]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/var-tracking.c
Apply mechanical replacement (generated patch).
[thirdparty/gcc.git] / gcc / var-tracking.c
1 /* Variable tracking routines for the GNU compiler.
2 Copyright (C) 2002-2019 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file contains the variable tracking pass. It computes where
21 variables are located (which registers or where in memory) at each position
22 in instruction stream and emits notes describing the locations.
23 Debug information (DWARF2 location lists) is finally generated from
24 these notes.
25 With this debug information, it is possible to show variables
26 even when debugging optimized code.
27
28 How does the variable tracking pass work?
29
30 First, it scans RTL code for uses, stores and clobbers (register/memory
31 references in instructions), for call insns and for stack adjustments
32 separately for each basic block and saves them to an array of micro
33 operations.
34 The micro operations of one instruction are ordered so that
35 pre-modifying stack adjustment < use < use with no var < call insn <
36 < clobber < set < post-modifying stack adjustment
37
38 Then, a forward dataflow analysis is performed to find out how locations
39 of variables change through code and to propagate the variable locations
40 along control flow graph.
41 The IN set for basic block BB is computed as a union of OUT sets of BB's
42 predecessors, the OUT set for BB is copied from the IN set for BB and
43 is changed according to micro operations in BB.
44
45 The IN and OUT sets for basic blocks consist of a current stack adjustment
46 (used for adjusting offset of variables addressed using stack pointer),
47 the table of structures describing the locations of parts of a variable
48 and for each physical register a linked list for each physical register.
49 The linked list is a list of variable parts stored in the register,
50 i.e. it is a list of triplets (reg, decl, offset) where decl is
51 REG_EXPR (reg) and offset is REG_OFFSET (reg). The linked list is used for
52 effective deleting appropriate variable parts when we set or clobber the
53 register.
54
55 There may be more than one variable part in a register. The linked lists
56 should be pretty short so it is a good data structure here.
57 For example in the following code, register allocator may assign same
58 register to variables A and B, and both of them are stored in the same
59 register in CODE:
60
61 if (cond)
62 set A;
63 else
64 set B;
65 CODE;
66 if (cond)
67 use A;
68 else
69 use B;
70
71 Finally, the NOTE_INSN_VAR_LOCATION notes describing the variable locations
72 are emitted to appropriate positions in RTL code. Each such a note describes
73 the location of one variable at the point in instruction stream where the
74 note is. There is no need to emit a note for each variable before each
75 instruction, we only emit these notes where the location of variable changes
76 (this means that we also emit notes for changes between the OUT set of the
77 previous block and the IN set of the current block).
78
79 The notes consist of two parts:
80 1. the declaration (from REG_EXPR or MEM_EXPR)
81 2. the location of a variable - it is either a simple register/memory
82 reference (for simple variables, for example int),
83 or a parallel of register/memory references (for a large variables
84 which consist of several parts, for example long long).
85
86 */
87
88 #include "config.h"
89 #include "system.h"
90 #include "coretypes.h"
91 #include "backend.h"
92 #include "target.h"
93 #include "rtl.h"
94 #include "tree.h"
95 #include "cfghooks.h"
96 #include "alloc-pool.h"
97 #include "tree-pass.h"
98 #include "memmodel.h"
99 #include "tm_p.h"
100 #include "insn-config.h"
101 #include "regs.h"
102 #include "emit-rtl.h"
103 #include "recog.h"
104 #include "diagnostic.h"
105 #include "varasm.h"
106 #include "stor-layout.h"
107 #include "cfgrtl.h"
108 #include "cfganal.h"
109 #include "reload.h"
110 #include "calls.h"
111 #include "tree-dfa.h"
112 #include "tree-ssa.h"
113 #include "cselib.h"
114 #include "params.h"
115 #include "tree-pretty-print.h"
116 #include "rtl-iter.h"
117 #include "fibonacci_heap.h"
118 #include "print-rtl.h"
119 #include "function-abi.h"
120
121 typedef fibonacci_heap <long, basic_block_def> bb_heap_t;
122 typedef fibonacci_node <long, basic_block_def> bb_heap_node_t;
123
124 /* var-tracking.c assumes that tree code with the same value as VALUE rtx code
125 has no chance to appear in REG_EXPR/MEM_EXPRs and isn't a decl.
126 Currently the value is the same as IDENTIFIER_NODE, which has such
127 a property. If this compile time assertion ever fails, make sure that
128 the new tree code that equals (int) VALUE has the same property. */
129 extern char check_value_val[(int) VALUE == (int) IDENTIFIER_NODE ? 1 : -1];
130
131 /* Type of micro operation. */
132 enum micro_operation_type
133 {
134 MO_USE, /* Use location (REG or MEM). */
135 MO_USE_NO_VAR,/* Use location which is not associated with a variable
136 or the variable is not trackable. */
137 MO_VAL_USE, /* Use location which is associated with a value. */
138 MO_VAL_LOC, /* Use location which appears in a debug insn. */
139 MO_VAL_SET, /* Set location associated with a value. */
140 MO_SET, /* Set location. */
141 MO_COPY, /* Copy the same portion of a variable from one
142 location to another. */
143 MO_CLOBBER, /* Clobber location. */
144 MO_CALL, /* Call insn. */
145 MO_ADJUST /* Adjust stack pointer. */
146
147 };
148
149 static const char * const ATTRIBUTE_UNUSED
150 micro_operation_type_name[] = {
151 "MO_USE",
152 "MO_USE_NO_VAR",
153 "MO_VAL_USE",
154 "MO_VAL_LOC",
155 "MO_VAL_SET",
156 "MO_SET",
157 "MO_COPY",
158 "MO_CLOBBER",
159 "MO_CALL",
160 "MO_ADJUST"
161 };
162
163 /* Where shall the note be emitted? BEFORE or AFTER the instruction.
164 Notes emitted as AFTER_CALL are to take effect during the call,
165 rather than after the call. */
166 enum emit_note_where
167 {
168 EMIT_NOTE_BEFORE_INSN,
169 EMIT_NOTE_AFTER_INSN,
170 EMIT_NOTE_AFTER_CALL_INSN
171 };
172
173 /* Structure holding information about micro operation. */
174 struct micro_operation
175 {
176 /* Type of micro operation. */
177 enum micro_operation_type type;
178
179 /* The instruction which the micro operation is in, for MO_USE,
180 MO_USE_NO_VAR, MO_CALL and MO_ADJUST, or the subsequent
181 instruction or note in the original flow (before any var-tracking
182 notes are inserted, to simplify emission of notes), for MO_SET
183 and MO_CLOBBER. */
184 rtx_insn *insn;
185
186 union {
187 /* Location. For MO_SET and MO_COPY, this is the SET that
188 performs the assignment, if known, otherwise it is the target
189 of the assignment. For MO_VAL_USE and MO_VAL_SET, it is a
190 CONCAT of the VALUE and the LOC associated with it. For
191 MO_VAL_LOC, it is a CONCAT of the VALUE and the VAR_LOCATION
192 associated with it. */
193 rtx loc;
194
195 /* Stack adjustment. */
196 HOST_WIDE_INT adjust;
197 } u;
198 };
199
200
201 /* A declaration of a variable, or an RTL value being handled like a
202 declaration. */
203 typedef void *decl_or_value;
204
205 /* Return true if a decl_or_value DV is a DECL or NULL. */
206 static inline bool
207 dv_is_decl_p (decl_or_value dv)
208 {
209 return !dv || (int) TREE_CODE ((tree) dv) != (int) VALUE;
210 }
211
212 /* Return true if a decl_or_value is a VALUE rtl. */
213 static inline bool
214 dv_is_value_p (decl_or_value dv)
215 {
216 return dv && !dv_is_decl_p (dv);
217 }
218
219 /* Return the decl in the decl_or_value. */
220 static inline tree
221 dv_as_decl (decl_or_value dv)
222 {
223 gcc_checking_assert (dv_is_decl_p (dv));
224 return (tree) dv;
225 }
226
227 /* Return the value in the decl_or_value. */
228 static inline rtx
229 dv_as_value (decl_or_value dv)
230 {
231 gcc_checking_assert (dv_is_value_p (dv));
232 return (rtx)dv;
233 }
234
235 /* Return the opaque pointer in the decl_or_value. */
236 static inline void *
237 dv_as_opaque (decl_or_value dv)
238 {
239 return dv;
240 }
241
242
243 /* Description of location of a part of a variable. The content of a physical
244 register is described by a chain of these structures.
245 The chains are pretty short (usually 1 or 2 elements) and thus
246 chain is the best data structure. */
247 struct attrs
248 {
249 /* Pointer to next member of the list. */
250 attrs *next;
251
252 /* The rtx of register. */
253 rtx loc;
254
255 /* The declaration corresponding to LOC. */
256 decl_or_value dv;
257
258 /* Offset from start of DECL. */
259 HOST_WIDE_INT offset;
260 };
261
262 /* Structure for chaining the locations. */
263 struct location_chain
264 {
265 /* Next element in the chain. */
266 location_chain *next;
267
268 /* The location (REG, MEM or VALUE). */
269 rtx loc;
270
271 /* The "value" stored in this location. */
272 rtx set_src;
273
274 /* Initialized? */
275 enum var_init_status init;
276 };
277
278 /* A vector of loc_exp_dep holds the active dependencies of a one-part
279 DV on VALUEs, i.e., the VALUEs expanded so as to form the current
280 location of DV. Each entry is also part of VALUE' s linked-list of
281 backlinks back to DV. */
282 struct loc_exp_dep
283 {
284 /* The dependent DV. */
285 decl_or_value dv;
286 /* The dependency VALUE or DECL_DEBUG. */
287 rtx value;
288 /* The next entry in VALUE's backlinks list. */
289 struct loc_exp_dep *next;
290 /* A pointer to the pointer to this entry (head or prev's next) in
291 the doubly-linked list. */
292 struct loc_exp_dep **pprev;
293 };
294
295
296 /* This data structure holds information about the depth of a variable
297 expansion. */
298 struct expand_depth
299 {
300 /* This measures the complexity of the expanded expression. It
301 grows by one for each level of expansion that adds more than one
302 operand. */
303 int complexity;
304 /* This counts the number of ENTRY_VALUE expressions in an
305 expansion. We want to minimize their use. */
306 int entryvals;
307 };
308
309 /* This data structure is allocated for one-part variables at the time
310 of emitting notes. */
311 struct onepart_aux
312 {
313 /* Doubly-linked list of dependent DVs. These are DVs whose cur_loc
314 computation used the expansion of this variable, and that ought
315 to be notified should this variable change. If the DV's cur_loc
316 expanded to NULL, all components of the loc list are regarded as
317 active, so that any changes in them give us a chance to get a
318 location. Otherwise, only components of the loc that expanded to
319 non-NULL are regarded as active dependencies. */
320 loc_exp_dep *backlinks;
321 /* This holds the LOC that was expanded into cur_loc. We need only
322 mark a one-part variable as changed if the FROM loc is removed,
323 or if it has no known location and a loc is added, or if it gets
324 a change notification from any of its active dependencies. */
325 rtx from;
326 /* The depth of the cur_loc expression. */
327 expand_depth depth;
328 /* Dependencies actively used when expand FROM into cur_loc. */
329 vec<loc_exp_dep, va_heap, vl_embed> deps;
330 };
331
332 /* Structure describing one part of variable. */
333 struct variable_part
334 {
335 /* Chain of locations of the part. */
336 location_chain *loc_chain;
337
338 /* Location which was last emitted to location list. */
339 rtx cur_loc;
340
341 union variable_aux
342 {
343 /* The offset in the variable, if !var->onepart. */
344 HOST_WIDE_INT offset;
345
346 /* Pointer to auxiliary data, if var->onepart and emit_notes. */
347 struct onepart_aux *onepaux;
348 } aux;
349 };
350
351 /* Maximum number of location parts. */
352 #define MAX_VAR_PARTS 16
353
354 /* Enumeration type used to discriminate various types of one-part
355 variables. */
356 enum onepart_enum
357 {
358 /* Not a one-part variable. */
359 NOT_ONEPART = 0,
360 /* A one-part DECL that is not a DEBUG_EXPR_DECL. */
361 ONEPART_VDECL = 1,
362 /* A DEBUG_EXPR_DECL. */
363 ONEPART_DEXPR = 2,
364 /* A VALUE. */
365 ONEPART_VALUE = 3
366 };
367
368 /* Structure describing where the variable is located. */
369 struct variable
370 {
371 /* The declaration of the variable, or an RTL value being handled
372 like a declaration. */
373 decl_or_value dv;
374
375 /* Reference count. */
376 int refcount;
377
378 /* Number of variable parts. */
379 char n_var_parts;
380
381 /* What type of DV this is, according to enum onepart_enum. */
382 ENUM_BITFIELD (onepart_enum) onepart : CHAR_BIT;
383
384 /* True if this variable_def struct is currently in the
385 changed_variables hash table. */
386 bool in_changed_variables;
387
388 /* The variable parts. */
389 variable_part var_part[1];
390 };
391
392 /* Pointer to the BB's information specific to variable tracking pass. */
393 #define VTI(BB) ((variable_tracking_info *) (BB)->aux)
394
395 /* Return MEM_OFFSET (MEM) as a HOST_WIDE_INT, or 0 if we can't. */
396
397 static inline HOST_WIDE_INT
398 int_mem_offset (const_rtx mem)
399 {
400 HOST_WIDE_INT offset;
401 if (MEM_OFFSET_KNOWN_P (mem) && MEM_OFFSET (mem).is_constant (&offset))
402 return offset;
403 return 0;
404 }
405
406 #if CHECKING_P && (GCC_VERSION >= 2007)
407
408 /* Access VAR's Ith part's offset, checking that it's not a one-part
409 variable. */
410 #define VAR_PART_OFFSET(var, i) __extension__ \
411 (*({ variable *const __v = (var); \
412 gcc_checking_assert (!__v->onepart); \
413 &__v->var_part[(i)].aux.offset; }))
414
415 /* Access VAR's one-part auxiliary data, checking that it is a
416 one-part variable. */
417 #define VAR_LOC_1PAUX(var) __extension__ \
418 (*({ variable *const __v = (var); \
419 gcc_checking_assert (__v->onepart); \
420 &__v->var_part[0].aux.onepaux; }))
421
422 #else
423 #define VAR_PART_OFFSET(var, i) ((var)->var_part[(i)].aux.offset)
424 #define VAR_LOC_1PAUX(var) ((var)->var_part[0].aux.onepaux)
425 #endif
426
427 /* These are accessor macros for the one-part auxiliary data. When
428 convenient for users, they're guarded by tests that the data was
429 allocated. */
430 #define VAR_LOC_DEP_LST(var) (VAR_LOC_1PAUX (var) \
431 ? VAR_LOC_1PAUX (var)->backlinks \
432 : NULL)
433 #define VAR_LOC_DEP_LSTP(var) (VAR_LOC_1PAUX (var) \
434 ? &VAR_LOC_1PAUX (var)->backlinks \
435 : NULL)
436 #define VAR_LOC_FROM(var) (VAR_LOC_1PAUX (var)->from)
437 #define VAR_LOC_DEPTH(var) (VAR_LOC_1PAUX (var)->depth)
438 #define VAR_LOC_DEP_VEC(var) (VAR_LOC_1PAUX (var) \
439 ? &VAR_LOC_1PAUX (var)->deps \
440 : NULL)
441
442
443
444 typedef unsigned int dvuid;
445
446 /* Return the uid of DV. */
447
448 static inline dvuid
449 dv_uid (decl_or_value dv)
450 {
451 if (dv_is_value_p (dv))
452 return CSELIB_VAL_PTR (dv_as_value (dv))->uid;
453 else
454 return DECL_UID (dv_as_decl (dv));
455 }
456
457 /* Compute the hash from the uid. */
458
459 static inline hashval_t
460 dv_uid2hash (dvuid uid)
461 {
462 return uid;
463 }
464
465 /* The hash function for a mask table in a shared_htab chain. */
466
467 static inline hashval_t
468 dv_htab_hash (decl_or_value dv)
469 {
470 return dv_uid2hash (dv_uid (dv));
471 }
472
473 static void variable_htab_free (void *);
474
475 /* Variable hashtable helpers. */
476
477 struct variable_hasher : pointer_hash <variable>
478 {
479 typedef void *compare_type;
480 static inline hashval_t hash (const variable *);
481 static inline bool equal (const variable *, const void *);
482 static inline void remove (variable *);
483 };
484
485 /* The hash function for variable_htab, computes the hash value
486 from the declaration of variable X. */
487
488 inline hashval_t
489 variable_hasher::hash (const variable *v)
490 {
491 return dv_htab_hash (v->dv);
492 }
493
494 /* Compare the declaration of variable X with declaration Y. */
495
496 inline bool
497 variable_hasher::equal (const variable *v, const void *y)
498 {
499 decl_or_value dv = CONST_CAST2 (decl_or_value, const void *, y);
500
501 return (dv_as_opaque (v->dv) == dv_as_opaque (dv));
502 }
503
504 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
505
506 inline void
507 variable_hasher::remove (variable *var)
508 {
509 variable_htab_free (var);
510 }
511
512 typedef hash_table<variable_hasher> variable_table_type;
513 typedef variable_table_type::iterator variable_iterator_type;
514
515 /* Structure for passing some other parameters to function
516 emit_note_insn_var_location. */
517 struct emit_note_data
518 {
519 /* The instruction which the note will be emitted before/after. */
520 rtx_insn *insn;
521
522 /* Where the note will be emitted (before/after insn)? */
523 enum emit_note_where where;
524
525 /* The variables and values active at this point. */
526 variable_table_type *vars;
527 };
528
529 /* Structure holding a refcounted hash table. If refcount > 1,
530 it must be first unshared before modified. */
531 struct shared_hash
532 {
533 /* Reference count. */
534 int refcount;
535
536 /* Actual hash table. */
537 variable_table_type *htab;
538 };
539
540 /* Structure holding the IN or OUT set for a basic block. */
541 struct dataflow_set
542 {
543 /* Adjustment of stack offset. */
544 HOST_WIDE_INT stack_adjust;
545
546 /* Attributes for registers (lists of attrs). */
547 attrs *regs[FIRST_PSEUDO_REGISTER];
548
549 /* Variable locations. */
550 shared_hash *vars;
551
552 /* Vars that is being traversed. */
553 shared_hash *traversed_vars;
554 };
555
556 /* The structure (one for each basic block) containing the information
557 needed for variable tracking. */
558 struct variable_tracking_info
559 {
560 /* The vector of micro operations. */
561 vec<micro_operation> mos;
562
563 /* The IN and OUT set for dataflow analysis. */
564 dataflow_set in;
565 dataflow_set out;
566
567 /* The permanent-in dataflow set for this block. This is used to
568 hold values for which we had to compute entry values. ??? This
569 should probably be dynamically allocated, to avoid using more
570 memory in non-debug builds. */
571 dataflow_set *permp;
572
573 /* Has the block been visited in DFS? */
574 bool visited;
575
576 /* Has the block been flooded in VTA? */
577 bool flooded;
578
579 };
580
581 /* Alloc pool for struct attrs_def. */
582 object_allocator<attrs> attrs_pool ("attrs pool");
583
584 /* Alloc pool for struct variable_def with MAX_VAR_PARTS entries. */
585
586 static pool_allocator var_pool
587 ("variable_def pool", sizeof (variable) +
588 (MAX_VAR_PARTS - 1) * sizeof (((variable *)NULL)->var_part[0]));
589
590 /* Alloc pool for struct variable_def with a single var_part entry. */
591 static pool_allocator valvar_pool
592 ("small variable_def pool", sizeof (variable));
593
594 /* Alloc pool for struct location_chain. */
595 static object_allocator<location_chain> location_chain_pool
596 ("location_chain pool");
597
598 /* Alloc pool for struct shared_hash. */
599 static object_allocator<shared_hash> shared_hash_pool ("shared_hash pool");
600
601 /* Alloc pool for struct loc_exp_dep_s for NOT_ONEPART variables. */
602 object_allocator<loc_exp_dep> loc_exp_dep_pool ("loc_exp_dep pool");
603
604 /* Changed variables, notes will be emitted for them. */
605 static variable_table_type *changed_variables;
606
607 /* Shall notes be emitted? */
608 static bool emit_notes;
609
610 /* Values whose dynamic location lists have gone empty, but whose
611 cselib location lists are still usable. Use this to hold the
612 current location, the backlinks, etc, during emit_notes. */
613 static variable_table_type *dropped_values;
614
615 /* Empty shared hashtable. */
616 static shared_hash *empty_shared_hash;
617
618 /* Scratch register bitmap used by cselib_expand_value_rtx. */
619 static bitmap scratch_regs = NULL;
620
621 #ifdef HAVE_window_save
622 struct GTY(()) parm_reg {
623 rtx outgoing;
624 rtx incoming;
625 };
626
627
628 /* Vector of windowed parameter registers, if any. */
629 static vec<parm_reg, va_gc> *windowed_parm_regs = NULL;
630 #endif
631
632 /* Variable used to tell whether cselib_process_insn called our hook. */
633 static bool cselib_hook_called;
634
635 /* Local function prototypes. */
636 static void stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
637 HOST_WIDE_INT *);
638 static void insn_stack_adjust_offset_pre_post (rtx_insn *, HOST_WIDE_INT *,
639 HOST_WIDE_INT *);
640 static bool vt_stack_adjustments (void);
641
642 static void init_attrs_list_set (attrs **);
643 static void attrs_list_clear (attrs **);
644 static attrs *attrs_list_member (attrs *, decl_or_value, HOST_WIDE_INT);
645 static void attrs_list_insert (attrs **, decl_or_value, HOST_WIDE_INT, rtx);
646 static void attrs_list_copy (attrs **, attrs *);
647 static void attrs_list_union (attrs **, attrs *);
648
649 static variable **unshare_variable (dataflow_set *set, variable **slot,
650 variable *var, enum var_init_status);
651 static void vars_copy (variable_table_type *, variable_table_type *);
652 static tree var_debug_decl (tree);
653 static void var_reg_set (dataflow_set *, rtx, enum var_init_status, rtx);
654 static void var_reg_delete_and_set (dataflow_set *, rtx, bool,
655 enum var_init_status, rtx);
656 static void var_reg_delete (dataflow_set *, rtx, bool);
657 static void var_regno_delete (dataflow_set *, int);
658 static void var_mem_set (dataflow_set *, rtx, enum var_init_status, rtx);
659 static void var_mem_delete_and_set (dataflow_set *, rtx, bool,
660 enum var_init_status, rtx);
661 static void var_mem_delete (dataflow_set *, rtx, bool);
662
663 static void dataflow_set_init (dataflow_set *);
664 static void dataflow_set_clear (dataflow_set *);
665 static void dataflow_set_copy (dataflow_set *, dataflow_set *);
666 static int variable_union_info_cmp_pos (const void *, const void *);
667 static void dataflow_set_union (dataflow_set *, dataflow_set *);
668 static location_chain *find_loc_in_1pdv (rtx, variable *,
669 variable_table_type *);
670 static bool canon_value_cmp (rtx, rtx);
671 static int loc_cmp (rtx, rtx);
672 static bool variable_part_different_p (variable_part *, variable_part *);
673 static bool onepart_variable_different_p (variable *, variable *);
674 static bool variable_different_p (variable *, variable *);
675 static bool dataflow_set_different (dataflow_set *, dataflow_set *);
676 static void dataflow_set_destroy (dataflow_set *);
677
678 static bool track_expr_p (tree, bool);
679 static void add_uses_1 (rtx *, void *);
680 static void add_stores (rtx, const_rtx, void *);
681 static bool compute_bb_dataflow (basic_block);
682 static bool vt_find_locations (void);
683
684 static void dump_attrs_list (attrs *);
685 static void dump_var (variable *);
686 static void dump_vars (variable_table_type *);
687 static void dump_dataflow_set (dataflow_set *);
688 static void dump_dataflow_sets (void);
689
690 static void set_dv_changed (decl_or_value, bool);
691 static void variable_was_changed (variable *, dataflow_set *);
692 static variable **set_slot_part (dataflow_set *, rtx, variable **,
693 decl_or_value, HOST_WIDE_INT,
694 enum var_init_status, rtx);
695 static void set_variable_part (dataflow_set *, rtx,
696 decl_or_value, HOST_WIDE_INT,
697 enum var_init_status, rtx, enum insert_option);
698 static variable **clobber_slot_part (dataflow_set *, rtx,
699 variable **, HOST_WIDE_INT, rtx);
700 static void clobber_variable_part (dataflow_set *, rtx,
701 decl_or_value, HOST_WIDE_INT, rtx);
702 static variable **delete_slot_part (dataflow_set *, rtx, variable **,
703 HOST_WIDE_INT);
704 static void delete_variable_part (dataflow_set *, rtx,
705 decl_or_value, HOST_WIDE_INT);
706 static void emit_notes_in_bb (basic_block, dataflow_set *);
707 static void vt_emit_notes (void);
708
709 static void vt_add_function_parameters (void);
710 static bool vt_initialize (void);
711 static void vt_finalize (void);
712
713 /* Callback for stack_adjust_offset_pre_post, called via for_each_inc_dec. */
714
715 static int
716 stack_adjust_offset_pre_post_cb (rtx, rtx op, rtx dest, rtx src, rtx srcoff,
717 void *arg)
718 {
719 if (dest != stack_pointer_rtx)
720 return 0;
721
722 switch (GET_CODE (op))
723 {
724 case PRE_INC:
725 case PRE_DEC:
726 ((HOST_WIDE_INT *)arg)[0] -= INTVAL (srcoff);
727 return 0;
728 case POST_INC:
729 case POST_DEC:
730 ((HOST_WIDE_INT *)arg)[1] -= INTVAL (srcoff);
731 return 0;
732 case PRE_MODIFY:
733 case POST_MODIFY:
734 /* We handle only adjustments by constant amount. */
735 gcc_assert (GET_CODE (src) == PLUS
736 && CONST_INT_P (XEXP (src, 1))
737 && XEXP (src, 0) == stack_pointer_rtx);
738 ((HOST_WIDE_INT *)arg)[GET_CODE (op) == POST_MODIFY]
739 -= INTVAL (XEXP (src, 1));
740 return 0;
741 default:
742 gcc_unreachable ();
743 }
744 }
745
746 /* Given a SET, calculate the amount of stack adjustment it contains
747 PRE- and POST-modifying stack pointer.
748 This function is similar to stack_adjust_offset. */
749
750 static void
751 stack_adjust_offset_pre_post (rtx pattern, HOST_WIDE_INT *pre,
752 HOST_WIDE_INT *post)
753 {
754 rtx src = SET_SRC (pattern);
755 rtx dest = SET_DEST (pattern);
756 enum rtx_code code;
757
758 if (dest == stack_pointer_rtx)
759 {
760 /* (set (reg sp) (plus (reg sp) (const_int))) */
761 code = GET_CODE (src);
762 if (! (code == PLUS || code == MINUS)
763 || XEXP (src, 0) != stack_pointer_rtx
764 || !CONST_INT_P (XEXP (src, 1)))
765 return;
766
767 if (code == MINUS)
768 *post += INTVAL (XEXP (src, 1));
769 else
770 *post -= INTVAL (XEXP (src, 1));
771 return;
772 }
773 HOST_WIDE_INT res[2] = { 0, 0 };
774 for_each_inc_dec (pattern, stack_adjust_offset_pre_post_cb, res);
775 *pre += res[0];
776 *post += res[1];
777 }
778
779 /* Given an INSN, calculate the amount of stack adjustment it contains
780 PRE- and POST-modifying stack pointer. */
781
782 static void
783 insn_stack_adjust_offset_pre_post (rtx_insn *insn, HOST_WIDE_INT *pre,
784 HOST_WIDE_INT *post)
785 {
786 rtx pattern;
787
788 *pre = 0;
789 *post = 0;
790
791 pattern = PATTERN (insn);
792 if (RTX_FRAME_RELATED_P (insn))
793 {
794 rtx expr = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
795 if (expr)
796 pattern = XEXP (expr, 0);
797 }
798
799 if (GET_CODE (pattern) == SET)
800 stack_adjust_offset_pre_post (pattern, pre, post);
801 else if (GET_CODE (pattern) == PARALLEL
802 || GET_CODE (pattern) == SEQUENCE)
803 {
804 int i;
805
806 /* There may be stack adjustments inside compound insns. Search
807 for them. */
808 for ( i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
809 if (GET_CODE (XVECEXP (pattern, 0, i)) == SET)
810 stack_adjust_offset_pre_post (XVECEXP (pattern, 0, i), pre, post);
811 }
812 }
813
814 /* Compute stack adjustments for all blocks by traversing DFS tree.
815 Return true when the adjustments on all incoming edges are consistent.
816 Heavily borrowed from pre_and_rev_post_order_compute. */
817
818 static bool
819 vt_stack_adjustments (void)
820 {
821 edge_iterator *stack;
822 int sp;
823
824 /* Initialize entry block. */
825 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->visited = true;
826 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->in.stack_adjust
827 = INCOMING_FRAME_SP_OFFSET;
828 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->out.stack_adjust
829 = INCOMING_FRAME_SP_OFFSET;
830
831 /* Allocate stack for back-tracking up CFG. */
832 stack = XNEWVEC (edge_iterator, n_basic_blocks_for_fn (cfun) + 1);
833 sp = 0;
834
835 /* Push the first edge on to the stack. */
836 stack[sp++] = ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs);
837
838 while (sp)
839 {
840 edge_iterator ei;
841 basic_block src;
842 basic_block dest;
843
844 /* Look at the edge on the top of the stack. */
845 ei = stack[sp - 1];
846 src = ei_edge (ei)->src;
847 dest = ei_edge (ei)->dest;
848
849 /* Check if the edge destination has been visited yet. */
850 if (!VTI (dest)->visited)
851 {
852 rtx_insn *insn;
853 HOST_WIDE_INT pre, post, offset;
854 VTI (dest)->visited = true;
855 VTI (dest)->in.stack_adjust = offset = VTI (src)->out.stack_adjust;
856
857 if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
858 for (insn = BB_HEAD (dest);
859 insn != NEXT_INSN (BB_END (dest));
860 insn = NEXT_INSN (insn))
861 if (INSN_P (insn))
862 {
863 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
864 offset += pre + post;
865 }
866
867 VTI (dest)->out.stack_adjust = offset;
868
869 if (EDGE_COUNT (dest->succs) > 0)
870 /* Since the DEST node has been visited for the first
871 time, check its successors. */
872 stack[sp++] = ei_start (dest->succs);
873 }
874 else
875 {
876 /* We can end up with different stack adjustments for the exit block
877 of a shrink-wrapped function if stack_adjust_offset_pre_post
878 doesn't understand the rtx pattern used to restore the stack
879 pointer in the epilogue. For example, on s390(x), the stack
880 pointer is often restored via a load-multiple instruction
881 and so no stack_adjust offset is recorded for it. This means
882 that the stack offset at the end of the epilogue block is the
883 same as the offset before the epilogue, whereas other paths
884 to the exit block will have the correct stack_adjust.
885
886 It is safe to ignore these differences because (a) we never
887 use the stack_adjust for the exit block in this pass and
888 (b) dwarf2cfi checks whether the CFA notes in a shrink-wrapped
889 function are correct.
890
891 We must check whether the adjustments on other edges are
892 the same though. */
893 if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
894 && VTI (dest)->in.stack_adjust != VTI (src)->out.stack_adjust)
895 {
896 free (stack);
897 return false;
898 }
899
900 if (! ei_one_before_end_p (ei))
901 /* Go to the next edge. */
902 ei_next (&stack[sp - 1]);
903 else
904 /* Return to previous level if there are no more edges. */
905 sp--;
906 }
907 }
908
909 free (stack);
910 return true;
911 }
912
913 /* arg_pointer_rtx resp. frame_pointer_rtx if stack_pointer_rtx or
914 hard_frame_pointer_rtx is being mapped to it and offset for it. */
915 static rtx cfa_base_rtx;
916 static HOST_WIDE_INT cfa_base_offset;
917
918 /* Compute a CFA-based value for an ADJUSTMENT made to stack_pointer_rtx
919 or hard_frame_pointer_rtx. */
920
921 static inline rtx
922 compute_cfa_pointer (poly_int64 adjustment)
923 {
924 return plus_constant (Pmode, cfa_base_rtx, adjustment + cfa_base_offset);
925 }
926
927 /* Adjustment for hard_frame_pointer_rtx to cfa base reg,
928 or -1 if the replacement shouldn't be done. */
929 static poly_int64 hard_frame_pointer_adjustment = -1;
930
931 /* Data for adjust_mems callback. */
932
933 class adjust_mem_data
934 {
935 public:
936 bool store;
937 machine_mode mem_mode;
938 HOST_WIDE_INT stack_adjust;
939 auto_vec<rtx> side_effects;
940 };
941
942 /* Helper for adjust_mems. Return true if X is suitable for
943 transformation of wider mode arithmetics to narrower mode. */
944
945 static bool
946 use_narrower_mode_test (rtx x, const_rtx subreg)
947 {
948 subrtx_var_iterator::array_type array;
949 FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
950 {
951 rtx x = *iter;
952 if (CONSTANT_P (x))
953 iter.skip_subrtxes ();
954 else
955 switch (GET_CODE (x))
956 {
957 case REG:
958 if (cselib_lookup (x, GET_MODE (SUBREG_REG (subreg)), 0, VOIDmode))
959 return false;
960 if (!validate_subreg (GET_MODE (subreg), GET_MODE (x), x,
961 subreg_lowpart_offset (GET_MODE (subreg),
962 GET_MODE (x))))
963 return false;
964 break;
965 case PLUS:
966 case MINUS:
967 case MULT:
968 break;
969 case ASHIFT:
970 if (GET_MODE (XEXP (x, 1)) != VOIDmode)
971 {
972 enum machine_mode mode = GET_MODE (subreg);
973 rtx op1 = XEXP (x, 1);
974 enum machine_mode op1_mode = GET_MODE (op1);
975 if (GET_MODE_PRECISION (as_a <scalar_int_mode> (mode))
976 < GET_MODE_PRECISION (as_a <scalar_int_mode> (op1_mode)))
977 {
978 poly_uint64 byte = subreg_lowpart_offset (mode, op1_mode);
979 if (GET_CODE (op1) == SUBREG || GET_CODE (op1) == CONCAT)
980 {
981 if (!simplify_subreg (mode, op1, op1_mode, byte))
982 return false;
983 }
984 else if (!validate_subreg (mode, op1_mode, op1, byte))
985 return false;
986 }
987 }
988 iter.substitute (XEXP (x, 0));
989 break;
990 default:
991 return false;
992 }
993 }
994 return true;
995 }
996
997 /* Transform X into narrower mode MODE from wider mode WMODE. */
998
999 static rtx
1000 use_narrower_mode (rtx x, scalar_int_mode mode, scalar_int_mode wmode)
1001 {
1002 rtx op0, op1;
1003 if (CONSTANT_P (x))
1004 return lowpart_subreg (mode, x, wmode);
1005 switch (GET_CODE (x))
1006 {
1007 case REG:
1008 return lowpart_subreg (mode, x, wmode);
1009 case PLUS:
1010 case MINUS:
1011 case MULT:
1012 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
1013 op1 = use_narrower_mode (XEXP (x, 1), mode, wmode);
1014 return simplify_gen_binary (GET_CODE (x), mode, op0, op1);
1015 case ASHIFT:
1016 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
1017 op1 = XEXP (x, 1);
1018 /* Ensure shift amount is not wider than mode. */
1019 if (GET_MODE (op1) == VOIDmode)
1020 op1 = lowpart_subreg (mode, op1, wmode);
1021 else if (GET_MODE_PRECISION (mode)
1022 < GET_MODE_PRECISION (as_a <scalar_int_mode> (GET_MODE (op1))))
1023 op1 = lowpart_subreg (mode, op1, GET_MODE (op1));
1024 return simplify_gen_binary (ASHIFT, mode, op0, op1);
1025 default:
1026 gcc_unreachable ();
1027 }
1028 }
1029
1030 /* Helper function for adjusting used MEMs. */
1031
1032 static rtx
1033 adjust_mems (rtx loc, const_rtx old_rtx, void *data)
1034 {
1035 class adjust_mem_data *amd = (class adjust_mem_data *) data;
1036 rtx mem, addr = loc, tem;
1037 machine_mode mem_mode_save;
1038 bool store_save;
1039 scalar_int_mode tem_mode, tem_subreg_mode;
1040 poly_int64 size;
1041 switch (GET_CODE (loc))
1042 {
1043 case REG:
1044 /* Don't do any sp or fp replacements outside of MEM addresses
1045 on the LHS. */
1046 if (amd->mem_mode == VOIDmode && amd->store)
1047 return loc;
1048 if (loc == stack_pointer_rtx
1049 && !frame_pointer_needed
1050 && cfa_base_rtx)
1051 return compute_cfa_pointer (amd->stack_adjust);
1052 else if (loc == hard_frame_pointer_rtx
1053 && frame_pointer_needed
1054 && maybe_ne (hard_frame_pointer_adjustment, -1)
1055 && cfa_base_rtx)
1056 return compute_cfa_pointer (hard_frame_pointer_adjustment);
1057 gcc_checking_assert (loc != virtual_incoming_args_rtx);
1058 return loc;
1059 case MEM:
1060 mem = loc;
1061 if (!amd->store)
1062 {
1063 mem = targetm.delegitimize_address (mem);
1064 if (mem != loc && !MEM_P (mem))
1065 return simplify_replace_fn_rtx (mem, old_rtx, adjust_mems, data);
1066 }
1067
1068 addr = XEXP (mem, 0);
1069 mem_mode_save = amd->mem_mode;
1070 amd->mem_mode = GET_MODE (mem);
1071 store_save = amd->store;
1072 amd->store = false;
1073 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1074 amd->store = store_save;
1075 amd->mem_mode = mem_mode_save;
1076 if (mem == loc)
1077 addr = targetm.delegitimize_address (addr);
1078 if (addr != XEXP (mem, 0))
1079 mem = replace_equiv_address_nv (mem, addr);
1080 if (!amd->store)
1081 mem = avoid_constant_pool_reference (mem);
1082 return mem;
1083 case PRE_INC:
1084 case PRE_DEC:
1085 size = GET_MODE_SIZE (amd->mem_mode);
1086 addr = plus_constant (GET_MODE (loc), XEXP (loc, 0),
1087 GET_CODE (loc) == PRE_INC ? size : -size);
1088 /* FALLTHRU */
1089 case POST_INC:
1090 case POST_DEC:
1091 if (addr == loc)
1092 addr = XEXP (loc, 0);
1093 gcc_assert (amd->mem_mode != VOIDmode && amd->mem_mode != BLKmode);
1094 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1095 size = GET_MODE_SIZE (amd->mem_mode);
1096 tem = plus_constant (GET_MODE (loc), XEXP (loc, 0),
1097 (GET_CODE (loc) == PRE_INC
1098 || GET_CODE (loc) == POST_INC) ? size : -size);
1099 store_save = amd->store;
1100 amd->store = false;
1101 tem = simplify_replace_fn_rtx (tem, old_rtx, adjust_mems, data);
1102 amd->store = store_save;
1103 amd->side_effects.safe_push (gen_rtx_SET (XEXP (loc, 0), tem));
1104 return addr;
1105 case PRE_MODIFY:
1106 addr = XEXP (loc, 1);
1107 /* FALLTHRU */
1108 case POST_MODIFY:
1109 if (addr == loc)
1110 addr = XEXP (loc, 0);
1111 gcc_assert (amd->mem_mode != VOIDmode);
1112 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1113 store_save = amd->store;
1114 amd->store = false;
1115 tem = simplify_replace_fn_rtx (XEXP (loc, 1), old_rtx,
1116 adjust_mems, data);
1117 amd->store = store_save;
1118 amd->side_effects.safe_push (gen_rtx_SET (XEXP (loc, 0), tem));
1119 return addr;
1120 case SUBREG:
1121 /* First try without delegitimization of whole MEMs and
1122 avoid_constant_pool_reference, which is more likely to succeed. */
1123 store_save = amd->store;
1124 amd->store = true;
1125 addr = simplify_replace_fn_rtx (SUBREG_REG (loc), old_rtx, adjust_mems,
1126 data);
1127 amd->store = store_save;
1128 mem = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1129 if (mem == SUBREG_REG (loc))
1130 {
1131 tem = loc;
1132 goto finish_subreg;
1133 }
1134 tem = simplify_gen_subreg (GET_MODE (loc), mem,
1135 GET_MODE (SUBREG_REG (loc)),
1136 SUBREG_BYTE (loc));
1137 if (tem)
1138 goto finish_subreg;
1139 tem = simplify_gen_subreg (GET_MODE (loc), addr,
1140 GET_MODE (SUBREG_REG (loc)),
1141 SUBREG_BYTE (loc));
1142 if (tem == NULL_RTX)
1143 tem = gen_rtx_raw_SUBREG (GET_MODE (loc), addr, SUBREG_BYTE (loc));
1144 finish_subreg:
1145 if (MAY_HAVE_DEBUG_BIND_INSNS
1146 && GET_CODE (tem) == SUBREG
1147 && (GET_CODE (SUBREG_REG (tem)) == PLUS
1148 || GET_CODE (SUBREG_REG (tem)) == MINUS
1149 || GET_CODE (SUBREG_REG (tem)) == MULT
1150 || GET_CODE (SUBREG_REG (tem)) == ASHIFT)
1151 && is_a <scalar_int_mode> (GET_MODE (tem), &tem_mode)
1152 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (tem)),
1153 &tem_subreg_mode)
1154 && (GET_MODE_PRECISION (tem_mode)
1155 < GET_MODE_PRECISION (tem_subreg_mode))
1156 && subreg_lowpart_p (tem)
1157 && use_narrower_mode_test (SUBREG_REG (tem), tem))
1158 return use_narrower_mode (SUBREG_REG (tem), tem_mode, tem_subreg_mode);
1159 return tem;
1160 case ASM_OPERANDS:
