]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/var-tracking.c
c++: Handle multiple aggregate overloads [PR95319].
[thirdparty/gcc.git] / gcc / var-tracking.c
1 /* Variable tracking routines for the GNU compiler.
2 Copyright (C) 2002-2020 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file contains the variable tracking pass. It computes where
21 variables are located (which registers or where in memory) at each position
22 in instruction stream and emits notes describing the locations.
23 Debug information (DWARF2 location lists) is finally generated from
24 these notes.
25 With this debug information, it is possible to show variables
26 even when debugging optimized code.
27
28 How does the variable tracking pass work?
29
30 First, it scans RTL code for uses, stores and clobbers (register/memory
31 references in instructions), for call insns and for stack adjustments
32 separately for each basic block and saves them to an array of micro
33 operations.
34 The micro operations of one instruction are ordered so that
35 pre-modifying stack adjustment < use < use with no var < call insn <
36 < clobber < set < post-modifying stack adjustment
37
38 Then, a forward dataflow analysis is performed to find out how locations
39 of variables change through code and to propagate the variable locations
40 along control flow graph.
41 The IN set for basic block BB is computed as a union of OUT sets of BB's
42 predecessors, the OUT set for BB is copied from the IN set for BB and
43 is changed according to micro operations in BB.
44
45 The IN and OUT sets for basic blocks consist of a current stack adjustment
46 (used for adjusting offset of variables addressed using stack pointer),
47 the table of structures describing the locations of parts of a variable
48 and for each physical register a linked list for each physical register.
49 The linked list is a list of variable parts stored in the register,
50 i.e. it is a list of triplets (reg, decl, offset) where decl is
51 REG_EXPR (reg) and offset is REG_OFFSET (reg). The linked list is used for
52 effective deleting appropriate variable parts when we set or clobber the
53 register.
54
55 There may be more than one variable part in a register. The linked lists
56 should be pretty short so it is a good data structure here.
57 For example in the following code, register allocator may assign same
58 register to variables A and B, and both of them are stored in the same
59 register in CODE:
60
61 if (cond)
62 set A;
63 else
64 set B;
65 CODE;
66 if (cond)
67 use A;
68 else
69 use B;
70
71 Finally, the NOTE_INSN_VAR_LOCATION notes describing the variable locations
72 are emitted to appropriate positions in RTL code. Each such a note describes
73 the location of one variable at the point in instruction stream where the
74 note is. There is no need to emit a note for each variable before each
75 instruction, we only emit these notes where the location of variable changes
76 (this means that we also emit notes for changes between the OUT set of the
77 previous block and the IN set of the current block).
78
79 The notes consist of two parts:
80 1. the declaration (from REG_EXPR or MEM_EXPR)
81 2. the location of a variable - it is either a simple register/memory
82 reference (for simple variables, for example int),
83 or a parallel of register/memory references (for a large variables
84 which consist of several parts, for example long long).
85
86 */
87
88 #include "config.h"
89 #include "system.h"
90 #include "coretypes.h"
91 #include "backend.h"
92 #include "target.h"
93 #include "rtl.h"
94 #include "tree.h"
95 #include "cfghooks.h"
96 #include "alloc-pool.h"
97 #include "tree-pass.h"
98 #include "memmodel.h"
99 #include "tm_p.h"
100 #include "insn-config.h"
101 #include "regs.h"
102 #include "emit-rtl.h"
103 #include "recog.h"
104 #include "diagnostic.h"
105 #include "varasm.h"
106 #include "stor-layout.h"
107 #include "cfgrtl.h"
108 #include "cfganal.h"
109 #include "reload.h"
110 #include "calls.h"
111 #include "tree-dfa.h"
112 #include "tree-ssa.h"
113 #include "cselib.h"
114 #include "tree-pretty-print.h"
115 #include "rtl-iter.h"
116 #include "fibonacci_heap.h"
117 #include "print-rtl.h"
118 #include "function-abi.h"
119
120 typedef fibonacci_heap <long, basic_block_def> bb_heap_t;
121 typedef fibonacci_node <long, basic_block_def> bb_heap_node_t;
122
123 /* var-tracking.c assumes that tree code with the same value as VALUE rtx code
124 has no chance to appear in REG_EXPR/MEM_EXPRs and isn't a decl.
125 Currently the value is the same as IDENTIFIER_NODE, which has such
126 a property. If this compile time assertion ever fails, make sure that
127 the new tree code that equals (int) VALUE has the same property. */
128 extern char check_value_val[(int) VALUE == (int) IDENTIFIER_NODE ? 1 : -1];
129
130 /* Type of micro operation. */
131 enum micro_operation_type
132 {
133 MO_USE, /* Use location (REG or MEM). */
134 MO_USE_NO_VAR,/* Use location which is not associated with a variable
135 or the variable is not trackable. */
136 MO_VAL_USE, /* Use location which is associated with a value. */
137 MO_VAL_LOC, /* Use location which appears in a debug insn. */
138 MO_VAL_SET, /* Set location associated with a value. */
139 MO_SET, /* Set location. */
140 MO_COPY, /* Copy the same portion of a variable from one
141 location to another. */
142 MO_CLOBBER, /* Clobber location. */
143 MO_CALL, /* Call insn. */
144 MO_ADJUST /* Adjust stack pointer. */
145
146 };
147
148 static const char * const ATTRIBUTE_UNUSED
149 micro_operation_type_name[] = {
150 "MO_USE",
151 "MO_USE_NO_VAR",
152 "MO_VAL_USE",
153 "MO_VAL_LOC",
154 "MO_VAL_SET",
155 "MO_SET",
156 "MO_COPY",
157 "MO_CLOBBER",
158 "MO_CALL",
159 "MO_ADJUST"
160 };
161
162 /* Where shall the note be emitted? BEFORE or AFTER the instruction.
163 Notes emitted as AFTER_CALL are to take effect during the call,
164 rather than after the call. */
165 enum emit_note_where
166 {
167 EMIT_NOTE_BEFORE_INSN,
168 EMIT_NOTE_AFTER_INSN,
169 EMIT_NOTE_AFTER_CALL_INSN
170 };
171
172 /* Structure holding information about micro operation. */
173 struct micro_operation
174 {
175 /* Type of micro operation. */
176 enum micro_operation_type type;
177
178 /* The instruction which the micro operation is in, for MO_USE,
179 MO_USE_NO_VAR, MO_CALL and MO_ADJUST, or the subsequent
180 instruction or note in the original flow (before any var-tracking
181 notes are inserted, to simplify emission of notes), for MO_SET
182 and MO_CLOBBER. */
183 rtx_insn *insn;
184
185 union {
186 /* Location. For MO_SET and MO_COPY, this is the SET that
187 performs the assignment, if known, otherwise it is the target
188 of the assignment. For MO_VAL_USE and MO_VAL_SET, it is a
189 CONCAT of the VALUE and the LOC associated with it. For
190 MO_VAL_LOC, it is a CONCAT of the VALUE and the VAR_LOCATION
191 associated with it. */
192 rtx loc;
193
194 /* Stack adjustment. */
195 HOST_WIDE_INT adjust;
196 } u;
197 };
198
199
200 /* A declaration of a variable, or an RTL value being handled like a
201 declaration. */
202 typedef void *decl_or_value;
203
204 /* Return true if a decl_or_value DV is a DECL or NULL. */
205 static inline bool
206 dv_is_decl_p (decl_or_value dv)
207 {
208 return !dv || (int) TREE_CODE ((tree) dv) != (int) VALUE;
209 }
210
211 /* Return true if a decl_or_value is a VALUE rtl. */
212 static inline bool
213 dv_is_value_p (decl_or_value dv)
214 {
215 return dv && !dv_is_decl_p (dv);
216 }
217
218 /* Return the decl in the decl_or_value. */
219 static inline tree
220 dv_as_decl (decl_or_value dv)
221 {
222 gcc_checking_assert (dv_is_decl_p (dv));
223 return (tree) dv;
224 }
225
226 /* Return the value in the decl_or_value. */
227 static inline rtx
228 dv_as_value (decl_or_value dv)
229 {
230 gcc_checking_assert (dv_is_value_p (dv));
231 return (rtx)dv;
232 }
233
234 /* Return the opaque pointer in the decl_or_value. */
235 static inline void *
236 dv_as_opaque (decl_or_value dv)
237 {
238 return dv;
239 }
240
241
242 /* Description of location of a part of a variable. The content of a physical
243 register is described by a chain of these structures.
244 The chains are pretty short (usually 1 or 2 elements) and thus
245 chain is the best data structure. */
246 struct attrs
247 {
248 /* Pointer to next member of the list. */
249 attrs *next;
250
251 /* The rtx of register. */
252 rtx loc;
253
254 /* The declaration corresponding to LOC. */
255 decl_or_value dv;
256
257 /* Offset from start of DECL. */
258 HOST_WIDE_INT offset;
259 };
260
261 /* Structure for chaining the locations. */
262 struct location_chain
263 {
264 /* Next element in the chain. */
265 location_chain *next;
266
267 /* The location (REG, MEM or VALUE). */
268 rtx loc;
269
270 /* The "value" stored in this location. */
271 rtx set_src;
272
273 /* Initialized? */
274 enum var_init_status init;
275 };
276
277 /* A vector of loc_exp_dep holds the active dependencies of a one-part
278 DV on VALUEs, i.e., the VALUEs expanded so as to form the current
279 location of DV. Each entry is also part of VALUE' s linked-list of
280 backlinks back to DV. */
281 struct loc_exp_dep
282 {
283 /* The dependent DV. */
284 decl_or_value dv;
285 /* The dependency VALUE or DECL_DEBUG. */
286 rtx value;
287 /* The next entry in VALUE's backlinks list. */
288 struct loc_exp_dep *next;
289 /* A pointer to the pointer to this entry (head or prev's next) in
290 the doubly-linked list. */
291 struct loc_exp_dep **pprev;
292 };
293
294
295 /* This data structure holds information about the depth of a variable
296 expansion. */
297 struct expand_depth
298 {
299 /* This measures the complexity of the expanded expression. It
300 grows by one for each level of expansion that adds more than one
301 operand. */
302 int complexity;
303 /* This counts the number of ENTRY_VALUE expressions in an
304 expansion. We want to minimize their use. */
305 int entryvals;
306 };
307
308 /* This data structure is allocated for one-part variables at the time
309 of emitting notes. */
310 struct onepart_aux
311 {
312 /* Doubly-linked list of dependent DVs. These are DVs whose cur_loc
313 computation used the expansion of this variable, and that ought
314 to be notified should this variable change. If the DV's cur_loc
315 expanded to NULL, all components of the loc list are regarded as
316 active, so that any changes in them give us a chance to get a
317 location. Otherwise, only components of the loc that expanded to
318 non-NULL are regarded as active dependencies. */
319 loc_exp_dep *backlinks;
320 /* This holds the LOC that was expanded into cur_loc. We need only
321 mark a one-part variable as changed if the FROM loc is removed,
322 or if it has no known location and a loc is added, or if it gets
323 a change notification from any of its active dependencies. */
324 rtx from;
325 /* The depth of the cur_loc expression. */
326 expand_depth depth;
327 /* Dependencies actively used when expand FROM into cur_loc. */
328 vec<loc_exp_dep, va_heap, vl_embed> deps;
329 };
330
331 /* Structure describing one part of variable. */
332 struct variable_part
333 {
334 /* Chain of locations of the part. */
335 location_chain *loc_chain;
336
337 /* Location which was last emitted to location list. */
338 rtx cur_loc;
339
340 union variable_aux
341 {
342 /* The offset in the variable, if !var->onepart. */
343 HOST_WIDE_INT offset;
344
345 /* Pointer to auxiliary data, if var->onepart and emit_notes. */
346 struct onepart_aux *onepaux;
347 } aux;
348 };
349
350 /* Maximum number of location parts. */
351 #define MAX_VAR_PARTS 16
352
353 /* Enumeration type used to discriminate various types of one-part
354 variables. */
355 enum onepart_enum
356 {
357 /* Not a one-part variable. */
358 NOT_ONEPART = 0,
359 /* A one-part DECL that is not a DEBUG_EXPR_DECL. */
360 ONEPART_VDECL = 1,
361 /* A DEBUG_EXPR_DECL. */
362 ONEPART_DEXPR = 2,
363 /* A VALUE. */
364 ONEPART_VALUE = 3
365 };
366
367 /* Structure describing where the variable is located. */
368 struct variable
369 {
370 /* The declaration of the variable, or an RTL value being handled
371 like a declaration. */
372 decl_or_value dv;
373
374 /* Reference count. */
375 int refcount;
376
377 /* Number of variable parts. */
378 char n_var_parts;
379
380 /* What type of DV this is, according to enum onepart_enum. */
381 ENUM_BITFIELD (onepart_enum) onepart : CHAR_BIT;
382
383 /* True if this variable_def struct is currently in the
384 changed_variables hash table. */
385 bool in_changed_variables;
386
387 /* The variable parts. */
388 variable_part var_part[1];
389 };
390
391 /* Pointer to the BB's information specific to variable tracking pass. */
392 #define VTI(BB) ((variable_tracking_info *) (BB)->aux)
393
394 /* Return MEM_OFFSET (MEM) as a HOST_WIDE_INT, or 0 if we can't. */
395
396 static inline HOST_WIDE_INT
397 int_mem_offset (const_rtx mem)
398 {
399 HOST_WIDE_INT offset;
400 if (MEM_OFFSET_KNOWN_P (mem) && MEM_OFFSET (mem).is_constant (&offset))
401 return offset;
402 return 0;
403 }
404
405 #if CHECKING_P && (GCC_VERSION >= 2007)
406
407 /* Access VAR's Ith part's offset, checking that it's not a one-part
408 variable. */
409 #define VAR_PART_OFFSET(var, i) __extension__ \
410 (*({ variable *const __v = (var); \
411 gcc_checking_assert (!__v->onepart); \
412 &__v->var_part[(i)].aux.offset; }))
413
414 /* Access VAR's one-part auxiliary data, checking that it is a
415 one-part variable. */
416 #define VAR_LOC_1PAUX(var) __extension__ \
417 (*({ variable *const __v = (var); \
418 gcc_checking_assert (__v->onepart); \
419 &__v->var_part[0].aux.onepaux; }))
420
421 #else
422 #define VAR_PART_OFFSET(var, i) ((var)->var_part[(i)].aux.offset)
423 #define VAR_LOC_1PAUX(var) ((var)->var_part[0].aux.onepaux)
424 #endif
425
426 /* These are accessor macros for the one-part auxiliary data. When
427 convenient for users, they're guarded by tests that the data was
428 allocated. */
429 #define VAR_LOC_DEP_LST(var) (VAR_LOC_1PAUX (var) \
430 ? VAR_LOC_1PAUX (var)->backlinks \
431 : NULL)
432 #define VAR_LOC_DEP_LSTP(var) (VAR_LOC_1PAUX (var) \
433 ? &VAR_LOC_1PAUX (var)->backlinks \
434 : NULL)
435 #define VAR_LOC_FROM(var) (VAR_LOC_1PAUX (var)->from)
436 #define VAR_LOC_DEPTH(var) (VAR_LOC_1PAUX (var)->depth)
437 #define VAR_LOC_DEP_VEC(var) (VAR_LOC_1PAUX (var) \
438 ? &VAR_LOC_1PAUX (var)->deps \
439 : NULL)
440
441
442
443 typedef unsigned int dvuid;
444
445 /* Return the uid of DV. */
446
447 static inline dvuid
448 dv_uid (decl_or_value dv)
449 {
450 if (dv_is_value_p (dv))
451 return CSELIB_VAL_PTR (dv_as_value (dv))->uid;
452 else
453 return DECL_UID (dv_as_decl (dv));
454 }
455
456 /* Compute the hash from the uid. */
457
458 static inline hashval_t
459 dv_uid2hash (dvuid uid)
460 {
461 return uid;
462 }
463
464 /* The hash function for a mask table in a shared_htab chain. */
465
466 static inline hashval_t
467 dv_htab_hash (decl_or_value dv)
468 {
469 return dv_uid2hash (dv_uid (dv));
470 }
471
472 static void variable_htab_free (void *);
473
474 /* Variable hashtable helpers. */
475
476 struct variable_hasher : pointer_hash <variable>
477 {
478 typedef void *compare_type;
479 static inline hashval_t hash (const variable *);
480 static inline bool equal (const variable *, const void *);
481 static inline void remove (variable *);
482 };
483
484 /* The hash function for variable_htab, computes the hash value
485 from the declaration of variable X. */
486
487 inline hashval_t
488 variable_hasher::hash (const variable *v)
489 {
490 return dv_htab_hash (v->dv);
491 }
492
493 /* Compare the declaration of variable X with declaration Y. */
494
495 inline bool
496 variable_hasher::equal (const variable *v, const void *y)
497 {
498 decl_or_value dv = CONST_CAST2 (decl_or_value, const void *, y);
499
500 return (dv_as_opaque (v->dv) == dv_as_opaque (dv));
501 }
502
503 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
504
505 inline void
506 variable_hasher::remove (variable *var)
507 {
508 variable_htab_free (var);
509 }
510
511 typedef hash_table<variable_hasher> variable_table_type;
512 typedef variable_table_type::iterator variable_iterator_type;
513
514 /* Structure for passing some other parameters to function
515 emit_note_insn_var_location. */
516 struct emit_note_data
517 {
518 /* The instruction which the note will be emitted before/after. */
519 rtx_insn *insn;
520
521 /* Where the note will be emitted (before/after insn)? */
522 enum emit_note_where where;
523
524 /* The variables and values active at this point. */
525 variable_table_type *vars;
526 };
527
528 /* Structure holding a refcounted hash table. If refcount > 1,
529 it must be first unshared before modified. */
530 struct shared_hash
531 {
532 /* Reference count. */
533 int refcount;
534
535 /* Actual hash table. */
536 variable_table_type *htab;
537 };
538
539 /* Structure holding the IN or OUT set for a basic block. */
540 struct dataflow_set
541 {
542 /* Adjustment of stack offset. */
543 HOST_WIDE_INT stack_adjust;
544
545 /* Attributes for registers (lists of attrs). */
546 attrs *regs[FIRST_PSEUDO_REGISTER];
547
548 /* Variable locations. */
549 shared_hash *vars;
550
551 /* Vars that is being traversed. */
552 shared_hash *traversed_vars;
553 };
554
555 /* The structure (one for each basic block) containing the information
556 needed for variable tracking. */
557 struct variable_tracking_info
558 {
559 /* The vector of micro operations. */
560 vec<micro_operation> mos;
561
562 /* The IN and OUT set for dataflow analysis. */
563 dataflow_set in;
564 dataflow_set out;
565
566 /* The permanent-in dataflow set for this block. This is used to
567 hold values for which we had to compute entry values. ??? This
568 should probably be dynamically allocated, to avoid using more
569 memory in non-debug builds. */
570 dataflow_set *permp;
571
572 /* Has the block been visited in DFS? */
573 bool visited;
574
575 /* Has the block been flooded in VTA? */
576 bool flooded;
577
578 };
579
580 /* Alloc pool for struct attrs_def. */
581 object_allocator<attrs> attrs_pool ("attrs pool");
582
583 /* Alloc pool for struct variable_def with MAX_VAR_PARTS entries. */
584
585 static pool_allocator var_pool
586 ("variable_def pool", sizeof (variable) +
587 (MAX_VAR_PARTS - 1) * sizeof (((variable *)NULL)->var_part[0]));
588
589 /* Alloc pool for struct variable_def with a single var_part entry. */
590 static pool_allocator valvar_pool
591 ("small variable_def pool", sizeof (variable));
592
593 /* Alloc pool for struct location_chain. */
594 static object_allocator<location_chain> location_chain_pool
595 ("location_chain pool");
596
597 /* Alloc pool for struct shared_hash. */
598 static object_allocator<shared_hash> shared_hash_pool ("shared_hash pool");
599
600 /* Alloc pool for struct loc_exp_dep_s for NOT_ONEPART variables. */
601 object_allocator<loc_exp_dep> loc_exp_dep_pool ("loc_exp_dep pool");
602
603 /* Changed variables, notes will be emitted for them. */
604 static variable_table_type *changed_variables;
605
606 /* Shall notes be emitted? */
607 static bool emit_notes;
608
609 /* Values whose dynamic location lists have gone empty, but whose
610 cselib location lists are still usable. Use this to hold the
611 current location, the backlinks, etc, during emit_notes. */
612 static variable_table_type *dropped_values;
613
614 /* Empty shared hashtable. */
615 static shared_hash *empty_shared_hash;
616
617 /* Scratch register bitmap used by cselib_expand_value_rtx. */
618 static bitmap scratch_regs = NULL;
619
620 #ifdef HAVE_window_save
621 struct GTY(()) parm_reg {
622 rtx outgoing;
623 rtx incoming;
624 };
625
626
627 /* Vector of windowed parameter registers, if any. */
628 static vec<parm_reg, va_gc> *windowed_parm_regs = NULL;
629 #endif
630
631 /* Variable used to tell whether cselib_process_insn called our hook. */
632 static bool cselib_hook_called;
633
634 /* Local function prototypes. */
635 static void stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
636 HOST_WIDE_INT *);
637 static void insn_stack_adjust_offset_pre_post (rtx_insn *, HOST_WIDE_INT *,
638 HOST_WIDE_INT *);
639 static bool vt_stack_adjustments (void);
640
641 static void init_attrs_list_set (attrs **);
642 static void attrs_list_clear (attrs **);
643 static attrs *attrs_list_member (attrs *, decl_or_value, HOST_WIDE_INT);
644 static void attrs_list_insert (attrs **, decl_or_value, HOST_WIDE_INT, rtx);
645 static void attrs_list_copy (attrs **, attrs *);
646 static void attrs_list_union (attrs **, attrs *);
647
648 static variable **unshare_variable (dataflow_set *set, variable **slot,
649 variable *var, enum var_init_status);
650 static void vars_copy (variable_table_type *, variable_table_type *);
651 static tree var_debug_decl (tree);
652 static void var_reg_set (dataflow_set *, rtx, enum var_init_status, rtx);
653 static void var_reg_delete_and_set (dataflow_set *, rtx, bool,
654 enum var_init_status, rtx);
655 static void var_reg_delete (dataflow_set *, rtx, bool);
656 static void var_regno_delete (dataflow_set *, int);
657 static void var_mem_set (dataflow_set *, rtx, enum var_init_status, rtx);
658 static void var_mem_delete_and_set (dataflow_set *, rtx, bool,
659 enum var_init_status, rtx);
660 static void var_mem_delete (dataflow_set *, rtx, bool);
661
662 static void dataflow_set_init (dataflow_set *);
663 static void dataflow_set_clear (dataflow_set *);
664 static void dataflow_set_copy (dataflow_set *, dataflow_set *);
665 static int variable_union_info_cmp_pos (const void *, const void *);
666 static void dataflow_set_union (dataflow_set *, dataflow_set *);
667 static location_chain *find_loc_in_1pdv (rtx, variable *,
668 variable_table_type *);
669 static bool canon_value_cmp (rtx, rtx);
670 static int loc_cmp (rtx, rtx);
671 static bool variable_part_different_p (variable_part *, variable_part *);
672 static bool onepart_variable_different_p (variable *, variable *);
673 static bool variable_different_p (variable *, variable *);
674 static bool dataflow_set_different (dataflow_set *, dataflow_set *);
675 static void dataflow_set_destroy (dataflow_set *);
676
677 static bool track_expr_p (tree, bool);
678 static void add_uses_1 (rtx *, void *);
679 static void add_stores (rtx, const_rtx, void *);
680 static bool compute_bb_dataflow (basic_block);
681 static bool vt_find_locations (void);
682
683 static void dump_attrs_list (attrs *);
684 static void dump_var (variable *);
685 static void dump_vars (variable_table_type *);
686 static void dump_dataflow_set (dataflow_set *);
687 static void dump_dataflow_sets (void);
688
689 static void set_dv_changed (decl_or_value, bool);
690 static void variable_was_changed (variable *, dataflow_set *);
691 static variable **set_slot_part (dataflow_set *, rtx, variable **,
692 decl_or_value, HOST_WIDE_INT,
693 enum var_init_status, rtx);
694 static void set_variable_part (dataflow_set *, rtx,
695 decl_or_value, HOST_WIDE_INT,
696 enum var_init_status, rtx, enum insert_option);
697 static variable **clobber_slot_part (dataflow_set *, rtx,
698 variable **, HOST_WIDE_INT, rtx);
699 static void clobber_variable_part (dataflow_set *, rtx,
700 decl_or_value, HOST_WIDE_INT, rtx);
701 static variable **delete_slot_part (dataflow_set *, rtx, variable **,
702 HOST_WIDE_INT);
703 static void delete_variable_part (dataflow_set *, rtx,
704 decl_or_value, HOST_WIDE_INT);
705 static void emit_notes_in_bb (basic_block, dataflow_set *);
706 static void vt_emit_notes (void);
707
708 static void vt_add_function_parameters (void);
709 static bool vt_initialize (void);
710 static void vt_finalize (void);
711
712 /* Callback for stack_adjust_offset_pre_post, called via for_each_inc_dec. */
713
714 static int
715 stack_adjust_offset_pre_post_cb (rtx, rtx op, rtx dest, rtx src, rtx srcoff,
716 void *arg)
717 {
718 if (dest != stack_pointer_rtx)
719 return 0;
720
721 switch (GET_CODE (op))
722 {
723 case PRE_INC:
724 case PRE_DEC:
725 ((HOST_WIDE_INT *)arg)[0] -= INTVAL (srcoff);
726 return 0;
727 case POST_INC:
728 case POST_DEC:
729 ((HOST_WIDE_INT *)arg)[1] -= INTVAL (srcoff);
730 return 0;
731 case PRE_MODIFY:
732 case POST_MODIFY:
733 /* We handle only adjustments by constant amount. */
734 gcc_assert (GET_CODE (src) == PLUS
735 && CONST_INT_P (XEXP (src, 1))
736 && XEXP (src, 0) == stack_pointer_rtx);
737 ((HOST_WIDE_INT *)arg)[GET_CODE (op) == POST_MODIFY]
738 -= INTVAL (XEXP (src, 1));
739 return 0;
740 default:
741 gcc_unreachable ();
742 }
743 }
744
745 /* Given a SET, calculate the amount of stack adjustment it contains
746 PRE- and POST-modifying stack pointer.
747 This function is similar to stack_adjust_offset. */
748
749 static void
750 stack_adjust_offset_pre_post (rtx pattern, HOST_WIDE_INT *pre,
751 HOST_WIDE_INT *post)
752 {
753 rtx src = SET_SRC (pattern);
754 rtx dest = SET_DEST (pattern);
755 enum rtx_code code;
756
757 if (dest == stack_pointer_rtx)
758 {
759 /* (set (reg sp) (plus (reg sp) (const_int))) */
760 code = GET_CODE (src);
761 if (! (code == PLUS || code == MINUS)
762 || XEXP (src, 0) != stack_pointer_rtx
763 || !CONST_INT_P (XEXP (src, 1)))
764 return;
765
766 if (code == MINUS)
767 *post += INTVAL (XEXP (src, 1));
768 else
769 *post -= INTVAL (XEXP (src, 1));
770 return;
771 }
772 HOST_WIDE_INT res[2] = { 0, 0 };
773 for_each_inc_dec (pattern, stack_adjust_offset_pre_post_cb, res);
774 *pre += res[0];
775 *post += res[1];
776 }
777
778 /* Given an INSN, calculate the amount of stack adjustment it contains
779 PRE- and POST-modifying stack pointer. */
780
781 static void
782 insn_stack_adjust_offset_pre_post (rtx_insn *insn, HOST_WIDE_INT *pre,
783 HOST_WIDE_INT *post)
784 {
785 rtx pattern;
786
787 *pre = 0;
788 *post = 0;
789
790 pattern = PATTERN (insn);
791 if (RTX_FRAME_RELATED_P (insn))
792 {
793 rtx expr = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
794 if (expr)
795 pattern = XEXP (expr, 0);
796 }
797
798 if (GET_CODE (pattern) == SET)
799 stack_adjust_offset_pre_post (pattern, pre, post);
800 else if (GET_CODE (pattern) == PARALLEL
801 || GET_CODE (pattern) == SEQUENCE)
802 {
803 int i;
804
805 /* There may be stack adjustments inside compound insns. Search
806 for them. */
807 for ( i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
808 if (GET_CODE (XVECEXP (pattern, 0, i)) == SET)
809 stack_adjust_offset_pre_post (XVECEXP (pattern, 0, i), pre, post);
810 }
811 }
812
813 /* Compute stack adjustments for all blocks by traversing DFS tree.
814 Return true when the adjustments on all incoming edges are consistent.
815 Heavily borrowed from pre_and_rev_post_order_compute. */
816
817 static bool
818 vt_stack_adjustments (void)
819 {
820 edge_iterator *stack;
821 int sp;
822
823 /* Initialize entry block. */
824 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->visited = true;
825 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->in.stack_adjust
826 = INCOMING_FRAME_SP_OFFSET;
827 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->out.stack_adjust
828 = INCOMING_FRAME_SP_OFFSET;
829
830 /* Allocate stack for back-tracking up CFG. */
831 stack = XNEWVEC (edge_iterator, n_basic_blocks_for_fn (cfun) + 1);
832 sp = 0;
833
834 /* Push the first edge on to the stack. */
835 stack[sp++] = ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs);
836
837 while (sp)
838 {
839 edge_iterator ei;
840 basic_block src;
841 basic_block dest;
842
843 /* Look at the edge on the top of the stack. */
844 ei = stack[sp - 1];
845 src = ei_edge (ei)->src;
846 dest = ei_edge (ei)->dest;
847
848 /* Check if the edge destination has been visited yet. */
849 if (!VTI (dest)->visited)
850 {
851 rtx_insn *insn;
852 HOST_WIDE_INT pre, post, offset;
853 VTI (dest)->visited = true;
854 VTI (dest)->in.stack_adjust = offset = VTI (src)->out.stack_adjust;
855
856 if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
857 for (insn = BB_HEAD (dest);
858 insn != NEXT_INSN (BB_END (dest));
859 insn = NEXT_INSN (insn))
860 if (INSN_P (insn))
861 {
862 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
863 offset += pre + post;
864 }
865
866 VTI (dest)->out.stack_adjust = offset;
867
868 if (EDGE_COUNT (dest->succs) > 0)
869 /* Since the DEST node has been visited for the first
870 time, check its successors. */
871 stack[sp++] = ei_start (dest->succs);
872 }
873 else
874 {
875 /* We can end up with different stack adjustments for the exit block
876 of a shrink-wrapped function if stack_adjust_offset_pre_post
877 doesn't understand the rtx pattern used to restore the stack
878 pointer in the epilogue. For example, on s390(x), the stack
879 pointer is often restored via a load-multiple instruction
880 and so no stack_adjust offset is recorded for it. This means
881 that the stack offset at the end of the epilogue block is the
882 same as the offset before the epilogue, whereas other paths
883 to the exit block will have the correct stack_adjust.
884
885 It is safe to ignore these differences because (a) we never
886 use the stack_adjust for the exit block in this pass and
887 (b) dwarf2cfi checks whether the CFA notes in a shrink-wrapped
888 function are correct.
889
890 We must check whether the adjustments on other edges are
891 the same though. */
892 if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
893 && VTI (dest)->in.stack_adjust != VTI (src)->out.stack_adjust)
894 {
895 free (stack);
896 return false;
897 }
898
899 if (! ei_one_before_end_p (ei))
900 /* Go to the next edge. */
901 ei_next (&stack[sp - 1]);
902 else
903 /* Return to previous level if there are no more edges. */
904 sp--;
905 }
906 }
907
908 free (stack);
909 return true;
910 }
911
912 /* arg_pointer_rtx resp. frame_pointer_rtx if stack_pointer_rtx or
913 hard_frame_pointer_rtx is being mapped to it and offset for it. */
914 static rtx cfa_base_rtx;
915 static HOST_WIDE_INT cfa_base_offset;
916
917 /* Compute a CFA-based value for an ADJUSTMENT made to stack_pointer_rtx
918 or hard_frame_pointer_rtx. */
919
920 static inline rtx
921 compute_cfa_pointer (poly_int64 adjustment)
922 {
923 return plus_constant (Pmode, cfa_base_rtx, adjustment + cfa_base_offset);
924 }
925
926 /* Adjustment for hard_frame_pointer_rtx to cfa base reg,
927 or -1 if the replacement shouldn't be done. */
928 static poly_int64 hard_frame_pointer_adjustment = -1;
929
930 /* Data for adjust_mems callback. */
931
932 class adjust_mem_data
933 {
934 public:
935 bool store;
936 machine_mode mem_mode;
937 HOST_WIDE_INT stack_adjust;
938 auto_vec<rtx> side_effects;
939 };
940
941 /* Helper for adjust_mems. Return true if X is suitable for
942 transformation of wider mode arithmetics to narrower mode. */
943
944 static bool
945 use_narrower_mode_test (rtx x, const_rtx subreg)
946 {
947 subrtx_var_iterator::array_type array;
948 FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
949 {
950 rtx x = *iter;
951 if (CONSTANT_P (x))
952 iter.skip_subrtxes ();
953 else
954 switch (GET_CODE (x))
955 {
956 case REG:
957 if (cselib_lookup (x, GET_MODE (SUBREG_REG (subreg)), 0, VOIDmode))
958 return false;
959 if (!validate_subreg (GET_MODE (subreg), GET_MODE (x), x,
960 subreg_lowpart_offset (GET_MODE (subreg),
961 GET_MODE (x))))
962 return false;
963 break;
964 case PLUS:
965 case MINUS:
966 case MULT:
967 break;
968 case ASHIFT:
969 if (GET_MODE (XEXP (x, 1)) != VOIDmode)
970 {
971 enum machine_mode mode = GET_MODE (subreg);
972 rtx op1 = XEXP (x, 1);
973 enum machine_mode op1_mode = GET_MODE (op1);
974 if (GET_MODE_PRECISION (as_a <scalar_int_mode> (mode))
975 < GET_MODE_PRECISION (as_a <scalar_int_mode> (op1_mode)))
976 {
977 poly_uint64 byte = subreg_lowpart_offset (mode, op1_mode);
978 if (GET_CODE (op1) == SUBREG || GET_CODE (op1) == CONCAT)
979 {
980 if (!simplify_subreg (mode, op1, op1_mode, byte))
981 return false;
982 }
983 else if (!validate_subreg (mode, op1_mode, op1, byte))
984 return false;
985 }
986 }
987 iter.substitute (XEXP (x, 0));
988 break;
989 default:
990 return false;
991 }
992 }
993 return true;
994 }
995
996 /* Transform X into narrower mode MODE from wider mode WMODE. */
997
998 static rtx
999 use_narrower_mode (rtx x, scalar_int_mode mode, scalar_int_mode wmode)
1000 {
1001 rtx op0, op1;
1002 if (CONSTANT_P (x))
1003 return lowpart_subreg (mode, x, wmode);
1004 switch (GET_CODE (x))
1005 {
1006 case REG:
1007 return lowpart_subreg (mode, x, wmode);
1008 case PLUS:
1009 case MINUS:
1010 case MULT:
1011 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
1012 op1 = use_narrower_mode (XEXP (x, 1), mode, wmode);
1013 return simplify_gen_binary (GET_CODE (x), mode, op0, op1);
1014 case ASHIFT:
1015 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
1016 op1 = XEXP (x, 1);
1017 /* Ensure shift amount is not wider than mode. */
1018 if (GET_MODE (op1) == VOIDmode)
1019 op1 = lowpart_subreg (mode, op1, wmode);
1020 else if (GET_MODE_PRECISION (mode)
1021 < GET_MODE_PRECISION (as_a <scalar_int_mode> (GET_MODE (op1))))
1022 op1 = lowpart_subreg (mode, op1, GET_MODE (op1));
1023 return simplify_gen_binary (ASHIFT, mode, op0, op1);
1024 default:
1025 gcc_unreachable ();
1026 }
1027 }
1028
1029 /* Helper function for adjusting used MEMs. */
1030
1031 static rtx
1032 adjust_mems (rtx loc, const_rtx old_rtx, void *data)
1033 {
1034 class adjust_mem_data *amd = (class adjust_mem_data *) data;
1035 rtx mem, addr = loc, tem;
1036 machine_mode mem_mode_save;
1037 bool store_save;
1038 scalar_int_mode tem_mode, tem_subreg_mode;
1039 poly_int64 size;
1040 switch (GET_CODE (loc))
1041 {
1042 case REG:
1043 /* Don't do any sp or fp replacements outside of MEM addresses
1044 on the LHS. */
1045 if (amd->mem_mode == VOIDmode && amd->store)
1046 return loc;
1047 if (loc == stack_pointer_rtx
1048 && !frame_pointer_needed
1049 && cfa_base_rtx)
1050 return compute_cfa_pointer (amd->stack_adjust);
1051 else if (loc == hard_frame_pointer_rtx
1052 && frame_pointer_needed
1053 && maybe_ne (hard_frame_pointer_adjustment, -1)
1054 && cfa_base_rtx)
1055 return compute_cfa_pointer (hard_frame_pointer_adjustment);
1056 gcc_checking_assert (loc != virtual_incoming_args_rtx);
1057 return loc;
1058 case MEM:
1059 mem = loc;
1060 if (!amd->store)
1061 {
1062 mem = targetm.delegitimize_address (mem);
1063 if (mem != loc && !MEM_P (mem))
1064 return simplify_replace_fn_rtx (mem, old_rtx, adjust_mems, data);
1065 }
1066
1067 addr = XEXP (mem, 0);
1068 mem_mode_save = amd->mem_mode;
1069 amd->mem_mode = GET_MODE (mem);
1070 store_save = amd->store;
1071 amd->store = false;
1072 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1073 amd->store = store_save;
1074 amd->mem_mode = mem_mode_save;
1075 if (mem == loc)
1076 addr = targetm.delegitimize_address (addr);
1077 if (addr != XEXP (mem, 0))
1078 mem = replace_equiv_address_nv (mem, addr);
1079 if (!amd->store)
1080 mem = avoid_constant_pool_reference (mem);
1081 return mem;
1082 case PRE_INC:
1083 case PRE_DEC:
1084 size = GET_MODE_SIZE (amd->mem_mode);
1085 addr = plus_constant (GET_MODE (loc), XEXP (loc, 0),
1086 GET_CODE (loc) == PRE_INC ? size : -size);
1087 /* FALLTHRU */
1088 case POST_INC:
1089 case POST_DEC:
1090 if (addr == loc)
1091 addr = XEXP (loc, 0);
1092 gcc_assert (amd->mem_mode != VOIDmode && amd->mem_mode != BLKmode);
1093 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1094 size = GET_MODE_SIZE (amd->mem_mode);
1095 tem = plus_constant (GET_MODE (loc), XEXP (loc, 0),
1096 (GET_CODE (loc) == PRE_INC
1097 || GET_CODE (loc) == POST_INC) ? size : -size);
1098 store_save = amd->store;
1099 amd->store = false;
1100 tem = simplify_replace_fn_rtx (tem, old_rtx, adjust_mems, data);
1101 amd->store = store_save;
1102 amd->side_effects.safe_push (gen_rtx_SET (XEXP (loc, 0), tem));
1103 return addr;
1104 case PRE_MODIFY:
1105 addr = XEXP (loc, 1);
1106 /* FALLTHRU */
1107 case POST_MODIFY:
1108 if (addr == loc)
1109 addr = XEXP (loc, 0);
1110 gcc_assert (amd->mem_mode != VOIDmode);
1111 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1112 store_save = amd->store;
1113 amd->store = false;
1114 tem = simplify_replace_fn_rtx (XEXP (loc, 1), old_rtx,
1115 adjust_mems, data);
1116 amd->store = store_save;
1117 amd->side_effects.safe_push (gen_rtx_SET (XEXP (loc, 0), tem));
1118 return addr;
1119 case SUBREG:
1120 /* First try without delegitimization of whole MEMs and
1121 avoid_constant_pool_reference, which is more likely to succeed. */
1122 store_save = amd->store;
1123 amd->store = true;
1124 addr = simplify_replace_fn_rtx (SUBREG_REG (loc), old_rtx, adjust_mems,
1125 data);
1126 amd->store = store_save;
1127 mem = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1128 if (mem == SUBREG_REG (loc))
1129 {
1130 tem = loc;
1131 goto finish_subreg;
1132 }
1133 tem = simplify_gen_subreg (GET_MODE (loc), mem,
1134 GET_MODE (SUBREG_REG (loc)),
1135 SUBREG_BYTE (loc));
1136 if (tem)
1137 goto finish_subreg;
1138 tem = simplify_gen_subreg (GET_MODE (loc), addr,
1139 GET_MODE (SUBREG_REG (loc)),
1140 SUBREG_BYTE (loc));
1141 if (tem == NULL_RTX)
1142 tem = gen_rtx_raw_SUBREG (GET_MODE (loc), addr, SUBREG_BYTE (loc));
1143 finish_subreg:
1144 if (MAY_HAVE_DEBUG_BIND_INSNS
1145 && GET_CODE (tem) == SUBREG
1146 && (GET_CODE (SUBREG_REG (tem)) == PLUS
1147 || GET_CODE (SUBREG_REG (tem)) == MINUS
1148 || GET_CODE (SUBREG_REG (tem)) == MULT
1149 || GET_CODE (SUBREG_REG (tem)) == ASHIFT)
1150 && is_a <scalar_int_mode> (GET_MODE (tem), &tem_mode)
1151 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (tem)),
1152 &tem_subreg_mode)
1153 && (GET_MODE_PRECISION (tem_mode)
1154 < GET_MODE_PRECISION (tem_subreg_mode))
1155 && subreg_lowpart_p (tem)
1156 && use_narrower_mode_test (SUBREG_REG (tem), tem))
1157 return use_narrower_mode (SUBREG_REG (tem), tem_mode, tem_subreg_mode);
1158 return tem;
1159 case ASM_OPERANDS:
