]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/var-tracking.c
convert many uses of pointer_map to hash_map
[thirdparty/gcc.git] / gcc / var-tracking.c
1 /* Variable tracking routines for the GNU compiler.
2 Copyright (C) 2002-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file contains the variable tracking pass. It computes where
21 variables are located (which registers or where in memory) at each position
22 in instruction stream and emits notes describing the locations.
23 Debug information (DWARF2 location lists) is finally generated from
24 these notes.
25 With this debug information, it is possible to show variables
26 even when debugging optimized code.
27
28 How does the variable tracking pass work?
29
30 First, it scans RTL code for uses, stores and clobbers (register/memory
31 references in instructions), for call insns and for stack adjustments
32 separately for each basic block and saves them to an array of micro
33 operations.
34 The micro operations of one instruction are ordered so that
35 pre-modifying stack adjustment < use < use with no var < call insn <
36 < clobber < set < post-modifying stack adjustment
37
38 Then, a forward dataflow analysis is performed to find out how locations
39 of variables change through code and to propagate the variable locations
40 along control flow graph.
41 The IN set for basic block BB is computed as a union of OUT sets of BB's
42 predecessors, the OUT set for BB is copied from the IN set for BB and
43 is changed according to micro operations in BB.
44
45 The IN and OUT sets for basic blocks consist of a current stack adjustment
46 (used for adjusting offset of variables addressed using stack pointer),
47 the table of structures describing the locations of parts of a variable
48 and for each physical register a linked list for each physical register.
49 The linked list is a list of variable parts stored in the register,
50 i.e. it is a list of triplets (reg, decl, offset) where decl is
51 REG_EXPR (reg) and offset is REG_OFFSET (reg). The linked list is used for
52 effective deleting appropriate variable parts when we set or clobber the
53 register.
54
55 There may be more than one variable part in a register. The linked lists
56 should be pretty short so it is a good data structure here.
57 For example in the following code, register allocator may assign same
58 register to variables A and B, and both of them are stored in the same
59 register in CODE:
60
61 if (cond)
62 set A;
63 else
64 set B;
65 CODE;
66 if (cond)
67 use A;
68 else
69 use B;
70
71 Finally, the NOTE_INSN_VAR_LOCATION notes describing the variable locations
72 are emitted to appropriate positions in RTL code. Each such a note describes
73 the location of one variable at the point in instruction stream where the
74 note is. There is no need to emit a note for each variable before each
75 instruction, we only emit these notes where the location of variable changes
76 (this means that we also emit notes for changes between the OUT set of the
77 previous block and the IN set of the current block).
78
79 The notes consist of two parts:
80 1. the declaration (from REG_EXPR or MEM_EXPR)
81 2. the location of a variable - it is either a simple register/memory
82 reference (for simple variables, for example int),
83 or a parallel of register/memory references (for a large variables
84 which consist of several parts, for example long long).
85
86 */
87
88 #include "config.h"
89 #include "system.h"
90 #include "coretypes.h"
91 #include "tm.h"
92 #include "rtl.h"
93 #include "tree.h"
94 #include "varasm.h"
95 #include "stor-layout.h"
96 #include "pointer-set.h"
97 #include "hash-map.h"
98 #include "hash-table.h"
99 #include "basic-block.h"
100 #include "tm_p.h"
101 #include "hard-reg-set.h"
102 #include "flags.h"
103 #include "insn-config.h"
104 #include "reload.h"
105 #include "sbitmap.h"
106 #include "alloc-pool.h"
107 #include "fibheap.h"
108 #include "regs.h"
109 #include "expr.h"
110 #include "tree-pass.h"
111 #include "bitmap.h"
112 #include "tree-dfa.h"
113 #include "tree-ssa.h"
114 #include "cselib.h"
115 #include "target.h"
116 #include "params.h"
117 #include "diagnostic.h"
118 #include "tree-pretty-print.h"
119 #include "recog.h"
120 #include "tm_p.h"
121 #include "alias.h"
122
123 /* var-tracking.c assumes that tree code with the same value as VALUE rtx code
124 has no chance to appear in REG_EXPR/MEM_EXPRs and isn't a decl.
125 Currently the value is the same as IDENTIFIER_NODE, which has such
126 a property. If this compile time assertion ever fails, make sure that
127 the new tree code that equals (int) VALUE has the same property. */
128 extern char check_value_val[(int) VALUE == (int) IDENTIFIER_NODE ? 1 : -1];
129
130 /* Type of micro operation. */
131 enum micro_operation_type
132 {
133 MO_USE, /* Use location (REG or MEM). */
134 MO_USE_NO_VAR,/* Use location which is not associated with a variable
135 or the variable is not trackable. */
136 MO_VAL_USE, /* Use location which is associated with a value. */
137 MO_VAL_LOC, /* Use location which appears in a debug insn. */
138 MO_VAL_SET, /* Set location associated with a value. */
139 MO_SET, /* Set location. */
140 MO_COPY, /* Copy the same portion of a variable from one
141 location to another. */
142 MO_CLOBBER, /* Clobber location. */
143 MO_CALL, /* Call insn. */
144 MO_ADJUST /* Adjust stack pointer. */
145
146 };
147
148 static const char * const ATTRIBUTE_UNUSED
149 micro_operation_type_name[] = {
150 "MO_USE",
151 "MO_USE_NO_VAR",
152 "MO_VAL_USE",
153 "MO_VAL_LOC",
154 "MO_VAL_SET",
155 "MO_SET",
156 "MO_COPY",
157 "MO_CLOBBER",
158 "MO_CALL",
159 "MO_ADJUST"
160 };
161
162 /* Where shall the note be emitted? BEFORE or AFTER the instruction.
163 Notes emitted as AFTER_CALL are to take effect during the call,
164 rather than after the call. */
165 enum emit_note_where
166 {
167 EMIT_NOTE_BEFORE_INSN,
168 EMIT_NOTE_AFTER_INSN,
169 EMIT_NOTE_AFTER_CALL_INSN
170 };
171
172 /* Structure holding information about micro operation. */
173 typedef struct micro_operation_def
174 {
175 /* Type of micro operation. */
176 enum micro_operation_type type;
177
178 /* The instruction which the micro operation is in, for MO_USE,
179 MO_USE_NO_VAR, MO_CALL and MO_ADJUST, or the subsequent
180 instruction or note in the original flow (before any var-tracking
181 notes are inserted, to simplify emission of notes), for MO_SET
182 and MO_CLOBBER. */
183 rtx insn;
184
185 union {
186 /* Location. For MO_SET and MO_COPY, this is the SET that
187 performs the assignment, if known, otherwise it is the target
188 of the assignment. For MO_VAL_USE and MO_VAL_SET, it is a
189 CONCAT of the VALUE and the LOC associated with it. For
190 MO_VAL_LOC, it is a CONCAT of the VALUE and the VAR_LOCATION
191 associated with it. */
192 rtx loc;
193
194 /* Stack adjustment. */
195 HOST_WIDE_INT adjust;
196 } u;
197 } micro_operation;
198
199
200 /* A declaration of a variable, or an RTL value being handled like a
201 declaration. */
202 typedef void *decl_or_value;
203
204 /* Return true if a decl_or_value DV is a DECL or NULL. */
205 static inline bool
206 dv_is_decl_p (decl_or_value dv)
207 {
208 return !dv || (int) TREE_CODE ((tree) dv) != (int) VALUE;
209 }
210
211 /* Return true if a decl_or_value is a VALUE rtl. */
212 static inline bool
213 dv_is_value_p (decl_or_value dv)
214 {
215 return dv && !dv_is_decl_p (dv);
216 }
217
218 /* Return the decl in the decl_or_value. */
219 static inline tree
220 dv_as_decl (decl_or_value dv)
221 {
222 gcc_checking_assert (dv_is_decl_p (dv));
223 return (tree) dv;
224 }
225
226 /* Return the value in the decl_or_value. */
227 static inline rtx
228 dv_as_value (decl_or_value dv)
229 {
230 gcc_checking_assert (dv_is_value_p (dv));
231 return (rtx)dv;
232 }
233
234 /* Return the opaque pointer in the decl_or_value. */
235 static inline void *
236 dv_as_opaque (decl_or_value dv)
237 {
238 return dv;
239 }
240
241
242 /* Description of location of a part of a variable. The content of a physical
243 register is described by a chain of these structures.
244 The chains are pretty short (usually 1 or 2 elements) and thus
245 chain is the best data structure. */
246 typedef struct attrs_def
247 {
248 /* Pointer to next member of the list. */
249 struct attrs_def *next;
250
251 /* The rtx of register. */
252 rtx loc;
253
254 /* The declaration corresponding to LOC. */
255 decl_or_value dv;
256
257 /* Offset from start of DECL. */
258 HOST_WIDE_INT offset;
259 } *attrs;
260
261 /* Structure for chaining the locations. */
262 typedef struct location_chain_def
263 {
264 /* Next element in the chain. */
265 struct location_chain_def *next;
266
267 /* The location (REG, MEM or VALUE). */
268 rtx loc;
269
270 /* The "value" stored in this location. */
271 rtx set_src;
272
273 /* Initialized? */
274 enum var_init_status init;
275 } *location_chain;
276
277 /* A vector of loc_exp_dep holds the active dependencies of a one-part
278 DV on VALUEs, i.e., the VALUEs expanded so as to form the current
279 location of DV. Each entry is also part of VALUE' s linked-list of
280 backlinks back to DV. */
281 typedef struct loc_exp_dep_s
282 {
283 /* The dependent DV. */
284 decl_or_value dv;
285 /* The dependency VALUE or DECL_DEBUG. */
286 rtx value;
287 /* The next entry in VALUE's backlinks list. */
288 struct loc_exp_dep_s *next;
289 /* A pointer to the pointer to this entry (head or prev's next) in
290 the doubly-linked list. */
291 struct loc_exp_dep_s **pprev;
292 } loc_exp_dep;
293
294
295 /* This data structure holds information about the depth of a variable
296 expansion. */
297 typedef struct expand_depth_struct
298 {
299 /* This measures the complexity of the expanded expression. It
300 grows by one for each level of expansion that adds more than one
301 operand. */
302 int complexity;
303 /* This counts the number of ENTRY_VALUE expressions in an
304 expansion. We want to minimize their use. */
305 int entryvals;
306 } expand_depth;
307
308 /* This data structure is allocated for one-part variables at the time
309 of emitting notes. */
310 struct onepart_aux
311 {
312 /* Doubly-linked list of dependent DVs. These are DVs whose cur_loc
313 computation used the expansion of this variable, and that ought
314 to be notified should this variable change. If the DV's cur_loc
315 expanded to NULL, all components of the loc list are regarded as
316 active, so that any changes in them give us a chance to get a
317 location. Otherwise, only components of the loc that expanded to
318 non-NULL are regarded as active dependencies. */
319 loc_exp_dep *backlinks;
320 /* This holds the LOC that was expanded into cur_loc. We need only
321 mark a one-part variable as changed if the FROM loc is removed,
322 or if it has no known location and a loc is added, or if it gets
323 a change notification from any of its active dependencies. */
324 rtx from;
325 /* The depth of the cur_loc expression. */
326 expand_depth depth;
327 /* Dependencies actively used when expand FROM into cur_loc. */
328 vec<loc_exp_dep, va_heap, vl_embed> deps;
329 };
330
331 /* Structure describing one part of variable. */
332 typedef struct variable_part_def
333 {
334 /* Chain of locations of the part. */
335 location_chain loc_chain;
336
337 /* Location which was last emitted to location list. */
338 rtx cur_loc;
339
340 union variable_aux
341 {
342 /* The offset in the variable, if !var->onepart. */
343 HOST_WIDE_INT offset;
344
345 /* Pointer to auxiliary data, if var->onepart and emit_notes. */
346 struct onepart_aux *onepaux;
347 } aux;
348 } variable_part;
349
350 /* Maximum number of location parts. */
351 #define MAX_VAR_PARTS 16
352
353 /* Enumeration type used to discriminate various types of one-part
354 variables. */
355 typedef enum onepart_enum
356 {
357 /* Not a one-part variable. */
358 NOT_ONEPART = 0,
359 /* A one-part DECL that is not a DEBUG_EXPR_DECL. */
360 ONEPART_VDECL = 1,
361 /* A DEBUG_EXPR_DECL. */
362 ONEPART_DEXPR = 2,
363 /* A VALUE. */
364 ONEPART_VALUE = 3
365 } onepart_enum_t;
366
367 /* Structure describing where the variable is located. */
368 typedef struct variable_def
369 {
370 /* The declaration of the variable, or an RTL value being handled
371 like a declaration. */
372 decl_or_value dv;
373
374 /* Reference count. */
375 int refcount;
376
377 /* Number of variable parts. */
378 char n_var_parts;
379
380 /* What type of DV this is, according to enum onepart_enum. */
381 ENUM_BITFIELD (onepart_enum) onepart : CHAR_BIT;
382
383 /* True if this variable_def struct is currently in the
384 changed_variables hash table. */
385 bool in_changed_variables;
386
387 /* The variable parts. */
388 variable_part var_part[1];
389 } *variable;
390 typedef const struct variable_def *const_variable;
391
392 /* Pointer to the BB's information specific to variable tracking pass. */
393 #define VTI(BB) ((variable_tracking_info) (BB)->aux)
394
395 /* Macro to access MEM_OFFSET as an HOST_WIDE_INT. Evaluates MEM twice. */
396 #define INT_MEM_OFFSET(mem) (MEM_OFFSET_KNOWN_P (mem) ? MEM_OFFSET (mem) : 0)
397
398 #if ENABLE_CHECKING && (GCC_VERSION >= 2007)
399
400 /* Access VAR's Ith part's offset, checking that it's not a one-part
401 variable. */
402 #define VAR_PART_OFFSET(var, i) __extension__ \
403 (*({ variable const __v = (var); \
404 gcc_checking_assert (!__v->onepart); \
405 &__v->var_part[(i)].aux.offset; }))
406
407 /* Access VAR's one-part auxiliary data, checking that it is a
408 one-part variable. */
409 #define VAR_LOC_1PAUX(var) __extension__ \
410 (*({ variable const __v = (var); \
411 gcc_checking_assert (__v->onepart); \
412 &__v->var_part[0].aux.onepaux; }))
413
414 #else
415 #define VAR_PART_OFFSET(var, i) ((var)->var_part[(i)].aux.offset)
416 #define VAR_LOC_1PAUX(var) ((var)->var_part[0].aux.onepaux)
417 #endif
418
419 /* These are accessor macros for the one-part auxiliary data. When
420 convenient for users, they're guarded by tests that the data was
421 allocated. */
422 #define VAR_LOC_DEP_LST(var) (VAR_LOC_1PAUX (var) \
423 ? VAR_LOC_1PAUX (var)->backlinks \
424 : NULL)
425 #define VAR_LOC_DEP_LSTP(var) (VAR_LOC_1PAUX (var) \
426 ? &VAR_LOC_1PAUX (var)->backlinks \
427 : NULL)
428 #define VAR_LOC_FROM(var) (VAR_LOC_1PAUX (var)->from)
429 #define VAR_LOC_DEPTH(var) (VAR_LOC_1PAUX (var)->depth)
430 #define VAR_LOC_DEP_VEC(var) (VAR_LOC_1PAUX (var) \
431 ? &VAR_LOC_1PAUX (var)->deps \
432 : NULL)
433
434
435
436 typedef unsigned int dvuid;
437
438 /* Return the uid of DV. */
439
440 static inline dvuid
441 dv_uid (decl_or_value dv)
442 {
443 if (dv_is_value_p (dv))
444 return CSELIB_VAL_PTR (dv_as_value (dv))->uid;
445 else
446 return DECL_UID (dv_as_decl (dv));
447 }
448
449 /* Compute the hash from the uid. */
450
451 static inline hashval_t
452 dv_uid2hash (dvuid uid)
453 {
454 return uid;
455 }
456
457 /* The hash function for a mask table in a shared_htab chain. */
458
459 static inline hashval_t
460 dv_htab_hash (decl_or_value dv)
461 {
462 return dv_uid2hash (dv_uid (dv));
463 }
464
465 static void variable_htab_free (void *);
466
467 /* Variable hashtable helpers. */
468
469 struct variable_hasher
470 {
471 typedef variable_def value_type;
472 typedef void compare_type;
473 static inline hashval_t hash (const value_type *);
474 static inline bool equal (const value_type *, const compare_type *);
475 static inline void remove (value_type *);
476 };
477
478 /* The hash function for variable_htab, computes the hash value
479 from the declaration of variable X. */
480
481 inline hashval_t
482 variable_hasher::hash (const value_type *v)
483 {
484 return dv_htab_hash (v->dv);
485 }
486
487 /* Compare the declaration of variable X with declaration Y. */
488
489 inline bool
490 variable_hasher::equal (const value_type *v, const compare_type *y)
491 {
492 decl_or_value dv = CONST_CAST2 (decl_or_value, const void *, y);
493
494 return (dv_as_opaque (v->dv) == dv_as_opaque (dv));
495 }
496
497 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
498
499 inline void
500 variable_hasher::remove (value_type *var)
501 {
502 variable_htab_free (var);
503 }
504
505 typedef hash_table<variable_hasher> variable_table_type;
506 typedef variable_table_type::iterator variable_iterator_type;
507
508 /* Structure for passing some other parameters to function
509 emit_note_insn_var_location. */
510 typedef struct emit_note_data_def
511 {
512 /* The instruction which the note will be emitted before/after. */
513 rtx insn;
514
515 /* Where the note will be emitted (before/after insn)? */
516 enum emit_note_where where;
517
518 /* The variables and values active at this point. */
519 variable_table_type *vars;
520 } emit_note_data;
521
522 /* Structure holding a refcounted hash table. If refcount > 1,
523 it must be first unshared before modified. */
524 typedef struct shared_hash_def
525 {
526 /* Reference count. */
527 int refcount;
528
529 /* Actual hash table. */
530 variable_table_type *htab;
531 } *shared_hash;
532
533 /* Structure holding the IN or OUT set for a basic block. */
534 typedef struct dataflow_set_def
535 {
536 /* Adjustment of stack offset. */
537 HOST_WIDE_INT stack_adjust;
538
539 /* Attributes for registers (lists of attrs). */
540 attrs regs[FIRST_PSEUDO_REGISTER];
541
542 /* Variable locations. */
543 shared_hash vars;
544
545 /* Vars that is being traversed. */
546 shared_hash traversed_vars;
547 } dataflow_set;
548
549 /* The structure (one for each basic block) containing the information
550 needed for variable tracking. */
551 typedef struct variable_tracking_info_def
552 {
553 /* The vector of micro operations. */
554 vec<micro_operation> mos;
555
556 /* The IN and OUT set for dataflow analysis. */
557 dataflow_set in;
558 dataflow_set out;
559
560 /* The permanent-in dataflow set for this block. This is used to
561 hold values for which we had to compute entry values. ??? This
562 should probably be dynamically allocated, to avoid using more
563 memory in non-debug builds. */
564 dataflow_set *permp;
565
566 /* Has the block been visited in DFS? */
567 bool visited;
568
569 /* Has the block been flooded in VTA? */
570 bool flooded;
571
572 } *variable_tracking_info;
573
574 /* Alloc pool for struct attrs_def. */
575 static alloc_pool attrs_pool;
576
577 /* Alloc pool for struct variable_def with MAX_VAR_PARTS entries. */
578 static alloc_pool var_pool;
579
580 /* Alloc pool for struct variable_def with a single var_part entry. */
581 static alloc_pool valvar_pool;
582
583 /* Alloc pool for struct location_chain_def. */
584 static alloc_pool loc_chain_pool;
585
586 /* Alloc pool for struct shared_hash_def. */
587 static alloc_pool shared_hash_pool;
588
589 /* Alloc pool for struct loc_exp_dep_s for NOT_ONEPART variables. */
590 static alloc_pool loc_exp_dep_pool;
591
592 /* Changed variables, notes will be emitted for them. */
593 static variable_table_type *changed_variables;
594
595 /* Shall notes be emitted? */
596 static bool emit_notes;
597
598 /* Values whose dynamic location lists have gone empty, but whose
599 cselib location lists are still usable. Use this to hold the
600 current location, the backlinks, etc, during emit_notes. */
601 static variable_table_type *dropped_values;
602
603 /* Empty shared hashtable. */
604 static shared_hash empty_shared_hash;
605
606 /* Scratch register bitmap used by cselib_expand_value_rtx. */
607 static bitmap scratch_regs = NULL;
608
609 #ifdef HAVE_window_save
610 typedef struct GTY(()) parm_reg {
611 rtx outgoing;
612 rtx incoming;
613 } parm_reg_t;
614
615
616 /* Vector of windowed parameter registers, if any. */
617 static vec<parm_reg_t, va_gc> *windowed_parm_regs = NULL;
618 #endif
619
620 /* Variable used to tell whether cselib_process_insn called our hook. */
621 static bool cselib_hook_called;
622
623 /* Local function prototypes. */
624 static void stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
625 HOST_WIDE_INT *);
626 static void insn_stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
627 HOST_WIDE_INT *);
628 static bool vt_stack_adjustments (void);
629
630 static void init_attrs_list_set (attrs *);
631 static void attrs_list_clear (attrs *);
632 static attrs attrs_list_member (attrs, decl_or_value, HOST_WIDE_INT);
633 static void attrs_list_insert (attrs *, decl_or_value, HOST_WIDE_INT, rtx);
634 static void attrs_list_copy (attrs *, attrs);
635 static void attrs_list_union (attrs *, attrs);
636
637 static variable_def **unshare_variable (dataflow_set *set, variable_def **slot,
638 variable var, enum var_init_status);
639 static void vars_copy (variable_table_type *, variable_table_type *);
640 static tree var_debug_decl (tree);
641 static void var_reg_set (dataflow_set *, rtx, enum var_init_status, rtx);
642 static void var_reg_delete_and_set (dataflow_set *, rtx, bool,
643 enum var_init_status, rtx);
644 static void var_reg_delete (dataflow_set *, rtx, bool);
645 static void var_regno_delete (dataflow_set *, int);
646 static void var_mem_set (dataflow_set *, rtx, enum var_init_status, rtx);
647 static void var_mem_delete_and_set (dataflow_set *, rtx, bool,
648 enum var_init_status, rtx);
649 static void var_mem_delete (dataflow_set *, rtx, bool);
650
651 static void dataflow_set_init (dataflow_set *);
652 static void dataflow_set_clear (dataflow_set *);
653 static void dataflow_set_copy (dataflow_set *, dataflow_set *);
654 static int variable_union_info_cmp_pos (const void *, const void *);
655 static void dataflow_set_union (dataflow_set *, dataflow_set *);
656 static location_chain find_loc_in_1pdv (rtx, variable, variable_table_type *);
657 static bool canon_value_cmp (rtx, rtx);
658 static int loc_cmp (rtx, rtx);
659 static bool variable_part_different_p (variable_part *, variable_part *);
660 static bool onepart_variable_different_p (variable, variable);
661 static bool variable_different_p (variable, variable);
662 static bool dataflow_set_different (dataflow_set *, dataflow_set *);
663 static void dataflow_set_destroy (dataflow_set *);
664
665 static bool contains_symbol_ref (rtx);
666 static bool track_expr_p (tree, bool);
667 static bool same_variable_part_p (rtx, tree, HOST_WIDE_INT);
668 static int add_uses (rtx *, void *);
669 static void add_uses_1 (rtx *, void *);
670 static void add_stores (rtx, const_rtx, void *);
671 static bool compute_bb_dataflow (basic_block);
672 static bool vt_find_locations (void);
673
674 static void dump_attrs_list (attrs);
675 static void dump_var (variable);
676 static void dump_vars (variable_table_type *);
677 static void dump_dataflow_set (dataflow_set *);
678 static void dump_dataflow_sets (void);
679
680 static void set_dv_changed (decl_or_value, bool);
681 static void variable_was_changed (variable, dataflow_set *);
682 static variable_def **set_slot_part (dataflow_set *, rtx, variable_def **,
683 decl_or_value, HOST_WIDE_INT,
684 enum var_init_status, rtx);
685 static void set_variable_part (dataflow_set *, rtx,
686 decl_or_value, HOST_WIDE_INT,
687 enum var_init_status, rtx, enum insert_option);
688 static variable_def **clobber_slot_part (dataflow_set *, rtx,
689 variable_def **, HOST_WIDE_INT, rtx);
690 static void clobber_variable_part (dataflow_set *, rtx,
691 decl_or_value, HOST_WIDE_INT, rtx);
692 static variable_def **delete_slot_part (dataflow_set *, rtx, variable_def **,
693 HOST_WIDE_INT);
694 static void delete_variable_part (dataflow_set *, rtx,
695 decl_or_value, HOST_WIDE_INT);
696 static void emit_notes_in_bb (basic_block, dataflow_set *);
697 static void vt_emit_notes (void);
698
699 static bool vt_get_decl_and_offset (rtx, tree *, HOST_WIDE_INT *);
700 static void vt_add_function_parameters (void);
701 static bool vt_initialize (void);
702 static void vt_finalize (void);
703
704 /* Given a SET, calculate the amount of stack adjustment it contains
705 PRE- and POST-modifying stack pointer.
706 This function is similar to stack_adjust_offset. */
707
708 static void
709 stack_adjust_offset_pre_post (rtx pattern, HOST_WIDE_INT *pre,
710 HOST_WIDE_INT *post)
711 {
712 rtx src = SET_SRC (pattern);
713 rtx dest = SET_DEST (pattern);
714 enum rtx_code code;
715
716 if (dest == stack_pointer_rtx)
717 {
718 /* (set (reg sp) (plus (reg sp) (const_int))) */
719 code = GET_CODE (src);
720 if (! (code == PLUS || code == MINUS)
721 || XEXP (src, 0) != stack_pointer_rtx
722 || !CONST_INT_P (XEXP (src, 1)))
723 return;
724
725 if (code == MINUS)
726 *post += INTVAL (XEXP (src, 1));
727 else
728 *post -= INTVAL (XEXP (src, 1));
729 }
730 else if (MEM_P (dest))
731 {
732 /* (set (mem (pre_dec (reg sp))) (foo)) */
733 src = XEXP (dest, 0);
734 code = GET_CODE (src);
735
736 switch (code)
737 {
738 case PRE_MODIFY:
739 case POST_MODIFY:
740 if (XEXP (src, 0) == stack_pointer_rtx)
741 {
742 rtx val = XEXP (XEXP (src, 1), 1);
743 /* We handle only adjustments by constant amount. */
744 gcc_assert (GET_CODE (XEXP (src, 1)) == PLUS &&
745 CONST_INT_P (val));
746
747 if (code == PRE_MODIFY)
748 *pre -= INTVAL (val);
749 else
750 *post -= INTVAL (val);
751 break;
752 }
753 return;
754
755 case PRE_DEC:
756 if (XEXP (src, 0) == stack_pointer_rtx)
757 {
758 *pre += GET_MODE_SIZE (GET_MODE (dest));
759 break;
760 }
761 return;
762
763 case POST_DEC:
764 if (XEXP (src, 0) == stack_pointer_rtx)
765 {
766 *post += GET_MODE_SIZE (GET_MODE (dest));
767 break;
768 }
769 return;
770
771 case PRE_INC:
772 if (XEXP (src, 0) == stack_pointer_rtx)
773 {
774 *pre -= GET_MODE_SIZE (GET_MODE (dest));
775 break;
776 }
777 return;
778
779 case POST_INC:
780 if (XEXP (src, 0) == stack_pointer_rtx)
781 {
782 *post -= GET_MODE_SIZE (GET_MODE (dest));
783 break;
784 }
785 return;
786
787 default:
788 return;
789 }
790 }
791 }
792
793 /* Given an INSN, calculate the amount of stack adjustment it contains
794 PRE- and POST-modifying stack pointer. */
795
796 static void
797 insn_stack_adjust_offset_pre_post (rtx insn, HOST_WIDE_INT *pre,
798 HOST_WIDE_INT *post)
799 {
800 rtx pattern;
801
802 *pre = 0;
803 *post = 0;
804
805 pattern = PATTERN (insn);
806 if (RTX_FRAME_RELATED_P (insn))
807 {
808 rtx expr = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
809 if (expr)
810 pattern = XEXP (expr, 0);
811 }
812
813 if (GET_CODE (pattern) == SET)
814 stack_adjust_offset_pre_post (pattern, pre, post);
815 else if (GET_CODE (pattern) == PARALLEL
816 || GET_CODE (pattern) == SEQUENCE)
817 {
818 int i;
819
820 /* There may be stack adjustments inside compound insns. Search
821 for them. */
822 for ( i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
823 if (GET_CODE (XVECEXP (pattern, 0, i)) == SET)
824 stack_adjust_offset_pre_post (XVECEXP (pattern, 0, i), pre, post);
825 }
826 }
827
828 /* Compute stack adjustments for all blocks by traversing DFS tree.
829 Return true when the adjustments on all incoming edges are consistent.
830 Heavily borrowed from pre_and_rev_post_order_compute. */
831
832 static bool
833 vt_stack_adjustments (void)
834 {
835 edge_iterator *stack;
836 int sp;
837
838 /* Initialize entry block. */
839 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->visited = true;
840 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->in.stack_adjust =
841 INCOMING_FRAME_SP_OFFSET;
842 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->out.stack_adjust =
843 INCOMING_FRAME_SP_OFFSET;
844
845 /* Allocate stack for back-tracking up CFG. */
846 stack = XNEWVEC (edge_iterator, n_basic_blocks_for_fn (cfun) + 1);
847 sp = 0;
848
849 /* Push the first edge on to the stack. */
850 stack[sp++] = ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs);
851
852 while (sp)
853 {
854 edge_iterator ei;
855 basic_block src;
856 basic_block dest;
857
858 /* Look at the edge on the top of the stack. */
859 ei = stack[sp - 1];
860 src = ei_edge (ei)->src;
861 dest = ei_edge (ei)->dest;
862
863 /* Check if the edge destination has been visited yet. */
864 if (!VTI (dest)->visited)
865 {
866 rtx insn;
867 HOST_WIDE_INT pre, post, offset;
868 VTI (dest)->visited = true;
869 VTI (dest)->in.stack_adjust = offset = VTI (src)->out.stack_adjust;
870
871 if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
872 for (insn = BB_HEAD (dest);
873 insn != NEXT_INSN (BB_END (dest));
874 insn = NEXT_INSN (insn))
875 if (INSN_P (insn))
876 {
877 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
878 offset += pre + post;
879 }
880
881 VTI (dest)->out.stack_adjust = offset;
882
883 if (EDGE_COUNT (dest->succs) > 0)
884 /* Since the DEST node has been visited for the first
885 time, check its successors. */
886 stack[sp++] = ei_start (dest->succs);
887 }
888 else
889 {
890 /* We can end up with different stack adjustments for the exit block
891 of a shrink-wrapped function if stack_adjust_offset_pre_post
892 doesn't understand the rtx pattern used to restore the stack
893 pointer in the epilogue. For example, on s390(x), the stack
894 pointer is often restored via a load-multiple instruction
895 and so no stack_adjust offset is recorded for it. This means
896 that the stack offset at the end of the epilogue block is the
897 the same as the offset before the epilogue, whereas other paths
898 to the exit block will have the correct stack_adjust.
899
900 It is safe to ignore these differences because (a) we never
901 use the stack_adjust for the exit block in this pass and
902 (b) dwarf2cfi checks whether the CFA notes in a shrink-wrapped
903 function are correct.
904
905 We must check whether the adjustments on other edges are
906 the same though. */
907 if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
908 && VTI (dest)->in.stack_adjust != VTI (src)->out.stack_adjust)
909 {
910 free (stack);
911 return false;
912 }
913
914 if (! ei_one_before_end_p (ei))
915 /* Go to the next edge. */
916 ei_next (&stack[sp - 1]);
917 else
918 /* Return to previous level if there are no more edges. */
919 sp--;
920 }
921 }
922
923 free (stack);
924 return true;
925 }
926
927 /* arg_pointer_rtx resp. frame_pointer_rtx if stack_pointer_rtx or
928 hard_frame_pointer_rtx is being mapped to it and offset for it. */
929 static rtx cfa_base_rtx;
930 static HOST_WIDE_INT cfa_base_offset;
931
932 /* Compute a CFA-based value for an ADJUSTMENT made to stack_pointer_rtx
933 or hard_frame_pointer_rtx. */
934
935 static inline rtx
936 compute_cfa_pointer (HOST_WIDE_INT adjustment)
937 {
938 return plus_constant (Pmode, cfa_base_rtx, adjustment + cfa_base_offset);
939 }
940
941 /* Adjustment for hard_frame_pointer_rtx to cfa base reg,
942 or -1 if the replacement shouldn't be done. */
943 static HOST_WIDE_INT hard_frame_pointer_adjustment = -1;
944
945 /* Data for adjust_mems callback. */
946
947 struct adjust_mem_data
948 {
949 bool store;
950 enum machine_mode mem_mode;
951 HOST_WIDE_INT stack_adjust;
952 rtx side_effects;
953 };
954
955 /* Helper for adjust_mems. Return 1 if *loc is unsuitable for
956 transformation of wider mode arithmetics to narrower mode,
957 -1 if it is suitable and subexpressions shouldn't be
958 traversed and 0 if it is suitable and subexpressions should
959 be traversed. Called through for_each_rtx. */
960
961 static int
962 use_narrower_mode_test (rtx *loc, void *data)
963 {
964 rtx subreg = (rtx) data;
965
966 if (CONSTANT_P (*loc))
967 return -1;
968 switch (GET_CODE (*loc))
969 {
970 case REG:
971 if (cselib_lookup (*loc, GET_MODE (SUBREG_REG (subreg)), 0, VOIDmode))
972 return 1;
973 if (!validate_subreg (GET_MODE (subreg), GET_MODE (*loc),
974 *loc, subreg_lowpart_offset (GET_MODE (subreg),
975 GET_MODE (*loc))))
976 return 1;
977 return -1;
978 case PLUS:
979 case MINUS:
980 case MULT:
981 return 0;
982 case ASHIFT:
983 if (for_each_rtx (&XEXP (*loc, 0), use_narrower_mode_test, data))
984 return 1;
985 else
986 return -1;
987 default:
988 return 1;
989 }
990 }
991
992 /* Transform X into narrower mode MODE from wider mode WMODE. */
993
994 static rtx
995 use_narrower_mode (rtx x, enum machine_mode mode, enum machine_mode wmode)
996 {
997 rtx op0, op1;
998 if (CONSTANT_P (x))
999 return lowpart_subreg (mode, x, wmode);
1000 switch (GET_CODE (x))
1001 {
1002 case REG:
1003 return lowpart_subreg (mode, x, wmode);
1004 case PLUS:
1005 case MINUS:
1006 case MULT:
1007 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
1008 op1 = use_narrower_mode (XEXP (x, 1), mode, wmode);
1009 return simplify_gen_binary (GET_CODE (x), mode, op0, op1);
1010 case ASHIFT:
1011 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
1012 return simplify_gen_binary (ASHIFT, mode, op0, XEXP (x, 1));
1013 default:
1014 gcc_unreachable ();
1015 }
1016 }
1017
1018 /* Helper function for adjusting used MEMs. */
1019
1020 static rtx
1021 adjust_mems (rtx loc, const_rtx old_rtx, void *data)
1022 {
1023 struct adjust_mem_data *amd = (struct adjust_mem_data *) data;
1024 rtx mem, addr = loc, tem;
1025 enum machine_mode mem_mode_save;
1026 bool store_save;
1027 switch (GET_CODE (loc))
1028 {
1029 case REG:
1030 /* Don't do any sp or fp replacements outside of MEM addresses
1031 on the LHS. */
1032 if (amd->mem_mode == VOIDmode && amd->store)
1033 return loc;
1034 if (loc == stack_pointer_rtx
1035 && !frame_pointer_needed
1036 && cfa_base_rtx)
1037 return compute_cfa_pointer (amd->stack_adjust);
1038 else if (loc == hard_frame_pointer_rtx
1039 && frame_pointer_needed
1040 && hard_frame_pointer_adjustment != -1
1041 && cfa_base_rtx)
1042 return compute_cfa_pointer (hard_frame_pointer_adjustment);
1043 gcc_checking_assert (loc != virtual_incoming_args_rtx);
1044 return loc;
1045 case MEM:
1046 mem = loc;
1047 if (!amd->store)
1048 {
1049 mem = targetm.delegitimize_address (mem);
1050 if (mem != loc && !MEM_P (mem))
1051 return simplify_replace_fn_rtx (mem, old_rtx, adjust_mems, data);
1052 }
1053
1054 addr = XEXP (mem, 0);
1055 mem_mode_save = amd->mem_mode;
1056 amd->mem_mode = GET_MODE (mem);
1057 store_save = amd->store;
1058 amd->store = false;
1059 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1060 amd->store = store_save;
1061 amd->mem_mode = mem_mode_save;
1062 if (mem == loc)
1063 addr = targetm.delegitimize_address (addr);
1064 if (addr != XEXP (mem, 0))
1065 mem = replace_equiv_address_nv (mem, addr);
1066 if (!amd->store)
1067 mem = avoid_constant_pool_reference (mem);
1068 return mem;
1069 case PRE_INC:
1070 case PRE_DEC:
1071 addr = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
1072 gen_int_mode (GET_CODE (loc) == PRE_INC
1073 ? GET_MODE_SIZE (amd->mem_mode)
1074 : -GET_MODE_SIZE (amd->mem_mode),
1075 GET_MODE (loc)));
1076 case POST_INC:
1077 case POST_DEC:
1078 if (addr == loc)
1079 addr = XEXP (loc, 0);
1080 gcc_assert (amd->mem_mode != VOIDmode && amd->mem_mode != BLKmode);
1081 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1082 tem = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
1083 gen_int_mode ((GET_CODE (loc) == PRE_INC
1084 || GET_CODE (loc) == POST_INC)
1085 ? GET_MODE_SIZE (amd->mem_mode)
1086 : -GET_MODE_SIZE (amd->mem_mode),
1087 GET_MODE (loc)));
1088 store_save = amd->store;
1089 amd->store = false;
1090 tem = simplify_replace_fn_rtx (tem, old_rtx, adjust_mems, data);
1091 amd->store = store_save;
1092 amd->side_effects = alloc_EXPR_LIST (0,
1093 gen_rtx_SET (VOIDmode,
1094 XEXP (loc, 0), tem),
1095 amd->side_effects);
1096 return addr;
1097 case PRE_MODIFY:
1098 addr = XEXP (loc, 1);
1099 case POST_MODIFY:
1100 if (addr == loc)
1101 addr = XEXP (loc, 0);
1102 gcc_assert (amd->mem_mode != VOIDmode);
1103 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1104 store_save = amd->store;
1105 amd->store = false;
1106 tem = simplify_replace_fn_rtx (XEXP (loc, 1), old_rtx,
1107 adjust_mems, data);
1108 amd->store = store_save;
1109 amd->side_effects = alloc_EXPR_LIST (0,
1110 gen_rtx_SET (VOIDmode,
1111 XEXP (loc, 0), tem),
1112 amd->side_effects);
1113 return addr;
1114 case SUBREG:
1115 /* First try without delegitimization of whole MEMs and
1116 avoid_constant_pool_reference, which is more likely to succeed. */
1117 store_save = amd->store;
1118 amd->store = true;
1119 addr = simplify_replace_fn_rtx (SUBREG_REG (loc), old_rtx, adjust_mems,
1120 data);
1121 amd->store = store_save;
1122 mem = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1123 if (mem == SUBREG_REG (loc))
1124 {
1125 tem = loc;
1126 goto finish_subreg;
1127 }
1128 tem = simplify_gen_subreg (GET_MODE (loc), mem,
1129 GET_MODE (SUBREG_REG (loc)),
1130 SUBREG_BYTE (loc));
1131 if (tem)
1132 goto finish_subreg;
1133 tem = simplify_gen_subreg (GET_MODE (loc), addr,
1134 GET_MODE (SUBREG_REG (loc)),
1135 SUBREG_BYTE (loc));
1136 if (tem == NULL_RTX)
1137 tem = gen_rtx_raw_SUBREG (GET_MODE (loc), addr, SUBREG_BYTE (loc));
1138 finish_subreg:
1139 if (MAY_HAVE_DEBUG_INSNS
1140 && GET_CODE (tem) == SUBREG
1141 && (GET_CODE (SUBREG_REG (tem)) == PLUS
1142 || GET_CODE (SUBREG_REG (tem)) == MINUS
1143 || GET_CODE (SUBREG_REG (tem)) == MULT
1144 || GET_CODE (SUBREG_REG (tem)) == ASHIFT)
1145 && GET_MODE_CLASS (GET_MODE (tem)) == MODE_INT
1146 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (tem))) == MODE_INT
1147 && GET_MODE_SIZE (GET_MODE (tem))
1148 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (tem)))
1149 && subreg_lowpart_p (tem)
1150 && !for_each_rtx (&SUBREG_REG (tem), use_narrower_mode_test, tem))
1151 return use_narrower_mode (SUBREG_REG (tem), GET_MODE (tem),
1152 GET_MODE (SUBREG_REG (tem)));
1153 return tem;
1154 case ASM_OPERANDS:
