]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/var-tracking.c
Change copyright header to refer to version 3 of the GNU General Public License and...
[thirdparty/gcc.git] / gcc / var-tracking.c
1 /* Variable tracking routines for the GNU compiler.
2 Copyright (C) 2002, 2003, 2004, 2005, 2007 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file contains the variable tracking pass. It computes where
21 variables are located (which registers or where in memory) at each position
22 in instruction stream and emits notes describing the locations.
23 Debug information (DWARF2 location lists) is finally generated from
24 these notes.
25 With this debug information, it is possible to show variables
26 even when debugging optimized code.
27
28 How does the variable tracking pass work?
29
30 First, it scans RTL code for uses, stores and clobbers (register/memory
31 references in instructions), for call insns and for stack adjustments
32 separately for each basic block and saves them to an array of micro
33 operations.
34 The micro operations of one instruction are ordered so that
35 pre-modifying stack adjustment < use < use with no var < call insn <
36 < set < clobber < post-modifying stack adjustment
37
38 Then, a forward dataflow analysis is performed to find out how locations
39 of variables change through code and to propagate the variable locations
40 along control flow graph.
41 The IN set for basic block BB is computed as a union of OUT sets of BB's
42 predecessors, the OUT set for BB is copied from the IN set for BB and
43 is changed according to micro operations in BB.
44
45 The IN and OUT sets for basic blocks consist of a current stack adjustment
46 (used for adjusting offset of variables addressed using stack pointer),
47 the table of structures describing the locations of parts of a variable
48 and for each physical register a linked list for each physical register.
49 The linked list is a list of variable parts stored in the register,
50 i.e. it is a list of triplets (reg, decl, offset) where decl is
51 REG_EXPR (reg) and offset is REG_OFFSET (reg). The linked list is used for
52 effective deleting appropriate variable parts when we set or clobber the
53 register.
54
55 There may be more than one variable part in a register. The linked lists
56 should be pretty short so it is a good data structure here.
57 For example in the following code, register allocator may assign same
58 register to variables A and B, and both of them are stored in the same
59 register in CODE:
60
61 if (cond)
62 set A;
63 else
64 set B;
65 CODE;
66 if (cond)
67 use A;
68 else
69 use B;
70
71 Finally, the NOTE_INSN_VAR_LOCATION notes describing the variable locations
72 are emitted to appropriate positions in RTL code. Each such a note describes
73 the location of one variable at the point in instruction stream where the
74 note is. There is no need to emit a note for each variable before each
75 instruction, we only emit these notes where the location of variable changes
76 (this means that we also emit notes for changes between the OUT set of the
77 previous block and the IN set of the current block).
78
79 The notes consist of two parts:
80 1. the declaration (from REG_EXPR or MEM_EXPR)
81 2. the location of a variable - it is either a simple register/memory
82 reference (for simple variables, for example int),
83 or a parallel of register/memory references (for a large variables
84 which consist of several parts, for example long long).
85
86 */
87
88 #include "config.h"
89 #include "system.h"
90 #include "coretypes.h"
91 #include "tm.h"
92 #include "rtl.h"
93 #include "tree.h"
94 #include "hard-reg-set.h"
95 #include "basic-block.h"
96 #include "flags.h"
97 #include "output.h"
98 #include "insn-config.h"
99 #include "reload.h"
100 #include "sbitmap.h"
101 #include "alloc-pool.h"
102 #include "fibheap.h"
103 #include "hashtab.h"
104 #include "regs.h"
105 #include "expr.h"
106 #include "timevar.h"
107 #include "tree-pass.h"
108
109 /* Type of micro operation. */
110 enum micro_operation_type
111 {
112 MO_USE, /* Use location (REG or MEM). */
113 MO_USE_NO_VAR,/* Use location which is not associated with a variable
114 or the variable is not trackable. */
115 MO_SET, /* Set location. */
116 MO_COPY, /* Copy the same portion of a variable from one
117 location to another. */
118 MO_CLOBBER, /* Clobber location. */
119 MO_CALL, /* Call insn. */
120 MO_ADJUST /* Adjust stack pointer. */
121 };
122
123 /* Where shall the note be emitted? BEFORE or AFTER the instruction. */
124 enum emit_note_where
125 {
126 EMIT_NOTE_BEFORE_INSN,
127 EMIT_NOTE_AFTER_INSN
128 };
129
130 /* Structure holding information about micro operation. */
131 typedef struct micro_operation_def
132 {
133 /* Type of micro operation. */
134 enum micro_operation_type type;
135
136 union {
137 /* Location. */
138 rtx loc;
139
140 /* Stack adjustment. */
141 HOST_WIDE_INT adjust;
142 } u;
143
144 /* The instruction which the micro operation is in, for MO_USE,
145 MO_USE_NO_VAR, MO_CALL and MO_ADJUST, or the subsequent
146 instruction or note in the original flow (before any var-tracking
147 notes are inserted, to simplify emission of notes), for MO_SET
148 and MO_CLOBBER. */
149 rtx insn;
150 } micro_operation;
151
152 /* Structure for passing some other parameters to function
153 emit_note_insn_var_location. */
154 typedef struct emit_note_data_def
155 {
156 /* The instruction which the note will be emitted before/after. */
157 rtx insn;
158
159 /* Where the note will be emitted (before/after insn)? */
160 enum emit_note_where where;
161 } emit_note_data;
162
163 /* Description of location of a part of a variable. The content of a physical
164 register is described by a chain of these structures.
165 The chains are pretty short (usually 1 or 2 elements) and thus
166 chain is the best data structure. */
167 typedef struct attrs_def
168 {
169 /* Pointer to next member of the list. */
170 struct attrs_def *next;
171
172 /* The rtx of register. */
173 rtx loc;
174
175 /* The declaration corresponding to LOC. */
176 tree decl;
177
178 /* Offset from start of DECL. */
179 HOST_WIDE_INT offset;
180 } *attrs;
181
182 /* Structure holding the IN or OUT set for a basic block. */
183 typedef struct dataflow_set_def
184 {
185 /* Adjustment of stack offset. */
186 HOST_WIDE_INT stack_adjust;
187
188 /* Attributes for registers (lists of attrs). */
189 attrs regs[FIRST_PSEUDO_REGISTER];
190
191 /* Variable locations. */
192 htab_t vars;
193 } dataflow_set;
194
195 /* The structure (one for each basic block) containing the information
196 needed for variable tracking. */
197 typedef struct variable_tracking_info_def
198 {
199 /* Number of micro operations stored in the MOS array. */
200 int n_mos;
201
202 /* The array of micro operations. */
203 micro_operation *mos;
204
205 /* The IN and OUT set for dataflow analysis. */
206 dataflow_set in;
207 dataflow_set out;
208
209 /* Has the block been visited in DFS? */
210 bool visited;
211 } *variable_tracking_info;
212
213 /* Structure for chaining the locations. */
214 typedef struct location_chain_def
215 {
216 /* Next element in the chain. */
217 struct location_chain_def *next;
218
219 /* The location (REG or MEM). */
220 rtx loc;
221
222 /* The "value" stored in this location. */
223 rtx set_src;
224
225 /* Initialized? */
226 enum var_init_status init;
227 } *location_chain;
228
229 /* Structure describing one part of variable. */
230 typedef struct variable_part_def
231 {
232 /* Chain of locations of the part. */
233 location_chain loc_chain;
234
235 /* Location which was last emitted to location list. */
236 rtx cur_loc;
237
238 /* The offset in the variable. */
239 HOST_WIDE_INT offset;
240 } variable_part;
241
242 /* Maximum number of location parts. */
243 #define MAX_VAR_PARTS 16
244
245 /* Structure describing where the variable is located. */
246 typedef struct variable_def
247 {
248 /* The declaration of the variable. */
249 tree decl;
250
251 /* Reference count. */
252 int refcount;
253
254 /* Number of variable parts. */
255 int n_var_parts;
256
257 /* The variable parts. */
258 variable_part var_part[MAX_VAR_PARTS];
259 } *variable;
260 typedef const struct variable_def *const_variable;
261
262 /* Hash function for DECL for VARIABLE_HTAB. */
263 #define VARIABLE_HASH_VAL(decl) (DECL_UID (decl))
264
265 /* Pointer to the BB's information specific to variable tracking pass. */
266 #define VTI(BB) ((variable_tracking_info) (BB)->aux)
267
268 /* Alloc pool for struct attrs_def. */
269 static alloc_pool attrs_pool;
270
271 /* Alloc pool for struct variable_def. */
272 static alloc_pool var_pool;
273
274 /* Alloc pool for struct location_chain_def. */
275 static alloc_pool loc_chain_pool;
276
277 /* Changed variables, notes will be emitted for them. */
278 static htab_t changed_variables;
279
280 /* Shall notes be emitted? */
281 static bool emit_notes;
282
283 /* Local function prototypes. */
284 static void stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
285 HOST_WIDE_INT *);
286 static void insn_stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
287 HOST_WIDE_INT *);
288 static void bb_stack_adjust_offset (basic_block);
289 static bool vt_stack_adjustments (void);
290 static rtx adjust_stack_reference (rtx, HOST_WIDE_INT);
291 static hashval_t variable_htab_hash (const void *);
292 static int variable_htab_eq (const void *, const void *);
293 static void variable_htab_free (void *);
294
295 static void init_attrs_list_set (attrs *);
296 static void attrs_list_clear (attrs *);
297 static attrs attrs_list_member (attrs, tree, HOST_WIDE_INT);
298 static void attrs_list_insert (attrs *, tree, HOST_WIDE_INT, rtx);
299 static void attrs_list_copy (attrs *, attrs);
300 static void attrs_list_union (attrs *, attrs);
301
302 static void vars_clear (htab_t);
303 static variable unshare_variable (dataflow_set *set, variable var,
304 enum var_init_status);
305 static int vars_copy_1 (void **, void *);
306 static void vars_copy (htab_t, htab_t);
307 static tree var_debug_decl (tree);
308 static void var_reg_set (dataflow_set *, rtx, enum var_init_status, rtx);
309 static void var_reg_delete_and_set (dataflow_set *, rtx, bool,
310 enum var_init_status, rtx);
311 static void var_reg_delete (dataflow_set *, rtx, bool);
312 static void var_regno_delete (dataflow_set *, int);
313 static void var_mem_set (dataflow_set *, rtx, enum var_init_status, rtx);
314 static void var_mem_delete_and_set (dataflow_set *, rtx, bool,
315 enum var_init_status, rtx);
316 static void var_mem_delete (dataflow_set *, rtx, bool);
317
318 static void dataflow_set_init (dataflow_set *, int);
319 static void dataflow_set_clear (dataflow_set *);
320 static void dataflow_set_copy (dataflow_set *, dataflow_set *);
321 static int variable_union_info_cmp_pos (const void *, const void *);
322 static int variable_union (void **, void *);
323 static void dataflow_set_union (dataflow_set *, dataflow_set *);
324 static bool variable_part_different_p (variable_part *, variable_part *);
325 static bool variable_different_p (variable, variable, bool);
326 static int dataflow_set_different_1 (void **, void *);
327 static int dataflow_set_different_2 (void **, void *);
328 static bool dataflow_set_different (dataflow_set *, dataflow_set *);
329 static void dataflow_set_destroy (dataflow_set *);
330
331 static bool contains_symbol_ref (rtx);
332 static bool track_expr_p (tree);
333 static bool same_variable_part_p (rtx, tree, HOST_WIDE_INT);
334 static int count_uses (rtx *, void *);
335 static void count_uses_1 (rtx *, void *);
336 static void count_stores (rtx, rtx, void *);
337 static int add_uses (rtx *, void *);
338 static void add_uses_1 (rtx *, void *);
339 static void add_stores (rtx, rtx, void *);
340 static bool compute_bb_dataflow (basic_block);
341 static void vt_find_locations (void);
342
343 static void dump_attrs_list (attrs);
344 static int dump_variable (void **, void *);
345 static void dump_vars (htab_t);
346 static void dump_dataflow_set (dataflow_set *);
347 static void dump_dataflow_sets (void);
348
349 static void variable_was_changed (variable, htab_t);
350 static void set_variable_part (dataflow_set *, rtx, tree, HOST_WIDE_INT,
351 enum var_init_status, rtx);
352 static void clobber_variable_part (dataflow_set *, rtx, tree, HOST_WIDE_INT,
353 rtx);
354 static void delete_variable_part (dataflow_set *, rtx, tree, HOST_WIDE_INT);
355 static int emit_note_insn_var_location (void **, void *);
356 static void emit_notes_for_changes (rtx, enum emit_note_where);
357 static int emit_notes_for_differences_1 (void **, void *);
358 static int emit_notes_for_differences_2 (void **, void *);
359 static void emit_notes_for_differences (rtx, dataflow_set *, dataflow_set *);
360 static void emit_notes_in_bb (basic_block);
361 static void vt_emit_notes (void);
362
363 static bool vt_get_decl_and_offset (rtx, tree *, HOST_WIDE_INT *);
364 static void vt_add_function_parameters (void);
365 static void vt_initialize (void);
366 static void vt_finalize (void);
