]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree.c
2013-04-10 Richard Biener <rguenther@suse.de>
[thirdparty/gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file contains the low level primitives for operating on tree nodes,
21 including allocation, list operations, interning of identifiers,
22 construction of data type nodes and statement nodes,
23 and construction of type conversion nodes. It also contains
24 tables index by tree code that describe how to take apart
25 nodes of that code.
26
27 It is intended to be language-independent, but occasionally
28 calls language-dependent routines defined (for C) in typecheck.c. */
29
30 #include "config.h"
31 #include "system.h"
32 #include "coretypes.h"
33 #include "tm.h"
34 #include "flags.h"
35 #include "tree.h"
36 #include "tm_p.h"
37 #include "function.h"
38 #include "obstack.h"
39 #include "toplev.h" /* get_random_seed */
40 #include "ggc.h"
41 #include "hashtab.h"
42 #include "filenames.h"
43 #include "output.h"
44 #include "target.h"
45 #include "common/common-target.h"
46 #include "langhooks.h"
47 #include "tree-inline.h"
48 #include "tree-iterator.h"
49 #include "basic-block.h"
50 #include "tree-flow.h"
51 #include "params.h"
52 #include "pointer-set.h"
53 #include "tree-pass.h"
54 #include "langhooks-def.h"
55 #include "diagnostic.h"
56 #include "tree-diagnostic.h"
57 #include "tree-pretty-print.h"
58 #include "cgraph.h"
59 #include "except.h"
60 #include "debug.h"
61 #include "intl.h"
62
63 /* Tree code classes. */
64
65 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
66 #define END_OF_BASE_TREE_CODES tcc_exceptional,
67
68 const enum tree_code_class tree_code_type[] = {
69 #include "all-tree.def"
70 };
71
72 #undef DEFTREECODE
73 #undef END_OF_BASE_TREE_CODES
74
75 /* Table indexed by tree code giving number of expression
76 operands beyond the fixed part of the node structure.
77 Not used for types or decls. */
78
79 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
80 #define END_OF_BASE_TREE_CODES 0,
81
82 const unsigned char tree_code_length[] = {
83 #include "all-tree.def"
84 };
85
86 #undef DEFTREECODE
87 #undef END_OF_BASE_TREE_CODES
88
89 /* Names of tree components.
90 Used for printing out the tree and error messages. */
91 #define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
92 #define END_OF_BASE_TREE_CODES "@dummy",
93
94 const char *const tree_code_name[] = {
95 #include "all-tree.def"
96 };
97
98 #undef DEFTREECODE
99 #undef END_OF_BASE_TREE_CODES
100
101 /* Each tree code class has an associated string representation.
102 These must correspond to the tree_code_class entries. */
103
104 const char *const tree_code_class_strings[] =
105 {
106 "exceptional",
107 "constant",
108 "type",
109 "declaration",
110 "reference",
111 "comparison",
112 "unary",
113 "binary",
114 "statement",
115 "vl_exp",
116 "expression"
117 };
118
119 /* obstack.[ch] explicitly declined to prototype this. */
120 extern int _obstack_allocated_p (struct obstack *h, void *obj);
121
122 /* Statistics-gathering stuff. */
123
124 static int tree_code_counts[MAX_TREE_CODES];
125 int tree_node_counts[(int) all_kinds];
126 int tree_node_sizes[(int) all_kinds];
127
128 /* Keep in sync with tree.h:enum tree_node_kind. */
129 static const char * const tree_node_kind_names[] = {
130 "decls",
131 "types",
132 "blocks",
133 "stmts",
134 "refs",
135 "exprs",
136 "constants",
137 "identifiers",
138 "vecs",
139 "binfos",
140 "ssa names",
141 "constructors",
142 "random kinds",
143 "lang_decl kinds",
144 "lang_type kinds",
145 "omp clauses",
146 };
147
148 /* Unique id for next decl created. */
149 static GTY(()) int next_decl_uid;
150 /* Unique id for next type created. */
151 static GTY(()) int next_type_uid = 1;
152 /* Unique id for next debug decl created. Use negative numbers,
153 to catch erroneous uses. */
154 static GTY(()) int next_debug_decl_uid;
155
156 /* Since we cannot rehash a type after it is in the table, we have to
157 keep the hash code. */
158
159 struct GTY(()) type_hash {
160 unsigned long hash;
161 tree type;
162 };
163
164 /* Initial size of the hash table (rounded to next prime). */
165 #define TYPE_HASH_INITIAL_SIZE 1000
166
167 /* Now here is the hash table. When recording a type, it is added to
168 the slot whose index is the hash code. Note that the hash table is
169 used for several kinds of types (function types, array types and
170 array index range types, for now). While all these live in the
171 same table, they are completely independent, and the hash code is
172 computed differently for each of these. */
173
174 static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash)))
175 htab_t type_hash_table;
176
177 /* Hash table and temporary node for larger integer const values. */
178 static GTY (()) tree int_cst_node;
179 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
180 htab_t int_cst_hash_table;
181
182 /* Hash table for optimization flags and target option flags. Use the same
183 hash table for both sets of options. Nodes for building the current
184 optimization and target option nodes. The assumption is most of the time
185 the options created will already be in the hash table, so we avoid
186 allocating and freeing up a node repeatably. */
187 static GTY (()) tree cl_optimization_node;
188 static GTY (()) tree cl_target_option_node;
189 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
190 htab_t cl_option_hash_table;
191
192 /* General tree->tree mapping structure for use in hash tables. */
193
194
195 static GTY ((if_marked ("tree_decl_map_marked_p"), param_is (struct tree_decl_map)))
196 htab_t debug_expr_for_decl;
197
198 static GTY ((if_marked ("tree_decl_map_marked_p"), param_is (struct tree_decl_map)))
199 htab_t value_expr_for_decl;
200
201 static GTY ((if_marked ("tree_vec_map_marked_p"), param_is (struct tree_vec_map)))
202 htab_t debug_args_for_decl;
203
204 static GTY ((if_marked ("tree_priority_map_marked_p"),
205 param_is (struct tree_priority_map)))
206 htab_t init_priority_for_decl;
207
208 static void set_type_quals (tree, int);
209 static int type_hash_eq (const void *, const void *);
210 static hashval_t type_hash_hash (const void *);
211 static hashval_t int_cst_hash_hash (const void *);
212 static int int_cst_hash_eq (const void *, const void *);
213 static hashval_t cl_option_hash_hash (const void *);
214 static int cl_option_hash_eq (const void *, const void *);
215 static void print_type_hash_statistics (void);
216 static void print_debug_expr_statistics (void);
217 static void print_value_expr_statistics (void);
218 static int type_hash_marked_p (const void *);
219 static unsigned int type_hash_list (const_tree, hashval_t);
220 static unsigned int attribute_hash_list (const_tree, hashval_t);
221
222 tree global_trees[TI_MAX];
223 tree integer_types[itk_none];
224
225 unsigned char tree_contains_struct[MAX_TREE_CODES][64];
226
227 /* Number of operands for each OpenMP clause. */
228 unsigned const char omp_clause_num_ops[] =
229 {
230 0, /* OMP_CLAUSE_ERROR */
231 1, /* OMP_CLAUSE_PRIVATE */
232 1, /* OMP_CLAUSE_SHARED */
233 1, /* OMP_CLAUSE_FIRSTPRIVATE */
234 2, /* OMP_CLAUSE_LASTPRIVATE */
235 4, /* OMP_CLAUSE_REDUCTION */
236 1, /* OMP_CLAUSE_COPYIN */
237 1, /* OMP_CLAUSE_COPYPRIVATE */
238 1, /* OMP_CLAUSE_IF */
239 1, /* OMP_CLAUSE_NUM_THREADS */
240 1, /* OMP_CLAUSE_SCHEDULE */
241 0, /* OMP_CLAUSE_NOWAIT */
242 0, /* OMP_CLAUSE_ORDERED */
243 0, /* OMP_CLAUSE_DEFAULT */
244 3, /* OMP_CLAUSE_COLLAPSE */
245 0, /* OMP_CLAUSE_UNTIED */
246 1, /* OMP_CLAUSE_FINAL */
247 0 /* OMP_CLAUSE_MERGEABLE */
248 };
249
250 const char * const omp_clause_code_name[] =
251 {
252 "error_clause",
253 "private",
254 "shared",
255 "firstprivate",
256 "lastprivate",
257 "reduction",
258 "copyin",
259 "copyprivate",
260 "if",
261 "num_threads",
262 "schedule",
263 "nowait",
264 "ordered",
265 "default",
266 "collapse",
267 "untied",
268 "final",
269 "mergeable"
270 };
271
272
273 /* Return the tree node structure used by tree code CODE. */
274
275 static inline enum tree_node_structure_enum
276 tree_node_structure_for_code (enum tree_code code)
277 {
278 switch (TREE_CODE_CLASS (code))
279 {
280 case tcc_declaration:
281 {
282 switch (code)
283 {
284 case FIELD_DECL:
285 return TS_FIELD_DECL;
286 case PARM_DECL:
287 return TS_PARM_DECL;
288 case VAR_DECL:
289 return TS_VAR_DECL;
290 case LABEL_DECL:
291 return TS_LABEL_DECL;
292 case RESULT_DECL:
293 return TS_RESULT_DECL;
294 case DEBUG_EXPR_DECL:
295 return TS_DECL_WRTL;
296 case CONST_DECL:
297 return TS_CONST_DECL;
298 case TYPE_DECL:
299 return TS_TYPE_DECL;
300 case FUNCTION_DECL:
301 return TS_FUNCTION_DECL;
302 case TRANSLATION_UNIT_DECL:
303 return TS_TRANSLATION_UNIT_DECL;
304 default:
305 return TS_DECL_NON_COMMON;
306 }
307 }
308 case tcc_type:
309 return TS_TYPE_NON_COMMON;
310 case tcc_reference:
311 case tcc_comparison:
312 case tcc_unary:
313 case tcc_binary:
314 case tcc_expression:
315 case tcc_statement:
316 case tcc_vl_exp:
317 return TS_EXP;
318 default: /* tcc_constant and tcc_exceptional */
319 break;
320 }
321 switch (code)
322 {
323 /* tcc_constant cases. */
324 case INTEGER_CST: return TS_INT_CST;
325 case REAL_CST: return TS_REAL_CST;
326 case FIXED_CST: return TS_FIXED_CST;
327 case COMPLEX_CST: return TS_COMPLEX;
328 case VECTOR_CST: return TS_VECTOR;
329 case STRING_CST: return TS_STRING;
330 /* tcc_exceptional cases. */
331 case ERROR_MARK: return TS_COMMON;
332 case IDENTIFIER_NODE: return TS_IDENTIFIER;
333 case TREE_LIST: return TS_LIST;
334 case TREE_VEC: return TS_VEC;
335 case SSA_NAME: return TS_SSA_NAME;
336 case PLACEHOLDER_EXPR: return TS_COMMON;
337 case STATEMENT_LIST: return TS_STATEMENT_LIST;
338 case BLOCK: return TS_BLOCK;
339 case CONSTRUCTOR: return TS_CONSTRUCTOR;
340 case TREE_BINFO: return TS_BINFO;
341 case OMP_CLAUSE: return TS_OMP_CLAUSE;
342 case OPTIMIZATION_NODE: return TS_OPTIMIZATION;
343 case TARGET_OPTION_NODE: return TS_TARGET_OPTION;
344
345 default:
346 gcc_unreachable ();
347 }
348 }
349
350
351 /* Initialize tree_contains_struct to describe the hierarchy of tree
352 nodes. */
353
354 static void
355 initialize_tree_contains_struct (void)
356 {
357 unsigned i;
358
359 for (i = ERROR_MARK; i < LAST_AND_UNUSED_TREE_CODE; i++)
360 {
361 enum tree_code code;
362 enum tree_node_structure_enum ts_code;
363
364 code = (enum tree_code) i;
365 ts_code = tree_node_structure_for_code (code);
366
367 /* Mark the TS structure itself. */
368 tree_contains_struct[code][ts_code] = 1;
369
370 /* Mark all the structures that TS is derived from. */
371 switch (ts_code)
372 {
373 case TS_TYPED:
374 case TS_BLOCK:
375 MARK_TS_BASE (code);
376 break;
377
378 case TS_COMMON:
379 case TS_INT_CST:
380 case TS_REAL_CST:
381 case TS_FIXED_CST:
382 case TS_VECTOR:
383 case TS_STRING:
384 case TS_COMPLEX:
385 case TS_SSA_NAME:
386 case TS_CONSTRUCTOR:
387 case TS_EXP:
388 case TS_STATEMENT_LIST:
389 MARK_TS_TYPED (code);
390 break;
391
392 case TS_IDENTIFIER:
393 case TS_DECL_MINIMAL:
394 case TS_TYPE_COMMON:
395 case TS_LIST:
396 case TS_VEC:
397 case TS_BINFO:
398 case TS_OMP_CLAUSE:
399 case TS_OPTIMIZATION:
400 case TS_TARGET_OPTION:
401 MARK_TS_COMMON (code);
402 break;
403
404 case TS_TYPE_WITH_LANG_SPECIFIC:
405 MARK_TS_TYPE_COMMON (code);
406 break;
407
408 case TS_TYPE_NON_COMMON:
409 MARK_TS_TYPE_WITH_LANG_SPECIFIC (code);
410 break;
411
412 case TS_DECL_COMMON:
413 MARK_TS_DECL_MINIMAL (code);
414 break;
415
416 case TS_DECL_WRTL:
417 case TS_CONST_DECL:
418 MARK_TS_DECL_COMMON (code);
419 break;
420
421 case TS_DECL_NON_COMMON:
422 MARK_TS_DECL_WITH_VIS (code);
423 break;
424
425 case TS_DECL_WITH_VIS:
426 case TS_PARM_DECL:
427 case TS_LABEL_DECL:
428 case TS_RESULT_DECL:
429 MARK_TS_DECL_WRTL (code);
430 break;
431
432 case TS_FIELD_DECL:
433 MARK_TS_DECL_COMMON (code);
434 break;
435
436 case TS_VAR_DECL:
437 MARK_TS_DECL_WITH_VIS (code);
438 break;
439
440 case TS_TYPE_DECL:
441 case TS_FUNCTION_DECL:
442 MARK_TS_DECL_NON_COMMON (code);
443 break;
444
445 case TS_TRANSLATION_UNIT_DECL:
446 MARK_TS_DECL_COMMON (code);
447 break;
448
449 default:
450 gcc_unreachable ();
451 }
452 }
453
454 /* Basic consistency checks for attributes used in fold. */
455 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_NON_COMMON]);
456 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_NON_COMMON]);
457 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_COMMON]);
458 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_COMMON]);
459 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_COMMON]);
460 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_COMMON]);
461 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_COMMON]);
462 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_COMMON]);
463 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_COMMON]);
464 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_COMMON]);
465 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_COMMON]);
466 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WRTL]);
467 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_WRTL]);
468 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_WRTL]);
469 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WRTL]);
470 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_WRTL]);
471 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_MINIMAL]);
472 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_MINIMAL]);
473 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_MINIMAL]);
474 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_MINIMAL]);
475 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_MINIMAL]);
476 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_MINIMAL]);
477 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_MINIMAL]);
478 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_MINIMAL]);
479 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_MINIMAL]);
480 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WITH_VIS]);
481 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WITH_VIS]);
482 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_WITH_VIS]);
483 gcc_assert (tree_contains_struct[VAR_DECL][TS_VAR_DECL]);
484 gcc_assert (tree_contains_struct[FIELD_DECL][TS_FIELD_DECL]);
485 gcc_assert (tree_contains_struct[PARM_DECL][TS_PARM_DECL]);
486 gcc_assert (tree_contains_struct[LABEL_DECL][TS_LABEL_DECL]);
487 gcc_assert (tree_contains_struct[RESULT_DECL][TS_RESULT_DECL]);
488 gcc_assert (tree_contains_struct[CONST_DECL][TS_CONST_DECL]);
489 gcc_assert (tree_contains_struct[TYPE_DECL][TS_TYPE_DECL]);
490 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_FUNCTION_DECL]);
491 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_MINIMAL]);
492 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_COMMON]);
493 }
494
495
496 /* Init tree.c. */
497
498 void
499 init_ttree (void)
500 {
501 /* Initialize the hash table of types. */
502 type_hash_table = htab_create_ggc (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
503 type_hash_eq, 0);
504
505 debug_expr_for_decl = htab_create_ggc (512, tree_decl_map_hash,
506 tree_decl_map_eq, 0);
507
508 value_expr_for_decl = htab_create_ggc (512, tree_decl_map_hash,
509 tree_decl_map_eq, 0);
510 init_priority_for_decl = htab_create_ggc (512, tree_priority_map_hash,
511 tree_priority_map_eq, 0);
512
513 int_cst_hash_table = htab_create_ggc (1024, int_cst_hash_hash,
514 int_cst_hash_eq, NULL);
515
516 int_cst_node = make_node (INTEGER_CST);
517
518 cl_option_hash_table = htab_create_ggc (64, cl_option_hash_hash,
519 cl_option_hash_eq, NULL);
520
521 cl_optimization_node = make_node (OPTIMIZATION_NODE);
522 cl_target_option_node = make_node (TARGET_OPTION_NODE);
523
524 /* Initialize the tree_contains_struct array. */
525 initialize_tree_contains_struct ();
526 lang_hooks.init_ts ();
527 }
528
529 \f
530 /* The name of the object as the assembler will see it (but before any
531 translations made by ASM_OUTPUT_LABELREF). Often this is the same
532 as DECL_NAME. It is an IDENTIFIER_NODE. */
533 tree
534 decl_assembler_name (tree decl)
535 {
536 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
537 lang_hooks.set_decl_assembler_name (decl);
538 return DECL_WITH_VIS_CHECK (decl)->decl_with_vis.assembler_name;
539 }
540
541 /* Compare ASMNAME with the DECL_ASSEMBLER_NAME of DECL. */
542
543 bool
544 decl_assembler_name_equal (tree decl, const_tree asmname)
545 {
546 tree decl_asmname = DECL_ASSEMBLER_NAME (decl);
547 const char *decl_str;
548 const char *asmname_str;
549 bool test = false;
550
551 if (decl_asmname == asmname)
552 return true;
553
554 decl_str = IDENTIFIER_POINTER (decl_asmname);
555 asmname_str = IDENTIFIER_POINTER (asmname);
556
557
558 /* If the target assembler name was set by the user, things are trickier.
559 We have a leading '*' to begin with. After that, it's arguable what
560 is the correct thing to do with -fleading-underscore. Arguably, we've
561 historically been doing the wrong thing in assemble_alias by always
562 printing the leading underscore. Since we're not changing that, make
563 sure user_label_prefix follows the '*' before matching. */
564 if (decl_str[0] == '*')
565 {
566 size_t ulp_len = strlen (user_label_prefix);
567
568 decl_str ++;
569
570 if (ulp_len == 0)
571 test = true;
572 else if (strncmp (decl_str, user_label_prefix, ulp_len) == 0)
573 decl_str += ulp_len, test=true;
574 else
575 decl_str --;
576 }
577 if (asmname_str[0] == '*')
578 {
579 size_t ulp_len = strlen (user_label_prefix);
580
581 asmname_str ++;
582
583 if (ulp_len == 0)
584 test = true;
585 else if (strncmp (asmname_str, user_label_prefix, ulp_len) == 0)
586 asmname_str += ulp_len, test=true;
587 else
588 asmname_str --;
589 }
590
591 if (!test)
592 return false;
593 return strcmp (decl_str, asmname_str) == 0;
594 }
595
596 /* Hash asmnames ignoring the user specified marks. */
597
598 hashval_t
599 decl_assembler_name_hash (const_tree asmname)
600 {
601 if (IDENTIFIER_POINTER (asmname)[0] == '*')
602 {
603 const char *decl_str = IDENTIFIER_POINTER (asmname) + 1;
604 size_t ulp_len = strlen (user_label_prefix);
605
606 if (ulp_len == 0)
607 ;
608 else if (strncmp (decl_str, user_label_prefix, ulp_len) == 0)
609 decl_str += ulp_len;
610
611 return htab_hash_string (decl_str);
612 }
613
614 return htab_hash_string (IDENTIFIER_POINTER (asmname));
615 }
616
617 /* Compute the number of bytes occupied by a tree with code CODE.
618 This function cannot be used for nodes that have variable sizes,
619 including TREE_VEC, STRING_CST, and CALL_EXPR. */
620 size_t
621 tree_code_size (enum tree_code code)
622 {
623 switch (TREE_CODE_CLASS (code))
624 {
625 case tcc_declaration: /* A decl node */
626 {
627 switch (code)
628 {
629 case FIELD_DECL:
630 return sizeof (struct tree_field_decl);
631 case PARM_DECL:
632 return sizeof (struct tree_parm_decl);
633 case VAR_DECL:
634 return sizeof (struct tree_var_decl);
635 case LABEL_DECL:
636 return sizeof (struct tree_label_decl);
637 case RESULT_DECL:
638 return sizeof (struct tree_result_decl);
639 case CONST_DECL:
640 return sizeof (struct tree_const_decl);
641 case TYPE_DECL:
642 return sizeof (struct tree_type_decl);
643 case FUNCTION_DECL:
644 return sizeof (struct tree_function_decl);
645 case DEBUG_EXPR_DECL:
646 return sizeof (struct tree_decl_with_rtl);
647 default:
648 return sizeof (struct tree_decl_non_common);
649 }
650 }
651
652 case tcc_type: /* a type node */
653 return sizeof (struct tree_type_non_common);
654
655 case tcc_reference: /* a reference */
656 case tcc_expression: /* an expression */
657 case tcc_statement: /* an expression with side effects */
658 case tcc_comparison: /* a comparison expression */
659 case tcc_unary: /* a unary arithmetic expression */
660 case tcc_binary: /* a binary arithmetic expression */
661 return (sizeof (struct tree_exp)
662 + (TREE_CODE_LENGTH (code) - 1) * sizeof (tree));
663
664 case tcc_constant: /* a constant */
665 switch (code)
666 {
667 case INTEGER_CST: return sizeof (struct tree_int_cst);
668 case REAL_CST: return sizeof (struct tree_real_cst);
669 case FIXED_CST: return sizeof (struct tree_fixed_cst);
670 case COMPLEX_CST: return sizeof (struct tree_complex);
671 case VECTOR_CST: return sizeof (struct tree_vector);
672 case STRING_CST: gcc_unreachable ();
673 default:
674 return lang_hooks.tree_size (code);
675 }
676
677 case tcc_exceptional: /* something random, like an identifier. */
678 switch (code)
679 {
680 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
681 case TREE_LIST: return sizeof (struct tree_list);
682
683 case ERROR_MARK:
684 case PLACEHOLDER_EXPR: return sizeof (struct tree_common);
685
686 case TREE_VEC:
687 case OMP_CLAUSE: gcc_unreachable ();
688
689 case SSA_NAME: return sizeof (struct tree_ssa_name);
690
691 case STATEMENT_LIST: return sizeof (struct tree_statement_list);
692 case BLOCK: return sizeof (struct tree_block);
693 case CONSTRUCTOR: return sizeof (struct tree_constructor);
694 case OPTIMIZATION_NODE: return sizeof (struct tree_optimization_option);
695 case TARGET_OPTION_NODE: return sizeof (struct tree_target_option);
696
697 default:
698 return lang_hooks.tree_size (code);
699 }
700
701 default:
702 gcc_unreachable ();
703 }
704 }
705
706 /* Compute the number of bytes occupied by NODE. This routine only
707 looks at TREE_CODE, except for those nodes that have variable sizes. */
708 size_t
709 tree_size (const_tree node)
710 {
711 const enum tree_code code = TREE_CODE (node);
712 switch (code)
713 {
714 case TREE_BINFO:
715 return (offsetof (struct tree_binfo, base_binfos)
716 + vec<tree, va_gc>
717 ::embedded_size (BINFO_N_BASE_BINFOS (node)));
718
719 case TREE_VEC:
720 return (sizeof (struct tree_vec)
721 + (TREE_VEC_LENGTH (node) - 1) * sizeof (tree));
722
723 case VECTOR_CST:
724 return (sizeof (struct tree_vector)
725 + (TYPE_VECTOR_SUBPARTS (TREE_TYPE (node)) - 1) * sizeof (tree));
726
727 case STRING_CST:
728 return TREE_STRING_LENGTH (node) + offsetof (struct tree_string, str) + 1;
729
730 case OMP_CLAUSE:
731 return (sizeof (struct tree_omp_clause)
732 + (omp_clause_num_ops[OMP_CLAUSE_CODE (node)] - 1)
733 * sizeof (tree));
734
735 default:
736 if (TREE_CODE_CLASS (code) == tcc_vl_exp)
737 return (sizeof (struct tree_exp)
738 + (VL_EXP_OPERAND_LENGTH (node) - 1) * sizeof (tree));
739 else
740 return tree_code_size (code);
741 }
742 }
743
744 /* Record interesting allocation statistics for a tree node with CODE
745 and LENGTH. */
746
747 static void
748 record_node_allocation_statistics (enum tree_code code ATTRIBUTE_UNUSED,
749 size_t length ATTRIBUTE_UNUSED)
750 {
751 enum tree_code_class type = TREE_CODE_CLASS (code);
752 tree_node_kind kind;
753
754 if (!GATHER_STATISTICS)
755 return;
756
757 switch (type)
758 {
759 case tcc_declaration: /* A decl node */
760 kind = d_kind;
761 break;
762
763 case tcc_type: /* a type node */
764 kind = t_kind;
765 break;
766
767 case tcc_statement: /* an expression with side effects */
768 kind = s_kind;
769 break;
770
771 case tcc_reference: /* a reference */
772 kind = r_kind;
773 break;
774
775 case tcc_expression: /* an expression */
776 case tcc_comparison: /* a comparison expression */
777 case tcc_unary: /* a unary arithmetic expression */
778 case tcc_binary: /* a binary arithmetic expression */
779 kind = e_kind;
780 break;
781
782 case tcc_constant: /* a constant */
783 kind = c_kind;
784 break;
785
786 case tcc_exceptional: /* something random, like an identifier. */
787 switch (code)
788 {
789 case IDENTIFIER_NODE:
790 kind = id_kind;
791 break;
792
793 case TREE_VEC:
794 kind = vec_kind;
795 break;
796
797 case TREE_BINFO:
798 kind = binfo_kind;
799 break;
800
801 case SSA_NAME:
802 kind = ssa_name_kind;
803 break;
804
805 case BLOCK:
806 kind = b_kind;
807 break;
808
809 case CONSTRUCTOR:
810 kind = constr_kind;
811 break;
812
813 case OMP_CLAUSE:
814 kind = omp_clause_kind;
815 break;
816
817 default:
818 kind = x_kind;
819 break;
820 }
821 break;
822
823 case tcc_vl_exp:
824 kind = e_kind;
825 break;
826
827 default:
828 gcc_unreachable ();
829 }
830
831 tree_code_counts[(int) code]++;
832 tree_node_counts[(int) kind]++;
833 tree_node_sizes[(int) kind] += length;
834 }
835
836 /* Allocate and return a new UID from the DECL_UID namespace. */
837
838 int
839 allocate_decl_uid (void)
840 {
841 return next_decl_uid++;
842 }
843
844 /* Return a newly allocated node of code CODE. For decl and type
845 nodes, some other fields are initialized. The rest of the node is
846 initialized to zero. This function cannot be used for TREE_VEC or
847 OMP_CLAUSE nodes, which is enforced by asserts in tree_code_size.
848
849 Achoo! I got a code in the node. */
850
851 tree
852 make_node_stat (enum tree_code code MEM_STAT_DECL)
853 {
854 tree t;
855 enum tree_code_class type = TREE_CODE_CLASS (code);
856 size_t length = tree_code_size (code);
857
858 record_node_allocation_statistics (code, length);
859
860 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
861 TREE_SET_CODE (t, code);
862
863 switch (type)
864 {
865 case tcc_statement:
866 TREE_SIDE_EFFECTS (t) = 1;
867 break;
868
869 case tcc_declaration:
870 if (CODE_CONTAINS_STRUCT (code, TS_DECL_COMMON))
871 {
872 if (code == FUNCTION_DECL)
873 {
874 DECL_ALIGN (t) = FUNCTION_BOUNDARY;
875 DECL_MODE (t) = FUNCTION_MODE;
876 }
877 else
878 DECL_ALIGN (t) = 1;
879 }
880 DECL_SOURCE_LOCATION (t) = input_location;
881 if (TREE_CODE (t) == DEBUG_EXPR_DECL)
882 DECL_UID (t) = --next_debug_decl_uid;
883 else
884 {
885 DECL_UID (t) = allocate_decl_uid ();
886 SET_DECL_PT_UID (t, -1);
887 }
888 if (TREE_CODE (t) == LABEL_DECL)
889 LABEL_DECL_UID (t) = -1;
890
891 break;
892
893 case tcc_type:
894 TYPE_UID (t) = next_type_uid++;
895 TYPE_ALIGN (t) = BITS_PER_UNIT;
896 TYPE_USER_ALIGN (t) = 0;
897 TYPE_MAIN_VARIANT (t) = t;
898 TYPE_CANONICAL (t) = t;
899
900 /* Default to no attributes for type, but let target change that. */
901 TYPE_ATTRIBUTES (t) = NULL_TREE;
902 targetm.set_default_type_attributes (t);
903
904 /* We have not yet computed the alias set for this type. */
905 TYPE_ALIAS_SET (t) = -1;
906 break;
907
908 case tcc_constant:
909 TREE_CONSTANT (t) = 1;
910 break;
911
912 case tcc_expression:
913 switch (code)
914 {
915 case INIT_EXPR:
916 case MODIFY_EXPR:
917 case VA_ARG_EXPR:
918 case PREDECREMENT_EXPR:
919 case PREINCREMENT_EXPR:
920 case POSTDECREMENT_EXPR:
921 case POSTINCREMENT_EXPR:
922 /* All of these have side-effects, no matter what their
923 operands are. */
924 TREE_SIDE_EFFECTS (t) = 1;
925 break;
926
927 default:
928 break;
929 }
930 break;
931
932 default:
933 /* Other classes need no special treatment. */
934 break;
935 }
936
937 return t;
938 }
939 \f
940 /* Return a new node with the same contents as NODE except that its
941 TREE_CHAIN, if it has one, is zero and it has a fresh uid. */
942
943 tree
944 copy_node_stat (tree node MEM_STAT_DECL)
945 {
946 tree t;
947 enum tree_code code = TREE_CODE (node);
948 size_t length;
949
950 gcc_assert (code != STATEMENT_LIST);
951
952 length = tree_size (node);
953 record_node_allocation_statistics (code, length);
954 t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
955 memcpy (t, node, length);
956
957 if (CODE_CONTAINS_STRUCT (code, TS_COMMON))
958 TREE_CHAIN (t) = 0;
959 TREE_ASM_WRITTEN (t) = 0;
960 TREE_VISITED (t) = 0;
961
962 if (TREE_CODE_CLASS (code) == tcc_declaration)
963 {
964 if (code == DEBUG_EXPR_DECL)
965 DECL_UID (t) = --next_debug_decl_uid;
966 else
967 {
968 DECL_UID (t) = allocate_decl_uid ();
969 if (DECL_PT_UID_SET_P (node))
970 SET_DECL_PT_UID (t, DECL_PT_UID (node));
971 }
972 if ((TREE_CODE (node) == PARM_DECL || TREE_CODE (node) == VAR_DECL)
973 && DECL_HAS_VALUE_EXPR_P (node))
974 {
975 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (node));
976 DECL_HAS_VALUE_EXPR_P (t) = 1;
977 }
978 /* DECL_DEBUG_EXPR is copied explicitely by callers. */
979 if (TREE_CODE (node) == VAR_DECL)
980 DECL_HAS_DEBUG_EXPR_P (t) = 0;
981 if (TREE_CODE (node) == VAR_DECL && DECL_HAS_INIT_PRIORITY_P (node))
982 {
983 SET_DECL_INIT_PRIORITY (t, DECL_INIT_PRIORITY (node));
984 DECL_HAS_INIT_PRIORITY_P (t) = 1;
985 }
986 if (TREE_CODE (node) == FUNCTION_DECL)
987 DECL_STRUCT_FUNCTION (t) = NULL;
988 }
989 else if (TREE_CODE_CLASS (code) == tcc_type)
990 {
991 TYPE_UID (t) = next_type_uid++;
992 /* The following is so that the debug code for
993 the copy is different from the original type.
994 The two statements usually duplicate each other
995 (because they clear fields of the same union),
996 but the optimizer should catch that. */
997 TYPE_SYMTAB_POINTER (t) = 0;
998 TYPE_SYMTAB_ADDRESS (t) = 0;
999
1000 /* Do not copy the values cache. */
1001 if (TYPE_CACHED_VALUES_P(t))
1002 {
1003 TYPE_CACHED_VALUES_P (t) = 0;
1004 TYPE_CACHED_VALUES (t) = NULL_TREE;
1005 }
1006 }
1007
1008 return t;
1009 }
1010
1011 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
1012 For example, this can copy a list made of TREE_LIST nodes. */
1013
1014 tree
1015 copy_list (tree list)
1016 {
1017 tree head;
1018 tree prev, next;
1019
1020 if (list == 0)
1021 return 0;
1022
1023 head = prev = copy_node (list);
1024 next = TREE_CHAIN (list);
1025 while (next)
1026 {
1027 TREE_CHAIN (prev) = copy_node (next);
1028 prev = TREE_CHAIN (prev);
1029 next = TREE_CHAIN (next);
1030 }
1031 return head;
1032 }
1033
1034 \f
1035 /* Create an INT_CST node with a LOW value sign extended to TYPE. */
1036
1037 tree
1038 build_int_cst (tree type, HOST_WIDE_INT low)
1039 {
1040 /* Support legacy code. */
1041 if (!type)
1042 type = integer_type_node;
1043
1044 return double_int_to_tree (type, double_int::from_shwi (low));
1045 }
1046
1047 /* Create an INT_CST node with a LOW value sign extended to TYPE. */
1048
1049 tree
1050 build_int_cst_type (tree type, HOST_WIDE_INT low)
1051 {
1052 gcc_assert (type);
1053
1054 return double_int_to_tree (type, double_int::from_shwi (low));
1055 }
1056
1057 /* Constructs tree in type TYPE from with value given by CST. Signedness
1058 of CST is assumed to be the same as the signedness of TYPE. */
1059
1060 tree
1061 double_int_to_tree (tree type, double_int cst)
1062 {
1063 bool sign_extended_type = !TYPE_UNSIGNED (type);
1064
1065 cst = cst.ext (TYPE_PRECISION (type), !sign_extended_type);
1066
1067 return build_int_cst_wide (type, cst.low, cst.high);
1068 }
1069
1070 /* Returns true if CST fits into range of TYPE. Signedness of CST is assumed
1071 to be the same as the signedness of TYPE. */
1072
1073 bool
1074 double_int_fits_to_tree_p (const_tree type, double_int cst)
1075 {
1076 bool sign_extended_type = !TYPE_UNSIGNED (type);
1077
1078 double_int ext
1079 = cst.ext (TYPE_PRECISION (type), !sign_extended_type);
1080
1081 return cst == ext;
1082 }
1083
1084 /* We force the double_int CST to the range of the type TYPE by sign or
1085 zero extending it. OVERFLOWABLE indicates if we are interested in
1086 overflow of the value, when >0 we are only interested in signed
1087 overflow, for <0 we are interested in any overflow. OVERFLOWED
1088 indicates whether overflow has already occurred. CONST_OVERFLOWED
1089 indicates whether constant overflow has already occurred. We force
1090 T's value to be within range of T's type (by setting to 0 or 1 all
1091 the bits outside the type's range). We set TREE_OVERFLOWED if,
1092 OVERFLOWED is nonzero,
1093 or OVERFLOWABLE is >0 and signed overflow occurs
1094 or OVERFLOWABLE is <0 and any overflow occurs
1095 We return a new tree node for the extended double_int. The node
1096 is shared if no overflow flags are set. */
1097
1098
1099 tree
1100 force_fit_type_double (tree type, double_int cst, int overflowable,
1101 bool overflowed)
1102 {
1103 bool sign_extended_type = !TYPE_UNSIGNED (type);
1104
1105 /* If we need to set overflow flags, return a new unshared node. */
1106 if (overflowed || !double_int_fits_to_tree_p(type, cst))
1107 {
1108 if (overflowed
1109 || overflowable < 0
1110 || (overflowable > 0 && sign_extended_type))
1111 {
1112 tree t = make_node (INTEGER_CST);
1113 TREE_INT_CST (t)
1114 = cst.ext (TYPE_PRECISION (type), !sign_extended_type);
1115 TREE_TYPE (t) = type;
1116 TREE_OVERFLOW (t) = 1;
1117 return t;
1118 }
1119 }
1120
1121 /* Else build a shared node. */
1122 return double_int_to_tree (type, cst);
1123 }
1124
1125 /* These are the hash table functions for the hash table of INTEGER_CST
1126 nodes of a sizetype. */
1127
1128 /* Return the hash code code X, an INTEGER_CST. */
1129
1130 static hashval_t
1131 int_cst_hash_hash (const void *x)
1132 {
1133 const_tree const t = (const_tree) x;
1134
1135 return (TREE_INT_CST_HIGH (t) ^ TREE_INT_CST_LOW (t)
1136 ^ htab_hash_pointer (TREE_TYPE (t)));
1137 }
1138
1139 /* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
1140 is the same as that given by *Y, which is the same. */
1141
1142 static int
1143 int_cst_hash_eq (const void *x, const void *y)
1144 {
1145 const_tree const xt = (const_tree) x;
1146 const_tree const yt = (const_tree) y;
1147
1148 return (TREE_TYPE (xt) == TREE_TYPE (yt)
1149 && TREE_INT_CST_HIGH (xt) == TREE_INT_CST_HIGH (yt)
1150 && TREE_INT_CST_LOW (xt) == TREE_INT_CST_LOW (yt));
1151 }
1152
1153 /* Create an INT_CST node of TYPE and value HI:LOW.
1154 The returned node is always shared. For small integers we use a
1155 per-type vector cache, for larger ones we use a single hash table. */
1156
1157 tree
1158 build_int_cst_wide (tree type, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
1159 {
1160 tree t;
1161 int ix = -1;
1162 int limit = 0;
1163
1164 gcc_assert (type);
1165
1166 switch (TREE_CODE (type))
1167 {
1168 case NULLPTR_TYPE:
1169 gcc_assert (hi == 0 && low == 0);
1170 /* Fallthru. */
1171
1172 case POINTER_TYPE:
1173 case REFERENCE_TYPE:
1174 /* Cache NULL pointer. */
1175 if (!hi && !low)
1176 {
1177 limit = 1;
1178 ix = 0;
1179 }
1180 break;
1181
1182 case BOOLEAN_TYPE:
1183 /* Cache false or true. */
1184 limit = 2;
1185 if (!hi && low < 2)
1186 ix = low;
1187 break;
1188
1189 case INTEGER_TYPE:
1190 case OFFSET_TYPE:
1191 if (TYPE_UNSIGNED (type))
1192 {
1193 /* Cache 0..N */
1194 limit = INTEGER_SHARE_LIMIT;
1195 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
1196 ix = low;
1197 }
1198 else
1199 {
1200 /* Cache -1..N */
1201 limit = INTEGER_SHARE_LIMIT + 1;
1202 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
1203 ix = low + 1;
1204 else if (hi == -1 && low == -(unsigned HOST_WIDE_INT)1)
1205 ix = 0;
1206 }
1207 break;
1208
1209 case ENUMERAL_TYPE:
1210 break;
1211
1212 default:
1213 gcc_unreachable ();
1214 }
1215
1216 if (ix >= 0)
1217 {
1218 /* Look for it in the type's vector of small shared ints. */
1219 if (!TYPE_CACHED_VALUES_P (type))
1220 {
1221 TYPE_CACHED_VALUES_P (type) = 1;
1222 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
1223 }
1224
1225 t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix);
1226 if (t)
1227 {
1228 /* Make sure no one is clobbering the shared constant. */
1229 gcc_assert (TREE_TYPE (t) == type);
1230 gcc_assert (TREE_INT_CST_LOW (t) == low);
1231 gcc_assert (TREE_INT_CST_HIGH (t) == hi);
1232 }
1233 else
1234 {
1235 /* Create a new shared int. */
1236 t = make_node (INTEGER_CST);
1237
1238 TREE_INT_CST_LOW (t) = low;
1239 TREE_INT_CST_HIGH (t) = hi;
1240 TREE_TYPE (t) = type;
1241
1242 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
1243 }
1244 }
1245 else
1246 {
1247 /* Use the cache of larger shared ints. */
1248 void **slot;
1249
1250 TREE_INT_CST_LOW (int_cst_node) = low;
1251 TREE_INT_CST_HIGH (int_cst_node) = hi;
1252 TREE_TYPE (int_cst_node) = type;
1253
1254 slot = htab_find_slot (int_cst_hash_table, int_cst_node, INSERT);
1255 t = (tree) *slot;
1256 if (!t)
1257 {
1258 /* Insert this one into the hash table. */
1259 t = int_cst_node;
1260 *slot = t;
1261 /* Make a new node for next time round. */
1262 int_cst_node = make_node (INTEGER_CST);
1263 }
1264 }
1265
1266 return t;
1267 }
1268
1269 /* Builds an integer constant in TYPE such that lowest BITS bits are ones
1270 and the rest are zeros. */
1271
1272 tree
1273 build_low_bits_mask (tree type, unsigned bits)
1274 {
1275 double_int mask;
1276
1277 gcc_assert (bits <= TYPE_PRECISION (type));
1278
1279 if (bits == TYPE_PRECISION (type)
1280 && !TYPE_UNSIGNED (type))
1281 /* Sign extended all-ones mask. */
1282 mask = double_int_minus_one;
1283 else
1284 mask = double_int::mask (bits);
1285
1286 return build_int_cst_wide (type, mask.low, mask.high);
1287 }
1288
1289 /* Checks that X is integer constant that can be expressed in (unsigned)
1290 HOST_WIDE_INT without loss of precision. */
1291
1292 bool
1293 cst_and_fits_in_hwi (const_tree x)
1294 {
1295 if (TREE_CODE (x) != INTEGER_CST)
1296 return false;
1297
1298 if (TYPE_PRECISION (TREE_TYPE (x)) > HOST_BITS_PER_WIDE_INT)
1299 return false;
1300
1301 return (TREE_INT_CST_HIGH (x) == 0
1302 || TREE_INT_CST_HIGH (x) == -1);
1303 }
1304
1305 /* Build a newly constructed TREE_VEC node of length LEN. */
1306
1307 tree
1308 make_vector_stat (unsigned len MEM_STAT_DECL)
1309 {
1310 tree t;
1311 unsigned length = (len - 1) * sizeof (tree) + sizeof (struct tree_vector);
1312
1313 record_node_allocation_statistics (VECTOR_CST, length);
1314
1315 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
1316
1317 TREE_SET_CODE (t, VECTOR_CST);
1318 TREE_CONSTANT (t) = 1;
1319
1320 return t;
1321 }
1322
1323 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1324 are in a list pointed to by VALS. */
1325
1326 tree
1327 build_vector_stat (tree type, tree *vals MEM_STAT_DECL)
1328 {
1329 int over = 0;
1330 unsigned cnt = 0;
1331 tree v = make_vector (TYPE_VECTOR_SUBPARTS (type));
1332 TREE_TYPE (v) = type;
1333
1334 /* Iterate through elements and check for overflow. */
1335 for (cnt = 0; cnt < TYPE_VECTOR_SUBPARTS (type); ++cnt)
1336 {
1337 tree value = vals[cnt];
1338
1339 VECTOR_CST_ELT (v, cnt) = value;
1340
1341 /* Don't crash if we get an address constant. */
1342 if (!CONSTANT_CLASS_P (value))
1343 continue;
1344
1345 over |= TREE_OVERFLOW (value);
1346 }
1347
1348 TREE_OVERFLOW (v) = over;
1349 return v;
1350 }
1351
1352 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1353 are extracted from V, a vector of CONSTRUCTOR_ELT. */
1354
1355 tree
1356 build_vector_from_ctor (tree type, vec<constructor_elt, va_gc> *v)
1357 {
1358 tree *vec = XALLOCAVEC (tree, TYPE_VECTOR_SUBPARTS (type));
1359 unsigned HOST_WIDE_INT idx;
1360 tree value;
1361
1362 FOR_EACH_CONSTRUCTOR_VALUE (v, idx, value)
1363 vec[idx] = value;
1364 for (; idx < TYPE_VECTOR_SUBPARTS (type); ++idx)
1365 vec[idx] = build_zero_cst (TREE_TYPE (type));
1366
1367 return build_vector (type, vec);
1368 }
1369
1370 /* Build a vector of type VECTYPE where all the elements are SCs. */
1371 tree
1372 build_vector_from_val (tree vectype, tree sc)
1373 {
1374 int i, nunits = TYPE_VECTOR_SUBPARTS (vectype);
1375
1376 if (sc == error_mark_node)
1377 return sc;
1378
1379 /* Verify that the vector type is suitable for SC. Note that there
1380 is some inconsistency in the type-system with respect to restrict
1381 qualifications of pointers. Vector types always have a main-variant
1382 element type and the qualification is applied to the vector-type.
1383 So TREE_TYPE (vector-type) does not return a properly qualified
1384 vector element-type. */
1385 gcc_checking_assert (types_compatible_p (TYPE_MAIN_VARIANT (TREE_TYPE (sc)),
1386 TREE_TYPE (vectype)));
1387
1388 if (CONSTANT_CLASS_P (sc))
1389 {
1390 tree *v = XALLOCAVEC (tree, nunits);
1391 for (i = 0; i < nunits; ++i)
1392 v[i] = sc;
1393 return build_vector (vectype, v);
1394 }
1395 else
1396 {
1397 vec<constructor_elt, va_gc> *v;
1398 vec_alloc (v, nunits);
1399 for (i = 0; i < nunits; ++i)
1400 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, sc);
1401 return build_constructor (vectype, v);
1402 }
1403 }
1404
1405 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1406 are in the vec pointed to by VALS. */
1407 tree
1408 build_constructor (tree type, vec<constructor_elt, va_gc> *vals)
1409 {
1410 tree c = make_node (CONSTRUCTOR);
1411 unsigned int i;
1412 constructor_elt *elt;
1413 bool constant_p = true;
1414 bool side_effects_p = false;
1415
1416 TREE_TYPE (c) = type;
1417 CONSTRUCTOR_ELTS (c) = vals;
1418
1419 FOR_EACH_VEC_SAFE_ELT (vals, i, elt)
1420 {
1421 /* Mostly ctors will have elts that don't have side-effects, so
1422 the usual case is to scan all the elements. Hence a single
1423 loop for both const and side effects, rather than one loop
1424 each (with early outs). */
1425 if (!TREE_CONSTANT (elt->value))
1426 constant_p = false;
1427 if (TREE_SIDE_EFFECTS (elt->value))
1428 side_effects_p = true;
1429 }
1430
1431 TREE_SIDE_EFFECTS (c) = side_effects_p;
1432 TREE_CONSTANT (c) = constant_p;
1433
1434 return c;
1435 }
1436
1437 /* Build a CONSTRUCTOR node made of a single initializer, with the specified
1438 INDEX and VALUE. */
1439 tree
1440 build_constructor_single (tree type, tree index, tree value)
1441 {
1442 vec<constructor_elt, va_gc> *v;
1443 constructor_elt elt = {index, value};
1444
1445 vec_alloc (v, 1);
1446 v->quick_push (elt);
1447
1448 return build_constructor (type, v);
1449 }
1450
1451
1452 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1453 are in a list pointed to by VALS. */
1454 tree
1455 build_constructor_from_list (tree type, tree vals)
1456 {
1457 tree t;
1458 vec<constructor_elt, va_gc> *v = NULL;
1459
1460 if (vals)
1461 {
1462 vec_alloc (v, list_length (vals));
1463 for (t = vals; t; t = TREE_CHAIN (t))
1464 CONSTRUCTOR_APPEND_ELT (v, TREE_PURPOSE (t), TREE_VALUE (t));
1465 }
1466
1467 return build_constructor (type, v);
1468 }
1469
1470 /* Return a new FIXED_CST node whose type is TYPE and value is F. */
1471
1472 tree
1473 build_fixed (tree type, FIXED_VALUE_TYPE f)
1474 {
1475 tree v;
1476 FIXED_VALUE_TYPE *fp;
1477
1478 v = make_node (FIXED_CST);
1479 fp = ggc_alloc_fixed_value ();
1480 memcpy (fp, &f, sizeof (FIXED_VALUE_TYPE));
1481
1482 TREE_TYPE (v) = type;
1483 TREE_FIXED_CST_PTR (v) = fp;
1484 return v;
1485 }
1486
1487 /* Return a new REAL_CST node whose type is TYPE and value is D. */
1488
1489 tree
1490 build_real (tree type, REAL_VALUE_TYPE d)
1491 {
1492 tree v;
1493 REAL_VALUE_TYPE *dp;
1494 int overflow = 0;
1495
1496 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
1497 Consider doing it via real_convert now. */
1498
1499 v = make_node (REAL_CST);
1500 dp = ggc_alloc_real_value ();
1501 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
1502
1503 TREE_TYPE (v) = type;
1504 TREE_REAL_CST_PTR (v) = dp;
1505 TREE_OVERFLOW (v) = overflow;
1506 return v;
1507 }
1508
1509 /* Return a new REAL_CST node whose type is TYPE
1510 and whose value is the integer value of the INTEGER_CST node I. */
1511
1512 REAL_VALUE_TYPE
1513 real_value_from_int_cst (const_tree type, const_tree i)
1514 {
1515 REAL_VALUE_TYPE d;
1516
1517 /* Clear all bits of the real value type so that we can later do
1518 bitwise comparisons to see if two values are the same. */
1519 memset (&d, 0, sizeof d);
1520
1521 real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode,
1522 TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
1523 TYPE_UNSIGNED (TREE_TYPE (i)));
1524 return d;
1525 }
1526
1527 /* Given a tree representing an integer constant I, return a tree
1528 representing the same value as a floating-point constant of type TYPE. */
1529
1530 tree
1531 build_real_from_int_cst (tree type, const_tree i)
1532 {
1533 tree v;
1534 int overflow = TREE_OVERFLOW (i);
1535
1536 v = build_real (type, real_value_from_int_cst (type, i));
1537
1538 TREE_OVERFLOW (v) |= overflow;
1539 return v;
1540 }
1541
1542 /* Return a newly constructed STRING_CST node whose value is
1543 the LEN characters at STR.
