]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree.cc
c++, mingw: Fix up types of dtor hooks to __cxa_{,thread_}atexit/__cxa_throw on mingw...
[thirdparty/gcc.git] / gcc / tree.cc
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987-2024 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file contains the low level primitives for operating on tree nodes,
21 including allocation, list operations, interning of identifiers,
22 construction of data type nodes and statement nodes,
23 and construction of type conversion nodes. It also contains
24 tables index by tree code that describe how to take apart
25 nodes of that code.
26
27 It is intended to be language-independent but can occasionally
28 calls language-dependent routines. */
29
30 #include "config.h"
31 #include "system.h"
32 #include "coretypes.h"
33 #include "backend.h"
34 #include "target.h"
35 #include "tree.h"
36 #include "gimple.h"
37 #include "tree-pass.h"
38 #include "ssa.h"
39 #include "cgraph.h"
40 #include "diagnostic.h"
41 #include "flags.h"
42 #include "alias.h"
43 #include "fold-const.h"
44 #include "stor-layout.h"
45 #include "calls.h"
46 #include "attribs.h"
47 #include "toplev.h" /* get_random_seed */
48 #include "output.h"
49 #include "common/common-target.h"
50 #include "langhooks.h"
51 #include "tree-inline.h"
52 #include "tree-iterator.h"
53 #include "internal-fn.h"
54 #include "gimple-iterator.h"
55 #include "gimplify.h"
56 #include "tree-dfa.h"
57 #include "langhooks-def.h"
58 #include "tree-diagnostic.h"
59 #include "except.h"
60 #include "builtins.h"
61 #include "print-tree.h"
62 #include "ipa-utils.h"
63 #include "selftest.h"
64 #include "stringpool.h"
65 #include "attribs.h"
66 #include "rtl.h"
67 #include "regs.h"
68 #include "tree-vector-builder.h"
69 #include "gimple-fold.h"
70 #include "escaped_string.h"
71 #include "gimple-range.h"
72 #include "gomp-constants.h"
73 #include "dfp.h"
74 #include "asan.h"
75 #include "ubsan.h"
76
77 /* Names of tree components.
78 Used for printing out the tree and error messages. */
79 #define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
80 #define END_OF_BASE_TREE_CODES "@dummy",
81
82 static const char *const tree_code_name[] = {
83 #include "all-tree.def"
84 };
85
86 #undef DEFTREECODE
87 #undef END_OF_BASE_TREE_CODES
88
89 /* Each tree code class has an associated string representation.
90 These must correspond to the tree_code_class entries. */
91
92 const char *const tree_code_class_strings[] =
93 {
94 "exceptional",
95 "constant",
96 "type",
97 "declaration",
98 "reference",
99 "comparison",
100 "unary",
101 "binary",
102 "statement",
103 "vl_exp",
104 "expression"
105 };
106
107 /* obstack.[ch] explicitly declined to prototype this. */
108 extern int _obstack_allocated_p (struct obstack *h, void *obj);
109
110 /* Statistics-gathering stuff. */
111
112 static uint64_t tree_code_counts[MAX_TREE_CODES];
113 uint64_t tree_node_counts[(int) all_kinds];
114 uint64_t tree_node_sizes[(int) all_kinds];
115
116 /* Keep in sync with tree.h:enum tree_node_kind. */
117 static const char * const tree_node_kind_names[] = {
118 "decls",
119 "types",
120 "blocks",
121 "stmts",
122 "refs",
123 "exprs",
124 "constants",
125 "identifiers",
126 "vecs",
127 "binfos",
128 "ssa names",
129 "constructors",
130 "random kinds",
131 "lang_decl kinds",
132 "lang_type kinds",
133 "omp clauses",
134 };
135
136 /* Unique id for next decl created. */
137 static GTY(()) int next_decl_uid;
138 /* Unique id for next type created. */
139 static GTY(()) unsigned next_type_uid = 1;
140 /* Unique id for next debug decl created. Use negative numbers,
141 to catch erroneous uses. */
142 static GTY(()) int next_debug_decl_uid;
143
144 /* Since we cannot rehash a type after it is in the table, we have to
145 keep the hash code. */
146
147 struct GTY((for_user)) type_hash {
148 unsigned long hash;
149 tree type;
150 };
151
152 /* Initial size of the hash table (rounded to next prime). */
153 #define TYPE_HASH_INITIAL_SIZE 1000
154
155 struct type_cache_hasher : ggc_cache_ptr_hash<type_hash>
156 {
157 static hashval_t hash (type_hash *t) { return t->hash; }
158 static bool equal (type_hash *a, type_hash *b);
159
160 static int
161 keep_cache_entry (type_hash *&t)
162 {
163 return ggc_marked_p (t->type);
164 }
165 };
166
167 /* Now here is the hash table. When recording a type, it is added to
168 the slot whose index is the hash code. Note that the hash table is
169 used for several kinds of types (function types, array types and
170 array index range types, for now). While all these live in the
171 same table, they are completely independent, and the hash code is
172 computed differently for each of these. */
173
174 static GTY ((cache)) hash_table<type_cache_hasher> *type_hash_table;
175
176 /* Hash table and temporary node for larger integer const values. */
177 static GTY (()) tree int_cst_node;
178
179 struct int_cst_hasher : ggc_cache_ptr_hash<tree_node>
180 {
181 static hashval_t hash (tree t);
182 static bool equal (tree x, tree y);
183 };
184
185 static GTY ((cache)) hash_table<int_cst_hasher> *int_cst_hash_table;
186
187 /* Class and variable for making sure that there is a single POLY_INT_CST
188 for a given value. */
189 struct poly_int_cst_hasher : ggc_cache_ptr_hash<tree_node>
190 {
191 typedef std::pair<tree, const poly_wide_int *> compare_type;
192 static hashval_t hash (tree t);
193 static bool equal (tree x, const compare_type &y);
194 };
195
196 static GTY ((cache)) hash_table<poly_int_cst_hasher> *poly_int_cst_hash_table;
197
198 /* Hash table for optimization flags and target option flags. Use the same
199 hash table for both sets of options. Nodes for building the current
200 optimization and target option nodes. The assumption is most of the time
201 the options created will already be in the hash table, so we avoid
202 allocating and freeing up a node repeatably. */
203 static GTY (()) tree cl_optimization_node;
204 static GTY (()) tree cl_target_option_node;
205
206 struct cl_option_hasher : ggc_cache_ptr_hash<tree_node>
207 {
208 static hashval_t hash (tree t);
209 static bool equal (tree x, tree y);
210 };
211
212 static GTY ((cache)) hash_table<cl_option_hasher> *cl_option_hash_table;
213
214 /* General tree->tree mapping structure for use in hash tables. */
215
216
217 static GTY ((cache))
218 hash_table<tree_decl_map_cache_hasher> *debug_expr_for_decl;
219
220 static GTY ((cache))
221 hash_table<tree_decl_map_cache_hasher> *value_expr_for_decl;
222
223 static GTY ((cache))
224 hash_table<tree_vec_map_cache_hasher> *debug_args_for_decl;
225
226 static void set_type_quals (tree, int);
227 static void print_type_hash_statistics (void);
228 static void print_debug_expr_statistics (void);
229 static void print_value_expr_statistics (void);
230
231 tree global_trees[TI_MAX];
232 tree integer_types[itk_none];
233
234 bool int_n_enabled_p[NUM_INT_N_ENTS];
235 struct int_n_trees_t int_n_trees [NUM_INT_N_ENTS];
236
237 bool tree_contains_struct[MAX_TREE_CODES][64];
238
239 /* Number of operands for each OMP clause. */
240 unsigned const char omp_clause_num_ops[] =
241 {
242 0, /* OMP_CLAUSE_ERROR */
243 1, /* OMP_CLAUSE_PRIVATE */
244 1, /* OMP_CLAUSE_SHARED */
245 1, /* OMP_CLAUSE_FIRSTPRIVATE */
246 2, /* OMP_CLAUSE_LASTPRIVATE */
247 5, /* OMP_CLAUSE_REDUCTION */
248 5, /* OMP_CLAUSE_TASK_REDUCTION */
249 5, /* OMP_CLAUSE_IN_REDUCTION */
250 1, /* OMP_CLAUSE_COPYIN */
251 1, /* OMP_CLAUSE_COPYPRIVATE */
252 3, /* OMP_CLAUSE_LINEAR */
253 1, /* OMP_CLAUSE_AFFINITY */
254 2, /* OMP_CLAUSE_ALIGNED */
255 3, /* OMP_CLAUSE_ALLOCATE */
256 1, /* OMP_CLAUSE_DEPEND */
257 1, /* OMP_CLAUSE_NONTEMPORAL */
258 1, /* OMP_CLAUSE_UNIFORM */
259 1, /* OMP_CLAUSE_ENTER */
260 1, /* OMP_CLAUSE_LINK */
261 1, /* OMP_CLAUSE_DETACH */
262 1, /* OMP_CLAUSE_USE_DEVICE_PTR */
263 1, /* OMP_CLAUSE_USE_DEVICE_ADDR */
264 1, /* OMP_CLAUSE_IS_DEVICE_PTR */
265 1, /* OMP_CLAUSE_INCLUSIVE */
266 1, /* OMP_CLAUSE_EXCLUSIVE */
267 2, /* OMP_CLAUSE_FROM */
268 2, /* OMP_CLAUSE_TO */
269 2, /* OMP_CLAUSE_MAP */
270 1, /* OMP_CLAUSE_HAS_DEVICE_ADDR */
271 1, /* OMP_CLAUSE_DOACROSS */
272 2, /* OMP_CLAUSE__CACHE_ */
273 2, /* OMP_CLAUSE_GANG */
274 1, /* OMP_CLAUSE_ASYNC */
275 1, /* OMP_CLAUSE_WAIT */
276 0, /* OMP_CLAUSE_AUTO */
277 0, /* OMP_CLAUSE_SEQ */
278 1, /* OMP_CLAUSE__LOOPTEMP_ */
279 1, /* OMP_CLAUSE__REDUCTEMP_ */
280 1, /* OMP_CLAUSE__CONDTEMP_ */
281 1, /* OMP_CLAUSE__SCANTEMP_ */
282 1, /* OMP_CLAUSE_IF */
283 1, /* OMP_CLAUSE_SELF */
284 1, /* OMP_CLAUSE_NUM_THREADS */
285 1, /* OMP_CLAUSE_SCHEDULE */
286 0, /* OMP_CLAUSE_NOWAIT */
287 1, /* OMP_CLAUSE_ORDERED */
288 0, /* OMP_CLAUSE_DEFAULT */
289 3, /* OMP_CLAUSE_COLLAPSE */
290 0, /* OMP_CLAUSE_UNTIED */
291 1, /* OMP_CLAUSE_FINAL */
292 0, /* OMP_CLAUSE_MERGEABLE */
293 1, /* OMP_CLAUSE_DEVICE */
294 1, /* OMP_CLAUSE_DIST_SCHEDULE */
295 0, /* OMP_CLAUSE_INBRANCH */
296 0, /* OMP_CLAUSE_NOTINBRANCH */
297 2, /* OMP_CLAUSE_NUM_TEAMS */
298 1, /* OMP_CLAUSE_THREAD_LIMIT */
299 0, /* OMP_CLAUSE_PROC_BIND */
300 1, /* OMP_CLAUSE_SAFELEN */
301 1, /* OMP_CLAUSE_SIMDLEN */
302 0, /* OMP_CLAUSE_DEVICE_TYPE */
303 0, /* OMP_CLAUSE_FOR */
304 0, /* OMP_CLAUSE_PARALLEL */
305 0, /* OMP_CLAUSE_SECTIONS */
306 0, /* OMP_CLAUSE_TASKGROUP */
307 1, /* OMP_CLAUSE_PRIORITY */
308 1, /* OMP_CLAUSE_GRAINSIZE */
309 1, /* OMP_CLAUSE_NUM_TASKS */
310 0, /* OMP_CLAUSE_NOGROUP */
311 0, /* OMP_CLAUSE_THREADS */
312 0, /* OMP_CLAUSE_SIMD */
313 1, /* OMP_CLAUSE_HINT */
314 0, /* OMP_CLAUSE_DEFAULTMAP */
315 0, /* OMP_CLAUSE_ORDER */
316 0, /* OMP_CLAUSE_BIND */
317 1, /* OMP_CLAUSE_FILTER */
318 1, /* OMP_CLAUSE_INDIRECT */
319 1, /* OMP_CLAUSE__SIMDUID_ */
320 0, /* OMP_CLAUSE__SIMT_ */
321 0, /* OMP_CLAUSE_INDEPENDENT */
322 1, /* OMP_CLAUSE_WORKER */
323 1, /* OMP_CLAUSE_VECTOR */
324 1, /* OMP_CLAUSE_NUM_GANGS */
325 1, /* OMP_CLAUSE_NUM_WORKERS */
326 1, /* OMP_CLAUSE_VECTOR_LENGTH */
327 3, /* OMP_CLAUSE_TILE */
328 0, /* OMP_CLAUSE_IF_PRESENT */
329 0, /* OMP_CLAUSE_FINALIZE */
330 0, /* OMP_CLAUSE_NOHOST */
331 };
332
333 const char * const omp_clause_code_name[] =
334 {
335 "error_clause",
336 "private",
337 "shared",
338 "firstprivate",
339 "lastprivate",
340 "reduction",
341 "task_reduction",
342 "in_reduction",
343 "copyin",
344 "copyprivate",
345 "linear",
346 "affinity",
347 "aligned",
348 "allocate",
349 "depend",
350 "nontemporal",
351 "uniform",
352 "enter",
353 "link",
354 "detach",
355 "use_device_ptr",
356 "use_device_addr",
357 "is_device_ptr",
358 "inclusive",
359 "exclusive",
360 "from",
361 "to",
362 "map",
363 "has_device_addr",
364 "doacross",
365 "_cache_",
366 "gang",
367 "async",
368 "wait",
369 "auto",
370 "seq",
371 "_looptemp_",
372 "_reductemp_",
373 "_condtemp_",
374 "_scantemp_",
375 "if",
376 "self",
377 "num_threads",
378 "schedule",
379 "nowait",
380 "ordered",
381 "default",
382 "collapse",
383 "untied",
384 "final",
385 "mergeable",
386 "device",
387 "dist_schedule",
388 "inbranch",
389 "notinbranch",
390 "num_teams",
391 "thread_limit",
392 "proc_bind",
393 "safelen",
394 "simdlen",
395 "device_type",
396 "for",
397 "parallel",
398 "sections",
399 "taskgroup",
400 "priority",
401 "grainsize",
402 "num_tasks",
403 "nogroup",
404 "threads",
405 "simd",
406 "hint",
407 "defaultmap",
408 "order",
409 "bind",
410 "filter",
411 "indirect",
412 "_simduid_",
413 "_simt_",
414 "independent",
415 "worker",
416 "vector",
417 "num_gangs",
418 "num_workers",
419 "vector_length",
420 "tile",
421 "if_present",
422 "finalize",
423 "nohost",
424 };
425
426 /* Unless specific to OpenACC, we tend to internally maintain OpenMP-centric
427 clause names, but for use in diagnostics etc. would like to use the "user"
428 clause names. */
429
430 const char *
431 user_omp_clause_code_name (tree clause, bool oacc)
432 {
433 /* For OpenACC, the 'OMP_CLAUSE_MAP_KIND' of an 'OMP_CLAUSE_MAP' is used to
434 distinguish clauses as seen by the user. See also where front ends do
435 'build_omp_clause' with 'OMP_CLAUSE_MAP'. */
436 if (oacc && OMP_CLAUSE_CODE (clause) == OMP_CLAUSE_MAP)
437 switch (OMP_CLAUSE_MAP_KIND (clause))
438 {
439 case GOMP_MAP_FORCE_ALLOC:
440 case GOMP_MAP_ALLOC: return "create";
441 case GOMP_MAP_FORCE_TO:
442 case GOMP_MAP_TO: return "copyin";
443 case GOMP_MAP_FORCE_FROM:
444 case GOMP_MAP_FROM: return "copyout";
445 case GOMP_MAP_FORCE_TOFROM:
446 case GOMP_MAP_TOFROM: return "copy";
447 case GOMP_MAP_RELEASE: return "delete";
448 case GOMP_MAP_FORCE_PRESENT: return "present";
449 case GOMP_MAP_ATTACH: return "attach";
450 case GOMP_MAP_FORCE_DETACH:
451 case GOMP_MAP_DETACH: return "detach";
452 case GOMP_MAP_DEVICE_RESIDENT: return "device_resident";
453 case GOMP_MAP_LINK: return "link";
454 case GOMP_MAP_FORCE_DEVICEPTR: return "deviceptr";
455 default: break;
456 }
457
458 return omp_clause_code_name[OMP_CLAUSE_CODE (clause)];
459 }
460
461
462 /* Return the tree node structure used by tree code CODE. */
463
464 static inline enum tree_node_structure_enum
465 tree_node_structure_for_code (enum tree_code code)
466 {
467 switch (TREE_CODE_CLASS (code))
468 {
469 case tcc_declaration:
470 switch (code)
471 {
472 case CONST_DECL: return TS_CONST_DECL;
473 case DEBUG_EXPR_DECL: return TS_DECL_WRTL;
474 case FIELD_DECL: return TS_FIELD_DECL;
475 case FUNCTION_DECL: return TS_FUNCTION_DECL;
476 case LABEL_DECL: return TS_LABEL_DECL;
477 case PARM_DECL: return TS_PARM_DECL;
478 case RESULT_DECL: return TS_RESULT_DECL;
479 case TRANSLATION_UNIT_DECL: return TS_TRANSLATION_UNIT_DECL;
480 case TYPE_DECL: return TS_TYPE_DECL;
481 case VAR_DECL: return TS_VAR_DECL;
482 default: return TS_DECL_NON_COMMON;
483 }
484
485 case tcc_type: return TS_TYPE_NON_COMMON;
486
487 case tcc_binary:
488 case tcc_comparison:
489 case tcc_expression:
490 case tcc_reference:
491 case tcc_statement:
492 case tcc_unary:
493 case tcc_vl_exp: return TS_EXP;
494
495 default: /* tcc_constant and tcc_exceptional */
496 break;
497 }
498
499 switch (code)
500 {
501 /* tcc_constant cases. */
502 case COMPLEX_CST: return TS_COMPLEX;
503 case FIXED_CST: return TS_FIXED_CST;
504 case INTEGER_CST: return TS_INT_CST;
505 case POLY_INT_CST: return TS_POLY_INT_CST;
506 case REAL_CST: return TS_REAL_CST;
507 case STRING_CST: return TS_STRING;
508 case VECTOR_CST: return TS_VECTOR;
509 case VOID_CST: return TS_TYPED;
510
511 /* tcc_exceptional cases. */
512 case BLOCK: return TS_BLOCK;
513 case CONSTRUCTOR: return TS_CONSTRUCTOR;
514 case ERROR_MARK: return TS_COMMON;
515 case IDENTIFIER_NODE: return TS_IDENTIFIER;
516 case OMP_CLAUSE: return TS_OMP_CLAUSE;
517 case OPTIMIZATION_NODE: return TS_OPTIMIZATION;
518 case PLACEHOLDER_EXPR: return TS_COMMON;
519 case SSA_NAME: return TS_SSA_NAME;
520 case STATEMENT_LIST: return TS_STATEMENT_LIST;
521 case TARGET_OPTION_NODE: return TS_TARGET_OPTION;
522 case TREE_BINFO: return TS_BINFO;
523 case TREE_LIST: return TS_LIST;
524 case TREE_VEC: return TS_VEC;
525
526 default:
527 gcc_unreachable ();
528 }
529 }
530
531
532 /* Initialize tree_contains_struct to describe the hierarchy of tree
533 nodes. */
534
535 static void
536 initialize_tree_contains_struct (void)
537 {
538 unsigned i;
539
540 for (i = ERROR_MARK; i < LAST_AND_UNUSED_TREE_CODE; i++)
541 {
542 enum tree_code code;
543 enum tree_node_structure_enum ts_code;
544
545 code = (enum tree_code) i;
546 ts_code = tree_node_structure_for_code (code);
547
548 /* Mark the TS structure itself. */
549 tree_contains_struct[code][ts_code] = 1;
550
551 /* Mark all the structures that TS is derived from. */
552 switch (ts_code)
553 {
554 case TS_TYPED:
555 case TS_BLOCK:
556 case TS_OPTIMIZATION:
557 case TS_TARGET_OPTION:
558 MARK_TS_BASE (code);
559 break;
560
561 case TS_COMMON:
562 case TS_INT_CST:
563 case TS_POLY_INT_CST:
564 case TS_REAL_CST:
565 case TS_FIXED_CST:
566 case TS_VECTOR:
567 case TS_STRING:
568 case TS_COMPLEX:
569 case TS_SSA_NAME:
570 case TS_CONSTRUCTOR:
571 case TS_EXP:
572 case TS_STATEMENT_LIST:
573 MARK_TS_TYPED (code);
574 break;
575
576 case TS_IDENTIFIER:
577 case TS_DECL_MINIMAL:
578 case TS_TYPE_COMMON:
579 case TS_LIST:
580 case TS_VEC:
581 case TS_BINFO:
582 case TS_OMP_CLAUSE:
583 MARK_TS_COMMON (code);
584 break;
585
586 case TS_TYPE_WITH_LANG_SPECIFIC:
587 MARK_TS_TYPE_COMMON (code);
588 break;
589
590 case TS_TYPE_NON_COMMON:
591 MARK_TS_TYPE_WITH_LANG_SPECIFIC (code);
592 break;
593
594 case TS_DECL_COMMON:
595 MARK_TS_DECL_MINIMAL (code);
596 break;
597
598 case TS_DECL_WRTL:
599 case TS_CONST_DECL:
600 MARK_TS_DECL_COMMON (code);
601 break;
602
603 case TS_DECL_NON_COMMON:
604 MARK_TS_DECL_WITH_VIS (code);
605 break;
606
607 case TS_DECL_WITH_VIS:
608 case TS_PARM_DECL:
609 case TS_LABEL_DECL:
610 case TS_RESULT_DECL:
611 MARK_TS_DECL_WRTL (code);
612 break;
613
614 case TS_FIELD_DECL:
615 MARK_TS_DECL_COMMON (code);
616 break;
617
618 case TS_VAR_DECL:
619 MARK_TS_DECL_WITH_VIS (code);
620 break;
621
622 case TS_TYPE_DECL:
623 case TS_FUNCTION_DECL:
624 MARK_TS_DECL_NON_COMMON (code);
625 break;
626
627 case TS_TRANSLATION_UNIT_DECL:
628 MARK_TS_DECL_COMMON (code);
629 break;
630
631 default:
632 gcc_unreachable ();
633 }
634 }
635
636 /* Basic consistency checks for attributes used in fold. */
637 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_NON_COMMON]);
638 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_NON_COMMON]);
639 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_COMMON]);
640 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_COMMON]);
641 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_COMMON]);
642 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_COMMON]);
643 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_COMMON]);
644 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_COMMON]);
645 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_COMMON]);
646 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_COMMON]);
647 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_COMMON]);
648 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WRTL]);
649 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_WRTL]);
650 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_WRTL]);
651 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WRTL]);
652 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_WRTL]);
653 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_MINIMAL]);
654 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_MINIMAL]);
655 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_MINIMAL]);
656 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_MINIMAL]);
657 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_MINIMAL]);
658 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_MINIMAL]);
659 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_MINIMAL]);
660 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_MINIMAL]);
661 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_MINIMAL]);
662 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WITH_VIS]);
663 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WITH_VIS]);
664 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_WITH_VIS]);
665 gcc_assert (tree_contains_struct[VAR_DECL][TS_VAR_DECL]);
666 gcc_assert (tree_contains_struct[FIELD_DECL][TS_FIELD_DECL]);
667 gcc_assert (tree_contains_struct[PARM_DECL][TS_PARM_DECL]);
668 gcc_assert (tree_contains_struct[LABEL_DECL][TS_LABEL_DECL]);
669 gcc_assert (tree_contains_struct[RESULT_DECL][TS_RESULT_DECL]);
670 gcc_assert (tree_contains_struct[CONST_DECL][TS_CONST_DECL]);
671 gcc_assert (tree_contains_struct[TYPE_DECL][TS_TYPE_DECL]);
672 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_FUNCTION_DECL]);
673 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_MINIMAL]);
674 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_COMMON]);
675 gcc_assert (tree_contains_struct[NAMELIST_DECL][TS_DECL_MINIMAL]);
676 gcc_assert (tree_contains_struct[NAMELIST_DECL][TS_DECL_COMMON]);
677 }
678
679
680 /* Init tree.cc. */
681
682 void
683 init_ttree (void)
684 {
685 /* Initialize the hash table of types. */
686 type_hash_table
687 = hash_table<type_cache_hasher>::create_ggc (TYPE_HASH_INITIAL_SIZE);
688
689 debug_expr_for_decl
690 = hash_table<tree_decl_map_cache_hasher>::create_ggc (512);
691
692 value_expr_for_decl
693 = hash_table<tree_decl_map_cache_hasher>::create_ggc (512);
694
695 int_cst_hash_table = hash_table<int_cst_hasher>::create_ggc (1024);
696
697 poly_int_cst_hash_table = hash_table<poly_int_cst_hasher>::create_ggc (64);
698
699 int_cst_node = make_int_cst (1, 1);
700
701 cl_option_hash_table = hash_table<cl_option_hasher>::create_ggc (64);
702
703 cl_optimization_node = make_node (OPTIMIZATION_NODE);
704 cl_target_option_node = make_node (TARGET_OPTION_NODE);
705
706 /* Initialize the tree_contains_struct array. */
707 initialize_tree_contains_struct ();
708 lang_hooks.init_ts ();
709 }
710
711 \f
712 /* The name of the object as the assembler will see it (but before any
713 translations made by ASM_OUTPUT_LABELREF). Often this is the same
714 as DECL_NAME. It is an IDENTIFIER_NODE. */
715 tree
716 decl_assembler_name (tree decl)
717 {
718 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
719 lang_hooks.set_decl_assembler_name (decl);
720 return DECL_ASSEMBLER_NAME_RAW (decl);
721 }
722
723 /* The DECL_ASSEMBLER_NAME_RAW of DECL is being explicitly set to NAME
724 (either of which may be NULL). Inform the FE, if this changes the
725 name. */
726
727 void
728 overwrite_decl_assembler_name (tree decl, tree name)
729 {
730 if (DECL_ASSEMBLER_NAME_RAW (decl) != name)
731 lang_hooks.overwrite_decl_assembler_name (decl, name);
732 }
733
734 /* Return true if DECL may need an assembler name to be set. */
735
736 static inline bool
737 need_assembler_name_p (tree decl)
738 {
739 /* We use DECL_ASSEMBLER_NAME to hold mangled type names for One Definition
740 Rule merging. This makes type_odr_p to return true on those types during
741 LTO and by comparing the mangled name, we can say what types are intended
742 to be equivalent across compilation unit.
743
744 We do not store names of type_in_anonymous_namespace_p.
745
746 Record, union and enumeration type have linkage that allows use
747 to check type_in_anonymous_namespace_p. We do not mangle compound types
748 that always can be compared structurally.
749
750 Similarly for builtin types, we compare properties of their main variant.
751 A special case are integer types where mangling do make differences
752 between char/signed char/unsigned char etc. Storing name for these makes
753 e.g. -fno-signed-char/-fsigned-char mismatches to be handled well.
754 See cp/mangle.cc:write_builtin_type for details. */
755
756 if (TREE_CODE (decl) == TYPE_DECL)
757 {
758 if (DECL_NAME (decl)
759 && decl == TYPE_NAME (TREE_TYPE (decl))
760 && TYPE_MAIN_VARIANT (TREE_TYPE (decl)) == TREE_TYPE (decl)
761 && !TYPE_ARTIFICIAL (TREE_TYPE (decl))
762 && ((TREE_CODE (TREE_TYPE (decl)) != RECORD_TYPE
763 && TREE_CODE (TREE_TYPE (decl)) != UNION_TYPE)
764 || TYPE_CXX_ODR_P (TREE_TYPE (decl)))
765 && (type_with_linkage_p (TREE_TYPE (decl))
766 || TREE_CODE (TREE_TYPE (decl)) == INTEGER_TYPE)
767 && !variably_modified_type_p (TREE_TYPE (decl), NULL_TREE))
768 return !DECL_ASSEMBLER_NAME_SET_P (decl);
769 return false;
770 }
771 /* Only FUNCTION_DECLs and VAR_DECLs are considered. */
772 if (!VAR_OR_FUNCTION_DECL_P (decl))
773 return false;
774
775 /* If DECL already has its assembler name set, it does not need a
776 new one. */
777 if (!HAS_DECL_ASSEMBLER_NAME_P (decl)
778 || DECL_ASSEMBLER_NAME_SET_P (decl))
779 return false;
780
781 /* Abstract decls do not need an assembler name. */
782 if (DECL_ABSTRACT_P (decl))
783 return false;
784
785 /* For VAR_DECLs, only static, public and external symbols need an
786 assembler name. */
787 if (VAR_P (decl)
788 && !TREE_STATIC (decl)
789 && !TREE_PUBLIC (decl)
790 && !DECL_EXTERNAL (decl))
791 return false;
792
793 if (TREE_CODE (decl) == FUNCTION_DECL)
794 {
795 /* Do not set assembler name on builtins. Allow RTL expansion to
796 decide whether to expand inline or via a regular call. */
797 if (fndecl_built_in_p (decl)
798 && DECL_BUILT_IN_CLASS (decl) != BUILT_IN_FRONTEND)
799 return false;
800
801 /* Functions represented in the callgraph need an assembler name. */
802 if (cgraph_node::get (decl) != NULL)
803 return true;
804
805 /* Unused and not public functions don't need an assembler name. */
806 if (!TREE_USED (decl) && !TREE_PUBLIC (decl))
807 return false;
808 }
809
810 return true;
811 }
812
813 /* If T needs an assembler name, have one created for it. */
814
815 void
816 assign_assembler_name_if_needed (tree t)
817 {
818 if (need_assembler_name_p (t))
819 {
820 /* When setting DECL_ASSEMBLER_NAME, the C++ mangler may emit
821 diagnostics that use input_location to show locus
822 information. The problem here is that, at this point,
823 input_location is generally anchored to the end of the file
824 (since the parser is long gone), so we don't have a good
825 position to pin it to.
826
827 To alleviate this problem, this uses the location of T's
828 declaration. Examples of this are
829 testsuite/g++.dg/template/cond2.C and
830 testsuite/g++.dg/template/pr35240.C. */
831 location_t saved_location = input_location;
832 input_location = DECL_SOURCE_LOCATION (t);
833
834 decl_assembler_name (t);
835
836 input_location = saved_location;
837 }
838 }
839
840 /* When the target supports COMDAT groups, this indicates which group the
841 DECL is associated with. This can be either an IDENTIFIER_NODE or a
842 decl, in which case its DECL_ASSEMBLER_NAME identifies the group. */
843 tree
844 decl_comdat_group (const_tree node)
845 {
846 struct symtab_node *snode = symtab_node::get (node);
847 if (!snode)
848 return NULL;
849 return snode->get_comdat_group ();
850 }
851
852 /* Likewise, but make sure it's been reduced to an IDENTIFIER_NODE. */
853 tree
854 decl_comdat_group_id (const_tree node)
855 {
856 struct symtab_node *snode = symtab_node::get (node);
857 if (!snode)
858 return NULL;
859 return snode->get_comdat_group_id ();
860 }
861
862 /* When the target supports named section, return its name as IDENTIFIER_NODE
863 or NULL if it is in no section. */
864 const char *
865 decl_section_name (const_tree node)
866 {
867 struct symtab_node *snode = symtab_node::get (node);
868 if (!snode)
869 return NULL;
870 return snode->get_section ();
871 }
872
873 /* Set section name of NODE to VALUE (that is expected to be
874 identifier node) */
875 void
876 set_decl_section_name (tree node, const char *value)
877 {
878 struct symtab_node *snode;
879
880 if (value == NULL)
881 {
882 snode = symtab_node::get (node);
883 if (!snode)
884 return;
885 }
886 else if (VAR_P (node))
887 snode = varpool_node::get_create (node);
888 else
889 snode = cgraph_node::get_create (node);
890 snode->set_section (value);
891 }
892
893 /* Set section name of NODE to match the section name of OTHER.
894
895 set_decl_section_name (decl, other) is equivalent to
896 set_decl_section_name (decl, DECL_SECTION_NAME (other)), but possibly more
897 efficient. */
898 void
899 set_decl_section_name (tree decl, const_tree other)
900 {
901 struct symtab_node *other_node = symtab_node::get (other);
902 if (other_node)
903 {
904 struct symtab_node *decl_node;
905 if (VAR_P (decl))
906 decl_node = varpool_node::get_create (decl);
907 else
908 decl_node = cgraph_node::get_create (decl);
909 decl_node->set_section (*other_node);
910 }
911 else
912 {
913 struct symtab_node *decl_node = symtab_node::get (decl);
914 if (!decl_node)
915 return;
916 decl_node->set_section (NULL);
917 }
918 }
919
920 /* Return TLS model of a variable NODE. */
921 enum tls_model
922 decl_tls_model (const_tree node)
923 {
924 struct varpool_node *snode = varpool_node::get (node);
925 if (!snode)
926 return TLS_MODEL_NONE;
927 return snode->tls_model;
928 }
929
930 /* Set TLS model of variable NODE to MODEL. */
931 void
932 set_decl_tls_model (tree node, enum tls_model model)
933 {
934 struct varpool_node *vnode;
935
936 if (model == TLS_MODEL_NONE)
937 {
938 vnode = varpool_node::get (node);
939 if (!vnode)
940 return;
941 }
942 else
943 vnode = varpool_node::get_create (node);
944 vnode->tls_model = model;
945 }
946
947 /* Compute the number of bytes occupied by a tree with code CODE.
948 This function cannot be used for nodes that have variable sizes,
949 including TREE_VEC, INTEGER_CST, STRING_CST, and CALL_EXPR. */
950 size_t
951 tree_code_size (enum tree_code code)
952 {
953 switch (TREE_CODE_CLASS (code))
954 {
955 case tcc_declaration: /* A decl node */
956 switch (code)
957 {
958 case FIELD_DECL: return sizeof (tree_field_decl);
959 case PARM_DECL: return sizeof (tree_parm_decl);
960 case VAR_DECL: return sizeof (tree_var_decl);
961 case LABEL_DECL: return sizeof (tree_label_decl);
962 case RESULT_DECL: return sizeof (tree_result_decl);
963 case CONST_DECL: return sizeof (tree_const_decl);
964 case TYPE_DECL: return sizeof (tree_type_decl);
965 case FUNCTION_DECL: return sizeof (tree_function_decl);
966 case DEBUG_EXPR_DECL: return sizeof (tree_decl_with_rtl);
967 case TRANSLATION_UNIT_DECL: return sizeof (tree_translation_unit_decl);
968 case NAMESPACE_DECL:
969 case IMPORTED_DECL:
970 case NAMELIST_DECL: return sizeof (tree_decl_non_common);
971 default:
972 gcc_checking_assert (code >= NUM_TREE_CODES);
973 return lang_hooks.tree_size (code);
974 }
975
976 case tcc_type: /* a type node */
977 switch (code)
978 {
979 case OFFSET_TYPE:
980 case ENUMERAL_TYPE:
981 case BOOLEAN_TYPE:
982 case INTEGER_TYPE:
983 case REAL_TYPE:
984 case OPAQUE_TYPE:
985 case POINTER_TYPE:
986 case REFERENCE_TYPE:
987 case NULLPTR_TYPE:
988 case FIXED_POINT_TYPE:
989 case COMPLEX_TYPE:
990 case VECTOR_TYPE:
991 case ARRAY_TYPE:
992 case RECORD_TYPE:
993 case UNION_TYPE:
994 case QUAL_UNION_TYPE:
995 case VOID_TYPE:
996 case FUNCTION_TYPE:
997 case METHOD_TYPE:
998 case BITINT_TYPE:
999 case LANG_TYPE: return sizeof (tree_type_non_common);
1000 default:
1001 gcc_checking_assert (code >= NUM_TREE_CODES);
1002 return lang_hooks.tree_size (code);
1003 }
1004
1005 case tcc_reference: /* a reference */
1006 case tcc_expression: /* an expression */
1007 case tcc_statement: /* an expression with side effects */
1008 case tcc_comparison: /* a comparison expression */
1009 case tcc_unary: /* a unary arithmetic expression */
1010 case tcc_binary: /* a binary arithmetic expression */
1011 return (sizeof (struct tree_exp)
1012 + (TREE_CODE_LENGTH (code) - 1) * sizeof (tree));
1013
1014 case tcc_constant: /* a constant */
1015 switch (code)
1016 {
1017 case VOID_CST: return sizeof (tree_typed);
1018 case INTEGER_CST: gcc_unreachable ();
1019 case POLY_INT_CST: return sizeof (tree_poly_int_cst);
1020 case REAL_CST: return sizeof (tree_real_cst);
1021 case FIXED_CST: return sizeof (tree_fixed_cst);
1022 case COMPLEX_CST: return sizeof (tree_complex);
1023 case VECTOR_CST: gcc_unreachable ();
1024 case STRING_CST: gcc_unreachable ();
1025 default:
1026 gcc_checking_assert (code >= NUM_TREE_CODES);
1027 return lang_hooks.tree_size (code);
1028 }
1029
1030 case tcc_exceptional: /* something random, like an identifier. */
1031 switch (code)
1032 {
1033 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
1034 case TREE_LIST: return sizeof (tree_list);
1035
1036 case ERROR_MARK:
1037 case PLACEHOLDER_EXPR: return sizeof (tree_common);
1038
1039 case TREE_VEC: gcc_unreachable ();
1040 case OMP_CLAUSE: gcc_unreachable ();
1041
1042 case SSA_NAME: return sizeof (tree_ssa_name);
1043
1044 case STATEMENT_LIST: return sizeof (tree_statement_list);
1045 case BLOCK: return sizeof (struct tree_block);
1046 case CONSTRUCTOR: return sizeof (tree_constructor);
1047 case OPTIMIZATION_NODE: return sizeof (tree_optimization_option);
1048 case TARGET_OPTION_NODE: return sizeof (tree_target_option);
1049
1050 default:
1051 gcc_checking_assert (code >= NUM_TREE_CODES);
1052 return lang_hooks.tree_size (code);
1053 }
1054
1055 default:
1056 gcc_unreachable ();
1057 }
1058 }
1059
1060 /* Compute the number of bytes occupied by NODE. This routine only
1061 looks at TREE_CODE, except for those nodes that have variable sizes. */
1062 size_t
1063 tree_size (const_tree node)
1064 {
1065 const enum tree_code code = TREE_CODE (node);
1066 switch (code)
1067 {
1068 case INTEGER_CST:
1069 return (sizeof (struct tree_int_cst)
1070 + (TREE_INT_CST_EXT_NUNITS (node) - 1) * sizeof (HOST_WIDE_INT));
1071
1072 case TREE_BINFO:
1073 return (offsetof (struct tree_binfo, base_binfos)
1074 + vec<tree, va_gc>
1075 ::embedded_size (BINFO_N_BASE_BINFOS (node)));
1076
1077 case TREE_VEC:
1078 return (sizeof (struct tree_vec)
1079 + (TREE_VEC_LENGTH (node) - 1) * sizeof (tree));
1080
1081 case VECTOR_CST:
1082 return (sizeof (struct tree_vector)
1083 + (vector_cst_encoded_nelts (node) - 1) * sizeof (tree));
1084
1085 case STRING_CST:
1086 return TREE_STRING_LENGTH (node) + offsetof (struct tree_string, str) + 1;
1087
1088 case OMP_CLAUSE:
1089 return (sizeof (struct tree_omp_clause)
1090 + (omp_clause_num_ops[OMP_CLAUSE_CODE (node)] - 1)
1091 * sizeof (tree));
1092
1093 default:
1094 if (TREE_CODE_CLASS (code) == tcc_vl_exp)
1095 return (sizeof (struct tree_exp)
1096 + (VL_EXP_OPERAND_LENGTH (node) - 1) * sizeof (tree));
1097 else
1098 return tree_code_size (code);
1099 }
1100 }
1101
1102 /* Return tree node kind based on tree CODE. */
1103
1104 static tree_node_kind
1105 get_stats_node_kind (enum tree_code code)
1106 {
1107 enum tree_code_class type = TREE_CODE_CLASS (code);
1108
1109 switch (type)
1110 {
1111 case tcc_declaration: /* A decl node */
1112 return d_kind;
1113 case tcc_type: /* a type node */
1114 return t_kind;
1115 case tcc_statement: /* an expression with side effects */
1116 return s_kind;
1117 case tcc_reference: /* a reference */
1118 return r_kind;
1119 case tcc_expression: /* an expression */
1120 case tcc_comparison: /* a comparison expression */
1121 case tcc_unary: /* a unary arithmetic expression */
1122 case tcc_binary: /* a binary arithmetic expression */
1123 return e_kind;
1124 case tcc_constant: /* a constant */
1125 return c_kind;
1126 case tcc_exceptional: /* something random, like an identifier. */
1127 switch (code)
1128 {
1129 case IDENTIFIER_NODE:
1130 return id_kind;
1131 case TREE_VEC:
1132 return vec_kind;
1133 case TREE_BINFO:
1134 return binfo_kind;
1135 case SSA_NAME:
1136 return ssa_name_kind;
1137 case BLOCK:
1138 return b_kind;
1139 case CONSTRUCTOR:
1140 return constr_kind;
1141 case OMP_CLAUSE:
1142 return omp_clause_kind;
1143 default:
1144 return x_kind;
1145 }
1146 break;
1147 case tcc_vl_exp:
1148 return e_kind;
1149 default:
1150 gcc_unreachable ();
1151 }
1152 }
1153
1154 /* Record interesting allocation statistics for a tree node with CODE
1155 and LENGTH. */
1156
1157 static void
1158 record_node_allocation_statistics (enum tree_code code, size_t length)
1159 {
1160 if (!GATHER_STATISTICS)
1161 return;
1162
1163 tree_node_kind kind = get_stats_node_kind (code);
1164
1165 tree_code_counts[(int) code]++;
1166 tree_node_counts[(int) kind]++;
1167 tree_node_sizes[(int) kind] += length;
1168 }
1169
1170 /* Allocate and return a new UID from the DECL_UID namespace. */
1171
1172 int
1173 allocate_decl_uid (void)
1174 {
1175 return next_decl_uid++;
1176 }
1177
1178 /* Return a newly allocated node of code CODE. For decl and type
1179 nodes, some other fields are initialized. The rest of the node is
1180 initialized to zero. This function cannot be used for TREE_VEC,
1181 INTEGER_CST or OMP_CLAUSE nodes, which is enforced by asserts in
1182 tree_code_size.
1183
1184 Achoo! I got a code in the node. */
1185
1186 tree
1187 make_node (enum tree_code code MEM_STAT_DECL)
1188 {
1189 tree t;
1190 enum tree_code_class type = TREE_CODE_CLASS (code);
1191 size_t length = tree_code_size (code);
1192
1193 record_node_allocation_statistics (code, length);
1194
1195 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
1196 TREE_SET_CODE (t, code);
1197
1198 switch (type)
1199 {
1200 case tcc_statement:
1201 if (code != DEBUG_BEGIN_STMT)
1202 TREE_SIDE_EFFECTS (t) = 1;
1203 break;
1204
1205 case tcc_declaration:
1206 if (CODE_CONTAINS_STRUCT (code, TS_DECL_COMMON))
1207 {
1208 if (code == FUNCTION_DECL)
1209 {
1210 SET_DECL_ALIGN (t, FUNCTION_ALIGNMENT (FUNCTION_BOUNDARY));
1211 SET_DECL_MODE (t, FUNCTION_MODE);
1212 }
1213 else
1214 SET_DECL_ALIGN (t, 1);
1215 }
1216 DECL_SOURCE_LOCATION (t) = input_location;
1217 if (TREE_CODE (t) == DEBUG_EXPR_DECL)
1218 DECL_UID (t) = --next_debug_decl_uid;
1219 else
1220 {
1221 DECL_UID (t) = allocate_decl_uid ();
1222 SET_DECL_PT_UID (t, -1);
1223 }
1224 if (TREE_CODE (t) == LABEL_DECL)
1225 LABEL_DECL_UID (t) = -1;
1226
1227 break;
1228
1229 case tcc_type:
1230 TYPE_UID (t) = next_type_uid++;
1231 SET_TYPE_ALIGN (t, BITS_PER_UNIT);
1232 TYPE_USER_ALIGN (t) = 0;
1233 TYPE_MAIN_VARIANT (t) = t;
1234 TYPE_CANONICAL (t) = t;
1235
1236 /* Default to no attributes for type, but let target change that. */
1237 TYPE_ATTRIBUTES (t) = NULL_TREE;
1238 targetm.set_default_type_attributes (t);
1239
1240 /* We have not yet computed the alias set for this type. */
1241 TYPE_ALIAS_SET (t) = -1;
1242 break;
1243
1244 case tcc_constant:
1245 TREE_CONSTANT (t) = 1;
1246 break;
1247
1248 case tcc_expression:
1249 switch (code)
1250 {
1251 case INIT_EXPR:
1252 case MODIFY_EXPR:
1253 case VA_ARG_EXPR:
1254 case PREDECREMENT_EXPR:
1255 case PREINCREMENT_EXPR:
1256 case POSTDECREMENT_EXPR:
1257 case POSTINCREMENT_EXPR:
1258 /* All of these have side-effects, no matter what their
1259 operands are. */
1260 TREE_SIDE_EFFECTS (t) = 1;
1261 break;
1262
1263 default:
1264 break;
1265 }
1266 break;
1267
1268 case tcc_exceptional:
1269 switch (code)
1270 {
1271 case TARGET_OPTION_NODE:
1272 TREE_TARGET_OPTION(t)
1273 = ggc_cleared_alloc<struct cl_target_option> ();
1274 break;
1275
1276 case OPTIMIZATION_NODE:
1277 TREE_OPTIMIZATION (t)
1278 = ggc_cleared_alloc<struct cl_optimization> ();
1279 break;
1280
1281 default:
1282 break;
1283 }
1284 break;
1285
1286 default:
1287 /* Other classes need no special treatment. */
1288 break;
1289 }
1290
1291 return t;
1292 }
1293
1294 /* Free tree node. */
1295
1296 void
1297 free_node (tree node)
1298 {
1299 enum tree_code code = TREE_CODE (node);
1300 if (GATHER_STATISTICS)
1301 {
1302 enum tree_node_kind kind = get_stats_node_kind (code);
1303
1304 gcc_checking_assert (tree_code_counts[(int) TREE_CODE (node)] != 0);
1305 gcc_checking_assert (tree_node_counts[(int) kind] != 0);
1306 gcc_checking_assert (tree_node_sizes[(int) kind] >= tree_size (node));
1307
1308 tree_code_counts[(int) TREE_CODE (node)]--;
1309 tree_node_counts[(int) kind]--;
1310 tree_node_sizes[(int) kind] -= tree_size (node);
1311 }
1312 if (CODE_CONTAINS_STRUCT (code, TS_CONSTRUCTOR))
1313 vec_free (CONSTRUCTOR_ELTS (node));
1314 else if (code == BLOCK)
1315 vec_free (BLOCK_NONLOCALIZED_VARS (node));
1316 else if (code == TREE_BINFO)
1317 vec_free (BINFO_BASE_ACCESSES (node));
1318 else if (code == OPTIMIZATION_NODE)
1319 cl_optimization_option_free (TREE_OPTIMIZATION (node));
1320 else if (code == TARGET_OPTION_NODE)
1321 cl_target_option_free (TREE_TARGET_OPTION (node));
1322 ggc_free (node);
1323 }
1324 \f
1325 /* Return a new node with the same contents as NODE except that its
1326 TREE_CHAIN, if it has one, is zero and it has a fresh uid. */
1327
1328 tree
1329 copy_node (tree node MEM_STAT_DECL)
1330 {
1331 tree t;
1332 enum tree_code code = TREE_CODE (node);
1333 size_t length;
1334
1335 gcc_assert (code != STATEMENT_LIST);
1336
1337 length = tree_size (node);
1338 record_node_allocation_statistics (code, length);
1339 t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
1340 memcpy (t, node, length);
1341
1342 if (CODE_CONTAINS_STRUCT (code, TS_COMMON))
1343 TREE_CHAIN (t) = 0;
1344 TREE_ASM_WRITTEN (t) = 0;
1345 TREE_VISITED (t) = 0;
1346
1347 if (TREE_CODE_CLASS (code) == tcc_declaration)
1348 {
1349 if (code == DEBUG_EXPR_DECL)
1350 DECL_UID (t) = --next_debug_decl_uid;
1351 else
1352 {
1353 DECL_UID (t) = allocate_decl_uid ();
1354 if (DECL_PT_UID_SET_P (node))
1355 SET_DECL_PT_UID (t, DECL_PT_UID (node));
1356 }
1357 if ((TREE_CODE (node) == PARM_DECL || VAR_P (node))
1358 && DECL_HAS_VALUE_EXPR_P (node))
1359 {
1360 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (node));
1361 DECL_HAS_VALUE_EXPR_P (t) = 1;
1362 }
1363 /* DECL_DEBUG_EXPR is copied explicitly by callers. */
1364 if (VAR_P (node))
1365 {
1366 DECL_HAS_DEBUG_EXPR_P (t) = 0;
1367 t->decl_with_vis.symtab_node = NULL;
1368 }
1369 if (VAR_P (node) && DECL_HAS_INIT_PRIORITY_P (node))
1370 {
1371 SET_DECL_INIT_PRIORITY (t, DECL_INIT_PRIORITY (node));
1372 DECL_HAS_INIT_PRIORITY_P (t) = 1;
1373 }
1374 if (TREE_CODE (node) == FUNCTION_DECL)
1375 {
1376 DECL_STRUCT_FUNCTION (t) = NULL;
1377 t->decl_with_vis.symtab_node = NULL;
1378 }
1379 }
1380 else if (TREE_CODE_CLASS (code) == tcc_type)
1381 {
1382 TYPE_UID (t) = next_type_uid++;
1383 /* The following is so that the debug code for
1384 the copy is different from the original type.
1385 The two statements usually duplicate each other
1386 (because they clear fields of the same union),
1387 but the optimizer should catch that. */
1388 TYPE_SYMTAB_ADDRESS (t) = 0;
1389 TYPE_SYMTAB_DIE (t) = 0;
1390
1391 /* Do not copy the values cache. */
1392 if (TYPE_CACHED_VALUES_P (t))
1393 {
1394 TYPE_CACHED_VALUES_P (t) = 0;
1395 TYPE_CACHED_VALUES (t) = NULL_TREE;
1396 }
1397 }
1398 else if (code == TARGET_OPTION_NODE)
1399 {
1400 TREE_TARGET_OPTION (t) = ggc_alloc<struct cl_target_option>();
1401 memcpy (TREE_TARGET_OPTION (t), TREE_TARGET_OPTION (node),
1402 sizeof (struct cl_target_option));
1403 }
1404 else if (code == OPTIMIZATION_NODE)
1405 {
1406 TREE_OPTIMIZATION (t) = ggc_alloc<struct cl_optimization>();
1407 memcpy (TREE_OPTIMIZATION (t), TREE_OPTIMIZATION (node),
1408 sizeof (struct cl_optimization));
1409 }
1410
1411 return t;
1412 }
1413
1414 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
1415 For example, this can copy a list made of TREE_LIST nodes. */
1416
1417 tree
1418 copy_list (tree list)
1419 {
1420 tree head;
1421 tree prev, next;
1422
1423 if (list == 0)
1424 return 0;
1425
1426 head = prev = copy_node (list);
1427 next = TREE_CHAIN (list);
1428 while (next)
1429 {
1430 TREE_CHAIN (prev) = copy_node (next);
1431 prev = TREE_CHAIN (prev);
1432 next = TREE_CHAIN (next);
1433 }
1434 return head;
1435 }
1436
1437 \f
1438 /* Return the value that TREE_INT_CST_EXT_NUNITS should have for an
1439 INTEGER_CST with value CST and type TYPE. */
1440
1441 static unsigned int
1442 get_int_cst_ext_nunits (tree type, const wide_int &cst)
1443 {
1444 gcc_checking_assert (cst.get_precision () == TYPE_PRECISION (type));
1445 /* We need extra HWIs if CST is an unsigned integer with its
1446 upper bit set. */
1447 if (TYPE_UNSIGNED (type) && wi::neg_p (cst))
1448 return cst.get_precision () / HOST_BITS_PER_WIDE_INT + 1;
1449 return cst.get_len ();
1450 }
1451
1452 /* Return a new INTEGER_CST with value CST and type TYPE. */
1453
1454 static tree
1455 build_new_int_cst (tree type, const wide_int &cst)
1456 {
1457 unsigned int len = cst.get_len ();
1458 unsigned int ext_len = get_int_cst_ext_nunits (type, cst);
1459 tree nt = make_int_cst (len, ext_len);
1460
1461 if (len < ext_len)
1462 {
1463 --ext_len;
1464 TREE_INT_CST_ELT (nt, ext_len)
1465 = zext_hwi (-1, cst.get_precision () % HOST_BITS_PER_WIDE_INT);
1466 for (unsigned int i = len; i < ext_len; ++i)
1467 TREE_INT_CST_ELT (nt, i) = -1;
1468 }
1469 else if (TYPE_UNSIGNED (type)
1470 && cst.get_precision () < len * HOST_BITS_PER_WIDE_INT)
1471 {
1472 len--;
1473 TREE_INT_CST_ELT (nt, len)
1474 = zext_hwi (cst.elt (len),
1475 cst.get_precision () % HOST_BITS_PER_WIDE_INT);
1476 }
1477
1478 for (unsigned int i = 0; i < len; i++)
1479 TREE_INT_CST_ELT (nt, i) = cst.elt (i);
1480 TREE_TYPE (nt) = type;
1481 return nt;
1482 }
1483
1484 /* Return a new POLY_INT_CST with coefficients COEFFS and type TYPE. */
1485
1486 static tree
1487 build_new_poly_int_cst (tree type, tree (&coeffs)[NUM_POLY_INT_COEFFS]
1488 CXX_MEM_STAT_INFO)
1489 {
1490 size_t length = sizeof (struct tree_poly_int_cst);
1491 record_node_allocation_statistics (POLY_INT_CST, length);
1492
1493 tree t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
1494
1495 TREE_SET_CODE (t, POLY_INT_CST);
1496 TREE_CONSTANT (t) = 1;
1497 TREE_TYPE (t) = type;
1498 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1499 POLY_INT_CST_COEFF (t, i) = coeffs[i];
1500 return t;
1501 }
1502
1503 /* Create a constant tree that contains CST sign-extended to TYPE. */
1504
1505 tree
1506 build_int_cst (tree type, poly_int64 cst)
1507 {
1508 /* Support legacy code. */
1509 if (!type)
1510 type = integer_type_node;
1511
1512 return wide_int_to_tree (type, wi::shwi (cst, TYPE_PRECISION (type)));
1513 }
1514
1515 /* Create a constant tree that contains CST zero-extended to TYPE. */
1516
1517 tree
1518 build_int_cstu (tree type, poly_uint64 cst)
1519 {
1520 return wide_int_to_tree (type, wi::uhwi (cst, TYPE_PRECISION (type)));
1521 }
1522
1523 /* Create a constant tree that contains CST sign-extended to TYPE. */
1524
1525 tree
1526 build_int_cst_type (tree type, poly_int64 cst)
1527 {
1528 gcc_assert (type);
1529 return wide_int_to_tree (type, wi::shwi (cst, TYPE_PRECISION (type)));
1530 }
1531
1532 /* Constructs tree in type TYPE from with value given by CST. Signedness
1533 of CST is assumed to be the same as the signedness of TYPE. */
1534
1535 tree
1536 double_int_to_tree (tree type, double_int cst)
1537 {
1538 return wide_int_to_tree (type, widest_int::from (cst, TYPE_SIGN (type)));
1539 }
1540
1541 /* We force the wide_int CST to the range of the type TYPE by sign or
1542 zero extending it. OVERFLOWABLE indicates if we are interested in
1543 overflow of the value, when >0 we are only interested in signed
1544 overflow, for <0 we are interested in any overflow. OVERFLOWED
1545 indicates whether overflow has already occurred. CONST_OVERFLOWED
1546 indicates whether constant overflow has already occurred. We force
1547 T's value to be within range of T's type (by setting to 0 or 1 all
1548 the bits outside the type's range). We set TREE_OVERFLOWED if,
1549 OVERFLOWED is nonzero,
1550 or OVERFLOWABLE is >0 and signed overflow occurs
1551 or OVERFLOWABLE is <0 and any overflow occurs
1552 We return a new tree node for the extended wide_int. The node
1553 is shared if no overflow flags are set. */
1554
1555
1556 tree
1557 force_fit_type (tree type, const poly_wide_int_ref &cst,
1558 int overflowable, bool overflowed)
1559 {
1560 signop sign = TYPE_SIGN (type);
1561
1562 /* If we need to set overflow flags, return a new unshared node. */
1563 if (overflowed || !wi::fits_to_tree_p (cst, type))
1564 {
1565 if (overflowed
1566 || overflowable < 0
1567 || (overflowable > 0 && sign == SIGNED))
1568 {
1569 poly_wide_int tmp = poly_wide_int::from (cst, TYPE_PRECISION (type),
1570 sign);
1571 tree t;
1572 if (tmp.is_constant ())
1573 t = build_new_int_cst (type, tmp.coeffs[0]);
1574 else
1575 {
1576 tree coeffs[NUM_POLY_INT_COEFFS];
1577 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1578 {
1579 coeffs[i] = build_new_int_cst (type, tmp.coeffs[i]);
1580 TREE_OVERFLOW (coeffs[i]) = 1;
1581 }
1582 t = build_new_poly_int_cst (type, coeffs);
1583 }
1584 TREE_OVERFLOW (t) = 1;
1585 return t;
1586 }
1587 }
1588
1589 /* Else build a shared node. */
1590 return wide_int_to_tree (type, cst);
1591 }
1592
1593 /* These are the hash table functions for the hash table of INTEGER_CST
1594 nodes of a sizetype. */
1595
1596 /* Return the hash code X, an INTEGER_CST. */
1597
1598 hashval_t
1599 int_cst_hasher::hash (tree x)
1600 {
1601 const_tree const t = x;
1602 hashval_t code = TYPE_UID (TREE_TYPE (t));
1603 int i;
1604
1605 for (i = 0; i < TREE_INT_CST_NUNITS (t); i++)
1606 code = iterative_hash_host_wide_int (TREE_INT_CST_ELT(t, i), code);
1607
1608 return code;
1609 }
1610
1611 /* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
1612 is the same as that given by *Y, which is the same. */
1613
1614 bool
1615 int_cst_hasher::equal (tree x, tree y)
1616 {
1617 const_tree const xt = x;
1618 const_tree const yt = y;
1619
1620 if (TREE_TYPE (xt) != TREE_TYPE (yt)
1621 || TREE_INT_CST_NUNITS (xt) != TREE_INT_CST_NUNITS (yt)
1622 || TREE_INT_CST_EXT_NUNITS (xt) != TREE_INT_CST_EXT_NUNITS (yt))
1623 return false;
1624
1625 for (int i = 0; i < TREE_INT_CST_NUNITS (xt); i++)
1626 if (TREE_INT_CST_ELT (xt, i) != TREE_INT_CST_ELT (yt, i))
1627 return false;
1628
1629 return true;
1630 }
1631
1632 /* Cache wide_int CST into the TYPE_CACHED_VALUES cache for TYPE.
1633 SLOT is the slot entry to store it in, and MAX_SLOTS is the maximum
1634 number of slots that can be cached for the type. */
1635
1636 static inline tree
1637 cache_wide_int_in_type_cache (tree type, const wide_int &cst,
1638 int slot, int max_slots)
1639 {
1640 gcc_checking_assert (slot >= 0);
1641 /* Initialize cache. */
1642 if (!TYPE_CACHED_VALUES_P (type))
1643 {
1644 TYPE_CACHED_VALUES_P (type) = 1;
1645 TYPE_CACHED_VALUES (type) = make_tree_vec (max_slots);
1646 }
1647 tree t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), slot);
1648 if (!t)
1649 {
1650 /* Create a new shared int. */
1651 t = build_new_int_cst (type, cst);
1652 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), slot) = t;
1653 }
1654 return t;
1655 }
1656
1657 /* Create an INT_CST node of TYPE and value CST.
1658 The returned node is always shared. For small integers we use a
1659 per-type vector cache, for larger ones we use a single hash table.
1660 The value is extended from its precision according to the sign of
1661 the type to be a multiple of HOST_BITS_PER_WIDE_INT. This defines
1662 the upper bits and ensures that hashing and value equality based
1663 upon the underlying HOST_WIDE_INTs works without masking. */
1664
1665 static tree
1666 wide_int_to_tree_1 (tree type, const wide_int_ref &pcst)
1667 {
1668 tree t;
1669 int ix = -1;
1670 int limit = 0;
1671
1672 gcc_assert (type);
1673 unsigned int prec = TYPE_PRECISION (type);
1674 signop sgn = TYPE_SIGN (type);
1675
1676 /* Verify that everything is canonical. */
1677 int l = pcst.get_len ();
1678 if (l > 1)
1679 {
1680 if (pcst.elt (l - 1) == 0)
1681 gcc_checking_assert (pcst.elt (l - 2) < 0);
1682 if (pcst.elt (l - 1) == HOST_WIDE_INT_M1)
1683 gcc_checking_assert (pcst.elt (l - 2) >= 0);
1684 }
1685
1686 wide_int cst = wide_int::from (pcst, prec, sgn);
1687 unsigned int ext_len = get_int_cst_ext_nunits (type, cst);
1688
1689 enum tree_code code = TREE_CODE (type);
1690 if (code == POINTER_TYPE || code == REFERENCE_TYPE)
1691 {
1692 /* Cache NULL pointer and zero bounds. */
1693 if (cst == 0)
1694 ix = 0;
1695 /* Cache upper bounds of pointers. */
1696 else if (cst == wi::max_value (prec, sgn))
1697 ix = 1;
1698 /* Cache 1 which is used for a non-zero range. */
1699 else if (cst == 1)
1700 ix = 2;
1701
1702 if (ix >= 0)
1703 {
1704 t = cache_wide_int_in_type_cache (type, cst, ix, 3);
1705 /* Make sure no one is clobbering the shared constant. */
1706 gcc_checking_assert (TREE_TYPE (t) == type
1707 && cst == wi::to_wide (t));
1708 return t;
1709 }
1710 }
1711 if (ext_len == 1)
1712 {
1713 /* We just need to store a single HOST_WIDE_INT. */
1714 HOST_WIDE_INT hwi;
1715 if (TYPE_UNSIGNED (type))
1716 hwi = cst.to_uhwi ();
1717 else
1718 hwi = cst.to_shwi ();
1719
1720 switch (code)
1721 {
1722 case NULLPTR_TYPE:
1723 gcc_assert (hwi == 0);
1724 /* Fallthru. */
1725
1726 case POINTER_TYPE:
1727 case REFERENCE_TYPE:
1728 /* Ignore pointers, as they were already handled above. */
1729 break;
1730
1731 case BOOLEAN_TYPE:
1732 /* Cache false or true. */
1733 limit = 2;
1734 if (IN_RANGE (hwi, 0, 1))
1735 ix = hwi;
1736 break;
1737
1738 case INTEGER_TYPE:
1739 case OFFSET_TYPE:
1740 case BITINT_TYPE:
1741 if (TYPE_SIGN (type) == UNSIGNED)
1742 {
1743 /* Cache [0, N). */
1744 limit = param_integer_share_limit;
1745 if (IN_RANGE (hwi, 0, param_integer_share_limit - 1))
1746 ix = hwi;
1747 }
1748 else
1749 {
1750 /* Cache [-1, N). */
1751 limit = param_integer_share_limit + 1;
1752 if (IN_RANGE (hwi, -1, param_integer_share_limit - 1))
1753 ix = hwi + 1;
1754 }
1755 break;
1756
1757 case ENUMERAL_TYPE:
1758 break;
1759
1760 default:
1761 gcc_unreachable ();
1762 }
1763
1764 if (ix >= 0)
1765 {
1766 t = cache_wide_int_in_type_cache (type, cst, ix, limit);
1767 /* Make sure no one is clobbering the shared constant. */
1768 gcc_checking_assert (TREE_TYPE (t) == type
1769 && TREE_INT_CST_NUNITS (t) == 1
1770 && TREE_INT_CST_EXT_NUNITS (t) == 1
1771 && TREE_INT_CST_ELT (t, 0) == hwi);
1772 return t;
1773 }
1774 else
1775 {
1776 /* Use the cache of larger shared ints, using int_cst_node as
1777 a temporary. */
1778
1779 TREE_INT_CST_ELT (int_cst_node, 0) = hwi;
1780 TREE_TYPE (int_cst_node) = type;
1781
1782 tree *slot = int_cst_hash_table->find_slot (int_cst_node, INSERT);
1783 t = *slot;
1784 if (!t)
1785 {
1786 /* Insert this one into the hash table. */
1787 t = int_cst_node;
1788 *slot = t;
1789 /* Make a new node for next time round. */
1790 int_cst_node = make_int_cst (1, 1);
1791 }
1792 }
1793 }
1794 else
1795 {
1796 /* The value either hashes properly or we drop it on the floor
1797 for the gc to take care of. There will not be enough of them
1798 to worry about. */
1799
1800 tree nt = build_new_int_cst (type, cst);
1801 tree *slot = int_cst_hash_table->find_slot (nt, INSERT);
1802 t = *slot;
1803 if (!t)
1804 {
1805 /* Insert this one into the hash table. */
1806 t = nt;
1807 *slot = t;
1808 }
1809 else
1810 ggc_free (nt);
1811 }
1812
1813 return t;
1814 }
1815
1816 hashval_t
1817 poly_int_cst_hasher::hash (tree t)
1818 {
1819 inchash::hash hstate;
1820
1821 hstate.add_int (TYPE_UID (TREE_TYPE (t)));
1822 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1823 hstate.add_wide_int (wi::to_wide (POLY_INT_CST_COEFF (t, i)));
1824
1825 return hstate.end ();
1826 }
1827
1828 bool
1829 poly_int_cst_hasher::equal (tree x, const compare_type &y)
1830 {
1831 if (TREE_TYPE (x) != y.first)
1832 return false;
1833 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1834 if (wi::to_wide (POLY_INT_CST_COEFF (x, i)) != y.second->coeffs[i])
1835 return false;
1836 return true;
1837 }
1838
1839 /* Build a POLY_INT_CST node with type TYPE and with the elements in VALUES.
1840 The elements must also have type TYPE. */
1841
1842 tree
1843 build_poly_int_cst (tree type, const poly_wide_int_ref &values)
1844 {
1845 unsigned int prec = TYPE_PRECISION (type);
1846 gcc_assert (prec <= values.coeffs[0].get_precision ());
1847 poly_wide_int c = poly_wide_int::from (values, prec, SIGNED);
1848
1849 inchash::hash h;
1850 h.add_int (TYPE_UID (type));
1851 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1852 h.add_wide_int (c.coeffs[i]);
1853 poly_int_cst_hasher::compare_type comp (type, &c);
1854 tree *slot = poly_int_cst_hash_table->find_slot_with_hash (comp, h.end (),
1855 INSERT);
1856 if (*slot == NULL_TREE)
1857 {
1858 tree coeffs[NUM_POLY_INT_COEFFS];
1859 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1860 coeffs[i] = wide_int_to_tree_1 (type, c.coeffs[i]);
1861 *slot = build_new_poly_int_cst (type, coeffs);
1862 }
1863 return *slot;
1864 }
1865
1866 /* Create a constant tree with value VALUE in type TYPE. */
1867
1868 tree
1869 wide_int_to_tree (tree type, const poly_wide_int_ref &value)
1870 {
1871 if (value.is_constant ())
1872 return wide_int_to_tree_1 (type, value.coeffs[0]);
1873 return build_poly_int_cst (type, value);
1874 }
1875
1876 /* Insert INTEGER_CST T into a cache of integer constants. And return
1877 the cached constant (which may or may not be T). If MIGHT_DUPLICATE
1878 is false, and T falls into the type's 'smaller values' range, there
1879 cannot be an existing entry. Otherwise, if MIGHT_DUPLICATE is true,
1880 or the value is large, should an existing entry exist, it is
1881 returned (rather than inserting T). */
1882
1883 tree
1884 cache_integer_cst (tree t, bool might_duplicate ATTRIBUTE_UNUSED)
1885 {
1886 tree type = TREE_TYPE (t);
1887 int ix = -1;
1888 int limit = 0;
1889 int prec = TYPE_PRECISION (type);
1890
1891 gcc_assert (!TREE_OVERFLOW (t));
1892
1893 /* The caching indices here must match those in
1894 wide_int_to_type_1. */
1895 switch (TREE_CODE (type))
1896 {
1897 case NULLPTR_TYPE:
1898 gcc_checking_assert (integer_zerop (t));
1899 /* Fallthru. */
1900
1901 case POINTER_TYPE:
1902 case REFERENCE_TYPE:
1903 {
1904 if (integer_zerop (t))
1905 ix = 0;
1906 else if (integer_onep (t))
1907 ix = 2;
1908
1909 if (ix >= 0)
1910 limit = 3;
1911 }
1912 break;
1913
1914 case BOOLEAN_TYPE:
1915 /* Cache false or true. */
1916 limit = 2;
1917 if (wi::ltu_p (wi::to_wide (t), 2))
1918 ix = TREE_INT_CST_ELT (t, 0);
1919 break;
1920
1921 case INTEGER_TYPE:
1922 case OFFSET_TYPE:
1923 case BITINT_TYPE:
1924 if (TYPE_UNSIGNED (type))
1925 {
1926 /* Cache 0..N */
1927 limit = param_integer_share_limit;
1928
1929 /* This is a little hokie, but if the prec is smaller than
1930 what is necessary to hold param_integer_share_limit, then the
1931 obvious test will not get the correct answer. */
1932 if (prec < HOST_BITS_PER_WIDE_INT)
1933 {
1934 if (tree_to_uhwi (t)
1935 < (unsigned HOST_WIDE_INT) param_integer_share_limit)
1936 ix = tree_to_uhwi (t);
1937 }
1938 else if (wi::ltu_p (wi::to_wide (t), param_integer_share_limit))
1939 ix = tree_to_uhwi (t);
1940 }
1941 else
1942 {
1943 /* Cache -1..N */
1944 limit = param_integer_share_limit + 1;
1945
1946 if (integer_minus_onep (t))
1947 ix = 0;
1948 else if (!wi::neg_p (wi::to_wide (t)))
1949 {
1950 if (prec < HOST_BITS_PER_WIDE_INT)
1951 {
1952 if (tree_to_shwi (t) < param_integer_share_limit)
1953 ix = tree_to_shwi (t) + 1;
1954 }
1955 else if (wi::ltu_p (wi::to_wide (t), param_integer_share_limit))
1956 ix = tree_to_shwi (t) + 1;
1957 }
1958 }
1959 break;
1960
1961 case ENUMERAL_TYPE:
1962 /* The slot used by TYPE_CACHED_VALUES is used for the enum
1963 members. */
1964 break;
1965
1966 default:
1967 gcc_unreachable ();
1968 }
1969
1970 if (ix >= 0)
1971 {
1972 /* Look for it in the type's vector of small shared ints. */
1973 if (!TYPE_CACHED_VALUES_P (type))
1974 {
1975 TYPE_CACHED_VALUES_P (type) = 1;
1976 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
1977 }
1978
1979 if (tree r = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix))
1980 {
1981 gcc_checking_assert (might_duplicate);
1982 t = r;
1983 }
1984 else
1985 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
1986 }
1987 else
1988 {
1989 /* Use the cache of larger shared ints. */
1990 tree *slot = int_cst_hash_table->find_slot (t, INSERT);
1991 if (tree r = *slot)
1992 {
1993 /* If there is already an entry for the number verify it's the
1994 same value. */
1995 gcc_checking_assert (wi::to_wide (tree (r)) == wi::to_wide (t));
1996 /* And return the cached value. */
1997 t = r;
1998 }
1999 else
2000 /* Otherwise insert this one into the hash table. */
2001 *slot = t;
2002 }
2003
2004 return t;
2005 }
2006
2007
2008 /* Builds an integer constant in TYPE such that lowest BITS bits are ones
2009 and the rest are zeros. */
2010
2011 tree
2012 build_low_bits_mask (tree type, unsigned bits)
2013 {
2014 gcc_assert (bits <= TYPE_PRECISION (type));
2015
2016 return wide_int_to_tree (type, wi::mask (bits, false,
2017 TYPE_PRECISION (type)));
2018 }
2019
2020 /* Checks that X is integer constant that can be expressed in (unsigned)
2021 HOST_WIDE_INT without loss of precision. */
2022
2023 bool
2024 cst_and_fits_in_hwi (const_tree x)
2025 {
2026 return (TREE_CODE (x) == INTEGER_CST
2027 && (tree_fits_shwi_p (x) || tree_fits_uhwi_p (x)));
2028 }
2029
2030 /* Build a newly constructed VECTOR_CST with the given values of
2031 (VECTOR_CST_)LOG2_NPATTERNS and (VECTOR_CST_)NELTS_PER_PATTERN. */
2032
2033 tree
2034 make_vector (unsigned log2_npatterns,
2035 unsigned int nelts_per_pattern MEM_STAT_DECL)
2036 {
2037 gcc_assert (IN_RANGE (nelts_per_pattern, 1, 3));
2038 tree t;
2039 unsigned npatterns = 1 << log2_npatterns;
2040 unsigned encoded_nelts = npatterns * nelts_per_pattern;
2041 unsigned length = (sizeof (struct tree_vector)
2042 + (encoded_nelts - 1) * sizeof (tree));
2043
2044 record_node_allocation_statistics (VECTOR_CST, length);
2045
2046 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
2047
2048 TREE_SET_CODE (t, VECTOR_CST);
2049 TREE_CONSTANT (t) = 1;
2050 VECTOR_CST_LOG2_NPATTERNS (t) = log2_npatterns;
2051 VECTOR_CST_NELTS_PER_PATTERN (t) = nelts_per_pattern;
2052
2053 return t;
2054 }
2055
2056 /* Return a new VECTOR_CST node whose type is TYPE and whose values
2057 are extracted from V, a vector of CONSTRUCTOR_ELT. */
2058
2059 tree
2060 build_vector_from_ctor (tree type, const vec<constructor_elt, va_gc> *v)
2061 {
2062 if (vec_safe_length (v) == 0)
2063 return build_zero_cst (type);
2064
2065 unsigned HOST_WIDE_INT idx, nelts;
2066 tree value;
2067
2068 /* We can't construct a VECTOR_CST for a variable number of elements. */
2069 nelts = TYPE_VECTOR_SUBPARTS (type).to_constant ();
2070 tree_vector_builder vec (type, nelts, 1);
2071 FOR_EACH_CONSTRUCTOR_VALUE (v, idx, value)
2072 {
2073 if (TREE_CODE (value) == VECTOR_CST)
2074 {
2075 /* If NELTS is constant then this must be too. */
2076 unsigned int sub_nelts = VECTOR_CST_NELTS (value).to_constant ();
2077 for (unsigned i = 0; i < sub_nelts; ++i)
2078 vec.quick_push (VECTOR_CST_ELT (value, i));
2079 }
2080 else
2081 vec.quick_push (value);
2082 }
2083 while (vec.length () < nelts)
2084 vec.quick_push (build_zero_cst (TREE_TYPE (type)));
2085
2086 return vec.build ();
2087 }
2088
2089 /* Build a vector of type VECTYPE where all the elements are SCs. */
2090 tree
2091 build_vector_from_val (tree vectype, tree sc)
2092 {
2093 unsigned HOST_WIDE_INT i, nunits;
2094
2095 if (sc == error_mark_node)
2096 return sc;
2097
2098 /* Verify that the vector type is suitable for SC. Note that there
2099 is some inconsistency in the type-system with respect to restrict
2100 qualifications of pointers. Vector types always have a main-variant
2101 element type and the qualification is applied to the vector-type.
