]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/unroll.c
Oops, missed ChangeLog in last checkin...
[thirdparty/gcc.git] / gcc / unroll.c
1 /* Try to unroll loops, and split induction variables.
2 Copyright (C) 1992, 1993, 1994, 1995, 1997, 1998,
3 1999, 2000 Free Software Foundation, Inc.
4 Contributed by James E. Wilson, Cygnus Support/UC Berkeley.
5
6 This file is part of GNU CC.
7
8 GNU CC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GNU CC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU CC; see the file COPYING. If not, write to
20 the Free Software Foundation, 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 /* Try to unroll a loop, and split induction variables.
24
25 Loops for which the number of iterations can be calculated exactly are
26 handled specially. If the number of iterations times the insn_count is
27 less than MAX_UNROLLED_INSNS, then the loop is unrolled completely.
28 Otherwise, we try to unroll the loop a number of times modulo the number
29 of iterations, so that only one exit test will be needed. It is unrolled
30 a number of times approximately equal to MAX_UNROLLED_INSNS divided by
31 the insn count.
32
33 Otherwise, if the number of iterations can be calculated exactly at
34 run time, and the loop is always entered at the top, then we try to
35 precondition the loop. That is, at run time, calculate how many times
36 the loop will execute, and then execute the loop body a few times so
37 that the remaining iterations will be some multiple of 4 (or 2 if the
38 loop is large). Then fall through to a loop unrolled 4 (or 2) times,
39 with only one exit test needed at the end of the loop.
40
41 Otherwise, if the number of iterations can not be calculated exactly,
42 not even at run time, then we still unroll the loop a number of times
43 approximately equal to MAX_UNROLLED_INSNS divided by the insn count,
44 but there must be an exit test after each copy of the loop body.
45
46 For each induction variable, which is dead outside the loop (replaceable)
47 or for which we can easily calculate the final value, if we can easily
48 calculate its value at each place where it is set as a function of the
49 current loop unroll count and the variable's value at loop entry, then
50 the induction variable is split into `N' different variables, one for
51 each copy of the loop body. One variable is live across the backward
52 branch, and the others are all calculated as a function of this variable.
53 This helps eliminate data dependencies, and leads to further opportunities
54 for cse. */
55
56 /* Possible improvements follow: */
57
58 /* ??? Add an extra pass somewhere to determine whether unrolling will
59 give any benefit. E.g. after generating all unrolled insns, compute the
60 cost of all insns and compare against cost of insns in rolled loop.
61
62 - On traditional architectures, unrolling a non-constant bound loop
63 is a win if there is a giv whose only use is in memory addresses, the
64 memory addresses can be split, and hence giv increments can be
65 eliminated.
66 - It is also a win if the loop is executed many times, and preconditioning
67 can be performed for the loop.
68 Add code to check for these and similar cases. */
69
70 /* ??? Improve control of which loops get unrolled. Could use profiling
71 info to only unroll the most commonly executed loops. Perhaps have
72 a user specifyable option to control the amount of code expansion,
73 or the percent of loops to consider for unrolling. Etc. */
74
75 /* ??? Look at the register copies inside the loop to see if they form a
76 simple permutation. If so, iterate the permutation until it gets back to
77 the start state. This is how many times we should unroll the loop, for
78 best results, because then all register copies can be eliminated.
79 For example, the lisp nreverse function should be unrolled 3 times
80 while (this)
81 {
82 next = this->cdr;
83 this->cdr = prev;
84 prev = this;
85 this = next;
86 }
87
88 ??? The number of times to unroll the loop may also be based on data
89 references in the loop. For example, if we have a loop that references
90 x[i-1], x[i], and x[i+1], we should unroll it a multiple of 3 times. */
91
92 /* ??? Add some simple linear equation solving capability so that we can
93 determine the number of loop iterations for more complex loops.
94 For example, consider this loop from gdb
95 #define SWAP_TARGET_AND_HOST(buffer,len)
96 {
97 char tmp;
98 char *p = (char *) buffer;
99 char *q = ((char *) buffer) + len - 1;
100 int iterations = (len + 1) >> 1;
101 int i;
102 for (p; p < q; p++, q--;)
103 {
104 tmp = *q;
105 *q = *p;
106 *p = tmp;
107 }
108 }
109 Note that:
110 start value = p = &buffer + current_iteration
111 end value = q = &buffer + len - 1 - current_iteration
112 Given the loop exit test of "p < q", then there must be "q - p" iterations,
113 set equal to zero and solve for number of iterations:
114 q - p = len - 1 - 2*current_iteration = 0
115 current_iteration = (len - 1) / 2
116 Hence, there are (len - 1) / 2 (rounded up to the nearest integer)
117 iterations of this loop. */
118
119 /* ??? Currently, no labels are marked as loop invariant when doing loop
120 unrolling. This is because an insn inside the loop, that loads the address
121 of a label inside the loop into a register, could be moved outside the loop
122 by the invariant code motion pass if labels were invariant. If the loop
123 is subsequently unrolled, the code will be wrong because each unrolled
124 body of the loop will use the same address, whereas each actually needs a
125 different address. A case where this happens is when a loop containing
126 a switch statement is unrolled.
127
128 It would be better to let labels be considered invariant. When we
129 unroll loops here, check to see if any insns using a label local to the
130 loop were moved before the loop. If so, then correct the problem, by
131 moving the insn back into the loop, or perhaps replicate the insn before
132 the loop, one copy for each time the loop is unrolled. */
133
134 /* The prime factors looked for when trying to unroll a loop by some
135 number which is modulo the total number of iterations. Just checking
136 for these 4 prime factors will find at least one factor for 75% of
137 all numbers theoretically. Practically speaking, this will succeed
138 almost all of the time since loops are generally a multiple of 2
139 and/or 5. */
140
141 #define NUM_FACTORS 4
142
143 struct _factor { int factor, count; } factors[NUM_FACTORS]
144 = { {2, 0}, {3, 0}, {5, 0}, {7, 0}};
145
146 /* Describes the different types of loop unrolling performed. */
147
148 enum unroll_types { UNROLL_COMPLETELY, UNROLL_MODULO, UNROLL_NAIVE };
149
150 #include "config.h"
151 #include "system.h"
152 #include "rtl.h"
153 #include "tm_p.h"
154 #include "insn-config.h"
155 #include "integrate.h"
156 #include "regs.h"
157 #include "recog.h"
158 #include "flags.h"
159 #include "function.h"
160 #include "expr.h"
161 #include "loop.h"
162 #include "toplev.h"
163
164 /* This controls which loops are unrolled, and by how much we unroll
165 them. */
166
167 #ifndef MAX_UNROLLED_INSNS
168 #define MAX_UNROLLED_INSNS 100
169 #endif
170
171 /* Indexed by register number, if non-zero, then it contains a pointer
172 to a struct induction for a DEST_REG giv which has been combined with
173 one of more address givs. This is needed because whenever such a DEST_REG
174 giv is modified, we must modify the value of all split address givs
175 that were combined with this DEST_REG giv. */
176
177 static struct induction **addr_combined_regs;
178
179 /* Indexed by register number, if this is a splittable induction variable,
180 then this will hold the current value of the register, which depends on the
181 iteration number. */
182
183 static rtx *splittable_regs;
184
185 /* Indexed by register number, if this is a splittable induction variable,
186 this indicates if it was made from a derived giv. */
187 static char *derived_regs;
188
189 /* Indexed by register number, if this is a splittable induction variable,
190 then this will hold the number of instructions in the loop that modify
191 the induction variable. Used to ensure that only the last insn modifying
192 a split iv will update the original iv of the dest. */
193
194 static int *splittable_regs_updates;
195
196 /* Forward declarations. */
197
198 static void init_reg_map PARAMS ((struct inline_remap *, int));
199 static rtx calculate_giv_inc PARAMS ((rtx, rtx, unsigned int));
200 static rtx initial_reg_note_copy PARAMS ((rtx, struct inline_remap *));
201 static void final_reg_note_copy PARAMS ((rtx, struct inline_remap *));
202 static void copy_loop_body PARAMS ((rtx, rtx, struct inline_remap *, rtx, int,
203 enum unroll_types, rtx, rtx, rtx, rtx));
204 static void iteration_info PARAMS ((const struct loop *, rtx, rtx *, rtx *));
205 static int find_splittable_regs PARAMS ((const struct loop *,
206 enum unroll_types, rtx, int));
207 static int find_splittable_givs PARAMS ((const struct loop *,
208 struct iv_class *, enum unroll_types,
209 rtx, int));
210 static int reg_dead_after_loop PARAMS ((const struct loop *, rtx));
211 static rtx fold_rtx_mult_add PARAMS ((rtx, rtx, rtx, enum machine_mode));
212 static int verify_addresses PARAMS ((struct induction *, rtx, int));
213 static rtx remap_split_bivs PARAMS ((rtx));
214 static rtx find_common_reg_term PARAMS ((rtx, rtx));
215 static rtx subtract_reg_term PARAMS ((rtx, rtx));
216 static rtx loop_find_equiv_value PARAMS ((const struct loop *, rtx));
217
218 /* Try to unroll one loop and split induction variables in the loop.
219
220 The loop is described by the arguments LOOP and INSN_COUNT.
221 END_INSERT_BEFORE indicates where insns should be added which need
222 to be executed when the loop falls through. STRENGTH_REDUCTION_P
223 indicates whether information generated in the strength reduction
224 pass is available.
225
226 This function is intended to be called from within `strength_reduce'
227 in loop.c. */
228
229 void
230 unroll_loop (loop, insn_count, end_insert_before, strength_reduce_p)
231 struct loop *loop;
232 int insn_count;
233 rtx end_insert_before;
234 int strength_reduce_p;
235 {
236 int i, j;
237 unsigned int r;
238 unsigned HOST_WIDE_INT temp;
239 int unroll_number = 1;
240 rtx copy_start, copy_end;
241 rtx insn, sequence, pattern, tem;
242 int max_labelno, max_insnno;
243 rtx insert_before;
244 struct inline_remap *map;
245 char *local_label = NULL;
246 char *local_regno;
247 unsigned int max_local_regnum;
248 unsigned int maxregnum;
249 rtx exit_label = 0;
250 rtx start_label;
251 struct iv_class *bl;
252 int splitting_not_safe = 0;
253 enum unroll_types unroll_type = UNROLL_NAIVE;
254 int loop_preconditioned = 0;
255 rtx safety_label;
256 /* This points to the last real insn in the loop, which should be either
257 a JUMP_INSN (for conditional jumps) or a BARRIER (for unconditional
258 jumps). */
259 rtx last_loop_insn;
260 rtx loop_start = loop->start;
261 rtx loop_end = loop->end;
262 struct loop_info *loop_info = LOOP_INFO (loop);
263
264 /* Don't bother unrolling huge loops. Since the minimum factor is
265 two, loops greater than one half of MAX_UNROLLED_INSNS will never
266 be unrolled. */
267 if (insn_count > MAX_UNROLLED_INSNS / 2)
268 {
269 if (loop_dump_stream)
270 fprintf (loop_dump_stream, "Unrolling failure: Loop too big.\n");
271 return;
272 }
273
274 /* When emitting debugger info, we can't unroll loops with unequal numbers
275 of block_beg and block_end notes, because that would unbalance the block
276 structure of the function. This can happen as a result of the
277 "if (foo) bar; else break;" optimization in jump.c. */
278 /* ??? Gcc has a general policy that -g is never supposed to change the code
279 that the compiler emits, so we must disable this optimization always,
280 even if debug info is not being output. This is rare, so this should
281 not be a significant performance problem. */
282
283 if (1 /* write_symbols != NO_DEBUG */)
284 {
285 int block_begins = 0;
286 int block_ends = 0;
287
288 for (insn = loop_start; insn != loop_end; insn = NEXT_INSN (insn))
289 {
290 if (GET_CODE (insn) == NOTE)
291 {
292 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
293 block_begins++;
294 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
295 block_ends++;
296 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG
297 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END)
298 {
299 /* Note, would be nice to add code to unroll EH
300 regions, but until that time, we punt (don't
301 unroll). For the proper way of doing it, see
302 expand_inline_function. */
303
304 if (loop_dump_stream)
305 fprintf (loop_dump_stream,
306 "Unrolling failure: cannot unroll EH regions.\n");
307 return;
308 }
309 }
310 }
311
312 if (block_begins != block_ends)
313 {
314 if (loop_dump_stream)
315 fprintf (loop_dump_stream,
316 "Unrolling failure: Unbalanced block notes.\n");
317 return;
318 }
319 }
320
321 /* Determine type of unroll to perform. Depends on the number of iterations
322 and the size of the loop. */
323
324 /* If there is no strength reduce info, then set
325 loop_info->n_iterations to zero. This can happen if
326 strength_reduce can't find any bivs in the loop. A value of zero
327 indicates that the number of iterations could not be calculated. */
328
329 if (! strength_reduce_p)
330 loop_info->n_iterations = 0;
331
332 if (loop_dump_stream && loop_info->n_iterations > 0)
333 {
334 fputs ("Loop unrolling: ", loop_dump_stream);
335 fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC,
336 loop_info->n_iterations);
337 fputs (" iterations.\n", loop_dump_stream);
338 }
339
340 /* Find and save a pointer to the last nonnote insn in the loop. */
341
342 last_loop_insn = prev_nonnote_insn (loop_end);
343
344 /* Calculate how many times to unroll the loop. Indicate whether or
345 not the loop is being completely unrolled. */
346
347 if (loop_info->n_iterations == 1)
348 {
349 /* If number of iterations is exactly 1, then eliminate the compare and
350 branch at the end of the loop since they will never be taken.
351 Then return, since no other action is needed here. */
352
353 /* If the last instruction is not a BARRIER or a JUMP_INSN, then
354 don't do anything. */
355
356 if (GET_CODE (last_loop_insn) == BARRIER)
357 {
358 /* Delete the jump insn. This will delete the barrier also. */
359 delete_insn (PREV_INSN (last_loop_insn));
360 }
361 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
362 {
363 #ifdef HAVE_cc0
364 rtx prev = PREV_INSN (last_loop_insn);
365 #endif
366 delete_insn (last_loop_insn);
367 #ifdef HAVE_cc0
368 /* The immediately preceding insn may be a compare which must be
369 deleted. */
370 if (sets_cc0_p (prev))
371 delete_insn (prev);
372 #endif
373 }
374
375 /* Remove the loop notes since this is no longer a loop. */
376 if (loop->vtop)
377 delete_insn (loop->vtop);
378 if (loop->cont)
379 delete_insn (loop->cont);
380 if (loop_start)
381 delete_insn (loop_start);
382 if (loop_end)
383 delete_insn (loop_end);
384
385 return;
386 }
387 else if (loop_info->n_iterations > 0
388 && loop_info->n_iterations * insn_count < MAX_UNROLLED_INSNS)
389 {
390 unroll_number = loop_info->n_iterations;
391 unroll_type = UNROLL_COMPLETELY;
392 }
393 else if (loop_info->n_iterations > 0)
394 {
395 /* Try to factor the number of iterations. Don't bother with the
396 general case, only using 2, 3, 5, and 7 will get 75% of all
397 numbers theoretically, and almost all in practice. */
398
399 for (i = 0; i < NUM_FACTORS; i++)
400 factors[i].count = 0;
401
402 temp = loop_info->n_iterations;
403 for (i = NUM_FACTORS - 1; i >= 0; i--)
404 while (temp % factors[i].factor == 0)
405 {
406 factors[i].count++;
407 temp = temp / factors[i].factor;
408 }
409
410 /* Start with the larger factors first so that we generally
411 get lots of unrolling. */
412
413 unroll_number = 1;
414 temp = insn_count;
415 for (i = 3; i >= 0; i--)
416 while (factors[i].count--)
417 {
418 if (temp * factors[i].factor < MAX_UNROLLED_INSNS)
419 {
420 unroll_number *= factors[i].factor;
421 temp *= factors[i].factor;
422 }
423 else
424 break;
425 }
426
427 /* If we couldn't find any factors, then unroll as in the normal
428 case. */
429 if (unroll_number == 1)
430 {
431 if (loop_dump_stream)
432 fprintf (loop_dump_stream,
433 "Loop unrolling: No factors found.\n");
434 }
435 else
436 unroll_type = UNROLL_MODULO;
437 }
438
439
440 /* Default case, calculate number of times to unroll loop based on its
441 size. */
442 if (unroll_type == UNROLL_NAIVE)
443 {
444 if (8 * insn_count < MAX_UNROLLED_INSNS)
445 unroll_number = 8;
446 else if (4 * insn_count < MAX_UNROLLED_INSNS)
447 unroll_number = 4;
448 else
449 unroll_number = 2;
450 }
451
452 /* Now we know how many times to unroll the loop. */
453
454 if (loop_dump_stream)
455 fprintf (loop_dump_stream,
456 "Unrolling loop %d times.\n", unroll_number);
457
458
459 if (unroll_type == UNROLL_COMPLETELY || unroll_type == UNROLL_MODULO)
460 {
461 /* Loops of these types can start with jump down to the exit condition
462 in rare circumstances.
463
464 Consider a pair of nested loops where the inner loop is part
465 of the exit code for the outer loop.
466
467 In this case jump.c will not duplicate the exit test for the outer
468 loop, so it will start with a jump to the exit code.
469
470 Then consider if the inner loop turns out to iterate once and
471 only once. We will end up deleting the jumps associated with
472 the inner loop. However, the loop notes are not removed from
473 the instruction stream.
474
475 And finally assume that we can compute the number of iterations
476 for the outer loop.
477
478 In this case unroll may want to unroll the outer loop even though
479 it starts with a jump to the outer loop's exit code.
480
481 We could try to optimize this case, but it hardly seems worth it.
482 Just return without unrolling the loop in such cases. */
483
484 insn = loop_start;
485 while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
486 insn = NEXT_INSN (insn);
487 if (GET_CODE (insn) == JUMP_INSN)
488 return;
489 }
490
491 if (unroll_type == UNROLL_COMPLETELY)
492 {
493 /* Completely unrolling the loop: Delete the compare and branch at
494 the end (the last two instructions). This delete must done at the
495 very end of loop unrolling, to avoid problems with calls to
496 back_branch_in_range_p, which is called by find_splittable_regs.
497 All increments of splittable bivs/givs are changed to load constant
498 instructions. */
499
500 copy_start = loop_start;
501
502 /* Set insert_before to the instruction immediately after the JUMP_INSN
503 (or BARRIER), so that any NOTEs between the JUMP_INSN and the end of
504 the loop will be correctly handled by copy_loop_body. */
505 insert_before = NEXT_INSN (last_loop_insn);
506
507 /* Set copy_end to the insn before the jump at the end of the loop. */
508 if (GET_CODE (last_loop_insn) == BARRIER)
509 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
510 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
511 {
512 copy_end = PREV_INSN (last_loop_insn);
513 #ifdef HAVE_cc0
514 /* The instruction immediately before the JUMP_INSN may be a compare
515 instruction which we do not want to copy. */
516 if (sets_cc0_p (PREV_INSN (copy_end)))
517 copy_end = PREV_INSN (copy_end);
518 #endif
519 }
520 else
521 {
522 /* We currently can't unroll a loop if it doesn't end with a
523 JUMP_INSN. There would need to be a mechanism that recognizes
524 this case, and then inserts a jump after each loop body, which
525 jumps to after the last loop body. */
526 if (loop_dump_stream)
527 fprintf (loop_dump_stream,
528 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
529 return;
530 }
531 }
532 else if (unroll_type == UNROLL_MODULO)
533 {
534 /* Partially unrolling the loop: The compare and branch at the end
535 (the last two instructions) must remain. Don't copy the compare
536 and branch instructions at the end of the loop. Insert the unrolled
537 code immediately before the compare/branch at the end so that the
538 code will fall through to them as before. */
539
540 copy_start = loop_start;
541
542 /* Set insert_before to the jump insn at the end of the loop.