367
368 /* Given a SET, calculate the amount of stack adjustment it contains
369 PRE- and POST-modifying stack pointer.
370 This function is similar to stack_adjust_offset. */
371
372 static void
373 stack_adjust_offset_pre_post (rtx pattern, HOST_WIDE_INT *pre,
374 HOST_WIDE_INT *post)
375 {
376 rtx src = SET_SRC (pattern);
377 rtx dest = SET_DEST (pattern);
378 enum rtx_code code;
379
380 if (dest == stack_pointer_rtx)
381 {
382 /* (set (reg sp) (plus (reg sp) (const_int))) */
383 code = GET_CODE (src);
384 if (! (code == PLUS || code == MINUS)
385 || XEXP (src, 0) != stack_pointer_rtx
386 || GET_CODE (XEXP (src, 1)) != CONST_INT)
387 return;
388
389 if (code == MINUS)
390 *post += INTVAL (XEXP (src, 1));
391 else
392 *post -= INTVAL (XEXP (src, 1));
393 }
394 else if (MEM_P (dest))
395 {
396 /* (set (mem (pre_dec (reg sp))) (foo)) */
397 src = XEXP (dest, 0);
398 code = GET_CODE (src);
399
400 switch (code)
401 {
402 case PRE_MODIFY:
403 case POST_MODIFY:
404 if (XEXP (src, 0) == stack_pointer_rtx)
405 {
406 rtx val = XEXP (XEXP (src, 1), 1);
407 /* We handle only adjustments by constant amount. */
408 gcc_assert (GET_CODE (XEXP (src, 1)) == PLUS &&
409 GET_CODE (val) == CONST_INT);
410
411 if (code == PRE_MODIFY)
412 *pre -= INTVAL (val);
413 else
414 *post -= INTVAL (val);
415 break;
416 }
417 return;
418
419 case PRE_DEC:
420 if (XEXP (src, 0) == stack_pointer_rtx)
421 {
422 *pre += GET_MODE_SIZE (GET_MODE (dest));
423 break;
424 }
425 return;
426
427 case POST_DEC:
428 if (XEXP (src, 0) == stack_pointer_rtx)
429 {
430 *post += GET_MODE_SIZE (GET_MODE (dest));
431 break;
432 }
433 return;
434
435 case PRE_INC:
436 if (XEXP (src, 0) == stack_pointer_rtx)
437 {
438 *pre -= GET_MODE_SIZE (GET_MODE (dest));
439 break;
440 }
441 return;
442
443 case POST_INC:
444 if (XEXP (src, 0) == stack_pointer_rtx)
445 {
446 *post -= GET_MODE_SIZE (GET_MODE (dest));
447 break;
448 }
449 return;
450
451 default:
452 return;
453 }
454 }
455 }
456
457 /* Given an INSN, calculate the amount of stack adjustment it contains
458 PRE- and POST-modifying stack pointer. */
459
460 static void
461 insn_stack_adjust_offset_pre_post (rtx insn, HOST_WIDE_INT *pre,
462 HOST_WIDE_INT *post)
463 {
464 *pre = 0;
465 *post = 0;
466
467 if (GET_CODE (PATTERN (insn)) == SET)
468 stack_adjust_offset_pre_post (PATTERN (insn), pre, post);
469 else if (GET_CODE (PATTERN (insn)) == PARALLEL
470 || GET_CODE (PATTERN (insn)) == SEQUENCE)
471 {
472 int i;
473
474 /* There may be stack adjustments inside compound insns. Search
475 for them. */
476 for ( i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
477 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
478 stack_adjust_offset_pre_post (XVECEXP (PATTERN (insn), 0, i),
479 pre, post);
480 }
481 }
482
483 /* Compute stack adjustment in basic block BB. */
484
485 static void
486 bb_stack_adjust_offset (basic_block bb)
487 {
488 HOST_WIDE_INT offset;
489 int i;
490
491 offset = VTI (bb)->in.stack_adjust;
492 for (i = 0; i < VTI (bb)->n_mos; i++)
493 {
494 if (VTI (bb)->mos[i].type == MO_ADJUST)
495 offset += VTI (bb)->mos[i].u.adjust;
496 else if (VTI (bb)->mos[i].type != MO_CALL)
497 {
498 if (MEM_P (VTI (bb)->mos[i].u.loc))
499 {
500 VTI (bb)->mos[i].u.loc
501 = adjust_stack_reference (VTI (bb)->mos[i].u.loc, -offset);
502 }
503 }
504 }
505 VTI (bb)->out.stack_adjust = offset;
506 }
507
508 /* Compute stack adjustments for all blocks by traversing DFS tree.
509 Return true when the adjustments on all incoming edges are consistent.
510 Heavily borrowed from pre_and_rev_post_order_compute. */
511
512 static bool
513 vt_stack_adjustments (void)
514 {
515 edge_iterator *stack;
516 int sp;
517
518 /* Initialize entry block. */
519 VTI (ENTRY_BLOCK_PTR)->visited = true;
520 VTI (ENTRY_BLOCK_PTR)->out.stack_adjust = INCOMING_FRAME_SP_OFFSET;
521
522 /* Allocate stack for back-tracking up CFG. */
523 stack = XNEWVEC (edge_iterator, n_basic_blocks + 1);
524 sp = 0;
525
526 /* Push the first edge on to the stack. */
527 stack[sp++] = ei_start (ENTRY_BLOCK_PTR->succs);
528
529 while (sp)
530 {
531 edge_iterator ei;
532 basic_block src;
533 basic_block dest;
534
535 /* Look at the edge on the top of the stack. */
536 ei = stack[sp - 1];
537 src = ei_edge (ei)->src;
538 dest = ei_edge (ei)->dest;
539
540 /* Check if the edge destination has been visited yet. */
541 if (!VTI (dest)->visited)
542 {
543 VTI (dest)->visited = true;
544 VTI (dest)->in.stack_adjust = VTI (src)->out.stack_adjust;
545 bb_stack_adjust_offset (dest);
546
547 if (EDGE_COUNT (dest->succs) > 0)
548 /* Since the DEST node has been visited for the first
549 time, check its successors. */
550 stack[sp++] = ei_start (dest->succs);
551 }
552 else
553 {
554 /* Check whether the adjustments on the edges are the same. */
555 if (VTI (dest)->in.stack_adjust != VTI (src)->out.stack_adjust)
556 {
557 free (stack);
558 return false;
559 }
560
561 if (! ei_one_before_end_p (ei))
562 /* Go to the next edge. */
563 ei_next (&stack[sp - 1]);
564 else
565 /* Return to previous level if there are no more edges. */
566 sp--;
567 }
568 }
569
570 free (stack);
571 return true;
572 }
573
574 /* Adjust stack reference MEM by ADJUSTMENT bytes and make it relative
575 to the argument pointer. Return the new rtx. */
576
577 static rtx
578 adjust_stack_reference (rtx mem, HOST_WIDE_INT adjustment)
579 {
580 rtx addr, cfa, tmp;
581
582 #ifdef FRAME_POINTER_CFA_OFFSET
583 adjustment -= FRAME_POINTER_CFA_OFFSET (current_function_decl);
584 cfa = plus_constant (frame_pointer_rtx, adjustment);
585 #else
586 adjustment -= ARG_POINTER_CFA_OFFSET (current_function_decl);
587 cfa = plus_constant (arg_pointer_rtx, adjustment);
588 #endif
589
590 addr = replace_rtx (copy_rtx (XEXP (mem, 0)), stack_pointer_rtx, cfa);
591 tmp = simplify_rtx (addr);
592 if (tmp)
593 addr = tmp;
594
595 return replace_equiv_address_nv (mem, addr);
596 }
597
598 /* The hash function for variable_htab, computes the hash value
599 from the declaration of variable X. */
600
601 static hashval_t
602 variable_htab_hash (const void *x)
603 {
604 const_variable const v = (const_variable) x;
605
606 return (VARIABLE_HASH_VAL (v->decl));
607 }
608
609 /* Compare the declaration of variable X with declaration Y. */
610
611 static int
612 variable_htab_eq (const void *x, const void *y)
613 {
614 const_variable const v = (const_variable) x;
615 const_tree const decl = (const_tree) y;
616
617 return (VARIABLE_HASH_VAL (v->decl) == VARIABLE_HASH_VAL (decl));
618 }
619
620 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
621
622 static void
623 variable_htab_free (void *elem)
624 {
625 int i;
626 variable var = (variable) elem;
627 location_chain node, next;
628
629 gcc_assert (var->refcount > 0);
630
631 var->refcount--;
632 if (var->refcount > 0)
633 return;
634
635 for (i = 0; i < var->n_var_parts; i++)
636 {
637 for (node = var->var_part[i].loc_chain; node; node = next)
638 {
639 next = node->next;
640 pool_free (loc_chain_pool, node);
641 }
642 var->var_part[i].loc_chain = NULL;
643 }
644 pool_free (var_pool, var);
645 }
646
647 /* Initialize the set (array) SET of attrs to empty lists. */
648
649 static void
650 init_attrs_list_set (attrs *set)
651 {
652 int i;
653
654 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
655 set[i] = NULL;
656 }
657
658 /* Make the list *LISTP empty. */
659
660 static void
661 attrs_list_clear (attrs *listp)
662 {
663 attrs list, next;
664
665 for (list = *listp; list; list = next)
666 {
667 next = list->next;
668 pool_free (attrs_pool, list);
669 }
670 *listp = NULL;
671 }
672
673 /* Return true if the pair of DECL and OFFSET is the member of the LIST. */
674
675 static attrs
676 attrs_list_member (attrs list, tree decl, HOST_WIDE_INT offset)
677 {
678 for (; list; list = list->next)
679 if (list->decl == decl && list->offset == offset)
680 return list;
681 return NULL;
682 }
683
684 /* Insert the triplet DECL, OFFSET, LOC to the list *LISTP. */
685
686 static void
687 attrs_list_insert (attrs *listp, tree decl, HOST_WIDE_INT offset, rtx loc)
688 {
689 attrs list;
690
691 list = pool_alloc (attrs_pool);
692 list->loc = loc;
693 list->decl = decl;
694 list->offset = offset;
695 list->next = *listp;
696 *listp = list;
697 }
698
699 /* Copy all nodes from SRC and create a list *DSTP of the copies. */
700
701 static void
702 attrs_list_copy (attrs *dstp, attrs src)
703 {
704 attrs n;
705
706 attrs_list_clear (dstp);
707 for (; src; src = src->next)
708 {
709 n = pool_alloc (attrs_pool);
710 n->loc = src->loc;
711 n->decl = src->decl;
712 n->offset = src->offset;
713 n->next = *dstp;
714 *dstp = n;
715 }
716 }
717
718 /* Add all nodes from SRC which are not in *DSTP to *DSTP. */
719
720 static void
721 attrs_list_union (attrs *dstp, attrs src)
722 {
723 for (; src; src = src->next)
724 {
725 if (!attrs_list_member (*dstp, src->decl, src->offset))
726 attrs_list_insert (dstp, src->decl, src->offset, src->loc);
727 }
728 }
729
730 /* Delete all variables from hash table VARS. */
731
732 static void
733 vars_clear (htab_t vars)
734 {
735 htab_empty (vars);
736 }
737
738 /* Return a copy of a variable VAR and insert it to dataflow set SET. */
739
740 static variable
741 unshare_variable (dataflow_set *set, variable var,
742 enum var_init_status initialized)
743 {
744 void **slot;
745 variable new_var;
746 int i;
747
748 new_var = pool_alloc (var_pool);
749 new_var->decl = var->decl;
750 new_var->refcount = 1;
751 var->refcount--;
752 new_var->n_var_parts = var->n_var_parts;
753
754 for (i = 0; i < var->n_var_parts; i++)
755 {
756 location_chain node;
757 location_chain *nextp;
758
759 new_var->var_part[i].offset = var->var_part[i].offset;
760 nextp = &new_var->var_part[i].loc_chain;
761 for (node = var->var_part[i].loc_chain; node; node = node->next)
762 {
763 location_chain new_lc;
764
765 new_lc = pool_alloc (loc_chain_pool);
766 new_lc->next = NULL;
767 if (node->init > initialized)
768 new_lc->init = node->init;
769 else
770 new_lc->init = initialized;
771 if (node->set_src && !(MEM_P (node->set_src)))
772 new_lc->set_src = node->set_src;
773 else
774 new_lc->set_src = NULL;
775 new_lc->loc = node->loc;
776
777 *nextp = new_lc;
778 nextp = &new_lc->next;
779 }
780
781 /* We are at the basic block boundary when copying variable description
782 so set the CUR_LOC to be the first element of the chain. */
783 if (new_var->var_part[i].loc_chain)
784 new_var->var_part[i].cur_loc = new_var->var_part[i].loc_chain->loc;
785 else
786 new_var->var_part[i].cur_loc = NULL;
787 }
788
789 slot = htab_find_slot_with_hash (set->vars, new_var->decl,
790 VARIABLE_HASH_VAL (new_var->decl),
791 INSERT);
792 *slot = new_var;
793 return new_var;
794 }
795
796 /* Add a variable from *SLOT to hash table DATA and increase its reference
797 count. */
798
799 static int
800 vars_copy_1 (void **slot, void *data)
801 {
802 htab_t dst = (htab_t) data;
803 variable src, *dstp;
804
805 src = *(variable *) slot;
806 src->refcount++;
807
808 dstp = (variable *) htab_find_slot_with_hash (dst, src->decl,
809 VARIABLE_HASH_VAL (src->decl),
810 INSERT);
811 *dstp = src;
812
813 /* Continue traversing the hash table. */
814 return 1;
815 }
816
817 /* Copy all variables from hash table SRC to hash table DST. */
818
819 static void
820 vars_copy (htab_t dst, htab_t src)
821 {
822 vars_clear (dst);
823 htab_traverse (src, vars_copy_1, dst);
824 }
825
826 /* Map a decl to its main debug decl. */
827
828 static inline tree
829 var_debug_decl (tree decl)
830 {
831 if (decl && DECL_P (decl)
832 && DECL_DEBUG_EXPR_IS_FROM (decl) && DECL_DEBUG_EXPR (decl)
833 && DECL_P (DECL_DEBUG_EXPR (decl)))
834 decl = DECL_DEBUG_EXPR (decl);
835
836 return decl;
837 }
838
839 /* Set the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). */
840
841 static void
842 var_reg_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
843 rtx set_src)
844 {
845 tree decl = REG_EXPR (loc);
846 HOST_WIDE_INT offset = REG_OFFSET (loc);
847 attrs node;
848
849 decl = var_debug_decl (decl);
850
851 for (node = set->regs[REGNO (loc)]; node; node = node->next)
852 if (node->decl == decl && node->offset == offset)
853 break;
854 if (!node)
855 attrs_list_insert (&set->regs[REGNO (loc)], decl, offset, loc);
856 set_variable_part (set, loc, decl, offset, initialized, set_src);
857 }
858
859 static int
860 get_init_value (dataflow_set *set, rtx loc, tree decl)
861 {
862 void **slot;
863 variable var;
864 int i;
865 int ret_val = VAR_INIT_STATUS_UNKNOWN;
866
867 if (! flag_var_tracking_uninit)
868 return VAR_INIT_STATUS_INITIALIZED;
869
870 slot = htab_find_slot_with_hash (set->vars, decl, VARIABLE_HASH_VAL (decl),
871 NO_INSERT);
872 if (slot)
873 {
874 var = * (variable *) slot;
875 for (i = 0; i < var->n_var_parts && ret_val == VAR_INIT_STATUS_UNKNOWN; i++)
876 {
877 location_chain nextp;
878 for (nextp = var->var_part[i].loc_chain; nextp; nextp = nextp->next)
879 if (rtx_equal_p (nextp->loc, loc))
880 {
881 ret_val = nextp->init;
882 break;
883 }
884 }
885 }
886
887 return ret_val;
888 }
889
890 /* Delete current content of register LOC in dataflow set SET and set
891 the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). If
892 MODIFY is true, any other live copies of the same variable part are
893 also deleted from the dataflow set, otherwise the variable part is
894 assumed to be copied from another location holding the same
895 part. */
896
897 static void
898 var_reg_delete_and_set (dataflow_set *set, rtx loc, bool modify,
899 enum var_init_status initialized, rtx set_src)
900 {
901 tree decl = REG_EXPR (loc);
902 HOST_WIDE_INT offset = REG_OFFSET (loc);
903 attrs node, next;
904 attrs *nextp;
905
906 decl = var_debug_decl (decl);
907
908 if (initialized == VAR_INIT_STATUS_UNKNOWN)
909 initialized = get_init_value (set, loc, decl);
910
911 nextp = &set->regs[REGNO (loc)];
912 for (node = *nextp; node; node = next)
913 {
914 next = node->next;
915 if (node->decl != decl || node->offset != offset)
916 {
917 delete_variable_part (set, node->loc, node->decl, node->offset);
918 pool_free (attrs_pool, node);
919 *nextp = next;
920 }
921 else
922 {
923 node->loc = loc;
924 nextp = &node->next;
925 }
926 }
927 if (modify)
928 clobber_variable_part (set, loc, decl, offset, set_src);
929 var_reg_set (set, loc, initialized, set_src);
930 }
931
932 /* Delete current content of register LOC in dataflow set SET. If
933 CLOBBER is true, also delete any other live copies of the same
934 variable part. */
935
936 static void
937 var_reg_delete (dataflow_set *set, rtx loc, bool clobber)
938 {
939 attrs *reg = &set->regs[REGNO (loc)];
940 attrs node, next;
941
942 if (clobber)
943 {
944 tree decl = REG_EXPR (loc);
945 HOST_WIDE_INT offset = REG_OFFSET (loc);
946
947 decl = var_debug_decl (decl);
948
949 clobber_variable_part (set, NULL, decl, offset, NULL);
950 }
951
952 for (node = *reg; node; node = next)
953 {
954 next = node->next;
955 delete_variable_part (set, node->loc, node->decl, node->offset);
956 pool_free (attrs_pool, node);
957 }
958 *reg = NULL;
959 }
960
961 /* Delete content of register with number REGNO in dataflow set SET. */
962
963 static void
964 var_regno_delete (dataflow_set *set, int regno)
965 {
966 attrs *reg = &set->regs[regno];
967 attrs node, next;
968
969 for (node = *reg; node; node = next)
970 {
971 next = node->next;
972 delete_variable_part (set, node->loc, node->decl, node->offset);
973 pool_free (attrs_pool, node);
974 }
975 *reg = NULL;
