]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/var-tracking.c
[PR67355] drop dummy zero from reverse VTA ops, fix infinite recursion
[thirdparty/gcc.git] / gcc / var-tracking.c
1 /* Variable tracking routines for the GNU compiler.
2 Copyright (C) 2002-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file contains the variable tracking pass. It computes where
21 variables are located (which registers or where in memory) at each position
22 in instruction stream and emits notes describing the locations.
23 Debug information (DWARF2 location lists) is finally generated from
24 these notes.
25 With this debug information, it is possible to show variables
26 even when debugging optimized code.
27
28 How does the variable tracking pass work?
29
30 First, it scans RTL code for uses, stores and clobbers (register/memory
31 references in instructions), for call insns and for stack adjustments
32 separately for each basic block and saves them to an array of micro
33 operations.
34 The micro operations of one instruction are ordered so that
35 pre-modifying stack adjustment < use < use with no var < call insn <
36 < clobber < set < post-modifying stack adjustment
37
38 Then, a forward dataflow analysis is performed to find out how locations
39 of variables change through code and to propagate the variable locations
40 along control flow graph.
41 The IN set for basic block BB is computed as a union of OUT sets of BB's
42 predecessors, the OUT set for BB is copied from the IN set for BB and
43 is changed according to micro operations in BB.
44
45 The IN and OUT sets for basic blocks consist of a current stack adjustment
46 (used for adjusting offset of variables addressed using stack pointer),
47 the table of structures describing the locations of parts of a variable
48 and for each physical register a linked list for each physical register.
49 The linked list is a list of variable parts stored in the register,
50 i.e. it is a list of triplets (reg, decl, offset) where decl is
51 REG_EXPR (reg) and offset is REG_OFFSET (reg). The linked list is used for
52 effective deleting appropriate variable parts when we set or clobber the
53 register.
54
55 There may be more than one variable part in a register. The linked lists
56 should be pretty short so it is a good data structure here.
57 For example in the following code, register allocator may assign same
58 register to variables A and B, and both of them are stored in the same
59 register in CODE:
60
61 if (cond)
62 set A;
63 else
64 set B;
65 CODE;
66 if (cond)
67 use A;
68 else
69 use B;
70
71 Finally, the NOTE_INSN_VAR_LOCATION notes describing the variable locations
72 are emitted to appropriate positions in RTL code. Each such a note describes
73 the location of one variable at the point in instruction stream where the
74 note is. There is no need to emit a note for each variable before each
75 instruction, we only emit these notes where the location of variable changes
76 (this means that we also emit notes for changes between the OUT set of the
77 previous block and the IN set of the current block).
78
79 The notes consist of two parts:
80 1. the declaration (from REG_EXPR or MEM_EXPR)
81 2. the location of a variable - it is either a simple register/memory
82 reference (for simple variables, for example int),
83 or a parallel of register/memory references (for a large variables
84 which consist of several parts, for example long long).
85
86 */
87
88 #include "config.h"
89 #include "system.h"
90 #include "coretypes.h"
91 #include "backend.h"
92 #include "target.h"
93 #include "rtl.h"
94 #include "tree.h"
95 #include "cfghooks.h"
96 #include "alloc-pool.h"
97 #include "tree-pass.h"
98 #include "tm_p.h"
99 #include "insn-config.h"
100 #include "regs.h"
101 #include "emit-rtl.h"
102 #include "recog.h"
103 #include "diagnostic.h"
104 #include "varasm.h"
105 #include "stor-layout.h"
106 #include "cfgrtl.h"
107 #include "cfganal.h"
108 #include "reload.h"
109 #include "calls.h"
110 #include "tree-dfa.h"
111 #include "tree-ssa.h"
112 #include "cselib.h"
113 #include "params.h"
114 #include "tree-pretty-print.h"
115 #include "rtl-iter.h"
116 #include "fibonacci_heap.h"
117
118 typedef fibonacci_heap <long, basic_block_def> bb_heap_t;
119 typedef fibonacci_node <long, basic_block_def> bb_heap_node_t;
120
121 /* var-tracking.c assumes that tree code with the same value as VALUE rtx code
122 has no chance to appear in REG_EXPR/MEM_EXPRs and isn't a decl.
123 Currently the value is the same as IDENTIFIER_NODE, which has such
124 a property. If this compile time assertion ever fails, make sure that
125 the new tree code that equals (int) VALUE has the same property. */
126 extern char check_value_val[(int) VALUE == (int) IDENTIFIER_NODE ? 1 : -1];
127
128 /* Type of micro operation. */
129 enum micro_operation_type
130 {
131 MO_USE, /* Use location (REG or MEM). */
132 MO_USE_NO_VAR,/* Use location which is not associated with a variable
133 or the variable is not trackable. */
134 MO_VAL_USE, /* Use location which is associated with a value. */
135 MO_VAL_LOC, /* Use location which appears in a debug insn. */
136 MO_VAL_SET, /* Set location associated with a value. */
137 MO_SET, /* Set location. */
138 MO_COPY, /* Copy the same portion of a variable from one
139 location to another. */
140 MO_CLOBBER, /* Clobber location. */
141 MO_CALL, /* Call insn. */
142 MO_ADJUST /* Adjust stack pointer. */
143
144 };
145
146 static const char * const ATTRIBUTE_UNUSED
147 micro_operation_type_name[] = {
148 "MO_USE",
149 "MO_USE_NO_VAR",
150 "MO_VAL_USE",
151 "MO_VAL_LOC",
152 "MO_VAL_SET",
153 "MO_SET",
154 "MO_COPY",
155 "MO_CLOBBER",
156 "MO_CALL",
157 "MO_ADJUST"
158 };
159
160 /* Where shall the note be emitted? BEFORE or AFTER the instruction.
161 Notes emitted as AFTER_CALL are to take effect during the call,
162 rather than after the call. */
163 enum emit_note_where
164 {
165 EMIT_NOTE_BEFORE_INSN,
166 EMIT_NOTE_AFTER_INSN,
167 EMIT_NOTE_AFTER_CALL_INSN
168 };
169
170 /* Structure holding information about micro operation. */
171 struct micro_operation
172 {
173 /* Type of micro operation. */
174 enum micro_operation_type type;
175
176 /* The instruction which the micro operation is in, for MO_USE,
177 MO_USE_NO_VAR, MO_CALL and MO_ADJUST, or the subsequent
178 instruction or note in the original flow (before any var-tracking
179 notes are inserted, to simplify emission of notes), for MO_SET
180 and MO_CLOBBER. */
181 rtx_insn *insn;
182
183 union {
184 /* Location. For MO_SET and MO_COPY, this is the SET that
185 performs the assignment, if known, otherwise it is the target
186 of the assignment. For MO_VAL_USE and MO_VAL_SET, it is a
187 CONCAT of the VALUE and the LOC associated with it. For
188 MO_VAL_LOC, it is a CONCAT of the VALUE and the VAR_LOCATION
189 associated with it. */
190 rtx loc;
191
192 /* Stack adjustment. */
193 HOST_WIDE_INT adjust;
194 } u;
195 };
196
197
198 /* A declaration of a variable, or an RTL value being handled like a
199 declaration. */
200 typedef void *decl_or_value;
201
202 /* Return true if a decl_or_value DV is a DECL or NULL. */
203 static inline bool
204 dv_is_decl_p (decl_or_value dv)
205 {
206 return !dv || (int) TREE_CODE ((tree) dv) != (int) VALUE;
207 }
208
209 /* Return true if a decl_or_value is a VALUE rtl. */
210 static inline bool
211 dv_is_value_p (decl_or_value dv)
212 {
213 return dv && !dv_is_decl_p (dv);
214 }
215
216 /* Return the decl in the decl_or_value. */
217 static inline tree
218 dv_as_decl (decl_or_value dv)
219 {
220 gcc_checking_assert (dv_is_decl_p (dv));
221 return (tree) dv;
222 }
223
224 /* Return the value in the decl_or_value. */
225 static inline rtx
226 dv_as_value (decl_or_value dv)
227 {
228 gcc_checking_assert (dv_is_value_p (dv));
229 return (rtx)dv;
230 }
231
232 /* Return the opaque pointer in the decl_or_value. */
233 static inline void *
234 dv_as_opaque (decl_or_value dv)
235 {
236 return dv;
237 }
238
239
240 /* Description of location of a part of a variable. The content of a physical
241 register is described by a chain of these structures.
242 The chains are pretty short (usually 1 or 2 elements) and thus
243 chain is the best data structure. */
244 struct attrs
245 {
246 /* Pointer to next member of the list. */
247 attrs *next;
248
249 /* The rtx of register. */
250 rtx loc;
251
252 /* The declaration corresponding to LOC. */
253 decl_or_value dv;
254
255 /* Offset from start of DECL. */
256 HOST_WIDE_INT offset;
257 };
258
259 /* Structure for chaining the locations. */
260 struct location_chain
261 {
262 /* Next element in the chain. */
263 location_chain *next;
264
265 /* The location (REG, MEM or VALUE). */
266 rtx loc;
267
268 /* The "value" stored in this location. */
269 rtx set_src;
270
271 /* Initialized? */
272 enum var_init_status init;
273 };
274
275 /* A vector of loc_exp_dep holds the active dependencies of a one-part
276 DV on VALUEs, i.e., the VALUEs expanded so as to form the current
277 location of DV. Each entry is also part of VALUE' s linked-list of
278 backlinks back to DV. */
279 struct loc_exp_dep
280 {
281 /* The dependent DV. */
282 decl_or_value dv;
283 /* The dependency VALUE or DECL_DEBUG. */
284 rtx value;
285 /* The next entry in VALUE's backlinks list. */
286 struct loc_exp_dep *next;
287 /* A pointer to the pointer to this entry (head or prev's next) in
288 the doubly-linked list. */
289 struct loc_exp_dep **pprev;
290 };
291
292
293 /* This data structure holds information about the depth of a variable
294 expansion. */
295 struct expand_depth
296 {
297 /* This measures the complexity of the expanded expression. It
298 grows by one for each level of expansion that adds more than one
299 operand. */
300 int complexity;
301 /* This counts the number of ENTRY_VALUE expressions in an
302 expansion. We want to minimize their use. */
303 int entryvals;
304 };
305
306 /* This data structure is allocated for one-part variables at the time
307 of emitting notes. */
308 struct onepart_aux
309 {
310 /* Doubly-linked list of dependent DVs. These are DVs whose cur_loc
311 computation used the expansion of this variable, and that ought
312 to be notified should this variable change. If the DV's cur_loc
313 expanded to NULL, all components of the loc list are regarded as
314 active, so that any changes in them give us a chance to get a
315 location. Otherwise, only components of the loc that expanded to
316 non-NULL are regarded as active dependencies. */
317 loc_exp_dep *backlinks;
318 /* This holds the LOC that was expanded into cur_loc. We need only
319 mark a one-part variable as changed if the FROM loc is removed,
320 or if it has no known location and a loc is added, or if it gets
321 a change notification from any of its active dependencies. */
322 rtx from;
323 /* The depth of the cur_loc expression. */
324 expand_depth depth;
325 /* Dependencies actively used when expand FROM into cur_loc. */
326 vec<loc_exp_dep, va_heap, vl_embed> deps;
327 };
328
329 /* Structure describing one part of variable. */
330 struct variable_part
331 {
332 /* Chain of locations of the part. */
333 location_chain *loc_chain;
334
335 /* Location which was last emitted to location list. */
336 rtx cur_loc;
337
338 union variable_aux
339 {
340 /* The offset in the variable, if !var->onepart. */
341 HOST_WIDE_INT offset;
342
343 /* Pointer to auxiliary data, if var->onepart and emit_notes. */
344 struct onepart_aux *onepaux;
345 } aux;
346 };
347
348 /* Maximum number of location parts. */
349 #define MAX_VAR_PARTS 16
350
351 /* Enumeration type used to discriminate various types of one-part
352 variables. */
353 enum onepart_enum
354 {
355 /* Not a one-part variable. */
356 NOT_ONEPART = 0,
357 /* A one-part DECL that is not a DEBUG_EXPR_DECL. */
358 ONEPART_VDECL = 1,
359 /* A DEBUG_EXPR_DECL. */
360 ONEPART_DEXPR = 2,
361 /* A VALUE. */
362 ONEPART_VALUE = 3
363 };
364
365 /* Structure describing where the variable is located. */
366 struct variable
367 {
368 /* The declaration of the variable, or an RTL value being handled
369 like a declaration. */
370 decl_or_value dv;
371
372 /* Reference count. */
373 int refcount;
374
375 /* Number of variable parts. */
376 char n_var_parts;
377
378 /* What type of DV this is, according to enum onepart_enum. */
379 ENUM_BITFIELD (onepart_enum) onepart : CHAR_BIT;
380
381 /* True if this variable_def struct is currently in the
382 changed_variables hash table. */
383 bool in_changed_variables;
384
385 /* The variable parts. */
386 variable_part var_part[1];
387 };
388
389 /* Pointer to the BB's information specific to variable tracking pass. */
390 #define VTI(BB) ((variable_tracking_info *) (BB)->aux)
391
392 /* Macro to access MEM_OFFSET as an HOST_WIDE_INT. Evaluates MEM twice. */
393 #define INT_MEM_OFFSET(mem) (MEM_OFFSET_KNOWN_P (mem) ? MEM_OFFSET (mem) : 0)
394
395 #if CHECKING_P && (GCC_VERSION >= 2007)
396
397 /* Access VAR's Ith part's offset, checking that it's not a one-part
398 variable. */
399 #define VAR_PART_OFFSET(var, i) __extension__ \
400 (*({ variable *const __v = (var); \
401 gcc_checking_assert (!__v->onepart); \
402 &__v->var_part[(i)].aux.offset; }))
403
404 /* Access VAR's one-part auxiliary data, checking that it is a
405 one-part variable. */
406 #define VAR_LOC_1PAUX(var) __extension__ \
407 (*({ variable *const __v = (var); \
408 gcc_checking_assert (__v->onepart); \
409 &__v->var_part[0].aux.onepaux; }))
410
411 #else
412 #define VAR_PART_OFFSET(var, i) ((var)->var_part[(i)].aux.offset)
413 #define VAR_LOC_1PAUX(var) ((var)->var_part[0].aux.onepaux)
414 #endif
415
416 /* These are accessor macros for the one-part auxiliary data. When
417 convenient for users, they're guarded by tests that the data was
418 allocated. */
419 #define VAR_LOC_DEP_LST(var) (VAR_LOC_1PAUX (var) \
420 ? VAR_LOC_1PAUX (var)->backlinks \
421 : NULL)
422 #define VAR_LOC_DEP_LSTP(var) (VAR_LOC_1PAUX (var) \
423 ? &VAR_LOC_1PAUX (var)->backlinks \
424 : NULL)
425 #define VAR_LOC_FROM(var) (VAR_LOC_1PAUX (var)->from)
426 #define VAR_LOC_DEPTH(var) (VAR_LOC_1PAUX (var)->depth)
427 #define VAR_LOC_DEP_VEC(var) (VAR_LOC_1PAUX (var) \
428 ? &VAR_LOC_1PAUX (var)->deps \
429 : NULL)
430
431
432
433 typedef unsigned int dvuid;
434
435 /* Return the uid of DV. */
436
437 static inline dvuid
438 dv_uid (decl_or_value dv)
439 {
440 if (dv_is_value_p (dv))
441 return CSELIB_VAL_PTR (dv_as_value (dv))->uid;
442 else
443 return DECL_UID (dv_as_decl (dv));
444 }
445
446 /* Compute the hash from the uid. */
447
448 static inline hashval_t
449 dv_uid2hash (dvuid uid)
450 {
451 return uid;
452 }
453
454 /* The hash function for a mask table in a shared_htab chain. */
455
456 static inline hashval_t
457 dv_htab_hash (decl_or_value dv)
458 {
459 return dv_uid2hash (dv_uid (dv));
460 }
461
462 static void variable_htab_free (void *);
463
464 /* Variable hashtable helpers. */
465
466 struct variable_hasher : pointer_hash <variable>
467 {
468 typedef void *compare_type;
469 static inline hashval_t hash (const variable *);
470 static inline bool equal (const variable *, const void *);
471 static inline void remove (variable *);
472 };
473
474 /* The hash function for variable_htab, computes the hash value
475 from the declaration of variable X. */
476
477 inline hashval_t
478 variable_hasher::hash (const variable *v)
479 {
480 return dv_htab_hash (v->dv);
481 }
482
483 /* Compare the declaration of variable X with declaration Y. */
484
485 inline bool
486 variable_hasher::equal (const variable *v, const void *y)
487 {
488 decl_or_value dv = CONST_CAST2 (decl_or_value, const void *, y);
489
490 return (dv_as_opaque (v->dv) == dv_as_opaque (dv));
491 }
492
493 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
494
495 inline void
496 variable_hasher::remove (variable *var)
497 {
498 variable_htab_free (var);
499 }
500
501 typedef hash_table<variable_hasher> variable_table_type;
502 typedef variable_table_type::iterator variable_iterator_type;
503
504 /* Structure for passing some other parameters to function
505 emit_note_insn_var_location. */
506 struct emit_note_data
507 {
508 /* The instruction which the note will be emitted before/after. */
509 rtx_insn *insn;
510
511 /* Where the note will be emitted (before/after insn)? */
512 enum emit_note_where where;
513
514 /* The variables and values active at this point. */
515 variable_table_type *vars;
516 };
517
518 /* Structure holding a refcounted hash table. If refcount > 1,
519 it must be first unshared before modified. */
520 struct shared_hash
521 {
522 /* Reference count. */
523 int refcount;
524
525 /* Actual hash table. */
526 variable_table_type *htab;
527 };
528
529 /* Structure holding the IN or OUT set for a basic block. */
530 struct dataflow_set
531 {
532 /* Adjustment of stack offset. */
533 HOST_WIDE_INT stack_adjust;
534
535 /* Attributes for registers (lists of attrs). */
536 attrs *regs[FIRST_PSEUDO_REGISTER];
537
538 /* Variable locations. */
539 shared_hash *vars;
540
541 /* Vars that is being traversed. */
542 shared_hash *traversed_vars;
543 };
544
545 /* The structure (one for each basic block) containing the information
546 needed for variable tracking. */
547 struct variable_tracking_info
548 {
549 /* The vector of micro operations. */
550 vec<micro_operation> mos;
551
552 /* The IN and OUT set for dataflow analysis. */
553 dataflow_set in;
554 dataflow_set out;
555
556 /* The permanent-in dataflow set for this block. This is used to
557 hold values for which we had to compute entry values. ??? This
558 should probably be dynamically allocated, to avoid using more
559 memory in non-debug builds. */
560 dataflow_set *permp;
561
562 /* Has the block been visited in DFS? */
563 bool visited;
564
565 /* Has the block been flooded in VTA? */
566 bool flooded;
567
568 };
569
570 /* Alloc pool for struct attrs_def. */
571 object_allocator<attrs> attrs_pool ("attrs pool");
572
573 /* Alloc pool for struct variable_def with MAX_VAR_PARTS entries. */
574
575 static pool_allocator var_pool
576 ("variable_def pool", sizeof (variable) +
577 (MAX_VAR_PARTS - 1) * sizeof (((variable *)NULL)->var_part[0]));
578
579 /* Alloc pool for struct variable_def with a single var_part entry. */
580 static pool_allocator valvar_pool
581 ("small variable_def pool", sizeof (variable));
582
583 /* Alloc pool for struct location_chain. */
584 static object_allocator<location_chain> location_chain_pool
585 ("location_chain pool");
586
587 /* Alloc pool for struct shared_hash. */
588 static object_allocator<shared_hash> shared_hash_pool ("shared_hash pool");
589
590 /* Alloc pool for struct loc_exp_dep_s for NOT_ONEPART variables. */
591 object_allocator<loc_exp_dep> loc_exp_dep_pool ("loc_exp_dep pool");
592
593 /* Changed variables, notes will be emitted for them. */
594 static variable_table_type *changed_variables;
595
596 /* Shall notes be emitted? */
597 static bool emit_notes;
598
599 /* Values whose dynamic location lists have gone empty, but whose
600 cselib location lists are still usable. Use this to hold the
601 current location, the backlinks, etc, during emit_notes. */
602 static variable_table_type *dropped_values;
603
604 /* Empty shared hashtable. */
605 static shared_hash *empty_shared_hash;
606
607 /* Scratch register bitmap used by cselib_expand_value_rtx. */
608 static bitmap scratch_regs = NULL;
609
610 #ifdef HAVE_window_save
611 struct GTY(()) parm_reg {
612 rtx outgoing;
613 rtx incoming;
614 };
615
616
617 /* Vector of windowed parameter registers, if any. */
618 static vec<parm_reg, va_gc> *windowed_parm_regs = NULL;
619 #endif
620
621 /* Variable used to tell whether cselib_process_insn called our hook. */
622 static bool cselib_hook_called;
623
624 /* Local function prototypes. */
625 static void stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
626 HOST_WIDE_INT *);
627 static void insn_stack_adjust_offset_pre_post (rtx_insn *, HOST_WIDE_INT *,
628 HOST_WIDE_INT *);
629 static bool vt_stack_adjustments (void);
630
631 static void init_attrs_list_set (attrs **);
632 static void attrs_list_clear (attrs **);
633 static attrs *attrs_list_member (attrs *, decl_or_value, HOST_WIDE_INT);
634 static void attrs_list_insert (attrs **, decl_or_value, HOST_WIDE_INT, rtx);
635 static void attrs_list_copy (attrs **, attrs *);
636 static void attrs_list_union (attrs **, attrs *);
637
638 static variable **unshare_variable (dataflow_set *set, variable **slot,
639 variable *var, enum var_init_status);
640 static void vars_copy (variable_table_type *, variable_table_type *);
641 static tree var_debug_decl (tree);
642 static void var_reg_set (dataflow_set *, rtx, enum var_init_status, rtx);
643 static void var_reg_delete_and_set (dataflow_set *, rtx, bool,
644 enum var_init_status, rtx);
645 static void var_reg_delete (dataflow_set *, rtx, bool);
646 static void var_regno_delete (dataflow_set *, int);
647 static void var_mem_set (dataflow_set *, rtx, enum var_init_status, rtx);
648 static void var_mem_delete_and_set (dataflow_set *, rtx, bool,
649 enum var_init_status, rtx);
650 static void var_mem_delete (dataflow_set *, rtx, bool);
651
652 static void dataflow_set_init (dataflow_set *);
653 static void dataflow_set_clear (dataflow_set *);
654 static void dataflow_set_copy (dataflow_set *, dataflow_set *);
655 static int variable_union_info_cmp_pos (const void *, const void *);
656 static void dataflow_set_union (dataflow_set *, dataflow_set *);
657 static location_chain *find_loc_in_1pdv (rtx, variable *,
658 variable_table_type *);
659 static bool canon_value_cmp (rtx, rtx);
660 static int loc_cmp (rtx, rtx);
661 static bool variable_part_different_p (variable_part *, variable_part *);
662 static bool onepart_variable_different_p (variable *, variable *);
663 static bool variable_different_p (variable *, variable *);
664 static bool dataflow_set_different (dataflow_set *, dataflow_set *);
665 static void dataflow_set_destroy (dataflow_set *);
666
667 static bool track_expr_p (tree, bool);
668 static bool same_variable_part_p (rtx, tree, HOST_WIDE_INT);
669 static void add_uses_1 (rtx *, void *);
670 static void add_stores (rtx, const_rtx, void *);
671 static bool compute_bb_dataflow (basic_block);
672 static bool vt_find_locations (void);
673
674 static void dump_attrs_list (attrs *);
675 static void dump_var (variable *);
676 static void dump_vars (variable_table_type *);
677 static void dump_dataflow_set (dataflow_set *);
678 static void dump_dataflow_sets (void);
679
680 static void set_dv_changed (decl_or_value, bool);
681 static void variable_was_changed (variable *, dataflow_set *);
682 static variable **set_slot_part (dataflow_set *, rtx, variable **,
683 decl_or_value, HOST_WIDE_INT,
684 enum var_init_status, rtx);
685 static void set_variable_part (dataflow_set *, rtx,
686 decl_or_value, HOST_WIDE_INT,
687 enum var_init_status, rtx, enum insert_option);
688 static variable **clobber_slot_part (dataflow_set *, rtx,
689 variable **, HOST_WIDE_INT, rtx);
690 static void clobber_variable_part (dataflow_set *, rtx,
691 decl_or_value, HOST_WIDE_INT, rtx);
692 static variable **delete_slot_part (dataflow_set *, rtx, variable **,
693 HOST_WIDE_INT);
694 static void delete_variable_part (dataflow_set *, rtx,
695 decl_or_value, HOST_WIDE_INT);
696 static void emit_notes_in_bb (basic_block, dataflow_set *);
697 static void vt_emit_notes (void);
698
699 static bool vt_get_decl_and_offset (rtx, tree *, HOST_WIDE_INT *);
700 static void vt_add_function_parameters (void);
701 static bool vt_initialize (void);
702 static void vt_finalize (void);
703
704 /* Callback for stack_adjust_offset_pre_post, called via for_each_inc_dec. */
705
706 static int
707 stack_adjust_offset_pre_post_cb (rtx, rtx op, rtx dest, rtx src, rtx srcoff,
708 void *arg)
709 {
710 if (dest != stack_pointer_rtx)
711 return 0;
712
713 switch (GET_CODE (op))
714 {
715 case PRE_INC:
716 case PRE_DEC:
717 ((HOST_WIDE_INT *)arg)[0] -= INTVAL (srcoff);
718 return 0;
719 case POST_INC:
720 case POST_DEC:
721 ((HOST_WIDE_INT *)arg)[1] -= INTVAL (srcoff);
722 return 0;
723 case PRE_MODIFY:
724 case POST_MODIFY:
725 /* We handle only adjustments by constant amount. */
726 gcc_assert (GET_CODE (src) == PLUS
727 && CONST_INT_P (XEXP (src, 1))
728 && XEXP (src, 0) == stack_pointer_rtx);
729 ((HOST_WIDE_INT *)arg)[GET_CODE (op) == POST_MODIFY]
730 -= INTVAL (XEXP (src, 1));
731 return 0;
732 default:
733 gcc_unreachable ();
734 }
735 }
736
737 /* Given a SET, calculate the amount of stack adjustment it contains
738 PRE- and POST-modifying stack pointer.
739 This function is similar to stack_adjust_offset. */
740
741 static void
742 stack_adjust_offset_pre_post (rtx pattern, HOST_WIDE_INT *pre,
743 HOST_WIDE_INT *post)
744 {
745 rtx src = SET_SRC (pattern);
746 rtx dest = SET_DEST (pattern);
747 enum rtx_code code;
748
749 if (dest == stack_pointer_rtx)
750 {
751 /* (set (reg sp) (plus (reg sp) (const_int))) */
752 code = GET_CODE (src);
753 if (! (code == PLUS || code == MINUS)
754 || XEXP (src, 0) != stack_pointer_rtx
755 || !CONST_INT_P (XEXP (src, 1)))
756 return;
757
758 if (code == MINUS)
759 *post += INTVAL (XEXP (src, 1));
760 else
761 *post -= INTVAL (XEXP (src, 1));
762 return;
763 }
764 HOST_WIDE_INT res[2] = { 0, 0 };
765 for_each_inc_dec (pattern, stack_adjust_offset_pre_post_cb, res);
766 *pre += res[0];
767 *post += res[1];
768 }
769
770 /* Given an INSN, calculate the amount of stack adjustment it contains
771 PRE- and POST-modifying stack pointer. */
772
773 static void
774 insn_stack_adjust_offset_pre_post (rtx_insn *insn, HOST_WIDE_INT *pre,
775 HOST_WIDE_INT *post)
776 {
777 rtx pattern;
778
779 *pre = 0;
780 *post = 0;
781
782 pattern = PATTERN (insn);
783 if (RTX_FRAME_RELATED_P (insn))
784 {
785 rtx expr = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
786 if (expr)
787 pattern = XEXP (expr, 0);
788 }
789
790 if (GET_CODE (pattern) == SET)
791 stack_adjust_offset_pre_post (pattern, pre, post);
792 else if (GET_CODE (pattern) == PARALLEL
793 || GET_CODE (pattern) == SEQUENCE)
794 {
795 int i;
796
797 /* There may be stack adjustments inside compound insns. Search
798 for them. */
799 for ( i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
800 if (GET_CODE (XVECEXP (pattern, 0, i)) == SET)
801 stack_adjust_offset_pre_post (XVECEXP (pattern, 0, i), pre, post);
802 }
803 }
804
805 /* Compute stack adjustments for all blocks by traversing DFS tree.
806 Return true when the adjustments on all incoming edges are consistent.
807 Heavily borrowed from pre_and_rev_post_order_compute. */
808
809 static bool
810 vt_stack_adjustments (void)
811 {
812 edge_iterator *stack;
813 int sp;
814
815 /* Initialize entry block. */
816 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->visited = true;
817 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->in.stack_adjust
818 = INCOMING_FRAME_SP_OFFSET;
819 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->out.stack_adjust
820 = INCOMING_FRAME_SP_OFFSET;
821
822 /* Allocate stack for back-tracking up CFG. */
823 stack = XNEWVEC (edge_iterator, n_basic_blocks_for_fn (cfun) + 1);
824 sp = 0;
825
826 /* Push the first edge on to the stack. */
827 stack[sp++] = ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs);
828
829 while (sp)
830 {
831 edge_iterator ei;
832 basic_block src;
833 basic_block dest;
834
835 /* Look at the edge on the top of the stack. */
836 ei = stack[sp - 1];
837 src = ei_edge (ei)->src;
838 dest = ei_edge (ei)->dest;
839
840 /* Check if the edge destination has been visited yet. */
841 if (!VTI (dest)->visited)
842 {
843 rtx_insn *insn;
844 HOST_WIDE_INT pre, post, offset;
845 VTI (dest)->visited = true;
846 VTI (dest)->in.stack_adjust = offset = VTI (src)->out.stack_adjust;
847
848 if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
849 for (insn = BB_HEAD (dest);
850 insn != NEXT_INSN (BB_END (dest));
851 insn = NEXT_INSN (insn))
852 if (INSN_P (insn))
853 {
854 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
855 offset += pre + post;
856 }
857
858 VTI (dest)->out.stack_adjust = offset;
859
860 if (EDGE_COUNT (dest->succs) > 0)
861 /* Since the DEST node has been visited for the first
862 time, check its successors. */
863 stack[sp++] = ei_start (dest->succs);
864 }
865 else
866 {
867 /* We can end up with different stack adjustments for the exit block
868 of a shrink-wrapped function if stack_adjust_offset_pre_post
869 doesn't understand the rtx pattern used to restore the stack
870 pointer in the epilogue. For example, on s390(x), the stack
871 pointer is often restored via a load-multiple instruction
872 and so no stack_adjust offset is recorded for it. This means
873 that the stack offset at the end of the epilogue block is the
874 the same as the offset before the epilogue, whereas other paths
875 to the exit block will have the correct stack_adjust.
876
877 It is safe to ignore these differences because (a) we never
878 use the stack_adjust for the exit block in this pass and
879 (b) dwarf2cfi checks whether the CFA notes in a shrink-wrapped
880 function are correct.
881
882 We must check whether the adjustments on other edges are
883 the same though. */
884 if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
885 && VTI (dest)->in.stack_adjust != VTI (src)->out.stack_adjust)
886 {
887 free (stack);
888 return false;
889 }
890
891 if (! ei_one_before_end_p (ei))
892 /* Go to the next edge. */
893 ei_next (&stack[sp - 1]);
894 else
895 /* Return to previous level if there are no more edges. */
896 sp--;
897 }
898 }
899
900 free (stack);
901 return true;
902 }
903
904 /* arg_pointer_rtx resp. frame_pointer_rtx if stack_pointer_rtx or
905 hard_frame_pointer_rtx is being mapped to it and offset for it. */
906 static rtx cfa_base_rtx;
907 static HOST_WIDE_INT cfa_base_offset;
908
909 /* Compute a CFA-based value for an ADJUSTMENT made to stack_pointer_rtx
910 or hard_frame_pointer_rtx. */
911
912 static inline rtx
913 compute_cfa_pointer (HOST_WIDE_INT adjustment)
914 {
915 return plus_constant (Pmode, cfa_base_rtx, adjustment + cfa_base_offset);
916 }
917
918 /* Adjustment for hard_frame_pointer_rtx to cfa base reg,
919 or -1 if the replacement shouldn't be done. */
920 static HOST_WIDE_INT hard_frame_pointer_adjustment = -1;
921
922 /* Data for adjust_mems callback. */
923
924 struct adjust_mem_data
925 {
926 bool store;
927 machine_mode mem_mode;
928 HOST_WIDE_INT stack_adjust;
929 rtx_expr_list *side_effects;
930 };
931
932 /* Helper for adjust_mems. Return true if X is suitable for
933 transformation of wider mode arithmetics to narrower mode. */
934
935 static bool
936 use_narrower_mode_test (rtx x, const_rtx subreg)
937 {
938 subrtx_var_iterator::array_type array;
939 FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
940 {
941 rtx x = *iter;
942 if (CONSTANT_P (x))
943 iter.skip_subrtxes ();
944 else
945 switch (GET_CODE (x))
946 {
947 case REG:
948 if (cselib_lookup (x, GET_MODE (SUBREG_REG (subreg)), 0, VOIDmode))
949 return false;
950 if (!validate_subreg (GET_MODE (subreg), GET_MODE (x), x,
951 subreg_lowpart_offset (GET_MODE (subreg),
952 GET_MODE (x))))
953 return false;
954 break;
955 case PLUS:
956 case MINUS:
957 case MULT:
958 break;
959 case ASHIFT:
960 iter.substitute (XEXP (x, 0));
961 break;
962 default:
963 return false;
964 }
965 }
966 return true;
967 }
968
969 /* Transform X into narrower mode MODE from wider mode WMODE. */
970
971 static rtx
972 use_narrower_mode (rtx x, machine_mode mode, machine_mode wmode)
973 {
974 rtx op0, op1;
975 if (CONSTANT_P (x))
976 return lowpart_subreg (mode, x, wmode);
977 switch (GET_CODE (x))
978 {
979 case REG:
980 return lowpart_subreg (mode, x, wmode);
981 case PLUS:
982 case MINUS:
983 case MULT:
984 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
985 op1 = use_narrower_mode (XEXP (x, 1), mode, wmode);
986 return simplify_gen_binary (GET_CODE (x), mode, op0, op1);
987 case ASHIFT:
988 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
989 op1 = XEXP (x, 1);
990 /* Ensure shift amount is not wider than mode. */
991 if (GET_MODE (op1) == VOIDmode)
992 op1 = lowpart_subreg (mode, op1, wmode);
993 else if (GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (GET_MODE (op1)))
994 op1 = lowpart_subreg (mode, op1, GET_MODE (op1));
995 return simplify_gen_binary (ASHIFT, mode, op0, op1);
996 default:
997 gcc_unreachable ();
998 }
999 }
1000
1001 /* Helper function for adjusting used MEMs. */
1002
1003 static rtx
1004 adjust_mems (rtx loc, const_rtx old_rtx, void *data)
1005 {
1006 struct adjust_mem_data *amd = (struct adjust_mem_data *) data;
1007 rtx mem, addr = loc, tem;
1008 machine_mode mem_mode_save;
1009 bool store_save;
1010 switch (GET_CODE (loc))
1011 {
1012 case REG:
1013 /* Don't do any sp or fp replacements outside of MEM addresses
1014 on the LHS. */
1015 if (amd->mem_mode == VOIDmode && amd->store)
1016 return loc;
1017 if (loc == stack_pointer_rtx
1018 && !frame_pointer_needed
1019 && cfa_base_rtx)
1020 return compute_cfa_pointer (amd->stack_adjust);
1021 else if (loc == hard_frame_pointer_rtx
1022 && frame_pointer_needed
1023 && hard_frame_pointer_adjustment != -1
1024 && cfa_base_rtx)
1025 return compute_cfa_pointer (hard_frame_pointer_adjustment);
1026 gcc_checking_assert (loc != virtual_incoming_args_rtx);
1027 return loc;
1028 case MEM:
1029 mem = loc;
1030 if (!amd->store)
1031 {
1032 mem = targetm.delegitimize_address (mem);
1033 if (mem != loc && !MEM_P (mem))
1034 return simplify_replace_fn_rtx (mem, old_rtx, adjust_mems, data);
1035 }
1036
1037 addr = XEXP (mem, 0);
1038 mem_mode_save = amd->mem_mode;
1039 amd->mem_mode = GET_MODE (mem);
1040 store_save = amd->store;
1041 amd->store = false;
1042 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1043 amd->store = store_save;
1044 amd->mem_mode = mem_mode_save;
1045 if (mem == loc)
1046 addr = targetm.delegitimize_address (addr);
1047 if (addr != XEXP (mem, 0))
1048 mem = replace_equiv_address_nv (mem, addr);
1049 if (!amd->store)
1050 mem = avoid_constant_pool_reference (mem);
1051 return mem;
1052 case PRE_INC:
1053 case PRE_DEC:
1054 addr = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
1055 gen_int_mode (GET_CODE (loc) == PRE_INC
1056 ? GET_MODE_SIZE (amd->mem_mode)
1057 : -GET_MODE_SIZE (amd->mem_mode),
1058 GET_MODE (loc)));
1059 case POST_INC:
1060 case POST_DEC:
1061 if (addr == loc)
1062 addr = XEXP (loc, 0);
1063 gcc_assert (amd->mem_mode != VOIDmode && amd->mem_mode != BLKmode);
1064 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1065 tem = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
1066 gen_int_mode ((GET_CODE (loc) == PRE_INC
1067 || GET_CODE (loc) == POST_INC)
1068 ? GET_MODE_SIZE (amd->mem_mode)
1069 : -GET_MODE_SIZE (amd->mem_mode),
1070 GET_MODE (loc)));
1071 store_save = amd->store;
1072 amd->store = false;
1073 tem = simplify_replace_fn_rtx (tem, old_rtx, adjust_mems, data);
1074 amd->store = store_save;
1075 amd->side_effects = alloc_EXPR_LIST (0,
1076 gen_rtx_SET (XEXP (loc, 0), tem),
1077 amd->side_effects);
1078 return addr;
1079 case PRE_MODIFY:
1080 addr = XEXP (loc, 1);
1081 case POST_MODIFY:
1082 if (addr == loc)
1083 addr = XEXP (loc, 0);
1084 gcc_assert (amd->mem_mode != VOIDmode);
1085 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1086 store_save = amd->store;
1087 amd->store = false;
1088 tem = simplify_replace_fn_rtx (XEXP (loc, 1), old_rtx,
1089 adjust_mems, data);
1090 amd->store = store_save;
1091 amd->side_effects = alloc_EXPR_LIST (0,
1092 gen_rtx_SET (XEXP (loc, 0), tem),
1093 amd->side_effects);
1094 return addr;
1095 case SUBREG:
1096 /* First try without delegitimization of whole MEMs and
1097 avoid_constant_pool_reference, which is more likely to succeed. */
1098 store_save = amd->store;
1099 amd->store = true;
1100 addr = simplify_replace_fn_rtx (SUBREG_REG (loc), old_rtx, adjust_mems,
1101 data);
1102 amd->store = store_save;
1103 mem = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1104 if (mem == SUBREG_REG (loc))
1105 {
1106 tem = loc;
1107 goto finish_subreg;
1108 }
1109 tem = simplify_gen_subreg (GET_MODE (loc), mem,
1110 GET_MODE (SUBREG_REG (loc)),
1111 SUBREG_BYTE (loc));
1112 if (tem)
1113 goto finish_subreg;
1114 tem = simplify_gen_subreg (GET_MODE (loc), addr,
1115 GET_MODE (SUBREG_REG (loc)),
1116 SUBREG_BYTE (loc));
1117 if (tem == NULL_RTX)
1118 tem = gen_rtx_raw_SUBREG (GET_MODE (loc), addr, SUBREG_BYTE (loc));
1119 finish_subreg:
1120 if (MAY_HAVE_DEBUG_INSNS
1121 && GET_CODE (tem) == SUBREG
1122 && (GET_CODE (SUBREG_REG (tem)) == PLUS
1123 || GET_CODE (SUBREG_REG (tem)) == MINUS
1124 || GET_CODE (SUBREG_REG (tem)) == MULT
1125 || GET_CODE (SUBREG_REG (tem)) == ASHIFT)
1126 && (GET_MODE_CLASS (GET_MODE (tem)) == MODE_INT
1127 || GET_MODE_CLASS (GET_MODE (tem)) == MODE_PARTIAL_INT)
1128 && (GET_MODE_CLASS (GET_MODE (SUBREG_REG (tem))) == MODE_INT
1129 || GET_MODE_CLASS (GET_MODE (SUBREG_REG (tem))) == MODE_PARTIAL_INT)
1130 && GET_MODE_PRECISION (GET_MODE (tem))
1131 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (tem)))
1132 && subreg_lowpart_p (tem)
1133 && use_narrower_mode_test (SUBREG_REG (tem), tem))
1134 return use_narrower_mode (SUBREG_REG (tem), GET_MODE (tem),
1135 GET_MODE (SUBREG_REG (tem)));
1136 return tem;
1137 case ASM_OPERANDS:
1138 /* Don't do any replacements in second and following
1139 ASM_OPERANDS of inline-asm with multiple sets.
1140 ASM_OPERANDS_INPUT_VEC, ASM_OPERANDS_INPUT_CONSTRAINT_VEC
1141 and ASM_OPERANDS_LABEL_VEC need to be equal between
1142 all the ASM_OPERANDs in the insn and adjust_insn will
1143 fix this up. */
1144 if (ASM_OPERANDS_OUTPUT_IDX (loc) != 0)
1145 return loc;
1146 break;
1147 default:
1148 break;
1149 }
1150 return NULL_RTX;
1151 }
1152
1153 /* Helper function for replacement of uses. */
1154
1155 static void
1156 adjust_mem_uses (rtx *x, void *data)
1157 {
1158 rtx new_x = simplify_replace_fn_rtx (*x, NULL_RTX, adjust_mems, data);
1159 if (new_x != *x)
1160 validate_change (NULL_RTX, x, new_x, true);
1161 }
1162
1163 /* Helper function for replacement of stores. */
1164
1165 static void
1166 adjust_mem_stores (rtx loc, const_rtx expr, void *data)
1167 {
1168 if (MEM_P (loc))
1169 {
1170 rtx new_dest = simplify_replace_fn_rtx (SET_DEST (expr), NULL_RTX,
1171 adjust_mems, data);
1172 if (new_dest != SET_DEST (expr))
1173 {
1174 rtx xexpr = CONST_CAST_RTX (expr);
1175 validate_change (NULL_RTX, &SET_DEST (xexpr), new_dest, true);
1176 }
1177 }
1178 }
1179
1180 /* Simplify INSN. Remove all {PRE,POST}_{INC,DEC,MODIFY} rtxes,
1181 replace them with their value in the insn and add the side-effects
1182 as other sets to the insn. */
1183
1184 static void
1185 adjust_insn (basic_block bb, rtx_insn *insn)
1186 {
1187 struct adjust_mem_data amd;
1188 rtx set;
1189
1190 #ifdef HAVE_window_save
1191 /* If the target machine has an explicit window save instruction, the
1192 transformation OUTGOING_REGNO -> INCOMING_REGNO is done there. */
1193 if (RTX_FRAME_RELATED_P (insn)
1194 && find_reg_note (insn, REG_CFA_WINDOW_SAVE, NULL_RTX))
1195 {
1196 unsigned int i, nregs = vec_safe_length (windowed_parm_regs);
1197 rtx rtl = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (nregs * 2));
1198 parm_reg *p;
1199
1200 FOR_EACH_VEC_SAFE_ELT (windowed_parm_regs, i, p)
1201 {
1202 XVECEXP (rtl, 0, i * 2)
1203 = gen_rtx_SET (p->incoming, p->outgoing);
1204 /* Do not clobber the attached DECL, but only the REG. */
1205 XVECEXP (rtl, 0, i * 2 + 1)
1206 = gen_rtx_CLOBBER (GET_MODE (p->outgoing),
1207 gen_raw_REG (GET_MODE (p->outgoing),
1208 REGNO (p->outgoing)));
1209 }
1210
1211 validate_change (NULL_RTX, &PATTERN (insn), rtl, true);
1212 return;
1213 }
1214 #endif
1215
1216 amd.mem_mode = VOIDmode;
1217 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
1218 amd.side_effects = NULL;
1219
1220 amd.store = true;
1221 note_stores (PATTERN (insn), adjust_mem_stores, &amd);
1222
1223 amd.store = false;
1224 if (GET_CODE (PATTERN (insn)) == PARALLEL
1225 && asm_noperands (PATTERN (insn)) > 0
1226 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1227 {
1228 rtx body, set0;
1229 int i;
1230
1231 /* inline-asm with multiple sets is tiny bit more complicated,
1232 because the 3 vectors in ASM_OPERANDS need to be shared between
1233 all ASM_OPERANDS in the instruction. adjust_mems will
1234 not touch ASM_OPERANDS other than the first one, asm_noperands
1235 test above needs to be called before that (otherwise it would fail)
1236 and afterwards this code fixes it up. */
1237 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1238 body = PATTERN (insn);
1239 set0 = XVECEXP (body, 0, 0);
1240 gcc_checking_assert (GET_CODE (set0) == SET
1241 && GET_CODE (SET_SRC (set0)) == ASM_OPERANDS
1242 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set0)) == 0);
1243 for (i = 1; i < XVECLEN (body, 0); i++)
1244 if (GET_CODE (XVECEXP (body, 0, i)) != SET)
1245 break;
1246 else
1247 {
1248 set = XVECEXP (body, 0, i);
1249 gcc_checking_assert (GET_CODE (SET_SRC (set)) == ASM_OPERANDS
1250 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set))
1251 == i);
1252 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (set))
1253 != ASM_OPERANDS_INPUT_VEC (SET_SRC (set0))
1254 || ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set))
1255 != ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0))
1256 || ASM_OPERANDS_LABEL_VEC (SET_SRC (set))
1257 != ASM_OPERANDS_LABEL_VEC (SET_SRC (set0)))
1258 {
1259 rtx newsrc = shallow_copy_rtx (SET_SRC (set));
1260 ASM_OPERANDS_INPUT_VEC (newsrc)
1261 = ASM_OPERANDS_INPUT_VEC (SET_SRC (set0));
1262 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (newsrc)
1263 = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0));
1264 ASM_OPERANDS_LABEL_VEC (newsrc)
1265 = ASM_OPERANDS_LABEL_VEC (SET_SRC (set0));
1266 validate_change (NULL_RTX, &SET_SRC (set), newsrc, true);
1267 }
1268 }
1269 }
1270 else
1271 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1272
1273 /* For read-only MEMs containing some constant, prefer those
1274 constants. */
1275 set = single_set (insn);
1276 if (set && MEM_P (SET_SRC (set)) && MEM_READONLY_P (SET_SRC (set)))
1277 {
1278 rtx note = find_reg_equal_equiv_note (insn);
1279
1280 if (note && CONSTANT_P (XEXP (note, 0)))
1281 validate_change (NULL_RTX, &SET_SRC (set), XEXP (note, 0), true);
1282 }
1283
1284 if (amd.side_effects)
1285 {
1286 rtx *pat, new_pat, s;
1287 int i, oldn, newn;
1288
1289 pat = &PATTERN (insn);
1290 if (GET_CODE (*pat) == COND_EXEC)
1291 pat = &COND_EXEC_CODE (*pat);
1292 if (GET_CODE (*pat) == PARALLEL)
1293 oldn = XVECLEN (*pat, 0);
1294 else
1295 oldn = 1;
1296 for (s = amd.side_effects, newn = 0; s; newn++)
1297 s = XEXP (s, 1);
1298 new_pat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (oldn + newn));
1299 if (GET_CODE (*pat) == PARALLEL)
1300 for (i = 0; i < oldn; i++)
1301 XVECEXP (new_pat, 0, i) = XVECEXP (*pat, 0, i);
1302 else
1303 XVECEXP (new_pat, 0, 0) = *pat;
1304 for (s = amd.side_effects, i = oldn; i < oldn + newn; i++, s = XEXP (s, 1))
1305 XVECEXP (new_pat, 0, i) = XEXP (s, 0);
1306 free_EXPR_LIST_list (&amd.side_effects);
1307 validate_change (NULL_RTX, pat, new_pat, true);
1308 }
1309 }
1310
1311 /* Return the DEBUG_EXPR of a DEBUG_EXPR_DECL or the VALUE in DV. */
1312 static inline rtx
1313 dv_as_rtx (decl_or_value dv)
1314 {
1315 tree decl;
1316
1317 if (dv_is_value_p (dv))
1318 return dv_as_value (dv);
1319
1320 decl = dv_as_decl (dv);
1321
1322 gcc_checking_assert (TREE_CODE (decl) == DEBUG_EXPR_DECL);
1323 return DECL_RTL_KNOWN_SET (decl);
1324 }
1325
1326 /* Return nonzero if a decl_or_value must not have more than one
1327 variable part. The returned value discriminates among various
1328 kinds of one-part DVs ccording to enum onepart_enum. */
1329 static inline onepart_enum
1330 dv_onepart_p (decl_or_value dv)
1331 {
1332 tree decl;
1333
1334 if (!MAY_HAVE_DEBUG_INSNS)
1335 return NOT_ONEPART;
1336
1337 if (dv_is_value_p (dv))
1338 return ONEPART_VALUE;
1339
1340 decl = dv_as_decl (dv);
1341
1342 if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
1343 return ONEPART_DEXPR;
1344
1345 if (target_for_debug_bind (decl) != NULL_TREE)
1346 return ONEPART_VDECL;
1347
1348 return NOT_ONEPART;
1349 }
1350
1351 /* Return the variable pool to be used for a dv of type ONEPART. */
1352 static inline pool_allocator &
1353 onepart_pool (onepart_enum onepart)
1354 {
1355 return onepart ? valvar_pool : var_pool;
1356 }
1357
1358 /* Allocate a variable_def from the corresponding variable pool. */
1359 static inline variable *
1360 onepart_pool_allocate (onepart_enum onepart)
1361 {
1362 return (variable*) onepart_pool (onepart).allocate ();
1363 }
1364
1365 /* Build a decl_or_value out of a decl. */
1366 static inline decl_or_value
1367 dv_from_decl (tree decl)
1368 {
1369 decl_or_value dv;
1370 dv = decl;
1371 gcc_checking_assert (dv_is_decl_p (dv));
1372 return dv;
1373 }
1374
1375 /* Build a decl_or_value out of a value. */
1376 static inline decl_or_value
1377 dv_from_value (rtx value)
1378 {
1379 decl_or_value dv;
1380 dv = value;
1381 gcc_checking_assert (dv_is_value_p (dv));
1382 return dv;
1383 }
1384
1385 /* Return a value or the decl of a debug_expr as a decl_or_value. */
1386 static inline decl_or_value
1387 dv_from_rtx (rtx x)
1388 {
1389 decl_or_value dv;
1390
1391 switch (GET_CODE (x))
1392 {
1393 case DEBUG_EXPR:
1394 dv = dv_from_decl (DEBUG_EXPR_TREE_DECL (x));
1395 gcc_checking_assert (DECL_RTL_KNOWN_SET (DEBUG_EXPR_TREE_DECL (x)) == x);
1396 break;
1397
1398 case VALUE:
1399 dv = dv_from_value (x);
1400 break;
1401
1402 default:
1403 gcc_unreachable ();
1404 }
1405
1406 return dv;
1407 }
1408
1409 extern void debug_dv (decl_or_value dv);
1410
1411 DEBUG_FUNCTION void
1412 debug_dv (decl_or_value dv)
1413 {
1414 if (dv_is_value_p (dv))
1415 debug_rtx (dv_as_value (dv));
1416 else
1417 debug_generic_stmt (dv_as_decl (dv));
1418 }
1419
1420 static void loc_exp_dep_clear (variable *var);
1421
1422 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
1423
1424 static void
1425 variable_htab_free (void *elem)
1426 {
1427 int i;
1428 variable *var = (variable *) elem;
1429 location_chain *node, *next;
1430
1431 gcc_checking_assert (var->refcount > 0);
1432
1433 var->refcount--;
1434 if (var->refcount > 0)
1435 return;
1436
1437 for (i = 0; i < var->n_var_parts; i++)
1438 {
1439 for (node = var->var_part[i].loc_chain; node; node = next)
1440 {
1441 next = node->next;
1442 delete node;
1443 }
1444 var->var_part[i].loc_chain = NULL;
1445 }
1446 if (var->onepart && VAR_LOC_1PAUX (var))
1447 {
1448 loc_exp_dep_clear (var);
1449 if (VAR_LOC_DEP_LST (var))
1450 VAR_LOC_DEP_LST (var)->pprev = NULL;
1451 XDELETE (VAR_LOC_1PAUX (var));
1452 /* These may be reused across functions, so reset
1453 e.g. NO_LOC_P. */
1454 if (var->onepart == ONEPART_DEXPR)
1455 set_dv_changed (var->dv, true);
1456 }
1457 onepart_pool (var->onepart).remove (var);
1458 }
1459
1460 /* Initialize the set (array) SET of attrs to empty lists. */
1461
1462 static void
1463 init_attrs_list_set (attrs **set)
1464 {
1465 int i;
1466
1467 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1468 set[i] = NULL;
1469 }
1470
1471 /* Make the list *LISTP empty. */
1472
1473 static void
1474 attrs_list_clear (attrs **listp)
1475 {
1476 attrs *list, *next;
1477
1478 for (list = *listp; list; list = next)
1479 {
1480 next = list->next;
1481 delete list;
1482 }
1483 *listp = NULL;
1484 }
1485
1486 /* Return true if the pair of DECL and OFFSET is the member of the LIST. */
1487
1488 static attrs *
1489 attrs_list_member (attrs *list, decl_or_value dv, HOST_WIDE_INT offset)
1490 {
1491 for (; list; list = list->next)
1492 if (dv_as_opaque (list->dv) == dv_as_opaque (dv) && list->offset == offset)
1493 return list;
1494 return NULL;
1495 }
1496
1497 /* Insert the triplet DECL, OFFSET, LOC to the list *LISTP. */
1498
1499 static void
1500 attrs_list_insert (attrs **listp, decl_or_value dv,
1501 HOST_WIDE_INT offset, rtx loc)
1502 {
1503 attrs *list = new attrs;
1504 list->loc = loc;
1505 list->dv = dv;
1506 list->offset = offset;
1507 list->next = *listp;
1508 *listp = list;
1509 }
1510
1511 /* Copy all nodes from SRC and create a list *DSTP of the copies. */
1512
1513 static void
1514 attrs_list_copy (attrs **dstp, attrs *src)
1515 {
1516 attrs_list_clear (dstp);
1517 for (; src; src = src->next)
1518 {
1519 attrs *n = new attrs;
1520 n->loc = src->loc;
1521 n->dv = src->dv;
1522 n->offset = src->offset;
1523 n->next = *dstp;
1524 *dstp = n;
1525 }
1526 }
1527
1528 /* Add all nodes from SRC which are not in *DSTP to *DSTP. */
1529
1530 static void
1531 attrs_list_union (attrs **dstp, attrs *src)
1532 {
1533 for (; src; src = src->next)
1534 {
1535 if (!attrs_list_member (*dstp, src->dv, src->offset))
1536 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1537 }
1538 }
1539
1540 /* Combine nodes that are not onepart nodes from SRC and SRC2 into
1541 *DSTP. */
1542
1543 static void
1544 attrs_list_mpdv_union (attrs **dstp, attrs *src, attrs *src2)
1545 {
1546 gcc_assert (!*dstp);
1547 for (; src; src = src->next)
1548 {
1549 if (!dv_onepart_p (src->dv))
1550 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1551 }
1552 for (src = src2; src; src = src->next)
1553 {
1554 if (!dv_onepart_p (src->dv)
1555 && !attrs_list_member (*dstp, src->dv, src->offset))
1556 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1557 }
1558 }
1559
1560 /* Shared hashtable support. */
1561
1562 /* Return true if VARS is shared. */
1563
1564 static inline bool
1565 shared_hash_shared (shared_hash *vars)
1566 {
1567 return vars->refcount > 1;
1568 }
1569
1570 /* Return the hash table for VARS. */
1571
1572 static inline variable_table_type *
1573 shared_hash_htab (shared_hash *vars)
1574 {
1575 return vars->htab;
1576 }
1577
1578 /* Return true if VAR is shared, or maybe because VARS is shared. */
1579
1580 static inline bool
1581 shared_var_p (variable *var, shared_hash *vars)
1582 {
1583 /* Don't count an entry in the changed_variables table as a duplicate. */
1584 return ((var->refcount > 1 + (int) var->in_changed_variables)
1585 || shared_hash_shared (vars));
1586 }
1587
1588 /* Copy variables into a new hash table. */
1589
1590 static shared_hash *
1591 shared_hash_unshare (shared_hash *vars)
1592 {
1593 shared_hash *new_vars = new shared_hash;
1594 gcc_assert (vars->refcount > 1);
1595 new_vars->refcount = 1;
1596 new_vars->htab = new variable_table_type (vars->htab->elements () + 3);
1597 vars_copy (new_vars->htab, vars->htab);
1598 vars->refcount--;
1599 return new_vars;
1600 }
1601
1602 /* Increment reference counter on VARS and return it. */
1603
1604 static inline shared_hash *
1605 shared_hash_copy (shared_hash *vars)
1606 {
1607 vars->refcount++;
1608 return vars;
1609 }
1610
1611 /* Decrement reference counter and destroy hash table if not shared
1612 anymore. */
1613
1614 static void
1615 shared_hash_destroy (shared_hash *vars)
1616 {
1617 gcc_checking_assert (vars->refcount > 0);
1618 if (--vars->refcount == 0)
1619 {
1620 delete vars->htab;
1621 delete vars;
1622 }
1623 }
1624
1625 /* Unshare *PVARS if shared and return slot for DV. If INS is
1626 INSERT, insert it if not already present. */
1627
1628 static inline variable **
1629 shared_hash_find_slot_unshare_1 (shared_hash **pvars, decl_or_value dv,
1630 hashval_t dvhash, enum insert_option ins)
1631 {
1632 if (shared_hash_shared (*pvars))
1633 *pvars = shared_hash_unshare (*pvars);
1634 return shared_hash_htab (*pvars)->find_slot_with_hash (dv, dvhash, ins);
1635 }
1636
1637 static inline variable **
1638 shared_hash_find_slot_unshare (shared_hash **pvars, decl_or_value dv,
1639 enum insert_option ins)
1640 {
1641 return shared_hash_find_slot_unshare_1 (pvars, dv, dv_htab_hash (dv), ins);
1642 }
1643
1644 /* Return slot for DV, if it is already present in the hash table.
1645 If it is not present, insert it only VARS is not shared, otherwise
1646 return NULL. */
1647
1648 static inline variable **
1649 shared_hash_find_slot_1 (shared_hash *vars, decl_or_value dv, hashval_t dvhash)
1650 {
1651 return shared_hash_htab (vars)->find_slot_with_hash (dv, dvhash,
1652 shared_hash_shared (vars)
1653 ? NO_INSERT : INSERT);
1654 }
1655
1656 static inline variable **
1657 shared_hash_find_slot (shared_hash *vars, decl_or_value dv)
1658 {
1659 return shared_hash_find_slot_1 (vars, dv, dv_htab_hash (dv));
1660 }
1661
1662 /* Return slot for DV only if it is already present in the hash table. */
1663
1664 static inline variable **
1665 shared_hash_find_slot_noinsert_1 (shared_hash *vars, decl_or_value dv,
1666 hashval_t dvhash)
1667 {
1668 return shared_hash_htab (vars)->find_slot_with_hash (dv, dvhash, NO_INSERT);
1669 }
1670
1671 static inline variable **
1672 shared_hash_find_slot_noinsert (shared_hash *vars, decl_or_value dv)
1673 {
1674 return shared_hash_find_slot_noinsert_1 (vars, dv, dv_htab_hash (dv));
1675 }
1676
1677 /* Return variable for DV or NULL if not already present in the hash
1678 table. */
1679
1680 static inline variable *
1681 shared_hash_find_1 (shared_hash *vars, decl_or_value dv, hashval_t dvhash)
1682 {
1683 return shared_hash_htab (vars)->find_with_hash (dv, dvhash);
1684 }
1685
1686 static inline variable *
1687 shared_hash_find (shared_hash *vars, decl_or_value dv)
1688 {
1689 return shared_hash_find_1 (vars, dv, dv_htab_hash (dv));
1690 }
1691
1692 /* Return true if TVAL is better than CVAL as a canonival value. We
1693 choose lowest-numbered VALUEs, using the RTX address as a
1694 tie-breaker. The idea is to arrange them into a star topology,
1695 such that all of them are at most one step away from the canonical
1696 value, and the canonical value has backlinks to all of them, in
1697 addition to all the actual locations. We don't enforce this
1698 topology throughout the entire dataflow analysis, though.
1699 */
1700
1701 static inline bool
1702 canon_value_cmp (rtx tval, rtx cval)
1703 {
1704 return !cval
1705 || CSELIB_VAL_PTR (tval)->uid < CSELIB_VAL_PTR (cval)->uid;
1706 }
1707
1708 static bool dst_can_be_shared;
1709
1710 /* Return a copy of a variable VAR and insert it to dataflow set SET. */
1711
1712 static variable **
1713 unshare_variable (dataflow_set *set, variable **slot, variable *var,
1714 enum var_init_status initialized)
1715 {
1716 variable *new_var;
1717 int i;
1718
1719 new_var = onepart_pool_allocate (var->onepart);
1720 new_var->dv = var->dv;
1721 new_var->refcount = 1;
1722 var->refcount--;
1723 new_var->n_var_parts = var->n_var_parts;
1724 new_var->onepart = var->onepart;
1725 new_var->in_changed_variables = false;
1726
1727 if (! flag_var_tracking_uninit)
1728 initialized = VAR_INIT_STATUS_INITIALIZED;
1729
1730 for (i = 0; i < var->n_var_parts; i++)
1731 {
1732 location_chain *node;
1733 location_chain **nextp;
1734
1735 if (i == 0 && var->onepart)
1736 {
1737 /* One-part auxiliary data is only used while emitting
1738 notes, so propagate it to the new variable in the active
1739 dataflow set. If we're not emitting notes, this will be
1740 a no-op. */
1741 gcc_checking_assert (!VAR_LOC_1PAUX (var) || emit_notes);
1742 VAR_LOC_1PAUX (new_var) = VAR_LOC_1PAUX (var);
1743 VAR_LOC_1PAUX (var) = NULL;
1744 }
1745 else
1746 VAR_PART_OFFSET (new_var, i) = VAR_PART_OFFSET (var, i);
1747 nextp = &new_var->var_part[i].loc_chain;
1748 for (node = var->var_part[i].loc_chain; node; node = node->next)
1749 {
1750 location_chain *new_lc;
1751
1752 new_lc = new location_chain;
1753 new_lc->next = NULL;
1754 if (node->init > initialized)
1755 new_lc->init = node->init;
1756 else
1757 new_lc->init = initialized;
1758 if (node->set_src && !(MEM_P (node->set_src)))
1759 new_lc->set_src = node->set_src;
1760 else
1761 new_lc->set_src = NULL;
1762 new_lc->loc = node->loc;
1763
1764 *nextp = new_lc;
1765 nextp = &new_lc->next;
1766 }
1767
1768 new_var->var_part[i].cur_loc = var->var_part[i].cur_loc;
1769 }
1770
1771 dst_can_be_shared = false;
1772 if (shared_hash_shared (set->vars))
1773 slot = shared_hash_find_slot_unshare (&set->vars, var->dv, NO_INSERT);
1774 else if (set->traversed_vars && set->vars != set->traversed_vars)
1775 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
1776 *slot = new_var;
1777 if (var->in_changed_variables)
1778 {
1779 variable **cslot
1780 = changed_variables->find_slot_with_hash (var->dv,
1781 dv_htab_hash (var->dv),
1782 NO_INSERT);
1783 gcc_assert (*cslot == (void *) var);
1784 var->in_changed_variables = false;
1785 variable_htab_free (var);
1786 *cslot = new_var;
1787 new_var->in_changed_variables = true;
1788 }
1789 return slot;
1790 }
1791
1792 /* Copy all variables from hash table SRC to hash table DST. */
1793
1794 static void
1795 vars_copy (variable_table_type *dst, variable_table_type *src)
1796 {
1797 variable_iterator_type hi;
1798 variable *var;
1799
1800 FOR_EACH_HASH_TABLE_ELEMENT (*src, var, variable, hi)
1801 {
1802 variable **dstp;
1803 var->refcount++;
1804 dstp = dst->find_slot_with_hash (var->dv, dv_htab_hash (var->dv),
1805 INSERT);
1806 *dstp = var;
1807 }
1808 }
1809
1810 /* Map a decl to its main debug decl. */
1811
1812 static inline tree
1813 var_debug_decl (tree decl)
1814 {
1815 if (decl && TREE_CODE (decl) == VAR_DECL
1816 && DECL_HAS_DEBUG_EXPR_P (decl))
1817 {
1818 tree debugdecl = DECL_DEBUG_EXPR (decl);
1819 if (DECL_P (debugdecl))
1820 decl = debugdecl;
1821 }
1822
1823 return decl;
1824 }
1825
1826 /* Set the register LOC to contain DV, OFFSET. */
1827
1828 static void
1829 var_reg_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1830 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
1831 enum insert_option iopt)
1832 {
1833 attrs *node;
1834 bool decl_p = dv_is_decl_p (dv);
1835
1836 if (decl_p)
1837 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
1838
1839 for (node = set->regs[REGNO (loc)]; node; node = node->next)
1840 if (dv_as_opaque (node->dv) == dv_as_opaque (dv)
1841 && node->offset == offset)
1842 break;
1843 if (!node)
1844 attrs_list_insert (&set->regs[REGNO (loc)], dv, offset, loc);
1845 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
1846 }
1847
1848 /* Set the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). */
1849
1850 static void
1851 var_reg_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1852 rtx set_src)
1853 {
1854 tree decl = REG_EXPR (loc);
1855 HOST_WIDE_INT offset = REG_OFFSET (loc);
1856
1857 var_reg_decl_set (set, loc, initialized,
1858 dv_from_decl (decl), offset, set_src, INSERT);
1859 }
1860
1861 static enum var_init_status
1862 get_init_value (dataflow_set *set, rtx loc, decl_or_value dv)
1863 {
1864 variable *var;
1865 int i;
1866 enum var_init_status ret_val = VAR_INIT_STATUS_UNKNOWN;
1867
1868 if (! flag_var_tracking_uninit)
1869 return VAR_INIT_STATUS_INITIALIZED;
1870
1871 var = shared_hash_find (set->vars, dv);
1872 if (var)
1873 {
1874 for (i = 0; i < var->n_var_parts && ret_val == VAR_INIT_STATUS_UNKNOWN; i++)
1875 {
1876 location_chain *nextp;
1877 for (nextp = var->var_part[i].loc_chain; nextp; nextp = nextp->next)
1878 if (rtx_equal_p (nextp->loc, loc))
1879 {
1880 ret_val = nextp->init;
1881 break;
1882 }
1883 }
1884 }
1885
1886 return ret_val;
1887 }
1888
1889 /* Delete current content of register LOC in dataflow set SET and set
1890 the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). If
1891 MODIFY is true, any other live copies of the same variable part are
1892 also deleted from the dataflow set, otherwise the variable part is
1893 assumed to be copied from another location holding the same
1894 part. */
1895
1896 static void
1897 var_reg_delete_and_set (dataflow_set *set, rtx loc, bool modify,
1898 enum var_init_status initialized, rtx set_src)
1899 {
1900 tree decl = REG_EXPR (loc);
1901 HOST_WIDE_INT offset = REG_OFFSET (loc);
1902 attrs *node, *next;
1903 attrs **nextp;
1904
1905 decl = var_debug_decl (decl);
1906
1907 if (initialized == VAR_INIT_STATUS_UNKNOWN)
1908 initialized = get_init_value (set, loc, dv_from_decl (decl));
1909
1910 nextp = &set->regs[REGNO (loc)];
1911 for (node = *nextp; node; node = next)
1912 {
1913 next = node->next;
1914 if (dv_as_opaque (node->dv) != decl || node->offset != offset)
1915 {
1916 delete_variable_part (set, node->loc, node->dv, node->offset);
1917 delete node;
1918 *nextp = next;
1919 }
1920 else
1921 {
1922 node->loc = loc;
1923 nextp = &node->next;
1924 }
1925 }
1926 if (modify)
1927 clobber_variable_part (set, loc, dv_from_decl (decl), offset, set_src);
1928 var_reg_set (set, loc, initialized, set_src);
1929 }
1930
1931 /* Delete the association of register LOC in dataflow set SET with any
1932 variables that aren't onepart. If CLOBBER is true, also delete any
1933 other live copies of the same variable part, and delete the
1934 association with onepart dvs too. */
1935
1936 static void
1937 var_reg_delete (dataflow_set *set, rtx loc, bool clobber)
1938 {
1939 attrs **nextp = &set->regs[REGNO (loc)];
1940 attrs *node, *next;
1941
1942 if (clobber)
1943 {
1944 tree decl = REG_EXPR (loc);
1945 HOST_WIDE_INT offset = REG_OFFSET (loc);
1946
1947 decl = var_debug_decl (decl);
1948
1949 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
1950 }
1951
1952 for (node = *nextp; node; node = next)
1953 {
1954 next = node->next;
1955 if (clobber || !dv_onepart_p (node->dv))
1956 {
1957 delete_variable_part (set, node->loc, node->dv, node->offset);
1958 delete node;
1959 *nextp = next;
1960 }
1961 else
1962 nextp = &node->next;
1963 }
1964 }
1965
1966 /* Delete content of register with number REGNO in dataflow set SET. */
1967
1968 static void
1969 var_regno_delete (dataflow_set *set, int regno)
1970 {
1971 attrs **reg = &set->regs[regno];
1972 attrs *node, *next;
1973
1974 for (node = *reg; node; node = next)
1975 {
1976 next = node->next;
1977 delete_variable_part (set, node->loc, node->dv, node->offset);
1978 delete node;
1979 }
1980 *reg = NULL;
1981 }
1982
1983 /* Return true if I is the negated value of a power of two. */
1984 static bool
1985 negative_power_of_two_p (HOST_WIDE_INT i)
1986 {
1987 unsigned HOST_WIDE_INT x = -(unsigned HOST_WIDE_INT)i;
1988 return x == (x & -x);
1989 }
1990
1991 /* Strip constant offsets and alignments off of LOC. Return the base
1992 expression. */
1993
1994 static rtx
1995 vt_get_canonicalize_base (rtx loc)
1996 {
1997 while ((GET_CODE (loc) == PLUS
1998 || GET_CODE (loc) == AND)
1999 && GET_CODE (XEXP (loc, 1)) == CONST_INT
2000 && (GET_CODE (loc) != AND
2001 || negative_power_of_two_p (INTVAL (XEXP (loc, 1)))))
2002 loc = XEXP (loc, 0);
2003
2004 return loc;
2005 }
2006
2007 /* This caches canonicalized addresses for VALUEs, computed using
2008 information in the global cselib table. */
2009 static hash_map<rtx, rtx> *global_get_addr_cache;
2010
2011 /* This caches canonicalized addresses for VALUEs, computed using
2012 information from the global cache and information pertaining to a
2013 basic block being analyzed. */
2014 static hash_map<rtx, rtx> *local_get_addr_cache;
2015
2016 static rtx vt_canonicalize_addr (dataflow_set *, rtx);
2017
2018 /* Return the canonical address for LOC, that must be a VALUE, using a
2019 cached global equivalence or computing it and storing it in the
2020 global cache. */
2021
2022 static rtx
2023 get_addr_from_global_cache (rtx const loc)
2024 {
2025 rtx x;
2026
2027 gcc_checking_assert (GET_CODE (loc) == VALUE);
2028
2029 bool existed;
2030 rtx *slot = &global_get_addr_cache->get_or_insert (loc, &existed);
2031 if (existed)
2032 return *slot;
2033
2034 x = canon_rtx (get_addr (loc));
2035
2036 /* Tentative, avoiding infinite recursion. */
2037 *slot = x;
2038
2039 if (x != loc)
2040 {
2041 rtx nx = vt_canonicalize_addr (NULL, x);
2042 if (nx != x)
2043 {
2044 /* The table may have moved during recursion, recompute
2045 SLOT. */
2046 *global_get_addr_cache->get (loc) = x = nx;
2047 }
2048 }
2049
2050 return x;
2051 }
2052
2053 /* Return the canonical address for LOC, that must be a VALUE, using a
2054 cached local equivalence or computing it and storing it in the
2055 local cache. */
2056
2057 static rtx
2058 get_addr_from_local_cache (dataflow_set *set, rtx const loc)
2059 {
2060 rtx x;
2061 decl_or_value dv;
2062 variable *var;
2063 location_chain *l;
2064
2065 gcc_checking_assert (GET_CODE (loc) == VALUE);
2066
2067 bool existed;
2068 rtx *slot = &local_get_addr_cache->get_or_insert (loc, &existed);
2069 if (existed)
2070 return *slot;
2071
2072 x = get_addr_from_global_cache (loc);
2073
2074 /* Tentative, avoiding infinite recursion. */
2075 *slot = x;
2076
2077 /* Recurse to cache local expansion of X, or if we need to search
2078 for a VALUE in the expansion. */
2079 if (x != loc)
2080 {
2081 rtx nx = vt_canonicalize_addr (set, x);
2082 if (nx != x)
2083 {
2084 slot = local_get_addr_cache->get (loc);
2085 *slot = x = nx;
2086 }
2087 return x;
2088 }
2089
2090 dv = dv_from_rtx (x);
2091 var = shared_hash_find (set->vars, dv);
2092 if (!var)
2093 return x;
2094
2095 /* Look for an improved equivalent expression. */
2096 for (l = var->var_part[0].loc_chain; l; l = l->next)
2097 {
2098 rtx base = vt_get_canonicalize_base (l->loc);
2099 if (GET_CODE (base) == VALUE
2100 && canon_value_cmp (base, loc))
2101 {
2102 rtx nx = vt_canonicalize_addr (set, l->loc);
2103 if (x != nx)
2104 {
2105 slot = local_get_addr_cache->get (loc);
2106 *slot = x = nx;
2107 }
2108 break;
2109 }
2110 }
2111
2112 return x;
2113 }
2114
2115 /* Canonicalize LOC using equivalences from SET in addition to those
2116 in the cselib static table. It expects a VALUE-based expression,
2117 and it will only substitute VALUEs with other VALUEs or
2118 function-global equivalences, so that, if two addresses have base
2119 VALUEs that are locally or globally related in ways that
2120 memrefs_conflict_p cares about, they will both canonicalize to
2121 expressions that have the same base VALUE.
2122
2123 The use of VALUEs as canonical base addresses enables the canonical
2124 RTXs to remain unchanged globally, if they resolve to a constant,
2125 or throughout a basic block otherwise, so that they can be cached
2126 and the cache needs not be invalidated when REGs, MEMs or such
2127 change. */
2128
2129 static rtx
2130 vt_canonicalize_addr (dataflow_set *set, rtx oloc)
2131 {
2132 HOST_WIDE_INT ofst = 0;
2133 machine_mode mode = GET_MODE (oloc);
2134 rtx loc = oloc;
2135 rtx x;
2136 bool retry = true;
2137
2138 while (retry)
2139 {
2140 while (GET_CODE (loc) == PLUS
2141 && GET_CODE (XEXP (loc, 1)) == CONST_INT)
2142 {
2143 ofst += INTVAL (XEXP (loc, 1));
2144 loc = XEXP (loc, 0);
2145 }
2146
2147 /* Alignment operations can't normally be combined, so just
2148 canonicalize the base and we're done. We'll normally have
2149 only one stack alignment anyway. */
2150 if (GET_CODE (loc) == AND
2151 && GET_CODE (XEXP (loc, 1)) == CONST_INT
2152 && negative_power_of_two_p (INTVAL (XEXP (loc, 1))))
2153 {
2154 x = vt_canonicalize_addr (set, XEXP (loc, 0));
2155 if (x != XEXP (loc, 0))
2156 loc = gen_rtx_AND (mode, x, XEXP (loc, 1));
2157 retry = false;
2158 }
2159
2160 if (GET_CODE (loc) == VALUE)
2161 {
2162 if (set)
2163 loc = get_addr_from_local_cache (set, loc);
2164 else
2165 loc = get_addr_from_global_cache (loc);
2166
2167 /* Consolidate plus_constants. */
2168 while (ofst && GET_CODE (loc) == PLUS
2169 && GET_CODE (XEXP (loc, 1)) == CONST_INT)
2170 {
2171 ofst += INTVAL (XEXP (loc, 1));
2172 loc = XEXP (loc, 0);
2173 }
2174
2175 retry = false;
2176 }
2177 else
2178 {
2179 x = canon_rtx (loc);
2180 if (retry)
2181 retry = (x != loc);
2182 loc = x;
2183 }
2184 }
2185
2186 /* Add OFST back in. */
2187 if (ofst)
2188 {
2189 /* Don't build new RTL if we can help it. */
2190 if (GET_CODE (oloc) == PLUS
2191 && XEXP (oloc, 0) == loc
2192 && INTVAL (XEXP (oloc, 1)) == ofst)
2193 return oloc;
2194
2195 loc = plus_constant (mode, loc, ofst);
2196 }
2197
2198 return loc;
2199 }
2200
2201 /* Return true iff there's a true dependence between MLOC and LOC.
2202 MADDR must be a canonicalized version of MLOC's address. */
2203
2204 static inline bool
2205 vt_canon_true_dep (dataflow_set *set, rtx mloc, rtx maddr, rtx loc)
2206 {
2207 if (GET_CODE (loc) != MEM)
2208 return false;
2209
2210 rtx addr = vt_canonicalize_addr (set, XEXP (loc, 0));
2211 if (!canon_true_dependence (mloc, GET_MODE (mloc), maddr, loc, addr))
2212 return false;
2213
2214 return true;
2215 }
2216
2217 /* Hold parameters for the hashtab traversal function
2218 drop_overlapping_mem_locs, see below. */
2219
2220 struct overlapping_mems
2221 {
2222 dataflow_set *set;
2223 rtx loc, addr;
2224 };
2225
2226 /* Remove all MEMs that overlap with COMS->LOC from the location list
2227 of a hash table entry for a value. COMS->ADDR must be a
2228 canonicalized form of COMS->LOC's address, and COMS->LOC must be
2229 canonicalized itself. */
2230
2231 int
2232 drop_overlapping_mem_locs (variable **slot, overlapping_mems *coms)
2233 {
2234 dataflow_set *set = coms->set;
2235 rtx mloc = coms->loc, addr = coms->addr;
2236 variable *var = *slot;
2237
2238 if (var->onepart == ONEPART_VALUE)
2239 {
2240 location_chain *loc, **locp;
2241 bool changed = false;
2242 rtx cur_loc;
2243
2244 gcc_assert (var->n_var_parts == 1);
2245
2246 if (shared_var_p (var, set->vars))
2247 {
2248 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
2249 if (vt_canon_true_dep (set, mloc, addr, loc->loc))
2250 break;
2251
2252 if (!loc)
2253 return 1;
2254
2255 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
2256 var = *slot;
2257 gcc_assert (var->n_var_parts == 1);
2258 }
2259
2260 if (VAR_LOC_1PAUX (var))
2261 cur_loc = VAR_LOC_FROM (var);
2262 else
2263 cur_loc = var->var_part[0].cur_loc;
2264
2265 for (locp = &var->var_part[0].loc_chain, loc = *locp;
2266 loc; loc = *locp)
2267 {
2268 if (!vt_canon_true_dep (set, mloc, addr, loc->loc))
2269 {
2270 locp = &loc->next;
2271 continue;
2272 }
2273
2274 *locp = loc->next;
2275 /* If we have deleted the location which was last emitted
2276 we have to emit new location so add the variable to set
2277 of changed variables. */
2278 if (cur_loc == loc->loc)
2279 {
2280 changed = true;
2281 var->var_part[0].cur_loc = NULL;
2282 if (VAR_LOC_1PAUX (var))
2283 VAR_LOC_FROM (var) = NULL;
2284 }
2285 delete loc;
2286 }
2287
2288 if (!var->var_part[0].loc_chain)
2289 {
2290 var->n_var_parts--;
2291 changed = true;
2292 }
2293 if (changed)
2294 variable_was_changed (var, set);
2295 }
2296
2297 return 1;
2298 }
2299
2300 /* Remove from SET all VALUE bindings to MEMs that overlap with LOC. */
2301
2302 static void
2303 clobber_overlapping_mems (dataflow_set *set, rtx loc)
2304 {
2305 struct overlapping_mems coms;
2306
2307 gcc_checking_assert (GET_CODE (loc) == MEM);
2308
2309 coms.set = set;
2310 coms.loc = canon_rtx (loc);
2311 coms.addr = vt_canonicalize_addr (set, XEXP (loc, 0));
2312
2313 set->traversed_vars = set->vars;
2314 shared_hash_htab (set->vars)
2315 ->traverse <overlapping_mems*, drop_overlapping_mem_locs> (&coms);
2316 set->traversed_vars = NULL;
2317 }
2318
2319 /* Set the location of DV, OFFSET as the MEM LOC. */
2320
2321 static void
2322 var_mem_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
2323 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
2324 enum insert_option iopt)
2325 {
2326 if (dv_is_decl_p (dv))
2327 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
2328
2329 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
2330 }
2331
2332 /* Set the location part of variable MEM_EXPR (LOC) in dataflow set
2333 SET to LOC.
2334 Adjust the address first if it is stack pointer based. */
2335
2336 static void
2337 var_mem_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
2338 rtx set_src)
2339 {
2340 tree decl = MEM_EXPR (loc);
2341 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2342
2343 var_mem_decl_set (set, loc, initialized,
2344 dv_from_decl (decl), offset, set_src, INSERT);
2345 }
2346
2347 /* Delete and set the location part of variable MEM_EXPR (LOC) in
2348 dataflow set SET to LOC. If MODIFY is true, any other live copies
2349 of the same variable part are also deleted from the dataflow set,
2350 otherwise the variable part is assumed to be copied from another
2351 location holding the same part.
2352 Adjust the address first if it is stack pointer based. */
2353
2354 static void
2355 var_mem_delete_and_set (dataflow_set *set, rtx loc, bool modify,
2356 enum var_init_status initialized, rtx set_src)
2357 {
2358 tree decl = MEM_EXPR (loc);
2359 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2360
2361 clobber_overlapping_mems (set, loc);
2362 decl = var_debug_decl (decl);
2363
2364 if (initialized == VAR_INIT_STATUS_UNKNOWN)
2365 initialized = get_init_value (set, loc, dv_from_decl (decl));
2366
2367 if (modify)
2368 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, set_src);
2369 var_mem_set (set, loc, initialized, set_src);
2370 }
2371
2372 /* Delete the location part LOC from dataflow set SET. If CLOBBER is
2373 true, also delete any other live copies of the same variable part.
2374 Adjust the address first if it is stack pointer based. */
2375
2376 static void
2377 var_mem_delete (dataflow_set *set, rtx loc, bool clobber)
2378 {
2379 tree decl = MEM_EXPR (loc);
2380 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2381
2382 clobber_overlapping_mems (set, loc);
2383 decl = var_debug_decl (decl);
2384 if (clobber)
2385 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
2386 delete_variable_part (set, loc, dv_from_decl (decl), offset);
2387 }
2388
2389 /* Return true if LOC should not be expanded for location expressions,
2390 or used in them. */
2391
2392 static inline bool
2393 unsuitable_loc (rtx loc)
2394 {
2395 switch (GET_CODE (loc))
2396 {
2397 case PC:
2398 case SCRATCH:
2399 case CC0:
2400 case ASM_INPUT:
2401 case ASM_OPERANDS:
2402 return true;
2403
2404 default:
2405 return false;
2406 }
2407 }
2408
2409 /* Bind VAL to LOC in SET. If MODIFIED, detach LOC from any values
2410 bound to it. */
2411
2412 static inline void
2413 val_bind (dataflow_set *set, rtx val, rtx loc, bool modified)
2414 {
2415 if (REG_P (loc))
2416 {
2417 if (modified)
2418 var_regno_delete (set, REGNO (loc));
2419 var_reg_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2420 dv_from_value (val), 0, NULL_RTX, INSERT);
2421 }
2422 else if (MEM_P (loc))
2423 {
2424 struct elt_loc_list *l = CSELIB_VAL_PTR (val)->locs;
2425
2426 if (modified)
2427 clobber_overlapping_mems (set, loc);
2428
2429 if (l && GET_CODE (l->loc) == VALUE)
2430 l = canonical_cselib_val (CSELIB_VAL_PTR (l->loc))->locs;
2431
2432 /* If this MEM is a global constant, we don't need it in the
2433 dynamic tables. ??? We should test this before emitting the
2434 micro-op in the first place. */
2435 while (l)
2436 if (GET_CODE (l->loc) == MEM && XEXP (l->loc, 0) == XEXP (loc, 0))
2437 break;
2438 else
2439 l = l->next;
2440
2441 if (!l)
2442 var_mem_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2443 dv_from_value (val), 0, NULL_RTX, INSERT);
2444 }
2445 else
2446 {
2447 /* Other kinds of equivalences are necessarily static, at least
2448 so long as we do not perform substitutions while merging
2449 expressions. */
2450 gcc_unreachable ();
2451 set_variable_part (set, loc, dv_from_value (val), 0,
2452 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2453 }
2454 }
2455
2456 /* Bind a value to a location it was just stored in. If MODIFIED
2457 holds, assume the location was modified, detaching it from any
2458 values bound to it. */
2459
2460 static void
2461 val_store (dataflow_set *set, rtx val, rtx loc, rtx_insn *insn,
2462 bool modified)
2463 {
2464 cselib_val *v = CSELIB_VAL_PTR (val);
2465
2466 gcc_assert (cselib_preserved_value_p (v));
2467
2468 if (dump_file)
2469 {
2470 fprintf (dump_file, "%i: ", insn ? INSN_UID (insn) : 0);
2471 print_inline_rtx (dump_file, loc, 0);
2472 fprintf (dump_file, " evaluates to ");
2473 print_inline_rtx (dump_file, val, 0);
2474 if (v->locs)
2475 {
2476 struct elt_loc_list *l;
2477 for (l = v->locs; l; l = l->next)
2478 {
2479 fprintf (dump_file, "\n%i: ", INSN_UID (l->setting_insn));
2480 print_inline_rtx (dump_file, l->loc, 0);
2481 }
2482 }
2483 fprintf (dump_file, "\n");
2484 }
2485
2486 gcc_checking_assert (!unsuitable_loc (loc));
2487
2488 val_bind (set, val, loc, modified);
2489 }
2490
2491 /* Clear (canonical address) slots that reference X. */
2492
2493 bool
2494 local_get_addr_clear_given_value (rtx const &, rtx *slot, rtx x)
2495 {
2496 if (vt_get_canonicalize_base (*slot) == x)
2497 *slot = NULL;
2498 return true;
2499 }
2500
2501 /* Reset this node, detaching all its equivalences. Return the slot
2502 in the variable hash table that holds dv, if there is one. */
2503
2504 static void
2505 val_reset (dataflow_set *set, decl_or_value dv)
2506 {
2507 variable *var = shared_hash_find (set->vars, dv) ;
2508 location_chain *node;
2509 rtx cval;
2510
2511 if (!var || !var->n_var_parts)
2512 return;
2513
2514 gcc_assert (var->n_var_parts == 1);
2515
2516 if (var->onepart == ONEPART_VALUE)
2517 {
2518 rtx x = dv_as_value (dv);
2519
2520 /* Relationships in the global cache don't change, so reset the
2521 local cache entry only. */
2522 rtx *slot = local_get_addr_cache->get (x);
2523 if (slot)
2524 {
2525 /* If the value resolved back to itself, odds are that other
2526 values may have cached it too. These entries now refer
2527 to the old X, so detach them too. Entries that used the
2528 old X but resolved to something else remain ok as long as
2529 that something else isn't also reset. */
2530 if (*slot == x)
2531 local_get_addr_cache
2532 ->traverse<rtx, local_get_addr_clear_given_value> (x);
2533 *slot = NULL;
2534 }
2535 }
2536
2537 cval = NULL;
2538 for (node = var->var_part[0].loc_chain; node; node = node->next)
2539 if (GET_CODE (node->loc) == VALUE
2540 && canon_value_cmp (node->loc, cval))
2541 cval = node->loc;
2542
2543 for (node = var->var_part[0].loc_chain; node; node = node->next)
2544 if (GET_CODE (node->loc) == VALUE && cval != node->loc)
2545 {
2546 /* Redirect the equivalence link to the new canonical
2547 value, or simply remove it if it would point at
2548 itself. */
2549 if (cval)
2550 set_variable_part (set, cval, dv_from_value (node->loc),
2551 0, node->init, node->set_src, NO_INSERT);
2552 delete_variable_part (set, dv_as_value (dv),
2553 dv_from_value (node->loc), 0);
2554 }
2555
2556 if (cval)
2557 {
2558 decl_or_value cdv = dv_from_value (cval);
2559
2560 /* Keep the remaining values connected, accummulating links
2561 in the canonical value. */
2562 for (node = var->var_part[0].loc_chain; node; node = node->next)
2563 {
2564 if (node->loc == cval)
2565 continue;
2566 else if (GET_CODE (node->loc) == REG)
2567 var_reg_decl_set (set, node->loc, node->init, cdv, 0,
2568 node->set_src, NO_INSERT);
2569 else if (GET_CODE (node->loc) == MEM)
2570 var_mem_decl_set (set, node->loc, node->init, cdv, 0,
2571 node->set_src, NO_INSERT);
2572 else
2573 set_variable_part (set, node->loc, cdv, 0,
2574 node->init, node->set_src, NO_INSERT);
2575 }
2576 }
2577
2578 /* We remove this last, to make sure that the canonical value is not
2579 removed to the point of requiring reinsertion. */
2580 if (cval)
2581 delete_variable_part (set, dv_as_value (dv), dv_from_value (cval), 0);
2582
2583 clobber_variable_part (set, NULL, dv, 0, NULL);
2584 }
2585
2586 /* Find the values in a given location and map the val to another
2587 value, if it is unique, or add the location as one holding the
2588 value. */
2589
2590 static void
2591 val_resolve (dataflow_set *set, rtx val, rtx loc, rtx_insn *insn)
2592 {
2593 decl_or_value dv = dv_from_value (val);
2594
2595 if (dump_file && (dump_flags & TDF_DETAILS))
2596 {
2597 if (insn)
2598 fprintf (dump_file, "%i: ", INSN_UID (insn));
2599 else
2600 fprintf (dump_file, "head: ");
2601 print_inline_rtx (dump_file, val, 0);
2602 fputs (" is at ", dump_file);
2603 print_inline_rtx (dump_file, loc, 0);
2604 fputc ('\n', dump_file);
2605 }
2606
2607 val_reset (set, dv);
2608
2609 gcc_checking_assert (!unsuitable_loc (loc));
2610
2611 if (REG_P (loc))
2612 {
2613 attrs *node, *found = NULL;
2614
2615 for (node = set->regs[REGNO (loc)]; node; node = node->next)
2616 if (dv_is_value_p (node->dv)
2617 && GET_MODE (dv_as_value (node->dv)) == GET_MODE (loc))
2618 {
2619 found = node;
2620
2621 /* Map incoming equivalences. ??? Wouldn't it be nice if
2622 we just started sharing the location lists? Maybe a
2623 circular list ending at the value itself or some
2624 such. */
2625 set_variable_part (set, dv_as_value (node->dv),
2626 dv_from_value (val), node->offset,
2627 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2628 set_variable_part (set, val, node->dv, node->offset,
2629 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2630 }
2631
2632 /* If we didn't find any equivalence, we need to remember that
2633 this value is held in the named register. */
2634 if (found)
2635 return;
2636 }
2637 /* ??? Attempt to find and merge equivalent MEMs or other
2638 expressions too. */
2639
2640 val_bind (set, val, loc, false);
2641 }
2642
2643 /* Initialize dataflow set SET to be empty.