543 Set copy_end to before the jump insn at the end of the loop. */
544 if (GET_CODE (last_loop_insn) == BARRIER)
545 {
546 insert_before = PREV_INSN (last_loop_insn);
547 copy_end = PREV_INSN (insert_before);
548 }
549 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
550 {
551 insert_before = last_loop_insn;
552 #ifdef HAVE_cc0
553 /* The instruction immediately before the JUMP_INSN may be a compare
554 instruction which we do not want to copy or delete. */
555 if (sets_cc0_p (PREV_INSN (insert_before)))
556 insert_before = PREV_INSN (insert_before);
557 #endif
558 copy_end = PREV_INSN (insert_before);
559 }
560 else
561 {
562 /* We currently can't unroll a loop if it doesn't end with a
563 JUMP_INSN. There would need to be a mechanism that recognizes
564 this case, and then inserts a jump after each loop body, which
565 jumps to after the last loop body. */
566 if (loop_dump_stream)
567 fprintf (loop_dump_stream,
568 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
569 return;
570 }
571 }
572 else
573 {
574 /* Normal case: Must copy the compare and branch instructions at the
575 end of the loop. */
576
577 if (GET_CODE (last_loop_insn) == BARRIER)
578 {
579 /* Loop ends with an unconditional jump and a barrier.
580 Handle this like above, don't copy jump and barrier.
581 This is not strictly necessary, but doing so prevents generating
582 unconditional jumps to an immediately following label.
583
584 This will be corrected below if the target of this jump is
585 not the start_label. */
586
587 insert_before = PREV_INSN (last_loop_insn);
588 copy_end = PREV_INSN (insert_before);
589 }
590 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
591 {
592 /* Set insert_before to immediately after the JUMP_INSN, so that
593 NOTEs at the end of the loop will be correctly handled by
594 copy_loop_body. */
595 insert_before = NEXT_INSN (last_loop_insn);
596 copy_end = last_loop_insn;
597 }
598 else
599 {
600 /* We currently can't unroll a loop if it doesn't end with a
601 JUMP_INSN. There would need to be a mechanism that recognizes
602 this case, and then inserts a jump after each loop body, which
603 jumps to after the last loop body. */
604 if (loop_dump_stream)
605 fprintf (loop_dump_stream,
606 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
607 return;
608 }
609
610 /* If copying exit test branches because they can not be eliminated,
611 then must convert the fall through case of the branch to a jump past
612 the end of the loop. Create a label to emit after the loop and save
613 it for later use. Do not use the label after the loop, if any, since
614 it might be used by insns outside the loop, or there might be insns
615 added before it later by final_[bg]iv_value which must be after
616 the real exit label. */
617 exit_label = gen_label_rtx ();
618
619 insn = loop_start;
620 while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
621 insn = NEXT_INSN (insn);
622
623 if (GET_CODE (insn) == JUMP_INSN)
624 {
625 /* The loop starts with a jump down to the exit condition test.
626 Start copying the loop after the barrier following this
627 jump insn. */
628 copy_start = NEXT_INSN (insn);
629
630 /* Splitting induction variables doesn't work when the loop is
631 entered via a jump to the bottom, because then we end up doing
632 a comparison against a new register for a split variable, but
633 we did not execute the set insn for the new register because
634 it was skipped over. */
635 splitting_not_safe = 1;
636 if (loop_dump_stream)
637 fprintf (loop_dump_stream,
638 "Splitting not safe, because loop not entered at top.\n");
639 }
640 else
641 copy_start = loop_start;
642 }
643
644 /* This should always be the first label in the loop. */
645 start_label = NEXT_INSN (copy_start);
646 /* There may be a line number note and/or a loop continue note here. */
647 while (GET_CODE (start_label) == NOTE)
648 start_label = NEXT_INSN (start_label);
649 if (GET_CODE (start_label) != CODE_LABEL)
650 {
651 /* This can happen as a result of jump threading. If the first insns in
652 the loop test the same condition as the loop's backward jump, or the
653 opposite condition, then the backward jump will be modified to point
654 to elsewhere, and the loop's start label is deleted.
655
656 This case currently can not be handled by the loop unrolling code. */
657
658 if (loop_dump_stream)
659 fprintf (loop_dump_stream,
660 "Unrolling failure: unknown insns between BEG note and loop label.\n");
661 return;
662 }
663 if (LABEL_NAME (start_label))
664 {
665 /* The jump optimization pass must have combined the original start label
666 with a named label for a goto. We can't unroll this case because
667 jumps which go to the named label must be handled differently than
668 jumps to the loop start, and it is impossible to differentiate them
669 in this case. */
670 if (loop_dump_stream)
671 fprintf (loop_dump_stream,
672 "Unrolling failure: loop start label is gone\n");
673 return;
674 }
675
676 if (unroll_type == UNROLL_NAIVE
677 && GET_CODE (last_loop_insn) == BARRIER
678 && GET_CODE (PREV_INSN (last_loop_insn)) == JUMP_INSN
679 && start_label != JUMP_LABEL (PREV_INSN (last_loop_insn)))
680 {
681 /* In this case, we must copy the jump and barrier, because they will
682 not be converted to jumps to an immediately following label. */
683
684 insert_before = NEXT_INSN (last_loop_insn);
685 copy_end = last_loop_insn;
686 }
687
688 if (unroll_type == UNROLL_NAIVE
689 && GET_CODE (last_loop_insn) == JUMP_INSN
690 && start_label != JUMP_LABEL (last_loop_insn))
691 {
692 /* ??? The loop ends with a conditional branch that does not branch back
693 to the loop start label. In this case, we must emit an unconditional
694 branch to the loop exit after emitting the final branch.
695 copy_loop_body does not have support for this currently, so we
696 give up. It doesn't seem worthwhile to unroll anyways since
697 unrolling would increase the number of branch instructions
698 executed. */
699 if (loop_dump_stream)
700 fprintf (loop_dump_stream,
701 "Unrolling failure: final conditional branch not to loop start\n");
702 return;
703 }
704
705 /* Allocate a translation table for the labels and insn numbers.
706 They will be filled in as we copy the insns in the loop. */
707
708 max_labelno = max_label_num ();
709 max_insnno = get_max_uid ();
710
711 /* Various paths through the unroll code may reach the "egress" label
712 without initializing fields within the map structure.
713
714 To be safe, we use xcalloc to zero the memory. */
715 map = (struct inline_remap *) xcalloc (1, sizeof (struct inline_remap));
716
717 /* Allocate the label map. */
718
719 if (max_labelno > 0)
720 {
721 map->label_map = (rtx *) xmalloc (max_labelno * sizeof (rtx));
722
723 local_label = (char *) xcalloc (max_labelno, sizeof (char));
724 }
725
726 /* Search the loop and mark all local labels, i.e. the ones which have to
727 be distinct labels when copied. For all labels which might be
728 non-local, set their label_map entries to point to themselves.
729 If they happen to be local their label_map entries will be overwritten
730 before the loop body is copied. The label_map entries for local labels
731 will be set to a different value each time the loop body is copied. */
732
733 for (insn = copy_start; insn != loop_end; insn = NEXT_INSN (insn))
734 {
735 rtx note;
736
737 if (GET_CODE (insn) == CODE_LABEL)
738 local_label[CODE_LABEL_NUMBER (insn)] = 1;
739 else if (GET_CODE (insn) == JUMP_INSN)
740 {
741 if (JUMP_LABEL (insn))
742 set_label_in_map (map,
743 CODE_LABEL_NUMBER (JUMP_LABEL (insn)),
744 JUMP_LABEL (insn));
745 else if (GET_CODE (PATTERN (insn)) == ADDR_VEC
746 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
747 {
748 rtx pat = PATTERN (insn);
749 int diff_vec_p = GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC;
750 int len = XVECLEN (pat, diff_vec_p);
751 rtx label;
752
753 for (i = 0; i < len; i++)
754 {
755 label = XEXP (XVECEXP (pat, diff_vec_p, i), 0);
756 set_label_in_map (map,
757 CODE_LABEL_NUMBER (label),
758 label);
759 }
760 }
761 }
762 else if ((note = find_reg_note (insn, REG_LABEL, NULL_RTX)))
763 set_label_in_map (map, CODE_LABEL_NUMBER (XEXP (note, 0)),
764 XEXP (note, 0));
765 }
766
767 /* Allocate space for the insn map. */
768
769 map->insn_map = (rtx *) xmalloc (max_insnno * sizeof (rtx));
770
771 /* Set this to zero, to indicate that we are doing loop unrolling,
772 not function inlining. */
773 map->inline_target = 0;
774
775 /* The register and constant maps depend on the number of registers
776 present, so the final maps can't be created until after
777 find_splittable_regs is called. However, they are needed for
778 preconditioning, so we create temporary maps when preconditioning
779 is performed. */
780
781 /* The preconditioning code may allocate two new pseudo registers. */
782 maxregnum = max_reg_num ();
783
784 /* local_regno is only valid for regnos < max_local_regnum. */
785 max_local_regnum = maxregnum;
786
787 /* Allocate and zero out the splittable_regs and addr_combined_regs
788 arrays. These must be zeroed here because they will be used if
789 loop preconditioning is performed, and must be zero for that case.
790
791 It is safe to do this here, since the extra registers created by the
792 preconditioning code and find_splittable_regs will never be used
793 to access the splittable_regs[] and addr_combined_regs[] arrays. */
794
795 splittable_regs = (rtx *) xcalloc (maxregnum, sizeof (rtx));
796 derived_regs = (char *) xcalloc (maxregnum, sizeof (char));
797 splittable_regs_updates = (int *) xcalloc (maxregnum, sizeof (int));
798 addr_combined_regs
799 = (struct induction **) xcalloc (maxregnum, sizeof (struct induction *));
800 local_regno = (char *) xcalloc (maxregnum, sizeof (char));
801
802 /* Mark all local registers, i.e. the ones which are referenced only
803 inside the loop. */
804 if (INSN_UID (copy_end) < max_uid_for_loop)
805 {
806 int copy_start_luid = INSN_LUID (copy_start);
807 int copy_end_luid = INSN_LUID (copy_end);
808
809 /* If a register is used in the jump insn, we must not duplicate it
810 since it will also be used outside the loop. */
811 if (GET_CODE (copy_end) == JUMP_INSN)
812 copy_end_luid--;
813
814 /* If we have a target that uses cc0, then we also must not duplicate
815 the insn that sets cc0 before the jump insn, if one is present. */
816 #ifdef HAVE_cc0
817 if (GET_CODE (copy_end) == JUMP_INSN && sets_cc0_p (PREV_INSN (copy_end)))
818 copy_end_luid--;
819 #endif
820
821 /* If copy_start points to the NOTE that starts the loop, then we must
822 use the next luid, because invariant pseudo-regs moved out of the loop
823 have their lifetimes modified to start here, but they are not safe
824 to duplicate. */
825 if (copy_start == loop_start)
826 copy_start_luid++;
827
828 /* If a pseudo's lifetime is entirely contained within this loop, then we
829 can use a different pseudo in each unrolled copy of the loop. This
830 results in better code. */
831 /* We must limit the generic test to max_reg_before_loop, because only
832 these pseudo registers have valid regno_first_uid info. */
833 for (r = FIRST_PSEUDO_REGISTER; r < max_reg_before_loop; ++r)
834 if (REGNO_FIRST_UID (r) > 0 && REGNO_FIRST_UID (r) <= max_uid_for_loop
835 && uid_luid[REGNO_FIRST_UID (r)] >= copy_start_luid
836 && REGNO_LAST_UID (r) > 0 && REGNO_LAST_UID (r) <= max_uid_for_loop
837 && uid_luid[REGNO_LAST_UID (r)] <= copy_end_luid)
838 {
839 /* However, we must also check for loop-carried dependencies.
840 If the value the pseudo has at the end of iteration X is
841 used by iteration X+1, then we can not use a different pseudo
842 for each unrolled copy of the loop. */
843 /* A pseudo is safe if regno_first_uid is a set, and this
844 set dominates all instructions from regno_first_uid to
845 regno_last_uid. */
846 /* ??? This check is simplistic. We would get better code if
847 this check was more sophisticated. */
848 if (set_dominates_use (r, REGNO_FIRST_UID (r), REGNO_LAST_UID (r),
849 copy_start, copy_end))
850 local_regno[r] = 1;
851
852 if (loop_dump_stream)
853 {
854 if (local_regno[r])
855 fprintf (loop_dump_stream, "Marked reg %d as local\n", r);
856 else
857 fprintf (loop_dump_stream, "Did not mark reg %d as local\n",
858 r);
859 }
860 }
861 /* Givs that have been created from multiple biv increments always have
862 local registers. */
863 for (r = first_increment_giv; r <= last_increment_giv; r++)
864 {
865 local_regno[r] = 1;
866 if (loop_dump_stream)
867 fprintf (loop_dump_stream, "Marked reg %d as local\n", r);
868 }
869 }
870
871 /* If this loop requires exit tests when unrolled, check to see if we
872 can precondition the loop so as to make the exit tests unnecessary.
873 Just like variable splitting, this is not safe if the loop is entered
874 via a jump to the bottom. Also, can not do this if no strength
875 reduce info, because precondition_loop_p uses this info. */
876
877 /* Must copy the loop body for preconditioning before the following
878 find_splittable_regs call since that will emit insns which need to
879 be after the preconditioned loop copies, but immediately before the
880 unrolled loop copies. */
881
882 /* Also, it is not safe to split induction variables for the preconditioned
883 copies of the loop body. If we split induction variables, then the code
884 assumes that each induction variable can be represented as a function
885 of its initial value and the loop iteration number. This is not true
886 in this case, because the last preconditioned copy of the loop body
887 could be any iteration from the first up to the `unroll_number-1'th,
888 depending on the initial value of the iteration variable. Therefore
889 we can not split induction variables here, because we can not calculate
890 their value. Hence, this code must occur before find_splittable_regs
891 is called. */
892
893 if (unroll_type == UNROLL_NAIVE && ! splitting_not_safe && strength_reduce_p)
894 {
895 rtx initial_value, final_value, increment;
896 enum machine_mode mode;
897
898 if (precondition_loop_p (loop,
899 &initial_value, &final_value, &increment,
900 &mode))
901 {
902 register rtx diff ;
903 rtx *labels;
904 int abs_inc, neg_inc;
905
906 map->reg_map = (rtx *) xmalloc (maxregnum * sizeof (rtx));
907
908 VARRAY_CONST_EQUIV_INIT (map->const_equiv_varray, maxregnum,
909 "unroll_loop");
910 global_const_equiv_varray = map->const_equiv_varray;
911
912 init_reg_map (map, maxregnum);
913
914 /* Limit loop unrolling to 4, since this will make 7 copies of
915 the loop body. */
916 if (unroll_number > 4)
917 unroll_number = 4;
918
919 /* Save the absolute value of the increment, and also whether or
920 not it is negative. */
921 neg_inc = 0;
922 abs_inc = INTVAL (increment);
923 if (abs_inc < 0)
924 {
925 abs_inc = - abs_inc;
926 neg_inc = 1;
927 }
928
929 start_sequence ();
930
931 /* Calculate the difference between the final and initial values.
932 Final value may be a (plus (reg x) (const_int 1)) rtx.
933 Let the following cse pass simplify this if initial value is
934 a constant.
935
936 We must copy the final and initial values here to avoid
937 improperly shared rtl. */
938
939 diff = expand_binop (mode, sub_optab, copy_rtx (final_value),
940 copy_rtx (initial_value), NULL_RTX, 0,
941 OPTAB_LIB_WIDEN);
942
943 /* Now calculate (diff % (unroll * abs (increment))) by using an
944 and instruction. */
945 diff = expand_binop (GET_MODE (diff), and_optab, diff,
946 GEN_INT (unroll_number * abs_inc - 1),
947 NULL_RTX, 0, OPTAB_LIB_WIDEN);
948
949 /* Now emit a sequence of branches to jump to the proper precond
950 loop entry point. */
951
952 labels = (rtx *) xmalloc (sizeof (rtx) * unroll_number);
953 for (i = 0; i < unroll_number; i++)
954 labels[i] = gen_label_rtx ();
955
956 /* Check for the case where the initial value is greater than or
957 equal to the final value. In that case, we want to execute
958 exactly one loop iteration. The code below will fail for this
959 case. This check does not apply if the loop has a NE
960 comparison at the end. */
961
962 if (loop_info->comparison_code != NE)
963 {
964 emit_cmp_and_jump_insns (initial_value, final_value,
965 neg_inc ? LE : GE,
966 NULL_RTX, mode, 0, 0, labels[1]);
967 JUMP_LABEL (get_last_insn ()) = labels[1];
968 LABEL_NUSES (labels[1])++;
969 }
970
971 /* Assuming the unroll_number is 4, and the increment is 2, then
972 for a negative increment: for a positive increment:
973 diff = 0,1 precond 0 diff = 0,7 precond 0
974 diff = 2,3 precond 3 diff = 1,2 precond 1
975 diff = 4,5 precond 2 diff = 3,4 precond 2
976 diff = 6,7 precond 1 diff = 5,6 precond 3 */
977
978 /* We only need to emit (unroll_number - 1) branches here, the
979 last case just falls through to the following code. */
980
981 /* ??? This would give better code if we emitted a tree of branches
982 instead of the current linear list of branches. */
983
984 for (i = 0; i < unroll_number - 1; i++)
985 {
986 int cmp_const;
987 enum rtx_code cmp_code;
988
989 /* For negative increments, must invert the constant compared
990 against, except when comparing against zero. */
991 if (i == 0)
992 {
993 cmp_const = 0;
994 cmp_code = EQ;
995 }
996 else if (neg_inc)
997 {
998 cmp_const = unroll_number - i;
999 cmp_code = GE;
1000 }
1001 else
1002 {
1003 cmp_const = i;
1004 cmp_code = LE;
1005 }
1006
1007 emit_cmp_and_jump_insns (diff, GEN_INT (abs_inc * cmp_const),
1008 cmp_code, NULL_RTX, mode, 0, 0,
1009 labels[i]);
1010 JUMP_LABEL (get_last_insn ()) = labels[i];
1011 LABEL_NUSES (labels[i])++;
1012 }
1013
1014 /* If the increment is greater than one, then we need another branch,
1015 to handle other cases equivalent to 0. */
1016
1017 /* ??? This should be merged into the code above somehow to help
1018 simplify the code here, and reduce the number of branches emitted.