976 }
977
978 /* Set the location part of variable MEM_EXPR (LOC) in dataflow set
979 SET to LOC.
980 Adjust the address first if it is stack pointer based. */
981
982 static void
983 var_mem_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
984 rtx set_src)
985 {
986 tree decl = MEM_EXPR (loc);
987 HOST_WIDE_INT offset = MEM_OFFSET (loc) ? INTVAL (MEM_OFFSET (loc)) : 0;
988
989 decl = var_debug_decl (decl);
990
991 set_variable_part (set, loc, decl, offset, initialized, set_src);
992 }
993
994 /* Delete and set the location part of variable MEM_EXPR (LOC) in
995 dataflow set SET to LOC. If MODIFY is true, any other live copies
996 of the same variable part are also deleted from the dataflow set,
997 otherwise the variable part is assumed to be copied from another
998 location holding the same part.
999 Adjust the address first if it is stack pointer based. */
1000
1001 static void
1002 var_mem_delete_and_set (dataflow_set *set, rtx loc, bool modify,
1003 enum var_init_status initialized, rtx set_src)
1004 {
1005 tree decl = MEM_EXPR (loc);
1006 HOST_WIDE_INT offset = MEM_OFFSET (loc) ? INTVAL (MEM_OFFSET (loc)) : 0;
1007
1008 decl = var_debug_decl (decl);
1009
1010 if (initialized == VAR_INIT_STATUS_UNKNOWN)
1011 initialized = get_init_value (set, loc, decl);
1012
1013 if (modify)
1014 clobber_variable_part (set, NULL, decl, offset, set_src);
1015 var_mem_set (set, loc, initialized, set_src);
1016 }
1017
1018 /* Delete the location part LOC from dataflow set SET. If CLOBBER is
1019 true, also delete any other live copies of the same variable part.
1020 Adjust the address first if it is stack pointer based. */
1021
1022 static void
1023 var_mem_delete (dataflow_set *set, rtx loc, bool clobber)
1024 {
1025 tree decl = MEM_EXPR (loc);
1026 HOST_WIDE_INT offset = MEM_OFFSET (loc) ? INTVAL (MEM_OFFSET (loc)) : 0;
1027
1028 decl = var_debug_decl (decl);
1029 if (clobber)
1030 clobber_variable_part (set, NULL, decl, offset, NULL);
1031 delete_variable_part (set, loc, decl, offset);
1032 }
1033
1034 /* Initialize dataflow set SET to be empty.
1035 VARS_SIZE is the initial size of hash table VARS. */
1036
1037 static void
1038 dataflow_set_init (dataflow_set *set, int vars_size)
1039 {
1040 init_attrs_list_set (set->regs);
1041 set->vars = htab_create (vars_size, variable_htab_hash, variable_htab_eq,
1042 variable_htab_free);
1043 set->stack_adjust = 0;
1044 }
1045
1046 /* Delete the contents of dataflow set SET. */
1047
1048 static void
1049 dataflow_set_clear (dataflow_set *set)
1050 {
1051 int i;
1052
1053 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1054 attrs_list_clear (&set->regs[i]);
1055
1056 vars_clear (set->vars);
1057 }
1058
1059 /* Copy the contents of dataflow set SRC to DST. */
1060
1061 static void
1062 dataflow_set_copy (dataflow_set *dst, dataflow_set *src)
1063 {
1064 int i;
1065
1066 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1067 attrs_list_copy (&dst->regs[i], src->regs[i]);
1068
1069 vars_copy (dst->vars, src->vars);
1070 dst->stack_adjust = src->stack_adjust;
1071 }
1072
1073 /* Information for merging lists of locations for a given offset of variable.
1074 */
1075 struct variable_union_info
1076 {
1077 /* Node of the location chain. */
1078 location_chain lc;
1079
1080 /* The sum of positions in the input chains. */
1081 int pos;
1082
1083 /* The position in the chains of SRC and DST dataflow sets. */
1084 int pos_src;
1085 int pos_dst;
1086 };
1087
1088 /* Compare function for qsort, order the structures by POS element. */
1089
1090 static int
1091 variable_union_info_cmp_pos (const void *n1, const void *n2)
1092 {
1093 const struct variable_union_info *i1 = n1;
1094 const struct variable_union_info *i2 = n2;
1095
1096 if (i1->pos != i2->pos)
1097 return i1->pos - i2->pos;
1098
1099 return (i1->pos_dst - i2->pos_dst);
1100 }
1101
1102 /* Compute union of location parts of variable *SLOT and the same variable
1103 from hash table DATA. Compute "sorted" union of the location chains
1104 for common offsets, i.e. the locations of a variable part are sorted by
1105 a priority where the priority is the sum of the positions in the 2 chains
1106 (if a location is only in one list the position in the second list is
1107 defined to be larger than the length of the chains).
1108 When we are updating the location parts the newest location is in the
1109 beginning of the chain, so when we do the described "sorted" union
1110 we keep the newest locations in the beginning. */
1111
1112 static int
1113 variable_union (void **slot, void *data)
1114 {
1115 variable src, dst, *dstp;
1116 dataflow_set *set = (dataflow_set *) data;
1117 int i, j, k;
1118
1119 src = *(variable *) slot;
1120 dstp = (variable *) htab_find_slot_with_hash (set->vars, src->decl,
1121 VARIABLE_HASH_VAL (src->decl),
1122 INSERT);
1123 if (!*dstp)
1124 {
1125 src->refcount++;
1126
1127 /* If CUR_LOC of some variable part is not the first element of
1128 the location chain we are going to change it so we have to make
1129 a copy of the variable. */
1130 for (k = 0; k < src->n_var_parts; k++)
1131 {
1132 gcc_assert (!src->var_part[k].loc_chain
1133 == !src->var_part[k].cur_loc);
1134 if (src->var_part[k].loc_chain)
1135 {
1136 gcc_assert (src->var_part[k].cur_loc);
1137 if (src->var_part[k].cur_loc != src->var_part[k].loc_chain->loc)
1138 break;
1139 }
1140 }
1141 if (k < src->n_var_parts)
1142 {
1143 enum var_init_status status = VAR_INIT_STATUS_UNKNOWN;
1144
1145 if (! flag_var_tracking_uninit)
1146 status = VAR_INIT_STATUS_INITIALIZED;
1147
1148 unshare_variable (set, src, status);
1149 }
1150 else
1151 *dstp = src;
1152
1153 /* Continue traversing the hash table. */
1154 return 1;
1155 }
1156 else
1157 dst = *dstp;
1158
1159 gcc_assert (src->n_var_parts);
1160
1161 /* Count the number of location parts, result is K. */
1162 for (i = 0, j = 0, k = 0;
1163 i < src->n_var_parts && j < dst->n_var_parts; k++)
1164 {
1165 if (src->var_part[i].offset == dst->var_part[j].offset)
1166 {
1167 i++;
1168 j++;
1169 }
1170 else if (src->var_part[i].offset < dst->var_part[j].offset)
1171 i++;
1172 else
1173 j++;
1174 }
1175 k += src->n_var_parts - i;
1176 k += dst->n_var_parts - j;
1177
1178 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
1179 thus there are at most MAX_VAR_PARTS different offsets. */
1180 gcc_assert (k <= MAX_VAR_PARTS);
1181
1182 if (dst->refcount > 1 && dst->n_var_parts != k)
1183 {
1184 enum var_init_status status = VAR_INIT_STATUS_UNKNOWN;
1185
1186 if (! flag_var_tracking_uninit)
1187 status = VAR_INIT_STATUS_INITIALIZED;
1188 dst = unshare_variable (set, dst, status);
1189 }
1190
1191 i = src->n_var_parts - 1;
1192 j = dst->n_var_parts - 1;
1193 dst->n_var_parts = k;
1194
1195 for (k--; k >= 0; k--)
1196 {
1197 location_chain node, node2;
1198
1199 if (i >= 0 && j >= 0
1200 && src->var_part[i].offset == dst->var_part[j].offset)
1201 {
1202 /* Compute the "sorted" union of the chains, i.e. the locations which
1203 are in both chains go first, they are sorted by the sum of
1204 positions in the chains. */
1205 int dst_l, src_l;
1206 int ii, jj, n;
1207 struct variable_union_info *vui;
1208
1209 /* If DST is shared compare the location chains.