1155 /* Don't do any replacements in second and following
1156 ASM_OPERANDS of inline-asm with multiple sets.
1157 ASM_OPERANDS_INPUT_VEC, ASM_OPERANDS_INPUT_CONSTRAINT_VEC
1158 and ASM_OPERANDS_LABEL_VEC need to be equal between
1159 all the ASM_OPERANDs in the insn and adjust_insn will
1160 fix this up. */
1161 if (ASM_OPERANDS_OUTPUT_IDX (loc) != 0)
1162 return loc;
1163 break;
1164 default:
1165 break;
1166 }
1167 return NULL_RTX;
1168 }
1169
1170 /* Helper function for replacement of uses. */
1171
1172 static void
1173 adjust_mem_uses (rtx *x, void *data)
1174 {
1175 rtx new_x = simplify_replace_fn_rtx (*x, NULL_RTX, adjust_mems, data);
1176 if (new_x != *x)
1177 validate_change (NULL_RTX, x, new_x, true);
1178 }
1179
1180 /* Helper function for replacement of stores. */
1181
1182 static void
1183 adjust_mem_stores (rtx loc, const_rtx expr, void *data)
1184 {
1185 if (MEM_P (loc))
1186 {
1187 rtx new_dest = simplify_replace_fn_rtx (SET_DEST (expr), NULL_RTX,
1188 adjust_mems, data);
1189 if (new_dest != SET_DEST (expr))
1190 {
1191 rtx xexpr = CONST_CAST_RTX (expr);
1192 validate_change (NULL_RTX, &SET_DEST (xexpr), new_dest, true);
1193 }
1194 }
1195 }
1196
1197 /* Simplify INSN. Remove all {PRE,POST}_{INC,DEC,MODIFY} rtxes,
1198 replace them with their value in the insn and add the side-effects
1199 as other sets to the insn. */
1200
1201 static void
1202 adjust_insn (basic_block bb, rtx insn)
1203 {
1204 struct adjust_mem_data amd;
1205 rtx set;
1206
1207 #ifdef HAVE_window_save
1208 /* If the target machine has an explicit window save instruction, the
1209 transformation OUTGOING_REGNO -> INCOMING_REGNO is done there. */
1210 if (RTX_FRAME_RELATED_P (insn)
1211 && find_reg_note (insn, REG_CFA_WINDOW_SAVE, NULL_RTX))
1212 {
1213 unsigned int i, nregs = vec_safe_length (windowed_parm_regs);
1214 rtx rtl = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (nregs * 2));
1215 parm_reg_t *p;
1216
1217 FOR_EACH_VEC_SAFE_ELT (windowed_parm_regs, i, p)
1218 {
1219 XVECEXP (rtl, 0, i * 2)
1220 = gen_rtx_SET (VOIDmode, p->incoming, p->outgoing);
1221 /* Do not clobber the attached DECL, but only the REG. */
1222 XVECEXP (rtl, 0, i * 2 + 1)
1223 = gen_rtx_CLOBBER (GET_MODE (p->outgoing),
1224 gen_raw_REG (GET_MODE (p->outgoing),
1225 REGNO (p->outgoing)));
1226 }
1227
1228 validate_change (NULL_RTX, &PATTERN (insn), rtl, true);
1229 return;
1230 }
1231 #endif
1232
1233 amd.mem_mode = VOIDmode;
1234 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
1235 amd.side_effects = NULL_RTX;
1236
1237 amd.store = true;
1238 note_stores (PATTERN (insn), adjust_mem_stores, &amd);
1239
1240 amd.store = false;
1241 if (GET_CODE (PATTERN (insn)) == PARALLEL
1242 && asm_noperands (PATTERN (insn)) > 0
1243 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1244 {
1245 rtx body, set0;
1246 int i;
1247
1248 /* inline-asm with multiple sets is tiny bit more complicated,
1249 because the 3 vectors in ASM_OPERANDS need to be shared between
1250 all ASM_OPERANDS in the instruction. adjust_mems will
1251 not touch ASM_OPERANDS other than the first one, asm_noperands
1252 test above needs to be called before that (otherwise it would fail)
1253 and afterwards this code fixes it up. */
1254 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1255 body = PATTERN (insn);
1256 set0 = XVECEXP (body, 0, 0);
1257 gcc_checking_assert (GET_CODE (set0) == SET
1258 && GET_CODE (SET_SRC (set0)) == ASM_OPERANDS
1259 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set0)) == 0);
1260 for (i = 1; i < XVECLEN (body, 0); i++)
1261 if (GET_CODE (XVECEXP (body, 0, i)) != SET)
1262 break;
1263 else
1264 {
1265 set = XVECEXP (body, 0, i);
1266 gcc_checking_assert (GET_CODE (SET_SRC (set)) == ASM_OPERANDS
1267 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set))
1268 == i);
1269 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (set))
1270 != ASM_OPERANDS_INPUT_VEC (SET_SRC (set0))
1271 || ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set))
1272 != ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0))
1273 || ASM_OPERANDS_LABEL_VEC (SET_SRC (set))
1274 != ASM_OPERANDS_LABEL_VEC (SET_SRC (set0)))
1275 {
1276 rtx newsrc = shallow_copy_rtx (SET_SRC (set));
1277 ASM_OPERANDS_INPUT_VEC (newsrc)
1278 = ASM_OPERANDS_INPUT_VEC (SET_SRC (set0));
1279 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (newsrc)
1280 = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0));
1281 ASM_OPERANDS_LABEL_VEC (newsrc)
1282 = ASM_OPERANDS_LABEL_VEC (SET_SRC (set0));
1283 validate_change (NULL_RTX, &SET_SRC (set), newsrc, true);
1284 }
1285 }
1286 }
1287 else
1288 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1289
1290 /* For read-only MEMs containing some constant, prefer those
1291 constants. */
1292 set = single_set (insn);
1293 if (set && MEM_P (SET_SRC (set)) && MEM_READONLY_P (SET_SRC (set)))
1294 {
1295 rtx note = find_reg_equal_equiv_note (insn);
1296
1297 if (note && CONSTANT_P (XEXP (note, 0)))
1298 validate_change (NULL_RTX, &SET_SRC (set), XEXP (note, 0), true);
1299 }
1300
1301 if (amd.side_effects)
1302 {
1303 rtx *pat, new_pat, s;
1304 int i, oldn, newn;
1305
1306 pat = &PATTERN (insn);
1307 if (GET_CODE (*pat) == COND_EXEC)
1308 pat = &COND_EXEC_CODE (*pat);
1309 if (GET_CODE (*pat) == PARALLEL)
1310 oldn = XVECLEN (*pat, 0);
1311 else
1312 oldn = 1;
1313 for (s = amd.side_effects, newn = 0; s; newn++)
1314 s = XEXP (s, 1);
1315 new_pat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (oldn + newn));
1316 if (GET_CODE (*pat) == PARALLEL)
1317 for (i = 0; i < oldn; i++)
1318 XVECEXP (new_pat, 0, i) = XVECEXP (*pat, 0, i);
1319 else
1320 XVECEXP (new_pat, 0, 0) = *pat;
1321 for (s = amd.side_effects, i = oldn; i < oldn + newn; i++, s = XEXP (s, 1))
1322 XVECEXP (new_pat, 0, i) = XEXP (s, 0);
1323 free_EXPR_LIST_list (&amd.side_effects);
1324 validate_change (NULL_RTX, pat, new_pat, true);
1325 }
1326 }
1327
1328 /* Return the DEBUG_EXPR of a DEBUG_EXPR_DECL or the VALUE in DV. */
1329 static inline rtx
1330 dv_as_rtx (decl_or_value dv)
1331 {
1332 tree decl;
1333
1334 if (dv_is_value_p (dv))
1335 return dv_as_value (dv);
1336
1337 decl = dv_as_decl (dv);
1338
1339 gcc_checking_assert (TREE_CODE (decl) == DEBUG_EXPR_DECL);
1340 return DECL_RTL_KNOWN_SET (decl);
1341 }
1342
1343 /* Return nonzero if a decl_or_value must not have more than one
1344 variable part. The returned value discriminates among various
1345 kinds of one-part DVs ccording to enum onepart_enum. */
1346 static inline onepart_enum_t
1347 dv_onepart_p (decl_or_value dv)
1348 {
1349 tree decl;
1350
1351 if (!MAY_HAVE_DEBUG_INSNS)
1352 return NOT_ONEPART;
1353
1354 if (dv_is_value_p (dv))
1355 return ONEPART_VALUE;
1356
1357 decl = dv_as_decl (dv);
1358
1359 if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
1360 return ONEPART_DEXPR;
1361
1362 if (target_for_debug_bind (decl) != NULL_TREE)
1363 return ONEPART_VDECL;
1364
1365 return NOT_ONEPART;
1366 }
1367
1368 /* Return the variable pool to be used for a dv of type ONEPART. */
1369 static inline alloc_pool
1370 onepart_pool (onepart_enum_t onepart)
1371 {
1372 return onepart ? valvar_pool : var_pool;
1373 }
1374
1375 /* Build a decl_or_value out of a decl. */
1376 static inline decl_or_value
1377 dv_from_decl (tree decl)
1378 {
1379 decl_or_value dv;
1380 dv = decl;
1381 gcc_checking_assert (dv_is_decl_p (dv));
1382 return dv;
1383 }
1384
1385 /* Build a decl_or_value out of a value. */
1386 static inline decl_or_value
1387 dv_from_value (rtx value)
1388 {
1389 decl_or_value dv;
1390 dv = value;
1391 gcc_checking_assert (dv_is_value_p (dv));
1392 return dv;
1393 }
1394
1395 /* Return a value or the decl of a debug_expr as a decl_or_value. */
1396 static inline decl_or_value
1397 dv_from_rtx (rtx x)
1398 {
1399 decl_or_value dv;
1400
1401 switch (GET_CODE (x))
1402 {
1403 case DEBUG_EXPR:
1404 dv = dv_from_decl (DEBUG_EXPR_TREE_DECL (x));
1405 gcc_checking_assert (DECL_RTL_KNOWN_SET (DEBUG_EXPR_TREE_DECL (x)) == x);
1406 break;
1407
1408 case VALUE:
1409 dv = dv_from_value (x);
1410 break;
1411
1412 default:
1413 gcc_unreachable ();
1414 }
1415
1416 return dv;
1417 }
1418
1419 extern void debug_dv (decl_or_value dv);
1420
1421 DEBUG_FUNCTION void
1422 debug_dv (decl_or_value dv)
1423 {
1424 if (dv_is_value_p (dv))
1425 debug_rtx (dv_as_value (dv));
1426 else
1427 debug_generic_stmt (dv_as_decl (dv));
1428 }
1429
1430 static void loc_exp_dep_clear (variable var);
1431
1432 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
1433
1434 static void
1435 variable_htab_free (void *elem)
1436 {
1437 int i;
1438 variable var = (variable) elem;
1439 location_chain node, next;
1440
1441 gcc_checking_assert (var->refcount > 0);
1442
1443 var->refcount--;
1444 if (var->refcount > 0)
1445 return;
1446
1447 for (i = 0; i < var->n_var_parts; i++)
1448 {
1449 for (node = var->var_part[i].loc_chain; node; node = next)
1450 {
1451 next = node->next;
1452 pool_free (loc_chain_pool, node);
1453 }
1454 var->var_part[i].loc_chain = NULL;
1455 }
1456 if (var->onepart && VAR_LOC_1PAUX (var))
1457 {
1458 loc_exp_dep_clear (var);
1459 if (VAR_LOC_DEP_LST (var))
1460 VAR_LOC_DEP_LST (var)->pprev = NULL;
1461 XDELETE (VAR_LOC_1PAUX (var));
1462 /* These may be reused across functions, so reset
1463 e.g. NO_LOC_P. */
1464 if (var->onepart == ONEPART_DEXPR)
1465 set_dv_changed (var->dv, true);
1466 }
1467 pool_free (onepart_pool (var->onepart), var);
1468 }
1469
1470 /* Initialize the set (array) SET of attrs to empty lists. */
1471
1472 static void
1473 init_attrs_list_set (attrs *set)
1474 {
1475 int i;
1476
1477 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1478 set[i] = NULL;
1479 }
1480
1481 /* Make the list *LISTP empty. */
1482
1483 static void
1484 attrs_list_clear (attrs *listp)
1485 {
1486 attrs list, next;
1487
1488 for (list = *listp; list; list = next)
1489 {
1490 next = list->next;
1491 pool_free (attrs_pool, list);
1492 }
1493 *listp = NULL;
1494 }
1495
1496 /* Return true if the pair of DECL and OFFSET is the member of the LIST. */
1497
1498 static attrs
1499 attrs_list_member (attrs list, decl_or_value dv, HOST_WIDE_INT offset)
1500 {
1501 for (; list; list = list->next)
1502 if (dv_as_opaque (list->dv) == dv_as_opaque (dv) && list->offset == offset)
1503 return list;
1504 return NULL;
1505 }
1506
1507 /* Insert the triplet DECL, OFFSET, LOC to the list *LISTP. */
1508
1509 static void
1510 attrs_list_insert (attrs *listp, decl_or_value dv,
1511 HOST_WIDE_INT offset, rtx loc)
1512 {
1513 attrs list;
1514
1515 list = (attrs) pool_alloc (attrs_pool);
1516 list->loc = loc;
1517 list->dv = dv;
1518 list->offset = offset;
1519 list->next = *listp;
1520 *listp = list;
1521 }
1522
1523 /* Copy all nodes from SRC and create a list *DSTP of the copies. */
1524
1525 static void
1526 attrs_list_copy (attrs *dstp, attrs src)
1527 {
1528 attrs n;
1529
1530 attrs_list_clear (dstp);
1531 for (; src; src = src->next)
1532 {
1533 n = (attrs) pool_alloc (attrs_pool);
1534 n->loc = src->loc;
1535 n->dv = src->dv;
1536 n->offset = src->offset;
1537 n->next = *dstp;
1538 *dstp = n;
1539 }
1540 }
1541
1542 /* Add all nodes from SRC which are not in *DSTP to *DSTP. */
1543
1544 static void
1545 attrs_list_union (attrs *dstp, attrs src)
1546 {
1547 for (; src; src = src->next)
1548 {
1549 if (!attrs_list_member (*dstp, src->dv, src->offset))
1550 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1551 }
1552 }
1553
1554 /* Combine nodes that are not onepart nodes from SRC and SRC2 into
1555 *DSTP. */
1556
1557 static void
1558 attrs_list_mpdv_union (attrs *dstp, attrs src, attrs src2)
1559 {
1560 gcc_assert (!*dstp);
1561 for (; src; src = src->next)
1562 {
1563 if (!dv_onepart_p (src->dv))
1564 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1565 }
1566 for (src = src2; src; src = src->next)
1567 {
1568 if (!dv_onepart_p (src->dv)
1569 && !attrs_list_member (*dstp, src->dv, src->offset))
1570 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1571 }
1572 }
1573
1574 /* Shared hashtable support. */
1575
1576 /* Return true if VARS is shared. */
1577
1578 static inline bool
1579 shared_hash_shared (shared_hash vars)
1580 {
1581 return vars->refcount > 1;
1582 }
1583
1584 /* Return the hash table for VARS. */
1585
1586 static inline variable_table_type *
1587 shared_hash_htab (shared_hash vars)
1588 {
1589 return vars->htab;
1590 }
1591
1592 /* Return true if VAR is shared, or maybe because VARS is shared. */
1593
1594 static inline bool
1595 shared_var_p (variable var, shared_hash vars)
1596 {
1597 /* Don't count an entry in the changed_variables table as a duplicate. */
1598 return ((var->refcount > 1 + (int) var->in_changed_variables)
1599 || shared_hash_shared (vars));
1600 }
1601
1602 /* Copy variables into a new hash table. */
1603
1604 static shared_hash
1605 shared_hash_unshare (shared_hash vars)
1606 {
1607 shared_hash new_vars = (shared_hash) pool_alloc (shared_hash_pool);
1608 gcc_assert (vars->refcount > 1);
1609 new_vars->refcount = 1;
1610 new_vars->htab = new variable_table_type (vars->htab->elements () + 3);
1611 vars_copy (new_vars->htab, vars->htab);
1612 vars->refcount--;
1613 return new_vars;
1614 }
1615
1616 /* Increment reference counter on VARS and return it. */
1617
1618 static inline shared_hash
1619 shared_hash_copy (shared_hash vars)
1620 {
1621 vars->refcount++;
1622 return vars;
1623 }
1624
1625 /* Decrement reference counter and destroy hash table if not shared
1626 anymore. */
1627
1628 static void
1629 shared_hash_destroy (shared_hash vars)
1630 {
1631 gcc_checking_assert (vars->refcount > 0);
1632 if (--vars->refcount == 0)
1633 {
1634 delete vars->htab;
1635 pool_free (shared_hash_pool, vars);
1636 }
1637 }
1638
1639 /* Unshare *PVARS if shared and return slot for DV. If INS is
1640 INSERT, insert it if not already present. */
1641
1642 static inline variable_def **
1643 shared_hash_find_slot_unshare_1 (shared_hash *pvars, decl_or_value dv,
1644 hashval_t dvhash, enum insert_option ins)
1645 {
1646 if (shared_hash_shared (*pvars))
1647 *pvars = shared_hash_unshare (*pvars);
1648 return shared_hash_htab (*pvars)->find_slot_with_hash (dv, dvhash, ins);
1649 }
1650
1651 static inline variable_def **
1652 shared_hash_find_slot_unshare (shared_hash *pvars, decl_or_value dv,
1653 enum insert_option ins)
1654 {
1655 return shared_hash_find_slot_unshare_1 (pvars, dv, dv_htab_hash (dv), ins);
1656 }
1657
1658 /* Return slot for DV, if it is already present in the hash table.
1659 If it is not present, insert it only VARS is not shared, otherwise
1660 return NULL. */
1661
1662 static inline variable_def **
1663 shared_hash_find_slot_1 (shared_hash vars, decl_or_value dv, hashval_t dvhash)
1664 {
1665 return shared_hash_htab (vars)->find_slot_with_hash (dv, dvhash,
1666 shared_hash_shared (vars)
1667 ? NO_INSERT : INSERT);
1668 }
1669
1670 static inline variable_def **
1671 shared_hash_find_slot (shared_hash vars, decl_or_value dv)
1672 {
1673 return shared_hash_find_slot_1 (vars, dv, dv_htab_hash (dv));
1674 }
1675
1676 /* Return slot for DV only if it is already present in the hash table. */
1677
1678 static inline variable_def **
1679 shared_hash_find_slot_noinsert_1 (shared_hash vars, decl_or_value dv,
1680 hashval_t dvhash)
1681 {
1682 return shared_hash_htab (vars)->find_slot_with_hash (dv, dvhash, NO_INSERT);
1683 }
1684
1685 static inline variable_def **
1686 shared_hash_find_slot_noinsert (shared_hash vars, decl_or_value dv)
1687 {
1688 return shared_hash_find_slot_noinsert_1 (vars, dv, dv_htab_hash (dv));
1689 }
1690
1691 /* Return variable for DV or NULL if not already present in the hash
1692 table. */
1693
1694 static inline variable
1695 shared_hash_find_1 (shared_hash vars, decl_or_value dv, hashval_t dvhash)
1696 {
1697 return shared_hash_htab (vars)->find_with_hash (dv, dvhash);
1698 }
1699
1700 static inline variable
1701 shared_hash_find (shared_hash vars, decl_or_value dv)
1702 {
1703 return shared_hash_find_1 (vars, dv, dv_htab_hash (dv));
1704 }
1705
1706 /* Return true if TVAL is better than CVAL as a canonival value. We
1707 choose lowest-numbered VALUEs, using the RTX address as a
1708 tie-breaker. The idea is to arrange them into a star topology,
1709 such that all of them are at most one step away from the canonical
1710 value, and the canonical value has backlinks to all of them, in
1711 addition to all the actual locations. We don't enforce this
1712 topology throughout the entire dataflow analysis, though.
1713 */
1714
1715 static inline bool
1716 canon_value_cmp (rtx tval, rtx cval)
1717 {
1718 return !cval
1719 || CSELIB_VAL_PTR (tval)->uid < CSELIB_VAL_PTR (cval)->uid;
1720 }
1721
1722 static bool dst_can_be_shared;
1723
1724 /* Return a copy of a variable VAR and insert it to dataflow set SET. */
1725
1726 static variable_def **
1727 unshare_variable (dataflow_set *set, variable_def **slot, variable var,
1728 enum var_init_status initialized)
1729 {
1730 variable new_var;
1731 int i;
1732
1733 new_var = (variable) pool_alloc (onepart_pool (var->onepart));
1734 new_var->dv = var->dv;
1735 new_var->refcount = 1;
1736 var->refcount--;
1737 new_var->n_var_parts = var->n_var_parts;
1738 new_var->onepart = var->onepart;
1739 new_var->in_changed_variables = false;
1740
1741 if (! flag_var_tracking_uninit)
1742 initialized = VAR_INIT_STATUS_INITIALIZED;
1743
1744 for (i = 0; i < var->n_var_parts; i++)
1745 {
1746 location_chain node;
1747 location_chain *nextp;
1748
1749 if (i == 0 && var->onepart)
1750 {
1751 /* One-part auxiliary data is only used while emitting
1752 notes, so propagate it to the new variable in the active
1753 dataflow set. If we're not emitting notes, this will be
1754 a no-op. */
1755 gcc_checking_assert (!VAR_LOC_1PAUX (var) || emit_notes);
1756 VAR_LOC_1PAUX (new_var) = VAR_LOC_1PAUX (var);
1757 VAR_LOC_1PAUX (var) = NULL;
1758 }
1759 else
1760 VAR_PART_OFFSET (new_var, i) = VAR_PART_OFFSET (var, i);
1761 nextp = &new_var->var_part[i].loc_chain;
1762 for (node = var->var_part[i].loc_chain; node; node = node->next)
1763 {
1764 location_chain new_lc;
1765
1766 new_lc = (location_chain) pool_alloc (loc_chain_pool);
1767 new_lc->next = NULL;
1768 if (node->init > initialized)
1769 new_lc->init = node->init;
1770 else
1771 new_lc->init = initialized;
1772 if (node->set_src && !(MEM_P (node->set_src)))
1773 new_lc->set_src = node->set_src;
1774 else
1775 new_lc->set_src = NULL;
1776 new_lc->loc = node->loc;
1777
1778 *nextp = new_lc;
1779 nextp = &new_lc->next;
1780 }
1781
1782 new_var->var_part[i].cur_loc = var->var_part[i].cur_loc;
1783 }
1784
1785 dst_can_be_shared = false;
1786 if (shared_hash_shared (set->vars))
1787 slot = shared_hash_find_slot_unshare (&set->vars, var->dv, NO_INSERT);
1788 else if (set->traversed_vars && set->vars != set->traversed_vars)
1789 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
1790 *slot = new_var;
1791 if (var->in_changed_variables)
1792 {
1793 variable_def **cslot
1794 = changed_variables->find_slot_with_hash (var->dv,
1795 dv_htab_hash (var->dv),
1796 NO_INSERT);
1797 gcc_assert (*cslot == (void *) var);
1798 var->in_changed_variables = false;
1799 variable_htab_free (var);
1800 *cslot = new_var;
1801 new_var->in_changed_variables = true;
1802 }
1803 return slot;
1804 }
1805
1806 /* Copy all variables from hash table SRC to hash table DST. */
1807
1808 static void
1809 vars_copy (variable_table_type *dst, variable_table_type *src)
1810 {
1811 variable_iterator_type hi;
1812 variable var;
1813
1814 FOR_EACH_HASH_TABLE_ELEMENT (*src, var, variable, hi)
1815 {
1816 variable_def **dstp;
1817 var->refcount++;
1818 dstp = dst->find_slot_with_hash (var->dv, dv_htab_hash (var->dv),
1819 INSERT);
1820 *dstp = var;
1821 }
1822 }
1823
1824 /* Map a decl to its main debug decl. */
1825
1826 static inline tree
1827 var_debug_decl (tree decl)
1828 {
1829 if (decl && TREE_CODE (decl) == VAR_DECL
1830 && DECL_HAS_DEBUG_EXPR_P (decl))
1831 {
1832 tree debugdecl = DECL_DEBUG_EXPR (decl);
1833 if (DECL_P (debugdecl))
1834 decl = debugdecl;
1835 }
1836
1837 return decl;
1838 }
1839
1840 /* Set the register LOC to contain DV, OFFSET. */
1841
1842 static void
1843 var_reg_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1844 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
1845 enum insert_option iopt)
1846 {
1847 attrs node;
1848 bool decl_p = dv_is_decl_p (dv);
1849
1850 if (decl_p)
1851 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
1852
1853 for (node = set->regs[REGNO (loc)]; node; node = node->next)
1854 if (dv_as_opaque (node->dv) == dv_as_opaque (dv)
1855 && node->offset == offset)
1856 break;
1857 if (!node)
1858 attrs_list_insert (&set->regs[REGNO (loc)], dv, offset, loc);
1859 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
1860 }
1861
1862 /* Set the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). */
1863
1864 static void
1865 var_reg_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1866 rtx set_src)
1867 {
1868 tree decl = REG_EXPR (loc);
1869 HOST_WIDE_INT offset = REG_OFFSET (loc);
1870
1871 var_reg_decl_set (set, loc, initialized,
1872 dv_from_decl (decl), offset, set_src, INSERT);
1873 }
1874
1875 static enum var_init_status
1876 get_init_value (dataflow_set *set, rtx loc, decl_or_value dv)
1877 {
1878 variable var;
1879 int i;
1880 enum var_init_status ret_val = VAR_INIT_STATUS_UNKNOWN;
1881
1882 if (! flag_var_tracking_uninit)
1883 return VAR_INIT_STATUS_INITIALIZED;
1884
1885 var = shared_hash_find (set->vars, dv);
1886 if (var)
1887 {
1888 for (i = 0; i < var->n_var_parts && ret_val == VAR_INIT_STATUS_UNKNOWN; i++)
1889 {
1890 location_chain nextp;
1891 for (nextp = var->var_part[i].loc_chain; nextp; nextp = nextp->next)
1892 if (rtx_equal_p (nextp->loc, loc))
1893 {
1894 ret_val = nextp->init;
1895 break;
1896 }
1897 }
1898 }
1899
1900 return ret_val;
1901 }
1902
1903 /* Delete current content of register LOC in dataflow set SET and set
1904 the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). If
1905 MODIFY is true, any other live copies of the same variable part are
1906 also deleted from the dataflow set, otherwise the variable part is
1907 assumed to be copied from another location holding the same
1908 part. */
1909
1910 static void
1911 var_reg_delete_and_set (dataflow_set *set, rtx loc, bool modify,
1912 enum var_init_status initialized, rtx set_src)
1913 {
1914 tree decl = REG_EXPR (loc);
1915 HOST_WIDE_INT offset = REG_OFFSET (loc);
1916 attrs node, next;
1917 attrs *nextp;
1918
1919 decl = var_debug_decl (decl);
1920
1921 if (initialized == VAR_INIT_STATUS_UNKNOWN)
1922 initialized = get_init_value (set, loc, dv_from_decl (decl));
1923
1924 nextp = &set->regs[REGNO (loc)];
1925 for (node = *nextp; node; node = next)
1926 {
1927 next = node->next;
1928 if (dv_as_opaque (node->dv) != decl || node->offset != offset)
1929 {
1930 delete_variable_part (set, node->loc, node->dv, node->offset);
1931 pool_free (attrs_pool, node);
1932 *nextp = next;
1933 }
1934 else
1935 {
1936 node->loc = loc;
1937 nextp = &node->next;
1938 }
1939 }
1940 if (modify)
1941 clobber_variable_part (set, loc, dv_from_decl (decl), offset, set_src);
1942 var_reg_set (set, loc, initialized, set_src);
1943 }
1944
1945 /* Delete the association of register LOC in dataflow set SET with any
1946 variables that aren't onepart. If CLOBBER is true, also delete any
1947 other live copies of the same variable part, and delete the
1948 association with onepart dvs too. */
1949
1950 static void
1951 var_reg_delete (dataflow_set *set, rtx loc, bool clobber)
1952 {
1953 attrs *nextp = &set->regs[REGNO (loc)];
1954 attrs node, next;
1955
1956 if (clobber)
1957 {
1958 tree decl = REG_EXPR (loc);
1959 HOST_WIDE_INT offset = REG_OFFSET (loc);
1960
1961 decl = var_debug_decl (decl);
1962
1963 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
1964 }
1965
1966 for (node = *nextp; node; node = next)
1967 {
1968 next = node->next;
1969 if (clobber || !dv_onepart_p (node->dv))
1970 {
1971 delete_variable_part (set, node->loc, node->dv, node->offset);
1972 pool_free (attrs_pool, node);
1973 *nextp = next;
1974 }
1975 else
1976 nextp = &node->next;
1977 }
1978 }
1979
1980 /* Delete content of register with number REGNO in dataflow set SET. */
1981
1982 static void
1983 var_regno_delete (dataflow_set *set, int regno)
1984 {
1985 attrs *reg = &set->regs[regno];
1986 attrs node, next;
1987
1988 for (node = *reg; node; node = next)
1989 {
1990 next = node->next;
1991 delete_variable_part (set, node->loc, node->dv, node->offset);
1992 pool_free (attrs_pool, node);
1993 }
1994 *reg = NULL;
1995 }
1996
1997 /* Return true if I is the negated value of a power of two. */
1998 static bool
1999 negative_power_of_two_p (HOST_WIDE_INT i)
2000 {
2001 unsigned HOST_WIDE_INT x = -(unsigned HOST_WIDE_INT)i;
2002 return x == (x & -x);
2003 }
2004
2005 /* Strip constant offsets and alignments off of LOC. Return the base
2006 expression. */
2007
2008 static rtx
2009 vt_get_canonicalize_base (rtx loc)
2010 {
2011 while ((GET_CODE (loc) == PLUS
2012 || GET_CODE (loc) == AND)
2013 && GET_CODE (XEXP (loc, 1)) == CONST_INT
2014 && (GET_CODE (loc) != AND
2015 || negative_power_of_two_p (INTVAL (XEXP (loc, 1)))))
2016 loc = XEXP (loc, 0);
2017
2018 return loc;
2019 }
2020
2021 /* This caches canonicalized addresses for VALUEs, computed using
2022 information in the global cselib table. */
2023 static hash_map<rtx, rtx> *global_get_addr_cache;
2024
2025 /* This caches canonicalized addresses for VALUEs, computed using
2026 information from the global cache and information pertaining to a
2027 basic block being analyzed. */
2028 static hash_map<rtx, rtx> *local_get_addr_cache;
2029
2030 static rtx vt_canonicalize_addr (dataflow_set *, rtx);
2031
2032 /* Return the canonical address for LOC, that must be a VALUE, using a
2033 cached global equivalence or computing it and storing it in the
2034 global cache. */
2035
2036 static rtx
2037 get_addr_from_global_cache (rtx const loc)
2038 {
2039 rtx x;
2040
2041 gcc_checking_assert (GET_CODE (loc) == VALUE);
2042
2043 bool existed;
2044 rtx *slot = &global_get_addr_cache->get_or_insert (loc, &existed);
2045 if (existed)
2046 return *slot;
2047
2048 x = canon_rtx (get_addr (loc));
2049
2050 /* Tentative, avoiding infinite recursion. */
2051 *slot = x;
2052
2053 if (x != loc)
2054 {
2055 rtx nx = vt_canonicalize_addr (NULL, x);
2056 if (nx != x)
2057 {
2058 /* The table may have moved during recursion, recompute
2059 SLOT. */
2060 *global_get_addr_cache->get (loc) = x = nx;
2061 }
2062 }
2063
2064 return x;
2065 }
2066
2067 /* Return the canonical address for LOC, that must be a VALUE, using a
2068 cached local equivalence or computing it and storing it in the
2069 local cache. */
2070
2071 static rtx
2072 get_addr_from_local_cache (dataflow_set *set, rtx const loc)
2073 {
2074 rtx x;
2075 decl_or_value dv;
2076 variable var;
2077 location_chain l;
2078
2079 gcc_checking_assert (GET_CODE (loc) == VALUE);
2080
2081 bool existed;
2082 rtx *slot = &local_get_addr_cache->get_or_insert (loc, &existed);
2083 if (existed)
2084 return *slot;
2085
2086 x = get_addr_from_global_cache (loc);
2087
2088 /* Tentative, avoiding infinite recursion. */
2089 *slot = x;
2090
2091 /* Recurse to cache local expansion of X, or if we need to search
2092 for a VALUE in the expansion. */
2093 if (x != loc)
2094 {
2095 rtx nx = vt_canonicalize_addr (set, x);
2096 if (nx != x)
2097 {
2098 slot = local_get_addr_cache->get (loc);
2099 *slot = x = nx;
2100 }
2101 return x;
2102 }
2103
2104 dv = dv_from_rtx (x);
2105 var = shared_hash_find (set->vars, dv);
2106 if (!var)
2107 return x;
2108
2109 /* Look for an improved equivalent expression. */
2110 for (l = var->var_part[0].loc_chain; l; l = l->next)
2111 {
2112 rtx base = vt_get_canonicalize_base (l->loc);
2113 if (GET_CODE (base) == VALUE
2114 && canon_value_cmp (base, loc))
2115 {
2116 rtx nx = vt_canonicalize_addr (set, l->loc);
2117 if (x != nx)
2118 {
2119 slot = local_get_addr_cache->get (loc);
2120 *slot = x = nx;
2121 }
2122 break;
2123 }
2124 }
2125
2126 return x;
2127 }
2128
2129 /* Canonicalize LOC using equivalences from SET in addition to those
2130 in the cselib static table. It expects a VALUE-based expression,
2131 and it will only substitute VALUEs with other VALUEs or
2132 function-global equivalences, so that, if two addresses have base
2133 VALUEs that are locally or globally related in ways that
2134 memrefs_conflict_p cares about, they will both canonicalize to
2135 expressions that have the same base VALUE.
2136
2137 The use of VALUEs as canonical base addresses enables the canonical
2138 RTXs to remain unchanged globally, if they resolve to a constant,
2139 or throughout a basic block otherwise, so that they can be cached
2140 and the cache needs not be invalidated when REGs, MEMs or such
2141 change. */
2142
2143 static rtx
2144 vt_canonicalize_addr (dataflow_set *set, rtx oloc)
2145 {
2146 HOST_WIDE_INT ofst = 0;
2147 enum machine_mode mode = GET_MODE (oloc);
2148 rtx loc = oloc;
2149 rtx x;
2150 bool retry = true;
2151
2152 while (retry)
2153 {
2154 while (GET_CODE (loc) == PLUS
2155 && GET_CODE (XEXP (loc, 1)) == CONST_INT)
2156 {
2157 ofst += INTVAL (XEXP (loc, 1));
2158 loc = XEXP (loc, 0);
2159 }
2160
2161 /* Alignment operations can't normally be combined, so just
2162 canonicalize the base and we're done. We'll normally have
2163 only one stack alignment anyway. */
2164 if (GET_CODE (loc) == AND
2165 && GET_CODE (XEXP (loc, 1)) == CONST_INT
2166 && negative_power_of_two_p (INTVAL (XEXP (loc, 1))))
2167 {
2168 x = vt_canonicalize_addr (set, XEXP (loc, 0));
2169 if (x != XEXP (loc, 0))
2170 loc = gen_rtx_AND (mode, x, XEXP (loc, 1));
2171 retry = false;
2172 }
2173
2174 if (GET_CODE (loc) == VALUE)
2175 {
2176 if (set)
2177 loc = get_addr_from_local_cache (set, loc);
2178 else
2179 loc = get_addr_from_global_cache (loc);
2180
2181 /* Consolidate plus_constants. */
2182 while (ofst && GET_CODE (loc) == PLUS
2183 && GET_CODE (XEXP (loc, 1)) == CONST_INT)
2184 {
2185 ofst += INTVAL (XEXP (loc, 1));
2186 loc = XEXP (loc, 0);
2187 }
2188
2189 retry = false;
2190 }
2191 else
2192 {
2193 x = canon_rtx (loc);
2194 if (retry)
2195 retry = (x != loc);
2196 loc = x;
2197 }
2198 }
2199
2200 /* Add OFST back in. */
2201 if (ofst)
2202 {
2203 /* Don't build new RTL if we can help it. */
2204 if (GET_CODE (oloc) == PLUS
2205 && XEXP (oloc, 0) == loc
2206 && INTVAL (XEXP (oloc, 1)) == ofst)
2207 return oloc;
2208
2209 loc = plus_constant (mode, loc, ofst);
2210 }
2211
2212 return loc;
2213 }
2214
2215 /* Return true iff there's a true dependence between MLOC and LOC.
2216 MADDR must be a canonicalized version of MLOC's address. */
2217
2218 static inline bool
2219 vt_canon_true_dep (dataflow_set *set, rtx mloc, rtx maddr, rtx loc)
2220 {
2221 if (GET_CODE (loc) != MEM)
2222 return false;
2223
2224 rtx addr = vt_canonicalize_addr (set, XEXP (loc, 0));
2225 if (!canon_true_dependence (mloc, GET_MODE (mloc), maddr, loc, addr))
2226 return false;
2227
2228 return true;
2229 }
2230
2231 /* Hold parameters for the hashtab traversal function
2232 drop_overlapping_mem_locs, see below. */
2233
2234 struct overlapping_mems
2235 {
2236 dataflow_set *set;
2237 rtx loc, addr;
2238 };
2239
2240 /* Remove all MEMs that overlap with COMS->LOC from the location list
2241 of a hash table entry for a value. COMS->ADDR must be a
2242 canonicalized form of COMS->LOC's address, and COMS->LOC must be
2243 canonicalized itself. */
2244
2245 int
2246 drop_overlapping_mem_locs (variable_def **slot, overlapping_mems *coms)
2247 {
2248 dataflow_set *set = coms->set;
2249 rtx mloc = coms->loc, addr = coms->addr;
2250 variable var = *slot;
2251
2252 if (var->onepart == ONEPART_VALUE)
2253 {
2254 location_chain loc, *locp;
2255 bool changed = false;
2256 rtx cur_loc;
2257
2258 gcc_assert (var->n_var_parts == 1);
2259
2260 if (shared_var_p (var, set->vars))
2261 {
2262 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
2263 if (vt_canon_true_dep (set, mloc, addr, loc->loc))
2264 break;
2265
2266 if (!loc)
2267 return 1;
2268
2269 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
2270 var = *slot;
2271 gcc_assert (var->n_var_parts == 1);
2272 }
2273
2274 if (VAR_LOC_1PAUX (var))
2275 cur_loc = VAR_LOC_FROM (var);
2276 else
2277 cur_loc = var->var_part[0].cur_loc;
2278
2279 for (locp = &var->var_part[0].loc_chain, loc = *locp;
2280 loc; loc = *locp)
2281 {
2282 if (!vt_canon_true_dep (set, mloc, addr, loc->loc))
2283 {
2284 locp = &loc->next;
2285 continue;
2286 }
2287
2288 *locp = loc->next;
2289 /* If we have deleted the location which was last emitted
2290 we have to emit new location so add the variable to set
2291 of changed variables. */
2292 if (cur_loc == loc->loc)
2293 {
2294 changed = true;
2295 var->var_part[0].cur_loc = NULL;
2296 if (VAR_LOC_1PAUX (var))
2297 VAR_LOC_FROM (var) = NULL;
2298 }
2299 pool_free (loc_chain_pool, loc);
2300 }
2301
2302 if (!var->var_part[0].loc_chain)
2303 {
2304 var->n_var_parts--;
2305 changed = true;
2306 }
2307 if (changed)
2308 variable_was_changed (var, set);
2309 }
2310
2311 return 1;
2312 }
2313
2314 /* Remove from SET all VALUE bindings to MEMs that overlap with LOC. */
2315
2316 static void
2317 clobber_overlapping_mems (dataflow_set *set, rtx loc)
2318 {
2319 struct overlapping_mems coms;
2320
2321 gcc_checking_assert (GET_CODE (loc) == MEM);
2322
2323 coms.set = set;
2324 coms.loc = canon_rtx (loc);
2325 coms.addr = vt_canonicalize_addr (set, XEXP (loc, 0));
2326
2327 set->traversed_vars = set->vars;
2328 shared_hash_htab (set->vars)
2329 ->traverse <overlapping_mems*, drop_overlapping_mem_locs> (&coms);
2330 set->traversed_vars = NULL;
2331 }
2332
2333 /* Set the location of DV, OFFSET as the MEM LOC. */
2334
2335 static void
2336 var_mem_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
2337 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
2338 enum insert_option iopt)
2339 {
2340 if (dv_is_decl_p (dv))
2341 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
2342
2343 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
2344 }
2345
2346 /* Set the location part of variable MEM_EXPR (LOC) in dataflow set
2347 SET to LOC.
2348 Adjust the address first if it is stack pointer based. */
2349
2350 static void
2351 var_mem_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
2352 rtx set_src)
2353 {
2354 tree decl = MEM_EXPR (loc);
2355 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2356
2357 var_mem_decl_set (set, loc, initialized,
2358 dv_from_decl (decl), offset, set_src, INSERT);
2359 }
2360
2361 /* Delete and set the location part of variable MEM_EXPR (LOC) in
2362 dataflow set SET to LOC. If MODIFY is true, any other live copies
2363 of the same variable part are also deleted from the dataflow set,
2364 otherwise the variable part is assumed to be copied from another
2365 location holding the same part.
2366 Adjust the address first if it is stack pointer based. */
2367
2368 static void
2369 var_mem_delete_and_set (dataflow_set *set, rtx loc, bool modify,
2370 enum var_init_status initialized, rtx set_src)
2371 {
2372 tree decl = MEM_EXPR (loc);
2373 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2374
2375 clobber_overlapping_mems (set, loc);
2376 decl = var_debug_decl (decl);
2377
2378 if (initialized == VAR_INIT_STATUS_UNKNOWN)
2379 initialized = get_init_value (set, loc, dv_from_decl (decl));
2380
2381 if (modify)
2382 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, set_src);
2383 var_mem_set (set, loc, initialized, set_src);
2384 }
2385
2386 /* Delete the location part LOC from dataflow set SET. If CLOBBER is
2387 true, also delete any other live copies of the same variable part.
2388 Adjust the address first if it is stack pointer based. */
2389
2390 static void
2391 var_mem_delete (dataflow_set *set, rtx loc, bool clobber)
2392 {
2393 tree decl = MEM_EXPR (loc);
2394 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2395
2396 clobber_overlapping_mems (set, loc);
2397 decl = var_debug_decl (decl);
2398 if (clobber)
2399 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
2400 delete_variable_part (set, loc, dv_from_decl (decl), offset);
2401 }
2402
2403 /* Return true if LOC should not be expanded for location expressions,
2404 or used in them. */
2405
2406 static inline bool
2407 unsuitable_loc (rtx loc)
2408 {
2409 switch (GET_CODE (loc))
2410 {
2411 case PC:
2412 case SCRATCH:
2413 case CC0:
2414 case ASM_INPUT:
2415 case ASM_OPERANDS:
2416 return true;
2417
2418 default:
2419 return false;
2420 }
2421 }
2422
2423 /* Bind VAL to LOC in SET. If MODIFIED, detach LOC from any values
2424 bound to it. */
2425
2426 static inline void
2427 val_bind (dataflow_set *set, rtx val, rtx loc, bool modified)
2428 {
2429 if (REG_P (loc))
2430 {
2431 if (modified)
2432 var_regno_delete (set, REGNO (loc));
2433 var_reg_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2434 dv_from_value (val), 0, NULL_RTX, INSERT);
2435 }
2436 else if (MEM_P (loc))
2437 {
2438 struct elt_loc_list *l = CSELIB_VAL_PTR (val)->locs;
2439
2440 if (modified)
2441 clobber_overlapping_mems (set, loc);
2442
2443 if (l && GET_CODE (l->loc) == VALUE)
2444 l = canonical_cselib_val (CSELIB_VAL_PTR (l->loc))->locs;
2445
2446 /* If this MEM is a global constant, we don't need it in the
2447 dynamic tables. ??? We should test this before emitting the
2448 micro-op in the first place. */
2449 while (l)
2450 if (GET_CODE (l->loc) == MEM && XEXP (l->loc, 0) == XEXP (loc, 0))
2451 break;
2452 else
2453 l = l->next;
2454
2455 if (!l)
2456 var_mem_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2457 dv_from_value (val), 0, NULL_RTX, INSERT);
2458 }
2459 else
2460 {
2461 /* Other kinds of equivalences are necessarily static, at least
2462 so long as we do not perform substitutions while merging
2463 expressions. */
2464 gcc_unreachable ();
2465 set_variable_part (set, loc, dv_from_value (val), 0,
2466 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2467 }
2468 }
2469
2470 /* Bind a value to a location it was just stored in. If MODIFIED
2471 holds, assume the location was modified, detaching it from any
2472 values bound to it. */
2473
2474 static void
2475 val_store (dataflow_set *set, rtx val, rtx loc, rtx insn, bool modified)
2476 {
2477 cselib_val *v = CSELIB_VAL_PTR (val);
2478
2479 gcc_assert (cselib_preserved_value_p (v));
2480
2481 if (dump_file)
2482 {
2483 fprintf (dump_file, "%i: ", insn ? INSN_UID (insn) : 0);
2484 print_inline_rtx (dump_file, loc, 0);
2485 fprintf (dump_file, " evaluates to ");
2486 print_inline_rtx (dump_file, val, 0);
2487 if (v->locs)
2488 {
2489 struct elt_loc_list *l;
2490 for (l = v->locs; l; l = l->next)
2491 {
2492 fprintf (dump_file, "\n%i: ", INSN_UID (l->setting_insn));
2493 print_inline_rtx (dump_file, l->loc, 0);
2494 }
2495 }
2496 fprintf (dump_file, "\n");
2497 }
2498
2499 gcc_checking_assert (!unsuitable_loc (loc));
2500
2501 val_bind (set, val, loc, modified);
2502 }
2503
2504 /* Clear (canonical address) slots that reference X. */
2505
2506 bool
2507 local_get_addr_clear_given_value (rtx const &, rtx *slot, rtx x)
2508 {
2509 if (vt_get_canonicalize_base (*slot) == x)
2510 *slot = NULL;
2511 return true;
2512 }
2513
2514 /* Reset this node, detaching all its equivalences. Return the slot
2515 in the variable hash table that holds dv, if there is one. */
2516
2517 static void
2518 val_reset (dataflow_set *set, decl_or_value dv)
2519 {
2520 variable var = shared_hash_find (set->vars, dv) ;
2521 location_chain node;
2522 rtx cval;
2523
2524 if (!var || !var->n_var_parts)
2525 return;
2526
2527 gcc_assert (var->n_var_parts == 1);
2528
2529 if (var->onepart == ONEPART_VALUE)
2530 {
2531 rtx x = dv_as_value (dv);
2532
2533 /* Relationships in the global cache don't change, so reset the
2534 local cache entry only. */
2535 rtx *slot = local_get_addr_cache->get (x);
2536 if (slot)
2537 {
2538 /* If the value resolved back to itself, odds are that other
2539 values may have cached it too. These entries now refer
2540 to the old X, so detach them too. Entries that used the
2541 old X but resolved to something else remain ok as long as
2542 that something else isn't also reset. */
2543 if (*slot == x)
2544 local_get_addr_cache
2545 ->traverse<rtx, local_get_addr_clear_given_value> (x);
2546 *slot = NULL;
2547 }
2548 }
2549
2550 cval = NULL;
2551 for (node = var->var_part[0].loc_chain; node; node = node->next)
2552 if (GET_CODE (node->loc) == VALUE
2553 && canon_value_cmp (node->loc, cval))
2554 cval = node->loc;
2555
2556 for (node = var->var_part[0].loc_chain; node; node = node->next)
2557 if (GET_CODE (node->loc) == VALUE && cval != node->loc)
2558 {
2559 /* Redirect the equivalence link to the new canonical
2560 value, or simply remove it if it would point at
2561 itself. */
2562 if (cval)
2563 set_variable_part (set, cval, dv_from_value (node->loc),
2564 0, node->init, node->set_src, NO_INSERT);
2565 delete_variable_part (set, dv_as_value (dv),
2566 dv_from_value (node->loc), 0);
2567 }
2568
2569 if (cval)
2570 {
2571 decl_or_value cdv = dv_from_value (cval);
2572
2573 /* Keep the remaining values connected, accummulating links
2574 in the canonical value. */
2575 for (node = var->var_part[0].loc_chain; node; node = node->next)
2576 {
2577 if (node->loc == cval)
2578 continue;
2579 else if (GET_CODE (node->loc) == REG)
2580 var_reg_decl_set (set, node->loc, node->init, cdv, 0,
2581 node->set_src, NO_INSERT);
2582 else if (GET_CODE (node->loc) == MEM)
2583 var_mem_decl_set (set, node->loc, node->init, cdv, 0,
2584 node->set_src, NO_INSERT);
2585 else
2586 set_variable_part (set, node->loc, cdv, 0,
2587 node->init, node->set_src, NO_INSERT);
2588 }
2589 }
2590
2591 /* We remove this last, to make sure that the canonical value is not
2592 removed to the point of requiring reinsertion. */
2593 if (cval)
2594 delete_variable_part (set, dv_as_value (dv), dv_from_value (cval), 0);
2595
2596 clobber_variable_part (set, NULL, dv, 0, NULL);
2597 }
2598
2599 /* Find the values in a given location and map the val to another
2600 value, if it is unique, or add the location as one holding the
2601 value. */
2602
2603 static void
2604 val_resolve (dataflow_set *set, rtx val, rtx loc, rtx insn)
2605 {
2606 decl_or_value dv = dv_from_value (val);
2607
2608 if (dump_file && (dump_flags & TDF_DETAILS))
2609 {
2610 if (insn)
2611 fprintf (dump_file, "%i: ", INSN_UID (insn));
2612 else
2613 fprintf (dump_file, "head: ");
2614 print_inline_rtx (dump_file, val, 0);
2615 fputs (" is at ", dump_file);
2616 print_inline_rtx (dump_file, loc, 0);
2617 fputc ('\n', dump_file);
2618 }
2619
2620 val_reset (set, dv);
2621
2622 gcc_checking_assert (!unsuitable_loc (loc));
2623
2624 if (REG_P (loc))
2625 {
2626 attrs node, found = NULL;
2627
2628 for (node = set->regs[REGNO (loc)]; node; node = node->next)
2629 if (dv_is_value_p (node->dv)
2630 && GET_MODE (dv_as_value (node->dv)) == GET_MODE (loc))
2631 {
2632 found = node;
2633
2634 /* Map incoming equivalences. ??? Wouldn't it be nice if
2635 we just started sharing the location lists? Maybe a
2636 circular list ending at the value itself or some
2637 such. */
2638 set_variable_part (set, dv_as_value (node->dv),
2639 dv_from_value (val), node->offset,
2640 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2641 set_variable_part (set, val, node->dv, node->offset,
2642 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2643 }
2644
2645 /* If we didn't find any equivalence, we need to remember that
2646 this value is held in the named register. */
2647 if (found)
2648 return;
2649 }
2650 /* ??? Attempt to find and merge equivalent MEMs or other
2651 expressions too. */
2652
2653 val_bind (set, val, loc, false);
2654 }
2655
2656 /* Initialize dataflow set SET to be empty.
