common_builtin_nodes (void)
10535 {
10536 tree tmp, ftype;
10537 int ecf_flags;
10538
10539 if (!builtin_decl_explicit_p (BUILT_IN_UNREACHABLE)
10540 || !builtin_decl_explicit_p (BUILT_IN_ABORT))
10541 {
10542 ftype = build_function_type (void_type_node, void_list_node);
10543 if (!builtin_decl_explicit_p (BUILT_IN_UNREACHABLE))
10544 local_define_builtin ("__builtin_unreachable", ftype,
10545 BUILT_IN_UNREACHABLE,
10546 "__builtin_unreachable",
10547 ECF_NOTHROW | ECF_LEAF | ECF_NORETURN
10548 | ECF_CONST | ECF_COLD);
10549 if (!builtin_decl_explicit_p (BUILT_IN_ABORT))
10550 local_define_builtin ("__builtin_abort", ftype, BUILT_IN_ABORT,
10551 "abort",
10552 ECF_LEAF | ECF_NORETURN | ECF_CONST | ECF_COLD);
10553 }
10554
10555 if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY)
10556 || !builtin_decl_explicit_p (BUILT_IN_MEMMOVE))
10557 {
10558 ftype = build_function_type_list (ptr_type_node,
10559 ptr_type_node, const_ptr_type_node,
10560 size_type_node, NULL_TREE);
10561
10562 if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY))
10563 local_define_builtin ("__builtin_memcpy", ftype, BUILT_IN_MEMCPY,
10564 "memcpy", ECF_NOTHROW | ECF_LEAF | ECF_RET1);
10565 if (!builtin_decl_explicit_p (BUILT_IN_MEMMOVE))
10566 local_define_builtin ("__builtin_memmove", ftype, BUILT_IN_MEMMOVE,
10567 "memmove", ECF_NOTHROW | ECF_LEAF | ECF_RET1);
10568 }
10569
10570 if (!builtin_decl_explicit_p (BUILT_IN_MEMCMP))
10571 {
10572 ftype = build_function_type_list (integer_type_node, const_ptr_type_node,
10573 const_ptr_type_node, size_type_node,
10574 NULL_TREE);
10575 local_define_builtin ("__builtin_memcmp", ftype, BUILT_IN_MEMCMP,
10576 "memcmp", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10577 }
10578
10579 if (!builtin_decl_explicit_p (BUILT_IN_MEMSET))
10580 {
10581 ftype = build_function_type_list (ptr_type_node,
10582 ptr_type_node, integer_type_node,
10583 size_type_node, NULL_TREE);
10584 local_define_builtin ("__builtin_memset", ftype, BUILT_IN_MEMSET,
10585 "memset", ECF_NOTHROW | ECF_LEAF | ECF_RET1);
10586 }
10587
10588 /* If we're checking the stack, `alloca' can throw. */
10589 const int alloca_flags
10590 = ECF_MALLOC | ECF_LEAF | (flag_stack_check ? 0 : ECF_NOTHROW);
10591
10592 if (!builtin_decl_explicit_p (BUILT_IN_ALLOCA))
10593 {
10594 ftype = build_function_type_list (ptr_type_node,
10595 size_type_node, NULL_TREE);
10596 local_define_builtin ("__builtin_alloca", ftype, BUILT_IN_ALLOCA,
10597 "alloca", alloca_flags);
10598 }
10599
10600 ftype = build_function_type_list (ptr_type_node, size_type_node,
10601 size_type_node, NULL_TREE);
10602 local_define_builtin ("__builtin_alloca_with_align", ftype,
10603 BUILT_IN_ALLOCA_WITH_ALIGN,
10604 "__builtin_alloca_with_align",
10605 alloca_flags);
10606
10607 ftype = build_function_type_list (ptr_type_node, size_type_node,
10608 size_type_node, size_type_node, NULL_TREE);
10609 local_define_builtin ("__builtin_alloca_with_align_and_max", ftype,
10610 BUILT_IN_ALLOCA_WITH_ALIGN_AND_MAX,
10611 "__builtin_alloca_with_align_and_max",
10612 alloca_flags);
10613
10614 ftype = build_function_type_list (void_type_node,
10615 ptr_type_node, ptr_type_node,
10616 ptr_type_node, NULL_TREE);
10617 local_define_builtin ("__builtin_init_trampoline", ftype,
10618 BUILT_IN_INIT_TRAMPOLINE,
10619 "__builtin_init_trampoline", ECF_NOTHROW | ECF_LEAF);
10620 local_define_builtin ("__builtin_init_heap_trampoline", ftype,
10621 BUILT_IN_INIT_HEAP_TRAMPOLINE,
10622 "__builtin_init_heap_trampoline",
10623 ECF_NOTHROW | ECF_LEAF);
10624 local_define_builtin ("__builtin_init_descriptor", ftype,
10625 BUILT_IN_INIT_DESCRIPTOR,
10626 "__builtin_init_descriptor", ECF_NOTHROW | ECF_LEAF);
10627
10628 ftype = build_function_type_list (ptr_type_node, ptr_type_node, NULL_TREE);
10629 local_define_builtin ("__builtin_adjust_trampoline", ftype,
10630 BUILT_IN_ADJUST_TRAMPOLINE,
10631 "__builtin_adjust_trampoline",
10632 ECF_CONST | ECF_NOTHROW);
10633 local_define_builtin ("__builtin_adjust_descriptor", ftype,
10634 BUILT_IN_ADJUST_DESCRIPTOR,
10635 "__builtin_adjust_descriptor",
10636 ECF_CONST | ECF_NOTHROW);
10637
10638 ftype = build_function_type_list (void_type_node,
10639 ptr_type_node, ptr_type_node, NULL_TREE);
10640 local_define_builtin ("__builtin_nonlocal_goto", ftype,
10641 BUILT_IN_NONLOCAL_GOTO,
10642 "__builtin_nonlocal_goto",
10643 ECF_NORETURN | ECF_NOTHROW);
10644
10645 ftype = build_function_type_list (void_type_node,
10646 ptr_type_node, ptr_type_node, NULL_TREE);
10647 local_define_builtin ("__builtin_setjmp_setup", ftype,
10648 BUILT_IN_SETJMP_SETUP,
10649 "__builtin_setjmp_setup", ECF_NOTHROW);
10650
10651 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
10652 local_define_builtin ("__builtin_setjmp_receiver", ftype,
10653 BUILT_IN_SETJMP_RECEIVER,
10654 "__builtin_setjmp_receiver", ECF_NOTHROW | ECF_LEAF);
10655
10656 ftype = build_function_type_list (ptr_type_node, NULL_TREE);
10657 local_define_builtin ("__builtin_stack_save", ftype, BUILT_IN_STACK_SAVE,
10658 "__builtin_stack_save", ECF_NOTHROW | ECF_LEAF);
10659
10660 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
10661 local_define_builtin ("__builtin_stack_restore", ftype,
10662 BUILT_IN_STACK_RESTORE,
10663 "__builtin_stack_restore", ECF_NOTHROW | ECF_LEAF);
10664
10665 ftype = build_function_type_list (integer_type_node, const_ptr_type_node,
10666 const_ptr_type_node, size_type_node,
10667 NULL_TREE);
10668 local_define_builtin ("__builtin_memcmp_eq", ftype, BUILT_IN_MEMCMP_EQ,
10669 "__builtin_memcmp_eq",
10670 ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10671
10672 local_define_builtin ("__builtin_strncmp_eq", ftype, BUILT_IN_STRNCMP_EQ,
10673 "__builtin_strncmp_eq",
10674 ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10675
10676 local_define_builtin ("__builtin_strcmp_eq", ftype, BUILT_IN_STRCMP_EQ,
10677 "__builtin_strcmp_eq",
10678 ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10679
10680 /* If there's a possibility that we might use the ARM EABI, build the
10681 alternate __cxa_end_cleanup node used to resume from C++. */
10682 if (targetm.arm_eabi_unwinder)
10683 {
10684 ftype = build_function_type_list (void_type_node, NULL_TREE);
10685 local_define_builtin ("__builtin_cxa_end_cleanup", ftype,
10686 BUILT_IN_CXA_END_CLEANUP,
10687 "__cxa_end_cleanup", ECF_NORETURN | ECF_LEAF);
10688 }
10689
10690 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
10691 local_define_builtin ("__builtin_unwind_resume", ftype,
10692 BUILT_IN_UNWIND_RESUME,
10693 ((targetm_common.except_unwind_info (&global_options)
10694 == UI_SJLJ)
10695 ? "_Unwind_SjLj_Resume" : "_Unwind_Resume"),
10696 ECF_NORETURN);
10697
10698 if (builtin_decl_explicit (BUILT_IN_RETURN_ADDRESS) == NULL_TREE)
10699 {
10700 ftype = build_function_type_list (ptr_type_node, integer_type_node,
10701 NULL_TREE);
10702 local_define_builtin ("__builtin_return_address", ftype,
10703 BUILT_IN_RETURN_ADDRESS,
10704 "__builtin_return_address",
10705 ECF_NOTHROW);
10706 }
10707
10708 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER)
10709 || !builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT))
10710 {
10711 ftype = build_function_type_list (void_type_node, ptr_type_node,
10712 ptr_type_node, NULL_TREE);
10713 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER))
10714 local_define_builtin ("__cyg_profile_func_enter", ftype,
10715 BUILT_IN_PROFILE_FUNC_ENTER,
10716 "__cyg_profile_func_enter", 0);
10717 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT))
10718 local_define_builtin ("__cyg_profile_func_exit", ftype,
10719 BUILT_IN_PROFILE_FUNC_EXIT,
10720 "__cyg_profile_func_exit", 0);
10721 }
10722
10723 /* The exception object and filter values from the runtime. The argument
10724 must be zero before exception lowering, i.e. from the front end. After
10725 exception lowering, it will be the region number for the exception
10726 landing pad. These functions are PURE instead of CONST to prevent
10727 them from being hoisted past the exception edge that will initialize
10728 its value in the landing pad. */
10729 ftype = build_function_type_list (ptr_type_node,
10730 integer_type_node, NULL_TREE);
10731 ecf_flags = ECF_PURE | ECF_NOTHROW | ECF_LEAF;
10732 /* Only use TM_PURE if we have TM language support. */
10733 if (builtin_decl_explicit_p (BUILT_IN_TM_LOAD_1))
10734 ecf_flags |= ECF_TM_PURE;
10735 local_define_builtin ("__builtin_eh_pointer", ftype, BUILT_IN_EH_POINTER,
10736 "__builtin_eh_pointer", ecf_flags);
10737
10738 tmp = lang_hooks.types.type_for_mode (targetm.eh_return_filter_mode (), 0);
10739 ftype = build_function_type_list (tmp, integer_type_node, NULL_TREE);
10740 local_define_builtin ("__builtin_eh_filter", ftype, BUILT_IN_EH_FILTER,
10741 "__builtin_eh_filter", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10742
10743 ftype = build_function_type_list (void_type_node,
10744 integer_type_node, integer_type_node,
10745 NULL_TREE);
10746 local_define_builtin ("__builtin_eh_copy_values", ftype,
10747 BUILT_IN_EH_COPY_VALUES,
10748 "__builtin_eh_copy_values", ECF_NOTHROW);
10749
10750 /* Complex multiplication and division. These are handled as builtins
10751 rather than optabs because emit_library_call_value doesn't support
10752 complex. Further, we can do slightly better with folding these
10753 beasties if the real and complex parts of the arguments are separate. */
10754 {
10755 int mode;
10756
10757 for (mode = MIN_MODE_COMPLEX_FLOAT; mode <= MAX_MODE_COMPLEX_FLOAT; ++mode)
10758 {
10759 char mode_name_buf[4], *q;
10760 const char *p;
10761 enum built_in_function mcode, dcode;
10762 tree type, inner_type;
10763 const char *prefix = "__";
10764
10765 if (targetm.libfunc_gnu_prefix)
10766 prefix = "__gnu_";
10767
10768 type = lang_hooks.types.type_for_mode ((machine_mode) mode, 0);
10769 if (type == NULL)
10770 continue;
10771 inner_type = TREE_TYPE (type);
10772
10773 ftype = build_function_type_list (type, inner_type, inner_type,
10774 inner_type, inner_type, NULL_TREE);
10775
10776 mcode = ((enum built_in_function)
10777 (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
10778 dcode = ((enum built_in_function)
10779 (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
10780
10781 for (p = GET_MODE_NAME (mode), q = mode_name_buf; *p; p++, q++)
10782 *q = TOLOWER (*p);
10783 *q = '\0';
10784
10785 /* For -ftrapping-math these should throw from a former
10786 -fnon-call-exception stmt. */
10787 built_in_names[mcode] = concat (prefix, "mul", mode_name_buf, "3",
10788 NULL);
10789 local_define_builtin (built_in_names[mcode], ftype, mcode,
10790 built_in_names[mcode],
10791 ECF_CONST | ECF_LEAF);
10792
10793 built_in_names[dcode] = concat (prefix, "div", mode_name_buf, "3",
10794 NULL);
10795 local_define_builtin (built_in_names[dcode], ftype, dcode,
10796 built_in_names[dcode],
10797 ECF_CONST | ECF_LEAF);
10798 }
10799 }
10800
10801 init_internal_fns ();
10802 }
10803
10804 /* HACK. GROSS. This is absolutely disgusting. I wish there was a
10805 better way.
10806
10807 If we requested a pointer to a vector, build up the pointers that
10808 we stripped off while looking for the inner type. Similarly for
10809 return values from functions.
10810
10811 The argument TYPE is the top of the chain, and BOTTOM is the
10812 new type which we will point to. */
10813
10814 tree
10815 reconstruct_complex_type (tree type, tree bottom)
10816 {
10817 tree inner, outer;
10818
10819 if (TREE_CODE (type) == POINTER_TYPE)
10820 {
10821 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10822 outer = build_pointer_type_for_mode (inner, TYPE_MODE (type),
10823 TYPE_REF_CAN_ALIAS_ALL (type));
10824 }
10825 else if (TREE_CODE (type) == REFERENCE_TYPE)
10826 {
10827 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10828 outer = build_reference_type_for_mode (inner, TYPE_MODE (type),
10829 TYPE_REF_CAN_ALIAS_ALL (type));
10830 }
10831 else if (TREE_CODE (type) == ARRAY_TYPE)
10832 {
10833 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10834 outer = build_array_type (inner, TYPE_DOMAIN (type));
10835 }
10836 else if (TREE_CODE (type) == FUNCTION_TYPE)
10837 {
10838 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10839 outer = build_function_type (inner, TYPE_ARG_TYPES (type));
10840 }
10841 else if (TREE_CODE (type) == METHOD_TYPE)
10842 {
10843 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10844 /* The build_method_type_directly() routine prepends 'this' to argument list,
10845 so we must compensate by getting rid of it. */
10846 outer
10847 = build_method_type_directly
10848 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (type))),
10849 inner,
10850 TREE_CHAIN (TYPE_ARG_TYPES (type)));
10851 }
10852 else if (TREE_CODE (type) == OFFSET_TYPE)
10853 {
10854 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10855 outer = build_offset_type (TYPE_OFFSET_BASETYPE (type), inner);
10856 }
10857 else
10858 return bottom;
10859
10860 return build_type_attribute_qual_variant (outer, TYPE_ATTRIBUTES (type),
10861 TYPE_QUALS (type));
10862 }
10863
10864 /* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
10865 the inner type. */
10866 tree
10867 build_vector_type_for_mode (tree innertype, machine_mode mode)
10868 {
10869 poly_int64 nunits;
10870 unsigned int bitsize;
10871
10872 switch (GET_MODE_CLASS (mode))
10873 {
10874 case MODE_VECTOR_BOOL:
10875 case MODE_VECTOR_INT:
10876 case MODE_VECTOR_FLOAT:
10877 case MODE_VECTOR_FRACT:
10878 case MODE_VECTOR_UFRACT:
10879 case MODE_VECTOR_ACCUM:
10880 case MODE_VECTOR_UACCUM:
10881 nunits = GET_MODE_NUNITS (mode);
10882 break;
10883
10884 case MODE_INT:
10885 /* Check that there are no leftover bits. */
10886 bitsize = GET_MODE_BITSIZE (as_a <scalar_int_mode> (mode));
10887 gcc_assert (bitsize % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0);
10888 nunits = bitsize / TREE_INT_CST_LOW (TYPE_SIZE (innertype));
10889 break;
10890
10891 default:
10892 gcc_unreachable ();
10893 }
10894
10895 return make_vector_type (innertype, nunits, mode);
10896 }
10897
10898 /* Similarly, but takes the inner type and number of units, which must be
10899 a power of two. */
10900
10901 tree
10902 build_vector_type (tree innertype, poly_int64 nunits)
10903 {
10904 return make_vector_type (innertype, nunits, VOIDmode);
10905 }
10906
10907 /* Build a truth vector with NUNITS units, giving it mode MASK_MODE. */
10908
10909 tree
10910 build_truth_vector_type_for_mode (poly_uint64 nunits, machine_mode mask_mode)
10911 {
10912 gcc_assert (mask_mode != BLKmode);
10913
10914 poly_uint64 vsize = GET_MODE_BITSIZE (mask_mode);
10915 unsigned HOST_WIDE_INT esize = vector_element_size (vsize, nunits);
10916 tree bool_type = build_nonstandard_boolean_type (esize);
10917
10918 return make_vector_type (bool_type, nunits, mask_mode);
10919 }
10920
10921 /* Build a vector type that holds one boolean result for each element of
10922 vector type VECTYPE. The public interface for this operation is
10923 truth_type_for. */
10924
10925 static tree
10926 build_truth_vector_type_for (tree vectype)
10927 {
10928 machine_mode vector_mode = TYPE_MODE (vectype);
10929 poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (vectype);
10930
10931 machine_mode mask_mode;
10932 if (VECTOR_MODE_P (vector_mode)
10933 && targetm.vectorize.get_mask_mode (vector_mode).exists (&mask_mode))
10934 return build_truth_vector_type_for_mode (nunits, mask_mode);
10935
10936 poly_uint64 vsize = tree_to_poly_uint64 (TYPE_SIZE (vectype));
10937 unsigned HOST_WIDE_INT esize = vector_element_size (vsize, nunits);
10938 tree bool_type = build_nonstandard_boolean_type (esize);
10939
10940 return make_vector_type (bool_type, nunits, BLKmode);
10941 }
10942
10943 /* Like build_vector_type, but builds a variant type with TYPE_VECTOR_OPAQUE
10944 set. */
10945
10946 tree
10947 build_opaque_vector_type (tree innertype, poly_int64 nunits)
10948 {
10949 tree t = make_vector_type (innertype, nunits, VOIDmode);
10950 tree cand;
10951 /* We always build the non-opaque variant before the opaque one,
10952 so if it already exists, it is TYPE_NEXT_VARIANT of this one. */
10953 cand = TYPE_NEXT_VARIANT (t);
10954 if (cand
10955 && TYPE_VECTOR_OPAQUE (cand)
10956 && check_qualified_type (cand, t, TYPE_QUALS (t)))
10957 return cand;
10958 /* Othewise build a variant type and make sure to queue it after
10959 the non-opaque type. */
10960 cand = build_distinct_type_copy (t);
10961 TYPE_VECTOR_OPAQUE (cand) = true;
10962 TYPE_CANONICAL (cand) = TYPE_CANONICAL (t);
10963 TYPE_NEXT_VARIANT (cand) = TYPE_NEXT_VARIANT (t);
10964 TYPE_NEXT_VARIANT (t) = cand;
10965 TYPE_MAIN_VARIANT (cand) = TYPE_MAIN_VARIANT (t);
10966 return cand;
10967 }
10968
10969 /* Return the value of element I of VECTOR_CST T as a wide_int. */
10970
10971 wide_int
10972 vector_cst_int_elt (const_tree t, unsigned int i)
10973 {
10974 /* First handle elements that are directly encoded. */
10975 unsigned int encoded_nelts = vector_cst_encoded_nelts (t);
10976 if (i < encoded_nelts)
10977 return wi::to_wide (VECTOR_CST_ENCODED_ELT (t, i));
10978
10979 /* Identify the pattern that contains element I and work out the index of
10980 the last encoded element for that pattern. */
10981 unsigned int npatterns = VECTOR_CST_NPATTERNS (t);
10982 unsigned int pattern = i % npatterns;
10983 unsigned int count = i / npatterns;
10984 unsigned int final_i = encoded_nelts - npatterns + pattern;
10985
10986 /* If there are no steps, the final encoded value is the right one. */
10987 if (!VECTOR_CST_STEPPED_P (t))
10988 return wi::to_wide (VECTOR_CST_ENCODED_ELT (t, final_i));
10989
10990 /* Otherwise work out the value from the last two encoded elements. */
10991 tree v1 = VECTOR_CST_ENCODED_ELT (t, final_i - npatterns);
10992 tree v2 = VECTOR_CST_ENCODED_ELT (t, final_i);
10993 wide_int diff = wi::to_wide (v2) - wi::to_wide (v1);
10994 return wi::to_wide (v2) + (count - 2) * diff;
10995 }
10996
10997 /* Return the value of element I of VECTOR_CST T. */
10998
10999 tree
11000 vector_cst_elt (const_tree t, unsigned int i)
11001 {
11002 /* First handle elements that are directly encoded. */
11003 unsigned int encoded_nelts = vector_cst_encoded_nelts (t);
11004 if (i < encoded_nelts)
11005 return VECTOR_CST_ENCODED_ELT (t, i);
11006
11007 /* If there are no steps, the final encoded value is the right one. */
11008 if (!VECTOR_CST_STEPPED_P (t))
11009 {
11010 /* Identify the pattern that contains element I and work out the index of
11011 the last encoded element for that pattern. */
11012 unsigned int npatterns = VECTOR_CST_NPATTERNS (t);
11013 unsigned int pattern = i % npatterns;
11014 unsigned int final_i = encoded_nelts - npatterns + pattern;
11015 return VECTOR_CST_ENCODED_ELT (t, final_i);
11016 }
11017
11018 /* Otherwise work out the value from the last two encoded elements. */
11019 return wide_int_to_tree (TREE_TYPE (TREE_TYPE (t)),
11020 vector_cst_int_elt (t, i));
11021 }
11022
11023 /* Given an initializer INIT, return TRUE if INIT is zero or some
11024 aggregate of zeros. Otherwise return FALSE. If NONZERO is not
11025 null, set *NONZERO if and only if INIT is known not to be all
11026 zeros. The combination of return value of false and *NONZERO
11027 false implies that INIT may but need not be all zeros. Other
11028 combinations indicate definitive answers. */
11029
11030 bool
11031 initializer_zerop (const_tree init, bool *nonzero /* = NULL */)
11032 {
11033 bool dummy;
11034 if (!nonzero)
11035 nonzero = &dummy;
11036
11037 /* Conservatively clear NONZERO and set it only if INIT is definitely
11038 not all zero. */
11039 *nonzero = false;
11040
11041 STRIP_NOPS (init);
11042
11043 unsigned HOST_WIDE_INT off = 0;
11044
11045 switch (TREE_CODE (init))
11046 {
11047 case INTEGER_CST:
11048 if (integer_zerop (init))
11049 return true;
11050
11051 *nonzero = true;
11052 return false;
11053
11054 case REAL_CST:
11055 /* ??? Note that this is not correct for C4X float formats. There,
11056 a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
11057 negative exponent. */
11058 if (real_zerop (init)
11059 && !REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init)))
11060 return true;
11061
11062 *nonzero = true;
11063 return false;
11064
11065 case FIXED_CST:
11066 if (fixed_zerop (init))
11067 return true;
11068
11069 *nonzero = true;
11070 return false;
11071
11072 case COMPLEX_CST:
11073 if (integer_zerop (init)
11074 || (real_zerop (init)
11075 && !REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
11076 && !REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init)))))
11077 return true;
11078
11079 *nonzero = true;
11080 return false;
11081
11082 case VECTOR_CST:
11083 if (VECTOR_CST_NPATTERNS (init) == 1
11084 && VECTOR_CST_DUPLICATE_P (init)
11085 && initializer_zerop (VECTOR_CST_ENCODED_ELT (init, 0)))
11086 return true;
11087
11088 *nonzero = true;
11089 return false;
11090
11091 case CONSTRUCTOR:
11092 {
11093 if (TREE_CLOBBER_P (init))
11094 return false;
11095
11096 unsigned HOST_WIDE_INT idx;
11097 tree elt;
11098
11099 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
11100 if (!initializer_zerop (elt, nonzero))
11101 return false;
11102
11103 return true;
11104 }
11105
11106 case MEM_REF:
11107 {
11108 tree arg = TREE_OPERAND (init, 0);
11109 if (TREE_CODE (arg) != ADDR_EXPR)
11110 return false;
11111 tree offset = TREE_OPERAND (init, 1);
11112 if (TREE_CODE (offset) != INTEGER_CST
11113 || !tree_fits_uhwi_p (offset))
11114 return false;
11115 off = tree_to_uhwi (offset);
11116 if (INT_MAX < off)
11117 return false;
11118 arg = TREE_OPERAND (arg, 0);
11119 if (TREE_CODE (arg) != STRING_CST)
11120 return false;
11121 init = arg;
11122 }
11123 /* Fall through. */
11124
11125 case STRING_CST:
11126 {
11127 gcc_assert (off <= INT_MAX);
11128
11129 int i = off;
11130 int n = TREE_STRING_LENGTH (init);
11131 if (n <= i)
11132 return false;
11133
11134 /* We need to loop through all elements to handle cases like
11135 "\0" and "\0foobar". */
11136 for (i = 0; i < n; ++i)
11137 if (TREE_STRING_POINTER (init)[i] != '\0')
11138 {
11139 *nonzero = true;
11140 return false;
11141 }
11142
11143 return true;
11144 }
11145
11146 default:
11147 return false;
11148 }
11149 }
11150
11151 /* Return true if EXPR is an initializer expression in which every element
11152 is a constant that is numerically equal to 0 or 1. The elements do not
11153 need to be equal to each other. */
11154
11155 bool
11156 initializer_each_zero_or_onep (const_tree expr)
11157 {
11158 STRIP_ANY_LOCATION_WRAPPER (expr);
11159
11160 switch (TREE_CODE (expr))
11161 {
11162 case INTEGER_CST:
11163 return integer_zerop (expr) || integer_onep (expr);
11164
11165 case REAL_CST:
11166 return real_zerop (expr) || real_onep (expr);
11167
11168 case VECTOR_CST:
11169 {
11170 unsigned HOST_WIDE_INT nelts = vector_cst_encoded_nelts (expr);
11171 if (VECTOR_CST_STEPPED_P (expr)
11172 && !TYPE_VECTOR_SUBPARTS (TREE_TYPE (expr)).is_constant (&nelts))
11173 return false;
11174
11175 for (unsigned int i = 0; i < nelts; ++i)
11176 {
11177 tree elt = vector_cst_elt (expr, i);
11178 if (!initializer_each_zero_or_onep (elt))
11179 return false;
11180 }
11181
11182 return true;
11183 }
11184
11185 default:
11186 return false;
11187 }
11188 }
11189
11190 /* Check if vector VEC consists of all the equal elements and
11191 that the number of elements corresponds to the type of VEC.