1210 If they are different we will modify the chain in DST with
1211 high probability so make a copy of DST. */
1212 if (dst->refcount > 1)
1213 {
1214 for (node = src->var_part[i].loc_chain,
1215 node2 = dst->var_part[j].loc_chain; node && node2;
1216 node = node->next, node2 = node2->next)
1217 {
1218 if (!((REG_P (node2->loc)
1219 && REG_P (node->loc)
1220 && REGNO (node2->loc) == REGNO (node->loc))
1221 || rtx_equal_p (node2->loc, node->loc)))
1222 if (node2->init < node->init)
1223 node2->init = node->init;
1224 break;
1225 }
1226 if (node || node2)
1227 dst = unshare_variable (set, dst, VAR_INIT_STATUS_UNKNOWN);
1228 }
1229
1230 src_l = 0;
1231 for (node = src->var_part[i].loc_chain; node; node = node->next)
1232 src_l++;
1233 dst_l = 0;
1234 for (node = dst->var_part[j].loc_chain; node; node = node->next)
1235 dst_l++;
1236 vui = XCNEWVEC (struct variable_union_info, src_l + dst_l);
1237
1238 /* Fill in the locations from DST. */
1239 for (node = dst->var_part[j].loc_chain, jj = 0; node;
1240 node = node->next, jj++)
1241 {
1242 vui[jj].lc = node;
1243 vui[jj].pos_dst = jj;
1244
1245 /* Value larger than a sum of 2 valid positions. */
1246 vui[jj].pos_src = src_l + dst_l;
1247 }
1248
1249 /* Fill in the locations from SRC. */
1250 n = dst_l;
1251 for (node = src->var_part[i].loc_chain, ii = 0; node;
1252 node = node->next, ii++)
1253 {
1254 /* Find location from NODE. */
1255 for (jj = 0; jj < dst_l; jj++)
1256 {
1257 if ((REG_P (vui[jj].lc->loc)
1258 && REG_P (node->loc)
1259 && REGNO (vui[jj].lc->loc) == REGNO (node->loc))
1260 || rtx_equal_p (vui[jj].lc->loc, node->loc))
1261 {
1262 vui[jj].pos_src = ii;
1263 break;
1264 }
1265 }
1266 if (jj >= dst_l) /* The location has not been found. */
1267 {
1268 location_chain new_node;
1269
1270 /* Copy the location from SRC. */
1271 new_node = pool_alloc (loc_chain_pool);
1272 new_node->loc = node->loc;
1273 new_node->init = node->init;
1274 if (!node->set_src || MEM_P (node->set_src))
1275 new_node->set_src = NULL;
1276 else
1277 new_node->set_src = node->set_src;
1278 vui[n].lc = new_node;
1279 vui[n].pos_src = ii;
1280 vui[n].pos_dst = src_l + dst_l;
1281 n++;
1282 }
1283 }
1284
1285 for (ii = 0; ii < src_l + dst_l; ii++)
1286 vui[ii].pos = vui[ii].pos_src + vui[ii].pos_dst;
1287
1288 qsort (vui, n, sizeof (struct variable_union_info),
1289 variable_union_info_cmp_pos);
1290
1291 /* Reconnect the nodes in sorted order. */
1292 for (ii = 1; ii < n; ii++)
1293 vui[ii - 1].lc->next = vui[ii].lc;
1294 vui[n - 1].lc->next = NULL;
1295
1296 dst->var_part[k].loc_chain = vui[0].lc;
1297 dst->var_part[k].offset = dst->var_part[j].offset;
1298
1299 free (vui);
1300 i--;
1301 j--;
1302 }
1303 else if ((i >= 0 && j >= 0
1304 && src->var_part[i].offset < dst->var_part[j].offset)
1305 || i < 0)
1306 {
1307 dst->var_part[k] = dst->var_part[j];
1308 j--;
1309 }
1310 else if ((i >= 0 && j >= 0
1311 && src->var_part[i].offset > dst->var_part[j].offset)
1312 || j < 0)
1313 {
1314 location_chain *nextp;
1315
1316 /* Copy the chain from SRC. */
1317 nextp = &dst->var_part[k].loc_chain;
1318 for (node = src->var_part[i].loc_chain; node; node = node->next)
1319 {
1320 location_chain new_lc;
1321
1322 new_lc = pool_alloc (loc_chain_pool);
1323 new_lc->next = NULL;
1324 new_lc->init = node->init;
1325 if (!node->set_src || MEM_P (node->set_src))
1326 new_lc->set_src = NULL;
1327 else
1328 new_lc->set_src = node->set_src;
1329 new_lc->loc = node->loc;
1330
1331 *nextp = new_lc;
1332 nextp = &new_lc->next;
1333 }
1334
1335 dst->var_part[k].offset = src->var_part[i].offset;
1336 i--;
1337 }
1338
1339 /* We are at the basic block boundary when computing union
1340 so set the CUR_LOC to be the first element of the chain. */
1341 if (dst->var_part[k].loc_chain)
1342 dst->var_part[k].cur_loc = dst->var_part[k].loc_chain->loc;
1343 else
1344 dst->var_part[k].cur_loc = NULL;
1345 }
1346
1347 for (i = 0; i < src->n_var_parts && i < dst->n_var_parts; i++)
1348 {
1349 location_chain node, node2;
1350 for (node = src->var_part[i].loc_chain; node; node = node->next)
1351 for (node2 = dst->var_part[i].loc_chain; node2; node2 = node2->next)
1352 if (rtx_equal_p (node->loc, node2->loc))
1353 {
1354 if (node->init > node2->init)
1355 node2->init = node->init;
1356 }
1357 }
1358
1359 /* Continue traversing the hash table. */
1360 return 1;
1361 }
1362
1363 /* Compute union of dataflow sets SRC and DST and store it to DST. */
1364
1365 static void
1366 dataflow_set_union (dataflow_set *dst, dataflow_set *src)
1367 {
1368 int i;
1369
1370 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1371 attrs_list_union (&dst->regs[i], src->regs[i]);
1372
1373 htab_traverse (src->vars, variable_union, dst);
1374 }
1375
1376 /* Flag whether two dataflow sets being compared contain different data. */
1377 static bool
1378 dataflow_set_different_value;
1379
1380 static bool
1381 variable_part_different_p (variable_part *vp1, variable_part *vp2)
1382 {
1383 location_chain lc1, lc2;
1384
1385 for (lc1 = vp1->loc_chain; lc1; lc1 = lc1->next)
1386 {
1387 for (lc2 = vp2->loc_chain; lc2; lc2 = lc2->next)
1388 {
1389 if (REG_P (lc1->loc) && REG_P (lc2->loc))
1390 {
1391 if (REGNO (lc1->loc) == REGNO (lc2->loc))
1392 break;
1393 }
1394 if (rtx_equal_p (lc1->loc, lc2->loc))
1395 break;
1396 }
1397 if (!lc2)
1398 return true;
1399 }
1400 return false;
1401 }
1402
1403 /* Return true if variables VAR1 and VAR2 are different.
1404 If COMPARE_CURRENT_LOCATION is true compare also the cur_loc of each
1405 variable part. */
1406
1407 static bool
1408 variable_different_p (variable var1, variable var2,
1409 bool compare_current_location)
1410 {
1411 int i;
1412
1413 if (var1 == var2)
1414 return false;
1415
1416 if (var1->n_var_parts != var2->n_var_parts)
1417 return true;
1418
1419 for (i = 0; i < var1->n_var_parts; i++)
1420 {
1421 if (var1->var_part[i].offset != var2->var_part[i].offset)
1422 return true;
1423 if (compare_current_location)
1424 {
1425 if (!((REG_P (var1->var_part[i].cur_loc)
1426 && REG_P (var2->var_part[i].cur_loc)
1427 && (REGNO (var1->var_part[i].cur_loc)
1428 == REGNO (var2->var_part[i].cur_loc)))
1429 || rtx_equal_p (var1->var_part[i].cur_loc,
1430 var2->var_part[i].cur_loc)))
1431 return true;
1432 }
1433 if (variable_part_different_p (&var1->var_part[i], &var2->var_part[i]))
1434 return true;
1435 if (variable_part_different_p (&var2->var_part[i], &var1->var_part[i]))
1436 return true;
1437 }
1438 return false;
1439 }
1440
1441 /* Compare variable *SLOT with the same variable in hash table DATA
1442 and set DATAFLOW_SET_DIFFERENT_VALUE if they are different. */
1443
1444 static int
1445 dataflow_set_different_1 (void **slot, void *data)
1446 {
1447 htab_t htab = (htab_t) data;
1448 variable var1, var2;
1449
1450 var1 = *(variable *) slot;
1451 var2 = htab_find_with_hash (htab, var1->decl,
1452 VARIABLE_HASH_VAL (var1->decl));
1453 if (!var2)
1454 {
1455 dataflow_set_different_value = true;
1456
1457 /* Stop traversing the hash table. */
1458 return 0;
1459 }
1460
1461 if (variable_different_p (var1, var2, false))
1462 {
1463 dataflow_set_different_value = true;
1464
1465 /* Stop traversing the hash table. */
1466 return 0;
1467 }
1468
1469 /* Continue traversing the hash table. */
1470 return 1;
1471 }
1472
1473 /* Compare variable *SLOT with the same variable in hash table DATA
1474 and set DATAFLOW_SET_DIFFERENT_VALUE if they are different. */
1475
1476 static int
1477 dataflow_set_different_2 (void **slot, void *data)
1478 {
1479 htab_t htab = (htab_t) data;
1480 variable var1, var2;
1481
1482 var1 = *(variable *) slot;
1483 var2 = htab_find_with_hash (htab, var1->decl,
1484 VARIABLE_HASH_VAL (var1->decl));
1485 if (!var2)
1486 {
1487 dataflow_set_different_value = true;
1488
1489 /* Stop traversing the hash table. */
1490 return 0;
1491 }
1492
1493 /* If both variables are defined they have been already checked for
1494 equivalence. */
1495 gcc_assert (!variable_different_p (var1, var2, false));
1496
1497 /* Continue traversing the hash table. */
1498 return 1;
1499 }
1500
1501 /* Return true if dataflow sets OLD_SET and NEW_SET differ. */
1502
1503 static bool
1504 dataflow_set_different (dataflow_set *old_set, dataflow_set *new_set)
1505 {
1506 dataflow_set_different_value = false;
1507
1508 htab_traverse (old_set->vars, dataflow_set_different_1, new_set->vars);
1509 if (!dataflow_set_different_value)
1510 {
1511 /* We have compared the variables which are in both hash tables
1512 so now only check whether there are some variables in NEW_SET->VARS
1513 which are not in OLD_SET->VARS. */
1514 htab_traverse (new_set->vars, dataflow_set_different_2, old_set->vars);
1515 }
1516 return dataflow_set_different_value;
1517 }
1518
1519 /* Free the contents of dataflow set SET. */
1520
1521 static void
1522 dataflow_set_destroy (dataflow_set *set)
1523 {
1524 int i;
1525
1526 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1527 attrs_list_clear (&set->regs[i]);
1528
1529 htab_delete (set->vars);
1530 set->vars = NULL;
1531 }
1532
1533 /* Return true if RTL X contains a SYMBOL_REF. */
1534
1535 static bool
1536 contains_symbol_ref (rtx x)
1537 {
1538 const char *fmt;
1539 RTX_CODE code;
1540 int i;
1541
1542 if (!x)
1543 return false;
1544
1545 code = GET_CODE (x);
1546 if (code == SYMBOL_REF)
1547 return true;
1548
1549 fmt = GET_RTX_FORMAT (code);
1550 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1551 {
1552 if (fmt[i] == 'e')
1553 {
1554 if (contains_symbol_ref (XEXP (x, i)))
1555 return true;
1556 }
1557 else if (fmt[i] == 'E')
1558 {
1559 int j;
1560 for (j = 0; j < XVECLEN (x, i); j++)
1561 if (contains_symbol_ref (XVECEXP (x, i, j)))
1562 return true;
1563 }
1564 }
1565
1566 return false;
1567 }
1568
1569 /* Shall EXPR be tracked? */
1570
1571 static bool
1572 track_expr_p (tree expr)
1573 {
1574 rtx decl_rtl;
1575 tree realdecl;
1576
1577 /* If EXPR is not a parameter or a variable do not track it. */
1578 if (TREE_CODE (expr) != VAR_DECL && TREE_CODE (expr) != PARM_DECL)
1579 return 0;
1580
1581 /* It also must have a name... */
1582 if (!DECL_NAME (expr))
1583 return 0;
1584
1585 /* ... and a RTL assigned to it. */
1586 decl_rtl = DECL_RTL_IF_SET (expr);
1587 if (!decl_rtl)
1588 return 0;
1589
1590 /* If this expression is really a debug alias of some other declaration, we
1591 don't need to track this expression if the ultimate declaration is
1592 ignored. */
1593 realdecl = expr;
1594 if (DECL_DEBUG_EXPR_IS_FROM (realdecl) && DECL_DEBUG_EXPR (realdecl))
1595 {
1596 realdecl = DECL_DEBUG_EXPR (realdecl);
1597 /* ??? We don't yet know how to emit DW_OP_piece for variable
1598 that has been SRA'ed. */
1599 if (!DECL_P (realdecl))
1600 return 0;
1601 }
1602
1603 /* Do not track EXPR if REALDECL it should be ignored for debugging
1604 purposes. */
1605 if (DECL_IGNORED_P (realdecl))
1606 return 0;
1607
1608 /* Do not track global variables until we are able to emit correct location
1609 list for them. */
1610 if (TREE_STATIC (realdecl))
1611 return 0;
1612
1613 /* When the EXPR is a DECL for alias of some variable (see example)
1614 the TREE_STATIC flag is not used. Disable tracking all DECLs whose
1615 DECL_RTL contains SYMBOL_REF.
1616
1617 Example:
1618 extern char **_dl_argv_internal __attribute__ ((alias ("_dl_argv")));
1619 char **_dl_argv;
1620 */
1621 if (MEM_P (decl_rtl)
1622 && contains_symbol_ref (XEXP (decl_rtl, 0)))
1623 return 0;
1624
1625 /* If RTX is a memory it should not be very large (because it would be
1626 an array or struct). */
1627 if (MEM_P (decl_rtl))
1628 {
1629 /* Do not track structures and arrays. */
1630 if (GET_MODE (decl_rtl) == BLKmode
1631 || AGGREGATE_TYPE_P (TREE_TYPE (realdecl)))
1632 return 0;
1633 if (MEM_SIZE (decl_rtl)
1634 && INTVAL (MEM_SIZE (decl_rtl)) > MAX_VAR_PARTS)
1635 return 0;
1636 }
1637
1638 return 1;
1639 }
1640
1641 /* Determine whether a given LOC refers to the same variable part as
1642 EXPR+OFFSET. */
1643
1644 static bool
1645 same_variable_part_p (rtx loc, tree expr, HOST_WIDE_INT offset)
1646 {
1647 tree expr2;
1648 HOST_WIDE_INT offset2;
1649
1650 if (! DECL_P (expr))
1651 return false;
1652
1653 if (REG_P (loc))
1654 {
1655 expr2 = REG_EXPR (loc);
1656 offset2 = REG_OFFSET (loc);
1657 }
1658 else if (MEM_P (loc))
1659 {
1660 expr2 = MEM_EXPR (loc);
1661 offset2 = MEM_OFFSET (loc) ? INTVAL (MEM_OFFSET (loc)) : 0;
1662 }
1663 else
1664 return false;
1665
1666 if (! expr2 || ! DECL_P (expr2))
1667 return false;
1668
1669 expr = var_debug_decl (expr);
1670 expr2 = var_debug_decl (expr2);
1671
1672 return (expr == expr2 && offset == offset2);
1673 }
1674
1675
1676 /* Count uses (register and memory references) LOC which will be tracked.