1019 For the negative increment case, the branch here could easily
1020 be merged with the `0' case branch above. For the positive
1021 increment case, it is not clear how this can be simplified. */
1022
1023 if (abs_inc != 1)
1024 {
1025 int cmp_const;
1026 enum rtx_code cmp_code;
1027
1028 if (neg_inc)
1029 {
1030 cmp_const = abs_inc - 1;
1031 cmp_code = LE;
1032 }
1033 else
1034 {
1035 cmp_const = abs_inc * (unroll_number - 1) + 1;
1036 cmp_code = GE;
1037 }
1038
1039 emit_cmp_and_jump_insns (diff, GEN_INT (cmp_const), cmp_code,
1040 NULL_RTX, mode, 0, 0, labels[0]);
1041 JUMP_LABEL (get_last_insn ()) = labels[0];
1042 LABEL_NUSES (labels[0])++;
1043 }
1044
1045 sequence = gen_sequence ();
1046 end_sequence ();
1047 emit_insn_before (sequence, loop_start);
1048
1049 /* Only the last copy of the loop body here needs the exit
1050 test, so set copy_end to exclude the compare/branch here,
1051 and then reset it inside the loop when get to the last
1052 copy. */
1053
1054 if (GET_CODE (last_loop_insn) == BARRIER)
1055 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
1056 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
1057 {
1058 copy_end = PREV_INSN (last_loop_insn);
1059 #ifdef HAVE_cc0
1060 /* The immediately preceding insn may be a compare which we do not
1061 want to copy. */
1062 if (sets_cc0_p (PREV_INSN (copy_end)))
1063 copy_end = PREV_INSN (copy_end);
1064 #endif
1065 }
1066 else
1067 abort ();
1068
1069 for (i = 1; i < unroll_number; i++)
1070 {
1071 emit_label_after (labels[unroll_number - i],
1072 PREV_INSN (loop_start));
1073
1074 bzero ((char *) map->insn_map, max_insnno * sizeof (rtx));
1075 bzero ((char *) &VARRAY_CONST_EQUIV (map->const_equiv_varray, 0),
1076 (VARRAY_SIZE (map->const_equiv_varray)
1077 * sizeof (struct const_equiv_data)));
1078 map->const_age = 0;
1079
1080 for (j = 0; j < max_labelno; j++)
1081 if (local_label[j])
1082 set_label_in_map (map, j, gen_label_rtx ());
1083
1084 for (r = FIRST_PSEUDO_REGISTER; r < max_local_regnum; r++)
1085 if (local_regno[r])
1086 {
1087 map->reg_map[r]
1088 = gen_reg_rtx (GET_MODE (regno_reg_rtx[r]));
1089 record_base_value (REGNO (map->reg_map[r]),
1090 regno_reg_rtx[r], 0);
1091 }
1092 /* The last copy needs the compare/branch insns at the end,
1093 so reset copy_end here if the loop ends with a conditional
1094 branch. */
1095
1096 if (i == unroll_number - 1)
1097 {
1098 if (GET_CODE (last_loop_insn) == BARRIER)
1099 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
1100 else
1101 copy_end = last_loop_insn;
1102 }
1103
1104 /* None of the copies are the `last_iteration', so just
1105 pass zero for that parameter. */
1106 copy_loop_body (copy_start, copy_end, map, exit_label, 0,
1107 unroll_type, start_label, loop_end,
1108 loop_start, copy_end);
1109 }
1110 emit_label_after (labels[0], PREV_INSN (loop_start));
1111
1112 if (GET_CODE (last_loop_insn) == BARRIER)
1113 {
1114 insert_before = PREV_INSN (last_loop_insn);
1115 copy_end = PREV_INSN (insert_before);
1116 }
1117 else
1118 {
1119 insert_before = last_loop_insn;
1120 #ifdef HAVE_cc0
1121 /* The instruction immediately before the JUMP_INSN may be a compare
1122 instruction which we do not want to copy or delete. */
1123 if (sets_cc0_p (PREV_INSN (insert_before)))
1124 insert_before = PREV_INSN (insert_before);
1125 #endif
1126 copy_end = PREV_INSN (insert_before);
1127 }
1128
1129 /* Set unroll type to MODULO now. */
1130 unroll_type = UNROLL_MODULO;
1131 loop_preconditioned = 1;
1132
1133 /* Clean up. */
1134 free (labels);
1135 }
1136 }
1137
1138 /* If reach here, and the loop type is UNROLL_NAIVE, then don't unroll
1139 the loop unless all loops are being unrolled. */
1140 if (unroll_type == UNROLL_NAIVE && ! flag_unroll_all_loops)
1141 {
1142 if (loop_dump_stream)
1143 fprintf (loop_dump_stream, "Unrolling failure: Naive unrolling not being done.\n");
1144 goto egress;
1145 }
1146
1147 /* At this point, we are guaranteed to unroll the loop. */
1148
1149 /* Keep track of the unroll factor for the loop. */
1150 loop_info->unroll_number = unroll_number;
1151
1152 /* For each biv and giv, determine whether it can be safely split into
1153 a different variable for each unrolled copy of the loop body.
1154 We precalculate and save this info here, since computing it is
1155 expensive.
1156
1157 Do this before deleting any instructions from the loop, so that
1158 back_branch_in_range_p will work correctly. */
1159
1160 if (splitting_not_safe)
1161 temp = 0;
1162 else
1163 temp = find_splittable_regs (loop, unroll_type,
1164 end_insert_before, unroll_number);
1165
1166 /* find_splittable_regs may have created some new registers, so must
1167 reallocate the reg_map with the new larger size, and must realloc
1168 the constant maps also. */
1169
1170 maxregnum = max_reg_num ();
1171 map->reg_map = (rtx *) xmalloc (maxregnum * sizeof (rtx));
1172
1173 init_reg_map (map, maxregnum);
1174
1175 if (map->const_equiv_varray == 0)
1176 VARRAY_CONST_EQUIV_INIT (map->const_equiv_varray,
1177 maxregnum + temp * unroll_number * 2,
1178 "unroll_loop");
1179 global_const_equiv_varray = map->const_equiv_varray;
1180
1181 /* Search the list of bivs and givs to find ones which need to be remapped
1182 when split, and set their reg_map entry appropriately. */
1183
1184 for (bl = loop_iv_list; bl; bl = bl->next)
1185 {
1186 if (REGNO (bl->biv->src_reg) != bl->regno)
1187 map->reg_map[bl->regno] = bl->biv->src_reg;
1188 #if 0
1189 /* Currently, non-reduced/final-value givs are never split. */
1190 for (v = bl->giv; v; v = v->next_iv)
1191 if (REGNO (v->src_reg) != bl->regno)
1192 map->reg_map[REGNO (v->dest_reg)] = v->src_reg;
1193 #endif
1194 }
1195
1196 /* Use our current register alignment and pointer flags. */
1197 map->regno_pointer_flag = cfun->emit->regno_pointer_flag;
1198 map->regno_pointer_align = cfun->emit->regno_pointer_align;
1199
1200 /* If the loop is being partially unrolled, and the iteration variables
1201 are being split, and are being renamed for the split, then must fix up
1202 the compare/jump instruction at the end of the loop to refer to the new
1203 registers. This compare isn't copied, so the registers used in it
1204 will never be replaced if it isn't done here. */
1205
1206 if (unroll_type == UNROLL_MODULO)
1207 {
1208 insn = NEXT_INSN (copy_end);
1209 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
1210 PATTERN (insn) = remap_split_bivs (PATTERN (insn));
1211 }
1212
1213 /* For unroll_number times, make a copy of each instruction
1214 between copy_start and copy_end, and insert these new instructions
1215 before the end of the loop. */
1216
1217 for (i = 0; i < unroll_number; i++)
1218 {
1219 bzero ((char *) map->insn_map, max_insnno * sizeof (rtx));
1220 bzero ((char *) &VARRAY_CONST_EQUIV (map->const_equiv_varray, 0),
1221 VARRAY_SIZE (map->const_equiv_varray) * sizeof (struct const_equiv_data));
1222 map->const_age = 0;
1223
1224 for (j = 0; j < max_labelno; j++)
1225 if (local_label[j])
1226 set_label_in_map (map, j, gen_label_rtx ());
1227
1228 for (r = FIRST_PSEUDO_REGISTER; r < max_local_regnum; r++)
1229 if (local_regno[r])
1230 {
1231 map->reg_map[r] = gen_reg_rtx (GET_MODE (regno_reg_rtx[r]));
1232 record_base_value (REGNO (map->reg_map[r]),
1233 regno_reg_rtx[r], 0);
1234 }
1235
1236 /* If loop starts with a branch to the test, then fix it so that
1237 it points to the test of the first unrolled copy of the loop. */
1238 if (i == 0 && loop_start != copy_start)
1239 {
1240 insn = PREV_INSN (copy_start);
1241 pattern = PATTERN (insn);
1242
1243 tem = get_label_from_map (map,
1244 CODE_LABEL_NUMBER
1245 (XEXP (SET_SRC (pattern), 0)));
1246 SET_SRC (pattern) = gen_rtx_LABEL_REF (VOIDmode, tem);
1247
1248 /* Set the jump label so that it can be used by later loop unrolling
1249 passes. */
1250 JUMP_LABEL (insn) = tem;
1251 LABEL_NUSES (tem)++;
1252 }
1253
1254 copy_loop_body (copy_start, copy_end, map, exit_label,
1255 i == unroll_number - 1, unroll_type, start_label,
1256 loop_end, insert_before, insert_before);
1257 }
1258
1259 /* Before deleting any insns, emit a CODE_LABEL immediately after the last
1260 insn to be deleted. This prevents any runaway delete_insn call from
1261 more insns that it should, as it always stops at a CODE_LABEL. */
1262
1263 /* Delete the compare and branch at the end of the loop if completely
1264 unrolling the loop. Deleting the backward branch at the end also
1265 deletes the code label at the start of the loop. This is done at
1266 the very end to avoid problems with back_branch_in_range_p. */
1267
1268 if (unroll_type == UNROLL_COMPLETELY)
1269 safety_label = emit_label_after (gen_label_rtx (), last_loop_insn);
1270 else
1271 safety_label = emit_label_after (gen_label_rtx (), copy_end);
1272
1273 /* Delete all of the original loop instructions. Don't delete the
1274 LOOP_BEG note, or the first code label in the loop. */
1275
1276 insn = NEXT_INSN (copy_start);
1277 while (insn != safety_label)
1278 {
1279 /* ??? Don't delete named code labels. They will be deleted when the
1280 jump that references them is deleted. Otherwise, we end up deleting
1281 them twice, which causes them to completely disappear instead of turn
1282 into NOTE_INSN_DELETED_LABEL notes. This in turn causes aborts in
1283 dwarfout.c/dwarf2out.c. We could perhaps fix the dwarf*out.c files
1284 to handle deleted labels instead. Or perhaps fix DECL_RTL of the
1285 associated LABEL_DECL to point to one of the new label instances. */
1286 /* ??? Likewise, we can't delete a NOTE_INSN_DELETED_LABEL note. */
1287 if (insn != start_label
1288 && ! (GET_CODE (insn) == CODE_LABEL && LABEL_NAME (insn))
1289 && ! (GET_CODE (insn) == NOTE
1290 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL))
1291 insn = delete_insn (insn);
1292 else
1293 insn = NEXT_INSN (insn);
1294 }
1295
1296 /* Can now delete the 'safety' label emitted to protect us from runaway
1297 delete_insn calls. */
1298 if (INSN_DELETED_P (safety_label))
1299 abort ();
1300 delete_insn (safety_label);
1301
1302 /* If exit_label exists, emit it after the loop. Doing the emit here
1303 forces it to have a higher INSN_UID than any insn in the unrolled loop.
1304 This is needed so that mostly_true_jump in reorg.c will treat jumps
1305 to this loop end label correctly, i.e. predict that they are usually
1306 not taken. */
1307 if (exit_label)
1308 emit_label_after (exit_label, loop_end);
1309
1310 egress:
1311 if (unroll_type == UNROLL_COMPLETELY)
1312 {
1313 /* Remove the loop notes since this is no longer a loop. */
1314 if (loop->vtop)
1315 delete_insn (loop->vtop);
1316 if (loop->cont)
1317 delete_insn (loop->cont);
1318 if (loop_start)
1319 delete_insn (loop_start);
1320 if (loop_end)
1321 delete_insn (loop_end);
1322 }
1323
1324 if (map->const_equiv_varray)
1325 VARRAY_FREE (map->const_equiv_varray);
1326 if (map->label_map)
1327 {
1328 free (map->label_map);
1329 free (local_label);
1330 }
1331 free (map->insn_map);
1332 free (splittable_regs);
1333 free (derived_regs);
1334 free (splittable_regs_updates);
1335 free (addr_combined_regs);
1336 free (local_regno);
1337 if (map->reg_map)
1338 free (map->reg_map);
1339 free (map);
1340 }
1341 \f
1342 /* Return true if the loop can be safely, and profitably, preconditioned
1343 so that the unrolled copies of the loop body don't need exit tests.
1344
1345 This only works if final_value, initial_value and increment can be
1346 determined, and if increment is a constant power of 2.
1347 If increment is not a power of 2, then the preconditioning modulo
1348 operation would require a real modulo instead of a boolean AND, and this
1349 is not considered `profitable'. */
1350
1351 /* ??? If the loop is known to be executed very many times, or the machine
1352 has a very cheap divide instruction, then preconditioning is a win even
1353 when the increment is not a power of 2. Use RTX_COST to compute
1354 whether divide is cheap.
1355 ??? A divide by constant doesn't actually need a divide, look at
1356 expand_divmod. The reduced cost of this optimized modulo is not
1357 reflected in RTX_COST. */
1358
1359 int
1360 precondition_loop_p (loop, initial_value, final_value, increment, mode)
1361 const struct loop *loop;
1362 rtx *initial_value, *final_value, *increment;
1363 enum machine_mode *mode;
1364 {
1365 rtx loop_start = loop->start;
1366 struct loop_info *loop_info = LOOP_INFO (loop);
1367
1368 if (loop_info->n_iterations > 0)
1369 {
1370 *initial_value = const0_rtx;
1371 *increment = const1_rtx;
1372 *final_value = GEN_INT (loop_info->n_iterations);
1373 *mode = word_mode;
1374
1375 if (loop_dump_stream)
1376 {
1377 fputs ("Preconditioning: Success, number of iterations known, ",
1378 loop_dump_stream);
1379 fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC,
1380 loop_info->n_iterations);
1381 fputs (".\n", loop_dump_stream);
1382 }
1383 return 1;
1384 }
1385
1386 if (loop_info->initial_value == 0)
1387 {
1388 if (loop_dump_stream)
1389 fprintf (loop_dump_stream,
1390 "Preconditioning: Could not find initial value.\n");
1391 return 0;
1392 }
1393 else if (loop_info->increment == 0)
1394 {
1395 if (loop_dump_stream)
1396 fprintf (loop_dump_stream,
1397 "Preconditioning: Could not find increment value.\n");
1398 return 0;
1399 }
1400 else if (GET_CODE (loop_info->increment) != CONST_INT)
1401 {
1402 if (loop_dump_stream)
1403 fprintf (loop_dump_stream,
1404 "Preconditioning: Increment not a constant.\n");
1405 return 0;
1406 }
1407 else if ((exact_log2 (INTVAL (loop_info->increment)) < 0)
1408 && (exact_log2 (- INTVAL (loop_info->increment)) < 0))
1409 {
1410 if (loop_dump_stream)
1411 fprintf (loop_dump_stream,
1412 "Preconditioning: Increment not a constant power of 2.\n");
1413 return 0;
1414 }
1415
1416 /* Unsigned_compare and compare_dir can be ignored here, since they do
1417 not matter for preconditioning. */
1418
1419 if (loop_info->final_value == 0)
1420 {
1421 if (loop_dump_stream)
1422 fprintf (loop_dump_stream,
1423 "Preconditioning: EQ comparison loop.\n");
1424 return 0;
1425 }
1426
1427 /* Must ensure that final_value is invariant, so call
1428 loop_invariant_p to check. Before doing so, must check regno
1429 against max_reg_before_loop to make sure that the register is in
1430 the range covered by loop_invariant_p. If it isn't, then it is
1431 most likely a biv/giv which by definition are not invariant. */
1432 if ((GET_CODE (loop_info->final_value) == REG
1433 && REGNO (loop_info->final_value) >= max_reg_before_loop)
1434 || (GET_CODE (loop_info->final_value) == PLUS
1435 && REGNO (XEXP (loop_info->final_value, 0)) >= max_reg_before_loop)
1436 || ! loop_invariant_p (loop, loop_info->final_value))
1437 {
1438 if (loop_dump_stream)
1439 fprintf (loop_dump_stream,
1440 "Preconditioning: Final value not invariant.\n");
1441 return 0;
1442 }
1443
1444 /* Fail for floating point values, since the caller of this function
1445 does not have code to deal with them. */
1446 if (GET_MODE_CLASS (GET_MODE (loop_info->final_value)) == MODE_FLOAT
1447 || GET_MODE_CLASS (GET_MODE (loop_info->initial_value)) == MODE_FLOAT)
1448 {
1449 if (loop_dump_stream)
1450 fprintf (loop_dump_stream,
1451 "Preconditioning: Floating point final or initial value.\n");
1452 return 0;
1453 }
1454
1455 /* Fail if loop_info->iteration_var is not live before loop_start,
1456 since we need to test its value in the preconditioning code. */
1457
1458 if (uid_luid[REGNO_FIRST_UID (REGNO (loop_info->iteration_var))]
1459 > INSN_LUID (loop_start))
1460 {
1461 if (loop_dump_stream)
1462 fprintf (loop_dump_stream,
1463 "Preconditioning: Iteration var not live before loop start.\n");
1464 return 0;
1465 }
1466
1467 /* Note that iteration_info biases the initial value for GIV iterators
1468 such as "while (i-- > 0)" so that we can calculate the number of
1469 iterations just like for BIV iterators.
1470
1471 Also note that the absolute values of initial_value and
1472 final_value are unimportant as only their difference is used for
1473 calculating the number of loop iterations. */
1474 *initial_value = loop_info->initial_value;
1475 *increment = loop_info->increment;
1476 *final_value = loop_info->final_value;
1477
1478 /* Decide what mode to do these calculations in. Choose the larger
1479 of final_value's mode and initial_value's mode, or a full-word if
1480 both are constants. */
1481 *mode = GET_MODE (*final_value);
1482 if (*mode == VOIDmode)
1483 {
1484 *mode = GET_MODE (*initial_value);
1485 if (*mode == VOIDmode)
1486 *mode = word_mode;
1487 }
1488 else if (*mode != GET_MODE (*initial_value)
1489 && (GET_MODE_SIZE (*mode)
1490 < GET_MODE_SIZE (GET_MODE (*initial_value))))
1491 *mode = GET_MODE (*initial_value);
1492
1493 /* Success! */
1494 if (loop_dump_stream)
1495 fprintf (loop_dump_stream, "Preconditioning: Successful.\n");
1496 return 1;
1497 }
1498
1499
1500 /* All pseudo-registers must be mapped to themselves. Two hard registers
1501 must be mapped, VIRTUAL_STACK_VARS_REGNUM and VIRTUAL_INCOMING_ARGS_
1502 REGNUM, to avoid function-inlining specific conversions of these
1503 registers. All other hard regs can not be mapped because they may be
1504 used with different
1505 modes. */
1506
1507 static void
1508 init_reg_map (map, maxregnum)
1509 struct inline_remap *map;
1510 int maxregnum;
1511 {
1512 int i;
1513
1514 for (i = maxregnum - 1; i > LAST_VIRTUAL_REGISTER; i--)
1515 map->reg_map[i] = regno_reg_rtx[i];
1516 /* Just clear the rest of the entries. */
1517 for (i = LAST_VIRTUAL_REGISTER; i >= 0; i--)
1518 map->reg_map[i] = 0;
1519
1520 map->reg_map[VIRTUAL_STACK_VARS_REGNUM]
1521 = regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM];
1522 map->reg_map[VIRTUAL_INCOMING_ARGS_REGNUM]
1523 = regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM];
1524 }
1525 \f
1526 /* Strength-reduction will often emit code for optimized biv/givs which
1527 calculates their value in a temporary register, and then copies the result
1528 to the iv. This procedure reconstructs the pattern computing the iv;
1529 verifying that all operands are of the proper form.