1544 Note that for a C string literal, LEN should include the trailing NUL.
1545 The TREE_TYPE is not initialized. */
1546
1547 tree
1548 build_string (int len, const char *str)
1549 {
1550 tree s;
1551 size_t length;
1552
1553 /* Do not waste bytes provided by padding of struct tree_string. */
1554 length = len + offsetof (struct tree_string, str) + 1;
1555
1556 record_node_allocation_statistics (STRING_CST, length);
1557
1558 s = ggc_alloc_tree_node (length);
1559
1560 memset (s, 0, sizeof (struct tree_typed));
1561 TREE_SET_CODE (s, STRING_CST);
1562 TREE_CONSTANT (s) = 1;
1563 TREE_STRING_LENGTH (s) = len;
1564 memcpy (s->string.str, str, len);
1565 s->string.str[len] = '\0';
1566
1567 return s;
1568 }
1569
1570 /* Return a newly constructed COMPLEX_CST node whose value is
1571 specified by the real and imaginary parts REAL and IMAG.
1572 Both REAL and IMAG should be constant nodes. TYPE, if specified,
1573 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
1574
1575 tree
1576 build_complex (tree type, tree real, tree imag)
1577 {
1578 tree t = make_node (COMPLEX_CST);
1579
1580 TREE_REALPART (t) = real;
1581 TREE_IMAGPART (t) = imag;
1582 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
1583 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
1584 return t;
1585 }
1586
1587 /* Return a constant of arithmetic type TYPE which is the
1588 multiplicative identity of the set TYPE. */
1589
1590 tree
1591 build_one_cst (tree type)
1592 {
1593 switch (TREE_CODE (type))
1594 {
1595 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1596 case POINTER_TYPE: case REFERENCE_TYPE:
1597 case OFFSET_TYPE:
1598 return build_int_cst (type, 1);
1599
1600 case REAL_TYPE:
1601 return build_real (type, dconst1);
1602
1603 case FIXED_POINT_TYPE:
1604 /* We can only generate 1 for accum types. */
1605 gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
1606 return build_fixed (type, FCONST1(TYPE_MODE (type)));
1607
1608 case VECTOR_TYPE:
1609 {
1610 tree scalar = build_one_cst (TREE_TYPE (type));
1611
1612 return build_vector_from_val (type, scalar);
1613 }
1614
1615 case COMPLEX_TYPE:
1616 return build_complex (type,
1617 build_one_cst (TREE_TYPE (type)),
1618 build_zero_cst (TREE_TYPE (type)));
1619
1620 default:
1621 gcc_unreachable ();
1622 }
1623 }
1624
1625 /* Build 0 constant of type TYPE. This is used by constructor folding
1626 and thus the constant should be represented in memory by
1627 zero(es). */
1628
1629 tree
1630 build_zero_cst (tree type)
1631 {
1632 switch (TREE_CODE (type))
1633 {
1634 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1635 case POINTER_TYPE: case REFERENCE_TYPE:
1636 case OFFSET_TYPE: case NULLPTR_TYPE:
1637 return build_int_cst (type, 0);
1638
1639 case REAL_TYPE:
1640 return build_real (type, dconst0);
1641
1642 case FIXED_POINT_TYPE:
1643 return build_fixed (type, FCONST0 (TYPE_MODE (type)));
1644
1645 case VECTOR_TYPE:
1646 {
1647 tree scalar = build_zero_cst (TREE_TYPE (type));
1648
1649 return build_vector_from_val (type, scalar);
1650 }
1651
1652 case COMPLEX_TYPE:
1653 {
1654 tree zero = build_zero_cst (TREE_TYPE (type));
1655
1656 return build_complex (type, zero, zero);
1657 }
1658
1659 default:
1660 if (!AGGREGATE_TYPE_P (type))
1661 return fold_convert (type, integer_zero_node);
1662 return build_constructor (type, NULL);
1663 }
1664 }
1665
1666
1667 /* Build a BINFO with LEN language slots. */
1668
1669 tree
1670 make_tree_binfo_stat (unsigned base_binfos MEM_STAT_DECL)
1671 {
1672 tree t;
1673 size_t length = (offsetof (struct tree_binfo, base_binfos)
1674 + vec<tree, va_gc>::embedded_size (base_binfos));
1675
1676 record_node_allocation_statistics (TREE_BINFO, length);
1677
1678 t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
1679
1680 memset (t, 0, offsetof (struct tree_binfo, base_binfos));
1681
1682 TREE_SET_CODE (t, TREE_BINFO);
1683
1684 BINFO_BASE_BINFOS (t)->embedded_init (base_binfos);
1685
1686 return t;
1687 }
1688
1689 /* Create a CASE_LABEL_EXPR tree node and return it. */
1690
1691 tree
1692 build_case_label (tree low_value, tree high_value, tree label_decl)
1693 {
1694 tree t = make_node (CASE_LABEL_EXPR);
1695
1696 TREE_TYPE (t) = void_type_node;
1697 SET_EXPR_LOCATION (t, DECL_SOURCE_LOCATION (label_decl));
1698
1699 CASE_LOW (t) = low_value;
1700 CASE_HIGH (t) = high_value;
1701 CASE_LABEL (t) = label_decl;
1702 CASE_CHAIN (t) = NULL_TREE;
1703
1704 return t;
1705 }
1706
1707 /* Build a newly constructed TREE_VEC node of length LEN. */
1708
1709 tree
1710 make_tree_vec_stat (int len MEM_STAT_DECL)
1711 {
1712 tree t;
1713 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
1714
1715 record_node_allocation_statistics (TREE_VEC, length);
1716
1717 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
1718
1719 TREE_SET_CODE (t, TREE_VEC);
1720 TREE_VEC_LENGTH (t) = len;
1721
1722 return t;
1723 }
1724 \f
1725 /* Return 1 if EXPR is the integer constant zero or a complex constant
1726 of zero. */
1727
1728 int
1729 integer_zerop (const_tree expr)
1730 {
1731 STRIP_NOPS (expr);
1732
1733 switch (TREE_CODE (expr))
1734 {
1735 case INTEGER_CST:
1736 return (TREE_INT_CST_LOW (expr) == 0
1737 && TREE_INT_CST_HIGH (expr) == 0);
1738 case COMPLEX_CST:
1739 return (integer_zerop (TREE_REALPART (expr))
1740 && integer_zerop (TREE_IMAGPART (expr)));
1741 case VECTOR_CST:
1742 {
1743 unsigned i;
1744 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
1745 if (!integer_zerop (VECTOR_CST_ELT (expr, i)))
1746 return false;
1747 return true;
1748 }
1749 default:
1750 return false;
1751 }
1752 }
1753
1754 /* Return 1 if EXPR is the integer constant one or the corresponding
1755 complex constant. */
1756
1757 int
1758 integer_onep (const_tree expr)
1759 {
1760 STRIP_NOPS (expr);
1761
1762 switch (TREE_CODE (expr))
1763 {
1764 case INTEGER_CST:
1765 return (TREE_INT_CST_LOW (expr) == 1
1766 && TREE_INT_CST_HIGH (expr) == 0);
1767 case COMPLEX_CST:
1768 return (integer_onep (TREE_REALPART (expr))
1769 && integer_zerop (TREE_IMAGPART (expr)));
1770 case VECTOR_CST:
1771 {
1772 unsigned i;
1773 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
1774 if (!integer_onep (VECTOR_CST_ELT (expr, i)))
1775 return false;
1776 return true;
1777 }
1778 default:
1779 return false;
1780 }
1781 }
1782
1783 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
1784 it contains. Likewise for the corresponding complex constant. */
1785
1786 int
1787 integer_all_onesp (const_tree expr)
1788 {
1789 int prec;
1790 int uns;
1791
1792 STRIP_NOPS (expr);
1793
1794 if (TREE_CODE (expr) == COMPLEX_CST
1795 && integer_all_onesp (TREE_REALPART (expr))
1796 && integer_zerop (TREE_IMAGPART (expr)))
1797 return 1;
1798
1799 else if (TREE_CODE (expr) == VECTOR_CST)
1800 {
1801 unsigned i;
1802 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
1803 if (!integer_all_onesp (VECTOR_CST_ELT (expr, i)))
1804 return 0;
1805 return 1;
1806 }
1807
1808 else if (TREE_CODE (expr) != INTEGER_CST)
1809 return 0;
1810
1811 uns = TYPE_UNSIGNED (TREE_TYPE (expr));
1812 if (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1813 && TREE_INT_CST_HIGH (expr) == -1)
1814 return 1;
1815 if (!uns)
1816 return 0;
1817
1818 prec = TYPE_PRECISION (TREE_TYPE (expr));
1819 if (prec >= HOST_BITS_PER_WIDE_INT)
1820 {
1821 HOST_WIDE_INT high_value;
1822 int shift_amount;
1823
1824 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
1825
1826 /* Can not handle precisions greater than twice the host int size. */
1827 gcc_assert (shift_amount <= HOST_BITS_PER_WIDE_INT);
1828 if (shift_amount == HOST_BITS_PER_WIDE_INT)
1829 /* Shifting by the host word size is undefined according to the ANSI
1830 standard, so we must handle this as a special case. */
1831 high_value = -1;
1832 else
1833 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
1834
1835 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1836 && TREE_INT_CST_HIGH (expr) == high_value);
1837 }
1838 else
1839 return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
1840 }
1841
1842 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
1843 one bit on). */
1844
1845 int
1846 integer_pow2p (const_tree expr)
1847 {
1848 int prec;
1849 unsigned HOST_WIDE_INT high, low;
1850
1851 STRIP_NOPS (expr);
1852
1853 if (TREE_CODE (expr) == COMPLEX_CST
1854 && integer_pow2p (TREE_REALPART (expr))
1855 && integer_zerop (TREE_IMAGPART (expr)))
1856 return 1;
1857
1858 if (TREE_CODE (expr) != INTEGER_CST)
1859 return 0;
1860
1861 prec = TYPE_PRECISION (TREE_TYPE (expr));
1862 high = TREE_INT_CST_HIGH (expr);
1863 low = TREE_INT_CST_LOW (expr);
1864
1865 /* First clear all bits that are beyond the type's precision in case
1866 we've been sign extended. */
1867
1868 if (prec == HOST_BITS_PER_DOUBLE_INT)
1869 ;
1870 else if (prec > HOST_BITS_PER_WIDE_INT)
1871 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1872 else
1873 {
1874 high = 0;
1875 if (prec < HOST_BITS_PER_WIDE_INT)
1876 low &= ~((HOST_WIDE_INT) (-1) << prec);
1877 }
1878
1879 if (high == 0 && low == 0)
1880 return 0;
1881
1882 return ((high == 0 && (low & (low - 1)) == 0)
1883 || (low == 0 && (high & (high - 1)) == 0));
1884 }
1885
1886 /* Return 1 if EXPR is an integer constant other than zero or a
1887 complex constant other than zero. */
1888
1889 int
1890 integer_nonzerop (const_tree expr)
1891 {
1892 STRIP_NOPS (expr);
1893
1894 return ((TREE_CODE (expr) == INTEGER_CST
1895 && (TREE_INT_CST_LOW (expr) != 0
1896 || TREE_INT_CST_HIGH (expr) != 0))
1897 || (TREE_CODE (expr) == COMPLEX_CST
1898 && (integer_nonzerop (TREE_REALPART (expr))
1899 || integer_nonzerop (TREE_IMAGPART (expr)))));
1900 }
1901
1902 /* Return 1 if EXPR is the fixed-point constant zero. */
1903
1904 int
1905 fixed_zerop (const_tree expr)
1906 {
1907 return (TREE_CODE (expr) == FIXED_CST
1908 && TREE_FIXED_CST (expr).data.is_zero ());
1909 }
1910
1911 /* Return the power of two represented by a tree node known to be a
1912 power of two. */
1913
1914 int
1915 tree_log2 (const_tree expr)
1916 {
1917 int prec;
1918 HOST_WIDE_INT high, low;
1919
1920 STRIP_NOPS (expr);
1921
1922 if (TREE_CODE (expr) == COMPLEX_CST)
1923 return tree_log2 (TREE_REALPART (expr));
1924
1925 prec = TYPE_PRECISION (TREE_TYPE (expr));
1926 high = TREE_INT_CST_HIGH (expr);
1927 low = TREE_INT_CST_LOW (expr);
1928
1929 /* First clear all bits that are beyond the type's precision in case
1930 we've been sign extended. */
1931
1932 if (prec == HOST_BITS_PER_DOUBLE_INT)
1933 ;
1934 else if (prec > HOST_BITS_PER_WIDE_INT)
1935 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1936 else
1937 {
1938 high = 0;
1939 if (prec < HOST_BITS_PER_WIDE_INT)
1940 low &= ~((HOST_WIDE_INT) (-1) << prec);
1941 }
1942
1943 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
1944 : exact_log2 (low));
1945 }
1946
1947 /* Similar, but return the largest integer Y such that 2 ** Y is less
1948 than or equal to EXPR. */
1949
1950 int
1951 tree_floor_log2 (const_tree expr)
1952 {
1953 int prec;
1954 HOST_WIDE_INT high, low;
1955
1956 STRIP_NOPS (expr);
1957
1958 if (TREE_CODE (expr) == COMPLEX_CST)
1959 return tree_log2 (TREE_REALPART (expr));
1960
1961 prec = TYPE_PRECISION (TREE_TYPE (expr));
1962 high = TREE_INT_CST_HIGH (expr);
1963 low = TREE_INT_CST_LOW (expr);
1964
1965 /* First clear all bits that are beyond the type's precision in case
1966 we've been sign extended. Ignore if type's precision hasn't been set
1967 since what we are doing is setting it. */
1968
1969 if (prec == HOST_BITS_PER_DOUBLE_INT || prec == 0)
1970 ;
1971 else if (prec > HOST_BITS_PER_WIDE_INT)
1972 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1973 else
1974 {
1975 high = 0;
1976 if (prec < HOST_BITS_PER_WIDE_INT)
1977 low &= ~((HOST_WIDE_INT) (-1) << prec);
1978 }
1979
1980 return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
1981 : floor_log2 (low));
1982 }
1983
1984 /* Return 1 if EXPR is the real constant zero. Trailing zeroes matter for
1985 decimal float constants, so don't return 1 for them. */
1986
1987 int
1988 real_zerop (const_tree expr)
1989 {
1990 STRIP_NOPS (expr);
1991
1992 switch (TREE_CODE (expr))
1993 {
1994 case REAL_CST:
1995 return REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0)
1996 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
1997 case COMPLEX_CST:
1998 return real_zerop (TREE_REALPART (expr))
1999 && real_zerop (TREE_IMAGPART (expr));
2000 case VECTOR_CST:
2001 {
2002 unsigned i;
2003 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
2004 if (!real_zerop (VECTOR_CST_ELT (expr, i)))
2005 return false;
2006 return true;
2007 }
2008 default:
2009 return false;
2010 }
2011 }
2012
2013 /* Return 1 if EXPR is the real constant one in real or complex form.
2014 Trailing zeroes matter for decimal float constants, so don't return
2015 1 for them. */
2016
2017 int
2018 real_onep (const_tree expr)
2019 {
2020 STRIP_NOPS (expr);
2021
2022 switch (TREE_CODE (expr))
2023 {
2024 case REAL_CST:
2025 return REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1)
2026 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2027 case COMPLEX_CST:
2028 return real_onep (TREE_REALPART (expr))
2029 && real_zerop (TREE_IMAGPART (expr));
2030 case VECTOR_CST:
2031 {
2032 unsigned i;
2033 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
2034 if (!real_onep (VECTOR_CST_ELT (expr, i)))
2035 return false;
2036 return true;
2037 }
2038 default:
2039 return false;
2040 }
2041 }
2042
2043 /* Return 1 if EXPR is the real constant two. Trailing zeroes matter
2044 for decimal float constants, so don't return 1 for them. */
2045
2046 int
2047 real_twop (const_tree expr)
2048 {
2049 STRIP_NOPS (expr);
2050
2051 switch (TREE_CODE (expr))
2052 {
2053 case REAL_CST:
2054 return REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2)
2055 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2056 case COMPLEX_CST:
2057 return real_twop (TREE_REALPART (expr))
2058 && real_zerop (TREE_IMAGPART (expr));
2059 case VECTOR_CST:
2060 {
2061 unsigned i;
2062 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
2063 if (!real_twop (VECTOR_CST_ELT (expr, i)))
2064 return false;
2065 return true;
2066 }
2067 default:
2068 return false;
2069 }
2070 }
2071
2072 /* Return 1 if EXPR is the real constant minus one. Trailing zeroes
2073 matter for decimal float constants, so don't return 1 for them. */
2074
2075 int
2076 real_minus_onep (const_tree expr)
2077 {
2078 STRIP_NOPS (expr);
2079
2080 switch (TREE_CODE (expr))
2081 {
2082 case REAL_CST:
2083 return REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconstm1)
2084 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2085 case COMPLEX_CST:
2086 return real_minus_onep (TREE_REALPART (expr))
2087 && real_zerop (TREE_IMAGPART (expr));
2088 case VECTOR_CST:
2089 {
2090 unsigned i;
2091 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
2092 if (!real_minus_onep (VECTOR_CST_ELT (expr, i)))
2093 return false;
2094 return true;
2095 }
2096 default:
2097 return false;
2098 }
2099 }
2100
2101 /* Nonzero if EXP is a constant or a cast of a constant. */
2102
2103 int
2104 really_constant_p (const_tree exp)
2105 {
2106 /* This is not quite the same as STRIP_NOPS. It does more. */
2107 while (CONVERT_EXPR_P (exp)
2108 || TREE_CODE (exp) == NON_LVALUE_EXPR)
2109 exp = TREE_OPERAND (exp, 0);
2110 return TREE_CONSTANT (exp);
2111 }
2112 \f
2113 /* Return first list element whose TREE_VALUE is ELEM.
2114 Return 0 if ELEM is not in LIST. */
2115
2116 tree
2117 value_member (tree elem, tree list)
2118 {
2119 while (list)
2120 {
2121 if (elem == TREE_VALUE (list))
2122 return list;
2123 list = TREE_CHAIN (list);
2124 }
2125 return NULL_TREE;
2126 }
2127
2128 /* Return first list element whose TREE_PURPOSE is ELEM.
2129 Return 0 if ELEM is not in LIST. */
2130
2131 tree
2132 purpose_member (const_tree elem, tree list)
2133 {
2134 while (list)
2135 {
2136 if (elem == TREE_PURPOSE (list))
2137 return list;
2138 list = TREE_CHAIN (list);
2139 }
2140 return NULL_TREE;
2141 }
2142
2143 /* Return true if ELEM is in V. */
2144
2145 bool
2146 vec_member (const_tree elem, vec<tree, va_gc> *v)
2147 {
2148 unsigned ix;
2149 tree t;
2150 FOR_EACH_VEC_SAFE_ELT (v, ix, t)
2151 if (elem == t)
2152 return true;
2153 return false;
2154 }
2155
2156 /* Returns element number IDX (zero-origin) of chain CHAIN, or
2157 NULL_TREE. */
2158
2159 tree
2160 chain_index (int idx, tree chain)
2161 {
2162 for (; chain && idx > 0; --idx)
2163 chain = TREE_CHAIN (chain);
2164 return chain;
2165 }
2166
2167 /* Return nonzero if ELEM is part of the chain CHAIN. */
2168
2169 int
2170 chain_member (const_tree elem, const_tree chain)
2171 {
2172 while (chain)
2173 {
2174 if (elem == chain)
2175 return 1;
2176 chain = DECL_CHAIN (chain);
2177 }
2178
2179 return 0;
2180 }
2181
2182 /* Return the length of a chain of nodes chained through TREE_CHAIN.
2183 We expect a null pointer to mark the end of the chain.
2184 This is the Lisp primitive `length'. */
2185
2186 int
2187 list_length (const_tree t)
2188 {
2189 const_tree p = t;
2190 #ifdef ENABLE_TREE_CHECKING
2191 const_tree q = t;
2192 #endif
2193 int len = 0;
2194
2195 while (p)
2196 {
2197 p = TREE_CHAIN (p);
2198 #ifdef ENABLE_TREE_CHECKING
2199 if (len % 2)
2200 q = TREE_CHAIN (q);
2201 gcc_assert (p != q);
2202 #endif
2203 len++;
2204 }
2205
2206 return len;
2207 }
2208
2209 /* Returns the number of FIELD_DECLs in TYPE. */
2210
2211 int
2212 fields_length (const_tree type)
2213 {
2214 tree t = TYPE_FIELDS (type);
2215 int count = 0;
2216
2217 for (; t; t = DECL_CHAIN (t))
2218 if (TREE_CODE (t) == FIELD_DECL)
2219 ++count;
2220
2221 return count;
2222 }
2223
2224 /* Returns the first FIELD_DECL in the TYPE_FIELDS of the RECORD_TYPE or
2225 UNION_TYPE TYPE, or NULL_TREE if none. */
2226
2227 tree
2228 first_field (const_tree type)
2229 {
2230 tree t = TYPE_FIELDS (type);
2231 while (t && TREE_CODE (t) != FIELD_DECL)
2232 t = TREE_CHAIN (t);
2233 return t;
2234 }
2235
2236 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
2237 by modifying the last node in chain 1 to point to chain 2.
2238 This is the Lisp primitive `nconc'. */
2239
2240 tree
2241 chainon (tree op1, tree op2)
2242 {
2243 tree t1;
2244
2245 if (!op1)
2246 return op2;
2247 if (!op2)
2248 return op1;
2249
2250 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
2251 continue;
2252 TREE_CHAIN (t1) = op2;
2253
2254 #ifdef ENABLE_TREE_CHECKING
2255 {
2256 tree t2;
2257 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
2258 gcc_assert (t2 != t1);
2259 }
2260 #endif
2261
2262 return op1;
2263 }
2264
2265 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
2266
2267 tree
2268 tree_last (tree chain)
2269 {
2270 tree next;
2271 if (chain)
2272 while ((next = TREE_CHAIN (chain)))
2273 chain = next;
2274 return chain;
2275 }
2276
2277 /* Reverse the order of elements in the chain T,
2278 and return the new head of the chain (old last element). */
2279
2280 tree
2281 nreverse (tree t)
2282 {
2283 tree prev = 0, decl, next;
2284 for (decl = t; decl; decl = next)
2285 {
2286 /* We shouldn't be using this function to reverse BLOCK chains; we
2287 have blocks_nreverse for that. */
2288 gcc_checking_assert (TREE_CODE (decl) != BLOCK);
2289 next = TREE_CHAIN (decl);
2290 TREE_CHAIN (decl) = prev;
2291 prev = decl;
2292 }
2293 return prev;
2294 }
2295 \f
2296 /* Return a newly created TREE_LIST node whose
2297 purpose and value fields are PARM and VALUE. */
2298
2299 tree
2300 build_tree_list_stat (tree parm, tree value MEM_STAT_DECL)
2301 {
2302 tree t = make_node_stat (TREE_LIST PASS_MEM_STAT);
2303 TREE_PURPOSE (t) = parm;
2304 TREE_VALUE (t) = value;
2305 return t;
2306 }
2307
2308 /* Build a chain of TREE_LIST nodes from a vector. */
2309
2310 tree
2311 build_tree_list_vec_stat (const vec<tree, va_gc> *vec MEM_STAT_DECL)
2312 {
2313 tree ret = NULL_TREE;
2314 tree *pp = &ret;
2315 unsigned int i;
2316 tree t;
2317 FOR_EACH_VEC_SAFE_ELT (vec, i, t)
2318 {
2319 *pp = build_tree_list_stat (NULL, t PASS_MEM_STAT);
2320 pp = &TREE_CHAIN (*pp);
2321 }
2322 return ret;
2323 }
2324
2325 /* Return a newly created TREE_LIST node whose
2326 purpose and value fields are PURPOSE and VALUE
2327 and whose TREE_CHAIN is CHAIN. */
2328
2329 tree
2330 tree_cons_stat (tree purpose, tree value, tree chain MEM_STAT_DECL)
2331 {
2332 tree node;
2333
2334 node = ggc_alloc_tree_node_stat (sizeof (struct tree_list) PASS_MEM_STAT);
2335 memset (node, 0, sizeof (struct tree_common));
2336
2337 record_node_allocation_statistics (TREE_LIST, sizeof (struct tree_list));
2338
2339 TREE_SET_CODE (node, TREE_LIST);
2340 TREE_CHAIN (node) = chain;
2341 TREE_PURPOSE (node) = purpose;
2342 TREE_VALUE (node) = value;
2343 return node;
2344 }
2345
2346 /* Return the values of the elements of a CONSTRUCTOR as a vector of
2347 trees. */
2348
2349 vec<tree, va_gc> *
2350 ctor_to_vec (tree ctor)
2351 {
2352 vec<tree, va_gc> *vec;
2353 vec_alloc (vec, CONSTRUCTOR_NELTS (ctor));
2354 unsigned int ix;
2355 tree val;
2356
2357 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (ctor), ix, val)
2358 vec->quick_push (val);
2359
2360 return vec;
2361 }
2362 \f
2363 /* Return the size nominally occupied by an object of type TYPE
2364 when it resides in memory. The value is measured in units of bytes,
2365 and its data type is that normally used for type sizes
2366 (which is the first type created by make_signed_type or
2367 make_unsigned_type). */
2368
2369 tree
2370 size_in_bytes (const_tree type)
2371 {
2372 tree t;
2373
2374 if (type == error_mark_node)
2375 return integer_zero_node;
2376
2377 type = TYPE_MAIN_VARIANT (type);
2378 t = TYPE_SIZE_UNIT (type);
2379
2380 if (t == 0)
2381 {
2382 lang_hooks.types.incomplete_type_error (NULL_TREE, type);
2383 return size_zero_node;
2384 }
2385
2386 return t;
2387 }
2388
2389 /* Return the size of TYPE (in bytes) as a wide integer
2390 or return -1 if the size can vary or is larger than an integer. */
2391
2392 HOST_WIDE_INT
2393 int_size_in_bytes (const_tree type)
2394 {
2395 tree t;
2396
2397 if (type == error_mark_node)
2398 return 0;
2399
2400 type = TYPE_MAIN_VARIANT (type);
2401 t = TYPE_SIZE_UNIT (type);
2402 if (t == 0
2403 || TREE_CODE (t) != INTEGER_CST
2404 || TREE_INT_CST_HIGH (t) != 0
2405 /* If the result would appear negative, it's too big to represent. */
2406 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
2407 return -1;
2408
2409 return TREE_INT_CST_LOW (t);
2410 }
2411
2412 /* Return the maximum size of TYPE (in bytes) as a wide integer
2413 or return -1 if the size can vary or is larger than an integer. */
2414
2415 HOST_WIDE_INT
2416 max_int_size_in_bytes (const_tree type)
2417 {
2418 HOST_WIDE_INT size = -1;
2419 tree size_tree;
2420
2421 /* If this is an array type, check for a possible MAX_SIZE attached. */
2422
2423 if (TREE_CODE (type) == ARRAY_TYPE)
2424 {
2425 size_tree = TYPE_ARRAY_MAX_SIZE (type);
2426
2427 if (size_tree && host_integerp (size_tree, 1))
2428 size = tree_low_cst (size_tree, 1);
2429 }
2430
2431 /* If we still haven't been able to get a size, see if the language
2432 can compute a maximum size. */
2433
2434 if (size == -1)
2435 {
2436 size_tree = lang_hooks.types.max_size (type);
2437
2438 if (size_tree && host_integerp (size_tree, 1))
2439 size = tree_low_cst (size_tree, 1);
2440 }
2441
2442 return size;
2443 }
2444
2445 /* Returns a tree for the size of EXP in bytes. */
2446
2447 tree
2448 tree_expr_size (const_tree exp)
2449 {
2450 if (DECL_P (exp)
2451 && DECL_SIZE_UNIT (exp) != 0)
2452 return DECL_SIZE_UNIT (exp);
2453 else
2454 return size_in_bytes (TREE_TYPE (exp));
2455 }
2456 \f
2457 /* Return the bit position of FIELD, in bits from the start of the record.
2458 This is a tree of type bitsizetype. */
2459
2460 tree
2461 bit_position (const_tree field)
2462 {
2463 return bit_from_pos (DECL_FIELD_OFFSET (field),
2464 DECL_FIELD_BIT_OFFSET (field));
2465 }
2466
2467 /* Likewise, but return as an integer. It must be representable in
2468 that way (since it could be a signed value, we don't have the
2469 option of returning -1 like int_size_in_byte can. */
2470
2471 HOST_WIDE_INT
2472 int_bit_position (const_tree field)
2473 {
2474 return tree_low_cst (bit_position (field), 0);
2475 }
2476 \f
2477 /* Return the byte position of FIELD, in bytes from the start of the record.
2478 This is a tree of type sizetype. */
2479
2480 tree
2481 byte_position (const_tree field)
2482 {
2483 return byte_from_pos (DECL_FIELD_OFFSET (field),
2484 DECL_FIELD_BIT_OFFSET (field));
2485 }
2486
2487 /* Likewise, but return as an integer. It must be representable in
2488 that way (since it could be a signed value, we don't have the
2489 option of returning -1 like int_size_in_byte can. */
2490
2491 HOST_WIDE_INT
2492 int_byte_position (const_tree field)
2493 {
2494 return tree_low_cst (byte_position (field), 0);
2495 }
2496 \f
2497 /* Return the strictest alignment, in bits, that T is known to have. */
2498
2499 unsigned int
2500 expr_align (const_tree t)
2501 {
2502 unsigned int align0, align1;
2503
2504 switch (TREE_CODE (t))
2505 {
2506 CASE_CONVERT: case NON_LVALUE_EXPR:
2507 /* If we have conversions, we know that the alignment of the
2508 object must meet each of the alignments of the types. */
2509 align0 = expr_align (TREE_OPERAND (t, 0));
2510 align1 = TYPE_ALIGN (TREE_TYPE (t));
2511 return MAX (align0, align1);
2512
2513 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
2514 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
2515 case CLEANUP_POINT_EXPR:
2516 /* These don't change the alignment of an object. */
2517 return expr_align (TREE_OPERAND (t, 0));
2518
2519 case COND_EXPR:
2520 /* The best we can do is say that the alignment is the least aligned
2521 of the two arms. */
2522 align0 = expr_align (TREE_OPERAND (t, 1));
2523 align1 = expr_align (TREE_OPERAND (t, 2));
2524 return MIN (align0, align1);
2525
2526 /* FIXME: LABEL_DECL and CONST_DECL never have DECL_ALIGN set
2527 meaningfully, it's always 1. */
2528 case LABEL_DECL: case CONST_DECL:
2529 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
2530 case FUNCTION_DECL:
2531 gcc_assert (DECL_ALIGN (t) != 0);
2532 return DECL_ALIGN (t);
2533
2534 default:
2535 break;
2536 }
2537
2538 /* Otherwise take the alignment from that of the type. */
2539 return TYPE_ALIGN (TREE_TYPE (t));
2540 }
2541 \f
2542 /* Return, as a tree node, the number of elements for TYPE (which is an
2543 ARRAY_TYPE) minus one. This counts only elements of the top array. */
2544
2545 tree
2546 array_type_nelts (const_tree type)
2547 {
2548 tree index_type, min, max;
2549
2550 /* If they did it with unspecified bounds, then we should have already
2551 given an error about it before we got here. */
2552 if (! TYPE_DOMAIN (type))
2553 return error_mark_node;
2554
2555 index_type = TYPE_DOMAIN (type);
2556 min = TYPE_MIN_VALUE (index_type);
2557 max = TYPE_MAX_VALUE (index_type);
2558
2559 /* TYPE_MAX_VALUE may not be set if the array has unknown length. */
2560 if (!max)
2561 return error_mark_node;
2562
2563 return (integer_zerop (min)
2564 ? max
2565 : fold_build2 (MINUS_EXPR, TREE_TYPE (max), max, min));
2566 }
2567 \f
2568 /* If arg is static -- a reference to an object in static storage -- then
2569 return the object. This is not the same as the C meaning of `static'.
2570 If arg isn't static, return NULL. */
2571
2572 tree
2573 staticp (tree arg)
2574 {
2575 switch (TREE_CODE (arg))
2576 {
2577 case FUNCTION_DECL:
2578 /* Nested functions are static, even though taking their address will
2579 involve a trampoline as we unnest the nested function and create
2580 the trampoline on the tree level. */
2581 return arg;
2582
2583 case VAR_DECL:
2584 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2585 && ! DECL_THREAD_LOCAL_P (arg)
2586 && ! DECL_DLLIMPORT_P (arg)
2587 ? arg : NULL);
2588
2589 case CONST_DECL:
2590 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2591 ? arg : NULL);
2592
2593 case CONSTRUCTOR:
2594 return TREE_STATIC (arg) ? arg : NULL;
2595
2596 case LABEL_DECL:
2597 case STRING_CST:
2598 return arg;
2599
2600 case COMPONENT_REF:
2601 /* If the thing being referenced is not a field, then it is
2602 something language specific. */
2603 gcc_assert (TREE_CODE (TREE_OPERAND (arg, 1)) == FIELD_DECL);
2604
2605 /* If we are referencing a bitfield, we can't evaluate an
2606 ADDR_EXPR at compile time and so it isn't a constant. */
2607 if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
2608 return NULL;
2609
2610 return staticp (TREE_OPERAND (arg, 0));
2611
2612 case BIT_FIELD_REF:
2613 return NULL;
2614
2615 case INDIRECT_REF:
2616 return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;
2617
2618 case ARRAY_REF:
2619 case ARRAY_RANGE_REF:
2620 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
2621 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
2622 return staticp (TREE_OPERAND (arg, 0));
2623 else
2624 return NULL;
2625
2626 case COMPOUND_LITERAL_EXPR:
2627 return TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (arg)) ? arg : NULL;
2628
2629 default:
2630 return NULL;
2631 }
2632 }
2633
2634 \f
2635
2636
2637 /* Return whether OP is a DECL whose address is function-invariant. */
2638
2639 bool
2640 decl_address_invariant_p (const_tree op)
2641 {
2642 /* The conditions below are slightly less strict than the one in
2643 staticp. */
2644
2645 switch (TREE_CODE (op))
2646 {
2647 case PARM_DECL:
2648 case RESULT_DECL:
2649 case LABEL_DECL:
2650 case FUNCTION_DECL:
2651 return true;
2652
2653 case VAR_DECL:
2654 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
2655 || DECL_THREAD_LOCAL_P (op)
2656 || DECL_CONTEXT (op) == current_function_decl
2657 || decl_function_context (op) == current_function_decl)
2658 return true;
2659 break;
2660
2661 case CONST_DECL:
2662 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
2663 || decl_function_context (op) == current_function_decl)
2664 return true;
2665 break;
2666
2667 default:
2668 break;
2669 }
2670
2671 return false;
2672 }
2673
2674 /* Return whether OP is a DECL whose address is interprocedural-invariant. */
2675
2676 bool
2677 decl_address_ip_invariant_p (const_tree op)
2678 {
2679 /* The conditions below are slightly less strict than the one in
2680 staticp. */
2681
2682 switch (TREE_CODE (op))
2683 {
2684 case LABEL_DECL:
2685 case FUNCTION_DECL:
2686 case STRING_CST:
2687 return true;
2688
2689 case VAR_DECL:
2690 if (((TREE_STATIC (op) || DECL_EXTERNAL (op))
2691 && !DECL_DLLIMPORT_P (op))
2692 || DECL_THREAD_LOCAL_P (op))
2693 return true;
2694 break;
2695
2696 case CONST_DECL:
2697 if ((TREE_STATIC (op) || DECL_EXTERNAL (op)))
2698 return true;
2699 break;
2700
2701 default:
2702 break;
2703 }
2704
2705 return false;
2706 }
2707
2708
2709 /* Return true if T is function-invariant (internal function, does
2710 not handle arithmetic; that's handled in skip_simple_arithmetic and
2711 tree_invariant_p). */
2712
2713 static bool tree_invariant_p (tree t);
2714
2715 static bool
2716 tree_invariant_p_1 (tree t)
2717 {
2718 tree op;
2719
2720 if (TREE_CONSTANT (t)
2721 || (TREE_READONLY (t) && !TREE_SIDE_EFFECTS (t)))
2722 return true;
2723
2724 switch (TREE_CODE (t))
2725 {
2726 case SAVE_EXPR:
2727 return true;
2728
2729 case ADDR_EXPR:
2730 op = TREE_OPERAND (t, 0);
2731 while (handled_component_p (op))
2732 {
2733 switch (TREE_CODE (op))
2734 {
2735 case ARRAY_REF:
2736 case ARRAY_RANGE_REF:
2737 if (!tree_invariant_p (TREE_OPERAND (op, 1))
2738 || TREE_OPERAND (op, 2) != NULL_TREE
2739 || TREE_OPERAND (op, 3) != NULL_TREE)
2740 return false;
2741 break;
2742
2743 case COMPONENT_REF:
2744 if (TREE_OPERAND (op, 2) != NULL_TREE)
2745 return false;
2746 break;
2747
2748 default:;
2749 }
2750 op = TREE_OPERAND (op, 0);
2751 }
2752
2753 return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
2754
2755 default:
2756 break;
2757 }
2758
2759 return false;
2760 }
2761
2762 /* Return true if T is function-invariant. */
2763
2764 static bool
2765 tree_invariant_p (tree t)
2766 {
2767 tree inner = skip_simple_arithmetic (t);
2768 return tree_invariant_p_1 (inner);
2769 }
2770
2771 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
2772 Do this to any expression which may be used in more than one place,
2773 but must be evaluated only once.
2774
2775 Normally, expand_expr would reevaluate the expression each time.
2776 Calling save_expr produces something that is evaluated and recorded
2777 the first time expand_expr is called on it. Subsequent calls to
2778 expand_expr just reuse the recorded value.
2779
2780 The call to expand_expr that generates code that actually computes
2781 the value is the first call *at compile time*. Subsequent calls
2782 *at compile time* generate code to use the saved value.
2783 This produces correct result provided that *at run time* control
2784 always flows through the insns made by the first expand_expr
2785 before reaching the other places where the save_expr was evaluated.
2786 You, the caller of save_expr, must make sure this is so.
2787
2788 Constants, and certain read-only nodes, are returned with no
2789 SAVE_EXPR because that is safe. Expressions containing placeholders
2790 are not touched; see tree.def for an explanation of what these
2791 are used for. */
2792
2793 tree
2794 save_expr (tree expr)
2795 {
2796 tree t = fold (expr);
2797 tree inner;
2798
2799 /* If the tree evaluates to a constant, then we don't want to hide that
2800 fact (i.e. this allows further folding, and direct checks for constants).
2801 However, a read-only object that has side effects cannot be bypassed.
2802 Since it is no problem to reevaluate literals, we just return the
2803 literal node. */
2804 inner = skip_simple_arithmetic (t);
2805 if (TREE_CODE (inner) == ERROR_MARK)
2806 return inner;
2807
2808 if (tree_invariant_p_1 (inner))
2809 return t;
2810
2811 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
2812 it means that the size or offset of some field of an object depends on
2813 the value within another field.
2814
2815 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
2816 and some variable since it would then need to be both evaluated once and
2817 evaluated more than once. Front-ends must assure this case cannot
2818 happen by surrounding any such subexpressions in their own SAVE_EXPR
2819 and forcing evaluation at the proper time. */
2820 if (contains_placeholder_p (inner))
2821 return t;
2822
2823 t = build1 (SAVE_EXPR, TREE_TYPE (expr), t);
2824 SET_EXPR_LOCATION (t, EXPR_LOCATION (expr));
2825
2826 /* This expression might be placed ahead of a jump to ensure that the
2827 value was computed on both sides of the jump. So make sure it isn't
2828 eliminated as dead. */
2829 TREE_SIDE_EFFECTS (t) = 1;
2830 return t;
2831 }
2832
2833 /* Look inside EXPR and into any simple arithmetic operations. Return
2834 the innermost non-arithmetic node. */
2835
2836 tree
2837 skip_simple_arithmetic (tree expr)
2838 {
2839 tree inner;
2840
2841 /* We don't care about whether this can be used as an lvalue in this
2842 context. */
2843 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
2844 expr = TREE_OPERAND (expr, 0);
2845
2846 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
2847 a constant, it will be more efficient to not make another SAVE_EXPR since
2848 it will allow better simplification and GCSE will be able to merge the
2849 computations if they actually occur. */
2850 inner = expr;
2851 while (1)
2852 {
2853 if (UNARY_CLASS_P (inner))
2854 inner = TREE_OPERAND (inner, 0);
2855 else if (BINARY_CLASS_P (inner))
2856 {
2857 if (tree_invariant_p (TREE_OPERAND (inner, 1)))
2858 inner = TREE_OPERAND (inner, 0);
2859 else if (tree_invariant_p (TREE_OPERAND (inner, 0)))
2860 inner = TREE_OPERAND (inner, 1);
2861 else
2862 break;
2863 }
2864 else
2865 break;
2866 }
2867
2868 return inner;
2869 }
2870
2871
2872 /* Return which tree structure is used by T. */
2873
2874 enum tree_node_structure_enum
2875 tree_node_structure (const_tree t)
2876 {
2877 const enum tree_code code = TREE_CODE (t);
2878 return tree_node_structure_for_code (code);
2879 }
2880
2881 /* Set various status flags when building a CALL_EXPR object T. */
2882
2883 static void
2884 process_call_operands (tree t)
2885 {
2886 bool side_effects = TREE_SIDE_EFFECTS (t);
2887 bool read_only = false;
2888 int i = call_expr_flags (t);
2889
2890 /* Calls have side-effects, except those to const or pure functions. */
2891 if ((i & ECF_LOOPING_CONST_OR_PURE) || !(i & (ECF_CONST | ECF_PURE)))
2892 side_effects = true;
2893 /* Propagate TREE_READONLY of arguments for const functions. */
2894 if (i & ECF_CONST)
2895 read_only = true;
2896
2897 if (!side_effects || read_only)
2898 for (i = 1; i < TREE_OPERAND_LENGTH (t); i++)
2899 {
2900 tree op = TREE_OPERAND (t, i);
2901 if (op && TREE_SIDE_EFFECTS (op))
2902 side_effects = true;
2903 if (op && !TREE_READONLY (op) && !CONSTANT_CLASS_P (op))
2904 read_only = false;
2905 }
2906
2907 TREE_SIDE_EFFECTS (t) = side_effects;
2908 TREE_READONLY (t) = read_only;
2909 }
2910 \f
2911 /* Return true if EXP contains a PLACEHOLDER_EXPR, i.e. if it represents a
2912 size or offset that depends on a field within a record. */
2913
2914 bool
2915 contains_placeholder_p (const_tree exp)
2916 {
2917 enum tree_code code;
2918
2919 if (!exp)
2920 return 0;
2921
2922 code = TREE_CODE (exp);
2923 if (code == PLACEHOLDER_EXPR)
2924 return 1;
2925
2926 switch (TREE_CODE_CLASS (code))
2927 {
2928 case tcc_reference:
2929 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
2930 position computations since they will be converted into a
2931 WITH_RECORD_EXPR involving the reference, which will assume
2932 here will be valid. */
2933 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
2934
2935 case tcc_exceptional:
2936 if (code == TREE_LIST)
2937 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
2938 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
2939 break;
2940
2941 case tcc_unary:
2942 case tcc_binary:
2943 case tcc_comparison:
2944 case tcc_expression:
2945 switch (code)
2946 {
2947 case COMPOUND_EXPR:
2948 /* Ignoring the first operand isn't quite right, but works best. */
2949 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
2950
2951 case COND_EXPR:
2952 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
2953 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
2954 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
2955
2956 case SAVE_EXPR:
2957 /* The save_expr function never wraps anything containing
2958 a PLACEHOLDER_EXPR. */
2959 return 0;
2960
2961 default:
2962 break;
2963 }
2964
2965 switch (TREE_CODE_LENGTH (code))
2966 {
2967 case 1:
2968 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
2969 case 2:
2970 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
2971 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
2972 default:
2973 return 0;
2974 }
2975
2976 case tcc_vl_exp:
2977 switch (code)
2978 {
2979 case CALL_EXPR:
2980 {
2981 const_tree arg;
2982 const_call_expr_arg_iterator iter;
2983 FOR_EACH_CONST_CALL_EXPR_ARG (arg, iter, exp)
2984 if (CONTAINS_PLACEHOLDER_P (arg))
2985 return 1;
2986 return 0;
2987 }
2988 default:
2989 return 0;
2990 }
2991
2992 default:
2993 return 0;
2994 }
2995 return 0;
2996 }
2997
2998 /* Return true if any part of the structure of TYPE involves a PLACEHOLDER_EXPR
2999 directly. This includes size, bounds, qualifiers (for QUAL_UNION_TYPE) and
3000 field positions. */
3001
3002 static bool
3003 type_contains_placeholder_1 (const_tree type)
3004 {
3005 /* If the size contains a placeholder or the parent type (component type in
3006 the case of arrays) type involves a placeholder, this type does. */
3007 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
3008 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
3009 || (!POINTER_TYPE_P (type)
3010 && TREE_TYPE (type)
3011 && type_contains_placeholder_p (TREE_TYPE (type))))
3012 return true;
3013
3014 /* Now do type-specific checks. Note that the last part of the check above
3015 greatly limits what we have to do below. */
3016 switch (TREE_CODE (type))
3017 {
3018 case VOID_TYPE:
3019 case COMPLEX_TYPE:
3020 case ENUMERAL_TYPE:
3021 case BOOLEAN_TYPE:
3022 case POINTER_TYPE:
3023 case OFFSET_TYPE:
3024 case REFERENCE_TYPE:
3025 case METHOD_TYPE:
3026 case FUNCTION_TYPE:
3027 case VECTOR_TYPE:
3028 case NULLPTR_TYPE:
3029 return false;
3030
3031 case INTEGER_TYPE:
3032 case REAL_TYPE:
3033 case FIXED_POINT_TYPE:
3034 /* Here we just check the bounds. */
3035 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
3036 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
3037
3038 case ARRAY_TYPE:
3039 /* We have already checked the component type above, so just check the
3040 domain type. */
3041 return type_contains_placeholder_p (TYPE_DOMAIN (type));
3042
3043 case RECORD_TYPE:
3044 case UNION_TYPE:
3045 case QUAL_UNION_TYPE:
3046 {
3047 tree field;
3048
3049 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
3050 if (TREE_CODE (field) == FIELD_DECL
3051 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
3052 || (TREE_CODE (type) == QUAL_UNION_TYPE
3053 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
3054 || type_contains_placeholder_p (TREE_TYPE (field))))
3055 return true;
3056
3057 return false;
3058 }
3059
3060 default:
3061 gcc_unreachable ();
3062 }
3063 }
3064
3065 /* Wrapper around above function used to cache its result. */
3066
3067 bool
3068 type_contains_placeholder_p (tree type)
3069 {
3070 bool result;
3071
3072 /* If the contains_placeholder_bits field has been initialized,
3073 then we know the answer. */
3074 if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0)
3075 return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1;
3076
3077 /* Indicate that we've seen this type node, and the answer is false.
