]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree.c
* gimple-fold.c (gimple_extract_devirt_binfo_from_cst): Add new
[thirdparty/gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file contains the low level primitives for operating on tree nodes,
21 including allocation, list operations, interning of identifiers,
22 construction of data type nodes and statement nodes,
23 and construction of type conversion nodes. It also contains
24 tables index by tree code that describe how to take apart
25 nodes of that code.
26
27 It is intended to be language-independent, but occasionally
28 calls language-dependent routines defined (for C) in typecheck.c. */
29
30 #include "config.h"
31 #include "system.h"
32 #include "coretypes.h"
33 #include "tm.h"
34 #include "flags.h"
35 #include "tree.h"
36 #include "tm_p.h"
37 #include "function.h"
38 #include "obstack.h"
39 #include "toplev.h" /* get_random_seed */
40 #include "ggc.h"
41 #include "hashtab.h"
42 #include "filenames.h"
43 #include "output.h"
44 #include "target.h"
45 #include "common/common-target.h"
46 #include "langhooks.h"
47 #include "tree-inline.h"
48 #include "tree-iterator.h"
49 #include "basic-block.h"
50 #include "tree-flow.h"
51 #include "params.h"
52 #include "pointer-set.h"
53 #include "tree-pass.h"
54 #include "langhooks-def.h"
55 #include "diagnostic.h"
56 #include "tree-diagnostic.h"
57 #include "tree-pretty-print.h"
58 #include "cgraph.h"
59 #include "except.h"
60 #include "debug.h"
61 #include "intl.h"
62
63 /* Tree code classes. */
64
65 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
66 #define END_OF_BASE_TREE_CODES tcc_exceptional,
67
68 const enum tree_code_class tree_code_type[] = {
69 #include "all-tree.def"
70 };
71
72 #undef DEFTREECODE
73 #undef END_OF_BASE_TREE_CODES
74
75 /* Table indexed by tree code giving number of expression
76 operands beyond the fixed part of the node structure.
77 Not used for types or decls. */
78
79 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
80 #define END_OF_BASE_TREE_CODES 0,
81
82 const unsigned char tree_code_length[] = {
83 #include "all-tree.def"
84 };
85
86 #undef DEFTREECODE
87 #undef END_OF_BASE_TREE_CODES
88
89 /* Names of tree components.
90 Used for printing out the tree and error messages. */
91 #define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
92 #define END_OF_BASE_TREE_CODES "@dummy",
93
94 const char *const tree_code_name[] = {
95 #include "all-tree.def"
96 };
97
98 #undef DEFTREECODE
99 #undef END_OF_BASE_TREE_CODES
100
101 /* Each tree code class has an associated string representation.
102 These must correspond to the tree_code_class entries. */
103
104 const char *const tree_code_class_strings[] =
105 {
106 "exceptional",
107 "constant",
108 "type",
109 "declaration",
110 "reference",
111 "comparison",
112 "unary",
113 "binary",
114 "statement",
115 "vl_exp",
116 "expression"
117 };
118
119 /* obstack.[ch] explicitly declined to prototype this. */
120 extern int _obstack_allocated_p (struct obstack *h, void *obj);
121
122 /* Statistics-gathering stuff. */
123
124 static int tree_code_counts[MAX_TREE_CODES];
125 int tree_node_counts[(int) all_kinds];
126 int tree_node_sizes[(int) all_kinds];
127
128 /* Keep in sync with tree.h:enum tree_node_kind. */
129 static const char * const tree_node_kind_names[] = {
130 "decls",
131 "types",
132 "blocks",
133 "stmts",
134 "refs",
135 "exprs",
136 "constants",
137 "identifiers",
138 "vecs",
139 "binfos",
140 "ssa names",
141 "constructors",
142 "random kinds",
143 "lang_decl kinds",
144 "lang_type kinds",
145 "omp clauses",
146 };
147
148 /* Unique id for next decl created. */
149 static GTY(()) int next_decl_uid;
150 /* Unique id for next type created. */
151 static GTY(()) int next_type_uid = 1;
152 /* Unique id for next debug decl created. Use negative numbers,
153 to catch erroneous uses. */
154 static GTY(()) int next_debug_decl_uid;
155
156 /* Since we cannot rehash a type after it is in the table, we have to
157 keep the hash code. */
158
159 struct GTY(()) type_hash {
160 unsigned long hash;
161 tree type;
162 };
163
164 /* Initial size of the hash table (rounded to next prime). */
165 #define TYPE_HASH_INITIAL_SIZE 1000
166
167 /* Now here is the hash table. When recording a type, it is added to
168 the slot whose index is the hash code. Note that the hash table is
169 used for several kinds of types (function types, array types and
170 array index range types, for now). While all these live in the
171 same table, they are completely independent, and the hash code is
172 computed differently for each of these. */
173
174 static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash)))
175 htab_t type_hash_table;
176
177 /* Hash table and temporary node for larger integer const values. */
178 static GTY (()) tree int_cst_node;
179 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
180 htab_t int_cst_hash_table;
181
182 /* Hash table for optimization flags and target option flags. Use the same
183 hash table for both sets of options. Nodes for building the current
184 optimization and target option nodes. The assumption is most of the time
185 the options created will already be in the hash table, so we avoid
186 allocating and freeing up a node repeatably. */
187 static GTY (()) tree cl_optimization_node;
188 static GTY (()) tree cl_target_option_node;
189 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
190 htab_t cl_option_hash_table;
191
192 /* General tree->tree mapping structure for use in hash tables. */
193
194
195 static GTY ((if_marked ("tree_decl_map_marked_p"), param_is (struct tree_decl_map)))
196 htab_t debug_expr_for_decl;
197
198 static GTY ((if_marked ("tree_decl_map_marked_p"), param_is (struct tree_decl_map)))
199 htab_t value_expr_for_decl;
200
201 static GTY ((if_marked ("tree_vec_map_marked_p"), param_is (struct tree_vec_map)))
202 htab_t debug_args_for_decl;
203
204 static GTY ((if_marked ("tree_priority_map_marked_p"),
205 param_is (struct tree_priority_map)))
206 htab_t init_priority_for_decl;
207
208 static void set_type_quals (tree, int);
209 static int type_hash_eq (const void *, const void *);
210 static hashval_t type_hash_hash (const void *);
211 static hashval_t int_cst_hash_hash (const void *);
212 static int int_cst_hash_eq (const void *, const void *);
213 static hashval_t cl_option_hash_hash (const void *);
214 static int cl_option_hash_eq (const void *, const void *);
215 static void print_type_hash_statistics (void);
216 static void print_debug_expr_statistics (void);
217 static void print_value_expr_statistics (void);
218 static int type_hash_marked_p (const void *);
219 static unsigned int type_hash_list (const_tree, hashval_t);
220 static unsigned int attribute_hash_list (const_tree, hashval_t);
221 static bool decls_same_for_odr (tree decl1, tree decl2);
222
223 tree global_trees[TI_MAX];
224 tree integer_types[itk_none];
225
226 unsigned char tree_contains_struct[MAX_TREE_CODES][64];
227
228 /* Number of operands for each OpenMP clause. */
229 unsigned const char omp_clause_num_ops[] =
230 {
231 0, /* OMP_CLAUSE_ERROR */
232 1, /* OMP_CLAUSE_PRIVATE */
233 1, /* OMP_CLAUSE_SHARED */
234 1, /* OMP_CLAUSE_FIRSTPRIVATE */
235 2, /* OMP_CLAUSE_LASTPRIVATE */
236 4, /* OMP_CLAUSE_REDUCTION */
237 1, /* OMP_CLAUSE_COPYIN */
238 1, /* OMP_CLAUSE_COPYPRIVATE */
239 1, /* OMP_CLAUSE_IF */
240 1, /* OMP_CLAUSE_NUM_THREADS */
241 1, /* OMP_CLAUSE_SCHEDULE */
242 0, /* OMP_CLAUSE_NOWAIT */
243 0, /* OMP_CLAUSE_ORDERED */
244 0, /* OMP_CLAUSE_DEFAULT */
245 3, /* OMP_CLAUSE_COLLAPSE */
246 0, /* OMP_CLAUSE_UNTIED */
247 1, /* OMP_CLAUSE_FINAL */
248 0 /* OMP_CLAUSE_MERGEABLE */
249 };
250
251 const char * const omp_clause_code_name[] =
252 {
253 "error_clause",
254 "private",
255 "shared",
256 "firstprivate",
257 "lastprivate",
258 "reduction",
259 "copyin",
260 "copyprivate",
261 "if",
262 "num_threads",
263 "schedule",
264 "nowait",
265 "ordered",
266 "default",
267 "collapse",
268 "untied",
269 "final",
270 "mergeable"
271 };
272
273
274 /* Return the tree node structure used by tree code CODE. */
275
276 static inline enum tree_node_structure_enum
277 tree_node_structure_for_code (enum tree_code code)
278 {
279 switch (TREE_CODE_CLASS (code))
280 {
281 case tcc_declaration:
282 {
283 switch (code)
284 {
285 case FIELD_DECL:
286 return TS_FIELD_DECL;
287 case PARM_DECL:
288 return TS_PARM_DECL;
289 case VAR_DECL:
290 return TS_VAR_DECL;
291 case LABEL_DECL:
292 return TS_LABEL_DECL;
293 case RESULT_DECL:
294 return TS_RESULT_DECL;
295 case DEBUG_EXPR_DECL:
296 return TS_DECL_WRTL;
297 case CONST_DECL:
298 return TS_CONST_DECL;
299 case TYPE_DECL:
300 return TS_TYPE_DECL;
301 case FUNCTION_DECL:
302 return TS_FUNCTION_DECL;
303 case TRANSLATION_UNIT_DECL:
304 return TS_TRANSLATION_UNIT_DECL;
305 default:
306 return TS_DECL_NON_COMMON;
307 }
308 }
309 case tcc_type:
310 return TS_TYPE_NON_COMMON;
311 case tcc_reference:
312 case tcc_comparison:
313 case tcc_unary:
314 case tcc_binary:
315 case tcc_expression:
316 case tcc_statement:
317 case tcc_vl_exp:
318 return TS_EXP;
319 default: /* tcc_constant and tcc_exceptional */
320 break;
321 }
322 switch (code)
323 {
324 /* tcc_constant cases. */
325 case INTEGER_CST: return TS_INT_CST;
326 case REAL_CST: return TS_REAL_CST;
327 case FIXED_CST: return TS_FIXED_CST;
328 case COMPLEX_CST: return TS_COMPLEX;
329 case VECTOR_CST: return TS_VECTOR;
330 case STRING_CST: return TS_STRING;
331 /* tcc_exceptional cases. */
332 case ERROR_MARK: return TS_COMMON;
333 case IDENTIFIER_NODE: return TS_IDENTIFIER;
334 case TREE_LIST: return TS_LIST;
335 case TREE_VEC: return TS_VEC;
336 case SSA_NAME: return TS_SSA_NAME;
337 case PLACEHOLDER_EXPR: return TS_COMMON;
338 case STATEMENT_LIST: return TS_STATEMENT_LIST;
339 case BLOCK: return TS_BLOCK;
340 case CONSTRUCTOR: return TS_CONSTRUCTOR;
341 case TREE_BINFO: return TS_BINFO;
342 case OMP_CLAUSE: return TS_OMP_CLAUSE;
343 case OPTIMIZATION_NODE: return TS_OPTIMIZATION;
344 case TARGET_OPTION_NODE: return TS_TARGET_OPTION;
345
346 default:
347 gcc_unreachable ();
348 }
349 }
350
351
352 /* Initialize tree_contains_struct to describe the hierarchy of tree
353 nodes. */
354
355 static void
356 initialize_tree_contains_struct (void)
357 {
358 unsigned i;
359
360 for (i = ERROR_MARK; i < LAST_AND_UNUSED_TREE_CODE; i++)
361 {
362 enum tree_code code;
363 enum tree_node_structure_enum ts_code;
364
365 code = (enum tree_code) i;
366 ts_code = tree_node_structure_for_code (code);
367
368 /* Mark the TS structure itself. */
369 tree_contains_struct[code][ts_code] = 1;
370
371 /* Mark all the structures that TS is derived from. */
372 switch (ts_code)
373 {
374 case TS_TYPED:
375 case TS_BLOCK:
376 MARK_TS_BASE (code);
377 break;
378
379 case TS_COMMON:
380 case TS_INT_CST:
381 case TS_REAL_CST:
382 case TS_FIXED_CST:
383 case TS_VECTOR:
384 case TS_STRING:
385 case TS_COMPLEX:
386 case TS_SSA_NAME:
387 case TS_CONSTRUCTOR:
388 case TS_EXP:
389 case TS_STATEMENT_LIST:
390 MARK_TS_TYPED (code);
391 break;
392
393 case TS_IDENTIFIER:
394 case TS_DECL_MINIMAL:
395 case TS_TYPE_COMMON:
396 case TS_LIST:
397 case TS_VEC:
398 case TS_BINFO:
399 case TS_OMP_CLAUSE:
400 case TS_OPTIMIZATION:
401 case TS_TARGET_OPTION:
402 MARK_TS_COMMON (code);
403 break;
404
405 case TS_TYPE_WITH_LANG_SPECIFIC:
406 MARK_TS_TYPE_COMMON (code);
407 break;
408
409 case TS_TYPE_NON_COMMON:
410 MARK_TS_TYPE_WITH_LANG_SPECIFIC (code);
411 break;
412
413 case TS_DECL_COMMON:
414 MARK_TS_DECL_MINIMAL (code);
415 break;
416
417 case TS_DECL_WRTL:
418 case TS_CONST_DECL:
419 MARK_TS_DECL_COMMON (code);
420 break;
421
422 case TS_DECL_NON_COMMON:
423 MARK_TS_DECL_WITH_VIS (code);
424 break;
425
426 case TS_DECL_WITH_VIS:
427 case TS_PARM_DECL:
428 case TS_LABEL_DECL:
429 case TS_RESULT_DECL:
430 MARK_TS_DECL_WRTL (code);
431 break;
432
433 case TS_FIELD_DECL:
434 MARK_TS_DECL_COMMON (code);
435 break;
436
437 case TS_VAR_DECL:
438 MARK_TS_DECL_WITH_VIS (code);
439 break;
440
441 case TS_TYPE_DECL:
442 case TS_FUNCTION_DECL:
443 MARK_TS_DECL_NON_COMMON (code);
444 break;
445
446 case TS_TRANSLATION_UNIT_DECL:
447 MARK_TS_DECL_COMMON (code);
448 break;
449
450 default:
451 gcc_unreachable ();
452 }
453 }
454
455 /* Basic consistency checks for attributes used in fold. */
456 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_NON_COMMON]);
457 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_NON_COMMON]);
458 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_COMMON]);
459 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_COMMON]);
460 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_COMMON]);
461 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_COMMON]);
462 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_COMMON]);
463 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_COMMON]);
464 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_COMMON]);
465 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_COMMON]);
466 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_COMMON]);
467 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WRTL]);
468 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_WRTL]);
469 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_WRTL]);
470 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WRTL]);
471 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_WRTL]);
472 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_MINIMAL]);
473 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_MINIMAL]);
474 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_MINIMAL]);
475 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_MINIMAL]);
476 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_MINIMAL]);
477 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_MINIMAL]);
478 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_MINIMAL]);
479 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_MINIMAL]);
480 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_MINIMAL]);
481 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WITH_VIS]);
482 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WITH_VIS]);
483 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_WITH_VIS]);
484 gcc_assert (tree_contains_struct[VAR_DECL][TS_VAR_DECL]);
485 gcc_assert (tree_contains_struct[FIELD_DECL][TS_FIELD_DECL]);
486 gcc_assert (tree_contains_struct[PARM_DECL][TS_PARM_DECL]);
487 gcc_assert (tree_contains_struct[LABEL_DECL][TS_LABEL_DECL]);
488 gcc_assert (tree_contains_struct[RESULT_DECL][TS_RESULT_DECL]);
489 gcc_assert (tree_contains_struct[CONST_DECL][TS_CONST_DECL]);
490 gcc_assert (tree_contains_struct[TYPE_DECL][TS_TYPE_DECL]);
491 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_FUNCTION_DECL]);
492 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_MINIMAL]);
493 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_COMMON]);
494 }
495
496
497 /* Init tree.c. */
498
499 void
500 init_ttree (void)
501 {
502 /* Initialize the hash table of types. */
503 type_hash_table = htab_create_ggc (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
504 type_hash_eq, 0);
505
506 debug_expr_for_decl = htab_create_ggc (512, tree_decl_map_hash,
507 tree_decl_map_eq, 0);
508
509 value_expr_for_decl = htab_create_ggc (512, tree_decl_map_hash,
510 tree_decl_map_eq, 0);
511 init_priority_for_decl = htab_create_ggc (512, tree_priority_map_hash,
512 tree_priority_map_eq, 0);
513
514 int_cst_hash_table = htab_create_ggc (1024, int_cst_hash_hash,
515 int_cst_hash_eq, NULL);
516
517 int_cst_node = make_node (INTEGER_CST);
518
519 cl_option_hash_table = htab_create_ggc (64, cl_option_hash_hash,
520 cl_option_hash_eq, NULL);
521
522 cl_optimization_node = make_node (OPTIMIZATION_NODE);
523 cl_target_option_node = make_node (TARGET_OPTION_NODE);
524
525 /* Initialize the tree_contains_struct array. */
526 initialize_tree_contains_struct ();
527 lang_hooks.init_ts ();
528 }
529
530 \f
531 /* The name of the object as the assembler will see it (but before any
532 translations made by ASM_OUTPUT_LABELREF). Often this is the same
533 as DECL_NAME. It is an IDENTIFIER_NODE. */
534 tree
535 decl_assembler_name (tree decl)
536 {
537 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
538 lang_hooks.set_decl_assembler_name (decl);
539 return DECL_WITH_VIS_CHECK (decl)->decl_with_vis.assembler_name;
540 }
541
542 /* Compare ASMNAME with the DECL_ASSEMBLER_NAME of DECL. */
543
544 bool
545 decl_assembler_name_equal (tree decl, const_tree asmname)
546 {
547 tree decl_asmname = DECL_ASSEMBLER_NAME (decl);
548 const char *decl_str;
549 const char *asmname_str;
550 bool test = false;
551
552 if (decl_asmname == asmname)
553 return true;
554
555 decl_str = IDENTIFIER_POINTER (decl_asmname);
556 asmname_str = IDENTIFIER_POINTER (asmname);
557
558
559 /* If the target assembler name was set by the user, things are trickier.
560 We have a leading '*' to begin with. After that, it's arguable what
561 is the correct thing to do with -fleading-underscore. Arguably, we've
562 historically been doing the wrong thing in assemble_alias by always
563 printing the leading underscore. Since we're not changing that, make
564 sure user_label_prefix follows the '*' before matching. */
565 if (decl_str[0] == '*')
566 {
567 size_t ulp_len = strlen (user_label_prefix);
568
569 decl_str ++;
570
571 if (ulp_len == 0)
572 test = true;
573 else if (strncmp (decl_str, user_label_prefix, ulp_len) == 0)
574 decl_str += ulp_len, test=true;
575 else
576 decl_str --;
577 }
578 if (asmname_str[0] == '*')
579 {
580 size_t ulp_len = strlen (user_label_prefix);
581
582 asmname_str ++;
583
584 if (ulp_len == 0)
585 test = true;
586 else if (strncmp (asmname_str, user_label_prefix, ulp_len) == 0)
587 asmname_str += ulp_len, test=true;
588 else
589 asmname_str --;
590 }
591
592 if (!test)
593 return false;
594 return strcmp (decl_str, asmname_str) == 0;
595 }
596
597 /* Hash asmnames ignoring the user specified marks. */
598
599 hashval_t
600 decl_assembler_name_hash (const_tree asmname)
601 {
602 if (IDENTIFIER_POINTER (asmname)[0] == '*')
603 {
604 const char *decl_str = IDENTIFIER_POINTER (asmname) + 1;
605 size_t ulp_len = strlen (user_label_prefix);
606
607 if (ulp_len == 0)
608 ;
609 else if (strncmp (decl_str, user_label_prefix, ulp_len) == 0)
610 decl_str += ulp_len;
611
612 return htab_hash_string (decl_str);
613 }
614
615 return htab_hash_string (IDENTIFIER_POINTER (asmname));
616 }
617
618 /* Compute the number of bytes occupied by a tree with code CODE.
619 This function cannot be used for nodes that have variable sizes,
620 including TREE_VEC, STRING_CST, and CALL_EXPR. */
621 size_t
622 tree_code_size (enum tree_code code)
623 {
624 switch (TREE_CODE_CLASS (code))
625 {
626 case tcc_declaration: /* A decl node */
627 {
628 switch (code)
629 {
630 case FIELD_DECL:
631 return sizeof (struct tree_field_decl);
632 case PARM_DECL:
633 return sizeof (struct tree_parm_decl);
634 case VAR_DECL:
635 return sizeof (struct tree_var_decl);
636 case LABEL_DECL:
637 return sizeof (struct tree_label_decl);
638 case RESULT_DECL:
639 return sizeof (struct tree_result_decl);
640 case CONST_DECL:
641 return sizeof (struct tree_const_decl);
642 case TYPE_DECL:
643 return sizeof (struct tree_type_decl);
644 case FUNCTION_DECL:
645 return sizeof (struct tree_function_decl);
646 case DEBUG_EXPR_DECL:
647 return sizeof (struct tree_decl_with_rtl);
648 default:
649 return sizeof (struct tree_decl_non_common);
650 }
651 }
652
653 case tcc_type: /* a type node */
654 return sizeof (struct tree_type_non_common);
655
656 case tcc_reference: /* a reference */
657 case tcc_expression: /* an expression */
658 case tcc_statement: /* an expression with side effects */
659 case tcc_comparison: /* a comparison expression */
660 case tcc_unary: /* a unary arithmetic expression */
661 case tcc_binary: /* a binary arithmetic expression */
662 return (sizeof (struct tree_exp)
663 + (TREE_CODE_LENGTH (code) - 1) * sizeof (tree));
664
665 case tcc_constant: /* a constant */
666 switch (code)
667 {
668 case INTEGER_CST: return sizeof (struct tree_int_cst);
669 case REAL_CST: return sizeof (struct tree_real_cst);
670 case FIXED_CST: return sizeof (struct tree_fixed_cst);
671 case COMPLEX_CST: return sizeof (struct tree_complex);
672 case VECTOR_CST: return sizeof (struct tree_vector);
673 case STRING_CST: gcc_unreachable ();
674 default:
675 return lang_hooks.tree_size (code);
676 }
677
678 case tcc_exceptional: /* something random, like an identifier. */
679 switch (code)
680 {
681 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
682 case TREE_LIST: return sizeof (struct tree_list);
683
684 case ERROR_MARK:
685 case PLACEHOLDER_EXPR: return sizeof (struct tree_common);
686
687 case TREE_VEC:
688 case OMP_CLAUSE: gcc_unreachable ();
689
690 case SSA_NAME: return sizeof (struct tree_ssa_name);
691
692 case STATEMENT_LIST: return sizeof (struct tree_statement_list);
693 case BLOCK: return sizeof (struct tree_block);
694 case CONSTRUCTOR: return sizeof (struct tree_constructor);
695 case OPTIMIZATION_NODE: return sizeof (struct tree_optimization_option);
696 case TARGET_OPTION_NODE: return sizeof (struct tree_target_option);
697
698 default:
699 return lang_hooks.tree_size (code);
700 }
701
702 default:
703 gcc_unreachable ();
704 }
705 }
706
707 /* Compute the number of bytes occupied by NODE. This routine only
708 looks at TREE_CODE, except for those nodes that have variable sizes. */
709 size_t
710 tree_size (const_tree node)
711 {
712 const enum tree_code code = TREE_CODE (node);
713 switch (code)
714 {
715 case TREE_BINFO:
716 return (offsetof (struct tree_binfo, base_binfos)
717 + vec<tree, va_gc>
718 ::embedded_size (BINFO_N_BASE_BINFOS (node)));
719
720 case TREE_VEC:
721 return (sizeof (struct tree_vec)
722 + (TREE_VEC_LENGTH (node) - 1) * sizeof (tree));
723
724 case VECTOR_CST:
725 return (sizeof (struct tree_vector)
726 + (TYPE_VECTOR_SUBPARTS (TREE_TYPE (node)) - 1) * sizeof (tree));
727
728 case STRING_CST:
729 return TREE_STRING_LENGTH (node) + offsetof (struct tree_string, str) + 1;
730
731 case OMP_CLAUSE:
732 return (sizeof (struct tree_omp_clause)
733 + (omp_clause_num_ops[OMP_CLAUSE_CODE (node)] - 1)
734 * sizeof (tree));
735
736 default:
737 if (TREE_CODE_CLASS (code) == tcc_vl_exp)
738 return (sizeof (struct tree_exp)
739 + (VL_EXP_OPERAND_LENGTH (node) - 1) * sizeof (tree));
740 else
741 return tree_code_size (code);
742 }
743 }
744
745 /* Record interesting allocation statistics for a tree node with CODE
746 and LENGTH. */
747
748 static void
749 record_node_allocation_statistics (enum tree_code code ATTRIBUTE_UNUSED,
750 size_t length ATTRIBUTE_UNUSED)
751 {
752 enum tree_code_class type = TREE_CODE_CLASS (code);
753 tree_node_kind kind;
754
755 if (!GATHER_STATISTICS)
756 return;
757
758 switch (type)
759 {
760 case tcc_declaration: /* A decl node */
761 kind = d_kind;
762 break;
763
764 case tcc_type: /* a type node */
765 kind = t_kind;
766 break;
767
768 case tcc_statement: /* an expression with side effects */
769 kind = s_kind;
770 break;
771
772 case tcc_reference: /* a reference */
773 kind = r_kind;
774 break;
775
776 case tcc_expression: /* an expression */
777 case tcc_comparison: /* a comparison expression */
778 case tcc_unary: /* a unary arithmetic expression */
779 case tcc_binary: /* a binary arithmetic expression */
780 kind = e_kind;
781 break;
782
783 case tcc_constant: /* a constant */
784 kind = c_kind;
785 break;
786
787 case tcc_exceptional: /* something random, like an identifier. */
788 switch (code)
789 {
790 case IDENTIFIER_NODE:
791 kind = id_kind;
792 break;
793
794 case TREE_VEC:
795 kind = vec_kind;
796 break;
797
798 case TREE_BINFO:
799 kind = binfo_kind;
800 break;
801
802 case SSA_NAME:
803 kind = ssa_name_kind;
804 break;
805
806 case BLOCK:
807 kind = b_kind;
808 break;
809
810 case CONSTRUCTOR:
811 kind = constr_kind;
812 break;
813
814 case OMP_CLAUSE:
815 kind = omp_clause_kind;
816 break;
817
818 default:
819 kind = x_kind;
820 break;
821 }
822 break;
823
824 case tcc_vl_exp:
825 kind = e_kind;
826 break;
827
828 default:
829 gcc_unreachable ();
830 }
831
832 tree_code_counts[(int) code]++;
833 tree_node_counts[(int) kind]++;
834 tree_node_sizes[(int) kind] += length;
835 }
836
837 /* Allocate and return a new UID from the DECL_UID namespace. */
838
839 int
840 allocate_decl_uid (void)
841 {
842 return next_decl_uid++;
843 }
844
845 /* Return a newly allocated node of code CODE. For decl and type
846 nodes, some other fields are initialized. The rest of the node is
847 initialized to zero. This function cannot be used for TREE_VEC or
848 OMP_CLAUSE nodes, which is enforced by asserts in tree_code_size.
849
850 Achoo! I got a code in the node. */
851
852 tree
853 make_node_stat (enum tree_code code MEM_STAT_DECL)
854 {
855 tree t;
856 enum tree_code_class type = TREE_CODE_CLASS (code);
857 size_t length = tree_code_size (code);
858
859 record_node_allocation_statistics (code, length);
860
861 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
862 TREE_SET_CODE (t, code);
863
864 switch (type)
865 {
866 case tcc_statement:
867 TREE_SIDE_EFFECTS (t) = 1;
868 break;
869
870 case tcc_declaration:
871 if (CODE_CONTAINS_STRUCT (code, TS_DECL_COMMON))
872 {
873 if (code == FUNCTION_DECL)
874 {
875 DECL_ALIGN (t) = FUNCTION_BOUNDARY;
876 DECL_MODE (t) = FUNCTION_MODE;
877 }
878 else
879 DECL_ALIGN (t) = 1;
880 }
881 DECL_SOURCE_LOCATION (t) = input_location;
882 if (TREE_CODE (t) == DEBUG_EXPR_DECL)
883 DECL_UID (t) = --next_debug_decl_uid;
884 else
885 {
886 DECL_UID (t) = allocate_decl_uid ();
887 SET_DECL_PT_UID (t, -1);
888 }
889 if (TREE_CODE (t) == LABEL_DECL)
890 LABEL_DECL_UID (t) = -1;
891
892 break;
893
894 case tcc_type:
895 TYPE_UID (t) = next_type_uid++;
896 TYPE_ALIGN (t) = BITS_PER_UNIT;
897 TYPE_USER_ALIGN (t) = 0;
898 TYPE_MAIN_VARIANT (t) = t;
899 TYPE_CANONICAL (t) = t;
900
901 /* Default to no attributes for type, but let target change that. */
902 TYPE_ATTRIBUTES (t) = NULL_TREE;
903 targetm.set_default_type_attributes (t);
904
905 /* We have not yet computed the alias set for this type. */
906 TYPE_ALIAS_SET (t) = -1;
907 break;
908
909 case tcc_constant:
910 TREE_CONSTANT (t) = 1;
911 break;
912
913 case tcc_expression:
914 switch (code)
915 {
916 case INIT_EXPR:
917 case MODIFY_EXPR:
918 case VA_ARG_EXPR:
919 case PREDECREMENT_EXPR:
920 case PREINCREMENT_EXPR:
921 case POSTDECREMENT_EXPR:
922 case POSTINCREMENT_EXPR:
923 /* All of these have side-effects, no matter what their
924 operands are. */
925 TREE_SIDE_EFFECTS (t) = 1;
926 break;
927
928 default:
929 break;
930 }
931 break;
932
933 default:
934 /* Other classes need no special treatment. */
935 break;
936 }
937
938 return t;
939 }
940 \f
941 /* Return a new node with the same contents as NODE except that its
942 TREE_CHAIN, if it has one, is zero and it has a fresh uid. */
943
944 tree
945 copy_node_stat (tree node MEM_STAT_DECL)
946 {
947 tree t;
948 enum tree_code code = TREE_CODE (node);
949 size_t length;
950
951 gcc_assert (code != STATEMENT_LIST);
952
953 length = tree_size (node);
954 record_node_allocation_statistics (code, length);
955 t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
956 memcpy (t, node, length);
957
958 if (CODE_CONTAINS_STRUCT (code, TS_COMMON))
959 TREE_CHAIN (t) = 0;
960 TREE_ASM_WRITTEN (t) = 0;
961 TREE_VISITED (t) = 0;
962
963 if (TREE_CODE_CLASS (code) == tcc_declaration)
964 {
965 if (code == DEBUG_EXPR_DECL)
966 DECL_UID (t) = --next_debug_decl_uid;
967 else
968 {
969 DECL_UID (t) = allocate_decl_uid ();
970 if (DECL_PT_UID_SET_P (node))
971 SET_DECL_PT_UID (t, DECL_PT_UID (node));
972 }
973 if ((TREE_CODE (node) == PARM_DECL || TREE_CODE (node) == VAR_DECL)
974 && DECL_HAS_VALUE_EXPR_P (node))
975 {
976 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (node));
977 DECL_HAS_VALUE_EXPR_P (t) = 1;
978 }
979 /* DECL_DEBUG_EXPR is copied explicitely by callers. */
980 if (TREE_CODE (node) == VAR_DECL)
981 DECL_HAS_DEBUG_EXPR_P (t) = 0;
982 if (TREE_CODE (node) == VAR_DECL && DECL_HAS_INIT_PRIORITY_P (node))
983 {
984 SET_DECL_INIT_PRIORITY (t, DECL_INIT_PRIORITY (node));
985 DECL_HAS_INIT_PRIORITY_P (t) = 1;
986 }
987 if (TREE_CODE (node) == FUNCTION_DECL)
988 DECL_STRUCT_FUNCTION (t) = NULL;
989 }
990 else if (TREE_CODE_CLASS (code) == tcc_type)
991 {
992 TYPE_UID (t) = next_type_uid++;
993 /* The following is so that the debug code for
994 the copy is different from the original type.
995 The two statements usually duplicate each other
996 (because they clear fields of the same union),
997 but the optimizer should catch that. */
998 TYPE_SYMTAB_POINTER (t) = 0;
999 TYPE_SYMTAB_ADDRESS (t) = 0;
1000
1001 /* Do not copy the values cache. */
1002 if (TYPE_CACHED_VALUES_P(t))
1003 {
1004 TYPE_CACHED_VALUES_P (t) = 0;
1005 TYPE_CACHED_VALUES (t) = NULL_TREE;
1006 }
1007 }
1008
1009 return t;
1010 }
1011
1012 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
1013 For example, this can copy a list made of TREE_LIST nodes. */
1014
1015 tree
1016 copy_list (tree list)
1017 {
1018 tree head;
1019 tree prev, next;
1020
1021 if (list == 0)
1022 return 0;
1023
1024 head = prev = copy_node (list);
1025 next = TREE_CHAIN (list);
1026 while (next)
1027 {
1028 TREE_CHAIN (prev) = copy_node (next);
1029 prev = TREE_CHAIN (prev);
1030 next = TREE_CHAIN (next);
1031 }
1032 return head;
1033 }
1034
1035 \f
1036 /* Create an INT_CST node with a LOW value sign extended to TYPE. */
1037
1038 tree
1039 build_int_cst (tree type, HOST_WIDE_INT low)
1040 {
1041 /* Support legacy code. */
1042 if (!type)
1043 type = integer_type_node;
1044
1045 return double_int_to_tree (type, double_int::from_shwi (low));
1046 }
1047
1048 /* Create an INT_CST node with a LOW value sign extended to TYPE. */
1049
1050 tree
1051 build_int_cst_type (tree type, HOST_WIDE_INT low)
1052 {
1053 gcc_assert (type);
1054
1055 return double_int_to_tree (type, double_int::from_shwi (low));
1056 }
1057
1058 /* Constructs tree in type TYPE from with value given by CST. Signedness
1059 of CST is assumed to be the same as the signedness of TYPE. */
1060
1061 tree
1062 double_int_to_tree (tree type, double_int cst)
1063 {
1064 bool sign_extended_type = !TYPE_UNSIGNED (type);
1065
1066 cst = cst.ext (TYPE_PRECISION (type), !sign_extended_type);
1067
1068 return build_int_cst_wide (type, cst.low, cst.high);
1069 }
1070
1071 /* Returns true if CST fits into range of TYPE. Signedness of CST is assumed
1072 to be the same as the signedness of TYPE. */
1073
1074 bool
1075 double_int_fits_to_tree_p (const_tree type, double_int cst)
1076 {
1077 bool sign_extended_type = !TYPE_UNSIGNED (type);
1078
1079 double_int ext
1080 = cst.ext (TYPE_PRECISION (type), !sign_extended_type);
1081
1082 return cst == ext;
1083 }
1084
1085 /* We force the double_int CST to the range of the type TYPE by sign or
1086 zero extending it. OVERFLOWABLE indicates if we are interested in
1087 overflow of the value, when >0 we are only interested in signed
1088 overflow, for <0 we are interested in any overflow. OVERFLOWED
1089 indicates whether overflow has already occurred. CONST_OVERFLOWED
1090 indicates whether constant overflow has already occurred. We force
1091 T's value to be within range of T's type (by setting to 0 or 1 all
1092 the bits outside the type's range). We set TREE_OVERFLOWED if,
1093 OVERFLOWED is nonzero,
1094 or OVERFLOWABLE is >0 and signed overflow occurs
1095 or OVERFLOWABLE is <0 and any overflow occurs
1096 We return a new tree node for the extended double_int. The node
1097 is shared if no overflow flags are set. */
1098
1099
1100 tree
1101 force_fit_type_double (tree type, double_int cst, int overflowable,
1102 bool overflowed)
1103 {
1104 bool sign_extended_type = !TYPE_UNSIGNED (type);
1105
1106 /* If we need to set overflow flags, return a new unshared node. */
1107 if (overflowed || !double_int_fits_to_tree_p(type, cst))
1108 {
1109 if (overflowed
1110 || overflowable < 0
1111 || (overflowable > 0 && sign_extended_type))
1112 {
1113 tree t = make_node (INTEGER_CST);
1114 TREE_INT_CST (t)
1115 = cst.ext (TYPE_PRECISION (type), !sign_extended_type);
1116 TREE_TYPE (t) = type;
1117 TREE_OVERFLOW (t) = 1;
1118 return t;
1119 }
1120 }
1121
1122 /* Else build a shared node. */
1123 return double_int_to_tree (type, cst);
1124 }
1125
1126 /* These are the hash table functions for the hash table of INTEGER_CST
1127 nodes of a sizetype. */
1128
1129 /* Return the hash code code X, an INTEGER_CST. */
1130
1131 static hashval_t
1132 int_cst_hash_hash (const void *x)
1133 {
1134 const_tree const t = (const_tree) x;
1135
1136 return (TREE_INT_CST_HIGH (t) ^ TREE_INT_CST_LOW (t)
1137 ^ htab_hash_pointer (TREE_TYPE (t)));
1138 }
1139
1140 /* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
1141 is the same as that given by *Y, which is the same. */
1142
1143 static int
1144 int_cst_hash_eq (const void *x, const void *y)
1145 {
1146 const_tree const xt = (const_tree) x;
1147 const_tree const yt = (const_tree) y;
1148
1149 return (TREE_TYPE (xt) == TREE_TYPE (yt)
1150 && TREE_INT_CST_HIGH (xt) == TREE_INT_CST_HIGH (yt)
1151 && TREE_INT_CST_LOW (xt) == TREE_INT_CST_LOW (yt));
1152 }
1153
1154 /* Create an INT_CST node of TYPE and value HI:LOW.
1155 The returned node is always shared. For small integers we use a
1156 per-type vector cache, for larger ones we use a single hash table. */
1157
1158 tree
1159 build_int_cst_wide (tree type, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
1160 {
1161 tree t;
1162 int ix = -1;
1163 int limit = 0;
1164
1165 gcc_assert (type);
1166
1167 switch (TREE_CODE (type))
1168 {
1169 case NULLPTR_TYPE:
1170 gcc_assert (hi == 0 && low == 0);
1171 /* Fallthru. */
1172
1173 case POINTER_TYPE:
1174 case REFERENCE_TYPE:
1175 /* Cache NULL pointer. */
1176 if (!hi && !low)
1177 {
1178 limit = 1;
1179 ix = 0;
1180 }
1181 break;
1182
1183 case BOOLEAN_TYPE:
1184 /* Cache false or true. */
1185 limit = 2;
1186 if (!hi && low < 2)
1187 ix = low;
1188 break;
1189
1190 case INTEGER_TYPE:
1191 case OFFSET_TYPE:
1192 if (TYPE_UNSIGNED (type))
1193 {
1194 /* Cache 0..N */
1195 limit = INTEGER_SHARE_LIMIT;
1196 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
1197 ix = low;
1198 }
1199 else
1200 {
1201 /* Cache -1..N */
1202 limit = INTEGER_SHARE_LIMIT + 1;
1203 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
1204 ix = low + 1;
1205 else if (hi == -1 && low == -(unsigned HOST_WIDE_INT)1)
1206 ix = 0;
1207 }
1208 break;
1209
1210 case ENUMERAL_TYPE:
1211 break;
1212
1213 default:
1214 gcc_unreachable ();
1215 }
1216
1217 if (ix >= 0)
1218 {
1219 /* Look for it in the type's vector of small shared ints. */
1220 if (!TYPE_CACHED_VALUES_P (type))
1221 {
1222 TYPE_CACHED_VALUES_P (type) = 1;
1223 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
1224 }
1225
1226 t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix);
1227 if (t)
1228 {
1229 /* Make sure no one is clobbering the shared constant. */
1230 gcc_assert (TREE_TYPE (t) == type);
1231 gcc_assert (TREE_INT_CST_LOW (t) == low);
1232 gcc_assert (TREE_INT_CST_HIGH (t) == hi);
1233 }
1234 else
1235 {
1236 /* Create a new shared int. */
1237 t = make_node (INTEGER_CST);
1238
1239 TREE_INT_CST_LOW (t) = low;
1240 TREE_INT_CST_HIGH (t) = hi;
1241 TREE_TYPE (t) = type;
1242
1243 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
1244 }
1245 }
1246 else
1247 {
1248 /* Use the cache of larger shared ints. */
1249 void **slot;
1250
1251 TREE_INT_CST_LOW (int_cst_node) = low;
1252 TREE_INT_CST_HIGH (int_cst_node) = hi;
1253 TREE_TYPE (int_cst_node) = type;
1254
1255 slot = htab_find_slot (int_cst_hash_table, int_cst_node, INSERT);
1256 t = (tree) *slot;
1257 if (!t)
1258 {
1259 /* Insert this one into the hash table. */
1260 t = int_cst_node;
1261 *slot = t;
1262 /* Make a new node for next time round. */
1263 int_cst_node = make_node (INTEGER_CST);
1264 }
1265 }
1266
1267 return t;
1268 }
1269
1270 void
1271 cache_integer_cst (tree t)
1272 {
1273 tree type = TREE_TYPE (t);
1274 HOST_WIDE_INT hi = TREE_INT_CST_HIGH (t);
1275 unsigned HOST_WIDE_INT low = TREE_INT_CST_LOW (t);
1276 int ix = -1;
1277 int limit = 0;
1278
1279 gcc_assert (!TREE_OVERFLOW (t));
1280
1281 switch (TREE_CODE (type))
1282 {
1283 case NULLPTR_TYPE:
1284 gcc_assert (hi == 0 && low == 0);
1285 /* Fallthru. */
1286
1287 case POINTER_TYPE:
1288 case REFERENCE_TYPE:
1289 /* Cache NULL pointer. */
1290 if (!hi && !low)
1291 {
1292 limit = 1;
1293 ix = 0;
1294 }
1295 break;
1296
1297 case BOOLEAN_TYPE:
1298 /* Cache false or true. */
1299 limit = 2;
1300 if (!hi && low < 2)
1301 ix = low;
1302 break;
1303
1304 case INTEGER_TYPE:
1305 case OFFSET_TYPE:
1306 if (TYPE_UNSIGNED (type))
1307 {
1308 /* Cache 0..N */
1309 limit = INTEGER_SHARE_LIMIT;
1310 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
1311 ix = low;
1312 }
1313 else
1314 {
1315 /* Cache -1..N */
1316 limit = INTEGER_SHARE_LIMIT + 1;
1317 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
1318 ix = low + 1;
1319 else if (hi == -1 && low == -(unsigned HOST_WIDE_INT)1)
1320 ix = 0;
1321 }
1322 break;
1323
1324 case ENUMERAL_TYPE:
1325 break;
1326
1327 default:
1328 gcc_unreachable ();
1329 }
1330
1331 if (ix >= 0)
1332 {
1333 /* Look for it in the type's vector of small shared ints. */
1334 if (!TYPE_CACHED_VALUES_P (type))
1335 {
1336 TYPE_CACHED_VALUES_P (type) = 1;
1337 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
1338 }
1339
1340 gcc_assert (TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) == NULL_TREE);
1341 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
1342 }
1343 else
1344 {
1345 /* Use the cache of larger shared ints. */
1346 void **slot;
1347
1348 slot = htab_find_slot (int_cst_hash_table, t, INSERT);
1349 /* If there is already an entry for the number verify it's the
1350 same. */
1351 if (*slot)
1352 {
1353 gcc_assert (TREE_INT_CST_LOW ((tree)*slot) == low
1354 && TREE_INT_CST_HIGH ((tree)*slot) == hi);
1355 return;
1356 }
1357 /* Otherwise insert this one into the hash table. */
1358 *slot = t;
1359 }
1360 }
1361
1362
1363 /* Builds an integer constant in TYPE such that lowest BITS bits are ones
1364 and the rest are zeros. */
1365
1366 tree
1367 build_low_bits_mask (tree type, unsigned bits)
1368 {
1369 double_int mask;
1370
1371 gcc_assert (bits <= TYPE_PRECISION (type));
1372
1373 if (bits == TYPE_PRECISION (type)
1374 && !TYPE_UNSIGNED (type))
1375 /* Sign extended all-ones mask. */
1376 mask = double_int_minus_one;
1377 else
1378 mask = double_int::mask (bits);
1379
1380 return build_int_cst_wide (type, mask.low, mask.high);
1381 }
1382
1383 /* Checks that X is integer constant that can be expressed in (unsigned)
1384 HOST_WIDE_INT without loss of precision. */
1385
1386 bool
1387 cst_and_fits_in_hwi (const_tree x)
1388 {
1389 if (TREE_CODE (x) != INTEGER_CST)
1390 return false;
1391
1392 if (TYPE_PRECISION (TREE_TYPE (x)) > HOST_BITS_PER_WIDE_INT)
1393 return false;
1394
1395 return (TREE_INT_CST_HIGH (x) == 0
1396 || TREE_INT_CST_HIGH (x) == -1);
1397 }
1398
1399 /* Build a newly constructed TREE_VEC node of length LEN. */
1400
1401 tree
1402 make_vector_stat (unsigned len MEM_STAT_DECL)
1403 {
1404 tree t;
1405 unsigned length = (len - 1) * sizeof (tree) + sizeof (struct tree_vector);
1406
1407 record_node_allocation_statistics (VECTOR_CST, length);
1408
1409 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
1410
1411 TREE_SET_CODE (t, VECTOR_CST);
1412 TREE_CONSTANT (t) = 1;
1413
1414 return t;
1415 }
1416
1417 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1418 are in a list pointed to by VALS. */
1419
1420 tree
1421 build_vector_stat (tree type, tree *vals MEM_STAT_DECL)
1422 {
1423 int over = 0;
1424 unsigned cnt = 0;
1425 tree v = make_vector (TYPE_VECTOR_SUBPARTS (type));
1426 TREE_TYPE (v) = type;
1427
1428 /* Iterate through elements and check for overflow. */
1429 for (cnt = 0; cnt < TYPE_VECTOR_SUBPARTS (type); ++cnt)
1430 {
1431 tree value = vals[cnt];
1432
1433 VECTOR_CST_ELT (v, cnt) = value;
1434
1435 /* Don't crash if we get an address constant. */
1436 if (!CONSTANT_CLASS_P (value))
1437 continue;
1438
1439 over |= TREE_OVERFLOW (value);
1440 }
1441
1442 TREE_OVERFLOW (v) = over;
1443 return v;
1444 }
1445
1446 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1447 are extracted from V, a vector of CONSTRUCTOR_ELT. */
1448
1449 tree
1450 build_vector_from_ctor (tree type, vec<constructor_elt, va_gc> *v)
1451 {
1452 tree *vec = XALLOCAVEC (tree, TYPE_VECTOR_SUBPARTS (type));
1453 unsigned HOST_WIDE_INT idx;
1454 tree value;
1455
1456 FOR_EACH_CONSTRUCTOR_VALUE (v, idx, value)
1457 vec[idx] = value;
1458 for (; idx < TYPE_VECTOR_SUBPARTS (type); ++idx)
1459 vec[idx] = build_zero_cst (TREE_TYPE (type));
1460
1461 return build_vector (type, vec);
1462 }
1463
1464 /* Build a vector of type VECTYPE where all the elements are SCs. */
1465 tree
1466 build_vector_from_val (tree vectype, tree sc)
1467 {
1468 int i, nunits = TYPE_VECTOR_SUBPARTS (vectype);
1469
1470 if (sc == error_mark_node)
1471 return sc;
1472
1473 /* Verify that the vector type is suitable for SC. Note that there
1474 is some inconsistency in the type-system with respect to restrict
1475 qualifications of pointers. Vector types always have a main-variant
1476 element type and the qualification is applied to the vector-type.
1477 So TREE_TYPE (vector-type) does not return a properly qualified
1478 vector element-type. */
1479 gcc_checking_assert (types_compatible_p (TYPE_MAIN_VARIANT (TREE_TYPE (sc)),
1480 TREE_TYPE (vectype)));
1481
1482 if (CONSTANT_CLASS_P (sc))
1483 {
1484 tree *v = XALLOCAVEC (tree, nunits);
1485 for (i = 0; i < nunits; ++i)
1486 v[i] = sc;
1487 return build_vector (vectype, v);
1488 }
1489 else
1490 {
1491 vec<constructor_elt, va_gc> *v;
1492 vec_alloc (v, nunits);
1493 for (i = 0; i < nunits; ++i)
1494 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, sc);
1495 return build_constructor (vectype, v);
1496 }
1497 }
1498
1499 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1500 are in the vec pointed to by VALS. */
1501 tree
1502 build_constructor (tree type, vec<constructor_elt, va_gc> *vals)
1503 {
1504 tree c = make_node (CONSTRUCTOR);
1505 unsigned int i;
1506 constructor_elt *elt;
1507 bool constant_p = true;
1508 bool side_effects_p = false;
1509
1510 TREE_TYPE (c) = type;
1511 CONSTRUCTOR_ELTS (c) = vals;
1512
1513 FOR_EACH_VEC_SAFE_ELT (vals, i, elt)
1514 {
1515 /* Mostly ctors will have elts that don't have side-effects, so
1516 the usual case is to scan all the elements. Hence a single
1517 loop for both const and side effects, rather than one loop
1518 each (with early outs). */
1519 if (!TREE_CONSTANT (elt->value))
1520 constant_p = false;
1521 if (TREE_SIDE_EFFECTS (elt->value))
1522 side_effects_p = true;
1523 }
1524
1525 TREE_SIDE_EFFECTS (c) = side_effects_p;
1526 TREE_CONSTANT (c) = constant_p;
1527
1528 return c;
1529 }
1530
1531 /* Build a CONSTRUCTOR node made of a single initializer, with the specified
1532 INDEX and VALUE. */
1533 tree
1534 build_constructor_single (tree type, tree index, tree value)
1535 {
1536 vec<constructor_elt, va_gc> *v;
1537 constructor_elt elt = {index, value};
1538
1539 vec_alloc (v, 1);
1540 v->quick_push (elt);
1541
1542 return build_constructor (type, v);
1543 }
1544
1545
1546 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1547 are in a list pointed to by VALS. */
1548 tree
1549 build_constructor_from_list (tree type, tree vals)
1550 {
1551 tree t;
1552 vec<constructor_elt, va_gc> *v = NULL;
1553
1554 if (vals)
1555 {
1556 vec_alloc (v, list_length (vals));
1557 for (t = vals; t; t = TREE_CHAIN (t))
1558 CONSTRUCTOR_APPEND_ELT (v, TREE_PURPOSE (t), TREE_VALUE (t));
1559 }
1560
1561 return build_constructor (type, v);
1562 }
1563
1564 /* Return a new CONSTRUCTOR node whose type is TYPE. NELTS is the number
1565 of elements, provided as index/value pairs. */
1566
1567 tree
1568 build_constructor_va (tree type, int nelts, ...)