2102 So TREE_TYPE (vector-type) does not return a properly qualified
2103 vector element-type. */
2104 gcc_checking_assert (types_compatible_p (TYPE_MAIN_VARIANT (TREE_TYPE (sc)),
2105 TREE_TYPE (vectype)));
2106
2107 if (CONSTANT_CLASS_P (sc))
2108 {
2109 tree_vector_builder v (vectype, 1, 1);
2110 v.quick_push (sc);
2111 return v.build ();
2112 }
2113 else if (!TYPE_VECTOR_SUBPARTS (vectype).is_constant (&nunits))
2114 return fold_build1 (VEC_DUPLICATE_EXPR, vectype, sc);
2115 else
2116 {
2117 vec<constructor_elt, va_gc> *v;
2118 vec_alloc (v, nunits);
2119 for (i = 0; i < nunits; ++i)
2120 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, sc);
2121 return build_constructor (vectype, v);
2122 }
2123 }
2124
2125 /* If TYPE is not a vector type, just return SC, otherwise return
2126 build_vector_from_val (TYPE, SC). */
2127
2128 tree
2129 build_uniform_cst (tree type, tree sc)
2130 {
2131 if (!VECTOR_TYPE_P (type))
2132 return sc;
2133
2134 return build_vector_from_val (type, sc);
2135 }
2136
2137 /* Build a vector series of type TYPE in which element I has the value
2138 BASE + I * STEP. The result is a constant if BASE and STEP are constant
2139 and a VEC_SERIES_EXPR otherwise. */
2140
2141 tree
2142 build_vec_series (tree type, tree base, tree step)
2143 {
2144 if (integer_zerop (step))
2145 return build_vector_from_val (type, base);
2146 if (TREE_CODE (base) == INTEGER_CST && TREE_CODE (step) == INTEGER_CST)
2147 {
2148 tree_vector_builder builder (type, 1, 3);
2149 tree elt1 = wide_int_to_tree (TREE_TYPE (base),
2150 wi::to_wide (base) + wi::to_wide (step));
2151 tree elt2 = wide_int_to_tree (TREE_TYPE (base),
2152 wi::to_wide (elt1) + wi::to_wide (step));
2153 builder.quick_push (base);
2154 builder.quick_push (elt1);
2155 builder.quick_push (elt2);
2156 return builder.build ();
2157 }
2158 return build2 (VEC_SERIES_EXPR, type, base, step);
2159 }
2160
2161 /* Return a vector with the same number of units and number of bits
2162 as VEC_TYPE, but in which the elements are a linear series of unsigned
2163 integers { BASE, BASE + STEP, BASE + STEP * 2, ... }. */
2164
2165 tree
2166 build_index_vector (tree vec_type, poly_uint64 base, poly_uint64 step)
2167 {
2168 tree index_vec_type = vec_type;
2169 tree index_elt_type = TREE_TYPE (vec_type);
2170 poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (vec_type);
2171 if (!INTEGRAL_TYPE_P (index_elt_type) || !TYPE_UNSIGNED (index_elt_type))
2172 {
2173 index_elt_type = build_nonstandard_integer_type
2174 (GET_MODE_BITSIZE (SCALAR_TYPE_MODE (index_elt_type)), true);
2175 index_vec_type = build_vector_type (index_elt_type, nunits);
2176 }
2177
2178 tree_vector_builder v (index_vec_type, 1, 3);
2179 for (unsigned int i = 0; i < 3; ++i)
2180 v.quick_push (build_int_cstu (index_elt_type, base + i * step));
2181 return v.build ();
2182 }
2183
2184 /* Return a VECTOR_CST of type VEC_TYPE in which the first NUM_A
2185 elements are A and the rest are B. */
2186
2187 tree
2188 build_vector_a_then_b (tree vec_type, unsigned int num_a, tree a, tree b)
2189 {
2190 gcc_assert (known_le (num_a, TYPE_VECTOR_SUBPARTS (vec_type)));
2191 unsigned int count = constant_lower_bound (TYPE_VECTOR_SUBPARTS (vec_type));
2192 /* Optimize the constant case. */
2193 if ((count & 1) == 0 && TYPE_VECTOR_SUBPARTS (vec_type).is_constant ())
2194 count /= 2;
2195 tree_vector_builder builder (vec_type, count, 2);
2196 for (unsigned int i = 0; i < count * 2; ++i)
2197 builder.quick_push (i < num_a ? a : b);
2198 return builder.build ();
2199 }
2200
2201 /* Something has messed with the elements of CONSTRUCTOR C after it was built;
2202 calculate TREE_CONSTANT and TREE_SIDE_EFFECTS. */
2203
2204 void
2205 recompute_constructor_flags (tree c)
2206 {
2207 unsigned int i;
2208 tree val;
2209 bool constant_p = true;
2210 bool side_effects_p = false;
2211 vec<constructor_elt, va_gc> *vals = CONSTRUCTOR_ELTS (c);
2212
2213 FOR_EACH_CONSTRUCTOR_VALUE (vals, i, val)
2214 {
2215 /* Mostly ctors will have elts that don't have side-effects, so
2216 the usual case is to scan all the elements. Hence a single
2217 loop for both const and side effects, rather than one loop
2218 each (with early outs). */
2219 if (!TREE_CONSTANT (val))
2220 constant_p = false;
2221 if (TREE_SIDE_EFFECTS (val))
2222 side_effects_p = true;
2223 }
2224
2225 TREE_SIDE_EFFECTS (c) = side_effects_p;
2226 TREE_CONSTANT (c) = constant_p;
2227 }
2228
2229 /* Make sure that TREE_CONSTANT and TREE_SIDE_EFFECTS are correct for
2230 CONSTRUCTOR C. */
2231
2232 void
2233 verify_constructor_flags (tree c)
2234 {
2235 unsigned int i;
2236 tree val;
2237 bool constant_p = TREE_CONSTANT (c);
2238 bool side_effects_p = TREE_SIDE_EFFECTS (c);
2239 vec<constructor_elt, va_gc> *vals = CONSTRUCTOR_ELTS (c);
2240
2241 FOR_EACH_CONSTRUCTOR_VALUE (vals, i, val)
2242 {
2243 if (constant_p && !TREE_CONSTANT (val))
2244 internal_error ("non-constant element in constant CONSTRUCTOR");
2245 if (!side_effects_p && TREE_SIDE_EFFECTS (val))
2246 internal_error ("side-effects element in no-side-effects CONSTRUCTOR");
2247 }
2248 }
2249
2250 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
2251 are in the vec pointed to by VALS. */
2252 tree
2253 build_constructor (tree type, vec<constructor_elt, va_gc> *vals MEM_STAT_DECL)
2254 {
2255 tree c = make_node (CONSTRUCTOR PASS_MEM_STAT);
2256
2257 TREE_TYPE (c) = type;
2258 CONSTRUCTOR_ELTS (c) = vals;
2259
2260 recompute_constructor_flags (c);
2261
2262 return c;
2263 }
2264
2265 /* Build a CONSTRUCTOR node made of a single initializer, with the specified
2266 INDEX and VALUE. */
2267 tree
2268 build_constructor_single (tree type, tree index, tree value)
2269 {
2270 vec<constructor_elt, va_gc> *v;
2271 constructor_elt elt = {index, value};
2272
2273 vec_alloc (v, 1);
2274 v->quick_push (elt);
2275
2276 return build_constructor (type, v);
2277 }
2278
2279
2280 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
2281 are in a list pointed to by VALS. */
2282 tree
2283 build_constructor_from_list (tree type, tree vals)
2284 {
2285 tree t;
2286 vec<constructor_elt, va_gc> *v = NULL;
2287
2288 if (vals)
2289 {
2290 vec_alloc (v, list_length (vals));
2291 for (t = vals; t; t = TREE_CHAIN (t))
2292 CONSTRUCTOR_APPEND_ELT (v, TREE_PURPOSE (t), TREE_VALUE (t));
2293 }
2294
2295 return build_constructor (type, v);
2296 }
2297
2298 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
2299 are in a vector pointed to by VALS. Note that the TREE_PURPOSE
2300 fields in the constructor remain null. */
2301
2302 tree
2303 build_constructor_from_vec (tree type, const vec<tree, va_gc> *vals)
2304 {
2305 vec<constructor_elt, va_gc> *v = NULL;
2306
2307 for (tree t : vals)
2308 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, t);
2309
2310 return build_constructor (type, v);
2311 }
2312
2313 /* Return a new CONSTRUCTOR node whose type is TYPE. NELTS is the number
2314 of elements, provided as index/value pairs. */
2315
2316 tree
2317 build_constructor_va (tree type, int nelts, ...)
2318 {
2319 vec<constructor_elt, va_gc> *v = NULL;
2320 va_list p;
2321
2322 va_start (p, nelts);
2323 vec_alloc (v, nelts);
2324 while (nelts--)
2325 {
2326 tree index = va_arg (p, tree);
2327 tree value = va_arg (p, tree);
2328 CONSTRUCTOR_APPEND_ELT (v, index, value);
2329 }
2330 va_end (p);
2331 return build_constructor (type, v);
2332 }
2333
2334 /* Return a node of type TYPE for which TREE_CLOBBER_P is true. */
2335
2336 tree
2337 build_clobber (tree type, enum clobber_kind kind)
2338 {
2339 tree clobber = build_constructor (type, NULL);
2340 TREE_THIS_VOLATILE (clobber) = true;
2341 CLOBBER_KIND (clobber) = kind;
2342 return clobber;
2343 }
2344
2345 /* Return a new FIXED_CST node whose type is TYPE and value is F. */
2346
2347 tree
2348 build_fixed (tree type, FIXED_VALUE_TYPE f)
2349 {
2350 tree v;
2351 FIXED_VALUE_TYPE *fp;
2352
2353 v = make_node (FIXED_CST);
2354 fp = ggc_alloc<fixed_value> ();
2355 memcpy (fp, &f, sizeof (FIXED_VALUE_TYPE));
2356
2357 TREE_TYPE (v) = type;
2358 TREE_FIXED_CST_PTR (v) = fp;
2359 return v;
2360 }
2361
2362 /* Return a new REAL_CST node whose type is TYPE and value is D. */
2363
2364 tree
2365 build_real (tree type, REAL_VALUE_TYPE d)
2366 {
2367 tree v;
2368 int overflow = 0;
2369
2370 /* dconst{0,1,2,m1,half} are used in various places in
2371 the middle-end and optimizers, allow them here
2372 even for decimal floating point types as an exception
2373 by converting them to decimal. */
2374 if (DECIMAL_FLOAT_MODE_P (TYPE_MODE (type))
2375 && (d.cl == rvc_normal || d.cl == rvc_zero)
2376 && !d.decimal)
2377 {
2378 if (memcmp (&d, &dconst1, sizeof (d)) == 0)
2379 decimal_real_from_string (&d, "1");
2380 else if (memcmp (&d, &dconst2, sizeof (d)) == 0)
2381 decimal_real_from_string (&d, "2");
2382 else if (memcmp (&d, &dconstm1, sizeof (d)) == 0)
2383 decimal_real_from_string (&d, "-1");
2384 else if (memcmp (&d, &dconsthalf, sizeof (d)) == 0)
2385 decimal_real_from_string (&d, "0.5");
2386 else if (memcmp (&d, &dconst0, sizeof (d)) == 0)
2387 {
2388 /* Make sure to give zero the minimum quantum exponent for
2389 the type (which corresponds to all bits zero). */
2390 const struct real_format *fmt = REAL_MODE_FORMAT (TYPE_MODE (type));
2391 char buf[16];
2392 sprintf (buf, "0e%d", fmt->emin - fmt->p);
2393 decimal_real_from_string (&d, buf);
2394 }
2395 else
2396 gcc_unreachable ();
2397 }
2398
2399 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
2400 Consider doing it via real_convert now. */
2401
2402 v = make_node (REAL_CST);
2403 TREE_TYPE (v) = type;
2404 memcpy (TREE_REAL_CST_PTR (v), &d, sizeof (REAL_VALUE_TYPE));
2405 TREE_OVERFLOW (v) = overflow;
2406 return v;
2407 }
2408
2409 /* Like build_real, but first truncate D to the type. */
2410
2411 tree
2412 build_real_truncate (tree type, REAL_VALUE_TYPE d)
2413 {
2414 return build_real (type, real_value_truncate (TYPE_MODE (type), d));
2415 }
2416
2417 /* Return a new REAL_CST node whose type is TYPE
2418 and whose value is the integer value of the INTEGER_CST node I. */
2419
2420 REAL_VALUE_TYPE
2421 real_value_from_int_cst (const_tree type, const_tree i)
2422 {
2423 REAL_VALUE_TYPE d;
2424
2425 /* Clear all bits of the real value type so that we can later do
2426 bitwise comparisons to see if two values are the same. */
2427 memset (&d, 0, sizeof d);
2428
2429 real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode, wi::to_wide (i),
2430 TYPE_SIGN (TREE_TYPE (i)));
2431 return d;
2432 }
2433
2434 /* Given a tree representing an integer constant I, return a tree
2435 representing the same value as a floating-point constant of type TYPE. */
2436
2437 tree
2438 build_real_from_int_cst (tree type, const_tree i)
2439 {
2440 tree v;
2441 int overflow = TREE_OVERFLOW (i);
2442
2443 v = build_real (type, real_value_from_int_cst (type, i));
2444
2445 TREE_OVERFLOW (v) |= overflow;
2446 return v;
2447 }
2448
2449 /* Return a new REAL_CST node whose type is TYPE
2450 and whose value is the integer value I which has sign SGN. */
2451
2452 tree
2453 build_real_from_wide (tree type, const wide_int_ref &i, signop sgn)
2454 {
2455 REAL_VALUE_TYPE d;
2456
2457 /* Clear all bits of the real value type so that we can later do
2458 bitwise comparisons to see if two values are the same. */
2459 memset (&d, 0, sizeof d);
2460
2461 real_from_integer (&d, TYPE_MODE (type), i, sgn);
2462 return build_real (type, d);
2463 }
2464
2465 /* Return a newly constructed STRING_CST node whose value is the LEN
2466 characters at STR when STR is nonnull, or all zeros otherwise.
2467 Note that for a C string literal, LEN should include the trailing NUL.
2468 The TREE_TYPE is not initialized. */
2469
2470 tree
2471 build_string (unsigned len, const char *str /*= NULL */)
2472 {
2473 /* Do not waste bytes provided by padding of struct tree_string. */
2474 unsigned size = len + offsetof (struct tree_string, str) + 1;
2475
2476 record_node_allocation_statistics (STRING_CST, size);
2477
2478 tree s = (tree) ggc_internal_alloc (size);
2479
2480 memset (s, 0, sizeof (struct tree_typed));
2481 TREE_SET_CODE (s, STRING_CST);
2482 TREE_CONSTANT (s) = 1;
2483 TREE_STRING_LENGTH (s) = len;
2484 if (str)
2485 memcpy (s->string.str, str, len);
2486 else
2487 memset (s->string.str, 0, len);
2488 s->string.str[len] = '\0';
2489
2490 return s;
2491 }
2492
2493 /* Return a newly constructed COMPLEX_CST node whose value is
2494 specified by the real and imaginary parts REAL and IMAG.
2495 Both REAL and IMAG should be constant nodes. TYPE, if specified,
2496 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
2497
2498 tree
2499 build_complex (tree type, tree real, tree imag)
2500 {
2501 gcc_assert (CONSTANT_CLASS_P (real));
2502 gcc_assert (CONSTANT_CLASS_P (imag));
2503
2504 tree t = make_node (COMPLEX_CST);
2505
2506 TREE_REALPART (t) = real;
2507 TREE_IMAGPART (t) = imag;
2508 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
2509 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
2510 return t;
2511 }
2512
2513 /* Build a complex (inf +- 0i), such as for the result of cproj.
2514 TYPE is the complex tree type of the result. If NEG is true, the
2515 imaginary zero is negative. */
2516
2517 tree
2518 build_complex_inf (tree type, bool neg)
2519 {
2520 REAL_VALUE_TYPE rzero = dconst0;
2521
2522 rzero.sign = neg;
2523 return build_complex (type, build_real (TREE_TYPE (type), dconstinf),
2524 build_real (TREE_TYPE (type), rzero));
2525 }
2526
2527 /* Return the constant 1 in type TYPE. If TYPE has several elements, each
2528 element is set to 1. In particular, this is 1 + i for complex types. */
2529
2530 tree
2531 build_each_one_cst (tree type)
2532 {
2533 if (TREE_CODE (type) == COMPLEX_TYPE)
2534 {
2535 tree scalar = build_one_cst (TREE_TYPE (type));
2536 return build_complex (type, scalar, scalar);
2537 }
2538 else
2539 return build_one_cst (type);
2540 }
2541
2542 /* Return a constant of arithmetic type TYPE which is the
2543 multiplicative identity of the set TYPE. */
2544
2545 tree
2546 build_one_cst (tree type)
2547 {
2548 switch (TREE_CODE (type))
2549 {
2550 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2551 case POINTER_TYPE: case REFERENCE_TYPE:
2552 case OFFSET_TYPE: case BITINT_TYPE:
2553 return build_int_cst (type, 1);
2554
2555 case REAL_TYPE:
2556 return build_real (type, dconst1);
2557
2558 case FIXED_POINT_TYPE:
2559 /* We can only generate 1 for accum types. */
2560 gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
2561 return build_fixed (type, FCONST1 (TYPE_MODE (type)));
2562
2563 case VECTOR_TYPE:
2564 {
2565 tree scalar = build_one_cst (TREE_TYPE (type));
2566
2567 return build_vector_from_val (type, scalar);
2568 }
2569
2570 case COMPLEX_TYPE:
2571 return build_complex (type,
2572 build_one_cst (TREE_TYPE (type)),
2573 build_zero_cst (TREE_TYPE (type)));
2574
2575 default:
2576 gcc_unreachable ();
2577 }
2578 }
2579
2580 /* Return an integer of type TYPE containing all 1's in as much precision as
2581 it contains, or a complex or vector whose subparts are such integers. */
2582
2583 tree
2584 build_all_ones_cst (tree type)
2585 {
2586 if (TREE_CODE (type) == COMPLEX_TYPE)
2587 {
2588 tree scalar = build_all_ones_cst (TREE_TYPE (type));
2589 return build_complex (type, scalar, scalar);
2590 }
2591 else
2592 return build_minus_one_cst (type);
2593 }
2594
2595 /* Return a constant of arithmetic type TYPE which is the
2596 opposite of the multiplicative identity of the set TYPE. */
2597
2598 tree
2599 build_minus_one_cst (tree type)
2600 {
2601 switch (TREE_CODE (type))
2602 {
2603 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2604 case POINTER_TYPE: case REFERENCE_TYPE:
2605 case OFFSET_TYPE: case BITINT_TYPE:
2606 return build_int_cst (type, -1);
2607
2608 case REAL_TYPE:
2609 return build_real (type, dconstm1);
2610
2611 case FIXED_POINT_TYPE:
2612 /* We can only generate 1 for accum types. */
2613 gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
2614 return build_fixed (type,
2615 fixed_from_double_int (double_int_minus_one,
2616 SCALAR_TYPE_MODE (type)));
2617
2618 case VECTOR_TYPE:
2619 {
2620 tree scalar = build_minus_one_cst (TREE_TYPE (type));
2621
2622 return build_vector_from_val (type, scalar);
2623 }
2624
2625 case COMPLEX_TYPE:
2626 return build_complex (type,
2627 build_minus_one_cst (TREE_TYPE (type)),
2628 build_zero_cst (TREE_TYPE (type)));
2629
2630 default:
2631 gcc_unreachable ();
2632 }
2633 }
2634
2635 /* Build 0 constant of type TYPE. This is used by constructor folding
2636 and thus the constant should be represented in memory by
2637 zero(es). */
2638
2639 tree
2640 build_zero_cst (tree type)
2641 {
2642 switch (TREE_CODE (type))
2643 {
2644 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2645 case POINTER_TYPE: case REFERENCE_TYPE:
2646 case OFFSET_TYPE: case NULLPTR_TYPE: case BITINT_TYPE:
2647 return build_int_cst (type, 0);
2648
2649 case REAL_TYPE:
2650 return build_real (type, dconst0);
2651
2652 case FIXED_POINT_TYPE:
2653 return build_fixed (type, FCONST0 (TYPE_MODE (type)));
2654
2655 case VECTOR_TYPE:
2656 {
2657 tree scalar = build_zero_cst (TREE_TYPE (type));
2658
2659 return build_vector_from_val (type, scalar);
2660 }
2661
2662 case COMPLEX_TYPE:
2663 {
2664 tree zero = build_zero_cst (TREE_TYPE (type));
2665
2666 return build_complex (type, zero, zero);
2667 }
2668
2669 default:
2670 if (!AGGREGATE_TYPE_P (type))
2671 return fold_convert (type, integer_zero_node);
2672 return build_constructor (type, NULL);
2673 }
2674 }
2675
2676 /* Build a constant of integer type TYPE, made of VALUE's bits replicated
2677 every WIDTH bits to fit TYPE's precision. */
2678
2679 tree
2680 build_replicated_int_cst (tree type, unsigned int width, HOST_WIDE_INT value)
2681 {
2682 int n = ((TYPE_PRECISION (type) + HOST_BITS_PER_WIDE_INT - 1)
2683 / HOST_BITS_PER_WIDE_INT);
2684 unsigned HOST_WIDE_INT low, mask;
2685 HOST_WIDE_INT a[WIDE_INT_MAX_INL_ELTS];
2686 int i;
2687
2688 gcc_assert (n && n <= WIDE_INT_MAX_INL_ELTS);
2689
2690 if (width == HOST_BITS_PER_WIDE_INT)
2691 low = value;
2692 else
2693 {
2694 mask = (HOST_WIDE_INT_1U << width) - 1;
2695 low = (unsigned HOST_WIDE_INT) ~0 / mask * (value & mask);
2696 }
2697
2698 for (i = 0; i < n; i++)
2699 a[i] = low;
2700
2701 gcc_assert (TYPE_PRECISION (type) <= MAX_BITSIZE_MODE_ANY_INT);
2702 return wide_int_to_tree (type, wide_int::from_array (a, n,
2703 TYPE_PRECISION (type)));
2704 }
2705
2706 /* If floating-point type TYPE has an IEEE-style sign bit, return an
2707 unsigned constant in which only the sign bit is set. Return null
2708 otherwise. */
2709
2710 tree
2711 sign_mask_for (tree type)
2712 {
2713 /* Avoid having to choose between a real-only sign and a pair of signs.
2714 This could be relaxed if the choice becomes obvious later. */
2715 if (TREE_CODE (type) == COMPLEX_TYPE)
2716 return NULL_TREE;
2717
2718 auto eltmode = as_a<scalar_float_mode> (element_mode (type));
2719 auto bits = REAL_MODE_FORMAT (eltmode)->ieee_bits;
2720 if (!bits || !pow2p_hwi (bits))
2721 return NULL_TREE;
2722
2723 tree inttype = unsigned_type_for (type);
2724 if (!inttype)
2725 return NULL_TREE;
2726
2727 auto mask = wi::set_bit_in_zero (bits - 1, bits);
2728 if (VECTOR_TYPE_P (inttype))
2729 {
2730 tree elt = wide_int_to_tree (TREE_TYPE (inttype), mask);
2731 return build_vector_from_val (inttype, elt);
2732 }
2733 return wide_int_to_tree (inttype, mask);
2734 }
2735
2736 /* Build a BINFO with LEN language slots. */
2737
2738 tree
2739 make_tree_binfo (unsigned base_binfos MEM_STAT_DECL)
2740 {
2741 tree t;
2742 size_t length = (offsetof (struct tree_binfo, base_binfos)
2743 + vec<tree, va_gc>::embedded_size (base_binfos));
2744
2745 record_node_allocation_statistics (TREE_BINFO, length);
2746
2747 t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
2748
2749 memset (t, 0, offsetof (struct tree_binfo, base_binfos));
2750
2751 TREE_SET_CODE (t, TREE_BINFO);
2752
2753 BINFO_BASE_BINFOS (t)->embedded_init (base_binfos);
2754
2755 return t;
2756 }
2757
2758 /* Create a CASE_LABEL_EXPR tree node and return it. */
2759
2760 tree
2761 build_case_label (tree low_value, tree high_value, tree label_decl)
2762 {
2763 tree t = make_node (CASE_LABEL_EXPR);
2764
2765 TREE_TYPE (t) = void_type_node;
2766 SET_EXPR_LOCATION (t, DECL_SOURCE_LOCATION (label_decl));
2767
2768 CASE_LOW (t) = low_value;
2769 CASE_HIGH (t) = high_value;
2770 CASE_LABEL (t) = label_decl;
2771 CASE_CHAIN (t) = NULL_TREE;
2772
2773 return t;
2774 }
2775
2776 /* Build a newly constructed INTEGER_CST node. LEN and EXT_LEN are the
2777 values of TREE_INT_CST_NUNITS and TREE_INT_CST_EXT_NUNITS respectively.
2778 The latter determines the length of the HOST_WIDE_INT vector. */
2779
2780 tree
2781 make_int_cst (int len, int ext_len MEM_STAT_DECL)
2782 {
2783 tree t;
2784 int length = ((ext_len - 1) * sizeof (HOST_WIDE_INT)
2785 + sizeof (struct tree_int_cst));
2786
2787 gcc_assert (len);
2788 record_node_allocation_statistics (INTEGER_CST, length);
2789
2790 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
2791
2792 TREE_SET_CODE (t, INTEGER_CST);
2793 TREE_INT_CST_NUNITS (t) = len;
2794 TREE_INT_CST_EXT_NUNITS (t) = ext_len;
2795 TREE_CONSTANT (t) = 1;
2796
2797 return t;
2798 }
2799
2800 /* Build a newly constructed TREE_VEC node of length LEN. */
2801
2802 tree
2803 make_tree_vec (int len MEM_STAT_DECL)
2804 {
2805 tree t;
2806 size_t length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
2807
2808 record_node_allocation_statistics (TREE_VEC, length);
2809
2810 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
2811
2812 TREE_SET_CODE (t, TREE_VEC);
2813 TREE_VEC_LENGTH (t) = len;
2814
2815 return t;
2816 }
2817
2818 /* Grow a TREE_VEC node to new length LEN. */
2819
2820 tree
2821 grow_tree_vec (tree v, int len MEM_STAT_DECL)
2822 {
2823 gcc_assert (TREE_CODE (v) == TREE_VEC);
2824
2825 int oldlen = TREE_VEC_LENGTH (v);
2826 gcc_assert (len > oldlen);
2827
2828 size_t oldlength = (oldlen - 1) * sizeof (tree) + sizeof (struct tree_vec);
2829 size_t length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
2830
2831 record_node_allocation_statistics (TREE_VEC, length - oldlength);
2832
2833 v = (tree) ggc_realloc (v, length PASS_MEM_STAT);
2834
2835 TREE_VEC_LENGTH (v) = len;
2836
2837 return v;
2838 }
2839 \f
2840 /* Return true if EXPR is the constant zero, whether it is integral, float or
2841 fixed, and scalar, complex or vector. */
2842
2843 bool
2844 zerop (const_tree expr)
2845 {
2846 return (integer_zerop (expr)
2847 || real_zerop (expr)
2848 || fixed_zerop (expr));
2849 }
2850
2851 /* Return true if EXPR is the integer constant zero or a complex constant
2852 of zero, or a location wrapper for such a constant. */
2853
2854 bool
2855 integer_zerop (const_tree expr)
2856 {
2857 STRIP_ANY_LOCATION_WRAPPER (expr);
2858
2859 switch (TREE_CODE (expr))
2860 {
2861 case INTEGER_CST:
2862 return wi::to_wide (expr) == 0;
2863 case COMPLEX_CST:
2864 return (integer_zerop (TREE_REALPART (expr))
2865 && integer_zerop (TREE_IMAGPART (expr)));
2866 case VECTOR_CST:
2867 return (VECTOR_CST_NPATTERNS (expr) == 1
2868 && VECTOR_CST_DUPLICATE_P (expr)
2869 && integer_zerop (VECTOR_CST_ENCODED_ELT (expr, 0)));
2870 default:
2871 return false;
2872 }
2873 }
2874
2875 /* Return true if EXPR is the integer constant one or the corresponding
2876 complex constant, or a location wrapper for such a constant. */
2877
2878 bool
2879 integer_onep (const_tree expr)
2880 {
2881 STRIP_ANY_LOCATION_WRAPPER (expr);
2882
2883 switch (TREE_CODE (expr))
2884 {
2885 case INTEGER_CST:
2886 return wi::eq_p (wi::to_widest (expr), 1);
2887 case COMPLEX_CST:
2888 return (integer_onep (TREE_REALPART (expr))
2889 && integer_zerop (TREE_IMAGPART (expr)));
2890 case VECTOR_CST:
2891 return (VECTOR_CST_NPATTERNS (expr) == 1
2892 && VECTOR_CST_DUPLICATE_P (expr)
2893 && integer_onep (VECTOR_CST_ENCODED_ELT (expr, 0)));
2894 default:
2895 return false;
2896 }
2897 }
2898
2899 /* Return true if EXPR is the integer constant one. For complex and vector,
2900 return true if every piece is the integer constant one.
2901 Also return true for location wrappers for such a constant. */
2902
2903 bool
2904 integer_each_onep (const_tree expr)
2905 {
2906 STRIP_ANY_LOCATION_WRAPPER (expr);
2907
2908 if (TREE_CODE (expr) == COMPLEX_CST)
2909 return (integer_onep (TREE_REALPART (expr))
2910 && integer_onep (TREE_IMAGPART (expr)));
2911 else
2912 return integer_onep (expr);
2913 }
2914
2915 /* Return true if EXPR is an integer containing all 1's in as much precision
2916 as it contains, or a complex or vector whose subparts are such integers,
2917 or a location wrapper for such a constant. */
2918
2919 bool
2920 integer_all_onesp (const_tree expr)
2921 {
2922 STRIP_ANY_LOCATION_WRAPPER (expr);
2923
2924 if (TREE_CODE (expr) == COMPLEX_CST
2925 && integer_all_onesp (TREE_REALPART (expr))
2926 && integer_all_onesp (TREE_IMAGPART (expr)))
2927 return true;
2928
2929 else if (TREE_CODE (expr) == VECTOR_CST)
2930 return (VECTOR_CST_NPATTERNS (expr) == 1
2931 && VECTOR_CST_DUPLICATE_P (expr)
2932 && integer_all_onesp (VECTOR_CST_ENCODED_ELT (expr, 0)));
2933
2934 else if (TREE_CODE (expr) != INTEGER_CST)
2935 return false;
2936
2937 return (wi::max_value (TYPE_PRECISION (TREE_TYPE (expr)), UNSIGNED)
2938 == wi::to_wide (expr));
2939 }
2940
2941 /* Return true if EXPR is the integer constant minus one, or a location
2942 wrapper for such a constant. */
2943
2944 bool
2945 integer_minus_onep (const_tree expr)
2946 {
2947 STRIP_ANY_LOCATION_WRAPPER (expr);
2948
2949 if (TREE_CODE (expr) == COMPLEX_CST)
2950 return (integer_all_onesp (TREE_REALPART (expr))
2951 && integer_zerop (TREE_IMAGPART (expr)));
2952 else
2953 return integer_all_onesp (expr);
2954 }
2955
2956 /* Return true if EXPR is an integer constant that is a power of 2 (i.e., has
2957 only one bit on), or a location wrapper for such a constant. */
2958
2959 bool
2960 integer_pow2p (const_tree expr)
2961 {
2962 STRIP_ANY_LOCATION_WRAPPER (expr);
2963
2964 if (TREE_CODE (expr) == COMPLEX_CST
2965 && integer_pow2p (TREE_REALPART (expr))
2966 && integer_zerop (TREE_IMAGPART (expr)))
2967 return true;
2968
2969 if (TREE_CODE (expr) != INTEGER_CST)
2970 return false;
2971
2972 return wi::popcount (wi::to_wide (expr)) == 1;
2973 }
2974
2975 /* Return true if EXPR is an integer constant other than zero or a
2976 complex constant other than zero, or a location wrapper for such a
2977 constant. */
2978
2979 bool
2980 integer_nonzerop (const_tree expr)
2981 {
2982 STRIP_ANY_LOCATION_WRAPPER (expr);
2983
2984 return ((TREE_CODE (expr) == INTEGER_CST
2985 && wi::to_wide (expr) != 0)
2986 || (TREE_CODE (expr) == COMPLEX_CST
2987 && (integer_nonzerop (TREE_REALPART (expr))
2988 || integer_nonzerop (TREE_IMAGPART (expr)))));
2989 }
2990
2991 /* Return true if EXPR is the integer constant one. For vector,
2992 return true if every piece is the integer constant minus one
2993 (representing the value TRUE).
2994 Also return true for location wrappers for such a constant. */
2995
2996 bool
2997 integer_truep (const_tree expr)
2998 {
2999 STRIP_ANY_LOCATION_WRAPPER (expr);
3000
3001 if (TREE_CODE (expr) == VECTOR_CST)
3002 return integer_all_onesp (expr);
3003 return integer_onep (expr);
3004 }
3005
3006 /* Return true if EXPR is the fixed-point constant zero, or a location wrapper
3007 for such a constant. */
3008
3009 bool
3010 fixed_zerop (const_tree expr)
3011 {
3012 STRIP_ANY_LOCATION_WRAPPER (expr);
3013
3014 return (TREE_CODE (expr) == FIXED_CST
3015 && TREE_FIXED_CST (expr).data.is_zero ());
3016 }
3017
3018 /* Return the power of two represented by a tree node known to be a
3019 power of two. */
3020
3021 int
3022 tree_log2 (const_tree expr)
3023 {
3024 if (TREE_CODE (expr) == COMPLEX_CST)
3025 return tree_log2 (TREE_REALPART (expr));
3026
3027 return wi::exact_log2 (wi::to_wide (expr));
3028 }
3029
3030 /* Similar, but return the largest integer Y such that 2 ** Y is less
3031 than or equal to EXPR. */
3032
3033 int
3034 tree_floor_log2 (const_tree expr)
3035 {
3036 if (TREE_CODE (expr) == COMPLEX_CST)
3037 return tree_log2 (TREE_REALPART (expr));
3038
3039 return wi::floor_log2 (wi::to_wide (expr));
3040 }
3041
3042 /* Return number of known trailing zero bits in EXPR, or, if the value of
3043 EXPR is known to be zero, the precision of it's type. */
3044
3045 unsigned int
3046 tree_ctz (const_tree expr)
3047 {
3048 if (!INTEGRAL_TYPE_P (TREE_TYPE (expr))
3049 && !POINTER_TYPE_P (TREE_TYPE (expr)))
3050 return 0;
3051
3052 unsigned int ret1, ret2, prec = TYPE_PRECISION (TREE_TYPE (expr));
3053 switch (TREE_CODE (expr))
3054 {
3055 case INTEGER_CST:
3056 ret1 = wi::ctz (wi::to_wide (expr));
3057 return MIN (ret1, prec);
3058 case SSA_NAME:
3059 ret1 = wi::ctz (get_nonzero_bits (expr));
3060 return MIN (ret1, prec);
3061 case PLUS_EXPR:
3062 case MINUS_EXPR:
3063 case BIT_IOR_EXPR:
3064 case BIT_XOR_EXPR:
3065 case MIN_EXPR:
3066 case MAX_EXPR:
3067 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
3068 if (ret1 == 0)
3069 return ret1;
3070 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
3071 return MIN (ret1, ret2);
3072 case POINTER_PLUS_EXPR:
3073 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
3074 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
3075 /* Second operand is sizetype, which could be in theory
3076 wider than pointer's precision. Make sure we never
3077 return more than prec. */
3078 ret2 = MIN (ret2, prec);
3079 return MIN (ret1, ret2);
3080 case BIT_AND_EXPR:
3081 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
3082 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
3083 return MAX (ret1, ret2);
3084 case MULT_EXPR:
3085 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
3086 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
3087 return MIN (ret1 + ret2, prec);
3088 case LSHIFT_EXPR:
3089 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
3090 if (tree_fits_uhwi_p (TREE_OPERAND (expr, 1))
3091 && (tree_to_uhwi (TREE_OPERAND (expr, 1)) < prec))
3092 {
3093 ret2 = tree_to_uhwi (TREE_OPERAND (expr, 1));
3094 return MIN (ret1 + ret2, prec);
3095 }
3096 return ret1;
3097 case RSHIFT_EXPR:
3098 if (tree_fits_uhwi_p (TREE_OPERAND (expr, 1))
3099 && (tree_to_uhwi (TREE_OPERAND (expr, 1)) < prec))
3100 {
3101 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
3102 ret2 = tree_to_uhwi (TREE_OPERAND (expr, 1));
3103 if (ret1 > ret2)
3104 return ret1 - ret2;
3105 }
3106 return 0;
3107 case TRUNC_DIV_EXPR:
3108 case CEIL_DIV_EXPR:
3109 case FLOOR_DIV_EXPR:
3110 case ROUND_DIV_EXPR:
3111 case EXACT_DIV_EXPR:
3112 if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
3113 && tree_int_cst_sgn (TREE_OPERAND (expr, 1)) == 1)
3114 {
3115 int l = tree_log2 (TREE_OPERAND (expr, 1));
3116 if (l >= 0)
3117 {
3118 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
3119 ret2 = l;
3120 if (ret1 > ret2)
3121 return ret1 - ret2;
3122 }
3123 }
3124 return 0;
3125 CASE_CONVERT:
3126 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
3127 if (ret1 && ret1 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (expr, 0))))
3128 ret1 = prec;
3129 return MIN (ret1, prec);
3130 case SAVE_EXPR:
3131 return tree_ctz (TREE_OPERAND (expr, 0));
3132 case COND_EXPR:
3133 ret1 = tree_ctz (TREE_OPERAND (expr, 1));
3134 if (ret1 == 0)
3135 return 0;
3136 ret2 = tree_ctz (TREE_OPERAND (expr, 2));
3137 return MIN (ret1, ret2);
3138 case COMPOUND_EXPR:
3139 return tree_ctz (TREE_OPERAND (expr, 1));
3140 case ADDR_EXPR:
3141 ret1 = get_pointer_alignment (CONST_CAST_TREE (expr));
3142 if (ret1 > BITS_PER_UNIT)
3143 {
3144 ret1 = ctz_hwi (ret1 / BITS_PER_UNIT);
3145 return MIN (ret1, prec);
3146 }
3147 return 0;
3148 default:
3149 return 0;
3150 }
3151 }
3152
3153 /* Return true if EXPR is the real constant zero. Trailing zeroes matter for
3154 decimal float constants, so don't return true for them.
3155 Also return true for location wrappers around such a constant. */
3156
3157 bool
3158 real_zerop (const_tree expr)
3159 {
3160 STRIP_ANY_LOCATION_WRAPPER (expr);
3161
3162 switch (TREE_CODE (expr))
3163 {
3164 case REAL_CST:
3165 return real_equal (&TREE_REAL_CST (expr), &dconst0)
3166 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
3167 case COMPLEX_CST:
3168 return real_zerop (TREE_REALPART (expr))
3169 && real_zerop (TREE_IMAGPART (expr));
3170 case VECTOR_CST:
3171 {
3172 /* Don't simply check for a duplicate because the predicate
3173 accepts both +0.0 and -0.0. */
3174 unsigned count = vector_cst_encoded_nelts (expr);
3175 for (unsigned int i = 0; i < count; ++i)
3176 if (!real_zerop (VECTOR_CST_ENCODED_ELT (expr, i)))
3177 return false;
3178 return true;
3179 }
3180 default:
3181 return false;
3182 }
3183 }
3184
3185 /* Return true if EXPR is the real constant one in real or complex form.
3186 Trailing zeroes matter for decimal float constants, so don't return
3187 true for them.
3188 Also return true for location wrappers around such a constant. */
3189
3190 bool
3191 real_onep (const_tree expr)
3192 {
3193 STRIP_ANY_LOCATION_WRAPPER (expr);
3194
3195 switch (TREE_CODE (expr))
3196 {
3197 case REAL_CST:
3198 return real_equal (&TREE_REAL_CST (expr), &dconst1)
3199 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
3200 case COMPLEX_CST:
3201 return real_onep (TREE_REALPART (expr))
3202 && real_zerop (TREE_IMAGPART (expr));
3203 case VECTOR_CST:
3204 return (VECTOR_CST_NPATTERNS (expr) == 1
3205 && VECTOR_CST_DUPLICATE_P (expr)
3206 && real_onep (VECTOR_CST_ENCODED_ELT (expr, 0)));
3207 default:
3208 return false;
3209 }
3210 }
3211
3212 /* Return true if EXPR is the real constant minus one. Trailing zeroes
3213 matter for decimal float constants, so don't return true for them.
3214 Also return true for location wrappers around such a constant. */
3215
3216 bool
3217 real_minus_onep (const_tree expr)
3218 {
3219 STRIP_ANY_LOCATION_WRAPPER (expr);
3220
3221 switch (TREE_CODE (expr))
3222 {
3223 case REAL_CST:
3224 return real_equal (&TREE_REAL_CST (expr), &dconstm1)
3225 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
3226 case COMPLEX_CST:
3227 return real_minus_onep (TREE_REALPART (expr))
3228 && real_zerop (TREE_IMAGPART (expr));
3229 case VECTOR_CST:
3230 return (VECTOR_CST_NPATTERNS (expr) == 1
3231 && VECTOR_CST_DUPLICATE_P (expr)
3232 && real_minus_onep (VECTOR_CST_ENCODED_ELT (expr, 0)));
3233 default:
3234 return false;
3235 }
3236 }
3237
3238 /* Return true if T could be a floating point zero. */
3239
3240 bool
3241 real_maybe_zerop (const_tree expr)
3242 {
3243 switch (TREE_CODE (expr))
3244 {
3245 case REAL_CST:
3246 /* Can't use real_zerop here, as it always returns false for decimal
3247 floats. And can't use TREE_REAL_CST (expr).cl == rvc_zero
3248 either, as decimal zeros are rvc_normal. */
3249 return real_equal (&TREE_REAL_CST (expr), &dconst0);
3250 case COMPLEX_CST:
3251 return (real_maybe_zerop (TREE_REALPART (expr))
3252 || real_maybe_zerop (TREE_IMAGPART (expr)));
3253 case VECTOR_CST:
3254 {
3255 unsigned count = vector_cst_encoded_nelts (expr);
3256 for (unsigned int i = 0; i < count; ++i)
3257 if (real_maybe_zerop (VECTOR_CST_ENCODED_ELT (expr, i)))
3258 return true;
3259 return false;
3260 }
3261 default:
3262 /* Perhaps for SSA_NAMEs we could query frange. */
3263 return true;
3264 }
3265 }
3266
3267 /* True if EXP is a constant or a cast of a constant. */
3268
3269 bool
3270 really_constant_p (const_tree exp)
3271 {
3272 /* This is not quite the same as STRIP_NOPS. It does more. */
3273 while (CONVERT_EXPR_P (exp)
3274 || TREE_CODE (exp) == NON_LVALUE_EXPR)
3275 exp = TREE_OPERAND (exp, 0);
3276 return TREE_CONSTANT (exp);
3277 }
3278
3279 /* Return true if T holds a polynomial pointer difference, storing it in
3280 *VALUE if so. A true return means that T's precision is no greater
3281 than 64 bits, which is the largest address space we support, so *VALUE
3282 never loses precision. However, the signedness of the result does
3283 not necessarily match the signedness of T: sometimes an unsigned type
3284 like sizetype is used to encode a value that is actually negative. */
3285
3286 bool
3287 ptrdiff_tree_p (const_tree t, poly_int64 *value)
3288 {
3289 if (!t)
3290 return false;
3291 if (TREE_CODE (t) == INTEGER_CST)
3292 {
3293 if (!cst_and_fits_in_hwi (t))
3294 return false;
3295 *value = int_cst_value (t);
3296 return true;
3297 }
3298 if (POLY_INT_CST_P (t))
3299 {
3300 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
3301 if (!cst_and_fits_in_hwi (POLY_INT_CST_COEFF (t, i)))
3302 return false;
3303 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
3304 value->coeffs[i] = int_cst_value (POLY_INT_CST_COEFF (t, i));
3305 return true;
3306 }
3307 return false;
3308 }
3309
3310 poly_int64
3311 tree_to_poly_int64 (const_tree t)
3312 {
3313 gcc_assert (tree_fits_poly_int64_p (t));
3314 if (POLY_INT_CST_P (t))
3315 return poly_int_cst_value (t).force_shwi ();
3316 return TREE_INT_CST_LOW (t);
3317 }
3318
3319 poly_uint64
3320 tree_to_poly_uint64 (const_tree t)
3321 {
3322 gcc_assert (tree_fits_poly_uint64_p (t));
3323 if (POLY_INT_CST_P (t))
3324 return poly_int_cst_value (t).force_uhwi ();
3325 return TREE_INT_CST_LOW (t);
3326 }
3327 \f
3328 /* Return first list element whose TREE_VALUE is ELEM.
3329 Return 0 if ELEM is not in LIST. */
3330
3331 tree
3332 value_member (tree elem, tree list)
3333 {
3334 while (list)
3335 {
3336 if (elem == TREE_VALUE (list))
3337 return list;
3338 list = TREE_CHAIN (list);
3339 }
3340 return NULL_TREE;
3341 }
3342
3343 /* Return first list element whose TREE_PURPOSE is ELEM.
3344 Return 0 if ELEM is not in LIST. */
3345
3346 tree
3347 purpose_member (const_tree elem, tree list)
3348 {
3349 while (list)
3350 {
3351 if (elem == TREE_PURPOSE (list))
3352 return list;
3353 list = TREE_CHAIN (list);
3354 }
3355 return NULL_TREE;
3356 }
3357
3358 /* Return true if ELEM is in V. */
3359
3360 bool
3361 vec_member (const_tree elem, vec<tree, va_gc> *v)
3362 {
3363 unsigned ix;
3364 tree t;
3365 FOR_EACH_VEC_SAFE_ELT (v, ix, t)
3366 if (elem == t)
3367 return true;
3368 return false;
3369 }
3370
3371 /* Returns element number IDX (zero-origin) of chain CHAIN, or
3372 NULL_TREE. */
3373
3374 tree
3375 chain_index (int idx, tree chain)
3376 {
3377 for (; chain && idx > 0; --idx)
3378 chain = TREE_CHAIN (chain);
3379 return chain;
3380 }
3381
3382 /* Return true if ELEM is part of the chain CHAIN. */
3383
3384 bool
3385 chain_member (const_tree elem, const_tree chain)
3386 {
3387 while (chain)
3388 {
3389 if (elem == chain)
3390 return true;
3391 chain = DECL_CHAIN (chain);
3392 }
3393
3394 return false;
3395 }
3396
3397 /* Return the length of a chain of nodes chained through TREE_CHAIN.
3398 We expect a null pointer to mark the end of the chain.
3399 This is the Lisp primitive `length'. */
3400
3401 int
3402 list_length (const_tree t)
3403 {
3404 const_tree p = t;
3405 #ifdef ENABLE_TREE_CHECKING
3406 const_tree q = t;
3407 #endif
3408 int len = 0;
3409
3410 while (p)
3411 {
3412 p = TREE_CHAIN (p);
3413 #ifdef ENABLE_TREE_CHECKING
3414 if (len % 2)
3415 q = TREE_CHAIN (q);
3416 gcc_assert (p != q);
3417 #endif
3418 len++;
3419 }
3420
3421 return len;
3422 }
3423
3424 /* Returns the first FIELD_DECL in the TYPE_FIELDS of the RECORD_TYPE or
3425 UNION_TYPE TYPE, or NULL_TREE if none. */
3426
3427 tree
3428 first_field (const_tree type)
3429 {
3430 tree t = TYPE_FIELDS (type);
3431 while (t && TREE_CODE (t) != FIELD_DECL)
3432 t = TREE_CHAIN (t);
3433 return t;
3434 }
3435
3436 /* Returns the last FIELD_DECL in the TYPE_FIELDS of the RECORD_TYPE or
3437 UNION_TYPE TYPE, or NULL_TREE if none. */
3438
3439 tree
3440 last_field (const_tree type)
3441 {
3442 tree last = NULL_TREE;
3443
3444 for (tree fld = TYPE_FIELDS (type); fld; fld = TREE_CHAIN (fld))
3445 {
3446 if (TREE_CODE (fld) != FIELD_DECL)
3447 continue;
3448
3449 last = fld;
3450 }
3451
3452 return last;
3453 }
3454
3455 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
3456 by modifying the last node in chain 1 to point to chain 2.
3457 This is the Lisp primitive `nconc'. */
3458
3459 tree
3460 chainon (tree op1, tree op2)
3461 {
3462 tree t1;
3463
3464 if (!op1)
3465 return op2;
3466 if (!op2)
3467 return op1;
3468
3469 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
3470 continue;
3471 TREE_CHAIN (t1) = op2;
3472
3473 #ifdef ENABLE_TREE_CHECKING
3474 {
3475 tree t2;
3476 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
3477 gcc_assert (t2 != t1);
3478 }
3479 #endif
3480
3481 return op1;
3482 }
3483
3484 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
3485
3486 tree
3487 tree_last (tree chain)
3488 {
3489 tree next;
3490 if (chain)
3491 while ((next = TREE_CHAIN (chain)))
3492 chain = next;
3493 return chain;
3494 }
3495
3496 /* Reverse the order of elements in the chain T,
3497 and return the new head of the chain (old last element). */
3498
3499 tree
3500 nreverse (tree t)
3501 {
3502 tree prev = 0, decl, next;
3503 for (decl = t; decl; decl = next)
3504 {
3505 /* We shouldn't be using this function to reverse BLOCK chains; we
3506 have blocks_nreverse for that. */
3507 gcc_checking_assert (TREE_CODE (decl) != BLOCK);
3508 next = TREE_CHAIN (decl);
3509 TREE_CHAIN (decl) = prev;
3510 prev = decl;
3511 }
3512 return prev;
3513 }
3514 \f
3515 /* Return a newly created TREE_LIST node whose
3516 purpose and value fields are PARM and VALUE. */
3517
3518 tree
3519 build_tree_list (tree parm, tree value MEM_STAT_DECL)
3520 {
3521 tree t = make_node (TREE_LIST PASS_MEM_STAT);
3522 TREE_PURPOSE (t) = parm;
3523 TREE_VALUE (t) = value;
3524 return t;
3525 }
3526
3527 /* Build a chain of TREE_LIST nodes from a vector. */
3528
3529 tree
3530 build_tree_list_vec (const vec<tree, va_gc> *vec MEM_STAT_DECL)
3531 {
3532 tree ret = NULL_TREE;
3533 tree *pp = &ret;
3534 unsigned int i;
3535 tree t;
3536 FOR_EACH_VEC_SAFE_ELT (vec, i, t)
3537 {
3538 *pp = build_tree_list (NULL, t PASS_MEM_STAT);
3539 pp = &TREE_CHAIN (*pp);
3540 }
3541 return ret;
3542 }
3543
3544 /* Return a newly created TREE_LIST node whose
3545 purpose and value fields are PURPOSE and VALUE
3546 and whose TREE_CHAIN is CHAIN. */
3547
3548 tree
3549 tree_cons (tree purpose, tree value, tree chain MEM_STAT_DECL)
3550 {
3551 tree node;
3552
3553 node = ggc_alloc_tree_node_stat (sizeof (struct tree_list) PASS_MEM_STAT);
3554 memset (node, 0, sizeof (struct tree_common));
3555
3556 record_node_allocation_statistics (TREE_LIST, sizeof (struct tree_list));
3557
3558 TREE_SET_CODE (node, TREE_LIST);
3559 TREE_CHAIN (node) = chain;
3560 TREE_PURPOSE (node) = purpose;
3561 TREE_VALUE (node) = value;
3562 return node;
3563 }
3564
3565 /* Return the values of the elements of a CONSTRUCTOR as a vector of
3566 trees. */
3567
3568 vec<tree, va_gc> *
3569 ctor_to_vec (tree ctor)
3570 {
3571 vec<tree, va_gc> *vec;
3572 vec_alloc (vec, CONSTRUCTOR_NELTS (ctor));
3573 unsigned int ix;
3574 tree val;
3575
3576 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (ctor), ix, val)
3577 vec->quick_push (val);
3578
3579 return vec;
3580 }
3581 \f
3582 /* Return the size nominally occupied by an object of type TYPE
3583 when it resides in memory. The value is measured in units of bytes,
3584 and its data type is that normally used for type sizes
3585 (which is the first type created by make_signed_type or
3586 make_unsigned_type). */
3587
3588 tree
3589 size_in_bytes_loc (location_t loc, const_tree type)
3590 {
3591 tree t;
3592
3593 if (type == error_mark_node)
3594 return integer_zero_node;
3595
3596 type = TYPE_MAIN_VARIANT (type);
3597 t = TYPE_SIZE_UNIT (type);
3598
3599 if (t == 0)
3600 {
3601 lang_hooks.types.incomplete_type_error (loc, NULL_TREE, type);
3602 return size_zero_node;
3603 }
3604
3605 return t;
3606 }
3607
3608 /* Return the size of TYPE (in bytes) as a wide integer
3609 or return -1 if the size can vary or is larger than an integer. */
3610
3611 HOST_WIDE_INT
3612 int_size_in_bytes (const_tree type)
3613 {
3614 tree t;
3615
3616 if (type == error_mark_node)
3617 return 0;
3618
3619 type = TYPE_MAIN_VARIANT (type);
3620 t = TYPE_SIZE_UNIT (type);
3621
3622 if (t && tree_fits_uhwi_p (t))
3623 return TREE_INT_CST_LOW (t);
3624 else
3625 return -1;
3626 }
3627
3628 /* Return the maximum size of TYPE (in bytes) as a wide integer
3629 or return -1 if the size can vary or is larger than an integer. */
3630
3631 HOST_WIDE_INT
3632 max_int_size_in_bytes (const_tree type)
3633 {
3634 HOST_WIDE_INT size = -1;
3635 tree size_tree;
3636
3637 /* If this is an array type, check for a possible MAX_SIZE attached. */
3638
3639 if (TREE_CODE (type) == ARRAY_TYPE)
3640 {
3641 size_tree = TYPE_ARRAY_MAX_SIZE (type);
3642
3643 if (size_tree && tree_fits_uhwi_p (size_tree))
3644 size = tree_to_uhwi (size_tree);
3645 }
3646
3647 /* If we still haven't been able to get a size, see if the language
3648 can compute a maximum size. */
3649
3650 if (size == -1)
3651 {
3652 size_tree = lang_hooks.types.max_size (type);
3653
3654 if (size_tree && tree_fits_uhwi_p (size_tree))
3655 size = tree_to_uhwi (size_tree);
3656 }
3657
3658 return size;
3659 }
3660 \f
3661 /* Return the bit position of FIELD, in bits from the start of the record.
3662 This is a tree of type bitsizetype. */
3663
3664 tree
3665 bit_position (const_tree field)
3666 {
3667 return bit_from_pos (DECL_FIELD_OFFSET (field),
3668 DECL_FIELD_BIT_OFFSET (field));
3669 }
3670 \f
3671 /* Return the byte position of FIELD, in bytes from the start of the record.
3672 This is a tree of type sizetype. */
3673
3674 tree
3675 byte_position (const_tree field)
3676 {
3677 return byte_from_pos (DECL_FIELD_OFFSET (field),
3678 DECL_FIELD_BIT_OFFSET (field));
3679 }
3680
3681 /* Likewise, but return as an integer. It must be representable in
3682 that way (since it could be a signed value, we don't have the
3683 option of returning -1 like int_size_in_byte can. */
3684
3685 HOST_WIDE_INT
3686 int_byte_position (const_tree field)
3687 {
3688 return tree_to_shwi (byte_position (field));
3689 }
3690 \f
3691 /* Return, as a tree node, the number of elements for TYPE (which is an
3692 ARRAY_TYPE) minus one. This counts only elements of the top array. */
3693
3694 tree
3695 array_type_nelts (const_tree type)
3696 {
3697 tree index_type, min, max;
3698
3699 /* If they did it with unspecified bounds, then we should have already
3700 given an error about it before we got here. */
3701 if (! TYPE_DOMAIN (type))
3702 return error_mark_node;
3703
3704 index_type = TYPE_DOMAIN (type);
3705 min = TYPE_MIN_VALUE (index_type);
3706 max = TYPE_MAX_VALUE (index_type);
3707
3708 /* TYPE_MAX_VALUE may not be set if the array has unknown length. */
3709 if (!max)
3710 {
3711 /* zero sized arrays are represented from C FE as complete types with
3712 NULL TYPE_MAX_VALUE and zero TYPE_SIZE, while C++ FE represents
3713 them as min 0, max -1. */
3714 if (COMPLETE_TYPE_P (type)
3715 && integer_zerop (TYPE_SIZE (type))
3716 && integer_zerop (min))
3717 return build_int_cst (TREE_TYPE (min), -1);
3718
3719 return error_mark_node;
3720 }
3721
3722 return (integer_zerop (min)
3723 ? max
3724 : fold_build2 (MINUS_EXPR, TREE_TYPE (max), max, min));
3725 }
3726 \f
3727 /* If arg is static -- a reference to an object in static storage -- then
3728 return the object. This is not the same as the C meaning of `static'.
3729 If arg isn't static, return NULL. */
3730
3731 tree
3732 staticp (tree arg)
3733 {
3734 switch (TREE_CODE (arg))
3735 {
3736 case FUNCTION_DECL:
3737 /* Nested functions are static, even though taking their address will
3738 involve a trampoline as we unnest the nested function and create
3739 the trampoline on the tree level. */
3740 return arg;
3741
3742 case VAR_DECL:
3743 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
3744 && ! DECL_THREAD_LOCAL_P (arg)
3745 && ! DECL_DLLIMPORT_P (arg)
3746 ? arg : NULL);
3747
3748 case CONST_DECL:
3749 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
3750 ? arg : NULL);
3751
3752 case CONSTRUCTOR:
3753 return TREE_STATIC (arg) ? arg : NULL;
3754
3755 case LABEL_DECL:
3756 case STRING_CST:
3757 return arg;
3758
3759 case COMPONENT_REF:
3760 /* If the thing being referenced is not a field, then it is
3761 something language specific. */
3762 gcc_assert (TREE_CODE (TREE_OPERAND (arg, 1)) == FIELD_DECL);
3763
3764 /* If we are referencing a bitfield, we can't evaluate an
3765 ADDR_EXPR at compile time and so it isn't a constant. */
3766 if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
3767 return NULL;
3768
3769 return staticp (TREE_OPERAND (arg, 0));
3770
3771 case BIT_FIELD_REF:
3772 return NULL;
3773
3774 case INDIRECT_REF:
3775 return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;
3776
3777 case ARRAY_REF:
3778 case ARRAY_RANGE_REF:
3779 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
3780 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
3781 return staticp (TREE_OPERAND (arg, 0));
3782 else
3783 return NULL;
3784
3785 case COMPOUND_LITERAL_EXPR:
3786 return TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (arg)) ? arg : NULL;
3787
3788 default:
3789 return NULL;
3790 }
3791 }
3792
3793 \f
3794
3795
3796 /* Return whether OP is a DECL whose address is function-invariant. */
3797
3798 bool
3799 decl_address_invariant_p (const_tree op)
3800 {
3801 /* The conditions below are slightly less strict than the one in
3802 staticp. */
3803
3804 switch (TREE_CODE (op))
3805 {
3806 case PARM_DECL:
3807 case RESULT_DECL:
3808 case LABEL_DECL:
3809 case FUNCTION_DECL:
3810 return true;
3811
3812 case VAR_DECL:
3813 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
3814 || DECL_THREAD_LOCAL_P (op)
3815 || DECL_CONTEXT (op) == current_function_decl
3816 || decl_function_context (op) == current_function_decl)
3817 return true;
3818 break;
3819
3820 case CONST_DECL:
3821 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
3822 || decl_function_context (op) == current_function_decl)
3823 return true;
3824 break;
3825
3826 default:
3827 break;
3828 }
3829
3830 return false;
3831 }
3832
3833 /* Return whether OP is a DECL whose address is interprocedural-invariant. */
3834
3835 bool
3836 decl_address_ip_invariant_p (const_tree op)
3837 {
3838 /* The conditions below are slightly less strict than the one in
3839 staticp. */
3840
3841 switch (TREE_CODE (op))
3842 {
3843 case LABEL_DECL:
3844 case FUNCTION_DECL:
3845 case STRING_CST:
3846 return true;
3847
3848 case VAR_DECL:
3849 if (((TREE_STATIC (op) || DECL_EXTERNAL (op))
3850 && !DECL_DLLIMPORT_P (op))
3851 || DECL_THREAD_LOCAL_P (op))
3852 return true;
3853 break;
3854
3855 case CONST_DECL:
3856 if ((TREE_STATIC (op) || DECL_EXTERNAL (op)))
3857 return true;
3858 break;
3859
3860 default:
3861 break;
3862 }
3863
3864 return false;
3865 }
3866
3867
3868 /* Return true if T is function-invariant (internal function, does
3869 not handle arithmetic; that's handled in skip_simple_arithmetic and
3870 tree_invariant_p). */
3871
3872 static bool
3873 tree_invariant_p_1 (tree t)
3874 {
3875 tree op;
3876
3877 if (TREE_CONSTANT (t)
3878 || (TREE_READONLY (t) && !TREE_SIDE_EFFECTS (t)))
3879 return true;
3880
3881 switch (TREE_CODE (t))
3882 {
3883 case SAVE_EXPR:
3884 return true;
3885
3886 case ADDR_EXPR:
3887 op = TREE_OPERAND (t, 0);
3888 while (handled_component_p (op))
3889 {
3890 switch (TREE_CODE (op))
3891 {
3892 case ARRAY_REF:
3893 case ARRAY_RANGE_REF:
3894 if (!tree_invariant_p (TREE_OPERAND (op, 1))
3895 || TREE_OPERAND (op, 2) != NULL_TREE
3896 || TREE_OPERAND (op, 3) != NULL_TREE)
3897 return false;
3898 break;
3899
3900 case COMPONENT_REF:
3901 if (TREE_OPERAND (op, 2) != NULL_TREE)
3902 return false;
3903 break;
3904
3905 default:;
3906 }
3907 op = TREE_OPERAND (op, 0);
3908 }
3909
3910 return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
3911
3912 default:
3913 break;
3914 }
3915
3916 return false;
3917 }
3918
3919 /* Return true if T is function-invariant. */
3920
3921 bool
3922 tree_invariant_p (tree t)
3923 {
3924 tree inner = skip_simple_arithmetic (t);
3925 return tree_invariant_p_1 (inner);
3926 }
3927
3928 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
3929 Do this to any expression which may be used in more than one place,
3930 but must be evaluated only once.
3931
3932 Normally, expand_expr would reevaluate the expression each time.
3933 Calling save_expr produces something that is evaluated and recorded
3934 the first time expand_expr is called on it. Subsequent calls to
3935 expand_expr just reuse the recorded value.
3936
3937 The call to expand_expr that generates code that actually computes
3938 the value is the first call *at compile time*. Subsequent calls
3939 *at compile time* generate code to use the saved value.
3940 This produces correct result provided that *at run time* control
3941 always flows through the insns made by the first expand_expr
3942 before reaching the other places where the save_expr was evaluated.
3943 You, the caller of save_expr, must make sure this is so.
3944
3945 Constants, and certain read-only nodes, are returned with no
3946 SAVE_EXPR because that is safe. Expressions containing placeholders
3947 are not touched; see tree.def for an explanation of what these
3948 are used for. */
3949
3950 tree
3951 save_expr (tree expr)
3952 {
3953 tree inner;
3954
3955 /* If the tree evaluates to a constant, then we don't want to hide that
3956 fact (i.e. this allows further folding, and direct checks for constants).
3957 However, a read-only object that has side effects cannot be bypassed.
3958 Since it is no problem to reevaluate literals, we just return the
3959 literal node. */
3960 inner = skip_simple_arithmetic (expr);
3961 if (TREE_CODE (inner) == ERROR_MARK)
3962 return inner;
3963
3964 if (tree_invariant_p_1 (inner))
3965 return expr;
3966
3967 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
3968 it means that the size or offset of some field of an object depends on
3969 the value within another field.
3970
3971 Note that it must not be the case that EXPR contains both a PLACEHOLDER_EXPR
3972 and some variable since it would then need to be both evaluated once and
3973 evaluated more than once. Front-ends must assure this case cannot
3974 happen by surrounding any such subexpressions in their own SAVE_EXPR
3975 and forcing evaluation at the proper time. */
3976 if (contains_placeholder_p (inner))
3977 return expr;
3978
3979 expr = build1_loc (EXPR_LOCATION (expr), SAVE_EXPR, TREE_TYPE (expr), expr);
3980
3981 /* This expression might be placed ahead of a jump to ensure that the
3982 value was computed on both sides of the jump. So make sure it isn't
3983 eliminated as dead. */
3984 TREE_SIDE_EFFECTS (expr) = 1;
3985 return expr;
3986 }
3987
3988 /* Look inside EXPR into any simple arithmetic operations. Return the
3989 outermost non-arithmetic or non-invariant node. */
3990
3991 tree
3992 skip_simple_arithmetic (tree expr)
3993 {
3994 /* We don't care about whether this can be used as an lvalue in this
3995 context. */
3996 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
3997 expr = TREE_OPERAND (expr, 0);
3998
3999 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
4000 a constant, it will be more efficient to not make another SAVE_EXPR since
4001 it will allow better simplification and GCSE will be able to merge the
4002 computations if they actually occur. */
4003 while (true)
4004 {
4005 if (UNARY_CLASS_P (expr))
4006 expr = TREE_OPERAND (expr, 0);
4007 else if (BINARY_CLASS_P (expr))
4008 {
4009 if (tree_invariant_p (TREE_OPERAND (expr, 1)))
4010 expr = TREE_OPERAND (expr, 0);
4011 else if (tree_invariant_p (TREE_OPERAND (expr, 0)))
4012 expr = TREE_OPERAND (expr, 1);
4013 else
4014 break;
4015 }
4016 else
4017 break;
4018 }
4019
4020 return expr;
4021 }
4022
4023 /* Look inside EXPR into simple arithmetic operations involving constants.
4024 Return the outermost non-arithmetic or non-constant node. */
4025
4026 tree
4027 skip_simple_constant_arithmetic (tree expr)
4028 {
4029 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
4030 expr = TREE_OPERAND (expr, 0);
4031
4032 while (true)
4033 {
4034 if (UNARY_CLASS_P (expr))
4035 expr = TREE_OPERAND (expr, 0);
4036 else if (BINARY_CLASS_P (expr))
4037 {
4038 if (TREE_CONSTANT (TREE_OPERAND (expr, 1)))
4039 expr = TREE_OPERAND (expr, 0);
4040 else if (TREE_CONSTANT (TREE_OPERAND (expr, 0)))
4041 expr = TREE_OPERAND (expr, 1);
4042 else
4043 break;
4044 }
4045 else
4046 break;
4047 }
4048
4049 return expr;
4050 }
4051
4052 /* Return which tree structure is used by T. */
4053
4054 enum tree_node_structure_enum
4055 tree_node_structure (const_tree t)
4056 {
4057 const enum tree_code code = TREE_CODE (t);
4058 return tree_node_structure_for_code (code);
4059 }
4060
4061 /* Set various status flags when building a CALL_EXPR object T. */
4062
4063 static void
4064 process_call_operands (tree t)
4065 {
4066 bool side_effects = TREE_SIDE_EFFECTS (t);
4067 bool read_only = false;
4068 int i = call_expr_flags (t);
4069
4070 /* Calls have side-effects, except those to const or pure functions. */
4071 if ((i & ECF_LOOPING_CONST_OR_PURE) || !(i & (ECF_CONST | ECF_PURE)))
4072 side_effects = true;
4073 /* Propagate TREE_READONLY of arguments for const functions. */
4074 if (i & ECF_CONST)
4075 read_only = true;
4076
4077 if (!side_effects || read_only)
4078 for (i = 1; i < TREE_OPERAND_LENGTH (t); i++)
4079 {
4080 tree op = TREE_OPERAND (t, i);
4081 if (op && TREE_SIDE_EFFECTS (op))
4082 side_effects = true;
4083 if (op && !TREE_READONLY (op) && !CONSTANT_CLASS_P (op))
4084 read_only = false;
4085 }
4086
4087 TREE_SIDE_EFFECTS (t) = side_effects;
4088 TREE_READONLY (t) = read_only;
4089 }
4090 \f
4091 /* Return true if EXP contains a PLACEHOLDER_EXPR, i.e. if it represents a
4092 size or offset that depends on a field within a record. */
4093
4094 bool
4095 contains_placeholder_p (const_tree exp)
4096 {
4097 enum tree_code code;
4098
4099 if (!exp)
4100 return false;
4101
4102 code = TREE_CODE (exp);
4103 if (code == PLACEHOLDER_EXPR)
4104 return true;
4105
4106 switch (TREE_CODE_CLASS (code))
4107 {
4108 case tcc_reference:
4109 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
4110 position computations since they will be converted into a
4111 WITH_RECORD_EXPR involving the reference, which will assume
4112 here will be valid. */
4113 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
4114
4115 case tcc_exceptional:
4116 if (code == TREE_LIST)
4117 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
4118 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
4119 break;
4120
4121 case tcc_unary:
4122 case tcc_binary:
4123 case tcc_comparison:
4124 case tcc_expression:
4125 switch (code)
4126 {
4127 case COMPOUND_EXPR:
4128 /* Ignoring the first operand isn't quite right, but works best. */
4129 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
4130
4131 case COND_EXPR:
4132 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
4133 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
4134 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
4135
4136 case SAVE_EXPR:
4137 /* The save_expr function never wraps anything containing
4138 a PLACEHOLDER_EXPR. */
4139 return false;
4140
4141 default:
4142 break;
4143 }
4144
4145 switch (TREE_CODE_LENGTH (code))
4146 {
4147 case 1:
4148 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
4149 case 2:
4150 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
4151 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
4152 default:
4153 return false;
4154 }
4155
4156 case tcc_vl_exp:
4157 switch (code)
4158 {
4159 case CALL_EXPR:
4160 {
4161 const_tree arg;
4162 const_call_expr_arg_iterator iter;
4163 FOR_EACH_CONST_CALL_EXPR_ARG (arg, iter, exp)
4164 if (CONTAINS_PLACEHOLDER_P (arg))
4165 return true;
4166 return false;
4167 }
4168 default:
4169 return false;
4170 }
4171
4172 default:
4173 return false;
4174 }
4175 return false;
4176 }
4177
4178 /* Return true if any part of the structure of TYPE involves a PLACEHOLDER_EXPR
4179 directly. This includes size, bounds, qualifiers (for QUAL_UNION_TYPE) and
4180 field positions. */
4181
4182 static bool
4183 type_contains_placeholder_1 (const_tree type)
4184 {
4185 /* If the size contains a placeholder or the parent type (component type in
4186 the case of arrays) type involves a placeholder, this type does. */
4187 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
4188 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
4189 || (!POINTER_TYPE_P (type)
4190 && TREE_TYPE (type)
4191 && type_contains_placeholder_p (TREE_TYPE (type))))
4192 return true;
4193
4194 /* Now do type-specific checks. Note that the last part of the check above
4195 greatly limits what we have to do below. */
4196 switch (TREE_CODE (type))
4197 {
4198 case VOID_TYPE:
4199 case OPAQUE_TYPE:
4200 case COMPLEX_TYPE:
4201 case ENUMERAL_TYPE:
4202 case BOOLEAN_TYPE:
4203 case POINTER_TYPE:
4204 case OFFSET_TYPE:
4205 case REFERENCE_TYPE:
4206 case METHOD_TYPE:
4207 case FUNCTION_TYPE:
4208 case VECTOR_TYPE:
4209 case NULLPTR_TYPE:
4210 return false;
4211
4212 case INTEGER_TYPE:
4213 case BITINT_TYPE:
4214 case REAL_TYPE:
4215 case FIXED_POINT_TYPE:
4216 /* Here we just check the bounds. */
4217 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
4218 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
4219
4220 case ARRAY_TYPE:
4221 /* We have already checked the component type above, so just check
4222 the domain type. Flexible array members have a null domain. */
4223 return TYPE_DOMAIN (type) ?