2644 VARS_SIZE is the initial size of hash table VARS. */
2645
2646 static void
2647 dataflow_set_init (dataflow_set *set)
2648 {
2649 init_attrs_list_set (set->regs);
2650 set->vars = shared_hash_copy (empty_shared_hash);
2651 set->stack_adjust = 0;
2652 set->traversed_vars = NULL;
2653 }
2654
2655 /* Delete the contents of dataflow set SET. */
2656
2657 static void
2658 dataflow_set_clear (dataflow_set *set)
2659 {
2660 int i;
2661
2662 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2663 attrs_list_clear (&set->regs[i]);
2664
2665 shared_hash_destroy (set->vars);
2666 set->vars = shared_hash_copy (empty_shared_hash);
2667 }
2668
2669 /* Copy the contents of dataflow set SRC to DST. */
2670
2671 static void
2672 dataflow_set_copy (dataflow_set *dst, dataflow_set *src)
2673 {
2674 int i;
2675
2676 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2677 attrs_list_copy (&dst->regs[i], src->regs[i]);
2678
2679 shared_hash_destroy (dst->vars);
2680 dst->vars = shared_hash_copy (src->vars);
2681 dst->stack_adjust = src->stack_adjust;
2682 }
2683
2684 /* Information for merging lists of locations for a given offset of variable.
2685 */
2686 struct variable_union_info
2687 {
2688 /* Node of the location chain. */
2689 location_chain *lc;
2690
2691 /* The sum of positions in the input chains. */
2692 int pos;
2693
2694 /* The position in the chain of DST dataflow set. */
2695 int pos_dst;
2696 };
2697
2698 /* Buffer for location list sorting and its allocated size. */
2699 static struct variable_union_info *vui_vec;
2700 static int vui_allocated;
2701
2702 /* Compare function for qsort, order the structures by POS element. */
2703
2704 static int
2705 variable_union_info_cmp_pos (const void *n1, const void *n2)
2706 {
2707 const struct variable_union_info *const i1 =
2708 (const struct variable_union_info *) n1;
2709 const struct variable_union_info *const i2 =
2710 ( const struct variable_union_info *) n2;
2711
2712 if (i1->pos != i2->pos)
2713 return i1->pos - i2->pos;
2714
2715 return (i1->pos_dst - i2->pos_dst);
2716 }
2717
2718 /* Compute union of location parts of variable *SLOT and the same variable
2719 from hash table DATA. Compute "sorted" union of the location chains
2720 for common offsets, i.e. the locations of a variable part are sorted by
2721 a priority where the priority is the sum of the positions in the 2 chains
2722 (if a location is only in one list the position in the second list is
2723 defined to be larger than the length of the chains).
2724 When we are updating the location parts the newest location is in the
2725 beginning of the chain, so when we do the described "sorted" union
2726 we keep the newest locations in the beginning. */
2727
2728 static int
2729 variable_union (variable *src, dataflow_set *set)
2730 {
2731 variable *dst;
2732 variable **dstp;
2733 int i, j, k;
2734
2735 dstp = shared_hash_find_slot (set->vars, src->dv);
2736 if (!dstp || !*dstp)
2737 {
2738 src->refcount++;
2739
2740 dst_can_be_shared = false;
2741 if (!dstp)
2742 dstp = shared_hash_find_slot_unshare (&set->vars, src->dv, INSERT);
2743
2744 *dstp = src;
2745
2746 /* Continue traversing the hash table. */
2747 return 1;
2748 }
2749 else
2750 dst = *dstp;
2751
2752 gcc_assert (src->n_var_parts);
2753 gcc_checking_assert (src->onepart == dst->onepart);
2754
2755 /* We can combine one-part variables very efficiently, because their
2756 entries are in canonical order. */
2757 if (src->onepart)
2758 {
2759 location_chain **nodep, *dnode, *snode;
2760
2761 gcc_assert (src->n_var_parts == 1
2762 && dst->n_var_parts == 1);
2763
2764 snode = src->var_part[0].loc_chain;
2765 gcc_assert (snode);
2766
2767 restart_onepart_unshared:
2768 nodep = &dst->var_part[0].loc_chain;
2769 dnode = *nodep;
2770 gcc_assert (dnode);
2771
2772 while (snode)
2773 {
2774 int r = dnode ? loc_cmp (dnode->loc, snode->loc) : 1;
2775
2776 if (r > 0)
2777 {
2778 location_chain *nnode;
2779
2780 if (shared_var_p (dst, set->vars))
2781 {
2782 dstp = unshare_variable (set, dstp, dst,
2783 VAR_INIT_STATUS_INITIALIZED);
2784 dst = *dstp;
2785 goto restart_onepart_unshared;
2786 }
2787
2788 *nodep = nnode = new location_chain;
2789 nnode->loc = snode->loc;
2790 nnode->init = snode->init;
2791 if (!snode->set_src || MEM_P (snode->set_src))
2792 nnode->set_src = NULL;
2793 else
2794 nnode->set_src = snode->set_src;
2795 nnode->next = dnode;
2796 dnode = nnode;
2797 }
2798 else if (r == 0)
2799 gcc_checking_assert (rtx_equal_p (dnode->loc, snode->loc));
2800
2801 if (r >= 0)
2802 snode = snode->next;
2803
2804 nodep = &dnode->next;
2805 dnode = *nodep;
2806 }
2807
2808 return 1;
2809 }
2810
2811 gcc_checking_assert (!src->onepart);
2812
2813 /* Count the number of location parts, result is K. */
2814 for (i = 0, j = 0, k = 0;
2815 i < src->n_var_parts && j < dst->n_var_parts; k++)
2816 {
2817 if (VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
2818 {
2819 i++;
2820 j++;
2821 }
2822 else if (VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
2823 i++;
2824 else
2825 j++;
2826 }
2827 k += src->n_var_parts - i;
2828 k += dst->n_var_parts - j;
2829
2830 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
2831 thus there are at most MAX_VAR_PARTS different offsets. */
2832 gcc_checking_assert (dst->onepart ? k == 1 : k <= MAX_VAR_PARTS);
2833
2834 if (dst->n_var_parts != k && shared_var_p (dst, set->vars))
2835 {
2836 dstp = unshare_variable (set, dstp, dst, VAR_INIT_STATUS_UNKNOWN);
2837 dst = *dstp;
2838 }
2839
2840 i = src->n_var_parts - 1;
2841 j = dst->n_var_parts - 1;
2842 dst->n_var_parts = k;
2843
2844 for (k--; k >= 0; k--)
2845 {
2846 location_chain *node, *node2;
2847
2848 if (i >= 0 && j >= 0
2849 && VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
2850 {
2851 /* Compute the "sorted" union of the chains, i.e. the locations which
2852 are in both chains go first, they are sorted by the sum of
2853 positions in the chains. */
2854 int dst_l, src_l;
2855 int ii, jj, n;
2856 struct variable_union_info *vui;
2857
2858 /* If DST is shared compare the location chains.
2859 If they are different we will modify the chain in DST with
2860 high probability so make a copy of DST. */
2861 if (shared_var_p (dst, set->vars))
2862 {
2863 for (node = src->var_part[i].loc_chain,
2864 node2 = dst->var_part[j].loc_chain; node && node2;
2865 node = node->next, node2 = node2->next)
2866 {
2867 if (!((REG_P (node2->loc)
2868 && REG_P (node->loc)
2869 && REGNO (node2->loc) == REGNO (node->loc))
2870 || rtx_equal_p (node2->loc, node->loc)))
2871 {
2872 if (node2->init < node->init)
2873 node2->init = node->init;
2874 break;
2875 }
2876 }
2877 if (node || node2)
2878 {
2879 dstp = unshare_variable (set, dstp, dst,
2880 VAR_INIT_STATUS_UNKNOWN);
2881 dst = (variable *)*dstp;
2882 }
2883 }
2884
2885 src_l = 0;
2886 for (node = src->var_part[i].loc_chain; node; node = node->next)
2887 src_l++;
2888 dst_l = 0;
2889 for (node = dst->var_part[j].loc_chain; node; node = node->next)
2890 dst_l++;
2891
2892 if (dst_l == 1)
2893 {
2894 /* The most common case, much simpler, no qsort is needed. */
2895 location_chain *dstnode = dst->var_part[j].loc_chain;
2896 dst->var_part[k].loc_chain = dstnode;
2897 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (dst, j);
2898 node2 = dstnode;
2899 for (node = src->var_part[i].loc_chain; node; node = node->next)
2900 if (!((REG_P (dstnode->loc)
2901 && REG_P (node->loc)
2902 && REGNO (dstnode->loc) == REGNO (node->loc))
2903 || rtx_equal_p (dstnode->loc, node->loc)))
2904 {
2905 location_chain *new_node;
2906
2907 /* Copy the location from SRC. */
2908 new_node = new location_chain;
2909 new_node->loc = node->loc;
2910 new_node->init = node->init;
2911 if (!node->set_src || MEM_P (node->set_src))
2912 new_node->set_src = NULL;
2913 else
2914 new_node->set_src = node->set_src;
2915 node2->next = new_node;
2916 node2 = new_node;
2917 }
2918 node2->next = NULL;
2919 }
2920 else
2921 {
2922 if (src_l + dst_l > vui_allocated)
2923 {
2924 vui_allocated = MAX (vui_allocated * 2, src_l + dst_l);
2925 vui_vec = XRESIZEVEC (struct variable_union_info, vui_vec,
2926 vui_allocated);
2927 }
2928 vui = vui_vec;
2929
2930 /* Fill in the locations from DST. */
2931 for (node = dst->var_part[j].loc_chain, jj = 0; node;
2932 node = node->next, jj++)
2933 {
2934 vui[jj].lc = node;
2935 vui[jj].pos_dst = jj;
2936
2937 /* Pos plus value larger than a sum of 2 valid positions. */
2938 vui[jj].pos = jj + src_l + dst_l;
2939 }
2940
2941 /* Fill in the locations from SRC. */
2942 n = dst_l;
2943 for (node = src->var_part[i].loc_chain, ii = 0; node;
2944 node = node->next, ii++)
2945 {
2946 /* Find location from NODE. */
2947 for (jj = 0; jj < dst_l; jj++)
2948 {
2949 if ((REG_P (vui[jj].lc->loc)
2950 && REG_P (node->loc)
2951 && REGNO (vui[jj].lc->loc) == REGNO (node->loc))
2952 || rtx_equal_p (vui[jj].lc->loc, node->loc))
2953 {
2954 vui[jj].pos = jj + ii;
2955 break;
2956 }
2957 }
2958 if (jj >= dst_l) /* The location has not been found. */
2959 {
2960 location_chain *new_node;
2961
2962 /* Copy the location from SRC. */
2963 new_node = new location_chain;
2964 new_node->loc = node->loc;
2965 new_node->init = node->init;
2966 if (!node->set_src || MEM_P (node->set_src))
2967 new_node->set_src = NULL;
2968 else
2969 new_node->set_src = node->set_src;
2970 vui[n].lc = new_node;
2971 vui[n].pos_dst = src_l + dst_l;
2972 vui[n].pos = ii + src_l + dst_l;
2973 n++;
2974 }
2975 }
2976
2977 if (dst_l == 2)
2978 {
2979 /* Special case still very common case. For dst_l == 2
2980 all entries dst_l ... n-1 are sorted, with for i >= dst_l
2981 vui[i].pos == i + src_l + dst_l. */
2982 if (vui[0].pos > vui[1].pos)
2983 {
2984 /* Order should be 1, 0, 2... */
2985 dst->var_part[k].loc_chain = vui[1].lc;
2986 vui[1].lc->next = vui[0].lc;
2987 if (n >= 3)
2988 {
2989 vui[0].lc->next = vui[2].lc;
2990 vui[n - 1].lc->next = NULL;
2991 }
2992 else
2993 vui[0].lc->next = NULL;
2994 ii = 3;
2995 }
2996 else
2997 {
2998 dst->var_part[k].loc_chain = vui[0].lc;
2999 if (n >= 3 && vui[2].pos < vui[1].pos)
3000 {
3001 /* Order should be 0, 2, 1, 3... */
3002 vui[0].lc->next = vui[2].lc;
3003 vui[2].lc->next = vui[1].lc;
3004 if (n >= 4)
3005 {
3006 vui[1].lc->next = vui[3].lc;
3007 vui[n - 1].lc->next = NULL;
3008 }
3009 else
3010 vui[1].lc->next = NULL;
3011 ii = 4;
3012 }
3013 else
3014 {
3015 /* Order should be 0, 1, 2... */
3016 ii = 1;
3017 vui[n - 1].lc->next = NULL;
3018 }
3019 }
3020 for (; ii < n; ii++)
3021 vui[ii - 1].lc->next = vui[ii].lc;
3022 }
3023 else
3024 {
3025 qsort (vui, n, sizeof (struct variable_union_info),
3026 variable_union_info_cmp_pos);
3027
3028 /* Reconnect the nodes in sorted order. */
3029 for (ii = 1; ii < n; ii++)
3030 vui[ii - 1].lc->next = vui[ii].lc;
3031 vui[n - 1].lc->next = NULL;
3032 dst->var_part[k].loc_chain = vui[0].lc;
3033 }
3034
3035 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (dst, j);
3036 }
3037 i--;
3038 j--;
3039 }
3040 else if ((i >= 0 && j >= 0
3041 && VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
3042 || i < 0)
3043 {
3044 dst->var_part[k] = dst->var_part[j];
3045 j--;
3046 }
3047 else if ((i >= 0 && j >= 0
3048 && VAR_PART_OFFSET (src, i) > VAR_PART_OFFSET (dst, j))
3049 || j < 0)
3050 {
3051 location_chain **nextp;
3052
3053 /* Copy the chain from SRC. */
3054 nextp = &dst->var_part[k].loc_chain;
3055 for (node = src->var_part[i].loc_chain; node; node = node->next)
3056 {
3057 location_chain *new_lc;
3058
3059 new_lc = new location_chain;
3060 new_lc->next = NULL;
3061 new_lc->init = node->init;
3062 if (!node->set_src || MEM_P (node->set_src))
3063 new_lc->set_src = NULL;
3064 else
3065 new_lc->set_src = node->set_src;
3066 new_lc->loc = node->loc;
3067
3068 *nextp = new_lc;
3069 nextp = &new_lc->next;
3070 }
3071
3072 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (src, i);
3073 i--;
3074 }
3075 dst->var_part[k].cur_loc = NULL;
3076 }
3077
3078 if (flag_var_tracking_uninit)
3079 for (i = 0; i < src->n_var_parts && i < dst->n_var_parts; i++)
3080 {
3081 location_chain *node, *node2;
3082 for (node = src->var_part[i].loc_chain; node; node = node->next)
3083 for (node2 = dst->var_part[i].loc_chain; node2; node2 = node2->next)
3084 if (rtx_equal_p (node->loc, node2->loc))
3085 {
3086 if (node->init > node2->init)
3087 node2->init = node->init;
3088 }
3089 }
3090
3091 /* Continue traversing the hash table. */
3092 return 1;
3093 }
3094
3095 /* Compute union of dataflow sets SRC and DST and store it to DST. */
3096
3097 static void
3098 dataflow_set_union (dataflow_set *dst, dataflow_set *src)
3099 {
3100 int i;
3101
3102 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3103 attrs_list_union (&dst->regs[i], src->regs[i]);
3104
3105 if (dst->vars == empty_shared_hash)
3106 {
3107 shared_hash_destroy (dst->vars);
3108 dst->vars = shared_hash_copy (src->vars);
3109 }
3110 else
3111 {
3112 variable_iterator_type hi;
3113 variable *var;
3114
3115 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (src->vars),
3116 var, variable, hi)
3117 variable_union (var, dst);
3118 }
3119 }
3120
3121 /* Whether the value is currently being expanded. */
3122 #define VALUE_RECURSED_INTO(x) \
3123 (RTL_FLAG_CHECK2 ("VALUE_RECURSED_INTO", (x), VALUE, DEBUG_EXPR)->used)
3124
3125 /* Whether no expansion was found, saving useless lookups.
3126 It must only be set when VALUE_CHANGED is clear. */
3127 #define NO_LOC_P(x) \
3128 (RTL_FLAG_CHECK2 ("NO_LOC_P", (x), VALUE, DEBUG_EXPR)->return_val)
3129
3130 /* Whether cur_loc in the value needs to be (re)computed. */
3131 #define VALUE_CHANGED(x) \
3132 (RTL_FLAG_CHECK1 ("VALUE_CHANGED", (x), VALUE)->frame_related)
3133 /* Whether cur_loc in the decl needs to be (re)computed. */
3134 #define DECL_CHANGED(x) TREE_VISITED (x)
3135
3136 /* Record (if NEWV) that DV needs to have its cur_loc recomputed. For
3137 user DECLs, this means they're in changed_variables. Values and
3138 debug exprs may be left with this flag set if no user variable
3139 requires them to be evaluated. */
3140
3141 static inline void
3142 set_dv_changed (decl_or_value dv, bool newv)
3143 {
3144 switch (dv_onepart_p (dv))
3145 {
3146 case ONEPART_VALUE:
3147 if (newv)
3148 NO_LOC_P (dv_as_value (dv)) = false;
3149 VALUE_CHANGED (dv_as_value (dv)) = newv;
3150 break;
3151
3152 case ONEPART_DEXPR:
3153 if (newv)
3154 NO_LOC_P (DECL_RTL_KNOWN_SET (dv_as_decl (dv))) = false;
3155 /* Fall through... */
3156
3157 default:
3158 DECL_CHANGED (dv_as_decl (dv)) = newv;
3159 break;
3160 }
3161 }
3162
3163 /* Return true if DV needs to have its cur_loc recomputed. */
3164
3165 static inline bool
3166 dv_changed_p (decl_or_value dv)
3167 {
3168 return (dv_is_value_p (dv)
3169 ? VALUE_CHANGED (dv_as_value (dv))
3170 : DECL_CHANGED (dv_as_decl (dv)));
3171 }
3172
3173 /* Return a location list node whose loc is rtx_equal to LOC, in the
3174 location list of a one-part variable or value VAR, or in that of
3175 any values recursively mentioned in the location lists. VARS must
3176 be in star-canonical form. */
3177
3178 static location_chain *
3179 find_loc_in_1pdv (rtx loc, variable *var, variable_table_type *vars)
3180 {
3181 location_chain *node;
3182 enum rtx_code loc_code;
3183
3184 if (!var)
3185 return NULL;
3186
3187 gcc_checking_assert (var->onepart);
3188
3189 if (!var->n_var_parts)
3190 return NULL;
3191
3192 gcc_checking_assert (loc != dv_as_opaque (var->dv));
3193
3194 loc_code = GET_CODE (loc);
3195 for (node = var->var_part[0].loc_chain; node; node = node->next)
3196 {
3197 decl_or_value dv;
3198 variable *rvar;
3199
3200 if (GET_CODE (node->loc) != loc_code)
3201 {
3202 if (GET_CODE (node->loc) != VALUE)
3203 continue;
3204 }
3205 else if (loc == node->loc)
3206 return node;
3207 else if (loc_code != VALUE)
3208 {
3209 if (rtx_equal_p (loc, node->loc))
3210 return node;
3211 continue;
3212 }
3213
3214 /* Since we're in star-canonical form, we don't need to visit
3215 non-canonical nodes: one-part variables and non-canonical
3216 values would only point back to the canonical node. */
3217 if (dv_is_value_p (var->dv)
3218 && !canon_value_cmp (node->loc, dv_as_value (var->dv)))
3219 {
3220 /* Skip all subsequent VALUEs. */
3221 while (node->next && GET_CODE (node->next->loc) == VALUE)
3222 {
3223 node = node->next;
3224 gcc_checking_assert (!canon_value_cmp (node->loc,
3225 dv_as_value (var->dv)));
3226 if (loc == node->loc)
3227 return node;
3228 }
3229 continue;
3230 }
3231
3232 gcc_checking_assert (node == var->var_part[0].loc_chain);
3233 gcc_checking_assert (!node->next);
3234
3235 dv = dv_from_value (node->loc);
3236 rvar = vars->find_with_hash (dv, dv_htab_hash (dv));
3237 return find_loc_in_1pdv (loc, rvar, vars);
3238 }
3239
3240 /* ??? Gotta look in cselib_val locations too. */
3241
3242 return NULL;
3243 }
3244
3245 /* Hash table iteration argument passed to variable_merge. */
3246 struct dfset_merge
3247 {
3248 /* The set in which the merge is to be inserted. */
3249 dataflow_set *dst;
3250 /* The set that we're iterating in. */
3251 dataflow_set *cur;
3252 /* The set that may contain the other dv we are to merge with. */
3253 dataflow_set *src;
3254 /* Number of onepart dvs in src. */
3255 int src_onepart_cnt;
3256 };
3257
3258 /* Insert LOC in *DNODE, if it's not there yet. The list must be in
3259 loc_cmp order, and it is maintained as such. */
3260
3261 static void
3262 insert_into_intersection (location_chain **nodep, rtx loc,
3263 enum var_init_status status)
3264 {
3265 location_chain *node;
3266 int r;
3267
3268 for (node = *nodep; node; nodep = &node->next, node = *nodep)
3269 if ((r = loc_cmp (node->loc, loc)) == 0)
3270 {
3271 node->init = MIN (node->init, status);
3272 return;
3273 }
3274 else if (r > 0)
3275 break;
3276
3277 node = new location_chain;
3278
3279 node->loc = loc;
3280 node->set_src = NULL;
3281 node->init = status;
3282 node->next = *nodep;
3283 *nodep = node;
3284 }
3285
3286 /* Insert in DEST the intersection of the locations present in both
3287 S1NODE and S2VAR, directly or indirectly. S1NODE is from a
3288 variable in DSM->cur, whereas S2VAR is from DSM->src. dvar is in
3289 DSM->dst. */
3290
3291 static void
3292 intersect_loc_chains (rtx val, location_chain **dest, struct dfset_merge *dsm,
3293 location_chain *s1node, variable *s2var)
3294 {
3295 dataflow_set *s1set = dsm->cur;
3296 dataflow_set *s2set = dsm->src;
3297 location_chain *found;
3298
3299 if (s2var)
3300 {
3301 location_chain *s2node;
3302
3303 gcc_checking_assert (s2var->onepart);
3304
3305 if (s2var->n_var_parts)
3306 {
3307 s2node = s2var->var_part[0].loc_chain;
3308
3309 for (; s1node && s2node;
3310 s1node = s1node->next, s2node = s2node->next)
3311 if (s1node->loc != s2node->loc)
3312 break;
3313 else if (s1node->loc == val)
3314 continue;
3315 else
3316 insert_into_intersection (dest, s1node->loc,
3317 MIN (s1node->init, s2node->init));
3318 }
3319 }
3320
3321 for (; s1node; s1node = s1node->next)
3322 {
3323 if (s1node->loc == val)
3324 continue;
3325
3326 if ((found = find_loc_in_1pdv (s1node->loc, s2var,
3327 shared_hash_htab (s2set->vars))))
3328 {
3329 insert_into_intersection (dest, s1node->loc,
3330 MIN (s1node->init, found->init));
3331 continue;
3332 }
3333
3334 if (GET_CODE (s1node->loc) == VALUE
3335 && !VALUE_RECURSED_INTO (s1node->loc))
3336 {
3337 decl_or_value dv = dv_from_value (s1node->loc);
3338 variable *svar = shared_hash_find (s1set->vars, dv);
3339 if (svar)
3340 {
3341 if (svar->n_var_parts == 1)
3342 {
3343 VALUE_RECURSED_INTO (s1node->loc) = true;
3344 intersect_loc_chains (val, dest, dsm,
3345 svar->var_part[0].loc_chain,
3346 s2var);
3347 VALUE_RECURSED_INTO (s1node->loc) = false;
3348 }
3349 }
3350 }
3351
3352 /* ??? gotta look in cselib_val locations too. */
3353
3354 /* ??? if the location is equivalent to any location in src,
3355 searched recursively
3356
3357 add to dst the values needed to represent the equivalence
3358
3359 telling whether locations S is equivalent to another dv's
3360 location list:
3361
3362 for each location D in the list
3363
3364 if S and D satisfy rtx_equal_p, then it is present
3365
3366 else if D is a value, recurse without cycles
3367
3368 else if S and D have the same CODE and MODE
3369
3370 for each operand oS and the corresponding oD
3371
3372 if oS and oD are not equivalent, then S an D are not equivalent
3373
3374 else if they are RTX vectors
3375
3376 if any vector oS element is not equivalent to its respective oD,
3377 then S and D are not equivalent
3378
3379 */
3380
3381
3382 }
3383 }
3384
3385 /* Return -1 if X should be before Y in a location list for a 1-part
3386 variable, 1 if Y should be before X, and 0 if they're equivalent
3387 and should not appear in the list. */
3388
3389 static int
3390 loc_cmp (rtx x, rtx y)
3391 {
3392 int i, j, r;
3393 RTX_CODE code = GET_CODE (x);
3394 const char *fmt;
3395
3396 if (x == y)
3397 return 0;
3398
3399 if (REG_P (x))
3400 {
3401 if (!REG_P (y))
3402 return -1;
3403 gcc_assert (GET_MODE (x) == GET_MODE (y));
3404 if (REGNO (x) == REGNO (y))
3405 return 0;
3406 else if (REGNO (x) < REGNO (y))
3407 return -1;
3408 else
3409 return 1;
3410 }
3411
3412 if (REG_P (y))
3413 return 1;
3414
3415 if (MEM_P (x))
3416 {
3417 if (!MEM_P (y))
3418 return -1;
3419 gcc_assert (GET_MODE (x) == GET_MODE (y));
3420 return loc_cmp (XEXP (x, 0), XEXP (y, 0));
3421 }
3422
3423 if (MEM_P (y))
3424 return 1;
3425
3426 if (GET_CODE (x) == VALUE)
3427 {
3428 if (GET_CODE (y) != VALUE)
3429 return -1;
3430 /* Don't assert the modes are the same, that is true only
3431 when not recursing. (subreg:QI (value:SI 1:1) 0)
3432 and (subreg:QI (value:DI 2:2) 0) can be compared,
3433 even when the modes are different. */
3434 if (canon_value_cmp (x, y))
3435 return -1;
3436 else
3437 return 1;
3438 }
3439
3440 if (GET_CODE (y) == VALUE)
3441 return 1;
3442
3443 /* Entry value is the least preferable kind of expression. */
3444 if (GET_CODE (x) == ENTRY_VALUE)
3445 {
3446 if (GET_CODE (y) != ENTRY_VALUE)
3447 return 1;
3448 gcc_assert (GET_MODE (x) == GET_MODE (y));
3449 return loc_cmp (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
3450 }
3451
3452 if (GET_CODE (y) == ENTRY_VALUE)
3453 return -1;
3454
3455 if (GET_CODE (x) == GET_CODE (y))
3456 /* Compare operands below. */;
3457 else if (GET_CODE (x) < GET_CODE (y))
3458 return -1;
3459 else
3460 return 1;
3461
3462 gcc_assert (GET_MODE (x) == GET_MODE (y));
3463
3464 if (GET_CODE (x) == DEBUG_EXPR)
3465 {
3466 if (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
3467 < DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)))
3468 return -1;
3469 gcc_checking_assert (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
3470 > DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)));
3471 return 1;
3472 }
3473
3474 fmt = GET_RTX_FORMAT (code);
3475 for (i = 0; i < GET_RTX_LENGTH (code); i++)
3476 switch (fmt[i])
3477 {
3478 case 'w':
3479 if (XWINT (x, i) == XWINT (y, i))
3480 break;
3481 else if (XWINT (x, i) < XWINT (y, i))
3482 return -1;
3483 else
3484 return 1;
3485
3486 case 'n':
3487 case 'i':
3488 if (XINT (x, i) == XINT (y, i))
3489 break;
3490 else if (XINT (x, i) < XINT (y, i))
3491 return -1;
3492 else
3493 return 1;
3494
3495 case 'V':
3496 case 'E':
3497 /* Compare the vector length first. */
3498 if (XVECLEN (x, i) == XVECLEN (y, i))
3499 /* Compare the vectors elements. */;
3500 else if (XVECLEN (x, i) < XVECLEN (y, i))
3501 return -1;
3502 else
3503 return 1;
3504
3505 for (j = 0; j < XVECLEN (x, i); j++)
3506 if ((r = loc_cmp (XVECEXP (x, i, j),
3507 XVECEXP (y, i, j))))
3508 return r;
3509 break;
3510
3511 case 'e':
3512 if ((r = loc_cmp (XEXP (x, i), XEXP (y, i))))
3513 return r;
3514 break;
3515
3516 case 'S':
3517 case 's':
3518 if (XSTR (x, i) == XSTR (y, i))
3519 break;
3520 if (!XSTR (x, i))
3521 return -1;
3522 if (!XSTR (y, i))
3523 return 1;
3524 if ((r = strcmp (XSTR (x, i), XSTR (y, i))) == 0)
3525 break;
3526 else if (r < 0)
3527 return -1;
3528 else
3529 return 1;
3530
3531 case 'u':
3532 /* These are just backpointers, so they don't matter. */
3533 break;
3534
3535 case '0':
3536 case 't':
3537 break;
3538
3539 /* It is believed that rtx's at this level will never
3540 contain anything but integers and other rtx's,
3541 except for within LABEL_REFs and SYMBOL_REFs. */
3542 default:
3543 gcc_unreachable ();
3544 }
3545 if (CONST_WIDE_INT_P (x))
3546 {
3547 /* Compare the vector length first. */
3548 if (CONST_WIDE_INT_NUNITS (x) >= CONST_WIDE_INT_NUNITS (y))
3549 return 1;
3550 else if (CONST_WIDE_INT_NUNITS (x) < CONST_WIDE_INT_NUNITS (y))
3551 return -1;
3552
3553 /* Compare the vectors elements. */;
3554 for (j = CONST_WIDE_INT_NUNITS (x) - 1; j >= 0 ; j--)
3555 {
3556 if (CONST_WIDE_INT_ELT (x, j) < CONST_WIDE_INT_ELT (y, j))
3557 return -1;
3558 if (CONST_WIDE_INT_ELT (x, j) > CONST_WIDE_INT_ELT (y, j))
3559 return 1;
3560 }
3561 }
3562
3563 return 0;
3564 }
3565
3566 /* Check the order of entries in one-part variables. */
3567
3568 int
3569 canonicalize_loc_order_check (variable **slot,
3570 dataflow_set *data ATTRIBUTE_UNUSED)
3571 {
3572 variable *var = *slot;
3573 location_chain *node, *next;
3574
3575 #ifdef ENABLE_RTL_CHECKING
3576 int i;
3577 for (i = 0; i < var->n_var_parts; i++)
3578 gcc_assert (var->var_part[0].cur_loc == NULL);
3579 gcc_assert (!var->in_changed_variables);
3580 #endif
3581
3582 if (!var->onepart)
3583 return 1;
3584
3585 gcc_assert (var->n_var_parts == 1);
3586 node = var->var_part[0].loc_chain;
3587 gcc_assert (node);
3588
3589 while ((next = node->next))
3590 {
3591 gcc_assert (loc_cmp (node->loc, next->loc) < 0);
3592 node = next;
3593 }
3594
3595 return 1;
3596 }
3597
3598 /* Mark with VALUE_RECURSED_INTO values that have neighbors that are
3599 more likely to be chosen as canonical for an equivalence set.
3600 Ensure less likely values can reach more likely neighbors, making
3601 the connections bidirectional. */
3602
3603 int
3604 canonicalize_values_mark (variable **slot, dataflow_set *set)
3605 {
3606 variable *var = *slot;
3607 decl_or_value dv = var->dv;
3608 rtx val;
3609 location_chain *node;
3610
3611 if (!dv_is_value_p (dv))
3612 return 1;
3613
3614 gcc_checking_assert (var->n_var_parts == 1);
3615
3616 val = dv_as_value (dv);
3617
3618 for (node = var->var_part[0].loc_chain; node; node = node->next)
3619 if (GET_CODE (node->loc) == VALUE)
3620 {
3621 if (canon_value_cmp (node->loc, val))
3622 VALUE_RECURSED_INTO (val) = true;
3623 else
3624 {
3625 decl_or_value odv = dv_from_value (node->loc);
3626 variable **oslot;
3627 oslot = shared_hash_find_slot_noinsert (set->vars, odv);
3628
3629 set_slot_part (set, val, oslot, odv, 0,
3630 node->init, NULL_RTX);
3631
3632 VALUE_RECURSED_INTO (node->loc) = true;
3633 }
3634 }
3635
3636 return 1;
3637 }
3638
3639 /* Remove redundant entries from equivalence lists in onepart
3640 variables, canonicalizing equivalence sets into star shapes. */
3641
3642 int
3643 canonicalize_values_star (variable **slot, dataflow_set *set)
3644 {
3645 variable *var = *slot;
3646 decl_or_value dv = var->dv;
3647 location_chain *node;
3648 decl_or_value cdv;
3649 rtx val, cval;
3650 variable **cslot;
3651 bool has_value;
3652 bool has_marks;
3653
3654 if (!var->onepart)
3655 return 1;
3656
3657 gcc_checking_assert (var->n_var_parts == 1);
3658
3659 if (dv_is_value_p (dv))
3660 {
3661 cval = dv_as_value (dv);
3662 if (!VALUE_RECURSED_INTO (cval))
3663 return 1;
3664 VALUE_RECURSED_INTO (cval) = false;
3665 }
3666 else
3667 cval = NULL_RTX;
3668
3669 restart:
3670 val = cval;
3671 has_value = false;
3672 has_marks = false;
3673
3674 gcc_assert (var->n_var_parts == 1);
3675
3676 for (node = var->var_part[0].loc_chain; node; node = node->next)
3677 if (GET_CODE (node->loc) == VALUE)
3678 {
3679 has_value = true;
3680 if (VALUE_RECURSED_INTO (node->loc))
3681 has_marks = true;
3682 if (canon_value_cmp (node->loc, cval))
3683 cval = node->loc;
3684 }
3685
3686 if (!has_value)
3687 return 1;
3688
3689 if (cval == val)
3690 {
3691 if (!has_marks || dv_is_decl_p (dv))
3692 return 1;
3693
3694 /* Keep it marked so that we revisit it, either after visiting a
3695 child node, or after visiting a new parent that might be
3696 found out. */
3697 VALUE_RECURSED_INTO (val) = true;
3698
3699 for (node = var->var_part[0].loc_chain; node; node = node->next)
3700 if (GET_CODE (node->loc) == VALUE
3701 && VALUE_RECURSED_INTO (node->loc))
3702 {
3703 cval = node->loc;
3704 restart_with_cval:
3705 VALUE_RECURSED_INTO (cval) = false;
3706 dv = dv_from_value (cval);
3707 slot = shared_hash_find_slot_noinsert (set->vars, dv);
3708 if (!slot)
3709 {
3710 gcc_assert (dv_is_decl_p (var->dv));
3711 /* The canonical value was reset and dropped.
3712 Remove it. */
3713 clobber_variable_part (set, NULL, var->dv, 0, NULL);
3714 return 1;
3715 }
3716 var = *slot;
3717 gcc_assert (dv_is_value_p (var->dv));
3718 if (var->n_var_parts == 0)
3719 return 1;
3720 gcc_assert (var->n_var_parts == 1);
3721 goto restart;
3722 }
3723
3724 VALUE_RECURSED_INTO (val) = false;
3725
3726 return 1;
3727 }
3728
3729 /* Push values to the canonical one. */
3730 cdv = dv_from_value (cval);
3731 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3732
3733 for (node = var->var_part[0].loc_chain; node; node = node->next)
3734 if (node->loc != cval)
3735 {
3736 cslot = set_slot_part (set, node->loc, cslot, cdv, 0,
3737 node->init, NULL_RTX);
3738 if (GET_CODE (node->loc) == VALUE)
3739 {
3740 decl_or_value ndv = dv_from_value (node->loc);
3741
3742 set_variable_part (set, cval, ndv, 0, node->init, NULL_RTX,
3743 NO_INSERT);
3744
3745 if (canon_value_cmp (node->loc, val))
3746 {
3747 /* If it could have been a local minimum, it's not any more,
3748 since it's now neighbor to cval, so it may have to push
3749 to it. Conversely, if it wouldn't have prevailed over
3750 val, then whatever mark it has is fine: if it was to
3751 push, it will now push to a more canonical node, but if
3752 it wasn't, then it has already pushed any values it might
3753 have to. */
3754 VALUE_RECURSED_INTO (node->loc) = true;
3755 /* Make sure we visit node->loc by ensuring we cval is
3756 visited too. */
3757 VALUE_RECURSED_INTO (cval) = true;
3758 }
3759 else if (!VALUE_RECURSED_INTO (node->loc))
3760 /* If we have no need to "recurse" into this node, it's
3761 already "canonicalized", so drop the link to the old
3762 parent. */
3763 clobber_variable_part (set, cval, ndv, 0, NULL);
3764 }
3765 else if (GET_CODE (node->loc) == REG)
3766 {
3767 attrs *list = set->regs[REGNO (node->loc)], **listp;
3768
3769 /* Change an existing attribute referring to dv so that it
3770 refers to cdv, removing any duplicate this might
3771 introduce, and checking that no previous duplicates
3772 existed, all in a single pass. */
3773
3774 while (list)
3775 {
3776 if (list->offset == 0
3777 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3778 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3779 break;
3780
3781 list = list->next;
3782 }
3783
3784 gcc_assert (list);
3785 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3786 {
3787 list->dv = cdv;
3788 for (listp = &list->next; (list = *listp); listp = &list->next)
3789 {
3790 if (list->offset)
3791 continue;
3792
3793 if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3794 {
3795 *listp = list->next;
3796 delete list;
3797 list = *listp;
3798 break;
3799 }
3800
3801 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (dv));
3802 }
3803 }
3804 else if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3805 {
3806 for (listp = &list->next; (list = *listp); listp = &list->next)
3807 {
3808 if (list->offset)
3809 continue;
3810
3811 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3812 {
3813 *listp = list->next;
3814 delete list;
3815 list = *listp;
3816 break;
3817 }
3818
3819 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (cdv));
3820 }
3821 }
3822 else
3823 gcc_unreachable ();
3824
3825 if (flag_checking)
3826 while (list)
3827 {
3828 if (list->offset == 0
3829 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3830 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3831 gcc_unreachable ();
3832
3833 list = list->next;
3834 }
3835 }
3836 }
3837
3838 if (val)
3839 set_slot_part (set, val, cslot, cdv, 0,
3840 VAR_INIT_STATUS_INITIALIZED, NULL_RTX);
3841
3842 slot = clobber_slot_part (set, cval, slot, 0, NULL);
3843
3844 /* Variable may have been unshared. */
3845 var = *slot;
3846 gcc_checking_assert (var->n_var_parts && var->var_part[0].loc_chain->loc == cval
3847 && var->var_part[0].loc_chain->next == NULL);
3848
3849 if (VALUE_RECURSED_INTO (cval))
3850 goto restart_with_cval;
3851
3852 return 1;
3853 }
3854
3855 /* Bind one-part variables to the canonical value in an equivalence
3856 set. Not doing this causes dataflow convergence failure in rare
3857 circumstances, see PR42873. Unfortunately we can't do this
3858 efficiently as part of canonicalize_values_star, since we may not
3859 have determined or even seen the canonical value of a set when we
3860 get to a variable that references another member of the set. */
3861
3862 int
3863 canonicalize_vars_star (variable **slot, dataflow_set *set)
3864 {
3865 variable *var = *slot;
3866 decl_or_value dv = var->dv;
3867 location_chain *node;
3868 rtx cval;
3869 decl_or_value cdv;
3870 variable **cslot;
3871 variable *cvar;
3872 location_chain *cnode;
3873
3874 if (!var->onepart || var->onepart == ONEPART_VALUE)
3875 return 1;
3876
3877 gcc_assert (var->n_var_parts == 1);
3878
3879 node = var->var_part[0].loc_chain;
3880
3881 if (GET_CODE (node->loc) != VALUE)
3882 return 1;
3883
3884 gcc_assert (!node->next);
3885 cval = node->loc;
3886
3887 /* Push values to the canonical one. */
3888 cdv = dv_from_value (cval);
3889 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3890 if (!cslot)
3891 return 1;
3892 cvar = *cslot;
3893 gcc_assert (cvar->n_var_parts == 1);
3894
3895 cnode = cvar->var_part[0].loc_chain;
3896
3897 /* CVAL is canonical if its value list contains non-VALUEs or VALUEs
3898 that are not “more canonical” than it. */
3899 if (GET_CODE (cnode->loc) != VALUE
3900 || !canon_value_cmp (cnode->loc, cval))
3901 return 1;
3902
3903 /* CVAL was found to be non-canonical. Change the variable to point
3904 to the canonical VALUE. */
3905 gcc_assert (!cnode->next);
3906 cval = cnode->loc;
3907
3908 slot = set_slot_part (set, cval, slot, dv, 0,
3909 node->init, node->set_src);
3910 clobber_slot_part (set, cval, slot, 0, node->set_src);
3911
3912 return 1;
3913 }
3914
3915 /* Combine variable or value in *S1SLOT (in DSM->cur) with the
3916 corresponding entry in DSM->src. Multi-part variables are combined
3917 with variable_union, whereas onepart dvs are combined with
3918 intersection. */
3919
3920 static int
3921 variable_merge_over_cur (variable *s1var, struct dfset_merge *dsm)
3922 {
3923 dataflow_set *dst = dsm->dst;
3924 variable **dstslot;
3925 variable *s2var, *dvar = NULL;
3926 decl_or_value dv = s1var->dv;
3927 onepart_enum onepart = s1var->onepart;
3928 rtx val;
3929 hashval_t dvhash;
3930 location_chain *node, **nodep;
3931
3932 /* If the incoming onepart variable has an empty location list, then
3933 the intersection will be just as empty. For other variables,
3934 it's always union. */
3935 gcc_checking_assert (s1var->n_var_parts
3936 && s1var->var_part[0].loc_chain);
3937
3938 if (!onepart)
3939 return variable_union (s1var, dst);
3940
3941 gcc_checking_assert (s1var->n_var_parts == 1);
3942
3943 dvhash = dv_htab_hash (dv);
3944 if (dv_is_value_p (dv))
3945 val = dv_as_value (dv);
3946 else
3947 val = NULL;
3948
3949 s2var = shared_hash_find_1 (dsm->src->vars, dv, dvhash);
3950 if (!s2var)
3951 {
3952 dst_can_be_shared = false;
3953 return 1;
3954 }
3955
3956 dsm->src_onepart_cnt--;
3957 gcc_assert (s2var->var_part[0].loc_chain
3958 && s2var->onepart == onepart
3959 && s2var->n_var_parts == 1);
3960
3961 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
3962 if (dstslot)
3963 {
3964 dvar = *dstslot;
3965 gcc_assert (dvar->refcount == 1
3966 && dvar->onepart == onepart
3967 && dvar->n_var_parts == 1);
3968 nodep = &dvar->var_part[0].loc_chain;
3969 }
3970 else
3971 {
3972 nodep = &node;
3973 node = NULL;
3974 }
3975
3976 if (!dstslot && !onepart_variable_different_p (s1var, s2var))
3977 {
3978 dstslot = shared_hash_find_slot_unshare_1 (&dst->vars, dv,
3979 dvhash, INSERT);
3980 *dstslot = dvar = s2var;
3981 dvar->refcount++;
3982 }
3983 else
3984 {
3985 dst_can_be_shared = false;
3986
3987 intersect_loc_chains (val, nodep, dsm,
3988 s1var->var_part[0].loc_chain, s2var);
3989
3990 if (!dstslot)
3991 {
3992 if (node)
3993 {
3994 dvar = onepart_pool_allocate (onepart);
3995 dvar->dv = dv;
3996 dvar->refcount = 1;
3997 dvar->n_var_parts = 1;
3998 dvar->onepart = onepart;
3999 dvar->in_changed_variables = false;
4000 dvar->var_part[0].loc_chain = node;
4001 dvar->var_part[0].cur_loc = NULL;
4002 if (onepart)
4003 VAR_LOC_1PAUX (dvar) = NULL;
4004 else
4005 VAR_PART_OFFSET (dvar, 0) = 0;
4006
4007 dstslot
4008 = shared_hash_find_slot_unshare_1 (&dst->vars, dv, dvhash,
4009 INSERT);
4010 gcc_assert (!*dstslot);
4011 *dstslot = dvar;
4012 }
4013 else
4014 return 1;
4015 }
4016 }
4017
4018 nodep = &dvar->var_part[0].loc_chain;
4019 while ((node = *nodep))
4020 {
4021 location_chain **nextp = &node->next;
4022
4023 if (GET_CODE (node->loc) == REG)
4024 {
4025 attrs *list;
4026
4027 for (list = dst->regs[REGNO (node->loc)]; list; list = list->next)
4028 if (GET_MODE (node->loc) == GET_MODE (list->loc)
4029 && dv_is_value_p (list->dv))
4030 break;
4031
4032 if (!list)
4033 attrs_list_insert (&dst->regs[REGNO (node->loc)],
4034 dv, 0, node->loc);
4035 /* If this value became canonical for another value that had
4036 this register, we want to leave it alone. */
4037 else if (dv_as_value (list->dv) != val)
4038 {
4039 dstslot = set_slot_part (dst, dv_as_value (list->dv),
4040 dstslot, dv, 0,
4041 node->init, NULL_RTX);
4042 dstslot = delete_slot_part (dst, node->loc, dstslot, 0);
4043
4044 /* Since nextp points into the removed node, we can't
4045 use it. The pointer to the next node moved to nodep.