1160 /* Don't do any replacements in second and following
1161 ASM_OPERANDS of inline-asm with multiple sets.
1162 ASM_OPERANDS_INPUT_VEC, ASM_OPERANDS_INPUT_CONSTRAINT_VEC
1163 and ASM_OPERANDS_LABEL_VEC need to be equal between
1164 all the ASM_OPERANDs in the insn and adjust_insn will
1165 fix this up. */
1166 if (ASM_OPERANDS_OUTPUT_IDX (loc) != 0)
1167 return loc;
1168 break;
1169 default:
1170 break;
1171 }
1172 return NULL_RTX;
1173 }
1174
1175 /* Helper function for replacement of uses. */
1176
1177 static void
1178 adjust_mem_uses (rtx *x, void *data)
1179 {
1180 rtx new_x = simplify_replace_fn_rtx (*x, NULL_RTX, adjust_mems, data);
1181 if (new_x != *x)
1182 validate_change (NULL_RTX, x, new_x, true);
1183 }
1184
1185 /* Helper function for replacement of stores. */
1186
1187 static void
1188 adjust_mem_stores (rtx loc, const_rtx expr, void *data)
1189 {
1190 if (MEM_P (loc))
1191 {
1192 rtx new_dest = simplify_replace_fn_rtx (SET_DEST (expr), NULL_RTX,
1193 adjust_mems, data);
1194 if (new_dest != SET_DEST (expr))
1195 {
1196 rtx xexpr = CONST_CAST_RTX (expr);
1197 validate_change (NULL_RTX, &SET_DEST (xexpr), new_dest, true);
1198 }
1199 }
1200 }
1201
1202 /* Simplify INSN. Remove all {PRE,POST}_{INC,DEC,MODIFY} rtxes,
1203 replace them with their value in the insn and add the side-effects
1204 as other sets to the insn. */
1205
1206 static void
1207 adjust_insn (basic_block bb, rtx_insn *insn)
1208 {
1209 rtx set;
1210
1211 #ifdef HAVE_window_save
1212 /* If the target machine has an explicit window save instruction, the
1213 transformation OUTGOING_REGNO -> INCOMING_REGNO is done there. */
1214 if (RTX_FRAME_RELATED_P (insn)
1215 && find_reg_note (insn, REG_CFA_WINDOW_SAVE, NULL_RTX))
1216 {
1217 unsigned int i, nregs = vec_safe_length (windowed_parm_regs);
1218 rtx rtl = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (nregs * 2));
1219 parm_reg *p;
1220
1221 FOR_EACH_VEC_SAFE_ELT (windowed_parm_regs, i, p)
1222 {
1223 XVECEXP (rtl, 0, i * 2)
1224 = gen_rtx_SET (p->incoming, p->outgoing);
1225 /* Do not clobber the attached DECL, but only the REG. */
1226 XVECEXP (rtl, 0, i * 2 + 1)
1227 = gen_rtx_CLOBBER (GET_MODE (p->outgoing),
1228 gen_raw_REG (GET_MODE (p->outgoing),
1229 REGNO (p->outgoing)));
1230 }
1231
1232 validate_change (NULL_RTX, &PATTERN (insn), rtl, true);
1233 return;
1234 }
1235 #endif
1236
1237 adjust_mem_data amd;
1238 amd.mem_mode = VOIDmode;
1239 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
1240
1241 amd.store = true;
1242 note_stores (insn, adjust_mem_stores, &amd);
1243
1244 amd.store = false;
1245 if (GET_CODE (PATTERN (insn)) == PARALLEL
1246 && asm_noperands (PATTERN (insn)) > 0
1247 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1248 {
1249 rtx body, set0;
1250 int i;
1251
1252 /* inline-asm with multiple sets is tiny bit more complicated,
1253 because the 3 vectors in ASM_OPERANDS need to be shared between
1254 all ASM_OPERANDS in the instruction. adjust_mems will
1255 not touch ASM_OPERANDS other than the first one, asm_noperands
1256 test above needs to be called before that (otherwise it would fail)
1257 and afterwards this code fixes it up. */
1258 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1259 body = PATTERN (insn);
1260 set0 = XVECEXP (body, 0, 0);
1261 gcc_checking_assert (GET_CODE (set0) == SET
1262 && GET_CODE (SET_SRC (set0)) == ASM_OPERANDS
1263 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set0)) == 0);
1264 for (i = 1; i < XVECLEN (body, 0); i++)
1265 if (GET_CODE (XVECEXP (body, 0, i)) != SET)
1266 break;
1267 else
1268 {
1269 set = XVECEXP (body, 0, i);
1270 gcc_checking_assert (GET_CODE (SET_SRC (set)) == ASM_OPERANDS
1271 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set))
1272 == i);
1273 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (set))
1274 != ASM_OPERANDS_INPUT_VEC (SET_SRC (set0))
1275 || ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set))
1276 != ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0))
1277 || ASM_OPERANDS_LABEL_VEC (SET_SRC (set))
1278 != ASM_OPERANDS_LABEL_VEC (SET_SRC (set0)))
1279 {
1280 rtx newsrc = shallow_copy_rtx (SET_SRC (set));
1281 ASM_OPERANDS_INPUT_VEC (newsrc)
1282 = ASM_OPERANDS_INPUT_VEC (SET_SRC (set0));
1283 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (newsrc)
1284 = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0));
1285 ASM_OPERANDS_LABEL_VEC (newsrc)
1286 = ASM_OPERANDS_LABEL_VEC (SET_SRC (set0));
1287 validate_change (NULL_RTX, &SET_SRC (set), newsrc, true);
1288 }
1289 }
1290 }
1291 else
1292 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1293
1294 /* For read-only MEMs containing some constant, prefer those
1295 constants. */
1296 set = single_set (insn);
1297 if (set && MEM_P (SET_SRC (set)) && MEM_READONLY_P (SET_SRC (set)))
1298 {
1299 rtx note = find_reg_equal_equiv_note (insn);
1300
1301 if (note && CONSTANT_P (XEXP (note, 0)))
1302 validate_change (NULL_RTX, &SET_SRC (set), XEXP (note, 0), true);
1303 }
1304
1305 if (!amd.side_effects.is_empty ())
1306 {
1307 rtx *pat, new_pat;
1308 int i, oldn;
1309
1310 pat = &PATTERN (insn);
1311 if (GET_CODE (*pat) == COND_EXEC)
1312 pat = &COND_EXEC_CODE (*pat);
1313 if (GET_CODE (*pat) == PARALLEL)
1314 oldn = XVECLEN (*pat, 0);
1315 else
1316 oldn = 1;
1317 unsigned int newn = amd.side_effects.length ();
1318 new_pat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (oldn + newn));
1319 if (GET_CODE (*pat) == PARALLEL)
1320 for (i = 0; i < oldn; i++)
1321 XVECEXP (new_pat, 0, i) = XVECEXP (*pat, 0, i);
1322 else
1323 XVECEXP (new_pat, 0, 0) = *pat;
1324
1325 rtx effect;
1326 unsigned int j;
1327 FOR_EACH_VEC_ELT_REVERSE (amd.side_effects, j, effect)
1328 XVECEXP (new_pat, 0, j + oldn) = effect;
1329 validate_change (NULL_RTX, pat, new_pat, true);
1330 }
1331 }
1332
1333 /* Return the DEBUG_EXPR of a DEBUG_EXPR_DECL or the VALUE in DV. */
1334 static inline rtx
1335 dv_as_rtx (decl_or_value dv)
1336 {
1337 tree decl;
1338
1339 if (dv_is_value_p (dv))
1340 return dv_as_value (dv);
1341
1342 decl = dv_as_decl (dv);
1343
1344 gcc_checking_assert (TREE_CODE (decl) == DEBUG_EXPR_DECL);
1345 return DECL_RTL_KNOWN_SET (decl);
1346 }
1347
1348 /* Return nonzero if a decl_or_value must not have more than one
1349 variable part. The returned value discriminates among various
1350 kinds of one-part DVs ccording to enum onepart_enum. */
1351 static inline onepart_enum
1352 dv_onepart_p (decl_or_value dv)
1353 {
1354 tree decl;
1355
1356 if (!MAY_HAVE_DEBUG_BIND_INSNS)
1357 return NOT_ONEPART;
1358
1359 if (dv_is_value_p (dv))
1360 return ONEPART_VALUE;
1361
1362 decl = dv_as_decl (dv);
1363
1364 if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
1365 return ONEPART_DEXPR;
1366
1367 if (target_for_debug_bind (decl) != NULL_TREE)
1368 return ONEPART_VDECL;
1369
1370 return NOT_ONEPART;
1371 }
1372
1373 /* Return the variable pool to be used for a dv of type ONEPART. */
1374 static inline pool_allocator &
1375 onepart_pool (onepart_enum onepart)
1376 {
1377 return onepart ? valvar_pool : var_pool;
1378 }
1379
1380 /* Allocate a variable_def from the corresponding variable pool. */
1381 static inline variable *
1382 onepart_pool_allocate (onepart_enum onepart)
1383 {
1384 return (variable*) onepart_pool (onepart).allocate ();
1385 }
1386
1387 /* Build a decl_or_value out of a decl. */
1388 static inline decl_or_value
1389 dv_from_decl (tree decl)
1390 {
1391 decl_or_value dv;
1392 dv = decl;
1393 gcc_checking_assert (dv_is_decl_p (dv));
1394 return dv;
1395 }
1396
1397 /* Build a decl_or_value out of a value. */
1398 static inline decl_or_value
1399 dv_from_value (rtx value)
1400 {
1401 decl_or_value dv;
1402 dv = value;
1403 gcc_checking_assert (dv_is_value_p (dv));
1404 return dv;
1405 }
1406
1407 /* Return a value or the decl of a debug_expr as a decl_or_value. */
1408 static inline decl_or_value
1409 dv_from_rtx (rtx x)
1410 {
1411 decl_or_value dv;
1412
1413 switch (GET_CODE (x))
1414 {
1415 case DEBUG_EXPR:
1416 dv = dv_from_decl (DEBUG_EXPR_TREE_DECL (x));
1417 gcc_checking_assert (DECL_RTL_KNOWN_SET (DEBUG_EXPR_TREE_DECL (x)) == x);
1418 break;
1419
1420 case VALUE:
1421 dv = dv_from_value (x);
1422 break;
1423
1424 default:
1425 gcc_unreachable ();
1426 }
1427
1428 return dv;
1429 }
1430
1431 extern void debug_dv (decl_or_value dv);
1432
1433 DEBUG_FUNCTION void
1434 debug_dv (decl_or_value dv)
1435 {
1436 if (dv_is_value_p (dv))
1437 debug_rtx (dv_as_value (dv));
1438 else
1439 debug_generic_stmt (dv_as_decl (dv));
1440 }
1441
1442 static void loc_exp_dep_clear (variable *var);
1443
1444 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
1445
1446 static void
1447 variable_htab_free (void *elem)
1448 {
1449 int i;
1450 variable *var = (variable *) elem;
1451 location_chain *node, *next;
1452
1453 gcc_checking_assert (var->refcount > 0);
1454
1455 var->refcount--;
1456 if (var->refcount > 0)
1457 return;
1458
1459 for (i = 0; i < var->n_var_parts; i++)
1460 {
1461 for (node = var->var_part[i].loc_chain; node; node = next)
1462 {
1463 next = node->next;
1464 delete node;
1465 }
1466 var->var_part[i].loc_chain = NULL;
1467 }
1468 if (var->onepart && VAR_LOC_1PAUX (var))
1469 {
1470 loc_exp_dep_clear (var);
1471 if (VAR_LOC_DEP_LST (var))
1472 VAR_LOC_DEP_LST (var)->pprev = NULL;
1473 XDELETE (VAR_LOC_1PAUX (var));
1474 /* These may be reused across functions, so reset
1475 e.g. NO_LOC_P. */
1476 if (var->onepart == ONEPART_DEXPR)
1477 set_dv_changed (var->dv, true);
1478 }
1479 onepart_pool (var->onepart).remove (var);
1480 }
1481
1482 /* Initialize the set (array) SET of attrs to empty lists. */
1483
1484 static void
1485 init_attrs_list_set (attrs **set)
1486 {
1487 int i;
1488
1489 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1490 set[i] = NULL;
1491 }
1492
1493 /* Make the list *LISTP empty. */
1494
1495 static void
1496 attrs_list_clear (attrs **listp)
1497 {
1498 attrs *list, *next;
1499
1500 for (list = *listp; list; list = next)
1501 {
1502 next = list->next;
1503 delete list;
1504 }
1505 *listp = NULL;
1506 }
1507
1508 /* Return true if the pair of DECL and OFFSET is the member of the LIST. */
1509
1510 static attrs *
1511 attrs_list_member (attrs *list, decl_or_value dv, HOST_WIDE_INT offset)
1512 {
1513 for (; list; list = list->next)
1514 if (dv_as_opaque (list->dv) == dv_as_opaque (dv) && list->offset == offset)
1515 return list;
1516 return NULL;
1517 }
1518
1519 /* Insert the triplet DECL, OFFSET, LOC to the list *LISTP. */
1520
1521 static void
1522 attrs_list_insert (attrs **listp, decl_or_value dv,
1523 HOST_WIDE_INT offset, rtx loc)
1524 {
1525 attrs *list = new attrs;
1526 list->loc = loc;
1527 list->dv = dv;
1528 list->offset = offset;
1529 list->next = *listp;
1530 *listp = list;
1531 }
1532
1533 /* Copy all nodes from SRC and create a list *DSTP of the copies. */
1534
1535 static void
1536 attrs_list_copy (attrs **dstp, attrs *src)
1537 {
1538 attrs_list_clear (dstp);
1539 for (; src; src = src->next)
1540 {
1541 attrs *n = new attrs;
1542 n->loc = src->loc;
1543 n->dv = src->dv;
1544 n->offset = src->offset;
1545 n->next = *dstp;
1546 *dstp = n;
1547 }
1548 }
1549
1550 /* Add all nodes from SRC which are not in *DSTP to *DSTP. */
1551
1552 static void
1553 attrs_list_union (attrs **dstp, attrs *src)
1554 {
1555 for (; src; src = src->next)
1556 {
1557 if (!attrs_list_member (*dstp, src->dv, src->offset))
1558 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1559 }
1560 }
1561
1562 /* Combine nodes that are not onepart nodes from SRC and SRC2 into
1563 *DSTP. */
1564
1565 static void
1566 attrs_list_mpdv_union (attrs **dstp, attrs *src, attrs *src2)
1567 {
1568 gcc_assert (!*dstp);
1569 for (; src; src = src->next)
1570 {
1571 if (!dv_onepart_p (src->dv))
1572 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1573 }
1574 for (src = src2; src; src = src->next)
1575 {
1576 if (!dv_onepart_p (src->dv)
1577 && !attrs_list_member (*dstp, src->dv, src->offset))
1578 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1579 }
1580 }
1581
1582 /* Shared hashtable support. */
1583
1584 /* Return true if VARS is shared. */
1585
1586 static inline bool
1587 shared_hash_shared (shared_hash *vars)
1588 {
1589 return vars->refcount > 1;
1590 }
1591
1592 /* Return the hash table for VARS. */
1593
1594 static inline variable_table_type *
1595 shared_hash_htab (shared_hash *vars)
1596 {
1597 return vars->htab;
1598 }
1599
1600 /* Return true if VAR is shared, or maybe because VARS is shared. */
1601
1602 static inline bool
1603 shared_var_p (variable *var, shared_hash *vars)
1604 {
1605 /* Don't count an entry in the changed_variables table as a duplicate. */
1606 return ((var->refcount > 1 + (int) var->in_changed_variables)
1607 || shared_hash_shared (vars));
1608 }
1609
1610 /* Copy variables into a new hash table. */
1611
1612 static shared_hash *
1613 shared_hash_unshare (shared_hash *vars)
1614 {
1615 shared_hash *new_vars = new shared_hash;
1616 gcc_assert (vars->refcount > 1);
1617 new_vars->refcount = 1;
1618 new_vars->htab = new variable_table_type (vars->htab->elements () + 3);
1619 vars_copy (new_vars->htab, vars->htab);
1620 vars->refcount--;
1621 return new_vars;
1622 }
1623
1624 /* Increment reference counter on VARS and return it. */
1625
1626 static inline shared_hash *
1627 shared_hash_copy (shared_hash *vars)
1628 {
1629 vars->refcount++;
1630 return vars;
1631 }
1632
1633 /* Decrement reference counter and destroy hash table if not shared
1634 anymore. */
1635
1636 static void
1637 shared_hash_destroy (shared_hash *vars)
1638 {
1639 gcc_checking_assert (vars->refcount > 0);
1640 if (--vars->refcount == 0)
1641 {
1642 delete vars->htab;
1643 delete vars;
1644 }
1645 }
1646
1647 /* Unshare *PVARS if shared and return slot for DV. If INS is
1648 INSERT, insert it if not already present. */
1649
1650 static inline variable **
1651 shared_hash_find_slot_unshare_1 (shared_hash **pvars, decl_or_value dv,
1652 hashval_t dvhash, enum insert_option ins)
1653 {
1654 if (shared_hash_shared (*pvars))
1655 *pvars = shared_hash_unshare (*pvars);
1656 return shared_hash_htab (*pvars)->find_slot_with_hash (dv, dvhash, ins);
1657 }
1658
1659 static inline variable **
1660 shared_hash_find_slot_unshare (shared_hash **pvars, decl_or_value dv,
1661 enum insert_option ins)
1662 {
1663 return shared_hash_find_slot_unshare_1 (pvars, dv, dv_htab_hash (dv), ins);
1664 }
1665
1666 /* Return slot for DV, if it is already present in the hash table.
1667 If it is not present, insert it only VARS is not shared, otherwise
1668 return NULL. */
1669
1670 static inline variable **
1671 shared_hash_find_slot_1 (shared_hash *vars, decl_or_value dv, hashval_t dvhash)
1672 {
1673 return shared_hash_htab (vars)->find_slot_with_hash (dv, dvhash,
1674 shared_hash_shared (vars)
1675 ? NO_INSERT : INSERT);
1676 }
1677
1678 static inline variable **
1679 shared_hash_find_slot (shared_hash *vars, decl_or_value dv)
1680 {
1681 return shared_hash_find_slot_1 (vars, dv, dv_htab_hash (dv));
1682 }
1683
1684 /* Return slot for DV only if it is already present in the hash table. */
1685
1686 static inline variable **
1687 shared_hash_find_slot_noinsert_1 (shared_hash *vars, decl_or_value dv,
1688 hashval_t dvhash)
1689 {
1690 return shared_hash_htab (vars)->find_slot_with_hash (dv, dvhash, NO_INSERT);
1691 }
1692
1693 static inline variable **
1694 shared_hash_find_slot_noinsert (shared_hash *vars, decl_or_value dv)
1695 {
1696 return shared_hash_find_slot_noinsert_1 (vars, dv, dv_htab_hash (dv));
1697 }
1698
1699 /* Return variable for DV or NULL if not already present in the hash
1700 table. */
1701
1702 static inline variable *
1703 shared_hash_find_1 (shared_hash *vars, decl_or_value dv, hashval_t dvhash)
1704 {
1705 return shared_hash_htab (vars)->find_with_hash (dv, dvhash);
1706 }
1707
1708 static inline variable *
1709 shared_hash_find (shared_hash *vars, decl_or_value dv)
1710 {
1711 return shared_hash_find_1 (vars, dv, dv_htab_hash (dv));
1712 }
1713
1714 /* Return true if TVAL is better than CVAL as a canonival value. We
1715 choose lowest-numbered VALUEs, using the RTX address as a
1716 tie-breaker. The idea is to arrange them into a star topology,
1717 such that all of them are at most one step away from the canonical
1718 value, and the canonical value has backlinks to all of them, in
1719 addition to all the actual locations. We don't enforce this
1720 topology throughout the entire dataflow analysis, though.
1721 */
1722
1723 static inline bool
1724 canon_value_cmp (rtx tval, rtx cval)
1725 {
1726 return !cval
1727 || CSELIB_VAL_PTR (tval)->uid < CSELIB_VAL_PTR (cval)->uid;
1728 }
1729
1730 static bool dst_can_be_shared;
1731
1732 /* Return a copy of a variable VAR and insert it to dataflow set SET. */
1733
1734 static variable **
1735 unshare_variable (dataflow_set *set, variable **slot, variable *var,
1736 enum var_init_status initialized)
1737 {
1738 variable *new_var;
1739 int i;
1740
1741 new_var = onepart_pool_allocate (var->onepart);
1742 new_var->dv = var->dv;
1743 new_var->refcount = 1;
1744 var->refcount--;
1745 new_var->n_var_parts = var->n_var_parts;
1746 new_var->onepart = var->onepart;
1747 new_var->in_changed_variables = false;
1748
1749 if (! flag_var_tracking_uninit)
1750 initialized = VAR_INIT_STATUS_INITIALIZED;
1751
1752 for (i = 0; i < var->n_var_parts; i++)
1753 {
1754 location_chain *node;
1755 location_chain **nextp;
1756
1757 if (i == 0 && var->onepart)
1758 {
1759 /* One-part auxiliary data is only used while emitting
1760 notes, so propagate it to the new variable in the active
1761 dataflow set. If we're not emitting notes, this will be
1762 a no-op. */
1763 gcc_checking_assert (!VAR_LOC_1PAUX (var) || emit_notes);
1764 VAR_LOC_1PAUX (new_var) = VAR_LOC_1PAUX (var);
1765 VAR_LOC_1PAUX (var) = NULL;
1766 }
1767 else
1768 VAR_PART_OFFSET (new_var, i) = VAR_PART_OFFSET (var, i);
1769 nextp = &new_var->var_part[i].loc_chain;
1770 for (node = var->var_part[i].loc_chain; node; node = node->next)
1771 {
1772 location_chain *new_lc;
1773
1774 new_lc = new location_chain;
1775 new_lc->next = NULL;
1776 if (node->init > initialized)
1777 new_lc->init = node->init;
1778 else
1779 new_lc->init = initialized;
1780 if (node->set_src && !(MEM_P (node->set_src)))
1781 new_lc->set_src = node->set_src;
1782 else
1783 new_lc->set_src = NULL;
1784 new_lc->loc = node->loc;
1785
1786 *nextp = new_lc;
1787 nextp = &new_lc->next;
1788 }
1789
1790 new_var->var_part[i].cur_loc = var->var_part[i].cur_loc;
1791 }
1792
1793 dst_can_be_shared = false;
1794 if (shared_hash_shared (set->vars))
1795 slot = shared_hash_find_slot_unshare (&set->vars, var->dv, NO_INSERT);
1796 else if (set->traversed_vars && set->vars != set->traversed_vars)
1797 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
1798 *slot = new_var;
1799 if (var->in_changed_variables)
1800 {
1801 variable **cslot
1802 = changed_variables->find_slot_with_hash (var->dv,
1803 dv_htab_hash (var->dv),
1804 NO_INSERT);
1805 gcc_assert (*cslot == (void *) var);
1806 var->in_changed_variables = false;
1807 variable_htab_free (var);
1808 *cslot = new_var;
1809 new_var->in_changed_variables = true;
1810 }
1811 return slot;
1812 }
1813
1814 /* Copy all variables from hash table SRC to hash table DST. */
1815
1816 static void
1817 vars_copy (variable_table_type *dst, variable_table_type *src)
1818 {
1819 variable_iterator_type hi;
1820 variable *var;
1821
1822 FOR_EACH_HASH_TABLE_ELEMENT (*src, var, variable, hi)
1823 {
1824 variable **dstp;
1825 var->refcount++;
1826 dstp = dst->find_slot_with_hash (var->dv, dv_htab_hash (var->dv),
1827 INSERT);
1828 *dstp = var;
1829 }
1830 }
1831
1832 /* Map a decl to its main debug decl. */
1833
1834 static inline tree
1835 var_debug_decl (tree decl)
1836 {
1837 if (decl && VAR_P (decl) && DECL_HAS_DEBUG_EXPR_P (decl))
1838 {
1839 tree debugdecl = DECL_DEBUG_EXPR (decl);
1840 if (DECL_P (debugdecl))
1841 decl = debugdecl;
1842 }
1843
1844 return decl;
1845 }
1846
1847 /* Set the register LOC to contain DV, OFFSET. */
1848
1849 static void
1850 var_reg_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1851 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
1852 enum insert_option iopt)
1853 {
1854 attrs *node;
1855 bool decl_p = dv_is_decl_p (dv);
1856
1857 if (decl_p)
1858 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
1859
1860 for (node = set->regs[REGNO (loc)]; node; node = node->next)
1861 if (dv_as_opaque (node->dv) == dv_as_opaque (dv)
1862 && node->offset == offset)
1863 break;
1864 if (!node)
1865 attrs_list_insert (&set->regs[REGNO (loc)], dv, offset, loc);
1866 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
1867 }
1868
1869 /* Return true if we should track a location that is OFFSET bytes from
1870 a variable. Store the constant offset in *OFFSET_OUT if so. */
1871
1872 static bool
1873 track_offset_p (poly_int64 offset, HOST_WIDE_INT *offset_out)
1874 {
1875 HOST_WIDE_INT const_offset;
1876 if (!offset.is_constant (&const_offset)
1877 || !IN_RANGE (const_offset, 0, MAX_VAR_PARTS - 1))
1878 return false;
1879 *offset_out = const_offset;
1880 return true;
1881 }
1882
1883 /* Return the offset of a register that track_offset_p says we
1884 should track. */
1885
1886 static HOST_WIDE_INT
1887 get_tracked_reg_offset (rtx loc)
1888 {
1889 HOST_WIDE_INT offset;
1890 if (!track_offset_p (REG_OFFSET (loc), &offset))
1891 gcc_unreachable ();
1892 return offset;
1893 }
1894
1895 /* Set the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). */
1896
1897 static void
1898 var_reg_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1899 rtx set_src)
1900 {
1901 tree decl = REG_EXPR (loc);
1902 HOST_WIDE_INT offset = get_tracked_reg_offset (loc);
1903
1904 var_reg_decl_set (set, loc, initialized,
1905 dv_from_decl (decl), offset, set_src, INSERT);
1906 }
1907
1908 static enum var_init_status
1909 get_init_value (dataflow_set *set, rtx loc, decl_or_value dv)
1910 {
1911 variable *var;
1912 int i;
1913 enum var_init_status ret_val = VAR_INIT_STATUS_UNKNOWN;
1914
1915 if (! flag_var_tracking_uninit)
1916 return VAR_INIT_STATUS_INITIALIZED;
1917
1918 var = shared_hash_find (set->vars, dv);
1919 if (var)
1920 {
1921 for (i = 0; i < var->n_var_parts && ret_val == VAR_INIT_STATUS_UNKNOWN; i++)
1922 {
1923 location_chain *nextp;
1924 for (nextp = var->var_part[i].loc_chain; nextp; nextp = nextp->next)
1925 if (rtx_equal_p (nextp->loc, loc))
1926 {
1927 ret_val = nextp->init;
1928 break;
1929 }
1930 }
1931 }
1932
1933 return ret_val;
1934 }
1935
1936 /* Delete current content of register LOC in dataflow set SET and set
1937 the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). If
1938 MODIFY is true, any other live copies of the same variable part are
1939 also deleted from the dataflow set, otherwise the variable part is
1940 assumed to be copied from another location holding the same
1941 part. */
1942
1943 static void
1944 var_reg_delete_and_set (dataflow_set *set, rtx loc, bool modify,
1945 enum var_init_status initialized, rtx set_src)
1946 {
1947 tree decl = REG_EXPR (loc);
1948 HOST_WIDE_INT offset = get_tracked_reg_offset (loc);
1949 attrs *node, *next;
1950 attrs **nextp;
1951
1952 decl = var_debug_decl (decl);
1953
1954 if (initialized == VAR_INIT_STATUS_UNKNOWN)
1955 initialized = get_init_value (set, loc, dv_from_decl (decl));
1956
1957 nextp = &set->regs[REGNO (loc)];
1958 for (node = *nextp; node; node = next)
1959 {
1960 next = node->next;
1961 if (dv_as_opaque (node->dv) != decl || node->offset != offset)
1962 {
1963 delete_variable_part (set, node->loc, node->dv, node->offset);
1964 delete node;
1965 *nextp = next;
1966 }
1967 else
1968 {
1969 node->loc = loc;
1970 nextp = &node->next;
1971 }
1972 }
1973 if (modify)
1974 clobber_variable_part (set, loc, dv_from_decl (decl), offset, set_src);
1975 var_reg_set (set, loc, initialized, set_src);
1976 }
1977
1978 /* Delete the association of register LOC in dataflow set SET with any
1979 variables that aren't onepart. If CLOBBER is true, also delete any
1980 other live copies of the same variable part, and delete the
1981 association with onepart dvs too. */
1982
1983 static void
1984 var_reg_delete (dataflow_set *set, rtx loc, bool clobber)
1985 {
1986 attrs **nextp = &set->regs[REGNO (loc)];
1987 attrs *node, *next;
1988
1989 HOST_WIDE_INT offset;
1990 if (clobber && track_offset_p (REG_OFFSET (loc), &offset))
1991 {
1992 tree decl = REG_EXPR (loc);
1993
1994 decl = var_debug_decl (decl);
1995
1996 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
1997 }
1998
1999 for (node = *nextp; node; node = next)
2000 {
2001 next = node->next;
2002 if (clobber || !dv_onepart_p (node->dv))
2003 {
2004 delete_variable_part (set, node->loc, node->dv, node->offset);
2005 delete node;
2006 *nextp = next;
2007 }
2008 else
2009 nextp = &node->next;
2010 }
2011 }
2012
2013 /* Delete content of register with number REGNO in dataflow set SET. */
2014
2015 static void
2016 var_regno_delete (dataflow_set *set, int regno)
2017 {
2018 attrs **reg = &set->regs[regno];
2019 attrs *node, *next;
2020
2021 for (node = *reg; node; node = next)
2022 {
2023 next = node->next;
2024 delete_variable_part (set, node->loc, node->dv, node->offset);
2025 delete node;
2026 }
2027 *reg = NULL;
2028 }
2029
2030 /* Return true if I is the negated value of a power of two. */
2031 static bool
2032 negative_power_of_two_p (HOST_WIDE_INT i)
2033 {
2034 unsigned HOST_WIDE_INT x = -(unsigned HOST_WIDE_INT)i;
2035 return pow2_or_zerop (x);
2036 }
2037
2038 /* Strip constant offsets and alignments off of LOC. Return the base
2039 expression. */
2040
2041 static rtx
2042 vt_get_canonicalize_base (rtx loc)
2043 {
2044 while ((GET_CODE (loc) == PLUS
2045 || GET_CODE (loc) == AND)
2046 && GET_CODE (XEXP (loc, 1)) == CONST_INT
2047 && (GET_CODE (loc) != AND
2048 || negative_power_of_two_p (INTVAL (XEXP (loc, 1)))))
2049 loc = XEXP (loc, 0);
2050
2051 return loc;
2052 }
2053
2054 /* This caches canonicalized addresses for VALUEs, computed using
2055 information in the global cselib table. */
2056 static hash_map<rtx, rtx> *global_get_addr_cache;
2057
2058 /* This caches canonicalized addresses for VALUEs, computed using
2059 information from the global cache and information pertaining to a
2060 basic block being analyzed. */
2061 static hash_map<rtx, rtx> *local_get_addr_cache;
2062
2063 static rtx vt_canonicalize_addr (dataflow_set *, rtx);
2064
2065 /* Return the canonical address for LOC, that must be a VALUE, using a
2066 cached global equivalence or computing it and storing it in the
2067 global cache. */
2068
2069 static rtx
2070 get_addr_from_global_cache (rtx const loc)
2071 {
2072 rtx x;
2073
2074 gcc_checking_assert (GET_CODE (loc) == VALUE);
2075
2076 bool existed;
2077 rtx *slot = &global_get_addr_cache->get_or_insert (loc, &existed);
2078 if (existed)
2079 return *slot;
2080
2081 x = canon_rtx (get_addr (loc));
2082
2083 /* Tentative, avoiding infinite recursion. */
2084 *slot = x;
2085
2086 if (x != loc)
2087 {
2088 rtx nx = vt_canonicalize_addr (NULL, x);
2089 if (nx != x)
2090 {
2091 /* The table may have moved during recursion, recompute
2092 SLOT. */
2093 *global_get_addr_cache->get (loc) = x = nx;
2094 }
2095 }
2096
2097 return x;
2098 }
2099
2100 /* Return the canonical address for LOC, that must be a VALUE, using a
2101 cached local equivalence or computing it and storing it in the
2102 local cache. */
2103
2104 static rtx
2105 get_addr_from_local_cache (dataflow_set *set, rtx const loc)
2106 {
2107 rtx x;
2108 decl_or_value dv;
2109 variable *var;
2110 location_chain *l;
2111
2112 gcc_checking_assert (GET_CODE (loc) == VALUE);
2113
2114 bool existed;
2115 rtx *slot = &local_get_addr_cache->get_or_insert (loc, &existed);
2116 if (existed)
2117 return *slot;
2118
2119 x = get_addr_from_global_cache (loc);
2120
2121 /* Tentative, avoiding infinite recursion. */
2122 *slot = x;
2123
2124 /* Recurse to cache local expansion of X, or if we need to search
2125 for a VALUE in the expansion. */
2126 if (x != loc)
2127 {
2128 rtx nx = vt_canonicalize_addr (set, x);
2129 if (nx != x)
2130 {
2131 slot = local_get_addr_cache->get (loc);
2132 *slot = x = nx;
2133 }
2134 return x;
2135 }
2136
2137 dv = dv_from_rtx (x);
2138 var = shared_hash_find (set->vars, dv);
2139 if (!var)
2140 return x;
2141
2142 /* Look for an improved equivalent expression. */
2143 for (l = var->var_part[0].loc_chain; l; l = l->next)
2144 {
2145 rtx base = vt_get_canonicalize_base (l->loc);
2146 if (GET_CODE (base) == VALUE
2147 && canon_value_cmp (base, loc))
2148 {
2149 rtx nx = vt_canonicalize_addr (set, l->loc);
2150 if (x != nx)
2151 {
2152 slot = local_get_addr_cache->get (loc);
2153 *slot = x = nx;
2154 }
2155 break;
2156 }
2157 }
2158
2159 return x;
2160 }
2161
2162 /* Canonicalize LOC using equivalences from SET in addition to those
2163 in the cselib static table. It expects a VALUE-based expression,
2164 and it will only substitute VALUEs with other VALUEs or
2165 function-global equivalences, so that, if two addresses have base
2166 VALUEs that are locally or globally related in ways that
2167 memrefs_conflict_p cares about, they will both canonicalize to
2168 expressions that have the same base VALUE.
2169
2170 The use of VALUEs as canonical base addresses enables the canonical
2171 RTXs to remain unchanged globally, if they resolve to a constant,
2172 or throughout a basic block otherwise, so that they can be cached
2173 and the cache needs not be invalidated when REGs, MEMs or such
2174 change. */
2175
2176 static rtx
2177 vt_canonicalize_addr (dataflow_set *set, rtx oloc)
2178 {
2179 poly_int64 ofst = 0, term;
2180 machine_mode mode = GET_MODE (oloc);
2181 rtx loc = oloc;
2182 rtx x;
2183 bool retry = true;
2184
2185 while (retry)
2186 {
2187 while (GET_CODE (loc) == PLUS
2188 && poly_int_rtx_p (XEXP (loc, 1), &term))
2189 {
2190 ofst += term;
2191 loc = XEXP (loc, 0);
2192 }
2193
2194 /* Alignment operations can't normally be combined, so just
2195 canonicalize the base and we're done. We'll normally have
2196 only one stack alignment anyway. */
2197 if (GET_CODE (loc) == AND
2198 && GET_CODE (XEXP (loc, 1)) == CONST_INT
2199 && negative_power_of_two_p (INTVAL (XEXP (loc, 1))))
2200 {
2201 x = vt_canonicalize_addr (set, XEXP (loc, 0));
2202 if (x != XEXP (loc, 0))
2203 loc = gen_rtx_AND (mode, x, XEXP (loc, 1));
2204 retry = false;
2205 }
2206
2207 if (GET_CODE (loc) == VALUE)
2208 {
2209 if (set)
2210 loc = get_addr_from_local_cache (set, loc);
2211 else
2212 loc = get_addr_from_global_cache (loc);
2213
2214 /* Consolidate plus_constants. */
2215 while (maybe_ne (ofst, 0)
2216 && GET_CODE (loc) == PLUS
2217 && poly_int_rtx_p (XEXP (loc, 1), &term))
2218 {
2219 ofst += term;
2220 loc = XEXP (loc, 0);
2221 }
2222
2223 retry = false;
2224 }
2225 else
2226 {
2227 x = canon_rtx (loc);
2228 if (retry)
2229 retry = (x != loc);
2230 loc = x;
2231 }
2232 }
2233
2234 /* Add OFST back in. */
2235 if (maybe_ne (ofst, 0))
2236 {
2237 /* Don't build new RTL if we can help it. */
2238 if (strip_offset (oloc, &term) == loc && known_eq (term, ofst))
2239 return oloc;
2240
2241 loc = plus_constant (mode, loc, ofst);
2242 }
2243
2244 return loc;
2245 }
2246
2247 /* Return true iff there's a true dependence between MLOC and LOC.
2248 MADDR must be a canonicalized version of MLOC's address. */
2249
2250 static inline bool
2251 vt_canon_true_dep (dataflow_set *set, rtx mloc, rtx maddr, rtx loc)
2252 {
2253 if (GET_CODE (loc) != MEM)
2254 return false;
2255
2256 rtx addr = vt_canonicalize_addr (set, XEXP (loc, 0));
2257 if (!canon_true_dependence (mloc, GET_MODE (mloc), maddr, loc, addr))
2258 return false;
2259
2260 return true;
2261 }
2262
2263 /* Hold parameters for the hashtab traversal function
2264 drop_overlapping_mem_locs, see below. */
2265
2266 struct overlapping_mems
2267 {
2268 dataflow_set *set;
2269 rtx loc, addr;
2270 };
2271
2272 /* Remove all MEMs that overlap with COMS->LOC from the location list
2273 of a hash table entry for a onepart variable. COMS->ADDR must be a
2274 canonicalized form of COMS->LOC's address, and COMS->LOC must be
2275 canonicalized itself. */
2276
2277 int
2278 drop_overlapping_mem_locs (variable **slot, overlapping_mems *coms)
2279 {
2280 dataflow_set *set = coms->set;
2281 rtx mloc = coms->loc, addr = coms->addr;
2282 variable *var = *slot;
2283
2284 if (var->onepart != NOT_ONEPART)
2285 {
2286 location_chain *loc, **locp;
2287 bool changed = false;
2288 rtx cur_loc;
2289
2290 gcc_assert (var->n_var_parts == 1);
2291
2292 if (shared_var_p (var, set->vars))
2293 {
2294 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
2295 if (vt_canon_true_dep (set, mloc, addr, loc->loc))
2296 break;
2297
2298 if (!loc)
2299 return 1;
2300
2301 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
2302 var = *slot;
2303 gcc_assert (var->n_var_parts == 1);
2304 }
2305
2306 if (VAR_LOC_1PAUX (var))
2307 cur_loc = VAR_LOC_FROM (var);
2308 else
2309 cur_loc = var->var_part[0].cur_loc;
2310
2311 for (locp = &var->var_part[0].loc_chain, loc = *locp;
2312 loc; loc = *locp)
2313 {
2314 if (!vt_canon_true_dep (set, mloc, addr, loc->loc))
2315 {
2316 locp = &loc->next;
2317 continue;
2318 }
2319
2320 *locp = loc->next;
2321 /* If we have deleted the location which was last emitted
2322 we have to emit new location so add the variable to set
2323 of changed variables. */
2324 if (cur_loc == loc->loc)
2325 {
2326 changed = true;
2327 var->var_part[0].cur_loc = NULL;
2328 if (VAR_LOC_1PAUX (var))
2329 VAR_LOC_FROM (var) = NULL;
2330 }
2331 delete loc;
2332 }
2333
2334 if (!var->var_part[0].loc_chain)
2335 {
2336 var->n_var_parts--;
2337 changed = true;
2338 }
2339 if (changed)
2340 variable_was_changed (var, set);
2341 }
2342
2343 return 1;
2344 }
2345
2346 /* Remove from SET all VALUE bindings to MEMs that overlap with LOC. */
2347
2348 static void
2349 clobber_overlapping_mems (dataflow_set *set, rtx loc)
2350 {
2351 struct overlapping_mems coms;
2352
2353 gcc_checking_assert (GET_CODE (loc) == MEM);
2354
2355 coms.set = set;
2356 coms.loc = canon_rtx (loc);
2357 coms.addr = vt_canonicalize_addr (set, XEXP (loc, 0));
2358
2359 set->traversed_vars = set->vars;
2360 shared_hash_htab (set->vars)
2361 ->traverse <overlapping_mems*, drop_overlapping_mem_locs> (&coms);
2362 set->traversed_vars = NULL;
2363 }
2364
2365 /* Set the location of DV, OFFSET as the MEM LOC. */
2366
2367 static void
2368 var_mem_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
2369 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
2370 enum insert_option iopt)
2371 {
2372 if (dv_is_decl_p (dv))
2373 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
2374
2375 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
2376 }
2377
2378 /* Set the location part of variable MEM_EXPR (LOC) in dataflow set
2379 SET to LOC.
2380 Adjust the address first if it is stack pointer based. */
2381
2382 static void
2383 var_mem_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
2384 rtx set_src)
2385 {
2386 tree decl = MEM_EXPR (loc);
2387 HOST_WIDE_INT offset = int_mem_offset (loc);
2388
2389 var_mem_decl_set (set, loc, initialized,
2390 dv_from_decl (decl), offset, set_src, INSERT);
2391 }
2392
2393 /* Delete and set the location part of variable MEM_EXPR (LOC) in
2394 dataflow set SET to LOC. If MODIFY is true, any other live copies
2395 of the same variable part are also deleted from the dataflow set,
2396 otherwise the variable part is assumed to be copied from another
2397 location holding the same part.
2398 Adjust the address first if it is stack pointer based. */
2399
2400 static void
2401 var_mem_delete_and_set (dataflow_set *set, rtx loc, bool modify,
2402 enum var_init_status initialized, rtx set_src)
2403 {
2404 tree decl = MEM_EXPR (loc);
2405 HOST_WIDE_INT offset = int_mem_offset (loc);
2406
2407 clobber_overlapping_mems (set, loc);
2408 decl = var_debug_decl (decl);
2409
2410 if (initialized == VAR_INIT_STATUS_UNKNOWN)
2411 initialized = get_init_value (set, loc, dv_from_decl (decl));
2412
2413 if (modify)
2414 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, set_src);
2415 var_mem_set (set, loc, initialized, set_src);
2416 }
2417
2418 /* Delete the location part LOC from dataflow set SET. If CLOBBER is
2419 true, also delete any other live copies of the same variable part.
2420 Adjust the address first if it is stack pointer based. */
2421
2422 static void
2423 var_mem_delete (dataflow_set *set, rtx loc, bool clobber)
2424 {
2425 tree decl = MEM_EXPR (loc);
2426 HOST_WIDE_INT offset = int_mem_offset (loc);
2427
2428 clobber_overlapping_mems (set, loc);
2429 decl = var_debug_decl (decl);
2430 if (clobber)
2431 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
2432 delete_variable_part (set, loc, dv_from_decl (decl), offset);
2433 }
2434
2435 /* Return true if LOC should not be expanded for location expressions,
2436 or used in them. */
2437
2438 static inline bool
2439 unsuitable_loc (rtx loc)
2440 {
2441 switch (GET_CODE (loc))
2442 {
2443 case PC:
2444 case SCRATCH:
2445 case CC0:
2446 case ASM_INPUT:
2447 case ASM_OPERANDS:
2448 return true;
2449
2450 default:
2451 return false;
2452 }
2453 }
2454
2455 /* Bind VAL to LOC in SET. If MODIFIED, detach LOC from any values
2456 bound to it. */
2457
2458 static inline void
2459 val_bind (dataflow_set *set, rtx val, rtx loc, bool modified)
2460 {
2461 if (REG_P (loc))
2462 {
2463 if (modified)
2464 var_regno_delete (set, REGNO (loc));
2465 var_reg_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2466 dv_from_value (val), 0, NULL_RTX, INSERT);
2467 }
2468 else if (MEM_P (loc))
2469 {
2470 struct elt_loc_list *l = CSELIB_VAL_PTR (val)->locs;
2471
2472 if (modified)
2473 clobber_overlapping_mems (set, loc);
2474
2475 if (l && GET_CODE (l->loc) == VALUE)
2476 l = canonical_cselib_val (CSELIB_VAL_PTR (l->loc))->locs;
2477
2478 /* If this MEM is a global constant, we don't need it in the
2479 dynamic tables. ??? We should test this before emitting the
2480 micro-op in the first place. */
2481 while (l)
2482 if (GET_CODE (l->loc) == MEM && XEXP (l->loc, 0) == XEXP (loc, 0))
2483 break;
2484 else
2485 l = l->next;
2486
2487 if (!l)
2488 var_mem_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2489 dv_from_value (val), 0, NULL_RTX, INSERT);
2490 }
2491 else
2492 {
2493 /* Other kinds of equivalences are necessarily static, at least
2494 so long as we do not perform substitutions while merging
2495 expressions. */
2496 gcc_unreachable ();
2497 set_variable_part (set, loc, dv_from_value (val), 0,
2498 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2499 }
2500 }
2501
2502 /* Bind a value to a location it was just stored in. If MODIFIED
2503 holds, assume the location was modified, detaching it from any
2504 values bound to it. */
2505
2506 static void
2507 val_store (dataflow_set *set, rtx val, rtx loc, rtx_insn *insn,
2508 bool modified)
2509 {
2510 cselib_val *v = CSELIB_VAL_PTR (val);
2511
2512 gcc_assert (cselib_preserved_value_p (v));
2513
2514 if (dump_file)
2515 {
2516 fprintf (dump_file, "%i: ", insn ? INSN_UID (insn) : 0);
2517 print_inline_rtx (dump_file, loc, 0);
2518 fprintf (dump_file, " evaluates to ");
2519 print_inline_rtx (dump_file, val, 0);
2520 if (v->locs)
2521 {
2522 struct elt_loc_list *l;
2523 for (l = v->locs; l; l = l->next)
2524 {
2525 fprintf (dump_file, "\n%i: ", INSN_UID (l->setting_insn));
2526 print_inline_rtx (dump_file, l->loc, 0);
2527 }
2528 }
2529 fprintf (dump_file, "\n");
2530 }
2531
2532 gcc_checking_assert (!unsuitable_loc (loc));
2533
2534 val_bind (set, val, loc, modified);
2535 }
2536
2537 /* Clear (canonical address) slots that reference X. */
2538
2539 bool
2540 local_get_addr_clear_given_value (rtx const &, rtx *slot, rtx x)
2541 {
2542 if (vt_get_canonicalize_base (*slot) == x)
2543 *slot = NULL;
2544 return true;
2545 }
2546
2547 /* Reset this node, detaching all its equivalences. Return the slot
2548 in the variable hash table that holds dv, if there is one. */
2549
2550 static void
2551 val_reset (dataflow_set *set, decl_or_value dv)
2552 {
2553 variable *var = shared_hash_find (set->vars, dv) ;
2554 location_chain *node;
2555 rtx cval;
2556
2557 if (!var || !var->n_var_parts)
2558 return;
2559
2560 gcc_assert (var->n_var_parts == 1);
2561
2562 if (var->onepart == ONEPART_VALUE)
2563 {
2564 rtx x = dv_as_value (dv);
2565
2566 /* Relationships in the global cache don't change, so reset the
2567 local cache entry only. */
2568 rtx *slot = local_get_addr_cache->get (x);
2569 if (slot)
2570 {
2571 /* If the value resolved back to itself, odds are that other
2572 values may have cached it too. These entries now refer
2573 to the old X, so detach them too. Entries that used the
2574 old X but resolved to something else remain ok as long as
2575 that something else isn't also reset. */
2576 if (*slot == x)
2577 local_get_addr_cache
2578 ->traverse<rtx, local_get_addr_clear_given_value> (x);
2579 *slot = NULL;
2580 }
2581 }
2582
2583 cval = NULL;
2584 for (node = var->var_part[0].loc_chain; node; node = node->next)
2585 if (GET_CODE (node->loc) == VALUE
2586 && canon_value_cmp (node->loc, cval))
2587 cval = node->loc;
2588
2589 for (node = var->var_part[0].loc_chain; node; node = node->next)
2590 if (GET_CODE (node->loc) == VALUE && cval != node->loc)
2591 {
2592 /* Redirect the equivalence link to the new canonical
2593 value, or simply remove it if it would point at
2594 itself. */
2595 if (cval)
2596 set_variable_part (set, cval, dv_from_value (node->loc),
2597 0, node->init, node->set_src, NO_INSERT);
2598 delete_variable_part (set, dv_as_value (dv),
2599 dv_from_value (node->loc), 0);
2600 }
2601
2602 if (cval)
2603 {
2604 decl_or_value cdv = dv_from_value (cval);
2605
2606 /* Keep the remaining values connected, accumulating links
2607 in the canonical value. */
2608 for (node = var->var_part[0].loc_chain; node; node = node->next)
2609 {
2610 if (node->loc == cval)
2611 continue;
2612 else if (GET_CODE (node->loc) == REG)
2613 var_reg_decl_set (set, node->loc, node->init, cdv, 0,
2614 node->set_src, NO_INSERT);
2615 else if (GET_CODE (node->loc) == MEM)
2616 var_mem_decl_set (set, node->loc, node->init, cdv, 0,
2617 node->set_src, NO_INSERT);
2618 else
2619 set_variable_part (set, node->loc, cdv, 0,
2620 node->init, node->set_src, NO_INSERT);
2621 }
2622 }
2623
2624 /* We remove this last, to make sure that the canonical value is not
2625 removed to the point of requiring reinsertion. */
2626 if (cval)
2627 delete_variable_part (set, dv_as_value (dv), dv_from_value (cval), 0);
2628
2629 clobber_variable_part (set, NULL, dv, 0, NULL);
2630 }
2631
2632 /* Find the values in a given location and map the val to another
2633 value, if it is unique, or add the location as one holding the
2634 value. */
2635
2636 static void
2637 val_resolve (dataflow_set *set, rtx val, rtx loc, rtx_insn *insn)
2638 {
2639 decl_or_value dv = dv_from_value (val);
2640
2641 if (dump_file && (dump_flags & TDF_DETAILS))
2642 {
2643 if (insn)
2644 fprintf (dump_file, "%i: ", INSN_UID (insn));
2645 else
2646 fprintf (dump_file, "head: ");
2647 print_inline_rtx (dump_file, val, 0);
2648 fputs (" is at ", dump_file);
2649 print_inline_rtx (dump_file, loc, 0);
2650 fputc ('\n', dump_file);
2651 }
2652
2653 val_reset (set, dv);
2654
2655 gcc_checking_assert (!unsuitable_loc (loc));
2656
2657 if (REG_P (loc))
2658 {
2659 attrs *node, *found = NULL;
2660
2661 for (node = set->regs[REGNO (loc)]; node; node = node->next)
2662 if (dv_is_value_p (node->dv)
2663 && GET_MODE (dv_as_value (node->dv)) == GET_MODE (loc))
2664 {
2665 found = node;
2666
2667 /* Map incoming equivalences. ??? Wouldn't it be nice if
2668 we just started sharing the location lists? Maybe a
2669 circular list ending at the value itself or some
2670 such. */
2671 set_variable_part (set, dv_as_value (node->dv),
2672 dv_from_value (val), node->offset,
2673 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2674 set_variable_part (set, val, node->dv, node->offset,
2675 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2676 }
2677
2678 /* If we didn't find any equivalence, we need to remember that
2679 this value is held in the named register. */
2680 if (found)
2681 return;
2682 }
2683 /* ??? Attempt to find and merge equivalent MEMs or other
2684 expressions too. */
2685
2686 val_bind (set, val, loc, false);
2687 }
2688
2689 /* Initialize dataflow set SET to be empty.
