]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/value-range-storage.cc
Fix profiledbootstrap
[thirdparty/gcc.git] / gcc / value-range-storage.cc
1 /* Support routines for vrange storage.
2 Copyright (C) 2022-2023 Free Software Foundation, Inc.
3 Contributed by Aldy Hernandez <aldyh@redhat.com>.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "ssa.h"
28 #include "tree-pretty-print.h"
29 #include "fold-const.h"
30 #include "gimple-range.h"
31 #include "value-range-storage.h"
32
33 // Generic memory allocator to share one interface between GC and
34 // obstack allocators.
35
36 class vrange_internal_alloc
37 {
38 public:
39 vrange_internal_alloc () { }
40 virtual ~vrange_internal_alloc () { }
41 virtual void *alloc (size_t size) = 0;
42 virtual void free (void *) = 0;
43 private:
44 DISABLE_COPY_AND_ASSIGN (vrange_internal_alloc);
45 };
46
47 class vrange_obstack_alloc final: public vrange_internal_alloc
48 {
49 public:
50 vrange_obstack_alloc ()
51 {
52 obstack_init (&m_obstack);
53 }
54 virtual ~vrange_obstack_alloc () final override
55 {
56 obstack_free (&m_obstack, NULL);
57 }
58 virtual void *alloc (size_t size) final override
59 {
60 return obstack_alloc (&m_obstack, size);
61 }
62 virtual void free (void *) final override { }
63 private:
64 obstack m_obstack;
65 };
66
67 class vrange_ggc_alloc final: public vrange_internal_alloc
68 {
69 public:
70 vrange_ggc_alloc () { }
71 virtual ~vrange_ggc_alloc () final override { }
72 virtual void *alloc (size_t size) final override
73 {
74 return ggc_internal_alloc (size);
75 }
76 virtual void free (void *p) final override
77 {
78 return ggc_free (p);
79 }
80 };
81
82 vrange_allocator::vrange_allocator (bool gc)
83 {
84 if (gc)
85 m_alloc = new vrange_ggc_alloc;
86 else
87 m_alloc = new vrange_obstack_alloc;
88 }
89
90 vrange_allocator::~vrange_allocator ()
91 {
92 delete m_alloc;
93 }
94
95 void *
96 vrange_allocator::alloc (size_t size)
97 {
98 return m_alloc->alloc (size);
99 }
100
101 void
102 vrange_allocator::free (void *p)
103 {
104 m_alloc->free (p);
105 }
106
107 // Allocate a new vrange_storage object initialized to R and return
108 // it.
109
110 vrange_storage *
111 vrange_allocator::clone (const vrange &r)
112 {
113 return vrange_storage::alloc (*m_alloc, r);
114 }
115
116 vrange_storage *
117 vrange_allocator::clone_varying (tree type)
118 {
119 if (irange::supports_p (type))
120 return irange_storage::alloc (*m_alloc, int_range <1> (type));
121 if (frange::supports_p (type))
122 return frange_storage::alloc (*m_alloc, frange (type));
123 return NULL;
124 }
125
126 vrange_storage *
127 vrange_allocator::clone_undefined (tree type)
128 {
129 if (irange::supports_p (type))
130 return irange_storage::alloc (*m_alloc, int_range<1> ());
131 if (frange::supports_p (type))
132 return frange_storage::alloc (*m_alloc, frange ());
133 return NULL;
134 }
135
136 // Allocate a new vrange_storage object initialized to R and return
137 // it. Return NULL if R is unsupported.
138
139 vrange_storage *
140 vrange_storage::alloc (vrange_internal_alloc &allocator, const vrange &r)
141 {
142 if (is_a <irange> (r))
143 return irange_storage::alloc (allocator, as_a <irange> (r));
144 if (is_a <frange> (r))
145 return frange_storage::alloc (allocator, as_a <frange> (r));
146 return NULL;
147 }
148
149 // Set storage to R.
150
151 void
152 vrange_storage::set_vrange (const vrange &r)
153 {
154 if (is_a <irange> (r))
155 {
156 irange_storage *s = static_cast <irange_storage *> (this);
157 gcc_checking_assert (s->fits_p (as_a <irange> (r)));
158 s->set_irange (as_a <irange> (r));
159 }
160 else if (is_a <frange> (r))
161 {
162 frange_storage *s = static_cast <frange_storage *> (this);
163 gcc_checking_assert (s->fits_p (as_a <frange> (r)));
164 s->set_frange (as_a <frange> (r));
165 }
166 else
167 gcc_unreachable ();
168 }
169
170 // Restore R from storage.