1677 INSN is instruction which the LOC is part of. */
1678
1679 static int
1680 count_uses (rtx *loc, void *insn)
1681 {
1682 basic_block bb = BLOCK_FOR_INSN ((rtx) insn);
1683
1684 if (REG_P (*loc))
1685 {
1686 gcc_assert (REGNO (*loc) < FIRST_PSEUDO_REGISTER);
1687 VTI (bb)->n_mos++;
1688 }
1689 else if (MEM_P (*loc)
1690 && MEM_EXPR (*loc)
1691 && track_expr_p (MEM_EXPR (*loc)))
1692 {
1693 VTI (bb)->n_mos++;
1694 }
1695
1696 return 0;
1697 }
1698
1699 /* Helper function for finding all uses of REG/MEM in X in insn INSN. */
1700
1701 static void
1702 count_uses_1 (rtx *x, void *insn)
1703 {
1704 for_each_rtx (x, count_uses, insn);
1705 }
1706
1707 /* Count stores (register and memory references) LOC which will be tracked.
1708 INSN is instruction which the LOC is part of. */
1709
1710 static void
1711 count_stores (rtx loc, rtx expr ATTRIBUTE_UNUSED, void *insn)
1712 {
1713 count_uses (&loc, insn);
1714 }
1715
1716 /* Add uses (register and memory references) LOC which will be tracked
1717 to VTI (bb)->mos. INSN is instruction which the LOC is part of. */
1718
1719 static int
1720 add_uses (rtx *loc, void *insn)
1721 {
1722 if (REG_P (*loc))
1723 {
1724 basic_block bb = BLOCK_FOR_INSN ((rtx) insn);
1725 micro_operation *mo = VTI (bb)->mos + VTI (bb)->n_mos++;
1726
1727 mo->type = ((REG_EXPR (*loc) && track_expr_p (REG_EXPR (*loc)))
1728 ? MO_USE : MO_USE_NO_VAR);
1729 mo->u.loc = *loc;
1730 mo->insn = (rtx) insn;
1731 }
1732 else if (MEM_P (*loc)
1733 && MEM_EXPR (*loc)
1734 && track_expr_p (MEM_EXPR (*loc)))
1735 {
1736 basic_block bb = BLOCK_FOR_INSN ((rtx) insn);
1737 micro_operation *mo = VTI (bb)->mos + VTI (bb)->n_mos++;
1738
1739 mo->type = MO_USE;
1740 mo->u.loc = *loc;
1741 mo->insn = (rtx) insn;
1742 }
1743
1744 return 0;
1745 }
1746
1747 /* Helper function for finding all uses of REG/MEM in X in insn INSN. */
1748
1749 static void
1750 add_uses_1 (rtx *x, void *insn)
1751 {
1752 for_each_rtx (x, add_uses, insn);
1753 }
1754
1755 /* Add stores (register and memory references) LOC which will be tracked
1756 to VTI (bb)->mos. EXPR is the RTL expression containing the store.
1757 INSN is instruction which the LOC is part of. */
1758
1759 static void
1760 add_stores (rtx loc, rtx expr, void *insn)
1761 {
1762 if (REG_P (loc))
1763 {
1764 basic_block bb = BLOCK_FOR_INSN ((rtx) insn);
1765 micro_operation *mo = VTI (bb)->mos + VTI (bb)->n_mos++;
1766
1767 if (GET_CODE (expr) == CLOBBER
1768 || ! REG_EXPR (loc)
1769 || ! track_expr_p (REG_EXPR (loc)))
1770 mo->type = MO_CLOBBER;
1771 else if (GET_CODE (expr) == SET
1772 && SET_DEST (expr) == loc
1773 && same_variable_part_p (SET_SRC (expr),
1774 REG_EXPR (loc),
1775 REG_OFFSET (loc)))
1776 mo->type = MO_COPY;
1777 else
1778 mo->type = MO_SET;
1779 mo->u.loc = loc;
1780 mo->insn = (rtx) insn;
1781 }
1782 else if (MEM_P (loc)
1783 && MEM_EXPR (loc)
1784 && track_expr_p (MEM_EXPR (loc)))
1785 {
1786 basic_block bb = BLOCK_FOR_INSN ((rtx) insn);
1787 micro_operation *mo = VTI (bb)->mos + VTI (bb)->n_mos++;
1788
1789 if (GET_CODE (expr) == CLOBBER)
1790 mo->type = MO_CLOBBER;
1791 else if (GET_CODE (expr) == SET
1792 && SET_DEST (expr) == loc
1793 && same_variable_part_p (SET_SRC (expr),
1794 MEM_EXPR (loc),
1795 MEM_OFFSET (loc)
1796 ? INTVAL (MEM_OFFSET (loc)) : 0))
1797 mo->type = MO_COPY;
1798 else
1799 mo->type = MO_SET;
1800 mo->u.loc = loc;
1801 mo->insn = (rtx) insn;
1802 }
1803 }
1804
1805 static enum var_init_status
1806 find_src_status (dataflow_set *in, rtx loc, rtx insn)
1807 {
1808 rtx src = NULL_RTX;
1809 rtx pattern;
1810 tree decl = NULL_TREE;
1811 enum var_init_status status = VAR_INIT_STATUS_UNINITIALIZED;
1812
1813 if (! flag_var_tracking_uninit)
1814 status = VAR_INIT_STATUS_INITIALIZED;
1815
1816 pattern = PATTERN (insn);
1817
1818 if (GET_CODE (pattern) == COND_EXEC)
1819 pattern = COND_EXEC_CODE (pattern);
1820
1821 if (GET_CODE (pattern) == SET)
1822 src = SET_SRC (pattern);
1823 else if (GET_CODE (pattern) == PARALLEL
1824 || GET_CODE (pattern) == SEQUENCE)
1825 {
1826 int i;
1827 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
1828 if (GET_CODE (XVECEXP (pattern, 0, i)) == SET
1829 && SET_DEST (XVECEXP (pattern, 0, i)) == loc)
1830 src = SET_SRC (XVECEXP (pattern, 0, i));
1831 }
1832
1833 if (src && REG_P (src))
1834 decl = var_debug_decl (REG_EXPR (src));
1835 else if (src && MEM_P (src))
1836 decl = var_debug_decl (MEM_EXPR (src));
1837
1838 if (src && decl)
1839 status = get_init_value (in, src, decl);
1840
1841 return status;
1842 }
1843
1844 /* LOC is the destination the variable is being copied to. INSN
1845 contains the copy instruction. SET is the dataflow set containing
1846 the variable in LOC. */
1847
1848 static rtx
1849 find_src_set_src (dataflow_set *set, rtx loc, rtx insn)
1850 {
1851 tree decl = NULL_TREE; /* The variable being copied around. */
1852 rtx src = NULL_RTX; /* The location "decl" is being copied from. */
1853 rtx set_src = NULL_RTX; /* The value for "decl" stored in "src". */
1854 rtx pattern;
1855 void **slot;
1856 variable var;
1857 location_chain nextp;
1858 int i;
1859 bool found;
1860
1861
1862 pattern = PATTERN (insn);
1863 if (GET_CODE (pattern) == COND_EXEC)
1864 pattern = COND_EXEC_CODE (pattern);
1865
1866 if (GET_CODE (pattern) == SET)
1867 src = SET_SRC (pattern);
1868 else if (GET_CODE (pattern) == PARALLEL
1869 || GET_CODE (pattern) == SEQUENCE)
1870 {
1871 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
1872 if (GET_CODE (XVECEXP (pattern, 0, i)) == SET
1873 && SET_DEST (XVECEXP (pattern, 0, i)) == loc)
1874 src = SET_SRC (XVECEXP (pattern, 0, i));
1875 }
1876
1877 if (src && REG_P (src))
1878 decl = var_debug_decl (REG_EXPR (src));
1879 else if (src && MEM_P (src))
1880 decl = var_debug_decl (MEM_EXPR (src));
1881
1882 if (src && decl)
1883 {
1884 slot = htab_find_slot_with_hash (set->vars, decl,
1885 VARIABLE_HASH_VAL (decl), NO_INSERT);
1886
1887 if (slot)
1888 {
1889 var = *(variable *) slot;
1890 found = false;
1891 for (i = 0; i < var->n_var_parts && !found; i++)
1892 for (nextp = var->var_part[i].loc_chain; nextp && !found;
1893 nextp = nextp->next)
1894 if (rtx_equal_p (nextp->loc, src))
1895 {
1896 set_src = nextp->set_src;
1897 found = true;
1898 }
1899
1900 }
1901 }
1902
1903 return set_src;
1904 }
1905
1906 /* Compute the changes of variable locations in the basic block BB. */
1907
1908 static bool
1909 compute_bb_dataflow (basic_block bb)
1910 {
1911 int i, n, r;
1912 bool changed;
1913 dataflow_set old_out;
1914 dataflow_set *in = &VTI (bb)->in;
1915 dataflow_set *out = &VTI (bb)->out;
1916
1917 dataflow_set_init (&old_out, htab_elements (VTI (bb)->out.vars) + 3);
1918 dataflow_set_copy (&old_out, out);
1919 dataflow_set_copy (out, in);
1920
1921 n = VTI (bb)->n_mos;
1922 for (i = 0; i < n; i++)
1923 {
1924 switch (VTI (bb)->mos[i].type)
1925 {
1926 case MO_CALL:
1927 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1928 if (TEST_HARD_REG_BIT (call_used_reg_set, r))
1929 var_regno_delete (out, r);
1930 break;
1931
1932 case MO_USE:
1933 {
1934 rtx loc = VTI (bb)->mos[i].u.loc;
1935 enum var_init_status status = VAR_INIT_STATUS_UNINITIALIZED;
1936
1937 if (! flag_var_tracking_uninit)
1938 status = VAR_INIT_STATUS_INITIALIZED;
1939
1940 if (GET_CODE (loc) == REG)
1941 var_reg_set (out, loc, status, NULL);
1942 else if (GET_CODE (loc) == MEM)
1943 var_mem_set (out, loc, status, NULL);
1944 }
1945 break;
1946
1947 case MO_SET:
1948 {
1949 rtx loc = VTI (bb)->mos[i].u.loc;
1950 rtx set_src = NULL;
1951 rtx insn = VTI (bb)->mos[i].insn;
1952
1953 if (GET_CODE (PATTERN (insn)) == SET)
1954 set_src = SET_SRC (PATTERN (insn));
1955 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1956 || GET_CODE (PATTERN (insn)) == SEQUENCE)
1957 {
1958 int j;
1959 for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
1960 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET
1961 && SET_DEST (XVECEXP (PATTERN (insn), 0, j)) == loc)
1962 set_src = SET_SRC (XVECEXP (PATTERN (insn), 0, j));
1963 }
1964
1965 if (REG_P (loc))
1966 var_reg_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
1967 set_src);
1968 else if (MEM_P (loc))
1969 var_mem_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
1970 set_src);
1971 }
1972 break;
1973
1974 case MO_COPY:
1975 {
1976 rtx loc = VTI (bb)->mos[i].u.loc;
1977 enum var_init_status src_status;
1978 rtx set_src;
1979
1980 if (! flag_var_tracking_uninit)
1981 src_status = VAR_INIT_STATUS_INITIALIZED;
1982 else
1983 src_status = find_src_status (in, loc, VTI (bb)->mos[i].insn);
1984
1985 if (src_status == VAR_INIT_STATUS_UNKNOWN)
1986 src_status = find_src_status (out, loc, VTI (bb)->mos[i].insn);
1987
1988 set_src = find_src_set_src (in, loc, VTI (bb)->mos[i].insn);
1989
1990 if (REG_P (loc))
1991 var_reg_delete_and_set (out, loc, false, src_status, set_src);
1992 else if (MEM_P (loc))
1993 var_mem_delete_and_set (out, loc, false, src_status, set_src);
1994 }
1995 break;
1996
1997 case MO_USE_NO_VAR:
1998 {
1999 rtx loc = VTI (bb)->mos[i].u.loc;
2000
2001 if (REG_P (loc))
2002 var_reg_delete (out, loc, false);
2003 else if (MEM_P (loc))
2004 var_mem_delete (out, loc, false);
2005 }
2006 break;
2007
2008 case MO_CLOBBER:
2009 {
2010 rtx loc = VTI (bb)->mos[i].u.loc;
2011
2012 if (REG_P (loc))
2013 var_reg_delete (out, loc, true);
2014 else if (MEM_P (loc))
2015 var_mem_delete (out, loc, true);
2016 }
2017 break;
2018
2019 case MO_ADJUST:
2020 out->stack_adjust += VTI (bb)->mos[i].u.adjust;
2021 break;
2022 }
2023 }
2024
2025 changed = dataflow_set_different (&old_out, out);
2026 dataflow_set_destroy (&old_out);
2027 return changed;
2028 }
2029
2030 /* Find the locations of variables in the whole function. */
2031
2032 static void
2033 vt_find_locations (void)
2034 {
2035 fibheap_t worklist, pending, fibheap_swap;
2036 sbitmap visited, in_worklist, in_pending, sbitmap_swap;
2037 basic_block bb;
2038 edge e;
2039 int *bb_order;
2040 int *rc_order;
2041 int i;
2042
2043 /* Compute reverse completion order of depth first search of the CFG
2044 so that the data-flow runs faster. */
2045 rc_order = XNEWVEC (int, n_basic_blocks - NUM_FIXED_BLOCKS);
2046 bb_order = XNEWVEC (int, last_basic_block);
2047 pre_and_rev_post_order_compute (NULL, rc_order, false);
