]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/var-tracking.c
Make more use of paradoxical_subreg_p
[thirdparty/gcc.git] / gcc / var-tracking.c
1 /* Variable tracking routines for the GNU compiler.
2 Copyright (C) 2002-2017 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file contains the variable tracking pass. It computes where
21 variables are located (which registers or where in memory) at each position
22 in instruction stream and emits notes describing the locations.
23 Debug information (DWARF2 location lists) is finally generated from
24 these notes.
25 With this debug information, it is possible to show variables
26 even when debugging optimized code.
27
28 How does the variable tracking pass work?
29
30 First, it scans RTL code for uses, stores and clobbers (register/memory
31 references in instructions), for call insns and for stack adjustments
32 separately for each basic block and saves them to an array of micro
33 operations.
34 The micro operations of one instruction are ordered so that
35 pre-modifying stack adjustment < use < use with no var < call insn <
36 < clobber < set < post-modifying stack adjustment
37
38 Then, a forward dataflow analysis is performed to find out how locations
39 of variables change through code and to propagate the variable locations
40 along control flow graph.
41 The IN set for basic block BB is computed as a union of OUT sets of BB's
42 predecessors, the OUT set for BB is copied from the IN set for BB and
43 is changed according to micro operations in BB.
44
45 The IN and OUT sets for basic blocks consist of a current stack adjustment
46 (used for adjusting offset of variables addressed using stack pointer),
47 the table of structures describing the locations of parts of a variable
48 and for each physical register a linked list for each physical register.
49 The linked list is a list of variable parts stored in the register,
50 i.e. it is a list of triplets (reg, decl, offset) where decl is
51 REG_EXPR (reg) and offset is REG_OFFSET (reg). The linked list is used for
52 effective deleting appropriate variable parts when we set or clobber the
53 register.
54
55 There may be more than one variable part in a register. The linked lists
56 should be pretty short so it is a good data structure here.
57 For example in the following code, register allocator may assign same
58 register to variables A and B, and both of them are stored in the same
59 register in CODE:
60
61 if (cond)
62 set A;
63 else
64 set B;
65 CODE;
66 if (cond)
67 use A;
68 else
69 use B;
70
71 Finally, the NOTE_INSN_VAR_LOCATION notes describing the variable locations
72 are emitted to appropriate positions in RTL code. Each such a note describes
73 the location of one variable at the point in instruction stream where the
74 note is. There is no need to emit a note for each variable before each
75 instruction, we only emit these notes where the location of variable changes
76 (this means that we also emit notes for changes between the OUT set of the
77 previous block and the IN set of the current block).
78
79 The notes consist of two parts:
80 1. the declaration (from REG_EXPR or MEM_EXPR)
81 2. the location of a variable - it is either a simple register/memory
82 reference (for simple variables, for example int),
83 or a parallel of register/memory references (for a large variables
84 which consist of several parts, for example long long).
85
86 */
87
88 #include "config.h"
89 #include "system.h"
90 #include "coretypes.h"
91 #include "backend.h"
92 #include "target.h"
93 #include "rtl.h"
94 #include "tree.h"
95 #include "cfghooks.h"
96 #include "alloc-pool.h"
97 #include "tree-pass.h"
98 #include "memmodel.h"
99 #include "tm_p.h"
100 #include "insn-config.h"
101 #include "regs.h"
102 #include "emit-rtl.h"
103 #include "recog.h"
104 #include "diagnostic.h"
105 #include "varasm.h"
106 #include "stor-layout.h"
107 #include "cfgrtl.h"
108 #include "cfganal.h"
109 #include "reload.h"
110 #include "calls.h"
111 #include "tree-dfa.h"
112 #include "tree-ssa.h"
113 #include "cselib.h"
114 #include "params.h"
115 #include "tree-pretty-print.h"
116 #include "rtl-iter.h"
117 #include "fibonacci_heap.h"
118
119 typedef fibonacci_heap <long, basic_block_def> bb_heap_t;
120 typedef fibonacci_node <long, basic_block_def> bb_heap_node_t;
121
122 /* var-tracking.c assumes that tree code with the same value as VALUE rtx code
123 has no chance to appear in REG_EXPR/MEM_EXPRs and isn't a decl.
124 Currently the value is the same as IDENTIFIER_NODE, which has such
125 a property. If this compile time assertion ever fails, make sure that
126 the new tree code that equals (int) VALUE has the same property. */
127 extern char check_value_val[(int) VALUE == (int) IDENTIFIER_NODE ? 1 : -1];
128
129 /* Type of micro operation. */
130 enum micro_operation_type
131 {
132 MO_USE, /* Use location (REG or MEM). */
133 MO_USE_NO_VAR,/* Use location which is not associated with a variable
134 or the variable is not trackable. */
135 MO_VAL_USE, /* Use location which is associated with a value. */
136 MO_VAL_LOC, /* Use location which appears in a debug insn. */
137 MO_VAL_SET, /* Set location associated with a value. */
138 MO_SET, /* Set location. */
139 MO_COPY, /* Copy the same portion of a variable from one
140 location to another. */
141 MO_CLOBBER, /* Clobber location. */
142 MO_CALL, /* Call insn. */
143 MO_ADJUST /* Adjust stack pointer. */
144
145 };
146
147 static const char * const ATTRIBUTE_UNUSED
148 micro_operation_type_name[] = {
149 "MO_USE",
150 "MO_USE_NO_VAR",
151 "MO_VAL_USE",
152 "MO_VAL_LOC",
153 "MO_VAL_SET",
154 "MO_SET",
155 "MO_COPY",
156 "MO_CLOBBER",
157 "MO_CALL",
158 "MO_ADJUST"
159 };
160
161 /* Where shall the note be emitted? BEFORE or AFTER the instruction.
162 Notes emitted as AFTER_CALL are to take effect during the call,
163 rather than after the call. */
164 enum emit_note_where
165 {
166 EMIT_NOTE_BEFORE_INSN,
167 EMIT_NOTE_AFTER_INSN,
168 EMIT_NOTE_AFTER_CALL_INSN
169 };
170
171 /* Structure holding information about micro operation. */
172 struct micro_operation
173 {
174 /* Type of micro operation. */
175 enum micro_operation_type type;
176
177 /* The instruction which the micro operation is in, for MO_USE,
178 MO_USE_NO_VAR, MO_CALL and MO_ADJUST, or the subsequent
179 instruction or note in the original flow (before any var-tracking
180 notes are inserted, to simplify emission of notes), for MO_SET
181 and MO_CLOBBER. */
182 rtx_insn *insn;
183
184 union {
185 /* Location. For MO_SET and MO_COPY, this is the SET that
186 performs the assignment, if known, otherwise it is the target
187 of the assignment. For MO_VAL_USE and MO_VAL_SET, it is a
188 CONCAT of the VALUE and the LOC associated with it. For
189 MO_VAL_LOC, it is a CONCAT of the VALUE and the VAR_LOCATION
190 associated with it. */
191 rtx loc;
192
193 /* Stack adjustment. */
194 HOST_WIDE_INT adjust;
195 } u;
196 };
197
198
199 /* A declaration of a variable, or an RTL value being handled like a
200 declaration. */
201 typedef void *decl_or_value;
202
203 /* Return true if a decl_or_value DV is a DECL or NULL. */
204 static inline bool
205 dv_is_decl_p (decl_or_value dv)
206 {
207 return !dv || (int) TREE_CODE ((tree) dv) != (int) VALUE;
208 }
209
210 /* Return true if a decl_or_value is a VALUE rtl. */
211 static inline bool
212 dv_is_value_p (decl_or_value dv)
213 {
214 return dv && !dv_is_decl_p (dv);
215 }
216
217 /* Return the decl in the decl_or_value. */
218 static inline tree
219 dv_as_decl (decl_or_value dv)
220 {
221 gcc_checking_assert (dv_is_decl_p (dv));
222 return (tree) dv;
223 }
224
225 /* Return the value in the decl_or_value. */
226 static inline rtx
227 dv_as_value (decl_or_value dv)
228 {
229 gcc_checking_assert (dv_is_value_p (dv));
230 return (rtx)dv;
231 }
232
233 /* Return the opaque pointer in the decl_or_value. */
234 static inline void *
235 dv_as_opaque (decl_or_value dv)
236 {
237 return dv;
238 }
239
240
241 /* Description of location of a part of a variable. The content of a physical
242 register is described by a chain of these structures.
243 The chains are pretty short (usually 1 or 2 elements) and thus
244 chain is the best data structure. */
245 struct attrs
246 {
247 /* Pointer to next member of the list. */
248 attrs *next;
249
250 /* The rtx of register. */
251 rtx loc;
252
253 /* The declaration corresponding to LOC. */
254 decl_or_value dv;
255
256 /* Offset from start of DECL. */
257 HOST_WIDE_INT offset;
258 };
259
260 /* Structure for chaining the locations. */
261 struct location_chain
262 {
263 /* Next element in the chain. */
264 location_chain *next;
265
266 /* The location (REG, MEM or VALUE). */
267 rtx loc;
268
269 /* The "value" stored in this location. */
270 rtx set_src;
271
272 /* Initialized? */
273 enum var_init_status init;
274 };
275
276 /* A vector of loc_exp_dep holds the active dependencies of a one-part
277 DV on VALUEs, i.e., the VALUEs expanded so as to form the current
278 location of DV. Each entry is also part of VALUE' s linked-list of
279 backlinks back to DV. */
280 struct loc_exp_dep
281 {
282 /* The dependent DV. */
283 decl_or_value dv;
284 /* The dependency VALUE or DECL_DEBUG. */
285 rtx value;
286 /* The next entry in VALUE's backlinks list. */
287 struct loc_exp_dep *next;
288 /* A pointer to the pointer to this entry (head or prev's next) in
289 the doubly-linked list. */
290 struct loc_exp_dep **pprev;
291 };
292
293
294 /* This data structure holds information about the depth of a variable
295 expansion. */
296 struct expand_depth
297 {
298 /* This measures the complexity of the expanded expression. It
299 grows by one for each level of expansion that adds more than one
300 operand. */
301 int complexity;
302 /* This counts the number of ENTRY_VALUE expressions in an
303 expansion. We want to minimize their use. */
304 int entryvals;
305 };
306
307 /* This data structure is allocated for one-part variables at the time
308 of emitting notes. */
309 struct onepart_aux
310 {
311 /* Doubly-linked list of dependent DVs. These are DVs whose cur_loc
312 computation used the expansion of this variable, and that ought
313 to be notified should this variable change. If the DV's cur_loc
314 expanded to NULL, all components of the loc list are regarded as
315 active, so that any changes in them give us a chance to get a
316 location. Otherwise, only components of the loc that expanded to
317 non-NULL are regarded as active dependencies. */
318 loc_exp_dep *backlinks;
319 /* This holds the LOC that was expanded into cur_loc. We need only
320 mark a one-part variable as changed if the FROM loc is removed,
321 or if it has no known location and a loc is added, or if it gets
322 a change notification from any of its active dependencies. */
323 rtx from;
324 /* The depth of the cur_loc expression. */
325 expand_depth depth;
326 /* Dependencies actively used when expand FROM into cur_loc. */
327 vec<loc_exp_dep, va_heap, vl_embed> deps;
328 };
329
330 /* Structure describing one part of variable. */
331 struct variable_part
332 {
333 /* Chain of locations of the part. */
334 location_chain *loc_chain;
335
336 /* Location which was last emitted to location list. */
337 rtx cur_loc;
338
339 union variable_aux
340 {
341 /* The offset in the variable, if !var->onepart. */
342 HOST_WIDE_INT offset;
343
344 /* Pointer to auxiliary data, if var->onepart and emit_notes. */
345 struct onepart_aux *onepaux;
346 } aux;
347 };
348
349 /* Maximum number of location parts. */
350 #define MAX_VAR_PARTS 16
351
352 /* Enumeration type used to discriminate various types of one-part
353 variables. */
354 enum onepart_enum
355 {
356 /* Not a one-part variable. */
357 NOT_ONEPART = 0,
358 /* A one-part DECL that is not a DEBUG_EXPR_DECL. */
359 ONEPART_VDECL = 1,
360 /* A DEBUG_EXPR_DECL. */
361 ONEPART_DEXPR = 2,
362 /* A VALUE. */
363 ONEPART_VALUE = 3
364 };
365
366 /* Structure describing where the variable is located. */
367 struct variable
368 {
369 /* The declaration of the variable, or an RTL value being handled
370 like a declaration. */
371 decl_or_value dv;
372
373 /* Reference count. */
374 int refcount;
375
376 /* Number of variable parts. */
377 char n_var_parts;
378
379 /* What type of DV this is, according to enum onepart_enum. */
380 ENUM_BITFIELD (onepart_enum) onepart : CHAR_BIT;
381
382 /* True if this variable_def struct is currently in the
383 changed_variables hash table. */
384 bool in_changed_variables;
385
386 /* The variable parts. */
387 variable_part var_part[1];
388 };
389
390 /* Pointer to the BB's information specific to variable tracking pass. */
391 #define VTI(BB) ((variable_tracking_info *) (BB)->aux)
392
393 /* Macro to access MEM_OFFSET as an HOST_WIDE_INT. Evaluates MEM twice. */
394 #define INT_MEM_OFFSET(mem) (MEM_OFFSET_KNOWN_P (mem) ? MEM_OFFSET (mem) : 0)
395
396 #if CHECKING_P && (GCC_VERSION >= 2007)
397
398 /* Access VAR's Ith part's offset, checking that it's not a one-part
399 variable. */
400 #define VAR_PART_OFFSET(var, i) __extension__ \
401 (*({ variable *const __v = (var); \
402 gcc_checking_assert (!__v->onepart); \
403 &__v->var_part[(i)].aux.offset; }))
404