1161 /* Don't do any replacements in second and following
1162 ASM_OPERANDS of inline-asm with multiple sets.
1163 ASM_OPERANDS_INPUT_VEC, ASM_OPERANDS_INPUT_CONSTRAINT_VEC
1164 and ASM_OPERANDS_LABEL_VEC need to be equal between
1165 all the ASM_OPERANDs in the insn and adjust_insn will
1166 fix this up. */
1167 if (ASM_OPERANDS_OUTPUT_IDX (loc) != 0)
1168 return loc;
1169 break;
1170 default:
1171 break;
1172 }
1173 return NULL_RTX;
1174 }
1175
1176 /* Helper function for replacement of uses. */
1177
1178 static void
1179 adjust_mem_uses (rtx *x, void *data)
1180 {
1181 rtx new_x = simplify_replace_fn_rtx (*x, NULL_RTX, adjust_mems, data);
1182 if (new_x != *x)
1183 validate_change (NULL_RTX, x, new_x, true);
1184 }
1185
1186 /* Helper function for replacement of stores. */
1187
1188 static void
1189 adjust_mem_stores (rtx loc, const_rtx expr, void *data)
1190 {
1191 if (MEM_P (loc))
1192 {
1193 rtx new_dest = simplify_replace_fn_rtx (SET_DEST (expr), NULL_RTX,
1194 adjust_mems, data);
1195 if (new_dest != SET_DEST (expr))
1196 {
1197 rtx xexpr = CONST_CAST_RTX (expr);
1198 validate_change (NULL_RTX, &SET_DEST (xexpr), new_dest, true);
1199 }
1200 }
1201 }
1202
1203 /* Simplify INSN. Remove all {PRE,POST}_{INC,DEC,MODIFY} rtxes,
1204 replace them with their value in the insn and add the side-effects
1205 as other sets to the insn. */
1206
1207 static void
1208 adjust_insn (basic_block bb, rtx_insn *insn)
1209 {
1210 rtx set;
1211
1212 #ifdef HAVE_window_save
1213 /* If the target machine has an explicit window save instruction, the
1214 transformation OUTGOING_REGNO -> INCOMING_REGNO is done there. */
1215 if (RTX_FRAME_RELATED_P (insn)
1216 && find_reg_note (insn, REG_CFA_WINDOW_SAVE, NULL_RTX))
1217 {
1218 unsigned int i, nregs = vec_safe_length (windowed_parm_regs);
1219 rtx rtl = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (nregs * 2));
1220 parm_reg *p;
1221
1222 FOR_EACH_VEC_SAFE_ELT (windowed_parm_regs, i, p)
1223 {
1224 XVECEXP (rtl, 0, i * 2)
1225 = gen_rtx_SET (p->incoming, p->outgoing);
1226 /* Do not clobber the attached DECL, but only the REG. */
1227 XVECEXP (rtl, 0, i * 2 + 1)
1228 = gen_rtx_CLOBBER (GET_MODE (p->outgoing),
1229 gen_raw_REG (GET_MODE (p->outgoing),
1230 REGNO (p->outgoing)));
1231 }
1232
1233 validate_change (NULL_RTX, &PATTERN (insn), rtl, true);
1234 return;
1235 }
1236 #endif
1237
1238 adjust_mem_data amd;
1239 amd.mem_mode = VOIDmode;
1240 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
1241
1242 amd.store = true;
1243 note_stores (insn, adjust_mem_stores, &amd);
1244
1245 amd.store = false;
1246 if (GET_CODE (PATTERN (insn)) == PARALLEL
1247 && asm_noperands (PATTERN (insn)) > 0
1248 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1249 {
1250 rtx body, set0;
1251 int i;
1252
1253 /* inline-asm with multiple sets is tiny bit more complicated,
1254 because the 3 vectors in ASM_OPERANDS need to be shared between
1255 all ASM_OPERANDS in the instruction. adjust_mems will
1256 not touch ASM_OPERANDS other than the first one, asm_noperands
1257 test above needs to be called before that (otherwise it would fail)
1258 and afterwards this code fixes it up. */
1259 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1260 body = PATTERN (insn);
1261 set0 = XVECEXP (body, 0, 0);
1262 gcc_checking_assert (GET_CODE (set0) == SET
1263 && GET_CODE (SET_SRC (set0)) == ASM_OPERANDS
1264 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set0)) == 0);
1265 for (i = 1; i < XVECLEN (body, 0); i++)
1266 if (GET_CODE (XVECEXP (body, 0, i)) != SET)
1267 break;
1268 else
1269 {
1270 set = XVECEXP (body, 0, i);
1271 gcc_checking_assert (GET_CODE (SET_SRC (set)) == ASM_OPERANDS
1272 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set))
1273 == i);
1274 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (set))
1275 != ASM_OPERANDS_INPUT_VEC (SET_SRC (set0))
1276 || ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set))
1277 != ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0))
1278 || ASM_OPERANDS_LABEL_VEC (SET_SRC (set))
1279 != ASM_OPERANDS_LABEL_VEC (SET_SRC (set0)))
1280 {
1281 rtx newsrc = shallow_copy_rtx (SET_SRC (set));
1282 ASM_OPERANDS_INPUT_VEC (newsrc)
1283 = ASM_OPERANDS_INPUT_VEC (SET_SRC (set0));
1284 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (newsrc)
1285 = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0));
1286 ASM_OPERANDS_LABEL_VEC (newsrc)
1287 = ASM_OPERANDS_LABEL_VEC (SET_SRC (set0));
1288 validate_change (NULL_RTX, &SET_SRC (set), newsrc, true);
1289 }
1290 }
1291 }
1292 else
1293 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1294
1295 /* For read-only MEMs containing some constant, prefer those
1296 constants. */
1297 set = single_set (insn);
1298 if (set && MEM_P (SET_SRC (set)) && MEM_READONLY_P (SET_SRC (set)))
1299 {
1300 rtx note = find_reg_equal_equiv_note (insn);
1301
1302 if (note && CONSTANT_P (XEXP (note, 0)))
1303 validate_change (NULL_RTX, &SET_SRC (set), XEXP (note, 0), true);
1304 }
1305
1306 if (!amd.side_effects.is_empty ())
1307 {
1308 rtx *pat, new_pat;
1309 int i, oldn;
1310
1311 pat = &PATTERN (insn);
1312 if (GET_CODE (*pat) == COND_EXEC)
1313 pat = &COND_EXEC_CODE (*pat);
1314 if (GET_CODE (*pat) == PARALLEL)
1315 oldn = XVECLEN (*pat, 0);
1316 else
1317 oldn = 1;
1318 unsigned int newn = amd.side_effects.length ();
1319 new_pat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (oldn + newn));
1320 if (GET_CODE (*pat) == PARALLEL)
1321 for (i = 0; i < oldn; i++)
1322 XVECEXP (new_pat, 0, i) = XVECEXP (*pat, 0, i);
1323 else
1324 XVECEXP (new_pat, 0, 0) = *pat;
1325
1326 rtx effect;
1327 unsigned int j;
1328 FOR_EACH_VEC_ELT_REVERSE (amd.side_effects, j, effect)
1329 XVECEXP (new_pat, 0, j + oldn) = effect;
1330 validate_change (NULL_RTX, pat, new_pat, true);
1331 }
1332 }
1333
1334 /* Return the DEBUG_EXPR of a DEBUG_EXPR_DECL or the VALUE in DV. */
1335 static inline rtx
1336 dv_as_rtx (decl_or_value dv)
1337 {
1338 tree decl;
1339
1340 if (dv_is_value_p (dv))
1341 return dv_as_value (dv);
1342
1343 decl = dv_as_decl (dv);
1344
1345 gcc_checking_assert (TREE_CODE (decl) == DEBUG_EXPR_DECL);
1346 return DECL_RTL_KNOWN_SET (decl);
1347 }
1348
1349 /* Return nonzero if a decl_or_value must not have more than one
1350 variable part. The returned value discriminates among various
1351 kinds of one-part DVs ccording to enum onepart_enum. */
1352 static inline onepart_enum
1353 dv_onepart_p (decl_or_value dv)
1354 {
1355 tree decl;
1356
1357 if (!MAY_HAVE_DEBUG_BIND_INSNS)
1358 return NOT_ONEPART;
1359
1360 if (dv_is_value_p (dv))
1361 return ONEPART_VALUE;
1362
1363 decl = dv_as_decl (dv);
1364
1365 if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
1366 return ONEPART_DEXPR;
1367
1368 if (target_for_debug_bind (decl) != NULL_TREE)
1369 return ONEPART_VDECL;
1370
1371 return NOT_ONEPART;
1372 }
1373
1374 /* Return the variable pool to be used for a dv of type ONEPART. */
1375 static inline pool_allocator &
1376 onepart_pool (onepart_enum onepart)
1377 {
1378 return onepart ? valvar_pool : var_pool;
1379 }
1380
1381 /* Allocate a variable_def from the corresponding variable pool. */
1382 static inline variable *
1383 onepart_pool_allocate (onepart_enum onepart)
1384 {
1385 return (variable*) onepart_pool (onepart).allocate ();
1386 }
1387
1388 /* Build a decl_or_value out of a decl. */
1389 static inline decl_or_value
1390 dv_from_decl (tree decl)
1391 {
1392 decl_or_value dv;
1393 dv = decl;
1394 gcc_checking_assert (dv_is_decl_p (dv));
1395 return dv;
1396 }
1397
1398 /* Build a decl_or_value out of a value. */
1399 static inline decl_or_value
1400 dv_from_value (rtx value)
1401 {
1402 decl_or_value dv;
1403 dv = value;
1404 gcc_checking_assert (dv_is_value_p (dv));
1405 return dv;
1406 }
1407
1408 /* Return a value or the decl of a debug_expr as a decl_or_value. */
1409 static inline decl_or_value
1410 dv_from_rtx (rtx x)
1411 {
1412 decl_or_value dv;
1413
1414 switch (GET_CODE (x))
1415 {
1416 case DEBUG_EXPR:
1417 dv = dv_from_decl (DEBUG_EXPR_TREE_DECL (x));
1418 gcc_checking_assert (DECL_RTL_KNOWN_SET (DEBUG_EXPR_TREE_DECL (x)) == x);
1419 break;
1420
1421 case VALUE:
1422 dv = dv_from_value (x);
1423 break;
1424
1425 default:
1426 gcc_unreachable ();
1427 }
1428
1429 return dv;
1430 }
1431
1432 extern void debug_dv (decl_or_value dv);
1433
1434 DEBUG_FUNCTION void
1435 debug_dv (decl_or_value dv)
1436 {
1437 if (dv_is_value_p (dv))
1438 debug_rtx (dv_as_value (dv));
1439 else
1440 debug_generic_stmt (dv_as_decl (dv));
1441 }
1442
1443 static void loc_exp_dep_clear (variable *var);
1444
1445 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
1446
1447 static void
1448 variable_htab_free (void *elem)
1449 {
1450 int i;
1451 variable *var = (variable *) elem;
1452 location_chain *node, *next;
1453
1454 gcc_checking_assert (var->refcount > 0);
1455
1456 var->refcount--;
1457 if (var->refcount > 0)
1458 return;
1459
1460 for (i = 0; i < var->n_var_parts; i++)
1461 {
1462 for (node = var->var_part[i].loc_chain; node; node = next)
1463 {
1464 next = node->next;
1465 delete node;
1466 }
1467 var->var_part[i].loc_chain = NULL;
1468 }
1469 if (var->onepart && VAR_LOC_1PAUX (var))
1470 {
1471 loc_exp_dep_clear (var);
1472 if (VAR_LOC_DEP_LST (var))
1473 VAR_LOC_DEP_LST (var)->pprev = NULL;
1474 XDELETE (VAR_LOC_1PAUX (var));
1475 /* These may be reused across functions, so reset
1476 e.g. NO_LOC_P. */
1477 if (var->onepart == ONEPART_DEXPR)
1478 set_dv_changed (var->dv, true);
1479 }
1480 onepart_pool (var->onepart).remove (var);
1481 }
1482
1483 /* Initialize the set (array) SET of attrs to empty lists. */
1484
1485 static void
1486 init_attrs_list_set (attrs **set)
1487 {
1488 int i;
1489
1490 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1491 set[i] = NULL;
1492 }
1493
1494 /* Make the list *LISTP empty. */
1495
1496 static void
1497 attrs_list_clear (attrs **listp)
1498 {
1499 attrs *list, *next;
1500
1501 for (list = *listp; list; list = next)
1502 {
1503 next = list->next;
1504 delete list;
1505 }
1506 *listp = NULL;
1507 }
1508
1509 /* Return true if the pair of DECL and OFFSET is the member of the LIST. */
1510
1511 static attrs *
1512 attrs_list_member (attrs *list, decl_or_value dv, HOST_WIDE_INT offset)
1513 {
1514 for (; list; list = list->next)
1515 if (dv_as_opaque (list->dv) == dv_as_opaque (dv) && list->offset == offset)
1516 return list;
1517 return NULL;
1518 }
1519
1520 /* Insert the triplet DECL, OFFSET, LOC to the list *LISTP. */
1521
1522 static void
1523 attrs_list_insert (attrs **listp, decl_or_value dv,
1524 HOST_WIDE_INT offset, rtx loc)
1525 {
1526 attrs *list = new attrs;
1527 list->loc = loc;
1528 list->dv = dv;
1529 list->offset = offset;
1530 list->next = *listp;
1531 *listp = list;
1532 }
1533
1534 /* Copy all nodes from SRC and create a list *DSTP of the copies. */
1535
1536 static void
1537 attrs_list_copy (attrs **dstp, attrs *src)
1538 {
1539 attrs_list_clear (dstp);
1540 for (; src; src = src->next)
1541 {
1542 attrs *n = new attrs;
1543 n->loc = src->loc;
1544 n->dv = src->dv;
1545 n->offset = src->offset;
1546 n->next = *dstp;
1547 *dstp = n;
1548 }
1549 }
1550
1551 /* Add all nodes from SRC which are not in *DSTP to *DSTP. */
1552
1553 static void
1554 attrs_list_union (attrs **dstp, attrs *src)
1555 {
1556 for (; src; src = src->next)
1557 {
1558 if (!attrs_list_member (*dstp, src->dv, src->offset))
1559 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1560 }
1561 }
1562
1563 /* Combine nodes that are not onepart nodes from SRC and SRC2 into
1564 *DSTP. */
1565
1566 static void
1567 attrs_list_mpdv_union (attrs **dstp, attrs *src, attrs *src2)
1568 {
1569 gcc_assert (!*dstp);
1570 for (; src; src = src->next)
1571 {
1572 if (!dv_onepart_p (src->dv))
1573 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1574 }
1575 for (src = src2; src; src = src->next)
1576 {
1577 if (!dv_onepart_p (src->dv)
1578 && !attrs_list_member (*dstp, src->dv, src->offset))
1579 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1580 }
1581 }
1582
1583 /* Shared hashtable support. */
1584
1585 /* Return true if VARS is shared. */
1586
1587 static inline bool
1588 shared_hash_shared (shared_hash *vars)
1589 {
1590 return vars->refcount > 1;
1591 }
1592
1593 /* Return the hash table for VARS. */
1594
1595 static inline variable_table_type *
1596 shared_hash_htab (shared_hash *vars)
1597 {
1598 return vars->htab;
1599 }
1600
1601 /* Return true if VAR is shared, or maybe because VARS is shared. */
1602
1603 static inline bool
1604 shared_var_p (variable *var, shared_hash *vars)
1605 {
1606 /* Don't count an entry in the changed_variables table as a duplicate. */
1607 return ((var->refcount > 1 + (int) var->in_changed_variables)
1608 || shared_hash_shared (vars));
1609 }
1610
1611 /* Copy variables into a new hash table. */
1612
1613 static shared_hash *
1614 shared_hash_unshare (shared_hash *vars)
1615 {
1616 shared_hash *new_vars = new shared_hash;
1617 gcc_assert (vars->refcount > 1);
1618 new_vars->refcount = 1;
1619 new_vars->htab = new variable_table_type (vars->htab->elements () + 3);
1620 vars_copy (new_vars->htab, vars->htab);
1621 vars->refcount--;
1622 return new_vars;
1623 }
1624
1625 /* Increment reference counter on VARS and return it. */
1626
1627 static inline shared_hash *
1628 shared_hash_copy (shared_hash *vars)
1629 {
1630 vars->refcount++;
1631 return vars;
1632 }
1633
1634 /* Decrement reference counter and destroy hash table if not shared
1635 anymore. */
1636
1637 static void
1638 shared_hash_destroy (shared_hash *vars)
1639 {
1640 gcc_checking_assert (vars->refcount > 0);
1641 if (--vars->refcount == 0)
1642 {
1643 delete vars->htab;
1644 delete vars;
1645 }
1646 }
1647
1648 /* Unshare *PVARS if shared and return slot for DV. If INS is
1649 INSERT, insert it if not already present. */
1650
1651 static inline variable **
1652 shared_hash_find_slot_unshare_1 (shared_hash **pvars, decl_or_value dv,
1653 hashval_t dvhash, enum insert_option ins)
1654 {
1655 if (shared_hash_shared (*pvars))
1656 *pvars = shared_hash_unshare (*pvars);
1657 return shared_hash_htab (*pvars)->find_slot_with_hash (dv, dvhash, ins);
1658 }
1659
1660 static inline variable **
1661 shared_hash_find_slot_unshare (shared_hash **pvars, decl_or_value dv,
1662 enum insert_option ins)
1663 {
1664 return shared_hash_find_slot_unshare_1 (pvars, dv, dv_htab_hash (dv), ins);
1665 }
1666
1667 /* Return slot for DV, if it is already present in the hash table.
1668 If it is not present, insert it only VARS is not shared, otherwise
1669 return NULL. */
1670
1671 static inline variable **
1672 shared_hash_find_slot_1 (shared_hash *vars, decl_or_value dv, hashval_t dvhash)
1673 {
1674 return shared_hash_htab (vars)->find_slot_with_hash (dv, dvhash,
1675 shared_hash_shared (vars)
1676 ? NO_INSERT : INSERT);
1677 }
1678
1679 static inline variable **
1680 shared_hash_find_slot (shared_hash *vars, decl_or_value dv)
1681 {
1682 return shared_hash_find_slot_1 (vars, dv, dv_htab_hash (dv));
1683 }
1684
1685 /* Return slot for DV only if it is already present in the hash table. */
1686
1687 static inline variable **
1688 shared_hash_find_slot_noinsert_1 (shared_hash *vars, decl_or_value dv,
1689 hashval_t dvhash)
1690 {
1691 return shared_hash_htab (vars)->find_slot_with_hash (dv, dvhash, NO_INSERT);
1692 }
1693
1694 static inline variable **
1695 shared_hash_find_slot_noinsert (shared_hash *vars, decl_or_value dv)
1696 {
1697 return shared_hash_find_slot_noinsert_1 (vars, dv, dv_htab_hash (dv));
1698 }
1699
1700 /* Return variable for DV or NULL if not already present in the hash
1701 table. */
1702
1703 static inline variable *
1704 shared_hash_find_1 (shared_hash *vars, decl_or_value dv, hashval_t dvhash)
1705 {
1706 return shared_hash_htab (vars)->find_with_hash (dv, dvhash);
1707 }
1708
1709 static inline variable *
1710 shared_hash_find (shared_hash *vars, decl_or_value dv)
1711 {
1712 return shared_hash_find_1 (vars, dv, dv_htab_hash (dv));
1713 }
1714
1715 /* Return true if TVAL is better than CVAL as a canonival value. We
1716 choose lowest-numbered VALUEs, using the RTX address as a
1717 tie-breaker. The idea is to arrange them into a star topology,
1718 such that all of them are at most one step away from the canonical
1719 value, and the canonical value has backlinks to all of them, in
1720 addition to all the actual locations. We don't enforce this
1721 topology throughout the entire dataflow analysis, though.
1722 */
1723
1724 static inline bool
1725 canon_value_cmp (rtx tval, rtx cval)
1726 {
1727 return !cval
1728 || CSELIB_VAL_PTR (tval)->uid < CSELIB_VAL_PTR (cval)->uid;
1729 }
1730
1731 static bool dst_can_be_shared;
1732
1733 /* Return a copy of a variable VAR and insert it to dataflow set SET. */
1734
1735 static variable **
1736 unshare_variable (dataflow_set *set, variable **slot, variable *var,
1737 enum var_init_status initialized)
1738 {
1739 variable *new_var;
1740 int i;
1741
1742 new_var = onepart_pool_allocate (var->onepart);
1743 new_var->dv = var->dv;
1744 new_var->refcount = 1;
1745 var->refcount--;
1746 new_var->n_var_parts = var->n_var_parts;
1747 new_var->onepart = var->onepart;
1748 new_var->in_changed_variables = false;
1749
1750 if (! flag_var_tracking_uninit)
1751 initialized = VAR_INIT_STATUS_INITIALIZED;
1752
1753 for (i = 0; i < var->n_var_parts; i++)
1754 {
1755 location_chain *node;
1756 location_chain **nextp;
1757
1758 if (i == 0 && var->onepart)
1759 {
1760 /* One-part auxiliary data is only used while emitting
1761 notes, so propagate it to the new variable in the active
1762 dataflow set. If we're not emitting notes, this will be
1763 a no-op. */
1764 gcc_checking_assert (!VAR_LOC_1PAUX (var) || emit_notes);
1765 VAR_LOC_1PAUX (new_var) = VAR_LOC_1PAUX (var);
1766 VAR_LOC_1PAUX (var) = NULL;
1767 }
1768 else
1769 VAR_PART_OFFSET (new_var, i) = VAR_PART_OFFSET (var, i);
1770 nextp = &new_var->var_part[i].loc_chain;
1771 for (node = var->var_part[i].loc_chain; node; node = node->next)
1772 {
1773 location_chain *new_lc;
1774
1775 new_lc = new location_chain;
1776 new_lc->next = NULL;
1777 if (node->init > initialized)
1778 new_lc->init = node->init;
1779 else
1780 new_lc->init = initialized;
1781 if (node->set_src && !(MEM_P (node->set_src)))
1782 new_lc->set_src = node->set_src;
1783 else
1784 new_lc->set_src = NULL;
1785 new_lc->loc = node->loc;
1786
1787 *nextp = new_lc;
1788 nextp = &new_lc->next;
1789 }
1790
1791 new_var->var_part[i].cur_loc = var->var_part[i].cur_loc;
1792 }
1793
1794 dst_can_be_shared = false;
1795 if (shared_hash_shared (set->vars))
1796 slot = shared_hash_find_slot_unshare (&set->vars, var->dv, NO_INSERT);
1797 else if (set->traversed_vars && set->vars != set->traversed_vars)
1798 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
1799 *slot = new_var;
1800 if (var->in_changed_variables)
1801 {
1802 variable **cslot
1803 = changed_variables->find_slot_with_hash (var->dv,
1804 dv_htab_hash (var->dv),
1805 NO_INSERT);
1806 gcc_assert (*cslot == (void *) var);
1807 var->in_changed_variables = false;
1808 variable_htab_free (var);
1809 *cslot = new_var;
1810 new_var->in_changed_variables = true;
1811 }
1812 return slot;
1813 }
1814
1815 /* Copy all variables from hash table SRC to hash table DST. */
1816
1817 static void
1818 vars_copy (variable_table_type *dst, variable_table_type *src)
1819 {
1820 variable_iterator_type hi;
1821 variable *var;
1822
1823 FOR_EACH_HASH_TABLE_ELEMENT (*src, var, variable, hi)
1824 {
1825 variable **dstp;
1826 var->refcount++;
1827 dstp = dst->find_slot_with_hash (var->dv, dv_htab_hash (var->dv),
1828 INSERT);
1829 *dstp = var;
1830 }
1831 }
1832
1833 /* Map a decl to its main debug decl. */
1834
1835 static inline tree
1836 var_debug_decl (tree decl)
1837 {
1838 if (decl && VAR_P (decl) && DECL_HAS_DEBUG_EXPR_P (decl))
1839 {
1840 tree debugdecl = DECL_DEBUG_EXPR (decl);
1841 if (DECL_P (debugdecl))
1842 decl = debugdecl;
1843 }
1844
1845 return decl;
1846 }
1847
1848 /* Set the register LOC to contain DV, OFFSET. */
1849
1850 static void
1851 var_reg_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1852 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
1853 enum insert_option iopt)
1854 {
1855 attrs *node;
1856 bool decl_p = dv_is_decl_p (dv);
1857
1858 if (decl_p)
1859 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
1860
1861 for (node = set->regs[REGNO (loc)]; node; node = node->next)
1862 if (dv_as_opaque (node->dv) == dv_as_opaque (dv)
1863 && node->offset == offset)
1864 break;
1865 if (!node)
1866 attrs_list_insert (&set->regs[REGNO (loc)], dv, offset, loc);
1867 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
1868 }
1869
1870 /* Return true if we should track a location that is OFFSET bytes from
1871 a variable. Store the constant offset in *OFFSET_OUT if so. */
1872
1873 static bool
1874 track_offset_p (poly_int64 offset, HOST_WIDE_INT *offset_out)
1875 {
1876 HOST_WIDE_INT const_offset;
1877 if (!offset.is_constant (&const_offset)
1878 || !IN_RANGE (const_offset, 0, MAX_VAR_PARTS - 1))
1879 return false;
1880 *offset_out = const_offset;
1881 return true;
1882 }
1883
1884 /* Return the offset of a register that track_offset_p says we
1885 should track. */
1886
1887 static HOST_WIDE_INT
1888 get_tracked_reg_offset (rtx loc)
1889 {
1890 HOST_WIDE_INT offset;
1891 if (!track_offset_p (REG_OFFSET (loc), &offset))
1892 gcc_unreachable ();
1893 return offset;
1894 }
1895
1896 /* Set the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). */
1897
1898 static void
1899 var_reg_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1900 rtx set_src)
1901 {
1902 tree decl = REG_EXPR (loc);
1903 HOST_WIDE_INT offset = get_tracked_reg_offset (loc);
1904
1905 var_reg_decl_set (set, loc, initialized,
1906 dv_from_decl (decl), offset, set_src, INSERT);
1907 }
1908
1909 static enum var_init_status
1910 get_init_value (dataflow_set *set, rtx loc, decl_or_value dv)
1911 {
1912 variable *var;
1913 int i;
1914 enum var_init_status ret_val = VAR_INIT_STATUS_UNKNOWN;
1915
1916 if (! flag_var_tracking_uninit)
1917 return VAR_INIT_STATUS_INITIALIZED;
1918
1919 var = shared_hash_find (set->vars, dv);
1920 if (var)
1921 {
1922 for (i = 0; i < var->n_var_parts && ret_val == VAR_INIT_STATUS_UNKNOWN; i++)
1923 {
1924 location_chain *nextp;
1925 for (nextp = var->var_part[i].loc_chain; nextp; nextp = nextp->next)
1926 if (rtx_equal_p (nextp->loc, loc))
1927 {
1928 ret_val = nextp->init;
1929 break;
1930 }
1931 }
1932 }
1933
1934 return ret_val;
1935 }
1936
1937 /* Delete current content of register LOC in dataflow set SET and set
1938 the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). If
1939 MODIFY is true, any other live copies of the same variable part are
1940 also deleted from the dataflow set, otherwise the variable part is
1941 assumed to be copied from another location holding the same
1942 part. */
1943
1944 static void
1945 var_reg_delete_and_set (dataflow_set *set, rtx loc, bool modify,
1946 enum var_init_status initialized, rtx set_src)
1947 {
1948 tree decl = REG_EXPR (loc);
1949 HOST_WIDE_INT offset = get_tracked_reg_offset (loc);
1950 attrs *node, *next;
1951 attrs **nextp;
1952
1953 decl = var_debug_decl (decl);
1954
1955 if (initialized == VAR_INIT_STATUS_UNKNOWN)
1956 initialized = get_init_value (set, loc, dv_from_decl (decl));
1957
1958 nextp = &set->regs[REGNO (loc)];
1959 for (node = *nextp; node; node = next)
1960 {
1961 next = node->next;
1962 if (dv_as_opaque (node->dv) != decl || node->offset != offset)
1963 {
1964 delete_variable_part (set, node->loc, node->dv, node->offset);
1965 delete node;
1966 *nextp = next;
1967 }
1968 else
1969 {
1970 node->loc = loc;
1971 nextp = &node->next;
1972 }
1973 }
1974 if (modify)
1975 clobber_variable_part (set, loc, dv_from_decl (decl), offset, set_src);
1976 var_reg_set (set, loc, initialized, set_src);
1977 }
1978
1979 /* Delete the association of register LOC in dataflow set SET with any
1980 variables that aren't onepart. If CLOBBER is true, also delete any
1981 other live copies of the same variable part, and delete the
1982 association with onepart dvs too. */
1983
1984 static void
1985 var_reg_delete (dataflow_set *set, rtx loc, bool clobber)
1986 {
1987 attrs **nextp = &set->regs[REGNO (loc)];
1988 attrs *node, *next;
1989
1990 HOST_WIDE_INT offset;
1991 if (clobber && track_offset_p (REG_OFFSET (loc), &offset))
1992 {
1993 tree decl = REG_EXPR (loc);
1994
1995 decl = var_debug_decl (decl);
1996
1997 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
1998 }
1999
2000 for (node = *nextp; node; node = next)
2001 {
2002 next = node->next;
2003 if (clobber || !dv_onepart_p (node->dv))
2004 {
2005 delete_variable_part (set, node->loc, node->dv, node->offset);
2006 delete node;
2007 *nextp = next;
2008 }
2009 else
2010 nextp = &node->next;
2011 }
2012 }
2013
2014 /* Delete content of register with number REGNO in dataflow set SET. */
2015
2016 static void
2017 var_regno_delete (dataflow_set *set, int regno)
2018 {
2019 attrs **reg = &set->regs[regno];
2020 attrs *node, *next;
2021
2022 for (node = *reg; node; node = next)
2023 {
2024 next = node->next;
2025 delete_variable_part (set, node->loc, node->dv, node->offset);
2026 delete node;
2027 }
2028 *reg = NULL;
2029 }
2030
2031 /* Return true if I is the negated value of a power of two. */
2032 static bool
2033 negative_power_of_two_p (HOST_WIDE_INT i)
2034 {
2035 unsigned HOST_WIDE_INT x = -(unsigned HOST_WIDE_INT)i;
2036 return pow2_or_zerop (x);
2037 }
2038
2039 /* Strip constant offsets and alignments off of LOC. Return the base
2040 expression. */
2041
2042 static rtx
2043 vt_get_canonicalize_base (rtx loc)
2044 {
2045 while ((GET_CODE (loc) == PLUS
2046 || GET_CODE (loc) == AND)
2047 && GET_CODE (XEXP (loc, 1)) == CONST_INT
2048 && (GET_CODE (loc) != AND
2049 || negative_power_of_two_p (INTVAL (XEXP (loc, 1)))))
2050 loc = XEXP (loc, 0);
2051
2052 return loc;
2053 }
2054
2055 /* This caches canonicalized addresses for VALUEs, computed using
2056 information in the global cselib table. */
2057 static hash_map<rtx, rtx> *global_get_addr_cache;
2058
2059 /* This caches canonicalized addresses for VALUEs, computed using
2060 information from the global cache and information pertaining to a
2061 basic block being analyzed. */
2062 static hash_map<rtx, rtx> *local_get_addr_cache;
2063
2064 static rtx vt_canonicalize_addr (dataflow_set *, rtx);
2065
2066 /* Return the canonical address for LOC, that must be a VALUE, using a
2067 cached global equivalence or computing it and storing it in the
2068 global cache. */
2069
2070 static rtx
2071 get_addr_from_global_cache (rtx const loc)
2072 {
2073 rtx x;
2074
2075 gcc_checking_assert (GET_CODE (loc) == VALUE);
2076
2077 bool existed;
2078 rtx *slot = &global_get_addr_cache->get_or_insert (loc, &existed);
2079 if (existed)
2080 return *slot;
2081
2082 x = canon_rtx (get_addr (loc));
2083
2084 /* Tentative, avoiding infinite recursion. */
2085 *slot = x;
2086
2087 if (x != loc)
2088 {
2089 rtx nx = vt_canonicalize_addr (NULL, x);
2090 if (nx != x)
2091 {
2092 /* The table may have moved during recursion, recompute
2093 SLOT. */
2094 *global_get_addr_cache->get (loc) = x = nx;
2095 }
2096 }
2097
2098 return x;
2099 }
2100
2101 /* Return the canonical address for LOC, that must be a VALUE, using a
2102 cached local equivalence or computing it and storing it in the
2103 local cache. */
2104
2105 static rtx
2106 get_addr_from_local_cache (dataflow_set *set, rtx const loc)
2107 {
2108 rtx x;
2109 decl_or_value dv;
2110 variable *var;
2111 location_chain *l;
2112
2113 gcc_checking_assert (GET_CODE (loc) == VALUE);
2114
2115 bool existed;
2116 rtx *slot = &local_get_addr_cache->get_or_insert (loc, &existed);
2117 if (existed)
2118 return *slot;
2119
2120 x = get_addr_from_global_cache (loc);
2121
2122 /* Tentative, avoiding infinite recursion. */
2123 *slot = x;
2124
2125 /* Recurse to cache local expansion of X, or if we need to search
2126 for a VALUE in the expansion. */
2127 if (x != loc)
2128 {
2129 rtx nx = vt_canonicalize_addr (set, x);
2130 if (nx != x)
2131 {
2132 slot = local_get_addr_cache->get (loc);
2133 *slot = x = nx;
2134 }
2135 return x;
2136 }
2137
2138 dv = dv_from_rtx (x);
2139 var = shared_hash_find (set->vars, dv);
2140 if (!var)
2141 return x;
2142
2143 /* Look for an improved equivalent expression. */
2144 for (l = var->var_part[0].loc_chain; l; l = l->next)
2145 {
2146 rtx base = vt_get_canonicalize_base (l->loc);
2147 if (GET_CODE (base) == VALUE
2148 && canon_value_cmp (base, loc))
2149 {
2150 rtx nx = vt_canonicalize_addr (set, l->loc);
2151 if (x != nx)
2152 {
2153 slot = local_get_addr_cache->get (loc);
2154 *slot = x = nx;
2155 }
2156 break;
2157 }
2158 }
2159
2160 return x;
2161 }
2162
2163 /* Canonicalize LOC using equivalences from SET in addition to those
2164 in the cselib static table. It expects a VALUE-based expression,
2165 and it will only substitute VALUEs with other VALUEs or
2166 function-global equivalences, so that, if two addresses have base
2167 VALUEs that are locally or globally related in ways that
2168 memrefs_conflict_p cares about, they will both canonicalize to
2169 expressions that have the same base VALUE.
2170
2171 The use of VALUEs as canonical base addresses enables the canonical
2172 RTXs to remain unchanged globally, if they resolve to a constant,
2173 or throughout a basic block otherwise, so that they can be cached
2174 and the cache needs not be invalidated when REGs, MEMs or such
2175 change. */
2176
2177 static rtx
2178 vt_canonicalize_addr (dataflow_set *set, rtx oloc)
2179 {
2180 poly_int64 ofst = 0, term;
2181 machine_mode mode = GET_MODE (oloc);
2182 rtx loc = oloc;
2183 rtx x;
2184 bool retry = true;
2185
2186 while (retry)
2187 {
2188 while (GET_CODE (loc) == PLUS
2189 && poly_int_rtx_p (XEXP (loc, 1), &term))
2190 {
2191 ofst += term;
2192 loc = XEXP (loc, 0);
2193 }
2194
2195 /* Alignment operations can't normally be combined, so just
2196 canonicalize the base and we're done. We'll normally have
2197 only one stack alignment anyway. */
2198 if (GET_CODE (loc) == AND
2199 && GET_CODE (XEXP (loc, 1)) == CONST_INT
2200 && negative_power_of_two_p (INTVAL (XEXP (loc, 1))))
2201 {
2202 x = vt_canonicalize_addr (set, XEXP (loc, 0));
2203 if (x != XEXP (loc, 0))
2204 loc = gen_rtx_AND (mode, x, XEXP (loc, 1));
2205 retry = false;
2206 }
2207
2208 if (GET_CODE (loc) == VALUE)
2209 {
2210 if (set)
2211 loc = get_addr_from_local_cache (set, loc);
2212 else
2213 loc = get_addr_from_global_cache (loc);
2214
2215 /* Consolidate plus_constants. */
2216 while (maybe_ne (ofst, 0)
2217 && GET_CODE (loc) == PLUS
2218 && poly_int_rtx_p (XEXP (loc, 1), &term))
2219 {
2220 ofst += term;
2221 loc = XEXP (loc, 0);
2222 }
2223
2224 retry = false;
2225 }
2226 else
2227 {
2228 x = canon_rtx (loc);
2229 if (retry)
2230 retry = (x != loc);
2231 loc = x;
2232 }
2233 }
2234
2235 /* Add OFST back in. */
2236 if (maybe_ne (ofst, 0))
2237 {
2238 /* Don't build new RTL if we can help it. */
2239 if (strip_offset (oloc, &term) == loc && known_eq (term, ofst))
2240 return oloc;
2241
2242 loc = plus_constant (mode, loc, ofst);
2243 }
2244
2245 return loc;
2246 }
2247
2248 /* Return true iff there's a true dependence between MLOC and LOC.
2249 MADDR must be a canonicalized version of MLOC's address. */
2250
2251 static inline bool
2252 vt_canon_true_dep (dataflow_set *set, rtx mloc, rtx maddr, rtx loc)
2253 {
2254 if (GET_CODE (loc) != MEM)
2255 return false;
2256
2257 rtx addr = vt_canonicalize_addr (set, XEXP (loc, 0));
2258 if (!canon_true_dependence (mloc, GET_MODE (mloc), maddr, loc, addr))
2259 return false;
2260
2261 return true;
2262 }
2263
2264 /* Hold parameters for the hashtab traversal function
2265 drop_overlapping_mem_locs, see below. */
2266
2267 struct overlapping_mems
2268 {
2269 dataflow_set *set;
2270 rtx loc, addr;
2271 };
2272
2273 /* Remove all MEMs that overlap with COMS->LOC from the location list
2274 of a hash table entry for a onepart variable. COMS->ADDR must be a
2275 canonicalized form of COMS->LOC's address, and COMS->LOC must be
2276 canonicalized itself. */
2277
2278 int
2279 drop_overlapping_mem_locs (variable **slot, overlapping_mems *coms)
2280 {
2281 dataflow_set *set = coms->set;
2282 rtx mloc = coms->loc, addr = coms->addr;
2283 variable *var = *slot;
2284
2285 if (var->onepart != NOT_ONEPART)
2286 {
2287 location_chain *loc, **locp;
2288 bool changed = false;
2289 rtx cur_loc;
2290
2291 gcc_assert (var->n_var_parts == 1);
2292
2293 if (shared_var_p (var, set->vars))
2294 {
2295 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
2296 if (vt_canon_true_dep (set, mloc, addr, loc->loc))
2297 break;
2298
2299 if (!loc)
2300 return 1;
2301
2302 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
2303 var = *slot;
2304 gcc_assert (var->n_var_parts == 1);
2305 }
2306
2307 if (VAR_LOC_1PAUX (var))
2308 cur_loc = VAR_LOC_FROM (var);
2309 else
2310 cur_loc = var->var_part[0].cur_loc;
2311
2312 for (locp = &var->var_part[0].loc_chain, loc = *locp;
2313 loc; loc = *locp)
2314 {
2315 if (!vt_canon_true_dep (set, mloc, addr, loc->loc))
2316 {
2317 locp = &loc->next;
2318 continue;
2319 }
2320
2321 *locp = loc->next;
2322 /* If we have deleted the location which was last emitted
2323 we have to emit new location so add the variable to set
2324 of changed variables. */
2325 if (cur_loc == loc->loc)
2326 {
2327 changed = true;
2328 var->var_part[0].cur_loc = NULL;
2329 if (VAR_LOC_1PAUX (var))
2330 VAR_LOC_FROM (var) = NULL;
2331 }
2332 delete loc;
2333 }
2334
2335 if (!var->var_part[0].loc_chain)
2336 {
2337 var->n_var_parts--;
2338 changed = true;
2339 }
2340 if (changed)
2341 variable_was_changed (var, set);
2342 }
2343
2344 return 1;
2345 }
2346
2347 /* Remove from SET all VALUE bindings to MEMs that overlap with LOC. */
2348
2349 static void
2350 clobber_overlapping_mems (dataflow_set *set, rtx loc)
2351 {
2352 struct overlapping_mems coms;
2353
2354 gcc_checking_assert (GET_CODE (loc) == MEM);
2355
2356 coms.set = set;
2357 coms.loc = canon_rtx (loc);
2358 coms.addr = vt_canonicalize_addr (set, XEXP (loc, 0));
2359
2360 set->traversed_vars = set->vars;
2361 shared_hash_htab (set->vars)
2362 ->traverse <overlapping_mems*, drop_overlapping_mem_locs> (&coms);
2363 set->traversed_vars = NULL;
2364 }
2365
2366 /* Set the location of DV, OFFSET as the MEM LOC. */
2367
2368 static void
2369 var_mem_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
2370 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
2371 enum insert_option iopt)
2372 {
2373 if (dv_is_decl_p (dv))
2374 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
2375
2376 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
2377 }
2378
2379 /* Set the location part of variable MEM_EXPR (LOC) in dataflow set
2380 SET to LOC.
2381 Adjust the address first if it is stack pointer based. */
2382
2383 static void
2384 var_mem_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
2385 rtx set_src)
2386 {
2387 tree decl = MEM_EXPR (loc);
2388 HOST_WIDE_INT offset = int_mem_offset (loc);
2389
2390 var_mem_decl_set (set, loc, initialized,
2391 dv_from_decl (decl), offset, set_src, INSERT);
2392 }
2393
2394 /* Delete and set the location part of variable MEM_EXPR (LOC) in
2395 dataflow set SET to LOC. If MODIFY is true, any other live copies
2396 of the same variable part are also deleted from the dataflow set,
2397 otherwise the variable part is assumed to be copied from another
2398 location holding the same part.
2399 Adjust the address first if it is stack pointer based. */
2400
2401 static void
2402 var_mem_delete_and_set (dataflow_set *set, rtx loc, bool modify,
2403 enum var_init_status initialized, rtx set_src)
2404 {
2405 tree decl = MEM_EXPR (loc);
2406 HOST_WIDE_INT offset = int_mem_offset (loc);
2407
2408 clobber_overlapping_mems (set, loc);
2409 decl = var_debug_decl (decl);
2410
2411 if (initialized == VAR_INIT_STATUS_UNKNOWN)
2412 initialized = get_init_value (set, loc, dv_from_decl (decl));
2413
2414 if (modify)
2415 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, set_src);
2416 var_mem_set (set, loc, initialized, set_src);
2417 }
2418
2419 /* Delete the location part LOC from dataflow set SET. If CLOBBER is
2420 true, also delete any other live copies of the same variable part.
2421 Adjust the address first if it is stack pointer based. */
2422
2423 static void
2424 var_mem_delete (dataflow_set *set, rtx loc, bool clobber)
2425 {
2426 tree decl = MEM_EXPR (loc);
2427 HOST_WIDE_INT offset = int_mem_offset (loc);
2428
2429 clobber_overlapping_mems (set, loc);
2430 decl = var_debug_decl (decl);
2431 if (clobber)
2432 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
2433 delete_variable_part (set, loc, dv_from_decl (decl), offset);
2434 }
2435
2436 /* Return true if LOC should not be expanded for location expressions,
2437 or used in them. */
2438
2439 static inline bool
2440 unsuitable_loc (rtx loc)
2441 {
2442 switch (GET_CODE (loc))
2443 {
2444 case PC:
2445 case SCRATCH:
2446 case CC0:
2447 case ASM_INPUT:
2448 case ASM_OPERANDS:
2449 return true;
2450
2451 default:
2452 return false;
2453 }
2454 }
2455
2456 /* Bind VAL to LOC in SET. If MODIFIED, detach LOC from any values
2457 bound to it. */
2458
2459 static inline void
2460 val_bind (dataflow_set *set, rtx val, rtx loc, bool modified)
2461 {
2462 if (REG_P (loc))
2463 {
2464 if (modified)
2465 var_regno_delete (set, REGNO (loc));
2466 var_reg_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2467 dv_from_value (val), 0, NULL_RTX, INSERT);
2468 }
2469 else if (MEM_P (loc))
2470 {
2471 struct elt_loc_list *l = CSELIB_VAL_PTR (val)->locs;
2472
2473 if (modified)
2474 clobber_overlapping_mems (set, loc);
2475
2476 if (l && GET_CODE (l->loc) == VALUE)
2477 l = canonical_cselib_val (CSELIB_VAL_PTR (l->loc))->locs;
2478
2479 /* If this MEM is a global constant, we don't need it in the
2480 dynamic tables. ??? We should test this before emitting the
2481 micro-op in the first place. */
2482 while (l)
2483 if (GET_CODE (l->loc) == MEM && XEXP (l->loc, 0) == XEXP (loc, 0))
2484 break;
2485 else
2486 l = l->next;
2487
2488 if (!l)
2489 var_mem_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2490 dv_from_value (val), 0, NULL_RTX, INSERT);
2491 }
2492 else
2493 {
2494 /* Other kinds of equivalences are necessarily static, at least
2495 so long as we do not perform substitutions while merging
2496 expressions. */
2497 gcc_unreachable ();
2498 set_variable_part (set, loc, dv_from_value (val), 0,
2499 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2500 }
2501 }
2502
2503 /* Bind a value to a location it was just stored in. If MODIFIED
2504 holds, assume the location was modified, detaching it from any
2505 values bound to it. */
2506
2507 static void
2508 val_store (dataflow_set *set, rtx val, rtx loc, rtx_insn *insn,
2509 bool modified)
2510 {
2511 cselib_val *v = CSELIB_VAL_PTR (val);
2512
2513 gcc_assert (cselib_preserved_value_p (v));
2514
2515 if (dump_file)
2516 {
2517 fprintf (dump_file, "%i: ", insn ? INSN_UID (insn) : 0);
2518 print_inline_rtx (dump_file, loc, 0);
2519 fprintf (dump_file, " evaluates to ");
2520 print_inline_rtx (dump_file, val, 0);
2521 if (v->locs)
2522 {
2523 struct elt_loc_list *l;
2524 for (l = v->locs; l; l = l->next)
2525 {
2526 fprintf (dump_file, "\n%i: ", INSN_UID (l->setting_insn));
2527 print_inline_rtx (dump_file, l->loc, 0);
2528 }
2529 }
2530 fprintf (dump_file, "\n");
2531 }
2532
2533 gcc_checking_assert (!unsuitable_loc (loc));
2534
2535 val_bind (set, val, loc, modified);
2536 }
2537
2538 /* Clear (canonical address) slots that reference X. */
2539
2540 bool
2541 local_get_addr_clear_given_value (rtx const &, rtx *slot, rtx x)
2542 {
2543 if (vt_get_canonicalize_base (*slot) == x)
2544 *slot = NULL;
2545 return true;
2546 }
2547
2548 /* Reset this node, detaching all its equivalences. Return the slot
2549 in the variable hash table that holds dv, if there is one. */
2550
2551 static void
2552 val_reset (dataflow_set *set, decl_or_value dv)
2553 {
2554 variable *var = shared_hash_find (set->vars, dv) ;
2555 location_chain *node;
2556 rtx cval;
2557
2558 if (!var || !var->n_var_parts)
2559 return;
2560
2561 gcc_assert (var->n_var_parts == 1);
2562
2563 if (var->onepart == ONEPART_VALUE)
2564 {
2565 rtx x = dv_as_value (dv);
2566
2567 /* Relationships in the global cache don't change, so reset the
2568 local cache entry only. */
2569 rtx *slot = local_get_addr_cache->get (x);
2570 if (slot)
2571 {
2572 /* If the value resolved back to itself, odds are that other
2573 values may have cached it too. These entries now refer
2574 to the old X, so detach them too. Entries that used the
2575 old X but resolved to something else remain ok as long as
2576 that something else isn't also reset. */
2577 if (*slot == x)
2578 local_get_addr_cache
2579 ->traverse<rtx, local_get_addr_clear_given_value> (x);
2580 *slot = NULL;
2581 }
2582 }
2583
2584 cval = NULL;
2585 for (node = var->var_part[0].loc_chain; node; node = node->next)
2586 if (GET_CODE (node->loc) == VALUE
2587 && canon_value_cmp (node->loc, cval))
2588 cval = node->loc;
2589
2590 for (node = var->var_part[0].loc_chain; node; node = node->next)
2591 if (GET_CODE (node->loc) == VALUE && cval != node->loc)
2592 {
2593 /* Redirect the equivalence link to the new canonical
2594 value, or simply remove it if it would point at
2595 itself. */
2596 if (cval)
2597 set_variable_part (set, cval, dv_from_value (node->loc),
2598 0, node->init, node->set_src, NO_INSERT);
2599 delete_variable_part (set, dv_as_value (dv),
2600 dv_from_value (node->loc), 0);
2601 }
2602
2603 if (cval)
2604 {
2605 decl_or_value cdv = dv_from_value (cval);
2606
2607 /* Keep the remaining values connected, accumulating links
2608 in the canonical value. */
2609 for (node = var->var_part[0].loc_chain; node; node = node->next)
2610 {
2611 if (node->loc == cval)
2612 continue;
2613 else if (GET_CODE (node->loc) == REG)
2614 var_reg_decl_set (set, node->loc, node->init, cdv, 0,
2615 node->set_src, NO_INSERT);
2616 else if (GET_CODE (node->loc) == MEM)
2617 var_mem_decl_set (set, node->loc, node->init, cdv, 0,
2618 node->set_src, NO_INSERT);
2619 else
2620 set_variable_part (set, node->loc, cdv, 0,
2621 node->init, node->set_src, NO_INSERT);
2622 }
2623 }
2624
2625 /* We remove this last, to make sure that the canonical value is not
2626 removed to the point of requiring reinsertion. */
2627 if (cval)
2628 delete_variable_part (set, dv_as_value (dv), dv_from_value (cval), 0);
2629
2630 clobber_variable_part (set, NULL, dv, 0, NULL);
2631 }
2632
2633 /* Find the values in a given location and map the val to another
2634 value, if it is unique, or add the location as one holding the
2635 value. */
2636
2637 static void
2638 val_resolve (dataflow_set *set, rtx val, rtx loc, rtx_insn *insn)
2639 {
2640 decl_or_value dv = dv_from_value (val);
2641
2642 if (dump_file && (dump_flags & TDF_DETAILS))
2643 {
2644 if (insn)
2645 fprintf (dump_file, "%i: ", INSN_UID (insn));
2646 else
2647 fprintf (dump_file, "head: ");
2648 print_inline_rtx (dump_file, val, 0);
2649 fputs (" is at ", dump_file);
2650 print_inline_rtx (dump_file, loc, 0);
2651 fputc ('\n', dump_file);
2652 }
2653
2654 val_reset (set, dv);
2655
2656 gcc_checking_assert (!unsuitable_loc (loc));
2657
2658 if (REG_P (loc))
2659 {
2660 attrs *node, *found = NULL;
2661
2662 for (node = set->regs[REGNO (loc)]; node; node = node->next)
2663 if (dv_is_value_p (node->dv)
2664 && GET_MODE (dv_as_value (node->dv)) == GET_MODE (loc))
2665 {
2666 found = node;
2667
2668 /* Map incoming equivalences. ??? Wouldn't it be nice if
2669 we just started sharing the location lists? Maybe a
2670 circular list ending at the value itself or some
2671 such. */
2672 set_variable_part (set, dv_as_value (node->dv),
2673 dv_from_value (val), node->offset,
2674 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2675 set_variable_part (set, val, node->dv, node->offset,
2676 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2677 }
2678
2679 /* If we didn't find any equivalence, we need to remember that
2680 this value is held in the named register. */
2681 if (found)
2682 return;
2683 }
2684 /* ??? Attempt to find and merge equivalent MEMs or other
2685 expressions too. */
2686
2687 val_bind (set, val, loc, false);
2688 }
2689
2690 /* Initialize dataflow set SET to be empty.