2048 for (i = 0; i < n_basic_blocks - NUM_FIXED_BLOCKS; i++)
2049 bb_order[rc_order[i]] = i;
2050 free (rc_order);
2051
2052 worklist = fibheap_new ();
2053 pending = fibheap_new ();
2054 visited = sbitmap_alloc (last_basic_block);
2055 in_worklist = sbitmap_alloc (last_basic_block);
2056 in_pending = sbitmap_alloc (last_basic_block);
2057 sbitmap_zero (in_worklist);
2058
2059 FOR_EACH_BB (bb)
2060 fibheap_insert (pending, bb_order[bb->index], bb);
2061 sbitmap_ones (in_pending);
2062
2063 while (!fibheap_empty (pending))
2064 {
2065 fibheap_swap = pending;
2066 pending = worklist;
2067 worklist = fibheap_swap;
2068 sbitmap_swap = in_pending;
2069 in_pending = in_worklist;
2070 in_worklist = sbitmap_swap;
2071
2072 sbitmap_zero (visited);
2073
2074 while (!fibheap_empty (worklist))
2075 {
2076 bb = fibheap_extract_min (worklist);
2077 RESET_BIT (in_worklist, bb->index);
2078 if (!TEST_BIT (visited, bb->index))
2079 {
2080 bool changed;
2081 edge_iterator ei;
2082
2083 SET_BIT (visited, bb->index);
2084
2085 /* Calculate the IN set as union of predecessor OUT sets. */
2086 dataflow_set_clear (&VTI (bb)->in);
2087 FOR_EACH_EDGE (e, ei, bb->preds)
2088 {
2089 dataflow_set_union (&VTI (bb)->in, &VTI (e->src)->out);
2090 }
2091
2092 changed = compute_bb_dataflow (bb);
2093 if (changed)
2094 {
2095 FOR_EACH_EDGE (e, ei, bb->succs)
2096 {
2097 if (e->dest == EXIT_BLOCK_PTR)
2098 continue;
2099
2100 if (e->dest == bb)
2101 continue;
2102
2103 if (TEST_BIT (visited, e->dest->index))
2104 {
2105 if (!TEST_BIT (in_pending, e->dest->index))
2106 {
2107 /* Send E->DEST to next round. */
2108 SET_BIT (in_pending, e->dest->index);
2109 fibheap_insert (pending,
2110 bb_order[e->dest->index],
2111 e->dest);
2112 }
2113 }
2114 else if (!TEST_BIT (in_worklist, e->dest->index))
2115 {
2116 /* Add E->DEST to current round. */
2117 SET_BIT (in_worklist, e->dest->index);
2118 fibheap_insert (worklist, bb_order[e->dest->index],
2119 e->dest);
2120 }
2121 }
2122 }
2123 }
2124 }
2125 }
2126
2127 free (bb_order);
2128 fibheap_delete (worklist);
2129 fibheap_delete (pending);
2130 sbitmap_free (visited);
2131 sbitmap_free (in_worklist);
2132 sbitmap_free (in_pending);
2133 }
2134
2135 /* Print the content of the LIST to dump file. */
2136
2137 static void
2138 dump_attrs_list (attrs list)
2139 {
2140 for (; list; list = list->next)
2141 {
2142 print_mem_expr (dump_file, list->decl);
2143 fprintf (dump_file, "+" HOST_WIDE_INT_PRINT_DEC, list->offset);
2144 }
2145 fprintf (dump_file, "\n");
2146 }
2147
2148 /* Print the information about variable *SLOT to dump file. */
2149
2150 static int
2151 dump_variable (void **slot, void *data ATTRIBUTE_UNUSED)
2152 {
2153 variable var = *(variable *) slot;
2154 int i;
2155 location_chain node;
2156
2157 fprintf (dump_file, " name: %s\n",
2158 IDENTIFIER_POINTER (DECL_NAME (var->decl)));
2159 for (i = 0; i < var->n_var_parts; i++)
2160 {
2161 fprintf (dump_file, " offset %ld\n",
2162 (long) var->var_part[i].offset);
2163 for (node = var->var_part[i].loc_chain; node; node = node->next)
2164 {
2165 fprintf (dump_file, " ");
2166 if (node->init == VAR_INIT_STATUS_UNINITIALIZED)
2167 fprintf (dump_file, "[uninit]");
2168 print_rtl_single (dump_file, node->loc);
2169 }
2170 }
2171
2172 /* Continue traversing the hash table. */
2173 return 1;
2174 }
2175
2176 /* Print the information about variables from hash table VARS to dump file. */
2177
2178 static void
2179 dump_vars (htab_t vars)
2180 {
2181 if (htab_elements (vars) > 0)
2182 {
2183 fprintf (dump_file, "Variables:\n");
2184 htab_traverse (vars, dump_variable, NULL);
2185 }
2186 }
2187
2188 /* Print the dataflow set SET to dump file. */
2189
2190 static void
2191 dump_dataflow_set (dataflow_set *set)
2192 {
2193 int i;
2194
2195 fprintf (dump_file, "Stack adjustment: " HOST_WIDE_INT_PRINT_DEC "\n",
2196 set->stack_adjust);
2197 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2198 {
2199 if (set->regs[i])
2200 {
2201 fprintf (dump_file, "Reg %d:", i);
2202 dump_attrs_list (set->regs[i]);
2203 }
2204 }
2205 dump_vars (set->vars);
2206 fprintf (dump_file, "\n");
2207 }
2208
2209 /* Print the IN and OUT sets for each basic block to dump file. */
2210
2211 static void
2212 dump_dataflow_sets (void)
2213 {
2214 basic_block bb;
2215
2216 FOR_EACH_BB (bb)
2217 {
2218 fprintf (dump_file, "\nBasic block %d:\n", bb->index);
2219 fprintf (dump_file, "IN:\n");
2220 dump_dataflow_set (&VTI (bb)->in);
2221 fprintf (dump_file, "OUT:\n");
2222 dump_dataflow_set (&VTI (bb)->out);
2223 }
2224 }
2225
2226 /* Add variable VAR to the hash table of changed variables and
2227 if it has no locations delete it from hash table HTAB. */
2228
2229 static void
2230 variable_was_changed (variable var, htab_t htab)
2231 {
2232 hashval_t hash = VARIABLE_HASH_VAL (var->decl);
2233
2234 if (emit_notes)
2235 {
2236 variable *slot;
2237
2238 slot = (variable *) htab_find_slot_with_hash (changed_variables,
2239 var->decl, hash, INSERT);
2240
2241 if (htab && var->n_var_parts == 0)
2242 {
2243 variable empty_var;
2244 void **old;
2245
2246 empty_var = pool_alloc (var_pool);
2247 empty_var->decl = var->decl;
2248 empty_var->refcount = 1;
2249 empty_var->n_var_parts = 0;
2250 *slot = empty_var;
2251
2252 old = htab_find_slot_with_hash (htab, var->decl, hash,
2253 NO_INSERT);
2254 if (old)
2255 htab_clear_slot (htab, old);
2256 }
2257 else
2258 {
2259 *slot = var;
2260 }
2261 }
2262 else
2263 {
2264 gcc_assert (htab);
2265 if (var->n_var_parts == 0)
2266 {
2267 void **slot = htab_find_slot_with_hash (htab, var->decl, hash,
2268 NO_INSERT);
2269 if (slot)
2270 htab_clear_slot (htab, slot);
2271 }
2272 }
2273 }
2274
2275 /* Look for the index in VAR->var_part corresponding to OFFSET.
2276 Return -1 if not found. If INSERTION_POINT is non-NULL, the
2277 referenced int will be set to the index that the part has or should
2278 have, if it should be inserted. */
2279
2280 static inline int
2281 find_variable_location_part (variable var, HOST_WIDE_INT offset,
2282 int *insertion_point)
2283 {
2284 int pos, low, high;
2285
2286 /* Find the location part. */
2287 low = 0;
2288 high = var->n_var_parts;
2289 while (low != high)
2290 {
2291 pos = (low + high) / 2;
2292 if (var->var_part[pos].offset < offset)
2293 low = pos + 1;
2294 else
2295 high = pos;
2296 }
2297 pos = low;
2298
2299 if (insertion_point)
2300 *insertion_point = pos;
2301
2302 if (pos < var->n_var_parts && var->var_part[pos].offset == offset)
2303 return pos;
2304
2305 return -1;
2306 }
2307
2308 /* Set the part of variable's location in the dataflow set SET. The variable
2309 part is specified by variable's declaration DECL and offset OFFSET and the
2310 part's location by LOC. */
2311
2312 static void
2313 set_variable_part (dataflow_set *set, rtx loc, tree decl, HOST_WIDE_INT offset,
2314 enum var_init_status initialized, rtx set_src)
2315 {
2316 int pos;
2317 location_chain node, next;
2318 location_chain *nextp;
2319 variable var;
2320 void **slot;
2321
2322 slot = htab_find_slot_with_hash (set->vars, decl,
2323 VARIABLE_HASH_VAL (decl), INSERT);
2324 if (!*slot)
2325 {
2326 /* Create new variable information. */
2327 var = pool_alloc (var_pool);
2328 var->decl = decl;
2329 var->refcount = 1;
2330 var->n_var_parts = 1;
2331 var->var_part[0].offset = offset;
2332 var->var_part[0].loc_chain = NULL;
2333 var->var_part[0].cur_loc = NULL;
2334 *slot = var;
2335 pos = 0;
2336 }
2337 else
2338 {
2339 int inspos = 0;
2340
2341 var = (variable) *slot;
2342
2343 pos = find_variable_location_part (var, offset, &inspos);
2344
2345 if (pos >= 0)
2346 {
2347 node = var->var_part[pos].loc_chain;
2348
2349 if (node
2350 && ((REG_P (node->loc) && REG_P (loc)
2351 && REGNO (node->loc) == REGNO (loc))
2352 || rtx_equal_p (node->loc, loc)))
2353 {
2354 /* LOC is in the beginning of the chain so we have nothing
2355 to do. */
2356 if (node->init < initialized)
2357 node->init = initialized;
2358 if (set_src != NULL)
2359 node->set_src = set_src;
2360
2361 *slot = var;
2362 return;
2363 }
2364 else
2365 {
2366 /* We have to make a copy of a shared variable. */
2367 if (var->refcount > 1)
2368 var = unshare_variable (set, var, initialized);
2369 }
2370 }
2371 else
2372 {
2373 /* We have not found the location part, new one will be created. */
2374
2375 /* We have to make a copy of the shared variable. */
2376 if (var->refcount > 1)
2377 var = unshare_variable (set, var, initialized);
2378
2379 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
2380 thus there are at most MAX_VAR_PARTS different offsets. */
2381 gcc_assert (var->n_var_parts < MAX_VAR_PARTS);
2382
2383 /* We have to move the elements of array starting at index
2384 inspos to the next position. */
2385 for (pos = var->n_var_parts; pos > inspos; pos--)
2386 var->var_part[pos] = var->var_part[pos - 1];
2387
2388 var->n_var_parts++;
2389 var->var_part[pos].offset = offset;
2390 var->var_part[pos].loc_chain = NULL;
2391 var->var_part[pos].cur_loc = NULL;
2392 }
2393 }
2394
2395 /* Delete the location from the list. */
2396 nextp = &var->var_part[pos].loc_chain;
2397 for (node = var->var_part[pos].loc_chain; node; node = next)
2398 {
2399 next = node->next;
2400 if ((REG_P (node->loc) && REG_P (loc)
2401 && REGNO (node->loc) == REGNO (loc))
2402 || rtx_equal_p (node->loc, loc))
2403 {
2404 /* Save these values, to assign to the new node, before
2405 deleting this one. */
2406 if (node->init > initialized)
2407 initialized = node->init;
2408 if (node->set_src != NULL && set_src == NULL)
2409 set_src = node->set_src;
2410 pool_free (loc_chain_pool, node);
2411 *nextp = next;
2412 break;
2413 }
2414 else
2415 nextp = &node->next;
2416 }
2417
2418 /* Add the location to the beginning. */
2419 node = pool_alloc (loc_chain_pool);
2420 node->loc = loc;
2421 node->init = initialized;
2422 node->set_src = set_src;
2423 node->next = var->var_part[pos].loc_chain;
2424 var->var_part[pos].loc_chain = node;
2425
2426 /* If no location was emitted do so. */
2427 if (var->var_part[pos].cur_loc == NULL)
2428 {
2429 var->var_part[pos].cur_loc = loc;
2430 variable_was_changed (var, set->vars);
2431 }
2432 }
2433
2434 /* Remove all recorded register locations for the given variable part
2435 from dataflow set SET, except for those that are identical to loc.