1530
1531 PATTERN must be the result of single_set.
1532 The return value is the amount that the giv is incremented by. */
1533
1534 static rtx
1535 calculate_giv_inc (pattern, src_insn, regno)
1536 rtx pattern, src_insn;
1537 unsigned int regno;
1538 {
1539 rtx increment;
1540 rtx increment_total = 0;
1541 int tries = 0;
1542
1543 retry:
1544 /* Verify that we have an increment insn here. First check for a plus
1545 as the set source. */
1546 if (GET_CODE (SET_SRC (pattern)) != PLUS)
1547 {
1548 /* SR sometimes computes the new giv value in a temp, then copies it
1549 to the new_reg. */
1550 src_insn = PREV_INSN (src_insn);
1551 pattern = PATTERN (src_insn);
1552 if (GET_CODE (SET_SRC (pattern)) != PLUS)
1553 abort ();
1554
1555 /* The last insn emitted is not needed, so delete it to avoid confusing
1556 the second cse pass. This insn sets the giv unnecessarily. */
1557 delete_insn (get_last_insn ());
1558 }
1559
1560 /* Verify that we have a constant as the second operand of the plus. */
1561 increment = XEXP (SET_SRC (pattern), 1);
1562 if (GET_CODE (increment) != CONST_INT)
1563 {
1564 /* SR sometimes puts the constant in a register, especially if it is
1565 too big to be an add immed operand. */
1566 src_insn = PREV_INSN (src_insn);
1567 increment = SET_SRC (PATTERN (src_insn));
1568
1569 /* SR may have used LO_SUM to compute the constant if it is too large
1570 for a load immed operand. In this case, the constant is in operand
1571 one of the LO_SUM rtx. */
1572 if (GET_CODE (increment) == LO_SUM)
1573 increment = XEXP (increment, 1);
1574
1575 /* Some ports store large constants in memory and add a REG_EQUAL
1576 note to the store insn. */
1577 else if (GET_CODE (increment) == MEM)
1578 {
1579 rtx note = find_reg_note (src_insn, REG_EQUAL, 0);
1580 if (note)
1581 increment = XEXP (note, 0);
1582 }
1583
1584 else if (GET_CODE (increment) == IOR
1585 || GET_CODE (increment) == ASHIFT
1586 || GET_CODE (increment) == PLUS)
1587 {
1588 /* The rs6000 port loads some constants with IOR.
1589 The alpha port loads some constants with ASHIFT and PLUS. */
1590 rtx second_part = XEXP (increment, 1);
1591 enum rtx_code code = GET_CODE (increment);
1592
1593 src_insn = PREV_INSN (src_insn);
1594 increment = SET_SRC (PATTERN (src_insn));
1595 /* Don't need the last insn anymore. */
1596 delete_insn (get_last_insn ());
1597
1598 if (GET_CODE (second_part) != CONST_INT
1599 || GET_CODE (increment) != CONST_INT)
1600 abort ();
1601
1602 if (code == IOR)
1603 increment = GEN_INT (INTVAL (increment) | INTVAL (second_part));
1604 else if (code == PLUS)
1605 increment = GEN_INT (INTVAL (increment) + INTVAL (second_part));
1606 else
1607 increment = GEN_INT (INTVAL (increment) << INTVAL (second_part));
1608 }
1609
1610 if (GET_CODE (increment) != CONST_INT)
1611 abort ();
1612
1613 /* The insn loading the constant into a register is no longer needed,
1614 so delete it. */
1615 delete_insn (get_last_insn ());
1616 }
1617
1618 if (increment_total)
1619 increment_total = GEN_INT (INTVAL (increment_total) + INTVAL (increment));
1620 else
1621 increment_total = increment;
1622
1623 /* Check that the source register is the same as the register we expected
1624 to see as the source. If not, something is seriously wrong. */
1625 if (GET_CODE (XEXP (SET_SRC (pattern), 0)) != REG
1626 || REGNO (XEXP (SET_SRC (pattern), 0)) != regno)
1627 {
1628 /* Some machines (e.g. the romp), may emit two add instructions for
1629 certain constants, so lets try looking for another add immediately
1630 before this one if we have only seen one add insn so far. */
1631
1632 if (tries == 0)
1633 {
1634 tries++;
1635
1636 src_insn = PREV_INSN (src_insn);
1637 pattern = PATTERN (src_insn);
1638
1639 delete_insn (get_last_insn ());
1640
1641 goto retry;
1642 }
1643
1644 abort ();
1645 }
1646
1647 return increment_total;
1648 }
1649
1650 /* Copy REG_NOTES, except for insn references, because not all insn_map
1651 entries are valid yet. We do need to copy registers now though, because
1652 the reg_map entries can change during copying. */
1653
1654 static rtx
1655 initial_reg_note_copy (notes, map)
1656 rtx notes;
1657 struct inline_remap *map;
1658 {
1659 rtx copy;
1660
1661 if (notes == 0)
1662 return 0;
1663
1664 copy = rtx_alloc (GET_CODE (notes));
1665 PUT_MODE (copy, GET_MODE (notes));
1666
1667 if (GET_CODE (notes) == EXPR_LIST)
1668 XEXP (copy, 0) = copy_rtx_and_substitute (XEXP (notes, 0), map, 0);
1669 else if (GET_CODE (notes) == INSN_LIST)
1670 /* Don't substitute for these yet. */
1671 XEXP (copy, 0) = XEXP (notes, 0);
1672 else
1673 abort ();
1674
1675 XEXP (copy, 1) = initial_reg_note_copy (XEXP (notes, 1), map);
1676
1677 return copy;
1678 }
1679
1680 /* Fixup insn references in copied REG_NOTES. */
1681
1682 static void
1683 final_reg_note_copy (notes, map)
1684 rtx notes;
1685 struct inline_remap *map;
1686 {
1687 rtx note;
1688
1689 for (note = notes; note; note = XEXP (note, 1))
1690 if (GET_CODE (note) == INSN_LIST)
1691 XEXP (note, 0) = map->insn_map[INSN_UID (XEXP (note, 0))];
1692 }
1693
1694 /* Copy each instruction in the loop, substituting from map as appropriate.
1695 This is very similar to a loop in expand_inline_function. */
1696
1697 static void
1698 copy_loop_body (copy_start, copy_end, map, exit_label, last_iteration,
1699 unroll_type, start_label, loop_end, insert_before,
1700 copy_notes_from)
1701 rtx copy_start, copy_end;
1702 struct inline_remap *map;
1703 rtx exit_label;
1704 int last_iteration;
1705 enum unroll_types unroll_type;
1706 rtx start_label, loop_end, insert_before, copy_notes_from;
1707 {
1708 rtx insn, pattern;
1709 rtx set, tem, copy = NULL_RTX;
1710 int dest_reg_was_split, i;
1711 #ifdef HAVE_cc0
1712 rtx cc0_insn = 0;
1713 #endif
1714 rtx final_label = 0;
1715 rtx giv_inc, giv_dest_reg, giv_src_reg;
1716
1717 /* If this isn't the last iteration, then map any references to the
1718 start_label to final_label. Final label will then be emitted immediately
1719 after the end of this loop body if it was ever used.
1720
1721 If this is the last iteration, then map references to the start_label
1722 to itself. */
1723 if (! last_iteration)
1724 {
1725 final_label = gen_label_rtx ();
1726 set_label_in_map (map, CODE_LABEL_NUMBER (start_label),
1727 final_label);
1728 }
1729 else
1730 set_label_in_map (map, CODE_LABEL_NUMBER (start_label), start_label);
1731
1732 start_sequence ();
1733
1734 /* Emit a NOTE_INSN_DELETED to force at least two insns onto the sequence.
1735 Else gen_sequence could return a raw pattern for a jump which we pass
1736 off to emit_insn_before (instead of emit_jump_insn_before) which causes
1737 a variety of losing behaviors later. */
1738 emit_note (0, NOTE_INSN_DELETED);
1739
1740 insn = copy_start;
1741 do
1742 {
1743 insn = NEXT_INSN (insn);
1744
1745 map->orig_asm_operands_vector = 0;
1746
1747 switch (GET_CODE (insn))
1748 {
1749 case INSN:
1750 pattern = PATTERN (insn);
1751 copy = 0;
1752 giv_inc = 0;
1753
1754 /* Check to see if this is a giv that has been combined with
1755 some split address givs. (Combined in the sense that
1756 `combine_givs' in loop.c has put two givs in the same register.)
1757 In this case, we must search all givs based on the same biv to
1758 find the address givs. Then split the address givs.
1759 Do this before splitting the giv, since that may map the
1760 SET_DEST to a new register. */
1761
1762 if ((set = single_set (insn))
1763 && GET_CODE (SET_DEST (set)) == REG
1764 && addr_combined_regs[REGNO (SET_DEST (set))])
1765 {
1766 struct iv_class *bl;
1767 struct induction *v, *tv;
1768 unsigned int regno = REGNO (SET_DEST (set));
1769
1770 v = addr_combined_regs[REGNO (SET_DEST (set))];
1771 bl = reg_biv_class[REGNO (v->src_reg)];
1772
1773 /* Although the giv_inc amount is not needed here, we must call
1774 calculate_giv_inc here since it might try to delete the
1775 last insn emitted. If we wait until later to call it,
1776 we might accidentally delete insns generated immediately
1777 below by emit_unrolled_add. */
1778
1779 if (! derived_regs[regno])
1780 giv_inc = calculate_giv_inc (set, insn, regno);
1781
1782 /* Now find all address giv's that were combined with this
1783 giv 'v'. */
1784 for (tv = bl->giv; tv; tv = tv->next_iv)
1785 if (tv->giv_type == DEST_ADDR && tv->same == v)
1786 {
1787 int this_giv_inc;
1788
1789 /* If this DEST_ADDR giv was not split, then ignore it. */
1790 if (*tv->location != tv->dest_reg)
1791 continue;
1792
1793 /* Scale this_giv_inc if the multiplicative factors of
1794 the two givs are different. */
1795 this_giv_inc = INTVAL (giv_inc);
1796 if (tv->mult_val != v->mult_val)
1797 this_giv_inc = (this_giv_inc / INTVAL (v->mult_val)
1798 * INTVAL (tv->mult_val));
1799
1800 tv->dest_reg = plus_constant (tv->dest_reg, this_giv_inc);
1801 *tv->location = tv->dest_reg;
1802
1803 if (last_iteration && unroll_type != UNROLL_COMPLETELY)
1804 {
1805 /* Must emit an insn to increment the split address
1806 giv. Add in the const_adjust field in case there
1807 was a constant eliminated from the address. */
1808 rtx value, dest_reg;
1809
1810 /* tv->dest_reg will be either a bare register,
1811 or else a register plus a constant. */
1812 if (GET_CODE (tv->dest_reg) == REG)
1813 dest_reg = tv->dest_reg;
1814 else
1815 dest_reg = XEXP (tv->dest_reg, 0);
1816
1817 /* Check for shared address givs, and avoid
1818 incrementing the shared pseudo reg more than
1819 once. */
1820 if (! tv->same_insn && ! tv->shared)
1821 {
1822 /* tv->dest_reg may actually be a (PLUS (REG)
1823 (CONST)) here, so we must call plus_constant
1824 to add the const_adjust amount before calling
1825 emit_unrolled_add below. */
1826 value = plus_constant (tv->dest_reg,
1827 tv->const_adjust);
1828
1829 if (GET_CODE (value) == PLUS)
1830 {
1831 /* The constant could be too large for an add
1832 immediate, so can't directly emit an insn
1833 here. */
1834 emit_unrolled_add (dest_reg, XEXP (value, 0),
1835 XEXP (value, 1));
1836 }
1837 }
1838
1839 /* Reset the giv to be just the register again, in case
1840 it is used after the set we have just emitted.
1841 We must subtract the const_adjust factor added in
1842 above. */
1843 tv->dest_reg = plus_constant (dest_reg,
1844 - tv->const_adjust);
1845 *tv->location = tv->dest_reg;
1846 }
1847 }
1848 }
1849
1850 /* If this is a setting of a splittable variable, then determine
1851 how to split the variable, create a new set based on this split,
1852 and set up the reg_map so that later uses of the variable will
1853 use the new split variable. */
1854
1855 dest_reg_was_split = 0;
1856
1857 if ((set = single_set (insn))
1858 && GET_CODE (SET_DEST (set)) == REG
1859 && splittable_regs[REGNO (SET_DEST (set))])
1860 {
1861 unsigned int regno = REGNO (SET_DEST (set));
1862 unsigned int src_regno;
1863
1864 dest_reg_was_split = 1;
1865
1866 giv_dest_reg = SET_DEST (set);
1867 if (derived_regs[regno])
1868 {
1869 /* ??? This relies on SET_SRC (SET) to be of
1870 the form (plus (reg) (const_int)), and thus
1871 forces recombine_givs to restrict the kind
1872 of giv derivations it does before unrolling. */
1873 giv_src_reg = XEXP (SET_SRC (set), 0);
1874 giv_inc = XEXP (SET_SRC (set), 1);
1875 }
1876 else
1877 {
1878 giv_src_reg = giv_dest_reg;
1879 /* Compute the increment value for the giv, if it wasn't
1880 already computed above. */
1881 if (giv_inc == 0)
1882 giv_inc = calculate_giv_inc (set, insn, regno);
1883 }
1884 src_regno = REGNO (giv_src_reg);
1885
1886 if (unroll_type == UNROLL_COMPLETELY)
1887 {
1888 /* Completely unrolling the loop. Set the induction
1889 variable to a known constant value. */
1890
1891 /* The value in splittable_regs may be an invariant
1892 value, so we must use plus_constant here. */
1893 splittable_regs[regno]
1894 = plus_constant (splittable_regs[src_regno],
1895 INTVAL (giv_inc));
1896
1897 if (GET_CODE (splittable_regs[regno]) == PLUS)
1898 {
1899 giv_src_reg = XEXP (splittable_regs[regno], 0);
1900 giv_inc = XEXP (splittable_regs[regno], 1);
1901 }
1902 else
1903 {
1904 /* The splittable_regs value must be a REG or a
1905 CONST_INT, so put the entire value in the giv_src_reg
1906 variable. */
1907 giv_src_reg = splittable_regs[regno];
1908 giv_inc = const0_rtx;
1909 }
1910 }
1911 else
1912 {
1913 /* Partially unrolling loop. Create a new pseudo
1914 register for the iteration variable, and set it to
1915 be a constant plus the original register. Except
1916 on the last iteration, when the result has to
1917 go back into the original iteration var register. */
1918
1919 /* Handle bivs which must be mapped to a new register
1920 when split. This happens for bivs which need their
1921 final value set before loop entry. The new register
1922 for the biv was stored in the biv's first struct
1923 induction entry by find_splittable_regs. */
1924
1925 if (regno < max_reg_before_loop
1926 && REG_IV_TYPE (regno) == BASIC_INDUCT)
1927 {
1928 giv_src_reg = reg_biv_class[regno]->biv->src_reg;
1929 giv_dest_reg = giv_src_reg;
1930 }
1931
1932 #if 0
1933 /* If non-reduced/final-value givs were split, then
1934 this would have to remap those givs also. See
1935 find_splittable_regs. */
1936 #endif
1937
1938 splittable_regs[regno]
1939 = GEN_INT (INTVAL (giv_inc)
1940 + INTVAL (splittable_regs[src_regno]));
1941 giv_inc = splittable_regs[regno];
1942
1943 /* Now split the induction variable by changing the dest
1944 of this insn to a new register, and setting its
1945 reg_map entry to point to this new register.
1946
1947 If this is the last iteration, and this is the last insn
1948 that will update the iv, then reuse the original dest,
1949 to ensure that the iv will have the proper value when
1950 the loop exits or repeats.
1951
1952 Using splittable_regs_updates here like this is safe,
1953 because it can only be greater than one if all
1954 instructions modifying the iv are always executed in
1955 order. */
1956
1957 if (! last_iteration
1958 || (splittable_regs_updates[regno]-- != 1))
1959 {
1960 tem = gen_reg_rtx (GET_MODE (giv_src_reg));
1961 giv_dest_reg = tem;
1962 map->reg_map[regno] = tem;
1963 record_base_value (REGNO (tem),
1964 giv_inc == const0_rtx
1965 ? giv_src_reg
1966 : gen_rtx_PLUS (GET_MODE (giv_src_reg),
1967 giv_src_reg, giv_inc),
1968 1);
1969 }
1970 else
1971 map->reg_map[regno] = giv_src_reg;
1972 }
1973
1974 /* The constant being added could be too large for an add
1975 immediate, so can't directly emit an insn here. */
1976 emit_unrolled_add (giv_dest_reg, giv_src_reg, giv_inc);
1977 copy = get_last_insn ();
1978 pattern = PATTERN (copy);
1979 }
1980 else
1981 {
1982 pattern = copy_rtx_and_substitute (pattern, map, 0);
1983 copy = emit_insn (pattern);
1984 }
1985 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
1986
1987 #ifdef HAVE_cc0
1988 /* If this insn is setting CC0, it may need to look at
1989 the insn that uses CC0 to see what type of insn it is.
1990 In that case, the call to recog via validate_change will
1991 fail. So don't substitute constants here. Instead,
1992 do it when we emit the following insn.
1993
1994 For example, see the pyr.md file. That machine has signed and
1995 unsigned compares. The compare patterns must check the
1996 following branch insn to see which what kind of compare to
1997 emit.
1998
1999 If the previous insn set CC0, substitute constants on it as
2000 well. */
2001 if (sets_cc0_p (PATTERN (copy)) != 0)
2002 cc0_insn = copy;
2003 else
2004 {
2005 if (cc0_insn)
2006 try_constants (cc0_insn, map);
2007 cc0_insn = 0;
2008 try_constants (copy, map);
2009 }
2010 #else
2011 try_constants (copy, map);
2012 #endif
2013
2014 /* Make split induction variable constants `permanent' since we
2015 know there are no backward branches across iteration variable
2016 settings which would invalidate this. */
2017 if (dest_reg_was_split)
2018 {
2019 int regno = REGNO (SET_DEST (set));
2020
2021 if ((size_t) regno < VARRAY_SIZE (map->const_equiv_varray)
2022 && (VARRAY_CONST_EQUIV (map->const_equiv_varray, regno).age
2023 == map->const_age))
2024 VARRAY_CONST_EQUIV (map->const_equiv_varray, regno).age = -1;
2025 }
2026 break;
2027
2028 case JUMP_INSN:
2029 pattern = copy_rtx_and_substitute (PATTERN (insn), map, 0);
2030 copy = emit_jump_insn (pattern);
2031 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
2032
2033 if (JUMP_LABEL (insn) == start_label && insn == copy_end
2034 && ! last_iteration)
2035 {
2036 /* This is a branch to the beginning of the loop; this is the
2037 last insn being copied; and this is not the last iteration.