405 /* Access VAR's one-part auxiliary data, checking that it is a
406 one-part variable. */
407 #define VAR_LOC_1PAUX(var) __extension__ \
408 (*({ variable *const __v = (var); \
409 gcc_checking_assert (__v->onepart); \
410 &__v->var_part[0].aux.onepaux; }))
411
412 #else
413 #define VAR_PART_OFFSET(var, i) ((var)->var_part[(i)].aux.offset)
414 #define VAR_LOC_1PAUX(var) ((var)->var_part[0].aux.onepaux)
415 #endif
416
417 /* These are accessor macros for the one-part auxiliary data. When
418 convenient for users, they're guarded by tests that the data was
419 allocated. */
420 #define VAR_LOC_DEP_LST(var) (VAR_LOC_1PAUX (var) \
421 ? VAR_LOC_1PAUX (var)->backlinks \
422 : NULL)
423 #define VAR_LOC_DEP_LSTP(var) (VAR_LOC_1PAUX (var) \
424 ? &VAR_LOC_1PAUX (var)->backlinks \
425 : NULL)
426 #define VAR_LOC_FROM(var) (VAR_LOC_1PAUX (var)->from)
427 #define VAR_LOC_DEPTH(var) (VAR_LOC_1PAUX (var)->depth)
428 #define VAR_LOC_DEP_VEC(var) (VAR_LOC_1PAUX (var) \
429 ? &VAR_LOC_1PAUX (var)->deps \
430 : NULL)
431
432
433
434 typedef unsigned int dvuid;
435
436 /* Return the uid of DV. */
437
438 static inline dvuid
439 dv_uid (decl_or_value dv)
440 {
441 if (dv_is_value_p (dv))
442 return CSELIB_VAL_PTR (dv_as_value (dv))->uid;
443 else
444 return DECL_UID (dv_as_decl (dv));
445 }
446
447 /* Compute the hash from the uid. */
448
449 static inline hashval_t
450 dv_uid2hash (dvuid uid)
451 {
452 return uid;
453 }
454
455 /* The hash function for a mask table in a shared_htab chain. */
456
457 static inline hashval_t
458 dv_htab_hash (decl_or_value dv)
459 {
460 return dv_uid2hash (dv_uid (dv));
461 }
462
463 static void variable_htab_free (void *);
464
465 /* Variable hashtable helpers. */
466
467 struct variable_hasher : pointer_hash <variable>
468 {
469 typedef void *compare_type;
470 static inline hashval_t hash (const variable *);
471 static inline bool equal (const variable *, const void *);
472 static inline void remove (variable *);
473 };
474
475 /* The hash function for variable_htab, computes the hash value
476 from the declaration of variable X. */
477
478 inline hashval_t
479 variable_hasher::hash (const variable *v)
480 {
481 return dv_htab_hash (v->dv);
482 }
483
484 /* Compare the declaration of variable X with declaration Y. */
485
486 inline bool
487 variable_hasher::equal (const variable *v, const void *y)
488 {
489 decl_or_value dv = CONST_CAST2 (decl_or_value, const void *, y);
490
491 return (dv_as_opaque (v->dv) == dv_as_opaque (dv));
492 }
493
494 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
495
496 inline void
497 variable_hasher::remove (variable *var)
498 {
499 variable_htab_free (var);
500 }
501
502 typedef hash_table<variable_hasher> variable_table_type;
503 typedef variable_table_type::iterator variable_iterator_type;
504
505 /* Structure for passing some other parameters to function
506 emit_note_insn_var_location. */
507 struct emit_note_data
508 {
509 /* The instruction which the note will be emitted before/after. */
510 rtx_insn *insn;
511
512 /* Where the note will be emitted (before/after insn)? */
513 enum emit_note_where where;
514
515 /* The variables and values active at this point. */
516 variable_table_type *vars;
517 };
518
519 /* Structure holding a refcounted hash table. If refcount > 1,
520 it must be first unshared before modified. */
521 struct shared_hash
522 {
523 /* Reference count. */
524 int refcount;
525
526 /* Actual hash table. */
527 variable_table_type *htab;
528 };
529
530 /* Structure holding the IN or OUT set for a basic block. */
531 struct dataflow_set
532 {
533 /* Adjustment of stack offset. */
534 HOST_WIDE_INT stack_adjust;
535
536 /* Attributes for registers (lists of attrs). */
537 attrs *regs[FIRST_PSEUDO_REGISTER];
538
539 /* Variable locations. */
540 shared_hash *vars;
541
542 /* Vars that is being traversed. */
543 shared_hash *traversed_vars;
544 };
545
546 /* The structure (one for each basic block) containing the information
547 needed for variable tracking. */
548 struct variable_tracking_info
549 {
550 /* The vector of micro operations. */
551 vec<micro_operation> mos;
552
553 /* The IN and OUT set for dataflow analysis. */
554 dataflow_set in;
555 dataflow_set out;
556
557 /* The permanent-in dataflow set for this block. This is used to
558 hold values for which we had to compute entry values. ??? This
559 should probably be dynamically allocated, to avoid using more
560 memory in non-debug builds. */
561 dataflow_set *permp;
562
563 /* Has the block been visited in DFS? */
564 bool visited;
565
566 /* Has the block been flooded in VTA? */
567 bool flooded;
568
569 };
570
571 /* Alloc pool for struct attrs_def. */
572 object_allocator<attrs> attrs_pool ("attrs pool");
573
574 /* Alloc pool for struct variable_def with MAX_VAR_PARTS entries. */
575
576 static pool_allocator var_pool
577 ("variable_def pool", sizeof (variable) +
578 (MAX_VAR_PARTS - 1) * sizeof (((variable *)NULL)->var_part[0]));
579
580 /* Alloc pool for struct variable_def with a single var_part entry. */
581 static pool_allocator valvar_pool
582 ("small variable_def pool", sizeof (variable));
583
584 /* Alloc pool for struct location_chain. */
585 static object_allocator<location_chain> location_chain_pool
586 ("location_chain pool");
587
588 /* Alloc pool for struct shared_hash. */
589 static object_allocator<shared_hash> shared_hash_pool ("shared_hash pool");
590
591 /* Alloc pool for struct loc_exp_dep_s for NOT_ONEPART variables. */
592 object_allocator<loc_exp_dep> loc_exp_dep_pool ("loc_exp_dep pool");
593
594 /* Changed variables, notes will be emitted for them. */
595 static variable_table_type *changed_variables;
596
597 /* Shall notes be emitted? */
598 static bool emit_notes;
599
600 /* Values whose dynamic location lists have gone empty, but whose
601 cselib location lists are still usable. Use this to hold the
602 current location, the backlinks, etc, during emit_notes. */
603 static variable_table_type *dropped_values;
604
605 /* Empty shared hashtable. */
606 static shared_hash *empty_shared_hash;
607
608 /* Scratch register bitmap used by cselib_expand_value_rtx. */
609 static bitmap scratch_regs = NULL;
610
611 #ifdef HAVE_window_save
612 struct GTY(()) parm_reg {
613 rtx outgoing;
614 rtx incoming;
615 };
616
617
618 /* Vector of windowed parameter registers, if any. */
619 static vec<parm_reg, va_gc> *windowed_parm_regs = NULL;
620 #endif
621
622 /* Variable used to tell whether cselib_process_insn called our hook. */
623 static bool cselib_hook_called;
624
625 /* Local function prototypes. */
626 static void stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
627 HOST_WIDE_INT *);
628 static void insn_stack_adjust_offset_pre_post (rtx_insn *, HOST_WIDE_INT *,
629 HOST_WIDE_INT *);
630 static bool vt_stack_adjustments (void);
631
632 static void init_attrs_list_set (attrs **);
633 static void attrs_list_clear (attrs **);
634 static attrs *attrs_list_member (attrs *, decl_or_value, HOST_WIDE_INT);
635 static void attrs_list_insert (attrs **, decl_or_value, HOST_WIDE_INT, rtx);
636 static void attrs_list_copy (attrs **, attrs *);
637 static void attrs_list_union (attrs **, attrs *);
638
639 static variable **unshare_variable (dataflow_set *set, variable **slot,
640 variable *var, enum var_init_status);
641 static void vars_copy (variable_table_type *, variable_table_type *);
642 static tree var_debug_decl (tree);
643 static void var_reg_set (dataflow_set *, rtx, enum var_init_status, rtx);
644 static void var_reg_delete_and_set (dataflow_set *, rtx, bool,
645 enum var_init_status, rtx);
646 static void var_reg_delete (dataflow_set *, rtx, bool);
647 static void var_regno_delete (dataflow_set *, int);
648 static void var_mem_set (dataflow_set *, rtx, enum var_init_status, rtx);
649 static void var_mem_delete_and_set (dataflow_set *, rtx, bool,
650 enum var_init_status, rtx);
651 static void var_mem_delete (dataflow_set *, rtx, bool);
652
653 static void dataflow_set_init (dataflow_set *);
654 static void dataflow_set_clear (dataflow_set *);
655 static void dataflow_set_copy (dataflow_set *, dataflow_set *);
656 static int variable_union_info_cmp_pos (const void *, const void *);
657 static void dataflow_set_union (dataflow_set *, dataflow_set *);
658 static location_chain *find_loc_in_1pdv (rtx, variable *,
659 variable_table_type *);
660 static bool canon_value_cmp (rtx, rtx);
661 static int loc_cmp (rtx, rtx);
662 static bool variable_part_different_p (variable_part *, variable_part *);
663 static bool onepart_variable_different_p (variable *, variable *);
664 static bool variable_different_p (variable *, variable *);
665 static bool dataflow_set_different (dataflow_set *, dataflow_set *);
666 static void dataflow_set_destroy (dataflow_set *);
667
668 static bool track_expr_p (tree, bool);
669 static bool same_variable_part_p (rtx, tree, HOST_WIDE_INT);
670 static void add_uses_1 (rtx *, void *);
671 static void add_stores (rtx, const_rtx, void *);
672 static bool compute_bb_dataflow (basic_block);
673 static bool vt_find_locations (void);
674
675 static void dump_attrs_list (attrs *);
676 static void dump_var (variable *);
677 static void dump_vars (variable_table_type *);
678 static void dump_dataflow_set (dataflow_set *);
679 static void dump_dataflow_sets (void);
680
681 static void set_dv_changed (decl_or_value, bool);
682 static void variable_was_changed (variable *, dataflow_set *);
683 static variable **set_slot_part (dataflow_set *, rtx, variable **,
684 decl_or_value, HOST_WIDE_INT,
685 enum var_init_status, rtx);
686 static void set_variable_part (dataflow_set *, rtx,
687 decl_or_value, HOST_WIDE_INT,
688 enum var_init_status, rtx, enum insert_option);
689 static variable **clobber_slot_part (dataflow_set *, rtx,
690 variable **, HOST_WIDE_INT, rtx);
691 static void clobber_variable_part (dataflow_set *, rtx,
692 decl_or_value, HOST_WIDE_INT, rtx);
693 static variable **delete_slot_part (dataflow_set *, rtx, variable **,
694 HOST_WIDE_INT);
695 static void delete_variable_part (dataflow_set *, rtx,
696 decl_or_value, HOST_WIDE_INT);
697 static void emit_notes_in_bb (basic_block, dataflow_set *);
698 static void vt_emit_notes (void);
699
700 static bool vt_get_decl_and_offset (rtx, tree *, HOST_WIDE_INT *);
701 static void vt_add_function_parameters (void);
702 static bool vt_initialize (void);
703 static void vt_finalize (void);
704
705 /* Callback for stack_adjust_offset_pre_post, called via for_each_inc_dec. */
706
707 static int
708 stack_adjust_offset_pre_post_cb (rtx, rtx op, rtx dest, rtx src, rtx srcoff,
709 void *arg)
710 {
711 if (dest != stack_pointer_rtx)
712 return 0;
713
714 switch (GET_CODE (op))
715 {
716 case PRE_INC:
717 case PRE_DEC:
718 ((HOST_WIDE_INT *)arg)[0] -= INTVAL (srcoff);
719 return 0;
720 case POST_INC:
721 case POST_DEC:
722 ((HOST_WIDE_INT *)arg)[1] -= INTVAL (srcoff);
723 return 0;
724 case PRE_MODIFY:
725 case POST_MODIFY:
726 /* We handle only adjustments by constant amount. */
727 gcc_assert (GET_CODE (src) == PLUS
728 && CONST_INT_P (XEXP (src, 1))
729 && XEXP (src, 0) == stack_pointer_rtx);
730 ((HOST_WIDE_INT *)arg)[GET_CODE (op) == POST_MODIFY]
731 -= INTVAL (XEXP (src, 1));
732 return 0;
733 default:
734 gcc_unreachable ();
735 }
736 }
737
738 /* Given a SET, calculate the amount of stack adjustment it contains
739 PRE- and POST-modifying stack pointer.
740 This function is similar to stack_adjust_offset. */
741
742 static void
743 stack_adjust_offset_pre_post (rtx pattern, HOST_WIDE_INT *pre,
744 HOST_WIDE_INT *post)
745 {
746 rtx src = SET_SRC (pattern);
747 rtx dest = SET_DEST (pattern);
748 enum rtx_code code;
749
750 if (dest == stack_pointer_rtx)
751 {
752 /* (set (reg sp) (plus (reg sp) (const_int))) */
753 code = GET_CODE (src);
754 if (! (code == PLUS || code == MINUS)
755 || XEXP (src, 0) != stack_pointer_rtx
756 || !CONST_INT_P (XEXP (src, 1)))
757 return;
758
759 if (code == MINUS)
760 *post += INTVAL (XEXP (src, 1));
761 else
762 *post -= INTVAL (XEXP (src, 1));
763 return;
764 }
765 HOST_WIDE_INT res[2] = { 0, 0 };
766 for_each_inc_dec (pattern, stack_adjust_offset_pre_post_cb, res);
767 *pre += res[0];
768 *post += res[1];
769 }
770
771 /* Given an INSN, calculate the amount of stack adjustment it contains
772 PRE- and POST-modifying stack pointer. */
773
774 static void
775 insn_stack_adjust_offset_pre_post (rtx_insn *insn, HOST_WIDE_INT *pre,
776 HOST_WIDE_INT *post)
777 {
778 rtx pattern;
779
780 *pre = 0;
781 *post = 0;
782
783 pattern = PATTERN (insn);
784 if (RTX_FRAME_RELATED_P (insn))
785 {
786 rtx expr = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
787 if (expr)
788 pattern = XEXP (expr, 0);
789 }
790
791 if (GET_CODE (pattern) == SET)
792 stack_adjust_offset_pre_post (pattern, pre, post);
793 else if (GET_CODE (pattern) == PARALLEL
794 || GET_CODE (pattern) == SEQUENCE)
795 {
796 int i;
797
798 /* There may be stack adjustments inside compound insns. Search
799 for them. */
800 for ( i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
801 if (GET_CODE (XVECEXP (pattern, 0, i)) == SET)
802 stack_adjust_offset_pre_post (XVECEXP (pattern, 0, i), pre, post);
803 }
804 }
805
806 /* Compute stack adjustments for all blocks by traversing DFS tree.