2690 VARS_SIZE is the initial size of hash table VARS. */
2691
2692 static void
2693 dataflow_set_init (dataflow_set *set)
2694 {
2695 init_attrs_list_set (set->regs);
2696 set->vars = shared_hash_copy (empty_shared_hash);
2697 set->stack_adjust = 0;
2698 set->traversed_vars = NULL;
2699 }
2700
2701 /* Delete the contents of dataflow set SET. */
2702
2703 static void
2704 dataflow_set_clear (dataflow_set *set)
2705 {
2706 int i;
2707
2708 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2709 attrs_list_clear (&set->regs[i]);
2710
2711 shared_hash_destroy (set->vars);
2712 set->vars = shared_hash_copy (empty_shared_hash);
2713 }
2714
2715 /* Copy the contents of dataflow set SRC to DST. */
2716
2717 static void
2718 dataflow_set_copy (dataflow_set *dst, dataflow_set *src)
2719 {
2720 int i;
2721
2722 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2723 attrs_list_copy (&dst->regs[i], src->regs[i]);
2724
2725 shared_hash_destroy (dst->vars);
2726 dst->vars = shared_hash_copy (src->vars);
2727 dst->stack_adjust = src->stack_adjust;
2728 }
2729
2730 /* Information for merging lists of locations for a given offset of variable.
2731 */
2732 struct variable_union_info
2733 {
2734 /* Node of the location chain. */
2735 location_chain *lc;
2736
2737 /* The sum of positions in the input chains. */
2738 int pos;
2739
2740 /* The position in the chain of DST dataflow set. */
2741 int pos_dst;
2742 };
2743
2744 /* Buffer for location list sorting and its allocated size. */
2745 static struct variable_union_info *vui_vec;
2746 static int vui_allocated;
2747
2748 /* Compare function for qsort, order the structures by POS element. */
2749
2750 static int
2751 variable_union_info_cmp_pos (const void *n1, const void *n2)
2752 {
2753 const struct variable_union_info *const i1 =
2754 (const struct variable_union_info *) n1;
2755 const struct variable_union_info *const i2 =
2756 ( const struct variable_union_info *) n2;
2757
2758 if (i1->pos != i2->pos)
2759 return i1->pos - i2->pos;
2760
2761 return (i1->pos_dst - i2->pos_dst);
2762 }
2763
2764 /* Compute union of location parts of variable *SLOT and the same variable
2765 from hash table DATA. Compute "sorted" union of the location chains
2766 for common offsets, i.e. the locations of a variable part are sorted by
2767 a priority where the priority is the sum of the positions in the 2 chains
2768 (if a location is only in one list the position in the second list is
2769 defined to be larger than the length of the chains).
2770 When we are updating the location parts the newest location is in the
2771 beginning of the chain, so when we do the described "sorted" union
2772 we keep the newest locations in the beginning. */
2773
2774 static int
2775 variable_union (variable *src, dataflow_set *set)
2776 {
2777 variable *dst;
2778 variable **dstp;
2779 int i, j, k;
2780
2781 dstp = shared_hash_find_slot (set->vars, src->dv);
2782 if (!dstp || !*dstp)
2783 {
2784 src->refcount++;
2785
2786 dst_can_be_shared = false;
2787 if (!dstp)
2788 dstp = shared_hash_find_slot_unshare (&set->vars, src->dv, INSERT);
2789
2790 *dstp = src;
2791
2792 /* Continue traversing the hash table. */
2793 return 1;
2794 }
2795 else
2796 dst = *dstp;
2797
2798 gcc_assert (src->n_var_parts);
2799 gcc_checking_assert (src->onepart == dst->onepart);
2800
2801 /* We can combine one-part variables very efficiently, because their
2802 entries are in canonical order. */
2803 if (src->onepart)
2804 {
2805 location_chain **nodep, *dnode, *snode;
2806
2807 gcc_assert (src->n_var_parts == 1
2808 && dst->n_var_parts == 1);
2809
2810 snode = src->var_part[0].loc_chain;
2811 gcc_assert (snode);
2812
2813 restart_onepart_unshared:
2814 nodep = &dst->var_part[0].loc_chain;
2815 dnode = *nodep;
2816 gcc_assert (dnode);
2817
2818 while (snode)
2819 {
2820 int r = dnode ? loc_cmp (dnode->loc, snode->loc) : 1;
2821
2822 if (r > 0)
2823 {
2824 location_chain *nnode;
2825
2826 if (shared_var_p (dst, set->vars))
2827 {
2828 dstp = unshare_variable (set, dstp, dst,
2829 VAR_INIT_STATUS_INITIALIZED);
2830 dst = *dstp;
2831 goto restart_onepart_unshared;
2832 }
2833
2834 *nodep = nnode = new location_chain;
2835 nnode->loc = snode->loc;
2836 nnode->init = snode->init;
2837 if (!snode->set_src || MEM_P (snode->set_src))
2838 nnode->set_src = NULL;
2839 else
2840 nnode->set_src = snode->set_src;
2841 nnode->next = dnode;
2842 dnode = nnode;
2843 }
2844 else if (r == 0)
2845 gcc_checking_assert (rtx_equal_p (dnode->loc, snode->loc));
2846
2847 if (r >= 0)
2848 snode = snode->next;
2849
2850 nodep = &dnode->next;
2851 dnode = *nodep;
2852 }
2853
2854 return 1;
2855 }
2856
2857 gcc_checking_assert (!src->onepart);
2858
2859 /* Count the number of location parts, result is K. */
2860 for (i = 0, j = 0, k = 0;
2861 i < src->n_var_parts && j < dst->n_var_parts; k++)
2862 {
2863 if (VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
2864 {
2865 i++;
2866 j++;
2867 }
2868 else if (VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
2869 i++;
2870 else
2871 j++;
2872 }
2873 k += src->n_var_parts - i;
2874 k += dst->n_var_parts - j;
2875
2876 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
2877 thus there are at most MAX_VAR_PARTS different offsets. */
2878 gcc_checking_assert (dst->onepart ? k == 1 : k <= MAX_VAR_PARTS);
2879
2880 if (dst->n_var_parts != k && shared_var_p (dst, set->vars))
2881 {
2882 dstp = unshare_variable (set, dstp, dst, VAR_INIT_STATUS_UNKNOWN);
2883 dst = *dstp;
2884 }
2885
2886 i = src->n_var_parts - 1;
2887 j = dst->n_var_parts - 1;
2888 dst->n_var_parts = k;
2889
2890 for (k--; k >= 0; k--)
2891 {
2892 location_chain *node, *node2;
2893
2894 if (i >= 0 && j >= 0
2895 && VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
2896 {
2897 /* Compute the "sorted" union of the chains, i.e. the locations which
2898 are in both chains go first, they are sorted by the sum of
2899 positions in the chains. */
2900 int dst_l, src_l;
2901 int ii, jj, n;
2902 struct variable_union_info *vui;
2903
2904 /* If DST is shared compare the location chains.
2905 If they are different we will modify the chain in DST with
2906 high probability so make a copy of DST. */
2907 if (shared_var_p (dst, set->vars))
2908 {
2909 for (node = src->var_part[i].loc_chain,
2910 node2 = dst->var_part[j].loc_chain; node && node2;
2911 node = node->next, node2 = node2->next)
2912 {
2913 if (!((REG_P (node2->loc)
2914 && REG_P (node->loc)
2915 && REGNO (node2->loc) == REGNO (node->loc))
2916 || rtx_equal_p (node2->loc, node->loc)))
2917 {
2918 if (node2->init < node->init)
2919 node2->init = node->init;
2920 break;
2921 }
2922 }
2923 if (node || node2)
2924 {
2925 dstp = unshare_variable (set, dstp, dst,
2926 VAR_INIT_STATUS_UNKNOWN);
2927 dst = (variable *)*dstp;
2928 }
2929 }
2930
2931 src_l = 0;
2932 for (node = src->var_part[i].loc_chain; node; node = node->next)
2933 src_l++;
2934 dst_l = 0;
2935 for (node = dst->var_part[j].loc_chain; node; node = node->next)
2936 dst_l++;
2937
2938 if (dst_l == 1)
2939 {
2940 /* The most common case, much simpler, no qsort is needed. */
2941 location_chain *dstnode = dst->var_part[j].loc_chain;
2942 dst->var_part[k].loc_chain = dstnode;
2943 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (dst, j);
2944 node2 = dstnode;
2945 for (node = src->var_part[i].loc_chain; node; node = node->next)
2946 if (!((REG_P (dstnode->loc)
2947 && REG_P (node->loc)
2948 && REGNO (dstnode->loc) == REGNO (node->loc))
2949 || rtx_equal_p (dstnode->loc, node->loc)))
2950 {
2951 location_chain *new_node;
2952
2953 /* Copy the location from SRC. */
2954 new_node = new location_chain;
2955 new_node->loc = node->loc;
2956 new_node->init = node->init;
2957 if (!node->set_src || MEM_P (node->set_src))
2958 new_node->set_src = NULL;
2959 else
2960 new_node->set_src = node->set_src;
2961 node2->next = new_node;
2962 node2 = new_node;
2963 }
2964 node2->next = NULL;
2965 }
2966 else
2967 {
2968 if (src_l + dst_l > vui_allocated)
2969 {
2970 vui_allocated = MAX (vui_allocated * 2, src_l + dst_l);
2971 vui_vec = XRESIZEVEC (struct variable_union_info, vui_vec,
2972 vui_allocated);
2973 }
2974 vui = vui_vec;
2975
2976 /* Fill in the locations from DST. */
2977 for (node = dst->var_part[j].loc_chain, jj = 0; node;
2978 node = node->next, jj++)
2979 {
2980 vui[jj].lc = node;
2981 vui[jj].pos_dst = jj;
2982
2983 /* Pos plus value larger than a sum of 2 valid positions. */
2984 vui[jj].pos = jj + src_l + dst_l;
2985 }
2986
2987 /* Fill in the locations from SRC. */
2988 n = dst_l;
2989 for (node = src->var_part[i].loc_chain, ii = 0; node;
2990 node = node->next, ii++)
2991 {
2992 /* Find location from NODE. */
2993 for (jj = 0; jj < dst_l; jj++)
2994 {
2995 if ((REG_P (vui[jj].lc->loc)
2996 && REG_P (node->loc)
2997 && REGNO (vui[jj].lc->loc) == REGNO (node->loc))
2998 || rtx_equal_p (vui[jj].lc->loc, node->loc))
2999 {
3000 vui[jj].pos = jj + ii;
3001 break;
3002 }
3003 }
3004 if (jj >= dst_l) /* The location has not been found. */
3005 {
3006 location_chain *new_node;
3007
3008 /* Copy the location from SRC. */
3009 new_node = new location_chain;
3010 new_node->loc = node->loc;
3011 new_node->init = node->init;
3012 if (!node->set_src || MEM_P (node->set_src))
3013 new_node->set_src = NULL;
3014 else
3015 new_node->set_src = node->set_src;
3016 vui[n].lc = new_node;
3017 vui[n].pos_dst = src_l + dst_l;
3018 vui[n].pos = ii + src_l + dst_l;
3019 n++;
3020 }
3021 }
3022
3023 if (dst_l == 2)
3024 {
3025 /* Special case still very common case. For dst_l == 2
3026 all entries dst_l ... n-1 are sorted, with for i >= dst_l
3027 vui[i].pos == i + src_l + dst_l. */
3028 if (vui[0].pos > vui[1].pos)
3029 {
3030 /* Order should be 1, 0, 2... */
3031 dst->var_part[k].loc_chain = vui[1].lc;
3032 vui[1].lc->next = vui[0].lc;
3033 if (n >= 3)
3034 {
3035 vui[0].lc->next = vui[2].lc;
3036 vui[n - 1].lc->next = NULL;
3037 }
3038 else
3039 vui[0].lc->next = NULL;
3040 ii = 3;
3041 }
3042 else
3043 {
3044 dst->var_part[k].loc_chain = vui[0].lc;
3045 if (n >= 3 && vui[2].pos < vui[1].pos)
3046 {
3047 /* Order should be 0, 2, 1, 3... */
3048 vui[0].lc->next = vui[2].lc;
3049 vui[2].lc->next = vui[1].lc;
3050 if (n >= 4)
3051 {
3052 vui[1].lc->next = vui[3].lc;
3053 vui[n - 1].lc->next = NULL;
3054 }
3055 else
3056 vui[1].lc->next = NULL;
3057 ii = 4;
3058 }
3059 else
3060 {
3061 /* Order should be 0, 1, 2... */
3062 ii = 1;
3063 vui[n - 1].lc->next = NULL;
3064 }
3065 }
3066 for (; ii < n; ii++)
3067 vui[ii - 1].lc->next = vui[ii].lc;
3068 }
3069 else
3070 {
3071 qsort (vui, n, sizeof (struct variable_union_info),
3072 variable_union_info_cmp_pos);
3073
3074 /* Reconnect the nodes in sorted order. */
3075 for (ii = 1; ii < n; ii++)
3076 vui[ii - 1].lc->next = vui[ii].lc;
3077 vui[n - 1].lc->next = NULL;
3078 dst->var_part[k].loc_chain = vui[0].lc;
3079 }
3080
3081 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (dst, j);
3082 }
3083 i--;
3084 j--;
3085 }
3086 else if ((i >= 0 && j >= 0
3087 && VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
3088 || i < 0)
3089 {
3090 dst->var_part[k] = dst->var_part[j];
3091 j--;
3092 }
3093 else if ((i >= 0 && j >= 0
3094 && VAR_PART_OFFSET (src, i) > VAR_PART_OFFSET (dst, j))
3095 || j < 0)
3096 {
3097 location_chain **nextp;
3098
3099 /* Copy the chain from SRC. */
3100 nextp = &dst->var_part[k].loc_chain;
3101 for (node = src->var_part[i].loc_chain; node; node = node->next)
3102 {
3103 location_chain *new_lc;
3104
3105 new_lc = new location_chain;
3106 new_lc->next = NULL;
3107 new_lc->init = node->init;
3108 if (!node->set_src || MEM_P (node->set_src))
3109 new_lc->set_src = NULL;
3110 else
3111 new_lc->set_src = node->set_src;
3112 new_lc->loc = node->loc;
3113
3114 *nextp = new_lc;
3115 nextp = &new_lc->next;
3116 }
3117
3118 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (src, i);
3119 i--;
3120 }
3121 dst->var_part[k].cur_loc = NULL;
3122 }
3123
3124 if (flag_var_tracking_uninit)
3125 for (i = 0; i < src->n_var_parts && i < dst->n_var_parts; i++)
3126 {
3127 location_chain *node, *node2;
3128 for (node = src->var_part[i].loc_chain; node; node = node->next)
3129 for (node2 = dst->var_part[i].loc_chain; node2; node2 = node2->next)
3130 if (rtx_equal_p (node->loc, node2->loc))
3131 {
3132 if (node->init > node2->init)
3133 node2->init = node->init;
3134 }
3135 }
3136
3137 /* Continue traversing the hash table. */
3138 return 1;
3139 }
3140
3141 /* Compute union of dataflow sets SRC and DST and store it to DST. */
3142
3143 static void
3144 dataflow_set_union (dataflow_set *dst, dataflow_set *src)
3145 {
3146 int i;
3147
3148 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3149 attrs_list_union (&dst->regs[i], src->regs[i]);
3150
3151 if (dst->vars == empty_shared_hash)
3152 {
3153 shared_hash_destroy (dst->vars);
3154 dst->vars = shared_hash_copy (src->vars);
3155 }
3156 else
3157 {
3158 variable_iterator_type hi;
3159 variable *var;
3160
3161 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (src->vars),
3162 var, variable, hi)
3163 variable_union (var, dst);
3164 }
3165 }
3166
3167 /* Whether the value is currently being expanded. */
3168 #define VALUE_RECURSED_INTO(x) \
3169 (RTL_FLAG_CHECK2 ("VALUE_RECURSED_INTO", (x), VALUE, DEBUG_EXPR)->used)
3170
3171 /* Whether no expansion was found, saving useless lookups.
3172 It must only be set when VALUE_CHANGED is clear. */
3173 #define NO_LOC_P(x) \
3174 (RTL_FLAG_CHECK2 ("NO_LOC_P", (x), VALUE, DEBUG_EXPR)->return_val)
3175
3176 /* Whether cur_loc in the value needs to be (re)computed. */
3177 #define VALUE_CHANGED(x) \
3178 (RTL_FLAG_CHECK1 ("VALUE_CHANGED", (x), VALUE)->frame_related)
3179 /* Whether cur_loc in the decl needs to be (re)computed. */
3180 #define DECL_CHANGED(x) TREE_VISITED (x)
3181
3182 /* Record (if NEWV) that DV needs to have its cur_loc recomputed. For
3183 user DECLs, this means they're in changed_variables. Values and
3184 debug exprs may be left with this flag set if no user variable
3185 requires them to be evaluated. */
3186
3187 static inline void
3188 set_dv_changed (decl_or_value dv, bool newv)
3189 {
3190 switch (dv_onepart_p (dv))
3191 {
3192 case ONEPART_VALUE:
3193 if (newv)
3194 NO_LOC_P (dv_as_value (dv)) = false;
3195 VALUE_CHANGED (dv_as_value (dv)) = newv;
3196 break;
3197
3198 case ONEPART_DEXPR:
3199 if (newv)
3200 NO_LOC_P (DECL_RTL_KNOWN_SET (dv_as_decl (dv))) = false;
3201 /* Fall through. */
3202
3203 default:
3204 DECL_CHANGED (dv_as_decl (dv)) = newv;
3205 break;
3206 }
3207 }
3208
3209 /* Return true if DV needs to have its cur_loc recomputed. */
3210
3211 static inline bool
3212 dv_changed_p (decl_or_value dv)
3213 {
3214 return (dv_is_value_p (dv)
3215 ? VALUE_CHANGED (dv_as_value (dv))
3216 : DECL_CHANGED (dv_as_decl (dv)));
3217 }
3218
3219 /* Return a location list node whose loc is rtx_equal to LOC, in the
3220 location list of a one-part variable or value VAR, or in that of
3221 any values recursively mentioned in the location lists. VARS must
3222 be in star-canonical form. */
3223
3224 static location_chain *
3225 find_loc_in_1pdv (rtx loc, variable *var, variable_table_type *vars)
3226 {
3227 location_chain *node;
3228 enum rtx_code loc_code;
3229
3230 if (!var)
3231 return NULL;
3232
3233 gcc_checking_assert (var->onepart);
3234
3235 if (!var->n_var_parts)
3236 return NULL;
3237
3238 gcc_checking_assert (loc != dv_as_opaque (var->dv));
3239
3240 loc_code = GET_CODE (loc);
3241 for (node = var->var_part[0].loc_chain; node; node = node->next)
3242 {
3243 decl_or_value dv;
3244 variable *rvar;
3245
3246 if (GET_CODE (node->loc) != loc_code)
3247 {
3248 if (GET_CODE (node->loc) != VALUE)
3249 continue;
3250 }
3251 else if (loc == node->loc)
3252 return node;
3253 else if (loc_code != VALUE)
3254 {
3255 if (rtx_equal_p (loc, node->loc))
3256 return node;
3257 continue;
3258 }
3259
3260 /* Since we're in star-canonical form, we don't need to visit
3261 non-canonical nodes: one-part variables and non-canonical
3262 values would only point back to the canonical node. */
3263 if (dv_is_value_p (var->dv)
3264 && !canon_value_cmp (node->loc, dv_as_value (var->dv)))
3265 {
3266 /* Skip all subsequent VALUEs. */
3267 while (node->next && GET_CODE (node->next->loc) == VALUE)
3268 {
3269 node = node->next;
3270 gcc_checking_assert (!canon_value_cmp (node->loc,
3271 dv_as_value (var->dv)));
3272 if (loc == node->loc)
3273 return node;
3274 }
3275 continue;
3276 }
3277
3278 gcc_checking_assert (node == var->var_part[0].loc_chain);
3279 gcc_checking_assert (!node->next);
3280
3281 dv = dv_from_value (node->loc);
3282 rvar = vars->find_with_hash (dv, dv_htab_hash (dv));
3283 return find_loc_in_1pdv (loc, rvar, vars);
3284 }
3285
3286 /* ??? Gotta look in cselib_val locations too. */
3287
3288 return NULL;
3289 }
3290
3291 /* Hash table iteration argument passed to variable_merge. */
3292 struct dfset_merge
3293 {
3294 /* The set in which the merge is to be inserted. */
3295 dataflow_set *dst;
3296 /* The set that we're iterating in. */
3297 dataflow_set *cur;
3298 /* The set that may contain the other dv we are to merge with. */
3299 dataflow_set *src;
3300 /* Number of onepart dvs in src. */
3301 int src_onepart_cnt;
3302 };
3303
3304 /* Insert LOC in *DNODE, if it's not there yet. The list must be in
3305 loc_cmp order, and it is maintained as such. */
3306
3307 static void
3308 insert_into_intersection (location_chain **nodep, rtx loc,
3309 enum var_init_status status)
3310 {
3311 location_chain *node;
3312 int r;
3313
3314 for (node = *nodep; node; nodep = &node->next, node = *nodep)
3315 if ((r = loc_cmp (node->loc, loc)) == 0)
3316 {
3317 node->init = MIN (node->init, status);
3318 return;
3319 }
3320 else if (r > 0)
3321 break;
3322
3323 node = new location_chain;
3324
3325 node->loc = loc;
3326 node->set_src = NULL;
3327 node->init = status;
3328 node->next = *nodep;
3329 *nodep = node;
3330 }
3331
3332 /* Insert in DEST the intersection of the locations present in both
3333 S1NODE and S2VAR, directly or indirectly. S1NODE is from a
3334 variable in DSM->cur, whereas S2VAR is from DSM->src. dvar is in
3335 DSM->dst. */
3336
3337 static void
3338 intersect_loc_chains (rtx val, location_chain **dest, struct dfset_merge *dsm,
3339 location_chain *s1node, variable *s2var)
3340 {
3341 dataflow_set *s1set = dsm->cur;
3342 dataflow_set *s2set = dsm->src;
3343 location_chain *found;
3344
3345 if (s2var)
3346 {
3347 location_chain *s2node;
3348
3349 gcc_checking_assert (s2var->onepart);
3350
3351 if (s2var->n_var_parts)
3352 {
3353 s2node = s2var->var_part[0].loc_chain;
3354
3355 for (; s1node && s2node;
3356 s1node = s1node->next, s2node = s2node->next)
3357 if (s1node->loc != s2node->loc)
3358 break;
3359 else if (s1node->loc == val)
3360 continue;
3361 else
3362 insert_into_intersection (dest, s1node->loc,
3363 MIN (s1node->init, s2node->init));
3364 }
3365 }
3366
3367 for (; s1node; s1node = s1node->next)
3368 {
3369 if (s1node->loc == val)
3370 continue;
3371
3372 if ((found = find_loc_in_1pdv (s1node->loc, s2var,
3373 shared_hash_htab (s2set->vars))))
3374 {
3375 insert_into_intersection (dest, s1node->loc,
3376 MIN (s1node->init, found->init));
3377 continue;
3378 }
3379
3380 if (GET_CODE (s1node->loc) == VALUE
3381 && !VALUE_RECURSED_INTO (s1node->loc))
3382 {
3383 decl_or_value dv = dv_from_value (s1node->loc);
3384 variable *svar = shared_hash_find (s1set->vars, dv);
3385 if (svar)
3386 {
3387 if (svar->n_var_parts == 1)
3388 {
3389 VALUE_RECURSED_INTO (s1node->loc) = true;
3390 intersect_loc_chains (val, dest, dsm,
3391 svar->var_part[0].loc_chain,
3392 s2var);
3393 VALUE_RECURSED_INTO (s1node->loc) = false;
3394 }
3395 }
3396 }
3397
3398 /* ??? gotta look in cselib_val locations too. */
3399
3400 /* ??? if the location is equivalent to any location in src,
3401 searched recursively
3402
3403 add to dst the values needed to represent the equivalence
3404
3405 telling whether locations S is equivalent to another dv's
3406 location list:
3407
3408 for each location D in the list
3409
3410 if S and D satisfy rtx_equal_p, then it is present
3411
3412 else if D is a value, recurse without cycles
3413
3414 else if S and D have the same CODE and MODE
3415
3416 for each operand oS and the corresponding oD
3417
3418 if oS and oD are not equivalent, then S an D are not equivalent
3419
3420 else if they are RTX vectors
3421
3422 if any vector oS element is not equivalent to its respective oD,
3423 then S and D are not equivalent
3424
3425 */
3426
3427
3428 }
3429 }
3430
3431 /* Return -1 if X should be before Y in a location list for a 1-part
3432 variable, 1 if Y should be before X, and 0 if they're equivalent
3433 and should not appear in the list. */
3434
3435 static int
3436 loc_cmp (rtx x, rtx y)
3437 {
3438 int i, j, r;
3439 RTX_CODE code = GET_CODE (x);
3440 const char *fmt;
3441
3442 if (x == y)
3443 return 0;
3444
3445 if (REG_P (x))
3446 {
3447 if (!REG_P (y))
3448 return -1;
3449 gcc_assert (GET_MODE (x) == GET_MODE (y));
3450 if (REGNO (x) == REGNO (y))
3451 return 0;
3452 else if (REGNO (x) < REGNO (y))
3453 return -1;
3454 else
3455 return 1;
3456 }
3457
3458 if (REG_P (y))
3459 return 1;
3460
3461 if (MEM_P (x))
3462 {
3463 if (!MEM_P (y))
3464 return -1;
3465 gcc_assert (GET_MODE (x) == GET_MODE (y));
3466 return loc_cmp (XEXP (x, 0), XEXP (y, 0));
3467 }
3468
3469 if (MEM_P (y))
3470 return 1;
3471
3472 if (GET_CODE (x) == VALUE)
3473 {
3474 if (GET_CODE (y) != VALUE)
3475 return -1;
3476 /* Don't assert the modes are the same, that is true only
3477 when not recursing. (subreg:QI (value:SI 1:1) 0)
3478 and (subreg:QI (value:DI 2:2) 0) can be compared,
3479 even when the modes are different. */
3480 if (canon_value_cmp (x, y))
3481 return -1;
3482 else
3483 return 1;
3484 }
3485
3486 if (GET_CODE (y) == VALUE)
3487 return 1;
3488
3489 /* Entry value is the least preferable kind of expression. */
3490 if (GET_CODE (x) == ENTRY_VALUE)
3491 {
3492 if (GET_CODE (y) != ENTRY_VALUE)
3493 return 1;
3494 gcc_assert (GET_MODE (x) == GET_MODE (y));
3495 return loc_cmp (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
3496 }
3497
3498 if (GET_CODE (y) == ENTRY_VALUE)
3499 return -1;
3500
3501 if (GET_CODE (x) == GET_CODE (y))
3502 /* Compare operands below. */;
3503 else if (GET_CODE (x) < GET_CODE (y))
3504 return -1;
3505 else
3506 return 1;
3507
3508 gcc_assert (GET_MODE (x) == GET_MODE (y));
3509
3510 if (GET_CODE (x) == DEBUG_EXPR)
3511 {
3512 if (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
3513 < DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)))
3514 return -1;
3515 gcc_checking_assert (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
3516 > DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)));
3517 return 1;
3518 }
3519
3520 fmt = GET_RTX_FORMAT (code);
3521 for (i = 0; i < GET_RTX_LENGTH (code); i++)
3522 switch (fmt[i])
3523 {
3524 case 'w':
3525 if (XWINT (x, i) == XWINT (y, i))
3526 break;
3527 else if (XWINT (x, i) < XWINT (y, i))
3528 return -1;
3529 else
3530 return 1;
3531
3532 case 'n':
3533 case 'i':
3534 if (XINT (x, i) == XINT (y, i))
3535 break;
3536 else if (XINT (x, i) < XINT (y, i))
3537 return -1;
3538 else
3539 return 1;
3540
3541 case 'p':
3542 r = compare_sizes_for_sort (SUBREG_BYTE (x), SUBREG_BYTE (y));
3543 if (r != 0)
3544 return r;
3545 break;
3546
3547 case 'V':
3548 case 'E':
3549 /* Compare the vector length first. */
3550 if (XVECLEN (x, i) == XVECLEN (y, i))
3551 /* Compare the vectors elements. */;
3552 else if (XVECLEN (x, i) < XVECLEN (y, i))
3553 return -1;
3554 else
3555 return 1;
3556
3557 for (j = 0; j < XVECLEN (x, i); j++)
3558 if ((r = loc_cmp (XVECEXP (x, i, j),
3559 XVECEXP (y, i, j))))
3560 return r;
3561 break;
3562
3563 case 'e':
3564 if ((r = loc_cmp (XEXP (x, i), XEXP (y, i))))
3565 return r;
3566 break;
3567
3568 case 'S':
3569 case 's':
3570 if (XSTR (x, i) == XSTR (y, i))
3571 break;
3572 if (!XSTR (x, i))
3573 return -1;
3574 if (!XSTR (y, i))
3575 return 1;
3576 if ((r = strcmp (XSTR (x, i), XSTR (y, i))) == 0)
3577 break;
3578 else if (r < 0)
3579 return -1;
3580 else
3581 return 1;
3582
3583 case 'u':
3584 /* These are just backpointers, so they don't matter. */
3585 break;
3586
3587 case '0':
3588 case 't':
3589 break;
3590
3591 /* It is believed that rtx's at this level will never
3592 contain anything but integers and other rtx's,
3593 except for within LABEL_REFs and SYMBOL_REFs. */
3594 default:
3595 gcc_unreachable ();
3596 }
3597 if (CONST_WIDE_INT_P (x))
3598 {
3599 /* Compare the vector length first. */
3600 if (CONST_WIDE_INT_NUNITS (x) >= CONST_WIDE_INT_NUNITS (y))
3601 return 1;
3602 else if (CONST_WIDE_INT_NUNITS (x) < CONST_WIDE_INT_NUNITS (y))
3603 return -1;
3604
3605 /* Compare the vectors elements. */;
3606 for (j = CONST_WIDE_INT_NUNITS (x) - 1; j >= 0 ; j--)
3607 {
3608 if (CONST_WIDE_INT_ELT (x, j) < CONST_WIDE_INT_ELT (y, j))
3609 return -1;
3610 if (CONST_WIDE_INT_ELT (x, j) > CONST_WIDE_INT_ELT (y, j))
3611 return 1;
3612 }
3613 }
3614
3615 return 0;
3616 }
3617
3618 /* Check the order of entries in one-part variables. */
3619
3620 int
3621 canonicalize_loc_order_check (variable **slot,
3622 dataflow_set *data ATTRIBUTE_UNUSED)
3623 {
3624 variable *var = *slot;
3625 location_chain *node, *next;
3626
3627 #ifdef ENABLE_RTL_CHECKING
3628 int i;
3629 for (i = 0; i < var->n_var_parts; i++)
3630 gcc_assert (var->var_part[0].cur_loc == NULL);
3631 gcc_assert (!var->in_changed_variables);
3632 #endif
3633
3634 if (!var->onepart)
3635 return 1;
3636
3637 gcc_assert (var->n_var_parts == 1);
3638 node = var->var_part[0].loc_chain;
3639 gcc_assert (node);
3640
3641 while ((next = node->next))
3642 {
3643 gcc_assert (loc_cmp (node->loc, next->loc) < 0);
3644 node = next;
3645 }
3646
3647 return 1;
3648 }
3649
3650 /* Mark with VALUE_RECURSED_INTO values that have neighbors that are
3651 more likely to be chosen as canonical for an equivalence set.
3652 Ensure less likely values can reach more likely neighbors, making
3653 the connections bidirectional. */
3654
3655 int
3656 canonicalize_values_mark (variable **slot, dataflow_set *set)
3657 {
3658 variable *var = *slot;
3659 decl_or_value dv = var->dv;
3660 rtx val;
3661 location_chain *node;
3662
3663 if (!dv_is_value_p (dv))
3664 return 1;
3665
3666 gcc_checking_assert (var->n_var_parts == 1);
3667
3668 val = dv_as_value (dv);
3669
3670 for (node = var->var_part[0].loc_chain; node; node = node->next)
3671 if (GET_CODE (node->loc) == VALUE)
3672 {
3673 if (canon_value_cmp (node->loc, val))
3674 VALUE_RECURSED_INTO (val) = true;
3675 else
3676 {
3677 decl_or_value odv = dv_from_value (node->loc);
3678 variable **oslot;
3679 oslot = shared_hash_find_slot_noinsert (set->vars, odv);
3680
3681 set_slot_part (set, val, oslot, odv, 0,
3682 node->init, NULL_RTX);
3683
3684 VALUE_RECURSED_INTO (node->loc) = true;
3685 }
3686 }
3687
3688 return 1;
3689 }
3690
3691 /* Remove redundant entries from equivalence lists in onepart
3692 variables, canonicalizing equivalence sets into star shapes. */
3693
3694 int
3695 canonicalize_values_star (variable **slot, dataflow_set *set)
3696 {
3697 variable *var = *slot;
3698 decl_or_value dv = var->dv;
3699 location_chain *node;
3700 decl_or_value cdv;
3701 rtx val, cval;
3702 variable **cslot;
3703 bool has_value;
3704 bool has_marks;
3705
3706 if (!var->onepart)
3707 return 1;
3708
3709 gcc_checking_assert (var->n_var_parts == 1);
3710
3711 if (dv_is_value_p (dv))
3712 {
3713 cval = dv_as_value (dv);
3714 if (!VALUE_RECURSED_INTO (cval))
3715 return 1;
3716 VALUE_RECURSED_INTO (cval) = false;
3717 }
3718 else
3719 cval = NULL_RTX;
3720
3721 restart:
3722 val = cval;
3723 has_value = false;
3724 has_marks = false;
3725
3726 gcc_assert (var->n_var_parts == 1);
3727
3728 for (node = var->var_part[0].loc_chain; node; node = node->next)
3729 if (GET_CODE (node->loc) == VALUE)
3730 {
3731 has_value = true;
3732 if (VALUE_RECURSED_INTO (node->loc))
3733 has_marks = true;
3734 if (canon_value_cmp (node->loc, cval))
3735 cval = node->loc;
3736 }
3737
3738 if (!has_value)
3739 return 1;
3740
3741 if (cval == val)
3742 {
3743 if (!has_marks || dv_is_decl_p (dv))
3744 return 1;
3745
3746 /* Keep it marked so that we revisit it, either after visiting a
3747 child node, or after visiting a new parent that might be
3748 found out. */
3749 VALUE_RECURSED_INTO (val) = true;
3750
3751 for (node = var->var_part[0].loc_chain; node; node = node->next)
3752 if (GET_CODE (node->loc) == VALUE
3753 && VALUE_RECURSED_INTO (node->loc))
3754 {
3755 cval = node->loc;
3756 restart_with_cval:
3757 VALUE_RECURSED_INTO (cval) = false;
3758 dv = dv_from_value (cval);
3759 slot = shared_hash_find_slot_noinsert (set->vars, dv);
3760 if (!slot)
3761 {
3762 gcc_assert (dv_is_decl_p (var->dv));
3763 /* The canonical value was reset and dropped.
3764 Remove it. */
3765 clobber_variable_part (set, NULL, var->dv, 0, NULL);
3766 return 1;
3767 }
3768 var = *slot;
3769 gcc_assert (dv_is_value_p (var->dv));
3770 if (var->n_var_parts == 0)
3771 return 1;
3772 gcc_assert (var->n_var_parts == 1);
3773 goto restart;
3774 }
3775
3776 VALUE_RECURSED_INTO (val) = false;
3777
3778 return 1;
3779 }
3780
3781 /* Push values to the canonical one. */
3782 cdv = dv_from_value (cval);
3783 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3784
3785 for (node = var->var_part[0].loc_chain; node; node = node->next)
3786 if (node->loc != cval)
3787 {
3788 cslot = set_slot_part (set, node->loc, cslot, cdv, 0,
3789 node->init, NULL_RTX);
3790 if (GET_CODE (node->loc) == VALUE)
3791 {
3792 decl_or_value ndv = dv_from_value (node->loc);
3793
3794 set_variable_part (set, cval, ndv, 0, node->init, NULL_RTX,
3795 NO_INSERT);
3796
3797 if (canon_value_cmp (node->loc, val))
3798 {
3799 /* If it could have been a local minimum, it's not any more,
3800 since it's now neighbor to cval, so it may have to push
3801 to it. Conversely, if it wouldn't have prevailed over
3802 val, then whatever mark it has is fine: if it was to
3803 push, it will now push to a more canonical node, but if
3804 it wasn't, then it has already pushed any values it might
3805 have to. */
3806 VALUE_RECURSED_INTO (node->loc) = true;
3807 /* Make sure we visit node->loc by ensuring we cval is
3808 visited too. */
3809 VALUE_RECURSED_INTO (cval) = true;
3810 }
3811 else if (!VALUE_RECURSED_INTO (node->loc))
3812 /* If we have no need to "recurse" into this node, it's
3813 already "canonicalized", so drop the link to the old
3814 parent. */
3815 clobber_variable_part (set, cval, ndv, 0, NULL);
3816 }
3817 else if (GET_CODE (node->loc) == REG)
3818 {
3819 attrs *list = set->regs[REGNO (node->loc)], **listp;
3820
3821 /* Change an existing attribute referring to dv so that it
3822 refers to cdv, removing any duplicate this might
3823 introduce, and checking that no previous duplicates
3824 existed, all in a single pass. */
3825
3826 while (list)
3827 {
3828 if (list->offset == 0
3829 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3830 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3831 break;
3832
3833 list = list->next;
3834 }
3835
3836 gcc_assert (list);
3837 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3838 {
3839 list->dv = cdv;
3840 for (listp = &list->next; (list = *listp); listp = &list->next)
3841 {
3842 if (list->offset)
3843 continue;
3844
3845 if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3846 {
3847 *listp = list->next;
3848 delete list;
3849 list = *listp;
3850 break;
3851 }
3852
3853 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (dv));
3854 }
3855 }
3856 else if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3857 {
3858 for (listp = &list->next; (list = *listp); listp = &list->next)
3859 {
3860 if (list->offset)
3861 continue;
3862
3863 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3864 {
3865 *listp = list->next;
3866 delete list;
3867 list = *listp;
3868 break;
3869 }
3870
3871 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (cdv));
3872 }
3873 }
3874 else
3875 gcc_unreachable ();
3876
3877 if (flag_checking)
3878 while (list)
3879 {
3880 if (list->offset == 0
3881 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3882 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3883 gcc_unreachable ();
3884
3885 list = list->next;
3886 }
3887 }
3888 }
3889
3890 if (val)
3891 set_slot_part (set, val, cslot, cdv, 0,
3892 VAR_INIT_STATUS_INITIALIZED, NULL_RTX);
3893
3894 slot = clobber_slot_part (set, cval, slot, 0, NULL);
3895
3896 /* Variable may have been unshared. */
3897 var = *slot;
3898 gcc_checking_assert (var->n_var_parts && var->var_part[0].loc_chain->loc == cval
3899 && var->var_part[0].loc_chain->next == NULL);
3900
3901 if (VALUE_RECURSED_INTO (cval))
3902 goto restart_with_cval;
3903
3904 return 1;
3905 }
3906
3907 /* Bind one-part variables to the canonical value in an equivalence
3908 set. Not doing this causes dataflow convergence failure in rare
3909 circumstances, see PR42873. Unfortunately we can't do this
3910 efficiently as part of canonicalize_values_star, since we may not
3911 have determined or even seen the canonical value of a set when we
3912 get to a variable that references another member of the set. */
3913
3914 int
3915 canonicalize_vars_star (variable **slot, dataflow_set *set)
3916 {
3917 variable *var = *slot;
3918 decl_or_value dv = var->dv;
3919 location_chain *node;
3920 rtx cval;
3921 decl_or_value cdv;
3922 variable **cslot;
3923 variable *cvar;
3924 location_chain *cnode;
3925
3926 if (!var->onepart || var->onepart == ONEPART_VALUE)
3927 return 1;
3928
3929 gcc_assert (var->n_var_parts == 1);
3930
3931 node = var->var_part[0].loc_chain;
3932
3933 if (GET_CODE (node->loc) != VALUE)
3934 return 1;
3935
3936 gcc_assert (!node->next);
3937 cval = node->loc;
3938
3939 /* Push values to the canonical one. */
3940 cdv = dv_from_value (cval);
3941 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3942 if (!cslot)
3943 return 1;
3944 cvar = *cslot;
3945 gcc_assert (cvar->n_var_parts == 1);
3946
3947 cnode = cvar->var_part[0].loc_chain;
3948
3949 /* CVAL is canonical if its value list contains non-VALUEs or VALUEs
3950 that are not “more canonical” than it. */
3951 if (GET_CODE (cnode->loc) != VALUE
3952 || !canon_value_cmp (cnode->loc, cval))
3953 return 1;
3954
3955 /* CVAL was found to be non-canonical. Change the variable to point
3956 to the canonical VALUE. */
3957 gcc_assert (!cnode->next);
3958 cval = cnode->loc;
3959
3960 slot = set_slot_part (set, cval, slot, dv, 0,
3961 node->init, node->set_src);
3962 clobber_slot_part (set, cval, slot, 0, node->set_src);
3963
3964 return 1;
3965 }
3966
3967 /* Combine variable or value in *S1SLOT (in DSM->cur) with the
3968 corresponding entry in DSM->src. Multi-part variables are combined
3969 with variable_union, whereas onepart dvs are combined with
3970 intersection. */
3971
3972 static int
3973 variable_merge_over_cur (variable *s1var, struct dfset_merge *dsm)
3974 {
3975 dataflow_set *dst = dsm->dst;
3976 variable **dstslot;
3977 variable *s2var, *dvar = NULL;
3978 decl_or_value dv = s1var->dv;
3979 onepart_enum onepart = s1var->onepart;
3980 rtx val;
3981 hashval_t dvhash;
3982 location_chain *node, **nodep;
3983
3984 /* If the incoming onepart variable has an empty location list, then
3985 the intersection will be just as empty. For other variables,
3986 it's always union. */
3987 gcc_checking_assert (s1var->n_var_parts
3988 && s1var->var_part[0].loc_chain);
3989
3990 if (!onepart)
3991 return variable_union (s1var, dst);
3992
3993 gcc_checking_assert (s1var->n_var_parts == 1);
3994
3995 dvhash = dv_htab_hash (dv);
3996 if (dv_is_value_p (dv))
3997 val = dv_as_value (dv);
3998 else
3999 val = NULL;
4000
4001 s2var = shared_hash_find_1 (dsm->src->vars, dv, dvhash);
4002 if (!s2var)
4003 {
4004 dst_can_be_shared = false;
4005 return 1;
4006 }
4007
4008 dsm->src_onepart_cnt--;
4009 gcc_assert (s2var->var_part[0].loc_chain
4010 && s2var->onepart == onepart
4011 && s2var->n_var_parts == 1);
4012
4013 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
4014 if (dstslot)
4015 {
4016 dvar = *dstslot;
4017 gcc_assert (dvar->refcount == 1
4018 && dvar->onepart == onepart
4019 && dvar->n_var_parts == 1);
4020 nodep = &dvar->var_part[0].loc_chain;
4021 }
4022 else
4023 {
4024 nodep = &node;
4025 node = NULL;
4026 }
4027
4028 if (!dstslot && !onepart_variable_different_p (s1var, s2var))
4029 {
4030 dstslot = shared_hash_find_slot_unshare_1 (&dst->vars, dv,
4031 dvhash, INSERT);
4032 *dstslot = dvar = s2var;
4033 dvar->refcount++;
4034 }
4035 else
4036 {
4037 dst_can_be_shared = false;
4038
4039 intersect_loc_chains (val, nodep, dsm,
4040 s1var->var_part[0].loc_chain, s2var);
4041
4042 if (!dstslot)
4043 {
4044 if (node)
4045 {
4046 dvar = onepart_pool_allocate (onepart);
4047 dvar->dv = dv;
4048 dvar->refcount = 1;
4049 dvar->n_var_parts = 1;
4050 dvar->onepart = onepart;
4051 dvar->in_changed_variables = false;
4052 dvar->var_part[0].loc_chain = node;
4053 dvar->var_part[0].cur_loc = NULL;
4054 if (onepart)
4055 VAR_LOC_1PAUX (dvar) = NULL;
4056 else
4057 VAR_PART_OFFSET (dvar, 0) = 0;
4058
4059 dstslot
4060 = shared_hash_find_slot_unshare_1 (&dst->vars, dv, dvhash,
4061 INSERT);
4062 gcc_assert (!*dstslot);
4063 *dstslot = dvar;
4064 }
4065 else
4066 return 1;
4067 }
4068 }
4069
4070 nodep = &dvar->var_part[0].loc_chain;
4071 while ((node = *nodep))
4072 {
4073 location_chain **nextp = &node->next;
4074
4075 if (GET_CODE (node->loc) == REG)
4076 {
4077 attrs *list;
4078
4079 for (list = dst->regs[REGNO (node->loc)]; list; list = list->next)
4080 if (GET_MODE (node->loc) == GET_MODE (list->loc)
4081 && dv_is_value_p (list->dv))
4082 break;
4083
4084 if (!list)
4085 attrs_list_insert (&dst->regs[REGNO (node->loc)],
4086 dv, 0, node->loc);
4087 /* If this value became canonical for another value that had
4088 this register, we want to leave it alone. */
4089 else if (dv_as_value (list->dv) != val)
4090 {
4091 dstslot = set_slot_part (dst, dv_as_value (list->dv),
4092 dstslot, dv, 0,
4093 node->init, NULL_RTX);
4094 dstslot = delete_slot_part (dst, node->loc, dstslot, 0);
4095
4096 /* Since nextp points into the removed node, we can't
4097 use it. The pointer to the next node moved to nodep.