2436 The variable part is specified by variable's declaration DECL and
2437 offset OFFSET. */
2438
2439 static void
2440 clobber_variable_part (dataflow_set *set, rtx loc, tree decl,
2441 HOST_WIDE_INT offset, rtx set_src)
2442 {
2443 void **slot;
2444
2445 if (! decl || ! DECL_P (decl))
2446 return;
2447
2448 slot = htab_find_slot_with_hash (set->vars, decl, VARIABLE_HASH_VAL (decl),
2449 NO_INSERT);
2450 if (slot)
2451 {
2452 variable var = (variable) *slot;
2453 int pos = find_variable_location_part (var, offset, NULL);
2454
2455 if (pos >= 0)
2456 {
2457 location_chain node, next;
2458
2459 /* Remove the register locations from the dataflow set. */
2460 next = var->var_part[pos].loc_chain;
2461 for (node = next; node; node = next)
2462 {
2463 next = node->next;
2464 if (node->loc != loc
2465 && (!flag_var_tracking_uninit
2466 || !set_src
2467 || MEM_P (set_src)
2468 || !rtx_equal_p (set_src, node->set_src)))
2469 {
2470 if (REG_P (node->loc))
2471 {
2472 attrs anode, anext;
2473 attrs *anextp;
2474
2475 /* Remove the variable part from the register's
2476 list, but preserve any other variable parts
2477 that might be regarded as live in that same
2478 register. */
2479 anextp = &set->regs[REGNO (node->loc)];
2480 for (anode = *anextp; anode; anode = anext)
2481 {
2482 anext = anode->next;
2483 if (anode->decl == decl
2484 && anode->offset == offset)
2485 {
2486 pool_free (attrs_pool, anode);
2487 *anextp = anext;
2488 }
2489 }
2490 }
2491
2492 delete_variable_part (set, node->loc, decl, offset);
2493 }
2494 }
2495 }
2496 }
2497 }
2498
2499 /* Delete the part of variable's location from dataflow set SET. The variable
2500 part is specified by variable's declaration DECL and offset OFFSET and the
2501 part's location by LOC. */
2502
2503 static void
2504 delete_variable_part (dataflow_set *set, rtx loc, tree decl,
2505 HOST_WIDE_INT offset)
2506 {
2507 void **slot;
2508
2509 slot = htab_find_slot_with_hash (set->vars, decl, VARIABLE_HASH_VAL (decl),
2510 NO_INSERT);
2511 if (slot)
2512 {
2513 variable var = (variable) *slot;
2514 int pos = find_variable_location_part (var, offset, NULL);
2515
2516 if (pos >= 0)
2517 {
2518 location_chain node, next;
2519 location_chain *nextp;
2520 bool changed;
2521
2522 if (var->refcount > 1)
2523 {
2524 /* If the variable contains the location part we have to
2525 make a copy of the variable. */
2526 for (node = var->var_part[pos].loc_chain; node;
2527 node = node->next)
2528 {
2529 if ((REG_P (node->loc) && REG_P (loc)
2530 && REGNO (node->loc) == REGNO (loc))
2531 || rtx_equal_p (node->loc, loc))
2532 {
2533 enum var_init_status status = VAR_INIT_STATUS_UNKNOWN;
2534 if (! flag_var_tracking_uninit)
2535 status = VAR_INIT_STATUS_INITIALIZED;
2536 var = unshare_variable (set, var, status);
2537 break;
2538 }
2539 }
2540 }
2541
2542 /* Delete the location part. */
2543 nextp = &var->var_part[pos].loc_chain;
2544 for (node = *nextp; node; node = next)
2545 {
2546 next = node->next;
2547 if ((REG_P (node->loc) && REG_P (loc)
2548 && REGNO (node->loc) == REGNO (loc))
2549 || rtx_equal_p (node->loc, loc))
2550 {
2551 pool_free (loc_chain_pool, node);
2552 *nextp = next;
2553 break;
2554 }
2555 else
2556 nextp = &node->next;
2557 }
2558
2559 /* If we have deleted the location which was last emitted
2560 we have to emit new location so add the variable to set
2561 of changed variables. */
2562 if (var->var_part[pos].cur_loc
2563 && ((REG_P (loc)
2564 && REG_P (var->var_part[pos].cur_loc)
2565 && REGNO (loc) == REGNO (var->var_part[pos].cur_loc))
2566 || rtx_equal_p (loc, var->var_part[pos].cur_loc)))
2567 {
2568 changed = true;
2569 if (var->var_part[pos].loc_chain)
2570 var->var_part[pos].cur_loc = var->var_part[pos].loc_chain->loc;
2571 }
2572 else
2573 changed = false;
2574
2575 if (var->var_part[pos].loc_chain == NULL)
2576 {
2577 var->n_var_parts--;
2578 while (pos < var->n_var_parts)
2579 {
2580 var->var_part[pos] = var->var_part[pos + 1];
2581 pos++;
2582 }
2583 }
2584 if (changed)
2585 variable_was_changed (var, set->vars);
2586 }
2587 }
2588 }
2589
2590 /* Emit the NOTE_INSN_VAR_LOCATION for variable *VARP. DATA contains
2591 additional parameters: WHERE specifies whether the note shall be emitted
2592 before of after instruction INSN. */
2593
2594 static int
2595 emit_note_insn_var_location (void **varp, void *data)
2596 {
2597 variable var = *(variable *) varp;
2598 rtx insn = ((emit_note_data *)data)->insn;
2599 enum emit_note_where where = ((emit_note_data *)data)->where;
2600 rtx note;
2601 int i, j, n_var_parts;
2602 bool complete;
2603 enum var_init_status initialized = VAR_INIT_STATUS_UNINITIALIZED;
2604 HOST_WIDE_INT last_limit;
2605 tree type_size_unit;
2606 HOST_WIDE_INT offsets[MAX_VAR_PARTS];
2607 rtx loc[MAX_VAR_PARTS];
2608
2609 gcc_assert (var->decl);
2610
2611 if (! flag_var_tracking_uninit)
2612 initialized = VAR_INIT_STATUS_INITIALIZED;
2613
2614 complete = true;
2615 last_limit = 0;
2616 n_var_parts = 0;
2617 for (i = 0; i < var->n_var_parts; i++)
2618 {
2619 enum machine_mode mode, wider_mode;
2620
2621 if (last_limit < var->var_part[i].offset)
2622 {
2623 complete = false;
2624 break;
2625 }
2626 else if (last_limit > var->var_part[i].offset)
2627 continue;
2628 offsets[n_var_parts] = var->var_part[i].offset;
2629 loc[n_var_parts] = var->var_part[i].loc_chain->loc;
2630 mode = GET_MODE (loc[n_var_parts]);
2631 initialized = var->var_part[i].loc_chain->init;
2632 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
2633
2634 /* Attempt to merge adjacent registers or memory. */
2635 wider_mode = GET_MODE_WIDER_MODE (mode);
2636 for (j = i + 1; j < var->n_var_parts; j++)
2637 if (last_limit <= var->var_part[j].offset)
2638 break;
2639 if (j < var->n_var_parts
2640 && wider_mode != VOIDmode
2641 && GET_CODE (loc[n_var_parts])
2642 == GET_CODE (var->var_part[j].loc_chain->loc)
2643 && mode == GET_MODE (var->var_part[j].loc_chain->loc)
2644 && last_limit == var->var_part[j].offset)
2645 {
2646 rtx new_loc = NULL;
2647 rtx loc2 = var->var_part[j].loc_chain->loc;
2648
2649 if (REG_P (loc[n_var_parts])
2650 && hard_regno_nregs[REGNO (loc[n_var_parts])][mode] * 2
2651 == hard_regno_nregs[REGNO (loc[n_var_parts])][wider_mode]
2652 && end_hard_regno (mode, REGNO (loc[n_var_parts]))
2653 == REGNO (loc2))
2654 {
2655 if (! WORDS_BIG_ENDIAN && ! BYTES_BIG_ENDIAN)
2656 new_loc = simplify_subreg (wider_mode, loc[n_var_parts],
2657 mode, 0);
2658 else if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
2659 new_loc = simplify_subreg (wider_mode, loc2, mode, 0);
2660 if (new_loc)
2661 {
2662 if (!REG_P (new_loc)
2663 || REGNO (new_loc) != REGNO (loc[n_var_parts]))
2664 new_loc = NULL;
2665 else
2666 REG_ATTRS (new_loc) = REG_ATTRS (loc[n_var_parts]);
2667 }
2668 }
2669 else if (MEM_P (loc[n_var_parts])
2670 && GET_CODE (XEXP (loc2, 0)) == PLUS
2671 && GET_CODE (XEXP (XEXP (loc2, 0), 0)) == REG
2672 && GET_CODE (XEXP (XEXP (loc2, 0), 1)) == CONST_INT)
2673 {
2674 if ((GET_CODE (XEXP (loc[n_var_parts], 0)) == REG
2675 && rtx_equal_p (XEXP (loc[n_var_parts], 0),
2676 XEXP (XEXP (loc2, 0), 0))
2677 && INTVAL (XEXP (XEXP (loc2, 0), 1))
2678 == GET_MODE_SIZE (mode))
2679 || (GET_CODE (XEXP (loc[n_var_parts], 0)) == PLUS
2680 && GET_CODE (XEXP (XEXP (loc[n_var_parts], 0), 1))
2681 == CONST_INT
2682 && rtx_equal_p (XEXP (XEXP (loc[n_var_parts], 0), 0),
2683 XEXP (XEXP (loc2, 0), 0))
2684 && INTVAL (XEXP (XEXP (loc[n_var_parts], 0), 1))
2685 + GET_MODE_SIZE (mode)
2686 == INTVAL (XEXP (XEXP (loc2, 0), 1))))
2687 new_loc = adjust_address_nv (loc[n_var_parts],
2688 wider_mode, 0);
2689 }
2690
2691 if (new_loc)
2692 {
2693 loc[n_var_parts] = new_loc;
2694 mode = wider_mode;
2695 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
2696 i = j;
2697 }
2698 }
2699 ++n_var_parts;
2700 }
2701 type_size_unit = TYPE_SIZE_UNIT (TREE_TYPE (var->decl));
2702 if ((unsigned HOST_WIDE_INT) last_limit < TREE_INT_CST_LOW (type_size_unit))
2703 complete = false;
2704
2705 if (where == EMIT_NOTE_AFTER_INSN)
2706 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
2707 else
2708 note = emit_note_before (NOTE_INSN_VAR_LOCATION, insn);
2709
2710 if (! flag_var_tracking_uninit)
2711 initialized = VAR_INIT_STATUS_INITIALIZED;
2712
2713 if (!complete)
2714 {
2715 NOTE_VAR_LOCATION (note) = gen_rtx_VAR_LOCATION (VOIDmode, var->decl,
2716 NULL_RTX, (int) initialized);
2717 }
2718 else if (n_var_parts == 1)
2719 {
2720 rtx expr_list
2721 = gen_rtx_EXPR_LIST (VOIDmode, loc[0], GEN_INT (offsets[0]));
2722
2723 NOTE_VAR_LOCATION (note) = gen_rtx_VAR_LOCATION (VOIDmode, var->decl,
2724 expr_list,
2725 (int) initialized);
2726 }
2727 else if (n_var_parts)
2728 {
2729 rtx parallel;
2730
2731 for (i = 0; i < n_var_parts; i++)
2732 loc[i]
2733 = gen_rtx_EXPR_LIST (VOIDmode, loc[i], GEN_INT (offsets[i]));
2734
2735 parallel = gen_rtx_PARALLEL (VOIDmode,
2736 gen_rtvec_v (n_var_parts, loc));
2737 NOTE_VAR_LOCATION (note) = gen_rtx_VAR_LOCATION (VOIDmode, var->decl,
2738 parallel,
2739 (int) initialized);
2740 }
2741
2742 htab_clear_slot (changed_variables, varp);
2743
2744 /* When there are no location parts the variable has been already
2745 removed from hash table and a new empty variable was created.
2746 Free the empty variable. */
2747 if (var->n_var_parts == 0)
2748 {
2749 pool_free (var_pool, var);
2750 }
2751
2752 /* Continue traversing the hash table. */
2753 return 1;
2754 }
2755
2756 /* Emit NOTE_INSN_VAR_LOCATION note for each variable from a chain
2757 CHANGED_VARIABLES and delete this chain. WHERE specifies whether the notes
2758 shall be emitted before of after instruction INSN. */
2759
2760 static void
2761 emit_notes_for_changes (rtx insn, enum emit_note_where where)
2762 {
2763 emit_note_data data;
2764
2765 data.insn = insn;
2766 data.where = where;
2767 htab_traverse (changed_variables, emit_note_insn_var_location, &data);
2768 }
2769
2770 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it differs from the
2771 same variable in hash table DATA or is not there at all. */
2772
2773 static int
2774 emit_notes_for_differences_1 (void **slot, void *data)
2775 {
2776 htab_t new_vars = (htab_t) data;
2777 variable old_var, new_var;
2778
2779 old_var = *(variable *) slot;
2780 new_var = htab_find_with_hash (new_vars, old_var->decl,
2781 VARIABLE_HASH_VAL (old_var->decl));
2782
2783 if (!new_var)
2784 {
2785 /* Variable has disappeared. */
2786 variable empty_var;
2787
2788 empty_var = pool_alloc (var_pool);
2789 empty_var->decl = old_var->decl;
2790 empty_var->refcount = 1;
2791 empty_var->n_var_parts = 0;
2792 variable_was_changed (empty_var, NULL);
2793 }
2794 else if (variable_different_p (old_var, new_var, true))
2795 {
2796 variable_was_changed (new_var, NULL);
2797 }
2798
2799 /* Continue traversing the hash table. */
2800 return 1;
2801 }
2802
2803 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it is not in hash
2804 table DATA. */
2805
2806 static int
2807 emit_notes_for_differences_2 (void **slot, void *data)
2808 {
2809 htab_t old_vars = (htab_t) data;
2810 variable old_var, new_var;
2811
2812 new_var = *(variable *) slot;
2813 old_var = htab_find_with_hash (old_vars, new_var->decl,
2814 VARIABLE_HASH_VAL (new_var->decl));
2815 if (!old_var)
2816 {
2817 /* Variable has appeared. */
2818 variable_was_changed (new_var, NULL);
2819 }
2820
2821 /* Continue traversing the hash table. */
2822 return 1;
2823 }
2824
2825 /* Emit notes before INSN for differences between dataflow sets OLD_SET and
2826 NEW_SET. */
2827
2828 static void
2829 emit_notes_for_differences (rtx insn, dataflow_set *old_set,
2830 dataflow_set *new_set)
2831 {
2832 htab_traverse (old_set->vars, emit_notes_for_differences_1, new_set->vars);
2833 htab_traverse (new_set->vars, emit_notes_for_differences_2, old_set->vars);