4224 type_contains_placeholder_p (TYPE_DOMAIN (type)) : false;
4225
4226 case RECORD_TYPE:
4227 case UNION_TYPE:
4228 case QUAL_UNION_TYPE:
4229 {
4230 tree field;
4231
4232 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
4233 if (TREE_CODE (field) == FIELD_DECL
4234 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
4235 || (TREE_CODE (type) == QUAL_UNION_TYPE
4236 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
4237 || type_contains_placeholder_p (TREE_TYPE (field))))
4238 return true;
4239
4240 return false;
4241 }
4242
4243 default:
4244 gcc_unreachable ();
4245 }
4246 }
4247
4248 /* Wrapper around above function used to cache its result. */
4249
4250 bool
4251 type_contains_placeholder_p (tree type)
4252 {
4253 bool result;
4254
4255 /* If the contains_placeholder_bits field has been initialized,
4256 then we know the answer. */
4257 if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0)
4258 return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1;
4259
4260 /* Indicate that we've seen this type node, and the answer is false.
4261 This is what we want to return if we run into recursion via fields. */
4262 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1;
4263
4264 /* Compute the real value. */
4265 result = type_contains_placeholder_1 (type);
4266
4267 /* Store the real value. */
4268 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1;
4269
4270 return result;
4271 }
4272 \f
4273 /* Push tree EXP onto vector QUEUE if it is not already present. */
4274
4275 static void
4276 push_without_duplicates (tree exp, vec<tree> *queue)
4277 {
4278 unsigned int i;
4279 tree iter;
4280
4281 FOR_EACH_VEC_ELT (*queue, i, iter)
4282 if (simple_cst_equal (iter, exp) == 1)
4283 break;
4284
4285 if (!iter)
4286 queue->safe_push (exp);
4287 }
4288
4289 /* Given a tree EXP, find all occurrences of references to fields
4290 in a PLACEHOLDER_EXPR and place them in vector REFS without
4291 duplicates. Also record VAR_DECLs and CONST_DECLs. Note that
4292 we assume here that EXP contains only arithmetic expressions
4293 or CALL_EXPRs with PLACEHOLDER_EXPRs occurring only in their
4294 argument list. */
4295
4296 void
4297 find_placeholder_in_expr (tree exp, vec<tree> *refs)
4298 {
4299 enum tree_code code = TREE_CODE (exp);
4300 tree inner;
4301 int i;
4302
4303 /* We handle TREE_LIST and COMPONENT_REF separately. */
4304 if (code == TREE_LIST)
4305 {
4306 FIND_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), refs);
4307 FIND_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), refs);
4308 }
4309 else if (code == COMPONENT_REF)
4310 {
4311 for (inner = TREE_OPERAND (exp, 0);
4312 REFERENCE_CLASS_P (inner);
4313 inner = TREE_OPERAND (inner, 0))
4314 ;
4315
4316 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
4317 push_without_duplicates (exp, refs);
4318 else
4319 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), refs);
4320 }
4321 else
4322 switch (TREE_CODE_CLASS (code))
4323 {
4324 case tcc_constant:
4325 break;
4326
4327 case tcc_declaration:
4328 /* Variables allocated to static storage can stay. */
4329 if (!TREE_STATIC (exp))
4330 push_without_duplicates (exp, refs);
4331 break;
4332
4333 case tcc_expression:
4334 /* This is the pattern built in ada/make_aligning_type. */
4335 if (code == ADDR_EXPR
4336 && TREE_CODE (TREE_OPERAND (exp, 0)) == PLACEHOLDER_EXPR)
4337 {
4338 push_without_duplicates (exp, refs);
4339 break;
4340 }
4341
4342 /* Fall through. */
4343
4344 case tcc_exceptional:
4345 case tcc_unary:
4346 case tcc_binary:
4347 case tcc_comparison:
4348 case tcc_reference:
4349 for (i = 0; i < TREE_CODE_LENGTH (code); i++)
4350 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
4351 break;
4352
4353 case tcc_vl_exp:
4354 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
4355 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
4356 break;
4357
4358 default:
4359 gcc_unreachable ();
4360 }
4361 }
4362
4363 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
4364 return a tree with all occurrences of references to F in a
4365 PLACEHOLDER_EXPR replaced by R. Also handle VAR_DECLs and
4366 CONST_DECLs. Note that we assume here that EXP contains only
4367 arithmetic expressions or CALL_EXPRs with PLACEHOLDER_EXPRs
4368 occurring only in their argument list. */
4369
4370 tree
4371 substitute_in_expr (tree exp, tree f, tree r)
4372 {
4373 enum tree_code code = TREE_CODE (exp);
4374 tree op0, op1, op2, op3;
4375 tree new_tree;
4376
4377 /* We handle TREE_LIST and COMPONENT_REF separately. */
4378 if (code == TREE_LIST)
4379 {
4380 op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
4381 op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
4382 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
4383 return exp;
4384
4385 return tree_cons (TREE_PURPOSE (exp), op1, op0);
4386 }
4387 else if (code == COMPONENT_REF)
4388 {
4389 tree inner;
4390
4391 /* If this expression is getting a value from a PLACEHOLDER_EXPR
4392 and it is the right field, replace it with R. */
4393 for (inner = TREE_OPERAND (exp, 0);
4394 REFERENCE_CLASS_P (inner);
4395 inner = TREE_OPERAND (inner, 0))
4396 ;
4397
4398 /* The field. */
4399 op1 = TREE_OPERAND (exp, 1);
4400
4401 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && op1 == f)
4402 return r;
4403
4404 /* If this expression hasn't been completed let, leave it alone. */
4405 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && !TREE_TYPE (inner))
4406 return exp;
4407
4408 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
4409 if (op0 == TREE_OPERAND (exp, 0))
4410 return exp;
4411
4412 new_tree
4413 = fold_build3 (COMPONENT_REF, TREE_TYPE (exp), op0, op1, NULL_TREE);
4414 }
4415 else
4416 switch (TREE_CODE_CLASS (code))
4417 {
4418 case tcc_constant:
4419 return exp;
4420
4421 case tcc_declaration:
4422 if (exp == f)
4423 return r;
4424 else
4425 return exp;
4426
4427 case tcc_expression:
4428 if (exp == f)
4429 return r;
4430
4431 /* Fall through. */
4432
4433 case tcc_exceptional:
4434 case tcc_unary:
4435 case tcc_binary:
4436 case tcc_comparison:
4437 case tcc_reference:
4438 switch (TREE_CODE_LENGTH (code))
4439 {
4440 case 0:
4441 return exp;
4442
4443 case 1:
4444 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
4445 if (op0 == TREE_OPERAND (exp, 0))
4446 return exp;
4447
4448 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
4449 break;
4450
4451 case 2:
4452 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
4453 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
4454
4455 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
4456 return exp;
4457
4458 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
4459 break;
4460
4461 case 3:
4462 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
4463 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
4464 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
4465
4466 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
4467 && op2 == TREE_OPERAND (exp, 2))
4468 return exp;
4469
4470 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
4471 break;
4472
4473 case 4:
4474 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
4475 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
4476 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
4477 op3 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 3), f, r);
4478
4479 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
4480 && op2 == TREE_OPERAND (exp, 2)
4481 && op3 == TREE_OPERAND (exp, 3))
4482 return exp;
4483
4484 new_tree
4485 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
4486 break;
4487
4488 default:
4489 gcc_unreachable ();
4490 }
4491 break;
4492
4493 case tcc_vl_exp:
4494 {
4495 int i;
4496
4497 new_tree = NULL_TREE;
4498
4499 /* If we are trying to replace F with a constant or with another
4500 instance of one of the arguments of the call, inline back
4501 functions which do nothing else than computing a value from
4502 the arguments they are passed. This makes it possible to
4503 fold partially or entirely the replacement expression. */
4504 if (code == CALL_EXPR)
4505 {
4506 bool maybe_inline = false;
4507 if (CONSTANT_CLASS_P (r))
4508 maybe_inline = true;
4509 else
4510 for (i = 3; i < TREE_OPERAND_LENGTH (exp); i++)
4511 if (operand_equal_p (TREE_OPERAND (exp, i), r, 0))
4512 {
4513 maybe_inline = true;
4514 break;
4515 }
4516 if (maybe_inline)
4517 {
4518 tree t = maybe_inline_call_in_expr (exp);
4519 if (t)
4520 return SUBSTITUTE_IN_EXPR (t, f, r);
4521 }
4522 }
4523
4524 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
4525 {
4526 tree op = TREE_OPERAND (exp, i);
4527 tree new_op = SUBSTITUTE_IN_EXPR (op, f, r);
4528 if (new_op != op)
4529 {
4530 if (!new_tree)
4531 new_tree = copy_node (exp);
4532 TREE_OPERAND (new_tree, i) = new_op;
4533 }
4534 }
4535
4536 if (new_tree)
4537 {
4538 new_tree = fold (new_tree);
4539 if (TREE_CODE (new_tree) == CALL_EXPR)
4540 process_call_operands (new_tree);
4541 }
4542 else
4543 return exp;
4544 }
4545 break;
4546
4547 default:
4548 gcc_unreachable ();
4549 }
4550
4551 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
4552
4553 if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
4554 TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
4555
4556 return new_tree;
4557 }
4558
4559 /* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
4560 for it within OBJ, a tree that is an object or a chain of references. */
4561
4562 tree
4563 substitute_placeholder_in_expr (tree exp, tree obj)
4564 {
4565 enum tree_code code = TREE_CODE (exp);
4566 tree op0, op1, op2, op3;
4567 tree new_tree;
4568
4569 /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
4570 in the chain of OBJ. */
4571 if (code == PLACEHOLDER_EXPR)
4572 {
4573 tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
4574 tree elt;
4575
4576 for (elt = obj; elt != 0;
4577 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
4578 || TREE_CODE (elt) == COND_EXPR)
4579 ? TREE_OPERAND (elt, 1)
4580 : (REFERENCE_CLASS_P (elt)
4581 || UNARY_CLASS_P (elt)
4582 || BINARY_CLASS_P (elt)
4583 || VL_EXP_CLASS_P (elt)
4584 || EXPRESSION_CLASS_P (elt))
4585 ? TREE_OPERAND (elt, 0) : 0))
4586 if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
4587 return elt;
4588
4589 for (elt = obj; elt != 0;
4590 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
4591 || TREE_CODE (elt) == COND_EXPR)
4592 ? TREE_OPERAND (elt, 1)
4593 : (REFERENCE_CLASS_P (elt)
4594 || UNARY_CLASS_P (elt)
4595 || BINARY_CLASS_P (elt)
4596 || VL_EXP_CLASS_P (elt)
4597 || EXPRESSION_CLASS_P (elt))
4598 ? TREE_OPERAND (elt, 0) : 0))
4599 if (POINTER_TYPE_P (TREE_TYPE (elt))
4600 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
4601 == need_type))
4602 return fold_build1 (INDIRECT_REF, need_type, elt);
4603
4604 /* If we didn't find it, return the original PLACEHOLDER_EXPR. If it
4605 survives until RTL generation, there will be an error. */
4606 return exp;
4607 }
4608
4609 /* TREE_LIST is special because we need to look at TREE_VALUE
4610 and TREE_CHAIN, not TREE_OPERANDS. */
4611 else if (code == TREE_LIST)
4612 {
4613 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
4614 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
4615 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
4616 return exp;
4617
4618 return tree_cons (TREE_PURPOSE (exp), op1, op0);
4619 }
4620 else
4621 switch (TREE_CODE_CLASS (code))
4622 {
4623 case tcc_constant:
4624 case tcc_declaration:
4625 return exp;
4626
4627 case tcc_exceptional:
4628 case tcc_unary:
4629 case tcc_binary:
4630 case tcc_comparison:
4631 case tcc_expression:
4632 case tcc_reference:
4633 case tcc_statement:
4634 switch (TREE_CODE_LENGTH (code))
4635 {
4636 case 0:
4637 return exp;
4638
4639 case 1:
4640 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
4641 if (op0 == TREE_OPERAND (exp, 0))
4642 return exp;
4643
4644 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
4645 break;
4646
4647 case 2:
4648 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
4649 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
4650
4651 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
4652 return exp;
4653
4654 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
4655 break;
4656
4657 case 3:
4658 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
4659 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
4660 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
4661
4662 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
4663 && op2 == TREE_OPERAND (exp, 2))
4664 return exp;
4665
4666 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
4667 break;
4668
4669 case 4:
4670 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
4671 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
4672 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
4673 op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
4674
4675 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
4676 && op2 == TREE_OPERAND (exp, 2)
4677 && op3 == TREE_OPERAND (exp, 3))
4678 return exp;
4679
4680 new_tree
4681 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
4682 break;
4683
4684 default:
4685 gcc_unreachable ();
4686 }
4687 break;
4688
4689 case tcc_vl_exp:
4690 {
4691 int i;
4692
4693 new_tree = NULL_TREE;
4694
4695 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
4696 {
4697 tree op = TREE_OPERAND (exp, i);
4698 tree new_op = SUBSTITUTE_PLACEHOLDER_IN_EXPR (op, obj);
4699 if (new_op != op)
4700 {
4701 if (!new_tree)
4702 new_tree = copy_node (exp);
4703 TREE_OPERAND (new_tree, i) = new_op;
4704 }
4705 }
4706
4707 if (new_tree)
4708 {
4709 new_tree = fold (new_tree);
4710 if (TREE_CODE (new_tree) == CALL_EXPR)
4711 process_call_operands (new_tree);
4712 }
4713 else
4714 return exp;
4715 }
4716 break;
4717
4718 default:
4719 gcc_unreachable ();
4720 }
4721
4722 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
4723
4724 if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
4725 TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
4726
4727 return new_tree;
4728 }
4729 \f
4730
4731 /* Subroutine of stabilize_reference; this is called for subtrees of
4732 references. Any expression with side-effects must be put in a SAVE_EXPR
4733 to ensure that it is only evaluated once.
4734
4735 We don't put SAVE_EXPR nodes around everything, because assigning very
4736 simple expressions to temporaries causes us to miss good opportunities
4737 for optimizations. Among other things, the opportunity to fold in the
4738 addition of a constant into an addressing mode often gets lost, e.g.
4739 "y[i+1] += x;". In general, we take the approach that we should not make
4740 an assignment unless we are forced into it - i.e., that any non-side effect
4741 operator should be allowed, and that cse should take care of coalescing
4742 multiple utterances of the same expression should that prove fruitful. */
4743
4744 static tree
4745 stabilize_reference_1 (tree e)
4746 {
4747 tree result;
4748 enum tree_code code = TREE_CODE (e);
4749
4750 /* We cannot ignore const expressions because it might be a reference
4751 to a const array but whose index contains side-effects. But we can
4752 ignore things that are actual constant or that already have been
4753 handled by this function. */
4754
4755 if (tree_invariant_p (e))
4756 return e;
4757
4758 switch (TREE_CODE_CLASS (code))
4759 {
4760 case tcc_exceptional:
4761 /* Always wrap STATEMENT_LIST into SAVE_EXPR, even if it doesn't
4762 have side-effects. */
4763 if (code == STATEMENT_LIST)
4764 return save_expr (e);
4765 /* FALLTHRU */
4766 case tcc_type:
4767 case tcc_declaration:
4768 case tcc_comparison:
4769 case tcc_statement:
4770 case tcc_expression:
4771 case tcc_reference:
4772 case tcc_vl_exp:
4773 /* If the expression has side-effects, then encase it in a SAVE_EXPR
4774 so that it will only be evaluated once. */
4775 /* The reference (r) and comparison (<) classes could be handled as
4776 below, but it is generally faster to only evaluate them once. */
4777 if (TREE_SIDE_EFFECTS (e))
4778 return save_expr (e);
4779 return e;
4780
4781 case tcc_constant:
4782 /* Constants need no processing. In fact, we should never reach
4783 here. */
4784 return e;
4785
4786 case tcc_binary:
4787 /* Division is slow and tends to be compiled with jumps,
4788 especially the division by powers of 2 that is often
4789 found inside of an array reference. So do it just once. */
4790 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
4791 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
4792 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
4793 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
4794 return save_expr (e);
4795 /* Recursively stabilize each operand. */
4796 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
4797 stabilize_reference_1 (TREE_OPERAND (e, 1)));
4798 break;
4799
4800 case tcc_unary:
4801 /* Recursively stabilize each operand. */
4802 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
4803 break;
4804
4805 default:
4806 gcc_unreachable ();
4807 }
4808
4809 TREE_TYPE (result) = TREE_TYPE (e);
4810 TREE_READONLY (result) = TREE_READONLY (e);
4811 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
4812 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
4813
4814 return result;
4815 }
4816
4817 /* Stabilize a reference so that we can use it any number of times
4818 without causing its operands to be evaluated more than once.
4819 Returns the stabilized reference. This works by means of save_expr,
4820 so see the caveats in the comments about save_expr.
4821
4822 Also allows conversion expressions whose operands are references.
4823 Any other kind of expression is returned unchanged. */
4824
4825 tree
4826 stabilize_reference (tree ref)
4827 {
4828 tree result;
4829 enum tree_code code = TREE_CODE (ref);
4830
4831 switch (code)
4832 {
4833 case VAR_DECL:
4834 case PARM_DECL:
4835 case RESULT_DECL:
4836 /* No action is needed in this case. */
4837 return ref;
4838
4839 CASE_CONVERT:
4840 case FLOAT_EXPR:
4841 case FIX_TRUNC_EXPR:
4842 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
4843 break;
4844
4845 case INDIRECT_REF:
4846 result = build_nt (INDIRECT_REF,
4847 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
4848 break;
4849
4850 case COMPONENT_REF:
4851 result = build_nt (COMPONENT_REF,
4852 stabilize_reference (TREE_OPERAND (ref, 0)),
4853 TREE_OPERAND (ref, 1), NULL_TREE);
4854 break;
4855
4856 case BIT_FIELD_REF:
4857 result = build_nt (BIT_FIELD_REF,
4858 stabilize_reference (TREE_OPERAND (ref, 0)),
4859 TREE_OPERAND (ref, 1), TREE_OPERAND (ref, 2));
4860 REF_REVERSE_STORAGE_ORDER (result) = REF_REVERSE_STORAGE_ORDER (ref);
4861 break;
4862
4863 case ARRAY_REF:
4864 result = build_nt (ARRAY_REF,
4865 stabilize_reference (TREE_OPERAND (ref, 0)),
4866 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
4867 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
4868 break;
4869
4870 case ARRAY_RANGE_REF:
4871 result = build_nt (ARRAY_RANGE_REF,
4872 stabilize_reference (TREE_OPERAND (ref, 0)),
4873 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
4874 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
4875 break;
4876
4877 case COMPOUND_EXPR:
4878 /* We cannot wrap the first expression in a SAVE_EXPR, as then
4879 it wouldn't be ignored. This matters when dealing with
4880 volatiles. */
4881 return stabilize_reference_1 (ref);
4882
4883 /* If arg isn't a kind of lvalue we recognize, make no change.
4884 Caller should recognize the error for an invalid lvalue. */
4885 default:
4886 return ref;
4887
4888 case ERROR_MARK:
4889 return error_mark_node;
4890 }
4891
4892 TREE_TYPE (result) = TREE_TYPE (ref);
4893 TREE_READONLY (result) = TREE_READONLY (ref);
4894 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
4895 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
4896 protected_set_expr_location (result, EXPR_LOCATION (ref));
4897
4898 return result;
4899 }
4900 \f
4901 /* Low-level constructors for expressions. */
4902
4903 /* A helper function for build1 and constant folders. Set TREE_CONSTANT,
4904 and TREE_SIDE_EFFECTS for an ADDR_EXPR. */
4905
4906 void
4907 recompute_tree_invariant_for_addr_expr (tree t)
4908 {
4909 tree node;
4910 bool tc = true, se = false;
4911
4912 gcc_assert (TREE_CODE (t) == ADDR_EXPR);
4913
4914 /* We started out assuming this address is both invariant and constant, but
4915 does not have side effects. Now go down any handled components and see if
4916 any of them involve offsets that are either non-constant or non-invariant.
4917 Also check for side-effects.
4918
4919 ??? Note that this code makes no attempt to deal with the case where
4920 taking the address of something causes a copy due to misalignment. */
4921
4922 #define UPDATE_FLAGS(NODE) \
4923 do { tree _node = (NODE); \
4924 if (_node && !TREE_CONSTANT (_node)) tc = false; \
4925 if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
4926
4927 for (node = TREE_OPERAND (t, 0); handled_component_p (node);
4928 node = TREE_OPERAND (node, 0))
4929 {
4930 /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
4931 array reference (probably made temporarily by the G++ front end),
4932 so ignore all the operands. */
4933 if ((TREE_CODE (node) == ARRAY_REF
4934 || TREE_CODE (node) == ARRAY_RANGE_REF)
4935 && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
4936 {
4937 UPDATE_FLAGS (TREE_OPERAND (node, 1));
4938 if (TREE_OPERAND (node, 2))
4939 UPDATE_FLAGS (TREE_OPERAND (node, 2));
4940 if (TREE_OPERAND (node, 3))
4941 UPDATE_FLAGS (TREE_OPERAND (node, 3));
4942 }
4943 /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
4944 FIELD_DECL, apparently. The G++ front end can put something else
4945 there, at least temporarily. */
4946 else if (TREE_CODE (node) == COMPONENT_REF
4947 && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
4948 {
4949 if (TREE_OPERAND (node, 2))
4950 UPDATE_FLAGS (TREE_OPERAND (node, 2));
4951 }
4952 }
4953
4954 node = lang_hooks.expr_to_decl (node, &tc, &se);
4955
4956 /* Now see what's inside. If it's an INDIRECT_REF, copy our properties from
4957 the address, since &(*a)->b is a form of addition. If it's a constant, the
4958 address is constant too. If it's a decl, its address is constant if the
4959 decl is static. Everything else is not constant and, furthermore,
4960 taking the address of a volatile variable is not volatile. */
4961 if (INDIRECT_REF_P (node)
4962 || TREE_CODE (node) == MEM_REF)
4963 UPDATE_FLAGS (TREE_OPERAND (node, 0));
4964 else if (CONSTANT_CLASS_P (node))
4965 ;
4966 else if (DECL_P (node))
4967 tc &= (staticp (node) != NULL_TREE);
4968 else
4969 {
4970 tc = false;
4971 se |= TREE_SIDE_EFFECTS (node);
4972 }
4973
4974
4975 TREE_CONSTANT (t) = tc;
4976 TREE_SIDE_EFFECTS (t) = se;
4977 #undef UPDATE_FLAGS
4978 }
4979
4980 /* Build an expression of code CODE, data type TYPE, and operands as
4981 specified. Expressions and reference nodes can be created this way.
4982 Constants, decls, types and misc nodes cannot be.
4983
4984 We define 5 non-variadic functions, from 0 to 4 arguments. This is
4985 enough for all extant tree codes. */
4986
4987 tree
4988 build0 (enum tree_code code, tree tt MEM_STAT_DECL)
4989 {
4990 tree t;
4991
4992 gcc_assert (TREE_CODE_LENGTH (code) == 0);
4993
4994 t = make_node (code PASS_MEM_STAT);
4995 TREE_TYPE (t) = tt;
4996
4997 return t;
4998 }
4999
5000 tree
5001 build1 (enum tree_code code, tree type, tree node MEM_STAT_DECL)
5002 {
5003 int length = sizeof (struct tree_exp);
5004 tree t;
5005
5006 record_node_allocation_statistics (code, length);
5007
5008 gcc_assert (TREE_CODE_LENGTH (code) == 1);
5009
5010 t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
5011
5012 memset (t, 0, sizeof (struct tree_common));
5013
5014 TREE_SET_CODE (t, code);
5015
5016 TREE_TYPE (t) = type;
5017 SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
5018 TREE_OPERAND (t, 0) = node;
5019 if (node && !TYPE_P (node))
5020 {
5021 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
5022 TREE_READONLY (t) = TREE_READONLY (node);
5023 }
5024
5025 if (TREE_CODE_CLASS (code) == tcc_statement)
5026 {
5027 if (code != DEBUG_BEGIN_STMT)
5028 TREE_SIDE_EFFECTS (t) = 1;
5029 }
5030 else switch (code)
5031 {
5032 case VA_ARG_EXPR:
5033 /* All of these have side-effects, no matter what their
5034 operands are. */
5035 TREE_SIDE_EFFECTS (t) = 1;
5036 TREE_READONLY (t) = 0;
5037 break;
5038
5039 case INDIRECT_REF:
5040 /* Whether a dereference is readonly has nothing to do with whether
5041 its operand is readonly. */
5042 TREE_READONLY (t) = 0;
5043 break;
5044
5045 case ADDR_EXPR:
5046 if (node)
5047 recompute_tree_invariant_for_addr_expr (t);
5048 break;
5049
5050 default:
5051 if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
5052 && node && !TYPE_P (node)
5053 && TREE_CONSTANT (node))
5054 TREE_CONSTANT (t) = 1;
5055 if (TREE_CODE_CLASS (code) == tcc_reference
5056 && node && TREE_THIS_VOLATILE (node))
5057 TREE_THIS_VOLATILE (t) = 1;
5058 break;
5059 }
5060
5061 return t;
5062 }
5063
5064 #define PROCESS_ARG(N) \
5065 do { \
5066 TREE_OPERAND (t, N) = arg##N; \
5067 if (arg##N &&!TYPE_P (arg##N)) \
5068 { \
5069 if (TREE_SIDE_EFFECTS (arg##N)) \
5070 side_effects = 1; \
5071 if (!TREE_READONLY (arg##N) \
5072 && !CONSTANT_CLASS_P (arg##N)) \
5073 (void) (read_only = 0); \
5074 if (!TREE_CONSTANT (arg##N)) \
5075 (void) (constant = 0); \
5076 } \
5077 } while (0)
5078
5079 tree
5080 build2 (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
5081 {
5082 bool constant, read_only, side_effects, div_by_zero;
5083 tree t;
5084
5085 gcc_assert (TREE_CODE_LENGTH (code) == 2);
5086
5087 if ((code == MINUS_EXPR || code == PLUS_EXPR || code == MULT_EXPR)
5088 && arg0 && arg1 && tt && POINTER_TYPE_P (tt)
5089 /* When sizetype precision doesn't match that of pointers
5090 we need to be able to build explicit extensions or truncations
5091 of the offset argument. */
5092 && TYPE_PRECISION (sizetype) == TYPE_PRECISION (tt))
5093 gcc_assert (TREE_CODE (arg0) == INTEGER_CST
5094 && TREE_CODE (arg1) == INTEGER_CST);
5095
5096 if (code == POINTER_PLUS_EXPR && arg0 && arg1 && tt)
5097 gcc_assert (POINTER_TYPE_P (tt) && POINTER_TYPE_P (TREE_TYPE (arg0))
5098 && ptrofftype_p (TREE_TYPE (arg1)));
5099
5100 t = make_node (code PASS_MEM_STAT);
5101 TREE_TYPE (t) = tt;
5102
5103 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
5104 result based on those same flags for the arguments. But if the
5105 arguments aren't really even `tree' expressions, we shouldn't be trying
5106 to do this. */
5107
5108 /* Expressions without side effects may be constant if their
5109 arguments are as well. */
5110 constant = (TREE_CODE_CLASS (code) == tcc_comparison
5111 || TREE_CODE_CLASS (code) == tcc_binary);
5112 read_only = 1;
5113 side_effects = TREE_SIDE_EFFECTS (t);
5114
5115 switch (code)
5116 {
5117 case TRUNC_DIV_EXPR:
5118 case CEIL_DIV_EXPR:
5119 case FLOOR_DIV_EXPR:
5120 case ROUND_DIV_EXPR:
5121 case EXACT_DIV_EXPR:
5122 case CEIL_MOD_EXPR:
5123 case FLOOR_MOD_EXPR:
5124 case ROUND_MOD_EXPR:
5125 case TRUNC_MOD_EXPR:
5126 div_by_zero = integer_zerop (arg1);
5127 break;
5128 default:
5129 div_by_zero = false;
5130 }
5131
5132 PROCESS_ARG (0);
5133 PROCESS_ARG (1);
5134
5135 TREE_SIDE_EFFECTS (t) = side_effects;
5136 if (code == MEM_REF)
5137 {
5138 if (arg0 && TREE_CODE (arg0) == ADDR_EXPR)
5139 {
5140 tree o = TREE_OPERAND (arg0, 0);
5141 TREE_READONLY (t) = TREE_READONLY (o);
5142 TREE_THIS_VOLATILE (t) = TREE_THIS_VOLATILE (o);
5143 }
5144 }
5145 else
5146 {
5147 TREE_READONLY (t) = read_only;
5148 /* Don't mark X / 0 as constant. */
5149 TREE_CONSTANT (t) = constant && !div_by_zero;
5150 TREE_THIS_VOLATILE (t)
5151 = (TREE_CODE_CLASS (code) == tcc_reference
5152 && arg0 && TREE_THIS_VOLATILE (arg0));
5153 }
5154
5155 return t;
5156 }
5157
5158
5159 tree
5160 build3 (enum tree_code code, tree tt, tree arg0, tree arg1,
5161 tree arg2 MEM_STAT_DECL)
5162 {
5163 bool constant, read_only, side_effects;
5164 tree t;
5165
5166 gcc_assert (TREE_CODE_LENGTH (code) == 3);
5167 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
5168
5169 t = make_node (code PASS_MEM_STAT);
5170 TREE_TYPE (t) = tt;
5171
5172 read_only = 1;
5173
5174 /* As a special exception, if COND_EXPR has NULL branches, we
5175 assume that it is a gimple statement and always consider
5176 it to have side effects. */
5177 if (code == COND_EXPR
5178 && tt == void_type_node
5179 && arg1 == NULL_TREE
5180 && arg2 == NULL_TREE)
5181 side_effects = true;
5182 else
5183 side_effects = TREE_SIDE_EFFECTS (t);
5184
5185 PROCESS_ARG (0);
5186 PROCESS_ARG (1);
5187 PROCESS_ARG (2);
5188
5189 if (code == COND_EXPR)
5190 TREE_READONLY (t) = read_only;
5191
5192 TREE_SIDE_EFFECTS (t) = side_effects;
5193 TREE_THIS_VOLATILE (t)
5194 = (TREE_CODE_CLASS (code) == tcc_reference
5195 && arg0 && TREE_THIS_VOLATILE (arg0));
5196
5197 return t;
5198 }
5199
5200 tree
5201 build4 (enum tree_code code, tree tt, tree arg0, tree arg1,
5202 tree arg2, tree arg3 MEM_STAT_DECL)
5203 {
5204 bool constant, read_only, side_effects;
5205 tree t;
5206
5207 gcc_assert (TREE_CODE_LENGTH (code) == 4);
5208
5209 t = make_node (code PASS_MEM_STAT);
5210 TREE_TYPE (t) = tt;
5211
5212 side_effects = TREE_SIDE_EFFECTS (t);
5213
5214 PROCESS_ARG (0);
5215 PROCESS_ARG (1);
5216 PROCESS_ARG (2);
5217 PROCESS_ARG (3);
5218
5219 TREE_SIDE_EFFECTS (t) = side_effects;
5220 TREE_THIS_VOLATILE (t)
5221 = (TREE_CODE_CLASS (code) == tcc_reference
5222 && arg0 && TREE_THIS_VOLATILE (arg0));
5223
5224 return t;
5225 }
5226
5227 tree
5228 build5 (enum tree_code code, tree tt, tree arg0, tree arg1,
5229 tree arg2, tree arg3, tree arg4 MEM_STAT_DECL)
5230 {
5231 bool constant, read_only, side_effects;
5232 tree t;
5233
5234 gcc_assert (TREE_CODE_LENGTH (code) == 5);
5235
5236 t = make_node (code PASS_MEM_STAT);
5237 TREE_TYPE (t) = tt;
5238
5239 side_effects = TREE_SIDE_EFFECTS (t);
5240
5241 PROCESS_ARG (0);
5242 PROCESS_ARG (1);
5243 PROCESS_ARG (2);
5244 PROCESS_ARG (3);
5245 PROCESS_ARG (4);
5246
5247 TREE_SIDE_EFFECTS (t) = side_effects;
5248 if (code == TARGET_MEM_REF)
5249 {
5250 if (arg0 && TREE_CODE (arg0) == ADDR_EXPR)
5251 {
5252 tree o = TREE_OPERAND (arg0, 0);
5253 TREE_READONLY (t) = TREE_READONLY (o);
5254 TREE_THIS_VOLATILE (t) = TREE_THIS_VOLATILE (o);
5255 }
5256 }
5257 else
5258 TREE_THIS_VOLATILE (t)
5259 = (TREE_CODE_CLASS (code) == tcc_reference
5260 && arg0 && TREE_THIS_VOLATILE (arg0));
5261
5262 return t;
5263 }
5264
5265 /* Build a simple MEM_REF tree with the sematics of a plain INDIRECT_REF
5266 on the pointer PTR. */
5267
5268 tree
5269 build_simple_mem_ref_loc (location_t loc, tree ptr)
5270 {
5271 poly_int64 offset = 0;
5272 tree ptype = TREE_TYPE (ptr);
5273 tree tem;
5274 /* For convenience allow addresses that collapse to a simple base
5275 and offset. */
5276 if (TREE_CODE (ptr) == ADDR_EXPR
5277 && (handled_component_p (TREE_OPERAND (ptr, 0))
5278 || TREE_CODE (TREE_OPERAND (ptr, 0)) == MEM_REF))
5279 {
5280 ptr = get_addr_base_and_unit_offset (TREE_OPERAND (ptr, 0), &offset);
5281 gcc_assert (ptr);
5282 if (TREE_CODE (ptr) == MEM_REF)
5283 {
5284 offset += mem_ref_offset (ptr).force_shwi ();
5285 ptr = TREE_OPERAND (ptr, 0);
5286 }
5287 else
5288 ptr = build_fold_addr_expr (ptr);
5289 gcc_assert (is_gimple_reg (ptr) || is_gimple_min_invariant (ptr));
5290 }
5291 tem = build2 (MEM_REF, TREE_TYPE (ptype),
5292 ptr, build_int_cst (ptype, offset));
5293 SET_EXPR_LOCATION (tem, loc);
5294 return tem;
5295 }
5296
5297 /* Return the constant offset of a MEM_REF or TARGET_MEM_REF tree T. */
5298
5299 poly_offset_int
5300 mem_ref_offset (const_tree t)
5301 {
5302 return poly_offset_int::from (wi::to_poly_wide (TREE_OPERAND (t, 1)),
5303 SIGNED);
5304 }
5305
5306 /* Return an invariant ADDR_EXPR of type TYPE taking the address of BASE
5307 offsetted by OFFSET units. */
5308
5309 tree
5310 build_invariant_address (tree type, tree base, poly_int64 offset)
5311 {
5312 tree ref = fold_build2 (MEM_REF, TREE_TYPE (type),
5313 build_fold_addr_expr (base),
5314 build_int_cst (ptr_type_node, offset));
5315 tree addr = build1 (ADDR_EXPR, type, ref);
5316 recompute_tree_invariant_for_addr_expr (addr);
5317 return addr;
5318 }
5319
5320 /* Similar except don't specify the TREE_TYPE
5321 and leave the TREE_SIDE_EFFECTS as 0.
5322 It is permissible for arguments to be null,
5323 or even garbage if their values do not matter. */
5324
5325 tree
5326 build_nt (enum tree_code code, ...)
5327 {
5328 tree t;
5329 int length;
5330 int i;
5331 va_list p;
5332
5333 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
5334
5335 va_start (p, code);
5336
5337 t = make_node (code);
5338 length = TREE_CODE_LENGTH (code);
5339
5340 for (i = 0; i < length; i++)
5341 TREE_OPERAND (t, i) = va_arg (p, tree);
5342
5343 va_end (p);
5344 return t;
5345 }
5346
5347 /* Similar to build_nt, but for creating a CALL_EXPR object with a
5348 tree vec. */
5349
5350 tree
5351 build_nt_call_vec (tree fn, vec<tree, va_gc> *args)
5352 {
5353 tree ret, t;
5354 unsigned int ix;
5355
5356 ret = build_vl_exp (CALL_EXPR, vec_safe_length (args) + 3);
5357 CALL_EXPR_FN (ret) = fn;
5358 CALL_EXPR_STATIC_CHAIN (ret) = NULL_TREE;
5359 FOR_EACH_VEC_SAFE_ELT (args, ix, t)
5360 CALL_EXPR_ARG (ret, ix) = t;
5361 return ret;
5362 }
5363 \f
5364 /* Create a DECL_... node of code CODE, name NAME (if non-null)
5365 and data type TYPE.
5366 We do NOT enter this node in any sort of symbol table.
5367
5368 LOC is the location of the decl.
5369
5370 layout_decl is used to set up the decl's storage layout.
5371 Other slots are initialized to 0 or null pointers. */
5372
5373 tree
5374 build_decl (location_t loc, enum tree_code code, tree name,
5375 tree type MEM_STAT_DECL)
5376 {
5377 tree t;
5378
5379 t = make_node (code PASS_MEM_STAT);
5380 DECL_SOURCE_LOCATION (t) = loc;
5381
5382 /* if (type == error_mark_node)
5383 type = integer_type_node; */
5384 /* That is not done, deliberately, so that having error_mark_node
5385 as the type can suppress useless errors in the use of this variable. */
5386
5387 DECL_NAME (t) = name;
5388 TREE_TYPE (t) = type;
5389
5390 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
5391 layout_decl (t, 0);
5392
5393 return t;
5394 }
5395
5396 /* Create and return a DEBUG_EXPR_DECL node of the given TYPE. */
5397
5398 tree
5399 build_debug_expr_decl (tree type)
5400 {
5401 tree vexpr = make_node (DEBUG_EXPR_DECL);
5402 DECL_ARTIFICIAL (vexpr) = 1;
5403 TREE_TYPE (vexpr) = type;
5404 SET_DECL_MODE (vexpr, TYPE_MODE (type));
5405 return vexpr;
5406 }
5407
5408 /* Builds and returns function declaration with NAME and TYPE. */
5409
5410 tree
5411 build_fn_decl (const char *name, tree type)
5412 {
5413 tree id = get_identifier (name);
5414 tree decl = build_decl (input_location, FUNCTION_DECL, id, type);
5415
5416 DECL_EXTERNAL (decl) = 1;
5417 TREE_PUBLIC (decl) = 1;
5418 DECL_ARTIFICIAL (decl) = 1;
5419 TREE_NOTHROW (decl) = 1;
5420
5421 return decl;
5422 }
5423
5424 vec<tree, va_gc> *all_translation_units;
5425
5426 /* Builds a new translation-unit decl with name NAME, queues it in the
5427 global list of translation-unit decls and returns it. */
5428
5429 tree
5430 build_translation_unit_decl (tree name)
5431 {
5432 tree tu = build_decl (UNKNOWN_LOCATION, TRANSLATION_UNIT_DECL,
5433 name, NULL_TREE);
5434 TRANSLATION_UNIT_LANGUAGE (tu) = lang_hooks.name;
5435 vec_safe_push (all_translation_units, tu);
5436 return tu;
5437 }
5438
5439 \f
5440 /* BLOCK nodes are used to represent the structure of binding contours
5441 and declarations, once those contours have been exited and their contents
5442 compiled. This information is used for outputting debugging info. */
5443
5444 tree
5445 build_block (tree vars, tree subblocks, tree supercontext, tree chain)
5446 {
5447 tree block = make_node (BLOCK);
5448
5449 BLOCK_VARS (block) = vars;
5450 BLOCK_SUBBLOCKS (block) = subblocks;
5451 BLOCK_SUPERCONTEXT (block) = supercontext;
5452 BLOCK_CHAIN (block) = chain;
5453 return block;
5454 }
5455
5456 \f
5457 /* Like SET_EXPR_LOCATION, but make sure the tree can have a location.
5458
5459 LOC is the location to use in tree T. */
5460
5461 void
5462 protected_set_expr_location (tree t, location_t loc)
5463 {
5464 if (CAN_HAVE_LOCATION_P (t))
5465 SET_EXPR_LOCATION (t, loc);
5466 else if (t && TREE_CODE (t) == STATEMENT_LIST)
5467 {
5468 t = expr_single (t);
5469 if (t && CAN_HAVE_LOCATION_P (t))
5470 SET_EXPR_LOCATION (t, loc);
5471 }
5472 }
5473
5474 /* Like PROTECTED_SET_EXPR_LOCATION, but only do that if T has
5475 UNKNOWN_LOCATION. */
5476
5477 void
5478 protected_set_expr_location_if_unset (tree t, location_t loc)
5479 {
5480 t = expr_single (t);
5481 if (t && !EXPR_HAS_LOCATION (t))
5482 protected_set_expr_location (t, loc);
5483 }
5484 \f
5485 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
5486 of the various TYPE_QUAL values. */
5487
5488 static void
5489 set_type_quals (tree type, int type_quals)
5490 {
5491 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
5492 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
5493 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
5494 TYPE_ATOMIC (type) = (type_quals & TYPE_QUAL_ATOMIC) != 0;
5495 TYPE_ADDR_SPACE (type) = DECODE_QUAL_ADDR_SPACE (type_quals);
5496 }
5497
5498 /* Returns true iff CAND and BASE have equivalent language-specific
5499 qualifiers. */
5500
5501 bool
5502 check_lang_type (const_tree cand, const_tree base)
5503 {
5504 if (lang_hooks.types.type_hash_eq == NULL)
5505 return true;
5506 /* type_hash_eq currently only applies to these types. */
5507 if (TREE_CODE (cand) != FUNCTION_TYPE
5508 && TREE_CODE (cand) != METHOD_TYPE)
5509 return true;
5510 return lang_hooks.types.type_hash_eq (cand, base);
5511 }
5512
5513 /* This function checks to see if TYPE matches the size one of the built-in
5514 atomic types, and returns that core atomic type. */
5515
5516 static tree
5517 find_atomic_core_type (const_tree type)
5518 {
5519 tree base_atomic_type;
5520
5521 /* Only handle complete types. */
5522 if (!tree_fits_uhwi_p (TYPE_SIZE (type)))
5523 return NULL_TREE;
5524
5525 switch (tree_to_uhwi (TYPE_SIZE (type)))
5526 {
5527 case 8:
5528 base_atomic_type = atomicQI_type_node;
5529 break;
5530
5531 case 16:
5532 base_atomic_type = atomicHI_type_node;
5533 break;
5534
5535 case 32:
5536 base_atomic_type = atomicSI_type_node;
5537 break;
5538
5539 case 64:
5540 base_atomic_type = atomicDI_type_node;
5541 break;
5542
5543 case 128:
5544 base_atomic_type = atomicTI_type_node;
5545 break;
5546
5547 default:
5548 base_atomic_type = NULL_TREE;
5549 }
5550
5551 return base_atomic_type;
5552 }
5553
5554 /* Returns true iff unqualified CAND and BASE are equivalent. */
5555
5556 bool
5557 check_base_type (const_tree cand, const_tree base)
5558 {
5559 if (TYPE_NAME (cand) != TYPE_NAME (base)
5560 /* Apparently this is needed for Objective-C. */
5561 || TYPE_CONTEXT (cand) != TYPE_CONTEXT (base)
5562 || !attribute_list_equal (TYPE_ATTRIBUTES (cand),
5563 TYPE_ATTRIBUTES (base)))
5564 return false;
5565 /* Check alignment. */
5566 if (TYPE_ALIGN (cand) == TYPE_ALIGN (base)
5567 && TYPE_USER_ALIGN (cand) == TYPE_USER_ALIGN (base))
5568 return true;
5569 /* Atomic types increase minimal alignment. We must to do so as well
5570 or we get duplicated canonical types. See PR88686. */
5571 if ((TYPE_QUALS (cand) & TYPE_QUAL_ATOMIC))
5572 {
5573 /* See if this object can map to a basic atomic type. */
5574 tree atomic_type = find_atomic_core_type (cand);
5575 if (atomic_type && TYPE_ALIGN (atomic_type) == TYPE_ALIGN (cand))
5576 return true;
5577 }
5578 return false;
5579 }
5580
5581 /* Returns true iff CAND is equivalent to BASE with TYPE_QUALS. */
5582
5583 bool
5584 check_qualified_type (const_tree cand, const_tree base, int type_quals)
5585 {
5586 return (TYPE_QUALS (cand) == type_quals
5587 && check_base_type (cand, base)
5588 && check_lang_type (cand, base));
5589 }
5590
5591 /* Returns true iff CAND is equivalent to BASE with ALIGN. */
5592
5593 static bool
5594 check_aligned_type (const_tree cand, const_tree base, unsigned int align)
5595 {
5596 return (TYPE_QUALS (cand) == TYPE_QUALS (base)
5597 && TYPE_NAME (cand) == TYPE_NAME (base)
5598 /* Apparently this is needed for Objective-C. */
5599 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
5600 /* Check alignment. */
5601 && TYPE_ALIGN (cand) == align
5602 /* Check this is a user-aligned type as build_aligned_type
5603 would create. */
5604 && TYPE_USER_ALIGN (cand)
5605 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
5606 TYPE_ATTRIBUTES (base))
5607 && check_lang_type (cand, base));
5608 }
5609
5610 /* Return a version of the TYPE, qualified as indicated by the
5611 TYPE_QUALS, if one exists. If no qualified version exists yet,
5612 return NULL_TREE. */
5613
5614 tree
5615 get_qualified_type (tree type, int type_quals)
5616 {
5617 if (TYPE_QUALS (type) == type_quals)
5618 return type;
5619
5620 tree mv = TYPE_MAIN_VARIANT (type);
5621 if (check_qualified_type (mv, type, type_quals))
5622 return mv;
5623
5624 /* Search the chain of variants to see if there is already one there just
5625 like the one we need to have. If so, use that existing one. We must
5626 preserve the TYPE_NAME, since there is code that depends on this. */
5627 for (tree *tp = &TYPE_NEXT_VARIANT (mv); *tp; tp = &TYPE_NEXT_VARIANT (*tp))
5628 if (check_qualified_type (*tp, type, type_quals))
5629 {
5630 /* Put the found variant at the head of the variant list so
5631 frequently searched variants get found faster. The C++ FE
5632 benefits greatly from this. */
5633 tree t = *tp;
5634 *tp = TYPE_NEXT_VARIANT (t);
5635 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (mv);
5636 TYPE_NEXT_VARIANT (mv) = t;
5637 return t;
5638 }
5639
5640 return NULL_TREE;
5641 }
5642
5643 /* Like get_qualified_type, but creates the type if it does not
5644 exist. This function never returns NULL_TREE. */
5645
5646 tree
5647 build_qualified_type (tree type, int type_quals MEM_STAT_DECL)
5648 {
5649 tree t;
5650
5651 /* See if we already have the appropriate qualified variant. */
5652 t = get_qualified_type (type, type_quals);
5653
5654 /* If not, build it. */
5655 if (!t)
5656 {
5657 t = build_variant_type_copy (type PASS_MEM_STAT);
5658 set_type_quals (t, type_quals);
5659
5660 if (((type_quals & TYPE_QUAL_ATOMIC) == TYPE_QUAL_ATOMIC))
5661 {
5662 /* See if this object can map to a basic atomic type. */
5663 tree atomic_type = find_atomic_core_type (type);
5664 if (atomic_type)
5665 {
5666 /* Ensure the alignment of this type is compatible with
5667 the required alignment of the atomic type. */
5668 if (TYPE_ALIGN (atomic_type) > TYPE_ALIGN (t))
5669 SET_TYPE_ALIGN (t, TYPE_ALIGN (atomic_type));
5670 }
5671 }
5672
5673 if (TYPE_STRUCTURAL_EQUALITY_P (type))
5674 /* Propagate structural equality. */
5675 SET_TYPE_STRUCTURAL_EQUALITY (t);
5676 else if (TYPE_CANONICAL (type) != type)
5677 /* Build the underlying canonical type, since it is different
5678 from TYPE. */
5679 {
5680 tree c = build_qualified_type (TYPE_CANONICAL (type), type_quals);
5681 TYPE_CANONICAL (t) = TYPE_CANONICAL (c);
5682 }
5683 else
5684 /* T is its own canonical type. */
5685 TYPE_CANONICAL (t) = t;
5686
5687 }
5688
5689 return t;
5690 }
5691
5692 /* Create a variant of type T with alignment ALIGN which
5693 is measured in bits. */
5694
5695 tree
5696 build_aligned_type (tree type, unsigned int align)
5697 {
5698 tree t;
5699
5700 if (TYPE_PACKED (type)
5701 || TYPE_ALIGN (type) == align)
5702 return type;
5703
5704 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
5705 if (check_aligned_type (t, type, align))
5706 return t;
5707
5708 t = build_variant_type_copy (type);
5709 SET_TYPE_ALIGN (t, align);
5710 TYPE_USER_ALIGN (t) = 1;
5711
5712 return t;
5713 }
5714
5715 /* Create a new distinct copy of TYPE. The new type is made its own
5716 MAIN_VARIANT. If TYPE requires structural equality checks, the
5717 resulting type requires structural equality checks; otherwise, its
5718 TYPE_CANONICAL points to itself. */
5719
5720 tree
5721 build_distinct_type_copy (tree type MEM_STAT_DECL)
5722 {
5723 tree t = copy_node (type PASS_MEM_STAT);
5724
5725 TYPE_POINTER_TO (t) = 0;
5726 TYPE_REFERENCE_TO (t) = 0;
5727
5728 /* Set the canonical type either to a new equivalence class, or
5729 propagate the need for structural equality checks. */
5730 if (TYPE_STRUCTURAL_EQUALITY_P (type))
5731 SET_TYPE_STRUCTURAL_EQUALITY (t);
5732 else
5733 TYPE_CANONICAL (t) = t;
5734
5735 /* Make it its own variant. */
5736 TYPE_MAIN_VARIANT (t) = t;
5737 TYPE_NEXT_VARIANT (t) = 0;
5738
5739 /* Note that it is now possible for TYPE_MIN_VALUE to be a value
5740 whose TREE_TYPE is not t. This can also happen in the Ada
5741 frontend when using subtypes. */
5742
5743 return t;
5744 }
5745
5746 /* Create a new variant of TYPE, equivalent but distinct. This is so
5747 the caller can modify it. TYPE_CANONICAL for the return type will
5748 be equivalent to TYPE_CANONICAL of TYPE, indicating that the types
5749 are considered equal by the language itself (or that both types
5750 require structural equality checks). */
5751
5752 tree
5753 build_variant_type_copy (tree type MEM_STAT_DECL)
5754 {
5755 tree t, m = TYPE_MAIN_VARIANT (type);
5756
5757 t = build_distinct_type_copy (type PASS_MEM_STAT);
5758
5759 /* Since we're building a variant, assume that it is a non-semantic
5760 variant. This also propagates TYPE_STRUCTURAL_EQUALITY_P. */
5761 TYPE_CANONICAL (t) = TYPE_CANONICAL (type);
5762 /* Type variants have no alias set defined. */
5763 TYPE_ALIAS_SET (t) = -1;
5764
5765 /* Add the new type to the chain of variants of TYPE. */
5766 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
5767 TYPE_NEXT_VARIANT (m) = t;
5768 TYPE_MAIN_VARIANT (t) = m;
5769
5770 return t;
5771 }
5772 \f
5773 /* Return true if the from tree in both tree maps are equal. */
5774
5775 int
5776 tree_map_base_eq (const void *va, const void *vb)
5777 {
5778 const struct tree_map_base *const a = (const struct tree_map_base *) va,
5779 *const b = (const struct tree_map_base *) vb;
5780 return (a->from == b->from);
5781 }
5782
5783 /* Hash a from tree in a tree_base_map. */
5784
5785 unsigned int
5786 tree_map_base_hash (const void *item)
5787 {
5788 return htab_hash_pointer (((const struct tree_map_base *)item)->from);
5789 }
5790
5791 /* Return true if this tree map structure is marked for garbage collection
5792 purposes. We simply return true if the from tree is marked, so that this
5793 structure goes away when the from tree goes away. */
5794
5795 bool
5796 tree_map_base_marked_p (const void *p)
5797 {
5798 return ggc_marked_p (((const struct tree_map_base *) p)->from);
5799 }
5800
5801 /* Hash a from tree in a tree_map. */
5802
5803 unsigned int
5804 tree_map_hash (const void *item)
5805 {
5806 return (((const struct tree_map *) item)->hash);
5807 }
5808
5809 /* Hash a from tree in a tree_decl_map. */
5810
5811 unsigned int
5812 tree_decl_map_hash (const void *item)
5813 {
5814 return DECL_UID (((const struct tree_decl_map *) item)->base.from);
5815 }
5816
5817 /* Return the initialization priority for DECL. */
5818
5819 priority_type
5820 decl_init_priority_lookup (tree decl)
5821 {
5822 symtab_node *snode = symtab_node::get (decl);
5823
5824 if (!snode)
5825 return DEFAULT_INIT_PRIORITY;
5826 return
5827 snode->get_init_priority ();
5828 }
5829
5830 /* Return the finalization priority for DECL. */
5831
5832 priority_type
5833 decl_fini_priority_lookup (tree decl)
5834 {
5835 cgraph_node *node = cgraph_node::get (decl);
5836
5837 if (!node)
5838 return DEFAULT_INIT_PRIORITY;
5839 return
5840 node->get_fini_priority ();
5841 }
5842
5843 /* Set the initialization priority for DECL to PRIORITY. */
5844
5845 void
5846 decl_init_priority_insert (tree decl, priority_type priority)
5847 {
5848 struct symtab_node *snode;
5849
5850 if (priority == DEFAULT_INIT_PRIORITY)
5851 {
5852 snode = symtab_node::get (decl);
5853 if (!snode)
5854 return;
5855 }
5856 else if (VAR_P (decl))
5857 snode = varpool_node::get_create (decl);
5858 else
5859 snode = cgraph_node::get_create (decl);
5860 snode->set_init_priority (priority);
5861 }
5862
5863 /* Set the finalization priority for DECL to PRIORITY. */
5864
5865 void
5866 decl_fini_priority_insert (tree decl, priority_type priority)
5867 {
5868 struct cgraph_node *node;
5869
5870 if (priority == DEFAULT_INIT_PRIORITY)
5871 {
5872 node = cgraph_node::get (decl);
5873 if (!node)
5874 return;
5875 }
5876 else
5877 node = cgraph_node::get_create (decl);
5878 node->set_fini_priority (priority);
5879 }
5880
5881 /* Print out the statistics for the DECL_DEBUG_EXPR hash table. */
5882
5883 static void
5884 print_debug_expr_statistics (void)
5885 {
5886 fprintf (stderr, "DECL_DEBUG_EXPR hash: size " HOST_SIZE_T_PRINT_DEC ", "
5887 HOST_SIZE_T_PRINT_DEC " elements, %f collisions\n",
5888 (fmt_size_t) debug_expr_for_decl->size (),
5889 (fmt_size_t) debug_expr_for_decl->elements (),
5890 debug_expr_for_decl->collisions ());
5891 }
5892
5893 /* Print out the statistics for the DECL_VALUE_EXPR hash table. */
5894
5895 static void
5896 print_value_expr_statistics (void)
5897 {
5898 fprintf (stderr, "DECL_VALUE_EXPR hash: size " HOST_SIZE_T_PRINT_DEC ", "
5899 HOST_SIZE_T_PRINT_DEC " elements, %f collisions\n",
5900 (fmt_size_t) value_expr_for_decl->size (),
5901 (fmt_size_t) value_expr_for_decl->elements (),
5902 value_expr_for_decl->collisions ());
5903 }
5904
5905 /* Lookup a debug expression for FROM, and return it if we find one. */
5906
5907 tree
5908 decl_debug_expr_lookup (tree from)
5909 {
5910 struct tree_decl_map *h, in;
5911 in.base.from = from;
5912
5913 h = debug_expr_for_decl->find_with_hash (&in, DECL_UID (from));
5914 if (h)
5915 return h->to;
5916 return NULL_TREE;
5917 }
5918
5919 /* Insert a mapping FROM->TO in the debug expression hashtable. */
5920
5921 void
5922 decl_debug_expr_insert (tree from, tree to)
5923 {
5924 struct tree_decl_map *h;
5925
5926 h = ggc_alloc<tree_decl_map> ();
5927 h->base.from = from;
5928 h->to = to;
5929 *debug_expr_for_decl->find_slot_with_hash (h, DECL_UID (from), INSERT) = h;
5930 }
5931
5932 /* Lookup a value expression for FROM, and return it if we find one. */
5933
5934 tree
5935 decl_value_expr_lookup (tree from)
5936 {
5937 struct tree_decl_map *h, in;
5938 in.base.from = from;
5939
5940 h = value_expr_for_decl->find_with_hash (&in, DECL_UID (from));
5941 if (h)
5942 return h->to;
5943 return NULL_TREE;
5944 }
5945
5946 /* Insert a mapping FROM->TO in the value expression hashtable. */
5947
5948 void
5949 decl_value_expr_insert (tree from, tree to)
5950 {
5951 struct tree_decl_map *h;
5952
5953 /* Uses of FROM shouldn't look like they happen at the location of TO. */
5954 to = protected_set_expr_location_unshare (to, UNKNOWN_LOCATION);
5955
5956 h = ggc_alloc<tree_decl_map> ();
5957 h->base.from = from;
5958 h->to = to;
5959 *value_expr_for_decl->find_slot_with_hash (h, DECL_UID (from), INSERT) = h;
5960 }
5961
5962 /* Lookup a vector of debug arguments for FROM, and return it if we
5963 find one. */
5964
5965 vec<tree, va_gc> **
5966 decl_debug_args_lookup (tree from)
5967 {
5968 struct tree_vec_map *h, in;
5969
5970 if (!DECL_HAS_DEBUG_ARGS_P (from))
5971 return NULL;
5972 gcc_checking_assert (debug_args_for_decl != NULL);
5973 in.base.from = from;
5974 h = debug_args_for_decl->find_with_hash (&in, DECL_UID (from));
5975 if (h)
5976 return &h->to;
5977 return NULL;
5978 }
5979
5980 /* Insert a mapping FROM->empty vector of debug arguments in the value
5981 expression hashtable. */
5982
5983 vec<tree, va_gc> **
5984 decl_debug_args_insert (tree from)
5985 {
5986 struct tree_vec_map *h;
5987 tree_vec_map **loc;
5988
5989 if (DECL_HAS_DEBUG_ARGS_P (from))
5990 return decl_debug_args_lookup (from);
5991 if (debug_args_for_decl == NULL)
5992 debug_args_for_decl = hash_table<tree_vec_map_cache_hasher>::create_ggc (64);
5993 h = ggc_alloc<tree_vec_map> ();
5994 h->base.from = from;
5995 h->to = NULL;
5996 loc = debug_args_for_decl->find_slot_with_hash (h, DECL_UID (from), INSERT);
5997 *loc = h;
5998 DECL_HAS_DEBUG_ARGS_P (from) = 1;
5999 return &h->to;
6000 }
6001
6002 /* Hashing of types so that we don't make duplicates.
6003 The entry point is `type_hash_canon'. */
6004
6005 /* Generate the default hash code for TYPE. This is designed for
6006 speed, rather than maximum entropy. */
6007
6008 hashval_t
6009 type_hash_canon_hash (tree type)
6010 {
6011 inchash::hash hstate;
6012
6013 hstate.add_int (TREE_CODE (type));
6014
6015 hstate.add_flag (TYPE_STRUCTURAL_EQUALITY_P (type));
6016
6017 if (TREE_TYPE (type))
6018 hstate.add_object (TYPE_HASH (TREE_TYPE (type)));
6019
6020 for (tree t = TYPE_ATTRIBUTES (type); t; t = TREE_CHAIN (t))
6021 /* Just the identifier is adequate to distinguish. */
6022 hstate.add_object (IDENTIFIER_HASH_VALUE (get_attribute_name (t)));
6023
6024 switch (TREE_CODE (type))
6025 {
6026 case METHOD_TYPE:
6027 hstate.add_object (TYPE_HASH (TYPE_METHOD_BASETYPE (type)));
6028 /* FALLTHROUGH. */
6029 case FUNCTION_TYPE:
6030 for (tree t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
6031 if (TREE_VALUE (t) != error_mark_node)
6032 hstate.add_object (TYPE_HASH (TREE_VALUE (t)));
6033 break;
6034
6035 case OFFSET_TYPE:
6036 hstate.add_object (TYPE_HASH (TYPE_OFFSET_BASETYPE (type)));
6037 break;
6038
6039 case ARRAY_TYPE:
6040 {
6041 if (TYPE_DOMAIN (type))
6042 hstate.add_object (TYPE_HASH (TYPE_DOMAIN (type)));
6043 if (!AGGREGATE_TYPE_P (TREE_TYPE (type)))
6044 {
6045 unsigned typeless = TYPE_TYPELESS_STORAGE (type);
6046 hstate.add_object (typeless);
6047 }
6048 }
6049 break;
6050
6051 case INTEGER_TYPE:
6052 {
6053 tree t = TYPE_MAX_VALUE (type);
6054 if (!t)
6055 t = TYPE_MIN_VALUE (type);
6056 for (int i = 0; i < TREE_INT_CST_NUNITS (t); i++)
6057 hstate.add_object (TREE_INT_CST_ELT (t, i));
6058 break;
6059 }
6060
6061 case BITINT_TYPE:
6062 {
6063 unsigned prec = TYPE_PRECISION (type);
6064 unsigned uns = TYPE_UNSIGNED (type);
6065 hstate.add_object (prec);
6066 hstate.add_int (uns);
6067 break;
6068 }
6069
6070 case REAL_TYPE:
6071 case FIXED_POINT_TYPE:
6072 {
6073 unsigned prec = TYPE_PRECISION (type);
6074 hstate.add_object (prec);
6075 break;
6076 }
6077
6078 case VECTOR_TYPE:
6079 hstate.add_poly_int (TYPE_VECTOR_SUBPARTS (type));
6080 break;
6081
6082 default:
6083 break;
6084 }
6085
6086 return hstate.end ();
6087 }
6088
6089 /* These are the Hashtable callback functions. */
6090
6091 /* Returns true iff the types are equivalent. */
6092
6093 bool
6094 type_cache_hasher::equal (type_hash *a, type_hash *b)
6095 {
6096 /* First test the things that are the same for all types. */
6097 if (a->hash != b->hash
6098 || TREE_CODE (a->type) != TREE_CODE (b->type)
6099 || TREE_TYPE (a->type) != TREE_TYPE (b->type)
6100 || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
6101 TYPE_ATTRIBUTES (b->type))
6102 || (TREE_CODE (a->type) != COMPLEX_TYPE
6103 && TYPE_NAME (a->type) != TYPE_NAME (b->type)))
6104 return false;
6105
6106 /* Be careful about comparing arrays before and after the element type
6107 has been completed; don't compare TYPE_ALIGN unless both types are
6108 complete. */
6109 if (COMPLETE_TYPE_P (a->type) && COMPLETE_TYPE_P (b->type)
6110 && (TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
6111 || TYPE_MODE (a->type) != TYPE_MODE (b->type)))
6112 return false;
6113
6114 if (TYPE_STRUCTURAL_EQUALITY_P (a->type)
6115 != TYPE_STRUCTURAL_EQUALITY_P (b->type))
6116 return false;
6117
6118 switch (TREE_CODE (a->type))
6119 {
6120 case VOID_TYPE:
6121 case OPAQUE_TYPE:
6122 case COMPLEX_TYPE:
6123 case POINTER_TYPE:
6124 case REFERENCE_TYPE:
6125 case NULLPTR_TYPE:
6126 return true;
6127
6128 case VECTOR_TYPE:
6129 return known_eq (TYPE_VECTOR_SUBPARTS (a->type),
6130 TYPE_VECTOR_SUBPARTS (b->type));
6131
6132 case ENUMERAL_TYPE:
6133 if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
6134 && !(TYPE_VALUES (a->type)
6135 && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
6136 && TYPE_VALUES (b->type)
6137 && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
6138 && type_list_equal (TYPE_VALUES (a->type),
6139 TYPE_VALUES (b->type))))
6140 return false;
6141
6142 /* fall through */
6143
6144 case INTEGER_TYPE:
6145 case REAL_TYPE:
6146 case BOOLEAN_TYPE:
6147 if (TYPE_PRECISION (a->type) != TYPE_PRECISION (b->type))
6148 return false;
6149 return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
6150 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
6151 TYPE_MAX_VALUE (b->type)))
6152 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
6153 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
6154 TYPE_MIN_VALUE (b->type))));
6155
6156 case BITINT_TYPE:
6157 if (TYPE_PRECISION (a->type) != TYPE_PRECISION (b->type))
6158 return false;
6159 return TYPE_UNSIGNED (a->type) == TYPE_UNSIGNED (b->type);
6160
6161 case FIXED_POINT_TYPE:
6162 return TYPE_SATURATING (a->type) == TYPE_SATURATING (b->type);
6163
6164 case OFFSET_TYPE:
6165 return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
6166
6167 case METHOD_TYPE:
6168 if (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
6169 && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
6170 || (TYPE_ARG_TYPES (a->type)
6171 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
6172 && TYPE_ARG_TYPES (b->type)
6173 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
6174 && type_list_equal (TYPE_ARG_TYPES (a->type),
6175 TYPE_ARG_TYPES (b->type)))))
6176 break;
6177 return false;
6178 case ARRAY_TYPE:
6179 /* Don't compare TYPE_TYPELESS_STORAGE flag on aggregates,
6180 where the flag should be inherited from the element type
6181 and can change after ARRAY_TYPEs are created; on non-aggregates
6182 compare it and hash it, scalars will never have that flag set
6183 and we need to differentiate between arrays created by different
6184 front-ends or middle-end created arrays. */
6185 return (TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type)
6186 && (AGGREGATE_TYPE_P (TREE_TYPE (a->type))
6187 || (TYPE_TYPELESS_STORAGE (a->type)
6188 == TYPE_TYPELESS_STORAGE (b->type))));
6189
6190 case RECORD_TYPE:
6191 case UNION_TYPE:
6192 case QUAL_UNION_TYPE:
6193 return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
6194 || (TYPE_FIELDS (a->type)
6195 && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
6196 && TYPE_FIELDS (b->type)
6197 && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
6198 && type_list_equal (TYPE_FIELDS (a->type),
6199 TYPE_FIELDS (b->type))));
6200
6201 case FUNCTION_TYPE:
6202 if ((TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
6203 && (TYPE_NO_NAMED_ARGS_STDARG_P (a->type)
6204 == TYPE_NO_NAMED_ARGS_STDARG_P (b->type)))
6205 || (TYPE_ARG_TYPES (a->type)
6206 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
6207 && TYPE_ARG_TYPES (b->type)
6208 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
6209 && type_list_equal (TYPE_ARG_TYPES (a->type),
6210 TYPE_ARG_TYPES (b->type))))
6211 break;
6212 return false;
6213
6214 default:
6215 return false;
6216 }
6217
6218 if (lang_hooks.types.type_hash_eq != NULL)
6219 return lang_hooks.types.type_hash_eq (a->type, b->type);
6220
6221 return true;
6222 }
6223
6224 /* Given TYPE, and HASHCODE its hash code, return the canonical
6225 object for an identical type if one already exists.
6226 Otherwise, return TYPE, and record it as the canonical object.
6227
6228 To use this function, first create a type of the sort you want.
6229 Then compute its hash code from the fields of the type that
6230 make it different from other similar types.
6231 Then call this function and use the value. */
6232
6233 tree
6234 type_hash_canon (unsigned int hashcode, tree type)
6235 {
6236 type_hash in;
6237 type_hash **loc;
6238
6239 /* The hash table only contains main variants, so ensure that's what we're
6240 being passed. */
6241 gcc_assert (TYPE_MAIN_VARIANT (type) == type);
6242
6243 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
6244 must call that routine before comparing TYPE_ALIGNs. */
6245 layout_type (type);
6246
6247 in.hash = hashcode;
6248 in.type = type;
6249
6250 loc = type_hash_table->find_slot_with_hash (&in, hashcode, INSERT);
6251 if (*loc)
6252 {
6253 tree t1 = ((type_hash *) *loc)->type;
6254 gcc_assert (TYPE_MAIN_VARIANT (t1) == t1
6255 && t1 != type);
6256 if (TYPE_UID (type) + 1 == next_type_uid)
6257 --next_type_uid;
6258 /* Free also min/max values and the cache for integer
6259 types. This can't be done in free_node, as LTO frees
6260 those on its own. */
6261 if (TREE_CODE (type) == INTEGER_TYPE || TREE_CODE (type) == BITINT_TYPE)
6262 {
6263 if (TYPE_MIN_VALUE (type)
6264 && TREE_TYPE (TYPE_MIN_VALUE (type)) == type)
6265 {
6266 /* Zero is always in TYPE_CACHED_VALUES. */
6267 if (! TYPE_UNSIGNED (type))
6268 int_cst_hash_table->remove_elt (TYPE_MIN_VALUE (type));
6269 ggc_free (TYPE_MIN_VALUE (type));
6270 }
6271 if (TYPE_MAX_VALUE (type)
6272 && TREE_TYPE (TYPE_MAX_VALUE (type)) == type)
6273 {
6274 int_cst_hash_table->remove_elt (TYPE_MAX_VALUE (type));
6275 ggc_free (TYPE_MAX_VALUE (type));
6276 }
6277 if (TYPE_CACHED_VALUES_P (type))
6278 ggc_free (TYPE_CACHED_VALUES (type));
6279 }
6280 free_node (type);
6281 return t1;
6282 }
6283 else
6284 {
6285 struct type_hash *h;
6286
6287 h = ggc_alloc<type_hash> ();
6288 h->hash = hashcode;
6289 h->type = type;
6290 *loc = h;
6291
6292 return type;
6293 }
6294 }
6295
6296 static void
6297 print_type_hash_statistics (void)
6298 {
6299 fprintf (stderr, "Type hash: size " HOST_SIZE_T_PRINT_DEC ", "
6300 HOST_SIZE_T_PRINT_DEC " elements, %f collisions\n",
6301 (fmt_size_t) type_hash_table->size (),
6302 (fmt_size_t) type_hash_table->elements (),
6303 type_hash_table->collisions ());
6304 }
6305
6306 /* Given two lists of types
6307 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
6308 return 1 if the lists contain the same types in the same order.
6309 Also, the TREE_PURPOSEs must match. */
6310
6311 bool
6312 type_list_equal (const_tree l1, const_tree l2)
6313 {
6314 const_tree t1, t2;
6315
6316 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
6317 if (TREE_VALUE (t1) != TREE_VALUE (t2)
6318 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
6319 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
6320 && (TREE_TYPE (TREE_PURPOSE (t1))
6321 == TREE_TYPE (TREE_PURPOSE (t2))))))
6322 return false;
6323
6324 return t1 == t2;
6325 }
6326
6327 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
6328 given by TYPE. If the argument list accepts variable arguments,
6329 then this function counts only the ordinary arguments. */
6330
6331 int
6332 type_num_arguments (const_tree fntype)
6333 {
6334 int i = 0;
6335
6336 for (tree t = TYPE_ARG_TYPES (fntype); t; t = TREE_CHAIN (t))
6337 /* If the function does not take a variable number of arguments,
6338 the last element in the list will have type `void'. */
6339 if (VOID_TYPE_P (TREE_VALUE (t)))
6340 break;
6341 else
6342 ++i;
6343
6344 return i;
6345 }
6346
6347 /* Return the type of the function TYPE's argument ARGNO if known.
6348 For vararg function's where ARGNO refers to one of the variadic
6349 arguments return null. Otherwise, return a void_type_node for
6350 out-of-bounds ARGNO. */
6351
6352 tree
6353 type_argument_type (const_tree fntype, unsigned argno)
6354 {
6355 /* Treat zero the same as an out-of-bounds argument number. */
6356 if (!argno)
6357 return void_type_node;
6358
6359 function_args_iterator iter;
6360
6361 tree argtype;
6362 unsigned i = 1;
6363 FOREACH_FUNCTION_ARGS (fntype, argtype, iter)
6364 {
6365 /* A vararg function's argument list ends in a null. Otherwise,
6366 an ordinary function's argument list ends with void. Return
6367 null if ARGNO refers to a vararg argument, void_type_node if
6368 it's out of bounds, and the formal argument type otherwise. */
6369 if (!argtype)
6370 break;
6371
6372 if (i == argno || VOID_TYPE_P (argtype))
6373 return argtype;
6374
6375 ++i;
6376 }
6377
6378 return NULL_TREE;
6379 }
6380
6381 /* True if integer constants T1 and T2
6382 represent the same constant value. */
6383
6384 bool
6385 tree_int_cst_equal (const_tree t1, const_tree t2)
6386 {
6387 if (t1 == t2)
6388 return true;
6389
6390 if (t1 == 0 || t2 == 0)
6391 return false;
6392
6393 STRIP_ANY_LOCATION_WRAPPER (t1);
6394 STRIP_ANY_LOCATION_WRAPPER (t2);
6395
6396 if (TREE_CODE (t1) == INTEGER_CST
6397 && TREE_CODE (t2) == INTEGER_CST
6398 && wi::to_widest (t1) == wi::to_widest (t2))
6399 return true;
6400
6401 return false;
6402 }
6403
6404 /* Return true if T is an INTEGER_CST whose numerical value (extended
6405 according to TYPE_UNSIGNED) fits in a signed HOST_WIDE_INT. */
6406
6407 bool
6408 tree_fits_shwi_p (const_tree t)
6409 {
6410 return (t != NULL_TREE
6411 && TREE_CODE (t) == INTEGER_CST
6412 && wi::fits_shwi_p (wi::to_widest (t)));
6413 }
6414
6415 /* Return true if T is an INTEGER_CST or POLY_INT_CST whose numerical
6416 value (extended according to TYPE_UNSIGNED) fits in a poly_int64. */
6417
6418 bool
6419 tree_fits_poly_int64_p (const_tree t)
6420 {
6421 if (t == NULL_TREE)
6422 return false;
6423 if (POLY_INT_CST_P (t))
6424 {
6425 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; i++)
6426 if (!wi::fits_shwi_p (wi::to_wide (POLY_INT_CST_COEFF (t, i))))
6427 return false;
6428 return true;
6429 }
6430 return (TREE_CODE (t) == INTEGER_CST
6431 && wi::fits_shwi_p (wi::to_widest (t)));
6432 }
6433
6434 /* Return true if T is an INTEGER_CST whose numerical value (extended
6435 according to TYPE_UNSIGNED) fits in an unsigned HOST_WIDE_INT. */
6436
6437 bool
6438 tree_fits_uhwi_p (const_tree t)
6439 {
6440 return (t != NULL_TREE
6441 && TREE_CODE (t) == INTEGER_CST
6442 && wi::fits_uhwi_p (wi::to_widest (t)));
6443 }
6444
6445 /* Return true if T is an INTEGER_CST or POLY_INT_CST whose numerical
6446 value (extended according to TYPE_UNSIGNED) fits in a poly_uint64. */
6447
6448 bool
6449 tree_fits_poly_uint64_p (const_tree t)
6450 {
6451 if (t == NULL_TREE)
6452 return false;
6453 if (POLY_INT_CST_P (t))
6454 {
6455 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; i++)
6456 if (!wi::fits_uhwi_p (wi::to_widest (POLY_INT_CST_COEFF (t, i))))
6457 return false;
6458 return true;
6459 }
6460 return (TREE_CODE (t) == INTEGER_CST
6461 && wi::fits_uhwi_p (wi::to_widest (t)));
6462 }
6463
6464 /* T is an INTEGER_CST whose numerical value (extended according to
6465 TYPE_UNSIGNED) fits in a signed HOST_WIDE_INT. Return that
6466 HOST_WIDE_INT. */
6467
6468 HOST_WIDE_INT
6469 tree_to_shwi (const_tree t)
6470 {
6471 gcc_assert (tree_fits_shwi_p (t));
6472 return TREE_INT_CST_LOW (t);
6473 }
6474
6475 /* T is an INTEGER_CST whose numerical value (extended according to
6476 TYPE_UNSIGNED) fits in an unsigned HOST_WIDE_INT. Return that
6477 HOST_WIDE_INT. */
6478
6479 unsigned HOST_WIDE_INT
6480 tree_to_uhwi (const_tree t)
6481 {
6482 gcc_assert (tree_fits_uhwi_p (t));
6483 return TREE_INT_CST_LOW (t);
6484 }
6485
6486 /* Return the most significant (sign) bit of T. */
6487
6488 int
6489 tree_int_cst_sign_bit (const_tree t)
6490 {
6491 unsigned bitno = TYPE_PRECISION (TREE_TYPE (t)) - 1;
6492
6493 return wi::extract_uhwi (wi::to_wide (t), bitno, 1);
6494 }
6495
6496 /* Return an indication of the sign of the integer constant T.