11192 The function returns first element of the vector
11193 or NULL_TREE if the vector is not uniform. */
11194 tree
11195 uniform_vector_p (const_tree vec)
11196 {
11197 tree first, t;
11198 unsigned HOST_WIDE_INT i, nelts;
11199
11200 if (vec == NULL_TREE)
11201 return NULL_TREE;
11202
11203 gcc_assert (VECTOR_TYPE_P (TREE_TYPE (vec)));
11204
11205 if (TREE_CODE (vec) == VEC_DUPLICATE_EXPR)
11206 return TREE_OPERAND (vec, 0);
11207
11208 else if (TREE_CODE (vec) == VECTOR_CST)
11209 {
11210 if (VECTOR_CST_NPATTERNS (vec) == 1 && VECTOR_CST_DUPLICATE_P (vec))
11211 return VECTOR_CST_ENCODED_ELT (vec, 0);
11212 return NULL_TREE;
11213 }
11214
11215 else if (TREE_CODE (vec) == CONSTRUCTOR
11216 && TYPE_VECTOR_SUBPARTS (TREE_TYPE (vec)).is_constant (&nelts))
11217 {
11218 first = error_mark_node;
11219
11220 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (vec), i, t)
11221 {
11222 if (i == 0)
11223 {
11224 first = t;
11225 continue;
11226 }
11227 if (!operand_equal_p (first, t, 0))
11228 return NULL_TREE;
11229 }
11230 if (i != nelts)
11231 return NULL_TREE;
11232
11233 return first;
11234 }
11235
11236 return NULL_TREE;
11237 }
11238
11239 /* If the argument is INTEGER_CST, return it. If the argument is vector
11240 with all elements the same INTEGER_CST, return that INTEGER_CST. Otherwise
11241 return NULL_TREE.
11242 Look through location wrappers. */
11243
11244 tree
11245 uniform_integer_cst_p (tree t)
11246 {
11247 STRIP_ANY_LOCATION_WRAPPER (t);
11248
11249 if (TREE_CODE (t) == INTEGER_CST)
11250 return t;
11251
11252 if (VECTOR_TYPE_P (TREE_TYPE (t)))
11253 {
11254 t = uniform_vector_p (t);
11255 if (t && TREE_CODE (t) == INTEGER_CST)
11256 return t;
11257 }
11258
11259 return NULL_TREE;
11260 }
11261
11262 /* If VECTOR_CST T has a single nonzero element, return the index of that
11263 element, otherwise return -1. */
11264
11265 int
11266 single_nonzero_element (const_tree t)
11267 {
11268 unsigned HOST_WIDE_INT nelts;
11269 unsigned int repeat_nelts;
11270 if (VECTOR_CST_NELTS (t).is_constant (&nelts))
11271 repeat_nelts = nelts;
11272 else if (VECTOR_CST_NELTS_PER_PATTERN (t) == 2)
11273 {
11274 nelts = vector_cst_encoded_nelts (t);
11275 repeat_nelts = VECTOR_CST_NPATTERNS (t);
11276 }
11277 else
11278 return -1;
11279
11280 int res = -1;
11281 for (unsigned int i = 0; i < nelts; ++i)
11282 {
11283 tree elt = vector_cst_elt (t, i);
11284 if (!integer_zerop (elt) && !real_zerop (elt))
11285 {
11286 if (res >= 0 || i >= repeat_nelts)
11287 return -1;
11288 res = i;
11289 }
11290 }
11291 return res;
11292 }
11293
11294 /* Build an empty statement at location LOC. */
11295
11296 tree
11297 build_empty_stmt (location_t loc)
11298 {
11299 tree t = build1 (NOP_EXPR, void_type_node, size_zero_node);
11300 SET_EXPR_LOCATION (t, loc);
11301 return t;
11302 }
11303
11304
11305 /* Build an OpenMP clause with code CODE. LOC is the location of the
11306 clause. */
11307
11308 tree
11309 build_omp_clause (location_t loc, enum omp_clause_code code)
11310 {
11311 tree t;
11312 int size, length;
11313
11314 length = omp_clause_num_ops[code];
11315 size = (sizeof (struct tree_omp_clause) + (length - 1) * sizeof (tree));
11316
11317 record_node_allocation_statistics (OMP_CLAUSE, size);
11318
11319 t = (tree) ggc_internal_alloc (size);
11320 memset (t, 0, size);
11321 TREE_SET_CODE (t, OMP_CLAUSE);
11322 OMP_CLAUSE_SET_CODE (t, code);
11323 OMP_CLAUSE_LOCATION (t) = loc;
11324
11325 return t;
11326 }
11327
11328 /* Build a tcc_vl_exp object with code CODE and room for LEN operands. LEN
11329 includes the implicit operand count in TREE_OPERAND 0, and so must be >= 1.
11330 Except for the CODE and operand count field, other storage for the
11331 object is initialized to zeros. */
11332
11333 tree
11334 build_vl_exp (enum tree_code code, int len MEM_STAT_DECL)
11335 {
11336 tree t;
11337 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_exp);
11338
11339 gcc_assert (TREE_CODE_CLASS (code) == tcc_vl_exp);
11340 gcc_assert (len >= 1);
11341
11342 record_node_allocation_statistics (code, length);
11343
11344 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
11345
11346 TREE_SET_CODE (t, code);
11347
11348 /* Can't use TREE_OPERAND to store the length because if checking is
11349 enabled, it will try to check the length before we store it. :-P */
11350 t->exp.operands[0] = build_int_cst (sizetype, len);
11351
11352 return t;
11353 }
11354
11355 /* Helper function for build_call_* functions; build a CALL_EXPR with
11356 indicated RETURN_TYPE, FN, and NARGS, but do not initialize any of
11357 the argument slots. */
11358
11359 static tree
11360 build_call_1 (tree return_type, tree fn, int nargs)
11361 {
11362 tree t;
11363
11364 t = build_vl_exp (CALL_EXPR, nargs + 3);
11365 TREE_TYPE (t) = return_type;
11366 CALL_EXPR_FN (t) = fn;
11367 CALL_EXPR_STATIC_CHAIN (t) = NULL;
11368
11369 return t;
11370 }
11371
11372 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
11373 FN and a null static chain slot. NARGS is the number of call arguments
11374 which are specified as "..." arguments. */
11375
11376 tree
11377 build_call_nary (tree return_type, tree fn, int nargs, ...)
11378 {
11379 tree ret;
11380 va_list args;
11381 va_start (args, nargs);
11382 ret = build_call_valist (return_type, fn, nargs, args);
11383 va_end (args);
11384 return ret;
11385 }
11386
11387 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
11388 FN and a null static chain slot. NARGS is the number of call arguments
11389 which are specified as a va_list ARGS. */
11390
11391 tree
11392 build_call_valist (tree return_type, tree fn, int nargs, va_list args)
11393 {
11394 tree t;
11395 int i;
11396
11397 t = build_call_1 (return_type, fn, nargs);
11398 for (i = 0; i < nargs; i++)
11399 CALL_EXPR_ARG (t, i) = va_arg (args, tree);
11400 process_call_operands (t);
11401 return t;
11402 }
11403
11404 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
11405 FN and a null static chain slot. NARGS is the number of call arguments
11406 which are specified as a tree array ARGS. */
11407
11408 tree
11409 build_call_array_loc (location_t loc, tree return_type, tree fn,
11410 int nargs, const tree *args)
11411 {
11412 tree t;
11413 int i;
11414
11415 t = build_call_1 (return_type, fn, nargs);
11416 for (i = 0; i < nargs; i++)
11417 CALL_EXPR_ARG (t, i) = args[i];
11418 process_call_operands (t);
11419 SET_EXPR_LOCATION (t, loc);
11420 return t;
11421 }
11422
11423 /* Like build_call_array, but takes a vec. */
11424
11425 tree
11426 build_call_vec (tree return_type, tree fn, vec<tree, va_gc> *args)
11427 {
11428 tree ret, t;
11429 unsigned int ix;
11430
11431 ret = build_call_1 (return_type, fn, vec_safe_length (args));
11432 FOR_EACH_VEC_SAFE_ELT (args, ix, t)
11433 CALL_EXPR_ARG (ret, ix) = t;
11434 process_call_operands (ret);
11435 return ret;
11436 }
11437
11438 /* Conveniently construct a function call expression. FNDECL names the
11439 function to be called and N arguments are passed in the array
11440 ARGARRAY. */
11441
11442 tree
11443 build_call_expr_loc_array (location_t loc, tree fndecl, int n, tree *argarray)
11444 {
11445 tree fntype = TREE_TYPE (fndecl);
11446 tree fn = build1 (ADDR_EXPR, build_pointer_type (fntype), fndecl);
11447
11448 return fold_build_call_array_loc (loc, TREE_TYPE (fntype), fn, n, argarray);
11449 }
11450
11451 /* Conveniently construct a function call expression. FNDECL names the
11452 function to be called and the arguments are passed in the vector
11453 VEC. */
11454
11455 tree
11456 build_call_expr_loc_vec (location_t loc, tree fndecl, vec<tree, va_gc> *vec)
11457 {
11458 return build_call_expr_loc_array (loc, fndecl, vec_safe_length (vec),
11459 vec_safe_address (vec));
11460 }
11461
11462
11463 /* Conveniently construct a function call expression. FNDECL names the
11464 function to be called, N is the number of arguments, and the "..."
11465 parameters are the argument expressions. */
11466
11467 tree
11468 build_call_expr_loc (location_t loc, tree fndecl, int n, ...)
11469 {
11470 va_list ap;
11471 tree *argarray = XALLOCAVEC (tree, n);
11472 int i;
11473
11474 va_start (ap, n);
11475 for (i = 0; i < n; i++)
11476 argarray[i] = va_arg (ap, tree);
11477 va_end (ap);
11478 return build_call_expr_loc_array (loc, fndecl, n, argarray);
11479 }
11480
11481 /* Like build_call_expr_loc (UNKNOWN_LOCATION, ...). Duplicated because
11482 varargs macros aren't supported by all bootstrap compilers. */
11483
11484 tree
11485 build_call_expr (tree fndecl, int n, ...)
11486 {
11487 va_list ap;
11488 tree *argarray = XALLOCAVEC (tree, n);
11489 int i;
11490
11491 va_start (ap, n);
11492 for (i = 0; i < n; i++)
11493 argarray[i] = va_arg (ap, tree);
11494 va_end (ap);
11495 return build_call_expr_loc_array (UNKNOWN_LOCATION, fndecl, n, argarray);
11496 }
11497
11498 /* Build an internal call to IFN, with arguments ARGS[0:N-1] and with return
11499 type TYPE. This is just like CALL_EXPR, except its CALL_EXPR_FN is NULL.
11500 It will get gimplified later into an ordinary internal function. */
11501
11502 tree
11503 build_call_expr_internal_loc_array (location_t loc, internal_fn ifn,
11504 tree type, int n, const tree *args)
11505 {
11506 tree t = build_call_1 (type, NULL_TREE, n);
11507 for (int i = 0; i < n; ++i)
11508 CALL_EXPR_ARG (t, i) = args[i];
11509 SET_EXPR_LOCATION (t, loc);
11510 CALL_EXPR_IFN (t) = ifn;
11511 process_call_operands (t);
11512 return t;
11513 }
11514
11515 /* Build internal call expression. This is just like CALL_EXPR, except
11516 its CALL_EXPR_FN is NULL. It will get gimplified later into ordinary
11517 internal function. */
11518
11519 tree
11520 build_call_expr_internal_loc (location_t loc, enum internal_fn ifn,
11521 tree type, int n, ...)
11522 {
11523 va_list ap;
11524 tree *argarray = XALLOCAVEC (tree, n);
11525 int i;
11526
11527 va_start (ap, n);
11528 for (i = 0; i < n; i++)
11529 argarray[i] = va_arg (ap, tree);
11530 va_end (ap);
11531 return build_call_expr_internal_loc_array (loc, ifn, type, n, argarray);
11532 }
11533
11534 /* Return a function call to FN, if the target is guaranteed to support it,
11535 or null otherwise.
11536
11537 N is the number of arguments, passed in the "...", and TYPE is the
11538 type of the return value. */
11539
11540 tree
11541 maybe_build_call_expr_loc (location_t loc, combined_fn fn, tree type,
11542 int n, ...)
11543 {
11544 va_list ap;
11545 tree *argarray = XALLOCAVEC (tree, n);
11546 int i;
11547
11548 va_start (ap, n);
11549 for (i = 0; i < n; i++)
11550 argarray[i] = va_arg (ap, tree);
11551 va_end (ap);
11552 if (internal_fn_p (fn))
11553 {
11554 internal_fn ifn = as_internal_fn (fn);
11555 if (direct_internal_fn_p (ifn))
11556 {
11557 tree_pair types = direct_internal_fn_types (ifn, type, argarray);
11558 if (!direct_internal_fn_supported_p (ifn, types,
11559 OPTIMIZE_FOR_BOTH))
11560 return NULL_TREE;
11561 }
11562 return build_call_expr_internal_loc_array (loc, ifn, type, n, argarray);
11563 }
11564 else
11565 {
11566 tree fndecl = builtin_decl_implicit (as_builtin_fn (fn));
11567 if (!fndecl)
11568 return NULL_TREE;
11569 return build_call_expr_loc_array (loc, fndecl, n, argarray);
11570 }
11571 }
11572
11573 /* Return a function call to the appropriate builtin alloca variant.
11574
11575 SIZE is the size to be allocated. ALIGN, if non-zero, is the requested
11576 alignment of the allocated area. MAX_SIZE, if non-negative, is an upper
11577 bound for SIZE in case it is not a fixed value. */
11578
11579 tree
11580 build_alloca_call_expr (tree size, unsigned int align, HOST_WIDE_INT max_size)
11581 {
11582 if (max_size >= 0)
11583 {
11584 tree t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN_AND_MAX);
11585 return
11586 build_call_expr (t, 3, size, size_int (align), size_int (max_size));
11587 }
11588 else if (align > 0)
11589 {
11590 tree t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN);
11591 return build_call_expr (t, 2, size, size_int (align));
11592 }
11593 else
11594 {
11595 tree t = builtin_decl_explicit (BUILT_IN_ALLOCA);
11596 return build_call_expr (t, 1, size);
11597 }
11598 }
11599
11600 /* Create a new constant string literal of type ELTYPE[SIZE] (or LEN
11601 if SIZE == -1) and return a tree node representing char* pointer to
11602 it as an ADDR_EXPR (ARRAY_REF (ELTYPE, ...)). When STR is nonnull
11603 the STRING_CST value is the LEN bytes at STR (the representation
11604 of the string, which may be wide). Otherwise it's all zeros. */
11605
11606 tree
11607 build_string_literal (unsigned len, const char *str /* = NULL */,
11608 tree eltype /* = char_type_node */,
11609 unsigned HOST_WIDE_INT size /* = -1 */)
11610 {
11611 tree t = build_string (len, str);
11612 /* Set the maximum valid index based on the string length or SIZE. */
11613 unsigned HOST_WIDE_INT maxidx
11614 = (size == HOST_WIDE_INT_M1U ? len : size) - 1;
11615
11616 tree index = build_index_type (size_int (maxidx));
11617 eltype = build_type_variant (eltype, 1, 0);
11618 tree type = build_array_type (eltype, index);
11619 TREE_TYPE (t) = type;
11620 TREE_CONSTANT (t) = 1;
11621 TREE_READONLY (t) = 1;
11622 TREE_STATIC (t) = 1;
11623
11624 type = build_pointer_type (eltype);
11625 t = build1 (ADDR_EXPR, type,
11626 build4 (ARRAY_REF, eltype,
11627 t, integer_zero_node, NULL_TREE, NULL_TREE));
11628 return t;
11629 }
11630
11631
11632
11633 /* Return true if T (assumed to be a DECL) must be assigned a memory
11634 location. */
11635
11636 bool
11637 needs_to_live_in_memory (const_tree t)
11638 {
11639 return (TREE_ADDRESSABLE (t)
11640 || is_global_var (t)
11641 || (TREE_CODE (t) == RESULT_DECL
11642 && !DECL_BY_REFERENCE (t)
11643 && aggregate_value_p (t, current_function_decl)));
11644 }
11645
11646 /* Return value of a constant X and sign-extend it. */
11647
11648 HOST_WIDE_INT
11649 int_cst_value (const_tree x)
11650 {
11651 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
11652 unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
11653
11654 /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
11655 gcc_assert (cst_and_fits_in_hwi (x));
11656
11657 if (bits < HOST_BITS_PER_WIDE_INT)
11658 {
11659 bool negative = ((val >> (bits - 1)) & 1) != 0;
11660 if (negative)
11661 val |= HOST_WIDE_INT_M1U << (bits - 1) << 1;
11662 else
11663 val &= ~(HOST_WIDE_INT_M1U << (bits - 1) << 1);
11664 }
11665
11666 return val;
11667 }
11668
11669 /* If TYPE is an integral or pointer type, return an integer type with
11670 the same precision which is unsigned iff UNSIGNEDP is true, or itself
11671 if TYPE is already an integer type of signedness UNSIGNEDP.
11672 If TYPE is a floating-point type, return an integer type with the same
11673 bitsize and with the signedness given by UNSIGNEDP; this is useful
11674 when doing bit-level operations on a floating-point value. */
11675
11676 tree
11677 signed_or_unsigned_type_for (int unsignedp, tree type)
11678 {
11679 if (ANY_INTEGRAL_TYPE_P (type) && TYPE_UNSIGNED (type) == unsignedp)
11680 return type;
11681
11682 if (TREE_CODE (type) == VECTOR_TYPE)
11683 {
11684 tree inner = TREE_TYPE (type);
11685 tree inner2 = signed_or_unsigned_type_for (unsignedp, inner);
11686 if (!inner2)
11687 return NULL_TREE;
11688 if (inner == inner2)
11689 return type;
11690 return build_vector_type (inner2, TYPE_VECTOR_SUBPARTS (type));
11691 }
11692
11693 if (TREE_CODE (type) == COMPLEX_TYPE)
11694 {
11695 tree inner = TREE_TYPE (type);
11696 tree inner2 = signed_or_unsigned_type_for (unsignedp, inner);
11697 if (!inner2)
11698 return NULL_TREE;
11699 if (inner == inner2)
11700 return type;
11701 return build_complex_type (inner2);
11702 }
11703
11704 unsigned int bits;
11705 if (INTEGRAL_TYPE_P (type)
11706 || POINTER_TYPE_P (type)
11707 || TREE_CODE (type) == OFFSET_TYPE)
11708 bits = TYPE_PRECISION (type);
11709 else if (TREE_CODE (type) == REAL_TYPE)
11710 bits = GET_MODE_BITSIZE (SCALAR_TYPE_MODE (type));
11711 else
11712 return NULL_TREE;
11713
11714 return build_nonstandard_integer_type (bits, unsignedp);
11715 }
11716
11717 /* If TYPE is an integral or pointer type, return an integer type with
11718 the same precision which is unsigned, or itself if TYPE is already an
11719 unsigned integer type. If TYPE is a floating-point type, return an
11720 unsigned integer type with the same bitsize as TYPE. */
11721
11722 tree
11723 unsigned_type_for (tree type)
11724 {
11725 return signed_or_unsigned_type_for (1, type);
11726 }
11727
11728 /* If TYPE is an integral or pointer type, return an integer type with
11729 the same precision which is signed, or itself if TYPE is already a
11730 signed integer type. If TYPE is a floating-point type, return a
11731 signed integer type with the same bitsize as TYPE. */
11732
11733 tree
11734 signed_type_for (tree type)
11735 {
11736 return signed_or_unsigned_type_for (0, type);
11737 }
11738
11739 /* If TYPE is a vector type, return a signed integer vector type with the
11740 same width and number of subparts. Otherwise return boolean_type_node. */
11741
11742 tree
11743 truth_type_for (tree type)
11744 {
11745 if (TREE_CODE (type) == VECTOR_TYPE)
11746 {
11747 if (VECTOR_BOOLEAN_TYPE_P (type))
11748 return type;
11749 return build_truth_vector_type_for (type);
11750 }
11751 else
11752 return boolean_type_node;
11753 }
11754
11755 /* Returns the largest value obtainable by casting something in INNER type to
11756 OUTER type. */
11757
11758 tree
11759 upper_bound_in_type (tree outer, tree inner)
11760 {
11761 unsigned int det = 0;
11762 unsigned oprec = TYPE_PRECISION (outer);
11763 unsigned iprec = TYPE_PRECISION (inner);
11764 unsigned prec;
11765
11766 /* Compute a unique number for every combination. */
11767 det |= (oprec > iprec) ? 4 : 0;
11768 det |= TYPE_UNSIGNED (outer) ? 2 : 0;
11769 det |= TYPE_UNSIGNED (inner) ? 1 : 0;
11770
11771 /* Determine the exponent to use. */
11772 switch (det)
11773 {
11774 case 0:
11775 case 1:
11776 /* oprec <= iprec, outer: signed, inner: don't care. */
11777 prec = oprec - 1;
11778 break;
11779 case 2:
11780 case 3:
11781 /* oprec <= iprec, outer: unsigned, inner: don't care. */
11782 prec = oprec;
11783 break;
11784 case 4:
11785 /* oprec > iprec, outer: signed, inner: signed. */
11786 prec = iprec - 1;
11787 break;
11788 case 5:
11789 /* oprec > iprec, outer: signed, inner: unsigned. */
11790 prec = iprec;
11791 break;
11792 case 6:
11793 /* oprec > iprec, outer: unsigned, inner: signed. */
11794 prec = oprec;
11795 break;
11796 case 7:
11797 /* oprec > iprec, outer: unsigned, inner: unsigned. */
11798 prec = iprec;
11799 break;
11800 default:
11801 gcc_unreachable ();
11802 }
11803
11804 return wide_int_to_tree (outer,
11805 wi::mask (prec, false, TYPE_PRECISION (outer)));
11806 }
11807
11808 /* Returns the smallest value obtainable by casting something in INNER type to
11809 OUTER type. */
11810
11811 tree
11812 lower_bound_in_type (tree outer, tree inner)
11813 {
11814 unsigned oprec = TYPE_PRECISION (outer);
11815 unsigned iprec = TYPE_PRECISION (inner);
11816
11817 /* If OUTER type is unsigned, we can definitely cast 0 to OUTER type
11818 and obtain 0. */
11819 if (TYPE_UNSIGNED (outer)
11820 /* If we are widening something of an unsigned type, OUTER type
11821 contains all values of INNER type. In particular, both INNER
11822 and OUTER types have zero in common. */
11823 || (oprec > iprec && TYPE_UNSIGNED (inner)))
11824 return build_int_cst (outer, 0);
11825 else
11826 {
11827 /* If we are widening a signed type to another signed type, we
11828 want to obtain -2^^(iprec-1). If we are keeping the
11829 precision or narrowing to a signed type, we want to obtain
11830 -2^(oprec-1). */
11831 unsigned prec = oprec > iprec ? iprec : oprec;
11832 return wide_int_to_tree (outer,
11833 wi::mask (prec - 1, true,
11834 TYPE_PRECISION (outer)));
11835 }
11836 }
11837
11838 /* Return nonzero if two operands that are suitable for PHI nodes are
11839 necessarily equal. Specifically, both ARG0 and ARG1 must be either
11840 SSA_NAME or invariant. Note that this is strictly an optimization.
11841 That is, callers of this function can directly call operand_equal_p
11842 and get the same result, only slower. */
11843
11844 int
11845 operand_equal_for_phi_arg_p (const_tree arg0, const_tree arg1)
11846 {
11847 if (arg0 == arg1)
11848 return 1;
11849 if (TREE_CODE (arg0) == SSA_NAME || TREE_CODE (arg1) == SSA_NAME)
11850 return 0;
11851 return operand_equal_p (arg0, arg1, 0);
11852 }
11853
11854 /* Returns number of zeros at the end of binary representation of X. */
11855
11856 tree
11857 num_ending_zeros (const_tree x)
11858 {
11859 return build_int_cst (TREE_TYPE (x), wi::ctz (wi::to_wide (x)));
11860 }
11861
11862
11863 #define WALK_SUBTREE(NODE) \
11864 do \
11865 { \
11866 result = walk_tree_1 (&(NODE), func, data, pset, lh); \
11867 if (result) \
11868 return result; \
11869 } \
11870 while (0)
11871
11872 /* This is a subroutine of walk_tree that walks field of TYPE that are to
11873 be walked whenever a type is seen in the tree. Rest of operands and return
11874 value are as for walk_tree. */
11875
11876 static tree
11877 walk_type_fields (tree type, walk_tree_fn func, void *data,
11878 hash_set<tree> *pset, walk_tree_lh lh)
11879 {
11880 tree result = NULL_TREE;
11881
11882 switch (TREE_CODE (type))
11883 {
11884 case POINTER_TYPE:
11885 case REFERENCE_TYPE:
11886 case VECTOR_TYPE:
11887 /* We have to worry about mutually recursive pointers. These can't
11888 be written in C. They can in Ada. It's pathological, but
11889 there's an ACATS test (c38102a) that checks it. Deal with this
11890 by checking if we're pointing to another pointer, that one
11891 points to another pointer, that one does too, and we have no htab.