2691 VARS_SIZE is the initial size of hash table VARS. */
2692
2693 static void
2694 dataflow_set_init (dataflow_set *set)
2695 {
2696 init_attrs_list_set (set->regs);
2697 set->vars = shared_hash_copy (empty_shared_hash);
2698 set->stack_adjust = 0;
2699 set->traversed_vars = NULL;
2700 }
2701
2702 /* Delete the contents of dataflow set SET. */
2703
2704 static void
2705 dataflow_set_clear (dataflow_set *set)
2706 {
2707 int i;
2708
2709 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2710 attrs_list_clear (&set->regs[i]);
2711
2712 shared_hash_destroy (set->vars);
2713 set->vars = shared_hash_copy (empty_shared_hash);
2714 }
2715
2716 /* Copy the contents of dataflow set SRC to DST. */
2717
2718 static void
2719 dataflow_set_copy (dataflow_set *dst, dataflow_set *src)
2720 {
2721 int i;
2722
2723 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2724 attrs_list_copy (&dst->regs[i], src->regs[i]);
2725
2726 shared_hash_destroy (dst->vars);
2727 dst->vars = shared_hash_copy (src->vars);
2728 dst->stack_adjust = src->stack_adjust;
2729 }
2730
2731 /* Information for merging lists of locations for a given offset of variable.
2732 */
2733 struct variable_union_info
2734 {
2735 /* Node of the location chain. */
2736 location_chain *lc;
2737
2738 /* The sum of positions in the input chains. */
2739 int pos;
2740
2741 /* The position in the chain of DST dataflow set. */
2742 int pos_dst;
2743 };
2744
2745 /* Buffer for location list sorting and its allocated size. */
2746 static struct variable_union_info *vui_vec;
2747 static int vui_allocated;
2748
2749 /* Compare function for qsort, order the structures by POS element. */
2750
2751 static int
2752 variable_union_info_cmp_pos (const void *n1, const void *n2)
2753 {
2754 const struct variable_union_info *const i1 =
2755 (const struct variable_union_info *) n1;
2756 const struct variable_union_info *const i2 =
2757 ( const struct variable_union_info *) n2;
2758
2759 if (i1->pos != i2->pos)
2760 return i1->pos - i2->pos;
2761
2762 return (i1->pos_dst - i2->pos_dst);
2763 }
2764
2765 /* Compute union of location parts of variable *SLOT and the same variable
2766 from hash table DATA. Compute "sorted" union of the location chains
2767 for common offsets, i.e. the locations of a variable part are sorted by
2768 a priority where the priority is the sum of the positions in the 2 chains
2769 (if a location is only in one list the position in the second list is
2770 defined to be larger than the length of the chains).
2771 When we are updating the location parts the newest location is in the
2772 beginning of the chain, so when we do the described "sorted" union
2773 we keep the newest locations in the beginning. */
2774
2775 static int
2776 variable_union (variable *src, dataflow_set *set)
2777 {
2778 variable *dst;
2779 variable **dstp;
2780 int i, j, k;
2781
2782 dstp = shared_hash_find_slot (set->vars, src->dv);
2783 if (!dstp || !*dstp)
2784 {
2785 src->refcount++;
2786
2787 dst_can_be_shared = false;
2788 if (!dstp)
2789 dstp = shared_hash_find_slot_unshare (&set->vars, src->dv, INSERT);
2790
2791 *dstp = src;
2792
2793 /* Continue traversing the hash table. */
2794 return 1;
2795 }
2796 else
2797 dst = *dstp;
2798
2799 gcc_assert (src->n_var_parts);
2800 gcc_checking_assert (src->onepart == dst->onepart);
2801
2802 /* We can combine one-part variables very efficiently, because their
2803 entries are in canonical order. */
2804 if (src->onepart)
2805 {
2806 location_chain **nodep, *dnode, *snode;
2807
2808 gcc_assert (src->n_var_parts == 1
2809 && dst->n_var_parts == 1);
2810
2811 snode = src->var_part[0].loc_chain;
2812 gcc_assert (snode);
2813
2814 restart_onepart_unshared:
2815 nodep = &dst->var_part[0].loc_chain;
2816 dnode = *nodep;
2817 gcc_assert (dnode);
2818
2819 while (snode)
2820 {
2821 int r = dnode ? loc_cmp (dnode->loc, snode->loc) : 1;
2822
2823 if (r > 0)
2824 {
2825 location_chain *nnode;
2826
2827 if (shared_var_p (dst, set->vars))
2828 {
2829 dstp = unshare_variable (set, dstp, dst,
2830 VAR_INIT_STATUS_INITIALIZED);
2831 dst = *dstp;
2832 goto restart_onepart_unshared;
2833 }
2834
2835 *nodep = nnode = new location_chain;
2836 nnode->loc = snode->loc;
2837 nnode->init = snode->init;
2838 if (!snode->set_src || MEM_P (snode->set_src))
2839 nnode->set_src = NULL;
2840 else
2841 nnode->set_src = snode->set_src;
2842 nnode->next = dnode;
2843 dnode = nnode;
2844 }
2845 else if (r == 0)
2846 gcc_checking_assert (rtx_equal_p (dnode->loc, snode->loc));
2847
2848 if (r >= 0)
2849 snode = snode->next;
2850
2851 nodep = &dnode->next;
2852 dnode = *nodep;
2853 }
2854
2855 return 1;
2856 }
2857
2858 gcc_checking_assert (!src->onepart);
2859
2860 /* Count the number of location parts, result is K. */
2861 for (i = 0, j = 0, k = 0;
2862 i < src->n_var_parts && j < dst->n_var_parts; k++)
2863 {
2864 if (VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
2865 {
2866 i++;
2867 j++;
2868 }
2869 else if (VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
2870 i++;
2871 else
2872 j++;
2873 }
2874 k += src->n_var_parts - i;
2875 k += dst->n_var_parts - j;
2876
2877 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
2878 thus there are at most MAX_VAR_PARTS different offsets. */
2879 gcc_checking_assert (dst->onepart ? k == 1 : k <= MAX_VAR_PARTS);
2880
2881 if (dst->n_var_parts != k && shared_var_p (dst, set->vars))
2882 {
2883 dstp = unshare_variable (set, dstp, dst, VAR_INIT_STATUS_UNKNOWN);
2884 dst = *dstp;
2885 }
2886
2887 i = src->n_var_parts - 1;
2888 j = dst->n_var_parts - 1;
2889 dst->n_var_parts = k;
2890
2891 for (k--; k >= 0; k--)
2892 {
2893 location_chain *node, *node2;
2894
2895 if (i >= 0 && j >= 0
2896 && VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
2897 {
2898 /* Compute the "sorted" union of the chains, i.e. the locations which
2899 are in both chains go first, they are sorted by the sum of
2900 positions in the chains. */
2901 int dst_l, src_l;
2902 int ii, jj, n;
2903 struct variable_union_info *vui;
2904
2905 /* If DST is shared compare the location chains.
2906 If they are different we will modify the chain in DST with
2907 high probability so make a copy of DST. */
2908 if (shared_var_p (dst, set->vars))
2909 {
2910 for (node = src->var_part[i].loc_chain,
2911 node2 = dst->var_part[j].loc_chain; node && node2;
2912 node = node->next, node2 = node2->next)
2913 {
2914 if (!((REG_P (node2->loc)
2915 && REG_P (node->loc)
2916 && REGNO (node2->loc) == REGNO (node->loc))
2917 || rtx_equal_p (node2->loc, node->loc)))
2918 {
2919 if (node2->init < node->init)
2920 node2->init = node->init;
2921 break;
2922 }
2923 }
2924 if (node || node2)
2925 {
2926 dstp = unshare_variable (set, dstp, dst,
2927 VAR_INIT_STATUS_UNKNOWN);
2928 dst = (variable *)*dstp;
2929 }
2930 }
2931
2932 src_l = 0;
2933 for (node = src->var_part[i].loc_chain; node; node = node->next)
2934 src_l++;
2935 dst_l = 0;
2936 for (node = dst->var_part[j].loc_chain; node; node = node->next)
2937 dst_l++;
2938
2939 if (dst_l == 1)
2940 {
2941 /* The most common case, much simpler, no qsort is needed. */
2942 location_chain *dstnode = dst->var_part[j].loc_chain;
2943 dst->var_part[k].loc_chain = dstnode;
2944 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (dst, j);
2945 node2 = dstnode;
2946 for (node = src->var_part[i].loc_chain; node; node = node->next)
2947 if (!((REG_P (dstnode->loc)
2948 && REG_P (node->loc)
2949 && REGNO (dstnode->loc) == REGNO (node->loc))
2950 || rtx_equal_p (dstnode->loc, node->loc)))
2951 {
2952 location_chain *new_node;
2953
2954 /* Copy the location from SRC. */
2955 new_node = new location_chain;
2956 new_node->loc = node->loc;
2957 new_node->init = node->init;
2958 if (!node->set_src || MEM_P (node->set_src))
2959 new_node->set_src = NULL;
2960 else
2961 new_node->set_src = node->set_src;
2962 node2->next = new_node;
2963 node2 = new_node;
2964 }
2965 node2->next = NULL;
2966 }
2967 else
2968 {
2969 if (src_l + dst_l > vui_allocated)
2970 {
2971 vui_allocated = MAX (vui_allocated * 2, src_l + dst_l);
2972 vui_vec = XRESIZEVEC (struct variable_union_info, vui_vec,
2973 vui_allocated);
2974 }
2975 vui = vui_vec;
2976
2977 /* Fill in the locations from DST. */
2978 for (node = dst->var_part[j].loc_chain, jj = 0; node;
2979 node = node->next, jj++)
2980 {
2981 vui[jj].lc = node;
2982 vui[jj].pos_dst = jj;
2983
2984 /* Pos plus value larger than a sum of 2 valid positions. */
2985 vui[jj].pos = jj + src_l + dst_l;
2986 }
2987
2988 /* Fill in the locations from SRC. */
2989 n = dst_l;
2990 for (node = src->var_part[i].loc_chain, ii = 0; node;
2991 node = node->next, ii++)
2992 {
2993 /* Find location from NODE. */
2994 for (jj = 0; jj < dst_l; jj++)
2995 {
2996 if ((REG_P (vui[jj].lc->loc)
2997 && REG_P (node->loc)
2998 && REGNO (vui[jj].lc->loc) == REGNO (node->loc))
2999 || rtx_equal_p (vui[jj].lc->loc, node->loc))
3000 {
3001 vui[jj].pos = jj + ii;
3002 break;
3003 }
3004 }
3005 if (jj >= dst_l) /* The location has not been found. */
3006 {
3007 location_chain *new_node;
3008
3009 /* Copy the location from SRC. */
3010 new_node = new location_chain;
3011 new_node->loc = node->loc;
3012 new_node->init = node->init;
3013 if (!node->set_src || MEM_P (node->set_src))
3014 new_node->set_src = NULL;
3015 else
3016 new_node->set_src = node->set_src;
3017 vui[n].lc = new_node;
3018 vui[n].pos_dst = src_l + dst_l;
3019 vui[n].pos = ii + src_l + dst_l;
3020 n++;
3021 }
3022 }
3023
3024 if (dst_l == 2)
3025 {
3026 /* Special case still very common case. For dst_l == 2
3027 all entries dst_l ... n-1 are sorted, with for i >= dst_l
3028 vui[i].pos == i + src_l + dst_l. */
3029 if (vui[0].pos > vui[1].pos)
3030 {
3031 /* Order should be 1, 0, 2... */
3032 dst->var_part[k].loc_chain = vui[1].lc;
3033 vui[1].lc->next = vui[0].lc;
3034 if (n >= 3)
3035 {
3036 vui[0].lc->next = vui[2].lc;
3037 vui[n - 1].lc->next = NULL;
3038 }
3039 else
3040 vui[0].lc->next = NULL;
3041 ii = 3;
3042 }
3043 else
3044 {
3045 dst->var_part[k].loc_chain = vui[0].lc;
3046 if (n >= 3 && vui[2].pos < vui[1].pos)
3047 {
3048 /* Order should be 0, 2, 1, 3... */
3049 vui[0].lc->next = vui[2].lc;
3050 vui[2].lc->next = vui[1].lc;
3051 if (n >= 4)
3052 {
3053 vui[1].lc->next = vui[3].lc;
3054 vui[n - 1].lc->next = NULL;
3055 }
3056 else
3057 vui[1].lc->next = NULL;
3058 ii = 4;
3059 }
3060 else
3061 {
3062 /* Order should be 0, 1, 2... */
3063 ii = 1;
3064 vui[n - 1].lc->next = NULL;
3065 }
3066 }
3067 for (; ii < n; ii++)
3068 vui[ii - 1].lc->next = vui[ii].lc;
3069 }
3070 else
3071 {
3072 qsort (vui, n, sizeof (struct variable_union_info),
3073 variable_union_info_cmp_pos);
3074
3075 /* Reconnect the nodes in sorted order. */
3076 for (ii = 1; ii < n; ii++)
3077 vui[ii - 1].lc->next = vui[ii].lc;
3078 vui[n - 1].lc->next = NULL;
3079 dst->var_part[k].loc_chain = vui[0].lc;
3080 }
3081
3082 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (dst, j);
3083 }
3084 i--;
3085 j--;
3086 }
3087 else if ((i >= 0 && j >= 0
3088 && VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
3089 || i < 0)
3090 {
3091 dst->var_part[k] = dst->var_part[j];
3092 j--;
3093 }
3094 else if ((i >= 0 && j >= 0
3095 && VAR_PART_OFFSET (src, i) > VAR_PART_OFFSET (dst, j))
3096 || j < 0)
3097 {
3098 location_chain **nextp;
3099
3100 /* Copy the chain from SRC. */
3101 nextp = &dst->var_part[k].loc_chain;
3102 for (node = src->var_part[i].loc_chain; node; node = node->next)
3103 {
3104 location_chain *new_lc;
3105
3106 new_lc = new location_chain;
3107 new_lc->next = NULL;
3108 new_lc->init = node->init;
3109 if (!node->set_src || MEM_P (node->set_src))
3110 new_lc->set_src = NULL;
3111 else
3112 new_lc->set_src = node->set_src;
3113 new_lc->loc = node->loc;
3114
3115 *nextp = new_lc;
3116 nextp = &new_lc->next;
3117 }
3118
3119 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (src, i);
3120 i--;
3121 }
3122 dst->var_part[k].cur_loc = NULL;
3123 }
3124
3125 if (flag_var_tracking_uninit)
3126 for (i = 0; i < src->n_var_parts && i < dst->n_var_parts; i++)
3127 {
3128 location_chain *node, *node2;
3129 for (node = src->var_part[i].loc_chain; node; node = node->next)
3130 for (node2 = dst->var_part[i].loc_chain; node2; node2 = node2->next)
3131 if (rtx_equal_p (node->loc, node2->loc))
3132 {
3133 if (node->init > node2->init)
3134 node2->init = node->init;
3135 }
3136 }
3137
3138 /* Continue traversing the hash table. */
3139 return 1;
3140 }
3141
3142 /* Compute union of dataflow sets SRC and DST and store it to DST. */
3143
3144 static void
3145 dataflow_set_union (dataflow_set *dst, dataflow_set *src)
3146 {
3147 int i;
3148
3149 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3150 attrs_list_union (&dst->regs[i], src->regs[i]);
3151
3152 if (dst->vars == empty_shared_hash)
3153 {
3154 shared_hash_destroy (dst->vars);
3155 dst->vars = shared_hash_copy (src->vars);
3156 }
3157 else
3158 {
3159 variable_iterator_type hi;
3160 variable *var;
3161
3162 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (src->vars),
3163 var, variable, hi)
3164 variable_union (var, dst);
3165 }
3166 }
3167
3168 /* Whether the value is currently being expanded. */
3169 #define VALUE_RECURSED_INTO(x) \
3170 (RTL_FLAG_CHECK2 ("VALUE_RECURSED_INTO", (x), VALUE, DEBUG_EXPR)->used)
3171
3172 /* Whether no expansion was found, saving useless lookups.
3173 It must only be set when VALUE_CHANGED is clear. */
3174 #define NO_LOC_P(x) \
3175 (RTL_FLAG_CHECK2 ("NO_LOC_P", (x), VALUE, DEBUG_EXPR)->return_val)
3176
3177 /* Whether cur_loc in the value needs to be (re)computed. */
3178 #define VALUE_CHANGED(x) \
3179 (RTL_FLAG_CHECK1 ("VALUE_CHANGED", (x), VALUE)->frame_related)
3180 /* Whether cur_loc in the decl needs to be (re)computed. */
3181 #define DECL_CHANGED(x) TREE_VISITED (x)
3182
3183 /* Record (if NEWV) that DV needs to have its cur_loc recomputed. For
3184 user DECLs, this means they're in changed_variables. Values and
3185 debug exprs may be left with this flag set if no user variable
3186 requires them to be evaluated. */
3187
3188 static inline void
3189 set_dv_changed (decl_or_value dv, bool newv)
3190 {
3191 switch (dv_onepart_p (dv))
3192 {
3193 case ONEPART_VALUE:
3194 if (newv)
3195 NO_LOC_P (dv_as_value (dv)) = false;
3196 VALUE_CHANGED (dv_as_value (dv)) = newv;
3197 break;
3198
3199 case ONEPART_DEXPR:
3200 if (newv)
3201 NO_LOC_P (DECL_RTL_KNOWN_SET (dv_as_decl (dv))) = false;
3202 /* Fall through. */
3203
3204 default:
3205 DECL_CHANGED (dv_as_decl (dv)) = newv;
3206 break;
3207 }
3208 }
3209
3210 /* Return true if DV needs to have its cur_loc recomputed. */
3211
3212 static inline bool
3213 dv_changed_p (decl_or_value dv)
3214 {
3215 return (dv_is_value_p (dv)
3216 ? VALUE_CHANGED (dv_as_value (dv))
3217 : DECL_CHANGED (dv_as_decl (dv)));
3218 }
3219
3220 /* Return a location list node whose loc is rtx_equal to LOC, in the
3221 location list of a one-part variable or value VAR, or in that of
3222 any values recursively mentioned in the location lists. VARS must
3223 be in star-canonical form. */
3224
3225 static location_chain *
3226 find_loc_in_1pdv (rtx loc, variable *var, variable_table_type *vars)
3227 {
3228 location_chain *node;
3229 enum rtx_code loc_code;
3230
3231 if (!var)
3232 return NULL;
3233
3234 gcc_checking_assert (var->onepart);
3235
3236 if (!var->n_var_parts)
3237 return NULL;
3238
3239 gcc_checking_assert (loc != dv_as_opaque (var->dv));
3240
3241 loc_code = GET_CODE (loc);
3242 for (node = var->var_part[0].loc_chain; node; node = node->next)
3243 {
3244 decl_or_value dv;
3245 variable *rvar;
3246
3247 if (GET_CODE (node->loc) != loc_code)
3248 {
3249 if (GET_CODE (node->loc) != VALUE)
3250 continue;
3251 }
3252 else if (loc == node->loc)
3253 return node;
3254 else if (loc_code != VALUE)
3255 {
3256 if (rtx_equal_p (loc, node->loc))
3257 return node;
3258 continue;
3259 }
3260
3261 /* Since we're in star-canonical form, we don't need to visit
3262 non-canonical nodes: one-part variables and non-canonical
3263 values would only point back to the canonical node. */
3264 if (dv_is_value_p (var->dv)
3265 && !canon_value_cmp (node->loc, dv_as_value (var->dv)))
3266 {
3267 /* Skip all subsequent VALUEs. */
3268 while (node->next && GET_CODE (node->next->loc) == VALUE)
3269 {
3270 node = node->next;
3271 gcc_checking_assert (!canon_value_cmp (node->loc,
3272 dv_as_value (var->dv)));
3273 if (loc == node->loc)
3274 return node;
3275 }
3276 continue;
3277 }
3278
3279 gcc_checking_assert (node == var->var_part[0].loc_chain);
3280 gcc_checking_assert (!node->next);
3281
3282 dv = dv_from_value (node->loc);
3283 rvar = vars->find_with_hash (dv, dv_htab_hash (dv));
3284 return find_loc_in_1pdv (loc, rvar, vars);
3285 }
3286
3287 /* ??? Gotta look in cselib_val locations too. */
3288
3289 return NULL;
3290 }
3291
3292 /* Hash table iteration argument passed to variable_merge. */
3293 struct dfset_merge
3294 {
3295 /* The set in which the merge is to be inserted. */
3296 dataflow_set *dst;
3297 /* The set that we're iterating in. */
3298 dataflow_set *cur;
3299 /* The set that may contain the other dv we are to merge with. */
3300 dataflow_set *src;
3301 /* Number of onepart dvs in src. */
3302 int src_onepart_cnt;
3303 };
3304
3305 /* Insert LOC in *DNODE, if it's not there yet. The list must be in
3306 loc_cmp order, and it is maintained as such. */
3307
3308 static void
3309 insert_into_intersection (location_chain **nodep, rtx loc,
3310 enum var_init_status status)
3311 {
3312 location_chain *node;
3313 int r;
3314
3315 for (node = *nodep; node; nodep = &node->next, node = *nodep)
3316 if ((r = loc_cmp (node->loc, loc)) == 0)
3317 {
3318 node->init = MIN (node->init, status);
3319 return;
3320 }
3321 else if (r > 0)
3322 break;
3323
3324 node = new location_chain;
3325
3326 node->loc = loc;
3327 node->set_src = NULL;
3328 node->init = status;
3329 node->next = *nodep;
3330 *nodep = node;
3331 }
3332
3333 /* Insert in DEST the intersection of the locations present in both
3334 S1NODE and S2VAR, directly or indirectly. S1NODE is from a
3335 variable in DSM->cur, whereas S2VAR is from DSM->src. dvar is in
3336 DSM->dst. */
3337
3338 static void
3339 intersect_loc_chains (rtx val, location_chain **dest, struct dfset_merge *dsm,
3340 location_chain *s1node, variable *s2var)
3341 {
3342 dataflow_set *s1set = dsm->cur;
3343 dataflow_set *s2set = dsm->src;
3344 location_chain *found;
3345
3346 if (s2var)
3347 {
3348 location_chain *s2node;
3349
3350 gcc_checking_assert (s2var->onepart);
3351
3352 if (s2var->n_var_parts)
3353 {
3354 s2node = s2var->var_part[0].loc_chain;
3355
3356 for (; s1node && s2node;
3357 s1node = s1node->next, s2node = s2node->next)
3358 if (s1node->loc != s2node->loc)
3359 break;
3360 else if (s1node->loc == val)
3361 continue;
3362 else
3363 insert_into_intersection (dest, s1node->loc,
3364 MIN (s1node->init, s2node->init));
3365 }
3366 }
3367
3368 for (; s1node; s1node = s1node->next)
3369 {
3370 if (s1node->loc == val)
3371 continue;
3372
3373 if ((found = find_loc_in_1pdv (s1node->loc, s2var,
3374 shared_hash_htab (s2set->vars))))
3375 {
3376 insert_into_intersection (dest, s1node->loc,
3377 MIN (s1node->init, found->init));
3378 continue;
3379 }
3380
3381 if (GET_CODE (s1node->loc) == VALUE
3382 && !VALUE_RECURSED_INTO (s1node->loc))
3383 {
3384 decl_or_value dv = dv_from_value (s1node->loc);
3385 variable *svar = shared_hash_find (s1set->vars, dv);
3386 if (svar)
3387 {
3388 if (svar->n_var_parts == 1)
3389 {
3390 VALUE_RECURSED_INTO (s1node->loc) = true;
3391 intersect_loc_chains (val, dest, dsm,
3392 svar->var_part[0].loc_chain,
3393 s2var);
3394 VALUE_RECURSED_INTO (s1node->loc) = false;
3395 }
3396 }
3397 }
3398
3399 /* ??? gotta look in cselib_val locations too. */
3400
3401 /* ??? if the location is equivalent to any location in src,
3402 searched recursively
3403
3404 add to dst the values needed to represent the equivalence
3405
3406 telling whether locations S is equivalent to another dv's
3407 location list:
3408
3409 for each location D in the list
3410
3411 if S and D satisfy rtx_equal_p, then it is present
3412
3413 else if D is a value, recurse without cycles
3414
3415 else if S and D have the same CODE and MODE
3416
3417 for each operand oS and the corresponding oD
3418
3419 if oS and oD are not equivalent, then S an D are not equivalent
3420
3421 else if they are RTX vectors
3422
3423 if any vector oS element is not equivalent to its respective oD,
3424 then S and D are not equivalent
3425
3426 */
3427
3428
3429 }
3430 }
3431
3432 /* Return -1 if X should be before Y in a location list for a 1-part
3433 variable, 1 if Y should be before X, and 0 if they're equivalent
3434 and should not appear in the list. */
3435
3436 static int
3437 loc_cmp (rtx x, rtx y)
3438 {
3439 int i, j, r;
3440 RTX_CODE code = GET_CODE (x);
3441 const char *fmt;
3442
3443 if (x == y)
3444 return 0;
3445
3446 if (REG_P (x))
3447 {
3448 if (!REG_P (y))
3449 return -1;
3450 gcc_assert (GET_MODE (x) == GET_MODE (y));
3451 if (REGNO (x) == REGNO (y))
3452 return 0;
3453 else if (REGNO (x) < REGNO (y))
3454 return -1;
3455 else
3456 return 1;
3457 }
3458
3459 if (REG_P (y))
3460 return 1;
3461
3462 if (MEM_P (x))
3463 {
3464 if (!MEM_P (y))
3465 return -1;
3466 gcc_assert (GET_MODE (x) == GET_MODE (y));
3467 return loc_cmp (XEXP (x, 0), XEXP (y, 0));
3468 }
3469
3470 if (MEM_P (y))
3471 return 1;
3472
3473 if (GET_CODE (x) == VALUE)
3474 {
3475 if (GET_CODE (y) != VALUE)
3476 return -1;
3477 /* Don't assert the modes are the same, that is true only
3478 when not recursing. (subreg:QI (value:SI 1:1) 0)
3479 and (subreg:QI (value:DI 2:2) 0) can be compared,
3480 even when the modes are different. */
3481 if (canon_value_cmp (x, y))
3482 return -1;
3483 else
3484 return 1;
3485 }
3486
3487 if (GET_CODE (y) == VALUE)
3488 return 1;
3489
3490 /* Entry value is the least preferable kind of expression. */
3491 if (GET_CODE (x) == ENTRY_VALUE)
3492 {
3493 if (GET_CODE (y) != ENTRY_VALUE)
3494 return 1;
3495 gcc_assert (GET_MODE (x) == GET_MODE (y));
3496 return loc_cmp (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
3497 }
3498
3499 if (GET_CODE (y) == ENTRY_VALUE)
3500 return -1;
3501
3502 if (GET_CODE (x) == GET_CODE (y))
3503 /* Compare operands below. */;
3504 else if (GET_CODE (x) < GET_CODE (y))
3505 return -1;
3506 else
3507 return 1;
3508
3509 gcc_assert (GET_MODE (x) == GET_MODE (y));
3510
3511 if (GET_CODE (x) == DEBUG_EXPR)
3512 {
3513 if (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
3514 < DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)))
3515 return -1;
3516 gcc_checking_assert (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
3517 > DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)));
3518 return 1;
3519 }
3520
3521 fmt = GET_RTX_FORMAT (code);
3522 for (i = 0; i < GET_RTX_LENGTH (code); i++)
3523 switch (fmt[i])
3524 {
3525 case 'w':
3526 if (XWINT (x, i) == XWINT (y, i))
3527 break;
3528 else if (XWINT (x, i) < XWINT (y, i))
3529 return -1;
3530 else
3531 return 1;
3532
3533 case 'n':
3534 case 'i':
3535 if (XINT (x, i) == XINT (y, i))
3536 break;
3537 else if (XINT (x, i) < XINT (y, i))
3538 return -1;
3539 else
3540 return 1;
3541
3542 case 'p':
3543 r = compare_sizes_for_sort (SUBREG_BYTE (x), SUBREG_BYTE (y));
3544 if (r != 0)
3545 return r;
3546 break;
3547
3548 case 'V':
3549 case 'E':
3550 /* Compare the vector length first. */
3551 if (XVECLEN (x, i) == XVECLEN (y, i))
3552 /* Compare the vectors elements. */;
3553 else if (XVECLEN (x, i) < XVECLEN (y, i))
3554 return -1;
3555 else
3556 return 1;
3557
3558 for (j = 0; j < XVECLEN (x, i); j++)
3559 if ((r = loc_cmp (XVECEXP (x, i, j),
3560 XVECEXP (y, i, j))))
3561 return r;
3562 break;
3563
3564 case 'e':
3565 if ((r = loc_cmp (XEXP (x, i), XEXP (y, i))))
3566 return r;
3567 break;
3568
3569 case 'S':
3570 case 's':
3571 if (XSTR (x, i) == XSTR (y, i))
3572 break;
3573 if (!XSTR (x, i))
3574 return -1;
3575 if (!XSTR (y, i))
3576 return 1;
3577 if ((r = strcmp (XSTR (x, i), XSTR (y, i))) == 0)
3578 break;
3579 else if (r < 0)
3580 return -1;
3581 else
3582 return 1;
3583
3584 case 'u':
3585 /* These are just backpointers, so they don't matter. */
3586 break;
3587
3588 case '0':
3589 case 't':
3590 break;
3591
3592 /* It is believed that rtx's at this level will never
3593 contain anything but integers and other rtx's,
3594 except for within LABEL_REFs and SYMBOL_REFs. */
3595 default:
3596 gcc_unreachable ();
3597 }
3598 if (CONST_WIDE_INT_P (x))
3599 {
3600 /* Compare the vector length first. */
3601 if (CONST_WIDE_INT_NUNITS (x) >= CONST_WIDE_INT_NUNITS (y))
3602 return 1;
3603 else if (CONST_WIDE_INT_NUNITS (x) < CONST_WIDE_INT_NUNITS (y))
3604 return -1;
3605
3606 /* Compare the vectors elements. */;
3607 for (j = CONST_WIDE_INT_NUNITS (x) - 1; j >= 0 ; j--)
3608 {
3609 if (CONST_WIDE_INT_ELT (x, j) < CONST_WIDE_INT_ELT (y, j))
3610 return -1;
3611 if (CONST_WIDE_INT_ELT (x, j) > CONST_WIDE_INT_ELT (y, j))
3612 return 1;
3613 }
3614 }
3615
3616 return 0;
3617 }
3618
3619 /* Check the order of entries in one-part variables. */
3620
3621 int
3622 canonicalize_loc_order_check (variable **slot,
3623 dataflow_set *data ATTRIBUTE_UNUSED)
3624 {
3625 variable *var = *slot;
3626 location_chain *node, *next;
3627
3628 #ifdef ENABLE_RTL_CHECKING
3629 int i;
3630 for (i = 0; i < var->n_var_parts; i++)
3631 gcc_assert (var->var_part[0].cur_loc == NULL);
3632 gcc_assert (!var->in_changed_variables);
3633 #endif
3634
3635 if (!var->onepart)
3636 return 1;
3637
3638 gcc_assert (var->n_var_parts == 1);
3639 node = var->var_part[0].loc_chain;
3640 gcc_assert (node);
3641
3642 while ((next = node->next))
3643 {
3644 gcc_assert (loc_cmp (node->loc, next->loc) < 0);
3645 node = next;
3646 }
3647
3648 return 1;
3649 }
3650
3651 /* Mark with VALUE_RECURSED_INTO values that have neighbors that are
3652 more likely to be chosen as canonical for an equivalence set.
3653 Ensure less likely values can reach more likely neighbors, making
3654 the connections bidirectional. */
3655
3656 int
3657 canonicalize_values_mark (variable **slot, dataflow_set *set)
3658 {
3659 variable *var = *slot;
3660 decl_or_value dv = var->dv;
3661 rtx val;
3662 location_chain *node;
3663
3664 if (!dv_is_value_p (dv))
3665 return 1;
3666
3667 gcc_checking_assert (var->n_var_parts == 1);
3668
3669 val = dv_as_value (dv);
3670
3671 for (node = var->var_part[0].loc_chain; node; node = node->next)
3672 if (GET_CODE (node->loc) == VALUE)
3673 {
3674 if (canon_value_cmp (node->loc, val))
3675 VALUE_RECURSED_INTO (val) = true;
3676 else
3677 {
3678 decl_or_value odv = dv_from_value (node->loc);
3679 variable **oslot;
3680 oslot = shared_hash_find_slot_noinsert (set->vars, odv);
3681
3682 set_slot_part (set, val, oslot, odv, 0,
3683 node->init, NULL_RTX);
3684
3685 VALUE_RECURSED_INTO (node->loc) = true;
3686 }
3687 }
3688
3689 return 1;
3690 }
3691
3692 /* Remove redundant entries from equivalence lists in onepart
3693 variables, canonicalizing equivalence sets into star shapes. */
3694
3695 int
3696 canonicalize_values_star (variable **slot, dataflow_set *set)
3697 {
3698 variable *var = *slot;
3699 decl_or_value dv = var->dv;
3700 location_chain *node;
3701 decl_or_value cdv;
3702 rtx val, cval;
3703 variable **cslot;
3704 bool has_value;
3705 bool has_marks;
3706
3707 if (!var->onepart)
3708 return 1;
3709
3710 gcc_checking_assert (var->n_var_parts == 1);
3711
3712 if (dv_is_value_p (dv))
3713 {
3714 cval = dv_as_value (dv);
3715 if (!VALUE_RECURSED_INTO (cval))
3716 return 1;
3717 VALUE_RECURSED_INTO (cval) = false;
3718 }
3719 else
3720 cval = NULL_RTX;
3721
3722 restart:
3723 val = cval;
3724 has_value = false;
3725 has_marks = false;
3726
3727 gcc_assert (var->n_var_parts == 1);
3728
3729 for (node = var->var_part[0].loc_chain; node; node = node->next)
3730 if (GET_CODE (node->loc) == VALUE)
3731 {
3732 has_value = true;
3733 if (VALUE_RECURSED_INTO (node->loc))
3734 has_marks = true;
3735 if (canon_value_cmp (node->loc, cval))
3736 cval = node->loc;
3737 }
3738
3739 if (!has_value)
3740 return 1;
3741
3742 if (cval == val)
3743 {
3744 if (!has_marks || dv_is_decl_p (dv))
3745 return 1;
3746
3747 /* Keep it marked so that we revisit it, either after visiting a
3748 child node, or after visiting a new parent that might be
3749 found out. */
3750 VALUE_RECURSED_INTO (val) = true;
3751
3752 for (node = var->var_part[0].loc_chain; node; node = node->next)
3753 if (GET_CODE (node->loc) == VALUE
3754 && VALUE_RECURSED_INTO (node->loc))
3755 {
3756 cval = node->loc;
3757 restart_with_cval:
3758 VALUE_RECURSED_INTO (cval) = false;
3759 dv = dv_from_value (cval);
3760 slot = shared_hash_find_slot_noinsert (set->vars, dv);
3761 if (!slot)
3762 {
3763 gcc_assert (dv_is_decl_p (var->dv));
3764 /* The canonical value was reset and dropped.
3765 Remove it. */
3766 clobber_variable_part (set, NULL, var->dv, 0, NULL);
3767 return 1;
3768 }
3769 var = *slot;
3770 gcc_assert (dv_is_value_p (var->dv));
3771 if (var->n_var_parts == 0)
3772 return 1;
3773 gcc_assert (var->n_var_parts == 1);
3774 goto restart;
3775 }
3776
3777 VALUE_RECURSED_INTO (val) = false;
3778
3779 return 1;
3780 }
3781
3782 /* Push values to the canonical one. */
3783 cdv = dv_from_value (cval);
3784 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3785
3786 for (node = var->var_part[0].loc_chain; node; node = node->next)
3787 if (node->loc != cval)
3788 {
3789 cslot = set_slot_part (set, node->loc, cslot, cdv, 0,
3790 node->init, NULL_RTX);
3791 if (GET_CODE (node->loc) == VALUE)
3792 {
3793 decl_or_value ndv = dv_from_value (node->loc);
3794
3795 set_variable_part (set, cval, ndv, 0, node->init, NULL_RTX,
3796 NO_INSERT);
3797
3798 if (canon_value_cmp (node->loc, val))
3799 {
3800 /* If it could have been a local minimum, it's not any more,
3801 since it's now neighbor to cval, so it may have to push
3802 to it. Conversely, if it wouldn't have prevailed over
3803 val, then whatever mark it has is fine: if it was to
3804 push, it will now push to a more canonical node, but if
3805 it wasn't, then it has already pushed any values it might
3806 have to. */
3807 VALUE_RECURSED_INTO (node->loc) = true;
3808 /* Make sure we visit node->loc by ensuring we cval is
3809 visited too. */
3810 VALUE_RECURSED_INTO (cval) = true;
3811 }
3812 else if (!VALUE_RECURSED_INTO (node->loc))
3813 /* If we have no need to "recurse" into this node, it's
3814 already "canonicalized", so drop the link to the old
3815 parent. */
3816 clobber_variable_part (set, cval, ndv, 0, NULL);
3817 }
3818 else if (GET_CODE (node->loc) == REG)
3819 {
3820 attrs *list = set->regs[REGNO (node->loc)], **listp;
3821
3822 /* Change an existing attribute referring to dv so that it
3823 refers to cdv, removing any duplicate this might
3824 introduce, and checking that no previous duplicates
3825 existed, all in a single pass. */
3826
3827 while (list)
3828 {
3829 if (list->offset == 0
3830 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3831 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3832 break;
3833
3834 list = list->next;
3835 }
3836
3837 gcc_assert (list);
3838 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3839 {
3840 list->dv = cdv;
3841 for (listp = &list->next; (list = *listp); listp = &list->next)
3842 {
3843 if (list->offset)
3844 continue;
3845
3846 if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3847 {
3848 *listp = list->next;
3849 delete list;
3850 list = *listp;
3851 break;
3852 }
3853
3854 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (dv));
3855 }
3856 }
3857 else if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3858 {
3859 for (listp = &list->next; (list = *listp); listp = &list->next)
3860 {
3861 if (list->offset)
3862 continue;
3863
3864 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3865 {
3866 *listp = list->next;
3867 delete list;
3868 list = *listp;
3869 break;
3870 }
3871
3872 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (cdv));
3873 }
3874 }
3875 else
3876 gcc_unreachable ();
3877
3878 if (flag_checking)
3879 while (list)
3880 {
3881 if (list->offset == 0
3882 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3883 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3884 gcc_unreachable ();
3885
3886 list = list->next;
3887 }
3888 }
3889 }
3890
3891 if (val)
3892 set_slot_part (set, val, cslot, cdv, 0,
3893 VAR_INIT_STATUS_INITIALIZED, NULL_RTX);
3894
3895 slot = clobber_slot_part (set, cval, slot, 0, NULL);
3896
3897 /* Variable may have been unshared. */
3898 var = *slot;
3899 gcc_checking_assert (var->n_var_parts && var->var_part[0].loc_chain->loc == cval
3900 && var->var_part[0].loc_chain->next == NULL);
3901
3902 if (VALUE_RECURSED_INTO (cval))
3903 goto restart_with_cval;
3904
3905 return 1;
3906 }
3907
3908 /* Bind one-part variables to the canonical value in an equivalence
3909 set. Not doing this causes dataflow convergence failure in rare
3910 circumstances, see PR42873. Unfortunately we can't do this
3911 efficiently as part of canonicalize_values_star, since we may not
3912 have determined or even seen the canonical value of a set when we
3913 get to a variable that references another member of the set. */
3914
3915 int
3916 canonicalize_vars_star (variable **slot, dataflow_set *set)
3917 {
3918 variable *var = *slot;
3919 decl_or_value dv = var->dv;
3920 location_chain *node;
3921 rtx cval;
3922 decl_or_value cdv;
3923 variable **cslot;
3924 variable *cvar;
3925 location_chain *cnode;
3926
3927 if (!var->onepart || var->onepart == ONEPART_VALUE)
3928 return 1;
3929
3930 gcc_assert (var->n_var_parts == 1);
3931
3932 node = var->var_part[0].loc_chain;
3933
3934 if (GET_CODE (node->loc) != VALUE)
3935 return 1;
3936
3937 gcc_assert (!node->next);
3938 cval = node->loc;
3939
3940 /* Push values to the canonical one. */
3941 cdv = dv_from_value (cval);
3942 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3943 if (!cslot)
3944 return 1;
3945 cvar = *cslot;
3946 gcc_assert (cvar->n_var_parts == 1);
3947
3948 cnode = cvar->var_part[0].loc_chain;
3949
3950 /* CVAL is canonical if its value list contains non-VALUEs or VALUEs
3951 that are not “more canonical” than it. */
3952 if (GET_CODE (cnode->loc) != VALUE
3953 || !canon_value_cmp (cnode->loc, cval))
3954 return 1;
3955
3956 /* CVAL was found to be non-canonical. Change the variable to point
3957 to the canonical VALUE. */
3958 gcc_assert (!cnode->next);
3959 cval = cnode->loc;
3960
3961 slot = set_slot_part (set, cval, slot, dv, 0,
3962 node->init, node->set_src);
3963 clobber_slot_part (set, cval, slot, 0, node->set_src);
3964
3965 return 1;
3966 }
3967
3968 /* Combine variable or value in *S1SLOT (in DSM->cur) with the
3969 corresponding entry in DSM->src. Multi-part variables are combined
3970 with variable_union, whereas onepart dvs are combined with
3971 intersection. */
3972
3973 static int
3974 variable_merge_over_cur (variable *s1var, struct dfset_merge *dsm)
3975 {
3976 dataflow_set *dst = dsm->dst;
3977 variable **dstslot;
3978 variable *s2var, *dvar = NULL;
3979 decl_or_value dv = s1var->dv;
3980 onepart_enum onepart = s1var->onepart;
3981 rtx val;
3982 hashval_t dvhash;
3983 location_chain *node, **nodep;
3984
3985 /* If the incoming onepart variable has an empty location list, then
3986 the intersection will be just as empty. For other variables,
3987 it's always union. */
3988 gcc_checking_assert (s1var->n_var_parts
3989 && s1var->var_part[0].loc_chain);
3990
3991 if (!onepart)
3992 return variable_union (s1var, dst);
3993
3994 gcc_checking_assert (s1var->n_var_parts == 1);
3995
3996 dvhash = dv_htab_hash (dv);
3997 if (dv_is_value_p (dv))
3998 val = dv_as_value (dv);
3999 else
4000 val = NULL;
4001
4002 s2var = shared_hash_find_1 (dsm->src->vars, dv, dvhash);
4003 if (!s2var)
4004 {
4005 dst_can_be_shared = false;
4006 return 1;
4007 }
4008
4009 dsm->src_onepart_cnt--;
4010 gcc_assert (s2var->var_part[0].loc_chain
4011 && s2var->onepart == onepart
4012 && s2var->n_var_parts == 1);
4013
4014 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
4015 if (dstslot)
4016 {
4017 dvar = *dstslot;
4018 gcc_assert (dvar->refcount == 1
4019 && dvar->onepart == onepart
4020 && dvar->n_var_parts == 1);
4021 nodep = &dvar->var_part[0].loc_chain;
4022 }
4023 else
4024 {
4025 nodep = &node;
4026 node = NULL;
4027 }
4028
4029 if (!dstslot && !onepart_variable_different_p (s1var, s2var))
4030 {
4031 dstslot = shared_hash_find_slot_unshare_1 (&dst->vars, dv,
4032 dvhash, INSERT);
4033 *dstslot = dvar = s2var;
4034 dvar->refcount++;
4035 }
4036 else
4037 {
4038 dst_can_be_shared = false;
4039
4040 intersect_loc_chains (val, nodep, dsm,
4041 s1var->var_part[0].loc_chain, s2var);
4042
4043 if (!dstslot)
4044 {
4045 if (node)
4046 {
4047 dvar = onepart_pool_allocate (onepart);
4048 dvar->dv = dv;
4049 dvar->refcount = 1;
4050 dvar->n_var_parts = 1;
4051 dvar->onepart = onepart;
4052 dvar->in_changed_variables = false;
4053 dvar->var_part[0].loc_chain = node;
4054 dvar->var_part[0].cur_loc = NULL;
4055 if (onepart)
4056 VAR_LOC_1PAUX (dvar) = NULL;
4057 else
4058 VAR_PART_OFFSET (dvar, 0) = 0;
4059
4060 dstslot
4061 = shared_hash_find_slot_unshare_1 (&dst->vars, dv, dvhash,
4062 INSERT);
4063 gcc_assert (!*dstslot);
4064 *dstslot = dvar;
4065 }
4066 else
4067 return 1;
4068 }
4069 }
4070
4071 nodep = &dvar->var_part[0].loc_chain;
4072 while ((node = *nodep))
4073 {
4074 location_chain **nextp = &node->next;
4075
4076 if (GET_CODE (node->loc) == REG)
4077 {
4078 attrs *list;
4079
4080 for (list = dst->regs[REGNO (node->loc)]; list; list = list->next)
4081 if (GET_MODE (node->loc) == GET_MODE (list->loc)
4082 && dv_is_value_p (list->dv))
4083 break;
4084
4085 if (!list)
4086 attrs_list_insert (&dst->regs[REGNO (node->loc)],
4087 dv, 0, node->loc);
4088 /* If this value became canonical for another value that had
4089 this register, we want to leave it alone. */
4090 else if (dv_as_value (list->dv) != val)
4091 {
4092 dstslot = set_slot_part (dst, dv_as_value (list->dv),
4093 dstslot, dv, 0,
4094 node->init, NULL_RTX);
4095 dstslot = delete_slot_part (dst, node->loc, dstslot, 0);
4096
4097 /* Since nextp points into the removed node, we can't
4098 use it. The pointer to the next node moved to nodep.