807 Return true when the adjustments on all incoming edges are consistent.
808 Heavily borrowed from pre_and_rev_post_order_compute. */
809
810 static bool
811 vt_stack_adjustments (void)
812 {
813 edge_iterator *stack;
814 int sp;
815
816 /* Initialize entry block. */
817 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->visited = true;
818 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->in.stack_adjust
819 = INCOMING_FRAME_SP_OFFSET;
820 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->out.stack_adjust
821 = INCOMING_FRAME_SP_OFFSET;
822
823 /* Allocate stack for back-tracking up CFG. */
824 stack = XNEWVEC (edge_iterator, n_basic_blocks_for_fn (cfun) + 1);
825 sp = 0;
826
827 /* Push the first edge on to the stack. */
828 stack[sp++] = ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs);
829
830 while (sp)
831 {
832 edge_iterator ei;
833 basic_block src;
834 basic_block dest;
835
836 /* Look at the edge on the top of the stack. */
837 ei = stack[sp - 1];
838 src = ei_edge (ei)->src;
839 dest = ei_edge (ei)->dest;
840
841 /* Check if the edge destination has been visited yet. */
842 if (!VTI (dest)->visited)
843 {
844 rtx_insn *insn;
845 HOST_WIDE_INT pre, post, offset;
846 VTI (dest)->visited = true;
847 VTI (dest)->in.stack_adjust = offset = VTI (src)->out.stack_adjust;
848
849 if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
850 for (insn = BB_HEAD (dest);
851 insn != NEXT_INSN (BB_END (dest));
852 insn = NEXT_INSN (insn))
853 if (INSN_P (insn))
854 {
855 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
856 offset += pre + post;
857 }
858
859 VTI (dest)->out.stack_adjust = offset;
860
861 if (EDGE_COUNT (dest->succs) > 0)
862 /* Since the DEST node has been visited for the first
863 time, check its successors. */
864 stack[sp++] = ei_start (dest->succs);
865 }
866 else
867 {
868 /* We can end up with different stack adjustments for the exit block
869 of a shrink-wrapped function if stack_adjust_offset_pre_post
870 doesn't understand the rtx pattern used to restore the stack
871 pointer in the epilogue. For example, on s390(x), the stack
872 pointer is often restored via a load-multiple instruction
873 and so no stack_adjust offset is recorded for it. This means
874 that the stack offset at the end of the epilogue block is the
875 same as the offset before the epilogue, whereas other paths
876 to the exit block will have the correct stack_adjust.
877
878 It is safe to ignore these differences because (a) we never
879 use the stack_adjust for the exit block in this pass and
880 (b) dwarf2cfi checks whether the CFA notes in a shrink-wrapped
881 function are correct.
882
883 We must check whether the adjustments on other edges are
884 the same though. */
885 if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
886 && VTI (dest)->in.stack_adjust != VTI (src)->out.stack_adjust)
887 {
888 free (stack);
889 return false;
890 }
891
892 if (! ei_one_before_end_p (ei))
893 /* Go to the next edge. */
894 ei_next (&stack[sp - 1]);
895 else
896 /* Return to previous level if there are no more edges. */
897 sp--;
898 }
899 }
900
901 free (stack);
902 return true;
903 }
904
905 /* arg_pointer_rtx resp. frame_pointer_rtx if stack_pointer_rtx or
906 hard_frame_pointer_rtx is being mapped to it and offset for it. */
907 static rtx cfa_base_rtx;
908 static HOST_WIDE_INT cfa_base_offset;
909
910 /* Compute a CFA-based value for an ADJUSTMENT made to stack_pointer_rtx
911 or hard_frame_pointer_rtx. */
912
913 static inline rtx
914 compute_cfa_pointer (HOST_WIDE_INT adjustment)
915 {
916 return plus_constant (Pmode, cfa_base_rtx, adjustment + cfa_base_offset);
917 }
918
919 /* Adjustment for hard_frame_pointer_rtx to cfa base reg,
920 or -1 if the replacement shouldn't be done. */
921 static HOST_WIDE_INT hard_frame_pointer_adjustment = -1;
922
923 /* Data for adjust_mems callback. */
924
925 struct adjust_mem_data
926 {
927 bool store;
928 machine_mode mem_mode;
929 HOST_WIDE_INT stack_adjust;
930 auto_vec<rtx> side_effects;
931 };
932
933 /* Helper for adjust_mems. Return true if X is suitable for
934 transformation of wider mode arithmetics to narrower mode. */
935
936 static bool
937 use_narrower_mode_test (rtx x, const_rtx subreg)
938 {
939 subrtx_var_iterator::array_type array;
940 FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
941 {
942 rtx x = *iter;
943 if (CONSTANT_P (x))
944 iter.skip_subrtxes ();
945 else
946 switch (GET_CODE (x))
947 {
948 case REG:
949 if (cselib_lookup (x, GET_MODE (SUBREG_REG (subreg)), 0, VOIDmode))
950 return false;
951 if (!validate_subreg (GET_MODE (subreg), GET_MODE (x), x,
952 subreg_lowpart_offset (GET_MODE (subreg),
953 GET_MODE (x))))
954 return false;
955 break;
956 case PLUS:
957 case MINUS:
958 case MULT:
959 break;
960 case ASHIFT:
961 iter.substitute (XEXP (x, 0));
962 break;
963 default:
964 return false;
965 }
966 }
967 return true;
968 }
969
970 /* Transform X into narrower mode MODE from wider mode WMODE. */
971
972 static rtx
973 use_narrower_mode (rtx x, machine_mode mode, machine_mode wmode)
974 {
975 rtx op0, op1;
976 if (CONSTANT_P (x))
977 return lowpart_subreg (mode, x, wmode);
978 switch (GET_CODE (x))
979 {
980 case REG:
981 return lowpart_subreg (mode, x, wmode);
982 case PLUS:
983 case MINUS:
984 case MULT:
985 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
986 op1 = use_narrower_mode (XEXP (x, 1), mode, wmode);
987 return simplify_gen_binary (GET_CODE (x), mode, op0, op1);
988 case ASHIFT:
989 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
990 op1 = XEXP (x, 1);
991 /* Ensure shift amount is not wider than mode. */
992 if (GET_MODE (op1) == VOIDmode)
993 op1 = lowpart_subreg (mode, op1, wmode);
994 else if (GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (GET_MODE (op1)))
995 op1 = lowpart_subreg (mode, op1, GET_MODE (op1));
996 return simplify_gen_binary (ASHIFT, mode, op0, op1);
997 default:
998 gcc_unreachable ();
999 }
1000 }
1001
1002 /* Helper function for adjusting used MEMs. */
1003
1004 static rtx
1005 adjust_mems (rtx loc, const_rtx old_rtx, void *data)
1006 {
1007 struct adjust_mem_data *amd = (struct adjust_mem_data *) data;
1008 rtx mem, addr = loc, tem;
1009 machine_mode mem_mode_save;
1010 bool store_save;
1011 switch (GET_CODE (loc))
1012 {
1013 case REG:
1014 /* Don't do any sp or fp replacements outside of MEM addresses
1015 on the LHS. */
1016 if (amd->mem_mode == VOIDmode && amd->store)
1017 return loc;
1018 if (loc == stack_pointer_rtx
1019 && !frame_pointer_needed
1020 && cfa_base_rtx)
1021 return compute_cfa_pointer (amd->stack_adjust);
1022 else if (loc == hard_frame_pointer_rtx
1023 && frame_pointer_needed
1024 && hard_frame_pointer_adjustment != -1
1025 && cfa_base_rtx)
1026 return compute_cfa_pointer (hard_frame_pointer_adjustment);
1027 gcc_checking_assert (loc != virtual_incoming_args_rtx);
1028 return loc;
1029 case MEM:
1030 mem = loc;
1031 if (!amd->store)
1032 {
1033 mem = targetm.delegitimize_address (mem);
1034 if (mem != loc && !MEM_P (mem))
1035 return simplify_replace_fn_rtx (mem, old_rtx, adjust_mems, data);
1036 }
1037
1038 addr = XEXP (mem, 0);
1039 mem_mode_save = amd->mem_mode;
1040 amd->mem_mode = GET_MODE (mem);
1041 store_save = amd->store;
1042 amd->store = false;
1043 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1044 amd->store = store_save;
1045 amd->mem_mode = mem_mode_save;
1046 if (mem == loc)
1047 addr = targetm.delegitimize_address (addr);
1048 if (addr != XEXP (mem, 0))
1049 mem = replace_equiv_address_nv (mem, addr);
1050 if (!amd->store)
1051 mem = avoid_constant_pool_reference (mem);
1052 return mem;
1053 case PRE_INC:
1054 case PRE_DEC:
1055 addr = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
1056 gen_int_mode (GET_CODE (loc) == PRE_INC
1057 ? GET_MODE_SIZE (amd->mem_mode)
1058 : -GET_MODE_SIZE (amd->mem_mode),
1059 GET_MODE (loc)));
1060 /* FALLTHRU */
1061 case POST_INC:
1062 case POST_DEC:
1063 if (addr == loc)
1064 addr = XEXP (loc, 0);
1065 gcc_assert (amd->mem_mode != VOIDmode && amd->mem_mode != BLKmode);
1066 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1067 tem = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
1068 gen_int_mode ((GET_CODE (loc) == PRE_INC
1069 || GET_CODE (loc) == POST_INC)
1070 ? GET_MODE_SIZE (amd->mem_mode)
1071 : -GET_MODE_SIZE (amd->mem_mode),
1072 GET_MODE (loc)));
1073 store_save = amd->store;
1074 amd->store = false;
1075 tem = simplify_replace_fn_rtx (tem, old_rtx, adjust_mems, data);
1076 amd->store = store_save;
1077 amd->side_effects.safe_push (gen_rtx_SET (XEXP (loc, 0), tem));
1078 return addr;
1079 case PRE_MODIFY:
1080 addr = XEXP (loc, 1);
1081 /* FALLTHRU */
1082 case POST_MODIFY:
1083 if (addr == loc)
1084 addr = XEXP (loc, 0);
1085 gcc_assert (amd->mem_mode != VOIDmode);
1086 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1087 store_save = amd->store;
1088 amd->store = false;
1089 tem = simplify_replace_fn_rtx (XEXP (loc, 1), old_rtx,
1090 adjust_mems, data);
1091 amd->store = store_save;
1092 amd->side_effects.safe_push (gen_rtx_SET (XEXP (loc, 0), tem));
1093 return addr;
1094 case SUBREG:
1095 /* First try without delegitimization of whole MEMs and
1096 avoid_constant_pool_reference, which is more likely to succeed. */
1097 store_save = amd->store;
1098 amd->store = true;
1099 addr = simplify_replace_fn_rtx (SUBREG_REG (loc), old_rtx, adjust_mems,
1100 data);
1101 amd->store = store_save;
1102 mem = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1103 if (mem == SUBREG_REG (loc))
1104 {
1105 tem = loc;
1106 goto finish_subreg;
1107 }
1108 tem = simplify_gen_subreg (GET_MODE (loc), mem,
1109 GET_MODE (SUBREG_REG (loc)),
1110 SUBREG_BYTE (loc));
1111 if (tem)
1112 goto finish_subreg;
1113 tem = simplify_gen_subreg (GET_MODE (loc), addr,
1114 GET_MODE (SUBREG_REG (loc)),
1115 SUBREG_BYTE (loc));
1116 if (tem == NULL_RTX)
1117 tem = gen_rtx_raw_SUBREG (GET_MODE (loc), addr, SUBREG_BYTE (loc));
1118 finish_subreg:
1119 if (MAY_HAVE_DEBUG_INSNS
1120 && GET_CODE (tem) == SUBREG
1121 && (GET_CODE (SUBREG_REG (tem)) == PLUS
1122 || GET_CODE (SUBREG_REG (tem)) == MINUS
1123 || GET_CODE (SUBREG_REG (tem)) == MULT
1124 || GET_CODE (SUBREG_REG (tem)) == ASHIFT)
1125 && (GET_MODE_CLASS (GET_MODE (tem)) == MODE_INT
1126 || GET_MODE_CLASS (GET_MODE (tem)) == MODE_PARTIAL_INT)
1127 && (GET_MODE_CLASS (GET_MODE (SUBREG_REG (tem))) == MODE_INT
1128 || GET_MODE_CLASS (GET_MODE (SUBREG_REG (tem))) == MODE_PARTIAL_INT)
1129 && GET_MODE_PRECISION (GET_MODE (tem))
1130 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (tem)))
1131 && subreg_lowpart_p (tem)
1132 && use_narrower_mode_test (SUBREG_REG (tem), tem))
1133 return use_narrower_mode (SUBREG_REG (tem), GET_MODE (tem),
1134 GET_MODE (SUBREG_REG (tem)));
1135 return tem;
1136 case ASM_OPERANDS:
1137 /* Don't do any replacements in second and following
1138 ASM_OPERANDS of inline-asm with multiple sets.
1139 ASM_OPERANDS_INPUT_VEC, ASM_OPERANDS_INPUT_CONSTRAINT_VEC
1140 and ASM_OPERANDS_LABEL_VEC need to be equal between
1141 all the ASM_OPERANDs in the insn and adjust_insn will
1142 fix this up. */
1143 if (ASM_OPERANDS_OUTPUT_IDX (loc) != 0)
1144 return loc;
1145 break;
1146 default:
1147 break;
1148 }
1149 return NULL_RTX;
1150 }
1151
1152 /* Helper function for replacement of uses. */
1153
1154 static void
1155 adjust_mem_uses (rtx *x, void *data)
1156 {
1157 rtx new_x = simplify_replace_fn_rtx (*x, NULL_RTX, adjust_mems, data);
1158 if (new_x != *x)
1159 validate_change (NULL_RTX, x, new_x, true);
1160 }
1161
1162 /* Helper function for replacement of stores. */
1163
1164 static void
1165 adjust_mem_stores (rtx loc, const_rtx expr, void *data)
1166 {
1167 if (MEM_P (loc))
1168 {
1169 rtx new_dest = simplify_replace_fn_rtx (SET_DEST (expr), NULL_RTX,
1170 adjust_mems, data);
1171 if (new_dest != SET_DEST (expr))
1172 {
1173 rtx xexpr = CONST_CAST_RTX (expr);
1174 validate_change (NULL_RTX, &SET_DEST (xexpr), new_dest, true);
1175 }
1176 }
1177 }
1178
1179 /* Simplify INSN. Remove all {PRE,POST}_{INC,DEC,MODIFY} rtxes,
1180 replace them with their value in the insn and add the side-effects
1181 as other sets to the insn. */
1182
1183 static void
1184 adjust_insn (basic_block bb, rtx_insn *insn)
1185 {
1186 rtx set;
1187
1188 #ifdef HAVE_window_save
1189 /* If the target machine has an explicit window save instruction, the
1190 transformation OUTGOING_REGNO -> INCOMING_REGNO is done there. */
1191 if (RTX_FRAME_RELATED_P (insn)
1192 && find_reg_note (insn, REG_CFA_WINDOW_SAVE, NULL_RTX))
1193 {
1194 unsigned int i, nregs = vec_safe_length (windowed_parm_regs);
1195 rtx rtl = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (nregs * 2));
1196 parm_reg *p;
1197
1198 FOR_EACH_VEC_SAFE_ELT (windowed_parm_regs, i, p)
1199 {
1200 XVECEXP (rtl, 0, i * 2)
1201 = gen_rtx_SET (p->incoming, p->outgoing);
1202 /* Do not clobber the attached DECL, but only the REG. */
1203 XVECEXP (rtl, 0, i * 2 + 1)
1204 = gen_rtx_CLOBBER (GET_MODE (p->outgoing),
1205 gen_raw_REG (GET_MODE (p->outgoing),
1206 REGNO (p->outgoing)));
1207 }
1208
1209 validate_change (NULL_RTX, &PATTERN (insn), rtl, true);
1210 return;
1211 }
1212 #endif
1213
1214 adjust_mem_data amd;
1215 amd.mem_mode = VOIDmode;
1216 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
1217
1218 amd.store = true;
1219 note_stores (PATTERN (insn), adjust_mem_stores, &amd);
1220
1221 amd.store = false;
1222 if (GET_CODE (PATTERN (insn)) == PARALLEL
1223 && asm_noperands (PATTERN (insn)) > 0
1224 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1225 {
1226 rtx body, set0;
1227 int i;
1228
1229 /* inline-asm with multiple sets is tiny bit more complicated,
1230 because the 3 vectors in ASM_OPERANDS need to be shared between
1231 all ASM_OPERANDS in the instruction. adjust_mems will
1232 not touch ASM_OPERANDS other than the first one, asm_noperands
1233 test above needs to be called before that (otherwise it would fail)
1234 and afterwards this code fixes it up. */
1235 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1236 body = PATTERN (insn);
1237 set0 = XVECEXP (body, 0, 0);
1238 gcc_checking_assert (GET_CODE (set0) == SET
1239 && GET_CODE (SET_SRC (set0)) == ASM_OPERANDS
1240 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set0)) == 0);
1241 for (i = 1; i < XVECLEN (body, 0); i++)
1242 if (GET_CODE (XVECEXP (body, 0, i)) != SET)
1243 break;
1244 else
1245 {
1246 set = XVECEXP (body, 0, i);
1247 gcc_checking_assert (GET_CODE (SET_SRC (set)) == ASM_OPERANDS
1248 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set))
1249 == i);
1250 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (set))
1251 != ASM_OPERANDS_INPUT_VEC (SET_SRC (set0))
1252 || ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set))
1253 != ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0))
1254 || ASM_OPERANDS_LABEL_VEC (SET_SRC (set))
1255 != ASM_OPERANDS_LABEL_VEC (SET_SRC (set0)))
1256 {
1257 rtx newsrc = shallow_copy_rtx (SET_SRC (set));
1258 ASM_OPERANDS_INPUT_VEC (newsrc)
1259 = ASM_OPERANDS_INPUT_VEC (SET_SRC (set0));
1260 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (newsrc)
1261 = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0));
1262 ASM_OPERANDS_LABEL_VEC (newsrc)
1263 = ASM_OPERANDS_LABEL_VEC (SET_SRC (set0));
1264 validate_change (NULL_RTX, &SET_SRC (set), newsrc, true);
1265 }
1266 }
1267 }
1268 else
1269 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1270
1271 /* For read-only MEMs containing some constant, prefer those
1272 constants. */
1273 set = single_set (insn);
1274 if (set && MEM_P (SET_SRC (set)) && MEM_READONLY_P (SET_SRC (set)))
1275 {
1276 rtx note = find_reg_equal_equiv_note (insn);
1277
1278 if (note && CONSTANT_P (XEXP (note, 0)))
1279 validate_change (NULL_RTX, &SET_SRC (set), XEXP (note, 0), true);
1280 }
1281
1282 if (!amd.side_effects.is_empty ())
1283 {
1284 rtx *pat, new_pat;
1285 int i, oldn;
1286
1287 pat = &PATTERN (insn);
1288 if (GET_CODE (*pat) == COND_EXEC)
1289 pat = &COND_EXEC_CODE (*pat);
1290 if (GET_CODE (*pat) == PARALLEL)
1291 oldn = XVECLEN (*pat, 0);
1292 else
1293 oldn = 1;
1294 unsigned int newn = amd.side_effects.length ();
1295 new_pat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (oldn + newn));
1296 if (GET_CODE (*pat) == PARALLEL)
1297 for (i = 0; i < oldn; i++)
1298 XVECEXP (new_pat, 0, i) = XVECEXP (*pat, 0, i);
1299 else
1300 XVECEXP (new_pat, 0, 0) = *pat;
1301
1302 rtx effect;
1303 unsigned int j;
1304 FOR_EACH_VEC_ELT_REVERSE (amd.side_effects, j, effect)
1305 XVECEXP (new_pat, 0, j + oldn) = effect;
1306 validate_change (NULL_RTX, pat, new_pat, true);
1307 }
1308 }
1309
1310 /* Return the DEBUG_EXPR of a DEBUG_EXPR_DECL or the VALUE in DV. */
1311 static inline rtx
1312 dv_as_rtx (decl_or_value dv)
1313 {
1314 tree decl;
1315
1316 if (dv_is_value_p (dv))
1317 return dv_as_value (dv);
1318
1319 decl = dv_as_decl (dv);
1320
1321 gcc_checking_assert (TREE_CODE (decl) == DEBUG_EXPR_DECL);
1322 return DECL_RTL_KNOWN_SET (decl);
1323 }
1324
1325 /* Return nonzero if a decl_or_value must not have more than one
1326 variable part. The returned value discriminates among various
1327 kinds of one-part DVs ccording to enum onepart_enum. */
1328 static inline onepart_enum
1329 dv_onepart_p (decl_or_value dv)
1330 {
1331 tree decl;
1332
1333 if (!MAY_HAVE_DEBUG_INSNS)
1334 return NOT_ONEPART;
1335
1336 if (dv_is_value_p (dv))
1337 return ONEPART_VALUE;
1338
1339 decl = dv_as_decl (dv);
1340
1341 if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
1342 return ONEPART_DEXPR;
1343
1344 if (target_for_debug_bind (decl) != NULL_TREE)
1345 return ONEPART_VDECL;
1346
1347 return NOT_ONEPART;
1348 }
1349
1350 /* Return the variable pool to be used for a dv of type ONEPART. */
1351 static inline pool_allocator &
1352 onepart_pool (onepart_enum onepart)
1353 {
1354 return onepart ? valvar_pool : var_pool;
1355 }
1356
1357 /* Allocate a variable_def from the corresponding variable pool. */
1358 static inline variable *
1359 onepart_pool_allocate (onepart_enum onepart)
1360 {
1361 return (variable*) onepart_pool (onepart).allocate ();
1362 }
1363
1364 /* Build a decl_or_value out of a decl. */
1365 static inline decl_or_value
1366 dv_from_decl (tree decl)
1367 {
1368 decl_or_value dv;
1369 dv = decl;
1370 gcc_checking_assert (dv_is_decl_p (dv));
1371 return dv;
1372 }
1373
1374 /* Build a decl_or_value out of a value. */
1375 static inline decl_or_value
1376 dv_from_value (rtx value)
1377 {
1378 decl_or_value dv;
1379 dv = value;
1380 gcc_checking_assert (dv_is_value_p (dv));
1381 return dv;
1382 }
1383
1384 /* Return a value or the decl of a debug_expr as a decl_or_value. */
1385 static inline decl_or_value
1386 dv_from_rtx (rtx x)
1387 {
1388 decl_or_value dv;
1389
1390 switch (GET_CODE (x))
1391 {
1392 case DEBUG_EXPR:
1393 dv = dv_from_decl (DEBUG_EXPR_TREE_DECL (x));
1394 gcc_checking_assert (DECL_RTL_KNOWN_SET (DEBUG_EXPR_TREE_DECL (x)) == x);
1395 break;
1396
1397 case VALUE:
1398 dv = dv_from_value (x);
1399 break;
1400
1401 default:
1402 gcc_unreachable ();
1403 }
1404
1405 return dv;
1406 }
1407
1408 extern void debug_dv (decl_or_value dv);
1409
1410 DEBUG_FUNCTION void
1411 debug_dv (decl_or_value dv)
1412 {
1413 if (dv_is_value_p (dv))
1414 debug_rtx (dv_as_value (dv));
1415 else
1416 debug_generic_stmt (dv_as_decl (dv));
1417 }
1418
1419 static void loc_exp_dep_clear (variable *var);
1420
1421 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
1422
1423 static void
1424 variable_htab_free (void *elem)
1425 {
1426 int i;
1427 variable *var = (variable *) elem;
1428 location_chain *node, *next;
1429
1430 gcc_checking_assert (var->refcount > 0);
1431
1432 var->refcount--;
1433 if (var->refcount > 0)
1434 return;
1435
1436 for (i = 0; i < var->n_var_parts; i++)
1437 {
1438 for (node = var->var_part[i].loc_chain; node; node = next)
1439 {
1440 next = node->next;
1441 delete node;
1442 }
1443 var->var_part[i].loc_chain = NULL;
1444 }
1445 if (var->onepart && VAR_LOC_1PAUX (var))
1446 {
1447 loc_exp_dep_clear (var);
1448 if (VAR_LOC_DEP_LST (var))
1449 VAR_LOC_DEP_LST (var)->pprev = NULL;
1450 XDELETE (VAR_LOC_1PAUX (var));
1451 /* These may be reused across functions, so reset
1452 e.g. NO_LOC_P. */
1453 if (var->onepart == ONEPART_DEXPR)
1454 set_dv_changed (var->dv, true);
1455 }
1456 onepart_pool (var->onepart).remove (var);
1457 }
1458
1459 /* Initialize the set (array) SET of attrs to empty lists. */
1460
1461 static void
1462 init_attrs_list_set (attrs **set)
1463 {
1464 int i;
1465
1466 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1467 set[i] = NULL;
1468 }
1469
1470 /* Make the list *LISTP empty. */
1471
1472 static void
1473 attrs_list_clear (attrs **listp)
1474 {
1475 attrs *list, *next;
1476
1477 for (list = *listp; list; list = next)
1478 {
1479 next = list->next;
1480 delete list;
1481 }
1482 *listp = NULL;
1483 }
1484
1485 /* Return true if the pair of DECL and OFFSET is the member of the LIST. */
1486
1487 static attrs *
1488 attrs_list_member (attrs *list, decl_or_value dv, HOST_WIDE_INT offset)
1489 {
1490 for (; list; list = list->next)
1491 if (dv_as_opaque (list->dv) == dv_as_opaque (dv) && list->offset == offset)
1492 return list;
1493 return NULL;
1494 }
1495
1496 /* Insert the triplet DECL, OFFSET, LOC to the list *LISTP. */
1497
1498 static void
1499 attrs_list_insert (attrs **listp, decl_or_value dv,
1500 HOST_WIDE_INT offset, rtx loc)
1501 {
1502 attrs *list = new attrs;
1503 list->loc = loc;
1504 list->dv = dv;
1505 list->offset = offset;
1506 list->next = *listp;
1507 *listp = list;
1508 }
1509
1510 /* Copy all nodes from SRC and create a list *DSTP of the copies. */
1511
1512 static void
1513 attrs_list_copy (attrs **dstp, attrs *src)
1514 {
1515 attrs_list_clear (dstp);
1516 for (; src; src = src->next)
1517 {
1518 attrs *n = new attrs;
1519 n->loc = src->loc;
1520 n->dv = src->dv;
1521 n->offset = src->offset;
1522 n->next = *dstp;
1523 *dstp = n;
1524 }
1525 }
1526
1527 /* Add all nodes from SRC which are not in *DSTP to *DSTP. */
1528
1529 static void
1530 attrs_list_union (attrs **dstp, attrs *src)