2657 VARS_SIZE is the initial size of hash table VARS. */
2658
2659 static void
2660 dataflow_set_init (dataflow_set *set)
2661 {
2662 init_attrs_list_set (set->regs);
2663 set->vars = shared_hash_copy (empty_shared_hash);
2664 set->stack_adjust = 0;
2665 set->traversed_vars = NULL;
2666 }
2667
2668 /* Delete the contents of dataflow set SET. */
2669
2670 static void
2671 dataflow_set_clear (dataflow_set *set)
2672 {
2673 int i;
2674
2675 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2676 attrs_list_clear (&set->regs[i]);
2677
2678 shared_hash_destroy (set->vars);
2679 set->vars = shared_hash_copy (empty_shared_hash);
2680 }
2681
2682 /* Copy the contents of dataflow set SRC to DST. */
2683
2684 static void
2685 dataflow_set_copy (dataflow_set *dst, dataflow_set *src)
2686 {
2687 int i;
2688
2689 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2690 attrs_list_copy (&dst->regs[i], src->regs[i]);
2691
2692 shared_hash_destroy (dst->vars);
2693 dst->vars = shared_hash_copy (src->vars);
2694 dst->stack_adjust = src->stack_adjust;
2695 }
2696
2697 /* Information for merging lists of locations for a given offset of variable.
2698 */
2699 struct variable_union_info
2700 {
2701 /* Node of the location chain. */
2702 location_chain lc;
2703
2704 /* The sum of positions in the input chains. */
2705 int pos;
2706
2707 /* The position in the chain of DST dataflow set. */
2708 int pos_dst;
2709 };
2710
2711 /* Buffer for location list sorting and its allocated size. */
2712 static struct variable_union_info *vui_vec;
2713 static int vui_allocated;
2714
2715 /* Compare function for qsort, order the structures by POS element. */
2716
2717 static int
2718 variable_union_info_cmp_pos (const void *n1, const void *n2)
2719 {
2720 const struct variable_union_info *const i1 =
2721 (const struct variable_union_info *) n1;
2722 const struct variable_union_info *const i2 =
2723 ( const struct variable_union_info *) n2;
2724
2725 if (i1->pos != i2->pos)
2726 return i1->pos - i2->pos;
2727
2728 return (i1->pos_dst - i2->pos_dst);
2729 }
2730
2731 /* Compute union of location parts of variable *SLOT and the same variable
2732 from hash table DATA. Compute "sorted" union of the location chains
2733 for common offsets, i.e. the locations of a variable part are sorted by
2734 a priority where the priority is the sum of the positions in the 2 chains
2735 (if a location is only in one list the position in the second list is
2736 defined to be larger than the length of the chains).
2737 When we are updating the location parts the newest location is in the
2738 beginning of the chain, so when we do the described "sorted" union
2739 we keep the newest locations in the beginning. */
2740
2741 static int
2742 variable_union (variable src, dataflow_set *set)
2743 {
2744 variable dst;
2745 variable_def **dstp;
2746 int i, j, k;
2747
2748 dstp = shared_hash_find_slot (set->vars, src->dv);
2749 if (!dstp || !*dstp)
2750 {
2751 src->refcount++;
2752
2753 dst_can_be_shared = false;
2754 if (!dstp)
2755 dstp = shared_hash_find_slot_unshare (&set->vars, src->dv, INSERT);
2756
2757 *dstp = src;
2758
2759 /* Continue traversing the hash table. */
2760 return 1;
2761 }
2762 else
2763 dst = *dstp;
2764
2765 gcc_assert (src->n_var_parts);
2766 gcc_checking_assert (src->onepart == dst->onepart);
2767
2768 /* We can combine one-part variables very efficiently, because their
2769 entries are in canonical order. */
2770 if (src->onepart)
2771 {
2772 location_chain *nodep, dnode, snode;
2773
2774 gcc_assert (src->n_var_parts == 1
2775 && dst->n_var_parts == 1);
2776
2777 snode = src->var_part[0].loc_chain;
2778 gcc_assert (snode);
2779
2780 restart_onepart_unshared:
2781 nodep = &dst->var_part[0].loc_chain;
2782 dnode = *nodep;
2783 gcc_assert (dnode);
2784
2785 while (snode)
2786 {
2787 int r = dnode ? loc_cmp (dnode->loc, snode->loc) : 1;
2788
2789 if (r > 0)
2790 {
2791 location_chain nnode;
2792
2793 if (shared_var_p (dst, set->vars))
2794 {
2795 dstp = unshare_variable (set, dstp, dst,
2796 VAR_INIT_STATUS_INITIALIZED);
2797 dst = *dstp;
2798 goto restart_onepart_unshared;
2799 }
2800
2801 *nodep = nnode = (location_chain) pool_alloc (loc_chain_pool);
2802 nnode->loc = snode->loc;
2803 nnode->init = snode->init;
2804 if (!snode->set_src || MEM_P (snode->set_src))
2805 nnode->set_src = NULL;
2806 else
2807 nnode->set_src = snode->set_src;
2808 nnode->next = dnode;
2809 dnode = nnode;
2810 }
2811 else if (r == 0)
2812 gcc_checking_assert (rtx_equal_p (dnode->loc, snode->loc));
2813
2814 if (r >= 0)
2815 snode = snode->next;
2816
2817 nodep = &dnode->next;
2818 dnode = *nodep;
2819 }
2820
2821 return 1;
2822 }
2823
2824 gcc_checking_assert (!src->onepart);
2825
2826 /* Count the number of location parts, result is K. */
2827 for (i = 0, j = 0, k = 0;
2828 i < src->n_var_parts && j < dst->n_var_parts; k++)
2829 {
2830 if (VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
2831 {
2832 i++;
2833 j++;
2834 }
2835 else if (VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
2836 i++;
2837 else
2838 j++;
2839 }
2840 k += src->n_var_parts - i;
2841 k += dst->n_var_parts - j;
2842
2843 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
2844 thus there are at most MAX_VAR_PARTS different offsets. */
2845 gcc_checking_assert (dst->onepart ? k == 1 : k <= MAX_VAR_PARTS);
2846
2847 if (dst->n_var_parts != k && shared_var_p (dst, set->vars))
2848 {
2849 dstp = unshare_variable (set, dstp, dst, VAR_INIT_STATUS_UNKNOWN);
2850 dst = *dstp;
2851 }
2852
2853 i = src->n_var_parts - 1;
2854 j = dst->n_var_parts - 1;
2855 dst->n_var_parts = k;
2856
2857 for (k--; k >= 0; k--)
2858 {
2859 location_chain node, node2;
2860
2861 if (i >= 0 && j >= 0
2862 && VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
2863 {
2864 /* Compute the "sorted" union of the chains, i.e. the locations which
2865 are in both chains go first, they are sorted by the sum of
2866 positions in the chains. */
2867 int dst_l, src_l;
2868 int ii, jj, n;
2869 struct variable_union_info *vui;
2870
2871 /* If DST is shared compare the location chains.
2872 If they are different we will modify the chain in DST with
2873 high probability so make a copy of DST. */
2874 if (shared_var_p (dst, set->vars))
2875 {
2876 for (node = src->var_part[i].loc_chain,
2877 node2 = dst->var_part[j].loc_chain; node && node2;
2878 node = node->next, node2 = node2->next)
2879 {
2880 if (!((REG_P (node2->loc)
2881 && REG_P (node->loc)
2882 && REGNO (node2->loc) == REGNO (node->loc))
2883 || rtx_equal_p (node2->loc, node->loc)))
2884 {
2885 if (node2->init < node->init)
2886 node2->init = node->init;
2887 break;
2888 }
2889 }
2890 if (node || node2)
2891 {
2892 dstp = unshare_variable (set, dstp, dst,
2893 VAR_INIT_STATUS_UNKNOWN);
2894 dst = (variable)*dstp;
2895 }
2896 }
2897
2898 src_l = 0;
2899 for (node = src->var_part[i].loc_chain; node; node = node->next)
2900 src_l++;
2901 dst_l = 0;
2902 for (node = dst->var_part[j].loc_chain; node; node = node->next)
2903 dst_l++;
2904
2905 if (dst_l == 1)
2906 {
2907 /* The most common case, much simpler, no qsort is needed. */
2908 location_chain dstnode = dst->var_part[j].loc_chain;
2909 dst->var_part[k].loc_chain = dstnode;
2910 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (dst, j);
2911 node2 = dstnode;
2912 for (node = src->var_part[i].loc_chain; node; node = node->next)
2913 if (!((REG_P (dstnode->loc)
2914 && REG_P (node->loc)
2915 && REGNO (dstnode->loc) == REGNO (node->loc))
2916 || rtx_equal_p (dstnode->loc, node->loc)))
2917 {
2918 location_chain new_node;
2919
2920 /* Copy the location from SRC. */
2921 new_node = (location_chain) pool_alloc (loc_chain_pool);
2922 new_node->loc = node->loc;
2923 new_node->init = node->init;
2924 if (!node->set_src || MEM_P (node->set_src))
2925 new_node->set_src = NULL;
2926 else
2927 new_node->set_src = node->set_src;
2928 node2->next = new_node;
2929 node2 = new_node;
2930 }
2931 node2->next = NULL;
2932 }
2933 else
2934 {
2935 if (src_l + dst_l > vui_allocated)
2936 {
2937 vui_allocated = MAX (vui_allocated * 2, src_l + dst_l);
2938 vui_vec = XRESIZEVEC (struct variable_union_info, vui_vec,
2939 vui_allocated);
2940 }
2941 vui = vui_vec;
2942
2943 /* Fill in the locations from DST. */
2944 for (node = dst->var_part[j].loc_chain, jj = 0; node;
2945 node = node->next, jj++)
2946 {
2947 vui[jj].lc = node;
2948 vui[jj].pos_dst = jj;
2949
2950 /* Pos plus value larger than a sum of 2 valid positions. */
2951 vui[jj].pos = jj + src_l + dst_l;
2952 }
2953
2954 /* Fill in the locations from SRC. */
2955 n = dst_l;
2956 for (node = src->var_part[i].loc_chain, ii = 0; node;
2957 node = node->next, ii++)
2958 {
2959 /* Find location from NODE. */
2960 for (jj = 0; jj < dst_l; jj++)
2961 {
2962 if ((REG_P (vui[jj].lc->loc)
2963 && REG_P (node->loc)
2964 && REGNO (vui[jj].lc->loc) == REGNO (node->loc))
2965 || rtx_equal_p (vui[jj].lc->loc, node->loc))
2966 {
2967 vui[jj].pos = jj + ii;
2968 break;
2969 }
2970 }
2971 if (jj >= dst_l) /* The location has not been found. */
2972 {
2973 location_chain new_node;
2974
2975 /* Copy the location from SRC. */
2976 new_node = (location_chain) pool_alloc (loc_chain_pool);
2977 new_node->loc = node->loc;
2978 new_node->init = node->init;
2979 if (!node->set_src || MEM_P (node->set_src))
2980 new_node->set_src = NULL;
2981 else
2982 new_node->set_src = node->set_src;
2983 vui[n].lc = new_node;
2984 vui[n].pos_dst = src_l + dst_l;
2985 vui[n].pos = ii + src_l + dst_l;
2986 n++;
2987 }
2988 }
2989
2990 if (dst_l == 2)
2991 {
2992 /* Special case still very common case. For dst_l == 2
2993 all entries dst_l ... n-1 are sorted, with for i >= dst_l
2994 vui[i].pos == i + src_l + dst_l. */
2995 if (vui[0].pos > vui[1].pos)
2996 {
2997 /* Order should be 1, 0, 2... */
2998 dst->var_part[k].loc_chain = vui[1].lc;
2999 vui[1].lc->next = vui[0].lc;
3000 if (n >= 3)
3001 {
3002 vui[0].lc->next = vui[2].lc;
3003 vui[n - 1].lc->next = NULL;
3004 }
3005 else
3006 vui[0].lc->next = NULL;
3007 ii = 3;
3008 }
3009 else
3010 {
3011 dst->var_part[k].loc_chain = vui[0].lc;
3012 if (n >= 3 && vui[2].pos < vui[1].pos)
3013 {
3014 /* Order should be 0, 2, 1, 3... */
3015 vui[0].lc->next = vui[2].lc;
3016 vui[2].lc->next = vui[1].lc;
3017 if (n >= 4)
3018 {
3019 vui[1].lc->next = vui[3].lc;
3020 vui[n - 1].lc->next = NULL;
3021 }
3022 else
3023 vui[1].lc->next = NULL;
3024 ii = 4;
3025 }
3026 else
3027 {
3028 /* Order should be 0, 1, 2... */
3029 ii = 1;
3030 vui[n - 1].lc->next = NULL;
3031 }
3032 }
3033 for (; ii < n; ii++)
3034 vui[ii - 1].lc->next = vui[ii].lc;
3035 }
3036 else
3037 {
3038 qsort (vui, n, sizeof (struct variable_union_info),
3039 variable_union_info_cmp_pos);
3040
3041 /* Reconnect the nodes in sorted order. */
3042 for (ii = 1; ii < n; ii++)
3043 vui[ii - 1].lc->next = vui[ii].lc;
3044 vui[n - 1].lc->next = NULL;
3045 dst->var_part[k].loc_chain = vui[0].lc;
3046 }
3047
3048 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (dst, j);
3049 }
3050 i--;
3051 j--;
3052 }
3053 else if ((i >= 0 && j >= 0
3054 && VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
3055 || i < 0)
3056 {
3057 dst->var_part[k] = dst->var_part[j];
3058 j--;
3059 }
3060 else if ((i >= 0 && j >= 0
3061 && VAR_PART_OFFSET (src, i) > VAR_PART_OFFSET (dst, j))
3062 || j < 0)
3063 {
3064 location_chain *nextp;
3065
3066 /* Copy the chain from SRC. */
3067 nextp = &dst->var_part[k].loc_chain;
3068 for (node = src->var_part[i].loc_chain; node; node = node->next)
3069 {
3070 location_chain new_lc;
3071
3072 new_lc = (location_chain) pool_alloc (loc_chain_pool);
3073 new_lc->next = NULL;
3074 new_lc->init = node->init;
3075 if (!node->set_src || MEM_P (node->set_src))
3076 new_lc->set_src = NULL;
3077 else
3078 new_lc->set_src = node->set_src;
3079 new_lc->loc = node->loc;
3080
3081 *nextp = new_lc;
3082 nextp = &new_lc->next;
3083 }
3084
3085 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (src, i);
3086 i--;
3087 }
3088 dst->var_part[k].cur_loc = NULL;
3089 }
3090
3091 if (flag_var_tracking_uninit)
3092 for (i = 0; i < src->n_var_parts && i < dst->n_var_parts; i++)
3093 {
3094 location_chain node, node2;
3095 for (node = src->var_part[i].loc_chain; node; node = node->next)
3096 for (node2 = dst->var_part[i].loc_chain; node2; node2 = node2->next)
3097 if (rtx_equal_p (node->loc, node2->loc))
3098 {
3099 if (node->init > node2->init)
3100 node2->init = node->init;
3101 }
3102 }
3103
3104 /* Continue traversing the hash table. */
3105 return 1;
3106 }
3107
3108 /* Compute union of dataflow sets SRC and DST and store it to DST. */
3109
3110 static void
3111 dataflow_set_union (dataflow_set *dst, dataflow_set *src)
3112 {
3113 int i;
3114
3115 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3116 attrs_list_union (&dst->regs[i], src->regs[i]);
3117
3118 if (dst->vars == empty_shared_hash)
3119 {
3120 shared_hash_destroy (dst->vars);
3121 dst->vars = shared_hash_copy (src->vars);
3122 }
3123 else
3124 {
3125 variable_iterator_type hi;
3126 variable var;
3127
3128 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (src->vars),
3129 var, variable, hi)
3130 variable_union (var, dst);
3131 }
3132 }
3133
3134 /* Whether the value is currently being expanded. */
3135 #define VALUE_RECURSED_INTO(x) \
3136 (RTL_FLAG_CHECK2 ("VALUE_RECURSED_INTO", (x), VALUE, DEBUG_EXPR)->used)
3137
3138 /* Whether no expansion was found, saving useless lookups.
3139 It must only be set when VALUE_CHANGED is clear. */
3140 #define NO_LOC_P(x) \
3141 (RTL_FLAG_CHECK2 ("NO_LOC_P", (x), VALUE, DEBUG_EXPR)->return_val)
3142
3143 /* Whether cur_loc in the value needs to be (re)computed. */
3144 #define VALUE_CHANGED(x) \
3145 (RTL_FLAG_CHECK1 ("VALUE_CHANGED", (x), VALUE)->frame_related)
3146 /* Whether cur_loc in the decl needs to be (re)computed. */
3147 #define DECL_CHANGED(x) TREE_VISITED (x)
3148
3149 /* Record (if NEWV) that DV needs to have its cur_loc recomputed. For
3150 user DECLs, this means they're in changed_variables. Values and
3151 debug exprs may be left with this flag set if no user variable
3152 requires them to be evaluated. */
3153
3154 static inline void
3155 set_dv_changed (decl_or_value dv, bool newv)
3156 {
3157 switch (dv_onepart_p (dv))
3158 {
3159 case ONEPART_VALUE:
3160 if (newv)
3161 NO_LOC_P (dv_as_value (dv)) = false;
3162 VALUE_CHANGED (dv_as_value (dv)) = newv;
3163 break;
3164
3165 case ONEPART_DEXPR:
3166 if (newv)
3167 NO_LOC_P (DECL_RTL_KNOWN_SET (dv_as_decl (dv))) = false;
3168 /* Fall through... */
3169
3170 default:
3171 DECL_CHANGED (dv_as_decl (dv)) = newv;
3172 break;
3173 }
3174 }
3175
3176 /* Return true if DV needs to have its cur_loc recomputed. */
3177
3178 static inline bool
3179 dv_changed_p (decl_or_value dv)
3180 {
3181 return (dv_is_value_p (dv)
3182 ? VALUE_CHANGED (dv_as_value (dv))
3183 : DECL_CHANGED (dv_as_decl (dv)));
3184 }
3185
3186 /* Return a location list node whose loc is rtx_equal to LOC, in the
3187 location list of a one-part variable or value VAR, or in that of
3188 any values recursively mentioned in the location lists. VARS must
3189 be in star-canonical form. */
3190
3191 static location_chain
3192 find_loc_in_1pdv (rtx loc, variable var, variable_table_type *vars)
3193 {
3194 location_chain node;
3195 enum rtx_code loc_code;
3196
3197 if (!var)
3198 return NULL;
3199
3200 gcc_checking_assert (var->onepart);
3201
3202 if (!var->n_var_parts)
3203 return NULL;
3204
3205 gcc_checking_assert (loc != dv_as_opaque (var->dv));
3206
3207 loc_code = GET_CODE (loc);
3208 for (node = var->var_part[0].loc_chain; node; node = node->next)
3209 {
3210 decl_or_value dv;
3211 variable rvar;
3212
3213 if (GET_CODE (node->loc) != loc_code)
3214 {
3215 if (GET_CODE (node->loc) != VALUE)
3216 continue;
3217 }
3218 else if (loc == node->loc)
3219 return node;
3220 else if (loc_code != VALUE)
3221 {
3222 if (rtx_equal_p (loc, node->loc))
3223 return node;
3224 continue;
3225 }
3226
3227 /* Since we're in star-canonical form, we don't need to visit
3228 non-canonical nodes: one-part variables and non-canonical
3229 values would only point back to the canonical node. */
3230 if (dv_is_value_p (var->dv)
3231 && !canon_value_cmp (node->loc, dv_as_value (var->dv)))
3232 {
3233 /* Skip all subsequent VALUEs. */
3234 while (node->next && GET_CODE (node->next->loc) == VALUE)
3235 {
3236 node = node->next;
3237 gcc_checking_assert (!canon_value_cmp (node->loc,
3238 dv_as_value (var->dv)));
3239 if (loc == node->loc)
3240 return node;
3241 }
3242 continue;
3243 }
3244
3245 gcc_checking_assert (node == var->var_part[0].loc_chain);
3246 gcc_checking_assert (!node->next);
3247
3248 dv = dv_from_value (node->loc);
3249 rvar = vars->find_with_hash (dv, dv_htab_hash (dv));
3250 return find_loc_in_1pdv (loc, rvar, vars);
3251 }
3252
3253 /* ??? Gotta look in cselib_val locations too. */
3254
3255 return NULL;
3256 }
3257
3258 /* Hash table iteration argument passed to variable_merge. */
3259 struct dfset_merge
3260 {
3261 /* The set in which the merge is to be inserted. */
3262 dataflow_set *dst;
3263 /* The set that we're iterating in. */
3264 dataflow_set *cur;
3265 /* The set that may contain the other dv we are to merge with. */
3266 dataflow_set *src;
3267 /* Number of onepart dvs in src. */
3268 int src_onepart_cnt;
3269 };
3270
3271 /* Insert LOC in *DNODE, if it's not there yet. The list must be in
3272 loc_cmp order, and it is maintained as such. */
3273
3274 static void
3275 insert_into_intersection (location_chain *nodep, rtx loc,
3276 enum var_init_status status)
3277 {
3278 location_chain node;
3279 int r;
3280
3281 for (node = *nodep; node; nodep = &node->next, node = *nodep)
3282 if ((r = loc_cmp (node->loc, loc)) == 0)
3283 {
3284 node->init = MIN (node->init, status);
3285 return;
3286 }
3287 else if (r > 0)
3288 break;
3289
3290 node = (location_chain) pool_alloc (loc_chain_pool);
3291
3292 node->loc = loc;
3293 node->set_src = NULL;
3294 node->init = status;
3295 node->next = *nodep;
3296 *nodep = node;
3297 }
3298
3299 /* Insert in DEST the intersection of the locations present in both
3300 S1NODE and S2VAR, directly or indirectly. S1NODE is from a
3301 variable in DSM->cur, whereas S2VAR is from DSM->src. dvar is in
3302 DSM->dst. */
3303
3304 static void
3305 intersect_loc_chains (rtx val, location_chain *dest, struct dfset_merge *dsm,
3306 location_chain s1node, variable s2var)
3307 {
3308 dataflow_set *s1set = dsm->cur;
3309 dataflow_set *s2set = dsm->src;
3310 location_chain found;
3311
3312 if (s2var)
3313 {
3314 location_chain s2node;
3315
3316 gcc_checking_assert (s2var->onepart);
3317
3318 if (s2var->n_var_parts)
3319 {
3320 s2node = s2var->var_part[0].loc_chain;
3321
3322 for (; s1node && s2node;
3323 s1node = s1node->next, s2node = s2node->next)
3324 if (s1node->loc != s2node->loc)
3325 break;
3326 else if (s1node->loc == val)
3327 continue;
3328 else
3329 insert_into_intersection (dest, s1node->loc,
3330 MIN (s1node->init, s2node->init));
3331 }
3332 }
3333
3334 for (; s1node; s1node = s1node->next)
3335 {
3336 if (s1node->loc == val)
3337 continue;
3338
3339 if ((found = find_loc_in_1pdv (s1node->loc, s2var,
3340 shared_hash_htab (s2set->vars))))
3341 {
3342 insert_into_intersection (dest, s1node->loc,
3343 MIN (s1node->init, found->init));
3344 continue;
3345 }
3346
3347 if (GET_CODE (s1node->loc) == VALUE
3348 && !VALUE_RECURSED_INTO (s1node->loc))
3349 {
3350 decl_or_value dv = dv_from_value (s1node->loc);
3351 variable svar = shared_hash_find (s1set->vars, dv);
3352 if (svar)
3353 {
3354 if (svar->n_var_parts == 1)
3355 {
3356 VALUE_RECURSED_INTO (s1node->loc) = true;
3357 intersect_loc_chains (val, dest, dsm,
3358 svar->var_part[0].loc_chain,
3359 s2var);
3360 VALUE_RECURSED_INTO (s1node->loc) = false;
3361 }
3362 }
3363 }
3364
3365 /* ??? gotta look in cselib_val locations too. */
3366
3367 /* ??? if the location is equivalent to any location in src,
3368 searched recursively
3369
3370 add to dst the values needed to represent the equivalence
3371
3372 telling whether locations S is equivalent to another dv's
3373 location list:
3374
3375 for each location D in the list
3376
3377 if S and D satisfy rtx_equal_p, then it is present
3378
3379 else if D is a value, recurse without cycles
3380
3381 else if S and D have the same CODE and MODE
3382
3383 for each operand oS and the corresponding oD
3384
3385 if oS and oD are not equivalent, then S an D are not equivalent
3386
3387 else if they are RTX vectors
3388
3389 if any vector oS element is not equivalent to its respective oD,
3390 then S and D are not equivalent
3391
3392 */
3393
3394
3395 }
3396 }
3397
3398 /* Return -1 if X should be before Y in a location list for a 1-part
3399 variable, 1 if Y should be before X, and 0 if they're equivalent
3400 and should not appear in the list. */
3401
3402 static int
3403 loc_cmp (rtx x, rtx y)
3404 {
3405 int i, j, r;
3406 RTX_CODE code = GET_CODE (x);
3407 const char *fmt;
3408
3409 if (x == y)
3410 return 0;
3411
3412 if (REG_P (x))
3413 {
3414 if (!REG_P (y))
3415 return -1;
3416 gcc_assert (GET_MODE (x) == GET_MODE (y));
3417 if (REGNO (x) == REGNO (y))
3418 return 0;
3419 else if (REGNO (x) < REGNO (y))
3420 return -1;
3421 else
3422 return 1;
3423 }
3424
3425 if (REG_P (y))
3426 return 1;
3427
3428 if (MEM_P (x))
3429 {
3430 if (!MEM_P (y))
3431 return -1;
3432 gcc_assert (GET_MODE (x) == GET_MODE (y));
3433 return loc_cmp (XEXP (x, 0), XEXP (y, 0));
3434 }
3435
3436 if (MEM_P (y))
3437 return 1;
3438
3439 if (GET_CODE (x) == VALUE)
3440 {
3441 if (GET_CODE (y) != VALUE)
3442 return -1;
3443 /* Don't assert the modes are the same, that is true only
3444 when not recursing. (subreg:QI (value:SI 1:1) 0)
3445 and (subreg:QI (value:DI 2:2) 0) can be compared,
3446 even when the modes are different. */
3447 if (canon_value_cmp (x, y))
3448 return -1;
3449 else
3450 return 1;
3451 }
3452
3453 if (GET_CODE (y) == VALUE)
3454 return 1;
3455
3456 /* Entry value is the least preferable kind of expression. */
3457 if (GET_CODE (x) == ENTRY_VALUE)
3458 {
3459 if (GET_CODE (y) != ENTRY_VALUE)
3460 return 1;
3461 gcc_assert (GET_MODE (x) == GET_MODE (y));
3462 return loc_cmp (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
3463 }
3464
3465 if (GET_CODE (y) == ENTRY_VALUE)
3466 return -1;
3467
3468 if (GET_CODE (x) == GET_CODE (y))
3469 /* Compare operands below. */;
3470 else if (GET_CODE (x) < GET_CODE (y))
3471 return -1;
3472 else
3473 return 1;
3474
3475 gcc_assert (GET_MODE (x) == GET_MODE (y));
3476
3477 if (GET_CODE (x) == DEBUG_EXPR)
3478 {
3479 if (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
3480 < DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)))
3481 return -1;
3482 gcc_checking_assert (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
3483 > DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)));
3484 return 1;
3485 }
3486
3487 fmt = GET_RTX_FORMAT (code);
3488 for (i = 0; i < GET_RTX_LENGTH (code); i++)
3489 switch (fmt[i])
3490 {
3491 case 'w':
3492 if (XWINT (x, i) == XWINT (y, i))
3493 break;
3494 else if (XWINT (x, i) < XWINT (y, i))
3495 return -1;
3496 else
3497 return 1;
3498
3499 case 'n':
3500 case 'i':
3501 if (XINT (x, i) == XINT (y, i))
3502 break;
3503 else if (XINT (x, i) < XINT (y, i))
3504 return -1;
3505 else
3506 return 1;
3507
3508 case 'V':
3509 case 'E':
3510 /* Compare the vector length first. */
3511 if (XVECLEN (x, i) == XVECLEN (y, i))
3512 /* Compare the vectors elements. */;
3513 else if (XVECLEN (x, i) < XVECLEN (y, i))
3514 return -1;
3515 else
3516 return 1;
3517
3518 for (j = 0; j < XVECLEN (x, i); j++)
3519 if ((r = loc_cmp (XVECEXP (x, i, j),
3520 XVECEXP (y, i, j))))
3521 return r;
3522 break;
3523
3524 case 'e':
3525 if ((r = loc_cmp (XEXP (x, i), XEXP (y, i))))
3526 return r;
3527 break;
3528
3529 case 'S':
3530 case 's':
3531 if (XSTR (x, i) == XSTR (y, i))
3532 break;
3533 if (!XSTR (x, i))
3534 return -1;
3535 if (!XSTR (y, i))
3536 return 1;
3537 if ((r = strcmp (XSTR (x, i), XSTR (y, i))) == 0)
3538 break;
3539 else if (r < 0)
3540 return -1;
3541 else
3542 return 1;
3543
3544 case 'u':
3545 /* These are just backpointers, so they don't matter. */
3546 break;
3547
3548 case '0':
3549 case 't':
3550 break;
3551
3552 /* It is believed that rtx's at this level will never
3553 contain anything but integers and other rtx's,
3554 except for within LABEL_REFs and SYMBOL_REFs. */
3555 default:
3556 gcc_unreachable ();
3557 }
3558 if (CONST_WIDE_INT_P (x))
3559 {
3560 /* Compare the vector length first. */
3561 if (CONST_WIDE_INT_NUNITS (x) >= CONST_WIDE_INT_NUNITS (y))
3562 return 1;
3563 else if (CONST_WIDE_INT_NUNITS (x) < CONST_WIDE_INT_NUNITS (y))
3564 return -1;
3565
3566 /* Compare the vectors elements. */;
3567 for (j = CONST_WIDE_INT_NUNITS (x) - 1; j >= 0 ; j--)
3568 {
3569 if (CONST_WIDE_INT_ELT (x, j) < CONST_WIDE_INT_ELT (y, j))
3570 return -1;
3571 if (CONST_WIDE_INT_ELT (x, j) > CONST_WIDE_INT_ELT (y, j))
3572 return 1;
3573 }
3574 }
3575
3576 return 0;
3577 }
3578
3579 #if ENABLE_CHECKING
3580 /* Check the order of entries in one-part variables. */
3581
3582 int
3583 canonicalize_loc_order_check (variable_def **slot,
3584 dataflow_set *data ATTRIBUTE_UNUSED)
3585 {
3586 variable var = *slot;
3587 location_chain node, next;
3588
3589 #ifdef ENABLE_RTL_CHECKING
3590 int i;
3591 for (i = 0; i < var->n_var_parts; i++)
3592 gcc_assert (var->var_part[0].cur_loc == NULL);
3593 gcc_assert (!var->in_changed_variables);
3594 #endif
3595
3596 if (!var->onepart)
3597 return 1;
3598
3599 gcc_assert (var->n_var_parts == 1);
3600 node = var->var_part[0].loc_chain;
3601 gcc_assert (node);
3602
3603 while ((next = node->next))
3604 {
3605 gcc_assert (loc_cmp (node->loc, next->loc) < 0);
3606 node = next;
3607 }
3608
3609 return 1;
3610 }
3611 #endif
3612
3613 /* Mark with VALUE_RECURSED_INTO values that have neighbors that are
3614 more likely to be chosen as canonical for an equivalence set.
3615 Ensure less likely values can reach more likely neighbors, making
3616 the connections bidirectional. */
3617
3618 int
3619 canonicalize_values_mark (variable_def **slot, dataflow_set *set)
3620 {
3621 variable var = *slot;
3622 decl_or_value dv = var->dv;
3623 rtx val;
3624 location_chain node;
3625
3626 if (!dv_is_value_p (dv))
3627 return 1;
3628
3629 gcc_checking_assert (var->n_var_parts == 1);
3630
3631 val = dv_as_value (dv);
3632
3633 for (node = var->var_part[0].loc_chain; node; node = node->next)
3634 if (GET_CODE (node->loc) == VALUE)
3635 {
3636 if (canon_value_cmp (node->loc, val))
3637 VALUE_RECURSED_INTO (val) = true;
3638 else
3639 {
3640 decl_or_value odv = dv_from_value (node->loc);
3641 variable_def **oslot;
3642 oslot = shared_hash_find_slot_noinsert (set->vars, odv);
3643
3644 set_slot_part (set, val, oslot, odv, 0,
3645 node->init, NULL_RTX);
3646
3647 VALUE_RECURSED_INTO (node->loc) = true;
3648 }
3649 }
3650
3651 return 1;
3652 }
3653
3654 /* Remove redundant entries from equivalence lists in onepart
3655 variables, canonicalizing equivalence sets into star shapes. */
3656
3657 int
3658 canonicalize_values_star (variable_def **slot, dataflow_set *set)
3659 {
3660 variable var = *slot;
3661 decl_or_value dv = var->dv;
3662 location_chain node;
3663 decl_or_value cdv;
3664 rtx val, cval;
3665 variable_def **cslot;
3666 bool has_value;
3667 bool has_marks;
3668
3669 if (!var->onepart)
3670 return 1;
3671
3672 gcc_checking_assert (var->n_var_parts == 1);
3673
3674 if (dv_is_value_p (dv))
3675 {
3676 cval = dv_as_value (dv);
3677 if (!VALUE_RECURSED_INTO (cval))
3678 return 1;
3679 VALUE_RECURSED_INTO (cval) = false;
3680 }
3681 else
3682 cval = NULL_RTX;
3683
3684 restart:
3685 val = cval;
3686 has_value = false;
3687 has_marks = false;
3688
3689 gcc_assert (var->n_var_parts == 1);
3690
3691 for (node = var->var_part[0].loc_chain; node; node = node->next)
3692 if (GET_CODE (node->loc) == VALUE)
3693 {
3694 has_value = true;
3695 if (VALUE_RECURSED_INTO (node->loc))
3696 has_marks = true;
3697 if (canon_value_cmp (node->loc, cval))
3698 cval = node->loc;
3699 }
3700
3701 if (!has_value)
3702 return 1;
3703
3704 if (cval == val)
3705 {
3706 if (!has_marks || dv_is_decl_p (dv))
3707 return 1;
3708
3709 /* Keep it marked so that we revisit it, either after visiting a
3710 child node, or after visiting a new parent that might be
3711 found out. */
3712 VALUE_RECURSED_INTO (val) = true;
3713
3714 for (node = var->var_part[0].loc_chain; node; node = node->next)
3715 if (GET_CODE (node->loc) == VALUE
3716 && VALUE_RECURSED_INTO (node->loc))
3717 {
3718 cval = node->loc;
3719 restart_with_cval:
3720 VALUE_RECURSED_INTO (cval) = false;
3721 dv = dv_from_value (cval);
3722 slot = shared_hash_find_slot_noinsert (set->vars, dv);
3723 if (!slot)
3724 {
3725 gcc_assert (dv_is_decl_p (var->dv));
3726 /* The canonical value was reset and dropped.
3727 Remove it. */
3728 clobber_variable_part (set, NULL, var->dv, 0, NULL);
3729 return 1;
3730 }
3731 var = *slot;
3732 gcc_assert (dv_is_value_p (var->dv));
3733 if (var->n_var_parts == 0)
3734 return 1;
3735 gcc_assert (var->n_var_parts == 1);
3736 goto restart;
3737 }
3738
3739 VALUE_RECURSED_INTO (val) = false;
3740
3741 return 1;
3742 }
3743
3744 /* Push values to the canonical one. */
3745 cdv = dv_from_value (cval);
3746 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3747
3748 for (node = var->var_part[0].loc_chain; node; node = node->next)
3749 if (node->loc != cval)
3750 {
3751 cslot = set_slot_part (set, node->loc, cslot, cdv, 0,
3752 node->init, NULL_RTX);
3753 if (GET_CODE (node->loc) == VALUE)
3754 {
3755 decl_or_value ndv = dv_from_value (node->loc);
3756
3757 set_variable_part (set, cval, ndv, 0, node->init, NULL_RTX,
3758 NO_INSERT);
3759
3760 if (canon_value_cmp (node->loc, val))
3761 {
3762 /* If it could have been a local minimum, it's not any more,
3763 since it's now neighbor to cval, so it may have to push
3764 to it. Conversely, if it wouldn't have prevailed over
3765 val, then whatever mark it has is fine: if it was to
3766 push, it will now push to a more canonical node, but if
3767 it wasn't, then it has already pushed any values it might
3768 have to. */
3769 VALUE_RECURSED_INTO (node->loc) = true;
3770 /* Make sure we visit node->loc by ensuring we cval is
3771 visited too. */
3772 VALUE_RECURSED_INTO (cval) = true;
3773 }
3774 else if (!VALUE_RECURSED_INTO (node->loc))
3775 /* If we have no need to "recurse" into this node, it's
3776 already "canonicalized", so drop the link to the old
3777 parent. */
3778 clobber_variable_part (set, cval, ndv, 0, NULL);
3779 }
3780 else if (GET_CODE (node->loc) == REG)
3781 {
3782 attrs list = set->regs[REGNO (node->loc)], *listp;
3783
3784 /* Change an existing attribute referring to dv so that it
3785 refers to cdv, removing any duplicate this might
3786 introduce, and checking that no previous duplicates
3787 existed, all in a single pass. */
3788
3789 while (list)
3790 {
3791 if (list->offset == 0
3792 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3793 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3794 break;
3795
3796 list = list->next;
3797 }
3798
3799 gcc_assert (list);
3800 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3801 {
3802 list->dv = cdv;
3803 for (listp = &list->next; (list = *listp); listp = &list->next)
3804 {
3805 if (list->offset)
3806 continue;
3807
3808 if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3809 {
3810 *listp = list->next;
3811 pool_free (attrs_pool, list);
3812 list = *listp;
3813 break;
3814 }
3815
3816 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (dv));
3817 }
3818 }
3819 else if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3820 {
3821 for (listp = &list->next; (list = *listp); listp = &list->next)
3822 {
3823 if (list->offset)
3824 continue;
3825
3826 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3827 {
3828 *listp = list->next;
3829 pool_free (attrs_pool, list);
3830 list = *listp;
3831 break;
3832 }
3833
3834 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (cdv));
3835 }
3836 }
3837 else
3838 gcc_unreachable ();
3839
3840 #if ENABLE_CHECKING
3841 while (list)
3842 {
3843 if (list->offset == 0
3844 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3845 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3846 gcc_unreachable ();
3847
3848 list = list->next;
3849 }
3850 #endif
3851 }
3852 }
3853
3854 if (val)
3855 set_slot_part (set, val, cslot, cdv, 0,
3856 VAR_INIT_STATUS_INITIALIZED, NULL_RTX);
3857
3858 slot = clobber_slot_part (set, cval, slot, 0, NULL);
3859
3860 /* Variable may have been unshared. */
3861 var = *slot;
3862 gcc_checking_assert (var->n_var_parts && var->var_part[0].loc_chain->loc == cval
3863 && var->var_part[0].loc_chain->next == NULL);
3864
3865 if (VALUE_RECURSED_INTO (cval))
3866 goto restart_with_cval;
3867
3868 return 1;
3869 }
3870
3871 /* Bind one-part variables to the canonical value in an equivalence
3872 set. Not doing this causes dataflow convergence failure in rare
3873 circumstances, see PR42873. Unfortunately we can't do this
3874 efficiently as part of canonicalize_values_star, since we may not
3875 have determined or even seen the canonical value of a set when we
3876 get to a variable that references another member of the set. */
3877
3878 int
3879 canonicalize_vars_star (variable_def **slot, dataflow_set *set)
3880 {
3881 variable var = *slot;
3882 decl_or_value dv = var->dv;
3883 location_chain node;
3884 rtx cval;
3885 decl_or_value cdv;
3886 variable_def **cslot;
3887 variable cvar;
3888 location_chain cnode;
3889
3890 if (!var->onepart || var->onepart == ONEPART_VALUE)
3891 return 1;
3892
3893 gcc_assert (var->n_var_parts == 1);
3894
3895 node = var->var_part[0].loc_chain;
3896
3897 if (GET_CODE (node->loc) != VALUE)
3898 return 1;
3899
3900 gcc_assert (!node->next);
3901 cval = node->loc;
3902
3903 /* Push values to the canonical one. */
3904 cdv = dv_from_value (cval);
3905 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3906 if (!cslot)
3907 return 1;
3908 cvar = *cslot;
3909 gcc_assert (cvar->n_var_parts == 1);
3910
3911 cnode = cvar->var_part[0].loc_chain;
3912
3913 /* CVAL is canonical if its value list contains non-VALUEs or VALUEs
3914 that are not “more canonical” than it. */
3915 if (GET_CODE (cnode->loc) != VALUE
3916 || !canon_value_cmp (cnode->loc, cval))
3917 return 1;
3918
3919 /* CVAL was found to be non-canonical. Change the variable to point
3920 to the canonical VALUE. */
3921 gcc_assert (!cnode->next);
3922 cval = cnode->loc;
3923
3924 slot = set_slot_part (set, cval, slot, dv, 0,
3925 node->init, node->set_src);
3926 clobber_slot_part (set, cval, slot, 0, node->set_src);
3927
3928 return 1;
3929 }
3930
3931 /* Combine variable or value in *S1SLOT (in DSM->cur) with the
3932 corresponding entry in DSM->src. Multi-part variables are combined
3933 with variable_union, whereas onepart dvs are combined with
3934 intersection. */
3935
3936 static int
3937 variable_merge_over_cur (variable s1var, struct dfset_merge *dsm)
3938 {
3939 dataflow_set *dst = dsm->dst;
3940 variable_def **dstslot;
3941 variable s2var, dvar = NULL;
3942 decl_or_value dv = s1var->dv;
3943 onepart_enum_t onepart = s1var->onepart;
3944 rtx val;
3945 hashval_t dvhash;
3946 location_chain node, *nodep;
3947
3948 /* If the incoming onepart variable has an empty location list, then
3949 the intersection will be just as empty. For other variables,
3950 it's always union. */
3951 gcc_checking_assert (s1var->n_var_parts
3952 && s1var->var_part[0].loc_chain);
3953
3954 if (!onepart)
3955 return variable_union (s1var, dst);
3956
3957 gcc_checking_assert (s1var->n_var_parts == 1);
3958
3959 dvhash = dv_htab_hash (dv);
3960 if (dv_is_value_p (dv))
3961 val = dv_as_value (dv);
3962 else
3963 val = NULL;
3964
3965 s2var = shared_hash_find_1 (dsm->src->vars, dv, dvhash);
3966 if (!s2var)
3967 {
3968 dst_can_be_shared = false;
3969 return 1;
3970 }
3971
3972 dsm->src_onepart_cnt--;
3973 gcc_assert (s2var->var_part[0].loc_chain
3974 && s2var->onepart == onepart
3975 && s2var->n_var_parts == 1);
3976
3977 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
3978 if (dstslot)
3979 {
3980 dvar = *dstslot;
3981 gcc_assert (dvar->refcount == 1
3982 && dvar->onepart == onepart
3983 && dvar->n_var_parts == 1);
3984 nodep = &dvar->var_part[0].loc_chain;
3985 }
3986 else
3987 {
3988 nodep = &node;
3989 node = NULL;
3990 }
3991
3992 if (!dstslot && !onepart_variable_different_p (s1var, s2var))
3993 {
3994 dstslot = shared_hash_find_slot_unshare_1 (&dst->vars, dv,
3995 dvhash, INSERT);
3996 *dstslot = dvar = s2var;
3997 dvar->refcount++;
3998 }
3999 else
4000 {
4001 dst_can_be_shared = false;
4002
4003 intersect_loc_chains (val, nodep, dsm,
4004 s1var->var_part[0].loc_chain, s2var);
4005
4006 if (!dstslot)
4007 {
4008 if (node)
4009 {
4010 dvar = (variable) pool_alloc (onepart_pool (onepart));
4011 dvar->dv = dv;
4012 dvar->refcount = 1;
4013 dvar->n_var_parts = 1;
4014 dvar->onepart = onepart;
4015 dvar->in_changed_variables = false;
4016 dvar->var_part[0].loc_chain = node;
4017 dvar->var_part[0].cur_loc = NULL;
4018 if (onepart)
4019 VAR_LOC_1PAUX (dvar) = NULL;
4020 else
4021 VAR_PART_OFFSET (dvar, 0) = 0;
4022
4023 dstslot
4024 = shared_hash_find_slot_unshare_1 (&dst->vars, dv, dvhash,
4025 INSERT);
4026 gcc_assert (!*dstslot);
4027 *dstslot = dvar;
4028 }
4029 else
4030 return 1;
4031 }
4032 }
4033
4034 nodep = &dvar->var_part[0].loc_chain;
4035 while ((node = *nodep))
4036 {
4037 location_chain *nextp = &node->next;
4038
4039 if (GET_CODE (node->loc) == REG)
4040 {
4041 attrs list;
4042
4043 for (list = dst->regs[REGNO (node->loc)]; list; list = list->next)
4044 if (GET_MODE (node->loc) == GET_MODE (list->loc)
4045 && dv_is_value_p (list->dv))
4046 break;
4047
4048 if (!list)
4049 attrs_list_insert (&dst->regs[REGNO (node->loc)],
4050 dv, 0, node->loc);
4051 /* If this value became canonical for another value that had
4052 this register, we want to leave it alone. */
4053 else if (dv_as_value (list->dv) != val)
4054 {
4055 dstslot = set_slot_part (dst, dv_as_value (list->dv),
4056 dstslot, dv, 0,
4057 node->init, NULL_RTX);
4058 dstslot = delete_slot_part (dst, node->loc, dstslot, 0);
4059
4060 /* Since nextp points into the removed node, we can't
4061 use it. The pointer to the next node moved to nodep.