4046 However, if the variable we're walking is unshared
4047 during our walk, we'll keep walking the location list
4048 of the previously-shared variable, in which case the
4049 node won't have been removed, and we'll want to skip
4050 it. That's why we test *nodep here. */
4051 if (*nodep != node)
4052 nextp = nodep;
4053 }
4054 }
4055 else
4056 /* Canonicalization puts registers first, so we don't have to
4057 walk it all. */
4058 break;
4059 nodep = nextp;
4060 }
4061
4062 if (dvar != *dstslot)
4063 dvar = *dstslot;
4064 nodep = &dvar->var_part[0].loc_chain;
4065
4066 if (val)
4067 {
4068 /* Mark all referenced nodes for canonicalization, and make sure
4069 we have mutual equivalence links. */
4070 VALUE_RECURSED_INTO (val) = true;
4071 for (node = *nodep; node; node = node->next)
4072 if (GET_CODE (node->loc) == VALUE)
4073 {
4074 VALUE_RECURSED_INTO (node->loc) = true;
4075 set_variable_part (dst, val, dv_from_value (node->loc), 0,
4076 node->init, NULL, INSERT);
4077 }
4078
4079 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
4080 gcc_assert (*dstslot == dvar);
4081 canonicalize_values_star (dstslot, dst);
4082 gcc_checking_assert (dstslot
4083 == shared_hash_find_slot_noinsert_1 (dst->vars,
4084 dv, dvhash));
4085 dvar = *dstslot;
4086 }
4087 else
4088 {
4089 bool has_value = false, has_other = false;
4090
4091 /* If we have one value and anything else, we're going to
4092 canonicalize this, so make sure all values have an entry in
4093 the table and are marked for canonicalization. */
4094 for (node = *nodep; node; node = node->next)
4095 {
4096 if (GET_CODE (node->loc) == VALUE)
4097 {
4098 /* If this was marked during register canonicalization,
4099 we know we have to canonicalize values. */
4100 if (has_value)
4101 has_other = true;
4102 has_value = true;
4103 if (has_other)
4104 break;
4105 }
4106 else
4107 {
4108 has_other = true;
4109 if (has_value)
4110 break;
4111 }
4112 }
4113
4114 if (has_value && has_other)
4115 {
4116 for (node = *nodep; node; node = node->next)
4117 {
4118 if (GET_CODE (node->loc) == VALUE)
4119 {
4120 decl_or_value dv = dv_from_value (node->loc);
4121 variable **slot = NULL;
4122
4123 if (shared_hash_shared (dst->vars))
4124 slot = shared_hash_find_slot_noinsert (dst->vars, dv);
4125 if (!slot)
4126 slot = shared_hash_find_slot_unshare (&dst->vars, dv,
4127 INSERT);
4128 if (!*slot)
4129 {
4130 variable *var = onepart_pool_allocate (ONEPART_VALUE);
4131 var->dv = dv;
4132 var->refcount = 1;
4133 var->n_var_parts = 1;
4134 var->onepart = ONEPART_VALUE;
4135 var->in_changed_variables = false;
4136 var->var_part[0].loc_chain = NULL;
4137 var->var_part[0].cur_loc = NULL;
4138 VAR_LOC_1PAUX (var) = NULL;
4139 *slot = var;
4140 }
4141
4142 VALUE_RECURSED_INTO (node->loc) = true;
4143 }
4144 }
4145
4146 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
4147 gcc_assert (*dstslot == dvar);
4148 canonicalize_values_star (dstslot, dst);
4149 gcc_checking_assert (dstslot
4150 == shared_hash_find_slot_noinsert_1 (dst->vars,
4151 dv, dvhash));
4152 dvar = *dstslot;
4153 }
4154 }
4155
4156 if (!onepart_variable_different_p (dvar, s2var))
4157 {
4158 variable_htab_free (dvar);
4159 *dstslot = dvar = s2var;
4160 dvar->refcount++;
4161 }
4162 else if (s2var != s1var && !onepart_variable_different_p (dvar, s1var))
4163 {
4164 variable_htab_free (dvar);
4165 *dstslot = dvar = s1var;
4166 dvar->refcount++;
4167 dst_can_be_shared = false;
4168 }
4169 else
4170 dst_can_be_shared = false;
4171
4172 return 1;
4173 }
4174
4175 /* Copy s2slot (in DSM->src) to DSM->dst if the variable is a
4176 multi-part variable. Unions of multi-part variables and
4177 intersections of one-part ones will be handled in
4178 variable_merge_over_cur(). */
4179
4180 static int
4181 variable_merge_over_src (variable *s2var, struct dfset_merge *dsm)
4182 {
4183 dataflow_set *dst = dsm->dst;
4184 decl_or_value dv = s2var->dv;
4185
4186 if (!s2var->onepart)
4187 {
4188 variable **dstp = shared_hash_find_slot (dst->vars, dv);
4189 *dstp = s2var;
4190 s2var->refcount++;
4191 return 1;
4192 }
4193
4194 dsm->src_onepart_cnt++;
4195 return 1;
4196 }
4197
4198 /* Combine dataflow set information from SRC2 into DST, using PDST
4199 to carry over information across passes. */
4200
4201 static void
4202 dataflow_set_merge (dataflow_set *dst, dataflow_set *src2)
4203 {
4204 dataflow_set cur = *dst;
4205 dataflow_set *src1 = &cur;
4206 struct dfset_merge dsm;
4207 int i;
4208 size_t src1_elems, src2_elems;
4209 variable_iterator_type hi;
4210 variable *var;
4211
4212 src1_elems = shared_hash_htab (src1->vars)->elements ();
4213 src2_elems = shared_hash_htab (src2->vars)->elements ();
4214 dataflow_set_init (dst);
4215 dst->stack_adjust = cur.stack_adjust;
4216 shared_hash_destroy (dst->vars);
4217 dst->vars = new shared_hash;
4218 dst->vars->refcount = 1;
4219 dst->vars->htab = new variable_table_type (MAX (src1_elems, src2_elems));
4220
4221 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4222 attrs_list_mpdv_union (&dst->regs[i], src1->regs[i], src2->regs[i]);
4223
4224 dsm.dst = dst;
4225 dsm.src = src2;
4226 dsm.cur = src1;
4227 dsm.src_onepart_cnt = 0;
4228
4229 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (dsm.src->vars),
4230 var, variable, hi)
4231 variable_merge_over_src (var, &dsm);
4232 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (dsm.cur->vars),
4233 var, variable, hi)
4234 variable_merge_over_cur (var, &dsm);
4235
4236 if (dsm.src_onepart_cnt)
4237 dst_can_be_shared = false;
4238
4239 dataflow_set_destroy (src1);
4240 }
4241
4242 /* Mark register equivalences. */
4243
4244 static void
4245 dataflow_set_equiv_regs (dataflow_set *set)
4246 {
4247 int i;
4248 attrs *list, **listp;
4249
4250 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4251 {
4252 rtx canon[NUM_MACHINE_MODES];
4253
4254 /* If the list is empty or one entry, no need to canonicalize
4255 anything. */
4256 if (set->regs[i] == NULL || set->regs[i]->next == NULL)
4257 continue;
4258
4259 memset (canon, 0, sizeof (canon));
4260
4261 for (list = set->regs[i]; list; list = list->next)
4262 if (list->offset == 0 && dv_is_value_p (list->dv))
4263 {
4264 rtx val = dv_as_value (list->dv);
4265 rtx *cvalp = &canon[(int)GET_MODE (val)];
4266 rtx cval = *cvalp;
4267
4268 if (canon_value_cmp (val, cval))
4269 *cvalp = val;
4270 }
4271
4272 for (list = set->regs[i]; list; list = list->next)
4273 if (list->offset == 0 && dv_onepart_p (list->dv))
4274 {
4275 rtx cval = canon[(int)GET_MODE (list->loc)];
4276
4277 if (!cval)
4278 continue;
4279
4280 if (dv_is_value_p (list->dv))
4281 {
4282 rtx val = dv_as_value (list->dv);
4283
4284 if (val == cval)
4285 continue;
4286
4287 VALUE_RECURSED_INTO (val) = true;
4288 set_variable_part (set, val, dv_from_value (cval), 0,
4289 VAR_INIT_STATUS_INITIALIZED,
4290 NULL, NO_INSERT);
4291 }
4292
4293 VALUE_RECURSED_INTO (cval) = true;
4294 set_variable_part (set, cval, list->dv, 0,
4295 VAR_INIT_STATUS_INITIALIZED, NULL, NO_INSERT);
4296 }
4297
4298 for (listp = &set->regs[i]; (list = *listp);
4299 listp = list ? &list->next : listp)
4300 if (list->offset == 0 && dv_onepart_p (list->dv))
4301 {
4302 rtx cval = canon[(int)GET_MODE (list->loc)];
4303 variable **slot;
4304
4305 if (!cval)
4306 continue;
4307
4308 if (dv_is_value_p (list->dv))
4309 {
4310 rtx val = dv_as_value (list->dv);
4311 if (!VALUE_RECURSED_INTO (val))
4312 continue;
4313 }
4314
4315 slot = shared_hash_find_slot_noinsert (set->vars, list->dv);
4316 canonicalize_values_star (slot, set);
4317 if (*listp != list)
4318 list = NULL;
4319 }
4320 }
4321 }
4322
4323 /* Remove any redundant values in the location list of VAR, which must
4324 be unshared and 1-part. */
4325
4326 static void
4327 remove_duplicate_values (variable *var)
4328 {
4329 location_chain *node, **nodep;
4330
4331 gcc_assert (var->onepart);
4332 gcc_assert (var->n_var_parts == 1);
4333 gcc_assert (var->refcount == 1);
4334
4335 for (nodep = &var->var_part[0].loc_chain; (node = *nodep); )
4336 {
4337 if (GET_CODE (node->loc) == VALUE)
4338 {
4339 if (VALUE_RECURSED_INTO (node->loc))
4340 {
4341 /* Remove duplicate value node. */
4342 *nodep = node->next;
4343 delete node;
4344 continue;
4345 }
4346 else
4347 VALUE_RECURSED_INTO (node->loc) = true;
4348 }
4349 nodep = &node->next;
4350 }
4351
4352 for (node = var->var_part[0].loc_chain; node; node = node->next)
4353 if (GET_CODE (node->loc) == VALUE)
4354 {
4355 gcc_assert (VALUE_RECURSED_INTO (node->loc));
4356 VALUE_RECURSED_INTO (node->loc) = false;
4357 }
4358 }
4359
4360
4361 /* Hash table iteration argument passed to variable_post_merge. */
4362 struct dfset_post_merge
4363 {
4364 /* The new input set for the current block. */
4365 dataflow_set *set;
4366 /* Pointer to the permanent input set for the current block, or
4367 NULL. */
4368 dataflow_set **permp;
4369 };
4370
4371 /* Create values for incoming expressions associated with one-part
4372 variables that don't have value numbers for them. */
4373
4374 int
4375 variable_post_merge_new_vals (variable **slot, dfset_post_merge *dfpm)
4376 {
4377 dataflow_set *set = dfpm->set;
4378 variable *var = *slot;
4379 location_chain *node;
4380
4381 if (!var->onepart || !var->n_var_parts)
4382 return 1;
4383
4384 gcc_assert (var->n_var_parts == 1);
4385
4386 if (dv_is_decl_p (var->dv))
4387 {
4388 bool check_dupes = false;
4389
4390 restart:
4391 for (node = var->var_part[0].loc_chain; node; node = node->next)
4392 {
4393 if (GET_CODE (node->loc) == VALUE)
4394 gcc_assert (!VALUE_RECURSED_INTO (node->loc));
4395 else if (GET_CODE (node->loc) == REG)
4396 {
4397 attrs *att, **attp, **curp = NULL;
4398
4399 if (var->refcount != 1)
4400 {
4401 slot = unshare_variable (set, slot, var,
4402 VAR_INIT_STATUS_INITIALIZED);
4403 var = *slot;
4404 goto restart;
4405 }
4406
4407 for (attp = &set->regs[REGNO (node->loc)]; (att = *attp);
4408 attp = &att->next)
4409 if (att->offset == 0
4410 && GET_MODE (att->loc) == GET_MODE (node->loc))
4411 {
4412 if (dv_is_value_p (att->dv))
4413 {
4414 rtx cval = dv_as_value (att->dv);
4415 node->loc = cval;
4416 check_dupes = true;
4417 break;
4418 }
4419 else if (dv_as_opaque (att->dv) == dv_as_opaque (var->dv))
4420 curp = attp;
4421 }
4422
4423 if (!curp)
4424 {
4425 curp = attp;
4426 while (*curp)
4427 if ((*curp)->offset == 0
4428 && GET_MODE ((*curp)->loc) == GET_MODE (node->loc)
4429 && dv_as_opaque ((*curp)->dv) == dv_as_opaque (var->dv))
4430 break;
4431 else
4432 curp = &(*curp)->next;
4433 gcc_assert (*curp);
4434 }
4435
4436 if (!att)
4437 {
4438 decl_or_value cdv;
4439 rtx cval;
4440
4441 if (!*dfpm->permp)
4442 {
4443 *dfpm->permp = XNEW (dataflow_set);
4444 dataflow_set_init (*dfpm->permp);
4445 }
4446
4447 for (att = (*dfpm->permp)->regs[REGNO (node->loc)];
4448 att; att = att->next)
4449 if (GET_MODE (att->loc) == GET_MODE (node->loc))
4450 {
4451 gcc_assert (att->offset == 0
4452 && dv_is_value_p (att->dv));
4453 val_reset (set, att->dv);
4454 break;
4455 }
4456
4457 if (att)
4458 {
4459 cdv = att->dv;
4460 cval = dv_as_value (cdv);
4461 }
4462 else
4463 {
4464 /* Create a unique value to hold this register,
4465 that ought to be found and reused in
4466 subsequent rounds. */
4467 cselib_val *v;
4468 gcc_assert (!cselib_lookup (node->loc,
4469 GET_MODE (node->loc), 0,
4470 VOIDmode));
4471 v = cselib_lookup (node->loc, GET_MODE (node->loc), 1,
4472 VOIDmode);
4473 cselib_preserve_value (v);
4474 cselib_invalidate_rtx (node->loc);
4475 cval = v->val_rtx;
4476 cdv = dv_from_value (cval);
4477 if (dump_file)
4478 fprintf (dump_file,
4479 "Created new value %u:%u for reg %i\n",
4480 v->uid, v->hash, REGNO (node->loc));
4481 }
4482
4483 var_reg_decl_set (*dfpm->permp, node->loc,
4484 VAR_INIT_STATUS_INITIALIZED,
4485 cdv, 0, NULL, INSERT);
4486
4487 node->loc = cval;
4488 check_dupes = true;
4489 }
4490
4491 /* Remove attribute referring to the decl, which now
4492 uses the value for the register, already existing or
4493 to be added when we bring perm in. */
4494 att = *curp;
4495 *curp = att->next;
4496 delete att;
4497 }
4498 }
4499
4500 if (check_dupes)
4501 remove_duplicate_values (var);
4502 }
4503
4504 return 1;
4505 }
4506
4507 /* Reset values in the permanent set that are not associated with the
4508 chosen expression. */
4509
4510 int
4511 variable_post_merge_perm_vals (variable **pslot, dfset_post_merge *dfpm)
4512 {
4513 dataflow_set *set = dfpm->set;
4514 variable *pvar = *pslot, *var;
4515 location_chain *pnode;
4516 decl_or_value dv;
4517 attrs *att;
4518
4519 gcc_assert (dv_is_value_p (pvar->dv)
4520 && pvar->n_var_parts == 1);
4521 pnode = pvar->var_part[0].loc_chain;
4522 gcc_assert (pnode
4523 && !pnode->next
4524 && REG_P (pnode->loc));
4525
4526 dv = pvar->dv;
4527
4528 var = shared_hash_find (set->vars, dv);
4529 if (var)
4530 {
4531 /* Although variable_post_merge_new_vals may have made decls
4532 non-star-canonical, values that pre-existed in canonical form
4533 remain canonical, and newly-created values reference a single
4534 REG, so they are canonical as well. Since VAR has the
4535 location list for a VALUE, using find_loc_in_1pdv for it is
4536 fine, since VALUEs don't map back to DECLs. */
4537 if (find_loc_in_1pdv (pnode->loc, var, shared_hash_htab (set->vars)))
4538 return 1;
4539 val_reset (set, dv);
4540 }
4541
4542 for (att = set->regs[REGNO (pnode->loc)]; att; att = att->next)
4543 if (att->offset == 0
4544 && GET_MODE (att->loc) == GET_MODE (pnode->loc)
4545 && dv_is_value_p (att->dv))
4546 break;
4547
4548 /* If there is a value associated with this register already, create
4549 an equivalence. */
4550 if (att && dv_as_value (att->dv) != dv_as_value (dv))
4551 {
4552 rtx cval = dv_as_value (att->dv);
4553 set_variable_part (set, cval, dv, 0, pnode->init, NULL, INSERT);
4554 set_variable_part (set, dv_as_value (dv), att->dv, 0, pnode->init,
4555 NULL, INSERT);
4556 }
4557 else if (!att)
4558 {
4559 attrs_list_insert (&set->regs[REGNO (pnode->loc)],
4560 dv, 0, pnode->loc);
4561 variable_union (pvar, set);
4562 }
4563
4564 return 1;
4565 }
4566
4567 /* Just checking stuff and registering register attributes for
4568 now. */
4569
4570 static void
4571 dataflow_post_merge_adjust (dataflow_set *set, dataflow_set **permp)
4572 {
4573 struct dfset_post_merge dfpm;
4574
4575 dfpm.set = set;
4576 dfpm.permp = permp;
4577
4578 shared_hash_htab (set->vars)
4579 ->traverse <dfset_post_merge*, variable_post_merge_new_vals> (&dfpm);
4580 if (*permp)
4581 shared_hash_htab ((*permp)->vars)
4582 ->traverse <dfset_post_merge*, variable_post_merge_perm_vals> (&dfpm);
4583 shared_hash_htab (set->vars)
4584 ->traverse <dataflow_set *, canonicalize_values_star> (set);
4585 shared_hash_htab (set->vars)
4586 ->traverse <dataflow_set *, canonicalize_vars_star> (set);
4587 }
4588
4589 /* Return a node whose loc is a MEM that refers to EXPR in the
4590 location list of a one-part variable or value VAR, or in that of
4591 any values recursively mentioned in the location lists. */
4592
4593 static location_chain *
4594 find_mem_expr_in_1pdv (tree expr, rtx val, variable_table_type *vars)
4595 {
4596 location_chain *node;
4597 decl_or_value dv;
4598 variable *var;
4599 location_chain *where = NULL;
4600
4601 if (!val)
4602 return NULL;
4603
4604 gcc_assert (GET_CODE (val) == VALUE
4605 && !VALUE_RECURSED_INTO (val));
4606
4607 dv = dv_from_value (val);
4608 var = vars->find_with_hash (dv, dv_htab_hash (dv));
4609
4610 if (!var)
4611 return NULL;
4612
4613 gcc_assert (var->onepart);
4614
4615 if (!var->n_var_parts)
4616 return NULL;
4617
4618 VALUE_RECURSED_INTO (val) = true;
4619
4620 for (node = var->var_part[0].loc_chain; node; node = node->next)
4621 if (MEM_P (node->loc)
4622 && MEM_EXPR (node->loc) == expr
4623 && INT_MEM_OFFSET (node->loc) == 0)
4624 {
4625 where = node;
4626 break;
4627 }
4628 else if (GET_CODE (node->loc) == VALUE
4629 && !VALUE_RECURSED_INTO (node->loc)
4630 && (where = find_mem_expr_in_1pdv (expr, node->loc, vars)))
4631 break;
4632
4633 VALUE_RECURSED_INTO (val) = false;
4634
4635 return where;
4636 }
4637
4638 /* Return TRUE if the value of MEM may vary across a call. */
4639
4640 static bool
4641 mem_dies_at_call (rtx mem)
4642 {
4643 tree expr = MEM_EXPR (mem);
4644 tree decl;
4645
4646 if (!expr)
4647 return true;
4648
4649 decl = get_base_address (expr);
4650
4651 if (!decl)
4652 return true;
4653
4654 if (!DECL_P (decl))
4655 return true;
4656
4657 return (may_be_aliased (decl)
4658 || (!TREE_READONLY (decl) && is_global_var (decl)));
4659 }
4660
4661 /* Remove all MEMs from the location list of a hash table entry for a
4662 one-part variable, except those whose MEM attributes map back to
4663 the variable itself, directly or within a VALUE. */
4664
4665 int
4666 dataflow_set_preserve_mem_locs (variable **slot, dataflow_set *set)
4667 {
4668 variable *var = *slot;
4669
4670 if (var->onepart == ONEPART_VDECL || var->onepart == ONEPART_DEXPR)
4671 {
4672 tree decl = dv_as_decl (var->dv);
4673 location_chain *loc, **locp;
4674 bool changed = false;
4675
4676 if (!var->n_var_parts)
4677 return 1;
4678
4679 gcc_assert (var->n_var_parts == 1);
4680
4681 if (shared_var_p (var, set->vars))
4682 {
4683 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4684 {
4685 /* We want to remove dying MEMs that doesn't refer to DECL. */
4686 if (GET_CODE (loc->loc) == MEM
4687 && (MEM_EXPR (loc->loc) != decl
4688 || INT_MEM_OFFSET (loc->loc) != 0)
4689 && !mem_dies_at_call (loc->loc))
4690 break;
4691 /* We want to move here MEMs that do refer to DECL. */
4692 else if (GET_CODE (loc->loc) == VALUE
4693 && find_mem_expr_in_1pdv (decl, loc->loc,
4694 shared_hash_htab (set->vars)))
4695 break;
4696 }
4697
4698 if (!loc)
4699 return 1;
4700
4701 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4702 var = *slot;
4703 gcc_assert (var->n_var_parts == 1);
4704 }
4705
4706 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4707 loc; loc = *locp)
4708 {
4709 rtx old_loc = loc->loc;
4710 if (GET_CODE (old_loc) == VALUE)
4711 {
4712 location_chain *mem_node
4713 = find_mem_expr_in_1pdv (decl, loc->loc,
4714 shared_hash_htab (set->vars));
4715
4716 /* ??? This picks up only one out of multiple MEMs that
4717 refer to the same variable. Do we ever need to be
4718 concerned about dealing with more than one, or, given
4719 that they should all map to the same variable
4720 location, their addresses will have been merged and
4721 they will be regarded as equivalent? */
4722 if (mem_node)
4723 {
4724 loc->loc = mem_node->loc;
4725 loc->set_src = mem_node->set_src;
4726 loc->init = MIN (loc->init, mem_node->init);
4727 }
4728 }
4729
4730 if (GET_CODE (loc->loc) != MEM
4731 || (MEM_EXPR (loc->loc) == decl
4732 && INT_MEM_OFFSET (loc->loc) == 0)
4733 || !mem_dies_at_call (loc->loc))
4734 {
4735 if (old_loc != loc->loc && emit_notes)
4736 {
4737 if (old_loc == var->var_part[0].cur_loc)
4738 {
4739 changed = true;
4740 var->var_part[0].cur_loc = NULL;
4741 }
4742 }
4743 locp = &loc->next;
4744 continue;
4745 }
4746
4747 if (emit_notes)
4748 {
4749 if (old_loc == var->var_part[0].cur_loc)
4750 {
4751 changed = true;
4752 var->var_part[0].cur_loc = NULL;
4753 }
4754 }
4755 *locp = loc->next;
4756 delete loc;
4757 }
4758
4759 if (!var->var_part[0].loc_chain)
4760 {
4761 var->n_var_parts--;
4762 changed = true;
4763 }
4764 if (changed)
4765 variable_was_changed (var, set);
4766 }
4767
4768 return 1;
4769 }
4770
4771 /* Remove all MEMs from the location list of a hash table entry for a
4772 value. */
4773
4774 int
4775 dataflow_set_remove_mem_locs (variable **slot, dataflow_set *set)
4776 {
4777 variable *var = *slot;
4778
4779 if (var->onepart == ONEPART_VALUE)
4780 {
4781 location_chain *loc, **locp;
4782 bool changed = false;
4783 rtx cur_loc;
4784
4785 gcc_assert (var->n_var_parts == 1);
4786
4787 if (shared_var_p (var, set->vars))
4788 {
4789 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4790 if (GET_CODE (loc->loc) == MEM
4791 && mem_dies_at_call (loc->loc))
4792 break;
4793
4794 if (!loc)
4795 return 1;
4796
4797 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4798 var = *slot;
4799 gcc_assert (var->n_var_parts == 1);
4800 }
4801
4802 if (VAR_LOC_1PAUX (var))
4803 cur_loc = VAR_LOC_FROM (var);
4804 else
4805 cur_loc = var->var_part[0].cur_loc;
4806
4807 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4808 loc; loc = *locp)
4809 {
4810 if (GET_CODE (loc->loc) != MEM
4811 || !mem_dies_at_call (loc->loc))
4812 {
4813 locp = &loc->next;
4814 continue;
4815 }
4816
4817 *locp = loc->next;
4818 /* If we have deleted the location which was last emitted
4819 we have to emit new location so add the variable to set
4820 of changed variables. */
4821 if (cur_loc == loc->loc)
4822 {
4823 changed = true;
4824 var->var_part[0].cur_loc = NULL;
4825 if (VAR_LOC_1PAUX (var))
4826 VAR_LOC_FROM (var) = NULL;
4827 }
4828 delete loc;
4829 }
4830
4831 if (!var->var_part[0].loc_chain)
4832 {
4833 var->n_var_parts--;
4834 changed = true;
4835 }
4836 if (changed)
4837 variable_was_changed (var, set);
4838 }
4839
4840 return 1;
4841 }
4842
4843 /* Remove all variable-location information about call-clobbered
4844 registers, as well as associations between MEMs and VALUEs. */
4845
4846 static void
4847 dataflow_set_clear_at_call (dataflow_set *set, rtx_insn *call_insn)
4848 {
4849 unsigned int r;
4850 hard_reg_set_iterator hrsi;
4851 HARD_REG_SET invalidated_regs;
4852
4853 get_call_reg_set_usage (call_insn, &invalidated_regs,
4854 regs_invalidated_by_call);
4855
4856 EXECUTE_IF_SET_IN_HARD_REG_SET (invalidated_regs, 0, r, hrsi)
4857 var_regno_delete (set, r);
4858
4859 if (MAY_HAVE_DEBUG_INSNS)
4860 {
4861 set->traversed_vars = set->vars;
4862 shared_hash_htab (set->vars)
4863 ->traverse <dataflow_set *, dataflow_set_preserve_mem_locs> (set);
4864 set->traversed_vars = set->vars;
4865 shared_hash_htab (set->vars)
4866 ->traverse <dataflow_set *, dataflow_set_remove_mem_locs> (set);
4867 set->traversed_vars = NULL;
4868 }
4869 }
4870
4871 static bool
4872 variable_part_different_p (variable_part *vp1, variable_part *vp2)
4873 {
4874 location_chain *lc1, *lc2;
4875
4876 for (lc1 = vp1->loc_chain; lc1; lc1 = lc1->next)
4877 {
4878 for (lc2 = vp2->loc_chain; lc2; lc2 = lc2->next)
4879 {
4880 if (REG_P (lc1->loc) && REG_P (lc2->loc))
4881 {
4882 if (REGNO (lc1->loc) == REGNO (lc2->loc))
4883 break;
4884 }
4885 if (rtx_equal_p (lc1->loc, lc2->loc))
4886 break;
4887 }
4888 if (!lc2)
4889 return true;
4890 }
4891 return false;
4892 }
4893
4894 /* Return true if one-part variables VAR1 and VAR2 are different.
4895 They must be in canonical order. */
4896
4897 static bool
4898 onepart_variable_different_p (variable *var1, variable *var2)
4899 {
4900 location_chain *lc1, *lc2;
4901
4902 if (var1 == var2)
4903 return false;
4904
4905 gcc_assert (var1->n_var_parts == 1
4906 && var2->n_var_parts == 1);
4907
4908 lc1 = var1->var_part[0].loc_chain;
4909 lc2 = var2->var_part[0].loc_chain;
4910
4911 gcc_assert (lc1 && lc2);
4912
4913 while (lc1 && lc2)
4914 {
4915 if (loc_cmp (lc1->loc, lc2->loc))
4916 return true;
4917 lc1 = lc1->next;
4918 lc2 = lc2->next;
4919 }
4920
4921 return lc1 != lc2;
4922 }
4923
4924 /* Return true if variables VAR1 and VAR2 are different. */
4925
4926 static bool
4927 variable_different_p (variable *var1, variable *var2)
4928 {
4929 int i;
4930
4931 if (var1 == var2)
4932 return false;
4933
4934 if (var1->onepart != var2->onepart)
4935 return true;
4936
4937 if (var1->n_var_parts != var2->n_var_parts)
4938 return true;
4939
4940 if (var1->onepart && var1->n_var_parts)
4941 {
4942 gcc_checking_assert (dv_as_opaque (var1->dv) == dv_as_opaque (var2->dv)
4943 && var1->n_var_parts == 1);
4944 /* One-part values have locations in a canonical order. */
4945 return onepart_variable_different_p (var1, var2);
4946 }
4947
4948 for (i = 0; i < var1->n_var_parts; i++)
4949 {
4950 if (VAR_PART_OFFSET (var1, i) != VAR_PART_OFFSET (var2, i))
4951 return true;
4952 if (variable_part_different_p (&var1->var_part[i], &var2->var_part[i]))
4953 return true;
4954 if (variable_part_different_p (&var2->var_part[i], &var1->var_part[i]))
4955 return true;
4956 }
4957 return false;
4958 }
4959
4960 /* Return true if dataflow sets OLD_SET and NEW_SET differ. */
4961
4962 static bool
4963 dataflow_set_different (dataflow_set *old_set, dataflow_set *new_set)
4964 {
4965 variable_iterator_type hi;
4966 variable *var1;
4967
4968 if (old_set->vars == new_set->vars)
4969 return false;
4970
4971 if (shared_hash_htab (old_set->vars)->elements ()
4972 != shared_hash_htab (new_set->vars)->elements ())
4973 return true;
4974
4975 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (old_set->vars),
4976 var1, variable, hi)
4977 {
4978 variable_table_type *htab = shared_hash_htab (new_set->vars);
4979 variable *var2 = htab->find_with_hash (var1->dv, dv_htab_hash (var1->dv));
4980 if (!var2)
4981 {
4982 if (dump_file && (dump_flags & TDF_DETAILS))
4983 {
4984 fprintf (dump_file, "dataflow difference found: removal of:\n");
4985 dump_var (var1);
4986 }
4987 return true;
4988 }
4989
4990 if (variable_different_p (var1, var2))
4991 {
4992 if (dump_file && (dump_flags & TDF_DETAILS))
4993 {
4994 fprintf (dump_file, "dataflow difference found: "
4995 "old and new follow:\n");
4996 dump_var (var1);
4997 dump_var (var2);
4998 }
4999 return true;
5000 }
5001 }
5002
5003 /* No need to traverse the second hashtab, if both have the same number
5004 of elements and the second one had all entries found in the first one,
5005 then it can't have any extra entries. */
5006 return false;
5007 }
5008
5009 /* Free the contents of dataflow set SET. */
5010
5011 static void
5012 dataflow_set_destroy (dataflow_set *set)
5013 {
5014 int i;
5015
5016 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5017 attrs_list_clear (&set->regs[i]);
5018
5019 shared_hash_destroy (set->vars);
5020 set->vars = NULL;
5021 }
5022
5023 /* Shall EXPR be tracked? */
5024
5025 static bool
5026 track_expr_p (tree expr, bool need_rtl)
5027 {
5028 rtx decl_rtl;
5029 tree realdecl;
5030
5031 if (TREE_CODE (expr) == DEBUG_EXPR_DECL)
5032 return DECL_RTL_SET_P (expr);
5033
5034 /* If EXPR is not a parameter or a variable do not track it. */
5035 if (TREE_CODE (expr) != VAR_DECL && TREE_CODE (expr) != PARM_DECL)
5036 return 0;
5037
5038 /* It also must have a name... */
5039 if (!DECL_NAME (expr) && need_rtl)
5040 return 0;
5041
5042 /* ... and a RTL assigned to it. */
5043 decl_rtl = DECL_RTL_IF_SET (expr);
5044 if (!decl_rtl && need_rtl)
5045 return 0;
5046
5047 /* If this expression is really a debug alias of some other declaration, we
5048 don't need to track this expression if the ultimate declaration is
5049 ignored. */
5050 realdecl = expr;
5051 if (TREE_CODE (realdecl) == VAR_DECL && DECL_HAS_DEBUG_EXPR_P (realdecl))
5052 {
5053 realdecl = DECL_DEBUG_EXPR (realdecl);
5054 if (!DECL_P (realdecl))
5055 {
5056 if (handled_component_p (realdecl)
5057 || (TREE_CODE (realdecl) == MEM_REF
5058 && TREE_CODE (TREE_OPERAND (realdecl, 0)) == ADDR_EXPR))
5059 {
5060 HOST_WIDE_INT bitsize, bitpos, maxsize;
5061 bool reverse;
5062 tree innerdecl
5063 = get_ref_base_and_extent (realdecl, &bitpos, &bitsize,
5064 &maxsize, &reverse);
5065 if (!DECL_P (innerdecl)
5066 || DECL_IGNORED_P (innerdecl)
5067 /* Do not track declarations for parts of tracked parameters
5068 since we want to track them as a whole instead. */
5069 || (TREE_CODE (innerdecl) == PARM_DECL
5070 && DECL_MODE (innerdecl) != BLKmode
5071 && TREE_CODE (TREE_TYPE (innerdecl)) != UNION_TYPE)
5072 || TREE_STATIC (innerdecl)
5073 || bitsize <= 0
5074 || bitpos + bitsize > 256
5075 || bitsize != maxsize)
5076 return 0;
5077 else
5078 realdecl = expr;
5079 }
5080 else
5081 return 0;
5082 }
5083 }
5084
5085 /* Do not track EXPR if REALDECL it should be ignored for debugging
5086 purposes. */
5087 if (DECL_IGNORED_P (realdecl))
5088 return 0;
5089
5090 /* Do not track global variables until we are able to emit correct location
5091 list for them. */
5092 if (TREE_STATIC (realdecl))
5093 return 0;
5094
5095 /* When the EXPR is a DECL for alias of some variable (see example)
5096 the TREE_STATIC flag is not used. Disable tracking all DECLs whose
5097 DECL_RTL contains SYMBOL_REF.
5098
5099 Example:
5100 extern char **_dl_argv_internal __attribute__ ((alias ("_dl_argv")));
5101 char **_dl_argv;
5102 */
5103 if (decl_rtl && MEM_P (decl_rtl)
5104 && contains_symbol_ref_p (XEXP (decl_rtl, 0)))
5105 return 0;
5106
5107 /* If RTX is a memory it should not be very large (because it would be
5108 an array or struct). */
5109 if (decl_rtl && MEM_P (decl_rtl))
5110 {
5111 /* Do not track structures and arrays. */
5112 if (GET_MODE (decl_rtl) == BLKmode
5113 || AGGREGATE_TYPE_P (TREE_TYPE (realdecl)))
5114 return 0;
5115 if (MEM_SIZE_KNOWN_P (decl_rtl)
5116 && MEM_SIZE (decl_rtl) > MAX_VAR_PARTS)
5117 return 0;
5118 }
5119
5120 DECL_CHANGED (expr) = 0;
5121 DECL_CHANGED (realdecl) = 0;
5122 return 1;
5123 }
5124
5125 /* Determine whether a given LOC refers to the same variable part as
5126 EXPR+OFFSET. */
5127
5128 static bool
5129 same_variable_part_p (rtx loc, tree expr, HOST_WIDE_INT offset)
5130 {
5131 tree expr2;
5132 HOST_WIDE_INT offset2;
5133
5134 if (! DECL_P (expr))
5135 return false;
5136
5137 if (REG_P (loc))
5138 {
5139 expr2 = REG_EXPR (loc);
5140 offset2 = REG_OFFSET (loc);
5141 }
5142 else if (MEM_P (loc))
5143 {
5144 expr2 = MEM_EXPR (loc);
5145 offset2 = INT_MEM_OFFSET (loc);
5146 }
5147 else
5148 return false;
5149
5150 if (! expr2 || ! DECL_P (expr2))
5151 return false;
5152
5153 expr = var_debug_decl (expr);
5154 expr2 = var_debug_decl (expr2);
5155
5156 return (expr == expr2 && offset == offset2);
5157 }
5158
5159 /* LOC is a REG or MEM that we would like to track if possible.
5160 If EXPR is null, we don't know what expression LOC refers to,
5161 otherwise it refers to EXPR + OFFSET. STORE_REG_P is true if
5162 LOC is an lvalue register.
5163
5164 Return true if EXPR is nonnull and if LOC, or some lowpart of it,
5165 is something we can track. When returning true, store the mode of
5166 the lowpart we can track in *MODE_OUT (if nonnull) and its offset
5167 from EXPR in *OFFSET_OUT (if nonnull). */
5168
5169 static bool
5170 track_loc_p (rtx loc, tree expr, HOST_WIDE_INT offset, bool store_reg_p,
5171 machine_mode *mode_out, HOST_WIDE_INT *offset_out)
5172 {
5173 machine_mode mode;
5174
5175 if (expr == NULL || !track_expr_p (expr, true))
5176 return false;
5177
5178 /* If REG was a paradoxical subreg, its REG_ATTRS will describe the
5179 whole subreg, but only the old inner part is really relevant. */
5180 mode = GET_MODE (loc);
5181 if (REG_P (loc) && !HARD_REGISTER_NUM_P (ORIGINAL_REGNO (loc)))
5182 {
5183 machine_mode pseudo_mode;
5184
5185 pseudo_mode = PSEUDO_REGNO_MODE (ORIGINAL_REGNO (loc));
5186 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (pseudo_mode))
5187 {
5188 offset += byte_lowpart_offset (pseudo_mode, mode);
5189 mode = pseudo_mode;
5190 }
5191 }
5192
5193 /* If LOC is a paradoxical lowpart of EXPR, refer to EXPR itself.