4098 However, if the variable we're walking is unshared
4099 during our walk, we'll keep walking the location list
4100 of the previously-shared variable, in which case the
4101 node won't have been removed, and we'll want to skip
4102 it. That's why we test *nodep here. */
4103 if (*nodep != node)
4104 nextp = nodep;
4105 }
4106 }
4107 else
4108 /* Canonicalization puts registers first, so we don't have to
4109 walk it all. */
4110 break;
4111 nodep = nextp;
4112 }
4113
4114 if (dvar != *dstslot)
4115 dvar = *dstslot;
4116 nodep = &dvar->var_part[0].loc_chain;
4117
4118 if (val)
4119 {
4120 /* Mark all referenced nodes for canonicalization, and make sure
4121 we have mutual equivalence links. */
4122 VALUE_RECURSED_INTO (val) = true;
4123 for (node = *nodep; node; node = node->next)
4124 if (GET_CODE (node->loc) == VALUE)
4125 {
4126 VALUE_RECURSED_INTO (node->loc) = true;
4127 set_variable_part (dst, val, dv_from_value (node->loc), 0,
4128 node->init, NULL, INSERT);
4129 }
4130
4131 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
4132 gcc_assert (*dstslot == dvar);
4133 canonicalize_values_star (dstslot, dst);
4134 gcc_checking_assert (dstslot
4135 == shared_hash_find_slot_noinsert_1 (dst->vars,
4136 dv, dvhash));
4137 dvar = *dstslot;
4138 }
4139 else
4140 {
4141 bool has_value = false, has_other = false;
4142
4143 /* If we have one value and anything else, we're going to
4144 canonicalize this, so make sure all values have an entry in
4145 the table and are marked for canonicalization. */
4146 for (node = *nodep; node; node = node->next)
4147 {
4148 if (GET_CODE (node->loc) == VALUE)
4149 {
4150 /* If this was marked during register canonicalization,
4151 we know we have to canonicalize values. */
4152 if (has_value)
4153 has_other = true;
4154 has_value = true;
4155 if (has_other)
4156 break;
4157 }
4158 else
4159 {
4160 has_other = true;
4161 if (has_value)
4162 break;
4163 }
4164 }
4165
4166 if (has_value && has_other)
4167 {
4168 for (node = *nodep; node; node = node->next)
4169 {
4170 if (GET_CODE (node->loc) == VALUE)
4171 {
4172 decl_or_value dv = dv_from_value (node->loc);
4173 variable **slot = NULL;
4174
4175 if (shared_hash_shared (dst->vars))
4176 slot = shared_hash_find_slot_noinsert (dst->vars, dv);
4177 if (!slot)
4178 slot = shared_hash_find_slot_unshare (&dst->vars, dv,
4179 INSERT);
4180 if (!*slot)
4181 {
4182 variable *var = onepart_pool_allocate (ONEPART_VALUE);
4183 var->dv = dv;
4184 var->refcount = 1;
4185 var->n_var_parts = 1;
4186 var->onepart = ONEPART_VALUE;
4187 var->in_changed_variables = false;
4188 var->var_part[0].loc_chain = NULL;
4189 var->var_part[0].cur_loc = NULL;
4190 VAR_LOC_1PAUX (var) = NULL;
4191 *slot = var;
4192 }
4193
4194 VALUE_RECURSED_INTO (node->loc) = true;
4195 }
4196 }
4197
4198 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
4199 gcc_assert (*dstslot == dvar);
4200 canonicalize_values_star (dstslot, dst);
4201 gcc_checking_assert (dstslot
4202 == shared_hash_find_slot_noinsert_1 (dst->vars,
4203 dv, dvhash));
4204 dvar = *dstslot;
4205 }
4206 }
4207
4208 if (!onepart_variable_different_p (dvar, s2var))
4209 {
4210 variable_htab_free (dvar);
4211 *dstslot = dvar = s2var;
4212 dvar->refcount++;
4213 }
4214 else if (s2var != s1var && !onepart_variable_different_p (dvar, s1var))
4215 {
4216 variable_htab_free (dvar);
4217 *dstslot = dvar = s1var;
4218 dvar->refcount++;
4219 dst_can_be_shared = false;
4220 }
4221 else
4222 dst_can_be_shared = false;
4223
4224 return 1;
4225 }
4226
4227 /* Copy s2slot (in DSM->src) to DSM->dst if the variable is a
4228 multi-part variable. Unions of multi-part variables and
4229 intersections of one-part ones will be handled in
4230 variable_merge_over_cur(). */
4231
4232 static int
4233 variable_merge_over_src (variable *s2var, struct dfset_merge *dsm)
4234 {
4235 dataflow_set *dst = dsm->dst;
4236 decl_or_value dv = s2var->dv;
4237
4238 if (!s2var->onepart)
4239 {
4240 variable **dstp = shared_hash_find_slot (dst->vars, dv);
4241 *dstp = s2var;
4242 s2var->refcount++;
4243 return 1;
4244 }
4245
4246 dsm->src_onepart_cnt++;
4247 return 1;
4248 }
4249
4250 /* Combine dataflow set information from SRC2 into DST, using PDST
4251 to carry over information across passes. */
4252
4253 static void
4254 dataflow_set_merge (dataflow_set *dst, dataflow_set *src2)
4255 {
4256 dataflow_set cur = *dst;
4257 dataflow_set *src1 = &cur;
4258 struct dfset_merge dsm;
4259 int i;
4260 size_t src1_elems, src2_elems;
4261 variable_iterator_type hi;
4262 variable *var;
4263
4264 src1_elems = shared_hash_htab (src1->vars)->elements ();
4265 src2_elems = shared_hash_htab (src2->vars)->elements ();
4266 dataflow_set_init (dst);
4267 dst->stack_adjust = cur.stack_adjust;
4268 shared_hash_destroy (dst->vars);
4269 dst->vars = new shared_hash;
4270 dst->vars->refcount = 1;
4271 dst->vars->htab = new variable_table_type (MAX (src1_elems, src2_elems));
4272
4273 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4274 attrs_list_mpdv_union (&dst->regs[i], src1->regs[i], src2->regs[i]);
4275
4276 dsm.dst = dst;
4277 dsm.src = src2;
4278 dsm.cur = src1;
4279 dsm.src_onepart_cnt = 0;
4280
4281 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (dsm.src->vars),
4282 var, variable, hi)
4283 variable_merge_over_src (var, &dsm);
4284 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (dsm.cur->vars),
4285 var, variable, hi)
4286 variable_merge_over_cur (var, &dsm);
4287
4288 if (dsm.src_onepart_cnt)
4289 dst_can_be_shared = false;
4290
4291 dataflow_set_destroy (src1);
4292 }
4293
4294 /* Mark register equivalences. */
4295
4296 static void
4297 dataflow_set_equiv_regs (dataflow_set *set)
4298 {
4299 int i;
4300 attrs *list, **listp;
4301
4302 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4303 {
4304 rtx canon[NUM_MACHINE_MODES];
4305
4306 /* If the list is empty or one entry, no need to canonicalize
4307 anything. */
4308 if (set->regs[i] == NULL || set->regs[i]->next == NULL)
4309 continue;
4310
4311 memset (canon, 0, sizeof (canon));
4312
4313 for (list = set->regs[i]; list; list = list->next)
4314 if (list->offset == 0 && dv_is_value_p (list->dv))
4315 {
4316 rtx val = dv_as_value (list->dv);
4317 rtx *cvalp = &canon[(int)GET_MODE (val)];
4318 rtx cval = *cvalp;
4319
4320 if (canon_value_cmp (val, cval))
4321 *cvalp = val;
4322 }
4323
4324 for (list = set->regs[i]; list; list = list->next)
4325 if (list->offset == 0 && dv_onepart_p (list->dv))
4326 {
4327 rtx cval = canon[(int)GET_MODE (list->loc)];
4328
4329 if (!cval)
4330 continue;
4331
4332 if (dv_is_value_p (list->dv))
4333 {
4334 rtx val = dv_as_value (list->dv);
4335
4336 if (val == cval)
4337 continue;
4338
4339 VALUE_RECURSED_INTO (val) = true;
4340 set_variable_part (set, val, dv_from_value (cval), 0,
4341 VAR_INIT_STATUS_INITIALIZED,
4342 NULL, NO_INSERT);
4343 }
4344
4345 VALUE_RECURSED_INTO (cval) = true;
4346 set_variable_part (set, cval, list->dv, 0,
4347 VAR_INIT_STATUS_INITIALIZED, NULL, NO_INSERT);
4348 }
4349
4350 for (listp = &set->regs[i]; (list = *listp);
4351 listp = list ? &list->next : listp)
4352 if (list->offset == 0 && dv_onepart_p (list->dv))
4353 {
4354 rtx cval = canon[(int)GET_MODE (list->loc)];
4355 variable **slot;
4356
4357 if (!cval)
4358 continue;
4359
4360 if (dv_is_value_p (list->dv))
4361 {
4362 rtx val = dv_as_value (list->dv);
4363 if (!VALUE_RECURSED_INTO (val))
4364 continue;
4365 }
4366
4367 slot = shared_hash_find_slot_noinsert (set->vars, list->dv);
4368 canonicalize_values_star (slot, set);
4369 if (*listp != list)
4370 list = NULL;
4371 }
4372 }
4373 }
4374
4375 /* Remove any redundant values in the location list of VAR, which must
4376 be unshared and 1-part. */
4377
4378 static void
4379 remove_duplicate_values (variable *var)
4380 {
4381 location_chain *node, **nodep;
4382
4383 gcc_assert (var->onepart);
4384 gcc_assert (var->n_var_parts == 1);
4385 gcc_assert (var->refcount == 1);
4386
4387 for (nodep = &var->var_part[0].loc_chain; (node = *nodep); )
4388 {
4389 if (GET_CODE (node->loc) == VALUE)
4390 {
4391 if (VALUE_RECURSED_INTO (node->loc))
4392 {
4393 /* Remove duplicate value node. */
4394 *nodep = node->next;
4395 delete node;
4396 continue;
4397 }
4398 else
4399 VALUE_RECURSED_INTO (node->loc) = true;
4400 }
4401 nodep = &node->next;
4402 }
4403
4404 for (node = var->var_part[0].loc_chain; node; node = node->next)
4405 if (GET_CODE (node->loc) == VALUE)
4406 {
4407 gcc_assert (VALUE_RECURSED_INTO (node->loc));
4408 VALUE_RECURSED_INTO (node->loc) = false;
4409 }
4410 }
4411
4412
4413 /* Hash table iteration argument passed to variable_post_merge. */
4414 struct dfset_post_merge
4415 {
4416 /* The new input set for the current block. */
4417 dataflow_set *set;
4418 /* Pointer to the permanent input set for the current block, or
4419 NULL. */
4420 dataflow_set **permp;
4421 };
4422
4423 /* Create values for incoming expressions associated with one-part
4424 variables that don't have value numbers for them. */
4425
4426 int
4427 variable_post_merge_new_vals (variable **slot, dfset_post_merge *dfpm)
4428 {
4429 dataflow_set *set = dfpm->set;
4430 variable *var = *slot;
4431 location_chain *node;
4432
4433 if (!var->onepart || !var->n_var_parts)
4434 return 1;
4435
4436 gcc_assert (var->n_var_parts == 1);
4437
4438 if (dv_is_decl_p (var->dv))
4439 {
4440 bool check_dupes = false;
4441
4442 restart:
4443 for (node = var->var_part[0].loc_chain; node; node = node->next)
4444 {
4445 if (GET_CODE (node->loc) == VALUE)
4446 gcc_assert (!VALUE_RECURSED_INTO (node->loc));
4447 else if (GET_CODE (node->loc) == REG)
4448 {
4449 attrs *att, **attp, **curp = NULL;
4450
4451 if (var->refcount != 1)
4452 {
4453 slot = unshare_variable (set, slot, var,
4454 VAR_INIT_STATUS_INITIALIZED);
4455 var = *slot;
4456 goto restart;
4457 }
4458
4459 for (attp = &set->regs[REGNO (node->loc)]; (att = *attp);
4460 attp = &att->next)
4461 if (att->offset == 0
4462 && GET_MODE (att->loc) == GET_MODE (node->loc))
4463 {
4464 if (dv_is_value_p (att->dv))
4465 {
4466 rtx cval = dv_as_value (att->dv);
4467 node->loc = cval;
4468 check_dupes = true;
4469 break;
4470 }
4471 else if (dv_as_opaque (att->dv) == dv_as_opaque (var->dv))
4472 curp = attp;
4473 }
4474
4475 if (!curp)
4476 {
4477 curp = attp;
4478 while (*curp)
4479 if ((*curp)->offset == 0
4480 && GET_MODE ((*curp)->loc) == GET_MODE (node->loc)
4481 && dv_as_opaque ((*curp)->dv) == dv_as_opaque (var->dv))
4482 break;
4483 else
4484 curp = &(*curp)->next;
4485 gcc_assert (*curp);
4486 }
4487
4488 if (!att)
4489 {
4490 decl_or_value cdv;
4491 rtx cval;
4492
4493 if (!*dfpm->permp)
4494 {
4495 *dfpm->permp = XNEW (dataflow_set);
4496 dataflow_set_init (*dfpm->permp);
4497 }
4498
4499 for (att = (*dfpm->permp)->regs[REGNO (node->loc)];
4500 att; att = att->next)
4501 if (GET_MODE (att->loc) == GET_MODE (node->loc))
4502 {
4503 gcc_assert (att->offset == 0
4504 && dv_is_value_p (att->dv));
4505 val_reset (set, att->dv);
4506 break;
4507 }
4508
4509 if (att)
4510 {
4511 cdv = att->dv;
4512 cval = dv_as_value (cdv);
4513 }
4514 else
4515 {
4516 /* Create a unique value to hold this register,
4517 that ought to be found and reused in
4518 subsequent rounds. */
4519 cselib_val *v;
4520 gcc_assert (!cselib_lookup (node->loc,
4521 GET_MODE (node->loc), 0,
4522 VOIDmode));
4523 v = cselib_lookup (node->loc, GET_MODE (node->loc), 1,
4524 VOIDmode);
4525 cselib_preserve_value (v);
4526 cselib_invalidate_rtx (node->loc);
4527 cval = v->val_rtx;
4528 cdv = dv_from_value (cval);
4529 if (dump_file)
4530 fprintf (dump_file,
4531 "Created new value %u:%u for reg %i\n",
4532 v->uid, v->hash, REGNO (node->loc));
4533 }
4534
4535 var_reg_decl_set (*dfpm->permp, node->loc,
4536 VAR_INIT_STATUS_INITIALIZED,
4537 cdv, 0, NULL, INSERT);
4538
4539 node->loc = cval;
4540 check_dupes = true;
4541 }
4542
4543 /* Remove attribute referring to the decl, which now
4544 uses the value for the register, already existing or
4545 to be added when we bring perm in. */
4546 att = *curp;
4547 *curp = att->next;
4548 delete att;
4549 }
4550 }
4551
4552 if (check_dupes)
4553 remove_duplicate_values (var);
4554 }
4555
4556 return 1;
4557 }
4558
4559 /* Reset values in the permanent set that are not associated with the
4560 chosen expression. */
4561
4562 int
4563 variable_post_merge_perm_vals (variable **pslot, dfset_post_merge *dfpm)
4564 {
4565 dataflow_set *set = dfpm->set;
4566 variable *pvar = *pslot, *var;
4567 location_chain *pnode;
4568 decl_or_value dv;
4569 attrs *att;
4570
4571 gcc_assert (dv_is_value_p (pvar->dv)
4572 && pvar->n_var_parts == 1);
4573 pnode = pvar->var_part[0].loc_chain;
4574 gcc_assert (pnode
4575 && !pnode->next
4576 && REG_P (pnode->loc));
4577
4578 dv = pvar->dv;
4579
4580 var = shared_hash_find (set->vars, dv);
4581 if (var)
4582 {
4583 /* Although variable_post_merge_new_vals may have made decls
4584 non-star-canonical, values that pre-existed in canonical form
4585 remain canonical, and newly-created values reference a single
4586 REG, so they are canonical as well. Since VAR has the
4587 location list for a VALUE, using find_loc_in_1pdv for it is
4588 fine, since VALUEs don't map back to DECLs. */
4589 if (find_loc_in_1pdv (pnode->loc, var, shared_hash_htab (set->vars)))
4590 return 1;
4591 val_reset (set, dv);
4592 }
4593
4594 for (att = set->regs[REGNO (pnode->loc)]; att; att = att->next)
4595 if (att->offset == 0
4596 && GET_MODE (att->loc) == GET_MODE (pnode->loc)
4597 && dv_is_value_p (att->dv))
4598 break;
4599
4600 /* If there is a value associated with this register already, create
4601 an equivalence. */
4602 if (att && dv_as_value (att->dv) != dv_as_value (dv))
4603 {
4604 rtx cval = dv_as_value (att->dv);
4605 set_variable_part (set, cval, dv, 0, pnode->init, NULL, INSERT);
4606 set_variable_part (set, dv_as_value (dv), att->dv, 0, pnode->init,
4607 NULL, INSERT);
4608 }
4609 else if (!att)
4610 {
4611 attrs_list_insert (&set->regs[REGNO (pnode->loc)],
4612 dv, 0, pnode->loc);
4613 variable_union (pvar, set);
4614 }
4615
4616 return 1;
4617 }
4618
4619 /* Just checking stuff and registering register attributes for
4620 now. */
4621
4622 static void
4623 dataflow_post_merge_adjust (dataflow_set *set, dataflow_set **permp)
4624 {
4625 struct dfset_post_merge dfpm;
4626
4627 dfpm.set = set;
4628 dfpm.permp = permp;
4629
4630 shared_hash_htab (set->vars)
4631 ->traverse <dfset_post_merge*, variable_post_merge_new_vals> (&dfpm);
4632 if (*permp)
4633 shared_hash_htab ((*permp)->vars)
4634 ->traverse <dfset_post_merge*, variable_post_merge_perm_vals> (&dfpm);
4635 shared_hash_htab (set->vars)
4636 ->traverse <dataflow_set *, canonicalize_values_star> (set);
4637 shared_hash_htab (set->vars)
4638 ->traverse <dataflow_set *, canonicalize_vars_star> (set);
4639 }
4640
4641 /* Return a node whose loc is a MEM that refers to EXPR in the
4642 location list of a one-part variable or value VAR, or in that of
4643 any values recursively mentioned in the location lists. */
4644
4645 static location_chain *
4646 find_mem_expr_in_1pdv (tree expr, rtx val, variable_table_type *vars)
4647 {
4648 location_chain *node;
4649 decl_or_value dv;
4650 variable *var;
4651 location_chain *where = NULL;
4652
4653 if (!val)
4654 return NULL;
4655
4656 gcc_assert (GET_CODE (val) == VALUE
4657 && !VALUE_RECURSED_INTO (val));
4658
4659 dv = dv_from_value (val);
4660 var = vars->find_with_hash (dv, dv_htab_hash (dv));
4661
4662 if (!var)
4663 return NULL;
4664
4665 gcc_assert (var->onepart);
4666
4667 if (!var->n_var_parts)
4668 return NULL;
4669
4670 VALUE_RECURSED_INTO (val) = true;
4671
4672 for (node = var->var_part[0].loc_chain; node; node = node->next)
4673 if (MEM_P (node->loc)
4674 && MEM_EXPR (node->loc) == expr
4675 && int_mem_offset (node->loc) == 0)
4676 {
4677 where = node;
4678 break;
4679 }
4680 else if (GET_CODE (node->loc) == VALUE
4681 && !VALUE_RECURSED_INTO (node->loc)
4682 && (where = find_mem_expr_in_1pdv (expr, node->loc, vars)))
4683 break;
4684
4685 VALUE_RECURSED_INTO (val) = false;
4686
4687 return where;
4688 }
4689
4690 /* Return TRUE if the value of MEM may vary across a call. */
4691
4692 static bool
4693 mem_dies_at_call (rtx mem)
4694 {
4695 tree expr = MEM_EXPR (mem);
4696 tree decl;
4697
4698 if (!expr)
4699 return true;
4700
4701 decl = get_base_address (expr);
4702
4703 if (!decl)
4704 return true;
4705
4706 if (!DECL_P (decl))
4707 return true;
4708
4709 return (may_be_aliased (decl)
4710 || (!TREE_READONLY (decl) && is_global_var (decl)));
4711 }
4712
4713 /* Remove all MEMs from the location list of a hash table entry for a
4714 one-part variable, except those whose MEM attributes map back to
4715 the variable itself, directly or within a VALUE. */
4716
4717 int
4718 dataflow_set_preserve_mem_locs (variable **slot, dataflow_set *set)
4719 {
4720 variable *var = *slot;
4721
4722 if (var->onepart == ONEPART_VDECL || var->onepart == ONEPART_DEXPR)
4723 {
4724 tree decl = dv_as_decl (var->dv);
4725 location_chain *loc, **locp;
4726 bool changed = false;
4727
4728 if (!var->n_var_parts)
4729 return 1;
4730
4731 gcc_assert (var->n_var_parts == 1);
4732
4733 if (shared_var_p (var, set->vars))
4734 {
4735 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4736 {
4737 /* We want to remove dying MEMs that don't refer to DECL. */
4738 if (GET_CODE (loc->loc) == MEM
4739 && (MEM_EXPR (loc->loc) != decl
4740 || int_mem_offset (loc->loc) != 0)
4741 && mem_dies_at_call (loc->loc))
4742 break;
4743 /* We want to move here MEMs that do refer to DECL. */
4744 else if (GET_CODE (loc->loc) == VALUE
4745 && find_mem_expr_in_1pdv (decl, loc->loc,
4746 shared_hash_htab (set->vars)))
4747 break;
4748 }
4749
4750 if (!loc)
4751 return 1;
4752
4753 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4754 var = *slot;
4755 gcc_assert (var->n_var_parts == 1);
4756 }
4757
4758 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4759 loc; loc = *locp)
4760 {
4761 rtx old_loc = loc->loc;
4762 if (GET_CODE (old_loc) == VALUE)
4763 {
4764 location_chain *mem_node
4765 = find_mem_expr_in_1pdv (decl, loc->loc,
4766 shared_hash_htab (set->vars));
4767
4768 /* ??? This picks up only one out of multiple MEMs that
4769 refer to the same variable. Do we ever need to be
4770 concerned about dealing with more than one, or, given
4771 that they should all map to the same variable
4772 location, their addresses will have been merged and
4773 they will be regarded as equivalent? */
4774 if (mem_node)
4775 {
4776 loc->loc = mem_node->loc;
4777 loc->set_src = mem_node->set_src;
4778 loc->init = MIN (loc->init, mem_node->init);
4779 }
4780 }
4781
4782 if (GET_CODE (loc->loc) != MEM
4783 || (MEM_EXPR (loc->loc) == decl
4784 && int_mem_offset (loc->loc) == 0)
4785 || !mem_dies_at_call (loc->loc))
4786 {
4787 if (old_loc != loc->loc && emit_notes)
4788 {
4789 if (old_loc == var->var_part[0].cur_loc)
4790 {
4791 changed = true;
4792 var->var_part[0].cur_loc = NULL;
4793 }
4794 }
4795 locp = &loc->next;
4796 continue;
4797 }
4798
4799 if (emit_notes)
4800 {
4801 if (old_loc == var->var_part[0].cur_loc)
4802 {
4803 changed = true;
4804 var->var_part[0].cur_loc = NULL;
4805 }
4806 }
4807 *locp = loc->next;
4808 delete loc;
4809 }
4810
4811 if (!var->var_part[0].loc_chain)
4812 {
4813 var->n_var_parts--;
4814 changed = true;
4815 }
4816 if (changed)
4817 variable_was_changed (var, set);
4818 }
4819
4820 return 1;
4821 }
4822
4823 /* Remove all MEMs from the location list of a hash table entry for a
4824 onepart variable. */
4825
4826 int
4827 dataflow_set_remove_mem_locs (variable **slot, dataflow_set *set)
4828 {
4829 variable *var = *slot;
4830
4831 if (var->onepart != NOT_ONEPART)
4832 {
4833 location_chain *loc, **locp;
4834 bool changed = false;
4835 rtx cur_loc;
4836
4837 gcc_assert (var->n_var_parts == 1);
4838
4839 if (shared_var_p (var, set->vars))
4840 {
4841 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4842 if (GET_CODE (loc->loc) == MEM
4843 && mem_dies_at_call (loc->loc))
4844 break;
4845
4846 if (!loc)
4847 return 1;
4848
4849 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4850 var = *slot;
4851 gcc_assert (var->n_var_parts == 1);
4852 }
4853
4854 if (VAR_LOC_1PAUX (var))
4855 cur_loc = VAR_LOC_FROM (var);
4856 else
4857 cur_loc = var->var_part[0].cur_loc;
4858
4859 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4860 loc; loc = *locp)
4861 {
4862 if (GET_CODE (loc->loc) != MEM
4863 || !mem_dies_at_call (loc->loc))
4864 {
4865 locp = &loc->next;
4866 continue;
4867 }
4868
4869 *locp = loc->next;
4870 /* If we have deleted the location which was last emitted
4871 we have to emit new location so add the variable to set
4872 of changed variables. */
4873 if (cur_loc == loc->loc)
4874 {
4875 changed = true;
4876 var->var_part[0].cur_loc = NULL;
4877 if (VAR_LOC_1PAUX (var))
4878 VAR_LOC_FROM (var) = NULL;
4879 }
4880 delete loc;
4881 }
4882
4883 if (!var->var_part[0].loc_chain)
4884 {
4885 var->n_var_parts--;
4886 changed = true;
4887 }
4888 if (changed)
4889 variable_was_changed (var, set);
4890 }
4891
4892 return 1;
4893 }
4894
4895 /* Remove all variable-location information about call-clobbered
4896 registers, as well as associations between MEMs and VALUEs. */
4897
4898 static void
4899 dataflow_set_clear_at_call (dataflow_set *set, rtx_insn *call_insn)
4900 {
4901 unsigned int r;
4902 hard_reg_set_iterator hrsi;
4903
4904 HARD_REG_SET callee_clobbers
4905 = insn_callee_abi (call_insn).full_reg_clobbers ();
4906
4907 EXECUTE_IF_SET_IN_HARD_REG_SET (callee_clobbers, 0, r, hrsi)
4908 var_regno_delete (set, r);
4909
4910 if (MAY_HAVE_DEBUG_BIND_INSNS)
4911 {
4912 set->traversed_vars = set->vars;
4913 shared_hash_htab (set->vars)
4914 ->traverse <dataflow_set *, dataflow_set_preserve_mem_locs> (set);
4915 set->traversed_vars = set->vars;
4916 shared_hash_htab (set->vars)
4917 ->traverse <dataflow_set *, dataflow_set_remove_mem_locs> (set);
4918 set->traversed_vars = NULL;
4919 }
4920 }
4921
4922 static bool
4923 variable_part_different_p (variable_part *vp1, variable_part *vp2)
4924 {
4925 location_chain *lc1, *lc2;
4926
4927 for (lc1 = vp1->loc_chain; lc1; lc1 = lc1->next)
4928 {
4929 for (lc2 = vp2->loc_chain; lc2; lc2 = lc2->next)
4930 {
4931 if (REG_P (lc1->loc) && REG_P (lc2->loc))
4932 {
4933 if (REGNO (lc1->loc) == REGNO (lc2->loc))
4934 break;
4935 }
4936 if (rtx_equal_p (lc1->loc, lc2->loc))
4937 break;
4938 }
4939 if (!lc2)
4940 return true;
4941 }
4942 return false;
4943 }
4944
4945 /* Return true if one-part variables VAR1 and VAR2 are different.
4946 They must be in canonical order. */
4947
4948 static bool
4949 onepart_variable_different_p (variable *var1, variable *var2)
4950 {
4951 location_chain *lc1, *lc2;
4952
4953 if (var1 == var2)
4954 return false;
4955
4956 gcc_assert (var1->n_var_parts == 1
4957 && var2->n_var_parts == 1);
4958
4959 lc1 = var1->var_part[0].loc_chain;
4960 lc2 = var2->var_part[0].loc_chain;
4961
4962 gcc_assert (lc1 && lc2);
4963
4964 while (lc1 && lc2)
4965 {
4966 if (loc_cmp (lc1->loc, lc2->loc))
4967 return true;
4968 lc1 = lc1->next;
4969 lc2 = lc2->next;
4970 }
4971
4972 return lc1 != lc2;
4973 }
4974
4975 /* Return true if one-part variables VAR1 and VAR2 are different.
4976 They must be in canonical order. */
4977
4978 static void
4979 dump_onepart_variable_differences (variable *var1, variable *var2)
4980 {
4981 location_chain *lc1, *lc2;
4982
4983 gcc_assert (var1 != var2);
4984 gcc_assert (dump_file);
4985 gcc_assert (dv_as_opaque (var1->dv) == dv_as_opaque (var2->dv));
4986 gcc_assert (var1->n_var_parts == 1
4987 && var2->n_var_parts == 1);
4988
4989 lc1 = var1->var_part[0].loc_chain;
4990 lc2 = var2->var_part[0].loc_chain;
4991
4992 gcc_assert (lc1 && lc2);
4993
4994 while (lc1 && lc2)
4995 {
4996 switch (loc_cmp (lc1->loc, lc2->loc))
4997 {
4998 case -1:
4999 fprintf (dump_file, "removed: ");
5000 print_rtl_single (dump_file, lc1->loc);
5001 lc1 = lc1->next;
5002 continue;
5003 case 0:
5004 break;
5005 case 1:
5006 fprintf (dump_file, "added: ");
5007 print_rtl_single (dump_file, lc2->loc);
5008 lc2 = lc2->next;
5009 continue;
5010 default:
5011 gcc_unreachable ();
5012 }
5013 lc1 = lc1->next;
5014 lc2 = lc2->next;
5015 }
5016
5017 while (lc1)
5018 {
5019 fprintf (dump_file, "removed: ");
5020 print_rtl_single (dump_file, lc1->loc);
5021 lc1 = lc1->next;
5022 }
5023
5024 while (lc2)
5025 {
5026 fprintf (dump_file, "added: ");
5027 print_rtl_single (dump_file, lc2->loc);
5028 lc2 = lc2->next;
5029 }
5030 }
5031
5032 /* Return true if variables VAR1 and VAR2 are different. */
5033
5034 static bool
5035 variable_different_p (variable *var1, variable *var2)
5036 {
5037 int i;
5038
5039 if (var1 == var2)
5040 return false;
5041
5042 if (var1->onepart != var2->onepart)
5043 return true;
5044
5045 if (var1->n_var_parts != var2->n_var_parts)
5046 return true;
5047
5048 if (var1->onepart && var1->n_var_parts)
5049 {
5050 gcc_checking_assert (dv_as_opaque (var1->dv) == dv_as_opaque (var2->dv)
5051 && var1->n_var_parts == 1);
5052 /* One-part values have locations in a canonical order. */
5053 return onepart_variable_different_p (var1, var2);
5054 }
5055
5056 for (i = 0; i < var1->n_var_parts; i++)
5057 {
5058 if (VAR_PART_OFFSET (var1, i) != VAR_PART_OFFSET (var2, i))
5059 return true;
5060 if (variable_part_different_p (&var1->var_part[i], &var2->var_part[i]))
5061 return true;
5062 if (variable_part_different_p (&var2->var_part[i], &var1->var_part[i]))
5063 return true;
5064 }
5065 return false;
5066 }
5067
5068 /* Return true if dataflow sets OLD_SET and NEW_SET differ. */
5069
5070 static bool
5071 dataflow_set_different (dataflow_set *old_set, dataflow_set *new_set)
5072 {
5073 variable_iterator_type hi;
5074 variable *var1;
5075 bool diffound = false;
5076 bool details = (dump_file && (dump_flags & TDF_DETAILS));
5077
5078 #define RETRUE \
5079 do \
5080 { \
5081 if (!details) \
5082 return true; \
5083 else \
5084 diffound = true; \
5085 } \
5086 while (0)
5087
5088 if (old_set->vars == new_set->vars)
5089 return false;
5090
5091 if (shared_hash_htab (old_set->vars)->elements ()
5092 != shared_hash_htab (new_set->vars)->elements ())
5093 RETRUE;
5094
5095 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (old_set->vars),
5096 var1, variable, hi)
5097 {
5098 variable_table_type *htab = shared_hash_htab (new_set->vars);
5099 variable *var2 = htab->find_with_hash (var1->dv, dv_htab_hash (var1->dv));
5100
5101 if (!var2)
5102 {
5103 if (dump_file && (dump_flags & TDF_DETAILS))
5104 {
5105 fprintf (dump_file, "dataflow difference found: removal of:\n");
5106 dump_var (var1);
5107 }
5108 RETRUE;
5109 }
5110 else if (variable_different_p (var1, var2))
5111 {
5112 if (details)
5113 {
5114 fprintf (dump_file, "dataflow difference found: "
5115 "old and new follow:\n");
5116 dump_var (var1);
5117 if (dv_onepart_p (var1->dv))
5118 dump_onepart_variable_differences (var1, var2);
5119 dump_var (var2);
5120 }
5121 RETRUE;
5122 }
5123 }
5124
5125 /* There's no need to traverse the second hashtab unless we want to
5126 print the details. If both have the same number of elements and
5127 the second one had all entries found in the first one, then the
5128 second can't have any extra entries. */
5129 if (!details)
5130 return diffound;
5131
5132 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (new_set->vars),
5133 var1, variable, hi)
5134 {
5135 variable_table_type *htab = shared_hash_htab (old_set->vars);
5136 variable *var2 = htab->find_with_hash (var1->dv, dv_htab_hash (var1->dv));
5137 if (!var2)
5138 {
5139 if (details)
5140 {
5141 fprintf (dump_file, "dataflow difference found: addition of:\n");
5142 dump_var (var1);
5143 }
5144 RETRUE;
5145 }
5146 }
5147
5148 #undef RETRUE
5149
5150 return diffound;
5151 }
5152
5153 /* Free the contents of dataflow set SET. */
5154
5155 static void
5156 dataflow_set_destroy (dataflow_set *set)
5157 {
5158 int i;
5159
5160 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5161 attrs_list_clear (&set->regs[i]);
5162
5163 shared_hash_destroy (set->vars);
5164 set->vars = NULL;
5165 }
5166
5167 /* Return true if T is a tracked parameter with non-degenerate record type. */
5168
5169 static bool
5170 tracked_record_parameter_p (tree t)
5171 {
5172 if (TREE_CODE (t) != PARM_DECL)
5173 return false;
5174
5175 if (DECL_MODE (t) == BLKmode)
5176 return false;
5177
5178 tree type = TREE_TYPE (t);
5179 if (TREE_CODE (type) != RECORD_TYPE)
5180 return false;
5181
5182 if (TYPE_FIELDS (type) == NULL_TREE
5183 || DECL_CHAIN (TYPE_FIELDS (type)) == NULL_TREE)
5184 return false;
5185
5186 return true;
5187 }
5188
5189 /* Shall EXPR be tracked? */
5190
5191 static bool
5192 track_expr_p (tree expr, bool need_rtl)
5193 {
5194 rtx decl_rtl;
5195 tree realdecl;
5196
5197 if (TREE_CODE (expr) == DEBUG_EXPR_DECL)
5198 return DECL_RTL_SET_P (expr);
5199
5200 /* If EXPR is not a parameter or a variable do not track it. */
5201 if (!VAR_P (expr) && TREE_CODE (expr) != PARM_DECL)
5202 return 0;
5203
5204 /* It also must have a name... */
5205 if (!DECL_NAME (expr) && need_rtl)
5206 return 0;
5207
5208 /* ... and a RTL assigned to it. */
5209 decl_rtl = DECL_RTL_IF_SET (expr);
5210 if (!decl_rtl && need_rtl)
5211 return 0;
5212
5213 /* If this expression is really a debug alias of some other declaration, we
5214 don't need to track this expression if the ultimate declaration is
5215 ignored. */
5216 realdecl = expr;
5217 if (VAR_P (realdecl) && DECL_HAS_DEBUG_EXPR_P (realdecl))
5218 {
5219 realdecl = DECL_DEBUG_EXPR (realdecl);
5220 if (!DECL_P (realdecl))
5221 {
5222 if (handled_component_p (realdecl)
5223 || (TREE_CODE (realdecl) == MEM_REF
5224 && TREE_CODE (TREE_OPERAND (realdecl, 0)) == ADDR_EXPR))
5225 {
5226 HOST_WIDE_INT bitsize, bitpos;
5227 bool reverse;
5228 tree innerdecl
5229 = get_ref_base_and_extent_hwi (realdecl, &bitpos,
5230 &bitsize, &reverse);
5231 if (!innerdecl
5232 || !DECL_P (innerdecl)
5233 || DECL_IGNORED_P (innerdecl)
5234 /* Do not track declarations for parts of tracked record
5235 parameters since we want to track them as a whole. */
5236 || tracked_record_parameter_p (innerdecl)
5237 || TREE_STATIC (innerdecl)
5238 || bitsize == 0
5239 || bitpos + bitsize > 256)
5240 return 0;
5241 else
5242 realdecl = expr;
5243 }
5244 else
5245 return 0;
5246 }
5247 }
5248
5249 /* Do not track EXPR if REALDECL it should be ignored for debugging
5250 purposes. */
5251 if (DECL_IGNORED_P (realdecl))
5252 return 0;
5253
5254 /* Do not track global variables until we are able to emit correct location
5255 list for them. */
5256 if (TREE_STATIC (realdecl))
5257 return 0;
5258
5259 /* When the EXPR is a DECL for alias of some variable (see example)
5260 the TREE_STATIC flag is not used. Disable tracking all DECLs whose
5261 DECL_RTL contains SYMBOL_REF.
5262
5263 Example:
5264 extern char **_dl_argv_internal __attribute__ ((alias ("_dl_argv")));
5265 char **_dl_argv;
5266 */
5267 if (decl_rtl && MEM_P (decl_rtl)
5268 && contains_symbol_ref_p (XEXP (decl_rtl, 0)))
5269 return 0;
5270
5271 /* If RTX is a memory it should not be very large (because it would be
5272 an array or struct). */
5273 if (decl_rtl && MEM_P (decl_rtl))
5274 {
5275 /* Do not track structures and arrays. */
5276 if ((GET_MODE (decl_rtl) == BLKmode
5277 || AGGREGATE_TYPE_P (TREE_TYPE (realdecl)))
5278 && !tracked_record_parameter_p (realdecl))
5279 return 0;
5280 if (MEM_SIZE_KNOWN_P (decl_rtl)
5281 && maybe_gt (MEM_SIZE (decl_rtl), MAX_VAR_PARTS))
5282 return 0;
5283 }
5284
5285 DECL_CHANGED (expr) = 0;
5286 DECL_CHANGED (realdecl) = 0;
5287 return 1;
5288 }
5289
5290 /* Determine whether a given LOC refers to the same variable part as
5291 EXPR+OFFSET. */
5292
5293 static bool
5294 same_variable_part_p (rtx loc, tree expr, poly_int64 offset)
5295 {
5296 tree expr2;
5297 poly_int64 offset2;
5298
5299 if (! DECL_P (expr))
5300 return false;
5301
5302 if (REG_P (loc))
5303 {
5304 expr2 = REG_EXPR (loc);
5305 offset2 = REG_OFFSET (loc);
5306 }
5307 else if (MEM_P (loc))
5308 {
5309 expr2 = MEM_EXPR (loc);
5310 offset2 = int_mem_offset (loc);
5311 }
5312 else
5313 return false;
5314
5315 if (! expr2 || ! DECL_P (expr2))
5316 return false;
5317
5318 expr = var_debug_decl (expr);
5319 expr2 = var_debug_decl (expr2);
5320
5321 return (expr == expr2 && known_eq (offset, offset2));
5322 }
5323
5324 /* LOC is a REG or MEM that we would like to track if possible.
5325 If EXPR is null, we don't know what expression LOC refers to,
5326 otherwise it refers to EXPR + OFFSET. STORE_REG_P is true if
5327 LOC is an lvalue register.
5328
5329 Return true if EXPR is nonnull and if LOC, or some lowpart of it,
5330 is something we can track. When returning true, store the mode of
5331 the lowpart we can track in *MODE_OUT (if nonnull) and its offset
5332 from EXPR in *OFFSET_OUT (if nonnull). */
5333
5334 static bool
5335 track_loc_p (rtx loc, tree expr, poly_int64 offset, bool store_reg_p,
5336 machine_mode *mode_out, HOST_WIDE_INT *offset_out)
5337 {
5338 machine_mode mode;
5339
5340 if (expr == NULL || !track_expr_p (expr, true))
5341 return false;
5342
5343 /* If REG was a paradoxical subreg, its REG_ATTRS will describe the
5344 whole subreg, but only the old inner part is really relevant. */
5345 mode = GET_MODE (loc);
5346 if (REG_P (loc) && !HARD_REGISTER_NUM_P (ORIGINAL_REGNO (loc)))
5347 {
5348 machine_mode pseudo_mode;
5349
5350 pseudo_mode = PSEUDO_REGNO_MODE (ORIGINAL_REGNO (loc));
5351 if (paradoxical_subreg_p (mode, pseudo_mode))
5352 {
5353 offset += byte_lowpart_offset (pseudo_mode, mode);
5354 mode = pseudo_mode;
5355 }
5356 }
5357
5358 /* If LOC is a paradoxical lowpart of EXPR, refer to EXPR itself.