1569 {
1570 vec<constructor_elt, va_gc> *v = NULL;
1571 va_list p;
1572
1573 va_start (p, nelts);
1574 vec_alloc (v, nelts);
1575 while (nelts--)
1576 {
1577 tree index = va_arg (p, tree);
1578 tree value = va_arg (p, tree);
1579 CONSTRUCTOR_APPEND_ELT (v, index, value);
1580 }
1581 va_end (p);
1582 return build_constructor (type, v);
1583 }
1584
1585 /* Return a new FIXED_CST node whose type is TYPE and value is F. */
1586
1587 tree
1588 build_fixed (tree type, FIXED_VALUE_TYPE f)
1589 {
1590 tree v;
1591 FIXED_VALUE_TYPE *fp;
1592
1593 v = make_node (FIXED_CST);
1594 fp = ggc_alloc_fixed_value ();
1595 memcpy (fp, &f, sizeof (FIXED_VALUE_TYPE));
1596
1597 TREE_TYPE (v) = type;
1598 TREE_FIXED_CST_PTR (v) = fp;
1599 return v;
1600 }
1601
1602 /* Return a new REAL_CST node whose type is TYPE and value is D. */
1603
1604 tree
1605 build_real (tree type, REAL_VALUE_TYPE d)
1606 {
1607 tree v;
1608 REAL_VALUE_TYPE *dp;
1609 int overflow = 0;
1610
1611 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
1612 Consider doing it via real_convert now. */
1613
1614 v = make_node (REAL_CST);
1615 dp = ggc_alloc_real_value ();
1616 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
1617
1618 TREE_TYPE (v) = type;
1619 TREE_REAL_CST_PTR (v) = dp;
1620 TREE_OVERFLOW (v) = overflow;
1621 return v;
1622 }
1623
1624 /* Return a new REAL_CST node whose type is TYPE
1625 and whose value is the integer value of the INTEGER_CST node I. */
1626
1627 REAL_VALUE_TYPE
1628 real_value_from_int_cst (const_tree type, const_tree i)
1629 {
1630 REAL_VALUE_TYPE d;
1631
1632 /* Clear all bits of the real value type so that we can later do
1633 bitwise comparisons to see if two values are the same. */
1634 memset (&d, 0, sizeof d);
1635
1636 real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode,
1637 TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
1638 TYPE_UNSIGNED (TREE_TYPE (i)));
1639 return d;
1640 }
1641
1642 /* Given a tree representing an integer constant I, return a tree
1643 representing the same value as a floating-point constant of type TYPE. */
1644
1645 tree
1646 build_real_from_int_cst (tree type, const_tree i)
1647 {
1648 tree v;
1649 int overflow = TREE_OVERFLOW (i);
1650
1651 v = build_real (type, real_value_from_int_cst (type, i));
1652
1653 TREE_OVERFLOW (v) |= overflow;
1654 return v;
1655 }
1656
1657 /* Return a newly constructed STRING_CST node whose value is
1658 the LEN characters at STR.
1659 Note that for a C string literal, LEN should include the trailing NUL.
1660 The TREE_TYPE is not initialized. */
1661
1662 tree
1663 build_string (int len, const char *str)
1664 {
1665 tree s;
1666 size_t length;
1667
1668 /* Do not waste bytes provided by padding of struct tree_string. */
1669 length = len + offsetof (struct tree_string, str) + 1;
1670
1671 record_node_allocation_statistics (STRING_CST, length);
1672
1673 s = ggc_alloc_tree_node (length);
1674
1675 memset (s, 0, sizeof (struct tree_typed));
1676 TREE_SET_CODE (s, STRING_CST);
1677 TREE_CONSTANT (s) = 1;
1678 TREE_STRING_LENGTH (s) = len;
1679 memcpy (s->string.str, str, len);
1680 s->string.str[len] = '\0';
1681
1682 return s;
1683 }
1684
1685 /* Return a newly constructed COMPLEX_CST node whose value is
1686 specified by the real and imaginary parts REAL and IMAG.
1687 Both REAL and IMAG should be constant nodes. TYPE, if specified,
1688 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
1689
1690 tree
1691 build_complex (tree type, tree real, tree imag)
1692 {
1693 tree t = make_node (COMPLEX_CST);
1694
1695 TREE_REALPART (t) = real;
1696 TREE_IMAGPART (t) = imag;
1697 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
1698 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
1699 return t;
1700 }
1701
1702 /* Return a constant of arithmetic type TYPE which is the
1703 multiplicative identity of the set TYPE. */
1704
1705 tree
1706 build_one_cst (tree type)
1707 {
1708 switch (TREE_CODE (type))
1709 {
1710 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1711 case POINTER_TYPE: case REFERENCE_TYPE:
1712 case OFFSET_TYPE:
1713 return build_int_cst (type, 1);
1714
1715 case REAL_TYPE:
1716 return build_real (type, dconst1);
1717
1718 case FIXED_POINT_TYPE:
1719 /* We can only generate 1 for accum types. */
1720 gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
1721 return build_fixed (type, FCONST1(TYPE_MODE (type)));
1722
1723 case VECTOR_TYPE:
1724 {
1725 tree scalar = build_one_cst (TREE_TYPE (type));
1726
1727 return build_vector_from_val (type, scalar);
1728 }
1729
1730 case COMPLEX_TYPE:
1731 return build_complex (type,
1732 build_one_cst (TREE_TYPE (type)),
1733 build_zero_cst (TREE_TYPE (type)));
1734
1735 default:
1736 gcc_unreachable ();
1737 }
1738 }
1739
1740 /* Return an integer of type TYPE containing all 1's in as much precision as
1741 it contains, or a complex or vector whose subparts are such integers. */
1742
1743 tree
1744 build_all_ones_cst (tree type)
1745 {
1746 if (TREE_CODE (type) == COMPLEX_TYPE)
1747 {
1748 tree scalar = build_all_ones_cst (TREE_TYPE (type));
1749 return build_complex (type, scalar, scalar);
1750 }
1751 else
1752 return build_minus_one_cst (type);
1753 }
1754
1755 /* Return a constant of arithmetic type TYPE which is the
1756 opposite of the multiplicative identity of the set TYPE. */
1757
1758 tree
1759 build_minus_one_cst (tree type)
1760 {
1761 switch (TREE_CODE (type))
1762 {
1763 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1764 case POINTER_TYPE: case REFERENCE_TYPE:
1765 case OFFSET_TYPE:
1766 return build_int_cst (type, -1);
1767
1768 case REAL_TYPE:
1769 return build_real (type, dconstm1);
1770
1771 case FIXED_POINT_TYPE:
1772 /* We can only generate 1 for accum types. */
1773 gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
1774 return build_fixed (type, fixed_from_double_int (double_int_minus_one,
1775 TYPE_MODE (type)));
1776
1777 case VECTOR_TYPE:
1778 {
1779 tree scalar = build_minus_one_cst (TREE_TYPE (type));
1780
1781 return build_vector_from_val (type, scalar);
1782 }
1783
1784 case COMPLEX_TYPE:
1785 return build_complex (type,
1786 build_minus_one_cst (TREE_TYPE (type)),
1787 build_zero_cst (TREE_TYPE (type)));
1788
1789 default:
1790 gcc_unreachable ();
1791 }
1792 }
1793
1794 /* Build 0 constant of type TYPE. This is used by constructor folding
1795 and thus the constant should be represented in memory by
1796 zero(es). */
1797
1798 tree
1799 build_zero_cst (tree type)
1800 {
1801 switch (TREE_CODE (type))
1802 {
1803 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1804 case POINTER_TYPE: case REFERENCE_TYPE:
1805 case OFFSET_TYPE: case NULLPTR_TYPE:
1806 return build_int_cst (type, 0);
1807
1808 case REAL_TYPE:
1809 return build_real (type, dconst0);
1810
1811 case FIXED_POINT_TYPE:
1812 return build_fixed (type, FCONST0 (TYPE_MODE (type)));
1813
1814 case VECTOR_TYPE:
1815 {
1816 tree scalar = build_zero_cst (TREE_TYPE (type));
1817
1818 return build_vector_from_val (type, scalar);
1819 }
1820
1821 case COMPLEX_TYPE:
1822 {
1823 tree zero = build_zero_cst (TREE_TYPE (type));
1824
1825 return build_complex (type, zero, zero);
1826 }
1827
1828 default:
1829 if (!AGGREGATE_TYPE_P (type))
1830 return fold_convert (type, integer_zero_node);
1831 return build_constructor (type, NULL);
1832 }
1833 }
1834
1835
1836 /* Build a BINFO with LEN language slots. */
1837
1838 tree
1839 make_tree_binfo_stat (unsigned base_binfos MEM_STAT_DECL)
1840 {
1841 tree t;
1842 size_t length = (offsetof (struct tree_binfo, base_binfos)
1843 + vec<tree, va_gc>::embedded_size (base_binfos));
1844
1845 record_node_allocation_statistics (TREE_BINFO, length);
1846
1847 t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
1848
1849 memset (t, 0, offsetof (struct tree_binfo, base_binfos));
1850
1851 TREE_SET_CODE (t, TREE_BINFO);
1852
1853 BINFO_BASE_BINFOS (t)->embedded_init (base_binfos);
1854
1855 return t;
1856 }
1857
1858 /* Create a CASE_LABEL_EXPR tree node and return it. */
1859
1860 tree
1861 build_case_label (tree low_value, tree high_value, tree label_decl)
1862 {
1863 tree t = make_node (CASE_LABEL_EXPR);
1864
1865 TREE_TYPE (t) = void_type_node;
1866 SET_EXPR_LOCATION (t, DECL_SOURCE_LOCATION (label_decl));
1867
1868 CASE_LOW (t) = low_value;
1869 CASE_HIGH (t) = high_value;
1870 CASE_LABEL (t) = label_decl;
1871 CASE_CHAIN (t) = NULL_TREE;
1872
1873 return t;
1874 }
1875
1876 /* Build a newly constructed TREE_VEC node of length LEN. */
1877
1878 tree
1879 make_tree_vec_stat (int len MEM_STAT_DECL)
1880 {
1881 tree t;
1882 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
1883
1884 record_node_allocation_statistics (TREE_VEC, length);
1885
1886 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
1887
1888 TREE_SET_CODE (t, TREE_VEC);
1889 TREE_VEC_LENGTH (t) = len;
1890
1891 return t;
1892 }
1893 \f
1894 /* Return 1 if EXPR is the integer constant zero or a complex constant
1895 of zero. */
1896
1897 int
1898 integer_zerop (const_tree expr)
1899 {
1900 STRIP_NOPS (expr);
1901
1902 switch (TREE_CODE (expr))
1903 {
1904 case INTEGER_CST:
1905 return (TREE_INT_CST_LOW (expr) == 0
1906 && TREE_INT_CST_HIGH (expr) == 0);
1907 case COMPLEX_CST:
1908 return (integer_zerop (TREE_REALPART (expr))
1909 && integer_zerop (TREE_IMAGPART (expr)));
1910 case VECTOR_CST:
1911 {
1912 unsigned i;
1913 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
1914 if (!integer_zerop (VECTOR_CST_ELT (expr, i)))
1915 return false;
1916 return true;
1917 }
1918 default:
1919 return false;
1920 }
1921 }
1922
1923 /* Return 1 if EXPR is the integer constant one or the corresponding
1924 complex constant. */
1925
1926 int
1927 integer_onep (const_tree expr)
1928 {
1929 STRIP_NOPS (expr);
1930
1931 switch (TREE_CODE (expr))
1932 {
1933 case INTEGER_CST:
1934 return (TREE_INT_CST_LOW (expr) == 1
1935 && TREE_INT_CST_HIGH (expr) == 0);
1936 case COMPLEX_CST:
1937 return (integer_onep (TREE_REALPART (expr))
1938 && integer_zerop (TREE_IMAGPART (expr)));
1939 case VECTOR_CST:
1940 {
1941 unsigned i;
1942 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
1943 if (!integer_onep (VECTOR_CST_ELT (expr, i)))
1944 return false;
1945 return true;
1946 }
1947 default:
1948 return false;
1949 }
1950 }
1951
1952 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
1953 it contains, or a complex or vector whose subparts are such integers. */
1954
1955 int
1956 integer_all_onesp (const_tree expr)
1957 {
1958 int prec;
1959 int uns;
1960
1961 STRIP_NOPS (expr);
1962
1963 if (TREE_CODE (expr) == COMPLEX_CST
1964 && integer_all_onesp (TREE_REALPART (expr))
1965 && integer_all_onesp (TREE_IMAGPART (expr)))
1966 return 1;
1967
1968 else if (TREE_CODE (expr) == VECTOR_CST)
1969 {
1970 unsigned i;
1971 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
1972 if (!integer_all_onesp (VECTOR_CST_ELT (expr, i)))
1973 return 0;
1974 return 1;
1975 }
1976
1977 else if (TREE_CODE (expr) != INTEGER_CST)
1978 return 0;
1979
1980 uns = TYPE_UNSIGNED (TREE_TYPE (expr));
1981 if (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1982 && TREE_INT_CST_HIGH (expr) == -1)
1983 return 1;
1984 if (!uns)
1985 return 0;
1986
1987 prec = TYPE_PRECISION (TREE_TYPE (expr));
1988 if (prec >= HOST_BITS_PER_WIDE_INT)
1989 {
1990 HOST_WIDE_INT high_value;
1991 int shift_amount;
1992
1993 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
1994
1995 /* Can not handle precisions greater than twice the host int size. */
1996 gcc_assert (shift_amount <= HOST_BITS_PER_WIDE_INT);
1997 if (shift_amount == HOST_BITS_PER_WIDE_INT)
1998 /* Shifting by the host word size is undefined according to the ANSI
1999 standard, so we must handle this as a special case. */
2000 high_value = -1;
2001 else
2002 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
2003
2004 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
2005 && TREE_INT_CST_HIGH (expr) == high_value);
2006 }
2007 else
2008 return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
2009 }
2010
2011 /* Return 1 if EXPR is the integer constant minus one. */
2012
2013 int
2014 integer_minus_onep (const_tree expr)
2015 {
2016 STRIP_NOPS (expr);
2017
2018 if (TREE_CODE (expr) == COMPLEX_CST)
2019 return (integer_all_onesp (TREE_REALPART (expr))
2020 && integer_zerop (TREE_IMAGPART (expr)));
2021 else
2022 return integer_all_onesp (expr);
2023 }
2024
2025 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
2026 one bit on). */
2027
2028 int
2029 integer_pow2p (const_tree expr)
2030 {
2031 int prec;
2032 unsigned HOST_WIDE_INT high, low;
2033
2034 STRIP_NOPS (expr);
2035
2036 if (TREE_CODE (expr) == COMPLEX_CST
2037 && integer_pow2p (TREE_REALPART (expr))
2038 && integer_zerop (TREE_IMAGPART (expr)))
2039 return 1;
2040
2041 if (TREE_CODE (expr) != INTEGER_CST)
2042 return 0;
2043
2044 prec = TYPE_PRECISION (TREE_TYPE (expr));
2045 high = TREE_INT_CST_HIGH (expr);
2046 low = TREE_INT_CST_LOW (expr);
2047
2048 /* First clear all bits that are beyond the type's precision in case
2049 we've been sign extended. */
2050
2051 if (prec == HOST_BITS_PER_DOUBLE_INT)
2052 ;
2053 else if (prec > HOST_BITS_PER_WIDE_INT)
2054 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
2055 else
2056 {
2057 high = 0;
2058 if (prec < HOST_BITS_PER_WIDE_INT)
2059 low &= ~((HOST_WIDE_INT) (-1) << prec);
2060 }
2061
2062 if (high == 0 && low == 0)
2063 return 0;
2064
2065 return ((high == 0 && (low & (low - 1)) == 0)
2066 || (low == 0 && (high & (high - 1)) == 0));
2067 }
2068
2069 /* Return 1 if EXPR is an integer constant other than zero or a
2070 complex constant other than zero. */
2071
2072 int
2073 integer_nonzerop (const_tree expr)
2074 {
2075 STRIP_NOPS (expr);
2076
2077 return ((TREE_CODE (expr) == INTEGER_CST
2078 && (TREE_INT_CST_LOW (expr) != 0
2079 || TREE_INT_CST_HIGH (expr) != 0))
2080 || (TREE_CODE (expr) == COMPLEX_CST
2081 && (integer_nonzerop (TREE_REALPART (expr))
2082 || integer_nonzerop (TREE_IMAGPART (expr)))));
2083 }
2084
2085 /* Return 1 if EXPR is the fixed-point constant zero. */
2086
2087 int
2088 fixed_zerop (const_tree expr)
2089 {
2090 return (TREE_CODE (expr) == FIXED_CST
2091 && TREE_FIXED_CST (expr).data.is_zero ());
2092 }
2093
2094 /* Return the power of two represented by a tree node known to be a
2095 power of two. */
2096
2097 int
2098 tree_log2 (const_tree expr)
2099 {
2100 int prec;
2101 HOST_WIDE_INT high, low;
2102
2103 STRIP_NOPS (expr);
2104
2105 if (TREE_CODE (expr) == COMPLEX_CST)
2106 return tree_log2 (TREE_REALPART (expr));
2107
2108 prec = TYPE_PRECISION (TREE_TYPE (expr));
2109 high = TREE_INT_CST_HIGH (expr);
2110 low = TREE_INT_CST_LOW (expr);
2111
2112 /* First clear all bits that are beyond the type's precision in case
2113 we've been sign extended. */
2114
2115 if (prec == HOST_BITS_PER_DOUBLE_INT)
2116 ;
2117 else if (prec > HOST_BITS_PER_WIDE_INT)
2118 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
2119 else
2120 {
2121 high = 0;
2122 if (prec < HOST_BITS_PER_WIDE_INT)
2123 low &= ~((HOST_WIDE_INT) (-1) << prec);
2124 }
2125
2126 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
2127 : exact_log2 (low));
2128 }
2129
2130 /* Similar, but return the largest integer Y such that 2 ** Y is less
2131 than or equal to EXPR. */
2132
2133 int
2134 tree_floor_log2 (const_tree expr)
2135 {
2136 int prec;
2137 HOST_WIDE_INT high, low;
2138
2139 STRIP_NOPS (expr);
2140
2141 if (TREE_CODE (expr) == COMPLEX_CST)
2142 return tree_log2 (TREE_REALPART (expr));
2143
2144 prec = TYPE_PRECISION (TREE_TYPE (expr));
2145 high = TREE_INT_CST_HIGH (expr);
2146 low = TREE_INT_CST_LOW (expr);
2147
2148 /* First clear all bits that are beyond the type's precision in case
2149 we've been sign extended. Ignore if type's precision hasn't been set
2150 since what we are doing is setting it. */
2151
2152 if (prec == HOST_BITS_PER_DOUBLE_INT || prec == 0)
2153 ;
2154 else if (prec > HOST_BITS_PER_WIDE_INT)
2155 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
2156 else
2157 {
2158 high = 0;
2159 if (prec < HOST_BITS_PER_WIDE_INT)
2160 low &= ~((HOST_WIDE_INT) (-1) << prec);
2161 }
2162
2163 return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
2164 : floor_log2 (low));
2165 }
2166
2167 /* Return 1 if EXPR is the real constant zero. Trailing zeroes matter for
2168 decimal float constants, so don't return 1 for them. */
2169
2170 int
2171 real_zerop (const_tree expr)
2172 {
2173 STRIP_NOPS (expr);
2174
2175 switch (TREE_CODE (expr))
2176 {
2177 case REAL_CST:
2178 return REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0)
2179 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2180 case COMPLEX_CST:
2181 return real_zerop (TREE_REALPART (expr))
2182 && real_zerop (TREE_IMAGPART (expr));
2183 case VECTOR_CST:
2184 {
2185 unsigned i;
2186 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
2187 if (!real_zerop (VECTOR_CST_ELT (expr, i)))
2188 return false;
2189 return true;
2190 }
2191 default:
2192 return false;
2193 }
2194 }
2195
2196 /* Return 1 if EXPR is the real constant one in real or complex form.
2197 Trailing zeroes matter for decimal float constants, so don't return
2198 1 for them. */
2199
2200 int
2201 real_onep (const_tree expr)
2202 {
2203 STRIP_NOPS (expr);
2204
2205 switch (TREE_CODE (expr))
2206 {
2207 case REAL_CST:
2208 return REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1)
2209 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2210 case COMPLEX_CST:
2211 return real_onep (TREE_REALPART (expr))
2212 && real_zerop (TREE_IMAGPART (expr));
2213 case VECTOR_CST:
2214 {
2215 unsigned i;
2216 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
2217 if (!real_onep (VECTOR_CST_ELT (expr, i)))
2218 return false;
2219 return true;
2220 }
2221 default:
2222 return false;
2223 }
2224 }
2225
2226 /* Return 1 if EXPR is the real constant two. Trailing zeroes matter
2227 for decimal float constants, so don't return 1 for them. */
2228
2229 int
2230 real_twop (const_tree expr)
2231 {
2232 STRIP_NOPS (expr);
2233
2234 switch (TREE_CODE (expr))
2235 {
2236 case REAL_CST:
2237 return REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2)
2238 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2239 case COMPLEX_CST:
2240 return real_twop (TREE_REALPART (expr))
2241 && real_zerop (TREE_IMAGPART (expr));
2242 case VECTOR_CST:
2243 {
2244 unsigned i;
2245 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
2246 if (!real_twop (VECTOR_CST_ELT (expr, i)))
2247 return false;
2248 return true;
2249 }
2250 default:
2251 return false;
2252 }
2253 }
2254
2255 /* Return 1 if EXPR is the real constant minus one. Trailing zeroes
2256 matter for decimal float constants, so don't return 1 for them. */
2257
2258 int
2259 real_minus_onep (const_tree expr)
2260 {
2261 STRIP_NOPS (expr);
2262
2263 switch (TREE_CODE (expr))
2264 {
2265 case REAL_CST:
2266 return REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconstm1)
2267 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2268 case COMPLEX_CST:
2269 return real_minus_onep (TREE_REALPART (expr))
2270 && real_zerop (TREE_IMAGPART (expr));
2271 case VECTOR_CST:
2272 {
2273 unsigned i;
2274 for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
2275 if (!real_minus_onep (VECTOR_CST_ELT (expr, i)))
2276 return false;
2277 return true;
2278 }
2279 default:
2280 return false;
2281 }
2282 }
2283
2284 /* Nonzero if EXP is a constant or a cast of a constant. */
2285
2286 int
2287 really_constant_p (const_tree exp)
2288 {
2289 /* This is not quite the same as STRIP_NOPS. It does more. */
2290 while (CONVERT_EXPR_P (exp)
2291 || TREE_CODE (exp) == NON_LVALUE_EXPR)
2292 exp = TREE_OPERAND (exp, 0);
2293 return TREE_CONSTANT (exp);
2294 }
2295 \f
2296 /* Return first list element whose TREE_VALUE is ELEM.
2297 Return 0 if ELEM is not in LIST. */
2298
2299 tree
2300 value_member (tree elem, tree list)
2301 {
2302 while (list)
2303 {
2304 if (elem == TREE_VALUE (list))
2305 return list;
2306 list = TREE_CHAIN (list);
2307 }
2308 return NULL_TREE;
2309 }
2310
2311 /* Return first list element whose TREE_PURPOSE is ELEM.
2312 Return 0 if ELEM is not in LIST. */
2313
2314 tree
2315 purpose_member (const_tree elem, tree list)
2316 {
2317 while (list)
2318 {
2319 if (elem == TREE_PURPOSE (list))
2320 return list;
2321 list = TREE_CHAIN (list);
2322 }
2323 return NULL_TREE;
2324 }
2325
2326 /* Return true if ELEM is in V. */
2327
2328 bool
2329 vec_member (const_tree elem, vec<tree, va_gc> *v)
2330 {
2331 unsigned ix;
2332 tree t;
2333 FOR_EACH_VEC_SAFE_ELT (v, ix, t)
2334 if (elem == t)
2335 return true;
2336 return false;
2337 }
2338
2339 /* Returns element number IDX (zero-origin) of chain CHAIN, or
2340 NULL_TREE. */
2341
2342 tree
2343 chain_index (int idx, tree chain)
2344 {
2345 for (; chain && idx > 0; --idx)
2346 chain = TREE_CHAIN (chain);
2347 return chain;
2348 }
2349
2350 /* Return nonzero if ELEM is part of the chain CHAIN. */
2351
2352 int
2353 chain_member (const_tree elem, const_tree chain)
2354 {
2355 while (chain)
2356 {
2357 if (elem == chain)
2358 return 1;
2359 chain = DECL_CHAIN (chain);
2360 }
2361
2362 return 0;
2363 }
2364
2365 /* Return the length of a chain of nodes chained through TREE_CHAIN.
2366 We expect a null pointer to mark the end of the chain.
2367 This is the Lisp primitive `length'. */
2368
2369 int
2370 list_length (const_tree t)
2371 {
2372 const_tree p = t;
2373 #ifdef ENABLE_TREE_CHECKING
2374 const_tree q = t;
2375 #endif
2376 int len = 0;
2377
2378 while (p)
2379 {
2380 p = TREE_CHAIN (p);
2381 #ifdef ENABLE_TREE_CHECKING
2382 if (len % 2)
2383 q = TREE_CHAIN (q);
2384 gcc_assert (p != q);
2385 #endif
2386 len++;
2387 }
2388
2389 return len;
2390 }
2391
2392 /* Returns the number of FIELD_DECLs in TYPE. */
2393
2394 int
2395 fields_length (const_tree type)
2396 {
2397 tree t = TYPE_FIELDS (type);
2398 int count = 0;
2399
2400 for (; t; t = DECL_CHAIN (t))
2401 if (TREE_CODE (t) == FIELD_DECL)
2402 ++count;
2403
2404 return count;
2405 }
2406
2407 /* Returns the first FIELD_DECL in the TYPE_FIELDS of the RECORD_TYPE or
2408 UNION_TYPE TYPE, or NULL_TREE if none. */
2409
2410 tree
2411 first_field (const_tree type)
2412 {
2413 tree t = TYPE_FIELDS (type);
2414 while (t && TREE_CODE (t) != FIELD_DECL)
2415 t = TREE_CHAIN (t);
2416 return t;
2417 }
2418
2419 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
2420 by modifying the last node in chain 1 to point to chain 2.
2421 This is the Lisp primitive `nconc'. */
2422
2423 tree
2424 chainon (tree op1, tree op2)
2425 {
2426 tree t1;
2427
2428 if (!op1)
2429 return op2;
2430 if (!op2)
2431 return op1;
2432
2433 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
2434 continue;
2435 TREE_CHAIN (t1) = op2;
2436
2437 #ifdef ENABLE_TREE_CHECKING
2438 {
2439 tree t2;
2440 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
2441 gcc_assert (t2 != t1);
2442 }
2443 #endif
2444
2445 return op1;
2446 }
2447
2448 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
2449
2450 tree
2451 tree_last (tree chain)
2452 {
2453 tree next;
2454 if (chain)
2455 while ((next = TREE_CHAIN (chain)))
2456 chain = next;
2457 return chain;
2458 }
2459
2460 /* Reverse the order of elements in the chain T,
2461 and return the new head of the chain (old last element). */
2462
2463 tree
2464 nreverse (tree t)
2465 {
2466 tree prev = 0, decl, next;
2467 for (decl = t; decl; decl = next)
2468 {
2469 /* We shouldn't be using this function to reverse BLOCK chains; we
2470 have blocks_nreverse for that. */
2471 gcc_checking_assert (TREE_CODE (decl) != BLOCK);
2472 next = TREE_CHAIN (decl);
2473 TREE_CHAIN (decl) = prev;
2474 prev = decl;
2475 }
2476 return prev;
2477 }
2478 \f
2479 /* Return a newly created TREE_LIST node whose
2480 purpose and value fields are PARM and VALUE. */
2481
2482 tree
2483 build_tree_list_stat (tree parm, tree value MEM_STAT_DECL)
2484 {
2485 tree t = make_node_stat (TREE_LIST PASS_MEM_STAT);
2486 TREE_PURPOSE (t) = parm;
2487 TREE_VALUE (t) = value;
2488 return t;
2489 }
2490
2491 /* Build a chain of TREE_LIST nodes from a vector. */
2492
2493 tree
2494 build_tree_list_vec_stat (const vec<tree, va_gc> *vec MEM_STAT_DECL)
2495 {
2496 tree ret = NULL_TREE;
2497 tree *pp = &ret;
2498 unsigned int i;
2499 tree t;
2500 FOR_EACH_VEC_SAFE_ELT (vec, i, t)
2501 {
2502 *pp = build_tree_list_stat (NULL, t PASS_MEM_STAT);
2503 pp = &TREE_CHAIN (*pp);
2504 }
2505 return ret;
2506 }
2507
2508 /* Return a newly created TREE_LIST node whose
2509 purpose and value fields are PURPOSE and VALUE
2510 and whose TREE_CHAIN is CHAIN. */
2511
2512 tree
2513 tree_cons_stat (tree purpose, tree value, tree chain MEM_STAT_DECL)
2514 {
2515 tree node;
2516
2517 node = ggc_alloc_tree_node_stat (sizeof (struct tree_list) PASS_MEM_STAT);
2518 memset (node, 0, sizeof (struct tree_common));
2519
2520 record_node_allocation_statistics (TREE_LIST, sizeof (struct tree_list));
2521
2522 TREE_SET_CODE (node, TREE_LIST);
2523 TREE_CHAIN (node) = chain;
2524 TREE_PURPOSE (node) = purpose;
2525 TREE_VALUE (node) = value;
2526 return node;
2527 }
2528
2529 /* Return the values of the elements of a CONSTRUCTOR as a vector of
2530 trees. */
2531
2532 vec<tree, va_gc> *
2533 ctor_to_vec (tree ctor)
2534 {
2535 vec<tree, va_gc> *vec;
2536 vec_alloc (vec, CONSTRUCTOR_NELTS (ctor));
2537 unsigned int ix;
2538 tree val;
2539
2540 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (ctor), ix, val)
2541 vec->quick_push (val);
2542
2543 return vec;
2544 }
2545 \f
2546 /* Return the size nominally occupied by an object of type TYPE
2547 when it resides in memory. The value is measured in units of bytes,
2548 and its data type is that normally used for type sizes
2549 (which is the first type created by make_signed_type or
2550 make_unsigned_type). */
2551
2552 tree
2553 size_in_bytes (const_tree type)
2554 {
2555 tree t;
2556
2557 if (type == error_mark_node)
2558 return integer_zero_node;
2559
2560 type = TYPE_MAIN_VARIANT (type);
2561 t = TYPE_SIZE_UNIT (type);
2562
2563 if (t == 0)
2564 {
2565 lang_hooks.types.incomplete_type_error (NULL_TREE, type);
2566 return size_zero_node;
2567 }
2568
2569 return t;
2570 }
2571
2572 /* Return the size of TYPE (in bytes) as a wide integer
2573 or return -1 if the size can vary or is larger than an integer. */
2574
2575 HOST_WIDE_INT
2576 int_size_in_bytes (const_tree type)
2577 {
2578 tree t;
2579
2580 if (type == error_mark_node)
2581 return 0;
2582
2583 type = TYPE_MAIN_VARIANT (type);
2584 t = TYPE_SIZE_UNIT (type);
2585 if (t == 0
2586 || TREE_CODE (t) != INTEGER_CST
2587 || TREE_INT_CST_HIGH (t) != 0
2588 /* If the result would appear negative, it's too big to represent. */
2589 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
2590 return -1;
2591
2592 return TREE_INT_CST_LOW (t);
2593 }
2594
2595 /* Return the maximum size of TYPE (in bytes) as a wide integer
2596 or return -1 if the size can vary or is larger than an integer. */
2597
2598 HOST_WIDE_INT
2599 max_int_size_in_bytes (const_tree type)
2600 {
2601 HOST_WIDE_INT size = -1;
2602 tree size_tree;
2603
2604 /* If this is an array type, check for a possible MAX_SIZE attached. */
2605
2606 if (TREE_CODE (type) == ARRAY_TYPE)
2607 {
2608 size_tree = TYPE_ARRAY_MAX_SIZE (type);
2609
2610 if (size_tree && host_integerp (size_tree, 1))
2611 size = tree_low_cst (size_tree, 1);
2612 }
2613
2614 /* If we still haven't been able to get a size, see if the language
2615 can compute a maximum size. */
2616
2617 if (size == -1)
2618 {
2619 size_tree = lang_hooks.types.max_size (type);
2620
2621 if (size_tree && host_integerp (size_tree, 1))
2622 size = tree_low_cst (size_tree, 1);
2623 }
2624
2625 return size;
2626 }
2627
2628 /* Returns a tree for the size of EXP in bytes. */
2629
2630 tree
2631 tree_expr_size (const_tree exp)
2632 {
2633 if (DECL_P (exp)
2634 && DECL_SIZE_UNIT (exp) != 0)
2635 return DECL_SIZE_UNIT (exp);
2636 else
2637 return size_in_bytes (TREE_TYPE (exp));
2638 }
2639 \f
2640 /* Return the bit position of FIELD, in bits from the start of the record.
2641 This is a tree of type bitsizetype. */
2642
2643 tree
2644 bit_position (const_tree field)
2645 {
2646 return bit_from_pos (DECL_FIELD_OFFSET (field),
2647 DECL_FIELD_BIT_OFFSET (field));
2648 }
2649
2650 /* Likewise, but return as an integer. It must be representable in
2651 that way (since it could be a signed value, we don't have the
2652 option of returning -1 like int_size_in_byte can. */
2653
2654 HOST_WIDE_INT
2655 int_bit_position (const_tree field)
2656 {
2657 return tree_low_cst (bit_position (field), 0);
2658 }
2659 \f
2660 /* Return the byte position of FIELD, in bytes from the start of the record.
2661 This is a tree of type sizetype. */
2662
2663 tree
2664 byte_position (const_tree field)
2665 {
2666 return byte_from_pos (DECL_FIELD_OFFSET (field),
2667 DECL_FIELD_BIT_OFFSET (field));
2668 }
2669
2670 /* Likewise, but return as an integer. It must be representable in
2671 that way (since it could be a signed value, we don't have the
2672 option of returning -1 like int_size_in_byte can. */
2673
2674 HOST_WIDE_INT
2675 int_byte_position (const_tree field)
2676 {
2677 return tree_low_cst (byte_position (field), 0);
2678 }
2679 \f
2680 /* Return the strictest alignment, in bits, that T is known to have. */
2681
2682 unsigned int
2683 expr_align (const_tree t)
2684 {
2685 unsigned int align0, align1;
2686
2687 switch (TREE_CODE (t))
2688 {
2689 CASE_CONVERT: case NON_LVALUE_EXPR:
2690 /* If we have conversions, we know that the alignment of the
2691 object must meet each of the alignments of the types. */
2692 align0 = expr_align (TREE_OPERAND (t, 0));
2693 align1 = TYPE_ALIGN (TREE_TYPE (t));
2694 return MAX (align0, align1);
2695
2696 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
2697 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
2698 case CLEANUP_POINT_EXPR:
2699 /* These don't change the alignment of an object. */
2700 return expr_align (TREE_OPERAND (t, 0));
2701
2702 case COND_EXPR:
2703 /* The best we can do is say that the alignment is the least aligned
2704 of the two arms. */
2705 align0 = expr_align (TREE_OPERAND (t, 1));
2706 align1 = expr_align (TREE_OPERAND (t, 2));
2707 return MIN (align0, align1);
2708
2709 /* FIXME: LABEL_DECL and CONST_DECL never have DECL_ALIGN set
2710 meaningfully, it's always 1. */
2711 case LABEL_DECL: case CONST_DECL:
2712 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
2713 case FUNCTION_DECL:
2714 gcc_assert (DECL_ALIGN (t) != 0);
2715 return DECL_ALIGN (t);
2716
2717 default:
2718 break;
2719 }
2720
2721 /* Otherwise take the alignment from that of the type. */
2722 return TYPE_ALIGN (TREE_TYPE (t));
2723 }
2724 \f
2725 /* Return, as a tree node, the number of elements for TYPE (which is an
2726 ARRAY_TYPE) minus one. This counts only elements of the top array. */
2727
2728 tree
2729 array_type_nelts (const_tree type)
2730 {
2731 tree index_type, min, max;
2732
2733 /* If they did it with unspecified bounds, then we should have already
2734 given an error about it before we got here. */
2735 if (! TYPE_DOMAIN (type))
2736 return error_mark_node;
2737
2738 index_type = TYPE_DOMAIN (type);
2739 min = TYPE_MIN_VALUE (index_type);
2740 max = TYPE_MAX_VALUE (index_type);
2741
2742 /* TYPE_MAX_VALUE may not be set if the array has unknown length. */
2743 if (!max)
2744 return error_mark_node;
2745
2746 return (integer_zerop (min)
2747 ? max
2748 : fold_build2 (MINUS_EXPR, TREE_TYPE (max), max, min));
2749 }
2750 \f
2751 /* If arg is static -- a reference to an object in static storage -- then
2752 return the object. This is not the same as the C meaning of `static'.
2753 If arg isn't static, return NULL. */
2754
2755 tree
2756 staticp (tree arg)
2757 {
2758 switch (TREE_CODE (arg))
2759 {
2760 case FUNCTION_DECL:
2761 /* Nested functions are static, even though taking their address will
2762 involve a trampoline as we unnest the nested function and create
2763 the trampoline on the tree level. */
2764 return arg;
2765
2766 case VAR_DECL:
2767 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2768 && ! DECL_THREAD_LOCAL_P (arg)
2769 && ! DECL_DLLIMPORT_P (arg)
2770 ? arg : NULL);
2771
2772 case CONST_DECL:
2773 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2774 ? arg : NULL);
2775
2776 case CONSTRUCTOR:
2777 return TREE_STATIC (arg) ? arg : NULL;
2778
2779 case LABEL_DECL:
2780 case STRING_CST:
2781 return arg;
2782
2783 case COMPONENT_REF:
2784 /* If the thing being referenced is not a field, then it is
2785 something language specific. */
2786 gcc_assert (TREE_CODE (TREE_OPERAND (arg, 1)) == FIELD_DECL);
2787
2788 /* If we are referencing a bitfield, we can't evaluate an
2789 ADDR_EXPR at compile time and so it isn't a constant. */
2790 if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
2791 return NULL;
2792
2793 return staticp (TREE_OPERAND (arg, 0));
2794
2795 case BIT_FIELD_REF:
2796 return NULL;
2797
2798 case INDIRECT_REF:
2799 return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;
2800
2801 case ARRAY_REF:
2802 case ARRAY_RANGE_REF:
2803 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
2804 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
2805 return staticp (TREE_OPERAND (arg, 0));
2806 else
2807 return NULL;
2808
2809 case COMPOUND_LITERAL_EXPR:
2810 return TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (arg)) ? arg : NULL;
2811
2812 default:
2813 return NULL;
2814 }
2815 }
2816
2817 \f
2818
2819
2820 /* Return whether OP is a DECL whose address is function-invariant. */
2821
2822 bool
2823 decl_address_invariant_p (const_tree op)
2824 {
2825 /* The conditions below are slightly less strict than the one in
2826 staticp. */
2827
2828 switch (TREE_CODE (op))
2829 {
2830 case PARM_DECL:
2831 case RESULT_DECL:
2832 case LABEL_DECL:
2833 case FUNCTION_DECL:
2834 return true;
2835
2836 case VAR_DECL:
2837 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
2838 || DECL_THREAD_LOCAL_P (op)
2839 || DECL_CONTEXT (op) == current_function_decl
2840 || decl_function_context (op) == current_function_decl)
2841 return true;
2842 break;
2843
2844 case CONST_DECL:
2845 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
2846 || decl_function_context (op) == current_function_decl)
2847 return true;
2848 break;
2849
2850 default:
2851 break;
2852 }
2853
2854 return false;
2855 }
2856
2857 /* Return whether OP is a DECL whose address is interprocedural-invariant. */
2858
2859 bool
2860 decl_address_ip_invariant_p (const_tree op)
2861 {
2862 /* The conditions below are slightly less strict than the one in
2863 staticp. */
2864
2865 switch (TREE_CODE (op))
2866 {
2867 case LABEL_DECL:
2868 case FUNCTION_DECL:
2869 case STRING_CST:
2870 return true;
2871
2872 case VAR_DECL:
2873 if (((TREE_STATIC (op) || DECL_EXTERNAL (op))
2874 && !DECL_DLLIMPORT_P (op))
2875 || DECL_THREAD_LOCAL_P (op))
2876 return true;
2877 break;
2878
2879 case CONST_DECL:
2880 if ((TREE_STATIC (op) || DECL_EXTERNAL (op)))
2881 return true;
2882 break;
2883
2884 default:
2885 break;
2886 }
2887
2888 return false;
2889 }
2890
2891
2892 /* Return true if T is function-invariant (internal function, does
2893 not handle arithmetic; that's handled in skip_simple_arithmetic and
2894 tree_invariant_p). */
2895
2896 static bool tree_invariant_p (tree t);
2897
2898 static bool
2899 tree_invariant_p_1 (tree t)
2900 {
2901 tree op;
2902
2903 if (TREE_CONSTANT (t)
2904 || (TREE_READONLY (t) && !TREE_SIDE_EFFECTS (t)))
2905 return true;
2906
2907 switch (TREE_CODE (t))
2908 {
2909 case SAVE_EXPR:
2910 return true;
2911
2912 case ADDR_EXPR:
2913 op = TREE_OPERAND (t, 0);
2914 while (handled_component_p (op))
2915 {
2916 switch (TREE_CODE (op))
2917 {
2918 case ARRAY_REF:
2919 case ARRAY_RANGE_REF:
2920 if (!tree_invariant_p (TREE_OPERAND (op, 1))
2921 || TREE_OPERAND (op, 2) != NULL_TREE
2922 || TREE_OPERAND (op, 3) != NULL_TREE)
2923 return false;
2924 break;
2925
2926 case COMPONENT_REF:
2927 if (TREE_OPERAND (op, 2) != NULL_TREE)
2928 return false;
2929 break;
2930
2931 default:;
2932 }
2933 op = TREE_OPERAND (op, 0);
2934 }
2935
2936 return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
2937
2938 default:
2939 break;
2940 }
2941
2942 return false;
2943 }
2944
2945 /* Return true if T is function-invariant. */
2946
2947 static bool
2948 tree_invariant_p (tree t)
2949 {
2950 tree inner = skip_simple_arithmetic (t);
2951 return tree_invariant_p_1 (inner);
2952 }
2953
2954 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
2955 Do this to any expression which may be used in more than one place,
2956 but must be evaluated only once.
2957
2958 Normally, expand_expr would reevaluate the expression each time.
2959 Calling save_expr produces something that is evaluated and recorded
2960 the first time expand_expr is called on it. Subsequent calls to
2961 expand_expr just reuse the recorded value.
2962
2963 The call to expand_expr that generates code that actually computes
2964 the value is the first call *at compile time*. Subsequent calls
2965 *at compile time* generate code to use the saved value.
2966 This produces correct result provided that *at run time* control
2967 always flows through the insns made by the first expand_expr
2968 before reaching the other places where the save_expr was evaluated.
2969 You, the caller of save_expr, must make sure this is so.
2970
2971 Constants, and certain read-only nodes, are returned with no
2972 SAVE_EXPR because that is safe. Expressions containing placeholders
2973 are not touched; see tree.def for an explanation of what these
2974 are used for. */
2975
2976 tree
2977 save_expr (tree expr)
2978 {
2979 tree t = fold (expr);
2980 tree inner;
2981
2982 /* If the tree evaluates to a constant, then we don't want to hide that
2983 fact (i.e. this allows further folding, and direct checks for constants).
2984 However, a read-only object that has side effects cannot be bypassed.
2985 Since it is no problem to reevaluate literals, we just return the
2986 literal node. */
2987 inner = skip_simple_arithmetic (t);
2988 if (TREE_CODE (inner) == ERROR_MARK)
2989 return inner;
2990
2991 if (tree_invariant_p_1 (inner))
2992 return t;
2993
2994 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
2995 it means that the size or offset of some field of an object depends on
2996 the value within another field.
2997
2998 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
2999 and some variable since it would then need to be both evaluated once and
3000 evaluated more than once. Front-ends must assure this case cannot
3001 happen by surrounding any such subexpressions in their own SAVE_EXPR
3002 and forcing evaluation at the proper time. */
3003 if (contains_placeholder_p (inner))
3004 return t;
3005
3006 t = build1 (SAVE_EXPR, TREE_TYPE (expr), t);
3007 SET_EXPR_LOCATION (t, EXPR_LOCATION (expr));
3008
3009 /* This expression might be placed ahead of a jump to ensure that the
3010 value was computed on both sides of the jump. So make sure it isn't
3011 eliminated as dead. */
3012 TREE_SIDE_EFFECTS (t) = 1;
3013 return t;
3014 }
3015
3016 /* Look inside EXPR into any simple arithmetic operations. Return the
3017 outermost non-arithmetic or non-invariant node. */
3018
3019 tree
3020 skip_simple_arithmetic (tree expr)
3021 {
3022 /* We don't care about whether this can be used as an lvalue in this
3023 context. */
3024 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
3025 expr = TREE_OPERAND (expr, 0);
3026
3027 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
3028 a constant, it will be more efficient to not make another SAVE_EXPR since
3029 it will allow better simplification and GCSE will be able to merge the
3030 computations if they actually occur. */
3031 while (true)
3032 {
3033 if (UNARY_CLASS_P (expr))
3034 expr = TREE_OPERAND (expr, 0);
3035 else if (BINARY_CLASS_P (expr))
3036 {
3037 if (tree_invariant_p (TREE_OPERAND (expr, 1)))
3038 expr = TREE_OPERAND (expr, 0);
3039 else if (tree_invariant_p (TREE_OPERAND (expr, 0)))
3040 expr = TREE_OPERAND (expr, 1);
3041 else
3042 break;
3043 }
3044 else
3045 break;
3046 }
3047
3048 return expr;
3049 }
3050
3051 /* Look inside EXPR into simple arithmetic operations involving constants.
3052 Return the outermost non-arithmetic or non-constant node. */
3053
3054 tree
3055 skip_simple_constant_arithmetic (tree expr)
3056 {
3057 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
3058 expr = TREE_OPERAND (expr, 0);
3059
3060 while (true)
3061 {
3062 if (UNARY_CLASS_P (expr))
3063 expr = TREE_OPERAND (expr, 0);
3064 else if (BINARY_CLASS_P (expr))
3065 {
3066 if (TREE_CONSTANT (TREE_OPERAND (expr, 1)))
3067 expr = TREE_OPERAND (expr, 0);
3068 else if (TREE_CONSTANT (TREE_OPERAND (expr, 0)))
3069 expr = TREE_OPERAND (expr, 1);
3070 else
3071 break;
3072 }
3073 else
3074 break;
3075 }
3076
3077 return expr;
3078 }
3079
3080 /* Return which tree structure is used by T. */
3081
3082 enum tree_node_structure_enum
3083 tree_node_structure (const_tree t)
3084 {
3085 const enum tree_code code = TREE_CODE (t);
3086 return tree_node_structure_for_code (code);
3087 }
3088
3089 /* Set various status flags when building a CALL_EXPR object T. */
3090
3091 static void
3092 process_call_operands (tree t)
3093 {
3094 bool side_effects = TREE_SIDE_EFFECTS (t);
3095 bool read_only = false;
3096 int i = call_expr_flags (t);
3097
3098 /* Calls have side-effects, except those to const or pure functions. */
3099 if ((i & ECF_LOOPING_CONST_OR_PURE) || !(i & (ECF_CONST | ECF_PURE)))
3100 side_effects = true;
3101 /* Propagate TREE_READONLY of arguments for const functions. */
3102 if (i & ECF_CONST)
3103 read_only = true;
3104
3105 if (!side_effects || read_only)
3106 for (i = 1; i < TREE_OPERAND_LENGTH (t); i++)
3107 {
3108 tree op = TREE_OPERAND (t, i);
3109 if (op && TREE_SIDE_EFFECTS (op))
3110 side_effects = true;
3111 if (op && !TREE_READONLY (op) && !CONSTANT_CLASS_P (op))
3112 read_only = false;
3113 }
3114
3115 TREE_SIDE_EFFECTS (t) = side_effects;
3116 TREE_READONLY (t) = read_only;
3117 }
3118 \f
3119 /* Return true if EXP contains a PLACEHOLDER_EXPR, i.e. if it represents a
3120 size or offset that depends on a field within a record. */
3121
3122 bool
3123 contains_placeholder_p (const_tree exp)
3124 {
3125 enum tree_code code;
3126
3127 if (!exp)
3128 return 0;
3129
3130 code = TREE_CODE (exp);
3131 if (code == PLACEHOLDER_EXPR)
3132 return 1;
3133
3134 switch (TREE_CODE_CLASS (code))
3135 {
3136 case tcc_reference:
3137 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
3138 position computations since they will be converted into a
3139 WITH_RECORD_EXPR involving the reference, which will assume
3140 here will be valid. */
3141 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
3142
3143 case tcc_exceptional:
3144 if (code == TREE_LIST)
3145 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
3146 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
3147 break;
3148
3149 case tcc_unary:
3150 case tcc_binary:
3151 case tcc_comparison:
3152 case tcc_expression:
3153 switch (code)
3154 {
3155 case COMPOUND_EXPR:
3156 /* Ignoring the first operand isn't quite right, but works best. */
3157 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
3158
3159 case COND_EXPR:
3160 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
3161 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
3162 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
3163
3164 case SAVE_EXPR:
3165 /* The save_expr function never wraps anything containing
3166 a PLACEHOLDER_EXPR. */
3167 return 0;
3168
3169 default:
3170 break;
3171 }
3172
3173 switch (TREE_CODE_LENGTH (code))
3174 {
3175 case 1:
3176 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
3177 case 2:
3178 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
3179 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
3180 default:
3181 return 0;
3182 }
3183
3184 case tcc_vl_exp:
3185 switch (code)
3186 {
3187 case CALL_EXPR:
3188 {
3189 const_tree arg;
3190 const_call_expr_arg_iterator iter;
3191 FOR_EACH_CONST_CALL_EXPR_ARG (arg, iter, exp)
3192 if (CONTAINS_PLACEHOLDER_P (arg))
3193 return 1;
3194 return 0;
3195 }
3196 default:
3197 return 0;
3198 }
3199
3200 default:
3201 return 0;
3202 }
3203 return 0;
3204 }
3205
3206 /* Return true if any part of the structure of TYPE involves a PLACEHOLDER_EXPR
3207 directly. This includes size, bounds, qualifiers (for QUAL_UNION_TYPE) and
3208 field positions. */
3209
3210 static bool
3211 type_contains_placeholder_1 (const_tree type)
3212 {
3213 /* If the size contains a placeholder or the parent type (component type in
3214 the case of arrays) type involves a placeholder, this type does. */
3215 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
3216 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
3217 || (!POINTER_TYPE_P (type)
3218 && TREE_TYPE (type)
3219 && type_contains_placeholder_p (TREE_TYPE (type))))
3220 return true;
3221
3222 /* Now do type-specific checks. Note that the last part of the check above
3223 greatly limits what we have to do below. */
3224 switch (TREE_CODE (type))
3225 {
3226 case VOID_TYPE:
3227 case COMPLEX_TYPE:
3228 case ENUMERAL_TYPE:
3229 case BOOLEAN_TYPE:
3230 case POINTER_TYPE:
3231 case OFFSET_TYPE:
3232 case REFERENCE_TYPE:
3233 case METHOD_TYPE:
3234 case FUNCTION_TYPE:
3235 case VECTOR_TYPE:
3236 case NULLPTR_TYPE:
3237 return false;
3238
3239 case INTEGER_TYPE:
3240 case REAL_TYPE:
3241 case FIXED_POINT_TYPE:
3242 /* Here we just check the bounds. */
3243 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
3244 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
3245
3246 case ARRAY_TYPE:
3247 /* We have already checked the component type above, so just check the
3248 domain type. */
3249 return type_contains_placeholder_p (TYPE_DOMAIN (type));
3250
3251 case RECORD_TYPE:
3252 case UNION_TYPE:
3253 case QUAL_UNION_TYPE:
3254 {
3255 tree field;
3256
3257 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
3258 if (TREE_CODE (field) == FIELD_DECL
3259 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
3260 || (TREE_CODE (type) == QUAL_UNION_TYPE
3261 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
3262 || type_contains_placeholder_p (TREE_TYPE (field))))
3263 return true;
3264
3265 return false;
3266 }
3267
3268 default:
3269 gcc_unreachable ();
3270 }
3271 }
3272
3273 /* Wrapper around above function used to cache its result. */
3274
3275 bool
3276 type_contains_placeholder_p (tree type)
3277 {
3278 bool result;
3279
3280 /* If the contains_placeholder_bits field has been initialized,
3281 then we know the answer. */
3282 if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0)
3283 return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1;
3284
3285 /* Indicate that we've seen this type node, and the answer is false.