3078 This is what we want to return if we run into recursion via fields. */
3079 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1;
3080
3081 /* Compute the real value. */
3082 result = type_contains_placeholder_1 (type);
3083
3084 /* Store the real value. */
3085 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1;
3086
3087 return result;
3088 }
3089 \f
3090 /* Push tree EXP onto vector QUEUE if it is not already present. */
3091
3092 static void
3093 push_without_duplicates (tree exp, vec<tree> *queue)
3094 {
3095 unsigned int i;
3096 tree iter;
3097
3098 FOR_EACH_VEC_ELT (*queue, i, iter)
3099 if (simple_cst_equal (iter, exp) == 1)
3100 break;
3101
3102 if (!iter)
3103 queue->safe_push (exp);
3104 }
3105
3106 /* Given a tree EXP, find all occurrences of references to fields
3107 in a PLACEHOLDER_EXPR and place them in vector REFS without
3108 duplicates. Also record VAR_DECLs and CONST_DECLs. Note that
3109 we assume here that EXP contains only arithmetic expressions
3110 or CALL_EXPRs with PLACEHOLDER_EXPRs occurring only in their
3111 argument list. */
3112
3113 void
3114 find_placeholder_in_expr (tree exp, vec<tree> *refs)
3115 {
3116 enum tree_code code = TREE_CODE (exp);
3117 tree inner;
3118 int i;
3119
3120 /* We handle TREE_LIST and COMPONENT_REF separately. */
3121 if (code == TREE_LIST)
3122 {
3123 FIND_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), refs);
3124 FIND_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), refs);
3125 }
3126 else if (code == COMPONENT_REF)
3127 {
3128 for (inner = TREE_OPERAND (exp, 0);
3129 REFERENCE_CLASS_P (inner);
3130 inner = TREE_OPERAND (inner, 0))
3131 ;
3132
3133 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
3134 push_without_duplicates (exp, refs);
3135 else
3136 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), refs);
3137 }
3138 else
3139 switch (TREE_CODE_CLASS (code))
3140 {
3141 case tcc_constant:
3142 break;
3143
3144 case tcc_declaration:
3145 /* Variables allocated to static storage can stay. */
3146 if (!TREE_STATIC (exp))
3147 push_without_duplicates (exp, refs);
3148 break;
3149
3150 case tcc_expression:
3151 /* This is the pattern built in ada/make_aligning_type. */
3152 if (code == ADDR_EXPR
3153 && TREE_CODE (TREE_OPERAND (exp, 0)) == PLACEHOLDER_EXPR)
3154 {
3155 push_without_duplicates (exp, refs);
3156 break;
3157 }
3158
3159 /* Fall through... */
3160
3161 case tcc_exceptional:
3162 case tcc_unary:
3163 case tcc_binary:
3164 case tcc_comparison:
3165 case tcc_reference:
3166 for (i = 0; i < TREE_CODE_LENGTH (code); i++)
3167 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
3168 break;
3169
3170 case tcc_vl_exp:
3171 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3172 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
3173 break;
3174
3175 default:
3176 gcc_unreachable ();
3177 }
3178 }
3179
3180 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
3181 return a tree with all occurrences of references to F in a
3182 PLACEHOLDER_EXPR replaced by R. Also handle VAR_DECLs and
3183 CONST_DECLs. Note that we assume here that EXP contains only
3184 arithmetic expressions or CALL_EXPRs with PLACEHOLDER_EXPRs
3185 occurring only in their argument list. */
3186
3187 tree
3188 substitute_in_expr (tree exp, tree f, tree r)
3189 {
3190 enum tree_code code = TREE_CODE (exp);
3191 tree op0, op1, op2, op3;
3192 tree new_tree;
3193
3194 /* We handle TREE_LIST and COMPONENT_REF separately. */
3195 if (code == TREE_LIST)
3196 {
3197 op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
3198 op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
3199 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
3200 return exp;
3201
3202 return tree_cons (TREE_PURPOSE (exp), op1, op0);
3203 }
3204 else if (code == COMPONENT_REF)
3205 {
3206 tree inner;
3207
3208 /* If this expression is getting a value from a PLACEHOLDER_EXPR
3209 and it is the right field, replace it with R. */
3210 for (inner = TREE_OPERAND (exp, 0);
3211 REFERENCE_CLASS_P (inner);
3212 inner = TREE_OPERAND (inner, 0))
3213 ;
3214
3215 /* The field. */
3216 op1 = TREE_OPERAND (exp, 1);
3217
3218 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && op1 == f)
3219 return r;
3220
3221 /* If this expression hasn't been completed let, leave it alone. */
3222 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && !TREE_TYPE (inner))
3223 return exp;
3224
3225 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3226 if (op0 == TREE_OPERAND (exp, 0))
3227 return exp;
3228
3229 new_tree
3230 = fold_build3 (COMPONENT_REF, TREE_TYPE (exp), op0, op1, NULL_TREE);
3231 }
3232 else
3233 switch (TREE_CODE_CLASS (code))
3234 {
3235 case tcc_constant:
3236 return exp;
3237
3238 case tcc_declaration:
3239 if (exp == f)
3240 return r;
3241 else
3242 return exp;
3243
3244 case tcc_expression:
3245 if (exp == f)
3246 return r;
3247
3248 /* Fall through... */
3249
3250 case tcc_exceptional:
3251 case tcc_unary:
3252 case tcc_binary:
3253 case tcc_comparison:
3254 case tcc_reference:
3255 switch (TREE_CODE_LENGTH (code))
3256 {
3257 case 0:
3258 return exp;
3259
3260 case 1:
3261 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3262 if (op0 == TREE_OPERAND (exp, 0))
3263 return exp;
3264
3265 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
3266 break;
3267
3268 case 2:
3269 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3270 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3271
3272 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
3273 return exp;
3274
3275 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
3276 break;
3277
3278 case 3:
3279 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3280 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3281 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
3282
3283 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3284 && op2 == TREE_OPERAND (exp, 2))
3285 return exp;
3286
3287 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
3288 break;
3289
3290 case 4:
3291 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3292 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3293 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
3294 op3 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 3), f, r);
3295
3296 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3297 && op2 == TREE_OPERAND (exp, 2)
3298 && op3 == TREE_OPERAND (exp, 3))
3299 return exp;
3300
3301 new_tree
3302 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
3303 break;
3304
3305 default:
3306 gcc_unreachable ();
3307 }
3308 break;
3309
3310 case tcc_vl_exp:
3311 {
3312 int i;
3313
3314 new_tree = NULL_TREE;
3315
3316 /* If we are trying to replace F with a constant, inline back
3317 functions which do nothing else than computing a value from
3318 the arguments they are passed. This makes it possible to
3319 fold partially or entirely the replacement expression. */
3320 if (CONSTANT_CLASS_P (r) && code == CALL_EXPR)
3321 {
3322 tree t = maybe_inline_call_in_expr (exp);
3323 if (t)
3324 return SUBSTITUTE_IN_EXPR (t, f, r);
3325 }
3326
3327 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3328 {
3329 tree op = TREE_OPERAND (exp, i);
3330 tree new_op = SUBSTITUTE_IN_EXPR (op, f, r);
3331 if (new_op != op)
3332 {
3333 if (!new_tree)
3334 new_tree = copy_node (exp);
3335 TREE_OPERAND (new_tree, i) = new_op;
3336 }
3337 }
3338
3339 if (new_tree)
3340 {
3341 new_tree = fold (new_tree);
3342 if (TREE_CODE (new_tree) == CALL_EXPR)
3343 process_call_operands (new_tree);
3344 }
3345 else
3346 return exp;
3347 }
3348 break;
3349
3350 default:
3351 gcc_unreachable ();
3352 }
3353
3354 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
3355
3356 if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
3357 TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
3358
3359 return new_tree;
3360 }
3361
3362 /* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
3363 for it within OBJ, a tree that is an object or a chain of references. */
3364
3365 tree
3366 substitute_placeholder_in_expr (tree exp, tree obj)
3367 {
3368 enum tree_code code = TREE_CODE (exp);
3369 tree op0, op1, op2, op3;
3370 tree new_tree;
3371
3372 /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
3373 in the chain of OBJ. */
3374 if (code == PLACEHOLDER_EXPR)
3375 {
3376 tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
3377 tree elt;
3378
3379 for (elt = obj; elt != 0;
3380 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
3381 || TREE_CODE (elt) == COND_EXPR)
3382 ? TREE_OPERAND (elt, 1)
3383 : (REFERENCE_CLASS_P (elt)
3384 || UNARY_CLASS_P (elt)
3385 || BINARY_CLASS_P (elt)
3386 || VL_EXP_CLASS_P (elt)
3387 || EXPRESSION_CLASS_P (elt))
3388 ? TREE_OPERAND (elt, 0) : 0))
3389 if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
3390 return elt;
3391
3392 for (elt = obj; elt != 0;
3393 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
3394 || TREE_CODE (elt) == COND_EXPR)
3395 ? TREE_OPERAND (elt, 1)
3396 : (REFERENCE_CLASS_P (elt)
3397 || UNARY_CLASS_P (elt)
3398 || BINARY_CLASS_P (elt)
3399 || VL_EXP_CLASS_P (elt)
3400 || EXPRESSION_CLASS_P (elt))
3401 ? TREE_OPERAND (elt, 0) : 0))
3402 if (POINTER_TYPE_P (TREE_TYPE (elt))
3403 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
3404 == need_type))
3405 return fold_build1 (INDIRECT_REF, need_type, elt);
3406
3407 /* If we didn't find it, return the original PLACEHOLDER_EXPR. If it
3408 survives until RTL generation, there will be an error. */
3409 return exp;
3410 }
3411
3412 /* TREE_LIST is special because we need to look at TREE_VALUE
3413 and TREE_CHAIN, not TREE_OPERANDS. */
3414 else if (code == TREE_LIST)
3415 {
3416 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
3417 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
3418 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
3419 return exp;
3420
3421 return tree_cons (TREE_PURPOSE (exp), op1, op0);
3422 }
3423 else
3424 switch (TREE_CODE_CLASS (code))
3425 {
3426 case tcc_constant:
3427 case tcc_declaration:
3428 return exp;
3429
3430 case tcc_exceptional:
3431 case tcc_unary:
3432 case tcc_binary:
3433 case tcc_comparison:
3434 case tcc_expression:
3435 case tcc_reference:
3436 case tcc_statement:
3437 switch (TREE_CODE_LENGTH (code))
3438 {
3439 case 0:
3440 return exp;
3441
3442 case 1:
3443 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3444 if (op0 == TREE_OPERAND (exp, 0))
3445 return exp;
3446
3447 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
3448 break;
3449
3450 case 2:
3451 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3452 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3453
3454 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
3455 return exp;
3456
3457 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
3458 break;
3459
3460 case 3:
3461 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3462 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3463 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
3464
3465 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3466 && op2 == TREE_OPERAND (exp, 2))
3467 return exp;
3468
3469 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
3470 break;
3471
3472 case 4:
3473 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3474 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3475 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
3476 op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
3477
3478 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3479 && op2 == TREE_OPERAND (exp, 2)
3480 && op3 == TREE_OPERAND (exp, 3))
3481 return exp;
3482
3483 new_tree
3484 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
3485 break;
3486
3487 default:
3488 gcc_unreachable ();
3489 }
3490 break;
3491
3492 case tcc_vl_exp:
3493 {
3494 int i;
3495
3496 new_tree = NULL_TREE;
3497
3498 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3499 {
3500 tree op = TREE_OPERAND (exp, i);
3501 tree new_op = SUBSTITUTE_PLACEHOLDER_IN_EXPR (op, obj);
3502 if (new_op != op)
3503 {
3504 if (!new_tree)
3505 new_tree = copy_node (exp);
3506 TREE_OPERAND (new_tree, i) = new_op;
3507 }
3508 }
3509
3510 if (new_tree)
3511 {
3512 new_tree = fold (new_tree);
3513 if (TREE_CODE (new_tree) == CALL_EXPR)
3514 process_call_operands (new_tree);
3515 }
3516 else
3517 return exp;
3518 }
3519 break;
3520
3521 default:
3522 gcc_unreachable ();
3523 }
3524
3525 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
3526
3527 if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
3528 TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
3529
3530 return new_tree;
3531 }
3532 \f
3533 /* Stabilize a reference so that we can use it any number of times
3534 without causing its operands to be evaluated more than once.
3535 Returns the stabilized reference. This works by means of save_expr,
3536 so see the caveats in the comments about save_expr.
3537
3538 Also allows conversion expressions whose operands are references.
3539 Any other kind of expression is returned unchanged. */
3540
3541 tree
3542 stabilize_reference (tree ref)
3543 {
3544 tree result;
3545 enum tree_code code = TREE_CODE (ref);
3546
3547 switch (code)
3548 {
3549 case VAR_DECL:
3550 case PARM_DECL:
3551 case RESULT_DECL:
3552 /* No action is needed in this case. */
3553 return ref;
3554
3555 CASE_CONVERT:
3556 case FLOAT_EXPR:
3557 case FIX_TRUNC_EXPR:
3558 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
3559 break;
3560
3561 case INDIRECT_REF:
3562 result = build_nt (INDIRECT_REF,
3563 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
3564 break;
3565
3566 case COMPONENT_REF:
3567 result = build_nt (COMPONENT_REF,
3568 stabilize_reference (TREE_OPERAND (ref, 0)),
3569 TREE_OPERAND (ref, 1), NULL_TREE);
3570 break;
3571
3572 case BIT_FIELD_REF:
3573 result = build_nt (BIT_FIELD_REF,
3574 stabilize_reference (TREE_OPERAND (ref, 0)),
3575 TREE_OPERAND (ref, 1), TREE_OPERAND (ref, 2));
3576 break;
3577
3578 case ARRAY_REF:
3579 result = build_nt (ARRAY_REF,
3580 stabilize_reference (TREE_OPERAND (ref, 0)),
3581 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
3582 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
3583 break;
3584
3585 case ARRAY_RANGE_REF:
3586 result = build_nt (ARRAY_RANGE_REF,
3587 stabilize_reference (TREE_OPERAND (ref, 0)),
3588 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
3589 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
3590 break;
3591
3592 case COMPOUND_EXPR:
3593 /* We cannot wrap the first expression in a SAVE_EXPR, as then
3594 it wouldn't be ignored. This matters when dealing with
3595 volatiles. */
3596 return stabilize_reference_1 (ref);
3597
3598 /* If arg isn't a kind of lvalue we recognize, make no change.
3599 Caller should recognize the error for an invalid lvalue. */
3600 default:
3601 return ref;
3602
3603 case ERROR_MARK:
3604 return error_mark_node;
3605 }
3606
3607 TREE_TYPE (result) = TREE_TYPE (ref);
3608 TREE_READONLY (result) = TREE_READONLY (ref);
3609 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
3610 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
3611
3612 return result;
3613 }
3614
3615 /* Subroutine of stabilize_reference; this is called for subtrees of
3616 references. Any expression with side-effects must be put in a SAVE_EXPR
3617 to ensure that it is only evaluated once.
3618
3619 We don't put SAVE_EXPR nodes around everything, because assigning very
3620 simple expressions to temporaries causes us to miss good opportunities
3621 for optimizations. Among other things, the opportunity to fold in the
3622 addition of a constant into an addressing mode often gets lost, e.g.
3623 "y[i+1] += x;". In general, we take the approach that we should not make
3624 an assignment unless we are forced into it - i.e., that any non-side effect
3625 operator should be allowed, and that cse should take care of coalescing
3626 multiple utterances of the same expression should that prove fruitful. */
3627
3628 tree
3629 stabilize_reference_1 (tree e)
3630 {
3631 tree result;
3632 enum tree_code code = TREE_CODE (e);
3633
3634 /* We cannot ignore const expressions because it might be a reference
3635 to a const array but whose index contains side-effects. But we can
3636 ignore things that are actual constant or that already have been
3637 handled by this function. */
3638
3639 if (tree_invariant_p (e))
3640 return e;
3641
3642 switch (TREE_CODE_CLASS (code))
3643 {
3644 case tcc_exceptional:
3645 case tcc_type:
3646 case tcc_declaration:
3647 case tcc_comparison:
3648 case tcc_statement:
3649 case tcc_expression:
3650 case tcc_reference:
3651 case tcc_vl_exp:
3652 /* If the expression has side-effects, then encase it in a SAVE_EXPR
3653 so that it will only be evaluated once. */
3654 /* The reference (r) and comparison (<) classes could be handled as
3655 below, but it is generally faster to only evaluate them once. */
3656 if (TREE_SIDE_EFFECTS (e))
3657 return save_expr (e);
3658 return e;
3659
3660 case tcc_constant:
3661 /* Constants need no processing. In fact, we should never reach
3662 here. */
3663 return e;
3664
3665 case tcc_binary:
3666 /* Division is slow and tends to be compiled with jumps,
3667 especially the division by powers of 2 that is often
3668 found inside of an array reference. So do it just once. */
3669 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
3670 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
3671 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
3672 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
3673 return save_expr (e);
3674 /* Recursively stabilize each operand. */
3675 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
3676 stabilize_reference_1 (TREE_OPERAND (e, 1)));
3677 break;
3678
3679 case tcc_unary:
3680 /* Recursively stabilize each operand. */
3681 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
3682 break;
3683
3684 default:
3685 gcc_unreachable ();
3686 }
3687
3688 TREE_TYPE (result) = TREE_TYPE (e);
3689 TREE_READONLY (result) = TREE_READONLY (e);
3690 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
3691 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
3692
3693 return result;
3694 }
3695 \f
3696 /* Low-level constructors for expressions. */
3697
3698 /* A helper function for build1 and constant folders. Set TREE_CONSTANT,
3699 and TREE_SIDE_EFFECTS for an ADDR_EXPR. */
3700
3701 void
3702 recompute_tree_invariant_for_addr_expr (tree t)
3703 {
3704 tree node;
3705 bool tc = true, se = false;
3706
3707 /* We started out assuming this address is both invariant and constant, but
3708 does not have side effects. Now go down any handled components and see if
3709 any of them involve offsets that are either non-constant or non-invariant.
3710 Also check for side-effects.
3711
3712 ??? Note that this code makes no attempt to deal with the case where
3713 taking the address of something causes a copy due to misalignment. */
3714
3715 #define UPDATE_FLAGS(NODE) \
3716 do { tree _node = (NODE); \
3717 if (_node && !TREE_CONSTANT (_node)) tc = false; \
3718 if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
3719
3720 for (node = TREE_OPERAND (t, 0); handled_component_p (node);
3721 node = TREE_OPERAND (node, 0))
3722 {
3723 /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
3724 array reference (probably made temporarily by the G++ front end),
3725 so ignore all the operands. */
3726 if ((TREE_CODE (node) == ARRAY_REF
3727 || TREE_CODE (node) == ARRAY_RANGE_REF)
3728 && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
3729 {
3730 UPDATE_FLAGS (TREE_OPERAND (node, 1));
3731 if (TREE_OPERAND (node, 2))
3732 UPDATE_FLAGS (TREE_OPERAND (node, 2));
3733 if (TREE_OPERAND (node, 3))
3734 UPDATE_FLAGS (TREE_OPERAND (node, 3));
3735 }
3736 /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
3737 FIELD_DECL, apparently. The G++ front end can put something else
3738 there, at least temporarily. */
3739 else if (TREE_CODE (node) == COMPONENT_REF
3740 && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
3741 {
3742 if (TREE_OPERAND (node, 2))
3743 UPDATE_FLAGS (TREE_OPERAND (node, 2));
3744 }
3745 }
3746
3747 node = lang_hooks.expr_to_decl (node, &tc, &se);
3748
3749 /* Now see what's inside. If it's an INDIRECT_REF, copy our properties from
3750 the address, since &(*a)->b is a form of addition. If it's a constant, the
3751 address is constant too. If it's a decl, its address is constant if the
3752 decl is static. Everything else is not constant and, furthermore,
3753 taking the address of a volatile variable is not volatile. */
3754 if (TREE_CODE (node) == INDIRECT_REF
3755 || TREE_CODE (node) == MEM_REF)
3756 UPDATE_FLAGS (TREE_OPERAND (node, 0));
3757 else if (CONSTANT_CLASS_P (node))
3758 ;
3759 else if (DECL_P (node))
3760 tc &= (staticp (node) != NULL_TREE);
3761 else
3762 {
3763 tc = false;
3764 se |= TREE_SIDE_EFFECTS (node);
3765 }
3766
3767
3768 TREE_CONSTANT (t) = tc;
3769 TREE_SIDE_EFFECTS (t) = se;
3770 #undef UPDATE_FLAGS
3771 }
3772
3773 /* Build an expression of code CODE, data type TYPE, and operands as
3774 specified. Expressions and reference nodes can be created this way.
3775 Constants, decls, types and misc nodes cannot be.
3776
3777 We define 5 non-variadic functions, from 0 to 4 arguments. This is
3778 enough for all extant tree codes. */
3779
3780 tree
3781 build0_stat (enum tree_code code, tree tt MEM_STAT_DECL)
3782 {
3783 tree t;
3784
3785 gcc_assert (TREE_CODE_LENGTH (code) == 0);
3786
3787 t = make_node_stat (code PASS_MEM_STAT);
3788 TREE_TYPE (t) = tt;
3789
3790 return t;
3791 }
3792
3793 tree
3794 build1_stat (enum tree_code code, tree type, tree node MEM_STAT_DECL)
3795 {
3796 int length = sizeof (struct tree_exp);
3797 tree t;
3798
3799 record_node_allocation_statistics (code, length);
3800
3801 gcc_assert (TREE_CODE_LENGTH (code) == 1);
3802
3803 t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
3804
3805 memset (t, 0, sizeof (struct tree_common));
3806
3807 TREE_SET_CODE (t, code);
3808
3809 TREE_TYPE (t) = type;
3810 SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
3811 TREE_OPERAND (t, 0) = node;
3812 if (node && !TYPE_P (node))
3813 {
3814 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
3815 TREE_READONLY (t) = TREE_READONLY (node);
3816 }
3817
3818 if (TREE_CODE_CLASS (code) == tcc_statement)
3819 TREE_SIDE_EFFECTS (t) = 1;
3820 else switch (code)
3821 {
3822 case VA_ARG_EXPR:
3823 /* All of these have side-effects, no matter what their
3824 operands are. */
3825 TREE_SIDE_EFFECTS (t) = 1;
3826 TREE_READONLY (t) = 0;
3827 break;
3828
3829 case INDIRECT_REF:
3830 /* Whether a dereference is readonly has nothing to do with whether
3831 its operand is readonly. */
3832 TREE_READONLY (t) = 0;
3833 break;
3834
3835 case ADDR_EXPR:
3836 if (node)
3837 recompute_tree_invariant_for_addr_expr (t);
3838 break;
3839
3840 default:
3841 if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
3842 && node && !TYPE_P (node)
3843 && TREE_CONSTANT (node))
3844 TREE_CONSTANT (t) = 1;
3845 if (TREE_CODE_CLASS (code) == tcc_reference
3846 && node && TREE_THIS_VOLATILE (node))
3847 TREE_THIS_VOLATILE (t) = 1;
3848 break;
3849 }
3850
3851 return t;
3852 }
3853
3854 #define PROCESS_ARG(N) \
3855 do { \
3856 TREE_OPERAND (t, N) = arg##N; \
3857 if (arg##N &&!TYPE_P (arg##N)) \
3858 { \
3859 if (TREE_SIDE_EFFECTS (arg##N)) \
3860 side_effects = 1; \
3861 if (!TREE_READONLY (arg##N) \
3862 && !CONSTANT_CLASS_P (arg##N)) \
3863 (void) (read_only = 0); \
3864 if (!TREE_CONSTANT (arg##N)) \
3865 (void) (constant = 0); \
3866 } \
3867 } while (0)
3868
3869 tree
3870 build2_stat (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
3871 {
3872 bool constant, read_only, side_effects;
3873 tree t;
3874
3875 gcc_assert (TREE_CODE_LENGTH (code) == 2);
3876
3877 if ((code == MINUS_EXPR || code == PLUS_EXPR || code == MULT_EXPR)
3878 && arg0 && arg1 && tt && POINTER_TYPE_P (tt)
3879 /* When sizetype precision doesn't match that of pointers
3880 we need to be able to build explicit extensions or truncations
3881 of the offset argument. */
3882 && TYPE_PRECISION (sizetype) == TYPE_PRECISION (tt))
3883 gcc_assert (TREE_CODE (arg0) == INTEGER_CST
3884 && TREE_CODE (arg1) == INTEGER_CST);
3885
3886 if (code == POINTER_PLUS_EXPR && arg0 && arg1 && tt)
3887 gcc_assert (POINTER_TYPE_P (tt) && POINTER_TYPE_P (TREE_TYPE (arg0))
3888 && ptrofftype_p (TREE_TYPE (arg1)));
3889
3890 t = make_node_stat (code PASS_MEM_STAT);
3891 TREE_TYPE (t) = tt;
3892
3893 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
3894 result based on those same flags for the arguments. But if the
3895 arguments aren't really even `tree' expressions, we shouldn't be trying
3896 to do this. */
3897
3898 /* Expressions without side effects may be constant if their
3899 arguments are as well. */
3900 constant = (TREE_CODE_CLASS (code) == tcc_comparison
3901 || TREE_CODE_CLASS (code) == tcc_binary);
3902 read_only = 1;
3903 side_effects = TREE_SIDE_EFFECTS (t);
3904
3905 PROCESS_ARG(0);
3906 PROCESS_ARG(1);
3907
3908 TREE_READONLY (t) = read_only;
3909 TREE_CONSTANT (t) = constant;
3910 TREE_SIDE_EFFECTS (t) = side_effects;
3911 TREE_THIS_VOLATILE (t)
3912 = (TREE_CODE_CLASS (code) == tcc_reference
3913 && arg0 && TREE_THIS_VOLATILE (arg0));
3914
3915 return t;
3916 }
3917
3918
3919 tree
3920 build3_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3921 tree arg2 MEM_STAT_DECL)
3922 {
3923 bool constant, read_only, side_effects;
3924 tree t;
3925
3926 gcc_assert (TREE_CODE_LENGTH (code) == 3);
3927 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
3928
3929 t = make_node_stat (code PASS_MEM_STAT);
3930 TREE_TYPE (t) = tt;
3931
3932 read_only = 1;
3933
3934 /* As a special exception, if COND_EXPR has NULL branches, we
3935 assume that it is a gimple statement and always consider
3936 it to have side effects. */
3937 if (code == COND_EXPR
3938 && tt == void_type_node
3939 && arg1 == NULL_TREE
3940 && arg2 == NULL_TREE)
3941 side_effects = true;
3942 else
3943 side_effects = TREE_SIDE_EFFECTS (t);
3944
3945 PROCESS_ARG(0);
3946 PROCESS_ARG(1);
3947 PROCESS_ARG(2);
3948
3949 if (code == COND_EXPR)
3950 TREE_READONLY (t) = read_only;
3951
3952 TREE_SIDE_EFFECTS (t) = side_effects;
3953 TREE_THIS_VOLATILE (t)
3954 = (TREE_CODE_CLASS (code) == tcc_reference
3955 && arg0 && TREE_THIS_VOLATILE (arg0));
3956
3957 return t;
3958 }
3959
3960 tree
3961 build4_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3962 tree arg2, tree arg3 MEM_STAT_DECL)
3963 {
3964 bool constant, read_only, side_effects;
3965 tree t;
3966
3967 gcc_assert (TREE_CODE_LENGTH (code) == 4);
3968
3969 t = make_node_stat (code PASS_MEM_STAT);
3970 TREE_TYPE (t) = tt;
3971
3972 side_effects = TREE_SIDE_EFFECTS (t);
3973
3974 PROCESS_ARG(0);
3975 PROCESS_ARG(1);
3976 PROCESS_ARG(2);
3977 PROCESS_ARG(3);
3978
3979 TREE_SIDE_EFFECTS (t) = side_effects;
3980 TREE_THIS_VOLATILE (t)
3981 = (TREE_CODE_CLASS (code) == tcc_reference
3982 && arg0 && TREE_THIS_VOLATILE (arg0));
3983
3984 return t;
3985 }
3986
3987 tree
3988 build5_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3989 tree arg2, tree arg3, tree arg4 MEM_STAT_DECL)
3990 {
3991 bool constant, read_only, side_effects;
3992 tree t;
3993
3994 gcc_assert (TREE_CODE_LENGTH (code) == 5);
3995
3996 t = make_node_stat (code PASS_MEM_STAT);
3997 TREE_TYPE (t) = tt;
3998
3999 side_effects = TREE_SIDE_EFFECTS (t);
4000
4001 PROCESS_ARG(0);
4002 PROCESS_ARG(1);
4003 PROCESS_ARG(2);
4004 PROCESS_ARG(3);
4005 PROCESS_ARG(4);
4006
4007 TREE_SIDE_EFFECTS (t) = side_effects;
4008 TREE_THIS_VOLATILE (t)
4009 = (TREE_CODE_CLASS (code) == tcc_reference
4010 && arg0 && TREE_THIS_VOLATILE (arg0));
4011
4012 return t;
4013 }
4014
4015 /* Build a simple MEM_REF tree with the sematics of a plain INDIRECT_REF
4016 on the pointer PTR. */
4017
4018 tree
4019 build_simple_mem_ref_loc (location_t loc, tree ptr)
4020 {
4021 HOST_WIDE_INT offset = 0;
4022 tree ptype = TREE_TYPE (ptr);
4023 tree tem;
4024 /* For convenience allow addresses that collapse to a simple base
4025 and offset. */
4026 if (TREE_CODE (ptr) == ADDR_EXPR
4027 && (handled_component_p (TREE_OPERAND (ptr, 0))
4028 || TREE_CODE (TREE_OPERAND (ptr, 0)) == MEM_REF))
4029 {
4030 ptr = get_addr_base_and_unit_offset (TREE_OPERAND (ptr, 0), &offset);
4031 gcc_assert (ptr);
4032 ptr = build_fold_addr_expr (ptr);
4033 gcc_assert (is_gimple_reg (ptr) || is_gimple_min_invariant (ptr));
4034 }
4035 tem = build2 (MEM_REF, TREE_TYPE (ptype),
4036 ptr, build_int_cst (ptype, offset));
4037 SET_EXPR_LOCATION (tem, loc);
4038 return tem;
4039 }
4040
4041 /* Return the constant offset of a MEM_REF or TARGET_MEM_REF tree T. */
4042
4043 double_int
4044 mem_ref_offset (const_tree t)
4045 {
4046 tree toff = TREE_OPERAND (t, 1);
4047 return tree_to_double_int (toff).sext (TYPE_PRECISION (TREE_TYPE (toff)));
4048 }
4049
4050 /* Return the pointer-type relevant for TBAA purposes from the
4051 gimple memory reference tree T. This is the type to be used for
4052 the offset operand of MEM_REF or TARGET_MEM_REF replacements of T. */
4053
4054 tree
4055 reference_alias_ptr_type (const_tree t)
4056 {
4057 const_tree base = t;
4058 while (handled_component_p (base))
4059 base = TREE_OPERAND (base, 0);
4060 if (TREE_CODE (base) == MEM_REF)
4061 return TREE_TYPE (TREE_OPERAND (base, 1));
4062 else if (TREE_CODE (base) == TARGET_MEM_REF)
4063 return TREE_TYPE (TMR_OFFSET (base));
4064 else
4065 return build_pointer_type (TYPE_MAIN_VARIANT (TREE_TYPE (base)));
4066 }
4067
4068 /* Return an invariant ADDR_EXPR of type TYPE taking the address of BASE
4069 offsetted by OFFSET units. */
4070
4071 tree
4072 build_invariant_address (tree type, tree base, HOST_WIDE_INT offset)
4073 {
4074 tree ref = fold_build2 (MEM_REF, TREE_TYPE (type),
4075 build_fold_addr_expr (base),
4076 build_int_cst (ptr_type_node, offset));
4077 tree addr = build1 (ADDR_EXPR, type, ref);
4078 recompute_tree_invariant_for_addr_expr (addr);
4079 return addr;
4080 }
4081
4082 /* Similar except don't specify the TREE_TYPE
4083 and leave the TREE_SIDE_EFFECTS as 0.
4084 It is permissible for arguments to be null,
4085 or even garbage if their values do not matter. */
4086
4087 tree
4088 build_nt (enum tree_code code, ...)
4089 {
4090 tree t;
4091 int length;
4092 int i;
4093 va_list p;
4094
4095 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
4096
4097 va_start (p, code);
4098
4099 t = make_node (code);
4100 length = TREE_CODE_LENGTH (code);
4101
4102 for (i = 0; i < length; i++)
4103 TREE_OPERAND (t, i) = va_arg (p, tree);
4104
4105 va_end (p);
4106 return t;
4107 }
4108
4109 /* Similar to build_nt, but for creating a CALL_EXPR object with a
4110 tree vec. */
4111
4112 tree
4113 build_nt_call_vec (tree fn, vec<tree, va_gc> *args)
4114 {
4115 tree ret, t;
4116 unsigned int ix;
4117
4118 ret = build_vl_exp (CALL_EXPR, vec_safe_length (args) + 3);
4119 CALL_EXPR_FN (ret) = fn;
4120 CALL_EXPR_STATIC_CHAIN (ret) = NULL_TREE;
4121 FOR_EACH_VEC_SAFE_ELT (args, ix, t)
4122 CALL_EXPR_ARG (ret, ix) = t;
4123 return ret;
4124 }
4125 \f
4126 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
4127 We do NOT enter this node in any sort of symbol table.
4128
4129 LOC is the location of the decl.
4130
4131 layout_decl is used to set up the decl's storage layout.
4132 Other slots are initialized to 0 or null pointers. */
4133
4134 tree
4135 build_decl_stat (location_t loc, enum tree_code code, tree name,
4136 tree type MEM_STAT_DECL)
4137 {
4138 tree t;
4139
4140 t = make_node_stat (code PASS_MEM_STAT);
4141 DECL_SOURCE_LOCATION (t) = loc;
4142
4143 /* if (type == error_mark_node)
4144 type = integer_type_node; */
4145 /* That is not done, deliberately, so that having error_mark_node
4146 as the type can suppress useless errors in the use of this variable. */
4147
4148 DECL_NAME (t) = name;
4149 TREE_TYPE (t) = type;
4150
4151 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
4152 layout_decl (t, 0);
4153
4154 return t;
4155 }
4156
4157 /* Builds and returns function declaration with NAME and TYPE. */
4158
4159 tree
4160 build_fn_decl (const char *name, tree type)
4161 {
4162 tree id = get_identifier (name);
4163 tree decl = build_decl (input_location, FUNCTION_DECL, id, type);
4164
4165 DECL_EXTERNAL (decl) = 1;
4166 TREE_PUBLIC (decl) = 1;
4167 DECL_ARTIFICIAL (decl) = 1;
4168 TREE_NOTHROW (decl) = 1;
4169
4170 return decl;
4171 }
4172
4173 vec<tree, va_gc> *all_translation_units;
4174
4175 /* Builds a new translation-unit decl with name NAME, queues it in the
4176 global list of translation-unit decls and returns it. */
4177
4178 tree
4179 build_translation_unit_decl (tree name)
4180 {
4181 tree tu = build_decl (UNKNOWN_LOCATION, TRANSLATION_UNIT_DECL,
4182 name, NULL_TREE);
4183 TRANSLATION_UNIT_LANGUAGE (tu) = lang_hooks.name;
4184 vec_safe_push (all_translation_units, tu);
4185 return tu;
4186 }
4187
4188 \f
4189 /* BLOCK nodes are used to represent the structure of binding contours
4190 and declarations, once those contours have been exited and their contents
4191 compiled. This information is used for outputting debugging info. */
4192
4193 tree
4194 build_block (tree vars, tree subblocks, tree supercontext, tree chain)
4195 {
4196 tree block = make_node (BLOCK);
4197
4198 BLOCK_VARS (block) = vars;
4199 BLOCK_SUBBLOCKS (block) = subblocks;
4200 BLOCK_SUPERCONTEXT (block) = supercontext;
4201 BLOCK_CHAIN (block) = chain;
4202 return block;
4203 }
4204
4205 \f
4206 /* Like SET_EXPR_LOCATION, but make sure the tree can have a location.
4207
4208 LOC is the location to use in tree T. */
4209
4210 void
4211 protected_set_expr_location (tree t, location_t loc)
4212 {
4213 if (t && CAN_HAVE_LOCATION_P (t))
4214 SET_EXPR_LOCATION (t, loc);
4215 }
4216 \f
4217 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
4218 is ATTRIBUTE. */
4219
4220 tree
4221 build_decl_attribute_variant (tree ddecl, tree attribute)
4222 {
4223 DECL_ATTRIBUTES (ddecl) = attribute;
4224 return ddecl;
4225 }
4226
4227 /* Borrowed from hashtab.c iterative_hash implementation. */
4228 #define mix(a,b,c) \
4229 { \
4230 a -= b; a -= c; a ^= (c>>13); \
4231 b -= c; b -= a; b ^= (a<< 8); \
4232 c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
4233 a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
4234 b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
4235 c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
4236 a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
4237 b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
4238 c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
4239 }
4240
4241
4242 /* Produce good hash value combining VAL and VAL2. */
4243 hashval_t
4244 iterative_hash_hashval_t (hashval_t val, hashval_t val2)
4245 {
4246 /* the golden ratio; an arbitrary value. */
4247 hashval_t a = 0x9e3779b9;
4248
4249 mix (a, val, val2);
4250 return val2;
4251 }
4252
4253 /* Produce good hash value combining VAL and VAL2. */
4254 hashval_t
4255 iterative_hash_host_wide_int (HOST_WIDE_INT val, hashval_t val2)
4256 {
4257 if (sizeof (HOST_WIDE_INT) == sizeof (hashval_t))
4258 return iterative_hash_hashval_t (val, val2);
4259 else
4260 {
4261 hashval_t a = (hashval_t) val;
4262 /* Avoid warnings about shifting of more than the width of the type on
4263 hosts that won't execute this path. */
4264 int zero = 0;
4265 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 8 + zero));
4266 mix (a, b, val2);
4267 if (sizeof (HOST_WIDE_INT) > 2 * sizeof (hashval_t))
4268 {
4269 hashval_t a = (hashval_t) (val >> (sizeof (hashval_t) * 16 + zero));
4270 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 24 + zero));
4271 mix (a, b, val2);
4272 }
4273 return val2;
4274 }
4275 }
4276
4277 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
4278 is ATTRIBUTE and its qualifiers are QUALS.
4279
4280 Record such modified types already made so we don't make duplicates. */
4281
4282 tree
4283 build_type_attribute_qual_variant (tree ttype, tree attribute, int quals)
4284 {
4285 if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
4286 {
4287 hashval_t hashcode = 0;
4288 tree ntype;
4289 enum tree_code code = TREE_CODE (ttype);
4290
4291 /* Building a distinct copy of a tagged type is inappropriate; it
4292 causes breakage in code that expects there to be a one-to-one
4293 relationship between a struct and its fields.
4294 build_duplicate_type is another solution (as used in
4295 handle_transparent_union_attribute), but that doesn't play well
4296 with the stronger C++ type identity model. */
4297 if (TREE_CODE (ttype) == RECORD_TYPE
4298 || TREE_CODE (ttype) == UNION_TYPE
4299 || TREE_CODE (ttype) == QUAL_UNION_TYPE
4300 || TREE_CODE (ttype) == ENUMERAL_TYPE)
4301 {
4302 warning (OPT_Wattributes,
4303 "ignoring attributes applied to %qT after definition",
4304 TYPE_MAIN_VARIANT (ttype));
4305 return build_qualified_type (ttype, quals);
4306 }
4307
4308 ttype = build_qualified_type (ttype, TYPE_UNQUALIFIED);
4309 ntype = build_distinct_type_copy (ttype);
4310
4311 TYPE_ATTRIBUTES (ntype) = attribute;
4312
4313 hashcode = iterative_hash_object (code, hashcode);
4314 if (TREE_TYPE (ntype))
4315 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (ntype)),
4316 hashcode);
4317 hashcode = attribute_hash_list (attribute, hashcode);
4318
4319 switch (TREE_CODE (ntype))
4320 {
4321 case FUNCTION_TYPE:
4322 hashcode = type_hash_list (TYPE_ARG_TYPES (ntype), hashcode);
4323 break;
4324 case ARRAY_TYPE:
4325 if (TYPE_DOMAIN (ntype))
4326 hashcode = iterative_hash_object (TYPE_HASH (TYPE_DOMAIN (ntype)),
4327 hashcode);
4328 break;
4329 case INTEGER_TYPE:
4330 hashcode = iterative_hash_object
4331 (TREE_INT_CST_LOW (TYPE_MAX_VALUE (ntype)), hashcode);
4332 hashcode = iterative_hash_object
4333 (TREE_INT_CST_HIGH (TYPE_MAX_VALUE (ntype)), hashcode);
4334 break;
4335 case REAL_TYPE:
4336 case FIXED_POINT_TYPE:
4337 {
4338 unsigned int precision = TYPE_PRECISION (ntype);
4339 hashcode = iterative_hash_object (precision, hashcode);
4340 }
4341 break;
4342 default:
4343 break;
4344 }
4345
4346 ntype = type_hash_canon (hashcode, ntype);
4347
4348 /* If the target-dependent attributes make NTYPE different from
4349 its canonical type, we will need to use structural equality
4350 checks for this type. */
4351 if (TYPE_STRUCTURAL_EQUALITY_P (ttype)
4352 || !comp_type_attributes (ntype, ttype))
4353 SET_TYPE_STRUCTURAL_EQUALITY (ntype);
4354 else if (TYPE_CANONICAL (ntype) == ntype)
4355 TYPE_CANONICAL (ntype) = TYPE_CANONICAL (ttype);
4356
4357 ttype = build_qualified_type (ntype, quals);
4358 }
4359 else if (TYPE_QUALS (ttype) != quals)
4360 ttype = build_qualified_type (ttype, quals);
4361
4362 return ttype;
4363 }
4364
4365 /* Compare two attributes for their value identity. Return true if the
4366 attribute values are known to be equal; otherwise return false.
4367 */
4368
4369 static bool
4370 attribute_value_equal (const_tree attr1, const_tree attr2)
4371 {
4372 if (TREE_VALUE (attr1) == TREE_VALUE (attr2))
4373 return true;
4374
4375 if (TREE_VALUE (attr1) != NULL_TREE
4376 && TREE_CODE (TREE_VALUE (attr1)) == TREE_LIST
4377 && TREE_VALUE (attr2) != NULL
4378 && TREE_CODE (TREE_VALUE (attr2)) == TREE_LIST)
4379 return (simple_cst_list_equal (TREE_VALUE (attr1),
4380 TREE_VALUE (attr2)) == 1);
4381
4382 return (simple_cst_equal (TREE_VALUE (attr1), TREE_VALUE (attr2)) == 1);
4383 }
4384
4385 /* Return 0 if the attributes for two types are incompatible, 1 if they
4386 are compatible, and 2 if they are nearly compatible (which causes a
4387 warning to be generated). */
4388 int
4389 comp_type_attributes (const_tree type1, const_tree type2)
4390 {
4391 const_tree a1 = TYPE_ATTRIBUTES (type1);
4392 const_tree a2 = TYPE_ATTRIBUTES (type2);
4393 const_tree a;
4394
4395 if (a1 == a2)
4396 return 1;
4397 for (a = a1; a != NULL_TREE; a = TREE_CHAIN (a))
4398 {
4399 const struct attribute_spec *as;
4400 const_tree attr;
4401
4402 as = lookup_attribute_spec (get_attribute_name (a));
4403 if (!as || as->affects_type_identity == false)
4404 continue;
4405
4406 attr = lookup_attribute (as->name, CONST_CAST_TREE (a2));
4407 if (!attr || !attribute_value_equal (a, attr))
4408 break;
4409 }
4410 if (!a)
4411 {
4412 for (a = a2; a != NULL_TREE; a = TREE_CHAIN (a))
4413 {
4414 const struct attribute_spec *as;
4415
4416 as = lookup_attribute_spec (get_attribute_name (a));
4417 if (!as || as->affects_type_identity == false)
4418 continue;
4419
4420 if (!lookup_attribute (as->name, CONST_CAST_TREE (a1)))
4421 break;
4422 /* We don't need to compare trees again, as we did this
4423 already in first loop. */
4424 }
4425 /* All types - affecting identity - are equal, so
4426 there is no need to call target hook for comparison. */
4427 if (!a)
4428 return 1;
4429 }
4430 /* As some type combinations - like default calling-convention - might
4431 be compatible, we have to call the target hook to get the final result. */
4432 return targetm.comp_type_attributes (type1, type2);
4433 }
4434
4435 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
4436 is ATTRIBUTE.
4437
4438 Record such modified types already made so we don't make duplicates. */
4439
4440 tree
4441 build_type_attribute_variant (tree ttype, tree attribute)
4442 {
4443 return build_type_attribute_qual_variant (ttype, attribute,
4444 TYPE_QUALS (ttype));
4445 }
4446
4447
4448 /* Reset the expression *EXPR_P, a size or position.
4449
4450 ??? We could reset all non-constant sizes or positions. But it's cheap
4451 enough to not do so and refrain from adding workarounds to dwarf2out.c.
4452
4453 We need to reset self-referential sizes or positions because they cannot
4454 be gimplified and thus can contain a CALL_EXPR after the gimplification
4455 is finished, which will run afoul of LTO streaming. And they need to be
4456 reset to something essentially dummy but not constant, so as to preserve
4457 the properties of the object they are attached to. */
4458
4459 static inline void
4460 free_lang_data_in_one_sizepos (tree *expr_p)
4461 {
4462 tree expr = *expr_p;
4463 if (CONTAINS_PLACEHOLDER_P (expr))
4464 *expr_p = build0 (PLACEHOLDER_EXPR, TREE_TYPE (expr));
4465 }
4466
4467
4468 /* Reset all the fields in a binfo node BINFO. We only keep
4469 BINFO_VTABLE, which is used by gimple_fold_obj_type_ref. */
4470
4471 static void
4472 free_lang_data_in_binfo (tree binfo)
4473 {
4474 unsigned i;
4475 tree t;
4476
4477 gcc_assert (TREE_CODE (binfo) == TREE_BINFO);
4478
4479 BINFO_VIRTUALS (binfo) = NULL_TREE;
4480 BINFO_BASE_ACCESSES (binfo) = NULL;
4481 BINFO_INHERITANCE_CHAIN (binfo) = NULL_TREE;
4482 BINFO_SUBVTT_INDEX (binfo) = NULL_TREE;
4483
4484 FOR_EACH_VEC_ELT (*BINFO_BASE_BINFOS (binfo), i, t)
4485 free_lang_data_in_binfo (t);
4486 }
4487
4488
4489 /* Reset all language specific information still present in TYPE. */
4490
4491 static void
4492 free_lang_data_in_type (tree type)
4493 {
4494 gcc_assert (TYPE_P (type));
4495
4496 /* Give the FE a chance to remove its own data first. */
4497 lang_hooks.free_lang_data (type);
4498
4499 TREE_LANG_FLAG_0 (type) = 0;
4500 TREE_LANG_FLAG_1 (type) = 0;
4501 TREE_LANG_FLAG_2 (type) = 0;
4502 TREE_LANG_FLAG_3 (type) = 0;
4503 TREE_LANG_FLAG_4 (type) = 0;
4504 TREE_LANG_FLAG_5 (type) = 0;
4505 TREE_LANG_FLAG_6 (type) = 0;
4506
4507 if (TREE_CODE (type) == FUNCTION_TYPE)
4508 {
4509 /* Remove the const and volatile qualifiers from arguments. The
4510 C++ front end removes them, but the C front end does not,
4511 leading to false ODR violation errors when merging two
4512 instances of the same function signature compiled by
4513 different front ends. */
4514 tree p;
4515
4516 for (p = TYPE_ARG_TYPES (type); p; p = TREE_CHAIN (p))
4517 {
4518 tree arg_type = TREE_VALUE (p);
4519
4520 if (TYPE_READONLY (arg_type) || TYPE_VOLATILE (arg_type))
4521 {
4522 int quals = TYPE_QUALS (arg_type)
4523 & ~TYPE_QUAL_CONST
4524 & ~TYPE_QUAL_VOLATILE;
4525 TREE_VALUE (p) = build_qualified_type (arg_type, quals);
4526 free_lang_data_in_type (TREE_VALUE (p));
4527 }
4528 }
4529 }
4530
4531 /* Remove members that are not actually FIELD_DECLs from the field
4532 list of an aggregate. These occur in C++. */
4533 if (RECORD_OR_UNION_TYPE_P (type))
4534 {
4535 tree prev, member;
4536
4537 /* Note that TYPE_FIELDS can be shared across distinct
4538 TREE_TYPEs. Therefore, if the first field of TYPE_FIELDS is
4539 to be removed, we cannot set its TREE_CHAIN to NULL.
4540 Otherwise, we would not be able to find all the other fields
4541 in the other instances of this TREE_TYPE.
4542
4543 This was causing an ICE in testsuite/g++.dg/lto/20080915.C. */
4544 prev = NULL_TREE;
4545 member = TYPE_FIELDS (type);
4546 while (member)
4547 {
4548 if (TREE_CODE (member) == FIELD_DECL
4549 || TREE_CODE (member) == TYPE_DECL)
4550 {
4551 if (prev)
4552 TREE_CHAIN (prev) = member;
4553 else
4554 TYPE_FIELDS (type) = member;
4555 prev = member;
4556 }
4557
4558 member = TREE_CHAIN (member);
4559 }
4560
4561 if (prev)
4562 TREE_CHAIN (prev) = NULL_TREE;
4563 else
4564 TYPE_FIELDS (type) = NULL_TREE;
4565
4566 TYPE_METHODS (type) = NULL_TREE;
4567 if (TYPE_BINFO (type))
4568 free_lang_data_in_binfo (TYPE_BINFO (type));
4569 }
4570 else
4571 {
4572 /* For non-aggregate types, clear out the language slot (which
4573 overloads TYPE_BINFO). */
4574 TYPE_LANG_SLOT_1 (type) = NULL_TREE;
4575
4576 if (INTEGRAL_TYPE_P (type)
4577 || SCALAR_FLOAT_TYPE_P (type)
4578 || FIXED_POINT_TYPE_P (type))
4579 {
4580 free_lang_data_in_one_sizepos (&TYPE_MIN_VALUE (type));
4581 free_lang_data_in_one_sizepos (&TYPE_MAX_VALUE (type));
4582 }
4583 }
4584
4585 free_lang_data_in_one_sizepos (&TYPE_SIZE (type));
4586 free_lang_data_in_one_sizepos (&TYPE_SIZE_UNIT (type));
4587
4588 if (TYPE_CONTEXT (type)
4589 && TREE_CODE (TYPE_CONTEXT (type)) == BLOCK)
4590 {
4591 tree ctx = TYPE_CONTEXT (type);
4592 do
4593 {
4594 ctx = BLOCK_SUPERCONTEXT (ctx);
4595 }
4596 while (ctx && TREE_CODE (ctx) == BLOCK);
4597 TYPE_CONTEXT (type) = ctx;
4598 }
4599 }
4600
4601
4602 /* Return true if DECL may need an assembler name to be set. */
4603
4604 static inline bool
4605 need_assembler_name_p (tree decl)
4606 {
4607 /* Only FUNCTION_DECLs and VAR_DECLs are considered. */
4608 if (TREE_CODE (decl) != FUNCTION_DECL
4609 && TREE_CODE (decl) != VAR_DECL)
4610 return false;
4611
4612 /* If DECL already has its assembler name set, it does not need a
4613 new one. */
4614 if (!HAS_DECL_ASSEMBLER_NAME_P (decl)
4615 || DECL_ASSEMBLER_NAME_SET_P (decl))
4616 return false;
4617
4618 /* Abstract decls do not need an assembler name. */
4619 if (DECL_ABSTRACT (decl))
4620 return false;
4621
4622 /* For VAR_DECLs, only static, public and external symbols need an
4623 assembler name. */
4624 if (TREE_CODE (decl) == VAR_DECL
4625 && !TREE_STATIC (decl)
4626 && !TREE_PUBLIC (decl)
4627 && !DECL_EXTERNAL (decl))
4628 return false;
4629
4630 if (TREE_CODE (decl) == FUNCTION_DECL)
4631 {
4632 /* Do not set assembler name on builtins. Allow RTL expansion to
4633 decide whether to expand inline or via a regular call. */
4634 if (DECL_BUILT_IN (decl)
4635 && DECL_BUILT_IN_CLASS (decl) != BUILT_IN_FRONTEND)
4636 return false;
4637
4638 /* Functions represented in the callgraph need an assembler name. */
4639 if (cgraph_get_node (decl) != NULL)
4640 return true;
4641
4642 /* Unused and not public functions don't need an assembler name. */
4643 if (!TREE_USED (decl) && !TREE_PUBLIC (decl))
4644 return false;
4645 }
4646
4647 return true;
4648 }
4649
4650
4651 /* Reset all language specific information still present in symbol
4652 DECL. */
4653
4654 static void
4655 free_lang_data_in_decl (tree decl)
4656 {
4657 gcc_assert (DECL_P (decl));
4658
4659 /* Give the FE a chance to remove its own data first. */
4660 lang_hooks.free_lang_data (decl);
4661
4662 TREE_LANG_FLAG_0 (decl) = 0;
4663 TREE_LANG_FLAG_1 (decl) = 0;
4664 TREE_LANG_FLAG_2 (decl) = 0;
4665 TREE_LANG_FLAG_3 (decl) = 0;
4666 TREE_LANG_FLAG_4 (decl) = 0;
4667 TREE_LANG_FLAG_5 (decl) = 0;
4668 TREE_LANG_FLAG_6 (decl) = 0;
4669
4670 free_lang_data_in_one_sizepos (&DECL_SIZE (decl));
4671 free_lang_data_in_one_sizepos (&DECL_SIZE_UNIT (decl));
4672 if (TREE_CODE (decl) == FIELD_DECL)
4673 {
4674 free_lang_data_in_one_sizepos (&DECL_FIELD_OFFSET (decl));
4675 if (TREE_CODE (DECL_CONTEXT (decl)) == QUAL_UNION_TYPE)
4676 DECL_QUALIFIER (decl) = NULL_TREE;
4677 }
4678
4679 if (TREE_CODE (decl) == FUNCTION_DECL)
4680 {
4681 if (gimple_has_body_p (decl))
4682 {
4683 tree t;
4684
4685 /* If DECL has a gimple body, then the context for its
4686 arguments must be DECL. Otherwise, it doesn't really
4687 matter, as we will not be emitting any code for DECL. In
4688 general, there may be other instances of DECL created by
4689 the front end and since PARM_DECLs are generally shared,
4690 their DECL_CONTEXT changes as the replicas of DECL are
4691 created. The only time where DECL_CONTEXT is important
4692 is for the FUNCTION_DECLs that have a gimple body (since
4693 the PARM_DECL will be used in the function's body). */
4694 for (t = DECL_ARGUMENTS (decl); t; t = TREE_CHAIN (t))
4695 DECL_CONTEXT (t) = decl;
4696 }
4697
4698 /* DECL_SAVED_TREE holds the GENERIC representation for DECL.