5194 Do the same if we are storing to a register and EXPR occupies
5195 the whole of register LOC; in that case, the whole of EXPR is
5196 being changed. We exclude complex modes from the second case
5197 because the real and imaginary parts are represented as separate
5198 pseudo registers, even if the whole complex value fits into one
5199 hard register. */
5200 if ((GET_MODE_SIZE (mode) > GET_MODE_SIZE (DECL_MODE (expr))
5201 || (store_reg_p
5202 && !COMPLEX_MODE_P (DECL_MODE (expr))
5203 && hard_regno_nregs[REGNO (loc)][DECL_MODE (expr)] == 1))
5204 && offset + byte_lowpart_offset (DECL_MODE (expr), mode) == 0)
5205 {
5206 mode = DECL_MODE (expr);
5207 offset = 0;
5208 }
5209
5210 if (offset < 0 || offset >= MAX_VAR_PARTS)
5211 return false;
5212
5213 if (mode_out)
5214 *mode_out = mode;
5215 if (offset_out)
5216 *offset_out = offset;
5217 return true;
5218 }
5219
5220 /* Return the MODE lowpart of LOC, or null if LOC is not something we
5221 want to track. When returning nonnull, make sure that the attributes
5222 on the returned value are updated. */
5223
5224 static rtx
5225 var_lowpart (machine_mode mode, rtx loc)
5226 {
5227 unsigned int offset, reg_offset, regno;
5228
5229 if (GET_MODE (loc) == mode)
5230 return loc;
5231
5232 if (!REG_P (loc) && !MEM_P (loc))
5233 return NULL;
5234
5235 offset = byte_lowpart_offset (mode, GET_MODE (loc));
5236
5237 if (MEM_P (loc))
5238 return adjust_address_nv (loc, mode, offset);
5239
5240 reg_offset = subreg_lowpart_offset (mode, GET_MODE (loc));
5241 regno = REGNO (loc) + subreg_regno_offset (REGNO (loc), GET_MODE (loc),
5242 reg_offset, mode);
5243 return gen_rtx_REG_offset (loc, mode, regno, offset);
5244 }
5245
5246 /* Carry information about uses and stores while walking rtx. */
5247
5248 struct count_use_info
5249 {
5250 /* The insn where the RTX is. */
5251 rtx_insn *insn;
5252
5253 /* The basic block where insn is. */
5254 basic_block bb;
5255
5256 /* The array of n_sets sets in the insn, as determined by cselib. */
5257 struct cselib_set *sets;
5258 int n_sets;
5259
5260 /* True if we're counting stores, false otherwise. */
5261 bool store_p;
5262 };
5263
5264 /* Find a VALUE corresponding to X. */
5265
5266 static inline cselib_val *
5267 find_use_val (rtx x, machine_mode mode, struct count_use_info *cui)
5268 {
5269 int i;
5270
5271 if (cui->sets)
5272 {
5273 /* This is called after uses are set up and before stores are
5274 processed by cselib, so it's safe to look up srcs, but not
5275 dsts. So we look up expressions that appear in srcs or in
5276 dest expressions, but we search the sets array for dests of
5277 stores. */
5278 if (cui->store_p)
5279 {
5280 /* Some targets represent memset and memcpy patterns
5281 by (set (mem:BLK ...) (reg:[QHSD]I ...)) or
5282 (set (mem:BLK ...) (const_int ...)) or
5283 (set (mem:BLK ...) (mem:BLK ...)). Don't return anything
5284 in that case, otherwise we end up with mode mismatches. */
5285 if (mode == BLKmode && MEM_P (x))
5286 return NULL;
5287 for (i = 0; i < cui->n_sets; i++)
5288 if (cui->sets[i].dest == x)
5289 return cui->sets[i].src_elt;
5290 }
5291 else
5292 return cselib_lookup (x, mode, 0, VOIDmode);
5293 }
5294
5295 return NULL;
5296 }
5297
5298 /* Replace all registers and addresses in an expression with VALUE
5299 expressions that map back to them, unless the expression is a
5300 register. If no mapping is or can be performed, returns NULL. */
5301
5302 static rtx
5303 replace_expr_with_values (rtx loc)
5304 {
5305 if (REG_P (loc) || GET_CODE (loc) == ENTRY_VALUE)
5306 return NULL;
5307 else if (MEM_P (loc))
5308 {
5309 cselib_val *addr = cselib_lookup (XEXP (loc, 0),
5310 get_address_mode (loc), 0,
5311 GET_MODE (loc));
5312 if (addr)
5313 return replace_equiv_address_nv (loc, addr->val_rtx);
5314 else
5315 return NULL;
5316 }
5317 else
5318 return cselib_subst_to_values (loc, VOIDmode);
5319 }
5320
5321 /* Return true if X contains a DEBUG_EXPR. */
5322
5323 static bool
5324 rtx_debug_expr_p (const_rtx x)
5325 {
5326 subrtx_iterator::array_type array;
5327 FOR_EACH_SUBRTX (iter, array, x, ALL)
5328 if (GET_CODE (*iter) == DEBUG_EXPR)
5329 return true;
5330 return false;
5331 }
5332
5333 /* Determine what kind of micro operation to choose for a USE. Return
5334 MO_CLOBBER if no micro operation is to be generated. */
5335
5336 static enum micro_operation_type
5337 use_type (rtx loc, struct count_use_info *cui, machine_mode *modep)
5338 {
5339 tree expr;
5340
5341 if (cui && cui->sets)
5342 {
5343 if (GET_CODE (loc) == VAR_LOCATION)
5344 {
5345 if (track_expr_p (PAT_VAR_LOCATION_DECL (loc), false))
5346 {
5347 rtx ploc = PAT_VAR_LOCATION_LOC (loc);
5348 if (! VAR_LOC_UNKNOWN_P (ploc))
5349 {
5350 cselib_val *val = cselib_lookup (ploc, GET_MODE (loc), 1,
5351 VOIDmode);
5352
5353 /* ??? flag_float_store and volatile mems are never
5354 given values, but we could in theory use them for
5355 locations. */
5356 gcc_assert (val || 1);
5357 }
5358 return MO_VAL_LOC;
5359 }
5360 else
5361 return MO_CLOBBER;
5362 }
5363
5364 if (REG_P (loc) || MEM_P (loc))
5365 {
5366 if (modep)
5367 *modep = GET_MODE (loc);
5368 if (cui->store_p)
5369 {
5370 if (REG_P (loc)
5371 || (find_use_val (loc, GET_MODE (loc), cui)
5372 && cselib_lookup (XEXP (loc, 0),
5373 get_address_mode (loc), 0,
5374 GET_MODE (loc))))
5375 return MO_VAL_SET;
5376 }
5377 else
5378 {
5379 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5380
5381 if (val && !cselib_preserved_value_p (val))
5382 return MO_VAL_USE;
5383 }
5384 }
5385 }
5386
5387 if (REG_P (loc))
5388 {
5389 gcc_assert (REGNO (loc) < FIRST_PSEUDO_REGISTER);
5390
5391 if (loc == cfa_base_rtx)
5392 return MO_CLOBBER;
5393 expr = REG_EXPR (loc);
5394
5395 if (!expr)
5396 return MO_USE_NO_VAR;
5397 else if (target_for_debug_bind (var_debug_decl (expr)))
5398 return MO_CLOBBER;
5399 else if (track_loc_p (loc, expr, REG_OFFSET (loc),
5400 false, modep, NULL))
5401 return MO_USE;
5402 else
5403 return MO_USE_NO_VAR;
5404 }
5405 else if (MEM_P (loc))
5406 {
5407 expr = MEM_EXPR (loc);
5408
5409 if (!expr)
5410 return MO_CLOBBER;
5411 else if (target_for_debug_bind (var_debug_decl (expr)))
5412 return MO_CLOBBER;
5413 else if (track_loc_p (loc, expr, INT_MEM_OFFSET (loc),
5414 false, modep, NULL)
5415 /* Multi-part variables shouldn't refer to one-part
5416 variable names such as VALUEs (never happens) or
5417 DEBUG_EXPRs (only happens in the presence of debug
5418 insns). */
5419 && (!MAY_HAVE_DEBUG_INSNS
5420 || !rtx_debug_expr_p (XEXP (loc, 0))))
5421 return MO_USE;
5422 else
5423 return MO_CLOBBER;
5424 }
5425
5426 return MO_CLOBBER;
5427 }
5428
5429 /* Log to OUT information about micro-operation MOPT involving X in
5430 INSN of BB. */
5431
5432 static inline void
5433 log_op_type (rtx x, basic_block bb, rtx_insn *insn,
5434 enum micro_operation_type mopt, FILE *out)
5435 {
5436 fprintf (out, "bb %i op %i insn %i %s ",
5437 bb->index, VTI (bb)->mos.length (),
5438 INSN_UID (insn), micro_operation_type_name[mopt]);
5439 print_inline_rtx (out, x, 2);
5440 fputc ('\n', out);
5441 }
5442
5443 /* Tell whether the CONCAT used to holds a VALUE and its location
5444 needs value resolution, i.e., an attempt of mapping the location
5445 back to other incoming values. */
5446 #define VAL_NEEDS_RESOLUTION(x) \
5447 (RTL_FLAG_CHECK1 ("VAL_NEEDS_RESOLUTION", (x), CONCAT)->volatil)
5448 /* Whether the location in the CONCAT is a tracked expression, that
5449 should also be handled like a MO_USE. */
5450 #define VAL_HOLDS_TRACK_EXPR(x) \
5451 (RTL_FLAG_CHECK1 ("VAL_HOLDS_TRACK_EXPR", (x), CONCAT)->used)
5452 /* Whether the location in the CONCAT should be handled like a MO_COPY
5453 as well. */
5454 #define VAL_EXPR_IS_COPIED(x) \
5455 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_COPIED", (x), CONCAT)->jump)
5456 /* Whether the location in the CONCAT should be handled like a
5457 MO_CLOBBER as well. */
5458 #define VAL_EXPR_IS_CLOBBERED(x) \
5459 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_CLOBBERED", (x), CONCAT)->unchanging)
5460
5461 /* All preserved VALUEs. */
5462 static vec<rtx> preserved_values;
5463
5464 /* Ensure VAL is preserved and remember it in a vector for vt_emit_notes. */
5465
5466 static void
5467 preserve_value (cselib_val *val)
5468 {
5469 cselib_preserve_value (val);
5470 preserved_values.safe_push (val->val_rtx);
5471 }
5472
5473 /* Helper function for MO_VAL_LOC handling. Return non-zero if
5474 any rtxes not suitable for CONST use not replaced by VALUEs
5475 are discovered. */
5476
5477 static bool
5478 non_suitable_const (const_rtx x)
5479 {
5480 subrtx_iterator::array_type array;
5481 FOR_EACH_SUBRTX (iter, array, x, ALL)
5482 {
5483 const_rtx x = *iter;
5484 switch (GET_CODE (x))
5485 {
5486 case REG:
5487 case DEBUG_EXPR:
5488 case PC:
5489 case SCRATCH:
5490 case CC0:
5491 case ASM_INPUT:
5492 case ASM_OPERANDS:
5493 return true;
5494 case MEM:
5495 if (!MEM_READONLY_P (x))
5496 return true;
5497 break;
5498 default:
5499 break;
5500 }
5501 }
5502 return false;
5503 }
5504
5505 /* Add uses (register and memory references) LOC which will be tracked
5506 to VTI (bb)->mos. */
5507
5508 static void
5509 add_uses (rtx loc, struct count_use_info *cui)
5510 {
5511 machine_mode mode = VOIDmode;
5512 enum micro_operation_type type = use_type (loc, cui, &mode);
5513
5514 if (type != MO_CLOBBER)
5515 {
5516 basic_block bb = cui->bb;
5517 micro_operation mo;
5518
5519 mo.type = type;
5520 mo.u.loc = type == MO_USE ? var_lowpart (mode, loc) : loc;
5521 mo.insn = cui->insn;
5522
5523 if (type == MO_VAL_LOC)
5524 {
5525 rtx oloc = loc;
5526 rtx vloc = PAT_VAR_LOCATION_LOC (oloc);
5527 cselib_val *val;
5528
5529 gcc_assert (cui->sets);
5530
5531 if (MEM_P (vloc)
5532 && !REG_P (XEXP (vloc, 0))
5533 && !MEM_P (XEXP (vloc, 0)))
5534 {
5535 rtx mloc = vloc;
5536 machine_mode address_mode = get_address_mode (mloc);
5537 cselib_val *val
5538 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5539 GET_MODE (mloc));
5540
5541 if (val && !cselib_preserved_value_p (val))
5542 preserve_value (val);
5543 }
5544
5545 if (CONSTANT_P (vloc)
5546 && (GET_CODE (vloc) != CONST || non_suitable_const (vloc)))
5547 /* For constants don't look up any value. */;
5548 else if (!VAR_LOC_UNKNOWN_P (vloc) && !unsuitable_loc (vloc)
5549 && (val = find_use_val (vloc, GET_MODE (oloc), cui)))
5550 {
5551 machine_mode mode2;
5552 enum micro_operation_type type2;
5553 rtx nloc = NULL;
5554 bool resolvable = REG_P (vloc) || MEM_P (vloc);
5555
5556 if (resolvable)
5557 nloc = replace_expr_with_values (vloc);
5558
5559 if (nloc)
5560 {
5561 oloc = shallow_copy_rtx (oloc);
5562 PAT_VAR_LOCATION_LOC (oloc) = nloc;
5563 }
5564
5565 oloc = gen_rtx_CONCAT (mode, val->val_rtx, oloc);
5566
5567 type2 = use_type (vloc, 0, &mode2);
5568
5569 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5570 || type2 == MO_CLOBBER);
5571
5572 if (type2 == MO_CLOBBER
5573 && !cselib_preserved_value_p (val))
5574 {
5575 VAL_NEEDS_RESOLUTION (oloc) = resolvable;
5576 preserve_value (val);
5577 }
5578 }
5579 else if (!VAR_LOC_UNKNOWN_P (vloc))
5580 {
5581 oloc = shallow_copy_rtx (oloc);
5582 PAT_VAR_LOCATION_LOC (oloc) = gen_rtx_UNKNOWN_VAR_LOC ();
5583 }
5584
5585 mo.u.loc = oloc;
5586 }
5587 else if (type == MO_VAL_USE)
5588 {
5589 machine_mode mode2 = VOIDmode;
5590 enum micro_operation_type type2;
5591 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5592 rtx vloc, oloc = loc, nloc;
5593
5594 gcc_assert (cui->sets);
5595
5596 if (MEM_P (oloc)
5597 && !REG_P (XEXP (oloc, 0))
5598 && !MEM_P (XEXP (oloc, 0)))
5599 {
5600 rtx mloc = oloc;
5601 machine_mode address_mode = get_address_mode (mloc);
5602 cselib_val *val
5603 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5604 GET_MODE (mloc));
5605
5606 if (val && !cselib_preserved_value_p (val))
5607 preserve_value (val);
5608 }
5609
5610 type2 = use_type (loc, 0, &mode2);
5611
5612 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5613 || type2 == MO_CLOBBER);
5614
5615 if (type2 == MO_USE)
5616 vloc = var_lowpart (mode2, loc);
5617 else
5618 vloc = oloc;
5619
5620 /* The loc of a MO_VAL_USE may have two forms:
5621
5622 (concat val src): val is at src, a value-based
5623 representation.
5624
5625 (concat (concat val use) src): same as above, with use as
5626 the MO_USE tracked value, if it differs from src.
5627
5628 */
5629
5630 gcc_checking_assert (REG_P (loc) || MEM_P (loc));
5631 nloc = replace_expr_with_values (loc);
5632 if (!nloc)
5633 nloc = oloc;
5634
5635 if (vloc != nloc)
5636 oloc = gen_rtx_CONCAT (mode2, val->val_rtx, vloc);
5637 else
5638 oloc = val->val_rtx;
5639
5640 mo.u.loc = gen_rtx_CONCAT (mode, oloc, nloc);
5641
5642 if (type2 == MO_USE)
5643 VAL_HOLDS_TRACK_EXPR (mo.u.loc) = 1;
5644 if (!cselib_preserved_value_p (val))
5645 {
5646 VAL_NEEDS_RESOLUTION (mo.u.loc) = 1;
5647 preserve_value (val);
5648 }
5649 }
5650 else
5651 gcc_assert (type == MO_USE || type == MO_USE_NO_VAR);
5652
5653 if (dump_file && (dump_flags & TDF_DETAILS))
5654 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
5655 VTI (bb)->mos.safe_push (mo);
5656 }
5657 }
5658
5659 /* Helper function for finding all uses of REG/MEM in X in insn INSN. */
5660
5661 static void
5662 add_uses_1 (rtx *x, void *cui)
5663 {
5664 subrtx_var_iterator::array_type array;
5665 FOR_EACH_SUBRTX_VAR (iter, array, *x, NONCONST)
5666 add_uses (*iter, (struct count_use_info *) cui);
5667 }
5668
5669 /* This is the value used during expansion of locations. We want it
5670 to be unbounded, so that variables expanded deep in a recursion
5671 nest are fully evaluated, so that their values are cached
5672 correctly. We avoid recursion cycles through other means, and we
5673 don't unshare RTL, so excess complexity is not a problem. */
5674 #define EXPR_DEPTH (INT_MAX)
5675 /* We use this to keep too-complex expressions from being emitted as
5676 location notes, and then to debug information. Users can trade
5677 compile time for ridiculously complex expressions, although they're
5678 seldom useful, and they may often have to be discarded as not
5679 representable anyway. */
5680 #define EXPR_USE_DEPTH (PARAM_VALUE (PARAM_MAX_VARTRACK_EXPR_DEPTH))
5681
5682 /* Attempt to reverse the EXPR operation in the debug info and record
5683 it in the cselib table. Say for reg1 = reg2 + 6 even when reg2 is
5684 no longer live we can express its value as VAL - 6. */
5685
5686 static void
5687 reverse_op (rtx val, const_rtx expr, rtx_insn *insn)
5688 {
5689 rtx src, arg, ret;
5690 cselib_val *v;
5691 struct elt_loc_list *l;
5692 enum rtx_code code;
5693 int count;
5694
5695 if (GET_CODE (expr) != SET)
5696 return;
5697
5698 if (!REG_P (SET_DEST (expr)) || GET_MODE (val) != GET_MODE (SET_DEST (expr)))
5699 return;
5700
5701 src = SET_SRC (expr);
5702 switch (GET_CODE (src))
5703 {
5704 case PLUS:
5705 case MINUS:
5706 case XOR:
5707 case NOT:
5708 case NEG:
5709 if (!REG_P (XEXP (src, 0)))
5710 return;
5711 break;
5712 case SIGN_EXTEND:
5713 case ZERO_EXTEND:
5714 if (!REG_P (XEXP (src, 0)) && !MEM_P (XEXP (src, 0)))
5715 return;
5716 break;
5717 default:
5718 return;
5719 }
5720
5721 if (!SCALAR_INT_MODE_P (GET_MODE (src)) || XEXP (src, 0) == cfa_base_rtx)
5722 return;
5723
5724 v = cselib_lookup (XEXP (src, 0), GET_MODE (XEXP (src, 0)), 0, VOIDmode);
5725 if (!v || !cselib_preserved_value_p (v))
5726 return;
5727
5728 /* Use canonical V to avoid creating multiple redundant expressions
5729 for different VALUES equivalent to V. */
5730 v = canonical_cselib_val (v);
5731
5732 /* Adding a reverse op isn't useful if V already has an always valid
5733 location. Ignore ENTRY_VALUE, while it is always constant, we should
5734 prefer non-ENTRY_VALUE locations whenever possible. */
5735 for (l = v->locs, count = 0; l; l = l->next, count++)
5736 if (CONSTANT_P (l->loc)
5737 && (GET_CODE (l->loc) != CONST || !references_value_p (l->loc, 0)))
5738 return;
5739 /* Avoid creating too large locs lists. */
5740 else if (count == PARAM_VALUE (PARAM_MAX_VARTRACK_REVERSE_OP_SIZE))
5741 return;
5742
5743 switch (GET_CODE (src))
5744 {
5745 case NOT:
5746 case NEG:
5747 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5748 return;
5749 ret = gen_rtx_fmt_e (GET_CODE (src), GET_MODE (val), val);
5750 break;
5751 case SIGN_EXTEND:
5752 case ZERO_EXTEND:
5753 ret = gen_lowpart_SUBREG (GET_MODE (v->val_rtx), val);
5754 break;
5755 case XOR:
5756 code = XOR;
5757 goto binary;
5758 case PLUS:
5759 code = MINUS;
5760 goto binary;
5761 case MINUS:
5762 code = PLUS;
5763 goto binary;
5764 binary:
5765 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5766 return;
5767 arg = XEXP (src, 1);
5768 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5769 {
5770 arg = cselib_expand_value_rtx (arg, scratch_regs, 5);
5771 if (arg == NULL_RTX)
5772 return;
5773 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5774 return;
5775 }
5776 ret = simplify_gen_binary (code, GET_MODE (val), val, arg);
5777 break;
5778 default:
5779 gcc_unreachable ();
5780 }
5781
5782 cselib_add_permanent_equiv (v, ret, insn);
5783 }
5784
5785 /* Add stores (register and memory references) LOC which will be tracked
5786 to VTI (bb)->mos. EXPR is the RTL expression containing the store.
5787 CUIP->insn is instruction which the LOC is part of. */
5788
5789 static void
5790 add_stores (rtx loc, const_rtx expr, void *cuip)
5791 {
5792 machine_mode mode = VOIDmode, mode2;
5793 struct count_use_info *cui = (struct count_use_info *)cuip;
5794 basic_block bb = cui->bb;
5795 micro_operation mo;
5796 rtx oloc = loc, nloc, src = NULL;
5797 enum micro_operation_type type = use_type (loc, cui, &mode);
5798 bool track_p = false;
5799 cselib_val *v;
5800 bool resolve, preserve;
5801
5802 if (type == MO_CLOBBER)
5803 return;
5804
5805 mode2 = mode;
5806
5807 if (REG_P (loc))
5808 {
5809 gcc_assert (loc != cfa_base_rtx);
5810 if ((GET_CODE (expr) == CLOBBER && type != MO_VAL_SET)
5811 || !(track_p = use_type (loc, NULL, &mode2) == MO_USE)
5812 || GET_CODE (expr) == CLOBBER)
5813 {
5814 mo.type = MO_CLOBBER;
5815 mo.u.loc = loc;
5816 if (GET_CODE (expr) == SET
5817 && SET_DEST (expr) == loc
5818 && !unsuitable_loc (SET_SRC (expr))
5819 && find_use_val (loc, mode, cui))
5820 {
5821 gcc_checking_assert (type == MO_VAL_SET);
5822 mo.u.loc = gen_rtx_SET (loc, SET_SRC (expr));
5823 }
5824 }
5825 else
5826 {
5827 if (GET_CODE (expr) == SET
5828 && SET_DEST (expr) == loc
5829 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
5830 src = var_lowpart (mode2, SET_SRC (expr));
5831 loc = var_lowpart (mode2, loc);
5832
5833 if (src == NULL)
5834 {
5835 mo.type = MO_SET;
5836 mo.u.loc = loc;
5837 }
5838 else
5839 {
5840 rtx xexpr = gen_rtx_SET (loc, src);
5841 if (same_variable_part_p (src, REG_EXPR (loc), REG_OFFSET (loc)))
5842 {
5843 /* If this is an instruction copying (part of) a parameter
5844 passed by invisible reference to its register location,
5845 pretend it's a SET so that the initial memory location
5846 is discarded, as the parameter register can be reused
5847 for other purposes and we do not track locations based
5848 on generic registers. */
5849 if (MEM_P (src)
5850 && REG_EXPR (loc)
5851 && TREE_CODE (REG_EXPR (loc)) == PARM_DECL
5852 && DECL_MODE (REG_EXPR (loc)) != BLKmode
5853 && MEM_P (DECL_INCOMING_RTL (REG_EXPR (loc)))
5854 && XEXP (DECL_INCOMING_RTL (REG_EXPR (loc)), 0)
5855 != arg_pointer_rtx)
5856 mo.type = MO_SET;
5857 else
5858 mo.type = MO_COPY;
5859 }
5860 else
5861 mo.type = MO_SET;
5862 mo.u.loc = xexpr;
5863 }
5864 }
5865 mo.insn = cui->insn;
5866 }
5867 else if (MEM_P (loc)
5868 && ((track_p = use_type (loc, NULL, &mode2) == MO_USE)
5869 || cui->sets))
5870 {
5871 if (MEM_P (loc) && type == MO_VAL_SET
5872 && !REG_P (XEXP (loc, 0))
5873 && !MEM_P (XEXP (loc, 0)))
5874 {
5875 rtx mloc = loc;
5876 machine_mode address_mode = get_address_mode (mloc);
5877 cselib_val *val = cselib_lookup (XEXP (mloc, 0),
5878 address_mode, 0,
5879 GET_MODE (mloc));
5880
5881 if (val && !cselib_preserved_value_p (val))
5882 preserve_value (val);
5883 }
5884
5885 if (GET_CODE (expr) == CLOBBER || !track_p)
5886 {
5887 mo.type = MO_CLOBBER;
5888 mo.u.loc = track_p ? var_lowpart (mode2, loc) : loc;
5889 }
5890 else
5891 {
5892 if (GET_CODE (expr) == SET
5893 && SET_DEST (expr) == loc
5894 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
5895 src = var_lowpart (mode2, SET_SRC (expr));
5896 loc = var_lowpart (mode2, loc);
5897
5898 if (src == NULL)
5899 {
5900 mo.type = MO_SET;
5901 mo.u.loc = loc;
5902 }
5903 else
5904 {
5905 rtx xexpr = gen_rtx_SET (loc, src);
5906 if (same_variable_part_p (SET_SRC (xexpr),
5907 MEM_EXPR (loc),
5908 INT_MEM_OFFSET (loc)))
5909 mo.type = MO_COPY;
5910 else
5911 mo.type = MO_SET;
5912 mo.u.loc = xexpr;
5913 }
5914 }
5915 mo.insn = cui->insn;
5916 }
5917 else
5918 return;
5919
5920 if (type != MO_VAL_SET)
5921 goto log_and_return;
5922
5923 v = find_use_val (oloc, mode, cui);
5924
5925 if (!v)
5926 goto log_and_return;
5927
5928 resolve = preserve = !cselib_preserved_value_p (v);
5929
5930 /* We cannot track values for multiple-part variables, so we track only
5931 locations for tracked parameters passed either by invisible reference
5932 or directly in multiple locations. */
5933 if (track_p
5934 && REG_P (loc)
5935 && REG_EXPR (loc)
5936 && TREE_CODE (REG_EXPR (loc)) == PARM_DECL
5937 && DECL_MODE (REG_EXPR (loc)) != BLKmode
5938 && TREE_CODE (TREE_TYPE (REG_EXPR (loc))) != UNION_TYPE
5939 && ((MEM_P (DECL_INCOMING_RTL (REG_EXPR (loc)))
5940 && XEXP (DECL_INCOMING_RTL (REG_EXPR (loc)), 0) != arg_pointer_rtx)
5941 || (GET_CODE (DECL_INCOMING_RTL (REG_EXPR (loc))) == PARALLEL
5942 && XVECLEN (DECL_INCOMING_RTL (REG_EXPR (loc)), 0) > 1)))
5943 {
5944 /* Although we don't use the value here, it could be used later by the
5945 mere virtue of its existence as the operand of the reverse operation
5946 that gave rise to it (typically extension/truncation). Make sure it
5947 is preserved as required by vt_expand_var_loc_chain. */
5948 if (preserve)
5949 preserve_value (v);
5950 goto log_and_return;
5951 }
5952
5953 if (loc == stack_pointer_rtx
5954 && hard_frame_pointer_adjustment != -1
5955 && preserve)
5956 cselib_set_value_sp_based (v);
5957
5958 nloc = replace_expr_with_values (oloc);
5959 if (nloc)
5960 oloc = nloc;
5961
5962 if (GET_CODE (PATTERN (cui->insn)) == COND_EXEC)
5963 {
5964 cselib_val *oval = cselib_lookup (oloc, GET_MODE (oloc), 0, VOIDmode);
5965
5966 if (oval == v)
5967 return;
5968 gcc_assert (REG_P (oloc) || MEM_P (oloc));
5969
5970 if (oval && !cselib_preserved_value_p (oval))
5971 {
5972 micro_operation moa;
5973
5974 preserve_value (oval);
5975
5976 moa.type = MO_VAL_USE;
5977 moa.u.loc = gen_rtx_CONCAT (mode, oval->val_rtx, oloc);
5978 VAL_NEEDS_RESOLUTION (moa.u.loc) = 1;
5979 moa.insn = cui->insn;
5980
5981 if (dump_file && (dump_flags & TDF_DETAILS))
5982 log_op_type (moa.u.loc, cui->bb, cui->insn,
5983 moa.type, dump_file);
5984 VTI (bb)->mos.safe_push (moa);
5985 }
5986
5987 resolve = false;
5988 }
5989 else if (resolve && GET_CODE (mo.u.loc) == SET)
5990 {
5991 if (REG_P (SET_SRC (expr)) || MEM_P (SET_SRC (expr)))
5992 nloc = replace_expr_with_values (SET_SRC (expr));
5993 else
5994 nloc = NULL_RTX;
5995
5996 /* Avoid the mode mismatch between oexpr and expr. */
5997 if (!nloc && mode != mode2)
5998 {
5999 nloc = SET_SRC (expr);
6000 gcc_assert (oloc == SET_DEST (expr));
6001 }
6002
6003 if (nloc && nloc != SET_SRC (mo.u.loc))
6004 oloc = gen_rtx_SET (oloc, nloc);
6005 else
6006 {
6007 if (oloc == SET_DEST (mo.u.loc))
6008 /* No point in duplicating. */
6009 oloc = mo.u.loc;
6010 if (!REG_P (SET_SRC (mo.u.loc)))
6011 resolve = false;
6012 }
6013 }
6014 else if (!resolve)
6015 {
6016 if (GET_CODE (mo.u.loc) == SET
6017 && oloc == SET_DEST (mo.u.loc))
6018 /* No point in duplicating. */
6019 oloc = mo.u.loc;
6020 }
6021 else
6022 resolve = false;
6023
6024 loc = gen_rtx_CONCAT (mode, v->val_rtx, oloc);
6025
6026 if (mo.u.loc != oloc)
6027 loc = gen_rtx_CONCAT (GET_MODE (mo.u.loc), loc, mo.u.loc);
6028
6029 /* The loc of a MO_VAL_SET may have various forms:
6030
6031 (concat val dst): dst now holds val
6032
6033 (concat val (set dst src)): dst now holds val, copied from src
6034
6035 (concat (concat val dstv) dst): dst now holds val; dstv is dst
6036 after replacing mems and non-top-level regs with values.
6037
6038 (concat (concat val dstv) (set dst src)): dst now holds val,
6039 copied from src. dstv is a value-based representation of dst, if
6040 it differs from dst. If resolution is needed, src is a REG, and
6041 its mode is the same as that of val.
6042
6043 (concat (concat val (set dstv srcv)) (set dst src)): src
6044 copied to dst, holding val. dstv and srcv are value-based
6045 representations of dst and src, respectively.
6046
6047 */
6048
6049 if (GET_CODE (PATTERN (cui->insn)) != COND_EXEC)
6050 reverse_op (v->val_rtx, expr, cui->insn);
6051
6052 mo.u.loc = loc;
6053
6054 if (track_p)
6055 VAL_HOLDS_TRACK_EXPR (loc) = 1;
6056 if (preserve)
6057 {
6058 VAL_NEEDS_RESOLUTION (loc) = resolve;
6059 preserve_value (v);
6060 }
6061 if (mo.type == MO_CLOBBER)
6062 VAL_EXPR_IS_CLOBBERED (loc) = 1;
6063 if (mo.type == MO_COPY)
6064 VAL_EXPR_IS_COPIED (loc) = 1;
6065
6066 mo.type = MO_VAL_SET;
6067
6068 log_and_return:
6069 if (dump_file && (dump_flags & TDF_DETAILS))
6070 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
6071 VTI (bb)->mos.safe_push (mo);
6072 }
6073
6074 /* Arguments to the call. */
6075 static rtx call_arguments;
6076
6077 /* Compute call_arguments. */
6078
6079 static void
6080 prepare_call_arguments (basic_block bb, rtx_insn *insn)
6081 {
6082 rtx link, x, call;
6083 rtx prev, cur, next;
6084 rtx this_arg = NULL_RTX;
6085 tree type = NULL_TREE, t, fndecl = NULL_TREE;
6086 tree obj_type_ref = NULL_TREE;
6087 CUMULATIVE_ARGS args_so_far_v;
6088 cumulative_args_t args_so_far;
6089
6090 memset (&args_so_far_v, 0, sizeof (args_so_far_v));
6091 args_so_far = pack_cumulative_args (&args_so_far_v);
6092 call = get_call_rtx_from (insn);
6093 if (call)
6094 {
6095 if (GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
6096 {
6097 rtx symbol = XEXP (XEXP (call, 0), 0);
6098 if (SYMBOL_REF_DECL (symbol))
6099 fndecl = SYMBOL_REF_DECL (symbol);
6100 }
6101 if (fndecl == NULL_TREE)
6102 fndecl = MEM_EXPR (XEXP (call, 0));
6103 if (fndecl
6104 && TREE_CODE (TREE_TYPE (fndecl)) != FUNCTION_TYPE
6105 && TREE_CODE (TREE_TYPE (fndecl)) != METHOD_TYPE)
6106 fndecl = NULL_TREE;
6107 if (fndecl && TYPE_ARG_TYPES (TREE_TYPE (fndecl)))
6108 type = TREE_TYPE (fndecl);
6109 if (fndecl && TREE_CODE (fndecl) != FUNCTION_DECL)
6110 {
6111 if (TREE_CODE (fndecl) == INDIRECT_REF
6112 && TREE_CODE (TREE_OPERAND (fndecl, 0)) == OBJ_TYPE_REF)
6113 obj_type_ref = TREE_OPERAND (fndecl, 0);
6114 fndecl = NULL_TREE;
6115 }
6116 if (type)
6117 {
6118 for (t = TYPE_ARG_TYPES (type); t && t != void_list_node;
6119 t = TREE_CHAIN (t))
6120 if (TREE_CODE (TREE_VALUE (t)) == REFERENCE_TYPE
6121 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_VALUE (t))))
6122 break;
6123 if ((t == NULL || t == void_list_node) && obj_type_ref == NULL_TREE)
6124 type = NULL;
6125 else
6126 {
6127 int nargs ATTRIBUTE_UNUSED = list_length (TYPE_ARG_TYPES (type));
6128 link = CALL_INSN_FUNCTION_USAGE (insn);
6129 #ifndef PCC_STATIC_STRUCT_RETURN
6130 if (aggregate_value_p (TREE_TYPE (type), type)
6131 && targetm.calls.struct_value_rtx (type, 0) == 0)
6132 {
6133 tree struct_addr = build_pointer_type (TREE_TYPE (type));
6134 machine_mode mode = TYPE_MODE (struct_addr);
6135 rtx reg;
6136 INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
6137 nargs + 1);
6138 reg = targetm.calls.function_arg (args_so_far, mode,
6139 struct_addr, true);
6140 targetm.calls.function_arg_advance (args_so_far, mode,
6141 struct_addr, true);
6142 if (reg == NULL_RTX)
6143 {
6144 for (; link; link = XEXP (link, 1))
6145 if (GET_CODE (XEXP (link, 0)) == USE
6146 && MEM_P (XEXP (XEXP (link, 0), 0)))
6147 {
6148 link = XEXP (link, 1);
6149 break;
6150 }
6151 }
6152 }
6153 else
6154 #endif
6155 INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
6156 nargs);
6157 if (obj_type_ref && TYPE_ARG_TYPES (type) != void_list_node)
6158 {
6159 machine_mode mode;
6160 t = TYPE_ARG_TYPES (type);
6161 mode = TYPE_MODE (TREE_VALUE (t));
6162 this_arg = targetm.calls.function_arg (args_so_far, mode,
6163 TREE_VALUE (t), true);
6164 if (this_arg && !REG_P (this_arg))
6165 this_arg = NULL_RTX;
6166 else if (this_arg == NULL_RTX)
6167 {
6168 for (; link; link = XEXP (link, 1))
6169 if (GET_CODE (XEXP (link, 0)) == USE
6170 && MEM_P (XEXP (XEXP (link, 0), 0)))
6171 {
6172 this_arg = XEXP (XEXP (link, 0), 0);
6173 break;
6174 }
6175 }
6176 }
6177 }
6178 }
6179 }
6180 t = type ? TYPE_ARG_TYPES (type) : NULL_TREE;
6181
6182 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
6183 if (GET_CODE (XEXP (link, 0)) == USE)
6184 {
6185 rtx item = NULL_RTX;
6186 x = XEXP (XEXP (link, 0), 0);
6187 if (GET_MODE (link) == VOIDmode
6188 || GET_MODE (link) == BLKmode
6189 || (GET_MODE (link) != GET_MODE (x)
6190 && ((GET_MODE_CLASS (GET_MODE (link)) != MODE_INT
6191 && GET_MODE_CLASS (GET_MODE (link)) != MODE_PARTIAL_INT)
6192 || (GET_MODE_CLASS (GET_MODE (x)) != MODE_INT
6193 && GET_MODE_CLASS (GET_MODE (x)) != MODE_PARTIAL_INT))))
6194 /* Can't do anything for these, if the original type mode
6195 isn't known or can't be converted. */;
6196 else if (REG_P (x))
6197 {
6198 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
6199 if (val && cselib_preserved_value_p (val))
6200 item = val->val_rtx;
6201 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
6202 || GET_MODE_CLASS (GET_MODE (x)) == MODE_PARTIAL_INT)
6203 {
6204 machine_mode mode = GET_MODE (x);
6205
6206 while ((mode = GET_MODE_WIDER_MODE (mode)) != VOIDmode
6207 && GET_MODE_BITSIZE (mode) <= BITS_PER_WORD)
6208 {
6209 rtx reg = simplify_subreg (mode, x, GET_MODE (x), 0);
6210
6211 if (reg == NULL_RTX || !REG_P (reg))
6212 continue;
6213 val = cselib_lookup (reg, mode, 0, VOIDmode);
6214 if (val && cselib_preserved_value_p (val))
6215 {
6216 item = val->val_rtx;
6217 break;
6218 }
6219 }
6220 }
6221 }
6222 else if (MEM_P (x))
6223 {
6224 rtx mem = x;
6225 cselib_val *val;
6226
6227 if (!frame_pointer_needed)
6228 {
6229 struct adjust_mem_data amd;
6230 amd.mem_mode = VOIDmode;
6231 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
6232 amd.side_effects = NULL;
6233 amd.store = true;
6234 mem = simplify_replace_fn_rtx (mem, NULL_RTX, adjust_mems,
6235 &amd);
6236 gcc_assert (amd.side_effects == NULL_RTX);
6237 }
6238 val = cselib_lookup (mem, GET_MODE (mem), 0, VOIDmode);
6239 if (val && cselib_preserved_value_p (val))
6240 item = val->val_rtx;
6241 else if (GET_MODE_CLASS (GET_MODE (mem)) != MODE_INT
6242 && GET_MODE_CLASS (GET_MODE (mem)) != MODE_PARTIAL_INT)
6243 {
6244 /* For non-integer stack argument see also if they weren't
6245 initialized by integers. */
6246 machine_mode imode = int_mode_for_mode (GET_MODE (mem));
6247 if (imode != GET_MODE (mem) && imode != BLKmode)
6248 {
6249 val = cselib_lookup (adjust_address_nv (mem, imode, 0),
6250 imode, 0, VOIDmode);
6251 if (val && cselib_preserved_value_p (val))
6252 item = lowpart_subreg (GET_MODE (x), val->val_rtx,
6253 imode);
6254 }
6255 }
6256 }
6257 if (item)
6258 {
6259 rtx x2 = x;
6260 if (GET_MODE (item) != GET_MODE (link))
6261 item = lowpart_subreg (GET_MODE (link), item, GET_MODE (item));
6262 if (GET_MODE (x2) != GET_MODE (link))
6263 x2 = lowpart_subreg (GET_MODE (link), x2, GET_MODE (x2));
6264 item = gen_rtx_CONCAT (GET_MODE (link), x2, item);
6265 call_arguments
6266 = gen_rtx_EXPR_LIST (VOIDmode, item, call_arguments);
6267 }
6268 if (t && t != void_list_node)
6269 {
6270 tree argtype = TREE_VALUE (t);
6271 machine_mode mode = TYPE_MODE (argtype);
6272 rtx reg;
6273 if (pass_by_reference (&args_so_far_v, mode, argtype, true))
6274 {
6275 argtype = build_pointer_type (argtype);
6276 mode = TYPE_MODE (argtype);
6277 }
6278 reg = targetm.calls.function_arg (args_so_far, mode,
6279 argtype, true);
6280 if (TREE_CODE (argtype) == REFERENCE_TYPE
6281 && INTEGRAL_TYPE_P (TREE_TYPE (argtype))
6282 && reg
6283 && REG_P (reg)
6284 && GET_MODE (reg) == mode
6285 && (GET_MODE_CLASS (mode) == MODE_INT
6286 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
6287 && REG_P (x)
6288 && REGNO (x) == REGNO (reg)
6289 && GET_MODE (x) == mode
6290 && item)
6291 {
6292 machine_mode indmode
6293 = TYPE_MODE (TREE_TYPE (argtype));
6294 rtx mem = gen_rtx_MEM (indmode, x);
6295 cselib_val *val = cselib_lookup (mem, indmode, 0, VOIDmode);
6296 if (val && cselib_preserved_value_p (val))
6297 {
6298 item = gen_rtx_CONCAT (indmode, mem, val->val_rtx);
6299 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
6300 call_arguments);
6301 }
6302 else
6303 {
6304 struct elt_loc_list *l;
6305 tree initial;
6306
6307 /* Try harder, when passing address of a constant
6308 pool integer it can be easily read back. */
6309 item = XEXP (item, 1);
6310 if (GET_CODE (item) == SUBREG)
6311 item = SUBREG_REG (item);
6312 gcc_assert (GET_CODE (item) == VALUE);
6313 val = CSELIB_VAL_PTR (item);
6314 for (l = val->locs; l; l = l->next)
6315 if (GET_CODE (l->loc) == SYMBOL_REF
6316 && TREE_CONSTANT_POOL_ADDRESS_P (l->loc)
6317 && SYMBOL_REF_DECL (l->loc)
6318 && DECL_INITIAL (SYMBOL_REF_DECL (l->loc)))
6319 {
6320 initial = DECL_INITIAL (SYMBOL_REF_DECL (l->loc));
6321 if (tree_fits_shwi_p (initial))
6322 {
6323 item = GEN_INT (tree_to_shwi (initial));
6324 item = gen_rtx_CONCAT (indmode, mem, item);
6325 call_arguments
6326 = gen_rtx_EXPR_LIST (VOIDmode, item,
6327 call_arguments);
6328 }
6329 break;
6330 }
6331 }
6332 }
6333 targetm.calls.function_arg_advance (args_so_far, mode,
6334 argtype, true);
6335 t = TREE_CHAIN (t);
6336 }
6337 }
6338
6339 /* Add debug arguments. */
6340 if (fndecl
6341 && TREE_CODE (fndecl) == FUNCTION_DECL
6342 && DECL_HAS_DEBUG_ARGS_P (fndecl))
6343 {
6344 vec<tree, va_gc> **debug_args = decl_debug_args_lookup (fndecl);
6345 if (debug_args)
6346 {
6347 unsigned int ix;
6348 tree param;
6349 for (ix = 0; vec_safe_iterate (*debug_args, ix, &param); ix += 2)
6350 {
6351 rtx item;
6352 tree dtemp = (**debug_args)[ix + 1];
6353 machine_mode mode = DECL_MODE (dtemp);
6354 item = gen_rtx_DEBUG_PARAMETER_REF (mode, param);
6355 item = gen_rtx_CONCAT (mode, item, DECL_RTL_KNOWN_SET (dtemp));
6356 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
6357 call_arguments);
6358 }
6359 }
6360 }
6361
6362 /* Reverse call_arguments chain. */
6363 prev = NULL_RTX;
6364 for (cur = call_arguments; cur; cur = next)
6365 {
6366 next = XEXP (cur, 1);
6367 XEXP (cur, 1) = prev;
6368 prev = cur;
6369 }
6370 call_arguments = prev;
6371
6372 x = get_call_rtx_from (insn);
6373 if (x)
6374 {
6375 x = XEXP (XEXP (x, 0), 0);
6376 if (GET_CODE (x) == SYMBOL_REF)
6377 /* Don't record anything. */;
6378 else if (CONSTANT_P (x))
6379 {
6380 x = gen_rtx_CONCAT (GET_MODE (x) == VOIDmode ? Pmode : GET_MODE (x),
6381 pc_rtx, x);
6382 call_arguments
6383 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6384 }
6385 else
6386 {
6387 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
6388 if (val && cselib_preserved_value_p (val))
6389 {
6390 x = gen_rtx_CONCAT (GET_MODE (x), pc_rtx, val->val_rtx);
6391 call_arguments
6392 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6393 }
6394 }
6395 }
6396 if (this_arg)
6397 {
6398 machine_mode mode
6399 = TYPE_MODE (TREE_TYPE (OBJ_TYPE_REF_EXPR (obj_type_ref)));
6400 rtx clobbered = gen_rtx_MEM (mode, this_arg);
6401 HOST_WIDE_INT token
6402 = tree_to_shwi (OBJ_TYPE_REF_TOKEN (obj_type_ref));
6403 if (token)
6404 clobbered = plus_constant (mode, clobbered,