3286 This is what we want to return if we run into recursion via fields. */
3287 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1;
3288
3289 /* Compute the real value. */
3290 result = type_contains_placeholder_1 (type);
3291
3292 /* Store the real value. */
3293 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1;
3294
3295 return result;
3296 }
3297 \f
3298 /* Push tree EXP onto vector QUEUE if it is not already present. */
3299
3300 static void
3301 push_without_duplicates (tree exp, vec<tree> *queue)
3302 {
3303 unsigned int i;
3304 tree iter;
3305
3306 FOR_EACH_VEC_ELT (*queue, i, iter)
3307 if (simple_cst_equal (iter, exp) == 1)
3308 break;
3309
3310 if (!iter)
3311 queue->safe_push (exp);
3312 }
3313
3314 /* Given a tree EXP, find all occurrences of references to fields
3315 in a PLACEHOLDER_EXPR and place them in vector REFS without
3316 duplicates. Also record VAR_DECLs and CONST_DECLs. Note that
3317 we assume here that EXP contains only arithmetic expressions
3318 or CALL_EXPRs with PLACEHOLDER_EXPRs occurring only in their
3319 argument list. */
3320
3321 void
3322 find_placeholder_in_expr (tree exp, vec<tree> *refs)
3323 {
3324 enum tree_code code = TREE_CODE (exp);
3325 tree inner;
3326 int i;
3327
3328 /* We handle TREE_LIST and COMPONENT_REF separately. */
3329 if (code == TREE_LIST)
3330 {
3331 FIND_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), refs);
3332 FIND_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), refs);
3333 }
3334 else if (code == COMPONENT_REF)
3335 {
3336 for (inner = TREE_OPERAND (exp, 0);
3337 REFERENCE_CLASS_P (inner);
3338 inner = TREE_OPERAND (inner, 0))
3339 ;
3340
3341 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
3342 push_without_duplicates (exp, refs);
3343 else
3344 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), refs);
3345 }
3346 else
3347 switch (TREE_CODE_CLASS (code))
3348 {
3349 case tcc_constant:
3350 break;
3351
3352 case tcc_declaration:
3353 /* Variables allocated to static storage can stay. */
3354 if (!TREE_STATIC (exp))
3355 push_without_duplicates (exp, refs);
3356 break;
3357
3358 case tcc_expression:
3359 /* This is the pattern built in ada/make_aligning_type. */
3360 if (code == ADDR_EXPR
3361 && TREE_CODE (TREE_OPERAND (exp, 0)) == PLACEHOLDER_EXPR)
3362 {
3363 push_without_duplicates (exp, refs);
3364 break;
3365 }
3366
3367 /* Fall through... */
3368
3369 case tcc_exceptional:
3370 case tcc_unary:
3371 case tcc_binary:
3372 case tcc_comparison:
3373 case tcc_reference:
3374 for (i = 0; i < TREE_CODE_LENGTH (code); i++)
3375 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
3376 break;
3377
3378 case tcc_vl_exp:
3379 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3380 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
3381 break;
3382
3383 default:
3384 gcc_unreachable ();
3385 }
3386 }
3387
3388 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
3389 return a tree with all occurrences of references to F in a
3390 PLACEHOLDER_EXPR replaced by R. Also handle VAR_DECLs and
3391 CONST_DECLs. Note that we assume here that EXP contains only
3392 arithmetic expressions or CALL_EXPRs with PLACEHOLDER_EXPRs
3393 occurring only in their argument list. */
3394
3395 tree
3396 substitute_in_expr (tree exp, tree f, tree r)
3397 {
3398 enum tree_code code = TREE_CODE (exp);
3399 tree op0, op1, op2, op3;
3400 tree new_tree;
3401
3402 /* We handle TREE_LIST and COMPONENT_REF separately. */
3403 if (code == TREE_LIST)
3404 {
3405 op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
3406 op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
3407 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
3408 return exp;
3409
3410 return tree_cons (TREE_PURPOSE (exp), op1, op0);
3411 }
3412 else if (code == COMPONENT_REF)
3413 {
3414 tree inner;
3415
3416 /* If this expression is getting a value from a PLACEHOLDER_EXPR
3417 and it is the right field, replace it with R. */
3418 for (inner = TREE_OPERAND (exp, 0);
3419 REFERENCE_CLASS_P (inner);
3420 inner = TREE_OPERAND (inner, 0))
3421 ;
3422
3423 /* The field. */
3424 op1 = TREE_OPERAND (exp, 1);
3425
3426 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && op1 == f)
3427 return r;
3428
3429 /* If this expression hasn't been completed let, leave it alone. */
3430 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && !TREE_TYPE (inner))
3431 return exp;
3432
3433 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3434 if (op0 == TREE_OPERAND (exp, 0))
3435 return exp;
3436
3437 new_tree
3438 = fold_build3 (COMPONENT_REF, TREE_TYPE (exp), op0, op1, NULL_TREE);
3439 }
3440 else
3441 switch (TREE_CODE_CLASS (code))
3442 {
3443 case tcc_constant:
3444 return exp;
3445
3446 case tcc_declaration:
3447 if (exp == f)
3448 return r;
3449 else
3450 return exp;
3451
3452 case tcc_expression:
3453 if (exp == f)
3454 return r;
3455
3456 /* Fall through... */
3457
3458 case tcc_exceptional:
3459 case tcc_unary:
3460 case tcc_binary:
3461 case tcc_comparison:
3462 case tcc_reference:
3463 switch (TREE_CODE_LENGTH (code))
3464 {
3465 case 0:
3466 return exp;
3467
3468 case 1:
3469 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3470 if (op0 == TREE_OPERAND (exp, 0))
3471 return exp;
3472
3473 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
3474 break;
3475
3476 case 2:
3477 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3478 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3479
3480 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
3481 return exp;
3482
3483 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
3484 break;
3485
3486 case 3:
3487 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3488 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3489 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
3490
3491 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3492 && op2 == TREE_OPERAND (exp, 2))
3493 return exp;
3494
3495 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
3496 break;
3497
3498 case 4:
3499 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3500 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3501 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
3502 op3 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 3), f, r);
3503
3504 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3505 && op2 == TREE_OPERAND (exp, 2)
3506 && op3 == TREE_OPERAND (exp, 3))
3507 return exp;
3508
3509 new_tree
3510 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
3511 break;
3512
3513 default:
3514 gcc_unreachable ();
3515 }
3516 break;
3517
3518 case tcc_vl_exp:
3519 {
3520 int i;
3521
3522 new_tree = NULL_TREE;
3523
3524 /* If we are trying to replace F with a constant, inline back
3525 functions which do nothing else than computing a value from
3526 the arguments they are passed. This makes it possible to
3527 fold partially or entirely the replacement expression. */
3528 if (CONSTANT_CLASS_P (r) && code == CALL_EXPR)
3529 {
3530 tree t = maybe_inline_call_in_expr (exp);
3531 if (t)
3532 return SUBSTITUTE_IN_EXPR (t, f, r);
3533 }
3534
3535 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3536 {
3537 tree op = TREE_OPERAND (exp, i);
3538 tree new_op = SUBSTITUTE_IN_EXPR (op, f, r);
3539 if (new_op != op)
3540 {
3541 if (!new_tree)
3542 new_tree = copy_node (exp);
3543 TREE_OPERAND (new_tree, i) = new_op;
3544 }
3545 }
3546
3547 if (new_tree)
3548 {
3549 new_tree = fold (new_tree);
3550 if (TREE_CODE (new_tree) == CALL_EXPR)
3551 process_call_operands (new_tree);
3552 }
3553 else
3554 return exp;
3555 }
3556 break;
3557
3558 default:
3559 gcc_unreachable ();
3560 }
3561
3562 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
3563
3564 if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
3565 TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
3566
3567 return new_tree;
3568 }
3569
3570 /* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
3571 for it within OBJ, a tree that is an object or a chain of references. */
3572
3573 tree
3574 substitute_placeholder_in_expr (tree exp, tree obj)
3575 {
3576 enum tree_code code = TREE_CODE (exp);
3577 tree op0, op1, op2, op3;
3578 tree new_tree;
3579
3580 /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
3581 in the chain of OBJ. */
3582 if (code == PLACEHOLDER_EXPR)
3583 {
3584 tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
3585 tree elt;
3586
3587 for (elt = obj; elt != 0;
3588 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
3589 || TREE_CODE (elt) == COND_EXPR)
3590 ? TREE_OPERAND (elt, 1)
3591 : (REFERENCE_CLASS_P (elt)
3592 || UNARY_CLASS_P (elt)
3593 || BINARY_CLASS_P (elt)
3594 || VL_EXP_CLASS_P (elt)
3595 || EXPRESSION_CLASS_P (elt))
3596 ? TREE_OPERAND (elt, 0) : 0))
3597 if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
3598 return elt;
3599
3600 for (elt = obj; elt != 0;
3601 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
3602 || TREE_CODE (elt) == COND_EXPR)
3603 ? TREE_OPERAND (elt, 1)
3604 : (REFERENCE_CLASS_P (elt)
3605 || UNARY_CLASS_P (elt)
3606 || BINARY_CLASS_P (elt)
3607 || VL_EXP_CLASS_P (elt)
3608 || EXPRESSION_CLASS_P (elt))
3609 ? TREE_OPERAND (elt, 0) : 0))
3610 if (POINTER_TYPE_P (TREE_TYPE (elt))
3611 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
3612 == need_type))
3613 return fold_build1 (INDIRECT_REF, need_type, elt);
3614
3615 /* If we didn't find it, return the original PLACEHOLDER_EXPR. If it
3616 survives until RTL generation, there will be an error. */
3617 return exp;
3618 }
3619
3620 /* TREE_LIST is special because we need to look at TREE_VALUE
3621 and TREE_CHAIN, not TREE_OPERANDS. */
3622 else if (code == TREE_LIST)
3623 {
3624 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
3625 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
3626 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
3627 return exp;
3628
3629 return tree_cons (TREE_PURPOSE (exp), op1, op0);
3630 }
3631 else
3632 switch (TREE_CODE_CLASS (code))
3633 {
3634 case tcc_constant:
3635 case tcc_declaration:
3636 return exp;
3637
3638 case tcc_exceptional:
3639 case tcc_unary:
3640 case tcc_binary:
3641 case tcc_comparison:
3642 case tcc_expression:
3643 case tcc_reference:
3644 case tcc_statement:
3645 switch (TREE_CODE_LENGTH (code))
3646 {
3647 case 0:
3648 return exp;
3649
3650 case 1:
3651 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3652 if (op0 == TREE_OPERAND (exp, 0))
3653 return exp;
3654
3655 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
3656 break;
3657
3658 case 2:
3659 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3660 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3661
3662 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
3663 return exp;
3664
3665 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
3666 break;
3667
3668 case 3:
3669 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3670 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3671 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
3672
3673 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3674 && op2 == TREE_OPERAND (exp, 2))
3675 return exp;
3676
3677 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
3678 break;
3679
3680 case 4:
3681 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3682 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3683 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
3684 op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
3685
3686 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3687 && op2 == TREE_OPERAND (exp, 2)
3688 && op3 == TREE_OPERAND (exp, 3))
3689 return exp;
3690
3691 new_tree
3692 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
3693 break;
3694
3695 default:
3696 gcc_unreachable ();
3697 }
3698 break;
3699
3700 case tcc_vl_exp:
3701 {
3702 int i;
3703
3704 new_tree = NULL_TREE;
3705
3706 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3707 {
3708 tree op = TREE_OPERAND (exp, i);
3709 tree new_op = SUBSTITUTE_PLACEHOLDER_IN_EXPR (op, obj);
3710 if (new_op != op)
3711 {
3712 if (!new_tree)
3713 new_tree = copy_node (exp);
3714 TREE_OPERAND (new_tree, i) = new_op;
3715 }
3716 }
3717
3718 if (new_tree)
3719 {
3720 new_tree = fold (new_tree);
3721 if (TREE_CODE (new_tree) == CALL_EXPR)
3722 process_call_operands (new_tree);
3723 }
3724 else
3725 return exp;
3726 }
3727 break;
3728
3729 default:
3730 gcc_unreachable ();
3731 }
3732
3733 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
3734
3735 if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
3736 TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
3737
3738 return new_tree;
3739 }
3740 \f
3741 /* Stabilize a reference so that we can use it any number of times
3742 without causing its operands to be evaluated more than once.
3743 Returns the stabilized reference. This works by means of save_expr,
3744 so see the caveats in the comments about save_expr.
3745
3746 Also allows conversion expressions whose operands are references.
3747 Any other kind of expression is returned unchanged. */
3748
3749 tree
3750 stabilize_reference (tree ref)
3751 {
3752 tree result;
3753 enum tree_code code = TREE_CODE (ref);
3754
3755 switch (code)
3756 {
3757 case VAR_DECL:
3758 case PARM_DECL:
3759 case RESULT_DECL:
3760 /* No action is needed in this case. */
3761 return ref;
3762
3763 CASE_CONVERT:
3764 case FLOAT_EXPR:
3765 case FIX_TRUNC_EXPR:
3766 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
3767 break;
3768
3769 case INDIRECT_REF:
3770 result = build_nt (INDIRECT_REF,
3771 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
3772 break;
3773
3774 case COMPONENT_REF:
3775 result = build_nt (COMPONENT_REF,
3776 stabilize_reference (TREE_OPERAND (ref, 0)),
3777 TREE_OPERAND (ref, 1), NULL_TREE);
3778 break;
3779
3780 case BIT_FIELD_REF:
3781 result = build_nt (BIT_FIELD_REF,
3782 stabilize_reference (TREE_OPERAND (ref, 0)),
3783 TREE_OPERAND (ref, 1), TREE_OPERAND (ref, 2));
3784 break;
3785
3786 case ARRAY_REF:
3787 result = build_nt (ARRAY_REF,
3788 stabilize_reference (TREE_OPERAND (ref, 0)),
3789 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
3790 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
3791 break;
3792
3793 case ARRAY_RANGE_REF:
3794 result = build_nt (ARRAY_RANGE_REF,
3795 stabilize_reference (TREE_OPERAND (ref, 0)),
3796 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
3797 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
3798 break;
3799
3800 case COMPOUND_EXPR:
3801 /* We cannot wrap the first expression in a SAVE_EXPR, as then
3802 it wouldn't be ignored. This matters when dealing with
3803 volatiles. */
3804 return stabilize_reference_1 (ref);
3805
3806 /* If arg isn't a kind of lvalue we recognize, make no change.
3807 Caller should recognize the error for an invalid lvalue. */
3808 default:
3809 return ref;
3810
3811 case ERROR_MARK:
3812 return error_mark_node;
3813 }
3814
3815 TREE_TYPE (result) = TREE_TYPE (ref);
3816 TREE_READONLY (result) = TREE_READONLY (ref);
3817 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
3818 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
3819
3820 return result;
3821 }
3822
3823 /* Subroutine of stabilize_reference; this is called for subtrees of
3824 references. Any expression with side-effects must be put in a SAVE_EXPR
3825 to ensure that it is only evaluated once.
3826
3827 We don't put SAVE_EXPR nodes around everything, because assigning very
3828 simple expressions to temporaries causes us to miss good opportunities
3829 for optimizations. Among other things, the opportunity to fold in the
3830 addition of a constant into an addressing mode often gets lost, e.g.
3831 "y[i+1] += x;". In general, we take the approach that we should not make
3832 an assignment unless we are forced into it - i.e., that any non-side effect
3833 operator should be allowed, and that cse should take care of coalescing
3834 multiple utterances of the same expression should that prove fruitful. */
3835
3836 tree
3837 stabilize_reference_1 (tree e)
3838 {
3839 tree result;
3840 enum tree_code code = TREE_CODE (e);
3841
3842 /* We cannot ignore const expressions because it might be a reference
3843 to a const array but whose index contains side-effects. But we can
3844 ignore things that are actual constant or that already have been
3845 handled by this function. */
3846
3847 if (tree_invariant_p (e))
3848 return e;
3849
3850 switch (TREE_CODE_CLASS (code))
3851 {
3852 case tcc_exceptional:
3853 case tcc_type:
3854 case tcc_declaration:
3855 case tcc_comparison:
3856 case tcc_statement:
3857 case tcc_expression:
3858 case tcc_reference:
3859 case tcc_vl_exp:
3860 /* If the expression has side-effects, then encase it in a SAVE_EXPR
3861 so that it will only be evaluated once. */
3862 /* The reference (r) and comparison (<) classes could be handled as
3863 below, but it is generally faster to only evaluate them once. */
3864 if (TREE_SIDE_EFFECTS (e))
3865 return save_expr (e);
3866 return e;
3867
3868 case tcc_constant:
3869 /* Constants need no processing. In fact, we should never reach
3870 here. */
3871 return e;
3872
3873 case tcc_binary:
3874 /* Division is slow and tends to be compiled with jumps,
3875 especially the division by powers of 2 that is often
3876 found inside of an array reference. So do it just once. */
3877 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
3878 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
3879 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
3880 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
3881 return save_expr (e);
3882 /* Recursively stabilize each operand. */
3883 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
3884 stabilize_reference_1 (TREE_OPERAND (e, 1)));
3885 break;
3886
3887 case tcc_unary:
3888 /* Recursively stabilize each operand. */
3889 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
3890 break;
3891
3892 default:
3893 gcc_unreachable ();
3894 }
3895
3896 TREE_TYPE (result) = TREE_TYPE (e);
3897 TREE_READONLY (result) = TREE_READONLY (e);
3898 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
3899 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
3900
3901 return result;
3902 }
3903 \f
3904 /* Low-level constructors for expressions. */
3905
3906 /* A helper function for build1 and constant folders. Set TREE_CONSTANT,
3907 and TREE_SIDE_EFFECTS for an ADDR_EXPR. */
3908
3909 void
3910 recompute_tree_invariant_for_addr_expr (tree t)
3911 {
3912 tree node;
3913 bool tc = true, se = false;
3914
3915 /* We started out assuming this address is both invariant and constant, but
3916 does not have side effects. Now go down any handled components and see if
3917 any of them involve offsets that are either non-constant or non-invariant.
3918 Also check for side-effects.
3919
3920 ??? Note that this code makes no attempt to deal with the case where
3921 taking the address of something causes a copy due to misalignment. */
3922
3923 #define UPDATE_FLAGS(NODE) \
3924 do { tree _node = (NODE); \
3925 if (_node && !TREE_CONSTANT (_node)) tc = false; \
3926 if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
3927
3928 for (node = TREE_OPERAND (t, 0); handled_component_p (node);
3929 node = TREE_OPERAND (node, 0))
3930 {
3931 /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
3932 array reference (probably made temporarily by the G++ front end),
3933 so ignore all the operands. */
3934 if ((TREE_CODE (node) == ARRAY_REF
3935 || TREE_CODE (node) == ARRAY_RANGE_REF)
3936 && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
3937 {
3938 UPDATE_FLAGS (TREE_OPERAND (node, 1));
3939 if (TREE_OPERAND (node, 2))
3940 UPDATE_FLAGS (TREE_OPERAND (node, 2));
3941 if (TREE_OPERAND (node, 3))
3942 UPDATE_FLAGS (TREE_OPERAND (node, 3));
3943 }
3944 /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
3945 FIELD_DECL, apparently. The G++ front end can put something else
3946 there, at least temporarily. */
3947 else if (TREE_CODE (node) == COMPONENT_REF
3948 && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
3949 {
3950 if (TREE_OPERAND (node, 2))
3951 UPDATE_FLAGS (TREE_OPERAND (node, 2));
3952 }
3953 }
3954
3955 node = lang_hooks.expr_to_decl (node, &tc, &se);
3956
3957 /* Now see what's inside. If it's an INDIRECT_REF, copy our properties from
3958 the address, since &(*a)->b is a form of addition. If it's a constant, the
3959 address is constant too. If it's a decl, its address is constant if the
3960 decl is static. Everything else is not constant and, furthermore,
3961 taking the address of a volatile variable is not volatile. */
3962 if (TREE_CODE (node) == INDIRECT_REF
3963 || TREE_CODE (node) == MEM_REF)
3964 UPDATE_FLAGS (TREE_OPERAND (node, 0));
3965 else if (CONSTANT_CLASS_P (node))
3966 ;
3967 else if (DECL_P (node))
3968 tc &= (staticp (node) != NULL_TREE);
3969 else
3970 {
3971 tc = false;
3972 se |= TREE_SIDE_EFFECTS (node);
3973 }
3974
3975
3976 TREE_CONSTANT (t) = tc;
3977 TREE_SIDE_EFFECTS (t) = se;
3978 #undef UPDATE_FLAGS
3979 }
3980
3981 /* Build an expression of code CODE, data type TYPE, and operands as
3982 specified. Expressions and reference nodes can be created this way.
3983 Constants, decls, types and misc nodes cannot be.
3984
3985 We define 5 non-variadic functions, from 0 to 4 arguments. This is
3986 enough for all extant tree codes. */
3987
3988 tree
3989 build0_stat (enum tree_code code, tree tt MEM_STAT_DECL)
3990 {
3991 tree t;
3992
3993 gcc_assert (TREE_CODE_LENGTH (code) == 0);
3994
3995 t = make_node_stat (code PASS_MEM_STAT);
3996 TREE_TYPE (t) = tt;
3997
3998 return t;
3999 }
4000
4001 tree
4002 build1_stat (enum tree_code code, tree type, tree node MEM_STAT_DECL)
4003 {
4004 int length = sizeof (struct tree_exp);
4005 tree t;
4006
4007 record_node_allocation_statistics (code, length);
4008
4009 gcc_assert (TREE_CODE_LENGTH (code) == 1);
4010
4011 t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
4012
4013 memset (t, 0, sizeof (struct tree_common));
4014
4015 TREE_SET_CODE (t, code);
4016
4017 TREE_TYPE (t) = type;
4018 SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
4019 TREE_OPERAND (t, 0) = node;
4020 if (node && !TYPE_P (node))
4021 {
4022 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
4023 TREE_READONLY (t) = TREE_READONLY (node);
4024 }
4025
4026 if (TREE_CODE_CLASS (code) == tcc_statement)
4027 TREE_SIDE_EFFECTS (t) = 1;
4028 else switch (code)
4029 {
4030 case VA_ARG_EXPR:
4031 /* All of these have side-effects, no matter what their
4032 operands are. */
4033 TREE_SIDE_EFFECTS (t) = 1;
4034 TREE_READONLY (t) = 0;
4035 break;
4036
4037 case INDIRECT_REF:
4038 /* Whether a dereference is readonly has nothing to do with whether
4039 its operand is readonly. */
4040 TREE_READONLY (t) = 0;
4041 break;
4042
4043 case ADDR_EXPR:
4044 if (node)
4045 recompute_tree_invariant_for_addr_expr (t);
4046 break;
4047
4048 default:
4049 if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
4050 && node && !TYPE_P (node)
4051 && TREE_CONSTANT (node))
4052 TREE_CONSTANT (t) = 1;
4053 if (TREE_CODE_CLASS (code) == tcc_reference
4054 && node && TREE_THIS_VOLATILE (node))
4055 TREE_THIS_VOLATILE (t) = 1;
4056 break;
4057 }
4058
4059 return t;
4060 }
4061
4062 #define PROCESS_ARG(N) \
4063 do { \
4064 TREE_OPERAND (t, N) = arg##N; \
4065 if (arg##N &&!TYPE_P (arg##N)) \
4066 { \
4067 if (TREE_SIDE_EFFECTS (arg##N)) \
4068 side_effects = 1; \
4069 if (!TREE_READONLY (arg##N) \
4070 && !CONSTANT_CLASS_P (arg##N)) \
4071 (void) (read_only = 0); \
4072 if (!TREE_CONSTANT (arg##N)) \
4073 (void) (constant = 0); \
4074 } \
4075 } while (0)
4076
4077 tree
4078 build2_stat (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
4079 {
4080 bool constant, read_only, side_effects;
4081 tree t;
4082
4083 gcc_assert (TREE_CODE_LENGTH (code) == 2);
4084
4085 if ((code == MINUS_EXPR || code == PLUS_EXPR || code == MULT_EXPR)
4086 && arg0 && arg1 && tt && POINTER_TYPE_P (tt)
4087 /* When sizetype precision doesn't match that of pointers
4088 we need to be able to build explicit extensions or truncations
4089 of the offset argument. */
4090 && TYPE_PRECISION (sizetype) == TYPE_PRECISION (tt))
4091 gcc_assert (TREE_CODE (arg0) == INTEGER_CST
4092 && TREE_CODE (arg1) == INTEGER_CST);
4093
4094 if (code == POINTER_PLUS_EXPR && arg0 && arg1 && tt)
4095 gcc_assert (POINTER_TYPE_P (tt) && POINTER_TYPE_P (TREE_TYPE (arg0))
4096 && ptrofftype_p (TREE_TYPE (arg1)));
4097
4098 t = make_node_stat (code PASS_MEM_STAT);
4099 TREE_TYPE (t) = tt;
4100
4101 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
4102 result based on those same flags for the arguments. But if the
4103 arguments aren't really even `tree' expressions, we shouldn't be trying
4104 to do this. */
4105
4106 /* Expressions without side effects may be constant if their
4107 arguments are as well. */
4108 constant = (TREE_CODE_CLASS (code) == tcc_comparison
4109 || TREE_CODE_CLASS (code) == tcc_binary);
4110 read_only = 1;
4111 side_effects = TREE_SIDE_EFFECTS (t);
4112
4113 PROCESS_ARG(0);
4114 PROCESS_ARG(1);
4115
4116 TREE_READONLY (t) = read_only;
4117 TREE_CONSTANT (t) = constant;
4118 TREE_SIDE_EFFECTS (t) = side_effects;
4119 TREE_THIS_VOLATILE (t)
4120 = (TREE_CODE_CLASS (code) == tcc_reference
4121 && arg0 && TREE_THIS_VOLATILE (arg0));
4122
4123 return t;
4124 }
4125
4126
4127 tree
4128 build3_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
4129 tree arg2 MEM_STAT_DECL)
4130 {
4131 bool constant, read_only, side_effects;
4132 tree t;
4133
4134 gcc_assert (TREE_CODE_LENGTH (code) == 3);
4135 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
4136
4137 t = make_node_stat (code PASS_MEM_STAT);
4138 TREE_TYPE (t) = tt;
4139
4140 read_only = 1;
4141
4142 /* As a special exception, if COND_EXPR has NULL branches, we
4143 assume that it is a gimple statement and always consider
4144 it to have side effects. */
4145 if (code == COND_EXPR
4146 && tt == void_type_node
4147 && arg1 == NULL_TREE
4148 && arg2 == NULL_TREE)
4149 side_effects = true;
4150 else
4151 side_effects = TREE_SIDE_EFFECTS (t);
4152
4153 PROCESS_ARG(0);
4154 PROCESS_ARG(1);
4155 PROCESS_ARG(2);
4156
4157 if (code == COND_EXPR)
4158 TREE_READONLY (t) = read_only;
4159
4160 TREE_SIDE_EFFECTS (t) = side_effects;
4161 TREE_THIS_VOLATILE (t)
4162 = (TREE_CODE_CLASS (code) == tcc_reference
4163 && arg0 && TREE_THIS_VOLATILE (arg0));
4164
4165 return t;
4166 }
4167
4168 tree
4169 build4_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
4170 tree arg2, tree arg3 MEM_STAT_DECL)
4171 {
4172 bool constant, read_only, side_effects;
4173 tree t;
4174
4175 gcc_assert (TREE_CODE_LENGTH (code) == 4);
4176
4177 t = make_node_stat (code PASS_MEM_STAT);
4178 TREE_TYPE (t) = tt;
4179
4180 side_effects = TREE_SIDE_EFFECTS (t);
4181
4182 PROCESS_ARG(0);
4183 PROCESS_ARG(1);
4184 PROCESS_ARG(2);
4185 PROCESS_ARG(3);
4186
4187 TREE_SIDE_EFFECTS (t) = side_effects;
4188 TREE_THIS_VOLATILE (t)
4189 = (TREE_CODE_CLASS (code) == tcc_reference
4190 && arg0 && TREE_THIS_VOLATILE (arg0));
4191
4192 return t;
4193 }
4194
4195 tree
4196 build5_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
4197 tree arg2, tree arg3, tree arg4 MEM_STAT_DECL)
4198 {
4199 bool constant, read_only, side_effects;
4200 tree t;
4201
4202 gcc_assert (TREE_CODE_LENGTH (code) == 5);
4203
4204 t = make_node_stat (code PASS_MEM_STAT);
4205 TREE_TYPE (t) = tt;
4206
4207 side_effects = TREE_SIDE_EFFECTS (t);
4208
4209 PROCESS_ARG(0);
4210 PROCESS_ARG(1);
4211 PROCESS_ARG(2);
4212 PROCESS_ARG(3);
4213 PROCESS_ARG(4);
4214
4215 TREE_SIDE_EFFECTS (t) = side_effects;
4216 TREE_THIS_VOLATILE (t)
4217 = (TREE_CODE_CLASS (code) == tcc_reference
4218 && arg0 && TREE_THIS_VOLATILE (arg0));
4219
4220 return t;
4221 }
4222
4223 /* Build a simple MEM_REF tree with the sematics of a plain INDIRECT_REF
4224 on the pointer PTR. */
4225
4226 tree
4227 build_simple_mem_ref_loc (location_t loc, tree ptr)
4228 {
4229 HOST_WIDE_INT offset = 0;
4230 tree ptype = TREE_TYPE (ptr);
4231 tree tem;
4232 /* For convenience allow addresses that collapse to a simple base
4233 and offset. */
4234 if (TREE_CODE (ptr) == ADDR_EXPR
4235 && (handled_component_p (TREE_OPERAND (ptr, 0))
4236 || TREE_CODE (TREE_OPERAND (ptr, 0)) == MEM_REF))
4237 {
4238 ptr = get_addr_base_and_unit_offset (TREE_OPERAND (ptr, 0), &offset);
4239 gcc_assert (ptr);
4240 ptr = build_fold_addr_expr (ptr);
4241 gcc_assert (is_gimple_reg (ptr) || is_gimple_min_invariant (ptr));
4242 }
4243 tem = build2 (MEM_REF, TREE_TYPE (ptype),
4244 ptr, build_int_cst (ptype, offset));
4245 SET_EXPR_LOCATION (tem, loc);
4246 return tem;
4247 }
4248
4249 /* Return the constant offset of a MEM_REF or TARGET_MEM_REF tree T. */
4250
4251 double_int
4252 mem_ref_offset (const_tree t)
4253 {
4254 tree toff = TREE_OPERAND (t, 1);
4255 return tree_to_double_int (toff).sext (TYPE_PRECISION (TREE_TYPE (toff)));
4256 }
4257
4258 /* Return the pointer-type relevant for TBAA purposes from the
4259 gimple memory reference tree T. This is the type to be used for
4260 the offset operand of MEM_REF or TARGET_MEM_REF replacements of T. */
4261
4262 tree
4263 reference_alias_ptr_type (const_tree t)
4264 {
4265 const_tree base = t;
4266 while (handled_component_p (base))
4267 base = TREE_OPERAND (base, 0);
4268 if (TREE_CODE (base) == MEM_REF)
4269 return TREE_TYPE (TREE_OPERAND (base, 1));
4270 else if (TREE_CODE (base) == TARGET_MEM_REF)
4271 return TREE_TYPE (TMR_OFFSET (base));
4272 else
4273 return build_pointer_type (TYPE_MAIN_VARIANT (TREE_TYPE (base)));
4274 }
4275
4276 /* Return an invariant ADDR_EXPR of type TYPE taking the address of BASE
4277 offsetted by OFFSET units. */
4278
4279 tree
4280 build_invariant_address (tree type, tree base, HOST_WIDE_INT offset)
4281 {
4282 tree ref = fold_build2 (MEM_REF, TREE_TYPE (type),
4283 build_fold_addr_expr (base),
4284 build_int_cst (ptr_type_node, offset));
4285 tree addr = build1 (ADDR_EXPR, type, ref);
4286 recompute_tree_invariant_for_addr_expr (addr);
4287 return addr;
4288 }
4289
4290 /* Similar except don't specify the TREE_TYPE
4291 and leave the TREE_SIDE_EFFECTS as 0.
4292 It is permissible for arguments to be null,
4293 or even garbage if their values do not matter. */
4294
4295 tree
4296 build_nt (enum tree_code code, ...)
4297 {
4298 tree t;
4299 int length;
4300 int i;
4301 va_list p;
4302
4303 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
4304
4305 va_start (p, code);
4306
4307 t = make_node (code);
4308 length = TREE_CODE_LENGTH (code);
4309
4310 for (i = 0; i < length; i++)
4311 TREE_OPERAND (t, i) = va_arg (p, tree);
4312
4313 va_end (p);
4314 return t;
4315 }
4316
4317 /* Similar to build_nt, but for creating a CALL_EXPR object with a
4318 tree vec. */
4319
4320 tree
4321 build_nt_call_vec (tree fn, vec<tree, va_gc> *args)
4322 {
4323 tree ret, t;
4324 unsigned int ix;
4325
4326 ret = build_vl_exp (CALL_EXPR, vec_safe_length (args) + 3);
4327 CALL_EXPR_FN (ret) = fn;
4328 CALL_EXPR_STATIC_CHAIN (ret) = NULL_TREE;
4329 FOR_EACH_VEC_SAFE_ELT (args, ix, t)
4330 CALL_EXPR_ARG (ret, ix) = t;
4331 return ret;
4332 }
4333 \f
4334 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
4335 We do NOT enter this node in any sort of symbol table.
4336
4337 LOC is the location of the decl.
4338
4339 layout_decl is used to set up the decl's storage layout.
4340 Other slots are initialized to 0 or null pointers. */
4341
4342 tree
4343 build_decl_stat (location_t loc, enum tree_code code, tree name,
4344 tree type MEM_STAT_DECL)
4345 {
4346 tree t;
4347
4348 t = make_node_stat (code PASS_MEM_STAT);
4349 DECL_SOURCE_LOCATION (t) = loc;
4350
4351 /* if (type == error_mark_node)
4352 type = integer_type_node; */
4353 /* That is not done, deliberately, so that having error_mark_node
4354 as the type can suppress useless errors in the use of this variable. */
4355
4356 DECL_NAME (t) = name;
4357 TREE_TYPE (t) = type;
4358
4359 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
4360 layout_decl (t, 0);
4361
4362 return t;
4363 }
4364
4365 /* Builds and returns function declaration with NAME and TYPE. */
4366
4367 tree
4368 build_fn_decl (const char *name, tree type)
4369 {
4370 tree id = get_identifier (name);
4371 tree decl = build_decl (input_location, FUNCTION_DECL, id, type);
4372
4373 DECL_EXTERNAL (decl) = 1;
4374 TREE_PUBLIC (decl) = 1;
4375 DECL_ARTIFICIAL (decl) = 1;
4376 TREE_NOTHROW (decl) = 1;
4377
4378 return decl;
4379 }
4380
4381 vec<tree, va_gc> *all_translation_units;
4382
4383 /* Builds a new translation-unit decl with name NAME, queues it in the
4384 global list of translation-unit decls and returns it. */
4385
4386 tree
4387 build_translation_unit_decl (tree name)
4388 {
4389 tree tu = build_decl (UNKNOWN_LOCATION, TRANSLATION_UNIT_DECL,
4390 name, NULL_TREE);
4391 TRANSLATION_UNIT_LANGUAGE (tu) = lang_hooks.name;
4392 vec_safe_push (all_translation_units, tu);
4393 return tu;
4394 }
4395
4396 \f
4397 /* BLOCK nodes are used to represent the structure of binding contours
4398 and declarations, once those contours have been exited and their contents
4399 compiled. This information is used for outputting debugging info. */
4400
4401 tree
4402 build_block (tree vars, tree subblocks, tree supercontext, tree chain)
4403 {
4404 tree block = make_node (BLOCK);
4405
4406 BLOCK_VARS (block) = vars;
4407 BLOCK_SUBBLOCKS (block) = subblocks;
4408 BLOCK_SUPERCONTEXT (block) = supercontext;
4409 BLOCK_CHAIN (block) = chain;
4410 return block;
4411 }
4412
4413 \f
4414 /* Like SET_EXPR_LOCATION, but make sure the tree can have a location.
4415
4416 LOC is the location to use in tree T. */
4417
4418 void
4419 protected_set_expr_location (tree t, location_t loc)
4420 {
4421 if (t && CAN_HAVE_LOCATION_P (t))
4422 SET_EXPR_LOCATION (t, loc);
4423 }
4424 \f
4425 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
4426 is ATTRIBUTE. */
4427
4428 tree
4429 build_decl_attribute_variant (tree ddecl, tree attribute)
4430 {
4431 DECL_ATTRIBUTES (ddecl) = attribute;
4432 return ddecl;
4433 }
4434
4435 /* Borrowed from hashtab.c iterative_hash implementation. */
4436 #define mix(a,b,c) \
4437 { \
4438 a -= b; a -= c; a ^= (c>>13); \
4439 b -= c; b -= a; b ^= (a<< 8); \
4440 c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
4441 a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
4442 b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
4443 c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
4444 a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
4445 b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
4446 c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
4447 }
4448
4449
4450 /* Produce good hash value combining VAL and VAL2. */
4451 hashval_t
4452 iterative_hash_hashval_t (hashval_t val, hashval_t val2)
4453 {
4454 /* the golden ratio; an arbitrary value. */
4455 hashval_t a = 0x9e3779b9;
4456
4457 mix (a, val, val2);
4458 return val2;
4459 }
4460
4461 /* Produce good hash value combining VAL and VAL2. */
4462 hashval_t
4463 iterative_hash_host_wide_int (HOST_WIDE_INT val, hashval_t val2)
4464 {
4465 if (sizeof (HOST_WIDE_INT) == sizeof (hashval_t))
4466 return iterative_hash_hashval_t (val, val2);
4467 else
4468 {
4469 hashval_t a = (hashval_t) val;
4470 /* Avoid warnings about shifting of more than the width of the type on
4471 hosts that won't execute this path. */
4472 int zero = 0;
4473 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 8 + zero));
4474 mix (a, b, val2);
4475 if (sizeof (HOST_WIDE_INT) > 2 * sizeof (hashval_t))
4476 {
4477 hashval_t a = (hashval_t) (val >> (sizeof (hashval_t) * 16 + zero));
4478 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 24 + zero));
4479 mix (a, b, val2);
4480 }
4481 return val2;
4482 }
4483 }
4484
4485 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
4486 is ATTRIBUTE and its qualifiers are QUALS.
4487
4488 Record such modified types already made so we don't make duplicates. */
4489
4490 tree
4491 build_type_attribute_qual_variant (tree ttype, tree attribute, int quals)
4492 {
4493 if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
4494 {
4495 hashval_t hashcode = 0;
4496 tree ntype;
4497 enum tree_code code = TREE_CODE (ttype);
4498
4499 /* Building a distinct copy of a tagged type is inappropriate; it
4500 causes breakage in code that expects there to be a one-to-one
4501 relationship between a struct and its fields.
4502 build_duplicate_type is another solution (as used in
4503 handle_transparent_union_attribute), but that doesn't play well
4504 with the stronger C++ type identity model. */
4505 if (TREE_CODE (ttype) == RECORD_TYPE
4506 || TREE_CODE (ttype) == UNION_TYPE
4507 || TREE_CODE (ttype) == QUAL_UNION_TYPE
4508 || TREE_CODE (ttype) == ENUMERAL_TYPE)
4509 {
4510 warning (OPT_Wattributes,
4511 "ignoring attributes applied to %qT after definition",
4512 TYPE_MAIN_VARIANT (ttype));
4513 return build_qualified_type (ttype, quals);
4514 }
4515
4516 ttype = build_qualified_type (ttype, TYPE_UNQUALIFIED);
4517 ntype = build_distinct_type_copy (ttype);
4518
4519 TYPE_ATTRIBUTES (ntype) = attribute;
4520
4521 hashcode = iterative_hash_object (code, hashcode);
4522 if (TREE_TYPE (ntype))
4523 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (ntype)),
4524 hashcode);
4525 hashcode = attribute_hash_list (attribute, hashcode);
4526
4527 switch (TREE_CODE (ntype))
4528 {
4529 case FUNCTION_TYPE:
4530 hashcode = type_hash_list (TYPE_ARG_TYPES (ntype), hashcode);
4531 break;
4532 case ARRAY_TYPE:
4533 if (TYPE_DOMAIN (ntype))
4534 hashcode = iterative_hash_object (TYPE_HASH (TYPE_DOMAIN (ntype)),
4535 hashcode);
4536 break;
4537 case INTEGER_TYPE:
4538 hashcode = iterative_hash_object
4539 (TREE_INT_CST_LOW (TYPE_MAX_VALUE (ntype)), hashcode);
4540 hashcode = iterative_hash_object
4541 (TREE_INT_CST_HIGH (TYPE_MAX_VALUE (ntype)), hashcode);
4542 break;
4543 case REAL_TYPE:
4544 case FIXED_POINT_TYPE:
4545 {
4546 unsigned int precision = TYPE_PRECISION (ntype);
4547 hashcode = iterative_hash_object (precision, hashcode);
4548 }
4549 break;
4550 default:
4551 break;
4552 }
4553
4554 ntype = type_hash_canon (hashcode, ntype);
4555
4556 /* If the target-dependent attributes make NTYPE different from
4557 its canonical type, we will need to use structural equality
4558 checks for this type. */
4559 if (TYPE_STRUCTURAL_EQUALITY_P (ttype)
4560 || !comp_type_attributes (ntype, ttype))
4561 SET_TYPE_STRUCTURAL_EQUALITY (ntype);
4562 else if (TYPE_CANONICAL (ntype) == ntype)
4563 TYPE_CANONICAL (ntype) = TYPE_CANONICAL (ttype);
4564
4565 ttype = build_qualified_type (ntype, quals);
4566 }
4567 else if (TYPE_QUALS (ttype) != quals)
4568 ttype = build_qualified_type (ttype, quals);
4569
4570 return ttype;
4571 }
4572
4573 /* Compare two attributes for their value identity. Return true if the
4574 attribute values are known to be equal; otherwise return false.
4575 */
4576
4577 static bool
4578 attribute_value_equal (const_tree attr1, const_tree attr2)
4579 {
4580 if (TREE_VALUE (attr1) == TREE_VALUE (attr2))
4581 return true;
4582
4583 if (TREE_VALUE (attr1) != NULL_TREE
4584 && TREE_CODE (TREE_VALUE (attr1)) == TREE_LIST
4585 && TREE_VALUE (attr2) != NULL
4586 && TREE_CODE (TREE_VALUE (attr2)) == TREE_LIST)
4587 return (simple_cst_list_equal (TREE_VALUE (attr1),
4588 TREE_VALUE (attr2)) == 1);
4589
4590 return (simple_cst_equal (TREE_VALUE (attr1), TREE_VALUE (attr2)) == 1);
4591 }
4592
4593 /* Return 0 if the attributes for two types are incompatible, 1 if they
4594 are compatible, and 2 if they are nearly compatible (which causes a
4595 warning to be generated). */
4596 int
4597 comp_type_attributes (const_tree type1, const_tree type2)
4598 {
4599 const_tree a1 = TYPE_ATTRIBUTES (type1);
4600 const_tree a2 = TYPE_ATTRIBUTES (type2);
4601 const_tree a;
4602
4603 if (a1 == a2)
4604 return 1;
4605 for (a = a1; a != NULL_TREE; a = TREE_CHAIN (a))
4606 {
4607 const struct attribute_spec *as;
4608 const_tree attr;
4609
4610 as = lookup_attribute_spec (get_attribute_name (a));
4611 if (!as || as->affects_type_identity == false)
4612 continue;
4613
4614 attr = lookup_attribute (as->name, CONST_CAST_TREE (a2));
4615 if (!attr || !attribute_value_equal (a, attr))
4616 break;
4617 }
4618 if (!a)
4619 {
4620 for (a = a2; a != NULL_TREE; a = TREE_CHAIN (a))
4621 {
4622 const struct attribute_spec *as;
4623
4624 as = lookup_attribute_spec (get_attribute_name (a));
4625 if (!as || as->affects_type_identity == false)
4626 continue;
4627
4628 if (!lookup_attribute (as->name, CONST_CAST_TREE (a1)))
4629 break;
4630 /* We don't need to compare trees again, as we did this
4631 already in first loop. */
4632 }
4633 /* All types - affecting identity - are equal, so
4634 there is no need to call target hook for comparison. */
4635 if (!a)
4636 return 1;
4637 }
4638 /* As some type combinations - like default calling-convention - might
4639 be compatible, we have to call the target hook to get the final result. */
4640 return targetm.comp_type_attributes (type1, type2);
4641 }
4642
4643 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
4644 is ATTRIBUTE.
4645
4646 Record such modified types already made so we don't make duplicates. */
4647
4648 tree
4649 build_type_attribute_variant (tree ttype, tree attribute)
4650 {
4651 return build_type_attribute_qual_variant (ttype, attribute,
4652 TYPE_QUALS (ttype));
4653 }
4654
4655
4656 /* Reset the expression *EXPR_P, a size or position.
4657
4658 ??? We could reset all non-constant sizes or positions. But it's cheap
4659 enough to not do so and refrain from adding workarounds to dwarf2out.c.
4660
4661 We need to reset self-referential sizes or positions because they cannot
4662 be gimplified and thus can contain a CALL_EXPR after the gimplification
4663 is finished, which will run afoul of LTO streaming. And they need to be
4664 reset to something essentially dummy but not constant, so as to preserve
4665 the properties of the object they are attached to. */
4666
4667 static inline void
4668 free_lang_data_in_one_sizepos (tree *expr_p)
4669 {
4670 tree expr = *expr_p;
4671 if (CONTAINS_PLACEHOLDER_P (expr))
4672 *expr_p = build0 (PLACEHOLDER_EXPR, TREE_TYPE (expr));
4673 }
4674
4675
4676 /* Reset all the fields in a binfo node BINFO. We only keep
4677 BINFO_VTABLE, which is used by gimple_fold_obj_type_ref. */
4678
4679 static void
4680 free_lang_data_in_binfo (tree binfo)
4681 {
4682 unsigned i;
4683 tree t;
4684
4685 gcc_assert (TREE_CODE (binfo) == TREE_BINFO);
4686
4687 BINFO_VIRTUALS (binfo) = NULL_TREE;
4688 BINFO_BASE_ACCESSES (binfo) = NULL;
4689 BINFO_INHERITANCE_CHAIN (binfo) = NULL_TREE;
4690 BINFO_SUBVTT_INDEX (binfo) = NULL_TREE;
4691
4692 FOR_EACH_VEC_ELT (*BINFO_BASE_BINFOS (binfo), i, t)
4693 free_lang_data_in_binfo (t);
4694 }
4695
4696
4697 /* Reset all language specific information still present in TYPE. */
4698
4699 static void
4700 free_lang_data_in_type (tree type)
4701 {
4702 gcc_assert (TYPE_P (type));
4703
4704 /* Give the FE a chance to remove its own data first. */
4705 lang_hooks.free_lang_data (type);
4706
4707 TREE_LANG_FLAG_0 (type) = 0;
4708 TREE_LANG_FLAG_1 (type) = 0;
4709 TREE_LANG_FLAG_2 (type) = 0;
4710 TREE_LANG_FLAG_3 (type) = 0;
4711 TREE_LANG_FLAG_4 (type) = 0;
4712 TREE_LANG_FLAG_5 (type) = 0;
4713 TREE_LANG_FLAG_6 (type) = 0;
4714
4715 if (TREE_CODE (type) == FUNCTION_TYPE)
4716 {
4717 /* Remove the const and volatile qualifiers from arguments. The
4718 C++ front end removes them, but the C front end does not,
4719 leading to false ODR violation errors when merging two
4720 instances of the same function signature compiled by
4721 different front ends. */
4722 tree p;
4723
4724 for (p = TYPE_ARG_TYPES (type); p; p = TREE_CHAIN (p))
4725 {
4726 tree arg_type = TREE_VALUE (p);
4727
4728 if (TYPE_READONLY (arg_type) || TYPE_VOLATILE (arg_type))
4729 {
4730 int quals = TYPE_QUALS (arg_type)
4731 & ~TYPE_QUAL_CONST
4732 & ~TYPE_QUAL_VOLATILE;
4733 TREE_VALUE (p) = build_qualified_type (arg_type, quals);
4734 free_lang_data_in_type (TREE_VALUE (p));
4735 }
4736 }
4737 }
4738
4739 /* Remove members that are not actually FIELD_DECLs from the field
4740 list of an aggregate. These occur in C++. */
4741 if (RECORD_OR_UNION_TYPE_P (type))
4742 {
4743 tree prev, member;
4744
4745 /* Note that TYPE_FIELDS can be shared across distinct
4746 TREE_TYPEs. Therefore, if the first field of TYPE_FIELDS is
4747 to be removed, we cannot set its TREE_CHAIN to NULL.
4748 Otherwise, we would not be able to find all the other fields
4749 in the other instances of this TREE_TYPE.