11892 If so, get a hash table. We check three levels deep to avoid
11893 the cost of the hash table if we don't need one. */
11894 if (POINTER_TYPE_P (TREE_TYPE (type))
11895 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (type)))
11896 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (TREE_TYPE (type))))
11897 && !pset)
11898 {
11899 result = walk_tree_without_duplicates (&TREE_TYPE (type),
11900 func, data);
11901 if (result)
11902 return result;
11903
11904 break;
11905 }
11906
11907 /* fall through */
11908
11909 case COMPLEX_TYPE:
11910 WALK_SUBTREE (TREE_TYPE (type));
11911 break;
11912
11913 case METHOD_TYPE:
11914 WALK_SUBTREE (TYPE_METHOD_BASETYPE (type));
11915
11916 /* Fall through. */
11917
11918 case FUNCTION_TYPE:
11919 WALK_SUBTREE (TREE_TYPE (type));
11920 {
11921 tree arg;
11922
11923 /* We never want to walk into default arguments. */
11924 for (arg = TYPE_ARG_TYPES (type); arg; arg = TREE_CHAIN (arg))
11925 WALK_SUBTREE (TREE_VALUE (arg));
11926 }
11927 break;
11928
11929 case ARRAY_TYPE:
11930 /* Don't follow this nodes's type if a pointer for fear that
11931 we'll have infinite recursion. If we have a PSET, then we
11932 need not fear. */
11933 if (pset
11934 || (!POINTER_TYPE_P (TREE_TYPE (type))
11935 && TREE_CODE (TREE_TYPE (type)) != OFFSET_TYPE))
11936 WALK_SUBTREE (TREE_TYPE (type));
11937 WALK_SUBTREE (TYPE_DOMAIN (type));
11938 break;
11939
11940 case OFFSET_TYPE:
11941 WALK_SUBTREE (TREE_TYPE (type));
11942 WALK_SUBTREE (TYPE_OFFSET_BASETYPE (type));
11943 break;
11944
11945 default:
11946 break;
11947 }
11948
11949 return NULL_TREE;
11950 }
11951
11952 /* Apply FUNC to all the sub-trees of TP in a pre-order traversal. FUNC is
11953 called with the DATA and the address of each sub-tree. If FUNC returns a
11954 non-NULL value, the traversal is stopped, and the value returned by FUNC
11955 is returned. If PSET is non-NULL it is used to record the nodes visited,
11956 and to avoid visiting a node more than once. */
11957
11958 tree
11959 walk_tree_1 (tree *tp, walk_tree_fn func, void *data,
11960 hash_set<tree> *pset, walk_tree_lh lh)
11961 {
11962 enum tree_code code;
11963 int walk_subtrees;
11964 tree result;
11965
11966 #define WALK_SUBTREE_TAIL(NODE) \
11967 do \
11968 { \
11969 tp = & (NODE); \
11970 goto tail_recurse; \
11971 } \
11972 while (0)
11973
11974 tail_recurse:
11975 /* Skip empty subtrees. */
11976 if (!*tp)
11977 return NULL_TREE;
11978
11979 /* Don't walk the same tree twice, if the user has requested
11980 that we avoid doing so. */
11981 if (pset && pset->add (*tp))
11982 return NULL_TREE;
11983
11984 /* Call the function. */
11985 walk_subtrees = 1;
11986 result = (*func) (tp, &walk_subtrees, data);
11987
11988 /* If we found something, return it. */
11989 if (result)
11990 return result;
11991
11992 code = TREE_CODE (*tp);
11993
11994 /* Even if we didn't, FUNC may have decided that there was nothing
11995 interesting below this point in the tree. */
11996 if (!walk_subtrees)
11997 {
11998 /* But we still need to check our siblings. */
11999 if (code == TREE_LIST)
12000 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
12001 else if (code == OMP_CLAUSE)
12002 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
12003 else
12004 return NULL_TREE;
12005 }
12006
12007 if (lh)
12008 {
12009 result = (*lh) (tp, &walk_subtrees, func, data, pset);
12010 if (result || !walk_subtrees)
12011 return result;
12012 }
12013
12014 switch (code)
12015 {
12016 case ERROR_MARK:
12017 case IDENTIFIER_NODE:
12018 case INTEGER_CST:
12019 case REAL_CST:
12020 case FIXED_CST:
12021 case VECTOR_CST:
12022 case STRING_CST:
12023 case BLOCK:
12024 case PLACEHOLDER_EXPR:
12025 case SSA_NAME:
12026 case FIELD_DECL:
12027 case RESULT_DECL:
12028 /* None of these have subtrees other than those already walked
12029 above. */
12030 break;
12031
12032 case TREE_LIST:
12033 WALK_SUBTREE (TREE_VALUE (*tp));
12034 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
12035 break;
12036
12037 case TREE_VEC:
12038 {
12039 int len = TREE_VEC_LENGTH (*tp);
12040
12041 if (len == 0)
12042 break;
12043
12044 /* Walk all elements but the first. */
12045 while (--len)
12046 WALK_SUBTREE (TREE_VEC_ELT (*tp, len));
12047
12048 /* Now walk the first one as a tail call. */
12049 WALK_SUBTREE_TAIL (TREE_VEC_ELT (*tp, 0));
12050 }
12051
12052 case COMPLEX_CST:
12053 WALK_SUBTREE (TREE_REALPART (*tp));
12054 WALK_SUBTREE_TAIL (TREE_IMAGPART (*tp));
12055
12056 case CONSTRUCTOR:
12057 {
12058 unsigned HOST_WIDE_INT idx;
12059 constructor_elt *ce;
12060
12061 for (idx = 0; vec_safe_iterate (CONSTRUCTOR_ELTS (*tp), idx, &ce);
12062 idx++)
12063 WALK_SUBTREE (ce->value);
12064 }
12065 break;
12066
12067 case SAVE_EXPR:
12068 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, 0));
12069
12070 case BIND_EXPR:
12071 {
12072 tree decl;
12073 for (decl = BIND_EXPR_VARS (*tp); decl; decl = DECL_CHAIN (decl))
12074 {
12075 /* Walk the DECL_INITIAL and DECL_SIZE. We don't want to walk
12076 into declarations that are just mentioned, rather than
12077 declared; they don't really belong to this part of the tree.
12078 And, we can see cycles: the initializer for a declaration
12079 can refer to the declaration itself. */
12080 WALK_SUBTREE (DECL_INITIAL (decl));
12081 WALK_SUBTREE (DECL_SIZE (decl));
12082 WALK_SUBTREE (DECL_SIZE_UNIT (decl));
12083 }
12084 WALK_SUBTREE_TAIL (BIND_EXPR_BODY (*tp));
12085 }
12086
12087 case STATEMENT_LIST:
12088 {
12089 tree_stmt_iterator i;
12090 for (i = tsi_start (*tp); !tsi_end_p (i); tsi_next (&i))
12091 WALK_SUBTREE (*tsi_stmt_ptr (i));
12092 }
12093 break;
12094
12095 case OMP_CLAUSE:
12096 switch (OMP_CLAUSE_CODE (*tp))
12097 {
12098 case OMP_CLAUSE_GANG:
12099 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 1));
12100 /* FALLTHRU */
12101
12102 case OMP_CLAUSE_ASYNC:
12103 case OMP_CLAUSE_WAIT:
12104 case OMP_CLAUSE_WORKER:
12105 case OMP_CLAUSE_VECTOR:
12106 case OMP_CLAUSE_NUM_GANGS:
12107 case OMP_CLAUSE_NUM_WORKERS:
12108 case OMP_CLAUSE_VECTOR_LENGTH:
12109 case OMP_CLAUSE_PRIVATE:
12110 case OMP_CLAUSE_SHARED:
12111 case OMP_CLAUSE_FIRSTPRIVATE:
12112 case OMP_CLAUSE_COPYIN:
12113 case OMP_CLAUSE_COPYPRIVATE:
12114 case OMP_CLAUSE_FINAL:
12115 case OMP_CLAUSE_IF:
12116 case OMP_CLAUSE_NUM_THREADS:
12117 case OMP_CLAUSE_SCHEDULE:
12118 case OMP_CLAUSE_UNIFORM:
12119 case OMP_CLAUSE_DEPEND:
12120 case OMP_CLAUSE_NONTEMPORAL:
12121 case OMP_CLAUSE_NUM_TEAMS:
12122 case OMP_CLAUSE_THREAD_LIMIT:
12123 case OMP_CLAUSE_DEVICE:
12124 case OMP_CLAUSE_DIST_SCHEDULE:
12125 case OMP_CLAUSE_SAFELEN:
12126 case OMP_CLAUSE_SIMDLEN:
12127 case OMP_CLAUSE_ORDERED:
12128 case OMP_CLAUSE_PRIORITY:
12129 case OMP_CLAUSE_GRAINSIZE:
12130 case OMP_CLAUSE_NUM_TASKS:
12131 case OMP_CLAUSE_HINT:
12132 case OMP_CLAUSE_TO_DECLARE:
12133 case OMP_CLAUSE_LINK:
12134 case OMP_CLAUSE_USE_DEVICE_PTR:
12135 case OMP_CLAUSE_USE_DEVICE_ADDR:
12136 case OMP_CLAUSE_IS_DEVICE_PTR:
12137 case OMP_CLAUSE_INCLUSIVE:
12138 case OMP_CLAUSE_EXCLUSIVE:
12139 case OMP_CLAUSE__LOOPTEMP_:
12140 case OMP_CLAUSE__REDUCTEMP_:
12141 case OMP_CLAUSE__CONDTEMP_:
12142 case OMP_CLAUSE__SCANTEMP_:
12143 case OMP_CLAUSE__SIMDUID_:
12144 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 0));
12145 /* FALLTHRU */
12146
12147 case OMP_CLAUSE_INDEPENDENT:
12148 case OMP_CLAUSE_NOWAIT:
12149 case OMP_CLAUSE_DEFAULT:
12150 case OMP_CLAUSE_UNTIED:
12151 case OMP_CLAUSE_MERGEABLE:
12152 case OMP_CLAUSE_PROC_BIND:
12153 case OMP_CLAUSE_DEVICE_TYPE:
12154 case OMP_CLAUSE_INBRANCH:
12155 case OMP_CLAUSE_NOTINBRANCH:
12156 case OMP_CLAUSE_FOR:
12157 case OMP_CLAUSE_PARALLEL:
12158 case OMP_CLAUSE_SECTIONS:
12159 case OMP_CLAUSE_TASKGROUP:
12160 case OMP_CLAUSE_NOGROUP:
12161 case OMP_CLAUSE_THREADS:
12162 case OMP_CLAUSE_SIMD:
12163 case OMP_CLAUSE_DEFAULTMAP:
12164 case OMP_CLAUSE_ORDER:
12165 case OMP_CLAUSE_BIND:
12166 case OMP_CLAUSE_AUTO:
12167 case OMP_CLAUSE_SEQ:
12168 case OMP_CLAUSE_TILE:
12169 case OMP_CLAUSE__SIMT_:
12170 case OMP_CLAUSE_IF_PRESENT:
12171 case OMP_CLAUSE_FINALIZE:
12172 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
12173
12174 case OMP_CLAUSE_LASTPRIVATE:
12175 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
12176 WALK_SUBTREE (OMP_CLAUSE_LASTPRIVATE_STMT (*tp));
12177 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
12178
12179 case OMP_CLAUSE_COLLAPSE:
12180 {
12181 int i;
12182 for (i = 0; i < 3; i++)
12183 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
12184 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
12185 }
12186
12187 case OMP_CLAUSE_LINEAR:
12188 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
12189 WALK_SUBTREE (OMP_CLAUSE_LINEAR_STEP (*tp));
12190 WALK_SUBTREE (OMP_CLAUSE_LINEAR_STMT (*tp));
12191 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
12192
12193 case OMP_CLAUSE_ALIGNED:
12194 case OMP_CLAUSE_FROM:
12195 case OMP_CLAUSE_TO:
12196 case OMP_CLAUSE_MAP:
12197 case OMP_CLAUSE__CACHE_:
12198 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
12199 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 1));
12200 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
12201
12202 case OMP_CLAUSE_REDUCTION:
12203 case OMP_CLAUSE_TASK_REDUCTION:
12204 case OMP_CLAUSE_IN_REDUCTION:
12205 {
12206 int i;
12207 for (i = 0; i < 5; i++)
12208 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
12209 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
12210 }
12211
12212 default:
12213 gcc_unreachable ();
12214 }
12215 break;
12216
12217 case TARGET_EXPR:
12218 {
12219 int i, len;
12220
12221 /* TARGET_EXPRs are peculiar: operands 1 and 3 can be the same.
12222 But, we only want to walk once. */
12223 len = (TREE_OPERAND (*tp, 3) == TREE_OPERAND (*tp, 1)) ? 2 : 3;
12224 for (i = 0; i < len; ++i)
12225 WALK_SUBTREE (TREE_OPERAND (*tp, i));
12226 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len));
12227 }
12228
12229 case DECL_EXPR:
12230 /* If this is a TYPE_DECL, walk into the fields of the type that it's
12231 defining. We only want to walk into these fields of a type in this
12232 case and not in the general case of a mere reference to the type.
12233
12234 The criterion is as follows: if the field can be an expression, it
12235 must be walked only here. This should be in keeping with the fields
12236 that are directly gimplified in gimplify_type_sizes in order for the
12237 mark/copy-if-shared/unmark machinery of the gimplifier to work with
12238 variable-sized types.
12239
12240 Note that DECLs get walked as part of processing the BIND_EXPR. */
12241 if (TREE_CODE (DECL_EXPR_DECL (*tp)) == TYPE_DECL)
12242 {
12243 /* Call the function for the decl so e.g. copy_tree_body_r can
12244 replace it with the remapped one. */
12245 result = (*func) (&DECL_EXPR_DECL (*tp), &walk_subtrees, data);
12246 if (result || !walk_subtrees)
12247 return result;
12248
12249 tree *type_p = &TREE_TYPE (DECL_EXPR_DECL (*tp));
12250 if (TREE_CODE (*type_p) == ERROR_MARK)
12251 return NULL_TREE;
12252
12253 /* Call the function for the type. See if it returns anything or
12254 doesn't want us to continue. If we are to continue, walk both
12255 the normal fields and those for the declaration case. */
12256 result = (*func) (type_p, &walk_subtrees, data);
12257 if (result || !walk_subtrees)
12258 return result;
12259
12260 /* But do not walk a pointed-to type since it may itself need to
12261 be walked in the declaration case if it isn't anonymous. */
12262 if (!POINTER_TYPE_P (*type_p))
12263 {
12264 result = walk_type_fields (*type_p, func, data, pset, lh);
12265 if (result)
12266 return result;
12267 }
12268
12269 /* If this is a record type, also walk the fields. */
12270 if (RECORD_OR_UNION_TYPE_P (*type_p))
12271 {
12272 tree field;
12273
12274 for (field = TYPE_FIELDS (*type_p); field;
12275 field = DECL_CHAIN (field))
12276 {
12277 /* We'd like to look at the type of the field, but we can
12278 easily get infinite recursion. So assume it's pointed
12279 to elsewhere in the tree. Also, ignore things that
12280 aren't fields. */
12281 if (TREE_CODE (field) != FIELD_DECL)
12282 continue;
12283
12284 WALK_SUBTREE (DECL_FIELD_OFFSET (field));
12285 WALK_SUBTREE (DECL_SIZE (field));
12286 WALK_SUBTREE (DECL_SIZE_UNIT (field));
12287 if (TREE_CODE (*type_p) == QUAL_UNION_TYPE)
12288 WALK_SUBTREE (DECL_QUALIFIER (field));
12289 }
12290 }
12291
12292 /* Same for scalar types. */
12293 else if (TREE_CODE (*type_p) == BOOLEAN_TYPE
12294 || TREE_CODE (*type_p) == ENUMERAL_TYPE
12295 || TREE_CODE (*type_p) == INTEGER_TYPE
12296 || TREE_CODE (*type_p) == FIXED_POINT_TYPE
12297 || TREE_CODE (*type_p) == REAL_TYPE)
12298 {
12299 WALK_SUBTREE (TYPE_MIN_VALUE (*type_p));
12300 WALK_SUBTREE (TYPE_MAX_VALUE (*type_p));
12301 }
12302
12303 WALK_SUBTREE (TYPE_SIZE (*type_p));
12304 WALK_SUBTREE_TAIL (TYPE_SIZE_UNIT (*type_p));
12305 }
12306 /* FALLTHRU */
12307
12308 default:
12309 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
12310 {
12311 int i, len;
12312
12313 /* Walk over all the sub-trees of this operand. */
12314 len = TREE_OPERAND_LENGTH (*tp);
12315
12316 /* Go through the subtrees. We need to do this in forward order so
12317 that the scope of a FOR_EXPR is handled properly. */
12318 if (len)
12319 {
12320 for (i = 0; i < len - 1; ++i)
12321 WALK_SUBTREE (TREE_OPERAND (*tp, i));
12322 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len - 1));
12323 }
12324 }
12325 /* If this is a type, walk the needed fields in the type. */
12326 else if (TYPE_P (*tp))
12327 return walk_type_fields (*tp, func, data, pset, lh);
12328 break;
12329 }
12330
12331 /* We didn't find what we were looking for. */
12332 return NULL_TREE;
12333
12334 #undef WALK_SUBTREE_TAIL
12335 }
12336 #undef WALK_SUBTREE
12337
12338 /* Like walk_tree, but does not walk duplicate nodes more than once. */
12339
12340 tree
12341 walk_tree_without_duplicates_1 (tree *tp, walk_tree_fn func, void *data,
12342 walk_tree_lh lh)
12343 {
12344 tree result;
12345
12346 hash_set<tree> pset;
12347 result = walk_tree_1 (tp, func, data, &pset, lh);
12348 return result;
12349 }
12350
12351
12352 tree
12353 tree_block (tree t)
12354 {
12355 const enum tree_code_class c = TREE_CODE_CLASS (TREE_CODE (t));
12356
12357 if (IS_EXPR_CODE_CLASS (c))
12358 return LOCATION_BLOCK (t->exp.locus);
12359 gcc_unreachable ();
12360 return NULL;
12361 }
12362
12363 void
12364 tree_set_block (tree t, tree b)
12365 {
12366 const enum tree_code_class c = TREE_CODE_CLASS (TREE_CODE (t));
12367
12368 if (IS_EXPR_CODE_CLASS (c))
12369 {
12370 t->exp.locus = set_block (t->exp.locus, b);
12371 }
12372 else
12373 gcc_unreachable ();
12374 }
12375
12376 /* Create a nameless artificial label and put it in the current
12377 function context. The label has a location of LOC. Returns the
12378 newly created label. */
12379
12380 tree
12381 create_artificial_label (location_t loc)
12382 {
12383 tree lab = build_decl (loc,
12384 LABEL_DECL, NULL_TREE, void_type_node);
12385
12386 DECL_ARTIFICIAL (lab) = 1;
12387 DECL_IGNORED_P (lab) = 1;
12388 DECL_CONTEXT (lab) = current_function_decl;
12389 return lab;
12390 }
12391
12392 /* Given a tree, try to return a useful variable name that we can use
12393 to prefix a temporary that is being assigned the value of the tree.
12394 I.E. given <temp> = &A, return A. */
12395
12396 const char *
12397 get_name (tree t)
12398 {
12399 tree stripped_decl;
12400
12401 stripped_decl = t;
12402 STRIP_NOPS (stripped_decl);
12403 if (DECL_P (stripped_decl) && DECL_NAME (stripped_decl))
12404 return IDENTIFIER_POINTER (DECL_NAME (stripped_decl));
12405 else if (TREE_CODE (stripped_decl) == SSA_NAME)
12406 {
12407 tree name = SSA_NAME_IDENTIFIER (stripped_decl);
12408 if (!name)
12409 return NULL;
12410 return IDENTIFIER_POINTER (name);
12411 }
12412 else
12413 {
12414 switch (TREE_CODE (stripped_decl))
12415 {
12416 case ADDR_EXPR:
12417 return get_name (TREE_OPERAND (stripped_decl, 0));
12418 default:
12419 return NULL;
12420 }
12421 }
12422 }
12423
12424 /* Return true if TYPE has a variable argument list. */
12425
12426 bool
12427 stdarg_p (const_tree fntype)
12428 {
12429 function_args_iterator args_iter;
12430 tree n = NULL_TREE, t;
12431
12432 if (!fntype)
12433 return false;
12434
12435 FOREACH_FUNCTION_ARGS (fntype, t, args_iter)
12436 {
12437 n = t;
12438 }
12439
12440 return n != NULL_TREE && n != void_type_node;
12441 }
12442
12443 /* Return true if TYPE has a prototype. */
12444
12445 bool
12446 prototype_p (const_tree fntype)
12447 {
12448 tree t;
12449
12450 gcc_assert (fntype != NULL_TREE);
12451
12452 t = TYPE_ARG_TYPES (fntype);
12453 return (t != NULL_TREE);
12454 }
12455
12456 /* If BLOCK is inlined from an __attribute__((__artificial__))
12457 routine, return pointer to location from where it has been
12458 called. */
12459 location_t *
12460 block_nonartificial_location (tree block)
12461 {
12462 location_t *ret = NULL;
12463
12464 while (block && TREE_CODE (block) == BLOCK
12465 && BLOCK_ABSTRACT_ORIGIN (block))
12466 {
12467 tree ao = BLOCK_ABSTRACT_ORIGIN (block);
12468 if (TREE_CODE (ao) == FUNCTION_DECL)
12469 {
12470 /* If AO is an artificial inline, point RET to the
12471 call site locus at which it has been inlined and continue
12472 the loop, in case AO's caller is also an artificial
12473 inline. */
12474 if (DECL_DECLARED_INLINE_P (ao)
12475 && lookup_attribute ("artificial", DECL_ATTRIBUTES (ao)))
12476 ret = &BLOCK_SOURCE_LOCATION (block);
12477 else
12478 break;
12479 }
12480 else if (TREE_CODE (ao) != BLOCK)
12481 break;
12482
12483 block = BLOCK_SUPERCONTEXT (block);
12484 }
12485 return ret;
12486 }
12487
12488
12489 /* If EXP is inlined from an __attribute__((__artificial__))
12490 function, return the location of the original call expression. */
12491
12492 location_t
12493 tree_nonartificial_location (tree exp)
12494 {
12495 location_t *loc = block_nonartificial_location (TREE_BLOCK (exp));
12496
12497 if (loc)
12498 return *loc;
12499 else
12500 return EXPR_LOCATION (exp);
12501 }
12502
12503
12504 /* These are the hash table functions for the hash table of OPTIMIZATION_NODEq
12505 nodes. */
12506
12507 /* Return the hash code X, an OPTIMIZATION_NODE or TARGET_OPTION code. */
12508
12509 hashval_t
12510 cl_option_hasher::hash (tree x)
12511 {
12512 const_tree const t = x;
12513 const char *p;
12514 size_t i;
12515 size_t len = 0;
12516 hashval_t hash = 0;
12517
12518 if (TREE_CODE (t) == OPTIMIZATION_NODE)
12519 {
12520 p = (const char *)TREE_OPTIMIZATION (t);
12521 len = sizeof (struct cl_optimization);
12522 }
12523
12524 else if (TREE_CODE (t) == TARGET_OPTION_NODE)
12525 return cl_target_option_hash (TREE_TARGET_OPTION (t));
12526
12527 else
12528 gcc_unreachable ();
12529
12530 /* assume most opt flags are just 0/1, some are 2-3, and a few might be
12531 something else. */
12532 for (i = 0; i < len; i++)
12533 if (p[i])
12534 hash = (hash << 4) ^ ((i << 2) | p[i]);
12535
12536 return hash;
12537 }
12538
12539 /* Return nonzero if the value represented by *X (an OPTIMIZATION or
12540 TARGET_OPTION tree node) is the same as that given by *Y, which is the
12541 same. */
12542
12543 bool
12544 cl_option_hasher::equal (tree x, tree y)
12545 {
12546 const_tree const xt = x;
12547 const_tree const yt = y;
12548
12549 if (TREE_CODE (xt) != TREE_CODE (yt))
12550 return 0;
12551
12552 if (TREE_CODE (xt) == OPTIMIZATION_NODE)
12553 return cl_optimization_option_eq (TREE_OPTIMIZATION (xt),
12554 TREE_OPTIMIZATION (yt));
12555 else if (TREE_CODE (xt) == TARGET_OPTION_NODE)
12556 return cl_target_option_eq (TREE_TARGET_OPTION (xt),
12557 TREE_TARGET_OPTION (yt));
12558 else
12559 gcc_unreachable ();
12560 }
12561
12562 /* Build an OPTIMIZATION_NODE based on the options in OPTS. */
12563
12564 tree
12565 build_optimization_node (struct gcc_options *opts)
12566 {
12567 tree t;
12568
12569 /* Use the cache of optimization nodes. */
12570
12571 cl_optimization_save (TREE_OPTIMIZATION (cl_optimization_node),
12572 opts);
12573
12574 tree *slot = cl_option_hash_table->find_slot (cl_optimization_node, INSERT);
12575 t = *slot;
12576 if (!t)
12577 {
12578 /* Insert this one into the hash table. */
12579 t = cl_optimization_node;
12580 *slot = t;
12581
12582 /* Make a new node for next time round. */
12583 cl_optimization_node = make_node (OPTIMIZATION_NODE);
12584 }
12585
12586 return t;
12587 }
12588
12589 /* Build a TARGET_OPTION_NODE based on the options in OPTS. */
12590
12591 tree
12592 build_target_option_node (struct gcc_options *opts)
12593 {
12594 tree t;
12595
12596 /* Use the cache of optimization nodes. */
12597
12598 cl_target_option_save (TREE_TARGET_OPTION (cl_target_option_node),
12599 opts);
12600
12601 tree *slot = cl_option_hash_table->find_slot (cl_target_option_node, INSERT);
12602 t = *slot;
12603 if (!t)
12604 {
12605 /* Insert this one into the hash table. */
12606 t = cl_target_option_node;
12607 *slot = t;
12608
12609 /* Make a new node for next time round. */
12610 cl_target_option_node = make_node (TARGET_OPTION_NODE);
12611 }
12612
12613 return t;
12614 }
12615
12616 /* Clear TREE_TARGET_GLOBALS of all TARGET_OPTION_NODE trees,
12617 so that they aren't saved during PCH writing. */
12618
12619 void
12620 prepare_target_option_nodes_for_pch (void)
12621 {
12622 hash_table<cl_option_hasher>::iterator iter = cl_option_hash_table->begin ();
12623 for (; iter != cl_option_hash_table->end (); ++iter)
12624 if (TREE_CODE (*iter) == TARGET_OPTION_NODE)
12625 TREE_TARGET_GLOBALS (*iter) = NULL;
12626 }
12627
12628 /* Determine the "ultimate origin" of a block. */
12629
12630 tree
12631 block_ultimate_origin (const_tree block)
12632 {
12633 tree origin = BLOCK_ABSTRACT_ORIGIN (block);
12634
12635 if (origin == NULL_TREE)
12636 return NULL_TREE;
12637 else
12638 {
12639 gcc_checking_assert ((DECL_P (origin)
12640 && DECL_ORIGIN (origin) == origin)
12641 || BLOCK_ORIGIN (origin) == origin);
12642 return origin;
12643 }
12644 }
12645
12646 /* Return true iff conversion from INNER_TYPE to OUTER_TYPE generates
12647 no instruction. */
12648
12649 bool
12650 tree_nop_conversion_p (const_tree outer_type, const_tree inner_type)
12651 {
12652 /* Do not strip casts into or out of differing address spaces. */
12653 if (POINTER_TYPE_P (outer_type)
12654 && TYPE_ADDR_SPACE (TREE_TYPE (outer_type)) != ADDR_SPACE_GENERIC)
12655 {
12656 if (!POINTER_TYPE_P (inner_type)
12657 || (TYPE_ADDR_SPACE (TREE_TYPE (outer_type))
12658 != TYPE_ADDR_SPACE (TREE_TYPE (inner_type))))
12659 return false;
12660 }
12661 else if (POINTER_TYPE_P (inner_type)
12662 && TYPE_ADDR_SPACE (TREE_TYPE (inner_type)) != ADDR_SPACE_GENERIC)
12663 {
12664 /* We already know that outer_type is not a pointer with
12665 a non-generic address space. */
12666 return false;
12667 }
12668
12669 /* Use precision rather then machine mode when we can, which gives
12670 the correct answer even for submode (bit-field) types. */
12671 if ((INTEGRAL_TYPE_P (outer_type)
12672 || POINTER_TYPE_P (outer_type)
12673 || TREE_CODE (outer_type) == OFFSET_TYPE)
12674 && (INTEGRAL_TYPE_P (inner_type)
12675 || POINTER_TYPE_P (inner_type)
12676 || TREE_CODE (inner_type) == OFFSET_TYPE))
12677 return TYPE_PRECISION (outer_type) == TYPE_PRECISION (inner_type);
12678
12679 /* Otherwise fall back on comparing machine modes (e.g. for
12680 aggregate types, floats). */
12681 return TYPE_MODE (outer_type) == TYPE_MODE (inner_type);
12682 }
12683
12684 /* Return true iff conversion in EXP generates no instruction. Mark
12685 it inline so that we fully inline into the stripping functions even
12686 though we have two uses of this function. */
12687
12688 static inline bool
12689 tree_nop_conversion (const_tree exp)
12690 {
12691 tree outer_type, inner_type;
12692
12693 if (location_wrapper_p (exp))
12694 return true;
12695 if (!CONVERT_EXPR_P (exp)
12696 && TREE_CODE (exp) != NON_LVALUE_EXPR)
12697 return false;
12698
12699 outer_type = TREE_TYPE (exp);
12700 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
12701 if (!inner_type || inner_type == error_mark_node)
12702 return false;
12703
12704 return tree_nop_conversion_p (outer_type, inner_type);
12705 }
12706
12707 /* Return true iff conversion in EXP generates no instruction. Don't
12708 consider conversions changing the signedness. */
12709
12710 static bool
12711 tree_sign_nop_conversion (const_tree exp)
12712 {
12713 tree outer_type, inner_type;
12714
12715 if (!tree_nop_conversion (exp))
12716 return false;
12717
12718 outer_type = TREE_TYPE (exp);
12719 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
12720
12721 return (TYPE_UNSIGNED (outer_type) == TYPE_UNSIGNED (inner_type)
12722 && POINTER_TYPE_P (outer_type) == POINTER_TYPE_P (inner_type));
12723 }
12724
12725 /* Strip conversions from EXP according to tree_nop_conversion and
12726 return the resulting expression. */
12727
12728 tree
12729 tree_strip_nop_conversions (tree exp)
12730 {
12731 while (tree_nop_conversion (exp))
12732 exp = TREE_OPERAND (exp, 0);
12733 return exp;
12734 }
12735
12736 /* Strip conversions from EXP according to tree_sign_nop_conversion
12737 and return the resulting expression. */
12738
12739 tree
12740 tree_strip_sign_nop_conversions (tree exp)
12741 {
12742 while (tree_sign_nop_conversion (exp))
12743 exp = TREE_OPERAND (exp, 0);
12744 return exp;
12745 }
12746
12747 /* Avoid any floating point extensions from EXP. */
12748 tree
12749 strip_float_extensions (tree exp)
12750 {
12751 tree sub, expt, subt;
12752
12753 /* For floating point constant look up the narrowest type that can hold
12754 it properly and handle it like (type)(narrowest_type)constant.