4099 However, if the variable we're walking is unshared
4100 during our walk, we'll keep walking the location list
4101 of the previously-shared variable, in which case the
4102 node won't have been removed, and we'll want to skip
4103 it. That's why we test *nodep here. */
4104 if (*nodep != node)
4105 nextp = nodep;
4106 }
4107 }
4108 else
4109 /* Canonicalization puts registers first, so we don't have to
4110 walk it all. */
4111 break;
4112 nodep = nextp;
4113 }
4114
4115 if (dvar != *dstslot)
4116 dvar = *dstslot;
4117 nodep = &dvar->var_part[0].loc_chain;
4118
4119 if (val)
4120 {
4121 /* Mark all referenced nodes for canonicalization, and make sure
4122 we have mutual equivalence links. */
4123 VALUE_RECURSED_INTO (val) = true;
4124 for (node = *nodep; node; node = node->next)
4125 if (GET_CODE (node->loc) == VALUE)
4126 {
4127 VALUE_RECURSED_INTO (node->loc) = true;
4128 set_variable_part (dst, val, dv_from_value (node->loc), 0,
4129 node->init, NULL, INSERT);
4130 }
4131
4132 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
4133 gcc_assert (*dstslot == dvar);
4134 canonicalize_values_star (dstslot, dst);
4135 gcc_checking_assert (dstslot
4136 == shared_hash_find_slot_noinsert_1 (dst->vars,
4137 dv, dvhash));
4138 dvar = *dstslot;
4139 }
4140 else
4141 {
4142 bool has_value = false, has_other = false;
4143
4144 /* If we have one value and anything else, we're going to
4145 canonicalize this, so make sure all values have an entry in
4146 the table and are marked for canonicalization. */
4147 for (node = *nodep; node; node = node->next)
4148 {
4149 if (GET_CODE (node->loc) == VALUE)
4150 {
4151 /* If this was marked during register canonicalization,
4152 we know we have to canonicalize values. */
4153 if (has_value)
4154 has_other = true;
4155 has_value = true;
4156 if (has_other)
4157 break;
4158 }
4159 else
4160 {
4161 has_other = true;
4162 if (has_value)
4163 break;
4164 }
4165 }
4166
4167 if (has_value && has_other)
4168 {
4169 for (node = *nodep; node; node = node->next)
4170 {
4171 if (GET_CODE (node->loc) == VALUE)
4172 {
4173 decl_or_value dv = dv_from_value (node->loc);
4174 variable **slot = NULL;
4175
4176 if (shared_hash_shared (dst->vars))
4177 slot = shared_hash_find_slot_noinsert (dst->vars, dv);
4178 if (!slot)
4179 slot = shared_hash_find_slot_unshare (&dst->vars, dv,
4180 INSERT);
4181 if (!*slot)
4182 {
4183 variable *var = onepart_pool_allocate (ONEPART_VALUE);
4184 var->dv = dv;
4185 var->refcount = 1;
4186 var->n_var_parts = 1;
4187 var->onepart = ONEPART_VALUE;
4188 var->in_changed_variables = false;
4189 var->var_part[0].loc_chain = NULL;
4190 var->var_part[0].cur_loc = NULL;
4191 VAR_LOC_1PAUX (var) = NULL;
4192 *slot = var;
4193 }
4194
4195 VALUE_RECURSED_INTO (node->loc) = true;
4196 }
4197 }
4198
4199 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
4200 gcc_assert (*dstslot == dvar);
4201 canonicalize_values_star (dstslot, dst);
4202 gcc_checking_assert (dstslot
4203 == shared_hash_find_slot_noinsert_1 (dst->vars,
4204 dv, dvhash));
4205 dvar = *dstslot;
4206 }
4207 }
4208
4209 if (!onepart_variable_different_p (dvar, s2var))
4210 {
4211 variable_htab_free (dvar);
4212 *dstslot = dvar = s2var;
4213 dvar->refcount++;
4214 }
4215 else if (s2var != s1var && !onepart_variable_different_p (dvar, s1var))
4216 {
4217 variable_htab_free (dvar);
4218 *dstslot = dvar = s1var;
4219 dvar->refcount++;
4220 dst_can_be_shared = false;
4221 }
4222 else
4223 dst_can_be_shared = false;
4224
4225 return 1;
4226 }
4227
4228 /* Copy s2slot (in DSM->src) to DSM->dst if the variable is a
4229 multi-part variable. Unions of multi-part variables and
4230 intersections of one-part ones will be handled in
4231 variable_merge_over_cur(). */
4232
4233 static int
4234 variable_merge_over_src (variable *s2var, struct dfset_merge *dsm)
4235 {
4236 dataflow_set *dst = dsm->dst;
4237 decl_or_value dv = s2var->dv;
4238
4239 if (!s2var->onepart)
4240 {
4241 variable **dstp = shared_hash_find_slot (dst->vars, dv);
4242 *dstp = s2var;
4243 s2var->refcount++;
4244 return 1;
4245 }
4246
4247 dsm->src_onepart_cnt++;
4248 return 1;
4249 }
4250
4251 /* Combine dataflow set information from SRC2 into DST, using PDST
4252 to carry over information across passes. */
4253
4254 static void
4255 dataflow_set_merge (dataflow_set *dst, dataflow_set *src2)
4256 {
4257 dataflow_set cur = *dst;
4258 dataflow_set *src1 = &cur;
4259 struct dfset_merge dsm;
4260 int i;
4261 size_t src1_elems, src2_elems;
4262 variable_iterator_type hi;
4263 variable *var;
4264
4265 src1_elems = shared_hash_htab (src1->vars)->elements ();
4266 src2_elems = shared_hash_htab (src2->vars)->elements ();
4267 dataflow_set_init (dst);
4268 dst->stack_adjust = cur.stack_adjust;
4269 shared_hash_destroy (dst->vars);
4270 dst->vars = new shared_hash;
4271 dst->vars->refcount = 1;
4272 dst->vars->htab = new variable_table_type (MAX (src1_elems, src2_elems));
4273
4274 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4275 attrs_list_mpdv_union (&dst->regs[i], src1->regs[i], src2->regs[i]);
4276
4277 dsm.dst = dst;
4278 dsm.src = src2;
4279 dsm.cur = src1;
4280 dsm.src_onepart_cnt = 0;
4281
4282 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (dsm.src->vars),
4283 var, variable, hi)
4284 variable_merge_over_src (var, &dsm);
4285 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (dsm.cur->vars),
4286 var, variable, hi)
4287 variable_merge_over_cur (var, &dsm);
4288
4289 if (dsm.src_onepart_cnt)
4290 dst_can_be_shared = false;
4291
4292 dataflow_set_destroy (src1);
4293 }
4294
4295 /* Mark register equivalences. */
4296
4297 static void
4298 dataflow_set_equiv_regs (dataflow_set *set)
4299 {
4300 int i;
4301 attrs *list, **listp;
4302
4303 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4304 {
4305 rtx canon[NUM_MACHINE_MODES];
4306
4307 /* If the list is empty or one entry, no need to canonicalize
4308 anything. */
4309 if (set->regs[i] == NULL || set->regs[i]->next == NULL)
4310 continue;
4311
4312 memset (canon, 0, sizeof (canon));
4313
4314 for (list = set->regs[i]; list; list = list->next)
4315 if (list->offset == 0 && dv_is_value_p (list->dv))
4316 {
4317 rtx val = dv_as_value (list->dv);
4318 rtx *cvalp = &canon[(int)GET_MODE (val)];
4319 rtx cval = *cvalp;
4320
4321 if (canon_value_cmp (val, cval))
4322 *cvalp = val;
4323 }
4324
4325 for (list = set->regs[i]; list; list = list->next)
4326 if (list->offset == 0 && dv_onepart_p (list->dv))
4327 {
4328 rtx cval = canon[(int)GET_MODE (list->loc)];
4329
4330 if (!cval)
4331 continue;
4332
4333 if (dv_is_value_p (list->dv))
4334 {
4335 rtx val = dv_as_value (list->dv);
4336
4337 if (val == cval)
4338 continue;
4339
4340 VALUE_RECURSED_INTO (val) = true;
4341 set_variable_part (set, val, dv_from_value (cval), 0,
4342 VAR_INIT_STATUS_INITIALIZED,
4343 NULL, NO_INSERT);
4344 }
4345
4346 VALUE_RECURSED_INTO (cval) = true;
4347 set_variable_part (set, cval, list->dv, 0,
4348 VAR_INIT_STATUS_INITIALIZED, NULL, NO_INSERT);
4349 }
4350
4351 for (listp = &set->regs[i]; (list = *listp);
4352 listp = list ? &list->next : listp)
4353 if (list->offset == 0 && dv_onepart_p (list->dv))
4354 {
4355 rtx cval = canon[(int)GET_MODE (list->loc)];
4356 variable **slot;
4357
4358 if (!cval)
4359 continue;
4360
4361 if (dv_is_value_p (list->dv))
4362 {
4363 rtx val = dv_as_value (list->dv);
4364 if (!VALUE_RECURSED_INTO (val))
4365 continue;
4366 }
4367
4368 slot = shared_hash_find_slot_noinsert (set->vars, list->dv);
4369 canonicalize_values_star (slot, set);
4370 if (*listp != list)
4371 list = NULL;
4372 }
4373 }
4374 }
4375
4376 /* Remove any redundant values in the location list of VAR, which must
4377 be unshared and 1-part. */
4378
4379 static void
4380 remove_duplicate_values (variable *var)
4381 {
4382 location_chain *node, **nodep;
4383
4384 gcc_assert (var->onepart);
4385 gcc_assert (var->n_var_parts == 1);
4386 gcc_assert (var->refcount == 1);
4387
4388 for (nodep = &var->var_part[0].loc_chain; (node = *nodep); )
4389 {
4390 if (GET_CODE (node->loc) == VALUE)
4391 {
4392 if (VALUE_RECURSED_INTO (node->loc))
4393 {
4394 /* Remove duplicate value node. */
4395 *nodep = node->next;
4396 delete node;
4397 continue;
4398 }
4399 else
4400 VALUE_RECURSED_INTO (node->loc) = true;
4401 }
4402 nodep = &node->next;
4403 }
4404
4405 for (node = var->var_part[0].loc_chain; node; node = node->next)
4406 if (GET_CODE (node->loc) == VALUE)
4407 {
4408 gcc_assert (VALUE_RECURSED_INTO (node->loc));
4409 VALUE_RECURSED_INTO (node->loc) = false;
4410 }
4411 }
4412
4413
4414 /* Hash table iteration argument passed to variable_post_merge. */
4415 struct dfset_post_merge
4416 {
4417 /* The new input set for the current block. */
4418 dataflow_set *set;
4419 /* Pointer to the permanent input set for the current block, or
4420 NULL. */
4421 dataflow_set **permp;
4422 };
4423
4424 /* Create values for incoming expressions associated with one-part
4425 variables that don't have value numbers for them. */
4426
4427 int
4428 variable_post_merge_new_vals (variable **slot, dfset_post_merge *dfpm)
4429 {
4430 dataflow_set *set = dfpm->set;
4431 variable *var = *slot;
4432 location_chain *node;
4433
4434 if (!var->onepart || !var->n_var_parts)
4435 return 1;
4436
4437 gcc_assert (var->n_var_parts == 1);
4438
4439 if (dv_is_decl_p (var->dv))
4440 {
4441 bool check_dupes = false;
4442
4443 restart:
4444 for (node = var->var_part[0].loc_chain; node; node = node->next)
4445 {
4446 if (GET_CODE (node->loc) == VALUE)
4447 gcc_assert (!VALUE_RECURSED_INTO (node->loc));
4448 else if (GET_CODE (node->loc) == REG)
4449 {
4450 attrs *att, **attp, **curp = NULL;
4451
4452 if (var->refcount != 1)
4453 {
4454 slot = unshare_variable (set, slot, var,
4455 VAR_INIT_STATUS_INITIALIZED);
4456 var = *slot;
4457 goto restart;
4458 }
4459
4460 for (attp = &set->regs[REGNO (node->loc)]; (att = *attp);
4461 attp = &att->next)
4462 if (att->offset == 0
4463 && GET_MODE (att->loc) == GET_MODE (node->loc))
4464 {
4465 if (dv_is_value_p (att->dv))
4466 {
4467 rtx cval = dv_as_value (att->dv);
4468 node->loc = cval;
4469 check_dupes = true;
4470 break;
4471 }
4472 else if (dv_as_opaque (att->dv) == dv_as_opaque (var->dv))
4473 curp = attp;
4474 }
4475
4476 if (!curp)
4477 {
4478 curp = attp;
4479 while (*curp)
4480 if ((*curp)->offset == 0
4481 && GET_MODE ((*curp)->loc) == GET_MODE (node->loc)
4482 && dv_as_opaque ((*curp)->dv) == dv_as_opaque (var->dv))
4483 break;
4484 else
4485 curp = &(*curp)->next;
4486 gcc_assert (*curp);
4487 }
4488
4489 if (!att)
4490 {
4491 decl_or_value cdv;
4492 rtx cval;
4493
4494 if (!*dfpm->permp)
4495 {
4496 *dfpm->permp = XNEW (dataflow_set);
4497 dataflow_set_init (*dfpm->permp);
4498 }
4499
4500 for (att = (*dfpm->permp)->regs[REGNO (node->loc)];
4501 att; att = att->next)
4502 if (GET_MODE (att->loc) == GET_MODE (node->loc))
4503 {
4504 gcc_assert (att->offset == 0
4505 && dv_is_value_p (att->dv));
4506 val_reset (set, att->dv);
4507 break;
4508 }
4509
4510 if (att)
4511 {
4512 cdv = att->dv;
4513 cval = dv_as_value (cdv);
4514 }
4515 else
4516 {
4517 /* Create a unique value to hold this register,
4518 that ought to be found and reused in
4519 subsequent rounds. */
4520 cselib_val *v;
4521 gcc_assert (!cselib_lookup (node->loc,
4522 GET_MODE (node->loc), 0,
4523 VOIDmode));
4524 v = cselib_lookup (node->loc, GET_MODE (node->loc), 1,
4525 VOIDmode);
4526 cselib_preserve_value (v);
4527 cselib_invalidate_rtx (node->loc);
4528 cval = v->val_rtx;
4529 cdv = dv_from_value (cval);
4530 if (dump_file)
4531 fprintf (dump_file,
4532 "Created new value %u:%u for reg %i\n",
4533 v->uid, v->hash, REGNO (node->loc));
4534 }
4535
4536 var_reg_decl_set (*dfpm->permp, node->loc,
4537 VAR_INIT_STATUS_INITIALIZED,
4538 cdv, 0, NULL, INSERT);
4539
4540 node->loc = cval;
4541 check_dupes = true;
4542 }
4543
4544 /* Remove attribute referring to the decl, which now
4545 uses the value for the register, already existing or
4546 to be added when we bring perm in. */
4547 att = *curp;
4548 *curp = att->next;
4549 delete att;
4550 }
4551 }
4552
4553 if (check_dupes)
4554 remove_duplicate_values (var);
4555 }
4556
4557 return 1;
4558 }
4559
4560 /* Reset values in the permanent set that are not associated with the
4561 chosen expression. */
4562
4563 int
4564 variable_post_merge_perm_vals (variable **pslot, dfset_post_merge *dfpm)
4565 {
4566 dataflow_set *set = dfpm->set;
4567 variable *pvar = *pslot, *var;
4568 location_chain *pnode;
4569 decl_or_value dv;
4570 attrs *att;
4571
4572 gcc_assert (dv_is_value_p (pvar->dv)
4573 && pvar->n_var_parts == 1);
4574 pnode = pvar->var_part[0].loc_chain;
4575 gcc_assert (pnode
4576 && !pnode->next
4577 && REG_P (pnode->loc));
4578
4579 dv = pvar->dv;
4580
4581 var = shared_hash_find (set->vars, dv);
4582 if (var)
4583 {
4584 /* Although variable_post_merge_new_vals may have made decls
4585 non-star-canonical, values that pre-existed in canonical form
4586 remain canonical, and newly-created values reference a single
4587 REG, so they are canonical as well. Since VAR has the
4588 location list for a VALUE, using find_loc_in_1pdv for it is
4589 fine, since VALUEs don't map back to DECLs. */
4590 if (find_loc_in_1pdv (pnode->loc, var, shared_hash_htab (set->vars)))
4591 return 1;
4592 val_reset (set, dv);
4593 }
4594
4595 for (att = set->regs[REGNO (pnode->loc)]; att; att = att->next)
4596 if (att->offset == 0
4597 && GET_MODE (att->loc) == GET_MODE (pnode->loc)
4598 && dv_is_value_p (att->dv))
4599 break;
4600
4601 /* If there is a value associated with this register already, create
4602 an equivalence. */
4603 if (att && dv_as_value (att->dv) != dv_as_value (dv))
4604 {
4605 rtx cval = dv_as_value (att->dv);
4606 set_variable_part (set, cval, dv, 0, pnode->init, NULL, INSERT);
4607 set_variable_part (set, dv_as_value (dv), att->dv, 0, pnode->init,
4608 NULL, INSERT);
4609 }
4610 else if (!att)
4611 {
4612 attrs_list_insert (&set->regs[REGNO (pnode->loc)],
4613 dv, 0, pnode->loc);
4614 variable_union (pvar, set);
4615 }
4616
4617 return 1;
4618 }
4619
4620 /* Just checking stuff and registering register attributes for
4621 now. */
4622
4623 static void
4624 dataflow_post_merge_adjust (dataflow_set *set, dataflow_set **permp)
4625 {
4626 struct dfset_post_merge dfpm;
4627
4628 dfpm.set = set;
4629 dfpm.permp = permp;
4630
4631 shared_hash_htab (set->vars)
4632 ->traverse <dfset_post_merge*, variable_post_merge_new_vals> (&dfpm);
4633 if (*permp)
4634 shared_hash_htab ((*permp)->vars)
4635 ->traverse <dfset_post_merge*, variable_post_merge_perm_vals> (&dfpm);
4636 shared_hash_htab (set->vars)
4637 ->traverse <dataflow_set *, canonicalize_values_star> (set);
4638 shared_hash_htab (set->vars)
4639 ->traverse <dataflow_set *, canonicalize_vars_star> (set);
4640 }
4641
4642 /* Return a node whose loc is a MEM that refers to EXPR in the
4643 location list of a one-part variable or value VAR, or in that of
4644 any values recursively mentioned in the location lists. */
4645
4646 static location_chain *
4647 find_mem_expr_in_1pdv (tree expr, rtx val, variable_table_type *vars)
4648 {
4649 location_chain *node;
4650 decl_or_value dv;
4651 variable *var;
4652 location_chain *where = NULL;
4653
4654 if (!val)
4655 return NULL;
4656
4657 gcc_assert (GET_CODE (val) == VALUE
4658 && !VALUE_RECURSED_INTO (val));
4659
4660 dv = dv_from_value (val);
4661 var = vars->find_with_hash (dv, dv_htab_hash (dv));
4662
4663 if (!var)
4664 return NULL;
4665
4666 gcc_assert (var->onepart);
4667
4668 if (!var->n_var_parts)
4669 return NULL;
4670
4671 VALUE_RECURSED_INTO (val) = true;
4672
4673 for (node = var->var_part[0].loc_chain; node; node = node->next)
4674 if (MEM_P (node->loc)
4675 && MEM_EXPR (node->loc) == expr
4676 && int_mem_offset (node->loc) == 0)
4677 {
4678 where = node;
4679 break;
4680 }
4681 else if (GET_CODE (node->loc) == VALUE
4682 && !VALUE_RECURSED_INTO (node->loc)
4683 && (where = find_mem_expr_in_1pdv (expr, node->loc, vars)))
4684 break;
4685
4686 VALUE_RECURSED_INTO (val) = false;
4687
4688 return where;
4689 }
4690
4691 /* Return TRUE if the value of MEM may vary across a call. */
4692
4693 static bool
4694 mem_dies_at_call (rtx mem)
4695 {
4696 tree expr = MEM_EXPR (mem);
4697 tree decl;
4698
4699 if (!expr)
4700 return true;
4701
4702 decl = get_base_address (expr);
4703
4704 if (!decl)
4705 return true;
4706
4707 if (!DECL_P (decl))
4708 return true;
4709
4710 return (may_be_aliased (decl)
4711 || (!TREE_READONLY (decl) && is_global_var (decl)));
4712 }
4713
4714 /* Remove all MEMs from the location list of a hash table entry for a
4715 one-part variable, except those whose MEM attributes map back to
4716 the variable itself, directly or within a VALUE. */
4717
4718 int
4719 dataflow_set_preserve_mem_locs (variable **slot, dataflow_set *set)
4720 {
4721 variable *var = *slot;
4722
4723 if (var->onepart == ONEPART_VDECL || var->onepart == ONEPART_DEXPR)
4724 {
4725 tree decl = dv_as_decl (var->dv);
4726 location_chain *loc, **locp;
4727 bool changed = false;
4728
4729 if (!var->n_var_parts)
4730 return 1;
4731
4732 gcc_assert (var->n_var_parts == 1);
4733
4734 if (shared_var_p (var, set->vars))
4735 {
4736 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4737 {
4738 /* We want to remove dying MEMs that don't refer to DECL. */
4739 if (GET_CODE (loc->loc) == MEM
4740 && (MEM_EXPR (loc->loc) != decl
4741 || int_mem_offset (loc->loc) != 0)
4742 && mem_dies_at_call (loc->loc))
4743 break;
4744 /* We want to move here MEMs that do refer to DECL. */
4745 else if (GET_CODE (loc->loc) == VALUE
4746 && find_mem_expr_in_1pdv (decl, loc->loc,
4747 shared_hash_htab (set->vars)))
4748 break;
4749 }
4750
4751 if (!loc)
4752 return 1;
4753
4754 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4755 var = *slot;
4756 gcc_assert (var->n_var_parts == 1);
4757 }
4758
4759 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4760 loc; loc = *locp)
4761 {
4762 rtx old_loc = loc->loc;
4763 if (GET_CODE (old_loc) == VALUE)
4764 {
4765 location_chain *mem_node
4766 = find_mem_expr_in_1pdv (decl, loc->loc,
4767 shared_hash_htab (set->vars));
4768
4769 /* ??? This picks up only one out of multiple MEMs that
4770 refer to the same variable. Do we ever need to be
4771 concerned about dealing with more than one, or, given
4772 that they should all map to the same variable
4773 location, their addresses will have been merged and
4774 they will be regarded as equivalent? */
4775 if (mem_node)
4776 {
4777 loc->loc = mem_node->loc;
4778 loc->set_src = mem_node->set_src;
4779 loc->init = MIN (loc->init, mem_node->init);
4780 }
4781 }
4782
4783 if (GET_CODE (loc->loc) != MEM
4784 || (MEM_EXPR (loc->loc) == decl
4785 && int_mem_offset (loc->loc) == 0)
4786 || !mem_dies_at_call (loc->loc))
4787 {
4788 if (old_loc != loc->loc && emit_notes)
4789 {
4790 if (old_loc == var->var_part[0].cur_loc)
4791 {
4792 changed = true;
4793 var->var_part[0].cur_loc = NULL;
4794 }
4795 }
4796 locp = &loc->next;
4797 continue;
4798 }
4799
4800 if (emit_notes)
4801 {
4802 if (old_loc == var->var_part[0].cur_loc)
4803 {
4804 changed = true;
4805 var->var_part[0].cur_loc = NULL;
4806 }
4807 }
4808 *locp = loc->next;
4809 delete loc;
4810 }
4811
4812 if (!var->var_part[0].loc_chain)
4813 {
4814 var->n_var_parts--;
4815 changed = true;
4816 }
4817 if (changed)
4818 variable_was_changed (var, set);
4819 }
4820
4821 return 1;
4822 }
4823
4824 /* Remove all MEMs from the location list of a hash table entry for a
4825 onepart variable. */
4826
4827 int
4828 dataflow_set_remove_mem_locs (variable **slot, dataflow_set *set)
4829 {
4830 variable *var = *slot;
4831
4832 if (var->onepart != NOT_ONEPART)
4833 {
4834 location_chain *loc, **locp;
4835 bool changed = false;
4836 rtx cur_loc;
4837
4838 gcc_assert (var->n_var_parts == 1);
4839
4840 if (shared_var_p (var, set->vars))
4841 {
4842 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4843 if (GET_CODE (loc->loc) == MEM
4844 && mem_dies_at_call (loc->loc))
4845 break;
4846
4847 if (!loc)
4848 return 1;
4849
4850 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4851 var = *slot;
4852 gcc_assert (var->n_var_parts == 1);
4853 }
4854
4855 if (VAR_LOC_1PAUX (var))
4856 cur_loc = VAR_LOC_FROM (var);
4857 else
4858 cur_loc = var->var_part[0].cur_loc;
4859
4860 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4861 loc; loc = *locp)
4862 {
4863 if (GET_CODE (loc->loc) != MEM
4864 || !mem_dies_at_call (loc->loc))
4865 {
4866 locp = &loc->next;
4867 continue;
4868 }
4869
4870 *locp = loc->next;
4871 /* If we have deleted the location which was last emitted
4872 we have to emit new location so add the variable to set
4873 of changed variables. */
4874 if (cur_loc == loc->loc)
4875 {
4876 changed = true;
4877 var->var_part[0].cur_loc = NULL;
4878 if (VAR_LOC_1PAUX (var))
4879 VAR_LOC_FROM (var) = NULL;
4880 }
4881 delete loc;
4882 }
4883
4884 if (!var->var_part[0].loc_chain)
4885 {
4886 var->n_var_parts--;
4887 changed = true;
4888 }
4889 if (changed)
4890 variable_was_changed (var, set);
4891 }
4892
4893 return 1;
4894 }
4895
4896 /* Remove all variable-location information about call-clobbered
4897 registers, as well as associations between MEMs and VALUEs. */
4898
4899 static void
4900 dataflow_set_clear_at_call (dataflow_set *set, rtx_insn *call_insn)
4901 {
4902 unsigned int r;
4903 hard_reg_set_iterator hrsi;
4904
4905 HARD_REG_SET callee_clobbers
4906 = insn_callee_abi (call_insn).full_reg_clobbers ();
4907
4908 EXECUTE_IF_SET_IN_HARD_REG_SET (callee_clobbers, 0, r, hrsi)
4909 var_regno_delete (set, r);
4910
4911 if (MAY_HAVE_DEBUG_BIND_INSNS)
4912 {
4913 set->traversed_vars = set->vars;
4914 shared_hash_htab (set->vars)
4915 ->traverse <dataflow_set *, dataflow_set_preserve_mem_locs> (set);
4916 set->traversed_vars = set->vars;
4917 shared_hash_htab (set->vars)
4918 ->traverse <dataflow_set *, dataflow_set_remove_mem_locs> (set);
4919 set->traversed_vars = NULL;
4920 }
4921 }
4922
4923 static bool
4924 variable_part_different_p (variable_part *vp1, variable_part *vp2)
4925 {
4926 location_chain *lc1, *lc2;
4927
4928 for (lc1 = vp1->loc_chain; lc1; lc1 = lc1->next)
4929 {
4930 for (lc2 = vp2->loc_chain; lc2; lc2 = lc2->next)
4931 {
4932 if (REG_P (lc1->loc) && REG_P (lc2->loc))
4933 {
4934 if (REGNO (lc1->loc) == REGNO (lc2->loc))
4935 break;
4936 }
4937 if (rtx_equal_p (lc1->loc, lc2->loc))
4938 break;
4939 }
4940 if (!lc2)
4941 return true;
4942 }
4943 return false;
4944 }
4945
4946 /* Return true if one-part variables VAR1 and VAR2 are different.
4947 They must be in canonical order. */
4948
4949 static bool
4950 onepart_variable_different_p (variable *var1, variable *var2)
4951 {
4952 location_chain *lc1, *lc2;
4953
4954 if (var1 == var2)
4955 return false;
4956
4957 gcc_assert (var1->n_var_parts == 1
4958 && var2->n_var_parts == 1);
4959
4960 lc1 = var1->var_part[0].loc_chain;
4961 lc2 = var2->var_part[0].loc_chain;
4962
4963 gcc_assert (lc1 && lc2);
4964
4965 while (lc1 && lc2)
4966 {
4967 if (loc_cmp (lc1->loc, lc2->loc))
4968 return true;
4969 lc1 = lc1->next;
4970 lc2 = lc2->next;
4971 }
4972
4973 return lc1 != lc2;
4974 }
4975
4976 /* Return true if one-part variables VAR1 and VAR2 are different.
4977 They must be in canonical order. */
4978
4979 static void
4980 dump_onepart_variable_differences (variable *var1, variable *var2)
4981 {
4982 location_chain *lc1, *lc2;
4983
4984 gcc_assert (var1 != var2);
4985 gcc_assert (dump_file);
4986 gcc_assert (dv_as_opaque (var1->dv) == dv_as_opaque (var2->dv));
4987 gcc_assert (var1->n_var_parts == 1
4988 && var2->n_var_parts == 1);
4989
4990 lc1 = var1->var_part[0].loc_chain;
4991 lc2 = var2->var_part[0].loc_chain;
4992
4993 gcc_assert (lc1 && lc2);
4994
4995 while (lc1 && lc2)
4996 {
4997 switch (loc_cmp (lc1->loc, lc2->loc))
4998 {
4999 case -1:
5000 fprintf (dump_file, "removed: ");
5001 print_rtl_single (dump_file, lc1->loc);
5002 lc1 = lc1->next;
5003 continue;
5004 case 0:
5005 break;
5006 case 1:
5007 fprintf (dump_file, "added: ");
5008 print_rtl_single (dump_file, lc2->loc);
5009 lc2 = lc2->next;
5010 continue;
5011 default:
5012 gcc_unreachable ();
5013 }
5014 lc1 = lc1->next;
5015 lc2 = lc2->next;
5016 }
5017
5018 while (lc1)
5019 {
5020 fprintf (dump_file, "removed: ");
5021 print_rtl_single (dump_file, lc1->loc);
5022 lc1 = lc1->next;
5023 }
5024
5025 while (lc2)
5026 {
5027 fprintf (dump_file, "added: ");
5028 print_rtl_single (dump_file, lc2->loc);
5029 lc2 = lc2->next;
5030 }
5031 }
5032
5033 /* Return true if variables VAR1 and VAR2 are different. */
5034
5035 static bool
5036 variable_different_p (variable *var1, variable *var2)
5037 {
5038 int i;
5039
5040 if (var1 == var2)
5041 return false;
5042
5043 if (var1->onepart != var2->onepart)
5044 return true;
5045
5046 if (var1->n_var_parts != var2->n_var_parts)
5047 return true;
5048
5049 if (var1->onepart && var1->n_var_parts)
5050 {
5051 gcc_checking_assert (dv_as_opaque (var1->dv) == dv_as_opaque (var2->dv)
5052 && var1->n_var_parts == 1);
5053 /* One-part values have locations in a canonical order. */
5054 return onepart_variable_different_p (var1, var2);
5055 }
5056
5057 for (i = 0; i < var1->n_var_parts; i++)
5058 {
5059 if (VAR_PART_OFFSET (var1, i) != VAR_PART_OFFSET (var2, i))
5060 return true;
5061 if (variable_part_different_p (&var1->var_part[i], &var2->var_part[i]))
5062 return true;
5063 if (variable_part_different_p (&var2->var_part[i], &var1->var_part[i]))
5064 return true;
5065 }
5066 return false;
5067 }
5068
5069 /* Return true if dataflow sets OLD_SET and NEW_SET differ. */
5070
5071 static bool
5072 dataflow_set_different (dataflow_set *old_set, dataflow_set *new_set)
5073 {
5074 variable_iterator_type hi;
5075 variable *var1;
5076 bool diffound = false;
5077 bool details = (dump_file && (dump_flags & TDF_DETAILS));
5078
5079 #define RETRUE \
5080 do \
5081 { \
5082 if (!details) \
5083 return true; \
5084 else \
5085 diffound = true; \
5086 } \
5087 while (0)
5088
5089 if (old_set->vars == new_set->vars)
5090 return false;
5091
5092 if (shared_hash_htab (old_set->vars)->elements ()
5093 != shared_hash_htab (new_set->vars)->elements ())
5094 RETRUE;
5095
5096 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (old_set->vars),
5097 var1, variable, hi)
5098 {
5099 variable_table_type *htab = shared_hash_htab (new_set->vars);
5100 variable *var2 = htab->find_with_hash (var1->dv, dv_htab_hash (var1->dv));
5101
5102 if (!var2)
5103 {
5104 if (dump_file && (dump_flags & TDF_DETAILS))
5105 {
5106 fprintf (dump_file, "dataflow difference found: removal of:\n");
5107 dump_var (var1);
5108 }
5109 RETRUE;
5110 }
5111 else if (variable_different_p (var1, var2))
5112 {
5113 if (details)
5114 {
5115 fprintf (dump_file, "dataflow difference found: "
5116 "old and new follow:\n");
5117 dump_var (var1);
5118 if (dv_onepart_p (var1->dv))
5119 dump_onepart_variable_differences (var1, var2);
5120 dump_var (var2);
5121 }
5122 RETRUE;
5123 }
5124 }
5125
5126 /* There's no need to traverse the second hashtab unless we want to
5127 print the details. If both have the same number of elements and
5128 the second one had all entries found in the first one, then the
5129 second can't have any extra entries. */
5130 if (!details)
5131 return diffound;
5132
5133 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (new_set->vars),
5134 var1, variable, hi)
5135 {
5136 variable_table_type *htab = shared_hash_htab (old_set->vars);
5137 variable *var2 = htab->find_with_hash (var1->dv, dv_htab_hash (var1->dv));
5138 if (!var2)
5139 {
5140 if (details)
5141 {
5142 fprintf (dump_file, "dataflow difference found: addition of:\n");
5143 dump_var (var1);
5144 }
5145 RETRUE;
5146 }
5147 }
5148
5149 #undef RETRUE
5150
5151 return diffound;
5152 }
5153
5154 /* Free the contents of dataflow set SET. */
5155
5156 static void
5157 dataflow_set_destroy (dataflow_set *set)
5158 {
5159 int i;
5160
5161 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5162 attrs_list_clear (&set->regs[i]);
5163
5164 shared_hash_destroy (set->vars);
5165 set->vars = NULL;
5166 }
5167
5168 /* Return true if T is a tracked parameter with non-degenerate record type. */
5169
5170 static bool
5171 tracked_record_parameter_p (tree t)
5172 {
5173 if (TREE_CODE (t) != PARM_DECL)
5174 return false;
5175
5176 if (DECL_MODE (t) == BLKmode)
5177 return false;
5178
5179 tree type = TREE_TYPE (t);
5180 if (TREE_CODE (type) != RECORD_TYPE)
5181 return false;
5182
5183 if (TYPE_FIELDS (type) == NULL_TREE
5184 || DECL_CHAIN (TYPE_FIELDS (type)) == NULL_TREE)
5185 return false;
5186
5187 return true;
5188 }
5189
5190 /* Shall EXPR be tracked? */
5191
5192 static bool
5193 track_expr_p (tree expr, bool need_rtl)
5194 {
5195 rtx decl_rtl;
5196 tree realdecl;
5197
5198 if (TREE_CODE (expr) == DEBUG_EXPR_DECL)
5199 return DECL_RTL_SET_P (expr);
5200
5201 /* If EXPR is not a parameter or a variable do not track it. */
5202 if (!VAR_P (expr) && TREE_CODE (expr) != PARM_DECL)
5203 return 0;
5204
5205 /* It also must have a name... */
5206 if (!DECL_NAME (expr) && need_rtl)
5207 return 0;
5208
5209 /* ... and a RTL assigned to it. */
5210 decl_rtl = DECL_RTL_IF_SET (expr);
5211 if (!decl_rtl && need_rtl)
5212 return 0;
5213
5214 /* If this expression is really a debug alias of some other declaration, we
5215 don't need to track this expression if the ultimate declaration is
5216 ignored. */
5217 realdecl = expr;
5218 if (VAR_P (realdecl) && DECL_HAS_DEBUG_EXPR_P (realdecl))
5219 {
5220 realdecl = DECL_DEBUG_EXPR (realdecl);
5221 if (!DECL_P (realdecl))
5222 {
5223 if (handled_component_p (realdecl)
5224 || (TREE_CODE (realdecl) == MEM_REF
5225 && TREE_CODE (TREE_OPERAND (realdecl, 0)) == ADDR_EXPR))
5226 {
5227 HOST_WIDE_INT bitsize, bitpos;
5228 bool reverse;
5229 tree innerdecl
5230 = get_ref_base_and_extent_hwi (realdecl, &bitpos,
5231 &bitsize, &reverse);
5232 if (!innerdecl
5233 || !DECL_P (innerdecl)
5234 || DECL_IGNORED_P (innerdecl)
5235 /* Do not track declarations for parts of tracked record
5236 parameters since we want to track them as a whole. */
5237 || tracked_record_parameter_p (innerdecl)
5238 || TREE_STATIC (innerdecl)
5239 || bitsize == 0
5240 || bitpos + bitsize > 256)
5241 return 0;
5242 else
5243 realdecl = expr;
5244 }
5245 else
5246 return 0;
5247 }
5248 }
5249
5250 /* Do not track EXPR if REALDECL it should be ignored for debugging
5251 purposes. */
5252 if (DECL_IGNORED_P (realdecl))
5253 return 0;
5254
5255 /* Do not track global variables until we are able to emit correct location
5256 list for them. */
5257 if (TREE_STATIC (realdecl))
5258 return 0;
5259
5260 /* When the EXPR is a DECL for alias of some variable (see example)
5261 the TREE_STATIC flag is not used. Disable tracking all DECLs whose
5262 DECL_RTL contains SYMBOL_REF.
5263
5264 Example:
5265 extern char **_dl_argv_internal __attribute__ ((alias ("_dl_argv")));
5266 char **_dl_argv;
5267 */
5268 if (decl_rtl && MEM_P (decl_rtl)
5269 && contains_symbol_ref_p (XEXP (decl_rtl, 0)))
5270 return 0;
5271
5272 /* If RTX is a memory it should not be very large (because it would be
5273 an array or struct). */
5274 if (decl_rtl && MEM_P (decl_rtl))
5275 {
5276 /* Do not track structures and arrays. */
5277 if ((GET_MODE (decl_rtl) == BLKmode
5278 || AGGREGATE_TYPE_P (TREE_TYPE (realdecl)))
5279 && !tracked_record_parameter_p (realdecl))
5280 return 0;
5281 if (MEM_SIZE_KNOWN_P (decl_rtl)
5282 && maybe_gt (MEM_SIZE (decl_rtl), MAX_VAR_PARTS))
5283 return 0;
5284 }
5285
5286 DECL_CHANGED (expr) = 0;
5287 DECL_CHANGED (realdecl) = 0;
5288 return 1;
5289 }
5290
5291 /* Determine whether a given LOC refers to the same variable part as
5292 EXPR+OFFSET. */
5293
5294 static bool
5295 same_variable_part_p (rtx loc, tree expr, poly_int64 offset)
5296 {
5297 tree expr2;
5298 poly_int64 offset2;
5299
5300 if (! DECL_P (expr))
5301 return false;
5302
5303 if (REG_P (loc))
5304 {
5305 expr2 = REG_EXPR (loc);
5306 offset2 = REG_OFFSET (loc);
5307 }
5308 else if (MEM_P (loc))
5309 {
5310 expr2 = MEM_EXPR (loc);
5311 offset2 = int_mem_offset (loc);
5312 }
5313 else
5314 return false;
5315
5316 if (! expr2 || ! DECL_P (expr2))
5317 return false;
5318
5319 expr = var_debug_decl (expr);
5320 expr2 = var_debug_decl (expr2);
5321
5322 return (expr == expr2 && known_eq (offset, offset2));
5323 }
5324
5325 /* LOC is a REG or MEM that we would like to track if possible.
5326 If EXPR is null, we don't know what expression LOC refers to,
5327 otherwise it refers to EXPR + OFFSET. STORE_REG_P is true if
5328 LOC is an lvalue register.
5329
5330 Return true if EXPR is nonnull and if LOC, or some lowpart of it,
5331 is something we can track. When returning true, store the mode of
5332 the lowpart we can track in *MODE_OUT (if nonnull) and its offset
5333 from EXPR in *OFFSET_OUT (if nonnull). */
5334
5335 static bool
5336 track_loc_p (rtx loc, tree expr, poly_int64 offset, bool store_reg_p,
5337 machine_mode *mode_out, HOST_WIDE_INT *offset_out)
5338 {
5339 machine_mode mode;
5340
5341 if (expr == NULL || !track_expr_p (expr, true))
5342 return false;
5343
5344 /* If REG was a paradoxical subreg, its REG_ATTRS will describe the
5345 whole subreg, but only the old inner part is really relevant. */
5346 mode = GET_MODE (loc);
5347 if (REG_P (loc) && !HARD_REGISTER_NUM_P (ORIGINAL_REGNO (loc)))
5348 {
5349 machine_mode pseudo_mode;
5350
5351 pseudo_mode = PSEUDO_REGNO_MODE (ORIGINAL_REGNO (loc));
5352 if (paradoxical_subreg_p (mode, pseudo_mode))
5353 {
5354 offset += byte_lowpart_offset (pseudo_mode, mode);
5355 mode = pseudo_mode;
5356 }
5357 }
5358
5359 /* If LOC is a paradoxical lowpart of EXPR, refer to EXPR itself.