4699 At this point, it is not needed anymore. */
4700 DECL_SAVED_TREE (decl) = NULL_TREE;
4701
4702 /* Clear the abstract origin if it refers to a method. Otherwise
4703 dwarf2out.c will ICE as we clear TYPE_METHODS and thus the
4704 origin will not be output correctly. */
4705 if (DECL_ABSTRACT_ORIGIN (decl)
4706 && DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))
4707 && RECORD_OR_UNION_TYPE_P
4708 (DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))))
4709 DECL_ABSTRACT_ORIGIN (decl) = NULL_TREE;
4710
4711 /* Sometimes the C++ frontend doesn't manage to transform a temporary
4712 DECL_VINDEX referring to itself into a vtable slot number as it
4713 should. Happens with functions that are copied and then forgotten
4714 about. Just clear it, it won't matter anymore. */
4715 if (DECL_VINDEX (decl) && !host_integerp (DECL_VINDEX (decl), 0))
4716 DECL_VINDEX (decl) = NULL_TREE;
4717 }
4718 else if (TREE_CODE (decl) == VAR_DECL)
4719 {
4720 if ((DECL_EXTERNAL (decl)
4721 && (!TREE_STATIC (decl) || !TREE_READONLY (decl)))
4722 || (decl_function_context (decl) && !TREE_STATIC (decl)))
4723 DECL_INITIAL (decl) = NULL_TREE;
4724 }
4725 else if (TREE_CODE (decl) == TYPE_DECL
4726 || TREE_CODE (decl) == FIELD_DECL)
4727 DECL_INITIAL (decl) = NULL_TREE;
4728 else if (TREE_CODE (decl) == TRANSLATION_UNIT_DECL
4729 && DECL_INITIAL (decl)
4730 && TREE_CODE (DECL_INITIAL (decl)) == BLOCK)
4731 {
4732 /* Strip builtins from the translation-unit BLOCK. We still have targets
4733 without builtin_decl_explicit support and also builtins are shared
4734 nodes and thus we can't use TREE_CHAIN in multiple lists. */
4735 tree *nextp = &BLOCK_VARS (DECL_INITIAL (decl));
4736 while (*nextp)
4737 {
4738 tree var = *nextp;
4739 if (TREE_CODE (var) == FUNCTION_DECL
4740 && DECL_BUILT_IN (var))
4741 *nextp = TREE_CHAIN (var);
4742 else
4743 nextp = &TREE_CHAIN (var);
4744 }
4745 }
4746 }
4747
4748
4749 /* Data used when collecting DECLs and TYPEs for language data removal. */
4750
4751 struct free_lang_data_d
4752 {
4753 /* Worklist to avoid excessive recursion. */
4754 vec<tree> worklist;
4755
4756 /* Set of traversed objects. Used to avoid duplicate visits. */
4757 struct pointer_set_t *pset;
4758
4759 /* Array of symbols to process with free_lang_data_in_decl. */
4760 vec<tree> decls;
4761
4762 /* Array of types to process with free_lang_data_in_type. */
4763 vec<tree> types;
4764 };
4765
4766
4767 /* Save all language fields needed to generate proper debug information
4768 for DECL. This saves most fields cleared out by free_lang_data_in_decl. */
4769
4770 static void
4771 save_debug_info_for_decl (tree t)
4772 {
4773 /*struct saved_debug_info_d *sdi;*/
4774
4775 gcc_assert (debug_info_level > DINFO_LEVEL_TERSE && t && DECL_P (t));
4776
4777 /* FIXME. Partial implementation for saving debug info removed. */
4778 }
4779
4780
4781 /* Save all language fields needed to generate proper debug information
4782 for TYPE. This saves most fields cleared out by free_lang_data_in_type. */
4783
4784 static void
4785 save_debug_info_for_type (tree t)
4786 {
4787 /*struct saved_debug_info_d *sdi;*/
4788
4789 gcc_assert (debug_info_level > DINFO_LEVEL_TERSE && t && TYPE_P (t));
4790
4791 /* FIXME. Partial implementation for saving debug info removed. */
4792 }
4793
4794
4795 /* Add type or decl T to one of the list of tree nodes that need their
4796 language data removed. The lists are held inside FLD. */
4797
4798 static void
4799 add_tree_to_fld_list (tree t, struct free_lang_data_d *fld)
4800 {
4801 if (DECL_P (t))
4802 {
4803 fld->decls.safe_push (t);
4804 if (debug_info_level > DINFO_LEVEL_TERSE)
4805 save_debug_info_for_decl (t);
4806 }
4807 else if (TYPE_P (t))
4808 {
4809 fld->types.safe_push (t);
4810 if (debug_info_level > DINFO_LEVEL_TERSE)
4811 save_debug_info_for_type (t);
4812 }
4813 else
4814 gcc_unreachable ();
4815 }
4816
4817 /* Push tree node T into FLD->WORKLIST. */
4818
4819 static inline void
4820 fld_worklist_push (tree t, struct free_lang_data_d *fld)
4821 {
4822 if (t && !is_lang_specific (t) && !pointer_set_contains (fld->pset, t))
4823 fld->worklist.safe_push ((t));
4824 }
4825
4826
4827 /* Operand callback helper for free_lang_data_in_node. *TP is the
4828 subtree operand being considered. */
4829
4830 static tree
4831 find_decls_types_r (tree *tp, int *ws, void *data)
4832 {
4833 tree t = *tp;
4834 struct free_lang_data_d *fld = (struct free_lang_data_d *) data;
4835
4836 if (TREE_CODE (t) == TREE_LIST)
4837 return NULL_TREE;
4838
4839 /* Language specific nodes will be removed, so there is no need
4840 to gather anything under them. */
4841 if (is_lang_specific (t))
4842 {
4843 *ws = 0;
4844 return NULL_TREE;
4845 }
4846
4847 if (DECL_P (t))
4848 {
4849 /* Note that walk_tree does not traverse every possible field in
4850 decls, so we have to do our own traversals here. */
4851 add_tree_to_fld_list (t, fld);
4852
4853 fld_worklist_push (DECL_NAME (t), fld);
4854 fld_worklist_push (DECL_CONTEXT (t), fld);
4855 fld_worklist_push (DECL_SIZE (t), fld);
4856 fld_worklist_push (DECL_SIZE_UNIT (t), fld);
4857
4858 /* We are going to remove everything under DECL_INITIAL for
4859 TYPE_DECLs. No point walking them. */
4860 if (TREE_CODE (t) != TYPE_DECL)
4861 fld_worklist_push (DECL_INITIAL (t), fld);
4862
4863 fld_worklist_push (DECL_ATTRIBUTES (t), fld);
4864 fld_worklist_push (DECL_ABSTRACT_ORIGIN (t), fld);
4865
4866 if (TREE_CODE (t) == FUNCTION_DECL)
4867 {
4868 fld_worklist_push (DECL_ARGUMENTS (t), fld);
4869 fld_worklist_push (DECL_RESULT (t), fld);
4870 }
4871 else if (TREE_CODE (t) == TYPE_DECL)
4872 {
4873 fld_worklist_push (DECL_ARGUMENT_FLD (t), fld);
4874 fld_worklist_push (DECL_VINDEX (t), fld);
4875 fld_worklist_push (DECL_ORIGINAL_TYPE (t), fld);
4876 }
4877 else if (TREE_CODE (t) == FIELD_DECL)
4878 {
4879 fld_worklist_push (DECL_FIELD_OFFSET (t), fld);
4880 fld_worklist_push (DECL_BIT_FIELD_TYPE (t), fld);
4881 fld_worklist_push (DECL_FIELD_BIT_OFFSET (t), fld);
4882 fld_worklist_push (DECL_FCONTEXT (t), fld);
4883 }
4884 else if (TREE_CODE (t) == VAR_DECL)
4885 {
4886 fld_worklist_push (DECL_SECTION_NAME (t), fld);
4887 fld_worklist_push (DECL_COMDAT_GROUP (t), fld);
4888 }
4889
4890 if ((TREE_CODE (t) == VAR_DECL || TREE_CODE (t) == PARM_DECL)
4891 && DECL_HAS_VALUE_EXPR_P (t))
4892 fld_worklist_push (DECL_VALUE_EXPR (t), fld);
4893
4894 if (TREE_CODE (t) != FIELD_DECL
4895 && TREE_CODE (t) != TYPE_DECL)
4896 fld_worklist_push (TREE_CHAIN (t), fld);
4897 *ws = 0;
4898 }
4899 else if (TYPE_P (t))
4900 {
4901 /* Note that walk_tree does not traverse every possible field in
4902 types, so we have to do our own traversals here. */
4903 add_tree_to_fld_list (t, fld);
4904
4905 if (!RECORD_OR_UNION_TYPE_P (t))
4906 fld_worklist_push (TYPE_CACHED_VALUES (t), fld);
4907 fld_worklist_push (TYPE_SIZE (t), fld);
4908 fld_worklist_push (TYPE_SIZE_UNIT (t), fld);
4909 fld_worklist_push (TYPE_ATTRIBUTES (t), fld);
4910 fld_worklist_push (TYPE_POINTER_TO (t), fld);
4911 fld_worklist_push (TYPE_REFERENCE_TO (t), fld);
4912 fld_worklist_push (TYPE_NAME (t), fld);
4913 /* Do not walk TYPE_NEXT_PTR_TO or TYPE_NEXT_REF_TO. We do not stream
4914 them and thus do not and want not to reach unused pointer types
4915 this way. */
4916 if (!POINTER_TYPE_P (t))
4917 fld_worklist_push (TYPE_MINVAL (t), fld);
4918 if (!RECORD_OR_UNION_TYPE_P (t))
4919 fld_worklist_push (TYPE_MAXVAL (t), fld);
4920 fld_worklist_push (TYPE_MAIN_VARIANT (t), fld);
4921 /* Do not walk TYPE_NEXT_VARIANT. We do not stream it and thus
4922 do not and want not to reach unused variants this way. */
4923 if (TYPE_CONTEXT (t))
4924 {
4925 tree ctx = TYPE_CONTEXT (t);
4926 /* We adjust BLOCK TYPE_CONTEXTs to the innermost non-BLOCK one.
4927 So push that instead. */
4928 while (ctx && TREE_CODE (ctx) == BLOCK)
4929 ctx = BLOCK_SUPERCONTEXT (ctx);
4930 fld_worklist_push (ctx, fld);
4931 }
4932 /* Do not walk TYPE_CANONICAL. We do not stream it and thus do not
4933 and want not to reach unused types this way. */
4934
4935 if (RECORD_OR_UNION_TYPE_P (t) && TYPE_BINFO (t))
4936 {
4937 unsigned i;
4938 tree tem;
4939 FOR_EACH_VEC_ELT (*BINFO_BASE_BINFOS (TYPE_BINFO (t)), i, tem)
4940 fld_worklist_push (TREE_TYPE (tem), fld);
4941 tem = BINFO_VIRTUALS (TYPE_BINFO (t));
4942 if (tem
4943 /* The Java FE overloads BINFO_VIRTUALS for its own purpose. */
4944 && TREE_CODE (tem) == TREE_LIST)
4945 do
4946 {
4947 fld_worklist_push (TREE_VALUE (tem), fld);
4948 tem = TREE_CHAIN (tem);
4949 }
4950 while (tem);
4951 }
4952 if (RECORD_OR_UNION_TYPE_P (t))
4953 {
4954 tree tem;
4955 /* Push all TYPE_FIELDS - there can be interleaving interesting
4956 and non-interesting things. */
4957 tem = TYPE_FIELDS (t);
4958 while (tem)
4959 {
4960 if (TREE_CODE (tem) == FIELD_DECL
4961 || TREE_CODE (tem) == TYPE_DECL)
4962 fld_worklist_push (tem, fld);
4963 tem = TREE_CHAIN (tem);
4964 }
4965 }
4966
4967 fld_worklist_push (TYPE_STUB_DECL (t), fld);
4968 *ws = 0;
4969 }
4970 else if (TREE_CODE (t) == BLOCK)
4971 {
4972 tree tem;
4973 for (tem = BLOCK_VARS (t); tem; tem = TREE_CHAIN (tem))
4974 fld_worklist_push (tem, fld);
4975 for (tem = BLOCK_SUBBLOCKS (t); tem; tem = BLOCK_CHAIN (tem))
4976 fld_worklist_push (tem, fld);
4977 fld_worklist_push (BLOCK_ABSTRACT_ORIGIN (t), fld);
4978 }
4979
4980 if (TREE_CODE (t) != IDENTIFIER_NODE
4981 && CODE_CONTAINS_STRUCT (TREE_CODE (t), TS_TYPED))
4982 fld_worklist_push (TREE_TYPE (t), fld);
4983
4984 return NULL_TREE;
4985 }
4986
4987
4988 /* Find decls and types in T. */
4989
4990 static void
4991 find_decls_types (tree t, struct free_lang_data_d *fld)
4992 {
4993 while (1)
4994 {
4995 if (!pointer_set_contains (fld->pset, t))
4996 walk_tree (&t, find_decls_types_r, fld, fld->pset);
4997 if (fld->worklist.is_empty ())
4998 break;
4999 t = fld->worklist.pop ();
5000 }
5001 }
5002
5003 /* Translate all the types in LIST with the corresponding runtime
5004 types. */
5005
5006 static tree
5007 get_eh_types_for_runtime (tree list)
5008 {
5009 tree head, prev;
5010
5011 if (list == NULL_TREE)
5012 return NULL_TREE;
5013
5014 head = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
5015 prev = head;
5016 list = TREE_CHAIN (list);
5017 while (list)
5018 {
5019 tree n = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
5020 TREE_CHAIN (prev) = n;
5021 prev = TREE_CHAIN (prev);
5022 list = TREE_CHAIN (list);
5023 }
5024
5025 return head;
5026 }
5027
5028
5029 /* Find decls and types referenced in EH region R and store them in
5030 FLD->DECLS and FLD->TYPES. */
5031
5032 static void
5033 find_decls_types_in_eh_region (eh_region r, struct free_lang_data_d *fld)
5034 {
5035 switch (r->type)
5036 {
5037 case ERT_CLEANUP:
5038 break;
5039
5040 case ERT_TRY:
5041 {
5042 eh_catch c;
5043
5044 /* The types referenced in each catch must first be changed to the
5045 EH types used at runtime. This removes references to FE types
5046 in the region. */
5047 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
5048 {
5049 c->type_list = get_eh_types_for_runtime (c->type_list);
5050 walk_tree (&c->type_list, find_decls_types_r, fld, fld->pset);
5051 }
5052 }
5053 break;
5054
5055 case ERT_ALLOWED_EXCEPTIONS:
5056 r->u.allowed.type_list
5057 = get_eh_types_for_runtime (r->u.allowed.type_list);
5058 walk_tree (&r->u.allowed.type_list, find_decls_types_r, fld, fld->pset);
5059 break;
5060
5061 case ERT_MUST_NOT_THROW:
5062 walk_tree (&r->u.must_not_throw.failure_decl,
5063 find_decls_types_r, fld, fld->pset);
5064 break;
5065 }
5066 }
5067
5068
5069 /* Find decls and types referenced in cgraph node N and store them in
5070 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
5071 look for *every* kind of DECL and TYPE node reachable from N,
5072 including those embedded inside types and decls (i.e,, TYPE_DECLs,
5073 NAMESPACE_DECLs, etc). */
5074
5075 static void
5076 find_decls_types_in_node (struct cgraph_node *n, struct free_lang_data_d *fld)
5077 {
5078 basic_block bb;
5079 struct function *fn;
5080 unsigned ix;
5081 tree t;
5082
5083 find_decls_types (n->symbol.decl, fld);
5084
5085 if (!gimple_has_body_p (n->symbol.decl))
5086 return;
5087
5088 gcc_assert (current_function_decl == NULL_TREE && cfun == NULL);
5089
5090 fn = DECL_STRUCT_FUNCTION (n->symbol.decl);
5091
5092 /* Traverse locals. */
5093 FOR_EACH_LOCAL_DECL (fn, ix, t)
5094 find_decls_types (t, fld);
5095
5096 /* Traverse EH regions in FN. */
5097 {
5098 eh_region r;
5099 FOR_ALL_EH_REGION_FN (r, fn)
5100 find_decls_types_in_eh_region (r, fld);
5101 }
5102
5103 /* Traverse every statement in FN. */
5104 FOR_EACH_BB_FN (bb, fn)
5105 {
5106 gimple_stmt_iterator si;
5107 unsigned i;
5108
5109 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
5110 {
5111 gimple phi = gsi_stmt (si);
5112
5113 for (i = 0; i < gimple_phi_num_args (phi); i++)
5114 {
5115 tree *arg_p = gimple_phi_arg_def_ptr (phi, i);
5116 find_decls_types (*arg_p, fld);
5117 }
5118 }
5119
5120 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5121 {
5122 gimple stmt = gsi_stmt (si);
5123
5124 if (is_gimple_call (stmt))
5125 find_decls_types (gimple_call_fntype (stmt), fld);
5126
5127 for (i = 0; i < gimple_num_ops (stmt); i++)
5128 {
5129 tree arg = gimple_op (stmt, i);
5130 find_decls_types (arg, fld);
5131 }
5132 }
5133 }
5134 }
5135
5136
5137 /* Find decls and types referenced in varpool node N and store them in
5138 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
5139 look for *every* kind of DECL and TYPE node reachable from N,
5140 including those embedded inside types and decls (i.e,, TYPE_DECLs,
5141 NAMESPACE_DECLs, etc). */
5142
5143 static void
5144 find_decls_types_in_var (struct varpool_node *v, struct free_lang_data_d *fld)
5145 {
5146 find_decls_types (v->symbol.decl, fld);
5147 }
5148
5149 /* If T needs an assembler name, have one created for it. */
5150
5151 void
5152 assign_assembler_name_if_neeeded (tree t)
5153 {
5154 if (need_assembler_name_p (t))
5155 {
5156 /* When setting DECL_ASSEMBLER_NAME, the C++ mangler may emit
5157 diagnostics that use input_location to show locus
5158 information. The problem here is that, at this point,
5159 input_location is generally anchored to the end of the file
5160 (since the parser is long gone), so we don't have a good
5161 position to pin it to.
5162
5163 To alleviate this problem, this uses the location of T's
5164 declaration. Examples of this are
5165 testsuite/g++.dg/template/cond2.C and
5166 testsuite/g++.dg/template/pr35240.C. */
5167 location_t saved_location = input_location;
5168 input_location = DECL_SOURCE_LOCATION (t);
5169
5170 decl_assembler_name (t);
5171
5172 input_location = saved_location;
5173 }
5174 }
5175
5176
5177 /* Free language specific information for every operand and expression
5178 in every node of the call graph. This process operates in three stages:
5179
5180 1- Every callgraph node and varpool node is traversed looking for
5181 decls and types embedded in them. This is a more exhaustive
5182 search than that done by find_referenced_vars, because it will
5183 also collect individual fields, decls embedded in types, etc.
5184
5185 2- All the decls found are sent to free_lang_data_in_decl.
5186
5187 3- All the types found are sent to free_lang_data_in_type.
5188
5189 The ordering between decls and types is important because
5190 free_lang_data_in_decl sets assembler names, which includes
5191 mangling. So types cannot be freed up until assembler names have
5192 been set up. */
5193
5194 static void
5195 free_lang_data_in_cgraph (void)
5196 {
5197 struct cgraph_node *n;
5198 struct varpool_node *v;
5199 struct free_lang_data_d fld;
5200 tree t;
5201 unsigned i;
5202 alias_pair *p;
5203
5204 /* Initialize sets and arrays to store referenced decls and types. */
5205 fld.pset = pointer_set_create ();
5206 fld.worklist.create (0);
5207 fld.decls.create (100);
5208 fld.types.create (100);
5209
5210 /* Find decls and types in the body of every function in the callgraph. */
5211 FOR_EACH_FUNCTION (n)
5212 find_decls_types_in_node (n, &fld);
5213
5214 FOR_EACH_VEC_SAFE_ELT (alias_pairs, i, p)
5215 find_decls_types (p->decl, &fld);
5216
5217 /* Find decls and types in every varpool symbol. */
5218 FOR_EACH_VARIABLE (v)
5219 find_decls_types_in_var (v, &fld);
5220
5221 /* Set the assembler name on every decl found. We need to do this
5222 now because free_lang_data_in_decl will invalidate data needed
5223 for mangling. This breaks mangling on interdependent decls. */
5224 FOR_EACH_VEC_ELT (fld.decls, i, t)
5225 assign_assembler_name_if_neeeded (t);
5226
5227 /* Traverse every decl found freeing its language data. */
5228 FOR_EACH_VEC_ELT (fld.decls, i, t)
5229 free_lang_data_in_decl (t);
5230
5231 /* Traverse every type found freeing its language data. */
5232 FOR_EACH_VEC_ELT (fld.types, i, t)
5233 free_lang_data_in_type (t);
5234
5235 pointer_set_destroy (fld.pset);
5236 fld.worklist.release ();
5237 fld.decls.release ();
5238 fld.types.release ();
5239 }
5240
5241
5242 /* Free resources that are used by FE but are not needed once they are done. */
5243
5244 static unsigned
5245 free_lang_data (void)
5246 {
5247 unsigned i;
5248
5249 /* If we are the LTO frontend we have freed lang-specific data already. */
5250 if (in_lto_p
5251 || !flag_generate_lto)
5252 return 0;
5253
5254 /* Allocate and assign alias sets to the standard integer types
5255 while the slots are still in the way the frontends generated them. */
5256 for (i = 0; i < itk_none; ++i)
5257 if (integer_types[i])
5258 TYPE_ALIAS_SET (integer_types[i]) = get_alias_set (integer_types[i]);
5259
5260 /* Traverse the IL resetting language specific information for
5261 operands, expressions, etc. */
5262 free_lang_data_in_cgraph ();
5263
5264 /* Create gimple variants for common types. */
5265 ptrdiff_type_node = integer_type_node;
5266 fileptr_type_node = ptr_type_node;
5267
5268 /* Reset some langhooks. Do not reset types_compatible_p, it may
5269 still be used indirectly via the get_alias_set langhook. */
5270 lang_hooks.dwarf_name = lhd_dwarf_name;
5271 lang_hooks.decl_printable_name = gimple_decl_printable_name;
5272 /* We do not want the default decl_assembler_name implementation,
5273 rather if we have fixed everything we want a wrapper around it
5274 asserting that all non-local symbols already got their assembler
5275 name and only produce assembler names for local symbols. Or rather
5276 make sure we never call decl_assembler_name on local symbols and
5277 devise a separate, middle-end private scheme for it. */
5278
5279 /* Reset diagnostic machinery. */
5280 tree_diagnostics_defaults (global_dc);
5281
5282 return 0;
5283 }
5284
5285
5286 struct simple_ipa_opt_pass pass_ipa_free_lang_data =
5287 {
5288 {
5289 SIMPLE_IPA_PASS,
5290 "*free_lang_data", /* name */
5291 OPTGROUP_NONE, /* optinfo_flags */
5292 NULL, /* gate */
5293 free_lang_data, /* execute */
5294 NULL, /* sub */
5295 NULL, /* next */
5296 0, /* static_pass_number */
5297 TV_IPA_FREE_LANG_DATA, /* tv_id */
5298 0, /* properties_required */
5299 0, /* properties_provided */
5300 0, /* properties_destroyed */
5301 0, /* todo_flags_start */
5302 0 /* todo_flags_finish */
5303 }
5304 };
5305
5306 /* The backbone of is_attribute_p(). ATTR_LEN is the string length of
5307 ATTR_NAME. Also used internally by remove_attribute(). */
5308 bool
5309 private_is_attribute_p (const char *attr_name, size_t attr_len, const_tree ident)
5310 {
5311 size_t ident_len = IDENTIFIER_LENGTH (ident);
5312
5313 if (ident_len == attr_len)
5314 {
5315 if (strcmp (attr_name, IDENTIFIER_POINTER (ident)) == 0)
5316 return true;
5317 }
5318 else if (ident_len == attr_len + 4)
5319 {
5320 /* There is the possibility that ATTR is 'text' and IDENT is
5321 '__text__'. */
5322 const char *p = IDENTIFIER_POINTER (ident);
5323 if (p[0] == '_' && p[1] == '_'
5324 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
5325 && strncmp (attr_name, p + 2, attr_len) == 0)
5326 return true;
5327 }
5328
5329 return false;
5330 }
5331
5332 /* The backbone of lookup_attribute(). ATTR_LEN is the string length
5333 of ATTR_NAME, and LIST is not NULL_TREE. */
5334 tree
5335 private_lookup_attribute (const char *attr_name, size_t attr_len, tree list)
5336 {
5337 while (list)
5338 {
5339 size_t ident_len = IDENTIFIER_LENGTH (get_attribute_name (list));
5340
5341 if (ident_len == attr_len)
5342 {
5343 if (!strcmp (attr_name,
5344 IDENTIFIER_POINTER (get_attribute_name (list))))
5345 break;
5346 }
5347 /* TODO: If we made sure that attributes were stored in the
5348 canonical form without '__...__' (ie, as in 'text' as opposed
5349 to '__text__') then we could avoid the following case. */
5350 else if (ident_len == attr_len + 4)
5351 {
5352 const char *p = IDENTIFIER_POINTER (get_attribute_name (list));
5353 if (p[0] == '_' && p[1] == '_'
5354 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
5355 && strncmp (attr_name, p + 2, attr_len) == 0)
5356 break;
5357 }
5358 list = TREE_CHAIN (list);
5359 }
5360
5361 return list;
5362 }
5363
5364 /* A variant of lookup_attribute() that can be used with an identifier
5365 as the first argument, and where the identifier can be either
5366 'text' or '__text__'.
5367
5368 Given an attribute ATTR_IDENTIFIER, and a list of attributes LIST,
5369 return a pointer to the attribute's list element if the attribute
5370 is part of the list, or NULL_TREE if not found. If the attribute
5371 appears more than once, this only returns the first occurrence; the
5372 TREE_CHAIN of the return value should be passed back in if further
5373 occurrences are wanted. ATTR_IDENTIFIER must be an identifier but
5374 can be in the form 'text' or '__text__'. */
5375 static tree
5376 lookup_ident_attribute (tree attr_identifier, tree list)
5377 {
5378 gcc_checking_assert (TREE_CODE (attr_identifier) == IDENTIFIER_NODE);
5379
5380 while (list)
5381 {
5382 gcc_checking_assert (TREE_CODE (get_attribute_name (list))
5383 == IDENTIFIER_NODE);
5384
5385 /* Identifiers can be compared directly for equality. */
5386 if (attr_identifier == get_attribute_name (list))
5387 break;
5388
5389 /* If they are not equal, they may still be one in the form
5390 'text' while the other one is in the form '__text__'. TODO:
5391 If we were storing attributes in normalized 'text' form, then
5392 this could all go away and we could take full advantage of
5393 the fact that we're comparing identifiers. :-) */
5394 {
5395 size_t attr_len = IDENTIFIER_LENGTH (attr_identifier);
5396 size_t ident_len = IDENTIFIER_LENGTH (get_attribute_name (list));
5397
5398 if (ident_len == attr_len + 4)
5399 {
5400 const char *p = IDENTIFIER_POINTER (get_attribute_name (list));
5401 const char *q = IDENTIFIER_POINTER (attr_identifier);
5402 if (p[0] == '_' && p[1] == '_'
5403 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
5404 && strncmp (q, p + 2, attr_len) == 0)
5405 break;
5406 }
5407 else if (ident_len + 4 == attr_len)
5408 {
5409 const char *p = IDENTIFIER_POINTER (get_attribute_name (list));
5410 const char *q = IDENTIFIER_POINTER (attr_identifier);
5411 if (q[0] == '_' && q[1] == '_'
5412 && q[attr_len - 2] == '_' && q[attr_len - 1] == '_'
5413 && strncmp (q + 2, p, ident_len) == 0)
5414 break;
5415 }
5416 }
5417 list = TREE_CHAIN (list);
5418 }
5419
5420 return list;
5421 }
5422
5423 /* Remove any instances of attribute ATTR_NAME in LIST and return the
5424 modified list. */
5425
5426 tree
5427 remove_attribute (const char *attr_name, tree list)
5428 {
5429 tree *p;
5430 size_t attr_len = strlen (attr_name);
5431
5432 gcc_checking_assert (attr_name[0] != '_');
5433
5434 for (p = &list; *p; )
5435 {
5436 tree l = *p;
5437 /* TODO: If we were storing attributes in normalized form, here
5438 we could use a simple strcmp(). */
5439 if (private_is_attribute_p (attr_name, attr_len, get_attribute_name (l)))
5440 *p = TREE_CHAIN (l);
5441 else
5442 p = &TREE_CHAIN (l);
5443 }
5444
5445 return list;
5446 }
5447
5448 /* Return an attribute list that is the union of a1 and a2. */
5449
5450 tree
5451 merge_attributes (tree a1, tree a2)
5452 {
5453 tree attributes;
5454
5455 /* Either one unset? Take the set one. */
5456
5457 if ((attributes = a1) == 0)
5458 attributes = a2;
5459
5460 /* One that completely contains the other? Take it. */
5461
5462 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
5463 {
5464 if (attribute_list_contained (a2, a1))
5465 attributes = a2;
5466 else
5467 {
5468 /* Pick the longest list, and hang on the other list. */
5469
5470 if (list_length (a1) < list_length (a2))
5471 attributes = a2, a2 = a1;
5472
5473 for (; a2 != 0; a2 = TREE_CHAIN (a2))
5474 {
5475 tree a;
5476 for (a = lookup_ident_attribute (get_attribute_name (a2),
5477 attributes);
5478 a != NULL_TREE && !attribute_value_equal (a, a2);
5479 a = lookup_ident_attribute (get_attribute_name (a2),
5480 TREE_CHAIN (a)))
5481 ;
5482 if (a == NULL_TREE)
5483 {
5484 a1 = copy_node (a2);
5485 TREE_CHAIN (a1) = attributes;
5486 attributes = a1;
5487 }
5488 }
5489 }
5490 }
5491 return attributes;
5492 }
5493
5494 /* Given types T1 and T2, merge their attributes and return
5495 the result. */
5496
5497 tree
5498 merge_type_attributes (tree t1, tree t2)
5499 {
5500 return merge_attributes (TYPE_ATTRIBUTES (t1),
5501 TYPE_ATTRIBUTES (t2));
5502 }
5503
5504 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
5505 the result. */
5506
5507 tree
5508 merge_decl_attributes (tree olddecl, tree newdecl)
5509 {
5510 return merge_attributes (DECL_ATTRIBUTES (olddecl),
5511 DECL_ATTRIBUTES (newdecl));
5512 }
5513
5514 #if TARGET_DLLIMPORT_DECL_ATTRIBUTES
5515
5516 /* Specialization of merge_decl_attributes for various Windows targets.
5517
5518 This handles the following situation:
5519
5520 __declspec (dllimport) int foo;
5521 int foo;
5522
5523 The second instance of `foo' nullifies the dllimport. */
5524
5525 tree
5526 merge_dllimport_decl_attributes (tree old, tree new_tree)
5527 {
5528 tree a;
5529 int delete_dllimport_p = 1;
5530
5531 /* What we need to do here is remove from `old' dllimport if it doesn't
5532 appear in `new'. dllimport behaves like extern: if a declaration is
5533 marked dllimport and a definition appears later, then the object
5534 is not dllimport'd. We also remove a `new' dllimport if the old list
5535 contains dllexport: dllexport always overrides dllimport, regardless
5536 of the order of declaration. */
5537 if (!VAR_OR_FUNCTION_DECL_P (new_tree))
5538 delete_dllimport_p = 0;
5539 else if (DECL_DLLIMPORT_P (new_tree)
5540 && lookup_attribute ("dllexport", DECL_ATTRIBUTES (old)))
5541 {
5542 DECL_DLLIMPORT_P (new_tree) = 0;
5543 warning (OPT_Wattributes, "%q+D already declared with dllexport attribute: "
5544 "dllimport ignored", new_tree);
5545 }
5546 else if (DECL_DLLIMPORT_P (old) && !DECL_DLLIMPORT_P (new_tree))
5547 {
5548 /* Warn about overriding a symbol that has already been used, e.g.:
5549 extern int __attribute__ ((dllimport)) foo;
5550 int* bar () {return &foo;}
5551 int foo;
5552 */
5553 if (TREE_USED (old))
5554 {
5555 warning (0, "%q+D redeclared without dllimport attribute "
5556 "after being referenced with dll linkage", new_tree);
5557 /* If we have used a variable's address with dllimport linkage,
5558 keep the old DECL_DLLIMPORT_P flag: the ADDR_EXPR using the
5559 decl may already have had TREE_CONSTANT computed.
5560 We still remove the attribute so that assembler code refers
5561 to '&foo rather than '_imp__foo'. */
5562 if (TREE_CODE (old) == VAR_DECL && TREE_ADDRESSABLE (old))
5563 DECL_DLLIMPORT_P (new_tree) = 1;
5564 }
5565
5566 /* Let an inline definition silently override the external reference,
5567 but otherwise warn about attribute inconsistency. */
5568 else if (TREE_CODE (new_tree) == VAR_DECL
5569 || !DECL_DECLARED_INLINE_P (new_tree))
5570 warning (OPT_Wattributes, "%q+D redeclared without dllimport attribute: "
5571 "previous dllimport ignored", new_tree);
5572 }
5573 else
5574 delete_dllimport_p = 0;
5575
5576 a = merge_attributes (DECL_ATTRIBUTES (old), DECL_ATTRIBUTES (new_tree));
5577
5578 if (delete_dllimport_p)
5579 a = remove_attribute ("dllimport", a);
5580
5581 return a;
5582 }
5583
5584 /* Handle a "dllimport" or "dllexport" attribute; arguments as in
5585 struct attribute_spec.handler. */
5586
5587 tree
5588 handle_dll_attribute (tree * pnode, tree name, tree args, int flags,
5589 bool *no_add_attrs)
5590 {
5591 tree node = *pnode;
5592 bool is_dllimport;
5593
5594 /* These attributes may apply to structure and union types being created,
5595 but otherwise should pass to the declaration involved. */
5596 if (!DECL_P (node))
5597 {
5598 if (flags & ((int) ATTR_FLAG_DECL_NEXT | (int) ATTR_FLAG_FUNCTION_NEXT
5599 | (int) ATTR_FLAG_ARRAY_NEXT))
5600 {
5601 *no_add_attrs = true;
5602 return tree_cons (name, args, NULL_TREE);
5603 }
5604 if (TREE_CODE (node) == RECORD_TYPE
5605 || TREE_CODE (node) == UNION_TYPE)
5606 {
5607 node = TYPE_NAME (node);
5608 if (!node)
5609 return NULL_TREE;
5610 }
5611 else
5612 {
5613 warning (OPT_Wattributes, "%qE attribute ignored",
5614 name);
5615 *no_add_attrs = true;
5616 return NULL_TREE;
5617 }
5618 }
5619
5620 if (TREE_CODE (node) != FUNCTION_DECL
5621 && TREE_CODE (node) != VAR_DECL
5622 && TREE_CODE (node) != TYPE_DECL)
5623 {
5624 *no_add_attrs = true;
5625 warning (OPT_Wattributes, "%qE attribute ignored",
5626 name);
5627 return NULL_TREE;
5628 }
5629
5630 if (TREE_CODE (node) == TYPE_DECL
5631 && TREE_CODE (TREE_TYPE (node)) != RECORD_TYPE
5632 && TREE_CODE (TREE_TYPE (node)) != UNION_TYPE)
5633 {
5634 *no_add_attrs = true;
5635 warning (OPT_Wattributes, "%qE attribute ignored",
5636 name);
5637 return NULL_TREE;
5638 }
5639
5640 is_dllimport = is_attribute_p ("dllimport", name);
5641
5642 /* Report error on dllimport ambiguities seen now before they cause
5643 any damage. */
5644 if (is_dllimport)
5645 {
5646 /* Honor any target-specific overrides. */
5647 if (!targetm.valid_dllimport_attribute_p (node))
5648 *no_add_attrs = true;
5649
5650 else if (TREE_CODE (node) == FUNCTION_DECL
5651 && DECL_DECLARED_INLINE_P (node))
5652 {
5653 warning (OPT_Wattributes, "inline function %q+D declared as "
5654 " dllimport: attribute ignored", node);
5655 *no_add_attrs = true;
5656 }
5657 /* Like MS, treat definition of dllimported variables and
5658 non-inlined functions on declaration as syntax errors. */
5659 else if (TREE_CODE (node) == FUNCTION_DECL && DECL_INITIAL (node))
5660 {
5661 error ("function %q+D definition is marked dllimport", node);
5662 *no_add_attrs = true;
5663 }
5664
5665 else if (TREE_CODE (node) == VAR_DECL)
5666 {
5667 if (DECL_INITIAL (node))
5668 {
5669 error ("variable %q+D definition is marked dllimport",
5670 node);
5671 *no_add_attrs = true;
5672 }
5673
5674 /* `extern' needn't be specified with dllimport.
5675 Specify `extern' now and hope for the best. Sigh. */
5676 DECL_EXTERNAL (node) = 1;
5677 /* Also, implicitly give dllimport'd variables declared within
5678 a function global scope, unless declared static. */
5679 if (current_function_decl != NULL_TREE && !TREE_STATIC (node))
5680 TREE_PUBLIC (node) = 1;
5681 }
5682
5683 if (*no_add_attrs == false)
5684 DECL_DLLIMPORT_P (node) = 1;
5685 }
5686 else if (TREE_CODE (node) == FUNCTION_DECL
5687 && DECL_DECLARED_INLINE_P (node)
5688 && flag_keep_inline_dllexport)
5689 /* An exported function, even if inline, must be emitted. */
5690 DECL_EXTERNAL (node) = 0;
5691
5692 /* Report error if symbol is not accessible at global scope. */
5693 if (!TREE_PUBLIC (node)
5694 && (TREE_CODE (node) == VAR_DECL
5695 || TREE_CODE (node) == FUNCTION_DECL))
5696 {
5697 error ("external linkage required for symbol %q+D because of "
5698 "%qE attribute", node, name);
5699 *no_add_attrs = true;
5700 }
5701
5702 /* A dllexport'd entity must have default visibility so that other
5703 program units (shared libraries or the main executable) can see
5704 it. A dllimport'd entity must have default visibility so that
5705 the linker knows that undefined references within this program
5706 unit can be resolved by the dynamic linker. */
5707 if (!*no_add_attrs)
5708 {
5709 if (DECL_VISIBILITY_SPECIFIED (node)
5710 && DECL_VISIBILITY (node) != VISIBILITY_DEFAULT)
5711 error ("%qE implies default visibility, but %qD has already "
5712 "been declared with a different visibility",
5713 name, node);
5714 DECL_VISIBILITY (node) = VISIBILITY_DEFAULT;
5715 DECL_VISIBILITY_SPECIFIED (node) = 1;
5716 }
5717
5718 return NULL_TREE;
5719 }
5720
5721 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
5722 \f
5723 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
5724 of the various TYPE_QUAL values. */
5725
5726 static void
5727 set_type_quals (tree type, int type_quals)
5728 {
5729 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
5730 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
5731 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
5732 TYPE_ADDR_SPACE (type) = DECODE_QUAL_ADDR_SPACE (type_quals);
5733 }
5734
5735 /* Returns true iff CAND is equivalent to BASE with TYPE_QUALS. */
5736
5737 bool
5738 check_qualified_type (const_tree cand, const_tree base, int type_quals)
5739 {
5740 return (TYPE_QUALS (cand) == type_quals
5741 && TYPE_NAME (cand) == TYPE_NAME (base)
5742 /* Apparently this is needed for Objective-C. */
5743 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
5744 /* Check alignment. */
5745 && TYPE_ALIGN (cand) == TYPE_ALIGN (base)
5746 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
5747 TYPE_ATTRIBUTES (base)));
5748 }
5749
5750 /* Returns true iff CAND is equivalent to BASE with ALIGN. */
5751
5752 static bool
5753 check_aligned_type (const_tree cand, const_tree base, unsigned int align)
5754 {
5755 return (TYPE_QUALS (cand) == TYPE_QUALS (base)
5756 && TYPE_NAME (cand) == TYPE_NAME (base)
5757 /* Apparently this is needed for Objective-C. */
5758 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
5759 /* Check alignment. */
5760 && TYPE_ALIGN (cand) == align
5761 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
5762 TYPE_ATTRIBUTES (base)));
5763 }
5764
5765 /* Return a version of the TYPE, qualified as indicated by the
5766 TYPE_QUALS, if one exists. If no qualified version exists yet,
5767 return NULL_TREE. */
5768
5769 tree
5770 get_qualified_type (tree type, int type_quals)
5771 {
5772 tree t;
5773
5774 if (TYPE_QUALS (type) == type_quals)
5775 return type;
5776
5777 /* Search the chain of variants to see if there is already one there just
5778 like the one we need to have. If so, use that existing one. We must
5779 preserve the TYPE_NAME, since there is code that depends on this. */
5780 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
5781 if (check_qualified_type (t, type, type_quals))
5782 return t;
5783
5784 return NULL_TREE;
5785 }
5786
5787 /* Like get_qualified_type, but creates the type if it does not
5788 exist. This function never returns NULL_TREE. */
5789
5790 tree
5791 build_qualified_type (tree type, int type_quals)
5792 {
5793 tree t;
5794
5795 /* See if we already have the appropriate qualified variant. */
5796 t = get_qualified_type (type, type_quals);
5797
5798 /* If not, build it. */
5799 if (!t)
5800 {
5801 t = build_variant_type_copy (type);
5802 set_type_quals (t, type_quals);
5803
5804 if (TYPE_STRUCTURAL_EQUALITY_P (type))
5805 /* Propagate structural equality. */
5806 SET_TYPE_STRUCTURAL_EQUALITY (t);
5807 else if (TYPE_CANONICAL (type) != type)
5808 /* Build the underlying canonical type, since it is different
5809 from TYPE. */
5810 TYPE_CANONICAL (t) = build_qualified_type (TYPE_CANONICAL (type),
5811 type_quals);
5812 else
5813 /* T is its own canonical type. */
5814 TYPE_CANONICAL (t) = t;
5815
5816 }
5817
5818 return t;
5819 }
5820
5821 /* Create a variant of type T with alignment ALIGN. */
5822
5823 tree
5824 build_aligned_type (tree type, unsigned int align)
5825 {
5826 tree t;
5827
5828 if (TYPE_PACKED (type)
5829 || TYPE_ALIGN (type) == align)
5830 return type;
5831
5832 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
5833 if (check_aligned_type (t, type, align))
5834 return t;
5835
5836 t = build_variant_type_copy (type);
5837 TYPE_ALIGN (t) = align;
5838
5839 return t;
5840 }
5841
5842 /* Create a new distinct copy of TYPE. The new type is made its own
5843 MAIN_VARIANT. If TYPE requires structural equality checks, the
5844 resulting type requires structural equality checks; otherwise, its
5845 TYPE_CANONICAL points to itself. */
5846
5847 tree
5848 build_distinct_type_copy (tree type)
5849 {
5850 tree t = copy_node (type);
5851
5852 TYPE_POINTER_TO (t) = 0;
5853 TYPE_REFERENCE_TO (t) = 0;
5854
5855 /* Set the canonical type either to a new equivalence class, or
5856 propagate the need for structural equality checks. */
5857 if (TYPE_STRUCTURAL_EQUALITY_P (type))
5858 SET_TYPE_STRUCTURAL_EQUALITY (t);
5859 else
5860 TYPE_CANONICAL (t) = t;
5861
5862 /* Make it its own variant. */
5863 TYPE_MAIN_VARIANT (t) = t;
5864 TYPE_NEXT_VARIANT (t) = 0;
5865
5866 /* Note that it is now possible for TYPE_MIN_VALUE to be a value
5867 whose TREE_TYPE is not t. This can also happen in the Ada
5868 frontend when using subtypes. */
5869
5870 return t;
5871 }
5872
5873 /* Create a new variant of TYPE, equivalent but distinct. This is so
5874 the caller can modify it. TYPE_CANONICAL for the return type will
5875 be equivalent to TYPE_CANONICAL of TYPE, indicating that the types
5876 are considered equal by the language itself (or that both types
5877 require structural equality checks). */
5878
5879 tree
5880 build_variant_type_copy (tree type)
5881 {
5882 tree t, m = TYPE_MAIN_VARIANT (type);
5883
5884 t = build_distinct_type_copy (type);
5885
5886 /* Since we're building a variant, assume that it is a non-semantic
5887 variant. This also propagates TYPE_STRUCTURAL_EQUALITY_P. */
5888 TYPE_CANONICAL (t) = TYPE_CANONICAL (type);
5889
5890 /* Add the new type to the chain of variants of TYPE. */
5891 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
5892 TYPE_NEXT_VARIANT (m) = t;
5893 TYPE_MAIN_VARIANT (t) = m;
5894
5895 return t;
5896 }
5897 \f
5898 /* Return true if the from tree in both tree maps are equal. */
5899
5900 int
5901 tree_map_base_eq (const void *va, const void *vb)
5902 {
5903 const struct tree_map_base *const a = (const struct tree_map_base *) va,
5904 *const b = (const struct tree_map_base *) vb;
5905 return (a->from == b->from);
5906 }
5907
5908 /* Hash a from tree in a tree_base_map. */
5909
5910 unsigned int
5911 tree_map_base_hash (const void *item)
5912 {
5913 return htab_hash_pointer (((const struct tree_map_base *)item)->from);
5914 }
5915
5916 /* Return true if this tree map structure is marked for garbage collection
5917 purposes. We simply return true if the from tree is marked, so that this
5918 structure goes away when the from tree goes away. */
5919
5920 int
5921 tree_map_base_marked_p (const void *p)
5922 {
5923 return ggc_marked_p (((const struct tree_map_base *) p)->from);
5924 }
5925
5926 /* Hash a from tree in a tree_map. */
5927
5928 unsigned int
5929 tree_map_hash (const void *item)
5930 {
5931 return (((const struct tree_map *) item)->hash);
5932 }
5933
5934 /* Hash a from tree in a tree_decl_map. */
5935
5936 unsigned int
5937 tree_decl_map_hash (const void *item)
5938 {
5939 return DECL_UID (((const struct tree_decl_map *) item)->base.from);
5940 }
5941
5942 /* Return the initialization priority for DECL. */
5943
5944 priority_type
5945 decl_init_priority_lookup (tree decl)
5946 {
5947 struct tree_priority_map *h;
5948 struct tree_map_base in;
5949
5950 gcc_assert (VAR_OR_FUNCTION_DECL_P (decl));
5951 in.from = decl;
5952 h = (struct tree_priority_map *) htab_find (init_priority_for_decl, &in);
5953 return h ? h->init : DEFAULT_INIT_PRIORITY;
5954 }
5955
5956 /* Return the finalization priority for DECL. */
5957
5958 priority_type
5959 decl_fini_priority_lookup (tree decl)
5960 {
5961 struct tree_priority_map *h;
5962 struct tree_map_base in;
5963
5964 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
5965 in.from = decl;
5966 h = (struct tree_priority_map *) htab_find (init_priority_for_decl, &in);
5967 return h ? h->fini : DEFAULT_INIT_PRIORITY;
5968 }
5969
5970 /* Return the initialization and finalization priority information for
5971 DECL. If there is no previous priority information, a freshly
5972 allocated structure is returned. */
5973
5974 static struct tree_priority_map *
5975 decl_priority_info (tree decl)
5976 {
5977 struct tree_priority_map in;
5978 struct tree_priority_map *h;
5979 void **loc;
5980
5981 in.base.from = decl;
5982 loc = htab_find_slot (init_priority_for_decl, &in, INSERT);
5983 h = (struct tree_priority_map *) *loc;
5984 if (!h)
5985 {
5986 h = ggc_alloc_cleared_tree_priority_map ();
5987 *loc = h;
5988 h->base.from = decl;
5989 h->init = DEFAULT_INIT_PRIORITY;
5990 h->fini = DEFAULT_INIT_PRIORITY;
5991 }
5992
5993 return h;
5994 }
5995
5996 /* Set the initialization priority for DECL to PRIORITY. */
5997
5998 void
5999 decl_init_priority_insert (tree decl, priority_type priority)
6000 {
6001 struct tree_priority_map *h;
6002
6003 gcc_assert (VAR_OR_FUNCTION_DECL_P (decl));
6004 if (priority == DEFAULT_INIT_PRIORITY)
6005 return;
6006 h = decl_priority_info (decl);
6007 h->init = priority;
6008 }
6009
6010 /* Set the finalization priority for DECL to PRIORITY. */
6011
6012 void
6013 decl_fini_priority_insert (tree decl, priority_type priority)
6014 {
6015 struct tree_priority_map *h;
6016
6017 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
6018 if (priority == DEFAULT_INIT_PRIORITY)
6019 return;
6020 h = decl_priority_info (decl);
6021 h->fini = priority;
6022 }
6023
6024 /* Print out the statistics for the DECL_DEBUG_EXPR hash table. */
6025
6026 static void
6027 print_debug_expr_statistics (void)
6028 {
6029 fprintf (stderr, "DECL_DEBUG_EXPR hash: size %ld, %ld elements, %f collisions\n",
6030 (long) htab_size (debug_expr_for_decl),
6031 (long) htab_elements (debug_expr_for_decl),
6032 htab_collisions (debug_expr_for_decl));
6033 }
6034
6035 /* Print out the statistics for the DECL_VALUE_EXPR hash table. */
6036
6037 static void
6038 print_value_expr_statistics (void)
6039 {
6040 fprintf (stderr, "DECL_VALUE_EXPR hash: size %ld, %ld elements, %f collisions\n",
6041 (long) htab_size (value_expr_for_decl),
6042 (long) htab_elements (value_expr_for_decl),
6043 htab_collisions (value_expr_for_decl));
6044 }
6045
6046 /* Lookup a debug expression for FROM, and return it if we find one. */
6047
6048 tree
6049 decl_debug_expr_lookup (tree from)
6050 {
6051 struct tree_decl_map *h, in;
6052 in.base.from = from;
6053
6054 h = (struct tree_decl_map *)
6055 htab_find_with_hash (debug_expr_for_decl, &in, DECL_UID (from));
6056 if (h)
6057 return h->to;
6058 return NULL_TREE;
6059 }
6060
6061 /* Insert a mapping FROM->TO in the debug expression hashtable. */
6062
6063 void
6064 decl_debug_expr_insert (tree from, tree to)
6065 {
6066 struct tree_decl_map *h;
6067 void **loc;
6068
6069 h = ggc_alloc_tree_decl_map ();
6070 h->base.from = from;
6071 h->to = to;
6072 loc = htab_find_slot_with_hash (debug_expr_for_decl, h, DECL_UID (from),
6073 INSERT);
6074 *(struct tree_decl_map **) loc = h;
6075 }
6076
6077 /* Lookup a value expression for FROM, and return it if we find one. */
6078
6079 tree
6080 decl_value_expr_lookup (tree from)
6081 {
6082 struct tree_decl_map *h, in;
6083 in.base.from = from;
6084
6085 h = (struct tree_decl_map *)
6086 htab_find_with_hash (value_expr_for_decl, &in, DECL_UID (from));
6087 if (h)
6088 return h->to;
6089 return NULL_TREE;
6090 }
6091
6092 /* Insert a mapping FROM->TO in the value expression hashtable. */
6093
6094 void
6095 decl_value_expr_insert (tree from, tree to)
6096 {
6097 struct tree_decl_map *h;
6098 void **loc;
6099
6100 h = ggc_alloc_tree_decl_map ();
6101 h->base.from = from;
6102 h->to = to;
6103 loc = htab_find_slot_with_hash (value_expr_for_decl, h, DECL_UID (from),
6104 INSERT);
6105 *(struct tree_decl_map **) loc = h;
6106 }
6107
6108 /* Lookup a vector of debug arguments for FROM, and return it if we
6109 find one. */
6110
6111 vec<tree, va_gc> **
6112 decl_debug_args_lookup (tree from)
6113 {
6114 struct tree_vec_map *h, in;
6115
6116 if (!DECL_HAS_DEBUG_ARGS_P (from))
6117 return NULL;
6118 gcc_checking_assert (debug_args_for_decl != NULL);
6119 in.base.from = from;
6120 h = (struct tree_vec_map *)
6121 htab_find_with_hash (debug_args_for_decl, &in, DECL_UID (from));
6122 if (h)
6123 return &h->to;
6124 return NULL;
6125 }
6126
6127 /* Insert a mapping FROM->empty vector of debug arguments in the value
6128 expression hashtable. */
6129
6130 vec<tree, va_gc> **
6131 decl_debug_args_insert (tree from)
6132 {
6133 struct tree_vec_map *h;
6134 void **loc;
6135
6136 if (DECL_HAS_DEBUG_ARGS_P (from))
6137 return decl_debug_args_lookup (from);
6138 if (debug_args_for_decl == NULL)
6139 debug_args_for_decl = htab_create_ggc (64, tree_vec_map_hash,
6140 tree_vec_map_eq, 0);
6141 h = ggc_alloc_tree_vec_map ();
6142 h->base.from = from;
6143 h->to = NULL;
6144 loc = htab_find_slot_with_hash (debug_args_for_decl, h, DECL_UID (from),
6145 INSERT);
6146 *(struct tree_vec_map **) loc = h;
6147 DECL_HAS_DEBUG_ARGS_P (from) = 1;
6148 return &h->to;
6149 }
6150
6151 /* Hashing of types so that we don't make duplicates.