12755 This way we can optimize for instance a=a*2.0 where "a" is float
12756 but 2.0 is double constant. */
12757 if (TREE_CODE (exp) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (TREE_TYPE (exp)))
12758 {
12759 REAL_VALUE_TYPE orig;
12760 tree type = NULL;
12761
12762 orig = TREE_REAL_CST (exp);
12763 if (TYPE_PRECISION (TREE_TYPE (exp)) > TYPE_PRECISION (float_type_node)
12764 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
12765 type = float_type_node;
12766 else if (TYPE_PRECISION (TREE_TYPE (exp))
12767 > TYPE_PRECISION (double_type_node)
12768 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
12769 type = double_type_node;
12770 if (type)
12771 return build_real_truncate (type, orig);
12772 }
12773
12774 if (!CONVERT_EXPR_P (exp))
12775 return exp;
12776
12777 sub = TREE_OPERAND (exp, 0);
12778 subt = TREE_TYPE (sub);
12779 expt = TREE_TYPE (exp);
12780
12781 if (!FLOAT_TYPE_P (subt))
12782 return exp;
12783
12784 if (DECIMAL_FLOAT_TYPE_P (expt) != DECIMAL_FLOAT_TYPE_P (subt))
12785 return exp;
12786
12787 if (TYPE_PRECISION (subt) > TYPE_PRECISION (expt))
12788 return exp;
12789
12790 return strip_float_extensions (sub);
12791 }
12792
12793 /* Strip out all handled components that produce invariant
12794 offsets. */
12795
12796 const_tree
12797 strip_invariant_refs (const_tree op)
12798 {
12799 while (handled_component_p (op))
12800 {
12801 switch (TREE_CODE (op))
12802 {
12803 case ARRAY_REF:
12804 case ARRAY_RANGE_REF:
12805 if (!is_gimple_constant (TREE_OPERAND (op, 1))
12806 || TREE_OPERAND (op, 2) != NULL_TREE
12807 || TREE_OPERAND (op, 3) != NULL_TREE)
12808 return NULL;
12809 break;
12810
12811 case COMPONENT_REF:
12812 if (TREE_OPERAND (op, 2) != NULL_TREE)
12813 return NULL;
12814 break;
12815
12816 default:;
12817 }
12818 op = TREE_OPERAND (op, 0);
12819 }
12820
12821 return op;
12822 }
12823
12824 static GTY(()) tree gcc_eh_personality_decl;
12825
12826 /* Return the GCC personality function decl. */
12827
12828 tree
12829 lhd_gcc_personality (void)
12830 {
12831 if (!gcc_eh_personality_decl)
12832 gcc_eh_personality_decl = build_personality_function ("gcc");
12833 return gcc_eh_personality_decl;
12834 }
12835
12836 /* TARGET is a call target of GIMPLE call statement
12837 (obtained by gimple_call_fn). Return true if it is
12838 OBJ_TYPE_REF representing an virtual call of C++ method.
12839 (As opposed to OBJ_TYPE_REF representing objc calls
12840 through a cast where middle-end devirtualization machinery
12841 can't apply.) FOR_DUMP_P is true when being called from
12842 the dump routines. */
12843
12844 bool
12845 virtual_method_call_p (const_tree target, bool for_dump_p)
12846 {
12847 if (TREE_CODE (target) != OBJ_TYPE_REF)
12848 return false;
12849 tree t = TREE_TYPE (target);
12850 gcc_checking_assert (TREE_CODE (t) == POINTER_TYPE);
12851 t = TREE_TYPE (t);
12852 if (TREE_CODE (t) == FUNCTION_TYPE)
12853 return false;
12854 gcc_checking_assert (TREE_CODE (t) == METHOD_TYPE);
12855 /* If we do not have BINFO associated, it means that type was built
12856 without devirtualization enabled. Do not consider this a virtual
12857 call. */
12858 if (!TYPE_BINFO (obj_type_ref_class (target, for_dump_p)))
12859 return false;
12860 return true;
12861 }
12862
12863 /* Lookup sub-BINFO of BINFO of TYPE at offset POS. */
12864
12865 static tree
12866 lookup_binfo_at_offset (tree binfo, tree type, HOST_WIDE_INT pos)
12867 {
12868 unsigned int i;
12869 tree base_binfo, b;
12870
12871 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
12872 if (pos == tree_to_shwi (BINFO_OFFSET (base_binfo))
12873 && types_same_for_odr (TREE_TYPE (base_binfo), type))
12874 return base_binfo;
12875 else if ((b = lookup_binfo_at_offset (base_binfo, type, pos)) != NULL)
12876 return b;
12877 return NULL;
12878 }
12879
12880 /* Try to find a base info of BINFO that would have its field decl at offset
12881 OFFSET within the BINFO type and which is of EXPECTED_TYPE. If it can be
12882 found, return, otherwise return NULL_TREE. */
12883
12884 tree
12885 get_binfo_at_offset (tree binfo, poly_int64 offset, tree expected_type)
12886 {
12887 tree type = BINFO_TYPE (binfo);
12888
12889 while (true)
12890 {
12891 HOST_WIDE_INT pos, size;
12892 tree fld;
12893 int i;
12894
12895 if (types_same_for_odr (type, expected_type))
12896 return binfo;
12897 if (maybe_lt (offset, 0))
12898 return NULL_TREE;
12899
12900 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
12901 {
12902 if (TREE_CODE (fld) != FIELD_DECL || !DECL_ARTIFICIAL (fld))
12903 continue;
12904
12905 pos = int_bit_position (fld);
12906 size = tree_to_uhwi (DECL_SIZE (fld));
12907 if (known_in_range_p (offset, pos, size))
12908 break;
12909 }
12910 if (!fld || TREE_CODE (TREE_TYPE (fld)) != RECORD_TYPE)
12911 return NULL_TREE;
12912
12913 /* Offset 0 indicates the primary base, whose vtable contents are
12914 represented in the binfo for the derived class. */
12915 else if (maybe_ne (offset, 0))
12916 {
12917 tree found_binfo = NULL, base_binfo;
12918 /* Offsets in BINFO are in bytes relative to the whole structure
12919 while POS is in bits relative to the containing field. */
12920 int binfo_offset = (tree_to_shwi (BINFO_OFFSET (binfo)) + pos
12921 / BITS_PER_UNIT);
12922
12923 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
12924 if (tree_to_shwi (BINFO_OFFSET (base_binfo)) == binfo_offset
12925 && types_same_for_odr (TREE_TYPE (base_binfo), TREE_TYPE (fld)))
12926 {
12927 found_binfo = base_binfo;
12928 break;
12929 }
12930 if (found_binfo)
12931 binfo = found_binfo;
12932 else
12933 binfo = lookup_binfo_at_offset (binfo, TREE_TYPE (fld),
12934 binfo_offset);
12935 }
12936
12937 type = TREE_TYPE (fld);
12938 offset -= pos;
12939 }
12940 }
12941
12942 /* Returns true if X is a typedef decl. */
12943
12944 bool
12945 is_typedef_decl (const_tree x)
12946 {
12947 return (x && TREE_CODE (x) == TYPE_DECL
12948 && DECL_ORIGINAL_TYPE (x) != NULL_TREE);
12949 }
12950
12951 /* Returns true iff TYPE is a type variant created for a typedef. */
12952
12953 bool
12954 typedef_variant_p (const_tree type)
12955 {
12956 return is_typedef_decl (TYPE_NAME (type));
12957 }
12958
12959 /* PR 84195: Replace control characters in "unescaped" with their
12960 escaped equivalents. Allow newlines if -fmessage-length has
12961 been set to a non-zero value. This is done here, rather than
12962 where the attribute is recorded as the message length can
12963 change between these two locations. */
12964
12965 void
12966 escaped_string::escape (const char *unescaped)
12967 {
12968 char *escaped;
12969 size_t i, new_i, len;
12970
12971 if (m_owned)
12972 free (m_str);
12973
12974 m_str = const_cast<char *> (unescaped);
12975 m_owned = false;
12976
12977 if (unescaped == NULL || *unescaped == 0)
12978 return;
12979
12980 len = strlen (unescaped);
12981 escaped = NULL;
12982 new_i = 0;
12983
12984 for (i = 0; i < len; i++)
12985 {
12986 char c = unescaped[i];
12987
12988 if (!ISCNTRL (c))
12989 {
12990 if (escaped)
12991 escaped[new_i++] = c;
12992 continue;
12993 }
12994
12995 if (c != '\n' || !pp_is_wrapping_line (global_dc->printer))
12996 {
12997 if (escaped == NULL)
12998 {
12999 /* We only allocate space for a new string if we
13000 actually encounter a control character that
13001 needs replacing. */
13002 escaped = (char *) xmalloc (len * 2 + 1);
13003 strncpy (escaped, unescaped, i);
13004 new_i = i;
13005 }
13006
13007 escaped[new_i++] = '\\';
13008
13009 switch (c)
13010 {
13011 case '\a': escaped[new_i++] = 'a'; break;
13012 case '\b': escaped[new_i++] = 'b'; break;
13013 case '\f': escaped[new_i++] = 'f'; break;
13014 case '\n': escaped[new_i++] = 'n'; break;
13015 case '\r': escaped[new_i++] = 'r'; break;
13016 case '\t': escaped[new_i++] = 't'; break;
13017 case '\v': escaped[new_i++] = 'v'; break;
13018 default: escaped[new_i++] = '?'; break;
13019 }
13020 }
13021 else if (escaped)
13022 escaped[new_i++] = c;
13023 }
13024
13025 if (escaped)
13026 {
13027 escaped[new_i] = 0;
13028 m_str = escaped;
13029 m_owned = true;
13030 }
13031 }
13032
13033 /* Warn about a use of an identifier which was marked deprecated. Returns
13034 whether a warning was given. */
13035
13036 bool
13037 warn_deprecated_use (tree node, tree attr)
13038 {
13039 escaped_string msg;
13040
13041 if (node == 0 || !warn_deprecated_decl)
13042 return false;
13043
13044 if (!attr)
13045 {
13046 if (DECL_P (node))
13047 attr = DECL_ATTRIBUTES (node);
13048 else if (TYPE_P (node))
13049 {
13050 tree decl = TYPE_STUB_DECL (node);
13051 if (decl)
13052 attr = lookup_attribute ("deprecated",
13053 TYPE_ATTRIBUTES (TREE_TYPE (decl)));
13054 }
13055 }
13056
13057 if (attr)
13058 attr = lookup_attribute ("deprecated", attr);
13059
13060 if (attr)
13061 msg.escape (TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
13062
13063 bool w = false;
13064 if (DECL_P (node))
13065 {
13066 auto_diagnostic_group d;
13067 if (msg)
13068 w = warning (OPT_Wdeprecated_declarations,
13069 "%qD is deprecated: %s", node, (const char *) msg);
13070 else
13071 w = warning (OPT_Wdeprecated_declarations,
13072 "%qD is deprecated", node);
13073 if (w)
13074 inform (DECL_SOURCE_LOCATION (node), "declared here");
13075 }
13076 else if (TYPE_P (node))
13077 {
13078 tree what = NULL_TREE;
13079 tree decl = TYPE_STUB_DECL (node);
13080
13081 if (TYPE_NAME (node))
13082 {
13083 if (TREE_CODE (TYPE_NAME (node)) == IDENTIFIER_NODE)
13084 what = TYPE_NAME (node);
13085 else if (TREE_CODE (TYPE_NAME (node)) == TYPE_DECL
13086 && DECL_NAME (TYPE_NAME (node)))
13087 what = DECL_NAME (TYPE_NAME (node));
13088 }
13089
13090 auto_diagnostic_group d;
13091 if (what)
13092 {
13093 if (msg)
13094 w = warning (OPT_Wdeprecated_declarations,
13095 "%qE is deprecated: %s", what, (const char *) msg);
13096 else
13097 w = warning (OPT_Wdeprecated_declarations,
13098 "%qE is deprecated", what);
13099 }
13100 else
13101 {
13102 if (msg)
13103 w = warning (OPT_Wdeprecated_declarations,
13104 "type is deprecated: %s", (const char *) msg);
13105 else
13106 w = warning (OPT_Wdeprecated_declarations,
13107 "type is deprecated");
13108 }
13109
13110 if (w && decl)
13111 inform (DECL_SOURCE_LOCATION (decl), "declared here");
13112 }
13113
13114 return w;
13115 }
13116
13117 /* Return true if REF has a COMPONENT_REF with a bit-field field declaration
13118 somewhere in it. */
13119
13120 bool
13121 contains_bitfld_component_ref_p (const_tree ref)
13122 {
13123 while (handled_component_p (ref))
13124 {
13125 if (TREE_CODE (ref) == COMPONENT_REF
13126 && DECL_BIT_FIELD (TREE_OPERAND (ref, 1)))
13127 return true;
13128 ref = TREE_OPERAND (ref, 0);
13129 }
13130
13131 return false;
13132 }
13133
13134 /* Try to determine whether a TRY_CATCH expression can fall through.
13135 This is a subroutine of block_may_fallthru. */
13136
13137 static bool
13138 try_catch_may_fallthru (const_tree stmt)
13139 {
13140 tree_stmt_iterator i;
13141
13142 /* If the TRY block can fall through, the whole TRY_CATCH can
13143 fall through. */
13144 if (block_may_fallthru (TREE_OPERAND (stmt, 0)))
13145 return true;
13146
13147 i = tsi_start (TREE_OPERAND (stmt, 1));
13148 switch (TREE_CODE (tsi_stmt (i)))
13149 {
13150 case CATCH_EXPR:
13151 /* We expect to see a sequence of CATCH_EXPR trees, each with a
13152 catch expression and a body. The whole TRY_CATCH may fall
13153 through iff any of the catch bodies falls through. */
13154 for (; !tsi_end_p (i); tsi_next (&i))
13155 {
13156 if (block_may_fallthru (CATCH_BODY (tsi_stmt (i))))
13157 return true;
13158 }
13159 return false;
13160
13161 case EH_FILTER_EXPR:
13162 /* The exception filter expression only matters if there is an
13163 exception. If the exception does not match EH_FILTER_TYPES,
13164 we will execute EH_FILTER_FAILURE, and we will fall through
13165 if that falls through. If the exception does match
13166 EH_FILTER_TYPES, the stack unwinder will continue up the
13167 stack, so we will not fall through. We don't know whether we
13168 will throw an exception which matches EH_FILTER_TYPES or not,
13169 so we just ignore EH_FILTER_TYPES and assume that we might
13170 throw an exception which doesn't match. */
13171 return block_may_fallthru (EH_FILTER_FAILURE (tsi_stmt (i)));
13172
13173 default:
13174 /* This case represents statements to be executed when an
13175 exception occurs. Those statements are implicitly followed
13176 by a RESX statement to resume execution after the exception.
13177 So in this case the TRY_CATCH never falls through. */
13178 return false;
13179 }
13180 }
13181
13182 /* Try to determine if we can fall out of the bottom of BLOCK. This guess
13183 need not be 100% accurate; simply be conservative and return true if we
13184 don't know. This is used only to avoid stupidly generating extra code.
13185 If we're wrong, we'll just delete the extra code later. */
13186
13187 bool
13188 block_may_fallthru (const_tree block)
13189 {
13190 /* This CONST_CAST is okay because expr_last returns its argument
13191 unmodified and we assign it to a const_tree. */
13192 const_tree stmt = expr_last (CONST_CAST_TREE (block));
13193
13194 switch (stmt ? TREE_CODE (stmt) : ERROR_MARK)
13195 {
13196 case GOTO_EXPR:
13197 case RETURN_EXPR:
13198 /* Easy cases. If the last statement of the block implies
13199 control transfer, then we can't fall through. */
13200 return false;
13201
13202 case SWITCH_EXPR:
13203 /* If there is a default: label or case labels cover all possible
13204 SWITCH_COND values, then the SWITCH_EXPR will transfer control
13205 to some case label in all cases and all we care is whether the
13206 SWITCH_BODY falls through. */
13207 if (SWITCH_ALL_CASES_P (stmt))
13208 return block_may_fallthru (SWITCH_BODY (stmt));
13209 return true;
13210
13211 case COND_EXPR:
13212 if (block_may_fallthru (COND_EXPR_THEN (stmt)))
13213 return true;
13214 return block_may_fallthru (COND_EXPR_ELSE (stmt));
13215
13216 case BIND_EXPR:
13217 return block_may_fallthru (BIND_EXPR_BODY (stmt));
13218
13219 case TRY_CATCH_EXPR:
13220 return try_catch_may_fallthru (stmt);
13221
13222 case TRY_FINALLY_EXPR:
13223 /* The finally clause is always executed after the try clause,
13224 so if it does not fall through, then the try-finally will not
13225 fall through. Otherwise, if the try clause does not fall
13226 through, then when the finally clause falls through it will
13227 resume execution wherever the try clause was going. So the
13228 whole try-finally will only fall through if both the try
13229 clause and the finally clause fall through. */
13230 return (block_may_fallthru (TREE_OPERAND (stmt, 0))
13231 && block_may_fallthru (TREE_OPERAND (stmt, 1)));
13232
13233 case EH_ELSE_EXPR:
13234 return block_may_fallthru (TREE_OPERAND (stmt, 0));
13235
13236 case MODIFY_EXPR:
13237 if (TREE_CODE (TREE_OPERAND (stmt, 1)) == CALL_EXPR)
13238 stmt = TREE_OPERAND (stmt, 1);
13239 else
13240 return true;
13241 /* FALLTHRU */
13242
13243 case CALL_EXPR:
13244 /* Functions that do not return do not fall through. */
13245 return (call_expr_flags (stmt) & ECF_NORETURN) == 0;
13246
13247 case CLEANUP_POINT_EXPR:
13248 return block_may_fallthru (TREE_OPERAND (stmt, 0));
13249
13250 case TARGET_EXPR:
13251 return block_may_fallthru (TREE_OPERAND (stmt, 1));
13252
13253 case ERROR_MARK:
13254 return true;
13255
13256 default:
13257 return lang_hooks.block_may_fallthru (stmt);
13258 }
13259 }
13260
13261 /* True if we are using EH to handle cleanups. */
13262 static bool using_eh_for_cleanups_flag = false;
13263
13264 /* This routine is called from front ends to indicate eh should be used for
13265 cleanups. */
13266 void
13267 using_eh_for_cleanups (void)
13268 {
13269 using_eh_for_cleanups_flag = true;
13270 }
13271
13272 /* Query whether EH is used for cleanups. */
13273 bool
13274 using_eh_for_cleanups_p (void)
13275 {
13276 return using_eh_for_cleanups_flag;
13277 }
13278
13279 /* Wrapper for tree_code_name to ensure that tree code is valid */
13280 const char *
13281 get_tree_code_name (enum tree_code code)
13282 {
13283 const char *invalid = "<invalid tree code>";
13284
13285 /* The tree_code enum promotes to signed, but we could be getting
13286 invalid values, so force an unsigned comparison. */
13287 if (unsigned (code) >= MAX_TREE_CODES)
13288 {
13289 if (code == 0xa5a5)
13290 return "ggc_freed";
13291 return invalid;
13292 }
13293
13294 return tree_code_name[code];
13295 }
13296
13297 /* Drops the TREE_OVERFLOW flag from T. */
13298
13299 tree
13300 drop_tree_overflow (tree t)
13301 {
13302 gcc_checking_assert (TREE_OVERFLOW (t));
13303
13304 /* For tree codes with a sharing machinery re-build the result. */
13305 if (poly_int_tree_p (t))
13306 return wide_int_to_tree (TREE_TYPE (t), wi::to_poly_wide (t));
13307
13308 /* For VECTOR_CST, remove the overflow bits from the encoded elements
13309 and canonicalize the result. */
13310 if (TREE_CODE (t) == VECTOR_CST)
13311 {
13312 tree_vector_builder builder;
13313 builder.new_unary_operation (TREE_TYPE (t), t, true);
13314 unsigned int count = builder.encoded_nelts ();
13315 for (unsigned int i = 0; i < count; ++i)
13316 {
13317 tree elt = VECTOR_CST_ELT (t, i);
13318 if (TREE_OVERFLOW (elt))
13319 elt = drop_tree_overflow (elt);
13320 builder.quick_push (elt);
13321 }
13322 return builder.build ();
13323 }
13324
13325 /* Otherwise, as all tcc_constants are possibly shared, copy the node
13326 and drop the flag. */
13327 t = copy_node (t);
13328 TREE_OVERFLOW (t) = 0;
13329
13330 /* For constants that contain nested constants, drop the flag
13331 from those as well. */
13332 if (TREE_CODE (t) == COMPLEX_CST)
13333 {
13334 if (TREE_OVERFLOW (TREE_REALPART (t)))
13335 TREE_REALPART (t) = drop_tree_overflow (TREE_REALPART (t));
13336 if (TREE_OVERFLOW (TREE_IMAGPART (t)))
13337 TREE_IMAGPART (t) = drop_tree_overflow (TREE_IMAGPART (t));
13338 }
13339
13340 return t;
13341 }
13342
13343 /* Given a memory reference expression T, return its base address.
13344 The base address of a memory reference expression is the main
13345 object being referenced. For instance, the base address for
13346 'array[i].fld[j]' is 'array'. You can think of this as stripping
13347 away the offset part from a memory address.
13348
13349 This function calls handled_component_p to strip away all the inner
13350 parts of the memory reference until it reaches the base object. */
13351
13352 tree
13353 get_base_address (tree t)
13354 {
13355 while (handled_component_p (t))
13356 t = TREE_OPERAND (t, 0);
13357
13358 if ((TREE_CODE (t) == MEM_REF
13359 || TREE_CODE (t) == TARGET_MEM_REF)
13360 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR)
13361 t = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
13362
13363 /* ??? Either the alias oracle or all callers need to properly deal
13364 with WITH_SIZE_EXPRs before we can look through those. */
13365 if (TREE_CODE (t) == WITH_SIZE_EXPR)
13366 return NULL_TREE;
13367
13368 return t;
13369 }
13370
13371 /* Return a tree of sizetype representing the size, in bytes, of the element
13372 of EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
13373
13374 tree
13375 array_ref_element_size (tree exp)
13376 {
13377 tree aligned_size = TREE_OPERAND (exp, 3);
13378 tree elmt_type = TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)));
13379 location_t loc = EXPR_LOCATION (exp);
13380
13381 /* If a size was specified in the ARRAY_REF, it's the size measured
13382 in alignment units of the element type. So multiply by that value. */
13383 if (aligned_size)
13384 {
13385 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
13386 sizetype from another type of the same width and signedness. */
13387 if (TREE_TYPE (aligned_size) != sizetype)
13388 aligned_size = fold_convert_loc (loc, sizetype, aligned_size);
13389 return size_binop_loc (loc, MULT_EXPR, aligned_size,
13390 size_int (TYPE_ALIGN_UNIT (elmt_type)));
13391 }
13392
13393 /* Otherwise, take the size from that of the element type. Substitute
13394 any PLACEHOLDER_EXPR that we have. */
13395 else
13396 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type), exp);
13397 }
13398
13399 /* Return a tree representing the lower bound of the array mentioned in
13400 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
13401
13402 tree
13403 array_ref_low_bound (tree exp)
13404 {
13405 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
13406
13407 /* If a lower bound is specified in EXP, use it. */
13408 if (TREE_OPERAND (exp, 2))
13409 return TREE_OPERAND (exp, 2);
13410
13411 /* Otherwise, if there is a domain type and it has a lower bound, use it,
13412 substituting for a PLACEHOLDER_EXPR as needed. */
13413 if (domain_type && TYPE_MIN_VALUE (domain_type))
13414 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type), exp);
13415
13416 /* Otherwise, return a zero of the appropriate type. */
13417 tree idxtype = TREE_TYPE (TREE_OPERAND (exp, 1));
13418 return (idxtype == error_mark_node
13419 ? integer_zero_node : build_int_cst (idxtype, 0));
13420 }
13421
13422 /* Return a tree representing the upper bound of the array mentioned in
13423 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
13424
13425 tree
13426 array_ref_up_bound (tree exp)
13427 {
13428 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
13429
13430 /* If there is a domain type and it has an upper bound, use it, substituting
13431 for a PLACEHOLDER_EXPR as needed. */
13432 if (domain_type && TYPE_MAX_VALUE (domain_type))
13433 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type), exp);
13434
13435 /* Otherwise fail. */
13436 return NULL_TREE;
13437 }
13438
13439 /* Returns true if REF is an array reference, component reference,
13440 or memory reference to an array at the end of a structure.
13441 If this is the case, the array may be allocated larger
13442 than its upper bound implies. */
13443
13444 bool
13445 array_at_struct_end_p (tree ref)
13446 {
13447 tree atype;
13448
13449 if (TREE_CODE (ref) == ARRAY_REF
13450 || TREE_CODE (ref) == ARRAY_RANGE_REF)
13451 {
13452 atype = TREE_TYPE (TREE_OPERAND (ref, 0));
13453 ref = TREE_OPERAND (ref, 0);
13454 }
13455 else if (TREE_CODE (ref) == COMPONENT_REF
13456 && TREE_CODE (TREE_TYPE (TREE_OPERAND (ref, 1))) == ARRAY_TYPE)
13457 atype = TREE_TYPE (TREE_OPERAND (ref, 1));
13458 else if (TREE_CODE (ref) == MEM_REF)
13459 {
13460 tree arg = TREE_OPERAND (ref, 0);
13461 if (TREE_CODE (arg) == ADDR_EXPR)
13462 arg = TREE_OPERAND (arg, 0);
13463 tree argtype = TREE_TYPE (arg);
13464 if (TREE_CODE (argtype) == RECORD_TYPE)
13465 {
13466 if (tree fld = last_field (argtype))
13467 {
13468 atype = TREE_TYPE (fld);
13469 if (TREE_CODE (atype) != ARRAY_TYPE)
13470 return false;
13471 if (VAR_P (arg) && DECL_SIZE (fld))
13472 return false;
13473 }
13474 else
13475 return false;
13476 }
13477 else
13478 return false;
13479 }
13480 else
13481 return false;
13482
13483 if (TREE_CODE (ref) == STRING_CST)
13484 return false;
13485
13486 tree ref_to_array = ref;
13487 while (handled_component_p (ref))
13488 {
13489 /* If the reference chain contains a component reference to a
13490 non-union type and there follows another field the reference
13491 is not at the end of a structure. */
13492 if (TREE_CODE (ref) == COMPONENT_REF)
13493 {
13494 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (ref, 0))) == RECORD_TYPE)
13495 {
13496 tree nextf = DECL_CHAIN (TREE_OPERAND (ref, 1));
13497 while (nextf && TREE_CODE (nextf) != FIELD_DECL)
13498 nextf = DECL_CHAIN (nextf);
13499 if (nextf)
13500 return false;
13501 }
13502 }
13503 /* If we have a multi-dimensional array we do not consider
13504 a non-innermost dimension as flex array if the whole
13505 multi-dimensional array is at struct end.