6497 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
6498 Note that -1 will never be returned if T's type is unsigned. */
6499
6500 int
6501 tree_int_cst_sgn (const_tree t)
6502 {
6503 if (wi::to_wide (t) == 0)
6504 return 0;
6505 else if (TYPE_UNSIGNED (TREE_TYPE (t)))
6506 return 1;
6507 else if (wi::neg_p (wi::to_wide (t)))
6508 return -1;
6509 else
6510 return 1;
6511 }
6512
6513 /* Return the minimum number of bits needed to represent VALUE in a
6514 signed or unsigned type, UNSIGNEDP says which. */
6515
6516 unsigned int
6517 tree_int_cst_min_precision (tree value, signop sgn)
6518 {
6519 /* If the value is negative, compute its negative minus 1. The latter
6520 adjustment is because the absolute value of the largest negative value
6521 is one larger than the largest positive value. This is equivalent to
6522 a bit-wise negation, so use that operation instead. */
6523
6524 if (tree_int_cst_sgn (value) < 0)
6525 value = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (value), value);
6526
6527 /* Return the number of bits needed, taking into account the fact
6528 that we need one more bit for a signed than unsigned type.
6529 If value is 0 or -1, the minimum precision is 1 no matter
6530 whether unsignedp is true or false. */
6531
6532 if (integer_zerop (value))
6533 return 1;
6534 else
6535 return tree_floor_log2 (value) + 1 + (sgn == SIGNED ? 1 : 0) ;
6536 }
6537
6538 /* Return truthvalue of whether T1 is the same tree structure as T2.
6539 Return 1 if they are the same.
6540 Return 0 if they are understandably different.
6541 Return -1 if either contains tree structure not understood by
6542 this function. */
6543
6544 int
6545 simple_cst_equal (const_tree t1, const_tree t2)
6546 {
6547 enum tree_code code1, code2;
6548 int cmp;
6549 int i;
6550
6551 if (t1 == t2)
6552 return 1;
6553 if (t1 == 0 || t2 == 0)
6554 return 0;
6555
6556 /* For location wrappers to be the same, they must be at the same
6557 source location (and wrap the same thing). */
6558 if (location_wrapper_p (t1) && location_wrapper_p (t2))
6559 {
6560 if (EXPR_LOCATION (t1) != EXPR_LOCATION (t2))
6561 return 0;
6562 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6563 }
6564
6565 code1 = TREE_CODE (t1);
6566 code2 = TREE_CODE (t2);
6567
6568 if (CONVERT_EXPR_CODE_P (code1) || code1 == NON_LVALUE_EXPR)
6569 {
6570 if (CONVERT_EXPR_CODE_P (code2)
6571 || code2 == NON_LVALUE_EXPR)
6572 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6573 else
6574 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
6575 }
6576
6577 else if (CONVERT_EXPR_CODE_P (code2)
6578 || code2 == NON_LVALUE_EXPR)
6579 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
6580
6581 if (code1 != code2)
6582 return 0;
6583
6584 switch (code1)
6585 {
6586 case INTEGER_CST:
6587 return wi::to_widest (t1) == wi::to_widest (t2);
6588
6589 case REAL_CST:
6590 return real_identical (&TREE_REAL_CST (t1), &TREE_REAL_CST (t2));
6591
6592 case FIXED_CST:
6593 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1), TREE_FIXED_CST (t2));
6594
6595 case STRING_CST:
6596 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
6597 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
6598 TREE_STRING_LENGTH (t1)));
6599
6600 case CONSTRUCTOR:
6601 {
6602 unsigned HOST_WIDE_INT idx;
6603 vec<constructor_elt, va_gc> *v1 = CONSTRUCTOR_ELTS (t1);
6604 vec<constructor_elt, va_gc> *v2 = CONSTRUCTOR_ELTS (t2);
6605
6606 if (vec_safe_length (v1) != vec_safe_length (v2))
6607 return false;
6608
6609 for (idx = 0; idx < vec_safe_length (v1); ++idx)
6610 /* ??? Should we handle also fields here? */
6611 if (!simple_cst_equal ((*v1)[idx].value, (*v2)[idx].value))
6612 return false;
6613 return true;
6614 }
6615
6616 case SAVE_EXPR:
6617 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6618
6619 case CALL_EXPR:
6620 cmp = simple_cst_equal (CALL_EXPR_FN (t1), CALL_EXPR_FN (t2));
6621 if (cmp <= 0)
6622 return cmp;
6623 if (call_expr_nargs (t1) != call_expr_nargs (t2))
6624 return 0;
6625 {
6626 const_tree arg1, arg2;
6627 const_call_expr_arg_iterator iter1, iter2;
6628 for (arg1 = first_const_call_expr_arg (t1, &iter1),
6629 arg2 = first_const_call_expr_arg (t2, &iter2);
6630 arg1 && arg2;
6631 arg1 = next_const_call_expr_arg (&iter1),
6632 arg2 = next_const_call_expr_arg (&iter2))
6633 {
6634 cmp = simple_cst_equal (arg1, arg2);
6635 if (cmp <= 0)
6636 return cmp;
6637 }
6638 return arg1 == arg2;
6639 }
6640
6641 case TARGET_EXPR:
6642 /* Special case: if either target is an unallocated VAR_DECL,
6643 it means that it's going to be unified with whatever the
6644 TARGET_EXPR is really supposed to initialize, so treat it
6645 as being equivalent to anything. */
6646 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
6647 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
6648 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
6649 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
6650 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
6651 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
6652 cmp = 1;
6653 else
6654 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6655
6656 if (cmp <= 0)
6657 return cmp;
6658
6659 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
6660
6661 case WITH_CLEANUP_EXPR:
6662 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6663 if (cmp <= 0)
6664 return cmp;
6665
6666 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
6667
6668 case COMPONENT_REF:
6669 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
6670 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6671
6672 return 0;
6673
6674 case VAR_DECL:
6675 case PARM_DECL:
6676 case CONST_DECL:
6677 case FUNCTION_DECL:
6678 return 0;
6679
6680 default:
6681 if (POLY_INT_CST_P (t1))
6682 /* A false return means maybe_ne rather than known_ne. */
6683 return known_eq (poly_widest_int::from (poly_int_cst_value (t1),
6684 TYPE_SIGN (TREE_TYPE (t1))),
6685 poly_widest_int::from (poly_int_cst_value (t2),
6686 TYPE_SIGN (TREE_TYPE (t2))));
6687 break;
6688 }
6689
6690 /* This general rule works for most tree codes. All exceptions should be
6691 handled above. If this is a language-specific tree code, we can't
6692 trust what might be in the operand, so say we don't know
6693 the situation. */
6694 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
6695 return -1;
6696
6697 switch (TREE_CODE_CLASS (code1))
6698 {
6699 case tcc_unary:
6700 case tcc_binary:
6701 case tcc_comparison:
6702 case tcc_expression:
6703 case tcc_reference:
6704 case tcc_statement:
6705 cmp = 1;
6706 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
6707 {
6708 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
6709 if (cmp <= 0)
6710 return cmp;
6711 }
6712
6713 return cmp;
6714
6715 default:
6716 return -1;
6717 }
6718 }
6719
6720 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
6721 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
6722 than U, respectively. */
6723
6724 int
6725 compare_tree_int (const_tree t, unsigned HOST_WIDE_INT u)
6726 {
6727 if (tree_int_cst_sgn (t) < 0)
6728 return -1;
6729 else if (!tree_fits_uhwi_p (t))
6730 return 1;
6731 else if (TREE_INT_CST_LOW (t) == u)
6732 return 0;
6733 else if (TREE_INT_CST_LOW (t) < u)
6734 return -1;
6735 else
6736 return 1;
6737 }
6738
6739 /* Return true if SIZE represents a constant size that is in bounds of
6740 what the middle-end and the backend accepts (covering not more than
6741 half of the address-space).
6742 When PERR is non-null, set *PERR on failure to the description of
6743 why SIZE is not valid. */
6744
6745 bool
6746 valid_constant_size_p (const_tree size, cst_size_error *perr /* = NULL */)
6747 {
6748 if (POLY_INT_CST_P (size))
6749 {
6750 if (TREE_OVERFLOW (size))
6751 return false;
6752 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
6753 if (!valid_constant_size_p (POLY_INT_CST_COEFF (size, i)))
6754 return false;
6755 return true;
6756 }
6757
6758 cst_size_error error;
6759 if (!perr)
6760 perr = &error;
6761
6762 if (TREE_CODE (size) != INTEGER_CST)
6763 {
6764 *perr = cst_size_not_constant;
6765 return false;
6766 }
6767
6768 if (TREE_OVERFLOW_P (size))
6769 {
6770 *perr = cst_size_overflow;
6771 return false;
6772 }
6773
6774 if (tree_int_cst_sgn (size) < 0)
6775 {
6776 *perr = cst_size_negative;
6777 return false;
6778 }
6779 if (!tree_fits_uhwi_p (size)
6780 || (wi::to_widest (TYPE_MAX_VALUE (sizetype))
6781 < wi::to_widest (size) * 2))
6782 {
6783 *perr = cst_size_too_big;
6784 return false;
6785 }
6786
6787 return true;
6788 }
6789
6790 /* Return the precision of the type, or for a complex or vector type the
6791 precision of the type of its elements. */
6792
6793 unsigned int
6794 element_precision (const_tree type)
6795 {
6796 if (!TYPE_P (type))
6797 type = TREE_TYPE (type);
6798 enum tree_code code = TREE_CODE (type);
6799 if (code == COMPLEX_TYPE || code == VECTOR_TYPE)
6800 type = TREE_TYPE (type);
6801
6802 return TYPE_PRECISION (type);
6803 }
6804
6805 /* Return true if CODE represents an associative tree code. Otherwise
6806 return false. */
6807 bool
6808 associative_tree_code (enum tree_code code)
6809 {
6810 switch (code)
6811 {
6812 case BIT_IOR_EXPR:
6813 case BIT_AND_EXPR:
6814 case BIT_XOR_EXPR:
6815 case PLUS_EXPR:
6816 case MULT_EXPR:
6817 case MIN_EXPR:
6818 case MAX_EXPR:
6819 return true;
6820
6821 default:
6822 break;
6823 }
6824 return false;
6825 }
6826
6827 /* Return true if CODE represents a commutative tree code. Otherwise
6828 return false. */
6829 bool
6830 commutative_tree_code (enum tree_code code)
6831 {
6832 switch (code)
6833 {
6834 case PLUS_EXPR:
6835 case MULT_EXPR:
6836 case MULT_HIGHPART_EXPR:
6837 case MIN_EXPR:
6838 case MAX_EXPR:
6839 case BIT_IOR_EXPR:
6840 case BIT_XOR_EXPR:
6841 case BIT_AND_EXPR:
6842 case NE_EXPR:
6843 case EQ_EXPR:
6844 case UNORDERED_EXPR:
6845 case ORDERED_EXPR:
6846 case UNEQ_EXPR:
6847 case LTGT_EXPR:
6848 case TRUTH_AND_EXPR:
6849 case TRUTH_XOR_EXPR:
6850 case TRUTH_OR_EXPR:
6851 case WIDEN_MULT_EXPR:
6852 case VEC_WIDEN_MULT_HI_EXPR:
6853 case VEC_WIDEN_MULT_LO_EXPR:
6854 case VEC_WIDEN_MULT_EVEN_EXPR:
6855 case VEC_WIDEN_MULT_ODD_EXPR:
6856 return true;
6857
6858 default:
6859 break;
6860 }
6861 return false;
6862 }
6863
6864 /* Return true if CODE represents a ternary tree code for which the
6865 first two operands are commutative. Otherwise return false. */
6866 bool
6867 commutative_ternary_tree_code (enum tree_code code)
6868 {
6869 switch (code)
6870 {
6871 case WIDEN_MULT_PLUS_EXPR:
6872 case WIDEN_MULT_MINUS_EXPR:
6873 case DOT_PROD_EXPR:
6874 return true;
6875
6876 default:
6877 break;
6878 }
6879 return false;
6880 }
6881
6882 /* Returns true if CODE can overflow. */
6883
6884 bool
6885 operation_can_overflow (enum tree_code code)
6886 {
6887 switch (code)
6888 {
6889 case PLUS_EXPR:
6890 case MINUS_EXPR:
6891 case MULT_EXPR:
6892 case LSHIFT_EXPR:
6893 /* Can overflow in various ways. */
6894 return true;
6895 case TRUNC_DIV_EXPR:
6896 case EXACT_DIV_EXPR:
6897 case FLOOR_DIV_EXPR:
6898 case CEIL_DIV_EXPR:
6899 /* For INT_MIN / -1. */
6900 return true;
6901 case NEGATE_EXPR:
6902 case ABS_EXPR:
6903 /* For -INT_MIN. */
6904 return true;
6905 default:
6906 /* These operators cannot overflow. */
6907 return false;
6908 }
6909 }
6910
6911 /* Returns true if CODE operating on operands of type TYPE doesn't overflow, or
6912 ftrapv doesn't generate trapping insns for CODE. */
6913
6914 bool
6915 operation_no_trapping_overflow (tree type, enum tree_code code)
6916 {
6917 gcc_checking_assert (ANY_INTEGRAL_TYPE_P (type));
6918
6919 /* We don't generate instructions that trap on overflow for complex or vector
6920 types. */
6921 if (!INTEGRAL_TYPE_P (type))
6922 return true;
6923
6924 if (!TYPE_OVERFLOW_TRAPS (type))
6925 return true;
6926
6927 switch (code)
6928 {
6929 case PLUS_EXPR:
6930 case MINUS_EXPR:
6931 case MULT_EXPR:
6932 case NEGATE_EXPR:
6933 case ABS_EXPR:
6934 /* These operators can overflow, and -ftrapv generates trapping code for
6935 these. */
6936 return false;
6937 case TRUNC_DIV_EXPR:
6938 case EXACT_DIV_EXPR:
6939 case FLOOR_DIV_EXPR:
6940 case CEIL_DIV_EXPR:
6941 case LSHIFT_EXPR:
6942 /* These operators can overflow, but -ftrapv does not generate trapping
6943 code for these. */
6944 return true;
6945 default:
6946 /* These operators cannot overflow. */
6947 return true;
6948 }
6949 }
6950
6951 /* Constructors for pointer, array and function types.
6952 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
6953 constructed by language-dependent code, not here.) */
6954
6955 /* Construct, lay out and return the type of pointers to TO_TYPE with
6956 mode MODE. If MODE is VOIDmode, a pointer mode for the address
6957 space of TO_TYPE will be picked. If CAN_ALIAS_ALL is TRUE,
6958 indicate this type can reference all of memory. If such a type has
6959 already been constructed, reuse it. */
6960
6961 tree
6962 build_pointer_type_for_mode (tree to_type, machine_mode mode,
6963 bool can_alias_all)
6964 {
6965 tree t;
6966 bool could_alias = can_alias_all;
6967
6968 if (to_type == error_mark_node)
6969 return error_mark_node;
6970
6971 if (mode == VOIDmode)
6972 {
6973 addr_space_t as = TYPE_ADDR_SPACE (to_type);
6974 mode = targetm.addr_space.pointer_mode (as);
6975 }
6976
6977 /* If the pointed-to type has the may_alias attribute set, force
6978 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
6979 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
6980 can_alias_all = true;
6981
6982 /* In some cases, languages will have things that aren't a POINTER_TYPE
6983 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
6984 In that case, return that type without regard to the rest of our
6985 operands.
6986
6987 ??? This is a kludge, but consistent with the way this function has
6988 always operated and there doesn't seem to be a good way to avoid this
6989 at the moment. */
6990 if (TYPE_POINTER_TO (to_type) != 0
6991 && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
6992 return TYPE_POINTER_TO (to_type);
6993
6994 /* First, if we already have a type for pointers to TO_TYPE and it's
6995 the proper mode, use it. */
6996 for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
6997 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
6998 return t;
6999
7000 t = make_node (POINTER_TYPE);
7001
7002 TREE_TYPE (t) = to_type;
7003 SET_TYPE_MODE (t, mode);
7004 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
7005 TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
7006 TYPE_POINTER_TO (to_type) = t;
7007
7008 /* During LTO we do not set TYPE_CANONICAL of pointers and references. */
7009 if (TYPE_STRUCTURAL_EQUALITY_P (to_type) || in_lto_p)
7010 SET_TYPE_STRUCTURAL_EQUALITY (t);
7011 else if (TYPE_CANONICAL (to_type) != to_type || could_alias)
7012 TYPE_CANONICAL (t)
7013 = build_pointer_type_for_mode (TYPE_CANONICAL (to_type),
7014 mode, false);
7015
7016 /* Lay out the type. This function has many callers that are concerned
7017 with expression-construction, and this simplifies them all. */
7018 layout_type (t);
7019
7020 return t;
7021 }
7022
7023 /* By default build pointers in ptr_mode. */
7024
7025 tree
7026 build_pointer_type (tree to_type)
7027 {
7028 return build_pointer_type_for_mode (to_type, VOIDmode, false);
7029 }
7030
7031 /* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE. */
7032
7033 tree
7034 build_reference_type_for_mode (tree to_type, machine_mode mode,
7035 bool can_alias_all)
7036 {
7037 tree t;
7038 bool could_alias = can_alias_all;
7039
7040 if (to_type == error_mark_node)
7041 return error_mark_node;
7042
7043 if (mode == VOIDmode)
7044 {
7045 addr_space_t as = TYPE_ADDR_SPACE (to_type);
7046 mode = targetm.addr_space.pointer_mode (as);
7047 }
7048
7049 /* If the pointed-to type has the may_alias attribute set, force
7050 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
7051 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
7052 can_alias_all = true;
7053
7054 /* In some cases, languages will have things that aren't a REFERENCE_TYPE
7055 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
7056 In that case, return that type without regard to the rest of our
7057 operands.
7058
7059 ??? This is a kludge, but consistent with the way this function has
7060 always operated and there doesn't seem to be a good way to avoid this
7061 at the moment. */
7062 if (TYPE_REFERENCE_TO (to_type) != 0
7063 && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
7064 return TYPE_REFERENCE_TO (to_type);
7065
7066 /* First, if we already have a type for pointers to TO_TYPE and it's
7067 the proper mode, use it. */
7068 for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
7069 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
7070 return t;
7071
7072 t = make_node (REFERENCE_TYPE);
7073
7074 TREE_TYPE (t) = to_type;
7075 SET_TYPE_MODE (t, mode);
7076 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
7077 TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
7078 TYPE_REFERENCE_TO (to_type) = t;
7079
7080 /* During LTO we do not set TYPE_CANONICAL of pointers and references. */
7081 if (TYPE_STRUCTURAL_EQUALITY_P (to_type) || in_lto_p)
7082 SET_TYPE_STRUCTURAL_EQUALITY (t);
7083 else if (TYPE_CANONICAL (to_type) != to_type || could_alias)
7084 TYPE_CANONICAL (t)
7085 = build_reference_type_for_mode (TYPE_CANONICAL (to_type),
7086 mode, false);
7087
7088 layout_type (t);
7089
7090 return t;
7091 }
7092
7093
7094 /* Build the node for the type of references-to-TO_TYPE by default
7095 in ptr_mode. */
7096
7097 tree
7098 build_reference_type (tree to_type)
7099 {
7100 return build_reference_type_for_mode (to_type, VOIDmode, false);
7101 }
7102
7103 #define MAX_INT_CACHED_PREC \
7104 (HOST_BITS_PER_WIDE_INT > 64 ? HOST_BITS_PER_WIDE_INT : 64)
7105 static GTY(()) tree nonstandard_integer_type_cache[2 * MAX_INT_CACHED_PREC + 2];
7106
7107 static void
7108 clear_nonstandard_integer_type_cache (void)
7109 {
7110 for (size_t i = 0 ; i < 2 * MAX_INT_CACHED_PREC + 2 ; i++)
7111 {
7112 nonstandard_integer_type_cache[i] = NULL;
7113 }
7114 }
7115
7116 /* Builds a signed or unsigned integer type of precision PRECISION.
7117 Used for C bitfields whose precision does not match that of
7118 built-in target types. */
7119 tree
7120 build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
7121 int unsignedp)
7122 {
7123 tree itype, ret;
7124
7125 if (unsignedp)
7126 unsignedp = MAX_INT_CACHED_PREC + 1;
7127
7128 if (precision <= MAX_INT_CACHED_PREC)
7129 {
7130 itype = nonstandard_integer_type_cache[precision + unsignedp];
7131 if (itype)
7132 return itype;
7133 }
7134
7135 itype = make_node (INTEGER_TYPE);
7136 TYPE_PRECISION (itype) = precision;
7137
7138 if (unsignedp)
7139 fixup_unsigned_type (itype);
7140 else
7141 fixup_signed_type (itype);
7142
7143 inchash::hash hstate;
7144 inchash::add_expr (TYPE_MAX_VALUE (itype), hstate);
7145 ret = type_hash_canon (hstate.end (), itype);
7146 if (precision <= MAX_INT_CACHED_PREC)
7147 nonstandard_integer_type_cache[precision + unsignedp] = ret;
7148
7149 return ret;
7150 }
7151
7152 #define MAX_BOOL_CACHED_PREC \
7153 (HOST_BITS_PER_WIDE_INT > 64 ? HOST_BITS_PER_WIDE_INT : 64)
7154 static GTY(()) tree nonstandard_boolean_type_cache[MAX_BOOL_CACHED_PREC + 1];
7155
7156 /* Builds a boolean type of precision PRECISION.
7157 Used for boolean vectors to choose proper vector element size. */
7158 tree
7159 build_nonstandard_boolean_type (unsigned HOST_WIDE_INT precision)
7160 {
7161 tree type;
7162
7163 if (precision <= MAX_BOOL_CACHED_PREC)
7164 {
7165 type = nonstandard_boolean_type_cache[precision];
7166 if (type)
7167 return type;
7168 }
7169
7170 type = make_node (BOOLEAN_TYPE);
7171 TYPE_PRECISION (type) = precision;
7172 fixup_signed_type (type);
7173
7174 if (precision <= MAX_INT_CACHED_PREC)
7175 nonstandard_boolean_type_cache[precision] = type;
7176
7177 return type;
7178 }
7179
7180 static GTY(()) vec<tree, va_gc> *bitint_type_cache;
7181
7182 /* Builds a signed or unsigned _BitInt(PRECISION) type. */
7183 tree
7184 build_bitint_type (unsigned HOST_WIDE_INT precision, int unsignedp)
7185 {
7186 tree itype, ret;
7187
7188 gcc_checking_assert (precision >= 1 + !unsignedp);
7189
7190 if (unsignedp)
7191 unsignedp = MAX_INT_CACHED_PREC + 1;
7192
7193 if (bitint_type_cache == NULL)
7194 vec_safe_grow_cleared (bitint_type_cache, 2 * MAX_INT_CACHED_PREC + 2);
7195
7196 if (precision <= MAX_INT_CACHED_PREC)
7197 {
7198 itype = (*bitint_type_cache)[precision + unsignedp];
7199 if (itype)
7200 return itype;
7201 }
7202
7203 itype = make_node (BITINT_TYPE);
7204 TYPE_PRECISION (itype) = precision;
7205
7206 if (unsignedp)
7207 fixup_unsigned_type (itype);
7208 else
7209 fixup_signed_type (itype);
7210
7211 inchash::hash hstate;
7212 inchash::add_expr (TYPE_MAX_VALUE (itype), hstate);
7213 ret = type_hash_canon (hstate.end (), itype);
7214 if (precision <= MAX_INT_CACHED_PREC)
7215 (*bitint_type_cache)[precision + unsignedp] = ret;
7216
7217 return ret;
7218 }
7219
7220 /* Create a range of some discrete type TYPE (an INTEGER_TYPE, ENUMERAL_TYPE
7221 or BOOLEAN_TYPE) with low bound LOWVAL and high bound HIGHVAL. If SHARED
7222 is true, reuse such a type that has already been constructed. */
7223
7224 static tree
7225 build_range_type_1 (tree type, tree lowval, tree highval, bool shared)
7226 {
7227 tree itype = make_node (INTEGER_TYPE);
7228
7229 TREE_TYPE (itype) = type;
7230
7231 TYPE_MIN_VALUE (itype) = fold_convert (type, lowval);
7232 TYPE_MAX_VALUE (itype) = highval ? fold_convert (type, highval) : NULL;
7233
7234 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
7235 SET_TYPE_MODE (itype, TYPE_MODE (type));
7236 TYPE_SIZE (itype) = TYPE_SIZE (type);
7237 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
7238 SET_TYPE_ALIGN (itype, TYPE_ALIGN (type));
7239 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
7240 SET_TYPE_WARN_IF_NOT_ALIGN (itype, TYPE_WARN_IF_NOT_ALIGN (type));
7241
7242 if (!shared)
7243 return itype;
7244
7245 if ((TYPE_MIN_VALUE (itype)
7246 && TREE_CODE (TYPE_MIN_VALUE (itype)) != INTEGER_CST)
7247 || (TYPE_MAX_VALUE (itype)
7248 && TREE_CODE (TYPE_MAX_VALUE (itype)) != INTEGER_CST))
7249 {
7250 /* Since we cannot reliably merge this type, we need to compare it using
7251 structural equality checks. */
7252 SET_TYPE_STRUCTURAL_EQUALITY (itype);
7253 return itype;
7254 }
7255
7256 hashval_t hash = type_hash_canon_hash (itype);
7257 itype = type_hash_canon (hash, itype);
7258
7259 return itype;
7260 }
7261
7262 /* Wrapper around build_range_type_1 with SHARED set to true. */
7263
7264 tree
7265 build_range_type (tree type, tree lowval, tree highval)
7266 {
7267 return build_range_type_1 (type, lowval, highval, true);
7268 }
7269
7270 /* Wrapper around build_range_type_1 with SHARED set to false. */
7271
7272 tree
7273 build_nonshared_range_type (tree type, tree lowval, tree highval)
7274 {
7275 return build_range_type_1 (type, lowval, highval, false);
7276 }
7277
7278 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
7279 MAXVAL should be the maximum value in the domain
7280 (one less than the length of the array).
7281
7282 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
7283 We don't enforce this limit, that is up to caller (e.g. language front end).
7284 The limit exists because the result is a signed type and we don't handle
7285 sizes that use more than one HOST_WIDE_INT. */
7286
7287 tree
7288 build_index_type (tree maxval)
7289 {
7290 return build_range_type (sizetype, size_zero_node, maxval);
7291 }
7292
7293 /* Return true if the debug information for TYPE, a subtype, should be emitted
7294 as a subrange type. If so, set LOWVAL to the low bound and HIGHVAL to the
7295 high bound, respectively. Sometimes doing so unnecessarily obfuscates the
7296 debug info and doesn't reflect the source code. */
7297
7298 bool
7299 subrange_type_for_debug_p (const_tree type, tree *lowval, tree *highval)
7300 {
7301 tree base_type = TREE_TYPE (type), low, high;
7302
7303 /* Subrange types have a base type which is an integral type. */
7304 if (!INTEGRAL_TYPE_P (base_type))
7305 return false;
7306
7307 /* Get the real bounds of the subtype. */
7308 if (lang_hooks.types.get_subrange_bounds)
7309 lang_hooks.types.get_subrange_bounds (type, &low, &high);
7310 else
7311 {
7312 low = TYPE_MIN_VALUE (type);
7313 high = TYPE_MAX_VALUE (type);
7314 }
7315
7316 /* If the type and its base type have the same representation and the same
7317 name, then the type is not a subrange but a copy of the base type. */
7318 if ((TREE_CODE (base_type) == INTEGER_TYPE
7319 || TREE_CODE (base_type) == BOOLEAN_TYPE)
7320 && int_size_in_bytes (type) == int_size_in_bytes (base_type)
7321 && tree_int_cst_equal (low, TYPE_MIN_VALUE (base_type))
7322 && tree_int_cst_equal (high, TYPE_MAX_VALUE (base_type))
7323 && TYPE_IDENTIFIER (type) == TYPE_IDENTIFIER (base_type))
7324 return false;
7325
7326 if (lowval)
7327 *lowval = low;
7328 if (highval)
7329 *highval = high;
7330 return true;
7331 }
7332
7333 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
7334 and number of elements specified by the range of values of INDEX_TYPE.
7335 If TYPELESS_STORAGE is true, TYPE_TYPELESS_STORAGE flag is set on the type.
7336 If SHARED is true, reuse such a type that has already been constructed.
7337 If SET_CANONICAL is true, compute TYPE_CANONICAL from the element type. */
7338
7339 tree
7340 build_array_type_1 (tree elt_type, tree index_type, bool typeless_storage,
7341 bool shared, bool set_canonical)
7342 {
7343 tree t;
7344
7345 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
7346 {
7347 error ("arrays of functions are not meaningful");
7348 elt_type = integer_type_node;
7349 }
7350
7351 t = make_node (ARRAY_TYPE);
7352 TREE_TYPE (t) = elt_type;
7353 TYPE_DOMAIN (t) = index_type;
7354 TYPE_ADDR_SPACE (t) = TYPE_ADDR_SPACE (elt_type);
7355 TYPE_TYPELESS_STORAGE (t) = typeless_storage;
7356
7357 /* Set TYPE_STRUCTURAL_EQUALITY_P. */
7358 if (set_canonical
7359 && (TYPE_STRUCTURAL_EQUALITY_P (elt_type)
7360 || (index_type && TYPE_STRUCTURAL_EQUALITY_P (index_type))
7361 || in_lto_p))
7362 SET_TYPE_STRUCTURAL_EQUALITY (t);
7363
7364 layout_type (t);
7365
7366 if (shared)
7367 {
7368 hashval_t hash = type_hash_canon_hash (t);
7369 tree probe_type = t;
7370 t = type_hash_canon (hash, t);
7371 if (t != probe_type)
7372 return t;
7373 }
7374
7375 if (TYPE_CANONICAL (t) == t && set_canonical)
7376 {
7377 if (TYPE_STRUCTURAL_EQUALITY_P (elt_type)
7378 || (index_type && TYPE_STRUCTURAL_EQUALITY_P (index_type))
7379 || in_lto_p)
7380 gcc_unreachable ();
7381 else if (TYPE_CANONICAL (elt_type) != elt_type
7382 || (index_type && TYPE_CANONICAL (index_type) != index_type))
7383 TYPE_CANONICAL (t)
7384 = build_array_type_1 (TYPE_CANONICAL (elt_type),
7385 index_type
7386 ? TYPE_CANONICAL (index_type) : NULL_TREE,
7387 typeless_storage, shared, set_canonical);
7388 }
7389
7390 return t;
7391 }
7392
7393 /* Wrapper around build_array_type_1 with SHARED set to true. */
7394
7395 tree
7396 build_array_type (tree elt_type, tree index_type, bool typeless_storage)
7397 {
7398 return
7399 build_array_type_1 (elt_type, index_type, typeless_storage, true, true);
7400 }
7401
7402 /* Wrapper around build_array_type_1 with SHARED set to false. */
7403
7404 tree
7405 build_nonshared_array_type (tree elt_type, tree index_type)
7406 {
7407 return build_array_type_1 (elt_type, index_type, false, false, true);
7408 }
7409
7410 /* Return a representation of ELT_TYPE[NELTS], using indices of type
7411 sizetype. */
7412
7413 tree
7414 build_array_type_nelts (tree elt_type, poly_uint64 nelts)
7415 {
7416 return build_array_type (elt_type, build_index_type (size_int (nelts - 1)));
7417 }
7418
7419 /* Computes the canonical argument types from the argument type list
7420 ARGTYPES.
7421
7422 Upon return, *ANY_STRUCTURAL_P will be true iff either it was true
7423 on entry to this function, or if any of the ARGTYPES are
7424 structural.
7425
7426 Upon return, *ANY_NONCANONICAL_P will be true iff either it was
7427 true on entry to this function, or if any of the ARGTYPES are
7428 non-canonical.
7429
7430 Returns a canonical argument list, which may be ARGTYPES when the
7431 canonical argument list is unneeded (i.e., *ANY_STRUCTURAL_P is
7432 true) or would not differ from ARGTYPES. */
7433
7434 static tree
7435 maybe_canonicalize_argtypes (tree argtypes,
7436 bool *any_structural_p,
7437 bool *any_noncanonical_p)
7438 {
7439 tree arg;
7440 bool any_noncanonical_argtypes_p = false;
7441
7442 for (arg = argtypes; arg && !(*any_structural_p); arg = TREE_CHAIN (arg))
7443 {
7444 if (!TREE_VALUE (arg) || TREE_VALUE (arg) == error_mark_node)
7445 /* Fail gracefully by stating that the type is structural. */
7446 *any_structural_p = true;
7447 else if (TYPE_STRUCTURAL_EQUALITY_P (TREE_VALUE (arg)))
7448 *any_structural_p = true;
7449 else if (TYPE_CANONICAL (TREE_VALUE (arg)) != TREE_VALUE (arg)
7450 || TREE_PURPOSE (arg))
7451 /* If the argument has a default argument, we consider it
7452 non-canonical even though the type itself is canonical.
7453 That way, different variants of function and method types
7454 with default arguments will all point to the variant with
7455 no defaults as their canonical type. */
7456 any_noncanonical_argtypes_p = true;
7457 }
7458
7459 if (*any_structural_p)
7460 return argtypes;
7461
7462 if (any_noncanonical_argtypes_p)
7463 {
7464 /* Build the canonical list of argument types. */
7465 tree canon_argtypes = NULL_TREE;
7466 bool is_void = false;
7467
7468 for (arg = argtypes; arg; arg = TREE_CHAIN (arg))
7469 {
7470 if (arg == void_list_node)
7471 is_void = true;
7472 else
7473 canon_argtypes = tree_cons (NULL_TREE,
7474 TYPE_CANONICAL (TREE_VALUE (arg)),
7475 canon_argtypes);
7476 }
7477
7478 canon_argtypes = nreverse (canon_argtypes);
7479 if (is_void)
7480 canon_argtypes = chainon (canon_argtypes, void_list_node);
7481
7482 /* There is a non-canonical type. */
7483 *any_noncanonical_p = true;
7484 return canon_argtypes;
7485 }
7486
7487 /* The canonical argument types are the same as ARGTYPES. */
7488 return argtypes;
7489 }
7490
7491 /* Construct, lay out and return
7492 the type of functions returning type VALUE_TYPE
7493 given arguments of types ARG_TYPES.
7494 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
7495 are data type nodes for the arguments of the function.
7496 NO_NAMED_ARGS_STDARG_P is true if this is a prototyped
7497 variable-arguments function with (...) prototype (no named arguments).
7498 If such a type has already been constructed, reuse it. */
7499
7500 tree
7501 build_function_type (tree value_type, tree arg_types,
7502 bool no_named_args_stdarg_p)
7503 {
7504 tree t;
7505 inchash::hash hstate;
7506 bool any_structural_p, any_noncanonical_p;
7507 tree canon_argtypes;
7508
7509 gcc_assert (arg_types != error_mark_node);
7510
7511 if (TREE_CODE (value_type) == FUNCTION_TYPE)
7512 {
7513 error ("function return type cannot be function");
7514 value_type = integer_type_node;
7515 }
7516
7517 /* Make a node of the sort we want. */
7518 t = make_node (FUNCTION_TYPE);
7519 TREE_TYPE (t) = value_type;
7520 TYPE_ARG_TYPES (t) = arg_types;
7521 if (no_named_args_stdarg_p)
7522 {
7523 gcc_assert (arg_types == NULL_TREE);
7524 TYPE_NO_NAMED_ARGS_STDARG_P (t) = 1;
7525 }
7526
7527 /* Set up the canonical type. */
7528 any_structural_p = TYPE_STRUCTURAL_EQUALITY_P (value_type);
7529 any_noncanonical_p = TYPE_CANONICAL (value_type) != value_type;
7530 canon_argtypes = maybe_canonicalize_argtypes (arg_types,
7531 &any_structural_p,
7532 &any_noncanonical_p);
7533 /* Set TYPE_STRUCTURAL_EQUALITY_P early. */
7534 if (any_structural_p)
7535 SET_TYPE_STRUCTURAL_EQUALITY (t);
7536
7537 /* If we already have such a type, use the old one. */
7538 hashval_t hash = type_hash_canon_hash (t);
7539 tree probe_type = t;
7540 t = type_hash_canon (hash, t);
7541 if (t != probe_type)
7542 return t;
7543
7544 if (any_structural_p)
7545 gcc_assert (TYPE_STRUCTURAL_EQUALITY_P (t));
7546 else if (any_noncanonical_p)
7547 TYPE_CANONICAL (t) = build_function_type (TYPE_CANONICAL (value_type),
7548 canon_argtypes);
7549
7550 if (!COMPLETE_TYPE_P (t))
7551 layout_type (t);
7552 return t;
7553 }
7554
7555 /* Build a function type. The RETURN_TYPE is the type returned by the
7556 function. If VAARGS is set, no void_type_node is appended to the
7557 list. ARGP must be always be terminated be a NULL_TREE. */
7558
7559 static tree
7560 build_function_type_list_1 (bool vaargs, tree return_type, va_list argp)
7561 {
7562 tree t, args, last;
7563
7564 t = va_arg (argp, tree);
7565 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (argp, tree))
7566 args = tree_cons (NULL_TREE, t, args);
7567
7568 if (vaargs)
7569 {
7570 last = args;
7571 if (args != NULL_TREE)
7572 args = nreverse (args);
7573 gcc_assert (last != void_list_node);
7574 }
7575 else if (args == NULL_TREE)
7576 args = void_list_node;
7577 else
7578 {
7579 last = args;
7580 args = nreverse (args);
7581 TREE_CHAIN (last) = void_list_node;
7582 }
7583 args = build_function_type (return_type, args, vaargs && args == NULL_TREE);
7584
7585 return args;
7586 }
7587
7588 /* Build a function type. The RETURN_TYPE is the type returned by the
7589 function. If additional arguments are provided, they are
7590 additional argument types. The list of argument types must always
7591 be terminated by NULL_TREE. */
7592
7593 tree
7594 build_function_type_list (tree return_type, ...)
7595 {
7596 tree args;
7597 va_list p;
7598
7599 va_start (p, return_type);
7600 args = build_function_type_list_1 (false, return_type, p);
7601 va_end (p);
7602 return args;
7603 }
7604
7605 /* Build a variable argument function type. The RETURN_TYPE is the
7606 type returned by the function. If additional arguments are provided,
7607 they are additional argument types. The list of argument types must
7608 always be terminated by NULL_TREE. */
7609
7610 tree
7611 build_varargs_function_type_list (tree return_type, ...)
7612 {
7613 tree args;
7614 va_list p;
7615
7616 va_start (p, return_type);
7617 args = build_function_type_list_1 (true, return_type, p);
7618 va_end (p);
7619
7620 return args;
7621 }
7622
7623 /* Build a function type. RETURN_TYPE is the type returned by the
7624 function; VAARGS indicates whether the function takes varargs. The
7625 function takes N named arguments, the types of which are provided in
7626 ARG_TYPES. */
7627
7628 static tree
7629 build_function_type_array_1 (bool vaargs, tree return_type, int n,
7630 tree *arg_types)
7631 {
7632 int i;
7633 tree t = vaargs ? NULL_TREE : void_list_node;
7634
7635 for (i = n - 1; i >= 0; i--)
7636 t = tree_cons (NULL_TREE, arg_types[i], t);
7637
7638 return build_function_type (return_type, t, vaargs && n == 0);
7639 }
7640
7641 /* Build a function type. RETURN_TYPE is the type returned by the
7642 function. The function takes N named arguments, the types of which
7643 are provided in ARG_TYPES. */
7644
7645 tree
7646 build_function_type_array (tree return_type, int n, tree *arg_types)
7647 {
7648 return build_function_type_array_1 (false, return_type, n, arg_types);
7649 }
7650
7651 /* Build a variable argument function type. RETURN_TYPE is the type
7652 returned by the function. The function takes N named arguments, the
7653 types of which are provided in ARG_TYPES. */
7654
7655 tree
7656 build_varargs_function_type_array (tree return_type, int n, tree *arg_types)
7657 {
7658 return build_function_type_array_1 (true, return_type, n, arg_types);
7659 }
7660
7661 /* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
7662 and ARGTYPES (a TREE_LIST) are the return type and arguments types
7663 for the method. An implicit additional parameter (of type
7664 pointer-to-BASETYPE) is added to the ARGTYPES. */
7665
7666 tree
7667 build_method_type_directly (tree basetype,
7668 tree rettype,
7669 tree argtypes)
7670 {
7671 tree t;
7672 tree ptype;
7673 bool any_structural_p, any_noncanonical_p;
7674 tree canon_argtypes;
7675
7676 /* Make a node of the sort we want. */
7677 t = make_node (METHOD_TYPE);
7678
7679 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
7680 TREE_TYPE (t) = rettype;
7681 ptype = build_pointer_type (basetype);
7682
7683 /* The actual arglist for this function includes a "hidden" argument
7684 which is "this". Put it into the list of argument types. */
7685 argtypes = tree_cons (NULL_TREE, ptype, argtypes);
7686 TYPE_ARG_TYPES (t) = argtypes;
7687
7688 /* Set up the canonical type. */
7689 any_structural_p
7690 = (TYPE_STRUCTURAL_EQUALITY_P (basetype)
7691 || TYPE_STRUCTURAL_EQUALITY_P (rettype));
7692 any_noncanonical_p
7693 = (TYPE_CANONICAL (basetype) != basetype
7694 || TYPE_CANONICAL (rettype) != rettype);
7695 canon_argtypes = maybe_canonicalize_argtypes (TREE_CHAIN (argtypes),
7696 &any_structural_p,
7697 &any_noncanonical_p);
7698
7699 /* Set TYPE_STRUCTURAL_EQUALITY_P early. */
7700 if (any_structural_p)
7701 SET_TYPE_STRUCTURAL_EQUALITY (t);
7702
7703 /* If we already have such a type, use the old one. */
7704 hashval_t hash = type_hash_canon_hash (t);
7705 tree probe_type = t;
7706 t = type_hash_canon (hash, t);
7707 if (t != probe_type)
7708 return t;
7709
7710 if (any_structural_p)
7711 gcc_assert (TYPE_STRUCTURAL_EQUALITY_P (t));
7712 else if (any_noncanonical_p)
7713 TYPE_CANONICAL (t)
7714 = build_method_type_directly (TYPE_CANONICAL (basetype),
7715 TYPE_CANONICAL (rettype),
7716 canon_argtypes);
7717 if (!COMPLETE_TYPE_P (t))
7718 layout_type (t);
7719
7720 return t;
7721 }
7722
7723 /* Construct, lay out and return the type of methods belonging to class
7724 BASETYPE and whose arguments and values are described by TYPE.
7725 If that type exists already, reuse it.
7726 TYPE must be a FUNCTION_TYPE node. */
7727
7728 tree
7729 build_method_type (tree basetype, tree type)
7730 {
7731 gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
7732
7733 return build_method_type_directly (basetype,
7734 TREE_TYPE (type),
7735 TYPE_ARG_TYPES (type));
7736 }
7737
7738 /* Construct, lay out and return the type of offsets to a value
7739 of type TYPE, within an object of type BASETYPE.
7740 If a suitable offset type exists already, reuse it. */
7741
7742 tree
7743 build_offset_type (tree basetype, tree type)
7744 {
7745 tree t;
7746
7747 /* Make a node of the sort we want. */
7748 t = make_node (OFFSET_TYPE);
7749
7750 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
7751 TREE_TYPE (t) = type;
7752 if (TYPE_STRUCTURAL_EQUALITY_P (basetype)
7753 || TYPE_STRUCTURAL_EQUALITY_P (type))
7754 SET_TYPE_STRUCTURAL_EQUALITY (t);
7755
7756 /* If we already have such a type, use the old one. */
7757 hashval_t hash = type_hash_canon_hash (t);
7758 tree probe_type = t;
7759 t = type_hash_canon (hash, t);
7760 if (t != probe_type)
7761 return t;
7762
7763 if (!COMPLETE_TYPE_P (t))
7764 layout_type (t);
7765
7766 if (TYPE_CANONICAL (t) == t)
7767 {
7768 if (TYPE_STRUCTURAL_EQUALITY_P (basetype)
7769 || TYPE_STRUCTURAL_EQUALITY_P (type))
7770 gcc_unreachable ();
7771 else if (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)) != basetype
7772 || TYPE_CANONICAL (type) != type)
7773 TYPE_CANONICAL (t)
7774 = build_offset_type (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)),
7775 TYPE_CANONICAL (type));
7776 }
7777
7778 return t;
7779 }
7780
7781 /* Create a complex type whose components are COMPONENT_TYPE.
7782
7783 If NAMED is true, the type is given a TYPE_NAME. We do not always
7784 do so because this creates a DECL node and thus make the DECL_UIDs
7785 dependent on the type canonicalization hashtable, which is GC-ed,
7786 so the DECL_UIDs would not be stable wrt garbage collection. */
7787
7788 tree
7789 build_complex_type (tree component_type, bool named)
7790 {
7791 gcc_assert (INTEGRAL_TYPE_P (component_type)
7792 || SCALAR_FLOAT_TYPE_P (component_type)
7793 || FIXED_POINT_TYPE_P (component_type));
7794
7795 /* Make a node of the sort we want. */
7796 tree probe = make_node (COMPLEX_TYPE);
7797
7798 TREE_TYPE (probe) = TYPE_MAIN_VARIANT (component_type);
7799 if (TYPE_STRUCTURAL_EQUALITY_P (TREE_TYPE (probe)))
7800 SET_TYPE_STRUCTURAL_EQUALITY (probe);
7801
7802 /* If we already have such a type, use the old one. */
7803 hashval_t hash = type_hash_canon_hash (probe);
7804 tree t = type_hash_canon (hash, probe);
7805
7806 if (t == probe)
7807 {
7808 /* We created a new type. The hash insertion will have laid
7809 out the type. We need to check the canonicalization and
7810 maybe set the name. */
7811 gcc_checking_assert (COMPLETE_TYPE_P (t)
7812 && !TYPE_NAME (t));
7813
7814 if (TYPE_STRUCTURAL_EQUALITY_P (TREE_TYPE (t)))
7815 ;
7816 else if (TYPE_CANONICAL (TREE_TYPE (t)) != TREE_TYPE (t))
7817 TYPE_CANONICAL (t)
7818 = build_complex_type (TYPE_CANONICAL (TREE_TYPE (t)), named);
7819
7820 /* We need to create a name, since complex is a fundamental type. */
7821 if (named)
7822 {
7823 const char *name = NULL;
7824
7825 if (TREE_TYPE (t) == char_type_node)
7826 name = "complex char";
7827 else if (TREE_TYPE (t) == signed_char_type_node)
7828 name = "complex signed char";
7829 else if (TREE_TYPE (t) == unsigned_char_type_node)
7830 name = "complex unsigned char";
7831 else if (TREE_TYPE (t) == short_integer_type_node)
7832 name = "complex short int";
7833 else if (TREE_TYPE (t) == short_unsigned_type_node)
7834 name = "complex short unsigned int";
7835 else if (TREE_TYPE (t) == integer_type_node)
7836 name = "complex int";
7837 else if (TREE_TYPE (t) == unsigned_type_node)
7838 name = "complex unsigned int";
7839 else if (TREE_TYPE (t) == long_integer_type_node)
7840 name = "complex long int";
7841 else if (TREE_TYPE (t) == long_unsigned_type_node)
7842 name = "complex long unsigned int";
7843 else if (TREE_TYPE (t) == long_long_integer_type_node)
7844 name = "complex long long int";
7845 else if (TREE_TYPE (t) == long_long_unsigned_type_node)
7846 name = "complex long long unsigned int";
7847
7848 if (name != NULL)
7849 TYPE_NAME (t) = build_decl (UNKNOWN_LOCATION, TYPE_DECL,
7850 get_identifier (name), t);
7851 }
7852 }
7853
7854 return build_qualified_type (t, TYPE_QUALS (component_type));
7855 }
7856
7857 /* If TYPE is a real or complex floating-point type and the target
7858 does not directly support arithmetic on TYPE then return the wider
7859 type to be used for arithmetic on TYPE. Otherwise, return
7860 NULL_TREE. */
7861
7862 tree
7863 excess_precision_type (tree type)
7864 {
7865 /* The target can give two different responses to the question of
7866 which excess precision mode it would like depending on whether we
7867 are in -fexcess-precision=standard or -fexcess-precision=fast. */
7868
7869 enum excess_precision_type requested_type
7870 = (flag_excess_precision == EXCESS_PRECISION_FAST
7871 ? EXCESS_PRECISION_TYPE_FAST
7872 : (flag_excess_precision == EXCESS_PRECISION_FLOAT16
7873 ? EXCESS_PRECISION_TYPE_FLOAT16 : EXCESS_PRECISION_TYPE_STANDARD));
7874
7875 enum flt_eval_method target_flt_eval_method
7876 = targetm.c.excess_precision (requested_type);
7877
7878 /* The target should not ask for unpredictable float evaluation (though
7879 it might advertise that implicitly the evaluation is unpredictable,
7880 but we don't care about that here, it will have been reported
7881 elsewhere). If it does ask for unpredictable evaluation, we have
7882 nothing to do here. */
7883 gcc_assert (target_flt_eval_method != FLT_EVAL_METHOD_UNPREDICTABLE);
7884
7885 /* Nothing to do. The target has asked for all types we know about
7886 to be computed with their native precision and range. */
7887 if (target_flt_eval_method == FLT_EVAL_METHOD_PROMOTE_TO_FLOAT16)
7888 return NULL_TREE;
7889
7890 /* The target will promote this type in a target-dependent way, so excess
7891 precision ought to leave it alone. */
7892 if (targetm.promoted_type (type) != NULL_TREE)
7893 return NULL_TREE;
7894
7895 machine_mode float16_type_mode = (float16_type_node
7896 ? TYPE_MODE (float16_type_node)
7897 : VOIDmode);
7898 machine_mode bfloat16_type_mode = (bfloat16_type_node
7899 ? TYPE_MODE (bfloat16_type_node)
7900 : VOIDmode);
7901 machine_mode float_type_mode = TYPE_MODE (float_type_node);
7902 machine_mode double_type_mode = TYPE_MODE (double_type_node);
7903
7904 switch (TREE_CODE (type))
7905 {
7906 case REAL_TYPE:
7907 {
7908 machine_mode type_mode = TYPE_MODE (type);
7909 switch (target_flt_eval_method)
7910 {
7911 case FLT_EVAL_METHOD_PROMOTE_TO_FLOAT:
7912 if (type_mode == float16_type_mode
7913 || type_mode == bfloat16_type_mode)
7914 return float_type_node;
7915 break;
7916 case FLT_EVAL_METHOD_PROMOTE_TO_DOUBLE:
7917 if (type_mode == float16_type_mode
7918 || type_mode == bfloat16_type_mode
7919 || type_mode == float_type_mode)
7920 return double_type_node;
7921 break;
7922 case FLT_EVAL_METHOD_PROMOTE_TO_LONG_DOUBLE:
7923 if (type_mode == float16_type_mode
7924 || type_mode == bfloat16_type_mode
7925 || type_mode == float_type_mode
7926 || type_mode == double_type_mode)
7927 return long_double_type_node;
7928 break;
7929 default:
7930 gcc_unreachable ();
7931 }
7932 break;
7933 }
7934 case COMPLEX_TYPE:
7935 {
7936 if (TREE_CODE (TREE_TYPE (type)) != REAL_TYPE)
7937 return NULL_TREE;
7938 machine_mode type_mode = TYPE_MODE (TREE_TYPE (type));
7939 switch (target_flt_eval_method)
7940 {
7941 case FLT_EVAL_METHOD_PROMOTE_TO_FLOAT:
7942 if (type_mode == float16_type_mode
7943 || type_mode == bfloat16_type_mode)
7944 return complex_float_type_node;
7945 break;
7946 case FLT_EVAL_METHOD_PROMOTE_TO_DOUBLE:
7947 if (type_mode == float16_type_mode
7948 || type_mode == bfloat16_type_mode
7949 || type_mode == float_type_mode)
7950 return complex_double_type_node;
7951 break;
7952 case FLT_EVAL_METHOD_PROMOTE_TO_LONG_DOUBLE:
7953 if (type_mode == float16_type_mode
7954 || type_mode == bfloat16_type_mode
7955 || type_mode == float_type_mode
7956 || type_mode == double_type_mode)
7957 return complex_long_double_type_node;
7958 break;
7959 default:
7960 gcc_unreachable ();
7961 }
7962 break;
7963 }
7964 default:
7965 break;
7966 }
7967
7968 return NULL_TREE;
7969 }
7970 \f
7971 /* Return OP, stripped of any conversions to wider types as much as is safe.
7972 Converting the value back to OP's type makes a value equivalent to OP.
7973
7974 If FOR_TYPE is nonzero, we return a value which, if converted to
7975 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
7976
7977 OP must have integer, real or enumeral type. Pointers are not allowed!
7978
7979 There are some cases where the obvious value we could return
7980 would regenerate to OP if converted to OP's type,
7981 but would not extend like OP to wider types.
7982 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
7983 For example, if OP is (unsigned short)(signed char)-1,
7984 we avoid returning (signed char)-1 if FOR_TYPE is int,
7985 even though extending that to an unsigned short would regenerate OP,
7986 since the result of extending (signed char)-1 to (int)
7987 is different from (int) OP. */
7988
7989 tree
7990 get_unwidened (tree op, tree for_type)
7991 {
7992 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
7993 tree type = TREE_TYPE (op);
7994 unsigned final_prec
7995 = TYPE_PRECISION (for_type != 0 ? for_type : type);
7996 int uns
7997 = (for_type != 0 && for_type != type
7998 && final_prec > TYPE_PRECISION (type)
7999 && TYPE_UNSIGNED (type));
8000 tree win = op;
8001
8002 while (CONVERT_EXPR_P (op))
8003 {
8004 int bitschange;
8005
8006 /* TYPE_PRECISION on vector types has different meaning
8007 (TYPE_VECTOR_SUBPARTS) and casts from vectors are view conversions,
8008 so avoid them here. */
8009 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == VECTOR_TYPE)
8010 break;
8011
8012 bitschange = TYPE_PRECISION (TREE_TYPE (op))
8013 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
8014
8015 /* Truncations are many-one so cannot be removed.
8016 Unless we are later going to truncate down even farther. */
8017 if (bitschange < 0
8018 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
8019 break;
8020
8021 /* See what's inside this conversion. If we decide to strip it,
8022 we will set WIN. */
8023 op = TREE_OPERAND (op, 0);
8024
8025 /* If we have not stripped any zero-extensions (uns is 0),
8026 we can strip any kind of extension.
8027 If we have previously stripped a zero-extension,
8028 only zero-extensions can safely be stripped.
8029 Any extension can be stripped if the bits it would produce
8030 are all going to be discarded later by truncating to FOR_TYPE. */
8031
8032 if (bitschange > 0)
8033 {
8034 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
8035 win = op;
8036 /* TYPE_UNSIGNED says whether this is a zero-extension.
8037 Let's avoid computing it if it does not affect WIN
8038 and if UNS will not be needed again. */
8039 if ((uns
8040 || CONVERT_EXPR_P (op))
8041 && TYPE_UNSIGNED (TREE_TYPE (op)))
8042 {
8043 uns = 1;
8044 win = op;
8045 }
8046 }
8047 }
8048
8049 /* If we finally reach a constant see if it fits in sth smaller and
8050 in that case convert it. */
8051 if (TREE_CODE (win) == INTEGER_CST)
8052 {
8053 tree wtype = TREE_TYPE (win);
8054 unsigned prec = wi::min_precision (wi::to_wide (win), TYPE_SIGN (wtype));
8055 if (for_type)
8056 prec = MAX (prec, final_prec);
8057 if (prec < TYPE_PRECISION (wtype))
8058 {
8059 tree t = lang_hooks.types.type_for_size (prec, TYPE_UNSIGNED (wtype));
8060 if (t && TYPE_PRECISION (t) < TYPE_PRECISION (wtype))
8061 win = fold_convert (t, win);
8062 }
8063 }
8064
8065 return win;
8066 }
8067 \f
8068 /* Return OP or a simpler expression for a narrower value
8069 which can be sign-extended or zero-extended to give back OP.
8070 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
8071 or 0 if the value should be sign-extended. */
8072
8073 tree
8074 get_narrower (tree op, int *unsignedp_ptr)
8075 {
8076 int uns = 0;
8077 bool first = true;
8078 tree win = op;
8079 bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));
8080
8081 if (TREE_CODE (op) == COMPOUND_EXPR)
8082 {
8083 do
8084 op = TREE_OPERAND (op, 1);
8085 while (TREE_CODE (op) == COMPOUND_EXPR);
8086 tree ret = get_narrower (op, unsignedp_ptr);
8087 if (ret == op)
8088 return win;
8089 auto_vec <tree, 16> v;
8090 unsigned int i;
8091 for (op = win; TREE_CODE (op) == COMPOUND_EXPR;
8092 op = TREE_OPERAND (op, 1))
8093 v.safe_push (op);
8094 FOR_EACH_VEC_ELT_REVERSE (v, i, op)
8095 ret = build2_loc (EXPR_LOCATION (op), COMPOUND_EXPR,
8096 TREE_TYPE (ret), TREE_OPERAND (op, 0),
8097 ret);
8098 return ret;
8099 }
8100 while (TREE_CODE (op) == NOP_EXPR)
8101 {
8102 int bitschange
8103 = (TYPE_PRECISION (TREE_TYPE (op))
8104 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
8105
8106 /* Truncations are many-one so cannot be removed. */
8107 if (bitschange < 0)
8108 break;
8109
8110 /* See what's inside this conversion. If we decide to strip it,
8111 we will set WIN. */
8112
8113 if (bitschange > 0)
8114 {
8115 op = TREE_OPERAND (op, 0);
8116 /* An extension: the outermost one can be stripped,
8117 but remember whether it is zero or sign extension. */
8118 if (first)
8119 uns = TYPE_UNSIGNED (TREE_TYPE (op));
8120 /* Otherwise, if a sign extension has been stripped,
8121 only sign extensions can now be stripped;
8122 if a zero extension has been stripped, only zero-extensions. */
8123 else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
8124 break;
8125 first = false;
8126 }
8127 else /* bitschange == 0 */
8128 {
8129 /* A change in nominal type can always be stripped, but we must
8130 preserve the unsignedness. */
8131 if (first)
8132 uns = TYPE_UNSIGNED (TREE_TYPE (op));
8133 first = false;
8134 op = TREE_OPERAND (op, 0);
8135 /* Keep trying to narrow, but don't assign op to win if it
8136 would turn an integral type into something else. */
8137 if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
8138 continue;
8139 }
8140
8141 win = op;
8142 }
8143
8144 if (TREE_CODE (op) == COMPONENT_REF
8145 /* Since type_for_size always gives an integer type. */
8146 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
8147 && TREE_CODE (TREE_TYPE (op)) != FIXED_POINT_TYPE
8148 /* Ensure field is laid out already. */
8149 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
8150 && tree_fits_uhwi_p (DECL_SIZE (TREE_OPERAND (op, 1))))
8151 {
8152 unsigned HOST_WIDE_INT innerprec
8153 = tree_to_uhwi (DECL_SIZE (TREE_OPERAND (op, 1)));
8154 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
8155 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
8156 tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
8157
8158 /* We can get this structure field in a narrower type that fits it,
8159 but the resulting extension to its nominal type (a fullword type)
8160 must satisfy the same conditions as for other extensions.
8161
8162 Do this only for fields that are aligned (not bit-fields),
8163 because when bit-field insns will be used there is no
8164 advantage in doing this. */
8165
8166 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
8167 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
8168 && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
8169 && type != 0)
8170 {
8171 if (first)
8172 uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
8173 win = fold_convert (type, op);
8174 }
8175 }
8176
8177 *unsignedp_ptr = uns;
8178 return win;
8179 }
8180 \f
8181 /* Return true if integer constant C has a value that is permissible
8182 for TYPE, an integral type. */
8183
8184 bool
8185 int_fits_type_p (const_tree c, const_tree type)
8186 {
8187 tree type_low_bound, type_high_bound;
8188 bool ok_for_low_bound, ok_for_high_bound;
8189 signop sgn_c = TYPE_SIGN (TREE_TYPE (c));
8190
8191 /* Non-standard boolean types can have arbitrary precision but various
8192 transformations assume that they can only take values 0 and +/-1. */
8193 if (TREE_CODE (type) == BOOLEAN_TYPE)
8194 return wi::fits_to_boolean_p (wi::to_wide (c), type);
8195
8196 retry:
8197 type_low_bound = TYPE_MIN_VALUE (type);
8198 type_high_bound = TYPE_MAX_VALUE (type);
8199
8200 /* If at least one bound of the type is a constant integer, we can check
8201 ourselves and maybe make a decision. If no such decision is possible, but
8202 this type is a subtype, try checking against that. Otherwise, use
8203 fits_to_tree_p, which checks against the precision.
8204
8205 Compute the status for each possibly constant bound, and return if we see
8206 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
8207 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
8208 for "constant known to fit". */
8209
8210 /* Check if c >= type_low_bound. */
8211 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
8212 {
8213 if (tree_int_cst_lt (c, type_low_bound))
8214 return false;
8215 ok_for_low_bound = true;
8216 }
8217 else
8218 ok_for_low_bound = false;
8219
8220 /* Check if c <= type_high_bound. */
8221 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
8222 {
8223 if (tree_int_cst_lt (type_high_bound, c))
8224 return false;
8225 ok_for_high_bound = true;
8226 }
8227 else
8228 ok_for_high_bound = false;
8229
8230 /* If the constant fits both bounds, the result is known. */
8231 if (ok_for_low_bound && ok_for_high_bound)
8232 return true;
8233
8234 /* Perform some generic filtering which may allow making a decision
8235 even if the bounds are not constant. First, negative integers
8236 never fit in unsigned types, */
8237 if (TYPE_UNSIGNED (type) && sgn_c == SIGNED && wi::neg_p (wi::to_wide (c)))
8238 return false;
8239
8240 /* Second, narrower types always fit in wider ones. */
8241 if (TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (c)))
8242 return true;
8243
8244 /* Third, unsigned integers with top bit set never fit signed types. */
8245 if (!TYPE_UNSIGNED (type) && sgn_c == UNSIGNED)
8246 {
8247 int prec = GET_MODE_PRECISION (SCALAR_INT_TYPE_MODE (TREE_TYPE (c))) - 1;
8248 if (prec < TYPE_PRECISION (TREE_TYPE (c)))
8249 {
8250 /* When a tree_cst is converted to a wide-int, the precision
8251 is taken from the type. However, if the precision of the
8252 mode underneath the type is smaller than that, it is
8253 possible that the value will not fit. The test below
8254 fails if any bit is set between the sign bit of the
8255 underlying mode and the top bit of the type. */
8256 if (wi::zext (wi::to_wide (c), prec - 1) != wi::to_wide (c))
8257 return false;
8258 }
8259 else if (wi::neg_p (wi::to_wide (c)))
8260 return false;
8261 }
8262
8263 /* If we haven't been able to decide at this point, there nothing more we
8264 can check ourselves here. Look at the base type if we have one and it
8265 has the same precision. */
8266 if (TREE_CODE (type) == INTEGER_TYPE
8267 && TREE_TYPE (type) != 0
8268 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (type)))
8269 {
8270 type = TREE_TYPE (type);
8271 goto retry;
8272 }
8273
8274 /* Or to fits_to_tree_p, if nothing else. */
8275 return wi::fits_to_tree_p (wi::to_wide (c), type);
8276 }
8277
8278 /* Stores bounds of an integer TYPE in MIN and MAX. If TYPE has non-constant
8279 bounds or is a POINTER_TYPE, the maximum and/or minimum values that can be
8280 represented (assuming two's-complement arithmetic) within the bit
8281 precision of the type are returned instead. */
8282
8283 void
8284 get_type_static_bounds (const_tree type, mpz_t min, mpz_t max)
8285 {
8286 if (!POINTER_TYPE_P (type) && TYPE_MIN_VALUE (type)
8287 && TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST)
8288 wi::to_mpz (wi::to_wide (TYPE_MIN_VALUE (type)), min, TYPE_SIGN (type));
8289 else
8290 {
8291 if (TYPE_UNSIGNED (type))
8292 mpz_set_ui (min, 0);
8293 else
8294 {
8295 wide_int mn = wi::min_value (TYPE_PRECISION (type), SIGNED);
8296 wi::to_mpz (mn, min, SIGNED);
8297 }
8298 }
8299
8300 if (!POINTER_TYPE_P (type) && TYPE_MAX_VALUE (type)
8301 && TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST)
8302 wi::to_mpz (wi::to_wide (TYPE_MAX_VALUE (type)), max, TYPE_SIGN (type));
8303 else
8304 {
8305 wide_int mn = wi::max_value (TYPE_PRECISION (type), TYPE_SIGN (type));
8306 wi::to_mpz (mn, max, TYPE_SIGN (type));
8307 }
8308 }
8309
8310 /* Return true if VAR is an automatic variable. */
8311
8312 bool
8313 auto_var_p (const_tree var)
8314 {
8315 return ((((VAR_P (var) && ! DECL_EXTERNAL (var))
8316 || TREE_CODE (var) == PARM_DECL)
8317 && ! TREE_STATIC (var))
8318 || TREE_CODE (var) == RESULT_DECL);
8319 }
8320
8321 /* Return true if VAR is an automatic variable defined in function FN. */
8322
8323 bool
8324 auto_var_in_fn_p (const_tree var, const_tree fn)
8325 {
8326 return (DECL_P (var) && DECL_CONTEXT (var) == fn
8327 && (auto_var_p (var)
8328 || TREE_CODE (var) == LABEL_DECL));
8329 }
8330
8331 /* Subprogram of following function. Called by walk_tree.
8332
8333 Return *TP if it is an automatic variable or parameter of the
8334 function passed in as DATA. */
8335
8336 static tree
8337 find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
8338 {
8339 tree fn = (tree) data;
8340
8341 if (TYPE_P (*tp))
8342 *walk_subtrees = 0;
8343
8344 else if (DECL_P (*tp)
8345 && auto_var_in_fn_p (*tp, fn))
8346 return *tp;
8347
8348 return NULL_TREE;
8349 }
8350
8351 /* Returns true if T is, contains, or refers to a type with variable
8352 size. For METHOD_TYPEs and FUNCTION_TYPEs we exclude the
8353 arguments, but not the return type. If FN is nonzero, only return
8354 true if a modifier of the type or position of FN is a variable or
8355 parameter inside FN.
8356
8357 This concept is more general than that of C99 'variably modified types':
8358 in C99, a struct type is never variably modified because a VLA may not
8359 appear as a structure member. However, in GNU C code like:
8360
8361 struct S { int i[f()]; };
8362
8363 is valid, and other languages may define similar constructs. */
8364
8365 bool
8366 variably_modified_type_p (tree type, tree fn)
8367 {
8368 tree t;
8369
8370 /* Test if T is either variable (if FN is zero) or an expression containing
8371 a variable in FN. If TYPE isn't gimplified, return true also if
8372 gimplify_one_sizepos would gimplify the expression into a local
8373 variable. */
8374 #define RETURN_TRUE_IF_VAR(T) \
8375 do { tree _t = (T); \
8376 if (_t != NULL_TREE \
8377 && _t != error_mark_node \
8378 && !CONSTANT_CLASS_P (_t) \
8379 && TREE_CODE (_t) != PLACEHOLDER_EXPR \
8380 && (!fn \
8381 || (!TYPE_SIZES_GIMPLIFIED (type) \
8382 && (TREE_CODE (_t) != VAR_DECL \
8383 && !CONTAINS_PLACEHOLDER_P (_t))) \
8384 || walk_tree (&_t, find_var_from_fn, fn, NULL))) \
8385 return true; } while (0)
8386
8387 if (type == error_mark_node)
8388 return false;
8389
8390 /* If TYPE itself has variable size, it is variably modified. */
8391 RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
8392 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (type));
8393
8394 switch (TREE_CODE (type))
8395 {
8396 case POINTER_TYPE:
8397 case REFERENCE_TYPE:
8398 case VECTOR_TYPE:
8399 /* Ada can have pointer types refering to themselves indirectly. */
8400 if (TREE_VISITED (type))
8401 return false;
8402 TREE_VISITED (type) = true;
8403 if (variably_modified_type_p (TREE_TYPE (type), fn))
8404 {
8405 TREE_VISITED (type) = false;
8406 return true;
8407 }
8408 TREE_VISITED (type) = false;
8409 break;
8410
8411 case FUNCTION_TYPE:
8412 case METHOD_TYPE:
8413 /* If TYPE is a function type, it is variably modified if the
8414 return type is variably modified. */
8415 if (variably_modified_type_p (TREE_TYPE (type), fn))
8416 return true;
8417 break;
8418
8419 case INTEGER_TYPE:
8420 case REAL_TYPE:
8421 case FIXED_POINT_TYPE:
8422 case ENUMERAL_TYPE:
8423 case BOOLEAN_TYPE:
8424 /* Scalar types are variably modified if their end points
8425 aren't constant. */
8426 RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
8427 RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
8428 break;
8429
8430 case RECORD_TYPE:
8431 case UNION_TYPE:
8432 case QUAL_UNION_TYPE:
8433 /* We can't see if any of the fields are variably-modified by the
8434 definition we normally use, since that would produce infinite
8435 recursion via pointers. */
8436 /* This is variably modified if some field's type is. */
8437 for (t = TYPE_FIELDS (type); t; t = DECL_CHAIN (t))
8438 if (TREE_CODE (t) == FIELD_DECL)
8439 {
8440 RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
8441 RETURN_TRUE_IF_VAR (DECL_SIZE (t));
8442 RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));
8443
8444 /* If the type is a qualified union, then the DECL_QUALIFIER
8445 of fields can also be an expression containing a variable. */
8446 if (TREE_CODE (type) == QUAL_UNION_TYPE)
8447 RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));
8448
8449 /* If the field is a qualified union, then it's only a container
8450 for what's inside so we look into it. That's necessary in LTO
8451 mode because the sizes of the field tested above have been set
8452 to PLACEHOLDER_EXPRs by free_lang_data. */
8453 if (TREE_CODE (TREE_TYPE (t)) == QUAL_UNION_TYPE
8454 && variably_modified_type_p (TREE_TYPE (t), fn))
8455 return true;
8456 }
8457 break;
8458
8459 case ARRAY_TYPE:
8460 /* Do not call ourselves to avoid infinite recursion. This is
8461 variably modified if the element type is. */
8462 RETURN_TRUE_IF_VAR (TYPE_SIZE (TREE_TYPE (type)));
8463 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (TREE_TYPE (type)));
8464 break;
8465
8466 default:
8467 break;
8468 }
8469
8470 /* The current language may have other cases to check, but in general,
8471 all other types are not variably modified. */
8472 return lang_hooks.tree_inlining.var_mod_type_p (type, fn);
8473
8474 #undef RETURN_TRUE_IF_VAR
8475 }
8476
8477 /* Given a DECL or TYPE, return the scope in which it was declared, or
8478 NULL_TREE if there is no containing scope. */
8479
8480 tree
8481 get_containing_scope (const_tree t)
8482 {
8483 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
8484 }
8485
8486 /* Returns the ultimate TRANSLATION_UNIT_DECL context of DECL or NULL. */
8487
8488 const_tree
8489 get_ultimate_context (const_tree decl)
8490 {
8491 while (decl && TREE_CODE (decl) != TRANSLATION_UNIT_DECL)
8492 {
8493 if (TREE_CODE (decl) == BLOCK)
8494 decl = BLOCK_SUPERCONTEXT (decl);
8495 else
8496 decl = get_containing_scope (decl);
8497 }
8498 return decl;
8499 }
8500
8501 /* Return the innermost context enclosing DECL that is
8502 a FUNCTION_DECL, or zero if none. */
8503
8504 tree
8505 decl_function_context (const_tree decl)
8506 {
8507 tree context;
8508
8509 if (TREE_CODE (decl) == ERROR_MARK)
8510 return 0;
8511
8512 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
8513 where we look up the function at runtime. Such functions always take
8514 a first argument of type 'pointer to real context'.