4062 However, if the variable we're walking is unshared
4063 during our walk, we'll keep walking the location list
4064 of the previously-shared variable, in which case the
4065 node won't have been removed, and we'll want to skip
4066 it. That's why we test *nodep here. */
4067 if (*nodep != node)
4068 nextp = nodep;
4069 }
4070 }
4071 else
4072 /* Canonicalization puts registers first, so we don't have to
4073 walk it all. */
4074 break;
4075 nodep = nextp;
4076 }
4077
4078 if (dvar != *dstslot)
4079 dvar = *dstslot;
4080 nodep = &dvar->var_part[0].loc_chain;
4081
4082 if (val)
4083 {
4084 /* Mark all referenced nodes for canonicalization, and make sure
4085 we have mutual equivalence links. */
4086 VALUE_RECURSED_INTO (val) = true;
4087 for (node = *nodep; node; node = node->next)
4088 if (GET_CODE (node->loc) == VALUE)
4089 {
4090 VALUE_RECURSED_INTO (node->loc) = true;
4091 set_variable_part (dst, val, dv_from_value (node->loc), 0,
4092 node->init, NULL, INSERT);
4093 }
4094
4095 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
4096 gcc_assert (*dstslot == dvar);
4097 canonicalize_values_star (dstslot, dst);
4098 gcc_checking_assert (dstslot
4099 == shared_hash_find_slot_noinsert_1 (dst->vars,
4100 dv, dvhash));
4101 dvar = *dstslot;
4102 }
4103 else
4104 {
4105 bool has_value = false, has_other = false;
4106
4107 /* If we have one value and anything else, we're going to
4108 canonicalize this, so make sure all values have an entry in
4109 the table and are marked for canonicalization. */
4110 for (node = *nodep; node; node = node->next)
4111 {
4112 if (GET_CODE (node->loc) == VALUE)
4113 {
4114 /* If this was marked during register canonicalization,
4115 we know we have to canonicalize values. */
4116 if (has_value)
4117 has_other = true;
4118 has_value = true;
4119 if (has_other)
4120 break;
4121 }
4122 else
4123 {
4124 has_other = true;
4125 if (has_value)
4126 break;
4127 }
4128 }
4129
4130 if (has_value && has_other)
4131 {
4132 for (node = *nodep; node; node = node->next)
4133 {
4134 if (GET_CODE (node->loc) == VALUE)
4135 {
4136 decl_or_value dv = dv_from_value (node->loc);
4137 variable_def **slot = NULL;
4138
4139 if (shared_hash_shared (dst->vars))
4140 slot = shared_hash_find_slot_noinsert (dst->vars, dv);
4141 if (!slot)
4142 slot = shared_hash_find_slot_unshare (&dst->vars, dv,
4143 INSERT);
4144 if (!*slot)
4145 {
4146 variable var = (variable) pool_alloc (onepart_pool
4147 (ONEPART_VALUE));
4148 var->dv = dv;
4149 var->refcount = 1;
4150 var->n_var_parts = 1;
4151 var->onepart = ONEPART_VALUE;
4152 var->in_changed_variables = false;
4153 var->var_part[0].loc_chain = NULL;
4154 var->var_part[0].cur_loc = NULL;
4155 VAR_LOC_1PAUX (var) = NULL;
4156 *slot = var;
4157 }
4158
4159 VALUE_RECURSED_INTO (node->loc) = true;
4160 }
4161 }
4162
4163 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
4164 gcc_assert (*dstslot == dvar);
4165 canonicalize_values_star (dstslot, dst);
4166 gcc_checking_assert (dstslot
4167 == shared_hash_find_slot_noinsert_1 (dst->vars,
4168 dv, dvhash));
4169 dvar = *dstslot;
4170 }
4171 }
4172
4173 if (!onepart_variable_different_p (dvar, s2var))
4174 {
4175 variable_htab_free (dvar);
4176 *dstslot = dvar = s2var;
4177 dvar->refcount++;
4178 }
4179 else if (s2var != s1var && !onepart_variable_different_p (dvar, s1var))
4180 {
4181 variable_htab_free (dvar);
4182 *dstslot = dvar = s1var;
4183 dvar->refcount++;
4184 dst_can_be_shared = false;
4185 }
4186 else
4187 dst_can_be_shared = false;
4188
4189 return 1;
4190 }
4191
4192 /* Copy s2slot (in DSM->src) to DSM->dst if the variable is a
4193 multi-part variable. Unions of multi-part variables and
4194 intersections of one-part ones will be handled in
4195 variable_merge_over_cur(). */
4196
4197 static int
4198 variable_merge_over_src (variable s2var, struct dfset_merge *dsm)
4199 {
4200 dataflow_set *dst = dsm->dst;
4201 decl_or_value dv = s2var->dv;
4202
4203 if (!s2var->onepart)
4204 {
4205 variable_def **dstp = shared_hash_find_slot (dst->vars, dv);
4206 *dstp = s2var;
4207 s2var->refcount++;
4208 return 1;
4209 }
4210
4211 dsm->src_onepart_cnt++;
4212 return 1;
4213 }
4214
4215 /* Combine dataflow set information from SRC2 into DST, using PDST
4216 to carry over information across passes. */
4217
4218 static void
4219 dataflow_set_merge (dataflow_set *dst, dataflow_set *src2)
4220 {
4221 dataflow_set cur = *dst;
4222 dataflow_set *src1 = &cur;
4223 struct dfset_merge dsm;
4224 int i;
4225 size_t src1_elems, src2_elems;
4226 variable_iterator_type hi;
4227 variable var;
4228
4229 src1_elems = shared_hash_htab (src1->vars)->elements ();
4230 src2_elems = shared_hash_htab (src2->vars)->elements ();
4231 dataflow_set_init (dst);
4232 dst->stack_adjust = cur.stack_adjust;
4233 shared_hash_destroy (dst->vars);
4234 dst->vars = (shared_hash) pool_alloc (shared_hash_pool);
4235 dst->vars->refcount = 1;
4236 dst->vars->htab = new variable_table_type (MAX (src1_elems, src2_elems));
4237
4238 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4239 attrs_list_mpdv_union (&dst->regs[i], src1->regs[i], src2->regs[i]);
4240
4241 dsm.dst = dst;
4242 dsm.src = src2;
4243 dsm.cur = src1;
4244 dsm.src_onepart_cnt = 0;
4245
4246 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (dsm.src->vars),
4247 var, variable, hi)
4248 variable_merge_over_src (var, &dsm);
4249 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (dsm.cur->vars),
4250 var, variable, hi)
4251 variable_merge_over_cur (var, &dsm);
4252
4253 if (dsm.src_onepart_cnt)
4254 dst_can_be_shared = false;
4255
4256 dataflow_set_destroy (src1);
4257 }
4258
4259 /* Mark register equivalences. */
4260
4261 static void
4262 dataflow_set_equiv_regs (dataflow_set *set)
4263 {
4264 int i;
4265 attrs list, *listp;
4266
4267 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4268 {
4269 rtx canon[NUM_MACHINE_MODES];
4270
4271 /* If the list is empty or one entry, no need to canonicalize
4272 anything. */
4273 if (set->regs[i] == NULL || set->regs[i]->next == NULL)
4274 continue;
4275
4276 memset (canon, 0, sizeof (canon));
4277
4278 for (list = set->regs[i]; list; list = list->next)
4279 if (list->offset == 0 && dv_is_value_p (list->dv))
4280 {
4281 rtx val = dv_as_value (list->dv);
4282 rtx *cvalp = &canon[(int)GET_MODE (val)];
4283 rtx cval = *cvalp;
4284
4285 if (canon_value_cmp (val, cval))
4286 *cvalp = val;
4287 }
4288
4289 for (list = set->regs[i]; list; list = list->next)
4290 if (list->offset == 0 && dv_onepart_p (list->dv))
4291 {
4292 rtx cval = canon[(int)GET_MODE (list->loc)];
4293
4294 if (!cval)
4295 continue;
4296
4297 if (dv_is_value_p (list->dv))
4298 {
4299 rtx val = dv_as_value (list->dv);
4300
4301 if (val == cval)
4302 continue;
4303
4304 VALUE_RECURSED_INTO (val) = true;
4305 set_variable_part (set, val, dv_from_value (cval), 0,
4306 VAR_INIT_STATUS_INITIALIZED,
4307 NULL, NO_INSERT);
4308 }
4309
4310 VALUE_RECURSED_INTO (cval) = true;
4311 set_variable_part (set, cval, list->dv, 0,
4312 VAR_INIT_STATUS_INITIALIZED, NULL, NO_INSERT);
4313 }
4314
4315 for (listp = &set->regs[i]; (list = *listp);
4316 listp = list ? &list->next : listp)
4317 if (list->offset == 0 && dv_onepart_p (list->dv))
4318 {
4319 rtx cval = canon[(int)GET_MODE (list->loc)];
4320 variable_def **slot;
4321
4322 if (!cval)
4323 continue;
4324
4325 if (dv_is_value_p (list->dv))
4326 {
4327 rtx val = dv_as_value (list->dv);
4328 if (!VALUE_RECURSED_INTO (val))
4329 continue;
4330 }
4331
4332 slot = shared_hash_find_slot_noinsert (set->vars, list->dv);
4333 canonicalize_values_star (slot, set);
4334 if (*listp != list)
4335 list = NULL;
4336 }
4337 }
4338 }
4339
4340 /* Remove any redundant values in the location list of VAR, which must
4341 be unshared and 1-part. */
4342
4343 static void
4344 remove_duplicate_values (variable var)
4345 {
4346 location_chain node, *nodep;
4347
4348 gcc_assert (var->onepart);
4349 gcc_assert (var->n_var_parts == 1);
4350 gcc_assert (var->refcount == 1);
4351
4352 for (nodep = &var->var_part[0].loc_chain; (node = *nodep); )
4353 {
4354 if (GET_CODE (node->loc) == VALUE)
4355 {
4356 if (VALUE_RECURSED_INTO (node->loc))
4357 {
4358 /* Remove duplicate value node. */
4359 *nodep = node->next;
4360 pool_free (loc_chain_pool, node);
4361 continue;
4362 }
4363 else
4364 VALUE_RECURSED_INTO (node->loc) = true;
4365 }
4366 nodep = &node->next;
4367 }
4368
4369 for (node = var->var_part[0].loc_chain; node; node = node->next)
4370 if (GET_CODE (node->loc) == VALUE)
4371 {
4372 gcc_assert (VALUE_RECURSED_INTO (node->loc));
4373 VALUE_RECURSED_INTO (node->loc) = false;
4374 }
4375 }
4376
4377
4378 /* Hash table iteration argument passed to variable_post_merge. */
4379 struct dfset_post_merge
4380 {
4381 /* The new input set for the current block. */
4382 dataflow_set *set;
4383 /* Pointer to the permanent input set for the current block, or
4384 NULL. */
4385 dataflow_set **permp;
4386 };
4387
4388 /* Create values for incoming expressions associated with one-part
4389 variables that don't have value numbers for them. */
4390
4391 int
4392 variable_post_merge_new_vals (variable_def **slot, dfset_post_merge *dfpm)
4393 {
4394 dataflow_set *set = dfpm->set;
4395 variable var = *slot;
4396 location_chain node;
4397
4398 if (!var->onepart || !var->n_var_parts)
4399 return 1;
4400
4401 gcc_assert (var->n_var_parts == 1);
4402
4403 if (dv_is_decl_p (var->dv))
4404 {
4405 bool check_dupes = false;
4406
4407 restart:
4408 for (node = var->var_part[0].loc_chain; node; node = node->next)
4409 {
4410 if (GET_CODE (node->loc) == VALUE)
4411 gcc_assert (!VALUE_RECURSED_INTO (node->loc));
4412 else if (GET_CODE (node->loc) == REG)
4413 {
4414 attrs att, *attp, *curp = NULL;
4415
4416 if (var->refcount != 1)
4417 {
4418 slot = unshare_variable (set, slot, var,
4419 VAR_INIT_STATUS_INITIALIZED);
4420 var = *slot;
4421 goto restart;
4422 }
4423
4424 for (attp = &set->regs[REGNO (node->loc)]; (att = *attp);
4425 attp = &att->next)
4426 if (att->offset == 0
4427 && GET_MODE (att->loc) == GET_MODE (node->loc))
4428 {
4429 if (dv_is_value_p (att->dv))
4430 {
4431 rtx cval = dv_as_value (att->dv);
4432 node->loc = cval;
4433 check_dupes = true;
4434 break;
4435 }
4436 else if (dv_as_opaque (att->dv) == dv_as_opaque (var->dv))
4437 curp = attp;
4438 }
4439
4440 if (!curp)
4441 {
4442 curp = attp;
4443 while (*curp)
4444 if ((*curp)->offset == 0
4445 && GET_MODE ((*curp)->loc) == GET_MODE (node->loc)
4446 && dv_as_opaque ((*curp)->dv) == dv_as_opaque (var->dv))
4447 break;
4448 else
4449 curp = &(*curp)->next;
4450 gcc_assert (*curp);
4451 }
4452
4453 if (!att)
4454 {
4455 decl_or_value cdv;
4456 rtx cval;
4457
4458 if (!*dfpm->permp)
4459 {
4460 *dfpm->permp = XNEW (dataflow_set);
4461 dataflow_set_init (*dfpm->permp);
4462 }
4463
4464 for (att = (*dfpm->permp)->regs[REGNO (node->loc)];
4465 att; att = att->next)
4466 if (GET_MODE (att->loc) == GET_MODE (node->loc))
4467 {
4468 gcc_assert (att->offset == 0
4469 && dv_is_value_p (att->dv));
4470 val_reset (set, att->dv);
4471 break;
4472 }
4473
4474 if (att)
4475 {
4476 cdv = att->dv;
4477 cval = dv_as_value (cdv);
4478 }
4479 else
4480 {
4481 /* Create a unique value to hold this register,
4482 that ought to be found and reused in
4483 subsequent rounds. */
4484 cselib_val *v;
4485 gcc_assert (!cselib_lookup (node->loc,
4486 GET_MODE (node->loc), 0,
4487 VOIDmode));
4488 v = cselib_lookup (node->loc, GET_MODE (node->loc), 1,
4489 VOIDmode);
4490 cselib_preserve_value (v);
4491 cselib_invalidate_rtx (node->loc);
4492 cval = v->val_rtx;
4493 cdv = dv_from_value (cval);
4494 if (dump_file)
4495 fprintf (dump_file,
4496 "Created new value %u:%u for reg %i\n",
4497 v->uid, v->hash, REGNO (node->loc));
4498 }
4499
4500 var_reg_decl_set (*dfpm->permp, node->loc,
4501 VAR_INIT_STATUS_INITIALIZED,
4502 cdv, 0, NULL, INSERT);
4503
4504 node->loc = cval;
4505 check_dupes = true;
4506 }
4507
4508 /* Remove attribute referring to the decl, which now
4509 uses the value for the register, already existing or
4510 to be added when we bring perm in. */
4511 att = *curp;
4512 *curp = att->next;
4513 pool_free (attrs_pool, att);
4514 }
4515 }
4516
4517 if (check_dupes)
4518 remove_duplicate_values (var);
4519 }
4520
4521 return 1;
4522 }
4523
4524 /* Reset values in the permanent set that are not associated with the
4525 chosen expression. */
4526
4527 int
4528 variable_post_merge_perm_vals (variable_def **pslot, dfset_post_merge *dfpm)
4529 {
4530 dataflow_set *set = dfpm->set;
4531 variable pvar = *pslot, var;
4532 location_chain pnode;
4533 decl_or_value dv;
4534 attrs att;
4535
4536 gcc_assert (dv_is_value_p (pvar->dv)
4537 && pvar->n_var_parts == 1);
4538 pnode = pvar->var_part[0].loc_chain;
4539 gcc_assert (pnode
4540 && !pnode->next
4541 && REG_P (pnode->loc));
4542
4543 dv = pvar->dv;
4544
4545 var = shared_hash_find (set->vars, dv);
4546 if (var)
4547 {
4548 /* Although variable_post_merge_new_vals may have made decls
4549 non-star-canonical, values that pre-existed in canonical form
4550 remain canonical, and newly-created values reference a single
4551 REG, so they are canonical as well. Since VAR has the
4552 location list for a VALUE, using find_loc_in_1pdv for it is
4553 fine, since VALUEs don't map back to DECLs. */
4554 if (find_loc_in_1pdv (pnode->loc, var, shared_hash_htab (set->vars)))
4555 return 1;
4556 val_reset (set, dv);
4557 }
4558
4559 for (att = set->regs[REGNO (pnode->loc)]; att; att = att->next)
4560 if (att->offset == 0
4561 && GET_MODE (att->loc) == GET_MODE (pnode->loc)
4562 && dv_is_value_p (att->dv))
4563 break;
4564
4565 /* If there is a value associated with this register already, create
4566 an equivalence. */
4567 if (att && dv_as_value (att->dv) != dv_as_value (dv))
4568 {
4569 rtx cval = dv_as_value (att->dv);
4570 set_variable_part (set, cval, dv, 0, pnode->init, NULL, INSERT);
4571 set_variable_part (set, dv_as_value (dv), att->dv, 0, pnode->init,
4572 NULL, INSERT);
4573 }
4574 else if (!att)
4575 {
4576 attrs_list_insert (&set->regs[REGNO (pnode->loc)],
4577 dv, 0, pnode->loc);
4578 variable_union (pvar, set);
4579 }
4580
4581 return 1;
4582 }
4583
4584 /* Just checking stuff and registering register attributes for
4585 now. */
4586
4587 static void
4588 dataflow_post_merge_adjust (dataflow_set *set, dataflow_set **permp)
4589 {
4590 struct dfset_post_merge dfpm;
4591
4592 dfpm.set = set;
4593 dfpm.permp = permp;
4594
4595 shared_hash_htab (set->vars)
4596 ->traverse <dfset_post_merge*, variable_post_merge_new_vals> (&dfpm);
4597 if (*permp)
4598 shared_hash_htab ((*permp)->vars)
4599 ->traverse <dfset_post_merge*, variable_post_merge_perm_vals> (&dfpm);
4600 shared_hash_htab (set->vars)
4601 ->traverse <dataflow_set *, canonicalize_values_star> (set);
4602 shared_hash_htab (set->vars)
4603 ->traverse <dataflow_set *, canonicalize_vars_star> (set);
4604 }
4605
4606 /* Return a node whose loc is a MEM that refers to EXPR in the
4607 location list of a one-part variable or value VAR, or in that of
4608 any values recursively mentioned in the location lists. */
4609
4610 static location_chain
4611 find_mem_expr_in_1pdv (tree expr, rtx val, variable_table_type *vars)
4612 {
4613 location_chain node;
4614 decl_or_value dv;
4615 variable var;
4616 location_chain where = NULL;
4617
4618 if (!val)
4619 return NULL;
4620
4621 gcc_assert (GET_CODE (val) == VALUE
4622 && !VALUE_RECURSED_INTO (val));
4623
4624 dv = dv_from_value (val);
4625 var = vars->find_with_hash (dv, dv_htab_hash (dv));
4626
4627 if (!var)
4628 return NULL;
4629
4630 gcc_assert (var->onepart);
4631
4632 if (!var->n_var_parts)
4633 return NULL;
4634
4635 VALUE_RECURSED_INTO (val) = true;
4636
4637 for (node = var->var_part[0].loc_chain; node; node = node->next)
4638 if (MEM_P (node->loc)
4639 && MEM_EXPR (node->loc) == expr
4640 && INT_MEM_OFFSET (node->loc) == 0)
4641 {
4642 where = node;
4643 break;
4644 }
4645 else if (GET_CODE (node->loc) == VALUE
4646 && !VALUE_RECURSED_INTO (node->loc)
4647 && (where = find_mem_expr_in_1pdv (expr, node->loc, vars)))
4648 break;
4649
4650 VALUE_RECURSED_INTO (val) = false;
4651
4652 return where;
4653 }
4654
4655 /* Return TRUE if the value of MEM may vary across a call. */
4656
4657 static bool
4658 mem_dies_at_call (rtx mem)
4659 {
4660 tree expr = MEM_EXPR (mem);
4661 tree decl;
4662
4663 if (!expr)
4664 return true;
4665
4666 decl = get_base_address (expr);
4667
4668 if (!decl)
4669 return true;
4670
4671 if (!DECL_P (decl))
4672 return true;
4673
4674 return (may_be_aliased (decl)
4675 || (!TREE_READONLY (decl) && is_global_var (decl)));
4676 }
4677
4678 /* Remove all MEMs from the location list of a hash table entry for a
4679 one-part variable, except those whose MEM attributes map back to
4680 the variable itself, directly or within a VALUE. */
4681
4682 int
4683 dataflow_set_preserve_mem_locs (variable_def **slot, dataflow_set *set)
4684 {
4685 variable var = *slot;
4686
4687 if (var->onepart == ONEPART_VDECL || var->onepart == ONEPART_DEXPR)
4688 {
4689 tree decl = dv_as_decl (var->dv);
4690 location_chain loc, *locp;
4691 bool changed = false;
4692
4693 if (!var->n_var_parts)
4694 return 1;
4695
4696 gcc_assert (var->n_var_parts == 1);
4697
4698 if (shared_var_p (var, set->vars))
4699 {
4700 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4701 {
4702 /* We want to remove dying MEMs that doesn't refer to DECL. */
4703 if (GET_CODE (loc->loc) == MEM
4704 && (MEM_EXPR (loc->loc) != decl
4705 || INT_MEM_OFFSET (loc->loc) != 0)
4706 && !mem_dies_at_call (loc->loc))
4707 break;
4708 /* We want to move here MEMs that do refer to DECL. */
4709 else if (GET_CODE (loc->loc) == VALUE
4710 && find_mem_expr_in_1pdv (decl, loc->loc,
4711 shared_hash_htab (set->vars)))
4712 break;
4713 }
4714
4715 if (!loc)
4716 return 1;
4717
4718 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4719 var = *slot;
4720 gcc_assert (var->n_var_parts == 1);
4721 }
4722
4723 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4724 loc; loc = *locp)
4725 {
4726 rtx old_loc = loc->loc;
4727 if (GET_CODE (old_loc) == VALUE)
4728 {
4729 location_chain mem_node
4730 = find_mem_expr_in_1pdv (decl, loc->loc,
4731 shared_hash_htab (set->vars));
4732
4733 /* ??? This picks up only one out of multiple MEMs that
4734 refer to the same variable. Do we ever need to be
4735 concerned about dealing with more than one, or, given
4736 that they should all map to the same variable
4737 location, their addresses will have been merged and
4738 they will be regarded as equivalent? */
4739 if (mem_node)
4740 {
4741 loc->loc = mem_node->loc;
4742 loc->set_src = mem_node->set_src;
4743 loc->init = MIN (loc->init, mem_node->init);
4744 }
4745 }
4746
4747 if (GET_CODE (loc->loc) != MEM
4748 || (MEM_EXPR (loc->loc) == decl
4749 && INT_MEM_OFFSET (loc->loc) == 0)
4750 || !mem_dies_at_call (loc->loc))
4751 {
4752 if (old_loc != loc->loc && emit_notes)
4753 {
4754 if (old_loc == var->var_part[0].cur_loc)
4755 {
4756 changed = true;
4757 var->var_part[0].cur_loc = NULL;
4758 }
4759 }
4760 locp = &loc->next;
4761 continue;
4762 }
4763
4764 if (emit_notes)
4765 {
4766 if (old_loc == var->var_part[0].cur_loc)
4767 {
4768 changed = true;
4769 var->var_part[0].cur_loc = NULL;
4770 }
4771 }
4772 *locp = loc->next;
4773 pool_free (loc_chain_pool, loc);
4774 }
4775
4776 if (!var->var_part[0].loc_chain)
4777 {
4778 var->n_var_parts--;
4779 changed = true;
4780 }
4781 if (changed)
4782 variable_was_changed (var, set);
4783 }
4784
4785 return 1;
4786 }
4787
4788 /* Remove all MEMs from the location list of a hash table entry for a
4789 value. */
4790
4791 int
4792 dataflow_set_remove_mem_locs (variable_def **slot, dataflow_set *set)
4793 {
4794 variable var = *slot;
4795
4796 if (var->onepart == ONEPART_VALUE)
4797 {
4798 location_chain loc, *locp;
4799 bool changed = false;
4800 rtx cur_loc;
4801
4802 gcc_assert (var->n_var_parts == 1);
4803
4804 if (shared_var_p (var, set->vars))
4805 {
4806 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4807 if (GET_CODE (loc->loc) == MEM
4808 && mem_dies_at_call (loc->loc))
4809 break;
4810
4811 if (!loc)
4812 return 1;
4813
4814 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4815 var = *slot;
4816 gcc_assert (var->n_var_parts == 1);
4817 }
4818
4819 if (VAR_LOC_1PAUX (var))
4820 cur_loc = VAR_LOC_FROM (var);
4821 else
4822 cur_loc = var->var_part[0].cur_loc;
4823
4824 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4825 loc; loc = *locp)
4826 {
4827 if (GET_CODE (loc->loc) != MEM
4828 || !mem_dies_at_call (loc->loc))
4829 {
4830 locp = &loc->next;
4831 continue;
4832 }
4833
4834 *locp = loc->next;
4835 /* If we have deleted the location which was last emitted
4836 we have to emit new location so add the variable to set
4837 of changed variables. */
4838 if (cur_loc == loc->loc)
4839 {
4840 changed = true;
4841 var->var_part[0].cur_loc = NULL;
4842 if (VAR_LOC_1PAUX (var))
4843 VAR_LOC_FROM (var) = NULL;
4844 }
4845 pool_free (loc_chain_pool, loc);
4846 }
4847
4848 if (!var->var_part[0].loc_chain)
4849 {
4850 var->n_var_parts--;
4851 changed = true;
4852 }
4853 if (changed)
4854 variable_was_changed (var, set);
4855 }
4856
4857 return 1;
4858 }
4859
4860 /* Remove all variable-location information about call-clobbered
4861 registers, as well as associations between MEMs and VALUEs. */
4862
4863 static void
4864 dataflow_set_clear_at_call (dataflow_set *set)
4865 {
4866 unsigned int r;
4867 hard_reg_set_iterator hrsi;
4868
4869 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, r, hrsi)
4870 var_regno_delete (set, r);
4871
4872 if (MAY_HAVE_DEBUG_INSNS)
4873 {
4874 set->traversed_vars = set->vars;
4875 shared_hash_htab (set->vars)
4876 ->traverse <dataflow_set *, dataflow_set_preserve_mem_locs> (set);
4877 set->traversed_vars = set->vars;
4878 shared_hash_htab (set->vars)
4879 ->traverse <dataflow_set *, dataflow_set_remove_mem_locs> (set);
4880 set->traversed_vars = NULL;
4881 }
4882 }
4883
4884 static bool
4885 variable_part_different_p (variable_part *vp1, variable_part *vp2)
4886 {
4887 location_chain lc1, lc2;
4888
4889 for (lc1 = vp1->loc_chain; lc1; lc1 = lc1->next)
4890 {
4891 for (lc2 = vp2->loc_chain; lc2; lc2 = lc2->next)
4892 {
4893 if (REG_P (lc1->loc) && REG_P (lc2->loc))
4894 {
4895 if (REGNO (lc1->loc) == REGNO (lc2->loc))
4896 break;
4897 }
4898 if (rtx_equal_p (lc1->loc, lc2->loc))
4899 break;
4900 }
4901 if (!lc2)
4902 return true;
4903 }
4904 return false;
4905 }
4906
4907 /* Return true if one-part variables VAR1 and VAR2 are different.
4908 They must be in canonical order. */
4909
4910 static bool
4911 onepart_variable_different_p (variable var1, variable var2)
4912 {
4913 location_chain lc1, lc2;
4914
4915 if (var1 == var2)
4916 return false;
4917
4918 gcc_assert (var1->n_var_parts == 1
4919 && var2->n_var_parts == 1);
4920
4921 lc1 = var1->var_part[0].loc_chain;
4922 lc2 = var2->var_part[0].loc_chain;
4923
4924 gcc_assert (lc1 && lc2);
4925
4926 while (lc1 && lc2)
4927 {
4928 if (loc_cmp (lc1->loc, lc2->loc))
4929 return true;
4930 lc1 = lc1->next;
4931 lc2 = lc2->next;
4932 }
4933
4934 return lc1 != lc2;
4935 }
4936
4937 /* Return true if variables VAR1 and VAR2 are different. */
4938
4939 static bool
4940 variable_different_p (variable var1, variable var2)
4941 {
4942 int i;
4943
4944 if (var1 == var2)
4945 return false;
4946
4947 if (var1->onepart != var2->onepart)
4948 return true;
4949
4950 if (var1->n_var_parts != var2->n_var_parts)
4951 return true;
4952
4953 if (var1->onepart && var1->n_var_parts)
4954 {
4955 gcc_checking_assert (dv_as_opaque (var1->dv) == dv_as_opaque (var2->dv)
4956 && var1->n_var_parts == 1);
4957 /* One-part values have locations in a canonical order. */
4958 return onepart_variable_different_p (var1, var2);
4959 }
4960
4961 for (i = 0; i < var1->n_var_parts; i++)
4962 {
4963 if (VAR_PART_OFFSET (var1, i) != VAR_PART_OFFSET (var2, i))
4964 return true;
4965 if (variable_part_different_p (&var1->var_part[i], &var2->var_part[i]))
4966 return true;
4967 if (variable_part_different_p (&var2->var_part[i], &var1->var_part[i]))
4968 return true;
4969 }
4970 return false;
4971 }
4972
4973 /* Return true if dataflow sets OLD_SET and NEW_SET differ. */
4974
4975 static bool
4976 dataflow_set_different (dataflow_set *old_set, dataflow_set *new_set)
4977 {
4978 variable_iterator_type hi;
4979 variable var1;
4980
4981 if (old_set->vars == new_set->vars)
4982 return false;
4983
4984 if (shared_hash_htab (old_set->vars)->elements ()
4985 != shared_hash_htab (new_set->vars)->elements ())
4986 return true;
4987
4988 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (old_set->vars),
4989 var1, variable, hi)
4990 {
4991 variable_table_type *htab = shared_hash_htab (new_set->vars);
4992 variable var2 = htab->find_with_hash (var1->dv, dv_htab_hash (var1->dv));
4993 if (!var2)
4994 {
4995 if (dump_file && (dump_flags & TDF_DETAILS))
4996 {
4997 fprintf (dump_file, "dataflow difference found: removal of:\n");
4998 dump_var (var1);
4999 }
5000 return true;
5001 }
5002
5003 if (variable_different_p (var1, var2))
5004 {
5005 if (dump_file && (dump_flags & TDF_DETAILS))
5006 {
5007 fprintf (dump_file, "dataflow difference found: "
5008 "old and new follow:\n");
5009 dump_var (var1);
5010 dump_var (var2);
5011 }
5012 return true;
5013 }
5014 }
5015
5016 /* No need to traverse the second hashtab, if both have the same number
5017 of elements and the second one had all entries found in the first one,
5018 then it can't have any extra entries. */
5019 return false;
5020 }
5021
5022 /* Free the contents of dataflow set SET. */
5023
5024 static void
5025 dataflow_set_destroy (dataflow_set *set)
5026 {
5027 int i;
5028
5029 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5030 attrs_list_clear (&set->regs[i]);
5031
5032 shared_hash_destroy (set->vars);
5033 set->vars = NULL;
5034 }
5035
5036 /* Return true if RTL X contains a SYMBOL_REF. */
5037
5038 static bool
5039 contains_symbol_ref (rtx x)
5040 {
5041 const char *fmt;
5042 RTX_CODE code;
5043 int i;
5044
5045 if (!x)
5046 return false;
5047
5048 code = GET_CODE (x);
5049 if (code == SYMBOL_REF)
5050 return true;
5051
5052 fmt = GET_RTX_FORMAT (code);
5053 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5054 {
5055 if (fmt[i] == 'e')
5056 {
5057 if (contains_symbol_ref (XEXP (x, i)))
5058 return true;
5059 }
5060 else if (fmt[i] == 'E')
5061 {
5062 int j;
5063 for (j = 0; j < XVECLEN (x, i); j++)
5064 if (contains_symbol_ref (XVECEXP (x, i, j)))
5065 return true;
5066 }
5067 }
5068
5069 return false;
5070 }
5071
5072 /* Shall EXPR be tracked? */
5073
5074 static bool
5075 track_expr_p (tree expr, bool need_rtl)
5076 {
5077 rtx decl_rtl;
5078 tree realdecl;
5079
5080 if (TREE_CODE (expr) == DEBUG_EXPR_DECL)
5081 return DECL_RTL_SET_P (expr);
5082
5083 /* If EXPR is not a parameter or a variable do not track it. */
5084 if (TREE_CODE (expr) != VAR_DECL && TREE_CODE (expr) != PARM_DECL)
5085 return 0;
5086
5087 /* It also must have a name... */
5088 if (!DECL_NAME (expr) && need_rtl)
5089 return 0;
5090
5091 /* ... and a RTL assigned to it. */
5092 decl_rtl = DECL_RTL_IF_SET (expr);
5093 if (!decl_rtl && need_rtl)
5094 return 0;
5095
5096 /* If this expression is really a debug alias of some other declaration, we
5097 don't need to track this expression if the ultimate declaration is
5098 ignored. */
5099 realdecl = expr;
5100 if (TREE_CODE (realdecl) == VAR_DECL && DECL_HAS_DEBUG_EXPR_P (realdecl))
5101 {
5102 realdecl = DECL_DEBUG_EXPR (realdecl);
5103 if (!DECL_P (realdecl))
5104 {
5105 if (handled_component_p (realdecl)
5106 || (TREE_CODE (realdecl) == MEM_REF
5107 && TREE_CODE (TREE_OPERAND (realdecl, 0)) == ADDR_EXPR))
5108 {
5109 HOST_WIDE_INT bitsize, bitpos, maxsize;
5110 tree innerdecl
5111 = get_ref_base_and_extent (realdecl, &bitpos, &bitsize,
5112 &maxsize);
5113 if (!DECL_P (innerdecl)
5114 || DECL_IGNORED_P (innerdecl)
5115 /* Do not track declarations for parts of tracked parameters
5116 since we want to track them as a whole instead. */
5117 || (TREE_CODE (innerdecl) == PARM_DECL
5118 && DECL_MODE (innerdecl) != BLKmode
5119 && TREE_CODE (TREE_TYPE (innerdecl)) != UNION_TYPE)
5120 || TREE_STATIC (innerdecl)
5121 || bitsize <= 0
5122 || bitpos + bitsize > 256
5123 || bitsize != maxsize)
5124 return 0;
5125 else
5126 realdecl = expr;
5127 }
5128 else
5129 return 0;
5130 }
5131 }
5132
5133 /* Do not track EXPR if REALDECL it should be ignored for debugging
5134 purposes. */
5135 if (DECL_IGNORED_P (realdecl))
5136 return 0;
5137
5138 /* Do not track global variables until we are able to emit correct location
5139 list for them. */
5140 if (TREE_STATIC (realdecl))
5141 return 0;
5142
5143 /* When the EXPR is a DECL for alias of some variable (see example)
5144 the TREE_STATIC flag is not used. Disable tracking all DECLs whose
5145 DECL_RTL contains SYMBOL_REF.
5146
5147 Example:
5148 extern char **_dl_argv_internal __attribute__ ((alias ("_dl_argv")));
5149 char **_dl_argv;
5150 */
5151 if (decl_rtl && MEM_P (decl_rtl)
5152 && contains_symbol_ref (XEXP (decl_rtl, 0)))
5153 return 0;
5154
5155 /* If RTX is a memory it should not be very large (because it would be
5156 an array or struct). */
5157 if (decl_rtl && MEM_P (decl_rtl))
5158 {
5159 /* Do not track structures and arrays. */
5160 if (GET_MODE (decl_rtl) == BLKmode
5161 || AGGREGATE_TYPE_P (TREE_TYPE (realdecl)))
5162 return 0;
5163 if (MEM_SIZE_KNOWN_P (decl_rtl)
5164 && MEM_SIZE (decl_rtl) > MAX_VAR_PARTS)
5165 return 0;
5166 }
5167
5168 DECL_CHANGED (expr) = 0;
5169 DECL_CHANGED (realdecl) = 0;
5170 return 1;
5171 }
5172
5173 /* Determine whether a given LOC refers to the same variable part as
5174 EXPR+OFFSET. */
5175
5176 static bool
5177 same_variable_part_p (rtx loc, tree expr, HOST_WIDE_INT offset)
5178 {
5179 tree expr2;
5180 HOST_WIDE_INT offset2;
5181
5182 if (! DECL_P (expr))
5183 return false;
5184
5185 if (REG_P (loc))
5186 {
5187 expr2 = REG_EXPR (loc);
5188 offset2 = REG_OFFSET (loc);
5189 }
5190 else if (MEM_P (loc))
5191 {
5192 expr2 = MEM_EXPR (loc);
5193 offset2 = INT_MEM_OFFSET (loc);
5194 }
5195 else
5196 return false;
5197
5198 if (! expr2 || ! DECL_P (expr2))
5199 return false;
5200
5201 expr = var_debug_decl (expr);
5202 expr2 = var_debug_decl (expr2);
5203
5204 return (expr == expr2 && offset == offset2);
5205 }
5206
5207 /* LOC is a REG or MEM that we would like to track if possible.
5208 If EXPR is null, we don't know what expression LOC refers to,
5209 otherwise it refers to EXPR + OFFSET. STORE_REG_P is true if
5210 LOC is an lvalue register.
5211
5212 Return true if EXPR is nonnull and if LOC, or some lowpart of it,
5213 is something we can track. When returning true, store the mode of
5214 the lowpart we can track in *MODE_OUT (if nonnull) and its offset
5215 from EXPR in *OFFSET_OUT (if nonnull). */
5216
5217 static bool
5218 track_loc_p (rtx loc, tree expr, HOST_WIDE_INT offset, bool store_reg_p,
5219 enum machine_mode *mode_out, HOST_WIDE_INT *offset_out)
5220 {
5221 enum machine_mode mode;
5222
5223 if (expr == NULL || !track_expr_p (expr, true))
5224 return false;
5225
5226 /* If REG was a paradoxical subreg, its REG_ATTRS will describe the
5227 whole subreg, but only the old inner part is really relevant. */
5228 mode = GET_MODE (loc);
5229 if (REG_P (loc) && !HARD_REGISTER_NUM_P (ORIGINAL_REGNO (loc)))
5230 {
5231 enum machine_mode pseudo_mode;
5232
5233 pseudo_mode = PSEUDO_REGNO_MODE (ORIGINAL_REGNO (loc));
5234 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (pseudo_mode))
5235 {
5236 offset += byte_lowpart_offset (pseudo_mode, mode);
5237 mode = pseudo_mode;
5238 }
5239 }
5240
5241 /* If LOC is a paradoxical lowpart of EXPR, refer to EXPR itself.