6405 token * GET_MODE_SIZE (mode));
6406 clobbered = gen_rtx_MEM (mode, clobbered);
6407 x = gen_rtx_CONCAT (mode, gen_rtx_CLOBBER (VOIDmode, pc_rtx), clobbered);
6408 call_arguments
6409 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6410 }
6411 }
6412
6413 /* Callback for cselib_record_sets_hook, that records as micro
6414 operations uses and stores in an insn after cselib_record_sets has
6415 analyzed the sets in an insn, but before it modifies the stored
6416 values in the internal tables, unless cselib_record_sets doesn't
6417 call it directly (perhaps because we're not doing cselib in the
6418 first place, in which case sets and n_sets will be 0). */
6419
6420 static void
6421 add_with_sets (rtx_insn *insn, struct cselib_set *sets, int n_sets)
6422 {
6423 basic_block bb = BLOCK_FOR_INSN (insn);
6424 int n1, n2;
6425 struct count_use_info cui;
6426 micro_operation *mos;
6427
6428 cselib_hook_called = true;
6429
6430 cui.insn = insn;
6431 cui.bb = bb;
6432 cui.sets = sets;
6433 cui.n_sets = n_sets;
6434
6435 n1 = VTI (bb)->mos.length ();
6436 cui.store_p = false;
6437 note_uses (&PATTERN (insn), add_uses_1, &cui);
6438 n2 = VTI (bb)->mos.length () - 1;
6439 mos = VTI (bb)->mos.address ();
6440
6441 /* Order the MO_USEs to be before MO_USE_NO_VARs and MO_VAL_USE, and
6442 MO_VAL_LOC last. */
6443 while (n1 < n2)
6444 {
6445 while (n1 < n2 && mos[n1].type == MO_USE)
6446 n1++;
6447 while (n1 < n2 && mos[n2].type != MO_USE)
6448 n2--;
6449 if (n1 < n2)
6450 std::swap (mos[n1], mos[n2]);
6451 }
6452
6453 n2 = VTI (bb)->mos.length () - 1;
6454 while (n1 < n2)
6455 {
6456 while (n1 < n2 && mos[n1].type != MO_VAL_LOC)
6457 n1++;
6458 while (n1 < n2 && mos[n2].type == MO_VAL_LOC)
6459 n2--;
6460 if (n1 < n2)
6461 std::swap (mos[n1], mos[n2]);
6462 }
6463
6464 if (CALL_P (insn))
6465 {
6466 micro_operation mo;
6467
6468 mo.type = MO_CALL;
6469 mo.insn = insn;
6470 mo.u.loc = call_arguments;
6471 call_arguments = NULL_RTX;
6472
6473 if (dump_file && (dump_flags & TDF_DETAILS))
6474 log_op_type (PATTERN (insn), bb, insn, mo.type, dump_file);
6475 VTI (bb)->mos.safe_push (mo);
6476 }
6477
6478 n1 = VTI (bb)->mos.length ();
6479 /* This will record NEXT_INSN (insn), such that we can
6480 insert notes before it without worrying about any
6481 notes that MO_USEs might emit after the insn. */
6482 cui.store_p = true;
6483 note_stores (PATTERN (insn), add_stores, &cui);
6484 n2 = VTI (bb)->mos.length () - 1;
6485 mos = VTI (bb)->mos.address ();
6486
6487 /* Order the MO_VAL_USEs first (note_stores does nothing
6488 on DEBUG_INSNs, so there are no MO_VAL_LOCs from this
6489 insn), then MO_CLOBBERs, then MO_SET/MO_COPY/MO_VAL_SET. */
6490 while (n1 < n2)
6491 {
6492 while (n1 < n2 && mos[n1].type == MO_VAL_USE)
6493 n1++;
6494 while (n1 < n2 && mos[n2].type != MO_VAL_USE)
6495 n2--;
6496 if (n1 < n2)
6497 std::swap (mos[n1], mos[n2]);
6498 }
6499
6500 n2 = VTI (bb)->mos.length () - 1;
6501 while (n1 < n2)
6502 {
6503 while (n1 < n2 && mos[n1].type == MO_CLOBBER)
6504 n1++;
6505 while (n1 < n2 && mos[n2].type != MO_CLOBBER)
6506 n2--;
6507 if (n1 < n2)
6508 std::swap (mos[n1], mos[n2]);
6509 }
6510 }
6511
6512 static enum var_init_status
6513 find_src_status (dataflow_set *in, rtx src)
6514 {
6515 tree decl = NULL_TREE;
6516 enum var_init_status status = VAR_INIT_STATUS_UNINITIALIZED;
6517
6518 if (! flag_var_tracking_uninit)
6519 status = VAR_INIT_STATUS_INITIALIZED;
6520
6521 if (src && REG_P (src))
6522 decl = var_debug_decl (REG_EXPR (src));
6523 else if (src && MEM_P (src))
6524 decl = var_debug_decl (MEM_EXPR (src));
6525
6526 if (src && decl)
6527 status = get_init_value (in, src, dv_from_decl (decl));
6528
6529 return status;
6530 }
6531
6532 /* SRC is the source of an assignment. Use SET to try to find what
6533 was ultimately assigned to SRC. Return that value if known,
6534 otherwise return SRC itself. */
6535
6536 static rtx
6537 find_src_set_src (dataflow_set *set, rtx src)
6538 {
6539 tree decl = NULL_TREE; /* The variable being copied around. */
6540 rtx set_src = NULL_RTX; /* The value for "decl" stored in "src". */
6541 variable *var;
6542 location_chain *nextp;
6543 int i;
6544 bool found;
6545
6546 if (src && REG_P (src))
6547 decl = var_debug_decl (REG_EXPR (src));
6548 else if (src && MEM_P (src))
6549 decl = var_debug_decl (MEM_EXPR (src));
6550
6551 if (src && decl)
6552 {
6553 decl_or_value dv = dv_from_decl (decl);
6554
6555 var = shared_hash_find (set->vars, dv);
6556 if (var)
6557 {
6558 found = false;
6559 for (i = 0; i < var->n_var_parts && !found; i++)
6560 for (nextp = var->var_part[i].loc_chain; nextp && !found;
6561 nextp = nextp->next)
6562 if (rtx_equal_p (nextp->loc, src))
6563 {
6564 set_src = nextp->set_src;
6565 found = true;
6566 }
6567
6568 }
6569 }
6570
6571 return set_src;
6572 }
6573
6574 /* Compute the changes of variable locations in the basic block BB. */
6575
6576 static bool
6577 compute_bb_dataflow (basic_block bb)
6578 {
6579 unsigned int i;
6580 micro_operation *mo;
6581 bool changed;
6582 dataflow_set old_out;
6583 dataflow_set *in = &VTI (bb)->in;
6584 dataflow_set *out = &VTI (bb)->out;
6585
6586 dataflow_set_init (&old_out);
6587 dataflow_set_copy (&old_out, out);
6588 dataflow_set_copy (out, in);
6589
6590 if (MAY_HAVE_DEBUG_INSNS)
6591 local_get_addr_cache = new hash_map<rtx, rtx>;
6592
6593 FOR_EACH_VEC_ELT (VTI (bb)->mos, i, mo)
6594 {
6595 rtx_insn *insn = mo->insn;
6596
6597 switch (mo->type)
6598 {
6599 case MO_CALL:
6600 dataflow_set_clear_at_call (out, insn);
6601 break;
6602
6603 case MO_USE:
6604 {
6605 rtx loc = mo->u.loc;
6606
6607 if (REG_P (loc))
6608 var_reg_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6609 else if (MEM_P (loc))
6610 var_mem_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6611 }
6612 break;
6613
6614 case MO_VAL_LOC:
6615 {
6616 rtx loc = mo->u.loc;
6617 rtx val, vloc;
6618 tree var;
6619
6620 if (GET_CODE (loc) == CONCAT)
6621 {
6622 val = XEXP (loc, 0);
6623 vloc = XEXP (loc, 1);
6624 }
6625 else
6626 {
6627 val = NULL_RTX;
6628 vloc = loc;
6629 }
6630
6631 var = PAT_VAR_LOCATION_DECL (vloc);
6632
6633 clobber_variable_part (out, NULL_RTX,
6634 dv_from_decl (var), 0, NULL_RTX);
6635 if (val)
6636 {
6637 if (VAL_NEEDS_RESOLUTION (loc))
6638 val_resolve (out, val, PAT_VAR_LOCATION_LOC (vloc), insn);
6639 set_variable_part (out, val, dv_from_decl (var), 0,
6640 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6641 INSERT);
6642 }
6643 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
6644 set_variable_part (out, PAT_VAR_LOCATION_LOC (vloc),
6645 dv_from_decl (var), 0,
6646 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6647 INSERT);
6648 }
6649 break;
6650
6651 case MO_VAL_USE:
6652 {
6653 rtx loc = mo->u.loc;
6654 rtx val, vloc, uloc;
6655
6656 vloc = uloc = XEXP (loc, 1);
6657 val = XEXP (loc, 0);
6658
6659 if (GET_CODE (val) == CONCAT)
6660 {
6661 uloc = XEXP (val, 1);
6662 val = XEXP (val, 0);
6663 }
6664
6665 if (VAL_NEEDS_RESOLUTION (loc))
6666 val_resolve (out, val, vloc, insn);
6667 else
6668 val_store (out, val, uloc, insn, false);
6669
6670 if (VAL_HOLDS_TRACK_EXPR (loc))
6671 {
6672 if (GET_CODE (uloc) == REG)
6673 var_reg_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6674 NULL);
6675 else if (GET_CODE (uloc) == MEM)
6676 var_mem_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6677 NULL);
6678 }
6679 }
6680 break;
6681
6682 case MO_VAL_SET:
6683 {
6684 rtx loc = mo->u.loc;
6685 rtx val, vloc, uloc;
6686 rtx dstv, srcv;
6687
6688 vloc = loc;
6689 uloc = XEXP (vloc, 1);
6690 val = XEXP (vloc, 0);
6691 vloc = uloc;
6692
6693 if (GET_CODE (uloc) == SET)
6694 {
6695 dstv = SET_DEST (uloc);
6696 srcv = SET_SRC (uloc);
6697 }
6698 else
6699 {
6700 dstv = uloc;
6701 srcv = NULL;
6702 }
6703
6704 if (GET_CODE (val) == CONCAT)
6705 {
6706 dstv = vloc = XEXP (val, 1);
6707 val = XEXP (val, 0);
6708 }
6709
6710 if (GET_CODE (vloc) == SET)
6711 {
6712 srcv = SET_SRC (vloc);
6713
6714 gcc_assert (val != srcv);
6715 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
6716
6717 dstv = vloc = SET_DEST (vloc);
6718
6719 if (VAL_NEEDS_RESOLUTION (loc))
6720 val_resolve (out, val, srcv, insn);
6721 }
6722 else if (VAL_NEEDS_RESOLUTION (loc))
6723 {
6724 gcc_assert (GET_CODE (uloc) == SET
6725 && GET_CODE (SET_SRC (uloc)) == REG);
6726 val_resolve (out, val, SET_SRC (uloc), insn);
6727 }
6728
6729 if (VAL_HOLDS_TRACK_EXPR (loc))
6730 {
6731 if (VAL_EXPR_IS_CLOBBERED (loc))
6732 {
6733 if (REG_P (uloc))
6734 var_reg_delete (out, uloc, true);
6735 else if (MEM_P (uloc))
6736 {
6737 gcc_assert (MEM_P (dstv));
6738 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (uloc));
6739 var_mem_delete (out, dstv, true);
6740 }
6741 }
6742 else
6743 {
6744 bool copied_p = VAL_EXPR_IS_COPIED (loc);
6745 rtx src = NULL, dst = uloc;
6746 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
6747
6748 if (GET_CODE (uloc) == SET)
6749 {
6750 src = SET_SRC (uloc);
6751 dst = SET_DEST (uloc);
6752 }
6753
6754 if (copied_p)
6755 {
6756 if (flag_var_tracking_uninit)
6757 {
6758 status = find_src_status (in, src);
6759
6760 if (status == VAR_INIT_STATUS_UNKNOWN)
6761 status = find_src_status (out, src);
6762 }
6763
6764 src = find_src_set_src (in, src);
6765 }
6766
6767 if (REG_P (dst))
6768 var_reg_delete_and_set (out, dst, !copied_p,
6769 status, srcv);
6770 else if (MEM_P (dst))
6771 {
6772 gcc_assert (MEM_P (dstv));
6773 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (dst));
6774 var_mem_delete_and_set (out, dstv, !copied_p,
6775 status, srcv);
6776 }
6777 }
6778 }
6779 else if (REG_P (uloc))
6780 var_regno_delete (out, REGNO (uloc));
6781 else if (MEM_P (uloc))
6782 {
6783 gcc_checking_assert (GET_CODE (vloc) == MEM);
6784 gcc_checking_assert (dstv == vloc);
6785 if (dstv != vloc)
6786 clobber_overlapping_mems (out, vloc);
6787 }
6788
6789 val_store (out, val, dstv, insn, true);
6790 }
6791 break;
6792
6793 case MO_SET:
6794 {
6795 rtx loc = mo->u.loc;
6796 rtx set_src = NULL;
6797
6798 if (GET_CODE (loc) == SET)
6799 {
6800 set_src = SET_SRC (loc);
6801 loc = SET_DEST (loc);
6802 }
6803
6804 if (REG_P (loc))
6805 var_reg_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6806 set_src);
6807 else if (MEM_P (loc))
6808 var_mem_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6809 set_src);
6810 }
6811 break;
6812
6813 case MO_COPY:
6814 {
6815 rtx loc = mo->u.loc;
6816 enum var_init_status src_status;
6817 rtx set_src = NULL;
6818
6819 if (GET_CODE (loc) == SET)
6820 {
6821 set_src = SET_SRC (loc);
6822 loc = SET_DEST (loc);
6823 }
6824
6825 if (! flag_var_tracking_uninit)
6826 src_status = VAR_INIT_STATUS_INITIALIZED;
6827 else
6828 {
6829 src_status = find_src_status (in, set_src);
6830
6831 if (src_status == VAR_INIT_STATUS_UNKNOWN)
6832 src_status = find_src_status (out, set_src);
6833 }
6834
6835 set_src = find_src_set_src (in, set_src);
6836
6837 if (REG_P (loc))
6838 var_reg_delete_and_set (out, loc, false, src_status, set_src);
6839 else if (MEM_P (loc))
6840 var_mem_delete_and_set (out, loc, false, src_status, set_src);
6841 }
6842 break;
6843
6844 case MO_USE_NO_VAR:
6845 {
6846 rtx loc = mo->u.loc;
6847
6848 if (REG_P (loc))
6849 var_reg_delete (out, loc, false);
6850 else if (MEM_P (loc))
6851 var_mem_delete (out, loc, false);
6852 }
6853 break;
6854
6855 case MO_CLOBBER:
6856 {
6857 rtx loc = mo->u.loc;
6858
6859 if (REG_P (loc))
6860 var_reg_delete (out, loc, true);
6861 else if (MEM_P (loc))
6862 var_mem_delete (out, loc, true);
6863 }
6864 break;
6865
6866 case MO_ADJUST:
6867 out->stack_adjust += mo->u.adjust;
6868 break;
6869 }
6870 }
6871
6872 if (MAY_HAVE_DEBUG_INSNS)
6873 {
6874 delete local_get_addr_cache;
6875 local_get_addr_cache = NULL;
6876
6877 dataflow_set_equiv_regs (out);
6878 shared_hash_htab (out->vars)
6879 ->traverse <dataflow_set *, canonicalize_values_mark> (out);
6880 shared_hash_htab (out->vars)
6881 ->traverse <dataflow_set *, canonicalize_values_star> (out);
6882 if (flag_checking)
6883 shared_hash_htab (out->vars)
6884 ->traverse <dataflow_set *, canonicalize_loc_order_check> (out);
6885 }
6886 changed = dataflow_set_different (&old_out, out);
6887 dataflow_set_destroy (&old_out);
6888 return changed;
6889 }
6890
6891 /* Find the locations of variables in the whole function. */
6892
6893 static bool
6894 vt_find_locations (void)
6895 {
6896 bb_heap_t *worklist = new bb_heap_t (LONG_MIN);
6897 bb_heap_t *pending = new bb_heap_t (LONG_MIN);
6898 sbitmap visited, in_worklist, in_pending;
6899 basic_block bb;
6900 edge e;
6901 int *bb_order;
6902 int *rc_order;
6903 int i;
6904 int htabsz = 0;
6905 int htabmax = PARAM_VALUE (PARAM_MAX_VARTRACK_SIZE);
6906 bool success = true;
6907
6908 timevar_push (TV_VAR_TRACKING_DATAFLOW);
6909 /* Compute reverse completion order of depth first search of the CFG
6910 so that the data-flow runs faster. */
6911 rc_order = XNEWVEC (int, n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS);
6912 bb_order = XNEWVEC (int, last_basic_block_for_fn (cfun));
6913 pre_and_rev_post_order_compute (NULL, rc_order, false);
6914 for (i = 0; i < n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS; i++)
6915 bb_order[rc_order[i]] = i;
6916 free (rc_order);
6917
6918 visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
6919 in_worklist = sbitmap_alloc (last_basic_block_for_fn (cfun));
6920 in_pending = sbitmap_alloc (last_basic_block_for_fn (cfun));
6921 bitmap_clear (in_worklist);
6922
6923 FOR_EACH_BB_FN (bb, cfun)
6924 pending->insert (bb_order[bb->index], bb);
6925 bitmap_ones (in_pending);
6926
6927 while (success && !pending->empty ())
6928 {
6929 std::swap (worklist, pending);
6930 std::swap (in_worklist, in_pending);
6931
6932 bitmap_clear (visited);
6933
6934 while (!worklist->empty ())
6935 {
6936 bb = worklist->extract_min ();
6937 bitmap_clear_bit (in_worklist, bb->index);
6938 gcc_assert (!bitmap_bit_p (visited, bb->index));
6939 if (!bitmap_bit_p (visited, bb->index))
6940 {
6941 bool changed;
6942 edge_iterator ei;
6943 int oldinsz, oldoutsz;
6944
6945 bitmap_set_bit (visited, bb->index);
6946
6947 if (VTI (bb)->in.vars)
6948 {
6949 htabsz
6950 -= shared_hash_htab (VTI (bb)->in.vars)->size ()
6951 + shared_hash_htab (VTI (bb)->out.vars)->size ();
6952 oldinsz = shared_hash_htab (VTI (bb)->in.vars)->elements ();
6953 oldoutsz
6954 = shared_hash_htab (VTI (bb)->out.vars)->elements ();
6955 }
6956 else
6957 oldinsz = oldoutsz = 0;
6958
6959 if (MAY_HAVE_DEBUG_INSNS)
6960 {
6961 dataflow_set *in = &VTI (bb)->in, *first_out = NULL;
6962 bool first = true, adjust = false;
6963
6964 /* Calculate the IN set as the intersection of
6965 predecessor OUT sets. */
6966
6967 dataflow_set_clear (in);
6968 dst_can_be_shared = true;
6969
6970 FOR_EACH_EDGE (e, ei, bb->preds)
6971 if (!VTI (e->src)->flooded)
6972 gcc_assert (bb_order[bb->index]
6973 <= bb_order[e->src->index]);
6974 else if (first)
6975 {
6976 dataflow_set_copy (in, &VTI (e->src)->out);
6977 first_out = &VTI (e->src)->out;
6978 first = false;
6979 }
6980 else
6981 {
6982 dataflow_set_merge (in, &VTI (e->src)->out);
6983 adjust = true;
6984 }
6985
6986 if (adjust)
6987 {
6988 dataflow_post_merge_adjust (in, &VTI (bb)->permp);
6989
6990 if (flag_checking)
6991 /* Merge and merge_adjust should keep entries in
6992 canonical order. */
6993 shared_hash_htab (in->vars)
6994 ->traverse <dataflow_set *,
6995 canonicalize_loc_order_check> (in);
6996
6997 if (dst_can_be_shared)
6998 {
6999 shared_hash_destroy (in->vars);
7000 in->vars = shared_hash_copy (first_out->vars);
7001 }
7002 }
7003
7004 VTI (bb)->flooded = true;
7005 }
7006 else
7007 {
7008 /* Calculate the IN set as union of predecessor OUT sets. */
7009 dataflow_set_clear (&VTI (bb)->in);
7010 FOR_EACH_EDGE (e, ei, bb->preds)
7011 dataflow_set_union (&VTI (bb)->in, &VTI (e->src)->out);
7012 }
7013
7014 changed = compute_bb_dataflow (bb);
7015 htabsz += shared_hash_htab (VTI (bb)->in.vars)->size ()
7016 + shared_hash_htab (VTI (bb)->out.vars)->size ();
7017
7018 if (htabmax && htabsz > htabmax)
7019 {
7020 if (MAY_HAVE_DEBUG_INSNS)
7021 inform (DECL_SOURCE_LOCATION (cfun->decl),
7022 "variable tracking size limit exceeded with "
7023 "-fvar-tracking-assignments, retrying without");
7024 else
7025 inform (DECL_SOURCE_LOCATION (cfun->decl),
7026 "variable tracking size limit exceeded");
7027 success = false;
7028 break;
7029 }
7030
7031 if (changed)
7032 {
7033 FOR_EACH_EDGE (e, ei, bb->succs)
7034 {
7035 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
7036 continue;
7037
7038 if (bitmap_bit_p (visited, e->dest->index))
7039 {
7040 if (!bitmap_bit_p (in_pending, e->dest->index))
7041 {
7042 /* Send E->DEST to next round. */
7043 bitmap_set_bit (in_pending, e->dest->index);
7044 pending->insert (bb_order[e->dest->index],
7045 e->dest);
7046 }
7047 }
7048 else if (!bitmap_bit_p (in_worklist, e->dest->index))
7049 {
7050 /* Add E->DEST to current round. */
7051 bitmap_set_bit (in_worklist, e->dest->index);
7052 worklist->insert (bb_order[e->dest->index],
7053 e->dest);
7054 }
7055 }
7056 }
7057
7058 if (dump_file)
7059 fprintf (dump_file,
7060 "BB %i: in %i (was %i), out %i (was %i), rem %i + %i, tsz %i\n",
7061 bb->index,
7062 (int)shared_hash_htab (VTI (bb)->in.vars)->size (),
7063 oldinsz,
7064 (int)shared_hash_htab (VTI (bb)->out.vars)->size (),
7065 oldoutsz,
7066 (int)worklist->nodes (), (int)pending->nodes (),
7067 htabsz);
7068
7069 if (dump_file && (dump_flags & TDF_DETAILS))
7070 {
7071 fprintf (dump_file, "BB %i IN:\n", bb->index);
7072 dump_dataflow_set (&VTI (bb)->in);
7073 fprintf (dump_file, "BB %i OUT:\n", bb->index);
7074 dump_dataflow_set (&VTI (bb)->out);
7075 }
7076 }
7077 }
7078 }
7079
7080 if (success && MAY_HAVE_DEBUG_INSNS)
7081 FOR_EACH_BB_FN (bb, cfun)
7082 gcc_assert (VTI (bb)->flooded);
7083
7084 free (bb_order);
7085 delete worklist;
7086 delete pending;
7087 sbitmap_free (visited);
7088 sbitmap_free (in_worklist);
7089 sbitmap_free (in_pending);
7090
7091 timevar_pop (TV_VAR_TRACKING_DATAFLOW);
7092 return success;
7093 }
7094
7095 /* Print the content of the LIST to dump file. */
7096
7097 static void
7098 dump_attrs_list (attrs *list)
7099 {
7100 for (; list; list = list->next)
7101 {
7102 if (dv_is_decl_p (list->dv))
7103 print_mem_expr (dump_file, dv_as_decl (list->dv));
7104 else
7105 print_rtl_single (dump_file, dv_as_value (list->dv));
7106 fprintf (dump_file, "+" HOST_WIDE_INT_PRINT_DEC, list->offset);
7107 }
7108 fprintf (dump_file, "\n");
7109 }
7110
7111 /* Print the information about variable *SLOT to dump file. */
7112
7113 int
7114 dump_var_tracking_slot (variable **slot, void *data ATTRIBUTE_UNUSED)
7115 {
7116 variable *var = *slot;
7117
7118 dump_var (var);
7119
7120 /* Continue traversing the hash table. */
7121 return 1;
7122 }
7123
7124 /* Print the information about variable VAR to dump file. */
7125
7126 static void
7127 dump_var (variable *var)
7128 {
7129 int i;
7130 location_chain *node;
7131
7132 if (dv_is_decl_p (var->dv))
7133 {
7134 const_tree decl = dv_as_decl (var->dv);
7135
7136 if (DECL_NAME (decl))
7137 {
7138 fprintf (dump_file, " name: %s",
7139 IDENTIFIER_POINTER (DECL_NAME (decl)));
7140 if (dump_flags & TDF_UID)
7141 fprintf (dump_file, "D.%u", DECL_UID (decl));
7142 }
7143 else if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
7144 fprintf (dump_file, " name: D#%u", DEBUG_TEMP_UID (decl));
7145 else
7146 fprintf (dump_file, " name: D.%u", DECL_UID (decl));
7147 fprintf (dump_file, "\n");
7148 }
7149 else
7150 {
7151 fputc (' ', dump_file);
7152 print_rtl_single (dump_file, dv_as_value (var->dv));
7153 }
7154
7155 for (i = 0; i < var->n_var_parts; i++)
7156 {
7157 fprintf (dump_file, " offset %ld\n",
7158 (long)(var->onepart ? 0 : VAR_PART_OFFSET (var, i)));
7159 for (node = var->var_part[i].loc_chain; node; node = node->next)
7160 {
7161 fprintf (dump_file, " ");
7162 if (node->init == VAR_INIT_STATUS_UNINITIALIZED)
7163 fprintf (dump_file, "[uninit]");
7164 print_rtl_single (dump_file, node->loc);
7165 }
7166 }
7167 }
7168
7169 /* Print the information about variables from hash table VARS to dump file. */
7170
7171 static void
7172 dump_vars (variable_table_type *vars)
7173 {
7174 if (vars->elements () > 0)
7175 {
7176 fprintf (dump_file, "Variables:\n");
7177 vars->traverse <void *, dump_var_tracking_slot> (NULL);
7178 }
7179 }
7180
7181 /* Print the dataflow set SET to dump file. */
7182
7183 static void
7184 dump_dataflow_set (dataflow_set *set)
7185 {
7186 int i;
7187
7188 fprintf (dump_file, "Stack adjustment: " HOST_WIDE_INT_PRINT_DEC "\n",
7189 set->stack_adjust);
7190 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
7191 {
7192 if (set->regs[i])
7193 {
7194 fprintf (dump_file, "Reg %d:", i);
7195 dump_attrs_list (set->regs[i]);
7196 }
7197 }
7198 dump_vars (shared_hash_htab (set->vars));
7199 fprintf (dump_file, "\n");
7200 }
7201
7202 /* Print the IN and OUT sets for each basic block to dump file. */
7203
7204 static void
7205 dump_dataflow_sets (void)
7206 {
7207 basic_block bb;
7208
7209 FOR_EACH_BB_FN (bb, cfun)
7210 {
7211 fprintf (dump_file, "\nBasic block %d:\n", bb->index);
7212 fprintf (dump_file, "IN:\n");
7213 dump_dataflow_set (&VTI (bb)->in);
7214 fprintf (dump_file, "OUT:\n");
7215 dump_dataflow_set (&VTI (bb)->out);
7216 }
7217 }
7218
7219 /* Return the variable for DV in dropped_values, inserting one if
7220 requested with INSERT. */
7221
7222 static inline variable *
7223 variable_from_dropped (decl_or_value dv, enum insert_option insert)
7224 {
7225 variable **slot;
7226 variable *empty_var;
7227 onepart_enum onepart;
7228
7229 slot = dropped_values->find_slot_with_hash (dv, dv_htab_hash (dv), insert);
7230
7231 if (!slot)
7232 return NULL;
7233
7234 if (*slot)
7235 return *slot;
7236
7237 gcc_checking_assert (insert == INSERT);
7238
7239 onepart = dv_onepart_p (dv);
7240
7241 gcc_checking_assert (onepart == ONEPART_VALUE || onepart == ONEPART_DEXPR);
7242
7243 empty_var = onepart_pool_allocate (onepart);
7244 empty_var->dv = dv;
7245 empty_var->refcount = 1;
7246 empty_var->n_var_parts = 0;
7247 empty_var->onepart = onepart;
7248 empty_var->in_changed_variables = false;
7249 empty_var->var_part[0].loc_chain = NULL;
7250 empty_var->var_part[0].cur_loc = NULL;
7251 VAR_LOC_1PAUX (empty_var) = NULL;
7252 set_dv_changed (dv, true);
7253
7254 *slot = empty_var;
7255
7256 return empty_var;
7257 }
7258
7259 /* Recover the one-part aux from dropped_values. */
7260
7261 static struct onepart_aux *
7262 recover_dropped_1paux (variable *var)
7263 {
7264 variable *dvar;
7265
7266 gcc_checking_assert (var->onepart);
7267
7268 if (VAR_LOC_1PAUX (var))
7269 return VAR_LOC_1PAUX (var);
7270
7271 if (var->onepart == ONEPART_VDECL)
7272 return NULL;
7273
7274 dvar = variable_from_dropped (var->dv, NO_INSERT);
7275
7276 if (!dvar)
7277 return NULL;
7278
7279 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (dvar);
7280 VAR_LOC_1PAUX (dvar) = NULL;
7281
7282 return VAR_LOC_1PAUX (var);
7283 }
7284
7285 /* Add variable VAR to the hash table of changed variables and
7286 if it has no locations delete it from SET's hash table. */
7287
7288 static void
7289 variable_was_changed (variable *var, dataflow_set *set)
7290 {
7291 hashval_t hash = dv_htab_hash (var->dv);
7292
7293 if (emit_notes)
7294 {
7295 variable **slot;
7296
7297 /* Remember this decl or VALUE has been added to changed_variables. */
7298 set_dv_changed (var->dv, true);
7299
7300 slot = changed_variables->find_slot_with_hash (var->dv, hash, INSERT);
7301
7302 if (*slot)
7303 {
7304 variable *old_var = *slot;
7305 gcc_assert (old_var->in_changed_variables);
7306 old_var->in_changed_variables = false;
7307 if (var != old_var && var->onepart)
7308 {
7309 /* Restore the auxiliary info from an empty variable
7310 previously created for changed_variables, so it is
7311 not lost. */
7312 gcc_checking_assert (!VAR_LOC_1PAUX (var));
7313 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (old_var);
7314 VAR_LOC_1PAUX (old_var) = NULL;
7315 }
7316 variable_htab_free (*slot);
7317 }
7318
7319 if (set && var->n_var_parts == 0)
7320 {
7321 onepart_enum onepart = var->onepart;
7322 variable *empty_var = NULL;
7323 variable **dslot = NULL;
7324
7325 if (onepart == ONEPART_VALUE || onepart == ONEPART_DEXPR)
7326 {
7327 dslot = dropped_values->find_slot_with_hash (var->dv,
7328 dv_htab_hash (var->dv),
7329 INSERT);
7330 empty_var = *dslot;
7331
7332 if (empty_var)
7333 {
7334 gcc_checking_assert (!empty_var->in_changed_variables);
7335 if (!VAR_LOC_1PAUX (var))
7336 {
7337 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (empty_var);
7338 VAR_LOC_1PAUX (empty_var) = NULL;
7339 }
7340 else
7341 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var));
7342 }
7343 }
7344
7345 if (!empty_var)
7346 {
7347 empty_var = onepart_pool_allocate (onepart);
7348 empty_var->dv = var->dv;
7349 empty_var->refcount = 1;
7350 empty_var->n_var_parts = 0;
7351 empty_var->onepart = onepart;
7352 if (dslot)
7353 {
7354 empty_var->refcount++;
7355 *dslot = empty_var;
7356 }
7357 }
7358 else
7359 empty_var->refcount++;
7360 empty_var->in_changed_variables = true;
7361 *slot = empty_var;
7362 if (onepart)
7363 {
7364 empty_var->var_part[0].loc_chain = NULL;
7365 empty_var->var_part[0].cur_loc = NULL;
7366 VAR_LOC_1PAUX (empty_var) = VAR_LOC_1PAUX (var);
7367 VAR_LOC_1PAUX (var) = NULL;
7368 }
7369 goto drop_var;
7370 }
7371 else
7372 {
7373 if (var->onepart && !VAR_LOC_1PAUX (var))
7374 recover_dropped_1paux (var);
7375 var->refcount++;
7376 var->in_changed_variables = true;
7377 *slot = var;
7378 }
7379 }
7380 else
7381 {
7382 gcc_assert (set);
7383 if (var->n_var_parts == 0)
7384 {
7385 variable **slot;
7386
7387 drop_var:
7388 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
7389 if (slot)
7390 {
7391 if (shared_hash_shared (set->vars))
7392 slot = shared_hash_find_slot_unshare (&set->vars, var->dv,
7393 NO_INSERT);
7394 shared_hash_htab (set->vars)->clear_slot (slot);
7395 }
7396 }
7397 }
7398 }
7399
7400 /* Look for the index in VAR->var_part corresponding to OFFSET.
7401 Return -1 if not found. If INSERTION_POINT is non-NULL, the
7402 referenced int will be set to the index that the part has or should
7403 have, if it should be inserted. */
7404
7405 static inline int
7406 find_variable_location_part (variable *var, HOST_WIDE_INT offset,
7407 int *insertion_point)
7408 {
7409 int pos, low, high;
7410
7411 if (var->onepart)
7412 {
7413 if (offset != 0)
7414 return -1;
7415
7416 if (insertion_point)
7417 *insertion_point = 0;
7418
7419 return var->n_var_parts - 1;
7420 }
7421
7422 /* Find the location part. */
7423 low = 0;
7424 high = var->n_var_parts;
7425 while (low != high)
7426 {
7427 pos = (low + high) / 2;
7428 if (VAR_PART_OFFSET (var, pos) < offset)
7429 low = pos + 1;
7430 else
7431 high = pos;
7432 }
7433 pos = low;
7434
7435 if (insertion_point)
7436 *insertion_point = pos;
7437
7438 if (pos < var->n_var_parts && VAR_PART_OFFSET (var, pos) == offset)
7439 return pos;
7440
7441 return -1;
7442 }
7443
7444 static variable **
7445 set_slot_part (dataflow_set *set, rtx loc, variable **slot,
7446 decl_or_value dv, HOST_WIDE_INT offset,
7447 enum var_init_status initialized, rtx set_src)
7448 {
7449 int pos;
7450 location_chain *node, *next;
7451 location_chain **nextp;
7452 variable *var;
7453 onepart_enum onepart;
7454
7455 var = *slot;
7456
7457 if (var)
7458 onepart = var->onepart;
7459 else
7460 onepart = dv_onepart_p (dv);
7461
7462 gcc_checking_assert (offset == 0 || !onepart);
7463 gcc_checking_assert (loc != dv_as_opaque (dv));
7464
7465 if (! flag_var_tracking_uninit)
7466 initialized = VAR_INIT_STATUS_INITIALIZED;
7467
7468 if (!var)
7469 {
7470 /* Create new variable information. */
7471 var = onepart_pool_allocate (onepart);
7472 var->dv = dv;
7473 var->refcount = 1;
7474 var->n_var_parts = 1;
7475 var->onepart = onepart;
7476 var->in_changed_variables = false;
7477 if (var->onepart)
7478 VAR_LOC_1PAUX (var) = NULL;
7479 else
7480 VAR_PART_OFFSET (var, 0) = offset;
7481 var->var_part[0].loc_chain = NULL;
7482 var->var_part[0].cur_loc = NULL;
7483 *slot = var;
7484 pos = 0;
7485 nextp = &var->var_part[0].loc_chain;
7486 }
7487 else if (onepart)
7488 {
7489 int r = -1, c = 0;
7490
7491 gcc_assert (dv_as_opaque (var->dv) == dv_as_opaque (dv));
7492
7493 pos = 0;
7494
7495 if (GET_CODE (loc) == VALUE)
7496 {
7497 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7498 nextp = &node->next)
7499 if (GET_CODE (node->loc) == VALUE)
7500 {
7501 if (node->loc == loc)
7502 {
7503 r = 0;
7504 break;
7505 }
7506 if (canon_value_cmp (node->loc, loc))
7507 c++;
7508 else
7509 {
7510 r = 1;
7511 break;
7512 }
7513 }
7514 else if (REG_P (node->loc) || MEM_P (node->loc))
7515 c++;
7516 else
7517 {
7518 r = 1;
7519 break;
7520 }
7521 }
7522 else if (REG_P (loc))
7523 {
7524 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7525 nextp = &node->next)
7526 if (REG_P (node->loc))
7527 {
7528 if (REGNO (node->loc) < REGNO (loc))
7529 c++;
7530 else
7531 {
7532 if (REGNO (node->loc) == REGNO (loc))
7533 r = 0;
7534 else
7535 r = 1;
7536 break;
7537 }
7538 }
7539 else
7540 {
7541 r = 1;
7542 break;
7543 }
7544 }
7545 else if (MEM_P (loc))
7546 {
7547 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7548 nextp = &node->next)
7549 if (REG_P (node->loc))
7550 c++;
7551 else if (MEM_P (node->loc))
7552 {
7553 if ((r = loc_cmp (XEXP (node->loc, 0), XEXP (loc, 0))) >= 0)
7554 break;
7555 else
7556 c++;
7557 }
7558 else
7559 {
7560 r = 1;
7561 break;
7562 }
7563 }
7564 else
7565 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7566 nextp = &node->next)
7567 if ((r = loc_cmp (node->loc, loc)) >= 0)
7568 break;
7569 else
7570 c++;
7571
7572 if (r == 0)
7573 return slot;
7574
7575 if (shared_var_p (var, set->vars))
7576 {
7577 slot = unshare_variable (set, slot, var, initialized);
7578 var = *slot;
7579 for (nextp = &var->var_part[0].loc_chain; c;
7580 nextp = &(*nextp)->next)
7581 c--;
7582 gcc_assert ((!node && !*nextp) || node->loc == (*nextp)->loc);
7583 }
7584 }
7585 else
7586 {
7587 int inspos = 0;
7588
7589 gcc_assert (dv_as_decl (var->dv) == dv_as_decl (dv));
7590
7591 pos = find_variable_location_part (var, offset, &inspos);
7592
7593 if (pos >= 0)
7594 {
7595 node = var->var_part[pos].loc_chain;
7596
7597 if (node
7598 && ((REG_P (node->loc) && REG_P (loc)
7599 && REGNO (node->loc) == REGNO (loc))
7600 || rtx_equal_p (node->loc, loc)))
7601 {
7602 /* LOC is in the beginning of the chain so we have nothing
7603 to do. */
7604 if (node->init < initialized)
7605 node->init = initialized;
7606 if (set_src != NULL)
7607 node->set_src = set_src;
7608
7609 return slot;
7610 }
7611 else
7612 {
7613 /* We have to make a copy of a shared variable. */
7614 if (shared_var_p (var, set->vars))
7615 {
7616 slot = unshare_variable (set, slot, var, initialized);
7617 var = *slot;
7618 }
7619 }
7620 }
7621 else
7622 {
7623 /* We have not found the location part, new one will be created. */
7624
7625 /* We have to make a copy of the shared variable. */
7626 if (shared_var_p (var, set->vars))
7627 {
7628 slot = unshare_variable (set, slot, var, initialized);
7629 var = *slot;
7630 }
7631
7632 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
7633 thus there are at most MAX_VAR_PARTS different offsets. */
7634 gcc_assert (var->n_var_parts < MAX_VAR_PARTS
7635 && (!var->n_var_parts || !onepart));
7636
7637 /* We have to move the elements of array starting at index
7638 inspos to the next position. */
7639 for (pos = var->n_var_parts; pos > inspos; pos--)
7640 var->var_part[pos] = var->var_part[pos - 1];
7641
7642 var->n_var_parts++;
7643 gcc_checking_assert (!onepart);
7644 VAR_PART_OFFSET (var, pos) = offset;
7645 var->var_part[pos].loc_chain = NULL;
7646 var->var_part[pos].cur_loc = NULL;
7647 }
7648
7649 /* Delete the location from the list. */
7650 nextp = &var->var_part[pos].loc_chain;
7651 for (node = var->var_part[pos].loc_chain; node; node = next)
7652 {
7653 next = node->next;
7654 if ((REG_P (node->loc) && REG_P (loc)
7655 && REGNO (node->loc) == REGNO (loc))
7656 || rtx_equal_p (node->loc, loc))
7657 {
7658 /* Save these values, to assign to the new node, before
7659 deleting this one. */
7660 if (node->init > initialized)
7661 initialized = node->init;
7662 if (node->set_src != NULL && set_src == NULL)
7663 set_src = node->set_src;
7664 if (var->var_part[pos].cur_loc == node->loc)
7665 var->var_part[pos].cur_loc = NULL;
7666 delete node;
7667 *nextp = next;
7668 break;
7669 }
7670 else
7671 nextp = &node->next;
7672 }
7673
7674 nextp = &var->var_part[pos].loc_chain;
7675 }
7676
7677 /* Add the location to the beginning. */
7678 node = new location_chain;
7679 node->loc = loc;
7680 node->init = initialized;
7681 node->set_src = set_src;
7682 node->next = *nextp;
7683 *nextp = node;
7684
7685 /* If no location was emitted do so. */
7686 if (var->var_part[pos].cur_loc == NULL)
7687 variable_was_changed (var, set);
7688
7689 return slot;
7690 }
7691
7692 /* Set the part of variable's location in the dataflow set SET. The
7693 variable part is specified by variable's declaration in DV and
7694 offset OFFSET and the part's location by LOC. IOPT should be
7695 NO_INSERT if the variable is known to be in SET already and the
7696 variable hash table must not be resized, and INSERT otherwise. */
7697
7698 static void
7699 set_variable_part (dataflow_set *set, rtx loc,
7700 decl_or_value dv, HOST_WIDE_INT offset,
7701 enum var_init_status initialized, rtx set_src,
7702 enum insert_option iopt)
7703 {
7704 variable **slot;
7705
7706 if (iopt == NO_INSERT)
7707 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7708 else
7709 {
7710 slot = shared_hash_find_slot (set->vars, dv);
7711 if (!slot)
7712 slot = shared_hash_find_slot_unshare (&set->vars, dv, iopt);
7713 }
7714 set_slot_part (set, loc, slot, dv, offset, initialized, set_src);
7715 }
7716
7717 /* Remove all recorded register locations for the given variable part
7718 from dataflow set SET, except for those that are identical to loc.
7719 The variable part is specified by variable's declaration or value
7720 DV and offset OFFSET. */
7721
7722 static variable **
7723 clobber_slot_part (dataflow_set *set, rtx loc, variable **slot,
7724 HOST_WIDE_INT offset, rtx set_src)
7725 {
7726 variable *var = *slot;
7727 int pos = find_variable_location_part (var, offset, NULL);
7728
7729 if (pos >= 0)
7730 {
7731 location_chain *node, *next;
7732
7733 /* Remove the register locations from the dataflow set. */
7734 next = var->var_part[pos].loc_chain;
7735 for (node = next; node; node = next)
7736 {
7737 next = node->next;
7738 if (node->loc != loc
7739 && (!flag_var_tracking_uninit
7740 || !set_src
7741 || MEM_P (set_src)
7742 || !rtx_equal_p (set_src, node->set_src)))
7743 {
7744 if (REG_P (node->loc))
7745 {
7746 attrs *anode, *anext;
7747 attrs **anextp;
7748
7749 /* Remove the variable part from the register's
7750 list, but preserve any other variable parts
7751 that might be regarded as live in that same
7752 register. */
7753 anextp = &set->regs[REGNO (node->loc)];
7754 for (anode = *anextp; anode; anode = anext)
7755 {
7756 anext = anode->next;
7757 if (dv_as_opaque (anode->dv) == dv_as_opaque (var->dv)
7758 && anode->offset == offset)
7759 {
7760 delete anode;
7761 *anextp = anext;
7762 }
7763 else
7764 anextp = &anode->next;
7765 }
7766 }
7767
7768 slot = delete_slot_part (set, node->loc, slot, offset);
7769 }
7770 }
7771 }
7772
7773 return slot;
7774 }
7775
7776 /* Remove all recorded register locations for the given variable part
7777 from dataflow set SET, except for those that are identical to loc.