5359 Do the same if we are storing to a register and EXPR occupies
5360 the whole of register LOC; in that case, the whole of EXPR is
5361 being changed. We exclude complex modes from the second case
5362 because the real and imaginary parts are represented as separate
5363 pseudo registers, even if the whole complex value fits into one
5364 hard register. */
5365 if ((paradoxical_subreg_p (mode, DECL_MODE (expr))
5366 || (store_reg_p
5367 && !COMPLEX_MODE_P (DECL_MODE (expr))
5368 && hard_regno_nregs (REGNO (loc), DECL_MODE (expr)) == 1))
5369 && known_eq (offset + byte_lowpart_offset (DECL_MODE (expr), mode), 0))
5370 {
5371 mode = DECL_MODE (expr);
5372 offset = 0;
5373 }
5374
5375 HOST_WIDE_INT const_offset;
5376 if (!track_offset_p (offset, &const_offset))
5377 return false;
5378
5379 if (mode_out)
5380 *mode_out = mode;
5381 if (offset_out)
5382 *offset_out = const_offset;
5383 return true;
5384 }
5385
5386 /* Return the MODE lowpart of LOC, or null if LOC is not something we
5387 want to track. When returning nonnull, make sure that the attributes
5388 on the returned value are updated. */
5389
5390 static rtx
5391 var_lowpart (machine_mode mode, rtx loc)
5392 {
5393 unsigned int regno;
5394
5395 if (GET_MODE (loc) == mode)
5396 return loc;
5397
5398 if (!REG_P (loc) && !MEM_P (loc))
5399 return NULL;
5400
5401 poly_uint64 offset = byte_lowpart_offset (mode, GET_MODE (loc));
5402
5403 if (MEM_P (loc))
5404 return adjust_address_nv (loc, mode, offset);
5405
5406 poly_uint64 reg_offset = subreg_lowpart_offset (mode, GET_MODE (loc));
5407 regno = REGNO (loc) + subreg_regno_offset (REGNO (loc), GET_MODE (loc),
5408 reg_offset, mode);
5409 return gen_rtx_REG_offset (loc, mode, regno, offset);
5410 }
5411
5412 /* Carry information about uses and stores while walking rtx. */
5413
5414 struct count_use_info
5415 {
5416 /* The insn where the RTX is. */
5417 rtx_insn *insn;
5418
5419 /* The basic block where insn is. */
5420 basic_block bb;
5421
5422 /* The array of n_sets sets in the insn, as determined by cselib. */
5423 struct cselib_set *sets;
5424 int n_sets;
5425
5426 /* True if we're counting stores, false otherwise. */
5427 bool store_p;
5428 };
5429
5430 /* Find a VALUE corresponding to X. */
5431
5432 static inline cselib_val *
5433 find_use_val (rtx x, machine_mode mode, struct count_use_info *cui)
5434 {
5435 int i;
5436
5437 if (cui->sets)
5438 {
5439 /* This is called after uses are set up and before stores are
5440 processed by cselib, so it's safe to look up srcs, but not
5441 dsts. So we look up expressions that appear in srcs or in
5442 dest expressions, but we search the sets array for dests of
5443 stores. */
5444 if (cui->store_p)
5445 {
5446 /* Some targets represent memset and memcpy patterns
5447 by (set (mem:BLK ...) (reg:[QHSD]I ...)) or
5448 (set (mem:BLK ...) (const_int ...)) or
5449 (set (mem:BLK ...) (mem:BLK ...)). Don't return anything
5450 in that case, otherwise we end up with mode mismatches. */
5451 if (mode == BLKmode && MEM_P (x))
5452 return NULL;
5453 for (i = 0; i < cui->n_sets; i++)
5454 if (cui->sets[i].dest == x)
5455 return cui->sets[i].src_elt;
5456 }
5457 else
5458 return cselib_lookup (x, mode, 0, VOIDmode);
5459 }
5460
5461 return NULL;
5462 }
5463
5464 /* Replace all registers and addresses in an expression with VALUE
5465 expressions that map back to them, unless the expression is a
5466 register. If no mapping is or can be performed, returns NULL. */
5467
5468 static rtx
5469 replace_expr_with_values (rtx loc)
5470 {
5471 if (REG_P (loc) || GET_CODE (loc) == ENTRY_VALUE)
5472 return NULL;
5473 else if (MEM_P (loc))
5474 {
5475 cselib_val *addr = cselib_lookup (XEXP (loc, 0),
5476 get_address_mode (loc), 0,
5477 GET_MODE (loc));
5478 if (addr)
5479 return replace_equiv_address_nv (loc, addr->val_rtx);
5480 else
5481 return NULL;
5482 }
5483 else
5484 return cselib_subst_to_values (loc, VOIDmode);
5485 }
5486
5487 /* Return true if X contains a DEBUG_EXPR. */
5488
5489 static bool
5490 rtx_debug_expr_p (const_rtx x)
5491 {
5492 subrtx_iterator::array_type array;
5493 FOR_EACH_SUBRTX (iter, array, x, ALL)
5494 if (GET_CODE (*iter) == DEBUG_EXPR)
5495 return true;
5496 return false;
5497 }
5498
5499 /* Determine what kind of micro operation to choose for a USE. Return
5500 MO_CLOBBER if no micro operation is to be generated. */
5501
5502 static enum micro_operation_type
5503 use_type (rtx loc, struct count_use_info *cui, machine_mode *modep)
5504 {
5505 tree expr;
5506
5507 if (cui && cui->sets)
5508 {
5509 if (GET_CODE (loc) == VAR_LOCATION)
5510 {
5511 if (track_expr_p (PAT_VAR_LOCATION_DECL (loc), false))
5512 {
5513 rtx ploc = PAT_VAR_LOCATION_LOC (loc);
5514 if (! VAR_LOC_UNKNOWN_P (ploc))
5515 {
5516 cselib_val *val = cselib_lookup (ploc, GET_MODE (loc), 1,
5517 VOIDmode);
5518
5519 /* ??? flag_float_store and volatile mems are never
5520 given values, but we could in theory use them for
5521 locations. */
5522 gcc_assert (val || 1);
5523 }
5524 return MO_VAL_LOC;
5525 }
5526 else
5527 return MO_CLOBBER;
5528 }
5529
5530 if (REG_P (loc) || MEM_P (loc))
5531 {
5532 if (modep)
5533 *modep = GET_MODE (loc);
5534 if (cui->store_p)
5535 {
5536 if (REG_P (loc)
5537 || (find_use_val (loc, GET_MODE (loc), cui)
5538 && cselib_lookup (XEXP (loc, 0),
5539 get_address_mode (loc), 0,
5540 GET_MODE (loc))))
5541 return MO_VAL_SET;
5542 }
5543 else
5544 {
5545 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5546
5547 if (val && !cselib_preserved_value_p (val))
5548 return MO_VAL_USE;
5549 }
5550 }
5551 }
5552
5553 if (REG_P (loc))
5554 {
5555 gcc_assert (REGNO (loc) < FIRST_PSEUDO_REGISTER);
5556
5557 if (loc == cfa_base_rtx)
5558 return MO_CLOBBER;
5559 expr = REG_EXPR (loc);
5560
5561 if (!expr)
5562 return MO_USE_NO_VAR;
5563 else if (target_for_debug_bind (var_debug_decl (expr)))
5564 return MO_CLOBBER;
5565 else if (track_loc_p (loc, expr, REG_OFFSET (loc),
5566 false, modep, NULL))
5567 return MO_USE;
5568 else
5569 return MO_USE_NO_VAR;
5570 }
5571 else if (MEM_P (loc))
5572 {
5573 expr = MEM_EXPR (loc);
5574
5575 if (!expr)
5576 return MO_CLOBBER;
5577 else if (target_for_debug_bind (var_debug_decl (expr)))
5578 return MO_CLOBBER;
5579 else if (track_loc_p (loc, expr, int_mem_offset (loc),
5580 false, modep, NULL)
5581 /* Multi-part variables shouldn't refer to one-part
5582 variable names such as VALUEs (never happens) or
5583 DEBUG_EXPRs (only happens in the presence of debug
5584 insns). */
5585 && (!MAY_HAVE_DEBUG_BIND_INSNS
5586 || !rtx_debug_expr_p (XEXP (loc, 0))))
5587 return MO_USE;
5588 else
5589 return MO_CLOBBER;
5590 }
5591
5592 return MO_CLOBBER;
5593 }
5594
5595 /* Log to OUT information about micro-operation MOPT involving X in
5596 INSN of BB. */
5597
5598 static inline void
5599 log_op_type (rtx x, basic_block bb, rtx_insn *insn,
5600 enum micro_operation_type mopt, FILE *out)
5601 {
5602 fprintf (out, "bb %i op %i insn %i %s ",
5603 bb->index, VTI (bb)->mos.length (),
5604 INSN_UID (insn), micro_operation_type_name[mopt]);
5605 print_inline_rtx (out, x, 2);
5606 fputc ('\n', out);
5607 }
5608
5609 /* Tell whether the CONCAT used to holds a VALUE and its location
5610 needs value resolution, i.e., an attempt of mapping the location
5611 back to other incoming values. */
5612 #define VAL_NEEDS_RESOLUTION(x) \
5613 (RTL_FLAG_CHECK1 ("VAL_NEEDS_RESOLUTION", (x), CONCAT)->volatil)
5614 /* Whether the location in the CONCAT is a tracked expression, that
5615 should also be handled like a MO_USE. */
5616 #define VAL_HOLDS_TRACK_EXPR(x) \
5617 (RTL_FLAG_CHECK1 ("VAL_HOLDS_TRACK_EXPR", (x), CONCAT)->used)
5618 /* Whether the location in the CONCAT should be handled like a MO_COPY
5619 as well. */
5620 #define VAL_EXPR_IS_COPIED(x) \
5621 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_COPIED", (x), CONCAT)->jump)
5622 /* Whether the location in the CONCAT should be handled like a
5623 MO_CLOBBER as well. */
5624 #define VAL_EXPR_IS_CLOBBERED(x) \
5625 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_CLOBBERED", (x), CONCAT)->unchanging)
5626
5627 /* All preserved VALUEs. */
5628 static vec<rtx> preserved_values;
5629
5630 /* Ensure VAL is preserved and remember it in a vector for vt_emit_notes. */
5631
5632 static void
5633 preserve_value (cselib_val *val)
5634 {
5635 cselib_preserve_value (val);
5636 preserved_values.safe_push (val->val_rtx);
5637 }
5638
5639 /* Helper function for MO_VAL_LOC handling. Return non-zero if
5640 any rtxes not suitable for CONST use not replaced by VALUEs
5641 are discovered. */
5642
5643 static bool
5644 non_suitable_const (const_rtx x)
5645 {
5646 subrtx_iterator::array_type array;
5647 FOR_EACH_SUBRTX (iter, array, x, ALL)
5648 {
5649 const_rtx x = *iter;
5650 switch (GET_CODE (x))
5651 {
5652 case REG:
5653 case DEBUG_EXPR:
5654 case PC:
5655 case SCRATCH:
5656 case CC0:
5657 case ASM_INPUT:
5658 case ASM_OPERANDS:
5659 return true;
5660 case MEM:
5661 if (!MEM_READONLY_P (x))
5662 return true;
5663 break;
5664 default:
5665 break;
5666 }
5667 }
5668 return false;
5669 }
5670
5671 /* Add uses (register and memory references) LOC which will be tracked
5672 to VTI (bb)->mos. */
5673
5674 static void
5675 add_uses (rtx loc, struct count_use_info *cui)
5676 {
5677 machine_mode mode = VOIDmode;
5678 enum micro_operation_type type = use_type (loc, cui, &mode);
5679
5680 if (type != MO_CLOBBER)
5681 {
5682 basic_block bb = cui->bb;
5683 micro_operation mo;
5684
5685 mo.type = type;
5686 mo.u.loc = type == MO_USE ? var_lowpart (mode, loc) : loc;
5687 mo.insn = cui->insn;
5688
5689 if (type == MO_VAL_LOC)
5690 {
5691 rtx oloc = loc;
5692 rtx vloc = PAT_VAR_LOCATION_LOC (oloc);
5693 cselib_val *val;
5694
5695 gcc_assert (cui->sets);
5696
5697 if (MEM_P (vloc)
5698 && !REG_P (XEXP (vloc, 0))
5699 && !MEM_P (XEXP (vloc, 0)))
5700 {
5701 rtx mloc = vloc;
5702 machine_mode address_mode = get_address_mode (mloc);
5703 cselib_val *val
5704 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5705 GET_MODE (mloc));
5706
5707 if (val && !cselib_preserved_value_p (val))
5708 preserve_value (val);
5709 }
5710
5711 if (CONSTANT_P (vloc)
5712 && (GET_CODE (vloc) != CONST || non_suitable_const (vloc)))
5713 /* For constants don't look up any value. */;
5714 else if (!VAR_LOC_UNKNOWN_P (vloc) && !unsuitable_loc (vloc)
5715 && (val = find_use_val (vloc, GET_MODE (oloc), cui)))
5716 {
5717 machine_mode mode2;
5718 enum micro_operation_type type2;
5719 rtx nloc = NULL;
5720 bool resolvable = REG_P (vloc) || MEM_P (vloc);
5721
5722 if (resolvable)
5723 nloc = replace_expr_with_values (vloc);
5724
5725 if (nloc)
5726 {
5727 oloc = shallow_copy_rtx (oloc);
5728 PAT_VAR_LOCATION_LOC (oloc) = nloc;
5729 }
5730
5731 oloc = gen_rtx_CONCAT (mode, val->val_rtx, oloc);
5732
5733 type2 = use_type (vloc, 0, &mode2);
5734
5735 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5736 || type2 == MO_CLOBBER);
5737
5738 if (type2 == MO_CLOBBER
5739 && !cselib_preserved_value_p (val))
5740 {
5741 VAL_NEEDS_RESOLUTION (oloc) = resolvable;
5742 preserve_value (val);
5743 }
5744 }
5745 else if (!VAR_LOC_UNKNOWN_P (vloc))
5746 {
5747 oloc = shallow_copy_rtx (oloc);
5748 PAT_VAR_LOCATION_LOC (oloc) = gen_rtx_UNKNOWN_VAR_LOC ();
5749 }
5750
5751 mo.u.loc = oloc;
5752 }
5753 else if (type == MO_VAL_USE)
5754 {
5755 machine_mode mode2 = VOIDmode;
5756 enum micro_operation_type type2;
5757 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5758 rtx vloc, oloc = loc, nloc;
5759
5760 gcc_assert (cui->sets);
5761
5762 if (MEM_P (oloc)
5763 && !REG_P (XEXP (oloc, 0))
5764 && !MEM_P (XEXP (oloc, 0)))
5765 {
5766 rtx mloc = oloc;
5767 machine_mode address_mode = get_address_mode (mloc);
5768 cselib_val *val
5769 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5770 GET_MODE (mloc));
5771
5772 if (val && !cselib_preserved_value_p (val))
5773 preserve_value (val);
5774 }
5775
5776 type2 = use_type (loc, 0, &mode2);
5777
5778 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5779 || type2 == MO_CLOBBER);
5780
5781 if (type2 == MO_USE)
5782 vloc = var_lowpart (mode2, loc);
5783 else
5784 vloc = oloc;
5785
5786 /* The loc of a MO_VAL_USE may have two forms:
5787
5788 (concat val src): val is at src, a value-based
5789 representation.
5790
5791 (concat (concat val use) src): same as above, with use as
5792 the MO_USE tracked value, if it differs from src.
5793
5794 */
5795
5796 gcc_checking_assert (REG_P (loc) || MEM_P (loc));
5797 nloc = replace_expr_with_values (loc);
5798 if (!nloc)
5799 nloc = oloc;
5800
5801 if (vloc != nloc)
5802 oloc = gen_rtx_CONCAT (mode2, val->val_rtx, vloc);
5803 else
5804 oloc = val->val_rtx;
5805
5806 mo.u.loc = gen_rtx_CONCAT (mode, oloc, nloc);
5807
5808 if (type2 == MO_USE)
5809 VAL_HOLDS_TRACK_EXPR (mo.u.loc) = 1;
5810 if (!cselib_preserved_value_p (val))
5811 {
5812 VAL_NEEDS_RESOLUTION (mo.u.loc) = 1;
5813 preserve_value (val);
5814 }
5815 }
5816 else
5817 gcc_assert (type == MO_USE || type == MO_USE_NO_VAR);
5818
5819 if (dump_file && (dump_flags & TDF_DETAILS))
5820 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
5821 VTI (bb)->mos.safe_push (mo);
5822 }
5823 }
5824
5825 /* Helper function for finding all uses of REG/MEM in X in insn INSN. */
5826
5827 static void
5828 add_uses_1 (rtx *x, void *cui)
5829 {
5830 subrtx_var_iterator::array_type array;
5831 FOR_EACH_SUBRTX_VAR (iter, array, *x, NONCONST)
5832 add_uses (*iter, (struct count_use_info *) cui);
5833 }
5834
5835 /* This is the value used during expansion of locations. We want it
5836 to be unbounded, so that variables expanded deep in a recursion
5837 nest are fully evaluated, so that their values are cached
5838 correctly. We avoid recursion cycles through other means, and we
5839 don't unshare RTL, so excess complexity is not a problem. */
5840 #define EXPR_DEPTH (INT_MAX)
5841 /* We use this to keep too-complex expressions from being emitted as
5842 location notes, and then to debug information. Users can trade
5843 compile time for ridiculously complex expressions, although they're
5844 seldom useful, and they may often have to be discarded as not
5845 representable anyway. */
5846 #define EXPR_USE_DEPTH (param_max_vartrack_expr_depth)
5847
5848 /* Attempt to reverse the EXPR operation in the debug info and record
5849 it in the cselib table. Say for reg1 = reg2 + 6 even when reg2 is
5850 no longer live we can express its value as VAL - 6. */
5851
5852 static void
5853 reverse_op (rtx val, const_rtx expr, rtx_insn *insn)
5854 {
5855 rtx src, arg, ret;
5856 cselib_val *v;
5857 struct elt_loc_list *l;
5858 enum rtx_code code;
5859 int count;
5860
5861 if (GET_CODE (expr) != SET)
5862 return;
5863
5864 if (!REG_P (SET_DEST (expr)) || GET_MODE (val) != GET_MODE (SET_DEST (expr)))
5865 return;
5866
5867 src = SET_SRC (expr);
5868 switch (GET_CODE (src))
5869 {
5870 case PLUS:
5871 case MINUS:
5872 case XOR:
5873 case NOT:
5874 case NEG:
5875 if (!REG_P (XEXP (src, 0)))
5876 return;
5877 break;
5878 case SIGN_EXTEND:
5879 case ZERO_EXTEND:
5880 if (!REG_P (XEXP (src, 0)) && !MEM_P (XEXP (src, 0)))
5881 return;
5882 break;
5883 default:
5884 return;
5885 }
5886
5887 if (!SCALAR_INT_MODE_P (GET_MODE (src)) || XEXP (src, 0) == cfa_base_rtx)
5888 return;
5889
5890 v = cselib_lookup (XEXP (src, 0), GET_MODE (XEXP (src, 0)), 0, VOIDmode);
5891 if (!v || !cselib_preserved_value_p (v))
5892 return;
5893
5894 /* Use canonical V to avoid creating multiple redundant expressions
5895 for different VALUES equivalent to V. */
5896 v = canonical_cselib_val (v);
5897
5898 /* Adding a reverse op isn't useful if V already has an always valid
5899 location. Ignore ENTRY_VALUE, while it is always constant, we should
5900 prefer non-ENTRY_VALUE locations whenever possible. */
5901 for (l = v->locs, count = 0; l; l = l->next, count++)
5902 if (CONSTANT_P (l->loc)
5903 && (GET_CODE (l->loc) != CONST || !references_value_p (l->loc, 0)))
5904 return;
5905 /* Avoid creating too large locs lists. */
5906 else if (count == param_max_vartrack_reverse_op_size)
5907 return;
5908
5909 switch (GET_CODE (src))
5910 {
5911 case NOT:
5912 case NEG:
5913 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5914 return;
5915 ret = gen_rtx_fmt_e (GET_CODE (src), GET_MODE (val), val);
5916 break;
5917 case SIGN_EXTEND:
5918 case ZERO_EXTEND:
5919 ret = gen_lowpart_SUBREG (GET_MODE (v->val_rtx), val);
5920 break;
5921 case XOR:
5922 code = XOR;
5923 goto binary;
5924 case PLUS:
5925 code = MINUS;
5926 goto binary;
5927 case MINUS:
5928 code = PLUS;
5929 goto binary;
5930 binary:
5931 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5932 return;
5933 arg = XEXP (src, 1);
5934 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5935 {
5936 arg = cselib_expand_value_rtx (arg, scratch_regs, 5);
5937 if (arg == NULL_RTX)
5938 return;
5939 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5940 return;
5941 }
5942 ret = simplify_gen_binary (code, GET_MODE (val), val, arg);
5943 break;
5944 default:
5945 gcc_unreachable ();
5946 }
5947
5948 cselib_add_permanent_equiv (v, ret, insn);
5949 }
5950
5951 /* Add stores (register and memory references) LOC which will be tracked
5952 to VTI (bb)->mos. EXPR is the RTL expression containing the store.
5953 CUIP->insn is instruction which the LOC is part of. */
5954
5955 static void
5956 add_stores (rtx loc, const_rtx expr, void *cuip)
5957 {
5958 machine_mode mode = VOIDmode, mode2;
5959 struct count_use_info *cui = (struct count_use_info *)cuip;
5960 basic_block bb = cui->bb;
5961 micro_operation mo;
5962 rtx oloc = loc, nloc, src = NULL;
5963 enum micro_operation_type type = use_type (loc, cui, &mode);
5964 bool track_p = false;
5965 cselib_val *v;
5966 bool resolve, preserve;
5967
5968 if (type == MO_CLOBBER)
5969 return;
5970
5971 mode2 = mode;
5972
5973 if (REG_P (loc))
5974 {
5975 gcc_assert (loc != cfa_base_rtx);
5976 if ((GET_CODE (expr) == CLOBBER && type != MO_VAL_SET)
5977 || !(track_p = use_type (loc, NULL, &mode2) == MO_USE)
5978 || GET_CODE (expr) == CLOBBER)
5979 {
5980 mo.type = MO_CLOBBER;
5981 mo.u.loc = loc;
5982 if (GET_CODE (expr) == SET
5983 && (SET_DEST (expr) == loc
5984 || (GET_CODE (SET_DEST (expr)) == STRICT_LOW_PART
5985 && XEXP (SET_DEST (expr), 0) == loc))
5986 && !unsuitable_loc (SET_SRC (expr))
5987 && find_use_val (loc, mode, cui))
5988 {
5989 gcc_checking_assert (type == MO_VAL_SET);
5990 mo.u.loc = gen_rtx_SET (loc, SET_SRC (expr));
5991 }
5992 }
5993 else
5994 {
5995 if (GET_CODE (expr) == SET
5996 && SET_DEST (expr) == loc
5997 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
5998 src = var_lowpart (mode2, SET_SRC (expr));
5999 loc = var_lowpart (mode2, loc);
6000
6001 if (src == NULL)
6002 {
6003 mo.type = MO_SET;
6004 mo.u.loc = loc;
6005 }
6006 else
6007 {
6008 rtx xexpr = gen_rtx_SET (loc, src);
6009 if (same_variable_part_p (src, REG_EXPR (loc), REG_OFFSET (loc)))
6010 {
6011 /* If this is an instruction copying (part of) a parameter
6012 passed by invisible reference to its register location,
6013 pretend it's a SET so that the initial memory location
6014 is discarded, as the parameter register can be reused
6015 for other purposes and we do not track locations based
6016 on generic registers. */
6017 if (MEM_P (src)
6018 && REG_EXPR (loc)
6019 && TREE_CODE (REG_EXPR (loc)) == PARM_DECL
6020 && DECL_MODE (REG_EXPR (loc)) != BLKmode
6021 && MEM_P (DECL_INCOMING_RTL (REG_EXPR (loc)))
6022 && XEXP (DECL_INCOMING_RTL (REG_EXPR (loc)), 0)
6023 != arg_pointer_rtx)
6024 mo.type = MO_SET;
6025 else
6026 mo.type = MO_COPY;
6027 }
6028 else
6029 mo.type = MO_SET;
6030 mo.u.loc = xexpr;
6031 }
6032 }
6033 mo.insn = cui->insn;
6034 }
6035 else if (MEM_P (loc)
6036 && ((track_p = use_type (loc, NULL, &mode2) == MO_USE)
6037 || cui->sets))
6038 {
6039 if (MEM_P (loc) && type == MO_VAL_SET
6040 && !REG_P (XEXP (loc, 0))
6041 && !MEM_P (XEXP (loc, 0)))
6042 {
6043 rtx mloc = loc;
6044 machine_mode address_mode = get_address_mode (mloc);
6045 cselib_val *val = cselib_lookup (XEXP (mloc, 0),
6046 address_mode, 0,
6047 GET_MODE (mloc));
6048
6049 if (val && !cselib_preserved_value_p (val))
6050 preserve_value (val);
6051 }
6052
6053 if (GET_CODE (expr) == CLOBBER || !track_p)
6054 {
6055 mo.type = MO_CLOBBER;
6056 mo.u.loc = track_p ? var_lowpart (mode2, loc) : loc;
6057 }
6058 else
6059 {
6060 if (GET_CODE (expr) == SET
6061 && SET_DEST (expr) == loc
6062 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
6063 src = var_lowpart (mode2, SET_SRC (expr));
6064 loc = var_lowpart (mode2, loc);
6065
6066 if (src == NULL)
6067 {
6068 mo.type = MO_SET;
6069 mo.u.loc = loc;
6070 }
6071 else
6072 {
6073 rtx xexpr = gen_rtx_SET (loc, src);
6074 if (same_variable_part_p (SET_SRC (xexpr),
6075 MEM_EXPR (loc),
6076 int_mem_offset (loc)))
6077 mo.type = MO_COPY;
6078 else
6079 mo.type = MO_SET;
6080 mo.u.loc = xexpr;
6081 }
6082 }
6083 mo.insn = cui->insn;
6084 }
6085 else
6086 return;
6087
6088 if (type != MO_VAL_SET)
6089 goto log_and_return;
6090
6091 v = find_use_val (oloc, mode, cui);
6092
6093 if (!v)
6094 goto log_and_return;
6095
6096 resolve = preserve = !cselib_preserved_value_p (v);
6097
6098 /* We cannot track values for multiple-part variables, so we track only
6099 locations for tracked record parameters. */
6100 if (track_p
6101 && REG_P (loc)
6102 && REG_EXPR (loc)
6103 && tracked_record_parameter_p (REG_EXPR (loc)))
6104 {
6105 /* Although we don't use the value here, it could be used later by the
6106 mere virtue of its existence as the operand of the reverse operation
6107 that gave rise to it (typically extension/truncation). Make sure it
6108 is preserved as required by vt_expand_var_loc_chain. */
6109 if (preserve)
6110 preserve_value (v);
6111 goto log_and_return;
6112 }
6113
6114 if (loc == stack_pointer_rtx
6115 && (maybe_ne (hard_frame_pointer_adjustment, -1)
6116 || (!frame_pointer_needed && !ACCUMULATE_OUTGOING_ARGS))
6117 && preserve)
6118 cselib_set_value_sp_based (v);
6119
6120 /* Don't record MO_VAL_SET for VALUEs that can be described using
6121 cfa_base_rtx or cfa_base_rtx + CONST_INT, cselib already knows
6122 all the needed equivalences and they shouldn't change depending
6123 on which register holds that VALUE in some instruction. */
6124 if (!frame_pointer_needed
6125 && cfa_base_rtx
6126 && cselib_sp_derived_value_p (v))
6127 {
6128 if (preserve)
6129 preserve_value (v);
6130 return;
6131 }
6132
6133 nloc = replace_expr_with_values (oloc);
6134 if (nloc)
6135 oloc = nloc;
6136
6137 if (GET_CODE (PATTERN (cui->insn)) == COND_EXEC)
6138 {
6139 cselib_val *oval = cselib_lookup (oloc, GET_MODE (oloc), 0, VOIDmode);
6140
6141 if (oval == v)
6142 return;
6143 gcc_assert (REG_P (oloc) || MEM_P (oloc));
6144
6145 if (oval && !cselib_preserved_value_p (oval))
6146 {
6147 micro_operation moa;
6148
6149 preserve_value (oval);
6150
6151 moa.type = MO_VAL_USE;
6152 moa.u.loc = gen_rtx_CONCAT (mode, oval->val_rtx, oloc);
6153 VAL_NEEDS_RESOLUTION (moa.u.loc) = 1;
6154 moa.insn = cui->insn;
6155
6156 if (dump_file && (dump_flags & TDF_DETAILS))
6157 log_op_type (moa.u.loc, cui->bb, cui->insn,
6158 moa.type, dump_file);
6159 VTI (bb)->mos.safe_push (moa);
6160 }
6161
6162 resolve = false;
6163 }
6164 else if (resolve && GET_CODE (mo.u.loc) == SET)
6165 {
6166 if (REG_P (SET_SRC (expr)) || MEM_P (SET_SRC (expr)))
6167 nloc = replace_expr_with_values (SET_SRC (expr));
6168 else
6169 nloc = NULL_RTX;
6170
6171 /* Avoid the mode mismatch between oexpr and expr. */
6172 if (!nloc && mode != mode2)
6173 {
6174 nloc = SET_SRC (expr);
6175 gcc_assert (oloc == SET_DEST (expr));
6176 }
6177
6178 if (nloc && nloc != SET_SRC (mo.u.loc))
6179 oloc = gen_rtx_SET (oloc, nloc);
6180 else
6181 {
6182 if (oloc == SET_DEST (mo.u.loc))
6183 /* No point in duplicating. */
6184 oloc = mo.u.loc;
6185 if (!REG_P (SET_SRC (mo.u.loc)))
6186 resolve = false;
6187 }
6188 }
6189 else if (!resolve)
6190 {
6191 if (GET_CODE (mo.u.loc) == SET
6192 && oloc == SET_DEST (mo.u.loc))
6193 /* No point in duplicating. */
6194 oloc = mo.u.loc;
6195 }
6196 else
6197 resolve = false;
6198
6199 loc = gen_rtx_CONCAT (mode, v->val_rtx, oloc);
6200
6201 if (mo.u.loc != oloc)
6202 loc = gen_rtx_CONCAT (GET_MODE (mo.u.loc), loc, mo.u.loc);
6203
6204 /* The loc of a MO_VAL_SET may have various forms:
6205
6206 (concat val dst): dst now holds val
6207
6208 (concat val (set dst src)): dst now holds val, copied from src
6209
6210 (concat (concat val dstv) dst): dst now holds val; dstv is dst
6211 after replacing mems and non-top-level regs with values.
6212
6213 (concat (concat val dstv) (set dst src)): dst now holds val,
6214 copied from src. dstv is a value-based representation of dst, if
6215 it differs from dst. If resolution is needed, src is a REG, and
6216 its mode is the same as that of val.
6217
6218 (concat (concat val (set dstv srcv)) (set dst src)): src
6219 copied to dst, holding val. dstv and srcv are value-based
6220 representations of dst and src, respectively.
6221
6222 */
6223
6224 if (GET_CODE (PATTERN (cui->insn)) != COND_EXEC)
6225 reverse_op (v->val_rtx, expr, cui->insn);
6226
6227 mo.u.loc = loc;
6228
6229 if (track_p)
6230 VAL_HOLDS_TRACK_EXPR (loc) = 1;
6231 if (preserve)
6232 {
6233 VAL_NEEDS_RESOLUTION (loc) = resolve;
6234 preserve_value (v);
6235 }
6236 if (mo.type == MO_CLOBBER)
6237 VAL_EXPR_IS_CLOBBERED (loc) = 1;
6238 if (mo.type == MO_COPY)
6239 VAL_EXPR_IS_COPIED (loc) = 1;
6240
6241 mo.type = MO_VAL_SET;
6242
6243 log_and_return:
6244 if (dump_file && (dump_flags & TDF_DETAILS))
6245 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
6246 VTI (bb)->mos.safe_push (mo);
6247 }
6248
6249 /* Arguments to the call. */
6250 static rtx call_arguments;
6251
6252 /* Compute call_arguments. */
6253
6254 static void
6255 prepare_call_arguments (basic_block bb, rtx_insn *insn)
6256 {
6257 rtx link, x, call;
6258 rtx prev, cur, next;
6259 rtx this_arg = NULL_RTX;
6260 tree type = NULL_TREE, t, fndecl = NULL_TREE;
6261 tree obj_type_ref = NULL_TREE;
6262 CUMULATIVE_ARGS args_so_far_v;
6263 cumulative_args_t args_so_far;
6264
6265 memset (&args_so_far_v, 0, sizeof (args_so_far_v));
6266 args_so_far = pack_cumulative_args (&args_so_far_v);
6267 call = get_call_rtx_from (insn);
6268 if (call)
6269 {
6270 if (GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
6271 {
6272 rtx symbol = XEXP (XEXP (call, 0), 0);
6273 if (SYMBOL_REF_DECL (symbol))
6274 fndecl = SYMBOL_REF_DECL (symbol);
6275 }
6276 if (fndecl == NULL_TREE)
6277 fndecl = MEM_EXPR (XEXP (call, 0));
6278 if (fndecl
6279 && TREE_CODE (TREE_TYPE (fndecl)) != FUNCTION_TYPE
6280 && TREE_CODE (TREE_TYPE (fndecl)) != METHOD_TYPE)
6281 fndecl = NULL_TREE;
6282 if (fndecl && TYPE_ARG_TYPES (TREE_TYPE (fndecl)))
6283 type = TREE_TYPE (fndecl);
6284 if (fndecl && TREE_CODE (fndecl) != FUNCTION_DECL)
6285 {
6286 if (TREE_CODE (fndecl) == INDIRECT_REF
6287 && TREE_CODE (TREE_OPERAND (fndecl, 0)) == OBJ_TYPE_REF)
6288 obj_type_ref = TREE_OPERAND (fndecl, 0);
6289 fndecl = NULL_TREE;
6290 }
6291 if (type)
6292 {
6293 for (t = TYPE_ARG_TYPES (type); t && t != void_list_node;
6294 t = TREE_CHAIN (t))
6295 if (TREE_CODE (TREE_VALUE (t)) == REFERENCE_TYPE
6296 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_VALUE (t))))
6297 break;
6298 if ((t == NULL || t == void_list_node) && obj_type_ref == NULL_TREE)
6299 type = NULL;
6300 else
6301 {
6302 int nargs ATTRIBUTE_UNUSED = list_length (TYPE_ARG_TYPES (type));
6303 link = CALL_INSN_FUNCTION_USAGE (insn);
6304 #ifndef PCC_STATIC_STRUCT_RETURN
6305 if (aggregate_value_p (TREE_TYPE (type), type)
6306 && targetm.calls.struct_value_rtx (type, 0) == 0)
6307 {
6308 tree struct_addr = build_pointer_type (TREE_TYPE (type));
6309 function_arg_info arg (struct_addr, /*named=*/true);
6310 rtx reg;
6311 INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
6312 nargs + 1);
6313 reg = targetm.calls.function_arg (args_so_far, arg);
6314 targetm.calls.function_arg_advance (args_so_far, arg);
6315 if (reg == NULL_RTX)
6316 {
6317 for (; link; link = XEXP (link, 1))
6318 if (GET_CODE (XEXP (link, 0)) == USE
6319 && MEM_P (XEXP (XEXP (link, 0), 0)))
6320 {
6321 link = XEXP (link, 1);
6322 break;
6323 }
6324 }
6325 }
6326 else
6327 #endif
6328 INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
6329 nargs);
6330 if (obj_type_ref && TYPE_ARG_TYPES (type) != void_list_node)
6331 {
6332 t = TYPE_ARG_TYPES (type);
6333 function_arg_info arg (TREE_VALUE (t), /*named=*/true);
6334 this_arg = targetm.calls.function_arg (args_so_far, arg);
6335 if (this_arg && !REG_P (this_arg))
6336 this_arg = NULL_RTX;
6337 else if (this_arg == NULL_RTX)
6338 {
6339 for (; link; link = XEXP (link, 1))
6340 if (GET_CODE (XEXP (link, 0)) == USE
6341 && MEM_P (XEXP (XEXP (link, 0), 0)))
6342 {
6343 this_arg = XEXP (XEXP (link, 0), 0);
6344 break;
6345 }
6346 }
6347 }
6348 }
6349 }
6350 }
6351 t = type ? TYPE_ARG_TYPES (type) : NULL_TREE;
6352
6353 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
6354 if (GET_CODE (XEXP (link, 0)) == USE)
6355 {
6356 rtx item = NULL_RTX;
6357 x = XEXP (XEXP (link, 0), 0);
6358 if (GET_MODE (link) == VOIDmode
6359 || GET_MODE (link) == BLKmode
6360 || (GET_MODE (link) != GET_MODE (x)
6361 && ((GET_MODE_CLASS (GET_MODE (link)) != MODE_INT
6362 && GET_MODE_CLASS (GET_MODE (link)) != MODE_PARTIAL_INT)
6363 || (GET_MODE_CLASS (GET_MODE (x)) != MODE_INT
6364 && GET_MODE_CLASS (GET_MODE (x)) != MODE_PARTIAL_INT))))
6365 /* Can't do anything for these, if the original type mode
6366 isn't known or can't be converted. */;
6367 else if (REG_P (x))
6368 {
6369 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
6370 scalar_int_mode mode;
6371 if (val && cselib_preserved_value_p (val))
6372 item = val->val_rtx;
6373 else if (is_a <scalar_int_mode> (GET_MODE (x), &mode))
6374 {
6375 opt_scalar_int_mode mode_iter;
6376 FOR_EACH_WIDER_MODE (mode_iter, mode)
6377 {
6378 mode = mode_iter.require ();
6379 if (GET_MODE_BITSIZE (mode) > BITS_PER_WORD)
6380 break;
6381
6382 rtx reg = simplify_subreg (mode, x, GET_MODE (x), 0);
6383 if (reg == NULL_RTX || !REG_P (reg))
6384 continue;
6385 val = cselib_lookup (reg, mode, 0, VOIDmode);
6386 if (val && cselib_preserved_value_p (val))
6387 {
6388 item = val->val_rtx;
6389 break;
6390 }
6391 }
6392 }
6393 }
6394 else if (MEM_P (x))
6395 {
6396 rtx mem = x;
6397 cselib_val *val;
6398
6399 if (!frame_pointer_needed)
6400 {
6401 class adjust_mem_data amd;
6402 amd.mem_mode = VOIDmode;
6403 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
6404 amd.store = true;
6405 mem = simplify_replace_fn_rtx (mem, NULL_RTX, adjust_mems,
6406 &amd);
6407 gcc_assert (amd.side_effects.is_empty ());
6408 }
6409 val = cselib_lookup (mem, GET_MODE (mem), 0, VOIDmode);
6410 if (val && cselib_preserved_value_p (val))
6411 item = val->val_rtx;
6412 else if (GET_MODE_CLASS (GET_MODE (mem)) != MODE_INT
6413 && GET_MODE_CLASS (GET_MODE (mem)) != MODE_PARTIAL_INT)
6414 {
6415 /* For non-integer stack argument see also if they weren't
6416 initialized by integers. */
6417 scalar_int_mode imode;
6418 if (int_mode_for_mode (GET_MODE (mem)).exists (&imode)
6419 && imode != GET_MODE (mem))
6420 {
6421 val = cselib_lookup (adjust_address_nv (mem, imode, 0),
6422 imode, 0, VOIDmode);
6423 if (val && cselib_preserved_value_p (val))
6424 item = lowpart_subreg (GET_MODE (x), val->val_rtx,
6425 imode);
6426 }
6427 }
6428 }
6429 if (item)
6430 {
6431 rtx x2 = x;
6432 if (GET_MODE (item) != GET_MODE (link))
6433 item = lowpart_subreg (GET_MODE (link), item, GET_MODE (item));
6434 if (GET_MODE (x2) != GET_MODE (link))
6435 x2 = lowpart_subreg (GET_MODE (link), x2, GET_MODE (x2));
6436 item = gen_rtx_CONCAT (GET_MODE (link), x2, item);
6437 call_arguments
6438 = gen_rtx_EXPR_LIST (VOIDmode, item, call_arguments);
6439 }
6440 if (t && t != void_list_node)
6441 {
6442 rtx reg;
6443 function_arg_info arg (TREE_VALUE (t), /*named=*/true);
6444 apply_pass_by_reference_rules (&args_so_far_v, arg);
6445 reg = targetm.calls.function_arg (args_so_far, arg);
6446 if (TREE_CODE (arg.type) == REFERENCE_TYPE
6447 && INTEGRAL_TYPE_P (TREE_TYPE (arg.type))
6448 && reg
6449 && REG_P (reg)
6450 && GET_MODE (reg) == arg.mode
6451 && (GET_MODE_CLASS (arg.mode) == MODE_INT
6452 || GET_MODE_CLASS (arg.mode) == MODE_PARTIAL_INT)
6453 && REG_P (x)
6454 && REGNO (x) == REGNO (reg)
6455 && GET_MODE (x) == arg.mode
6456 && item)
6457 {
6458 machine_mode indmode
6459 = TYPE_MODE (TREE_TYPE (arg.type));
6460 rtx mem = gen_rtx_MEM (indmode, x);
6461 cselib_val *val = cselib_lookup (mem, indmode, 0, VOIDmode);
6462 if (val && cselib_preserved_value_p (val))
6463 {
6464 item = gen_rtx_CONCAT (indmode, mem, val->val_rtx);
6465 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
6466 call_arguments);
6467 }
6468 else
6469 {
6470 struct elt_loc_list *l;
6471 tree initial;
6472
6473 /* Try harder, when passing address of a constant
6474 pool integer it can be easily read back. */
6475 item = XEXP (item, 1);
6476 if (GET_CODE (item) == SUBREG)
6477 item = SUBREG_REG (item);
6478 gcc_assert (GET_CODE (item) == VALUE);
6479 val = CSELIB_VAL_PTR (item);
6480 for (l = val->locs; l; l = l->next)
6481 if (GET_CODE (l->loc) == SYMBOL_REF
6482 && TREE_CONSTANT_POOL_ADDRESS_P (l->loc)
6483 && SYMBOL_REF_DECL (l->loc)
6484 && DECL_INITIAL (SYMBOL_REF_DECL (l->loc)))
6485 {
6486 initial = DECL_INITIAL (SYMBOL_REF_DECL (l->loc));
6487 if (tree_fits_shwi_p (initial))
6488 {
6489 item = GEN_INT (tree_to_shwi (initial));
6490 item = gen_rtx_CONCAT (indmode, mem, item);
6491 call_arguments
6492 = gen_rtx_EXPR_LIST (VOIDmode, item,
6493 call_arguments);
6494 }
6495 break;
6496 }
6497 }
6498 }
6499 targetm.calls.function_arg_advance (args_so_far, arg);
6500 t = TREE_CHAIN (t);
6501 }
6502 }
6503
6504 /* Add debug arguments. */
6505 if (fndecl
6506 && TREE_CODE (fndecl) == FUNCTION_DECL
6507 && DECL_HAS_DEBUG_ARGS_P (fndecl))
6508 {
6509 vec<tree, va_gc> **debug_args = decl_debug_args_lookup (fndecl);
6510 if (debug_args)
6511 {
6512 unsigned int ix;
6513 tree param;
6514 for (ix = 0; vec_safe_iterate (*debug_args, ix, &param); ix += 2)
6515 {
6516 rtx item;
6517 tree dtemp = (**debug_args)[ix + 1];
6518 machine_mode mode = DECL_MODE (dtemp);
6519 item = gen_rtx_DEBUG_PARAMETER_REF (mode, param);
6520 item = gen_rtx_CONCAT (mode, item, DECL_RTL_KNOWN_SET (dtemp));
6521 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
6522 call_arguments);
6523 }
6524 }
6525 }
6526
6527 /* Reverse call_arguments chain. */
6528 prev = NULL_RTX;
6529 for (cur = call_arguments; cur; cur = next)
6530 {
6531 next = XEXP (cur, 1);
6532 XEXP (cur, 1) = prev;
6533 prev = cur;
6534 }
6535 call_arguments = prev;
6536
6537 x = get_call_rtx_from (insn);
6538 if (x)
6539 {
6540 x = XEXP (XEXP (x, 0), 0);
6541 if (GET_CODE (x) == SYMBOL_REF)
6542 /* Don't record anything. */;
6543 else if (CONSTANT_P (x))
6544 {
6545 x = gen_rtx_CONCAT (GET_MODE (x) == VOIDmode ? Pmode : GET_MODE (x),
6546 pc_rtx, x);
6547 call_arguments
6548 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6549 }
6550 else
6551 {
6552 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
6553 if (val && cselib_preserved_value_p (val))
6554 {
6555 x = gen_rtx_CONCAT (GET_MODE (x), pc_rtx, val->val_rtx);
6556 call_arguments
6557 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6558 }
6559 }
6560 }
6561 if (this_arg)
6562 {
6563 machine_mode mode
6564 = TYPE_MODE (TREE_TYPE (OBJ_TYPE_REF_EXPR (obj_type_ref)));
6565 rtx clobbered = gen_rtx_MEM (mode, this_arg);
6566 HOST_WIDE_INT token
6567 = tree_to_shwi (OBJ_TYPE_REF_TOKEN (obj_type_ref));
6568 if (token)
6569 clobbered = plus_constant (mode, clobbered,