13506 Same for an array of aggregates with a trailing array
13507 member. */
13508 else if (TREE_CODE (ref) == ARRAY_REF)
13509 return false;
13510 else if (TREE_CODE (ref) == ARRAY_RANGE_REF)
13511 ;
13512 /* If we view an underlying object as sth else then what we
13513 gathered up to now is what we have to rely on. */
13514 else if (TREE_CODE (ref) == VIEW_CONVERT_EXPR)
13515 break;
13516 else
13517 gcc_unreachable ();
13518
13519 ref = TREE_OPERAND (ref, 0);
13520 }
13521
13522 /* The array now is at struct end. Treat flexible arrays as
13523 always subject to extend, even into just padding constrained by
13524 an underlying decl. */
13525 if (! TYPE_SIZE (atype)
13526 || ! TYPE_DOMAIN (atype)
13527 || ! TYPE_MAX_VALUE (TYPE_DOMAIN (atype)))
13528 return true;
13529
13530 if (TREE_CODE (ref) == MEM_REF
13531 && TREE_CODE (TREE_OPERAND (ref, 0)) == ADDR_EXPR)
13532 ref = TREE_OPERAND (TREE_OPERAND (ref, 0), 0);
13533
13534 /* If the reference is based on a declared entity, the size of the array
13535 is constrained by its given domain. (Do not trust commons PR/69368). */
13536 if (DECL_P (ref)
13537 && !(flag_unconstrained_commons
13538 && VAR_P (ref) && DECL_COMMON (ref))
13539 && DECL_SIZE_UNIT (ref)
13540 && TREE_CODE (DECL_SIZE_UNIT (ref)) == INTEGER_CST)
13541 {
13542 /* Check whether the array domain covers all of the available
13543 padding. */
13544 poly_int64 offset;
13545 if (TREE_CODE (TYPE_SIZE_UNIT (TREE_TYPE (atype))) != INTEGER_CST
13546 || TREE_CODE (TYPE_MAX_VALUE (TYPE_DOMAIN (atype))) != INTEGER_CST
13547 || TREE_CODE (TYPE_MIN_VALUE (TYPE_DOMAIN (atype))) != INTEGER_CST)
13548 return true;
13549 if (! get_addr_base_and_unit_offset (ref_to_array, &offset))
13550 return true;
13551
13552 /* If at least one extra element fits it is a flexarray. */
13553 if (known_le ((wi::to_offset (TYPE_MAX_VALUE (TYPE_DOMAIN (atype)))
13554 - wi::to_offset (TYPE_MIN_VALUE (TYPE_DOMAIN (atype)))
13555 + 2)
13556 * wi::to_offset (TYPE_SIZE_UNIT (TREE_TYPE (atype))),
13557 wi::to_offset (DECL_SIZE_UNIT (ref)) - offset))
13558 return true;
13559
13560 return false;
13561 }
13562
13563 return true;
13564 }
13565
13566 /* Return a tree representing the offset, in bytes, of the field referenced
13567 by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
13568
13569 tree
13570 component_ref_field_offset (tree exp)
13571 {
13572 tree aligned_offset = TREE_OPERAND (exp, 2);
13573 tree field = TREE_OPERAND (exp, 1);
13574 location_t loc = EXPR_LOCATION (exp);
13575
13576 /* If an offset was specified in the COMPONENT_REF, it's the offset measured
13577 in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
13578 value. */
13579 if (aligned_offset)
13580 {
13581 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
13582 sizetype from another type of the same width and signedness. */
13583 if (TREE_TYPE (aligned_offset) != sizetype)
13584 aligned_offset = fold_convert_loc (loc, sizetype, aligned_offset);
13585 return size_binop_loc (loc, MULT_EXPR, aligned_offset,
13586 size_int (DECL_OFFSET_ALIGN (field)
13587 / BITS_PER_UNIT));
13588 }
13589
13590 /* Otherwise, take the offset from that of the field. Substitute
13591 any PLACEHOLDER_EXPR that we have. */
13592 else
13593 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field), exp);
13594 }
13595
13596 /* Given the initializer INIT, return the initializer for the field
13597 DECL if it exists, otherwise null. Used to obtain the initializer
13598 for a flexible array member and determine its size. */
13599
13600 static tree
13601 get_initializer_for (tree init, tree decl)
13602 {
13603 STRIP_NOPS (init);
13604
13605 tree fld, fld_init;
13606 unsigned HOST_WIDE_INT i;
13607 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), i, fld, fld_init)
13608 {
13609 if (decl == fld)
13610 return fld_init;
13611
13612 if (TREE_CODE (fld) == CONSTRUCTOR)
13613 {
13614 fld_init = get_initializer_for (fld_init, decl);
13615 if (fld_init)
13616 return fld_init;
13617 }
13618 }
13619
13620 return NULL_TREE;
13621 }
13622
13623 /* Determines the size of the member referenced by the COMPONENT_REF
13624 REF, using its initializer expression if necessary in order to
13625 determine the size of an initialized flexible array member.
13626 If non-null, *INTERIOR_ZERO_LENGTH is set when REF refers to
13627 an interior zero-length array.
13628 Returns the size as sizetype (which might be zero for an object
13629 with an uninitialized flexible array member) or null if the size
13630 cannot be determined. */
13631
13632 tree
13633 component_ref_size (tree ref, bool *interior_zero_length /* = NULL */)
13634 {
13635 gcc_assert (TREE_CODE (ref) == COMPONENT_REF);
13636
13637 bool int_0_len = false;
13638 if (!interior_zero_length)
13639 interior_zero_length = &int_0_len;
13640
13641 /* The object/argument referenced by the COMPONENT_REF and its type. */
13642 tree arg = TREE_OPERAND (ref, 0);
13643 tree argtype = TREE_TYPE (arg);
13644 /* The referenced member. */
13645 tree member = TREE_OPERAND (ref, 1);
13646
13647 tree memsize = DECL_SIZE_UNIT (member);
13648 if (memsize)
13649 {
13650 tree memtype = TREE_TYPE (member);
13651 if (TREE_CODE (memtype) != ARRAY_TYPE)
13652 return memsize;
13653
13654 bool trailing = array_at_struct_end_p (ref);
13655 bool zero_length = integer_zerop (memsize);
13656 if (!trailing && !zero_length)
13657 /* MEMBER is either an interior array or is an array with
13658 more than one element. */
13659 return memsize;
13660
13661 *interior_zero_length = zero_length && !trailing;
13662 if (*interior_zero_length)
13663 memsize = NULL_TREE;
13664
13665 if (!zero_length)
13666 if (tree dom = TYPE_DOMAIN (memtype))
13667 if (tree min = TYPE_MIN_VALUE (dom))
13668 if (tree max = TYPE_MAX_VALUE (dom))
13669 if (TREE_CODE (min) == INTEGER_CST
13670 && TREE_CODE (max) == INTEGER_CST)
13671 {
13672 offset_int minidx = wi::to_offset (min);
13673 offset_int maxidx = wi::to_offset (max);
13674 if (maxidx - minidx > 0)
13675 /* MEMBER is an array with more than one element. */
13676 return memsize;
13677 }
13678
13679 /* For a refernce to a zero- or one-element array member of a union
13680 use the size of the union instead of the size of the member. */
13681 if (TREE_CODE (argtype) == UNION_TYPE)
13682 memsize = TYPE_SIZE_UNIT (argtype);
13683 }
13684
13685 /* MEMBER is either a bona fide flexible array member, or a zero-length
13686 array member, or an array of length one treated as such. */
13687
13688 /* If the reference is to a declared object and the member a true
13689 flexible array, try to determine its size from its initializer. */
13690 poly_int64 baseoff = 0;
13691 tree base = get_addr_base_and_unit_offset (ref, &baseoff);
13692 if (!base || !VAR_P (base))
13693 {
13694 if (!*interior_zero_length)
13695 return NULL_TREE;
13696
13697 if (TREE_CODE (arg) != COMPONENT_REF)
13698 return NULL_TREE;
13699
13700 base = arg;
13701 while (TREE_CODE (base) == COMPONENT_REF)
13702 base = TREE_OPERAND (base, 0);
13703 baseoff = tree_to_poly_int64 (byte_position (TREE_OPERAND (ref, 1)));
13704 }
13705
13706 /* BASE is the declared object of which MEMBER is either a member
13707 or that is cast to ARGTYPE (e.g., a char buffer used to store
13708 an ARGTYPE object). */
13709 tree basetype = TREE_TYPE (base);
13710
13711 /* Determine the base type of the referenced object. If it's
13712 the same as ARGTYPE and MEMBER has a known size, return it. */
13713 tree bt = basetype;
13714 if (!*interior_zero_length)
13715 while (TREE_CODE (bt) == ARRAY_TYPE)
13716 bt = TREE_TYPE (bt);
13717 bool typematch = useless_type_conversion_p (argtype, bt);
13718 if (memsize && typematch)
13719 return memsize;
13720
13721 memsize = NULL_TREE;
13722
13723 if (typematch)
13724 /* MEMBER is a true flexible array member. Compute its size from
13725 the initializer of the BASE object if it has one. */
13726 if (tree init = DECL_P (base) ? DECL_INITIAL (base) : NULL_TREE)
13727 if (init != error_mark_node)
13728 {
13729 init = get_initializer_for (init, member);
13730 if (init)
13731 {
13732 memsize = TYPE_SIZE_UNIT (TREE_TYPE (init));
13733 if (tree refsize = TYPE_SIZE_UNIT (argtype))
13734 {
13735 /* Use the larger of the initializer size and the tail
13736 padding in the enclosing struct. */
13737 poly_int64 rsz = tree_to_poly_int64 (refsize);
13738 rsz -= baseoff;
13739 if (known_lt (tree_to_poly_int64 (memsize), rsz))
13740 memsize = wide_int_to_tree (TREE_TYPE (memsize), rsz);
13741 }
13742
13743 baseoff = 0;
13744 }
13745 }
13746
13747 if (!memsize)
13748 {
13749 if (typematch)
13750 {
13751 if (DECL_P (base)
13752 && DECL_EXTERNAL (base)
13753 && bt == basetype
13754 && !*interior_zero_length)
13755 /* The size of a flexible array member of an extern struct
13756 with no initializer cannot be determined (it's defined
13757 in another translation unit and can have an initializer
13758 with an arbitrary number of elements). */
13759 return NULL_TREE;
13760
13761 /* Use the size of the base struct or, for interior zero-length
13762 arrays, the size of the enclosing type. */
13763 memsize = TYPE_SIZE_UNIT (bt);
13764 }
13765 else if (DECL_P (base))
13766 /* Use the size of the BASE object (possibly an array of some
13767 other type such as char used to store the struct). */
13768 memsize = DECL_SIZE_UNIT (base);
13769 else
13770 return NULL_TREE;
13771 }
13772
13773 /* If the flexible array member has a known size use the greater
13774 of it and the tail padding in the enclosing struct.
13775 Otherwise, when the size of the flexible array member is unknown
13776 and the referenced object is not a struct, use the size of its
13777 type when known. This detects sizes of array buffers when cast
13778 to struct types with flexible array members. */
13779 if (memsize)
13780 {
13781 poly_int64 memsz64 = memsize ? tree_to_poly_int64 (memsize) : 0;
13782 if (known_lt (baseoff, memsz64))
13783 {
13784 memsz64 -= baseoff;
13785 return wide_int_to_tree (TREE_TYPE (memsize), memsz64);
13786 }
13787 return size_zero_node;
13788 }
13789
13790 /* Return "don't know" for an external non-array object since its
13791 flexible array member can be initialized to have any number of
13792 elements. Otherwise, return zero because the flexible array
13793 member has no elements. */
13794 return (DECL_P (base)
13795 && DECL_EXTERNAL (base)
13796 && (!typematch
13797 || TREE_CODE (basetype) != ARRAY_TYPE)
13798 ? NULL_TREE : size_zero_node);
13799 }
13800
13801 /* Return the machine mode of T. For vectors, returns the mode of the
13802 inner type. The main use case is to feed the result to HONOR_NANS,
13803 avoiding the BLKmode that a direct TYPE_MODE (T) might return. */
13804
13805 machine_mode
13806 element_mode (const_tree t)
13807 {
13808 if (!TYPE_P (t))
13809 t = TREE_TYPE (t);
13810 if (VECTOR_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
13811 t = TREE_TYPE (t);
13812 return TYPE_MODE (t);
13813 }
13814
13815 /* Vector types need to re-check the target flags each time we report
13816 the machine mode. We need to do this because attribute target can
13817 change the result of vector_mode_supported_p and have_regs_of_mode
13818 on a per-function basis. Thus the TYPE_MODE of a VECTOR_TYPE can
13819 change on a per-function basis. */
13820 /* ??? Possibly a better solution is to run through all the types
13821 referenced by a function and re-compute the TYPE_MODE once, rather
13822 than make the TYPE_MODE macro call a function. */
13823
13824 machine_mode
13825 vector_type_mode (const_tree t)
13826 {
13827 machine_mode mode;
13828
13829 gcc_assert (TREE_CODE (t) == VECTOR_TYPE);
13830
13831 mode = t->type_common.mode;
13832 if (VECTOR_MODE_P (mode)
13833 && (!targetm.vector_mode_supported_p (mode)
13834 || !have_regs_of_mode[mode]))
13835 {
13836 scalar_int_mode innermode;
13837
13838 /* For integers, try mapping it to a same-sized scalar mode. */
13839 if (is_int_mode (TREE_TYPE (t)->type_common.mode, &innermode))
13840 {
13841 poly_int64 size = (TYPE_VECTOR_SUBPARTS (t)
13842 * GET_MODE_BITSIZE (innermode));
13843 scalar_int_mode mode;
13844 if (int_mode_for_size (size, 0).exists (&mode)
13845 && have_regs_of_mode[mode])
13846 return mode;
13847 }
13848
13849 return BLKmode;
13850 }
13851
13852 return mode;
13853 }
13854
13855 /* Return the size in bits of each element of vector type TYPE. */
13856
13857 unsigned int
13858 vector_element_bits (const_tree type)
13859 {
13860 gcc_checking_assert (VECTOR_TYPE_P (type));
13861 if (VECTOR_BOOLEAN_TYPE_P (type))
13862 return vector_element_size (tree_to_poly_uint64 (TYPE_SIZE (type)),
13863 TYPE_VECTOR_SUBPARTS (type));
13864 return tree_to_uhwi (TYPE_SIZE (TREE_TYPE (type)));
13865 }
13866
13867 /* Calculate the size in bits of each element of vector type TYPE
13868 and return the result as a tree of type bitsizetype. */
13869
13870 tree
13871 vector_element_bits_tree (const_tree type)
13872 {
13873 gcc_checking_assert (VECTOR_TYPE_P (type));
13874 if (VECTOR_BOOLEAN_TYPE_P (type))
13875 return bitsize_int (vector_element_bits (type));
13876 return TYPE_SIZE (TREE_TYPE (type));
13877 }
13878
13879 /* Verify that basic properties of T match TV and thus T can be a variant of
13880 TV. TV should be the more specified variant (i.e. the main variant). */
13881
13882 static bool
13883 verify_type_variant (const_tree t, tree tv)
13884 {
13885 /* Type variant can differ by:
13886
13887 - TYPE_QUALS: TYPE_READONLY, TYPE_VOLATILE, TYPE_ATOMIC, TYPE_RESTRICT,
13888 ENCODE_QUAL_ADDR_SPACE.
13889 - main variant may be TYPE_COMPLETE_P and variant types !TYPE_COMPLETE_P
13890 in this case some values may not be set in the variant types
13891 (see TYPE_COMPLETE_P checks).
13892 - it is possible to have TYPE_ARTIFICIAL variant of non-artifical type
13893 - by TYPE_NAME and attributes (i.e. when variant originate by typedef)
13894 - TYPE_CANONICAL (TYPE_ALIAS_SET is the same among variants)
13895 - by the alignment: TYPE_ALIGN and TYPE_USER_ALIGN
13896 - during LTO by TYPE_CONTEXT if type is TYPE_FILE_SCOPE_P
13897 this is necessary to make it possible to merge types form different TUs
13898 - arrays, pointers and references may have TREE_TYPE that is a variant
13899 of TREE_TYPE of their main variants.
13900 - aggregates may have new TYPE_FIELDS list that list variants of
13901 the main variant TYPE_FIELDS.
13902 - vector types may differ by TYPE_VECTOR_OPAQUE
13903 */
13904
13905 /* Convenience macro for matching individual fields. */
13906 #define verify_variant_match(flag) \
13907 do { \
13908 if (flag (tv) != flag (t)) \
13909 { \
13910 error ("type variant differs by %s", #flag); \
13911 debug_tree (tv); \
13912 return false; \
13913 } \
13914 } while (false)
13915
13916 /* tree_base checks. */
13917
13918 verify_variant_match (TREE_CODE);
13919 /* FIXME: Ada builds non-artificial variants of artificial types. */
13920 if (TYPE_ARTIFICIAL (tv) && 0)
13921 verify_variant_match (TYPE_ARTIFICIAL);
13922 if (POINTER_TYPE_P (tv))
13923 verify_variant_match (TYPE_REF_CAN_ALIAS_ALL);
13924 /* FIXME: TYPE_SIZES_GIMPLIFIED may differs for Ada build. */
13925 verify_variant_match (TYPE_UNSIGNED);
13926 verify_variant_match (TYPE_PACKED);
13927 if (TREE_CODE (t) == REFERENCE_TYPE)
13928 verify_variant_match (TYPE_REF_IS_RVALUE);
13929 if (AGGREGATE_TYPE_P (t))
13930 verify_variant_match (TYPE_REVERSE_STORAGE_ORDER);
13931 else
13932 verify_variant_match (TYPE_SATURATING);
13933 /* FIXME: This check trigger during libstdc++ build. */
13934 if (RECORD_OR_UNION_TYPE_P (t) && COMPLETE_TYPE_P (t) && 0)
13935 verify_variant_match (TYPE_FINAL_P);
13936
13937 /* tree_type_common checks. */
13938
13939 if (COMPLETE_TYPE_P (t))
13940 {
13941 verify_variant_match (TYPE_MODE);
13942 if (TREE_CODE (TYPE_SIZE (t)) != PLACEHOLDER_EXPR
13943 && TREE_CODE (TYPE_SIZE (tv)) != PLACEHOLDER_EXPR)
13944 verify_variant_match (TYPE_SIZE);
13945 if (TREE_CODE (TYPE_SIZE_UNIT (t)) != PLACEHOLDER_EXPR
13946 && TREE_CODE (TYPE_SIZE_UNIT (tv)) != PLACEHOLDER_EXPR
13947 && TYPE_SIZE_UNIT (t) != TYPE_SIZE_UNIT (tv))
13948 {
13949 gcc_assert (!operand_equal_p (TYPE_SIZE_UNIT (t),
13950 TYPE_SIZE_UNIT (tv), 0));
13951 error ("type variant has different %<TYPE_SIZE_UNIT%>");
13952 debug_tree (tv);
13953 error ("type variant%'s %<TYPE_SIZE_UNIT%>");
13954 debug_tree (TYPE_SIZE_UNIT (tv));
13955 error ("type%'s %<TYPE_SIZE_UNIT%>");
13956 debug_tree (TYPE_SIZE_UNIT (t));
13957 return false;
13958 }
13959 verify_variant_match (TYPE_NEEDS_CONSTRUCTING);
13960 }
13961 verify_variant_match (TYPE_PRECISION);
13962 if (RECORD_OR_UNION_TYPE_P (t))
13963 verify_variant_match (TYPE_TRANSPARENT_AGGR);
13964 else if (TREE_CODE (t) == ARRAY_TYPE)
13965 verify_variant_match (TYPE_NONALIASED_COMPONENT);
13966 /* During LTO we merge variant lists from diferent translation units
13967 that may differ BY TYPE_CONTEXT that in turn may point
13968 to TRANSLATION_UNIT_DECL.
13969 Ada also builds variants of types with different TYPE_CONTEXT. */
13970 if ((!in_lto_p || !TYPE_FILE_SCOPE_P (t)) && 0)
13971 verify_variant_match (TYPE_CONTEXT);
13972 if (TREE_CODE (t) == ARRAY_TYPE || TREE_CODE (t) == INTEGER_TYPE)
13973 verify_variant_match (TYPE_STRING_FLAG);
13974 if (TREE_CODE (t) == RECORD_TYPE || TREE_CODE (t) == UNION_TYPE)
13975 verify_variant_match (TYPE_CXX_ODR_P);
13976 if (TYPE_ALIAS_SET_KNOWN_P (t))
13977 {
13978 error ("type variant with %<TYPE_ALIAS_SET_KNOWN_P%>");
13979 debug_tree (tv);
13980 return false;
13981 }
13982
13983 /* tree_type_non_common checks. */
13984
13985 /* FIXME: C FE uses TYPE_VFIELD to record C_TYPE_INCOMPLETE_VARS
13986 and dangle the pointer from time to time. */
13987 if (RECORD_OR_UNION_TYPE_P (t) && TYPE_VFIELD (t) != TYPE_VFIELD (tv)
13988 && (in_lto_p || !TYPE_VFIELD (tv)
13989 || TREE_CODE (TYPE_VFIELD (tv)) != TREE_LIST))
13990 {
13991 error ("type variant has different %<TYPE_VFIELD%>");
13992 debug_tree (tv);
13993 return false;
13994 }
13995 if ((TREE_CODE (t) == ENUMERAL_TYPE && COMPLETE_TYPE_P (t))
13996 || TREE_CODE (t) == INTEGER_TYPE
13997 || TREE_CODE (t) == BOOLEAN_TYPE
13998 || TREE_CODE (t) == REAL_TYPE
13999 || TREE_CODE (t) == FIXED_POINT_TYPE)
14000 {
14001 verify_variant_match (TYPE_MAX_VALUE);
14002 verify_variant_match (TYPE_MIN_VALUE);
14003 }
14004 if (TREE_CODE (t) == METHOD_TYPE)
14005 verify_variant_match (TYPE_METHOD_BASETYPE);
14006 if (TREE_CODE (t) == OFFSET_TYPE)
14007 verify_variant_match (TYPE_OFFSET_BASETYPE);
14008 if (TREE_CODE (t) == ARRAY_TYPE)
14009 verify_variant_match (TYPE_ARRAY_MAX_SIZE);
14010 /* FIXME: Be lax and allow TYPE_BINFO to be missing in variant types
14011 or even type's main variant. This is needed to make bootstrap pass
14012 and the bug seems new in GCC 5.
14013 C++ FE should be updated to make this consistent and we should check
14014 that TYPE_BINFO is always NULL for !COMPLETE_TYPE_P and otherwise there
14015 is a match with main variant.
14016
14017 Also disable the check for Java for now because of parser hack that builds
14018 first an dummy BINFO and then sometimes replace it by real BINFO in some
14019 of the copies. */
14020 if (RECORD_OR_UNION_TYPE_P (t) && TYPE_BINFO (t) && TYPE_BINFO (tv)
14021 && TYPE_BINFO (t) != TYPE_BINFO (tv)
14022 /* FIXME: Java sometimes keep dump TYPE_BINFOs on variant types.
14023 Since there is no cheap way to tell C++/Java type w/o LTO, do checking
14024 at LTO time only. */
14025 && (in_lto_p && odr_type_p (t)))
14026 {
14027 error ("type variant has different %<TYPE_BINFO%>");
14028 debug_tree (tv);
14029 error ("type variant%'s %<TYPE_BINFO%>");
14030 debug_tree (TYPE_BINFO (tv));
14031 error ("type%'s %<TYPE_BINFO%>");
14032 debug_tree (TYPE_BINFO (t));
14033 return false;
14034 }
14035
14036 /* Check various uses of TYPE_VALUES_RAW. */
14037 if (TREE_CODE (t) == ENUMERAL_TYPE
14038 && TYPE_VALUES (t))
14039 verify_variant_match (TYPE_VALUES);
14040 else if (TREE_CODE (t) == ARRAY_TYPE)
14041 verify_variant_match (TYPE_DOMAIN);
14042 /* Permit incomplete variants of complete type. While FEs may complete
14043 all variants, this does not happen for C++ templates in all cases. */
14044 else if (RECORD_OR_UNION_TYPE_P (t)
14045 && COMPLETE_TYPE_P (t)
14046 && TYPE_FIELDS (t) != TYPE_FIELDS (tv))
14047 {
14048 tree f1, f2;
14049
14050 /* Fortran builds qualified variants as new records with items of
14051 qualified type. Verify that they looks same. */
14052 for (f1 = TYPE_FIELDS (t), f2 = TYPE_FIELDS (tv);
14053 f1 && f2;
14054 f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2))
14055 if (TREE_CODE (f1) != FIELD_DECL || TREE_CODE (f2) != FIELD_DECL
14056 || (TYPE_MAIN_VARIANT (TREE_TYPE (f1))
14057 != TYPE_MAIN_VARIANT (TREE_TYPE (f2))
14058 /* FIXME: gfc_nonrestricted_type builds all types as variants
14059 with exception of pointer types. It deeply copies the type
14060 which means that we may end up with a variant type
14061 referring non-variant pointer. We may change it to
14062 produce types as variants, too, like
14063 objc_get_protocol_qualified_type does. */
14064 && !POINTER_TYPE_P (TREE_TYPE (f1)))
14065 || DECL_FIELD_OFFSET (f1) != DECL_FIELD_OFFSET (f2)
14066 || DECL_FIELD_BIT_OFFSET (f1) != DECL_FIELD_BIT_OFFSET (f2))
14067 break;
14068 if (f1 || f2)
14069 {
14070 error ("type variant has different %<TYPE_FIELDS%>");
14071 debug_tree (tv);
14072 error ("first mismatch is field");
14073 debug_tree (f1);
14074 error ("and field");
14075 debug_tree (f2);
14076 return false;
14077 }
14078 }
14079 else if ((TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE))
14080 verify_variant_match (TYPE_ARG_TYPES);
14081 /* For C++ the qualified variant of array type is really an array type
14082 of qualified TREE_TYPE.