171
172 void
173 vrange_storage::get_vrange (vrange &r, tree type) const
174 {
175 if (is_a <irange> (r))
176 {
177 const irange_storage *s = static_cast <const irange_storage *> (this);
178 s->get_irange (as_a <irange> (r), type);
179 }
180 else if (is_a <frange> (r))
181 {
182 const frange_storage *s = static_cast <const frange_storage *> (this);
183 s->get_frange (as_a <frange> (r), type);
184 }
185 else
186 gcc_unreachable ();
187 }
188
189 // Return TRUE if storage can fit R.
190
191 bool
192 vrange_storage::fits_p (const vrange &r) const
193 {
194 if (is_a <irange> (r))
195 {
196 const irange_storage *s = static_cast <const irange_storage *> (this);
197 return s->fits_p (as_a <irange> (r));
198 }
199 if (is_a <frange> (r))
200 {
201 const frange_storage *s = static_cast <const frange_storage *> (this);
202 return s->fits_p (as_a <frange> (r));
203 }
204 gcc_unreachable ();
205 return false;
206 }
207
208 // Return TRUE if the range in storage is equal to R. It is the
209 // caller's responsibility to verify that the type of the range in
210 // storage matches that of R.
211
212 bool
213 vrange_storage::equal_p (const vrange &r) const
214 {
215 if (is_a <irange> (r))
216 {
217 const irange_storage *s = static_cast <const irange_storage *> (this);
218 return s->equal_p (as_a <irange> (r));
219 }
220 if (is_a <frange> (r))
221 {
222 const frange_storage *s = static_cast <const frange_storage *> (this);
223 return s->equal_p (as_a <frange> (r));
224 }
225 gcc_unreachable ();
226 }
227
228 //============================================================================
229 // irange_storage implementation
230 //============================================================================
231
232 unsigned char *
233 irange_storage::write_lengths_address ()
234 {
235 return (unsigned char *)&m_val[(m_num_ranges * 2 + 2)
236 * WIDE_INT_MAX_HWIS (m_precision)];
237 }
238
239 const unsigned char *
240 irange_storage::lengths_address () const
241 {
242 return const_cast <irange_storage *> (this)->write_lengths_address ();
243 }
244
245 // Allocate a new irange_storage object initialized to R.
246
247 irange_storage *
248 irange_storage::alloc (vrange_internal_alloc &allocator, const irange &r)
249 {
250 size_t size = irange_storage::size (r);
251 irange_storage *p = static_cast <irange_storage *> (allocator.alloc (size));
252 new (p) irange_storage (r);
253 return p;
254 }
255
256 // Initialize the storage with R.
257
258 irange_storage::irange_storage (const irange &r)
259 : m_max_ranges (r.num_pairs ())
260 {
261 m_num_ranges = m_max_ranges;
262 set_irange (r);
263 }
264
265 static inline void
266 write_wide_int (HOST_WIDE_INT *&val, unsigned char *&len, const wide_int &w)
267 {
268 *len = w.get_len ();
269 for (unsigned i = 0; i < *len; ++i)
270 *val++ = w.elt (i);
271 ++len;
272 }
273
274 // Store R into the current storage.
275
276 void
277 irange_storage::set_irange (const irange &r)
278 {
279 gcc_checking_assert (fits_p (r));
280
281 if (r.undefined_p ())
282 {
283 m_kind = VR_UNDEFINED;
284 return;
285 }
286 if (r.varying_p ())
287 {
288 m_kind = VR_VARYING;
289 return;
290 }
291
292 m_precision = TYPE_PRECISION (r.type ());
293 m_num_ranges = r.num_pairs ();
294 m_kind = VR_RANGE;
295
296 HOST_WIDE_INT *val = &m_val[0];
297 unsigned char *len = write_lengths_address ();
298
299 for (unsigned i = 0; i < r.num_pairs (); ++i)
300 {
301 write_wide_int (val, len, r.lower_bound (i));
302 write_wide_int (val, len, r.upper_bound (i));
303 }
304
305 // TODO: We could avoid streaming out the value if the mask is -1.