6152 The entry point is `type_hash_canon'. */
6153
6154 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
6155 with types in the TREE_VALUE slots), by adding the hash codes
6156 of the individual types. */
6157
6158 static unsigned int
6159 type_hash_list (const_tree list, hashval_t hashcode)
6160 {
6161 const_tree tail;
6162
6163 for (tail = list; tail; tail = TREE_CHAIN (tail))
6164 if (TREE_VALUE (tail) != error_mark_node)
6165 hashcode = iterative_hash_object (TYPE_HASH (TREE_VALUE (tail)),
6166 hashcode);
6167
6168 return hashcode;
6169 }
6170
6171 /* These are the Hashtable callback functions. */
6172
6173 /* Returns true iff the types are equivalent. */
6174
6175 static int
6176 type_hash_eq (const void *va, const void *vb)
6177 {
6178 const struct type_hash *const a = (const struct type_hash *) va,
6179 *const b = (const struct type_hash *) vb;
6180
6181 /* First test the things that are the same for all types. */
6182 if (a->hash != b->hash
6183 || TREE_CODE (a->type) != TREE_CODE (b->type)
6184 || TREE_TYPE (a->type) != TREE_TYPE (b->type)
6185 || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
6186 TYPE_ATTRIBUTES (b->type))
6187 || (TREE_CODE (a->type) != COMPLEX_TYPE
6188 && TYPE_NAME (a->type) != TYPE_NAME (b->type)))
6189 return 0;
6190
6191 /* Be careful about comparing arrays before and after the element type
6192 has been completed; don't compare TYPE_ALIGN unless both types are
6193 complete. */
6194 if (COMPLETE_TYPE_P (a->type) && COMPLETE_TYPE_P (b->type)
6195 && (TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
6196 || TYPE_MODE (a->type) != TYPE_MODE (b->type)))
6197 return 0;
6198
6199 switch (TREE_CODE (a->type))
6200 {
6201 case VOID_TYPE:
6202 case COMPLEX_TYPE:
6203 case POINTER_TYPE:
6204 case REFERENCE_TYPE:
6205 case NULLPTR_TYPE:
6206 return 1;
6207
6208 case VECTOR_TYPE:
6209 return TYPE_VECTOR_SUBPARTS (a->type) == TYPE_VECTOR_SUBPARTS (b->type);
6210
6211 case ENUMERAL_TYPE:
6212 if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
6213 && !(TYPE_VALUES (a->type)
6214 && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
6215 && TYPE_VALUES (b->type)
6216 && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
6217 && type_list_equal (TYPE_VALUES (a->type),
6218 TYPE_VALUES (b->type))))
6219 return 0;
6220
6221 /* ... fall through ... */
6222
6223 case INTEGER_TYPE:
6224 case REAL_TYPE:
6225 case BOOLEAN_TYPE:
6226 return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
6227 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
6228 TYPE_MAX_VALUE (b->type)))
6229 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
6230 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
6231 TYPE_MIN_VALUE (b->type))));
6232
6233 case FIXED_POINT_TYPE:
6234 return TYPE_SATURATING (a->type) == TYPE_SATURATING (b->type);
6235
6236 case OFFSET_TYPE:
6237 return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
6238
6239 case METHOD_TYPE:
6240 if (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
6241 && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
6242 || (TYPE_ARG_TYPES (a->type)
6243 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
6244 && TYPE_ARG_TYPES (b->type)
6245 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
6246 && type_list_equal (TYPE_ARG_TYPES (a->type),
6247 TYPE_ARG_TYPES (b->type)))))
6248 break;
6249 return 0;
6250 case ARRAY_TYPE:
6251 return TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type);
6252
6253 case RECORD_TYPE:
6254 case UNION_TYPE:
6255 case QUAL_UNION_TYPE:
6256 return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
6257 || (TYPE_FIELDS (a->type)
6258 && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
6259 && TYPE_FIELDS (b->type)
6260 && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
6261 && type_list_equal (TYPE_FIELDS (a->type),
6262 TYPE_FIELDS (b->type))));
6263
6264 case FUNCTION_TYPE:
6265 if (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
6266 || (TYPE_ARG_TYPES (a->type)
6267 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
6268 && TYPE_ARG_TYPES (b->type)
6269 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
6270 && type_list_equal (TYPE_ARG_TYPES (a->type),
6271 TYPE_ARG_TYPES (b->type))))
6272 break;
6273 return 0;
6274
6275 default:
6276 return 0;
6277 }
6278
6279 if (lang_hooks.types.type_hash_eq != NULL)
6280 return lang_hooks.types.type_hash_eq (a->type, b->type);
6281
6282 return 1;
6283 }
6284
6285 /* Return the cached hash value. */
6286
6287 static hashval_t
6288 type_hash_hash (const void *item)
6289 {
6290 return ((const struct type_hash *) item)->hash;
6291 }
6292
6293 /* Look in the type hash table for a type isomorphic to TYPE.
6294 If one is found, return it. Otherwise return 0. */
6295
6296 static tree
6297 type_hash_lookup (hashval_t hashcode, tree type)
6298 {
6299 struct type_hash *h, in;
6300
6301 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
6302 must call that routine before comparing TYPE_ALIGNs. */
6303 layout_type (type);
6304
6305 in.hash = hashcode;
6306 in.type = type;
6307
6308 h = (struct type_hash *) htab_find_with_hash (type_hash_table, &in,
6309 hashcode);
6310 if (h)
6311 return h->type;
6312 return NULL_TREE;
6313 }
6314
6315 /* Add an entry to the type-hash-table
6316 for a type TYPE whose hash code is HASHCODE. */
6317
6318 static void
6319 type_hash_add (hashval_t hashcode, tree type)
6320 {
6321 struct type_hash *h;
6322 void **loc;
6323
6324 h = ggc_alloc_type_hash ();
6325 h->hash = hashcode;
6326 h->type = type;
6327 loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
6328 *loc = (void *)h;
6329 }
6330
6331 /* Given TYPE, and HASHCODE its hash code, return the canonical
6332 object for an identical type if one already exists.
6333 Otherwise, return TYPE, and record it as the canonical object.
6334
6335 To use this function, first create a type of the sort you want.
6336 Then compute its hash code from the fields of the type that
6337 make it different from other similar types.
6338 Then call this function and use the value. */
6339
6340 tree
6341 type_hash_canon (unsigned int hashcode, tree type)
6342 {
6343 tree t1;
6344
6345 /* The hash table only contains main variants, so ensure that's what we're
6346 being passed. */
6347 gcc_assert (TYPE_MAIN_VARIANT (type) == type);
6348
6349 /* See if the type is in the hash table already. If so, return it.
6350 Otherwise, add the type. */
6351 t1 = type_hash_lookup (hashcode, type);
6352 if (t1 != 0)
6353 {
6354 if (GATHER_STATISTICS)
6355 {
6356 tree_code_counts[(int) TREE_CODE (type)]--;
6357 tree_node_counts[(int) t_kind]--;
6358 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type_non_common);
6359 }
6360 return t1;
6361 }
6362 else
6363 {
6364 type_hash_add (hashcode, type);
6365 return type;
6366 }
6367 }
6368
6369 /* See if the data pointed to by the type hash table is marked. We consider
6370 it marked if the type is marked or if a debug type number or symbol
6371 table entry has been made for the type. */
6372
6373 static int
6374 type_hash_marked_p (const void *p)
6375 {
6376 const_tree const type = ((const struct type_hash *) p)->type;
6377
6378 return ggc_marked_p (type);
6379 }
6380
6381 static void
6382 print_type_hash_statistics (void)
6383 {
6384 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
6385 (long) htab_size (type_hash_table),
6386 (long) htab_elements (type_hash_table),
6387 htab_collisions (type_hash_table));
6388 }
6389
6390 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
6391 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
6392 by adding the hash codes of the individual attributes. */
6393
6394 static unsigned int
6395 attribute_hash_list (const_tree list, hashval_t hashcode)
6396 {
6397 const_tree tail;
6398
6399 for (tail = list; tail; tail = TREE_CHAIN (tail))
6400 /* ??? Do we want to add in TREE_VALUE too? */
6401 hashcode = iterative_hash_object
6402 (IDENTIFIER_HASH_VALUE (get_attribute_name (tail)), hashcode);
6403 return hashcode;
6404 }
6405
6406 /* Given two lists of attributes, return true if list l2 is
6407 equivalent to l1. */
6408
6409 int
6410 attribute_list_equal (const_tree l1, const_tree l2)
6411 {
6412 if (l1 == l2)
6413 return 1;
6414
6415 return attribute_list_contained (l1, l2)
6416 && attribute_list_contained (l2, l1);
6417 }
6418
6419 /* Given two lists of attributes, return true if list L2 is
6420 completely contained within L1. */
6421 /* ??? This would be faster if attribute names were stored in a canonicalized
6422 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
6423 must be used to show these elements are equivalent (which they are). */
6424 /* ??? It's not clear that attributes with arguments will always be handled
6425 correctly. */
6426
6427 int
6428 attribute_list_contained (const_tree l1, const_tree l2)
6429 {
6430 const_tree t1, t2;
6431
6432 /* First check the obvious, maybe the lists are identical. */
6433 if (l1 == l2)
6434 return 1;
6435
6436 /* Maybe the lists are similar. */
6437 for (t1 = l1, t2 = l2;
6438 t1 != 0 && t2 != 0
6439 && get_attribute_name (t1) == get_attribute_name (t2)
6440 && TREE_VALUE (t1) == TREE_VALUE (t2);
6441 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
6442 ;
6443
6444 /* Maybe the lists are equal. */
6445 if (t1 == 0 && t2 == 0)
6446 return 1;
6447
6448 for (; t2 != 0; t2 = TREE_CHAIN (t2))
6449 {
6450 const_tree attr;
6451 /* This CONST_CAST is okay because lookup_attribute does not
6452 modify its argument and the return value is assigned to a
6453 const_tree. */
6454 for (attr = lookup_ident_attribute (get_attribute_name (t2), CONST_CAST_TREE(l1));
6455 attr != NULL_TREE && !attribute_value_equal (t2, attr);
6456 attr = lookup_ident_attribute (get_attribute_name (t2), TREE_CHAIN (attr)))
6457 ;
6458
6459 if (attr == NULL_TREE)
6460 return 0;
6461 }
6462
6463 return 1;
6464 }
6465
6466 /* Given two lists of types
6467 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
6468 return 1 if the lists contain the same types in the same order.
6469 Also, the TREE_PURPOSEs must match. */
6470
6471 int
6472 type_list_equal (const_tree l1, const_tree l2)
6473 {
6474 const_tree t1, t2;
6475
6476 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
6477 if (TREE_VALUE (t1) != TREE_VALUE (t2)
6478 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
6479 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
6480 && (TREE_TYPE (TREE_PURPOSE (t1))
6481 == TREE_TYPE (TREE_PURPOSE (t2))))))
6482 return 0;
6483
6484 return t1 == t2;
6485 }
6486
6487 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
6488 given by TYPE. If the argument list accepts variable arguments,
6489 then this function counts only the ordinary arguments. */
6490
6491 int
6492 type_num_arguments (const_tree type)
6493 {
6494 int i = 0;
6495 tree t;
6496
6497 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
6498 /* If the function does not take a variable number of arguments,
6499 the last element in the list will have type `void'. */
6500 if (VOID_TYPE_P (TREE_VALUE (t)))
6501 break;
6502 else
6503 ++i;
6504
6505 return i;
6506 }
6507
6508 /* Nonzero if integer constants T1 and T2
6509 represent the same constant value. */
6510
6511 int
6512 tree_int_cst_equal (const_tree t1, const_tree t2)
6513 {
6514 if (t1 == t2)
6515 return 1;
6516
6517 if (t1 == 0 || t2 == 0)
6518 return 0;
6519
6520 if (TREE_CODE (t1) == INTEGER_CST
6521 && TREE_CODE (t2) == INTEGER_CST
6522 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
6523 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
6524 return 1;
6525
6526 return 0;
6527 }
6528
6529 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
6530 The precise way of comparison depends on their data type. */
6531
6532 int
6533 tree_int_cst_lt (const_tree t1, const_tree t2)
6534 {
6535 if (t1 == t2)
6536 return 0;
6537
6538 if (TYPE_UNSIGNED (TREE_TYPE (t1)) != TYPE_UNSIGNED (TREE_TYPE (t2)))
6539 {
6540 int t1_sgn = tree_int_cst_sgn (t1);
6541 int t2_sgn = tree_int_cst_sgn (t2);
6542
6543 if (t1_sgn < t2_sgn)
6544 return 1;
6545 else if (t1_sgn > t2_sgn)
6546 return 0;
6547 /* Otherwise, both are non-negative, so we compare them as
6548 unsigned just in case one of them would overflow a signed
6549 type. */
6550 }
6551 else if (!TYPE_UNSIGNED (TREE_TYPE (t1)))
6552 return INT_CST_LT (t1, t2);
6553
6554 return INT_CST_LT_UNSIGNED (t1, t2);
6555 }
6556
6557 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
6558
6559 int
6560 tree_int_cst_compare (const_tree t1, const_tree t2)
6561 {
6562 if (tree_int_cst_lt (t1, t2))
6563 return -1;
6564 else if (tree_int_cst_lt (t2, t1))
6565 return 1;
6566 else
6567 return 0;
6568 }
6569
6570 /* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
6571 the host. If POS is zero, the value can be represented in a single
6572 HOST_WIDE_INT. If POS is nonzero, the value must be non-negative and can
6573 be represented in a single unsigned HOST_WIDE_INT. */
6574
6575 int
6576 host_integerp (const_tree t, int pos)
6577 {
6578 if (t == NULL_TREE)
6579 return 0;
6580
6581 return (TREE_CODE (t) == INTEGER_CST
6582 && ((TREE_INT_CST_HIGH (t) == 0
6583 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
6584 || (! pos && TREE_INT_CST_HIGH (t) == -1
6585 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0
6586 && !TYPE_UNSIGNED (TREE_TYPE (t)))
6587 || (pos && TREE_INT_CST_HIGH (t) == 0)));
6588 }
6589
6590 /* Return the HOST_WIDE_INT least significant bits of T if it is an
6591 INTEGER_CST and there is no overflow. POS is nonzero if the result must
6592 be non-negative. We must be able to satisfy the above conditions. */
6593
6594 HOST_WIDE_INT
6595 tree_low_cst (const_tree t, int pos)
6596 {
6597 gcc_assert (host_integerp (t, pos));
6598 return TREE_INT_CST_LOW (t);
6599 }
6600
6601 /* Return the HOST_WIDE_INT least significant bits of T, a sizetype
6602 kind INTEGER_CST. This makes sure to properly sign-extend the
6603 constant. */
6604
6605 HOST_WIDE_INT
6606 size_low_cst (const_tree t)
6607 {
6608 double_int d = tree_to_double_int (t);
6609 return d.sext (TYPE_PRECISION (TREE_TYPE (t))).low;
6610 }
6611
6612 /* Return the most significant (sign) bit of T. */
6613
6614 int
6615 tree_int_cst_sign_bit (const_tree t)
6616 {
6617 unsigned bitno = TYPE_PRECISION (TREE_TYPE (t)) - 1;
6618 unsigned HOST_WIDE_INT w;
6619
6620 if (bitno < HOST_BITS_PER_WIDE_INT)
6621 w = TREE_INT_CST_LOW (t);
6622 else
6623 {
6624 w = TREE_INT_CST_HIGH (t);
6625 bitno -= HOST_BITS_PER_WIDE_INT;
6626 }
6627
6628 return (w >> bitno) & 1;
6629 }
6630
6631 /* Return an indication of the sign of the integer constant T.
6632 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
6633 Note that -1 will never be returned if T's type is unsigned. */
6634
6635 int
6636 tree_int_cst_sgn (const_tree t)
6637 {
6638 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
6639 return 0;
6640 else if (TYPE_UNSIGNED (TREE_TYPE (t)))
6641 return 1;
6642 else if (TREE_INT_CST_HIGH (t) < 0)
6643 return -1;
6644 else
6645 return 1;
6646 }
6647
6648 /* Return the minimum number of bits needed to represent VALUE in a
6649 signed or unsigned type, UNSIGNEDP says which. */
6650
6651 unsigned int
6652 tree_int_cst_min_precision (tree value, bool unsignedp)
6653 {
6654 /* If the value is negative, compute its negative minus 1. The latter
6655 adjustment is because the absolute value of the largest negative value
6656 is one larger than the largest positive value. This is equivalent to
6657 a bit-wise negation, so use that operation instead. */
6658
6659 if (tree_int_cst_sgn (value) < 0)
6660 value = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (value), value);
6661
6662 /* Return the number of bits needed, taking into account the fact
6663 that we need one more bit for a signed than unsigned type.
6664 If value is 0 or -1, the minimum precision is 1 no matter
6665 whether unsignedp is true or false. */
6666
6667 if (integer_zerop (value))
6668 return 1;
6669 else
6670 return tree_floor_log2 (value) + 1 + !unsignedp;
6671 }
6672
6673 /* Compare two constructor-element-type constants. Return 1 if the lists
6674 are known to be equal; otherwise return 0. */
6675
6676 int
6677 simple_cst_list_equal (const_tree l1, const_tree l2)
6678 {
6679 while (l1 != NULL_TREE && l2 != NULL_TREE)
6680 {
6681 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
6682 return 0;
6683
6684 l1 = TREE_CHAIN (l1);
6685 l2 = TREE_CHAIN (l2);
6686 }
6687
6688 return l1 == l2;
6689 }
6690
6691 /* Return truthvalue of whether T1 is the same tree structure as T2.
6692 Return 1 if they are the same.
6693 Return 0 if they are understandably different.
6694 Return -1 if either contains tree structure not understood by
6695 this function. */
6696
6697 int
6698 simple_cst_equal (const_tree t1, const_tree t2)
6699 {
6700 enum tree_code code1, code2;
6701 int cmp;
6702 int i;
6703
6704 if (t1 == t2)
6705 return 1;
6706 if (t1 == 0 || t2 == 0)
6707 return 0;
6708
6709 code1 = TREE_CODE (t1);
6710 code2 = TREE_CODE (t2);
6711
6712 if (CONVERT_EXPR_CODE_P (code1) || code1 == NON_LVALUE_EXPR)
6713 {
6714 if (CONVERT_EXPR_CODE_P (code2)
6715 || code2 == NON_LVALUE_EXPR)
6716 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6717 else
6718 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
6719 }
6720
6721 else if (CONVERT_EXPR_CODE_P (code2)
6722 || code2 == NON_LVALUE_EXPR)
6723 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
6724
6725 if (code1 != code2)
6726 return 0;
6727
6728 switch (code1)
6729 {
6730 case INTEGER_CST:
6731 return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
6732 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
6733
6734 case REAL_CST:
6735 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
6736
6737 case FIXED_CST:
6738 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1), TREE_FIXED_CST (t2));
6739
6740 case STRING_CST:
6741 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
6742 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
6743 TREE_STRING_LENGTH (t1)));
6744
6745 case CONSTRUCTOR:
6746 {
6747 unsigned HOST_WIDE_INT idx;
6748 vec<constructor_elt, va_gc> *v1 = CONSTRUCTOR_ELTS (t1);
6749 vec<constructor_elt, va_gc> *v2 = CONSTRUCTOR_ELTS (t2);
6750
6751 if (vec_safe_length (v1) != vec_safe_length (v2))
6752 return false;
6753
6754 for (idx = 0; idx < vec_safe_length (v1); ++idx)
6755 /* ??? Should we handle also fields here? */
6756 if (!simple_cst_equal ((*v1)[idx].value, (*v2)[idx].value))
6757 return false;
6758 return true;
6759 }
6760
6761 case SAVE_EXPR:
6762 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6763
6764 case CALL_EXPR:
6765 cmp = simple_cst_equal (CALL_EXPR_FN (t1), CALL_EXPR_FN (t2));
6766 if (cmp <= 0)
6767 return cmp;
6768 if (call_expr_nargs (t1) != call_expr_nargs (t2))
6769 return 0;
6770 {
6771 const_tree arg1, arg2;
6772 const_call_expr_arg_iterator iter1, iter2;
6773 for (arg1 = first_const_call_expr_arg (t1, &iter1),
6774 arg2 = first_const_call_expr_arg (t2, &iter2);
6775 arg1 && arg2;
6776 arg1 = next_const_call_expr_arg (&iter1),
6777 arg2 = next_const_call_expr_arg (&iter2))
6778 {
6779 cmp = simple_cst_equal (arg1, arg2);
6780 if (cmp <= 0)
6781 return cmp;
6782 }
6783 return arg1 == arg2;
6784 }
6785
6786 case TARGET_EXPR:
6787 /* Special case: if either target is an unallocated VAR_DECL,
6788 it means that it's going to be unified with whatever the
6789 TARGET_EXPR is really supposed to initialize, so treat it
6790 as being equivalent to anything. */
6791 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
6792 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
6793 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
6794 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
6795 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
6796 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
6797 cmp = 1;
6798 else
6799 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6800
6801 if (cmp <= 0)
6802 return cmp;
6803
6804 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
6805
6806 case WITH_CLEANUP_EXPR:
6807 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6808 if (cmp <= 0)
6809 return cmp;
6810
6811 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
6812
6813 case COMPONENT_REF:
6814 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
6815 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6816
6817 return 0;
6818
6819 case VAR_DECL:
6820 case PARM_DECL:
6821 case CONST_DECL:
6822 case FUNCTION_DECL:
6823 return 0;
6824
6825 default:
6826 break;
6827 }
6828
6829 /* This general rule works for most tree codes. All exceptions should be
6830 handled above. If this is a language-specific tree code, we can't
6831 trust what might be in the operand, so say we don't know
6832 the situation. */
6833 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
6834 return -1;
6835
6836 switch (TREE_CODE_CLASS (code1))
6837 {
6838 case tcc_unary:
6839 case tcc_binary:
6840 case tcc_comparison:
6841 case tcc_expression:
6842 case tcc_reference:
6843 case tcc_statement:
6844 cmp = 1;
6845 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
6846 {
6847 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
6848 if (cmp <= 0)
6849 return cmp;
6850 }
6851
6852 return cmp;
6853
6854 default:
6855 return -1;
6856 }
6857 }
6858
6859 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
6860 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
6861 than U, respectively. */
6862
6863 int
6864 compare_tree_int (const_tree t, unsigned HOST_WIDE_INT u)
6865 {
6866 if (tree_int_cst_sgn (t) < 0)
6867 return -1;
6868 else if (TREE_INT_CST_HIGH (t) != 0)
6869 return 1;
6870 else if (TREE_INT_CST_LOW (t) == u)
6871 return 0;
6872 else if (TREE_INT_CST_LOW (t) < u)
6873 return -1;
6874 else
6875 return 1;
6876 }
6877
6878 /* Return true if SIZE represents a constant size that is in bounds of
6879 what the middle-end and the backend accepts (covering not more than
6880 half of the address-space). */
6881
6882 bool
6883 valid_constant_size_p (const_tree size)
6884 {
6885 if (! host_integerp (size, 1)
6886 || TREE_OVERFLOW (size)
6887 || tree_int_cst_sign_bit (size) != 0)
6888 return false;
6889 return true;
6890 }
6891
6892 /* Return true if CODE represents an associative tree code. Otherwise
6893 return false. */
6894 bool
6895 associative_tree_code (enum tree_code code)
6896 {
6897 switch (code)
6898 {
6899 case BIT_IOR_EXPR:
6900 case BIT_AND_EXPR:
6901 case BIT_XOR_EXPR:
6902 case PLUS_EXPR:
6903 case MULT_EXPR:
6904 case MIN_EXPR:
6905 case MAX_EXPR:
6906 return true;
6907
6908 default:
6909 break;
6910 }
6911 return false;
6912 }
6913
6914 /* Return true if CODE represents a commutative tree code. Otherwise
6915 return false. */
6916 bool
6917 commutative_tree_code (enum tree_code code)
6918 {
6919 switch (code)
6920 {
6921 case PLUS_EXPR:
6922 case MULT_EXPR:
6923 case MULT_HIGHPART_EXPR:
6924 case MIN_EXPR:
6925 case MAX_EXPR:
6926 case BIT_IOR_EXPR:
6927 case BIT_XOR_EXPR:
6928 case BIT_AND_EXPR:
6929 case NE_EXPR:
6930 case EQ_EXPR:
6931 case UNORDERED_EXPR:
6932 case ORDERED_EXPR:
6933 case UNEQ_EXPR:
6934 case LTGT_EXPR:
6935 case TRUTH_AND_EXPR:
6936 case TRUTH_XOR_EXPR:
6937 case TRUTH_OR_EXPR:
6938 case WIDEN_MULT_EXPR:
6939 case VEC_WIDEN_MULT_HI_EXPR:
6940 case VEC_WIDEN_MULT_LO_EXPR:
6941 case VEC_WIDEN_MULT_EVEN_EXPR:
6942 case VEC_WIDEN_MULT_ODD_EXPR:
6943 return true;
6944
6945 default:
6946 break;
6947 }
6948 return false;
6949 }
6950
6951 /* Return true if CODE represents a ternary tree code for which the
6952 first two operands are commutative. Otherwise return false. */
6953 bool
6954 commutative_ternary_tree_code (enum tree_code code)
6955 {
6956 switch (code)
6957 {
6958 case WIDEN_MULT_PLUS_EXPR:
6959 case WIDEN_MULT_MINUS_EXPR:
6960 return true;
6961
6962 default:
6963 break;
6964 }
6965 return false;
6966 }
6967
6968 /* Generate a hash value for an expression. This can be used iteratively
6969 by passing a previous result as the VAL argument.
6970
6971 This function is intended to produce the same hash for expressions which
6972 would compare equal using operand_equal_p. */
6973
6974 hashval_t
6975 iterative_hash_expr (const_tree t, hashval_t val)
6976 {
6977 int i;
6978 enum tree_code code;
6979 char tclass;
6980
6981 if (t == NULL_TREE)
6982 return iterative_hash_hashval_t (0, val);
6983
6984 code = TREE_CODE (t);
6985
6986 switch (code)
6987 {
6988 /* Alas, constants aren't shared, so we can't rely on pointer
6989 identity. */
6990 case INTEGER_CST:
6991 val = iterative_hash_host_wide_int (TREE_INT_CST_LOW (t), val);
6992 return iterative_hash_host_wide_int (TREE_INT_CST_HIGH (t), val);
6993 case REAL_CST:
6994 {
6995 unsigned int val2 = real_hash (TREE_REAL_CST_PTR (t));
6996
6997 return iterative_hash_hashval_t (val2, val);
6998 }
6999 case FIXED_CST:
7000 {
7001 unsigned int val2 = fixed_hash (TREE_FIXED_CST_PTR (t));
7002
7003 return iterative_hash_hashval_t (val2, val);
7004 }
7005 case STRING_CST:
7006 return iterative_hash (TREE_STRING_POINTER (t),
7007 TREE_STRING_LENGTH (t), val);
7008 case COMPLEX_CST:
7009 val = iterative_hash_expr (TREE_REALPART (t), val);
7010 return iterative_hash_expr (TREE_IMAGPART (t), val);
7011 case VECTOR_CST:
7012 {
7013 unsigned i;
7014 for (i = 0; i < VECTOR_CST_NELTS (t); ++i)
7015 val = iterative_hash_expr (VECTOR_CST_ELT (t, i), val);
7016 return val;
7017 }
7018 case SSA_NAME:
7019 /* We can just compare by pointer. */
7020 return iterative_hash_host_wide_int (SSA_NAME_VERSION (t), val);
7021 case PLACEHOLDER_EXPR:
7022 /* The node itself doesn't matter. */
7023 return val;
7024 case TREE_LIST:
7025 /* A list of expressions, for a CALL_EXPR or as the elements of a
7026 VECTOR_CST. */
7027 for (; t; t = TREE_CHAIN (t))
7028 val = iterative_hash_expr (TREE_VALUE (t), val);
7029 return val;
7030 case CONSTRUCTOR:
7031 {
7032 unsigned HOST_WIDE_INT idx;
7033 tree field, value;
7034 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t), idx, field, value)
7035 {
7036 val = iterative_hash_expr (field, val);
7037 val = iterative_hash_expr (value, val);
7038 }
7039 return val;
7040 }
7041 case MEM_REF:
7042 {
7043 /* The type of the second operand is relevant, except for
7044 its top-level qualifiers. */
7045 tree type = TYPE_MAIN_VARIANT (TREE_TYPE (TREE_OPERAND (t, 1)));
7046
7047 val = iterative_hash_object (TYPE_HASH (type), val);
7048
7049 /* We could use the standard hash computation from this point
7050 on. */
7051 val = iterative_hash_object (code, val);
7052 val = iterative_hash_expr (TREE_OPERAND (t, 1), val);
7053 val = iterative_hash_expr (TREE_OPERAND (t, 0), val);
7054 return val;
7055 }
7056 case FUNCTION_DECL:
7057 /* When referring to a built-in FUNCTION_DECL, use the __builtin__ form.
7058 Otherwise nodes that compare equal according to operand_equal_p might
7059 get different hash codes. However, don't do this for machine specific
7060 or front end builtins, since the function code is overloaded in those
7061 cases. */
7062 if (DECL_BUILT_IN_CLASS (t) == BUILT_IN_NORMAL
7063 && builtin_decl_explicit_p (DECL_FUNCTION_CODE (t)))
7064 {
7065 t = builtin_decl_explicit (DECL_FUNCTION_CODE (t));
7066 code = TREE_CODE (t);
7067 }
7068 /* FALL THROUGH */
7069 default:
7070 tclass = TREE_CODE_CLASS (code);
7071
7072 if (tclass == tcc_declaration)
7073 {
7074 /* DECL's have a unique ID */
7075 val = iterative_hash_host_wide_int (DECL_UID (t), val);
7076 }
7077 else
7078 {
7079 gcc_assert (IS_EXPR_CODE_CLASS (tclass));
7080
7081 val = iterative_hash_object (code, val);
7082
7083 /* Don't hash the type, that can lead to having nodes which
7084 compare equal according to operand_equal_p, but which
7085 have different hash codes. */
7086 if (CONVERT_EXPR_CODE_P (code)
7087 || code == NON_LVALUE_EXPR)
7088 {
7089 /* Make sure to include signness in the hash computation. */
7090 val += TYPE_UNSIGNED (TREE_TYPE (t));
7091 val = iterative_hash_expr (TREE_OPERAND (t, 0), val);
7092 }
7093
7094 else if (commutative_tree_code (code))
7095 {
7096 /* It's a commutative expression. We want to hash it the same
7097 however it appears. We do this by first hashing both operands
7098 and then rehashing based on the order of their independent
7099 hashes. */
7100 hashval_t one = iterative_hash_expr (TREE_OPERAND (t, 0), 0);
7101 hashval_t two = iterative_hash_expr (TREE_OPERAND (t, 1), 0);
7102 hashval_t t;
7103
7104 if (one > two)
7105 t = one, one = two, two = t;
7106
7107 val = iterative_hash_hashval_t (one, val);
7108 val = iterative_hash_hashval_t (two, val);
7109 }
7110 else
7111 for (i = TREE_OPERAND_LENGTH (t) - 1; i >= 0; --i)
7112 val = iterative_hash_expr (TREE_OPERAND (t, i), val);
7113 }
7114 return val;
7115 }
7116 }
7117
7118 /* Generate a hash value for a pair of expressions. This can be used
7119 iteratively by passing a previous result as the VAL argument.
7120
7121 The same hash value is always returned for a given pair of expressions,
7122 regardless of the order in which they are presented. This is useful in
7123 hashing the operands of commutative functions. */
7124
7125 hashval_t
7126 iterative_hash_exprs_commutative (const_tree t1,
7127 const_tree t2, hashval_t val)
7128 {
7129 hashval_t one = iterative_hash_expr (t1, 0);
7130 hashval_t two = iterative_hash_expr (t2, 0);
7131 hashval_t t;
7132
7133 if (one > two)
7134 t = one, one = two, two = t;
7135 val = iterative_hash_hashval_t (one, val);
7136 val = iterative_hash_hashval_t (two, val);
7137
7138 return val;
7139 }
7140 \f
7141 /* Constructors for pointer, array and function types.
7142 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
7143 constructed by language-dependent code, not here.) */
7144
7145 /* Construct, lay out and return the type of pointers to TO_TYPE with
7146 mode MODE. If CAN_ALIAS_ALL is TRUE, indicate this type can
7147 reference all of memory. If such a type has already been
7148 constructed, reuse it. */
7149
7150 tree
7151 build_pointer_type_for_mode (tree to_type, enum machine_mode mode,
7152 bool can_alias_all)
7153 {
7154 tree t;
7155
7156 if (to_type == error_mark_node)
7157 return error_mark_node;
7158
7159 /* If the pointed-to type has the may_alias attribute set, force
7160 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
7161 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
7162 can_alias_all = true;
7163
7164 /* In some cases, languages will have things that aren't a POINTER_TYPE
7165 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
7166 In that case, return that type without regard to the rest of our
7167 operands.
7168
7169 ??? This is a kludge, but consistent with the way this function has
7170 always operated and there doesn't seem to be a good way to avoid this
7171 at the moment. */
7172 if (TYPE_POINTER_TO (to_type) != 0
7173 && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
7174 return TYPE_POINTER_TO (to_type);
7175
7176 /* First, if we already have a type for pointers to TO_TYPE and it's
7177 the proper mode, use it. */
7178 for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
7179 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
7180 return t;
7181
7182 t = make_node (POINTER_TYPE);
7183
7184 TREE_TYPE (t) = to_type;
7185 SET_TYPE_MODE (t, mode);
7186 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
7187 TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
7188 TYPE_POINTER_TO (to_type) = t;
7189
7190 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
7191 SET_TYPE_STRUCTURAL_EQUALITY (t);
7192 else if (TYPE_CANONICAL (to_type) != to_type)
7193 TYPE_CANONICAL (t)
7194 = build_pointer_type_for_mode (TYPE_CANONICAL (to_type),
7195 mode, can_alias_all);
7196
7197 /* Lay out the type. This function has many callers that are concerned
7198 with expression-construction, and this simplifies them all. */
7199 layout_type (t);
7200
7201 return t;
7202 }
7203
7204 /* By default build pointers in ptr_mode. */
7205
7206 tree
7207 build_pointer_type (tree to_type)
7208 {
7209 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
7210 : TYPE_ADDR_SPACE (to_type);
7211 enum machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
7212 return build_pointer_type_for_mode (to_type, pointer_mode, false);
7213 }
7214
7215 /* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE. */
7216
7217 tree
7218 build_reference_type_for_mode (tree to_type, enum machine_mode mode,
7219 bool can_alias_all)
7220 {
7221 tree t;
7222
7223 if (to_type == error_mark_node)
7224 return error_mark_node;
7225
7226 /* If the pointed-to type has the may_alias attribute set, force
7227 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
7228 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
7229 can_alias_all = true;
7230
7231 /* In some cases, languages will have things that aren't a REFERENCE_TYPE
7232 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
7233 In that case, return that type without regard to the rest of our
7234 operands.
7235
7236 ??? This is a kludge, but consistent with the way this function has
7237 always operated and there doesn't seem to be a good way to avoid this
7238 at the moment. */
7239 if (TYPE_REFERENCE_TO (to_type) != 0
7240 && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
7241 return TYPE_REFERENCE_TO (to_type);
7242
7243 /* First, if we already have a type for pointers to TO_TYPE and it's
7244 the proper mode, use it. */
7245 for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
7246 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
7247 return t;
7248
7249 t = make_node (REFERENCE_TYPE);
7250
7251 TREE_TYPE (t) = to_type;
7252 SET_TYPE_MODE (t, mode);
7253 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
7254 TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
7255 TYPE_REFERENCE_TO (to_type) = t;
7256
7257 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
7258 SET_TYPE_STRUCTURAL_EQUALITY (t);
7259 else if (TYPE_CANONICAL (to_type) != to_type)
7260 TYPE_CANONICAL (t)
7261 = build_reference_type_for_mode (TYPE_CANONICAL (to_type),
7262 mode, can_alias_all);
7263
7264 layout_type (t);
7265
7266 return t;
7267 }
7268
7269
7270 /* Build the node for the type of references-to-TO_TYPE by default
7271 in ptr_mode. */
7272
7273 tree
7274 build_reference_type (tree to_type)
7275 {
7276 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
7277 : TYPE_ADDR_SPACE (to_type);
7278 enum machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
7279 return build_reference_type_for_mode (to_type, pointer_mode, false);
7280 }
7281
7282 /* Build a type that is compatible with t but has no cv quals anywhere
7283 in its type, thus
7284
7285 const char *const *const * -> char ***. */
7286
7287 tree
7288 build_type_no_quals (tree t)
7289 {
7290 switch (TREE_CODE (t))
7291 {
7292 case POINTER_TYPE:
7293 return build_pointer_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
7294 TYPE_MODE (t),
7295 TYPE_REF_CAN_ALIAS_ALL (t));
7296 case REFERENCE_TYPE:
7297 return
7298 build_reference_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
7299 TYPE_MODE (t),
7300 TYPE_REF_CAN_ALIAS_ALL (t));
7301 default:
7302 return TYPE_MAIN_VARIANT (t);
7303 }
7304 }
7305
7306 #define MAX_INT_CACHED_PREC \
7307 (HOST_BITS_PER_WIDE_INT > 64 ? HOST_BITS_PER_WIDE_INT : 64)
7308 static GTY(()) tree nonstandard_integer_type_cache[2 * MAX_INT_CACHED_PREC + 2];
7309
7310 /* Builds a signed or unsigned integer type of precision PRECISION.
7311 Used for C bitfields whose precision does not match that of
7312 built-in target types. */
7313 tree
7314 build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
7315 int unsignedp)
7316 {
7317 tree itype, ret;
7318
7319 if (unsignedp)
7320 unsignedp = MAX_INT_CACHED_PREC + 1;
7321
7322 if (precision <= MAX_INT_CACHED_PREC)
7323 {
7324 itype = nonstandard_integer_type_cache[precision + unsignedp];
7325 if (itype)
7326 return itype;
7327 }
7328
7329 itype = make_node (INTEGER_TYPE);
7330 TYPE_PRECISION (itype) = precision;
7331
7332 if (unsignedp)
7333 fixup_unsigned_type (itype);
7334 else
7335 fixup_signed_type (itype);
7336
7337 ret = itype;
7338 if (host_integerp (TYPE_MAX_VALUE (itype), 1))
7339 ret = type_hash_canon (tree_low_cst (TYPE_MAX_VALUE (itype), 1), itype);
7340 if (precision <= MAX_INT_CACHED_PREC)
7341 nonstandard_integer_type_cache[precision + unsignedp] = ret;
7342
7343 return ret;
7344 }
7345
7346 /* Create a range of some discrete type TYPE (an INTEGER_TYPE, ENUMERAL_TYPE
7347 or BOOLEAN_TYPE) with low bound LOWVAL and high bound HIGHVAL. If SHARED
7348 is true, reuse such a type that has already been constructed. */
7349
7350 static tree
7351 build_range_type_1 (tree type, tree lowval, tree highval, bool shared)
7352 {
7353 tree itype = make_node (INTEGER_TYPE);
7354 hashval_t hashcode = 0;
7355
7356 TREE_TYPE (itype) = type;
7357
7358 TYPE_MIN_VALUE (itype) = fold_convert (type, lowval);
7359 TYPE_MAX_VALUE (itype) = highval ? fold_convert (type, highval) : NULL;
7360
7361 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
7362 SET_TYPE_MODE (itype, TYPE_MODE (type));
7363 TYPE_SIZE (itype) = TYPE_SIZE (type);
7364 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
7365 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
7366 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
7367
7368 if (!shared)
7369 return itype;
7370
7371 if ((TYPE_MIN_VALUE (itype)
7372 && TREE_CODE (TYPE_MIN_VALUE (itype)) != INTEGER_CST)
7373 || (TYPE_MAX_VALUE (itype)
7374 && TREE_CODE (TYPE_MAX_VALUE (itype)) != INTEGER_CST))
7375 {
7376 /* Since we cannot reliably merge this type, we need to compare it using
7377 structural equality checks. */
7378 SET_TYPE_STRUCTURAL_EQUALITY (itype);
7379 return itype;
7380 }
7381
7382 hashcode = iterative_hash_expr (TYPE_MIN_VALUE (itype), hashcode);
7383 hashcode = iterative_hash_expr (TYPE_MAX_VALUE (itype), hashcode);
7384 hashcode = iterative_hash_hashval_t (TYPE_HASH (type), hashcode);
7385 itype = type_hash_canon (hashcode, itype);
7386
7387 return itype;
7388 }
7389
7390 /* Wrapper around build_range_type_1 with SHARED set to true. */
7391
7392 tree
7393 build_range_type (tree type, tree lowval, tree highval)
7394 {
7395 return build_range_type_1 (type, lowval, highval, true);
7396 }
7397
7398 /* Wrapper around build_range_type_1 with SHARED set to false. */
7399
7400 tree
7401 build_nonshared_range_type (tree type, tree lowval, tree highval)
7402 {
7403 return build_range_type_1 (type, lowval, highval, false);
7404 }
7405
7406 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
7407 MAXVAL should be the maximum value in the domain
7408 (one less than the length of the array).
7409
7410 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
7411 We don't enforce this limit, that is up to caller (e.g. language front end).
7412 The limit exists because the result is a signed type and we don't handle
7413 sizes that use more than one HOST_WIDE_INT. */
7414
7415 tree
7416 build_index_type (tree maxval)
7417 {
7418 return build_range_type (sizetype, size_zero_node, maxval);
7419 }
7420
7421 /* Return true if the debug information for TYPE, a subtype, should be emitted
7422 as a subrange type. If so, set LOWVAL to the low bound and HIGHVAL to the
7423 high bound, respectively. Sometimes doing so unnecessarily obfuscates the
7424 debug info and doesn't reflect the source code. */
7425
7426 bool
7427 subrange_type_for_debug_p (const_tree type, tree *lowval, tree *highval)
7428 {
7429 tree base_type = TREE_TYPE (type), low, high;
7430
7431 /* Subrange types have a base type which is an integral type. */
7432 if (!INTEGRAL_TYPE_P (base_type))
7433 return false;
7434
7435 /* Get the real bounds of the subtype. */
7436 if (lang_hooks.types.get_subrange_bounds)
7437 lang_hooks.types.get_subrange_bounds (type, &low, &high);
7438 else
7439 {
7440 low = TYPE_MIN_VALUE (type);
7441 high = TYPE_MAX_VALUE (type);
7442 }
7443
7444 /* If the type and its base type have the same representation and the same
7445 name, then the type is not a subrange but a copy of the base type. */
7446 if ((TREE_CODE (base_type) == INTEGER_TYPE
7447 || TREE_CODE (base_type) == BOOLEAN_TYPE)
7448 && int_size_in_bytes (type) == int_size_in_bytes (base_type)
7449 && tree_int_cst_equal (low, TYPE_MIN_VALUE (base_type))
7450 && tree_int_cst_equal (high, TYPE_MAX_VALUE (base_type)))
7451 {
7452 tree type_name = TYPE_NAME (type);
7453 tree base_type_name = TYPE_NAME (base_type);
7454
7455 if (type_name && TREE_CODE (type_name) == TYPE_DECL)
7456 type_name = DECL_NAME (type_name);
7457
7458 if (base_type_name && TREE_CODE (base_type_name) == TYPE_DECL)
7459 base_type_name = DECL_NAME (base_type_name);
7460
7461 if (type_name == base_type_name)
7462 return false;
7463 }
7464
7465 if (lowval)
7466 *lowval = low;
7467 if (highval)
7468 *highval = high;
7469 return true;
7470 }
7471
7472 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
7473 and number of elements specified by the range of values of INDEX_TYPE.