5242 Do the same if we are storing to a register and EXPR occupies
5243 the whole of register LOC; in that case, the whole of EXPR is
5244 being changed. We exclude complex modes from the second case
5245 because the real and imaginary parts are represented as separate
5246 pseudo registers, even if the whole complex value fits into one
5247 hard register. */
5248 if ((GET_MODE_SIZE (mode) > GET_MODE_SIZE (DECL_MODE (expr))
5249 || (store_reg_p
5250 && !COMPLEX_MODE_P (DECL_MODE (expr))
5251 && hard_regno_nregs[REGNO (loc)][DECL_MODE (expr)] == 1))
5252 && offset + byte_lowpart_offset (DECL_MODE (expr), mode) == 0)
5253 {
5254 mode = DECL_MODE (expr);
5255 offset = 0;
5256 }
5257
5258 if (offset < 0 || offset >= MAX_VAR_PARTS)
5259 return false;
5260
5261 if (mode_out)
5262 *mode_out = mode;
5263 if (offset_out)
5264 *offset_out = offset;
5265 return true;
5266 }
5267
5268 /* Return the MODE lowpart of LOC, or null if LOC is not something we
5269 want to track. When returning nonnull, make sure that the attributes
5270 on the returned value are updated. */
5271
5272 static rtx
5273 var_lowpart (enum machine_mode mode, rtx loc)
5274 {
5275 unsigned int offset, reg_offset, regno;
5276
5277 if (GET_MODE (loc) == mode)
5278 return loc;
5279
5280 if (!REG_P (loc) && !MEM_P (loc))
5281 return NULL;
5282
5283 offset = byte_lowpart_offset (mode, GET_MODE (loc));
5284
5285 if (MEM_P (loc))
5286 return adjust_address_nv (loc, mode, offset);
5287
5288 reg_offset = subreg_lowpart_offset (mode, GET_MODE (loc));
5289 regno = REGNO (loc) + subreg_regno_offset (REGNO (loc), GET_MODE (loc),
5290 reg_offset, mode);
5291 return gen_rtx_REG_offset (loc, mode, regno, offset);
5292 }
5293
5294 /* Carry information about uses and stores while walking rtx. */
5295
5296 struct count_use_info
5297 {
5298 /* The insn where the RTX is. */
5299 rtx insn;
5300
5301 /* The basic block where insn is. */
5302 basic_block bb;
5303
5304 /* The array of n_sets sets in the insn, as determined by cselib. */
5305 struct cselib_set *sets;
5306 int n_sets;
5307
5308 /* True if we're counting stores, false otherwise. */
5309 bool store_p;
5310 };
5311
5312 /* Find a VALUE corresponding to X. */
5313
5314 static inline cselib_val *
5315 find_use_val (rtx x, enum machine_mode mode, struct count_use_info *cui)
5316 {
5317 int i;
5318
5319 if (cui->sets)
5320 {
5321 /* This is called after uses are set up and before stores are
5322 processed by cselib, so it's safe to look up srcs, but not
5323 dsts. So we look up expressions that appear in srcs or in
5324 dest expressions, but we search the sets array for dests of
5325 stores. */
5326 if (cui->store_p)
5327 {
5328 /* Some targets represent memset and memcpy patterns
5329 by (set (mem:BLK ...) (reg:[QHSD]I ...)) or
5330 (set (mem:BLK ...) (const_int ...)) or
5331 (set (mem:BLK ...) (mem:BLK ...)). Don't return anything
5332 in that case, otherwise we end up with mode mismatches. */
5333 if (mode == BLKmode && MEM_P (x))
5334 return NULL;
5335 for (i = 0; i < cui->n_sets; i++)
5336 if (cui->sets[i].dest == x)
5337 return cui->sets[i].src_elt;
5338 }
5339 else
5340 return cselib_lookup (x, mode, 0, VOIDmode);
5341 }
5342
5343 return NULL;
5344 }
5345
5346 /* Replace all registers and addresses in an expression with VALUE
5347 expressions that map back to them, unless the expression is a
5348 register. If no mapping is or can be performed, returns NULL. */
5349
5350 static rtx
5351 replace_expr_with_values (rtx loc)
5352 {
5353 if (REG_P (loc) || GET_CODE (loc) == ENTRY_VALUE)
5354 return NULL;
5355 else if (MEM_P (loc))
5356 {
5357 cselib_val *addr = cselib_lookup (XEXP (loc, 0),
5358 get_address_mode (loc), 0,
5359 GET_MODE (loc));
5360 if (addr)
5361 return replace_equiv_address_nv (loc, addr->val_rtx);
5362 else
5363 return NULL;
5364 }
5365 else
5366 return cselib_subst_to_values (loc, VOIDmode);
5367 }
5368
5369 /* Return true if *X is a DEBUG_EXPR. Usable as an argument to
5370 for_each_rtx to tell whether there are any DEBUG_EXPRs within
5371 RTX. */
5372
5373 static int
5374 rtx_debug_expr_p (rtx *x, void *data ATTRIBUTE_UNUSED)
5375 {
5376 rtx loc = *x;
5377
5378 return GET_CODE (loc) == DEBUG_EXPR;
5379 }
5380
5381 /* Determine what kind of micro operation to choose for a USE. Return
5382 MO_CLOBBER if no micro operation is to be generated. */
5383
5384 static enum micro_operation_type
5385 use_type (rtx loc, struct count_use_info *cui, enum machine_mode *modep)
5386 {
5387 tree expr;
5388
5389 if (cui && cui->sets)
5390 {
5391 if (GET_CODE (loc) == VAR_LOCATION)
5392 {
5393 if (track_expr_p (PAT_VAR_LOCATION_DECL (loc), false))
5394 {
5395 rtx ploc = PAT_VAR_LOCATION_LOC (loc);
5396 if (! VAR_LOC_UNKNOWN_P (ploc))
5397 {
5398 cselib_val *val = cselib_lookup (ploc, GET_MODE (loc), 1,
5399 VOIDmode);
5400
5401 /* ??? flag_float_store and volatile mems are never
5402 given values, but we could in theory use them for
5403 locations. */
5404 gcc_assert (val || 1);
5405 }
5406 return MO_VAL_LOC;
5407 }
5408 else
5409 return MO_CLOBBER;
5410 }
5411
5412 if (REG_P (loc) || MEM_P (loc))
5413 {
5414 if (modep)
5415 *modep = GET_MODE (loc);
5416 if (cui->store_p)
5417 {
5418 if (REG_P (loc)
5419 || (find_use_val (loc, GET_MODE (loc), cui)
5420 && cselib_lookup (XEXP (loc, 0),
5421 get_address_mode (loc), 0,
5422 GET_MODE (loc))))
5423 return MO_VAL_SET;
5424 }
5425 else
5426 {
5427 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5428
5429 if (val && !cselib_preserved_value_p (val))
5430 return MO_VAL_USE;
5431 }
5432 }
5433 }
5434
5435 if (REG_P (loc))
5436 {
5437 gcc_assert (REGNO (loc) < FIRST_PSEUDO_REGISTER);
5438
5439 if (loc == cfa_base_rtx)
5440 return MO_CLOBBER;
5441 expr = REG_EXPR (loc);
5442
5443 if (!expr)
5444 return MO_USE_NO_VAR;
5445 else if (target_for_debug_bind (var_debug_decl (expr)))
5446 return MO_CLOBBER;
5447 else if (track_loc_p (loc, expr, REG_OFFSET (loc),
5448 false, modep, NULL))
5449 return MO_USE;
5450 else
5451 return MO_USE_NO_VAR;
5452 }
5453 else if (MEM_P (loc))
5454 {
5455 expr = MEM_EXPR (loc);
5456
5457 if (!expr)
5458 return MO_CLOBBER;
5459 else if (target_for_debug_bind (var_debug_decl (expr)))
5460 return MO_CLOBBER;
5461 else if (track_loc_p (loc, expr, INT_MEM_OFFSET (loc),
5462 false, modep, NULL)
5463 /* Multi-part variables shouldn't refer to one-part
5464 variable names such as VALUEs (never happens) or
5465 DEBUG_EXPRs (only happens in the presence of debug
5466 insns). */
5467 && (!MAY_HAVE_DEBUG_INSNS
5468 || !for_each_rtx (&XEXP (loc, 0), rtx_debug_expr_p, NULL)))
5469 return MO_USE;
5470 else
5471 return MO_CLOBBER;
5472 }
5473
5474 return MO_CLOBBER;
5475 }
5476
5477 /* Log to OUT information about micro-operation MOPT involving X in
5478 INSN of BB. */
5479
5480 static inline void
5481 log_op_type (rtx x, basic_block bb, rtx insn,
5482 enum micro_operation_type mopt, FILE *out)
5483 {
5484 fprintf (out, "bb %i op %i insn %i %s ",
5485 bb->index, VTI (bb)->mos.length (),
5486 INSN_UID (insn), micro_operation_type_name[mopt]);
5487 print_inline_rtx (out, x, 2);
5488 fputc ('\n', out);
5489 }
5490
5491 /* Tell whether the CONCAT used to holds a VALUE and its location
5492 needs value resolution, i.e., an attempt of mapping the location
5493 back to other incoming values. */
5494 #define VAL_NEEDS_RESOLUTION(x) \
5495 (RTL_FLAG_CHECK1 ("VAL_NEEDS_RESOLUTION", (x), CONCAT)->volatil)
5496 /* Whether the location in the CONCAT is a tracked expression, that
5497 should also be handled like a MO_USE. */
5498 #define VAL_HOLDS_TRACK_EXPR(x) \
5499 (RTL_FLAG_CHECK1 ("VAL_HOLDS_TRACK_EXPR", (x), CONCAT)->used)
5500 /* Whether the location in the CONCAT should be handled like a MO_COPY
5501 as well. */
5502 #define VAL_EXPR_IS_COPIED(x) \
5503 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_COPIED", (x), CONCAT)->jump)
5504 /* Whether the location in the CONCAT should be handled like a
5505 MO_CLOBBER as well. */
5506 #define VAL_EXPR_IS_CLOBBERED(x) \
5507 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_CLOBBERED", (x), CONCAT)->unchanging)
5508
5509 /* All preserved VALUEs. */
5510 static vec<rtx> preserved_values;
5511
5512 /* Ensure VAL is preserved and remember it in a vector for vt_emit_notes. */
5513
5514 static void
5515 preserve_value (cselib_val *val)
5516 {
5517 cselib_preserve_value (val);
5518 preserved_values.safe_push (val->val_rtx);
5519 }
5520
5521 /* Helper function for MO_VAL_LOC handling. Return non-zero if
5522 any rtxes not suitable for CONST use not replaced by VALUEs
5523 are discovered. */
5524
5525 static int
5526 non_suitable_const (rtx *x, void *data ATTRIBUTE_UNUSED)
5527 {
5528 if (*x == NULL_RTX)
5529 return 0;
5530
5531 switch (GET_CODE (*x))
5532 {
5533 case REG:
5534 case DEBUG_EXPR:
5535 case PC:
5536 case SCRATCH:
5537 case CC0:
5538 case ASM_INPUT:
5539 case ASM_OPERANDS:
5540 return 1;
5541 case MEM:
5542 return !MEM_READONLY_P (*x);
5543 default:
5544 return 0;
5545 }
5546 }
5547
5548 /* Add uses (register and memory references) LOC which will be tracked
5549 to VTI (bb)->mos. INSN is instruction which the LOC is part of. */
5550
5551 static int
5552 add_uses (rtx *ploc, void *data)
5553 {
5554 rtx loc = *ploc;
5555 enum machine_mode mode = VOIDmode;
5556 struct count_use_info *cui = (struct count_use_info *)data;
5557 enum micro_operation_type type = use_type (loc, cui, &mode);
5558
5559 if (type != MO_CLOBBER)
5560 {
5561 basic_block bb = cui->bb;
5562 micro_operation mo;
5563
5564 mo.type = type;
5565 mo.u.loc = type == MO_USE ? var_lowpart (mode, loc) : loc;
5566 mo.insn = cui->insn;
5567
5568 if (type == MO_VAL_LOC)
5569 {
5570 rtx oloc = loc;
5571 rtx vloc = PAT_VAR_LOCATION_LOC (oloc);
5572 cselib_val *val;
5573
5574 gcc_assert (cui->sets);
5575
5576 if (MEM_P (vloc)
5577 && !REG_P (XEXP (vloc, 0))
5578 && !MEM_P (XEXP (vloc, 0)))
5579 {
5580 rtx mloc = vloc;
5581 enum machine_mode address_mode = get_address_mode (mloc);
5582 cselib_val *val
5583 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5584 GET_MODE (mloc));
5585
5586 if (val && !cselib_preserved_value_p (val))
5587 preserve_value (val);
5588 }
5589
5590 if (CONSTANT_P (vloc)
5591 && (GET_CODE (vloc) != CONST
5592 || for_each_rtx (&vloc, non_suitable_const, NULL)))
5593 /* For constants don't look up any value. */;
5594 else if (!VAR_LOC_UNKNOWN_P (vloc) && !unsuitable_loc (vloc)
5595 && (val = find_use_val (vloc, GET_MODE (oloc), cui)))
5596 {
5597 enum machine_mode mode2;
5598 enum micro_operation_type type2;
5599 rtx nloc = NULL;
5600 bool resolvable = REG_P (vloc) || MEM_P (vloc);
5601
5602 if (resolvable)
5603 nloc = replace_expr_with_values (vloc);
5604
5605 if (nloc)
5606 {
5607 oloc = shallow_copy_rtx (oloc);
5608 PAT_VAR_LOCATION_LOC (oloc) = nloc;
5609 }
5610
5611 oloc = gen_rtx_CONCAT (mode, val->val_rtx, oloc);
5612
5613 type2 = use_type (vloc, 0, &mode2);
5614
5615 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5616 || type2 == MO_CLOBBER);
5617
5618 if (type2 == MO_CLOBBER
5619 && !cselib_preserved_value_p (val))
5620 {
5621 VAL_NEEDS_RESOLUTION (oloc) = resolvable;
5622 preserve_value (val);
5623 }
5624 }
5625 else if (!VAR_LOC_UNKNOWN_P (vloc))
5626 {
5627 oloc = shallow_copy_rtx (oloc);
5628 PAT_VAR_LOCATION_LOC (oloc) = gen_rtx_UNKNOWN_VAR_LOC ();
5629 }
5630
5631 mo.u.loc = oloc;
5632 }
5633 else if (type == MO_VAL_USE)
5634 {
5635 enum machine_mode mode2 = VOIDmode;
5636 enum micro_operation_type type2;
5637 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5638 rtx vloc, oloc = loc, nloc;
5639
5640 gcc_assert (cui->sets);
5641
5642 if (MEM_P (oloc)
5643 && !REG_P (XEXP (oloc, 0))
5644 && !MEM_P (XEXP (oloc, 0)))
5645 {
5646 rtx mloc = oloc;
5647 enum machine_mode address_mode = get_address_mode (mloc);
5648 cselib_val *val
5649 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5650 GET_MODE (mloc));
5651
5652 if (val && !cselib_preserved_value_p (val))
5653 preserve_value (val);
5654 }
5655
5656 type2 = use_type (loc, 0, &mode2);
5657
5658 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5659 || type2 == MO_CLOBBER);
5660
5661 if (type2 == MO_USE)
5662 vloc = var_lowpart (mode2, loc);
5663 else
5664 vloc = oloc;
5665
5666 /* The loc of a MO_VAL_USE may have two forms:
5667
5668 (concat val src): val is at src, a value-based
5669 representation.
5670
5671 (concat (concat val use) src): same as above, with use as
5672 the MO_USE tracked value, if it differs from src.
5673
5674 */
5675
5676 gcc_checking_assert (REG_P (loc) || MEM_P (loc));
5677 nloc = replace_expr_with_values (loc);
5678 if (!nloc)
5679 nloc = oloc;
5680
5681 if (vloc != nloc)
5682 oloc = gen_rtx_CONCAT (mode2, val->val_rtx, vloc);
5683 else
5684 oloc = val->val_rtx;
5685
5686 mo.u.loc = gen_rtx_CONCAT (mode, oloc, nloc);
5687
5688 if (type2 == MO_USE)
5689 VAL_HOLDS_TRACK_EXPR (mo.u.loc) = 1;
5690 if (!cselib_preserved_value_p (val))
5691 {
5692 VAL_NEEDS_RESOLUTION (mo.u.loc) = 1;
5693 preserve_value (val);
5694 }
5695 }
5696 else
5697 gcc_assert (type == MO_USE || type == MO_USE_NO_VAR);
5698
5699 if (dump_file && (dump_flags & TDF_DETAILS))
5700 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
5701 VTI (bb)->mos.safe_push (mo);
5702 }
5703
5704 return 0;
5705 }
5706
5707 /* Helper function for finding all uses of REG/MEM in X in insn INSN. */
5708
5709 static void
5710 add_uses_1 (rtx *x, void *cui)
5711 {
5712 for_each_rtx (x, add_uses, cui);
5713 }
5714
5715 /* This is the value used during expansion of locations. We want it
5716 to be unbounded, so that variables expanded deep in a recursion
5717 nest are fully evaluated, so that their values are cached
5718 correctly. We avoid recursion cycles through other means, and we
5719 don't unshare RTL, so excess complexity is not a problem. */
5720 #define EXPR_DEPTH (INT_MAX)
5721 /* We use this to keep too-complex expressions from being emitted as
5722 location notes, and then to debug information. Users can trade
5723 compile time for ridiculously complex expressions, although they're
5724 seldom useful, and they may often have to be discarded as not
5725 representable anyway. */
5726 #define EXPR_USE_DEPTH (PARAM_VALUE (PARAM_MAX_VARTRACK_EXPR_DEPTH))
5727
5728 /* Attempt to reverse the EXPR operation in the debug info and record
5729 it in the cselib table. Say for reg1 = reg2 + 6 even when reg2 is
5730 no longer live we can express its value as VAL - 6. */
5731
5732 static void
5733 reverse_op (rtx val, const_rtx expr, rtx insn)
5734 {
5735 rtx src, arg, ret;
5736 cselib_val *v;
5737 struct elt_loc_list *l;
5738 enum rtx_code code;
5739 int count;
5740
5741 if (GET_CODE (expr) != SET)
5742 return;
5743
5744 if (!REG_P (SET_DEST (expr)) || GET_MODE (val) != GET_MODE (SET_DEST (expr)))
5745 return;
5746
5747 src = SET_SRC (expr);
5748 switch (GET_CODE (src))
5749 {
5750 case PLUS:
5751 case MINUS:
5752 case XOR:
5753 case NOT:
5754 case NEG:
5755 if (!REG_P (XEXP (src, 0)))
5756 return;
5757 break;
5758 case SIGN_EXTEND:
5759 case ZERO_EXTEND:
5760 if (!REG_P (XEXP (src, 0)) && !MEM_P (XEXP (src, 0)))
5761 return;
5762 break;
5763 default:
5764 return;
5765 }
5766
5767 if (!SCALAR_INT_MODE_P (GET_MODE (src)) || XEXP (src, 0) == cfa_base_rtx)
5768 return;
5769
5770 v = cselib_lookup (XEXP (src, 0), GET_MODE (XEXP (src, 0)), 0, VOIDmode);
5771 if (!v || !cselib_preserved_value_p (v))
5772 return;
5773
5774 /* Use canonical V to avoid creating multiple redundant expressions
5775 for different VALUES equivalent to V. */
5776 v = canonical_cselib_val (v);
5777
5778 /* Adding a reverse op isn't useful if V already has an always valid
5779 location. Ignore ENTRY_VALUE, while it is always constant, we should
5780 prefer non-ENTRY_VALUE locations whenever possible. */
5781 for (l = v->locs, count = 0; l; l = l->next, count++)
5782 if (CONSTANT_P (l->loc)
5783 && (GET_CODE (l->loc) != CONST || !references_value_p (l->loc, 0)))
5784 return;
5785 /* Avoid creating too large locs lists. */
5786 else if (count == PARAM_VALUE (PARAM_MAX_VARTRACK_REVERSE_OP_SIZE))
5787 return;
5788
5789 switch (GET_CODE (src))
5790 {
5791 case NOT:
5792 case NEG:
5793 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5794 return;
5795 ret = gen_rtx_fmt_e (GET_CODE (src), GET_MODE (val), val);
5796 break;
5797 case SIGN_EXTEND:
5798 case ZERO_EXTEND:
5799 ret = gen_lowpart_SUBREG (GET_MODE (v->val_rtx), val);
5800 break;
5801 case XOR:
5802 code = XOR;
5803 goto binary;
5804 case PLUS:
5805 code = MINUS;
5806 goto binary;
5807 case MINUS:
5808 code = PLUS;
5809 goto binary;
5810 binary:
5811 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5812 return;
5813 arg = XEXP (src, 1);
5814 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5815 {
5816 arg = cselib_expand_value_rtx (arg, scratch_regs, 5);
5817 if (arg == NULL_RTX)
5818 return;
5819 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5820 return;
5821 }
5822 ret = simplify_gen_binary (code, GET_MODE (val), val, arg);
5823 if (ret == val)
5824 /* Ensure ret isn't VALUE itself (which can happen e.g. for
5825 (plus (reg1) (reg2)) when reg2 is known to be 0), as that
5826 breaks a lot of routines during var-tracking. */
5827 ret = gen_rtx_fmt_ee (PLUS, GET_MODE (val), val, const0_rtx);
5828 break;
5829 default:
5830 gcc_unreachable ();
5831 }
5832
5833 cselib_add_permanent_equiv (v, ret, insn);
5834 }
5835
5836 /* Add stores (register and memory references) LOC which will be tracked
5837 to VTI (bb)->mos. EXPR is the RTL expression containing the store.
5838 CUIP->insn is instruction which the LOC is part of. */
5839
5840 static void
5841 add_stores (rtx loc, const_rtx expr, void *cuip)
5842 {
5843 enum machine_mode mode = VOIDmode, mode2;
5844 struct count_use_info *cui = (struct count_use_info *)cuip;
5845 basic_block bb = cui->bb;
5846 micro_operation mo;
5847 rtx oloc = loc, nloc, src = NULL;
5848 enum micro_operation_type type = use_type (loc, cui, &mode);
5849 bool track_p = false;
5850 cselib_val *v;
5851 bool resolve, preserve;
5852
5853 if (type == MO_CLOBBER)
5854 return;
5855
5856 mode2 = mode;
5857
5858 if (REG_P (loc))
5859 {
5860 gcc_assert (loc != cfa_base_rtx);
5861 if ((GET_CODE (expr) == CLOBBER && type != MO_VAL_SET)
5862 || !(track_p = use_type (loc, NULL, &mode2) == MO_USE)
5863 || GET_CODE (expr) == CLOBBER)
5864 {
5865 mo.type = MO_CLOBBER;
5866 mo.u.loc = loc;
5867 if (GET_CODE (expr) == SET
5868 && SET_DEST (expr) == loc
5869 && !unsuitable_loc (SET_SRC (expr))
5870 && find_use_val (loc, mode, cui))
5871 {
5872 gcc_checking_assert (type == MO_VAL_SET);
5873 mo.u.loc = gen_rtx_SET (VOIDmode, loc, SET_SRC (expr));
5874 }
5875 }
5876 else
5877 {
5878 if (GET_CODE (expr) == SET
5879 && SET_DEST (expr) == loc
5880 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
5881 src = var_lowpart (mode2, SET_SRC (expr));
5882 loc = var_lowpart (mode2, loc);
5883
5884 if (src == NULL)
5885 {
5886 mo.type = MO_SET;
5887 mo.u.loc = loc;
5888 }
5889 else
5890 {
5891 rtx xexpr = gen_rtx_SET (VOIDmode, loc, src);
5892 if (same_variable_part_p (src, REG_EXPR (loc), REG_OFFSET (loc)))
5893 {
5894 /* If this is an instruction copying (part of) a parameter
5895 passed by invisible reference to its register location,
5896 pretend it's a SET so that the initial memory location
5897 is discarded, as the parameter register can be reused
5898 for other purposes and we do not track locations based
5899 on generic registers. */
5900 if (MEM_P (src)
5901 && REG_EXPR (loc)
5902 && TREE_CODE (REG_EXPR (loc)) == PARM_DECL
5903 && DECL_MODE (REG_EXPR (loc)) != BLKmode
5904 && MEM_P (DECL_INCOMING_RTL (REG_EXPR (loc)))
5905 && XEXP (DECL_INCOMING_RTL (REG_EXPR (loc)), 0)
5906 != arg_pointer_rtx)
5907 mo.type = MO_SET;
5908 else
5909 mo.type = MO_COPY;
5910 }
5911 else
5912 mo.type = MO_SET;
5913 mo.u.loc = xexpr;
5914 }
5915 }
5916 mo.insn = cui->insn;
5917 }
5918 else if (MEM_P (loc)
5919 && ((track_p = use_type (loc, NULL, &mode2) == MO_USE)
5920 || cui->sets))
5921 {
5922 if (MEM_P (loc) && type == MO_VAL_SET
5923 && !REG_P (XEXP (loc, 0))
5924 && !MEM_P (XEXP (loc, 0)))
5925 {
5926 rtx mloc = loc;
5927 enum machine_mode address_mode = get_address_mode (mloc);
5928 cselib_val *val = cselib_lookup (XEXP (mloc, 0),
5929 address_mode, 0,
5930 GET_MODE (mloc));
5931
5932 if (val && !cselib_preserved_value_p (val))
5933 preserve_value (val);
5934 }
5935
5936 if (GET_CODE (expr) == CLOBBER || !track_p)
5937 {
5938 mo.type = MO_CLOBBER;
5939 mo.u.loc = track_p ? var_lowpart (mode2, loc) : loc;
5940 }
5941 else
5942 {
5943 if (GET_CODE (expr) == SET
5944 && SET_DEST (expr) == loc
5945 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
5946 src = var_lowpart (mode2, SET_SRC (expr));
5947 loc = var_lowpart (mode2, loc);
5948
5949 if (src == NULL)
5950 {
5951 mo.type = MO_SET;
5952 mo.u.loc = loc;
5953 }
5954 else
5955 {
5956 rtx xexpr = gen_rtx_SET (VOIDmode, loc, src);
5957 if (same_variable_part_p (SET_SRC (xexpr),
5958 MEM_EXPR (loc),
5959 INT_MEM_OFFSET (loc)))
5960 mo.type = MO_COPY;
5961 else
5962 mo.type = MO_SET;
5963 mo.u.loc = xexpr;
5964 }
5965 }
5966 mo.insn = cui->insn;
5967 }
5968 else
5969 return;
5970
5971 if (type != MO_VAL_SET)
5972 goto log_and_return;
5973
5974 v = find_use_val (oloc, mode, cui);
5975
5976 if (!v)
5977 goto log_and_return;
5978
5979 resolve = preserve = !cselib_preserved_value_p (v);
5980
5981 /* We cannot track values for multiple-part variables, so we track only
5982 locations for tracked parameters passed either by invisible reference
5983 or directly in multiple locations. */
5984 if (track_p
5985 && REG_P (loc)
5986 && REG_EXPR (loc)
5987 && TREE_CODE (REG_EXPR (loc)) == PARM_DECL
5988 && DECL_MODE (REG_EXPR (loc)) != BLKmode
5989 && TREE_CODE (TREE_TYPE (REG_EXPR (loc))) != UNION_TYPE
5990 && ((MEM_P (DECL_INCOMING_RTL (REG_EXPR (loc)))
5991 && XEXP (DECL_INCOMING_RTL (REG_EXPR (loc)), 0) != arg_pointer_rtx)
5992 || (GET_CODE (DECL_INCOMING_RTL (REG_EXPR (loc))) == PARALLEL
5993 && XVECLEN (DECL_INCOMING_RTL (REG_EXPR (loc)), 0) > 1)))
5994 {
5995 /* Although we don't use the value here, it could be used later by the
5996 mere virtue of its existence as the operand of the reverse operation
5997 that gave rise to it (typically extension/truncation). Make sure it
5998 is preserved as required by vt_expand_var_loc_chain. */
5999 if (preserve)
6000 preserve_value (v);
6001 goto log_and_return;
6002 }
6003
6004 if (loc == stack_pointer_rtx
6005 && hard_frame_pointer_adjustment != -1
6006 && preserve)
6007 cselib_set_value_sp_based (v);
6008
6009 nloc = replace_expr_with_values (oloc);
6010 if (nloc)
6011 oloc = nloc;
6012
6013 if (GET_CODE (PATTERN (cui->insn)) == COND_EXEC)
6014 {
6015 cselib_val *oval = cselib_lookup (oloc, GET_MODE (oloc), 0, VOIDmode);
6016
6017 if (oval == v)
6018 return;
6019 gcc_assert (REG_P (oloc) || MEM_P (oloc));
6020
6021 if (oval && !cselib_preserved_value_p (oval))
6022 {
6023 micro_operation moa;
6024
6025 preserve_value (oval);
6026
6027 moa.type = MO_VAL_USE;
6028 moa.u.loc = gen_rtx_CONCAT (mode, oval->val_rtx, oloc);
6029 VAL_NEEDS_RESOLUTION (moa.u.loc) = 1;
6030 moa.insn = cui->insn;
6031
6032 if (dump_file && (dump_flags & TDF_DETAILS))
6033 log_op_type (moa.u.loc, cui->bb, cui->insn,
6034 moa.type, dump_file);
6035 VTI (bb)->mos.safe_push (moa);
6036 }
6037
6038 resolve = false;
6039 }
6040 else if (resolve && GET_CODE (mo.u.loc) == SET)
6041 {
6042 if (REG_P (SET_SRC (expr)) || MEM_P (SET_SRC (expr)))
6043 nloc = replace_expr_with_values (SET_SRC (expr));
6044 else
6045 nloc = NULL_RTX;
6046
6047 /* Avoid the mode mismatch between oexpr and expr. */
6048 if (!nloc && mode != mode2)
6049 {
6050 nloc = SET_SRC (expr);
6051 gcc_assert (oloc == SET_DEST (expr));
6052 }
6053
6054 if (nloc && nloc != SET_SRC (mo.u.loc))
6055 oloc = gen_rtx_SET (GET_MODE (mo.u.loc), oloc, nloc);
6056 else
6057 {
6058 if (oloc == SET_DEST (mo.u.loc))
6059 /* No point in duplicating. */
6060 oloc = mo.u.loc;
6061 if (!REG_P (SET_SRC (mo.u.loc)))
6062 resolve = false;
6063 }
6064 }
6065 else if (!resolve)
6066 {
6067 if (GET_CODE (mo.u.loc) == SET
6068 && oloc == SET_DEST (mo.u.loc))
6069 /* No point in duplicating. */
6070 oloc = mo.u.loc;
6071 }
6072 else
6073 resolve = false;
6074
6075 loc = gen_rtx_CONCAT (mode, v->val_rtx, oloc);
6076
6077 if (mo.u.loc != oloc)
6078 loc = gen_rtx_CONCAT (GET_MODE (mo.u.loc), loc, mo.u.loc);
6079
6080 /* The loc of a MO_VAL_SET may have various forms:
6081
6082 (concat val dst): dst now holds val
6083
6084 (concat val (set dst src)): dst now holds val, copied from src
6085
6086 (concat (concat val dstv) dst): dst now holds val; dstv is dst
6087 after replacing mems and non-top-level regs with values.
6088
6089 (concat (concat val dstv) (set dst src)): dst now holds val,
6090 copied from src. dstv is a value-based representation of dst, if
6091 it differs from dst. If resolution is needed, src is a REG, and
6092 its mode is the same as that of val.
6093
6094 (concat (concat val (set dstv srcv)) (set dst src)): src
6095 copied to dst, holding val. dstv and srcv are value-based
6096 representations of dst and src, respectively.
6097
6098 */
6099
6100 if (GET_CODE (PATTERN (cui->insn)) != COND_EXEC)
6101 reverse_op (v->val_rtx, expr, cui->insn);
6102
6103 mo.u.loc = loc;
6104
6105 if (track_p)
6106 VAL_HOLDS_TRACK_EXPR (loc) = 1;
6107 if (preserve)
6108 {
6109 VAL_NEEDS_RESOLUTION (loc) = resolve;
6110 preserve_value (v);
6111 }
6112 if (mo.type == MO_CLOBBER)
6113 VAL_EXPR_IS_CLOBBERED (loc) = 1;
6114 if (mo.type == MO_COPY)
6115 VAL_EXPR_IS_COPIED (loc) = 1;
6116
6117 mo.type = MO_VAL_SET;
6118
6119 log_and_return:
6120 if (dump_file && (dump_flags & TDF_DETAILS))
6121 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
6122 VTI (bb)->mos.safe_push (mo);
6123 }
6124
6125 /* Arguments to the call. */
6126 static rtx call_arguments;
6127
6128 /* Compute call_arguments. */
6129
6130 static void
6131 prepare_call_arguments (basic_block bb, rtx insn)
6132 {
6133 rtx link, x, call;
6134 rtx prev, cur, next;
6135 rtx this_arg = NULL_RTX;
6136 tree type = NULL_TREE, t, fndecl = NULL_TREE;
6137 tree obj_type_ref = NULL_TREE;
6138 CUMULATIVE_ARGS args_so_far_v;
6139 cumulative_args_t args_so_far;
6140
6141 memset (&args_so_far_v, 0, sizeof (args_so_far_v));
6142 args_so_far = pack_cumulative_args (&args_so_far_v);
6143 call = get_call_rtx_from (insn);
6144 if (call)
6145 {
6146 if (GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
6147 {
6148 rtx symbol = XEXP (XEXP (call, 0), 0);
6149 if (SYMBOL_REF_DECL (symbol))
6150 fndecl = SYMBOL_REF_DECL (symbol);
6151 }
6152 if (fndecl == NULL_TREE)
6153 fndecl = MEM_EXPR (XEXP (call, 0));
6154 if (fndecl
6155 && TREE_CODE (TREE_TYPE (fndecl)) != FUNCTION_TYPE
6156 && TREE_CODE (TREE_TYPE (fndecl)) != METHOD_TYPE)
6157 fndecl = NULL_TREE;
6158 if (fndecl && TYPE_ARG_TYPES (TREE_TYPE (fndecl)))
6159 type = TREE_TYPE (fndecl);
6160 if (fndecl && TREE_CODE (fndecl) != FUNCTION_DECL)
6161 {
6162 if (TREE_CODE (fndecl) == INDIRECT_REF
6163 && TREE_CODE (TREE_OPERAND (fndecl, 0)) == OBJ_TYPE_REF)
6164 obj_type_ref = TREE_OPERAND (fndecl, 0);
6165 fndecl = NULL_TREE;
6166 }
6167 if (type)
6168 {
6169 for (t = TYPE_ARG_TYPES (type); t && t != void_list_node;
6170 t = TREE_CHAIN (t))
6171 if (TREE_CODE (TREE_VALUE (t)) == REFERENCE_TYPE
6172 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_VALUE (t))))
6173 break;
6174 if ((t == NULL || t == void_list_node) && obj_type_ref == NULL_TREE)
6175 type = NULL;
6176 else
6177 {
6178 int nargs ATTRIBUTE_UNUSED = list_length (TYPE_ARG_TYPES (type));
6179 link = CALL_INSN_FUNCTION_USAGE (insn);
6180 #ifndef PCC_STATIC_STRUCT_RETURN
6181 if (aggregate_value_p (TREE_TYPE (type), type)
6182 && targetm.calls.struct_value_rtx (type, 0) == 0)
6183 {
6184 tree struct_addr = build_pointer_type (TREE_TYPE (type));
6185 enum machine_mode mode = TYPE_MODE (struct_addr);
6186 rtx reg;
6187 INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
6188 nargs + 1);
6189 reg = targetm.calls.function_arg (args_so_far, mode,
6190 struct_addr, true);
6191 targetm.calls.function_arg_advance (args_so_far, mode,
6192 struct_addr, true);
6193 if (reg == NULL_RTX)
6194 {
6195 for (; link; link = XEXP (link, 1))
6196 if (GET_CODE (XEXP (link, 0)) == USE
6197 && MEM_P (XEXP (XEXP (link, 0), 0)))
6198 {
6199 link = XEXP (link, 1);
6200 break;
6201 }
6202 }
6203 }
6204 else
6205 #endif
6206 INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
6207 nargs);
6208 if (obj_type_ref && TYPE_ARG_TYPES (type) != void_list_node)
6209 {
6210 enum machine_mode mode;
6211 t = TYPE_ARG_TYPES (type);
6212 mode = TYPE_MODE (TREE_VALUE (t));
6213 this_arg = targetm.calls.function_arg (args_so_far, mode,
6214 TREE_VALUE (t), true);
6215 if (this_arg && !REG_P (this_arg))
6216 this_arg = NULL_RTX;
6217 else if (this_arg == NULL_RTX)
6218 {
6219 for (; link; link = XEXP (link, 1))
6220 if (GET_CODE (XEXP (link, 0)) == USE
6221 && MEM_P (XEXP (XEXP (link, 0), 0)))
6222 {
6223 this_arg = XEXP (XEXP (link, 0), 0);
6224 break;
6225 }
6226 }
6227 }
6228 }
6229 }
6230 }
6231 t = type ? TYPE_ARG_TYPES (type) : NULL_TREE;
6232
6233 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
6234 if (GET_CODE (XEXP (link, 0)) == USE)
6235 {
6236 rtx item = NULL_RTX;
6237 x = XEXP (XEXP (link, 0), 0);
6238 if (GET_MODE (link) == VOIDmode
6239 || GET_MODE (link) == BLKmode
6240 || (GET_MODE (link) != GET_MODE (x)
6241 && (GET_MODE_CLASS (GET_MODE (link)) != MODE_INT
6242 || GET_MODE_CLASS (GET_MODE (x)) != MODE_INT)))
6243 /* Can't do anything for these, if the original type mode
6244 isn't known or can't be converted. */;
6245 else if (REG_P (x))
6246 {
6247 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
6248 if (val && cselib_preserved_value_p (val))
6249 item = val->val_rtx;
6250 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT)
6251 {
6252 enum machine_mode mode = GET_MODE (x);
6253
6254 while ((mode = GET_MODE_WIDER_MODE (mode)) != VOIDmode
6255 && GET_MODE_BITSIZE (mode) <= BITS_PER_WORD)
6256 {
6257 rtx reg = simplify_subreg (mode, x, GET_MODE (x), 0);
6258
6259 if (reg == NULL_RTX || !REG_P (reg))
6260 continue;
6261 val = cselib_lookup (reg, mode, 0, VOIDmode);
6262 if (val && cselib_preserved_value_p (val))
6263 {
6264 item = val->val_rtx;
6265 break;
6266 }
6267 }
6268 }
6269 }
6270 else if (MEM_P (x))
6271 {
6272 rtx mem = x;
6273 cselib_val *val;
6274
6275 if (!frame_pointer_needed)
6276 {
6277 struct adjust_mem_data amd;
6278 amd.mem_mode = VOIDmode;
6279 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
6280 amd.side_effects = NULL_RTX;
6281 amd.store = true;
6282 mem = simplify_replace_fn_rtx (mem, NULL_RTX, adjust_mems,
6283 &amd);
6284 gcc_assert (amd.side_effects == NULL_RTX);
6285 }
6286 val = cselib_lookup (mem, GET_MODE (mem), 0, VOIDmode);
6287 if (val && cselib_preserved_value_p (val))
6288 item = val->val_rtx;
6289 else if (GET_MODE_CLASS (GET_MODE (mem)) != MODE_INT)
6290 {
6291 /* For non-integer stack argument see also if they weren't
6292 initialized by integers. */
6293 enum machine_mode imode = int_mode_for_mode (GET_MODE (mem));
6294 if (imode != GET_MODE (mem) && imode != BLKmode)
6295 {
6296 val = cselib_lookup (adjust_address_nv (mem, imode, 0),
6297 imode, 0, VOIDmode);
6298 if (val && cselib_preserved_value_p (val))
6299 item = lowpart_subreg (GET_MODE (x), val->val_rtx,
6300 imode);
6301 }
6302 }
6303 }
6304 if (item)
6305 {
6306 rtx x2 = x;
6307 if (GET_MODE (item) != GET_MODE (link))
6308 item = lowpart_subreg (GET_MODE (link), item, GET_MODE (item));
6309 if (GET_MODE (x2) != GET_MODE (link))
6310 x2 = lowpart_subreg (GET_MODE (link), x2, GET_MODE (x2));
6311 item = gen_rtx_CONCAT (GET_MODE (link), x2, item);
6312 call_arguments
6313 = gen_rtx_EXPR_LIST (VOIDmode, item, call_arguments);
6314 }
6315 if (t && t != void_list_node)
6316 {
6317 tree argtype = TREE_VALUE (t);
6318 enum machine_mode mode = TYPE_MODE (argtype);
6319 rtx reg;
6320 if (pass_by_reference (&args_so_far_v, mode, argtype, true))
6321 {
6322 argtype = build_pointer_type (argtype);
6323 mode = TYPE_MODE (argtype);
6324 }
6325 reg = targetm.calls.function_arg (args_so_far, mode,
6326 argtype, true);
6327 if (TREE_CODE (argtype) == REFERENCE_TYPE
6328 && INTEGRAL_TYPE_P (TREE_TYPE (argtype))
6329 && reg
6330 && REG_P (reg)
6331 && GET_MODE (reg) == mode
6332 && GET_MODE_CLASS (mode) == MODE_INT
6333 && REG_P (x)
6334 && REGNO (x) == REGNO (reg)
6335 && GET_MODE (x) == mode
6336 && item)
6337 {
6338 enum machine_mode indmode
6339 = TYPE_MODE (TREE_TYPE (argtype));
6340 rtx mem = gen_rtx_MEM (indmode, x);
6341 cselib_val *val = cselib_lookup (mem, indmode, 0, VOIDmode);
6342 if (val && cselib_preserved_value_p (val))
6343 {
6344 item = gen_rtx_CONCAT (indmode, mem, val->val_rtx);
6345 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
6346 call_arguments);
6347 }
6348 else
6349 {
6350 struct elt_loc_list *l;
6351 tree initial;
6352
6353 /* Try harder, when passing address of a constant
6354 pool integer it can be easily read back. */
6355 item = XEXP (item, 1);
6356 if (GET_CODE (item) == SUBREG)
6357 item = SUBREG_REG (item);
6358 gcc_assert (GET_CODE (item) == VALUE);
6359 val = CSELIB_VAL_PTR (item);
6360 for (l = val->locs; l; l = l->next)
6361 if (GET_CODE (l->loc) == SYMBOL_REF
6362 && TREE_CONSTANT_POOL_ADDRESS_P (l->loc)
6363 && SYMBOL_REF_DECL (l->loc)
6364 && DECL_INITIAL (SYMBOL_REF_DECL (l->loc)))
6365 {
6366 initial = DECL_INITIAL (SYMBOL_REF_DECL (l->loc));
6367 if (tree_fits_shwi_p (initial))
6368 {
6369 item = GEN_INT (tree_to_shwi (initial));
6370 item = gen_rtx_CONCAT (indmode, mem, item);
6371 call_arguments
6372 = gen_rtx_EXPR_LIST (VOIDmode, item,
6373 call_arguments);
6374 }
6375 break;
6376 }
6377 }
6378 }
6379 targetm.calls.function_arg_advance (args_so_far, mode,
6380 argtype, true);
6381 t = TREE_CHAIN (t);
6382 }
6383 }
6384
6385 /* Add debug arguments. */
6386 if (fndecl
6387 && TREE_CODE (fndecl) == FUNCTION_DECL
6388 && DECL_HAS_DEBUG_ARGS_P (fndecl))
6389 {
6390 vec<tree, va_gc> **debug_args = decl_debug_args_lookup (fndecl);
6391 if (debug_args)
6392 {
6393 unsigned int ix;
6394 tree param;
6395 for (ix = 0; vec_safe_iterate (*debug_args, ix, &param); ix += 2)
6396 {
6397 rtx item;
6398 tree dtemp = (**debug_args)[ix + 1];
6399 enum machine_mode mode = DECL_MODE (dtemp);
6400 item = gen_rtx_DEBUG_PARAMETER_REF (mode, param);
6401 item = gen_rtx_CONCAT (mode, item, DECL_RTL_KNOWN_SET (dtemp));
6402 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
6403 call_arguments);
6404 }
6405 }
6406 }
6407
6408 /* Reverse call_arguments chain. */
6409 prev = NULL_RTX;
6410 for (cur = call_arguments; cur; cur = next)
6411 {
6412 next = XEXP (cur, 1);
6413 XEXP (cur, 1) = prev;
6414 prev = cur;
6415 }
6416 call_arguments = prev;
6417
6418 x = get_call_rtx_from (insn);
6419 if (x)
6420 {
6421 x = XEXP (XEXP (x, 0), 0);
6422 if (GET_CODE (x) == SYMBOL_REF)
6423 /* Don't record anything. */;
6424 else if (CONSTANT_P (x))
6425 {
6426 x = gen_rtx_CONCAT (GET_MODE (x) == VOIDmode ? Pmode : GET_MODE (x),
6427 pc_rtx, x);
6428 call_arguments
6429 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6430 }
6431 else
6432 {
6433 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
6434 if (val && cselib_preserved_value_p (val))
6435 {
6436 x = gen_rtx_CONCAT (GET_MODE (x), pc_rtx, val->val_rtx);
6437 call_arguments
6438 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6439 }
6440 }
6441 }
6442 if (this_arg)
6443 {
6444 enum machine_mode mode
6445 = TYPE_MODE (TREE_TYPE (OBJ_TYPE_REF_EXPR (obj_type_ref)));
6446 rtx clobbered = gen_rtx_MEM (mode, this_arg);
6447 HOST_WIDE_INT token
6448 = tree_to_shwi (OBJ_TYPE_REF_TOKEN (obj_type_ref));
6449 if (token)
6450 clobbered = plus_constant (mode, clobbered,
6451 token * GET_MODE_SIZE (mode));
6452 clobbered = gen_rtx_MEM (mode, clobbered);
6453 x = gen_rtx_CONCAT (mode, gen_rtx_CLOBBER (VOIDmode, pc_rtx), clobbered);
6454 call_arguments
6455 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6456 }