2834 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN);
2835 }
2836
2837 /* Emit the notes for changes of location parts in the basic block BB. */
2838
2839 static void
2840 emit_notes_in_bb (basic_block bb)
2841 {
2842 int i;
2843 dataflow_set set;
2844
2845 dataflow_set_init (&set, htab_elements (VTI (bb)->in.vars) + 3);
2846 dataflow_set_copy (&set, &VTI (bb)->in);
2847
2848 for (i = 0; i < VTI (bb)->n_mos; i++)
2849 {
2850 rtx insn = VTI (bb)->mos[i].insn;
2851
2852 switch (VTI (bb)->mos[i].type)
2853 {
2854 case MO_CALL:
2855 {
2856 int r;
2857
2858 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
2859 if (TEST_HARD_REG_BIT (call_used_reg_set, r))
2860 {
2861 var_regno_delete (&set, r);
2862 }
2863 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN);
2864 }
2865 break;
2866
2867 case MO_USE:
2868 {
2869 rtx loc = VTI (bb)->mos[i].u.loc;
2870
2871 enum var_init_status status = VAR_INIT_STATUS_UNINITIALIZED;
2872 if (! flag_var_tracking_uninit)
2873 status = VAR_INIT_STATUS_INITIALIZED;
2874 if (GET_CODE (loc) == REG)
2875 var_reg_set (&set, loc, status, NULL);
2876 else
2877 var_mem_set (&set, loc, status, NULL);
2878
2879 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN);
2880 }
2881 break;
2882
2883 case MO_SET:
2884 {
2885 rtx loc = VTI (bb)->mos[i].u.loc;
2886 rtx set_src = NULL;
2887
2888 if (GET_CODE (PATTERN (insn)) == SET)
2889 set_src = SET_SRC (PATTERN (insn));
2890 else if (GET_CODE (PATTERN (insn)) == PARALLEL
2891 || GET_CODE (PATTERN (insn)) == SEQUENCE)
2892 {
2893 int j;
2894 for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
2895 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET
2896 && SET_DEST (XVECEXP (PATTERN (insn), 0, j)) == loc)
2897 set_src = SET_SRC (XVECEXP (PATTERN (insn), 0, j));
2898 }
2899
2900 if (REG_P (loc))
2901 var_reg_delete_and_set (&set, loc, true, VAR_INIT_STATUS_INITIALIZED,
2902 set_src);
2903 else
2904 var_mem_delete_and_set (&set, loc, true, VAR_INIT_STATUS_INITIALIZED,
2905 set_src);
2906
2907 emit_notes_for_changes (NEXT_INSN (insn), EMIT_NOTE_BEFORE_INSN);
2908 }
2909 break;
2910
2911 case MO_COPY:
2912 {
2913 rtx loc = VTI (bb)->mos[i].u.loc;
2914 enum var_init_status src_status;
2915 rtx set_src;
2916
2917 src_status = find_src_status (&set, loc, VTI (bb)->mos[i].insn);
2918 set_src = find_src_set_src (&set, loc, VTI (bb)->mos[i].insn);
2919
2920 if (REG_P (loc))
2921 var_reg_delete_and_set (&set, loc, false, src_status, set_src);
2922 else
2923 var_mem_delete_and_set (&set, loc, false, src_status, set_src);
2924
2925 emit_notes_for_changes (NEXT_INSN (insn), EMIT_NOTE_BEFORE_INSN);
2926 }
2927 break;
2928
2929 case MO_USE_NO_VAR:
2930 {
2931 rtx loc = VTI (bb)->mos[i].u.loc;
2932
2933 if (REG_P (loc))
2934 var_reg_delete (&set, loc, false);
2935 else
2936 var_mem_delete (&set, loc, false);
2937
2938 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN);
2939 }
2940 break;
2941
2942 case MO_CLOBBER:
2943 {
2944 rtx loc = VTI (bb)->mos[i].u.loc;
2945
2946 if (REG_P (loc))
2947 var_reg_delete (&set, loc, true);
2948 else
2949 var_mem_delete (&set, loc, true);
2950
2951 emit_notes_for_changes (NEXT_INSN (insn), EMIT_NOTE_BEFORE_INSN);
2952 }
2953 break;
2954
2955 case MO_ADJUST:
2956 set.stack_adjust += VTI (bb)->mos[i].u.adjust;
2957 break;
2958 }
2959 }
2960 dataflow_set_destroy (&set);
2961 }
2962
2963 /* Emit notes for the whole function. */
2964
2965 static void
2966 vt_emit_notes (void)
2967 {
2968 basic_block bb;
2969 dataflow_set *last_out;
2970 dataflow_set empty;
2971
2972 gcc_assert (!htab_elements (changed_variables));
2973
2974 /* Enable emitting notes by functions (mainly by set_variable_part and
2975 delete_variable_part). */
2976 emit_notes = true;
2977
2978 dataflow_set_init (&empty, 7);
2979 last_out = &empty;
2980
2981 FOR_EACH_BB (bb)
2982 {
2983 /* Emit the notes for changes of variable locations between two
2984 subsequent basic blocks. */
2985 emit_notes_for_differences (BB_HEAD (bb), last_out, &VTI (bb)->in);
2986
2987 /* Emit the notes for the changes in the basic block itself. */
2988 emit_notes_in_bb (bb);
2989
2990 last_out = &VTI (bb)->out;
2991 }
2992 dataflow_set_destroy (&empty);
2993 emit_notes = false;
2994 }
2995
2996 /* If there is a declaration and offset associated with register/memory RTL
2997 assign declaration to *DECLP and offset to *OFFSETP, and return true. */
2998
2999 static bool
3000 vt_get_decl_and_offset (rtx rtl, tree *declp, HOST_WIDE_INT *offsetp)
3001 {
3002 if (REG_P (rtl))
3003 {
3004 if (REG_ATTRS (rtl))
3005 {
3006 *declp = REG_EXPR (rtl);
3007 *offsetp = REG_OFFSET (rtl);
3008 return true;
3009 }
3010 }
3011 else if (MEM_P (rtl))
3012 {
3013 if (MEM_ATTRS (rtl))
3014 {
3015 *declp = MEM_EXPR (rtl);
3016 *offsetp = MEM_OFFSET (rtl) ? INTVAL (MEM_OFFSET (rtl)) : 0;
3017 return true;
3018 }
3019 }
3020 return false;
3021 }
3022
3023 /* Insert function parameters to IN and OUT sets of ENTRY_BLOCK. */
3024
3025 static void
3026 vt_add_function_parameters (void)
3027 {
3028 tree parm;
3029
3030 for (parm = DECL_ARGUMENTS (current_function_decl);
3031 parm; parm = TREE_CHAIN (parm))
3032 {
3033 rtx decl_rtl = DECL_RTL_IF_SET (parm);
3034 rtx incoming = DECL_INCOMING_RTL (parm);
3035 tree decl;
3036 HOST_WIDE_INT offset;
3037 dataflow_set *out;
3038
3039 if (TREE_CODE (parm) != PARM_DECL)
3040 continue;
3041
3042 if (!DECL_NAME (parm))
3043 continue;
3044
3045 if (!decl_rtl || !incoming)
3046 continue;
3047
3048 if (GET_MODE (decl_rtl) == BLKmode || GET_MODE (incoming) == BLKmode)
3049 continue;
3050
3051 if (!vt_get_decl_and_offset (incoming, &decl, &offset))
3052 if (!vt_get_decl_and_offset (decl_rtl, &decl, &offset))
3053 continue;
3054
3055 if (!decl)
3056 continue;
3057
3058 gcc_assert (parm == decl);
3059
3060 out = &VTI (ENTRY_BLOCK_PTR)->out;
3061
3062 if (REG_P (incoming))
3063 {
3064 gcc_assert (REGNO (incoming) < FIRST_PSEUDO_REGISTER);
3065 attrs_list_insert (&out->regs[REGNO (incoming)],
3066 parm, offset, incoming);
3067 set_variable_part (out, incoming, parm, offset, VAR_INIT_STATUS_INITIALIZED,
3068 NULL);
3069 }
3070 else if (MEM_P (incoming))
3071 set_variable_part (out, incoming, parm, offset, VAR_INIT_STATUS_INITIALIZED,
3072 NULL);
3073 }
3074 }
3075
3076 /* Allocate and initialize the data structures for variable tracking
3077 and parse the RTL to get the micro operations. */
3078
3079 static void
3080 vt_initialize (void)
3081 {
3082 basic_block bb;
3083
3084 alloc_aux_for_blocks (sizeof (struct variable_tracking_info_def));
3085
3086 FOR_EACH_BB (bb)
3087 {
3088 rtx insn;
3089 HOST_WIDE_INT pre, post = 0;
3090
3091 /* Count the number of micro operations. */
3092 VTI (bb)->n_mos = 0;
3093 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
3094 insn = NEXT_INSN (insn))
3095 {
3096 if (INSN_P (insn))
3097 {
3098 if (!frame_pointer_needed)
3099 {
3100 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
3101 if (pre)
3102 VTI (bb)->n_mos++;
3103 if (post)
3104 VTI (bb)->n_mos++;
3105 }
3106 note_uses (&PATTERN (insn), count_uses_1, insn);
3107 note_stores (PATTERN (insn), count_stores, insn);
3108 if (CALL_P (insn))
3109 VTI (bb)->n_mos++;
3110 }
3111 }
3112
3113 /* Add the micro-operations to the array. */
3114 VTI (bb)->mos = XNEWVEC (micro_operation, VTI (bb)->n_mos);
3115 VTI (bb)->n_mos = 0;
3116 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
3117 insn = NEXT_INSN (insn))
3118 {
3119 if (INSN_P (insn))
3120 {
3121 int n1, n2;
3122
3123 if (!frame_pointer_needed)
3124 {
3125 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
3126 if (pre)
3127 {
3128 micro_operation *mo = VTI (bb)->mos + VTI (bb)->n_mos++;
3129
3130 mo->type = MO_ADJUST;
3131 mo->u.adjust = pre;
3132 mo->insn = insn;
3133 }
3134 }
3135
3136 n1 = VTI (bb)->n_mos;
3137 note_uses (&PATTERN (insn), add_uses_1, insn);
3138 n2 = VTI (bb)->n_mos - 1;
3139
3140 /* Order the MO_USEs to be before MO_USE_NO_VARs. */
3141 while (n1 < n2)
3142 {
3143 while (n1 < n2 && VTI (bb)->mos[n1].type == MO_USE)
3144 n1++;
3145 while (n1 < n2 && VTI (bb)->mos[n2].type == MO_USE_NO_VAR)
3146 n2--;
3147 if (n1 < n2)
3148 {
3149 micro_operation sw;
3150
3151 sw = VTI (bb)->mos[n1];
3152 VTI (bb)->mos[n1] = VTI (bb)->mos[n2];
3153 VTI (bb)->mos[n2] = sw;
3154 }
3155 }
3156
3157 if (CALL_P (insn))
3158 {
3159 micro_operation *mo = VTI (bb)->mos + VTI (bb)->n_mos++;
3160
3161 mo->type = MO_CALL;
3162 mo->insn = insn;
3163 }
3164
3165 n1 = VTI (bb)->n_mos;
3166 /* This will record NEXT_INSN (insn), such that we can
3167 insert notes before it without worrying about any
3168 notes that MO_USEs might emit after the insn. */
3169 note_stores (PATTERN (insn), add_stores, insn);
3170 n2 = VTI (bb)->n_mos - 1;
3171
3172 /* Order the MO_CLOBBERs to be before MO_SETs. */
3173 while (n1 < n2)
3174 {
3175 while (n1 < n2 && VTI (bb)->mos[n1].type == MO_CLOBBER)
3176 n1++;
3177 while (n1 < n2 && (VTI (bb)->mos[n2].type == MO_SET
3178 || VTI (bb)->mos[n2].type == MO_COPY))
3179 n2--;
3180 if (n1 < n2)
3181 {
3182 micro_operation sw;
3183
3184 sw = VTI (bb)->mos[n1];
3185 VTI (bb)->mos[n1] = VTI (bb)->mos[n2];
3186 VTI (bb)->mos[n2] = sw;
3187 }
3188 }
3189
3190 if (!frame_pointer_needed && post)
3191 {
3192 micro_operation *mo = VTI (bb)->mos + VTI (bb)->n_mos++;
3193
3194 mo->type = MO_ADJUST;
3195 mo->u.adjust = post;
3196 mo->insn = insn;
3197 }
3198 }
3199 }
3200 }
3201
3202 /* Init the IN and OUT sets. */
3203 FOR_ALL_BB (bb)
3204 {
3205 VTI (bb)->visited = false;
3206 dataflow_set_init (&VTI (bb)->in, 7);
3207 dataflow_set_init (&VTI (bb)->out, 7);
3208 }
3209
3210 attrs_pool = create_alloc_pool ("attrs_def pool",
3211 sizeof (struct attrs_def), 1024);
3212 var_pool = create_alloc_pool ("variable_def pool",
3213 sizeof (struct variable_def), 64);
3214 loc_chain_pool = create_alloc_pool ("location_chain_def pool",
3215 sizeof (struct location_chain_def),
3216 1024);
3217 changed_variables = htab_create (10, variable_htab_hash, variable_htab_eq,
3218 NULL);
3219 vt_add_function_parameters ();
3220 }
3221
3222 /* Free the data structures needed for variable tracking. */
3223
3224 static void
3225 vt_finalize (void)
3226 {
3227 basic_block bb;
3228
3229 FOR_EACH_BB (bb)
3230 {
3231 free (VTI (bb)->mos);
3232 }
3233
3234 FOR_ALL_BB (bb)
3235 {
3236 dataflow_set_destroy (&VTI (bb)->in);
3237 dataflow_set_destroy (&VTI (bb)->out);
3238 }
3239 free_aux_for_blocks ();
3240 free_alloc_pool (attrs_pool);
3241 free_alloc_pool (var_pool);
3242 free_alloc_pool (loc_chain_pool);
3243 htab_delete (changed_variables);
3244 }
3245
3246 /* The entry point to variable tracking pass. */
3247
3248 unsigned int
3249 variable_tracking_main (void)
3250 {
3251 if (n_basic_blocks > 500 && n_edges / n_basic_blocks >= 20)
3252 return 0;
3253
3254 mark_dfs_back_edges ();
3255 vt_initialize ();
3256 if (!frame_pointer_needed)
3257 {
3258 if (!vt_stack_adjustments ())
3259 {
3260 vt_finalize ();
3261 return 0;
3262 }
3263 }
3264
3265 vt_find_locations ();
3266 vt_emit_notes ();
3267
3268 if (dump_file && (dump_flags & TDF_DETAILS))
3269 {
3270 dump_dataflow_sets ();
3271 dump_flow_info (dump_file, dump_flags);
3272 }
3273
3274 vt_finalize ();
3275 return 0;
3276 }
3277 \f
3278 static bool
3279 gate_handle_var_tracking (void)
3280 {
3281 return (flag_var_tracking);
3282 }
3283
3284
3285
3286 struct tree_opt_pass pass_variable_tracking =
3287 {
3288 "vartrack", /* name */
3289 gate_handle_var_tracking, /* gate */
3290 variable_tracking_main, /* execute */
3291 NULL, /* sub */
3292 NULL, /* next */
3293 0, /* static_pass_number */
3294 TV_VAR_TRACKING, /* tv_id */
3295 0, /* properties_required */
3296 0, /* properties_provided */
3297 0, /* properties_destroyed */
3298 0, /* todo_flags_start */
3299 TODO_dump_func, /* todo_flags_finish */
3300 'V' /* letter */
3301 };
3302