14083 objc builds variants of pointer where pointer to type is a variant, too
14084 in objc_get_protocol_qualified_type. */
14085 if (TREE_TYPE (t) != TREE_TYPE (tv)
14086 && ((TREE_CODE (t) != ARRAY_TYPE
14087 && !POINTER_TYPE_P (t))
14088 || TYPE_MAIN_VARIANT (TREE_TYPE (t))
14089 != TYPE_MAIN_VARIANT (TREE_TYPE (tv))))
14090 {
14091 error ("type variant has different %<TREE_TYPE%>");
14092 debug_tree (tv);
14093 error ("type variant%'s %<TREE_TYPE%>");
14094 debug_tree (TREE_TYPE (tv));
14095 error ("type%'s %<TREE_TYPE%>");
14096 debug_tree (TREE_TYPE (t));
14097 return false;
14098 }
14099 if (type_with_alias_set_p (t)
14100 && !gimple_canonical_types_compatible_p (t, tv, false))
14101 {
14102 error ("type is not compatible with its variant");
14103 debug_tree (tv);
14104 error ("type variant%'s %<TREE_TYPE%>");
14105 debug_tree (TREE_TYPE (tv));
14106 error ("type%'s %<TREE_TYPE%>");
14107 debug_tree (TREE_TYPE (t));
14108 return false;
14109 }
14110 return true;
14111 #undef verify_variant_match
14112 }
14113
14114
14115 /* The TYPE_CANONICAL merging machinery. It should closely resemble
14116 the middle-end types_compatible_p function. It needs to avoid
14117 claiming types are different for types that should be treated
14118 the same with respect to TBAA. Canonical types are also used
14119 for IL consistency checks via the useless_type_conversion_p
14120 predicate which does not handle all type kinds itself but falls
14121 back to pointer-comparison of TYPE_CANONICAL for aggregates
14122 for example. */
14123
14124 /* Return true if TYPE_UNSIGNED of TYPE should be ignored for canonical
14125 type calculation because we need to allow inter-operability between signed
14126 and unsigned variants. */
14127
14128 bool
14129 type_with_interoperable_signedness (const_tree type)
14130 {
14131 /* Fortran standard require C_SIGNED_CHAR to be interoperable with both
14132 signed char and unsigned char. Similarly fortran FE builds
14133 C_SIZE_T as signed type, while C defines it unsigned. */
14134
14135 return tree_code_for_canonical_type_merging (TREE_CODE (type))
14136 == INTEGER_TYPE
14137 && (TYPE_PRECISION (type) == TYPE_PRECISION (signed_char_type_node)
14138 || TYPE_PRECISION (type) == TYPE_PRECISION (size_type_node));
14139 }
14140
14141 /* Return true iff T1 and T2 are structurally identical for what
14142 TBAA is concerned.
14143 This function is used both by lto.c canonical type merging and by the
14144 verifier. If TRUST_TYPE_CANONICAL we do not look into structure of types
14145 that have TYPE_CANONICAL defined and assume them equivalent. This is useful
14146 only for LTO because only in these cases TYPE_CANONICAL equivalence
14147 correspond to one defined by gimple_canonical_types_compatible_p. */
14148
14149 bool
14150 gimple_canonical_types_compatible_p (const_tree t1, const_tree t2,
14151 bool trust_type_canonical)
14152 {
14153 /* Type variants should be same as the main variant. When not doing sanity
14154 checking to verify this fact, go to main variants and save some work. */
14155 if (trust_type_canonical)
14156 {
14157 t1 = TYPE_MAIN_VARIANT (t1);
14158 t2 = TYPE_MAIN_VARIANT (t2);
14159 }
14160
14161 /* Check first for the obvious case of pointer identity. */
14162 if (t1 == t2)
14163 return true;
14164
14165 /* Check that we have two types to compare. */
14166 if (t1 == NULL_TREE || t2 == NULL_TREE)
14167 return false;
14168
14169 /* We consider complete types always compatible with incomplete type.
14170 This does not make sense for canonical type calculation and thus we
14171 need to ensure that we are never called on it.
14172
14173 FIXME: For more correctness the function probably should have three modes
14174 1) mode assuming that types are complete mathcing their structure
14175 2) mode allowing incomplete types but producing equivalence classes
14176 and thus ignoring all info from complete types
14177 3) mode allowing incomplete types to match complete but checking
14178 compatibility between complete types.
14179
14180 1 and 2 can be used for canonical type calculation. 3 is the real
14181 definition of type compatibility that can be used i.e. for warnings during
14182 declaration merging. */
14183
14184 gcc_assert (!trust_type_canonical
14185 || (type_with_alias_set_p (t1) && type_with_alias_set_p (t2)));
14186
14187 /* If the types have been previously registered and found equal
14188 they still are. */
14189
14190 if (TYPE_CANONICAL (t1) && TYPE_CANONICAL (t2)
14191 && trust_type_canonical)
14192 {
14193 /* Do not use TYPE_CANONICAL of pointer types. For LTO streamed types
14194 they are always NULL, but they are set to non-NULL for types
14195 constructed by build_pointer_type and variants. In this case the
14196 TYPE_CANONICAL is more fine grained than the equivalnce we test (where
14197 all pointers are considered equal. Be sure to not return false
14198 negatives. */
14199 gcc_checking_assert (canonical_type_used_p (t1)
14200 && canonical_type_used_p (t2));
14201 return TYPE_CANONICAL (t1) == TYPE_CANONICAL (t2);
14202 }
14203
14204 /* For types where we do ODR based TBAA the canonical type is always
14205 set correctly, so we know that types are different if their
14206 canonical types does not match. */
14207 if (trust_type_canonical
14208 && (odr_type_p (t1) && odr_based_tbaa_p (t1))
14209 != (odr_type_p (t2) && odr_based_tbaa_p (t2)))
14210 return false;
14211
14212 /* Can't be the same type if the types don't have the same code. */
14213 enum tree_code code = tree_code_for_canonical_type_merging (TREE_CODE (t1));
14214 if (code != tree_code_for_canonical_type_merging (TREE_CODE (t2)))
14215 return false;
14216
14217 /* Qualifiers do not matter for canonical type comparison purposes. */
14218
14219 /* Void types and nullptr types are always the same. */
14220 if (TREE_CODE (t1) == VOID_TYPE
14221 || TREE_CODE (t1) == NULLPTR_TYPE)
14222 return true;
14223
14224 /* Can't be the same type if they have different mode. */
14225 if (TYPE_MODE (t1) != TYPE_MODE (t2))
14226 return false;
14227
14228 /* Non-aggregate types can be handled cheaply. */
14229 if (INTEGRAL_TYPE_P (t1)
14230 || SCALAR_FLOAT_TYPE_P (t1)
14231 || FIXED_POINT_TYPE_P (t1)
14232 || TREE_CODE (t1) == VECTOR_TYPE
14233 || TREE_CODE (t1) == COMPLEX_TYPE
14234 || TREE_CODE (t1) == OFFSET_TYPE
14235 || POINTER_TYPE_P (t1))
14236 {
14237 /* Can't be the same type if they have different recision. */
14238 if (TYPE_PRECISION (t1) != TYPE_PRECISION (t2))
14239 return false;
14240
14241 /* In some cases the signed and unsigned types are required to be
14242 inter-operable. */
14243 if (TYPE_UNSIGNED (t1) != TYPE_UNSIGNED (t2)
14244 && !type_with_interoperable_signedness (t1))
14245 return false;
14246
14247 /* Fortran's C_SIGNED_CHAR is !TYPE_STRING_FLAG but needs to be
14248 interoperable with "signed char". Unless all frontends are revisited
14249 to agree on these types, we must ignore the flag completely. */
14250
14251 /* Fortran standard define C_PTR type that is compatible with every
14252 C pointer. For this reason we need to glob all pointers into one.
14253 Still pointers in different address spaces are not compatible. */
14254 if (POINTER_TYPE_P (t1))
14255 {
14256 if (TYPE_ADDR_SPACE (TREE_TYPE (t1))
14257 != TYPE_ADDR_SPACE (TREE_TYPE (t2)))
14258 return false;
14259 }
14260
14261 /* Tail-recurse to components. */
14262 if (TREE_CODE (t1) == VECTOR_TYPE
14263 || TREE_CODE (t1) == COMPLEX_TYPE)
14264 return gimple_canonical_types_compatible_p (TREE_TYPE (t1),
14265 TREE_TYPE (t2),
14266 trust_type_canonical);
14267
14268 return true;
14269 }
14270
14271 /* Do type-specific comparisons. */
14272 switch (TREE_CODE (t1))
14273 {
14274 case ARRAY_TYPE:
14275 /* Array types are the same if the element types are the same and
14276 the number of elements are the same. */
14277 if (!gimple_canonical_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2),
14278 trust_type_canonical)
14279 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)
14280 || TYPE_REVERSE_STORAGE_ORDER (t1) != TYPE_REVERSE_STORAGE_ORDER (t2)
14281 || TYPE_NONALIASED_COMPONENT (t1) != TYPE_NONALIASED_COMPONENT (t2))
14282 return false;
14283 else
14284 {
14285 tree i1 = TYPE_DOMAIN (t1);
14286 tree i2 = TYPE_DOMAIN (t2);
14287
14288 /* For an incomplete external array, the type domain can be
14289 NULL_TREE. Check this condition also. */
14290 if (i1 == NULL_TREE && i2 == NULL_TREE)
14291 return true;
14292 else if (i1 == NULL_TREE || i2 == NULL_TREE)
14293 return false;
14294 else
14295 {
14296 tree min1 = TYPE_MIN_VALUE (i1);
14297 tree min2 = TYPE_MIN_VALUE (i2);
14298 tree max1 = TYPE_MAX_VALUE (i1);
14299 tree max2 = TYPE_MAX_VALUE (i2);
14300
14301 /* The minimum/maximum values have to be the same. */
14302 if ((min1 == min2
14303 || (min1 && min2
14304 && ((TREE_CODE (min1) == PLACEHOLDER_EXPR
14305 && TREE_CODE (min2) == PLACEHOLDER_EXPR)
14306 || operand_equal_p (min1, min2, 0))))
14307 && (max1 == max2
14308 || (max1 && max2
14309 && ((TREE_CODE (max1) == PLACEHOLDER_EXPR
14310 && TREE_CODE (max2) == PLACEHOLDER_EXPR)
14311 || operand_equal_p (max1, max2, 0)))))
14312 return true;
14313 else
14314 return false;
14315 }
14316 }
14317
14318 case METHOD_TYPE:
14319 case FUNCTION_TYPE:
14320 /* Function types are the same if the return type and arguments types
14321 are the same. */
14322 if (!gimple_canonical_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2),
14323 trust_type_canonical))
14324 return false;
14325
14326 if (TYPE_ARG_TYPES (t1) == TYPE_ARG_TYPES (t2))
14327 return true;
14328 else
14329 {
14330 tree parms1, parms2;
14331
14332 for (parms1 = TYPE_ARG_TYPES (t1), parms2 = TYPE_ARG_TYPES (t2);
14333 parms1 && parms2;
14334 parms1 = TREE_CHAIN (parms1), parms2 = TREE_CHAIN (parms2))
14335 {
14336 if (!gimple_canonical_types_compatible_p
14337 (TREE_VALUE (parms1), TREE_VALUE (parms2),
14338 trust_type_canonical))
14339 return false;
14340 }
14341
14342 if (parms1 || parms2)
14343 return false;
14344
14345 return true;
14346 }
14347
14348 case RECORD_TYPE:
14349 case UNION_TYPE:
14350 case QUAL_UNION_TYPE:
14351 {
14352 tree f1, f2;
14353
14354 /* Don't try to compare variants of an incomplete type, before
14355 TYPE_FIELDS has been copied around. */
14356 if (!COMPLETE_TYPE_P (t1) && !COMPLETE_TYPE_P (t2))
14357 return true;
14358
14359
14360 if (TYPE_REVERSE_STORAGE_ORDER (t1) != TYPE_REVERSE_STORAGE_ORDER (t2))
14361 return false;
14362
14363 /* For aggregate types, all the fields must be the same. */
14364 for (f1 = TYPE_FIELDS (t1), f2 = TYPE_FIELDS (t2);
14365 f1 || f2;
14366 f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2))
14367 {
14368 /* Skip non-fields and zero-sized fields. */
14369 while (f1 && (TREE_CODE (f1) != FIELD_DECL
14370 || (DECL_SIZE (f1)
14371 && integer_zerop (DECL_SIZE (f1)))))
14372 f1 = TREE_CHAIN (f1);
14373 while (f2 && (TREE_CODE (f2) != FIELD_DECL
14374 || (DECL_SIZE (f2)
14375 && integer_zerop (DECL_SIZE (f2)))))
14376 f2 = TREE_CHAIN (f2);
14377 if (!f1 || !f2)
14378 break;
14379 /* The fields must have the same name, offset and type. */
14380 if (DECL_NONADDRESSABLE_P (f1) != DECL_NONADDRESSABLE_P (f2)
14381 || !gimple_compare_field_offset (f1, f2)
14382 || !gimple_canonical_types_compatible_p
14383 (TREE_TYPE (f1), TREE_TYPE (f2),
14384 trust_type_canonical))
14385 return false;
14386 }
14387
14388 /* If one aggregate has more fields than the other, they
14389 are not the same. */
14390 if (f1 || f2)
14391 return false;
14392
14393 return true;
14394 }
14395
14396 default:
14397 /* Consider all types with language specific trees in them mutually
14398 compatible. This is executed only from verify_type and false
14399 positives can be tolerated. */
14400 gcc_assert (!in_lto_p);
14401 return true;
14402 }
14403 }
14404
14405 /* Verify type T. */
14406
14407 void
14408 verify_type (const_tree t)
14409 {
14410 bool error_found = false;
14411 tree mv = TYPE_MAIN_VARIANT (t);
14412 if (!mv)
14413 {
14414 error ("main variant is not defined");
14415 error_found = true;
14416 }
14417 else if (mv != TYPE_MAIN_VARIANT (mv))
14418 {
14419 error ("%<TYPE_MAIN_VARIANT%> has different %<TYPE_MAIN_VARIANT%>");
14420 debug_tree (mv);
14421 error_found = true;
14422 }
14423 else if (t != mv && !verify_type_variant (t, mv))
14424 error_found = true;
14425
14426 tree ct = TYPE_CANONICAL (t);
14427 if (!ct)
14428 ;
14429 else if (TYPE_CANONICAL (t) != ct)
14430 {
14431 error ("%<TYPE_CANONICAL%> has different %<TYPE_CANONICAL%>");
14432 debug_tree (ct);
14433 error_found = true;
14434 }
14435 /* Method and function types cannot be used to address memory and thus
14436 TYPE_CANONICAL really matters only for determining useless conversions.
14437
14438 FIXME: C++ FE produce declarations of builtin functions that are not
14439 compatible with main variants. */
14440 else if (TREE_CODE (t) == FUNCTION_TYPE)
14441 ;
14442 else if (t != ct
14443 /* FIXME: gimple_canonical_types_compatible_p cannot compare types
14444 with variably sized arrays because their sizes possibly
14445 gimplified to different variables. */
14446 && !variably_modified_type_p (ct, NULL)
14447 && !gimple_canonical_types_compatible_p (t, ct, false)
14448 && COMPLETE_TYPE_P (t))
14449 {
14450 error ("%<TYPE_CANONICAL%> is not compatible");
14451 debug_tree (ct);
14452 error_found = true;
14453 }
14454
14455 if (COMPLETE_TYPE_P (t) && TYPE_CANONICAL (t)
14456 && TYPE_MODE (t) != TYPE_MODE (TYPE_CANONICAL (t)))
14457 {
14458 error ("%<TYPE_MODE%> of %<TYPE_CANONICAL%> is not compatible");
14459 debug_tree (ct);
14460 error_found = true;
14461 }
14462 if (TYPE_MAIN_VARIANT (t) == t && ct && TYPE_MAIN_VARIANT (ct) != ct)
14463 {
14464 error ("%<TYPE_CANONICAL%> of main variant is not main variant");
14465 debug_tree (ct);
14466 debug_tree (TYPE_MAIN_VARIANT (ct));
14467 error_found = true;
14468 }
14469
14470
14471 /* Check various uses of TYPE_MIN_VALUE_RAW. */
14472 if (RECORD_OR_UNION_TYPE_P (t))
14473 {
14474 /* FIXME: C FE uses TYPE_VFIELD to record C_TYPE_INCOMPLETE_VARS
14475 and danagle the pointer from time to time. */
14476 if (TYPE_VFIELD (t)
14477 && TREE_CODE (TYPE_VFIELD (t)) != FIELD_DECL
14478 && TREE_CODE (TYPE_VFIELD (t)) != TREE_LIST)
14479 {
14480 error ("%<TYPE_VFIELD%> is not %<FIELD_DECL%> nor %<TREE_LIST%>");
14481 debug_tree (TYPE_VFIELD (t));
14482 error_found = true;
14483 }
14484 }
14485 else if (TREE_CODE (t) == POINTER_TYPE)
14486 {
14487 if (TYPE_NEXT_PTR_TO (t)
14488 && TREE_CODE (TYPE_NEXT_PTR_TO (t)) != POINTER_TYPE)
14489 {
14490 error ("%<TYPE_NEXT_PTR_TO%> is not %<POINTER_TYPE%>");
14491 debug_tree (TYPE_NEXT_PTR_TO (t));
14492 error_found = true;
14493 }
14494 }
14495 else if (TREE_CODE (t) == REFERENCE_TYPE)
14496 {
14497 if (TYPE_NEXT_REF_TO (t)
14498 && TREE_CODE (TYPE_NEXT_REF_TO (t)) != REFERENCE_TYPE)
14499 {
14500 error ("%<TYPE_NEXT_REF_TO%> is not %<REFERENCE_TYPE%>");
14501 debug_tree (TYPE_NEXT_REF_TO (t));
14502 error_found = true;
14503 }
14504 }
14505 else if (INTEGRAL_TYPE_P (t) || TREE_CODE (t) == REAL_TYPE
14506 || TREE_CODE (t) == FIXED_POINT_TYPE)
14507 {
14508 /* FIXME: The following check should pass:
14509 useless_type_conversion_p (const_cast <tree> (t),
14510 TREE_TYPE (TYPE_MIN_VALUE (t))
14511 but does not for C sizetypes in LTO. */
14512 }
14513
14514 /* Check various uses of TYPE_MAXVAL_RAW. */
14515 if (RECORD_OR_UNION_TYPE_P (t))
14516 {
14517 if (!TYPE_BINFO (t))
14518 ;
14519 else if (TREE_CODE (TYPE_BINFO (t)) != TREE_BINFO)
14520 {
14521 error ("%<TYPE_BINFO%> is not %<TREE_BINFO%>");
14522 debug_tree (TYPE_BINFO (t));
14523 error_found = true;
14524 }
14525 else if (TREE_TYPE (TYPE_BINFO (t)) != TYPE_MAIN_VARIANT (t))
14526 {
14527 error ("%<TYPE_BINFO%> type is not %<TYPE_MAIN_VARIANT%>");
14528 debug_tree (TREE_TYPE (TYPE_BINFO (t)));
14529 error_found = true;
14530 }
14531 }
14532 else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
14533 {
14534 if (TYPE_METHOD_BASETYPE (t)
14535 && TREE_CODE (TYPE_METHOD_BASETYPE (t)) != RECORD_TYPE
14536 && TREE_CODE (TYPE_METHOD_BASETYPE (t)) != UNION_TYPE)
14537 {
14538 error ("%<TYPE_METHOD_BASETYPE%> is not record nor union");
14539 debug_tree (TYPE_METHOD_BASETYPE (t));
14540 error_found = true;
14541 }
14542 }
14543 else if (TREE_CODE (t) == OFFSET_TYPE)
14544 {
14545 if (TYPE_OFFSET_BASETYPE (t)
14546 && TREE_CODE (TYPE_OFFSET_BASETYPE (t)) != RECORD_TYPE
14547 && TREE_CODE (TYPE_OFFSET_BASETYPE (t)) != UNION_TYPE)
14548 {
14549 error ("%<TYPE_OFFSET_BASETYPE%> is not record nor union");
14550 debug_tree (TYPE_OFFSET_BASETYPE (t));
14551 error_found = true;
14552 }
14553 }
14554 else if (INTEGRAL_TYPE_P (t) || TREE_CODE (t) == REAL_TYPE
14555 || TREE_CODE (t) == FIXED_POINT_TYPE)
14556 {
14557 /* FIXME: The following check should pass:
14558 useless_type_conversion_p (const_cast <tree> (t),
14559 TREE_TYPE (TYPE_MAX_VALUE (t))
14560 but does not for C sizetypes in LTO. */
14561 }
14562 else if (TREE_CODE (t) == ARRAY_TYPE)
14563 {
14564 if (TYPE_ARRAY_MAX_SIZE (t)
14565 && TREE_CODE (TYPE_ARRAY_MAX_SIZE (t)) != INTEGER_CST)
14566 {
14567 error ("%<TYPE_ARRAY_MAX_SIZE%> not %<INTEGER_CST%>");
14568 debug_tree (TYPE_ARRAY_MAX_SIZE (t));
14569 error_found = true;
14570 }
14571 }
14572 else if (TYPE_MAX_VALUE_RAW (t))
14573 {
14574 error ("%<TYPE_MAX_VALUE_RAW%> non-NULL");
14575 debug_tree (TYPE_MAX_VALUE_RAW (t));
14576 error_found = true;
14577 }
14578
14579 if (TYPE_LANG_SLOT_1 (t) && in_lto_p)
14580 {
14581 error ("%<TYPE_LANG_SLOT_1 (binfo)%> field is non-NULL");
14582 debug_tree (TYPE_LANG_SLOT_1 (t));
14583 error_found = true;
14584 }
14585
14586 /* Check various uses of TYPE_VALUES_RAW. */
14587 if (TREE_CODE (t) == ENUMERAL_TYPE)
14588 for (tree l = TYPE_VALUES (t); l; l = TREE_CHAIN (l))
14589 {
14590 tree value = TREE_VALUE (l);
14591 tree name = TREE_PURPOSE (l);
14592
14593 /* C FE porduce INTEGER_CST of INTEGER_TYPE, while C++ FE uses
14594 CONST_DECL of ENUMERAL TYPE. */
14595 if (TREE_CODE (value) != INTEGER_CST && TREE_CODE (value) != CONST_DECL)
14596 {
14597 error ("enum value is not %<CONST_DECL%> or %<INTEGER_CST%>");
14598 debug_tree (value);
14599 debug_tree (name);
14600 error_found = true;
14601 }
14602 if (TREE_CODE (TREE_TYPE (value)) != INTEGER_TYPE
14603 && !useless_type_conversion_p (const_cast <tree> (t), TREE_TYPE (value)))
14604 {
14605 error ("enum value type is not %<INTEGER_TYPE%> nor convertible "
14606 "to the enum");
14607 debug_tree (value);
14608 debug_tree (name);
14609 error_found = true;
14610 }
14611 if (TREE_CODE (name) != IDENTIFIER_NODE)
14612 {
14613 error ("enum value name is not %<IDENTIFIER_NODE%>");
14614 debug_tree (value);
14615 debug_tree (name);
14616 error_found = true;
14617 }
14618 }
14619 else if (TREE_CODE (t) == ARRAY_TYPE)
14620 {
14621 if (TYPE_DOMAIN (t) && TREE_CODE (TYPE_DOMAIN (t)) != INTEGER_TYPE)
14622 {
14623 error ("array %<TYPE_DOMAIN%> is not integer type");
14624 debug_tree (TYPE_DOMAIN (t));
14625 error_found = true;
14626 }
14627 }
14628 else if (RECORD_OR_UNION_TYPE_P (t))
14629 {
14630 if (TYPE_FIELDS (t) && !COMPLETE_TYPE_P (t) && in_lto_p)
14631 {
14632 error ("%<TYPE_FIELDS%> defined in incomplete type");
14633 error_found = true;
14634 }
14635 for (tree fld = TYPE_FIELDS (t); fld; fld = TREE_CHAIN (fld))
14636 {
14637 /* TODO: verify properties of decls. */
14638 if (TREE_CODE (fld) == FIELD_DECL)
14639 ;
14640 else if (TREE_CODE (fld) == TYPE_DECL)
14641 ;
14642 else if (TREE_CODE (fld) == CONST_DECL)
14643 ;
14644 else if (VAR_P (fld))
14645 ;
14646 else if (TREE_CODE (fld) == TEMPLATE_DECL)
14647 ;
14648 else if (TREE_CODE (fld) == USING_DECL)
14649 ;
14650 else if (TREE_CODE (fld) == FUNCTION_DECL)
14651 ;
14652 else
14653 {
14654 error ("wrong tree in %<TYPE_FIELDS%> list");
14655 debug_tree (fld);
14656 error_found = true;
14657 }
14658 }
14659 }
14660 else if (TREE_CODE (t) == INTEGER_TYPE
14661 || TREE_CODE (t) == BOOLEAN_TYPE
14662 || TREE_CODE (t) == OFFSET_TYPE
14663 || TREE_CODE (t) == REFERENCE_TYPE
14664 || TREE_CODE (t) == NULLPTR_TYPE
14665 || TREE_CODE (t) == POINTER_TYPE)
14666 {
14667 if (TYPE_CACHED_VALUES_P (t) != (TYPE_CACHED_VALUES (t) != NULL))
14668 {
14669 error ("%<TYPE_CACHED_VALUES_P%> is %i while %<TYPE_CACHED_VALUES%> "
14670 "is %p",
14671 TYPE_CACHED_VALUES_P (t), (void *)TYPE_CACHED_VALUES (t));
14672 error_found = true;
14673 }
14674 else if (TYPE_CACHED_VALUES_P (t) && TREE_CODE (TYPE_CACHED_VALUES (t)) != TREE_VEC)
14675 {
14676 error ("%<TYPE_CACHED_VALUES%> is not %<TREE_VEC%>");
14677 debug_tree (TYPE_CACHED_VALUES (t));
14678 error_found = true;
14679 }
14680 /* Verify just enough of cache to ensure that no one copied it to new type.