6457 }
6458
6459 /* Callback for cselib_record_sets_hook, that records as micro
6460 operations uses and stores in an insn after cselib_record_sets has
6461 analyzed the sets in an insn, but before it modifies the stored
6462 values in the internal tables, unless cselib_record_sets doesn't
6463 call it directly (perhaps because we're not doing cselib in the
6464 first place, in which case sets and n_sets will be 0). */
6465
6466 static void
6467 add_with_sets (rtx insn, struct cselib_set *sets, int n_sets)
6468 {
6469 basic_block bb = BLOCK_FOR_INSN (insn);
6470 int n1, n2;
6471 struct count_use_info cui;
6472 micro_operation *mos;
6473
6474 cselib_hook_called = true;
6475
6476 cui.insn = insn;
6477 cui.bb = bb;
6478 cui.sets = sets;
6479 cui.n_sets = n_sets;
6480
6481 n1 = VTI (bb)->mos.length ();
6482 cui.store_p = false;
6483 note_uses (&PATTERN (insn), add_uses_1, &cui);
6484 n2 = VTI (bb)->mos.length () - 1;
6485 mos = VTI (bb)->mos.address ();
6486
6487 /* Order the MO_USEs to be before MO_USE_NO_VARs and MO_VAL_USE, and
6488 MO_VAL_LOC last. */
6489 while (n1 < n2)
6490 {
6491 while (n1 < n2 && mos[n1].type == MO_USE)
6492 n1++;
6493 while (n1 < n2 && mos[n2].type != MO_USE)
6494 n2--;
6495 if (n1 < n2)
6496 {
6497 micro_operation sw;
6498
6499 sw = mos[n1];
6500 mos[n1] = mos[n2];
6501 mos[n2] = sw;
6502 }
6503 }
6504
6505 n2 = VTI (bb)->mos.length () - 1;
6506 while (n1 < n2)
6507 {
6508 while (n1 < n2 && mos[n1].type != MO_VAL_LOC)
6509 n1++;
6510 while (n1 < n2 && mos[n2].type == MO_VAL_LOC)
6511 n2--;
6512 if (n1 < n2)
6513 {
6514 micro_operation sw;
6515
6516 sw = mos[n1];
6517 mos[n1] = mos[n2];
6518 mos[n2] = sw;
6519 }
6520 }
6521
6522 if (CALL_P (insn))
6523 {
6524 micro_operation mo;
6525
6526 mo.type = MO_CALL;
6527 mo.insn = insn;
6528 mo.u.loc = call_arguments;
6529 call_arguments = NULL_RTX;
6530
6531 if (dump_file && (dump_flags & TDF_DETAILS))
6532 log_op_type (PATTERN (insn), bb, insn, mo.type, dump_file);
6533 VTI (bb)->mos.safe_push (mo);
6534 }
6535
6536 n1 = VTI (bb)->mos.length ();
6537 /* This will record NEXT_INSN (insn), such that we can
6538 insert notes before it without worrying about any
6539 notes that MO_USEs might emit after the insn. */
6540 cui.store_p = true;
6541 note_stores (PATTERN (insn), add_stores, &cui);
6542 n2 = VTI (bb)->mos.length () - 1;
6543 mos = VTI (bb)->mos.address ();
6544
6545 /* Order the MO_VAL_USEs first (note_stores does nothing
6546 on DEBUG_INSNs, so there are no MO_VAL_LOCs from this
6547 insn), then MO_CLOBBERs, then MO_SET/MO_COPY/MO_VAL_SET. */
6548 while (n1 < n2)
6549 {
6550 while (n1 < n2 && mos[n1].type == MO_VAL_USE)
6551 n1++;
6552 while (n1 < n2 && mos[n2].type != MO_VAL_USE)
6553 n2--;
6554 if (n1 < n2)
6555 {
6556 micro_operation sw;
6557
6558 sw = mos[n1];
6559 mos[n1] = mos[n2];
6560 mos[n2] = sw;
6561 }
6562 }
6563
6564 n2 = VTI (bb)->mos.length () - 1;
6565 while (n1 < n2)
6566 {
6567 while (n1 < n2 && mos[n1].type == MO_CLOBBER)
6568 n1++;
6569 while (n1 < n2 && mos[n2].type != MO_CLOBBER)
6570 n2--;
6571 if (n1 < n2)
6572 {
6573 micro_operation sw;
6574
6575 sw = mos[n1];
6576 mos[n1] = mos[n2];
6577 mos[n2] = sw;
6578 }
6579 }
6580 }
6581
6582 static enum var_init_status
6583 find_src_status (dataflow_set *in, rtx src)
6584 {
6585 tree decl = NULL_TREE;
6586 enum var_init_status status = VAR_INIT_STATUS_UNINITIALIZED;
6587
6588 if (! flag_var_tracking_uninit)
6589 status = VAR_INIT_STATUS_INITIALIZED;
6590
6591 if (src && REG_P (src))
6592 decl = var_debug_decl (REG_EXPR (src));
6593 else if (src && MEM_P (src))
6594 decl = var_debug_decl (MEM_EXPR (src));
6595
6596 if (src && decl)
6597 status = get_init_value (in, src, dv_from_decl (decl));
6598
6599 return status;
6600 }
6601
6602 /* SRC is the source of an assignment. Use SET to try to find what
6603 was ultimately assigned to SRC. Return that value if known,
6604 otherwise return SRC itself. */
6605
6606 static rtx
6607 find_src_set_src (dataflow_set *set, rtx src)
6608 {
6609 tree decl = NULL_TREE; /* The variable being copied around. */
6610 rtx set_src = NULL_RTX; /* The value for "decl" stored in "src". */
6611 variable var;
6612 location_chain nextp;
6613 int i;
6614 bool found;
6615
6616 if (src && REG_P (src))
6617 decl = var_debug_decl (REG_EXPR (src));
6618 else if (src && MEM_P (src))
6619 decl = var_debug_decl (MEM_EXPR (src));
6620
6621 if (src && decl)
6622 {
6623 decl_or_value dv = dv_from_decl (decl);
6624
6625 var = shared_hash_find (set->vars, dv);
6626 if (var)
6627 {
6628 found = false;
6629 for (i = 0; i < var->n_var_parts && !found; i++)
6630 for (nextp = var->var_part[i].loc_chain; nextp && !found;
6631 nextp = nextp->next)
6632 if (rtx_equal_p (nextp->loc, src))
6633 {
6634 set_src = nextp->set_src;
6635 found = true;
6636 }
6637
6638 }
6639 }
6640
6641 return set_src;
6642 }
6643
6644 /* Compute the changes of variable locations in the basic block BB. */
6645
6646 static bool
6647 compute_bb_dataflow (basic_block bb)
6648 {
6649 unsigned int i;
6650 micro_operation *mo;
6651 bool changed;
6652 dataflow_set old_out;
6653 dataflow_set *in = &VTI (bb)->in;
6654 dataflow_set *out = &VTI (bb)->out;
6655
6656 dataflow_set_init (&old_out);
6657 dataflow_set_copy (&old_out, out);
6658 dataflow_set_copy (out, in);
6659
6660 if (MAY_HAVE_DEBUG_INSNS)
6661 local_get_addr_cache = new hash_map<rtx, rtx>;
6662
6663 FOR_EACH_VEC_ELT (VTI (bb)->mos, i, mo)
6664 {
6665 rtx insn = mo->insn;
6666
6667 switch (mo->type)
6668 {
6669 case MO_CALL:
6670 dataflow_set_clear_at_call (out);
6671 break;
6672
6673 case MO_USE:
6674 {
6675 rtx loc = mo->u.loc;
6676
6677 if (REG_P (loc))
6678 var_reg_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6679 else if (MEM_P (loc))
6680 var_mem_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6681 }
6682 break;
6683
6684 case MO_VAL_LOC:
6685 {
6686 rtx loc = mo->u.loc;
6687 rtx val, vloc;
6688 tree var;
6689
6690 if (GET_CODE (loc) == CONCAT)
6691 {
6692 val = XEXP (loc, 0);
6693 vloc = XEXP (loc, 1);
6694 }
6695 else
6696 {
6697 val = NULL_RTX;
6698 vloc = loc;
6699 }
6700
6701 var = PAT_VAR_LOCATION_DECL (vloc);
6702
6703 clobber_variable_part (out, NULL_RTX,
6704 dv_from_decl (var), 0, NULL_RTX);
6705 if (val)
6706 {
6707 if (VAL_NEEDS_RESOLUTION (loc))
6708 val_resolve (out, val, PAT_VAR_LOCATION_LOC (vloc), insn);
6709 set_variable_part (out, val, dv_from_decl (var), 0,
6710 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6711 INSERT);
6712 }
6713 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
6714 set_variable_part (out, PAT_VAR_LOCATION_LOC (vloc),
6715 dv_from_decl (var), 0,
6716 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6717 INSERT);
6718 }
6719 break;
6720
6721 case MO_VAL_USE:
6722 {
6723 rtx loc = mo->u.loc;
6724 rtx val, vloc, uloc;
6725
6726 vloc = uloc = XEXP (loc, 1);
6727 val = XEXP (loc, 0);
6728
6729 if (GET_CODE (val) == CONCAT)
6730 {
6731 uloc = XEXP (val, 1);
6732 val = XEXP (val, 0);
6733 }
6734
6735 if (VAL_NEEDS_RESOLUTION (loc))
6736 val_resolve (out, val, vloc, insn);
6737 else
6738 val_store (out, val, uloc, insn, false);
6739
6740 if (VAL_HOLDS_TRACK_EXPR (loc))
6741 {
6742 if (GET_CODE (uloc) == REG)
6743 var_reg_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6744 NULL);
6745 else if (GET_CODE (uloc) == MEM)
6746 var_mem_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6747 NULL);
6748 }
6749 }
6750 break;
6751
6752 case MO_VAL_SET:
6753 {
6754 rtx loc = mo->u.loc;
6755 rtx val, vloc, uloc;
6756 rtx dstv, srcv;
6757
6758 vloc = loc;
6759 uloc = XEXP (vloc, 1);
6760 val = XEXP (vloc, 0);
6761 vloc = uloc;
6762
6763 if (GET_CODE (uloc) == SET)
6764 {
6765 dstv = SET_DEST (uloc);
6766 srcv = SET_SRC (uloc);
6767 }
6768 else
6769 {
6770 dstv = uloc;
6771 srcv = NULL;
6772 }
6773
6774 if (GET_CODE (val) == CONCAT)
6775 {
6776 dstv = vloc = XEXP (val, 1);
6777 val = XEXP (val, 0);
6778 }
6779
6780 if (GET_CODE (vloc) == SET)
6781 {
6782 srcv = SET_SRC (vloc);
6783
6784 gcc_assert (val != srcv);
6785 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
6786
6787 dstv = vloc = SET_DEST (vloc);
6788
6789 if (VAL_NEEDS_RESOLUTION (loc))
6790 val_resolve (out, val, srcv, insn);
6791 }
6792 else if (VAL_NEEDS_RESOLUTION (loc))
6793 {
6794 gcc_assert (GET_CODE (uloc) == SET
6795 && GET_CODE (SET_SRC (uloc)) == REG);
6796 val_resolve (out, val, SET_SRC (uloc), insn);
6797 }
6798
6799 if (VAL_HOLDS_TRACK_EXPR (loc))
6800 {
6801 if (VAL_EXPR_IS_CLOBBERED (loc))
6802 {
6803 if (REG_P (uloc))
6804 var_reg_delete (out, uloc, true);
6805 else if (MEM_P (uloc))
6806 {
6807 gcc_assert (MEM_P (dstv));
6808 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (uloc));
6809 var_mem_delete (out, dstv, true);
6810 }
6811 }
6812 else
6813 {
6814 bool copied_p = VAL_EXPR_IS_COPIED (loc);
6815 rtx src = NULL, dst = uloc;
6816 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
6817
6818 if (GET_CODE (uloc) == SET)
6819 {
6820 src = SET_SRC (uloc);
6821 dst = SET_DEST (uloc);
6822 }
6823
6824 if (copied_p)
6825 {
6826 if (flag_var_tracking_uninit)
6827 {
6828 status = find_src_status (in, src);
6829
6830 if (status == VAR_INIT_STATUS_UNKNOWN)
6831 status = find_src_status (out, src);
6832 }
6833
6834 src = find_src_set_src (in, src);
6835 }
6836
6837 if (REG_P (dst))
6838 var_reg_delete_and_set (out, dst, !copied_p,
6839 status, srcv);
6840 else if (MEM_P (dst))
6841 {
6842 gcc_assert (MEM_P (dstv));
6843 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (dst));
6844 var_mem_delete_and_set (out, dstv, !copied_p,
6845 status, srcv);
6846 }
6847 }
6848 }
6849 else if (REG_P (uloc))
6850 var_regno_delete (out, REGNO (uloc));
6851 else if (MEM_P (uloc))
6852 {
6853 gcc_checking_assert (GET_CODE (vloc) == MEM);
6854 gcc_checking_assert (dstv == vloc);
6855 if (dstv != vloc)
6856 clobber_overlapping_mems (out, vloc);
6857 }
6858
6859 val_store (out, val, dstv, insn, true);
6860 }
6861 break;
6862
6863 case MO_SET:
6864 {
6865 rtx loc = mo->u.loc;
6866 rtx set_src = NULL;
6867
6868 if (GET_CODE (loc) == SET)
6869 {
6870 set_src = SET_SRC (loc);
6871 loc = SET_DEST (loc);
6872 }
6873
6874 if (REG_P (loc))
6875 var_reg_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6876 set_src);
6877 else if (MEM_P (loc))
6878 var_mem_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6879 set_src);
6880 }
6881 break;
6882
6883 case MO_COPY:
6884 {
6885 rtx loc = mo->u.loc;
6886 enum var_init_status src_status;
6887 rtx set_src = NULL;
6888
6889 if (GET_CODE (loc) == SET)
6890 {
6891 set_src = SET_SRC (loc);
6892 loc = SET_DEST (loc);
6893 }
6894
6895 if (! flag_var_tracking_uninit)
6896 src_status = VAR_INIT_STATUS_INITIALIZED;
6897 else
6898 {
6899 src_status = find_src_status (in, set_src);
6900
6901 if (src_status == VAR_INIT_STATUS_UNKNOWN)
6902 src_status = find_src_status (out, set_src);
6903 }
6904
6905 set_src = find_src_set_src (in, set_src);
6906
6907 if (REG_P (loc))
6908 var_reg_delete_and_set (out, loc, false, src_status, set_src);
6909 else if (MEM_P (loc))
6910 var_mem_delete_and_set (out, loc, false, src_status, set_src);
6911 }
6912 break;
6913
6914 case MO_USE_NO_VAR:
6915 {
6916 rtx loc = mo->u.loc;
6917
6918 if (REG_P (loc))
6919 var_reg_delete (out, loc, false);
6920 else if (MEM_P (loc))
6921 var_mem_delete (out, loc, false);
6922 }
6923 break;
6924
6925 case MO_CLOBBER:
6926 {
6927 rtx loc = mo->u.loc;
6928
6929 if (REG_P (loc))
6930 var_reg_delete (out, loc, true);
6931 else if (MEM_P (loc))
6932 var_mem_delete (out, loc, true);
6933 }
6934 break;
6935
6936 case MO_ADJUST:
6937 out->stack_adjust += mo->u.adjust;
6938 break;
6939 }
6940 }
6941
6942 if (MAY_HAVE_DEBUG_INSNS)
6943 {
6944 delete local_get_addr_cache;
6945 local_get_addr_cache = NULL;
6946
6947 dataflow_set_equiv_regs (out);
6948 shared_hash_htab (out->vars)
6949 ->traverse <dataflow_set *, canonicalize_values_mark> (out);
6950 shared_hash_htab (out->vars)
6951 ->traverse <dataflow_set *, canonicalize_values_star> (out);
6952 #if ENABLE_CHECKING
6953 shared_hash_htab (out->vars)
6954 ->traverse <dataflow_set *, canonicalize_loc_order_check> (out);
6955 #endif
6956 }
6957 changed = dataflow_set_different (&old_out, out);
6958 dataflow_set_destroy (&old_out);
6959 return changed;
6960 }
6961
6962 /* Find the locations of variables in the whole function. */
6963
6964 static bool
6965 vt_find_locations (void)
6966 {
6967 fibheap_t worklist, pending, fibheap_swap;
6968 sbitmap visited, in_worklist, in_pending, sbitmap_swap;
6969 basic_block bb;
6970 edge e;
6971 int *bb_order;
6972 int *rc_order;
6973 int i;
6974 int htabsz = 0;
6975 int htabmax = PARAM_VALUE (PARAM_MAX_VARTRACK_SIZE);
6976 bool success = true;
6977
6978 timevar_push (TV_VAR_TRACKING_DATAFLOW);
6979 /* Compute reverse completion order of depth first search of the CFG
6980 so that the data-flow runs faster. */
6981 rc_order = XNEWVEC (int, n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS);
6982 bb_order = XNEWVEC (int, last_basic_block_for_fn (cfun));
6983 pre_and_rev_post_order_compute (NULL, rc_order, false);
6984 for (i = 0; i < n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS; i++)
6985 bb_order[rc_order[i]] = i;
6986 free (rc_order);
6987
6988 worklist = fibheap_new ();
6989 pending = fibheap_new ();
6990 visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
6991 in_worklist = sbitmap_alloc (last_basic_block_for_fn (cfun));
6992 in_pending = sbitmap_alloc (last_basic_block_for_fn (cfun));
6993 bitmap_clear (in_worklist);
6994
6995 FOR_EACH_BB_FN (bb, cfun)
6996 fibheap_insert (pending, bb_order[bb->index], bb);
6997 bitmap_ones (in_pending);
6998
6999 while (success && !fibheap_empty (pending))
7000 {
7001 fibheap_swap = pending;
7002 pending = worklist;
7003 worklist = fibheap_swap;
7004 sbitmap_swap = in_pending;
7005 in_pending = in_worklist;
7006 in_worklist = sbitmap_swap;
7007
7008 bitmap_clear (visited);
7009
7010 while (!fibheap_empty (worklist))
7011 {
7012 bb = (basic_block) fibheap_extract_min (worklist);
7013 bitmap_clear_bit (in_worklist, bb->index);
7014 gcc_assert (!bitmap_bit_p (visited, bb->index));
7015 if (!bitmap_bit_p (visited, bb->index))
7016 {
7017 bool changed;
7018 edge_iterator ei;
7019 int oldinsz, oldoutsz;
7020
7021 bitmap_set_bit (visited, bb->index);
7022
7023 if (VTI (bb)->in.vars)
7024 {
7025 htabsz
7026 -= shared_hash_htab (VTI (bb)->in.vars)->size ()
7027 + shared_hash_htab (VTI (bb)->out.vars)->size ();
7028 oldinsz = shared_hash_htab (VTI (bb)->in.vars)->elements ();
7029 oldoutsz
7030 = shared_hash_htab (VTI (bb)->out.vars)->elements ();
7031 }
7032 else
7033 oldinsz = oldoutsz = 0;
7034
7035 if (MAY_HAVE_DEBUG_INSNS)
7036 {
7037 dataflow_set *in = &VTI (bb)->in, *first_out = NULL;
7038 bool first = true, adjust = false;
7039
7040 /* Calculate the IN set as the intersection of
7041 predecessor OUT sets. */
7042
7043 dataflow_set_clear (in);
7044 dst_can_be_shared = true;
7045
7046 FOR_EACH_EDGE (e, ei, bb->preds)
7047 if (!VTI (e->src)->flooded)
7048 gcc_assert (bb_order[bb->index]
7049 <= bb_order[e->src->index]);
7050 else if (first)
7051 {
7052 dataflow_set_copy (in, &VTI (e->src)->out);
7053 first_out = &VTI (e->src)->out;
7054 first = false;
7055 }
7056 else
7057 {
7058 dataflow_set_merge (in, &VTI (e->src)->out);
7059 adjust = true;
7060 }
7061
7062 if (adjust)
7063 {
7064 dataflow_post_merge_adjust (in, &VTI (bb)->permp);
7065 #if ENABLE_CHECKING
7066 /* Merge and merge_adjust should keep entries in
7067 canonical order. */
7068 shared_hash_htab (in->vars)
7069 ->traverse <dataflow_set *,
7070 canonicalize_loc_order_check> (in);
7071 #endif
7072 if (dst_can_be_shared)
7073 {
7074 shared_hash_destroy (in->vars);
7075 in->vars = shared_hash_copy (first_out->vars);
7076 }
7077 }
7078
7079 VTI (bb)->flooded = true;
7080 }
7081 else
7082 {
7083 /* Calculate the IN set as union of predecessor OUT sets. */
7084 dataflow_set_clear (&VTI (bb)->in);
7085 FOR_EACH_EDGE (e, ei, bb->preds)
7086 dataflow_set_union (&VTI (bb)->in, &VTI (e->src)->out);
7087 }
7088
7089 changed = compute_bb_dataflow (bb);
7090 htabsz += shared_hash_htab (VTI (bb)->in.vars)->size ()
7091 + shared_hash_htab (VTI (bb)->out.vars)->size ();
7092
7093 if (htabmax && htabsz > htabmax)
7094 {
7095 if (MAY_HAVE_DEBUG_INSNS)
7096 inform (DECL_SOURCE_LOCATION (cfun->decl),
7097 "variable tracking size limit exceeded with "
7098 "-fvar-tracking-assignments, retrying without");
7099 else
7100 inform (DECL_SOURCE_LOCATION (cfun->decl),
7101 "variable tracking size limit exceeded");
7102 success = false;
7103 break;
7104 }
7105
7106 if (changed)
7107 {
7108 FOR_EACH_EDGE (e, ei, bb->succs)
7109 {
7110 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
7111 continue;
7112
7113 if (bitmap_bit_p (visited, e->dest->index))
7114 {
7115 if (!bitmap_bit_p (in_pending, e->dest->index))
7116 {
7117 /* Send E->DEST to next round. */
7118 bitmap_set_bit (in_pending, e->dest->index);
7119 fibheap_insert (pending,
7120 bb_order[e->dest->index],
7121 e->dest);
7122 }
7123 }
7124 else if (!bitmap_bit_p (in_worklist, e->dest->index))
7125 {
7126 /* Add E->DEST to current round. */
7127 bitmap_set_bit (in_worklist, e->dest->index);
7128 fibheap_insert (worklist, bb_order[e->dest->index],
7129 e->dest);
7130 }
7131 }
7132 }
7133
7134 if (dump_file)
7135 fprintf (dump_file,
7136 "BB %i: in %i (was %i), out %i (was %i), rem %i + %i, tsz %i\n",
7137 bb->index,
7138 (int)shared_hash_htab (VTI (bb)->in.vars)->size (),
7139 oldinsz,
7140 (int)shared_hash_htab (VTI (bb)->out.vars)->size (),
7141 oldoutsz,
7142 (int)worklist->nodes, (int)pending->nodes, htabsz);
7143
7144 if (dump_file && (dump_flags & TDF_DETAILS))
7145 {
7146 fprintf (dump_file, "BB %i IN:\n", bb->index);
7147 dump_dataflow_set (&VTI (bb)->in);
7148 fprintf (dump_file, "BB %i OUT:\n", bb->index);
7149 dump_dataflow_set (&VTI (bb)->out);
7150 }
7151 }
7152 }
7153 }
7154
7155 if (success && MAY_HAVE_DEBUG_INSNS)
7156 FOR_EACH_BB_FN (bb, cfun)
7157 gcc_assert (VTI (bb)->flooded);
7158
7159 free (bb_order);
7160 fibheap_delete (worklist);
7161 fibheap_delete (pending);
7162 sbitmap_free (visited);
7163 sbitmap_free (in_worklist);
7164 sbitmap_free (in_pending);
7165
7166 timevar_pop (TV_VAR_TRACKING_DATAFLOW);
7167 return success;
7168 }
7169
7170 /* Print the content of the LIST to dump file. */
7171
7172 static void
7173 dump_attrs_list (attrs list)
7174 {
7175 for (; list; list = list->next)
7176 {
7177 if (dv_is_decl_p (list->dv))
7178 print_mem_expr (dump_file, dv_as_decl (list->dv));
7179 else
7180 print_rtl_single (dump_file, dv_as_value (list->dv));
7181 fprintf (dump_file, "+" HOST_WIDE_INT_PRINT_DEC, list->offset);
7182 }
7183 fprintf (dump_file, "\n");
7184 }
7185
7186 /* Print the information about variable *SLOT to dump file. */
7187
7188 int
7189 dump_var_tracking_slot (variable_def **slot, void *data ATTRIBUTE_UNUSED)
7190 {
7191 variable var = *slot;
7192
7193 dump_var (var);
7194
7195 /* Continue traversing the hash table. */
7196 return 1;
7197 }
7198
7199 /* Print the information about variable VAR to dump file. */
7200
7201 static void
7202 dump_var (variable var)
7203 {
7204 int i;
7205 location_chain node;
7206
7207 if (dv_is_decl_p (var->dv))
7208 {
7209 const_tree decl = dv_as_decl (var->dv);
7210
7211 if (DECL_NAME (decl))
7212 {
7213 fprintf (dump_file, " name: %s",
7214 IDENTIFIER_POINTER (DECL_NAME (decl)));
7215 if (dump_flags & TDF_UID)
7216 fprintf (dump_file, "D.%u", DECL_UID (decl));
7217 }
7218 else if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
7219 fprintf (dump_file, " name: D#%u", DEBUG_TEMP_UID (decl));
7220 else
7221 fprintf (dump_file, " name: D.%u", DECL_UID (decl));
7222 fprintf (dump_file, "\n");
7223 }
7224 else
7225 {
7226 fputc (' ', dump_file);
7227 print_rtl_single (dump_file, dv_as_value (var->dv));
7228 }
7229
7230 for (i = 0; i < var->n_var_parts; i++)
7231 {
7232 fprintf (dump_file, " offset %ld\n",
7233 (long)(var->onepart ? 0 : VAR_PART_OFFSET (var, i)));
7234 for (node = var->var_part[i].loc_chain; node; node = node->next)
7235 {
7236 fprintf (dump_file, " ");
7237 if (node->init == VAR_INIT_STATUS_UNINITIALIZED)
7238 fprintf (dump_file, "[uninit]");
7239 print_rtl_single (dump_file, node->loc);
7240 }
7241 }
7242 }
7243
7244 /* Print the information about variables from hash table VARS to dump file. */
7245
7246 static void
7247 dump_vars (variable_table_type *vars)
7248 {
7249 if (vars->elements () > 0)
7250 {
7251 fprintf (dump_file, "Variables:\n");
7252 vars->traverse <void *, dump_var_tracking_slot> (NULL);
7253 }
7254 }
7255
7256 /* Print the dataflow set SET to dump file. */
7257
7258 static void
7259 dump_dataflow_set (dataflow_set *set)
7260 {
7261 int i;
7262
7263 fprintf (dump_file, "Stack adjustment: " HOST_WIDE_INT_PRINT_DEC "\n",
7264 set->stack_adjust);
7265 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
7266 {
7267 if (set->regs[i])
7268 {
7269 fprintf (dump_file, "Reg %d:", i);
7270 dump_attrs_list (set->regs[i]);
7271 }
7272 }
7273 dump_vars (shared_hash_htab (set->vars));
7274 fprintf (dump_file, "\n");
7275 }
7276
7277 /* Print the IN and OUT sets for each basic block to dump file. */
7278
7279 static void
7280 dump_dataflow_sets (void)
7281 {
7282 basic_block bb;
7283
7284 FOR_EACH_BB_FN (bb, cfun)
7285 {
7286 fprintf (dump_file, "\nBasic block %d:\n", bb->index);
7287 fprintf (dump_file, "IN:\n");
7288 dump_dataflow_set (&VTI (bb)->in);
7289 fprintf (dump_file, "OUT:\n");
7290 dump_dataflow_set (&VTI (bb)->out);
7291 }
7292 }
7293
7294 /* Return the variable for DV in dropped_values, inserting one if
7295 requested with INSERT. */
7296
7297 static inline variable
7298 variable_from_dropped (decl_or_value dv, enum insert_option insert)
7299 {
7300 variable_def **slot;
7301 variable empty_var;
7302 onepart_enum_t onepart;
7303
7304 slot = dropped_values->find_slot_with_hash (dv, dv_htab_hash (dv), insert);
7305
7306 if (!slot)
7307 return NULL;
7308
7309 if (*slot)
7310 return *slot;
7311
7312 gcc_checking_assert (insert == INSERT);
7313
7314 onepart = dv_onepart_p (dv);
7315
7316 gcc_checking_assert (onepart == ONEPART_VALUE || onepart == ONEPART_DEXPR);
7317
7318 empty_var = (variable) pool_alloc (onepart_pool (onepart));
7319 empty_var->dv = dv;
7320 empty_var->refcount = 1;
7321 empty_var->n_var_parts = 0;
7322 empty_var->onepart = onepart;
7323 empty_var->in_changed_variables = false;
7324 empty_var->var_part[0].loc_chain = NULL;
7325 empty_var->var_part[0].cur_loc = NULL;
7326 VAR_LOC_1PAUX (empty_var) = NULL;
7327 set_dv_changed (dv, true);
7328
7329 *slot = empty_var;
7330
7331 return empty_var;
7332 }
7333
7334 /* Recover the one-part aux from dropped_values. */
7335
7336 static struct onepart_aux *
7337 recover_dropped_1paux (variable var)
7338 {
7339 variable dvar;
7340
7341 gcc_checking_assert (var->onepart);
7342
7343 if (VAR_LOC_1PAUX (var))
7344 return VAR_LOC_1PAUX (var);
7345
7346 if (var->onepart == ONEPART_VDECL)
7347 return NULL;
7348
7349 dvar = variable_from_dropped (var->dv, NO_INSERT);
7350
7351 if (!dvar)
7352 return NULL;
7353
7354 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (dvar);
7355 VAR_LOC_1PAUX (dvar) = NULL;
7356
7357 return VAR_LOC_1PAUX (var);
7358 }
7359
7360 /* Add variable VAR to the hash table of changed variables and
7361 if it has no locations delete it from SET's hash table. */
7362
7363 static void
7364 variable_was_changed (variable var, dataflow_set *set)
7365 {
7366 hashval_t hash = dv_htab_hash (var->dv);
7367
7368 if (emit_notes)
7369 {
7370 variable_def **slot;
7371
7372 /* Remember this decl or VALUE has been added to changed_variables. */
7373 set_dv_changed (var->dv, true);
7374
7375 slot = changed_variables->find_slot_with_hash (var->dv, hash, INSERT);
7376
7377 if (*slot)
7378 {
7379 variable old_var = *slot;
7380 gcc_assert (old_var->in_changed_variables);
7381 old_var->in_changed_variables = false;
7382 if (var != old_var && var->onepart)
7383 {
7384 /* Restore the auxiliary info from an empty variable
7385 previously created for changed_variables, so it is
7386 not lost. */
7387 gcc_checking_assert (!VAR_LOC_1PAUX (var));
7388 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (old_var);
7389 VAR_LOC_1PAUX (old_var) = NULL;
7390 }
7391 variable_htab_free (*slot);
7392 }
7393
7394 if (set && var->n_var_parts == 0)
7395 {
7396 onepart_enum_t onepart = var->onepart;
7397 variable empty_var = NULL;
7398 variable_def **dslot = NULL;
7399
7400 if (onepart == ONEPART_VALUE || onepart == ONEPART_DEXPR)
7401 {
7402 dslot = dropped_values->find_slot_with_hash (var->dv,
7403 dv_htab_hash (var->dv),
7404 INSERT);
7405 empty_var = *dslot;
7406
7407 if (empty_var)
7408 {
7409 gcc_checking_assert (!empty_var->in_changed_variables);
7410 if (!VAR_LOC_1PAUX (var))
7411 {
7412 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (empty_var);
7413 VAR_LOC_1PAUX (empty_var) = NULL;
7414 }
7415 else
7416 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var));
7417 }
7418 }
7419
7420 if (!empty_var)
7421 {
7422 empty_var = (variable) pool_alloc (onepart_pool (onepart));
7423 empty_var->dv = var->dv;
7424 empty_var->refcount = 1;
7425 empty_var->n_var_parts = 0;
7426 empty_var->onepart = onepart;
7427 if (dslot)
7428 {
7429 empty_var->refcount++;
7430 *dslot = empty_var;
7431 }
7432 }
7433 else
7434 empty_var->refcount++;
7435 empty_var->in_changed_variables = true;
7436 *slot = empty_var;
7437 if (onepart)
7438 {
7439 empty_var->var_part[0].loc_chain = NULL;
7440 empty_var->var_part[0].cur_loc = NULL;
7441 VAR_LOC_1PAUX (empty_var) = VAR_LOC_1PAUX (var);
7442 VAR_LOC_1PAUX (var) = NULL;
7443 }
7444 goto drop_var;
7445 }
7446 else
7447 {
7448 if (var->onepart && !VAR_LOC_1PAUX (var))
7449 recover_dropped_1paux (var);
7450 var->refcount++;
7451 var->in_changed_variables = true;
7452 *slot = var;
7453 }
7454 }
7455 else
7456 {
7457 gcc_assert (set);
7458 if (var->n_var_parts == 0)
7459 {
7460 variable_def **slot;
7461
7462 drop_var:
7463 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
7464 if (slot)
7465 {
7466 if (shared_hash_shared (set->vars))
7467 slot = shared_hash_find_slot_unshare (&set->vars, var->dv,
7468 NO_INSERT);
7469 shared_hash_htab (set->vars)->clear_slot (slot);
7470 }
7471 }
7472 }
7473 }
7474
7475 /* Look for the index in VAR->var_part corresponding to OFFSET.
7476 Return -1 if not found. If INSERTION_POINT is non-NULL, the
7477 referenced int will be set to the index that the part has or should
7478 have, if it should be inserted. */
7479
7480 static inline int
7481 find_variable_location_part (variable var, HOST_WIDE_INT offset,
7482 int *insertion_point)
7483 {
7484 int pos, low, high;
7485
7486 if (var->onepart)
7487 {
7488 if (offset != 0)
7489 return -1;
7490
7491 if (insertion_point)
7492 *insertion_point = 0;
7493
7494 return var->n_var_parts - 1;
7495 }
7496
7497 /* Find the location part. */
7498 low = 0;
7499 high = var->n_var_parts;
7500 while (low != high)
7501 {
7502 pos = (low + high) / 2;
7503 if (VAR_PART_OFFSET (var, pos) < offset)
7504 low = pos + 1;
7505 else
7506 high = pos;
7507 }
7508 pos = low;
7509
7510 if (insertion_point)
7511 *insertion_point = pos;
7512
7513 if (pos < var->n_var_parts && VAR_PART_OFFSET (var, pos) == offset)
7514 return pos;
7515
7516 return -1;
7517 }
7518
7519 static variable_def **
7520 set_slot_part (dataflow_set *set, rtx loc, variable_def **slot,
7521 decl_or_value dv, HOST_WIDE_INT offset,
7522 enum var_init_status initialized, rtx set_src)
7523 {
7524 int pos;
7525 location_chain node, next;
7526 location_chain *nextp;
7527 variable var;
7528 onepart_enum_t onepart;
7529
7530 var = *slot;
7531
7532 if (var)
7533 onepart = var->onepart;
7534 else
7535 onepart = dv_onepart_p (dv);
7536
7537 gcc_checking_assert (offset == 0 || !onepart);
7538 gcc_checking_assert (loc != dv_as_opaque (dv));
7539
7540 if (! flag_var_tracking_uninit)
7541 initialized = VAR_INIT_STATUS_INITIALIZED;
7542
7543 if (!var)
7544 {
7545 /* Create new variable information. */
7546 var = (variable) pool_alloc (onepart_pool (onepart));
7547 var->dv = dv;
7548 var->refcount = 1;
7549 var->n_var_parts = 1;
7550 var->onepart = onepart;
7551 var->in_changed_variables = false;
7552 if (var->onepart)
7553 VAR_LOC_1PAUX (var) = NULL;
7554 else
7555 VAR_PART_OFFSET (var, 0) = offset;
7556 var->var_part[0].loc_chain = NULL;
7557 var->var_part[0].cur_loc = NULL;
7558 *slot = var;
7559 pos = 0;
7560 nextp = &var->var_part[0].loc_chain;
7561 }
7562 else if (onepart)
7563 {
7564 int r = -1, c = 0;
7565
7566 gcc_assert (dv_as_opaque (var->dv) == dv_as_opaque (dv));
7567
7568 pos = 0;
7569
7570 if (GET_CODE (loc) == VALUE)
7571 {
7572 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7573 nextp = &node->next)
7574 if (GET_CODE (node->loc) == VALUE)
7575 {
7576 if (node->loc == loc)
7577 {
7578 r = 0;
7579 break;
7580 }
7581 if (canon_value_cmp (node->loc, loc))
7582 c++;
7583 else
7584 {
7585 r = 1;
7586 break;
7587 }
7588 }
7589 else if (REG_P (node->loc) || MEM_P (node->loc))
7590 c++;
7591 else
7592 {
7593 r = 1;
7594 break;
7595 }
7596 }
7597 else if (REG_P (loc))
7598 {
7599 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7600 nextp = &node->next)
7601 if (REG_P (node->loc))
7602 {
7603 if (REGNO (node->loc) < REGNO (loc))
7604 c++;
7605 else
7606 {
7607 if (REGNO (node->loc) == REGNO (loc))
7608 r = 0;
7609 else
7610 r = 1;
7611 break;
7612 }
7613 }
7614 else
7615 {
7616 r = 1;
7617 break;
7618 }
7619 }
7620 else if (MEM_P (loc))
7621 {
7622 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7623 nextp = &node->next)
7624 if (REG_P (node->loc))
7625 c++;
7626 else if (MEM_P (node->loc))
7627 {
7628 if ((r = loc_cmp (XEXP (node->loc, 0), XEXP (loc, 0))) >= 0)
7629 break;
7630 else
7631 c++;
7632 }
7633 else
7634 {
7635 r = 1;
7636 break;
7637 }
7638 }
7639 else
7640 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7641 nextp = &node->next)
7642 if ((r = loc_cmp (node->loc, loc)) >= 0)
7643 break;
7644 else
7645 c++;
7646
7647 if (r == 0)
7648 return slot;
7649
7650 if (shared_var_p (var, set->vars))
7651 {
7652 slot = unshare_variable (set, slot, var, initialized);
7653 var = *slot;
7654 for (nextp = &var->var_part[0].loc_chain; c;
7655 nextp = &(*nextp)->next)
7656 c--;
7657 gcc_assert ((!node && !*nextp) || node->loc == (*nextp)->loc);
7658 }
7659 }
7660 else
7661 {
7662 int inspos = 0;
7663
7664 gcc_assert (dv_as_decl (var->dv) == dv_as_decl (dv));
7665
7666 pos = find_variable_location_part (var, offset, &inspos);
7667
7668 if (pos >= 0)
7669 {
7670 node = var->var_part[pos].loc_chain;
7671
7672 if (node
7673 && ((REG_P (node->loc) && REG_P (loc)
7674 && REGNO (node->loc) == REGNO (loc))
7675 || rtx_equal_p (node->loc, loc)))
7676 {
7677 /* LOC is in the beginning of the chain so we have nothing
7678 to do. */
7679 if (node->init < initialized)
7680 node->init = initialized;
7681 if (set_src != NULL)
7682 node->set_src = set_src;
7683
7684 return slot;
7685 }
7686 else
7687 {
7688 /* We have to make a copy of a shared variable. */
7689 if (shared_var_p (var, set->vars))
7690 {
7691 slot = unshare_variable (set, slot, var, initialized);
7692 var = *slot;
7693 }
7694 }
7695 }
7696 else
7697 {
7698 /* We have not found the location part, new one will be created. */
7699
7700 /* We have to make a copy of the shared variable. */
7701 if (shared_var_p (var, set->vars))
7702 {
7703 slot = unshare_variable (set, slot, var, initialized);
7704 var = *slot;
7705 }
7706
7707 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
7708 thus there are at most MAX_VAR_PARTS different offsets. */
7709 gcc_assert (var->n_var_parts < MAX_VAR_PARTS
7710 && (!var->n_var_parts || !onepart));
7711
7712 /* We have to move the elements of array starting at index
7713 inspos to the next position. */
7714 for (pos = var->n_var_parts; pos > inspos; pos--)
7715 var->var_part[pos] = var->var_part[pos - 1];
7716
7717 var->n_var_parts++;
7718 gcc_checking_assert (!onepart);
7719 VAR_PART_OFFSET (var, pos) = offset;
7720 var->var_part[pos].loc_chain = NULL;
7721 var->var_part[pos].cur_loc = NULL;
7722 }
7723
7724 /* Delete the location from the list. */
7725 nextp = &var->var_part[pos].loc_chain;
7726 for (node = var->var_part[pos].loc_chain; node; node = next)
7727 {
7728 next = node->next;
7729 if ((REG_P (node->loc) && REG_P (loc)
7730 && REGNO (node->loc) == REGNO (loc))
7731 || rtx_equal_p (node->loc, loc))
7732 {
7733 /* Save these values, to assign to the new node, before
7734 deleting this one. */
7735 if (node->init > initialized)
7736 initialized = node->init;
7737 if (node->set_src != NULL && set_src == NULL)
7738 set_src = node->set_src;
7739 if (var->var_part[pos].cur_loc == node->loc)
7740 var->var_part[pos].cur_loc = NULL;
7741 pool_free (loc_chain_pool, node);
7742 *nextp = next;
7743 break;
7744 }
7745 else
7746 nextp = &node->next;
7747 }
7748
7749 nextp = &var->var_part[pos].loc_chain;
7750 }
7751
7752 /* Add the location to the beginning. */
7753 node = (location_chain) pool_alloc (loc_chain_pool);
7754 node->loc = loc;
7755 node->init = initialized;
7756 node->set_src = set_src;
7757 node->next = *nextp;
7758 *nextp = node;
7759
7760 /* If no location was emitted do so. */
7761 if (var->var_part[pos].cur_loc == NULL)
7762 variable_was_changed (var, set);
7763
7764 return slot;
7765 }
7766
7767 /* Set the part of variable's location in the dataflow set SET. The
7768 variable part is specified by variable's declaration in DV and
7769 offset OFFSET and the part's location by LOC. IOPT should be
7770 NO_INSERT if the variable is known to be in SET already and the
7771 variable hash table must not be resized, and INSERT otherwise. */
7772
7773 static void
7774 set_variable_part (dataflow_set *set, rtx loc,
7775 decl_or_value dv, HOST_WIDE_INT offset,
7776 enum var_init_status initialized, rtx set_src,
7777 enum insert_option iopt)
7778 {
7779 variable_def **slot;
7780
7781 if (iopt == NO_INSERT)
7782 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7783 else
7784 {
7785 slot = shared_hash_find_slot (set->vars, dv);
7786 if (!slot)
7787 slot = shared_hash_find_slot_unshare (&set->vars, dv, iopt);
7788 }
7789 set_slot_part (set, loc, slot, dv, offset, initialized, set_src);
7790 }
7791
7792 /* Remove all recorded register locations for the given variable part
7793 from dataflow set SET, except for those that are identical to loc.
7794 The variable part is specified by variable's declaration or value
7795 DV and offset OFFSET. */
7796
7797 static variable_def **
7798 clobber_slot_part (dataflow_set *set, rtx loc, variable_def **slot,
7799 HOST_WIDE_INT offset, rtx set_src)
7800 {
7801 variable var = *slot;
7802 int pos = find_variable_location_part (var, offset, NULL);
7803
7804 if (pos >= 0)
7805 {
7806 location_chain node, next;
7807
7808 /* Remove the register locations from the dataflow set. */
7809 next = var->var_part[pos].loc_chain;
7810 for (node = next; node; node = next)
7811 {
7812 next = node->next;
7813 if (node->loc != loc
7814 && (!flag_var_tracking_uninit
7815 || !set_src
7816 || MEM_P (set_src)
7817 || !rtx_equal_p (set_src, node->set_src)))
7818 {
7819 if (REG_P (node->loc))
7820 {
7821 attrs anode, anext;
7822 attrs *anextp;
7823
7824 /* Remove the variable part from the register's
7825 list, but preserve any other variable parts
7826 that might be regarded as live in that same
7827 register. */
7828 anextp = &set->regs[REGNO (node->loc)];
7829 for (anode = *anextp; anode; anode = anext)
7830 {
7831 anext = anode->next;
7832 if (dv_as_opaque (anode->dv) == dv_as_opaque (var->dv)
7833 && anode->offset == offset)
7834 {
7835 pool_free (attrs_pool, anode);
7836 *anextp = anext;
7837 }
7838 else
7839 anextp = &anode->next;
7840 }
7841 }
7842
7843 slot = delete_slot_part (set, node->loc, slot, offset);
7844 }
7845 }
7846 }
7847
7848 return slot;
7849 }
7850
7851 /* Remove all recorded register locations for the given variable part
7852 from dataflow set SET, except for those that are identical to loc.