8515
8516 C++ should really be fixed to use DECL_CONTEXT for the real context,
8517 and use something else for the "virtual context". */
8518 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VIRTUAL_P (decl))
8519 context
8520 = TYPE_MAIN_VARIANT
8521 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
8522 else
8523 context = DECL_CONTEXT (decl);
8524
8525 while (context && TREE_CODE (context) != FUNCTION_DECL)
8526 {
8527 if (TREE_CODE (context) == BLOCK)
8528 context = BLOCK_SUPERCONTEXT (context);
8529 else
8530 context = get_containing_scope (context);
8531 }
8532
8533 return context;
8534 }
8535
8536 /* Return the innermost context enclosing DECL that is
8537 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
8538 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
8539
8540 tree
8541 decl_type_context (const_tree decl)
8542 {
8543 tree context = DECL_CONTEXT (decl);
8544
8545 while (context)
8546 switch (TREE_CODE (context))
8547 {
8548 case NAMESPACE_DECL:
8549 case TRANSLATION_UNIT_DECL:
8550 return NULL_TREE;
8551
8552 case RECORD_TYPE:
8553 case UNION_TYPE:
8554 case QUAL_UNION_TYPE:
8555 return context;
8556
8557 case TYPE_DECL:
8558 case FUNCTION_DECL:
8559 context = DECL_CONTEXT (context);
8560 break;
8561
8562 case BLOCK:
8563 context = BLOCK_SUPERCONTEXT (context);
8564 break;
8565
8566 default:
8567 gcc_unreachable ();
8568 }
8569
8570 return NULL_TREE;
8571 }
8572
8573 /* CALL is a CALL_EXPR. Return the declaration for the function
8574 called, or NULL_TREE if the called function cannot be
8575 determined. */
8576
8577 tree
8578 get_callee_fndecl (const_tree call)
8579 {
8580 tree addr;
8581
8582 if (call == error_mark_node)
8583 return error_mark_node;
8584
8585 /* It's invalid to call this function with anything but a
8586 CALL_EXPR. */
8587 gcc_assert (TREE_CODE (call) == CALL_EXPR);
8588
8589 /* The first operand to the CALL is the address of the function
8590 called. */
8591 addr = CALL_EXPR_FN (call);
8592
8593 /* If there is no function, return early. */
8594 if (addr == NULL_TREE)
8595 return NULL_TREE;
8596
8597 STRIP_NOPS (addr);
8598
8599 /* If this is a readonly function pointer, extract its initial value. */
8600 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
8601 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
8602 && DECL_INITIAL (addr))
8603 addr = DECL_INITIAL (addr);
8604
8605 /* If the address is just `&f' for some function `f', then we know
8606 that `f' is being called. */
8607 if (TREE_CODE (addr) == ADDR_EXPR
8608 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
8609 return TREE_OPERAND (addr, 0);
8610
8611 /* We couldn't figure out what was being called. */
8612 return NULL_TREE;
8613 }
8614
8615 /* Return true when STMTs arguments and return value match those of FNDECL,
8616 a decl of a builtin function. */
8617
8618 static bool
8619 tree_builtin_call_types_compatible_p (const_tree call, tree fndecl)
8620 {
8621 gcc_checking_assert (DECL_BUILT_IN_CLASS (fndecl) != NOT_BUILT_IN);
8622
8623 if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
8624 if (tree decl = builtin_decl_explicit (DECL_FUNCTION_CODE (fndecl)))
8625 fndecl = decl;
8626
8627 bool gimple_form = (cfun && (cfun->curr_properties & PROP_gimple)) != 0;
8628 if (gimple_form
8629 ? !useless_type_conversion_p (TREE_TYPE (call),
8630 TREE_TYPE (TREE_TYPE (fndecl)))
8631 : (TYPE_MAIN_VARIANT (TREE_TYPE (call))
8632 != TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (fndecl)))))
8633 return false;
8634
8635 tree targs = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
8636 unsigned nargs = call_expr_nargs (call);
8637 for (unsigned i = 0; i < nargs; ++i, targs = TREE_CHAIN (targs))
8638 {
8639 /* Variadic args follow. */
8640 if (!targs)
8641 return true;
8642 tree arg = CALL_EXPR_ARG (call, i);
8643 tree type = TREE_VALUE (targs);
8644 if (gimple_form
8645 ? !useless_type_conversion_p (type, TREE_TYPE (arg))
8646 : TYPE_MAIN_VARIANT (type) != TYPE_MAIN_VARIANT (TREE_TYPE (arg)))
8647 {
8648 /* For pointer arguments be more forgiving, e.g. due to
8649 FILE * vs. fileptr_type_node, or say char * vs. const char *
8650 differences etc. */
8651 if (!gimple_form
8652 && POINTER_TYPE_P (type)
8653 && POINTER_TYPE_P (TREE_TYPE (arg))
8654 && tree_nop_conversion_p (type, TREE_TYPE (arg)))
8655 continue;
8656 /* char/short integral arguments are promoted to int
8657 by several frontends if targetm.calls.promote_prototypes
8658 is true. Allow such promotion too. */
8659 if (INTEGRAL_TYPE_P (type)
8660 && TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node)
8661 && INTEGRAL_TYPE_P (TREE_TYPE (arg))
8662 && !TYPE_UNSIGNED (TREE_TYPE (arg))
8663 && targetm.calls.promote_prototypes (TREE_TYPE (fndecl))
8664 && (gimple_form
8665 ? useless_type_conversion_p (integer_type_node,
8666 TREE_TYPE (arg))
8667 : tree_nop_conversion_p (integer_type_node,
8668 TREE_TYPE (arg))))
8669 continue;
8670 return false;
8671 }
8672 }
8673 if (targs && !VOID_TYPE_P (TREE_VALUE (targs)))
8674 return false;
8675 return true;
8676 }
8677
8678 /* If CALL_EXPR CALL calls a normal built-in function or an internal function,
8679 return the associated function code, otherwise return CFN_LAST. */
8680
8681 combined_fn
8682 get_call_combined_fn (const_tree call)
8683 {
8684 /* It's invalid to call this function with anything but a CALL_EXPR. */
8685 gcc_assert (TREE_CODE (call) == CALL_EXPR);
8686
8687 if (!CALL_EXPR_FN (call))
8688 return as_combined_fn (CALL_EXPR_IFN (call));
8689
8690 tree fndecl = get_callee_fndecl (call);
8691 if (fndecl
8692 && fndecl_built_in_p (fndecl, BUILT_IN_NORMAL)
8693 && tree_builtin_call_types_compatible_p (call, fndecl))
8694 return as_combined_fn (DECL_FUNCTION_CODE (fndecl));
8695
8696 return CFN_LAST;
8697 }
8698
8699 /* Comparator of indices based on tree_node_counts. */
8700
8701 static int
8702 tree_nodes_cmp (const void *p1, const void *p2)
8703 {
8704 const unsigned *n1 = (const unsigned *)p1;
8705 const unsigned *n2 = (const unsigned *)p2;
8706
8707 return tree_node_counts[*n1] - tree_node_counts[*n2];
8708 }
8709
8710 /* Comparator of indices based on tree_code_counts. */
8711
8712 static int
8713 tree_codes_cmp (const void *p1, const void *p2)
8714 {
8715 const unsigned *n1 = (const unsigned *)p1;
8716 const unsigned *n2 = (const unsigned *)p2;
8717
8718 return tree_code_counts[*n1] - tree_code_counts[*n2];
8719 }
8720
8721 #define TREE_MEM_USAGE_SPACES 40
8722
8723 /* Print debugging information about tree nodes generated during the compile,
8724 and any language-specific information. */
8725
8726 void
8727 dump_tree_statistics (void)
8728 {
8729 if (GATHER_STATISTICS)
8730 {
8731 uint64_t total_nodes, total_bytes;
8732 fprintf (stderr, "\nKind Nodes Bytes\n");
8733 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
8734 total_nodes = total_bytes = 0;
8735
8736 {
8737 auto_vec<unsigned> indices (all_kinds);
8738 for (unsigned i = 0; i < all_kinds; i++)
8739 indices.quick_push (i);
8740 indices.qsort (tree_nodes_cmp);
8741
8742 for (unsigned i = 0; i < (int) all_kinds; i++)
8743 {
8744 unsigned j = indices[i];
8745 fprintf (stderr, "%-20s %6" PRIu64 "%c %9" PRIu64 "%c\n",
8746 tree_node_kind_names[j], SIZE_AMOUNT (tree_node_counts[j]),
8747 SIZE_AMOUNT (tree_node_sizes[j]));
8748 total_nodes += tree_node_counts[j];
8749 total_bytes += tree_node_sizes[j];
8750 }
8751 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
8752 fprintf (stderr, "%-20s %6" PRIu64 "%c %9" PRIu64 "%c\n", "Total",
8753 SIZE_AMOUNT (total_nodes), SIZE_AMOUNT (total_bytes));
8754 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
8755 }
8756
8757 {
8758 fprintf (stderr, "Code Nodes\n");
8759 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
8760
8761 auto_vec<unsigned> indices (MAX_TREE_CODES);
8762 for (unsigned i = 0; i < MAX_TREE_CODES; i++)
8763 indices.quick_push (i);
8764 indices.qsort (tree_codes_cmp);
8765
8766 for (unsigned i = 0; i < MAX_TREE_CODES; i++)
8767 {
8768 unsigned j = indices[i];
8769 fprintf (stderr, "%-32s %6" PRIu64 "%c\n",
8770 get_tree_code_name ((enum tree_code) j),
8771 SIZE_AMOUNT (tree_code_counts[j]));
8772 }
8773 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
8774 fprintf (stderr, "\n");
8775 ssanames_print_statistics ();
8776 fprintf (stderr, "\n");
8777 phinodes_print_statistics ();
8778 fprintf (stderr, "\n");
8779 }
8780 }
8781 else
8782 fprintf (stderr, "(No per-node statistics)\n");
8783
8784 print_type_hash_statistics ();
8785 print_debug_expr_statistics ();
8786 print_value_expr_statistics ();
8787 lang_hooks.print_statistics ();
8788 }
8789 \f
8790 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
8791
8792 /* Generate a crc32 of the low BYTES bytes of VALUE. */
8793
8794 unsigned
8795 crc32_unsigned_n (unsigned chksum, unsigned value, unsigned bytes)
8796 {
8797 /* This relies on the raw feedback's top 4 bits being zero. */
8798 #define FEEDBACK(X) ((X) * 0x04c11db7)
8799 #define SYNDROME(X) (FEEDBACK ((X) & 1) ^ FEEDBACK ((X) & 2) \
8800 ^ FEEDBACK ((X) & 4) ^ FEEDBACK ((X) & 8))
8801 static const unsigned syndromes[16] =
8802 {
8803 SYNDROME(0x0), SYNDROME(0x1), SYNDROME(0x2), SYNDROME(0x3),
8804 SYNDROME(0x4), SYNDROME(0x5), SYNDROME(0x6), SYNDROME(0x7),
8805 SYNDROME(0x8), SYNDROME(0x9), SYNDROME(0xa), SYNDROME(0xb),
8806 SYNDROME(0xc), SYNDROME(0xd), SYNDROME(0xe), SYNDROME(0xf),
8807 };
8808 #undef FEEDBACK
8809 #undef SYNDROME
8810
8811 value <<= (32 - bytes * 8);
8812 for (unsigned ix = bytes * 2; ix--; value <<= 4)
8813 {
8814 unsigned feedback = syndromes[((value ^ chksum) >> 28) & 0xf];
8815
8816 chksum = (chksum << 4) ^ feedback;
8817 }
8818
8819 return chksum;
8820 }
8821
8822 /* Generate a crc32 of a string. */
8823
8824 unsigned
8825 crc32_string (unsigned chksum, const char *string)
8826 {
8827 do
8828 chksum = crc32_byte (chksum, *string);
8829 while (*string++);
8830 return chksum;
8831 }
8832
8833 /* P is a string that will be used in a symbol. Mask out any characters
8834 that are not valid in that context. */
8835
8836 void
8837 clean_symbol_name (char *p)
8838 {
8839 for (; *p; p++)
8840 if (! (ISALNUM (*p)
8841 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
8842 || *p == '$'
8843 #endif
8844 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
8845 || *p == '.'
8846 #endif
8847 ))
8848 *p = '_';
8849 }
8850
8851 static GTY(()) unsigned anon_cnt = 0; /* Saved for PCH. */
8852
8853 /* Create a unique anonymous identifier. The identifier is still a
8854 valid assembly label. */
8855
8856 tree
8857 make_anon_name ()
8858 {
8859 const char *fmt =
8860 #if !defined (NO_DOT_IN_LABEL)
8861 "."
8862 #elif !defined (NO_DOLLAR_IN_LABEL)
8863 "$"
8864 #else
8865 "_"
8866 #endif
8867 "_anon_%d";
8868
8869 char buf[24];
8870 int len = snprintf (buf, sizeof (buf), fmt, anon_cnt++);
8871 gcc_checking_assert (len < int (sizeof (buf)));
8872
8873 tree id = get_identifier_with_length (buf, len);
8874 IDENTIFIER_ANON_P (id) = true;
8875
8876 return id;
8877 }
8878
8879 /* Generate a name for a special-purpose function.
8880 The generated name may need to be unique across the whole link.
8881 Changes to this function may also require corresponding changes to
8882 xstrdup_mask_random.
8883 TYPE is some string to identify the purpose of this function to the
8884 linker or collect2; it must start with an uppercase letter,
8885 one of:
8886 I - for constructors
8887 D - for destructors
8888 N - for C++ anonymous namespaces
8889 F - for DWARF unwind frame information. */
8890
8891 tree
8892 get_file_function_name (const char *type)
8893 {
8894 char *buf;
8895 const char *p;
8896 char *q;
8897
8898 /* If we already have a name we know to be unique, just use that. */
8899 if (first_global_object_name)
8900 p = q = ASTRDUP (first_global_object_name);
8901 /* If the target is handling the constructors/destructors, they
8902 will be local to this file and the name is only necessary for
8903 debugging purposes.
8904 We also assign sub_I and sub_D sufixes to constructors called from
8905 the global static constructors. These are always local. */
8906 else if (((type[0] == 'I' || type[0] == 'D') && targetm.have_ctors_dtors)
8907 || (startswith (type, "sub_")
8908 && (type[4] == 'I' || type[4] == 'D')))
8909 {
8910 const char *file = main_input_filename;
8911 if (! file)
8912 file = LOCATION_FILE (input_location);
8913 /* Just use the file's basename, because the full pathname
8914 might be quite long. */
8915 p = q = ASTRDUP (lbasename (file));
8916 }
8917 else
8918 {
8919 /* Otherwise, the name must be unique across the entire link.
8920 We don't have anything that we know to be unique to this translation
8921 unit, so use what we do have and throw in some randomness. */
8922 unsigned len;
8923 const char *name = weak_global_object_name;
8924 const char *file = main_input_filename;
8925
8926 if (! name)
8927 name = "";
8928 if (! file)
8929 file = LOCATION_FILE (input_location);
8930
8931 len = strlen (file);
8932 q = (char *) alloca (9 + 19 + len + 1);
8933 memcpy (q, file, len + 1);
8934
8935 snprintf (q + len, 9 + 19 + 1, "_%08X_" HOST_WIDE_INT_PRINT_HEX,
8936 crc32_string (0, name), get_random_seed (false));
8937
8938 p = q;
8939 }
8940
8941 clean_symbol_name (q);
8942 buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
8943 + strlen (type));
8944
8945 /* Set up the name of the file-level functions we may need.
8946 Use a global object (which is already required to be unique over
8947 the program) rather than the file name (which imposes extra
8948 constraints). */
8949 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
8950
8951 return get_identifier (buf);
8952 }
8953 \f
8954 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
8955
8956 /* Complain that the tree code of NODE does not match the expected 0
8957 terminated list of trailing codes. The trailing code list can be
8958 empty, for a more vague error message. FILE, LINE, and FUNCTION
8959 are of the caller. */
8960
8961 void
8962 tree_check_failed (const_tree node, const char *file,
8963 int line, const char *function, ...)
8964 {
8965 va_list args;
8966 const char *buffer;
8967 unsigned length = 0;
8968 enum tree_code code;
8969
8970 va_start (args, function);
8971 while ((code = (enum tree_code) va_arg (args, int)))
8972 length += 4 + strlen (get_tree_code_name (code));
8973 va_end (args);
8974 if (length)
8975 {
8976 char *tmp;
8977 va_start (args, function);
8978 length += strlen ("expected ");
8979 buffer = tmp = (char *) alloca (length);
8980 length = 0;
8981 while ((code = (enum tree_code) va_arg (args, int)))
8982 {
8983 const char *prefix = length ? " or " : "expected ";
8984
8985 strcpy (tmp + length, prefix);
8986 length += strlen (prefix);
8987 strcpy (tmp + length, get_tree_code_name (code));
8988 length += strlen (get_tree_code_name (code));
8989 }
8990 va_end (args);
8991 }
8992 else
8993 buffer = "unexpected node";
8994
8995 internal_error ("tree check: %s, have %s in %s, at %s:%d",
8996 buffer, get_tree_code_name (TREE_CODE (node)),
8997 function, trim_filename (file), line);
8998 }
8999
9000 /* Complain that the tree code of NODE does match the expected 0
9001 terminated list of trailing codes. FILE, LINE, and FUNCTION are of
9002 the caller. */
9003
9004 void
9005 tree_not_check_failed (const_tree node, const char *file,
9006 int line, const char *function, ...)
9007 {
9008 va_list args;
9009 char *buffer;
9010 unsigned length = 0;
9011 enum tree_code code;
9012
9013 va_start (args, function);
9014 while ((code = (enum tree_code) va_arg (args, int)))
9015 length += 4 + strlen (get_tree_code_name (code));
9016 va_end (args);
9017 va_start (args, function);
9018 buffer = (char *) alloca (length);
9019 length = 0;
9020 while ((code = (enum tree_code) va_arg (args, int)))
9021 {
9022 if (length)
9023 {
9024 strcpy (buffer + length, " or ");
9025 length += 4;
9026 }
9027 strcpy (buffer + length, get_tree_code_name (code));
9028 length += strlen (get_tree_code_name (code));
9029 }
9030 va_end (args);
9031
9032 internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
9033 buffer, get_tree_code_name (TREE_CODE (node)),
9034 function, trim_filename (file), line);
9035 }
9036
9037 /* Similar to tree_check_failed, except that we check for a class of tree
9038 code, given in CL. */
9039
9040 void
9041 tree_class_check_failed (const_tree node, const enum tree_code_class cl,
9042 const char *file, int line, const char *function)
9043 {
9044 internal_error
9045 ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
9046 TREE_CODE_CLASS_STRING (cl),
9047 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
9048 get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
9049 }
9050
9051 /* Similar to tree_check_failed, except that instead of specifying a
9052 dozen codes, use the knowledge that they're all sequential. */
9053
9054 void
9055 tree_range_check_failed (const_tree node, const char *file, int line,
9056 const char *function, enum tree_code c1,
9057 enum tree_code c2)
9058 {
9059 char *buffer;
9060 unsigned length = 0;
9061 unsigned int c;
9062
9063 for (c = c1; c <= c2; ++c)
9064 length += 4 + strlen (get_tree_code_name ((enum tree_code) c));
9065
9066 length += strlen ("expected ");
9067 buffer = (char *) alloca (length);
9068 length = 0;
9069
9070 for (c = c1; c <= c2; ++c)
9071 {
9072 const char *prefix = length ? " or " : "expected ";
9073
9074 strcpy (buffer + length, prefix);
9075 length += strlen (prefix);
9076 strcpy (buffer + length, get_tree_code_name ((enum tree_code) c));
9077 length += strlen (get_tree_code_name ((enum tree_code) c));
9078 }
9079
9080 internal_error ("tree check: %s, have %s in %s, at %s:%d",
9081 buffer, get_tree_code_name (TREE_CODE (node)),
9082 function, trim_filename (file), line);
9083 }
9084
9085
9086 /* Similar to tree_check_failed, except that we check that a tree does
9087 not have the specified code, given in CL. */
9088
9089 void
9090 tree_not_class_check_failed (const_tree node, const enum tree_code_class cl,
9091 const char *file, int line, const char *function)
9092 {
9093 internal_error
9094 ("tree check: did not expect class %qs, have %qs (%s) in %s, at %s:%d",
9095 TREE_CODE_CLASS_STRING (cl),
9096 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
9097 get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
9098 }
9099
9100
9101 /* Similar to tree_check_failed but applied to OMP_CLAUSE codes. */
9102
9103 void
9104 omp_clause_check_failed (const_tree node, const char *file, int line,
9105 const char *function, enum omp_clause_code code)
9106 {
9107 internal_error ("tree check: expected %<omp_clause %s%>, have %qs "
9108 "in %s, at %s:%d",
9109 omp_clause_code_name[code],
9110 get_tree_code_name (TREE_CODE (node)),
9111 function, trim_filename (file), line);
9112 }
9113
9114
9115 /* Similar to tree_range_check_failed but applied to OMP_CLAUSE codes. */
9116
9117 void
9118 omp_clause_range_check_failed (const_tree node, const char *file, int line,
9119 const char *function, enum omp_clause_code c1,
9120 enum omp_clause_code c2)
9121 {
9122 char *buffer;
9123 unsigned length = 0;
9124 unsigned int c;
9125
9126 for (c = c1; c <= c2; ++c)
9127 length += 4 + strlen (omp_clause_code_name[c]);
9128
9129 length += strlen ("expected ");
9130 buffer = (char *) alloca (length);
9131 length = 0;
9132
9133 for (c = c1; c <= c2; ++c)
9134 {
9135 const char *prefix = length ? " or " : "expected ";
9136
9137 strcpy (buffer + length, prefix);
9138 length += strlen (prefix);
9139 strcpy (buffer + length, omp_clause_code_name[c]);
9140 length += strlen (omp_clause_code_name[c]);
9141 }
9142
9143 internal_error ("tree check: %s, have %s in %s, at %s:%d",
9144 buffer, omp_clause_code_name[TREE_CODE (node)],
9145 function, trim_filename (file), line);
9146 }
9147
9148
9149 #undef DEFTREESTRUCT
9150 #define DEFTREESTRUCT(VAL, NAME) NAME,
9151
9152 static const char *ts_enum_names[] = {
9153 #include "treestruct.def"
9154 };
9155 #undef DEFTREESTRUCT
9156
9157 #define TS_ENUM_NAME(EN) (ts_enum_names[(EN)])
9158
9159 /* Similar to tree_class_check_failed, except that we check for
9160 whether CODE contains the tree structure identified by EN. */
9161
9162 void
9163 tree_contains_struct_check_failed (const_tree node,
9164 const enum tree_node_structure_enum en,
9165 const char *file, int line,
9166 const char *function)
9167 {
9168 internal_error
9169 ("tree check: expected tree that contains %qs structure, have %qs in %s, at %s:%d",
9170 TS_ENUM_NAME (en),
9171 get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
9172 }
9173
9174
9175 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
9176 (dynamically sized) vector. */
9177
9178 void
9179 tree_int_cst_elt_check_failed (int idx, int len, const char *file, int line,
9180 const char *function)
9181 {
9182 internal_error
9183 ("tree check: accessed elt %d of %<tree_int_cst%> with %d elts in %s, "
9184 "at %s:%d",
9185 idx + 1, len, function, trim_filename (file), line);
9186 }
9187
9188 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
9189 (dynamically sized) vector. */
9190
9191 void
9192 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
9193 const char *function)
9194 {
9195 internal_error
9196 ("tree check: accessed elt %d of %<tree_vec%> with %d elts in %s, at %s:%d",
9197 idx + 1, len, function, trim_filename (file), line);
9198 }
9199
9200 /* Similar to above, except that the check is for the bounds of the operand
9201 vector of an expression node EXP. */
9202
9203 void
9204 tree_operand_check_failed (int idx, const_tree exp, const char *file,
9205 int line, const char *function)
9206 {
9207 enum tree_code code = TREE_CODE (exp);
9208 internal_error
9209 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
9210 idx + 1, get_tree_code_name (code), TREE_OPERAND_LENGTH (exp),
9211 function, trim_filename (file), line);
9212 }
9213
9214 /* Similar to above, except that the check is for the number of
9215 operands of an OMP_CLAUSE node. */
9216
9217 void
9218 omp_clause_operand_check_failed (int idx, const_tree t, const char *file,
9219 int line, const char *function)
9220 {
9221 internal_error
9222 ("tree check: accessed operand %d of %<omp_clause %s%> with %d operands "
9223 "in %s, at %s:%d", idx + 1, omp_clause_code_name[OMP_CLAUSE_CODE (t)],
9224 omp_clause_num_ops [OMP_CLAUSE_CODE (t)], function,
9225 trim_filename (file), line);
9226 }
9227 #endif /* ENABLE_TREE_CHECKING */
9228 \f
9229 /* Create a new vector type node holding NUNITS units of type INNERTYPE,
9230 and mapped to the machine mode MODE. Initialize its fields and build
9231 the information necessary for debugging output. */
9232
9233 static tree
9234 make_vector_type (tree innertype, poly_int64 nunits, machine_mode mode)
9235 {
9236 tree t;
9237 tree mv_innertype = TYPE_MAIN_VARIANT (innertype);
9238
9239 t = make_node (VECTOR_TYPE);
9240 TREE_TYPE (t) = mv_innertype;
9241 SET_TYPE_VECTOR_SUBPARTS (t, nunits);
9242 SET_TYPE_MODE (t, mode);
9243
9244 if (TYPE_STRUCTURAL_EQUALITY_P (mv_innertype) || in_lto_p)
9245 SET_TYPE_STRUCTURAL_EQUALITY (t);
9246 else if ((TYPE_CANONICAL (mv_innertype) != innertype
9247 || mode != VOIDmode)
9248 && !VECTOR_BOOLEAN_TYPE_P (t))
9249 TYPE_CANONICAL (t)
9250 = make_vector_type (TYPE_CANONICAL (mv_innertype), nunits, VOIDmode);
9251
9252 layout_type (t);
9253
9254 hashval_t hash = type_hash_canon_hash (t);
9255 t = type_hash_canon (hash, t);
9256
9257 /* We have built a main variant, based on the main variant of the
9258 inner type. Use it to build the variant we return. */
9259 if ((TYPE_ATTRIBUTES (innertype) || TYPE_QUALS (innertype))
9260 && TREE_TYPE (t) != innertype)
9261 return build_type_attribute_qual_variant (t,
9262 TYPE_ATTRIBUTES (innertype),
9263 TYPE_QUALS (innertype));
9264
9265 return t;
9266 }
9267
9268 static tree
9269 make_or_reuse_type (unsigned size, int unsignedp)
9270 {
9271 int i;
9272
9273 if (size == INT_TYPE_SIZE)
9274 return unsignedp ? unsigned_type_node : integer_type_node;
9275 if (size == CHAR_TYPE_SIZE)
9276 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
9277 if (size == SHORT_TYPE_SIZE)
9278 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
9279 if (size == LONG_TYPE_SIZE)
9280 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
9281 if (size == LONG_LONG_TYPE_SIZE)
9282 return (unsignedp ? long_long_unsigned_type_node
9283 : long_long_integer_type_node);
9284
9285 for (i = 0; i < NUM_INT_N_ENTS; i ++)
9286 if (size == int_n_data[i].bitsize
9287 && int_n_enabled_p[i])
9288 return (unsignedp ? int_n_trees[i].unsigned_type
9289 : int_n_trees[i].signed_type);
9290
9291 if (unsignedp)
9292 return make_unsigned_type (size);
9293 else
9294 return make_signed_type (size);
9295 }
9296
9297 /* Create or reuse a fract type by SIZE, UNSIGNEDP, and SATP. */
9298
9299 static tree
9300 make_or_reuse_fract_type (unsigned size, int unsignedp, int satp)
9301 {
9302 if (satp)
9303 {
9304 if (size == SHORT_FRACT_TYPE_SIZE)
9305 return unsignedp ? sat_unsigned_short_fract_type_node
9306 : sat_short_fract_type_node;
9307 if (size == FRACT_TYPE_SIZE)
9308 return unsignedp ? sat_unsigned_fract_type_node : sat_fract_type_node;
9309 if (size == LONG_FRACT_TYPE_SIZE)
9310 return unsignedp ? sat_unsigned_long_fract_type_node
9311 : sat_long_fract_type_node;
9312 if (size == LONG_LONG_FRACT_TYPE_SIZE)
9313 return unsignedp ? sat_unsigned_long_long_fract_type_node
9314 : sat_long_long_fract_type_node;
9315 }
9316 else
9317 {
9318 if (size == SHORT_FRACT_TYPE_SIZE)
9319 return unsignedp ? unsigned_short_fract_type_node
9320 : short_fract_type_node;
9321 if (size == FRACT_TYPE_SIZE)
9322 return unsignedp ? unsigned_fract_type_node : fract_type_node;
9323 if (size == LONG_FRACT_TYPE_SIZE)
9324 return unsignedp ? unsigned_long_fract_type_node
9325 : long_fract_type_node;
9326 if (size == LONG_LONG_FRACT_TYPE_SIZE)
9327 return unsignedp ? unsigned_long_long_fract_type_node
9328 : long_long_fract_type_node;
9329 }
9330
9331 return make_fract_type (size, unsignedp, satp);
9332 }
9333
9334 /* Create or reuse an accum type by SIZE, UNSIGNEDP, and SATP. */
9335
9336 static tree
9337 make_or_reuse_accum_type (unsigned size, int unsignedp, int satp)
9338 {
9339 if (satp)
9340 {
9341 if (size == SHORT_ACCUM_TYPE_SIZE)
9342 return unsignedp ? sat_unsigned_short_accum_type_node
9343 : sat_short_accum_type_node;
9344 if (size == ACCUM_TYPE_SIZE)
9345 return unsignedp ? sat_unsigned_accum_type_node : sat_accum_type_node;
9346 if (size == LONG_ACCUM_TYPE_SIZE)
9347 return unsignedp ? sat_unsigned_long_accum_type_node
9348 : sat_long_accum_type_node;
9349 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
9350 return unsignedp ? sat_unsigned_long_long_accum_type_node
9351 : sat_long_long_accum_type_node;
9352 }
9353 else
9354 {
9355 if (size == SHORT_ACCUM_TYPE_SIZE)
9356 return unsignedp ? unsigned_short_accum_type_node
9357 : short_accum_type_node;
9358 if (size == ACCUM_TYPE_SIZE)
9359 return unsignedp ? unsigned_accum_type_node : accum_type_node;
9360 if (size == LONG_ACCUM_TYPE_SIZE)
9361 return unsignedp ? unsigned_long_accum_type_node
9362 : long_accum_type_node;
9363 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
9364 return unsignedp ? unsigned_long_long_accum_type_node
9365 : long_long_accum_type_node;
9366 }
9367
9368 return make_accum_type (size, unsignedp, satp);
9369 }
9370
9371
9372 /* Create an atomic variant node for TYPE. This routine is called
9373 during initialization of data types to create the 5 basic atomic
9374 types. The generic build_variant_type function requires these to
9375 already be set up in order to function properly, so cannot be
9376 called from there. If ALIGN is non-zero, then ensure alignment is
9377 overridden to this value. */
9378
9379 static tree
9380 build_atomic_base (tree type, unsigned int align)
9381 {
9382 tree t;
9383
9384 /* Make sure its not already registered. */
9385 if ((t = get_qualified_type (type, TYPE_QUAL_ATOMIC)))
9386 return t;
9387
9388 t = build_variant_type_copy (type);
9389 set_type_quals (t, TYPE_QUAL_ATOMIC);
9390
9391 if (align)
9392 SET_TYPE_ALIGN (t, align);
9393
9394 return t;
9395 }
9396
9397 /* Information about the _FloatN and _FloatNx types. This must be in
9398 the same order as the corresponding TI_* enum values. */
9399 const floatn_type_info floatn_nx_types[NUM_FLOATN_NX_TYPES] =
9400 {
9401 { 16, false },
9402 { 32, false },
9403 { 64, false },
9404 { 128, false },
9405 { 32, true },
9406 { 64, true },
9407 { 128, true },
9408 };
9409
9410
9411 /* Create nodes for all integer types (and error_mark_node) using the sizes
9412 of C datatypes. SIGNED_CHAR specifies whether char is signed. */
9413
9414 void
9415 build_common_tree_nodes (bool signed_char)
9416 {
9417 int i;
9418
9419 error_mark_node = make_node (ERROR_MARK);
9420 TREE_TYPE (error_mark_node) = error_mark_node;
9421
9422 initialize_sizetypes ();
9423
9424 /* Define both `signed char' and `unsigned char'. */
9425 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
9426 TYPE_STRING_FLAG (signed_char_type_node) = 1;
9427 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
9428 TYPE_STRING_FLAG (unsigned_char_type_node) = 1;
9429
9430 /* Define `char', which is like either `signed char' or `unsigned char'
9431 but not the same as either. */
9432 char_type_node
9433 = (signed_char
9434 ? make_signed_type (CHAR_TYPE_SIZE)
9435 : make_unsigned_type (CHAR_TYPE_SIZE));
9436 TYPE_STRING_FLAG (char_type_node) = 1;
9437
9438 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
9439 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
9440 integer_type_node = make_signed_type (INT_TYPE_SIZE);
9441 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
9442 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
9443 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
9444 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
9445 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
9446
9447 for (i = 0; i < NUM_INT_N_ENTS; i ++)
9448 {
9449 int_n_trees[i].signed_type = make_signed_type (int_n_data[i].bitsize);
9450 int_n_trees[i].unsigned_type = make_unsigned_type (int_n_data[i].bitsize);
9451
9452 if (int_n_enabled_p[i])
9453 {
9454 integer_types[itk_intN_0 + i * 2] = int_n_trees[i].signed_type;
9455 integer_types[itk_unsigned_intN_0 + i * 2] = int_n_trees[i].unsigned_type;
9456 }
9457 }
9458
9459 /* Define a boolean type. This type only represents boolean values but
9460 may be larger than char depending on the value of BOOL_TYPE_SIZE. */
9461 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
9462 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
9463 TYPE_PRECISION (boolean_type_node) = 1;
9464 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
9465
9466 /* Define what type to use for size_t. */
9467 if (strcmp (SIZE_TYPE, "unsigned int") == 0)
9468 size_type_node = unsigned_type_node;
9469 else if (strcmp (SIZE_TYPE, "long unsigned int") == 0)
9470 size_type_node = long_unsigned_type_node;
9471 else if (strcmp (SIZE_TYPE, "long long unsigned int") == 0)
9472 size_type_node = long_long_unsigned_type_node;
9473 else if (strcmp (SIZE_TYPE, "short unsigned int") == 0)
9474 size_type_node = short_unsigned_type_node;
9475 else
9476 {
9477 int i;
9478
9479 size_type_node = NULL_TREE;
9480 for (i = 0; i < NUM_INT_N_ENTS; i++)
9481 if (int_n_enabled_p[i])
9482 {
9483 char name[50], altname[50];
9484 sprintf (name, "__int%d unsigned", int_n_data[i].bitsize);
9485 sprintf (altname, "__int%d__ unsigned", int_n_data[i].bitsize);
9486
9487 if (strcmp (name, SIZE_TYPE) == 0
9488 || strcmp (altname, SIZE_TYPE) == 0)
9489 {
9490 size_type_node = int_n_trees[i].unsigned_type;
9491 }
9492 }
9493 if (size_type_node == NULL_TREE)
9494 gcc_unreachable ();
9495 }
9496
9497 /* Define what type to use for ptrdiff_t. */
9498 if (strcmp (PTRDIFF_TYPE, "int") == 0)
9499 ptrdiff_type_node = integer_type_node;
9500 else if (strcmp (PTRDIFF_TYPE, "long int") == 0)
9501 ptrdiff_type_node = long_integer_type_node;
9502 else if (strcmp (PTRDIFF_TYPE, "long long int") == 0)
9503 ptrdiff_type_node = long_long_integer_type_node;
9504 else if (strcmp (PTRDIFF_TYPE, "short int") == 0)
9505 ptrdiff_type_node = short_integer_type_node;
9506 else
9507 {
9508 ptrdiff_type_node = NULL_TREE;
9509 for (int i = 0; i < NUM_INT_N_ENTS; i++)
9510 if (int_n_enabled_p[i])
9511 {
9512 char name[50], altname[50];
9513 sprintf (name, "__int%d", int_n_data[i].bitsize);
9514 sprintf (altname, "__int%d__", int_n_data[i].bitsize);
9515
9516 if (strcmp (name, PTRDIFF_TYPE) == 0
9517 || strcmp (altname, PTRDIFF_TYPE) == 0)
9518 ptrdiff_type_node = int_n_trees[i].signed_type;
9519 }
9520 if (ptrdiff_type_node == NULL_TREE)
9521 gcc_unreachable ();
9522 }
9523
9524 /* Fill in the rest of the sized types. Reuse existing type nodes
9525 when possible. */
9526 intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
9527 intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
9528 intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
9529 intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
9530 intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);
9531
9532 unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
9533 unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
9534 unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
9535 unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
9536 unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);
9537
9538 /* Don't call build_qualified type for atomics. That routine does
9539 special processing for atomics, and until they are initialized
9540 it's better not to make that call.
9541
9542 Check to see if there is a target override for atomic types. */
9543
9544 atomicQI_type_node = build_atomic_base (unsigned_intQI_type_node,
9545 targetm.atomic_align_for_mode (QImode));
9546 atomicHI_type_node = build_atomic_base (unsigned_intHI_type_node,
9547 targetm.atomic_align_for_mode (HImode));
9548 atomicSI_type_node = build_atomic_base (unsigned_intSI_type_node,
9549 targetm.atomic_align_for_mode (SImode));
9550 atomicDI_type_node = build_atomic_base (unsigned_intDI_type_node,
9551 targetm.atomic_align_for_mode (DImode));
9552 atomicTI_type_node = build_atomic_base (unsigned_intTI_type_node,
9553 targetm.atomic_align_for_mode (TImode));
9554
9555 access_public_node = get_identifier ("public");
9556 access_protected_node = get_identifier ("protected");
9557 access_private_node = get_identifier ("private");
9558
9559 /* Define these next since types below may used them. */
9560 integer_zero_node = build_int_cst (integer_type_node, 0);
9561 integer_one_node = build_int_cst (integer_type_node, 1);
9562 integer_three_node = build_int_cst (integer_type_node, 3);
9563 integer_minus_one_node = build_int_cst (integer_type_node, -1);
9564
9565 size_zero_node = size_int (0);
9566 size_one_node = size_int (1);
9567 bitsize_zero_node = bitsize_int (0);
9568 bitsize_one_node = bitsize_int (1);
9569 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
9570
9571 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
9572 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
9573
9574 void_type_node = make_node (VOID_TYPE);
9575 layout_type (void_type_node);
9576
9577 /* We are not going to have real types in C with less than byte alignment,
9578 so we might as well not have any types that claim to have it. */
9579 SET_TYPE_ALIGN (void_type_node, BITS_PER_UNIT);
9580 TYPE_USER_ALIGN (void_type_node) = 0;
9581
9582 void_node = make_node (VOID_CST);
9583 TREE_TYPE (void_node) = void_type_node;
9584
9585 void_list_node = build_tree_list (NULL_TREE, void_type_node);
9586
9587 null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
9588 layout_type (TREE_TYPE (null_pointer_node));
9589
9590 ptr_type_node = build_pointer_type (void_type_node);
9591 const_ptr_type_node
9592 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
9593 for (unsigned i = 0; i < ARRAY_SIZE (builtin_structptr_types); ++i)
9594 builtin_structptr_types[i].node = builtin_structptr_types[i].base;
9595
9596 pointer_sized_int_node = build_nonstandard_integer_type (POINTER_SIZE, 1);
9597
9598 float_type_node = make_node (REAL_TYPE);
9599 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
9600 layout_type (float_type_node);
9601
9602 double_type_node = make_node (REAL_TYPE);
9603 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
9604 layout_type (double_type_node);
9605
9606 long_double_type_node = make_node (REAL_TYPE);
9607 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
9608 layout_type (long_double_type_node);
9609
9610 for (i = 0; i < NUM_FLOATN_NX_TYPES; i++)
9611 {
9612 int n = floatn_nx_types[i].n;
9613 bool extended = floatn_nx_types[i].extended;
9614 scalar_float_mode mode;
9615 if (!targetm.floatn_mode (n, extended).exists (&mode))
9616 continue;
9617 int precision = GET_MODE_PRECISION (mode);
9618 /* Work around the rs6000 KFmode having precision 113 not
9619 128. */
9620 const struct real_format *fmt = REAL_MODE_FORMAT (mode);
9621 gcc_assert (fmt->b == 2 && fmt->emin + fmt->emax == 3);
9622 int min_precision = fmt->p + ceil_log2 (fmt->emax - fmt->emin);
9623 if (!extended)
9624 gcc_assert (min_precision == n);
9625 if (precision < min_precision)
9626 precision = min_precision;
9627 FLOATN_NX_TYPE_NODE (i) = make_node (REAL_TYPE);
9628 TYPE_PRECISION (FLOATN_NX_TYPE_NODE (i)) = precision;
9629 layout_type (FLOATN_NX_TYPE_NODE (i));
9630 SET_TYPE_MODE (FLOATN_NX_TYPE_NODE (i), mode);
9631 }
9632 float128t_type_node = float128_type_node;
9633 #ifdef HAVE_BFmode
9634 if (REAL_MODE_FORMAT (BFmode) == &arm_bfloat_half_format
9635 && targetm.scalar_mode_supported_p (BFmode)
9636 && targetm.libgcc_floating_mode_supported_p (BFmode))
9637 {
9638 bfloat16_type_node = make_node (REAL_TYPE);
9639 TYPE_PRECISION (bfloat16_type_node) = GET_MODE_PRECISION (BFmode);
9640 layout_type (bfloat16_type_node);
9641 SET_TYPE_MODE (bfloat16_type_node, BFmode);
9642 }
9643 #endif
9644
9645 float_ptr_type_node = build_pointer_type (float_type_node);
9646 double_ptr_type_node = build_pointer_type (double_type_node);
9647 long_double_ptr_type_node = build_pointer_type (long_double_type_node);
9648 integer_ptr_type_node = build_pointer_type (integer_type_node);
9649
9650 /* Fixed size integer types. */
9651 uint16_type_node = make_or_reuse_type (16, 1);
9652 uint32_type_node = make_or_reuse_type (32, 1);
9653 uint64_type_node = make_or_reuse_type (64, 1);
9654 if (targetm.scalar_mode_supported_p (TImode))
9655 uint128_type_node = make_or_reuse_type (128, 1);
9656
9657 /* Decimal float types. */
9658 if (targetm.decimal_float_supported_p ())
9659 {
9660 dfloat32_type_node = make_node (REAL_TYPE);
9661 TYPE_PRECISION (dfloat32_type_node) = DECIMAL32_TYPE_SIZE;
9662 SET_TYPE_MODE (dfloat32_type_node, SDmode);
9663 layout_type (dfloat32_type_node);
9664
9665 dfloat64_type_node = make_node (REAL_TYPE);
9666 TYPE_PRECISION (dfloat64_type_node) = DECIMAL64_TYPE_SIZE;
9667 SET_TYPE_MODE (dfloat64_type_node, DDmode);
9668 layout_type (dfloat64_type_node);
9669
9670 dfloat128_type_node = make_node (REAL_TYPE);
9671 TYPE_PRECISION (dfloat128_type_node) = DECIMAL128_TYPE_SIZE;
9672 SET_TYPE_MODE (dfloat128_type_node, TDmode);
9673 layout_type (dfloat128_type_node);
9674 }
9675
9676 complex_integer_type_node = build_complex_type (integer_type_node, true);
9677 complex_float_type_node = build_complex_type (float_type_node, true);
9678 complex_double_type_node = build_complex_type (double_type_node, true);
9679 complex_long_double_type_node = build_complex_type (long_double_type_node,
9680 true);
9681
9682 for (i = 0; i < NUM_FLOATN_NX_TYPES; i++)
9683 {
9684 if (FLOATN_NX_TYPE_NODE (i) != NULL_TREE)
9685 COMPLEX_FLOATN_NX_TYPE_NODE (i)
9686 = build_complex_type (FLOATN_NX_TYPE_NODE (i));
9687 }
9688
9689 /* Make fixed-point nodes based on sat/non-sat and signed/unsigned. */
9690 #define MAKE_FIXED_TYPE_NODE(KIND,SIZE) \
9691 sat_ ## KIND ## _type_node = \
9692 make_sat_signed_ ## KIND ## _type (SIZE); \
9693 sat_unsigned_ ## KIND ## _type_node = \
9694 make_sat_unsigned_ ## KIND ## _type (SIZE); \
9695 KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
9696 unsigned_ ## KIND ## _type_node = \
9697 make_unsigned_ ## KIND ## _type (SIZE);
9698
9699 #define MAKE_FIXED_TYPE_NODE_WIDTH(KIND,WIDTH,SIZE) \
9700 sat_ ## WIDTH ## KIND ## _type_node = \
9701 make_sat_signed_ ## KIND ## _type (SIZE); \
9702 sat_unsigned_ ## WIDTH ## KIND ## _type_node = \
9703 make_sat_unsigned_ ## KIND ## _type (SIZE); \
9704 WIDTH ## KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
9705 unsigned_ ## WIDTH ## KIND ## _type_node = \
9706 make_unsigned_ ## KIND ## _type (SIZE);
9707
9708 /* Make fixed-point type nodes based on four different widths. */
9709 #define MAKE_FIXED_TYPE_NODE_FAMILY(N1,N2) \
9710 MAKE_FIXED_TYPE_NODE_WIDTH (N1, short_, SHORT_ ## N2 ## _TYPE_SIZE) \
9711 MAKE_FIXED_TYPE_NODE (N1, N2 ## _TYPE_SIZE) \
9712 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_, LONG_ ## N2 ## _TYPE_SIZE) \
9713 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_long_, LONG_LONG_ ## N2 ## _TYPE_SIZE)
9714
9715 /* Make fixed-point mode nodes based on sat/non-sat and signed/unsigned. */
9716 #define MAKE_FIXED_MODE_NODE(KIND,NAME,MODE) \
9717 NAME ## _type_node = \
9718 make_or_reuse_signed_ ## KIND ## _type (GET_MODE_BITSIZE (MODE ## mode)); \
9719 u ## NAME ## _type_node = \
9720 make_or_reuse_unsigned_ ## KIND ## _type \
9721 (GET_MODE_BITSIZE (U ## MODE ## mode)); \
9722 sat_ ## NAME ## _type_node = \
9723 make_or_reuse_sat_signed_ ## KIND ## _type \
9724 (GET_MODE_BITSIZE (MODE ## mode)); \
9725 sat_u ## NAME ## _type_node = \
9726 make_or_reuse_sat_unsigned_ ## KIND ## _type \
9727 (GET_MODE_BITSIZE (U ## MODE ## mode));
9728
9729 /* Fixed-point type and mode nodes. */
9730 MAKE_FIXED_TYPE_NODE_FAMILY (fract, FRACT)
9731 MAKE_FIXED_TYPE_NODE_FAMILY (accum, ACCUM)
9732 MAKE_FIXED_MODE_NODE (fract, qq, QQ)
9733 MAKE_FIXED_MODE_NODE (fract, hq, HQ)
9734 MAKE_FIXED_MODE_NODE (fract, sq, SQ)
9735 MAKE_FIXED_MODE_NODE (fract, dq, DQ)
9736 MAKE_FIXED_MODE_NODE (fract, tq, TQ)
9737 MAKE_FIXED_MODE_NODE (accum, ha, HA)
9738 MAKE_FIXED_MODE_NODE (accum, sa, SA)
9739 MAKE_FIXED_MODE_NODE (accum, da, DA)
9740 MAKE_FIXED_MODE_NODE (accum, ta, TA)
9741
9742 {
9743 tree t = targetm.build_builtin_va_list ();
9744
9745 /* Many back-ends define record types without setting TYPE_NAME.
9746 If we copied the record type here, we'd keep the original
9747 record type without a name. This breaks name mangling. So,
9748 don't copy record types and let c_common_nodes_and_builtins()
9749 declare the type to be __builtin_va_list. */
9750 if (TREE_CODE (t) != RECORD_TYPE)
9751 t = build_variant_type_copy (t);
9752
9753 va_list_type_node = t;
9754 }
9755
9756 /* SCEV analyzer global shared trees. */
9757 chrec_dont_know = make_node (SCEV_NOT_KNOWN);
9758 TREE_TYPE (chrec_dont_know) = void_type_node;
9759 chrec_known = make_node (SCEV_KNOWN);
9760 TREE_TYPE (chrec_known) = void_type_node;
9761 }
9762
9763 /* Modify DECL for given flags.
9764 TM_PURE attribute is set only on types, so the function will modify
9765 DECL's type when ECF_TM_PURE is used. */
9766
9767 void
9768 set_call_expr_flags (tree decl, int flags)
9769 {
9770 if (flags & ECF_NOTHROW)
9771 TREE_NOTHROW (decl) = 1;
9772 if (flags & ECF_CONST)
9773 TREE_READONLY (decl) = 1;
9774 if (flags & ECF_PURE)
9775 DECL_PURE_P (decl) = 1;
9776 if (flags & ECF_LOOPING_CONST_OR_PURE)
9777 DECL_LOOPING_CONST_OR_PURE_P (decl) = 1;
9778 if (flags & ECF_NOVOPS)
9779 DECL_IS_NOVOPS (decl) = 1;
9780 if (flags & ECF_NORETURN)
9781 TREE_THIS_VOLATILE (decl) = 1;
9782 if (flags & ECF_MALLOC)
9783 DECL_IS_MALLOC (decl) = 1;
9784 if (flags & ECF_RETURNS_TWICE)
9785 DECL_IS_RETURNS_TWICE (decl) = 1;
9786 if (flags & ECF_LEAF)
9787 DECL_ATTRIBUTES (decl) = tree_cons (get_identifier ("leaf"),
9788 NULL, DECL_ATTRIBUTES (decl));
9789 if (flags & ECF_COLD)
9790 DECL_ATTRIBUTES (decl) = tree_cons (get_identifier ("cold"),
9791 NULL, DECL_ATTRIBUTES (decl));
9792 if (flags & ECF_RET1)
9793 DECL_ATTRIBUTES (decl)
9794 = tree_cons (get_identifier ("fn spec"),
9795 build_tree_list (NULL_TREE, build_string (2, "1 ")),
9796 DECL_ATTRIBUTES (decl));
9797 if ((flags & ECF_TM_PURE) && flag_tm)
9798 apply_tm_attr (decl, get_identifier ("transaction_pure"));
9799 if ((flags & ECF_XTHROW))
9800 DECL_ATTRIBUTES (decl)
9801 = tree_cons (get_identifier ("expected_throw"),
9802 NULL, DECL_ATTRIBUTES (decl));
9803 /* Looping const or pure is implied by noreturn.
9804 There is currently no way to declare looping const or looping pure alone. */
9805 gcc_assert (!(flags & ECF_LOOPING_CONST_OR_PURE)
9806 || ((flags & ECF_NORETURN) && (flags & (ECF_CONST | ECF_PURE))));
9807 }
9808
9809
9810 /* A subroutine of build_common_builtin_nodes. Define a builtin function. */
9811
9812 static void
9813 local_define_builtin (const char *name, tree type, enum built_in_function code,
9814 const char *library_name, int ecf_flags)
9815 {
9816 tree decl;
9817
9818 decl = add_builtin_function (name, type, code, BUILT_IN_NORMAL,
9819 library_name, NULL_TREE);
9820 set_call_expr_flags (decl, ecf_flags);
9821
9822 set_builtin_decl (code, decl, true);
9823 }
9824
9825 /* Call this function after instantiating all builtins that the language
9826 front end cares about. This will build the rest of the builtins
9827 and internal functions that are relied upon by the tree optimizers and
9828 the middle-end. */
9829
9830 void
9831 build_common_builtin_nodes (void)
9832 {
9833 tree tmp, ftype;
9834 int ecf_flags;
9835
9836 if (!builtin_decl_explicit_p (BUILT_IN_CLEAR_PADDING))
9837 {
9838 ftype = build_function_type_list (void_type_node,
9839 ptr_type_node,
9840 ptr_type_node,
9841 integer_type_node,
9842 NULL_TREE);
9843 local_define_builtin ("__builtin_clear_padding", ftype,
9844 BUILT_IN_CLEAR_PADDING,
9845 "__builtin_clear_padding",
9846 ECF_LEAF | ECF_NOTHROW);
9847 }
9848
9849 if (!builtin_decl_explicit_p (BUILT_IN_UNREACHABLE)
9850 || !builtin_decl_explicit_p (BUILT_IN_TRAP)
9851 || !builtin_decl_explicit_p (BUILT_IN_UNREACHABLE_TRAP)
9852 || !builtin_decl_explicit_p (BUILT_IN_ABORT))
9853 {
9854 ftype = build_function_type (void_type_node, void_list_node);
9855 if (!builtin_decl_explicit_p (BUILT_IN_UNREACHABLE))
9856 local_define_builtin ("__builtin_unreachable", ftype,
9857 BUILT_IN_UNREACHABLE,
9858 "__builtin_unreachable",
9859 ECF_NOTHROW | ECF_LEAF | ECF_NORETURN
9860 | ECF_CONST | ECF_COLD);
9861 if (!builtin_decl_explicit_p (BUILT_IN_UNREACHABLE_TRAP))
9862 local_define_builtin ("__builtin_unreachable trap", ftype,
9863 BUILT_IN_UNREACHABLE_TRAP,
9864 "__builtin_unreachable trap",
9865 ECF_NOTHROW | ECF_LEAF | ECF_NORETURN
9866 | ECF_CONST | ECF_COLD);
9867 if (!builtin_decl_explicit_p (BUILT_IN_ABORT))
9868 local_define_builtin ("__builtin_abort", ftype, BUILT_IN_ABORT,
9869 "abort",
9870 ECF_LEAF | ECF_NORETURN | ECF_CONST | ECF_COLD);
9871 if (!builtin_decl_explicit_p (BUILT_IN_TRAP))
9872 local_define_builtin ("__builtin_trap", ftype, BUILT_IN_TRAP,
9873 "__builtin_trap",
9874 ECF_NORETURN | ECF_NOTHROW | ECF_LEAF | ECF_COLD);
9875 }
9876
9877 if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY)
9878 || !builtin_decl_explicit_p (BUILT_IN_MEMMOVE))
9879 {
9880 ftype = build_function_type_list (ptr_type_node,
9881 ptr_type_node, const_ptr_type_node,
9882 size_type_node, NULL_TREE);
9883
9884 if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY))
9885 local_define_builtin ("__builtin_memcpy", ftype, BUILT_IN_MEMCPY,
9886 "memcpy", ECF_NOTHROW | ECF_LEAF);
9887 if (!builtin_decl_explicit_p (BUILT_IN_MEMMOVE))
9888 local_define_builtin ("__builtin_memmove", ftype, BUILT_IN_MEMMOVE,
9889 "memmove", ECF_NOTHROW | ECF_LEAF);
9890 }
9891
9892 if (!builtin_decl_explicit_p (BUILT_IN_MEMCMP))
9893 {
9894 ftype = build_function_type_list (integer_type_node, const_ptr_type_node,
9895 const_ptr_type_node, size_type_node,
9896 NULL_TREE);
9897 local_define_builtin ("__builtin_memcmp", ftype, BUILT_IN_MEMCMP,
9898 "memcmp", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
9899 }
9900
9901 if (!builtin_decl_explicit_p (BUILT_IN_MEMSET))
9902 {
9903 ftype = build_function_type_list (ptr_type_node,
9904 ptr_type_node, integer_type_node,
9905 size_type_node, NULL_TREE);
9906 local_define_builtin ("__builtin_memset", ftype, BUILT_IN_MEMSET,
9907 "memset", ECF_NOTHROW | ECF_LEAF);
9908 }
9909
9910 /* If we're checking the stack, `alloca' can throw. */
9911 const int alloca_flags
9912 = ECF_MALLOC | ECF_LEAF | (flag_stack_check ? 0 : ECF_NOTHROW);
9913
9914 if (!builtin_decl_explicit_p (BUILT_IN_ALLOCA))
9915 {
9916 ftype = build_function_type_list (ptr_type_node,
9917 size_type_node, NULL_TREE);
9918 local_define_builtin ("__builtin_alloca", ftype, BUILT_IN_ALLOCA,
9919 "alloca", alloca_flags);
9920 }
9921
9922 ftype = build_function_type_list (ptr_type_node, size_type_node,
9923 size_type_node, NULL_TREE);
9924 local_define_builtin ("__builtin_alloca_with_align", ftype,
9925 BUILT_IN_ALLOCA_WITH_ALIGN,
9926 "__builtin_alloca_with_align",
9927 alloca_flags);
9928
9929 ftype = build_function_type_list (ptr_type_node, size_type_node,
9930 size_type_node, size_type_node, NULL_TREE);
9931 local_define_builtin ("__builtin_alloca_with_align_and_max", ftype,
9932 BUILT_IN_ALLOCA_WITH_ALIGN_AND_MAX,
9933 "__builtin_alloca_with_align_and_max",
9934 alloca_flags);
9935
9936 ftype = build_function_type_list (void_type_node,
9937 ptr_type_node, ptr_type_node,
9938 ptr_type_node, NULL_TREE);
9939 local_define_builtin ("__builtin_init_trampoline", ftype,
9940 BUILT_IN_INIT_TRAMPOLINE,
9941 "__builtin_init_trampoline", ECF_NOTHROW | ECF_LEAF);
9942 local_define_builtin ("__builtin_init_heap_trampoline", ftype,
9943 BUILT_IN_INIT_HEAP_TRAMPOLINE,
9944 "__builtin_init_heap_trampoline",
9945 ECF_NOTHROW | ECF_LEAF);
9946 local_define_builtin ("__builtin_init_descriptor", ftype,
9947 BUILT_IN_INIT_DESCRIPTOR,
9948 "__builtin_init_descriptor", ECF_NOTHROW | ECF_LEAF);
9949
9950 ftype = build_function_type_list (ptr_type_node, ptr_type_node, NULL_TREE);
9951 local_define_builtin ("__builtin_adjust_trampoline", ftype,
9952 BUILT_IN_ADJUST_TRAMPOLINE,
9953 "__builtin_adjust_trampoline",
9954 ECF_CONST | ECF_NOTHROW);
9955 local_define_builtin ("__builtin_adjust_descriptor", ftype,
9956 BUILT_IN_ADJUST_DESCRIPTOR,
9957 "__builtin_adjust_descriptor",
9958 ECF_CONST | ECF_NOTHROW);
9959
9960 ftype = build_function_type_list (void_type_node,
9961 ptr_type_node, ptr_type_node, NULL_TREE);
9962 if (!builtin_decl_explicit_p (BUILT_IN_CLEAR_CACHE))
9963 local_define_builtin ("__builtin___clear_cache", ftype,
9964 BUILT_IN_CLEAR_CACHE,
9965 "__clear_cache",
9966 ECF_NOTHROW);
9967
9968 local_define_builtin ("__builtin_nonlocal_goto", ftype,
9969 BUILT_IN_NONLOCAL_GOTO,
9970 "__builtin_nonlocal_goto",
9971 ECF_NORETURN | ECF_NOTHROW);
9972
9973 tree ptr_ptr_type_node = build_pointer_type (ptr_type_node);
9974
9975 if (!builtin_decl_explicit_p (BUILT_IN_GCC_NESTED_PTR_CREATED))
9976 {
9977 ftype = build_function_type_list (void_type_node,
9978 ptr_type_node, // void *chain
9979 ptr_type_node, // void *func
9980 ptr_ptr_type_node, // void **dst
9981 NULL_TREE);
9982 local_define_builtin ("__builtin___gcc_nested_func_ptr_created", ftype,
9983 BUILT_IN_GCC_NESTED_PTR_CREATED,
9984 "__gcc_nested_func_ptr_created", ECF_NOTHROW);
9985 }
9986
9987 if (!builtin_decl_explicit_p (BUILT_IN_GCC_NESTED_PTR_DELETED))
9988 {
9989 ftype = build_function_type_list (void_type_node, NULL_TREE);
9990 local_define_builtin ("__builtin___gcc_nested_func_ptr_deleted", ftype,
9991 BUILT_IN_GCC_NESTED_PTR_DELETED,
9992 "__gcc_nested_func_ptr_deleted", ECF_NOTHROW);
9993 }
9994
9995 ftype = build_function_type_list (void_type_node,
9996 ptr_type_node, ptr_type_node, NULL_TREE);
9997 local_define_builtin ("__builtin_setjmp_setup", ftype,
9998 BUILT_IN_SETJMP_SETUP,
9999 "__builtin_setjmp_setup", ECF_NOTHROW);
10000
10001 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
10002 local_define_builtin ("__builtin_setjmp_receiver", ftype,
10003 BUILT_IN_SETJMP_RECEIVER,
10004 "__builtin_setjmp_receiver", ECF_NOTHROW | ECF_LEAF);
10005
10006 ftype = build_function_type_list (ptr_type_node, NULL_TREE);
10007 local_define_builtin ("__builtin_stack_save", ftype, BUILT_IN_STACK_SAVE,
10008 "__builtin_stack_save", ECF_NOTHROW | ECF_LEAF);
10009
10010 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
10011 local_define_builtin ("__builtin_stack_restore", ftype,
10012 BUILT_IN_STACK_RESTORE,
10013 "__builtin_stack_restore", ECF_NOTHROW | ECF_LEAF);
10014
10015 ftype = build_function_type_list (integer_type_node, const_ptr_type_node,
10016 const_ptr_type_node, size_type_node,
10017 NULL_TREE);
10018 local_define_builtin ("__builtin_memcmp_eq", ftype, BUILT_IN_MEMCMP_EQ,
10019 "__builtin_memcmp_eq",
10020 ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10021
10022 local_define_builtin ("__builtin_strncmp_eq", ftype, BUILT_IN_STRNCMP_EQ,
10023 "__builtin_strncmp_eq",
10024 ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10025
10026 local_define_builtin ("__builtin_strcmp_eq", ftype, BUILT_IN_STRCMP_EQ,
10027 "__builtin_strcmp_eq",
10028 ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10029
10030 /* If there's a possibility that we might use the ARM EABI, build the
10031 alternate __cxa_end_cleanup node used to resume from C++. */
10032 if (targetm.arm_eabi_unwinder)
10033 {
10034 ftype = build_function_type_list (void_type_node, NULL_TREE);
10035 local_define_builtin ("__builtin_cxa_end_cleanup", ftype,
10036 BUILT_IN_CXA_END_CLEANUP,
10037 "__cxa_end_cleanup",
10038 ECF_NORETURN | ECF_XTHROW | ECF_LEAF);
10039 }
10040
10041 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
10042 local_define_builtin ("__builtin_unwind_resume", ftype,
10043 BUILT_IN_UNWIND_RESUME,
10044 ((targetm_common.except_unwind_info (&global_options)
10045 == UI_SJLJ)
10046 ? "_Unwind_SjLj_Resume" : "_Unwind_Resume"),
10047 ECF_NORETURN | ECF_XTHROW);
10048
10049 if (builtin_decl_explicit (BUILT_IN_RETURN_ADDRESS) == NULL_TREE)
10050 {
10051 ftype = build_function_type_list (ptr_type_node, integer_type_node,
10052 NULL_TREE);
10053 local_define_builtin ("__builtin_return_address", ftype,
10054 BUILT_IN_RETURN_ADDRESS,
10055 "__builtin_return_address",
10056 ECF_NOTHROW);
10057 }
10058
10059 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER)
10060 || !builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT))
10061 {
10062 ftype = build_function_type_list (void_type_node, ptr_type_node,
10063 ptr_type_node, NULL_TREE);
10064 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER))
10065 local_define_builtin ("__cyg_profile_func_enter", ftype,
10066 BUILT_IN_PROFILE_FUNC_ENTER,
10067 "__cyg_profile_func_enter", 0);
10068 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT))
10069 local_define_builtin ("__cyg_profile_func_exit", ftype,
10070 BUILT_IN_PROFILE_FUNC_EXIT,
10071 "__cyg_profile_func_exit", 0);
10072 }
10073
10074 /* The exception object and filter values from the runtime. The argument
10075 must be zero before exception lowering, i.e. from the front end. After
10076 exception lowering, it will be the region number for the exception
10077 landing pad. These functions are PURE instead of CONST to prevent
10078 them from being hoisted past the exception edge that will initialize
10079 its value in the landing pad. */
10080 ftype = build_function_type_list (ptr_type_node,
10081 integer_type_node, NULL_TREE);
10082 ecf_flags = ECF_PURE | ECF_NOTHROW | ECF_LEAF;
10083 /* Only use TM_PURE if we have TM language support. */
10084 if (builtin_decl_explicit_p (BUILT_IN_TM_LOAD_1))
10085 ecf_flags |= ECF_TM_PURE;
10086 local_define_builtin ("__builtin_eh_pointer", ftype, BUILT_IN_EH_POINTER,
10087 "__builtin_eh_pointer", ecf_flags);
10088
10089 tmp = lang_hooks.types.type_for_mode (targetm.eh_return_filter_mode (), 0);
10090 ftype = build_function_type_list (tmp, integer_type_node, NULL_TREE);
10091 local_define_builtin ("__builtin_eh_filter", ftype, BUILT_IN_EH_FILTER,
10092 "__builtin_eh_filter", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10093
10094 ftype = build_function_type_list (void_type_node,
10095 integer_type_node, integer_type_node,
10096 NULL_TREE);
10097 local_define_builtin ("__builtin_eh_copy_values", ftype,
10098 BUILT_IN_EH_COPY_VALUES,
10099 "__builtin_eh_copy_values", ECF_NOTHROW);
10100
10101 /* Complex multiplication and division. These are handled as builtins
10102 rather than optabs because emit_library_call_value doesn't support
10103 complex. Further, we can do slightly better with folding these
10104 beasties if the real and complex parts of the arguments are separate. */
10105 {
10106 int mode;
10107
10108 for (mode = MIN_MODE_COMPLEX_FLOAT; mode <= MAX_MODE_COMPLEX_FLOAT; ++mode)
10109 {
10110 char mode_name_buf[4], *q;
10111 const char *p;
10112 enum built_in_function mcode, dcode;
10113 tree type, inner_type;
10114 const char *prefix = "__";
10115
10116 if (targetm.libfunc_gnu_prefix)
10117 prefix = "__gnu_";
10118
10119 type = lang_hooks.types.type_for_mode ((machine_mode) mode, 0);
10120 if (type == NULL)
10121 continue;
10122 inner_type = TREE_TYPE (type);
10123
10124 ftype = build_function_type_list (type, inner_type, inner_type,
10125 inner_type, inner_type, NULL_TREE);
10126
10127 mcode = ((enum built_in_function)
10128 (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
10129 dcode = ((enum built_in_function)
10130 (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
10131
10132 for (p = GET_MODE_NAME (mode), q = mode_name_buf; *p; p++, q++)
10133 *q = TOLOWER (*p);
10134 *q = '\0';
10135
10136 /* For -ftrapping-math these should throw from a former
10137 -fnon-call-exception stmt. */
10138 built_in_names[mcode] = concat (prefix, "mul", mode_name_buf, "3",
10139 NULL);
10140 local_define_builtin (built_in_names[mcode], ftype, mcode,
10141 built_in_names[mcode],
10142 ECF_CONST | ECF_LEAF);
10143
10144 built_in_names[dcode] = concat (prefix, "div", mode_name_buf, "3",
10145 NULL);
10146 local_define_builtin (built_in_names[dcode], ftype, dcode,
10147 built_in_names[dcode],
10148 ECF_CONST | ECF_LEAF);
10149 }
10150 }
10151
10152 init_internal_fns ();
10153 }
10154
10155 /* HACK. GROSS. This is absolutely disgusting. I wish there was a
10156 better way.
10157
10158 If we requested a pointer to a vector, build up the pointers that
10159 we stripped off while looking for the inner type. Similarly for
10160 return values from functions.