5360 Do the same if we are storing to a register and EXPR occupies
5361 the whole of register LOC; in that case, the whole of EXPR is
5362 being changed. We exclude complex modes from the second case
5363 because the real and imaginary parts are represented as separate
5364 pseudo registers, even if the whole complex value fits into one
5365 hard register. */
5366 if ((paradoxical_subreg_p (mode, DECL_MODE (expr))
5367 || (store_reg_p
5368 && !COMPLEX_MODE_P (DECL_MODE (expr))
5369 && hard_regno_nregs (REGNO (loc), DECL_MODE (expr)) == 1))
5370 && known_eq (offset + byte_lowpart_offset (DECL_MODE (expr), mode), 0))
5371 {
5372 mode = DECL_MODE (expr);
5373 offset = 0;
5374 }
5375
5376 HOST_WIDE_INT const_offset;
5377 if (!track_offset_p (offset, &const_offset))
5378 return false;
5379
5380 if (mode_out)
5381 *mode_out = mode;
5382 if (offset_out)
5383 *offset_out = const_offset;
5384 return true;
5385 }
5386
5387 /* Return the MODE lowpart of LOC, or null if LOC is not something we
5388 want to track. When returning nonnull, make sure that the attributes
5389 on the returned value are updated. */
5390
5391 static rtx
5392 var_lowpart (machine_mode mode, rtx loc)
5393 {
5394 unsigned int regno;
5395
5396 if (GET_MODE (loc) == mode)
5397 return loc;
5398
5399 if (!REG_P (loc) && !MEM_P (loc))
5400 return NULL;
5401
5402 poly_uint64 offset = byte_lowpart_offset (mode, GET_MODE (loc));
5403
5404 if (MEM_P (loc))
5405 return adjust_address_nv (loc, mode, offset);
5406
5407 poly_uint64 reg_offset = subreg_lowpart_offset (mode, GET_MODE (loc));
5408 regno = REGNO (loc) + subreg_regno_offset (REGNO (loc), GET_MODE (loc),
5409 reg_offset, mode);
5410 return gen_rtx_REG_offset (loc, mode, regno, offset);
5411 }
5412
5413 /* Carry information about uses and stores while walking rtx. */
5414
5415 struct count_use_info
5416 {
5417 /* The insn where the RTX is. */
5418 rtx_insn *insn;
5419
5420 /* The basic block where insn is. */
5421 basic_block bb;
5422
5423 /* The array of n_sets sets in the insn, as determined by cselib. */
5424 struct cselib_set *sets;
5425 int n_sets;
5426
5427 /* True if we're counting stores, false otherwise. */
5428 bool store_p;
5429 };
5430
5431 /* Find a VALUE corresponding to X. */
5432
5433 static inline cselib_val *
5434 find_use_val (rtx x, machine_mode mode, struct count_use_info *cui)
5435 {
5436 int i;
5437
5438 if (cui->sets)
5439 {
5440 /* This is called after uses are set up and before stores are
5441 processed by cselib, so it's safe to look up srcs, but not
5442 dsts. So we look up expressions that appear in srcs or in
5443 dest expressions, but we search the sets array for dests of
5444 stores. */
5445 if (cui->store_p)
5446 {
5447 /* Some targets represent memset and memcpy patterns
5448 by (set (mem:BLK ...) (reg:[QHSD]I ...)) or
5449 (set (mem:BLK ...) (const_int ...)) or
5450 (set (mem:BLK ...) (mem:BLK ...)). Don't return anything
5451 in that case, otherwise we end up with mode mismatches. */
5452 if (mode == BLKmode && MEM_P (x))
5453 return NULL;
5454 for (i = 0; i < cui->n_sets; i++)
5455 if (cui->sets[i].dest == x)
5456 return cui->sets[i].src_elt;
5457 }
5458 else
5459 return cselib_lookup (x, mode, 0, VOIDmode);
5460 }
5461
5462 return NULL;
5463 }
5464
5465 /* Replace all registers and addresses in an expression with VALUE
5466 expressions that map back to them, unless the expression is a
5467 register. If no mapping is or can be performed, returns NULL. */
5468
5469 static rtx
5470 replace_expr_with_values (rtx loc)
5471 {
5472 if (REG_P (loc) || GET_CODE (loc) == ENTRY_VALUE)
5473 return NULL;
5474 else if (MEM_P (loc))
5475 {
5476 cselib_val *addr = cselib_lookup (XEXP (loc, 0),
5477 get_address_mode (loc), 0,
5478 GET_MODE (loc));
5479 if (addr)
5480 return replace_equiv_address_nv (loc, addr->val_rtx);
5481 else
5482 return NULL;
5483 }
5484 else
5485 return cselib_subst_to_values (loc, VOIDmode);
5486 }
5487
5488 /* Return true if X contains a DEBUG_EXPR. */
5489
5490 static bool
5491 rtx_debug_expr_p (const_rtx x)
5492 {
5493 subrtx_iterator::array_type array;
5494 FOR_EACH_SUBRTX (iter, array, x, ALL)
5495 if (GET_CODE (*iter) == DEBUG_EXPR)
5496 return true;
5497 return false;
5498 }
5499
5500 /* Determine what kind of micro operation to choose for a USE. Return
5501 MO_CLOBBER if no micro operation is to be generated. */
5502
5503 static enum micro_operation_type
5504 use_type (rtx loc, struct count_use_info *cui, machine_mode *modep)
5505 {
5506 tree expr;
5507
5508 if (cui && cui->sets)
5509 {
5510 if (GET_CODE (loc) == VAR_LOCATION)
5511 {
5512 if (track_expr_p (PAT_VAR_LOCATION_DECL (loc), false))
5513 {
5514 rtx ploc = PAT_VAR_LOCATION_LOC (loc);
5515 if (! VAR_LOC_UNKNOWN_P (ploc))
5516 {
5517 cselib_val *val = cselib_lookup (ploc, GET_MODE (loc), 1,
5518 VOIDmode);
5519
5520 /* ??? flag_float_store and volatile mems are never
5521 given values, but we could in theory use them for
5522 locations. */
5523 gcc_assert (val || 1);
5524 }
5525 return MO_VAL_LOC;
5526 }
5527 else
5528 return MO_CLOBBER;
5529 }
5530
5531 if (REG_P (loc) || MEM_P (loc))
5532 {
5533 if (modep)
5534 *modep = GET_MODE (loc);
5535 if (cui->store_p)
5536 {
5537 if (REG_P (loc)
5538 || (find_use_val (loc, GET_MODE (loc), cui)
5539 && cselib_lookup (XEXP (loc, 0),
5540 get_address_mode (loc), 0,
5541 GET_MODE (loc))))
5542 return MO_VAL_SET;
5543 }
5544 else
5545 {
5546 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5547
5548 if (val && !cselib_preserved_value_p (val))
5549 return MO_VAL_USE;
5550 }
5551 }
5552 }
5553
5554 if (REG_P (loc))
5555 {
5556 gcc_assert (REGNO (loc) < FIRST_PSEUDO_REGISTER);
5557
5558 if (loc == cfa_base_rtx)
5559 return MO_CLOBBER;
5560 expr = REG_EXPR (loc);
5561
5562 if (!expr)
5563 return MO_USE_NO_VAR;
5564 else if (target_for_debug_bind (var_debug_decl (expr)))
5565 return MO_CLOBBER;
5566 else if (track_loc_p (loc, expr, REG_OFFSET (loc),
5567 false, modep, NULL))
5568 return MO_USE;
5569 else
5570 return MO_USE_NO_VAR;
5571 }
5572 else if (MEM_P (loc))
5573 {
5574 expr = MEM_EXPR (loc);
5575
5576 if (!expr)
5577 return MO_CLOBBER;
5578 else if (target_for_debug_bind (var_debug_decl (expr)))
5579 return MO_CLOBBER;
5580 else if (track_loc_p (loc, expr, int_mem_offset (loc),
5581 false, modep, NULL)
5582 /* Multi-part variables shouldn't refer to one-part
5583 variable names such as VALUEs (never happens) or
5584 DEBUG_EXPRs (only happens in the presence of debug
5585 insns). */
5586 && (!MAY_HAVE_DEBUG_BIND_INSNS
5587 || !rtx_debug_expr_p (XEXP (loc, 0))))
5588 return MO_USE;
5589 else
5590 return MO_CLOBBER;
5591 }
5592
5593 return MO_CLOBBER;
5594 }
5595
5596 /* Log to OUT information about micro-operation MOPT involving X in
5597 INSN of BB. */
5598
5599 static inline void
5600 log_op_type (rtx x, basic_block bb, rtx_insn *insn,
5601 enum micro_operation_type mopt, FILE *out)
5602 {
5603 fprintf (out, "bb %i op %i insn %i %s ",
5604 bb->index, VTI (bb)->mos.length (),
5605 INSN_UID (insn), micro_operation_type_name[mopt]);
5606 print_inline_rtx (out, x, 2);
5607 fputc ('\n', out);
5608 }
5609
5610 /* Tell whether the CONCAT used to holds a VALUE and its location
5611 needs value resolution, i.e., an attempt of mapping the location
5612 back to other incoming values. */
5613 #define VAL_NEEDS_RESOLUTION(x) \
5614 (RTL_FLAG_CHECK1 ("VAL_NEEDS_RESOLUTION", (x), CONCAT)->volatil)
5615 /* Whether the location in the CONCAT is a tracked expression, that
5616 should also be handled like a MO_USE. */
5617 #define VAL_HOLDS_TRACK_EXPR(x) \
5618 (RTL_FLAG_CHECK1 ("VAL_HOLDS_TRACK_EXPR", (x), CONCAT)->used)
5619 /* Whether the location in the CONCAT should be handled like a MO_COPY
5620 as well. */
5621 #define VAL_EXPR_IS_COPIED(x) \
5622 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_COPIED", (x), CONCAT)->jump)
5623 /* Whether the location in the CONCAT should be handled like a
5624 MO_CLOBBER as well. */
5625 #define VAL_EXPR_IS_CLOBBERED(x) \
5626 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_CLOBBERED", (x), CONCAT)->unchanging)
5627
5628 /* All preserved VALUEs. */
5629 static vec<rtx> preserved_values;
5630
5631 /* Ensure VAL is preserved and remember it in a vector for vt_emit_notes. */
5632
5633 static void
5634 preserve_value (cselib_val *val)
5635 {
5636 cselib_preserve_value (val);
5637 preserved_values.safe_push (val->val_rtx);
5638 }
5639
5640 /* Helper function for MO_VAL_LOC handling. Return non-zero if
5641 any rtxes not suitable for CONST use not replaced by VALUEs
5642 are discovered. */
5643
5644 static bool
5645 non_suitable_const (const_rtx x)
5646 {
5647 subrtx_iterator::array_type array;
5648 FOR_EACH_SUBRTX (iter, array, x, ALL)
5649 {
5650 const_rtx x = *iter;
5651 switch (GET_CODE (x))
5652 {
5653 case REG:
5654 case DEBUG_EXPR:
5655 case PC:
5656 case SCRATCH:
5657 case CC0:
5658 case ASM_INPUT:
5659 case ASM_OPERANDS:
5660 return true;
5661 case MEM:
5662 if (!MEM_READONLY_P (x))
5663 return true;
5664 break;
5665 default:
5666 break;
5667 }
5668 }
5669 return false;
5670 }
5671
5672 /* Add uses (register and memory references) LOC which will be tracked
5673 to VTI (bb)->mos. */
5674
5675 static void
5676 add_uses (rtx loc, struct count_use_info *cui)
5677 {
5678 machine_mode mode = VOIDmode;
5679 enum micro_operation_type type = use_type (loc, cui, &mode);
5680
5681 if (type != MO_CLOBBER)
5682 {
5683 basic_block bb = cui->bb;
5684 micro_operation mo;
5685
5686 mo.type = type;
5687 mo.u.loc = type == MO_USE ? var_lowpart (mode, loc) : loc;
5688 mo.insn = cui->insn;
5689
5690 if (type == MO_VAL_LOC)
5691 {
5692 rtx oloc = loc;
5693 rtx vloc = PAT_VAR_LOCATION_LOC (oloc);
5694 cselib_val *val;
5695
5696 gcc_assert (cui->sets);
5697
5698 if (MEM_P (vloc)
5699 && !REG_P (XEXP (vloc, 0))
5700 && !MEM_P (XEXP (vloc, 0)))
5701 {
5702 rtx mloc = vloc;
5703 machine_mode address_mode = get_address_mode (mloc);
5704 cselib_val *val
5705 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5706 GET_MODE (mloc));
5707
5708 if (val && !cselib_preserved_value_p (val))
5709 preserve_value (val);
5710 }
5711
5712 if (CONSTANT_P (vloc)
5713 && (GET_CODE (vloc) != CONST || non_suitable_const (vloc)))
5714 /* For constants don't look up any value. */;
5715 else if (!VAR_LOC_UNKNOWN_P (vloc) && !unsuitable_loc (vloc)
5716 && (val = find_use_val (vloc, GET_MODE (oloc), cui)))
5717 {
5718 machine_mode mode2;
5719 enum micro_operation_type type2;
5720 rtx nloc = NULL;
5721 bool resolvable = REG_P (vloc) || MEM_P (vloc);
5722
5723 if (resolvable)
5724 nloc = replace_expr_with_values (vloc);
5725
5726 if (nloc)
5727 {
5728 oloc = shallow_copy_rtx (oloc);
5729 PAT_VAR_LOCATION_LOC (oloc) = nloc;
5730 }
5731
5732 oloc = gen_rtx_CONCAT (mode, val->val_rtx, oloc);
5733
5734 type2 = use_type (vloc, 0, &mode2);
5735
5736 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5737 || type2 == MO_CLOBBER);
5738
5739 if (type2 == MO_CLOBBER
5740 && !cselib_preserved_value_p (val))
5741 {
5742 VAL_NEEDS_RESOLUTION (oloc) = resolvable;
5743 preserve_value (val);
5744 }
5745 }
5746 else if (!VAR_LOC_UNKNOWN_P (vloc))
5747 {
5748 oloc = shallow_copy_rtx (oloc);
5749 PAT_VAR_LOCATION_LOC (oloc) = gen_rtx_UNKNOWN_VAR_LOC ();
5750 }
5751
5752 mo.u.loc = oloc;
5753 }
5754 else if (type == MO_VAL_USE)
5755 {
5756 machine_mode mode2 = VOIDmode;
5757 enum micro_operation_type type2;
5758 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5759 rtx vloc, oloc = loc, nloc;
5760
5761 gcc_assert (cui->sets);
5762
5763 if (MEM_P (oloc)
5764 && !REG_P (XEXP (oloc, 0))
5765 && !MEM_P (XEXP (oloc, 0)))
5766 {
5767 rtx mloc = oloc;
5768 machine_mode address_mode = get_address_mode (mloc);
5769 cselib_val *val
5770 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5771 GET_MODE (mloc));
5772
5773 if (val && !cselib_preserved_value_p (val))
5774 preserve_value (val);
5775 }
5776
5777 type2 = use_type (loc, 0, &mode2);
5778
5779 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5780 || type2 == MO_CLOBBER);
5781
5782 if (type2 == MO_USE)
5783 vloc = var_lowpart (mode2, loc);
5784 else
5785 vloc = oloc;
5786
5787 /* The loc of a MO_VAL_USE may have two forms:
5788
5789 (concat val src): val is at src, a value-based
5790 representation.
5791
5792 (concat (concat val use) src): same as above, with use as
5793 the MO_USE tracked value, if it differs from src.
5794
5795 */
5796
5797 gcc_checking_assert (REG_P (loc) || MEM_P (loc));
5798 nloc = replace_expr_with_values (loc);
5799 if (!nloc)
5800 nloc = oloc;
5801
5802 if (vloc != nloc)
5803 oloc = gen_rtx_CONCAT (mode2, val->val_rtx, vloc);
5804 else
5805 oloc = val->val_rtx;
5806
5807 mo.u.loc = gen_rtx_CONCAT (mode, oloc, nloc);
5808
5809 if (type2 == MO_USE)
5810 VAL_HOLDS_TRACK_EXPR (mo.u.loc) = 1;
5811 if (!cselib_preserved_value_p (val))
5812 {
5813 VAL_NEEDS_RESOLUTION (mo.u.loc) = 1;
5814 preserve_value (val);
5815 }
5816 }
5817 else
5818 gcc_assert (type == MO_USE || type == MO_USE_NO_VAR);
5819
5820 if (dump_file && (dump_flags & TDF_DETAILS))
5821 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
5822 VTI (bb)->mos.safe_push (mo);
5823 }
5824 }
5825
5826 /* Helper function for finding all uses of REG/MEM in X in insn INSN. */
5827
5828 static void
5829 add_uses_1 (rtx *x, void *cui)
5830 {
5831 subrtx_var_iterator::array_type array;
5832 FOR_EACH_SUBRTX_VAR (iter, array, *x, NONCONST)
5833 add_uses (*iter, (struct count_use_info *) cui);
5834 }
5835
5836 /* This is the value used during expansion of locations. We want it
5837 to be unbounded, so that variables expanded deep in a recursion
5838 nest are fully evaluated, so that their values are cached
5839 correctly. We avoid recursion cycles through other means, and we
5840 don't unshare RTL, so excess complexity is not a problem. */
5841 #define EXPR_DEPTH (INT_MAX)
5842 /* We use this to keep too-complex expressions from being emitted as
5843 location notes, and then to debug information. Users can trade
5844 compile time for ridiculously complex expressions, although they're
5845 seldom useful, and they may often have to be discarded as not
5846 representable anyway. */
5847 #define EXPR_USE_DEPTH (param_max_vartrack_expr_depth)
5848
5849 /* Attempt to reverse the EXPR operation in the debug info and record
5850 it in the cselib table. Say for reg1 = reg2 + 6 even when reg2 is
5851 no longer live we can express its value as VAL - 6. */
5852
5853 static void
5854 reverse_op (rtx val, const_rtx expr, rtx_insn *insn)
5855 {
5856 rtx src, arg, ret;
5857 cselib_val *v;
5858 struct elt_loc_list *l;
5859 enum rtx_code code;
5860 int count;
5861
5862 if (GET_CODE (expr) != SET)
5863 return;
5864
5865 if (!REG_P (SET_DEST (expr)) || GET_MODE (val) != GET_MODE (SET_DEST (expr)))
5866 return;
5867
5868 src = SET_SRC (expr);
5869 switch (GET_CODE (src))
5870 {
5871 case PLUS:
5872 case MINUS:
5873 case XOR:
5874 case NOT:
5875 case NEG:
5876 if (!REG_P (XEXP (src, 0)))
5877 return;
5878 break;
5879 case SIGN_EXTEND:
5880 case ZERO_EXTEND:
5881 if (!REG_P (XEXP (src, 0)) && !MEM_P (XEXP (src, 0)))
5882 return;
5883 break;
5884 default:
5885 return;
5886 }
5887
5888 if (!SCALAR_INT_MODE_P (GET_MODE (src)) || XEXP (src, 0) == cfa_base_rtx)
5889 return;
5890
5891 v = cselib_lookup (XEXP (src, 0), GET_MODE (XEXP (src, 0)), 0, VOIDmode);
5892 if (!v || !cselib_preserved_value_p (v))
5893 return;
5894
5895 /* Use canonical V to avoid creating multiple redundant expressions
5896 for different VALUES equivalent to V. */
5897 v = canonical_cselib_val (v);
5898
5899 /* Adding a reverse op isn't useful if V already has an always valid
5900 location. Ignore ENTRY_VALUE, while it is always constant, we should
5901 prefer non-ENTRY_VALUE locations whenever possible. */
5902 for (l = v->locs, count = 0; l; l = l->next, count++)
5903 if (CONSTANT_P (l->loc)
5904 && (GET_CODE (l->loc) != CONST || !references_value_p (l->loc, 0)))
5905 return;
5906 /* Avoid creating too large locs lists. */
5907 else if (count == param_max_vartrack_reverse_op_size)
5908 return;
5909
5910 switch (GET_CODE (src))
5911 {
5912 case NOT:
5913 case NEG:
5914 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5915 return;
5916 ret = gen_rtx_fmt_e (GET_CODE (src), GET_MODE (val), val);
5917 break;
5918 case SIGN_EXTEND:
5919 case ZERO_EXTEND:
5920 ret = gen_lowpart_SUBREG (GET_MODE (v->val_rtx), val);
5921 break;
5922 case XOR:
5923 code = XOR;
5924 goto binary;
5925 case PLUS:
5926 code = MINUS;
5927 goto binary;
5928 case MINUS:
5929 code = PLUS;
5930 goto binary;
5931 binary:
5932 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5933 return;
5934 arg = XEXP (src, 1);
5935 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5936 {
5937 arg = cselib_expand_value_rtx (arg, scratch_regs, 5);
5938 if (arg == NULL_RTX)
5939 return;
5940 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5941 return;
5942 }
5943 ret = simplify_gen_binary (code, GET_MODE (val), val, arg);
5944 break;
5945 default:
5946 gcc_unreachable ();
5947 }
5948
5949 cselib_add_permanent_equiv (v, ret, insn);
5950 }
5951
5952 /* Add stores (register and memory references) LOC which will be tracked
5953 to VTI (bb)->mos. EXPR is the RTL expression containing the store.
5954 CUIP->insn is instruction which the LOC is part of. */
5955
5956 static void
5957 add_stores (rtx loc, const_rtx expr, void *cuip)
5958 {
5959 machine_mode mode = VOIDmode, mode2;
5960 struct count_use_info *cui = (struct count_use_info *)cuip;
5961 basic_block bb = cui->bb;
5962 micro_operation mo;
5963 rtx oloc = loc, nloc, src = NULL;
5964 enum micro_operation_type type = use_type (loc, cui, &mode);
5965 bool track_p = false;
5966 cselib_val *v;
5967 bool resolve, preserve;
5968
5969 if (type == MO_CLOBBER)
5970 return;
5971
5972 mode2 = mode;
5973
5974 if (REG_P (loc))
5975 {
5976 gcc_assert (loc != cfa_base_rtx);
5977 if ((GET_CODE (expr) == CLOBBER && type != MO_VAL_SET)
5978 || !(track_p = use_type (loc, NULL, &mode2) == MO_USE)
5979 || GET_CODE (expr) == CLOBBER)
5980 {
5981 mo.type = MO_CLOBBER;
5982 mo.u.loc = loc;
5983 if (GET_CODE (expr) == SET
5984 && (SET_DEST (expr) == loc
5985 || (GET_CODE (SET_DEST (expr)) == STRICT_LOW_PART
5986 && XEXP (SET_DEST (expr), 0) == loc))
5987 && !unsuitable_loc (SET_SRC (expr))
5988 && find_use_val (loc, mode, cui))
5989 {
5990 gcc_checking_assert (type == MO_VAL_SET);
5991 mo.u.loc = gen_rtx_SET (loc, SET_SRC (expr));
5992 }
5993 }
5994 else
5995 {
5996 if (GET_CODE (expr) == SET
5997 && SET_DEST (expr) == loc
5998 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
5999 src = var_lowpart (mode2, SET_SRC (expr));
6000 loc = var_lowpart (mode2, loc);
6001
6002 if (src == NULL)
6003 {
6004 mo.type = MO_SET;
6005 mo.u.loc = loc;
6006 }
6007 else
6008 {
6009 rtx xexpr = gen_rtx_SET (loc, src);
6010 if (same_variable_part_p (src, REG_EXPR (loc), REG_OFFSET (loc)))
6011 {
6012 /* If this is an instruction copying (part of) a parameter
6013 passed by invisible reference to its register location,
6014 pretend it's a SET so that the initial memory location
6015 is discarded, as the parameter register can be reused
6016 for other purposes and we do not track locations based
6017 on generic registers. */
6018 if (MEM_P (src)
6019 && REG_EXPR (loc)
6020 && TREE_CODE (REG_EXPR (loc)) == PARM_DECL
6021 && DECL_MODE (REG_EXPR (loc)) != BLKmode
6022 && MEM_P (DECL_INCOMING_RTL (REG_EXPR (loc)))
6023 && XEXP (DECL_INCOMING_RTL (REG_EXPR (loc)), 0)
6024 != arg_pointer_rtx)
6025 mo.type = MO_SET;
6026 else
6027 mo.type = MO_COPY;
6028 }
6029 else
6030 mo.type = MO_SET;
6031 mo.u.loc = xexpr;
6032 }
6033 }
6034 mo.insn = cui->insn;
6035 }
6036 else if (MEM_P (loc)
6037 && ((track_p = use_type (loc, NULL, &mode2) == MO_USE)
6038 || cui->sets))
6039 {
6040 if (MEM_P (loc) && type == MO_VAL_SET
6041 && !REG_P (XEXP (loc, 0))
6042 && !MEM_P (XEXP (loc, 0)))
6043 {
6044 rtx mloc = loc;
6045 machine_mode address_mode = get_address_mode (mloc);
6046 cselib_val *val = cselib_lookup (XEXP (mloc, 0),
6047 address_mode, 0,
6048 GET_MODE (mloc));
6049
6050 if (val && !cselib_preserved_value_p (val))
6051 preserve_value (val);
6052 }
6053
6054 if (GET_CODE (expr) == CLOBBER || !track_p)
6055 {
6056 mo.type = MO_CLOBBER;
6057 mo.u.loc = track_p ? var_lowpart (mode2, loc) : loc;
6058 }
6059 else
6060 {
6061 if (GET_CODE (expr) == SET
6062 && SET_DEST (expr) == loc
6063 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
6064 src = var_lowpart (mode2, SET_SRC (expr));
6065 loc = var_lowpart (mode2, loc);
6066
6067 if (src == NULL)
6068 {
6069 mo.type = MO_SET;
6070 mo.u.loc = loc;
6071 }
6072 else
6073 {
6074 rtx xexpr = gen_rtx_SET (loc, src);
6075 if (same_variable_part_p (SET_SRC (xexpr),
6076 MEM_EXPR (loc),
6077 int_mem_offset (loc)))
6078 mo.type = MO_COPY;
6079 else
6080 mo.type = MO_SET;
6081 mo.u.loc = xexpr;
6082 }
6083 }
6084 mo.insn = cui->insn;
6085 }
6086 else
6087 return;
6088
6089 if (type != MO_VAL_SET)
6090 goto log_and_return;
6091
6092 v = find_use_val (oloc, mode, cui);
6093
6094 if (!v)
6095 goto log_and_return;
6096
6097 resolve = preserve = !cselib_preserved_value_p (v);
6098
6099 /* We cannot track values for multiple-part variables, so we track only
6100 locations for tracked record parameters. */
6101 if (track_p
6102 && REG_P (loc)
6103 && REG_EXPR (loc)
6104 && tracked_record_parameter_p (REG_EXPR (loc)))
6105 {
6106 /* Although we don't use the value here, it could be used later by the
6107 mere virtue of its existence as the operand of the reverse operation
6108 that gave rise to it (typically extension/truncation). Make sure it
6109 is preserved as required by vt_expand_var_loc_chain. */
6110 if (preserve)
6111 preserve_value (v);
6112 goto log_and_return;
6113 }
6114
6115 if (loc == stack_pointer_rtx
6116 && maybe_ne (hard_frame_pointer_adjustment, -1)
6117 && preserve)
6118 cselib_set_value_sp_based (v);
6119
6120 nloc = replace_expr_with_values (oloc);
6121 if (nloc)
6122 oloc = nloc;
6123
6124 if (GET_CODE (PATTERN (cui->insn)) == COND_EXEC)
6125 {
6126 cselib_val *oval = cselib_lookup (oloc, GET_MODE (oloc), 0, VOIDmode);
6127
6128 if (oval == v)
6129 return;
6130 gcc_assert (REG_P (oloc) || MEM_P (oloc));
6131
6132 if (oval && !cselib_preserved_value_p (oval))
6133 {
6134 micro_operation moa;
6135
6136 preserve_value (oval);
6137
6138 moa.type = MO_VAL_USE;
6139 moa.u.loc = gen_rtx_CONCAT (mode, oval->val_rtx, oloc);
6140 VAL_NEEDS_RESOLUTION (moa.u.loc) = 1;
6141 moa.insn = cui->insn;
6142
6143 if (dump_file && (dump_flags & TDF_DETAILS))
6144 log_op_type (moa.u.loc, cui->bb, cui->insn,
6145 moa.type, dump_file);
6146 VTI (bb)->mos.safe_push (moa);
6147 }
6148
6149 resolve = false;
6150 }
6151 else if (resolve && GET_CODE (mo.u.loc) == SET)
6152 {
6153 if (REG_P (SET_SRC (expr)) || MEM_P (SET_SRC (expr)))
6154 nloc = replace_expr_with_values (SET_SRC (expr));
6155 else
6156 nloc = NULL_RTX;
6157
6158 /* Avoid the mode mismatch between oexpr and expr. */
6159 if (!nloc && mode != mode2)
6160 {
6161 nloc = SET_SRC (expr);
6162 gcc_assert (oloc == SET_DEST (expr));
6163 }
6164
6165 if (nloc && nloc != SET_SRC (mo.u.loc))
6166 oloc = gen_rtx_SET (oloc, nloc);
6167 else
6168 {
6169 if (oloc == SET_DEST (mo.u.loc))
6170 /* No point in duplicating. */
6171 oloc = mo.u.loc;
6172 if (!REG_P (SET_SRC (mo.u.loc)))
6173 resolve = false;
6174 }
6175 }
6176 else if (!resolve)
6177 {
6178 if (GET_CODE (mo.u.loc) == SET
6179 && oloc == SET_DEST (mo.u.loc))
6180 /* No point in duplicating. */
6181 oloc = mo.u.loc;
6182 }
6183 else
6184 resolve = false;
6185
6186 loc = gen_rtx_CONCAT (mode, v->val_rtx, oloc);
6187
6188 if (mo.u.loc != oloc)
6189 loc = gen_rtx_CONCAT (GET_MODE (mo.u.loc), loc, mo.u.loc);
6190
6191 /* The loc of a MO_VAL_SET may have various forms:
6192
6193 (concat val dst): dst now holds val
6194
6195 (concat val (set dst src)): dst now holds val, copied from src
6196
6197 (concat (concat val dstv) dst): dst now holds val; dstv is dst
6198 after replacing mems and non-top-level regs with values.
6199
6200 (concat (concat val dstv) (set dst src)): dst now holds val,
6201 copied from src. dstv is a value-based representation of dst, if
6202 it differs from dst. If resolution is needed, src is a REG, and
6203 its mode is the same as that of val.
6204
6205 (concat (concat val (set dstv srcv)) (set dst src)): src
6206 copied to dst, holding val. dstv and srcv are value-based
6207 representations of dst and src, respectively.
6208
6209 */
6210
6211 if (GET_CODE (PATTERN (cui->insn)) != COND_EXEC)
6212 reverse_op (v->val_rtx, expr, cui->insn);
6213
6214 mo.u.loc = loc;
6215
6216 if (track_p)
6217 VAL_HOLDS_TRACK_EXPR (loc) = 1;
6218 if (preserve)
6219 {
6220 VAL_NEEDS_RESOLUTION (loc) = resolve;
6221 preserve_value (v);
6222 }
6223 if (mo.type == MO_CLOBBER)
6224 VAL_EXPR_IS_CLOBBERED (loc) = 1;
6225 if (mo.type == MO_COPY)
6226 VAL_EXPR_IS_COPIED (loc) = 1;
6227
6228 mo.type = MO_VAL_SET;
6229
6230 log_and_return:
6231 if (dump_file && (dump_flags & TDF_DETAILS))
6232 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
6233 VTI (bb)->mos.safe_push (mo);
6234 }
6235
6236 /* Arguments to the call. */
6237 static rtx call_arguments;
6238
6239 /* Compute call_arguments. */
6240
6241 static void
6242 prepare_call_arguments (basic_block bb, rtx_insn *insn)
6243 {
6244 rtx link, x, call;
6245 rtx prev, cur, next;
6246 rtx this_arg = NULL_RTX;
6247 tree type = NULL_TREE, t, fndecl = NULL_TREE;
6248 tree obj_type_ref = NULL_TREE;
6249 CUMULATIVE_ARGS args_so_far_v;
6250 cumulative_args_t args_so_far;
6251
6252 memset (&args_so_far_v, 0, sizeof (args_so_far_v));
6253 args_so_far = pack_cumulative_args (&args_so_far_v);
6254 call = get_call_rtx_from (insn);
6255 if (call)
6256 {
6257 if (GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
6258 {
6259 rtx symbol = XEXP (XEXP (call, 0), 0);
6260 if (SYMBOL_REF_DECL (symbol))
6261 fndecl = SYMBOL_REF_DECL (symbol);
6262 }
6263 if (fndecl == NULL_TREE)
6264 fndecl = MEM_EXPR (XEXP (call, 0));
6265 if (fndecl
6266 && TREE_CODE (TREE_TYPE (fndecl)) != FUNCTION_TYPE
6267 && TREE_CODE (TREE_TYPE (fndecl)) != METHOD_TYPE)
6268 fndecl = NULL_TREE;
6269 if (fndecl && TYPE_ARG_TYPES (TREE_TYPE (fndecl)))
6270 type = TREE_TYPE (fndecl);
6271 if (fndecl && TREE_CODE (fndecl) != FUNCTION_DECL)
6272 {
6273 if (TREE_CODE (fndecl) == INDIRECT_REF
6274 && TREE_CODE (TREE_OPERAND (fndecl, 0)) == OBJ_TYPE_REF)
6275 obj_type_ref = TREE_OPERAND (fndecl, 0);
6276 fndecl = NULL_TREE;
6277 }
6278 if (type)
6279 {
6280 for (t = TYPE_ARG_TYPES (type); t && t != void_list_node;
6281 t = TREE_CHAIN (t))
6282 if (TREE_CODE (TREE_VALUE (t)) == REFERENCE_TYPE
6283 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_VALUE (t))))
6284 break;
6285 if ((t == NULL || t == void_list_node) && obj_type_ref == NULL_TREE)
6286 type = NULL;
6287 else
6288 {
6289 int nargs ATTRIBUTE_UNUSED = list_length (TYPE_ARG_TYPES (type));
6290 link = CALL_INSN_FUNCTION_USAGE (insn);
6291 #ifndef PCC_STATIC_STRUCT_RETURN
6292 if (aggregate_value_p (TREE_TYPE (type), type)
6293 && targetm.calls.struct_value_rtx (type, 0) == 0)
6294 {
6295 tree struct_addr = build_pointer_type (TREE_TYPE (type));
6296 function_arg_info arg (struct_addr, /*named=*/true);
6297 rtx reg;
6298 INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
6299 nargs + 1);
6300 reg = targetm.calls.function_arg (args_so_far, arg);
6301 targetm.calls.function_arg_advance (args_so_far, arg);
6302 if (reg == NULL_RTX)
6303 {
6304 for (; link; link = XEXP (link, 1))
6305 if (GET_CODE (XEXP (link, 0)) == USE
6306 && MEM_P (XEXP (XEXP (link, 0), 0)))
6307 {
6308 link = XEXP (link, 1);
6309 break;
6310 }
6311 }
6312 }
6313 else
6314 #endif
6315 INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
6316 nargs);
6317 if (obj_type_ref && TYPE_ARG_TYPES (type) != void_list_node)
6318 {
6319 t = TYPE_ARG_TYPES (type);
6320 function_arg_info arg (TREE_VALUE (t), /*named=*/true);
6321 this_arg = targetm.calls.function_arg (args_so_far, arg);
6322 if (this_arg && !REG_P (this_arg))
6323 this_arg = NULL_RTX;
6324 else if (this_arg == NULL_RTX)
6325 {
6326 for (; link; link = XEXP (link, 1))
6327 if (GET_CODE (XEXP (link, 0)) == USE
6328 && MEM_P (XEXP (XEXP (link, 0), 0)))
6329 {
6330 this_arg = XEXP (XEXP (link, 0), 0);
6331 break;
6332 }
6333 }
6334 }
6335 }
6336 }
6337 }
6338 t = type ? TYPE_ARG_TYPES (type) : NULL_TREE;
6339
6340 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
6341 if (GET_CODE (XEXP (link, 0)) == USE)
6342 {
6343 rtx item = NULL_RTX;
6344 x = XEXP (XEXP (link, 0), 0);
6345 if (GET_MODE (link) == VOIDmode
6346 || GET_MODE (link) == BLKmode
6347 || (GET_MODE (link) != GET_MODE (x)
6348 && ((GET_MODE_CLASS (GET_MODE (link)) != MODE_INT
6349 && GET_MODE_CLASS (GET_MODE (link)) != MODE_PARTIAL_INT)
6350 || (GET_MODE_CLASS (GET_MODE (x)) != MODE_INT
6351 && GET_MODE_CLASS (GET_MODE (x)) != MODE_PARTIAL_INT))))
6352 /* Can't do anything for these, if the original type mode
6353 isn't known or can't be converted. */;
6354 else if (REG_P (x))
6355 {
6356 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
6357 scalar_int_mode mode;
6358 if (val && cselib_preserved_value_p (val))
6359 item = val->val_rtx;
6360 else if (is_a <scalar_int_mode> (GET_MODE (x), &mode))
6361 {
6362 opt_scalar_int_mode mode_iter;
6363 FOR_EACH_WIDER_MODE (mode_iter, mode)
6364 {
6365 mode = mode_iter.require ();
6366 if (GET_MODE_BITSIZE (mode) > BITS_PER_WORD)
6367 break;
6368
6369 rtx reg = simplify_subreg (mode, x, GET_MODE (x), 0);
6370 if (reg == NULL_RTX || !REG_P (reg))
6371 continue;
6372 val = cselib_lookup (reg, mode, 0, VOIDmode);
6373 if (val && cselib_preserved_value_p (val))
6374 {
6375 item = val->val_rtx;
6376 break;
6377 }
6378 }
6379 }
6380 }
6381 else if (MEM_P (x))
6382 {
6383 rtx mem = x;
6384 cselib_val *val;
6385
6386 if (!frame_pointer_needed)
6387 {
6388 class adjust_mem_data amd;
6389 amd.mem_mode = VOIDmode;
6390 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
6391 amd.store = true;
6392 mem = simplify_replace_fn_rtx (mem, NULL_RTX, adjust_mems,
6393 &amd);
6394 gcc_assert (amd.side_effects.is_empty ());
6395 }
6396 val = cselib_lookup (mem, GET_MODE (mem), 0, VOIDmode);
6397 if (val && cselib_preserved_value_p (val))
6398 item = val->val_rtx;
6399 else if (GET_MODE_CLASS (GET_MODE (mem)) != MODE_INT
6400 && GET_MODE_CLASS (GET_MODE (mem)) != MODE_PARTIAL_INT)
6401 {
6402 /* For non-integer stack argument see also if they weren't
6403 initialized by integers. */
6404 scalar_int_mode imode;
6405 if (int_mode_for_mode (GET_MODE (mem)).exists (&imode)
6406 && imode != GET_MODE (mem))
6407 {
6408 val = cselib_lookup (adjust_address_nv (mem, imode, 0),
6409 imode, 0, VOIDmode);
6410 if (val && cselib_preserved_value_p (val))
6411 item = lowpart_subreg (GET_MODE (x), val->val_rtx,
6412 imode);
6413 }
6414 }
6415 }
6416 if (item)
6417 {
6418 rtx x2 = x;
6419 if (GET_MODE (item) != GET_MODE (link))
6420 item = lowpart_subreg (GET_MODE (link), item, GET_MODE (item));
6421 if (GET_MODE (x2) != GET_MODE (link))
6422 x2 = lowpart_subreg (GET_MODE (link), x2, GET_MODE (x2));
6423 item = gen_rtx_CONCAT (GET_MODE (link), x2, item);
6424 call_arguments
6425 = gen_rtx_EXPR_LIST (VOIDmode, item, call_arguments);
6426 }
6427 if (t && t != void_list_node)
6428 {
6429 rtx reg;
6430 function_arg_info arg (TREE_VALUE (t), /*named=*/true);
6431 apply_pass_by_reference_rules (&args_so_far_v, arg);
6432 reg = targetm.calls.function_arg (args_so_far, arg);
6433 if (TREE_CODE (arg.type) == REFERENCE_TYPE
6434 && INTEGRAL_TYPE_P (TREE_TYPE (arg.type))
6435 && reg
6436 && REG_P (reg)
6437 && GET_MODE (reg) == arg.mode
6438 && (GET_MODE_CLASS (arg.mode) == MODE_INT
6439 || GET_MODE_CLASS (arg.mode) == MODE_PARTIAL_INT)
6440 && REG_P (x)
6441 && REGNO (x) == REGNO (reg)
6442 && GET_MODE (x) == arg.mode
6443 && item)
6444 {
6445 machine_mode indmode
6446 = TYPE_MODE (TREE_TYPE (arg.type));
6447 rtx mem = gen_rtx_MEM (indmode, x);
6448 cselib_val *val = cselib_lookup (mem, indmode, 0, VOIDmode);
6449 if (val && cselib_preserved_value_p (val))
6450 {
6451 item = gen_rtx_CONCAT (indmode, mem, val->val_rtx);
6452 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
6453 call_arguments);
6454 }
6455 else
6456 {
6457 struct elt_loc_list *l;
6458 tree initial;
6459
6460 /* Try harder, when passing address of a constant
6461 pool integer it can be easily read back. */
6462 item = XEXP (item, 1);
6463 if (GET_CODE (item) == SUBREG)
6464 item = SUBREG_REG (item);
6465 gcc_assert (GET_CODE (item) == VALUE);
6466 val = CSELIB_VAL_PTR (item);
6467 for (l = val->locs; l; l = l->next)
6468 if (GET_CODE (l->loc) == SYMBOL_REF
6469 && TREE_CONSTANT_POOL_ADDRESS_P (l->loc)
6470 && SYMBOL_REF_DECL (l->loc)
6471 && DECL_INITIAL (SYMBOL_REF_DECL (l->loc)))
6472 {
6473 initial = DECL_INITIAL (SYMBOL_REF_DECL (l->loc));
6474 if (tree_fits_shwi_p (initial))
6475 {
6476 item = GEN_INT (tree_to_shwi (initial));
6477 item = gen_rtx_CONCAT (indmode, mem, item);
6478 call_arguments
6479 = gen_rtx_EXPR_LIST (VOIDmode, item,
6480 call_arguments);
6481 }
6482 break;
6483 }
6484 }
6485 }
6486 targetm.calls.function_arg_advance (args_so_far, arg);
6487 t = TREE_CHAIN (t);
6488 }
6489 }
6490
6491 /* Add debug arguments. */
6492 if (fndecl
6493 && TREE_CODE (fndecl) == FUNCTION_DECL
6494 && DECL_HAS_DEBUG_ARGS_P (fndecl))
6495 {
6496 vec<tree, va_gc> **debug_args = decl_debug_args_lookup (fndecl);
6497 if (debug_args)
6498 {
6499 unsigned int ix;
6500 tree param;
6501 for (ix = 0; vec_safe_iterate (*debug_args, ix, &param); ix += 2)
6502 {
6503 rtx item;
6504 tree dtemp = (**debug_args)[ix + 1];
6505 machine_mode mode = DECL_MODE (dtemp);
6506 item = gen_rtx_DEBUG_PARAMETER_REF (mode, param);
6507 item = gen_rtx_CONCAT (mode, item, DECL_RTL_KNOWN_SET (dtemp));
6508 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
6509 call_arguments);
6510 }
6511 }
6512 }
6513
6514 /* Reverse call_arguments chain. */
6515 prev = NULL_RTX;
6516 for (cur = call_arguments; cur; cur = next)
6517 {
6518 next = XEXP (cur, 1);
6519 XEXP (cur, 1) = prev;
6520 prev = cur;
6521 }
6522 call_arguments = prev;
6523
6524 x = get_call_rtx_from (insn);
6525 if (x)
6526 {
6527 x = XEXP (XEXP (x, 0), 0);
6528 if (GET_CODE (x) == SYMBOL_REF)
6529 /* Don't record anything. */;
6530 else if (CONSTANT_P (x))
6531 {
6532 x = gen_rtx_CONCAT (GET_MODE (x) == VOIDmode ? Pmode : GET_MODE (x),
6533 pc_rtx, x);
6534 call_arguments
6535 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6536 }
6537 else
6538 {
6539 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
6540 if (val && cselib_preserved_value_p (val))
6541 {
6542 x = gen_rtx_CONCAT (GET_MODE (x), pc_rtx, val->val_rtx);
6543 call_arguments
6544 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6545 }
6546 }
6547 }
6548 if (this_arg)
6549 {
6550 machine_mode mode
6551 = TYPE_MODE (TREE_TYPE (OBJ_TYPE_REF_EXPR (obj_type_ref)));
6552 rtx clobbered = gen_rtx_MEM (mode, this_arg);
6553 HOST_WIDE_INT token
6554 = tree_to_shwi (OBJ_TYPE_REF_TOKEN (obj_type_ref));
6555 if (token)
6556 clobbered = plus_constant (mode, clobbered,
6557 token * GET_MODE_SIZE (mode));
6558 clobbered = gen_rtx_MEM (mode, clobbered);
6559 x = gen_rtx_CONCAT (mode, gen_rtx_CLOBBER (VOIDmode, pc_rtx), clobbered);
6560 call_arguments
6561 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6562 }