7853 The variable part is specified by variable's declaration or value
7854 DV and offset OFFSET. */
7855
7856 static void
7857 clobber_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
7858 HOST_WIDE_INT offset, rtx set_src)
7859 {
7860 variable_def **slot;
7861
7862 if (!dv_as_opaque (dv)
7863 || (!dv_is_value_p (dv) && ! DECL_P (dv_as_decl (dv))))
7864 return;
7865
7866 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7867 if (!slot)
7868 return;
7869
7870 clobber_slot_part (set, loc, slot, offset, set_src);
7871 }
7872
7873 /* Delete the part of variable's location from dataflow set SET. The
7874 variable part is specified by its SET->vars slot SLOT and offset
7875 OFFSET and the part's location by LOC. */
7876
7877 static variable_def **
7878 delete_slot_part (dataflow_set *set, rtx loc, variable_def **slot,
7879 HOST_WIDE_INT offset)
7880 {
7881 variable var = *slot;
7882 int pos = find_variable_location_part (var, offset, NULL);
7883
7884 if (pos >= 0)
7885 {
7886 location_chain node, next;
7887 location_chain *nextp;
7888 bool changed;
7889 rtx cur_loc;
7890
7891 if (shared_var_p (var, set->vars))
7892 {
7893 /* If the variable contains the location part we have to
7894 make a copy of the variable. */
7895 for (node = var->var_part[pos].loc_chain; node;
7896 node = node->next)
7897 {
7898 if ((REG_P (node->loc) && REG_P (loc)
7899 && REGNO (node->loc) == REGNO (loc))
7900 || rtx_equal_p (node->loc, loc))
7901 {
7902 slot = unshare_variable (set, slot, var,
7903 VAR_INIT_STATUS_UNKNOWN);
7904 var = *slot;
7905 break;
7906 }
7907 }
7908 }
7909
7910 if (pos == 0 && var->onepart && VAR_LOC_1PAUX (var))
7911 cur_loc = VAR_LOC_FROM (var);
7912 else
7913 cur_loc = var->var_part[pos].cur_loc;
7914
7915 /* Delete the location part. */
7916 changed = false;
7917 nextp = &var->var_part[pos].loc_chain;
7918 for (node = *nextp; node; node = next)
7919 {
7920 next = node->next;
7921 if ((REG_P (node->loc) && REG_P (loc)
7922 && REGNO (node->loc) == REGNO (loc))
7923 || rtx_equal_p (node->loc, loc))
7924 {
7925 /* If we have deleted the location which was last emitted
7926 we have to emit new location so add the variable to set
7927 of changed variables. */
7928 if (cur_loc == node->loc)
7929 {
7930 changed = true;
7931 var->var_part[pos].cur_loc = NULL;
7932 if (pos == 0 && var->onepart && VAR_LOC_1PAUX (var))
7933 VAR_LOC_FROM (var) = NULL;
7934 }
7935 pool_free (loc_chain_pool, node);
7936 *nextp = next;
7937 break;
7938 }
7939 else
7940 nextp = &node->next;
7941 }
7942
7943 if (var->var_part[pos].loc_chain == NULL)
7944 {
7945 changed = true;
7946 var->n_var_parts--;
7947 while (pos < var->n_var_parts)
7948 {
7949 var->var_part[pos] = var->var_part[pos + 1];
7950 pos++;
7951 }
7952 }
7953 if (changed)
7954 variable_was_changed (var, set);
7955 }
7956
7957 return slot;
7958 }
7959
7960 /* Delete the part of variable's location from dataflow set SET. The
7961 variable part is specified by variable's declaration or value DV
7962 and offset OFFSET and the part's location by LOC. */
7963
7964 static void
7965 delete_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
7966 HOST_WIDE_INT offset)
7967 {
7968 variable_def **slot = shared_hash_find_slot_noinsert (set->vars, dv);
7969 if (!slot)
7970 return;
7971
7972 delete_slot_part (set, loc, slot, offset);
7973 }
7974
7975
7976 /* Structure for passing some other parameters to function
7977 vt_expand_loc_callback. */
7978 struct expand_loc_callback_data
7979 {
7980 /* The variables and values active at this point. */
7981 variable_table_type *vars;
7982
7983 /* Stack of values and debug_exprs under expansion, and their
7984 children. */
7985 auto_vec<rtx, 4> expanding;
7986
7987 /* Stack of values and debug_exprs whose expansion hit recursion
7988 cycles. They will have VALUE_RECURSED_INTO marked when added to
7989 this list. This flag will be cleared if any of its dependencies
7990 resolves to a valid location. So, if the flag remains set at the
7991 end of the search, we know no valid location for this one can
7992 possibly exist. */
7993 auto_vec<rtx, 4> pending;
7994
7995 /* The maximum depth among the sub-expressions under expansion.
7996 Zero indicates no expansion so far. */
7997 expand_depth depth;
7998 };
7999
8000 /* Allocate the one-part auxiliary data structure for VAR, with enough
8001 room for COUNT dependencies. */
8002
8003 static void
8004 loc_exp_dep_alloc (variable var, int count)
8005 {
8006 size_t allocsize;
8007
8008 gcc_checking_assert (var->onepart);
8009
8010 /* We can be called with COUNT == 0 to allocate the data structure
8011 without any dependencies, e.g. for the backlinks only. However,
8012 if we are specifying a COUNT, then the dependency list must have
8013 been emptied before. It would be possible to adjust pointers or
8014 force it empty here, but this is better done at an earlier point
8015 in the algorithm, so we instead leave an assertion to catch
8016 errors. */
8017 gcc_checking_assert (!count
8018 || VAR_LOC_DEP_VEC (var) == NULL
8019 || VAR_LOC_DEP_VEC (var)->is_empty ());
8020
8021 if (VAR_LOC_1PAUX (var) && VAR_LOC_DEP_VEC (var)->space (count))
8022 return;
8023
8024 allocsize = offsetof (struct onepart_aux, deps)
8025 + vec<loc_exp_dep, va_heap, vl_embed>::embedded_size (count);
8026
8027 if (VAR_LOC_1PAUX (var))
8028 {
8029 VAR_LOC_1PAUX (var) = XRESIZEVAR (struct onepart_aux,
8030 VAR_LOC_1PAUX (var), allocsize);
8031 /* If the reallocation moves the onepaux structure, the
8032 back-pointer to BACKLINKS in the first list member will still
8033 point to its old location. Adjust it. */
8034 if (VAR_LOC_DEP_LST (var))
8035 VAR_LOC_DEP_LST (var)->pprev = VAR_LOC_DEP_LSTP (var);
8036 }
8037 else
8038 {
8039 VAR_LOC_1PAUX (var) = XNEWVAR (struct onepart_aux, allocsize);
8040 *VAR_LOC_DEP_LSTP (var) = NULL;
8041 VAR_LOC_FROM (var) = NULL;
8042 VAR_LOC_DEPTH (var).complexity = 0;
8043 VAR_LOC_DEPTH (var).entryvals = 0;
8044 }
8045 VAR_LOC_DEP_VEC (var)->embedded_init (count);
8046 }
8047
8048 /* Remove all entries from the vector of active dependencies of VAR,
8049 removing them from the back-links lists too. */
8050
8051 static void
8052 loc_exp_dep_clear (variable var)
8053 {
8054 while (VAR_LOC_DEP_VEC (var) && !VAR_LOC_DEP_VEC (var)->is_empty ())
8055 {
8056 loc_exp_dep *led = &VAR_LOC_DEP_VEC (var)->last ();
8057 if (led->next)
8058 led->next->pprev = led->pprev;
8059 if (led->pprev)
8060 *led->pprev = led->next;
8061 VAR_LOC_DEP_VEC (var)->pop ();
8062 }
8063 }
8064
8065 /* Insert an active dependency from VAR on X to the vector of
8066 dependencies, and add the corresponding back-link to X's list of
8067 back-links in VARS. */
8068
8069 static void
8070 loc_exp_insert_dep (variable var, rtx x, variable_table_type *vars)
8071 {
8072 decl_or_value dv;
8073 variable xvar;
8074 loc_exp_dep *led;
8075
8076 dv = dv_from_rtx (x);
8077
8078 /* ??? Build a vector of variables parallel to EXPANDING, to avoid
8079 an additional look up? */
8080 xvar = vars->find_with_hash (dv, dv_htab_hash (dv));
8081
8082 if (!xvar)
8083 {
8084 xvar = variable_from_dropped (dv, NO_INSERT);
8085 gcc_checking_assert (xvar);
8086 }
8087
8088 /* No point in adding the same backlink more than once. This may
8089 arise if say the same value appears in two complex expressions in
8090 the same loc_list, or even more than once in a single
8091 expression. */
8092 if (VAR_LOC_DEP_LST (xvar) && VAR_LOC_DEP_LST (xvar)->dv == var->dv)
8093 return;
8094
8095 if (var->onepart == NOT_ONEPART)
8096 led = (loc_exp_dep *) pool_alloc (loc_exp_dep_pool);
8097 else
8098 {
8099 loc_exp_dep empty;
8100 memset (&empty, 0, sizeof (empty));
8101 VAR_LOC_DEP_VEC (var)->quick_push (empty);
8102 led = &VAR_LOC_DEP_VEC (var)->last ();
8103 }
8104 led->dv = var->dv;
8105 led->value = x;
8106
8107 loc_exp_dep_alloc (xvar, 0);
8108 led->pprev = VAR_LOC_DEP_LSTP (xvar);
8109 led->next = *led->pprev;
8110 if (led->next)
8111 led->next->pprev = &led->next;
8112 *led->pprev = led;
8113 }
8114
8115 /* Create active dependencies of VAR on COUNT values starting at
8116 VALUE, and corresponding back-links to the entries in VARS. Return
8117 true if we found any pending-recursion results. */
8118
8119 static bool
8120 loc_exp_dep_set (variable var, rtx result, rtx *value, int count,
8121 variable_table_type *vars)
8122 {
8123 bool pending_recursion = false;
8124
8125 gcc_checking_assert (VAR_LOC_DEP_VEC (var) == NULL
8126 || VAR_LOC_DEP_VEC (var)->is_empty ());
8127
8128 /* Set up all dependencies from last_child (as set up at the end of
8129 the loop above) to the end. */
8130 loc_exp_dep_alloc (var, count);
8131
8132 while (count--)
8133 {
8134 rtx x = *value++;
8135
8136 if (!pending_recursion)
8137 pending_recursion = !result && VALUE_RECURSED_INTO (x);
8138
8139 loc_exp_insert_dep (var, x, vars);
8140 }
8141
8142 return pending_recursion;
8143 }
8144
8145 /* Notify the back-links of IVAR that are pending recursion that we
8146 have found a non-NIL value for it, so they are cleared for another
8147 attempt to compute a current location. */
8148
8149 static void
8150 notify_dependents_of_resolved_value (variable ivar, variable_table_type *vars)
8151 {
8152 loc_exp_dep *led, *next;
8153
8154 for (led = VAR_LOC_DEP_LST (ivar); led; led = next)
8155 {
8156 decl_or_value dv = led->dv;
8157 variable var;
8158
8159 next = led->next;
8160
8161 if (dv_is_value_p (dv))
8162 {
8163 rtx value = dv_as_value (dv);
8164
8165 /* If we have already resolved it, leave it alone. */
8166 if (!VALUE_RECURSED_INTO (value))
8167 continue;
8168
8169 /* Check that VALUE_RECURSED_INTO, true from the test above,
8170 implies NO_LOC_P. */
8171 gcc_checking_assert (NO_LOC_P (value));
8172
8173 /* We won't notify variables that are being expanded,
8174 because their dependency list is cleared before
8175 recursing. */
8176 NO_LOC_P (value) = false;
8177 VALUE_RECURSED_INTO (value) = false;
8178
8179 gcc_checking_assert (dv_changed_p (dv));
8180 }
8181 else
8182 {
8183 gcc_checking_assert (dv_onepart_p (dv) != NOT_ONEPART);
8184 if (!dv_changed_p (dv))
8185 continue;
8186 }
8187
8188 var = vars->find_with_hash (dv, dv_htab_hash (dv));
8189
8190 if (!var)
8191 var = variable_from_dropped (dv, NO_INSERT);
8192
8193 if (var)
8194 notify_dependents_of_resolved_value (var, vars);
8195
8196 if (next)
8197 next->pprev = led->pprev;
8198 if (led->pprev)
8199 *led->pprev = next;
8200 led->next = NULL;
8201 led->pprev = NULL;
8202 }
8203 }
8204
8205 static rtx vt_expand_loc_callback (rtx x, bitmap regs,
8206 int max_depth, void *data);
8207
8208 /* Return the combined depth, when one sub-expression evaluated to
8209 BEST_DEPTH and the previous known depth was SAVED_DEPTH. */
8210
8211 static inline expand_depth
8212 update_depth (expand_depth saved_depth, expand_depth best_depth)
8213 {
8214 /* If we didn't find anything, stick with what we had. */
8215 if (!best_depth.complexity)
8216 return saved_depth;
8217
8218 /* If we found hadn't found anything, use the depth of the current
8219 expression. Do NOT add one extra level, we want to compute the
8220 maximum depth among sub-expressions. We'll increment it later,
8221 if appropriate. */
8222 if (!saved_depth.complexity)
8223 return best_depth;
8224
8225 /* Combine the entryval count so that regardless of which one we
8226 return, the entryval count is accurate. */
8227 best_depth.entryvals = saved_depth.entryvals
8228 = best_depth.entryvals + saved_depth.entryvals;
8229
8230 if (saved_depth.complexity < best_depth.complexity)
8231 return best_depth;
8232 else
8233 return saved_depth;
8234 }
8235
8236 /* Expand VAR to a location RTX, updating its cur_loc. Use REGS and
8237 DATA for cselib expand callback. If PENDRECP is given, indicate in
8238 it whether any sub-expression couldn't be fully evaluated because
8239 it is pending recursion resolution. */
8240
8241 static inline rtx
8242 vt_expand_var_loc_chain (variable var, bitmap regs, void *data, bool *pendrecp)
8243 {
8244 struct expand_loc_callback_data *elcd
8245 = (struct expand_loc_callback_data *) data;
8246 location_chain loc, next;
8247 rtx result = NULL;
8248 int first_child, result_first_child, last_child;
8249 bool pending_recursion;
8250 rtx loc_from = NULL;
8251 struct elt_loc_list *cloc = NULL;
8252 expand_depth depth = { 0, 0 }, saved_depth = elcd->depth;
8253 int wanted_entryvals, found_entryvals = 0;
8254
8255 /* Clear all backlinks pointing at this, so that we're not notified
8256 while we're active. */
8257 loc_exp_dep_clear (var);
8258
8259 retry:
8260 if (var->onepart == ONEPART_VALUE)
8261 {
8262 cselib_val *val = CSELIB_VAL_PTR (dv_as_value (var->dv));
8263
8264 gcc_checking_assert (cselib_preserved_value_p (val));
8265
8266 cloc = val->locs;
8267 }
8268
8269 first_child = result_first_child = last_child
8270 = elcd->expanding.length ();
8271
8272 wanted_entryvals = found_entryvals;
8273
8274 /* Attempt to expand each available location in turn. */
8275 for (next = loc = var->n_var_parts ? var->var_part[0].loc_chain : NULL;
8276 loc || cloc; loc = next)
8277 {
8278 result_first_child = last_child;
8279
8280 if (!loc)
8281 {
8282 loc_from = cloc->loc;
8283 next = loc;
8284 cloc = cloc->next;
8285 if (unsuitable_loc (loc_from))
8286 continue;
8287 }
8288 else
8289 {
8290 loc_from = loc->loc;
8291 next = loc->next;
8292 }
8293
8294 gcc_checking_assert (!unsuitable_loc (loc_from));
8295
8296 elcd->depth.complexity = elcd->depth.entryvals = 0;
8297 result = cselib_expand_value_rtx_cb (loc_from, regs, EXPR_DEPTH,
8298 vt_expand_loc_callback, data);
8299 last_child = elcd->expanding.length ();
8300
8301 if (result)
8302 {
8303 depth = elcd->depth;
8304
8305 gcc_checking_assert (depth.complexity
8306 || result_first_child == last_child);
8307
8308 if (last_child - result_first_child != 1)
8309 {
8310 if (!depth.complexity && GET_CODE (result) == ENTRY_VALUE)
8311 depth.entryvals++;
8312 depth.complexity++;
8313 }
8314
8315 if (depth.complexity <= EXPR_USE_DEPTH)
8316 {
8317 if (depth.entryvals <= wanted_entryvals)
8318 break;
8319 else if (!found_entryvals || depth.entryvals < found_entryvals)
8320 found_entryvals = depth.entryvals;
8321 }
8322
8323 result = NULL;
8324 }
8325
8326 /* Set it up in case we leave the loop. */
8327 depth.complexity = depth.entryvals = 0;
8328 loc_from = NULL;
8329 result_first_child = first_child;
8330 }
8331
8332 if (!loc_from && wanted_entryvals < found_entryvals)
8333 {
8334 /* We found entries with ENTRY_VALUEs and skipped them. Since
8335 we could not find any expansions without ENTRY_VALUEs, but we
8336 found at least one with them, go back and get an entry with
8337 the minimum number ENTRY_VALUE count that we found. We could
8338 avoid looping, but since each sub-loc is already resolved,
8339 the re-expansion should be trivial. ??? Should we record all
8340 attempted locs as dependencies, so that we retry the
8341 expansion should any of them change, in the hope it can give
8342 us a new entry without an ENTRY_VALUE? */
8343 elcd->expanding.truncate (first_child);
8344 goto retry;
8345 }
8346
8347 /* Register all encountered dependencies as active. */
8348 pending_recursion = loc_exp_dep_set
8349 (var, result, elcd->expanding.address () + result_first_child,
8350 last_child - result_first_child, elcd->vars);
8351
8352 elcd->expanding.truncate (first_child);
8353
8354 /* Record where the expansion came from. */
8355 gcc_checking_assert (!result || !pending_recursion);
8356 VAR_LOC_FROM (var) = loc_from;
8357 VAR_LOC_DEPTH (var) = depth;
8358
8359 gcc_checking_assert (!depth.complexity == !result);
8360
8361 elcd->depth = update_depth (saved_depth, depth);
8362
8363 /* Indicate whether any of the dependencies are pending recursion
8364 resolution. */
8365 if (pendrecp)
8366 *pendrecp = pending_recursion;
8367
8368 if (!pendrecp || !pending_recursion)
8369 var->var_part[0].cur_loc = result;
8370
8371 return result;
8372 }
8373
8374 /* Callback for cselib_expand_value, that looks for expressions
8375 holding the value in the var-tracking hash tables. Return X for
8376 standard processing, anything else is to be used as-is. */
8377
8378 static rtx
8379 vt_expand_loc_callback (rtx x, bitmap regs,
8380 int max_depth ATTRIBUTE_UNUSED,
8381 void *data)
8382 {
8383 struct expand_loc_callback_data *elcd
8384 = (struct expand_loc_callback_data *) data;
8385 decl_or_value dv;
8386 variable var;
8387 rtx result, subreg;
8388 bool pending_recursion = false;
8389 bool from_empty = false;
8390
8391 switch (GET_CODE (x))
8392 {
8393 case SUBREG:
8394 subreg = cselib_expand_value_rtx_cb (SUBREG_REG (x), regs,
8395 EXPR_DEPTH,
8396 vt_expand_loc_callback, data);
8397
8398 if (!subreg)
8399 return NULL;
8400
8401 result = simplify_gen_subreg (GET_MODE (x), subreg,
8402 GET_MODE (SUBREG_REG (x)),
8403 SUBREG_BYTE (x));
8404
8405 /* Invalid SUBREGs are ok in debug info. ??? We could try
8406 alternate expansions for the VALUE as well. */
8407 if (!result)
8408 result = gen_rtx_raw_SUBREG (GET_MODE (x), subreg, SUBREG_BYTE (x));
8409
8410 return result;
8411
8412 case DEBUG_EXPR:
8413 case VALUE:
8414 dv = dv_from_rtx (x);
8415 break;
8416
8417 default:
8418 return x;
8419 }
8420
8421 elcd->expanding.safe_push (x);
8422
8423 /* Check that VALUE_RECURSED_INTO implies NO_LOC_P. */
8424 gcc_checking_assert (!VALUE_RECURSED_INTO (x) || NO_LOC_P (x));
8425
8426 if (NO_LOC_P (x))
8427 {
8428 gcc_checking_assert (VALUE_RECURSED_INTO (x) || !dv_changed_p (dv));
8429 return NULL;
8430 }
8431
8432 var = elcd->vars->find_with_hash (dv, dv_htab_hash (dv));
8433
8434 if (!var)
8435 {
8436 from_empty = true;
8437 var = variable_from_dropped (dv, INSERT);
8438 }
8439
8440 gcc_checking_assert (var);
8441
8442 if (!dv_changed_p (dv))
8443 {
8444 gcc_checking_assert (!NO_LOC_P (x));
8445 gcc_checking_assert (var->var_part[0].cur_loc);
8446 gcc_checking_assert (VAR_LOC_1PAUX (var));
8447 gcc_checking_assert (VAR_LOC_1PAUX (var)->depth.complexity);
8448
8449 elcd->depth = update_depth (elcd->depth, VAR_LOC_1PAUX (var)->depth);
8450
8451 return var->var_part[0].cur_loc;
8452 }
8453
8454 VALUE_RECURSED_INTO (x) = true;
8455 /* This is tentative, but it makes some tests simpler. */
8456 NO_LOC_P (x) = true;
8457
8458 gcc_checking_assert (var->n_var_parts == 1 || from_empty);
8459
8460 result = vt_expand_var_loc_chain (var, regs, data, &pending_recursion);
8461
8462 if (pending_recursion)
8463 {
8464 gcc_checking_assert (!result);
8465 elcd->pending.safe_push (x);
8466 }
8467 else
8468 {
8469 NO_LOC_P (x) = !result;
8470 VALUE_RECURSED_INTO (x) = false;
8471 set_dv_changed (dv, false);
8472
8473 if (result)
8474 notify_dependents_of_resolved_value (var, elcd->vars);
8475 }
8476
8477 return result;
8478 }
8479
8480 /* While expanding variables, we may encounter recursion cycles
8481 because of mutual (possibly indirect) dependencies between two
8482 particular variables (or values), say A and B. If we're trying to
8483 expand A when we get to B, which in turn attempts to expand A, if
8484 we can't find any other expansion for B, we'll add B to this
8485 pending-recursion stack, and tentatively return NULL for its
8486 location. This tentative value will be used for any other
8487 occurrences of B, unless A gets some other location, in which case
8488 it will notify B that it is worth another try at computing a
8489 location for it, and it will use the location computed for A then.
8490 At the end of the expansion, the tentative NULL locations become
8491 final for all members of PENDING that didn't get a notification.
8492 This function performs this finalization of NULL locations. */
8493
8494 static void
8495 resolve_expansions_pending_recursion (vec<rtx, va_heap> *pending)
8496 {
8497 while (!pending->is_empty ())
8498 {
8499 rtx x = pending->pop ();
8500 decl_or_value dv;
8501
8502 if (!VALUE_RECURSED_INTO (x))
8503 continue;
8504
8505 gcc_checking_assert (NO_LOC_P (x));
8506 VALUE_RECURSED_INTO (x) = false;
8507 dv = dv_from_rtx (x);
8508 gcc_checking_assert (dv_changed_p (dv));
8509 set_dv_changed (dv, false);
8510 }
8511 }
8512
8513 /* Initialize expand_loc_callback_data D with variable hash table V.
8514 It must be a macro because of alloca (vec stack). */
8515 #define INIT_ELCD(d, v) \
8516 do \
8517 { \
8518 (d).vars = (v); \
8519 (d).depth.complexity = (d).depth.entryvals = 0; \
8520 } \
8521 while (0)
8522 /* Finalize expand_loc_callback_data D, resolved to location L. */
8523 #define FINI_ELCD(d, l) \
8524 do \
8525 { \
8526 resolve_expansions_pending_recursion (&(d).pending); \
8527 (d).pending.release (); \
8528 (d).expanding.release (); \
8529 \
8530 if ((l) && MEM_P (l)) \
8531 (l) = targetm.delegitimize_address (l); \
8532 } \
8533 while (0)
8534
8535 /* Expand VALUEs and DEBUG_EXPRs in LOC to a location, using the
8536 equivalences in VARS, updating their CUR_LOCs in the process. */
8537
8538 static rtx
8539 vt_expand_loc (rtx loc, variable_table_type *vars)
8540 {
8541 struct expand_loc_callback_data data;
8542 rtx result;
8543
8544 if (!MAY_HAVE_DEBUG_INSNS)
8545 return loc;
8546
8547 INIT_ELCD (data, vars);
8548
8549 result = cselib_expand_value_rtx_cb (loc, scratch_regs, EXPR_DEPTH,
8550 vt_expand_loc_callback, &data);
8551
8552 FINI_ELCD (data, result);
8553
8554 return result;
8555 }
8556
8557 /* Expand the one-part VARiable to a location, using the equivalences
8558 in VARS, updating their CUR_LOCs in the process. */
8559
8560 static rtx
8561 vt_expand_1pvar (variable var, variable_table_type *vars)
8562 {
8563 struct expand_loc_callback_data data;
8564 rtx loc;
8565
8566 gcc_checking_assert (var->onepart && var->n_var_parts == 1);
8567
8568 if (!dv_changed_p (var->dv))
8569 return var->var_part[0].cur_loc;
8570
8571 INIT_ELCD (data, vars);
8572
8573 loc = vt_expand_var_loc_chain (var, scratch_regs, &data, NULL);
8574
8575 gcc_checking_assert (data.expanding.is_empty ());
8576
8577 FINI_ELCD (data, loc);
8578
8579 return loc;
8580 }
8581
8582 /* Emit the NOTE_INSN_VAR_LOCATION for variable *VARP. DATA contains
8583 additional parameters: WHERE specifies whether the note shall be emitted
8584 before or after instruction INSN. */
8585
8586 int
8587 emit_note_insn_var_location (variable_def **varp, emit_note_data *data)
8588 {
8589 variable var = *varp;
8590 rtx insn = data->insn;
8591 enum emit_note_where where = data->where;
8592 variable_table_type *vars = data->vars;
8593 rtx note, note_vl;
8594 int i, j, n_var_parts;
8595 bool complete;
8596 enum var_init_status initialized = VAR_INIT_STATUS_UNINITIALIZED;
8597 HOST_WIDE_INT last_limit;
8598 tree type_size_unit;
8599 HOST_WIDE_INT offsets[MAX_VAR_PARTS];
8600 rtx loc[MAX_VAR_PARTS];
8601 tree decl;
8602 location_chain lc;
8603
8604 gcc_checking_assert (var->onepart == NOT_ONEPART
8605 || var->onepart == ONEPART_VDECL);
8606
8607 decl = dv_as_decl (var->dv);
8608
8609 complete = true;
8610 last_limit = 0;
8611 n_var_parts = 0;
8612 if (!var->onepart)
8613 for (i = 0; i < var->n_var_parts; i++)
8614 if (var->var_part[i].cur_loc == NULL && var->var_part[i].loc_chain)
8615 var->var_part[i].cur_loc = var->var_part[i].loc_chain->loc;
8616 for (i = 0; i < var->n_var_parts; i++)
8617 {
8618 enum machine_mode mode, wider_mode;
8619 rtx loc2;
8620 HOST_WIDE_INT offset;
8621
8622 if (i == 0 && var->onepart)
8623 {
8624 gcc_checking_assert (var->n_var_parts == 1);
8625 offset = 0;
8626 initialized = VAR_INIT_STATUS_INITIALIZED;
8627 loc2 = vt_expand_1pvar (var, vars);
8628 }
8629 else
8630 {
8631 if (last_limit < VAR_PART_OFFSET (var, i))
8632 {
8633 complete = false;
8634 break;
8635 }
8636 else if (last_limit > VAR_PART_OFFSET (var, i))
8637 continue;
8638 offset = VAR_PART_OFFSET (var, i);
8639 loc2 = var->var_part[i].cur_loc;
8640 if (loc2 && GET_CODE (loc2) == MEM
8641 && GET_CODE (XEXP (loc2, 0)) == VALUE)
8642 {
8643 rtx depval = XEXP (loc2, 0);
8644
8645 loc2 = vt_expand_loc (loc2, vars);
8646
8647 if (loc2)
8648 loc_exp_insert_dep (var, depval, vars);
8649 }
8650 if (!loc2)
8651 {
8652 complete = false;
8653 continue;
8654 }
8655 gcc_checking_assert (GET_CODE (loc2) != VALUE);
8656 for (lc = var->var_part[i].loc_chain; lc; lc = lc->next)
8657 if (var->var_part[i].cur_loc == lc->loc)
8658 {
8659 initialized = lc->init;
8660 break;
8661 }
8662 gcc_assert (lc);
8663 }
8664
8665 offsets[n_var_parts] = offset;
8666 if (!loc2)
8667 {
8668 complete = false;
8669 continue;
8670 }
8671 loc[n_var_parts] = loc2;
8672 mode = GET_MODE (var->var_part[i].cur_loc);
8673 if (mode == VOIDmode && var->onepart)
8674 mode = DECL_MODE (decl);
8675 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
8676
8677 /* Attempt to merge adjacent registers or memory. */
8678 wider_mode = GET_MODE_WIDER_MODE (mode);
8679 for (j = i + 1; j < var->n_var_parts; j++)
8680 if (last_limit <= VAR_PART_OFFSET (var, j))
8681 break;
8682 if (j < var->n_var_parts
8683 && wider_mode != VOIDmode
8684 && var->var_part[j].cur_loc
8685 && mode == GET_MODE (var->var_part[j].cur_loc)
8686 && (REG_P (loc[n_var_parts]) || MEM_P (loc[n_var_parts]))
8687 && last_limit == (var->onepart ? 0 : VAR_PART_OFFSET (var, j))
8688 && (loc2 = vt_expand_loc (var->var_part[j].cur_loc, vars))
8689 && GET_CODE (loc[n_var_parts]) == GET_CODE (loc2))
8690 {
8691 rtx new_loc = NULL;
8692
8693 if (REG_P (loc[n_var_parts])
8694 && hard_regno_nregs[REGNO (loc[n_var_parts])][mode] * 2
8695 == hard_regno_nregs[REGNO (loc[n_var_parts])][wider_mode]
8696 && end_hard_regno (mode, REGNO (loc[n_var_parts]))
8697 == REGNO (loc2))
8698 {
8699 if (! WORDS_BIG_ENDIAN && ! BYTES_BIG_ENDIAN)
8700 new_loc = simplify_subreg (wider_mode, loc[n_var_parts],
8701 mode, 0);
8702 else if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
8703 new_loc = simplify_subreg (wider_mode, loc2, mode, 0);
8704 if (new_loc)
8705 {
8706 if (!REG_P (new_loc)
8707 || REGNO (new_loc) != REGNO (loc[n_var_parts]))
8708 new_loc = NULL;
8709 else
8710 REG_ATTRS (new_loc) = REG_ATTRS (loc[n_var_parts]);
8711 }
8712 }
8713 else if (MEM_P (loc[n_var_parts])
8714 && GET_CODE (XEXP (loc2, 0)) == PLUS
8715 && REG_P (XEXP (XEXP (loc2, 0), 0))
8716 && CONST_INT_P (XEXP (XEXP (loc2, 0), 1)))
8717 {
8718 if ((REG_P (XEXP (loc[n_var_parts], 0))
8719 && rtx_equal_p (XEXP (loc[n_var_parts], 0),
8720 XEXP (XEXP (loc2, 0), 0))
8721 && INTVAL (XEXP (XEXP (loc2, 0), 1))
8722 == GET_MODE_SIZE (mode))
8723 || (GET_CODE (XEXP (loc[n_var_parts], 0)) == PLUS
8724 && CONST_INT_P (XEXP (XEXP (loc[n_var_parts], 0), 1))
8725 && rtx_equal_p (XEXP (XEXP (loc[n_var_parts], 0), 0),
8726 XEXP (XEXP (loc2, 0), 0))
8727 && INTVAL (XEXP (XEXP (loc[n_var_parts], 0), 1))
8728 + GET_MODE_SIZE (mode)
8729 == INTVAL (XEXP (XEXP (loc2, 0), 1))))
8730 new_loc = adjust_address_nv (loc[n_var_parts],
8731 wider_mode, 0);
8732 }
8733
8734 if (new_loc)
8735 {
8736 loc[n_var_parts] = new_loc;
8737 mode = wider_mode;
8738 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
8739 i = j;
8740 }
8741 }
8742 ++n_var_parts;
8743 }
8744 type_size_unit = TYPE_SIZE_UNIT (TREE_TYPE (decl));
8745 if ((unsigned HOST_WIDE_INT) last_limit < TREE_INT_CST_LOW (type_size_unit))
8746 complete = false;
8747
8748 if (! flag_var_tracking_uninit)
8749 initialized = VAR_INIT_STATUS_INITIALIZED;
8750
8751 note_vl = NULL_RTX;
8752 if (!complete)
8753 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, NULL_RTX, initialized);
8754 else if (n_var_parts == 1)
8755 {
8756 rtx expr_list;
8757
8758 if (offsets[0] || GET_CODE (loc[0]) == PARALLEL)
8759 expr_list = gen_rtx_EXPR_LIST (VOIDmode, loc[0], GEN_INT (offsets[0]));
8760 else
8761 expr_list = loc[0];
8762
8763 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, expr_list, initialized);
8764 }
8765 else if (n_var_parts)
8766 {
8767 rtx parallel;
8768
8769 for (i = 0; i < n_var_parts; i++)
8770 loc[i]
8771 = gen_rtx_EXPR_LIST (VOIDmode, loc[i], GEN_INT (offsets[i]));
8772
8773 parallel = gen_rtx_PARALLEL (VOIDmode,
8774 gen_rtvec_v (n_var_parts, loc));
8775 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl,
8776 parallel, initialized);
8777 }
8778
8779 if (where != EMIT_NOTE_BEFORE_INSN)
8780 {
8781 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
8782 if (where == EMIT_NOTE_AFTER_CALL_INSN)
8783 NOTE_DURING_CALL_P (note) = true;
8784 }
8785 else
8786 {
8787 /* Make sure that the call related notes come first. */
8788 while (NEXT_INSN (insn)
8789 && NOTE_P (insn)
8790 && ((NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
8791 && NOTE_DURING_CALL_P (insn))
8792 || NOTE_KIND (insn) == NOTE_INSN_CALL_ARG_LOCATION))
8793 insn = NEXT_INSN (insn);
8794 if (NOTE_P (insn)
8795 && ((NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
8796 && NOTE_DURING_CALL_P (insn))
8797 || NOTE_KIND (insn) == NOTE_INSN_CALL_ARG_LOCATION))
8798 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
8799 else
8800 note = emit_note_before (NOTE_INSN_VAR_LOCATION, insn);
8801 }
8802 NOTE_VAR_LOCATION (note) = note_vl;
8803
8804 set_dv_changed (var->dv, false);
8805 gcc_assert (var->in_changed_variables);
8806 var->in_changed_variables = false;
8807 changed_variables->clear_slot (varp);
8808
8809 /* Continue traversing the hash table. */
8810 return 1;
8811 }
8812
8813 /* While traversing changed_variables, push onto DATA (a stack of RTX
8814 values) entries that aren't user variables. */
8815
8816 int
8817 var_track_values_to_stack (variable_def **slot,
8818 vec<rtx, va_heap> *changed_values_stack)
8819 {
8820 variable var = *slot;
8821
8822 if (var->onepart == ONEPART_VALUE)
8823 changed_values_stack->safe_push (dv_as_value (var->dv));
8824 else if (var->onepart == ONEPART_DEXPR)
8825 changed_values_stack->safe_push (DECL_RTL_KNOWN_SET (dv_as_decl (var->dv)));
8826
8827 return 1;
8828 }
8829
8830 /* Remove from changed_variables the entry whose DV corresponds to
8831 value or debug_expr VAL. */
8832 static void
8833 remove_value_from_changed_variables (rtx val)
8834 {
8835 decl_or_value dv = dv_from_rtx (val);
8836 variable_def **slot;
8837 variable var;
8838
8839 slot = changed_variables->find_slot_with_hash (dv, dv_htab_hash (dv),
8840 NO_INSERT);
8841 var = *slot;
8842 var->in_changed_variables = false;
8843 changed_variables->clear_slot (slot);
8844 }
8845
8846 /* If VAL (a value or debug_expr) has backlinks to variables actively
8847 dependent on it in HTAB or in CHANGED_VARIABLES, mark them as
8848 changed, adding to CHANGED_VALUES_STACK any dependencies that may
8849 have dependencies of their own to notify. */
8850
8851 static void
8852 notify_dependents_of_changed_value (rtx val, variable_table_type *htab,
8853 vec<rtx, va_heap> *changed_values_stack)
8854 {
8855 variable_def **slot;
8856 variable var;
8857 loc_exp_dep *led;
8858 decl_or_value dv = dv_from_rtx (val);
8859
8860 slot = changed_variables->find_slot_with_hash (dv, dv_htab_hash (dv),
8861 NO_INSERT);
8862 if (!slot)
8863 slot = htab->find_slot_with_hash (dv, dv_htab_hash (dv), NO_INSERT);
8864 if (!slot)
8865 slot = dropped_values->find_slot_with_hash (dv, dv_htab_hash (dv),
8866 NO_INSERT);
8867 var = *slot;
8868
8869 while ((led = VAR_LOC_DEP_LST (var)))
8870 {
8871 decl_or_value ldv = led->dv;
8872 variable ivar;
8873
8874 /* Deactivate and remove the backlink, as it was “used up”. It
8875 makes no sense to attempt to notify the same entity again:
8876 either it will be recomputed and re-register an active
8877 dependency, or it will still have the changed mark. */
8878 if (led->next)
8879 led->next->pprev = led->pprev;
8880 if (led->pprev)
8881 *led->pprev = led->next;
8882 led->next = NULL;
8883 led->pprev = NULL;
8884
8885 if (dv_changed_p (ldv))
8886 continue;
8887
8888 switch (dv_onepart_p (ldv))
8889 {
8890 case ONEPART_VALUE:
8891 case ONEPART_DEXPR:
8892 set_dv_changed (ldv, true);
8893 changed_values_stack->safe_push (dv_as_rtx (ldv));
8894 break;
8895
8896 case ONEPART_VDECL:
8897 ivar = htab->find_with_hash (ldv, dv_htab_hash (ldv));
8898 gcc_checking_assert (!VAR_LOC_DEP_LST (ivar));
8899 variable_was_changed (ivar, NULL);
8900 break;
8901
8902 case NOT_ONEPART:
8903 pool_free (loc_exp_dep_pool, led);
8904 ivar = htab->find_with_hash (ldv, dv_htab_hash (ldv));
8905 if (ivar)
8906 {
8907 int i = ivar->n_var_parts;
8908 while (i--)
8909 {
8910 rtx loc = ivar->var_part[i].cur_loc;
8911
8912 if (loc && GET_CODE (loc) == MEM
8913 && XEXP (loc, 0) == val)
8914 {
8915 variable_was_changed (ivar, NULL);
8916 break;
8917 }
8918 }
8919 }
8920 break;
8921
8922 default:
8923 gcc_unreachable ();
8924 }
8925 }
8926 }
8927
8928 /* Take out of changed_variables any entries that don't refer to use
8929 variables. Back-propagate change notifications from values and
8930 debug_exprs to their active dependencies in HTAB or in
8931 CHANGED_VARIABLES. */
8932
8933 static void
8934 process_changed_values (variable_table_type *htab)
8935 {
8936 int i, n;
8937 rtx val;
8938 auto_vec<rtx, 20> changed_values_stack;
8939
8940 /* Move values from changed_variables to changed_values_stack. */
8941 changed_variables
8942 ->traverse <vec<rtx, va_heap>*, var_track_values_to_stack>
8943 (&changed_values_stack);
8944
8945 /* Back-propagate change notifications in values while popping
8946 them from the stack. */
8947 for (n = i = changed_values_stack.length ();
8948 i > 0; i = changed_values_stack.length ())
8949 {
8950 val = changed_values_stack.pop ();
8951 notify_dependents_of_changed_value (val, htab, &changed_values_stack);
8952
8953 /* This condition will hold when visiting each of the entries
8954 originally in changed_variables. We can't remove them
8955 earlier because this could drop the backlinks before we got a
8956 chance to use them. */
8957 if (i == n)
8958 {
8959 remove_value_from_changed_variables (val);
8960 n--;
8961 }
8962 }
8963 }
8964
8965 /* Emit NOTE_INSN_VAR_LOCATION note for each variable from a chain
8966 CHANGED_VARIABLES and delete this chain. WHERE specifies whether
8967 the notes shall be emitted before of after instruction INSN. */
8968
8969 static void
8970 emit_notes_for_changes (rtx insn, enum emit_note_where where,
8971 shared_hash vars)
8972 {
8973 emit_note_data data;
8974 variable_table_type *htab = shared_hash_htab (vars);
8975
8976 if (!changed_variables->elements ())
8977 return;
8978
8979 if (MAY_HAVE_DEBUG_INSNS)
8980 process_changed_values (htab);
8981
8982 data.insn = insn;
8983 data.where = where;
8984 data.vars = htab;
8985
8986 changed_variables
8987 ->traverse <emit_note_data*, emit_note_insn_var_location> (&data);
8988 }
8989
8990 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it differs from the
8991 same variable in hash table DATA or is not there at all. */
8992
8993 int
8994 emit_notes_for_differences_1 (variable_def **slot, variable_table_type *new_vars)
8995 {
8996 variable old_var, new_var;
8997
8998 old_var = *slot;
8999 new_var = new_vars->find_with_hash (old_var->dv, dv_htab_hash (old_var->dv));
9000
9001 if (!new_var)
9002 {
9003 /* Variable has disappeared. */
9004 variable empty_var = NULL;
9005
9006 if (old_var->onepart == ONEPART_VALUE
9007 || old_var->onepart == ONEPART_DEXPR)
9008 {
9009 empty_var = variable_from_dropped (old_var->dv, NO_INSERT);
9010 if (empty_var)
9011 {
9012 gcc_checking_assert (!empty_var->in_changed_variables);
9013 if (!VAR_LOC_1PAUX (old_var))
9014 {
9015 VAR_LOC_1PAUX (old_var) = VAR_LOC_1PAUX (empty_var);
9016 VAR_LOC_1PAUX (empty_var) = NULL;
9017 }
9018 else
9019 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var));
9020 }
9021 }
9022
9023 if (!empty_var)
9024 {
9025 empty_var = (variable) pool_alloc (onepart_pool (old_var->onepart));
9026 empty_var->dv = old_var->dv;
9027 empty_var->refcount = 0;
9028 empty_var->n_var_parts = 0;
9029 empty_var->onepart = old_var->onepart;
9030 empty_var->in_changed_variables = false;
9031 }
9032
9033 if (empty_var->onepart)
9034 {
9035 /* Propagate the auxiliary data to (ultimately)
9036 changed_variables. */
9037 empty_var->var_part[0].loc_chain = NULL;
9038 empty_var->var_part[0].cur_loc = NULL;
9039 VAR_LOC_1PAUX (empty_var) = VAR_LOC_1PAUX (old_var);
9040 VAR_LOC_1PAUX (old_var) = NULL;
9041 }
9042 variable_was_changed (empty_var, NULL);
9043 /* Continue traversing the hash table. */
9044 return 1;
9045 }
9046 /* Update cur_loc and one-part auxiliary data, before new_var goes
9047 through variable_was_changed. */
9048 if (old_var != new_var && new_var->onepart)
9049 {
9050 gcc_checking_assert (VAR_LOC_1PAUX (new_var) == NULL);
9051 VAR_LOC_1PAUX (new_var) = VAR_LOC_1PAUX (old_var);
9052 VAR_LOC_1PAUX (old_var) = NULL;
9053 new_var->var_part[0].cur_loc = old_var->var_part[0].cur_loc;
9054 }
9055 if (variable_different_p (old_var, new_var))
9056 variable_was_changed (new_var, NULL);
9057
9058 /* Continue traversing the hash table. */
9059 return 1;
9060 }
9061
9062 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it is not in hash
9063 table DATA. */
9064
9065 int
9066 emit_notes_for_differences_2 (variable_def **slot, variable_table_type *old_vars)