6570 token * GET_MODE_SIZE (mode));
6571 clobbered = gen_rtx_MEM (mode, clobbered);
6572 x = gen_rtx_CONCAT (mode, gen_rtx_CLOBBER (VOIDmode, pc_rtx), clobbered);
6573 call_arguments
6574 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6575 }
6576 }
6577
6578 /* Callback for cselib_record_sets_hook, that records as micro
6579 operations uses and stores in an insn after cselib_record_sets has
6580 analyzed the sets in an insn, but before it modifies the stored
6581 values in the internal tables, unless cselib_record_sets doesn't
6582 call it directly (perhaps because we're not doing cselib in the
6583 first place, in which case sets and n_sets will be 0). */
6584
6585 static void
6586 add_with_sets (rtx_insn *insn, struct cselib_set *sets, int n_sets)
6587 {
6588 basic_block bb = BLOCK_FOR_INSN (insn);
6589 int n1, n2;
6590 struct count_use_info cui;
6591 micro_operation *mos;
6592
6593 cselib_hook_called = true;
6594
6595 cui.insn = insn;
6596 cui.bb = bb;
6597 cui.sets = sets;
6598 cui.n_sets = n_sets;
6599
6600 n1 = VTI (bb)->mos.length ();
6601 cui.store_p = false;
6602 note_uses (&PATTERN (insn), add_uses_1, &cui);
6603 n2 = VTI (bb)->mos.length () - 1;
6604 mos = VTI (bb)->mos.address ();
6605
6606 /* Order the MO_USEs to be before MO_USE_NO_VARs and MO_VAL_USE, and
6607 MO_VAL_LOC last. */
6608 while (n1 < n2)
6609 {
6610 while (n1 < n2 && mos[n1].type == MO_USE)
6611 n1++;
6612 while (n1 < n2 && mos[n2].type != MO_USE)
6613 n2--;
6614 if (n1 < n2)
6615 std::swap (mos[n1], mos[n2]);
6616 }
6617
6618 n2 = VTI (bb)->mos.length () - 1;
6619 while (n1 < n2)
6620 {
6621 while (n1 < n2 && mos[n1].type != MO_VAL_LOC)
6622 n1++;
6623 while (n1 < n2 && mos[n2].type == MO_VAL_LOC)
6624 n2--;
6625 if (n1 < n2)
6626 std::swap (mos[n1], mos[n2]);
6627 }
6628
6629 if (CALL_P (insn))
6630 {
6631 micro_operation mo;
6632
6633 mo.type = MO_CALL;
6634 mo.insn = insn;
6635 mo.u.loc = call_arguments;
6636 call_arguments = NULL_RTX;
6637
6638 if (dump_file && (dump_flags & TDF_DETAILS))
6639 log_op_type (PATTERN (insn), bb, insn, mo.type, dump_file);
6640 VTI (bb)->mos.safe_push (mo);
6641 }
6642
6643 n1 = VTI (bb)->mos.length ();
6644 /* This will record NEXT_INSN (insn), such that we can
6645 insert notes before it without worrying about any
6646 notes that MO_USEs might emit after the insn. */
6647 cui.store_p = true;
6648 note_stores (insn, add_stores, &cui);
6649 n2 = VTI (bb)->mos.length () - 1;
6650 mos = VTI (bb)->mos.address ();
6651
6652 /* Order the MO_VAL_USEs first (note_stores does nothing
6653 on DEBUG_INSNs, so there are no MO_VAL_LOCs from this
6654 insn), then MO_CLOBBERs, then MO_SET/MO_COPY/MO_VAL_SET. */
6655 while (n1 < n2)
6656 {
6657 while (n1 < n2 && mos[n1].type == MO_VAL_USE)
6658 n1++;
6659 while (n1 < n2 && mos[n2].type != MO_VAL_USE)
6660 n2--;
6661 if (n1 < n2)
6662 std::swap (mos[n1], mos[n2]);
6663 }
6664
6665 n2 = VTI (bb)->mos.length () - 1;
6666 while (n1 < n2)
6667 {
6668 while (n1 < n2 && mos[n1].type == MO_CLOBBER)
6669 n1++;
6670 while (n1 < n2 && mos[n2].type != MO_CLOBBER)
6671 n2--;
6672 if (n1 < n2)
6673 std::swap (mos[n1], mos[n2]);
6674 }
6675 }
6676
6677 static enum var_init_status
6678 find_src_status (dataflow_set *in, rtx src)
6679 {
6680 tree decl = NULL_TREE;
6681 enum var_init_status status = VAR_INIT_STATUS_UNINITIALIZED;
6682
6683 if (! flag_var_tracking_uninit)
6684 status = VAR_INIT_STATUS_INITIALIZED;
6685
6686 if (src && REG_P (src))
6687 decl = var_debug_decl (REG_EXPR (src));
6688 else if (src && MEM_P (src))
6689 decl = var_debug_decl (MEM_EXPR (src));
6690
6691 if (src && decl)
6692 status = get_init_value (in, src, dv_from_decl (decl));
6693
6694 return status;
6695 }
6696
6697 /* SRC is the source of an assignment. Use SET to try to find what
6698 was ultimately assigned to SRC. Return that value if known,
6699 otherwise return SRC itself. */
6700
6701 static rtx
6702 find_src_set_src (dataflow_set *set, rtx src)
6703 {
6704 tree decl = NULL_TREE; /* The variable being copied around. */
6705 rtx set_src = NULL_RTX; /* The value for "decl" stored in "src". */
6706 variable *var;
6707 location_chain *nextp;
6708 int i;
6709 bool found;
6710
6711 if (src && REG_P (src))
6712 decl = var_debug_decl (REG_EXPR (src));
6713 else if (src && MEM_P (src))
6714 decl = var_debug_decl (MEM_EXPR (src));
6715
6716 if (src && decl)
6717 {
6718 decl_or_value dv = dv_from_decl (decl);
6719
6720 var = shared_hash_find (set->vars, dv);
6721 if (var)
6722 {
6723 found = false;
6724 for (i = 0; i < var->n_var_parts && !found; i++)
6725 for (nextp = var->var_part[i].loc_chain; nextp && !found;
6726 nextp = nextp->next)
6727 if (rtx_equal_p (nextp->loc, src))
6728 {
6729 set_src = nextp->set_src;
6730 found = true;
6731 }
6732
6733 }
6734 }
6735
6736 return set_src;
6737 }
6738
6739 /* Compute the changes of variable locations in the basic block BB. */
6740
6741 static bool
6742 compute_bb_dataflow (basic_block bb)
6743 {
6744 unsigned int i;
6745 micro_operation *mo;
6746 bool changed;
6747 dataflow_set old_out;
6748 dataflow_set *in = &VTI (bb)->in;
6749 dataflow_set *out = &VTI (bb)->out;
6750
6751 dataflow_set_init (&old_out);
6752 dataflow_set_copy (&old_out, out);
6753 dataflow_set_copy (out, in);
6754
6755 if (MAY_HAVE_DEBUG_BIND_INSNS)
6756 local_get_addr_cache = new hash_map<rtx, rtx>;
6757
6758 FOR_EACH_VEC_ELT (VTI (bb)->mos, i, mo)
6759 {
6760 rtx_insn *insn = mo->insn;
6761
6762 switch (mo->type)
6763 {
6764 case MO_CALL:
6765 dataflow_set_clear_at_call (out, insn);
6766 break;
6767
6768 case MO_USE:
6769 {
6770 rtx loc = mo->u.loc;
6771
6772 if (REG_P (loc))
6773 var_reg_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6774 else if (MEM_P (loc))
6775 var_mem_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6776 }
6777 break;
6778
6779 case MO_VAL_LOC:
6780 {
6781 rtx loc = mo->u.loc;
6782 rtx val, vloc;
6783 tree var;
6784
6785 if (GET_CODE (loc) == CONCAT)
6786 {
6787 val = XEXP (loc, 0);
6788 vloc = XEXP (loc, 1);
6789 }
6790 else
6791 {
6792 val = NULL_RTX;
6793 vloc = loc;
6794 }
6795
6796 var = PAT_VAR_LOCATION_DECL (vloc);
6797
6798 clobber_variable_part (out, NULL_RTX,
6799 dv_from_decl (var), 0, NULL_RTX);
6800 if (val)
6801 {
6802 if (VAL_NEEDS_RESOLUTION (loc))
6803 val_resolve (out, val, PAT_VAR_LOCATION_LOC (vloc), insn);
6804 set_variable_part (out, val, dv_from_decl (var), 0,
6805 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6806 INSERT);
6807 }
6808 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
6809 set_variable_part (out, PAT_VAR_LOCATION_LOC (vloc),
6810 dv_from_decl (var), 0,
6811 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6812 INSERT);
6813 }
6814 break;
6815
6816 case MO_VAL_USE:
6817 {
6818 rtx loc = mo->u.loc;
6819 rtx val, vloc, uloc;
6820
6821 vloc = uloc = XEXP (loc, 1);
6822 val = XEXP (loc, 0);
6823
6824 if (GET_CODE (val) == CONCAT)
6825 {
6826 uloc = XEXP (val, 1);
6827 val = XEXP (val, 0);
6828 }
6829
6830 if (VAL_NEEDS_RESOLUTION (loc))
6831 val_resolve (out, val, vloc, insn);
6832 else
6833 val_store (out, val, uloc, insn, false);
6834
6835 if (VAL_HOLDS_TRACK_EXPR (loc))
6836 {
6837 if (GET_CODE (uloc) == REG)
6838 var_reg_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6839 NULL);
6840 else if (GET_CODE (uloc) == MEM)
6841 var_mem_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6842 NULL);
6843 }
6844 }
6845 break;
6846
6847 case MO_VAL_SET:
6848 {
6849 rtx loc = mo->u.loc;
6850 rtx val, vloc, uloc;
6851 rtx dstv, srcv;
6852
6853 vloc = loc;
6854 uloc = XEXP (vloc, 1);
6855 val = XEXP (vloc, 0);
6856 vloc = uloc;
6857
6858 if (GET_CODE (uloc) == SET)
6859 {
6860 dstv = SET_DEST (uloc);
6861 srcv = SET_SRC (uloc);
6862 }
6863 else
6864 {
6865 dstv = uloc;
6866 srcv = NULL;
6867 }
6868
6869 if (GET_CODE (val) == CONCAT)
6870 {
6871 dstv = vloc = XEXP (val, 1);
6872 val = XEXP (val, 0);
6873 }
6874
6875 if (GET_CODE (vloc) == SET)
6876 {
6877 srcv = SET_SRC (vloc);
6878
6879 gcc_assert (val != srcv);
6880 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
6881
6882 dstv = vloc = SET_DEST (vloc);
6883
6884 if (VAL_NEEDS_RESOLUTION (loc))
6885 val_resolve (out, val, srcv, insn);
6886 }
6887 else if (VAL_NEEDS_RESOLUTION (loc))
6888 {
6889 gcc_assert (GET_CODE (uloc) == SET
6890 && GET_CODE (SET_SRC (uloc)) == REG);
6891 val_resolve (out, val, SET_SRC (uloc), insn);
6892 }
6893
6894 if (VAL_HOLDS_TRACK_EXPR (loc))
6895 {
6896 if (VAL_EXPR_IS_CLOBBERED (loc))
6897 {
6898 if (REG_P (uloc))
6899 var_reg_delete (out, uloc, true);
6900 else if (MEM_P (uloc))
6901 {
6902 gcc_assert (MEM_P (dstv));
6903 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (uloc));
6904 var_mem_delete (out, dstv, true);
6905 }
6906 }
6907 else
6908 {
6909 bool copied_p = VAL_EXPR_IS_COPIED (loc);
6910 rtx src = NULL, dst = uloc;
6911 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
6912
6913 if (GET_CODE (uloc) == SET)
6914 {
6915 src = SET_SRC (uloc);
6916 dst = SET_DEST (uloc);
6917 }
6918
6919 if (copied_p)
6920 {
6921 if (flag_var_tracking_uninit)
6922 {
6923 status = find_src_status (in, src);
6924
6925 if (status == VAR_INIT_STATUS_UNKNOWN)
6926 status = find_src_status (out, src);
6927 }
6928
6929 src = find_src_set_src (in, src);
6930 }
6931
6932 if (REG_P (dst))
6933 var_reg_delete_and_set (out, dst, !copied_p,
6934 status, srcv);
6935 else if (MEM_P (dst))
6936 {
6937 gcc_assert (MEM_P (dstv));
6938 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (dst));
6939 var_mem_delete_and_set (out, dstv, !copied_p,
6940 status, srcv);
6941 }
6942 }
6943 }
6944 else if (REG_P (uloc))
6945 var_regno_delete (out, REGNO (uloc));
6946 else if (MEM_P (uloc))
6947 {
6948 gcc_checking_assert (GET_CODE (vloc) == MEM);
6949 gcc_checking_assert (dstv == vloc);
6950 if (dstv != vloc)
6951 clobber_overlapping_mems (out, vloc);
6952 }
6953
6954 val_store (out, val, dstv, insn, true);
6955 }
6956 break;
6957
6958 case MO_SET:
6959 {
6960 rtx loc = mo->u.loc;
6961 rtx set_src = NULL;
6962
6963 if (GET_CODE (loc) == SET)
6964 {
6965 set_src = SET_SRC (loc);
6966 loc = SET_DEST (loc);
6967 }
6968
6969 if (REG_P (loc))
6970 var_reg_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6971 set_src);
6972 else if (MEM_P (loc))
6973 var_mem_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6974 set_src);
6975 }
6976 break;
6977
6978 case MO_COPY:
6979 {
6980 rtx loc = mo->u.loc;
6981 enum var_init_status src_status;
6982 rtx set_src = NULL;
6983
6984 if (GET_CODE (loc) == SET)
6985 {
6986 set_src = SET_SRC (loc);
6987 loc = SET_DEST (loc);
6988 }
6989
6990 if (! flag_var_tracking_uninit)
6991 src_status = VAR_INIT_STATUS_INITIALIZED;
6992 else
6993 {
6994 src_status = find_src_status (in, set_src);
6995
6996 if (src_status == VAR_INIT_STATUS_UNKNOWN)
6997 src_status = find_src_status (out, set_src);
6998 }
6999
7000 set_src = find_src_set_src (in, set_src);
7001
7002 if (REG_P (loc))
7003 var_reg_delete_and_set (out, loc, false, src_status, set_src);
7004 else if (MEM_P (loc))
7005 var_mem_delete_and_set (out, loc, false, src_status, set_src);
7006 }
7007 break;
7008
7009 case MO_USE_NO_VAR:
7010 {
7011 rtx loc = mo->u.loc;
7012
7013 if (REG_P (loc))
7014 var_reg_delete (out, loc, false);
7015 else if (MEM_P (loc))
7016 var_mem_delete (out, loc, false);
7017 }
7018 break;
7019
7020 case MO_CLOBBER:
7021 {
7022 rtx loc = mo->u.loc;
7023
7024 if (REG_P (loc))
7025 var_reg_delete (out, loc, true);
7026 else if (MEM_P (loc))
7027 var_mem_delete (out, loc, true);
7028 }
7029 break;
7030
7031 case MO_ADJUST:
7032 out->stack_adjust += mo->u.adjust;
7033 break;
7034 }
7035 }
7036
7037 if (MAY_HAVE_DEBUG_BIND_INSNS)
7038 {
7039 delete local_get_addr_cache;
7040 local_get_addr_cache = NULL;
7041
7042 dataflow_set_equiv_regs (out);
7043 shared_hash_htab (out->vars)
7044 ->traverse <dataflow_set *, canonicalize_values_mark> (out);
7045 shared_hash_htab (out->vars)
7046 ->traverse <dataflow_set *, canonicalize_values_star> (out);
7047 if (flag_checking)
7048 shared_hash_htab (out->vars)
7049 ->traverse <dataflow_set *, canonicalize_loc_order_check> (out);
7050 }
7051 changed = dataflow_set_different (&old_out, out);
7052 dataflow_set_destroy (&old_out);
7053 return changed;
7054 }
7055
7056 /* Find the locations of variables in the whole function. */
7057
7058 static bool
7059 vt_find_locations (void)
7060 {
7061 bb_heap_t *worklist = new bb_heap_t (LONG_MIN);
7062 bb_heap_t *pending = new bb_heap_t (LONG_MIN);
7063 sbitmap in_worklist, in_pending;
7064 basic_block bb;
7065 edge e;
7066 int *bb_order;
7067 int *rc_order;
7068 int i;
7069 int htabsz = 0;
7070 int htabmax = param_max_vartrack_size;
7071 bool success = true;
7072
7073 timevar_push (TV_VAR_TRACKING_DATAFLOW);
7074 /* Compute reverse completion order of depth first search of the CFG
7075 so that the data-flow runs faster. */
7076 rc_order = XNEWVEC (int, n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS);
7077 bb_order = XNEWVEC (int, last_basic_block_for_fn (cfun));
7078 pre_and_rev_post_order_compute (NULL, rc_order, false);
7079 for (i = 0; i < n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS; i++)
7080 bb_order[rc_order[i]] = i;
7081 free (rc_order);
7082
7083 auto_sbitmap visited (last_basic_block_for_fn (cfun));
7084 in_worklist = sbitmap_alloc (last_basic_block_for_fn (cfun));
7085 in_pending = sbitmap_alloc (last_basic_block_for_fn (cfun));
7086 bitmap_clear (in_worklist);
7087
7088 FOR_EACH_BB_FN (bb, cfun)
7089 pending->insert (bb_order[bb->index], bb);
7090 bitmap_ones (in_pending);
7091
7092 while (success && !pending->empty ())
7093 {
7094 std::swap (worklist, pending);
7095 std::swap (in_worklist, in_pending);
7096
7097 bitmap_clear (visited);
7098
7099 while (!worklist->empty ())
7100 {
7101 bb = worklist->extract_min ();
7102 bitmap_clear_bit (in_worklist, bb->index);
7103 gcc_assert (!bitmap_bit_p (visited, bb->index));
7104 if (!bitmap_bit_p (visited, bb->index))
7105 {
7106 bool changed;
7107 edge_iterator ei;
7108 int oldinsz, oldoutsz;
7109
7110 bitmap_set_bit (visited, bb->index);
7111
7112 if (VTI (bb)->in.vars)
7113 {
7114 htabsz
7115 -= shared_hash_htab (VTI (bb)->in.vars)->size ()
7116 + shared_hash_htab (VTI (bb)->out.vars)->size ();
7117 oldinsz = shared_hash_htab (VTI (bb)->in.vars)->elements ();
7118 oldoutsz
7119 = shared_hash_htab (VTI (bb)->out.vars)->elements ();
7120 }
7121 else
7122 oldinsz = oldoutsz = 0;
7123
7124 if (MAY_HAVE_DEBUG_BIND_INSNS)
7125 {
7126 dataflow_set *in = &VTI (bb)->in, *first_out = NULL;
7127 bool first = true, adjust = false;
7128
7129 /* Calculate the IN set as the intersection of
7130 predecessor OUT sets. */
7131
7132 dataflow_set_clear (in);
7133 dst_can_be_shared = true;
7134
7135 FOR_EACH_EDGE (e, ei, bb->preds)
7136 if (!VTI (e->src)->flooded)
7137 gcc_assert (bb_order[bb->index]
7138 <= bb_order[e->src->index]);
7139 else if (first)
7140 {
7141 dataflow_set_copy (in, &VTI (e->src)->out);
7142 first_out = &VTI (e->src)->out;
7143 first = false;
7144 }
7145 else
7146 {
7147 dataflow_set_merge (in, &VTI (e->src)->out);
7148 adjust = true;
7149 }
7150
7151 if (adjust)
7152 {
7153 dataflow_post_merge_adjust (in, &VTI (bb)->permp);
7154
7155 if (flag_checking)
7156 /* Merge and merge_adjust should keep entries in
7157 canonical order. */
7158 shared_hash_htab (in->vars)
7159 ->traverse <dataflow_set *,
7160 canonicalize_loc_order_check> (in);
7161
7162 if (dst_can_be_shared)
7163 {
7164 shared_hash_destroy (in->vars);
7165 in->vars = shared_hash_copy (first_out->vars);
7166 }
7167 }
7168
7169 VTI (bb)->flooded = true;
7170 }
7171 else
7172 {
7173 /* Calculate the IN set as union of predecessor OUT sets. */
7174 dataflow_set_clear (&VTI (bb)->in);
7175 FOR_EACH_EDGE (e, ei, bb->preds)
7176 dataflow_set_union (&VTI (bb)->in, &VTI (e->src)->out);
7177 }
7178
7179 changed = compute_bb_dataflow (bb);
7180 htabsz += shared_hash_htab (VTI (bb)->in.vars)->size ()
7181 + shared_hash_htab (VTI (bb)->out.vars)->size ();
7182
7183 if (htabmax && htabsz > htabmax)
7184 {
7185 if (MAY_HAVE_DEBUG_BIND_INSNS)
7186 inform (DECL_SOURCE_LOCATION (cfun->decl),
7187 "variable tracking size limit exceeded with "
7188 "%<-fvar-tracking-assignments%>, retrying without");
7189 else
7190 inform (DECL_SOURCE_LOCATION (cfun->decl),
7191 "variable tracking size limit exceeded");
7192 success = false;
7193 break;
7194 }
7195
7196 if (changed)
7197 {
7198 FOR_EACH_EDGE (e, ei, bb->succs)
7199 {
7200 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
7201 continue;
7202
7203 if (bitmap_bit_p (visited, e->dest->index))
7204 {
7205 if (!bitmap_bit_p (in_pending, e->dest->index))
7206 {
7207 /* Send E->DEST to next round. */
7208 bitmap_set_bit (in_pending, e->dest->index);
7209 pending->insert (bb_order[e->dest->index],
7210 e->dest);
7211 }
7212 }
7213 else if (!bitmap_bit_p (in_worklist, e->dest->index))
7214 {
7215 /* Add E->DEST to current round. */
7216 bitmap_set_bit (in_worklist, e->dest->index);
7217 worklist->insert (bb_order[e->dest->index],
7218 e->dest);
7219 }
7220 }
7221 }
7222
7223 if (dump_file)
7224 fprintf (dump_file,
7225 "BB %i: in %i (was %i), out %i (was %i), rem %i + %i, tsz %i\n",
7226 bb->index,
7227 (int)shared_hash_htab (VTI (bb)->in.vars)->size (),
7228 oldinsz,
7229 (int)shared_hash_htab (VTI (bb)->out.vars)->size (),
7230 oldoutsz,
7231 (int)worklist->nodes (), (int)pending->nodes (),
7232 htabsz);
7233
7234 if (dump_file && (dump_flags & TDF_DETAILS))
7235 {
7236 fprintf (dump_file, "BB %i IN:\n", bb->index);
7237 dump_dataflow_set (&VTI (bb)->in);
7238 fprintf (dump_file, "BB %i OUT:\n", bb->index);
7239 dump_dataflow_set (&VTI (bb)->out);
7240 }
7241 }
7242 }
7243 }
7244
7245 if (success && MAY_HAVE_DEBUG_BIND_INSNS)
7246 FOR_EACH_BB_FN (bb, cfun)
7247 gcc_assert (VTI (bb)->flooded);
7248
7249 free (bb_order);
7250 delete worklist;
7251 delete pending;
7252 sbitmap_free (in_worklist);
7253 sbitmap_free (in_pending);
7254
7255 timevar_pop (TV_VAR_TRACKING_DATAFLOW);
7256 return success;
7257 }
7258
7259 /* Print the content of the LIST to dump file. */
7260
7261 static void
7262 dump_attrs_list (attrs *list)
7263 {
7264 for (; list; list = list->next)
7265 {
7266 if (dv_is_decl_p (list->dv))
7267 print_mem_expr (dump_file, dv_as_decl (list->dv));
7268 else
7269 print_rtl_single (dump_file, dv_as_value (list->dv));
7270 fprintf (dump_file, "+" HOST_WIDE_INT_PRINT_DEC, list->offset);
7271 }
7272 fprintf (dump_file, "\n");
7273 }
7274
7275 /* Print the information about variable *SLOT to dump file. */
7276
7277 int
7278 dump_var_tracking_slot (variable **slot, void *data ATTRIBUTE_UNUSED)
7279 {
7280 variable *var = *slot;
7281
7282 dump_var (var);
7283
7284 /* Continue traversing the hash table. */
7285 return 1;
7286 }
7287
7288 /* Print the information about variable VAR to dump file. */
7289
7290 static void
7291 dump_var (variable *var)
7292 {
7293 int i;
7294 location_chain *node;
7295
7296 if (dv_is_decl_p (var->dv))
7297 {
7298 const_tree decl = dv_as_decl (var->dv);
7299
7300 if (DECL_NAME (decl))
7301 {
7302 fprintf (dump_file, " name: %s",
7303 IDENTIFIER_POINTER (DECL_NAME (decl)));
7304 if (dump_flags & TDF_UID)
7305 fprintf (dump_file, "D.%u", DECL_UID (decl));
7306 }
7307 else if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
7308 fprintf (dump_file, " name: D#%u", DEBUG_TEMP_UID (decl));
7309 else
7310 fprintf (dump_file, " name: D.%u", DECL_UID (decl));
7311 fprintf (dump_file, "\n");
7312 }
7313 else
7314 {
7315 fputc (' ', dump_file);
7316 print_rtl_single (dump_file, dv_as_value (var->dv));
7317 }
7318
7319 for (i = 0; i < var->n_var_parts; i++)
7320 {
7321 fprintf (dump_file, " offset %ld\n",
7322 (long)(var->onepart ? 0 : VAR_PART_OFFSET (var, i)));
7323 for (node = var->var_part[i].loc_chain; node; node = node->next)
7324 {
7325 fprintf (dump_file, " ");
7326 if (node->init == VAR_INIT_STATUS_UNINITIALIZED)
7327 fprintf (dump_file, "[uninit]");
7328 print_rtl_single (dump_file, node->loc);
7329 }
7330 }
7331 }
7332
7333 /* Print the information about variables from hash table VARS to dump file. */
7334
7335 static void
7336 dump_vars (variable_table_type *vars)
7337 {
7338 if (!vars->is_empty ())
7339 {
7340 fprintf (dump_file, "Variables:\n");
7341 vars->traverse <void *, dump_var_tracking_slot> (NULL);
7342 }
7343 }
7344
7345 /* Print the dataflow set SET to dump file. */
7346
7347 static void
7348 dump_dataflow_set (dataflow_set *set)
7349 {
7350 int i;
7351
7352 fprintf (dump_file, "Stack adjustment: " HOST_WIDE_INT_PRINT_DEC "\n",
7353 set->stack_adjust);
7354 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
7355 {
7356 if (set->regs[i])
7357 {
7358 fprintf (dump_file, "Reg %d:", i);
7359 dump_attrs_list (set->regs[i]);
7360 }
7361 }
7362 dump_vars (shared_hash_htab (set->vars));
7363 fprintf (dump_file, "\n");
7364 }
7365
7366 /* Print the IN and OUT sets for each basic block to dump file. */
7367
7368 static void
7369 dump_dataflow_sets (void)
7370 {
7371 basic_block bb;
7372
7373 FOR_EACH_BB_FN (bb, cfun)
7374 {
7375 fprintf (dump_file, "\nBasic block %d:\n", bb->index);
7376 fprintf (dump_file, "IN:\n");
7377 dump_dataflow_set (&VTI (bb)->in);
7378 fprintf (dump_file, "OUT:\n");
7379 dump_dataflow_set (&VTI (bb)->out);
7380 }
7381 }
7382
7383 /* Return the variable for DV in dropped_values, inserting one if
7384 requested with INSERT. */
7385
7386 static inline variable *
7387 variable_from_dropped (decl_or_value dv, enum insert_option insert)
7388 {
7389 variable **slot;
7390 variable *empty_var;
7391 onepart_enum onepart;
7392
7393 slot = dropped_values->find_slot_with_hash (dv, dv_htab_hash (dv), insert);
7394
7395 if (!slot)
7396 return NULL;
7397
7398 if (*slot)
7399 return *slot;
7400
7401 gcc_checking_assert (insert == INSERT);
7402
7403 onepart = dv_onepart_p (dv);
7404
7405 gcc_checking_assert (onepart == ONEPART_VALUE || onepart == ONEPART_DEXPR);
7406
7407 empty_var = onepart_pool_allocate (onepart);
7408 empty_var->dv = dv;
7409 empty_var->refcount = 1;
7410 empty_var->n_var_parts = 0;
7411 empty_var->onepart = onepart;
7412 empty_var->in_changed_variables = false;
7413 empty_var->var_part[0].loc_chain = NULL;
7414 empty_var->var_part[0].cur_loc = NULL;
7415 VAR_LOC_1PAUX (empty_var) = NULL;
7416 set_dv_changed (dv, true);
7417
7418 *slot = empty_var;
7419
7420 return empty_var;
7421 }
7422
7423 /* Recover the one-part aux from dropped_values. */
7424
7425 static struct onepart_aux *
7426 recover_dropped_1paux (variable *var)
7427 {
7428 variable *dvar;
7429
7430 gcc_checking_assert (var->onepart);
7431
7432 if (VAR_LOC_1PAUX (var))
7433 return VAR_LOC_1PAUX (var);
7434
7435 if (var->onepart == ONEPART_VDECL)
7436 return NULL;
7437
7438 dvar = variable_from_dropped (var->dv, NO_INSERT);
7439
7440 if (!dvar)
7441 return NULL;
7442
7443 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (dvar);
7444 VAR_LOC_1PAUX (dvar) = NULL;
7445
7446 return VAR_LOC_1PAUX (var);
7447 }
7448
7449 /* Add variable VAR to the hash table of changed variables and
7450 if it has no locations delete it from SET's hash table. */
7451
7452 static void
7453 variable_was_changed (variable *var, dataflow_set *set)
7454 {
7455 hashval_t hash = dv_htab_hash (var->dv);
7456
7457 if (emit_notes)
7458 {
7459 variable **slot;
7460
7461 /* Remember this decl or VALUE has been added to changed_variables. */
7462 set_dv_changed (var->dv, true);
7463
7464 slot = changed_variables->find_slot_with_hash (var->dv, hash, INSERT);
7465
7466 if (*slot)
7467 {
7468 variable *old_var = *slot;
7469 gcc_assert (old_var->in_changed_variables);
7470 old_var->in_changed_variables = false;
7471 if (var != old_var && var->onepart)
7472 {
7473 /* Restore the auxiliary info from an empty variable
7474 previously created for changed_variables, so it is
7475 not lost. */
7476 gcc_checking_assert (!VAR_LOC_1PAUX (var));
7477 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (old_var);
7478 VAR_LOC_1PAUX (old_var) = NULL;
7479 }
7480 variable_htab_free (*slot);
7481 }
7482
7483 if (set && var->n_var_parts == 0)
7484 {
7485 onepart_enum onepart = var->onepart;
7486 variable *empty_var = NULL;
7487 variable **dslot = NULL;
7488
7489 if (onepart == ONEPART_VALUE || onepart == ONEPART_DEXPR)
7490 {
7491 dslot = dropped_values->find_slot_with_hash (var->dv,
7492 dv_htab_hash (var->dv),
7493 INSERT);
7494 empty_var = *dslot;
7495
7496 if (empty_var)
7497 {
7498 gcc_checking_assert (!empty_var->in_changed_variables);
7499 if (!VAR_LOC_1PAUX (var))
7500 {
7501 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (empty_var);
7502 VAR_LOC_1PAUX (empty_var) = NULL;
7503 }
7504 else
7505 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var));
7506 }
7507 }
7508
7509 if (!empty_var)
7510 {
7511 empty_var = onepart_pool_allocate (onepart);
7512 empty_var->dv = var->dv;
7513 empty_var->refcount = 1;
7514 empty_var->n_var_parts = 0;
7515 empty_var->onepart = onepart;
7516 if (dslot)
7517 {
7518 empty_var->refcount++;
7519 *dslot = empty_var;
7520 }
7521 }
7522 else
7523 empty_var->refcount++;
7524 empty_var->in_changed_variables = true;
7525 *slot = empty_var;
7526 if (onepart)
7527 {
7528 empty_var->var_part[0].loc_chain = NULL;
7529 empty_var->var_part[0].cur_loc = NULL;
7530 VAR_LOC_1PAUX (empty_var) = VAR_LOC_1PAUX (var);
7531 VAR_LOC_1PAUX (var) = NULL;
7532 }
7533 goto drop_var;
7534 }
7535 else
7536 {
7537 if (var->onepart && !VAR_LOC_1PAUX (var))
7538 recover_dropped_1paux (var);
7539 var->refcount++;
7540 var->in_changed_variables = true;
7541 *slot = var;
7542 }
7543 }
7544 else
7545 {
7546 gcc_assert (set);
7547 if (var->n_var_parts == 0)
7548 {
7549 variable **slot;
7550
7551 drop_var:
7552 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
7553 if (slot)
7554 {
7555 if (shared_hash_shared (set->vars))
7556 slot = shared_hash_find_slot_unshare (&set->vars, var->dv,
7557 NO_INSERT);
7558 shared_hash_htab (set->vars)->clear_slot (slot);
7559 }
7560 }
7561 }
7562 }
7563
7564 /* Look for the index in VAR->var_part corresponding to OFFSET.
7565 Return -1 if not found. If INSERTION_POINT is non-NULL, the
7566 referenced int will be set to the index that the part has or should
7567 have, if it should be inserted. */
7568
7569 static inline int
7570 find_variable_location_part (variable *var, HOST_WIDE_INT offset,
7571 int *insertion_point)
7572 {
7573 int pos, low, high;
7574
7575 if (var->onepart)
7576 {
7577 if (offset != 0)
7578 return -1;
7579
7580 if (insertion_point)
7581 *insertion_point = 0;
7582
7583 return var->n_var_parts - 1;
7584 }
7585
7586 /* Find the location part. */
7587 low = 0;
7588 high = var->n_var_parts;
7589 while (low != high)
7590 {
7591 pos = (low + high) / 2;
7592 if (VAR_PART_OFFSET (var, pos) < offset)
7593 low = pos + 1;
7594 else
7595 high = pos;
7596 }
7597 pos = low;
7598
7599 if (insertion_point)
7600 *insertion_point = pos;
7601
7602 if (pos < var->n_var_parts && VAR_PART_OFFSET (var, pos) == offset)
7603 return pos;
7604
7605 return -1;
7606 }
7607
7608 static variable **
7609 set_slot_part (dataflow_set *set, rtx loc, variable **slot,
7610 decl_or_value dv, HOST_WIDE_INT offset,
7611 enum var_init_status initialized, rtx set_src)
7612 {
7613 int pos;
7614 location_chain *node, *next;
7615 location_chain **nextp;
7616 variable *var;
7617 onepart_enum onepart;
7618
7619 var = *slot;
7620
7621 if (var)
7622 onepart = var->onepart;
7623 else
7624 onepart = dv_onepart_p (dv);
7625
7626 gcc_checking_assert (offset == 0 || !onepart);
7627 gcc_checking_assert (loc != dv_as_opaque (dv));
7628
7629 if (! flag_var_tracking_uninit)
7630 initialized = VAR_INIT_STATUS_INITIALIZED;
7631
7632 if (!var)
7633 {
7634 /* Create new variable information. */
7635 var = onepart_pool_allocate (onepart);
7636 var->dv = dv;
7637 var->refcount = 1;
7638 var->n_var_parts = 1;
7639 var->onepart = onepart;
7640 var->in_changed_variables = false;
7641 if (var->onepart)
7642 VAR_LOC_1PAUX (var) = NULL;
7643 else
7644 VAR_PART_OFFSET (var, 0) = offset;
7645 var->var_part[0].loc_chain = NULL;
7646 var->var_part[0].cur_loc = NULL;
7647 *slot = var;
7648 pos = 0;
7649 nextp = &var->var_part[0].loc_chain;
7650 }
7651 else if (onepart)
7652 {
7653 int r = -1, c = 0;
7654
7655 gcc_assert (dv_as_opaque (var->dv) == dv_as_opaque (dv));
7656
7657 pos = 0;
7658
7659 if (GET_CODE (loc) == VALUE)
7660 {
7661 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7662 nextp = &node->next)
7663 if (GET_CODE (node->loc) == VALUE)
7664 {
7665 if (node->loc == loc)
7666 {
7667 r = 0;
7668 break;
7669 }
7670 if (canon_value_cmp (node->loc, loc))
7671 c++;
7672 else
7673 {
7674 r = 1;
7675 break;
7676 }
7677 }
7678 else if (REG_P (node->loc) || MEM_P (node->loc))
7679 c++;
7680 else
7681 {
7682 r = 1;
7683 break;
7684 }
7685 }
7686 else if (REG_P (loc))
7687 {
7688 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7689 nextp = &node->next)
7690 if (REG_P (node->loc))
7691 {
7692 if (REGNO (node->loc) < REGNO (loc))
7693 c++;
7694 else
7695 {
7696 if (REGNO (node->loc) == REGNO (loc))
7697 r = 0;
7698 else
7699 r = 1;
7700 break;
7701 }
7702 }
7703 else
7704 {
7705 r = 1;
7706 break;
7707 }
7708 }
7709 else if (MEM_P (loc))
7710 {
7711 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7712 nextp = &node->next)
7713 if (REG_P (node->loc))
7714 c++;
7715 else if (MEM_P (node->loc))
7716 {
7717 if ((r = loc_cmp (XEXP (node->loc, 0), XEXP (loc, 0))) >= 0)
7718 break;
7719 else
7720 c++;
7721 }
7722 else
7723 {
7724 r = 1;
7725 break;
7726 }
7727 }
7728 else
7729 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7730 nextp = &node->next)
7731 if ((r = loc_cmp (node->loc, loc)) >= 0)
7732 break;
7733 else
7734 c++;
7735
7736 if (r == 0)
7737 return slot;
7738
7739 if (shared_var_p (var, set->vars))
7740 {
7741 slot = unshare_variable (set, slot, var, initialized);
7742 var = *slot;
7743 for (nextp = &var->var_part[0].loc_chain; c;
7744 nextp = &(*nextp)->next)
7745 c--;
7746 gcc_assert ((!node && !*nextp) || node->loc == (*nextp)->loc);
7747 }
7748 }
7749 else
7750 {
7751 int inspos = 0;
7752
7753 gcc_assert (dv_as_decl (var->dv) == dv_as_decl (dv));
7754
7755 pos = find_variable_location_part (var, offset, &inspos);
7756
7757 if (pos >= 0)
7758 {
7759 node = var->var_part[pos].loc_chain;
7760
7761 if (node
7762 && ((REG_P (node->loc) && REG_P (loc)
7763 && REGNO (node->loc) == REGNO (loc))
7764 || rtx_equal_p (node->loc, loc)))
7765 {
7766 /* LOC is in the beginning of the chain so we have nothing
7767 to do. */
7768 if (node->init < initialized)
7769 node->init = initialized;
7770 if (set_src != NULL)
7771 node->set_src = set_src;
7772
7773 return slot;
7774 }
7775 else
7776 {
7777 /* We have to make a copy of a shared variable. */
7778 if (shared_var_p (var, set->vars))
7779 {
7780 slot = unshare_variable (set, slot, var, initialized);
7781 var = *slot;
7782 }
7783 }
7784 }
7785 else
7786 {
7787 /* We have not found the location part, new one will be created. */
7788
7789 /* We have to make a copy of the shared variable. */
7790 if (shared_var_p (var, set->vars))
7791 {
7792 slot = unshare_variable (set, slot, var, initialized);
7793 var = *slot;
7794 }
7795
7796 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
7797 thus there are at most MAX_VAR_PARTS different offsets. */
7798 gcc_assert (var->n_var_parts < MAX_VAR_PARTS
7799 && (!var->n_var_parts || !onepart));
7800
7801 /* We have to move the elements of array starting at index
7802 inspos to the next position. */
7803 for (pos = var->n_var_parts; pos > inspos; pos--)
7804 var->var_part[pos] = var->var_part[pos - 1];
7805
7806 var->n_var_parts++;
7807 gcc_checking_assert (!onepart);
7808 VAR_PART_OFFSET (var, pos) = offset;
7809 var->var_part[pos].loc_chain = NULL;
7810 var->var_part[pos].cur_loc = NULL;
7811 }
7812
7813 /* Delete the location from the list. */
7814 nextp = &var->var_part[pos].loc_chain;
7815 for (node = var->var_part[pos].loc_chain; node; node = next)
7816 {
7817 next = node->next;
7818 if ((REG_P (node->loc) && REG_P (loc)
7819 && REGNO (node->loc) == REGNO (loc))
7820 || rtx_equal_p (node->loc, loc))
7821 {
7822 /* Save these values, to assign to the new node, before
7823 deleting this one. */
7824 if (node->init > initialized)
7825 initialized = node->init;
7826 if (node->set_src != NULL && set_src == NULL)
7827 set_src = node->set_src;
7828 if (var->var_part[pos].cur_loc == node->loc)
7829 var->var_part[pos].cur_loc = NULL;
7830 delete node;
7831 *nextp = next;
7832 break;
7833 }
7834 else
7835 nextp = &node->next;
7836 }
7837
7838 nextp = &var->var_part[pos].loc_chain;
7839 }
7840
7841 /* Add the location to the beginning. */
7842 node = new location_chain;
7843 node->loc = loc;
7844 node->init = initialized;
7845 node->set_src = set_src;
7846 node->next = *nextp;
7847 *nextp = node;
7848
7849 /* If no location was emitted do so. */
7850 if (var->var_part[pos].cur_loc == NULL)
7851 variable_was_changed (var, set);
7852
7853 return slot;
7854 }
7855
7856 /* Set the part of variable's location in the dataflow set SET. The
7857 variable part is specified by variable's declaration in DV and
7858 offset OFFSET and the part's location by LOC. IOPT should be
7859 NO_INSERT if the variable is known to be in SET already and the
7860 variable hash table must not be resized, and INSERT otherwise. */
7861
7862 static void
7863 set_variable_part (dataflow_set *set, rtx loc,
7864 decl_or_value dv, HOST_WIDE_INT offset,
7865 enum var_init_status initialized, rtx set_src,
7866 enum insert_option iopt)
7867 {
7868 variable **slot;
7869
7870 if (iopt == NO_INSERT)
7871 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7872 else
7873 {
7874 slot = shared_hash_find_slot (set->vars, dv);
7875 if (!slot)
7876 slot = shared_hash_find_slot_unshare (&set->vars, dv, iopt);
7877 }
7878 set_slot_part (set, loc, slot, dv, offset, initialized, set_src);
7879 }
7880
7881 /* Remove all recorded register locations for the given variable part
7882 from dataflow set SET, except for those that are identical to loc.
7883 The variable part is specified by variable's declaration or value
7884 DV and offset OFFSET. */
7885
7886 static variable **
7887 clobber_slot_part (dataflow_set *set, rtx loc, variable **slot,
7888 HOST_WIDE_INT offset, rtx set_src)
7889 {
7890 variable *var = *slot;
7891 int pos = find_variable_location_part (var, offset, NULL);
7892
7893 if (pos >= 0)
7894 {
7895 location_chain *node, *next;
7896
7897 /* Remove the register locations from the dataflow set. */
7898 next = var->var_part[pos].loc_chain;
7899 for (node = next; node; node = next)
7900 {
7901 next = node->next;
7902 if (node->loc != loc
7903 && (!flag_var_tracking_uninit
7904 || !set_src
7905 || MEM_P (set_src)
7906 || !rtx_equal_p (set_src, node->set_src)))
7907 {
7908 if (REG_P (node->loc))
7909 {
7910 attrs *anode, *anext;
7911 attrs **anextp;
7912
7913 /* Remove the variable part from the register's
7914 list, but preserve any other variable parts
7915 that might be regarded as live in that same
7916 register. */
7917 anextp = &set->regs[REGNO (node->loc)];
7918 for (anode = *anextp; anode; anode = anext)
7919 {
7920 anext = anode->next;
7921 if (dv_as_opaque (anode->dv) == dv_as_opaque (var->dv)
7922 && anode->offset == offset)
7923 {
7924 delete anode;
7925 *anextp = anext;
7926 }
7927 else
7928 anextp = &anode->next;
7929 }
7930 }
7931
7932 slot = delete_slot_part (set, node->loc, slot, offset);
7933 }
7934 }
7935 }
7936
7937 return slot;
7938 }
7939
7940 /* Remove all recorded register locations for the given variable part
7941 from dataflow set SET, except for those that are identical to loc.