2038 In this case, we want to change the original fall through
2039 case to be a branch past the end of the loop, and the
2040 original jump label case to fall_through. */
2041
2042 if (invert_exp (pattern, copy))
2043 {
2044 if (! redirect_exp (&pattern,
2045 get_label_from_map (map,
2046 CODE_LABEL_NUMBER
2047 (JUMP_LABEL (insn))),
2048 exit_label, copy))
2049 abort ();
2050 }
2051 else
2052 {
2053 rtx jmp;
2054 rtx lab = gen_label_rtx ();
2055 /* Can't do it by reversing the jump (probably because we
2056 couldn't reverse the conditions), so emit a new
2057 jump_insn after COPY, and redirect the jump around
2058 that. */
2059 jmp = emit_jump_insn_after (gen_jump (exit_label), copy);
2060 jmp = emit_barrier_after (jmp);
2061 emit_label_after (lab, jmp);
2062 LABEL_NUSES (lab) = 0;
2063 if (! redirect_exp (&pattern,
2064 get_label_from_map (map,
2065 CODE_LABEL_NUMBER
2066 (JUMP_LABEL (insn))),
2067 lab, copy))
2068 abort ();
2069 }
2070 }
2071
2072 #ifdef HAVE_cc0
2073 if (cc0_insn)
2074 try_constants (cc0_insn, map);
2075 cc0_insn = 0;
2076 #endif
2077 try_constants (copy, map);
2078
2079 /* Set the jump label of COPY correctly to avoid problems with
2080 later passes of unroll_loop, if INSN had jump label set. */
2081 if (JUMP_LABEL (insn))
2082 {
2083 rtx label = 0;
2084
2085 /* Can't use the label_map for every insn, since this may be
2086 the backward branch, and hence the label was not mapped. */
2087 if ((set = single_set (copy)))
2088 {
2089 tem = SET_SRC (set);
2090 if (GET_CODE (tem) == LABEL_REF)
2091 label = XEXP (tem, 0);
2092 else if (GET_CODE (tem) == IF_THEN_ELSE)
2093 {
2094 if (XEXP (tem, 1) != pc_rtx)
2095 label = XEXP (XEXP (tem, 1), 0);
2096 else
2097 label = XEXP (XEXP (tem, 2), 0);
2098 }
2099 }
2100
2101 if (label && GET_CODE (label) == CODE_LABEL)
2102 JUMP_LABEL (copy) = label;
2103 else
2104 {
2105 /* An unrecognizable jump insn, probably the entry jump
2106 for a switch statement. This label must have been mapped,
2107 so just use the label_map to get the new jump label. */
2108 JUMP_LABEL (copy)
2109 = get_label_from_map (map,
2110 CODE_LABEL_NUMBER (JUMP_LABEL (insn)));
2111 }
2112
2113 /* If this is a non-local jump, then must increase the label
2114 use count so that the label will not be deleted when the
2115 original jump is deleted. */
2116 LABEL_NUSES (JUMP_LABEL (copy))++;
2117 }
2118 else if (GET_CODE (PATTERN (copy)) == ADDR_VEC
2119 || GET_CODE (PATTERN (copy)) == ADDR_DIFF_VEC)
2120 {
2121 rtx pat = PATTERN (copy);
2122 int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
2123 int len = XVECLEN (pat, diff_vec_p);
2124 int i;
2125
2126 for (i = 0; i < len; i++)
2127 LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))++;
2128 }
2129
2130 /* If this used to be a conditional jump insn but whose branch
2131 direction is now known, we must do something special. */
2132 if (condjump_p (insn) && !simplejump_p (insn) && map->last_pc_value)
2133 {
2134 #ifdef HAVE_cc0
2135 /* If the previous insn set cc0 for us, delete it. */
2136 if (sets_cc0_p (PREV_INSN (copy)))
2137 delete_insn (PREV_INSN (copy));
2138 #endif
2139
2140 /* If this is now a no-op, delete it. */
2141 if (map->last_pc_value == pc_rtx)
2142 {
2143 /* Don't let delete_insn delete the label referenced here,
2144 because we might possibly need it later for some other
2145 instruction in the loop. */
2146 if (JUMP_LABEL (copy))
2147 LABEL_NUSES (JUMP_LABEL (copy))++;
2148 delete_insn (copy);
2149 if (JUMP_LABEL (copy))
2150 LABEL_NUSES (JUMP_LABEL (copy))--;
2151 copy = 0;
2152 }
2153 else
2154 /* Otherwise, this is unconditional jump so we must put a
2155 BARRIER after it. We could do some dead code elimination
2156 here, but jump.c will do it just as well. */
2157 emit_barrier ();
2158 }
2159 break;
2160
2161 case CALL_INSN:
2162 pattern = copy_rtx_and_substitute (PATTERN (insn), map, 0);
2163 copy = emit_call_insn (pattern);
2164 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
2165
2166 /* Because the USAGE information potentially contains objects other
2167 than hard registers, we need to copy it. */
2168 CALL_INSN_FUNCTION_USAGE (copy)
2169 = copy_rtx_and_substitute (CALL_INSN_FUNCTION_USAGE (insn),
2170 map, 0);
2171
2172 #ifdef HAVE_cc0
2173 if (cc0_insn)
2174 try_constants (cc0_insn, map);
2175 cc0_insn = 0;
2176 #endif
2177 try_constants (copy, map);
2178
2179 /* Be lazy and assume CALL_INSNs clobber all hard registers. */
2180 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2181 VARRAY_CONST_EQUIV (map->const_equiv_varray, i).rtx = 0;
2182 break;
2183
2184 case CODE_LABEL:
2185 /* If this is the loop start label, then we don't need to emit a
2186 copy of this label since no one will use it. */
2187
2188 if (insn != start_label)
2189 {
2190 copy = emit_label (get_label_from_map (map,
2191 CODE_LABEL_NUMBER (insn)));
2192 map->const_age++;
2193 }
2194 break;
2195
2196 case BARRIER:
2197 copy = emit_barrier ();
2198 break;
2199
2200 case NOTE:
2201 /* VTOP and CONT notes are valid only before the loop exit test.
2202 If placed anywhere else, loop may generate bad code. */
2203 /* BASIC_BLOCK notes exist to stabilize basic block structures with
2204 the associated rtl. We do not want to share the structure in
2205 this new block. */
2206
2207 if (NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED
2208 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK
2209 && ((NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_VTOP
2210 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_CONT)
2211 || (last_iteration && unroll_type != UNROLL_COMPLETELY)))
2212 copy = emit_note (NOTE_SOURCE_FILE (insn),
2213 NOTE_LINE_NUMBER (insn));
2214 else
2215 copy = 0;
2216 break;
2217
2218 default:
2219 abort ();
2220 }
2221
2222 map->insn_map[INSN_UID (insn)] = copy;
2223 }
2224 while (insn != copy_end);
2225
2226 /* Now finish coping the REG_NOTES. */
2227 insn = copy_start;
2228 do
2229 {
2230 insn = NEXT_INSN (insn);
2231 if ((GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
2232 || GET_CODE (insn) == CALL_INSN)
2233 && map->insn_map[INSN_UID (insn)])
2234 final_reg_note_copy (REG_NOTES (map->insn_map[INSN_UID (insn)]), map);
2235 }
2236 while (insn != copy_end);
2237
2238 /* There may be notes between copy_notes_from and loop_end. Emit a copy of
2239 each of these notes here, since there may be some important ones, such as
2240 NOTE_INSN_BLOCK_END notes, in this group. We don't do this on the last
2241 iteration, because the original notes won't be deleted.
2242
2243 We can't use insert_before here, because when from preconditioning,
2244 insert_before points before the loop. We can't use copy_end, because
2245 there may be insns already inserted after it (which we don't want to
2246 copy) when not from preconditioning code. */
2247
2248 if (! last_iteration)
2249 {
2250 for (insn = copy_notes_from; insn != loop_end; insn = NEXT_INSN (insn))
2251 {
2252 /* VTOP notes are valid only before the loop exit test.
2253 If placed anywhere else, loop may generate bad code.
2254 There is no need to test for NOTE_INSN_LOOP_CONT notes
2255 here, since COPY_NOTES_FROM will be at most one or two (for cc0)
2256 instructions before the last insn in the loop, and if the
2257 end test is that short, there will be a VTOP note between
2258 the CONT note and the test. */
2259 if (GET_CODE (insn) == NOTE
2260 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED
2261 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK
2262 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_VTOP)
2263 emit_note (NOTE_SOURCE_FILE (insn), NOTE_LINE_NUMBER (insn));
2264 }
2265 }
2266
2267 if (final_label && LABEL_NUSES (final_label) > 0)
2268 emit_label (final_label);
2269
2270 tem = gen_sequence ();
2271 end_sequence ();
2272 emit_insn_before (tem, insert_before);
2273 }
2274 \f
2275 /* Emit an insn, using the expand_binop to ensure that a valid insn is
2276 emitted. This will correctly handle the case where the increment value
2277 won't fit in the immediate field of a PLUS insns. */
2278
2279 void
2280 emit_unrolled_add (dest_reg, src_reg, increment)
2281 rtx dest_reg, src_reg, increment;
2282 {
2283 rtx result;
2284
2285 result = expand_binop (GET_MODE (dest_reg), add_optab, src_reg, increment,
2286 dest_reg, 0, OPTAB_LIB_WIDEN);
2287
2288 if (dest_reg != result)
2289 emit_move_insn (dest_reg, result);
2290 }
2291 \f
2292 /* Searches the insns between INSN and LOOP->END. Returns 1 if there
2293 is a backward branch in that range that branches to somewhere between
2294 LOOP->START and INSN. Returns 0 otherwise. */
2295
2296 /* ??? This is quadratic algorithm. Could be rewritten to be linear.
2297 In practice, this is not a problem, because this function is seldom called,
2298 and uses a negligible amount of CPU time on average. */
2299
2300 int
2301 back_branch_in_range_p (loop, insn)
2302 const struct loop *loop;
2303 rtx insn;
2304 {
2305 rtx p, q, target_insn;
2306 rtx loop_start = loop->start;
2307 rtx loop_end = loop->end;
2308 rtx orig_loop_end = loop->end;
2309
2310 /* Stop before we get to the backward branch at the end of the loop. */
2311 loop_end = prev_nonnote_insn (loop_end);
2312 if (GET_CODE (loop_end) == BARRIER)
2313 loop_end = PREV_INSN (loop_end);
2314
2315 /* Check in case insn has been deleted, search forward for first non
2316 deleted insn following it. */
2317 while (INSN_DELETED_P (insn))
2318 insn = NEXT_INSN (insn);
2319
2320 /* Check for the case where insn is the last insn in the loop. Deal
2321 with the case where INSN was a deleted loop test insn, in which case
2322 it will now be the NOTE_LOOP_END. */
2323 if (insn == loop_end || insn == orig_loop_end)
2324 return 0;
2325
2326 for (p = NEXT_INSN (insn); p != loop_end; p = NEXT_INSN (p))
2327 {
2328 if (GET_CODE (p) == JUMP_INSN)
2329 {
2330 target_insn = JUMP_LABEL (p);
2331
2332 /* Search from loop_start to insn, to see if one of them is
2333 the target_insn. We can't use INSN_LUID comparisons here,
2334 since insn may not have an LUID entry. */
2335 for (q = loop_start; q != insn; q = NEXT_INSN (q))
2336 if (q == target_insn)
2337 return 1;
2338 }
2339 }
2340
2341 return 0;
2342 }
2343
2344 /* Try to generate the simplest rtx for the expression
2345 (PLUS (MULT mult1 mult2) add1). This is used to calculate the initial
2346 value of giv's. */
2347
2348 static rtx
2349 fold_rtx_mult_add (mult1, mult2, add1, mode)
2350 rtx mult1, mult2, add1;
2351 enum machine_mode mode;
2352 {
2353 rtx temp, mult_res;
2354 rtx result;
2355
2356 /* The modes must all be the same. This should always be true. For now,
2357 check to make sure. */
2358 if ((GET_MODE (mult1) != mode && GET_MODE (mult1) != VOIDmode)
2359 || (GET_MODE (mult2) != mode && GET_MODE (mult2) != VOIDmode)
2360 || (GET_MODE (add1) != mode && GET_MODE (add1) != VOIDmode))
2361 abort ();
2362
2363 /* Ensure that if at least one of mult1/mult2 are constant, then mult2
2364 will be a constant. */
2365 if (GET_CODE (mult1) == CONST_INT)
2366 {
2367 temp = mult2;
2368 mult2 = mult1;
2369 mult1 = temp;
2370 }
2371
2372 mult_res = simplify_binary_operation (MULT, mode, mult1, mult2);
2373 if (! mult_res)
2374 mult_res = gen_rtx_MULT (mode, mult1, mult2);
2375
2376 /* Again, put the constant second. */
2377 if (GET_CODE (add1) == CONST_INT)
2378 {
2379 temp = add1;
2380 add1 = mult_res;
2381 mult_res = temp;
2382 }
2383
2384 result = simplify_binary_operation (PLUS, mode, add1, mult_res);
2385 if (! result)
2386 result = gen_rtx_PLUS (mode, add1, mult_res);
2387
2388 return result;
2389 }
2390
2391 /* Searches the list of induction struct's for the biv BL, to try to calculate
2392 the total increment value for one iteration of the loop as a constant.
2393
2394 Returns the increment value as an rtx, simplified as much as possible,
2395 if it can be calculated. Otherwise, returns 0. */
2396
2397 rtx
2398 biv_total_increment (bl)
2399 struct iv_class *bl;
2400 {
2401 struct induction *v;
2402 rtx result;
2403
2404 /* For increment, must check every instruction that sets it. Each
2405 instruction must be executed only once each time through the loop.
2406 To verify this, we check that the insn is always executed, and that
2407 there are no backward branches after the insn that branch to before it.
2408 Also, the insn must have a mult_val of one (to make sure it really is
2409 an increment). */
2410
2411 result = const0_rtx;
2412 for (v = bl->biv; v; v = v->next_iv)
2413 {
2414 if (v->always_computable && v->mult_val == const1_rtx
2415 && ! v->maybe_multiple)
2416 result = fold_rtx_mult_add (result, const1_rtx, v->add_val, v->mode);
2417 else
2418 return 0;
2419 }
2420
2421 return result;
2422 }
2423
2424 /* Determine the initial value of the iteration variable, and the amount
2425 that it is incremented each loop. Use the tables constructed by
2426 the strength reduction pass to calculate these values.
2427
2428 Initial_value and/or increment are set to zero if their values could not
2429 be calculated. */
2430
2431 static void
2432 iteration_info (loop, iteration_var, initial_value, increment)
2433 const struct loop *loop ATTRIBUTE_UNUSED;
2434 rtx iteration_var, *initial_value, *increment;
2435 {
2436 struct iv_class *bl;
2437
2438 /* Clear the result values, in case no answer can be found. */
2439 *initial_value = 0;
2440 *increment = 0;
2441
2442 /* The iteration variable can be either a giv or a biv. Check to see
2443 which it is, and compute the variable's initial value, and increment
2444 value if possible. */
2445
2446 /* If this is a new register, can't handle it since we don't have any
2447 reg_iv_type entry for it. */
2448 if ((unsigned) REGNO (iteration_var) >= reg_iv_type->num_elements)
2449 {
2450 if (loop_dump_stream)
2451 fprintf (loop_dump_stream,
2452 "Loop unrolling: No reg_iv_type entry for iteration var.\n");
2453 return;
2454 }
2455
2456 /* Reject iteration variables larger than the host wide int size, since they
2457 could result in a number of iterations greater than the range of our
2458 `unsigned HOST_WIDE_INT' variable loop_info->n_iterations. */
2459 else if ((GET_MODE_BITSIZE (GET_MODE (iteration_var))
2460 > HOST_BITS_PER_WIDE_INT))
2461 {
2462 if (loop_dump_stream)
2463 fprintf (loop_dump_stream,
2464 "Loop unrolling: Iteration var rejected because mode too large.\n");
2465 return;
2466 }
2467 else if (GET_MODE_CLASS (GET_MODE (iteration_var)) != MODE_INT)
2468 {
2469 if (loop_dump_stream)
2470 fprintf (loop_dump_stream,
2471 "Loop unrolling: Iteration var not an integer.\n");
2472 return;
2473 }
2474 else if (REG_IV_TYPE (REGNO (iteration_var)) == BASIC_INDUCT)
2475 {
2476 /* When reg_iv_type / reg_iv_info is resized for biv increments
2477 that are turned into givs, reg_biv_class is not resized.
2478 So check here that we don't make an out-of-bounds access. */
2479 if (REGNO (iteration_var) >= max_reg_before_loop)
2480 abort ();
2481
2482 /* Grab initial value, only useful if it is a constant. */
2483 bl = reg_biv_class[REGNO (iteration_var)];
2484 *initial_value = bl->initial_value;
2485
2486 *increment = biv_total_increment (bl);
2487 }
2488 else if (REG_IV_TYPE (REGNO (iteration_var)) == GENERAL_INDUCT)
2489 {
2490 HOST_WIDE_INT offset = 0;
2491 struct induction *v = REG_IV_INFO (REGNO (iteration_var));
2492
2493 if (REGNO (v->src_reg) >= max_reg_before_loop)
2494 abort ();
2495
2496 bl = reg_biv_class[REGNO (v->src_reg)];
2497
2498 /* Increment value is mult_val times the increment value of the biv. */
2499
2500 *increment = biv_total_increment (bl);
2501 if (*increment)
2502 {
2503 struct induction *biv_inc;
2504
2505 *increment
2506 = fold_rtx_mult_add (v->mult_val, *increment, const0_rtx, v->mode);
2507 /* The caller assumes that one full increment has occured at the
2508 first loop test. But that's not true when the biv is incremented
2509 after the giv is set (which is the usual case), e.g.:
2510 i = 6; do {;} while (i++ < 9) .
2511 Therefore, we bias the initial value by subtracting the amount of
2512 the increment that occurs between the giv set and the giv test. */
2513 for (biv_inc = bl->biv; biv_inc; biv_inc = biv_inc->next_iv)
2514 {
2515 if (loop_insn_first_p (v->insn, biv_inc->insn))
2516 offset -= INTVAL (biv_inc->add_val);
2517 }
2518 offset *= INTVAL (v->mult_val);
2519 }
2520 if (loop_dump_stream)
2521 fprintf (loop_dump_stream,
2522 "Loop unrolling: Giv iterator, initial value bias %ld.\n",
2523 (long) offset);
2524 /* Initial value is mult_val times the biv's initial value plus
2525 add_val. Only useful if it is a constant. */
2526 *initial_value
2527 = fold_rtx_mult_add (v->mult_val,
2528 plus_constant (bl->initial_value, offset),
2529 v->add_val, v->mode);
2530 }
2531 else
2532 {
2533 if (loop_dump_stream)
2534 fprintf (loop_dump_stream,
2535 "Loop unrolling: Not basic or general induction var.\n");
2536 return;
2537 }
2538 }
2539
2540
2541 /* For each biv and giv, determine whether it can be safely split into
2542 a different variable for each unrolled copy of the loop body. If it
2543 is safe to split, then indicate that by saving some useful info
2544 in the splittable_regs array.
2545
2546 If the loop is being completely unrolled, then splittable_regs will hold
2547 the current value of the induction variable while the loop is unrolled.
2548 It must be set to the initial value of the induction variable here.
2549 Otherwise, splittable_regs will hold the difference between the current
2550 value of the induction variable and the value the induction variable had
2551 at the top of the loop. It must be set to the value 0 here.