4750
4751 This was causing an ICE in testsuite/g++.dg/lto/20080915.C. */
4752 prev = NULL_TREE;
4753 member = TYPE_FIELDS (type);
4754 while (member)
4755 {
4756 if (TREE_CODE (member) == FIELD_DECL
4757 || TREE_CODE (member) == TYPE_DECL)
4758 {
4759 if (prev)
4760 TREE_CHAIN (prev) = member;
4761 else
4762 TYPE_FIELDS (type) = member;
4763 prev = member;
4764 }
4765
4766 member = TREE_CHAIN (member);
4767 }
4768
4769 if (prev)
4770 TREE_CHAIN (prev) = NULL_TREE;
4771 else
4772 TYPE_FIELDS (type) = NULL_TREE;
4773
4774 TYPE_METHODS (type) = NULL_TREE;
4775 if (TYPE_BINFO (type))
4776 free_lang_data_in_binfo (TYPE_BINFO (type));
4777 }
4778 else
4779 {
4780 /* For non-aggregate types, clear out the language slot (which
4781 overloads TYPE_BINFO). */
4782 TYPE_LANG_SLOT_1 (type) = NULL_TREE;
4783
4784 if (INTEGRAL_TYPE_P (type)
4785 || SCALAR_FLOAT_TYPE_P (type)
4786 || FIXED_POINT_TYPE_P (type))
4787 {
4788 free_lang_data_in_one_sizepos (&TYPE_MIN_VALUE (type));
4789 free_lang_data_in_one_sizepos (&TYPE_MAX_VALUE (type));
4790 }
4791 }
4792
4793 free_lang_data_in_one_sizepos (&TYPE_SIZE (type));
4794 free_lang_data_in_one_sizepos (&TYPE_SIZE_UNIT (type));
4795
4796 if (TYPE_CONTEXT (type)
4797 && TREE_CODE (TYPE_CONTEXT (type)) == BLOCK)
4798 {
4799 tree ctx = TYPE_CONTEXT (type);
4800 do
4801 {
4802 ctx = BLOCK_SUPERCONTEXT (ctx);
4803 }
4804 while (ctx && TREE_CODE (ctx) == BLOCK);
4805 TYPE_CONTEXT (type) = ctx;
4806 }
4807 }
4808
4809
4810 /* Return true if DECL may need an assembler name to be set. */
4811
4812 static inline bool
4813 need_assembler_name_p (tree decl)
4814 {
4815 /* Only FUNCTION_DECLs and VAR_DECLs are considered. */
4816 if (TREE_CODE (decl) != FUNCTION_DECL
4817 && TREE_CODE (decl) != VAR_DECL)
4818 return false;
4819
4820 /* If DECL already has its assembler name set, it does not need a
4821 new one. */
4822 if (!HAS_DECL_ASSEMBLER_NAME_P (decl)
4823 || DECL_ASSEMBLER_NAME_SET_P (decl))
4824 return false;
4825
4826 /* Abstract decls do not need an assembler name. */
4827 if (DECL_ABSTRACT (decl))
4828 return false;
4829
4830 /* For VAR_DECLs, only static, public and external symbols need an
4831 assembler name. */
4832 if (TREE_CODE (decl) == VAR_DECL
4833 && !TREE_STATIC (decl)
4834 && !TREE_PUBLIC (decl)
4835 && !DECL_EXTERNAL (decl))
4836 return false;
4837
4838 if (TREE_CODE (decl) == FUNCTION_DECL)
4839 {
4840 /* Do not set assembler name on builtins. Allow RTL expansion to
4841 decide whether to expand inline or via a regular call. */
4842 if (DECL_BUILT_IN (decl)
4843 && DECL_BUILT_IN_CLASS (decl) != BUILT_IN_FRONTEND)
4844 return false;
4845
4846 /* Functions represented in the callgraph need an assembler name. */
4847 if (cgraph_get_node (decl) != NULL)
4848 return true;
4849
4850 /* Unused and not public functions don't need an assembler name. */
4851 if (!TREE_USED (decl) && !TREE_PUBLIC (decl))
4852 return false;
4853 }
4854
4855 return true;
4856 }
4857
4858
4859 /* Reset all language specific information still present in symbol
4860 DECL. */
4861
4862 static void
4863 free_lang_data_in_decl (tree decl)
4864 {
4865 gcc_assert (DECL_P (decl));
4866
4867 /* Give the FE a chance to remove its own data first. */
4868 lang_hooks.free_lang_data (decl);
4869
4870 TREE_LANG_FLAG_0 (decl) = 0;
4871 TREE_LANG_FLAG_1 (decl) = 0;
4872 TREE_LANG_FLAG_2 (decl) = 0;
4873 TREE_LANG_FLAG_3 (decl) = 0;
4874 TREE_LANG_FLAG_4 (decl) = 0;
4875 TREE_LANG_FLAG_5 (decl) = 0;
4876 TREE_LANG_FLAG_6 (decl) = 0;
4877
4878 free_lang_data_in_one_sizepos (&DECL_SIZE (decl));
4879 free_lang_data_in_one_sizepos (&DECL_SIZE_UNIT (decl));
4880 if (TREE_CODE (decl) == FIELD_DECL)
4881 {
4882 free_lang_data_in_one_sizepos (&DECL_FIELD_OFFSET (decl));
4883 if (TREE_CODE (DECL_CONTEXT (decl)) == QUAL_UNION_TYPE)
4884 DECL_QUALIFIER (decl) = NULL_TREE;
4885 }
4886
4887 if (TREE_CODE (decl) == FUNCTION_DECL)
4888 {
4889 struct cgraph_node *node;
4890 if (!(node = cgraph_get_node (decl))
4891 || (!node->symbol.definition && !node->clones))
4892 {
4893 if (node)
4894 cgraph_release_function_body (node);
4895 else
4896 {
4897 release_function_body (decl);
4898 DECL_ARGUMENTS (decl) = NULL;
4899 DECL_RESULT (decl) = NULL;
4900 DECL_INITIAL (decl) = error_mark_node;
4901 }
4902 }
4903 if (gimple_has_body_p (decl))
4904 {
4905 tree t;
4906
4907 /* If DECL has a gimple body, then the context for its
4908 arguments must be DECL. Otherwise, it doesn't really
4909 matter, as we will not be emitting any code for DECL. In
4910 general, there may be other instances of DECL created by
4911 the front end and since PARM_DECLs are generally shared,
4912 their DECL_CONTEXT changes as the replicas of DECL are
4913 created. The only time where DECL_CONTEXT is important
4914 is for the FUNCTION_DECLs that have a gimple body (since
4915 the PARM_DECL will be used in the function's body). */
4916 for (t = DECL_ARGUMENTS (decl); t; t = TREE_CHAIN (t))
4917 DECL_CONTEXT (t) = decl;
4918 }
4919
4920 /* DECL_SAVED_TREE holds the GENERIC representation for DECL.
4921 At this point, it is not needed anymore. */
4922 DECL_SAVED_TREE (decl) = NULL_TREE;
4923
4924 /* Clear the abstract origin if it refers to a method. Otherwise
4925 dwarf2out.c will ICE as we clear TYPE_METHODS and thus the
4926 origin will not be output correctly. */
4927 if (DECL_ABSTRACT_ORIGIN (decl)
4928 && DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))
4929 && RECORD_OR_UNION_TYPE_P
4930 (DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))))
4931 DECL_ABSTRACT_ORIGIN (decl) = NULL_TREE;
4932
4933 /* Sometimes the C++ frontend doesn't manage to transform a temporary
4934 DECL_VINDEX referring to itself into a vtable slot number as it
4935 should. Happens with functions that are copied and then forgotten
4936 about. Just clear it, it won't matter anymore. */
4937 if (DECL_VINDEX (decl) && !host_integerp (DECL_VINDEX (decl), 0))
4938 DECL_VINDEX (decl) = NULL_TREE;
4939 }
4940 else if (TREE_CODE (decl) == VAR_DECL)
4941 {
4942 if ((DECL_EXTERNAL (decl)
4943 && (!TREE_STATIC (decl) || !TREE_READONLY (decl)))
4944 || (decl_function_context (decl) && !TREE_STATIC (decl)))
4945 DECL_INITIAL (decl) = NULL_TREE;
4946 }
4947 else if (TREE_CODE (decl) == TYPE_DECL
4948 || TREE_CODE (decl) == FIELD_DECL)
4949 DECL_INITIAL (decl) = NULL_TREE;
4950 else if (TREE_CODE (decl) == TRANSLATION_UNIT_DECL
4951 && DECL_INITIAL (decl)
4952 && TREE_CODE (DECL_INITIAL (decl)) == BLOCK)
4953 {
4954 /* Strip builtins from the translation-unit BLOCK. We still have targets
4955 without builtin_decl_explicit support and also builtins are shared
4956 nodes and thus we can't use TREE_CHAIN in multiple lists. */
4957 tree *nextp = &BLOCK_VARS (DECL_INITIAL (decl));
4958 while (*nextp)
4959 {
4960 tree var = *nextp;
4961 if (TREE_CODE (var) == FUNCTION_DECL
4962 && DECL_BUILT_IN (var))
4963 *nextp = TREE_CHAIN (var);
4964 else
4965 nextp = &TREE_CHAIN (var);
4966 }
4967 }
4968 }
4969
4970
4971 /* Data used when collecting DECLs and TYPEs for language data removal. */
4972
4973 struct free_lang_data_d
4974 {
4975 /* Worklist to avoid excessive recursion. */
4976 vec<tree> worklist;
4977
4978 /* Set of traversed objects. Used to avoid duplicate visits. */
4979 struct pointer_set_t *pset;
4980
4981 /* Array of symbols to process with free_lang_data_in_decl. */
4982 vec<tree> decls;
4983
4984 /* Array of types to process with free_lang_data_in_type. */
4985 vec<tree> types;
4986 };
4987
4988
4989 /* Save all language fields needed to generate proper debug information
4990 for DECL. This saves most fields cleared out by free_lang_data_in_decl. */
4991
4992 static void
4993 save_debug_info_for_decl (tree t)
4994 {
4995 /*struct saved_debug_info_d *sdi;*/
4996
4997 gcc_assert (debug_info_level > DINFO_LEVEL_TERSE && t && DECL_P (t));
4998
4999 /* FIXME. Partial implementation for saving debug info removed. */
5000 }
5001
5002
5003 /* Save all language fields needed to generate proper debug information
5004 for TYPE. This saves most fields cleared out by free_lang_data_in_type. */
5005
5006 static void
5007 save_debug_info_for_type (tree t)
5008 {
5009 /*struct saved_debug_info_d *sdi;*/
5010
5011 gcc_assert (debug_info_level > DINFO_LEVEL_TERSE && t && TYPE_P (t));
5012
5013 /* FIXME. Partial implementation for saving debug info removed. */
5014 }
5015
5016
5017 /* Add type or decl T to one of the list of tree nodes that need their
5018 language data removed. The lists are held inside FLD. */
5019
5020 static void
5021 add_tree_to_fld_list (tree t, struct free_lang_data_d *fld)
5022 {
5023 if (DECL_P (t))
5024 {
5025 fld->decls.safe_push (t);
5026 if (debug_info_level > DINFO_LEVEL_TERSE)
5027 save_debug_info_for_decl (t);
5028 }
5029 else if (TYPE_P (t))
5030 {
5031 fld->types.safe_push (t);
5032 if (debug_info_level > DINFO_LEVEL_TERSE)
5033 save_debug_info_for_type (t);
5034 }
5035 else
5036 gcc_unreachable ();
5037 }
5038
5039 /* Push tree node T into FLD->WORKLIST. */
5040
5041 static inline void
5042 fld_worklist_push (tree t, struct free_lang_data_d *fld)
5043 {
5044 if (t && !is_lang_specific (t) && !pointer_set_contains (fld->pset, t))
5045 fld->worklist.safe_push ((t));
5046 }
5047
5048
5049 /* Operand callback helper for free_lang_data_in_node. *TP is the
5050 subtree operand being considered. */
5051
5052 static tree
5053 find_decls_types_r (tree *tp, int *ws, void *data)
5054 {
5055 tree t = *tp;
5056 struct free_lang_data_d *fld = (struct free_lang_data_d *) data;
5057
5058 if (TREE_CODE (t) == TREE_LIST)
5059 return NULL_TREE;
5060
5061 /* Language specific nodes will be removed, so there is no need
5062 to gather anything under them. */
5063 if (is_lang_specific (t))
5064 {
5065 *ws = 0;
5066 return NULL_TREE;
5067 }
5068
5069 if (DECL_P (t))
5070 {
5071 /* Note that walk_tree does not traverse every possible field in
5072 decls, so we have to do our own traversals here. */
5073 add_tree_to_fld_list (t, fld);
5074
5075 fld_worklist_push (DECL_NAME (t), fld);
5076 fld_worklist_push (DECL_CONTEXT (t), fld);
5077 fld_worklist_push (DECL_SIZE (t), fld);
5078 fld_worklist_push (DECL_SIZE_UNIT (t), fld);
5079
5080 /* We are going to remove everything under DECL_INITIAL for
5081 TYPE_DECLs. No point walking them. */
5082 if (TREE_CODE (t) != TYPE_DECL)
5083 fld_worklist_push (DECL_INITIAL (t), fld);
5084
5085 fld_worklist_push (DECL_ATTRIBUTES (t), fld);
5086 fld_worklist_push (DECL_ABSTRACT_ORIGIN (t), fld);
5087
5088 if (TREE_CODE (t) == FUNCTION_DECL)
5089 {
5090 fld_worklist_push (DECL_ARGUMENTS (t), fld);
5091 fld_worklist_push (DECL_RESULT (t), fld);
5092 }
5093 else if (TREE_CODE (t) == TYPE_DECL)
5094 {
5095 fld_worklist_push (DECL_ARGUMENT_FLD (t), fld);
5096 fld_worklist_push (DECL_VINDEX (t), fld);
5097 fld_worklist_push (DECL_ORIGINAL_TYPE (t), fld);
5098 }
5099 else if (TREE_CODE (t) == FIELD_DECL)
5100 {
5101 fld_worklist_push (DECL_FIELD_OFFSET (t), fld);
5102 fld_worklist_push (DECL_BIT_FIELD_TYPE (t), fld);
5103 fld_worklist_push (DECL_FIELD_BIT_OFFSET (t), fld);
5104 fld_worklist_push (DECL_FCONTEXT (t), fld);
5105 }
5106 else if (TREE_CODE (t) == VAR_DECL)
5107 {
5108 fld_worklist_push (DECL_SECTION_NAME (t), fld);
5109 fld_worklist_push (DECL_COMDAT_GROUP (t), fld);
5110 }
5111
5112 if ((TREE_CODE (t) == VAR_DECL || TREE_CODE (t) == PARM_DECL)
5113 && DECL_HAS_VALUE_EXPR_P (t))
5114 fld_worklist_push (DECL_VALUE_EXPR (t), fld);
5115
5116 if (TREE_CODE (t) != FIELD_DECL
5117 && TREE_CODE (t) != TYPE_DECL)
5118 fld_worklist_push (TREE_CHAIN (t), fld);
5119 *ws = 0;
5120 }
5121 else if (TYPE_P (t))
5122 {
5123 /* Note that walk_tree does not traverse every possible field in
5124 types, so we have to do our own traversals here. */
5125 add_tree_to_fld_list (t, fld);
5126
5127 if (!RECORD_OR_UNION_TYPE_P (t))
5128 fld_worklist_push (TYPE_CACHED_VALUES (t), fld);
5129 fld_worklist_push (TYPE_SIZE (t), fld);
5130 fld_worklist_push (TYPE_SIZE_UNIT (t), fld);
5131 fld_worklist_push (TYPE_ATTRIBUTES (t), fld);
5132 fld_worklist_push (TYPE_POINTER_TO (t), fld);
5133 fld_worklist_push (TYPE_REFERENCE_TO (t), fld);
5134 fld_worklist_push (TYPE_NAME (t), fld);
5135 /* Do not walk TYPE_NEXT_PTR_TO or TYPE_NEXT_REF_TO. We do not stream
5136 them and thus do not and want not to reach unused pointer types
5137 this way. */
5138 if (!POINTER_TYPE_P (t))
5139 fld_worklist_push (TYPE_MINVAL (t), fld);
5140 if (!RECORD_OR_UNION_TYPE_P (t))
5141 fld_worklist_push (TYPE_MAXVAL (t), fld);
5142 fld_worklist_push (TYPE_MAIN_VARIANT (t), fld);
5143 /* Do not walk TYPE_NEXT_VARIANT. We do not stream it and thus
5144 do not and want not to reach unused variants this way. */
5145 if (TYPE_CONTEXT (t))
5146 {
5147 tree ctx = TYPE_CONTEXT (t);
5148 /* We adjust BLOCK TYPE_CONTEXTs to the innermost non-BLOCK one.
5149 So push that instead. */
5150 while (ctx && TREE_CODE (ctx) == BLOCK)
5151 ctx = BLOCK_SUPERCONTEXT (ctx);
5152 fld_worklist_push (ctx, fld);
5153 }
5154 /* Do not walk TYPE_CANONICAL. We do not stream it and thus do not
5155 and want not to reach unused types this way. */
5156
5157 if (RECORD_OR_UNION_TYPE_P (t) && TYPE_BINFO (t))
5158 {
5159 unsigned i;
5160 tree tem;
5161 FOR_EACH_VEC_ELT (*BINFO_BASE_BINFOS (TYPE_BINFO (t)), i, tem)
5162 fld_worklist_push (TREE_TYPE (tem), fld);
5163 tem = BINFO_VIRTUALS (TYPE_BINFO (t));
5164 if (tem
5165 /* The Java FE overloads BINFO_VIRTUALS for its own purpose. */
5166 && TREE_CODE (tem) == TREE_LIST)
5167 do
5168 {
5169 fld_worklist_push (TREE_VALUE (tem), fld);
5170 tem = TREE_CHAIN (tem);
5171 }
5172 while (tem);
5173 }
5174 if (RECORD_OR_UNION_TYPE_P (t))
5175 {
5176 tree tem;
5177 /* Push all TYPE_FIELDS - there can be interleaving interesting
5178 and non-interesting things. */
5179 tem = TYPE_FIELDS (t);
5180 while (tem)
5181 {
5182 if (TREE_CODE (tem) == FIELD_DECL
5183 || TREE_CODE (tem) == TYPE_DECL)
5184 fld_worklist_push (tem, fld);
5185 tem = TREE_CHAIN (tem);
5186 }
5187 }
5188
5189 fld_worklist_push (TYPE_STUB_DECL (t), fld);
5190 *ws = 0;
5191 }
5192 else if (TREE_CODE (t) == BLOCK)
5193 {
5194 tree tem;
5195 for (tem = BLOCK_VARS (t); tem; tem = TREE_CHAIN (tem))
5196 fld_worklist_push (tem, fld);
5197 for (tem = BLOCK_SUBBLOCKS (t); tem; tem = BLOCK_CHAIN (tem))
5198 fld_worklist_push (tem, fld);
5199 fld_worklist_push (BLOCK_ABSTRACT_ORIGIN (t), fld);
5200 }
5201
5202 if (TREE_CODE (t) != IDENTIFIER_NODE
5203 && CODE_CONTAINS_STRUCT (TREE_CODE (t), TS_TYPED))
5204 fld_worklist_push (TREE_TYPE (t), fld);
5205
5206 return NULL_TREE;
5207 }
5208
5209
5210 /* Find decls and types in T. */
5211
5212 static void
5213 find_decls_types (tree t, struct free_lang_data_d *fld)
5214 {
5215 while (1)
5216 {
5217 if (!pointer_set_contains (fld->pset, t))
5218 walk_tree (&t, find_decls_types_r, fld, fld->pset);
5219 if (fld->worklist.is_empty ())
5220 break;
5221 t = fld->worklist.pop ();
5222 }
5223 }
5224
5225 /* Translate all the types in LIST with the corresponding runtime
5226 types. */
5227
5228 static tree
5229 get_eh_types_for_runtime (tree list)
5230 {
5231 tree head, prev;
5232
5233 if (list == NULL_TREE)
5234 return NULL_TREE;
5235
5236 head = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
5237 prev = head;
5238 list = TREE_CHAIN (list);
5239 while (list)
5240 {
5241 tree n = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
5242 TREE_CHAIN (prev) = n;
5243 prev = TREE_CHAIN (prev);
5244 list = TREE_CHAIN (list);
5245 }
5246
5247 return head;
5248 }
5249
5250
5251 /* Find decls and types referenced in EH region R and store them in
5252 FLD->DECLS and FLD->TYPES. */
5253
5254 static void
5255 find_decls_types_in_eh_region (eh_region r, struct free_lang_data_d *fld)
5256 {
5257 switch (r->type)
5258 {
5259 case ERT_CLEANUP:
5260 break;
5261
5262 case ERT_TRY:
5263 {
5264 eh_catch c;
5265
5266 /* The types referenced in each catch must first be changed to the
5267 EH types used at runtime. This removes references to FE types
5268 in the region. */
5269 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
5270 {
5271 c->type_list = get_eh_types_for_runtime (c->type_list);
5272 walk_tree (&c->type_list, find_decls_types_r, fld, fld->pset);
5273 }
5274 }
5275 break;
5276
5277 case ERT_ALLOWED_EXCEPTIONS:
5278 r->u.allowed.type_list
5279 = get_eh_types_for_runtime (r->u.allowed.type_list);
5280 walk_tree (&r->u.allowed.type_list, find_decls_types_r, fld, fld->pset);
5281 break;
5282
5283 case ERT_MUST_NOT_THROW:
5284 walk_tree (&r->u.must_not_throw.failure_decl,
5285 find_decls_types_r, fld, fld->pset);
5286 break;
5287 }
5288 }
5289
5290
5291 /* Find decls and types referenced in cgraph node N and store them in
5292 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
5293 look for *every* kind of DECL and TYPE node reachable from N,
5294 including those embedded inside types and decls (i.e,, TYPE_DECLs,
5295 NAMESPACE_DECLs, etc). */
5296
5297 static void
5298 find_decls_types_in_node (struct cgraph_node *n, struct free_lang_data_d *fld)
5299 {
5300 basic_block bb;
5301 struct function *fn;
5302 unsigned ix;
5303 tree t;
5304
5305 find_decls_types (n->symbol.decl, fld);
5306
5307 if (!gimple_has_body_p (n->symbol.decl))
5308 return;
5309
5310 gcc_assert (current_function_decl == NULL_TREE && cfun == NULL);
5311
5312 fn = DECL_STRUCT_FUNCTION (n->symbol.decl);
5313
5314 /* Traverse locals. */
5315 FOR_EACH_LOCAL_DECL (fn, ix, t)
5316 find_decls_types (t, fld);
5317
5318 /* Traverse EH regions in FN. */
5319 {
5320 eh_region r;
5321 FOR_ALL_EH_REGION_FN (r, fn)
5322 find_decls_types_in_eh_region (r, fld);
5323 }
5324
5325 /* Traverse every statement in FN. */
5326 FOR_EACH_BB_FN (bb, fn)
5327 {
5328 gimple_stmt_iterator si;
5329 unsigned i;
5330
5331 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
5332 {
5333 gimple phi = gsi_stmt (si);
5334
5335 for (i = 0; i < gimple_phi_num_args (phi); i++)
5336 {
5337 tree *arg_p = gimple_phi_arg_def_ptr (phi, i);
5338 find_decls_types (*arg_p, fld);
5339 }
5340 }
5341
5342 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5343 {
5344 gimple stmt = gsi_stmt (si);
5345
5346 if (is_gimple_call (stmt))
5347 find_decls_types (gimple_call_fntype (stmt), fld);
5348
5349 for (i = 0; i < gimple_num_ops (stmt); i++)
5350 {
5351 tree arg = gimple_op (stmt, i);
5352 find_decls_types (arg, fld);
5353 }
5354 }
5355 }
5356 }
5357
5358
5359 /* Find decls and types referenced in varpool node N and store them in
5360 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
5361 look for *every* kind of DECL and TYPE node reachable from N,
5362 including those embedded inside types and decls (i.e,, TYPE_DECLs,
5363 NAMESPACE_DECLs, etc). */
5364
5365 static void
5366 find_decls_types_in_var (struct varpool_node *v, struct free_lang_data_d *fld)
5367 {
5368 find_decls_types (v->symbol.decl, fld);
5369 }
5370
5371 /* If T needs an assembler name, have one created for it. */
5372
5373 void
5374 assign_assembler_name_if_neeeded (tree t)
5375 {
5376 if (need_assembler_name_p (t))
5377 {
5378 /* When setting DECL_ASSEMBLER_NAME, the C++ mangler may emit
5379 diagnostics that use input_location to show locus
5380 information. The problem here is that, at this point,
5381 input_location is generally anchored to the end of the file
5382 (since the parser is long gone), so we don't have a good
5383 position to pin it to.
5384
5385 To alleviate this problem, this uses the location of T's
5386 declaration. Examples of this are
5387 testsuite/g++.dg/template/cond2.C and
5388 testsuite/g++.dg/template/pr35240.C. */
5389 location_t saved_location = input_location;
5390 input_location = DECL_SOURCE_LOCATION (t);
5391
5392 decl_assembler_name (t);
5393
5394 input_location = saved_location;
5395 }
5396 }
5397
5398
5399 /* Free language specific information for every operand and expression
5400 in every node of the call graph. This process operates in three stages:
5401
5402 1- Every callgraph node and varpool node is traversed looking for
5403 decls and types embedded in them. This is a more exhaustive
5404 search than that done by find_referenced_vars, because it will
5405 also collect individual fields, decls embedded in types, etc.
5406
5407 2- All the decls found are sent to free_lang_data_in_decl.
5408
5409 3- All the types found are sent to free_lang_data_in_type.
5410
5411 The ordering between decls and types is important because
5412 free_lang_data_in_decl sets assembler names, which includes
5413 mangling. So types cannot be freed up until assembler names have
5414 been set up. */
5415
5416 static void
5417 free_lang_data_in_cgraph (void)
5418 {
5419 struct cgraph_node *n;
5420 struct varpool_node *v;
5421 struct free_lang_data_d fld;
5422 tree t;
5423 unsigned i;
5424 alias_pair *p;
5425
5426 /* Initialize sets and arrays to store referenced decls and types. */
5427 fld.pset = pointer_set_create ();
5428 fld.worklist.create (0);
5429 fld.decls.create (100);
5430 fld.types.create (100);
5431
5432 /* Find decls and types in the body of every function in the callgraph. */
5433 FOR_EACH_FUNCTION (n)
5434 find_decls_types_in_node (n, &fld);
5435
5436 FOR_EACH_VEC_SAFE_ELT (alias_pairs, i, p)
5437 find_decls_types (p->decl, &fld);
5438
5439 /* Find decls and types in every varpool symbol. */
5440 FOR_EACH_VARIABLE (v)
5441 find_decls_types_in_var (v, &fld);
5442
5443 /* Set the assembler name on every decl found. We need to do this
5444 now because free_lang_data_in_decl will invalidate data needed
5445 for mangling. This breaks mangling on interdependent decls. */
5446 FOR_EACH_VEC_ELT (fld.decls, i, t)
5447 assign_assembler_name_if_neeeded (t);
5448
5449 /* Traverse every decl found freeing its language data. */
5450 FOR_EACH_VEC_ELT (fld.decls, i, t)
5451 free_lang_data_in_decl (t);
5452
5453 /* Traverse every type found freeing its language data. */
5454 FOR_EACH_VEC_ELT (fld.types, i, t)
5455 free_lang_data_in_type (t);
5456
5457 pointer_set_destroy (fld.pset);
5458 fld.worklist.release ();
5459 fld.decls.release ();
5460 fld.types.release ();
5461 }
5462
5463
5464 /* Free resources that are used by FE but are not needed once they are done. */
5465
5466 static unsigned
5467 free_lang_data (void)
5468 {
5469 unsigned i;
5470
5471 /* If we are the LTO frontend we have freed lang-specific data already. */
5472 if (in_lto_p
5473 || !flag_generate_lto)
5474 return 0;
5475
5476 /* Allocate and assign alias sets to the standard integer types
5477 while the slots are still in the way the frontends generated them. */
5478 for (i = 0; i < itk_none; ++i)
5479 if (integer_types[i])
5480 TYPE_ALIAS_SET (integer_types[i]) = get_alias_set (integer_types[i]);
5481
5482 /* Traverse the IL resetting language specific information for
5483 operands, expressions, etc. */
5484 free_lang_data_in_cgraph ();
5485
5486 /* Create gimple variants for common types. */
5487 ptrdiff_type_node = integer_type_node;
5488 fileptr_type_node = ptr_type_node;
5489
5490 /* Reset some langhooks. Do not reset types_compatible_p, it may
5491 still be used indirectly via the get_alias_set langhook. */
5492 lang_hooks.dwarf_name = lhd_dwarf_name;
5493 lang_hooks.decl_printable_name = gimple_decl_printable_name;
5494 /* We do not want the default decl_assembler_name implementation,
5495 rather if we have fixed everything we want a wrapper around it
5496 asserting that all non-local symbols already got their assembler
5497 name and only produce assembler names for local symbols. Or rather
5498 make sure we never call decl_assembler_name on local symbols and
5499 devise a separate, middle-end private scheme for it. */
5500
5501 /* Reset diagnostic machinery. */
5502 tree_diagnostics_defaults (global_dc);
5503
5504 return 0;
5505 }
5506
5507
5508 namespace {
5509
5510 const pass_data pass_data_ipa_free_lang_data =
5511 {
5512 SIMPLE_IPA_PASS, /* type */
5513 "*free_lang_data", /* name */
5514 OPTGROUP_NONE, /* optinfo_flags */
5515 false, /* has_gate */
5516 true, /* has_execute */
5517 TV_IPA_FREE_LANG_DATA, /* tv_id */
5518 0, /* properties_required */
5519 0, /* properties_provided */
5520 0, /* properties_destroyed */
5521 0, /* todo_flags_start */
5522 0, /* todo_flags_finish */
5523 };
5524
5525 class pass_ipa_free_lang_data : public simple_ipa_opt_pass
5526 {
5527 public:
5528 pass_ipa_free_lang_data(gcc::context *ctxt)
5529 : simple_ipa_opt_pass(pass_data_ipa_free_lang_data, ctxt)
5530 {}
5531
5532 /* opt_pass methods: */
5533 unsigned int execute () { return free_lang_data (); }
5534
5535 }; // class pass_ipa_free_lang_data
5536
5537 } // anon namespace
5538
5539 simple_ipa_opt_pass *
5540 make_pass_ipa_free_lang_data (gcc::context *ctxt)
5541 {
5542 return new pass_ipa_free_lang_data (ctxt);
5543 }
5544
5545 /* The backbone of is_attribute_p(). ATTR_LEN is the string length of
5546 ATTR_NAME. Also used internally by remove_attribute(). */
5547 bool
5548 private_is_attribute_p (const char *attr_name, size_t attr_len, const_tree ident)
5549 {
5550 size_t ident_len = IDENTIFIER_LENGTH (ident);
5551
5552 if (ident_len == attr_len)
5553 {
5554 if (strcmp (attr_name, IDENTIFIER_POINTER (ident)) == 0)
5555 return true;
5556 }
5557 else if (ident_len == attr_len + 4)
5558 {
5559 /* There is the possibility that ATTR is 'text' and IDENT is
5560 '__text__'. */
5561 const char *p = IDENTIFIER_POINTER (ident);
5562 if (p[0] == '_' && p[1] == '_'
5563 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
5564 && strncmp (attr_name, p + 2, attr_len) == 0)
5565 return true;
5566 }
5567
5568 return false;
5569 }
5570
5571 /* The backbone of lookup_attribute(). ATTR_LEN is the string length
5572 of ATTR_NAME, and LIST is not NULL_TREE. */
5573 tree
5574 private_lookup_attribute (const char *attr_name, size_t attr_len, tree list)
5575 {
5576 while (list)
5577 {
5578 size_t ident_len = IDENTIFIER_LENGTH (get_attribute_name (list));
5579
5580 if (ident_len == attr_len)
5581 {
5582 if (!strcmp (attr_name,
5583 IDENTIFIER_POINTER (get_attribute_name (list))))
5584 break;
5585 }
5586 /* TODO: If we made sure that attributes were stored in the
5587 canonical form without '__...__' (ie, as in 'text' as opposed
5588 to '__text__') then we could avoid the following case. */
5589 else if (ident_len == attr_len + 4)
5590 {
5591 const char *p = IDENTIFIER_POINTER (get_attribute_name (list));
5592 if (p[0] == '_' && p[1] == '_'
5593 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
5594 && strncmp (attr_name, p + 2, attr_len) == 0)
5595 break;
5596 }
5597 list = TREE_CHAIN (list);
5598 }
5599
5600 return list;
5601 }
5602
5603 /* A variant of lookup_attribute() that can be used with an identifier
5604 as the first argument, and where the identifier can be either
5605 'text' or '__text__'.
5606
5607 Given an attribute ATTR_IDENTIFIER, and a list of attributes LIST,
5608 return a pointer to the attribute's list element if the attribute
5609 is part of the list, or NULL_TREE if not found. If the attribute
5610 appears more than once, this only returns the first occurrence; the
5611 TREE_CHAIN of the return value should be passed back in if further
5612 occurrences are wanted. ATTR_IDENTIFIER must be an identifier but
5613 can be in the form 'text' or '__text__'. */
5614 static tree
5615 lookup_ident_attribute (tree attr_identifier, tree list)
5616 {
5617 gcc_checking_assert (TREE_CODE (attr_identifier) == IDENTIFIER_NODE);
5618
5619 while (list)
5620 {
5621 gcc_checking_assert (TREE_CODE (get_attribute_name (list))
5622 == IDENTIFIER_NODE);
5623
5624 /* Identifiers can be compared directly for equality. */
5625 if (attr_identifier == get_attribute_name (list))
5626 break;
5627
5628 /* If they are not equal, they may still be one in the form
5629 'text' while the other one is in the form '__text__'. TODO:
5630 If we were storing attributes in normalized 'text' form, then
5631 this could all go away and we could take full advantage of
5632 the fact that we're comparing identifiers. :-) */
5633 {
5634 size_t attr_len = IDENTIFIER_LENGTH (attr_identifier);
5635 size_t ident_len = IDENTIFIER_LENGTH (get_attribute_name (list));
5636
5637 if (ident_len == attr_len + 4)
5638 {
5639 const char *p = IDENTIFIER_POINTER (get_attribute_name (list));
5640 const char *q = IDENTIFIER_POINTER (attr_identifier);
5641 if (p[0] == '_' && p[1] == '_'
5642 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
5643 && strncmp (q, p + 2, attr_len) == 0)
5644 break;
5645 }
5646 else if (ident_len + 4 == attr_len)
5647 {
5648 const char *p = IDENTIFIER_POINTER (get_attribute_name (list));
5649 const char *q = IDENTIFIER_POINTER (attr_identifier);
5650 if (q[0] == '_' && q[1] == '_'
5651 && q[attr_len - 2] == '_' && q[attr_len - 1] == '_'
5652 && strncmp (q + 2, p, ident_len) == 0)
5653 break;
5654 }
5655 }
5656 list = TREE_CHAIN (list);
5657 }
5658
5659 return list;
5660 }
5661
5662 /* Remove any instances of attribute ATTR_NAME in LIST and return the
5663 modified list. */
5664
5665 tree
5666 remove_attribute (const char *attr_name, tree list)
5667 {
5668 tree *p;
5669 size_t attr_len = strlen (attr_name);
5670
5671 gcc_checking_assert (attr_name[0] != '_');
5672
5673 for (p = &list; *p; )
5674 {
5675 tree l = *p;
5676 /* TODO: If we were storing attributes in normalized form, here
5677 we could use a simple strcmp(). */
5678 if (private_is_attribute_p (attr_name, attr_len, get_attribute_name (l)))
5679 *p = TREE_CHAIN (l);
5680 else
5681 p = &TREE_CHAIN (l);
5682 }
5683
5684 return list;
5685 }
5686
5687 /* Return an attribute list that is the union of a1 and a2. */
5688
5689 tree
5690 merge_attributes (tree a1, tree a2)
5691 {
5692 tree attributes;
5693
5694 /* Either one unset? Take the set one. */
5695
5696 if ((attributes = a1) == 0)
5697 attributes = a2;
5698
5699 /* One that completely contains the other? Take it. */
5700
5701 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
5702 {
5703 if (attribute_list_contained (a2, a1))
5704 attributes = a2;
5705 else
5706 {
5707 /* Pick the longest list, and hang on the other list. */
5708
5709 if (list_length (a1) < list_length (a2))
5710 attributes = a2, a2 = a1;
5711
5712 for (; a2 != 0; a2 = TREE_CHAIN (a2))
5713 {
5714 tree a;
5715 for (a = lookup_ident_attribute (get_attribute_name (a2),
5716 attributes);
5717 a != NULL_TREE && !attribute_value_equal (a, a2);
5718 a = lookup_ident_attribute (get_attribute_name (a2),
5719 TREE_CHAIN (a)))
5720 ;
5721 if (a == NULL_TREE)
5722 {
5723 a1 = copy_node (a2);
5724 TREE_CHAIN (a1) = attributes;
5725 attributes = a1;
5726 }
5727 }
5728 }
5729 }
5730 return attributes;
5731 }
5732
5733 /* Given types T1 and T2, merge their attributes and return
5734 the result. */
5735
5736 tree
5737 merge_type_attributes (tree t1, tree t2)
5738 {
5739 return merge_attributes (TYPE_ATTRIBUTES (t1),
5740 TYPE_ATTRIBUTES (t2));
5741 }
5742
5743 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
5744 the result. */
5745
5746 tree
5747 merge_decl_attributes (tree olddecl, tree newdecl)
5748 {
5749 return merge_attributes (DECL_ATTRIBUTES (olddecl),
5750 DECL_ATTRIBUTES (newdecl));
5751 }
5752
5753 #if TARGET_DLLIMPORT_DECL_ATTRIBUTES
5754
5755 /* Specialization of merge_decl_attributes for various Windows targets.
5756
5757 This handles the following situation:
5758
5759 __declspec (dllimport) int foo;
5760 int foo;
5761
5762 The second instance of `foo' nullifies the dllimport. */
5763
5764 tree
5765 merge_dllimport_decl_attributes (tree old, tree new_tree)
5766 {
5767 tree a;
5768 int delete_dllimport_p = 1;
5769
5770 /* What we need to do here is remove from `old' dllimport if it doesn't
5771 appear in `new'. dllimport behaves like extern: if a declaration is
5772 marked dllimport and a definition appears later, then the object
5773 is not dllimport'd. We also remove a `new' dllimport if the old list
5774 contains dllexport: dllexport always overrides dllimport, regardless
5775 of the order of declaration. */
5776 if (!VAR_OR_FUNCTION_DECL_P (new_tree))
5777 delete_dllimport_p = 0;
5778 else if (DECL_DLLIMPORT_P (new_tree)
5779 && lookup_attribute ("dllexport", DECL_ATTRIBUTES (old)))
5780 {
5781 DECL_DLLIMPORT_P (new_tree) = 0;
5782 warning (OPT_Wattributes, "%q+D already declared with dllexport attribute: "
5783 "dllimport ignored", new_tree);
5784 }
5785 else if (DECL_DLLIMPORT_P (old) && !DECL_DLLIMPORT_P (new_tree))
5786 {
5787 /* Warn about overriding a symbol that has already been used, e.g.:
5788 extern int __attribute__ ((dllimport)) foo;
5789 int* bar () {return &foo;}
5790 int foo;
5791 */
5792 if (TREE_USED (old))
5793 {
5794 warning (0, "%q+D redeclared without dllimport attribute "
5795 "after being referenced with dll linkage", new_tree);
5796 /* If we have used a variable's address with dllimport linkage,
5797 keep the old DECL_DLLIMPORT_P flag: the ADDR_EXPR using the
5798 decl may already have had TREE_CONSTANT computed.
5799 We still remove the attribute so that assembler code refers
5800 to '&foo rather than '_imp__foo'. */
5801 if (TREE_CODE (old) == VAR_DECL && TREE_ADDRESSABLE (old))
5802 DECL_DLLIMPORT_P (new_tree) = 1;
5803 }
5804
5805 /* Let an inline definition silently override the external reference,
5806 but otherwise warn about attribute inconsistency. */
5807 else if (TREE_CODE (new_tree) == VAR_DECL
5808 || !DECL_DECLARED_INLINE_P (new_tree))
5809 warning (OPT_Wattributes, "%q+D redeclared without dllimport attribute: "
5810 "previous dllimport ignored", new_tree);
5811 }
5812 else
5813 delete_dllimport_p = 0;
5814
5815 a = merge_attributes (DECL_ATTRIBUTES (old), DECL_ATTRIBUTES (new_tree));
5816
5817 if (delete_dllimport_p)
5818 a = remove_attribute ("dllimport", a);
5819
5820 return a;
5821 }
5822
5823 /* Handle a "dllimport" or "dllexport" attribute; arguments as in
5824 struct attribute_spec.handler. */
5825
5826 tree
5827 handle_dll_attribute (tree * pnode, tree name, tree args, int flags,
5828 bool *no_add_attrs)
5829 {
5830 tree node = *pnode;
5831 bool is_dllimport;
5832
5833 /* These attributes may apply to structure and union types being created,
5834 but otherwise should pass to the declaration involved. */
5835 if (!DECL_P (node))
5836 {
5837 if (flags & ((int) ATTR_FLAG_DECL_NEXT | (int) ATTR_FLAG_FUNCTION_NEXT
5838 | (int) ATTR_FLAG_ARRAY_NEXT))
5839 {
5840 *no_add_attrs = true;
5841 return tree_cons (name, args, NULL_TREE);
5842 }
5843 if (TREE_CODE (node) == RECORD_TYPE
5844 || TREE_CODE (node) == UNION_TYPE)
5845 {
5846 node = TYPE_NAME (node);
5847 if (!node)
5848 return NULL_TREE;
5849 }
5850 else
5851 {
5852 warning (OPT_Wattributes, "%qE attribute ignored",
5853 name);
5854 *no_add_attrs = true;
5855 return NULL_TREE;
5856 }
5857 }
5858
5859 if (TREE_CODE (node) != FUNCTION_DECL
5860 && TREE_CODE (node) != VAR_DECL
5861 && TREE_CODE (node) != TYPE_DECL)
5862 {
5863 *no_add_attrs = true;
5864 warning (OPT_Wattributes, "%qE attribute ignored",
5865 name);
5866 return NULL_TREE;
5867 }
5868
5869 if (TREE_CODE (node) == TYPE_DECL
5870 && TREE_CODE (TREE_TYPE (node)) != RECORD_TYPE
5871 && TREE_CODE (TREE_TYPE (node)) != UNION_TYPE)
5872 {
5873 *no_add_attrs = true;
5874 warning (OPT_Wattributes, "%qE attribute ignored",
5875 name);
5876 return NULL_TREE;
5877 }
5878
5879 is_dllimport = is_attribute_p ("dllimport", name);
5880
5881 /* Report error on dllimport ambiguities seen now before they cause
5882 any damage. */
5883 if (is_dllimport)
5884 {
5885 /* Honor any target-specific overrides. */
5886 if (!targetm.valid_dllimport_attribute_p (node))
5887 *no_add_attrs = true;
5888
5889 else if (TREE_CODE (node) == FUNCTION_DECL
5890 && DECL_DECLARED_INLINE_P (node))
5891 {
5892 warning (OPT_Wattributes, "inline function %q+D declared as "
5893 " dllimport: attribute ignored", node);
5894 *no_add_attrs = true;
5895 }
5896 /* Like MS, treat definition of dllimported variables and
5897 non-inlined functions on declaration as syntax errors. */
5898 else if (TREE_CODE (node) == FUNCTION_DECL && DECL_INITIAL (node))
5899 {
5900 error ("function %q+D definition is marked dllimport", node);
5901 *no_add_attrs = true;
5902 }
5903
5904 else if (TREE_CODE (node) == VAR_DECL)
5905 {
5906 if (DECL_INITIAL (node))
5907 {
5908 error ("variable %q+D definition is marked dllimport",
5909 node);
5910 *no_add_attrs = true;
5911 }
5912
5913 /* `extern' needn't be specified with dllimport.
5914 Specify `extern' now and hope for the best. Sigh. */
5915 DECL_EXTERNAL (node) = 1;
5916 /* Also, implicitly give dllimport'd variables declared within
5917 a function global scope, unless declared static. */
5918 if (current_function_decl != NULL_TREE && !TREE_STATIC (node))
5919 TREE_PUBLIC (node) = 1;
5920 }
5921
5922 if (*no_add_attrs == false)
5923 DECL_DLLIMPORT_P (node) = 1;
5924 }
5925 else if (TREE_CODE (node) == FUNCTION_DECL
5926 && DECL_DECLARED_INLINE_P (node)
5927 && flag_keep_inline_dllexport)
5928 /* An exported function, even if inline, must be emitted. */
5929 DECL_EXTERNAL (node) = 0;
5930
5931 /* Report error if symbol is not accessible at global scope. */
5932 if (!TREE_PUBLIC (node)
5933 && (TREE_CODE (node) == VAR_DECL
5934 || TREE_CODE (node) == FUNCTION_DECL))
5935 {
5936 error ("external linkage required for symbol %q+D because of "
5937 "%qE attribute", node, name);
5938 *no_add_attrs = true;
5939 }
5940
5941 /* A dllexport'd entity must have default visibility so that other
5942 program units (shared libraries or the main executable) can see
5943 it. A dllimport'd entity must have default visibility so that
5944 the linker knows that undefined references within this program
5945 unit can be resolved by the dynamic linker. */
5946 if (!*no_add_attrs)
5947 {
5948 if (DECL_VISIBILITY_SPECIFIED (node)
5949 && DECL_VISIBILITY (node) != VISIBILITY_DEFAULT)
5950 error ("%qE implies default visibility, but %qD has already "
5951 "been declared with a different visibility",
5952 name, node);
5953 DECL_VISIBILITY (node) = VISIBILITY_DEFAULT;
5954 DECL_VISIBILITY_SPECIFIED (node) = 1;
5955 }
5956
5957 return NULL_TREE;
5958 }
5959
5960 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
5961 \f
5962 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
5963 of the various TYPE_QUAL values. */
5964
5965 static void
5966 set_type_quals (tree type, int type_quals)
5967 {
5968 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
5969 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
5970 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
5971 TYPE_ADDR_SPACE (type) = DECODE_QUAL_ADDR_SPACE (type_quals);
5972 }
5973
5974 /* Returns true iff CAND is equivalent to BASE with TYPE_QUALS. */
5975
5976 bool
5977 check_qualified_type (const_tree cand, const_tree base, int type_quals)
5978 {
5979 return (TYPE_QUALS (cand) == type_quals
5980 && TYPE_NAME (cand) == TYPE_NAME (base)
5981 /* Apparently this is needed for Objective-C. */
5982 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
5983 /* Check alignment. */
5984 && TYPE_ALIGN (cand) == TYPE_ALIGN (base)
5985 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
5986 TYPE_ATTRIBUTES (base)));
5987 }
5988
5989 /* Returns true iff CAND is equivalent to BASE with ALIGN. */
5990
5991 static bool
5992 check_aligned_type (const_tree cand, const_tree base, unsigned int align)
5993 {
5994 return (TYPE_QUALS (cand) == TYPE_QUALS (base)
5995 && TYPE_NAME (cand) == TYPE_NAME (base)
5996 /* Apparently this is needed for Objective-C. */
5997 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
5998 /* Check alignment. */
5999 && TYPE_ALIGN (cand) == align
6000 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
6001 TYPE_ATTRIBUTES (base)));
6002 }
6003
6004 /* Return a version of the TYPE, qualified as indicated by the
6005 TYPE_QUALS, if one exists. If no qualified version exists yet,
6006 return NULL_TREE. */
6007
6008 tree
6009 get_qualified_type (tree type, int type_quals)
6010 {
6011 tree t;
6012
6013 if (TYPE_QUALS (type) == type_quals)
6014 return type;
6015
6016 /* Search the chain of variants to see if there is already one there just
6017 like the one we need to have. If so, use that existing one. We must
6018 preserve the TYPE_NAME, since there is code that depends on this. */
6019 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
6020 if (check_qualified_type (t, type, type_quals))
6021 return t;
6022
6023 return NULL_TREE;
6024 }
6025
6026 /* Like get_qualified_type, but creates the type if it does not
6027 exist. This function never returns NULL_TREE. */
6028
6029 tree
6030 build_qualified_type (tree type, int type_quals)
6031 {
6032 tree t;
6033
6034 /* See if we already have the appropriate qualified variant. */
6035 t = get_qualified_type (type, type_quals);
6036
6037 /* If not, build it. */
6038 if (!t)
6039 {
6040 t = build_variant_type_copy (type);
6041 set_type_quals (t, type_quals);
6042
6043 if (TYPE_STRUCTURAL_EQUALITY_P (type))
6044 /* Propagate structural equality. */
6045 SET_TYPE_STRUCTURAL_EQUALITY (t);
6046 else if (TYPE_CANONICAL (type) != type)
6047 /* Build the underlying canonical type, since it is different
6048 from TYPE. */
6049 TYPE_CANONICAL (t) = build_qualified_type (TYPE_CANONICAL (type),
6050 type_quals);
6051 else
6052 /* T is its own canonical type. */
6053 TYPE_CANONICAL (t) = t;
6054
6055 }
6056
6057 return t;
6058 }
6059
6060 /* Create a variant of type T with alignment ALIGN. */
6061
6062 tree
6063 build_aligned_type (tree type, unsigned int align)
6064 {
6065 tree t;
6066
6067 if (TYPE_PACKED (type)
6068 || TYPE_ALIGN (type) == align)
6069 return type;
6070
6071 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
6072 if (check_aligned_type (t, type, align))
6073 return t;
6074
6075 t = build_variant_type_copy (type);
6076 TYPE_ALIGN (t) = align;
6077
6078 return t;
6079 }
6080
6081 /* Create a new distinct copy of TYPE. The new type is made its own
6082 MAIN_VARIANT. If TYPE requires structural equality checks, the
6083 resulting type requires structural equality checks; otherwise, its
6084 TYPE_CANONICAL points to itself. */
6085
6086 tree
6087 build_distinct_type_copy (tree type)
6088 {
6089 tree t = copy_node (type);
6090
6091 TYPE_POINTER_TO (t) = 0;
6092 TYPE_REFERENCE_TO (t) = 0;
6093
6094 /* Set the canonical type either to a new equivalence class, or
6095 propagate the need for structural equality checks. */
6096 if (TYPE_STRUCTURAL_EQUALITY_P (type))
6097 SET_TYPE_STRUCTURAL_EQUALITY (t);
6098 else
6099 TYPE_CANONICAL (t) = t;
6100
6101 /* Make it its own variant. */
6102 TYPE_MAIN_VARIANT (t) = t;
6103 TYPE_NEXT_VARIANT (t) = 0;
6104
6105 /* Note that it is now possible for TYPE_MIN_VALUE to be a value
6106 whose TREE_TYPE is not t. This can also happen in the Ada
6107 frontend when using subtypes. */
6108
6109 return t;
6110 }
6111
6112 /* Create a new variant of TYPE, equivalent but distinct. This is so
6113 the caller can modify it. TYPE_CANONICAL for the return type will
6114 be equivalent to TYPE_CANONICAL of TYPE, indicating that the types
6115 are considered equal by the language itself (or that both types
6116 require structural equality checks). */
6117
6118 tree
6119 build_variant_type_copy (tree type)
6120 {
6121 tree t, m = TYPE_MAIN_VARIANT (type);
6122
6123 t = build_distinct_type_copy (type);
6124
6125 /* Since we're building a variant, assume that it is a non-semantic
6126 variant. This also propagates TYPE_STRUCTURAL_EQUALITY_P. */
6127 TYPE_CANONICAL (t) = TYPE_CANONICAL (type);
6128
6129 /* Add the new type to the chain of variants of TYPE. */
6130 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
6131 TYPE_NEXT_VARIANT (m) = t;
6132 TYPE_MAIN_VARIANT (t) = m;
6133
6134 return t;
6135 }
6136 \f
6137 /* Return true if the from tree in both tree maps are equal. */
6138
6139 int
6140 tree_map_base_eq (const void *va, const void *vb)
6141 {
6142 const struct tree_map_base *const a = (const struct tree_map_base *) va,
6143 *const b = (const struct tree_map_base *) vb;
6144 return (a->from == b->from);
6145 }
6146
6147 /* Hash a from tree in a tree_base_map. */
6148
6149 unsigned int
6150 tree_map_base_hash (const void *item)
6151 {
6152 return htab_hash_pointer (((const struct tree_map_base *)item)->from);
6153 }
6154
6155 /* Return true if this tree map structure is marked for garbage collection
6156 purposes. We simply return true if the from tree is marked, so that this
6157 structure goes away when the from tree goes away. */
6158
6159 int
6160 tree_map_base_marked_p (const void *p)
6161 {
6162 return ggc_marked_p (((const struct tree_map_base *) p)->from);
6163 }
6164
6165 /* Hash a from tree in a tree_map. */
6166
6167 unsigned int
6168 tree_map_hash (const void *item)
6169 {
6170 return (((const struct tree_map *) item)->hash);
6171 }
6172
6173 /* Hash a from tree in a tree_decl_map. */
6174
6175 unsigned int
6176 tree_decl_map_hash (const void *item)
6177 {
6178 return DECL_UID (((const struct tree_decl_map *) item)->base.from);
6179 }
6180
6181 /* Return the initialization priority for DECL. */
6182
6183 priority_type
6184 decl_init_priority_lookup (tree decl)
6185 {
6186 struct tree_priority_map *h;
6187 struct tree_map_base in;
6188
6189 gcc_assert (VAR_OR_FUNCTION_DECL_P (decl));
6190 in.from = decl;
6191 h = (struct tree_priority_map *) htab_find (init_priority_for_decl, &in);
6192 return h ? h->init : DEFAULT_INIT_PRIORITY;
6193 }
6194
6195 /* Return the finalization priority for DECL. */
6196
6197 priority_type
6198 decl_fini_priority_lookup (tree decl)
6199 {
6200 struct tree_priority_map *h;
6201 struct tree_map_base in;
6202
6203 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
6204 in.from = decl;
6205 h = (struct tree_priority_map *) htab_find (init_priority_for_decl, &in);
6206 return h ? h->fini : DEFAULT_INIT_PRIORITY;
6207 }
6208
6209 /* Return the initialization and finalization priority information for
6210 DECL. If there is no previous priority information, a freshly
6211 allocated structure is returned. */
6212
6213 static struct tree_priority_map *
6214 decl_priority_info (tree decl)
6215 {
6216 struct tree_priority_map in;
6217 struct tree_priority_map *h;
6218 void **loc;
6219
6220 in.base.from = decl;
6221 loc = htab_find_slot (init_priority_for_decl, &in, INSERT);
6222 h = (struct tree_priority_map *) *loc;
6223 if (!h)
6224 {
6225 h = ggc_alloc_cleared_tree_priority_map ();
6226 *loc = h;
6227 h->base.from = decl;
6228 h->init = DEFAULT_INIT_PRIORITY;
6229 h->fini = DEFAULT_INIT_PRIORITY;
6230 }
6231
6232 return h;
6233 }
6234
6235 /* Set the initialization priority for DECL to PRIORITY. */
6236
6237 void
6238 decl_init_priority_insert (tree decl, priority_type priority)
6239 {
6240 struct tree_priority_map *h;
6241
6242 gcc_assert (VAR_OR_FUNCTION_DECL_P (decl));
6243 if (priority == DEFAULT_INIT_PRIORITY)
6244 return;
6245 h = decl_priority_info (decl);
6246 h->init = priority;
6247 }
6248
6249 /* Set the finalization priority for DECL to PRIORITY. */
6250
6251 void
6252 decl_fini_priority_insert (tree decl, priority_type priority)
6253 {
6254 struct tree_priority_map *h;
6255
6256 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
6257 if (priority == DEFAULT_INIT_PRIORITY)
6258 return;
6259 h = decl_priority_info (decl);
6260 h->fini = priority;
6261 }
6262
6263 /* Print out the statistics for the DECL_DEBUG_EXPR hash table. */
6264
6265 static void
6266 print_debug_expr_statistics (void)
6267 {
6268 fprintf (stderr, "DECL_DEBUG_EXPR hash: size %ld, %ld elements, %f collisions\n",
6269 (long) htab_size (debug_expr_for_decl),
6270 (long) htab_elements (debug_expr_for_decl),
6271 htab_collisions (debug_expr_for_decl));
6272 }
6273
6274 /* Print out the statistics for the DECL_VALUE_EXPR hash table. */
6275
6276 static void
6277 print_value_expr_statistics (void)
6278 {
6279 fprintf (stderr, "DECL_VALUE_EXPR hash: size %ld, %ld elements, %f collisions\n",
6280 (long) htab_size (value_expr_for_decl),
6281 (long) htab_elements (value_expr_for_decl),
6282 htab_collisions (value_expr_for_decl));
6283 }
6284
6285 /* Lookup a debug expression for FROM, and return it if we find one. */
6286
6287 tree
6288 decl_debug_expr_lookup (tree from)
6289 {
6290 struct tree_decl_map *h, in;
6291 in.base.from = from;
6292
6293 h = (struct tree_decl_map *)
6294 htab_find_with_hash (debug_expr_for_decl, &in, DECL_UID (from));
6295 if (h)
6296 return h->to;
6297 return NULL_TREE;
6298 }
6299
6300 /* Insert a mapping FROM->TO in the debug expression hashtable. */
6301
6302 void
6303 decl_debug_expr_insert (tree from, tree to)
6304 {
6305 struct tree_decl_map *h;
6306 void **loc;
6307
6308 h = ggc_alloc_tree_decl_map ();
6309 h->base.from = from;
6310 h->to = to;
6311 loc = htab_find_slot_with_hash (debug_expr_for_decl, h, DECL_UID (from),
6312 INSERT);
6313 *(struct tree_decl_map **) loc = h;
6314 }
6315
6316 /* Lookup a value expression for FROM, and return it if we find one. */
6317
6318 tree
6319 decl_value_expr_lookup (tree from)
6320 {
6321 struct tree_decl_map *h, in;
6322 in.base.from = from;
6323
6324 h = (struct tree_decl_map *)
6325 htab_find_with_hash (value_expr_for_decl, &in, DECL_UID (from));
6326 if (h)
6327 return h->to;
6328 return NULL_TREE;
6329 }
6330
6331 /* Insert a mapping FROM->TO in the value expression hashtable. */
6332
6333 void
6334 decl_value_expr_insert (tree from, tree to)
6335 {
6336 struct tree_decl_map *h;
6337 void **loc;
6338
6339 h = ggc_alloc_tree_decl_map ();
6340 h->base.from = from;
6341 h->to = to;
6342 loc = htab_find_slot_with_hash (value_expr_for_decl, h, DECL_UID (from),
6343 INSERT);
6344 *(struct tree_decl_map **) loc = h;
6345 }
6346
6347 /* Lookup a vector of debug arguments for FROM, and return it if we
6348 find one. */
6349
6350 vec<tree, va_gc> **
6351 decl_debug_args_lookup (tree from)
6352 {
6353 struct tree_vec_map *h, in;
6354
6355 if (!DECL_HAS_DEBUG_ARGS_P (from))
6356 return NULL;
6357 gcc_checking_assert (debug_args_for_decl != NULL);
6358 in.base.from = from;
6359 h = (struct tree_vec_map *)
6360 htab_find_with_hash (debug_args_for_decl, &in, DECL_UID (from));
6361 if (h)
6362 return &h->to;
6363 return NULL;
6364 }
6365
6366 /* Insert a mapping FROM->empty vector of debug arguments in the value
6367 expression hashtable. */
6368
6369 vec<tree, va_gc> **
6370 decl_debug_args_insert (tree from)
6371 {
6372 struct tree_vec_map *h;
6373 void **loc;
6374
6375 if (DECL_HAS_DEBUG_ARGS_P (from))
6376 return decl_debug_args_lookup (from);
6377 if (debug_args_for_decl == NULL)
6378 debug_args_for_decl = htab_create_ggc (64, tree_vec_map_hash,
6379 tree_vec_map_eq, 0);
6380 h = ggc_alloc_tree_vec_map ();
6381 h->base.from = from;
6382 h->to = NULL;
6383 loc = htab_find_slot_with_hash (debug_args_for_decl, h, DECL_UID (from),
6384 INSERT);
6385 *(struct tree_vec_map **) loc = h;
6386 DECL_HAS_DEBUG_ARGS_P (from) = 1;
6387 return &h->to;
6388 }
6389
6390 /* Hashing of types so that we don't make duplicates.