7942 The variable part is specified by variable's declaration or value
7943 DV and offset OFFSET. */
7944
7945 static void
7946 clobber_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
7947 HOST_WIDE_INT offset, rtx set_src)
7948 {
7949 variable **slot;
7950
7951 if (!dv_as_opaque (dv)
7952 || (!dv_is_value_p (dv) && ! DECL_P (dv_as_decl (dv))))
7953 return;
7954
7955 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7956 if (!slot)
7957 return;
7958
7959 clobber_slot_part (set, loc, slot, offset, set_src);
7960 }
7961
7962 /* Delete the part of variable's location from dataflow set SET. The
7963 variable part is specified by its SET->vars slot SLOT and offset
7964 OFFSET and the part's location by LOC. */
7965
7966 static variable **
7967 delete_slot_part (dataflow_set *set, rtx loc, variable **slot,
7968 HOST_WIDE_INT offset)
7969 {
7970 variable *var = *slot;
7971 int pos = find_variable_location_part (var, offset, NULL);
7972
7973 if (pos >= 0)
7974 {
7975 location_chain *node, *next;
7976 location_chain **nextp;
7977 bool changed;
7978 rtx cur_loc;
7979
7980 if (shared_var_p (var, set->vars))
7981 {
7982 /* If the variable contains the location part we have to
7983 make a copy of the variable. */
7984 for (node = var->var_part[pos].loc_chain; node;
7985 node = node->next)
7986 {
7987 if ((REG_P (node->loc) && REG_P (loc)
7988 && REGNO (node->loc) == REGNO (loc))
7989 || rtx_equal_p (node->loc, loc))
7990 {
7991 slot = unshare_variable (set, slot, var,
7992 VAR_INIT_STATUS_UNKNOWN);
7993 var = *slot;
7994 break;
7995 }
7996 }
7997 }
7998
7999 if (pos == 0 && var->onepart && VAR_LOC_1PAUX (var))
8000 cur_loc = VAR_LOC_FROM (var);
8001 else
8002 cur_loc = var->var_part[pos].cur_loc;
8003
8004 /* Delete the location part. */
8005 changed = false;
8006 nextp = &var->var_part[pos].loc_chain;
8007 for (node = *nextp; node; node = next)
8008 {
8009 next = node->next;
8010 if ((REG_P (node->loc) && REG_P (loc)
8011 && REGNO (node->loc) == REGNO (loc))
8012 || rtx_equal_p (node->loc, loc))
8013 {
8014 /* If we have deleted the location which was last emitted
8015 we have to emit new location so add the variable to set
8016 of changed variables. */
8017 if (cur_loc == node->loc)
8018 {
8019 changed = true;
8020 var->var_part[pos].cur_loc = NULL;
8021 if (pos == 0 && var->onepart && VAR_LOC_1PAUX (var))
8022 VAR_LOC_FROM (var) = NULL;
8023 }
8024 delete node;
8025 *nextp = next;
8026 break;
8027 }
8028 else
8029 nextp = &node->next;
8030 }
8031
8032 if (var->var_part[pos].loc_chain == NULL)
8033 {
8034 changed = true;
8035 var->n_var_parts--;
8036 while (pos < var->n_var_parts)
8037 {
8038 var->var_part[pos] = var->var_part[pos + 1];
8039 pos++;
8040 }
8041 }
8042 if (changed)
8043 variable_was_changed (var, set);
8044 }
8045
8046 return slot;
8047 }
8048
8049 /* Delete the part of variable's location from dataflow set SET. The
8050 variable part is specified by variable's declaration or value DV
8051 and offset OFFSET and the part's location by LOC. */
8052
8053 static void
8054 delete_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
8055 HOST_WIDE_INT offset)
8056 {
8057 variable **slot = shared_hash_find_slot_noinsert (set->vars, dv);
8058 if (!slot)
8059 return;
8060
8061 delete_slot_part (set, loc, slot, offset);
8062 }
8063
8064
8065 /* Structure for passing some other parameters to function
8066 vt_expand_loc_callback. */
8067 class expand_loc_callback_data
8068 {
8069 public:
8070 /* The variables and values active at this point. */
8071 variable_table_type *vars;
8072
8073 /* Stack of values and debug_exprs under expansion, and their
8074 children. */
8075 auto_vec<rtx, 4> expanding;
8076
8077 /* Stack of values and debug_exprs whose expansion hit recursion
8078 cycles. They will have VALUE_RECURSED_INTO marked when added to
8079 this list. This flag will be cleared if any of its dependencies
8080 resolves to a valid location. So, if the flag remains set at the
8081 end of the search, we know no valid location for this one can
8082 possibly exist. */
8083 auto_vec<rtx, 4> pending;
8084
8085 /* The maximum depth among the sub-expressions under expansion.
8086 Zero indicates no expansion so far. */
8087 expand_depth depth;
8088 };
8089
8090 /* Allocate the one-part auxiliary data structure for VAR, with enough
8091 room for COUNT dependencies. */
8092
8093 static void
8094 loc_exp_dep_alloc (variable *var, int count)
8095 {
8096 size_t allocsize;
8097
8098 gcc_checking_assert (var->onepart);
8099
8100 /* We can be called with COUNT == 0 to allocate the data structure
8101 without any dependencies, e.g. for the backlinks only. However,
8102 if we are specifying a COUNT, then the dependency list must have
8103 been emptied before. It would be possible to adjust pointers or
8104 force it empty here, but this is better done at an earlier point
8105 in the algorithm, so we instead leave an assertion to catch
8106 errors. */
8107 gcc_checking_assert (!count
8108 || VAR_LOC_DEP_VEC (var) == NULL
8109 || VAR_LOC_DEP_VEC (var)->is_empty ());
8110
8111 if (VAR_LOC_1PAUX (var) && VAR_LOC_DEP_VEC (var)->space (count))
8112 return;
8113
8114 allocsize = offsetof (struct onepart_aux, deps)
8115 + vec<loc_exp_dep, va_heap, vl_embed>::embedded_size (count);
8116
8117 if (VAR_LOC_1PAUX (var))
8118 {
8119 VAR_LOC_1PAUX (var) = XRESIZEVAR (struct onepart_aux,
8120 VAR_LOC_1PAUX (var), allocsize);
8121 /* If the reallocation moves the onepaux structure, the
8122 back-pointer to BACKLINKS in the first list member will still
8123 point to its old location. Adjust it. */
8124 if (VAR_LOC_DEP_LST (var))
8125 VAR_LOC_DEP_LST (var)->pprev = VAR_LOC_DEP_LSTP (var);
8126 }
8127 else
8128 {
8129 VAR_LOC_1PAUX (var) = XNEWVAR (struct onepart_aux, allocsize);
8130 *VAR_LOC_DEP_LSTP (var) = NULL;
8131 VAR_LOC_FROM (var) = NULL;
8132 VAR_LOC_DEPTH (var).complexity = 0;
8133 VAR_LOC_DEPTH (var).entryvals = 0;
8134 }
8135 VAR_LOC_DEP_VEC (var)->embedded_init (count);
8136 }
8137
8138 /* Remove all entries from the vector of active dependencies of VAR,
8139 removing them from the back-links lists too. */
8140
8141 static void
8142 loc_exp_dep_clear (variable *var)
8143 {
8144 while (VAR_LOC_DEP_VEC (var) && !VAR_LOC_DEP_VEC (var)->is_empty ())
8145 {
8146 loc_exp_dep *led = &VAR_LOC_DEP_VEC (var)->last ();
8147 if (led->next)
8148 led->next->pprev = led->pprev;
8149 if (led->pprev)
8150 *led->pprev = led->next;
8151 VAR_LOC_DEP_VEC (var)->pop ();
8152 }
8153 }
8154
8155 /* Insert an active dependency from VAR on X to the vector of
8156 dependencies, and add the corresponding back-link to X's list of
8157 back-links in VARS. */
8158
8159 static void
8160 loc_exp_insert_dep (variable *var, rtx x, variable_table_type *vars)
8161 {
8162 decl_or_value dv;
8163 variable *xvar;
8164 loc_exp_dep *led;
8165
8166 dv = dv_from_rtx (x);
8167
8168 /* ??? Build a vector of variables parallel to EXPANDING, to avoid
8169 an additional look up? */
8170 xvar = vars->find_with_hash (dv, dv_htab_hash (dv));
8171
8172 if (!xvar)
8173 {
8174 xvar = variable_from_dropped (dv, NO_INSERT);
8175 gcc_checking_assert (xvar);
8176 }
8177
8178 /* No point in adding the same backlink more than once. This may
8179 arise if say the same value appears in two complex expressions in
8180 the same loc_list, or even more than once in a single
8181 expression. */
8182 if (VAR_LOC_DEP_LST (xvar) && VAR_LOC_DEP_LST (xvar)->dv == var->dv)
8183 return;
8184
8185 if (var->onepart == NOT_ONEPART)
8186 led = new loc_exp_dep;
8187 else
8188 {
8189 loc_exp_dep empty;
8190 memset (&empty, 0, sizeof (empty));
8191 VAR_LOC_DEP_VEC (var)->quick_push (empty);
8192 led = &VAR_LOC_DEP_VEC (var)->last ();
8193 }
8194 led->dv = var->dv;
8195 led->value = x;
8196
8197 loc_exp_dep_alloc (xvar, 0);
8198 led->pprev = VAR_LOC_DEP_LSTP (xvar);
8199 led->next = *led->pprev;
8200 if (led->next)
8201 led->next->pprev = &led->next;
8202 *led->pprev = led;
8203 }
8204
8205 /* Create active dependencies of VAR on COUNT values starting at
8206 VALUE, and corresponding back-links to the entries in VARS. Return
8207 true if we found any pending-recursion results. */
8208
8209 static bool
8210 loc_exp_dep_set (variable *var, rtx result, rtx *value, int count,
8211 variable_table_type *vars)
8212 {
8213 bool pending_recursion = false;
8214
8215 gcc_checking_assert (VAR_LOC_DEP_VEC (var) == NULL
8216 || VAR_LOC_DEP_VEC (var)->is_empty ());
8217
8218 /* Set up all dependencies from last_child (as set up at the end of
8219 the loop above) to the end. */
8220 loc_exp_dep_alloc (var, count);
8221
8222 while (count--)
8223 {
8224 rtx x = *value++;
8225
8226 if (!pending_recursion)
8227 pending_recursion = !result && VALUE_RECURSED_INTO (x);
8228
8229 loc_exp_insert_dep (var, x, vars);
8230 }
8231
8232 return pending_recursion;
8233 }
8234
8235 /* Notify the back-links of IVAR that are pending recursion that we
8236 have found a non-NIL value for it, so they are cleared for another
8237 attempt to compute a current location. */
8238
8239 static void
8240 notify_dependents_of_resolved_value (variable *ivar, variable_table_type *vars)
8241 {
8242 loc_exp_dep *led, *next;
8243
8244 for (led = VAR_LOC_DEP_LST (ivar); led; led = next)
8245 {
8246 decl_or_value dv = led->dv;
8247 variable *var;
8248
8249 next = led->next;
8250
8251 if (dv_is_value_p (dv))
8252 {
8253 rtx value = dv_as_value (dv);
8254
8255 /* If we have already resolved it, leave it alone. */
8256 if (!VALUE_RECURSED_INTO (value))
8257 continue;
8258
8259 /* Check that VALUE_RECURSED_INTO, true from the test above,
8260 implies NO_LOC_P. */
8261 gcc_checking_assert (NO_LOC_P (value));
8262
8263 /* We won't notify variables that are being expanded,
8264 because their dependency list is cleared before
8265 recursing. */
8266 NO_LOC_P (value) = false;
8267 VALUE_RECURSED_INTO (value) = false;
8268
8269 gcc_checking_assert (dv_changed_p (dv));
8270 }
8271 else
8272 {
8273 gcc_checking_assert (dv_onepart_p (dv) != NOT_ONEPART);
8274 if (!dv_changed_p (dv))
8275 continue;
8276 }
8277
8278 var = vars->find_with_hash (dv, dv_htab_hash (dv));
8279
8280 if (!var)
8281 var = variable_from_dropped (dv, NO_INSERT);
8282
8283 if (var)
8284 notify_dependents_of_resolved_value (var, vars);
8285
8286 if (next)
8287 next->pprev = led->pprev;
8288 if (led->pprev)
8289 *led->pprev = next;
8290 led->next = NULL;
8291 led->pprev = NULL;
8292 }
8293 }
8294
8295 static rtx vt_expand_loc_callback (rtx x, bitmap regs,
8296 int max_depth, void *data);
8297
8298 /* Return the combined depth, when one sub-expression evaluated to
8299 BEST_DEPTH and the previous known depth was SAVED_DEPTH. */
8300
8301 static inline expand_depth
8302 update_depth (expand_depth saved_depth, expand_depth best_depth)
8303 {
8304 /* If we didn't find anything, stick with what we had. */
8305 if (!best_depth.complexity)
8306 return saved_depth;
8307
8308 /* If we found hadn't found anything, use the depth of the current
8309 expression. Do NOT add one extra level, we want to compute the
8310 maximum depth among sub-expressions. We'll increment it later,
8311 if appropriate. */
8312 if (!saved_depth.complexity)
8313 return best_depth;
8314
8315 /* Combine the entryval count so that regardless of which one we
8316 return, the entryval count is accurate. */
8317 best_depth.entryvals = saved_depth.entryvals
8318 = best_depth.entryvals + saved_depth.entryvals;
8319
8320 if (saved_depth.complexity < best_depth.complexity)
8321 return best_depth;
8322 else
8323 return saved_depth;
8324 }
8325
8326 /* Expand VAR to a location RTX, updating its cur_loc. Use REGS and
8327 DATA for cselib expand callback. If PENDRECP is given, indicate in
8328 it whether any sub-expression couldn't be fully evaluated because
8329 it is pending recursion resolution. */
8330
8331 static inline rtx
8332 vt_expand_var_loc_chain (variable *var, bitmap regs, void *data,
8333 bool *pendrecp)
8334 {
8335 class expand_loc_callback_data *elcd
8336 = (class expand_loc_callback_data *) data;
8337 location_chain *loc, *next;
8338 rtx result = NULL;
8339 int first_child, result_first_child, last_child;
8340 bool pending_recursion;
8341 rtx loc_from = NULL;
8342 struct elt_loc_list *cloc = NULL;
8343 expand_depth depth = { 0, 0 }, saved_depth = elcd->depth;
8344 int wanted_entryvals, found_entryvals = 0;
8345
8346 /* Clear all backlinks pointing at this, so that we're not notified
8347 while we're active. */
8348 loc_exp_dep_clear (var);
8349
8350 retry:
8351 if (var->onepart == ONEPART_VALUE)
8352 {
8353 cselib_val *val = CSELIB_VAL_PTR (dv_as_value (var->dv));
8354
8355 gcc_checking_assert (cselib_preserved_value_p (val));
8356
8357 cloc = val->locs;
8358 }
8359
8360 first_child = result_first_child = last_child
8361 = elcd->expanding.length ();
8362
8363 wanted_entryvals = found_entryvals;
8364
8365 /* Attempt to expand each available location in turn. */
8366 for (next = loc = var->n_var_parts ? var->var_part[0].loc_chain : NULL;
8367 loc || cloc; loc = next)
8368 {
8369 result_first_child = last_child;
8370
8371 if (!loc)
8372 {
8373 loc_from = cloc->loc;
8374 next = loc;
8375 cloc = cloc->next;
8376 if (unsuitable_loc (loc_from))
8377 continue;
8378 }
8379 else
8380 {
8381 loc_from = loc->loc;
8382 next = loc->next;
8383 }
8384
8385 gcc_checking_assert (!unsuitable_loc (loc_from));
8386
8387 elcd->depth.complexity = elcd->depth.entryvals = 0;
8388 result = cselib_expand_value_rtx_cb (loc_from, regs, EXPR_DEPTH,
8389 vt_expand_loc_callback, data);
8390 last_child = elcd->expanding.length ();
8391
8392 if (result)
8393 {
8394 depth = elcd->depth;
8395
8396 gcc_checking_assert (depth.complexity
8397 || result_first_child == last_child);
8398
8399 if (last_child - result_first_child != 1)
8400 {
8401 if (!depth.complexity && GET_CODE (result) == ENTRY_VALUE)
8402 depth.entryvals++;
8403 depth.complexity++;
8404 }
8405
8406 if (depth.complexity <= EXPR_USE_DEPTH)
8407 {
8408 if (depth.entryvals <= wanted_entryvals)
8409 break;
8410 else if (!found_entryvals || depth.entryvals < found_entryvals)
8411 found_entryvals = depth.entryvals;
8412 }
8413
8414 result = NULL;
8415 }
8416
8417 /* Set it up in case we leave the loop. */
8418 depth.complexity = depth.entryvals = 0;
8419 loc_from = NULL;
8420 result_first_child = first_child;
8421 }
8422
8423 if (!loc_from && wanted_entryvals < found_entryvals)
8424 {
8425 /* We found entries with ENTRY_VALUEs and skipped them. Since
8426 we could not find any expansions without ENTRY_VALUEs, but we
8427 found at least one with them, go back and get an entry with
8428 the minimum number ENTRY_VALUE count that we found. We could
8429 avoid looping, but since each sub-loc is already resolved,
8430 the re-expansion should be trivial. ??? Should we record all
8431 attempted locs as dependencies, so that we retry the
8432 expansion should any of them change, in the hope it can give
8433 us a new entry without an ENTRY_VALUE? */
8434 elcd->expanding.truncate (first_child);
8435 goto retry;
8436 }
8437
8438 /* Register all encountered dependencies as active. */
8439 pending_recursion = loc_exp_dep_set
8440 (var, result, elcd->expanding.address () + result_first_child,
8441 last_child - result_first_child, elcd->vars);
8442
8443 elcd->expanding.truncate (first_child);
8444
8445 /* Record where the expansion came from. */
8446 gcc_checking_assert (!result || !pending_recursion);
8447 VAR_LOC_FROM (var) = loc_from;
8448 VAR_LOC_DEPTH (var) = depth;
8449
8450 gcc_checking_assert (!depth.complexity == !result);
8451
8452 elcd->depth = update_depth (saved_depth, depth);
8453
8454 /* Indicate whether any of the dependencies are pending recursion
8455 resolution. */
8456 if (pendrecp)
8457 *pendrecp = pending_recursion;
8458
8459 if (!pendrecp || !pending_recursion)
8460 var->var_part[0].cur_loc = result;
8461
8462 return result;
8463 }
8464
8465 /* Callback for cselib_expand_value, that looks for expressions
8466 holding the value in the var-tracking hash tables. Return X for
8467 standard processing, anything else is to be used as-is. */
8468
8469 static rtx
8470 vt_expand_loc_callback (rtx x, bitmap regs,
8471 int max_depth ATTRIBUTE_UNUSED,
8472 void *data)
8473 {
8474 class expand_loc_callback_data *elcd
8475 = (class expand_loc_callback_data *) data;
8476 decl_or_value dv;
8477 variable *var;
8478 rtx result, subreg;
8479 bool pending_recursion = false;
8480 bool from_empty = false;
8481
8482 switch (GET_CODE (x))
8483 {
8484 case SUBREG:
8485 subreg = cselib_expand_value_rtx_cb (SUBREG_REG (x), regs,
8486 EXPR_DEPTH,
8487 vt_expand_loc_callback, data);
8488
8489 if (!subreg)
8490 return NULL;
8491
8492 result = simplify_gen_subreg (GET_MODE (x), subreg,
8493 GET_MODE (SUBREG_REG (x)),
8494 SUBREG_BYTE (x));
8495
8496 /* Invalid SUBREGs are ok in debug info. ??? We could try
8497 alternate expansions for the VALUE as well. */
8498 if (!result && GET_MODE (subreg) != VOIDmode)
8499 result = gen_rtx_raw_SUBREG (GET_MODE (x), subreg, SUBREG_BYTE (x));
8500
8501 return result;
8502
8503 case DEBUG_EXPR:
8504 case VALUE:
8505 dv = dv_from_rtx (x);
8506 break;
8507
8508 default:
8509 return x;
8510 }
8511
8512 elcd->expanding.safe_push (x);
8513
8514 /* Check that VALUE_RECURSED_INTO implies NO_LOC_P. */
8515 gcc_checking_assert (!VALUE_RECURSED_INTO (x) || NO_LOC_P (x));
8516
8517 if (NO_LOC_P (x))
8518 {
8519 gcc_checking_assert (VALUE_RECURSED_INTO (x) || !dv_changed_p (dv));
8520 return NULL;
8521 }
8522
8523 var = elcd->vars->find_with_hash (dv, dv_htab_hash (dv));
8524
8525 if (!var)
8526 {
8527 from_empty = true;
8528 var = variable_from_dropped (dv, INSERT);
8529 }
8530
8531 gcc_checking_assert (var);
8532
8533 if (!dv_changed_p (dv))
8534 {
8535 gcc_checking_assert (!NO_LOC_P (x));
8536 gcc_checking_assert (var->var_part[0].cur_loc);
8537 gcc_checking_assert (VAR_LOC_1PAUX (var));
8538 gcc_checking_assert (VAR_LOC_1PAUX (var)->depth.complexity);
8539
8540 elcd->depth = update_depth (elcd->depth, VAR_LOC_1PAUX (var)->depth);
8541
8542 return var->var_part[0].cur_loc;
8543 }
8544
8545 VALUE_RECURSED_INTO (x) = true;
8546 /* This is tentative, but it makes some tests simpler. */
8547 NO_LOC_P (x) = true;
8548
8549 gcc_checking_assert (var->n_var_parts == 1 || from_empty);
8550
8551 result = vt_expand_var_loc_chain (var, regs, data, &pending_recursion);
8552
8553 if (pending_recursion)
8554 {
8555 gcc_checking_assert (!result);
8556 elcd->pending.safe_push (x);
8557 }
8558 else
8559 {
8560 NO_LOC_P (x) = !result;
8561 VALUE_RECURSED_INTO (x) = false;
8562 set_dv_changed (dv, false);
8563
8564 if (result)
8565 notify_dependents_of_resolved_value (var, elcd->vars);
8566 }
8567
8568 return result;
8569 }
8570
8571 /* While expanding variables, we may encounter recursion cycles
8572 because of mutual (possibly indirect) dependencies between two
8573 particular variables (or values), say A and B. If we're trying to
8574 expand A when we get to B, which in turn attempts to expand A, if
8575 we can't find any other expansion for B, we'll add B to this
8576 pending-recursion stack, and tentatively return NULL for its
8577 location. This tentative value will be used for any other
8578 occurrences of B, unless A gets some other location, in which case
8579 it will notify B that it is worth another try at computing a
8580 location for it, and it will use the location computed for A then.
8581 At the end of the expansion, the tentative NULL locations become
8582 final for all members of PENDING that didn't get a notification.
8583 This function performs this finalization of NULL locations. */
8584
8585 static void
8586 resolve_expansions_pending_recursion (vec<rtx, va_heap> *pending)
8587 {
8588 while (!pending->is_empty ())
8589 {
8590 rtx x = pending->pop ();
8591 decl_or_value dv;
8592
8593 if (!VALUE_RECURSED_INTO (x))
8594 continue;
8595
8596 gcc_checking_assert (NO_LOC_P (x));
8597 VALUE_RECURSED_INTO (x) = false;
8598 dv = dv_from_rtx (x);
8599 gcc_checking_assert (dv_changed_p (dv));
8600 set_dv_changed (dv, false);
8601 }
8602 }
8603
8604 /* Initialize expand_loc_callback_data D with variable hash table V.
8605 It must be a macro because of alloca (vec stack). */
8606 #define INIT_ELCD(d, v) \
8607 do \
8608 { \
8609 (d).vars = (v); \
8610 (d).depth.complexity = (d).depth.entryvals = 0; \
8611 } \
8612 while (0)
8613 /* Finalize expand_loc_callback_data D, resolved to location L. */
8614 #define FINI_ELCD(d, l) \
8615 do \
8616 { \
8617 resolve_expansions_pending_recursion (&(d).pending); \
8618 (d).pending.release (); \
8619 (d).expanding.release (); \
8620 \
8621 if ((l) && MEM_P (l)) \
8622 (l) = targetm.delegitimize_address (l); \
8623 } \
8624 while (0)
8625
8626 /* Expand VALUEs and DEBUG_EXPRs in LOC to a location, using the
8627 equivalences in VARS, updating their CUR_LOCs in the process. */
8628
8629 static rtx
8630 vt_expand_loc (rtx loc, variable_table_type *vars)
8631 {
8632 class expand_loc_callback_data data;
8633 rtx result;
8634
8635 if (!MAY_HAVE_DEBUG_BIND_INSNS)
8636 return loc;
8637
8638 INIT_ELCD (data, vars);
8639
8640 result = cselib_expand_value_rtx_cb (loc, scratch_regs, EXPR_DEPTH,
8641 vt_expand_loc_callback, &data);
8642
8643 FINI_ELCD (data, result);
8644
8645 return result;
8646 }
8647
8648 /* Expand the one-part VARiable to a location, using the equivalences
8649 in VARS, updating their CUR_LOCs in the process. */
8650
8651 static rtx
8652 vt_expand_1pvar (variable *var, variable_table_type *vars)
8653 {
8654 class expand_loc_callback_data data;
8655 rtx loc;
8656
8657 gcc_checking_assert (var->onepart && var->n_var_parts == 1);
8658
8659 if (!dv_changed_p (var->dv))
8660 return var->var_part[0].cur_loc;
8661
8662 INIT_ELCD (data, vars);
8663
8664 loc = vt_expand_var_loc_chain (var, scratch_regs, &data, NULL);
8665
8666 gcc_checking_assert (data.expanding.is_empty ());
8667
8668 FINI_ELCD (data, loc);
8669
8670 return loc;
8671 }
8672
8673 /* Emit the NOTE_INSN_VAR_LOCATION for variable *VARP. DATA contains
8674 additional parameters: WHERE specifies whether the note shall be emitted
8675 before or after instruction INSN. */
8676
8677 int
8678 emit_note_insn_var_location (variable **varp, emit_note_data *data)
8679 {
8680 variable *var = *varp;
8681 rtx_insn *insn = data->insn;
8682 enum emit_note_where where = data->where;
8683 variable_table_type *vars = data->vars;
8684 rtx_note *note;
8685 rtx note_vl;
8686 int i, j, n_var_parts;
8687 bool complete;
8688 enum var_init_status initialized = VAR_INIT_STATUS_UNINITIALIZED;
8689 HOST_WIDE_INT last_limit;
8690 HOST_WIDE_INT offsets[MAX_VAR_PARTS];
8691 rtx loc[MAX_VAR_PARTS];
8692 tree decl;
8693 location_chain *lc;
8694
8695 gcc_checking_assert (var->onepart == NOT_ONEPART
8696 || var->onepart == ONEPART_VDECL);
8697
8698 decl = dv_as_decl (var->dv);
8699
8700 complete = true;
8701 last_limit = 0;
8702 n_var_parts = 0;
8703 if (!var->onepart)
8704 for (i = 0; i < var->n_var_parts; i++)
8705 if (var->var_part[i].cur_loc == NULL && var->var_part[i].loc_chain)
8706 var->var_part[i].cur_loc = var->var_part[i].loc_chain->loc;
8707 for (i = 0; i < var->n_var_parts; i++)
8708 {
8709 machine_mode mode, wider_mode;
8710 rtx loc2;
8711 HOST_WIDE_INT offset, size, wider_size;
8712
8713 if (i == 0 && var->onepart)
8714 {
8715 gcc_checking_assert (var->n_var_parts == 1);
8716 offset = 0;
8717 initialized = VAR_INIT_STATUS_INITIALIZED;
8718 loc2 = vt_expand_1pvar (var, vars);
8719 }
8720 else
8721 {
8722 if (last_limit < VAR_PART_OFFSET (var, i))
8723 {
8724 complete = false;
8725 break;
8726 }
8727 else if (last_limit > VAR_PART_OFFSET (var, i))
8728 continue;
8729 offset = VAR_PART_OFFSET (var, i);
8730 loc2 = var->var_part[i].cur_loc;
8731 if (loc2 && GET_CODE (loc2) == MEM
8732 && GET_CODE (XEXP (loc2, 0)) == VALUE)
8733 {
8734 rtx depval = XEXP (loc2, 0);
8735
8736 loc2 = vt_expand_loc (loc2, vars);
8737
8738 if (loc2)
8739 loc_exp_insert_dep (var, depval, vars);
8740 }
8741 if (!loc2)
8742 {
8743 complete = false;
8744 continue;
8745 }
8746 gcc_checking_assert (GET_CODE (loc2) != VALUE);
8747 for (lc = var->var_part[i].loc_chain; lc; lc = lc->next)
8748 if (var->var_part[i].cur_loc == lc->loc)
8749 {
8750 initialized = lc->init;
8751 break;
8752 }
8753 gcc_assert (lc);
8754 }
8755
8756 offsets[n_var_parts] = offset;
8757 if (!loc2)
8758 {
8759 complete = false;
8760 continue;
8761 }
8762 loc[n_var_parts] = loc2;
8763 mode = GET_MODE (var->var_part[i].cur_loc);
8764 if (mode == VOIDmode && var->onepart)
8765 mode = DECL_MODE (decl);
8766 /* We ony track subparts of constant-sized objects, since at present
8767 there's no representation for polynomial pieces. */
8768 if (!GET_MODE_SIZE (mode).is_constant (&size))
8769 {
8770 complete = false;
8771 continue;
8772 }
8773 last_limit = offsets[n_var_parts] + size;
8774
8775 /* Attempt to merge adjacent registers or memory. */
8776 for (j = i + 1; j < var->n_var_parts; j++)
8777 if (last_limit <= VAR_PART_OFFSET (var, j))
8778 break;
8779 if (j < var->n_var_parts
8780 && GET_MODE_WIDER_MODE (mode).exists (&wider_mode)
8781 && GET_MODE_SIZE (wider_mode).is_constant (&wider_size)
8782 && var->var_part[j].cur_loc
8783 && mode == GET_MODE (var->var_part[j].cur_loc)
8784 && (REG_P (loc[n_var_parts]) || MEM_P (loc[n_var_parts]))
8785 && last_limit == (var->onepart ? 0 : VAR_PART_OFFSET (var, j))
8786 && (loc2 = vt_expand_loc (var->var_part[j].cur_loc, vars))
8787 && GET_CODE (loc[n_var_parts]) == GET_CODE (loc2))
8788 {
8789 rtx new_loc = NULL;
8790 poly_int64 offset2;
8791
8792 if (REG_P (loc[n_var_parts])
8793 && hard_regno_nregs (REGNO (loc[n_var_parts]), mode) * 2
8794 == hard_regno_nregs (REGNO (loc[n_var_parts]), wider_mode)
8795 && end_hard_regno (mode, REGNO (loc[n_var_parts]))
8796 == REGNO (loc2))
8797 {
8798 if (! WORDS_BIG_ENDIAN && ! BYTES_BIG_ENDIAN)
8799 new_loc = simplify_subreg (wider_mode, loc[n_var_parts],
8800 mode, 0);
8801 else if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
8802 new_loc = simplify_subreg (wider_mode, loc2, mode, 0);
8803 if (new_loc)
8804 {
8805 if (!REG_P (new_loc)
8806 || REGNO (new_loc) != REGNO (loc[n_var_parts]))
8807 new_loc = NULL;
8808 else
8809 REG_ATTRS (new_loc) = REG_ATTRS (loc[n_var_parts]);
8810 }
8811 }
8812 else if (MEM_P (loc[n_var_parts])
8813 && GET_CODE (XEXP (loc2, 0)) == PLUS
8814 && REG_P (XEXP (XEXP (loc2, 0), 0))
8815 && poly_int_rtx_p (XEXP (XEXP (loc2, 0), 1), &offset2))
8816 {
8817 poly_int64 end1 = size;
8818 rtx base1 = strip_offset_and_add (XEXP (loc[n_var_parts], 0),
8819 &end1);
8820 if (rtx_equal_p (base1, XEXP (XEXP (loc2, 0), 0))
8821 && known_eq (end1, offset2))
8822 new_loc = adjust_address_nv (loc[n_var_parts],
8823 wider_mode, 0);
8824 }
8825
8826 if (new_loc)
8827 {
8828 loc[n_var_parts] = new_loc;
8829 mode = wider_mode;
8830 last_limit = offsets[n_var_parts] + wider_size;
8831 i = j;
8832 }
8833 }
8834 ++n_var_parts;
8835 }
8836 poly_uint64 type_size_unit
8837 = tree_to_poly_uint64 (TYPE_SIZE_UNIT (TREE_TYPE (decl)));
8838 if (maybe_lt (poly_uint64 (last_limit), type_size_unit))
8839 complete = false;
8840
8841 if (! flag_var_tracking_uninit)
8842 initialized = VAR_INIT_STATUS_INITIALIZED;
8843
8844 note_vl = NULL_RTX;
8845 if (!complete)
8846 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, NULL_RTX, initialized);
8847 else if (n_var_parts == 1)
8848 {
8849 rtx expr_list;
8850
8851 if (offsets[0] || GET_CODE (loc[0]) == PARALLEL)
8852 expr_list = gen_rtx_EXPR_LIST (VOIDmode, loc[0], GEN_INT (offsets[0]));
8853 else
8854 expr_list = loc[0];
8855
8856 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, expr_list, initialized);
8857 }
8858 else if (n_var_parts)
8859 {
8860 rtx parallel;
8861
8862 for (i = 0; i < n_var_parts; i++)
8863 loc[i]
8864 = gen_rtx_EXPR_LIST (VOIDmode, loc[i], GEN_INT (offsets[i]));
8865
8866 parallel = gen_rtx_PARALLEL (VOIDmode,
8867 gen_rtvec_v (n_var_parts, loc));
8868 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl,
8869 parallel, initialized);
8870 }
8871
8872 if (where != EMIT_NOTE_BEFORE_INSN)
8873 {
8874 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
8875 if (where == EMIT_NOTE_AFTER_CALL_INSN)
8876 NOTE_DURING_CALL_P (note) = true;
8877 }
8878 else
8879 {
8880 /* Make sure that the call related notes come first. */
8881 while (NEXT_INSN (insn)
8882 && NOTE_P (insn)
8883 && NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
8884 && NOTE_DURING_CALL_P (insn))
8885 insn = NEXT_INSN (insn);
8886 if (NOTE_P (insn)
8887 && NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
8888 && NOTE_DURING_CALL_P (insn))
8889 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
8890 else
8891 note = emit_note_before (NOTE_INSN_VAR_LOCATION, insn);
8892 }
8893 NOTE_VAR_LOCATION (note) = note_vl;
8894
8895 set_dv_changed (var->dv, false);
8896 gcc_assert (var->in_changed_variables);
8897 var->in_changed_variables = false;
8898 changed_variables->clear_slot (varp);
8899
8900 /* Continue traversing the hash table. */
8901 return 1;
8902 }
8903
8904 /* While traversing changed_variables, push onto DATA (a stack of RTX
8905 values) entries that aren't user variables. */
8906
8907 int
8908 var_track_values_to_stack (variable **slot,
8909 vec<rtx, va_heap> *changed_values_stack)
8910 {
8911 variable *var = *slot;
8912
8913 if (var->onepart == ONEPART_VALUE)
8914 changed_values_stack->safe_push (dv_as_value (var->dv));
8915 else if (var->onepart == ONEPART_DEXPR)
8916 changed_values_stack->safe_push (DECL_RTL_KNOWN_SET (dv_as_decl (var->dv)));
8917
8918 return 1;
8919 }
8920
8921 /* Remove from changed_variables the entry whose DV corresponds to
8922 value or debug_expr VAL. */
8923 static void
8924 remove_value_from_changed_variables (rtx val)
8925 {
8926 decl_or_value dv = dv_from_rtx (val);
8927 variable **slot;
8928 variable *var;
8929
8930 slot = changed_variables->find_slot_with_hash (dv, dv_htab_hash (dv),
8931 NO_INSERT);
8932 var = *slot;
8933 var->in_changed_variables = false;
8934 changed_variables->clear_slot (slot);
8935 }
8936
8937 /* If VAL (a value or debug_expr) has backlinks to variables actively
8938 dependent on it in HTAB or in CHANGED_VARIABLES, mark them as
8939 changed, adding to CHANGED_VALUES_STACK any dependencies that may
8940 have dependencies of their own to notify. */
8941
8942 static void
8943 notify_dependents_of_changed_value (rtx val, variable_table_type *htab,
8944 vec<rtx, va_heap> *changed_values_stack)
8945 {
8946 variable **slot;
8947 variable *var;
8948 loc_exp_dep *led;
8949 decl_or_value dv = dv_from_rtx (val);
8950
8951 slot = changed_variables->find_slot_with_hash (dv, dv_htab_hash (dv),
8952 NO_INSERT);
8953 if (!slot)
8954 slot = htab->find_slot_with_hash (dv, dv_htab_hash (dv), NO_INSERT);
8955 if (!slot)
8956 slot = dropped_values->find_slot_with_hash (dv, dv_htab_hash (dv),
8957 NO_INSERT);
8958 var = *slot;
8959
8960 while ((led = VAR_LOC_DEP_LST (var)))
8961 {
8962 decl_or_value ldv = led->dv;
8963 variable *ivar;
8964
8965 /* Deactivate and remove the backlink, as it was “used up”. It
8966 makes no sense to attempt to notify the same entity again:
8967 either it will be recomputed and re-register an active
8968 dependency, or it will still have the changed mark. */
8969 if (led->next)
8970 led->next->pprev = led->pprev;
8971 if (led->pprev)
8972 *led->pprev = led->next;
8973 led->next = NULL;
8974 led->pprev = NULL;
8975
8976 if (dv_changed_p (ldv))
8977 continue;
8978
8979 switch (dv_onepart_p (ldv))
8980 {
8981 case ONEPART_VALUE:
8982 case ONEPART_DEXPR:
8983 set_dv_changed (ldv, true);
8984 changed_values_stack->safe_push (dv_as_rtx (ldv));
8985 break;
8986
8987 case ONEPART_VDECL:
8988 ivar = htab->find_with_hash (ldv, dv_htab_hash (ldv));
8989 gcc_checking_assert (!VAR_LOC_DEP_LST (ivar));
8990 variable_was_changed (ivar, NULL);
8991 break;
8992
8993 case NOT_ONEPART:
8994 delete led;
8995 ivar = htab->find_with_hash (ldv, dv_htab_hash (ldv));
8996 if (ivar)
8997 {
8998 int i = ivar->n_var_parts;
8999 while (i--)
9000 {
9001 rtx loc = ivar->var_part[i].cur_loc;
9002
9003 if (loc && GET_CODE (loc) == MEM
9004 && XEXP (loc, 0) == val)
9005 {
9006 variable_was_changed (ivar, NULL);
9007 break;
9008 }
9009 }
9010 }
9011 break;
9012
9013 default:
9014 gcc_unreachable ();
9015 }
9016 }
9017 }
9018
9019 /* Take out of changed_variables any entries that don't refer to use
9020 variables. Back-propagate change notifications from values and
9021 debug_exprs to their active dependencies in HTAB or in
9022 CHANGED_VARIABLES. */
9023
9024 static void
9025 process_changed_values (variable_table_type *htab)
9026 {
9027 int i, n;
9028 rtx val;
9029 auto_vec<rtx, 20> changed_values_stack;
9030
9031 /* Move values from changed_variables to changed_values_stack. */
9032 changed_variables
9033 ->traverse <vec<rtx, va_heap>*, var_track_values_to_stack>
9034 (&changed_values_stack);
9035
9036 /* Back-propagate change notifications in values while popping
9037 them from the stack. */
9038 for (n = i = changed_values_stack.length ();
9039 i > 0; i = changed_values_stack.length ())
9040 {
9041 val = changed_values_stack.pop ();
9042 notify_dependents_of_changed_value (val, htab, &changed_values_stack);
9043
9044 /* This condition will hold when visiting each of the entries
9045 originally in changed_variables. We can't remove them
9046 earlier because this could drop the backlinks before we got a
9047 chance to use them. */
9048 if (i == n)
9049 {
9050 remove_value_from_changed_variables (val);
9051 n--;
9052 }
9053 }
9054 }
9055
9056 /* Emit NOTE_INSN_VAR_LOCATION note for each variable from a chain
9057 CHANGED_VARIABLES and delete this chain. WHERE specifies whether
9058 the notes shall be emitted before of after instruction INSN. */
9059
9060 static void
9061 emit_notes_for_changes (rtx_insn *insn, enum emit_note_where where,
9062 shared_hash *vars)
9063 {
9064 emit_note_data data;
9065 variable_table_type *htab = shared_hash_htab (vars);
9066
9067 if (changed_variables->is_empty ())
9068 return;
9069
9070 if (MAY_HAVE_DEBUG_BIND_INSNS)
9071 process_changed_values (htab);
9072
9073 data.insn = insn;
9074 data.where = where;
9075 data.vars = htab;
9076
9077 changed_variables
9078 ->traverse <emit_note_data*, emit_note_insn_var_location> (&data);
9079 }
9080
9081 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it differs from the
9082 same variable in hash table DATA or is not there at all. */
9083
9084 int
9085 emit_notes_for_differences_1 (variable **slot, variable_table_type *new_vars)
9086 {
9087 variable *old_var, *new_var;
9088
9089 old_var = *slot;
9090 new_var = new_vars->find_with_hash (old_var->dv, dv_htab_hash (old_var->dv));
9091
9092 if (!new_var)
9093 {
9094 /* Variable has disappeared. */
9095 variable *empty_var = NULL;
9096
9097 if (old_var->onepart == ONEPART_VALUE
9098 || old_var->onepart == ONEPART_DEXPR)
9099 {
9100 empty_var = variable_from_dropped (old_var->dv, NO_INSERT);
9101 if (empty_var)
9102 {
9103 gcc_checking_assert (!empty_var->in_changed_variables);
9104 if (!VAR_LOC_1PAUX (old_var))
9105 {
9106 VAR_LOC_1PAUX (old_var) = VAR_LOC_1PAUX (empty_var);
9107 VAR_LOC_1PAUX (empty_var) = NULL;
9108 }
9109 else
9110 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var));
9111 }
9112 }
9113
9114 if (!empty_var)
9115 {
9116 empty_var = onepart_pool_allocate (old_var->onepart);
9117 empty_var->dv = old_var->dv;
9118 empty_var->refcount = 0;
9119 empty_var->n_var_parts = 0;
9120 empty_var->onepart = old_var->onepart;
9121 empty_var->in_changed_variables = false;
9122 }
9123
9124 if (empty_var->onepart)
9125 {
9126 /* Propagate the auxiliary data to (ultimately)
9127 changed_variables. */
9128 empty_var->var_part[0].loc_chain = NULL;
9129 empty_var->var_part[0].cur_loc = NULL;
9130 VAR_LOC_1PAUX (empty_var) = VAR_LOC_1PAUX (old_var);
9131 VAR_LOC_1PAUX (old_var) = NULL;
9132 }
9133 variable_was_changed (empty_var, NULL);
9134 /* Continue traversing the hash table. */
9135 return 1;
9136 }
9137 /* Update cur_loc and one-part auxiliary data, before new_var goes
9138 through variable_was_changed. */
9139 if (old_var != new_var && new_var->onepart)
9140 {
9141 gcc_checking_assert (VAR_LOC_1PAUX (new_var) == NULL);
9142 VAR_LOC_1PAUX (new_var) = VAR_LOC_1PAUX (old_var);
9143 VAR_LOC_1PAUX (old_var) = NULL;
9144 new_var->var_part[0].cur_loc = old_var->var_part[0].cur_loc;
9145 }
9146 if (variable_different_p (old_var, new_var))
9147 variable_was_changed (new_var, NULL);
9148
9149 /* Continue traversing the hash table. */
9150 return 1;
9151 }
9152
9153 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it is not in hash
9154 table DATA. */
9155
9156 int
9157 emit_notes_for_differences_2 (variable **slot, variable_table_type *old_vars)
9158 {
9159 variable *old_var, *new_var;
9160
9161 new_var = *slot;
9162 old_var = old_vars->find_with_hash (new_var->dv, dv_htab_hash (new_var->dv));
9163 if (!old_var)
9164 {
9165 int i;
9166 for (i = 0; i < new_var->n_var_parts; i++)
9167 new_var->var_part[i].cur_loc = NULL;
9168 variable_was_changed (new_var, NULL);
9169 }
9170
9171 /* Continue traversing the hash table. */
9172 return 1;
9173 }
9174
9175 /* Emit notes before INSN for differences between dataflow sets OLD_SET and
9176 NEW_SET. */
9177
9178 static void
9179 emit_notes_for_differences (rtx_insn *insn, dataflow_set *old_set,
9180 dataflow_set *new_set)
9181 {
9182 shared_hash_htab (old_set->vars)
9183 ->traverse <variable_table_type *, emit_notes_for_differences_1>
9184 (shared_hash_htab (new_set->vars));
9185 shared_hash_htab (new_set->vars)
9186 ->traverse <variable_table_type *, emit_notes_for_differences_2>
9187 (shared_hash_htab (old_set->vars));
9188 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, new_set->vars);
9189 }
9190
9191 /* Return the next insn after INSN that is not a NOTE_INSN_VAR_LOCATION. */
9192
9193 static rtx_insn *
9194 next_non_note_insn_var_location (rtx_insn *insn)
9195 {
9196 while (insn)