7474 If SHARED is true, reuse such a type that has already been constructed. */
7475
7476 static tree
7477 build_array_type_1 (tree elt_type, tree index_type, bool shared)
7478 {
7479 tree t;
7480
7481 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
7482 {
7483 error ("arrays of functions are not meaningful");
7484 elt_type = integer_type_node;
7485 }
7486
7487 t = make_node (ARRAY_TYPE);
7488 TREE_TYPE (t) = elt_type;
7489 TYPE_DOMAIN (t) = index_type;
7490 TYPE_ADDR_SPACE (t) = TYPE_ADDR_SPACE (elt_type);
7491 layout_type (t);
7492
7493 /* If the element type is incomplete at this point we get marked for
7494 structural equality. Do not record these types in the canonical
7495 type hashtable. */
7496 if (TYPE_STRUCTURAL_EQUALITY_P (t))
7497 return t;
7498
7499 if (shared)
7500 {
7501 hashval_t hashcode = iterative_hash_object (TYPE_HASH (elt_type), 0);
7502 if (index_type)
7503 hashcode = iterative_hash_object (TYPE_HASH (index_type), hashcode);
7504 t = type_hash_canon (hashcode, t);
7505 }
7506
7507 if (TYPE_CANONICAL (t) == t)
7508 {
7509 if (TYPE_STRUCTURAL_EQUALITY_P (elt_type)
7510 || (index_type && TYPE_STRUCTURAL_EQUALITY_P (index_type)))
7511 SET_TYPE_STRUCTURAL_EQUALITY (t);
7512 else if (TYPE_CANONICAL (elt_type) != elt_type
7513 || (index_type && TYPE_CANONICAL (index_type) != index_type))
7514 TYPE_CANONICAL (t)
7515 = build_array_type_1 (TYPE_CANONICAL (elt_type),
7516 index_type
7517 ? TYPE_CANONICAL (index_type) : NULL_TREE,
7518 shared);
7519 }
7520
7521 return t;
7522 }
7523
7524 /* Wrapper around build_array_type_1 with SHARED set to true. */
7525
7526 tree
7527 build_array_type (tree elt_type, tree index_type)
7528 {
7529 return build_array_type_1 (elt_type, index_type, true);
7530 }
7531
7532 /* Wrapper around build_array_type_1 with SHARED set to false. */
7533
7534 tree
7535 build_nonshared_array_type (tree elt_type, tree index_type)
7536 {
7537 return build_array_type_1 (elt_type, index_type, false);
7538 }
7539
7540 /* Return a representation of ELT_TYPE[NELTS], using indices of type
7541 sizetype. */
7542
7543 tree
7544 build_array_type_nelts (tree elt_type, unsigned HOST_WIDE_INT nelts)
7545 {
7546 return build_array_type (elt_type, build_index_type (size_int (nelts - 1)));
7547 }
7548
7549 /* Recursively examines the array elements of TYPE, until a non-array
7550 element type is found. */
7551
7552 tree
7553 strip_array_types (tree type)
7554 {
7555 while (TREE_CODE (type) == ARRAY_TYPE)
7556 type = TREE_TYPE (type);
7557
7558 return type;
7559 }
7560
7561 /* Computes the canonical argument types from the argument type list
7562 ARGTYPES.
7563
7564 Upon return, *ANY_STRUCTURAL_P will be true iff either it was true
7565 on entry to this function, or if any of the ARGTYPES are
7566 structural.
7567
7568 Upon return, *ANY_NONCANONICAL_P will be true iff either it was
7569 true on entry to this function, or if any of the ARGTYPES are
7570 non-canonical.
7571
7572 Returns a canonical argument list, which may be ARGTYPES when the
7573 canonical argument list is unneeded (i.e., *ANY_STRUCTURAL_P is
7574 true) or would not differ from ARGTYPES. */
7575
7576 static tree
7577 maybe_canonicalize_argtypes(tree argtypes,
7578 bool *any_structural_p,
7579 bool *any_noncanonical_p)
7580 {
7581 tree arg;
7582 bool any_noncanonical_argtypes_p = false;
7583
7584 for (arg = argtypes; arg && !(*any_structural_p); arg = TREE_CHAIN (arg))
7585 {
7586 if (!TREE_VALUE (arg) || TREE_VALUE (arg) == error_mark_node)
7587 /* Fail gracefully by stating that the type is structural. */
7588 *any_structural_p = true;
7589 else if (TYPE_STRUCTURAL_EQUALITY_P (TREE_VALUE (arg)))
7590 *any_structural_p = true;
7591 else if (TYPE_CANONICAL (TREE_VALUE (arg)) != TREE_VALUE (arg)
7592 || TREE_PURPOSE (arg))
7593 /* If the argument has a default argument, we consider it
7594 non-canonical even though the type itself is canonical.
7595 That way, different variants of function and method types
7596 with default arguments will all point to the variant with
7597 no defaults as their canonical type. */
7598 any_noncanonical_argtypes_p = true;
7599 }
7600
7601 if (*any_structural_p)
7602 return argtypes;
7603
7604 if (any_noncanonical_argtypes_p)
7605 {
7606 /* Build the canonical list of argument types. */
7607 tree canon_argtypes = NULL_TREE;
7608 bool is_void = false;
7609
7610 for (arg = argtypes; arg; arg = TREE_CHAIN (arg))
7611 {
7612 if (arg == void_list_node)
7613 is_void = true;
7614 else
7615 canon_argtypes = tree_cons (NULL_TREE,
7616 TYPE_CANONICAL (TREE_VALUE (arg)),
7617 canon_argtypes);
7618 }
7619
7620 canon_argtypes = nreverse (canon_argtypes);
7621 if (is_void)
7622 canon_argtypes = chainon (canon_argtypes, void_list_node);
7623
7624 /* There is a non-canonical type. */
7625 *any_noncanonical_p = true;
7626 return canon_argtypes;
7627 }
7628
7629 /* The canonical argument types are the same as ARGTYPES. */
7630 return argtypes;
7631 }
7632
7633 /* Construct, lay out and return
7634 the type of functions returning type VALUE_TYPE
7635 given arguments of types ARG_TYPES.
7636 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
7637 are data type nodes for the arguments of the function.
7638 If such a type has already been constructed, reuse it. */
7639
7640 tree
7641 build_function_type (tree value_type, tree arg_types)
7642 {
7643 tree t;
7644 hashval_t hashcode = 0;
7645 bool any_structural_p, any_noncanonical_p;
7646 tree canon_argtypes;
7647
7648 if (TREE_CODE (value_type) == FUNCTION_TYPE)
7649 {
7650 error ("function return type cannot be function");
7651 value_type = integer_type_node;
7652 }
7653
7654 /* Make a node of the sort we want. */
7655 t = make_node (FUNCTION_TYPE);
7656 TREE_TYPE (t) = value_type;
7657 TYPE_ARG_TYPES (t) = arg_types;
7658
7659 /* If we already have such a type, use the old one. */
7660 hashcode = iterative_hash_object (TYPE_HASH (value_type), hashcode);
7661 hashcode = type_hash_list (arg_types, hashcode);
7662 t = type_hash_canon (hashcode, t);
7663
7664 /* Set up the canonical type. */
7665 any_structural_p = TYPE_STRUCTURAL_EQUALITY_P (value_type);
7666 any_noncanonical_p = TYPE_CANONICAL (value_type) != value_type;
7667 canon_argtypes = maybe_canonicalize_argtypes (arg_types,
7668 &any_structural_p,
7669 &any_noncanonical_p);
7670 if (any_structural_p)
7671 SET_TYPE_STRUCTURAL_EQUALITY (t);
7672 else if (any_noncanonical_p)
7673 TYPE_CANONICAL (t) = build_function_type (TYPE_CANONICAL (value_type),
7674 canon_argtypes);
7675
7676 if (!COMPLETE_TYPE_P (t))
7677 layout_type (t);
7678 return t;
7679 }
7680
7681 /* Build variant of function type ORIG_TYPE skipping ARGS_TO_SKIP and the
7682 return value if SKIP_RETURN is true. */
7683
7684 static tree
7685 build_function_type_skip_args (tree orig_type, bitmap args_to_skip,
7686 bool skip_return)
7687 {
7688 tree new_type = NULL;
7689 tree args, new_args = NULL, t;
7690 tree new_reversed;
7691 int i = 0;
7692
7693 for (args = TYPE_ARG_TYPES (orig_type); args && args != void_list_node;
7694 args = TREE_CHAIN (args), i++)
7695 if (!args_to_skip || !bitmap_bit_p (args_to_skip, i))
7696 new_args = tree_cons (NULL_TREE, TREE_VALUE (args), new_args);
7697
7698 new_reversed = nreverse (new_args);
7699 if (args)
7700 {
7701 if (new_reversed)
7702 TREE_CHAIN (new_args) = void_list_node;
7703 else
7704 new_reversed = void_list_node;
7705 }
7706
7707 /* Use copy_node to preserve as much as possible from original type
7708 (debug info, attribute lists etc.)
7709 Exception is METHOD_TYPEs must have THIS argument.
7710 When we are asked to remove it, we need to build new FUNCTION_TYPE
7711 instead. */
7712 if (TREE_CODE (orig_type) != METHOD_TYPE
7713 || !args_to_skip
7714 || !bitmap_bit_p (args_to_skip, 0))
7715 {
7716 new_type = build_distinct_type_copy (orig_type);
7717 TYPE_ARG_TYPES (new_type) = new_reversed;
7718 }
7719 else
7720 {
7721 new_type
7722 = build_distinct_type_copy (build_function_type (TREE_TYPE (orig_type),
7723 new_reversed));
7724 TYPE_CONTEXT (new_type) = TYPE_CONTEXT (orig_type);
7725 }
7726
7727 if (skip_return)
7728 TREE_TYPE (new_type) = void_type_node;
7729
7730 /* This is a new type, not a copy of an old type. Need to reassociate
7731 variants. We can handle everything except the main variant lazily. */
7732 t = TYPE_MAIN_VARIANT (orig_type);
7733 if (t != orig_type)
7734 {
7735 t = build_function_type_skip_args (t, args_to_skip, skip_return);
7736 TYPE_MAIN_VARIANT (new_type) = t;
7737 TYPE_NEXT_VARIANT (new_type) = TYPE_NEXT_VARIANT (t);
7738 TYPE_NEXT_VARIANT (t) = new_type;
7739 }
7740 else
7741 {
7742 TYPE_MAIN_VARIANT (new_type) = new_type;
7743 TYPE_NEXT_VARIANT (new_type) = NULL;
7744 }
7745
7746 return new_type;
7747 }
7748
7749 /* Build variant of function decl ORIG_DECL skipping ARGS_TO_SKIP and the
7750 return value if SKIP_RETURN is true.
7751
7752 Arguments from DECL_ARGUMENTS list can't be removed now, since they are
7753 linked by TREE_CHAIN directly. The caller is responsible for eliminating
7754 them when they are being duplicated (i.e. copy_arguments_for_versioning). */
7755
7756 tree
7757 build_function_decl_skip_args (tree orig_decl, bitmap args_to_skip,
7758 bool skip_return)
7759 {
7760 tree new_decl = copy_node (orig_decl);
7761 tree new_type;
7762
7763 new_type = TREE_TYPE (orig_decl);
7764 if (prototype_p (new_type)
7765 || (skip_return && !VOID_TYPE_P (TREE_TYPE (new_type))))
7766 new_type
7767 = build_function_type_skip_args (new_type, args_to_skip, skip_return);
7768 TREE_TYPE (new_decl) = new_type;
7769
7770 /* For declarations setting DECL_VINDEX (i.e. methods)
7771 we expect first argument to be THIS pointer. */
7772 if (args_to_skip && bitmap_bit_p (args_to_skip, 0))
7773 DECL_VINDEX (new_decl) = NULL_TREE;
7774
7775 /* When signature changes, we need to clear builtin info. */
7776 if (DECL_BUILT_IN (new_decl)
7777 && args_to_skip
7778 && !bitmap_empty_p (args_to_skip))
7779 {
7780 DECL_BUILT_IN_CLASS (new_decl) = NOT_BUILT_IN;
7781 DECL_FUNCTION_CODE (new_decl) = (enum built_in_function) 0;
7782 }
7783 return new_decl;
7784 }
7785
7786 /* Build a function type. The RETURN_TYPE is the type returned by the
7787 function. If VAARGS is set, no void_type_node is appended to the
7788 the list. ARGP must be always be terminated be a NULL_TREE. */
7789
7790 static tree
7791 build_function_type_list_1 (bool vaargs, tree return_type, va_list argp)
7792 {
7793 tree t, args, last;
7794
7795 t = va_arg (argp, tree);
7796 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (argp, tree))
7797 args = tree_cons (NULL_TREE, t, args);
7798
7799 if (vaargs)
7800 {
7801 last = args;
7802 if (args != NULL_TREE)
7803 args = nreverse (args);
7804 gcc_assert (last != void_list_node);
7805 }
7806 else if (args == NULL_TREE)
7807 args = void_list_node;
7808 else
7809 {
7810 last = args;
7811 args = nreverse (args);
7812 TREE_CHAIN (last) = void_list_node;
7813 }
7814 args = build_function_type (return_type, args);
7815
7816 return args;
7817 }
7818
7819 /* Build a function type. The RETURN_TYPE is the type returned by the
7820 function. If additional arguments are provided, they are
7821 additional argument types. The list of argument types must always
7822 be terminated by NULL_TREE. */
7823
7824 tree
7825 build_function_type_list (tree return_type, ...)
7826 {
7827 tree args;
7828 va_list p;
7829
7830 va_start (p, return_type);
7831 args = build_function_type_list_1 (false, return_type, p);
7832 va_end (p);
7833 return args;
7834 }
7835
7836 /* Build a variable argument function type. The RETURN_TYPE is the
7837 type returned by the function. If additional arguments are provided,
7838 they are additional argument types. The list of argument types must
7839 always be terminated by NULL_TREE. */
7840
7841 tree
7842 build_varargs_function_type_list (tree return_type, ...)
7843 {
7844 tree args;
7845 va_list p;
7846
7847 va_start (p, return_type);
7848 args = build_function_type_list_1 (true, return_type, p);
7849 va_end (p);
7850
7851 return args;
7852 }
7853
7854 /* Build a function type. RETURN_TYPE is the type returned by the
7855 function; VAARGS indicates whether the function takes varargs. The
7856 function takes N named arguments, the types of which are provided in
7857 ARG_TYPES. */
7858
7859 static tree
7860 build_function_type_array_1 (bool vaargs, tree return_type, int n,
7861 tree *arg_types)
7862 {
7863 int i;
7864 tree t = vaargs ? NULL_TREE : void_list_node;
7865
7866 for (i = n - 1; i >= 0; i--)
7867 t = tree_cons (NULL_TREE, arg_types[i], t);
7868
7869 return build_function_type (return_type, t);
7870 }
7871
7872 /* Build a function type. RETURN_TYPE is the type returned by the
7873 function. The function takes N named arguments, the types of which
7874 are provided in ARG_TYPES. */
7875
7876 tree
7877 build_function_type_array (tree return_type, int n, tree *arg_types)
7878 {
7879 return build_function_type_array_1 (false, return_type, n, arg_types);
7880 }
7881
7882 /* Build a variable argument function type. RETURN_TYPE is the type
7883 returned by the function. The function takes N named arguments, the
7884 types of which are provided in ARG_TYPES. */
7885
7886 tree
7887 build_varargs_function_type_array (tree return_type, int n, tree *arg_types)
7888 {
7889 return build_function_type_array_1 (true, return_type, n, arg_types);
7890 }
7891
7892 /* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
7893 and ARGTYPES (a TREE_LIST) are the return type and arguments types
7894 for the method. An implicit additional parameter (of type
7895 pointer-to-BASETYPE) is added to the ARGTYPES. */
7896
7897 tree
7898 build_method_type_directly (tree basetype,
7899 tree rettype,
7900 tree argtypes)
7901 {
7902 tree t;
7903 tree ptype;
7904 int hashcode = 0;
7905 bool any_structural_p, any_noncanonical_p;
7906 tree canon_argtypes;
7907
7908 /* Make a node of the sort we want. */
7909 t = make_node (METHOD_TYPE);
7910
7911 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
7912 TREE_TYPE (t) = rettype;
7913 ptype = build_pointer_type (basetype);
7914
7915 /* The actual arglist for this function includes a "hidden" argument
7916 which is "this". Put it into the list of argument types. */
7917 argtypes = tree_cons (NULL_TREE, ptype, argtypes);
7918 TYPE_ARG_TYPES (t) = argtypes;
7919
7920 /* If we already have such a type, use the old one. */
7921 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
7922 hashcode = iterative_hash_object (TYPE_HASH (rettype), hashcode);
7923 hashcode = type_hash_list (argtypes, hashcode);
7924 t = type_hash_canon (hashcode, t);
7925
7926 /* Set up the canonical type. */
7927 any_structural_p
7928 = (TYPE_STRUCTURAL_EQUALITY_P (basetype)
7929 || TYPE_STRUCTURAL_EQUALITY_P (rettype));
7930 any_noncanonical_p
7931 = (TYPE_CANONICAL (basetype) != basetype
7932 || TYPE_CANONICAL (rettype) != rettype);
7933 canon_argtypes = maybe_canonicalize_argtypes (TREE_CHAIN (argtypes),
7934 &any_structural_p,
7935 &any_noncanonical_p);
7936 if (any_structural_p)
7937 SET_TYPE_STRUCTURAL_EQUALITY (t);
7938 else if (any_noncanonical_p)
7939 TYPE_CANONICAL (t)
7940 = build_method_type_directly (TYPE_CANONICAL (basetype),
7941 TYPE_CANONICAL (rettype),
7942 canon_argtypes);
7943 if (!COMPLETE_TYPE_P (t))
7944 layout_type (t);
7945
7946 return t;
7947 }
7948
7949 /* Construct, lay out and return the type of methods belonging to class
7950 BASETYPE and whose arguments and values are described by TYPE.
7951 If that type exists already, reuse it.
7952 TYPE must be a FUNCTION_TYPE node. */
7953
7954 tree
7955 build_method_type (tree basetype, tree type)
7956 {
7957 gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
7958
7959 return build_method_type_directly (basetype,
7960 TREE_TYPE (type),
7961 TYPE_ARG_TYPES (type));
7962 }
7963
7964 /* Construct, lay out and return the type of offsets to a value
7965 of type TYPE, within an object of type BASETYPE.
7966 If a suitable offset type exists already, reuse it. */
7967
7968 tree
7969 build_offset_type (tree basetype, tree type)
7970 {
7971 tree t;
7972 hashval_t hashcode = 0;
7973
7974 /* Make a node of the sort we want. */
7975 t = make_node (OFFSET_TYPE);
7976
7977 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
7978 TREE_TYPE (t) = type;
7979
7980 /* If we already have such a type, use the old one. */
7981 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
7982 hashcode = iterative_hash_object (TYPE_HASH (type), hashcode);
7983 t = type_hash_canon (hashcode, t);
7984
7985 if (!COMPLETE_TYPE_P (t))
7986 layout_type (t);
7987
7988 if (TYPE_CANONICAL (t) == t)
7989 {
7990 if (TYPE_STRUCTURAL_EQUALITY_P (basetype)
7991 || TYPE_STRUCTURAL_EQUALITY_P (type))
7992 SET_TYPE_STRUCTURAL_EQUALITY (t);
7993 else if (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)) != basetype
7994 || TYPE_CANONICAL (type) != type)
7995 TYPE_CANONICAL (t)
7996 = build_offset_type (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)),
7997 TYPE_CANONICAL (type));
7998 }
7999
8000 return t;
8001 }
8002
8003 /* Create a complex type whose components are COMPONENT_TYPE. */
8004
8005 tree
8006 build_complex_type (tree component_type)
8007 {
8008 tree t;
8009 hashval_t hashcode;
8010
8011 gcc_assert (INTEGRAL_TYPE_P (component_type)
8012 || SCALAR_FLOAT_TYPE_P (component_type)
8013 || FIXED_POINT_TYPE_P (component_type));
8014
8015 /* Make a node of the sort we want. */
8016 t = make_node (COMPLEX_TYPE);
8017
8018 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
8019
8020 /* If we already have such a type, use the old one. */
8021 hashcode = iterative_hash_object (TYPE_HASH (component_type), 0);
8022 t = type_hash_canon (hashcode, t);
8023
8024 if (!COMPLETE_TYPE_P (t))
8025 layout_type (t);
8026
8027 if (TYPE_CANONICAL (t) == t)
8028 {
8029 if (TYPE_STRUCTURAL_EQUALITY_P (component_type))
8030 SET_TYPE_STRUCTURAL_EQUALITY (t);
8031 else if (TYPE_CANONICAL (component_type) != component_type)
8032 TYPE_CANONICAL (t)
8033 = build_complex_type (TYPE_CANONICAL (component_type));
8034 }
8035
8036 /* We need to create a name, since complex is a fundamental type. */
8037 if (! TYPE_NAME (t))
8038 {
8039 const char *name;
8040 if (component_type == char_type_node)
8041 name = "complex char";
8042 else if (component_type == signed_char_type_node)
8043 name = "complex signed char";
8044 else if (component_type == unsigned_char_type_node)
8045 name = "complex unsigned char";
8046 else if (component_type == short_integer_type_node)
8047 name = "complex short int";
8048 else if (component_type == short_unsigned_type_node)
8049 name = "complex short unsigned int";
8050 else if (component_type == integer_type_node)
8051 name = "complex int";
8052 else if (component_type == unsigned_type_node)
8053 name = "complex unsigned int";
8054 else if (component_type == long_integer_type_node)
8055 name = "complex long int";
8056 else if (component_type == long_unsigned_type_node)
8057 name = "complex long unsigned int";
8058 else if (component_type == long_long_integer_type_node)
8059 name = "complex long long int";
8060 else if (component_type == long_long_unsigned_type_node)
8061 name = "complex long long unsigned int";
8062 else
8063 name = 0;
8064
8065 if (name != 0)
8066 TYPE_NAME (t) = build_decl (UNKNOWN_LOCATION, TYPE_DECL,
8067 get_identifier (name), t);
8068 }
8069
8070 return build_qualified_type (t, TYPE_QUALS (component_type));
8071 }
8072
8073 /* If TYPE is a real or complex floating-point type and the target
8074 does not directly support arithmetic on TYPE then return the wider
8075 type to be used for arithmetic on TYPE. Otherwise, return
8076 NULL_TREE. */
8077
8078 tree
8079 excess_precision_type (tree type)
8080 {
8081 if (flag_excess_precision != EXCESS_PRECISION_FAST)
8082 {
8083 int flt_eval_method = TARGET_FLT_EVAL_METHOD;
8084 switch (TREE_CODE (type))
8085 {
8086 case REAL_TYPE:
8087 switch (flt_eval_method)
8088 {
8089 case 1:
8090 if (TYPE_MODE (type) == TYPE_MODE (float_type_node))
8091 return double_type_node;
8092 break;
8093 case 2:
8094 if (TYPE_MODE (type) == TYPE_MODE (float_type_node)
8095 || TYPE_MODE (type) == TYPE_MODE (double_type_node))
8096 return long_double_type_node;
8097 break;
8098 default:
8099 gcc_unreachable ();
8100 }
8101 break;
8102 case COMPLEX_TYPE:
8103 if (TREE_CODE (TREE_TYPE (type)) != REAL_TYPE)
8104 return NULL_TREE;
8105 switch (flt_eval_method)
8106 {
8107 case 1:
8108 if (TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (float_type_node))
8109 return complex_double_type_node;
8110 break;
8111 case 2:
8112 if (TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (float_type_node)
8113 || (TYPE_MODE (TREE_TYPE (type))
8114 == TYPE_MODE (double_type_node)))
8115 return complex_long_double_type_node;
8116 break;
8117 default:
8118 gcc_unreachable ();
8119 }
8120 break;
8121 default:
8122 break;
8123 }
8124 }
8125 return NULL_TREE;
8126 }
8127 \f
8128 /* Return OP, stripped of any conversions to wider types as much as is safe.
8129 Converting the value back to OP's type makes a value equivalent to OP.
8130
8131 If FOR_TYPE is nonzero, we return a value which, if converted to
8132 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
8133
8134 OP must have integer, real or enumeral type. Pointers are not allowed!
8135
8136 There are some cases where the obvious value we could return
8137 would regenerate to OP if converted to OP's type,
8138 but would not extend like OP to wider types.
8139 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
8140 For example, if OP is (unsigned short)(signed char)-1,
8141 we avoid returning (signed char)-1 if FOR_TYPE is int,
8142 even though extending that to an unsigned short would regenerate OP,
8143 since the result of extending (signed char)-1 to (int)
8144 is different from (int) OP. */
8145
8146 tree
8147 get_unwidened (tree op, tree for_type)
8148 {
8149 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
8150 tree type = TREE_TYPE (op);
8151 unsigned final_prec
8152 = TYPE_PRECISION (for_type != 0 ? for_type : type);
8153 int uns
8154 = (for_type != 0 && for_type != type
8155 && final_prec > TYPE_PRECISION (type)
8156 && TYPE_UNSIGNED (type));
8157 tree win = op;
8158
8159 while (CONVERT_EXPR_P (op))
8160 {
8161 int bitschange;
8162
8163 /* TYPE_PRECISION on vector types has different meaning
8164 (TYPE_VECTOR_SUBPARTS) and casts from vectors are view conversions,
8165 so avoid them here. */
8166 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == VECTOR_TYPE)
8167 break;
8168
8169 bitschange = TYPE_PRECISION (TREE_TYPE (op))
8170 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
8171
8172 /* Truncations are many-one so cannot be removed.
8173 Unless we are later going to truncate down even farther. */
8174 if (bitschange < 0
8175 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
8176 break;
8177
8178 /* See what's inside this conversion. If we decide to strip it,
8179 we will set WIN. */
8180 op = TREE_OPERAND (op, 0);
8181
8182 /* If we have not stripped any zero-extensions (uns is 0),
8183 we can strip any kind of extension.
8184 If we have previously stripped a zero-extension,
8185 only zero-extensions can safely be stripped.
8186 Any extension can be stripped if the bits it would produce
8187 are all going to be discarded later by truncating to FOR_TYPE. */
8188
8189 if (bitschange > 0)
8190 {
8191 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
8192 win = op;
8193 /* TYPE_UNSIGNED says whether this is a zero-extension.
8194 Let's avoid computing it if it does not affect WIN
8195 and if UNS will not be needed again. */
8196 if ((uns
8197 || CONVERT_EXPR_P (op))
8198 && TYPE_UNSIGNED (TREE_TYPE (op)))
8199 {
8200 uns = 1;
8201 win = op;
8202 }
8203 }
8204 }
8205
8206 /* If we finally reach a constant see if it fits in for_type and
8207 in that case convert it. */
8208 if (for_type
8209 && TREE_CODE (win) == INTEGER_CST
8210 && TREE_TYPE (win) != for_type
8211 && int_fits_type_p (win, for_type))
8212 win = fold_convert (for_type, win);
8213
8214 return win;
8215 }
8216 \f
8217 /* Return OP or a simpler expression for a narrower value
8218 which can be sign-extended or zero-extended to give back OP.
8219 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
8220 or 0 if the value should be sign-extended. */
8221
8222 tree
8223 get_narrower (tree op, int *unsignedp_ptr)
8224 {
8225 int uns = 0;
8226 int first = 1;
8227 tree win = op;
8228 bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));
8229
8230 while (TREE_CODE (op) == NOP_EXPR)
8231 {
8232 int bitschange
8233 = (TYPE_PRECISION (TREE_TYPE (op))
8234 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
8235
8236 /* Truncations are many-one so cannot be removed. */
8237 if (bitschange < 0)
8238 break;
8239
8240 /* See what's inside this conversion. If we decide to strip it,
8241 we will set WIN. */
8242
8243 if (bitschange > 0)
8244 {
8245 op = TREE_OPERAND (op, 0);
8246 /* An extension: the outermost one can be stripped,
8247 but remember whether it is zero or sign extension. */
8248 if (first)
8249 uns = TYPE_UNSIGNED (TREE_TYPE (op));
8250 /* Otherwise, if a sign extension has been stripped,
8251 only sign extensions can now be stripped;
8252 if a zero extension has been stripped, only zero-extensions. */
8253 else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
8254 break;
8255 first = 0;
8256 }
8257 else /* bitschange == 0 */
8258 {
8259 /* A change in nominal type can always be stripped, but we must
8260 preserve the unsignedness. */
8261 if (first)
8262 uns = TYPE_UNSIGNED (TREE_TYPE (op));
8263 first = 0;
8264 op = TREE_OPERAND (op, 0);
8265 /* Keep trying to narrow, but don't assign op to win if it
8266 would turn an integral type into something else. */
8267 if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
8268 continue;
8269 }
8270
8271 win = op;
8272 }
8273
8274 if (TREE_CODE (op) == COMPONENT_REF
8275 /* Since type_for_size always gives an integer type. */
8276 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
8277 && TREE_CODE (TREE_TYPE (op)) != FIXED_POINT_TYPE
8278 /* Ensure field is laid out already. */
8279 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
8280 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
8281 {
8282 unsigned HOST_WIDE_INT innerprec
8283 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
8284 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
8285 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
8286 tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
8287
8288 /* We can get this structure field in a narrower type that fits it,
8289 but the resulting extension to its nominal type (a fullword type)
8290 must satisfy the same conditions as for other extensions.
8291
8292 Do this only for fields that are aligned (not bit-fields),
8293 because when bit-field insns will be used there is no
8294 advantage in doing this. */
8295
8296 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
8297 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
8298 && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
8299 && type != 0)
8300 {
8301 if (first)
8302 uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
8303 win = fold_convert (type, op);
8304 }
8305 }
8306
8307 *unsignedp_ptr = uns;
8308 return win;
8309 }
8310 \f
8311 /* Returns true if integer constant C has a value that is permissible
8312 for type TYPE (an INTEGER_TYPE). */
8313
8314 bool
8315 int_fits_type_p (const_tree c, const_tree type)
8316 {
8317 tree type_low_bound, type_high_bound;
8318 bool ok_for_low_bound, ok_for_high_bound, unsc;
8319 double_int dc, dd;
8320
8321 dc = tree_to_double_int (c);
8322 unsc = TYPE_UNSIGNED (TREE_TYPE (c));
8323
8324 retry:
8325 type_low_bound = TYPE_MIN_VALUE (type);
8326 type_high_bound = TYPE_MAX_VALUE (type);
8327
8328 /* If at least one bound of the type is a constant integer, we can check
8329 ourselves and maybe make a decision. If no such decision is possible, but
8330 this type is a subtype, try checking against that. Otherwise, use
8331 double_int_fits_to_tree_p, which checks against the precision.
8332
8333 Compute the status for each possibly constant bound, and return if we see
8334 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
8335 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
8336 for "constant known to fit". */
8337
8338 /* Check if c >= type_low_bound. */
8339 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
8340 {
8341 dd = tree_to_double_int (type_low_bound);
8342 if (unsc != TYPE_UNSIGNED (TREE_TYPE (type_low_bound)))
8343 {
8344 int c_neg = (!unsc && dc.is_negative ());
8345 int t_neg = (unsc && dd.is_negative ());
8346
8347 if (c_neg && !t_neg)
8348 return false;
8349 if ((c_neg || !t_neg) && dc.ult (dd))
8350 return false;
8351 }
8352 else if (dc.cmp (dd, unsc) < 0)
8353 return false;
8354 ok_for_low_bound = true;
8355 }
8356 else
8357 ok_for_low_bound = false;
8358
8359 /* Check if c <= type_high_bound. */
8360 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
8361 {
8362 dd = tree_to_double_int (type_high_bound);
8363 if (unsc != TYPE_UNSIGNED (TREE_TYPE (type_high_bound)))
8364 {
8365 int c_neg = (!unsc && dc.is_negative ());
8366 int t_neg = (unsc && dd.is_negative ());
8367
8368 if (t_neg && !c_neg)
8369 return false;
8370 if ((t_neg || !c_neg) && dc.ugt (dd))
8371 return false;
8372 }
8373 else if (dc.cmp (dd, unsc) > 0)
8374 return false;
8375 ok_for_high_bound = true;
8376 }
8377 else
8378 ok_for_high_bound = false;
8379
8380 /* If the constant fits both bounds, the result is known. */
8381 if (ok_for_low_bound && ok_for_high_bound)
8382 return true;
8383
8384 /* Perform some generic filtering which may allow making a decision
8385 even if the bounds are not constant. First, negative integers
8386 never fit in unsigned types, */
8387 if (TYPE_UNSIGNED (type) && !unsc && dc.is_negative ())
8388 return false;
8389
8390 /* Second, narrower types always fit in wider ones. */
8391 if (TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (c)))
8392 return true;
8393
8394 /* Third, unsigned integers with top bit set never fit signed types. */
8395 if (! TYPE_UNSIGNED (type) && unsc)
8396 {
8397 int prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (c))) - 1;
8398 if (prec < HOST_BITS_PER_WIDE_INT)
8399 {
8400 if (((((unsigned HOST_WIDE_INT) 1) << prec) & dc.low) != 0)
8401 return false;
8402 }
8403 else if (((((unsigned HOST_WIDE_INT) 1)
8404 << (prec - HOST_BITS_PER_WIDE_INT)) & dc.high) != 0)
8405 return false;
8406 }
8407
8408 /* If we haven't been able to decide at this point, there nothing more we
8409 can check ourselves here. Look at the base type if we have one and it
8410 has the same precision. */
8411 if (TREE_CODE (type) == INTEGER_TYPE
8412 && TREE_TYPE (type) != 0
8413 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (type)))
8414 {
8415 type = TREE_TYPE (type);
8416 goto retry;
8417 }
8418
8419 /* Or to double_int_fits_to_tree_p, if nothing else. */
8420 return double_int_fits_to_tree_p (type, dc);
8421 }
8422
8423 /* Stores bounds of an integer TYPE in MIN and MAX. If TYPE has non-constant
8424 bounds or is a POINTER_TYPE, the maximum and/or minimum values that can be
8425 represented (assuming two's-complement arithmetic) within the bit
8426 precision of the type are returned instead. */
8427
8428 void
8429 get_type_static_bounds (const_tree type, mpz_t min, mpz_t max)
8430 {
8431 if (!POINTER_TYPE_P (type) && TYPE_MIN_VALUE (type)
8432 && TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST)
8433 mpz_set_double_int (min, tree_to_double_int (TYPE_MIN_VALUE (type)),
8434 TYPE_UNSIGNED (type));
8435 else
8436 {
8437 if (TYPE_UNSIGNED (type))
8438 mpz_set_ui (min, 0);
8439 else
8440 {
8441 double_int mn;
8442 mn = double_int::mask (TYPE_PRECISION (type) - 1);
8443 mn = (mn + double_int_one).sext (TYPE_PRECISION (type));
8444 mpz_set_double_int (min, mn, false);
8445 }
8446 }
8447
8448 if (!POINTER_TYPE_P (type) && TYPE_MAX_VALUE (type)
8449 && TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST)
8450 mpz_set_double_int (max, tree_to_double_int (TYPE_MAX_VALUE (type)),
8451 TYPE_UNSIGNED (type));
8452 else
8453 {
8454 if (TYPE_UNSIGNED (type))
8455 mpz_set_double_int (max, double_int::mask (TYPE_PRECISION (type)),
8456 true);
8457 else
8458 mpz_set_double_int (max, double_int::mask (TYPE_PRECISION (type) - 1),
8459 true);
8460 }
8461 }
8462
8463 /* Return true if VAR is an automatic variable defined in function FN. */
8464
8465 bool
8466 auto_var_in_fn_p (const_tree var, const_tree fn)
8467 {
8468 return (DECL_P (var) && DECL_CONTEXT (var) == fn
8469 && ((((TREE_CODE (var) == VAR_DECL && ! DECL_EXTERNAL (var))
8470 || TREE_CODE (var) == PARM_DECL)
8471 && ! TREE_STATIC (var))
8472 || TREE_CODE (var) == LABEL_DECL
8473 || TREE_CODE (var) == RESULT_DECL));
8474 }
8475
8476 /* Subprogram of following function. Called by walk_tree.
8477
8478 Return *TP if it is an automatic variable or parameter of the
8479 function passed in as DATA. */
8480
8481 static tree
8482 find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
8483 {
8484 tree fn = (tree) data;
8485
8486 if (TYPE_P (*tp))
8487 *walk_subtrees = 0;
8488
8489 else if (DECL_P (*tp)
8490 && auto_var_in_fn_p (*tp, fn))
8491 return *tp;
8492
8493 return NULL_TREE;
8494 }
8495
8496 /* Returns true if T is, contains, or refers to a type with variable
8497 size. For METHOD_TYPEs and FUNCTION_TYPEs we exclude the
8498 arguments, but not the return type. If FN is nonzero, only return
8499 true if a modifier of the type or position of FN is a variable or
8500 parameter inside FN.
8501
8502 This concept is more general than that of C99 'variably modified types':
8503 in C99, a struct type is never variably modified because a VLA may not
8504 appear as a structure member. However, in GNU C code like:
8505
8506 struct S { int i[f()]; };
8507
8508 is valid, and other languages may define similar constructs. */
8509
8510 bool
8511 variably_modified_type_p (tree type, tree fn)
8512 {
8513 tree t;
8514
8515 /* Test if T is either variable (if FN is zero) or an expression containing
8516 a variable in FN. If TYPE isn't gimplified, return true also if
8517 gimplify_one_sizepos would gimplify the expression into a local
8518 variable. */
8519 #define RETURN_TRUE_IF_VAR(T) \
8520 do { tree _t = (T); \
8521 if (_t != NULL_TREE \
8522 && _t != error_mark_node \
8523 && TREE_CODE (_t) != INTEGER_CST \
8524 && TREE_CODE (_t) != PLACEHOLDER_EXPR \
8525 && (!fn \
8526 || (!TYPE_SIZES_GIMPLIFIED (type) \
8527 && !is_gimple_sizepos (_t)) \
8528 || walk_tree (&_t, find_var_from_fn, fn, NULL))) \
8529 return true; } while (0)
8530
8531 if (type == error_mark_node)
8532 return false;
8533
8534 /* If TYPE itself has variable size, it is variably modified. */
8535 RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
8536 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (type));
8537
8538 switch (TREE_CODE (type))
8539 {
8540 case POINTER_TYPE:
8541 case REFERENCE_TYPE:
8542 case VECTOR_TYPE:
8543 if (variably_modified_type_p (TREE_TYPE (type), fn))
8544 return true;
8545 break;
8546
8547 case FUNCTION_TYPE:
8548 case METHOD_TYPE:
8549 /* If TYPE is a function type, it is variably modified if the
8550 return type is variably modified. */
8551 if (variably_modified_type_p (TREE_TYPE (type), fn))
8552 return true;
8553 break;
8554
8555 case INTEGER_TYPE:
8556 case REAL_TYPE:
8557 case FIXED_POINT_TYPE:
8558 case ENUMERAL_TYPE:
8559 case BOOLEAN_TYPE:
8560 /* Scalar types are variably modified if their end points
8561 aren't constant. */
8562 RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
8563 RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
8564 break;
8565
8566 case RECORD_TYPE:
8567 case UNION_TYPE:
8568 case QUAL_UNION_TYPE:
8569 /* We can't see if any of the fields are variably-modified by the
8570 definition we normally use, since that would produce infinite
8571 recursion via pointers. */
8572 /* This is variably modified if some field's type is. */
8573 for (t = TYPE_FIELDS (type); t; t = DECL_CHAIN (t))
8574 if (TREE_CODE (t) == FIELD_DECL)
8575 {
8576 RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
8577 RETURN_TRUE_IF_VAR (DECL_SIZE (t));
8578 RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));
8579
8580 if (TREE_CODE (type) == QUAL_UNION_TYPE)
8581 RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));
8582 }
8583 break;
8584
8585 case ARRAY_TYPE:
8586 /* Do not call ourselves to avoid infinite recursion. This is
8587 variably modified if the element type is. */
8588 RETURN_TRUE_IF_VAR (TYPE_SIZE (TREE_TYPE (type)));
8589 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (TREE_TYPE (type)));
8590 break;
8591
8592 default:
8593 break;
8594 }
8595
8596 /* The current language may have other cases to check, but in general,
8597 all other types are not variably modified. */
8598 return lang_hooks.tree_inlining.var_mod_type_p (type, fn);
8599
8600 #undef RETURN_TRUE_IF_VAR
8601 }
8602
8603 /* Given a DECL or TYPE, return the scope in which it was declared, or
8604 NULL_TREE if there is no containing scope. */
8605
8606 tree
8607 get_containing_scope (const_tree t)
8608 {
8609 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
8610 }
8611
8612 /* Return the innermost context enclosing DECL that is
8613 a FUNCTION_DECL, or zero if none. */
8614
8615 tree
8616 decl_function_context (const_tree decl)
8617 {
8618 tree context;
8619
8620 if (TREE_CODE (decl) == ERROR_MARK)
8621 return 0;
8622
8623 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
8624 where we look up the function at runtime. Such functions always take
8625 a first argument of type 'pointer to real context'.
8626
8627 C++ should really be fixed to use DECL_CONTEXT for the real context,
8628 and use something else for the "virtual context". */
8629 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
8630 context
8631 = TYPE_MAIN_VARIANT
8632 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
8633 else
8634 context = DECL_CONTEXT (decl);
8635
8636 while (context && TREE_CODE (context) != FUNCTION_DECL)
8637 {
8638 if (TREE_CODE (context) == BLOCK)
8639 context = BLOCK_SUPERCONTEXT (context);
8640 else
8641 context = get_containing_scope (context);
8642 }
8643
8644 return context;
8645 }
8646
8647 /* Return the innermost context enclosing DECL that is
8648 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
8649 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
8650
8651 tree
8652 decl_type_context (const_tree decl)
8653 {
8654 tree context = DECL_CONTEXT (decl);
8655
8656 while (context)
8657 switch (TREE_CODE (context))
8658 {
8659 case NAMESPACE_DECL:
8660 case TRANSLATION_UNIT_DECL:
8661 return NULL_TREE;
8662
8663 case RECORD_TYPE:
8664 case UNION_TYPE:
8665 case QUAL_UNION_TYPE:
8666 return context;
8667
8668 case TYPE_DECL:
8669 case FUNCTION_DECL:
8670 context = DECL_CONTEXT (context);
8671 break;
8672
8673 case BLOCK:
8674 context = BLOCK_SUPERCONTEXT (context);
8675 break;
8676
8677 default:
8678 gcc_unreachable ();
8679 }
8680
8681 return NULL_TREE;
8682 }
8683
8684 /* CALL is a CALL_EXPR. Return the declaration for the function
8685 called, or NULL_TREE if the called function cannot be
8686 determined. */
8687
8688 tree
8689 get_callee_fndecl (const_tree call)
8690 {
8691 tree addr;
8692
8693 if (call == error_mark_node)
8694 return error_mark_node;
8695
8696 /* It's invalid to call this function with anything but a
8697 CALL_EXPR. */
8698 gcc_assert (TREE_CODE (call) == CALL_EXPR);
8699
8700 /* The first operand to the CALL is the address of the function
8701 called. */
8702 addr = CALL_EXPR_FN (call);
8703
8704 STRIP_NOPS (addr);
8705
8706 /* If this is a readonly function pointer, extract its initial value. */
8707 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
8708 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
8709 && DECL_INITIAL (addr))
8710 addr = DECL_INITIAL (addr);
8711
8712 /* If the address is just `&f' for some function `f', then we know
8713 that `f' is being called. */
8714 if (TREE_CODE (addr) == ADDR_EXPR
8715 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
8716 return TREE_OPERAND (addr, 0);
8717
8718 /* We couldn't figure out what was being called. */
8719 return NULL_TREE;
8720 }
8721
8722 /* Print debugging information about tree nodes generated during the compile,
8723 and any language-specific information. */
8724
8725 void
8726 dump_tree_statistics (void)
8727 {
8728 if (GATHER_STATISTICS)
8729 {
8730 int i;
8731 int total_nodes, total_bytes;
8732 fprintf (stderr, "Kind Nodes Bytes\n");
8733 fprintf (stderr, "---------------------------------------\n");
8734 total_nodes = total_bytes = 0;
8735 for (i = 0; i < (int) all_kinds; i++)
8736 {
8737 fprintf (stderr, "%-20s %7d %10d\n", tree_node_kind_names[i],
8738 tree_node_counts[i], tree_node_sizes[i]);
8739 total_nodes += tree_node_counts[i];
8740 total_bytes += tree_node_sizes[i];
8741 }
8742 fprintf (stderr, "---------------------------------------\n");
8743 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_nodes, total_bytes);
8744 fprintf (stderr, "---------------------------------------\n");
8745 fprintf (stderr, "Code Nodes\n");
8746 fprintf (stderr, "----------------------------\n");
8747 for (i = 0; i < (int) MAX_TREE_CODES; i++)
8748 fprintf (stderr, "%-20s %7d\n", tree_code_name[i], tree_code_counts[i]);
8749 fprintf (stderr, "----------------------------\n");
8750 ssanames_print_statistics ();
8751 phinodes_print_statistics ();
8752 }
8753 else
8754 fprintf (stderr, "(No per-node statistics)\n");
8755
8756 print_type_hash_statistics ();
8757 print_debug_expr_statistics ();
8758 print_value_expr_statistics ();
8759 lang_hooks.print_statistics ();
8760 }
8761 \f
8762 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
8763
8764 /* Generate a crc32 of a byte. */
8765
8766 static unsigned
8767 crc32_unsigned_bits (unsigned chksum, unsigned value, unsigned bits)
8768 {
8769 unsigned ix;
8770
8771 for (ix = bits; ix--; value <<= 1)
8772 {
8773 unsigned feedback;
8774
8775 feedback = (value ^ chksum) & 0x80000000 ? 0x04c11db7 : 0;
8776 chksum <<= 1;
8777 chksum ^= feedback;
8778 }
8779 return chksum;
8780 }
8781
8782 /* Generate a crc32 of a 32-bit unsigned. */
8783
8784 unsigned
8785 crc32_unsigned (unsigned chksum, unsigned value)
8786 {
8787 return crc32_unsigned_bits (chksum, value, 32);
8788 }
8789
8790 /* Generate a crc32 of a byte. */
8791
8792 unsigned
8793 crc32_byte (unsigned chksum, char byte)
8794 {
8795 return crc32_unsigned_bits (chksum, (unsigned) byte << 24, 8);
8796 }
8797
8798 /* Generate a crc32 of a string. */
8799
8800 unsigned
8801 crc32_string (unsigned chksum, const char *string)
8802 {
8803 do
8804 {
8805 chksum = crc32_byte (chksum, *string);
8806 }
8807 while (*string++);
8808 return chksum;
8809 }
8810
8811 /* P is a string that will be used in a symbol. Mask out any characters
8812 that are not valid in that context. */
8813
8814 void
8815 clean_symbol_name (char *p)
8816 {
8817 for (; *p; p++)
8818 if (! (ISALNUM (*p)
8819 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
8820 || *p == '$'
8821 #endif
8822 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
8823 || *p == '.'
8824 #endif
8825 ))
8826 *p = '_';
8827 }
8828
8829 /* Generate a name for a special-purpose function.
8830 The generated name may need to be unique across the whole link.
8831 Changes to this function may also require corresponding changes to
8832 xstrdup_mask_random.
8833 TYPE is some string to identify the purpose of this function to the
8834 linker or collect2; it must start with an uppercase letter,
8835 one of:
8836 I - for constructors
8837 D - for destructors
8838 N - for C++ anonymous namespaces
8839 F - for DWARF unwind frame information. */
8840
8841 tree
8842 get_file_function_name (const char *type)
8843 {
8844 char *buf;
8845 const char *p;
8846 char *q;
8847
8848 /* If we already have a name we know to be unique, just use that. */
8849 if (first_global_object_name)
8850 p = q = ASTRDUP (first_global_object_name);
8851 /* If the target is handling the constructors/destructors, they
8852 will be local to this file and the name is only necessary for
8853 debugging purposes.
8854 We also assign sub_I and sub_D sufixes to constructors called from
8855 the global static constructors. These are always local. */
8856 else if (((type[0] == 'I' || type[0] == 'D') && targetm.have_ctors_dtors)
8857 || (strncmp (type, "sub_", 4) == 0
8858 && (type[4] == 'I' || type[4] == 'D')))
8859 {
8860 const char *file = main_input_filename;
8861 if (! file)
8862 file = input_filename;
8863 /* Just use the file's basename, because the full pathname
8864 might be quite long. */
8865 p = q = ASTRDUP (lbasename (file));
8866 }
8867 else
8868 {
8869 /* Otherwise, the name must be unique across the entire link.
8870 We don't have anything that we know to be unique to this translation
8871 unit, so use what we do have and throw in some randomness. */
8872 unsigned len;
8873 const char *name = weak_global_object_name;
8874 const char *file = main_input_filename;
8875
8876 if (! name)
8877 name = "";
8878 if (! file)
8879 file = input_filename;
8880
8881 len = strlen (file);
8882 q = (char *) alloca (9 + 17 + len + 1);
8883 memcpy (q, file, len + 1);
8884
8885 snprintf (q + len, 9 + 17 + 1, "_%08X_" HOST_WIDE_INT_PRINT_HEX,
8886 crc32_string (0, name), get_random_seed (false));
8887
8888 p = q;
8889 }
8890
8891 clean_symbol_name (q);
8892 buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
8893 + strlen (type));
8894
8895 /* Set up the name of the file-level functions we may need.
8896 Use a global object (which is already required to be unique over
8897 the program) rather than the file name (which imposes extra
8898 constraints). */
8899 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
8900
8901 return get_identifier (buf);
8902 }
8903 \f
8904 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
8905
8906 /* Complain that the tree code of NODE does not match the expected 0
8907 terminated list of trailing codes. The trailing code list can be
8908 empty, for a more vague error message. FILE, LINE, and FUNCTION
8909 are of the caller. */
8910
8911 void
8912 tree_check_failed (const_tree node, const char *file,
8913 int line, const char *function, ...)