6391 The entry point is `type_hash_canon'. */
6392
6393 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
6394 with types in the TREE_VALUE slots), by adding the hash codes
6395 of the individual types. */
6396
6397 static unsigned int
6398 type_hash_list (const_tree list, hashval_t hashcode)
6399 {
6400 const_tree tail;
6401
6402 for (tail = list; tail; tail = TREE_CHAIN (tail))
6403 if (TREE_VALUE (tail) != error_mark_node)
6404 hashcode = iterative_hash_object (TYPE_HASH (TREE_VALUE (tail)),
6405 hashcode);
6406
6407 return hashcode;
6408 }
6409
6410 /* These are the Hashtable callback functions. */
6411
6412 /* Returns true iff the types are equivalent. */
6413
6414 static int
6415 type_hash_eq (const void *va, const void *vb)
6416 {
6417 const struct type_hash *const a = (const struct type_hash *) va,
6418 *const b = (const struct type_hash *) vb;
6419
6420 /* First test the things that are the same for all types. */
6421 if (a->hash != b->hash
6422 || TREE_CODE (a->type) != TREE_CODE (b->type)
6423 || TREE_TYPE (a->type) != TREE_TYPE (b->type)
6424 || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
6425 TYPE_ATTRIBUTES (b->type))
6426 || (TREE_CODE (a->type) != COMPLEX_TYPE
6427 && TYPE_NAME (a->type) != TYPE_NAME (b->type)))
6428 return 0;
6429
6430 /* Be careful about comparing arrays before and after the element type
6431 has been completed; don't compare TYPE_ALIGN unless both types are
6432 complete. */
6433 if (COMPLETE_TYPE_P (a->type) && COMPLETE_TYPE_P (b->type)
6434 && (TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
6435 || TYPE_MODE (a->type) != TYPE_MODE (b->type)))
6436 return 0;
6437
6438 switch (TREE_CODE (a->type))
6439 {
6440 case VOID_TYPE:
6441 case COMPLEX_TYPE:
6442 case POINTER_TYPE:
6443 case REFERENCE_TYPE:
6444 case NULLPTR_TYPE:
6445 return 1;
6446
6447 case VECTOR_TYPE:
6448 return TYPE_VECTOR_SUBPARTS (a->type) == TYPE_VECTOR_SUBPARTS (b->type);
6449
6450 case ENUMERAL_TYPE:
6451 if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
6452 && !(TYPE_VALUES (a->type)
6453 && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
6454 && TYPE_VALUES (b->type)
6455 && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
6456 && type_list_equal (TYPE_VALUES (a->type),
6457 TYPE_VALUES (b->type))))
6458 return 0;
6459
6460 /* ... fall through ... */
6461
6462 case INTEGER_TYPE:
6463 case REAL_TYPE:
6464 case BOOLEAN_TYPE:
6465 return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
6466 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
6467 TYPE_MAX_VALUE (b->type)))
6468 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
6469 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
6470 TYPE_MIN_VALUE (b->type))));
6471
6472 case FIXED_POINT_TYPE:
6473 return TYPE_SATURATING (a->type) == TYPE_SATURATING (b->type);
6474
6475 case OFFSET_TYPE:
6476 return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
6477
6478 case METHOD_TYPE:
6479 if (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
6480 && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
6481 || (TYPE_ARG_TYPES (a->type)
6482 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
6483 && TYPE_ARG_TYPES (b->type)
6484 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
6485 && type_list_equal (TYPE_ARG_TYPES (a->type),
6486 TYPE_ARG_TYPES (b->type)))))
6487 break;
6488 return 0;
6489 case ARRAY_TYPE:
6490 return TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type);
6491
6492 case RECORD_TYPE:
6493 case UNION_TYPE:
6494 case QUAL_UNION_TYPE:
6495 return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
6496 || (TYPE_FIELDS (a->type)
6497 && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
6498 && TYPE_FIELDS (b->type)
6499 && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
6500 && type_list_equal (TYPE_FIELDS (a->type),
6501 TYPE_FIELDS (b->type))));
6502
6503 case FUNCTION_TYPE:
6504 if (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
6505 || (TYPE_ARG_TYPES (a->type)
6506 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
6507 && TYPE_ARG_TYPES (b->type)
6508 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
6509 && type_list_equal (TYPE_ARG_TYPES (a->type),
6510 TYPE_ARG_TYPES (b->type))))
6511 break;
6512 return 0;
6513
6514 default:
6515 return 0;
6516 }
6517
6518 if (lang_hooks.types.type_hash_eq != NULL)
6519 return lang_hooks.types.type_hash_eq (a->type, b->type);
6520
6521 return 1;
6522 }
6523
6524 /* Return the cached hash value. */
6525
6526 static hashval_t
6527 type_hash_hash (const void *item)
6528 {
6529 return ((const struct type_hash *) item)->hash;
6530 }
6531
6532 /* Look in the type hash table for a type isomorphic to TYPE.
6533 If one is found, return it. Otherwise return 0. */
6534
6535 static tree
6536 type_hash_lookup (hashval_t hashcode, tree type)
6537 {
6538 struct type_hash *h, in;
6539
6540 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
6541 must call that routine before comparing TYPE_ALIGNs. */
6542 layout_type (type);
6543
6544 in.hash = hashcode;
6545 in.type = type;
6546
6547 h = (struct type_hash *) htab_find_with_hash (type_hash_table, &in,
6548 hashcode);
6549 if (h)
6550 return h->type;
6551 return NULL_TREE;
6552 }
6553
6554 /* Add an entry to the type-hash-table
6555 for a type TYPE whose hash code is HASHCODE. */
6556
6557 static void
6558 type_hash_add (hashval_t hashcode, tree type)
6559 {
6560 struct type_hash *h;
6561 void **loc;
6562
6563 h = ggc_alloc_type_hash ();
6564 h->hash = hashcode;
6565 h->type = type;
6566 loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
6567 *loc = (void *)h;
6568 }
6569
6570 /* Given TYPE, and HASHCODE its hash code, return the canonical
6571 object for an identical type if one already exists.
6572 Otherwise, return TYPE, and record it as the canonical object.
6573
6574 To use this function, first create a type of the sort you want.
6575 Then compute its hash code from the fields of the type that
6576 make it different from other similar types.
6577 Then call this function and use the value. */
6578
6579 tree
6580 type_hash_canon (unsigned int hashcode, tree type)
6581 {
6582 tree t1;
6583
6584 /* The hash table only contains main variants, so ensure that's what we're
6585 being passed. */
6586 gcc_assert (TYPE_MAIN_VARIANT (type) == type);
6587
6588 /* See if the type is in the hash table already. If so, return it.
6589 Otherwise, add the type. */
6590 t1 = type_hash_lookup (hashcode, type);
6591 if (t1 != 0)
6592 {
6593 if (GATHER_STATISTICS)
6594 {
6595 tree_code_counts[(int) TREE_CODE (type)]--;
6596 tree_node_counts[(int) t_kind]--;
6597 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type_non_common);
6598 }
6599 return t1;
6600 }
6601 else
6602 {
6603 type_hash_add (hashcode, type);
6604 return type;
6605 }
6606 }
6607
6608 /* See if the data pointed to by the type hash table is marked. We consider
6609 it marked if the type is marked or if a debug type number or symbol
6610 table entry has been made for the type. */
6611
6612 static int
6613 type_hash_marked_p (const void *p)
6614 {
6615 const_tree const type = ((const struct type_hash *) p)->type;
6616
6617 return ggc_marked_p (type);
6618 }
6619
6620 static void
6621 print_type_hash_statistics (void)
6622 {
6623 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
6624 (long) htab_size (type_hash_table),
6625 (long) htab_elements (type_hash_table),
6626 htab_collisions (type_hash_table));
6627 }
6628
6629 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
6630 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
6631 by adding the hash codes of the individual attributes. */
6632
6633 static unsigned int
6634 attribute_hash_list (const_tree list, hashval_t hashcode)
6635 {
6636 const_tree tail;
6637
6638 for (tail = list; tail; tail = TREE_CHAIN (tail))
6639 /* ??? Do we want to add in TREE_VALUE too? */
6640 hashcode = iterative_hash_object
6641 (IDENTIFIER_HASH_VALUE (get_attribute_name (tail)), hashcode);
6642 return hashcode;
6643 }
6644
6645 /* Given two lists of attributes, return true if list l2 is
6646 equivalent to l1. */
6647
6648 int
6649 attribute_list_equal (const_tree l1, const_tree l2)
6650 {
6651 if (l1 == l2)
6652 return 1;
6653
6654 return attribute_list_contained (l1, l2)
6655 && attribute_list_contained (l2, l1);
6656 }
6657
6658 /* Given two lists of attributes, return true if list L2 is
6659 completely contained within L1. */
6660 /* ??? This would be faster if attribute names were stored in a canonicalized
6661 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
6662 must be used to show these elements are equivalent (which they are). */
6663 /* ??? It's not clear that attributes with arguments will always be handled
6664 correctly. */
6665
6666 int
6667 attribute_list_contained (const_tree l1, const_tree l2)
6668 {
6669 const_tree t1, t2;
6670
6671 /* First check the obvious, maybe the lists are identical. */
6672 if (l1 == l2)
6673 return 1;
6674
6675 /* Maybe the lists are similar. */
6676 for (t1 = l1, t2 = l2;
6677 t1 != 0 && t2 != 0
6678 && get_attribute_name (t1) == get_attribute_name (t2)
6679 && TREE_VALUE (t1) == TREE_VALUE (t2);
6680 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
6681 ;
6682
6683 /* Maybe the lists are equal. */
6684 if (t1 == 0 && t2 == 0)
6685 return 1;
6686
6687 for (; t2 != 0; t2 = TREE_CHAIN (t2))
6688 {
6689 const_tree attr;
6690 /* This CONST_CAST is okay because lookup_attribute does not
6691 modify its argument and the return value is assigned to a
6692 const_tree. */
6693 for (attr = lookup_ident_attribute (get_attribute_name (t2), CONST_CAST_TREE(l1));
6694 attr != NULL_TREE && !attribute_value_equal (t2, attr);
6695 attr = lookup_ident_attribute (get_attribute_name (t2), TREE_CHAIN (attr)))
6696 ;
6697
6698 if (attr == NULL_TREE)
6699 return 0;
6700 }
6701
6702 return 1;
6703 }
6704
6705 /* Given two lists of types
6706 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
6707 return 1 if the lists contain the same types in the same order.
6708 Also, the TREE_PURPOSEs must match. */
6709
6710 int
6711 type_list_equal (const_tree l1, const_tree l2)
6712 {
6713 const_tree t1, t2;
6714
6715 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
6716 if (TREE_VALUE (t1) != TREE_VALUE (t2)
6717 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
6718 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
6719 && (TREE_TYPE (TREE_PURPOSE (t1))
6720 == TREE_TYPE (TREE_PURPOSE (t2))))))
6721 return 0;
6722
6723 return t1 == t2;
6724 }
6725
6726 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
6727 given by TYPE. If the argument list accepts variable arguments,
6728 then this function counts only the ordinary arguments. */
6729
6730 int
6731 type_num_arguments (const_tree type)
6732 {
6733 int i = 0;
6734 tree t;
6735
6736 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
6737 /* If the function does not take a variable number of arguments,
6738 the last element in the list will have type `void'. */
6739 if (VOID_TYPE_P (TREE_VALUE (t)))
6740 break;
6741 else
6742 ++i;
6743
6744 return i;
6745 }
6746
6747 /* Nonzero if integer constants T1 and T2
6748 represent the same constant value. */
6749
6750 int
6751 tree_int_cst_equal (const_tree t1, const_tree t2)
6752 {
6753 if (t1 == t2)
6754 return 1;
6755
6756 if (t1 == 0 || t2 == 0)
6757 return 0;
6758
6759 if (TREE_CODE (t1) == INTEGER_CST
6760 && TREE_CODE (t2) == INTEGER_CST
6761 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
6762 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
6763 return 1;
6764
6765 return 0;
6766 }
6767
6768 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
6769 The precise way of comparison depends on their data type. */
6770
6771 int
6772 tree_int_cst_lt (const_tree t1, const_tree t2)
6773 {
6774 if (t1 == t2)
6775 return 0;
6776
6777 if (TYPE_UNSIGNED (TREE_TYPE (t1)) != TYPE_UNSIGNED (TREE_TYPE (t2)))
6778 {
6779 int t1_sgn = tree_int_cst_sgn (t1);
6780 int t2_sgn = tree_int_cst_sgn (t2);
6781
6782 if (t1_sgn < t2_sgn)
6783 return 1;
6784 else if (t1_sgn > t2_sgn)
6785 return 0;
6786 /* Otherwise, both are non-negative, so we compare them as
6787 unsigned just in case one of them would overflow a signed
6788 type. */
6789 }
6790 else if (!TYPE_UNSIGNED (TREE_TYPE (t1)))
6791 return INT_CST_LT (t1, t2);
6792
6793 return INT_CST_LT_UNSIGNED (t1, t2);
6794 }
6795
6796 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
6797
6798 int
6799 tree_int_cst_compare (const_tree t1, const_tree t2)
6800 {
6801 if (tree_int_cst_lt (t1, t2))
6802 return -1;
6803 else if (tree_int_cst_lt (t2, t1))
6804 return 1;
6805 else
6806 return 0;
6807 }
6808
6809 /* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
6810 the host. If POS is zero, the value can be represented in a single
6811 HOST_WIDE_INT. If POS is nonzero, the value must be non-negative and can
6812 be represented in a single unsigned HOST_WIDE_INT. */
6813
6814 int
6815 host_integerp (const_tree t, int pos)
6816 {
6817 if (t == NULL_TREE)
6818 return 0;
6819
6820 return (TREE_CODE (t) == INTEGER_CST
6821 && ((TREE_INT_CST_HIGH (t) == 0
6822 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
6823 || (! pos && TREE_INT_CST_HIGH (t) == -1
6824 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0
6825 && !TYPE_UNSIGNED (TREE_TYPE (t)))
6826 || (pos && TREE_INT_CST_HIGH (t) == 0)));
6827 }
6828
6829 /* Return the HOST_WIDE_INT least significant bits of T if it is an
6830 INTEGER_CST and there is no overflow. POS is nonzero if the result must
6831 be non-negative. We must be able to satisfy the above conditions. */
6832
6833 HOST_WIDE_INT
6834 tree_low_cst (const_tree t, int pos)
6835 {
6836 gcc_assert (host_integerp (t, pos));
6837 return TREE_INT_CST_LOW (t);
6838 }
6839
6840 /* Return the HOST_WIDE_INT least significant bits of T, a sizetype
6841 kind INTEGER_CST. This makes sure to properly sign-extend the
6842 constant. */
6843
6844 HOST_WIDE_INT
6845 size_low_cst (const_tree t)
6846 {
6847 double_int d = tree_to_double_int (t);
6848 return d.sext (TYPE_PRECISION (TREE_TYPE (t))).low;
6849 }
6850
6851 /* Return the most significant (sign) bit of T. */
6852
6853 int
6854 tree_int_cst_sign_bit (const_tree t)
6855 {
6856 unsigned bitno = TYPE_PRECISION (TREE_TYPE (t)) - 1;
6857 unsigned HOST_WIDE_INT w;
6858
6859 if (bitno < HOST_BITS_PER_WIDE_INT)
6860 w = TREE_INT_CST_LOW (t);
6861 else
6862 {
6863 w = TREE_INT_CST_HIGH (t);
6864 bitno -= HOST_BITS_PER_WIDE_INT;
6865 }
6866
6867 return (w >> bitno) & 1;
6868 }
6869
6870 /* Return an indication of the sign of the integer constant T.
6871 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
6872 Note that -1 will never be returned if T's type is unsigned. */
6873
6874 int
6875 tree_int_cst_sgn (const_tree t)
6876 {
6877 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
6878 return 0;
6879 else if (TYPE_UNSIGNED (TREE_TYPE (t)))
6880 return 1;
6881 else if (TREE_INT_CST_HIGH (t) < 0)
6882 return -1;
6883 else
6884 return 1;
6885 }
6886
6887 /* Return the minimum number of bits needed to represent VALUE in a
6888 signed or unsigned type, UNSIGNEDP says which. */
6889
6890 unsigned int
6891 tree_int_cst_min_precision (tree value, bool unsignedp)
6892 {
6893 /* If the value is negative, compute its negative minus 1. The latter
6894 adjustment is because the absolute value of the largest negative value
6895 is one larger than the largest positive value. This is equivalent to
6896 a bit-wise negation, so use that operation instead. */
6897
6898 if (tree_int_cst_sgn (value) < 0)
6899 value = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (value), value);
6900
6901 /* Return the number of bits needed, taking into account the fact
6902 that we need one more bit for a signed than unsigned type.
6903 If value is 0 or -1, the minimum precision is 1 no matter
6904 whether unsignedp is true or false. */
6905
6906 if (integer_zerop (value))
6907 return 1;
6908 else
6909 return tree_floor_log2 (value) + 1 + !unsignedp;
6910 }
6911
6912 /* Compare two constructor-element-type constants. Return 1 if the lists
6913 are known to be equal; otherwise return 0. */
6914
6915 int
6916 simple_cst_list_equal (const_tree l1, const_tree l2)
6917 {
6918 while (l1 != NULL_TREE && l2 != NULL_TREE)
6919 {
6920 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
6921 return 0;
6922
6923 l1 = TREE_CHAIN (l1);
6924 l2 = TREE_CHAIN (l2);
6925 }
6926
6927 return l1 == l2;
6928 }
6929
6930 /* Return truthvalue of whether T1 is the same tree structure as T2.
6931 Return 1 if they are the same.
6932 Return 0 if they are understandably different.
6933 Return -1 if either contains tree structure not understood by
6934 this function. */
6935
6936 int
6937 simple_cst_equal (const_tree t1, const_tree t2)
6938 {
6939 enum tree_code code1, code2;
6940 int cmp;
6941 int i;
6942
6943 if (t1 == t2)
6944 return 1;
6945 if (t1 == 0 || t2 == 0)
6946 return 0;
6947
6948 code1 = TREE_CODE (t1);
6949 code2 = TREE_CODE (t2);
6950
6951 if (CONVERT_EXPR_CODE_P (code1) || code1 == NON_LVALUE_EXPR)
6952 {
6953 if (CONVERT_EXPR_CODE_P (code2)
6954 || code2 == NON_LVALUE_EXPR)
6955 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6956 else
6957 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
6958 }
6959
6960 else if (CONVERT_EXPR_CODE_P (code2)
6961 || code2 == NON_LVALUE_EXPR)
6962 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
6963
6964 if (code1 != code2)
6965 return 0;
6966
6967 switch (code1)
6968 {
6969 case INTEGER_CST:
6970 return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
6971 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
6972
6973 case REAL_CST:
6974 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
6975
6976 case FIXED_CST:
6977 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1), TREE_FIXED_CST (t2));
6978
6979 case STRING_CST:
6980 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
6981 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
6982 TREE_STRING_LENGTH (t1)));
6983
6984 case CONSTRUCTOR:
6985 {
6986 unsigned HOST_WIDE_INT idx;
6987 vec<constructor_elt, va_gc> *v1 = CONSTRUCTOR_ELTS (t1);
6988 vec<constructor_elt, va_gc> *v2 = CONSTRUCTOR_ELTS (t2);
6989
6990 if (vec_safe_length (v1) != vec_safe_length (v2))
6991 return false;
6992
6993 for (idx = 0; idx < vec_safe_length (v1); ++idx)
6994 /* ??? Should we handle also fields here? */
6995 if (!simple_cst_equal ((*v1)[idx].value, (*v2)[idx].value))
6996 return false;
6997 return true;
6998 }
6999
7000 case SAVE_EXPR:
7001 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7002
7003 case CALL_EXPR:
7004 cmp = simple_cst_equal (CALL_EXPR_FN (t1), CALL_EXPR_FN (t2));
7005 if (cmp <= 0)
7006 return cmp;
7007 if (call_expr_nargs (t1) != call_expr_nargs (t2))
7008 return 0;
7009 {
7010 const_tree arg1, arg2;
7011 const_call_expr_arg_iterator iter1, iter2;
7012 for (arg1 = first_const_call_expr_arg (t1, &iter1),
7013 arg2 = first_const_call_expr_arg (t2, &iter2);
7014 arg1 && arg2;
7015 arg1 = next_const_call_expr_arg (&iter1),
7016 arg2 = next_const_call_expr_arg (&iter2))
7017 {
7018 cmp = simple_cst_equal (arg1, arg2);
7019 if (cmp <= 0)
7020 return cmp;
7021 }
7022 return arg1 == arg2;
7023 }
7024
7025 case TARGET_EXPR:
7026 /* Special case: if either target is an unallocated VAR_DECL,
7027 it means that it's going to be unified with whatever the
7028 TARGET_EXPR is really supposed to initialize, so treat it
7029 as being equivalent to anything. */
7030 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
7031 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
7032 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
7033 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
7034 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
7035 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
7036 cmp = 1;
7037 else
7038 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7039
7040 if (cmp <= 0)
7041 return cmp;
7042
7043 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
7044
7045 case WITH_CLEANUP_EXPR:
7046 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7047 if (cmp <= 0)
7048 return cmp;
7049
7050 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
7051
7052 case COMPONENT_REF:
7053 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
7054 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7055
7056 return 0;
7057
7058 case VAR_DECL:
7059 case PARM_DECL:
7060 case CONST_DECL:
7061 case FUNCTION_DECL:
7062 return 0;
7063
7064 default:
7065 break;
7066 }
7067
7068 /* This general rule works for most tree codes. All exceptions should be
7069 handled above. If this is a language-specific tree code, we can't
7070 trust what might be in the operand, so say we don't know
7071 the situation. */
7072 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
7073 return -1;
7074
7075 switch (TREE_CODE_CLASS (code1))
7076 {
7077 case tcc_unary:
7078 case tcc_binary:
7079 case tcc_comparison:
7080 case tcc_expression:
7081 case tcc_reference:
7082 case tcc_statement:
7083 cmp = 1;
7084 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
7085 {
7086 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
7087 if (cmp <= 0)
7088 return cmp;
7089 }
7090
7091 return cmp;
7092
7093 default:
7094 return -1;
7095 }
7096 }
7097
7098 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
7099 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
7100 than U, respectively. */
7101
7102 int
7103 compare_tree_int (const_tree t, unsigned HOST_WIDE_INT u)
7104 {
7105 if (tree_int_cst_sgn (t) < 0)
7106 return -1;
7107 else if (TREE_INT_CST_HIGH (t) != 0)
7108 return 1;
7109 else if (TREE_INT_CST_LOW (t) == u)
7110 return 0;
7111 else if (TREE_INT_CST_LOW (t) < u)
7112 return -1;
7113 else
7114 return 1;
7115 }
7116
7117 /* Return true if SIZE represents a constant size that is in bounds of
7118 what the middle-end and the backend accepts (covering not more than
7119 half of the address-space). */
7120
7121 bool
7122 valid_constant_size_p (const_tree size)
7123 {
7124 if (! host_integerp (size, 1)
7125 || TREE_OVERFLOW (size)
7126 || tree_int_cst_sign_bit (size) != 0)
7127 return false;
7128 return true;
7129 }
7130
7131 /* Return the precision of the type, or for a complex or vector type the
7132 precision of the type of its elements. */
7133
7134 unsigned int
7135 element_precision (const_tree type)
7136 {
7137 enum tree_code code = TREE_CODE (type);
7138 if (code == COMPLEX_TYPE || code == VECTOR_TYPE)
7139 type = TREE_TYPE (type);
7140
7141 return TYPE_PRECISION (type);
7142 }
7143
7144 /* Return true if CODE represents an associative tree code. Otherwise
7145 return false. */
7146 bool
7147 associative_tree_code (enum tree_code code)
7148 {
7149 switch (code)
7150 {
7151 case BIT_IOR_EXPR:
7152 case BIT_AND_EXPR:
7153 case BIT_XOR_EXPR:
7154 case PLUS_EXPR:
7155 case MULT_EXPR:
7156 case MIN_EXPR:
7157 case MAX_EXPR:
7158 return true;
7159
7160 default:
7161 break;
7162 }
7163 return false;
7164 }
7165
7166 /* Return true if CODE represents a commutative tree code. Otherwise
7167 return false. */
7168 bool
7169 commutative_tree_code (enum tree_code code)
7170 {
7171 switch (code)
7172 {
7173 case PLUS_EXPR:
7174 case MULT_EXPR:
7175 case MULT_HIGHPART_EXPR:
7176 case MIN_EXPR:
7177 case MAX_EXPR:
7178 case BIT_IOR_EXPR:
7179 case BIT_XOR_EXPR:
7180 case BIT_AND_EXPR:
7181 case NE_EXPR:
7182 case EQ_EXPR:
7183 case UNORDERED_EXPR:
7184 case ORDERED_EXPR:
7185 case UNEQ_EXPR:
7186 case LTGT_EXPR:
7187 case TRUTH_AND_EXPR:
7188 case TRUTH_XOR_EXPR:
7189 case TRUTH_OR_EXPR:
7190 case WIDEN_MULT_EXPR:
7191 case VEC_WIDEN_MULT_HI_EXPR:
7192 case VEC_WIDEN_MULT_LO_EXPR:
7193 case VEC_WIDEN_MULT_EVEN_EXPR:
7194 case VEC_WIDEN_MULT_ODD_EXPR:
7195 return true;
7196
7197 default:
7198 break;
7199 }
7200 return false;
7201 }
7202
7203 /* Return true if CODE represents a ternary tree code for which the
7204 first two operands are commutative. Otherwise return false. */
7205 bool
7206 commutative_ternary_tree_code (enum tree_code code)
7207 {
7208 switch (code)
7209 {
7210 case WIDEN_MULT_PLUS_EXPR:
7211 case WIDEN_MULT_MINUS_EXPR:
7212 return true;
7213
7214 default:
7215 break;
7216 }
7217 return false;
7218 }
7219
7220 /* Generate a hash value for an expression. This can be used iteratively
7221 by passing a previous result as the VAL argument.
7222
7223 This function is intended to produce the same hash for expressions which
7224 would compare equal using operand_equal_p. */
7225
7226 hashval_t
7227 iterative_hash_expr (const_tree t, hashval_t val)
7228 {
7229 int i;
7230 enum tree_code code;
7231 char tclass;
7232
7233 if (t == NULL_TREE)
7234 return iterative_hash_hashval_t (0, val);
7235
7236 code = TREE_CODE (t);
7237
7238 switch (code)
7239 {
7240 /* Alas, constants aren't shared, so we can't rely on pointer
7241 identity. */
7242 case INTEGER_CST:
7243 val = iterative_hash_host_wide_int (TREE_INT_CST_LOW (t), val);
7244 return iterative_hash_host_wide_int (TREE_INT_CST_HIGH (t), val);
7245 case REAL_CST:
7246 {
7247 unsigned int val2 = real_hash (TREE_REAL_CST_PTR (t));
7248
7249 return iterative_hash_hashval_t (val2, val);
7250 }
7251 case FIXED_CST:
7252 {
7253 unsigned int val2 = fixed_hash (TREE_FIXED_CST_PTR (t));
7254
7255 return iterative_hash_hashval_t (val2, val);
7256 }
7257 case STRING_CST:
7258 return iterative_hash (TREE_STRING_POINTER (t),
7259 TREE_STRING_LENGTH (t), val);
7260 case COMPLEX_CST:
7261 val = iterative_hash_expr (TREE_REALPART (t), val);
7262 return iterative_hash_expr (TREE_IMAGPART (t), val);
7263 case VECTOR_CST:
7264 {
7265 unsigned i;
7266 for (i = 0; i < VECTOR_CST_NELTS (t); ++i)
7267 val = iterative_hash_expr (VECTOR_CST_ELT (t, i), val);
7268 return val;
7269 }
7270 case SSA_NAME:
7271 /* We can just compare by pointer. */
7272 return iterative_hash_host_wide_int (SSA_NAME_VERSION (t), val);
7273 case PLACEHOLDER_EXPR:
7274 /* The node itself doesn't matter. */
7275 return val;
7276 case TREE_LIST:
7277 /* A list of expressions, for a CALL_EXPR or as the elements of a
7278 VECTOR_CST. */
7279 for (; t; t = TREE_CHAIN (t))
7280 val = iterative_hash_expr (TREE_VALUE (t), val);
7281 return val;
7282 case CONSTRUCTOR:
7283 {
7284 unsigned HOST_WIDE_INT idx;
7285 tree field, value;
7286 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t), idx, field, value)
7287 {
7288 val = iterative_hash_expr (field, val);
7289 val = iterative_hash_expr (value, val);
7290 }
7291 return val;
7292 }
7293 case MEM_REF:
7294 {
7295 /* The type of the second operand is relevant, except for
7296 its top-level qualifiers. */
7297 tree type = TYPE_MAIN_VARIANT (TREE_TYPE (TREE_OPERAND (t, 1)));
7298
7299 val = iterative_hash_object (TYPE_HASH (type), val);
7300
7301 /* We could use the standard hash computation from this point
7302 on. */
7303 val = iterative_hash_object (code, val);
7304 val = iterative_hash_expr (TREE_OPERAND (t, 1), val);
7305 val = iterative_hash_expr (TREE_OPERAND (t, 0), val);
7306 return val;
7307 }
7308 case FUNCTION_DECL:
7309 /* When referring to a built-in FUNCTION_DECL, use the __builtin__ form.
7310 Otherwise nodes that compare equal according to operand_equal_p might
7311 get different hash codes. However, don't do this for machine specific
7312 or front end builtins, since the function code is overloaded in those
7313 cases. */
7314 if (DECL_BUILT_IN_CLASS (t) == BUILT_IN_NORMAL
7315 && builtin_decl_explicit_p (DECL_FUNCTION_CODE (t)))
7316 {
7317 t = builtin_decl_explicit (DECL_FUNCTION_CODE (t));
7318 code = TREE_CODE (t);
7319 }
7320 /* FALL THROUGH */
7321 default:
7322 tclass = TREE_CODE_CLASS (code);
7323
7324 if (tclass == tcc_declaration)
7325 {
7326 /* DECL's have a unique ID */
7327 val = iterative_hash_host_wide_int (DECL_UID (t), val);
7328 }
7329 else
7330 {
7331 gcc_assert (IS_EXPR_CODE_CLASS (tclass));
7332
7333 val = iterative_hash_object (code, val);
7334
7335 /* Don't hash the type, that can lead to having nodes which
7336 compare equal according to operand_equal_p, but which
7337 have different hash codes. */
7338 if (CONVERT_EXPR_CODE_P (code)
7339 || code == NON_LVALUE_EXPR)
7340 {
7341 /* Make sure to include signness in the hash computation. */
7342 val += TYPE_UNSIGNED (TREE_TYPE (t));
7343 val = iterative_hash_expr (TREE_OPERAND (t, 0), val);
7344 }
7345
7346 else if (commutative_tree_code (code))
7347 {
7348 /* It's a commutative expression. We want to hash it the same
7349 however it appears. We do this by first hashing both operands
7350 and then rehashing based on the order of their independent
7351 hashes. */
7352 hashval_t one = iterative_hash_expr (TREE_OPERAND (t, 0), 0);
7353 hashval_t two = iterative_hash_expr (TREE_OPERAND (t, 1), 0);
7354 hashval_t t;
7355
7356 if (one > two)
7357 t = one, one = two, two = t;
7358
7359 val = iterative_hash_hashval_t (one, val);
7360 val = iterative_hash_hashval_t (two, val);
7361 }
7362 else
7363 for (i = TREE_OPERAND_LENGTH (t) - 1; i >= 0; --i)
7364 val = iterative_hash_expr (TREE_OPERAND (t, i), val);
7365 }
7366 return val;
7367 }
7368 }
7369
7370 /* Generate a hash value for a pair of expressions. This can be used
7371 iteratively by passing a previous result as the VAL argument.
7372
7373 The same hash value is always returned for a given pair of expressions,
7374 regardless of the order in which they are presented. This is useful in
7375 hashing the operands of commutative functions. */
7376
7377 hashval_t
7378 iterative_hash_exprs_commutative (const_tree t1,
7379 const_tree t2, hashval_t val)
7380 {
7381 hashval_t one = iterative_hash_expr (t1, 0);
7382 hashval_t two = iterative_hash_expr (t2, 0);
7383 hashval_t t;
7384
7385 if (one > two)
7386 t = one, one = two, two = t;
7387 val = iterative_hash_hashval_t (one, val);
7388 val = iterative_hash_hashval_t (two, val);
7389
7390 return val;
7391 }
7392 \f
7393 /* Constructors for pointer, array and function types.
7394 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
7395 constructed by language-dependent code, not here.) */
7396
7397 /* Construct, lay out and return the type of pointers to TO_TYPE with
7398 mode MODE. If CAN_ALIAS_ALL is TRUE, indicate this type can
7399 reference all of memory. If such a type has already been
7400 constructed, reuse it. */
7401
7402 tree
7403 build_pointer_type_for_mode (tree to_type, enum machine_mode mode,
7404 bool can_alias_all)
7405 {
7406 tree t;
7407
7408 if (to_type == error_mark_node)
7409 return error_mark_node;
7410
7411 /* If the pointed-to type has the may_alias attribute set, force
7412 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
7413 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
7414 can_alias_all = true;
7415
7416 /* In some cases, languages will have things that aren't a POINTER_TYPE
7417 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
7418 In that case, return that type without regard to the rest of our
7419 operands.
7420
7421 ??? This is a kludge, but consistent with the way this function has
7422 always operated and there doesn't seem to be a good way to avoid this
7423 at the moment. */
7424 if (TYPE_POINTER_TO (to_type) != 0
7425 && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
7426 return TYPE_POINTER_TO (to_type);
7427
7428 /* First, if we already have a type for pointers to TO_TYPE and it's
7429 the proper mode, use it. */
7430 for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
7431 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
7432 return t;
7433
7434 t = make_node (POINTER_TYPE);
7435
7436 TREE_TYPE (t) = to_type;
7437 SET_TYPE_MODE (t, mode);
7438 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
7439 TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
7440 TYPE_POINTER_TO (to_type) = t;
7441
7442 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
7443 SET_TYPE_STRUCTURAL_EQUALITY (t);
7444 else if (TYPE_CANONICAL (to_type) != to_type)
7445 TYPE_CANONICAL (t)
7446 = build_pointer_type_for_mode (TYPE_CANONICAL (to_type),
7447 mode, can_alias_all);
7448
7449 /* Lay out the type. This function has many callers that are concerned
7450 with expression-construction, and this simplifies them all. */
7451 layout_type (t);
7452
7453 return t;
7454 }
7455
7456 /* By default build pointers in ptr_mode. */
7457
7458 tree
7459 build_pointer_type (tree to_type)
7460 {
7461 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
7462 : TYPE_ADDR_SPACE (to_type);
7463 enum machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
7464 return build_pointer_type_for_mode (to_type, pointer_mode, false);
7465 }
7466
7467 /* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE. */
7468
7469 tree
7470 build_reference_type_for_mode (tree to_type, enum machine_mode mode,
7471 bool can_alias_all)
7472 {
7473 tree t;
7474
7475 if (to_type == error_mark_node)
7476 return error_mark_node;
7477
7478 /* If the pointed-to type has the may_alias attribute set, force
7479 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
7480 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
7481 can_alias_all = true;
7482
7483 /* In some cases, languages will have things that aren't a REFERENCE_TYPE
7484 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
7485 In that case, return that type without regard to the rest of our
7486 operands.
7487
7488 ??? This is a kludge, but consistent with the way this function has
7489 always operated and there doesn't seem to be a good way to avoid this
7490 at the moment. */
7491 if (TYPE_REFERENCE_TO (to_type) != 0
7492 && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
7493 return TYPE_REFERENCE_TO (to_type);
7494
7495 /* First, if we already have a type for pointers to TO_TYPE and it's
7496 the proper mode, use it. */
7497 for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
7498 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
7499 return t;
7500
7501 t = make_node (REFERENCE_TYPE);
7502
7503 TREE_TYPE (t) = to_type;
7504 SET_TYPE_MODE (t, mode);
7505 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
7506 TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
7507 TYPE_REFERENCE_TO (to_type) = t;
7508
7509 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
7510 SET_TYPE_STRUCTURAL_EQUALITY (t);
7511 else if (TYPE_CANONICAL (to_type) != to_type)
7512 TYPE_CANONICAL (t)
7513 = build_reference_type_for_mode (TYPE_CANONICAL (to_type),
7514 mode, can_alias_all);
7515
7516 layout_type (t);
7517
7518 return t;
7519 }
7520
7521
7522 /* Build the node for the type of references-to-TO_TYPE by default
7523 in ptr_mode. */
7524
7525 tree
7526 build_reference_type (tree to_type)
7527 {
7528 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
7529 : TYPE_ADDR_SPACE (to_type);
7530 enum machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
7531 return build_reference_type_for_mode (to_type, pointer_mode, false);
7532 }
7533
7534 /* Build a type that is compatible with t but has no cv quals anywhere
7535 in its type, thus
7536
7537 const char *const *const * -> char ***. */
7538
7539 tree
7540 build_type_no_quals (tree t)
7541 {
7542 switch (TREE_CODE (t))
7543 {
7544 case POINTER_TYPE:
7545 return build_pointer_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
7546 TYPE_MODE (t),
7547 TYPE_REF_CAN_ALIAS_ALL (t));
7548 case REFERENCE_TYPE:
7549 return
7550 build_reference_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
7551 TYPE_MODE (t),
7552 TYPE_REF_CAN_ALIAS_ALL (t));
7553 default:
7554 return TYPE_MAIN_VARIANT (t);
7555 }
7556 }
7557
7558 #define MAX_INT_CACHED_PREC \
7559 (HOST_BITS_PER_WIDE_INT > 64 ? HOST_BITS_PER_WIDE_INT : 64)
7560 static GTY(()) tree nonstandard_integer_type_cache[2 * MAX_INT_CACHED_PREC + 2];
7561
7562 /* Builds a signed or unsigned integer type of precision PRECISION.
7563 Used for C bitfields whose precision does not match that of
7564 built-in target types. */
7565 tree
7566 build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
7567 int unsignedp)
7568 {
7569 tree itype, ret;
7570
7571 if (unsignedp)
7572 unsignedp = MAX_INT_CACHED_PREC + 1;
7573
7574 if (precision <= MAX_INT_CACHED_PREC)
7575 {
7576 itype = nonstandard_integer_type_cache[precision + unsignedp];
7577 if (itype)
7578 return itype;
7579 }
7580
7581 itype = make_node (INTEGER_TYPE);
7582 TYPE_PRECISION (itype) = precision;
7583
7584 if (unsignedp)
7585 fixup_unsigned_type (itype);
7586 else
7587 fixup_signed_type (itype);
7588
7589 ret = itype;
7590 if (host_integerp (TYPE_MAX_VALUE (itype), 1))
7591 ret = type_hash_canon (tree_low_cst (TYPE_MAX_VALUE (itype), 1), itype);
7592 if (precision <= MAX_INT_CACHED_PREC)
7593 nonstandard_integer_type_cache[precision + unsignedp] = ret;
7594
7595 return ret;
7596 }
7597
7598 /* Create a range of some discrete type TYPE (an INTEGER_TYPE, ENUMERAL_TYPE
7599 or BOOLEAN_TYPE) with low bound LOWVAL and high bound HIGHVAL. If SHARED
7600 is true, reuse such a type that has already been constructed. */
7601
7602 static tree
7603 build_range_type_1 (tree type, tree lowval, tree highval, bool shared)
7604 {
7605 tree itype = make_node (INTEGER_TYPE);
7606 hashval_t hashcode = 0;
7607
7608 TREE_TYPE (itype) = type;
7609
7610 TYPE_MIN_VALUE (itype) = fold_convert (type, lowval);
7611 TYPE_MAX_VALUE (itype) = highval ? fold_convert (type, highval) : NULL;
7612
7613 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
7614 SET_TYPE_MODE (itype, TYPE_MODE (type));
7615 TYPE_SIZE (itype) = TYPE_SIZE (type);
7616 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
7617 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
7618 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
7619
7620 if (!shared)
7621 return itype;
7622
7623 if ((TYPE_MIN_VALUE (itype)
7624 && TREE_CODE (TYPE_MIN_VALUE (itype)) != INTEGER_CST)
7625 || (TYPE_MAX_VALUE (itype)
7626 && TREE_CODE (TYPE_MAX_VALUE (itype)) != INTEGER_CST))
7627 {
7628 /* Since we cannot reliably merge this type, we need to compare it using
7629 structural equality checks. */
7630 SET_TYPE_STRUCTURAL_EQUALITY (itype);
7631 return itype;
7632 }
7633
7634 hashcode = iterative_hash_expr (TYPE_MIN_VALUE (itype), hashcode);
7635 hashcode = iterative_hash_expr (TYPE_MAX_VALUE (itype), hashcode);
7636 hashcode = iterative_hash_hashval_t (TYPE_HASH (type), hashcode);
7637 itype = type_hash_canon (hashcode, itype);
7638
7639 return itype;
7640 }
7641
7642 /* Wrapper around build_range_type_1 with SHARED set to true. */
7643
7644 tree
7645 build_range_type (tree type, tree lowval, tree highval)
7646 {
7647 return build_range_type_1 (type, lowval, highval, true);
7648 }
7649
7650 /* Wrapper around build_range_type_1 with SHARED set to false. */
7651
7652 tree
7653 build_nonshared_range_type (tree type, tree lowval, tree highval)
7654 {
7655 return build_range_type_1 (type, lowval, highval, false);
7656 }
7657
7658 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
7659 MAXVAL should be the maximum value in the domain
7660 (one less than the length of the array).
7661
7662 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
7663 We don't enforce this limit, that is up to caller (e.g. language front end).
7664 The limit exists because the result is a signed type and we don't handle
7665 sizes that use more than one HOST_WIDE_INT. */
7666
7667 tree
7668 build_index_type (tree maxval)
7669 {
7670 return build_range_type (sizetype, size_zero_node, maxval);
7671 }
7672
7673 /* Return true if the debug information for TYPE, a subtype, should be emitted
7674 as a subrange type. If so, set LOWVAL to the low bound and HIGHVAL to the
7675 high bound, respectively. Sometimes doing so unnecessarily obfuscates the
7676 debug info and doesn't reflect the source code. */
7677
7678 bool
7679 subrange_type_for_debug_p (const_tree type, tree *lowval, tree *highval)
7680 {
7681 tree base_type = TREE_TYPE (type), low, high;
7682
7683 /* Subrange types have a base type which is an integral type. */
7684 if (!INTEGRAL_TYPE_P (base_type))
7685 return false;
7686
7687 /* Get the real bounds of the subtype. */
7688 if (lang_hooks.types.get_subrange_bounds)
7689 lang_hooks.types.get_subrange_bounds (type, &low, &high);
7690 else
7691 {
7692 low = TYPE_MIN_VALUE (type);
7693 high = TYPE_MAX_VALUE (type);
7694 }
7695
7696 /* If the type and its base type have the same representation and the same
7697 name, then the type is not a subrange but a copy of the base type. */
7698 if ((TREE_CODE (base_type) == INTEGER_TYPE
7699 || TREE_CODE (base_type) == BOOLEAN_TYPE)
7700 && int_size_in_bytes (type) == int_size_in_bytes (base_type)
7701 && tree_int_cst_equal (low, TYPE_MIN_VALUE (base_type))
7702 && tree_int_cst_equal (high, TYPE_MAX_VALUE (base_type)))
7703 {
7704 tree type_name = TYPE_NAME (type);
7705 tree base_type_name = TYPE_NAME (base_type);
7706
7707 if (type_name && TREE_CODE (type_name) == TYPE_DECL)
7708 type_name = DECL_NAME (type_name);
7709
7710 if (base_type_name && TREE_CODE (base_type_name) == TYPE_DECL)
7711 base_type_name = DECL_NAME (base_type_name);
7712
7713 if (type_name == base_type_name)
7714 return false;
7715 }
7716
7717 if (lowval)
7718 *lowval = low;
7719 if (highval)
7720 *highval = high;
7721 return true;
7722 }
7723
7724 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
7725 and number of elements specified by the range of values of INDEX_TYPE.
7726 If SHARED is true, reuse such a type that has already been constructed. */
7727
7728 static tree
7729 build_array_type_1 (tree elt_type, tree index_type, bool shared)
7730 {
7731 tree t;
7732
7733 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
7734 {
7735 error ("arrays of functions are not meaningful");
7736 elt_type = integer_type_node;
7737 }
7738
7739 t = make_node (ARRAY_TYPE);
7740 TREE_TYPE (t) = elt_type;
7741 TYPE_DOMAIN (t) = index_type;
7742 TYPE_ADDR_SPACE (t) = TYPE_ADDR_SPACE (elt_type);
7743 layout_type (t);
7744
7745 /* If the element type is incomplete at this point we get marked for
7746 structural equality. Do not record these types in the canonical
7747 type hashtable. */
7748 if (TYPE_STRUCTURAL_EQUALITY_P (t))
7749 return t;
7750
7751 if (shared)
7752 {
7753 hashval_t hashcode = iterative_hash_object (TYPE_HASH (elt_type), 0);
7754 if (index_type)
7755 hashcode = iterative_hash_object (TYPE_HASH (index_type), hashcode);
7756 t = type_hash_canon (hashcode, t);
7757 }
7758
7759 if (TYPE_CANONICAL (t) == t)
7760 {
7761 if (TYPE_STRUCTURAL_EQUALITY_P (elt_type)
7762 || (index_type && TYPE_STRUCTURAL_EQUALITY_P (index_type)))
7763 SET_TYPE_STRUCTURAL_EQUALITY (t);
7764 else if (TYPE_CANONICAL (elt_type) != elt_type
7765 || (index_type && TYPE_CANONICAL (index_type) != index_type))
7766 TYPE_CANONICAL (t)
7767 = build_array_type_1 (TYPE_CANONICAL (elt_type),
7768 index_type
7769 ? TYPE_CANONICAL (index_type) : NULL_TREE,
7770 shared);
7771 }
7772
7773 return t;
7774 }
7775
7776 /* Wrapper around build_array_type_1 with SHARED set to true. */
7777
7778 tree
7779 build_array_type (tree elt_type, tree index_type)
7780 {
7781 return build_array_type_1 (elt_type, index_type, true);
7782 }
7783
7784 /* Wrapper around build_array_type_1 with SHARED set to false. */
7785
7786 tree
7787 build_nonshared_array_type (tree elt_type, tree index_type)
7788 {
7789 return build_array_type_1 (elt_type, index_type, false);
7790 }
7791
7792 /* Return a representation of ELT_TYPE[NELTS], using indices of type
7793 sizetype. */
7794
7795 tree
7796 build_array_type_nelts (tree elt_type, unsigned HOST_WIDE_INT nelts)
7797 {
7798 return build_array_type (elt_type, build_index_type (size_int (nelts - 1)));
7799 }
7800
7801 /* Recursively examines the array elements of TYPE, until a non-array
7802 element type is found. */
7803
7804 tree
7805 strip_array_types (tree type)
7806 {
7807 while (TREE_CODE (type) == ARRAY_TYPE)
7808 type = TREE_TYPE (type);
7809
7810 return type;
7811 }
7812
7813 /* Computes the canonical argument types from the argument type list
7814 ARGTYPES.
7815
7816 Upon return, *ANY_STRUCTURAL_P will be true iff either it was true
7817 on entry to this function, or if any of the ARGTYPES are
7818 structural.