1531 {
1532 for (; src; src = src->next)
1533 {
1534 if (!attrs_list_member (*dstp, src->dv, src->offset))
1535 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1536 }
1537 }
1538
1539 /* Combine nodes that are not onepart nodes from SRC and SRC2 into
1540 *DSTP. */
1541
1542 static void
1543 attrs_list_mpdv_union (attrs **dstp, attrs *src, attrs *src2)
1544 {
1545 gcc_assert (!*dstp);
1546 for (; src; src = src->next)
1547 {
1548 if (!dv_onepart_p (src->dv))
1549 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1550 }
1551 for (src = src2; src; src = src->next)
1552 {
1553 if (!dv_onepart_p (src->dv)
1554 && !attrs_list_member (*dstp, src->dv, src->offset))
1555 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1556 }
1557 }
1558
1559 /* Shared hashtable support. */
1560
1561 /* Return true if VARS is shared. */
1562
1563 static inline bool
1564 shared_hash_shared (shared_hash *vars)
1565 {
1566 return vars->refcount > 1;
1567 }
1568
1569 /* Return the hash table for VARS. */
1570
1571 static inline variable_table_type *
1572 shared_hash_htab (shared_hash *vars)
1573 {
1574 return vars->htab;
1575 }
1576
1577 /* Return true if VAR is shared, or maybe because VARS is shared. */
1578
1579 static inline bool
1580 shared_var_p (variable *var, shared_hash *vars)
1581 {
1582 /* Don't count an entry in the changed_variables table as a duplicate. */
1583 return ((var->refcount > 1 + (int) var->in_changed_variables)
1584 || shared_hash_shared (vars));
1585 }
1586
1587 /* Copy variables into a new hash table. */
1588
1589 static shared_hash *
1590 shared_hash_unshare (shared_hash *vars)
1591 {
1592 shared_hash *new_vars = new shared_hash;
1593 gcc_assert (vars->refcount > 1);
1594 new_vars->refcount = 1;
1595 new_vars->htab = new variable_table_type (vars->htab->elements () + 3);
1596 vars_copy (new_vars->htab, vars->htab);
1597 vars->refcount--;
1598 return new_vars;
1599 }
1600
1601 /* Increment reference counter on VARS and return it. */
1602
1603 static inline shared_hash *
1604 shared_hash_copy (shared_hash *vars)
1605 {
1606 vars->refcount++;
1607 return vars;
1608 }
1609
1610 /* Decrement reference counter and destroy hash table if not shared
1611 anymore. */
1612
1613 static void
1614 shared_hash_destroy (shared_hash *vars)
1615 {
1616 gcc_checking_assert (vars->refcount > 0);
1617 if (--vars->refcount == 0)
1618 {
1619 delete vars->htab;
1620 delete vars;
1621 }
1622 }
1623
1624 /* Unshare *PVARS if shared and return slot for DV. If INS is
1625 INSERT, insert it if not already present. */
1626
1627 static inline variable **
1628 shared_hash_find_slot_unshare_1 (shared_hash **pvars, decl_or_value dv,
1629 hashval_t dvhash, enum insert_option ins)
1630 {
1631 if (shared_hash_shared (*pvars))
1632 *pvars = shared_hash_unshare (*pvars);
1633 return shared_hash_htab (*pvars)->find_slot_with_hash (dv, dvhash, ins);
1634 }
1635
1636 static inline variable **
1637 shared_hash_find_slot_unshare (shared_hash **pvars, decl_or_value dv,
1638 enum insert_option ins)
1639 {
1640 return shared_hash_find_slot_unshare_1 (pvars, dv, dv_htab_hash (dv), ins);
1641 }
1642
1643 /* Return slot for DV, if it is already present in the hash table.
1644 If it is not present, insert it only VARS is not shared, otherwise
1645 return NULL. */
1646
1647 static inline variable **
1648 shared_hash_find_slot_1 (shared_hash *vars, decl_or_value dv, hashval_t dvhash)
1649 {
1650 return shared_hash_htab (vars)->find_slot_with_hash (dv, dvhash,
1651 shared_hash_shared (vars)
1652 ? NO_INSERT : INSERT);
1653 }
1654
1655 static inline variable **
1656 shared_hash_find_slot (shared_hash *vars, decl_or_value dv)
1657 {
1658 return shared_hash_find_slot_1 (vars, dv, dv_htab_hash (dv));
1659 }
1660
1661 /* Return slot for DV only if it is already present in the hash table. */
1662
1663 static inline variable **
1664 shared_hash_find_slot_noinsert_1 (shared_hash *vars, decl_or_value dv,
1665 hashval_t dvhash)
1666 {
1667 return shared_hash_htab (vars)->find_slot_with_hash (dv, dvhash, NO_INSERT);
1668 }
1669
1670 static inline variable **
1671 shared_hash_find_slot_noinsert (shared_hash *vars, decl_or_value dv)
1672 {
1673 return shared_hash_find_slot_noinsert_1 (vars, dv, dv_htab_hash (dv));
1674 }
1675
1676 /* Return variable for DV or NULL if not already present in the hash
1677 table. */
1678
1679 static inline variable *
1680 shared_hash_find_1 (shared_hash *vars, decl_or_value dv, hashval_t dvhash)
1681 {
1682 return shared_hash_htab (vars)->find_with_hash (dv, dvhash);
1683 }
1684
1685 static inline variable *
1686 shared_hash_find (shared_hash *vars, decl_or_value dv)
1687 {
1688 return shared_hash_find_1 (vars, dv, dv_htab_hash (dv));
1689 }
1690
1691 /* Return true if TVAL is better than CVAL as a canonival value. We
1692 choose lowest-numbered VALUEs, using the RTX address as a
1693 tie-breaker. The idea is to arrange them into a star topology,
1694 such that all of them are at most one step away from the canonical
1695 value, and the canonical value has backlinks to all of them, in
1696 addition to all the actual locations. We don't enforce this
1697 topology throughout the entire dataflow analysis, though.
1698 */
1699
1700 static inline bool
1701 canon_value_cmp (rtx tval, rtx cval)
1702 {
1703 return !cval
1704 || CSELIB_VAL_PTR (tval)->uid < CSELIB_VAL_PTR (cval)->uid;
1705 }
1706
1707 static bool dst_can_be_shared;
1708
1709 /* Return a copy of a variable VAR and insert it to dataflow set SET. */
1710
1711 static variable **
1712 unshare_variable (dataflow_set *set, variable **slot, variable *var,
1713 enum var_init_status initialized)
1714 {
1715 variable *new_var;
1716 int i;
1717
1718 new_var = onepart_pool_allocate (var->onepart);
1719 new_var->dv = var->dv;
1720 new_var->refcount = 1;
1721 var->refcount--;
1722 new_var->n_var_parts = var->n_var_parts;
1723 new_var->onepart = var->onepart;
1724 new_var->in_changed_variables = false;
1725
1726 if (! flag_var_tracking_uninit)
1727 initialized = VAR_INIT_STATUS_INITIALIZED;
1728
1729 for (i = 0; i < var->n_var_parts; i++)
1730 {
1731 location_chain *node;
1732 location_chain **nextp;
1733
1734 if (i == 0 && var->onepart)
1735 {
1736 /* One-part auxiliary data is only used while emitting
1737 notes, so propagate it to the new variable in the active
1738 dataflow set. If we're not emitting notes, this will be
1739 a no-op. */
1740 gcc_checking_assert (!VAR_LOC_1PAUX (var) || emit_notes);
1741 VAR_LOC_1PAUX (new_var) = VAR_LOC_1PAUX (var);
1742 VAR_LOC_1PAUX (var) = NULL;
1743 }
1744 else
1745 VAR_PART_OFFSET (new_var, i) = VAR_PART_OFFSET (var, i);
1746 nextp = &new_var->var_part[i].loc_chain;
1747 for (node = var->var_part[i].loc_chain; node; node = node->next)
1748 {
1749 location_chain *new_lc;
1750
1751 new_lc = new location_chain;
1752 new_lc->next = NULL;
1753 if (node->init > initialized)
1754 new_lc->init = node->init;
1755 else
1756 new_lc->init = initialized;
1757 if (node->set_src && !(MEM_P (node->set_src)))
1758 new_lc->set_src = node->set_src;
1759 else
1760 new_lc->set_src = NULL;
1761 new_lc->loc = node->loc;
1762
1763 *nextp = new_lc;
1764 nextp = &new_lc->next;
1765 }
1766
1767 new_var->var_part[i].cur_loc = var->var_part[i].cur_loc;
1768 }
1769
1770 dst_can_be_shared = false;
1771 if (shared_hash_shared (set->vars))
1772 slot = shared_hash_find_slot_unshare (&set->vars, var->dv, NO_INSERT);
1773 else if (set->traversed_vars && set->vars != set->traversed_vars)
1774 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
1775 *slot = new_var;
1776 if (var->in_changed_variables)
1777 {
1778 variable **cslot
1779 = changed_variables->find_slot_with_hash (var->dv,
1780 dv_htab_hash (var->dv),
1781 NO_INSERT);
1782 gcc_assert (*cslot == (void *) var);
1783 var->in_changed_variables = false;
1784 variable_htab_free (var);
1785 *cslot = new_var;
1786 new_var->in_changed_variables = true;
1787 }
1788 return slot;
1789 }
1790
1791 /* Copy all variables from hash table SRC to hash table DST. */
1792
1793 static void
1794 vars_copy (variable_table_type *dst, variable_table_type *src)
1795 {
1796 variable_iterator_type hi;
1797 variable *var;
1798
1799 FOR_EACH_HASH_TABLE_ELEMENT (*src, var, variable, hi)
1800 {
1801 variable **dstp;
1802 var->refcount++;
1803 dstp = dst->find_slot_with_hash (var->dv, dv_htab_hash (var->dv),
1804 INSERT);
1805 *dstp = var;
1806 }
1807 }
1808
1809 /* Map a decl to its main debug decl. */
1810
1811 static inline tree
1812 var_debug_decl (tree decl)
1813 {
1814 if (decl && VAR_P (decl) && DECL_HAS_DEBUG_EXPR_P (decl))
1815 {
1816 tree debugdecl = DECL_DEBUG_EXPR (decl);
1817 if (DECL_P (debugdecl))
1818 decl = debugdecl;
1819 }
1820
1821 return decl;
1822 }
1823
1824 /* Set the register LOC to contain DV, OFFSET. */
1825
1826 static void
1827 var_reg_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1828 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
1829 enum insert_option iopt)
1830 {
1831 attrs *node;
1832 bool decl_p = dv_is_decl_p (dv);
1833
1834 if (decl_p)
1835 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
1836
1837 for (node = set->regs[REGNO (loc)]; node; node = node->next)
1838 if (dv_as_opaque (node->dv) == dv_as_opaque (dv)
1839 && node->offset == offset)
1840 break;
1841 if (!node)
1842 attrs_list_insert (&set->regs[REGNO (loc)], dv, offset, loc);
1843 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
1844 }
1845
1846 /* Set the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). */
1847
1848 static void
1849 var_reg_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1850 rtx set_src)
1851 {
1852 tree decl = REG_EXPR (loc);
1853 HOST_WIDE_INT offset = REG_OFFSET (loc);
1854
1855 var_reg_decl_set (set, loc, initialized,
1856 dv_from_decl (decl), offset, set_src, INSERT);
1857 }
1858
1859 static enum var_init_status
1860 get_init_value (dataflow_set *set, rtx loc, decl_or_value dv)
1861 {
1862 variable *var;
1863 int i;
1864 enum var_init_status ret_val = VAR_INIT_STATUS_UNKNOWN;
1865
1866 if (! flag_var_tracking_uninit)
1867 return VAR_INIT_STATUS_INITIALIZED;
1868
1869 var = shared_hash_find (set->vars, dv);
1870 if (var)
1871 {
1872 for (i = 0; i < var->n_var_parts && ret_val == VAR_INIT_STATUS_UNKNOWN; i++)
1873 {
1874 location_chain *nextp;
1875 for (nextp = var->var_part[i].loc_chain; nextp; nextp = nextp->next)
1876 if (rtx_equal_p (nextp->loc, loc))
1877 {
1878 ret_val = nextp->init;
1879 break;
1880 }
1881 }
1882 }
1883
1884 return ret_val;
1885 }
1886
1887 /* Delete current content of register LOC in dataflow set SET and set
1888 the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). If
1889 MODIFY is true, any other live copies of the same variable part are
1890 also deleted from the dataflow set, otherwise the variable part is
1891 assumed to be copied from another location holding the same
1892 part. */
1893
1894 static void
1895 var_reg_delete_and_set (dataflow_set *set, rtx loc, bool modify,
1896 enum var_init_status initialized, rtx set_src)
1897 {
1898 tree decl = REG_EXPR (loc);
1899 HOST_WIDE_INT offset = REG_OFFSET (loc);
1900 attrs *node, *next;
1901 attrs **nextp;
1902
1903 decl = var_debug_decl (decl);
1904
1905 if (initialized == VAR_INIT_STATUS_UNKNOWN)
1906 initialized = get_init_value (set, loc, dv_from_decl (decl));