6563 }
6564
6565 /* Callback for cselib_record_sets_hook, that records as micro
6566 operations uses and stores in an insn after cselib_record_sets has
6567 analyzed the sets in an insn, but before it modifies the stored
6568 values in the internal tables, unless cselib_record_sets doesn't
6569 call it directly (perhaps because we're not doing cselib in the
6570 first place, in which case sets and n_sets will be 0). */
6571
6572 static void
6573 add_with_sets (rtx_insn *insn, struct cselib_set *sets, int n_sets)
6574 {
6575 basic_block bb = BLOCK_FOR_INSN (insn);
6576 int n1, n2;
6577 struct count_use_info cui;
6578 micro_operation *mos;
6579
6580 cselib_hook_called = true;
6581
6582 cui.insn = insn;
6583 cui.bb = bb;
6584 cui.sets = sets;
6585 cui.n_sets = n_sets;
6586
6587 n1 = VTI (bb)->mos.length ();
6588 cui.store_p = false;
6589 note_uses (&PATTERN (insn), add_uses_1, &cui);
6590 n2 = VTI (bb)->mos.length () - 1;
6591 mos = VTI (bb)->mos.address ();
6592
6593 /* Order the MO_USEs to be before MO_USE_NO_VARs and MO_VAL_USE, and
6594 MO_VAL_LOC last. */
6595 while (n1 < n2)
6596 {
6597 while (n1 < n2 && mos[n1].type == MO_USE)
6598 n1++;
6599 while (n1 < n2 && mos[n2].type != MO_USE)
6600 n2--;
6601 if (n1 < n2)
6602 std::swap (mos[n1], mos[n2]);
6603 }
6604
6605 n2 = VTI (bb)->mos.length () - 1;
6606 while (n1 < n2)
6607 {
6608 while (n1 < n2 && mos[n1].type != MO_VAL_LOC)
6609 n1++;
6610 while (n1 < n2 && mos[n2].type == MO_VAL_LOC)
6611 n2--;
6612 if (n1 < n2)
6613 std::swap (mos[n1], mos[n2]);
6614 }
6615
6616 if (CALL_P (insn))
6617 {
6618 micro_operation mo;
6619
6620 mo.type = MO_CALL;
6621 mo.insn = insn;
6622 mo.u.loc = call_arguments;
6623 call_arguments = NULL_RTX;
6624
6625 if (dump_file && (dump_flags & TDF_DETAILS))
6626 log_op_type (PATTERN (insn), bb, insn, mo.type, dump_file);
6627 VTI (bb)->mos.safe_push (mo);
6628 }
6629
6630 n1 = VTI (bb)->mos.length ();
6631 /* This will record NEXT_INSN (insn), such that we can
6632 insert notes before it without worrying about any
6633 notes that MO_USEs might emit after the insn. */
6634 cui.store_p = true;
6635 note_stores (insn, add_stores, &cui);
6636 n2 = VTI (bb)->mos.length () - 1;
6637 mos = VTI (bb)->mos.address ();
6638
6639 /* Order the MO_VAL_USEs first (note_stores does nothing
6640 on DEBUG_INSNs, so there are no MO_VAL_LOCs from this
6641 insn), then MO_CLOBBERs, then MO_SET/MO_COPY/MO_VAL_SET. */
6642 while (n1 < n2)
6643 {
6644 while (n1 < n2 && mos[n1].type == MO_VAL_USE)
6645 n1++;
6646 while (n1 < n2 && mos[n2].type != MO_VAL_USE)
6647 n2--;
6648 if (n1 < n2)
6649 std::swap (mos[n1], mos[n2]);
6650 }
6651
6652 n2 = VTI (bb)->mos.length () - 1;
6653 while (n1 < n2)
6654 {
6655 while (n1 < n2 && mos[n1].type == MO_CLOBBER)
6656 n1++;
6657 while (n1 < n2 && mos[n2].type != MO_CLOBBER)
6658 n2--;
6659 if (n1 < n2)
6660 std::swap (mos[n1], mos[n2]);
6661 }
6662 }
6663
6664 static enum var_init_status
6665 find_src_status (dataflow_set *in, rtx src)
6666 {
6667 tree decl = NULL_TREE;
6668 enum var_init_status status = VAR_INIT_STATUS_UNINITIALIZED;
6669
6670 if (! flag_var_tracking_uninit)
6671 status = VAR_INIT_STATUS_INITIALIZED;
6672
6673 if (src && REG_P (src))
6674 decl = var_debug_decl (REG_EXPR (src));
6675 else if (src && MEM_P (src))
6676 decl = var_debug_decl (MEM_EXPR (src));
6677
6678 if (src && decl)
6679 status = get_init_value (in, src, dv_from_decl (decl));
6680
6681 return status;
6682 }
6683
6684 /* SRC is the source of an assignment. Use SET to try to find what
6685 was ultimately assigned to SRC. Return that value if known,
6686 otherwise return SRC itself. */
6687
6688 static rtx
6689 find_src_set_src (dataflow_set *set, rtx src)
6690 {
6691 tree decl = NULL_TREE; /* The variable being copied around. */
6692 rtx set_src = NULL_RTX; /* The value for "decl" stored in "src". */
6693 variable *var;
6694 location_chain *nextp;
6695 int i;
6696 bool found;
6697
6698 if (src && REG_P (src))
6699 decl = var_debug_decl (REG_EXPR (src));
6700 else if (src && MEM_P (src))
6701 decl = var_debug_decl (MEM_EXPR (src));
6702
6703 if (src && decl)
6704 {
6705 decl_or_value dv = dv_from_decl (decl);
6706
6707 var = shared_hash_find (set->vars, dv);
6708 if (var)
6709 {
6710 found = false;
6711 for (i = 0; i < var->n_var_parts && !found; i++)
6712 for (nextp = var->var_part[i].loc_chain; nextp && !found;
6713 nextp = nextp->next)
6714 if (rtx_equal_p (nextp->loc, src))
6715 {
6716 set_src = nextp->set_src;
6717 found = true;
6718 }
6719
6720 }
6721 }
6722
6723 return set_src;
6724 }
6725
6726 /* Compute the changes of variable locations in the basic block BB. */
6727
6728 static bool
6729 compute_bb_dataflow (basic_block bb)
6730 {
6731 unsigned int i;
6732 micro_operation *mo;
6733 bool changed;
6734 dataflow_set old_out;
6735 dataflow_set *in = &VTI (bb)->in;
6736 dataflow_set *out = &VTI (bb)->out;
6737
6738 dataflow_set_init (&old_out);
6739 dataflow_set_copy (&old_out, out);
6740 dataflow_set_copy (out, in);
6741
6742 if (MAY_HAVE_DEBUG_BIND_INSNS)
6743 local_get_addr_cache = new hash_map<rtx, rtx>;
6744
6745 FOR_EACH_VEC_ELT (VTI (bb)->mos, i, mo)
6746 {
6747 rtx_insn *insn = mo->insn;
6748
6749 switch (mo->type)
6750 {
6751 case MO_CALL:
6752 dataflow_set_clear_at_call (out, insn);
6753 break;
6754
6755 case MO_USE:
6756 {
6757 rtx loc = mo->u.loc;
6758
6759 if (REG_P (loc))
6760 var_reg_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6761 else if (MEM_P (loc))
6762 var_mem_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6763 }
6764 break;
6765
6766 case MO_VAL_LOC:
6767 {
6768 rtx loc = mo->u.loc;
6769 rtx val, vloc;
6770 tree var;
6771
6772 if (GET_CODE (loc) == CONCAT)
6773 {
6774 val = XEXP (loc, 0);
6775 vloc = XEXP (loc, 1);
6776 }
6777 else
6778 {
6779 val = NULL_RTX;
6780 vloc = loc;
6781 }
6782
6783 var = PAT_VAR_LOCATION_DECL (vloc);
6784
6785 clobber_variable_part (out, NULL_RTX,
6786 dv_from_decl (var), 0, NULL_RTX);
6787 if (val)
6788 {
6789 if (VAL_NEEDS_RESOLUTION (loc))
6790 val_resolve (out, val, PAT_VAR_LOCATION_LOC (vloc), insn);
6791 set_variable_part (out, val, dv_from_decl (var), 0,
6792 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6793 INSERT);
6794 }
6795 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
6796 set_variable_part (out, PAT_VAR_LOCATION_LOC (vloc),
6797 dv_from_decl (var), 0,
6798 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6799 INSERT);
6800 }
6801 break;
6802
6803 case MO_VAL_USE:
6804 {
6805 rtx loc = mo->u.loc;
6806 rtx val, vloc, uloc;
6807
6808 vloc = uloc = XEXP (loc, 1);
6809 val = XEXP (loc, 0);
6810
6811 if (GET_CODE (val) == CONCAT)
6812 {
6813 uloc = XEXP (val, 1);
6814 val = XEXP (val, 0);
6815 }
6816
6817 if (VAL_NEEDS_RESOLUTION (loc))
6818 val_resolve (out, val, vloc, insn);
6819 else
6820 val_store (out, val, uloc, insn, false);
6821
6822 if (VAL_HOLDS_TRACK_EXPR (loc))
6823 {
6824 if (GET_CODE (uloc) == REG)
6825 var_reg_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6826 NULL);
6827 else if (GET_CODE (uloc) == MEM)
6828 var_mem_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6829 NULL);
6830 }
6831 }
6832 break;
6833
6834 case MO_VAL_SET:
6835 {
6836 rtx loc = mo->u.loc;
6837 rtx val, vloc, uloc;
6838 rtx dstv, srcv;
6839
6840 vloc = loc;
6841 uloc = XEXP (vloc, 1);
6842 val = XEXP (vloc, 0);
6843 vloc = uloc;
6844
6845 if (GET_CODE (uloc) == SET)
6846 {
6847 dstv = SET_DEST (uloc);
6848 srcv = SET_SRC (uloc);
6849 }
6850 else
6851 {
6852 dstv = uloc;
6853 srcv = NULL;
6854 }
6855
6856 if (GET_CODE (val) == CONCAT)
6857 {
6858 dstv = vloc = XEXP (val, 1);
6859 val = XEXP (val, 0);
6860 }
6861
6862 if (GET_CODE (vloc) == SET)
6863 {
6864 srcv = SET_SRC (vloc);
6865
6866 gcc_assert (val != srcv);
6867 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
6868
6869 dstv = vloc = SET_DEST (vloc);
6870
6871 if (VAL_NEEDS_RESOLUTION (loc))
6872 val_resolve (out, val, srcv, insn);
6873 }
6874 else if (VAL_NEEDS_RESOLUTION (loc))
6875 {
6876 gcc_assert (GET_CODE (uloc) == SET
6877 && GET_CODE (SET_SRC (uloc)) == REG);
6878 val_resolve (out, val, SET_SRC (uloc), insn);
6879 }
6880
6881 if (VAL_HOLDS_TRACK_EXPR (loc))
6882 {
6883 if (VAL_EXPR_IS_CLOBBERED (loc))
6884 {
6885 if (REG_P (uloc))
6886 var_reg_delete (out, uloc, true);
6887 else if (MEM_P (uloc))
6888 {
6889 gcc_assert (MEM_P (dstv));
6890 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (uloc));
6891 var_mem_delete (out, dstv, true);
6892 }
6893 }
6894 else
6895 {
6896 bool copied_p = VAL_EXPR_IS_COPIED (loc);
6897 rtx src = NULL, dst = uloc;
6898 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
6899
6900 if (GET_CODE (uloc) == SET)
6901 {
6902 src = SET_SRC (uloc);
6903 dst = SET_DEST (uloc);
6904 }
6905
6906 if (copied_p)
6907 {
6908 if (flag_var_tracking_uninit)
6909 {
6910 status = find_src_status (in, src);
6911
6912 if (status == VAR_INIT_STATUS_UNKNOWN)
6913 status = find_src_status (out, src);
6914 }
6915
6916 src = find_src_set_src (in, src);
6917 }
6918
6919 if (REG_P (dst))
6920 var_reg_delete_and_set (out, dst, !copied_p,
6921 status, srcv);
6922 else if (MEM_P (dst))
6923 {
6924 gcc_assert (MEM_P (dstv));
6925 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (dst));
6926 var_mem_delete_and_set (out, dstv, !copied_p,
6927 status, srcv);
6928 }
6929 }
6930 }
6931 else if (REG_P (uloc))
6932 var_regno_delete (out, REGNO (uloc));
6933 else if (MEM_P (uloc))
6934 {
6935 gcc_checking_assert (GET_CODE (vloc) == MEM);
6936 gcc_checking_assert (dstv == vloc);
6937 if (dstv != vloc)
6938 clobber_overlapping_mems (out, vloc);
6939 }
6940
6941 val_store (out, val, dstv, insn, true);
6942 }
6943 break;
6944
6945 case MO_SET:
6946 {
6947 rtx loc = mo->u.loc;
6948 rtx set_src = NULL;
6949
6950 if (GET_CODE (loc) == SET)
6951 {
6952 set_src = SET_SRC (loc);
6953 loc = SET_DEST (loc);
6954 }
6955
6956 if (REG_P (loc))
6957 var_reg_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6958 set_src);
6959 else if (MEM_P (loc))
6960 var_mem_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6961 set_src);
6962 }
6963 break;
6964
6965 case MO_COPY:
6966 {
6967 rtx loc = mo->u.loc;
6968 enum var_init_status src_status;
6969 rtx set_src = NULL;
6970
6971 if (GET_CODE (loc) == SET)
6972 {
6973 set_src = SET_SRC (loc);
6974 loc = SET_DEST (loc);
6975 }
6976
6977 if (! flag_var_tracking_uninit)
6978 src_status = VAR_INIT_STATUS_INITIALIZED;
6979 else
6980 {
6981 src_status = find_src_status (in, set_src);
6982
6983 if (src_status == VAR_INIT_STATUS_UNKNOWN)
6984 src_status = find_src_status (out, set_src);
6985 }
6986
6987 set_src = find_src_set_src (in, set_src);
6988
6989 if (REG_P (loc))
6990 var_reg_delete_and_set (out, loc, false, src_status, set_src);
6991 else if (MEM_P (loc))
6992 var_mem_delete_and_set (out, loc, false, src_status, set_src);
6993 }
6994 break;
6995
6996 case MO_USE_NO_VAR:
6997 {
6998 rtx loc = mo->u.loc;
6999
7000 if (REG_P (loc))
7001 var_reg_delete (out, loc, false);
7002 else if (MEM_P (loc))
7003 var_mem_delete (out, loc, false);
7004 }
7005 break;
7006
7007 case MO_CLOBBER:
7008 {
7009 rtx loc = mo->u.loc;
7010
7011 if (REG_P (loc))
7012 var_reg_delete (out, loc, true);
7013 else if (MEM_P (loc))
7014 var_mem_delete (out, loc, true);
7015 }
7016 break;
7017
7018 case MO_ADJUST:
7019 out->stack_adjust += mo->u.adjust;
7020 break;
7021 }
7022 }
7023
7024 if (MAY_HAVE_DEBUG_BIND_INSNS)
7025 {
7026 delete local_get_addr_cache;
7027 local_get_addr_cache = NULL;
7028
7029 dataflow_set_equiv_regs (out);
7030 shared_hash_htab (out->vars)
7031 ->traverse <dataflow_set *, canonicalize_values_mark> (out);
7032 shared_hash_htab (out->vars)
7033 ->traverse <dataflow_set *, canonicalize_values_star> (out);
7034 if (flag_checking)
7035 shared_hash_htab (out->vars)
7036 ->traverse <dataflow_set *, canonicalize_loc_order_check> (out);
7037 }
7038 changed = dataflow_set_different (&old_out, out);
7039 dataflow_set_destroy (&old_out);
7040 return changed;
7041 }
7042
7043 /* Find the locations of variables in the whole function. */
7044
7045 static bool
7046 vt_find_locations (void)
7047 {
7048 bb_heap_t *worklist = new bb_heap_t (LONG_MIN);
7049 bb_heap_t *pending = new bb_heap_t (LONG_MIN);
7050 sbitmap in_worklist, in_pending;
7051 basic_block bb;
7052 edge e;
7053 int *bb_order;
7054 int *rc_order;
7055 int i;
7056 int htabsz = 0;
7057 int htabmax = param_max_vartrack_size;
7058 bool success = true;
7059
7060 timevar_push (TV_VAR_TRACKING_DATAFLOW);
7061 /* Compute reverse completion order of depth first search of the CFG
7062 so that the data-flow runs faster. */
7063 rc_order = XNEWVEC (int, n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS);
7064 bb_order = XNEWVEC (int, last_basic_block_for_fn (cfun));
7065 pre_and_rev_post_order_compute (NULL, rc_order, false);
7066 for (i = 0; i < n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS; i++)
7067 bb_order[rc_order[i]] = i;
7068 free (rc_order);
7069
7070 auto_sbitmap visited (last_basic_block_for_fn (cfun));
7071 in_worklist = sbitmap_alloc (last_basic_block_for_fn (cfun));
7072 in_pending = sbitmap_alloc (last_basic_block_for_fn (cfun));
7073 bitmap_clear (in_worklist);
7074
7075 FOR_EACH_BB_FN (bb, cfun)
7076 pending->insert (bb_order[bb->index], bb);
7077 bitmap_ones (in_pending);
7078
7079 while (success && !pending->empty ())
7080 {
7081 std::swap (worklist, pending);
7082 std::swap (in_worklist, in_pending);
7083
7084 bitmap_clear (visited);
7085
7086 while (!worklist->empty ())
7087 {
7088 bb = worklist->extract_min ();
7089 bitmap_clear_bit (in_worklist, bb->index);
7090 gcc_assert (!bitmap_bit_p (visited, bb->index));
7091 if (!bitmap_bit_p (visited, bb->index))
7092 {
7093 bool changed;
7094 edge_iterator ei;
7095 int oldinsz, oldoutsz;
7096
7097 bitmap_set_bit (visited, bb->index);
7098
7099 if (VTI (bb)->in.vars)
7100 {
7101 htabsz
7102 -= shared_hash_htab (VTI (bb)->in.vars)->size ()
7103 + shared_hash_htab (VTI (bb)->out.vars)->size ();
7104 oldinsz = shared_hash_htab (VTI (bb)->in.vars)->elements ();
7105 oldoutsz
7106 = shared_hash_htab (VTI (bb)->out.vars)->elements ();
7107 }
7108 else
7109 oldinsz = oldoutsz = 0;
7110
7111 if (MAY_HAVE_DEBUG_BIND_INSNS)
7112 {
7113 dataflow_set *in = &VTI (bb)->in, *first_out = NULL;
7114 bool first = true, adjust = false;
7115
7116 /* Calculate the IN set as the intersection of
7117 predecessor OUT sets. */
7118
7119 dataflow_set_clear (in);
7120 dst_can_be_shared = true;
7121
7122 FOR_EACH_EDGE (e, ei, bb->preds)
7123 if (!VTI (e->src)->flooded)
7124 gcc_assert (bb_order[bb->index]
7125 <= bb_order[e->src->index]);
7126 else if (first)
7127 {
7128 dataflow_set_copy (in, &VTI (e->src)->out);
7129 first_out = &VTI (e->src)->out;
7130 first = false;
7131 }
7132 else
7133 {
7134 dataflow_set_merge (in, &VTI (e->src)->out);
7135 adjust = true;
7136 }
7137
7138 if (adjust)
7139 {
7140 dataflow_post_merge_adjust (in, &VTI (bb)->permp);
7141
7142 if (flag_checking)
7143 /* Merge and merge_adjust should keep entries in
7144 canonical order. */
7145 shared_hash_htab (in->vars)
7146 ->traverse <dataflow_set *,
7147 canonicalize_loc_order_check> (in);
7148
7149 if (dst_can_be_shared)
7150 {
7151 shared_hash_destroy (in->vars);
7152 in->vars = shared_hash_copy (first_out->vars);
7153 }
7154 }
7155
7156 VTI (bb)->flooded = true;
7157 }
7158 else
7159 {
7160 /* Calculate the IN set as union of predecessor OUT sets. */
7161 dataflow_set_clear (&VTI (bb)->in);
7162 FOR_EACH_EDGE (e, ei, bb->preds)
7163 dataflow_set_union (&VTI (bb)->in, &VTI (e->src)->out);
7164 }
7165
7166 changed = compute_bb_dataflow (bb);
7167 htabsz += shared_hash_htab (VTI (bb)->in.vars)->size ()
7168 + shared_hash_htab (VTI (bb)->out.vars)->size ();
7169
7170 if (htabmax && htabsz > htabmax)
7171 {
7172 if (MAY_HAVE_DEBUG_BIND_INSNS)
7173 inform (DECL_SOURCE_LOCATION (cfun->decl),
7174 "variable tracking size limit exceeded with "
7175 "%<-fvar-tracking-assignments%>, retrying without");
7176 else
7177 inform (DECL_SOURCE_LOCATION (cfun->decl),
7178 "variable tracking size limit exceeded");
7179 success = false;
7180 break;
7181 }
7182
7183 if (changed)
7184 {
7185 FOR_EACH_EDGE (e, ei, bb->succs)
7186 {
7187 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
7188 continue;
7189
7190 if (bitmap_bit_p (visited, e->dest->index))
7191 {
7192 if (!bitmap_bit_p (in_pending, e->dest->index))
7193 {
7194 /* Send E->DEST to next round. */
7195 bitmap_set_bit (in_pending, e->dest->index);
7196 pending->insert (bb_order[e->dest->index],
7197 e->dest);
7198 }
7199 }
7200 else if (!bitmap_bit_p (in_worklist, e->dest->index))
7201 {
7202 /* Add E->DEST to current round. */
7203 bitmap_set_bit (in_worklist, e->dest->index);
7204 worklist->insert (bb_order[e->dest->index],
7205 e->dest);
7206 }
7207 }
7208 }
7209
7210 if (dump_file)
7211 fprintf (dump_file,
7212 "BB %i: in %i (was %i), out %i (was %i), rem %i + %i, tsz %i\n",
7213 bb->index,
7214 (int)shared_hash_htab (VTI (bb)->in.vars)->size (),
7215 oldinsz,
7216 (int)shared_hash_htab (VTI (bb)->out.vars)->size (),
7217 oldoutsz,
7218 (int)worklist->nodes (), (int)pending->nodes (),
7219 htabsz);
7220
7221 if (dump_file && (dump_flags & TDF_DETAILS))
7222 {
7223 fprintf (dump_file, "BB %i IN:\n", bb->index);
7224 dump_dataflow_set (&VTI (bb)->in);
7225 fprintf (dump_file, "BB %i OUT:\n", bb->index);
7226 dump_dataflow_set (&VTI (bb)->out);
7227 }
7228 }
7229 }
7230 }
7231
7232 if (success && MAY_HAVE_DEBUG_BIND_INSNS)
7233 FOR_EACH_BB_FN (bb, cfun)
7234 gcc_assert (VTI (bb)->flooded);
7235
7236 free (bb_order);
7237 delete worklist;
7238 delete pending;
7239 sbitmap_free (in_worklist);
7240 sbitmap_free (in_pending);
7241
7242 timevar_pop (TV_VAR_TRACKING_DATAFLOW);
7243 return success;
7244 }
7245
7246 /* Print the content of the LIST to dump file. */
7247
7248 static void
7249 dump_attrs_list (attrs *list)
7250 {
7251 for (; list; list = list->next)
7252 {
7253 if (dv_is_decl_p (list->dv))
7254 print_mem_expr (dump_file, dv_as_decl (list->dv));
7255 else
7256 print_rtl_single (dump_file, dv_as_value (list->dv));
7257 fprintf (dump_file, "+" HOST_WIDE_INT_PRINT_DEC, list->offset);
7258 }
7259 fprintf (dump_file, "\n");
7260 }
7261
7262 /* Print the information about variable *SLOT to dump file. */
7263
7264 int
7265 dump_var_tracking_slot (variable **slot, void *data ATTRIBUTE_UNUSED)
7266 {
7267 variable *var = *slot;
7268
7269 dump_var (var);
7270
7271 /* Continue traversing the hash table. */
7272 return 1;
7273 }
7274
7275 /* Print the information about variable VAR to dump file. */
7276
7277 static void
7278 dump_var (variable *var)
7279 {
7280 int i;
7281 location_chain *node;
7282
7283 if (dv_is_decl_p (var->dv))
7284 {
7285 const_tree decl = dv_as_decl (var->dv);
7286
7287 if (DECL_NAME (decl))
7288 {
7289 fprintf (dump_file, " name: %s",
7290 IDENTIFIER_POINTER (DECL_NAME (decl)));
7291 if (dump_flags & TDF_UID)
7292 fprintf (dump_file, "D.%u", DECL_UID (decl));
7293 }
7294 else if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
7295 fprintf (dump_file, " name: D#%u", DEBUG_TEMP_UID (decl));
7296 else
7297 fprintf (dump_file, " name: D.%u", DECL_UID (decl));
7298 fprintf (dump_file, "\n");
7299 }
7300 else
7301 {
7302 fputc (' ', dump_file);
7303 print_rtl_single (dump_file, dv_as_value (var->dv));
7304 }
7305
7306 for (i = 0; i < var->n_var_parts; i++)
7307 {
7308 fprintf (dump_file, " offset %ld\n",
7309 (long)(var->onepart ? 0 : VAR_PART_OFFSET (var, i)));
7310 for (node = var->var_part[i].loc_chain; node; node = node->next)
7311 {
7312 fprintf (dump_file, " ");
7313 if (node->init == VAR_INIT_STATUS_UNINITIALIZED)
7314 fprintf (dump_file, "[uninit]");
7315 print_rtl_single (dump_file, node->loc);
7316 }
7317 }
7318 }
7319
7320 /* Print the information about variables from hash table VARS to dump file. */
7321
7322 static void
7323 dump_vars (variable_table_type *vars)
7324 {
7325 if (!vars->is_empty ())
7326 {
7327 fprintf (dump_file, "Variables:\n");
7328 vars->traverse <void *, dump_var_tracking_slot> (NULL);
7329 }
7330 }
7331
7332 /* Print the dataflow set SET to dump file. */
7333
7334 static void
7335 dump_dataflow_set (dataflow_set *set)
7336 {
7337 int i;
7338
7339 fprintf (dump_file, "Stack adjustment: " HOST_WIDE_INT_PRINT_DEC "\n",
7340 set->stack_adjust);
7341 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
7342 {
7343 if (set->regs[i])
7344 {
7345 fprintf (dump_file, "Reg %d:", i);
7346 dump_attrs_list (set->regs[i]);
7347 }
7348 }
7349 dump_vars (shared_hash_htab (set->vars));
7350 fprintf (dump_file, "\n");
7351 }
7352
7353 /* Print the IN and OUT sets for each basic block to dump file. */
7354
7355 static void
7356 dump_dataflow_sets (void)
7357 {
7358 basic_block bb;
7359
7360 FOR_EACH_BB_FN (bb, cfun)
7361 {
7362 fprintf (dump_file, "\nBasic block %d:\n", bb->index);
7363 fprintf (dump_file, "IN:\n");
7364 dump_dataflow_set (&VTI (bb)->in);
7365 fprintf (dump_file, "OUT:\n");
7366 dump_dataflow_set (&VTI (bb)->out);
7367 }
7368 }
7369
7370 /* Return the variable for DV in dropped_values, inserting one if
7371 requested with INSERT. */
7372
7373 static inline variable *
7374 variable_from_dropped (decl_or_value dv, enum insert_option insert)
7375 {
7376 variable **slot;
7377 variable *empty_var;
7378 onepart_enum onepart;
7379
7380 slot = dropped_values->find_slot_with_hash (dv, dv_htab_hash (dv), insert);
7381
7382 if (!slot)
7383 return NULL;
7384
7385 if (*slot)
7386 return *slot;
7387
7388 gcc_checking_assert (insert == INSERT);
7389
7390 onepart = dv_onepart_p (dv);
7391
7392 gcc_checking_assert (onepart == ONEPART_VALUE || onepart == ONEPART_DEXPR);
7393
7394 empty_var = onepart_pool_allocate (onepart);
7395 empty_var->dv = dv;
7396 empty_var->refcount = 1;
7397 empty_var->n_var_parts = 0;
7398 empty_var->onepart = onepart;
7399 empty_var->in_changed_variables = false;
7400 empty_var->var_part[0].loc_chain = NULL;
7401 empty_var->var_part[0].cur_loc = NULL;
7402 VAR_LOC_1PAUX (empty_var) = NULL;
7403 set_dv_changed (dv, true);
7404
7405 *slot = empty_var;
7406
7407 return empty_var;
7408 }
7409
7410 /* Recover the one-part aux from dropped_values. */
7411
7412 static struct onepart_aux *
7413 recover_dropped_1paux (variable *var)
7414 {
7415 variable *dvar;
7416
7417 gcc_checking_assert (var->onepart);
7418
7419 if (VAR_LOC_1PAUX (var))
7420 return VAR_LOC_1PAUX (var);
7421
7422 if (var->onepart == ONEPART_VDECL)
7423 return NULL;
7424
7425 dvar = variable_from_dropped (var->dv, NO_INSERT);
7426
7427 if (!dvar)
7428 return NULL;
7429
7430 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (dvar);
7431 VAR_LOC_1PAUX (dvar) = NULL;
7432
7433 return VAR_LOC_1PAUX (var);
7434 }
7435
7436 /* Add variable VAR to the hash table of changed variables and
7437 if it has no locations delete it from SET's hash table. */
7438
7439 static void
7440 variable_was_changed (variable *var, dataflow_set *set)
7441 {
7442 hashval_t hash = dv_htab_hash (var->dv);
7443
7444 if (emit_notes)
7445 {
7446 variable **slot;
7447
7448 /* Remember this decl or VALUE has been added to changed_variables. */
7449 set_dv_changed (var->dv, true);
7450
7451 slot = changed_variables->find_slot_with_hash (var->dv, hash, INSERT);
7452
7453 if (*slot)
7454 {
7455 variable *old_var = *slot;
7456 gcc_assert (old_var->in_changed_variables);
7457 old_var->in_changed_variables = false;
7458 if (var != old_var && var->onepart)
7459 {
7460 /* Restore the auxiliary info from an empty variable
7461 previously created for changed_variables, so it is
7462 not lost. */
7463 gcc_checking_assert (!VAR_LOC_1PAUX (var));
7464 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (old_var);
7465 VAR_LOC_1PAUX (old_var) = NULL;
7466 }
7467 variable_htab_free (*slot);
7468 }
7469
7470 if (set && var->n_var_parts == 0)
7471 {
7472 onepart_enum onepart = var->onepart;
7473 variable *empty_var = NULL;
7474 variable **dslot = NULL;
7475
7476 if (onepart == ONEPART_VALUE || onepart == ONEPART_DEXPR)
7477 {
7478 dslot = dropped_values->find_slot_with_hash (var->dv,
7479 dv_htab_hash (var->dv),
7480 INSERT);
7481 empty_var = *dslot;
7482
7483 if (empty_var)
7484 {
7485 gcc_checking_assert (!empty_var->in_changed_variables);
7486 if (!VAR_LOC_1PAUX (var))
7487 {
7488 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (empty_var);
7489 VAR_LOC_1PAUX (empty_var) = NULL;
7490 }
7491 else
7492 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var));
7493 }
7494 }
7495
7496 if (!empty_var)
7497 {
7498 empty_var = onepart_pool_allocate (onepart);
7499 empty_var->dv = var->dv;
7500 empty_var->refcount = 1;
7501 empty_var->n_var_parts = 0;
7502 empty_var->onepart = onepart;
7503 if (dslot)
7504 {
7505 empty_var->refcount++;
7506 *dslot = empty_var;
7507 }
7508 }
7509 else
7510 empty_var->refcount++;
7511 empty_var->in_changed_variables = true;
7512 *slot = empty_var;
7513 if (onepart)
7514 {
7515 empty_var->var_part[0].loc_chain = NULL;
7516 empty_var->var_part[0].cur_loc = NULL;
7517 VAR_LOC_1PAUX (empty_var) = VAR_LOC_1PAUX (var);
7518 VAR_LOC_1PAUX (var) = NULL;
7519 }
7520 goto drop_var;
7521 }
7522 else
7523 {
7524 if (var->onepart && !VAR_LOC_1PAUX (var))
7525 recover_dropped_1paux (var);
7526 var->refcount++;
7527 var->in_changed_variables = true;
7528 *slot = var;
7529 }
7530 }
7531 else
7532 {
7533 gcc_assert (set);
7534 if (var->n_var_parts == 0)
7535 {
7536 variable **slot;
7537
7538 drop_var:
7539 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
7540 if (slot)
7541 {
7542 if (shared_hash_shared (set->vars))
7543 slot = shared_hash_find_slot_unshare (&set->vars, var->dv,
7544 NO_INSERT);
7545 shared_hash_htab (set->vars)->clear_slot (slot);
7546 }
7547 }
7548 }
7549 }
7550
7551 /* Look for the index in VAR->var_part corresponding to OFFSET.
7552 Return -1 if not found. If INSERTION_POINT is non-NULL, the
7553 referenced int will be set to the index that the part has or should
7554 have, if it should be inserted. */
7555
7556 static inline int
7557 find_variable_location_part (variable *var, HOST_WIDE_INT offset,
7558 int *insertion_point)
7559 {
7560 int pos, low, high;
7561
7562 if (var->onepart)
7563 {
7564 if (offset != 0)
7565 return -1;
7566
7567 if (insertion_point)
7568 *insertion_point = 0;
7569
7570 return var->n_var_parts - 1;
7571 }
7572
7573 /* Find the location part. */
7574 low = 0;
7575 high = var->n_var_parts;
7576 while (low != high)
7577 {
7578 pos = (low + high) / 2;
7579 if (VAR_PART_OFFSET (var, pos) < offset)
7580 low = pos + 1;
7581 else
7582 high = pos;
7583 }
7584 pos = low;
7585
7586 if (insertion_point)
7587 *insertion_point = pos;
7588
7589 if (pos < var->n_var_parts && VAR_PART_OFFSET (var, pos) == offset)
7590 return pos;
7591
7592 return -1;
7593 }
7594
7595 static variable **
7596 set_slot_part (dataflow_set *set, rtx loc, variable **slot,
7597 decl_or_value dv, HOST_WIDE_INT offset,
7598 enum var_init_status initialized, rtx set_src)
7599 {
7600 int pos;
7601 location_chain *node, *next;
7602 location_chain **nextp;
7603 variable *var;
7604 onepart_enum onepart;
7605
7606 var = *slot;
7607
7608 if (var)
7609 onepart = var->onepart;
7610 else
7611 onepart = dv_onepart_p (dv);
7612
7613 gcc_checking_assert (offset == 0 || !onepart);
7614 gcc_checking_assert (loc != dv_as_opaque (dv));
7615
7616 if (! flag_var_tracking_uninit)
7617 initialized = VAR_INIT_STATUS_INITIALIZED;
7618
7619 if (!var)
7620 {
7621 /* Create new variable information. */
7622 var = onepart_pool_allocate (onepart);
7623 var->dv = dv;
7624 var->refcount = 1;
7625 var->n_var_parts = 1;
7626 var->onepart = onepart;
7627 var->in_changed_variables = false;
7628 if (var->onepart)
7629 VAR_LOC_1PAUX (var) = NULL;
7630 else
7631 VAR_PART_OFFSET (var, 0) = offset;
7632 var->var_part[0].loc_chain = NULL;
7633 var->var_part[0].cur_loc = NULL;
7634 *slot = var;
7635 pos = 0;
7636 nextp = &var->var_part[0].loc_chain;
7637 }
7638 else if (onepart)
7639 {
7640 int r = -1, c = 0;
7641
7642 gcc_assert (dv_as_opaque (var->dv) == dv_as_opaque (dv));
7643
7644 pos = 0;
7645
7646 if (GET_CODE (loc) == VALUE)
7647 {
7648 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7649 nextp = &node->next)
7650 if (GET_CODE (node->loc) == VALUE)
7651 {
7652 if (node->loc == loc)
7653 {
7654 r = 0;
7655 break;
7656 }
7657 if (canon_value_cmp (node->loc, loc))
7658 c++;
7659 else
7660 {
7661 r = 1;
7662 break;
7663 }
7664 }
7665 else if (REG_P (node->loc) || MEM_P (node->loc))
7666 c++;
7667 else
7668 {
7669 r = 1;
7670 break;
7671 }
7672 }
7673 else if (REG_P (loc))
7674 {
7675 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7676 nextp = &node->next)
7677 if (REG_P (node->loc))
7678 {
7679 if (REGNO (node->loc) < REGNO (loc))
7680 c++;
7681 else
7682 {
7683 if (REGNO (node->loc) == REGNO (loc))
7684 r = 0;
7685 else
7686 r = 1;
7687 break;
7688 }
7689 }
7690 else
7691 {
7692 r = 1;
7693 break;
7694 }
7695 }
7696 else if (MEM_P (loc))
7697 {
7698 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7699 nextp = &node->next)
7700 if (REG_P (node->loc))
7701 c++;
7702 else if (MEM_P (node->loc))
7703 {
7704 if ((r = loc_cmp (XEXP (node->loc, 0), XEXP (loc, 0))) >= 0)
7705 break;
7706 else
7707 c++;
7708 }
7709 else
7710 {
7711 r = 1;
7712 break;
7713 }
7714 }
7715 else
7716 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7717 nextp = &node->next)
7718 if ((r = loc_cmp (node->loc, loc)) >= 0)
7719 break;
7720 else
7721 c++;
7722
7723 if (r == 0)
7724 return slot;
7725
7726 if (shared_var_p (var, set->vars))
7727 {
7728 slot = unshare_variable (set, slot, var, initialized);
7729 var = *slot;
7730 for (nextp = &var->var_part[0].loc_chain; c;
7731 nextp = &(*nextp)->next)
7732 c--;
7733 gcc_assert ((!node && !*nextp) || node->loc == (*nextp)->loc);
7734 }
7735 }
7736 else
7737 {
7738 int inspos = 0;
7739
7740 gcc_assert (dv_as_decl (var->dv) == dv_as_decl (dv));
7741
7742 pos = find_variable_location_part (var, offset, &inspos);
7743
7744 if (pos >= 0)
7745 {
7746 node = var->var_part[pos].loc_chain;
7747
7748 if (node
7749 && ((REG_P (node->loc) && REG_P (loc)
7750 && REGNO (node->loc) == REGNO (loc))
7751 || rtx_equal_p (node->loc, loc)))
7752 {
7753 /* LOC is in the beginning of the chain so we have nothing
7754 to do. */
7755 if (node->init < initialized)
7756 node->init = initialized;
7757 if (set_src != NULL)
7758 node->set_src = set_src;
7759
7760 return slot;
7761 }
7762 else
7763 {
7764 /* We have to make a copy of a shared variable. */
7765 if (shared_var_p (var, set->vars))
7766 {
7767 slot = unshare_variable (set, slot, var, initialized);
7768 var = *slot;
7769 }
7770 }
7771 }
7772 else
7773 {
7774 /* We have not found the location part, new one will be created. */
7775
7776 /* We have to make a copy of the shared variable. */
7777 if (shared_var_p (var, set->vars))
7778 {
7779 slot = unshare_variable (set, slot, var, initialized);
7780 var = *slot;
7781 }
7782
7783 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
7784 thus there are at most MAX_VAR_PARTS different offsets. */
7785 gcc_assert (var->n_var_parts < MAX_VAR_PARTS
7786 && (!var->n_var_parts || !onepart));
7787
7788 /* We have to move the elements of array starting at index
7789 inspos to the next position. */
7790 for (pos = var->n_var_parts; pos > inspos; pos--)
7791 var->var_part[pos] = var->var_part[pos - 1];
7792
7793 var->n_var_parts++;
7794 gcc_checking_assert (!onepart);
7795 VAR_PART_OFFSET (var, pos) = offset;
7796 var->var_part[pos].loc_chain = NULL;
7797 var->var_part[pos].cur_loc = NULL;
7798 }
7799
7800 /* Delete the location from the list. */
7801 nextp = &var->var_part[pos].loc_chain;
7802 for (node = var->var_part[pos].loc_chain; node; node = next)
7803 {
7804 next = node->next;
7805 if ((REG_P (node->loc) && REG_P (loc)
7806 && REGNO (node->loc) == REGNO (loc))
7807 || rtx_equal_p (node->loc, loc))
7808 {
7809 /* Save these values, to assign to the new node, before
7810 deleting this one. */
7811 if (node->init > initialized)
7812 initialized = node->init;
7813 if (node->set_src != NULL && set_src == NULL)
7814 set_src = node->set_src;
7815 if (var->var_part[pos].cur_loc == node->loc)
7816 var->var_part[pos].cur_loc = NULL;
7817 delete node;
7818 *nextp = next;
7819 break;
7820 }
7821 else
7822 nextp = &node->next;
7823 }
7824
7825 nextp = &var->var_part[pos].loc_chain;
7826 }
7827
7828 /* Add the location to the beginning. */
7829 node = new location_chain;
7830 node->loc = loc;
7831 node->init = initialized;
7832 node->set_src = set_src;
7833 node->next = *nextp;
7834 *nextp = node;
7835
7836 /* If no location was emitted do so. */
7837 if (var->var_part[pos].cur_loc == NULL)
7838 variable_was_changed (var, set);
7839
7840 return slot;
7841 }
7842
7843 /* Set the part of variable's location in the dataflow set SET. The
7844 variable part is specified by variable's declaration in DV and
7845 offset OFFSET and the part's location by LOC. IOPT should be
7846 NO_INSERT if the variable is known to be in SET already and the
7847 variable hash table must not be resized, and INSERT otherwise. */
7848
7849 static void
7850 set_variable_part (dataflow_set *set, rtx loc,
7851 decl_or_value dv, HOST_WIDE_INT offset,
7852 enum var_init_status initialized, rtx set_src,
7853 enum insert_option iopt)
7854 {
7855 variable **slot;
7856
7857 if (iopt == NO_INSERT)
7858 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7859 else
7860 {
7861 slot = shared_hash_find_slot (set->vars, dv);
7862 if (!slot)
7863 slot = shared_hash_find_slot_unshare (&set->vars, dv, iopt);
7864 }
7865 set_slot_part (set, loc, slot, dv, offset, initialized, set_src);
7866 }
7867
7868 /* Remove all recorded register locations for the given variable part
7869 from dataflow set SET, except for those that are identical to loc.
7870 The variable part is specified by variable's declaration or value
7871 DV and offset OFFSET. */
7872
7873 static variable **
7874 clobber_slot_part (dataflow_set *set, rtx loc, variable **slot,
7875 HOST_WIDE_INT offset, rtx set_src)
7876 {
7877 variable *var = *slot;
7878 int pos = find_variable_location_part (var, offset, NULL);
7879
7880 if (pos >= 0)
7881 {
7882 location_chain *node, *next;
7883
7884 /* Remove the register locations from the dataflow set. */
7885 next = var->var_part[pos].loc_chain;
7886 for (node = next; node; node = next)
7887 {
7888 next = node->next;
7889 if (node->loc != loc
7890 && (!flag_var_tracking_uninit
7891 || !set_src
7892 || MEM_P (set_src)
7893 || !rtx_equal_p (set_src, node->set_src)))
7894 {
7895 if (REG_P (node->loc))
7896 {
7897 attrs *anode, *anext;
7898 attrs **anextp;
7899
7900 /* Remove the variable part from the register's
7901 list, but preserve any other variable parts
7902 that might be regarded as live in that same
7903 register. */
7904 anextp = &set->regs[REGNO (node->loc)];
7905 for (anode = *anextp; anode; anode = anext)
7906 {
7907 anext = anode->next;
7908 if (dv_as_opaque (anode->dv) == dv_as_opaque (var->dv)
7909 && anode->offset == offset)
7910 {
7911 delete anode;
7912 *anextp = anext;
7913 }
7914 else
7915 anextp = &anode->next;
7916 }
7917 }
7918
7919 slot = delete_slot_part (set, node->loc, slot, offset);
7920 }
7921 }
7922 }
7923
7924 return slot;
7925 }
7926
7927 /* Remove all recorded register locations for the given variable part
7928 from dataflow set SET, except for those that are identical to loc.