7819
7820 Upon return, *ANY_NONCANONICAL_P will be true iff either it was
7821 true on entry to this function, or if any of the ARGTYPES are
7822 non-canonical.
7823
7824 Returns a canonical argument list, which may be ARGTYPES when the
7825 canonical argument list is unneeded (i.e., *ANY_STRUCTURAL_P is
7826 true) or would not differ from ARGTYPES. */
7827
7828 static tree
7829 maybe_canonicalize_argtypes(tree argtypes,
7830 bool *any_structural_p,
7831 bool *any_noncanonical_p)
7832 {
7833 tree arg;
7834 bool any_noncanonical_argtypes_p = false;
7835
7836 for (arg = argtypes; arg && !(*any_structural_p); arg = TREE_CHAIN (arg))
7837 {
7838 if (!TREE_VALUE (arg) || TREE_VALUE (arg) == error_mark_node)
7839 /* Fail gracefully by stating that the type is structural. */
7840 *any_structural_p = true;
7841 else if (TYPE_STRUCTURAL_EQUALITY_P (TREE_VALUE (arg)))
7842 *any_structural_p = true;
7843 else if (TYPE_CANONICAL (TREE_VALUE (arg)) != TREE_VALUE (arg)
7844 || TREE_PURPOSE (arg))
7845 /* If the argument has a default argument, we consider it
7846 non-canonical even though the type itself is canonical.
7847 That way, different variants of function and method types
7848 with default arguments will all point to the variant with
7849 no defaults as their canonical type. */
7850 any_noncanonical_argtypes_p = true;
7851 }
7852
7853 if (*any_structural_p)
7854 return argtypes;
7855
7856 if (any_noncanonical_argtypes_p)
7857 {
7858 /* Build the canonical list of argument types. */
7859 tree canon_argtypes = NULL_TREE;
7860 bool is_void = false;
7861
7862 for (arg = argtypes; arg; arg = TREE_CHAIN (arg))
7863 {
7864 if (arg == void_list_node)
7865 is_void = true;
7866 else
7867 canon_argtypes = tree_cons (NULL_TREE,
7868 TYPE_CANONICAL (TREE_VALUE (arg)),
7869 canon_argtypes);
7870 }
7871
7872 canon_argtypes = nreverse (canon_argtypes);
7873 if (is_void)
7874 canon_argtypes = chainon (canon_argtypes, void_list_node);
7875
7876 /* There is a non-canonical type. */
7877 *any_noncanonical_p = true;
7878 return canon_argtypes;
7879 }
7880
7881 /* The canonical argument types are the same as ARGTYPES. */
7882 return argtypes;
7883 }
7884
7885 /* Construct, lay out and return
7886 the type of functions returning type VALUE_TYPE
7887 given arguments of types ARG_TYPES.
7888 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
7889 are data type nodes for the arguments of the function.
7890 If such a type has already been constructed, reuse it. */
7891
7892 tree
7893 build_function_type (tree value_type, tree arg_types)
7894 {
7895 tree t;
7896 hashval_t hashcode = 0;
7897 bool any_structural_p, any_noncanonical_p;
7898 tree canon_argtypes;
7899
7900 if (TREE_CODE (value_type) == FUNCTION_TYPE)
7901 {
7902 error ("function return type cannot be function");
7903 value_type = integer_type_node;
7904 }
7905
7906 /* Make a node of the sort we want. */
7907 t = make_node (FUNCTION_TYPE);
7908 TREE_TYPE (t) = value_type;
7909 TYPE_ARG_TYPES (t) = arg_types;
7910
7911 /* If we already have such a type, use the old one. */
7912 hashcode = iterative_hash_object (TYPE_HASH (value_type), hashcode);
7913 hashcode = type_hash_list (arg_types, hashcode);
7914 t = type_hash_canon (hashcode, t);
7915
7916 /* Set up the canonical type. */
7917 any_structural_p = TYPE_STRUCTURAL_EQUALITY_P (value_type);
7918 any_noncanonical_p = TYPE_CANONICAL (value_type) != value_type;
7919 canon_argtypes = maybe_canonicalize_argtypes (arg_types,
7920 &any_structural_p,
7921 &any_noncanonical_p);
7922 if (any_structural_p)
7923 SET_TYPE_STRUCTURAL_EQUALITY (t);
7924 else if (any_noncanonical_p)
7925 TYPE_CANONICAL (t) = build_function_type (TYPE_CANONICAL (value_type),
7926 canon_argtypes);
7927
7928 if (!COMPLETE_TYPE_P (t))
7929 layout_type (t);
7930 return t;
7931 }
7932
7933 /* Build variant of function type ORIG_TYPE skipping ARGS_TO_SKIP and the
7934 return value if SKIP_RETURN is true. */
7935
7936 static tree
7937 build_function_type_skip_args (tree orig_type, bitmap args_to_skip,
7938 bool skip_return)
7939 {
7940 tree new_type = NULL;
7941 tree args, new_args = NULL, t;
7942 tree new_reversed;
7943 int i = 0;
7944
7945 for (args = TYPE_ARG_TYPES (orig_type); args && args != void_list_node;
7946 args = TREE_CHAIN (args), i++)
7947 if (!args_to_skip || !bitmap_bit_p (args_to_skip, i))
7948 new_args = tree_cons (NULL_TREE, TREE_VALUE (args), new_args);
7949
7950 new_reversed = nreverse (new_args);
7951 if (args)
7952 {
7953 if (new_reversed)
7954 TREE_CHAIN (new_args) = void_list_node;
7955 else
7956 new_reversed = void_list_node;
7957 }
7958
7959 /* Use copy_node to preserve as much as possible from original type
7960 (debug info, attribute lists etc.)
7961 Exception is METHOD_TYPEs must have THIS argument.
7962 When we are asked to remove it, we need to build new FUNCTION_TYPE
7963 instead. */
7964 if (TREE_CODE (orig_type) != METHOD_TYPE
7965 || !args_to_skip
7966 || !bitmap_bit_p (args_to_skip, 0))
7967 {
7968 new_type = build_distinct_type_copy (orig_type);
7969 TYPE_ARG_TYPES (new_type) = new_reversed;
7970 }
7971 else
7972 {
7973 new_type
7974 = build_distinct_type_copy (build_function_type (TREE_TYPE (orig_type),
7975 new_reversed));
7976 TYPE_CONTEXT (new_type) = TYPE_CONTEXT (orig_type);
7977 }
7978
7979 if (skip_return)
7980 TREE_TYPE (new_type) = void_type_node;
7981
7982 /* This is a new type, not a copy of an old type. Need to reassociate
7983 variants. We can handle everything except the main variant lazily. */
7984 t = TYPE_MAIN_VARIANT (orig_type);
7985 if (t != orig_type)
7986 {
7987 t = build_function_type_skip_args (t, args_to_skip, skip_return);
7988 TYPE_MAIN_VARIANT (new_type) = t;
7989 TYPE_NEXT_VARIANT (new_type) = TYPE_NEXT_VARIANT (t);
7990 TYPE_NEXT_VARIANT (t) = new_type;
7991 }
7992 else
7993 {
7994 TYPE_MAIN_VARIANT (new_type) = new_type;
7995 TYPE_NEXT_VARIANT (new_type) = NULL;
7996 }
7997
7998 return new_type;
7999 }
8000
8001 /* Build variant of function decl ORIG_DECL skipping ARGS_TO_SKIP and the
8002 return value if SKIP_RETURN is true.
8003
8004 Arguments from DECL_ARGUMENTS list can't be removed now, since they are
8005 linked by TREE_CHAIN directly. The caller is responsible for eliminating
8006 them when they are being duplicated (i.e. copy_arguments_for_versioning). */
8007
8008 tree
8009 build_function_decl_skip_args (tree orig_decl, bitmap args_to_skip,
8010 bool skip_return)
8011 {
8012 tree new_decl = copy_node (orig_decl);
8013 tree new_type;
8014
8015 new_type = TREE_TYPE (orig_decl);
8016 if (prototype_p (new_type)
8017 || (skip_return && !VOID_TYPE_P (TREE_TYPE (new_type))))
8018 new_type
8019 = build_function_type_skip_args (new_type, args_to_skip, skip_return);
8020 TREE_TYPE (new_decl) = new_type;
8021
8022 /* For declarations setting DECL_VINDEX (i.e. methods)
8023 we expect first argument to be THIS pointer. */
8024 if (args_to_skip && bitmap_bit_p (args_to_skip, 0))
8025 DECL_VINDEX (new_decl) = NULL_TREE;
8026
8027 /* When signature changes, we need to clear builtin info. */
8028 if (DECL_BUILT_IN (new_decl)
8029 && args_to_skip
8030 && !bitmap_empty_p (args_to_skip))
8031 {
8032 DECL_BUILT_IN_CLASS (new_decl) = NOT_BUILT_IN;
8033 DECL_FUNCTION_CODE (new_decl) = (enum built_in_function) 0;
8034 }
8035 return new_decl;
8036 }
8037
8038 /* Build a function type. The RETURN_TYPE is the type returned by the
8039 function. If VAARGS is set, no void_type_node is appended to the
8040 the list. ARGP must be always be terminated be a NULL_TREE. */
8041
8042 static tree
8043 build_function_type_list_1 (bool vaargs, tree return_type, va_list argp)
8044 {
8045 tree t, args, last;
8046
8047 t = va_arg (argp, tree);
8048 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (argp, tree))
8049 args = tree_cons (NULL_TREE, t, args);
8050
8051 if (vaargs)
8052 {
8053 last = args;
8054 if (args != NULL_TREE)
8055 args = nreverse (args);
8056 gcc_assert (last != void_list_node);
8057 }
8058 else if (args == NULL_TREE)
8059 args = void_list_node;
8060 else
8061 {
8062 last = args;
8063 args = nreverse (args);
8064 TREE_CHAIN (last) = void_list_node;
8065 }
8066 args = build_function_type (return_type, args);
8067
8068 return args;
8069 }
8070
8071 /* Build a function type. The RETURN_TYPE is the type returned by the
8072 function. If additional arguments are provided, they are
8073 additional argument types. The list of argument types must always
8074 be terminated by NULL_TREE. */
8075
8076 tree
8077 build_function_type_list (tree return_type, ...)
8078 {
8079 tree args;
8080 va_list p;
8081
8082 va_start (p, return_type);
8083 args = build_function_type_list_1 (false, return_type, p);
8084 va_end (p);
8085 return args;
8086 }
8087
8088 /* Build a variable argument function type. The RETURN_TYPE is the
8089 type returned by the function. If additional arguments are provided,
8090 they are additional argument types. The list of argument types must
8091 always be terminated by NULL_TREE. */
8092
8093 tree
8094 build_varargs_function_type_list (tree return_type, ...)
8095 {
8096 tree args;
8097 va_list p;
8098
8099 va_start (p, return_type);
8100 args = build_function_type_list_1 (true, return_type, p);
8101 va_end (p);
8102
8103 return args;
8104 }
8105
8106 /* Build a function type. RETURN_TYPE is the type returned by the
8107 function; VAARGS indicates whether the function takes varargs. The
8108 function takes N named arguments, the types of which are provided in
8109 ARG_TYPES. */
8110
8111 static tree
8112 build_function_type_array_1 (bool vaargs, tree return_type, int n,
8113 tree *arg_types)
8114 {
8115 int i;
8116 tree t = vaargs ? NULL_TREE : void_list_node;
8117
8118 for (i = n - 1; i >= 0; i--)
8119 t = tree_cons (NULL_TREE, arg_types[i], t);
8120
8121 return build_function_type (return_type, t);
8122 }
8123
8124 /* Build a function type. RETURN_TYPE is the type returned by the
8125 function. The function takes N named arguments, the types of which
8126 are provided in ARG_TYPES. */
8127
8128 tree
8129 build_function_type_array (tree return_type, int n, tree *arg_types)
8130 {
8131 return build_function_type_array_1 (false, return_type, n, arg_types);
8132 }
8133
8134 /* Build a variable argument function type. RETURN_TYPE is the type
8135 returned by the function. The function takes N named arguments, the
8136 types of which are provided in ARG_TYPES. */
8137
8138 tree
8139 build_varargs_function_type_array (tree return_type, int n, tree *arg_types)
8140 {
8141 return build_function_type_array_1 (true, return_type, n, arg_types);
8142 }
8143
8144 /* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
8145 and ARGTYPES (a TREE_LIST) are the return type and arguments types
8146 for the method. An implicit additional parameter (of type
8147 pointer-to-BASETYPE) is added to the ARGTYPES. */
8148
8149 tree
8150 build_method_type_directly (tree basetype,
8151 tree rettype,
8152 tree argtypes)
8153 {
8154 tree t;
8155 tree ptype;
8156 int hashcode = 0;
8157 bool any_structural_p, any_noncanonical_p;
8158 tree canon_argtypes;
8159
8160 /* Make a node of the sort we want. */
8161 t = make_node (METHOD_TYPE);
8162
8163 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
8164 TREE_TYPE (t) = rettype;
8165 ptype = build_pointer_type (basetype);
8166
8167 /* The actual arglist for this function includes a "hidden" argument
8168 which is "this". Put it into the list of argument types. */
8169 argtypes = tree_cons (NULL_TREE, ptype, argtypes);
8170 TYPE_ARG_TYPES (t) = argtypes;
8171
8172 /* If we already have such a type, use the old one. */
8173 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
8174 hashcode = iterative_hash_object (TYPE_HASH (rettype), hashcode);
8175 hashcode = type_hash_list (argtypes, hashcode);
8176 t = type_hash_canon (hashcode, t);
8177
8178 /* Set up the canonical type. */
8179 any_structural_p
8180 = (TYPE_STRUCTURAL_EQUALITY_P (basetype)
8181 || TYPE_STRUCTURAL_EQUALITY_P (rettype));
8182 any_noncanonical_p
8183 = (TYPE_CANONICAL (basetype) != basetype
8184 || TYPE_CANONICAL (rettype) != rettype);
8185 canon_argtypes = maybe_canonicalize_argtypes (TREE_CHAIN (argtypes),
8186 &any_structural_p,
8187 &any_noncanonical_p);
8188 if (any_structural_p)
8189 SET_TYPE_STRUCTURAL_EQUALITY (t);
8190 else if (any_noncanonical_p)
8191 TYPE_CANONICAL (t)
8192 = build_method_type_directly (TYPE_CANONICAL (basetype),
8193 TYPE_CANONICAL (rettype),
8194 canon_argtypes);
8195 if (!COMPLETE_TYPE_P (t))
8196 layout_type (t);
8197
8198 return t;
8199 }
8200
8201 /* Construct, lay out and return the type of methods belonging to class
8202 BASETYPE and whose arguments and values are described by TYPE.
8203 If that type exists already, reuse it.
8204 TYPE must be a FUNCTION_TYPE node. */
8205
8206 tree
8207 build_method_type (tree basetype, tree type)
8208 {
8209 gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
8210
8211 return build_method_type_directly (basetype,
8212 TREE_TYPE (type),
8213 TYPE_ARG_TYPES (type));
8214 }
8215
8216 /* Construct, lay out and return the type of offsets to a value
8217 of type TYPE, within an object of type BASETYPE.
8218 If a suitable offset type exists already, reuse it. */
8219
8220 tree
8221 build_offset_type (tree basetype, tree type)
8222 {
8223 tree t;
8224 hashval_t hashcode = 0;
8225
8226 /* Make a node of the sort we want. */
8227 t = make_node (OFFSET_TYPE);
8228
8229 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
8230 TREE_TYPE (t) = type;
8231
8232 /* If we already have such a type, use the old one. */
8233 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
8234 hashcode = iterative_hash_object (TYPE_HASH (type), hashcode);
8235 t = type_hash_canon (hashcode, t);
8236
8237 if (!COMPLETE_TYPE_P (t))
8238 layout_type (t);
8239
8240 if (TYPE_CANONICAL (t) == t)
8241 {
8242 if (TYPE_STRUCTURAL_EQUALITY_P (basetype)
8243 || TYPE_STRUCTURAL_EQUALITY_P (type))
8244 SET_TYPE_STRUCTURAL_EQUALITY (t);
8245 else if (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)) != basetype
8246 || TYPE_CANONICAL (type) != type)
8247 TYPE_CANONICAL (t)
8248 = build_offset_type (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)),
8249 TYPE_CANONICAL (type));
8250 }
8251
8252 return t;
8253 }
8254
8255 /* Create a complex type whose components are COMPONENT_TYPE. */
8256
8257 tree
8258 build_complex_type (tree component_type)
8259 {
8260 tree t;
8261 hashval_t hashcode;
8262
8263 gcc_assert (INTEGRAL_TYPE_P (component_type)
8264 || SCALAR_FLOAT_TYPE_P (component_type)
8265 || FIXED_POINT_TYPE_P (component_type));
8266
8267 /* Make a node of the sort we want. */
8268 t = make_node (COMPLEX_TYPE);
8269
8270 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
8271
8272 /* If we already have such a type, use the old one. */
8273 hashcode = iterative_hash_object (TYPE_HASH (component_type), 0);
8274 t = type_hash_canon (hashcode, t);
8275
8276 if (!COMPLETE_TYPE_P (t))
8277 layout_type (t);
8278
8279 if (TYPE_CANONICAL (t) == t)
8280 {
8281 if (TYPE_STRUCTURAL_EQUALITY_P (component_type))
8282 SET_TYPE_STRUCTURAL_EQUALITY (t);
8283 else if (TYPE_CANONICAL (component_type) != component_type)
8284 TYPE_CANONICAL (t)
8285 = build_complex_type (TYPE_CANONICAL (component_type));
8286 }
8287
8288 /* We need to create a name, since complex is a fundamental type. */
8289 if (! TYPE_NAME (t))
8290 {
8291 const char *name;
8292 if (component_type == char_type_node)
8293 name = "complex char";
8294 else if (component_type == signed_char_type_node)
8295 name = "complex signed char";
8296 else if (component_type == unsigned_char_type_node)
8297 name = "complex unsigned char";
8298 else if (component_type == short_integer_type_node)
8299 name = "complex short int";
8300 else if (component_type == short_unsigned_type_node)
8301 name = "complex short unsigned int";
8302 else if (component_type == integer_type_node)
8303 name = "complex int";
8304 else if (component_type == unsigned_type_node)
8305 name = "complex unsigned int";
8306 else if (component_type == long_integer_type_node)
8307 name = "complex long int";
8308 else if (component_type == long_unsigned_type_node)
8309 name = "complex long unsigned int";
8310 else if (component_type == long_long_integer_type_node)
8311 name = "complex long long int";
8312 else if (component_type == long_long_unsigned_type_node)
8313 name = "complex long long unsigned int";
8314 else
8315 name = 0;
8316
8317 if (name != 0)
8318 TYPE_NAME (t) = build_decl (UNKNOWN_LOCATION, TYPE_DECL,
8319 get_identifier (name), t);
8320 }
8321
8322 return build_qualified_type (t, TYPE_QUALS (component_type));
8323 }
8324
8325 /* If TYPE is a real or complex floating-point type and the target
8326 does not directly support arithmetic on TYPE then return the wider
8327 type to be used for arithmetic on TYPE. Otherwise, return
8328 NULL_TREE. */
8329
8330 tree
8331 excess_precision_type (tree type)
8332 {
8333 if (flag_excess_precision != EXCESS_PRECISION_FAST)
8334 {
8335 int flt_eval_method = TARGET_FLT_EVAL_METHOD;
8336 switch (TREE_CODE (type))
8337 {
8338 case REAL_TYPE:
8339 switch (flt_eval_method)
8340 {
8341 case 1:
8342 if (TYPE_MODE (type) == TYPE_MODE (float_type_node))
8343 return double_type_node;
8344 break;
8345 case 2:
8346 if (TYPE_MODE (type) == TYPE_MODE (float_type_node)
8347 || TYPE_MODE (type) == TYPE_MODE (double_type_node))
8348 return long_double_type_node;
8349 break;
8350 default:
8351 gcc_unreachable ();
8352 }
8353 break;
8354 case COMPLEX_TYPE:
8355 if (TREE_CODE (TREE_TYPE (type)) != REAL_TYPE)
8356 return NULL_TREE;
8357 switch (flt_eval_method)
8358 {
8359 case 1:
8360 if (TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (float_type_node))
8361 return complex_double_type_node;
8362 break;
8363 case 2:
8364 if (TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (float_type_node)
8365 || (TYPE_MODE (TREE_TYPE (type))
8366 == TYPE_MODE (double_type_node)))
8367 return complex_long_double_type_node;
8368 break;
8369 default:
8370 gcc_unreachable ();
8371 }
8372 break;
8373 default:
8374 break;
8375 }
8376 }
8377 return NULL_TREE;
8378 }
8379 \f
8380 /* Return OP, stripped of any conversions to wider types as much as is safe.
8381 Converting the value back to OP's type makes a value equivalent to OP.
8382
8383 If FOR_TYPE is nonzero, we return a value which, if converted to
8384 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
8385
8386 OP must have integer, real or enumeral type. Pointers are not allowed!
8387
8388 There are some cases where the obvious value we could return
8389 would regenerate to OP if converted to OP's type,
8390 but would not extend like OP to wider types.
8391 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
8392 For example, if OP is (unsigned short)(signed char)-1,
8393 we avoid returning (signed char)-1 if FOR_TYPE is int,
8394 even though extending that to an unsigned short would regenerate OP,
8395 since the result of extending (signed char)-1 to (int)
8396 is different from (int) OP. */
8397
8398 tree
8399 get_unwidened (tree op, tree for_type)
8400 {
8401 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
8402 tree type = TREE_TYPE (op);
8403 unsigned final_prec
8404 = TYPE_PRECISION (for_type != 0 ? for_type : type);
8405 int uns
8406 = (for_type != 0 && for_type != type
8407 && final_prec > TYPE_PRECISION (type)
8408 && TYPE_UNSIGNED (type));
8409 tree win = op;
8410
8411 while (CONVERT_EXPR_P (op))
8412 {
8413 int bitschange;
8414
8415 /* TYPE_PRECISION on vector types has different meaning
8416 (TYPE_VECTOR_SUBPARTS) and casts from vectors are view conversions,
8417 so avoid them here. */
8418 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == VECTOR_TYPE)
8419 break;
8420
8421 bitschange = TYPE_PRECISION (TREE_TYPE (op))
8422 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
8423
8424 /* Truncations are many-one so cannot be removed.
8425 Unless we are later going to truncate down even farther. */
8426 if (bitschange < 0
8427 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
8428 break;
8429
8430 /* See what's inside this conversion. If we decide to strip it,
8431 we will set WIN. */
8432 op = TREE_OPERAND (op, 0);
8433
8434 /* If we have not stripped any zero-extensions (uns is 0),
8435 we can strip any kind of extension.
8436 If we have previously stripped a zero-extension,
8437 only zero-extensions can safely be stripped.
8438 Any extension can be stripped if the bits it would produce
8439 are all going to be discarded later by truncating to FOR_TYPE. */
8440
8441 if (bitschange > 0)
8442 {
8443 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
8444 win = op;
8445 /* TYPE_UNSIGNED says whether this is a zero-extension.
8446 Let's avoid computing it if it does not affect WIN
8447 and if UNS will not be needed again. */
8448 if ((uns
8449 || CONVERT_EXPR_P (op))
8450 && TYPE_UNSIGNED (TREE_TYPE (op)))
8451 {
8452 uns = 1;
8453 win = op;
8454 }
8455 }
8456 }
8457
8458 /* If we finally reach a constant see if it fits in for_type and
8459 in that case convert it. */
8460 if (for_type
8461 && TREE_CODE (win) == INTEGER_CST
8462 && TREE_TYPE (win) != for_type
8463 && int_fits_type_p (win, for_type))
8464 win = fold_convert (for_type, win);
8465
8466 return win;
8467 }
8468 \f
8469 /* Return OP or a simpler expression for a narrower value
8470 which can be sign-extended or zero-extended to give back OP.
8471 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
8472 or 0 if the value should be sign-extended. */
8473
8474 tree
8475 get_narrower (tree op, int *unsignedp_ptr)
8476 {
8477 int uns = 0;
8478 int first = 1;
8479 tree win = op;
8480 bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));
8481
8482 while (TREE_CODE (op) == NOP_EXPR)
8483 {
8484 int bitschange
8485 = (TYPE_PRECISION (TREE_TYPE (op))
8486 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
8487
8488 /* Truncations are many-one so cannot be removed. */
8489 if (bitschange < 0)
8490 break;
8491
8492 /* See what's inside this conversion. If we decide to strip it,
8493 we will set WIN. */
8494
8495 if (bitschange > 0)
8496 {
8497 op = TREE_OPERAND (op, 0);
8498 /* An extension: the outermost one can be stripped,
8499 but remember whether it is zero or sign extension. */
8500 if (first)
8501 uns = TYPE_UNSIGNED (TREE_TYPE (op));
8502 /* Otherwise, if a sign extension has been stripped,
8503 only sign extensions can now be stripped;
8504 if a zero extension has been stripped, only zero-extensions. */
8505 else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
8506 break;
8507 first = 0;
8508 }
8509 else /* bitschange == 0 */
8510 {
8511 /* A change in nominal type can always be stripped, but we must
8512 preserve the unsignedness. */
8513 if (first)
8514 uns = TYPE_UNSIGNED (TREE_TYPE (op));
8515 first = 0;
8516 op = TREE_OPERAND (op, 0);
8517 /* Keep trying to narrow, but don't assign op to win if it
8518 would turn an integral type into something else. */
8519 if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
8520 continue;
8521 }
8522
8523 win = op;
8524 }
8525
8526 if (TREE_CODE (op) == COMPONENT_REF
8527 /* Since type_for_size always gives an integer type. */
8528 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
8529 && TREE_CODE (TREE_TYPE (op)) != FIXED_POINT_TYPE
8530 /* Ensure field is laid out already. */
8531 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
8532 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
8533 {
8534 unsigned HOST_WIDE_INT innerprec
8535 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
8536 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
8537 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
8538 tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
8539
8540 /* We can get this structure field in a narrower type that fits it,
8541 but the resulting extension to its nominal type (a fullword type)
8542 must satisfy the same conditions as for other extensions.
8543
8544 Do this only for fields that are aligned (not bit-fields),
8545 because when bit-field insns will be used there is no
8546 advantage in doing this. */
8547
8548 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
8549 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
8550 && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
8551 && type != 0)
8552 {
8553 if (first)
8554 uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
8555 win = fold_convert (type, op);
8556 }
8557 }
8558
8559 *unsignedp_ptr = uns;
8560 return win;
8561 }
8562 \f
8563 /* Returns true if integer constant C has a value that is permissible
8564 for type TYPE (an INTEGER_TYPE). */
8565
8566 bool
8567 int_fits_type_p (const_tree c, const_tree type)
8568 {
8569 tree type_low_bound, type_high_bound;
8570 bool ok_for_low_bound, ok_for_high_bound, unsc;
8571 double_int dc, dd;
8572
8573 dc = tree_to_double_int (c);
8574 unsc = TYPE_UNSIGNED (TREE_TYPE (c));
8575
8576 retry:
8577 type_low_bound = TYPE_MIN_VALUE (type);
8578 type_high_bound = TYPE_MAX_VALUE (type);
8579
8580 /* If at least one bound of the type is a constant integer, we can check
8581 ourselves and maybe make a decision. If no such decision is possible, but
8582 this type is a subtype, try checking against that. Otherwise, use
8583 double_int_fits_to_tree_p, which checks against the precision.
8584
8585 Compute the status for each possibly constant bound, and return if we see
8586 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
8587 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
8588 for "constant known to fit". */
8589
8590 /* Check if c >= type_low_bound. */
8591 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
8592 {
8593 dd = tree_to_double_int (type_low_bound);
8594 if (unsc != TYPE_UNSIGNED (TREE_TYPE (type_low_bound)))
8595 {
8596 int c_neg = (!unsc && dc.is_negative ());
8597 int t_neg = (unsc && dd.is_negative ());
8598
8599 if (c_neg && !t_neg)
8600 return false;
8601 if ((c_neg || !t_neg) && dc.ult (dd))
8602 return false;
8603 }
8604 else if (dc.cmp (dd, unsc) < 0)
8605 return false;
8606 ok_for_low_bound = true;
8607 }
8608 else
8609 ok_for_low_bound = false;
8610
8611 /* Check if c <= type_high_bound. */
8612 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
8613 {
8614 dd = tree_to_double_int (type_high_bound);
8615 if (unsc != TYPE_UNSIGNED (TREE_TYPE (type_high_bound)))
8616 {
8617 int c_neg = (!unsc && dc.is_negative ());
8618 int t_neg = (unsc && dd.is_negative ());
8619
8620 if (t_neg && !c_neg)
8621 return false;
8622 if ((t_neg || !c_neg) && dc.ugt (dd))
8623 return false;
8624 }
8625 else if (dc.cmp (dd, unsc) > 0)
8626 return false;
8627 ok_for_high_bound = true;
8628 }
8629 else
8630 ok_for_high_bound = false;
8631
8632 /* If the constant fits both bounds, the result is known. */
8633 if (ok_for_low_bound && ok_for_high_bound)
8634 return true;
8635
8636 /* Perform some generic filtering which may allow making a decision
8637 even if the bounds are not constant. First, negative integers
8638 never fit in unsigned types, */
8639 if (TYPE_UNSIGNED (type) && !unsc && dc.is_negative ())
8640 return false;
8641
8642 /* Second, narrower types always fit in wider ones. */
8643 if (TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (c)))
8644 return true;
8645
8646 /* Third, unsigned integers with top bit set never fit signed types. */
8647 if (! TYPE_UNSIGNED (type) && unsc)
8648 {
8649 int prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (c))) - 1;
8650 if (prec < HOST_BITS_PER_WIDE_INT)
8651 {
8652 if (((((unsigned HOST_WIDE_INT) 1) << prec) & dc.low) != 0)
8653 return false;
8654 }
8655 else if (((((unsigned HOST_WIDE_INT) 1)
8656 << (prec - HOST_BITS_PER_WIDE_INT)) & dc.high) != 0)
8657 return false;
8658 }
8659
8660 /* If we haven't been able to decide at this point, there nothing more we
8661 can check ourselves here. Look at the base type if we have one and it
8662 has the same precision. */
8663 if (TREE_CODE (type) == INTEGER_TYPE
8664 && TREE_TYPE (type) != 0
8665 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (type)))
8666 {
8667 type = TREE_TYPE (type);
8668 goto retry;
8669 }
8670
8671 /* Or to double_int_fits_to_tree_p, if nothing else. */
8672 return double_int_fits_to_tree_p (type, dc);
8673 }
8674
8675 /* Stores bounds of an integer TYPE in MIN and MAX. If TYPE has non-constant
8676 bounds or is a POINTER_TYPE, the maximum and/or minimum values that can be
8677 represented (assuming two's-complement arithmetic) within the bit
8678 precision of the type are returned instead. */
8679
8680 void
8681 get_type_static_bounds (const_tree type, mpz_t min, mpz_t max)
8682 {
8683 if (!POINTER_TYPE_P (type) && TYPE_MIN_VALUE (type)
8684 && TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST)
8685 mpz_set_double_int (min, tree_to_double_int (TYPE_MIN_VALUE (type)),
8686 TYPE_UNSIGNED (type));
8687 else
8688 {
8689 if (TYPE_UNSIGNED (type))
8690 mpz_set_ui (min, 0);
8691 else
8692 {
8693 double_int mn;
8694 mn = double_int::mask (TYPE_PRECISION (type) - 1);
8695 mn = (mn + double_int_one).sext (TYPE_PRECISION (type));
8696 mpz_set_double_int (min, mn, false);
8697 }
8698 }
8699
8700 if (!POINTER_TYPE_P (type) && TYPE_MAX_VALUE (type)
8701 && TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST)
8702 mpz_set_double_int (max, tree_to_double_int (TYPE_MAX_VALUE (type)),
8703 TYPE_UNSIGNED (type));
8704 else
8705 {
8706 if (TYPE_UNSIGNED (type))
8707 mpz_set_double_int (max, double_int::mask (TYPE_PRECISION (type)),
8708 true);
8709 else
8710 mpz_set_double_int (max, double_int::mask (TYPE_PRECISION (type) - 1),
8711 true);
8712 }
8713 }
8714
8715 /* Return true if VAR is an automatic variable defined in function FN. */
8716
8717 bool
8718 auto_var_in_fn_p (const_tree var, const_tree fn)
8719 {
8720 return (DECL_P (var) && DECL_CONTEXT (var) == fn
8721 && ((((TREE_CODE (var) == VAR_DECL && ! DECL_EXTERNAL (var))
8722 || TREE_CODE (var) == PARM_DECL)
8723 && ! TREE_STATIC (var))
8724 || TREE_CODE (var) == LABEL_DECL
8725 || TREE_CODE (var) == RESULT_DECL));
8726 }
8727
8728 /* Subprogram of following function. Called by walk_tree.
8729
8730 Return *TP if it is an automatic variable or parameter of the
8731 function passed in as DATA. */
8732
8733 static tree
8734 find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
8735 {
8736 tree fn = (tree) data;
8737
8738 if (TYPE_P (*tp))
8739 *walk_subtrees = 0;
8740
8741 else if (DECL_P (*tp)
8742 && auto_var_in_fn_p (*tp, fn))
8743 return *tp;
8744
8745 return NULL_TREE;
8746 }
8747
8748 /* Returns true if T is, contains, or refers to a type with variable
8749 size. For METHOD_TYPEs and FUNCTION_TYPEs we exclude the
8750 arguments, but not the return type. If FN is nonzero, only return
8751 true if a modifier of the type or position of FN is a variable or
8752 parameter inside FN.
8753
8754 This concept is more general than that of C99 'variably modified types':
8755 in C99, a struct type is never variably modified because a VLA may not
8756 appear as a structure member. However, in GNU C code like:
8757
8758 struct S { int i[f()]; };
8759
8760 is valid, and other languages may define similar constructs. */
8761
8762 bool
8763 variably_modified_type_p (tree type, tree fn)
8764 {
8765 tree t;
8766
8767 /* Test if T is either variable (if FN is zero) or an expression containing
8768 a variable in FN. If TYPE isn't gimplified, return true also if
8769 gimplify_one_sizepos would gimplify the expression into a local
8770 variable. */
8771 #define RETURN_TRUE_IF_VAR(T) \
8772 do { tree _t = (T); \
8773 if (_t != NULL_TREE \
8774 && _t != error_mark_node \
8775 && TREE_CODE (_t) != INTEGER_CST \
8776 && TREE_CODE (_t) != PLACEHOLDER_EXPR \
8777 && (!fn \
8778 || (!TYPE_SIZES_GIMPLIFIED (type) \
8779 && !is_gimple_sizepos (_t)) \
8780 || walk_tree (&_t, find_var_from_fn, fn, NULL))) \
8781 return true; } while (0)
8782
8783 if (type == error_mark_node)
8784 return false;
8785
8786 /* If TYPE itself has variable size, it is variably modified. */
8787 RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
8788 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (type));
8789
8790 switch (TREE_CODE (type))
8791 {
8792 case POINTER_TYPE:
8793 case REFERENCE_TYPE:
8794 case VECTOR_TYPE:
8795 if (variably_modified_type_p (TREE_TYPE (type), fn))
8796 return true;
8797 break;
8798
8799 case FUNCTION_TYPE:
8800 case METHOD_TYPE:
8801 /* If TYPE is a function type, it is variably modified if the
8802 return type is variably modified. */
8803 if (variably_modified_type_p (TREE_TYPE (type), fn))
8804 return true;
8805 break;
8806
8807 case INTEGER_TYPE:
8808 case REAL_TYPE:
8809 case FIXED_POINT_TYPE:
8810 case ENUMERAL_TYPE:
8811 case BOOLEAN_TYPE:
8812 /* Scalar types are variably modified if their end points
8813 aren't constant. */
8814 RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
8815 RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
8816 break;
8817
8818 case RECORD_TYPE:
8819 case UNION_TYPE:
8820 case QUAL_UNION_TYPE:
8821 /* We can't see if any of the fields are variably-modified by the
8822 definition we normally use, since that would produce infinite
8823 recursion via pointers. */
8824 /* This is variably modified if some field's type is. */
8825 for (t = TYPE_FIELDS (type); t; t = DECL_CHAIN (t))
8826 if (TREE_CODE (t) == FIELD_DECL)
8827 {
8828 RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
8829 RETURN_TRUE_IF_VAR (DECL_SIZE (t));
8830 RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));
8831
8832 if (TREE_CODE (type) == QUAL_UNION_TYPE)
8833 RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));
8834 }
8835 break;
8836
8837 case ARRAY_TYPE:
8838 /* Do not call ourselves to avoid infinite recursion. This is
8839 variably modified if the element type is. */
8840 RETURN_TRUE_IF_VAR (TYPE_SIZE (TREE_TYPE (type)));
8841 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (TREE_TYPE (type)));
8842 break;
8843
8844 default:
8845 break;
8846 }
8847
8848 /* The current language may have other cases to check, but in general,
8849 all other types are not variably modified. */
8850 return lang_hooks.tree_inlining.var_mod_type_p (type, fn);
8851
8852 #undef RETURN_TRUE_IF_VAR
8853 }
8854
8855 /* Given a DECL or TYPE, return the scope in which it was declared, or
8856 NULL_TREE if there is no containing scope. */
8857
8858 tree
8859 get_containing_scope (const_tree t)
8860 {
8861 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
8862 }
8863
8864 /* Return the innermost context enclosing DECL that is
8865 a FUNCTION_DECL, or zero if none. */
8866
8867 tree
8868 decl_function_context (const_tree decl)
8869 {
8870 tree context;
8871
8872 if (TREE_CODE (decl) == ERROR_MARK)
8873 return 0;
8874
8875 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
8876 where we look up the function at runtime. Such functions always take
8877 a first argument of type 'pointer to real context'.
8878
8879 C++ should really be fixed to use DECL_CONTEXT for the real context,
8880 and use something else for the "virtual context". */
8881 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
8882 context
8883 = TYPE_MAIN_VARIANT
8884 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
8885 else
8886 context = DECL_CONTEXT (decl);
8887
8888 while (context && TREE_CODE (context) != FUNCTION_DECL)
8889 {
8890 if (TREE_CODE (context) == BLOCK)
8891 context = BLOCK_SUPERCONTEXT (context);
8892 else
8893 context = get_containing_scope (context);
8894 }
8895
8896 return context;
8897 }
8898
8899 /* Return the innermost context enclosing DECL that is
8900 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
8901 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
8902
8903 tree
8904 decl_type_context (const_tree decl)
8905 {
8906 tree context = DECL_CONTEXT (decl);
8907
8908 while (context)
8909 switch (TREE_CODE (context))
8910 {
8911 case NAMESPACE_DECL:
8912 case TRANSLATION_UNIT_DECL:
8913 return NULL_TREE;
8914
8915 case RECORD_TYPE:
8916 case UNION_TYPE:
8917 case QUAL_UNION_TYPE:
8918 return context;
8919
8920 case TYPE_DECL:
8921 case FUNCTION_DECL:
8922 context = DECL_CONTEXT (context);
8923 break;
8924
8925 case BLOCK:
8926 context = BLOCK_SUPERCONTEXT (context);
8927 break;
8928
8929 default:
8930 gcc_unreachable ();
8931 }
8932
8933 return NULL_TREE;
8934 }
8935
8936 /* CALL is a CALL_EXPR. Return the declaration for the function
8937 called, or NULL_TREE if the called function cannot be
8938 determined. */
8939
8940 tree
8941 get_callee_fndecl (const_tree call)
8942 {
8943 tree addr;
8944
8945 if (call == error_mark_node)
8946 return error_mark_node;
8947
8948 /* It's invalid to call this function with anything but a
8949 CALL_EXPR. */
8950 gcc_assert (TREE_CODE (call) == CALL_EXPR);
8951
8952 /* The first operand to the CALL is the address of the function
8953 called. */
8954 addr = CALL_EXPR_FN (call);
8955
8956 STRIP_NOPS (addr);
8957
8958 /* If this is a readonly function pointer, extract its initial value. */
8959 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
8960 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
8961 && DECL_INITIAL (addr))
8962 addr = DECL_INITIAL (addr);
8963
8964 /* If the address is just `&f' for some function `f', then we know
8965 that `f' is being called. */
8966 if (TREE_CODE (addr) == ADDR_EXPR
8967 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
8968 return TREE_OPERAND (addr, 0);
8969
8970 /* We couldn't figure out what was being called. */
8971 return NULL_TREE;
8972 }
8973
8974 /* Print debugging information about tree nodes generated during the compile,
8975 and any language-specific information. */
8976
8977 void
8978 dump_tree_statistics (void)
8979 {
8980 if (GATHER_STATISTICS)
8981 {
8982 int i;
8983 int total_nodes, total_bytes;
8984 fprintf (stderr, "Kind Nodes Bytes\n");
8985 fprintf (stderr, "---------------------------------------\n");
8986 total_nodes = total_bytes = 0;
8987 for (i = 0; i < (int) all_kinds; i++)
8988 {
8989 fprintf (stderr, "%-20s %7d %10d\n", tree_node_kind_names[i],
8990 tree_node_counts[i], tree_node_sizes[i]);
8991 total_nodes += tree_node_counts[i];
8992 total_bytes += tree_node_sizes[i];
8993 }
8994 fprintf (stderr, "---------------------------------------\n");
8995 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_nodes, total_bytes);
8996 fprintf (stderr, "---------------------------------------\n");
8997 fprintf (stderr, "Code Nodes\n");
8998 fprintf (stderr, "----------------------------\n");
8999 for (i = 0; i < (int) MAX_TREE_CODES; i++)
9000 fprintf (stderr, "%-20s %7d\n", tree_code_name[i], tree_code_counts[i]);
9001 fprintf (stderr, "----------------------------\n");
9002 ssanames_print_statistics ();
9003 phinodes_print_statistics ();
9004 }
9005 else
9006 fprintf (stderr, "(No per-node statistics)\n");
9007
9008 print_type_hash_statistics ();
9009 print_debug_expr_statistics ();
9010 print_value_expr_statistics ();
9011 lang_hooks.print_statistics ();
9012 }
9013 \f
9014 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
9015
9016 /* Generate a crc32 of a byte. */
9017
9018 static unsigned
9019 crc32_unsigned_bits (unsigned chksum, unsigned value, unsigned bits)
9020 {
9021 unsigned ix;
9022
9023 for (ix = bits; ix--; value <<= 1)
9024 {
9025 unsigned feedback;
9026
9027 feedback = (value ^ chksum) & 0x80000000 ? 0x04c11db7 : 0;
9028 chksum <<= 1;
9029 chksum ^= feedback;
9030 }
9031 return chksum;
9032 }
9033
9034 /* Generate a crc32 of a 32-bit unsigned. */
9035
9036 unsigned
9037 crc32_unsigned (unsigned chksum, unsigned value)
9038 {
9039 return crc32_unsigned_bits (chksum, value, 32);
9040 }
9041
9042 /* Generate a crc32 of a byte. */
9043
9044 unsigned
9045 crc32_byte (unsigned chksum, char byte)
9046 {
9047 return crc32_unsigned_bits (chksum, (unsigned) byte << 24, 8);
9048 }
9049
9050 /* Generate a crc32 of a string. */
9051
9052 unsigned
9053 crc32_string (unsigned chksum, const char *string)
9054 {
9055 do
9056 {
9057 chksum = crc32_byte (chksum, *string);
9058 }
9059 while (*string++);
9060 return chksum;
9061 }
9062
9063 /* P is a string that will be used in a symbol. Mask out any characters
9064 that are not valid in that context. */
9065
9066 void
9067 clean_symbol_name (char *p)
9068 {
9069 for (; *p; p++)
9070 if (! (ISALNUM (*p)
9071 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
9072 || *p == '$'
9073 #endif
9074 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
9075 || *p == '.'
9076 #endif
9077 ))
9078 *p = '_';
9079 }
9080
9081 /* Generate a name for a special-purpose function.
9082 The generated name may need to be unique across the whole link.
9083 Changes to this function may also require corresponding changes to
9084 xstrdup_mask_random.
9085 TYPE is some string to identify the purpose of this function to the
9086 linker or collect2; it must start with an uppercase letter,
9087 one of:
9088 I - for constructors
9089 D - for destructors
9090 N - for C++ anonymous namespaces
9091 F - for DWARF unwind frame information. */
9092
9093 tree
9094 get_file_function_name (const char *type)
9095 {
9096 char *buf;
9097 const char *p;
9098 char *q;
9099
9100 /* If we already have a name we know to be unique, just use that. */
9101 if (first_global_object_name)
9102 p = q = ASTRDUP (first_global_object_name);
9103 /* If the target is handling the constructors/destructors, they
9104 will be local to this file and the name is only necessary for
9105 debugging purposes.
9106 We also assign sub_I and sub_D sufixes to constructors called from
9107 the global static constructors. These are always local. */
9108 else if (((type[0] == 'I' || type[0] == 'D') && targetm.have_ctors_dtors)
9109 || (strncmp (type, "sub_", 4) == 0
9110 && (type[4] == 'I' || type[4] == 'D')))
9111 {
9112 const char *file = main_input_filename;
9113 if (! file)
9114 file = input_filename;
9115 /* Just use the file's basename, because the full pathname
9116 might be quite long. */
9117 p = q = ASTRDUP (lbasename (file));
9118 }
9119 else
9120 {
9121 /* Otherwise, the name must be unique across the entire link.
9122 We don't have anything that we know to be unique to this translation
9123 unit, so use what we do have and throw in some randomness. */
9124 unsigned len;
9125 const char *name = weak_global_object_name;
9126 const char *file = main_input_filename;
9127
9128 if (! name)
9129 name = "";
9130 if (! file)
9131 file = input_filename;
9132
9133 len = strlen (file);
9134 q = (char *) alloca (9 + 17 + len + 1);
9135 memcpy (q, file, len + 1);
9136
9137 snprintf (q + len, 9 + 17 + 1, "_%08X_" HOST_WIDE_INT_PRINT_HEX,
9138 crc32_string (0, name), get_random_seed (false));
9139
9140 p = q;
9141 }
9142
9143 clean_symbol_name (q);
9144 buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
9145 + strlen (type));
9146
9147 /* Set up the name of the file-level functions we may need.
9148 Use a global object (which is already required to be unique over
9149 the program) rather than the file name (which imposes extra
9150 constraints). */
9151 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
9152
9153 return get_identifier (buf);
9154 }
9155 \f
9156 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
9157
9158 /* Complain that the tree code of NODE does not match the expected 0
9159 terminated list of trailing codes. The trailing code list can be
9160 empty, for a more vague error message. FILE, LINE, and FUNCTION
9161 are of the caller. */
9162
9163 void
9164 tree_check_failed (const_tree node, const char *file,
9165 int line, const char *function, ...)
9166 {
9167 va_list args;
9168 const char *buffer;
9169 unsigned length = 0;
9170 int code;
9171
9172 va_start (args, function);
9173 while ((code = va_arg (args, int)))
9174 length += 4 + strlen (tree_code_name[code]);
9175 va_end (args);
9176 if (length)
9177 {
9178 char *tmp;
9179 va_start (args, function);
9180 length += strlen ("expected ");
9181 buffer = tmp = (char *) alloca (length);
9182 length = 0;
9183 while ((code = va_arg (args, int)))
9184 {
9185 const char *prefix = length ? " or " : "expected ";
9186
9187 strcpy (tmp + length, prefix);
9188 length += strlen (prefix);
9189 strcpy (tmp + length, tree_code_name[code]);
9190 length += strlen (tree_code_name[code]);
9191 }
9192 va_end (args);
9193 }
9194 else
9195 buffer = "unexpected node";
9196
9197 internal_error ("tree check: %s, have %s in %s, at %s:%d",
9198 buffer, tree_code_name[TREE_CODE (node)],
9199 function, trim_filename (file), line);
9200 }
9201
9202 /* Complain that the tree code of NODE does match the expected 0
9203 terminated list of trailing codes. FILE, LINE, and FUNCTION are of
9204 the caller. */
9205
9206 void
9207 tree_not_check_failed (const_tree node, const char *file,
9208 int line, const char *function, ...)