1907
1908 nextp = &set->regs[REGNO (loc)];
1909 for (node = *nextp; node; node = next)
1910 {
1911 next = node->next;
1912 if (dv_as_opaque (node->dv) != decl || node->offset != offset)
1913 {
1914 delete_variable_part (set, node->loc, node->dv, node->offset);
1915 delete node;
1916 *nextp = next;
1917 }
1918 else
1919 {
1920 node->loc = loc;
1921 nextp = &node->next;
1922 }
1923 }
1924 if (modify)
1925 clobber_variable_part (set, loc, dv_from_decl (decl), offset, set_src);
1926 var_reg_set (set, loc, initialized, set_src);
1927 }
1928
1929 /* Delete the association of register LOC in dataflow set SET with any
1930 variables that aren't onepart. If CLOBBER is true, also delete any
1931 other live copies of the same variable part, and delete the
1932 association with onepart dvs too. */
1933
1934 static void
1935 var_reg_delete (dataflow_set *set, rtx loc, bool clobber)
1936 {
1937 attrs **nextp = &set->regs[REGNO (loc)];
1938 attrs *node, *next;
1939
1940 if (clobber)
1941 {
1942 tree decl = REG_EXPR (loc);
1943 HOST_WIDE_INT offset = REG_OFFSET (loc);
1944
1945 decl = var_debug_decl (decl);
1946
1947 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
1948 }
1949
1950 for (node = *nextp; node; node = next)
1951 {
1952 next = node->next;
1953 if (clobber || !dv_onepart_p (node->dv))
1954 {
1955 delete_variable_part (set, node->loc, node->dv, node->offset);
1956 delete node;
1957 *nextp = next;
1958 }
1959 else
1960 nextp = &node->next;
1961 }
1962 }
1963
1964 /* Delete content of register with number REGNO in dataflow set SET. */
1965
1966 static void
1967 var_regno_delete (dataflow_set *set, int regno)
1968 {
1969 attrs **reg = &set->regs[regno];
1970 attrs *node, *next;
1971
1972 for (node = *reg; node; node = next)
1973 {
1974 next = node->next;
1975 delete_variable_part (set, node->loc, node->dv, node->offset);
1976 delete node;
1977 }
1978 *reg = NULL;
1979 }
1980
1981 /* Return true if I is the negated value of a power of two. */
1982 static bool
1983 negative_power_of_two_p (HOST_WIDE_INT i)
1984 {
1985 unsigned HOST_WIDE_INT x = -(unsigned HOST_WIDE_INT)i;
1986 return pow2_or_zerop (x);
1987 }
1988
1989 /* Strip constant offsets and alignments off of LOC. Return the base
1990 expression. */
1991
1992 static rtx
1993 vt_get_canonicalize_base (rtx loc)
1994 {
1995 while ((GET_CODE (loc) == PLUS
1996 || GET_CODE (loc) == AND)
1997 && GET_CODE (XEXP (loc, 1)) == CONST_INT
1998 && (GET_CODE (loc) != AND
1999 || negative_power_of_two_p (INTVAL (XEXP (loc, 1)))))
2000 loc = XEXP (loc, 0);
2001
2002 return loc;
2003 }
2004
2005 /* This caches canonicalized addresses for VALUEs, computed using
2006 information in the global cselib table. */
2007 static hash_map<rtx, rtx> *global_get_addr_cache;
2008
2009 /* This caches canonicalized addresses for VALUEs, computed using
2010 information from the global cache and information pertaining to a
2011 basic block being analyzed. */
2012 static hash_map<rtx, rtx> *local_get_addr_cache;
2013
2014 static rtx vt_canonicalize_addr (dataflow_set *, rtx);
2015
2016 /* Return the canonical address for LOC, that must be a VALUE, using a
2017 cached global equivalence or computing it and storing it in the
2018 global cache. */
2019
2020 static rtx
2021 get_addr_from_global_cache (rtx const loc)
2022 {
2023 rtx x;
2024
2025 gcc_checking_assert (GET_CODE (loc) == VALUE);
2026
2027 bool existed;
2028 rtx *slot = &global_get_addr_cache->get_or_insert (loc, &existed);
2029 if (existed)
2030 return *slot;
2031
2032 x = canon_rtx (get_addr (loc));
2033
2034 /* Tentative, avoiding infinite recursion. */
2035 *slot = x;
2036
2037 if (x != loc)
2038 {
2039 rtx nx = vt_canonicalize_addr (NULL, x);
2040 if (nx != x)
2041 {
2042 /* The table may have moved during recursion, recompute
2043 SLOT. */
2044 *global_get_addr_cache->get (loc) = x = nx;
2045 }
2046 }
2047
2048 return x;
2049 }
2050
2051 /* Return the canonical address for LOC, that must be a VALUE, using a
2052 cached local equivalence or computing it and storing it in the
2053 local cache. */
2054
2055 static rtx
2056 get_addr_from_local_cache (dataflow_set *set, rtx const loc)
2057 {
2058 rtx x;
2059 decl_or_value dv;
2060 variable *var;
2061 location_chain *l;
2062
2063 gcc_checking_assert (GET_CODE (loc) == VALUE);
2064
2065 bool existed;
2066 rtx *slot = &local_get_addr_cache->get_or_insert (loc, &existed);
2067 if (existed)
2068 return *slot;
2069
2070 x = get_addr_from_global_cache (loc);
2071
2072 /* Tentative, avoiding infinite recursion. */
2073 *slot = x;
2074
2075 /* Recurse to cache local expansion of X, or if we need to search
2076 for a VALUE in the expansion. */
2077 if (x != loc)
2078 {
2079 rtx nx = vt_canonicalize_addr (set, x);
2080 if (nx != x)
2081 {
2082 slot = local_get_addr_cache->get (loc);
2083 *slot = x = nx;
2084 }
2085 return x;
2086 }
2087
2088 dv = dv_from_rtx (x);
2089 var = shared_hash_find (set->vars, dv);
2090 if (!var)
2091 return x;
2092
2093 /* Look for an improved equivalent expression. */
2094 for (l = var->var_part[0].loc_chain; l; l = l->next)
2095 {
2096 rtx base = vt_get_canonicalize_base (l->loc);
2097 if (GET_CODE (base) == VALUE
2098 && canon_value_cmp (base, loc))
2099 {
2100 rtx nx = vt_canonicalize_addr (set, l->loc);
2101 if (x != nx)
2102 {
2103 slot = local_get_addr_cache->get (loc);
2104 *slot = x = nx;
2105 }
2106 break;
2107 }
2108 }
2109
2110 return x;
2111 }
2112
2113 /* Canonicalize LOC using equivalences from SET in addition to those
2114 in the cselib static table. It expects a VALUE-based expression,
2115 and it will only substitute VALUEs with other VALUEs or
2116 function-global equivalences, so that, if two addresses have base
2117 VALUEs that are locally or globally related in ways that
2118 memrefs_conflict_p cares about, they will both canonicalize to
2119 expressions that have the same base VALUE.
2120
2121 The use of VALUEs as canonical base addresses enables the canonical
2122 RTXs to remain unchanged globally, if they resolve to a constant,
2123 or throughout a basic block otherwise, so that they can be cached
2124 and the cache needs not be invalidated when REGs, MEMs or such
2125 change. */
2126
2127 static rtx
2128 vt_canonicalize_addr (dataflow_set *set, rtx oloc)
2129 {
2130 HOST_WIDE_INT ofst = 0;
2131 machine_mode mode = GET_MODE (oloc);
2132 rtx loc = oloc;
2133 rtx x;
2134 bool retry = true;
2135
2136 while (retry)
2137 {
2138 while (GET_CODE (loc) == PLUS
2139 && GET_CODE (XEXP (loc, 1)) == CONST_INT)
2140 {
2141 ofst += INTVAL (XEXP (loc, 1));
2142 loc = XEXP (loc, 0);
2143 }
2144
2145 /* Alignment operations can't normally be combined, so just
2146 canonicalize the base and we're done. We'll normally have
2147 only one stack alignment anyway. */
2148 if (GET_CODE (loc) == AND
2149 && GET_CODE (XEXP (loc, 1)) == CONST_INT
2150 && negative_power_of_two_p (INTVAL (XEXP (loc, 1))))
2151 {
2152 x = vt_canonicalize_addr (set, XEXP (loc, 0));
2153 if (x != XEXP (loc, 0))
2154 loc = gen_rtx_AND (mode, x, XEXP (loc, 1));
2155 retry = false;
2156 }
2157
2158 if (GET_CODE (loc) == VALUE)
2159 {
2160 if (set)
2161 loc = get_addr_from_local_cache (set, loc);
2162 else
2163 loc = get_addr_from_global_cache (loc);
2164
2165 /* Consolidate plus_constants. */
2166 while (ofst && GET_CODE (loc) == PLUS
2167 && GET_CODE (XEXP (loc, 1)) == CONST_INT)
2168 {
2169 ofst += INTVAL (XEXP (loc, 1));
2170 loc = XEXP (loc, 0);
2171 }
2172
2173 retry = false;
2174 }
2175 else
2176 {
2177 x = canon_rtx (loc);
2178 if (retry)
2179 retry = (x != loc);
2180 loc = x;
2181 }
2182 }
2183
2184 /* Add OFST back in. */
2185 if (ofst)
2186 {
2187 /* Don't build new RTL if we can help it. */
2188 if (GET_CODE (oloc) == PLUS
2189 && XEXP (oloc, 0) == loc
2190 && INTVAL (XEXP (oloc, 1)) == ofst)
2191 return oloc;
2192
2193 loc = plus_constant (mode, loc, ofst);
2194 }
2195
2196 return loc;
2197 }
2198
2199 /* Return true iff there's a true dependence between MLOC and LOC.
2200 MADDR must be a canonicalized version of MLOC's address. */
2201
2202 static inline bool
2203 vt_canon_true_dep (dataflow_set *set, rtx mloc, rtx maddr, rtx loc)
2204 {
2205 if (GET_CODE (loc) != MEM)
2206 return false;
2207
2208 rtx addr = vt_canonicalize_addr (set, XEXP (loc, 0));
2209 if (!canon_true_dependence (mloc, GET_MODE (mloc), maddr, loc, addr))
2210 return false;
2211
2212 return true;
2213 }
2214
2215 /* Hold parameters for the hashtab traversal function
2216 drop_overlapping_mem_locs, see below. */
2217
2218 struct overlapping_mems
2219 {
2220 dataflow_set *set;
2221 rtx loc, addr;
2222 };
2223
2224 /* Remove all MEMs that overlap with COMS->LOC from the location list
2225 of a hash table entry for a onepart variable. COMS->ADDR must be a
2226 canonicalized form of COMS->LOC's address, and COMS->LOC must be
2227 canonicalized itself. */
2228
2229 int
2230 drop_overlapping_mem_locs (variable **slot, overlapping_mems *coms)
2231 {
2232 dataflow_set *set = coms->set;
2233 rtx mloc = coms->loc, addr = coms->addr;
2234 variable *var = *slot;
2235
2236 if (var->onepart != NOT_ONEPART)
2237 {
2238 location_chain *loc, **locp;
2239 bool changed = false;
2240 rtx cur_loc;
2241
2242 gcc_assert (var->n_var_parts == 1);
2243
2244 if (shared_var_p (var, set->vars))
2245 {
2246 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
2247 if (vt_canon_true_dep (set, mloc, addr, loc->loc))
2248 break;
2249
2250 if (!loc)
2251 return 1;
2252
2253 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
2254 var = *slot;
2255 gcc_assert (var->n_var_parts == 1);
2256 }
2257
2258 if (VAR_LOC_1PAUX (var))
2259 cur_loc = VAR_LOC_FROM (var);
2260 else
2261 cur_loc = var->var_part[0].cur_loc;
2262
2263 for (locp = &var->var_part[0].loc_chain, loc = *locp;
2264 loc; loc = *locp)
2265 {
2266 if (!vt_canon_true_dep (set, mloc, addr, loc->loc))
2267 {
2268 locp = &loc->next;
2269 continue;
2270 }
2271
2272 *locp = loc->next;
2273 /* If we have deleted the location which was last emitted
2274 we have to emit new location so add the variable to set
2275 of changed variables. */
2276 if (cur_loc == loc->loc)
2277 {
2278 changed = true;
2279 var->var_part[0].cur_loc = NULL;
2280 if (VAR_LOC_1PAUX (var))
2281 VAR_LOC_FROM (var) = NULL;
2282 }
2283 delete loc;
2284 }
2285
2286 if (!var->var_part[0].loc_chain)
2287 {
2288 var->n_var_parts--;
2289 changed = true;
2290 }
2291 if (changed)
2292 variable_was_changed (var, set);
2293 }
2294
2295 return 1;
2296 }
2297
2298 /* Remove from SET all VALUE bindings to MEMs that overlap with LOC. */
2299
2300 static void
2301 clobber_overlapping_mems (dataflow_set *set, rtx loc)
2302 {
2303 struct overlapping_mems coms;
2304
2305 gcc_checking_assert (GET_CODE (loc) == MEM);
2306
2307 coms.set = set;
2308 coms.loc = canon_rtx (loc);
2309 coms.addr = vt_canonicalize_addr (set, XEXP (loc, 0));
2310
2311 set->traversed_vars = set->vars;
2312 shared_hash_htab (set->vars)
2313 ->traverse <overlapping_mems*, drop_overlapping_mem_locs> (&coms);
2314 set->traversed_vars = NULL;
2315 }
2316
2317 /* Set the location of DV, OFFSET as the MEM LOC. */
2318
2319 static void
2320 var_mem_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
2321 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
2322 enum insert_option iopt)
2323 {
2324 if (dv_is_decl_p (dv))