7929 The variable part is specified by variable's declaration or value
7930 DV and offset OFFSET. */
7931
7932 static void
7933 clobber_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
7934 HOST_WIDE_INT offset, rtx set_src)
7935 {
7936 variable **slot;
7937
7938 if (!dv_as_opaque (dv)
7939 || (!dv_is_value_p (dv) && ! DECL_P (dv_as_decl (dv))))
7940 return;
7941
7942 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7943 if (!slot)
7944 return;
7945
7946 clobber_slot_part (set, loc, slot, offset, set_src);
7947 }
7948
7949 /* Delete the part of variable's location from dataflow set SET. The
7950 variable part is specified by its SET->vars slot SLOT and offset
7951 OFFSET and the part's location by LOC. */
7952
7953 static variable **
7954 delete_slot_part (dataflow_set *set, rtx loc, variable **slot,
7955 HOST_WIDE_INT offset)
7956 {
7957 variable *var = *slot;
7958 int pos = find_variable_location_part (var, offset, NULL);
7959
7960 if (pos >= 0)
7961 {
7962 location_chain *node, *next;
7963 location_chain **nextp;
7964 bool changed;
7965 rtx cur_loc;
7966
7967 if (shared_var_p (var, set->vars))
7968 {
7969 /* If the variable contains the location part we have to
7970 make a copy of the variable. */
7971 for (node = var->var_part[pos].loc_chain; node;
7972 node = node->next)
7973 {
7974 if ((REG_P (node->loc) && REG_P (loc)
7975 && REGNO (node->loc) == REGNO (loc))
7976 || rtx_equal_p (node->loc, loc))
7977 {
7978 slot = unshare_variable (set, slot, var,
7979 VAR_INIT_STATUS_UNKNOWN);
7980 var = *slot;
7981 break;
7982 }
7983 }
7984 }
7985
7986 if (pos == 0 && var->onepart && VAR_LOC_1PAUX (var))
7987 cur_loc = VAR_LOC_FROM (var);
7988 else
7989 cur_loc = var->var_part[pos].cur_loc;
7990
7991 /* Delete the location part. */
7992 changed = false;
7993 nextp = &var->var_part[pos].loc_chain;
7994 for (node = *nextp; node; node = next)
7995 {
7996 next = node->next;
7997 if ((REG_P (node->loc) && REG_P (loc)
7998 && REGNO (node->loc) == REGNO (loc))
7999 || rtx_equal_p (node->loc, loc))
8000 {
8001 /* If we have deleted the location which was last emitted
8002 we have to emit new location so add the variable to set
8003 of changed variables. */
8004 if (cur_loc == node->loc)
8005 {
8006 changed = true;
8007 var->var_part[pos].cur_loc = NULL;
8008 if (pos == 0 && var->onepart && VAR_LOC_1PAUX (var))
8009 VAR_LOC_FROM (var) = NULL;
8010 }
8011 delete node;
8012 *nextp = next;
8013 break;
8014 }
8015 else
8016 nextp = &node->next;
8017 }
8018
8019 if (var->var_part[pos].loc_chain == NULL)
8020 {
8021 changed = true;
8022 var->n_var_parts--;
8023 while (pos < var->n_var_parts)
8024 {
8025 var->var_part[pos] = var->var_part[pos + 1];
8026 pos++;
8027 }
8028 }
8029 if (changed)
8030 variable_was_changed (var, set);
8031 }
8032
8033 return slot;
8034 }
8035
8036 /* Delete the part of variable's location from dataflow set SET. The
8037 variable part is specified by variable's declaration or value DV
8038 and offset OFFSET and the part's location by LOC. */
8039
8040 static void
8041 delete_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
8042 HOST_WIDE_INT offset)
8043 {
8044 variable **slot = shared_hash_find_slot_noinsert (set->vars, dv);
8045 if (!slot)
8046 return;
8047
8048 delete_slot_part (set, loc, slot, offset);
8049 }
8050
8051
8052 /* Structure for passing some other parameters to function
8053 vt_expand_loc_callback. */
8054 class expand_loc_callback_data
8055 {
8056 public:
8057 /* The variables and values active at this point. */
8058 variable_table_type *vars;
8059
8060 /* Stack of values and debug_exprs under expansion, and their
8061 children. */
8062 auto_vec<rtx, 4> expanding;
8063
8064 /* Stack of values and debug_exprs whose expansion hit recursion
8065 cycles. They will have VALUE_RECURSED_INTO marked when added to
8066 this list. This flag will be cleared if any of its dependencies
8067 resolves to a valid location. So, if the flag remains set at the
8068 end of the search, we know no valid location for this one can
8069 possibly exist. */
8070 auto_vec<rtx, 4> pending;
8071
8072 /* The maximum depth among the sub-expressions under expansion.
8073 Zero indicates no expansion so far. */
8074 expand_depth depth;
8075 };
8076
8077 /* Allocate the one-part auxiliary data structure for VAR, with enough
8078 room for COUNT dependencies. */
8079
8080 static void
8081 loc_exp_dep_alloc (variable *var, int count)
8082 {
8083 size_t allocsize;
8084
8085 gcc_checking_assert (var->onepart);
8086
8087 /* We can be called with COUNT == 0 to allocate the data structure
8088 without any dependencies, e.g. for the backlinks only. However,
8089 if we are specifying a COUNT, then the dependency list must have
8090 been emptied before. It would be possible to adjust pointers or
8091 force it empty here, but this is better done at an earlier point
8092 in the algorithm, so we instead leave an assertion to catch
8093 errors. */
8094 gcc_checking_assert (!count
8095 || VAR_LOC_DEP_VEC (var) == NULL
8096 || VAR_LOC_DEP_VEC (var)->is_empty ());
8097
8098 if (VAR_LOC_1PAUX (var) && VAR_LOC_DEP_VEC (var)->space (count))
8099 return;
8100
8101 allocsize = offsetof (struct onepart_aux, deps)
8102 + vec<loc_exp_dep, va_heap, vl_embed>::embedded_size (count);
8103
8104 if (VAR_LOC_1PAUX (var))
8105 {
8106 VAR_LOC_1PAUX (var) = XRESIZEVAR (struct onepart_aux,
8107 VAR_LOC_1PAUX (var), allocsize);
8108 /* If the reallocation moves the onepaux structure, the
8109 back-pointer to BACKLINKS in the first list member will still
8110 point to its old location. Adjust it. */
8111 if (VAR_LOC_DEP_LST (var))
8112 VAR_LOC_DEP_LST (var)->pprev = VAR_LOC_DEP_LSTP (var);
8113 }
8114 else
8115 {
8116 VAR_LOC_1PAUX (var) = XNEWVAR (struct onepart_aux, allocsize);
8117 *VAR_LOC_DEP_LSTP (var) = NULL;
8118 VAR_LOC_FROM (var) = NULL;
8119 VAR_LOC_DEPTH (var).complexity = 0;
8120 VAR_LOC_DEPTH (var).entryvals = 0;
8121 }
8122 VAR_LOC_DEP_VEC (var)->embedded_init (count);
8123 }
8124
8125 /* Remove all entries from the vector of active dependencies of VAR,
8126 removing them from the back-links lists too. */
8127
8128 static void
8129 loc_exp_dep_clear (variable *var)
8130 {
8131 while (VAR_LOC_DEP_VEC (var) && !VAR_LOC_DEP_VEC (var)->is_empty ())
8132 {
8133 loc_exp_dep *led = &VAR_LOC_DEP_VEC (var)->last ();
8134 if (led->next)
8135 led->next->pprev = led->pprev;
8136 if (led->pprev)
8137 *led->pprev = led->next;
8138 VAR_LOC_DEP_VEC (var)->pop ();
8139 }
8140 }
8141
8142 /* Insert an active dependency from VAR on X to the vector of
8143 dependencies, and add the corresponding back-link to X's list of
8144 back-links in VARS. */
8145
8146 static void
8147 loc_exp_insert_dep (variable *var, rtx x, variable_table_type *vars)
8148 {
8149 decl_or_value dv;
8150 variable *xvar;
8151 loc_exp_dep *led;
8152
8153 dv = dv_from_rtx (x);
8154
8155 /* ??? Build a vector of variables parallel to EXPANDING, to avoid
8156 an additional look up? */
8157 xvar = vars->find_with_hash (dv, dv_htab_hash (dv));
8158
8159 if (!xvar)
8160 {
8161 xvar = variable_from_dropped (dv, NO_INSERT);
8162 gcc_checking_assert (xvar);
8163 }
8164
8165 /* No point in adding the same backlink more than once. This may
8166 arise if say the same value appears in two complex expressions in
8167 the same loc_list, or even more than once in a single
8168 expression. */
8169 if (VAR_LOC_DEP_LST (xvar) && VAR_LOC_DEP_LST (xvar)->dv == var->dv)
8170 return;
8171
8172 if (var->onepart == NOT_ONEPART)
8173 led = new loc_exp_dep;
8174 else
8175 {
8176 loc_exp_dep empty;
8177 memset (&empty, 0, sizeof (empty));
8178 VAR_LOC_DEP_VEC (var)->quick_push (empty);
8179 led = &VAR_LOC_DEP_VEC (var)->last ();
8180 }
8181 led->dv = var->dv;
8182 led->value = x;
8183
8184 loc_exp_dep_alloc (xvar, 0);
8185 led->pprev = VAR_LOC_DEP_LSTP (xvar);
8186 led->next = *led->pprev;
8187 if (led->next)
8188 led->next->pprev = &led->next;
8189 *led->pprev = led;
8190 }
8191
8192 /* Create active dependencies of VAR on COUNT values starting at
8193 VALUE, and corresponding back-links to the entries in VARS. Return
8194 true if we found any pending-recursion results. */
8195
8196 static bool
8197 loc_exp_dep_set (variable *var, rtx result, rtx *value, int count,
8198 variable_table_type *vars)
8199 {
8200 bool pending_recursion = false;
8201
8202 gcc_checking_assert (VAR_LOC_DEP_VEC (var) == NULL
8203 || VAR_LOC_DEP_VEC (var)->is_empty ());
8204
8205 /* Set up all dependencies from last_child (as set up at the end of
8206 the loop above) to the end. */
8207 loc_exp_dep_alloc (var, count);
8208
8209 while (count--)
8210 {
8211 rtx x = *value++;
8212
8213 if (!pending_recursion)
8214 pending_recursion = !result && VALUE_RECURSED_INTO (x);
8215
8216 loc_exp_insert_dep (var, x, vars);
8217 }
8218
8219 return pending_recursion;
8220 }
8221
8222 /* Notify the back-links of IVAR that are pending recursion that we
8223 have found a non-NIL value for it, so they are cleared for another
8224 attempt to compute a current location. */
8225
8226 static void
8227 notify_dependents_of_resolved_value (variable *ivar, variable_table_type *vars)
8228 {
8229 loc_exp_dep *led, *next;
8230
8231 for (led = VAR_LOC_DEP_LST (ivar); led; led = next)
8232 {
8233 decl_or_value dv = led->dv;
8234 variable *var;
8235
8236 next = led->next;
8237
8238 if (dv_is_value_p (dv))
8239 {
8240 rtx value = dv_as_value (dv);
8241
8242 /* If we have already resolved it, leave it alone. */
8243 if (!VALUE_RECURSED_INTO (value))
8244 continue;
8245
8246 /* Check that VALUE_RECURSED_INTO, true from the test above,
8247 implies NO_LOC_P. */
8248 gcc_checking_assert (NO_LOC_P (value));
8249
8250 /* We won't notify variables that are being expanded,
8251 because their dependency list is cleared before
8252 recursing. */
8253 NO_LOC_P (value) = false;
8254 VALUE_RECURSED_INTO (value) = false;
8255
8256 gcc_checking_assert (dv_changed_p (dv));
8257 }
8258 else
8259 {
8260 gcc_checking_assert (dv_onepart_p (dv) != NOT_ONEPART);
8261 if (!dv_changed_p (dv))
8262 continue;
8263 }
8264
8265 var = vars->find_with_hash (dv, dv_htab_hash (dv));
8266
8267 if (!var)
8268 var = variable_from_dropped (dv, NO_INSERT);
8269
8270 if (var)
8271 notify_dependents_of_resolved_value (var, vars);
8272
8273 if (next)
8274 next->pprev = led->pprev;
8275 if (led->pprev)
8276 *led->pprev = next;
8277 led->next = NULL;
8278 led->pprev = NULL;
8279 }
8280 }
8281
8282 static rtx vt_expand_loc_callback (rtx x, bitmap regs,
8283 int max_depth, void *data);
8284
8285 /* Return the combined depth, when one sub-expression evaluated to
8286 BEST_DEPTH and the previous known depth was SAVED_DEPTH. */
8287
8288 static inline expand_depth
8289 update_depth (expand_depth saved_depth, expand_depth best_depth)
8290 {
8291 /* If we didn't find anything, stick with what we had. */
8292 if (!best_depth.complexity)
8293 return saved_depth;
8294
8295 /* If we found hadn't found anything, use the depth of the current
8296 expression. Do NOT add one extra level, we want to compute the
8297 maximum depth among sub-expressions. We'll increment it later,
8298 if appropriate. */
8299 if (!saved_depth.complexity)
8300 return best_depth;
8301
8302 /* Combine the entryval count so that regardless of which one we
8303 return, the entryval count is accurate. */
8304 best_depth.entryvals = saved_depth.entryvals
8305 = best_depth.entryvals + saved_depth.entryvals;
8306
8307 if (saved_depth.complexity < best_depth.complexity)
8308 return best_depth;
8309 else
8310 return saved_depth;
8311 }
8312
8313 /* Expand VAR to a location RTX, updating its cur_loc. Use REGS and
8314 DATA for cselib expand callback. If PENDRECP is given, indicate in
8315 it whether any sub-expression couldn't be fully evaluated because
8316 it is pending recursion resolution. */
8317
8318 static inline rtx
8319 vt_expand_var_loc_chain (variable *var, bitmap regs, void *data,
8320 bool *pendrecp)
8321 {
8322 class expand_loc_callback_data *elcd
8323 = (class expand_loc_callback_data *) data;
8324 location_chain *loc, *next;
8325 rtx result = NULL;
8326 int first_child, result_first_child, last_child;
8327 bool pending_recursion;
8328 rtx loc_from = NULL;
8329 struct elt_loc_list *cloc = NULL;
8330 expand_depth depth = { 0, 0 }, saved_depth = elcd->depth;
8331 int wanted_entryvals, found_entryvals = 0;
8332
8333 /* Clear all backlinks pointing at this, so that we're not notified
8334 while we're active. */
8335 loc_exp_dep_clear (var);
8336
8337 retry:
8338 if (var->onepart == ONEPART_VALUE)
8339 {
8340 cselib_val *val = CSELIB_VAL_PTR (dv_as_value (var->dv));
8341
8342 gcc_checking_assert (cselib_preserved_value_p (val));
8343
8344 cloc = val->locs;
8345 }
8346
8347 first_child = result_first_child = last_child
8348 = elcd->expanding.length ();
8349
8350 wanted_entryvals = found_entryvals;
8351
8352 /* Attempt to expand each available location in turn. */
8353 for (next = loc = var->n_var_parts ? var->var_part[0].loc_chain : NULL;
8354 loc || cloc; loc = next)
8355 {
8356 result_first_child = last_child;
8357
8358 if (!loc)
8359 {
8360 loc_from = cloc->loc;
8361 next = loc;
8362 cloc = cloc->next;
8363 if (unsuitable_loc (loc_from))
8364 continue;
8365 }
8366 else
8367 {
8368 loc_from = loc->loc;
8369 next = loc->next;
8370 }
8371
8372 gcc_checking_assert (!unsuitable_loc (loc_from));
8373
8374 elcd->depth.complexity = elcd->depth.entryvals = 0;
8375 result = cselib_expand_value_rtx_cb (loc_from, regs, EXPR_DEPTH,
8376 vt_expand_loc_callback, data);
8377 last_child = elcd->expanding.length ();
8378
8379 if (result)
8380 {
8381 depth = elcd->depth;
8382
8383 gcc_checking_assert (depth.complexity
8384 || result_first_child == last_child);
8385
8386 if (last_child - result_first_child != 1)
8387 {
8388 if (!depth.complexity && GET_CODE (result) == ENTRY_VALUE)
8389 depth.entryvals++;
8390 depth.complexity++;
8391 }
8392
8393 if (depth.complexity <= EXPR_USE_DEPTH)
8394 {
8395 if (depth.entryvals <= wanted_entryvals)
8396 break;
8397 else if (!found_entryvals || depth.entryvals < found_entryvals)
8398 found_entryvals = depth.entryvals;
8399 }
8400
8401 result = NULL;
8402 }
8403
8404 /* Set it up in case we leave the loop. */
8405 depth.complexity = depth.entryvals = 0;
8406 loc_from = NULL;
8407 result_first_child = first_child;
8408 }
8409
8410 if (!loc_from && wanted_entryvals < found_entryvals)
8411 {
8412 /* We found entries with ENTRY_VALUEs and skipped them. Since
8413 we could not find any expansions without ENTRY_VALUEs, but we
8414 found at least one with them, go back and get an entry with
8415 the minimum number ENTRY_VALUE count that we found. We could
8416 avoid looping, but since each sub-loc is already resolved,
8417 the re-expansion should be trivial. ??? Should we record all
8418 attempted locs as dependencies, so that we retry the
8419 expansion should any of them change, in the hope it can give
8420 us a new entry without an ENTRY_VALUE? */
8421 elcd->expanding.truncate (first_child);
8422 goto retry;
8423 }
8424
8425 /* Register all encountered dependencies as active. */
8426 pending_recursion = loc_exp_dep_set
8427 (var, result, elcd->expanding.address () + result_first_child,
8428 last_child - result_first_child, elcd->vars);
8429
8430 elcd->expanding.truncate (first_child);
8431
8432 /* Record where the expansion came from. */
8433 gcc_checking_assert (!result || !pending_recursion);
8434 VAR_LOC_FROM (var) = loc_from;
8435 VAR_LOC_DEPTH (var) = depth;
8436
8437 gcc_checking_assert (!depth.complexity == !result);
8438
8439 elcd->depth = update_depth (saved_depth, depth);
8440
8441 /* Indicate whether any of the dependencies are pending recursion
8442 resolution. */
8443 if (pendrecp)
8444 *pendrecp = pending_recursion;
8445
8446 if (!pendrecp || !pending_recursion)
8447 var->var_part[0].cur_loc = result;
8448
8449 return result;
8450 }
8451
8452 /* Callback for cselib_expand_value, that looks for expressions
8453 holding the value in the var-tracking hash tables. Return X for
8454 standard processing, anything else is to be used as-is. */
8455
8456 static rtx
8457 vt_expand_loc_callback (rtx x, bitmap regs,
8458 int max_depth ATTRIBUTE_UNUSED,
8459 void *data)
8460 {
8461 class expand_loc_callback_data *elcd
8462 = (class expand_loc_callback_data *) data;
8463 decl_or_value dv;
8464 variable *var;
8465 rtx result, subreg;
8466 bool pending_recursion = false;
8467 bool from_empty = false;
8468
8469 switch (GET_CODE (x))
8470 {
8471 case SUBREG:
8472 subreg = cselib_expand_value_rtx_cb (SUBREG_REG (x), regs,
8473 EXPR_DEPTH,
8474 vt_expand_loc_callback, data);
8475
8476 if (!subreg)
8477 return NULL;
8478
8479 result = simplify_gen_subreg (GET_MODE (x), subreg,
8480 GET_MODE (SUBREG_REG (x)),
8481 SUBREG_BYTE (x));
8482
8483 /* Invalid SUBREGs are ok in debug info. ??? We could try
8484 alternate expansions for the VALUE as well. */
8485 if (!result && GET_MODE (subreg) != VOIDmode)
8486 result = gen_rtx_raw_SUBREG (GET_MODE (x), subreg, SUBREG_BYTE (x));
8487
8488 return result;
8489
8490 case DEBUG_EXPR:
8491 case VALUE:
8492 dv = dv_from_rtx (x);
8493 break;
8494
8495 default:
8496 return x;
8497 }
8498
8499 elcd->expanding.safe_push (x);
8500
8501 /* Check that VALUE_RECURSED_INTO implies NO_LOC_P. */
8502 gcc_checking_assert (!VALUE_RECURSED_INTO (x) || NO_LOC_P (x));
8503
8504 if (NO_LOC_P (x))
8505 {
8506 gcc_checking_assert (VALUE_RECURSED_INTO (x) || !dv_changed_p (dv));
8507 return NULL;
8508 }
8509
8510 var = elcd->vars->find_with_hash (dv, dv_htab_hash (dv));
8511
8512 if (!var)
8513 {
8514 from_empty = true;
8515 var = variable_from_dropped (dv, INSERT);
8516 }
8517
8518 gcc_checking_assert (var);
8519
8520 if (!dv_changed_p (dv))
8521 {
8522 gcc_checking_assert (!NO_LOC_P (x));
8523 gcc_checking_assert (var->var_part[0].cur_loc);
8524 gcc_checking_assert (VAR_LOC_1PAUX (var));
8525 gcc_checking_assert (VAR_LOC_1PAUX (var)->depth.complexity);
8526
8527 elcd->depth = update_depth (elcd->depth, VAR_LOC_1PAUX (var)->depth);
8528
8529 return var->var_part[0].cur_loc;
8530 }
8531
8532 VALUE_RECURSED_INTO (x) = true;
8533 /* This is tentative, but it makes some tests simpler. */
8534 NO_LOC_P (x) = true;
8535
8536 gcc_checking_assert (var->n_var_parts == 1 || from_empty);
8537
8538 result = vt_expand_var_loc_chain (var, regs, data, &pending_recursion);
8539
8540 if (pending_recursion)
8541 {
8542 gcc_checking_assert (!result);
8543 elcd->pending.safe_push (x);
8544 }
8545 else
8546 {
8547 NO_LOC_P (x) = !result;
8548 VALUE_RECURSED_INTO (x) = false;
8549 set_dv_changed (dv, false);
8550
8551 if (result)
8552 notify_dependents_of_resolved_value (var, elcd->vars);
8553 }
8554
8555 return result;
8556 }
8557
8558 /* While expanding variables, we may encounter recursion cycles
8559 because of mutual (possibly indirect) dependencies between two
8560 particular variables (or values), say A and B. If we're trying to
8561 expand A when we get to B, which in turn attempts to expand A, if
8562 we can't find any other expansion for B, we'll add B to this
8563 pending-recursion stack, and tentatively return NULL for its
8564 location. This tentative value will be used for any other
8565 occurrences of B, unless A gets some other location, in which case
8566 it will notify B that it is worth another try at computing a
8567 location for it, and it will use the location computed for A then.
8568 At the end of the expansion, the tentative NULL locations become
8569 final for all members of PENDING that didn't get a notification.
8570 This function performs this finalization of NULL locations. */
8571
8572 static void
8573 resolve_expansions_pending_recursion (vec<rtx, va_heap> *pending)
8574 {
8575 while (!pending->is_empty ())
8576 {
8577 rtx x = pending->pop ();
8578 decl_or_value dv;
8579
8580 if (!VALUE_RECURSED_INTO (x))
8581 continue;
8582
8583 gcc_checking_assert (NO_LOC_P (x));
8584 VALUE_RECURSED_INTO (x) = false;
8585 dv = dv_from_rtx (x);
8586 gcc_checking_assert (dv_changed_p (dv));
8587 set_dv_changed (dv, false);
8588 }
8589 }
8590
8591 /* Initialize expand_loc_callback_data D with variable hash table V.
8592 It must be a macro because of alloca (vec stack). */
8593 #define INIT_ELCD(d, v) \
8594 do \
8595 { \
8596 (d).vars = (v); \
8597 (d).depth.complexity = (d).depth.entryvals = 0; \
8598 } \
8599 while (0)
8600 /* Finalize expand_loc_callback_data D, resolved to location L. */
8601 #define FINI_ELCD(d, l) \
8602 do \
8603 { \
8604 resolve_expansions_pending_recursion (&(d).pending); \
8605 (d).pending.release (); \
8606 (d).expanding.release (); \
8607 \
8608 if ((l) && MEM_P (l)) \
8609 (l) = targetm.delegitimize_address (l); \
8610 } \
8611 while (0)
8612
8613 /* Expand VALUEs and DEBUG_EXPRs in LOC to a location, using the
8614 equivalences in VARS, updating their CUR_LOCs in the process. */
8615
8616 static rtx
8617 vt_expand_loc (rtx loc, variable_table_type *vars)
8618 {
8619 class expand_loc_callback_data data;
8620 rtx result;
8621
8622 if (!MAY_HAVE_DEBUG_BIND_INSNS)
8623 return loc;
8624
8625 INIT_ELCD (data, vars);
8626
8627 result = cselib_expand_value_rtx_cb (loc, scratch_regs, EXPR_DEPTH,
8628 vt_expand_loc_callback, &data);
8629
8630 FINI_ELCD (data, result);
8631
8632 return result;
8633 }
8634
8635 /* Expand the one-part VARiable to a location, using the equivalences
8636 in VARS, updating their CUR_LOCs in the process. */
8637
8638 static rtx
8639 vt_expand_1pvar (variable *var, variable_table_type *vars)
8640 {
8641 class expand_loc_callback_data data;
8642 rtx loc;
8643
8644 gcc_checking_assert (var->onepart && var->n_var_parts == 1);
8645
8646 if (!dv_changed_p (var->dv))
8647 return var->var_part[0].cur_loc;
8648
8649 INIT_ELCD (data, vars);
8650
8651 loc = vt_expand_var_loc_chain (var, scratch_regs, &data, NULL);
8652
8653 gcc_checking_assert (data.expanding.is_empty ());
8654
8655 FINI_ELCD (data, loc);
8656
8657 return loc;
8658 }
8659
8660 /* Emit the NOTE_INSN_VAR_LOCATION for variable *VARP. DATA contains
8661 additional parameters: WHERE specifies whether the note shall be emitted
8662 before or after instruction INSN. */
8663
8664 int
8665 emit_note_insn_var_location (variable **varp, emit_note_data *data)
8666 {
8667 variable *var = *varp;
8668 rtx_insn *insn = data->insn;
8669 enum emit_note_where where = data->where;
8670 variable_table_type *vars = data->vars;
8671 rtx_note *note;
8672 rtx note_vl;
8673 int i, j, n_var_parts;
8674 bool complete;
8675 enum var_init_status initialized = VAR_INIT_STATUS_UNINITIALIZED;
8676 HOST_WIDE_INT last_limit;
8677 HOST_WIDE_INT offsets[MAX_VAR_PARTS];
8678 rtx loc[MAX_VAR_PARTS];
8679 tree decl;
8680 location_chain *lc;
8681
8682 gcc_checking_assert (var->onepart == NOT_ONEPART
8683 || var->onepart == ONEPART_VDECL);
8684
8685 decl = dv_as_decl (var->dv);
8686
8687 complete = true;
8688 last_limit = 0;
8689 n_var_parts = 0;
8690 if (!var->onepart)
8691 for (i = 0; i < var->n_var_parts; i++)
8692 if (var->var_part[i].cur_loc == NULL && var->var_part[i].loc_chain)
8693 var->var_part[i].cur_loc = var->var_part[i].loc_chain->loc;
8694 for (i = 0; i < var->n_var_parts; i++)
8695 {
8696 machine_mode mode, wider_mode;
8697 rtx loc2;
8698 HOST_WIDE_INT offset, size, wider_size;
8699
8700 if (i == 0 && var->onepart)
8701 {
8702 gcc_checking_assert (var->n_var_parts == 1);
8703 offset = 0;
8704 initialized = VAR_INIT_STATUS_INITIALIZED;
8705 loc2 = vt_expand_1pvar (var, vars);
8706 }
8707 else
8708 {
8709 if (last_limit < VAR_PART_OFFSET (var, i))
8710 {
8711 complete = false;
8712 break;
8713 }
8714 else if (last_limit > VAR_PART_OFFSET (var, i))
8715 continue;
8716 offset = VAR_PART_OFFSET (var, i);
8717 loc2 = var->var_part[i].cur_loc;
8718 if (loc2 && GET_CODE (loc2) == MEM
8719 && GET_CODE (XEXP (loc2, 0)) == VALUE)
8720 {
8721 rtx depval = XEXP (loc2, 0);
8722
8723 loc2 = vt_expand_loc (loc2, vars);
8724
8725 if (loc2)
8726 loc_exp_insert_dep (var, depval, vars);
8727 }
8728 if (!loc2)
8729 {
8730 complete = false;
8731 continue;
8732 }
8733 gcc_checking_assert (GET_CODE (loc2) != VALUE);
8734 for (lc = var->var_part[i].loc_chain; lc; lc = lc->next)
8735 if (var->var_part[i].cur_loc == lc->loc)
8736 {
8737 initialized = lc->init;
8738 break;
8739 }
8740 gcc_assert (lc);
8741 }
8742
8743 offsets[n_var_parts] = offset;
8744 if (!loc2)
8745 {
8746 complete = false;
8747 continue;
8748 }
8749 loc[n_var_parts] = loc2;
8750 mode = GET_MODE (var->var_part[i].cur_loc);
8751 if (mode == VOIDmode && var->onepart)
8752 mode = DECL_MODE (decl);
8753 /* We ony track subparts of constant-sized objects, since at present
8754 there's no representation for polynomial pieces. */
8755 if (!GET_MODE_SIZE (mode).is_constant (&size))
8756 {
8757 complete = false;
8758 continue;
8759 }
8760 last_limit = offsets[n_var_parts] + size;
8761
8762 /* Attempt to merge adjacent registers or memory. */
8763 for (j = i + 1; j < var->n_var_parts; j++)
8764 if (last_limit <= VAR_PART_OFFSET (var, j))
8765 break;
8766 if (j < var->n_var_parts
8767 && GET_MODE_WIDER_MODE (mode).exists (&wider_mode)
8768 && GET_MODE_SIZE (wider_mode).is_constant (&wider_size)
8769 && var->var_part[j].cur_loc
8770 && mode == GET_MODE (var->var_part[j].cur_loc)
8771 && (REG_P (loc[n_var_parts]) || MEM_P (loc[n_var_parts]))
8772 && last_limit == (var->onepart ? 0 : VAR_PART_OFFSET (var, j))
8773 && (loc2 = vt_expand_loc (var->var_part[j].cur_loc, vars))
8774 && GET_CODE (loc[n_var_parts]) == GET_CODE (loc2))
8775 {
8776 rtx new_loc = NULL;
8777 poly_int64 offset2;
8778
8779 if (REG_P (loc[n_var_parts])
8780 && hard_regno_nregs (REGNO (loc[n_var_parts]), mode) * 2
8781 == hard_regno_nregs (REGNO (loc[n_var_parts]), wider_mode)
8782 && end_hard_regno (mode, REGNO (loc[n_var_parts]))
8783 == REGNO (loc2))
8784 {
8785 if (! WORDS_BIG_ENDIAN && ! BYTES_BIG_ENDIAN)
8786 new_loc = simplify_subreg (wider_mode, loc[n_var_parts],
8787 mode, 0);
8788 else if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
8789 new_loc = simplify_subreg (wider_mode, loc2, mode, 0);
8790 if (new_loc)
8791 {
8792 if (!REG_P (new_loc)
8793 || REGNO (new_loc) != REGNO (loc[n_var_parts]))
8794 new_loc = NULL;
8795 else
8796 REG_ATTRS (new_loc) = REG_ATTRS (loc[n_var_parts]);
8797 }
8798 }
8799 else if (MEM_P (loc[n_var_parts])
8800 && GET_CODE (XEXP (loc2, 0)) == PLUS
8801 && REG_P (XEXP (XEXP (loc2, 0), 0))
8802 && poly_int_rtx_p (XEXP (XEXP (loc2, 0), 1), &offset2))
8803 {
8804 poly_int64 end1 = size;
8805 rtx base1 = strip_offset_and_add (XEXP (loc[n_var_parts], 0),
8806 &end1);
8807 if (rtx_equal_p (base1, XEXP (XEXP (loc2, 0), 0))
8808 && known_eq (end1, offset2))
8809 new_loc = adjust_address_nv (loc[n_var_parts],
8810 wider_mode, 0);
8811 }
8812
8813 if (new_loc)
8814 {
8815 loc[n_var_parts] = new_loc;
8816 mode = wider_mode;
8817 last_limit = offsets[n_var_parts] + wider_size;
8818 i = j;
8819 }
8820 }
8821 ++n_var_parts;
8822 }
8823 poly_uint64 type_size_unit
8824 = tree_to_poly_uint64 (TYPE_SIZE_UNIT (TREE_TYPE (decl)));
8825 if (maybe_lt (poly_uint64 (last_limit), type_size_unit))
8826 complete = false;
8827
8828 if (! flag_var_tracking_uninit)
8829 initialized = VAR_INIT_STATUS_INITIALIZED;
8830
8831 note_vl = NULL_RTX;
8832 if (!complete)
8833 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, NULL_RTX, initialized);
8834 else if (n_var_parts == 1)
8835 {
8836 rtx expr_list;
8837
8838 if (offsets[0] || GET_CODE (loc[0]) == PARALLEL)
8839 expr_list = gen_rtx_EXPR_LIST (VOIDmode, loc[0], GEN_INT (offsets[0]));
8840 else
8841 expr_list = loc[0];
8842
8843 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, expr_list, initialized);
8844 }
8845 else if (n_var_parts)
8846 {
8847 rtx parallel;
8848
8849 for (i = 0; i < n_var_parts; i++)
8850 loc[i]
8851 = gen_rtx_EXPR_LIST (VOIDmode, loc[i], GEN_INT (offsets[i]));
8852
8853 parallel = gen_rtx_PARALLEL (VOIDmode,
8854 gen_rtvec_v (n_var_parts, loc));
8855 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl,
8856 parallel, initialized);
8857 }
8858
8859 if (where != EMIT_NOTE_BEFORE_INSN)
8860 {
8861 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
8862 if (where == EMIT_NOTE_AFTER_CALL_INSN)
8863 NOTE_DURING_CALL_P (note) = true;
8864 }
8865 else
8866 {
8867 /* Make sure that the call related notes come first. */
8868 while (NEXT_INSN (insn)
8869 && NOTE_P (insn)
8870 && NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
8871 && NOTE_DURING_CALL_P (insn))
8872 insn = NEXT_INSN (insn);
8873 if (NOTE_P (insn)
8874 && NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
8875 && NOTE_DURING_CALL_P (insn))
8876 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
8877 else
8878 note = emit_note_before (NOTE_INSN_VAR_LOCATION, insn);
8879 }
8880 NOTE_VAR_LOCATION (note) = note_vl;
8881
8882 set_dv_changed (var->dv, false);
8883 gcc_assert (var->in_changed_variables);
8884 var->in_changed_variables = false;
8885 changed_variables->clear_slot (varp);
8886
8887 /* Continue traversing the hash table. */
8888 return 1;
8889 }
8890
8891 /* While traversing changed_variables, push onto DATA (a stack of RTX
8892 values) entries that aren't user variables. */
8893
8894 int
8895 var_track_values_to_stack (variable **slot,
8896 vec<rtx, va_heap> *changed_values_stack)
8897 {
8898 variable *var = *slot;
8899
8900 if (var->onepart == ONEPART_VALUE)
8901 changed_values_stack->safe_push (dv_as_value (var->dv));
8902 else if (var->onepart == ONEPART_DEXPR)
8903 changed_values_stack->safe_push (DECL_RTL_KNOWN_SET (dv_as_decl (var->dv)));
8904
8905 return 1;
8906 }
8907
8908 /* Remove from changed_variables the entry whose DV corresponds to
8909 value or debug_expr VAL. */
8910 static void
8911 remove_value_from_changed_variables (rtx val)
8912 {
8913 decl_or_value dv = dv_from_rtx (val);
8914 variable **slot;
8915 variable *var;
8916
8917 slot = changed_variables->find_slot_with_hash (dv, dv_htab_hash (dv),
8918 NO_INSERT);
8919 var = *slot;
8920 var->in_changed_variables = false;
8921 changed_variables->clear_slot (slot);
8922 }
8923
8924 /* If VAL (a value or debug_expr) has backlinks to variables actively
8925 dependent on it in HTAB or in CHANGED_VARIABLES, mark them as
8926 changed, adding to CHANGED_VALUES_STACK any dependencies that may
8927 have dependencies of their own to notify. */
8928
8929 static void
8930 notify_dependents_of_changed_value (rtx val, variable_table_type *htab,
8931 vec<rtx, va_heap> *changed_values_stack)
8932 {
8933 variable **slot;
8934 variable *var;
8935 loc_exp_dep *led;
8936 decl_or_value dv = dv_from_rtx (val);
8937
8938 slot = changed_variables->find_slot_with_hash (dv, dv_htab_hash (dv),
8939 NO_INSERT);
8940 if (!slot)
8941 slot = htab->find_slot_with_hash (dv, dv_htab_hash (dv), NO_INSERT);
8942 if (!slot)
8943 slot = dropped_values->find_slot_with_hash (dv, dv_htab_hash (dv),
8944 NO_INSERT);
8945 var = *slot;
8946
8947 while ((led = VAR_LOC_DEP_LST (var)))
8948 {
8949 decl_or_value ldv = led->dv;
8950 variable *ivar;
8951
8952 /* Deactivate and remove the backlink, as it was “used up”. It
8953 makes no sense to attempt to notify the same entity again:
8954 either it will be recomputed and re-register an active
8955 dependency, or it will still have the changed mark. */
8956 if (led->next)
8957 led->next->pprev = led->pprev;
8958 if (led->pprev)
8959 *led->pprev = led->next;
8960 led->next = NULL;
8961 led->pprev = NULL;
8962
8963 if (dv_changed_p (ldv))
8964 continue;
8965
8966 switch (dv_onepart_p (ldv))
8967 {
8968 case ONEPART_VALUE:
8969 case ONEPART_DEXPR:
8970 set_dv_changed (ldv, true);
8971 changed_values_stack->safe_push (dv_as_rtx (ldv));
8972 break;
8973
8974 case ONEPART_VDECL:
8975 ivar = htab->find_with_hash (ldv, dv_htab_hash (ldv));
8976 gcc_checking_assert (!VAR_LOC_DEP_LST (ivar));
8977 variable_was_changed (ivar, NULL);
8978 break;
8979
8980 case NOT_ONEPART:
8981 delete led;
8982 ivar = htab->find_with_hash (ldv, dv_htab_hash (ldv));
8983 if (ivar)
8984 {
8985 int i = ivar->n_var_parts;
8986 while (i--)
8987 {
8988 rtx loc = ivar->var_part[i].cur_loc;
8989
8990 if (loc && GET_CODE (loc) == MEM
8991 && XEXP (loc, 0) == val)
8992 {
8993 variable_was_changed (ivar, NULL);
8994 break;
8995 }
8996 }
8997 }
8998 break;
8999
9000 default:
9001 gcc_unreachable ();
9002 }
9003 }
9004 }
9005
9006 /* Take out of changed_variables any entries that don't refer to use
9007 variables. Back-propagate change notifications from values and
9008 debug_exprs to their active dependencies in HTAB or in
9009 CHANGED_VARIABLES. */
9010
9011 static void
9012 process_changed_values (variable_table_type *htab)
9013 {
9014 int i, n;
9015 rtx val;
9016 auto_vec<rtx, 20> changed_values_stack;
9017
9018 /* Move values from changed_variables to changed_values_stack. */
9019 changed_variables
9020 ->traverse <vec<rtx, va_heap>*, var_track_values_to_stack>
9021 (&changed_values_stack);
9022
9023 /* Back-propagate change notifications in values while popping
9024 them from the stack. */
9025 for (n = i = changed_values_stack.length ();
9026 i > 0; i = changed_values_stack.length ())
9027 {
9028 val = changed_values_stack.pop ();
9029 notify_dependents_of_changed_value (val, htab, &changed_values_stack);
9030
9031 /* This condition will hold when visiting each of the entries
9032 originally in changed_variables. We can't remove them
9033 earlier because this could drop the backlinks before we got a
9034 chance to use them. */
9035 if (i == n)
9036 {
9037 remove_value_from_changed_variables (val);
9038 n--;
9039 }
9040 }
9041 }
9042
9043 /* Emit NOTE_INSN_VAR_LOCATION note for each variable from a chain
9044 CHANGED_VARIABLES and delete this chain. WHERE specifies whether
9045 the notes shall be emitted before of after instruction INSN. */
9046
9047 static void
9048 emit_notes_for_changes (rtx_insn *insn, enum emit_note_where where,
9049 shared_hash *vars)
9050 {
9051 emit_note_data data;
9052 variable_table_type *htab = shared_hash_htab (vars);
9053
9054 if (changed_variables->is_empty ())
9055 return;
9056
9057 if (MAY_HAVE_DEBUG_BIND_INSNS)
9058 process_changed_values (htab);
9059
9060 data.insn = insn;
9061 data.where = where;
9062 data.vars = htab;
9063
9064 changed_variables
9065 ->traverse <emit_note_data*, emit_note_insn_var_location> (&data);
9066 }
9067
9068 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it differs from the
9069 same variable in hash table DATA or is not there at all. */
9070
9071 int
9072 emit_notes_for_differences_1 (variable **slot, variable_table_type *new_vars)
9073 {
9074 variable *old_var, *new_var;
9075
9076 old_var = *slot;
9077 new_var = new_vars->find_with_hash (old_var->dv, dv_htab_hash (old_var->dv));
9078
9079 if (!new_var)
9080 {
9081 /* Variable has disappeared. */
9082 variable *empty_var = NULL;
9083
9084 if (old_var->onepart == ONEPART_VALUE
9085 || old_var->onepart == ONEPART_DEXPR)
9086 {
9087 empty_var = variable_from_dropped (old_var->dv, NO_INSERT);
9088 if (empty_var)
9089 {
9090 gcc_checking_assert (!empty_var->in_changed_variables);
9091 if (!VAR_LOC_1PAUX (old_var))
9092 {
9093 VAR_LOC_1PAUX (old_var) = VAR_LOC_1PAUX (empty_var);
9094 VAR_LOC_1PAUX (empty_var) = NULL;
9095 }
9096 else
9097 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var));
9098 }
9099 }
9100
9101 if (!empty_var)
9102 {
9103 empty_var = onepart_pool_allocate (old_var->onepart);
9104 empty_var->dv = old_var->dv;
9105 empty_var->refcount = 0;
9106 empty_var->n_var_parts = 0;
9107 empty_var->onepart = old_var->onepart;
9108 empty_var->in_changed_variables = false;
9109 }
9110
9111 if (empty_var->onepart)
9112 {
9113 /* Propagate the auxiliary data to (ultimately)
9114 changed_variables. */
9115 empty_var->var_part[0].loc_chain = NULL;
9116 empty_var->var_part[0].cur_loc = NULL;
9117 VAR_LOC_1PAUX (empty_var) = VAR_LOC_1PAUX (old_var);
9118 VAR_LOC_1PAUX (old_var) = NULL;
9119 }
9120 variable_was_changed (empty_var, NULL);
9121 /* Continue traversing the hash table. */
9122 return 1;
9123 }
9124 /* Update cur_loc and one-part auxiliary data, before new_var goes
9125 through variable_was_changed. */
9126 if (old_var != new_var && new_var->onepart)
9127 {
9128 gcc_checking_assert (VAR_LOC_1PAUX (new_var) == NULL);
9129 VAR_LOC_1PAUX (new_var) = VAR_LOC_1PAUX (old_var);
9130 VAR_LOC_1PAUX (old_var) = NULL;
9131 new_var->var_part[0].cur_loc = old_var->var_part[0].cur_loc;
9132 }
9133 if (variable_different_p (old_var, new_var))
9134 variable_was_changed (new_var, NULL);
9135
9136 /* Continue traversing the hash table. */
9137 return 1;
9138 }
9139
9140 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it is not in hash
9141 table DATA. */
9142
9143 int
9144 emit_notes_for_differences_2 (variable **slot, variable_table_type *old_vars)
9145 {
9146 variable *old_var, *new_var;
9147
9148 new_var = *slot;
9149 old_var = old_vars->find_with_hash (new_var->dv, dv_htab_hash (new_var->dv));
9150 if (!old_var)
9151 {
9152 int i;
9153 for (i = 0; i < new_var->n_var_parts; i++)
9154 new_var->var_part[i].cur_loc = NULL;
9155 variable_was_changed (new_var, NULL);
9156 }
9157
9158 /* Continue traversing the hash table. */
9159 return 1;
9160 }
9161
9162 /* Emit notes before INSN for differences between dataflow sets OLD_SET and
9163 NEW_SET. */
9164
9165 static void
9166 emit_notes_for_differences (rtx_insn *insn, dataflow_set *old_set,
9167 dataflow_set *new_set)
9168 {
9169 shared_hash_htab (old_set->vars)
9170 ->traverse <variable_table_type *, emit_notes_for_differences_1>
9171 (shared_hash_htab (new_set->vars));
9172 shared_hash_htab (new_set->vars)
9173 ->traverse <variable_table_type *, emit_notes_for_differences_2>