9209 {
9210 va_list args;
9211 char *buffer;
9212 unsigned length = 0;
9213 int code;
9214
9215 va_start (args, function);
9216 while ((code = va_arg (args, int)))
9217 length += 4 + strlen (tree_code_name[code]);
9218 va_end (args);
9219 va_start (args, function);
9220 buffer = (char *) alloca (length);
9221 length = 0;
9222 while ((code = va_arg (args, int)))
9223 {
9224 if (length)
9225 {
9226 strcpy (buffer + length, " or ");
9227 length += 4;
9228 }
9229 strcpy (buffer + length, tree_code_name[code]);
9230 length += strlen (tree_code_name[code]);
9231 }
9232 va_end (args);
9233
9234 internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
9235 buffer, tree_code_name[TREE_CODE (node)],
9236 function, trim_filename (file), line);
9237 }
9238
9239 /* Similar to tree_check_failed, except that we check for a class of tree
9240 code, given in CL. */
9241
9242 void
9243 tree_class_check_failed (const_tree node, const enum tree_code_class cl,
9244 const char *file, int line, const char *function)
9245 {
9246 internal_error
9247 ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
9248 TREE_CODE_CLASS_STRING (cl),
9249 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
9250 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
9251 }
9252
9253 /* Similar to tree_check_failed, except that instead of specifying a
9254 dozen codes, use the knowledge that they're all sequential. */
9255
9256 void
9257 tree_range_check_failed (const_tree node, const char *file, int line,
9258 const char *function, enum tree_code c1,
9259 enum tree_code c2)
9260 {
9261 char *buffer;
9262 unsigned length = 0;
9263 unsigned int c;
9264
9265 for (c = c1; c <= c2; ++c)
9266 length += 4 + strlen (tree_code_name[c]);
9267
9268 length += strlen ("expected ");
9269 buffer = (char *) alloca (length);
9270 length = 0;
9271
9272 for (c = c1; c <= c2; ++c)
9273 {
9274 const char *prefix = length ? " or " : "expected ";
9275
9276 strcpy (buffer + length, prefix);
9277 length += strlen (prefix);
9278 strcpy (buffer + length, tree_code_name[c]);
9279 length += strlen (tree_code_name[c]);
9280 }
9281
9282 internal_error ("tree check: %s, have %s in %s, at %s:%d",
9283 buffer, tree_code_name[TREE_CODE (node)],
9284 function, trim_filename (file), line);
9285 }
9286
9287
9288 /* Similar to tree_check_failed, except that we check that a tree does
9289 not have the specified code, given in CL. */
9290
9291 void
9292 tree_not_class_check_failed (const_tree node, const enum tree_code_class cl,
9293 const char *file, int line, const char *function)
9294 {
9295 internal_error
9296 ("tree check: did not expect class %qs, have %qs (%s) in %s, at %s:%d",
9297 TREE_CODE_CLASS_STRING (cl),
9298 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
9299 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
9300 }
9301
9302
9303 /* Similar to tree_check_failed but applied to OMP_CLAUSE codes. */
9304
9305 void
9306 omp_clause_check_failed (const_tree node, const char *file, int line,
9307 const char *function, enum omp_clause_code code)
9308 {
9309 internal_error ("tree check: expected omp_clause %s, have %s in %s, at %s:%d",
9310 omp_clause_code_name[code], tree_code_name[TREE_CODE (node)],
9311 function, trim_filename (file), line);
9312 }
9313
9314
9315 /* Similar to tree_range_check_failed but applied to OMP_CLAUSE codes. */
9316
9317 void
9318 omp_clause_range_check_failed (const_tree node, const char *file, int line,
9319 const char *function, enum omp_clause_code c1,
9320 enum omp_clause_code c2)
9321 {
9322 char *buffer;
9323 unsigned length = 0;
9324 unsigned int c;
9325
9326 for (c = c1; c <= c2; ++c)
9327 length += 4 + strlen (omp_clause_code_name[c]);
9328
9329 length += strlen ("expected ");
9330 buffer = (char *) alloca (length);
9331 length = 0;
9332
9333 for (c = c1; c <= c2; ++c)
9334 {
9335 const char *prefix = length ? " or " : "expected ";
9336
9337 strcpy (buffer + length, prefix);
9338 length += strlen (prefix);
9339 strcpy (buffer + length, omp_clause_code_name[c]);
9340 length += strlen (omp_clause_code_name[c]);
9341 }
9342
9343 internal_error ("tree check: %s, have %s in %s, at %s:%d",
9344 buffer, omp_clause_code_name[TREE_CODE (node)],
9345 function, trim_filename (file), line);
9346 }
9347
9348
9349 #undef DEFTREESTRUCT
9350 #define DEFTREESTRUCT(VAL, NAME) NAME,
9351
9352 static const char *ts_enum_names[] = {
9353 #include "treestruct.def"
9354 };
9355 #undef DEFTREESTRUCT
9356
9357 #define TS_ENUM_NAME(EN) (ts_enum_names[(EN)])
9358
9359 /* Similar to tree_class_check_failed, except that we check for
9360 whether CODE contains the tree structure identified by EN. */
9361
9362 void
9363 tree_contains_struct_check_failed (const_tree node,
9364 const enum tree_node_structure_enum en,
9365 const char *file, int line,
9366 const char *function)
9367 {
9368 internal_error
9369 ("tree check: expected tree that contains %qs structure, have %qs in %s, at %s:%d",
9370 TS_ENUM_NAME(en),
9371 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
9372 }
9373
9374
9375 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
9376 (dynamically sized) vector. */
9377
9378 void
9379 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
9380 const char *function)
9381 {
9382 internal_error
9383 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
9384 idx + 1, len, function, trim_filename (file), line);
9385 }
9386
9387 /* Similar to above, except that the check is for the bounds of the operand
9388 vector of an expression node EXP. */
9389
9390 void
9391 tree_operand_check_failed (int idx, const_tree exp, const char *file,
9392 int line, const char *function)
9393 {
9394 int code = TREE_CODE (exp);
9395 internal_error
9396 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
9397 idx + 1, tree_code_name[code], TREE_OPERAND_LENGTH (exp),
9398 function, trim_filename (file), line);
9399 }
9400
9401 /* Similar to above, except that the check is for the number of
9402 operands of an OMP_CLAUSE node. */
9403
9404 void
9405 omp_clause_operand_check_failed (int idx, const_tree t, const char *file,
9406 int line, const char *function)
9407 {
9408 internal_error
9409 ("tree check: accessed operand %d of omp_clause %s with %d operands "
9410 "in %s, at %s:%d", idx + 1, omp_clause_code_name[OMP_CLAUSE_CODE (t)],
9411 omp_clause_num_ops [OMP_CLAUSE_CODE (t)], function,
9412 trim_filename (file), line);
9413 }
9414 #endif /* ENABLE_TREE_CHECKING */
9415 \f
9416 /* Create a new vector type node holding SUBPARTS units of type INNERTYPE,
9417 and mapped to the machine mode MODE. Initialize its fields and build
9418 the information necessary for debugging output. */
9419
9420 static tree
9421 make_vector_type (tree innertype, int nunits, enum machine_mode mode)
9422 {
9423 tree t;
9424 hashval_t hashcode = 0;
9425
9426 t = make_node (VECTOR_TYPE);
9427 TREE_TYPE (t) = TYPE_MAIN_VARIANT (innertype);
9428 SET_TYPE_VECTOR_SUBPARTS (t, nunits);
9429 SET_TYPE_MODE (t, mode);
9430
9431 if (TYPE_STRUCTURAL_EQUALITY_P (innertype))
9432 SET_TYPE_STRUCTURAL_EQUALITY (t);
9433 else if (TYPE_CANONICAL (innertype) != innertype
9434 || mode != VOIDmode)
9435 TYPE_CANONICAL (t)
9436 = make_vector_type (TYPE_CANONICAL (innertype), nunits, VOIDmode);
9437
9438 layout_type (t);
9439
9440 hashcode = iterative_hash_host_wide_int (VECTOR_TYPE, hashcode);
9441 hashcode = iterative_hash_host_wide_int (nunits, hashcode);
9442 hashcode = iterative_hash_host_wide_int (mode, hashcode);
9443 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (t)), hashcode);
9444 t = type_hash_canon (hashcode, t);
9445
9446 /* We have built a main variant, based on the main variant of the
9447 inner type. Use it to build the variant we return. */
9448 if ((TYPE_ATTRIBUTES (innertype) || TYPE_QUALS (innertype))
9449 && TREE_TYPE (t) != innertype)
9450 return build_type_attribute_qual_variant (t,
9451 TYPE_ATTRIBUTES (innertype),
9452 TYPE_QUALS (innertype));
9453
9454 return t;
9455 }
9456
9457 static tree
9458 make_or_reuse_type (unsigned size, int unsignedp)
9459 {
9460 if (size == INT_TYPE_SIZE)
9461 return unsignedp ? unsigned_type_node : integer_type_node;
9462 if (size == CHAR_TYPE_SIZE)
9463 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
9464 if (size == SHORT_TYPE_SIZE)
9465 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
9466 if (size == LONG_TYPE_SIZE)
9467 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
9468 if (size == LONG_LONG_TYPE_SIZE)
9469 return (unsignedp ? long_long_unsigned_type_node
9470 : long_long_integer_type_node);
9471 if (size == 128 && int128_integer_type_node)
9472 return (unsignedp ? int128_unsigned_type_node
9473 : int128_integer_type_node);
9474
9475 if (unsignedp)
9476 return make_unsigned_type (size);
9477 else
9478 return make_signed_type (size);
9479 }
9480
9481 /* Create or reuse a fract type by SIZE, UNSIGNEDP, and SATP. */
9482
9483 static tree
9484 make_or_reuse_fract_type (unsigned size, int unsignedp, int satp)
9485 {
9486 if (satp)
9487 {
9488 if (size == SHORT_FRACT_TYPE_SIZE)
9489 return unsignedp ? sat_unsigned_short_fract_type_node
9490 : sat_short_fract_type_node;
9491 if (size == FRACT_TYPE_SIZE)
9492 return unsignedp ? sat_unsigned_fract_type_node : sat_fract_type_node;
9493 if (size == LONG_FRACT_TYPE_SIZE)
9494 return unsignedp ? sat_unsigned_long_fract_type_node
9495 : sat_long_fract_type_node;
9496 if (size == LONG_LONG_FRACT_TYPE_SIZE)
9497 return unsignedp ? sat_unsigned_long_long_fract_type_node
9498 : sat_long_long_fract_type_node;
9499 }
9500 else
9501 {
9502 if (size == SHORT_FRACT_TYPE_SIZE)
9503 return unsignedp ? unsigned_short_fract_type_node
9504 : short_fract_type_node;
9505 if (size == FRACT_TYPE_SIZE)
9506 return unsignedp ? unsigned_fract_type_node : fract_type_node;
9507 if (size == LONG_FRACT_TYPE_SIZE)
9508 return unsignedp ? unsigned_long_fract_type_node
9509 : long_fract_type_node;
9510 if (size == LONG_LONG_FRACT_TYPE_SIZE)
9511 return unsignedp ? unsigned_long_long_fract_type_node
9512 : long_long_fract_type_node;
9513 }
9514
9515 return make_fract_type (size, unsignedp, satp);
9516 }
9517
9518 /* Create or reuse an accum type by SIZE, UNSIGNEDP, and SATP. */
9519
9520 static tree
9521 make_or_reuse_accum_type (unsigned size, int unsignedp, int satp)
9522 {
9523 if (satp)
9524 {
9525 if (size == SHORT_ACCUM_TYPE_SIZE)
9526 return unsignedp ? sat_unsigned_short_accum_type_node
9527 : sat_short_accum_type_node;
9528 if (size == ACCUM_TYPE_SIZE)
9529 return unsignedp ? sat_unsigned_accum_type_node : sat_accum_type_node;
9530 if (size == LONG_ACCUM_TYPE_SIZE)
9531 return unsignedp ? sat_unsigned_long_accum_type_node
9532 : sat_long_accum_type_node;
9533 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
9534 return unsignedp ? sat_unsigned_long_long_accum_type_node
9535 : sat_long_long_accum_type_node;
9536 }
9537 else
9538 {
9539 if (size == SHORT_ACCUM_TYPE_SIZE)
9540 return unsignedp ? unsigned_short_accum_type_node
9541 : short_accum_type_node;
9542 if (size == ACCUM_TYPE_SIZE)
9543 return unsignedp ? unsigned_accum_type_node : accum_type_node;
9544 if (size == LONG_ACCUM_TYPE_SIZE)
9545 return unsignedp ? unsigned_long_accum_type_node
9546 : long_accum_type_node;
9547 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
9548 return unsignedp ? unsigned_long_long_accum_type_node
9549 : long_long_accum_type_node;
9550 }
9551
9552 return make_accum_type (size, unsignedp, satp);
9553 }
9554
9555 /* Create nodes for all integer types (and error_mark_node) using the sizes
9556 of C datatypes. SIGNED_CHAR specifies whether char is signed,
9557 SHORT_DOUBLE specifies whether double should be of the same precision
9558 as float. */
9559
9560 void
9561 build_common_tree_nodes (bool signed_char, bool short_double)
9562 {
9563 error_mark_node = make_node (ERROR_MARK);
9564 TREE_TYPE (error_mark_node) = error_mark_node;
9565
9566 initialize_sizetypes ();
9567
9568 /* Define both `signed char' and `unsigned char'. */
9569 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
9570 TYPE_STRING_FLAG (signed_char_type_node) = 1;
9571 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
9572 TYPE_STRING_FLAG (unsigned_char_type_node) = 1;
9573
9574 /* Define `char', which is like either `signed char' or `unsigned char'
9575 but not the same as either. */
9576 char_type_node
9577 = (signed_char
9578 ? make_signed_type (CHAR_TYPE_SIZE)
9579 : make_unsigned_type (CHAR_TYPE_SIZE));
9580 TYPE_STRING_FLAG (char_type_node) = 1;
9581
9582 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
9583 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
9584 integer_type_node = make_signed_type (INT_TYPE_SIZE);
9585 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
9586 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
9587 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
9588 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
9589 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
9590 #if HOST_BITS_PER_WIDE_INT >= 64
9591 /* TODO: This isn't correct, but as logic depends at the moment on
9592 host's instead of target's wide-integer.
9593 If there is a target not supporting TImode, but has an 128-bit
9594 integer-scalar register, this target check needs to be adjusted. */
9595 if (targetm.scalar_mode_supported_p (TImode))
9596 {
9597 int128_integer_type_node = make_signed_type (128);
9598 int128_unsigned_type_node = make_unsigned_type (128);
9599 }
9600 #endif
9601
9602 /* Define a boolean type. This type only represents boolean values but
9603 may be larger than char depending on the value of BOOL_TYPE_SIZE.
9604 Front ends which want to override this size (i.e. Java) can redefine
9605 boolean_type_node before calling build_common_tree_nodes_2. */
9606 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
9607 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
9608 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
9609 TYPE_PRECISION (boolean_type_node) = 1;
9610
9611 /* Define what type to use for size_t. */
9612 if (strcmp (SIZE_TYPE, "unsigned int") == 0)
9613 size_type_node = unsigned_type_node;
9614 else if (strcmp (SIZE_TYPE, "long unsigned int") == 0)
9615 size_type_node = long_unsigned_type_node;
9616 else if (strcmp (SIZE_TYPE, "long long unsigned int") == 0)
9617 size_type_node = long_long_unsigned_type_node;
9618 else if (strcmp (SIZE_TYPE, "short unsigned int") == 0)
9619 size_type_node = short_unsigned_type_node;
9620 else
9621 gcc_unreachable ();
9622
9623 /* Fill in the rest of the sized types. Reuse existing type nodes
9624 when possible. */
9625 intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
9626 intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
9627 intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
9628 intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
9629 intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);
9630
9631 unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
9632 unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
9633 unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
9634 unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
9635 unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);
9636
9637 access_public_node = get_identifier ("public");
9638 access_protected_node = get_identifier ("protected");
9639 access_private_node = get_identifier ("private");
9640
9641 /* Define these next since types below may used them. */
9642 integer_zero_node = build_int_cst (integer_type_node, 0);
9643 integer_one_node = build_int_cst (integer_type_node, 1);
9644 integer_three_node = build_int_cst (integer_type_node, 3);
9645 integer_minus_one_node = build_int_cst (integer_type_node, -1);
9646
9647 size_zero_node = size_int (0);
9648 size_one_node = size_int (1);
9649 bitsize_zero_node = bitsize_int (0);
9650 bitsize_one_node = bitsize_int (1);
9651 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
9652
9653 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
9654 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
9655
9656 void_type_node = make_node (VOID_TYPE);
9657 layout_type (void_type_node);
9658
9659 /* We are not going to have real types in C with less than byte alignment,
9660 so we might as well not have any types that claim to have it. */
9661 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
9662 TYPE_USER_ALIGN (void_type_node) = 0;
9663
9664 null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
9665 layout_type (TREE_TYPE (null_pointer_node));
9666
9667 ptr_type_node = build_pointer_type (void_type_node);
9668 const_ptr_type_node
9669 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
9670 fileptr_type_node = ptr_type_node;
9671
9672 float_type_node = make_node (REAL_TYPE);
9673 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
9674 layout_type (float_type_node);
9675
9676 double_type_node = make_node (REAL_TYPE);
9677 if (short_double)
9678 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
9679 else
9680 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
9681 layout_type (double_type_node);
9682
9683 long_double_type_node = make_node (REAL_TYPE);
9684 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
9685 layout_type (long_double_type_node);
9686
9687 float_ptr_type_node = build_pointer_type (float_type_node);
9688 double_ptr_type_node = build_pointer_type (double_type_node);
9689 long_double_ptr_type_node = build_pointer_type (long_double_type_node);
9690 integer_ptr_type_node = build_pointer_type (integer_type_node);
9691
9692 /* Fixed size integer types. */
9693 uint16_type_node = build_nonstandard_integer_type (16, true);
9694 uint32_type_node = build_nonstandard_integer_type (32, true);
9695 uint64_type_node = build_nonstandard_integer_type (64, true);
9696
9697 /* Decimal float types. */
9698 dfloat32_type_node = make_node (REAL_TYPE);
9699 TYPE_PRECISION (dfloat32_type_node) = DECIMAL32_TYPE_SIZE;
9700 layout_type (dfloat32_type_node);
9701 SET_TYPE_MODE (dfloat32_type_node, SDmode);
9702 dfloat32_ptr_type_node = build_pointer_type (dfloat32_type_node);
9703
9704 dfloat64_type_node = make_node (REAL_TYPE);
9705 TYPE_PRECISION (dfloat64_type_node) = DECIMAL64_TYPE_SIZE;
9706 layout_type (dfloat64_type_node);
9707 SET_TYPE_MODE (dfloat64_type_node, DDmode);
9708 dfloat64_ptr_type_node = build_pointer_type (dfloat64_type_node);
9709
9710 dfloat128_type_node = make_node (REAL_TYPE);
9711 TYPE_PRECISION (dfloat128_type_node) = DECIMAL128_TYPE_SIZE;
9712 layout_type (dfloat128_type_node);
9713 SET_TYPE_MODE (dfloat128_type_node, TDmode);
9714 dfloat128_ptr_type_node = build_pointer_type (dfloat128_type_node);
9715
9716 complex_integer_type_node = build_complex_type (integer_type_node);
9717 complex_float_type_node = build_complex_type (float_type_node);
9718 complex_double_type_node = build_complex_type (double_type_node);
9719 complex_long_double_type_node = build_complex_type (long_double_type_node);
9720
9721 /* Make fixed-point nodes based on sat/non-sat and signed/unsigned. */
9722 #define MAKE_FIXED_TYPE_NODE(KIND,SIZE) \
9723 sat_ ## KIND ## _type_node = \
9724 make_sat_signed_ ## KIND ## _type (SIZE); \
9725 sat_unsigned_ ## KIND ## _type_node = \
9726 make_sat_unsigned_ ## KIND ## _type (SIZE); \
9727 KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
9728 unsigned_ ## KIND ## _type_node = \
9729 make_unsigned_ ## KIND ## _type (SIZE);
9730
9731 #define MAKE_FIXED_TYPE_NODE_WIDTH(KIND,WIDTH,SIZE) \
9732 sat_ ## WIDTH ## KIND ## _type_node = \
9733 make_sat_signed_ ## KIND ## _type (SIZE); \
9734 sat_unsigned_ ## WIDTH ## KIND ## _type_node = \
9735 make_sat_unsigned_ ## KIND ## _type (SIZE); \
9736 WIDTH ## KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
9737 unsigned_ ## WIDTH ## KIND ## _type_node = \
9738 make_unsigned_ ## KIND ## _type (SIZE);
9739
9740 /* Make fixed-point type nodes based on four different widths. */
9741 #define MAKE_FIXED_TYPE_NODE_FAMILY(N1,N2) \
9742 MAKE_FIXED_TYPE_NODE_WIDTH (N1, short_, SHORT_ ## N2 ## _TYPE_SIZE) \
9743 MAKE_FIXED_TYPE_NODE (N1, N2 ## _TYPE_SIZE) \
9744 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_, LONG_ ## N2 ## _TYPE_SIZE) \
9745 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_long_, LONG_LONG_ ## N2 ## _TYPE_SIZE)
9746
9747 /* Make fixed-point mode nodes based on sat/non-sat and signed/unsigned. */
9748 #define MAKE_FIXED_MODE_NODE(KIND,NAME,MODE) \
9749 NAME ## _type_node = \
9750 make_or_reuse_signed_ ## KIND ## _type (GET_MODE_BITSIZE (MODE ## mode)); \
9751 u ## NAME ## _type_node = \
9752 make_or_reuse_unsigned_ ## KIND ## _type \
9753 (GET_MODE_BITSIZE (U ## MODE ## mode)); \
9754 sat_ ## NAME ## _type_node = \
9755 make_or_reuse_sat_signed_ ## KIND ## _type \
9756 (GET_MODE_BITSIZE (MODE ## mode)); \
9757 sat_u ## NAME ## _type_node = \
9758 make_or_reuse_sat_unsigned_ ## KIND ## _type \
9759 (GET_MODE_BITSIZE (U ## MODE ## mode));
9760
9761 /* Fixed-point type and mode nodes. */
9762 MAKE_FIXED_TYPE_NODE_FAMILY (fract, FRACT)
9763 MAKE_FIXED_TYPE_NODE_FAMILY (accum, ACCUM)
9764 MAKE_FIXED_MODE_NODE (fract, qq, QQ)
9765 MAKE_FIXED_MODE_NODE (fract, hq, HQ)
9766 MAKE_FIXED_MODE_NODE (fract, sq, SQ)
9767 MAKE_FIXED_MODE_NODE (fract, dq, DQ)
9768 MAKE_FIXED_MODE_NODE (fract, tq, TQ)
9769 MAKE_FIXED_MODE_NODE (accum, ha, HA)
9770 MAKE_FIXED_MODE_NODE (accum, sa, SA)
9771 MAKE_FIXED_MODE_NODE (accum, da, DA)
9772 MAKE_FIXED_MODE_NODE (accum, ta, TA)
9773
9774 {
9775 tree t = targetm.build_builtin_va_list ();
9776
9777 /* Many back-ends define record types without setting TYPE_NAME.
9778 If we copied the record type here, we'd keep the original
9779 record type without a name. This breaks name mangling. So,
9780 don't copy record types and let c_common_nodes_and_builtins()
9781 declare the type to be __builtin_va_list. */
9782 if (TREE_CODE (t) != RECORD_TYPE)
9783 t = build_variant_type_copy (t);
9784
9785 va_list_type_node = t;
9786 }
9787 }
9788
9789 /* Modify DECL for given flags. */
9790 void
9791 set_call_expr_flags (tree decl, int flags)
9792 {
9793 if (flags & ECF_NOTHROW)
9794 TREE_NOTHROW (decl) = 1;
9795 if (flags & ECF_CONST)
9796 TREE_READONLY (decl) = 1;
9797 if (flags & ECF_PURE)
9798 DECL_PURE_P (decl) = 1;
9799 if (flags & ECF_LOOPING_CONST_OR_PURE)
9800 DECL_LOOPING_CONST_OR_PURE_P (decl) = 1;
9801 if (flags & ECF_NOVOPS)
9802 DECL_IS_NOVOPS (decl) = 1;
9803 if (flags & ECF_NORETURN)
9804 TREE_THIS_VOLATILE (decl) = 1;
9805 if (flags & ECF_MALLOC)
9806 DECL_IS_MALLOC (decl) = 1;
9807 if (flags & ECF_RETURNS_TWICE)
9808 DECL_IS_RETURNS_TWICE (decl) = 1;
9809 if (flags & ECF_LEAF)
9810 DECL_ATTRIBUTES (decl) = tree_cons (get_identifier ("leaf"),
9811 NULL, DECL_ATTRIBUTES (decl));
9812 if ((flags & ECF_TM_PURE) && flag_tm)
9813 DECL_ATTRIBUTES (decl) = tree_cons (get_identifier ("transaction_pure"),
9814 NULL, DECL_ATTRIBUTES (decl));
9815 /* Looping const or pure is implied by noreturn.
9816 There is currently no way to declare looping const or looping pure alone. */
9817 gcc_assert (!(flags & ECF_LOOPING_CONST_OR_PURE)
9818 || ((flags & ECF_NORETURN) && (flags & (ECF_CONST | ECF_PURE))));
9819 }
9820
9821
9822 /* A subroutine of build_common_builtin_nodes. Define a builtin function. */
9823
9824 static void
9825 local_define_builtin (const char *name, tree type, enum built_in_function code,
9826 const char *library_name, int ecf_flags)
9827 {
9828 tree decl;
9829
9830 decl = add_builtin_function (name, type, code, BUILT_IN_NORMAL,
9831 library_name, NULL_TREE);
9832 set_call_expr_flags (decl, ecf_flags);
9833
9834 set_builtin_decl (code, decl, true);
9835 }
9836
9837 /* Call this function after instantiating all builtins that the language
9838 front end cares about. This will build the rest of the builtins that
9839 are relied upon by the tree optimizers and the middle-end. */
9840
9841 void
9842 build_common_builtin_nodes (void)
9843 {
9844 tree tmp, ftype;
9845 int ecf_flags;
9846
9847 if (!builtin_decl_explicit_p (BUILT_IN_UNREACHABLE))
9848 {
9849 ftype = build_function_type (void_type_node, void_list_node);
9850 local_define_builtin ("__builtin_unreachable", ftype, BUILT_IN_UNREACHABLE,
9851 "__builtin_unreachable",
9852 ECF_NOTHROW | ECF_LEAF | ECF_NORETURN
9853 | ECF_CONST | ECF_LEAF);
9854 }
9855
9856 if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY)
9857 || !builtin_decl_explicit_p (BUILT_IN_MEMMOVE))
9858 {
9859 ftype = build_function_type_list (ptr_type_node,
9860 ptr_type_node, const_ptr_type_node,
9861 size_type_node, NULL_TREE);
9862
9863 if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY))
9864 local_define_builtin ("__builtin_memcpy", ftype, BUILT_IN_MEMCPY,
9865 "memcpy", ECF_NOTHROW | ECF_LEAF);
9866 if (!builtin_decl_explicit_p (BUILT_IN_MEMMOVE))
9867 local_define_builtin ("__builtin_memmove", ftype, BUILT_IN_MEMMOVE,
9868 "memmove", ECF_NOTHROW | ECF_LEAF);
9869 }
9870
9871 if (!builtin_decl_explicit_p (BUILT_IN_MEMCMP))
9872 {
9873 ftype = build_function_type_list (integer_type_node, const_ptr_type_node,
9874 const_ptr_type_node, size_type_node,
9875 NULL_TREE);
9876 local_define_builtin ("__builtin_memcmp", ftype, BUILT_IN_MEMCMP,
9877 "memcmp", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
9878 }
9879
9880 if (!builtin_decl_explicit_p (BUILT_IN_MEMSET))
9881 {
9882 ftype = build_function_type_list (ptr_type_node,
9883 ptr_type_node, integer_type_node,
9884 size_type_node, NULL_TREE);
9885 local_define_builtin ("__builtin_memset", ftype, BUILT_IN_MEMSET,
9886 "memset", ECF_NOTHROW | ECF_LEAF);
9887 }
9888
9889 if (!builtin_decl_explicit_p (BUILT_IN_ALLOCA))
9890 {
9891 ftype = build_function_type_list (ptr_type_node,
9892 size_type_node, NULL_TREE);
9893 local_define_builtin ("__builtin_alloca", ftype, BUILT_IN_ALLOCA,
9894 "alloca", ECF_MALLOC | ECF_NOTHROW | ECF_LEAF);
9895 }
9896
9897 ftype = build_function_type_list (ptr_type_node, size_type_node,
9898 size_type_node, NULL_TREE);
9899 local_define_builtin ("__builtin_alloca_with_align", ftype,
9900 BUILT_IN_ALLOCA_WITH_ALIGN, "alloca",
9901 ECF_MALLOC | ECF_NOTHROW | ECF_LEAF);
9902
9903 /* If we're checking the stack, `alloca' can throw. */
9904 if (flag_stack_check)
9905 {
9906 TREE_NOTHROW (builtin_decl_explicit (BUILT_IN_ALLOCA)) = 0;
9907 TREE_NOTHROW (builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN)) = 0;
9908 }
9909
9910 ftype = build_function_type_list (void_type_node,
9911 ptr_type_node, ptr_type_node,
9912 ptr_type_node, NULL_TREE);
9913 local_define_builtin ("__builtin_init_trampoline", ftype,
9914 BUILT_IN_INIT_TRAMPOLINE,
9915 "__builtin_init_trampoline", ECF_NOTHROW | ECF_LEAF);
9916 local_define_builtin ("__builtin_init_heap_trampoline", ftype,
9917 BUILT_IN_INIT_HEAP_TRAMPOLINE,
9918 "__builtin_init_heap_trampoline",
9919 ECF_NOTHROW | ECF_LEAF);
9920
9921 ftype = build_function_type_list (ptr_type_node, ptr_type_node, NULL_TREE);
9922 local_define_builtin ("__builtin_adjust_trampoline", ftype,
9923 BUILT_IN_ADJUST_TRAMPOLINE,
9924 "__builtin_adjust_trampoline",
9925 ECF_CONST | ECF_NOTHROW);
9926
9927 ftype = build_function_type_list (void_type_node,
9928 ptr_type_node, ptr_type_node, NULL_TREE);
9929 local_define_builtin ("__builtin_nonlocal_goto", ftype,
9930 BUILT_IN_NONLOCAL_GOTO,
9931 "__builtin_nonlocal_goto",
9932 ECF_NORETURN | ECF_NOTHROW);
9933
9934 ftype = build_function_type_list (void_type_node,
9935 ptr_type_node, ptr_type_node, NULL_TREE);
9936 local_define_builtin ("__builtin_setjmp_setup", ftype,
9937 BUILT_IN_SETJMP_SETUP,
9938 "__builtin_setjmp_setup", ECF_NOTHROW);
9939
9940 ftype = build_function_type_list (ptr_type_node, ptr_type_node, NULL_TREE);
9941 local_define_builtin ("__builtin_setjmp_dispatcher", ftype,
9942 BUILT_IN_SETJMP_DISPATCHER,
9943 "__builtin_setjmp_dispatcher",
9944 ECF_PURE | ECF_NOTHROW);
9945
9946 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
9947 local_define_builtin ("__builtin_setjmp_receiver", ftype,
9948 BUILT_IN_SETJMP_RECEIVER,
9949 "__builtin_setjmp_receiver", ECF_NOTHROW);
9950
9951 ftype = build_function_type_list (ptr_type_node, NULL_TREE);
9952 local_define_builtin ("__builtin_stack_save", ftype, BUILT_IN_STACK_SAVE,
9953 "__builtin_stack_save", ECF_NOTHROW | ECF_LEAF);
9954
9955 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
9956 local_define_builtin ("__builtin_stack_restore", ftype,
9957 BUILT_IN_STACK_RESTORE,
9958 "__builtin_stack_restore", ECF_NOTHROW | ECF_LEAF);
9959
9960 /* If there's a possibility that we might use the ARM EABI, build the
9961 alternate __cxa_end_cleanup node used to resume from C++ and Java. */
9962 if (targetm.arm_eabi_unwinder)
9963 {
9964 ftype = build_function_type_list (void_type_node, NULL_TREE);
9965 local_define_builtin ("__builtin_cxa_end_cleanup", ftype,
9966 BUILT_IN_CXA_END_CLEANUP,
9967 "__cxa_end_cleanup", ECF_NORETURN | ECF_LEAF);
9968 }
9969
9970 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
9971 local_define_builtin ("__builtin_unwind_resume", ftype,
9972 BUILT_IN_UNWIND_RESUME,
9973 ((targetm_common.except_unwind_info (&global_options)
9974 == UI_SJLJ)
9975 ? "_Unwind_SjLj_Resume" : "_Unwind_Resume"),
9976 ECF_NORETURN);
9977
9978 if (builtin_decl_explicit (BUILT_IN_RETURN_ADDRESS) == NULL_TREE)
9979 {
9980 ftype = build_function_type_list (ptr_type_node, integer_type_node,
9981 NULL_TREE);
9982 local_define_builtin ("__builtin_return_address", ftype,
9983 BUILT_IN_RETURN_ADDRESS,
9984 "__builtin_return_address",
9985 ECF_NOTHROW);
9986 }
9987
9988 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER)
9989 || !builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT))
9990 {
9991 ftype = build_function_type_list (void_type_node, ptr_type_node,
9992 ptr_type_node, NULL_TREE);
9993 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER))
9994 local_define_builtin ("__cyg_profile_func_enter", ftype,
9995 BUILT_IN_PROFILE_FUNC_ENTER,
9996 "__cyg_profile_func_enter", 0);
9997 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT))
9998 local_define_builtin ("__cyg_profile_func_exit", ftype,
9999 BUILT_IN_PROFILE_FUNC_EXIT,
10000 "__cyg_profile_func_exit", 0);
10001 }
10002
10003 /* The exception object and filter values from the runtime. The argument
10004 must be zero before exception lowering, i.e. from the front end. After
10005 exception lowering, it will be the region number for the exception
10006 landing pad. These functions are PURE instead of CONST to prevent
10007 them from being hoisted past the exception edge that will initialize
10008 its value in the landing pad. */
10009 ftype = build_function_type_list (ptr_type_node,
10010 integer_type_node, NULL_TREE);
10011 ecf_flags = ECF_PURE | ECF_NOTHROW | ECF_LEAF;
10012 /* Only use TM_PURE if we we have TM language support. */
10013 if (builtin_decl_explicit_p (BUILT_IN_TM_LOAD_1))
10014 ecf_flags |= ECF_TM_PURE;
10015 local_define_builtin ("__builtin_eh_pointer", ftype, BUILT_IN_EH_POINTER,
10016 "__builtin_eh_pointer", ecf_flags);
10017
10018 tmp = lang_hooks.types.type_for_mode (targetm.eh_return_filter_mode (), 0);
10019 ftype = build_function_type_list (tmp, integer_type_node, NULL_TREE);
10020 local_define_builtin ("__builtin_eh_filter", ftype, BUILT_IN_EH_FILTER,
10021 "__builtin_eh_filter", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10022
10023 ftype = build_function_type_list (void_type_node,
10024 integer_type_node, integer_type_node,
10025 NULL_TREE);
10026 local_define_builtin ("__builtin_eh_copy_values", ftype,
10027 BUILT_IN_EH_COPY_VALUES,
10028 "__builtin_eh_copy_values", ECF_NOTHROW);
10029
10030 /* Complex multiplication and division. These are handled as builtins
10031 rather than optabs because emit_library_call_value doesn't support
10032 complex. Further, we can do slightly better with folding these
10033 beasties if the real and complex parts of the arguments are separate. */
10034 {
10035 int mode;
10036
10037 for (mode = MIN_MODE_COMPLEX_FLOAT; mode <= MAX_MODE_COMPLEX_FLOAT; ++mode)
10038 {
10039 char mode_name_buf[4], *q;
10040 const char *p;
10041 enum built_in_function mcode, dcode;
10042 tree type, inner_type;
10043 const char *prefix = "__";
10044
10045 if (targetm.libfunc_gnu_prefix)
10046 prefix = "__gnu_";
10047
10048 type = lang_hooks.types.type_for_mode ((enum machine_mode) mode, 0);
10049 if (type == NULL)
10050 continue;
10051 inner_type = TREE_TYPE (type);
10052
10053 ftype = build_function_type_list (type, inner_type, inner_type,
10054 inner_type, inner_type, NULL_TREE);
10055
10056 mcode = ((enum built_in_function)
10057 (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
10058 dcode = ((enum built_in_function)
10059 (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
10060
10061 for (p = GET_MODE_NAME (mode), q = mode_name_buf; *p; p++, q++)
10062 *q = TOLOWER (*p);
10063 *q = '\0';
10064
10065 built_in_names[mcode] = concat (prefix, "mul", mode_name_buf, "3",
10066 NULL);
10067 local_define_builtin (built_in_names[mcode], ftype, mcode,
10068 built_in_names[mcode],
10069 ECF_CONST | ECF_NOTHROW | ECF_LEAF);
10070
10071 built_in_names[dcode] = concat (prefix, "div", mode_name_buf, "3",
10072 NULL);
10073 local_define_builtin (built_in_names[dcode], ftype, dcode,
10074 built_in_names[dcode],
10075 ECF_CONST | ECF_NOTHROW | ECF_LEAF);
10076 }
10077 }
10078 }
10079
10080 /* HACK. GROSS. This is absolutely disgusting. I wish there was a
10081 better way.
10082
10083 If we requested a pointer to a vector, build up the pointers that
10084 we stripped off while looking for the inner type. Similarly for
10085 return values from functions.
10086
10087 The argument TYPE is the top of the chain, and BOTTOM is the
10088 new type which we will point to. */
10089
10090 tree
10091 reconstruct_complex_type (tree type, tree bottom)
10092 {
10093 tree inner, outer;
10094
10095 if (TREE_CODE (type) == POINTER_TYPE)
10096 {
10097 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10098 outer = build_pointer_type_for_mode (inner, TYPE_MODE (type),
10099 TYPE_REF_CAN_ALIAS_ALL (type));
10100 }
10101 else if (TREE_CODE (type) == REFERENCE_TYPE)
10102 {
10103 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10104 outer = build_reference_type_for_mode (inner, TYPE_MODE (type),
10105 TYPE_REF_CAN_ALIAS_ALL (type));
10106 }
10107 else if (TREE_CODE (type) == ARRAY_TYPE)
10108 {
10109 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10110 outer = build_array_type (inner, TYPE_DOMAIN (type));
10111 }
10112 else if (TREE_CODE (type) == FUNCTION_TYPE)
10113 {
10114 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10115 outer = build_function_type (inner, TYPE_ARG_TYPES (type));
10116 }
10117 else if (TREE_CODE (type) == METHOD_TYPE)
10118 {
10119 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10120 /* The build_method_type_directly() routine prepends 'this' to argument list,
10121 so we must compensate by getting rid of it. */
10122 outer
10123 = build_method_type_directly
10124 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (type))),
10125 inner,
10126 TREE_CHAIN (TYPE_ARG_TYPES (type)));
10127 }
10128 else if (TREE_CODE (type) == OFFSET_TYPE)
10129 {
10130 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10131 outer = build_offset_type (TYPE_OFFSET_BASETYPE (type), inner);
10132 }
10133 else
10134 return bottom;
10135
10136 return build_type_attribute_qual_variant (outer, TYPE_ATTRIBUTES (type),
10137 TYPE_QUALS (type));
10138 }
10139
10140 /* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
10141 the inner type. */
10142 tree
10143 build_vector_type_for_mode (tree innertype, enum machine_mode mode)
10144 {
10145 int nunits;
10146
10147 switch (GET_MODE_CLASS (mode))
10148 {
10149 case MODE_VECTOR_INT:
10150 case MODE_VECTOR_FLOAT:
10151 case MODE_VECTOR_FRACT:
10152 case MODE_VECTOR_UFRACT:
10153 case MODE_VECTOR_ACCUM:
10154 case MODE_VECTOR_UACCUM:
10155 nunits = GET_MODE_NUNITS (mode);
10156 break;
10157
10158 case MODE_INT:
10159 /* Check that there are no leftover bits. */
10160 gcc_assert (GET_MODE_BITSIZE (mode)
10161 % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0);
10162
10163 nunits = GET_MODE_BITSIZE (mode)
10164 / TREE_INT_CST_LOW (TYPE_SIZE (innertype));
10165 break;
10166
10167 default:
10168 gcc_unreachable ();
10169 }
10170
10171 return make_vector_type (innertype, nunits, mode);
10172 }
10173
10174 /* Similarly, but takes the inner type and number of units, which must be
10175 a power of two. */
10176
10177 tree
10178 build_vector_type (tree innertype, int nunits)
10179 {
10180 return make_vector_type (innertype, nunits, VOIDmode);
10181 }
10182
10183 /* Similarly, but builds a variant type with TYPE_VECTOR_OPAQUE set. */
10184
10185 tree
10186 build_opaque_vector_type (tree innertype, int nunits)
10187 {
10188 tree t = make_vector_type (innertype, nunits, VOIDmode);
10189 tree cand;
10190 /* We always build the non-opaque variant before the opaque one,
10191 so if it already exists, it is TYPE_NEXT_VARIANT of this one. */
10192 cand = TYPE_NEXT_VARIANT (t);
10193 if (cand
10194 && TYPE_VECTOR_OPAQUE (cand)
10195 && check_qualified_type (cand, t, TYPE_QUALS (t)))
10196 return cand;
10197 /* Othewise build a variant type and make sure to queue it after
10198 the non-opaque type. */
10199 cand = build_distinct_type_copy (t);
10200 TYPE_VECTOR_OPAQUE (cand) = true;
10201 TYPE_CANONICAL (cand) = TYPE_CANONICAL (t);
10202 TYPE_NEXT_VARIANT (cand) = TYPE_NEXT_VARIANT (t);
10203 TYPE_NEXT_VARIANT (t) = cand;
10204 TYPE_MAIN_VARIANT (cand) = TYPE_MAIN_VARIANT (t);
10205 return cand;
10206 }
10207
10208
10209 /* Given an initializer INIT, return TRUE if INIT is zero or some
10210 aggregate of zeros. Otherwise return FALSE. */
10211 bool
10212 initializer_zerop (const_tree init)
10213 {
10214 tree elt;
10215
10216 STRIP_NOPS (init);
10217
10218 switch (TREE_CODE (init))
10219 {
10220 case INTEGER_CST:
10221 return integer_zerop (init);
10222
10223 case REAL_CST:
10224 /* ??? Note that this is not correct for C4X float formats. There,
10225 a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
10226 negative exponent. */
10227 return real_zerop (init)
10228 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
10229
10230 case FIXED_CST:
10231 return fixed_zerop (init);
10232
10233 case COMPLEX_CST:
10234 return integer_zerop (init)
10235 || (real_zerop (init)
10236 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
10237 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
10238
10239 case VECTOR_CST:
10240 {
10241 unsigned i;
10242 for (i = 0; i < VECTOR_CST_NELTS (init); ++i)
10243 if (!initializer_zerop (VECTOR_CST_ELT (init, i)))
10244 return false;
10245 return true;
10246 }
10247
10248 case CONSTRUCTOR:
10249 {
10250 unsigned HOST_WIDE_INT idx;
10251
10252 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
10253 if (!initializer_zerop (elt))
10254 return false;
10255 return true;
10256 }
10257
10258 case STRING_CST:
10259 {
10260 int i;
10261
10262 /* We need to loop through all elements to handle cases like
10263 "\0" and "\0foobar". */
10264 for (i = 0; i < TREE_STRING_LENGTH (init); ++i)
10265 if (TREE_STRING_POINTER (init)[i] != '\0')
10266 return false;
10267
10268 return true;
10269 }
10270
10271 default:
10272 return false;
10273 }
10274 }
10275
10276 /* Check if vector VEC consists of all the equal elements and
10277 that the number of elements corresponds to the type of VEC.
10278 The function returns first element of the vector
10279 or NULL_TREE if the vector is not uniform. */
10280 tree
10281 uniform_vector_p (const_tree vec)
10282 {
10283 tree first, t;
10284 unsigned i;
10285
10286 if (vec == NULL_TREE)
10287 return NULL_TREE;
10288
10289 gcc_assert (VECTOR_TYPE_P (TREE_TYPE (vec)));
10290
10291 if (TREE_CODE (vec) == VECTOR_CST)
10292 {
10293 first = VECTOR_CST_ELT (vec, 0);
10294 for (i = 1; i < VECTOR_CST_NELTS (vec); ++i)
10295 if (!operand_equal_p (first, VECTOR_CST_ELT (vec, i), 0))
10296 return NULL_TREE;
10297
10298 return first;
10299 }
10300
10301 else if (TREE_CODE (vec) == CONSTRUCTOR)
10302 {
10303 first = error_mark_node;
10304
10305 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (vec), i, t)
10306 {
10307 if (i == 0)
10308 {
10309 first = t;
10310 continue;
10311 }
10312 if (!operand_equal_p (first, t, 0))
10313 return NULL_TREE;
10314 }
10315 if (i != TYPE_VECTOR_SUBPARTS (TREE_TYPE (vec)))
10316 return NULL_TREE;
10317
10318 return first;
10319 }
10320
10321 return NULL_TREE;
10322 }
10323
10324 /* Build an empty statement at location LOC. */
10325
10326 tree
10327 build_empty_stmt (location_t loc)
10328 {
10329 tree t = build1 (NOP_EXPR, void_type_node, size_zero_node);
10330 SET_EXPR_LOCATION (t, loc);
10331 return t;
10332 }
10333
10334
10335 /* Build an OpenMP clause with code CODE. LOC is the location of the
10336 clause. */
10337
10338 tree
10339 build_omp_clause (location_t loc, enum omp_clause_code code)
10340 {
10341 tree t;
10342 int size, length;
10343
10344 length = omp_clause_num_ops[code];
10345 size = (sizeof (struct tree_omp_clause) + (length - 1) * sizeof (tree));
10346
10347 record_node_allocation_statistics (OMP_CLAUSE, size);
10348
10349 t = ggc_alloc_tree_node (size);
10350 memset (t, 0, size);
10351 TREE_SET_CODE (t, OMP_CLAUSE);
10352 OMP_CLAUSE_SET_CODE (t, code);
10353 OMP_CLAUSE_LOCATION (t) = loc;
10354
10355 return t;
10356 }
10357
10358 /* Build a tcc_vl_exp object with code CODE and room for LEN operands. LEN
10359 includes the implicit operand count in TREE_OPERAND 0, and so must be >= 1.
10360 Except for the CODE and operand count field, other storage for the
10361 object is initialized to zeros. */
10362
10363 tree
10364 build_vl_exp_stat (enum tree_code code, int len MEM_STAT_DECL)
10365 {
10366 tree t;
10367 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_exp);
10368
10369 gcc_assert (TREE_CODE_CLASS (code) == tcc_vl_exp);
10370 gcc_assert (len >= 1);
10371
10372 record_node_allocation_statistics (code, length);
10373
10374 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
10375
10376 TREE_SET_CODE (t, code);
10377
10378 /* Can't use TREE_OPERAND to store the length because if checking is
10379 enabled, it will try to check the length before we store it. :-P */
10380 t->exp.operands[0] = build_int_cst (sizetype, len);
10381
10382 return t;
10383 }
10384
10385 /* Helper function for build_call_* functions; build a CALL_EXPR with
10386 indicated RETURN_TYPE, FN, and NARGS, but do not initialize any of
10387 the argument slots. */
10388
10389 static tree
10390 build_call_1 (tree return_type, tree fn, int nargs)
10391 {
10392 tree t;
10393
10394 t = build_vl_exp (CALL_EXPR, nargs + 3);
10395 TREE_TYPE (t) = return_type;
10396 CALL_EXPR_FN (t) = fn;
10397 CALL_EXPR_STATIC_CHAIN (t) = NULL;
10398
10399 return t;
10400 }
10401
10402 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
10403 FN and a null static chain slot. NARGS is the number of call arguments
10404 which are specified as "..." arguments. */
10405
10406 tree
10407 build_call_nary (tree return_type, tree fn, int nargs, ...)