14681 All copying should go by copy_node that should clear it. */
14682 else if (TYPE_CACHED_VALUES_P (t))
14683 {
14684 int i;
14685 for (i = 0; i < TREE_VEC_LENGTH (TYPE_CACHED_VALUES (t)); i++)
14686 if (TREE_VEC_ELT (TYPE_CACHED_VALUES (t), i)
14687 && TREE_TYPE (TREE_VEC_ELT (TYPE_CACHED_VALUES (t), i)) != t)
14688 {
14689 error ("wrong %<TYPE_CACHED_VALUES%> entry");
14690 debug_tree (TREE_VEC_ELT (TYPE_CACHED_VALUES (t), i));
14691 error_found = true;
14692 break;
14693 }
14694 }
14695 }
14696 else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
14697 for (tree l = TYPE_ARG_TYPES (t); l; l = TREE_CHAIN (l))
14698 {
14699 /* C++ FE uses TREE_PURPOSE to store initial values. */
14700 if (TREE_PURPOSE (l) && in_lto_p)
14701 {
14702 error ("%<TREE_PURPOSE%> is non-NULL in %<TYPE_ARG_TYPES%> list");
14703 debug_tree (l);
14704 error_found = true;
14705 }
14706 if (!TYPE_P (TREE_VALUE (l)))
14707 {
14708 error ("wrong entry in %<TYPE_ARG_TYPES%> list");
14709 debug_tree (l);
14710 error_found = true;
14711 }
14712 }
14713 else if (!is_lang_specific (t) && TYPE_VALUES_RAW (t))
14714 {
14715 error ("%<TYPE_VALUES_RAW%> field is non-NULL");
14716 debug_tree (TYPE_VALUES_RAW (t));
14717 error_found = true;
14718 }
14719 if (TREE_CODE (t) != INTEGER_TYPE
14720 && TREE_CODE (t) != BOOLEAN_TYPE
14721 && TREE_CODE (t) != OFFSET_TYPE
14722 && TREE_CODE (t) != REFERENCE_TYPE
14723 && TREE_CODE (t) != NULLPTR_TYPE
14724 && TREE_CODE (t) != POINTER_TYPE
14725 && TYPE_CACHED_VALUES_P (t))
14726 {
14727 error ("%<TYPE_CACHED_VALUES_P%> is set while it should not be");
14728 error_found = true;
14729 }
14730
14731 /* ipa-devirt makes an assumption that TYPE_METHOD_BASETYPE is always
14732 TYPE_MAIN_VARIANT and it would be odd to add methods only to variatns
14733 of a type. */
14734 if (TREE_CODE (t) == METHOD_TYPE
14735 && TYPE_MAIN_VARIANT (TYPE_METHOD_BASETYPE (t)) != TYPE_METHOD_BASETYPE (t))
14736 {
14737 error ("%<TYPE_METHOD_BASETYPE%> is not main variant");
14738 error_found = true;
14739 }
14740
14741 if (error_found)
14742 {
14743 debug_tree (const_cast <tree> (t));
14744 internal_error ("%qs failed", __func__);
14745 }
14746 }
14747
14748
14749 /* Return 1 if ARG interpreted as signed in its precision is known to be
14750 always positive or 2 if ARG is known to be always negative, or 3 if
14751 ARG may be positive or negative. */
14752
14753 int
14754 get_range_pos_neg (tree arg)
14755 {
14756 if (arg == error_mark_node)
14757 return 3;
14758
14759 int prec = TYPE_PRECISION (TREE_TYPE (arg));
14760 int cnt = 0;
14761 if (TREE_CODE (arg) == INTEGER_CST)
14762 {
14763 wide_int w = wi::sext (wi::to_wide (arg), prec);
14764 if (wi::neg_p (w))
14765 return 2;
14766 else
14767 return 1;
14768 }
14769 while (CONVERT_EXPR_P (arg)
14770 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (arg, 0)))
14771 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg, 0))) <= prec)
14772 {
14773 arg = TREE_OPERAND (arg, 0);
14774 /* Narrower value zero extended into wider type
14775 will always result in positive values. */
14776 if (TYPE_UNSIGNED (TREE_TYPE (arg))
14777 && TYPE_PRECISION (TREE_TYPE (arg)) < prec)
14778 return 1;
14779 prec = TYPE_PRECISION (TREE_TYPE (arg));
14780 if (++cnt > 30)
14781 return 3;
14782 }
14783
14784 if (TREE_CODE (arg) != SSA_NAME)
14785 return 3;
14786 wide_int arg_min, arg_max;
14787 while (get_range_info (arg, &arg_min, &arg_max) != VR_RANGE)
14788 {
14789 gimple *g = SSA_NAME_DEF_STMT (arg);
14790 if (is_gimple_assign (g)
14791 && CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (g)))
14792 {
14793 tree t = gimple_assign_rhs1 (g);
14794 if (INTEGRAL_TYPE_P (TREE_TYPE (t))
14795 && TYPE_PRECISION (TREE_TYPE (t)) <= prec)
14796 {
14797 if (TYPE_UNSIGNED (TREE_TYPE (t))
14798 && TYPE_PRECISION (TREE_TYPE (t)) < prec)
14799 return 1;
14800 prec = TYPE_PRECISION (TREE_TYPE (t));
14801 arg = t;
14802 if (++cnt > 30)
14803 return 3;
14804 continue;
14805 }
14806 }
14807 return 3;
14808 }
14809 if (TYPE_UNSIGNED (TREE_TYPE (arg)))
14810 {
14811 /* For unsigned values, the "positive" range comes
14812 below the "negative" range. */
14813 if (!wi::neg_p (wi::sext (arg_max, prec), SIGNED))
14814 return 1;
14815 if (wi::neg_p (wi::sext (arg_min, prec), SIGNED))
14816 return 2;
14817 }
14818 else
14819 {
14820 if (!wi::neg_p (wi::sext (arg_min, prec), SIGNED))
14821 return 1;
14822 if (wi::neg_p (wi::sext (arg_max, prec), SIGNED))
14823 return 2;
14824 }
14825 return 3;
14826 }
14827
14828
14829
14830
14831 /* Return true if ARG is marked with the nonnull attribute in the
14832 current function signature. */
14833
14834 bool
14835 nonnull_arg_p (const_tree arg)
14836 {
14837 tree t, attrs, fntype;
14838 unsigned HOST_WIDE_INT arg_num;
14839
14840 gcc_assert (TREE_CODE (arg) == PARM_DECL
14841 && (POINTER_TYPE_P (TREE_TYPE (arg))
14842 || TREE_CODE (TREE_TYPE (arg)) == OFFSET_TYPE));
14843
14844 /* The static chain decl is always non null. */
14845 if (arg == cfun->static_chain_decl)
14846 return true;
14847
14848 /* THIS argument of method is always non-NULL. */
14849 if (TREE_CODE (TREE_TYPE (cfun->decl)) == METHOD_TYPE
14850 && arg == DECL_ARGUMENTS (cfun->decl)
14851 && flag_delete_null_pointer_checks)
14852 return true;
14853
14854 /* Values passed by reference are always non-NULL. */
14855 if (TREE_CODE (TREE_TYPE (arg)) == REFERENCE_TYPE
14856 && flag_delete_null_pointer_checks)
14857 return true;
14858
14859 fntype = TREE_TYPE (cfun->decl);
14860 for (attrs = TYPE_ATTRIBUTES (fntype); attrs; attrs = TREE_CHAIN (attrs))
14861 {
14862 attrs = lookup_attribute ("nonnull", attrs);
14863
14864 /* If "nonnull" wasn't specified, we know nothing about the argument. */
14865 if (attrs == NULL_TREE)
14866 return false;
14867
14868 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
14869 if (TREE_VALUE (attrs) == NULL_TREE)
14870 return true;
14871
14872 /* Get the position number for ARG in the function signature. */
14873 for (arg_num = 1, t = DECL_ARGUMENTS (cfun->decl);
14874 t;
14875 t = DECL_CHAIN (t), arg_num++)
14876 {
14877 if (t == arg)
14878 break;
14879 }
14880
14881 gcc_assert (t == arg);
14882
14883 /* Now see if ARG_NUM is mentioned in the nonnull list. */
14884 for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
14885 {
14886 if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
14887 return true;
14888 }
14889 }
14890
14891 return false;
14892 }
14893
14894 /* Combine LOC and BLOCK to a combined adhoc loc, retaining any range
14895 information. */
14896
14897 location_t
14898 set_block (location_t loc, tree block)
14899 {
14900 location_t pure_loc = get_pure_location (loc);
14901 source_range src_range = get_range_from_loc (line_table, loc);
14902 return COMBINE_LOCATION_DATA (line_table, pure_loc, src_range, block);
14903 }
14904
14905 location_t
14906 set_source_range (tree expr, location_t start, location_t finish)
14907 {
14908 source_range src_range;
14909 src_range.m_start = start;
14910 src_range.m_finish = finish;
14911 return set_source_range (expr, src_range);
14912 }
14913
14914 location_t
14915 set_source_range (tree expr, source_range src_range)
14916 {
14917 if (!EXPR_P (expr))
14918 return UNKNOWN_LOCATION;
14919
14920 location_t pure_loc = get_pure_location (EXPR_LOCATION (expr));
14921 location_t adhoc = COMBINE_LOCATION_DATA (line_table,
14922 pure_loc,
14923 src_range,
14924 NULL);
14925 SET_EXPR_LOCATION (expr, adhoc);
14926 return adhoc;
14927 }
14928
14929 /* Return EXPR, potentially wrapped with a node expression LOC,
14930 if !CAN_HAVE_LOCATION_P (expr).
14931
14932 NON_LVALUE_EXPR is used for wrapping constants, apart from STRING_CST.
14933 VIEW_CONVERT_EXPR is used for wrapping non-constants and STRING_CST.
14934
14935 Wrapper nodes can be identified using location_wrapper_p. */
14936
14937 tree
14938 maybe_wrap_with_location (tree expr, location_t loc)
14939 {
14940 if (expr == NULL)
14941 return NULL;
14942 if (loc == UNKNOWN_LOCATION)
14943 return expr;
14944 if (CAN_HAVE_LOCATION_P (expr))
14945 return expr;
14946 /* We should only be adding wrappers for constants and for decls,
14947 or for some exceptional tree nodes (e.g. BASELINK in the C++ FE). */
14948 gcc_assert (CONSTANT_CLASS_P (expr)
14949 || DECL_P (expr)
14950 || EXCEPTIONAL_CLASS_P (expr));
14951
14952 /* For now, don't add wrappers to exceptional tree nodes, to minimize
14953 any impact of the wrapper nodes. */
14954 if (EXCEPTIONAL_CLASS_P (expr))
14955 return expr;
14956
14957 /* If any auto_suppress_location_wrappers are active, don't create
14958 wrappers. */
14959 if (suppress_location_wrappers > 0)
14960 return expr;
14961
14962 tree_code code
14963 = (((CONSTANT_CLASS_P (expr) && TREE_CODE (expr) != STRING_CST)
14964 || (TREE_CODE (expr) == CONST_DECL && !TREE_STATIC (expr)))
14965 ? NON_LVALUE_EXPR : VIEW_CONVERT_EXPR);
14966 tree wrapper = build1_loc (loc, code, TREE_TYPE (expr), expr);
14967 /* Mark this node as being a wrapper. */
14968 EXPR_LOCATION_WRAPPER_P (wrapper) = 1;
14969 return wrapper;
14970 }
14971
14972 int suppress_location_wrappers;
14973
14974 /* Return the name of combined function FN, for debugging purposes. */
14975
14976 const char *
14977 combined_fn_name (combined_fn fn)
14978 {
14979 if (builtin_fn_p (fn))
14980 {
14981 tree fndecl = builtin_decl_explicit (as_builtin_fn (fn));
14982 return IDENTIFIER_POINTER (DECL_NAME (fndecl));
14983 }
14984 else
14985 return internal_fn_name (as_internal_fn (fn));
14986 }
14987
14988 /* Return a bitmap with a bit set corresponding to each argument in
14989 a function call type FNTYPE declared with attribute nonnull,
14990 or null if none of the function's argument are nonnull. The caller
14991 must free the bitmap. */
14992
14993 bitmap
14994 get_nonnull_args (const_tree fntype)
14995 {
14996 if (fntype == NULL_TREE)
14997 return NULL;
14998
14999 bitmap argmap = NULL;
15000 if (TREE_CODE (fntype) == METHOD_TYPE)
15001 {
15002 /* The this pointer in C++ non-static member functions is
15003 implicitly nonnull whether or not it's declared as such. */
15004 argmap = BITMAP_ALLOC (NULL);
15005 bitmap_set_bit (argmap, 0);
15006 }
15007
15008 tree attrs = TYPE_ATTRIBUTES (fntype);
15009 if (!attrs)
15010 return argmap;
15011
15012 /* A function declaration can specify multiple attribute nonnull,
15013 each with zero or more arguments. The loop below creates a bitmap
15014 representing a union of all the arguments. An empty (but non-null)
15015 bitmap means that all arguments have been declaraed nonnull. */
15016 for ( ; attrs; attrs = TREE_CHAIN (attrs))
15017 {
15018 attrs = lookup_attribute ("nonnull", attrs);
15019 if (!attrs)
15020 break;
15021
15022 if (!argmap)
15023 argmap = BITMAP_ALLOC (NULL);
15024
15025 if (!TREE_VALUE (attrs))
15026 {
15027 /* Clear the bitmap in case a previous attribute nonnull
15028 set it and this one overrides it for all arguments. */
15029 bitmap_clear (argmap);
15030 return argmap;
15031 }
15032
15033 /* Iterate over the indices of the format arguments declared nonnull
15034 and set a bit for each. */
15035 for (tree idx = TREE_VALUE (attrs); idx; idx = TREE_CHAIN (idx))
15036 {
15037 unsigned int val = TREE_INT_CST_LOW (TREE_VALUE (idx)) - 1;
15038 bitmap_set_bit (argmap, val);
15039 }
15040 }
15041
15042 return argmap;
15043 }
15044
15045 /* Returns true if TYPE is a type where it and all of its subobjects
15046 (recursively) are of structure, union, or array type. */
15047
15048 static bool
15049 default_is_empty_type (tree type)
15050 {
15051 if (RECORD_OR_UNION_TYPE_P (type))
15052 {
15053 for (tree field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
15054 if (TREE_CODE (field) == FIELD_DECL
15055 && !DECL_PADDING_P (field)
15056 && !default_is_empty_type (TREE_TYPE (field)))
15057 return false;
15058 return true;
15059 }
15060 else if (TREE_CODE (type) == ARRAY_TYPE)
15061 return (integer_minus_onep (array_type_nelts (type))
15062 || TYPE_DOMAIN (type) == NULL_TREE
15063 || default_is_empty_type (TREE_TYPE (type)));
15064 return false;
15065 }
15066
15067 /* Implement TARGET_EMPTY_RECORD_P. Return true if TYPE is an empty type
15068 that shouldn't be passed via stack. */
15069
15070 bool
15071 default_is_empty_record (const_tree type)
15072 {
15073 if (!abi_version_at_least (12))
15074 return false;
15075
15076 if (type == error_mark_node)
15077 return false;
15078
15079 if (TREE_ADDRESSABLE (type))
15080 return false;
15081
15082 return default_is_empty_type (TYPE_MAIN_VARIANT (type));
15083 }
15084
15085 /* Determine whether TYPE is a structure with a flexible array member,
15086 or a union containing such a structure (possibly recursively). */
15087
15088 bool
15089 flexible_array_type_p (const_tree type)
15090 {
15091 tree x, last;
15092 switch (TREE_CODE (type))
15093 {
15094 case RECORD_TYPE:
15095 last = NULL_TREE;
15096 for (x = TYPE_FIELDS (type); x != NULL_TREE; x = DECL_CHAIN (x))
15097 if (TREE_CODE (x) == FIELD_DECL)
15098 last = x;
15099 if (last == NULL_TREE)
15100 return false;
15101 if (TREE_CODE (TREE_TYPE (last)) == ARRAY_TYPE
15102 && TYPE_SIZE (TREE_TYPE (last)) == NULL_TREE
15103 && TYPE_DOMAIN (TREE_TYPE (last)) != NULL_TREE
15104 && TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (last))) == NULL_TREE)
15105 return true;
15106 return false;
15107 case UNION_TYPE:
15108 for (x = TYPE_FIELDS (type); x != NULL_TREE; x = DECL_CHAIN (x))
15109 {
15110 if (TREE_CODE (x) == FIELD_DECL
15111 && flexible_array_type_p (TREE_TYPE (x)))
15112 return true;
15113 }
15114 return false;
15115 default:
15116 return false;
15117 }
15118 }
15119
15120 /* Like int_size_in_bytes, but handle empty records specially. */
15121
15122 HOST_WIDE_INT
15123 arg_int_size_in_bytes (const_tree type)
15124 {
15125 return TYPE_EMPTY_P (type) ? 0 : int_size_in_bytes (type);
15126 }
15127
15128 /* Like size_in_bytes, but handle empty records specially. */
15129
15130 tree
15131 arg_size_in_bytes (const_tree type)
15132 {
15133 return TYPE_EMPTY_P (type) ? size_zero_node : size_in_bytes (type);
15134 }
15135
15136 /* Return true if an expression with CODE has to have the same result type as
15137 its first operand. */
15138
15139 bool
15140 expr_type_first_operand_type_p (tree_code code)
15141 {
15142 switch (code)
15143 {
15144 case NEGATE_EXPR:
15145 case ABS_EXPR:
15146 case BIT_NOT_EXPR:
15147 case PAREN_EXPR:
15148 case CONJ_EXPR:
15149
15150 case PLUS_EXPR:
15151 case MINUS_EXPR:
15152 case MULT_EXPR:
15153 case TRUNC_DIV_EXPR:
15154 case CEIL_DIV_EXPR:
15155 case FLOOR_DIV_EXPR:
15156 case ROUND_DIV_EXPR:
15157 case TRUNC_MOD_EXPR:
15158 case CEIL_MOD_EXPR:
15159 case FLOOR_MOD_EXPR:
15160 case ROUND_MOD_EXPR:
15161 case RDIV_EXPR:
15162 case EXACT_DIV_EXPR:
15163 case MIN_EXPR:
15164 case MAX_EXPR:
15165 case BIT_IOR_EXPR:
15166 case BIT_XOR_EXPR:
15167 case BIT_AND_EXPR:
15168
15169 case LSHIFT_EXPR:
15170 case RSHIFT_EXPR:
15171 case LROTATE_EXPR:
15172 case RROTATE_EXPR:
15173 return true;
15174
15175 default:
15176 return false;
15177 }
15178 }
15179
15180 /* Return a typenode for the "standard" C type with a given name. */
15181 tree
15182 get_typenode_from_name (const char *name)
15183 {
15184 if (name == NULL || *name == '\0')
15185 return NULL_TREE;
15186
15187 if (strcmp (name, "char") == 0)
15188 return char_type_node;
15189 if (strcmp (name, "unsigned char") == 0)
15190 return unsigned_char_type_node;
15191 if (strcmp (name, "signed char") == 0)
15192 return signed_char_type_node;
15193
15194 if (strcmp (name, "short int") == 0)
15195 return short_integer_type_node;
15196 if (strcmp (name, "short unsigned int") == 0)
15197 return short_unsigned_type_node;
15198
15199 if (strcmp (name, "int") == 0)
15200 return integer_type_node;
15201 if (strcmp (name, "unsigned int") == 0)
15202 return unsigned_type_node;
15203
15204 if (strcmp (name, "long int") == 0)
15205 return long_integer_type_node;
15206 if (strcmp (name, "long unsigned int") == 0)
15207 return long_unsigned_type_node;
15208
15209 if (strcmp (name, "long long int") == 0)
15210 return long_long_integer_type_node;
15211 if (strcmp (name, "long long unsigned int") == 0)
15212 return long_long_unsigned_type_node;
15213
15214 gcc_unreachable ();
15215 }
15216
15217 /* List of pointer types used to declare builtins before we have seen their
15218 real declaration.
15219
15220 Keep the size up to date in tree.h ! */
15221 const builtin_structptr_type builtin_structptr_types[6] =
15222 {
15223 { fileptr_type_node, ptr_type_node, "FILE" },
15224 { const_tm_ptr_type_node, const_ptr_type_node, "tm" },
15225 { fenv_t_ptr_type_node, ptr_type_node, "fenv_t" },
15226 { const_fenv_t_ptr_type_node, const_ptr_type_node, "fenv_t" },
15227 { fexcept_t_ptr_type_node, ptr_type_node, "fexcept_t" },
15228 { const_fexcept_t_ptr_type_node, const_ptr_type_node, "fexcept_t" }
15229 };
15230
15231 /* Return the maximum object size. */
15232
15233 tree
15234 max_object_size (void)
15235 {
15236 /* To do: Make this a configurable parameter. */
15237 return TYPE_MAX_VALUE (ptrdiff_type_node);
15238 }
15239
15240 /* A wrapper around TARGET_VERIFY_TYPE_CONTEXT that makes the silent_p
15241 parameter default to false and that weeds out error_mark_node. */
15242
15243 bool
15244 verify_type_context (location_t loc, type_context_kind context,
15245 const_tree type, bool silent_p)
15246 {
15247 if (type == error_mark_node)
15248 return true;
15249
15250 gcc_assert (TYPE_P (type));
15251 return (!targetm.verify_type_context
15252 || targetm.verify_type_context (loc, context, type, silent_p));
15253 }
15254
15255 #if CHECKING_P
15256
15257 namespace selftest {
15258
15259 /* Selftests for tree. */
15260
15261 /* Verify that integer constants are sane. */
15262
15263 static void
15264 test_integer_constants ()
15265 {
15266 ASSERT_TRUE (integer_type_node != NULL);
15267 ASSERT_TRUE (build_int_cst (integer_type_node, 0) != NULL);
15268
15269 tree type = integer_type_node;
15270
15271 tree zero = build_zero_cst (type);
15272 ASSERT_EQ (INTEGER_CST, TREE_CODE (zero));
15273 ASSERT_EQ (type, TREE_TYPE (zero));
15274
15275 tree one = build_int_cst (type, 1);
15276 ASSERT_EQ (INTEGER_CST, TREE_CODE (one));
15277 ASSERT_EQ (type, TREE_TYPE (zero));
15278 }
15279
15280 /* Verify identifiers. */
15281
15282 static void
15283 test_identifiers ()
15284 {
15285 tree identifier = get_identifier ("foo");
15286 ASSERT_EQ (3, IDENTIFIER_LENGTH (identifier));
15287 ASSERT_STREQ ("foo", IDENTIFIER_POINTER (identifier));
15288 }
15289
15290 /* Verify LABEL_DECL. */
15291
15292 static void
15293 test_labels ()
15294 {
15295 tree identifier = get_identifier ("err");
15296 tree label_decl = build_decl (UNKNOWN_LOCATION, LABEL_DECL,
15297 identifier, void_type_node);
15298 ASSERT_EQ (-1, LABEL_DECL_UID (label_decl));
15299 ASSERT_FALSE (FORCED_LABEL (label_decl));
15300 }
15301
15302 /* Return a new VECTOR_CST node whose type is TYPE and whose values
15303 are given by VALS. */
15304
15305 static tree
15306 build_vector (tree type, vec<tree> vals MEM_STAT_DECL)
15307 {
15308 gcc_assert (known_eq (vals.length (), TYPE_VECTOR_SUBPARTS (type)));
15309 tree_vector_builder builder (type, vals.length (), 1);
15310 builder.splice (vals);
15311 return builder.build ();
15312 }
15313
15314 /* Check that VECTOR_CST ACTUAL contains the elements in EXPECTED. */
15315
15316 static void
15317 check_vector_cst (vec<tree> expected, tree actual)
15318 {
15319 ASSERT_KNOWN_EQ (expected.length (),
15320 TYPE_VECTOR_SUBPARTS (TREE_TYPE (actual)));
15321 for (unsigned int i = 0; i < expected.length (); ++i)
15322 ASSERT_EQ (wi::to_wide (expected[i]),
15323 wi::to_wide (vector_cst_elt (actual, i)));
15324 }
15325
15326 /* Check that VECTOR_CST ACTUAL contains NPATTERNS duplicated elements,
15327 and that its elements match EXPECTED. */
15328
15329 static void
15330 check_vector_cst_duplicate (vec<tree> expected, tree actual,
15331 unsigned int npatterns)
15332 {
15333 ASSERT_EQ (npatterns, VECTOR_CST_NPATTERNS (actual));
15334 ASSERT_EQ (1, VECTOR_CST_NELTS_PER_PATTERN (actual));
15335 ASSERT_EQ (npatterns, vector_cst_encoded_nelts (actual));
15336 ASSERT_TRUE (VECTOR_CST_DUPLICATE_P (actual));
15337 ASSERT_FALSE (VECTOR_CST_STEPPED_P (actual));
15338 check_vector_cst (expected, actual);
15339 }
15340
15341 /* Check that VECTOR_CST ACTUAL contains NPATTERNS foreground elements
15342 and NPATTERNS background elements, and that its elements match
15343 EXPECTED. */
15344
15345 static void
15346 check_vector_cst_fill (vec<tree> expected, tree actual,
15347 unsigned int npatterns)
15348 {
15349 ASSERT_EQ (npatterns, VECTOR_CST_NPATTERNS (actual));
15350 ASSERT_EQ (2, VECTOR_CST_NELTS_PER_PATTERN (actual));
15351 ASSERT_EQ (2 * npatterns, vector_cst_encoded_nelts (actual));
15352 ASSERT_FALSE (VECTOR_CST_DUPLICATE_P (actual));
15353 ASSERT_FALSE (VECTOR_CST_STEPPED_P (actual));
15354 check_vector_cst (expected, actual);
15355 }
15356
15357 /* Check that VECTOR_CST ACTUAL contains NPATTERNS stepped patterns,
15358 and that its elements match EXPECTED. */
15359
15360 static void
15361 check_vector_cst_stepped (vec<tree> expected, tree actual,
15362 unsigned int npatterns)
15363 {
15364 ASSERT_EQ (npatterns, VECTOR_CST_NPATTERNS (actual));
15365 ASSERT_EQ (3, VECTOR_CST_NELTS_PER_PATTERN (actual));
15366 ASSERT_EQ (3 * npatterns, vector_cst_encoded_nelts (actual));
15367 ASSERT_FALSE (VECTOR_CST_DUPLICATE_P (actual));
15368 ASSERT_TRUE (VECTOR_CST_STEPPED_P (actual));
15369 check_vector_cst (expected, actual);
15370 }
15371
15372 /* Test the creation of VECTOR_CSTs. */
15373
15374 static void
15375 test_vector_cst_patterns (ALONE_CXX_MEM_STAT_INFO)
15376 {
15377 auto_vec<tree, 8> elements (8);
15378 elements.quick_grow (8);
15379 tree element_type = build_nonstandard_integer_type (16, true);
15380 tree vector_type = build_vector_type (element_type, 8);
15381
15382 /* Test a simple linear series with a base of 0 and a step of 1:
15383 { 0, 1, 2, 3, 4, 5, 6, 7 }. */
15384 for (unsigned int i = 0; i < 8; ++i)
15385 elements[i] = build_int_cst (element_type, i);
15386 tree vector = build_vector (vector_type, elements PASS_MEM_STAT);
15387 check_vector_cst_stepped (elements, vector, 1);
15388
15389 /* Try the same with the first element replaced by 100:
15390 { 100, 1, 2, 3, 4, 5, 6, 7 }. */
15391 elements[0] = build_int_cst (element_type, 100);
15392 vector = build_vector (vector_type, elements PASS_MEM_STAT);
15393 check_vector_cst_stepped (elements, vector, 1);
15394
15395 /* Try a series that wraps around.
15396 { 100, 65531, 65532, 65533, 65534, 65535, 0, 1 }. */
15397 for (unsigned int i = 1; i < 8; ++i)
15398 elements[i] = build_int_cst (element_type, (65530 + i) & 0xffff);
15399 vector = build_vector (vector_type, elements PASS_MEM_STAT);
15400 check_vector_cst_stepped (elements, vector, 1);
15401
15402 /* Try a downward series:
15403 { 100, 79, 78, 77, 76, 75, 75, 73 }. */
15404 for (unsigned int i = 1; i < 8; ++i)
15405 elements[i] = build_int_cst (element_type, 80 - i);
15406 vector = build_vector (vector_type, elements PASS_MEM_STAT);
15407 check_vector_cst_stepped (elements, vector, 1);
15408
15409 /* Try two interleaved series with different bases and steps:
15410 { 100, 53, 66, 206, 62, 212, 58, 218 }. */
15411 elements[1] = build_int_cst (element_type, 53);
15412 for (unsigned int i = 2; i < 8; i += 2)
15413 {
15414 elements[i] = build_int_cst (element_type, 70 - i * 2);
15415 elements[i + 1] = build_int_cst (element_type, 200 + i * 3);
15416 }
15417 vector = build_vector (vector_type, elements PASS_MEM_STAT);
15418 check_vector_cst_stepped (elements, vector, 2);
15419
15420 /* Try a duplicated value:
15421 { 100, 100, 100, 100, 100, 100, 100, 100 }. */
15422 for (unsigned int i = 1; i < 8; ++i)
15423 elements[i] = elements[0];
15424 vector = build_vector (vector_type, elements PASS_MEM_STAT);
15425 check_vector_cst_duplicate (elements, vector, 1);
15426
15427 /* Try an interleaved duplicated value:
15428 { 100, 55, 100, 55, 100, 55, 100, 55 }. */
15429 elements[1] = build_int_cst (element_type, 55);
15430 for (unsigned int i = 2; i < 8; ++i)
15431 elements[i] = elements[i - 2];
15432 vector = build_vector (vector_type, elements PASS_MEM_STAT);
15433 check_vector_cst_duplicate (elements, vector, 2);
15434
15435 /* Try a duplicated value with 2 exceptions
15436 { 41, 97, 100, 55, 100, 55, 100, 55 }. */
15437 elements[0] = build_int_cst (element_type, 41);
15438 elements[1] = build_int_cst (element_type, 97);
15439 vector = build_vector (vector_type, elements PASS_MEM_STAT);
15440 check_vector_cst_fill (elements, vector, 2);
15441
15442 /* Try with and without a step
15443 { 41, 97, 100, 21, 100, 35, 100, 49 }. */
15444 for (unsigned int i = 3; i < 8; i += 2)
15445 elements[i] = build_int_cst (element_type, i * 7);
15446 vector = build_vector (vector_type, elements PASS_MEM_STAT);
15447 check_vector_cst_stepped (elements, vector, 2);
15448
15449 /* Try a fully-general constant:
15450 { 41, 97, 100, 21, 100, 9990, 100, 49 }. */
15451 elements[5] = build_int_cst (element_type, 9990);
15452 vector = build_vector (vector_type, elements PASS_MEM_STAT);
15453 check_vector_cst_fill (elements, vector, 4);
15454 }
15455
15456 /* Verify that STRIP_NOPS (NODE) is EXPECTED.