8914 {
8915 va_list args;
8916 const char *buffer;
8917 unsigned length = 0;
8918 int code;
8919
8920 va_start (args, function);
8921 while ((code = va_arg (args, int)))
8922 length += 4 + strlen (tree_code_name[code]);
8923 va_end (args);
8924 if (length)
8925 {
8926 char *tmp;
8927 va_start (args, function);
8928 length += strlen ("expected ");
8929 buffer = tmp = (char *) alloca (length);
8930 length = 0;
8931 while ((code = va_arg (args, int)))
8932 {
8933 const char *prefix = length ? " or " : "expected ";
8934
8935 strcpy (tmp + length, prefix);
8936 length += strlen (prefix);
8937 strcpy (tmp + length, tree_code_name[code]);
8938 length += strlen (tree_code_name[code]);
8939 }
8940 va_end (args);
8941 }
8942 else
8943 buffer = "unexpected node";
8944
8945 internal_error ("tree check: %s, have %s in %s, at %s:%d",
8946 buffer, tree_code_name[TREE_CODE (node)],
8947 function, trim_filename (file), line);
8948 }
8949
8950 /* Complain that the tree code of NODE does match the expected 0
8951 terminated list of trailing codes. FILE, LINE, and FUNCTION are of
8952 the caller. */
8953
8954 void
8955 tree_not_check_failed (const_tree node, const char *file,
8956 int line, const char *function, ...)
8957 {
8958 va_list args;
8959 char *buffer;
8960 unsigned length = 0;
8961 int code;
8962
8963 va_start (args, function);
8964 while ((code = va_arg (args, int)))
8965 length += 4 + strlen (tree_code_name[code]);
8966 va_end (args);
8967 va_start (args, function);
8968 buffer = (char *) alloca (length);
8969 length = 0;
8970 while ((code = va_arg (args, int)))
8971 {
8972 if (length)
8973 {
8974 strcpy (buffer + length, " or ");
8975 length += 4;
8976 }
8977 strcpy (buffer + length, tree_code_name[code]);
8978 length += strlen (tree_code_name[code]);
8979 }
8980 va_end (args);
8981
8982 internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
8983 buffer, tree_code_name[TREE_CODE (node)],
8984 function, trim_filename (file), line);
8985 }
8986
8987 /* Similar to tree_check_failed, except that we check for a class of tree
8988 code, given in CL. */
8989
8990 void
8991 tree_class_check_failed (const_tree node, const enum tree_code_class cl,
8992 const char *file, int line, const char *function)
8993 {
8994 internal_error
8995 ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
8996 TREE_CODE_CLASS_STRING (cl),
8997 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
8998 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
8999 }
9000
9001 /* Similar to tree_check_failed, except that instead of specifying a
9002 dozen codes, use the knowledge that they're all sequential. */
9003
9004 void
9005 tree_range_check_failed (const_tree node, const char *file, int line,
9006 const char *function, enum tree_code c1,
9007 enum tree_code c2)
9008 {
9009 char *buffer;
9010 unsigned length = 0;
9011 unsigned int c;
9012
9013 for (c = c1; c <= c2; ++c)
9014 length += 4 + strlen (tree_code_name[c]);
9015
9016 length += strlen ("expected ");
9017 buffer = (char *) alloca (length);
9018 length = 0;
9019
9020 for (c = c1; c <= c2; ++c)
9021 {
9022 const char *prefix = length ? " or " : "expected ";
9023
9024 strcpy (buffer + length, prefix);
9025 length += strlen (prefix);
9026 strcpy (buffer + length, tree_code_name[c]);
9027 length += strlen (tree_code_name[c]);
9028 }
9029
9030 internal_error ("tree check: %s, have %s in %s, at %s:%d",
9031 buffer, tree_code_name[TREE_CODE (node)],
9032 function, trim_filename (file), line);
9033 }
9034
9035
9036 /* Similar to tree_check_failed, except that we check that a tree does
9037 not have the specified code, given in CL. */
9038
9039 void
9040 tree_not_class_check_failed (const_tree node, const enum tree_code_class cl,
9041 const char *file, int line, const char *function)
9042 {
9043 internal_error
9044 ("tree check: did not expect class %qs, have %qs (%s) in %s, at %s:%d",
9045 TREE_CODE_CLASS_STRING (cl),
9046 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
9047 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
9048 }
9049
9050
9051 /* Similar to tree_check_failed but applied to OMP_CLAUSE codes. */
9052
9053 void
9054 omp_clause_check_failed (const_tree node, const char *file, int line,
9055 const char *function, enum omp_clause_code code)
9056 {
9057 internal_error ("tree check: expected omp_clause %s, have %s in %s, at %s:%d",
9058 omp_clause_code_name[code], tree_code_name[TREE_CODE (node)],
9059 function, trim_filename (file), line);
9060 }
9061
9062
9063 /* Similar to tree_range_check_failed but applied to OMP_CLAUSE codes. */
9064
9065 void
9066 omp_clause_range_check_failed (const_tree node, const char *file, int line,
9067 const char *function, enum omp_clause_code c1,
9068 enum omp_clause_code c2)
9069 {
9070 char *buffer;
9071 unsigned length = 0;
9072 unsigned int c;
9073
9074 for (c = c1; c <= c2; ++c)
9075 length += 4 + strlen (omp_clause_code_name[c]);
9076
9077 length += strlen ("expected ");
9078 buffer = (char *) alloca (length);
9079 length = 0;
9080
9081 for (c = c1; c <= c2; ++c)
9082 {
9083 const char *prefix = length ? " or " : "expected ";
9084
9085 strcpy (buffer + length, prefix);
9086 length += strlen (prefix);
9087 strcpy (buffer + length, omp_clause_code_name[c]);
9088 length += strlen (omp_clause_code_name[c]);
9089 }
9090
9091 internal_error ("tree check: %s, have %s in %s, at %s:%d",
9092 buffer, omp_clause_code_name[TREE_CODE (node)],
9093 function, trim_filename (file), line);
9094 }
9095
9096
9097 #undef DEFTREESTRUCT
9098 #define DEFTREESTRUCT(VAL, NAME) NAME,
9099
9100 static const char *ts_enum_names[] = {
9101 #include "treestruct.def"
9102 };
9103 #undef DEFTREESTRUCT
9104
9105 #define TS_ENUM_NAME(EN) (ts_enum_names[(EN)])
9106
9107 /* Similar to tree_class_check_failed, except that we check for
9108 whether CODE contains the tree structure identified by EN. */
9109
9110 void
9111 tree_contains_struct_check_failed (const_tree node,
9112 const enum tree_node_structure_enum en,
9113 const char *file, int line,
9114 const char *function)
9115 {
9116 internal_error
9117 ("tree check: expected tree that contains %qs structure, have %qs in %s, at %s:%d",
9118 TS_ENUM_NAME(en),
9119 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
9120 }
9121
9122
9123 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
9124 (dynamically sized) vector. */
9125
9126 void
9127 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
9128 const char *function)
9129 {
9130 internal_error
9131 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
9132 idx + 1, len, function, trim_filename (file), line);
9133 }
9134
9135 /* Similar to above, except that the check is for the bounds of the operand
9136 vector of an expression node EXP. */
9137
9138 void
9139 tree_operand_check_failed (int idx, const_tree exp, const char *file,
9140 int line, const char *function)
9141 {
9142 int code = TREE_CODE (exp);
9143 internal_error
9144 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
9145 idx + 1, tree_code_name[code], TREE_OPERAND_LENGTH (exp),
9146 function, trim_filename (file), line);
9147 }
9148
9149 /* Similar to above, except that the check is for the number of
9150 operands of an OMP_CLAUSE node. */
9151
9152 void
9153 omp_clause_operand_check_failed (int idx, const_tree t, const char *file,
9154 int line, const char *function)
9155 {
9156 internal_error
9157 ("tree check: accessed operand %d of omp_clause %s with %d operands "
9158 "in %s, at %s:%d", idx + 1, omp_clause_code_name[OMP_CLAUSE_CODE (t)],
9159 omp_clause_num_ops [OMP_CLAUSE_CODE (t)], function,
9160 trim_filename (file), line);
9161 }
9162 #endif /* ENABLE_TREE_CHECKING */
9163 \f
9164 /* Create a new vector type node holding SUBPARTS units of type INNERTYPE,
9165 and mapped to the machine mode MODE. Initialize its fields and build
9166 the information necessary for debugging output. */
9167
9168 static tree
9169 make_vector_type (tree innertype, int nunits, enum machine_mode mode)
9170 {
9171 tree t;
9172 hashval_t hashcode = 0;
9173
9174 t = make_node (VECTOR_TYPE);
9175 TREE_TYPE (t) = TYPE_MAIN_VARIANT (innertype);
9176 SET_TYPE_VECTOR_SUBPARTS (t, nunits);
9177 SET_TYPE_MODE (t, mode);
9178
9179 if (TYPE_STRUCTURAL_EQUALITY_P (innertype))
9180 SET_TYPE_STRUCTURAL_EQUALITY (t);
9181 else if (TYPE_CANONICAL (innertype) != innertype
9182 || mode != VOIDmode)
9183 TYPE_CANONICAL (t)
9184 = make_vector_type (TYPE_CANONICAL (innertype), nunits, VOIDmode);
9185
9186 layout_type (t);
9187
9188 hashcode = iterative_hash_host_wide_int (VECTOR_TYPE, hashcode);
9189 hashcode = iterative_hash_host_wide_int (nunits, hashcode);
9190 hashcode = iterative_hash_host_wide_int (mode, hashcode);
9191 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (t)), hashcode);
9192 t = type_hash_canon (hashcode, t);
9193
9194 /* We have built a main variant, based on the main variant of the
9195 inner type. Use it to build the variant we return. */
9196 if ((TYPE_ATTRIBUTES (innertype) || TYPE_QUALS (innertype))
9197 && TREE_TYPE (t) != innertype)
9198 return build_type_attribute_qual_variant (t,
9199 TYPE_ATTRIBUTES (innertype),
9200 TYPE_QUALS (innertype));
9201
9202 return t;
9203 }
9204
9205 static tree
9206 make_or_reuse_type (unsigned size, int unsignedp)
9207 {
9208 if (size == INT_TYPE_SIZE)
9209 return unsignedp ? unsigned_type_node : integer_type_node;
9210 if (size == CHAR_TYPE_SIZE)
9211 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
9212 if (size == SHORT_TYPE_SIZE)
9213 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
9214 if (size == LONG_TYPE_SIZE)
9215 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
9216 if (size == LONG_LONG_TYPE_SIZE)
9217 return (unsignedp ? long_long_unsigned_type_node
9218 : long_long_integer_type_node);
9219 if (size == 128 && int128_integer_type_node)
9220 return (unsignedp ? int128_unsigned_type_node
9221 : int128_integer_type_node);
9222
9223 if (unsignedp)
9224 return make_unsigned_type (size);
9225 else
9226 return make_signed_type (size);
9227 }
9228
9229 /* Create or reuse a fract type by SIZE, UNSIGNEDP, and SATP. */
9230
9231 static tree
9232 make_or_reuse_fract_type (unsigned size, int unsignedp, int satp)
9233 {
9234 if (satp)
9235 {
9236 if (size == SHORT_FRACT_TYPE_SIZE)
9237 return unsignedp ? sat_unsigned_short_fract_type_node
9238 : sat_short_fract_type_node;
9239 if (size == FRACT_TYPE_SIZE)
9240 return unsignedp ? sat_unsigned_fract_type_node : sat_fract_type_node;
9241 if (size == LONG_FRACT_TYPE_SIZE)
9242 return unsignedp ? sat_unsigned_long_fract_type_node
9243 : sat_long_fract_type_node;
9244 if (size == LONG_LONG_FRACT_TYPE_SIZE)
9245 return unsignedp ? sat_unsigned_long_long_fract_type_node
9246 : sat_long_long_fract_type_node;
9247 }
9248 else
9249 {
9250 if (size == SHORT_FRACT_TYPE_SIZE)
9251 return unsignedp ? unsigned_short_fract_type_node
9252 : short_fract_type_node;
9253 if (size == FRACT_TYPE_SIZE)
9254 return unsignedp ? unsigned_fract_type_node : fract_type_node;
9255 if (size == LONG_FRACT_TYPE_SIZE)
9256 return unsignedp ? unsigned_long_fract_type_node
9257 : long_fract_type_node;
9258 if (size == LONG_LONG_FRACT_TYPE_SIZE)
9259 return unsignedp ? unsigned_long_long_fract_type_node
9260 : long_long_fract_type_node;
9261 }
9262
9263 return make_fract_type (size, unsignedp, satp);
9264 }
9265
9266 /* Create or reuse an accum type by SIZE, UNSIGNEDP, and SATP. */
9267
9268 static tree
9269 make_or_reuse_accum_type (unsigned size, int unsignedp, int satp)
9270 {
9271 if (satp)
9272 {
9273 if (size == SHORT_ACCUM_TYPE_SIZE)
9274 return unsignedp ? sat_unsigned_short_accum_type_node
9275 : sat_short_accum_type_node;
9276 if (size == ACCUM_TYPE_SIZE)
9277 return unsignedp ? sat_unsigned_accum_type_node : sat_accum_type_node;
9278 if (size == LONG_ACCUM_TYPE_SIZE)
9279 return unsignedp ? sat_unsigned_long_accum_type_node
9280 : sat_long_accum_type_node;
9281 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
9282 return unsignedp ? sat_unsigned_long_long_accum_type_node
9283 : sat_long_long_accum_type_node;
9284 }
9285 else
9286 {
9287 if (size == SHORT_ACCUM_TYPE_SIZE)
9288 return unsignedp ? unsigned_short_accum_type_node
9289 : short_accum_type_node;
9290 if (size == ACCUM_TYPE_SIZE)
9291 return unsignedp ? unsigned_accum_type_node : accum_type_node;
9292 if (size == LONG_ACCUM_TYPE_SIZE)
9293 return unsignedp ? unsigned_long_accum_type_node
9294 : long_accum_type_node;
9295 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
9296 return unsignedp ? unsigned_long_long_accum_type_node
9297 : long_long_accum_type_node;
9298 }
9299
9300 return make_accum_type (size, unsignedp, satp);
9301 }
9302
9303 /* Create nodes for all integer types (and error_mark_node) using the sizes
9304 of C datatypes. SIGNED_CHAR specifies whether char is signed,
9305 SHORT_DOUBLE specifies whether double should be of the same precision
9306 as float. */
9307
9308 void
9309 build_common_tree_nodes (bool signed_char, bool short_double)
9310 {
9311 error_mark_node = make_node (ERROR_MARK);
9312 TREE_TYPE (error_mark_node) = error_mark_node;
9313
9314 initialize_sizetypes ();
9315
9316 /* Define both `signed char' and `unsigned char'. */
9317 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
9318 TYPE_STRING_FLAG (signed_char_type_node) = 1;
9319 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
9320 TYPE_STRING_FLAG (unsigned_char_type_node) = 1;
9321
9322 /* Define `char', which is like either `signed char' or `unsigned char'
9323 but not the same as either. */
9324 char_type_node
9325 = (signed_char
9326 ? make_signed_type (CHAR_TYPE_SIZE)
9327 : make_unsigned_type (CHAR_TYPE_SIZE));
9328 TYPE_STRING_FLAG (char_type_node) = 1;
9329
9330 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
9331 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
9332 integer_type_node = make_signed_type (INT_TYPE_SIZE);
9333 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
9334 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
9335 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
9336 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
9337 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
9338 #if HOST_BITS_PER_WIDE_INT >= 64
9339 /* TODO: This isn't correct, but as logic depends at the moment on
9340 host's instead of target's wide-integer.
9341 If there is a target not supporting TImode, but has an 128-bit
9342 integer-scalar register, this target check needs to be adjusted. */
9343 if (targetm.scalar_mode_supported_p (TImode))
9344 {
9345 int128_integer_type_node = make_signed_type (128);
9346 int128_unsigned_type_node = make_unsigned_type (128);
9347 }
9348 #endif
9349
9350 /* Define a boolean type. This type only represents boolean values but
9351 may be larger than char depending on the value of BOOL_TYPE_SIZE.
9352 Front ends which want to override this size (i.e. Java) can redefine
9353 boolean_type_node before calling build_common_tree_nodes_2. */
9354 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
9355 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
9356 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
9357 TYPE_PRECISION (boolean_type_node) = 1;
9358
9359 /* Define what type to use for size_t. */
9360 if (strcmp (SIZE_TYPE, "unsigned int") == 0)
9361 size_type_node = unsigned_type_node;
9362 else if (strcmp (SIZE_TYPE, "long unsigned int") == 0)
9363 size_type_node = long_unsigned_type_node;
9364 else if (strcmp (SIZE_TYPE, "long long unsigned int") == 0)
9365 size_type_node = long_long_unsigned_type_node;
9366 else if (strcmp (SIZE_TYPE, "short unsigned int") == 0)
9367 size_type_node = short_unsigned_type_node;
9368 else
9369 gcc_unreachable ();
9370
9371 /* Fill in the rest of the sized types. Reuse existing type nodes
9372 when possible. */
9373 intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
9374 intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
9375 intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
9376 intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
9377 intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);
9378
9379 unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
9380 unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
9381 unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
9382 unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
9383 unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);
9384
9385 access_public_node = get_identifier ("public");
9386 access_protected_node = get_identifier ("protected");
9387 access_private_node = get_identifier ("private");
9388
9389 /* Define these next since types below may used them. */
9390 integer_zero_node = build_int_cst (integer_type_node, 0);
9391 integer_one_node = build_int_cst (integer_type_node, 1);
9392 integer_three_node = build_int_cst (integer_type_node, 3);
9393 integer_minus_one_node = build_int_cst (integer_type_node, -1);
9394
9395 size_zero_node = size_int (0);
9396 size_one_node = size_int (1);
9397 bitsize_zero_node = bitsize_int (0);
9398 bitsize_one_node = bitsize_int (1);
9399 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
9400
9401 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
9402 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
9403
9404 void_type_node = make_node (VOID_TYPE);
9405 layout_type (void_type_node);
9406
9407 /* We are not going to have real types in C with less than byte alignment,
9408 so we might as well not have any types that claim to have it. */
9409 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
9410 TYPE_USER_ALIGN (void_type_node) = 0;
9411
9412 null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
9413 layout_type (TREE_TYPE (null_pointer_node));
9414
9415 ptr_type_node = build_pointer_type (void_type_node);
9416 const_ptr_type_node
9417 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
9418 fileptr_type_node = ptr_type_node;
9419
9420 float_type_node = make_node (REAL_TYPE);
9421 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
9422 layout_type (float_type_node);
9423
9424 double_type_node = make_node (REAL_TYPE);
9425 if (short_double)
9426 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
9427 else
9428 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
9429 layout_type (double_type_node);
9430
9431 long_double_type_node = make_node (REAL_TYPE);
9432 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
9433 layout_type (long_double_type_node);
9434
9435 float_ptr_type_node = build_pointer_type (float_type_node);
9436 double_ptr_type_node = build_pointer_type (double_type_node);
9437 long_double_ptr_type_node = build_pointer_type (long_double_type_node);
9438 integer_ptr_type_node = build_pointer_type (integer_type_node);
9439
9440 /* Fixed size integer types. */
9441 uint16_type_node = build_nonstandard_integer_type (16, true);
9442 uint32_type_node = build_nonstandard_integer_type (32, true);
9443 uint64_type_node = build_nonstandard_integer_type (64, true);
9444
9445 /* Decimal float types. */
9446 dfloat32_type_node = make_node (REAL_TYPE);
9447 TYPE_PRECISION (dfloat32_type_node) = DECIMAL32_TYPE_SIZE;
9448 layout_type (dfloat32_type_node);
9449 SET_TYPE_MODE (dfloat32_type_node, SDmode);
9450 dfloat32_ptr_type_node = build_pointer_type (dfloat32_type_node);
9451
9452 dfloat64_type_node = make_node (REAL_TYPE);
9453 TYPE_PRECISION (dfloat64_type_node) = DECIMAL64_TYPE_SIZE;
9454 layout_type (dfloat64_type_node);
9455 SET_TYPE_MODE (dfloat64_type_node, DDmode);
9456 dfloat64_ptr_type_node = build_pointer_type (dfloat64_type_node);
9457
9458 dfloat128_type_node = make_node (REAL_TYPE);
9459 TYPE_PRECISION (dfloat128_type_node) = DECIMAL128_TYPE_SIZE;
9460 layout_type (dfloat128_type_node);
9461 SET_TYPE_MODE (dfloat128_type_node, TDmode);
9462 dfloat128_ptr_type_node = build_pointer_type (dfloat128_type_node);
9463
9464 complex_integer_type_node = build_complex_type (integer_type_node);
9465 complex_float_type_node = build_complex_type (float_type_node);
9466 complex_double_type_node = build_complex_type (double_type_node);
9467 complex_long_double_type_node = build_complex_type (long_double_type_node);
9468
9469 /* Make fixed-point nodes based on sat/non-sat and signed/unsigned. */
9470 #define MAKE_FIXED_TYPE_NODE(KIND,SIZE) \
9471 sat_ ## KIND ## _type_node = \
9472 make_sat_signed_ ## KIND ## _type (SIZE); \
9473 sat_unsigned_ ## KIND ## _type_node = \
9474 make_sat_unsigned_ ## KIND ## _type (SIZE); \
9475 KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
9476 unsigned_ ## KIND ## _type_node = \
9477 make_unsigned_ ## KIND ## _type (SIZE);
9478
9479 #define MAKE_FIXED_TYPE_NODE_WIDTH(KIND,WIDTH,SIZE) \
9480 sat_ ## WIDTH ## KIND ## _type_node = \
9481 make_sat_signed_ ## KIND ## _type (SIZE); \
9482 sat_unsigned_ ## WIDTH ## KIND ## _type_node = \
9483 make_sat_unsigned_ ## KIND ## _type (SIZE); \
9484 WIDTH ## KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
9485 unsigned_ ## WIDTH ## KIND ## _type_node = \
9486 make_unsigned_ ## KIND ## _type (SIZE);
9487
9488 /* Make fixed-point type nodes based on four different widths. */
9489 #define MAKE_FIXED_TYPE_NODE_FAMILY(N1,N2) \
9490 MAKE_FIXED_TYPE_NODE_WIDTH (N1, short_, SHORT_ ## N2 ## _TYPE_SIZE) \
9491 MAKE_FIXED_TYPE_NODE (N1, N2 ## _TYPE_SIZE) \
9492 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_, LONG_ ## N2 ## _TYPE_SIZE) \
9493 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_long_, LONG_LONG_ ## N2 ## _TYPE_SIZE)
9494
9495 /* Make fixed-point mode nodes based on sat/non-sat and signed/unsigned. */
9496 #define MAKE_FIXED_MODE_NODE(KIND,NAME,MODE) \
9497 NAME ## _type_node = \
9498 make_or_reuse_signed_ ## KIND ## _type (GET_MODE_BITSIZE (MODE ## mode)); \
9499 u ## NAME ## _type_node = \
9500 make_or_reuse_unsigned_ ## KIND ## _type \
9501 (GET_MODE_BITSIZE (U ## MODE ## mode)); \
9502 sat_ ## NAME ## _type_node = \
9503 make_or_reuse_sat_signed_ ## KIND ## _type \
9504 (GET_MODE_BITSIZE (MODE ## mode)); \
9505 sat_u ## NAME ## _type_node = \
9506 make_or_reuse_sat_unsigned_ ## KIND ## _type \
9507 (GET_MODE_BITSIZE (U ## MODE ## mode));
9508
9509 /* Fixed-point type and mode nodes. */
9510 MAKE_FIXED_TYPE_NODE_FAMILY (fract, FRACT)
9511 MAKE_FIXED_TYPE_NODE_FAMILY (accum, ACCUM)
9512 MAKE_FIXED_MODE_NODE (fract, qq, QQ)
9513 MAKE_FIXED_MODE_NODE (fract, hq, HQ)
9514 MAKE_FIXED_MODE_NODE (fract, sq, SQ)
9515 MAKE_FIXED_MODE_NODE (fract, dq, DQ)
9516 MAKE_FIXED_MODE_NODE (fract, tq, TQ)
9517 MAKE_FIXED_MODE_NODE (accum, ha, HA)
9518 MAKE_FIXED_MODE_NODE (accum, sa, SA)
9519 MAKE_FIXED_MODE_NODE (accum, da, DA)
9520 MAKE_FIXED_MODE_NODE (accum, ta, TA)
9521
9522 {
9523 tree t = targetm.build_builtin_va_list ();
9524
9525 /* Many back-ends define record types without setting TYPE_NAME.
9526 If we copied the record type here, we'd keep the original
9527 record type without a name. This breaks name mangling. So,
9528 don't copy record types and let c_common_nodes_and_builtins()
9529 declare the type to be __builtin_va_list. */
9530 if (TREE_CODE (t) != RECORD_TYPE)
9531 t = build_variant_type_copy (t);
9532
9533 va_list_type_node = t;
9534 }
9535 }
9536
9537 /* Modify DECL for given flags. */
9538 void
9539 set_call_expr_flags (tree decl, int flags)
9540 {
9541 if (flags & ECF_NOTHROW)
9542 TREE_NOTHROW (decl) = 1;
9543 if (flags & ECF_CONST)
9544 TREE_READONLY (decl) = 1;
9545 if (flags & ECF_PURE)
9546 DECL_PURE_P (decl) = 1;
9547 if (flags & ECF_LOOPING_CONST_OR_PURE)
9548 DECL_LOOPING_CONST_OR_PURE_P (decl) = 1;
9549 if (flags & ECF_NOVOPS)
9550 DECL_IS_NOVOPS (decl) = 1;
9551 if (flags & ECF_NORETURN)
9552 TREE_THIS_VOLATILE (decl) = 1;
9553 if (flags & ECF_MALLOC)
9554 DECL_IS_MALLOC (decl) = 1;
9555 if (flags & ECF_RETURNS_TWICE)
9556 DECL_IS_RETURNS_TWICE (decl) = 1;
9557 if (flags & ECF_LEAF)
9558 DECL_ATTRIBUTES (decl) = tree_cons (get_identifier ("leaf"),
9559 NULL, DECL_ATTRIBUTES (decl));
9560 if ((flags & ECF_TM_PURE) && flag_tm)
9561 DECL_ATTRIBUTES (decl) = tree_cons (get_identifier ("transaction_pure"),
9562 NULL, DECL_ATTRIBUTES (decl));
9563 /* Looping const or pure is implied by noreturn.
9564 There is currently no way to declare looping const or looping pure alone. */
9565 gcc_assert (!(flags & ECF_LOOPING_CONST_OR_PURE)
9566 || ((flags & ECF_NORETURN) && (flags & (ECF_CONST | ECF_PURE))));
9567 }
9568
9569
9570 /* A subroutine of build_common_builtin_nodes. Define a builtin function. */
9571
9572 static void
9573 local_define_builtin (const char *name, tree type, enum built_in_function code,
9574 const char *library_name, int ecf_flags)
9575 {
9576 tree decl;
9577
9578 decl = add_builtin_function (name, type, code, BUILT_IN_NORMAL,
9579 library_name, NULL_TREE);
9580 set_call_expr_flags (decl, ecf_flags);
9581
9582 set_builtin_decl (code, decl, true);
9583 }
9584
9585 /* Call this function after instantiating all builtins that the language
9586 front end cares about. This will build the rest of the builtins that
9587 are relied upon by the tree optimizers and the middle-end. */
9588
9589 void
9590 build_common_builtin_nodes (void)
9591 {
9592 tree tmp, ftype;
9593 int ecf_flags;
9594
9595 if (!builtin_decl_explicit_p (BUILT_IN_UNREACHABLE))
9596 {
9597 ftype = build_function_type (void_type_node, void_list_node);
9598 local_define_builtin ("__builtin_unreachable", ftype, BUILT_IN_UNREACHABLE,
9599 "__builtin_unreachable",
9600 ECF_NOTHROW | ECF_LEAF | ECF_NORETURN
9601 | ECF_CONST | ECF_LEAF);
9602 }
9603
9604 if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY)
9605 || !builtin_decl_explicit_p (BUILT_IN_MEMMOVE))
9606 {
9607 ftype = build_function_type_list (ptr_type_node,
9608 ptr_type_node, const_ptr_type_node,
9609 size_type_node, NULL_TREE);
9610
9611 if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY))
9612 local_define_builtin ("__builtin_memcpy", ftype, BUILT_IN_MEMCPY,
9613 "memcpy", ECF_NOTHROW | ECF_LEAF);
9614 if (!builtin_decl_explicit_p (BUILT_IN_MEMMOVE))
9615 local_define_builtin ("__builtin_memmove", ftype, BUILT_IN_MEMMOVE,
9616 "memmove", ECF_NOTHROW | ECF_LEAF);
9617 }
9618
9619 if (!builtin_decl_explicit_p (BUILT_IN_MEMCMP))
9620 {
9621 ftype = build_function_type_list (integer_type_node, const_ptr_type_node,
9622 const_ptr_type_node, size_type_node,
9623 NULL_TREE);
9624 local_define_builtin ("__builtin_memcmp", ftype, BUILT_IN_MEMCMP,
9625 "memcmp", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
9626 }
9627
9628 if (!builtin_decl_explicit_p (BUILT_IN_MEMSET))
9629 {
9630 ftype = build_function_type_list (ptr_type_node,
9631 ptr_type_node, integer_type_node,
9632 size_type_node, NULL_TREE);
9633 local_define_builtin ("__builtin_memset", ftype, BUILT_IN_MEMSET,
9634 "memset", ECF_NOTHROW | ECF_LEAF);
9635 }
9636
9637 if (!builtin_decl_explicit_p (BUILT_IN_ALLOCA))
9638 {
9639 ftype = build_function_type_list (ptr_type_node,
9640 size_type_node, NULL_TREE);
9641 local_define_builtin ("__builtin_alloca", ftype, BUILT_IN_ALLOCA,
9642 "alloca", ECF_MALLOC | ECF_NOTHROW | ECF_LEAF);
9643 }
9644
9645 ftype = build_function_type_list (ptr_type_node, size_type_node,
9646 size_type_node, NULL_TREE);
9647 local_define_builtin ("__builtin_alloca_with_align", ftype,
9648 BUILT_IN_ALLOCA_WITH_ALIGN, "alloca",
9649 ECF_MALLOC | ECF_NOTHROW | ECF_LEAF);
9650
9651 /* If we're checking the stack, `alloca' can throw. */
9652 if (flag_stack_check)
9653 {
9654 TREE_NOTHROW (builtin_decl_explicit (BUILT_IN_ALLOCA)) = 0;
9655 TREE_NOTHROW (builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN)) = 0;
9656 }
9657
9658 ftype = build_function_type_list (void_type_node,
9659 ptr_type_node, ptr_type_node,
9660 ptr_type_node, NULL_TREE);
9661 local_define_builtin ("__builtin_init_trampoline", ftype,
9662 BUILT_IN_INIT_TRAMPOLINE,
9663 "__builtin_init_trampoline", ECF_NOTHROW | ECF_LEAF);
9664 local_define_builtin ("__builtin_init_heap_trampoline", ftype,
9665 BUILT_IN_INIT_HEAP_TRAMPOLINE,
9666 "__builtin_init_heap_trampoline",
9667 ECF_NOTHROW | ECF_LEAF);
9668
9669 ftype = build_function_type_list (ptr_type_node, ptr_type_node, NULL_TREE);
9670 local_define_builtin ("__builtin_adjust_trampoline", ftype,
9671 BUILT_IN_ADJUST_TRAMPOLINE,
9672 "__builtin_adjust_trampoline",
9673 ECF_CONST | ECF_NOTHROW);
9674
9675 ftype = build_function_type_list (void_type_node,
9676 ptr_type_node, ptr_type_node, NULL_TREE);
9677 local_define_builtin ("__builtin_nonlocal_goto", ftype,
9678 BUILT_IN_NONLOCAL_GOTO,
9679 "__builtin_nonlocal_goto",
9680 ECF_NORETURN | ECF_NOTHROW);
9681
9682 ftype = build_function_type_list (void_type_node,
9683 ptr_type_node, ptr_type_node, NULL_TREE);
9684 local_define_builtin ("__builtin_setjmp_setup", ftype,
9685 BUILT_IN_SETJMP_SETUP,
9686 "__builtin_setjmp_setup", ECF_NOTHROW);
9687
9688 ftype = build_function_type_list (ptr_type_node, ptr_type_node, NULL_TREE);
9689 local_define_builtin ("__builtin_setjmp_dispatcher", ftype,
9690 BUILT_IN_SETJMP_DISPATCHER,
9691 "__builtin_setjmp_dispatcher",
9692 ECF_PURE | ECF_NOTHROW);
9693
9694 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
9695 local_define_builtin ("__builtin_setjmp_receiver", ftype,
9696 BUILT_IN_SETJMP_RECEIVER,
9697 "__builtin_setjmp_receiver", ECF_NOTHROW);
9698
9699 ftype = build_function_type_list (ptr_type_node, NULL_TREE);
9700 local_define_builtin ("__builtin_stack_save", ftype, BUILT_IN_STACK_SAVE,
9701 "__builtin_stack_save", ECF_NOTHROW | ECF_LEAF);
9702
9703 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
9704 local_define_builtin ("__builtin_stack_restore", ftype,
9705 BUILT_IN_STACK_RESTORE,
9706 "__builtin_stack_restore", ECF_NOTHROW | ECF_LEAF);
9707
9708 /* If there's a possibility that we might use the ARM EABI, build the
9709 alternate __cxa_end_cleanup node used to resume from C++ and Java. */
9710 if (targetm.arm_eabi_unwinder)
9711 {
9712 ftype = build_function_type_list (void_type_node, NULL_TREE);
9713 local_define_builtin ("__builtin_cxa_end_cleanup", ftype,
9714 BUILT_IN_CXA_END_CLEANUP,
9715 "__cxa_end_cleanup", ECF_NORETURN | ECF_LEAF);
9716 }
9717
9718 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
9719 local_define_builtin ("__builtin_unwind_resume", ftype,
9720 BUILT_IN_UNWIND_RESUME,
9721 ((targetm_common.except_unwind_info (&global_options)
9722 == UI_SJLJ)
9723 ? "_Unwind_SjLj_Resume" : "_Unwind_Resume"),
9724 ECF_NORETURN);
9725
9726 if (builtin_decl_explicit (BUILT_IN_RETURN_ADDRESS) == NULL_TREE)
9727 {
9728 ftype = build_function_type_list (ptr_type_node, integer_type_node,
9729 NULL_TREE);
9730 local_define_builtin ("__builtin_return_address", ftype,
9731 BUILT_IN_RETURN_ADDRESS,
9732 "__builtin_return_address",
9733 ECF_NOTHROW);
9734 }
9735
9736 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER)
9737 || !builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT))
9738 {
9739 ftype = build_function_type_list (void_type_node, ptr_type_node,
9740 ptr_type_node, NULL_TREE);
9741 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER))
9742 local_define_builtin ("__cyg_profile_func_enter", ftype,
9743 BUILT_IN_PROFILE_FUNC_ENTER,
9744 "__cyg_profile_func_enter", 0);
9745 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT))
9746 local_define_builtin ("__cyg_profile_func_exit", ftype,
9747 BUILT_IN_PROFILE_FUNC_EXIT,
9748 "__cyg_profile_func_exit", 0);
9749 }
9750
9751 /* The exception object and filter values from the runtime. The argument
9752 must be zero before exception lowering, i.e. from the front end. After
9753 exception lowering, it will be the region number for the exception
9754 landing pad. These functions are PURE instead of CONST to prevent
9755 them from being hoisted past the exception edge that will initialize
9756 its value in the landing pad. */
9757 ftype = build_function_type_list (ptr_type_node,
9758 integer_type_node, NULL_TREE);
9759 ecf_flags = ECF_PURE | ECF_NOTHROW | ECF_LEAF;
9760 /* Only use TM_PURE if we we have TM language support. */
9761 if (builtin_decl_explicit_p (BUILT_IN_TM_LOAD_1))
9762 ecf_flags |= ECF_TM_PURE;
9763 local_define_builtin ("__builtin_eh_pointer", ftype, BUILT_IN_EH_POINTER,
9764 "__builtin_eh_pointer", ecf_flags);
9765
9766 tmp = lang_hooks.types.type_for_mode (targetm.eh_return_filter_mode (), 0);
9767 ftype = build_function_type_list (tmp, integer_type_node, NULL_TREE);
9768 local_define_builtin ("__builtin_eh_filter", ftype, BUILT_IN_EH_FILTER,
9769 "__builtin_eh_filter", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
9770
9771 ftype = build_function_type_list (void_type_node,
9772 integer_type_node, integer_type_node,
9773 NULL_TREE);
9774 local_define_builtin ("__builtin_eh_copy_values", ftype,
9775 BUILT_IN_EH_COPY_VALUES,
9776 "__builtin_eh_copy_values", ECF_NOTHROW);
9777
9778 /* Complex multiplication and division. These are handled as builtins
9779 rather than optabs because emit_library_call_value doesn't support
9780 complex. Further, we can do slightly better with folding these
9781 beasties if the real and complex parts of the arguments are separate. */
9782 {
9783 int mode;
9784
9785 for (mode = MIN_MODE_COMPLEX_FLOAT; mode <= MAX_MODE_COMPLEX_FLOAT; ++mode)
9786 {
9787 char mode_name_buf[4], *q;
9788 const char *p;
9789 enum built_in_function mcode, dcode;
9790 tree type, inner_type;
9791 const char *prefix = "__";
9792
9793 if (targetm.libfunc_gnu_prefix)
9794 prefix = "__gnu_";
9795
9796 type = lang_hooks.types.type_for_mode ((enum machine_mode) mode, 0);
9797 if (type == NULL)
9798 continue;
9799 inner_type = TREE_TYPE (type);
9800
9801 ftype = build_function_type_list (type, inner_type, inner_type,
9802 inner_type, inner_type, NULL_TREE);
9803
9804 mcode = ((enum built_in_function)
9805 (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
9806 dcode = ((enum built_in_function)
9807 (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
9808
9809 for (p = GET_MODE_NAME (mode), q = mode_name_buf; *p; p++, q++)
9810 *q = TOLOWER (*p);
9811 *q = '\0';
9812
9813 built_in_names[mcode] = concat (prefix, "mul", mode_name_buf, "3",
9814 NULL);
9815 local_define_builtin (built_in_names[mcode], ftype, mcode,
9816 built_in_names[mcode],
9817 ECF_CONST | ECF_NOTHROW | ECF_LEAF);
9818
9819 built_in_names[dcode] = concat (prefix, "div", mode_name_buf, "3",
9820 NULL);
9821 local_define_builtin (built_in_names[dcode], ftype, dcode,
9822 built_in_names[dcode],
9823 ECF_CONST | ECF_NOTHROW | ECF_LEAF);
9824 }
9825 }
9826 }
9827
9828 /* HACK. GROSS. This is absolutely disgusting. I wish there was a
9829 better way.
9830
9831 If we requested a pointer to a vector, build up the pointers that
9832 we stripped off while looking for the inner type. Similarly for
9833 return values from functions.
9834
9835 The argument TYPE is the top of the chain, and BOTTOM is the
9836 new type which we will point to. */
9837
9838 tree
9839 reconstruct_complex_type (tree type, tree bottom)
9840 {
9841 tree inner, outer;
9842
9843 if (TREE_CODE (type) == POINTER_TYPE)
9844 {
9845 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9846 outer = build_pointer_type_for_mode (inner, TYPE_MODE (type),
9847 TYPE_REF_CAN_ALIAS_ALL (type));
9848 }
9849 else if (TREE_CODE (type) == REFERENCE_TYPE)
9850 {
9851 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9852 outer = build_reference_type_for_mode (inner, TYPE_MODE (type),
9853 TYPE_REF_CAN_ALIAS_ALL (type));
9854 }
9855 else if (TREE_CODE (type) == ARRAY_TYPE)
9856 {
9857 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9858 outer = build_array_type (inner, TYPE_DOMAIN (type));
9859 }
9860 else if (TREE_CODE (type) == FUNCTION_TYPE)
9861 {
9862 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9863 outer = build_function_type (inner, TYPE_ARG_TYPES (type));
9864 }
9865 else if (TREE_CODE (type) == METHOD_TYPE)
9866 {
9867 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9868 /* The build_method_type_directly() routine prepends 'this' to argument list,
9869 so we must compensate by getting rid of it. */
9870 outer
9871 = build_method_type_directly
9872 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (type))),
9873 inner,
9874 TREE_CHAIN (TYPE_ARG_TYPES (type)));
9875 }
9876 else if (TREE_CODE (type) == OFFSET_TYPE)
9877 {
9878 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9879 outer = build_offset_type (TYPE_OFFSET_BASETYPE (type), inner);
9880 }
9881 else
9882 return bottom;
9883
9884 return build_type_attribute_qual_variant (outer, TYPE_ATTRIBUTES (type),
9885 TYPE_QUALS (type));
9886 }
9887
9888 /* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
9889 the inner type. */
9890 tree
9891 build_vector_type_for_mode (tree innertype, enum machine_mode mode)
9892 {
9893 int nunits;
9894
9895 switch (GET_MODE_CLASS (mode))
9896 {
9897 case MODE_VECTOR_INT:
9898 case MODE_VECTOR_FLOAT:
9899 case MODE_VECTOR_FRACT:
9900 case MODE_VECTOR_UFRACT:
9901 case MODE_VECTOR_ACCUM:
9902 case MODE_VECTOR_UACCUM:
9903 nunits = GET_MODE_NUNITS (mode);
9904 break;
9905
9906 case MODE_INT:
9907 /* Check that there are no leftover bits. */
9908 gcc_assert (GET_MODE_BITSIZE (mode)
9909 % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0);
9910
9911 nunits = GET_MODE_BITSIZE (mode)
9912 / TREE_INT_CST_LOW (TYPE_SIZE (innertype));
9913 break;
9914
9915 default:
9916 gcc_unreachable ();
9917 }
9918
9919 return make_vector_type (innertype, nunits, mode);
9920 }
9921
9922 /* Similarly, but takes the inner type and number of units, which must be
9923 a power of two. */
9924
9925 tree
9926 build_vector_type (tree innertype, int nunits)
9927 {
9928 return make_vector_type (innertype, nunits, VOIDmode);
9929 }
9930
9931 /* Similarly, but builds a variant type with TYPE_VECTOR_OPAQUE set. */
9932
9933 tree
9934 build_opaque_vector_type (tree innertype, int nunits)
9935 {
9936 tree t = make_vector_type (innertype, nunits, VOIDmode);
9937 tree cand;
9938 /* We always build the non-opaque variant before the opaque one,
9939 so if it already exists, it is TYPE_NEXT_VARIANT of this one. */
9940 cand = TYPE_NEXT_VARIANT (t);
9941 if (cand
9942 && TYPE_VECTOR_OPAQUE (cand)
9943 && check_qualified_type (cand, t, TYPE_QUALS (t)))
9944 return cand;
9945 /* Othewise build a variant type and make sure to queue it after
9946 the non-opaque type. */
9947 cand = build_distinct_type_copy (t);
9948 TYPE_VECTOR_OPAQUE (cand) = true;
9949 TYPE_CANONICAL (cand) = TYPE_CANONICAL (t);
9950 TYPE_NEXT_VARIANT (cand) = TYPE_NEXT_VARIANT (t);
9951 TYPE_NEXT_VARIANT (t) = cand;
9952 TYPE_MAIN_VARIANT (cand) = TYPE_MAIN_VARIANT (t);
9953 return cand;
9954 }
9955
9956
9957 /* Given an initializer INIT, return TRUE if INIT is zero or some
9958 aggregate of zeros. Otherwise return FALSE. */
9959 bool
9960 initializer_zerop (const_tree init)
9961 {
9962 tree elt;
9963
9964 STRIP_NOPS (init);
9965
9966 switch (TREE_CODE (init))
9967 {
9968 case INTEGER_CST:
9969 return integer_zerop (init);
9970
9971 case REAL_CST:
9972 /* ??? Note that this is not correct for C4X float formats. There,
9973 a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
9974 negative exponent. */
9975 return real_zerop (init)
9976 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
9977
9978 case FIXED_CST:
9979 return fixed_zerop (init);
9980
9981 case COMPLEX_CST:
9982 return integer_zerop (init)
9983 || (real_zerop (init)
9984 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
9985 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
9986
9987 case VECTOR_CST:
9988 {
9989 unsigned i;
9990 for (i = 0; i < VECTOR_CST_NELTS (init); ++i)
9991 if (!initializer_zerop (VECTOR_CST_ELT (init, i)))
9992 return false;
9993 return true;
9994 }
9995
9996 case CONSTRUCTOR:
9997 {
9998 unsigned HOST_WIDE_INT idx;
9999
10000 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
10001 if (!initializer_zerop (elt))
10002 return false;
10003 return true;
10004 }
10005
10006 case STRING_CST:
10007 {
10008 int i;
10009
10010 /* We need to loop through all elements to handle cases like
10011 "\0" and "\0foobar". */
10012 for (i = 0; i < TREE_STRING_LENGTH (init); ++i)
10013 if (TREE_STRING_POINTER (init)[i] != '\0')
10014 return false;
10015
10016 return true;
10017 }
10018
10019 default:
10020 return false;
10021 }
10022 }
10023
10024 /* Build an empty statement at location LOC. */
10025
10026 tree
10027 build_empty_stmt (location_t loc)
10028 {
10029 tree t = build1 (NOP_EXPR, void_type_node, size_zero_node);
10030 SET_EXPR_LOCATION (t, loc);
10031 return t;
10032 }
10033
10034
10035 /* Build an OpenMP clause with code CODE. LOC is the location of the
10036 clause. */
10037
10038 tree
10039 build_omp_clause (location_t loc, enum omp_clause_code code)
10040 {
10041 tree t;
10042 int size, length;
10043
10044 length = omp_clause_num_ops[code];
10045 size = (sizeof (struct tree_omp_clause) + (length - 1) * sizeof (tree));
10046
10047 record_node_allocation_statistics (OMP_CLAUSE, size);
10048
10049 t = ggc_alloc_tree_node (size);
10050 memset (t, 0, size);
10051 TREE_SET_CODE (t, OMP_CLAUSE);
10052 OMP_CLAUSE_SET_CODE (t, code);
10053 OMP_CLAUSE_LOCATION (t) = loc;
10054
10055 return t;
10056 }
10057
10058 /* Build a tcc_vl_exp object with code CODE and room for LEN operands. LEN
10059 includes the implicit operand count in TREE_OPERAND 0, and so must be >= 1.
10060 Except for the CODE and operand count field, other storage for the
10061 object is initialized to zeros. */
10062
10063 tree
10064 build_vl_exp_stat (enum tree_code code, int len MEM_STAT_DECL)
10065 {
10066 tree t;
10067 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_exp);
10068
10069 gcc_assert (TREE_CODE_CLASS (code) == tcc_vl_exp);
10070 gcc_assert (len >= 1);
10071
10072 record_node_allocation_statistics (code, length);
10073
10074 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
10075
10076 TREE_SET_CODE (t, code);
10077
10078 /* Can't use TREE_OPERAND to store the length because if checking is
10079 enabled, it will try to check the length before we store it. :-P */
10080 t->exp.operands[0] = build_int_cst (sizetype, len);
10081
10082 return t;
10083 }
10084
10085 /* Helper function for build_call_* functions; build a CALL_EXPR with
10086 indicated RETURN_TYPE, FN, and NARGS, but do not initialize any of
10087 the argument slots. */
10088
10089 static tree
10090 build_call_1 (tree return_type, tree fn, int nargs)
10091 {
10092 tree t;
10093
10094 t = build_vl_exp (CALL_EXPR, nargs + 3);
10095 TREE_TYPE (t) = return_type;
10096 CALL_EXPR_FN (t) = fn;
10097 CALL_EXPR_STATIC_CHAIN (t) = NULL;
10098
10099 return t;
10100 }
10101
10102 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
10103 FN and a null static chain slot. NARGS is the number of call arguments
10104 which are specified as "..." arguments. */
10105
10106 tree
10107 build_call_nary (tree return_type, tree fn, int nargs, ...)