10408 {
10409 tree ret;
10410 va_list args;
10411 va_start (args, nargs);
10412 ret = build_call_valist (return_type, fn, nargs, args);
10413 va_end (args);
10414 return ret;
10415 }
10416
10417 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
10418 FN and a null static chain slot. NARGS is the number of call arguments
10419 which are specified as a va_list ARGS. */
10420
10421 tree
10422 build_call_valist (tree return_type, tree fn, int nargs, va_list args)
10423 {
10424 tree t;
10425 int i;
10426
10427 t = build_call_1 (return_type, fn, nargs);
10428 for (i = 0; i < nargs; i++)
10429 CALL_EXPR_ARG (t, i) = va_arg (args, tree);
10430 process_call_operands (t);
10431 return t;
10432 }
10433
10434 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
10435 FN and a null static chain slot. NARGS is the number of call arguments
10436 which are specified as a tree array ARGS. */
10437
10438 tree
10439 build_call_array_loc (location_t loc, tree return_type, tree fn,
10440 int nargs, const tree *args)
10441 {
10442 tree t;
10443 int i;
10444
10445 t = build_call_1 (return_type, fn, nargs);
10446 for (i = 0; i < nargs; i++)
10447 CALL_EXPR_ARG (t, i) = args[i];
10448 process_call_operands (t);
10449 SET_EXPR_LOCATION (t, loc);
10450 return t;
10451 }
10452
10453 /* Like build_call_array, but takes a vec. */
10454
10455 tree
10456 build_call_vec (tree return_type, tree fn, vec<tree, va_gc> *args)
10457 {
10458 tree ret, t;
10459 unsigned int ix;
10460
10461 ret = build_call_1 (return_type, fn, vec_safe_length (args));
10462 FOR_EACH_VEC_SAFE_ELT (args, ix, t)
10463 CALL_EXPR_ARG (ret, ix) = t;
10464 process_call_operands (ret);
10465 return ret;
10466 }
10467
10468
10469 /* Returns true if it is possible to prove that the index of
10470 an array access REF (an ARRAY_REF expression) falls into the
10471 array bounds. */
10472
10473 bool
10474 in_array_bounds_p (tree ref)
10475 {
10476 tree idx = TREE_OPERAND (ref, 1);
10477 tree min, max;
10478
10479 if (TREE_CODE (idx) != INTEGER_CST)
10480 return false;
10481
10482 min = array_ref_low_bound (ref);
10483 max = array_ref_up_bound (ref);
10484 if (!min
10485 || !max
10486 || TREE_CODE (min) != INTEGER_CST
10487 || TREE_CODE (max) != INTEGER_CST)
10488 return false;
10489
10490 if (tree_int_cst_lt (idx, min)
10491 || tree_int_cst_lt (max, idx))
10492 return false;
10493
10494 return true;
10495 }
10496
10497 /* Returns true if it is possible to prove that the range of
10498 an array access REF (an ARRAY_RANGE_REF expression) falls
10499 into the array bounds. */
10500
10501 bool
10502 range_in_array_bounds_p (tree ref)
10503 {
10504 tree domain_type = TYPE_DOMAIN (TREE_TYPE (ref));
10505 tree range_min, range_max, min, max;
10506
10507 range_min = TYPE_MIN_VALUE (domain_type);
10508 range_max = TYPE_MAX_VALUE (domain_type);
10509 if (!range_min
10510 || !range_max
10511 || TREE_CODE (range_min) != INTEGER_CST
10512 || TREE_CODE (range_max) != INTEGER_CST)
10513 return false;
10514
10515 min = array_ref_low_bound (ref);
10516 max = array_ref_up_bound (ref);
10517 if (!min
10518 || !max
10519 || TREE_CODE (min) != INTEGER_CST
10520 || TREE_CODE (max) != INTEGER_CST)
10521 return false;
10522
10523 if (tree_int_cst_lt (range_min, min)
10524 || tree_int_cst_lt (max, range_max))
10525 return false;
10526
10527 return true;
10528 }
10529
10530 /* Return true if T (assumed to be a DECL) must be assigned a memory
10531 location. */
10532
10533 bool
10534 needs_to_live_in_memory (const_tree t)
10535 {
10536 return (TREE_ADDRESSABLE (t)
10537 || is_global_var (t)
10538 || (TREE_CODE (t) == RESULT_DECL
10539 && !DECL_BY_REFERENCE (t)
10540 && aggregate_value_p (t, current_function_decl)));
10541 }
10542
10543 /* Return value of a constant X and sign-extend it. */
10544
10545 HOST_WIDE_INT
10546 int_cst_value (const_tree x)
10547 {
10548 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
10549 unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
10550
10551 /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
10552 gcc_assert (TREE_INT_CST_HIGH (x) == 0
10553 || TREE_INT_CST_HIGH (x) == -1);
10554
10555 if (bits < HOST_BITS_PER_WIDE_INT)
10556 {
10557 bool negative = ((val >> (bits - 1)) & 1) != 0;
10558 if (negative)
10559 val |= (~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1;
10560 else
10561 val &= ~((~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1);
10562 }
10563
10564 return val;
10565 }
10566
10567 /* Return value of a constant X and sign-extend it. */
10568
10569 HOST_WIDEST_INT
10570 widest_int_cst_value (const_tree x)
10571 {
10572 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
10573 unsigned HOST_WIDEST_INT val = TREE_INT_CST_LOW (x);
10574
10575 #if HOST_BITS_PER_WIDEST_INT > HOST_BITS_PER_WIDE_INT
10576 gcc_assert (HOST_BITS_PER_WIDEST_INT >= HOST_BITS_PER_DOUBLE_INT);
10577 val |= (((unsigned HOST_WIDEST_INT) TREE_INT_CST_HIGH (x))
10578 << HOST_BITS_PER_WIDE_INT);
10579 #else
10580 /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
10581 gcc_assert (TREE_INT_CST_HIGH (x) == 0
10582 || TREE_INT_CST_HIGH (x) == -1);
10583 #endif
10584
10585 if (bits < HOST_BITS_PER_WIDEST_INT)
10586 {
10587 bool negative = ((val >> (bits - 1)) & 1) != 0;
10588 if (negative)
10589 val |= (~(unsigned HOST_WIDEST_INT) 0) << (bits - 1) << 1;
10590 else
10591 val &= ~((~(unsigned HOST_WIDEST_INT) 0) << (bits - 1) << 1);
10592 }
10593
10594 return val;
10595 }
10596
10597 /* If TYPE is an integral or pointer type, return an integer type with
10598 the same precision which is unsigned iff UNSIGNEDP is true, or itself
10599 if TYPE is already an integer type of signedness UNSIGNEDP. */
10600
10601 tree
10602 signed_or_unsigned_type_for (int unsignedp, tree type)
10603 {
10604 if (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type) == unsignedp)
10605 return type;
10606
10607 if (TREE_CODE (type) == VECTOR_TYPE)
10608 {
10609 tree inner = TREE_TYPE (type);
10610 tree inner2 = signed_or_unsigned_type_for (unsignedp, inner);
10611 if (!inner2)
10612 return NULL_TREE;
10613 if (inner == inner2)
10614 return type;
10615 return build_vector_type (inner2, TYPE_VECTOR_SUBPARTS (type));
10616 }
10617
10618 if (!INTEGRAL_TYPE_P (type)
10619 && !POINTER_TYPE_P (type))
10620 return NULL_TREE;
10621
10622 return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp);
10623 }
10624
10625 /* If TYPE is an integral or pointer type, return an integer type with
10626 the same precision which is unsigned, or itself if TYPE is already an
10627 unsigned integer type. */
10628
10629 tree
10630 unsigned_type_for (tree type)
10631 {
10632 return signed_or_unsigned_type_for (1, type);
10633 }
10634
10635 /* If TYPE is an integral or pointer type, return an integer type with
10636 the same precision which is signed, or itself if TYPE is already a
10637 signed integer type. */
10638
10639 tree
10640 signed_type_for (tree type)
10641 {
10642 return signed_or_unsigned_type_for (0, type);
10643 }
10644
10645 /* If TYPE is a vector type, return a signed integer vector type with the
10646 same width and number of subparts. Otherwise return boolean_type_node. */
10647
10648 tree
10649 truth_type_for (tree type)
10650 {
10651 if (TREE_CODE (type) == VECTOR_TYPE)
10652 {
10653 tree elem = lang_hooks.types.type_for_size
10654 (GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (type))), 0);
10655 return build_opaque_vector_type (elem, TYPE_VECTOR_SUBPARTS (type));
10656 }
10657 else
10658 return boolean_type_node;
10659 }
10660
10661 /* Returns the largest value obtainable by casting something in INNER type to
10662 OUTER type. */
10663
10664 tree
10665 upper_bound_in_type (tree outer, tree inner)
10666 {
10667 double_int high;
10668 unsigned int det = 0;
10669 unsigned oprec = TYPE_PRECISION (outer);
10670 unsigned iprec = TYPE_PRECISION (inner);
10671 unsigned prec;
10672
10673 /* Compute a unique number for every combination. */
10674 det |= (oprec > iprec) ? 4 : 0;
10675 det |= TYPE_UNSIGNED (outer) ? 2 : 0;
10676 det |= TYPE_UNSIGNED (inner) ? 1 : 0;
10677
10678 /* Determine the exponent to use. */
10679 switch (det)
10680 {
10681 case 0:
10682 case 1:
10683 /* oprec <= iprec, outer: signed, inner: don't care. */
10684 prec = oprec - 1;
10685 break;
10686 case 2:
10687 case 3:
10688 /* oprec <= iprec, outer: unsigned, inner: don't care. */
10689 prec = oprec;
10690 break;
10691 case 4:
10692 /* oprec > iprec, outer: signed, inner: signed. */
10693 prec = iprec - 1;
10694 break;
10695 case 5:
10696 /* oprec > iprec, outer: signed, inner: unsigned. */
10697 prec = iprec;
10698 break;
10699 case 6:
10700 /* oprec > iprec, outer: unsigned, inner: signed. */
10701 prec = oprec;
10702 break;
10703 case 7:
10704 /* oprec > iprec, outer: unsigned, inner: unsigned. */
10705 prec = iprec;
10706 break;
10707 default:
10708 gcc_unreachable ();
10709 }
10710
10711 /* Compute 2^^prec - 1. */
10712 if (prec <= HOST_BITS_PER_WIDE_INT)
10713 {
10714 high.high = 0;
10715 high.low = ((~(unsigned HOST_WIDE_INT) 0)
10716 >> (HOST_BITS_PER_WIDE_INT - prec));
10717 }
10718 else
10719 {
10720 high.high = ((~(unsigned HOST_WIDE_INT) 0)
10721 >> (HOST_BITS_PER_DOUBLE_INT - prec));
10722 high.low = ~(unsigned HOST_WIDE_INT) 0;
10723 }
10724
10725 return double_int_to_tree (outer, high);
10726 }
10727
10728 /* Returns the smallest value obtainable by casting something in INNER type to
10729 OUTER type. */
10730
10731 tree
10732 lower_bound_in_type (tree outer, tree inner)
10733 {
10734 double_int low;
10735 unsigned oprec = TYPE_PRECISION (outer);
10736 unsigned iprec = TYPE_PRECISION (inner);
10737
10738 /* If OUTER type is unsigned, we can definitely cast 0 to OUTER type
10739 and obtain 0. */
10740 if (TYPE_UNSIGNED (outer)
10741 /* If we are widening something of an unsigned type, OUTER type
10742 contains all values of INNER type. In particular, both INNER
10743 and OUTER types have zero in common. */
10744 || (oprec > iprec && TYPE_UNSIGNED (inner)))
10745 low.low = low.high = 0;
10746 else
10747 {
10748 /* If we are widening a signed type to another signed type, we
10749 want to obtain -2^^(iprec-1). If we are keeping the
10750 precision or narrowing to a signed type, we want to obtain
10751 -2^(oprec-1). */
10752 unsigned prec = oprec > iprec ? iprec : oprec;
10753
10754 if (prec <= HOST_BITS_PER_WIDE_INT)
10755 {
10756 low.high = ~(unsigned HOST_WIDE_INT) 0;
10757 low.low = (~(unsigned HOST_WIDE_INT) 0) << (prec - 1);
10758 }
10759 else
10760 {
10761 low.high = ((~(unsigned HOST_WIDE_INT) 0)
10762 << (prec - HOST_BITS_PER_WIDE_INT - 1));
10763 low.low = 0;
10764 }
10765 }
10766
10767 return double_int_to_tree (outer, low);
10768 }
10769
10770 /* Return nonzero if two operands that are suitable for PHI nodes are
10771 necessarily equal. Specifically, both ARG0 and ARG1 must be either
10772 SSA_NAME or invariant. Note that this is strictly an optimization.
10773 That is, callers of this function can directly call operand_equal_p
10774 and get the same result, only slower. */
10775
10776 int
10777 operand_equal_for_phi_arg_p (const_tree arg0, const_tree arg1)
10778 {
10779 if (arg0 == arg1)
10780 return 1;
10781 if (TREE_CODE (arg0) == SSA_NAME || TREE_CODE (arg1) == SSA_NAME)
10782 return 0;
10783 return operand_equal_p (arg0, arg1, 0);
10784 }
10785
10786 /* Returns number of zeros at the end of binary representation of X.
10787
10788 ??? Use ffs if available? */
10789
10790 tree
10791 num_ending_zeros (const_tree x)
10792 {
10793 unsigned HOST_WIDE_INT fr, nfr;
10794 unsigned num, abits;
10795 tree type = TREE_TYPE (x);
10796
10797 if (TREE_INT_CST_LOW (x) == 0)
10798 {
10799 num = HOST_BITS_PER_WIDE_INT;
10800 fr = TREE_INT_CST_HIGH (x);
10801 }
10802 else
10803 {
10804 num = 0;
10805 fr = TREE_INT_CST_LOW (x);
10806 }
10807
10808 for (abits = HOST_BITS_PER_WIDE_INT / 2; abits; abits /= 2)
10809 {
10810 nfr = fr >> abits;
10811 if (nfr << abits == fr)
10812 {
10813 num += abits;
10814 fr = nfr;
10815 }
10816 }
10817
10818 if (num > TYPE_PRECISION (type))
10819 num = TYPE_PRECISION (type);
10820
10821 return build_int_cst_type (type, num);
10822 }
10823
10824
10825 #define WALK_SUBTREE(NODE) \
10826 do \
10827 { \
10828 result = walk_tree_1 (&(NODE), func, data, pset, lh); \
10829 if (result) \
10830 return result; \
10831 } \
10832 while (0)
10833
10834 /* This is a subroutine of walk_tree that walks field of TYPE that are to
10835 be walked whenever a type is seen in the tree. Rest of operands and return
10836 value are as for walk_tree. */
10837
10838 static tree
10839 walk_type_fields (tree type, walk_tree_fn func, void *data,
10840 struct pointer_set_t *pset, walk_tree_lh lh)
10841 {
10842 tree result = NULL_TREE;
10843
10844 switch (TREE_CODE (type))
10845 {
10846 case POINTER_TYPE:
10847 case REFERENCE_TYPE:
10848 /* We have to worry about mutually recursive pointers. These can't
10849 be written in C. They can in Ada. It's pathological, but
10850 there's an ACATS test (c38102a) that checks it. Deal with this
10851 by checking if we're pointing to another pointer, that one
10852 points to another pointer, that one does too, and we have no htab.
10853 If so, get a hash table. We check three levels deep to avoid
10854 the cost of the hash table if we don't need one. */
10855 if (POINTER_TYPE_P (TREE_TYPE (type))
10856 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (type)))
10857 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (TREE_TYPE (type))))
10858 && !pset)
10859 {
10860 result = walk_tree_without_duplicates (&TREE_TYPE (type),
10861 func, data);
10862 if (result)
10863 return result;
10864
10865 break;
10866 }
10867
10868 /* ... fall through ... */
10869
10870 case COMPLEX_TYPE:
10871 WALK_SUBTREE (TREE_TYPE (type));
10872 break;
10873
10874 case METHOD_TYPE:
10875 WALK_SUBTREE (TYPE_METHOD_BASETYPE (type));
10876
10877 /* Fall through. */
10878
10879 case FUNCTION_TYPE:
10880 WALK_SUBTREE (TREE_TYPE (type));
10881 {
10882 tree arg;
10883
10884 /* We never want to walk into default arguments. */
10885 for (arg = TYPE_ARG_TYPES (type); arg; arg = TREE_CHAIN (arg))
10886 WALK_SUBTREE (TREE_VALUE (arg));
10887 }
10888 break;
10889
10890 case ARRAY_TYPE:
10891 /* Don't follow this nodes's type if a pointer for fear that
10892 we'll have infinite recursion. If we have a PSET, then we
10893 need not fear. */
10894 if (pset
10895 || (!POINTER_TYPE_P (TREE_TYPE (type))
10896 && TREE_CODE (TREE_TYPE (type)) != OFFSET_TYPE))
10897 WALK_SUBTREE (TREE_TYPE (type));
10898 WALK_SUBTREE (TYPE_DOMAIN (type));
10899 break;
10900
10901 case OFFSET_TYPE:
10902 WALK_SUBTREE (TREE_TYPE (type));
10903 WALK_SUBTREE (TYPE_OFFSET_BASETYPE (type));
10904 break;
10905
10906 default:
10907 break;
10908 }
10909
10910 return NULL_TREE;
10911 }
10912
10913 /* Apply FUNC to all the sub-trees of TP in a pre-order traversal. FUNC is
10914 called with the DATA and the address of each sub-tree. If FUNC returns a
10915 non-NULL value, the traversal is stopped, and the value returned by FUNC
10916 is returned. If PSET is non-NULL it is used to record the nodes visited,
10917 and to avoid visiting a node more than once. */
10918
10919 tree
10920 walk_tree_1 (tree *tp, walk_tree_fn func, void *data,
10921 struct pointer_set_t *pset, walk_tree_lh lh)
10922 {
10923 enum tree_code code;
10924 int walk_subtrees;
10925 tree result;
10926
10927 #define WALK_SUBTREE_TAIL(NODE) \
10928 do \
10929 { \
10930 tp = & (NODE); \
10931 goto tail_recurse; \
10932 } \
10933 while (0)
10934
10935 tail_recurse:
10936 /* Skip empty subtrees. */
10937 if (!*tp)
10938 return NULL_TREE;
10939
10940 /* Don't walk the same tree twice, if the user has requested
10941 that we avoid doing so. */
10942 if (pset && pointer_set_insert (pset, *tp))
10943 return NULL_TREE;
10944
10945 /* Call the function. */
10946 walk_subtrees = 1;
10947 result = (*func) (tp, &walk_subtrees, data);
10948
10949 /* If we found something, return it. */
10950 if (result)
10951 return result;
10952
10953 code = TREE_CODE (*tp);
10954
10955 /* Even if we didn't, FUNC may have decided that there was nothing
10956 interesting below this point in the tree. */
10957 if (!walk_subtrees)
10958 {
10959 /* But we still need to check our siblings. */
10960 if (code == TREE_LIST)
10961 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
10962 else if (code == OMP_CLAUSE)
10963 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10964 else
10965 return NULL_TREE;
10966 }
10967
10968 if (lh)
10969 {
10970 result = (*lh) (tp, &walk_subtrees, func, data, pset);
10971 if (result || !walk_subtrees)
10972 return result;
10973 }
10974
10975 switch (code)
10976 {
10977 case ERROR_MARK:
10978 case IDENTIFIER_NODE:
10979 case INTEGER_CST:
10980 case REAL_CST:
10981 case FIXED_CST:
10982 case VECTOR_CST:
10983 case STRING_CST:
10984 case BLOCK:
10985 case PLACEHOLDER_EXPR:
10986 case SSA_NAME:
10987 case FIELD_DECL:
10988 case RESULT_DECL:
10989 /* None of these have subtrees other than those already walked
10990 above. */
10991 break;
10992
10993 case TREE_LIST:
10994 WALK_SUBTREE (TREE_VALUE (*tp));
10995 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
10996 break;
10997
10998 case TREE_VEC:
10999 {
11000 int len = TREE_VEC_LENGTH (*tp);
11001
11002 if (len == 0)
11003 break;
11004
11005 /* Walk all elements but the first. */
11006 while (--len)
11007 WALK_SUBTREE (TREE_VEC_ELT (*tp, len));
11008
11009 /* Now walk the first one as a tail call. */
11010 WALK_SUBTREE_TAIL (TREE_VEC_ELT (*tp, 0));
11011 }
11012
11013 case COMPLEX_CST:
11014 WALK_SUBTREE (TREE_REALPART (*tp));
11015 WALK_SUBTREE_TAIL (TREE_IMAGPART (*tp));
11016
11017 case CONSTRUCTOR:
11018 {
11019 unsigned HOST_WIDE_INT idx;
11020 constructor_elt *ce;
11021
11022 for (idx = 0; vec_safe_iterate(CONSTRUCTOR_ELTS (*tp), idx, &ce); idx++)
11023 WALK_SUBTREE (ce->value);
11024 }
11025 break;
11026
11027 case SAVE_EXPR:
11028 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, 0));
11029
11030 case BIND_EXPR:
11031 {
11032 tree decl;
11033 for (decl = BIND_EXPR_VARS (*tp); decl; decl = DECL_CHAIN (decl))
11034 {
11035 /* Walk the DECL_INITIAL and DECL_SIZE. We don't want to walk
11036 into declarations that are just mentioned, rather than
11037 declared; they don't really belong to this part of the tree.
11038 And, we can see cycles: the initializer for a declaration
11039 can refer to the declaration itself. */
11040 WALK_SUBTREE (DECL_INITIAL (decl));
11041 WALK_SUBTREE (DECL_SIZE (decl));
11042 WALK_SUBTREE (DECL_SIZE_UNIT (decl));
11043 }
11044 WALK_SUBTREE_TAIL (BIND_EXPR_BODY (*tp));
11045 }
11046
11047 case STATEMENT_LIST:
11048 {
11049 tree_stmt_iterator i;
11050 for (i = tsi_start (*tp); !tsi_end_p (i); tsi_next (&i))
11051 WALK_SUBTREE (*tsi_stmt_ptr (i));
11052 }
11053 break;
11054
11055 case OMP_CLAUSE:
11056 switch (OMP_CLAUSE_CODE (*tp))
11057 {
11058 case OMP_CLAUSE_PRIVATE:
11059 case OMP_CLAUSE_SHARED:
11060 case OMP_CLAUSE_FIRSTPRIVATE:
11061 case OMP_CLAUSE_COPYIN:
11062 case OMP_CLAUSE_COPYPRIVATE:
11063 case OMP_CLAUSE_FINAL:
11064 case OMP_CLAUSE_IF:
11065 case OMP_CLAUSE_NUM_THREADS:
11066 case OMP_CLAUSE_SCHEDULE:
11067 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 0));
11068 /* FALLTHRU */
11069
11070 case OMP_CLAUSE_NOWAIT:
11071 case OMP_CLAUSE_ORDERED:
11072 case OMP_CLAUSE_DEFAULT:
11073 case OMP_CLAUSE_UNTIED:
11074 case OMP_CLAUSE_MERGEABLE:
11075 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11076
11077 case OMP_CLAUSE_LASTPRIVATE:
11078 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
11079 WALK_SUBTREE (OMP_CLAUSE_LASTPRIVATE_STMT (*tp));
11080 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11081
11082 case OMP_CLAUSE_COLLAPSE:
11083 {
11084 int i;
11085 for (i = 0; i < 3; i++)
11086 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
11087 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11088 }
11089
11090 case OMP_CLAUSE_REDUCTION:
11091 {
11092 int i;
11093 for (i = 0; i < 4; i++)
11094 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
11095 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
11096 }
11097
11098 default:
11099 gcc_unreachable ();
11100 }
11101 break;
11102
11103 case TARGET_EXPR:
11104 {
11105 int i, len;
11106
11107 /* TARGET_EXPRs are peculiar: operands 1 and 3 can be the same.
11108 But, we only want to walk once. */
11109 len = (TREE_OPERAND (*tp, 3) == TREE_OPERAND (*tp, 1)) ? 2 : 3;
11110 for (i = 0; i < len; ++i)
11111 WALK_SUBTREE (TREE_OPERAND (*tp, i));
11112 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len));
11113 }
11114
11115 case DECL_EXPR:
11116 /* If this is a TYPE_DECL, walk into the fields of the type that it's
11117 defining. We only want to walk into these fields of a type in this
11118 case and not in the general case of a mere reference to the type.
11119
11120 The criterion is as follows: if the field can be an expression, it
11121 must be walked only here. This should be in keeping with the fields
11122 that are directly gimplified in gimplify_type_sizes in order for the
11123 mark/copy-if-shared/unmark machinery of the gimplifier to work with
11124 variable-sized types.
11125
11126 Note that DECLs get walked as part of processing the BIND_EXPR. */
11127 if (TREE_CODE (DECL_EXPR_DECL (*tp)) == TYPE_DECL)
11128 {
11129 tree *type_p = &TREE_TYPE (DECL_EXPR_DECL (*tp));
11130 if (TREE_CODE (*type_p) == ERROR_MARK)
11131 return NULL_TREE;
11132
11133 /* Call the function for the type. See if it returns anything or
11134 doesn't want us to continue. If we are to continue, walk both
11135 the normal fields and those for the declaration case. */
11136 result = (*func) (type_p, &walk_subtrees, data);
11137 if (result || !walk_subtrees)
11138 return result;
11139
11140 /* But do not walk a pointed-to type since it may itself need to
11141 be walked in the declaration case if it isn't anonymous. */
11142 if (!POINTER_TYPE_P (*type_p))
11143 {
11144 result = walk_type_fields (*type_p, func, data, pset, lh);
11145 if (result)
11146 return result;
11147 }
11148
11149 /* If this is a record type, also walk the fields. */
11150 if (RECORD_OR_UNION_TYPE_P (*type_p))
11151 {
11152 tree field;
11153
11154 for (field = TYPE_FIELDS (*type_p); field;
11155 field = DECL_CHAIN (field))
11156 {
11157 /* We'd like to look at the type of the field, but we can
11158 easily get infinite recursion. So assume it's pointed
11159 to elsewhere in the tree. Also, ignore things that
11160 aren't fields. */
11161 if (TREE_CODE (field) != FIELD_DECL)
11162 continue;
11163
11164 WALK_SUBTREE (DECL_FIELD_OFFSET (field));
11165 WALK_SUBTREE (DECL_SIZE (field));
11166 WALK_SUBTREE (DECL_SIZE_UNIT (field));
11167 if (TREE_CODE (*type_p) == QUAL_UNION_TYPE)
11168 WALK_SUBTREE (DECL_QUALIFIER (field));
11169 }
11170 }
11171
11172 /* Same for scalar types. */
11173 else if (TREE_CODE (*type_p) == BOOLEAN_TYPE
11174 || TREE_CODE (*type_p) == ENUMERAL_TYPE
11175 || TREE_CODE (*type_p) == INTEGER_TYPE
11176 || TREE_CODE (*type_p) == FIXED_POINT_TYPE
11177 || TREE_CODE (*type_p) == REAL_TYPE)
11178 {
11179 WALK_SUBTREE (TYPE_MIN_VALUE (*type_p));
11180 WALK_SUBTREE (TYPE_MAX_VALUE (*type_p));
11181 }
11182
11183 WALK_SUBTREE (TYPE_SIZE (*type_p));
11184 WALK_SUBTREE_TAIL (TYPE_SIZE_UNIT (*type_p));
11185 }
11186 /* FALLTHRU */
11187
11188 default:
11189 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
11190 {
11191 int i, len;
11192
11193 /* Walk over all the sub-trees of this operand. */
11194 len = TREE_OPERAND_LENGTH (*tp);
11195
11196 /* Go through the subtrees. We need to do this in forward order so
11197 that the scope of a FOR_EXPR is handled properly. */
11198 if (len)
11199 {
11200 for (i = 0; i < len - 1; ++i)
11201 WALK_SUBTREE (TREE_OPERAND (*tp, i));
11202 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len - 1));
11203 }
11204 }
11205 /* If this is a type, walk the needed fields in the type. */
11206 else if (TYPE_P (*tp))
11207 return walk_type_fields (*tp, func, data, pset, lh);
11208 break;
11209 }
11210
11211 /* We didn't find what we were looking for. */
11212 return NULL_TREE;
11213
11214 #undef WALK_SUBTREE_TAIL
11215 }
11216 #undef WALK_SUBTREE
11217
11218 /* Like walk_tree, but does not walk duplicate nodes more than once. */
11219
11220 tree
11221 walk_tree_without_duplicates_1 (tree *tp, walk_tree_fn func, void *data,
11222 walk_tree_lh lh)
11223 {
11224 tree result;
11225 struct pointer_set_t *pset;
11226
11227 pset = pointer_set_create ();
11228 result = walk_tree_1 (tp, func, data, pset, lh);
11229 pointer_set_destroy (pset);
11230 return result;
11231 }
11232
11233
11234 tree
11235 tree_block (tree t)
11236 {
11237 char const c = TREE_CODE_CLASS (TREE_CODE (t));
11238
11239 if (IS_EXPR_CODE_CLASS (c))
11240 return LOCATION_BLOCK (t->exp.locus);
11241 gcc_unreachable ();
11242 return NULL;
11243 }
11244
11245 void
11246 tree_set_block (tree t, tree b)
11247 {
11248 char const c = TREE_CODE_CLASS (TREE_CODE (t));
11249
11250 if (IS_EXPR_CODE_CLASS (c))
11251 {
11252 if (b)
11253 t->exp.locus = COMBINE_LOCATION_DATA (line_table, t->exp.locus, b);
11254 else
11255 t->exp.locus = LOCATION_LOCUS (t->exp.locus);
11256 }
11257 else
11258 gcc_unreachable ();
11259 }
11260
11261 /* Create a nameless artificial label and put it in the current
11262 function context. The label has a location of LOC. Returns the
11263 newly created label. */
11264
11265 tree
11266 create_artificial_label (location_t loc)
11267 {
11268 tree lab = build_decl (loc,
11269 LABEL_DECL, NULL_TREE, void_type_node);
11270
11271 DECL_ARTIFICIAL (lab) = 1;
11272 DECL_IGNORED_P (lab) = 1;
11273 DECL_CONTEXT (lab) = current_function_decl;
11274 return lab;
11275 }
11276
11277 /* Given a tree, try to return a useful variable name that we can use
11278 to prefix a temporary that is being assigned the value of the tree.
11279 I.E. given <temp> = &A, return A. */
11280
11281 const char *
11282 get_name (tree t)
11283 {
11284 tree stripped_decl;
11285
11286 stripped_decl = t;
11287 STRIP_NOPS (stripped_decl);
11288 if (DECL_P (stripped_decl) && DECL_NAME (stripped_decl))
11289 return IDENTIFIER_POINTER (DECL_NAME (stripped_decl));
11290 else if (TREE_CODE (stripped_decl) == SSA_NAME)
11291 {
11292 tree name = SSA_NAME_IDENTIFIER (stripped_decl);
11293 if (!name)
11294 return NULL;
11295 return IDENTIFIER_POINTER (name);
11296 }
11297 else
11298 {
11299 switch (TREE_CODE (stripped_decl))
11300 {
11301 case ADDR_EXPR:
11302 return get_name (TREE_OPERAND (stripped_decl, 0));
11303 default:
11304 return NULL;
11305 }
11306 }
11307 }
11308
11309 /* Return true if TYPE has a variable argument list. */
11310
11311 bool
11312 stdarg_p (const_tree fntype)
11313 {
11314 function_args_iterator args_iter;
11315 tree n = NULL_TREE, t;
11316
11317 if (!fntype)
11318 return false;
11319
11320 FOREACH_FUNCTION_ARGS(fntype, t, args_iter)
11321 {
11322 n = t;
11323 }
11324
11325 return n != NULL_TREE && n != void_type_node;
11326 }
11327
11328 /* Return true if TYPE has a prototype. */
11329
11330 bool
11331 prototype_p (tree fntype)
11332 {
11333 tree t;
11334
11335 gcc_assert (fntype != NULL_TREE);
11336
11337 t = TYPE_ARG_TYPES (fntype);
11338 return (t != NULL_TREE);
11339 }
11340
11341 /* If BLOCK is inlined from an __attribute__((__artificial__))
11342 routine, return pointer to location from where it has been
11343 called. */
11344 location_t *
11345 block_nonartificial_location (tree block)
11346 {
11347 location_t *ret = NULL;
11348
11349 while (block && TREE_CODE (block) == BLOCK
11350 && BLOCK_ABSTRACT_ORIGIN (block))
11351 {
11352 tree ao = BLOCK_ABSTRACT_ORIGIN (block);
11353
11354 while (TREE_CODE (ao) == BLOCK
11355 && BLOCK_ABSTRACT_ORIGIN (ao)
11356 && BLOCK_ABSTRACT_ORIGIN (ao) != ao)
11357 ao = BLOCK_ABSTRACT_ORIGIN (ao);
11358
11359 if (TREE_CODE (ao) == FUNCTION_DECL)
11360 {
11361 /* If AO is an artificial inline, point RET to the
11362 call site locus at which it has been inlined and continue
11363 the loop, in case AO's caller is also an artificial
11364 inline. */
11365 if (DECL_DECLARED_INLINE_P (ao)
11366 && lookup_attribute ("artificial", DECL_ATTRIBUTES (ao)))
11367 ret = &BLOCK_SOURCE_LOCATION (block);
11368 else
11369 break;
11370 }
11371 else if (TREE_CODE (ao) != BLOCK)
11372 break;
11373
11374 block = BLOCK_SUPERCONTEXT (block);
11375 }
11376 return ret;
11377 }
11378
11379
11380 /* If EXP is inlined from an __attribute__((__artificial__))
11381 function, return the location of the original call expression. */
11382
11383 location_t
11384 tree_nonartificial_location (tree exp)
11385 {
11386 location_t *loc = block_nonartificial_location (TREE_BLOCK (exp));
11387
11388 if (loc)
11389 return *loc;
11390 else
11391 return EXPR_LOCATION (exp);
11392 }
11393
11394
11395 /* These are the hash table functions for the hash table of OPTIMIZATION_NODEq
11396 nodes. */
11397
11398 /* Return the hash code code X, an OPTIMIZATION_NODE or TARGET_OPTION code. */
11399
11400 static hashval_t
11401 cl_option_hash_hash (const void *x)
11402 {
11403 const_tree const t = (const_tree) x;
11404 const char *p;
11405 size_t i;
11406 size_t len = 0;
11407 hashval_t hash = 0;
11408
11409 if (TREE_CODE (t) == OPTIMIZATION_NODE)
11410 {
11411 p = (const char *)TREE_OPTIMIZATION (t);
11412 len = sizeof (struct cl_optimization);
11413 }
11414
11415 else if (TREE_CODE (t) == TARGET_OPTION_NODE)
11416 {
11417 p = (const char *)TREE_TARGET_OPTION (t);
11418 len = sizeof (struct cl_target_option);
11419 }
11420
11421 else
11422 gcc_unreachable ();
11423
11424 /* assume most opt flags are just 0/1, some are 2-3, and a few might be
11425 something else. */
11426 for (i = 0; i < len; i++)
11427 if (p[i])
11428 hash = (hash << 4) ^ ((i << 2) | p[i]);
11429
11430 return hash;
11431 }
11432
11433 /* Return nonzero if the value represented by *X (an OPTIMIZATION or
11434 TARGET_OPTION tree node) is the same as that given by *Y, which is the
11435 same. */
11436
11437 static int
11438 cl_option_hash_eq (const void *x, const void *y)
11439 {
11440 const_tree const xt = (const_tree) x;
11441 const_tree const yt = (const_tree) y;
11442 const char *xp;
11443 const char *yp;
11444 size_t len;
11445
11446 if (TREE_CODE (xt) != TREE_CODE (yt))
11447 return 0;
11448
11449 if (TREE_CODE (xt) == OPTIMIZATION_NODE)
11450 {
11451 xp = (const char *)TREE_OPTIMIZATION (xt);
11452 yp = (const char *)TREE_OPTIMIZATION (yt);
11453 len = sizeof (struct cl_optimization);
11454 }
11455
11456 else if (TREE_CODE (xt) == TARGET_OPTION_NODE)
11457 {
11458 xp = (const char *)TREE_TARGET_OPTION (xt);
11459 yp = (const char *)TREE_TARGET_OPTION (yt);
11460 len = sizeof (struct cl_target_option);
11461 }
11462
11463 else
11464 gcc_unreachable ();
11465
11466 return (memcmp (xp, yp, len) == 0);
11467 }
11468
11469 /* Build an OPTIMIZATION_NODE based on the current options. */
11470
11471 tree
11472 build_optimization_node (void)
11473 {
11474 tree t;
11475 void **slot;
11476
11477 /* Use the cache of optimization nodes. */
11478
11479 cl_optimization_save (TREE_OPTIMIZATION (cl_optimization_node),
11480 &global_options);
11481
11482 slot = htab_find_slot (cl_option_hash_table, cl_optimization_node, INSERT);
11483 t = (tree) *slot;
11484 if (!t)
11485 {
11486 /* Insert this one into the hash table. */
11487 t = cl_optimization_node;
11488 *slot = t;
11489
11490 /* Make a new node for next time round. */
11491 cl_optimization_node = make_node (OPTIMIZATION_NODE);
11492 }
11493
11494 return t;
11495 }
11496
11497 /* Build a TARGET_OPTION_NODE based on the current options. */
11498
11499 tree
11500 build_target_option_node (void)
11501 {
11502 tree t;
11503 void **slot;
11504
11505 /* Use the cache of optimization nodes. */
11506
11507 cl_target_option_save (TREE_TARGET_OPTION (cl_target_option_node),
11508 &global_options);
11509
11510 slot = htab_find_slot (cl_option_hash_table, cl_target_option_node, INSERT);
11511 t = (tree) *slot;
11512 if (!t)
11513 {
11514 /* Insert this one into the hash table. */
11515 t = cl_target_option_node;
11516 *slot = t;
11517
11518 /* Make a new node for next time round. */
11519 cl_target_option_node = make_node (TARGET_OPTION_NODE);
11520 }
11521
11522 return t;
11523 }
11524
11525 /* Determine the "ultimate origin" of a block. The block may be an inlined
11526 instance of an inlined instance of a block which is local to an inline
11527 function, so we have to trace all of the way back through the origin chain
11528 to find out what sort of node actually served as the original seed for the
11529 given block. */
11530
11531 tree
11532 block_ultimate_origin (const_tree block)
11533 {
11534 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
11535
11536 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
11537 nodes in the function to point to themselves; ignore that if
11538 we're trying to output the abstract instance of this function. */
11539 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
11540 return NULL_TREE;
11541
11542 if (immediate_origin == NULL_TREE)
11543 return NULL_TREE;
11544 else
11545 {
11546 tree ret_val;
11547 tree lookahead = immediate_origin;
11548
11549 do
11550 {
11551 ret_val = lookahead;
11552 lookahead = (TREE_CODE (ret_val) == BLOCK
11553 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
11554 }
11555 while (lookahead != NULL && lookahead != ret_val);
11556
11557 /* The block's abstract origin chain may not be the *ultimate* origin of
11558 the block. It could lead to a DECL that has an abstract origin set.
11559 If so, we want that DECL's abstract origin (which is what DECL_ORIGIN
11560 will give us if it has one). Note that DECL's abstract origins are
11561 supposed to be the most distant ancestor (or so decl_ultimate_origin
11562 claims), so we don't need to loop following the DECL origins. */
11563 if (DECL_P (ret_val))
11564 return DECL_ORIGIN (ret_val);
11565
11566 return ret_val;
11567 }
11568 }
11569
11570 /* Return true if T1 and T2 are equivalent lists. */
11571
11572 bool
11573 list_equal_p (const_tree t1, const_tree t2)
11574 {
11575 for (; t1 && t2; t1 = TREE_CHAIN (t1) , t2 = TREE_CHAIN (t2))
11576 if (TREE_VALUE (t1) != TREE_VALUE (t2))
11577 return false;
11578 return !t1 && !t2;
11579 }
11580
11581 /* Return true iff conversion in EXP generates no instruction. Mark
11582 it inline so that we fully inline into the stripping functions even
11583 though we have two uses of this function. */
11584
11585 static inline bool
11586 tree_nop_conversion (const_tree exp)
11587 {
11588 tree outer_type, inner_type;
11589
11590 if (!CONVERT_EXPR_P (exp)
11591 && TREE_CODE (exp) != NON_LVALUE_EXPR)
11592 return false;
11593 if (TREE_OPERAND (exp, 0) == error_mark_node)
11594 return false;
11595
11596 outer_type = TREE_TYPE (exp);
11597 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
11598
11599 if (!inner_type)
11600 return false;
11601
11602 /* Use precision rather then machine mode when we can, which gives
11603 the correct answer even for submode (bit-field) types. */
11604 if ((INTEGRAL_TYPE_P (outer_type)
11605 || POINTER_TYPE_P (outer_type)
11606 || TREE_CODE (outer_type) == OFFSET_TYPE)
11607 && (INTEGRAL_TYPE_P (inner_type)
11608 || POINTER_TYPE_P (inner_type)
11609 || TREE_CODE (inner_type) == OFFSET_TYPE))
11610 return TYPE_PRECISION (outer_type) == TYPE_PRECISION (inner_type);
11611
11612 /* Otherwise fall back on comparing machine modes (e.g. for
11613 aggregate types, floats). */
11614 return TYPE_MODE (outer_type) == TYPE_MODE (inner_type);
11615 }
11616
11617 /* Return true iff conversion in EXP generates no instruction. Don't
11618 consider conversions changing the signedness. */
11619
11620 static bool
11621 tree_sign_nop_conversion (const_tree exp)
11622 {
11623 tree outer_type, inner_type;
11624
11625 if (!tree_nop_conversion (exp))
11626 return false;
11627
11628 outer_type = TREE_TYPE (exp);
11629 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
11630
11631 return (TYPE_UNSIGNED (outer_type) == TYPE_UNSIGNED (inner_type)
11632 && POINTER_TYPE_P (outer_type) == POINTER_TYPE_P (inner_type));
11633 }
11634
11635 /* Strip conversions from EXP according to tree_nop_conversion and
11636 return the resulting expression. */
11637
11638 tree
11639 tree_strip_nop_conversions (tree exp)
11640 {
11641 while (tree_nop_conversion (exp))
11642 exp = TREE_OPERAND (exp, 0);
11643 return exp;
11644 }
11645
11646 /* Strip conversions from EXP according to tree_sign_nop_conversion
11647 and return the resulting expression. */
11648
11649 tree
11650 tree_strip_sign_nop_conversions (tree exp)
11651 {
11652 while (tree_sign_nop_conversion (exp))
11653 exp = TREE_OPERAND (exp, 0);
11654 return exp;
11655 }
11656
11657 /* Avoid any floating point extensions from EXP. */
11658 tree
11659 strip_float_extensions (tree exp)
11660 {
11661 tree sub, expt, subt;
11662
11663 /* For floating point constant look up the narrowest type that can hold
11664 it properly and handle it like (type)(narrowest_type)constant.
11665 This way we can optimize for instance a=a*2.0 where "a" is float
11666 but 2.0 is double constant. */
11667 if (TREE_CODE (exp) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (TREE_TYPE (exp)))
11668 {
11669 REAL_VALUE_TYPE orig;
11670 tree type = NULL;
11671
11672 orig = TREE_REAL_CST (exp);
11673 if (TYPE_PRECISION (TREE_TYPE (exp)) > TYPE_PRECISION (float_type_node)
11674 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
11675 type = float_type_node;
11676 else if (TYPE_PRECISION (TREE_TYPE (exp))
11677 > TYPE_PRECISION (double_type_node)
11678 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
11679 type = double_type_node;
11680 if (type)
11681 return build_real (type, real_value_truncate (TYPE_MODE (type), orig));
11682 }
11683
11684 if (!CONVERT_EXPR_P (exp))
11685 return exp;
11686
11687 sub = TREE_OPERAND (exp, 0);
11688 subt = TREE_TYPE (sub);
11689 expt = TREE_TYPE (exp);
11690
11691 if (!FLOAT_TYPE_P (subt))
11692 return exp;
11693
11694 if (DECIMAL_FLOAT_TYPE_P (expt) != DECIMAL_FLOAT_TYPE_P (subt))
11695 return exp;
11696
11697 if (TYPE_PRECISION (subt) > TYPE_PRECISION (expt))
11698 return exp;
11699
11700 return strip_float_extensions (sub);
11701 }
11702
11703 /* Strip out all handled components that produce invariant
11704 offsets. */
11705
11706 const_tree
11707 strip_invariant_refs (const_tree op)
11708 {
11709 while (handled_component_p (op))
11710 {
11711 switch (TREE_CODE (op))
11712 {
11713 case ARRAY_REF:
11714 case ARRAY_RANGE_REF:
11715 if (!is_gimple_constant (TREE_OPERAND (op, 1))
11716 || TREE_OPERAND (op, 2) != NULL_TREE
11717 || TREE_OPERAND (op, 3) != NULL_TREE)
11718 return NULL;
11719 break;
11720
11721 case COMPONENT_REF:
11722 if (TREE_OPERAND (op, 2) != NULL_TREE)
11723 return NULL;
11724 break;
11725
11726 default:;
11727 }
11728 op = TREE_OPERAND (op, 0);
11729 }
11730
11731 return op;
11732 }
11733
11734 static GTY(()) tree gcc_eh_personality_decl;
11735
11736 /* Return the GCC personality function decl. */
11737
11738 tree
11739 lhd_gcc_personality (void)
11740 {
11741 if (!gcc_eh_personality_decl)
11742 gcc_eh_personality_decl = build_personality_function ("gcc");
11743 return gcc_eh_personality_decl;
11744 }
11745
11746 /* For languages with One Definition Rule, work out if
11747 trees are actually the same even if the tree representation
11748 differs. This handles only decls appearing in TYPE_NAME
11749 and TYPE_CONTEXT. That is NAMESPACE_DECL, TYPE_DECL,
11750 RECORD_TYPE and IDENTIFIER_NODE. */
11751
11752 static bool
11753 same_for_odr (tree t1, tree t2)
11754 {
11755 if (t1 == t2)
11756 return true;
11757 if (!t1 || !t2)
11758 return false;
11759 /* C and C++ FEs differ by using IDENTIFIER_NODE and TYPE_DECL. */
11760 if (TREE_CODE (t1) == IDENTIFIER_NODE
11761 && TREE_CODE (t2) == TYPE_DECL
11762 && DECL_FILE_SCOPE_P (t1))
11763 {
11764 t2 = DECL_NAME (t2);
11765 gcc_assert (TREE_CODE (t2) == IDENTIFIER_NODE);
11766 }
11767 if (TREE_CODE (t2) == IDENTIFIER_NODE
11768 && TREE_CODE (t1) == TYPE_DECL
11769 && DECL_FILE_SCOPE_P (t2))
11770 {
11771 t1 = DECL_NAME (t1);
11772 gcc_assert (TREE_CODE (t1) == IDENTIFIER_NODE);
11773 }
11774 if (TREE_CODE (t1) != TREE_CODE (t2))
11775 return false;
11776 if (TYPE_P (t1))
11777 return types_same_for_odr (t1, t2);
11778 if (DECL_P (t1))
11779 return decls_same_for_odr (t1, t2);
11780 return false;
11781 }
11782
11783 /* For languages with One Definition Rule, work out if
11784 decls are actually the same even if the tree representation
11785 differs. This handles only decls appearing in TYPE_NAME
11786 and TYPE_CONTEXT. That is NAMESPACE_DECL, TYPE_DECL,
11787 RECORD_TYPE and IDENTIFIER_NODE. */
11788
11789 static bool
11790 decls_same_for_odr (tree decl1, tree decl2)
11791 {
11792 if (decl1 && TREE_CODE (decl1) == TYPE_DECL
11793 && DECL_ORIGINAL_TYPE (decl1))
11794 decl1 = DECL_ORIGINAL_TYPE (decl1);
11795 if (decl2 && TREE_CODE (decl2) == TYPE_DECL
11796 && DECL_ORIGINAL_TYPE (decl2))
11797 decl2 = DECL_ORIGINAL_TYPE (decl2);
11798 if (decl1 == decl2)
11799 return true;
11800 if (!decl1 || !decl2)
11801 return false;
11802 gcc_checking_assert (DECL_P (decl1) && DECL_P (decl2));
11803 if (TREE_CODE (decl1) != TREE_CODE (decl2))
11804 return false;
11805 if (TREE_CODE (decl1) == TRANSLATION_UNIT_DECL)
11806 return true;
11807 if (TREE_CODE (decl1) != NAMESPACE_DECL
11808 && TREE_CODE (decl1) != TYPE_DECL)
11809 return false;
11810 if (!DECL_NAME (decl1))
11811 return false;
11812 gcc_checking_assert (TREE_CODE (DECL_NAME (decl1)) == IDENTIFIER_NODE);
11813 gcc_checking_assert (!DECL_NAME (decl2)
11814 || TREE_CODE (DECL_NAME (decl2)) == IDENTIFIER_NODE);
11815 if (DECL_NAME (decl1) != DECL_NAME (decl2))
11816 return false;
11817 return same_for_odr (DECL_CONTEXT (decl1),
11818 DECL_CONTEXT (decl2));
11819 }
11820
11821 /* For languages with One Definition Rule, work out if
11822 types are same even if the tree representation differs.
11823 This is non-trivial for LTO where minnor differences in
11824 the type representation may have prevented type merging
11825 to merge two copies of otherwise equivalent type. */
11826
11827 bool
11828 types_same_for_odr (tree type1, tree type2)
11829 {
11830 gcc_checking_assert (TYPE_P (type1) && TYPE_P (type2));
11831 type1 = TYPE_MAIN_VARIANT (type1);
11832 type2 = TYPE_MAIN_VARIANT (type2);
11833 if (type1 == type2)
11834 return true;
11835
11836 /* If types are not structuraly same, do not bother to contnue.
11837 Match in the remainder of code would mean ODR violation. */
11838 if (!types_compatible_p (type1, type2))
11839 return false;
11840
11841 #ifndef ENABLE_CHECKING
11842 if (!in_lto_p)
11843 return false;
11844 #endif
11845
11846 /* Check for anonymous namespaces. Those have !TREE_PUBLIC
11847 on the corresponding TYPE_STUB_DECL. */
11848 if (TYPE_STUB_DECL (type1) != TYPE_STUB_DECL (type2)
11849 && (!TYPE_STUB_DECL (type1)
11850 || !TYPE_STUB_DECL (type2)
11851 || !TREE_PUBLIC (TYPE_STUB_DECL (type1))
11852 || !TREE_PUBLIC (TYPE_STUB_DECL (type2))))
11853 return false;
11854
11855 if (!TYPE_NAME (type1))
11856 return false;
11857 if (!decls_same_for_odr (TYPE_NAME (type1), TYPE_NAME (type2)))
11858 return false;
11859 if (!same_for_odr (TYPE_CONTEXT (type1), TYPE_CONTEXT (type2)))
11860 return false;
11861 /* When not in LTO the MAIN_VARIANT check should be the same. */
11862 gcc_assert (in_lto_p);
11863
11864 return true;
11865 }
11866
11867 /* REF is OBJ_TYPE_REF, return the class the ref corresponds to. */
11868
11869 tree
11870 obj_type_ref_class (tree ref)
11871 {
11872 gcc_checking_assert (TREE_CODE (ref) == OBJ_TYPE_REF);
11873 ref = TREE_TYPE (ref);
11874 gcc_checking_assert (TREE_CODE (ref) == POINTER_TYPE);
11875 ref = TREE_TYPE (ref);
11876 gcc_checking_assert (TREE_CODE (ref) == METHOD_TYPE);
11877 ref = TREE_VALUE (TYPE_ARG_TYPES (ref));
11878 gcc_checking_assert (TREE_CODE (ref) == POINTER_TYPE);
11879 return TREE_TYPE (ref);
11880 }
11881
11882 /* Try to find a base info of BINFO that would have its field decl at offset
11883 OFFSET within the BINFO type and which is of EXPECTED_TYPE. If it can be
11884 found, return, otherwise return NULL_TREE. */
11885
11886 tree
11887 get_binfo_at_offset (tree binfo, HOST_WIDE_INT offset, tree expected_type)
11888 {
11889 tree type = BINFO_TYPE (binfo);
11890
11891 while (true)
11892 {
11893 HOST_WIDE_INT pos, size;
11894 tree fld;
11895 int i;
11896
11897 if (types_same_for_odr (type, expected_type))
11898 return binfo;
11899 if (offset < 0)
11900 return NULL_TREE;
11901
11902 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
11903 {
11904 if (TREE_CODE (fld) != FIELD_DECL)
11905 continue;
11906
11907 pos = int_bit_position (fld);
11908 size = tree_low_cst (DECL_SIZE (fld), 1);
11909 if (pos <= offset && (pos + size) > offset)
11910 break;
11911 }
11912 if (!fld || TREE_CODE (TREE_TYPE (fld)) != RECORD_TYPE)
11913 return NULL_TREE;
11914
11915 if (!DECL_ARTIFICIAL (fld))
11916 {
11917 binfo = TYPE_BINFO (TREE_TYPE (fld));
11918 if (!binfo)
11919 return NULL_TREE;
11920 }
11921 /* Offset 0 indicates the primary base, whose vtable contents are
11922 represented in the binfo for the derived class. */
11923 else if (offset != 0)
11924 {
11925 tree base_binfo, found_binfo = NULL_TREE;
11926 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
11927 if (types_same_for_odr (TREE_TYPE (base_binfo), TREE_TYPE (fld)))
11928 {
11929 found_binfo = base_binfo;
11930 break;
11931 }
11932 if (!found_binfo)
11933 return NULL_TREE;
11934 binfo = found_binfo;
11935 }
11936
11937 type = TREE_TYPE (fld);
11938 offset -= pos;
11939 }
11940 }
11941
11942 /* Returns true if X is a typedef decl. */
11943
11944 bool
11945 is_typedef_decl (tree x)
11946 {
11947 return (x && TREE_CODE (x) == TYPE_DECL
11948 && DECL_ORIGINAL_TYPE (x) != NULL_TREE);
11949 }
11950
11951 /* Returns true iff TYPE is a type variant created for a typedef. */
11952
11953 bool
11954 typedef_variant_p (tree type)
11955 {
11956 return is_typedef_decl (TYPE_NAME (type));
11957 }
11958
11959 /* Warn about a use of an identifier which was marked deprecated. */
11960 void
11961 warn_deprecated_use (tree node, tree attr)
11962 {
11963 const char *msg;
11964
11965 if (node == 0 || !warn_deprecated_decl)
11966 return;
11967
11968 if (!attr)
11969 {
11970 if (DECL_P (node))
11971 attr = DECL_ATTRIBUTES (node);
11972 else if (TYPE_P (node))
11973 {
11974 tree decl = TYPE_STUB_DECL (node);
11975 if (decl)
11976 attr = lookup_attribute ("deprecated",
11977 TYPE_ATTRIBUTES (TREE_TYPE (decl)));
11978 }
11979 }
11980
11981 if (attr)
11982 attr = lookup_attribute ("deprecated", attr);
11983
11984 if (attr)
11985 msg = TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr)));
11986 else
11987 msg = NULL;
11988
11989 if (DECL_P (node))
11990 {
11991 expanded_location xloc = expand_location (DECL_SOURCE_LOCATION (node));
11992 if (msg)
11993 warning (OPT_Wdeprecated_declarations,
11994 "%qD is deprecated (declared at %r%s:%d%R): %s",
11995 node, "locus", xloc.file, xloc.line, msg);
11996 else
11997 warning (OPT_Wdeprecated_declarations,
11998 "%qD is deprecated (declared at %r%s:%d%R)",
11999 node, "locus", xloc.file, xloc.line);
12000 }
12001 else if (TYPE_P (node))
12002 {
12003 tree what = NULL_TREE;
12004 tree decl = TYPE_STUB_DECL (node);
12005
12006 if (TYPE_NAME (node))
12007 {
12008 if (TREE_CODE (TYPE_NAME (node)) == IDENTIFIER_NODE)
12009 what = TYPE_NAME (node);
12010 else if (TREE_CODE (TYPE_NAME (node)) == TYPE_DECL
12011 && DECL_NAME (TYPE_NAME (node)))
12012 what = DECL_NAME (TYPE_NAME (node));
12013 }
12014
12015 if (decl)
12016 {
12017 expanded_location xloc
12018 = expand_location (DECL_SOURCE_LOCATION (decl));
12019 if (what)
12020 {
12021 if (msg)
12022 warning (OPT_Wdeprecated_declarations,
12023 "%qE is deprecated (declared at %r%s:%d%R): %s",
12024 what, "locus", xloc.file, xloc.line, msg);
12025 else
12026 warning (OPT_Wdeprecated_declarations,
12027 "%qE is deprecated (declared at %r%s:%d%R)",
12028 what, "locus", xloc.file, xloc.line);
12029 }
12030 else
12031 {
12032 if (msg)
12033 warning (OPT_Wdeprecated_declarations,
12034 "type is deprecated (declared at %r%s:%d%R): %s",
12035 "locus", xloc.file, xloc.line, msg);
12036 else
12037 warning (OPT_Wdeprecated_declarations,
12038 "type is deprecated (declared at %r%s:%d%R)",
12039 "locus", xloc.file, xloc.line);
12040 }
12041 }
12042 else
12043 {
12044 if (what)
12045 {
12046 if (msg)
12047 warning (OPT_Wdeprecated_declarations, "%qE is deprecated: %s",
12048 what, msg);
12049 else
12050 warning (OPT_Wdeprecated_declarations, "%qE is deprecated", what);
12051 }
12052 else
12053 {
12054 if (msg)
12055 warning (OPT_Wdeprecated_declarations, "type is deprecated: %s",
12056 msg);
12057 else
12058 warning (OPT_Wdeprecated_declarations, "type is deprecated");
12059 }
12060 }
12061 }
12062 }
12063
12064 /* Return true if REF has a COMPONENT_REF with a bit-field field declaration
12065 somewhere in it. */
12066
12067 bool
12068 contains_bitfld_component_ref_p (const_tree ref)
12069 {
12070 while (handled_component_p (ref))
12071 {
12072 if (TREE_CODE (ref) == COMPONENT_REF
12073 && DECL_BIT_FIELD (TREE_OPERAND (ref, 1)))
12074 return true;
12075 ref = TREE_OPERAND (ref, 0);
12076 }
12077
12078 return false;
12079 }
12080
12081 #include "gt-tree.h"