10161
10162 The argument TYPE is the top of the chain, and BOTTOM is the
10163 new type which we will point to. */
10164
10165 tree
10166 reconstruct_complex_type (tree type, tree bottom)
10167 {
10168 tree inner, outer;
10169
10170 if (TREE_CODE (type) == POINTER_TYPE)
10171 {
10172 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10173 outer = build_pointer_type_for_mode (inner, TYPE_MODE (type),
10174 TYPE_REF_CAN_ALIAS_ALL (type));
10175 }
10176 else if (TREE_CODE (type) == REFERENCE_TYPE)
10177 {
10178 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10179 outer = build_reference_type_for_mode (inner, TYPE_MODE (type),
10180 TYPE_REF_CAN_ALIAS_ALL (type));
10181 }
10182 else if (TREE_CODE (type) == ARRAY_TYPE)
10183 {
10184 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10185 outer = build_array_type (inner, TYPE_DOMAIN (type));
10186 }
10187 else if (TREE_CODE (type) == FUNCTION_TYPE)
10188 {
10189 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10190 outer = build_function_type (inner, TYPE_ARG_TYPES (type),
10191 TYPE_NO_NAMED_ARGS_STDARG_P (type));
10192 }
10193 else if (TREE_CODE (type) == METHOD_TYPE)
10194 {
10195 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10196 /* The build_method_type_directly() routine prepends 'this' to argument list,
10197 so we must compensate by getting rid of it. */
10198 outer
10199 = build_method_type_directly
10200 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (type))),
10201 inner,
10202 TREE_CHAIN (TYPE_ARG_TYPES (type)));
10203 }
10204 else if (TREE_CODE (type) == OFFSET_TYPE)
10205 {
10206 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10207 outer = build_offset_type (TYPE_OFFSET_BASETYPE (type), inner);
10208 }
10209 else
10210 return bottom;
10211
10212 return build_type_attribute_qual_variant (outer, TYPE_ATTRIBUTES (type),
10213 TYPE_QUALS (type));
10214 }
10215
10216 /* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
10217 the inner type. */
10218 tree
10219 build_vector_type_for_mode (tree innertype, machine_mode mode)
10220 {
10221 poly_int64 nunits;
10222 unsigned int bitsize;
10223
10224 switch (GET_MODE_CLASS (mode))
10225 {
10226 case MODE_VECTOR_BOOL:
10227 case MODE_VECTOR_INT:
10228 case MODE_VECTOR_FLOAT:
10229 case MODE_VECTOR_FRACT:
10230 case MODE_VECTOR_UFRACT:
10231 case MODE_VECTOR_ACCUM:
10232 case MODE_VECTOR_UACCUM:
10233 nunits = GET_MODE_NUNITS (mode);
10234 break;
10235
10236 case MODE_INT:
10237 /* Check that there are no leftover bits. */
10238 bitsize = GET_MODE_BITSIZE (as_a <scalar_int_mode> (mode));
10239 gcc_assert (bitsize % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0);
10240 nunits = bitsize / TREE_INT_CST_LOW (TYPE_SIZE (innertype));
10241 break;
10242
10243 default:
10244 gcc_unreachable ();
10245 }
10246
10247 return make_vector_type (innertype, nunits, mode);
10248 }
10249
10250 /* Similarly, but takes the inner type and number of units, which must be
10251 a power of two. */
10252
10253 tree
10254 build_vector_type (tree innertype, poly_int64 nunits)
10255 {
10256 return make_vector_type (innertype, nunits, VOIDmode);
10257 }
10258
10259 /* Build a truth vector with NUNITS units, giving it mode MASK_MODE. */
10260
10261 tree
10262 build_truth_vector_type_for_mode (poly_uint64 nunits, machine_mode mask_mode)
10263 {
10264 gcc_assert (mask_mode != BLKmode);
10265
10266 unsigned HOST_WIDE_INT esize;
10267 if (VECTOR_MODE_P (mask_mode))
10268 {
10269 poly_uint64 vsize = GET_MODE_PRECISION (mask_mode);
10270 esize = vector_element_size (vsize, nunits);
10271 }
10272 else
10273 esize = 1;
10274
10275 tree bool_type = build_nonstandard_boolean_type (esize);
10276
10277 return make_vector_type (bool_type, nunits, mask_mode);
10278 }
10279
10280 /* Build a vector type that holds one boolean result for each element of
10281 vector type VECTYPE. The public interface for this operation is
10282 truth_type_for. */
10283
10284 static tree
10285 build_truth_vector_type_for (tree vectype)
10286 {
10287 machine_mode vector_mode = TYPE_MODE (vectype);
10288 poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (vectype);
10289
10290 machine_mode mask_mode;
10291 if (VECTOR_MODE_P (vector_mode)
10292 && targetm.vectorize.get_mask_mode (vector_mode).exists (&mask_mode))
10293 return build_truth_vector_type_for_mode (nunits, mask_mode);
10294
10295 poly_uint64 vsize = tree_to_poly_uint64 (TYPE_SIZE (vectype));
10296 unsigned HOST_WIDE_INT esize = vector_element_size (vsize, nunits);
10297 tree bool_type = build_nonstandard_boolean_type (esize);
10298
10299 return make_vector_type (bool_type, nunits, VOIDmode);
10300 }
10301
10302 /* Like build_vector_type, but builds a variant type with TYPE_VECTOR_OPAQUE
10303 set. */
10304
10305 tree
10306 build_opaque_vector_type (tree innertype, poly_int64 nunits)
10307 {
10308 tree t = make_vector_type (innertype, nunits, VOIDmode);
10309 tree cand;
10310 /* We always build the non-opaque variant before the opaque one,
10311 so if it already exists, it is TYPE_NEXT_VARIANT of this one. */
10312 cand = TYPE_NEXT_VARIANT (t);
10313 if (cand
10314 && TYPE_VECTOR_OPAQUE (cand)
10315 && check_qualified_type (cand, t, TYPE_QUALS (t)))
10316 return cand;
10317 /* Othewise build a variant type and make sure to queue it after
10318 the non-opaque type. */
10319 cand = build_distinct_type_copy (t);
10320 TYPE_VECTOR_OPAQUE (cand) = true;
10321 TYPE_CANONICAL (cand) = TYPE_CANONICAL (t);
10322 TYPE_NEXT_VARIANT (cand) = TYPE_NEXT_VARIANT (t);
10323 TYPE_NEXT_VARIANT (t) = cand;
10324 TYPE_MAIN_VARIANT (cand) = TYPE_MAIN_VARIANT (t);
10325 /* Type variants have no alias set defined. */
10326 TYPE_ALIAS_SET (cand) = -1;
10327 return cand;
10328 }
10329
10330 /* Return the value of element I of VECTOR_CST T as a wide_int. */
10331
10332 static poly_wide_int
10333 vector_cst_int_elt (const_tree t, unsigned int i)
10334 {
10335 /* First handle elements that are directly encoded. */
10336 unsigned int encoded_nelts = vector_cst_encoded_nelts (t);
10337 if (i < encoded_nelts)
10338 return wi::to_poly_wide (VECTOR_CST_ENCODED_ELT (t, i));
10339
10340 /* Identify the pattern that contains element I and work out the index of
10341 the last encoded element for that pattern. */
10342 unsigned int npatterns = VECTOR_CST_NPATTERNS (t);
10343 unsigned int pattern = i % npatterns;
10344 unsigned int count = i / npatterns;
10345 unsigned int final_i = encoded_nelts - npatterns + pattern;
10346
10347 /* If there are no steps, the final encoded value is the right one. */
10348 if (!VECTOR_CST_STEPPED_P (t))
10349 return wi::to_poly_wide (VECTOR_CST_ENCODED_ELT (t, final_i));
10350
10351 /* Otherwise work out the value from the last two encoded elements. */
10352 tree v1 = VECTOR_CST_ENCODED_ELT (t, final_i - npatterns);
10353 tree v2 = VECTOR_CST_ENCODED_ELT (t, final_i);
10354 poly_wide_int diff = wi::to_poly_wide (v2) - wi::to_poly_wide (v1);
10355 return wi::to_poly_wide (v2) + (count - 2) * diff;
10356 }
10357
10358 /* Return the value of element I of VECTOR_CST T. */
10359
10360 tree
10361 vector_cst_elt (const_tree t, unsigned int i)
10362 {
10363 /* First handle elements that are directly encoded. */
10364 unsigned int encoded_nelts = vector_cst_encoded_nelts (t);
10365 if (i < encoded_nelts)
10366 return VECTOR_CST_ENCODED_ELT (t, i);
10367
10368 /* If there are no steps, the final encoded value is the right one. */
10369 if (!VECTOR_CST_STEPPED_P (t))
10370 {
10371 /* Identify the pattern that contains element I and work out the index of
10372 the last encoded element for that pattern. */
10373 unsigned int npatterns = VECTOR_CST_NPATTERNS (t);
10374 unsigned int pattern = i % npatterns;
10375 unsigned int final_i = encoded_nelts - npatterns + pattern;
10376 return VECTOR_CST_ENCODED_ELT (t, final_i);
10377 }
10378
10379 /* Otherwise work out the value from the last two encoded elements. */
10380 return wide_int_to_tree (TREE_TYPE (TREE_TYPE (t)),
10381 vector_cst_int_elt (t, i));
10382 }
10383
10384 /* Given an initializer INIT, return TRUE if INIT is zero or some
10385 aggregate of zeros. Otherwise return FALSE. If NONZERO is not
10386 null, set *NONZERO if and only if INIT is known not to be all
10387 zeros. The combination of return value of false and *NONZERO
10388 false implies that INIT may but need not be all zeros. Other
10389 combinations indicate definitive answers. */
10390
10391 bool
10392 initializer_zerop (const_tree init, bool *nonzero /* = NULL */)
10393 {
10394 bool dummy;
10395 if (!nonzero)
10396 nonzero = &dummy;
10397
10398 /* Conservatively clear NONZERO and set it only if INIT is definitely
10399 not all zero. */
10400 *nonzero = false;
10401
10402 STRIP_NOPS (init);
10403
10404 unsigned HOST_WIDE_INT off = 0;
10405
10406 switch (TREE_CODE (init))
10407 {
10408 case INTEGER_CST:
10409 if (integer_zerop (init))
10410 return true;
10411
10412 *nonzero = true;
10413 return false;
10414
10415 case REAL_CST:
10416 /* ??? Note that this is not correct for C4X float formats. There,
10417 a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
10418 negative exponent. */
10419 if (real_zerop (init)
10420 && !REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init)))
10421 return true;
10422
10423 *nonzero = true;
10424 return false;
10425
10426 case FIXED_CST:
10427 if (fixed_zerop (init))
10428 return true;
10429
10430 *nonzero = true;
10431 return false;
10432
10433 case COMPLEX_CST:
10434 if (integer_zerop (init)
10435 || (real_zerop (init)
10436 && !REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
10437 && !REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init)))))
10438 return true;
10439
10440 *nonzero = true;
10441 return false;
10442
10443 case VECTOR_CST:
10444 if (VECTOR_CST_NPATTERNS (init) == 1
10445 && VECTOR_CST_DUPLICATE_P (init)
10446 && initializer_zerop (VECTOR_CST_ENCODED_ELT (init, 0)))
10447 return true;
10448
10449 *nonzero = true;
10450 return false;
10451
10452 case CONSTRUCTOR:
10453 {
10454 if (TREE_CLOBBER_P (init))
10455 return false;
10456
10457 unsigned HOST_WIDE_INT idx;
10458 tree elt;
10459
10460 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
10461 if (!initializer_zerop (elt, nonzero))
10462 return false;
10463
10464 return true;
10465 }
10466
10467 case MEM_REF:
10468 {
10469 tree arg = TREE_OPERAND (init, 0);
10470 if (TREE_CODE (arg) != ADDR_EXPR)
10471 return false;
10472 tree offset = TREE_OPERAND (init, 1);
10473 if (TREE_CODE (offset) != INTEGER_CST
10474 || !tree_fits_uhwi_p (offset))
10475 return false;
10476 off = tree_to_uhwi (offset);
10477 if (INT_MAX < off)
10478 return false;
10479 arg = TREE_OPERAND (arg, 0);
10480 if (TREE_CODE (arg) != STRING_CST)
10481 return false;
10482 init = arg;
10483 }
10484 /* Fall through. */
10485
10486 case STRING_CST:
10487 {
10488 gcc_assert (off <= INT_MAX);
10489
10490 int i = off;
10491 int n = TREE_STRING_LENGTH (init);
10492 if (n <= i)
10493 return false;
10494
10495 /* We need to loop through all elements to handle cases like
10496 "\0" and "\0foobar". */
10497 for (i = 0; i < n; ++i)
10498 if (TREE_STRING_POINTER (init)[i] != '\0')
10499 {
10500 *nonzero = true;
10501 return false;
10502 }
10503
10504 return true;
10505 }
10506
10507 default:
10508 return false;
10509 }
10510 }
10511
10512 /* Return true if EXPR is an initializer expression in which every element
10513 is a constant that is numerically equal to 0 or 1. The elements do not
10514 need to be equal to each other. */
10515
10516 bool
10517 initializer_each_zero_or_onep (const_tree expr)
10518 {
10519 STRIP_ANY_LOCATION_WRAPPER (expr);
10520
10521 switch (TREE_CODE (expr))
10522 {
10523 case INTEGER_CST:
10524 return integer_zerop (expr) || integer_onep (expr);
10525
10526 case REAL_CST:
10527 return real_zerop (expr) || real_onep (expr);
10528
10529 case VECTOR_CST:
10530 {
10531 unsigned HOST_WIDE_INT nelts = vector_cst_encoded_nelts (expr);
10532 if (VECTOR_CST_STEPPED_P (expr)
10533 && !TYPE_VECTOR_SUBPARTS (TREE_TYPE (expr)).is_constant (&nelts))
10534 return false;
10535
10536 for (unsigned int i = 0; i < nelts; ++i)
10537 {
10538 tree elt = vector_cst_elt (expr, i);
10539 if (!initializer_each_zero_or_onep (elt))
10540 return false;
10541 }
10542
10543 return true;
10544 }
10545
10546 default:
10547 return false;
10548 }
10549 }
10550
10551 /* Check if vector VEC consists of all the equal elements and
10552 that the number of elements corresponds to the type of VEC.
10553 The function returns first element of the vector
10554 or NULL_TREE if the vector is not uniform. */
10555 tree
10556 uniform_vector_p (const_tree vec)
10557 {
10558 tree first, t;
10559 unsigned HOST_WIDE_INT i, nelts;
10560
10561 if (vec == NULL_TREE)
10562 return NULL_TREE;
10563
10564 gcc_assert (VECTOR_TYPE_P (TREE_TYPE (vec)));
10565
10566 if (TREE_CODE (vec) == VEC_DUPLICATE_EXPR)
10567 return TREE_OPERAND (vec, 0);
10568
10569 else if (TREE_CODE (vec) == VECTOR_CST)
10570 {
10571 if (VECTOR_CST_NPATTERNS (vec) == 1 && VECTOR_CST_DUPLICATE_P (vec))
10572 return VECTOR_CST_ENCODED_ELT (vec, 0);
10573 return NULL_TREE;
10574 }
10575
10576 else if (TREE_CODE (vec) == CONSTRUCTOR
10577 && TYPE_VECTOR_SUBPARTS (TREE_TYPE (vec)).is_constant (&nelts))
10578 {
10579 first = error_mark_node;
10580
10581 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (vec), i, t)
10582 {
10583 if (i == 0)
10584 {
10585 first = t;
10586 continue;
10587 }
10588 if (!operand_equal_p (first, t, 0))
10589 return NULL_TREE;
10590 }
10591 if (i != nelts)
10592 return NULL_TREE;
10593
10594 if (TREE_CODE (first) == CONSTRUCTOR || TREE_CODE (first) == VECTOR_CST)
10595 return uniform_vector_p (first);
10596 return first;
10597 }
10598
10599 return NULL_TREE;
10600 }
10601
10602 /* If the argument is INTEGER_CST, return it. If the argument is vector
10603 with all elements the same INTEGER_CST, return that INTEGER_CST. Otherwise
10604 return NULL_TREE.
10605 Look through location wrappers. */
10606
10607 tree
10608 uniform_integer_cst_p (tree t)
10609 {
10610 STRIP_ANY_LOCATION_WRAPPER (t);
10611
10612 if (TREE_CODE (t) == INTEGER_CST)
10613 return t;
10614
10615 if (VECTOR_TYPE_P (TREE_TYPE (t)))
10616 {
10617 t = uniform_vector_p (t);
10618 if (t && TREE_CODE (t) == INTEGER_CST)
10619 return t;
10620 }
10621
10622 return NULL_TREE;
10623 }
10624
10625 /* Checks to see if T is a constant or a constant vector and if each element E
10626 adheres to ~E + 1 == pow2 then return ~E otherwise NULL_TREE. */
10627
10628 tree
10629 bitmask_inv_cst_vector_p (tree t)
10630 {
10631
10632 tree_code code = TREE_CODE (t);
10633 tree type = TREE_TYPE (t);
10634
10635 if (!INTEGRAL_TYPE_P (type)
10636 && !VECTOR_INTEGER_TYPE_P (type))
10637 return NULL_TREE;
10638
10639 unsigned HOST_WIDE_INT nelts = 1;
10640 tree cst;
10641 unsigned int idx = 0;
10642 bool uniform = uniform_integer_cst_p (t);
10643 tree newtype = unsigned_type_for (type);
10644 tree_vector_builder builder;
10645 if (code == INTEGER_CST)
10646 cst = t;
10647 else
10648 {
10649 if (!VECTOR_CST_NELTS (t).is_constant (&nelts))
10650 return NULL_TREE;
10651
10652 cst = vector_cst_elt (t, 0);
10653 builder.new_vector (newtype, nelts, 1);
10654 }
10655
10656 tree ty = unsigned_type_for (TREE_TYPE (cst));
10657
10658 do
10659 {
10660 if (idx > 0)
10661 cst = vector_cst_elt (t, idx);
10662 wide_int icst = wi::to_wide (cst);
10663 wide_int inv = wi::bit_not (icst);
10664 icst = wi::add (1, inv);
10665 if (wi::popcount (icst) != 1)
10666 return NULL_TREE;
10667
10668 tree newcst = wide_int_to_tree (ty, inv);
10669
10670 if (uniform)
10671 return build_uniform_cst (newtype, newcst);
10672
10673 builder.quick_push (newcst);
10674 }
10675 while (++idx < nelts);
10676
10677 return builder.build ();
10678 }
10679
10680 /* If VECTOR_CST T has a single nonzero element, return the index of that
10681 element, otherwise return -1. */
10682
10683 int
10684 single_nonzero_element (const_tree t)
10685 {
10686 unsigned HOST_WIDE_INT nelts;
10687 unsigned int repeat_nelts;
10688 if (VECTOR_CST_NELTS (t).is_constant (&nelts))
10689 repeat_nelts = nelts;
10690 else if (VECTOR_CST_NELTS_PER_PATTERN (t) == 2)
10691 {
10692 nelts = vector_cst_encoded_nelts (t);
10693 repeat_nelts = VECTOR_CST_NPATTERNS (t);
10694 }
10695 else
10696 return -1;
10697
10698 int res = -1;
10699 for (unsigned int i = 0; i < nelts; ++i)
10700 {
10701 tree elt = vector_cst_elt (t, i);
10702 if (!integer_zerop (elt) && !real_zerop (elt))
10703 {
10704 if (res >= 0 || i >= repeat_nelts)
10705 return -1;
10706 res = i;
10707 }
10708 }
10709 return res;
10710 }
10711
10712 /* Build an empty statement at location LOC. */
10713
10714 tree
10715 build_empty_stmt (location_t loc)
10716 {
10717 tree t = build1 (NOP_EXPR, void_type_node, size_zero_node);
10718 SET_EXPR_LOCATION (t, loc);
10719 return t;
10720 }
10721
10722
10723 /* Build an OMP clause with code CODE. LOC is the location of the
10724 clause. */
10725
10726 tree
10727 build_omp_clause (location_t loc, enum omp_clause_code code)
10728 {
10729 tree t;
10730 int size, length;
10731
10732 length = omp_clause_num_ops[code];
10733 size = (sizeof (struct tree_omp_clause) + (length - 1) * sizeof (tree));
10734
10735 record_node_allocation_statistics (OMP_CLAUSE, size);
10736
10737 t = (tree) ggc_internal_alloc (size);
10738 memset (t, 0, size);
10739 TREE_SET_CODE (t, OMP_CLAUSE);
10740 OMP_CLAUSE_SET_CODE (t, code);
10741 OMP_CLAUSE_LOCATION (t) = loc;
10742
10743 return t;
10744 }
10745
10746 /* Build a tcc_vl_exp object with code CODE and room for LEN operands. LEN
10747 includes the implicit operand count in TREE_OPERAND 0, and so must be >= 1.
10748 Except for the CODE and operand count field, other storage for the
10749 object is initialized to zeros. */
10750
10751 tree
10752 build_vl_exp (enum tree_code code, int len MEM_STAT_DECL)
10753 {
10754 tree t;
10755 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_exp);
10756
10757 gcc_assert (TREE_CODE_CLASS (code) == tcc_vl_exp);
10758 gcc_assert (len >= 1);
10759
10760 record_node_allocation_statistics (code, length);
10761
10762 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
10763
10764 TREE_SET_CODE (t, code);
10765
10766 /* Can't use TREE_OPERAND to store the length because if checking is
10767 enabled, it will try to check the length before we store it. :-P */
10768 t->exp.operands[0] = build_int_cst (sizetype, len);
10769
10770 return t;
10771 }
10772
10773 /* Helper function for build_call_* functions; build a CALL_EXPR with
10774 indicated RETURN_TYPE, FN, and NARGS, but do not initialize any of
10775 the argument slots. */
10776
10777 static tree
10778 build_call_1 (tree return_type, tree fn, int nargs)
10779 {
10780 tree t;
10781
10782 t = build_vl_exp (CALL_EXPR, nargs + 3);
10783 TREE_TYPE (t) = return_type;
10784 CALL_EXPR_FN (t) = fn;
10785 CALL_EXPR_STATIC_CHAIN (t) = NULL;
10786
10787 return t;
10788 }
10789
10790 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
10791 FN and a null static chain slot. NARGS is the number of call arguments
10792 which are specified as "..." arguments. */
10793
10794 tree
10795 build_call_nary (tree return_type, tree fn, int nargs, ...)
10796 {
10797 tree ret;
10798 va_list args;
10799 va_start (args, nargs);
10800 ret = build_call_valist (return_type, fn, nargs, args);
10801 va_end (args);
10802 return ret;
10803 }
10804
10805 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
10806 FN and a null static chain slot. NARGS is the number of call arguments
10807 which are specified as a va_list ARGS. */
10808
10809 tree
10810 build_call_valist (tree return_type, tree fn, int nargs, va_list args)
10811 {
10812 tree t;
10813 int i;
10814
10815 t = build_call_1 (return_type, fn, nargs);
10816 for (i = 0; i < nargs; i++)
10817 CALL_EXPR_ARG (t, i) = va_arg (args, tree);
10818 process_call_operands (t);
10819 return t;
10820 }
10821
10822 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
10823 FN and a null static chain slot. NARGS is the number of call arguments
10824 which are specified as a tree array ARGS. */
10825
10826 tree
10827 build_call_array_loc (location_t loc, tree return_type, tree fn,
10828 int nargs, const tree *args)
10829 {
10830 tree t;
10831 int i;
10832
10833 t = build_call_1 (return_type, fn, nargs);
10834 for (i = 0; i < nargs; i++)
10835 CALL_EXPR_ARG (t, i) = args[i];
10836 process_call_operands (t);
10837 SET_EXPR_LOCATION (t, loc);
10838 return t;
10839 }
10840
10841 /* Like build_call_array, but takes a vec. */
10842
10843 tree
10844 build_call_vec (tree return_type, tree fn, const vec<tree, va_gc> *args)
10845 {
10846 tree ret, t;
10847 unsigned int ix;
10848
10849 ret = build_call_1 (return_type, fn, vec_safe_length (args));
10850 FOR_EACH_VEC_SAFE_ELT (args, ix, t)
10851 CALL_EXPR_ARG (ret, ix) = t;
10852 process_call_operands (ret);
10853 return ret;
10854 }
10855
10856 /* Conveniently construct a function call expression. FNDECL names the
10857 function to be called and N arguments are passed in the array
10858 ARGARRAY. */
10859
10860 tree
10861 build_call_expr_loc_array (location_t loc, tree fndecl, int n, tree *argarray)
10862 {
10863 tree fntype = TREE_TYPE (fndecl);
10864 tree fn = build1 (ADDR_EXPR, build_pointer_type (fntype), fndecl);
10865
10866 return fold_build_call_array_loc (loc, TREE_TYPE (fntype), fn, n, argarray);
10867 }
10868
10869 /* Conveniently construct a function call expression. FNDECL names the
10870 function to be called and the arguments are passed in the vector
10871 VEC. */
10872
10873 tree
10874 build_call_expr_loc_vec (location_t loc, tree fndecl, vec<tree, va_gc> *vec)
10875 {
10876 return build_call_expr_loc_array (loc, fndecl, vec_safe_length (vec),
10877 vec_safe_address (vec));
10878 }
10879
10880
10881 /* Conveniently construct a function call expression. FNDECL names the
10882 function to be called, N is the number of arguments, and the "..."
10883 parameters are the argument expressions. */
10884
10885 tree
10886 build_call_expr_loc (location_t loc, tree fndecl, int n, ...)
10887 {
10888 va_list ap;
10889 tree *argarray = XALLOCAVEC (tree, n);
10890 int i;
10891
10892 va_start (ap, n);
10893 for (i = 0; i < n; i++)
10894 argarray[i] = va_arg (ap, tree);
10895 va_end (ap);
10896 return build_call_expr_loc_array (loc, fndecl, n, argarray);
10897 }
10898
10899 /* Like build_call_expr_loc (UNKNOWN_LOCATION, ...). Duplicated because
10900 varargs macros aren't supported by all bootstrap compilers. */
10901
10902 tree
10903 build_call_expr (tree fndecl, int n, ...)
10904 {
10905 va_list ap;
10906 tree *argarray = XALLOCAVEC (tree, n);
10907 int i;
10908
10909 va_start (ap, n);
10910 for (i = 0; i < n; i++)
10911 argarray[i] = va_arg (ap, tree);
10912 va_end (ap);
10913 return build_call_expr_loc_array (UNKNOWN_LOCATION, fndecl, n, argarray);
10914 }
10915
10916 /* Build an internal call to IFN, with arguments ARGS[0:N-1] and with return
10917 type TYPE. This is just like CALL_EXPR, except its CALL_EXPR_FN is NULL.
10918 It will get gimplified later into an ordinary internal function. */
10919
10920 tree
10921 build_call_expr_internal_loc_array (location_t loc, internal_fn ifn,
10922 tree type, int n, const tree *args)
10923 {
10924 tree t = build_call_1 (type, NULL_TREE, n);
10925 for (int i = 0; i < n; ++i)
10926 CALL_EXPR_ARG (t, i) = args[i];
10927 SET_EXPR_LOCATION (t, loc);
10928 CALL_EXPR_IFN (t) = ifn;
10929 process_call_operands (t);
10930 return t;
10931 }
10932
10933 /* Build internal call expression. This is just like CALL_EXPR, except
10934 its CALL_EXPR_FN is NULL. It will get gimplified later into ordinary
10935 internal function. */
10936
10937 tree
10938 build_call_expr_internal_loc (location_t loc, enum internal_fn ifn,
10939 tree type, int n, ...)
10940 {
10941 va_list ap;
10942 tree *argarray = XALLOCAVEC (tree, n);
10943 int i;
10944
10945 va_start (ap, n);
10946 for (i = 0; i < n; i++)
10947 argarray[i] = va_arg (ap, tree);
10948 va_end (ap);
10949 return build_call_expr_internal_loc_array (loc, ifn, type, n, argarray);
10950 }
10951
10952 /* Return a function call to FN, if the target is guaranteed to support it,
10953 or null otherwise.
10954
10955 N is the number of arguments, passed in the "...", and TYPE is the
10956 type of the return value. */
10957
10958 tree
10959 maybe_build_call_expr_loc (location_t loc, combined_fn fn, tree type,
10960 int n, ...)
10961 {
10962 va_list ap;
10963 tree *argarray = XALLOCAVEC (tree, n);
10964 int i;
10965
10966 va_start (ap, n);
10967 for (i = 0; i < n; i++)
10968 argarray[i] = va_arg (ap, tree);
10969 va_end (ap);
10970 if (internal_fn_p (fn))
10971 {
10972 internal_fn ifn = as_internal_fn (fn);
10973 if (direct_internal_fn_p (ifn))
10974 {
10975 tree_pair types = direct_internal_fn_types (ifn, type, argarray);
10976 if (!direct_internal_fn_supported_p (ifn, types,
10977 OPTIMIZE_FOR_BOTH))
10978 return NULL_TREE;
10979 }
10980 return build_call_expr_internal_loc_array (loc, ifn, type, n, argarray);
10981 }
10982 else
10983 {
10984 tree fndecl = builtin_decl_implicit (as_builtin_fn (fn));
10985 if (!fndecl)
10986 return NULL_TREE;
10987 return build_call_expr_loc_array (loc, fndecl, n, argarray);
10988 }
10989 }
10990
10991 /* Return a function call to the appropriate builtin alloca variant.
10992
10993 SIZE is the size to be allocated. ALIGN, if non-zero, is the requested
10994 alignment of the allocated area. MAX_SIZE, if non-negative, is an upper
10995 bound for SIZE in case it is not a fixed value. */
10996
10997 tree
10998 build_alloca_call_expr (tree size, unsigned int align, HOST_WIDE_INT max_size)
10999 {
11000 if (max_size >= 0)
11001 {
11002 tree t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN_AND_MAX);
11003 return
11004 build_call_expr (t, 3, size, size_int (align), size_int (max_size));
11005 }
11006 else if (align > 0)
11007 {
11008 tree t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN);
11009 return build_call_expr (t, 2, size, size_int (align));
11010 }
11011 else
11012 {
11013 tree t = builtin_decl_explicit (BUILT_IN_ALLOCA);
11014 return build_call_expr (t, 1, size);
11015 }
11016 }
11017
11018 /* The built-in decl to use to mark code points believed to be unreachable.
11019 Typically __builtin_unreachable, but __builtin_trap if
11020 -fsanitize=unreachable -fsanitize-trap=unreachable. If only
11021 -fsanitize=unreachable, we rely on sanopt to replace calls with the
11022 appropriate ubsan function. When building a call directly, use
11023 {gimple_},build_builtin_unreachable instead. */
11024
11025 tree
11026 builtin_decl_unreachable ()
11027 {
11028 enum built_in_function fncode = BUILT_IN_UNREACHABLE;
11029
11030 if (sanitize_flags_p (SANITIZE_UNREACHABLE)
11031 ? (flag_sanitize_trap & SANITIZE_UNREACHABLE)
11032 : flag_unreachable_traps)
11033 fncode = BUILT_IN_UNREACHABLE_TRAP;
11034 /* For non-trapping sanitize, we will rewrite __builtin_unreachable () later,
11035 in the sanopt pass. */
11036
11037 return builtin_decl_explicit (fncode);
11038 }
11039
11040 /* Build a call to __builtin_unreachable, possibly rewritten by
11041 -fsanitize=unreachable. Use this rather than the above when practical. */
11042
11043 tree
11044 build_builtin_unreachable (location_t loc)
11045 {
11046 tree data = NULL_TREE;
11047 tree fn = sanitize_unreachable_fn (&data, loc);
11048 return build_call_expr_loc (loc, fn, data != NULL_TREE, data);
11049 }
11050
11051 /* Create a new constant string literal of type ELTYPE[SIZE] (or LEN
11052 if SIZE == -1) and return a tree node representing char* pointer to
11053 it as an ADDR_EXPR (ARRAY_REF (ELTYPE, ...)). When STR is nonnull
11054 the STRING_CST value is the LEN bytes at STR (the representation
11055 of the string, which may be wide). Otherwise it's all zeros. */
11056
11057 tree
11058 build_string_literal (unsigned len, const char *str /* = NULL */,
11059 tree eltype /* = char_type_node */,
11060 unsigned HOST_WIDE_INT size /* = -1 */)
11061 {
11062 tree t = build_string (len, str);
11063 /* Set the maximum valid index based on the string length or SIZE. */
11064 unsigned HOST_WIDE_INT maxidx
11065 = (size == HOST_WIDE_INT_M1U ? len : size) - 1;
11066
11067 tree index = build_index_type (size_int (maxidx));
11068 eltype = build_type_variant (eltype, 1, 0);
11069 tree type = build_array_type (eltype, index);
11070 TREE_TYPE (t) = type;
11071 TREE_CONSTANT (t) = 1;
11072 TREE_READONLY (t) = 1;
11073 TREE_STATIC (t) = 1;
11074
11075 type = build_pointer_type (eltype);
11076 t = build1 (ADDR_EXPR, type,
11077 build4 (ARRAY_REF, eltype,
11078 t, integer_zero_node, NULL_TREE, NULL_TREE));
11079 return t;
11080 }
11081
11082
11083
11084 /* Return true if T (assumed to be a DECL) must be assigned a memory
11085 location. */
11086
11087 bool
11088 needs_to_live_in_memory (const_tree t)
11089 {
11090 return (TREE_ADDRESSABLE (t)
11091 || is_global_var (t)
11092 || (TREE_CODE (t) == RESULT_DECL
11093 && !DECL_BY_REFERENCE (t)
11094 && aggregate_value_p (t, current_function_decl)));
11095 }
11096
11097 /* Return value of a constant X and sign-extend it. */
11098
11099 HOST_WIDE_INT
11100 int_cst_value (const_tree x)
11101 {
11102 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
11103 unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
11104
11105 /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
11106 gcc_assert (cst_and_fits_in_hwi (x));
11107
11108 if (bits < HOST_BITS_PER_WIDE_INT)
11109 {
11110 bool negative = ((val >> (bits - 1)) & 1) != 0;
11111 if (negative)
11112 val |= HOST_WIDE_INT_M1U << (bits - 1) << 1;
11113 else
11114 val &= ~(HOST_WIDE_INT_M1U << (bits - 1) << 1);
11115 }
11116
11117 return val;
11118 }
11119
11120 /* If TYPE is an integral or pointer type, return an integer type with
11121 the same precision which is unsigned iff UNSIGNEDP is true, or itself
11122 if TYPE is already an integer type of signedness UNSIGNEDP.
11123 If TYPE is a floating-point type, return an integer type with the same
11124 bitsize and with the signedness given by UNSIGNEDP; this is useful
11125 when doing bit-level operations on a floating-point value. */
11126
11127 tree
11128 signed_or_unsigned_type_for (int unsignedp, tree type)
11129 {
11130 if (ANY_INTEGRAL_TYPE_P (type) && TYPE_UNSIGNED (type) == unsignedp)
11131 return type;
11132
11133 if (TREE_CODE (type) == VECTOR_TYPE)
11134 {
11135 tree inner = TREE_TYPE (type);
11136 tree inner2 = signed_or_unsigned_type_for (unsignedp, inner);
11137 if (!inner2)
11138 return NULL_TREE;
11139 if (inner == inner2)
11140 return type;
11141 machine_mode new_mode;
11142 if (VECTOR_MODE_P (TYPE_MODE (type))
11143 && related_int_vector_mode (TYPE_MODE (type)).exists (&new_mode))
11144 return build_vector_type_for_mode (inner2, new_mode);
11145 return build_vector_type (inner2, TYPE_VECTOR_SUBPARTS (type));
11146 }
11147
11148 if (TREE_CODE (type) == COMPLEX_TYPE)
11149 {
11150 tree inner = TREE_TYPE (type);
11151 tree inner2 = signed_or_unsigned_type_for (unsignedp, inner);
11152 if (!inner2)
11153 return NULL_TREE;
11154 if (inner == inner2)
11155 return type;
11156 return build_complex_type (inner2);
11157 }
11158
11159 unsigned int bits;
11160 if (INTEGRAL_TYPE_P (type)
11161 || POINTER_TYPE_P (type)
11162 || TREE_CODE (type) == OFFSET_TYPE)
11163 bits = TYPE_PRECISION (type);
11164 else if (TREE_CODE (type) == REAL_TYPE)
11165 bits = GET_MODE_BITSIZE (SCALAR_TYPE_MODE (type));
11166 else
11167 return NULL_TREE;
11168
11169 if (TREE_CODE (type) == BITINT_TYPE && (unsignedp || bits > 1))
11170 return build_bitint_type (bits, unsignedp);
11171 return build_nonstandard_integer_type (bits, unsignedp);
11172 }
11173
11174 /* If TYPE is an integral or pointer type, return an integer type with
11175 the same precision which is unsigned, or itself if TYPE is already an
11176 unsigned integer type. If TYPE is a floating-point type, return an
11177 unsigned integer type with the same bitsize as TYPE. */
11178
11179 tree
11180 unsigned_type_for (tree type)
11181 {
11182 return signed_or_unsigned_type_for (1, type);
11183 }
11184
11185 /* If TYPE is an integral or pointer type, return an integer type with
11186 the same precision which is signed, or itself if TYPE is already a
11187 signed integer type. If TYPE is a floating-point type, return a
11188 signed integer type with the same bitsize as TYPE. */
11189
11190 tree
11191 signed_type_for (tree type)
11192 {
11193 return signed_or_unsigned_type_for (0, type);
11194 }
11195
11196 /* - For VECTOR_TYPEs:
11197 - The truth type must be a VECTOR_BOOLEAN_TYPE.
11198 - The number of elements must match (known_eq).
11199 - targetm.vectorize.get_mask_mode exists, and exactly
11200 the same mode as the truth type.
11201 - Otherwise, the truth type must be a BOOLEAN_TYPE
11202 or useless_type_conversion_p to BOOLEAN_TYPE. */
11203 bool
11204 is_truth_type_for (tree type, tree truth_type)
11205 {
11206 machine_mode mask_mode = TYPE_MODE (truth_type);
11207 machine_mode vmode = TYPE_MODE (type);
11208 machine_mode tmask_mode;
11209
11210 if (TREE_CODE (type) == VECTOR_TYPE)
11211 {
11212 if (VECTOR_BOOLEAN_TYPE_P (truth_type)
11213 && known_eq (TYPE_VECTOR_SUBPARTS (type),
11214 TYPE_VECTOR_SUBPARTS (truth_type))
11215 && targetm.vectorize.get_mask_mode (vmode).exists (&tmask_mode)
11216 && tmask_mode == mask_mode)
11217 return true;
11218
11219 return false;
11220 }
11221
11222 return useless_type_conversion_p (boolean_type_node, truth_type);
11223 }
11224
11225 /* If TYPE is a vector type, return a signed integer vector type with the
11226 same width and number of subparts. Otherwise return boolean_type_node. */
11227
11228 tree
11229 truth_type_for (tree type)
11230 {
11231 if (TREE_CODE (type) == VECTOR_TYPE)
11232 {
11233 if (VECTOR_BOOLEAN_TYPE_P (type))
11234 return type;
11235 return build_truth_vector_type_for (type);
11236 }
11237 else
11238 return boolean_type_node;
11239 }
11240
11241 /* Returns the largest value obtainable by casting something in INNER type to
11242 OUTER type. */
11243
11244 tree
11245 upper_bound_in_type (tree outer, tree inner)
11246 {
11247 unsigned int det = 0;
11248 unsigned oprec = TYPE_PRECISION (outer);
11249 unsigned iprec = TYPE_PRECISION (inner);
11250 unsigned prec;
11251
11252 /* Compute a unique number for every combination. */
11253 det |= (oprec > iprec) ? 4 : 0;
11254 det |= TYPE_UNSIGNED (outer) ? 2 : 0;
11255 det |= TYPE_UNSIGNED (inner) ? 1 : 0;
11256
11257 /* Determine the exponent to use. */
11258 switch (det)
11259 {
11260 case 0:
11261 case 1:
11262 /* oprec <= iprec, outer: signed, inner: don't care. */
11263 prec = oprec - 1;
11264 break;
11265 case 2:
11266 case 3:
11267 /* oprec <= iprec, outer: unsigned, inner: don't care. */
11268 prec = oprec;
11269 break;
11270 case 4:
11271 /* oprec > iprec, outer: signed, inner: signed. */
11272 prec = iprec - 1;
11273 break;
11274 case 5:
11275 /* oprec > iprec, outer: signed, inner: unsigned. */
11276 prec = iprec;
11277 break;
11278 case 6:
11279 /* oprec > iprec, outer: unsigned, inner: signed. */
11280 prec = oprec;
11281 break;
11282 case 7:
11283 /* oprec > iprec, outer: unsigned, inner: unsigned. */
11284 prec = iprec;
11285 break;
11286 default:
11287 gcc_unreachable ();
11288 }
11289
11290 return wide_int_to_tree (outer,
11291 wi::mask (prec, false, TYPE_PRECISION (outer)));
11292 }
11293
11294 /* Returns the smallest value obtainable by casting something in INNER type to
11295 OUTER type. */
11296
11297 tree
11298 lower_bound_in_type (tree outer, tree inner)
11299 {
11300 unsigned oprec = TYPE_PRECISION (outer);
11301 unsigned iprec = TYPE_PRECISION (inner);
11302
11303 /* If OUTER type is unsigned, we can definitely cast 0 to OUTER type
11304 and obtain 0. */
11305 if (TYPE_UNSIGNED (outer)
11306 /* If we are widening something of an unsigned type, OUTER type
11307 contains all values of INNER type. In particular, both INNER
11308 and OUTER types have zero in common. */
11309 || (oprec > iprec && TYPE_UNSIGNED (inner)))
11310 return build_int_cst (outer, 0);
11311 else
11312 {
11313 /* If we are widening a signed type to another signed type, we
11314 want to obtain -2^^(iprec-1). If we are keeping the
11315 precision or narrowing to a signed type, we want to obtain
11316 -2^(oprec-1). */
11317 unsigned prec = oprec > iprec ? iprec : oprec;
11318 return wide_int_to_tree (outer,
11319 wi::mask (prec - 1, true,
11320 TYPE_PRECISION (outer)));
11321 }
11322 }
11323
11324 /* Return true if two operands that are suitable for PHI nodes are
11325 necessarily equal. Specifically, both ARG0 and ARG1 must be either
11326 SSA_NAME or invariant. Note that this is strictly an optimization.
11327 That is, callers of this function can directly call operand_equal_p
11328 and get the same result, only slower. */
11329
11330 bool
11331 operand_equal_for_phi_arg_p (const_tree arg0, const_tree arg1)
11332 {
11333 if (arg0 == arg1)
11334 return true;
11335 if (TREE_CODE (arg0) == SSA_NAME || TREE_CODE (arg1) == SSA_NAME)
11336 return false;
11337 return operand_equal_p (arg0, arg1, 0);
11338 }
11339
11340 /* Returns number of zeros at the end of binary representation of X. */
11341
11342 tree
11343 num_ending_zeros (const_tree x)
11344 {
11345 return build_int_cst (TREE_TYPE (x), wi::ctz (wi::to_wide (x)));
11346 }
11347
11348
11349 #define WALK_SUBTREE(NODE) \
11350 do \
11351 { \
11352 result = walk_tree_1 (&(NODE), func, data, pset, lh); \
11353 if (result) \
11354 return result; \
11355 } \
11356 while (0)
11357
11358 /* This is a subroutine of walk_tree that walks field of TYPE that are to
11359 be walked whenever a type is seen in the tree. Rest of operands and return
11360 value are as for walk_tree. */
11361
11362 static tree
11363 walk_type_fields (tree type, walk_tree_fn func, void *data,
11364 hash_set<tree> *pset, walk_tree_lh lh)
11365 {
11366 tree result = NULL_TREE;
11367
11368 switch (TREE_CODE (type))
11369 {
11370 case POINTER_TYPE:
11371 case REFERENCE_TYPE:
11372 case VECTOR_TYPE:
11373 /* We have to worry about mutually recursive pointers. These can't
11374 be written in C. They can in Ada. It's pathological, but
11375 there's an ACATS test (c38102a) that checks it. Deal with this
11376 by checking if we're pointing to another pointer, that one
11377 points to another pointer, that one does too, and we have no htab.
11378 If so, get a hash table. We check three levels deep to avoid
11379 the cost of the hash table if we don't need one. */
11380 if (POINTER_TYPE_P (TREE_TYPE (type))
11381 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (type)))
11382 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (TREE_TYPE (type))))
11383 && !pset)
11384 {
11385 result = walk_tree_without_duplicates (&TREE_TYPE (type),
11386 func, data);
11387 if (result)
11388 return result;
11389
11390 break;
11391 }
11392
11393 /* fall through */
11394
11395 case COMPLEX_TYPE:
11396 WALK_SUBTREE (TREE_TYPE (type));
11397 break;
11398
11399 case METHOD_TYPE:
11400 WALK_SUBTREE (TYPE_METHOD_BASETYPE (type));
11401
11402 /* Fall through. */
11403
11404 case FUNCTION_TYPE:
11405 WALK_SUBTREE (TREE_TYPE (type));
11406 {
11407 tree arg;
11408
11409 /* We never want to walk into default arguments. */
11410 for (arg = TYPE_ARG_TYPES (type); arg; arg = TREE_CHAIN (arg))
11411 WALK_SUBTREE (TREE_VALUE (arg));
11412 }
11413 break;
11414
11415 case ARRAY_TYPE:
11416 /* Don't follow this nodes's type if a pointer for fear that
11417 we'll have infinite recursion. If we have a PSET, then we
11418 need not fear. */
11419 if (pset
11420 || (!POINTER_TYPE_P (TREE_TYPE (type))
11421 && TREE_CODE (TREE_TYPE (type)) != OFFSET_TYPE))
11422 WALK_SUBTREE (TREE_TYPE (type));
11423 WALK_SUBTREE (TYPE_DOMAIN (type));
11424 break;
11425
11426 case OFFSET_TYPE:
11427 WALK_SUBTREE (TREE_TYPE (type));
11428 WALK_SUBTREE (TYPE_OFFSET_BASETYPE (type));
11429 break;
11430
11431 default:
11432 break;
11433 }
11434
11435 return NULL_TREE;
11436 }
11437
11438 /* Apply FUNC to all the sub-trees of TP in a pre-order traversal. FUNC is
11439 called with the DATA and the address of each sub-tree. If FUNC returns a
11440 non-NULL value, the traversal is stopped, and the value returned by FUNC
11441 is returned. If PSET is non-NULL it is used to record the nodes visited,
11442 and to avoid visiting a node more than once. */
11443
11444 tree
11445 walk_tree_1 (tree *tp, walk_tree_fn func, void *data,
11446 hash_set<tree> *pset, walk_tree_lh lh)
11447 {
11448 #define WALK_SUBTREE_TAIL(NODE) \
11449 do \
11450 { \
11451 tp = & (NODE); \
11452 goto tail_recurse; \
11453 } \
11454 while (0)
11455
11456 tail_recurse:
11457 /* Skip empty subtrees. */
11458 if (!*tp)
11459 return NULL_TREE;
11460
11461 /* Don't walk the same tree twice, if the user has requested
11462 that we avoid doing so. */
11463 if (pset && pset->add (*tp))
11464 return NULL_TREE;
11465
11466 /* Call the function. */
11467 int walk_subtrees = 1;
11468 tree result = (*func) (tp, &walk_subtrees, data);
11469
11470 /* If we found something, return it. */
11471 if (result)
11472 return result;
11473
11474 tree t = *tp;
11475 tree_code code = TREE_CODE (t);
11476
11477 /* Even if we didn't, FUNC may have decided that there was nothing
11478 interesting below this point in the tree. */
11479 if (!walk_subtrees)
11480 {
11481 /* But we still need to check our siblings. */
11482 if (code == TREE_LIST)
11483 WALK_SUBTREE_TAIL (TREE_CHAIN (t));
11484 else if (code == OMP_CLAUSE)
11485 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (t));
11486 else
11487 return NULL_TREE;
11488 }
11489
11490 if (lh)
11491 {
11492 result = (*lh) (tp, &walk_subtrees, func, data, pset);
11493 if (result || !walk_subtrees)
11494 return result;
11495 }
11496
11497 switch (code)
11498 {
11499 case ERROR_MARK:
11500 case IDENTIFIER_NODE:
11501 case INTEGER_CST:
11502 case REAL_CST:
11503 case FIXED_CST:
11504 case STRING_CST:
11505 case BLOCK:
11506 case PLACEHOLDER_EXPR:
11507 case SSA_NAME:
11508 case FIELD_DECL:
11509 case RESULT_DECL:
11510 /* None of these have subtrees other than those already walked
11511 above. */
11512 break;
11513
11514 case TREE_LIST:
11515 WALK_SUBTREE (TREE_VALUE (t));
11516 WALK_SUBTREE_TAIL (TREE_CHAIN (t));
11517
11518 case TREE_VEC:
11519 {
11520 int len = TREE_VEC_LENGTH (t);
11521
11522 if (len == 0)
11523 break;
11524
11525 /* Walk all elements but the last. */
11526 for (int i = 0; i < len - 1; ++i)
11527 WALK_SUBTREE (TREE_VEC_ELT (t, i));
11528
11529 /* Now walk the last one as a tail call. */
11530 WALK_SUBTREE_TAIL (TREE_VEC_ELT (t, len - 1));
11531 }
11532
11533 case VECTOR_CST:
11534 {
11535 unsigned len = vector_cst_encoded_nelts (t);
11536 if (len == 0)
11537 break;
11538 /* Walk all elements but the last. */
11539 for (unsigned i = 0; i < len - 1; ++i)
11540 WALK_SUBTREE (VECTOR_CST_ENCODED_ELT (t, i));
11541 /* Now walk the last one as a tail call. */
11542 WALK_SUBTREE_TAIL (VECTOR_CST_ENCODED_ELT (t, len - 1));
11543 }
11544
11545 case COMPLEX_CST:
11546 WALK_SUBTREE (TREE_REALPART (t));
11547 WALK_SUBTREE_TAIL (TREE_IMAGPART (t));
11548
11549 case CONSTRUCTOR:
11550 {
11551 unsigned HOST_WIDE_INT idx;
11552 constructor_elt *ce;
11553
11554 for (idx = 0; vec_safe_iterate (CONSTRUCTOR_ELTS (t), idx, &ce);
11555 idx++)
11556 WALK_SUBTREE (ce->value);
11557 }
11558 break;
11559
11560 case SAVE_EXPR:
11561 WALK_SUBTREE_TAIL (TREE_OPERAND (t, 0));
11562
11563 case BIND_EXPR:
11564 {
11565 tree decl;
11566 for (decl = BIND_EXPR_VARS (t); decl; decl = DECL_CHAIN (decl))
11567 {
11568 /* Walk the DECL_INITIAL and DECL_SIZE. We don't want to walk
11569 into declarations that are just mentioned, rather than
11570 declared; they don't really belong to this part of the tree.
11571 And, we can see cycles: the initializer for a declaration
11572 can refer to the declaration itself. */
11573 WALK_SUBTREE (DECL_INITIAL (decl));
11574 WALK_SUBTREE (DECL_SIZE (decl));
11575 WALK_SUBTREE (DECL_SIZE_UNIT (decl));
11576 }
11577 WALK_SUBTREE_TAIL (BIND_EXPR_BODY (t));
11578 }
11579
11580 case STATEMENT_LIST:
11581 {
11582 tree_stmt_iterator i;
11583 for (i = tsi_start (t); !tsi_end_p (i); tsi_next (&i))
11584 WALK_SUBTREE (*tsi_stmt_ptr (i));
11585 }
11586 break;
11587
11588 case OMP_CLAUSE:
11589 {
11590 int len = omp_clause_num_ops[OMP_CLAUSE_CODE (t)];
11591 for (int i = 0; i < len; i++)
11592 WALK_SUBTREE (OMP_CLAUSE_OPERAND (t, i));
11593 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (t));
11594 }
11595
11596 case TARGET_EXPR:
11597 {
11598 int i, len;
11599
11600 /* TARGET_EXPRs are peculiar: operands 1 and 3 can be the same.
11601 But, we only want to walk once. */
11602 len = (TREE_OPERAND (t, 3) == TREE_OPERAND (t, 1)) ? 2 : 3;
11603 for (i = 0; i < len; ++i)
11604 WALK_SUBTREE (TREE_OPERAND (t, i));
11605 WALK_SUBTREE_TAIL (TREE_OPERAND (t, len));
11606 }
11607
11608 case DECL_EXPR:
11609 /* If this is a TYPE_DECL, walk into the fields of the type that it's
11610 defining. We only want to walk into these fields of a type in this
11611 case and not in the general case of a mere reference to the type.
11612
11613 The criterion is as follows: if the field can be an expression, it
11614 must be walked only here. This should be in keeping with the fields
11615 that are directly gimplified in gimplify_type_sizes in order for the
11616 mark/copy-if-shared/unmark machinery of the gimplifier to work with
11617 variable-sized types.
11618
11619 Note that DECLs get walked as part of processing the BIND_EXPR. */
11620 if (TREE_CODE (DECL_EXPR_DECL (t)) == TYPE_DECL)
11621 {
11622 /* Call the function for the decl so e.g. copy_tree_body_r can
11623 replace it with the remapped one. */
11624 result = (*func) (&DECL_EXPR_DECL (t), &walk_subtrees, data);
11625 if (result || !walk_subtrees)
11626 return result;
11627
11628 tree *type_p = &TREE_TYPE (DECL_EXPR_DECL (t));
11629 if (TREE_CODE (*type_p) == ERROR_MARK)
11630 return NULL_TREE;
11631
11632 /* Call the function for the type. See if it returns anything or
11633 doesn't want us to continue. If we are to continue, walk both
11634 the normal fields and those for the declaration case. */
11635 result = (*func) (type_p, &walk_subtrees, data);
11636 if (result || !walk_subtrees)
11637 return result;
11638
11639 tree type = *type_p;
11640
11641 /* But do not walk a pointed-to type since it may itself need to
11642 be walked in the declaration case if it isn't anonymous. */
11643 if (!POINTER_TYPE_P (type))
11644 {
11645 result = walk_type_fields (type, func, data, pset, lh);
11646 if (result)
11647 return result;
11648 }
11649
11650 /* If this is a record type, also walk the fields. */
11651 if (RECORD_OR_UNION_TYPE_P (type))
11652 {
11653 tree field;
11654
11655 for (field = TYPE_FIELDS (type); field;
11656 field = DECL_CHAIN (field))
11657 {
11658 /* We'd like to look at the type of the field, but we can
11659 easily get infinite recursion. So assume it's pointed
11660 to elsewhere in the tree. Also, ignore things that
11661 aren't fields. */
11662 if (TREE_CODE (field) != FIELD_DECL)
11663 continue;
11664
11665 WALK_SUBTREE (DECL_FIELD_OFFSET (field));
11666 WALK_SUBTREE (DECL_SIZE (field));
11667 WALK_SUBTREE (DECL_SIZE_UNIT (field));
11668 if (TREE_CODE (type) == QUAL_UNION_TYPE)
11669 WALK_SUBTREE (DECL_QUALIFIER (field));
11670 }
11671 }
11672
11673 /* Same for scalar types. */
11674 else if (TREE_CODE (type) == BOOLEAN_TYPE
11675 || TREE_CODE (type) == ENUMERAL_TYPE
11676 || TREE_CODE (type) == INTEGER_TYPE
11677 || TREE_CODE (type) == FIXED_POINT_TYPE
11678 || TREE_CODE (type) == REAL_TYPE)
11679 {
11680 WALK_SUBTREE (TYPE_MIN_VALUE (type));
11681 WALK_SUBTREE (TYPE_MAX_VALUE (type));
11682 }
11683
11684 WALK_SUBTREE (TYPE_SIZE (type));
11685 WALK_SUBTREE_TAIL (TYPE_SIZE_UNIT (type));
11686 }
11687 /* FALLTHRU */
11688
11689 default:
11690 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
11691 {
11692 int i, len;
11693
11694 /* Walk over all the sub-trees of this operand. */
11695 len = TREE_OPERAND_LENGTH (t);
11696
11697 /* Go through the subtrees. We need to do this in forward order so
11698 that the scope of a FOR_EXPR is handled properly. */
11699 if (len)
11700 {
11701 for (i = 0; i < len - 1; ++i)
11702 WALK_SUBTREE (TREE_OPERAND (t, i));
11703 WALK_SUBTREE_TAIL (TREE_OPERAND (t, len - 1));
11704 }
11705 }
11706 /* If this is a type, walk the needed fields in the type. */
11707 else if (TYPE_P (t))
11708 return walk_type_fields (t, func, data, pset, lh);
11709 break;
11710 }
11711
11712 /* We didn't find what we were looking for. */
11713 return NULL_TREE;
11714
11715 #undef WALK_SUBTREE_TAIL
11716 }
11717 #undef WALK_SUBTREE
11718
11719 /* Like walk_tree, but does not walk duplicate nodes more than once. */
11720
11721 tree
11722 walk_tree_without_duplicates_1 (tree *tp, walk_tree_fn func, void *data,
11723 walk_tree_lh lh)
11724 {
11725 tree result;
11726
11727 hash_set<tree> pset;
11728 result = walk_tree_1 (tp, func, data, &pset, lh);
11729 return result;
11730 }
11731
11732
11733 tree
11734 tree_block (tree t)
11735 {
11736 const enum tree_code_class c = TREE_CODE_CLASS (TREE_CODE (t));
11737
11738 if (IS_EXPR_CODE_CLASS (c))
11739 return LOCATION_BLOCK (t->exp.locus);
11740 gcc_unreachable ();
11741 return NULL;
11742 }
11743
11744 void
11745 tree_set_block (tree t, tree b)
11746 {
11747 const enum tree_code_class c = TREE_CODE_CLASS (TREE_CODE (t));
11748
11749 if (IS_EXPR_CODE_CLASS (c))
11750 {
11751 t->exp.locus = set_block (t->exp.locus, b);
11752 }
11753 else
11754 gcc_unreachable ();
11755 }
11756
11757 /* Create a nameless artificial label and put it in the current
11758 function context. The label has a location of LOC. Returns the
11759 newly created label. */
11760
11761 tree
11762 create_artificial_label (location_t loc)
11763 {
11764 tree lab = build_decl (loc,
11765 LABEL_DECL, NULL_TREE, void_type_node);
11766
11767 DECL_ARTIFICIAL (lab) = 1;
11768 DECL_IGNORED_P (lab) = 1;
11769 DECL_CONTEXT (lab) = current_function_decl;
11770 return lab;
11771 }
11772
11773 /* Given a tree, try to return a useful variable name that we can use
11774 to prefix a temporary that is being assigned the value of the tree.
11775 I.E. given <temp> = &A, return A. */
11776
11777 const char *
11778 get_name (tree t)
11779 {
11780 tree stripped_decl;
11781
11782 stripped_decl = t;
11783 STRIP_NOPS (stripped_decl);
11784 if (DECL_P (stripped_decl) && DECL_NAME (stripped_decl))
11785 return IDENTIFIER_POINTER (DECL_NAME (stripped_decl));
11786 else if (TREE_CODE (stripped_decl) == SSA_NAME)
11787 {
11788 tree name = SSA_NAME_IDENTIFIER (stripped_decl);
11789 if (!name)
11790 return NULL;
11791 return IDENTIFIER_POINTER (name);
11792 }
11793 else
11794 {
11795 switch (TREE_CODE (stripped_decl))
11796 {
11797 case ADDR_EXPR:
11798 return get_name (TREE_OPERAND (stripped_decl, 0));
11799 default:
11800 return NULL;
11801 }
11802 }
11803 }
11804
11805 /* Return true if TYPE has a variable argument list. */
11806
11807 bool
11808 stdarg_p (const_tree fntype)
11809 {
11810 function_args_iterator args_iter;
11811 tree n = NULL_TREE, t;
11812
11813 if (!fntype)
11814 return false;
11815
11816 if (TYPE_NO_NAMED_ARGS_STDARG_P (fntype))
11817 return true;
11818
11819 FOREACH_FUNCTION_ARGS (fntype, t, args_iter)
11820 {
11821 n = t;
11822 }
11823
11824 return n != NULL_TREE && n != void_type_node;
11825 }
11826
11827 /* Return true if TYPE has a prototype. */
11828
11829 bool
11830 prototype_p (const_tree fntype)
11831 {
11832 tree t;
11833
11834 gcc_assert (fntype != NULL_TREE);
11835
11836 if (TYPE_NO_NAMED_ARGS_STDARG_P (fntype))
11837 return true;
11838
11839 t = TYPE_ARG_TYPES (fntype);
11840 return (t != NULL_TREE);
11841 }
11842
11843 /* If BLOCK is inlined from an __attribute__((__artificial__))
11844 routine, return pointer to location from where it has been
11845 called. */
11846 location_t *
11847 block_nonartificial_location (tree block)
11848 {
11849 location_t *ret = NULL;
11850
11851 while (block && TREE_CODE (block) == BLOCK
11852 && BLOCK_ABSTRACT_ORIGIN (block))
11853 {
11854 tree ao = BLOCK_ABSTRACT_ORIGIN (block);
11855 if (TREE_CODE (ao) == FUNCTION_DECL)
11856 {
11857 /* If AO is an artificial inline, point RET to the
11858 call site locus at which it has been inlined and continue
11859 the loop, in case AO's caller is also an artificial
11860 inline. */
11861 if (DECL_DECLARED_INLINE_P (ao)
11862 && lookup_attribute ("artificial", DECL_ATTRIBUTES (ao)))
11863 ret = &BLOCK_SOURCE_LOCATION (block);
11864 else
11865 break;
11866 }
11867 else if (TREE_CODE (ao) != BLOCK)
11868 break;
11869
11870 block = BLOCK_SUPERCONTEXT (block);
11871 }
11872 return ret;
11873 }
11874
11875
11876 /* If EXP is inlined from an __attribute__((__artificial__))
11877 function, return the location of the original call expression. */
11878
11879 location_t
11880 tree_nonartificial_location (tree exp)
11881 {
11882 location_t *loc = block_nonartificial_location (TREE_BLOCK (exp));
11883
11884 if (loc)
11885 return *loc;
11886 else
11887 return EXPR_LOCATION (exp);
11888 }
11889
11890 /* Return the location into which EXP has been inlined. Analogous
11891 to tree_nonartificial_location() above but not limited to artificial
11892 functions declared inline. If SYSTEM_HEADER is true, return
11893 the macro expansion point of the location if it's in a system header */
11894
11895 location_t
11896 tree_inlined_location (tree exp, bool system_header /* = true */)
11897 {
11898 location_t loc = UNKNOWN_LOCATION;
11899
11900 tree block = TREE_BLOCK (exp);
11901
11902 while (block && TREE_CODE (block) == BLOCK
11903 && BLOCK_ABSTRACT_ORIGIN (block))
11904 {
11905 tree ao = BLOCK_ABSTRACT_ORIGIN (block);
11906 if (TREE_CODE (ao) == FUNCTION_DECL)
11907 loc = BLOCK_SOURCE_LOCATION (block);
11908 else if (TREE_CODE (ao) != BLOCK)
11909 break;
11910
11911 block = BLOCK_SUPERCONTEXT (block);
11912 }
11913
11914 if (loc == UNKNOWN_LOCATION)
11915 {
11916 loc = EXPR_LOCATION (exp);
11917 if (system_header)
11918 /* Only consider macro expansion when the block traversal failed
11919 to find a location. Otherwise it's not relevant. */
11920 return expansion_point_location_if_in_system_header (loc);
11921 }
11922
11923 return loc;
11924 }
11925
11926 /* These are the hash table functions for the hash table of OPTIMIZATION_NODE
11927 nodes. */
11928
11929 /* Return the hash code X, an OPTIMIZATION_NODE or TARGET_OPTION code. */
11930
11931 hashval_t
11932 cl_option_hasher::hash (tree x)
11933 {
11934 const_tree const t = x;
11935
11936 if (TREE_CODE (t) == OPTIMIZATION_NODE)
11937 return cl_optimization_hash (TREE_OPTIMIZATION (t));
11938 else if (TREE_CODE (t) == TARGET_OPTION_NODE)
11939 return cl_target_option_hash (TREE_TARGET_OPTION (t));
11940 else
11941 gcc_unreachable ();
11942 }
11943
11944 /* Return nonzero if the value represented by *X (an OPTIMIZATION or
11945 TARGET_OPTION tree node) is the same as that given by *Y, which is the
11946 same. */
11947
11948 bool
11949 cl_option_hasher::equal (tree x, tree y)
11950 {
11951 const_tree const xt = x;
11952 const_tree const yt = y;
11953
11954 if (TREE_CODE (xt) != TREE_CODE (yt))
11955 return false;
11956
11957 if (TREE_CODE (xt) == OPTIMIZATION_NODE)
11958 return cl_optimization_option_eq (TREE_OPTIMIZATION (xt),
11959 TREE_OPTIMIZATION (yt));
11960 else if (TREE_CODE (xt) == TARGET_OPTION_NODE)
11961 return cl_target_option_eq (TREE_TARGET_OPTION (xt),
11962 TREE_TARGET_OPTION (yt));
11963 else
11964 gcc_unreachable ();
11965 }
11966
11967 /* Build an OPTIMIZATION_NODE based on the options in OPTS and OPTS_SET. */
11968
11969 tree
11970 build_optimization_node (struct gcc_options *opts,
11971 struct gcc_options *opts_set)
11972 {
11973 tree t;
11974
11975 /* Use the cache of optimization nodes. */
11976
11977 cl_optimization_save (TREE_OPTIMIZATION (cl_optimization_node),
11978 opts, opts_set);
11979
11980 tree *slot = cl_option_hash_table->find_slot (cl_optimization_node, INSERT);
11981 t = *slot;
11982 if (!t)
11983 {
11984 /* Insert this one into the hash table. */
11985 t = cl_optimization_node;
11986 *slot = t;
11987
11988 /* Make a new node for next time round. */
11989 cl_optimization_node = make_node (OPTIMIZATION_NODE);
11990 }
11991
11992 return t;
11993 }
11994
11995 /* Build a TARGET_OPTION_NODE based on the options in OPTS and OPTS_SET. */
11996
11997 tree
11998 build_target_option_node (struct gcc_options *opts,
11999 struct gcc_options *opts_set)
12000 {
12001 tree t;
12002
12003 /* Use the cache of optimization nodes. */
12004
12005 cl_target_option_save (TREE_TARGET_OPTION (cl_target_option_node),
12006 opts, opts_set);
12007
12008 tree *slot = cl_option_hash_table->find_slot (cl_target_option_node, INSERT);
12009 t = *slot;
12010 if (!t)
12011 {
12012 /* Insert this one into the hash table. */
12013 t = cl_target_option_node;
12014 *slot = t;
12015
12016 /* Make a new node for next time round. */
12017 cl_target_option_node = make_node (TARGET_OPTION_NODE);
12018 }
12019
12020 return t;
12021 }
12022
12023 /* Clear TREE_TARGET_GLOBALS of all TARGET_OPTION_NODE trees,
12024 so that they aren't saved during PCH writing. */
12025
12026 void
12027 prepare_target_option_nodes_for_pch (void)
12028 {
12029 hash_table<cl_option_hasher>::iterator iter = cl_option_hash_table->begin ();
12030 for (; iter != cl_option_hash_table->end (); ++iter)
12031 if (TREE_CODE (*iter) == TARGET_OPTION_NODE)
12032 TREE_TARGET_GLOBALS (*iter) = NULL;
12033 }
12034
12035 /* Determine the "ultimate origin" of a block. */
12036
12037 tree
12038 block_ultimate_origin (const_tree block)
12039 {
12040 tree origin = BLOCK_ABSTRACT_ORIGIN (block);
12041
12042 if (origin == NULL_TREE)
12043 return NULL_TREE;
12044 else
12045 {
12046 gcc_checking_assert ((DECL_P (origin)
12047 && DECL_ORIGIN (origin) == origin)
12048 || BLOCK_ORIGIN (origin) == origin);
12049 return origin;
12050 }
12051 }
12052
12053 /* Return true iff conversion from INNER_TYPE to OUTER_TYPE generates
12054 no instruction. */
12055
12056 bool
12057 tree_nop_conversion_p (const_tree outer_type, const_tree inner_type)
12058 {
12059 /* Do not strip casts into or out of differing address spaces. */
12060 if (POINTER_TYPE_P (outer_type)
12061 && TYPE_ADDR_SPACE (TREE_TYPE (outer_type)) != ADDR_SPACE_GENERIC)
12062 {
12063 if (!POINTER_TYPE_P (inner_type)
12064 || (TYPE_ADDR_SPACE (TREE_TYPE (outer_type))
12065 != TYPE_ADDR_SPACE (TREE_TYPE (inner_type))))
12066 return false;
12067 }
12068 else if (POINTER_TYPE_P (inner_type)
12069 && TYPE_ADDR_SPACE (TREE_TYPE (inner_type)) != ADDR_SPACE_GENERIC)
12070 {
12071 /* We already know that outer_type is not a pointer with
12072 a non-generic address space. */
12073 return false;
12074 }
12075
12076 /* Use precision rather then machine mode when we can, which gives
12077 the correct answer even for submode (bit-field) types. */
12078 if ((INTEGRAL_TYPE_P (outer_type)
12079 || POINTER_TYPE_P (outer_type)
12080 || TREE_CODE (outer_type) == OFFSET_TYPE)
12081 && (INTEGRAL_TYPE_P (inner_type)
12082 || POINTER_TYPE_P (inner_type)
12083 || TREE_CODE (inner_type) == OFFSET_TYPE))
12084 return TYPE_PRECISION (outer_type) == TYPE_PRECISION (inner_type);
12085
12086 /* Otherwise fall back on comparing machine modes (e.g. for
12087 aggregate types, floats). */
12088 return TYPE_MODE (outer_type) == TYPE_MODE (inner_type);
12089 }
12090
12091 /* Return true iff conversion in EXP generates no instruction. Mark
12092 it inline so that we fully inline into the stripping functions even
12093 though we have two uses of this function. */
12094
12095 static inline bool
12096 tree_nop_conversion (const_tree exp)
12097 {
12098 tree outer_type, inner_type;
12099
12100 if (location_wrapper_p (exp))
12101 return true;
12102 if (!CONVERT_EXPR_P (exp)
12103 && TREE_CODE (exp) != NON_LVALUE_EXPR)
12104 return false;
12105
12106 outer_type = TREE_TYPE (exp);
12107 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
12108 if (!inner_type || inner_type == error_mark_node)
12109 return false;
12110
12111 return tree_nop_conversion_p (outer_type, inner_type);
12112 }
12113
12114 /* Return true iff conversion in EXP generates no instruction. Don't
12115 consider conversions changing the signedness. */
12116
12117 static bool
12118 tree_sign_nop_conversion (const_tree exp)
12119 {
12120 tree outer_type, inner_type;
12121
12122 if (!tree_nop_conversion (exp))
12123 return false;
12124
12125 outer_type = TREE_TYPE (exp);
12126 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
12127
12128 return (TYPE_UNSIGNED (outer_type) == TYPE_UNSIGNED (inner_type)
12129 && POINTER_TYPE_P (outer_type) == POINTER_TYPE_P (inner_type));
12130 }
12131
12132 /* Strip conversions from EXP according to tree_nop_conversion and
12133 return the resulting expression. */
12134
12135 tree
12136 tree_strip_nop_conversions (tree exp)
12137 {
12138 while (tree_nop_conversion (exp))
12139 exp = TREE_OPERAND (exp, 0);
12140 return exp;
12141 }
12142
12143 /* Strip conversions from EXP according to tree_sign_nop_conversion
12144 and return the resulting expression. */
12145
12146 tree
12147 tree_strip_sign_nop_conversions (tree exp)
12148 {
12149 while (tree_sign_nop_conversion (exp))
12150 exp = TREE_OPERAND (exp, 0);
12151 return exp;
12152 }
12153
12154 /* Avoid any floating point extensions from EXP. */
12155 tree
12156 strip_float_extensions (tree exp)
12157 {
12158 tree sub, expt, subt;
12159
12160 /* For floating point constant look up the narrowest type that can hold
12161 it properly and handle it like (type)(narrowest_type)constant.
12162 This way we can optimize for instance a=a*2.0 where "a" is float
12163 but 2.0 is double constant. */
12164 if (TREE_CODE (exp) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (TREE_TYPE (exp)))
12165 {
12166 REAL_VALUE_TYPE orig;
12167 tree type = NULL;
12168
12169 orig = TREE_REAL_CST (exp);
12170 if (TYPE_PRECISION (TREE_TYPE (exp)) > TYPE_PRECISION (float_type_node)
12171 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
12172 type = float_type_node;
12173 else if (TYPE_PRECISION (TREE_TYPE (exp))
12174 > TYPE_PRECISION (double_type_node)
12175 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
12176 type = double_type_node;
12177 if (type)
12178 return build_real_truncate (type, orig);
12179 }
12180
12181 if (!CONVERT_EXPR_P (exp))
12182 return exp;
12183
12184 sub = TREE_OPERAND (exp, 0);
12185 subt = TREE_TYPE (sub);
12186 expt = TREE_TYPE (exp);
12187
12188 if (!FLOAT_TYPE_P (subt))
12189 return exp;
12190
12191 if (DECIMAL_FLOAT_TYPE_P (expt) != DECIMAL_FLOAT_TYPE_P (subt))
12192 return exp;
12193
12194 if (element_precision (subt) > element_precision (expt))
12195 return exp;
12196
12197 return strip_float_extensions (sub);
12198 }
12199
12200 /* Strip out all handled components that produce invariant
12201 offsets. */
12202
12203 const_tree
12204 strip_invariant_refs (const_tree op)
12205 {
12206 while (handled_component_p (op))
12207 {
12208 switch (TREE_CODE (op))
12209 {
12210 case ARRAY_REF:
12211 case ARRAY_RANGE_REF:
12212 if (!is_gimple_constant (TREE_OPERAND (op, 1))
12213 || TREE_OPERAND (op, 2) != NULL_TREE
12214 || TREE_OPERAND (op, 3) != NULL_TREE)
12215 return NULL;
12216 break;
12217
12218 case COMPONENT_REF:
12219 if (TREE_OPERAND (op, 2) != NULL_TREE)
12220 return NULL;
12221 break;
12222
12223 default:;
12224 }
12225 op = TREE_OPERAND (op, 0);
12226 }
12227
12228 return op;
12229 }
12230
12231 /* Strip handled components with zero offset from OP. */
12232
12233 tree
12234 strip_zero_offset_components (tree op)
12235 {
12236 while (TREE_CODE (op) == COMPONENT_REF
12237 && integer_zerop (DECL_FIELD_OFFSET (TREE_OPERAND (op, 1)))
12238 && integer_zerop (DECL_FIELD_BIT_OFFSET (TREE_OPERAND (op, 1))))
12239 op = TREE_OPERAND (op, 0);
12240 return op;
12241 }
12242
12243 static GTY(()) tree gcc_eh_personality_decl;
12244
12245 /* Return the GCC personality function decl. */
12246
12247 tree
12248 lhd_gcc_personality (void)
12249 {
12250 if (!gcc_eh_personality_decl)
12251 gcc_eh_personality_decl = build_personality_function ("gcc");
12252 return gcc_eh_personality_decl;
12253 }
12254
12255 /* TARGET is a call target of GIMPLE call statement
12256 (obtained by gimple_call_fn). Return true if it is
12257 OBJ_TYPE_REF representing an virtual call of C++ method.
12258 (As opposed to OBJ_TYPE_REF representing objc calls
12259 through a cast where middle-end devirtualization machinery
12260 can't apply.) FOR_DUMP_P is true when being called from
12261 the dump routines. */
12262
12263 bool
12264 virtual_method_call_p (const_tree target, bool for_dump_p)
12265 {
12266 if (TREE_CODE (target) != OBJ_TYPE_REF)
12267 return false;
12268 tree t = TREE_TYPE (target);
12269 gcc_checking_assert (TREE_CODE (t) == POINTER_TYPE);
12270 t = TREE_TYPE (t);
12271 if (TREE_CODE (t) == FUNCTION_TYPE)
12272 return false;
12273 gcc_checking_assert (TREE_CODE (t) == METHOD_TYPE);
12274 /* If we do not have BINFO associated, it means that type was built
12275 without devirtualization enabled. Do not consider this a virtual
12276 call. */
12277 if (!TYPE_BINFO (obj_type_ref_class (target, for_dump_p)))
12278 return false;
12279 return true;
12280 }
12281
12282 /* Lookup sub-BINFO of BINFO of TYPE at offset POS. */
12283
12284 static tree
12285 lookup_binfo_at_offset (tree binfo, tree type, HOST_WIDE_INT pos)
12286 {
12287 unsigned int i;
12288 tree base_binfo, b;
12289
12290 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
12291 if (pos == tree_to_shwi (BINFO_OFFSET (base_binfo))
12292 && types_same_for_odr (TREE_TYPE (base_binfo), type))
12293 return base_binfo;
12294 else if ((b = lookup_binfo_at_offset (base_binfo, type, pos)) != NULL)
12295 return b;
12296 return NULL;
12297 }
12298
12299 /* Try to find a base info of BINFO that would have its field decl at offset
12300 OFFSET within the BINFO type and which is of EXPECTED_TYPE. If it can be
12301 found, return, otherwise return NULL_TREE. */
12302
12303 tree
12304 get_binfo_at_offset (tree binfo, poly_int64 offset, tree expected_type)
12305 {
12306 tree type = BINFO_TYPE (binfo);
12307
12308 while (true)
12309 {
12310 HOST_WIDE_INT pos, size;
12311 tree fld;
12312 int i;
12313
12314 if (types_same_for_odr (type, expected_type))
12315 return binfo;
12316 if (maybe_lt (offset, 0))
12317 return NULL_TREE;
12318
12319 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
12320 {
12321 if (TREE_CODE (fld) != FIELD_DECL || !DECL_ARTIFICIAL (fld))
12322 continue;
12323
12324 pos = int_bit_position (fld);
12325 size = tree_to_uhwi (DECL_SIZE (fld));
12326 if (known_in_range_p (offset, pos, size))
12327 break;
12328 }
12329 if (!fld || TREE_CODE (TREE_TYPE (fld)) != RECORD_TYPE)
12330 return NULL_TREE;
12331
12332 /* Offset 0 indicates the primary base, whose vtable contents are
12333 represented in the binfo for the derived class. */
12334 else if (maybe_ne (offset, 0))
12335 {
12336 tree found_binfo = NULL, base_binfo;
12337 /* Offsets in BINFO are in bytes relative to the whole structure
12338 while POS is in bits relative to the containing field. */
12339 int binfo_offset = (tree_to_shwi (BINFO_OFFSET (binfo)) + pos
12340 / BITS_PER_UNIT);
12341
12342 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
12343 if (tree_to_shwi (BINFO_OFFSET (base_binfo)) == binfo_offset
12344 && types_same_for_odr (TREE_TYPE (base_binfo), TREE_TYPE (fld)))
12345 {
12346 found_binfo = base_binfo;
12347 break;
12348 }
12349 if (found_binfo)
12350 binfo = found_binfo;
12351 else
12352 binfo = lookup_binfo_at_offset (binfo, TREE_TYPE (fld),
12353 binfo_offset);
12354 }
12355
12356 type = TREE_TYPE (fld);
12357 offset -= pos;
12358 }
12359 }
12360
12361 /* PR 84195: Replace control characters in "unescaped" with their
12362 escaped equivalents. Allow newlines if -fmessage-length has
12363 been set to a non-zero value. This is done here, rather than
12364 where the attribute is recorded as the message length can
12365 change between these two locations. */
12366
12367 void
12368 escaped_string::escape (const char *unescaped)
12369 {
12370 char *escaped;
12371 size_t i, new_i, len;
12372
12373 if (m_owned)
12374 free (m_str);
12375
12376 m_str = const_cast<char *> (unescaped);
12377 m_owned = false;
12378
12379 if (unescaped == NULL || *unescaped == 0)
12380 return;
12381
12382 len = strlen (unescaped);
12383 escaped = NULL;
12384 new_i = 0;
12385
12386 for (i = 0; i < len; i++)
12387 {
12388 char c = unescaped[i];
12389
12390 if (!ISCNTRL (c))
12391 {
12392 if (escaped)
12393 escaped[new_i++] = c;
12394 continue;
12395 }
12396
12397 if (c != '\n' || !pp_is_wrapping_line (global_dc->printer))
12398 {
12399 if (escaped == NULL)
12400 {
12401 /* We only allocate space for a new string if we
12402 actually encounter a control character that
12403 needs replacing. */
12404 escaped = (char *) xmalloc (len * 2 + 1);
12405 strncpy (escaped, unescaped, i);
12406 new_i = i;
12407 }
12408
12409 escaped[new_i++] = '\\';
12410
12411 switch (c)
12412 {
12413 case '\a': escaped[new_i++] = 'a'; break;
12414 case '\b': escaped[new_i++] = 'b'; break;
12415 case '\f': escaped[new_i++] = 'f'; break;
12416 case '\n': escaped[new_i++] = 'n'; break;
12417 case '\r': escaped[new_i++] = 'r'; break;
12418 case '\t': escaped[new_i++] = 't'; break;
12419 case '\v': escaped[new_i++] = 'v'; break;
12420 default: escaped[new_i++] = '?'; break;
12421 }
12422 }
12423 else if (escaped)
12424 escaped[new_i++] = c;
12425 }
12426
12427 if (escaped)
12428 {
12429 escaped[new_i] = 0;
12430 m_str = escaped;
12431 m_owned = true;
12432 }
12433 }
12434
12435 /* Warn about a use of an identifier which was marked deprecated. Returns
12436 whether a warning was given. */
12437
12438 bool
12439 warn_deprecated_use (tree node, tree attr)
12440 {
12441 escaped_string msg;
12442
12443 if (node == 0 || !warn_deprecated_decl)
12444 return false;
12445
12446 if (!attr)
12447 {
12448 if (DECL_P (node))
12449 attr = DECL_ATTRIBUTES (node);
12450 else if (TYPE_P (node))
12451 {
12452 tree decl = TYPE_STUB_DECL (node);
12453 if (decl)
12454 attr = TYPE_ATTRIBUTES (TREE_TYPE (decl));
12455 else if ((decl = TYPE_STUB_DECL (TYPE_MAIN_VARIANT (node)))
12456 != NULL_TREE)
12457 {
12458 node = TREE_TYPE (decl);
12459 attr = TYPE_ATTRIBUTES (node);
12460 }
12461 }
12462 }
12463
12464 if (attr)
12465 attr = lookup_attribute ("deprecated", attr);
12466
12467 if (attr)
12468 msg.escape (TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
12469
12470 bool w = false;
12471 if (DECL_P (node))
12472 {
12473 auto_diagnostic_group d;
12474 if (msg)
12475 w = warning (OPT_Wdeprecated_declarations,
12476 "%qD is deprecated: %s", node, (const char *) msg);
12477 else
12478 w = warning (OPT_Wdeprecated_declarations,
12479 "%qD is deprecated", node);
12480 if (w)
12481 inform (DECL_SOURCE_LOCATION (node), "declared here");
12482 }
12483 else if (TYPE_P (node))
12484 {
12485 tree what = NULL_TREE;
12486 tree decl = TYPE_STUB_DECL (node);
12487
12488 if (TYPE_NAME (node))
12489 {
12490 if (TREE_CODE (TYPE_NAME (node)) == IDENTIFIER_NODE)
12491 what = TYPE_NAME (node);
12492 else if (TREE_CODE (TYPE_NAME (node)) == TYPE_DECL
12493 && DECL_NAME (TYPE_NAME (node)))
12494 what = DECL_NAME (TYPE_NAME (node));
12495 }
12496
12497 auto_diagnostic_group d;
12498 if (what)
12499 {
12500 if (msg)
12501 w = warning (OPT_Wdeprecated_declarations,
12502 "%qE is deprecated: %s", what, (const char *) msg);
12503 else
12504 w = warning (OPT_Wdeprecated_declarations,
12505 "%qE is deprecated", what);
12506 }
12507 else
12508 {
12509 if (msg)
12510 w = warning (OPT_Wdeprecated_declarations,
12511 "type is deprecated: %s", (const char *) msg);
12512 else
12513 w = warning (OPT_Wdeprecated_declarations,
12514 "type is deprecated");
12515 }
12516
12517 if (w && decl)
12518 inform (DECL_SOURCE_LOCATION (decl), "declared here");
12519 }
12520
12521 return w;
12522 }
12523
12524 /* Error out with an identifier which was marked 'unavailable'. */
12525 void
12526 error_unavailable_use (tree node, tree attr)
12527 {
12528 escaped_string msg;
12529
12530 if (node == 0)
12531 return;
12532
12533 if (!attr)
12534 {
12535 if (DECL_P (node))
12536 attr = DECL_ATTRIBUTES (node);
12537 else if (TYPE_P (node))
12538 {
12539 tree decl = TYPE_STUB_DECL (node);
12540 if (decl)
12541 attr = lookup_attribute ("unavailable",
12542 TYPE_ATTRIBUTES (TREE_TYPE (decl)));
12543 }
12544 }
12545
12546 if (attr)
12547 attr = lookup_attribute ("unavailable", attr);
12548
12549 if (attr)
12550 msg.escape (TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
12551
12552 if (DECL_P (node))
12553 {
12554 auto_diagnostic_group d;
12555 if (msg)
12556 error ("%qD is unavailable: %s", node, (const char *) msg);
12557 else
12558 error ("%qD is unavailable", node);
12559 inform (DECL_SOURCE_LOCATION (node), "declared here");
12560 }
12561 else if (TYPE_P (node))
12562 {
12563 tree what = NULL_TREE;
12564 tree decl = TYPE_STUB_DECL (node);
12565
12566 if (TYPE_NAME (node))
12567 {
12568 if (TREE_CODE (TYPE_NAME (node)) == IDENTIFIER_NODE)
12569 what = TYPE_NAME (node);
12570 else if (TREE_CODE (TYPE_NAME (node)) == TYPE_DECL
12571 && DECL_NAME (TYPE_NAME (node)))
12572 what = DECL_NAME (TYPE_NAME (node));
12573 }
12574
12575 auto_diagnostic_group d;
12576 if (what)
12577 {
12578 if (msg)
12579 error ("%qE is unavailable: %s", what, (const char *) msg);
12580 else
12581 error ("%qE is unavailable", what);
12582 }
12583 else
12584 {
12585 if (msg)
12586 error ("type is unavailable: %s", (const char *) msg);
12587 else
12588 error ("type is unavailable");
12589 }
12590
12591 if (decl)
12592 inform (DECL_SOURCE_LOCATION (decl), "declared here");
12593 }
12594 }
12595
12596 /* Return true if REF has a COMPONENT_REF with a bit-field field declaration
12597 somewhere in it. */
12598
12599 bool
12600 contains_bitfld_component_ref_p (const_tree ref)
12601 {
12602 while (handled_component_p (ref))
12603 {
12604 if (TREE_CODE (ref) == COMPONENT_REF
12605 && DECL_BIT_FIELD (TREE_OPERAND (ref, 1)))
12606 return true;
12607 ref = TREE_OPERAND (ref, 0);
12608 }
12609
12610 return false;
12611 }
12612
12613 /* Try to determine whether a TRY_CATCH expression can fall through.