2552
2553 Returns the total number of instructions that set registers that are
2554 splittable. */
2555
2556 /* ?? If the loop is only unrolled twice, then most of the restrictions to
2557 constant values are unnecessary, since we can easily calculate increment
2558 values in this case even if nothing is constant. The increment value
2559 should not involve a multiply however. */
2560
2561 /* ?? Even if the biv/giv increment values aren't constant, it may still
2562 be beneficial to split the variable if the loop is only unrolled a few
2563 times, since multiplies by small integers (1,2,3,4) are very cheap. */
2564
2565 static int
2566 find_splittable_regs (loop, unroll_type, end_insert_before, unroll_number)
2567 const struct loop *loop;
2568 enum unroll_types unroll_type;
2569 rtx end_insert_before;
2570 int unroll_number;
2571 {
2572 struct iv_class *bl;
2573 struct induction *v;
2574 rtx increment, tem;
2575 rtx biv_final_value;
2576 int biv_splittable;
2577 int result = 0;
2578 rtx loop_start = loop->start;
2579 rtx loop_end = loop->end;
2580
2581 for (bl = loop_iv_list; bl; bl = bl->next)
2582 {
2583 /* Biv_total_increment must return a constant value,
2584 otherwise we can not calculate the split values. */
2585
2586 increment = biv_total_increment (bl);
2587 if (! increment || GET_CODE (increment) != CONST_INT)
2588 continue;
2589
2590 /* The loop must be unrolled completely, or else have a known number
2591 of iterations and only one exit, or else the biv must be dead
2592 outside the loop, or else the final value must be known. Otherwise,
2593 it is unsafe to split the biv since it may not have the proper
2594 value on loop exit. */
2595
2596 /* loop_number_exit_count is non-zero if the loop has an exit other than
2597 a fall through at the end. */
2598
2599 biv_splittable = 1;
2600 biv_final_value = 0;
2601 if (unroll_type != UNROLL_COMPLETELY
2602 && (loop->exit_count || unroll_type == UNROLL_NAIVE)
2603 && (uid_luid[REGNO_LAST_UID (bl->regno)] >= INSN_LUID (loop_end)
2604 || ! bl->init_insn
2605 || INSN_UID (bl->init_insn) >= max_uid_for_loop
2606 || (uid_luid[REGNO_FIRST_UID (bl->regno)]
2607 < INSN_LUID (bl->init_insn))
2608 || reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
2609 && ! (biv_final_value = final_biv_value (loop, bl)))
2610 biv_splittable = 0;
2611
2612 /* If any of the insns setting the BIV don't do so with a simple
2613 PLUS, we don't know how to split it. */
2614 for (v = bl->biv; biv_splittable && v; v = v->next_iv)
2615 if ((tem = single_set (v->insn)) == 0
2616 || GET_CODE (SET_DEST (tem)) != REG
2617 || REGNO (SET_DEST (tem)) != bl->regno
2618 || GET_CODE (SET_SRC (tem)) != PLUS)
2619 biv_splittable = 0;
2620
2621 /* If final value is non-zero, then must emit an instruction which sets
2622 the value of the biv to the proper value. This is done after
2623 handling all of the givs, since some of them may need to use the
2624 biv's value in their initialization code. */
2625
2626 /* This biv is splittable. If completely unrolling the loop, save
2627 the biv's initial value. Otherwise, save the constant zero. */
2628
2629 if (biv_splittable == 1)
2630 {
2631 if (unroll_type == UNROLL_COMPLETELY)
2632 {
2633 /* If the initial value of the biv is itself (i.e. it is too
2634 complicated for strength_reduce to compute), or is a hard
2635 register, or it isn't invariant, then we must create a new
2636 pseudo reg to hold the initial value of the biv. */
2637
2638 if (GET_CODE (bl->initial_value) == REG
2639 && (REGNO (bl->initial_value) == bl->regno
2640 || REGNO (bl->initial_value) < FIRST_PSEUDO_REGISTER
2641 || ! loop_invariant_p (loop, bl->initial_value)))
2642 {
2643 rtx tem = gen_reg_rtx (bl->biv->mode);
2644
2645 record_base_value (REGNO (tem), bl->biv->add_val, 0);
2646 emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
2647 loop_start);
2648
2649 if (loop_dump_stream)
2650 fprintf (loop_dump_stream, "Biv %d initial value remapped to %d.\n",
2651 bl->regno, REGNO (tem));
2652
2653 splittable_regs[bl->regno] = tem;
2654 }
2655 else
2656 splittable_regs[bl->regno] = bl->initial_value;
2657 }
2658 else
2659 splittable_regs[bl->regno] = const0_rtx;
2660
2661 /* Save the number of instructions that modify the biv, so that
2662 we can treat the last one specially. */
2663
2664 splittable_regs_updates[bl->regno] = bl->biv_count;
2665 result += bl->biv_count;
2666
2667 if (loop_dump_stream)
2668 fprintf (loop_dump_stream,
2669 "Biv %d safe to split.\n", bl->regno);
2670 }
2671
2672 /* Check every giv that depends on this biv to see whether it is
2673 splittable also. Even if the biv isn't splittable, givs which
2674 depend on it may be splittable if the biv is live outside the
2675 loop, and the givs aren't. */
2676
2677 result += find_splittable_givs (loop, bl, unroll_type, increment,
2678 unroll_number);
2679
2680 /* If final value is non-zero, then must emit an instruction which sets
2681 the value of the biv to the proper value. This is done after
2682 handling all of the givs, since some of them may need to use the
2683 biv's value in their initialization code. */
2684 if (biv_final_value)
2685 {
2686 /* If the loop has multiple exits, emit the insns before the
2687 loop to ensure that it will always be executed no matter
2688 how the loop exits. Otherwise emit the insn after the loop,
2689 since this is slightly more efficient. */
2690 if (! loop->exit_count)
2691 emit_insn_before (gen_move_insn (bl->biv->src_reg,
2692 biv_final_value),
2693 end_insert_before);
2694 else
2695 {
2696 /* Create a new register to hold the value of the biv, and then
2697 set the biv to its final value before the loop start. The biv
2698 is set to its final value before loop start to ensure that
2699 this insn will always be executed, no matter how the loop
2700 exits. */
2701 rtx tem = gen_reg_rtx (bl->biv->mode);
2702 record_base_value (REGNO (tem), bl->biv->add_val, 0);
2703
2704 emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
2705 loop_start);
2706 emit_insn_before (gen_move_insn (bl->biv->src_reg,
2707 biv_final_value),
2708 loop_start);
2709
2710 if (loop_dump_stream)
2711 fprintf (loop_dump_stream, "Biv %d mapped to %d for split.\n",
2712 REGNO (bl->biv->src_reg), REGNO (tem));
2713
2714 /* Set up the mapping from the original biv register to the new
2715 register. */
2716 bl->biv->src_reg = tem;
2717 }
2718 }
2719 }
2720 return result;
2721 }
2722
2723 /* Return 1 if the first and last unrolled copy of the address giv V is valid
2724 for the instruction that is using it. Do not make any changes to that
2725 instruction. */
2726
2727 static int
2728 verify_addresses (v, giv_inc, unroll_number)
2729 struct induction *v;
2730 rtx giv_inc;
2731 int unroll_number;
2732 {
2733 int ret = 1;
2734 rtx orig_addr = *v->location;
2735 rtx last_addr = plus_constant (v->dest_reg,
2736 INTVAL (giv_inc) * (unroll_number - 1));
2737
2738 /* First check to see if either address would fail. Handle the fact
2739 that we have may have a match_dup. */
2740 if (! validate_replace_rtx (*v->location, v->dest_reg, v->insn)
2741 || ! validate_replace_rtx (*v->location, last_addr, v->insn))
2742 ret = 0;
2743
2744 /* Now put things back the way they were before. This should always
2745 succeed. */
2746 if (! validate_replace_rtx (*v->location, orig_addr, v->insn))
2747 abort ();
2748
2749 return ret;
2750 }
2751
2752 /* For every giv based on the biv BL, check to determine whether it is
2753 splittable. This is a subroutine to find_splittable_regs ().
2754
2755 Return the number of instructions that set splittable registers. */
2756
2757 static int
2758 find_splittable_givs (loop, bl, unroll_type, increment, unroll_number)
2759 const struct loop *loop;
2760 struct iv_class *bl;
2761 enum unroll_types unroll_type;
2762 rtx increment;
2763 int unroll_number;
2764 {
2765 struct induction *v, *v2;
2766 rtx final_value;
2767 rtx tem;
2768 int result = 0;
2769
2770 /* Scan the list of givs, and set the same_insn field when there are
2771 multiple identical givs in the same insn. */
2772 for (v = bl->giv; v; v = v->next_iv)
2773 for (v2 = v->next_iv; v2; v2 = v2->next_iv)
2774 if (v->insn == v2->insn && rtx_equal_p (v->new_reg, v2->new_reg)
2775 && ! v2->same_insn)
2776 v2->same_insn = v;
2777
2778 for (v = bl->giv; v; v = v->next_iv)
2779 {
2780 rtx giv_inc, value;
2781
2782 /* Only split the giv if it has already been reduced, or if the loop is
2783 being completely unrolled. */
2784 if (unroll_type != UNROLL_COMPLETELY && v->ignore)
2785 continue;
2786
2787 /* The giv can be split if the insn that sets the giv is executed once
2788 and only once on every iteration of the loop. */
2789 /* An address giv can always be split. v->insn is just a use not a set,
2790 and hence it does not matter whether it is always executed. All that
2791 matters is that all the biv increments are always executed, and we
2792 won't reach here if they aren't. */
2793 if (v->giv_type != DEST_ADDR
2794 && (! v->always_computable
2795 || back_branch_in_range_p (loop, v->insn)))
2796 continue;
2797
2798 /* The giv increment value must be a constant. */
2799 giv_inc = fold_rtx_mult_add (v->mult_val, increment, const0_rtx,
2800 v->mode);
2801 if (! giv_inc || GET_CODE (giv_inc) != CONST_INT)
2802 continue;
2803
2804 /* The loop must be unrolled completely, or else have a known number of
2805 iterations and only one exit, or else the giv must be dead outside
2806 the loop, or else the final value of the giv must be known.
2807 Otherwise, it is not safe to split the giv since it may not have the
2808 proper value on loop exit. */
2809
2810 /* The used outside loop test will fail for DEST_ADDR givs. They are
2811 never used outside the loop anyways, so it is always safe to split a
2812 DEST_ADDR giv. */
2813
2814 final_value = 0;
2815 if (unroll_type != UNROLL_COMPLETELY
2816 && (loop->exit_count || unroll_type == UNROLL_NAIVE)
2817 && v->giv_type != DEST_ADDR
2818 /* The next part is true if the pseudo is used outside the loop.
2819 We assume that this is true for any pseudo created after loop
2820 starts, because we don't have a reg_n_info entry for them. */
2821 && (REGNO (v->dest_reg) >= max_reg_before_loop
2822 || (REGNO_FIRST_UID (REGNO (v->dest_reg)) != INSN_UID (v->insn)
2823 /* Check for the case where the pseudo is set by a shift/add
2824 sequence, in which case the first insn setting the pseudo
2825 is the first insn of the shift/add sequence. */
2826 && (! (tem = find_reg_note (v->insn, REG_RETVAL, NULL_RTX))
2827 || (REGNO_FIRST_UID (REGNO (v->dest_reg))
2828 != INSN_UID (XEXP (tem, 0)))))
2829 /* Line above always fails if INSN was moved by loop opt. */
2830 || (uid_luid[REGNO_LAST_UID (REGNO (v->dest_reg))]
2831 >= INSN_LUID (loop->end)))
2832 /* Givs made from biv increments are missed by the above test, so
2833 test explicitly for them. */
2834 && (REGNO (v->dest_reg) < first_increment_giv
2835 || REGNO (v->dest_reg) > last_increment_giv)
2836 && ! (final_value = v->final_value))
2837 continue;
2838
2839 #if 0
2840 /* Currently, non-reduced/final-value givs are never split. */
2841 /* Should emit insns after the loop if possible, as the biv final value
2842 code below does. */
2843
2844 /* If the final value is non-zero, and the giv has not been reduced,
2845 then must emit an instruction to set the final value. */
2846 if (final_value && !v->new_reg)
2847 {
2848 /* Create a new register to hold the value of the giv, and then set
2849 the giv to its final value before the loop start. The giv is set
2850 to its final value before loop start to ensure that this insn
2851 will always be executed, no matter how we exit. */
2852 tem = gen_reg_rtx (v->mode);
2853 emit_insn_before (gen_move_insn (tem, v->dest_reg), loop_start);
2854 emit_insn_before (gen_move_insn (v->dest_reg, final_value),
2855 loop_start);
2856
2857 if (loop_dump_stream)
2858 fprintf (loop_dump_stream, "Giv %d mapped to %d for split.\n",
2859 REGNO (v->dest_reg), REGNO (tem));
2860
2861 v->src_reg = tem;
2862 }
2863 #endif
2864
2865 /* This giv is splittable. If completely unrolling the loop, save the
2866 giv's initial value. Otherwise, save the constant zero for it. */
2867
2868 if (unroll_type == UNROLL_COMPLETELY)
2869 {
2870 /* It is not safe to use bl->initial_value here, because it may not
2871 be invariant. It is safe to use the initial value stored in
2872 the splittable_regs array if it is set. In rare cases, it won't
2873 be set, so then we do exactly the same thing as
2874 find_splittable_regs does to get a safe value. */
2875 rtx biv_initial_value;
2876
2877 if (splittable_regs[bl->regno])
2878 biv_initial_value = splittable_regs[bl->regno];
2879 else if (GET_CODE (bl->initial_value) != REG
2880 || (REGNO (bl->initial_value) != bl->regno
2881 && REGNO (bl->initial_value) >= FIRST_PSEUDO_REGISTER))
2882 biv_initial_value = bl->initial_value;
2883 else
2884 {
2885 rtx tem = gen_reg_rtx (bl->biv->mode);
2886
2887 record_base_value (REGNO (tem), bl->biv->add_val, 0);
2888 emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
2889 loop->start);
2890 biv_initial_value = tem;
2891 }
2892 value = fold_rtx_mult_add (v->mult_val, biv_initial_value,
2893 v->add_val, v->mode);
2894 }
2895 else
2896 value = const0_rtx;
2897
2898 if (v->new_reg)
2899 {
2900 /* If a giv was combined with another giv, then we can only split
2901 this giv if the giv it was combined with was reduced. This
2902 is because the value of v->new_reg is meaningless in this
2903 case. */
2904 if (v->same && ! v->same->new_reg)
2905 {
2906 if (loop_dump_stream)
2907 fprintf (loop_dump_stream,
2908 "giv combined with unreduced giv not split.\n");
2909 continue;
2910 }
2911 /* If the giv is an address destination, it could be something other
2912 than a simple register, these have to be treated differently. */
2913 else if (v->giv_type == DEST_REG)
2914 {
2915 /* If value is not a constant, register, or register plus
2916 constant, then compute its value into a register before
2917 loop start. This prevents invalid rtx sharing, and should
2918 generate better code. We can use bl->initial_value here
2919 instead of splittable_regs[bl->regno] because this code
2920 is going before the loop start. */
2921 if (unroll_type == UNROLL_COMPLETELY
2922 && GET_CODE (value) != CONST_INT
2923 && GET_CODE (value) != REG
2924 && (GET_CODE (value) != PLUS
2925 || GET_CODE (XEXP (value, 0)) != REG
2926 || GET_CODE (XEXP (value, 1)) != CONST_INT))
2927 {
2928 rtx tem = gen_reg_rtx (v->mode);
2929 record_base_value (REGNO (tem), v->add_val, 0);
2930 emit_iv_add_mult (bl->initial_value, v->mult_val,
2931 v->add_val, tem, loop->start);
2932 value = tem;
2933 }
2934
2935 splittable_regs[REGNO (v->new_reg)] = value;
2936 derived_regs[REGNO (v->new_reg)] = v->derived_from != 0;
2937 }
2938 else
2939 {
2940 /* Splitting address givs is useful since it will often allow us
2941 to eliminate some increment insns for the base giv as
2942 unnecessary. */
2943
2944 /* If the addr giv is combined with a dest_reg giv, then all
2945 references to that dest reg will be remapped, which is NOT
2946 what we want for split addr regs. We always create a new
2947 register for the split addr giv, just to be safe. */
2948
2949 /* If we have multiple identical address givs within a
2950 single instruction, then use a single pseudo reg for
2951 both. This is necessary in case one is a match_dup
2952 of the other. */
2953
2954 v->const_adjust = 0;
2955
2956 if (v->same_insn)
2957 {
2958 v->dest_reg = v->same_insn->dest_reg;
2959 if (loop_dump_stream)
2960 fprintf (loop_dump_stream,
2961 "Sharing address givs in insn %d\n",
2962 INSN_UID (v->insn));
2963 }
2964 /* If multiple address GIVs have been combined with the
2965 same dest_reg GIV, do not create a new register for
2966 each. */
2967 else if (unroll_type != UNROLL_COMPLETELY
2968 && v->giv_type == DEST_ADDR
2969 && v->same && v->same->giv_type == DEST_ADDR
2970 && v->same->unrolled
2971 /* combine_givs_p may return true for some cases
2972 where the add and mult values are not equal.
2973 To share a register here, the values must be
2974 equal. */
2975 && rtx_equal_p (v->same->mult_val, v->mult_val)
2976 && rtx_equal_p (v->same->add_val, v->add_val)
2977 /* If the memory references have different modes,
2978 then the address may not be valid and we must
2979 not share registers. */
2980 && verify_addresses (v, giv_inc, unroll_number))
2981 {
2982 v->dest_reg = v->same->dest_reg;
2983 v->shared = 1;
2984 }
2985 else if (unroll_type != UNROLL_COMPLETELY)
2986 {
2987 /* If not completely unrolling the loop, then create a new
2988 register to hold the split value of the DEST_ADDR giv.
2989 Emit insn to initialize its value before loop start. */
2990
2991 rtx tem = gen_reg_rtx (v->mode);
2992 struct induction *same = v->same;
2993 rtx new_reg = v->new_reg;
2994 record_base_value (REGNO (tem), v->add_val, 0);
2995
2996 if (same && same->derived_from)
2997 {
2998 /* calculate_giv_inc doesn't work for derived givs.
2999 copy_loop_body works around the problem for the
3000 DEST_REG givs themselves, but it can't handle
3001 DEST_ADDR givs that have been combined with
3002 a derived DEST_REG giv.
3003 So Handle V as if the giv from which V->SAME has
3004 been derived has been combined with V.
3005 recombine_givs only derives givs from givs that
3006 are reduced the ordinary, so we need not worry
3007 about same->derived_from being in turn derived. */
3008
3009 same = same->derived_from;
3010 new_reg = express_from (same, v);
3011 new_reg = replace_rtx (new_reg, same->dest_reg,
3012 same->new_reg);
3013 }
3014
3015 /* If the address giv has a constant in its new_reg value,
3016 then this constant can be pulled out and put in value,
3017 instead of being part of the initialization code. */
3018
3019 if (GET_CODE (new_reg) == PLUS
3020 && GET_CODE (XEXP (new_reg, 1)) == CONST_INT)
3021 {
3022 v->dest_reg
3023 = plus_constant (tem, INTVAL (XEXP (new_reg, 1)));
3024
3025 /* Only succeed if this will give valid addresses.
3026 Try to validate both the first and the last
3027 address resulting from loop unrolling, if
3028 one fails, then can't do const elim here. */
3029 if (verify_addresses (v, giv_inc, unroll_number))
3030 {
3031 /* Save the negative of the eliminated const, so
3032 that we can calculate the dest_reg's increment
3033 value later. */
3034 v->const_adjust = - INTVAL (XEXP (new_reg, 1));
3035
3036 new_reg = XEXP (new_reg, 0);
3037 if (loop_dump_stream)
3038 fprintf (loop_dump_stream,
3039 "Eliminating constant from giv %d\n",
3040 REGNO (tem));
3041 }
3042 else
3043 v->dest_reg = tem;
3044 }
3045 else
3046 v->dest_reg = tem;
3047
3048 /* If the address hasn't been checked for validity yet, do so
3049 now, and fail completely if either the first or the last
3050 unrolled copy of the address is not a valid address
3051 for the instruction that uses it. */
3052 if (v->dest_reg == tem
3053 && ! verify_addresses (v, giv_inc, unroll_number))
3054 {
3055 for (v2 = v->next_iv; v2; v2 = v2->next_iv)
3056 if (v2->same_insn == v)
3057 v2->same_insn = 0;
3058
3059 if (loop_dump_stream)
3060 fprintf (loop_dump_stream,
3061 "Invalid address for giv at insn %d\n",
3062 INSN_UID (v->insn));
3063 continue;
3064 }
3065
3066 v->new_reg = new_reg;
3067 v->same = same;
3068
3069 /* We set this after the address check, to guarantee that
3070 the register will be initialized. */
3071 v->unrolled = 1;
3072
3073 /* To initialize the new register, just move the value of
3074 new_reg into it. This is not guaranteed to give a valid
3075 instruction on machines with complex addressing modes.