2325 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
2326
2327 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
2328 }
2329
2330 /* Set the location part of variable MEM_EXPR (LOC) in dataflow set
2331 SET to LOC.
2332 Adjust the address first if it is stack pointer based. */
2333
2334 static void
2335 var_mem_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
2336 rtx set_src)
2337 {
2338 tree decl = MEM_EXPR (loc);
2339 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2340
2341 var_mem_decl_set (set, loc, initialized,
2342 dv_from_decl (decl), offset, set_src, INSERT);
2343 }
2344
2345 /* Delete and set the location part of variable MEM_EXPR (LOC) in
2346 dataflow set SET to LOC. If MODIFY is true, any other live copies
2347 of the same variable part are also deleted from the dataflow set,
2348 otherwise the variable part is assumed to be copied from another
2349 location holding the same part.
2350 Adjust the address first if it is stack pointer based. */
2351
2352 static void
2353 var_mem_delete_and_set (dataflow_set *set, rtx loc, bool modify,
2354 enum var_init_status initialized, rtx set_src)
2355 {
2356 tree decl = MEM_EXPR (loc);
2357 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2358
2359 clobber_overlapping_mems (set, loc);
2360 decl = var_debug_decl (decl);
2361
2362 if (initialized == VAR_INIT_STATUS_UNKNOWN)
2363 initialized = get_init_value (set, loc, dv_from_decl (decl));
2364
2365 if (modify)
2366 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, set_src);
2367 var_mem_set (set, loc, initialized, set_src);
2368 }
2369
2370 /* Delete the location part LOC from dataflow set SET. If CLOBBER is
2371 true, also delete any other live copies of the same variable part.
2372 Adjust the address first if it is stack pointer based. */
2373
2374 static void
2375 var_mem_delete (dataflow_set *set, rtx loc, bool clobber)
2376 {
2377 tree decl = MEM_EXPR (loc);
2378 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2379
2380 clobber_overlapping_mems (set, loc);
2381 decl = var_debug_decl (decl);
2382 if (clobber)
2383 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
2384 delete_variable_part (set, loc, dv_from_decl (decl), offset);
2385 }
2386
2387 /* Return true if LOC should not be expanded for location expressions,
2388 or used in them. */
2389
2390 static inline bool
2391 unsuitable_loc (rtx loc)
2392 {
2393 switch (GET_CODE (loc))
2394 {
2395 case PC:
2396 case SCRATCH:
2397 case CC0:
2398 case ASM_INPUT:
2399 case ASM_OPERANDS:
2400 return true;
2401
2402 default:
2403 return false;
2404 }
2405 }
2406
2407 /* Bind VAL to LOC in SET. If MODIFIED, detach LOC from any values
2408 bound to it. */
2409
2410 static inline void
2411 val_bind (dataflow_set *set, rtx val, rtx loc, bool modified)
2412 {
2413 if (REG_P (loc))
2414 {
2415 if (modified)
2416 var_regno_delete (set, REGNO (loc));
2417 var_reg_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2418 dv_from_value (val), 0, NULL_RTX, INSERT);
2419 }
2420 else if (MEM_P (loc))
2421 {
2422 struct elt_loc_list *l = CSELIB_VAL_PTR (val)->locs;
2423
2424 if (modified)
2425 clobber_overlapping_mems (set, loc);
2426
2427 if (l && GET_CODE (l->loc) == VALUE)
2428 l = canonical_cselib_val (CSELIB_VAL_PTR (l->loc))->locs;
2429
2430 /* If this MEM is a global constant, we don't need it in the
2431 dynamic tables. ??? We should test this before emitting the
2432 micro-op in the first place. */
2433 while (l)
2434 if (GET_CODE (l->loc) == MEM && XEXP (l->loc, 0) == XEXP (loc, 0))
2435 break;
2436 else
2437 l = l->next;
2438
2439 if (!l)
2440 var_mem_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2441 dv_from_value (val), 0, NULL_RTX, INSERT);
2442 }
2443 else
2444 {
2445 /* Other kinds of equivalences are necessarily static, at least
2446 so long as we do not perform substitutions while merging
2447 expressions. */
2448 gcc_unreachable ();
2449 set_variable_part (set, loc, dv_from_value (val), 0,
2450 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2451 }
2452 }
2453
2454 /* Bind a value to a location it was just stored in. If MODIFIED
2455 holds, assume the location was modified, detaching it from any
2456 values bound to it. */
2457
2458 static void
2459 val_store (dataflow_set *set, rtx val, rtx loc, rtx_insn *insn,
2460 bool modified)
2461 {
2462 cselib_val *v = CSELIB_VAL_PTR (val);
2463
2464 gcc_assert (cselib_preserved_value_p (v));
2465
2466 if (dump_file)
2467 {
2468 fprintf (dump_file, "%i: ", insn ? INSN_UID (insn) : 0);
2469 print_inline_rtx (dump_file, loc, 0);
2470 fprintf (dump_file, " evaluates to ");
2471 print_inline_rtx (dump_file, val, 0);
2472 if (v->locs)
2473 {
2474 struct elt_loc_list *l;
2475 for (l = v->locs; l; l = l->next)
2476 {
2477 fprintf (dump_file, "\n%i: ", INSN_UID (l->setting_insn));
2478 print_inline_rtx (dump_file, l->loc, 0);
2479 }
2480 }
2481 fprintf (dump_file, "\n");
2482 }
2483
2484 gcc_checking_assert (!unsuitable_loc (loc));
2485
2486 val_bind (set, val, loc, modified);
2487 }
2488
2489 /* Clear (canonical address) slots that reference X. */
2490
2491 bool
2492 local_get_addr_clear_given_value (rtx const &, rtx *slot, rtx x)
2493 {
2494 if (vt_get_canonicalize_base (*slot) == x)
2495 *slot = NULL;
2496 return true;
2497 }
2498
2499 /* Reset this node, detaching all its equivalences. Return the slot
2500 in the variable hash table that holds dv, if there is one. */
2501
2502 static void
2503 val_reset (dataflow_set *set, decl_or_value dv)
2504 {
2505 variable *var = shared_hash_find (set->vars, dv) ;
2506 location_chain *node;
2507 rtx cval;
2508
2509 if (!var || !var->n_var_parts)
2510 return;
2511
2512 gcc_assert (var->n_var_parts == 1);
2513
2514 if (var->onepart == ONEPART_VALUE)
2515 {
2516 rtx x = dv_as_value (dv);
2517
2518 /* Relationships in the global cache don't change, so reset the
2519 local cache entry only. */
2520 rtx *slot = local_get_addr_cache->get (x);
2521 if (slot)
2522 {
2523 /* If the value resolved back to itself, odds are that other
2524 values may have cached it too. These entries now refer
2525 to the old X, so detach them too. Entries that used the
2526 old X but resolved to something else remain ok as long as
2527 that something else isn't also reset. */
2528 if (*slot == x)
2529 local_get_addr_cache
2530 ->traverse<rtx, local_get_addr_clear_given_value> (x);
2531 *slot = NULL;
2532 }
2533 }
2534
2535 cval = NULL;
2536 for (node = var->var_part[0].loc_chain; node; node = node->next)
2537 if (GET_CODE (node->loc) == VALUE
2538 && canon_value_cmp (node->loc, cval))
2539 cval = node->loc;
2540
2541 for (node = var->var_part[0].loc_chain; node; node = node->next)
2542 if (GET_CODE (node->loc) == VALUE && cval != node->loc)
2543 {
2544 /* Redirect the equivalence link to the new canonical
2545 value, or simply remove it if it would point at
2546 itself. */
2547 if (cval)
2548 set_variable_part (set, cval, dv_from_value (node->loc),
2549 0, node->init, node->set_src, NO_INSERT);
2550 delete_variable_part (set, dv_as_value (dv),
2551 dv_from_value (node->loc), 0);
2552 }
2553
2554 if (cval)
2555 {
2556 decl_or_value cdv = dv_from_value (cval);
2557
2558 /* Keep the remaining values connected, accumulating links
2559 in the canonical value. */
2560 for (node = var->var_part[0].loc_chain; node; node = node->next)
2561 {
2562 if (node->loc == cval)
2563 continue;
2564 else if (GET_CODE (node->loc) == REG)
2565 var_reg_decl_set (set, node->loc, node->init, cdv, 0,
2566 node->set_src, NO_INSERT);
2567 else if (GET_CODE (node->loc) == MEM)
2568 var_mem_decl_set (set, node->loc, node->init, cdv, 0,
2569 node->set_src, NO_INSERT);
2570 else
2571 set_variable_part (set, node->loc, cdv, 0,
2572 node->init, node->set_src, NO_INSERT);
2573 }
2574 }
2575
2576 /* We remove this last, to make sure that the canonical value is not
2577 removed to the point of requiring reinsertion. */
2578 if (cval)
2579 delete_variable_part (set, dv_as_value (dv), dv_from_value (cval), 0);
2580
2581 clobber_variable_part (set, NULL, dv, 0, NULL);
2582 }
2583
2584 /* Find the values in a given location and map the val to another
2585 value, if it is unique, or add the location as one holding the
2586 value. */
2587
2588 static void
2589 val_resolve (dataflow_set *set, rtx val, rtx loc, rtx_insn *insn)
2590 {
2591 decl_or_value dv = dv_from_value (val);
2592
2593 if (dump_file && (dump_flags & TDF_DETAILS))
2594 {
2595 if (insn)
2596 fprintf (dump_file, "%i: ", INSN_UID (insn));
2597 else
2598 fprintf (dump_file, "head: ");
2599 print_inline_rtx (dump_file, val, 0);
2600 fputs (" is at ", dump_file);
2601 print_inline_rtx (dump_file, loc, 0);
2602 fputc ('\n', dump_file);
2603 }
2604
2605 val_reset (set, dv);
2606
2607 gcc_checking_assert (!unsuitable_loc (loc));
2608
2609 if (REG_P (loc))
2610 {
2611 attrs *node, *found = NULL;
2612
2613 for (node = set->regs[REGNO (loc)]; node; node = node->next)
2614 if (dv_is_value_p (node->dv)
2615 && GET_MODE (dv_as_value (node->dv)) == GET_MODE (loc))
2616 {
2617 found = node;
2618
2619 /* Map incoming equivalences. ??? Wouldn't it be nice if
2620 we just started sharing the location lists? Maybe a
2621 circular list ending at the value itself or some
2622 such. */
2623 set_variable_part (set, dv_as_value (node->dv),
2624 dv_from_value (val), node->offset,
2625 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2626 set_variable_part (set, val, node->dv, node->offset,
2627 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2628 }
2629
2630 /* If we didn't find any equivalence, we need to remember that
2631 this value is held in the named register. */
2632 if (found)
2633 return;
2634 }
2635 /* ??? Attempt to find and merge equivalent MEMs or other
2636 expressions too. */
2637
2638 val_bind (set, val, loc, false);
2639 }
2640
2641 /* Initialize dataflow set SET to be empty.
2642 VARS_SIZE is the initial size of hash table VARS. */
2643
2644 static void
2645 dataflow_set_init (dataflow_set *set)
2646 {
2647 init_attrs_list_set (set->regs);
2648 set->vars = shared_hash_copy (empty_shared_hash);
2649 set->stack_adjust = 0;
2650 set->traversed_vars = NULL;
2651 }
2652
2653 /* Delete the contents of dataflow set SET. */
2654
2655 static void
2656 dataflow_set_clear (dataflow_set *set)
2657 {
2658 int i;
2659
2660 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2661 attrs_list_clear (&set->regs[i]);
2662
2663 shared_hash_destroy (set->vars);
2664 set->vars = shared_hash_copy (empty_shared_hash);
2665 }
2666
2667 /* Copy the contents of dataflow set SRC to DST. */
2668
2669 static void
2670 dataflow_set_copy (dataflow_set *dst, dataflow_set *src)
2671 {
2672 int i;
2673
2674 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2675 attrs_list_copy (&dst->regs[i], src->regs[i]);
2676
2677 shared_hash_destroy (dst->vars);
2678 dst->vars = shared_hash_copy (src->vars);
2679 dst->stack_adjust = src->stack_adjust;
2680 }
2681
2682 /* Information for merging lists of locations for a given offset of variable.