7778 The variable part is specified by variable's declaration or value
7779 DV and offset OFFSET. */
7780
7781 static void
7782 clobber_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
7783 HOST_WIDE_INT offset, rtx set_src)
7784 {
7785 variable **slot;
7786
7787 if (!dv_as_opaque (dv)
7788 || (!dv_is_value_p (dv) && ! DECL_P (dv_as_decl (dv))))
7789 return;
7790
7791 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7792 if (!slot)
7793 return;
7794
7795 clobber_slot_part (set, loc, slot, offset, set_src);
7796 }
7797
7798 /* Delete the part of variable's location from dataflow set SET. The
7799 variable part is specified by its SET->vars slot SLOT and offset
7800 OFFSET and the part's location by LOC. */
7801
7802 static variable **
7803 delete_slot_part (dataflow_set *set, rtx loc, variable **slot,
7804 HOST_WIDE_INT offset)
7805 {
7806 variable *var = *slot;
7807 int pos = find_variable_location_part (var, offset, NULL);
7808
7809 if (pos >= 0)
7810 {
7811 location_chain *node, *next;
7812 location_chain **nextp;
7813 bool changed;
7814 rtx cur_loc;
7815
7816 if (shared_var_p (var, set->vars))
7817 {
7818 /* If the variable contains the location part we have to
7819 make a copy of the variable. */
7820 for (node = var->var_part[pos].loc_chain; node;
7821 node = node->next)
7822 {
7823 if ((REG_P (node->loc) && REG_P (loc)
7824 && REGNO (node->loc) == REGNO (loc))
7825 || rtx_equal_p (node->loc, loc))
7826 {
7827 slot = unshare_variable (set, slot, var,
7828 VAR_INIT_STATUS_UNKNOWN);
7829 var = *slot;
7830 break;
7831 }
7832 }
7833 }
7834
7835 if (pos == 0 && var->onepart && VAR_LOC_1PAUX (var))
7836 cur_loc = VAR_LOC_FROM (var);
7837 else
7838 cur_loc = var->var_part[pos].cur_loc;
7839
7840 /* Delete the location part. */
7841 changed = false;
7842 nextp = &var->var_part[pos].loc_chain;
7843 for (node = *nextp; node; node = next)
7844 {
7845 next = node->next;
7846 if ((REG_P (node->loc) && REG_P (loc)
7847 && REGNO (node->loc) == REGNO (loc))
7848 || rtx_equal_p (node->loc, loc))
7849 {
7850 /* If we have deleted the location which was last emitted
7851 we have to emit new location so add the variable to set
7852 of changed variables. */
7853 if (cur_loc == node->loc)
7854 {
7855 changed = true;
7856 var->var_part[pos].cur_loc = NULL;
7857 if (pos == 0 && var->onepart && VAR_LOC_1PAUX (var))
7858 VAR_LOC_FROM (var) = NULL;
7859 }
7860 delete node;
7861 *nextp = next;
7862 break;
7863 }
7864 else
7865 nextp = &node->next;
7866 }
7867
7868 if (var->var_part[pos].loc_chain == NULL)
7869 {
7870 changed = true;
7871 var->n_var_parts--;
7872 while (pos < var->n_var_parts)
7873 {
7874 var->var_part[pos] = var->var_part[pos + 1];
7875 pos++;
7876 }
7877 }
7878 if (changed)
7879 variable_was_changed (var, set);
7880 }
7881
7882 return slot;
7883 }
7884
7885 /* Delete the part of variable's location from dataflow set SET. The
7886 variable part is specified by variable's declaration or value DV
7887 and offset OFFSET and the part's location by LOC. */
7888
7889 static void
7890 delete_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
7891 HOST_WIDE_INT offset)
7892 {
7893 variable **slot = shared_hash_find_slot_noinsert (set->vars, dv);
7894 if (!slot)
7895 return;
7896
7897 delete_slot_part (set, loc, slot, offset);
7898 }
7899
7900
7901 /* Structure for passing some other parameters to function
7902 vt_expand_loc_callback. */
7903 struct expand_loc_callback_data
7904 {
7905 /* The variables and values active at this point. */
7906 variable_table_type *vars;
7907
7908 /* Stack of values and debug_exprs under expansion, and their
7909 children. */
7910 auto_vec<rtx, 4> expanding;
7911
7912 /* Stack of values and debug_exprs whose expansion hit recursion
7913 cycles. They will have VALUE_RECURSED_INTO marked when added to
7914 this list. This flag will be cleared if any of its dependencies
7915 resolves to a valid location. So, if the flag remains set at the
7916 end of the search, we know no valid location for this one can
7917 possibly exist. */
7918 auto_vec<rtx, 4> pending;
7919
7920 /* The maximum depth among the sub-expressions under expansion.
7921 Zero indicates no expansion so far. */
7922 expand_depth depth;
7923 };
7924
7925 /* Allocate the one-part auxiliary data structure for VAR, with enough
7926 room for COUNT dependencies. */
7927
7928 static void
7929 loc_exp_dep_alloc (variable *var, int count)
7930 {
7931 size_t allocsize;
7932
7933 gcc_checking_assert (var->onepart);
7934
7935 /* We can be called with COUNT == 0 to allocate the data structure
7936 without any dependencies, e.g. for the backlinks only. However,
7937 if we are specifying a COUNT, then the dependency list must have
7938 been emptied before. It would be possible to adjust pointers or
7939 force it empty here, but this is better done at an earlier point
7940 in the algorithm, so we instead leave an assertion to catch
7941 errors. */
7942 gcc_checking_assert (!count
7943 || VAR_LOC_DEP_VEC (var) == NULL
7944 || VAR_LOC_DEP_VEC (var)->is_empty ());
7945
7946 if (VAR_LOC_1PAUX (var) && VAR_LOC_DEP_VEC (var)->space (count))
7947 return;
7948
7949 allocsize = offsetof (struct onepart_aux, deps)
7950 + vec<loc_exp_dep, va_heap, vl_embed>::embedded_size (count);
7951
7952 if (VAR_LOC_1PAUX (var))
7953 {
7954 VAR_LOC_1PAUX (var) = XRESIZEVAR (struct onepart_aux,
7955 VAR_LOC_1PAUX (var), allocsize);
7956 /* If the reallocation moves the onepaux structure, the
7957 back-pointer to BACKLINKS in the first list member will still
7958 point to its old location. Adjust it. */
7959 if (VAR_LOC_DEP_LST (var))
7960 VAR_LOC_DEP_LST (var)->pprev = VAR_LOC_DEP_LSTP (var);
7961 }
7962 else
7963 {
7964 VAR_LOC_1PAUX (var) = XNEWVAR (struct onepart_aux, allocsize);
7965 *VAR_LOC_DEP_LSTP (var) = NULL;
7966 VAR_LOC_FROM (var) = NULL;
7967 VAR_LOC_DEPTH (var).complexity = 0;
7968 VAR_LOC_DEPTH (var).entryvals = 0;
7969 }
7970 VAR_LOC_DEP_VEC (var)->embedded_init (count);
7971 }
7972
7973 /* Remove all entries from the vector of active dependencies of VAR,
7974 removing them from the back-links lists too. */
7975
7976 static void
7977 loc_exp_dep_clear (variable *var)
7978 {
7979 while (VAR_LOC_DEP_VEC (var) && !VAR_LOC_DEP_VEC (var)->is_empty ())
7980 {
7981 loc_exp_dep *led = &VAR_LOC_DEP_VEC (var)->last ();
7982 if (led->next)
7983 led->next->pprev = led->pprev;
7984 if (led->pprev)
7985 *led->pprev = led->next;
7986 VAR_LOC_DEP_VEC (var)->pop ();
7987 }
7988 }
7989
7990 /* Insert an active dependency from VAR on X to the vector of
7991 dependencies, and add the corresponding back-link to X's list of
7992 back-links in VARS. */
7993
7994 static void
7995 loc_exp_insert_dep (variable *var, rtx x, variable_table_type *vars)
7996 {
7997 decl_or_value dv;
7998 variable *xvar;
7999 loc_exp_dep *led;
8000
8001 dv = dv_from_rtx (x);
8002
8003 /* ??? Build a vector of variables parallel to EXPANDING, to avoid
8004 an additional look up? */
8005 xvar = vars->find_with_hash (dv, dv_htab_hash (dv));
8006
8007 if (!xvar)
8008 {
8009 xvar = variable_from_dropped (dv, NO_INSERT);
8010 gcc_checking_assert (xvar);
8011 }
8012
8013 /* No point in adding the same backlink more than once. This may
8014 arise if say the same value appears in two complex expressions in
8015 the same loc_list, or even more than once in a single
8016 expression. */
8017 if (VAR_LOC_DEP_LST (xvar) && VAR_LOC_DEP_LST (xvar)->dv == var->dv)
8018 return;
8019
8020 if (var->onepart == NOT_ONEPART)
8021 led = new loc_exp_dep;
8022 else
8023 {
8024 loc_exp_dep empty;
8025 memset (&empty, 0, sizeof (empty));
8026 VAR_LOC_DEP_VEC (var)->quick_push (empty);
8027 led = &VAR_LOC_DEP_VEC (var)->last ();
8028 }
8029 led->dv = var->dv;
8030 led->value = x;
8031
8032 loc_exp_dep_alloc (xvar, 0);
8033 led->pprev = VAR_LOC_DEP_LSTP (xvar);
8034 led->next = *led->pprev;
8035 if (led->next)
8036 led->next->pprev = &led->next;
8037 *led->pprev = led;
8038 }
8039
8040 /* Create active dependencies of VAR on COUNT values starting at
8041 VALUE, and corresponding back-links to the entries in VARS. Return
8042 true if we found any pending-recursion results. */
8043
8044 static bool
8045 loc_exp_dep_set (variable *var, rtx result, rtx *value, int count,
8046 variable_table_type *vars)
8047 {
8048 bool pending_recursion = false;
8049
8050 gcc_checking_assert (VAR_LOC_DEP_VEC (var) == NULL
8051 || VAR_LOC_DEP_VEC (var)->is_empty ());
8052
8053 /* Set up all dependencies from last_child (as set up at the end of
8054 the loop above) to the end. */
8055 loc_exp_dep_alloc (var, count);
8056
8057 while (count--)
8058 {
8059 rtx x = *value++;
8060
8061 if (!pending_recursion)
8062 pending_recursion = !result && VALUE_RECURSED_INTO (x);
8063
8064 loc_exp_insert_dep (var, x, vars);
8065 }
8066
8067 return pending_recursion;
8068 }
8069
8070 /* Notify the back-links of IVAR that are pending recursion that we
8071 have found a non-NIL value for it, so they are cleared for another
8072 attempt to compute a current location. */
8073
8074 static void
8075 notify_dependents_of_resolved_value (variable *ivar, variable_table_type *vars)
8076 {
8077 loc_exp_dep *led, *next;
8078
8079 for (led = VAR_LOC_DEP_LST (ivar); led; led = next)
8080 {
8081 decl_or_value dv = led->dv;
8082 variable *var;
8083
8084 next = led->next;
8085
8086 if (dv_is_value_p (dv))
8087 {
8088 rtx value = dv_as_value (dv);
8089
8090 /* If we have already resolved it, leave it alone. */
8091 if (!VALUE_RECURSED_INTO (value))
8092 continue;
8093
8094 /* Check that VALUE_RECURSED_INTO, true from the test above,
8095 implies NO_LOC_P. */
8096 gcc_checking_assert (NO_LOC_P (value));
8097
8098 /* We won't notify variables that are being expanded,
8099 because their dependency list is cleared before
8100 recursing. */
8101 NO_LOC_P (value) = false;
8102 VALUE_RECURSED_INTO (value) = false;
8103
8104 gcc_checking_assert (dv_changed_p (dv));
8105 }
8106 else
8107 {
8108 gcc_checking_assert (dv_onepart_p (dv) != NOT_ONEPART);
8109 if (!dv_changed_p (dv))
8110 continue;
8111 }
8112
8113 var = vars->find_with_hash (dv, dv_htab_hash (dv));
8114
8115 if (!var)
8116 var = variable_from_dropped (dv, NO_INSERT);
8117
8118 if (var)
8119 notify_dependents_of_resolved_value (var, vars);
8120
8121 if (next)
8122 next->pprev = led->pprev;
8123 if (led->pprev)
8124 *led->pprev = next;
8125 led->next = NULL;
8126 led->pprev = NULL;
8127 }
8128 }
8129
8130 static rtx vt_expand_loc_callback (rtx x, bitmap regs,
8131 int max_depth, void *data);
8132
8133 /* Return the combined depth, when one sub-expression evaluated to
8134 BEST_DEPTH and the previous known depth was SAVED_DEPTH. */
8135
8136 static inline expand_depth
8137 update_depth (expand_depth saved_depth, expand_depth best_depth)
8138 {
8139 /* If we didn't find anything, stick with what we had. */
8140 if (!best_depth.complexity)
8141 return saved_depth;
8142
8143 /* If we found hadn't found anything, use the depth of the current
8144 expression. Do NOT add one extra level, we want to compute the
8145 maximum depth among sub-expressions. We'll increment it later,
8146 if appropriate. */
8147 if (!saved_depth.complexity)
8148 return best_depth;
8149
8150 /* Combine the entryval count so that regardless of which one we
8151 return, the entryval count is accurate. */
8152 best_depth.entryvals = saved_depth.entryvals
8153 = best_depth.entryvals + saved_depth.entryvals;
8154
8155 if (saved_depth.complexity < best_depth.complexity)
8156 return best_depth;
8157 else
8158 return saved_depth;
8159 }
8160
8161 /* Expand VAR to a location RTX, updating its cur_loc. Use REGS and
8162 DATA for cselib expand callback. If PENDRECP is given, indicate in
8163 it whether any sub-expression couldn't be fully evaluated because
8164 it is pending recursion resolution. */
8165
8166 static inline rtx
8167 vt_expand_var_loc_chain (variable *var, bitmap regs, void *data,
8168 bool *pendrecp)
8169 {
8170 struct expand_loc_callback_data *elcd
8171 = (struct expand_loc_callback_data *) data;
8172 location_chain *loc, *next;
8173 rtx result = NULL;
8174 int first_child, result_first_child, last_child;
8175 bool pending_recursion;
8176 rtx loc_from = NULL;
8177 struct elt_loc_list *cloc = NULL;
8178 expand_depth depth = { 0, 0 }, saved_depth = elcd->depth;
8179 int wanted_entryvals, found_entryvals = 0;
8180
8181 /* Clear all backlinks pointing at this, so that we're not notified
8182 while we're active. */
8183 loc_exp_dep_clear (var);
8184
8185 retry:
8186 if (var->onepart == ONEPART_VALUE)
8187 {
8188 cselib_val *val = CSELIB_VAL_PTR (dv_as_value (var->dv));
8189
8190 gcc_checking_assert (cselib_preserved_value_p (val));
8191
8192 cloc = val->locs;
8193 }
8194
8195 first_child = result_first_child = last_child
8196 = elcd->expanding.length ();
8197
8198 wanted_entryvals = found_entryvals;
8199
8200 /* Attempt to expand each available location in turn. */
8201 for (next = loc = var->n_var_parts ? var->var_part[0].loc_chain : NULL;
8202 loc || cloc; loc = next)
8203 {
8204 result_first_child = last_child;
8205
8206 if (!loc)
8207 {
8208 loc_from = cloc->loc;
8209 next = loc;
8210 cloc = cloc->next;
8211 if (unsuitable_loc (loc_from))
8212 continue;
8213 }
8214 else
8215 {
8216 loc_from = loc->loc;
8217 next = loc->next;
8218 }
8219
8220 gcc_checking_assert (!unsuitable_loc (loc_from));
8221
8222 elcd->depth.complexity = elcd->depth.entryvals = 0;
8223 result = cselib_expand_value_rtx_cb (loc_from, regs, EXPR_DEPTH,
8224 vt_expand_loc_callback, data);
8225 last_child = elcd->expanding.length ();
8226
8227 if (result)
8228 {
8229 depth = elcd->depth;
8230
8231 gcc_checking_assert (depth.complexity
8232 || result_first_child == last_child);
8233
8234 if (last_child - result_first_child != 1)
8235 {
8236 if (!depth.complexity && GET_CODE (result) == ENTRY_VALUE)
8237 depth.entryvals++;
8238 depth.complexity++;
8239 }
8240
8241 if (depth.complexity <= EXPR_USE_DEPTH)
8242 {
8243 if (depth.entryvals <= wanted_entryvals)
8244 break;
8245 else if (!found_entryvals || depth.entryvals < found_entryvals)
8246 found_entryvals = depth.entryvals;
8247 }
8248
8249 result = NULL;
8250 }
8251
8252 /* Set it up in case we leave the loop. */
8253 depth.complexity = depth.entryvals = 0;
8254 loc_from = NULL;
8255 result_first_child = first_child;
8256 }
8257
8258 if (!loc_from && wanted_entryvals < found_entryvals)
8259 {
8260 /* We found entries with ENTRY_VALUEs and skipped them. Since
8261 we could not find any expansions without ENTRY_VALUEs, but we
8262 found at least one with them, go back and get an entry with
8263 the minimum number ENTRY_VALUE count that we found. We could
8264 avoid looping, but since each sub-loc is already resolved,
8265 the re-expansion should be trivial. ??? Should we record all
8266 attempted locs as dependencies, so that we retry the
8267 expansion should any of them change, in the hope it can give
8268 us a new entry without an ENTRY_VALUE? */
8269 elcd->expanding.truncate (first_child);
8270 goto retry;
8271 }
8272
8273 /* Register all encountered dependencies as active. */
8274 pending_recursion = loc_exp_dep_set
8275 (var, result, elcd->expanding.address () + result_first_child,
8276 last_child - result_first_child, elcd->vars);
8277
8278 elcd->expanding.truncate (first_child);
8279
8280 /* Record where the expansion came from. */
8281 gcc_checking_assert (!result || !pending_recursion);
8282 VAR_LOC_FROM (var) = loc_from;
8283 VAR_LOC_DEPTH (var) = depth;
8284
8285 gcc_checking_assert (!depth.complexity == !result);
8286
8287 elcd->depth = update_depth (saved_depth, depth);
8288
8289 /* Indicate whether any of the dependencies are pending recursion
8290 resolution. */
8291 if (pendrecp)
8292 *pendrecp = pending_recursion;
8293
8294 if (!pendrecp || !pending_recursion)
8295 var->var_part[0].cur_loc = result;
8296
8297 return result;
8298 }
8299
8300 /* Callback for cselib_expand_value, that looks for expressions
8301 holding the value in the var-tracking hash tables. Return X for
8302 standard processing, anything else is to be used as-is. */
8303
8304 static rtx
8305 vt_expand_loc_callback (rtx x, bitmap regs,
8306 int max_depth ATTRIBUTE_UNUSED,
8307 void *data)
8308 {
8309 struct expand_loc_callback_data *elcd
8310 = (struct expand_loc_callback_data *) data;
8311 decl_or_value dv;
8312 variable *var;
8313 rtx result, subreg;
8314 bool pending_recursion = false;
8315 bool from_empty = false;
8316
8317 switch (GET_CODE (x))
8318 {
8319 case SUBREG:
8320 subreg = cselib_expand_value_rtx_cb (SUBREG_REG (x), regs,
8321 EXPR_DEPTH,
8322 vt_expand_loc_callback, data);
8323
8324 if (!subreg)
8325 return NULL;
8326
8327 result = simplify_gen_subreg (GET_MODE (x), subreg,
8328 GET_MODE (SUBREG_REG (x)),
8329 SUBREG_BYTE (x));
8330
8331 /* Invalid SUBREGs are ok in debug info. ??? We could try
8332 alternate expansions for the VALUE as well. */
8333 if (!result)
8334 result = gen_rtx_raw_SUBREG (GET_MODE (x), subreg, SUBREG_BYTE (x));
8335
8336 return result;
8337
8338 case DEBUG_EXPR:
8339 case VALUE:
8340 dv = dv_from_rtx (x);
8341 break;
8342
8343 default:
8344 return x;
8345 }
8346
8347 elcd->expanding.safe_push (x);
8348
8349 /* Check that VALUE_RECURSED_INTO implies NO_LOC_P. */
8350 gcc_checking_assert (!VALUE_RECURSED_INTO (x) || NO_LOC_P (x));
8351
8352 if (NO_LOC_P (x))
8353 {
8354 gcc_checking_assert (VALUE_RECURSED_INTO (x) || !dv_changed_p (dv));
8355 return NULL;
8356 }
8357
8358 var = elcd->vars->find_with_hash (dv, dv_htab_hash (dv));
8359
8360 if (!var)
8361 {
8362 from_empty = true;
8363 var = variable_from_dropped (dv, INSERT);
8364 }
8365
8366 gcc_checking_assert (var);
8367
8368 if (!dv_changed_p (dv))
8369 {
8370 gcc_checking_assert (!NO_LOC_P (x));
8371 gcc_checking_assert (var->var_part[0].cur_loc);
8372 gcc_checking_assert (VAR_LOC_1PAUX (var));
8373 gcc_checking_assert (VAR_LOC_1PAUX (var)->depth.complexity);
8374
8375 elcd->depth = update_depth (elcd->depth, VAR_LOC_1PAUX (var)->depth);
8376
8377 return var->var_part[0].cur_loc;
8378 }
8379
8380 VALUE_RECURSED_INTO (x) = true;
8381 /* This is tentative, but it makes some tests simpler. */
8382 NO_LOC_P (x) = true;
8383
8384 gcc_checking_assert (var->n_var_parts == 1 || from_empty);
8385
8386 result = vt_expand_var_loc_chain (var, regs, data, &pending_recursion);
8387
8388 if (pending_recursion)
8389 {
8390 gcc_checking_assert (!result);
8391 elcd->pending.safe_push (x);
8392 }
8393 else
8394 {
8395 NO_LOC_P (x) = !result;
8396 VALUE_RECURSED_INTO (x) = false;
8397 set_dv_changed (dv, false);
8398
8399 if (result)
8400 notify_dependents_of_resolved_value (var, elcd->vars);
8401 }
8402
8403 return result;
8404 }
8405
8406 /* While expanding variables, we may encounter recursion cycles
8407 because of mutual (possibly indirect) dependencies between two
8408 particular variables (or values), say A and B. If we're trying to
8409 expand A when we get to B, which in turn attempts to expand A, if
8410 we can't find any other expansion for B, we'll add B to this
8411 pending-recursion stack, and tentatively return NULL for its
8412 location. This tentative value will be used for any other
8413 occurrences of B, unless A gets some other location, in which case
8414 it will notify B that it is worth another try at computing a
8415 location for it, and it will use the location computed for A then.
8416 At the end of the expansion, the tentative NULL locations become
8417 final for all members of PENDING that didn't get a notification.
8418 This function performs this finalization of NULL locations. */
8419
8420 static void
8421 resolve_expansions_pending_recursion (vec<rtx, va_heap> *pending)
8422 {
8423 while (!pending->is_empty ())
8424 {
8425 rtx x = pending->pop ();
8426 decl_or_value dv;
8427
8428 if (!VALUE_RECURSED_INTO (x))
8429 continue;
8430
8431 gcc_checking_assert (NO_LOC_P (x));
8432 VALUE_RECURSED_INTO (x) = false;
8433 dv = dv_from_rtx (x);
8434 gcc_checking_assert (dv_changed_p (dv));
8435 set_dv_changed (dv, false);
8436 }
8437 }
8438
8439 /* Initialize expand_loc_callback_data D with variable hash table V.
8440 It must be a macro because of alloca (vec stack). */
8441 #define INIT_ELCD(d, v) \
8442 do \
8443 { \
8444 (d).vars = (v); \
8445 (d).depth.complexity = (d).depth.entryvals = 0; \
8446 } \
8447 while (0)
8448 /* Finalize expand_loc_callback_data D, resolved to location L. */
8449 #define FINI_ELCD(d, l) \
8450 do \
8451 { \
8452 resolve_expansions_pending_recursion (&(d).pending); \
8453 (d).pending.release (); \
8454 (d).expanding.release (); \
8455 \
8456 if ((l) && MEM_P (l)) \
8457 (l) = targetm.delegitimize_address (l); \
8458 } \
8459 while (0)
8460
8461 /* Expand VALUEs and DEBUG_EXPRs in LOC to a location, using the
8462 equivalences in VARS, updating their CUR_LOCs in the process. */
8463
8464 static rtx
8465 vt_expand_loc (rtx loc, variable_table_type *vars)
8466 {
8467 struct expand_loc_callback_data data;
8468 rtx result;
8469
8470 if (!MAY_HAVE_DEBUG_INSNS)
8471 return loc;
8472
8473 INIT_ELCD (data, vars);
8474
8475 result = cselib_expand_value_rtx_cb (loc, scratch_regs, EXPR_DEPTH,
8476 vt_expand_loc_callback, &data);
8477
8478 FINI_ELCD (data, result);
8479
8480 return result;
8481 }
8482
8483 /* Expand the one-part VARiable to a location, using the equivalences
8484 in VARS, updating their CUR_LOCs in the process. */
8485
8486 static rtx
8487 vt_expand_1pvar (variable *var, variable_table_type *vars)
8488 {
8489 struct expand_loc_callback_data data;
8490 rtx loc;
8491
8492 gcc_checking_assert (var->onepart && var->n_var_parts == 1);
8493
8494 if (!dv_changed_p (var->dv))
8495 return var->var_part[0].cur_loc;
8496
8497 INIT_ELCD (data, vars);
8498
8499 loc = vt_expand_var_loc_chain (var, scratch_regs, &data, NULL);
8500
8501 gcc_checking_assert (data.expanding.is_empty ());
8502
8503 FINI_ELCD (data, loc);
8504
8505 return loc;
8506 }
8507
8508 /* Emit the NOTE_INSN_VAR_LOCATION for variable *VARP. DATA contains
8509 additional parameters: WHERE specifies whether the note shall be emitted
8510 before or after instruction INSN. */
8511
8512 int
8513 emit_note_insn_var_location (variable **varp, emit_note_data *data)
8514 {
8515 variable *var = *varp;
8516 rtx_insn *insn = data->insn;
8517 enum emit_note_where where = data->where;
8518 variable_table_type *vars = data->vars;
8519 rtx_note *note;
8520 rtx note_vl;
8521 int i, j, n_var_parts;
8522 bool complete;
8523 enum var_init_status initialized = VAR_INIT_STATUS_UNINITIALIZED;
8524 HOST_WIDE_INT last_limit;
8525 tree type_size_unit;
8526 HOST_WIDE_INT offsets[MAX_VAR_PARTS];
8527 rtx loc[MAX_VAR_PARTS];
8528 tree decl;
8529 location_chain *lc;
8530
8531 gcc_checking_assert (var->onepart == NOT_ONEPART
8532 || var->onepart == ONEPART_VDECL);
8533
8534 decl = dv_as_decl (var->dv);
8535
8536 complete = true;
8537 last_limit = 0;
8538 n_var_parts = 0;
8539 if (!var->onepart)
8540 for (i = 0; i < var->n_var_parts; i++)
8541 if (var->var_part[i].cur_loc == NULL && var->var_part[i].loc_chain)
8542 var->var_part[i].cur_loc = var->var_part[i].loc_chain->loc;
8543 for (i = 0; i < var->n_var_parts; i++)
8544 {
8545 machine_mode mode, wider_mode;
8546 rtx loc2;
8547 HOST_WIDE_INT offset;
8548
8549 if (i == 0 && var->onepart)
8550 {
8551 gcc_checking_assert (var->n_var_parts == 1);
8552 offset = 0;
8553 initialized = VAR_INIT_STATUS_INITIALIZED;
8554 loc2 = vt_expand_1pvar (var, vars);
8555 }
8556 else
8557 {
8558 if (last_limit < VAR_PART_OFFSET (var, i))
8559 {
8560 complete = false;
8561 break;
8562 }
8563 else if (last_limit > VAR_PART_OFFSET (var, i))
8564 continue;
8565 offset = VAR_PART_OFFSET (var, i);
8566 loc2 = var->var_part[i].cur_loc;
8567 if (loc2 && GET_CODE (loc2) == MEM
8568 && GET_CODE (XEXP (loc2, 0)) == VALUE)
8569 {
8570 rtx depval = XEXP (loc2, 0);
8571
8572 loc2 = vt_expand_loc (loc2, vars);
8573
8574 if (loc2)
8575 loc_exp_insert_dep (var, depval, vars);
8576 }
8577 if (!loc2)
8578 {
8579 complete = false;
8580 continue;
8581 }
8582 gcc_checking_assert (GET_CODE (loc2) != VALUE);
8583 for (lc = var->var_part[i].loc_chain; lc; lc = lc->next)
8584 if (var->var_part[i].cur_loc == lc->loc)
8585 {
8586 initialized = lc->init;
8587 break;
8588 }
8589 gcc_assert (lc);
8590 }
8591
8592 offsets[n_var_parts] = offset;
8593 if (!loc2)
8594 {
8595 complete = false;
8596 continue;
8597 }
8598 loc[n_var_parts] = loc2;
8599 mode = GET_MODE (var->var_part[i].cur_loc);
8600 if (mode == VOIDmode && var->onepart)
8601 mode = DECL_MODE (decl);
8602 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
8603
8604 /* Attempt to merge adjacent registers or memory. */
8605 wider_mode = GET_MODE_WIDER_MODE (mode);
8606 for (j = i + 1; j < var->n_var_parts; j++)
8607 if (last_limit <= VAR_PART_OFFSET (var, j))
8608 break;
8609 if (j < var->n_var_parts
8610 && wider_mode != VOIDmode
8611 && var->var_part[j].cur_loc
8612 && mode == GET_MODE (var->var_part[j].cur_loc)
8613 && (REG_P (loc[n_var_parts]) || MEM_P (loc[n_var_parts]))
8614 && last_limit == (var->onepart ? 0 : VAR_PART_OFFSET (var, j))
8615 && (loc2 = vt_expand_loc (var->var_part[j].cur_loc, vars))
8616 && GET_CODE (loc[n_var_parts]) == GET_CODE (loc2))
8617 {
8618 rtx new_loc = NULL;
8619
8620 if (REG_P (loc[n_var_parts])
8621 && hard_regno_nregs[REGNO (loc[n_var_parts])][mode] * 2
8622 == hard_regno_nregs[REGNO (loc[n_var_parts])][wider_mode]
8623 && end_hard_regno (mode, REGNO (loc[n_var_parts]))
8624 == REGNO (loc2))
8625 {
8626 if (! WORDS_BIG_ENDIAN && ! BYTES_BIG_ENDIAN)
8627 new_loc = simplify_subreg (wider_mode, loc[n_var_parts],
8628 mode, 0);
8629 else if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
8630 new_loc = simplify_subreg (wider_mode, loc2, mode, 0);
8631 if (new_loc)
8632 {
8633 if (!REG_P (new_loc)
8634 || REGNO (new_loc) != REGNO (loc[n_var_parts]))
8635 new_loc = NULL;
8636 else
8637 REG_ATTRS (new_loc) = REG_ATTRS (loc[n_var_parts]);
8638 }
8639 }
8640 else if (MEM_P (loc[n_var_parts])
8641 && GET_CODE (XEXP (loc2, 0)) == PLUS
8642 && REG_P (XEXP (XEXP (loc2, 0), 0))
8643 && CONST_INT_P (XEXP (XEXP (loc2, 0), 1)))
8644 {
8645 if ((REG_P (XEXP (loc[n_var_parts], 0))
8646 && rtx_equal_p (XEXP (loc[n_var_parts], 0),
8647 XEXP (XEXP (loc2, 0), 0))
8648 && INTVAL (XEXP (XEXP (loc2, 0), 1))
8649 == GET_MODE_SIZE (mode))
8650 || (GET_CODE (XEXP (loc[n_var_parts], 0)) == PLUS
8651 && CONST_INT_P (XEXP (XEXP (loc[n_var_parts], 0), 1))
8652 && rtx_equal_p (XEXP (XEXP (loc[n_var_parts], 0), 0),
8653 XEXP (XEXP (loc2, 0), 0))
8654 && INTVAL (XEXP (XEXP (loc[n_var_parts], 0), 1))
8655 + GET_MODE_SIZE (mode)
8656 == INTVAL (XEXP (XEXP (loc2, 0), 1))))
8657 new_loc = adjust_address_nv (loc[n_var_parts],
8658 wider_mode, 0);
8659 }
8660
8661 if (new_loc)
8662 {
8663 loc[n_var_parts] = new_loc;
8664 mode = wider_mode;
8665 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
8666 i = j;
8667 }
8668 }
8669 ++n_var_parts;
8670 }
8671 type_size_unit = TYPE_SIZE_UNIT (TREE_TYPE (decl));
8672 if ((unsigned HOST_WIDE_INT) last_limit < TREE_INT_CST_LOW (type_size_unit))
8673 complete = false;
8674
8675 if (! flag_var_tracking_uninit)
8676 initialized = VAR_INIT_STATUS_INITIALIZED;
8677
8678 note_vl = NULL_RTX;
8679 if (!complete)
8680 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, NULL_RTX, initialized);
8681 else if (n_var_parts == 1)
8682 {
8683 rtx expr_list;
8684
8685 if (offsets[0] || GET_CODE (loc[0]) == PARALLEL)
8686 expr_list = gen_rtx_EXPR_LIST (VOIDmode, loc[0], GEN_INT (offsets[0]));
8687 else
8688 expr_list = loc[0];
8689
8690 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, expr_list, initialized);
8691 }
8692 else if (n_var_parts)
8693 {
8694 rtx parallel;
8695
8696 for (i = 0; i < n_var_parts; i++)
8697 loc[i]
8698 = gen_rtx_EXPR_LIST (VOIDmode, loc[i], GEN_INT (offsets[i]));
8699
8700 parallel = gen_rtx_PARALLEL (VOIDmode,
8701 gen_rtvec_v (n_var_parts, loc));
8702 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl,
8703 parallel, initialized);
8704 }
8705
8706 if (where != EMIT_NOTE_BEFORE_INSN)
8707 {
8708 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
8709 if (where == EMIT_NOTE_AFTER_CALL_INSN)
8710 NOTE_DURING_CALL_P (note) = true;
8711 }
8712 else
8713 {
8714 /* Make sure that the call related notes come first. */
8715 while (NEXT_INSN (insn)
8716 && NOTE_P (insn)
8717 && ((NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
8718 && NOTE_DURING_CALL_P (insn))
8719 || NOTE_KIND (insn) == NOTE_INSN_CALL_ARG_LOCATION))
8720 insn = NEXT_INSN (insn);
8721 if (NOTE_P (insn)
8722 && ((NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
8723 && NOTE_DURING_CALL_P (insn))
8724 || NOTE_KIND (insn) == NOTE_INSN_CALL_ARG_LOCATION))
8725 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
8726 else
8727 note = emit_note_before (NOTE_INSN_VAR_LOCATION, insn);
8728 }
8729 NOTE_VAR_LOCATION (note) = note_vl;
8730
8731 set_dv_changed (var->dv, false);
8732 gcc_assert (var->in_changed_variables);
8733 var->in_changed_variables = false;
8734 changed_variables->clear_slot (varp);
8735
8736 /* Continue traversing the hash table. */
8737 return 1;
8738 }
8739
8740 /* While traversing changed_variables, push onto DATA (a stack of RTX
8741 values) entries that aren't user variables. */
8742
8743 int
8744 var_track_values_to_stack (variable **slot,
8745 vec<rtx, va_heap> *changed_values_stack)
8746 {
8747 variable *var = *slot;
8748
8749 if (var->onepart == ONEPART_VALUE)
8750 changed_values_stack->safe_push (dv_as_value (var->dv));
8751 else if (var->onepart == ONEPART_DEXPR)
8752 changed_values_stack->safe_push (DECL_RTL_KNOWN_SET (dv_as_decl (var->dv)));
8753
8754 return 1;
8755 }
8756
8757 /* Remove from changed_variables the entry whose DV corresponds to
8758 value or debug_expr VAL. */
8759 static void
8760 remove_value_from_changed_variables (rtx val)
8761 {
8762 decl_or_value dv = dv_from_rtx (val);
8763 variable **slot;
8764 variable *var;
8765
8766 slot = changed_variables->find_slot_with_hash (dv, dv_htab_hash (dv),
8767 NO_INSERT);
8768 var = *slot;
8769 var->in_changed_variables = false;
8770 changed_variables->clear_slot (slot);
8771 }
8772
8773 /* If VAL (a value or debug_expr) has backlinks to variables actively
8774 dependent on it in HTAB or in CHANGED_VARIABLES, mark them as
8775 changed, adding to CHANGED_VALUES_STACK any dependencies that may
8776 have dependencies of their own to notify. */
8777
8778 static void
8779 notify_dependents_of_changed_value (rtx val, variable_table_type *htab,
8780 vec<rtx, va_heap> *changed_values_stack)
8781 {
8782 variable **slot;
8783 variable *var;
8784 loc_exp_dep *led;
8785 decl_or_value dv = dv_from_rtx (val);
8786
8787 slot = changed_variables->find_slot_with_hash (dv, dv_htab_hash (dv),
8788 NO_INSERT);
8789 if (!slot)
8790 slot = htab->find_slot_with_hash (dv, dv_htab_hash (dv), NO_INSERT);
8791 if (!slot)
8792 slot = dropped_values->find_slot_with_hash (dv, dv_htab_hash (dv),
8793 NO_INSERT);
8794 var = *slot;
8795
8796 while ((led = VAR_LOC_DEP_LST (var)))
8797 {
8798 decl_or_value ldv = led->dv;
8799 variable *ivar;
8800
8801 /* Deactivate and remove the backlink, as it was “used up”. It
8802 makes no sense to attempt to notify the same entity again:
8803 either it will be recomputed and re-register an active
8804 dependency, or it will still have the changed mark. */
8805 if (led->next)
8806 led->next->pprev = led->pprev;
8807 if (led->pprev)
8808 *led->pprev = led->next;
8809 led->next = NULL;
8810 led->pprev = NULL;
8811
8812 if (dv_changed_p (ldv))
8813 continue;
8814
8815 switch (dv_onepart_p (ldv))
8816 {
8817 case ONEPART_VALUE:
8818 case ONEPART_DEXPR:
8819 set_dv_changed (ldv, true);
8820 changed_values_stack->safe_push (dv_as_rtx (ldv));
8821 break;
8822
8823 case ONEPART_VDECL:
8824 ivar = htab->find_with_hash (ldv, dv_htab_hash (ldv));
8825 gcc_checking_assert (!VAR_LOC_DEP_LST (ivar));
8826 variable_was_changed (ivar, NULL);
8827 break;
8828
8829 case NOT_ONEPART:
8830 delete led;
8831 ivar = htab->find_with_hash (ldv, dv_htab_hash (ldv));
8832 if (ivar)
8833 {
8834 int i = ivar->n_var_parts;
8835 while (i--)
8836 {
8837 rtx loc = ivar->var_part[i].cur_loc;
8838
8839 if (loc && GET_CODE (loc) == MEM
8840 && XEXP (loc, 0) == val)
8841 {
8842 variable_was_changed (ivar, NULL);
8843 break;
8844 }
8845 }
8846 }
8847 break;
8848
8849 default:
8850 gcc_unreachable ();
8851 }
8852 }
8853 }
8854
8855 /* Take out of changed_variables any entries that don't refer to use
8856 variables. Back-propagate change notifications from values and
8857 debug_exprs to their active dependencies in HTAB or in
8858 CHANGED_VARIABLES. */
8859
8860 static void
8861 process_changed_values (variable_table_type *htab)
8862 {
8863 int i, n;
8864 rtx val;
8865 auto_vec<rtx, 20> changed_values_stack;
8866
8867 /* Move values from changed_variables to changed_values_stack. */
8868 changed_variables
8869 ->traverse <vec<rtx, va_heap>*, var_track_values_to_stack>
8870 (&changed_values_stack);
8871
8872 /* Back-propagate change notifications in values while popping
8873 them from the stack. */
8874 for (n = i = changed_values_stack.length ();
8875 i > 0; i = changed_values_stack.length ())
8876 {
8877 val = changed_values_stack.pop ();
8878 notify_dependents_of_changed_value (val, htab, &changed_values_stack);
8879
8880 /* This condition will hold when visiting each of the entries
8881 originally in changed_variables. We can't remove them
8882 earlier because this could drop the backlinks before we got a
8883 chance to use them. */
8884 if (i == n)
8885 {
8886 remove_value_from_changed_variables (val);
8887 n--;
8888 }
8889 }
8890 }
8891
8892 /* Emit NOTE_INSN_VAR_LOCATION note for each variable from a chain
8893 CHANGED_VARIABLES and delete this chain. WHERE specifies whether
8894 the notes shall be emitted before of after instruction INSN. */
8895
8896 static void
8897 emit_notes_for_changes (rtx_insn *insn, enum emit_note_where where,
8898 shared_hash *vars)
8899 {
8900 emit_note_data data;
8901 variable_table_type *htab = shared_hash_htab (vars);
8902
8903 if (!changed_variables->elements ())
8904 return;
8905
8906 if (MAY_HAVE_DEBUG_INSNS)
8907 process_changed_values (htab);
8908
8909 data.insn = insn;
8910 data.where = where;
8911 data.vars = htab;
8912
8913 changed_variables
8914 ->traverse <emit_note_data*, emit_note_insn_var_location> (&data);
8915 }
8916
8917 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it differs from the
8918 same variable in hash table DATA or is not there at all. */
8919
8920 int
8921 emit_notes_for_differences_1 (variable **slot, variable_table_type *new_vars)
8922 {
8923 variable *old_var, *new_var;
8924
8925 old_var = *slot;
8926 new_var = new_vars->find_with_hash (old_var->dv, dv_htab_hash (old_var->dv));
8927
8928 if (!new_var)
8929 {
8930 /* Variable has disappeared. */
8931 variable *empty_var = NULL;
8932
8933 if (old_var->onepart == ONEPART_VALUE
8934 || old_var->onepart == ONEPART_DEXPR)
8935 {
8936 empty_var = variable_from_dropped (old_var->dv, NO_INSERT);
8937 if (empty_var)
8938 {
8939 gcc_checking_assert (!empty_var->in_changed_variables);
8940 if (!VAR_LOC_1PAUX (old_var))
8941 {
8942 VAR_LOC_1PAUX (old_var) = VAR_LOC_1PAUX (empty_var);
8943 VAR_LOC_1PAUX (empty_var) = NULL;
8944 }
8945 else
8946 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var));
8947 }
8948 }
8949
8950 if (!empty_var)
8951 {
8952 empty_var = onepart_pool_allocate (old_var->onepart);
8953 empty_var->dv = old_var->dv;
8954 empty_var->refcount = 0;
8955 empty_var->n_var_parts = 0;
8956 empty_var->onepart = old_var->onepart;
8957 empty_var->in_changed_variables = false;
8958 }
8959
8960 if (empty_var->onepart)
8961 {
8962 /* Propagate the auxiliary data to (ultimately)
8963 changed_variables. */
8964 empty_var->var_part[0].loc_chain = NULL;
8965 empty_var->var_part[0].cur_loc = NULL;
8966 VAR_LOC_1PAUX (empty_var) = VAR_LOC_1PAUX (old_var);
8967 VAR_LOC_1PAUX (old_var) = NULL;
8968 }
8969 variable_was_changed (empty_var, NULL);
8970 /* Continue traversing the hash table. */
8971 return 1;
8972 }
8973 /* Update cur_loc and one-part auxiliary data, before new_var goes
8974 through variable_was_changed. */
8975 if (old_var != new_var && new_var->onepart)
8976 {
8977 gcc_checking_assert (VAR_LOC_1PAUX (new_var) == NULL);
8978 VAR_LOC_1PAUX (new_var) = VAR_LOC_1PAUX (old_var);
8979 VAR_LOC_1PAUX (old_var) = NULL;
8980 new_var->var_part[0].cur_loc = old_var->var_part[0].cur_loc;
8981 }
8982 if (variable_different_p (old_var, new_var))