9197 {
9198 insn = NEXT_INSN (insn);
9199 if (insn == 0
9200 || !NOTE_P (insn)
9201 || NOTE_KIND (insn) != NOTE_INSN_VAR_LOCATION)
9202 break;
9203 }
9204
9205 return insn;
9206 }
9207
9208 /* Emit the notes for changes of location parts in the basic block BB. */
9209
9210 static void
9211 emit_notes_in_bb (basic_block bb, dataflow_set *set)
9212 {
9213 unsigned int i;
9214 micro_operation *mo;
9215
9216 dataflow_set_clear (set);
9217 dataflow_set_copy (set, &VTI (bb)->in);
9218
9219 FOR_EACH_VEC_ELT (VTI (bb)->mos, i, mo)
9220 {
9221 rtx_insn *insn = mo->insn;
9222 rtx_insn *next_insn = next_non_note_insn_var_location (insn);
9223
9224 switch (mo->type)
9225 {
9226 case MO_CALL:
9227 dataflow_set_clear_at_call (set, insn);
9228 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_CALL_INSN, set->vars);
9229 {
9230 rtx arguments = mo->u.loc, *p = &arguments;
9231 while (*p)
9232 {
9233 XEXP (XEXP (*p, 0), 1)
9234 = vt_expand_loc (XEXP (XEXP (*p, 0), 1),
9235 shared_hash_htab (set->vars));
9236 /* If expansion is successful, keep it in the list. */
9237 if (XEXP (XEXP (*p, 0), 1))
9238 {
9239 XEXP (XEXP (*p, 0), 1)
9240 = copy_rtx_if_shared (XEXP (XEXP (*p, 0), 1));
9241 p = &XEXP (*p, 1);
9242 }
9243 /* Otherwise, if the following item is data_value for it,
9244 drop it too too. */
9245 else if (XEXP (*p, 1)
9246 && REG_P (XEXP (XEXP (*p, 0), 0))
9247 && MEM_P (XEXP (XEXP (XEXP (*p, 1), 0), 0))
9248 && REG_P (XEXP (XEXP (XEXP (XEXP (*p, 1), 0), 0),
9249 0))
9250 && REGNO (XEXP (XEXP (*p, 0), 0))
9251 == REGNO (XEXP (XEXP (XEXP (XEXP (*p, 1), 0),
9252 0), 0)))
9253 *p = XEXP (XEXP (*p, 1), 1);
9254 /* Just drop this item. */
9255 else
9256 *p = XEXP (*p, 1);
9257 }
9258 add_reg_note (insn, REG_CALL_ARG_LOCATION, arguments);
9259 }
9260 break;
9261
9262 case MO_USE:
9263 {
9264 rtx loc = mo->u.loc;
9265
9266 if (REG_P (loc))
9267 var_reg_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
9268 else
9269 var_mem_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
9270
9271 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
9272 }
9273 break;
9274
9275 case MO_VAL_LOC:
9276 {
9277 rtx loc = mo->u.loc;
9278 rtx val, vloc;
9279 tree var;
9280
9281 if (GET_CODE (loc) == CONCAT)
9282 {
9283 val = XEXP (loc, 0);
9284 vloc = XEXP (loc, 1);
9285 }
9286 else
9287 {
9288 val = NULL_RTX;
9289 vloc = loc;
9290 }
9291
9292 var = PAT_VAR_LOCATION_DECL (vloc);
9293
9294 clobber_variable_part (set, NULL_RTX,
9295 dv_from_decl (var), 0, NULL_RTX);
9296 if (val)
9297 {
9298 if (VAL_NEEDS_RESOLUTION (loc))
9299 val_resolve (set, val, PAT_VAR_LOCATION_LOC (vloc), insn);
9300 set_variable_part (set, val, dv_from_decl (var), 0,
9301 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
9302 INSERT);
9303 }
9304 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
9305 set_variable_part (set, PAT_VAR_LOCATION_LOC (vloc),
9306 dv_from_decl (var), 0,
9307 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
9308 INSERT);
9309
9310 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
9311 }
9312 break;
9313
9314 case MO_VAL_USE:
9315 {
9316 rtx loc = mo->u.loc;
9317 rtx val, vloc, uloc;
9318
9319 vloc = uloc = XEXP (loc, 1);
9320 val = XEXP (loc, 0);
9321
9322 if (GET_CODE (val) == CONCAT)
9323 {
9324 uloc = XEXP (val, 1);
9325 val = XEXP (val, 0);
9326 }
9327
9328 if (VAL_NEEDS_RESOLUTION (loc))
9329 val_resolve (set, val, vloc, insn);
9330 else
9331 val_store (set, val, uloc, insn, false);
9332
9333 if (VAL_HOLDS_TRACK_EXPR (loc))
9334 {
9335 if (GET_CODE (uloc) == REG)
9336 var_reg_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
9337 NULL);
9338 else if (GET_CODE (uloc) == MEM)
9339 var_mem_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
9340 NULL);
9341 }
9342
9343 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
9344 }
9345 break;
9346
9347 case MO_VAL_SET:
9348 {
9349 rtx loc = mo->u.loc;
9350 rtx val, vloc, uloc;
9351 rtx dstv, srcv;
9352
9353 vloc = loc;
9354 uloc = XEXP (vloc, 1);
9355 val = XEXP (vloc, 0);
9356 vloc = uloc;
9357
9358 if (GET_CODE (uloc) == SET)
9359 {
9360 dstv = SET_DEST (uloc);
9361 srcv = SET_SRC (uloc);
9362 }
9363 else
9364 {
9365 dstv = uloc;
9366 srcv = NULL;
9367 }
9368
9369 if (GET_CODE (val) == CONCAT)
9370 {
9371 dstv = vloc = XEXP (val, 1);
9372 val = XEXP (val, 0);
9373 }
9374
9375 if (GET_CODE (vloc) == SET)
9376 {
9377 srcv = SET_SRC (vloc);
9378
9379 gcc_assert (val != srcv);
9380 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
9381
9382 dstv = vloc = SET_DEST (vloc);
9383
9384 if (VAL_NEEDS_RESOLUTION (loc))
9385 val_resolve (set, val, srcv, insn);
9386 }
9387 else if (VAL_NEEDS_RESOLUTION (loc))
9388 {
9389 gcc_assert (GET_CODE (uloc) == SET
9390 && GET_CODE (SET_SRC (uloc)) == REG);
9391 val_resolve (set, val, SET_SRC (uloc), insn);
9392 }
9393
9394 if (VAL_HOLDS_TRACK_EXPR (loc))
9395 {
9396 if (VAL_EXPR_IS_CLOBBERED (loc))
9397 {
9398 if (REG_P (uloc))
9399 var_reg_delete (set, uloc, true);
9400 else if (MEM_P (uloc))
9401 {
9402 gcc_assert (MEM_P (dstv));
9403 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (uloc));
9404 var_mem_delete (set, dstv, true);
9405 }
9406 }
9407 else
9408 {
9409 bool copied_p = VAL_EXPR_IS_COPIED (loc);
9410 rtx src = NULL, dst = uloc;
9411 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
9412
9413 if (GET_CODE (uloc) == SET)
9414 {
9415 src = SET_SRC (uloc);
9416 dst = SET_DEST (uloc);
9417 }
9418
9419 if (copied_p)
9420 {
9421 status = find_src_status (set, src);
9422
9423 src = find_src_set_src (set, src);
9424 }
9425
9426 if (REG_P (dst))
9427 var_reg_delete_and_set (set, dst, !copied_p,
9428 status, srcv);
9429 else if (MEM_P (dst))
9430 {
9431 gcc_assert (MEM_P (dstv));
9432 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (dst));
9433 var_mem_delete_and_set (set, dstv, !copied_p,
9434 status, srcv);
9435 }
9436 }
9437 }
9438 else if (REG_P (uloc))
9439 var_regno_delete (set, REGNO (uloc));
9440 else if (MEM_P (uloc))
9441 {
9442 gcc_checking_assert (GET_CODE (vloc) == MEM);
9443 gcc_checking_assert (vloc == dstv);
9444 if (vloc != dstv)
9445 clobber_overlapping_mems (set, vloc);
9446 }
9447
9448 val_store (set, val, dstv, insn, true);
9449
9450 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9451 set->vars);
9452 }
9453 break;
9454
9455 case MO_SET:
9456 {
9457 rtx loc = mo->u.loc;
9458 rtx set_src = NULL;
9459
9460 if (GET_CODE (loc) == SET)
9461 {
9462 set_src = SET_SRC (loc);
9463 loc = SET_DEST (loc);
9464 }
9465
9466 if (REG_P (loc))
9467 var_reg_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
9468 set_src);
9469 else
9470 var_mem_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
9471 set_src);
9472
9473 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9474 set->vars);
9475 }
9476 break;
9477
9478 case MO_COPY:
9479 {
9480 rtx loc = mo->u.loc;
9481 enum var_init_status src_status;
9482 rtx set_src = NULL;
9483
9484 if (GET_CODE (loc) == SET)
9485 {
9486 set_src = SET_SRC (loc);
9487 loc = SET_DEST (loc);
9488 }
9489
9490 src_status = find_src_status (set, set_src);
9491 set_src = find_src_set_src (set, set_src);
9492
9493 if (REG_P (loc))
9494 var_reg_delete_and_set (set, loc, false, src_status, set_src);
9495 else
9496 var_mem_delete_and_set (set, loc, false, src_status, set_src);
9497
9498 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9499 set->vars);
9500 }
9501 break;
9502
9503 case MO_USE_NO_VAR:
9504 {
9505 rtx loc = mo->u.loc;
9506
9507 if (REG_P (loc))
9508 var_reg_delete (set, loc, false);
9509 else
9510 var_mem_delete (set, loc, false);
9511
9512 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
9513 }
9514 break;
9515
9516 case MO_CLOBBER:
9517 {
9518 rtx loc = mo->u.loc;
9519
9520 if (REG_P (loc))
9521 var_reg_delete (set, loc, true);
9522 else
9523 var_mem_delete (set, loc, true);
9524
9525 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9526 set->vars);
9527 }
9528 break;
9529
9530 case MO_ADJUST:
9531 set->stack_adjust += mo->u.adjust;
9532 break;
9533 }
9534 }
9535 }
9536
9537 /* Emit notes for the whole function. */
9538
9539 static void
9540 vt_emit_notes (void)
9541 {
9542 basic_block bb;
9543 dataflow_set cur;
9544
9545 gcc_assert (changed_variables->is_empty ());
9546
9547 /* Free memory occupied by the out hash tables, as they aren't used
9548 anymore. */
9549 FOR_EACH_BB_FN (bb, cfun)
9550 dataflow_set_clear (&VTI (bb)->out);
9551
9552 /* Enable emitting notes by functions (mainly by set_variable_part and
9553 delete_variable_part). */
9554 emit_notes = true;
9555
9556 if (MAY_HAVE_DEBUG_BIND_INSNS)
9557 dropped_values = new variable_table_type (cselib_get_next_uid () * 2);
9558
9559 dataflow_set_init (&cur);
9560
9561 FOR_EACH_BB_FN (bb, cfun)
9562 {
9563 /* Emit the notes for changes of variable locations between two
9564 subsequent basic blocks. */
9565 emit_notes_for_differences (BB_HEAD (bb), &cur, &VTI (bb)->in);
9566
9567 if (MAY_HAVE_DEBUG_BIND_INSNS)
9568 local_get_addr_cache = new hash_map<rtx, rtx>;
9569
9570 /* Emit the notes for the changes in the basic block itself. */
9571 emit_notes_in_bb (bb, &cur);
9572
9573 if (MAY_HAVE_DEBUG_BIND_INSNS)
9574 delete local_get_addr_cache;
9575 local_get_addr_cache = NULL;
9576
9577 /* Free memory occupied by the in hash table, we won't need it
9578 again. */
9579 dataflow_set_clear (&VTI (bb)->in);
9580 }
9581
9582 if (flag_checking)
9583 shared_hash_htab (cur.vars)
9584 ->traverse <variable_table_type *, emit_notes_for_differences_1>
9585 (shared_hash_htab (empty_shared_hash));
9586
9587 dataflow_set_destroy (&cur);
9588
9589 if (MAY_HAVE_DEBUG_BIND_INSNS)
9590 delete dropped_values;
9591 dropped_values = NULL;
9592
9593 emit_notes = false;
9594 }
9595
9596 /* If there is a declaration and offset associated with register/memory RTL
9597 assign declaration to *DECLP and offset to *OFFSETP, and return true. */
9598
9599 static bool
9600 vt_get_decl_and_offset (rtx rtl, tree *declp, poly_int64 *offsetp)
9601 {
9602 if (REG_P (rtl))
9603 {
9604 if (REG_ATTRS (rtl))
9605 {
9606 *declp = REG_EXPR (rtl);
9607 *offsetp = REG_OFFSET (rtl);
9608 return true;
9609 }
9610 }
9611 else if (GET_CODE (rtl) == PARALLEL)
9612 {
9613 tree decl = NULL_TREE;
9614 HOST_WIDE_INT offset = MAX_VAR_PARTS;
9615 int len = XVECLEN (rtl, 0), i;
9616
9617 for (i = 0; i < len; i++)
9618 {
9619 rtx reg = XEXP (XVECEXP (rtl, 0, i), 0);
9620 if (!REG_P (reg) || !REG_ATTRS (reg))
9621 break;
9622 if (!decl)
9623 decl = REG_EXPR (reg);
9624 if (REG_EXPR (reg) != decl)
9625 break;
9626 HOST_WIDE_INT this_offset;
9627 if (!track_offset_p (REG_OFFSET (reg), &this_offset))
9628 break;
9629 offset = MIN (offset, this_offset);
9630 }
9631
9632 if (i == len)
9633 {
9634 *declp = decl;
9635 *offsetp = offset;
9636 return true;
9637 }
9638 }
9639 else if (MEM_P (rtl))
9640 {
9641 if (MEM_ATTRS (rtl))
9642 {
9643 *declp = MEM_EXPR (rtl);
9644 *offsetp = int_mem_offset (rtl);
9645 return true;
9646 }
9647 }
9648 return false;
9649 }
9650
9651 /* Record the value for the ENTRY_VALUE of RTL as a global equivalence
9652 of VAL. */
9653
9654 static void
9655 record_entry_value (cselib_val *val, rtx rtl)
9656 {
9657 rtx ev = gen_rtx_ENTRY_VALUE (GET_MODE (rtl));
9658
9659 ENTRY_VALUE_EXP (ev) = rtl;
9660
9661 cselib_add_permanent_equiv (val, ev, get_insns ());
9662 }
9663
9664 /* Insert function parameter PARM in IN and OUT sets of ENTRY_BLOCK. */
9665
9666 static void
9667 vt_add_function_parameter (tree parm)
9668 {
9669 rtx decl_rtl = DECL_RTL_IF_SET (parm);
9670 rtx incoming = DECL_INCOMING_RTL (parm);
9671 tree decl;
9672 machine_mode mode;
9673 poly_int64 offset;
9674 dataflow_set *out;
9675 decl_or_value dv;
9676 bool incoming_ok = true;
9677
9678 if (TREE_CODE (parm) != PARM_DECL)
9679 return;
9680
9681 if (!decl_rtl || !incoming)
9682 return;
9683
9684 if (GET_MODE (decl_rtl) == BLKmode || GET_MODE (incoming) == BLKmode)
9685 return;
9686
9687 /* If there is a DRAP register or a pseudo in internal_arg_pointer,
9688 rewrite the incoming location of parameters passed on the stack
9689 into MEMs based on the argument pointer, so that incoming doesn't
9690 depend on a pseudo. */
9691 poly_int64 incoming_offset = 0;
9692 if (MEM_P (incoming)
9693 && (strip_offset (XEXP (incoming, 0), &incoming_offset)
9694 == crtl->args.internal_arg_pointer))
9695 {
9696 HOST_WIDE_INT off = -FIRST_PARM_OFFSET (current_function_decl);
9697 incoming
9698 = replace_equiv_address_nv (incoming,
9699 plus_constant (Pmode,
9700 arg_pointer_rtx,
9701 off + incoming_offset));
9702 }
9703
9704 #ifdef HAVE_window_save
9705 /* DECL_INCOMING_RTL uses the INCOMING_REGNO of parameter registers.
9706 If the target machine has an explicit window save instruction, the
9707 actual entry value is the corresponding OUTGOING_REGNO instead. */
9708 if (HAVE_window_save && !crtl->uses_only_leaf_regs)
9709 {
9710 if (REG_P (incoming)
9711 && HARD_REGISTER_P (incoming)
9712 && OUTGOING_REGNO (REGNO (incoming)) != REGNO (incoming))
9713 {
9714 parm_reg p;
9715 p.incoming = incoming;
9716 incoming
9717 = gen_rtx_REG_offset (incoming, GET_MODE (incoming),
9718 OUTGOING_REGNO (REGNO (incoming)), 0);
9719 p.outgoing = incoming;
9720 vec_safe_push (windowed_parm_regs, p);
9721 }
9722 else if (GET_CODE (incoming) == PARALLEL)
9723 {
9724 rtx outgoing
9725 = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (XVECLEN (incoming, 0)));
9726 int i;
9727
9728 for (i = 0; i < XVECLEN (incoming, 0); i++)
9729 {
9730 rtx reg = XEXP (XVECEXP (incoming, 0, i), 0);
9731 parm_reg p;
9732 p.incoming = reg;
9733 reg = gen_rtx_REG_offset (reg, GET_MODE (reg),
9734 OUTGOING_REGNO (REGNO (reg)), 0);
9735 p.outgoing = reg;
9736 XVECEXP (outgoing, 0, i)
9737 = gen_rtx_EXPR_LIST (VOIDmode, reg,
9738 XEXP (XVECEXP (incoming, 0, i), 1));
9739 vec_safe_push (windowed_parm_regs, p);
9740 }
9741
9742 incoming = outgoing;
9743 }
9744 else if (MEM_P (incoming)
9745 && REG_P (XEXP (incoming, 0))
9746 && HARD_REGISTER_P (XEXP (incoming, 0)))
9747 {
9748 rtx reg = XEXP (incoming, 0);
9749 if (OUTGOING_REGNO (REGNO (reg)) != REGNO (reg))
9750 {
9751 parm_reg p;
9752 p.incoming = reg;
9753 reg = gen_raw_REG (GET_MODE (reg), OUTGOING_REGNO (REGNO (reg)));
9754 p.outgoing = reg;
9755 vec_safe_push (windowed_parm_regs, p);
9756 incoming = replace_equiv_address_nv (incoming, reg);
9757 }
9758 }
9759 }
9760 #endif
9761
9762 if (!vt_get_decl_and_offset (incoming, &decl, &offset))
9763 {
9764 incoming_ok = false;
9765 if (MEM_P (incoming))
9766 {
9767 /* This means argument is passed by invisible reference. */
9768 offset = 0;
9769 decl = parm;
9770 }
9771 else
9772 {
9773 if (!vt_get_decl_and_offset (decl_rtl, &decl, &offset))
9774 return;
9775 offset += byte_lowpart_offset (GET_MODE (incoming),
9776 GET_MODE (decl_rtl));
9777 }
9778 }
9779
9780 if (!decl)
9781 return;
9782
9783 if (parm != decl)
9784 {
9785 /* If that DECL_RTL wasn't a pseudo that got spilled to
9786 memory, bail out. Otherwise, the spill slot sharing code
9787 will force the memory to reference spill_slot_decl (%sfp),
9788 so we don't match above. That's ok, the pseudo must have
9789 referenced the entire parameter, so just reset OFFSET. */
9790 if (decl != get_spill_slot_decl (false))
9791 return;
9792 offset = 0;
9793 }
9794
9795 HOST_WIDE_INT const_offset;
9796 if (!track_loc_p (incoming, parm, offset, false, &mode, &const_offset))
9797 return;
9798
9799 out = &VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->out;
9800
9801 dv = dv_from_decl (parm);
9802
9803 if (target_for_debug_bind (parm)
9804 /* We can't deal with these right now, because this kind of
9805 variable is single-part. ??? We could handle parallels
9806 that describe multiple locations for the same single
9807 value, but ATM we don't. */
9808 && GET_CODE (incoming) != PARALLEL)
9809 {
9810 cselib_val *val;
9811 rtx lowpart;
9812
9813 /* ??? We shouldn't ever hit this, but it may happen because
9814 arguments passed by invisible reference aren't dealt with
9815 above: incoming-rtl will have Pmode rather than the
9816 expected mode for the type. */
9817 if (const_offset)
9818 return;
9819
9820 lowpart = var_lowpart (mode, incoming);
9821 if (!lowpart)
9822 return;
9823
9824 val = cselib_lookup_from_insn (lowpart, mode, true,
9825 VOIDmode, get_insns ());
9826
9827 /* ??? Float-typed values in memory are not handled by
9828 cselib. */
9829 if (val)
9830 {
9831 preserve_value (val);
9832 set_variable_part (out, val->val_rtx, dv, const_offset,
9833 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9834 dv = dv_from_value (val->val_rtx);
9835 }
9836
9837 if (MEM_P (incoming))
9838 {
9839 val = cselib_lookup_from_insn (XEXP (incoming, 0), mode, true,
9840 VOIDmode, get_insns ());
9841 if (val)
9842 {
9843 preserve_value (val);
9844 incoming = replace_equiv_address_nv (incoming, val->val_rtx);
9845 }
9846 }
9847 }
9848
9849 if (REG_P (incoming))
9850 {
9851 incoming = var_lowpart (mode, incoming);
9852 gcc_assert (REGNO (incoming) < FIRST_PSEUDO_REGISTER);
9853 attrs_list_insert (&out->regs[REGNO (incoming)], dv, const_offset,
9854 incoming);
9855 set_variable_part (out, incoming, dv, const_offset,
9856 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9857 if (dv_is_value_p (dv))
9858 {
9859 record_entry_value (CSELIB_VAL_PTR (dv_as_value (dv)), incoming);
9860 if (TREE_CODE (TREE_TYPE (parm)) == REFERENCE_TYPE
9861 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_TYPE (parm))))
9862 {
9863 machine_mode indmode
9864 = TYPE_MODE (TREE_TYPE (TREE_TYPE (parm)));
9865 rtx mem = gen_rtx_MEM (indmode, incoming);
9866 cselib_val *val = cselib_lookup_from_insn (mem, indmode, true,
9867 VOIDmode,
9868 get_insns ());
9869 if (val)
9870 {
9871 preserve_value (val);
9872 record_entry_value (val, mem);
9873 set_variable_part (out, mem, dv_from_value (val->val_rtx), 0,
9874 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9875 }
9876 }
9877 }
9878 }
9879 else if (GET_CODE (incoming) == PARALLEL && !dv_onepart_p (dv))
9880 {
9881 int i;
9882
9883 /* The following code relies on vt_get_decl_and_offset returning true for
9884 incoming, which might not be always the case. */
9885 if (!incoming_ok)
9886 return;
9887 for (i = 0; i < XVECLEN (incoming, 0); i++)
9888 {
9889 rtx reg = XEXP (XVECEXP (incoming, 0, i), 0);
9890 /* vt_get_decl_and_offset has already checked that the offset
9891 is a valid variable part. */
9892 const_offset = get_tracked_reg_offset (reg);
9893 gcc_assert (REGNO (reg) < FIRST_PSEUDO_REGISTER);
9894 attrs_list_insert (&out->regs[REGNO (reg)], dv, const_offset, reg);
9895 set_variable_part (out, reg, dv, const_offset,
9896 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9897 }
9898 }
9899 else if (MEM_P (incoming))
9900 {
9901 incoming = var_lowpart (mode, incoming);
9902 set_variable_part (out, incoming, dv, const_offset,
9903 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9904 }
9905 }
9906
9907 /* Insert function parameters to IN and OUT sets of ENTRY_BLOCK. */
9908
9909 static void
9910 vt_add_function_parameters (void)
9911 {
9912 tree parm;
9913
9914 for (parm = DECL_ARGUMENTS (current_function_decl);
9915 parm; parm = DECL_CHAIN (parm))
9916 vt_add_function_parameter (parm);
9917
9918 if (DECL_HAS_VALUE_EXPR_P (DECL_RESULT (current_function_decl)))
9919 {
9920 tree vexpr = DECL_VALUE_EXPR (DECL_RESULT (current_function_decl));
9921
9922 if (TREE_CODE (vexpr) == INDIRECT_REF)
9923 vexpr = TREE_OPERAND (vexpr, 0);
9924
9925 if (TREE_CODE (vexpr) == PARM_DECL
9926 && DECL_ARTIFICIAL (vexpr)
9927 && !DECL_IGNORED_P (vexpr)
9928 && DECL_NAMELESS (vexpr))
9929 vt_add_function_parameter (vexpr);
9930 }
9931 }
9932
9933 /* Initialize cfa_base_rtx, create a preserved VALUE for it and
9934 ensure it isn't flushed during cselib_reset_table.
9935 Can be called only if frame_pointer_rtx resp. arg_pointer_rtx
9936 has been eliminated. */
9937
9938 static void
9939 vt_init_cfa_base (void)
9940 {
9941 cselib_val *val;
9942
9943 #ifdef FRAME_POINTER_CFA_OFFSET
9944 cfa_base_rtx = frame_pointer_rtx;
9945 cfa_base_offset = -FRAME_POINTER_CFA_OFFSET (current_function_decl);
9946 #else
9947 cfa_base_rtx = arg_pointer_rtx;
9948 cfa_base_offset = -ARG_POINTER_CFA_OFFSET (current_function_decl);
9949 #endif
9950 if (cfa_base_rtx == hard_frame_pointer_rtx
9951 || !fixed_regs[REGNO (cfa_base_rtx)])
9952 {
9953 cfa_base_rtx = NULL_RTX;
9954 return;
9955 }
9956 if (!MAY_HAVE_DEBUG_BIND_INSNS)
9957 return;
9958
9959 /* Tell alias analysis that cfa_base_rtx should share
9960 find_base_term value with stack pointer or hard frame pointer. */
9961 if (!frame_pointer_needed)
9962 vt_equate_reg_base_value (cfa_base_rtx, stack_pointer_rtx);
9963 else if (!crtl->stack_realign_tried)
9964 vt_equate_reg_base_value (cfa_base_rtx, hard_frame_pointer_rtx);
9965
9966 val = cselib_lookup_from_insn (cfa_base_rtx, GET_MODE (cfa_base_rtx), 1,
9967 VOIDmode, get_insns ());
9968 preserve_value (val);
9969 cselib_preserve_cfa_base_value (val, REGNO (cfa_base_rtx));
9970 }
9971
9972 /* Reemit INSN, a MARKER_DEBUG_INSN, as a note. */
9973
9974 static rtx_insn *
9975 reemit_marker_as_note (rtx_insn *insn)
9976 {
9977 gcc_checking_assert (DEBUG_MARKER_INSN_P (insn));
9978
9979 enum insn_note kind = INSN_DEBUG_MARKER_KIND (insn);
9980
9981 switch (kind)
9982 {
9983 case NOTE_INSN_BEGIN_STMT:
9984 case NOTE_INSN_INLINE_ENTRY:
9985 {
9986 rtx_insn *note = NULL;
9987 if (cfun->debug_nonbind_markers)
9988 {
9989 note = emit_note_before (kind, insn);
9990 NOTE_MARKER_LOCATION (note) = INSN_LOCATION (insn);
9991 }
9992 delete_insn (insn);
9993 return note;
9994 }
9995
9996 default:
9997 gcc_unreachable ();
9998 }
9999 }
10000
10001 /* Allocate and initialize the data structures for variable tracking
10002 and parse the RTL to get the micro operations. */
10003
10004 static bool
10005 vt_initialize (void)
10006 {
10007 basic_block bb;
10008 poly_int64 fp_cfa_offset = -1;
10009
10010 alloc_aux_for_blocks (sizeof (variable_tracking_info));
10011
10012 empty_shared_hash = shared_hash_pool.allocate ();
10013 empty_shared_hash->refcount = 1;
10014 empty_shared_hash->htab = new variable_table_type (1);
10015 changed_variables = new variable_table_type (10);
10016
10017 /* Init the IN and OUT sets. */
10018 FOR_ALL_BB_FN (bb, cfun)
10019 {
10020 VTI (bb)->visited = false;
10021 VTI (bb)->flooded = false;
10022 dataflow_set_init (&VTI (bb)->in);
10023 dataflow_set_init (&VTI (bb)->out);
10024 VTI (bb)->permp = NULL;
10025 }
10026
10027 if (MAY_HAVE_DEBUG_BIND_INSNS)
10028 {
10029 cselib_init (CSELIB_RECORD_MEMORY | CSELIB_PRESERVE_CONSTANTS);
10030 scratch_regs = BITMAP_ALLOC (NULL);
10031 preserved_values.create (256);
10032 global_get_addr_cache = new hash_map<rtx, rtx>;
10033 }
10034 else
10035 {
10036 scratch_regs = NULL;
10037 global_get_addr_cache = NULL;
10038 }
10039
10040 if (MAY_HAVE_DEBUG_BIND_INSNS)
10041 {
10042 rtx reg, expr;
10043 int ofst;
10044 cselib_val *val;
10045
10046 #ifdef FRAME_POINTER_CFA_OFFSET
10047 reg = frame_pointer_rtx;
10048 ofst = FRAME_POINTER_CFA_OFFSET (current_function_decl);
10049 #else
10050 reg = arg_pointer_rtx;
10051 ofst = ARG_POINTER_CFA_OFFSET (current_function_decl);
10052 #endif
10053
10054 ofst -= INCOMING_FRAME_SP_OFFSET;
10055
10056 val = cselib_lookup_from_insn (reg, GET_MODE (reg), 1,
10057 VOIDmode, get_insns ());
10058 preserve_value (val);
10059 if (reg != hard_frame_pointer_rtx && fixed_regs[REGNO (reg)])
10060 cselib_preserve_cfa_base_value (val, REGNO (reg));
10061 if (ofst)
10062 {
10063 cselib_val *valsp
10064 = cselib_lookup_from_insn (stack_pointer_rtx,
10065 GET_MODE (stack_pointer_rtx), 1,
10066 VOIDmode, get_insns ());
10067 preserve_value (valsp);
10068 expr = plus_constant (GET_MODE (reg), reg, ofst);
10069 /* This cselib_add_permanent_equiv call needs to be done before
10070 the other cselib_add_permanent_equiv a few lines later,
10071 because after that one is done, cselib_lookup on this expr
10072 will due to the cselib SP_DERIVED_VALUE_P optimizations
10073 return valsp and so no permanent equivalency will be added. */
10074 cselib_add_permanent_equiv (valsp, expr, get_insns ());
10075 }
10076
10077 expr = plus_constant (GET_MODE (stack_pointer_rtx),
10078 stack_pointer_rtx, -ofst);
10079 cselib_add_permanent_equiv (val, expr, get_insns ());
10080 }
10081
10082 /* In order to factor out the adjustments made to the stack pointer or to
10083 the hard frame pointer and thus be able to use DW_OP_fbreg operations
10084 instead of individual location lists, we're going to rewrite MEMs based
10085 on them into MEMs based on the CFA by de-eliminating stack_pointer_rtx
10086 or hard_frame_pointer_rtx to the virtual CFA pointer frame_pointer_rtx
10087 resp. arg_pointer_rtx. We can do this either when there is no frame
10088 pointer in the function and stack adjustments are consistent for all
10089 basic blocks or when there is a frame pointer and no stack realignment.
10090 But we first have to check that frame_pointer_rtx resp. arg_pointer_rtx
10091 has been eliminated. */
10092 if (!frame_pointer_needed)
10093 {
10094 rtx reg, elim;
10095
10096 if (!vt_stack_adjustments ())
10097 return false;
10098
10099 #ifdef FRAME_POINTER_CFA_OFFSET
10100 reg = frame_pointer_rtx;
10101 #else
10102 reg = arg_pointer_rtx;
10103 #endif
10104 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10105 if (elim != reg)
10106 {
10107 if (GET_CODE (elim) == PLUS)
10108 elim = XEXP (elim, 0);
10109 if (elim == stack_pointer_rtx)
10110 vt_init_cfa_base ();
10111 }
10112 }
10113 else if (!crtl->stack_realign_tried)
10114 {
10115 rtx reg, elim;
10116
10117 #ifdef FRAME_POINTER_CFA_OFFSET
10118 reg = frame_pointer_rtx;
10119 fp_cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
10120 #else
10121 reg = arg_pointer_rtx;
10122 fp_cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
10123 #endif
10124 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10125 if (elim != reg)
10126 {
10127 if (GET_CODE (elim) == PLUS)
10128 {
10129 fp_cfa_offset -= rtx_to_poly_int64 (XEXP (elim, 1));
10130 elim = XEXP (elim, 0);
10131 }
10132 if (elim != hard_frame_pointer_rtx)
10133 fp_cfa_offset = -1;
10134 }
10135 else
10136 fp_cfa_offset = -1;
10137 }
10138
10139 /* If the stack is realigned and a DRAP register is used, we're going to
10140 rewrite MEMs based on it representing incoming locations of parameters
10141 passed on the stack into MEMs based on the argument pointer. Although
10142 we aren't going to rewrite other MEMs, we still need to initialize the
10143 virtual CFA pointer in order to ensure that the argument pointer will
10144 be seen as a constant throughout the function.
10145
10146 ??? This doesn't work if FRAME_POINTER_CFA_OFFSET is defined. */
10147 else if (stack_realign_drap)
10148 {
10149 rtx reg, elim;
10150
10151 #ifdef FRAME_POINTER_CFA_OFFSET
10152 reg = frame_pointer_rtx;
10153 #else
10154 reg = arg_pointer_rtx;
10155 #endif
10156 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10157 if (elim != reg)
10158 {
10159 if (GET_CODE (elim) == PLUS)
10160 elim = XEXP (elim, 0);
10161 if (elim == hard_frame_pointer_rtx)
10162 vt_init_cfa_base ();
10163 }
10164 }
10165
10166 hard_frame_pointer_adjustment = -1;
10167
10168 vt_add_function_parameters ();
10169
10170 bool record_sp_value = false;
10171 FOR_EACH_BB_FN (bb, cfun)
10172 {
10173 rtx_insn *insn;
10174 basic_block first_bb, last_bb;
10175
10176 if (MAY_HAVE_DEBUG_BIND_INSNS)
10177 {
10178 cselib_record_sets_hook = add_with_sets;
10179 if (dump_file && (dump_flags & TDF_DETAILS))
10180 fprintf (dump_file, "first value: %i\n",
10181 cselib_get_next_uid ());
10182 }
10183
10184 if (MAY_HAVE_DEBUG_BIND_INSNS
10185 && cfa_base_rtx
10186 && !frame_pointer_needed
10187 && record_sp_value)
10188 cselib_record_sp_cfa_base_equiv (-cfa_base_offset
10189 - VTI (bb)->in.stack_adjust,
10190 BB_HEAD (bb));
10191 record_sp_value = true;
10192
10193 first_bb = bb;
10194 for (;;)
10195 {
10196 edge e;
10197 if (bb->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
10198 || ! single_pred_p (bb->next_bb))
10199 break;
10200 e = find_edge (bb, bb->next_bb);
10201 if (! e || (e->flags & EDGE_FALLTHRU) == 0)
10202 break;
10203 bb = bb->next_bb;
10204 }
10205 last_bb = bb;
10206
10207 /* Add the micro-operations to the vector. */
10208 FOR_BB_BETWEEN (bb, first_bb, last_bb->next_bb, next_bb)
10209 {
10210 HOST_WIDE_INT offset = VTI (bb)->out.stack_adjust;
10211 VTI (bb)->out.stack_adjust = VTI (bb)->in.stack_adjust;
10212
10213 rtx_insn *next;
10214 FOR_BB_INSNS_SAFE (bb, insn, next)
10215 {
10216 if (INSN_P (insn))
10217 {
10218 HOST_WIDE_INT pre = 0, post = 0;
10219
10220 if (!frame_pointer_needed)
10221 {
10222 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
10223 if (pre)
10224 {
10225 micro_operation mo;
10226 mo.type = MO_ADJUST;
10227 mo.u.adjust = pre;
10228 mo.insn = insn;
10229 if (dump_file && (dump_flags & TDF_DETAILS))
10230 log_op_type (PATTERN (insn), bb, insn,
10231 MO_ADJUST, dump_file);
10232 VTI (bb)->mos.safe_push (mo);
10233 }
10234 }
10235
10236 cselib_hook_called = false;
10237 adjust_insn (bb, insn);
10238
10239 if (pre)
10240 VTI (bb)->out.stack_adjust += pre;
10241
10242 if (DEBUG_MARKER_INSN_P (insn))
10243 {
10244 reemit_marker_as_note (insn);
10245 continue;
10246 }
10247
10248 if (MAY_HAVE_DEBUG_BIND_INSNS)
10249 {
10250 if (CALL_P (insn))
10251 prepare_call_arguments (bb, insn);
10252 cselib_process_insn (insn);
10253 if (dump_file && (dump_flags & TDF_DETAILS))
10254 {
10255 if (dump_flags & TDF_SLIM)
10256 dump_insn_slim (dump_file, insn);
10257 else
10258 print_rtl_single (dump_file, insn);
10259 dump_cselib_table (dump_file);
10260 }
10261 }
10262 if (!cselib_hook_called)
10263 add_with_sets (insn, 0, 0);
10264 cancel_changes (0);
10265
10266 if (post)
10267 {
10268 micro_operation mo;
10269 mo.type = MO_ADJUST;
10270 mo.u.adjust = post;
10271 mo.insn = insn;
10272 if (dump_file && (dump_flags & TDF_DETAILS))
10273 log_op_type (PATTERN (insn), bb, insn,
10274 MO_ADJUST, dump_file);
10275 VTI (bb)->mos.safe_push (mo);
10276 VTI (bb)->out.stack_adjust += post;
10277 }
10278
10279 if (maybe_ne (fp_cfa_offset, -1)
10280 && known_eq (hard_frame_pointer_adjustment, -1)
10281 && fp_setter_insn (insn))
10282 {
10283 vt_init_cfa_base ();
10284 hard_frame_pointer_adjustment = fp_cfa_offset;
10285 /* Disassociate sp from fp now. */
10286 if (MAY_HAVE_DEBUG_BIND_INSNS)
10287 {
10288 cselib_val *v;
10289 cselib_invalidate_rtx (stack_pointer_rtx);
10290 v = cselib_lookup (stack_pointer_rtx, Pmode, 1,
10291 VOIDmode);
10292 if (v && !cselib_preserved_value_p (v))
10293 {
10294 cselib_set_value_sp_based (v);
10295 preserve_value (v);
10296 }
10297 }
10298 }
10299 }
10300 }
10301 gcc_assert (offset == VTI (bb)->out.stack_adjust);
10302 }
10303
10304 bb = last_bb;
10305
10306 if (MAY_HAVE_DEBUG_BIND_INSNS)
10307 {
10308 cselib_preserve_only_values ();
10309 cselib_reset_table (cselib_get_next_uid ());
10310 cselib_record_sets_hook = NULL;
10311 }
10312 }
10313
10314 hard_frame_pointer_adjustment = -1;
10315 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->flooded = true;
10316 cfa_base_rtx = NULL_RTX;
10317 return true;
10318 }
10319
10320 /* This is *not* reset after each function. It gives each
10321 NOTE_INSN_DELETED_DEBUG_LABEL in the entire compilation
10322 a unique label number. */
10323
10324 static int debug_label_num = 1;
10325
10326 /* Remove from the insn stream a single debug insn used for
10327 variable tracking at assignments. */
10328
10329 static inline void
10330 delete_vta_debug_insn (rtx_insn *insn)
10331 {
10332 if (DEBUG_MARKER_INSN_P (insn))
10333 {
10334 reemit_marker_as_note (insn);
10335 return;
10336 }
10337
10338 tree decl = INSN_VAR_LOCATION_DECL (insn);
10339 if (TREE_CODE (decl) == LABEL_DECL
10340 && DECL_NAME (decl)
10341 && !DECL_RTL_SET_P (decl))
10342 {
10343 PUT_CODE (insn, NOTE);
10344 NOTE_KIND (insn) = NOTE_INSN_DELETED_DEBUG_LABEL;
10345 NOTE_DELETED_LABEL_NAME (insn)
10346 = IDENTIFIER_POINTER (DECL_NAME (decl));
10347 SET_DECL_RTL (decl, insn);
10348 CODE_LABEL_NUMBER (insn) = debug_label_num++;
10349 }
10350 else
10351 delete_insn (insn);
10352 }
10353
10354 /* Remove from the insn stream all debug insns used for variable
10355 tracking at assignments. USE_CFG should be false if the cfg is no
10356 longer usable. */
10357
10358 void
10359 delete_vta_debug_insns (bool use_cfg)
10360 {
10361 basic_block bb;
10362 rtx_insn *insn, *next;
10363
10364 if (!MAY_HAVE_DEBUG_INSNS)
10365 return;
10366
10367 if (use_cfg)
10368 FOR_EACH_BB_FN (bb, cfun)
10369 {
10370 FOR_BB_INSNS_SAFE (bb, insn, next)
10371 if (DEBUG_INSN_P (insn))
10372 delete_vta_debug_insn (insn);
10373 }
10374 else
10375 for (insn = get_insns (); insn; insn = next)
10376 {
10377 next = NEXT_INSN (insn);
10378 if (DEBUG_INSN_P (insn))
10379 delete_vta_debug_insn (insn);
10380 }
10381 }
10382
10383 /* Run a fast, BB-local only version of var tracking, to take care of
10384 information that we don't do global analysis on, such that not all
10385 information is lost. If SKIPPED holds, we're skipping the global
10386 pass entirely, so we should try to use information it would have
10387 handled as well.. */
10388
10389 static void
10390 vt_debug_insns_local (bool skipped ATTRIBUTE_UNUSED)
10391 {
10392 /* ??? Just skip it all for now. */
10393 delete_vta_debug_insns (true);
10394 }
10395
10396 /* Free the data structures needed for variable tracking. */
10397
10398 static void
10399 vt_finalize (void)
10400 {
10401 basic_block bb;
10402
10403 FOR_EACH_BB_FN (bb, cfun)
10404 {
10405 VTI (bb)->mos.release ();
10406 }
10407
10408 FOR_ALL_BB_FN (bb, cfun)
10409 {
10410 dataflow_set_destroy (&VTI (bb)->in);
10411 dataflow_set_destroy (&VTI (bb)->out);
10412 if (VTI (bb)->permp)
10413 {
10414 dataflow_set_destroy (VTI (bb)->permp);
10415 XDELETE (VTI (bb)->permp);
10416 }
10417 }
10418 free_aux_for_blocks ();
10419 delete empty_shared_hash->htab;
10420 empty_shared_hash->htab = NULL;
10421 delete changed_variables;
10422 changed_variables = NULL;
10423 attrs_pool.release ();
10424 var_pool.release ();
10425 location_chain_pool.release ();
10426 shared_hash_pool.release ();
10427
10428 if (MAY_HAVE_DEBUG_BIND_INSNS)
10429 {
10430 if (global_get_addr_cache)
10431 delete global_get_addr_cache;
10432 global_get_addr_cache = NULL;
10433 loc_exp_dep_pool.release ();
10434 valvar_pool.release ();
10435 preserved_values.release ();
10436 cselib_finish ();
10437 BITMAP_FREE (scratch_regs);
10438 scratch_regs = NULL;
10439 }
10440
10441 #ifdef HAVE_window_save
10442 vec_free (windowed_parm_regs);
10443 #endif
10444
10445 if (vui_vec)
10446 XDELETEVEC (vui_vec);
10447 vui_vec = NULL;
10448 vui_allocated = 0;
10449 }
10450
10451 /* The entry point to variable tracking pass. */
10452
10453 static inline unsigned int
10454 variable_tracking_main_1 (void)
10455 {
10456 bool success;
10457
10458 /* We won't be called as a separate pass if flag_var_tracking is not
10459 set, but final may call us to turn debug markers into notes. */
10460 if ((!flag_var_tracking && MAY_HAVE_DEBUG_INSNS)
10461 || flag_var_tracking_assignments < 0
10462 /* Var-tracking right now assumes the IR doesn't contain
10463 any pseudos at this point. */
10464 || targetm.no_register_allocation)
10465 {
10466 delete_vta_debug_insns (true);
10467 return 0;
10468 }
10469
10470 if (!flag_var_tracking)
10471 return 0;
10472
10473 if (n_basic_blocks_for_fn (cfun) > 500
10474 && n_edges_for_fn (cfun) / n_basic_blocks_for_fn (cfun) >= 20)
10475 {
10476 vt_debug_insns_local (true);
10477 return 0;
10478 }
10479
10480 mark_dfs_back_edges ();
10481 if (!vt_initialize ())
10482 {
10483 vt_finalize ();
10484 vt_debug_insns_local (true);
10485 return 0;
10486 }
10487
10488 success = vt_find_locations ();
10489
10490 if (!success && flag_var_tracking_assignments > 0)
10491 {
10492 vt_finalize ();
10493
10494 delete_vta_debug_insns (true);
10495
10496 /* This is later restored by our caller. */
10497 flag_var_tracking_assignments = 0;
10498
10499 success = vt_initialize ();
10500 gcc_assert (success);
10501
10502 success = vt_find_locations ();
10503 }
10504
10505 if (!success)
10506 {
10507 vt_finalize ();
10508 vt_debug_insns_local (false);
10509 return 0;
10510 }
10511
10512 if (dump_file && (dump_flags & TDF_DETAILS))
10513 {
10514 dump_dataflow_sets ();
10515 dump_reg_info (dump_file);
10516 dump_flow_info (dump_file, dump_flags);
10517 }
10518
10519 timevar_push (TV_VAR_TRACKING_EMIT);
10520 vt_emit_notes ();
10521 timevar_pop (TV_VAR_TRACKING_EMIT);
10522
10523 vt_finalize ();
10524 vt_debug_insns_local (false);
10525 return 0;
10526 }
10527
10528 unsigned int
10529 variable_tracking_main (void)
10530 {
10531 unsigned int ret;
10532 int save = flag_var_tracking_assignments;
10533
10534 ret = variable_tracking_main_1 ();
10535
10536 flag_var_tracking_assignments = save;
10537
10538 return ret;
10539 }
10540 \f
10541 namespace {
10542
10543 const pass_data pass_data_variable_tracking =
10544 {
10545 RTL_PASS, /* type */
10546 "vartrack", /* name */
10547 OPTGROUP_NONE, /* optinfo_flags */
10548 TV_VAR_TRACKING, /* tv_id */
10549 0, /* properties_required */
10550 0, /* properties_provided */
10551 0, /* properties_destroyed */
10552 0, /* todo_flags_start */
10553 0, /* todo_flags_finish */
10554 };
10555
10556 class pass_variable_tracking : public rtl_opt_pass
10557 {
10558 public:
10559 pass_variable_tracking (gcc::context *ctxt)
10560 : rtl_opt_pass (pass_data_variable_tracking, ctxt)
10561 {}
10562
10563 /* opt_pass methods: */
10564 virtual bool gate (function *)
10565 {
10566 return (flag_var_tracking && !targetm.delay_vartrack);
10567 }
10568
10569 virtual unsigned int execute (function *)
10570 {
10571 return variable_tracking_main ();
10572 }
10573
10574 }; // class pass_variable_tracking
10575
10576 } // anon namespace
10577
10578 rtl_opt_pass *
10579 make_pass_variable_tracking (gcc::context *ctxt)
10580 {
10581 return new pass_variable_tracking (ctxt);
10582 }