12614 This is a subroutine of block_may_fallthru. */
12615
12616 static bool
12617 try_catch_may_fallthru (const_tree stmt)
12618 {
12619 tree_stmt_iterator i;
12620
12621 /* If the TRY block can fall through, the whole TRY_CATCH can
12622 fall through. */
12623 if (block_may_fallthru (TREE_OPERAND (stmt, 0)))
12624 return true;
12625
12626 switch (TREE_CODE (TREE_OPERAND (stmt, 1)))
12627 {
12628 case CATCH_EXPR:
12629 /* See below. */
12630 return block_may_fallthru (CATCH_BODY (TREE_OPERAND (stmt, 1)));
12631
12632 case EH_FILTER_EXPR:
12633 /* See below. */
12634 return block_may_fallthru (EH_FILTER_FAILURE (TREE_OPERAND (stmt, 1)));
12635
12636 case STATEMENT_LIST:
12637 break;
12638
12639 default:
12640 /* See below. */
12641 return false;
12642 }
12643
12644 i = tsi_start (TREE_OPERAND (stmt, 1));
12645 switch (TREE_CODE (tsi_stmt (i)))
12646 {
12647 case CATCH_EXPR:
12648 /* We expect to see a sequence of CATCH_EXPR trees, each with a
12649 catch expression and a body. The whole TRY_CATCH may fall
12650 through iff any of the catch bodies falls through. */
12651 for (; !tsi_end_p (i); tsi_next (&i))
12652 {
12653 if (block_may_fallthru (CATCH_BODY (tsi_stmt (i))))
12654 return true;
12655 }
12656 return false;
12657
12658 case EH_FILTER_EXPR:
12659 /* The exception filter expression only matters if there is an
12660 exception. If the exception does not match EH_FILTER_TYPES,
12661 we will execute EH_FILTER_FAILURE, and we will fall through
12662 if that falls through. If the exception does match
12663 EH_FILTER_TYPES, the stack unwinder will continue up the
12664 stack, so we will not fall through. We don't know whether we
12665 will throw an exception which matches EH_FILTER_TYPES or not,
12666 so we just ignore EH_FILTER_TYPES and assume that we might
12667 throw an exception which doesn't match. */
12668 return block_may_fallthru (EH_FILTER_FAILURE (tsi_stmt (i)));
12669
12670 default:
12671 /* This case represents statements to be executed when an
12672 exception occurs. Those statements are implicitly followed
12673 by a RESX statement to resume execution after the exception.
12674 So in this case the TRY_CATCH never falls through. */
12675 return false;
12676 }
12677 }
12678
12679 /* Try to determine if we can fall out of the bottom of BLOCK. This guess
12680 need not be 100% accurate; simply be conservative and return true if we
12681 don't know. This is used only to avoid stupidly generating extra code.
12682 If we're wrong, we'll just delete the extra code later. */
12683
12684 bool
12685 block_may_fallthru (const_tree block)
12686 {
12687 /* This CONST_CAST is okay because expr_last returns its argument
12688 unmodified and we assign it to a const_tree. */
12689 const_tree stmt = expr_last (CONST_CAST_TREE (block));
12690
12691 switch (stmt ? TREE_CODE (stmt) : ERROR_MARK)
12692 {
12693 case GOTO_EXPR:
12694 case RETURN_EXPR:
12695 /* Easy cases. If the last statement of the block implies
12696 control transfer, then we can't fall through. */
12697 return false;
12698
12699 case SWITCH_EXPR:
12700 /* If there is a default: label or case labels cover all possible
12701 SWITCH_COND values, then the SWITCH_EXPR will transfer control
12702 to some case label in all cases and all we care is whether the
12703 SWITCH_BODY falls through. */
12704 if (SWITCH_ALL_CASES_P (stmt))
12705 return block_may_fallthru (SWITCH_BODY (stmt));
12706 return true;
12707
12708 case COND_EXPR:
12709 if (block_may_fallthru (COND_EXPR_THEN (stmt)))
12710 return true;
12711 return block_may_fallthru (COND_EXPR_ELSE (stmt));
12712
12713 case BIND_EXPR:
12714 return block_may_fallthru (BIND_EXPR_BODY (stmt));
12715
12716 case TRY_CATCH_EXPR:
12717 return try_catch_may_fallthru (stmt);
12718
12719 case TRY_FINALLY_EXPR:
12720 /* The finally clause is always executed after the try clause,
12721 so if it does not fall through, then the try-finally will not
12722 fall through. Otherwise, if the try clause does not fall
12723 through, then when the finally clause falls through it will
12724 resume execution wherever the try clause was going. So the
12725 whole try-finally will only fall through if both the try
12726 clause and the finally clause fall through. */
12727 return (block_may_fallthru (TREE_OPERAND (stmt, 0))
12728 && block_may_fallthru (TREE_OPERAND (stmt, 1)));
12729
12730 case EH_ELSE_EXPR:
12731 return block_may_fallthru (TREE_OPERAND (stmt, 0));
12732
12733 case MODIFY_EXPR:
12734 if (TREE_CODE (TREE_OPERAND (stmt, 1)) == CALL_EXPR)
12735 stmt = TREE_OPERAND (stmt, 1);
12736 else
12737 return true;
12738 /* FALLTHRU */
12739
12740 case CALL_EXPR:
12741 /* Functions that do not return do not fall through. */
12742 return (call_expr_flags (stmt) & ECF_NORETURN) == 0;
12743
12744 case CLEANUP_POINT_EXPR:
12745 return block_may_fallthru (TREE_OPERAND (stmt, 0));
12746
12747 case TARGET_EXPR:
12748 return block_may_fallthru (TREE_OPERAND (stmt, 1));
12749
12750 case ERROR_MARK:
12751 return true;
12752
12753 default:
12754 return lang_hooks.block_may_fallthru (stmt);
12755 }
12756 }
12757
12758 /* True if we are using EH to handle cleanups. */
12759 static bool using_eh_for_cleanups_flag = false;
12760
12761 /* This routine is called from front ends to indicate eh should be used for
12762 cleanups. */
12763 void
12764 using_eh_for_cleanups (void)
12765 {
12766 using_eh_for_cleanups_flag = true;
12767 }
12768
12769 /* Query whether EH is used for cleanups. */
12770 bool
12771 using_eh_for_cleanups_p (void)
12772 {
12773 return using_eh_for_cleanups_flag;
12774 }
12775
12776 /* Wrapper for tree_code_name to ensure that tree code is valid */
12777 const char *
12778 get_tree_code_name (enum tree_code code)
12779 {
12780 const char *invalid = "<invalid tree code>";
12781
12782 /* The tree_code enum promotes to signed, but we could be getting
12783 invalid values, so force an unsigned comparison. */
12784 if (unsigned (code) >= MAX_TREE_CODES)
12785 {
12786 if ((unsigned)code == 0xa5a5)
12787 return "ggc_freed";
12788 return invalid;
12789 }
12790
12791 return tree_code_name[code];
12792 }
12793
12794 /* Drops the TREE_OVERFLOW flag from T. */
12795
12796 tree
12797 drop_tree_overflow (tree t)
12798 {
12799 gcc_checking_assert (TREE_OVERFLOW (t));
12800
12801 /* For tree codes with a sharing machinery re-build the result. */
12802 if (poly_int_tree_p (t))
12803 return wide_int_to_tree (TREE_TYPE (t), wi::to_poly_wide (t));
12804
12805 /* For VECTOR_CST, remove the overflow bits from the encoded elements
12806 and canonicalize the result. */
12807 if (TREE_CODE (t) == VECTOR_CST)
12808 {
12809 tree_vector_builder builder;
12810 builder.new_unary_operation (TREE_TYPE (t), t, true);
12811 unsigned int count = builder.encoded_nelts ();
12812 for (unsigned int i = 0; i < count; ++i)
12813 {
12814 tree elt = VECTOR_CST_ELT (t, i);
12815 if (TREE_OVERFLOW (elt))
12816 elt = drop_tree_overflow (elt);
12817 builder.quick_push (elt);
12818 }
12819 return builder.build ();
12820 }
12821
12822 /* Otherwise, as all tcc_constants are possibly shared, copy the node
12823 and drop the flag. */
12824 t = copy_node (t);
12825 TREE_OVERFLOW (t) = 0;
12826
12827 /* For constants that contain nested constants, drop the flag
12828 from those as well. */
12829 if (TREE_CODE (t) == COMPLEX_CST)
12830 {
12831 if (TREE_OVERFLOW (TREE_REALPART (t)))
12832 TREE_REALPART (t) = drop_tree_overflow (TREE_REALPART (t));
12833 if (TREE_OVERFLOW (TREE_IMAGPART (t)))
12834 TREE_IMAGPART (t) = drop_tree_overflow (TREE_IMAGPART (t));
12835 }
12836
12837 return t;
12838 }
12839
12840 /* Given a memory reference expression T, return its base address.
12841 The base address of a memory reference expression is the main
12842 object being referenced. For instance, the base address for
12843 'array[i].fld[j]' is 'array'. You can think of this as stripping
12844 away the offset part from a memory address.
12845
12846 This function calls handled_component_p to strip away all the inner
12847 parts of the memory reference until it reaches the base object. */
12848
12849 tree
12850 get_base_address (tree t)
12851 {
12852 if (TREE_CODE (t) == WITH_SIZE_EXPR)
12853 t = TREE_OPERAND (t, 0);
12854 while (handled_component_p (t))
12855 t = TREE_OPERAND (t, 0);
12856
12857 if ((TREE_CODE (t) == MEM_REF
12858 || TREE_CODE (t) == TARGET_MEM_REF)
12859 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR)
12860 t = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
12861
12862 return t;
12863 }
12864
12865 /* Return a tree of sizetype representing the size, in bytes, of the element
12866 of EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
12867
12868 tree
12869 array_ref_element_size (tree exp)
12870 {
12871 tree aligned_size = TREE_OPERAND (exp, 3);
12872 tree elmt_type = TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)));
12873 location_t loc = EXPR_LOCATION (exp);
12874
12875 /* If a size was specified in the ARRAY_REF, it's the size measured
12876 in alignment units of the element type. So multiply by that value. */
12877 if (aligned_size)
12878 {
12879 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
12880 sizetype from another type of the same width and signedness. */
12881 if (TREE_TYPE (aligned_size) != sizetype)
12882 aligned_size = fold_convert_loc (loc, sizetype, aligned_size);
12883 return size_binop_loc (loc, MULT_EXPR, aligned_size,
12884 size_int (TYPE_ALIGN_UNIT (elmt_type)));
12885 }
12886
12887 /* Otherwise, take the size from that of the element type. Substitute
12888 any PLACEHOLDER_EXPR that we have. */
12889 else
12890 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type), exp);
12891 }
12892
12893 /* Return a tree representing the lower bound of the array mentioned in
12894 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
12895
12896 tree
12897 array_ref_low_bound (tree exp)
12898 {
12899 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
12900
12901 /* If a lower bound is specified in EXP, use it. */
12902 if (TREE_OPERAND (exp, 2))
12903 return TREE_OPERAND (exp, 2);
12904
12905 /* Otherwise, if there is a domain type and it has a lower bound, use it,
12906 substituting for a PLACEHOLDER_EXPR as needed. */
12907 if (domain_type && TYPE_MIN_VALUE (domain_type))
12908 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type), exp);
12909
12910 /* Otherwise, return a zero of the appropriate type. */
12911 tree idxtype = TREE_TYPE (TREE_OPERAND (exp, 1));
12912 return (idxtype == error_mark_node
12913 ? integer_zero_node : build_int_cst (idxtype, 0));
12914 }
12915
12916 /* Return a tree representing the upper bound of the array mentioned in
12917 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
12918
12919 tree
12920 array_ref_up_bound (tree exp)
12921 {
12922 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
12923
12924 /* If there is a domain type and it has an upper bound, use it, substituting
12925 for a PLACEHOLDER_EXPR as needed. */
12926 if (domain_type && TYPE_MAX_VALUE (domain_type))
12927 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type), exp);
12928
12929 /* Otherwise fail. */
12930 return NULL_TREE;
12931 }
12932
12933 /* Returns true if REF is an array reference, a component reference,
12934 or a memory reference to an array whose actual size might be larger
12935 than its upper bound implies, there are multiple cases:
12936 A. a ref to a flexible array member at the end of a structure;
12937 B. a ref to an array with a different type against the original decl;
12938 for example:
12939
12940 short a[16] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 };
12941 (*((char(*)[16])&a[0]))[i+8]
12942
12943 C. a ref to an array that was passed as a parameter;
12944 for example:
12945
12946 int test (uint8_t *p, uint32_t t[1][1], int n) {
12947 for (int i = 0; i < 4; i++, p++)
12948 t[i][0] = ...;
12949
12950 If non-null, set IS_TRAILING_ARRAY to true if the ref is the above case A.
12951 */
12952
12953 bool
12954 array_ref_flexible_size_p (tree ref, bool *is_trailing_array /* = NULL */)
12955 {
12956 /* The TYPE for this array referece. */
12957 tree atype = NULL_TREE;
12958 /* The FIELD_DECL for the array field in the containing structure. */
12959 tree afield_decl = NULL_TREE;
12960 /* Whether this array is the trailing array of a structure. */
12961 bool is_trailing_array_tmp = false;
12962 if (!is_trailing_array)
12963 is_trailing_array = &is_trailing_array_tmp;
12964
12965 if (TREE_CODE (ref) == ARRAY_REF
12966 || TREE_CODE (ref) == ARRAY_RANGE_REF)
12967 {
12968 atype = TREE_TYPE (TREE_OPERAND (ref, 0));
12969 ref = TREE_OPERAND (ref, 0);
12970 }
12971 else if (TREE_CODE (ref) == COMPONENT_REF
12972 && TREE_CODE (TREE_TYPE (TREE_OPERAND (ref, 1))) == ARRAY_TYPE)
12973 {
12974 atype = TREE_TYPE (TREE_OPERAND (ref, 1));
12975 afield_decl = TREE_OPERAND (ref, 1);
12976 }
12977 else if (TREE_CODE (ref) == MEM_REF)
12978 {
12979 tree arg = TREE_OPERAND (ref, 0);
12980 if (TREE_CODE (arg) == ADDR_EXPR)
12981 arg = TREE_OPERAND (arg, 0);
12982 tree argtype = TREE_TYPE (arg);
12983 if (TREE_CODE (argtype) == RECORD_TYPE)
12984 {
12985 if (tree fld = last_field (argtype))
12986 {
12987 atype = TREE_TYPE (fld);
12988 afield_decl = fld;
12989 if (TREE_CODE (atype) != ARRAY_TYPE)
12990 return false;
12991 if (VAR_P (arg) && DECL_SIZE (fld))
12992 return false;
12993 }
12994 else
12995 return false;
12996 }
12997 else
12998 return false;
12999 }
13000 else
13001 return false;
13002
13003 if (TREE_CODE (ref) == STRING_CST)
13004 return false;
13005
13006 tree ref_to_array = ref;
13007 while (handled_component_p (ref))
13008 {
13009 /* If the reference chain contains a component reference to a
13010 non-union type and there follows another field the reference
13011 is not at the end of a structure. */
13012 if (TREE_CODE (ref) == COMPONENT_REF)
13013 {
13014 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (ref, 0))) == RECORD_TYPE)
13015 {
13016 tree nextf = DECL_CHAIN (TREE_OPERAND (ref, 1));
13017 while (nextf && TREE_CODE (nextf) != FIELD_DECL)
13018 nextf = DECL_CHAIN (nextf);
13019 if (nextf)
13020 return false;
13021 }
13022 }
13023 /* If we have a multi-dimensional array we do not consider
13024 a non-innermost dimension as flex array if the whole
13025 multi-dimensional array is at struct end.
13026 Same for an array of aggregates with a trailing array
13027 member. */
13028 else if (TREE_CODE (ref) == ARRAY_REF)
13029 return false;
13030 else if (TREE_CODE (ref) == ARRAY_RANGE_REF)
13031 ;
13032 /* If we view an underlying object as sth else then what we
13033 gathered up to now is what we have to rely on. */
13034 else if (TREE_CODE (ref) == VIEW_CONVERT_EXPR)
13035 break;
13036 else
13037 gcc_unreachable ();
13038
13039 ref = TREE_OPERAND (ref, 0);
13040 }
13041
13042 gcc_assert (!afield_decl
13043 || (afield_decl && TREE_CODE (afield_decl) == FIELD_DECL));
13044
13045 /* The array now is at struct end. Treat flexible array member as
13046 always subject to extend, even into just padding constrained by
13047 an underlying decl. */
13048 if (! TYPE_SIZE (atype)
13049 || ! TYPE_DOMAIN (atype)
13050 || ! TYPE_MAX_VALUE (TYPE_DOMAIN (atype)))
13051 {
13052 *is_trailing_array = afield_decl && TREE_CODE (afield_decl) == FIELD_DECL;
13053 return afield_decl ? !DECL_NOT_FLEXARRAY (afield_decl) : true;
13054 }
13055
13056 /* If the reference is based on a declared entity, the size of the array
13057 is constrained by its given domain. (Do not trust commons PR/69368). */
13058 ref = get_base_address (ref);
13059 if (ref
13060 && DECL_P (ref)
13061 && !(flag_unconstrained_commons
13062 && VAR_P (ref) && DECL_COMMON (ref))
13063 && DECL_SIZE_UNIT (ref)
13064 && TREE_CODE (DECL_SIZE_UNIT (ref)) == INTEGER_CST)
13065 {
13066 /* If the object itself is the array it is not at struct end. */
13067 if (DECL_P (ref_to_array))
13068 return false;
13069
13070 /* Check whether the array domain covers all of the available
13071 padding. */
13072 poly_int64 offset;
13073 if (TREE_CODE (TYPE_SIZE_UNIT (TREE_TYPE (atype))) != INTEGER_CST
13074 || TREE_CODE (TYPE_MAX_VALUE (TYPE_DOMAIN (atype))) != INTEGER_CST
13075 || TREE_CODE (TYPE_MIN_VALUE (TYPE_DOMAIN (atype))) != INTEGER_CST)
13076 {
13077 *is_trailing_array
13078 = afield_decl && TREE_CODE (afield_decl) == FIELD_DECL;
13079 return afield_decl ? !DECL_NOT_FLEXARRAY (afield_decl) : true;
13080 }
13081 if (! get_addr_base_and_unit_offset (ref_to_array, &offset))
13082 {
13083 *is_trailing_array
13084 = afield_decl && TREE_CODE (afield_decl) == FIELD_DECL;
13085 return afield_decl ? !DECL_NOT_FLEXARRAY (afield_decl) : true;
13086 }
13087
13088 /* If at least one extra element fits it is a flexarray. */
13089 if (known_le ((wi::to_offset (TYPE_MAX_VALUE (TYPE_DOMAIN (atype)))
13090 - wi::to_offset (TYPE_MIN_VALUE (TYPE_DOMAIN (atype)))
13091 + 2)
13092 * wi::to_offset (TYPE_SIZE_UNIT (TREE_TYPE (atype))),
13093 wi::to_offset (DECL_SIZE_UNIT (ref)) - offset))
13094 {
13095 *is_trailing_array
13096 = afield_decl && TREE_CODE (afield_decl) == FIELD_DECL;
13097 return afield_decl ? !DECL_NOT_FLEXARRAY (afield_decl) : true;
13098 }
13099
13100 return false;
13101 }
13102
13103 *is_trailing_array = afield_decl && TREE_CODE (afield_decl) == FIELD_DECL;
13104 return afield_decl ? !DECL_NOT_FLEXARRAY (afield_decl) : true;
13105 }
13106
13107
13108 /* Return a tree representing the offset, in bytes, of the field referenced
13109 by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
13110
13111 tree
13112 component_ref_field_offset (tree exp)
13113 {
13114 tree aligned_offset = TREE_OPERAND (exp, 2);
13115 tree field = TREE_OPERAND (exp, 1);
13116 location_t loc = EXPR_LOCATION (exp);
13117
13118 /* If an offset was specified in the COMPONENT_REF, it's the offset measured
13119 in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
13120 value. */
13121 if (aligned_offset)
13122 {
13123 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
13124 sizetype from another type of the same width and signedness. */
13125 if (TREE_TYPE (aligned_offset) != sizetype)
13126 aligned_offset = fold_convert_loc (loc, sizetype, aligned_offset);
13127 return size_binop_loc (loc, MULT_EXPR, aligned_offset,
13128 size_int (DECL_OFFSET_ALIGN (field)
13129 / BITS_PER_UNIT));
13130 }
13131
13132 /* Otherwise, take the offset from that of the field. Substitute
13133 any PLACEHOLDER_EXPR that we have. */
13134 else
13135 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field), exp);
13136 }
13137
13138 /* Given the initializer INIT, return the initializer for the field
13139 DECL if it exists, otherwise null. Used to obtain the initializer
13140 for a flexible array member and determine its size. */
13141
13142 static tree
13143 get_initializer_for (tree init, tree decl)
13144 {
13145 STRIP_NOPS (init);
13146
13147 tree fld, fld_init;
13148 unsigned HOST_WIDE_INT i;
13149 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), i, fld, fld_init)
13150 {
13151 if (decl == fld)
13152 return fld_init;
13153
13154 if (TREE_CODE (fld) == CONSTRUCTOR)
13155 {
13156 fld_init = get_initializer_for (fld_init, decl);
13157 if (fld_init)
13158 return fld_init;
13159 }
13160 }
13161
13162 return NULL_TREE;
13163 }
13164
13165 /* Determines the special array member type for the array reference REF. */
13166 special_array_member
13167 component_ref_sam_type (tree ref)
13168 {
13169 special_array_member sam_type = special_array_member::none;
13170
13171 tree member = TREE_OPERAND (ref, 1);
13172 tree memsize = DECL_SIZE_UNIT (member);
13173 if (memsize)
13174 {
13175 tree memtype = TREE_TYPE (member);
13176 if (TREE_CODE (memtype) != ARRAY_TYPE)
13177 return sam_type;
13178
13179 bool trailing = false;
13180 (void) array_ref_flexible_size_p (ref, &trailing);
13181 bool zero_elts = integer_zerop (memsize);
13182 if (zero_elts && integer_zerop (TYPE_SIZE_UNIT (TREE_TYPE (memtype))))
13183 {
13184 /* If array element has zero size, verify if it is a flexible
13185 array member or zero length array. Clear zero_elts if
13186 it has one or more members or is a VLA member. */
13187 if (tree dom = TYPE_DOMAIN (memtype))
13188 if (tree min = TYPE_MIN_VALUE (dom))
13189 if (tree max = TYPE_MAX_VALUE (dom))
13190 if (TREE_CODE (min) != INTEGER_CST
13191 || TREE_CODE (max) != INTEGER_CST
13192 || !((integer_zerop (min) && integer_all_onesp (max))
13193 || tree_int_cst_lt (max, min)))
13194 zero_elts = false;
13195 }
13196 if (!trailing && !zero_elts)
13197 /* MEMBER is an interior array with more than one element. */
13198 return special_array_member::int_n;
13199
13200 if (zero_elts)
13201 {
13202 if (trailing)
13203 return special_array_member::trail_0;
13204 else
13205 return special_array_member::int_0;
13206 }
13207
13208 if (!zero_elts)
13209 if (tree dom = TYPE_DOMAIN (memtype))
13210 if (tree min = TYPE_MIN_VALUE (dom))
13211 if (tree max = TYPE_MAX_VALUE (dom))
13212 if (TREE_CODE (min) == INTEGER_CST
13213 && TREE_CODE (max) == INTEGER_CST)
13214 {
13215 offset_int minidx = wi::to_offset (min);
13216 offset_int maxidx = wi::to_offset (max);
13217 offset_int neltsm1 = maxidx - minidx;
13218 if (neltsm1 > 0)
13219 /* MEMBER is a trailing array with more than
13220 one elements. */
13221 return special_array_member::trail_n;
13222
13223 if (neltsm1 == 0)
13224 return special_array_member::trail_1;
13225 }
13226 }
13227
13228 return sam_type;
13229 }
13230
13231 /* Determines the size of the member referenced by the COMPONENT_REF
13232 REF, using its initializer expression if necessary in order to
13233 determine the size of an initialized flexible array member.
13234 If non-null, set *SAM to the type of special array member.
13235 Returns the size as sizetype (which might be zero for an object
13236 with an uninitialized flexible array member) or null if the size
13237 cannot be determined. */
13238
13239 tree
13240 component_ref_size (tree ref, special_array_member *sam /* = NULL */)
13241 {
13242 gcc_assert (TREE_CODE (ref) == COMPONENT_REF);
13243
13244 special_array_member sambuf;
13245 if (!sam)
13246 sam = &sambuf;
13247 *sam = component_ref_sam_type (ref);
13248
13249 /* The object/argument referenced by the COMPONENT_REF and its type. */
13250 tree arg = TREE_OPERAND (ref, 0);
13251 tree argtype = TREE_TYPE (arg);
13252 /* The referenced member. */
13253 tree member = TREE_OPERAND (ref, 1);
13254
13255 tree memsize = DECL_SIZE_UNIT (member);
13256 if (memsize)
13257 {
13258 tree memtype = TREE_TYPE (member);
13259 if (TREE_CODE (memtype) != ARRAY_TYPE)
13260 /* DECL_SIZE may be less than TYPE_SIZE in C++ when referring
13261 to the type of a class with a virtual base which doesn't
13262 reflect the size of the virtual's members (see pr97595).
13263 If that's the case fail for now and implement something
13264 more robust in the future. */
13265 return (tree_int_cst_equal (memsize, TYPE_SIZE_UNIT (memtype))
13266 ? memsize : NULL_TREE);
13267
13268 /* 2-or-more elements arrays are treated as normal arrays by default. */
13269 if (*sam == special_array_member::int_n
13270 || *sam == special_array_member::trail_n)
13271 return memsize;
13272
13273 tree afield_decl = TREE_OPERAND (ref, 1);
13274 gcc_assert (TREE_CODE (afield_decl) == FIELD_DECL);
13275 /* If the trailing array is a not a flexible array member, treat it as
13276 a normal array. */
13277 if (DECL_NOT_FLEXARRAY (afield_decl)
13278 && *sam != special_array_member::int_0)
13279 return memsize;
13280
13281 if (*sam == special_array_member::int_0)
13282 memsize = NULL_TREE;
13283
13284 /* For a reference to a flexible array member of a union
13285 use the size of the union instead of the size of the member. */
13286 if (TREE_CODE (argtype) == UNION_TYPE)
13287 memsize = TYPE_SIZE_UNIT (argtype);
13288 }
13289
13290 /* MEMBER is either a bona fide flexible array member, or a zero-elements
13291 array member, or an array of length one treated as such. */
13292
13293 /* If the reference is to a declared object and the member a true
13294 flexible array, try to determine its size from its initializer. */
13295 poly_int64 baseoff = 0;
13296 tree base = get_addr_base_and_unit_offset (ref, &baseoff);
13297 if (!base || !VAR_P (base))
13298 {
13299 if (*sam != special_array_member::int_0)
13300 return NULL_TREE;
13301
13302 if (TREE_CODE (arg) != COMPONENT_REF)
13303 return NULL_TREE;
13304
13305 base = arg;
13306 while (TREE_CODE (base) == COMPONENT_REF)
13307 base = TREE_OPERAND (base, 0);
13308 baseoff = tree_to_poly_int64 (byte_position (TREE_OPERAND (ref, 1)));
13309 }
13310
13311 /* BASE is the declared object of which MEMBER is either a member
13312 or that is cast to ARGTYPE (e.g., a char buffer used to store
13313 an ARGTYPE object). */
13314 tree basetype = TREE_TYPE (base);
13315
13316 /* Determine the base type of the referenced object. If it's
13317 the same as ARGTYPE and MEMBER has a known size, return it. */
13318 tree bt = basetype;
13319 if (*sam != special_array_member::int_0)
13320 while (TREE_CODE (bt) == ARRAY_TYPE)
13321 bt = TREE_TYPE (bt);
13322 bool typematch = useless_type_conversion_p (argtype, bt);
13323 if (memsize && typematch)
13324 return memsize;
13325
13326 memsize = NULL_TREE;
13327
13328 if (typematch)
13329 /* MEMBER is a true flexible array member. Compute its size from
13330 the initializer of the BASE object if it has one. */
13331 if (tree init = DECL_P (base) ? DECL_INITIAL (base) : NULL_TREE)
13332 if (init != error_mark_node)
13333 {
13334 init = get_initializer_for (init, member);
13335 if (init)
13336 {
13337 memsize = TYPE_SIZE_UNIT (TREE_TYPE (init));
13338 if (tree refsize = TYPE_SIZE_UNIT (argtype))
13339 {
13340 /* Use the larger of the initializer size and the tail
13341 padding in the enclosing struct. */
13342 poly_int64 rsz = tree_to_poly_int64 (refsize);
13343 rsz -= baseoff;
13344 if (known_lt (tree_to_poly_int64 (memsize), rsz))
13345 memsize = wide_int_to_tree (TREE_TYPE (memsize), rsz);
13346 }
13347
13348 baseoff = 0;
13349 }
13350 }
13351
13352 if (!memsize)
13353 {
13354 if (typematch)
13355 {
13356 if (DECL_P (base)
13357 && DECL_EXTERNAL (base)
13358 && bt == basetype
13359 && *sam != special_array_member::int_0)
13360 /* The size of a flexible array member of an extern struct
13361 with no initializer cannot be determined (it's defined
13362 in another translation unit and can have an initializer
13363 with an arbitrary number of elements). */
13364 return NULL_TREE;
13365
13366 /* Use the size of the base struct or, for interior zero-length
13367 arrays, the size of the enclosing type. */
13368 memsize = TYPE_SIZE_UNIT (bt);
13369 }
13370 else if (DECL_P (base))
13371 /* Use the size of the BASE object (possibly an array of some
13372 other type such as char used to store the struct). */
13373 memsize = DECL_SIZE_UNIT (base);
13374 else
13375 return NULL_TREE;
13376 }
13377
13378 /* If the flexible array member has a known size use the greater
13379 of it and the tail padding in the enclosing struct.
13380 Otherwise, when the size of the flexible array member is unknown
13381 and the referenced object is not a struct, use the size of its
13382 type when known. This detects sizes of array buffers when cast
13383 to struct types with flexible array members. */
13384 if (memsize)
13385 {
13386 if (!tree_fits_poly_int64_p (memsize))
13387 return NULL_TREE;
13388 poly_int64 memsz64 = memsize ? tree_to_poly_int64 (memsize) : 0;
13389 if (known_lt (baseoff, memsz64))
13390 {
13391 memsz64 -= baseoff;
13392 return wide_int_to_tree (TREE_TYPE (memsize), memsz64);
13393 }
13394 return size_zero_node;
13395 }
13396
13397 /* Return "don't know" for an external non-array object since its
13398 flexible array member can be initialized to have any number of
13399 elements. Otherwise, return zero because the flexible array
13400 member has no elements. */
13401 return (DECL_P (base)
13402 && DECL_EXTERNAL (base)
13403 && (!typematch
13404 || TREE_CODE (basetype) != ARRAY_TYPE)
13405 ? NULL_TREE : size_zero_node);
13406 }
13407
13408 /* Return the machine mode of T. For vectors, returns the mode of the
13409 inner type. The main use case is to feed the result to HONOR_NANS,
13410 avoiding the BLKmode that a direct TYPE_MODE (T) might return. */
13411
13412 machine_mode
13413 element_mode (const_tree t)
13414 {
13415 if (!TYPE_P (t))
13416 t = TREE_TYPE (t);
13417 if (VECTOR_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
13418 t = TREE_TYPE (t);
13419 return TYPE_MODE (t);
13420 }
13421
13422 /* Vector types need to re-check the target flags each time we report
13423 the machine mode. We need to do this because attribute target can
13424 change the result of vector_mode_supported_p and have_regs_of_mode
13425 on a per-function basis. Thus the TYPE_MODE of a VECTOR_TYPE can
13426 change on a per-function basis. */
13427 /* ??? Possibly a better solution is to run through all the types
13428 referenced by a function and re-compute the TYPE_MODE once, rather
13429 than make the TYPE_MODE macro call a function. */
13430
13431 machine_mode
13432 vector_type_mode (const_tree t)
13433 {
13434 machine_mode mode;
13435
13436 gcc_assert (TREE_CODE (t) == VECTOR_TYPE);
13437
13438 mode = t->type_common.mode;
13439 if (VECTOR_MODE_P (mode)
13440 && (!targetm.vector_mode_supported_p (mode)
13441 || !have_regs_of_mode[mode]))
13442 {
13443 scalar_int_mode innermode;
13444
13445 /* For integers, try mapping it to a same-sized scalar mode. */
13446 if (is_int_mode (TREE_TYPE (t)->type_common.mode, &innermode))
13447 {
13448 poly_int64 size = (TYPE_VECTOR_SUBPARTS (t)
13449 * GET_MODE_BITSIZE (innermode));
13450 scalar_int_mode mode;
13451 if (int_mode_for_size (size, 0).exists (&mode)
13452 && have_regs_of_mode[mode])
13453 return mode;
13454 }
13455
13456 return BLKmode;
13457 }
13458
13459 return mode;
13460 }
13461
13462 /* Return the size in bits of each element of vector type TYPE. */
13463
13464 unsigned int
13465 vector_element_bits (const_tree type)
13466 {
13467 gcc_checking_assert (VECTOR_TYPE_P (type));
13468 if (VECTOR_BOOLEAN_TYPE_P (type))
13469 return TYPE_PRECISION (TREE_TYPE (type));
13470 return tree_to_uhwi (TYPE_SIZE (TREE_TYPE (type)));
13471 }
13472
13473 /* Calculate the size in bits of each element of vector type TYPE
13474 and return the result as a tree of type bitsizetype. */
13475
13476 tree
13477 vector_element_bits_tree (const_tree type)
13478 {
13479 gcc_checking_assert (VECTOR_TYPE_P (type));
13480 if (VECTOR_BOOLEAN_TYPE_P (type))
13481 return bitsize_int (vector_element_bits (type));
13482 return TYPE_SIZE (TREE_TYPE (type));
13483 }
13484
13485 /* Verify that basic properties of T match TV and thus T can be a variant of
13486 TV. TV should be the more specified variant (i.e. the main variant). */
13487
13488 static bool
13489 verify_type_variant (const_tree t, tree tv)
13490 {
13491 /* Type variant can differ by:
13492
13493 - TYPE_QUALS: TYPE_READONLY, TYPE_VOLATILE, TYPE_ATOMIC, TYPE_RESTRICT,
13494 ENCODE_QUAL_ADDR_SPACE.
13495 - main variant may be TYPE_COMPLETE_P and variant types !TYPE_COMPLETE_P
13496 in this case some values may not be set in the variant types
13497 (see TYPE_COMPLETE_P checks).
13498 - it is possible to have TYPE_ARTIFICIAL variant of non-artifical type
13499 - by TYPE_NAME and attributes (i.e. when variant originate by typedef)
13500 - TYPE_CANONICAL (TYPE_ALIAS_SET is the same among variants)
13501 - by the alignment: TYPE_ALIGN and TYPE_USER_ALIGN
13502 - during LTO by TYPE_CONTEXT if type is TYPE_FILE_SCOPE_P
13503 this is necessary to make it possible to merge types form different TUs
13504 - arrays, pointers and references may have TREE_TYPE that is a variant
13505 of TREE_TYPE of their main variants.
13506 - aggregates may have new TYPE_FIELDS list that list variants of
13507 the main variant TYPE_FIELDS.
13508 - vector types may differ by TYPE_VECTOR_OPAQUE
13509 */
13510
13511 /* Convenience macro for matching individual fields. */
13512 #define verify_variant_match(flag) \
13513 do { \
13514 if (flag (tv) != flag (t)) \
13515 { \
13516 error ("type variant differs by %s", #flag); \
13517 debug_tree (tv); \
13518 return false; \
13519 } \
13520 } while (false)
13521
13522 /* tree_base checks. */
13523
13524 verify_variant_match (TREE_CODE);
13525 /* FIXME: Ada builds non-artificial variants of artificial types. */
13526 #if 0
13527 if (TYPE_ARTIFICIAL (tv))
13528 verify_variant_match (TYPE_ARTIFICIAL);
13529 #endif
13530 if (POINTER_TYPE_P (tv))
13531 verify_variant_match (TYPE_REF_CAN_ALIAS_ALL);
13532 /* FIXME: TYPE_SIZES_GIMPLIFIED may differs for Ada build. */
13533 verify_variant_match (TYPE_UNSIGNED);
13534 verify_variant_match (TYPE_PACKED);
13535 if (TREE_CODE (t) == REFERENCE_TYPE)
13536 verify_variant_match (TYPE_REF_IS_RVALUE);
13537 if (AGGREGATE_TYPE_P (t))
13538 verify_variant_match (TYPE_REVERSE_STORAGE_ORDER);
13539 else
13540 verify_variant_match (TYPE_SATURATING);
13541 /* FIXME: This check trigger during libstdc++ build. */
13542 #if 0
13543 if (RECORD_OR_UNION_TYPE_P (t) && COMPLETE_TYPE_P (t))
13544 verify_variant_match (TYPE_FINAL_P);
13545 #endif
13546
13547 /* tree_type_common checks. */
13548
13549 if (COMPLETE_TYPE_P (t))
13550 {
13551 verify_variant_match (TYPE_MODE);
13552 if (TREE_CODE (TYPE_SIZE (t)) != PLACEHOLDER_EXPR
13553 && TREE_CODE (TYPE_SIZE (tv)) != PLACEHOLDER_EXPR)
13554 verify_variant_match (TYPE_SIZE);
13555 if (TREE_CODE (TYPE_SIZE_UNIT (t)) != PLACEHOLDER_EXPR
13556 && TREE_CODE (TYPE_SIZE_UNIT (tv)) != PLACEHOLDER_EXPR
13557 && TYPE_SIZE_UNIT (t) != TYPE_SIZE_UNIT (tv))
13558 {
13559 gcc_assert (!operand_equal_p (TYPE_SIZE_UNIT (t),
13560 TYPE_SIZE_UNIT (tv), 0));
13561 error ("type variant has different %<TYPE_SIZE_UNIT%>");
13562 debug_tree (tv);
13563 error ("type variant%'s %<TYPE_SIZE_UNIT%>");
13564 debug_tree (TYPE_SIZE_UNIT (tv));
13565 error ("type%'s %<TYPE_SIZE_UNIT%>");
13566 debug_tree (TYPE_SIZE_UNIT (t));
13567 return false;
13568 }
13569 verify_variant_match (TYPE_NEEDS_CONSTRUCTING);
13570 }
13571 verify_variant_match (TYPE_PRECISION_RAW);
13572 if (RECORD_OR_UNION_TYPE_P (t))
13573 verify_variant_match (TYPE_TRANSPARENT_AGGR);
13574 else if (TREE_CODE (t) == ARRAY_TYPE)
13575 verify_variant_match (TYPE_NONALIASED_COMPONENT);
13576 /* During LTO we merge variant lists from diferent translation units
13577 that may differ BY TYPE_CONTEXT that in turn may point
13578 to TRANSLATION_UNIT_DECL.
13579 Ada also builds variants of types with different TYPE_CONTEXT. */
13580 #if 0
13581 if (!in_lto_p || !TYPE_FILE_SCOPE_P (t))
13582 verify_variant_match (TYPE_CONTEXT);
13583 #endif
13584 if (TREE_CODE (t) == ARRAY_TYPE || TREE_CODE (t) == INTEGER_TYPE)
13585 verify_variant_match (TYPE_STRING_FLAG);
13586 if (TREE_CODE (t) == RECORD_TYPE || TREE_CODE (t) == UNION_TYPE)
13587 verify_variant_match (TYPE_CXX_ODR_P);
13588 if (TYPE_ALIAS_SET_KNOWN_P (t))
13589 {
13590 error ("type variant with %<TYPE_ALIAS_SET_KNOWN_P%>");
13591 debug_tree (tv);
13592 return false;
13593 }
13594
13595 /* tree_type_non_common checks. */
13596
13597 /* FIXME: C FE uses TYPE_VFIELD to record C_TYPE_INCOMPLETE_VARS
13598 and dangle the pointer from time to time. */
13599 if (RECORD_OR_UNION_TYPE_P (t) && TYPE_VFIELD (t) != TYPE_VFIELD (tv)
13600 && (in_lto_p || !TYPE_VFIELD (tv)
13601 || TREE_CODE (TYPE_VFIELD (tv)) != TREE_LIST))
13602 {
13603 error ("type variant has different %<TYPE_VFIELD%>");
13604 debug_tree (tv);
13605 return false;
13606 }
13607 if ((TREE_CODE (t) == ENUMERAL_TYPE && COMPLETE_TYPE_P (t))
13608 || TREE_CODE (t) == INTEGER_TYPE
13609 || TREE_CODE (t) == BOOLEAN_TYPE
13610 || TREE_CODE (t) == BITINT_TYPE
13611 || SCALAR_FLOAT_TYPE_P (t)
13612 || FIXED_POINT_TYPE_P (t))
13613 {
13614 verify_variant_match (TYPE_MAX_VALUE);
13615 verify_variant_match (TYPE_MIN_VALUE);
13616 }
13617 if (TREE_CODE (t) == METHOD_TYPE)
13618 verify_variant_match (TYPE_METHOD_BASETYPE);
13619 if (TREE_CODE (t) == OFFSET_TYPE)
13620 verify_variant_match (TYPE_OFFSET_BASETYPE);
13621 if (TREE_CODE (t) == ARRAY_TYPE)
13622 verify_variant_match (TYPE_ARRAY_MAX_SIZE);
13623 /* FIXME: Be lax and allow TYPE_BINFO to be missing in variant types
13624 or even type's main variant. This is needed to make bootstrap pass
13625 and the bug seems new in GCC 5.
13626 C++ FE should be updated to make this consistent and we should check
13627 that TYPE_BINFO is always NULL for !COMPLETE_TYPE_P and otherwise there
13628 is a match with main variant.
13629
13630 Also disable the check for Java for now because of parser hack that builds
13631 first an dummy BINFO and then sometimes replace it by real BINFO in some
13632 of the copies. */
13633 if (RECORD_OR_UNION_TYPE_P (t) && TYPE_BINFO (t) && TYPE_BINFO (tv)
13634 && TYPE_BINFO (t) != TYPE_BINFO (tv)
13635 /* FIXME: Java sometimes keep dump TYPE_BINFOs on variant types.
13636 Since there is no cheap way to tell C++/Java type w/o LTO, do checking
13637 at LTO time only. */
13638 && (in_lto_p && odr_type_p (t)))
13639 {
13640 error ("type variant has different %<TYPE_BINFO%>");
13641 debug_tree (tv);
13642 error ("type variant%'s %<TYPE_BINFO%>");
13643 debug_tree (TYPE_BINFO (tv));
13644 error ("type%'s %<TYPE_BINFO%>");
13645 debug_tree (TYPE_BINFO (t));
13646 return false;
13647 }
13648
13649 /* Check various uses of TYPE_VALUES_RAW. */
13650 if (TREE_CODE (t) == ENUMERAL_TYPE
13651 && TYPE_VALUES (t))
13652 verify_variant_match (TYPE_VALUES);
13653 else if (TREE_CODE (t) == ARRAY_TYPE)
13654 verify_variant_match (TYPE_DOMAIN);
13655 /* Permit incomplete variants of complete type. While FEs may complete
13656 all variants, this does not happen for C++ templates in all cases. */
13657 else if (RECORD_OR_UNION_TYPE_P (t)
13658 && COMPLETE_TYPE_P (t)
13659 && TYPE_FIELDS (t) != TYPE_FIELDS (tv))
13660 {
13661 tree f1, f2;
13662
13663 /* Fortran builds qualified variants as new records with items of
13664 qualified type. Verify that they looks same. */
13665 for (f1 = TYPE_FIELDS (t), f2 = TYPE_FIELDS (tv);
13666 f1 && f2;
13667 f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2))
13668 if (TREE_CODE (f1) != FIELD_DECL || TREE_CODE (f2) != FIELD_DECL
13669 || (TYPE_MAIN_VARIANT (TREE_TYPE (f1))
13670 != TYPE_MAIN_VARIANT (TREE_TYPE (f2))
13671 /* FIXME: gfc_nonrestricted_type builds all types as variants
13672 with exception of pointer types. It deeply copies the type
13673 which means that we may end up with a variant type
13674 referring non-variant pointer. We may change it to
13675 produce types as variants, too, like
13676 objc_get_protocol_qualified_type does. */
13677 && !POINTER_TYPE_P (TREE_TYPE (f1)))
13678 || DECL_FIELD_OFFSET (f1) != DECL_FIELD_OFFSET (f2)
13679 || DECL_FIELD_BIT_OFFSET (f1) != DECL_FIELD_BIT_OFFSET (f2))
13680 break;
13681 if (f1 || f2)
13682 {
13683 error ("type variant has different %<TYPE_FIELDS%>");
13684 debug_tree (tv);
13685 error ("first mismatch is field");
13686 debug_tree (f1);
13687 error ("and field");
13688 debug_tree (f2);
13689 return false;
13690 }
13691 }
13692 else if (FUNC_OR_METHOD_TYPE_P (t))
13693 verify_variant_match (TYPE_ARG_TYPES);
13694 /* For C++ the qualified variant of array type is really an array type
13695 of qualified TREE_TYPE.
13696 objc builds variants of pointer where pointer to type is a variant, too
13697 in objc_get_protocol_qualified_type. */
13698 if (TREE_TYPE (t) != TREE_TYPE (tv)
13699 && ((TREE_CODE (t) != ARRAY_TYPE
13700 && !POINTER_TYPE_P (t))
13701 || TYPE_MAIN_VARIANT (TREE_TYPE (t))
13702 != TYPE_MAIN_VARIANT (TREE_TYPE (tv))))
13703 {
13704 error ("type variant has different %<TREE_TYPE%>");
13705 debug_tree (tv);
13706 error ("type variant%'s %<TREE_TYPE%>");
13707 debug_tree (TREE_TYPE (tv));
13708 error ("type%'s %<TREE_TYPE%>");
13709 debug_tree (TREE_TYPE (t));
13710 return false;
13711 }
13712 if (type_with_alias_set_p (t)
13713 && !gimple_canonical_types_compatible_p (t, tv, false))
13714 {
13715 error ("type is not compatible with its variant");
13716 debug_tree (tv);
13717 error ("type variant%'s %<TREE_TYPE%>");
13718 debug_tree (TREE_TYPE (tv));
13719 error ("type%'s %<TREE_TYPE%>");
13720 debug_tree (TREE_TYPE (t));
13721 return false;
13722 }
13723 return true;
13724 #undef verify_variant_match
13725 }
13726
13727
13728 /* The TYPE_CANONICAL merging machinery. It should closely resemble
13729 the middle-end types_compatible_p function. It needs to avoid
13730 claiming types are different for types that should be treated
13731 the same with respect to TBAA. Canonical types are also used
13732 for IL consistency checks via the useless_type_conversion_p
13733 predicate which does not handle all type kinds itself but falls
13734 back to pointer-comparison of TYPE_CANONICAL for aggregates
13735 for example. */
13736
13737 /* Return true if TYPE_UNSIGNED of TYPE should be ignored for canonical
13738 type calculation because we need to allow inter-operability between signed
13739 and unsigned variants. */
13740
13741 bool
13742 type_with_interoperable_signedness (const_tree type)
13743 {
13744 /* Fortran standard require C_SIGNED_CHAR to be interoperable with both
13745 signed char and unsigned char. Similarly fortran FE builds
13746 C_SIZE_T as signed type, while C defines it unsigned. */
13747
13748 return tree_code_for_canonical_type_merging (TREE_CODE (type))
13749 == INTEGER_TYPE
13750 && (TYPE_PRECISION (type) == TYPE_PRECISION (signed_char_type_node)
13751 || TYPE_PRECISION (type) == TYPE_PRECISION (size_type_node));
13752 }
13753
13754 /* Return true iff T1 and T2 are structurally identical for what
13755 TBAA is concerned.
13756 This function is used both by lto.cc canonical type merging and by the
13757 verifier. If TRUST_TYPE_CANONICAL we do not look into structure of types
13758 that have TYPE_CANONICAL defined and assume them equivalent. This is useful
13759 only for LTO because only in these cases TYPE_CANONICAL equivalence
13760 correspond to one defined by gimple_canonical_types_compatible_p. */
13761
13762 bool
13763 gimple_canonical_types_compatible_p (const_tree t1, const_tree t2,
13764 bool trust_type_canonical)
13765 {
13766 /* Type variants should be same as the main variant. When not doing sanity
13767 checking to verify this fact, go to main variants and save some work. */
13768 if (trust_type_canonical)
13769 {
13770 t1 = TYPE_MAIN_VARIANT (t1);
13771 t2 = TYPE_MAIN_VARIANT (t2);
13772 }
13773
13774 /* Check first for the obvious case of pointer identity. */
13775 if (t1 == t2)
13776 return true;
13777
13778 /* Check that we have two types to compare. */
13779 if (t1 == NULL_TREE || t2 == NULL_TREE)
13780 return false;
13781
13782 /* We consider complete types always compatible with incomplete type.
13783 This does not make sense for canonical type calculation and thus we
13784 need to ensure that we are never called on it.
13785
13786 FIXME: For more correctness the function probably should have three modes
13787 1) mode assuming that types are complete mathcing their structure
13788 2) mode allowing incomplete types but producing equivalence classes
13789 and thus ignoring all info from complete types
13790 3) mode allowing incomplete types to match complete but checking
13791 compatibility between complete types.
13792
13793 1 and 2 can be used for canonical type calculation. 3 is the real
13794 definition of type compatibility that can be used i.e. for warnings during
13795 declaration merging. */
13796
13797 gcc_assert (!trust_type_canonical
13798 || (type_with_alias_set_p (t1) && type_with_alias_set_p (t2)));
13799
13800 /* If the types have been previously registered and found equal
13801 they still are. */
13802
13803 if (TYPE_CANONICAL (t1) && TYPE_CANONICAL (t2)
13804 && trust_type_canonical)
13805 {
13806 /* Do not use TYPE_CANONICAL of pointer types. For LTO streamed types
13807 they are always NULL, but they are set to non-NULL for types
13808 constructed by build_pointer_type and variants. In this case the
13809 TYPE_CANONICAL is more fine grained than the equivalnce we test (where
13810 all pointers are considered equal. Be sure to not return false
13811 negatives. */
13812 gcc_checking_assert (canonical_type_used_p (t1)
13813 && canonical_type_used_p (t2));
13814 return TYPE_CANONICAL (t1) == TYPE_CANONICAL (t2);
13815 }
13816
13817 /* For types where we do ODR based TBAA the canonical type is always
13818 set correctly, so we know that types are different if their
13819 canonical types does not match. */
13820 if (trust_type_canonical
13821 && (odr_type_p (t1) && odr_based_tbaa_p (t1))
13822 != (odr_type_p (t2) && odr_based_tbaa_p (t2)))
13823 return false;
13824
13825 /* Can't be the same type if the types don't have the same code. */
13826 enum tree_code code = tree_code_for_canonical_type_merging (TREE_CODE (t1));
13827 if (code != tree_code_for_canonical_type_merging (TREE_CODE (t2)))
13828 return false;
13829
13830 /* Qualifiers do not matter for canonical type comparison purposes. */
13831
13832 /* Void types and nullptr types are always the same. */
13833 if (VOID_TYPE_P (t1)
13834 || TREE_CODE (t1) == NULLPTR_TYPE)
13835 return true;
13836
13837 /* Can't be the same type if they have different mode. */
13838 if (TYPE_MODE (t1) != TYPE_MODE (t2))
13839 return false;
13840
13841 /* Non-aggregate types can be handled cheaply. */
13842 if (INTEGRAL_TYPE_P (t1)
13843 || SCALAR_FLOAT_TYPE_P (t1)
13844 || FIXED_POINT_TYPE_P (t1)
13845 || VECTOR_TYPE_P (t1)
13846 || TREE_CODE (t1) == COMPLEX_TYPE
13847 || TREE_CODE (t1) == OFFSET_TYPE
13848 || POINTER_TYPE_P (t1))
13849 {
13850 /* Can't be the same type if they have different precision. */
13851 if (TYPE_PRECISION_RAW (t1) != TYPE_PRECISION_RAW (t2))
13852 return false;
13853
13854 /* In some cases the signed and unsigned types are required to be
13855 inter-operable. */
13856 if (TYPE_UNSIGNED (t1) != TYPE_UNSIGNED (t2)
13857 && !type_with_interoperable_signedness (t1))
13858 return false;
13859
13860 /* Fortran's C_SIGNED_CHAR is !TYPE_STRING_FLAG but needs to be
13861 interoperable with "signed char". Unless all frontends are revisited
13862 to agree on these types, we must ignore the flag completely. */
13863
13864 /* Fortran standard define C_PTR type that is compatible with every
13865 C pointer. For this reason we need to glob all pointers into one.
13866 Still pointers in different address spaces are not compatible. */
13867 if (POINTER_TYPE_P (t1))
13868 {
13869 if (TYPE_ADDR_SPACE (TREE_TYPE (t1))
13870 != TYPE_ADDR_SPACE (TREE_TYPE (t2)))
13871 return false;
13872 }
13873
13874 /* Tail-recurse to components. */
13875 if (VECTOR_TYPE_P (t1)
13876 || TREE_CODE (t1) == COMPLEX_TYPE)
13877 return gimple_canonical_types_compatible_p (TREE_TYPE (t1),
13878 TREE_TYPE (t2),
13879 trust_type_canonical);
13880
13881 return true;
13882 }
13883
13884 /* Do type-specific comparisons. */
13885 switch (TREE_CODE (t1))
13886 {
13887 case ARRAY_TYPE:
13888 /* Array types are the same if the element types are the same and
13889 the number of elements are the same. */
13890 if (!gimple_canonical_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2),
13891 trust_type_canonical)
13892 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)
13893 || TYPE_REVERSE_STORAGE_ORDER (t1) != TYPE_REVERSE_STORAGE_ORDER (t2)
13894 || TYPE_NONALIASED_COMPONENT (t1) != TYPE_NONALIASED_COMPONENT (t2))
13895 return false;
13896 else
13897 {
13898 tree i1 = TYPE_DOMAIN (t1);
13899 tree i2 = TYPE_DOMAIN (t2);
13900
13901 /* For an incomplete external array, the type domain can be
13902 NULL_TREE. Check this condition also. */
13903 if (i1 == NULL_TREE && i2 == NULL_TREE)
13904 return true;
13905 else if (i1 == NULL_TREE || i2 == NULL_TREE)
13906 return false;
13907 else
13908 {
13909 tree min1 = TYPE_MIN_VALUE (i1);
13910 tree min2 = TYPE_MIN_VALUE (i2);
13911 tree max1 = TYPE_MAX_VALUE (i1);
13912 tree max2 = TYPE_MAX_VALUE (i2);
13913
13914 /* The minimum/maximum values have to be the same. */
13915 if ((min1 == min2
13916 || (min1 && min2
13917 && ((TREE_CODE (min1) == PLACEHOLDER_EXPR
13918 && TREE_CODE (min2) == PLACEHOLDER_EXPR)
13919 || operand_equal_p (min1, min2, 0))))
13920 && (max1 == max2
13921 || (max1 && max2
13922 && ((TREE_CODE (max1) == PLACEHOLDER_EXPR
13923 && TREE_CODE (max2) == PLACEHOLDER_EXPR)
13924 || operand_equal_p (max1, max2, 0)))))
13925 return true;
13926 else
13927 return false;
13928 }
13929 }
13930
13931 case METHOD_TYPE:
13932 case FUNCTION_TYPE:
13933 /* Function types are the same if the return type and arguments types
13934 are the same. */
13935 if (!gimple_canonical_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2),
13936 trust_type_canonical))
13937 return false;
13938
13939 if (TYPE_ARG_TYPES (t1) == TYPE_ARG_TYPES (t2)
13940 && (TYPE_NO_NAMED_ARGS_STDARG_P (t1)
13941 == TYPE_NO_NAMED_ARGS_STDARG_P (t2)))
13942 return true;
13943 else
13944 {
13945 tree parms1, parms2;
13946
13947 for (parms1 = TYPE_ARG_TYPES (t1), parms2 = TYPE_ARG_TYPES (t2);
13948 parms1 && parms2;
13949 parms1 = TREE_CHAIN (parms1), parms2 = TREE_CHAIN (parms2))
13950 {
13951 if (!gimple_canonical_types_compatible_p
13952 (TREE_VALUE (parms1), TREE_VALUE (parms2),
13953 trust_type_canonical))
13954 return false;
13955 }
13956
13957 if (parms1 || parms2)
13958 return false;
13959
13960 return true;
13961 }
13962
13963 case RECORD_TYPE:
13964 case UNION_TYPE:
13965 case QUAL_UNION_TYPE:
13966 {
13967 tree f1, f2;
13968
13969 /* Don't try to compare variants of an incomplete type, before
13970 TYPE_FIELDS has been copied around. */
13971 if (!COMPLETE_TYPE_P (t1) && !COMPLETE_TYPE_P (t2))
13972 return true;
13973
13974
13975 if (TYPE_REVERSE_STORAGE_ORDER (t1) != TYPE_REVERSE_STORAGE_ORDER (t2))
13976 return false;
13977
13978 /* For aggregate types, all the fields must be the same. */
13979 for (f1 = TYPE_FIELDS (t1), f2 = TYPE_FIELDS (t2);
13980 f1 || f2;
13981 f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2))
13982 {
13983 /* Skip non-fields and zero-sized fields. */
13984 while (f1 && (TREE_CODE (f1) != FIELD_DECL
13985 || (DECL_SIZE (f1)
13986 && integer_zerop (DECL_SIZE (f1)))))
13987 f1 = TREE_CHAIN (f1);
13988 while (f2 && (TREE_CODE (f2) != FIELD_DECL
13989 || (DECL_SIZE (f2)
13990 && integer_zerop (DECL_SIZE (f2)))))
13991 f2 = TREE_CHAIN (f2);
13992 if (!f1 || !f2)
13993 break;
13994 /* The fields must have the same name, offset and type. */
13995 if (DECL_NONADDRESSABLE_P (f1) != DECL_NONADDRESSABLE_P (f2)
13996 || !gimple_compare_field_offset (f1, f2)
13997 || !gimple_canonical_types_compatible_p
13998 (TREE_TYPE (f1), TREE_TYPE (f2),
13999 trust_type_canonical))
14000 return false;
14001 }
14002
14003 /* If one aggregate has more fields than the other, they
14004 are not the same. */
14005 if (f1 || f2)
14006 return false;
14007
14008 return true;
14009 }
14010
14011 default:
14012 /* Consider all types with language specific trees in them mutually
14013 compatible. This is executed only from verify_type and false
14014 positives can be tolerated. */
14015 gcc_assert (!in_lto_p);
14016 return true;
14017 }
14018 }
14019
14020 /* For OPAQUE_TYPE T, it should have only size and alignment information
14021 and its mode should be of class MODE_OPAQUE. This function verifies
14022 these properties of T match TV which is the main variant of T and TC
14023 which is the canonical of T. */
14024
14025 static void
14026 verify_opaque_type (const_tree t, tree tv, tree tc)
14027 {
14028 gcc_assert (OPAQUE_TYPE_P (t));
14029 gcc_assert (tv && tv == TYPE_MAIN_VARIANT (tv));
14030 gcc_assert (tc && tc == TYPE_CANONICAL (tc));
14031
14032 /* For an opaque type T1, check if some of its properties match
14033 the corresponding ones of the other opaque type T2, emit some
14034 error messages for those inconsistent ones. */
14035 auto check_properties_for_opaque_type = [](const_tree t1, tree t2,
14036 const char *kind_msg)
14037 {
14038 if (!OPAQUE_TYPE_P (t2))
14039 {
14040 error ("type %s is not an opaque type", kind_msg);
14041 debug_tree (t2);
14042 return;
14043 }
14044 if (!OPAQUE_MODE_P (TYPE_MODE (t2)))
14045 {
14046 error ("type %s is not with opaque mode", kind_msg);
14047 debug_tree (t2);
14048 return;
14049 }
14050 if (TYPE_MODE (t1) != TYPE_MODE (t2))
14051 {
14052 error ("type %s differs by %<TYPE_MODE%>", kind_msg);
14053 debug_tree (t2);
14054 return;
14055 }
14056 poly_uint64 t1_size = tree_to_poly_uint64 (TYPE_SIZE (t1));
14057 poly_uint64 t2_size = tree_to_poly_uint64 (TYPE_SIZE (t2));
14058 if (maybe_ne (t1_size, t2_size))
14059 {
14060 error ("type %s differs by %<TYPE_SIZE%>", kind_msg);
14061 debug_tree (t2);
14062 return;
14063 }
14064 if (TYPE_ALIGN (t1) != TYPE_ALIGN (t2))
14065 {
14066 error ("type %s differs by %<TYPE_ALIGN%>", kind_msg);
14067 debug_tree (t2);
14068 return;
14069 }
14070 if (TYPE_USER_ALIGN (t1) != TYPE_USER_ALIGN (t2))
14071 {
14072 error ("type %s differs by %<TYPE_USER_ALIGN%>", kind_msg);
14073 debug_tree (t2);
14074 return;
14075 }
14076 };
14077
14078 if (t != tv)
14079 check_properties_for_opaque_type (t, tv, "variant");
14080
14081 if (t != tc)
14082 check_properties_for_opaque_type (t, tc, "canonical");
14083 }
14084
14085 /* Verify type T. */
14086
14087 void
14088 verify_type (const_tree t)
14089 {
14090 bool error_found = false;
14091 tree mv = TYPE_MAIN_VARIANT (t);
14092 tree ct = TYPE_CANONICAL (t);
14093
14094 if (OPAQUE_TYPE_P (t))
14095 {
14096 verify_opaque_type (t, mv, ct);
14097 return;
14098 }
14099
14100 if (!mv)
14101 {
14102 error ("main variant is not defined");
14103 error_found = true;
14104 }
14105 else if (mv != TYPE_MAIN_VARIANT (mv))
14106 {
14107 error ("%<TYPE_MAIN_VARIANT%> has different %<TYPE_MAIN_VARIANT%>");
14108 debug_tree (mv);
14109 error_found = true;
14110 }
14111 else if (t != mv && !verify_type_variant (t, mv))
14112 error_found = true;
14113
14114 if (!ct)
14115 ;
14116 else if (TYPE_CANONICAL (ct) != ct)
14117 {
14118 error ("%<TYPE_CANONICAL%> has different %<TYPE_CANONICAL%>");
14119 debug_tree (ct);
14120 error_found = true;
14121 }
14122 /* Method and function types cannot be used to address memory and thus
14123 TYPE_CANONICAL really matters only for determining useless conversions.
14124
14125 FIXME: C++ FE produce declarations of builtin functions that are not
14126 compatible with main variants. */
14127 else if (TREE_CODE (t) == FUNCTION_TYPE)
14128 ;
14129 else if (t != ct
14130 /* FIXME: gimple_canonical_types_compatible_p cannot compare types
14131 with variably sized arrays because their sizes possibly
14132 gimplified to different variables. */
14133 && !variably_modified_type_p (ct, NULL)
14134 && !gimple_canonical_types_compatible_p (t, ct, false)
14135 && COMPLETE_TYPE_P (t))
14136 {
14137 error ("%<TYPE_CANONICAL%> is not compatible");
14138 debug_tree (ct);
14139 error_found = true;
14140 }
14141
14142 if (COMPLETE_TYPE_P (t) && TYPE_CANONICAL (t)
14143 && TYPE_MODE (t) != TYPE_MODE (TYPE_CANONICAL (t)))
14144 {
14145 error ("%<TYPE_MODE%> of %<TYPE_CANONICAL%> is not compatible");
14146 debug_tree (ct);
14147 error_found = true;
14148 }
14149 if (TYPE_MAIN_VARIANT (t) == t && ct && TYPE_MAIN_VARIANT (ct) != ct)
14150 {
14151 error ("%<TYPE_CANONICAL%> of main variant is not main variant");
14152 debug_tree (ct);
14153 debug_tree (TYPE_MAIN_VARIANT (ct));
14154 error_found = true;
14155 }
14156
14157
14158 /* Check various uses of TYPE_MIN_VALUE_RAW. */
14159 if (RECORD_OR_UNION_TYPE_P (t))
14160 {
14161 /* FIXME: C FE uses TYPE_VFIELD to record C_TYPE_INCOMPLETE_VARS
14162 and danagle the pointer from time to time. */
14163 if (TYPE_VFIELD (t)
14164 && TREE_CODE (TYPE_VFIELD (t)) != FIELD_DECL
14165 && TREE_CODE (TYPE_VFIELD (t)) != TREE_LIST)
14166 {
14167 error ("%<TYPE_VFIELD%> is not %<FIELD_DECL%> nor %<TREE_LIST%>");
14168 debug_tree (TYPE_VFIELD (t));
14169 error_found = true;
14170 }
14171 }
14172 else if (TREE_CODE (t) == POINTER_TYPE)
14173 {
14174 if (TYPE_NEXT_PTR_TO (t)
14175 && TREE_CODE (TYPE_NEXT_PTR_TO (t)) != POINTER_TYPE)
14176 {
14177 error ("%<TYPE_NEXT_PTR_TO%> is not %<POINTER_TYPE%>");
14178 debug_tree (TYPE_NEXT_PTR_TO (t));
14179 error_found = true;
14180 }
14181 }
14182 else if (TREE_CODE (t) == REFERENCE_TYPE)
14183 {
14184 if (TYPE_NEXT_REF_TO (t)
14185 && TREE_CODE (TYPE_NEXT_REF_TO (t)) != REFERENCE_TYPE)
14186 {
14187 error ("%<TYPE_NEXT_REF_TO%> is not %<REFERENCE_TYPE%>");
14188 debug_tree (TYPE_NEXT_REF_TO (t));
14189 error_found = true;
14190 }
14191 }
14192 else if (INTEGRAL_TYPE_P (t) || SCALAR_FLOAT_TYPE_P (t)
14193 || FIXED_POINT_TYPE_P (t))
14194 {
14195 /* FIXME: The following check should pass:
14196 useless_type_conversion_p (const_cast <tree> (t),
14197 TREE_TYPE (TYPE_MIN_VALUE (t))
14198 but does not for C sizetypes in LTO. */
14199 }
14200
14201 /* Check various uses of TYPE_MAXVAL_RAW. */
14202 if (RECORD_OR_UNION_TYPE_P (t))
14203 {
14204 if (!TYPE_BINFO (t))
14205 ;
14206 else if (TREE_CODE (TYPE_BINFO (t)) != TREE_BINFO)
14207 {
14208 error ("%<TYPE_BINFO%> is not %<TREE_BINFO%>");
14209 debug_tree (TYPE_BINFO (t));
14210 error_found = true;
14211 }
14212 else if (TREE_TYPE (TYPE_BINFO (t)) != TYPE_MAIN_VARIANT (t))
14213 {
14214 error ("%<TYPE_BINFO%> type is not %<TYPE_MAIN_VARIANT%>");
14215 debug_tree (TREE_TYPE (TYPE_BINFO (t)));
14216 error_found = true;
14217 }
14218 }
14219 else if (FUNC_OR_METHOD_TYPE_P (t))
14220 {
14221 if (TYPE_METHOD_BASETYPE (t)
14222 && TREE_CODE (TYPE_METHOD_BASETYPE (t)) != RECORD_TYPE
14223 && TREE_CODE (TYPE_METHOD_BASETYPE (t)) != UNION_TYPE)
14224 {
14225 error ("%<TYPE_METHOD_BASETYPE%> is not record nor union");
14226 debug_tree (TYPE_METHOD_BASETYPE (t));
14227 error_found = true;
14228 }
14229 }
14230 else if (TREE_CODE (t) == OFFSET_TYPE)
14231 {
14232 if (TYPE_OFFSET_BASETYPE (t)
14233 && TREE_CODE (TYPE_OFFSET_BASETYPE (t)) != RECORD_TYPE
14234 && TREE_CODE (TYPE_OFFSET_BASETYPE (t)) != UNION_TYPE)
14235 {
14236 error ("%<TYPE_OFFSET_BASETYPE%> is not record nor union");
14237 debug_tree (TYPE_OFFSET_BASETYPE (t));
14238 error_found = true;
14239 }
14240 }
14241 else if (INTEGRAL_TYPE_P (t) || SCALAR_FLOAT_TYPE_P (t)
14242 || FIXED_POINT_TYPE_P (t))
14243 {
14244 /* FIXME: The following check should pass:
14245 useless_type_conversion_p (const_cast <tree> (t),
14246 TREE_TYPE (TYPE_MAX_VALUE (t))
14247 but does not for C sizetypes in LTO. */
14248 }
14249 else if (TREE_CODE (t) == ARRAY_TYPE)
14250 {
14251 if (TYPE_ARRAY_MAX_SIZE (t)
14252 && TREE_CODE (TYPE_ARRAY_MAX_SIZE (t)) != INTEGER_CST)
14253 {
14254 error ("%<TYPE_ARRAY_MAX_SIZE%> not %<INTEGER_CST%>");
14255 debug_tree (TYPE_ARRAY_MAX_SIZE (t));
14256 error_found = true;
14257 }
14258 }
14259 else if (TYPE_MAX_VALUE_RAW (t))
14260 {
14261 error ("%<TYPE_MAX_VALUE_RAW%> non-NULL");
14262 debug_tree (TYPE_MAX_VALUE_RAW (t));
14263 error_found = true;
14264 }
14265
14266 if (TYPE_LANG_SLOT_1 (t) && in_lto_p)
14267 {
14268 error ("%<TYPE_LANG_SLOT_1 (binfo)%> field is non-NULL");
14269 debug_tree (TYPE_LANG_SLOT_1 (t));
14270 error_found = true;
14271 }
14272
14273 /* Check various uses of TYPE_VALUES_RAW. */
14274 if (TREE_CODE (t) == ENUMERAL_TYPE)
14275 for (tree l = TYPE_VALUES (t); l; l = TREE_CHAIN (l))
14276 {
14277 tree value = TREE_VALUE (l);
14278 tree name = TREE_PURPOSE (l);
14279
14280 /* C FE porduce INTEGER_CST of INTEGER_TYPE, while C++ FE uses
14281 CONST_DECL of ENUMERAL TYPE. */
14282 if (TREE_CODE (value) != INTEGER_CST && TREE_CODE (value) != CONST_DECL)
14283 {
14284 error ("enum value is not %<CONST_DECL%> or %<INTEGER_CST%>");
14285 debug_tree (value);
14286 debug_tree (name);
14287 error_found = true;
14288 }
14289 if (TREE_CODE (TREE_TYPE (value)) != INTEGER_TYPE
14290 && TREE_CODE (TREE_TYPE (value)) != BOOLEAN_TYPE
14291 && !useless_type_conversion_p (const_cast <tree> (t), TREE_TYPE (value)))
14292 {
14293 error ("enum value type is not %<INTEGER_TYPE%> nor convertible "
14294 "to the enum");
14295 debug_tree (value);
14296 debug_tree (name);
14297 error_found = true;
14298 }
14299 if (TREE_CODE (name) != IDENTIFIER_NODE)
14300 {
14301 error ("enum value name is not %<IDENTIFIER_NODE%>");
14302 debug_tree (value);
14303 debug_tree (name);
14304 error_found = true;
14305 }
14306 }
14307 else if (TREE_CODE (t) == ARRAY_TYPE)
14308 {
14309 if (TYPE_DOMAIN (t) && TREE_CODE (TYPE_DOMAIN (t)) != INTEGER_TYPE)
14310 {
14311 error ("array %<TYPE_DOMAIN%> is not integer type");
14312 debug_tree (TYPE_DOMAIN (t));
14313 error_found = true;
14314 }
14315 }
14316 else if (RECORD_OR_UNION_TYPE_P (t))
14317 {
14318 if (TYPE_FIELDS (t) && !COMPLETE_TYPE_P (t) && in_lto_p)
14319 {
14320 error ("%<TYPE_FIELDS%> defined in incomplete type");
14321 error_found = true;
14322 }
14323 for (tree fld = TYPE_FIELDS (t); fld; fld = TREE_CHAIN (fld))
14324 {
14325 /* TODO: verify properties of decls. */
14326 if (TREE_CODE (fld) == FIELD_DECL)
14327 ;
14328 else if (TREE_CODE (fld) == TYPE_DECL)
14329 ;
14330 else if (TREE_CODE (fld) == CONST_DECL)
14331 ;
14332 else if (VAR_P (fld))
14333 ;
14334 else if (TREE_CODE (fld) == TEMPLATE_DECL)
14335 ;
14336 else if (TREE_CODE (fld) == USING_DECL)
14337 ;
14338 else if (TREE_CODE (fld) == FUNCTION_DECL)
14339 ;
14340 else
14341 {
14342 error ("wrong tree in %<TYPE_FIELDS%> list");
14343 debug_tree (fld);
14344 error_found = true;
14345 }
14346 }
14347 }
14348 else if (TREE_CODE (t) == INTEGER_TYPE
14349 || TREE_CODE (t) == BOOLEAN_TYPE
14350 || TREE_CODE (t) == BITINT_TYPE
14351 || TREE_CODE (t) == OFFSET_TYPE
14352 || TREE_CODE (t) == REFERENCE_TYPE
14353 || TREE_CODE (t) == NULLPTR_TYPE
14354 || TREE_CODE (t) == POINTER_TYPE)
14355 {
14356 if (TYPE_CACHED_VALUES_P (t) != (TYPE_CACHED_VALUES (t) != NULL))
14357 {
14358 error ("%<TYPE_CACHED_VALUES_P%> is %i while %<TYPE_CACHED_VALUES%> "
14359 "is %p",
14360 TYPE_CACHED_VALUES_P (t), (void *)TYPE_CACHED_VALUES (t));
14361 error_found = true;
14362 }
14363 else if (TYPE_CACHED_VALUES_P (t) && TREE_CODE (TYPE_CACHED_VALUES (t)) != TREE_VEC)
14364 {
14365 error ("%<TYPE_CACHED_VALUES%> is not %<TREE_VEC%>");
14366 debug_tree (TYPE_CACHED_VALUES (t));
14367 error_found = true;
14368 }
14369 /* Verify just enough of cache to ensure that no one copied it to new type.