8983 variable_was_changed (new_var, NULL);
8984
8985 /* Continue traversing the hash table. */
8986 return 1;
8987 }
8988
8989 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it is not in hash
8990 table DATA. */
8991
8992 int
8993 emit_notes_for_differences_2 (variable **slot, variable_table_type *old_vars)
8994 {
8995 variable *old_var, *new_var;
8996
8997 new_var = *slot;
8998 old_var = old_vars->find_with_hash (new_var->dv, dv_htab_hash (new_var->dv));
8999 if (!old_var)
9000 {
9001 int i;
9002 for (i = 0; i < new_var->n_var_parts; i++)
9003 new_var->var_part[i].cur_loc = NULL;
9004 variable_was_changed (new_var, NULL);
9005 }
9006
9007 /* Continue traversing the hash table. */
9008 return 1;
9009 }
9010
9011 /* Emit notes before INSN for differences between dataflow sets OLD_SET and
9012 NEW_SET. */
9013
9014 static void
9015 emit_notes_for_differences (rtx_insn *insn, dataflow_set *old_set,
9016 dataflow_set *new_set)
9017 {
9018 shared_hash_htab (old_set->vars)
9019 ->traverse <variable_table_type *, emit_notes_for_differences_1>
9020 (shared_hash_htab (new_set->vars));
9021 shared_hash_htab (new_set->vars)
9022 ->traverse <variable_table_type *, emit_notes_for_differences_2>
9023 (shared_hash_htab (old_set->vars));
9024 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, new_set->vars);
9025 }
9026
9027 /* Return the next insn after INSN that is not a NOTE_INSN_VAR_LOCATION. */
9028
9029 static rtx_insn *
9030 next_non_note_insn_var_location (rtx_insn *insn)
9031 {
9032 while (insn)
9033 {
9034 insn = NEXT_INSN (insn);
9035 if (insn == 0
9036 || !NOTE_P (insn)
9037 || NOTE_KIND (insn) != NOTE_INSN_VAR_LOCATION)
9038 break;
9039 }
9040
9041 return insn;
9042 }
9043
9044 /* Emit the notes for changes of location parts in the basic block BB. */
9045
9046 static void
9047 emit_notes_in_bb (basic_block bb, dataflow_set *set)
9048 {
9049 unsigned int i;
9050 micro_operation *mo;
9051
9052 dataflow_set_clear (set);
9053 dataflow_set_copy (set, &VTI (bb)->in);
9054
9055 FOR_EACH_VEC_ELT (VTI (bb)->mos, i, mo)
9056 {
9057 rtx_insn *insn = mo->insn;
9058 rtx_insn *next_insn = next_non_note_insn_var_location (insn);
9059
9060 switch (mo->type)
9061 {
9062 case MO_CALL:
9063 dataflow_set_clear_at_call (set, insn);
9064 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_CALL_INSN, set->vars);
9065 {
9066 rtx arguments = mo->u.loc, *p = &arguments;
9067 rtx_note *note;
9068 while (*p)
9069 {
9070 XEXP (XEXP (*p, 0), 1)
9071 = vt_expand_loc (XEXP (XEXP (*p, 0), 1),
9072 shared_hash_htab (set->vars));
9073 /* If expansion is successful, keep it in the list. */
9074 if (XEXP (XEXP (*p, 0), 1))
9075 p = &XEXP (*p, 1);
9076 /* Otherwise, if the following item is data_value for it,
9077 drop it too too. */
9078 else if (XEXP (*p, 1)
9079 && REG_P (XEXP (XEXP (*p, 0), 0))
9080 && MEM_P (XEXP (XEXP (XEXP (*p, 1), 0), 0))
9081 && REG_P (XEXP (XEXP (XEXP (XEXP (*p, 1), 0), 0),
9082 0))
9083 && REGNO (XEXP (XEXP (*p, 0), 0))
9084 == REGNO (XEXP (XEXP (XEXP (XEXP (*p, 1), 0),
9085 0), 0)))
9086 *p = XEXP (XEXP (*p, 1), 1);
9087 /* Just drop this item. */
9088 else
9089 *p = XEXP (*p, 1);
9090 }
9091 note = emit_note_after (NOTE_INSN_CALL_ARG_LOCATION, insn);
9092 NOTE_VAR_LOCATION (note) = arguments;
9093 }
9094 break;
9095
9096 case MO_USE:
9097 {
9098 rtx loc = mo->u.loc;
9099
9100 if (REG_P (loc))
9101 var_reg_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
9102 else
9103 var_mem_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
9104
9105 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
9106 }
9107 break;
9108
9109 case MO_VAL_LOC:
9110 {
9111 rtx loc = mo->u.loc;
9112 rtx val, vloc;
9113 tree var;
9114
9115 if (GET_CODE (loc) == CONCAT)
9116 {
9117 val = XEXP (loc, 0);
9118 vloc = XEXP (loc, 1);
9119 }
9120 else
9121 {
9122 val = NULL_RTX;
9123 vloc = loc;
9124 }
9125
9126 var = PAT_VAR_LOCATION_DECL (vloc);
9127
9128 clobber_variable_part (set, NULL_RTX,
9129 dv_from_decl (var), 0, NULL_RTX);
9130 if (val)
9131 {
9132 if (VAL_NEEDS_RESOLUTION (loc))
9133 val_resolve (set, val, PAT_VAR_LOCATION_LOC (vloc), insn);
9134 set_variable_part (set, val, dv_from_decl (var), 0,
9135 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
9136 INSERT);
9137 }
9138 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
9139 set_variable_part (set, PAT_VAR_LOCATION_LOC (vloc),
9140 dv_from_decl (var), 0,
9141 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
9142 INSERT);
9143
9144 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
9145 }
9146 break;
9147
9148 case MO_VAL_USE:
9149 {
9150 rtx loc = mo->u.loc;
9151 rtx val, vloc, uloc;
9152
9153 vloc = uloc = XEXP (loc, 1);
9154 val = XEXP (loc, 0);
9155
9156 if (GET_CODE (val) == CONCAT)
9157 {
9158 uloc = XEXP (val, 1);
9159 val = XEXP (val, 0);
9160 }
9161
9162 if (VAL_NEEDS_RESOLUTION (loc))
9163 val_resolve (set, val, vloc, insn);
9164 else
9165 val_store (set, val, uloc, insn, false);
9166
9167 if (VAL_HOLDS_TRACK_EXPR (loc))
9168 {
9169 if (GET_CODE (uloc) == REG)
9170 var_reg_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
9171 NULL);
9172 else if (GET_CODE (uloc) == MEM)
9173 var_mem_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
9174 NULL);
9175 }
9176
9177 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
9178 }
9179 break;
9180
9181 case MO_VAL_SET:
9182 {
9183 rtx loc = mo->u.loc;
9184 rtx val, vloc, uloc;
9185 rtx dstv, srcv;
9186
9187 vloc = loc;
9188 uloc = XEXP (vloc, 1);
9189 val = XEXP (vloc, 0);
9190 vloc = uloc;
9191
9192 if (GET_CODE (uloc) == SET)
9193 {
9194 dstv = SET_DEST (uloc);
9195 srcv = SET_SRC (uloc);
9196 }
9197 else
9198 {
9199 dstv = uloc;
9200 srcv = NULL;
9201 }
9202
9203 if (GET_CODE (val) == CONCAT)
9204 {
9205 dstv = vloc = XEXP (val, 1);
9206 val = XEXP (val, 0);
9207 }
9208
9209 if (GET_CODE (vloc) == SET)
9210 {
9211 srcv = SET_SRC (vloc);
9212
9213 gcc_assert (val != srcv);
9214 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
9215
9216 dstv = vloc = SET_DEST (vloc);
9217
9218 if (VAL_NEEDS_RESOLUTION (loc))
9219 val_resolve (set, val, srcv, insn);
9220 }
9221 else if (VAL_NEEDS_RESOLUTION (loc))
9222 {
9223 gcc_assert (GET_CODE (uloc) == SET
9224 && GET_CODE (SET_SRC (uloc)) == REG);
9225 val_resolve (set, val, SET_SRC (uloc), insn);
9226 }
9227
9228 if (VAL_HOLDS_TRACK_EXPR (loc))
9229 {
9230 if (VAL_EXPR_IS_CLOBBERED (loc))
9231 {
9232 if (REG_P (uloc))
9233 var_reg_delete (set, uloc, true);
9234 else if (MEM_P (uloc))
9235 {
9236 gcc_assert (MEM_P (dstv));
9237 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (uloc));
9238 var_mem_delete (set, dstv, true);
9239 }
9240 }
9241 else
9242 {
9243 bool copied_p = VAL_EXPR_IS_COPIED (loc);
9244 rtx src = NULL, dst = uloc;
9245 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
9246
9247 if (GET_CODE (uloc) == SET)
9248 {
9249 src = SET_SRC (uloc);
9250 dst = SET_DEST (uloc);
9251 }
9252
9253 if (copied_p)
9254 {
9255 status = find_src_status (set, src);
9256
9257 src = find_src_set_src (set, src);
9258 }
9259
9260 if (REG_P (dst))
9261 var_reg_delete_and_set (set, dst, !copied_p,
9262 status, srcv);
9263 else if (MEM_P (dst))
9264 {
9265 gcc_assert (MEM_P (dstv));
9266 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (dst));
9267 var_mem_delete_and_set (set, dstv, !copied_p,
9268 status, srcv);
9269 }
9270 }
9271 }
9272 else if (REG_P (uloc))
9273 var_regno_delete (set, REGNO (uloc));
9274 else if (MEM_P (uloc))
9275 {
9276 gcc_checking_assert (GET_CODE (vloc) == MEM);
9277 gcc_checking_assert (vloc == dstv);
9278 if (vloc != dstv)
9279 clobber_overlapping_mems (set, vloc);
9280 }
9281
9282 val_store (set, val, dstv, insn, true);
9283
9284 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9285 set->vars);
9286 }
9287 break;
9288
9289 case MO_SET:
9290 {
9291 rtx loc = mo->u.loc;
9292 rtx set_src = NULL;
9293
9294 if (GET_CODE (loc) == SET)
9295 {
9296 set_src = SET_SRC (loc);
9297 loc = SET_DEST (loc);
9298 }
9299
9300 if (REG_P (loc))
9301 var_reg_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
9302 set_src);
9303 else
9304 var_mem_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
9305 set_src);
9306
9307 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9308 set->vars);
9309 }
9310 break;
9311
9312 case MO_COPY:
9313 {
9314 rtx loc = mo->u.loc;
9315 enum var_init_status src_status;
9316 rtx set_src = NULL;
9317
9318 if (GET_CODE (loc) == SET)
9319 {
9320 set_src = SET_SRC (loc);
9321 loc = SET_DEST (loc);
9322 }
9323
9324 src_status = find_src_status (set, set_src);
9325 set_src = find_src_set_src (set, set_src);
9326
9327 if (REG_P (loc))
9328 var_reg_delete_and_set (set, loc, false, src_status, set_src);
9329 else
9330 var_mem_delete_and_set (set, loc, false, src_status, set_src);
9331
9332 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9333 set->vars);
9334 }
9335 break;
9336
9337 case MO_USE_NO_VAR:
9338 {
9339 rtx loc = mo->u.loc;
9340
9341 if (REG_P (loc))
9342 var_reg_delete (set, loc, false);
9343 else
9344 var_mem_delete (set, loc, false);
9345
9346 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
9347 }
9348 break;
9349
9350 case MO_CLOBBER:
9351 {
9352 rtx loc = mo->u.loc;
9353
9354 if (REG_P (loc))
9355 var_reg_delete (set, loc, true);
9356 else
9357 var_mem_delete (set, loc, true);
9358
9359 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9360 set->vars);
9361 }
9362 break;
9363
9364 case MO_ADJUST:
9365 set->stack_adjust += mo->u.adjust;
9366 break;
9367 }
9368 }
9369 }
9370
9371 /* Emit notes for the whole function. */
9372
9373 static void
9374 vt_emit_notes (void)
9375 {
9376 basic_block bb;
9377 dataflow_set cur;
9378
9379 gcc_assert (!changed_variables->elements ());
9380
9381 /* Free memory occupied by the out hash tables, as they aren't used
9382 anymore. */
9383 FOR_EACH_BB_FN (bb, cfun)
9384 dataflow_set_clear (&VTI (bb)->out);
9385
9386 /* Enable emitting notes by functions (mainly by set_variable_part and
9387 delete_variable_part). */
9388 emit_notes = true;
9389
9390 if (MAY_HAVE_DEBUG_INSNS)
9391 {
9392 dropped_values = new variable_table_type (cselib_get_next_uid () * 2);
9393 }
9394
9395 dataflow_set_init (&cur);
9396
9397 FOR_EACH_BB_FN (bb, cfun)
9398 {
9399 /* Emit the notes for changes of variable locations between two
9400 subsequent basic blocks. */
9401 emit_notes_for_differences (BB_HEAD (bb), &cur, &VTI (bb)->in);
9402
9403 if (MAY_HAVE_DEBUG_INSNS)
9404 local_get_addr_cache = new hash_map<rtx, rtx>;
9405
9406 /* Emit the notes for the changes in the basic block itself. */
9407 emit_notes_in_bb (bb, &cur);
9408
9409 if (MAY_HAVE_DEBUG_INSNS)
9410 delete local_get_addr_cache;
9411 local_get_addr_cache = NULL;
9412
9413 /* Free memory occupied by the in hash table, we won't need it
9414 again. */
9415 dataflow_set_clear (&VTI (bb)->in);
9416 }
9417
9418 if (flag_checking)
9419 shared_hash_htab (cur.vars)
9420 ->traverse <variable_table_type *, emit_notes_for_differences_1>
9421 (shared_hash_htab (empty_shared_hash));
9422
9423 dataflow_set_destroy (&cur);
9424
9425 if (MAY_HAVE_DEBUG_INSNS)
9426 delete dropped_values;
9427 dropped_values = NULL;
9428
9429 emit_notes = false;
9430 }
9431
9432 /* If there is a declaration and offset associated with register/memory RTL
9433 assign declaration to *DECLP and offset to *OFFSETP, and return true. */
9434
9435 static bool
9436 vt_get_decl_and_offset (rtx rtl, tree *declp, HOST_WIDE_INT *offsetp)
9437 {
9438 if (REG_P (rtl))
9439 {
9440 if (REG_ATTRS (rtl))
9441 {
9442 *declp = REG_EXPR (rtl);
9443 *offsetp = REG_OFFSET (rtl);
9444 return true;
9445 }
9446 }
9447 else if (GET_CODE (rtl) == PARALLEL)
9448 {
9449 tree decl = NULL_TREE;
9450 HOST_WIDE_INT offset = MAX_VAR_PARTS;
9451 int len = XVECLEN (rtl, 0), i;
9452
9453 for (i = 0; i < len; i++)
9454 {
9455 rtx reg = XEXP (XVECEXP (rtl, 0, i), 0);
9456 if (!REG_P (reg) || !REG_ATTRS (reg))
9457 break;
9458 if (!decl)
9459 decl = REG_EXPR (reg);
9460 if (REG_EXPR (reg) != decl)
9461 break;
9462 if (REG_OFFSET (reg) < offset)
9463 offset = REG_OFFSET (reg);
9464 }
9465
9466 if (i == len)
9467 {
9468 *declp = decl;
9469 *offsetp = offset;
9470 return true;
9471 }
9472 }
9473 else if (MEM_P (rtl))
9474 {
9475 if (MEM_ATTRS (rtl))
9476 {
9477 *declp = MEM_EXPR (rtl);
9478 *offsetp = INT_MEM_OFFSET (rtl);
9479 return true;
9480 }
9481 }
9482 return false;
9483 }
9484
9485 /* Record the value for the ENTRY_VALUE of RTL as a global equivalence
9486 of VAL. */
9487
9488 static void
9489 record_entry_value (cselib_val *val, rtx rtl)
9490 {
9491 rtx ev = gen_rtx_ENTRY_VALUE (GET_MODE (rtl));
9492
9493 ENTRY_VALUE_EXP (ev) = rtl;
9494
9495 cselib_add_permanent_equiv (val, ev, get_insns ());
9496 }
9497
9498 /* Insert function parameter PARM in IN and OUT sets of ENTRY_BLOCK. */
9499
9500 static void
9501 vt_add_function_parameter (tree parm)
9502 {
9503 rtx decl_rtl = DECL_RTL_IF_SET (parm);
9504 rtx incoming = DECL_INCOMING_RTL (parm);
9505 tree decl;
9506 machine_mode mode;
9507 HOST_WIDE_INT offset;
9508 dataflow_set *out;
9509 decl_or_value dv;
9510
9511 if (TREE_CODE (parm) != PARM_DECL)
9512 return;
9513
9514 if (!decl_rtl || !incoming)
9515 return;
9516
9517 if (GET_MODE (decl_rtl) == BLKmode || GET_MODE (incoming) == BLKmode)
9518 return;
9519
9520 /* If there is a DRAP register or a pseudo in internal_arg_pointer,
9521 rewrite the incoming location of parameters passed on the stack
9522 into MEMs based on the argument pointer, so that incoming doesn't
9523 depend on a pseudo. */
9524 if (MEM_P (incoming)
9525 && (XEXP (incoming, 0) == crtl->args.internal_arg_pointer
9526 || (GET_CODE (XEXP (incoming, 0)) == PLUS
9527 && XEXP (XEXP (incoming, 0), 0)
9528 == crtl->args.internal_arg_pointer
9529 && CONST_INT_P (XEXP (XEXP (incoming, 0), 1)))))
9530 {
9531 HOST_WIDE_INT off = -FIRST_PARM_OFFSET (current_function_decl);
9532 if (GET_CODE (XEXP (incoming, 0)) == PLUS)
9533 off += INTVAL (XEXP (XEXP (incoming, 0), 1));
9534 incoming
9535 = replace_equiv_address_nv (incoming,
9536 plus_constant (Pmode,
9537 arg_pointer_rtx, off));
9538 }
9539
9540 #ifdef HAVE_window_save
9541 /* DECL_INCOMING_RTL uses the INCOMING_REGNO of parameter registers.
9542 If the target machine has an explicit window save instruction, the
9543 actual entry value is the corresponding OUTGOING_REGNO instead. */
9544 if (HAVE_window_save && !crtl->uses_only_leaf_regs)
9545 {
9546 if (REG_P (incoming)
9547 && HARD_REGISTER_P (incoming)
9548 && OUTGOING_REGNO (REGNO (incoming)) != REGNO (incoming))
9549 {
9550 parm_reg p;
9551 p.incoming = incoming;
9552 incoming
9553 = gen_rtx_REG_offset (incoming, GET_MODE (incoming),
9554 OUTGOING_REGNO (REGNO (incoming)), 0);
9555 p.outgoing = incoming;
9556 vec_safe_push (windowed_parm_regs, p);
9557 }
9558 else if (GET_CODE (incoming) == PARALLEL)
9559 {
9560 rtx outgoing
9561 = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (XVECLEN (incoming, 0)));
9562 int i;
9563
9564 for (i = 0; i < XVECLEN (incoming, 0); i++)
9565 {
9566 rtx reg = XEXP (XVECEXP (incoming, 0, i), 0);
9567 parm_reg p;
9568 p.incoming = reg;
9569 reg = gen_rtx_REG_offset (reg, GET_MODE (reg),
9570 OUTGOING_REGNO (REGNO (reg)), 0);
9571 p.outgoing = reg;
9572 XVECEXP (outgoing, 0, i)
9573 = gen_rtx_EXPR_LIST (VOIDmode, reg,
9574 XEXP (XVECEXP (incoming, 0, i), 1));
9575 vec_safe_push (windowed_parm_regs, p);
9576 }
9577
9578 incoming = outgoing;
9579 }
9580 else if (MEM_P (incoming)
9581 && REG_P (XEXP (incoming, 0))
9582 && HARD_REGISTER_P (XEXP (incoming, 0)))
9583 {
9584 rtx reg = XEXP (incoming, 0);
9585 if (OUTGOING_REGNO (REGNO (reg)) != REGNO (reg))
9586 {
9587 parm_reg p;
9588 p.incoming = reg;
9589 reg = gen_raw_REG (GET_MODE (reg), OUTGOING_REGNO (REGNO (reg)));
9590 p.outgoing = reg;
9591 vec_safe_push (windowed_parm_regs, p);
9592 incoming = replace_equiv_address_nv (incoming, reg);
9593 }
9594 }
9595 }
9596 #endif
9597
9598 if (!vt_get_decl_and_offset (incoming, &decl, &offset))
9599 {
9600 if (MEM_P (incoming))
9601 {
9602 /* This means argument is passed by invisible reference. */
9603 offset = 0;
9604 decl = parm;
9605 }
9606 else
9607 {
9608 if (!vt_get_decl_and_offset (decl_rtl, &decl, &offset))
9609 return;
9610 offset += byte_lowpart_offset (GET_MODE (incoming),
9611 GET_MODE (decl_rtl));
9612 }
9613 }
9614
9615 if (!decl)
9616 return;
9617
9618 if (parm != decl)
9619 {
9620 /* If that DECL_RTL wasn't a pseudo that got spilled to
9621 memory, bail out. Otherwise, the spill slot sharing code
9622 will force the memory to reference spill_slot_decl (%sfp),
9623 so we don't match above. That's ok, the pseudo must have
9624 referenced the entire parameter, so just reset OFFSET. */
9625 if (decl != get_spill_slot_decl (false))
9626 return;
9627 offset = 0;
9628 }
9629
9630 if (!track_loc_p (incoming, parm, offset, false, &mode, &offset))
9631 return;
9632
9633 out = &VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->out;
9634
9635 dv = dv_from_decl (parm);
9636
9637 if (target_for_debug_bind (parm)
9638 /* We can't deal with these right now, because this kind of
9639 variable is single-part. ??? We could handle parallels
9640 that describe multiple locations for the same single
9641 value, but ATM we don't. */
9642 && GET_CODE (incoming) != PARALLEL)
9643 {
9644 cselib_val *val;
9645 rtx lowpart;
9646
9647 /* ??? We shouldn't ever hit this, but it may happen because
9648 arguments passed by invisible reference aren't dealt with
9649 above: incoming-rtl will have Pmode rather than the
9650 expected mode for the type. */
9651 if (offset)
9652 return;
9653
9654 lowpart = var_lowpart (mode, incoming);
9655 if (!lowpart)
9656 return;
9657
9658 val = cselib_lookup_from_insn (lowpart, mode, true,
9659 VOIDmode, get_insns ());
9660
9661 /* ??? Float-typed values in memory are not handled by
9662 cselib. */
9663 if (val)
9664 {
9665 preserve_value (val);
9666 set_variable_part (out, val->val_rtx, dv, offset,
9667 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9668 dv = dv_from_value (val->val_rtx);
9669 }
9670
9671 if (MEM_P (incoming))
9672 {
9673 val = cselib_lookup_from_insn (XEXP (incoming, 0), mode, true,
9674 VOIDmode, get_insns ());
9675 if (val)
9676 {
9677 preserve_value (val);
9678 incoming = replace_equiv_address_nv (incoming, val->val_rtx);
9679 }
9680 }
9681 }
9682
9683 if (REG_P (incoming))
9684 {
9685 incoming = var_lowpart (mode, incoming);
9686 gcc_assert (REGNO (incoming) < FIRST_PSEUDO_REGISTER);
9687 attrs_list_insert (&out->regs[REGNO (incoming)], dv, offset,
9688 incoming);
9689 set_variable_part (out, incoming, dv, offset,
9690 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9691 if (dv_is_value_p (dv))
9692 {
9693 record_entry_value (CSELIB_VAL_PTR (dv_as_value (dv)), incoming);
9694 if (TREE_CODE (TREE_TYPE (parm)) == REFERENCE_TYPE
9695 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_TYPE (parm))))
9696 {
9697 machine_mode indmode
9698 = TYPE_MODE (TREE_TYPE (TREE_TYPE (parm)));
9699 rtx mem = gen_rtx_MEM (indmode, incoming);
9700 cselib_val *val = cselib_lookup_from_insn (mem, indmode, true,
9701 VOIDmode,
9702 get_insns ());
9703 if (val)
9704 {
9705 preserve_value (val);
9706 record_entry_value (val, mem);
9707 set_variable_part (out, mem, dv_from_value (val->val_rtx), 0,
9708 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9709 }
9710 }
9711 }
9712 }
9713 else if (GET_CODE (incoming) == PARALLEL && !dv_onepart_p (dv))
9714 {
9715 int i;
9716
9717 for (i = 0; i < XVECLEN (incoming, 0); i++)
9718 {
9719 rtx reg = XEXP (XVECEXP (incoming, 0, i), 0);
9720 offset = REG_OFFSET (reg);
9721 gcc_assert (REGNO (reg) < FIRST_PSEUDO_REGISTER);
9722 attrs_list_insert (&out->regs[REGNO (reg)], dv, offset, reg);
9723 set_variable_part (out, reg, dv, offset,
9724 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9725 }
9726 }
9727 else if (MEM_P (incoming))
9728 {
9729 incoming = var_lowpart (mode, incoming);
9730 set_variable_part (out, incoming, dv, offset,
9731 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9732 }
9733 }
9734
9735 /* Insert function parameters to IN and OUT sets of ENTRY_BLOCK. */
9736
9737 static void
9738 vt_add_function_parameters (void)
9739 {
9740 tree parm;
9741
9742 for (parm = DECL_ARGUMENTS (current_function_decl);
9743 parm; parm = DECL_CHAIN (parm))
9744 if (!POINTER_BOUNDS_P (parm))
9745 vt_add_function_parameter (parm);
9746
9747 if (DECL_HAS_VALUE_EXPR_P (DECL_RESULT (current_function_decl)))
9748 {
9749 tree vexpr = DECL_VALUE_EXPR (DECL_RESULT (current_function_decl));
9750
9751 if (TREE_CODE (vexpr) == INDIRECT_REF)
9752 vexpr = TREE_OPERAND (vexpr, 0);
9753
9754 if (TREE_CODE (vexpr) == PARM_DECL
9755 && DECL_ARTIFICIAL (vexpr)
9756 && !DECL_IGNORED_P (vexpr)
9757 && DECL_NAMELESS (vexpr))
9758 vt_add_function_parameter (vexpr);
9759 }
9760 }
9761
9762 /* Initialize cfa_base_rtx, create a preserved VALUE for it and
9763 ensure it isn't flushed during cselib_reset_table.
9764 Can be called only if frame_pointer_rtx resp. arg_pointer_rtx
9765 has been eliminated. */
9766
9767 static void
9768 vt_init_cfa_base (void)
9769 {
9770 cselib_val *val;
9771
9772 #ifdef FRAME_POINTER_CFA_OFFSET
9773 cfa_base_rtx = frame_pointer_rtx;
9774 cfa_base_offset = -FRAME_POINTER_CFA_OFFSET (current_function_decl);
9775 #else
9776 cfa_base_rtx = arg_pointer_rtx;
9777 cfa_base_offset = -ARG_POINTER_CFA_OFFSET (current_function_decl);
9778 #endif
9779 if (cfa_base_rtx == hard_frame_pointer_rtx
9780 || !fixed_regs[REGNO (cfa_base_rtx)])
9781 {
9782 cfa_base_rtx = NULL_RTX;
9783 return;
9784 }
9785 if (!MAY_HAVE_DEBUG_INSNS)
9786 return;
9787
9788 /* Tell alias analysis that cfa_base_rtx should share
9789 find_base_term value with stack pointer or hard frame pointer. */
9790 if (!frame_pointer_needed)
9791 vt_equate_reg_base_value (cfa_base_rtx, stack_pointer_rtx);
9792 else if (!crtl->stack_realign_tried)
9793 vt_equate_reg_base_value (cfa_base_rtx, hard_frame_pointer_rtx);
9794
9795 val = cselib_lookup_from_insn (cfa_base_rtx, GET_MODE (cfa_base_rtx), 1,
9796 VOIDmode, get_insns ());
9797 preserve_value (val);
9798 cselib_preserve_cfa_base_value (val, REGNO (cfa_base_rtx));
9799 }
9800
9801 /* Allocate and initialize the data structures for variable tracking
9802 and parse the RTL to get the micro operations. */
9803
9804 static bool
9805 vt_initialize (void)
9806 {
9807 basic_block bb;
9808 HOST_WIDE_INT fp_cfa_offset = -1;
9809
9810 alloc_aux_for_blocks (sizeof (variable_tracking_info));
9811
9812 empty_shared_hash = shared_hash_pool.allocate ();
9813 empty_shared_hash->refcount = 1;
9814 empty_shared_hash->htab = new variable_table_type (1);
9815 changed_variables = new variable_table_type (10);
9816
9817 /* Init the IN and OUT sets. */
9818 FOR_ALL_BB_FN (bb, cfun)
9819 {
9820 VTI (bb)->visited = false;
9821 VTI (bb)->flooded = false;
9822 dataflow_set_init (&VTI (bb)->in);
9823 dataflow_set_init (&VTI (bb)->out);
9824 VTI (bb)->permp = NULL;
9825 }
9826
9827 if (MAY_HAVE_DEBUG_INSNS)
9828 {
9829 cselib_init (CSELIB_RECORD_MEMORY | CSELIB_PRESERVE_CONSTANTS);
9830 scratch_regs = BITMAP_ALLOC (NULL);
9831 preserved_values.create (256);
9832 global_get_addr_cache = new hash_map<rtx, rtx>;
9833 }
9834 else
9835 {
9836 scratch_regs = NULL;
9837 global_get_addr_cache = NULL;
9838 }
9839
9840 if (MAY_HAVE_DEBUG_INSNS)
9841 {
9842 rtx reg, expr;
9843 int ofst;
9844 cselib_val *val;
9845
9846 #ifdef FRAME_POINTER_CFA_OFFSET
9847 reg = frame_pointer_rtx;
9848 ofst = FRAME_POINTER_CFA_OFFSET (current_function_decl);
9849 #else
9850 reg = arg_pointer_rtx;
9851 ofst = ARG_POINTER_CFA_OFFSET (current_function_decl);
9852 #endif
9853
9854 ofst -= INCOMING_FRAME_SP_OFFSET;
9855
9856 val = cselib_lookup_from_insn (reg, GET_MODE (reg), 1,
9857 VOIDmode, get_insns ());
9858 preserve_value (val);
9859 if (reg != hard_frame_pointer_rtx && fixed_regs[REGNO (reg)])
9860 cselib_preserve_cfa_base_value (val, REGNO (reg));
9861 expr = plus_constant (GET_MODE (stack_pointer_rtx),
9862 stack_pointer_rtx, -ofst);
9863 cselib_add_permanent_equiv (val, expr, get_insns ());
9864
9865 if (ofst)
9866 {
9867 val = cselib_lookup_from_insn (stack_pointer_rtx,
9868 GET_MODE (stack_pointer_rtx), 1,
9869 VOIDmode, get_insns ());
9870 preserve_value (val);
9871 expr = plus_constant (GET_MODE (reg), reg, ofst);
9872 cselib_add_permanent_equiv (val, expr, get_insns ());
9873 }
9874 }
9875
9876 /* In order to factor out the adjustments made to the stack pointer or to
9877 the hard frame pointer and thus be able to use DW_OP_fbreg operations
9878 instead of individual location lists, we're going to rewrite MEMs based
9879 on them into MEMs based on the CFA by de-eliminating stack_pointer_rtx
9880 or hard_frame_pointer_rtx to the virtual CFA pointer frame_pointer_rtx
9881 resp. arg_pointer_rtx. We can do this either when there is no frame
9882 pointer in the function and stack adjustments are consistent for all
9883 basic blocks or when there is a frame pointer and no stack realignment.
9884 But we first have to check that frame_pointer_rtx resp. arg_pointer_rtx
9885 has been eliminated. */
9886 if (!frame_pointer_needed)
9887 {
9888 rtx reg, elim;
9889
9890 if (!vt_stack_adjustments ())
9891 return false;
9892
9893 #ifdef FRAME_POINTER_CFA_OFFSET
9894 reg = frame_pointer_rtx;
9895 #else
9896 reg = arg_pointer_rtx;
9897 #endif
9898 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
9899 if (elim != reg)
9900 {
9901 if (GET_CODE (elim) == PLUS)
9902 elim = XEXP (elim, 0);
9903 if (elim == stack_pointer_rtx)
9904 vt_init_cfa_base ();
9905 }
9906 }
9907 else if (!crtl->stack_realign_tried)
9908 {
9909 rtx reg, elim;
9910
9911 #ifdef FRAME_POINTER_CFA_OFFSET
9912 reg = frame_pointer_rtx;
9913 fp_cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
9914 #else
9915 reg = arg_pointer_rtx;
9916 fp_cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
9917 #endif
9918 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
9919 if (elim != reg)
9920 {
9921 if (GET_CODE (elim) == PLUS)
9922 {
9923 fp_cfa_offset -= INTVAL (XEXP (elim, 1));
9924 elim = XEXP (elim, 0);
9925 }
9926 if (elim != hard_frame_pointer_rtx)
9927 fp_cfa_offset = -1;
9928 }
9929 else
9930 fp_cfa_offset = -1;
9931 }
9932
9933 /* If the stack is realigned and a DRAP register is used, we're going to
9934 rewrite MEMs based on it representing incoming locations of parameters
9935 passed on the stack into MEMs based on the argument pointer. Although
9936 we aren't going to rewrite other MEMs, we still need to initialize the
9937 virtual CFA pointer in order to ensure that the argument pointer will
9938 be seen as a constant throughout the function.
9939
9940 ??? This doesn't work if FRAME_POINTER_CFA_OFFSET is defined. */
9941 else if (stack_realign_drap)
9942 {
9943 rtx reg, elim;
9944
9945 #ifdef FRAME_POINTER_CFA_OFFSET
9946 reg = frame_pointer_rtx;
9947 #else
9948 reg = arg_pointer_rtx;
9949 #endif
9950 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
9951 if (elim != reg)
9952 {
9953 if (GET_CODE (elim) == PLUS)
9954 elim = XEXP (elim, 0);
9955 if (elim == hard_frame_pointer_rtx)
9956 vt_init_cfa_base ();
9957 }
9958 }
9959
9960 hard_frame_pointer_adjustment = -1;
9961
9962 vt_add_function_parameters ();
9963
9964 FOR_EACH_BB_FN (bb, cfun)
9965 {
9966 rtx_insn *insn;
9967 HOST_WIDE_INT pre, post = 0;
9968 basic_block first_bb, last_bb;
9969
9970 if (MAY_HAVE_DEBUG_INSNS)
9971 {
9972 cselib_record_sets_hook = add_with_sets;
9973 if (dump_file && (dump_flags & TDF_DETAILS))
9974 fprintf (dump_file, "first value: %i\n",
9975 cselib_get_next_uid ());
9976 }
9977
9978 first_bb = bb;
9979 for (;;)
9980 {
9981 edge e;
9982 if (bb->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
9983 || ! single_pred_p (bb->next_bb))
9984 break;
9985 e = find_edge (bb, bb->next_bb);
9986 if (! e || (e->flags & EDGE_FALLTHRU) == 0)
9987 break;
9988 bb = bb->next_bb;
9989 }
9990 last_bb = bb;
9991
9992 /* Add the micro-operations to the vector. */
9993 FOR_BB_BETWEEN (bb, first_bb, last_bb->next_bb, next_bb)
9994 {
9995 HOST_WIDE_INT offset = VTI (bb)->out.stack_adjust;
9996 VTI (bb)->out.stack_adjust = VTI (bb)->in.stack_adjust;
9997 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
9998 insn = NEXT_INSN (insn))
9999 {
10000 if (INSN_P (insn))
10001 {
10002 if (!frame_pointer_needed)
10003 {
10004 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
10005 if (pre)
10006 {
10007 micro_operation mo;
10008 mo.type = MO_ADJUST;
10009 mo.u.adjust = pre;
10010 mo.insn = insn;
10011 if (dump_file && (dump_flags & TDF_DETAILS))
10012 log_op_type (PATTERN (insn), bb, insn,
10013 MO_ADJUST, dump_file);
10014 VTI (bb)->mos.safe_push (mo);
10015 VTI (bb)->out.stack_adjust += pre;
10016 }
10017 }
10018
10019 cselib_hook_called = false;
10020 adjust_insn (bb, insn);
10021 if (MAY_HAVE_DEBUG_INSNS)
10022 {
10023 if (CALL_P (insn))
10024 prepare_call_arguments (bb, insn);
10025 cselib_process_insn (insn);
10026 if (dump_file && (dump_flags & TDF_DETAILS))
10027 {
10028 print_rtl_single (dump_file, insn);
10029 dump_cselib_table (dump_file);
10030 }
10031 }
10032 if (!cselib_hook_called)
10033 add_with_sets (insn, 0, 0);
10034 cancel_changes (0);
10035
10036 if (!frame_pointer_needed && post)
10037 {
10038 micro_operation mo;
10039 mo.type = MO_ADJUST;
10040 mo.u.adjust = post;
10041 mo.insn = insn;
10042 if (dump_file && (dump_flags & TDF_DETAILS))
10043 log_op_type (PATTERN (insn), bb, insn,
10044 MO_ADJUST, dump_file);
10045 VTI (bb)->mos.safe_push (mo);
10046 VTI (bb)->out.stack_adjust += post;
10047 }
10048
10049 if (fp_cfa_offset != -1
10050 && hard_frame_pointer_adjustment == -1
10051 && fp_setter_insn (insn))
10052 {
10053 vt_init_cfa_base ();
10054 hard_frame_pointer_adjustment = fp_cfa_offset;
10055 /* Disassociate sp from fp now. */
10056 if (MAY_HAVE_DEBUG_INSNS)
10057 {
10058 cselib_val *v;
10059 cselib_invalidate_rtx (stack_pointer_rtx);
10060 v = cselib_lookup (stack_pointer_rtx, Pmode, 1,
10061 VOIDmode);
10062 if (v && !cselib_preserved_value_p (v))
10063 {
10064 cselib_set_value_sp_based (v);
10065 preserve_value (v);
10066 }
10067 }
10068 }
10069 }
10070 }
10071 gcc_assert (offset == VTI (bb)->out.stack_adjust);
10072 }
10073
10074 bb = last_bb;
10075
10076 if (MAY_HAVE_DEBUG_INSNS)
10077 {
10078 cselib_preserve_only_values ();
10079 cselib_reset_table (cselib_get_next_uid ());
10080 cselib_record_sets_hook = NULL;
10081 }
10082 }
10083
10084 hard_frame_pointer_adjustment = -1;
10085 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->flooded = true;
10086 cfa_base_rtx = NULL_RTX;
10087 return true;
10088 }
10089
10090 /* This is *not* reset after each function. It gives each
10091 NOTE_INSN_DELETED_DEBUG_LABEL in the entire compilation
10092 a unique label number. */
10093
10094 static int debug_label_num = 1;
10095
10096 /* Get rid of all debug insns from the insn stream. */
10097
10098 static void
10099 delete_debug_insns (void)
10100 {
10101 basic_block bb;
10102 rtx_insn *insn, *next;
10103
10104 if (!MAY_HAVE_DEBUG_INSNS)
10105 return;
10106
10107 FOR_EACH_BB_FN (bb, cfun)
10108 {
10109 FOR_BB_INSNS_SAFE (bb, insn, next)
10110 if (DEBUG_INSN_P (insn))
10111 {
10112 tree decl = INSN_VAR_LOCATION_DECL (insn);
10113 if (TREE_CODE (decl) == LABEL_DECL
10114 && DECL_NAME (decl)
10115 && !DECL_RTL_SET_P (decl))
10116 {
10117 PUT_CODE (insn, NOTE);
10118 NOTE_KIND (insn) = NOTE_INSN_DELETED_DEBUG_LABEL;
10119 NOTE_DELETED_LABEL_NAME (insn)
10120 = IDENTIFIER_POINTER (DECL_NAME (decl));
10121 SET_DECL_RTL (decl, insn);
10122 CODE_LABEL_NUMBER (insn) = debug_label_num++;
10123 }
10124 else
10125 delete_insn (insn);
10126 }
10127 }
10128 }
10129
10130 /* Run a fast, BB-local only version of var tracking, to take care of
10131 information that we don't do global analysis on, such that not all
10132 information is lost. If SKIPPED holds, we're skipping the global
10133 pass entirely, so we should try to use information it would have
10134 handled as well.. */
10135
10136 static void
10137 vt_debug_insns_local (bool skipped ATTRIBUTE_UNUSED)
10138 {
10139 /* ??? Just skip it all for now. */
10140 delete_debug_insns ();
10141 }
10142
10143 /* Free the data structures needed for variable tracking. */
10144
10145 static void
10146 vt_finalize (void)
10147 {
10148 basic_block bb;
10149
10150 FOR_EACH_BB_FN (bb, cfun)
10151 {
10152 VTI (bb)->mos.release ();
10153 }
10154
10155 FOR_ALL_BB_FN (bb, cfun)
10156 {
10157 dataflow_set_destroy (&VTI (bb)->in);
10158 dataflow_set_destroy (&VTI (bb)->out);
10159 if (VTI (bb)->permp)
10160 {
10161 dataflow_set_destroy (VTI (bb)->permp);
10162 XDELETE (VTI (bb)->permp);
10163 }
10164 }
10165 free_aux_for_blocks ();
10166 delete empty_shared_hash->htab;
10167 empty_shared_hash->htab = NULL;
10168 delete changed_variables;
10169 changed_variables = NULL;
10170 attrs_pool.release ();
10171 var_pool.release ();
10172 location_chain_pool.release ();
10173 shared_hash_pool.release ();
10174
10175 if (MAY_HAVE_DEBUG_INSNS)
10176 {
10177 if (global_get_addr_cache)
10178 delete global_get_addr_cache;
10179 global_get_addr_cache = NULL;
10180 loc_exp_dep_pool.release ();
10181 valvar_pool.release ();
10182 preserved_values.release ();
10183 cselib_finish ();
10184 BITMAP_FREE (scratch_regs);
10185 scratch_regs = NULL;
10186 }
10187
10188 #ifdef HAVE_window_save
10189 vec_free (windowed_parm_regs);
10190 #endif
10191
10192 if (vui_vec)
10193 XDELETEVEC (vui_vec);
10194 vui_vec = NULL;
10195 vui_allocated = 0;
10196 }
10197
10198 /* The entry point to variable tracking pass. */
10199
10200 static inline unsigned int
10201 variable_tracking_main_1 (void)
10202 {
10203 bool success;
10204
10205 if (flag_var_tracking_assignments < 0
10206 /* Var-tracking right now assumes the IR doesn't contain
10207 any pseudos at this point. */
10208 || targetm.no_register_allocation)
10209 {
10210 delete_debug_insns ();
10211 return 0;
10212 }
10213
10214 if (n_basic_blocks_for_fn (cfun) > 500 &&
10215 n_edges_for_fn (cfun) / n_basic_blocks_for_fn (cfun) >= 20)
10216 {
10217 vt_debug_insns_local (true);
10218 return 0;
10219 }
10220
10221 mark_dfs_back_edges ();
10222 if (!vt_initialize ())
10223 {
10224 vt_finalize ();
10225 vt_debug_insns_local (true);
10226 return 0;
10227 }
10228
10229 success = vt_find_locations ();
10230
10231 if (!success && flag_var_tracking_assignments > 0)
10232 {
10233 vt_finalize ();
10234
10235 delete_debug_insns ();
10236
10237 /* This is later restored by our caller. */
10238 flag_var_tracking_assignments = 0;
10239
10240 success = vt_initialize ();
10241 gcc_assert (success);
10242
10243 success = vt_find_locations ();
10244 }
10245
10246 if (!success)
10247 {
10248 vt_finalize ();
10249 vt_debug_insns_local (false);
10250 return 0;
10251 }
10252
10253 if (dump_file && (dump_flags & TDF_DETAILS))
10254 {
10255 dump_dataflow_sets ();
10256 dump_reg_info (dump_file);
10257 dump_flow_info (dump_file, dump_flags);
10258 }
10259
10260 timevar_push (TV_VAR_TRACKING_EMIT);
10261 vt_emit_notes ();
10262 timevar_pop (TV_VAR_TRACKING_EMIT);
10263
10264 vt_finalize ();
10265 vt_debug_insns_local (false);
10266 return 0;
10267 }
10268
10269 unsigned int
10270 variable_tracking_main (void)
10271 {
10272 unsigned int ret;
10273 int save = flag_var_tracking_assignments;
10274
10275 ret = variable_tracking_main_1 ();
10276
10277 flag_var_tracking_assignments = save;
10278
10279 return ret;
10280 }
10281 \f
10282 namespace {
10283
10284 const pass_data pass_data_variable_tracking =
10285 {
10286 RTL_PASS, /* type */
10287 "vartrack", /* name */
10288 OPTGROUP_NONE, /* optinfo_flags */
10289 TV_VAR_TRACKING, /* tv_id */
10290 0, /* properties_required */
10291 0, /* properties_provided */
10292 0, /* properties_destroyed */
10293 0, /* todo_flags_start */
10294 0, /* todo_flags_finish */
10295 };
10296
10297 class pass_variable_tracking : public rtl_opt_pass
10298 {
10299 public:
10300 pass_variable_tracking (gcc::context *ctxt)
10301 : rtl_opt_pass (pass_data_variable_tracking, ctxt)
10302 {}
10303
10304 /* opt_pass methods: */
10305 virtual bool gate (function *)
10306 {
10307 return (flag_var_tracking && !targetm.delay_vartrack);
10308 }
10309
10310 virtual unsigned int execute (function *)
10311 {
10312 return variable_tracking_main ();
10313 }
10314
10315 }; // class pass_variable_tracking
10316
10317 } // anon namespace
10318
10319 rtl_opt_pass *
10320 make_pass_variable_tracking (gcc::context *ctxt)
10321 {
10322 return new pass_variable_tracking (ctxt);
10323 }