10108 {
10109 tree ret;
10110 va_list args;
10111 va_start (args, nargs);
10112 ret = build_call_valist (return_type, fn, nargs, args);
10113 va_end (args);
10114 return ret;
10115 }
10116
10117 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
10118 FN and a null static chain slot. NARGS is the number of call arguments
10119 which are specified as a va_list ARGS. */
10120
10121 tree
10122 build_call_valist (tree return_type, tree fn, int nargs, va_list args)
10123 {
10124 tree t;
10125 int i;
10126
10127 t = build_call_1 (return_type, fn, nargs);
10128 for (i = 0; i < nargs; i++)
10129 CALL_EXPR_ARG (t, i) = va_arg (args, tree);
10130 process_call_operands (t);
10131 return t;
10132 }
10133
10134 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
10135 FN and a null static chain slot. NARGS is the number of call arguments
10136 which are specified as a tree array ARGS. */
10137
10138 tree
10139 build_call_array_loc (location_t loc, tree return_type, tree fn,
10140 int nargs, const tree *args)
10141 {
10142 tree t;
10143 int i;
10144
10145 t = build_call_1 (return_type, fn, nargs);
10146 for (i = 0; i < nargs; i++)
10147 CALL_EXPR_ARG (t, i) = args[i];
10148 process_call_operands (t);
10149 SET_EXPR_LOCATION (t, loc);
10150 return t;
10151 }
10152
10153 /* Like build_call_array, but takes a vec. */
10154
10155 tree
10156 build_call_vec (tree return_type, tree fn, vec<tree, va_gc> *args)
10157 {
10158 tree ret, t;
10159 unsigned int ix;
10160
10161 ret = build_call_1 (return_type, fn, vec_safe_length (args));
10162 FOR_EACH_VEC_SAFE_ELT (args, ix, t)
10163 CALL_EXPR_ARG (ret, ix) = t;
10164 process_call_operands (ret);
10165 return ret;
10166 }
10167
10168
10169 /* Returns true if it is possible to prove that the index of
10170 an array access REF (an ARRAY_REF expression) falls into the
10171 array bounds. */
10172
10173 bool
10174 in_array_bounds_p (tree ref)
10175 {
10176 tree idx = TREE_OPERAND (ref, 1);
10177 tree min, max;
10178
10179 if (TREE_CODE (idx) != INTEGER_CST)
10180 return false;
10181
10182 min = array_ref_low_bound (ref);
10183 max = array_ref_up_bound (ref);
10184 if (!min
10185 || !max
10186 || TREE_CODE (min) != INTEGER_CST
10187 || TREE_CODE (max) != INTEGER_CST)
10188 return false;
10189
10190 if (tree_int_cst_lt (idx, min)
10191 || tree_int_cst_lt (max, idx))
10192 return false;
10193
10194 return true;
10195 }
10196
10197 /* Returns true if it is possible to prove that the range of
10198 an array access REF (an ARRAY_RANGE_REF expression) falls
10199 into the array bounds. */
10200
10201 bool
10202 range_in_array_bounds_p (tree ref)
10203 {
10204 tree domain_type = TYPE_DOMAIN (TREE_TYPE (ref));
10205 tree range_min, range_max, min, max;
10206
10207 range_min = TYPE_MIN_VALUE (domain_type);
10208 range_max = TYPE_MAX_VALUE (domain_type);
10209 if (!range_min
10210 || !range_max
10211 || TREE_CODE (range_min) != INTEGER_CST
10212 || TREE_CODE (range_max) != INTEGER_CST)
10213 return false;
10214
10215 min = array_ref_low_bound (ref);
10216 max = array_ref_up_bound (ref);
10217 if (!min
10218 || !max
10219 || TREE_CODE (min) != INTEGER_CST
10220 || TREE_CODE (max) != INTEGER_CST)
10221 return false;
10222
10223 if (tree_int_cst_lt (range_min, min)
10224 || tree_int_cst_lt (max, range_max))
10225 return false;
10226
10227 return true;
10228 }
10229
10230 /* Return true if T (assumed to be a DECL) must be assigned a memory
10231 location. */
10232
10233 bool
10234 needs_to_live_in_memory (const_tree t)
10235 {
10236 return (TREE_ADDRESSABLE (t)
10237 || is_global_var (t)
10238 || (TREE_CODE (t) == RESULT_DECL
10239 && !DECL_BY_REFERENCE (t)
10240 && aggregate_value_p (t, current_function_decl)));
10241 }
10242
10243 /* Return value of a constant X and sign-extend it. */
10244
10245 HOST_WIDE_INT
10246 int_cst_value (const_tree x)
10247 {
10248 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
10249 unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
10250
10251 /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
10252 gcc_assert (TREE_INT_CST_HIGH (x) == 0
10253 || TREE_INT_CST_HIGH (x) == -1);
10254
10255 if (bits < HOST_BITS_PER_WIDE_INT)
10256 {
10257 bool negative = ((val >> (bits - 1)) & 1) != 0;
10258 if (negative)
10259 val |= (~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1;
10260 else
10261 val &= ~((~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1);
10262 }
10263
10264 return val;
10265 }
10266
10267 /* Return value of a constant X and sign-extend it. */
10268
10269 HOST_WIDEST_INT
10270 widest_int_cst_value (const_tree x)
10271 {
10272 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
10273 unsigned HOST_WIDEST_INT val = TREE_INT_CST_LOW (x);
10274
10275 #if HOST_BITS_PER_WIDEST_INT > HOST_BITS_PER_WIDE_INT
10276 gcc_assert (HOST_BITS_PER_WIDEST_INT >= HOST_BITS_PER_DOUBLE_INT);
10277 val |= (((unsigned HOST_WIDEST_INT) TREE_INT_CST_HIGH (x))
10278 << HOST_BITS_PER_WIDE_INT);
10279 #else
10280 /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
10281 gcc_assert (TREE_INT_CST_HIGH (x) == 0
10282 || TREE_INT_CST_HIGH (x) == -1);
10283 #endif
10284
10285 if (bits < HOST_BITS_PER_WIDEST_INT)
10286 {
10287 bool negative = ((val >> (bits - 1)) & 1) != 0;
10288 if (negative)
10289 val |= (~(unsigned HOST_WIDEST_INT) 0) << (bits - 1) << 1;
10290 else
10291 val &= ~((~(unsigned HOST_WIDEST_INT) 0) << (bits - 1) << 1);
10292 }
10293
10294 return val;
10295 }
10296
10297 /* If TYPE is an integral or pointer type, return an integer type with
10298 the same precision which is unsigned iff UNSIGNEDP is true, or itself
10299 if TYPE is already an integer type of signedness UNSIGNEDP. */
10300
10301 tree
10302 signed_or_unsigned_type_for (int unsignedp, tree type)
10303 {
10304 if (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type) == unsignedp)
10305 return type;
10306
10307 if (TREE_CODE (type) == VECTOR_TYPE)
10308 {
10309 tree inner = TREE_TYPE (type);
10310 tree inner2 = signed_or_unsigned_type_for (unsignedp, inner);
10311 if (!inner2)
10312 return NULL_TREE;
10313 if (inner == inner2)
10314 return type;
10315 return build_vector_type (inner2, TYPE_VECTOR_SUBPARTS (type));
10316 }
10317
10318 if (!INTEGRAL_TYPE_P (type)
10319 && !POINTER_TYPE_P (type))
10320 return NULL_TREE;
10321
10322 return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp);
10323 }
10324
10325 /* If TYPE is an integral or pointer type, return an integer type with
10326 the same precision which is unsigned, or itself if TYPE is already an
10327 unsigned integer type. */
10328
10329 tree
10330 unsigned_type_for (tree type)
10331 {
10332 return signed_or_unsigned_type_for (1, type);
10333 }
10334
10335 /* If TYPE is an integral or pointer type, return an integer type with
10336 the same precision which is signed, or itself if TYPE is already a
10337 signed integer type. */
10338
10339 tree
10340 signed_type_for (tree type)
10341 {
10342 return signed_or_unsigned_type_for (0, type);
10343 }
10344
10345 /* If TYPE is a vector type, return a signed integer vector type with the
10346 same width and number of subparts. Otherwise return boolean_type_node. */
10347
10348 tree
10349 truth_type_for (tree type)
10350 {
10351 if (TREE_CODE (type) == VECTOR_TYPE)
10352 {
10353 tree elem = lang_hooks.types.type_for_size
10354 (GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (type))), 0);
10355 return build_opaque_vector_type (elem, TYPE_VECTOR_SUBPARTS (type));
10356 }
10357 else
10358 return boolean_type_node;
10359 }
10360
10361 /* Returns the largest value obtainable by casting something in INNER type to
10362 OUTER type. */
10363
10364 tree
10365 upper_bound_in_type (tree outer, tree inner)
10366 {
10367 double_int high;
10368 unsigned int det = 0;
10369 unsigned oprec = TYPE_PRECISION (outer);
10370 unsigned iprec = TYPE_PRECISION (inner);
10371 unsigned prec;
10372
10373 /* Compute a unique number for every combination. */
10374 det |= (oprec > iprec) ? 4 : 0;
10375 det |= TYPE_UNSIGNED (outer) ? 2 : 0;
10376 det |= TYPE_UNSIGNED (inner) ? 1 : 0;
10377
10378 /* Determine the exponent to use. */
10379 switch (det)
10380 {
10381 case 0:
10382 case 1:
10383 /* oprec <= iprec, outer: signed, inner: don't care. */
10384 prec = oprec - 1;
10385 break;
10386 case 2:
10387 case 3:
10388 /* oprec <= iprec, outer: unsigned, inner: don't care. */
10389 prec = oprec;
10390 break;
10391 case 4:
10392 /* oprec > iprec, outer: signed, inner: signed. */
10393 prec = iprec - 1;
10394 break;
10395 case 5:
10396 /* oprec > iprec, outer: signed, inner: unsigned. */
10397 prec = iprec;
10398 break;
10399 case 6:
10400 /* oprec > iprec, outer: unsigned, inner: signed. */
10401 prec = oprec;
10402 break;
10403 case 7:
10404 /* oprec > iprec, outer: unsigned, inner: unsigned. */
10405 prec = iprec;
10406 break;
10407 default:
10408 gcc_unreachable ();
10409 }
10410
10411 /* Compute 2^^prec - 1. */
10412 if (prec <= HOST_BITS_PER_WIDE_INT)
10413 {
10414 high.high = 0;
10415 high.low = ((~(unsigned HOST_WIDE_INT) 0)
10416 >> (HOST_BITS_PER_WIDE_INT - prec));
10417 }
10418 else
10419 {
10420 high.high = ((~(unsigned HOST_WIDE_INT) 0)
10421 >> (HOST_BITS_PER_DOUBLE_INT - prec));
10422 high.low = ~(unsigned HOST_WIDE_INT) 0;
10423 }
10424
10425 return double_int_to_tree (outer, high);
10426 }
10427
10428 /* Returns the smallest value obtainable by casting something in INNER type to
10429 OUTER type. */
10430
10431 tree
10432 lower_bound_in_type (tree outer, tree inner)
10433 {
10434 double_int low;
10435 unsigned oprec = TYPE_PRECISION (outer);
10436 unsigned iprec = TYPE_PRECISION (inner);
10437
10438 /* If OUTER type is unsigned, we can definitely cast 0 to OUTER type
10439 and obtain 0. */
10440 if (TYPE_UNSIGNED (outer)
10441 /* If we are widening something of an unsigned type, OUTER type
10442 contains all values of INNER type. In particular, both INNER
10443 and OUTER types have zero in common. */
10444 || (oprec > iprec && TYPE_UNSIGNED (inner)))
10445 low.low = low.high = 0;
10446 else
10447 {
10448 /* If we are widening a signed type to another signed type, we
10449 want to obtain -2^^(iprec-1). If we are keeping the
10450 precision or narrowing to a signed type, we want to obtain
10451 -2^(oprec-1). */
10452 unsigned prec = oprec > iprec ? iprec : oprec;
10453
10454 if (prec <= HOST_BITS_PER_WIDE_INT)
10455 {
10456 low.high = ~(unsigned HOST_WIDE_INT) 0;
10457 low.low = (~(unsigned HOST_WIDE_INT) 0) << (prec - 1);
10458 }
10459 else
10460 {
10461 low.high = ((~(unsigned HOST_WIDE_INT) 0)
10462 << (prec - HOST_BITS_PER_WIDE_INT - 1));
10463 low.low = 0;
10464 }
10465 }
10466
10467 return double_int_to_tree (outer, low);
10468 }
10469
10470 /* Return nonzero if two operands that are suitable for PHI nodes are
10471 necessarily equal. Specifically, both ARG0 and ARG1 must be either
10472 SSA_NAME or invariant. Note that this is strictly an optimization.
10473 That is, callers of this function can directly call operand_equal_p
10474 and get the same result, only slower. */
10475
10476 int
10477 operand_equal_for_phi_arg_p (const_tree arg0, const_tree arg1)
10478 {
10479 if (arg0 == arg1)
10480 return 1;
10481 if (TREE_CODE (arg0) == SSA_NAME || TREE_CODE (arg1) == SSA_NAME)
10482 return 0;
10483 return operand_equal_p (arg0, arg1, 0);
10484 }
10485
10486 /* Returns number of zeros at the end of binary representation of X.
10487
10488 ??? Use ffs if available? */
10489
10490 tree
10491 num_ending_zeros (const_tree x)
10492 {
10493 unsigned HOST_WIDE_INT fr, nfr;
10494 unsigned num, abits;
10495 tree type = TREE_TYPE (x);
10496
10497 if (TREE_INT_CST_LOW (x) == 0)
10498 {
10499 num = HOST_BITS_PER_WIDE_INT;
10500 fr = TREE_INT_CST_HIGH (x);
10501 }
10502 else
10503 {
10504 num = 0;
10505 fr = TREE_INT_CST_LOW (x);
10506 }
10507
10508 for (abits = HOST_BITS_PER_WIDE_INT / 2; abits; abits /= 2)
10509 {
10510 nfr = fr >> abits;
10511 if (nfr << abits == fr)
10512 {
10513 num += abits;
10514 fr = nfr;
10515 }
10516 }
10517
10518 if (num > TYPE_PRECISION (type))
10519 num = TYPE_PRECISION (type);
10520
10521 return build_int_cst_type (type, num);
10522 }
10523
10524
10525 #define WALK_SUBTREE(NODE) \
10526 do \
10527 { \
10528 result = walk_tree_1 (&(NODE), func, data, pset, lh); \
10529 if (result) \
10530 return result; \
10531 } \
10532 while (0)
10533
10534 /* This is a subroutine of walk_tree that walks field of TYPE that are to
10535 be walked whenever a type is seen in the tree. Rest of operands and return
10536 value are as for walk_tree. */
10537
10538 static tree
10539 walk_type_fields (tree type, walk_tree_fn func, void *data,
10540 struct pointer_set_t *pset, walk_tree_lh lh)
10541 {
10542 tree result = NULL_TREE;
10543
10544 switch (TREE_CODE (type))
10545 {
10546 case POINTER_TYPE:
10547 case REFERENCE_TYPE:
10548 /* We have to worry about mutually recursive pointers. These can't
10549 be written in C. They can in Ada. It's pathological, but
10550 there's an ACATS test (c38102a) that checks it. Deal with this
10551 by checking if we're pointing to another pointer, that one
10552 points to another pointer, that one does too, and we have no htab.
10553 If so, get a hash table. We check three levels deep to avoid
10554 the cost of the hash table if we don't need one. */
10555 if (POINTER_TYPE_P (TREE_TYPE (type))
10556 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (type)))
10557 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (TREE_TYPE (type))))
10558 && !pset)
10559 {
10560 result = walk_tree_without_duplicates (&TREE_TYPE (type),
10561 func, data);
10562 if (result)
10563 return result;
10564
10565 break;
10566 }
10567
10568 /* ... fall through ... */
10569
10570 case COMPLEX_TYPE:
10571 WALK_SUBTREE (TREE_TYPE (type));
10572 break;
10573
10574 case METHOD_TYPE:
10575 WALK_SUBTREE (TYPE_METHOD_BASETYPE (type));
10576
10577 /* Fall through. */
10578
10579 case FUNCTION_TYPE:
10580 WALK_SUBTREE (TREE_TYPE (type));
10581 {
10582 tree arg;
10583
10584 /* We never want to walk into default arguments. */
10585 for (arg = TYPE_ARG_TYPES (type); arg; arg = TREE_CHAIN (arg))
10586 WALK_SUBTREE (TREE_VALUE (arg));
10587 }
10588 break;
10589
10590 case ARRAY_TYPE:
10591 /* Don't follow this nodes's type if a pointer for fear that
10592 we'll have infinite recursion. If we have a PSET, then we
10593 need not fear. */
10594 if (pset
10595 || (!POINTER_TYPE_P (TREE_TYPE (type))
10596 && TREE_CODE (TREE_TYPE (type)) != OFFSET_TYPE))
10597 WALK_SUBTREE (TREE_TYPE (type));
10598 WALK_SUBTREE (TYPE_DOMAIN (type));
10599 break;
10600
10601 case OFFSET_TYPE:
10602 WALK_SUBTREE (TREE_TYPE (type));
10603 WALK_SUBTREE (TYPE_OFFSET_BASETYPE (type));
10604 break;
10605
10606 default:
10607 break;
10608 }
10609
10610 return NULL_TREE;
10611 }
10612
10613 /* Apply FUNC to all the sub-trees of TP in a pre-order traversal. FUNC is
10614 called with the DATA and the address of each sub-tree. If FUNC returns a
10615 non-NULL value, the traversal is stopped, and the value returned by FUNC
10616 is returned. If PSET is non-NULL it is used to record the nodes visited,
10617 and to avoid visiting a node more than once. */
10618
10619 tree
10620 walk_tree_1 (tree *tp, walk_tree_fn func, void *data,
10621 struct pointer_set_t *pset, walk_tree_lh lh)
10622 {
10623 enum tree_code code;
10624 int walk_subtrees;
10625 tree result;
10626
10627 #define WALK_SUBTREE_TAIL(NODE) \
10628 do \
10629 { \
10630 tp = & (NODE); \
10631 goto tail_recurse; \
10632 } \
10633 while (0)
10634
10635 tail_recurse:
10636 /* Skip empty subtrees. */
10637 if (!*tp)
10638 return NULL_TREE;
10639
10640 /* Don't walk the same tree twice, if the user has requested
10641 that we avoid doing so. */
10642 if (pset && pointer_set_insert (pset, *tp))
10643 return NULL_TREE;
10644
10645 /* Call the function. */
10646 walk_subtrees = 1;
10647 result = (*func) (tp, &walk_subtrees, data);
10648
10649 /* If we found something, return it. */
10650 if (result)
10651 return result;
10652
10653 code = TREE_CODE (*tp);
10654
10655 /* Even if we didn't, FUNC may have decided that there was nothing
10656 interesting below this point in the tree. */
10657 if (!walk_subtrees)
10658 {
10659 /* But we still need to check our siblings. */
10660 if (code == TREE_LIST)
10661 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
10662 else if (code == OMP_CLAUSE)
10663 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10664 else
10665 return NULL_TREE;
10666 }
10667
10668 if (lh)
10669 {
10670 result = (*lh) (tp, &walk_subtrees, func, data, pset);
10671 if (result || !walk_subtrees)
10672 return result;
10673 }
10674
10675 switch (code)
10676 {
10677 case ERROR_MARK:
10678 case IDENTIFIER_NODE:
10679 case INTEGER_CST:
10680 case REAL_CST:
10681 case FIXED_CST:
10682 case VECTOR_CST:
10683 case STRING_CST:
10684 case BLOCK:
10685 case PLACEHOLDER_EXPR:
10686 case SSA_NAME:
10687 case FIELD_DECL:
10688 case RESULT_DECL:
10689 /* None of these have subtrees other than those already walked
10690 above. */
10691 break;
10692
10693 case TREE_LIST:
10694 WALK_SUBTREE (TREE_VALUE (*tp));
10695 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
10696 break;
10697
10698 case TREE_VEC:
10699 {
10700 int len = TREE_VEC_LENGTH (*tp);
10701
10702 if (len == 0)
10703 break;
10704
10705 /* Walk all elements but the first. */
10706 while (--len)
10707 WALK_SUBTREE (TREE_VEC_ELT (*tp, len));
10708
10709 /* Now walk the first one as a tail call. */
10710 WALK_SUBTREE_TAIL (TREE_VEC_ELT (*tp, 0));
10711 }
10712
10713 case COMPLEX_CST:
10714 WALK_SUBTREE (TREE_REALPART (*tp));
10715 WALK_SUBTREE_TAIL (TREE_IMAGPART (*tp));
10716
10717 case CONSTRUCTOR:
10718 {
10719 unsigned HOST_WIDE_INT idx;
10720 constructor_elt *ce;
10721
10722 for (idx = 0; vec_safe_iterate(CONSTRUCTOR_ELTS (*tp), idx, &ce); idx++)
10723 WALK_SUBTREE (ce->value);
10724 }
10725 break;
10726
10727 case SAVE_EXPR:
10728 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, 0));
10729
10730 case BIND_EXPR:
10731 {
10732 tree decl;
10733 for (decl = BIND_EXPR_VARS (*tp); decl; decl = DECL_CHAIN (decl))
10734 {
10735 /* Walk the DECL_INITIAL and DECL_SIZE. We don't want to walk
10736 into declarations that are just mentioned, rather than
10737 declared; they don't really belong to this part of the tree.
10738 And, we can see cycles: the initializer for a declaration
10739 can refer to the declaration itself. */
10740 WALK_SUBTREE (DECL_INITIAL (decl));
10741 WALK_SUBTREE (DECL_SIZE (decl));
10742 WALK_SUBTREE (DECL_SIZE_UNIT (decl));
10743 }
10744 WALK_SUBTREE_TAIL (BIND_EXPR_BODY (*tp));
10745 }
10746
10747 case STATEMENT_LIST:
10748 {
10749 tree_stmt_iterator i;
10750 for (i = tsi_start (*tp); !tsi_end_p (i); tsi_next (&i))
10751 WALK_SUBTREE (*tsi_stmt_ptr (i));
10752 }
10753 break;
10754
10755 case OMP_CLAUSE:
10756 switch (OMP_CLAUSE_CODE (*tp))
10757 {
10758 case OMP_CLAUSE_PRIVATE:
10759 case OMP_CLAUSE_SHARED:
10760 case OMP_CLAUSE_FIRSTPRIVATE:
10761 case OMP_CLAUSE_COPYIN:
10762 case OMP_CLAUSE_COPYPRIVATE:
10763 case OMP_CLAUSE_FINAL:
10764 case OMP_CLAUSE_IF:
10765 case OMP_CLAUSE_NUM_THREADS:
10766 case OMP_CLAUSE_SCHEDULE:
10767 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 0));
10768 /* FALLTHRU */
10769
10770 case OMP_CLAUSE_NOWAIT:
10771 case OMP_CLAUSE_ORDERED:
10772 case OMP_CLAUSE_DEFAULT:
10773 case OMP_CLAUSE_UNTIED:
10774 case OMP_CLAUSE_MERGEABLE:
10775 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10776
10777 case OMP_CLAUSE_LASTPRIVATE:
10778 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
10779 WALK_SUBTREE (OMP_CLAUSE_LASTPRIVATE_STMT (*tp));
10780 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10781
10782 case OMP_CLAUSE_COLLAPSE:
10783 {
10784 int i;
10785 for (i = 0; i < 3; i++)
10786 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
10787 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10788 }
10789
10790 case OMP_CLAUSE_REDUCTION:
10791 {
10792 int i;
10793 for (i = 0; i < 4; i++)
10794 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
10795 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10796 }
10797
10798 default:
10799 gcc_unreachable ();
10800 }
10801 break;
10802
10803 case TARGET_EXPR:
10804 {
10805 int i, len;
10806
10807 /* TARGET_EXPRs are peculiar: operands 1 and 3 can be the same.
10808 But, we only want to walk once. */
10809 len = (TREE_OPERAND (*tp, 3) == TREE_OPERAND (*tp, 1)) ? 2 : 3;
10810 for (i = 0; i < len; ++i)
10811 WALK_SUBTREE (TREE_OPERAND (*tp, i));
10812 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len));
10813 }
10814
10815 case DECL_EXPR:
10816 /* If this is a TYPE_DECL, walk into the fields of the type that it's
10817 defining. We only want to walk into these fields of a type in this
10818 case and not in the general case of a mere reference to the type.
10819
10820 The criterion is as follows: if the field can be an expression, it
10821 must be walked only here. This should be in keeping with the fields
10822 that are directly gimplified in gimplify_type_sizes in order for the
10823 mark/copy-if-shared/unmark machinery of the gimplifier to work with
10824 variable-sized types.
10825
10826 Note that DECLs get walked as part of processing the BIND_EXPR. */
10827 if (TREE_CODE (DECL_EXPR_DECL (*tp)) == TYPE_DECL)
10828 {
10829 tree *type_p = &TREE_TYPE (DECL_EXPR_DECL (*tp));
10830 if (TREE_CODE (*type_p) == ERROR_MARK)
10831 return NULL_TREE;
10832
10833 /* Call the function for the type. See if it returns anything or
10834 doesn't want us to continue. If we are to continue, walk both
10835 the normal fields and those for the declaration case. */
10836 result = (*func) (type_p, &walk_subtrees, data);
10837 if (result || !walk_subtrees)
10838 return result;
10839
10840 /* But do not walk a pointed-to type since it may itself need to
10841 be walked in the declaration case if it isn't anonymous. */
10842 if (!POINTER_TYPE_P (*type_p))
10843 {
10844 result = walk_type_fields (*type_p, func, data, pset, lh);
10845 if (result)
10846 return result;
10847 }
10848
10849 /* If this is a record type, also walk the fields. */
10850 if (RECORD_OR_UNION_TYPE_P (*type_p))
10851 {
10852 tree field;
10853
10854 for (field = TYPE_FIELDS (*type_p); field;
10855 field = DECL_CHAIN (field))
10856 {
10857 /* We'd like to look at the type of the field, but we can
10858 easily get infinite recursion. So assume it's pointed
10859 to elsewhere in the tree. Also, ignore things that
10860 aren't fields. */
10861 if (TREE_CODE (field) != FIELD_DECL)
10862 continue;
10863
10864 WALK_SUBTREE (DECL_FIELD_OFFSET (field));
10865 WALK_SUBTREE (DECL_SIZE (field));
10866 WALK_SUBTREE (DECL_SIZE_UNIT (field));
10867 if (TREE_CODE (*type_p) == QUAL_UNION_TYPE)
10868 WALK_SUBTREE (DECL_QUALIFIER (field));
10869 }
10870 }
10871
10872 /* Same for scalar types. */
10873 else if (TREE_CODE (*type_p) == BOOLEAN_TYPE
10874 || TREE_CODE (*type_p) == ENUMERAL_TYPE
10875 || TREE_CODE (*type_p) == INTEGER_TYPE
10876 || TREE_CODE (*type_p) == FIXED_POINT_TYPE
10877 || TREE_CODE (*type_p) == REAL_TYPE)
10878 {
10879 WALK_SUBTREE (TYPE_MIN_VALUE (*type_p));
10880 WALK_SUBTREE (TYPE_MAX_VALUE (*type_p));
10881 }
10882
10883 WALK_SUBTREE (TYPE_SIZE (*type_p));
10884 WALK_SUBTREE_TAIL (TYPE_SIZE_UNIT (*type_p));
10885 }
10886 /* FALLTHRU */
10887
10888 default:
10889 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
10890 {
10891 int i, len;
10892
10893 /* Walk over all the sub-trees of this operand. */
10894 len = TREE_OPERAND_LENGTH (*tp);
10895
10896 /* Go through the subtrees. We need to do this in forward order so
10897 that the scope of a FOR_EXPR is handled properly. */
10898 if (len)
10899 {
10900 for (i = 0; i < len - 1; ++i)
10901 WALK_SUBTREE (TREE_OPERAND (*tp, i));
10902 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len - 1));
10903 }
10904 }
10905 /* If this is a type, walk the needed fields in the type. */
10906 else if (TYPE_P (*tp))
10907 return walk_type_fields (*tp, func, data, pset, lh);
10908 break;
10909 }
10910
10911 /* We didn't find what we were looking for. */
10912 return NULL_TREE;
10913
10914 #undef WALK_SUBTREE_TAIL
10915 }
10916 #undef WALK_SUBTREE
10917
10918 /* Like walk_tree, but does not walk duplicate nodes more than once. */
10919
10920 tree
10921 walk_tree_without_duplicates_1 (tree *tp, walk_tree_fn func, void *data,
10922 walk_tree_lh lh)
10923 {
10924 tree result;
10925 struct pointer_set_t *pset;
10926
10927 pset = pointer_set_create ();
10928 result = walk_tree_1 (tp, func, data, pset, lh);
10929 pointer_set_destroy (pset);
10930 return result;
10931 }
10932
10933
10934 tree
10935 tree_block (tree t)
10936 {
10937 char const c = TREE_CODE_CLASS (TREE_CODE (t));
10938
10939 if (IS_EXPR_CODE_CLASS (c))
10940 return LOCATION_BLOCK (t->exp.locus);
10941 gcc_unreachable ();
10942 return NULL;
10943 }
10944
10945 void
10946 tree_set_block (tree t, tree b)
10947 {
10948 char const c = TREE_CODE_CLASS (TREE_CODE (t));
10949
10950 if (IS_EXPR_CODE_CLASS (c))
10951 {
10952 if (b)
10953 t->exp.locus = COMBINE_LOCATION_DATA (line_table, t->exp.locus, b);
10954 else
10955 t->exp.locus = LOCATION_LOCUS (t->exp.locus);
10956 }
10957 else
10958 gcc_unreachable ();
10959 }
10960
10961 /* Create a nameless artificial label and put it in the current
10962 function context. The label has a location of LOC. Returns the
10963 newly created label. */
10964
10965 tree
10966 create_artificial_label (location_t loc)
10967 {
10968 tree lab = build_decl (loc,
10969 LABEL_DECL, NULL_TREE, void_type_node);
10970
10971 DECL_ARTIFICIAL (lab) = 1;
10972 DECL_IGNORED_P (lab) = 1;
10973 DECL_CONTEXT (lab) = current_function_decl;
10974 return lab;
10975 }
10976
10977 /* Given a tree, try to return a useful variable name that we can use
10978 to prefix a temporary that is being assigned the value of the tree.
10979 I.E. given <temp> = &A, return A. */
10980
10981 const char *
10982 get_name (tree t)
10983 {
10984 tree stripped_decl;
10985
10986 stripped_decl = t;
10987 STRIP_NOPS (stripped_decl);
10988 if (DECL_P (stripped_decl) && DECL_NAME (stripped_decl))
10989 return IDENTIFIER_POINTER (DECL_NAME (stripped_decl));
10990 else if (TREE_CODE (stripped_decl) == SSA_NAME)
10991 {
10992 tree name = SSA_NAME_IDENTIFIER (stripped_decl);
10993 if (!name)
10994 return NULL;
10995 return IDENTIFIER_POINTER (name);
10996 }
10997 else
10998 {
10999 switch (TREE_CODE (stripped_decl))
11000 {
11001 case ADDR_EXPR:
11002 return get_name (TREE_OPERAND (stripped_decl, 0));
11003 default:
11004 return NULL;
11005 }
11006 }
11007 }
11008
11009 /* Return true if TYPE has a variable argument list. */
11010
11011 bool
11012 stdarg_p (const_tree fntype)
11013 {
11014 function_args_iterator args_iter;
11015 tree n = NULL_TREE, t;
11016
11017 if (!fntype)
11018 return false;
11019
11020 FOREACH_FUNCTION_ARGS(fntype, t, args_iter)
11021 {
11022 n = t;
11023 }
11024
11025 return n != NULL_TREE && n != void_type_node;
11026 }
11027
11028 /* Return true if TYPE has a prototype. */
11029
11030 bool
11031 prototype_p (tree fntype)
11032 {
11033 tree t;
11034
11035 gcc_assert (fntype != NULL_TREE);
11036
11037 t = TYPE_ARG_TYPES (fntype);
11038 return (t != NULL_TREE);
11039 }
11040
11041 /* If BLOCK is inlined from an __attribute__((__artificial__))
11042 routine, return pointer to location from where it has been
11043 called. */
11044 location_t *
11045 block_nonartificial_location (tree block)
11046 {
11047 location_t *ret = NULL;
11048
11049 while (block && TREE_CODE (block) == BLOCK
11050 && BLOCK_ABSTRACT_ORIGIN (block))
11051 {
11052 tree ao = BLOCK_ABSTRACT_ORIGIN (block);
11053
11054 while (TREE_CODE (ao) == BLOCK
11055 && BLOCK_ABSTRACT_ORIGIN (ao)
11056 && BLOCK_ABSTRACT_ORIGIN (ao) != ao)
11057 ao = BLOCK_ABSTRACT_ORIGIN (ao);
11058
11059 if (TREE_CODE (ao) == FUNCTION_DECL)
11060 {
11061 /* If AO is an artificial inline, point RET to the
11062 call site locus at which it has been inlined and continue
11063 the loop, in case AO's caller is also an artificial
11064 inline. */
11065 if (DECL_DECLARED_INLINE_P (ao)
11066 && lookup_attribute ("artificial", DECL_ATTRIBUTES (ao)))
11067 ret = &BLOCK_SOURCE_LOCATION (block);
11068 else
11069 break;
11070 }
11071 else if (TREE_CODE (ao) != BLOCK)
11072 break;
11073
11074 block = BLOCK_SUPERCONTEXT (block);
11075 }
11076 return ret;
11077 }
11078
11079
11080 /* If EXP is inlined from an __attribute__((__artificial__))
11081 function, return the location of the original call expression. */
11082
11083 location_t
11084 tree_nonartificial_location (tree exp)
11085 {
11086 location_t *loc = block_nonartificial_location (TREE_BLOCK (exp));
11087
11088 if (loc)
11089 return *loc;
11090 else
11091 return EXPR_LOCATION (exp);
11092 }
11093
11094
11095 /* These are the hash table functions for the hash table of OPTIMIZATION_NODEq
11096 nodes. */
11097
11098 /* Return the hash code code X, an OPTIMIZATION_NODE or TARGET_OPTION code. */
11099
11100 static hashval_t
11101 cl_option_hash_hash (const void *x)
11102 {
11103 const_tree const t = (const_tree) x;
11104 const char *p;
11105 size_t i;
11106 size_t len = 0;
11107 hashval_t hash = 0;
11108
11109 if (TREE_CODE (t) == OPTIMIZATION_NODE)
11110 {
11111 p = (const char *)TREE_OPTIMIZATION (t);
11112 len = sizeof (struct cl_optimization);
11113 }
11114
11115 else if (TREE_CODE (t) == TARGET_OPTION_NODE)
11116 {
11117 p = (const char *)TREE_TARGET_OPTION (t);
11118 len = sizeof (struct cl_target_option);
11119 }
11120
11121 else
11122 gcc_unreachable ();
11123
11124 /* assume most opt flags are just 0/1, some are 2-3, and a few might be
11125 something else. */
11126 for (i = 0; i < len; i++)
11127 if (p[i])
11128 hash = (hash << 4) ^ ((i << 2) | p[i]);
11129
11130 return hash;
11131 }
11132
11133 /* Return nonzero if the value represented by *X (an OPTIMIZATION or
11134 TARGET_OPTION tree node) is the same as that given by *Y, which is the
11135 same. */
11136
11137 static int
11138 cl_option_hash_eq (const void *x, const void *y)
11139 {
11140 const_tree const xt = (const_tree) x;
11141 const_tree const yt = (const_tree) y;
11142 const char *xp;
11143 const char *yp;
11144 size_t len;
11145
11146 if (TREE_CODE (xt) != TREE_CODE (yt))
11147 return 0;
11148
11149 if (TREE_CODE (xt) == OPTIMIZATION_NODE)
11150 {
11151 xp = (const char *)TREE_OPTIMIZATION (xt);
11152 yp = (const char *)TREE_OPTIMIZATION (yt);
11153 len = sizeof (struct cl_optimization);
11154 }
11155
11156 else if (TREE_CODE (xt) == TARGET_OPTION_NODE)
11157 {
11158 xp = (const char *)TREE_TARGET_OPTION (xt);
11159 yp = (const char *)TREE_TARGET_OPTION (yt);
11160 len = sizeof (struct cl_target_option);
11161 }
11162
11163 else
11164 gcc_unreachable ();
11165
11166 return (memcmp (xp, yp, len) == 0);
11167 }
11168
11169 /* Build an OPTIMIZATION_NODE based on the current options. */
11170
11171 tree
11172 build_optimization_node (void)
11173 {
11174 tree t;
11175 void **slot;
11176
11177 /* Use the cache of optimization nodes. */
11178
11179 cl_optimization_save (TREE_OPTIMIZATION (cl_optimization_node),
11180 &global_options);
11181
11182 slot = htab_find_slot (cl_option_hash_table, cl_optimization_node, INSERT);
11183 t = (tree) *slot;
11184 if (!t)
11185 {
11186 /* Insert this one into the hash table. */
11187 t = cl_optimization_node;
11188 *slot = t;
11189
11190 /* Make a new node for next time round. */
11191 cl_optimization_node = make_node (OPTIMIZATION_NODE);
11192 }
11193
11194 return t;
11195 }
11196
11197 /* Build a TARGET_OPTION_NODE based on the current options. */
11198
11199 tree
11200 build_target_option_node (void)
11201 {
11202 tree t;
11203 void **slot;
11204
11205 /* Use the cache of optimization nodes. */
11206
11207 cl_target_option_save (TREE_TARGET_OPTION (cl_target_option_node),
11208 &global_options);
11209
11210 slot = htab_find_slot (cl_option_hash_table, cl_target_option_node, INSERT);
11211 t = (tree) *slot;
11212 if (!t)
11213 {
11214 /* Insert this one into the hash table. */
11215 t = cl_target_option_node;
11216 *slot = t;
11217
11218 /* Make a new node for next time round. */
11219 cl_target_option_node = make_node (TARGET_OPTION_NODE);
11220 }
11221
11222 return t;
11223 }
11224
11225 /* Determine the "ultimate origin" of a block. The block may be an inlined
11226 instance of an inlined instance of a block which is local to an inline
11227 function, so we have to trace all of the way back through the origin chain
11228 to find out what sort of node actually served as the original seed for the
11229 given block. */
11230
11231 tree
11232 block_ultimate_origin (const_tree block)
11233 {
11234 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
11235
11236 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
11237 nodes in the function to point to themselves; ignore that if
11238 we're trying to output the abstract instance of this function. */
11239 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
11240 return NULL_TREE;
11241
11242 if (immediate_origin == NULL_TREE)
11243 return NULL_TREE;
11244 else
11245 {
11246 tree ret_val;
11247 tree lookahead = immediate_origin;
11248
11249 do
11250 {
11251 ret_val = lookahead;
11252 lookahead = (TREE_CODE (ret_val) == BLOCK
11253 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
11254 }
11255 while (lookahead != NULL && lookahead != ret_val);
11256
11257 /* The block's abstract origin chain may not be the *ultimate* origin of
11258 the block. It could lead to a DECL that has an abstract origin set.
11259 If so, we want that DECL's abstract origin (which is what DECL_ORIGIN
11260 will give us if it has one). Note that DECL's abstract origins are
11261 supposed to be the most distant ancestor (or so decl_ultimate_origin
11262 claims), so we don't need to loop following the DECL origins. */
11263 if (DECL_P (ret_val))
11264 return DECL_ORIGIN (ret_val);
11265
11266 return ret_val;
11267 }
11268 }
11269
11270 /* Return true if T1 and T2 are equivalent lists. */
11271
11272 bool
11273 list_equal_p (const_tree t1, const_tree t2)
11274 {
11275 for (; t1 && t2; t1 = TREE_CHAIN (t1) , t2 = TREE_CHAIN (t2))
11276 if (TREE_VALUE (t1) != TREE_VALUE (t2))
11277 return false;
11278 return !t1 && !t2;
11279 }
11280
11281 /* Return true iff conversion in EXP generates no instruction. Mark
11282 it inline so that we fully inline into the stripping functions even
11283 though we have two uses of this function. */
11284
11285 static inline bool
11286 tree_nop_conversion (const_tree exp)
11287 {
11288 tree outer_type, inner_type;
11289
11290 if (!CONVERT_EXPR_P (exp)
11291 && TREE_CODE (exp) != NON_LVALUE_EXPR)
11292 return false;
11293 if (TREE_OPERAND (exp, 0) == error_mark_node)
11294 return false;
11295
11296 outer_type = TREE_TYPE (exp);
11297 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
11298
11299 if (!inner_type)
11300 return false;
11301
11302 /* Use precision rather then machine mode when we can, which gives
11303 the correct answer even for submode (bit-field) types. */
11304 if ((INTEGRAL_TYPE_P (outer_type)
11305 || POINTER_TYPE_P (outer_type)
11306 || TREE_CODE (outer_type) == OFFSET_TYPE)
11307 && (INTEGRAL_TYPE_P (inner_type)
11308 || POINTER_TYPE_P (inner_type)
11309 || TREE_CODE (inner_type) == OFFSET_TYPE))
11310 return TYPE_PRECISION (outer_type) == TYPE_PRECISION (inner_type);
11311
11312 /* Otherwise fall back on comparing machine modes (e.g. for
11313 aggregate types, floats). */
11314 return TYPE_MODE (outer_type) == TYPE_MODE (inner_type);
11315 }
11316
11317 /* Return true iff conversion in EXP generates no instruction. Don't
11318 consider conversions changing the signedness. */
11319
11320 static bool
11321 tree_sign_nop_conversion (const_tree exp)
11322 {
11323 tree outer_type, inner_type;
11324
11325 if (!tree_nop_conversion (exp))
11326 return false;
11327
11328 outer_type = TREE_TYPE (exp);
11329 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
11330
11331 return (TYPE_UNSIGNED (outer_type) == TYPE_UNSIGNED (inner_type)
11332 && POINTER_TYPE_P (outer_type) == POINTER_TYPE_P (inner_type));
11333 }
11334
11335 /* Strip conversions from EXP according to tree_nop_conversion and
11336 return the resulting expression. */
11337
11338 tree
11339 tree_strip_nop_conversions (tree exp)
11340 {
11341 while (tree_nop_conversion (exp))
11342 exp = TREE_OPERAND (exp, 0);
11343 return exp;
11344 }
11345
11346 /* Strip conversions from EXP according to tree_sign_nop_conversion
11347 and return the resulting expression. */
11348
11349 tree
11350 tree_strip_sign_nop_conversions (tree exp)
11351 {
11352 while (tree_sign_nop_conversion (exp))
11353 exp = TREE_OPERAND (exp, 0);
11354 return exp;
11355 }
11356
11357 /* Avoid any floating point extensions from EXP. */
11358 tree
11359 strip_float_extensions (tree exp)
11360 {
11361 tree sub, expt, subt;
11362
11363 /* For floating point constant look up the narrowest type that can hold
11364 it properly and handle it like (type)(narrowest_type)constant.
11365 This way we can optimize for instance a=a*2.0 where "a" is float
11366 but 2.0 is double constant. */
11367 if (TREE_CODE (exp) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (TREE_TYPE (exp)))
11368 {
11369 REAL_VALUE_TYPE orig;
11370 tree type = NULL;
11371
11372 orig = TREE_REAL_CST (exp);
11373 if (TYPE_PRECISION (TREE_TYPE (exp)) > TYPE_PRECISION (float_type_node)
11374 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
11375 type = float_type_node;
11376 else if (TYPE_PRECISION (TREE_TYPE (exp))
11377 > TYPE_PRECISION (double_type_node)
11378 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
11379 type = double_type_node;
11380 if (type)
11381 return build_real (type, real_value_truncate (TYPE_MODE (type), orig));
11382 }
11383
11384 if (!CONVERT_EXPR_P (exp))
11385 return exp;
11386
11387 sub = TREE_OPERAND (exp, 0);
11388 subt = TREE_TYPE (sub);
11389 expt = TREE_TYPE (exp);
11390
11391 if (!FLOAT_TYPE_P (subt))
11392 return exp;
11393
11394 if (DECIMAL_FLOAT_TYPE_P (expt) != DECIMAL_FLOAT_TYPE_P (subt))
11395 return exp;
11396
11397 if (TYPE_PRECISION (subt) > TYPE_PRECISION (expt))
11398 return exp;
11399
11400 return strip_float_extensions (sub);
11401 }
11402
11403 /* Strip out all handled components that produce invariant
11404 offsets. */
11405
11406 const_tree
11407 strip_invariant_refs (const_tree op)
11408 {
11409 while (handled_component_p (op))
11410 {
11411 switch (TREE_CODE (op))
11412 {
11413 case ARRAY_REF:
11414 case ARRAY_RANGE_REF:
11415 if (!is_gimple_constant (TREE_OPERAND (op, 1))
11416 || TREE_OPERAND (op, 2) != NULL_TREE
11417 || TREE_OPERAND (op, 3) != NULL_TREE)
11418 return NULL;
11419 break;
11420
11421 case COMPONENT_REF:
11422 if (TREE_OPERAND (op, 2) != NULL_TREE)
11423 return NULL;
11424 break;
11425
11426 default:;
11427 }
11428 op = TREE_OPERAND (op, 0);
11429 }
11430
11431 return op;
11432 }
11433
11434 static GTY(()) tree gcc_eh_personality_decl;
11435
11436 /* Return the GCC personality function decl. */
11437
11438 tree
11439 lhd_gcc_personality (void)
11440 {
11441 if (!gcc_eh_personality_decl)
11442 gcc_eh_personality_decl = build_personality_function ("gcc");
11443 return gcc_eh_personality_decl;
11444 }
11445
11446 /* Try to find a base info of BINFO that would have its field decl at offset
11447 OFFSET within the BINFO type and which is of EXPECTED_TYPE. If it can be
11448 found, return, otherwise return NULL_TREE. */
11449
11450 tree
11451 get_binfo_at_offset (tree binfo, HOST_WIDE_INT offset, tree expected_type)
11452 {
11453 tree type = BINFO_TYPE (binfo);
11454
11455 while (true)
11456 {
11457 HOST_WIDE_INT pos, size;
11458 tree fld;
11459 int i;
11460
11461 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (expected_type))
11462 return binfo;
11463 if (offset < 0)
11464 return NULL_TREE;
11465
11466 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
11467 {
11468 if (TREE_CODE (fld) != FIELD_DECL)
11469 continue;
11470
11471 pos = int_bit_position (fld);
11472 size = tree_low_cst (DECL_SIZE (fld), 1);
11473 if (pos <= offset && (pos + size) > offset)
11474 break;
11475 }
11476 if (!fld || TREE_CODE (TREE_TYPE (fld)) != RECORD_TYPE)
11477 return NULL_TREE;
11478
11479 if (!DECL_ARTIFICIAL (fld))
11480 {
11481 binfo = TYPE_BINFO (TREE_TYPE (fld));
11482 if (!binfo)
11483 return NULL_TREE;
11484 }
11485 /* Offset 0 indicates the primary base, whose vtable contents are
11486 represented in the binfo for the derived class. */
11487 else if (offset != 0)
11488 {
11489 tree base_binfo, found_binfo = NULL_TREE;
11490 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
11491 if (TREE_TYPE (base_binfo) == TREE_TYPE (fld))
11492 {
11493 found_binfo = base_binfo;
11494 break;
11495 }
11496 if (!found_binfo)
11497 return NULL_TREE;
11498 binfo = found_binfo;
11499 }
11500
11501 type = TREE_TYPE (fld);
11502 offset -= pos;
11503 }
11504 }
11505
11506 /* Returns true if X is a typedef decl. */
11507
11508 bool
11509 is_typedef_decl (tree x)
11510 {
11511 return (x && TREE_CODE (x) == TYPE_DECL
11512 && DECL_ORIGINAL_TYPE (x) != NULL_TREE);
11513 }
11514
11515 /* Returns true iff TYPE is a type variant created for a typedef. */
11516
11517 bool
11518 typedef_variant_p (tree type)
11519 {
11520 return is_typedef_decl (TYPE_NAME (type));
11521 }
11522
11523 /* Warn about a use of an identifier which was marked deprecated. */
11524 void
11525 warn_deprecated_use (tree node, tree attr)
11526 {
11527 const char *msg;
11528
11529 if (node == 0 || !warn_deprecated_decl)
11530 return;
11531
11532 if (!attr)
11533 {
11534 if (DECL_P (node))
11535 attr = DECL_ATTRIBUTES (node);
11536 else if (TYPE_P (node))
11537 {
11538 tree decl = TYPE_STUB_DECL (node);
11539 if (decl)
11540 attr = lookup_attribute ("deprecated",
11541 TYPE_ATTRIBUTES (TREE_TYPE (decl)));
11542 }
11543 }
11544
11545 if (attr)
11546 attr = lookup_attribute ("deprecated", attr);
11547
11548 if (attr)
11549 msg = TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr)));
11550 else
11551 msg = NULL;
11552
11553 if (DECL_P (node))
11554 {
11555 expanded_location xloc = expand_location (DECL_SOURCE_LOCATION (node));
11556 if (msg)
11557 warning (OPT_Wdeprecated_declarations,
11558 "%qD is deprecated (declared at %s:%d): %s",
11559 node, xloc.file, xloc.line, msg);
11560 else
11561 warning (OPT_Wdeprecated_declarations,
11562 "%qD is deprecated (declared at %s:%d)",
11563 node, xloc.file, xloc.line);
11564 }
11565 else if (TYPE_P (node))
11566 {
11567 tree what = NULL_TREE;
11568 tree decl = TYPE_STUB_DECL (node);
11569
11570 if (TYPE_NAME (node))
11571 {
11572 if (TREE_CODE (TYPE_NAME (node)) == IDENTIFIER_NODE)
11573 what = TYPE_NAME (node);
11574 else if (TREE_CODE (TYPE_NAME (node)) == TYPE_DECL
11575 && DECL_NAME (TYPE_NAME (node)))
11576 what = DECL_NAME (TYPE_NAME (node));
11577 }
11578
11579 if (decl)
11580 {
11581 expanded_location xloc
11582 = expand_location (DECL_SOURCE_LOCATION (decl));
11583 if (what)
11584 {
11585 if (msg)
11586 warning (OPT_Wdeprecated_declarations,
11587 "%qE is deprecated (declared at %s:%d): %s",
11588 what, xloc.file, xloc.line, msg);
11589 else
11590 warning (OPT_Wdeprecated_declarations,
11591 "%qE is deprecated (declared at %s:%d)", what,
11592 xloc.file, xloc.line);
11593 }
11594 else
11595 {
11596 if (msg)
11597 warning (OPT_Wdeprecated_declarations,
11598 "type is deprecated (declared at %s:%d): %s",
11599 xloc.file, xloc.line, msg);
11600 else
11601 warning (OPT_Wdeprecated_declarations,
11602 "type is deprecated (declared at %s:%d)",
11603 xloc.file, xloc.line);
11604 }
11605 }
11606 else
11607 {
11608 if (what)
11609 {
11610 if (msg)
11611 warning (OPT_Wdeprecated_declarations, "%qE is deprecated: %s",
11612 what, msg);
11613 else
11614 warning (OPT_Wdeprecated_declarations, "%qE is deprecated", what);
11615 }
11616 else
11617 {
11618 if (msg)
11619 warning (OPT_Wdeprecated_declarations, "type is deprecated: %s",
11620 msg);
11621 else
11622 warning (OPT_Wdeprecated_declarations, "type is deprecated");
11623 }
11624 }
11625 }
11626 }
11627
11628 #include "gt-tree.h"