3076 If we can't recognize it, then delete it and emit insns
3077 to calculate the value from scratch. */
3078 emit_insn_before (gen_rtx_SET (VOIDmode, tem,
3079 copy_rtx (v->new_reg)),
3080 loop->start);
3081 if (recog_memoized (PREV_INSN (loop->start)) < 0)
3082 {
3083 rtx sequence, ret;
3084
3085 /* We can't use bl->initial_value to compute the initial
3086 value, because the loop may have been preconditioned.
3087 We must calculate it from NEW_REG. Try using
3088 force_operand instead of emit_iv_add_mult. */
3089 delete_insn (PREV_INSN (loop->start));
3090
3091 start_sequence ();
3092 ret = force_operand (v->new_reg, tem);
3093 if (ret != tem)
3094 emit_move_insn (tem, ret);
3095 sequence = gen_sequence ();
3096 end_sequence ();
3097 emit_insn_before (sequence, loop->start);
3098
3099 if (loop_dump_stream)
3100 fprintf (loop_dump_stream,
3101 "Invalid init insn, rewritten.\n");
3102 }
3103 }
3104 else
3105 {
3106 v->dest_reg = value;
3107
3108 /* Check the resulting address for validity, and fail
3109 if the resulting address would be invalid. */
3110 if (! verify_addresses (v, giv_inc, unroll_number))
3111 {
3112 for (v2 = v->next_iv; v2; v2 = v2->next_iv)
3113 if (v2->same_insn == v)
3114 v2->same_insn = 0;
3115
3116 if (loop_dump_stream)
3117 fprintf (loop_dump_stream,
3118 "Invalid address for giv at insn %d\n",
3119 INSN_UID (v->insn));
3120 continue;
3121 }
3122 if (v->same && v->same->derived_from)
3123 {
3124 /* Handle V as if the giv from which V->SAME has
3125 been derived has been combined with V. */
3126
3127 v->same = v->same->derived_from;
3128 v->new_reg = express_from (v->same, v);
3129 v->new_reg = replace_rtx (v->new_reg, v->same->dest_reg,
3130 v->same->new_reg);
3131 }
3132
3133 }
3134
3135 /* Store the value of dest_reg into the insn. This sharing
3136 will not be a problem as this insn will always be copied
3137 later. */
3138
3139 *v->location = v->dest_reg;
3140
3141 /* If this address giv is combined with a dest reg giv, then
3142 save the base giv's induction pointer so that we will be
3143 able to handle this address giv properly. The base giv
3144 itself does not have to be splittable. */
3145
3146 if (v->same && v->same->giv_type == DEST_REG)
3147 addr_combined_regs[REGNO (v->same->new_reg)] = v->same;
3148
3149 if (GET_CODE (v->new_reg) == REG)
3150 {
3151 /* This giv maybe hasn't been combined with any others.
3152 Make sure that it's giv is marked as splittable here. */
3153
3154 splittable_regs[REGNO (v->new_reg)] = value;
3155 derived_regs[REGNO (v->new_reg)] = v->derived_from != 0;
3156
3157 /* Make it appear to depend upon itself, so that the
3158 giv will be properly split in the main loop above. */
3159 if (! v->same)
3160 {
3161 v->same = v;
3162 addr_combined_regs[REGNO (v->new_reg)] = v;
3163 }
3164 }
3165
3166 if (loop_dump_stream)
3167 fprintf (loop_dump_stream, "DEST_ADDR giv being split.\n");
3168 }
3169 }
3170 else
3171 {
3172 #if 0
3173 /* Currently, unreduced giv's can't be split. This is not too much
3174 of a problem since unreduced giv's are not live across loop
3175 iterations anyways. When unrolling a loop completely though,
3176 it makes sense to reduce&split givs when possible, as this will
3177 result in simpler instructions, and will not require that a reg
3178 be live across loop iterations. */
3179
3180 splittable_regs[REGNO (v->dest_reg)] = value;
3181 fprintf (stderr, "Giv %d at insn %d not reduced\n",
3182 REGNO (v->dest_reg), INSN_UID (v->insn));
3183 #else
3184 continue;
3185 #endif
3186 }
3187
3188 /* Unreduced givs are only updated once by definition. Reduced givs
3189 are updated as many times as their biv is. Mark it so if this is
3190 a splittable register. Don't need to do anything for address givs
3191 where this may not be a register. */
3192
3193 if (GET_CODE (v->new_reg) == REG)
3194 {
3195 int count = 1;
3196 if (! v->ignore)
3197 count = reg_biv_class[REGNO (v->src_reg)]->biv_count;
3198
3199 if (count > 1 && v->derived_from)
3200 /* In this case, there is one set where the giv insn was and one
3201 set each after each biv increment. (Most are likely dead.) */
3202 count++;
3203
3204 splittable_regs_updates[REGNO (v->new_reg)] = count;
3205 }
3206
3207 result++;
3208
3209 if (loop_dump_stream)
3210 {
3211 int regnum;
3212
3213 if (GET_CODE (v->dest_reg) == CONST_INT)
3214 regnum = -1;
3215 else if (GET_CODE (v->dest_reg) != REG)
3216 regnum = REGNO (XEXP (v->dest_reg, 0));
3217 else
3218 regnum = REGNO (v->dest_reg);
3219 fprintf (loop_dump_stream, "Giv %d at insn %d safe to split.\n",
3220 regnum, INSN_UID (v->insn));
3221 }
3222 }
3223
3224 return result;
3225 }
3226 \f
3227 /* Try to prove that the register is dead after the loop exits. Trace every
3228 loop exit looking for an insn that will always be executed, which sets
3229 the register to some value, and appears before the first use of the register
3230 is found. If successful, then return 1, otherwise return 0. */
3231
3232 /* ?? Could be made more intelligent in the handling of jumps, so that
3233 it can search past if statements and other similar structures. */
3234
3235 static int
3236 reg_dead_after_loop (loop, reg)
3237 const struct loop *loop;
3238 rtx reg;
3239 {
3240 rtx insn, label;
3241 enum rtx_code code;
3242 int jump_count = 0;
3243 int label_count = 0;
3244
3245 /* In addition to checking all exits of this loop, we must also check
3246 all exits of inner nested loops that would exit this loop. We don't
3247 have any way to identify those, so we just give up if there are any
3248 such inner loop exits. */
3249
3250 for (label = loop->exit_labels; label; label = LABEL_NEXTREF (label))
3251 label_count++;
3252
3253 if (label_count != loop->exit_count)
3254 return 0;
3255
3256 /* HACK: Must also search the loop fall through exit, create a label_ref
3257 here which points to the loop->end, and append the loop_number_exit_labels
3258 list to it. */
3259 label = gen_rtx_LABEL_REF (VOIDmode, loop->end);
3260 LABEL_NEXTREF (label) = loop->exit_labels;
3261
3262 for ( ; label; label = LABEL_NEXTREF (label))
3263 {
3264 /* Succeed if find an insn which sets the biv or if reach end of
3265 function. Fail if find an insn that uses the biv, or if come to
3266 a conditional jump. */
3267
3268 insn = NEXT_INSN (XEXP (label, 0));
3269 while (insn)
3270 {
3271 code = GET_CODE (insn);
3272 if (GET_RTX_CLASS (code) == 'i')
3273 {
3274 rtx set;
3275
3276 if (reg_referenced_p (reg, PATTERN (insn)))
3277 return 0;
3278
3279 set = single_set (insn);
3280 if (set && rtx_equal_p (SET_DEST (set), reg))
3281 break;
3282 }
3283
3284 if (code == JUMP_INSN)
3285 {
3286 if (GET_CODE (PATTERN (insn)) == RETURN)
3287 break;
3288 else if (! simplejump_p (insn)
3289 /* Prevent infinite loop following infinite loops. */
3290 || jump_count++ > 20)
3291 return 0;
3292 else
3293 insn = JUMP_LABEL (insn);
3294 }
3295
3296 insn = NEXT_INSN (insn);
3297 }
3298 }
3299
3300 /* Success, the register is dead on all loop exits. */
3301 return 1;
3302 }
3303
3304 /* Try to calculate the final value of the biv, the value it will have at
3305 the end of the loop. If we can do it, return that value. */
3306
3307 rtx
3308 final_biv_value (loop, bl)
3309 const struct loop *loop;
3310 struct iv_class *bl;
3311 {
3312 rtx loop_end = loop->end;
3313 unsigned HOST_WIDE_INT n_iterations = LOOP_INFO (loop)->n_iterations;
3314 rtx increment, tem;
3315
3316 /* ??? This only works for MODE_INT biv's. Reject all others for now. */
3317
3318 if (GET_MODE_CLASS (bl->biv->mode) != MODE_INT)
3319 return 0;
3320
3321 /* The final value for reversed bivs must be calculated differently than
3322 for ordinary bivs. In this case, there is already an insn after the
3323 loop which sets this biv's final value (if necessary), and there are
3324 no other loop exits, so we can return any value. */
3325 if (bl->reversed)
3326 {
3327 if (loop_dump_stream)
3328 fprintf (loop_dump_stream,
3329 "Final biv value for %d, reversed biv.\n", bl->regno);
3330
3331 return const0_rtx;
3332 }
3333
3334 /* Try to calculate the final value as initial value + (number of iterations
3335 * increment). For this to work, increment must be invariant, the only
3336 exit from the loop must be the fall through at the bottom (otherwise
3337 it may not have its final value when the loop exits), and the initial
3338 value of the biv must be invariant. */
3339
3340 if (n_iterations != 0
3341 && ! loop->exit_count
3342 && loop_invariant_p (loop, bl->initial_value))
3343 {
3344 increment = biv_total_increment (bl);
3345
3346 if (increment && loop_invariant_p (loop, increment))
3347 {
3348 /* Can calculate the loop exit value, emit insns after loop
3349 end to calculate this value into a temporary register in
3350 case it is needed later. */
3351
3352 tem = gen_reg_rtx (bl->biv->mode);
3353 record_base_value (REGNO (tem), bl->biv->add_val, 0);
3354 /* Make sure loop_end is not the last insn. */
3355 if (NEXT_INSN (loop_end) == 0)
3356 emit_note_after (NOTE_INSN_DELETED, loop_end);
3357 emit_iv_add_mult (increment, GEN_INT (n_iterations),
3358 bl->initial_value, tem, NEXT_INSN (loop_end));
3359
3360 if (loop_dump_stream)
3361 fprintf (loop_dump_stream,
3362 "Final biv value for %d, calculated.\n", bl->regno);
3363
3364 return tem;
3365 }
3366 }
3367
3368 /* Check to see if the biv is dead at all loop exits. */
3369 if (reg_dead_after_loop (loop, bl->biv->src_reg))
3370 {
3371 if (loop_dump_stream)
3372 fprintf (loop_dump_stream,
3373 "Final biv value for %d, biv dead after loop exit.\n",
3374 bl->regno);
3375
3376 return const0_rtx;
3377 }
3378
3379 return 0;
3380 }
3381
3382 /* Try to calculate the final value of the giv, the value it will have at
3383 the end of the loop. If we can do it, return that value. */
3384
3385 rtx
3386 final_giv_value (loop, v)
3387 const struct loop *loop;
3388 struct induction *v;
3389 {
3390 struct iv_class *bl;
3391 rtx insn;
3392 rtx increment, tem;
3393 rtx insert_before, seq;
3394 rtx loop_end = loop->end;
3395 unsigned HOST_WIDE_INT n_iterations = LOOP_INFO (loop)->n_iterations;
3396
3397 bl = reg_biv_class[REGNO (v->src_reg)];
3398
3399 /* The final value for givs which depend on reversed bivs must be calculated
3400 differently than for ordinary givs. In this case, there is already an
3401 insn after the loop which sets this giv's final value (if necessary),
3402 and there are no other loop exits, so we can return any value. */
3403 if (bl->reversed)
3404 {
3405 if (loop_dump_stream)
3406 fprintf (loop_dump_stream,
3407 "Final giv value for %d, depends on reversed biv\n",
3408 REGNO (v->dest_reg));
3409 return const0_rtx;
3410 }
3411
3412 /* Try to calculate the final value as a function of the biv it depends
3413 upon. The only exit from the loop must be the fall through at the bottom
3414 (otherwise it may not have its final value when the loop exits). */
3415
3416 /* ??? Can calculate the final giv value by subtracting off the
3417 extra biv increments times the giv's mult_val. The loop must have
3418 only one exit for this to work, but the loop iterations does not need
3419 to be known. */
3420
3421 if (n_iterations != 0
3422 && ! loop->exit_count)
3423 {
3424 /* ?? It is tempting to use the biv's value here since these insns will
3425 be put after the loop, and hence the biv will have its final value
3426 then. However, this fails if the biv is subsequently eliminated.
3427 Perhaps determine whether biv's are eliminable before trying to
3428 determine whether giv's are replaceable so that we can use the
3429 biv value here if it is not eliminable. */
3430
3431 /* We are emitting code after the end of the loop, so we must make
3432 sure that bl->initial_value is still valid then. It will still
3433 be valid if it is invariant. */
3434
3435 increment = biv_total_increment (bl);
3436
3437 if (increment && loop_invariant_p (loop, increment)
3438 && loop_invariant_p (loop, bl->initial_value))
3439 {
3440 /* Can calculate the loop exit value of its biv as
3441 (n_iterations * increment) + initial_value */
3442
3443 /* The loop exit value of the giv is then
3444 (final_biv_value - extra increments) * mult_val + add_val.
3445 The extra increments are any increments to the biv which
3446 occur in the loop after the giv's value is calculated.
3447 We must search from the insn that sets the giv to the end
3448 of the loop to calculate this value. */
3449
3450 insert_before = NEXT_INSN (loop_end);
3451
3452 /* Put the final biv value in tem. */
3453 tem = gen_reg_rtx (bl->biv->mode);
3454 record_base_value (REGNO (tem), bl->biv->add_val, 0);
3455 emit_iv_add_mult (increment, GEN_INT (n_iterations),
3456 bl->initial_value, tem, insert_before);
3457
3458 /* Subtract off extra increments as we find them. */
3459 for (insn = NEXT_INSN (v->insn); insn != loop_end;
3460 insn = NEXT_INSN (insn))
3461 {
3462 struct induction *biv;
3463
3464 for (biv = bl->biv; biv; biv = biv->next_iv)
3465 if (biv->insn == insn)
3466 {
3467 start_sequence ();
3468 tem = expand_binop (GET_MODE (tem), sub_optab, tem,
3469 biv->add_val, NULL_RTX, 0,
3470 OPTAB_LIB_WIDEN);
3471 seq = gen_sequence ();
3472 end_sequence ();
3473 emit_insn_before (seq, insert_before);
3474 }
3475 }
3476
3477 /* Now calculate the giv's final value. */
3478 emit_iv_add_mult (tem, v->mult_val, v->add_val, tem,
3479 insert_before);
3480
3481 if (loop_dump_stream)
3482 fprintf (loop_dump_stream,
3483 "Final giv value for %d, calc from biv's value.\n",
3484 REGNO (v->dest_reg));
3485
3486 return tem;
3487 }
3488 }
3489
3490 /* Replaceable giv's should never reach here. */
3491 if (v->replaceable)
3492 abort ();
3493
3494 /* Check to see if the biv is dead at all loop exits. */
3495 if (reg_dead_after_loop (loop, v->dest_reg))
3496 {
3497 if (loop_dump_stream)
3498 fprintf (loop_dump_stream,
3499 "Final giv value for %d, giv dead after loop exit.\n",
3500 REGNO (v->dest_reg));
3501
3502 return const0_rtx;
3503 }
3504
3505 return 0;
3506 }
3507
3508
3509 /* Look back before LOOP->START for then insn that sets REG and return
3510 the equivalent constant if there is a REG_EQUAL note otherwise just
3511 the SET_SRC of REG. */
3512
3513 static rtx
3514 loop_find_equiv_value (loop, reg)
3515 const struct loop *loop;
3516 rtx reg;
3517 {
3518 rtx loop_start = loop->start;
3519 rtx insn, set;
3520 rtx ret;
3521
3522 ret = reg;
3523 for (insn = PREV_INSN (loop_start); insn ; insn = PREV_INSN (insn))
3524 {
3525 if (GET_CODE (insn) == CODE_LABEL)
3526 break;
3527
3528 else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
3529 && reg_set_p (reg, insn))
3530 {
3531 /* We found the last insn before the loop that sets the register.
3532 If it sets the entire register, and has a REG_EQUAL note,
3533 then use the value of the REG_EQUAL note. */
3534 if ((set = single_set (insn))
3535 && (SET_DEST (set) == reg))
3536 {
3537 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3538
3539 /* Only use the REG_EQUAL note if it is a constant.
3540 Other things, divide in particular, will cause
3541 problems later if we use them. */
3542 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST
3543 && CONSTANT_P (XEXP (note, 0)))
3544 ret = XEXP (note, 0);
3545 else
3546 ret = SET_SRC (set);
3547 }
3548 break;
3549 }
3550 }
3551 return ret;
3552 }
3553
3554 /* Return a simplified rtx for the expression OP - REG.
3555
3556 REG must appear in OP, and OP must be a register or the sum of a register
3557 and a second term.