9174 (shared_hash_htab (old_set->vars));
9175 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, new_set->vars);
9176 }
9177
9178 /* Return the next insn after INSN that is not a NOTE_INSN_VAR_LOCATION. */
9179
9180 static rtx_insn *
9181 next_non_note_insn_var_location (rtx_insn *insn)
9182 {
9183 while (insn)
9184 {
9185 insn = NEXT_INSN (insn);
9186 if (insn == 0
9187 || !NOTE_P (insn)
9188 || NOTE_KIND (insn) != NOTE_INSN_VAR_LOCATION)
9189 break;
9190 }
9191
9192 return insn;
9193 }
9194
9195 /* Emit the notes for changes of location parts in the basic block BB. */
9196
9197 static void
9198 emit_notes_in_bb (basic_block bb, dataflow_set *set)
9199 {
9200 unsigned int i;
9201 micro_operation *mo;
9202
9203 dataflow_set_clear (set);
9204 dataflow_set_copy (set, &VTI (bb)->in);
9205
9206 FOR_EACH_VEC_ELT (VTI (bb)->mos, i, mo)
9207 {
9208 rtx_insn *insn = mo->insn;
9209 rtx_insn *next_insn = next_non_note_insn_var_location (insn);
9210
9211 switch (mo->type)
9212 {
9213 case MO_CALL:
9214 dataflow_set_clear_at_call (set, insn);
9215 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_CALL_INSN, set->vars);
9216 {
9217 rtx arguments = mo->u.loc, *p = &arguments;
9218 while (*p)
9219 {
9220 XEXP (XEXP (*p, 0), 1)
9221 = vt_expand_loc (XEXP (XEXP (*p, 0), 1),
9222 shared_hash_htab (set->vars));
9223 /* If expansion is successful, keep it in the list. */
9224 if (XEXP (XEXP (*p, 0), 1))
9225 {
9226 XEXP (XEXP (*p, 0), 1)
9227 = copy_rtx_if_shared (XEXP (XEXP (*p, 0), 1));
9228 p = &XEXP (*p, 1);
9229 }
9230 /* Otherwise, if the following item is data_value for it,
9231 drop it too too. */
9232 else if (XEXP (*p, 1)
9233 && REG_P (XEXP (XEXP (*p, 0), 0))
9234 && MEM_P (XEXP (XEXP (XEXP (*p, 1), 0), 0))
9235 && REG_P (XEXP (XEXP (XEXP (XEXP (*p, 1), 0), 0),
9236 0))
9237 && REGNO (XEXP (XEXP (*p, 0), 0))
9238 == REGNO (XEXP (XEXP (XEXP (XEXP (*p, 1), 0),
9239 0), 0)))
9240 *p = XEXP (XEXP (*p, 1), 1);
9241 /* Just drop this item. */
9242 else
9243 *p = XEXP (*p, 1);
9244 }
9245 add_reg_note (insn, REG_CALL_ARG_LOCATION, arguments);
9246 }
9247 break;
9248
9249 case MO_USE:
9250 {
9251 rtx loc = mo->u.loc;
9252
9253 if (REG_P (loc))
9254 var_reg_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
9255 else
9256 var_mem_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
9257
9258 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
9259 }
9260 break;
9261
9262 case MO_VAL_LOC:
9263 {
9264 rtx loc = mo->u.loc;
9265 rtx val, vloc;
9266 tree var;
9267
9268 if (GET_CODE (loc) == CONCAT)
9269 {
9270 val = XEXP (loc, 0);
9271 vloc = XEXP (loc, 1);
9272 }
9273 else
9274 {
9275 val = NULL_RTX;
9276 vloc = loc;
9277 }
9278
9279 var = PAT_VAR_LOCATION_DECL (vloc);
9280
9281 clobber_variable_part (set, NULL_RTX,
9282 dv_from_decl (var), 0, NULL_RTX);
9283 if (val)
9284 {
9285 if (VAL_NEEDS_RESOLUTION (loc))
9286 val_resolve (set, val, PAT_VAR_LOCATION_LOC (vloc), insn);
9287 set_variable_part (set, val, dv_from_decl (var), 0,
9288 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
9289 INSERT);
9290 }
9291 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
9292 set_variable_part (set, PAT_VAR_LOCATION_LOC (vloc),
9293 dv_from_decl (var), 0,
9294 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
9295 INSERT);
9296
9297 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
9298 }
9299 break;
9300
9301 case MO_VAL_USE:
9302 {
9303 rtx loc = mo->u.loc;
9304 rtx val, vloc, uloc;
9305
9306 vloc = uloc = XEXP (loc, 1);
9307 val = XEXP (loc, 0);
9308
9309 if (GET_CODE (val) == CONCAT)
9310 {
9311 uloc = XEXP (val, 1);
9312 val = XEXP (val, 0);
9313 }
9314
9315 if (VAL_NEEDS_RESOLUTION (loc))
9316 val_resolve (set, val, vloc, insn);
9317 else
9318 val_store (set, val, uloc, insn, false);
9319
9320 if (VAL_HOLDS_TRACK_EXPR (loc))
9321 {
9322 if (GET_CODE (uloc) == REG)
9323 var_reg_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
9324 NULL);
9325 else if (GET_CODE (uloc) == MEM)
9326 var_mem_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
9327 NULL);
9328 }
9329
9330 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
9331 }
9332 break;
9333
9334 case MO_VAL_SET:
9335 {
9336 rtx loc = mo->u.loc;
9337 rtx val, vloc, uloc;
9338 rtx dstv, srcv;
9339
9340 vloc = loc;
9341 uloc = XEXP (vloc, 1);
9342 val = XEXP (vloc, 0);
9343 vloc = uloc;
9344
9345 if (GET_CODE (uloc) == SET)
9346 {
9347 dstv = SET_DEST (uloc);
9348 srcv = SET_SRC (uloc);
9349 }
9350 else
9351 {
9352 dstv = uloc;
9353 srcv = NULL;
9354 }
9355
9356 if (GET_CODE (val) == CONCAT)
9357 {
9358 dstv = vloc = XEXP (val, 1);
9359 val = XEXP (val, 0);
9360 }
9361
9362 if (GET_CODE (vloc) == SET)
9363 {
9364 srcv = SET_SRC (vloc);
9365
9366 gcc_assert (val != srcv);
9367 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
9368
9369 dstv = vloc = SET_DEST (vloc);
9370
9371 if (VAL_NEEDS_RESOLUTION (loc))
9372 val_resolve (set, val, srcv, insn);
9373 }
9374 else if (VAL_NEEDS_RESOLUTION (loc))
9375 {
9376 gcc_assert (GET_CODE (uloc) == SET
9377 && GET_CODE (SET_SRC (uloc)) == REG);
9378 val_resolve (set, val, SET_SRC (uloc), insn);
9379 }
9380
9381 if (VAL_HOLDS_TRACK_EXPR (loc))
9382 {
9383 if (VAL_EXPR_IS_CLOBBERED (loc))
9384 {
9385 if (REG_P (uloc))
9386 var_reg_delete (set, uloc, true);
9387 else if (MEM_P (uloc))
9388 {
9389 gcc_assert (MEM_P (dstv));
9390 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (uloc));
9391 var_mem_delete (set, dstv, true);
9392 }
9393 }
9394 else
9395 {
9396 bool copied_p = VAL_EXPR_IS_COPIED (loc);
9397 rtx src = NULL, dst = uloc;
9398 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
9399
9400 if (GET_CODE (uloc) == SET)
9401 {
9402 src = SET_SRC (uloc);
9403 dst = SET_DEST (uloc);
9404 }
9405
9406 if (copied_p)
9407 {
9408 status = find_src_status (set, src);
9409
9410 src = find_src_set_src (set, src);
9411 }
9412
9413 if (REG_P (dst))
9414 var_reg_delete_and_set (set, dst, !copied_p,
9415 status, srcv);
9416 else if (MEM_P (dst))
9417 {
9418 gcc_assert (MEM_P (dstv));
9419 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (dst));
9420 var_mem_delete_and_set (set, dstv, !copied_p,
9421 status, srcv);
9422 }
9423 }
9424 }
9425 else if (REG_P (uloc))
9426 var_regno_delete (set, REGNO (uloc));
9427 else if (MEM_P (uloc))
9428 {
9429 gcc_checking_assert (GET_CODE (vloc) == MEM);
9430 gcc_checking_assert (vloc == dstv);
9431 if (vloc != dstv)
9432 clobber_overlapping_mems (set, vloc);
9433 }
9434
9435 val_store (set, val, dstv, insn, true);
9436
9437 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9438 set->vars);
9439 }
9440 break;
9441
9442 case MO_SET:
9443 {
9444 rtx loc = mo->u.loc;
9445 rtx set_src = NULL;
9446
9447 if (GET_CODE (loc) == SET)
9448 {
9449 set_src = SET_SRC (loc);
9450 loc = SET_DEST (loc);
9451 }
9452
9453 if (REG_P (loc))
9454 var_reg_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
9455 set_src);
9456 else
9457 var_mem_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
9458 set_src);
9459
9460 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9461 set->vars);
9462 }
9463 break;
9464
9465 case MO_COPY:
9466 {
9467 rtx loc = mo->u.loc;
9468 enum var_init_status src_status;
9469 rtx set_src = NULL;
9470
9471 if (GET_CODE (loc) == SET)
9472 {
9473 set_src = SET_SRC (loc);
9474 loc = SET_DEST (loc);
9475 }
9476
9477 src_status = find_src_status (set, set_src);
9478 set_src = find_src_set_src (set, set_src);
9479
9480 if (REG_P (loc))
9481 var_reg_delete_and_set (set, loc, false, src_status, set_src);
9482 else
9483 var_mem_delete_and_set (set, loc, false, src_status, set_src);
9484
9485 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9486 set->vars);
9487 }
9488 break;
9489
9490 case MO_USE_NO_VAR:
9491 {
9492 rtx loc = mo->u.loc;
9493
9494 if (REG_P (loc))
9495 var_reg_delete (set, loc, false);
9496 else
9497 var_mem_delete (set, loc, false);
9498
9499 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
9500 }
9501 break;
9502
9503 case MO_CLOBBER:
9504 {
9505 rtx loc = mo->u.loc;
9506
9507 if (REG_P (loc))
9508 var_reg_delete (set, loc, true);
9509 else
9510 var_mem_delete (set, loc, true);
9511
9512 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9513 set->vars);
9514 }
9515 break;
9516
9517 case MO_ADJUST:
9518 set->stack_adjust += mo->u.adjust;
9519 break;
9520 }
9521 }
9522 }
9523
9524 /* Emit notes for the whole function. */
9525
9526 static void
9527 vt_emit_notes (void)
9528 {
9529 basic_block bb;
9530 dataflow_set cur;
9531
9532 gcc_assert (changed_variables->is_empty ());
9533
9534 /* Free memory occupied by the out hash tables, as they aren't used
9535 anymore. */
9536 FOR_EACH_BB_FN (bb, cfun)
9537 dataflow_set_clear (&VTI (bb)->out);
9538
9539 /* Enable emitting notes by functions (mainly by set_variable_part and
9540 delete_variable_part). */
9541 emit_notes = true;
9542
9543 if (MAY_HAVE_DEBUG_BIND_INSNS)
9544 dropped_values = new variable_table_type (cselib_get_next_uid () * 2);
9545
9546 dataflow_set_init (&cur);
9547
9548 FOR_EACH_BB_FN (bb, cfun)
9549 {
9550 /* Emit the notes for changes of variable locations between two
9551 subsequent basic blocks. */
9552 emit_notes_for_differences (BB_HEAD (bb), &cur, &VTI (bb)->in);
9553
9554 if (MAY_HAVE_DEBUG_BIND_INSNS)
9555 local_get_addr_cache = new hash_map<rtx, rtx>;
9556
9557 /* Emit the notes for the changes in the basic block itself. */
9558 emit_notes_in_bb (bb, &cur);
9559
9560 if (MAY_HAVE_DEBUG_BIND_INSNS)
9561 delete local_get_addr_cache;
9562 local_get_addr_cache = NULL;
9563
9564 /* Free memory occupied by the in hash table, we won't need it
9565 again. */
9566 dataflow_set_clear (&VTI (bb)->in);
9567 }
9568
9569 if (flag_checking)
9570 shared_hash_htab (cur.vars)
9571 ->traverse <variable_table_type *, emit_notes_for_differences_1>
9572 (shared_hash_htab (empty_shared_hash));
9573
9574 dataflow_set_destroy (&cur);
9575
9576 if (MAY_HAVE_DEBUG_BIND_INSNS)
9577 delete dropped_values;
9578 dropped_values = NULL;
9579
9580 emit_notes = false;
9581 }
9582
9583 /* If there is a declaration and offset associated with register/memory RTL
9584 assign declaration to *DECLP and offset to *OFFSETP, and return true. */
9585
9586 static bool
9587 vt_get_decl_and_offset (rtx rtl, tree *declp, poly_int64 *offsetp)
9588 {
9589 if (REG_P (rtl))
9590 {
9591 if (REG_ATTRS (rtl))
9592 {
9593 *declp = REG_EXPR (rtl);
9594 *offsetp = REG_OFFSET (rtl);
9595 return true;
9596 }
9597 }
9598 else if (GET_CODE (rtl) == PARALLEL)
9599 {
9600 tree decl = NULL_TREE;
9601 HOST_WIDE_INT offset = MAX_VAR_PARTS;
9602 int len = XVECLEN (rtl, 0), i;
9603
9604 for (i = 0; i < len; i++)
9605 {
9606 rtx reg = XEXP (XVECEXP (rtl, 0, i), 0);
9607 if (!REG_P (reg) || !REG_ATTRS (reg))
9608 break;
9609 if (!decl)
9610 decl = REG_EXPR (reg);
9611 if (REG_EXPR (reg) != decl)
9612 break;
9613 HOST_WIDE_INT this_offset;
9614 if (!track_offset_p (REG_OFFSET (reg), &this_offset))
9615 break;
9616 offset = MIN (offset, this_offset);
9617 }
9618
9619 if (i == len)
9620 {
9621 *declp = decl;
9622 *offsetp = offset;
9623 return true;
9624 }
9625 }
9626 else if (MEM_P (rtl))
9627 {
9628 if (MEM_ATTRS (rtl))
9629 {
9630 *declp = MEM_EXPR (rtl);
9631 *offsetp = int_mem_offset (rtl);
9632 return true;
9633 }
9634 }
9635 return false;
9636 }
9637
9638 /* Record the value for the ENTRY_VALUE of RTL as a global equivalence
9639 of VAL. */
9640
9641 static void
9642 record_entry_value (cselib_val *val, rtx rtl)
9643 {
9644 rtx ev = gen_rtx_ENTRY_VALUE (GET_MODE (rtl));
9645
9646 ENTRY_VALUE_EXP (ev) = rtl;
9647
9648 cselib_add_permanent_equiv (val, ev, get_insns ());
9649 }
9650
9651 /* Insert function parameter PARM in IN and OUT sets of ENTRY_BLOCK. */
9652
9653 static void
9654 vt_add_function_parameter (tree parm)
9655 {
9656 rtx decl_rtl = DECL_RTL_IF_SET (parm);
9657 rtx incoming = DECL_INCOMING_RTL (parm);
9658 tree decl;
9659 machine_mode mode;
9660 poly_int64 offset;
9661 dataflow_set *out;
9662 decl_or_value dv;
9663 bool incoming_ok = true;
9664
9665 if (TREE_CODE (parm) != PARM_DECL)
9666 return;
9667
9668 if (!decl_rtl || !incoming)
9669 return;
9670
9671 if (GET_MODE (decl_rtl) == BLKmode || GET_MODE (incoming) == BLKmode)
9672 return;
9673
9674 /* If there is a DRAP register or a pseudo in internal_arg_pointer,
9675 rewrite the incoming location of parameters passed on the stack
9676 into MEMs based on the argument pointer, so that incoming doesn't
9677 depend on a pseudo. */
9678 poly_int64 incoming_offset = 0;
9679 if (MEM_P (incoming)
9680 && (strip_offset (XEXP (incoming, 0), &incoming_offset)
9681 == crtl->args.internal_arg_pointer))
9682 {
9683 HOST_WIDE_INT off = -FIRST_PARM_OFFSET (current_function_decl);
9684 incoming
9685 = replace_equiv_address_nv (incoming,
9686 plus_constant (Pmode,
9687 arg_pointer_rtx,
9688 off + incoming_offset));
9689 }
9690
9691 #ifdef HAVE_window_save
9692 /* DECL_INCOMING_RTL uses the INCOMING_REGNO of parameter registers.
9693 If the target machine has an explicit window save instruction, the
9694 actual entry value is the corresponding OUTGOING_REGNO instead. */
9695 if (HAVE_window_save && !crtl->uses_only_leaf_regs)
9696 {
9697 if (REG_P (incoming)
9698 && HARD_REGISTER_P (incoming)
9699 && OUTGOING_REGNO (REGNO (incoming)) != REGNO (incoming))
9700 {
9701 parm_reg p;
9702 p.incoming = incoming;
9703 incoming
9704 = gen_rtx_REG_offset (incoming, GET_MODE (incoming),
9705 OUTGOING_REGNO (REGNO (incoming)), 0);
9706 p.outgoing = incoming;
9707 vec_safe_push (windowed_parm_regs, p);
9708 }
9709 else if (GET_CODE (incoming) == PARALLEL)
9710 {
9711 rtx outgoing
9712 = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (XVECLEN (incoming, 0)));
9713 int i;
9714
9715 for (i = 0; i < XVECLEN (incoming, 0); i++)
9716 {
9717 rtx reg = XEXP (XVECEXP (incoming, 0, i), 0);
9718 parm_reg p;
9719 p.incoming = reg;
9720 reg = gen_rtx_REG_offset (reg, GET_MODE (reg),
9721 OUTGOING_REGNO (REGNO (reg)), 0);
9722 p.outgoing = reg;
9723 XVECEXP (outgoing, 0, i)
9724 = gen_rtx_EXPR_LIST (VOIDmode, reg,
9725 XEXP (XVECEXP (incoming, 0, i), 1));
9726 vec_safe_push (windowed_parm_regs, p);
9727 }
9728
9729 incoming = outgoing;
9730 }
9731 else if (MEM_P (incoming)
9732 && REG_P (XEXP (incoming, 0))
9733 && HARD_REGISTER_P (XEXP (incoming, 0)))
9734 {
9735 rtx reg = XEXP (incoming, 0);
9736 if (OUTGOING_REGNO (REGNO (reg)) != REGNO (reg))
9737 {
9738 parm_reg p;
9739 p.incoming = reg;
9740 reg = gen_raw_REG (GET_MODE (reg), OUTGOING_REGNO (REGNO (reg)));
9741 p.outgoing = reg;
9742 vec_safe_push (windowed_parm_regs, p);
9743 incoming = replace_equiv_address_nv (incoming, reg);
9744 }
9745 }
9746 }
9747 #endif
9748
9749 if (!vt_get_decl_and_offset (incoming, &decl, &offset))
9750 {
9751 incoming_ok = false;
9752 if (MEM_P (incoming))
9753 {
9754 /* This means argument is passed by invisible reference. */
9755 offset = 0;
9756 decl = parm;
9757 }
9758 else
9759 {
9760 if (!vt_get_decl_and_offset (decl_rtl, &decl, &offset))
9761 return;
9762 offset += byte_lowpart_offset (GET_MODE (incoming),
9763 GET_MODE (decl_rtl));
9764 }
9765 }
9766
9767 if (!decl)
9768 return;
9769
9770 if (parm != decl)
9771 {
9772 /* If that DECL_RTL wasn't a pseudo that got spilled to
9773 memory, bail out. Otherwise, the spill slot sharing code
9774 will force the memory to reference spill_slot_decl (%sfp),
9775 so we don't match above. That's ok, the pseudo must have
9776 referenced the entire parameter, so just reset OFFSET. */
9777 if (decl != get_spill_slot_decl (false))
9778 return;
9779 offset = 0;
9780 }
9781
9782 HOST_WIDE_INT const_offset;
9783 if (!track_loc_p (incoming, parm, offset, false, &mode, &const_offset))
9784 return;
9785
9786 out = &VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->out;
9787
9788 dv = dv_from_decl (parm);
9789
9790 if (target_for_debug_bind (parm)
9791 /* We can't deal with these right now, because this kind of
9792 variable is single-part. ??? We could handle parallels
9793 that describe multiple locations for the same single
9794 value, but ATM we don't. */
9795 && GET_CODE (incoming) != PARALLEL)
9796 {
9797 cselib_val *val;
9798 rtx lowpart;
9799
9800 /* ??? We shouldn't ever hit this, but it may happen because
9801 arguments passed by invisible reference aren't dealt with
9802 above: incoming-rtl will have Pmode rather than the
9803 expected mode for the type. */
9804 if (const_offset)
9805 return;
9806
9807 lowpart = var_lowpart (mode, incoming);
9808 if (!lowpart)
9809 return;
9810
9811 val = cselib_lookup_from_insn (lowpart, mode, true,
9812 VOIDmode, get_insns ());
9813
9814 /* ??? Float-typed values in memory are not handled by
9815 cselib. */
9816 if (val)
9817 {
9818 preserve_value (val);
9819 set_variable_part (out, val->val_rtx, dv, const_offset,
9820 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9821 dv = dv_from_value (val->val_rtx);
9822 }
9823
9824 if (MEM_P (incoming))
9825 {
9826 val = cselib_lookup_from_insn (XEXP (incoming, 0), mode, true,
9827 VOIDmode, get_insns ());
9828 if (val)
9829 {
9830 preserve_value (val);
9831 incoming = replace_equiv_address_nv (incoming, val->val_rtx);
9832 }
9833 }
9834 }
9835
9836 if (REG_P (incoming))
9837 {
9838 incoming = var_lowpart (mode, incoming);
9839 gcc_assert (REGNO (incoming) < FIRST_PSEUDO_REGISTER);
9840 attrs_list_insert (&out->regs[REGNO (incoming)], dv, const_offset,
9841 incoming);
9842 set_variable_part (out, incoming, dv, const_offset,
9843 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9844 if (dv_is_value_p (dv))
9845 {
9846 record_entry_value (CSELIB_VAL_PTR (dv_as_value (dv)), incoming);
9847 if (TREE_CODE (TREE_TYPE (parm)) == REFERENCE_TYPE
9848 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_TYPE (parm))))
9849 {
9850 machine_mode indmode
9851 = TYPE_MODE (TREE_TYPE (TREE_TYPE (parm)));
9852 rtx mem = gen_rtx_MEM (indmode, incoming);
9853 cselib_val *val = cselib_lookup_from_insn (mem, indmode, true,
9854 VOIDmode,
9855 get_insns ());
9856 if (val)
9857 {
9858 preserve_value (val);
9859 record_entry_value (val, mem);
9860 set_variable_part (out, mem, dv_from_value (val->val_rtx), 0,
9861 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9862 }
9863 }
9864 }
9865 }
9866 else if (GET_CODE (incoming) == PARALLEL && !dv_onepart_p (dv))
9867 {
9868 int i;
9869
9870 /* The following code relies on vt_get_decl_and_offset returning true for
9871 incoming, which might not be always the case. */
9872 if (!incoming_ok)
9873 return;
9874 for (i = 0; i < XVECLEN (incoming, 0); i++)
9875 {
9876 rtx reg = XEXP (XVECEXP (incoming, 0, i), 0);
9877 /* vt_get_decl_and_offset has already checked that the offset
9878 is a valid variable part. */
9879 const_offset = get_tracked_reg_offset (reg);
9880 gcc_assert (REGNO (reg) < FIRST_PSEUDO_REGISTER);
9881 attrs_list_insert (&out->regs[REGNO (reg)], dv, const_offset, reg);
9882 set_variable_part (out, reg, dv, const_offset,
9883 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9884 }
9885 }
9886 else if (MEM_P (incoming))
9887 {
9888 incoming = var_lowpart (mode, incoming);
9889 set_variable_part (out, incoming, dv, const_offset,
9890 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9891 }
9892 }
9893
9894 /* Insert function parameters to IN and OUT sets of ENTRY_BLOCK. */
9895
9896 static void
9897 vt_add_function_parameters (void)
9898 {
9899 tree parm;
9900
9901 for (parm = DECL_ARGUMENTS (current_function_decl);
9902 parm; parm = DECL_CHAIN (parm))
9903 vt_add_function_parameter (parm);
9904
9905 if (DECL_HAS_VALUE_EXPR_P (DECL_RESULT (current_function_decl)))
9906 {
9907 tree vexpr = DECL_VALUE_EXPR (DECL_RESULT (current_function_decl));
9908
9909 if (TREE_CODE (vexpr) == INDIRECT_REF)
9910 vexpr = TREE_OPERAND (vexpr, 0);
9911
9912 if (TREE_CODE (vexpr) == PARM_DECL
9913 && DECL_ARTIFICIAL (vexpr)
9914 && !DECL_IGNORED_P (vexpr)
9915 && DECL_NAMELESS (vexpr))
9916 vt_add_function_parameter (vexpr);
9917 }
9918 }
9919
9920 /* Initialize cfa_base_rtx, create a preserved VALUE for it and
9921 ensure it isn't flushed during cselib_reset_table.
9922 Can be called only if frame_pointer_rtx resp. arg_pointer_rtx
9923 has been eliminated. */
9924
9925 static void
9926 vt_init_cfa_base (void)
9927 {
9928 cselib_val *val;
9929
9930 #ifdef FRAME_POINTER_CFA_OFFSET
9931 cfa_base_rtx = frame_pointer_rtx;
9932 cfa_base_offset = -FRAME_POINTER_CFA_OFFSET (current_function_decl);
9933 #else
9934 cfa_base_rtx = arg_pointer_rtx;
9935 cfa_base_offset = -ARG_POINTER_CFA_OFFSET (current_function_decl);
9936 #endif
9937 if (cfa_base_rtx == hard_frame_pointer_rtx
9938 || !fixed_regs[REGNO (cfa_base_rtx)])
9939 {
9940 cfa_base_rtx = NULL_RTX;
9941 return;
9942 }
9943 if (!MAY_HAVE_DEBUG_BIND_INSNS)
9944 return;
9945
9946 /* Tell alias analysis that cfa_base_rtx should share
9947 find_base_term value with stack pointer or hard frame pointer. */
9948 if (!frame_pointer_needed)
9949 vt_equate_reg_base_value (cfa_base_rtx, stack_pointer_rtx);
9950 else if (!crtl->stack_realign_tried)
9951 vt_equate_reg_base_value (cfa_base_rtx, hard_frame_pointer_rtx);
9952
9953 val = cselib_lookup_from_insn (cfa_base_rtx, GET_MODE (cfa_base_rtx), 1,
9954 VOIDmode, get_insns ());
9955 preserve_value (val);
9956 cselib_preserve_cfa_base_value (val, REGNO (cfa_base_rtx));
9957 }
9958
9959 /* Reemit INSN, a MARKER_DEBUG_INSN, as a note. */
9960
9961 static rtx_insn *
9962 reemit_marker_as_note (rtx_insn *insn)
9963 {
9964 gcc_checking_assert (DEBUG_MARKER_INSN_P (insn));
9965
9966 enum insn_note kind = INSN_DEBUG_MARKER_KIND (insn);
9967
9968 switch (kind)
9969 {
9970 case NOTE_INSN_BEGIN_STMT:
9971 case NOTE_INSN_INLINE_ENTRY:
9972 {
9973 rtx_insn *note = NULL;
9974 if (cfun->debug_nonbind_markers)
9975 {
9976 note = emit_note_before (kind, insn);
9977 NOTE_MARKER_LOCATION (note) = INSN_LOCATION (insn);
9978 }
9979 delete_insn (insn);
9980 return note;
9981 }
9982
9983 default:
9984 gcc_unreachable ();
9985 }
9986 }
9987
9988 /* Allocate and initialize the data structures for variable tracking
9989 and parse the RTL to get the micro operations. */
9990
9991 static bool
9992 vt_initialize (void)
9993 {
9994 basic_block bb;
9995 poly_int64 fp_cfa_offset = -1;
9996
9997 alloc_aux_for_blocks (sizeof (variable_tracking_info));
9998
9999 empty_shared_hash = shared_hash_pool.allocate ();
10000 empty_shared_hash->refcount = 1;
10001 empty_shared_hash->htab = new variable_table_type (1);
10002 changed_variables = new variable_table_type (10);
10003
10004 /* Init the IN and OUT sets. */
10005 FOR_ALL_BB_FN (bb, cfun)
10006 {
10007 VTI (bb)->visited = false;
10008 VTI (bb)->flooded = false;
10009 dataflow_set_init (&VTI (bb)->in);
10010 dataflow_set_init (&VTI (bb)->out);
10011 VTI (bb)->permp = NULL;
10012 }
10013
10014 if (MAY_HAVE_DEBUG_BIND_INSNS)
10015 {
10016 cselib_init (CSELIB_RECORD_MEMORY | CSELIB_PRESERVE_CONSTANTS);
10017 scratch_regs = BITMAP_ALLOC (NULL);
10018 preserved_values.create (256);
10019 global_get_addr_cache = new hash_map<rtx, rtx>;
10020 }
10021 else
10022 {
10023 scratch_regs = NULL;
10024 global_get_addr_cache = NULL;
10025 }
10026
10027 if (MAY_HAVE_DEBUG_BIND_INSNS)
10028 {
10029 rtx reg, expr;
10030 int ofst;
10031 cselib_val *val;
10032
10033 #ifdef FRAME_POINTER_CFA_OFFSET
10034 reg = frame_pointer_rtx;
10035 ofst = FRAME_POINTER_CFA_OFFSET (current_function_decl);
10036 #else
10037 reg = arg_pointer_rtx;
10038 ofst = ARG_POINTER_CFA_OFFSET (current_function_decl);
10039 #endif
10040
10041 ofst -= INCOMING_FRAME_SP_OFFSET;
10042
10043 val = cselib_lookup_from_insn (reg, GET_MODE (reg), 1,
10044 VOIDmode, get_insns ());
10045 preserve_value (val);
10046 if (reg != hard_frame_pointer_rtx && fixed_regs[REGNO (reg)])
10047 cselib_preserve_cfa_base_value (val, REGNO (reg));
10048 expr = plus_constant (GET_MODE (stack_pointer_rtx),
10049 stack_pointer_rtx, -ofst);
10050 cselib_add_permanent_equiv (val, expr, get_insns ());
10051
10052 if (ofst)
10053 {
10054 val = cselib_lookup_from_insn (stack_pointer_rtx,
10055 GET_MODE (stack_pointer_rtx), 1,
10056 VOIDmode, get_insns ());
10057 preserve_value (val);
10058 expr = plus_constant (GET_MODE (reg), reg, ofst);
10059 cselib_add_permanent_equiv (val, expr, get_insns ());
10060 }
10061 }
10062
10063 /* In order to factor out the adjustments made to the stack pointer or to
10064 the hard frame pointer and thus be able to use DW_OP_fbreg operations
10065 instead of individual location lists, we're going to rewrite MEMs based
10066 on them into MEMs based on the CFA by de-eliminating stack_pointer_rtx
10067 or hard_frame_pointer_rtx to the virtual CFA pointer frame_pointer_rtx
10068 resp. arg_pointer_rtx. We can do this either when there is no frame
10069 pointer in the function and stack adjustments are consistent for all
10070 basic blocks or when there is a frame pointer and no stack realignment.
10071 But we first have to check that frame_pointer_rtx resp. arg_pointer_rtx
10072 has been eliminated. */
10073 if (!frame_pointer_needed)
10074 {
10075 rtx reg, elim;
10076
10077 if (!vt_stack_adjustments ())
10078 return false;
10079
10080 #ifdef FRAME_POINTER_CFA_OFFSET
10081 reg = frame_pointer_rtx;
10082 #else
10083 reg = arg_pointer_rtx;
10084 #endif
10085 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10086 if (elim != reg)
10087 {
10088 if (GET_CODE (elim) == PLUS)
10089 elim = XEXP (elim, 0);
10090 if (elim == stack_pointer_rtx)
10091 vt_init_cfa_base ();
10092 }
10093 }
10094 else if (!crtl->stack_realign_tried)
10095 {
10096 rtx reg, elim;
10097
10098 #ifdef FRAME_POINTER_CFA_OFFSET
10099 reg = frame_pointer_rtx;
10100 fp_cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
10101 #else
10102 reg = arg_pointer_rtx;
10103 fp_cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
10104 #endif
10105 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10106 if (elim != reg)
10107 {
10108 if (GET_CODE (elim) == PLUS)
10109 {
10110 fp_cfa_offset -= rtx_to_poly_int64 (XEXP (elim, 1));
10111 elim = XEXP (elim, 0);
10112 }
10113 if (elim != hard_frame_pointer_rtx)
10114 fp_cfa_offset = -1;
10115 }
10116 else
10117 fp_cfa_offset = -1;
10118 }
10119
10120 /* If the stack is realigned and a DRAP register is used, we're going to
10121 rewrite MEMs based on it representing incoming locations of parameters
10122 passed on the stack into MEMs based on the argument pointer. Although
10123 we aren't going to rewrite other MEMs, we still need to initialize the
10124 virtual CFA pointer in order to ensure that the argument pointer will
10125 be seen as a constant throughout the function.
10126
10127 ??? This doesn't work if FRAME_POINTER_CFA_OFFSET is defined. */
10128 else if (stack_realign_drap)
10129 {
10130 rtx reg, elim;
10131
10132 #ifdef FRAME_POINTER_CFA_OFFSET
10133 reg = frame_pointer_rtx;
10134 #else
10135 reg = arg_pointer_rtx;
10136 #endif
10137 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10138 if (elim != reg)
10139 {
10140 if (GET_CODE (elim) == PLUS)
10141 elim = XEXP (elim, 0);
10142 if (elim == hard_frame_pointer_rtx)
10143 vt_init_cfa_base ();
10144 }
10145 }
10146
10147 hard_frame_pointer_adjustment = -1;
10148
10149 vt_add_function_parameters ();
10150
10151 FOR_EACH_BB_FN (bb, cfun)
10152 {
10153 rtx_insn *insn;
10154 HOST_WIDE_INT pre, post = 0;
10155 basic_block first_bb, last_bb;
10156
10157 if (MAY_HAVE_DEBUG_BIND_INSNS)
10158 {
10159 cselib_record_sets_hook = add_with_sets;
10160 if (dump_file && (dump_flags & TDF_DETAILS))
10161 fprintf (dump_file, "first value: %i\n",
10162 cselib_get_next_uid ());
10163 }
10164
10165 first_bb = bb;
10166 for (;;)
10167 {
10168 edge e;
10169 if (bb->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
10170 || ! single_pred_p (bb->next_bb))
10171 break;
10172 e = find_edge (bb, bb->next_bb);
10173 if (! e || (e->flags & EDGE_FALLTHRU) == 0)
10174 break;
10175 bb = bb->next_bb;
10176 }
10177 last_bb = bb;
10178
10179 /* Add the micro-operations to the vector. */
10180 FOR_BB_BETWEEN (bb, first_bb, last_bb->next_bb, next_bb)
10181 {
10182 HOST_WIDE_INT offset = VTI (bb)->out.stack_adjust;
10183 VTI (bb)->out.stack_adjust = VTI (bb)->in.stack_adjust;
10184
10185 rtx_insn *next;
10186 FOR_BB_INSNS_SAFE (bb, insn, next)
10187 {
10188 if (INSN_P (insn))
10189 {
10190 if (!frame_pointer_needed)
10191 {
10192 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
10193 if (pre)
10194 {
10195 micro_operation mo;
10196 mo.type = MO_ADJUST;
10197 mo.u.adjust = pre;
10198 mo.insn = insn;
10199 if (dump_file && (dump_flags & TDF_DETAILS))
10200 log_op_type (PATTERN (insn), bb, insn,
10201 MO_ADJUST, dump_file);
10202 VTI (bb)->mos.safe_push (mo);
10203 }
10204 }
10205
10206 cselib_hook_called = false;
10207 adjust_insn (bb, insn);
10208
10209 if (!frame_pointer_needed && pre)
10210 VTI (bb)->out.stack_adjust += pre;
10211
10212 if (DEBUG_MARKER_INSN_P (insn))
10213 {
10214 reemit_marker_as_note (insn);
10215 continue;
10216 }
10217
10218 if (MAY_HAVE_DEBUG_BIND_INSNS)
10219 {
10220 if (CALL_P (insn))
10221 prepare_call_arguments (bb, insn);
10222 cselib_process_insn (insn);
10223 if (dump_file && (dump_flags & TDF_DETAILS))
10224 {
10225 if (dump_flags & TDF_SLIM)
10226 dump_insn_slim (dump_file, insn);
10227 else
10228 print_rtl_single (dump_file, insn);
10229 dump_cselib_table (dump_file);
10230 }
10231 }
10232 if (!cselib_hook_called)
10233 add_with_sets (insn, 0, 0);
10234 cancel_changes (0);
10235
10236 if (!frame_pointer_needed && post)
10237 {
10238 micro_operation mo;
10239 mo.type = MO_ADJUST;
10240 mo.u.adjust = post;
10241 mo.insn = insn;
10242 if (dump_file && (dump_flags & TDF_DETAILS))
10243 log_op_type (PATTERN (insn), bb, insn,
10244 MO_ADJUST, dump_file);
10245 VTI (bb)->mos.safe_push (mo);
10246 VTI (bb)->out.stack_adjust += post;
10247 }
10248
10249 if (maybe_ne (fp_cfa_offset, -1)
10250 && known_eq (hard_frame_pointer_adjustment, -1)
10251 && fp_setter_insn (insn))
10252 {
10253 vt_init_cfa_base ();
10254 hard_frame_pointer_adjustment = fp_cfa_offset;
10255 /* Disassociate sp from fp now. */
10256 if (MAY_HAVE_DEBUG_BIND_INSNS)
10257 {
10258 cselib_val *v;
10259 cselib_invalidate_rtx (stack_pointer_rtx);
10260 v = cselib_lookup (stack_pointer_rtx, Pmode, 1,
10261 VOIDmode);
10262 if (v && !cselib_preserved_value_p (v))
10263 {
10264 cselib_set_value_sp_based (v);
10265 preserve_value (v);
10266 }
10267 }
10268 }
10269 }
10270 }
10271 gcc_assert (offset == VTI (bb)->out.stack_adjust);
10272 }
10273
10274 bb = last_bb;
10275
10276 if (MAY_HAVE_DEBUG_BIND_INSNS)
10277 {
10278 cselib_preserve_only_values ();
10279 cselib_reset_table (cselib_get_next_uid ());
10280 cselib_record_sets_hook = NULL;
10281 }
10282 }
10283
10284 hard_frame_pointer_adjustment = -1;
10285 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->flooded = true;
10286 cfa_base_rtx = NULL_RTX;
10287 return true;
10288 }
10289
10290 /* This is *not* reset after each function. It gives each
10291 NOTE_INSN_DELETED_DEBUG_LABEL in the entire compilation
10292 a unique label number. */
10293
10294 static int debug_label_num = 1;
10295
10296 /* Remove from the insn stream a single debug insn used for
10297 variable tracking at assignments. */
10298
10299 static inline void
10300 delete_vta_debug_insn (rtx_insn *insn)
10301 {
10302 if (DEBUG_MARKER_INSN_P (insn))
10303 {
10304 reemit_marker_as_note (insn);
10305 return;
10306 }
10307
10308 tree decl = INSN_VAR_LOCATION_DECL (insn);
10309 if (TREE_CODE (decl) == LABEL_DECL
10310 && DECL_NAME (decl)
10311 && !DECL_RTL_SET_P (decl))
10312 {
10313 PUT_CODE (insn, NOTE);
10314 NOTE_KIND (insn) = NOTE_INSN_DELETED_DEBUG_LABEL;
10315 NOTE_DELETED_LABEL_NAME (insn)
10316 = IDENTIFIER_POINTER (DECL_NAME (decl));
10317 SET_DECL_RTL (decl, insn);
10318 CODE_LABEL_NUMBER (insn) = debug_label_num++;
10319 }
10320 else
10321 delete_insn (insn);
10322 }
10323
10324 /* Remove from the insn stream all debug insns used for variable
10325 tracking at assignments. USE_CFG should be false if the cfg is no
10326 longer usable. */
10327
10328 void
10329 delete_vta_debug_insns (bool use_cfg)
10330 {
10331 basic_block bb;
10332 rtx_insn *insn, *next;
10333
10334 if (!MAY_HAVE_DEBUG_INSNS)
10335 return;
10336
10337 if (use_cfg)
10338 FOR_EACH_BB_FN (bb, cfun)
10339 {
10340 FOR_BB_INSNS_SAFE (bb, insn, next)
10341 if (DEBUG_INSN_P (insn))
10342 delete_vta_debug_insn (insn);
10343 }
10344 else
10345 for (insn = get_insns (); insn; insn = next)
10346 {
10347 next = NEXT_INSN (insn);
10348 if (DEBUG_INSN_P (insn))
10349 delete_vta_debug_insn (insn);
10350 }
10351 }
10352
10353 /* Run a fast, BB-local only version of var tracking, to take care of
10354 information that we don't do global analysis on, such that not all
10355 information is lost. If SKIPPED holds, we're skipping the global
10356 pass entirely, so we should try to use information it would have
10357 handled as well.. */
10358
10359 static void
10360 vt_debug_insns_local (bool skipped ATTRIBUTE_UNUSED)
10361 {
10362 /* ??? Just skip it all for now. */
10363 delete_vta_debug_insns (true);
10364 }
10365
10366 /* Free the data structures needed for variable tracking. */
10367
10368 static void
10369 vt_finalize (void)
10370 {
10371 basic_block bb;
10372
10373 FOR_EACH_BB_FN (bb, cfun)
10374 {
10375 VTI (bb)->mos.release ();
10376 }
10377
10378 FOR_ALL_BB_FN (bb, cfun)
10379 {
10380 dataflow_set_destroy (&VTI (bb)->in);
10381 dataflow_set_destroy (&VTI (bb)->out);
10382 if (VTI (bb)->permp)
10383 {
10384 dataflow_set_destroy (VTI (bb)->permp);
10385 XDELETE (VTI (bb)->permp);
10386 }
10387 }
10388 free_aux_for_blocks ();
10389 delete empty_shared_hash->htab;
10390 empty_shared_hash->htab = NULL;
10391 delete changed_variables;
10392 changed_variables = NULL;
10393 attrs_pool.release ();
10394 var_pool.release ();
10395 location_chain_pool.release ();
10396 shared_hash_pool.release ();
10397
10398 if (MAY_HAVE_DEBUG_BIND_INSNS)
10399 {
10400 if (global_get_addr_cache)
10401 delete global_get_addr_cache;
10402 global_get_addr_cache = NULL;
10403 loc_exp_dep_pool.release ();
10404 valvar_pool.release ();
10405 preserved_values.release ();
10406 cselib_finish ();
10407 BITMAP_FREE (scratch_regs);
10408 scratch_regs = NULL;
10409 }
10410
10411 #ifdef HAVE_window_save
10412 vec_free (windowed_parm_regs);
10413 #endif
10414
10415 if (vui_vec)
10416 XDELETEVEC (vui_vec);
10417 vui_vec = NULL;
10418 vui_allocated = 0;
10419 }
10420
10421 /* The entry point to variable tracking pass. */
10422
10423 static inline unsigned int
10424 variable_tracking_main_1 (void)
10425 {
10426 bool success;
10427
10428 /* We won't be called as a separate pass if flag_var_tracking is not
10429 set, but final may call us to turn debug markers into notes. */
10430 if ((!flag_var_tracking && MAY_HAVE_DEBUG_INSNS)
10431 || flag_var_tracking_assignments < 0
10432 /* Var-tracking right now assumes the IR doesn't contain
10433 any pseudos at this point. */
10434 || targetm.no_register_allocation)
10435 {
10436 delete_vta_debug_insns (true);
10437 return 0;
10438 }
10439
10440 if (!flag_var_tracking)
10441 return 0;
10442
10443 if (n_basic_blocks_for_fn (cfun) > 500
10444 && n_edges_for_fn (cfun) / n_basic_blocks_for_fn (cfun) >= 20)
10445 {
10446 vt_debug_insns_local (true);
10447 return 0;
10448 }
10449
10450 mark_dfs_back_edges ();
10451 if (!vt_initialize ())
10452 {
10453 vt_finalize ();
10454 vt_debug_insns_local (true);
10455 return 0;
10456 }
10457
10458 success = vt_find_locations ();
10459
10460 if (!success && flag_var_tracking_assignments > 0)
10461 {
10462 vt_finalize ();
10463
10464 delete_vta_debug_insns (true);
10465
10466 /* This is later restored by our caller. */
10467 flag_var_tracking_assignments = 0;
10468
10469 success = vt_initialize ();
10470 gcc_assert (success);
10471
10472 success = vt_find_locations ();
10473 }
10474
10475 if (!success)
10476 {
10477 vt_finalize ();
10478 vt_debug_insns_local (false);
10479 return 0;
10480 }
10481
10482 if (dump_file && (dump_flags & TDF_DETAILS))
10483 {
10484 dump_dataflow_sets ();
10485 dump_reg_info (dump_file);
10486 dump_flow_info (dump_file, dump_flags);
10487 }
10488
10489 timevar_push (TV_VAR_TRACKING_EMIT);
10490 vt_emit_notes ();
10491 timevar_pop (TV_VAR_TRACKING_EMIT);
10492
10493 vt_finalize ();
10494 vt_debug_insns_local (false);
10495 return 0;
10496 }
10497
10498 unsigned int
10499 variable_tracking_main (void)
10500 {
10501 unsigned int ret;
10502 int save = flag_var_tracking_assignments;
10503
10504 ret = variable_tracking_main_1 ();
10505
10506 flag_var_tracking_assignments = save;
10507
10508 return ret;
10509 }
10510 \f
10511 namespace {
10512
10513 const pass_data pass_data_variable_tracking =
10514 {
10515 RTL_PASS, /* type */
10516 "vartrack", /* name */
10517 OPTGROUP_NONE, /* optinfo_flags */
10518 TV_VAR_TRACKING, /* tv_id */
10519 0, /* properties_required */
10520 0, /* properties_provided */
10521 0, /* properties_destroyed */
10522 0, /* todo_flags_start */
10523 0, /* todo_flags_finish */
10524 };
10525
10526 class pass_variable_tracking : public rtl_opt_pass
10527 {
10528 public:
10529 pass_variable_tracking (gcc::context *ctxt)
10530 : rtl_opt_pass (pass_data_variable_tracking, ctxt)
10531 {}
10532
10533 /* opt_pass methods: */
10534 virtual bool gate (function *)
10535 {
10536 return (flag_var_tracking && !targetm.delay_vartrack);
10537 }
10538
10539 virtual unsigned int execute (function *)
10540 {
10541 return variable_tracking_main ();
10542 }
10543
10544 }; // class pass_variable_tracking
10545
10546 } // anon namespace
10547
10548 rtl_opt_pass *
10549 make_pass_variable_tracking (gcc::context *ctxt)
10550 {
10551 return new pass_variable_tracking (ctxt);
10552 }