306 irange_bitmask bm = r.m_bitmask;
307 write_wide_int (val, len, bm.value ());
308 write_wide_int (val, len, bm.mask ());
309
310 if (flag_checking)
311 {
312 int_range_max tmp;
313 get_irange (tmp, r.type ());
314 gcc_checking_assert (tmp == r);
315 }
316 }
317
318 static inline void
319 read_wide_int (wide_int &w,
320 const HOST_WIDE_INT *val, unsigned char len, unsigned prec)
321 {
322 trailing_wide_int_storage stow (prec, &len,
323 const_cast <HOST_WIDE_INT *> (val));
324 w = trailing_wide_int (stow);
325 }
326
327 // Restore a range of TYPE from storage into R.
328
329 void
330 irange_storage::get_irange (irange &r, tree type) const
331 {
332 if (m_kind == VR_UNDEFINED)
333 {
334 r.set_undefined ();
335 return;
336 }
337 if (m_kind == VR_VARYING)
338 {
339 r.set_varying (type);
340 return;
341 }
342
343 gcc_checking_assert (TYPE_PRECISION (type) == m_precision);
344 const HOST_WIDE_INT *val = &m_val[0];
345 const unsigned char *len = lengths_address ();
346
347 // Handle the common case where R can fit the new range.
348 if (r.m_max_ranges >= m_num_ranges)
349 {
350 r.m_kind = VR_RANGE;
351 r.m_num_ranges = m_num_ranges;
352 r.m_type = type;
353 for (unsigned i = 0; i < m_num_ranges * 2; ++i)
354 {
355 read_wide_int (r.m_base[i], val, *len, m_precision);
356 val += *len++;
357 }
358 }
359 // Otherwise build the range piecewise.
360 else
361 {
362 r.set_undefined ();
363 for (unsigned i = 0; i < m_num_ranges; ++i)
364 {
365 wide_int lb, ub;
366 read_wide_int (lb, val, *len, m_precision);
367 val += *len++;
368 read_wide_int (ub, val, *len, m_precision);
369 val += *len++;
370 int_range<1> tmp (type, lb, ub);
371 r.union_ (tmp);
372 }
373 }
374
375 wide_int bits_value, bits_mask;
376 read_wide_int (bits_value, val, *len, m_precision);
377 val += *len++;
378 read_wide_int (bits_mask, val, *len, m_precision);
379 r.m_bitmask = irange_bitmask (bits_value, bits_mask);
380 if (r.m_kind == VR_VARYING)
381 r.m_kind = VR_RANGE;
382
383 if (flag_checking)
384 r.verify_range ();
385 }
386
387 bool
388 irange_storage::equal_p (const irange &r) const
389 {
390 if (m_kind == VR_UNDEFINED || r.undefined_p ())
391 return m_kind == r.m_kind;
392 if (m_kind == VR_VARYING || r.varying_p ())
393 return m_kind == r.m_kind;
394
395 // ?? We could make this faster by doing the comparison in place,
396 // without going through get_irange.
397 int_range_max tmp;
398 get_irange (tmp, r.type ());
399 return tmp == r;
400 }
401
402 // Return the size in bytes to allocate storage that can hold R.
403
404 size_t
405 irange_storage::size (const irange &r)
406 {
407 if (r.undefined_p ())
408 return sizeof (irange_storage);
409
410 unsigned prec = TYPE_PRECISION (r.type ());
411 unsigned n = r.num_pairs () * 2 + 2;
412 unsigned hwi_size = ((n * WIDE_INT_MAX_HWIS (prec) - 1)
413 * sizeof (HOST_WIDE_INT));
414 unsigned len_size = n;
415 return sizeof (irange_storage) + hwi_size + len_size;
416 }
417
418 // Return TRUE if R fits in the current storage.