14370 All copying should go by copy_node that should clear it. */
14371 else if (TYPE_CACHED_VALUES_P (t))
14372 {
14373 int i;
14374 for (i = 0; i < TREE_VEC_LENGTH (TYPE_CACHED_VALUES (t)); i++)
14375 if (TREE_VEC_ELT (TYPE_CACHED_VALUES (t), i)
14376 && TREE_TYPE (TREE_VEC_ELT (TYPE_CACHED_VALUES (t), i)) != t)
14377 {
14378 error ("wrong %<TYPE_CACHED_VALUES%> entry");
14379 debug_tree (TREE_VEC_ELT (TYPE_CACHED_VALUES (t), i));
14380 error_found = true;
14381 break;
14382 }
14383 }
14384 }
14385 else if (FUNC_OR_METHOD_TYPE_P (t))
14386 for (tree l = TYPE_ARG_TYPES (t); l; l = TREE_CHAIN (l))
14387 {
14388 /* C++ FE uses TREE_PURPOSE to store initial values. */
14389 if (TREE_PURPOSE (l) && in_lto_p)
14390 {
14391 error ("%<TREE_PURPOSE%> is non-NULL in %<TYPE_ARG_TYPES%> list");
14392 debug_tree (l);
14393 error_found = true;
14394 }
14395 if (!TYPE_P (TREE_VALUE (l)))
14396 {
14397 error ("wrong entry in %<TYPE_ARG_TYPES%> list");
14398 debug_tree (l);
14399 error_found = true;
14400 }
14401 }
14402 else if (!is_lang_specific (t) && TYPE_VALUES_RAW (t))
14403 {
14404 error ("%<TYPE_VALUES_RAW%> field is non-NULL");
14405 debug_tree (TYPE_VALUES_RAW (t));
14406 error_found = true;
14407 }
14408 if (TREE_CODE (t) != INTEGER_TYPE
14409 && TREE_CODE (t) != BOOLEAN_TYPE
14410 && TREE_CODE (t) != BITINT_TYPE
14411 && TREE_CODE (t) != OFFSET_TYPE
14412 && TREE_CODE (t) != REFERENCE_TYPE
14413 && TREE_CODE (t) != NULLPTR_TYPE
14414 && TREE_CODE (t) != POINTER_TYPE
14415 && TYPE_CACHED_VALUES_P (t))
14416 {
14417 error ("%<TYPE_CACHED_VALUES_P%> is set while it should not be");
14418 error_found = true;
14419 }
14420
14421 /* ipa-devirt makes an assumption that TYPE_METHOD_BASETYPE is always
14422 TYPE_MAIN_VARIANT and it would be odd to add methods only to variatns
14423 of a type. */
14424 if (TREE_CODE (t) == METHOD_TYPE
14425 && TYPE_MAIN_VARIANT (TYPE_METHOD_BASETYPE (t)) != TYPE_METHOD_BASETYPE (t))
14426 {
14427 error ("%<TYPE_METHOD_BASETYPE%> is not main variant");
14428 error_found = true;
14429 }
14430
14431 if (error_found)
14432 {
14433 debug_tree (const_cast <tree> (t));
14434 internal_error ("%qs failed", __func__);
14435 }
14436 }
14437
14438
14439 /* Return 1 if ARG interpreted as signed in its precision is known to be
14440 always positive or 2 if ARG is known to be always negative, or 3 if
14441 ARG may be positive or negative. */
14442
14443 int
14444 get_range_pos_neg (tree arg)
14445 {
14446 if (arg == error_mark_node)
14447 return 3;
14448
14449 int prec = TYPE_PRECISION (TREE_TYPE (arg));
14450 int cnt = 0;
14451 if (TREE_CODE (arg) == INTEGER_CST)
14452 {
14453 wide_int w = wi::sext (wi::to_wide (arg), prec);
14454 if (wi::neg_p (w))
14455 return 2;
14456 else
14457 return 1;
14458 }
14459 while (CONVERT_EXPR_P (arg)
14460 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (arg, 0)))
14461 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg, 0))) <= prec)
14462 {
14463 arg = TREE_OPERAND (arg, 0);
14464 /* Narrower value zero extended into wider type
14465 will always result in positive values. */
14466 if (TYPE_UNSIGNED (TREE_TYPE (arg))
14467 && TYPE_PRECISION (TREE_TYPE (arg)) < prec)
14468 return 1;
14469 prec = TYPE_PRECISION (TREE_TYPE (arg));
14470 if (++cnt > 30)
14471 return 3;
14472 }
14473
14474 if (TREE_CODE (arg) != SSA_NAME)
14475 return 3;
14476 value_range r;
14477 while (!get_global_range_query ()->range_of_expr (r, arg)
14478 || r.undefined_p () || r.varying_p ())
14479 {
14480 gimple *g = SSA_NAME_DEF_STMT (arg);
14481 if (is_gimple_assign (g)
14482 && CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (g)))
14483 {
14484 tree t = gimple_assign_rhs1 (g);
14485 if (INTEGRAL_TYPE_P (TREE_TYPE (t))
14486 && TYPE_PRECISION (TREE_TYPE (t)) <= prec)
14487 {
14488 if (TYPE_UNSIGNED (TREE_TYPE (t))
14489 && TYPE_PRECISION (TREE_TYPE (t)) < prec)
14490 return 1;
14491 prec = TYPE_PRECISION (TREE_TYPE (t));
14492 arg = t;
14493 if (++cnt > 30)
14494 return 3;
14495 continue;
14496 }
14497 }
14498 return 3;
14499 }
14500 if (TYPE_UNSIGNED (TREE_TYPE (arg)))
14501 {
14502 /* For unsigned values, the "positive" range comes
14503 below the "negative" range. */
14504 if (!wi::neg_p (wi::sext (r.upper_bound (), prec), SIGNED))
14505 return 1;
14506 if (wi::neg_p (wi::sext (r.lower_bound (), prec), SIGNED))
14507 return 2;
14508 }
14509 else
14510 {
14511 if (!wi::neg_p (wi::sext (r.lower_bound (), prec), SIGNED))
14512 return 1;
14513 if (wi::neg_p (wi::sext (r.upper_bound (), prec), SIGNED))
14514 return 2;
14515 }
14516 return 3;
14517 }
14518
14519
14520
14521
14522 /* Return true if ARG is marked with the nonnull attribute in the
14523 current function signature. */
14524
14525 bool
14526 nonnull_arg_p (const_tree arg)
14527 {
14528 tree t, attrs, fntype;
14529 unsigned HOST_WIDE_INT arg_num;
14530
14531 gcc_assert (TREE_CODE (arg) == PARM_DECL
14532 && (POINTER_TYPE_P (TREE_TYPE (arg))
14533 || TREE_CODE (TREE_TYPE (arg)) == OFFSET_TYPE));
14534
14535 /* The static chain decl is always non null. */
14536 if (arg == cfun->static_chain_decl)
14537 return true;
14538
14539 /* THIS argument of method is always non-NULL. */
14540 if (TREE_CODE (TREE_TYPE (cfun->decl)) == METHOD_TYPE
14541 && arg == DECL_ARGUMENTS (cfun->decl)
14542 && flag_delete_null_pointer_checks)
14543 return true;
14544
14545 /* Values passed by reference are always non-NULL. */
14546 if (TREE_CODE (TREE_TYPE (arg)) == REFERENCE_TYPE
14547 && flag_delete_null_pointer_checks)
14548 return true;
14549
14550 fntype = TREE_TYPE (cfun->decl);
14551 for (attrs = TYPE_ATTRIBUTES (fntype); attrs; attrs = TREE_CHAIN (attrs))
14552 {
14553 attrs = lookup_attribute ("nonnull", attrs);
14554
14555 /* If "nonnull" wasn't specified, we know nothing about the argument. */
14556 if (attrs == NULL_TREE)
14557 return false;
14558
14559 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
14560 if (TREE_VALUE (attrs) == NULL_TREE)
14561 return true;
14562
14563 /* Get the position number for ARG in the function signature. */
14564 for (arg_num = 1, t = DECL_ARGUMENTS (cfun->decl);
14565 t;
14566 t = DECL_CHAIN (t), arg_num++)
14567 {
14568 if (t == arg)
14569 break;
14570 }
14571
14572 gcc_assert (t == arg);
14573
14574 /* Now see if ARG_NUM is mentioned in the nonnull list. */
14575 for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
14576 {
14577 if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
14578 return true;
14579 }
14580 }
14581
14582 return false;
14583 }
14584
14585 /* Combine LOC and BLOCK to a combined adhoc loc, retaining any range
14586 information. */
14587
14588 location_t
14589 set_block (location_t loc, tree block)
14590 {
14591 location_t pure_loc = get_pure_location (loc);
14592 source_range src_range = get_range_from_loc (line_table, loc);
14593 unsigned discriminator = get_discriminator_from_loc (line_table, loc);
14594 return line_table->get_or_create_combined_loc (pure_loc, src_range, block,
14595 discriminator);
14596 }
14597
14598 location_t
14599 set_source_range (tree expr, location_t start, location_t finish)
14600 {
14601 source_range src_range;
14602 src_range.m_start = start;
14603 src_range.m_finish = finish;
14604 return set_source_range (expr, src_range);
14605 }
14606
14607 location_t
14608 set_source_range (tree expr, source_range src_range)
14609 {
14610 if (!EXPR_P (expr))
14611 return UNKNOWN_LOCATION;
14612
14613 location_t expr_location = EXPR_LOCATION (expr);
14614 location_t pure_loc = get_pure_location (expr_location);
14615 unsigned discriminator = get_discriminator_from_loc (expr_location);
14616 location_t adhoc = line_table->get_or_create_combined_loc (pure_loc,
14617 src_range,
14618 nullptr,
14619 discriminator);
14620 SET_EXPR_LOCATION (expr, adhoc);
14621 return adhoc;
14622 }
14623
14624 /* Return EXPR, potentially wrapped with a node expression LOC,
14625 if !CAN_HAVE_LOCATION_P (expr).
14626
14627 NON_LVALUE_EXPR is used for wrapping constants, apart from STRING_CST.
14628 VIEW_CONVERT_EXPR is used for wrapping non-constants and STRING_CST.
14629
14630 Wrapper nodes can be identified using location_wrapper_p. */
14631
14632 tree
14633 maybe_wrap_with_location (tree expr, location_t loc)
14634 {
14635 if (expr == NULL)
14636 return NULL;
14637 if (loc == UNKNOWN_LOCATION)
14638 return expr;
14639 if (CAN_HAVE_LOCATION_P (expr))
14640 return expr;
14641 /* We should only be adding wrappers for constants and for decls,
14642 or for some exceptional tree nodes (e.g. BASELINK in the C++ FE). */
14643 gcc_assert (CONSTANT_CLASS_P (expr)
14644 || DECL_P (expr)
14645 || EXCEPTIONAL_CLASS_P (expr));
14646
14647 /* For now, don't add wrappers to exceptional tree nodes, to minimize
14648 any impact of the wrapper nodes. */
14649 if (EXCEPTIONAL_CLASS_P (expr) || error_operand_p (expr))
14650 return expr;
14651
14652 /* Compiler-generated temporary variables don't need a wrapper. */
14653 if (DECL_P (expr) && DECL_ARTIFICIAL (expr) && DECL_IGNORED_P (expr))
14654 return expr;
14655
14656 /* If any auto_suppress_location_wrappers are active, don't create
14657 wrappers. */
14658 if (suppress_location_wrappers > 0)
14659 return expr;
14660
14661 tree_code code
14662 = (((CONSTANT_CLASS_P (expr) && TREE_CODE (expr) != STRING_CST)
14663 || (TREE_CODE (expr) == CONST_DECL && !TREE_STATIC (expr)))
14664 ? NON_LVALUE_EXPR : VIEW_CONVERT_EXPR);
14665 tree wrapper = build1_loc (loc, code, TREE_TYPE (expr), expr);
14666 /* Mark this node as being a wrapper. */
14667 EXPR_LOCATION_WRAPPER_P (wrapper) = 1;
14668 return wrapper;
14669 }
14670
14671 int suppress_location_wrappers;
14672
14673 /* Return the name of combined function FN, for debugging purposes. */
14674
14675 const char *
14676 combined_fn_name (combined_fn fn)
14677 {
14678 if (builtin_fn_p (fn))
14679 {
14680 tree fndecl = builtin_decl_explicit (as_builtin_fn (fn));
14681 return IDENTIFIER_POINTER (DECL_NAME (fndecl));
14682 }
14683 else
14684 return internal_fn_name (as_internal_fn (fn));
14685 }
14686
14687 /* Return a bitmap with a bit set corresponding to each argument in
14688 a function call type FNTYPE declared with attribute nonnull,
14689 or null if none of the function's argument are nonnull. The caller
14690 must free the bitmap. */
14691
14692 bitmap
14693 get_nonnull_args (const_tree fntype)
14694 {
14695 if (fntype == NULL_TREE)
14696 return NULL;
14697
14698 bitmap argmap = NULL;
14699 if (TREE_CODE (fntype) == METHOD_TYPE)
14700 {
14701 /* The this pointer in C++ non-static member functions is
14702 implicitly nonnull whether or not it's declared as such. */
14703 argmap = BITMAP_ALLOC (NULL);
14704 bitmap_set_bit (argmap, 0);
14705 }
14706
14707 tree attrs = TYPE_ATTRIBUTES (fntype);
14708 if (!attrs)
14709 return argmap;
14710
14711 /* A function declaration can specify multiple attribute nonnull,
14712 each with zero or more arguments. The loop below creates a bitmap
14713 representing a union of all the arguments. An empty (but non-null)
14714 bitmap means that all arguments have been declaraed nonnull. */
14715 for ( ; attrs; attrs = TREE_CHAIN (attrs))
14716 {
14717 attrs = lookup_attribute ("nonnull", attrs);
14718 if (!attrs)
14719 break;
14720
14721 if (!argmap)
14722 argmap = BITMAP_ALLOC (NULL);
14723
14724 if (!TREE_VALUE (attrs))
14725 {
14726 /* Clear the bitmap in case a previous attribute nonnull
14727 set it and this one overrides it for all arguments. */
14728 bitmap_clear (argmap);
14729 return argmap;
14730 }
14731
14732 /* Iterate over the indices of the format arguments declared nonnull
14733 and set a bit for each. */
14734 for (tree idx = TREE_VALUE (attrs); idx; idx = TREE_CHAIN (idx))
14735 {
14736 unsigned int val = TREE_INT_CST_LOW (TREE_VALUE (idx)) - 1;
14737 bitmap_set_bit (argmap, val);
14738 }
14739 }
14740
14741 return argmap;
14742 }
14743
14744 /* Returns true if TYPE is a type where it and all of its subobjects
14745 (recursively) are of structure, union, or array type. */
14746
14747 bool
14748 is_empty_type (const_tree type)
14749 {
14750 if (RECORD_OR_UNION_TYPE_P (type))
14751 {
14752 for (tree field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
14753 if (TREE_CODE (field) == FIELD_DECL
14754 && !DECL_PADDING_P (field)
14755 && !is_empty_type (TREE_TYPE (field)))
14756 return false;
14757 return true;
14758 }
14759 else if (TREE_CODE (type) == ARRAY_TYPE)
14760 return (integer_minus_onep (array_type_nelts (type))
14761 || TYPE_DOMAIN (type) == NULL_TREE
14762 || is_empty_type (TREE_TYPE (type)));
14763 return false;
14764 }
14765
14766 /* Implement TARGET_EMPTY_RECORD_P. Return true if TYPE is an empty type
14767 that shouldn't be passed via stack. */
14768
14769 bool
14770 default_is_empty_record (const_tree type)
14771 {
14772 if (!abi_version_at_least (12))
14773 return false;
14774
14775 if (type == error_mark_node)
14776 return false;
14777
14778 if (TREE_ADDRESSABLE (type))
14779 return false;
14780
14781 return is_empty_type (TYPE_MAIN_VARIANT (type));
14782 }
14783
14784 /* Determine whether TYPE is a structure with a flexible array member,
14785 or a union containing such a structure (possibly recursively). */
14786
14787 bool
14788 flexible_array_type_p (const_tree type)
14789 {
14790 tree x, last;
14791 switch (TREE_CODE (type))
14792 {
14793 case RECORD_TYPE:
14794 last = NULL_TREE;
14795 for (x = TYPE_FIELDS (type); x != NULL_TREE; x = DECL_CHAIN (x))
14796 if (TREE_CODE (x) == FIELD_DECL)
14797 last = x;
14798 if (last == NULL_TREE)
14799 return false;
14800 if (TREE_CODE (TREE_TYPE (last)) == ARRAY_TYPE
14801 && TYPE_SIZE (TREE_TYPE (last)) == NULL_TREE
14802 && TYPE_DOMAIN (TREE_TYPE (last)) != NULL_TREE
14803 && TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (last))) == NULL_TREE)
14804 return true;
14805 return false;
14806 case UNION_TYPE:
14807 for (x = TYPE_FIELDS (type); x != NULL_TREE; x = DECL_CHAIN (x))
14808 {
14809 if (TREE_CODE (x) == FIELD_DECL
14810 && flexible_array_type_p (TREE_TYPE (x)))
14811 return true;
14812 }
14813 return false;
14814 default:
14815 return false;
14816 }
14817 }
14818
14819 /* Like int_size_in_bytes, but handle empty records specially. */
14820
14821 HOST_WIDE_INT
14822 arg_int_size_in_bytes (const_tree type)
14823 {
14824 return TYPE_EMPTY_P (type) ? 0 : int_size_in_bytes (type);
14825 }
14826
14827 /* Like size_in_bytes, but handle empty records specially. */
14828
14829 tree
14830 arg_size_in_bytes (const_tree type)
14831 {
14832 return TYPE_EMPTY_P (type) ? size_zero_node : size_in_bytes (type);
14833 }
14834
14835 /* Return true if an expression with CODE has to have the same result type as
14836 its first operand. */
14837
14838 bool
14839 expr_type_first_operand_type_p (tree_code code)
14840 {
14841 switch (code)
14842 {
14843 case NEGATE_EXPR:
14844 case ABS_EXPR:
14845 case BIT_NOT_EXPR:
14846 case PAREN_EXPR:
14847 case CONJ_EXPR:
14848
14849 case PLUS_EXPR:
14850 case MINUS_EXPR:
14851 case MULT_EXPR:
14852 case TRUNC_DIV_EXPR:
14853 case CEIL_DIV_EXPR:
14854 case FLOOR_DIV_EXPR:
14855 case ROUND_DIV_EXPR:
14856 case TRUNC_MOD_EXPR:
14857 case CEIL_MOD_EXPR:
14858 case FLOOR_MOD_EXPR:
14859 case ROUND_MOD_EXPR:
14860 case RDIV_EXPR:
14861 case EXACT_DIV_EXPR:
14862 case MIN_EXPR:
14863 case MAX_EXPR:
14864 case BIT_IOR_EXPR:
14865 case BIT_XOR_EXPR:
14866 case BIT_AND_EXPR:
14867
14868 case LSHIFT_EXPR:
14869 case RSHIFT_EXPR:
14870 case LROTATE_EXPR:
14871 case RROTATE_EXPR:
14872 return true;
14873
14874 default:
14875 return false;
14876 }
14877 }
14878
14879 /* Return a typenode for the "standard" C type with a given name. */
14880 tree
14881 get_typenode_from_name (const char *name)
14882 {
14883 if (name == NULL || *name == '\0')
14884 return NULL_TREE;
14885
14886 if (strcmp (name, "char") == 0)
14887 return char_type_node;
14888 if (strcmp (name, "unsigned char") == 0)
14889 return unsigned_char_type_node;
14890 if (strcmp (name, "signed char") == 0)
14891 return signed_char_type_node;
14892
14893 if (strcmp (name, "short int") == 0)
14894 return short_integer_type_node;
14895 if (strcmp (name, "short unsigned int") == 0)
14896 return short_unsigned_type_node;
14897
14898 if (strcmp (name, "int") == 0)
14899 return integer_type_node;
14900 if (strcmp (name, "unsigned int") == 0)
14901 return unsigned_type_node;
14902
14903 if (strcmp (name, "long int") == 0)
14904 return long_integer_type_node;
14905 if (strcmp (name, "long unsigned int") == 0)
14906 return long_unsigned_type_node;
14907
14908 if (strcmp (name, "long long int") == 0)
14909 return long_long_integer_type_node;
14910 if (strcmp (name, "long long unsigned int") == 0)
14911 return long_long_unsigned_type_node;
14912
14913 gcc_unreachable ();
14914 }
14915
14916 /* List of pointer types used to declare builtins before we have seen their
14917 real declaration.
14918
14919 Keep the size up to date in tree.h ! */
14920 const builtin_structptr_type builtin_structptr_types[6] =
14921 {
14922 { fileptr_type_node, ptr_type_node, "FILE" },
14923 { const_tm_ptr_type_node, const_ptr_type_node, "tm" },
14924 { fenv_t_ptr_type_node, ptr_type_node, "fenv_t" },
14925 { const_fenv_t_ptr_type_node, const_ptr_type_node, "fenv_t" },
14926 { fexcept_t_ptr_type_node, ptr_type_node, "fexcept_t" },
14927 { const_fexcept_t_ptr_type_node, const_ptr_type_node, "fexcept_t" }
14928 };
14929
14930 /* Return the maximum object size. */
14931
14932 tree
14933 max_object_size (void)
14934 {
14935 /* To do: Make this a configurable parameter. */
14936 return TYPE_MAX_VALUE (ptrdiff_type_node);
14937 }
14938
14939 /* A wrapper around TARGET_VERIFY_TYPE_CONTEXT that makes the silent_p
14940 parameter default to false and that weeds out error_mark_node. */
14941
14942 bool
14943 verify_type_context (location_t loc, type_context_kind context,
14944 const_tree type, bool silent_p)
14945 {
14946 if (type == error_mark_node)
14947 return true;
14948
14949 gcc_assert (TYPE_P (type));
14950 return (!targetm.verify_type_context
14951 || targetm.verify_type_context (loc, context, type, silent_p));
14952 }
14953
14954 /* Return true if NEW_ASM and DELETE_ASM name a valid pair of new and
14955 delete operators. Return false if they may or may not name such
14956 a pair and, when nonnull, set *PCERTAIN to true if they certainly
14957 do not. */
14958
14959 bool
14960 valid_new_delete_pair_p (tree new_asm, tree delete_asm,
14961 bool *pcertain /* = NULL */)
14962 {
14963 bool certain;
14964 if (!pcertain)
14965 pcertain = &certain;
14966
14967 const char *new_name = IDENTIFIER_POINTER (new_asm);
14968 const char *delete_name = IDENTIFIER_POINTER (delete_asm);
14969 unsigned int new_len = IDENTIFIER_LENGTH (new_asm);
14970 unsigned int delete_len = IDENTIFIER_LENGTH (delete_asm);
14971
14972 /* The following failures are due to invalid names so they're not
14973 considered certain mismatches. */
14974 *pcertain = false;
14975
14976 if (new_len < 5 || delete_len < 6)
14977 return false;
14978 if (new_name[0] == '_')
14979 ++new_name, --new_len;
14980 if (new_name[0] == '_')
14981 ++new_name, --new_len;
14982 if (delete_name[0] == '_')
14983 ++delete_name, --delete_len;
14984 if (delete_name[0] == '_')
14985 ++delete_name, --delete_len;
14986 if (new_len < 4 || delete_len < 5)
14987 return false;
14988
14989 /* The following failures are due to names of user-defined operators
14990 so they're also not considered certain mismatches. */
14991
14992 /* *_len is now just the length after initial underscores. */
14993 if (new_name[0] != 'Z' || new_name[1] != 'n')
14994 return false;
14995 if (delete_name[0] != 'Z' || delete_name[1] != 'd')
14996 return false;
14997
14998 /* The following failures are certain mismatches. */
14999 *pcertain = true;
15000
15001 /* _Znw must match _Zdl, _Zna must match _Zda. */
15002 if ((new_name[2] != 'w' || delete_name[2] != 'l')
15003 && (new_name[2] != 'a' || delete_name[2] != 'a'))
15004 return false;
15005 /* 'j', 'm' and 'y' correspond to size_t. */
15006 if (new_name[3] != 'j' && new_name[3] != 'm' && new_name[3] != 'y')
15007 return false;
15008 if (delete_name[3] != 'P' || delete_name[4] != 'v')
15009 return false;
15010 if (new_len == 4
15011 || (new_len == 18 && !memcmp (new_name + 4, "RKSt9nothrow_t", 14)))
15012 {
15013 /* _ZnXY or _ZnXYRKSt9nothrow_t matches
15014 _ZdXPv, _ZdXPvY and _ZdXPvRKSt9nothrow_t. */
15015 if (delete_len == 5)
15016 return true;
15017 if (delete_len == 6 && delete_name[5] == new_name[3])
15018 return true;
15019 if (delete_len == 19 && !memcmp (delete_name + 5, "RKSt9nothrow_t", 14))
15020 return true;
15021 }
15022 else if ((new_len == 19 && !memcmp (new_name + 4, "St11align_val_t", 15))
15023 || (new_len == 33
15024 && !memcmp (new_name + 4, "St11align_val_tRKSt9nothrow_t", 29)))
15025 {
15026 /* _ZnXYSt11align_val_t or _ZnXYSt11align_val_tRKSt9nothrow_t matches
15027 _ZdXPvSt11align_val_t or _ZdXPvYSt11align_val_t or or
15028 _ZdXPvSt11align_val_tRKSt9nothrow_t. */
15029 if (delete_len == 20 && !memcmp (delete_name + 5, "St11align_val_t", 15))
15030 return true;
15031 if (delete_len == 21
15032 && delete_name[5] == new_name[3]
15033 && !memcmp (delete_name + 6, "St11align_val_t", 15))
15034 return true;
15035 if (delete_len == 34
15036 && !memcmp (delete_name + 5, "St11align_val_tRKSt9nothrow_t", 29))
15037 return true;
15038 }
15039
15040 /* The negative result is conservative. */
15041 *pcertain = false;
15042 return false;
15043 }
15044
15045 /* Return the zero-based number corresponding to the argument being
15046 deallocated if FNDECL is a deallocation function or an out-of-bounds
15047 value if it isn't. */
15048
15049 unsigned
15050 fndecl_dealloc_argno (tree fndecl)
15051 {
15052 /* A call to operator delete isn't recognized as one to a built-in. */
15053 if (DECL_IS_OPERATOR_DELETE_P (fndecl))
15054 {
15055 if (DECL_IS_REPLACEABLE_OPERATOR (fndecl))
15056 return 0;
15057
15058 /* Avoid placement delete that's not been inlined. */
15059 tree fname = DECL_ASSEMBLER_NAME (fndecl);
15060 if (id_equal (fname, "_ZdlPvS_") // ordinary form
15061 || id_equal (fname, "_ZdaPvS_")) // array form
15062 return UINT_MAX;
15063 return 0;
15064 }
15065
15066 /* TODO: Handle user-defined functions with attribute malloc? Handle
15067 known non-built-ins like fopen? */
15068 if (fndecl_built_in_p (fndecl, BUILT_IN_NORMAL))
15069 {
15070 switch (DECL_FUNCTION_CODE (fndecl))
15071 {
15072 case BUILT_IN_FREE:
15073 case BUILT_IN_REALLOC:
15074 case BUILT_IN_GOMP_FREE:
15075 case BUILT_IN_GOMP_REALLOC:
15076 return 0;
15077 default:
15078 break;
15079 }
15080 return UINT_MAX;
15081 }
15082
15083 tree attrs = DECL_ATTRIBUTES (fndecl);
15084 if (!attrs)
15085 return UINT_MAX;
15086
15087 for (tree atfree = attrs;
15088 (atfree = lookup_attribute ("*dealloc", atfree));
15089 atfree = TREE_CHAIN (atfree))
15090 {
15091 tree alloc = TREE_VALUE (atfree);
15092 if (!alloc)
15093 continue;
15094
15095 tree pos = TREE_CHAIN (alloc);
15096 if (!pos)
15097 return 0;
15098
15099 pos = TREE_VALUE (pos);
15100 return TREE_INT_CST_LOW (pos) - 1;
15101 }
15102
15103 return UINT_MAX;
15104 }
15105
15106 /* If EXPR refers to a character array or pointer declared attribute
15107 nonstring, return a decl for that array or pointer and set *REF
15108 to the referenced enclosing object or pointer. Otherwise return
15109 null. */
15110
15111 tree
15112 get_attr_nonstring_decl (tree expr, tree *ref)
15113 {
15114 tree decl = expr;
15115 tree var = NULL_TREE;
15116 if (TREE_CODE (decl) == SSA_NAME)
15117 {
15118 gimple *def = SSA_NAME_DEF_STMT (decl);
15119
15120 if (is_gimple_assign (def))
15121 {
15122 tree_code code = gimple_assign_rhs_code (def);
15123 if (code == ADDR_EXPR
15124 || code == COMPONENT_REF
15125 || code == VAR_DECL)
15126 decl = gimple_assign_rhs1 (def);
15127 }
15128 else
15129 var = SSA_NAME_VAR (decl);
15130 }
15131
15132 if (TREE_CODE (decl) == ADDR_EXPR)
15133 decl = TREE_OPERAND (decl, 0);
15134
15135 /* To simplify calling code, store the referenced DECL regardless of
15136 the attribute determined below, but avoid storing the SSA_NAME_VAR
15137 obtained above (it's not useful for dataflow purposes). */
15138 if (ref)
15139 *ref = decl;
15140
15141 /* Use the SSA_NAME_VAR that was determined above to see if it's
15142 declared nonstring. Otherwise drill down into the referenced
15143 DECL. */
15144 if (var)
15145 decl = var;
15146 else if (TREE_CODE (decl) == ARRAY_REF)
15147 decl = TREE_OPERAND (decl, 0);
15148 else if (TREE_CODE (decl) == COMPONENT_REF)
15149 decl = TREE_OPERAND (decl, 1);
15150 else if (TREE_CODE (decl) == MEM_REF)
15151 return get_attr_nonstring_decl (TREE_OPERAND (decl, 0), ref);
15152
15153 if (DECL_P (decl)
15154 && lookup_attribute ("nonstring", DECL_ATTRIBUTES (decl)))
15155 return decl;
15156
15157 return NULL_TREE;
15158 }
15159
15160 /* Return length of attribute names string,
15161 if arglist chain > 1, -1 otherwise. */
15162
15163 int
15164 get_target_clone_attr_len (tree arglist)
15165 {
15166 tree arg;
15167 int str_len_sum = 0;
15168 int argnum = 0;
15169
15170 for (arg = arglist; arg; arg = TREE_CHAIN (arg))
15171 {
15172 const char *str = TREE_STRING_POINTER (TREE_VALUE (arg));
15173 size_t len = strlen (str);
15174 str_len_sum += len + 1;
15175 for (const char *p = strchr (str, ','); p; p = strchr (p + 1, ','))
15176 argnum++;
15177 argnum++;
15178 }
15179 if (argnum <= 1)
15180 return -1;
15181 return str_len_sum;
15182 }
15183
15184 void
15185 tree_cc_finalize (void)
15186 {
15187 clear_nonstandard_integer_type_cache ();
15188 vec_free (bitint_type_cache);
15189 }
15190
15191 #if CHECKING_P
15192
15193 namespace selftest {
15194
15195 /* Selftests for tree. */
15196
15197 /* Verify that integer constants are sane. */
15198
15199 static void
15200 test_integer_constants ()
15201 {
15202 ASSERT_TRUE (integer_type_node != NULL);
15203 ASSERT_TRUE (build_int_cst (integer_type_node, 0) != NULL);
15204
15205 tree type = integer_type_node;
15206
15207 tree zero = build_zero_cst (type);
15208 ASSERT_EQ (INTEGER_CST, TREE_CODE (zero));
15209 ASSERT_EQ (type, TREE_TYPE (zero));
15210
15211 tree one = build_int_cst (type, 1);
15212 ASSERT_EQ (INTEGER_CST, TREE_CODE (one));
15213 ASSERT_EQ (type, TREE_TYPE (zero));
15214 }
15215
15216 /* Verify identifiers. */
15217
15218 static void
15219 test_identifiers ()
15220 {
15221 tree identifier = get_identifier ("foo");
15222 ASSERT_EQ (3, IDENTIFIER_LENGTH (identifier));
15223 ASSERT_STREQ ("foo", IDENTIFIER_POINTER (identifier));
15224 }
15225
15226 /* Verify LABEL_DECL. */
15227
15228 static void
15229 test_labels ()
15230 {
15231 tree identifier = get_identifier ("err");
15232 tree label_decl = build_decl (UNKNOWN_LOCATION, LABEL_DECL,
15233 identifier, void_type_node);
15234 ASSERT_EQ (-1, LABEL_DECL_UID (label_decl));
15235 ASSERT_FALSE (FORCED_LABEL (label_decl));
15236 }
15237
15238 /* Return a new VECTOR_CST node whose type is TYPE and whose values
15239 are given by VALS. */
15240
15241 static tree
15242 build_vector (tree type, const vec<tree> &vals MEM_STAT_DECL)
15243 {
15244 gcc_assert (known_eq (vals.length (), TYPE_VECTOR_SUBPARTS (type)));
15245 tree_vector_builder builder (type, vals.length (), 1);
15246 builder.splice (vals);
15247 return builder.build ();
15248 }
15249
15250 /* Check that VECTOR_CST ACTUAL contains the elements in EXPECTED. */
15251
15252 static void
15253 check_vector_cst (const vec<tree> &expected, tree actual)
15254 {
15255 ASSERT_KNOWN_EQ (expected.length (),
15256 TYPE_VECTOR_SUBPARTS (TREE_TYPE (actual)));
15257 for (unsigned int i = 0; i < expected.length (); ++i)
15258 ASSERT_EQ (wi::to_wide (expected[i]),
15259 wi::to_wide (vector_cst_elt (actual, i)));
15260 }
15261
15262 /* Check that VECTOR_CST ACTUAL contains NPATTERNS duplicated elements,
15263 and that its elements match EXPECTED. */
15264
15265 static void
15266 check_vector_cst_duplicate (const vec<tree> &expected, tree actual,
15267 unsigned int npatterns)
15268 {
15269 ASSERT_EQ (npatterns, VECTOR_CST_NPATTERNS (actual));
15270 ASSERT_EQ (1, VECTOR_CST_NELTS_PER_PATTERN (actual));
15271 ASSERT_EQ (npatterns, vector_cst_encoded_nelts (actual));
15272 ASSERT_TRUE (VECTOR_CST_DUPLICATE_P (actual));
15273 ASSERT_FALSE (VECTOR_CST_STEPPED_P (actual));
15274 check_vector_cst (expected, actual);
15275 }
15276
15277 /* Check that VECTOR_CST ACTUAL contains NPATTERNS foreground elements
15278 and NPATTERNS background elements, and that its elements match
15279 EXPECTED. */
15280
15281 static void
15282 check_vector_cst_fill (const vec<tree> &expected, tree actual,
15283 unsigned int npatterns)
15284 {
15285 ASSERT_EQ (npatterns, VECTOR_CST_NPATTERNS (actual));
15286 ASSERT_EQ (2, VECTOR_CST_NELTS_PER_PATTERN (actual));
15287 ASSERT_EQ (2 * npatterns, vector_cst_encoded_nelts (actual));
15288 ASSERT_FALSE (VECTOR_CST_DUPLICATE_P (actual));
15289 ASSERT_FALSE (VECTOR_CST_STEPPED_P (actual));
15290 check_vector_cst (expected, actual);
15291 }
15292
15293 /* Check that VECTOR_CST ACTUAL contains NPATTERNS stepped patterns,
15294 and that its elements match EXPECTED. */
15295
15296 static void
15297 check_vector_cst_stepped (const vec<tree> &expected, tree actual,
15298 unsigned int npatterns)
15299 {
15300 ASSERT_EQ (npatterns, VECTOR_CST_NPATTERNS (actual));
15301 ASSERT_EQ (3, VECTOR_CST_NELTS_PER_PATTERN (actual));
15302 ASSERT_EQ (3 * npatterns, vector_cst_encoded_nelts (actual));
15303 ASSERT_FALSE (VECTOR_CST_DUPLICATE_P (actual));
15304 ASSERT_TRUE (VECTOR_CST_STEPPED_P (actual));
15305 check_vector_cst (expected, actual);
15306 }
15307
15308 /* Test the creation of VECTOR_CSTs. */
15309
15310 static void
15311 test_vector_cst_patterns (ALONE_CXX_MEM_STAT_INFO)
15312 {
15313 auto_vec<tree, 8> elements (8);
15314 elements.quick_grow (8);
15315 tree element_type = build_nonstandard_integer_type (16, true);
15316 tree vector_type = build_vector_type (element_type, 8);
15317
15318 /* Test a simple linear series with a base of 0 and a step of 1:
15319 { 0, 1, 2, 3, 4, 5, 6, 7 }. */
15320 for (unsigned int i = 0; i < 8; ++i)
15321 elements[i] = build_int_cst (element_type, i);
15322 tree vector = build_vector (vector_type, elements PASS_MEM_STAT);
15323 check_vector_cst_stepped (elements, vector, 1);
15324
15325 /* Try the same with the first element replaced by 100:
15326 { 100, 1, 2, 3, 4, 5, 6, 7 }. */
15327 elements[0] = build_int_cst (element_type, 100);
15328 vector = build_vector (vector_type, elements PASS_MEM_STAT);
15329 check_vector_cst_stepped (elements, vector, 1);
15330
15331 /* Try a series that wraps around.
15332 { 100, 65531, 65532, 65533, 65534, 65535, 0, 1 }. */
15333 for (unsigned int i = 1; i < 8; ++i)
15334 elements[i] = build_int_cst (element_type, (65530 + i) & 0xffff);
15335 vector = build_vector (vector_type, elements PASS_MEM_STAT);
15336 check_vector_cst_stepped (elements, vector, 1);
15337
15338 /* Try a downward series:
15339 { 100, 79, 78, 77, 76, 75, 75, 73 }. */
15340 for (unsigned int i = 1; i < 8; ++i)
15341 elements[i] = build_int_cst (element_type, 80 - i);
15342 vector = build_vector (vector_type, elements PASS_MEM_STAT);
15343 check_vector_cst_stepped (elements, vector, 1);
15344
15345 /* Try two interleaved series with different bases and steps:
15346 { 100, 53, 66, 206, 62, 212, 58, 218 }. */
15347 elements[1] = build_int_cst (element_type, 53);
15348 for (unsigned int i = 2; i < 8; i += 2)
15349 {
15350 elements[i] = build_int_cst (element_type, 70 - i * 2);
15351 elements[i + 1] = build_int_cst (element_type, 200 + i * 3);
15352 }
15353 vector = build_vector (vector_type, elements PASS_MEM_STAT);
15354 check_vector_cst_stepped (elements, vector, 2);
15355
15356 /* Try a duplicated value:
15357 { 100, 100, 100, 100, 100, 100, 100, 100 }. */
15358 for (unsigned int i = 1; i < 8; ++i)
15359 elements[i] = elements[0];
15360 vector = build_vector (vector_type, elements PASS_MEM_STAT);
15361 check_vector_cst_duplicate (elements, vector, 1);
15362
15363 /* Try an interleaved duplicated value:
15364 { 100, 55, 100, 55, 100, 55, 100, 55 }. */
15365 elements[1] = build_int_cst (element_type, 55);
15366 for (unsigned int i = 2; i < 8; ++i)
15367 elements[i] = elements[i - 2];
15368 vector = build_vector (vector_type, elements PASS_MEM_STAT);
15369 check_vector_cst_duplicate (elements, vector, 2);
15370
15371 /* Try a duplicated value with 2 exceptions
15372 { 41, 97, 100, 55, 100, 55, 100, 55 }. */
15373 elements[0] = build_int_cst (element_type, 41);
15374 elements[1] = build_int_cst (element_type, 97);
15375 vector = build_vector (vector_type, elements PASS_MEM_STAT);
15376 check_vector_cst_fill (elements, vector, 2);
15377
15378 /* Try with and without a step
15379 { 41, 97, 100, 21, 100, 35, 100, 49 }. */
15380 for (unsigned int i = 3; i < 8; i += 2)
15381 elements[i] = build_int_cst (element_type, i * 7);
15382 vector = build_vector (vector_type, elements PASS_MEM_STAT);
15383 check_vector_cst_stepped (elements, vector, 2);
15384
15385 /* Try a fully-general constant:
15386 { 41, 97, 100, 21, 100, 9990, 100, 49 }. */
15387 elements[5] = build_int_cst (element_type, 9990);
15388 vector = build_vector (vector_type, elements PASS_MEM_STAT);
15389 check_vector_cst_fill (elements, vector, 4);
15390 }
15391
15392 /* Verify that STRIP_NOPS (NODE) is EXPECTED.
15393 Helper function for test_location_wrappers, to deal with STRIP_NOPS
15394 modifying its argument in-place. */
15395
15396 static void
15397 check_strip_nops (tree node, tree expected)
15398 {
15399 STRIP_NOPS (node);
15400 ASSERT_EQ (expected, node);
15401 }
15402
15403 /* Verify location wrappers. */
15404
15405 static void
15406 test_location_wrappers ()
15407 {
15408 location_t loc = BUILTINS_LOCATION;
15409
15410 ASSERT_EQ (NULL_TREE, maybe_wrap_with_location (NULL_TREE, loc));
15411
15412 /* Wrapping a constant. */
15413 tree int_cst = build_int_cst (integer_type_node, 42);
15414 ASSERT_FALSE (CAN_HAVE_LOCATION_P (int_cst));
15415 ASSERT_FALSE (location_wrapper_p (int_cst));
15416
15417 tree wrapped_int_cst = maybe_wrap_with_location (int_cst, loc);
15418 ASSERT_TRUE (location_wrapper_p (wrapped_int_cst));
15419 ASSERT_EQ (loc, EXPR_LOCATION (wrapped_int_cst));
15420 ASSERT_EQ (int_cst, tree_strip_any_location_wrapper (wrapped_int_cst));
15421
15422 /* We shouldn't add wrapper nodes for UNKNOWN_LOCATION. */
15423 ASSERT_EQ (int_cst, maybe_wrap_with_location (int_cst, UNKNOWN_LOCATION));
15424
15425 /* We shouldn't add wrapper nodes for nodes that CAN_HAVE_LOCATION_P. */
15426 tree cast = build1 (NOP_EXPR, char_type_node, int_cst);
15427 ASSERT_TRUE (CAN_HAVE_LOCATION_P (cast));
15428 ASSERT_EQ (cast, maybe_wrap_with_location (cast, loc));
15429
15430 /* Wrapping a STRING_CST. */
15431 tree string_cst = build_string (4, "foo");
15432 ASSERT_FALSE (CAN_HAVE_LOCATION_P (string_cst));
15433 ASSERT_FALSE (location_wrapper_p (string_cst));
15434
15435 tree wrapped_string_cst = maybe_wrap_with_location (string_cst, loc);
15436 ASSERT_TRUE (location_wrapper_p (wrapped_string_cst));
15437 ASSERT_EQ (VIEW_CONVERT_EXPR, TREE_CODE (wrapped_string_cst));
15438 ASSERT_EQ (loc, EXPR_LOCATION (wrapped_string_cst));
15439 ASSERT_EQ (string_cst, tree_strip_any_location_wrapper (wrapped_string_cst));
15440
15441
15442 /* Wrapping a variable. */
15443 tree int_var = build_decl (UNKNOWN_LOCATION, VAR_DECL,
15444 get_identifier ("some_int_var"),
15445 integer_type_node);
15446 ASSERT_FALSE (CAN_HAVE_LOCATION_P (int_var));
15447 ASSERT_FALSE (location_wrapper_p (int_var));
15448
15449 tree wrapped_int_var = maybe_wrap_with_location (int_var, loc);
15450 ASSERT_TRUE (location_wrapper_p (wrapped_int_var));
15451 ASSERT_EQ (loc, EXPR_LOCATION (wrapped_int_var));
15452 ASSERT_EQ (int_var, tree_strip_any_location_wrapper (wrapped_int_var));
15453
15454 /* Verify that "reinterpret_cast<int>(some_int_var)" is not a location
15455 wrapper. */
15456 tree r_cast = build1 (NON_LVALUE_EXPR, integer_type_node, int_var);
15457 ASSERT_FALSE (location_wrapper_p (r_cast));
15458 ASSERT_EQ (r_cast, tree_strip_any_location_wrapper (r_cast));
15459
15460 /* Verify that STRIP_NOPS removes wrappers. */
15461 check_strip_nops (wrapped_int_cst, int_cst);
15462 check_strip_nops (wrapped_string_cst, string_cst);
15463 check_strip_nops (wrapped_int_var, int_var);
15464 }
15465
15466 /* Test various tree predicates. Verify that location wrappers don't
15467 affect the results. */
15468
15469 static void
15470 test_predicates ()
15471 {
15472 /* Build various constants and wrappers around them. */
15473
15474 location_t loc = BUILTINS_LOCATION;
15475
15476 tree i_0 = build_int_cst (integer_type_node, 0);
15477 tree wr_i_0 = maybe_wrap_with_location (i_0, loc);
15478
15479 tree i_1 = build_int_cst (integer_type_node, 1);
15480 tree wr_i_1 = maybe_wrap_with_location (i_1, loc);
15481
15482 tree i_m1 = build_int_cst (integer_type_node, -1);
15483 tree wr_i_m1 = maybe_wrap_with_location (i_m1, loc);
15484
15485 tree f_0 = build_real_from_int_cst (float_type_node, i_0);
15486 tree wr_f_0 = maybe_wrap_with_location (f_0, loc);
15487 tree f_1 = build_real_from_int_cst (float_type_node, i_1);
15488 tree wr_f_1 = maybe_wrap_with_location (f_1, loc);
15489 tree f_m1 = build_real_from_int_cst (float_type_node, i_m1);
15490 tree wr_f_m1 = maybe_wrap_with_location (f_m1, loc);
15491
15492 tree c_i_0 = build_complex (NULL_TREE, i_0, i_0);
15493 tree c_i_1 = build_complex (NULL_TREE, i_1, i_0);
15494 tree c_i_m1 = build_complex (NULL_TREE, i_m1, i_0);
15495
15496 tree c_f_0 = build_complex (NULL_TREE, f_0, f_0);
15497 tree c_f_1 = build_complex (NULL_TREE, f_1, f_0);
15498 tree c_f_m1 = build_complex (NULL_TREE, f_m1, f_0);
15499
15500 /* TODO: vector constants. */
15501
15502 /* Test integer_onep. */
15503 ASSERT_FALSE (integer_onep (i_0));
15504 ASSERT_FALSE (integer_onep (wr_i_0));
15505 ASSERT_TRUE (integer_onep (i_1));
15506 ASSERT_TRUE (integer_onep (wr_i_1));
15507 ASSERT_FALSE (integer_onep (i_m1));
15508 ASSERT_FALSE (integer_onep (wr_i_m1));
15509 ASSERT_FALSE (integer_onep (f_0));
15510 ASSERT_FALSE (integer_onep (wr_f_0));
15511 ASSERT_FALSE (integer_onep (f_1));
15512 ASSERT_FALSE (integer_onep (wr_f_1));
15513 ASSERT_FALSE (integer_onep (f_m1));
15514 ASSERT_FALSE (integer_onep (wr_f_m1));
15515 ASSERT_FALSE (integer_onep (c_i_0));
15516 ASSERT_TRUE (integer_onep (c_i_1));
15517 ASSERT_FALSE (integer_onep (c_i_m1));
15518 ASSERT_FALSE (integer_onep (c_f_0));
15519 ASSERT_FALSE (integer_onep (c_f_1));
15520 ASSERT_FALSE (integer_onep (c_f_m1));
15521
15522 /* Test integer_zerop. */
15523 ASSERT_TRUE (integer_zerop (i_0));
15524 ASSERT_TRUE (integer_zerop (wr_i_0));
15525 ASSERT_FALSE (integer_zerop (i_1));
15526 ASSERT_FALSE (integer_zerop (wr_i_1));
15527 ASSERT_FALSE (integer_zerop (i_m1));
15528 ASSERT_FALSE (integer_zerop (wr_i_m1));
15529 ASSERT_FALSE (integer_zerop (f_0));
15530 ASSERT_FALSE (integer_zerop (wr_f_0));
15531 ASSERT_FALSE (integer_zerop (f_1));
15532 ASSERT_FALSE (integer_zerop (wr_f_1));
15533 ASSERT_FALSE (integer_zerop (f_m1));
15534 ASSERT_FALSE (integer_zerop (wr_f_m1));
15535 ASSERT_TRUE (integer_zerop (c_i_0));
15536 ASSERT_FALSE (integer_zerop (c_i_1));
15537 ASSERT_FALSE (integer_zerop (c_i_m1));
15538 ASSERT_FALSE (integer_zerop (c_f_0));
15539 ASSERT_FALSE (integer_zerop (c_f_1));
15540 ASSERT_FALSE (integer_zerop (c_f_m1));
15541
15542 /* Test integer_all_onesp. */
15543 ASSERT_FALSE (integer_all_onesp (i_0));
15544 ASSERT_FALSE (integer_all_onesp (wr_i_0));
15545 ASSERT_FALSE (integer_all_onesp (i_1));
15546 ASSERT_FALSE (integer_all_onesp (wr_i_1));
15547 ASSERT_TRUE (integer_all_onesp (i_m1));
15548 ASSERT_TRUE (integer_all_onesp (wr_i_m1));
15549 ASSERT_FALSE (integer_all_onesp (f_0));
15550 ASSERT_FALSE (integer_all_onesp (wr_f_0));
15551 ASSERT_FALSE (integer_all_onesp (f_1));
15552 ASSERT_FALSE (integer_all_onesp (wr_f_1));
15553 ASSERT_FALSE (integer_all_onesp (f_m1));
15554 ASSERT_FALSE (integer_all_onesp (wr_f_m1));
15555 ASSERT_FALSE (integer_all_onesp (c_i_0));
15556 ASSERT_FALSE (integer_all_onesp (c_i_1));
15557 ASSERT_FALSE (integer_all_onesp (c_i_m1));
15558 ASSERT_FALSE (integer_all_onesp (c_f_0));
15559 ASSERT_FALSE (integer_all_onesp (c_f_1));
15560 ASSERT_FALSE (integer_all_onesp (c_f_m1));
15561
15562 /* Test integer_minus_onep. */
15563 ASSERT_FALSE (integer_minus_onep (i_0));
15564 ASSERT_FALSE (integer_minus_onep (wr_i_0));
15565 ASSERT_FALSE (integer_minus_onep (i_1));
15566 ASSERT_FALSE (integer_minus_onep (wr_i_1));
15567 ASSERT_TRUE (integer_minus_onep (i_m1));
15568 ASSERT_TRUE (integer_minus_onep (wr_i_m1));
15569 ASSERT_FALSE (integer_minus_onep (f_0));
15570 ASSERT_FALSE (integer_minus_onep (wr_f_0));
15571 ASSERT_FALSE (integer_minus_onep (f_1));
15572 ASSERT_FALSE (integer_minus_onep (wr_f_1));
15573 ASSERT_FALSE (integer_minus_onep (f_m1));
15574 ASSERT_FALSE (integer_minus_onep (wr_f_m1));
15575 ASSERT_FALSE (integer_minus_onep (c_i_0));
15576 ASSERT_FALSE (integer_minus_onep (c_i_1));
15577 ASSERT_TRUE (integer_minus_onep (c_i_m1));
15578 ASSERT_FALSE (integer_minus_onep (c_f_0));
15579 ASSERT_FALSE (integer_minus_onep (c_f_1));
15580 ASSERT_FALSE (integer_minus_onep (c_f_m1));
15581
15582 /* Test integer_each_onep. */
15583 ASSERT_FALSE (integer_each_onep (i_0));
15584 ASSERT_FALSE (integer_each_onep (wr_i_0));
15585 ASSERT_TRUE (integer_each_onep (i_1));
15586 ASSERT_TRUE (integer_each_onep (wr_i_1));
15587 ASSERT_FALSE (integer_each_onep (i_m1));
15588 ASSERT_FALSE (integer_each_onep (wr_i_m1));
15589 ASSERT_FALSE (integer_each_onep (f_0));
15590 ASSERT_FALSE (integer_each_onep (wr_f_0));
15591 ASSERT_FALSE (integer_each_onep (f_1));
15592 ASSERT_FALSE (integer_each_onep (wr_f_1));
15593 ASSERT_FALSE (integer_each_onep (f_m1));
15594 ASSERT_FALSE (integer_each_onep (wr_f_m1));
15595 ASSERT_FALSE (integer_each_onep (c_i_0));
15596 ASSERT_FALSE (integer_each_onep (c_i_1));
15597 ASSERT_FALSE (integer_each_onep (c_i_m1));
15598 ASSERT_FALSE (integer_each_onep (c_f_0));
15599 ASSERT_FALSE (integer_each_onep (c_f_1));
15600 ASSERT_FALSE (integer_each_onep (c_f_m1));
15601
15602 /* Test integer_truep. */
15603 ASSERT_FALSE (integer_truep (i_0));
15604 ASSERT_FALSE (integer_truep (wr_i_0));
15605 ASSERT_TRUE (integer_truep (i_1));
15606 ASSERT_TRUE (integer_truep (wr_i_1));
15607 ASSERT_FALSE (integer_truep (i_m1));
15608 ASSERT_FALSE (integer_truep (wr_i_m1));
15609 ASSERT_FALSE (integer_truep (f_0));
15610 ASSERT_FALSE (integer_truep (wr_f_0));
15611 ASSERT_FALSE (integer_truep (f_1));
15612 ASSERT_FALSE (integer_truep (wr_f_1));
15613 ASSERT_FALSE (integer_truep (f_m1));
15614 ASSERT_FALSE (integer_truep (wr_f_m1));
15615 ASSERT_FALSE (integer_truep (c_i_0));
15616 ASSERT_TRUE (integer_truep (c_i_1));
15617 ASSERT_FALSE (integer_truep (c_i_m1));
15618 ASSERT_FALSE (integer_truep (c_f_0));
15619 ASSERT_FALSE (integer_truep (c_f_1));
15620 ASSERT_FALSE (integer_truep (c_f_m1));
15621
15622 /* Test integer_nonzerop. */
15623 ASSERT_FALSE (integer_nonzerop (i_0));
15624 ASSERT_FALSE (integer_nonzerop (wr_i_0));
15625 ASSERT_TRUE (integer_nonzerop (i_1));
15626 ASSERT_TRUE (integer_nonzerop (wr_i_1));
15627 ASSERT_TRUE (integer_nonzerop (i_m1));
15628 ASSERT_TRUE (integer_nonzerop (wr_i_m1));
15629 ASSERT_FALSE (integer_nonzerop (f_0));
15630 ASSERT_FALSE (integer_nonzerop (wr_f_0));
15631 ASSERT_FALSE (integer_nonzerop (f_1));
15632 ASSERT_FALSE (integer_nonzerop (wr_f_1));
15633 ASSERT_FALSE (integer_nonzerop (f_m1));
15634 ASSERT_FALSE (integer_nonzerop (wr_f_m1));
15635 ASSERT_FALSE (integer_nonzerop (c_i_0));
15636 ASSERT_TRUE (integer_nonzerop (c_i_1));
15637 ASSERT_TRUE (integer_nonzerop (c_i_m1));
15638 ASSERT_FALSE (integer_nonzerop (c_f_0));
15639 ASSERT_FALSE (integer_nonzerop (c_f_1));
15640 ASSERT_FALSE (integer_nonzerop (c_f_m1));
15641
15642 /* Test real_zerop. */
15643 ASSERT_FALSE (real_zerop (i_0));
15644 ASSERT_FALSE (real_zerop (wr_i_0));
15645 ASSERT_FALSE (real_zerop (i_1));
15646 ASSERT_FALSE (real_zerop (wr_i_1));
15647 ASSERT_FALSE (real_zerop (i_m1));
15648 ASSERT_FALSE (real_zerop (wr_i_m1));
15649 ASSERT_TRUE (real_zerop (f_0));
15650 ASSERT_TRUE (real_zerop (wr_f_0));
15651 ASSERT_FALSE (real_zerop (f_1));
15652 ASSERT_FALSE (real_zerop (wr_f_1));
15653 ASSERT_FALSE (real_zerop (f_m1));
15654 ASSERT_FALSE (real_zerop (wr_f_m1));
15655 ASSERT_FALSE (real_zerop (c_i_0));
15656 ASSERT_FALSE (real_zerop (c_i_1));
15657 ASSERT_FALSE (real_zerop (c_i_m1));
15658 ASSERT_TRUE (real_zerop (c_f_0));
15659 ASSERT_FALSE (real_zerop (c_f_1));
15660 ASSERT_FALSE (real_zerop (c_f_m1));
15661
15662 /* Test real_onep. */
15663 ASSERT_FALSE (real_onep (i_0));
15664 ASSERT_FALSE (real_onep (wr_i_0));
15665 ASSERT_FALSE (real_onep (i_1));
15666 ASSERT_FALSE (real_onep (wr_i_1));
15667 ASSERT_FALSE (real_onep (i_m1));
15668 ASSERT_FALSE (real_onep (wr_i_m1));
15669 ASSERT_FALSE (real_onep (f_0));
15670 ASSERT_FALSE (real_onep (wr_f_0));
15671 ASSERT_TRUE (real_onep (f_1));
15672 ASSERT_TRUE (real_onep (wr_f_1));
15673 ASSERT_FALSE (real_onep (f_m1));
15674 ASSERT_FALSE (real_onep (wr_f_m1));
15675 ASSERT_FALSE (real_onep (c_i_0));
15676 ASSERT_FALSE (real_onep (c_i_1));
15677 ASSERT_FALSE (real_onep (c_i_m1));
15678 ASSERT_FALSE (real_onep (c_f_0));
15679 ASSERT_TRUE (real_onep (c_f_1));
15680 ASSERT_FALSE (real_onep (c_f_m1));
15681
15682 /* Test real_minus_onep. */
15683 ASSERT_FALSE (real_minus_onep (i_0));
15684 ASSERT_FALSE (real_minus_onep (wr_i_0));
15685 ASSERT_FALSE (real_minus_onep (i_1));
15686 ASSERT_FALSE (real_minus_onep (wr_i_1));
15687 ASSERT_FALSE (real_minus_onep (i_m1));
15688 ASSERT_FALSE (real_minus_onep (wr_i_m1));
15689 ASSERT_FALSE (real_minus_onep (f_0));
15690 ASSERT_FALSE (real_minus_onep (wr_f_0));
15691 ASSERT_FALSE (real_minus_onep (f_1));
15692 ASSERT_FALSE (real_minus_onep (wr_f_1));
15693 ASSERT_TRUE (real_minus_onep (f_m1));
15694 ASSERT_TRUE (real_minus_onep (wr_f_m1));
15695 ASSERT_FALSE (real_minus_onep (c_i_0));
15696 ASSERT_FALSE (real_minus_onep (c_i_1));
15697 ASSERT_FALSE (real_minus_onep (c_i_m1));
15698 ASSERT_FALSE (real_minus_onep (c_f_0));
15699 ASSERT_FALSE (real_minus_onep (c_f_1));
15700 ASSERT_TRUE (real_minus_onep (c_f_m1));
15701
15702 /* Test zerop. */
15703 ASSERT_TRUE (zerop (i_0));
15704 ASSERT_TRUE (zerop (wr_i_0));
15705 ASSERT_FALSE (zerop (i_1));
15706 ASSERT_FALSE (zerop (wr_i_1));
15707 ASSERT_FALSE (zerop (i_m1));
15708 ASSERT_FALSE (zerop (wr_i_m1));
15709 ASSERT_TRUE (zerop (f_0));
15710 ASSERT_TRUE (zerop (wr_f_0));
15711 ASSERT_FALSE (zerop (f_1));
15712 ASSERT_FALSE (zerop (wr_f_1));
15713 ASSERT_FALSE (zerop (f_m1));
15714 ASSERT_FALSE (zerop (wr_f_m1));
15715 ASSERT_TRUE (zerop (c_i_0));
15716 ASSERT_FALSE (zerop (c_i_1));
15717 ASSERT_FALSE (zerop (c_i_m1));
15718 ASSERT_TRUE (zerop (c_f_0));
15719 ASSERT_FALSE (zerop (c_f_1));
15720 ASSERT_FALSE (zerop (c_f_m1));
15721
15722 /* Test tree_expr_nonnegative_p. */
15723 ASSERT_TRUE (tree_expr_nonnegative_p (i_0));
15724 ASSERT_TRUE (tree_expr_nonnegative_p (wr_i_0));
15725 ASSERT_TRUE (tree_expr_nonnegative_p (i_1));
15726 ASSERT_TRUE (tree_expr_nonnegative_p (wr_i_1));
15727 ASSERT_FALSE (tree_expr_nonnegative_p (i_m1));
15728 ASSERT_FALSE (tree_expr_nonnegative_p (wr_i_m1));
15729 ASSERT_TRUE (tree_expr_nonnegative_p (f_0));
15730 ASSERT_TRUE (tree_expr_nonnegative_p (wr_f_0));
15731 ASSERT_TRUE (tree_expr_nonnegative_p (f_1));
15732 ASSERT_TRUE (tree_expr_nonnegative_p (wr_f_1));
15733 ASSERT_FALSE (tree_expr_nonnegative_p (f_m1));
15734 ASSERT_FALSE (tree_expr_nonnegative_p (wr_f_m1));
15735 ASSERT_FALSE (tree_expr_nonnegative_p (c_i_0));
15736 ASSERT_FALSE (tree_expr_nonnegative_p (c_i_1));
15737 ASSERT_FALSE (tree_expr_nonnegative_p (c_i_m1));
15738 ASSERT_FALSE (tree_expr_nonnegative_p (c_f_0));
15739 ASSERT_FALSE (tree_expr_nonnegative_p (c_f_1));
15740 ASSERT_FALSE (tree_expr_nonnegative_p (c_f_m1));
15741
15742 /* Test tree_expr_nonzero_p. */
15743 ASSERT_FALSE (tree_expr_nonzero_p (i_0));
15744 ASSERT_FALSE (tree_expr_nonzero_p (wr_i_0));
15745 ASSERT_TRUE (tree_expr_nonzero_p (i_1));
15746 ASSERT_TRUE (tree_expr_nonzero_p (wr_i_1));
15747 ASSERT_TRUE (tree_expr_nonzero_p (i_m1));
15748 ASSERT_TRUE (tree_expr_nonzero_p (wr_i_m1));
15749
15750 /* Test integer_valued_real_p. */
15751 ASSERT_FALSE (integer_valued_real_p (i_0));
15752 ASSERT_TRUE (integer_valued_real_p (f_0));
15753 ASSERT_TRUE (integer_valued_real_p (wr_f_0));
15754 ASSERT_TRUE (integer_valued_real_p (f_1));
15755 ASSERT_TRUE (integer_valued_real_p (wr_f_1));
15756
15757 /* Test integer_pow2p. */
15758 ASSERT_FALSE (integer_pow2p (i_0));
15759 ASSERT_TRUE (integer_pow2p (i_1));
15760 ASSERT_TRUE (integer_pow2p (wr_i_1));
15761
15762 /* Test uniform_integer_cst_p. */
15763 ASSERT_TRUE (uniform_integer_cst_p (i_0));
15764 ASSERT_TRUE (uniform_integer_cst_p (wr_i_0));
15765 ASSERT_TRUE (uniform_integer_cst_p (i_1));
15766 ASSERT_TRUE (uniform_integer_cst_p (wr_i_1));
15767 ASSERT_TRUE (uniform_integer_cst_p (i_m1));
15768 ASSERT_TRUE (uniform_integer_cst_p (wr_i_m1));
15769 ASSERT_FALSE (uniform_integer_cst_p (f_0));
15770 ASSERT_FALSE (uniform_integer_cst_p (wr_f_0));
15771 ASSERT_FALSE (uniform_integer_cst_p (f_1));
15772 ASSERT_FALSE (uniform_integer_cst_p (wr_f_1));
15773 ASSERT_FALSE (uniform_integer_cst_p (f_m1));
15774 ASSERT_FALSE (uniform_integer_cst_p (wr_f_m1));
15775 ASSERT_FALSE (uniform_integer_cst_p (c_i_0));
15776 ASSERT_FALSE (uniform_integer_cst_p (c_i_1));
15777 ASSERT_FALSE (uniform_integer_cst_p (c_i_m1));
15778 ASSERT_FALSE (uniform_integer_cst_p (c_f_0));
15779 ASSERT_FALSE (uniform_integer_cst_p (c_f_1));
15780 ASSERT_FALSE (uniform_integer_cst_p (c_f_m1));
15781 }
15782
15783 /* Check that string escaping works correctly. */
15784
15785 static void
15786 test_escaped_strings (void)
15787 {
15788 int saved_cutoff;
15789 escaped_string msg;
15790
15791 msg.escape (NULL);
15792 /* ASSERT_STREQ does not accept NULL as a valid test
15793 result, so we have to use ASSERT_EQ instead. */
15794 ASSERT_EQ (NULL, (const char *) msg);
15795
15796 msg.escape ("");
15797 ASSERT_STREQ ("", (const char *) msg);
15798
15799 msg.escape ("foobar");
15800 ASSERT_STREQ ("foobar", (const char *) msg);
15801
15802 /* Ensure that we have -fmessage-length set to 0. */
15803 saved_cutoff = pp_line_cutoff (global_dc->printer);
15804 pp_line_cutoff (global_dc->printer) = 0;
15805
15806 msg.escape ("foo\nbar");
15807 ASSERT_STREQ ("foo\\nbar", (const char *) msg);
15808
15809 msg.escape ("\a\b\f\n\r\t\v");
15810 ASSERT_STREQ ("\\a\\b\\f\\n\\r\\t\\v", (const char *) msg);
15811
15812 /* Now repeat the tests with -fmessage-length set to 5. */
15813 pp_line_cutoff (global_dc->printer) = 5;
15814
15815 /* Note that the newline is not translated into an escape. */
15816 msg.escape ("foo\nbar");
15817 ASSERT_STREQ ("foo\nbar", (const char *) msg);
15818
15819 msg.escape ("\a\b\f\n\r\t\v");
15820 ASSERT_STREQ ("\\a\\b\\f\n\\r\\t\\v", (const char *) msg);
15821
15822 /* Restore the original message length setting. */
15823 pp_line_cutoff (global_dc->printer) = saved_cutoff;
15824 }
15825
15826 /* Run all of the selftests within this file. */
15827
15828 void
15829 tree_cc_tests ()
15830 {
15831 test_integer_constants ();
15832 test_identifiers ();
15833 test_labels ();
15834 test_vector_cst_patterns ();
15835 test_location_wrappers ();
15836 test_predicates ();
15837 test_escaped_strings ();
15838 }
15839
15840 } // namespace selftest
15841
15842 #endif /* CHECKING_P */
15843
15844 #include "gt-tree.h"