9067 {
9068 variable old_var, new_var;
9069
9070 new_var = *slot;
9071 old_var = old_vars->find_with_hash (new_var->dv, dv_htab_hash (new_var->dv));
9072 if (!old_var)
9073 {
9074 int i;
9075 for (i = 0; i < new_var->n_var_parts; i++)
9076 new_var->var_part[i].cur_loc = NULL;
9077 variable_was_changed (new_var, NULL);
9078 }
9079
9080 /* Continue traversing the hash table. */
9081 return 1;
9082 }
9083
9084 /* Emit notes before INSN for differences between dataflow sets OLD_SET and
9085 NEW_SET. */
9086
9087 static void
9088 emit_notes_for_differences (rtx insn, dataflow_set *old_set,
9089 dataflow_set *new_set)
9090 {
9091 shared_hash_htab (old_set->vars)
9092 ->traverse <variable_table_type *, emit_notes_for_differences_1>
9093 (shared_hash_htab (new_set->vars));
9094 shared_hash_htab (new_set->vars)
9095 ->traverse <variable_table_type *, emit_notes_for_differences_2>
9096 (shared_hash_htab (old_set->vars));
9097 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, new_set->vars);
9098 }
9099
9100 /* Return the next insn after INSN that is not a NOTE_INSN_VAR_LOCATION. */
9101
9102 static rtx
9103 next_non_note_insn_var_location (rtx insn)
9104 {
9105 while (insn)
9106 {
9107 insn = NEXT_INSN (insn);
9108 if (insn == 0
9109 || !NOTE_P (insn)
9110 || NOTE_KIND (insn) != NOTE_INSN_VAR_LOCATION)
9111 break;
9112 }
9113
9114 return insn;
9115 }
9116
9117 /* Emit the notes for changes of location parts in the basic block BB. */
9118
9119 static void
9120 emit_notes_in_bb (basic_block bb, dataflow_set *set)
9121 {
9122 unsigned int i;
9123 micro_operation *mo;
9124
9125 dataflow_set_clear (set);
9126 dataflow_set_copy (set, &VTI (bb)->in);
9127
9128 FOR_EACH_VEC_ELT (VTI (bb)->mos, i, mo)
9129 {
9130 rtx insn = mo->insn;
9131 rtx next_insn = next_non_note_insn_var_location (insn);
9132
9133 switch (mo->type)
9134 {
9135 case MO_CALL:
9136 dataflow_set_clear_at_call (set);
9137 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_CALL_INSN, set->vars);
9138 {
9139 rtx arguments = mo->u.loc, *p = &arguments, note;
9140 while (*p)
9141 {
9142 XEXP (XEXP (*p, 0), 1)
9143 = vt_expand_loc (XEXP (XEXP (*p, 0), 1),
9144 shared_hash_htab (set->vars));
9145 /* If expansion is successful, keep it in the list. */
9146 if (XEXP (XEXP (*p, 0), 1))
9147 p = &XEXP (*p, 1);
9148 /* Otherwise, if the following item is data_value for it,
9149 drop it too too. */
9150 else if (XEXP (*p, 1)
9151 && REG_P (XEXP (XEXP (*p, 0), 0))
9152 && MEM_P (XEXP (XEXP (XEXP (*p, 1), 0), 0))
9153 && REG_P (XEXP (XEXP (XEXP (XEXP (*p, 1), 0), 0),
9154 0))
9155 && REGNO (XEXP (XEXP (*p, 0), 0))
9156 == REGNO (XEXP (XEXP (XEXP (XEXP (*p, 1), 0),
9157 0), 0)))
9158 *p = XEXP (XEXP (*p, 1), 1);
9159 /* Just drop this item. */
9160 else
9161 *p = XEXP (*p, 1);
9162 }
9163 note = emit_note_after (NOTE_INSN_CALL_ARG_LOCATION, insn);
9164 NOTE_VAR_LOCATION (note) = arguments;
9165 }
9166 break;
9167
9168 case MO_USE:
9169 {
9170 rtx loc = mo->u.loc;
9171
9172 if (REG_P (loc))
9173 var_reg_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
9174 else
9175 var_mem_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
9176
9177 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
9178 }
9179 break;
9180
9181 case MO_VAL_LOC:
9182 {
9183 rtx loc = mo->u.loc;
9184 rtx val, vloc;
9185 tree var;
9186
9187 if (GET_CODE (loc) == CONCAT)
9188 {
9189 val = XEXP (loc, 0);
9190 vloc = XEXP (loc, 1);
9191 }
9192 else
9193 {
9194 val = NULL_RTX;
9195 vloc = loc;
9196 }
9197
9198 var = PAT_VAR_LOCATION_DECL (vloc);
9199
9200 clobber_variable_part (set, NULL_RTX,
9201 dv_from_decl (var), 0, NULL_RTX);
9202 if (val)
9203 {
9204 if (VAL_NEEDS_RESOLUTION (loc))
9205 val_resolve (set, val, PAT_VAR_LOCATION_LOC (vloc), insn);
9206 set_variable_part (set, val, dv_from_decl (var), 0,
9207 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
9208 INSERT);
9209 }
9210 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
9211 set_variable_part (set, PAT_VAR_LOCATION_LOC (vloc),
9212 dv_from_decl (var), 0,
9213 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
9214 INSERT);
9215
9216 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
9217 }
9218 break;
9219
9220 case MO_VAL_USE:
9221 {
9222 rtx loc = mo->u.loc;
9223 rtx val, vloc, uloc;
9224
9225 vloc = uloc = XEXP (loc, 1);
9226 val = XEXP (loc, 0);
9227
9228 if (GET_CODE (val) == CONCAT)
9229 {
9230 uloc = XEXP (val, 1);
9231 val = XEXP (val, 0);
9232 }
9233
9234 if (VAL_NEEDS_RESOLUTION (loc))
9235 val_resolve (set, val, vloc, insn);
9236 else
9237 val_store (set, val, uloc, insn, false);
9238
9239 if (VAL_HOLDS_TRACK_EXPR (loc))
9240 {
9241 if (GET_CODE (uloc) == REG)
9242 var_reg_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
9243 NULL);
9244 else if (GET_CODE (uloc) == MEM)
9245 var_mem_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
9246 NULL);
9247 }
9248
9249 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
9250 }
9251 break;
9252
9253 case MO_VAL_SET:
9254 {
9255 rtx loc = mo->u.loc;
9256 rtx val, vloc, uloc;
9257 rtx dstv, srcv;
9258
9259 vloc = loc;
9260 uloc = XEXP (vloc, 1);
9261 val = XEXP (vloc, 0);
9262 vloc = uloc;
9263
9264 if (GET_CODE (uloc) == SET)
9265 {
9266 dstv = SET_DEST (uloc);
9267 srcv = SET_SRC (uloc);
9268 }
9269 else
9270 {
9271 dstv = uloc;
9272 srcv = NULL;
9273 }
9274
9275 if (GET_CODE (val) == CONCAT)
9276 {
9277 dstv = vloc = XEXP (val, 1);
9278 val = XEXP (val, 0);
9279 }
9280
9281 if (GET_CODE (vloc) == SET)
9282 {
9283 srcv = SET_SRC (vloc);
9284
9285 gcc_assert (val != srcv);
9286 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
9287
9288 dstv = vloc = SET_DEST (vloc);
9289
9290 if (VAL_NEEDS_RESOLUTION (loc))
9291 val_resolve (set, val, srcv, insn);
9292 }
9293 else if (VAL_NEEDS_RESOLUTION (loc))
9294 {
9295 gcc_assert (GET_CODE (uloc) == SET
9296 && GET_CODE (SET_SRC (uloc)) == REG);
9297 val_resolve (set, val, SET_SRC (uloc), insn);
9298 }
9299
9300 if (VAL_HOLDS_TRACK_EXPR (loc))
9301 {
9302 if (VAL_EXPR_IS_CLOBBERED (loc))
9303 {
9304 if (REG_P (uloc))
9305 var_reg_delete (set, uloc, true);
9306 else if (MEM_P (uloc))
9307 {
9308 gcc_assert (MEM_P (dstv));
9309 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (uloc));
9310 var_mem_delete (set, dstv, true);
9311 }
9312 }
9313 else
9314 {
9315 bool copied_p = VAL_EXPR_IS_COPIED (loc);
9316 rtx src = NULL, dst = uloc;
9317 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
9318
9319 if (GET_CODE (uloc) == SET)
9320 {
9321 src = SET_SRC (uloc);
9322 dst = SET_DEST (uloc);
9323 }
9324
9325 if (copied_p)
9326 {
9327 status = find_src_status (set, src);
9328
9329 src = find_src_set_src (set, src);
9330 }
9331
9332 if (REG_P (dst))
9333 var_reg_delete_and_set (set, dst, !copied_p,
9334 status, srcv);
9335 else if (MEM_P (dst))
9336 {
9337 gcc_assert (MEM_P (dstv));
9338 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (dst));
9339 var_mem_delete_and_set (set, dstv, !copied_p,
9340 status, srcv);
9341 }
9342 }
9343 }
9344 else if (REG_P (uloc))
9345 var_regno_delete (set, REGNO (uloc));
9346 else if (MEM_P (uloc))
9347 {
9348 gcc_checking_assert (GET_CODE (vloc) == MEM);
9349 gcc_checking_assert (vloc == dstv);
9350 if (vloc != dstv)
9351 clobber_overlapping_mems (set, vloc);
9352 }
9353
9354 val_store (set, val, dstv, insn, true);
9355
9356 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9357 set->vars);
9358 }
9359 break;
9360
9361 case MO_SET:
9362 {
9363 rtx loc = mo->u.loc;
9364 rtx set_src = NULL;
9365
9366 if (GET_CODE (loc) == SET)
9367 {
9368 set_src = SET_SRC (loc);
9369 loc = SET_DEST (loc);
9370 }
9371
9372 if (REG_P (loc))
9373 var_reg_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
9374 set_src);
9375 else
9376 var_mem_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
9377 set_src);
9378
9379 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9380 set->vars);
9381 }
9382 break;
9383
9384 case MO_COPY:
9385 {
9386 rtx loc = mo->u.loc;
9387 enum var_init_status src_status;
9388 rtx set_src = NULL;
9389
9390 if (GET_CODE (loc) == SET)
9391 {
9392 set_src = SET_SRC (loc);
9393 loc = SET_DEST (loc);
9394 }
9395
9396 src_status = find_src_status (set, set_src);
9397 set_src = find_src_set_src (set, set_src);
9398
9399 if (REG_P (loc))
9400 var_reg_delete_and_set (set, loc, false, src_status, set_src);
9401 else
9402 var_mem_delete_and_set (set, loc, false, src_status, set_src);
9403
9404 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9405 set->vars);
9406 }
9407 break;
9408
9409 case MO_USE_NO_VAR:
9410 {
9411 rtx loc = mo->u.loc;
9412
9413 if (REG_P (loc))
9414 var_reg_delete (set, loc, false);
9415 else
9416 var_mem_delete (set, loc, false);
9417
9418 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
9419 }
9420 break;
9421
9422 case MO_CLOBBER:
9423 {
9424 rtx loc = mo->u.loc;
9425
9426 if (REG_P (loc))
9427 var_reg_delete (set, loc, true);
9428 else
9429 var_mem_delete (set, loc, true);
9430
9431 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9432 set->vars);
9433 }
9434 break;
9435
9436 case MO_ADJUST:
9437 set->stack_adjust += mo->u.adjust;
9438 break;
9439 }
9440 }
9441 }
9442
9443 /* Emit notes for the whole function. */
9444
9445 static void
9446 vt_emit_notes (void)
9447 {
9448 basic_block bb;
9449 dataflow_set cur;
9450
9451 gcc_assert (!changed_variables->elements ());
9452
9453 /* Free memory occupied by the out hash tables, as they aren't used
9454 anymore. */
9455 FOR_EACH_BB_FN (bb, cfun)
9456 dataflow_set_clear (&VTI (bb)->out);
9457
9458 /* Enable emitting notes by functions (mainly by set_variable_part and
9459 delete_variable_part). */
9460 emit_notes = true;
9461
9462 if (MAY_HAVE_DEBUG_INSNS)
9463 {
9464 dropped_values = new variable_table_type (cselib_get_next_uid () * 2);
9465 loc_exp_dep_pool = create_alloc_pool ("loc_exp_dep pool",
9466 sizeof (loc_exp_dep), 64);
9467 }
9468
9469 dataflow_set_init (&cur);
9470
9471 FOR_EACH_BB_FN (bb, cfun)
9472 {
9473 /* Emit the notes for changes of variable locations between two
9474 subsequent basic blocks. */
9475 emit_notes_for_differences (BB_HEAD (bb), &cur, &VTI (bb)->in);
9476
9477 if (MAY_HAVE_DEBUG_INSNS)
9478 local_get_addr_cache = new hash_map<rtx, rtx>;
9479
9480 /* Emit the notes for the changes in the basic block itself. */
9481 emit_notes_in_bb (bb, &cur);
9482
9483 if (MAY_HAVE_DEBUG_INSNS)
9484 delete local_get_addr_cache;
9485 local_get_addr_cache = NULL;
9486
9487 /* Free memory occupied by the in hash table, we won't need it
9488 again. */
9489 dataflow_set_clear (&VTI (bb)->in);
9490 }
9491 #ifdef ENABLE_CHECKING
9492 shared_hash_htab (cur.vars)
9493 ->traverse <variable_table_type *, emit_notes_for_differences_1>
9494 (shared_hash_htab (empty_shared_hash));
9495 #endif
9496 dataflow_set_destroy (&cur);
9497
9498 if (MAY_HAVE_DEBUG_INSNS)
9499 delete dropped_values;
9500 dropped_values = NULL;
9501
9502 emit_notes = false;
9503 }
9504
9505 /* If there is a declaration and offset associated with register/memory RTL
9506 assign declaration to *DECLP and offset to *OFFSETP, and return true. */
9507
9508 static bool
9509 vt_get_decl_and_offset (rtx rtl, tree *declp, HOST_WIDE_INT *offsetp)
9510 {
9511 if (REG_P (rtl))
9512 {
9513 if (REG_ATTRS (rtl))
9514 {
9515 *declp = REG_EXPR (rtl);
9516 *offsetp = REG_OFFSET (rtl);
9517 return true;
9518 }
9519 }
9520 else if (GET_CODE (rtl) == PARALLEL)
9521 {
9522 tree decl = NULL_TREE;
9523 HOST_WIDE_INT offset = MAX_VAR_PARTS;
9524 int len = XVECLEN (rtl, 0), i;
9525
9526 for (i = 0; i < len; i++)
9527 {
9528 rtx reg = XEXP (XVECEXP (rtl, 0, i), 0);
9529 if (!REG_P (reg) || !REG_ATTRS (reg))
9530 break;
9531 if (!decl)
9532 decl = REG_EXPR (reg);
9533 if (REG_EXPR (reg) != decl)
9534 break;
9535 if (REG_OFFSET (reg) < offset)
9536 offset = REG_OFFSET (reg);
9537 }
9538
9539 if (i == len)
9540 {
9541 *declp = decl;
9542 *offsetp = offset;
9543 return true;
9544 }
9545 }
9546 else if (MEM_P (rtl))
9547 {
9548 if (MEM_ATTRS (rtl))
9549 {
9550 *declp = MEM_EXPR (rtl);
9551 *offsetp = INT_MEM_OFFSET (rtl);
9552 return true;
9553 }
9554 }
9555 return false;
9556 }
9557
9558 /* Record the value for the ENTRY_VALUE of RTL as a global equivalence
9559 of VAL. */
9560
9561 static void
9562 record_entry_value (cselib_val *val, rtx rtl)
9563 {
9564 rtx ev = gen_rtx_ENTRY_VALUE (GET_MODE (rtl));
9565
9566 ENTRY_VALUE_EXP (ev) = rtl;
9567
9568 cselib_add_permanent_equiv (val, ev, get_insns ());
9569 }
9570
9571 /* Insert function parameter PARM in IN and OUT sets of ENTRY_BLOCK. */
9572
9573 static void
9574 vt_add_function_parameter (tree parm)
9575 {
9576 rtx decl_rtl = DECL_RTL_IF_SET (parm);
9577 rtx incoming = DECL_INCOMING_RTL (parm);
9578 tree decl;
9579 enum machine_mode mode;
9580 HOST_WIDE_INT offset;
9581 dataflow_set *out;
9582 decl_or_value dv;
9583
9584 if (TREE_CODE (parm) != PARM_DECL)
9585 return;
9586
9587 if (!decl_rtl || !incoming)
9588 return;
9589
9590 if (GET_MODE (decl_rtl) == BLKmode || GET_MODE (incoming) == BLKmode)
9591 return;
9592
9593 /* If there is a DRAP register or a pseudo in internal_arg_pointer,
9594 rewrite the incoming location of parameters passed on the stack
9595 into MEMs based on the argument pointer, so that incoming doesn't
9596 depend on a pseudo. */
9597 if (MEM_P (incoming)
9598 && (XEXP (incoming, 0) == crtl->args.internal_arg_pointer
9599 || (GET_CODE (XEXP (incoming, 0)) == PLUS
9600 && XEXP (XEXP (incoming, 0), 0)
9601 == crtl->args.internal_arg_pointer
9602 && CONST_INT_P (XEXP (XEXP (incoming, 0), 1)))))
9603 {
9604 HOST_WIDE_INT off = -FIRST_PARM_OFFSET (current_function_decl);
9605 if (GET_CODE (XEXP (incoming, 0)) == PLUS)
9606 off += INTVAL (XEXP (XEXP (incoming, 0), 1));
9607 incoming
9608 = replace_equiv_address_nv (incoming,
9609 plus_constant (Pmode,
9610 arg_pointer_rtx, off));
9611 }
9612
9613 #ifdef HAVE_window_save
9614 /* DECL_INCOMING_RTL uses the INCOMING_REGNO of parameter registers.
9615 If the target machine has an explicit window save instruction, the
9616 actual entry value is the corresponding OUTGOING_REGNO instead. */
9617 if (HAVE_window_save && !crtl->uses_only_leaf_regs)
9618 {
9619 if (REG_P (incoming)
9620 && HARD_REGISTER_P (incoming)
9621 && OUTGOING_REGNO (REGNO (incoming)) != REGNO (incoming))
9622 {
9623 parm_reg_t p;
9624 p.incoming = incoming;
9625 incoming
9626 = gen_rtx_REG_offset (incoming, GET_MODE (incoming),
9627 OUTGOING_REGNO (REGNO (incoming)), 0);
9628 p.outgoing = incoming;
9629 vec_safe_push (windowed_parm_regs, p);
9630 }
9631 else if (GET_CODE (incoming) == PARALLEL)
9632 {
9633 rtx outgoing
9634 = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (XVECLEN (incoming, 0)));
9635 int i;
9636
9637 for (i = 0; i < XVECLEN (incoming, 0); i++)
9638 {
9639 rtx reg = XEXP (XVECEXP (incoming, 0, i), 0);
9640 parm_reg_t p;
9641 p.incoming = reg;
9642 reg = gen_rtx_REG_offset (reg, GET_MODE (reg),
9643 OUTGOING_REGNO (REGNO (reg)), 0);
9644 p.outgoing = reg;
9645 XVECEXP (outgoing, 0, i)
9646 = gen_rtx_EXPR_LIST (VOIDmode, reg,
9647 XEXP (XVECEXP (incoming, 0, i), 1));
9648 vec_safe_push (windowed_parm_regs, p);
9649 }
9650
9651 incoming = outgoing;
9652 }
9653 else if (MEM_P (incoming)
9654 && REG_P (XEXP (incoming, 0))
9655 && HARD_REGISTER_P (XEXP (incoming, 0)))
9656 {
9657 rtx reg = XEXP (incoming, 0);
9658 if (OUTGOING_REGNO (REGNO (reg)) != REGNO (reg))
9659 {
9660 parm_reg_t p;
9661 p.incoming = reg;
9662 reg = gen_raw_REG (GET_MODE (reg), OUTGOING_REGNO (REGNO (reg)));
9663 p.outgoing = reg;
9664 vec_safe_push (windowed_parm_regs, p);
9665 incoming = replace_equiv_address_nv (incoming, reg);
9666 }
9667 }
9668 }
9669 #endif
9670
9671 if (!vt_get_decl_and_offset (incoming, &decl, &offset))
9672 {
9673 if (MEM_P (incoming))
9674 {
9675 /* This means argument is passed by invisible reference. */
9676 offset = 0;
9677 decl = parm;
9678 }
9679 else
9680 {
9681 if (!vt_get_decl_and_offset (decl_rtl, &decl, &offset))
9682 return;
9683 offset += byte_lowpart_offset (GET_MODE (incoming),
9684 GET_MODE (decl_rtl));
9685 }
9686 }
9687
9688 if (!decl)
9689 return;
9690
9691 if (parm != decl)
9692 {
9693 /* If that DECL_RTL wasn't a pseudo that got spilled to
9694 memory, bail out. Otherwise, the spill slot sharing code
9695 will force the memory to reference spill_slot_decl (%sfp),
9696 so we don't match above. That's ok, the pseudo must have
9697 referenced the entire parameter, so just reset OFFSET. */
9698 if (decl != get_spill_slot_decl (false))
9699 return;
9700 offset = 0;
9701 }
9702
9703 if (!track_loc_p (incoming, parm, offset, false, &mode, &offset))
9704 return;
9705
9706 out = &VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->out;
9707
9708 dv = dv_from_decl (parm);
9709
9710 if (target_for_debug_bind (parm)
9711 /* We can't deal with these right now, because this kind of
9712 variable is single-part. ??? We could handle parallels
9713 that describe multiple locations for the same single
9714 value, but ATM we don't. */
9715 && GET_CODE (incoming) != PARALLEL)
9716 {
9717 cselib_val *val;
9718 rtx lowpart;
9719
9720 /* ??? We shouldn't ever hit this, but it may happen because
9721 arguments passed by invisible reference aren't dealt with
9722 above: incoming-rtl will have Pmode rather than the
9723 expected mode for the type. */
9724 if (offset)
9725 return;
9726
9727 lowpart = var_lowpart (mode, incoming);
9728 if (!lowpart)
9729 return;
9730
9731 val = cselib_lookup_from_insn (lowpart, mode, true,
9732 VOIDmode, get_insns ());
9733
9734 /* ??? Float-typed values in memory are not handled by
9735 cselib. */
9736 if (val)
9737 {
9738 preserve_value (val);
9739 set_variable_part (out, val->val_rtx, dv, offset,
9740 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9741 dv = dv_from_value (val->val_rtx);
9742 }
9743
9744 if (MEM_P (incoming))
9745 {
9746 val = cselib_lookup_from_insn (XEXP (incoming, 0), mode, true,
9747 VOIDmode, get_insns ());
9748 if (val)
9749 {
9750 preserve_value (val);
9751 incoming = replace_equiv_address_nv (incoming, val->val_rtx);
9752 }
9753 }
9754 }
9755
9756 if (REG_P (incoming))
9757 {
9758 incoming = var_lowpart (mode, incoming);
9759 gcc_assert (REGNO (incoming) < FIRST_PSEUDO_REGISTER);
9760 attrs_list_insert (&out->regs[REGNO (incoming)], dv, offset,
9761 incoming);
9762 set_variable_part (out, incoming, dv, offset,
9763 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9764 if (dv_is_value_p (dv))
9765 {
9766 record_entry_value (CSELIB_VAL_PTR (dv_as_value (dv)), incoming);
9767 if (TREE_CODE (TREE_TYPE (parm)) == REFERENCE_TYPE
9768 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_TYPE (parm))))
9769 {
9770 enum machine_mode indmode
9771 = TYPE_MODE (TREE_TYPE (TREE_TYPE (parm)));
9772 rtx mem = gen_rtx_MEM (indmode, incoming);
9773 cselib_val *val = cselib_lookup_from_insn (mem, indmode, true,
9774 VOIDmode,
9775 get_insns ());
9776 if (val)
9777 {
9778 preserve_value (val);
9779 record_entry_value (val, mem);
9780 set_variable_part (out, mem, dv_from_value (val->val_rtx), 0,
9781 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9782 }
9783 }
9784 }
9785 }
9786 else if (GET_CODE (incoming) == PARALLEL && !dv_onepart_p (dv))
9787 {
9788 int i;
9789
9790 for (i = 0; i < XVECLEN (incoming, 0); i++)
9791 {
9792 rtx reg = XEXP (XVECEXP (incoming, 0, i), 0);
9793 offset = REG_OFFSET (reg);
9794 gcc_assert (REGNO (reg) < FIRST_PSEUDO_REGISTER);
9795 attrs_list_insert (&out->regs[REGNO (reg)], dv, offset, reg);
9796 set_variable_part (out, reg, dv, offset,
9797 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9798 }
9799 }
9800 else if (MEM_P (incoming))
9801 {
9802 incoming = var_lowpart (mode, incoming);
9803 set_variable_part (out, incoming, dv, offset,
9804 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9805 }
9806 }
9807
9808 /* Insert function parameters to IN and OUT sets of ENTRY_BLOCK. */
9809
9810 static void
9811 vt_add_function_parameters (void)
9812 {
9813 tree parm;
9814
9815 for (parm = DECL_ARGUMENTS (current_function_decl);
9816 parm; parm = DECL_CHAIN (parm))
9817 vt_add_function_parameter (parm);
9818
9819 if (DECL_HAS_VALUE_EXPR_P (DECL_RESULT (current_function_decl)))
9820 {
9821 tree vexpr = DECL_VALUE_EXPR (DECL_RESULT (current_function_decl));
9822
9823 if (TREE_CODE (vexpr) == INDIRECT_REF)
9824 vexpr = TREE_OPERAND (vexpr, 0);
9825
9826 if (TREE_CODE (vexpr) == PARM_DECL
9827 && DECL_ARTIFICIAL (vexpr)
9828 && !DECL_IGNORED_P (vexpr)
9829 && DECL_NAMELESS (vexpr))
9830 vt_add_function_parameter (vexpr);
9831 }
9832 }
9833
9834 /* Initialize cfa_base_rtx, create a preserved VALUE for it and
9835 ensure it isn't flushed during cselib_reset_table.
9836 Can be called only if frame_pointer_rtx resp. arg_pointer_rtx
9837 has been eliminated. */
9838
9839 static void
9840 vt_init_cfa_base (void)
9841 {
9842 cselib_val *val;
9843
9844 #ifdef FRAME_POINTER_CFA_OFFSET
9845 cfa_base_rtx = frame_pointer_rtx;
9846 cfa_base_offset = -FRAME_POINTER_CFA_OFFSET (current_function_decl);
9847 #else
9848 cfa_base_rtx = arg_pointer_rtx;
9849 cfa_base_offset = -ARG_POINTER_CFA_OFFSET (current_function_decl);
9850 #endif
9851 if (cfa_base_rtx == hard_frame_pointer_rtx
9852 || !fixed_regs[REGNO (cfa_base_rtx)])
9853 {
9854 cfa_base_rtx = NULL_RTX;
9855 return;
9856 }
9857 if (!MAY_HAVE_DEBUG_INSNS)
9858 return;
9859
9860 /* Tell alias analysis that cfa_base_rtx should share
9861 find_base_term value with stack pointer or hard frame pointer. */
9862 if (!frame_pointer_needed)
9863 vt_equate_reg_base_value (cfa_base_rtx, stack_pointer_rtx);
9864 else if (!crtl->stack_realign_tried)
9865 vt_equate_reg_base_value (cfa_base_rtx, hard_frame_pointer_rtx);
9866
9867 val = cselib_lookup_from_insn (cfa_base_rtx, GET_MODE (cfa_base_rtx), 1,
9868 VOIDmode, get_insns ());
9869 preserve_value (val);
9870 cselib_preserve_cfa_base_value (val, REGNO (cfa_base_rtx));
9871 }
9872
9873 /* Allocate and initialize the data structures for variable tracking
9874 and parse the RTL to get the micro operations. */
9875
9876 static bool
9877 vt_initialize (void)
9878 {
9879 basic_block bb;
9880 HOST_WIDE_INT fp_cfa_offset = -1;
9881
9882 alloc_aux_for_blocks (sizeof (struct variable_tracking_info_def));
9883
9884 attrs_pool = create_alloc_pool ("attrs_def pool",
9885 sizeof (struct attrs_def), 1024);
9886 var_pool = create_alloc_pool ("variable_def pool",
9887 sizeof (struct variable_def)
9888 + (MAX_VAR_PARTS - 1)
9889 * sizeof (((variable)NULL)->var_part[0]), 64);
9890 loc_chain_pool = create_alloc_pool ("location_chain_def pool",
9891 sizeof (struct location_chain_def),
9892 1024);
9893 shared_hash_pool = create_alloc_pool ("shared_hash_def pool",
9894 sizeof (struct shared_hash_def), 256);
9895 empty_shared_hash = (shared_hash) pool_alloc (shared_hash_pool);
9896 empty_shared_hash->refcount = 1;
9897 empty_shared_hash->htab = new variable_table_type (1);
9898 changed_variables = new variable_table_type (10);
9899
9900 /* Init the IN and OUT sets. */
9901 FOR_ALL_BB_FN (bb, cfun)
9902 {
9903 VTI (bb)->visited = false;
9904 VTI (bb)->flooded = false;
9905 dataflow_set_init (&VTI (bb)->in);
9906 dataflow_set_init (&VTI (bb)->out);
9907 VTI (bb)->permp = NULL;
9908 }
9909
9910 if (MAY_HAVE_DEBUG_INSNS)
9911 {
9912 cselib_init (CSELIB_RECORD_MEMORY | CSELIB_PRESERVE_CONSTANTS);
9913 scratch_regs = BITMAP_ALLOC (NULL);
9914 valvar_pool = create_alloc_pool ("small variable_def pool",
9915 sizeof (struct variable_def), 256);
9916 preserved_values.create (256);
9917 global_get_addr_cache = new hash_map<rtx, rtx>;
9918 }
9919 else
9920 {
9921 scratch_regs = NULL;
9922 valvar_pool = NULL;
9923 global_get_addr_cache = NULL;
9924 }
9925
9926 if (MAY_HAVE_DEBUG_INSNS)
9927 {
9928 rtx reg, expr;
9929 int ofst;
9930 cselib_val *val;
9931
9932 #ifdef FRAME_POINTER_CFA_OFFSET
9933 reg = frame_pointer_rtx;
9934 ofst = FRAME_POINTER_CFA_OFFSET (current_function_decl);
9935 #else
9936 reg = arg_pointer_rtx;
9937 ofst = ARG_POINTER_CFA_OFFSET (current_function_decl);
9938 #endif
9939
9940 ofst -= INCOMING_FRAME_SP_OFFSET;
9941
9942 val = cselib_lookup_from_insn (reg, GET_MODE (reg), 1,
9943 VOIDmode, get_insns ());
9944 preserve_value (val);
9945 if (reg != hard_frame_pointer_rtx && fixed_regs[REGNO (reg)])
9946 cselib_preserve_cfa_base_value (val, REGNO (reg));
9947 expr = plus_constant (GET_MODE (stack_pointer_rtx),
9948 stack_pointer_rtx, -ofst);
9949 cselib_add_permanent_equiv (val, expr, get_insns ());
9950
9951 if (ofst)
9952 {
9953 val = cselib_lookup_from_insn (stack_pointer_rtx,
9954 GET_MODE (stack_pointer_rtx), 1,
9955 VOIDmode, get_insns ());
9956 preserve_value (val);
9957 expr = plus_constant (GET_MODE (reg), reg, ofst);
9958 cselib_add_permanent_equiv (val, expr, get_insns ());
9959 }
9960 }
9961
9962 /* In order to factor out the adjustments made to the stack pointer or to
9963 the hard frame pointer and thus be able to use DW_OP_fbreg operations
9964 instead of individual location lists, we're going to rewrite MEMs based
9965 on them into MEMs based on the CFA by de-eliminating stack_pointer_rtx
9966 or hard_frame_pointer_rtx to the virtual CFA pointer frame_pointer_rtx
9967 resp. arg_pointer_rtx. We can do this either when there is no frame
9968 pointer in the function and stack adjustments are consistent for all
9969 basic blocks or when there is a frame pointer and no stack realignment.
9970 But we first have to check that frame_pointer_rtx resp. arg_pointer_rtx
9971 has been eliminated. */
9972 if (!frame_pointer_needed)
9973 {
9974 rtx reg, elim;
9975
9976 if (!vt_stack_adjustments ())
9977 return false;
9978
9979 #ifdef FRAME_POINTER_CFA_OFFSET
9980 reg = frame_pointer_rtx;
9981 #else
9982 reg = arg_pointer_rtx;
9983 #endif
9984 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
9985 if (elim != reg)
9986 {
9987 if (GET_CODE (elim) == PLUS)
9988 elim = XEXP (elim, 0);
9989 if (elim == stack_pointer_rtx)
9990 vt_init_cfa_base ();
9991 }
9992 }
9993 else if (!crtl->stack_realign_tried)
9994 {
9995 rtx reg, elim;
9996
9997 #ifdef FRAME_POINTER_CFA_OFFSET
9998 reg = frame_pointer_rtx;
9999 fp_cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
10000 #else
10001 reg = arg_pointer_rtx;
10002 fp_cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
10003 #endif
10004 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10005 if (elim != reg)
10006 {
10007 if (GET_CODE (elim) == PLUS)
10008 {
10009 fp_cfa_offset -= INTVAL (XEXP (elim, 1));
10010 elim = XEXP (elim, 0);
10011 }
10012 if (elim != hard_frame_pointer_rtx)
10013 fp_cfa_offset = -1;
10014 }
10015 else
10016 fp_cfa_offset = -1;
10017 }
10018
10019 /* If the stack is realigned and a DRAP register is used, we're going to
10020 rewrite MEMs based on it representing incoming locations of parameters
10021 passed on the stack into MEMs based on the argument pointer. Although
10022 we aren't going to rewrite other MEMs, we still need to initialize the
10023 virtual CFA pointer in order to ensure that the argument pointer will
10024 be seen as a constant throughout the function.
10025
10026 ??? This doesn't work if FRAME_POINTER_CFA_OFFSET is defined. */
10027 else if (stack_realign_drap)
10028 {
10029 rtx reg, elim;
10030
10031 #ifdef FRAME_POINTER_CFA_OFFSET
10032 reg = frame_pointer_rtx;
10033 #else
10034 reg = arg_pointer_rtx;
10035 #endif
10036 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10037 if (elim != reg)
10038 {
10039 if (GET_CODE (elim) == PLUS)
10040 elim = XEXP (elim, 0);
10041 if (elim == hard_frame_pointer_rtx)
10042 vt_init_cfa_base ();
10043 }
10044 }
10045
10046 hard_frame_pointer_adjustment = -1;
10047
10048 vt_add_function_parameters ();
10049
10050 FOR_EACH_BB_FN (bb, cfun)
10051 {
10052 rtx insn;
10053 HOST_WIDE_INT pre, post = 0;
10054 basic_block first_bb, last_bb;
10055
10056 if (MAY_HAVE_DEBUG_INSNS)
10057 {
10058 cselib_record_sets_hook = add_with_sets;
10059 if (dump_file && (dump_flags & TDF_DETAILS))
10060 fprintf (dump_file, "first value: %i\n",
10061 cselib_get_next_uid ());
10062 }
10063
10064 first_bb = bb;
10065 for (;;)
10066 {
10067 edge e;
10068 if (bb->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
10069 || ! single_pred_p (bb->next_bb))
10070 break;
10071 e = find_edge (bb, bb->next_bb);
10072 if (! e || (e->flags & EDGE_FALLTHRU) == 0)
10073 break;
10074 bb = bb->next_bb;
10075 }
10076 last_bb = bb;
10077
10078 /* Add the micro-operations to the vector. */
10079 FOR_BB_BETWEEN (bb, first_bb, last_bb->next_bb, next_bb)
10080 {
10081 HOST_WIDE_INT offset = VTI (bb)->out.stack_adjust;
10082 VTI (bb)->out.stack_adjust = VTI (bb)->in.stack_adjust;
10083 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
10084 insn = NEXT_INSN (insn))
10085 {
10086 if (INSN_P (insn))
10087 {
10088 if (!frame_pointer_needed)
10089 {
10090 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
10091 if (pre)
10092 {
10093 micro_operation mo;
10094 mo.type = MO_ADJUST;
10095 mo.u.adjust = pre;
10096 mo.insn = insn;
10097 if (dump_file && (dump_flags & TDF_DETAILS))
10098 log_op_type (PATTERN (insn), bb, insn,
10099 MO_ADJUST, dump_file);
10100 VTI (bb)->mos.safe_push (mo);
10101 VTI (bb)->out.stack_adjust += pre;
10102 }
10103 }
10104
10105 cselib_hook_called = false;
10106 adjust_insn (bb, insn);
10107 if (MAY_HAVE_DEBUG_INSNS)
10108 {
10109 if (CALL_P (insn))
10110 prepare_call_arguments (bb, insn);
10111 cselib_process_insn (insn);
10112 if (dump_file && (dump_flags & TDF_DETAILS))
10113 {
10114 print_rtl_single (dump_file, insn);
10115 dump_cselib_table (dump_file);
10116 }
10117 }
10118 if (!cselib_hook_called)
10119 add_with_sets (insn, 0, 0);
10120 cancel_changes (0);
10121
10122 if (!frame_pointer_needed && post)
10123 {
10124 micro_operation mo;
10125 mo.type = MO_ADJUST;
10126 mo.u.adjust = post;
10127 mo.insn = insn;
10128 if (dump_file && (dump_flags & TDF_DETAILS))
10129 log_op_type (PATTERN (insn), bb, insn,
10130 MO_ADJUST, dump_file);
10131 VTI (bb)->mos.safe_push (mo);
10132 VTI (bb)->out.stack_adjust += post;
10133 }
10134
10135 if (fp_cfa_offset != -1
10136 && hard_frame_pointer_adjustment == -1
10137 && fp_setter_insn (insn))
10138 {
10139 vt_init_cfa_base ();
10140 hard_frame_pointer_adjustment = fp_cfa_offset;
10141 /* Disassociate sp from fp now. */
10142 if (MAY_HAVE_DEBUG_INSNS)
10143 {
10144 cselib_val *v;
10145 cselib_invalidate_rtx (stack_pointer_rtx);
10146 v = cselib_lookup (stack_pointer_rtx, Pmode, 1,
10147 VOIDmode);
10148 if (v && !cselib_preserved_value_p (v))
10149 {
10150 cselib_set_value_sp_based (v);
10151 preserve_value (v);
10152 }
10153 }
10154 }
10155 }
10156 }
10157 gcc_assert (offset == VTI (bb)->out.stack_adjust);
10158 }
10159
10160 bb = last_bb;
10161
10162 if (MAY_HAVE_DEBUG_INSNS)
10163 {
10164 cselib_preserve_only_values ();
10165 cselib_reset_table (cselib_get_next_uid ());
10166 cselib_record_sets_hook = NULL;
10167 }
10168 }
10169
10170 hard_frame_pointer_adjustment = -1;
10171 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->flooded = true;
10172 cfa_base_rtx = NULL_RTX;
10173 return true;
10174 }
10175
10176 /* This is *not* reset after each function. It gives each
10177 NOTE_INSN_DELETED_DEBUG_LABEL in the entire compilation
10178 a unique label number. */
10179
10180 static int debug_label_num = 1;
10181
10182 /* Get rid of all debug insns from the insn stream. */
10183
10184 static void
10185 delete_debug_insns (void)
10186 {
10187 basic_block bb;
10188 rtx insn, next;
10189
10190 if (!MAY_HAVE_DEBUG_INSNS)
10191 return;
10192
10193 FOR_EACH_BB_FN (bb, cfun)
10194 {
10195 FOR_BB_INSNS_SAFE (bb, insn, next)
10196 if (DEBUG_INSN_P (insn))
10197 {
10198 tree decl = INSN_VAR_LOCATION_DECL (insn);
10199 if (TREE_CODE (decl) == LABEL_DECL
10200 && DECL_NAME (decl)
10201 && !DECL_RTL_SET_P (decl))
10202 {
10203 PUT_CODE (insn, NOTE);
10204 NOTE_KIND (insn) = NOTE_INSN_DELETED_DEBUG_LABEL;
10205 NOTE_DELETED_LABEL_NAME (insn)
10206 = IDENTIFIER_POINTER (DECL_NAME (decl));
10207 SET_DECL_RTL (decl, insn);
10208 CODE_LABEL_NUMBER (insn) = debug_label_num++;
10209 }
10210 else
10211 delete_insn (insn);
10212 }
10213 }
10214 }
10215
10216 /* Run a fast, BB-local only version of var tracking, to take care of
10217 information that we don't do global analysis on, such that not all
10218 information is lost. If SKIPPED holds, we're skipping the global
10219 pass entirely, so we should try to use information it would have
10220 handled as well.. */
10221
10222 static void
10223 vt_debug_insns_local (bool skipped ATTRIBUTE_UNUSED)
10224 {
10225 /* ??? Just skip it all for now. */
10226 delete_debug_insns ();
10227 }
10228
10229 /* Free the data structures needed for variable tracking. */
10230
10231 static void
10232 vt_finalize (void)
10233 {
10234 basic_block bb;
10235
10236 FOR_EACH_BB_FN (bb, cfun)
10237 {
10238 VTI (bb)->mos.release ();
10239 }
10240
10241 FOR_ALL_BB_FN (bb, cfun)
10242 {
10243 dataflow_set_destroy (&VTI (bb)->in);
10244 dataflow_set_destroy (&VTI (bb)->out);
10245 if (VTI (bb)->permp)
10246 {
10247 dataflow_set_destroy (VTI (bb)->permp);
10248 XDELETE (VTI (bb)->permp);
10249 }
10250 }
10251 free_aux_for_blocks ();
10252 delete empty_shared_hash->htab;
10253 empty_shared_hash->htab = NULL;
10254 delete changed_variables;
10255 changed_variables = NULL;
10256 free_alloc_pool (attrs_pool);
10257 free_alloc_pool (var_pool);
10258 free_alloc_pool (loc_chain_pool);
10259 free_alloc_pool (shared_hash_pool);
10260
10261 if (MAY_HAVE_DEBUG_INSNS)
10262 {
10263 if (global_get_addr_cache)
10264 delete global_get_addr_cache;
10265 global_get_addr_cache = NULL;
10266 if (loc_exp_dep_pool)
10267 free_alloc_pool (loc_exp_dep_pool);
10268 loc_exp_dep_pool = NULL;
10269 free_alloc_pool (valvar_pool);
10270 preserved_values.release ();
10271 cselib_finish ();
10272 BITMAP_FREE (scratch_regs);
10273 scratch_regs = NULL;
10274 }
10275
10276 #ifdef HAVE_window_save
10277 vec_free (windowed_parm_regs);
10278 #endif
10279
10280 if (vui_vec)
10281 XDELETEVEC (vui_vec);
10282 vui_vec = NULL;
10283 vui_allocated = 0;
10284 }
10285
10286 /* The entry point to variable tracking pass. */
10287
10288 static inline unsigned int
10289 variable_tracking_main_1 (void)
10290 {
10291 bool success;
10292
10293 if (flag_var_tracking_assignments < 0)
10294 {
10295 delete_debug_insns ();
10296 return 0;
10297 }
10298
10299 if (n_basic_blocks_for_fn (cfun) > 500 &&
10300 n_edges_for_fn (cfun) / n_basic_blocks_for_fn (cfun) >= 20)
10301 {
10302 vt_debug_insns_local (true);
10303 return 0;
10304 }
10305
10306 mark_dfs_back_edges ();
10307 if (!vt_initialize ())
10308 {
10309 vt_finalize ();
10310 vt_debug_insns_local (true);
10311 return 0;
10312 }
10313
10314 success = vt_find_locations ();
10315
10316 if (!success && flag_var_tracking_assignments > 0)
10317 {
10318 vt_finalize ();
10319
10320 delete_debug_insns ();
10321
10322 /* This is later restored by our caller. */
10323 flag_var_tracking_assignments = 0;
10324
10325 success = vt_initialize ();
10326 gcc_assert (success);
10327
10328 success = vt_find_locations ();
10329 }
10330
10331 if (!success)
10332 {
10333 vt_finalize ();
10334 vt_debug_insns_local (false);
10335 return 0;
10336 }
10337
10338 if (dump_file && (dump_flags & TDF_DETAILS))
10339 {
10340 dump_dataflow_sets ();
10341 dump_reg_info (dump_file);
10342 dump_flow_info (dump_file, dump_flags);
10343 }
10344
10345 timevar_push (TV_VAR_TRACKING_EMIT);
10346 vt_emit_notes ();
10347 timevar_pop (TV_VAR_TRACKING_EMIT);
10348
10349 vt_finalize ();
10350 vt_debug_insns_local (false);
10351 return 0;
10352 }
10353
10354 unsigned int
10355 variable_tracking_main (void)
10356 {
10357 unsigned int ret;
10358 int save = flag_var_tracking_assignments;
10359
10360 ret = variable_tracking_main_1 ();
10361
10362 flag_var_tracking_assignments = save;
10363
10364 return ret;
10365 }
10366 \f
10367 namespace {
10368
10369 const pass_data pass_data_variable_tracking =
10370 {
10371 RTL_PASS, /* type */
10372 "vartrack", /* name */
10373 OPTGROUP_NONE, /* optinfo_flags */
10374 TV_VAR_TRACKING, /* tv_id */
10375 0, /* properties_required */
10376 0, /* properties_provided */
10377 0, /* properties_destroyed */
10378 0, /* todo_flags_start */
10379 0, /* todo_flags_finish */
10380 };
10381
10382 class pass_variable_tracking : public rtl_opt_pass
10383 {
10384 public:
10385 pass_variable_tracking (gcc::context *ctxt)
10386 : rtl_opt_pass (pass_data_variable_tracking, ctxt)
10387 {}
10388
10389 /* opt_pass methods: */
10390 virtual bool gate (function *)
10391 {
10392 return (flag_var_tracking && !targetm.delay_vartrack);
10393 }
10394
10395 virtual unsigned int execute (function *)
10396 {
10397 return variable_tracking_main ();
10398 }
10399
10400 }; // class pass_variable_tracking
10401
10402 } // anon namespace
10403
10404 rtl_opt_pass *
10405 make_pass_variable_tracking (gcc::context *ctxt)
10406 {
10407 return new pass_variable_tracking (ctxt);
10408 }