419
420 bool
421 irange_storage::fits_p (const irange &r) const
422 {
423 return m_max_ranges >= r.num_pairs ();
424 }
425
426 void
427 irange_storage::dump () const
428 {
429 fprintf (stderr, "irange_storage (prec=%d, ranges=%d):\n",
430 m_precision, m_num_ranges);
431
432 if (m_num_ranges == 0)
433 return;
434
435 const HOST_WIDE_INT *val = &m_val[0];
436 const unsigned char *len = lengths_address ();
437 int i, j;
438
439 fprintf (stderr, " lengths = [ ");
440 for (i = 0; i < m_num_ranges * 2 + 2; ++i)
441 fprintf (stderr, "%d ", len[i]);
442 fprintf (stderr, "]\n");
443
444 for (i = 0; i < m_num_ranges; ++i)
445 {
446 for (j = 0; j < *len; ++j)
447 fprintf (stderr, " [PAIR %d] LB " HOST_WIDE_INT_PRINT_DEC "\n", i,
448 *val++);
449 ++len;
450 for (j = 0; j < *len; ++j)
451 fprintf (stderr, " [PAIR %d] UB " HOST_WIDE_INT_PRINT_DEC "\n", i,
452 *val++);
453 ++len;
454 }
455
456 // Dump value/mask pair.
457 for (j = 0; j < *len; ++j)
458 fprintf (stderr, " [VALUE] " HOST_WIDE_INT_PRINT_DEC "\n", *val++);
459 ++len;
460 for (j = 0; j < *len; ++j)
461 fprintf (stderr, " [MASK] " HOST_WIDE_INT_PRINT_DEC "\n", *val++);
462 }
463
464 DEBUG_FUNCTION void
465 debug (const irange_storage &storage)
466 {
467 storage.dump ();
468 fprintf (stderr, "\n");
469 }
470
471 //============================================================================
472 // frange_storage implementation
473 //============================================================================
474
475 // Allocate a new frange_storage object initialized to R.
476
477 frange_storage *
478 frange_storage::alloc (vrange_internal_alloc &allocator, const frange &r)
479 {
480 size_t size = sizeof (frange_storage);
481 frange_storage *p = static_cast <frange_storage *> (allocator.alloc (size));
482 new (p) frange_storage (r);
483 return p;
484 }
485
486 void
487 frange_storage::set_frange (const frange &r)
488 {
489 gcc_checking_assert (fits_p (r));
490
491 m_kind = r.m_kind;
492 m_min = r.m_min;
493 m_max = r.m_max;
494 m_pos_nan = r.m_pos_nan;
495 m_neg_nan = r.m_neg_nan;
496 }
497
498 void
499 frange_storage::get_frange (frange &r, tree type) const
500 {
501 gcc_checking_assert (r.supports_type_p (type));
502
503 // Handle explicit NANs.
504 if (m_kind == VR_NAN)
505 {
506 if (HONOR_NANS (type))
507 {
508 if (m_pos_nan && m_neg_nan)
509 r.set_nan (type);
510 else
511 r.set_nan (type, m_neg_nan);
512 }
513 else
514 r.set_undefined ();
515 return;
516 }
517 if (m_kind == VR_UNDEFINED)
518 {
519 r.set_undefined ();
520 return;
521 }
522
523 // We use the constructor to create the new range instead of writing
524 // out the bits into the frange directly, because the global range
525 // being read may be being inlined into a function with different
526 // restrictions as when it was originally written. We want to make
527 // sure the resulting range is canonicalized correctly for the new
528 // consumer.
529 r = frange (type, m_min, m_max, m_kind);
530
531 // The constructor will set the NAN bits for HONOR_NANS, but we must
532 // make sure to set the NAN sign if known.
533 if (HONOR_NANS (type) && (m_pos_nan ^ m_neg_nan) == 1)
534 r.update_nan (m_neg_nan);
535 else if (!m_pos_nan && !m_neg_nan)
536 r.clear_nan ();
537 }
538
539 bool
540 frange_storage::equal_p (const frange &r) const
541 {
542 if (r.undefined_p ())
543 return m_kind == VR_UNDEFINED;
544
545 frange tmp;
546 get_frange (tmp, r.type ());
547 return tmp == r;
548 }
549
550 bool
551 frange_storage::fits_p (const frange &) const
552 {
553 return true;
554 }
555
556 static vrange_allocator ggc_vrange_allocator (true);
557
558 vrange_storage *ggc_alloc_vrange_storage (tree type)
559 {
560 return ggc_vrange_allocator.clone_varying (type);
561 }
562
563 vrange_storage *ggc_alloc_vrange_storage (const vrange &r)
564 {
565 return ggc_vrange_allocator.clone (r);
566 }