3558
3559 Thus, the return value must be const0_rtx or the second term.
3560
3561 The caller is responsible for verifying that REG appears in OP and OP has
3562 the proper form. */
3563
3564 static rtx
3565 subtract_reg_term (op, reg)
3566 rtx op, reg;
3567 {
3568 if (op == reg)
3569 return const0_rtx;
3570 if (GET_CODE (op) == PLUS)
3571 {
3572 if (XEXP (op, 0) == reg)
3573 return XEXP (op, 1);
3574 else if (XEXP (op, 1) == reg)
3575 return XEXP (op, 0);
3576 }
3577 /* OP does not contain REG as a term. */
3578 abort ();
3579 }
3580
3581
3582 /* Find and return register term common to both expressions OP0 and
3583 OP1 or NULL_RTX if no such term exists. Each expression must be a
3584 REG or a PLUS of a REG. */
3585
3586 static rtx
3587 find_common_reg_term (op0, op1)
3588 rtx op0, op1;
3589 {
3590 if ((GET_CODE (op0) == REG || GET_CODE (op0) == PLUS)
3591 && (GET_CODE (op1) == REG || GET_CODE (op1) == PLUS))
3592 {
3593 rtx op00;
3594 rtx op01;
3595 rtx op10;
3596 rtx op11;
3597
3598 if (GET_CODE (op0) == PLUS)
3599 op01 = XEXP (op0, 1), op00 = XEXP (op0, 0);
3600 else
3601 op01 = const0_rtx, op00 = op0;
3602
3603 if (GET_CODE (op1) == PLUS)
3604 op11 = XEXP (op1, 1), op10 = XEXP (op1, 0);
3605 else
3606 op11 = const0_rtx, op10 = op1;
3607
3608 /* Find and return common register term if present. */
3609 if (REG_P (op00) && (op00 == op10 || op00 == op11))
3610 return op00;
3611 else if (REG_P (op01) && (op01 == op10 || op01 == op11))
3612 return op01;
3613 }
3614
3615 /* No common register term found. */
3616 return NULL_RTX;
3617 }
3618
3619 /* Calculate the number of loop iterations. Returns the exact number of loop
3620 iterations if it can be calculated, otherwise returns zero. */
3621
3622 unsigned HOST_WIDE_INT
3623 loop_iterations (loop)
3624 struct loop *loop;
3625 {
3626 rtx comparison, comparison_value;
3627 rtx iteration_var, initial_value, increment, final_value;
3628 enum rtx_code comparison_code;
3629 HOST_WIDE_INT abs_inc;
3630 unsigned HOST_WIDE_INT abs_diff;
3631 int off_by_one;
3632 int increment_dir;
3633 int unsigned_p, compare_dir, final_larger;
3634 rtx last_loop_insn;
3635 rtx reg_term;
3636 struct loop_info *loop_info = LOOP_INFO (loop);
3637
3638 loop_info->n_iterations = 0;
3639 loop_info->initial_value = 0;
3640 loop_info->initial_equiv_value = 0;
3641 loop_info->comparison_value = 0;
3642 loop_info->final_value = 0;
3643 loop_info->final_equiv_value = 0;
3644 loop_info->increment = 0;
3645 loop_info->iteration_var = 0;
3646 loop_info->unroll_number = 1;
3647
3648 /* We used to use prev_nonnote_insn here, but that fails because it might
3649 accidentally get the branch for a contained loop if the branch for this
3650 loop was deleted. We can only trust branches immediately before the
3651 loop_end. */
3652 last_loop_insn = PREV_INSN (loop->end);
3653
3654 /* ??? We should probably try harder to find the jump insn
3655 at the end of the loop. The following code assumes that
3656 the last loop insn is a jump to the top of the loop. */
3657 if (GET_CODE (last_loop_insn) != JUMP_INSN)
3658 {
3659 if (loop_dump_stream)
3660 fprintf (loop_dump_stream,
3661 "Loop iterations: No final conditional branch found.\n");
3662 return 0;
3663 }
3664
3665 /* If there is a more than a single jump to the top of the loop
3666 we cannot (easily) determine the iteration count. */
3667 if (LABEL_NUSES (JUMP_LABEL (last_loop_insn)) > 1)
3668 {
3669 if (loop_dump_stream)
3670 fprintf (loop_dump_stream,
3671 "Loop iterations: Loop has multiple back edges.\n");
3672 return 0;
3673 }
3674
3675 /* Find the iteration variable. If the last insn is a conditional
3676 branch, and the insn before tests a register value, make that the
3677 iteration variable. */
3678
3679 comparison = get_condition_for_loop (loop, last_loop_insn);
3680 if (comparison == 0)
3681 {
3682 if (loop_dump_stream)
3683 fprintf (loop_dump_stream,
3684 "Loop iterations: No final comparison found.\n");
3685 return 0;
3686 }
3687
3688 /* ??? Get_condition may switch position of induction variable and
3689 invariant register when it canonicalizes the comparison. */
3690
3691 comparison_code = GET_CODE (comparison);
3692 iteration_var = XEXP (comparison, 0);
3693 comparison_value = XEXP (comparison, 1);
3694
3695 if (GET_CODE (iteration_var) != REG)
3696 {
3697 if (loop_dump_stream)
3698 fprintf (loop_dump_stream,
3699 "Loop iterations: Comparison not against register.\n");
3700 return 0;
3701 }
3702
3703 /* The only new registers that are created before loop iterations
3704 are givs made from biv increments or registers created by
3705 load_mems. In the latter case, it is possible that try_copy_prop
3706 will propagate a new pseudo into the old iteration register but
3707 this will be marked by having the REG_USERVAR_P bit set. */
3708
3709 if ((unsigned) REGNO (iteration_var) >= reg_iv_type->num_elements
3710 && ! REG_USERVAR_P (iteration_var))
3711 abort ();
3712
3713 iteration_info (loop, iteration_var, &initial_value, &increment);
3714
3715 if (initial_value == 0)
3716 /* iteration_info already printed a message. */
3717 return 0;
3718
3719 unsigned_p = 0;
3720 off_by_one = 0;
3721 switch (comparison_code)
3722 {
3723 case LEU:
3724 unsigned_p = 1;
3725 case LE:
3726 compare_dir = 1;
3727 off_by_one = 1;
3728 break;
3729 case GEU:
3730 unsigned_p = 1;
3731 case GE:
3732 compare_dir = -1;
3733 off_by_one = -1;
3734 break;
3735 case EQ:
3736 /* Cannot determine loop iterations with this case. */
3737 compare_dir = 0;
3738 break;
3739 case LTU:
3740 unsigned_p = 1;
3741 case LT:
3742 compare_dir = 1;
3743 break;
3744 case GTU:
3745 unsigned_p = 1;
3746 case GT:
3747 compare_dir = -1;
3748 case NE:
3749 compare_dir = 0;
3750 break;
3751 default:
3752 abort ();
3753 }
3754
3755 /* If the comparison value is an invariant register, then try to find
3756 its value from the insns before the start of the loop. */
3757
3758 final_value = comparison_value;
3759 if (GET_CODE (comparison_value) == REG
3760 && loop_invariant_p (loop, comparison_value))
3761 {
3762 final_value = loop_find_equiv_value (loop, comparison_value);
3763
3764 /* If we don't get an invariant final value, we are better
3765 off with the original register. */
3766 if (! loop_invariant_p (loop, final_value))
3767 final_value = comparison_value;
3768 }
3769
3770 /* Calculate the approximate final value of the induction variable
3771 (on the last successful iteration). The exact final value
3772 depends on the branch operator, and increment sign. It will be
3773 wrong if the iteration variable is not incremented by one each
3774 time through the loop and (comparison_value + off_by_one -
3775 initial_value) % increment != 0.
3776 ??? Note that the final_value may overflow and thus final_larger
3777 will be bogus. A potentially infinite loop will be classified
3778 as immediate, e.g. for (i = 0x7ffffff0; i <= 0x7fffffff; i++) */
3779 if (off_by_one)
3780 final_value = plus_constant (final_value, off_by_one);
3781
3782 /* Save the calculated values describing this loop's bounds, in case
3783 precondition_loop_p will need them later. These values can not be
3784 recalculated inside precondition_loop_p because strength reduction
3785 optimizations may obscure the loop's structure.
3786
3787 These values are only required by precondition_loop_p and insert_bct
3788 whenever the number of iterations cannot be computed at compile time.
3789 Only the difference between final_value and initial_value is
3790 important. Note that final_value is only approximate. */
3791 loop_info->initial_value = initial_value;
3792 loop_info->comparison_value = comparison_value;
3793 loop_info->final_value = plus_constant (comparison_value, off_by_one);
3794 loop_info->increment = increment;
3795 loop_info->iteration_var = iteration_var;
3796 loop_info->comparison_code = comparison_code;
3797
3798 /* Try to determine the iteration count for loops such
3799 as (for i = init; i < init + const; i++). When running the
3800 loop optimization twice, the first pass often converts simple
3801 loops into this form. */
3802
3803 if (REG_P (initial_value))
3804 {
3805 rtx reg1;
3806 rtx reg2;
3807 rtx const2;
3808
3809 reg1 = initial_value;
3810 if (GET_CODE (final_value) == PLUS)
3811 reg2 = XEXP (final_value, 0), const2 = XEXP (final_value, 1);
3812 else
3813 reg2 = final_value, const2 = const0_rtx;
3814
3815 /* Check for initial_value = reg1, final_value = reg2 + const2,
3816 where reg1 != reg2. */
3817 if (REG_P (reg2) && reg2 != reg1)
3818 {
3819 rtx temp;
3820
3821 /* Find what reg1 is equivalent to. Hopefully it will
3822 either be reg2 or reg2 plus a constant. */
3823 temp = loop_find_equiv_value (loop, reg1);
3824
3825 if (find_common_reg_term (temp, reg2))
3826 initial_value = temp;
3827 else
3828 {
3829 /* Find what reg2 is equivalent to. Hopefully it will
3830 either be reg1 or reg1 plus a constant. Let's ignore
3831 the latter case for now since it is not so common. */
3832 temp = loop_find_equiv_value (loop, reg2);
3833
3834 if (temp == loop_info->iteration_var)
3835 temp = initial_value;
3836 if (temp == reg1)
3837 final_value = (const2 == const0_rtx)
3838 ? reg1 : gen_rtx_PLUS (GET_MODE (reg1), reg1, const2);
3839 }
3840 }
3841 else if (loop->vtop && GET_CODE (reg2) == CONST_INT)
3842 {
3843 rtx temp;
3844
3845 /* When running the loop optimizer twice, check_dbra_loop
3846 further obfuscates reversible loops of the form:
3847 for (i = init; i < init + const; i++). We often end up with
3848 final_value = 0, initial_value = temp, temp = temp2 - init,
3849 where temp2 = init + const. If the loop has a vtop we
3850 can replace initial_value with const. */
3851
3852 temp = loop_find_equiv_value (loop, reg1);
3853
3854 if (GET_CODE (temp) == MINUS && REG_P (XEXP (temp, 0)))
3855 {
3856 rtx temp2 = loop_find_equiv_value (loop, XEXP (temp, 0));
3857
3858 if (GET_CODE (temp2) == PLUS
3859 && XEXP (temp2, 0) == XEXP (temp, 1))
3860 initial_value = XEXP (temp2, 1);
3861 }
3862 }
3863 }
3864
3865 /* If have initial_value = reg + const1 and final_value = reg +
3866 const2, then replace initial_value with const1 and final_value
3867 with const2. This should be safe since we are protected by the
3868 initial comparison before entering the loop if we have a vtop.
3869 For example, a + b < a + c is not equivalent to b < c for all a
3870 when using modulo arithmetic.
3871
3872 ??? Without a vtop we could still perform the optimization if we check
3873 the initial and final values carefully. */
3874 if (loop->vtop
3875 && (reg_term = find_common_reg_term (initial_value, final_value)))
3876 {
3877 initial_value = subtract_reg_term (initial_value, reg_term);
3878 final_value = subtract_reg_term (final_value, reg_term);
3879 }
3880
3881 loop_info->initial_equiv_value = initial_value;
3882 loop_info->final_equiv_value = final_value;
3883
3884 /* For EQ comparison loops, we don't have a valid final value.
3885 Check this now so that we won't leave an invalid value if we
3886 return early for any other reason. */
3887 if (comparison_code == EQ)
3888 loop_info->final_equiv_value = loop_info->final_value = 0;
3889
3890 if (increment == 0)
3891 {
3892 if (loop_dump_stream)
3893 fprintf (loop_dump_stream,
3894 "Loop iterations: Increment value can't be calculated.\n");
3895 return 0;
3896 }
3897
3898 if (GET_CODE (increment) != CONST_INT)
3899 {
3900 /* If we have a REG, check to see if REG holds a constant value. */
3901 /* ??? Other RTL, such as (neg (reg)) is possible here, but it isn't
3902 clear if it is worthwhile to try to handle such RTL. */
3903 if (GET_CODE (increment) == REG || GET_CODE (increment) == SUBREG)
3904 increment = loop_find_equiv_value (loop, increment);
3905
3906 if (GET_CODE (increment) != CONST_INT)
3907 {
3908 if (loop_dump_stream)
3909 {
3910 fprintf (loop_dump_stream,
3911 "Loop iterations: Increment value not constant ");
3912 print_rtl (loop_dump_stream, increment);
3913 fprintf (loop_dump_stream, ".\n");
3914 }
3915 return 0;
3916 }
3917 loop_info->increment = increment;
3918 }
3919
3920 if (GET_CODE (initial_value) != CONST_INT)
3921 {
3922 if (loop_dump_stream)
3923 {
3924 fprintf (loop_dump_stream,
3925 "Loop iterations: Initial value not constant ");
3926 print_rtl (loop_dump_stream, initial_value);
3927 fprintf (loop_dump_stream, ".\n");
3928 }
3929 return 0;
3930 }
3931 else if (comparison_code == EQ)
3932 {
3933 if (loop_dump_stream)
3934 fprintf (loop_dump_stream,
3935 "Loop iterations: EQ comparison loop.\n");
3936 return 0;
3937 }
3938 else if (GET_CODE (final_value) != CONST_INT)
3939 {
3940 if (loop_dump_stream)
3941 {
3942 fprintf (loop_dump_stream,
3943 "Loop iterations: Final value not constant ");
3944 print_rtl (loop_dump_stream, final_value);
3945 fprintf (loop_dump_stream, ".\n");
3946 }
3947 return 0;
3948 }
3949
3950 /* Final_larger is 1 if final larger, 0 if they are equal, otherwise -1. */
3951 if (unsigned_p)
3952 final_larger
3953 = ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3954 > (unsigned HOST_WIDE_INT) INTVAL (initial_value))
3955 - ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3956 < (unsigned HOST_WIDE_INT) INTVAL (initial_value));
3957 else
3958 final_larger = (INTVAL (final_value) > INTVAL (initial_value))
3959 - (INTVAL (final_value) < INTVAL (initial_value));
3960
3961 if (INTVAL (increment) > 0)
3962 increment_dir = 1;
3963 else if (INTVAL (increment) == 0)
3964 increment_dir = 0;
3965 else
3966 increment_dir = -1;
3967
3968 /* There are 27 different cases: compare_dir = -1, 0, 1;
3969 final_larger = -1, 0, 1; increment_dir = -1, 0, 1.
3970 There are 4 normal cases, 4 reverse cases (where the iteration variable
3971 will overflow before the loop exits), 4 infinite loop cases, and 15
3972 immediate exit (0 or 1 iteration depending on loop type) cases.
3973 Only try to optimize the normal cases. */
3974
3975 /* (compare_dir/final_larger/increment_dir)
3976 Normal cases: (0/-1/-1), (0/1/1), (-1/-1/-1), (1/1/1)
3977 Reverse cases: (0/-1/1), (0/1/-1), (-1/-1/1), (1/1/-1)
3978 Infinite loops: (0/-1/0), (0/1/0), (-1/-1/0), (1/1/0)
3979 Immediate exit: (0/0/X), (-1/0/X), (-1/1/X), (1/0/X), (1/-1/X) */
3980
3981 /* ?? If the meaning of reverse loops (where the iteration variable
3982 will overflow before the loop exits) is undefined, then could
3983 eliminate all of these special checks, and just always assume
3984 the loops are normal/immediate/infinite. Note that this means
3985 the sign of increment_dir does not have to be known. Also,
3986 since it does not really hurt if immediate exit loops or infinite loops
3987 are optimized, then that case could be ignored also, and hence all
3988 loops can be optimized.
3989
3990 According to ANSI Spec, the reverse loop case result is undefined,
3991 because the action on overflow is undefined.
3992
3993 See also the special test for NE loops below. */
3994
3995 if (final_larger == increment_dir && final_larger != 0
3996 && (final_larger == compare_dir || compare_dir == 0))
3997 /* Normal case. */
3998 ;
3999 else
4000 {
4001 if (loop_dump_stream)
4002 fprintf (loop_dump_stream,
4003 "Loop iterations: Not normal loop.\n");
4004 return 0;
4005 }
4006
4007 /* Calculate the number of iterations, final_value is only an approximation,
4008 so correct for that. Note that abs_diff and n_iterations are
4009 unsigned, because they can be as large as 2^n - 1. */
4010
4011 abs_inc = INTVAL (increment);
4012 if (abs_inc > 0)
4013 abs_diff = INTVAL (final_value) - INTVAL (initial_value);
4014 else if (abs_inc < 0)
4015 {
4016 abs_diff = INTVAL (initial_value) - INTVAL (final_value);
4017 abs_inc = -abs_inc;
4018 }
4019 else
4020 abort ();
4021
4022 /* For NE tests, make sure that the iteration variable won't miss
4023 the final value. If abs_diff mod abs_incr is not zero, then the
4024 iteration variable will overflow before the loop exits, and we
4025 can not calculate the number of iterations. */
4026 if (compare_dir == 0 && (abs_diff % abs_inc) != 0)
4027 return 0;
4028
4029 /* Note that the number of iterations could be calculated using
4030 (abs_diff + abs_inc - 1) / abs_inc, provided care was taken to
4031 handle potential overflow of the summation. */
4032 loop_info->n_iterations = abs_diff / abs_inc + ((abs_diff % abs_inc) != 0);
4033 return loop_info->n_iterations;
4034 }
4035
4036
4037 /* Replace uses of split bivs with their split pseudo register. This is
4038 for original instructions which remain after loop unrolling without
4039 copying. */
4040
4041 static rtx
4042 remap_split_bivs (x)
4043 rtx x;
4044 {
4045 register enum rtx_code code;
4046 register int i;
4047 register const char *fmt;
4048
4049 if (x == 0)
4050 return x;
4051
4052 code = GET_CODE (x);
4053 switch (code)
4054 {
4055 case SCRATCH:
4056 case PC:
4057 case CC0:
4058 case CONST_INT:
4059 case CONST_DOUBLE:
4060 case CONST:
4061 case SYMBOL_REF:
4062 case LABEL_REF:
4063 return x;
4064
4065 case REG:
4066 #if 0
4067 /* If non-reduced/final-value givs were split, then this would also
4068 have to remap those givs also. */
4069 #endif
4070 if (REGNO (x) < max_reg_before_loop
4071 && REG_IV_TYPE (REGNO (x)) == BASIC_INDUCT)
4072 return reg_biv_class[REGNO (x)]->biv->src_reg;
4073 break;
4074
4075 default:
4076 break;
4077 }
4078
4079 fmt = GET_RTX_FORMAT (code);
4080 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4081 {
4082 if (fmt[i] == 'e')
4083 XEXP (x, i) = remap_split_bivs (XEXP (x, i));
4084 else if (fmt[i] == 'E')
4085 {
4086 register int j;
4087 for (j = 0; j < XVECLEN (x, i); j++)
4088 XVECEXP (x, i, j) = remap_split_bivs (XVECEXP (x, i, j));
4089 }
4090 }
4091 return x;
4092 }
4093
4094 /* If FIRST_UID is a set of REGNO, and FIRST_UID dominates LAST_UID (e.g.
4095 FIST_UID is always executed if LAST_UID is), then return 1. Otherwise
4096 return 0. COPY_START is where we can start looking for the insns
4097 FIRST_UID and LAST_UID. COPY_END is where we stop looking for these
4098 insns.
4099
4100 If there is no JUMP_INSN between LOOP_START and FIRST_UID, then FIRST_UID
4101 must dominate LAST_UID.
4102
4103 If there is a CODE_LABEL between FIRST_UID and LAST_UID, then FIRST_UID
4104 may not dominate LAST_UID.
4105
4106 If there is no CODE_LABEL between FIRST_UID and LAST_UID, then FIRST_UID
4107 must dominate LAST_UID. */
4108
4109 int
4110 set_dominates_use (regno, first_uid, last_uid, copy_start, copy_end)
4111 int regno;
4112 int first_uid;
4113 int last_uid;
4114 rtx copy_start;
4115 rtx copy_end;
4116 {
4117 int passed_jump = 0;
4118 rtx p = NEXT_INSN (copy_start);
4119
4120 while (INSN_UID (p) != first_uid)
4121 {
4122 if (GET_CODE (p) == JUMP_INSN)
4123 passed_jump= 1;
4124 /* Could not find FIRST_UID. */
4125 if (p == copy_end)
4126 return 0;
4127 p = NEXT_INSN (p);
4128 }
4129
4130 /* Verify that FIRST_UID is an insn that entirely sets REGNO. */
4131 if (GET_RTX_CLASS (GET_CODE (p)) != 'i'
4132 || ! dead_or_set_regno_p (p, regno))
4133 return 0;
4134
4135 /* FIRST_UID is always executed. */
4136 if (passed_jump == 0)
4137 return 1;
4138
4139 while (INSN_UID (p) != last_uid)
4140 {
4141 /* If we see a CODE_LABEL between FIRST_UID and LAST_UID, then we
4142 can not be sure that FIRST_UID dominates LAST_UID. */
4143 if (GET_CODE (p) == CODE_LABEL)
4144 return 0;
4145 /* Could not find LAST_UID, but we reached the end of the loop, so
4146 it must be safe. */
4147 else if (p == copy_end)
4148 return 1;
4149 p = NEXT_INSN (p);
4150 }
4151
4152 /* FIRST_UID is always executed if LAST_UID is executed. */
4153 return 1;
4154 }