15457 Helper function for test_location_wrappers, to deal with STRIP_NOPS
15458 modifying its argument in-place. */
15459
15460 static void
15461 check_strip_nops (tree node, tree expected)
15462 {
15463 STRIP_NOPS (node);
15464 ASSERT_EQ (expected, node);
15465 }
15466
15467 /* Verify location wrappers. */
15468
15469 static void
15470 test_location_wrappers ()
15471 {
15472 location_t loc = BUILTINS_LOCATION;
15473
15474 ASSERT_EQ (NULL_TREE, maybe_wrap_with_location (NULL_TREE, loc));
15475
15476 /* Wrapping a constant. */
15477 tree int_cst = build_int_cst (integer_type_node, 42);
15478 ASSERT_FALSE (CAN_HAVE_LOCATION_P (int_cst));
15479 ASSERT_FALSE (location_wrapper_p (int_cst));
15480
15481 tree wrapped_int_cst = maybe_wrap_with_location (int_cst, loc);
15482 ASSERT_TRUE (location_wrapper_p (wrapped_int_cst));
15483 ASSERT_EQ (loc, EXPR_LOCATION (wrapped_int_cst));
15484 ASSERT_EQ (int_cst, tree_strip_any_location_wrapper (wrapped_int_cst));
15485
15486 /* We shouldn't add wrapper nodes for UNKNOWN_LOCATION. */
15487 ASSERT_EQ (int_cst, maybe_wrap_with_location (int_cst, UNKNOWN_LOCATION));
15488
15489 /* We shouldn't add wrapper nodes for nodes that CAN_HAVE_LOCATION_P. */
15490 tree cast = build1 (NOP_EXPR, char_type_node, int_cst);
15491 ASSERT_TRUE (CAN_HAVE_LOCATION_P (cast));
15492 ASSERT_EQ (cast, maybe_wrap_with_location (cast, loc));
15493
15494 /* Wrapping a STRING_CST. */
15495 tree string_cst = build_string (4, "foo");
15496 ASSERT_FALSE (CAN_HAVE_LOCATION_P (string_cst));
15497 ASSERT_FALSE (location_wrapper_p (string_cst));
15498
15499 tree wrapped_string_cst = maybe_wrap_with_location (string_cst, loc);
15500 ASSERT_TRUE (location_wrapper_p (wrapped_string_cst));
15501 ASSERT_EQ (VIEW_CONVERT_EXPR, TREE_CODE (wrapped_string_cst));
15502 ASSERT_EQ (loc, EXPR_LOCATION (wrapped_string_cst));
15503 ASSERT_EQ (string_cst, tree_strip_any_location_wrapper (wrapped_string_cst));
15504
15505
15506 /* Wrapping a variable. */
15507 tree int_var = build_decl (UNKNOWN_LOCATION, VAR_DECL,
15508 get_identifier ("some_int_var"),
15509 integer_type_node);
15510 ASSERT_FALSE (CAN_HAVE_LOCATION_P (int_var));
15511 ASSERT_FALSE (location_wrapper_p (int_var));
15512
15513 tree wrapped_int_var = maybe_wrap_with_location (int_var, loc);
15514 ASSERT_TRUE (location_wrapper_p (wrapped_int_var));
15515 ASSERT_EQ (loc, EXPR_LOCATION (wrapped_int_var));
15516 ASSERT_EQ (int_var, tree_strip_any_location_wrapper (wrapped_int_var));
15517
15518 /* Verify that "reinterpret_cast<int>(some_int_var)" is not a location
15519 wrapper. */
15520 tree r_cast = build1 (NON_LVALUE_EXPR, integer_type_node, int_var);
15521 ASSERT_FALSE (location_wrapper_p (r_cast));
15522 ASSERT_EQ (r_cast, tree_strip_any_location_wrapper (r_cast));
15523
15524 /* Verify that STRIP_NOPS removes wrappers. */
15525 check_strip_nops (wrapped_int_cst, int_cst);
15526 check_strip_nops (wrapped_string_cst, string_cst);
15527 check_strip_nops (wrapped_int_var, int_var);
15528 }
15529
15530 /* Test various tree predicates. Verify that location wrappers don't
15531 affect the results. */
15532
15533 static void
15534 test_predicates ()
15535 {
15536 /* Build various constants and wrappers around them. */
15537
15538 location_t loc = BUILTINS_LOCATION;
15539
15540 tree i_0 = build_int_cst (integer_type_node, 0);
15541 tree wr_i_0 = maybe_wrap_with_location (i_0, loc);
15542
15543 tree i_1 = build_int_cst (integer_type_node, 1);
15544 tree wr_i_1 = maybe_wrap_with_location (i_1, loc);
15545
15546 tree i_m1 = build_int_cst (integer_type_node, -1);
15547 tree wr_i_m1 = maybe_wrap_with_location (i_m1, loc);
15548
15549 tree f_0 = build_real_from_int_cst (float_type_node, i_0);
15550 tree wr_f_0 = maybe_wrap_with_location (f_0, loc);
15551 tree f_1 = build_real_from_int_cst (float_type_node, i_1);
15552 tree wr_f_1 = maybe_wrap_with_location (f_1, loc);
15553 tree f_m1 = build_real_from_int_cst (float_type_node, i_m1);
15554 tree wr_f_m1 = maybe_wrap_with_location (f_m1, loc);
15555
15556 tree c_i_0 = build_complex (NULL_TREE, i_0, i_0);
15557 tree c_i_1 = build_complex (NULL_TREE, i_1, i_0);
15558 tree c_i_m1 = build_complex (NULL_TREE, i_m1, i_0);
15559
15560 tree c_f_0 = build_complex (NULL_TREE, f_0, f_0);
15561 tree c_f_1 = build_complex (NULL_TREE, f_1, f_0);
15562 tree c_f_m1 = build_complex (NULL_TREE, f_m1, f_0);
15563
15564 /* TODO: vector constants. */
15565
15566 /* Test integer_onep. */
15567 ASSERT_FALSE (integer_onep (i_0));
15568 ASSERT_FALSE (integer_onep (wr_i_0));
15569 ASSERT_TRUE (integer_onep (i_1));
15570 ASSERT_TRUE (integer_onep (wr_i_1));
15571 ASSERT_FALSE (integer_onep (i_m1));
15572 ASSERT_FALSE (integer_onep (wr_i_m1));
15573 ASSERT_FALSE (integer_onep (f_0));
15574 ASSERT_FALSE (integer_onep (wr_f_0));
15575 ASSERT_FALSE (integer_onep (f_1));
15576 ASSERT_FALSE (integer_onep (wr_f_1));
15577 ASSERT_FALSE (integer_onep (f_m1));
15578 ASSERT_FALSE (integer_onep (wr_f_m1));
15579 ASSERT_FALSE (integer_onep (c_i_0));
15580 ASSERT_TRUE (integer_onep (c_i_1));
15581 ASSERT_FALSE (integer_onep (c_i_m1));
15582 ASSERT_FALSE (integer_onep (c_f_0));
15583 ASSERT_FALSE (integer_onep (c_f_1));
15584 ASSERT_FALSE (integer_onep (c_f_m1));
15585
15586 /* Test integer_zerop. */
15587 ASSERT_TRUE (integer_zerop (i_0));
15588 ASSERT_TRUE (integer_zerop (wr_i_0));
15589 ASSERT_FALSE (integer_zerop (i_1));
15590 ASSERT_FALSE (integer_zerop (wr_i_1));
15591 ASSERT_FALSE (integer_zerop (i_m1));
15592 ASSERT_FALSE (integer_zerop (wr_i_m1));
15593 ASSERT_FALSE (integer_zerop (f_0));
15594 ASSERT_FALSE (integer_zerop (wr_f_0));
15595 ASSERT_FALSE (integer_zerop (f_1));
15596 ASSERT_FALSE (integer_zerop (wr_f_1));
15597 ASSERT_FALSE (integer_zerop (f_m1));
15598 ASSERT_FALSE (integer_zerop (wr_f_m1));
15599 ASSERT_TRUE (integer_zerop (c_i_0));
15600 ASSERT_FALSE (integer_zerop (c_i_1));
15601 ASSERT_FALSE (integer_zerop (c_i_m1));
15602 ASSERT_FALSE (integer_zerop (c_f_0));
15603 ASSERT_FALSE (integer_zerop (c_f_1));
15604 ASSERT_FALSE (integer_zerop (c_f_m1));
15605
15606 /* Test integer_all_onesp. */
15607 ASSERT_FALSE (integer_all_onesp (i_0));
15608 ASSERT_FALSE (integer_all_onesp (wr_i_0));
15609 ASSERT_FALSE (integer_all_onesp (i_1));
15610 ASSERT_FALSE (integer_all_onesp (wr_i_1));
15611 ASSERT_TRUE (integer_all_onesp (i_m1));
15612 ASSERT_TRUE (integer_all_onesp (wr_i_m1));
15613 ASSERT_FALSE (integer_all_onesp (f_0));
15614 ASSERT_FALSE (integer_all_onesp (wr_f_0));
15615 ASSERT_FALSE (integer_all_onesp (f_1));
15616 ASSERT_FALSE (integer_all_onesp (wr_f_1));
15617 ASSERT_FALSE (integer_all_onesp (f_m1));
15618 ASSERT_FALSE (integer_all_onesp (wr_f_m1));
15619 ASSERT_FALSE (integer_all_onesp (c_i_0));
15620 ASSERT_FALSE (integer_all_onesp (c_i_1));
15621 ASSERT_FALSE (integer_all_onesp (c_i_m1));
15622 ASSERT_FALSE (integer_all_onesp (c_f_0));
15623 ASSERT_FALSE (integer_all_onesp (c_f_1));
15624 ASSERT_FALSE (integer_all_onesp (c_f_m1));
15625
15626 /* Test integer_minus_onep. */
15627 ASSERT_FALSE (integer_minus_onep (i_0));
15628 ASSERT_FALSE (integer_minus_onep (wr_i_0));
15629 ASSERT_FALSE (integer_minus_onep (i_1));
15630 ASSERT_FALSE (integer_minus_onep (wr_i_1));
15631 ASSERT_TRUE (integer_minus_onep (i_m1));
15632 ASSERT_TRUE (integer_minus_onep (wr_i_m1));
15633 ASSERT_FALSE (integer_minus_onep (f_0));
15634 ASSERT_FALSE (integer_minus_onep (wr_f_0));
15635 ASSERT_FALSE (integer_minus_onep (f_1));
15636 ASSERT_FALSE (integer_minus_onep (wr_f_1));
15637 ASSERT_FALSE (integer_minus_onep (f_m1));
15638 ASSERT_FALSE (integer_minus_onep (wr_f_m1));
15639 ASSERT_FALSE (integer_minus_onep (c_i_0));
15640 ASSERT_FALSE (integer_minus_onep (c_i_1));
15641 ASSERT_TRUE (integer_minus_onep (c_i_m1));
15642 ASSERT_FALSE (integer_minus_onep (c_f_0));
15643 ASSERT_FALSE (integer_minus_onep (c_f_1));
15644 ASSERT_FALSE (integer_minus_onep (c_f_m1));
15645
15646 /* Test integer_each_onep. */
15647 ASSERT_FALSE (integer_each_onep (i_0));
15648 ASSERT_FALSE (integer_each_onep (wr_i_0));
15649 ASSERT_TRUE (integer_each_onep (i_1));
15650 ASSERT_TRUE (integer_each_onep (wr_i_1));
15651 ASSERT_FALSE (integer_each_onep (i_m1));
15652 ASSERT_FALSE (integer_each_onep (wr_i_m1));
15653 ASSERT_FALSE (integer_each_onep (f_0));
15654 ASSERT_FALSE (integer_each_onep (wr_f_0));
15655 ASSERT_FALSE (integer_each_onep (f_1));
15656 ASSERT_FALSE (integer_each_onep (wr_f_1));
15657 ASSERT_FALSE (integer_each_onep (f_m1));
15658 ASSERT_FALSE (integer_each_onep (wr_f_m1));
15659 ASSERT_FALSE (integer_each_onep (c_i_0));
15660 ASSERT_FALSE (integer_each_onep (c_i_1));
15661 ASSERT_FALSE (integer_each_onep (c_i_m1));
15662 ASSERT_FALSE (integer_each_onep (c_f_0));
15663 ASSERT_FALSE (integer_each_onep (c_f_1));
15664 ASSERT_FALSE (integer_each_onep (c_f_m1));
15665
15666 /* Test integer_truep. */
15667 ASSERT_FALSE (integer_truep (i_0));
15668 ASSERT_FALSE (integer_truep (wr_i_0));
15669 ASSERT_TRUE (integer_truep (i_1));
15670 ASSERT_TRUE (integer_truep (wr_i_1));
15671 ASSERT_FALSE (integer_truep (i_m1));
15672 ASSERT_FALSE (integer_truep (wr_i_m1));
15673 ASSERT_FALSE (integer_truep (f_0));
15674 ASSERT_FALSE (integer_truep (wr_f_0));
15675 ASSERT_FALSE (integer_truep (f_1));
15676 ASSERT_FALSE (integer_truep (wr_f_1));
15677 ASSERT_FALSE (integer_truep (f_m1));
15678 ASSERT_FALSE (integer_truep (wr_f_m1));
15679 ASSERT_FALSE (integer_truep (c_i_0));
15680 ASSERT_TRUE (integer_truep (c_i_1));
15681 ASSERT_FALSE (integer_truep (c_i_m1));
15682 ASSERT_FALSE (integer_truep (c_f_0));
15683 ASSERT_FALSE (integer_truep (c_f_1));
15684 ASSERT_FALSE (integer_truep (c_f_m1));
15685
15686 /* Test integer_nonzerop. */
15687 ASSERT_FALSE (integer_nonzerop (i_0));
15688 ASSERT_FALSE (integer_nonzerop (wr_i_0));
15689 ASSERT_TRUE (integer_nonzerop (i_1));
15690 ASSERT_TRUE (integer_nonzerop (wr_i_1));
15691 ASSERT_TRUE (integer_nonzerop (i_m1));
15692 ASSERT_TRUE (integer_nonzerop (wr_i_m1));
15693 ASSERT_FALSE (integer_nonzerop (f_0));
15694 ASSERT_FALSE (integer_nonzerop (wr_f_0));
15695 ASSERT_FALSE (integer_nonzerop (f_1));
15696 ASSERT_FALSE (integer_nonzerop (wr_f_1));
15697 ASSERT_FALSE (integer_nonzerop (f_m1));
15698 ASSERT_FALSE (integer_nonzerop (wr_f_m1));
15699 ASSERT_FALSE (integer_nonzerop (c_i_0));
15700 ASSERT_TRUE (integer_nonzerop (c_i_1));
15701 ASSERT_TRUE (integer_nonzerop (c_i_m1));
15702 ASSERT_FALSE (integer_nonzerop (c_f_0));
15703 ASSERT_FALSE (integer_nonzerop (c_f_1));
15704 ASSERT_FALSE (integer_nonzerop (c_f_m1));
15705
15706 /* Test real_zerop. */
15707 ASSERT_FALSE (real_zerop (i_0));
15708 ASSERT_FALSE (real_zerop (wr_i_0));
15709 ASSERT_FALSE (real_zerop (i_1));
15710 ASSERT_FALSE (real_zerop (wr_i_1));
15711 ASSERT_FALSE (real_zerop (i_m1));
15712 ASSERT_FALSE (real_zerop (wr_i_m1));
15713 ASSERT_TRUE (real_zerop (f_0));
15714 ASSERT_TRUE (real_zerop (wr_f_0));
15715 ASSERT_FALSE (real_zerop (f_1));
15716 ASSERT_FALSE (real_zerop (wr_f_1));
15717 ASSERT_FALSE (real_zerop (f_m1));
15718 ASSERT_FALSE (real_zerop (wr_f_m1));
15719 ASSERT_FALSE (real_zerop (c_i_0));
15720 ASSERT_FALSE (real_zerop (c_i_1));
15721 ASSERT_FALSE (real_zerop (c_i_m1));
15722 ASSERT_TRUE (real_zerop (c_f_0));
15723 ASSERT_FALSE (real_zerop (c_f_1));
15724 ASSERT_FALSE (real_zerop (c_f_m1));
15725
15726 /* Test real_onep. */
15727 ASSERT_FALSE (real_onep (i_0));
15728 ASSERT_FALSE (real_onep (wr_i_0));
15729 ASSERT_FALSE (real_onep (i_1));
15730 ASSERT_FALSE (real_onep (wr_i_1));
15731 ASSERT_FALSE (real_onep (i_m1));
15732 ASSERT_FALSE (real_onep (wr_i_m1));
15733 ASSERT_FALSE (real_onep (f_0));
15734 ASSERT_FALSE (real_onep (wr_f_0));
15735 ASSERT_TRUE (real_onep (f_1));
15736 ASSERT_TRUE (real_onep (wr_f_1));
15737 ASSERT_FALSE (real_onep (f_m1));
15738 ASSERT_FALSE (real_onep (wr_f_m1));
15739 ASSERT_FALSE (real_onep (c_i_0));
15740 ASSERT_FALSE (real_onep (c_i_1));
15741 ASSERT_FALSE (real_onep (c_i_m1));
15742 ASSERT_FALSE (real_onep (c_f_0));
15743 ASSERT_TRUE (real_onep (c_f_1));
15744 ASSERT_FALSE (real_onep (c_f_m1));
15745
15746 /* Test real_minus_onep. */
15747 ASSERT_FALSE (real_minus_onep (i_0));
15748 ASSERT_FALSE (real_minus_onep (wr_i_0));
15749 ASSERT_FALSE (real_minus_onep (i_1));
15750 ASSERT_FALSE (real_minus_onep (wr_i_1));
15751 ASSERT_FALSE (real_minus_onep (i_m1));
15752 ASSERT_FALSE (real_minus_onep (wr_i_m1));
15753 ASSERT_FALSE (real_minus_onep (f_0));
15754 ASSERT_FALSE (real_minus_onep (wr_f_0));
15755 ASSERT_FALSE (real_minus_onep (f_1));
15756 ASSERT_FALSE (real_minus_onep (wr_f_1));
15757 ASSERT_TRUE (real_minus_onep (f_m1));
15758 ASSERT_TRUE (real_minus_onep (wr_f_m1));
15759 ASSERT_FALSE (real_minus_onep (c_i_0));
15760 ASSERT_FALSE (real_minus_onep (c_i_1));
15761 ASSERT_FALSE (real_minus_onep (c_i_m1));
15762 ASSERT_FALSE (real_minus_onep (c_f_0));
15763 ASSERT_FALSE (real_minus_onep (c_f_1));
15764 ASSERT_TRUE (real_minus_onep (c_f_m1));
15765
15766 /* Test zerop. */
15767 ASSERT_TRUE (zerop (i_0));
15768 ASSERT_TRUE (zerop (wr_i_0));
15769 ASSERT_FALSE (zerop (i_1));
15770 ASSERT_FALSE (zerop (wr_i_1));
15771 ASSERT_FALSE (zerop (i_m1));
15772 ASSERT_FALSE (zerop (wr_i_m1));
15773 ASSERT_TRUE (zerop (f_0));
15774 ASSERT_TRUE (zerop (wr_f_0));
15775 ASSERT_FALSE (zerop (f_1));
15776 ASSERT_FALSE (zerop (wr_f_1));
15777 ASSERT_FALSE (zerop (f_m1));
15778 ASSERT_FALSE (zerop (wr_f_m1));
15779 ASSERT_TRUE (zerop (c_i_0));
15780 ASSERT_FALSE (zerop (c_i_1));
15781 ASSERT_FALSE (zerop (c_i_m1));
15782 ASSERT_TRUE (zerop (c_f_0));
15783 ASSERT_FALSE (zerop (c_f_1));
15784 ASSERT_FALSE (zerop (c_f_m1));
15785
15786 /* Test tree_expr_nonnegative_p. */
15787 ASSERT_TRUE (tree_expr_nonnegative_p (i_0));
15788 ASSERT_TRUE (tree_expr_nonnegative_p (wr_i_0));
15789 ASSERT_TRUE (tree_expr_nonnegative_p (i_1));
15790 ASSERT_TRUE (tree_expr_nonnegative_p (wr_i_1));
15791 ASSERT_FALSE (tree_expr_nonnegative_p (i_m1));
15792 ASSERT_FALSE (tree_expr_nonnegative_p (wr_i_m1));
15793 ASSERT_TRUE (tree_expr_nonnegative_p (f_0));
15794 ASSERT_TRUE (tree_expr_nonnegative_p (wr_f_0));
15795 ASSERT_TRUE (tree_expr_nonnegative_p (f_1));
15796 ASSERT_TRUE (tree_expr_nonnegative_p (wr_f_1));
15797 ASSERT_FALSE (tree_expr_nonnegative_p (f_m1));
15798 ASSERT_FALSE (tree_expr_nonnegative_p (wr_f_m1));
15799 ASSERT_FALSE (tree_expr_nonnegative_p (c_i_0));
15800 ASSERT_FALSE (tree_expr_nonnegative_p (c_i_1));
15801 ASSERT_FALSE (tree_expr_nonnegative_p (c_i_m1));
15802 ASSERT_FALSE (tree_expr_nonnegative_p (c_f_0));
15803 ASSERT_FALSE (tree_expr_nonnegative_p (c_f_1));
15804 ASSERT_FALSE (tree_expr_nonnegative_p (c_f_m1));
15805
15806 /* Test tree_expr_nonzero_p. */
15807 ASSERT_FALSE (tree_expr_nonzero_p (i_0));
15808 ASSERT_FALSE (tree_expr_nonzero_p (wr_i_0));
15809 ASSERT_TRUE (tree_expr_nonzero_p (i_1));
15810 ASSERT_TRUE (tree_expr_nonzero_p (wr_i_1));
15811 ASSERT_TRUE (tree_expr_nonzero_p (i_m1));
15812 ASSERT_TRUE (tree_expr_nonzero_p (wr_i_m1));
15813
15814 /* Test integer_valued_real_p. */
15815 ASSERT_FALSE (integer_valued_real_p (i_0));
15816 ASSERT_TRUE (integer_valued_real_p (f_0));
15817 ASSERT_TRUE (integer_valued_real_p (wr_f_0));
15818 ASSERT_TRUE (integer_valued_real_p (f_1));
15819 ASSERT_TRUE (integer_valued_real_p (wr_f_1));
15820
15821 /* Test integer_pow2p. */
15822 ASSERT_FALSE (integer_pow2p (i_0));
15823 ASSERT_TRUE (integer_pow2p (i_1));
15824 ASSERT_TRUE (integer_pow2p (wr_i_1));
15825
15826 /* Test uniform_integer_cst_p. */
15827 ASSERT_TRUE (uniform_integer_cst_p (i_0));
15828 ASSERT_TRUE (uniform_integer_cst_p (wr_i_0));
15829 ASSERT_TRUE (uniform_integer_cst_p (i_1));
15830 ASSERT_TRUE (uniform_integer_cst_p (wr_i_1));
15831 ASSERT_TRUE (uniform_integer_cst_p (i_m1));
15832 ASSERT_TRUE (uniform_integer_cst_p (wr_i_m1));
15833 ASSERT_FALSE (uniform_integer_cst_p (f_0));
15834 ASSERT_FALSE (uniform_integer_cst_p (wr_f_0));
15835 ASSERT_FALSE (uniform_integer_cst_p (f_1));
15836 ASSERT_FALSE (uniform_integer_cst_p (wr_f_1));
15837 ASSERT_FALSE (uniform_integer_cst_p (f_m1));
15838 ASSERT_FALSE (uniform_integer_cst_p (wr_f_m1));
15839 ASSERT_FALSE (uniform_integer_cst_p (c_i_0));
15840 ASSERT_FALSE (uniform_integer_cst_p (c_i_1));
15841 ASSERT_FALSE (uniform_integer_cst_p (c_i_m1));
15842 ASSERT_FALSE (uniform_integer_cst_p (c_f_0));
15843 ASSERT_FALSE (uniform_integer_cst_p (c_f_1));
15844 ASSERT_FALSE (uniform_integer_cst_p (c_f_m1));
15845 }
15846
15847 /* Check that string escaping works correctly. */
15848
15849 static void
15850 test_escaped_strings (void)
15851 {
15852 int saved_cutoff;
15853 escaped_string msg;
15854
15855 msg.escape (NULL);
15856 /* ASSERT_STREQ does not accept NULL as a valid test
15857 result, so we have to use ASSERT_EQ instead. */
15858 ASSERT_EQ (NULL, (const char *) msg);
15859
15860 msg.escape ("");
15861 ASSERT_STREQ ("", (const char *) msg);
15862
15863 msg.escape ("foobar");
15864 ASSERT_STREQ ("foobar", (const char *) msg);
15865
15866 /* Ensure that we have -fmessage-length set to 0. */
15867 saved_cutoff = pp_line_cutoff (global_dc->printer);
15868 pp_line_cutoff (global_dc->printer) = 0;
15869
15870 msg.escape ("foo\nbar");
15871 ASSERT_STREQ ("foo\\nbar", (const char *) msg);
15872
15873 msg.escape ("\a\b\f\n\r\t\v");
15874 ASSERT_STREQ ("\\a\\b\\f\\n\\r\\t\\v", (const char *) msg);
15875
15876 /* Now repeat the tests with -fmessage-length set to 5. */
15877 pp_line_cutoff (global_dc->printer) = 5;
15878
15879 /* Note that the newline is not translated into an escape. */
15880 msg.escape ("foo\nbar");
15881 ASSERT_STREQ ("foo\nbar", (const char *) msg);
15882
15883 msg.escape ("\a\b\f\n\r\t\v");
15884 ASSERT_STREQ ("\\a\\b\\f\n\\r\\t\\v", (const char *) msg);
15885
15886 /* Restore the original message length setting. */
15887 pp_line_cutoff (global_dc->printer) = saved_cutoff;
15888 }
15889
15890 /* Run all of the selftests within this file. */
15891
15892 void
15893 tree_c_tests ()
15894 {
15895 test_integer_constants ();
15896 test_identifiers ();
15897 test_labels ();
15898 test_vector_cst_patterns ();
15899 test_location_wrappers ();
15900 test_predicates ();
15901 test_escaped_strings ();
15902 }
15903
15904 } // namespace selftest
15905
15906 #endif /* CHECKING_P */
15907
15908 #include "gt-tree.h"