2683 */
2684 struct variable_union_info
2685 {
2686 /* Node of the location chain. */
2687 location_chain *lc;
2688
2689 /* The sum of positions in the input chains. */
2690 int pos;
2691
2692 /* The position in the chain of DST dataflow set. */
2693 int pos_dst;
2694 };
2695
2696 /* Buffer for location list sorting and its allocated size. */
2697 static struct variable_union_info *vui_vec;
2698 static int vui_allocated;
2699
2700 /* Compare function for qsort, order the structures by POS element. */
2701
2702 static int
2703 variable_union_info_cmp_pos (const void *n1, const void *n2)
2704 {
2705 const struct variable_union_info *const i1 =
2706 (const struct variable_union_info *) n1;
2707 const struct variable_union_info *const i2 =
2708 ( const struct variable_union_info *) n2;
2709
2710 if (i1->pos != i2->pos)
2711 return i1->pos - i2->pos;
2712
2713 return (i1->pos_dst - i2->pos_dst);
2714 }
2715
2716 /* Compute union of location parts of variable *SLOT and the same variable
2717 from hash table DATA. Compute "sorted" union of the location chains
2718 for common offsets, i.e. the locations of a variable part are sorted by
2719 a priority where the priority is the sum of the positions in the 2 chains
2720 (if a location is only in one list the position in the second list is
2721 defined to be larger than the length of the chains).
2722 When we are updating the location parts the newest location is in the
2723 beginning of the chain, so when we do the described "sorted" union
2724 we keep the newest locations in the beginning. */
2725
2726 static int
2727 variable_union (variable *src, dataflow_set *set)
2728 {
2729 variable *dst;
2730 variable **dstp;
2731 int i, j, k;
2732
2733 dstp = shared_hash_find_slot (set->vars, src->dv);
2734 if (!dstp || !*dstp)
2735 {
2736 src->refcount++;
2737
2738 dst_can_be_shared = false;
2739 if (!dstp)
2740 dstp = shared_hash_find_slot_unshare (&set->vars, src->dv, INSERT);
2741
2742 *dstp = src;
2743
2744 /* Continue traversing the hash table. */
2745 return 1;
2746 }
2747 else
2748 dst = *dstp;
2749
2750 gcc_assert (src->n_var_parts);
2751 gcc_checking_assert (src->onepart == dst->onepart);
2752
2753 /* We can combine one-part variables very efficiently, because their
2754 entries are in canonical order. */
2755 if (src->onepart)
2756 {
2757 location_chain **nodep, *dnode, *snode;
2758
2759 gcc_assert (src->n_var_parts == 1
2760 && dst->n_var_parts == 1);
2761
2762 snode = src->var_part[0].loc_chain;
2763 gcc_assert (snode);
2764
2765 restart_onepart_unshared:
2766 nodep = &dst->var_part[0].loc_chain;
2767 dnode = *nodep;
2768 gcc_assert (dnode);
2769
2770 while (snode)
2771 {
2772 int r = dnode ? loc_cmp (dnode->loc, snode->loc) : 1;
2773
2774 if (r > 0)
2775 {
2776 location_chain *nnode;
2777
2778 if (shared_var_p (dst, set->vars))
2779 {
2780 dstp = unshare_variable (set, dstp, dst,
2781 VAR_INIT_STATUS_INITIALIZED);
2782 dst = *dstp;
2783 goto restart_onepart_unshared;
2784 }
2785
2786 *nodep = nnode = new location_chain;
2787 nnode->loc = snode->loc;
2788 nnode->init = snode->init;
2789 if (!snode->set_src || MEM_P (snode->set_src))
2790 nnode->set_src = NULL;
2791 else
2792 nnode->set_src = snode->set_src;
2793 nnode->next = dnode;
2794 dnode = nnode;
2795 }
2796 else if (r == 0)
2797 gcc_checking_assert (rtx_equal_p (dnode->loc, snode->loc));
2798
2799 if (r >= 0)
2800 snode = snode->next;
2801
2802 nodep = &dnode->next;
2803 dnode = *nodep;
2804 }
2805
2806 return 1;
2807 }
2808
2809 gcc_checking_assert (!src->onepart);
2810
2811 /* Count the number of location parts, result is K. */
2812 for (i = 0, j = 0, k = 0;
2813 i < src->n_var_parts && j < dst->n_var_parts; k++)
2814 {
2815 if (VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
2816 {
2817 i++;
2818 j++;
2819 }
2820 else if (VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
2821 i++;
2822 else
2823 j++;
2824 }
2825 k += src->n_var_parts - i;
2826 k += dst->n_var_parts - j;
2827
2828 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
2829 thus there are at most MAX_VAR_PARTS different offsets. */
2830 gcc_checking_assert (dst->onepart ? k == 1 : k <= MAX_VAR_PARTS);
2831
2832 if (dst->n_var_parts != k && shared_var_p (dst, set->vars))
2833 {
2834 dstp = unshare_variable (set, dstp, dst, VAR_INIT_STATUS_UNKNOWN);
2835 dst = *dstp;
2836 }
2837
2838 i = src->n_var_parts - 1;
2839 j = dst->n_var_parts - 1;
2840 dst->n_var_parts = k;
2841
2842 for (k--; k >= 0; k--)
2843 {
2844 location_chain *node, *node2;
2845
2846 if (i >= 0 && j >= 0
2847 && VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
2848 {
2849 /* Compute the "sorted" union of the chains, i.e. the locations which
2850 are in both chains go first, they are sorted by the sum of
2851 positions in the chains. */
2852 int dst_l, src_l;
2853 int ii, jj, n;
2854 struct variable_union_info *vui;
2855
2856 /* If DST is shared compare the location chains.
2857 If they are different we will modify the chain in DST with
2858 high probability so make a copy of DST. */
2859 if (shared_var_p (dst, set->vars))
2860 {
2861 for (node = src->var_part[i].loc_chain,
2862 node2 = dst->var_part[j].loc_chain; node && node2;
2863 node = node->next, node2 = node2->next)
2864 {
2865 if (!((REG_P (node2->loc)
2866 && REG_P (node->loc)
2867 && REGNO (node2->loc) == REGNO (node->loc))
2868 || rtx_equal_p (node2->loc, node->loc)))
2869 {
2870 if (node2->init < node->init)
2871 node2->init = node->init;
2872 break;
2873 }
2874 }
2875 if (node || node2)
2876 {
2877 dstp = unshare_variable (set, dstp, dst,
2878 VAR_INIT_STATUS_UNKNOWN);
2879 dst = (variable *)*dstp;
2880 }
2881 }
2882
2883 src_l = 0;
2884 for (node = src->var_part[i].loc_chain; node; node = node->next)
2885 src_l++;
2886 dst_l = 0;
2887 for (node = dst->var_part[j].loc_chain; node; node = node->next)
2888 dst_l++;
2889
2890 if (dst_l == 1)
2891 {
2892 /* The most common case, much simpler, no qsort is needed. */
2893 location_chain *dstnode = dst->var_part[j].loc_chain;
2894 dst->var_part[k].loc_chain = dstnode;
2895 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (dst, j);
2896 node2 = dstnode;
2897 for (node = src->var_part[i].loc_chain; node; node = node->next)
2898 if (!((REG_P (dstnode->loc)
2899 && REG_P (node->loc)
2900 && REGNO (dstnode->loc) == REGNO (node->loc))
2901 || rtx_equal_p (dstnode->loc, node->loc)))
2902 {
2903 location_chain *new_node;
2904
2905 /* Copy the location from SRC. */
2906 new_node = new location_chain;
2907 new_node->loc = node->loc;
2908 new_node->init = node->init;
2909 if (!node->set_src || MEM_P (node->set_src))
2910 new_node->set_src = NULL;
2911 else
2912 new_node->set_src = node->set_src;
2913 node2->next = new_node;
2914 node2 = new_node;
2915 }
2916 node2->next = NULL;
2917 }
2918 else
2919 {
2920 if (src_l + dst_l > vui_allocated)
2921 {
2922 vui_allocated = MAX (vui_allocated * 2, src_l + dst_l);
2923 vui_vec = XRESIZEVEC (struct variable_union_info, vui_vec,
2924 vui_allocated);
2925 }
2926 vui = vui_vec;
2927
2928 /* Fill in the locations from DST. */
2929 for (node = dst->var_part[j].loc_chain, jj = 0; node;
2930 node = node->next, jj++)
2931 {
2932 vui[jj].lc = node;
2933 vui[jj].pos_dst = jj;
2934
2935 /* Pos plus value larger than a sum of 2 valid positions. */
2936 vui[jj].pos = jj + src_l + dst_l;
2937 }
2938
2939 /* Fill in the locations from SRC. */
2940 n = dst_l;
2941 for (node = src->var_part[i].loc_chain, ii = 0; node;
2942 node = node->next, ii++)
2943 {
2944 /* Find location from NODE. */
2945 for (jj = 0; jj < dst_l; jj++)
2946 {
2947 if ((REG_P (vui[jj].lc->loc)
2948 && REG_P (node->loc)
2949 && REGNO (vui[jj].lc->loc) == REGNO (node->loc))
2950 || rtx_equal_p (vui[jj].lc->loc, node->loc))
2951 {
2952 vui[jj].pos = jj + ii;
2953 break;
2954 }
2955 }
2956 if (jj >= dst_l) /* The location has not been found. */
2957 {
2958 location_chain *new_node;
2959
2960 /* Copy the location from SRC. */
2961 new_node = new location_chain;
2962 new_node->loc = node->loc;
2963 new_node->init = node->init;
2964 if (!node->set_src || MEM_P (node->set_src))
2965 new_node->set_src = NULL;
2966 else
2967 new_node->set_src = node->set_src;
2968 vui[n].lc = new_node;
2969 vui[n].pos_dst = src_l + dst_l;
2970 vui[n].pos = ii + src_l + dst_l;
2971 n++;
2972 }
2973 }
2974
2975 if (dst_l == 2)
2976 {
2977 /* Special case still very common case. For dst_l == 2
2978 all entries dst_l ... n-1 are sorted, with for i >= dst_l
2979 vui[i].pos == i + src_l + dst_l. */
2980 if (vui[0].pos > vui[1].pos)
2981 {
2982 /* Order should be 1, 0, 2... */
2983 dst->var_part[k].loc_chain = vui[1].lc;
2984 vui[1].lc->next = vui[0].lc;
2985 if (n >= 3)
2986 {
2987 vui[0].lc->next = vui[2].lc;
2988 vui[n - 1].lc->next = NULL;
2989 }
2990 else
2991 vui[0].lc->next = NULL;
2992 ii = 3;
2993 }
2994 else
2995 {
2996 dst->var_part[k].loc_chain = vui[0].lc;
2997 if (n >= 3 && vui[2].pos < vui[1].pos)
2998 {
2999 /* Order should be 0, 2, 1, 3... */
3000 vui[0].lc->next = vui[2].lc;
3001 vui[2].lc->next = vui[1].lc;
3002 if (n >= 4)
3003 {
3004 vui[1].lc->next = vui[3].lc;
3005 vui[n - 1].lc->next = NULL;
3006 }
3007 else
3008 vui[1].lc->next = NULL;
3009 ii = 4;
3010 }
3011 else
3012 {
3013 /* Order should be 0, 1, 2... */
3014 ii = 1;
3015 vui[n - 1].lc->next = NULL;
3016 }
3017 }
3018 for (; ii < n; ii++)
3019 vui[ii - 1].lc->next = vui[ii].lc;
3020 }
3021 else
3022 {
3023 qsort (vui, n, sizeof (struct variable_union_info),
3024 variable_union_info_cmp_pos);
3025
3026 /* Reconnect the nodes in sorted order. */
3027 for (ii = 1; ii < n; ii++)
3028 vui[ii - 1].lc->next = vui[ii].lc;
3029 vui[n - 1].lc->next = NULL;
3030 dst->var_part[k].loc_chain = vui[0].lc;
3031 }
3032
3033 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (dst, j);
3034 }
3035 i--;
3036 j--;
3037 }
3038 else if ((i >= 0 && j >= 0
3039 && VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
3040 || i < 0)
3041 {
3042 dst->var_part[k] = dst->var_part[j];
3043 j--;
3044 }
3045 else if ((i >= 0 && j >= 0
3046 && VAR_PART_OFFSET (src, i) > VAR_PART_OFFSET (dst, j))
3047 || j < 0)
3048 {
3049 location_chain **nextp;
3050
3051 /* Copy the chain from SRC. */
3052 nextp = &dst->var_part[k].loc_chain;
3053 for (node = src->var_part[i].loc_chain; node; node = node->next)
3054 {
3055 location_chain *new_lc;
3056
3057 new_lc = new location_chain;
3058 new_lc->next = NULL;
3059 new_lc->init = node->init;
3060 if (!node->set_src || MEM_P (node->set_src))
3061 new_lc->set_src = NULL;
3062 else
3063 new_lc->set_src = node->set_src;
3064 new_lc->loc = node->loc;
3065
3066 *nextp = new_lc;
3067 nextp = &new_lc->next;
3068 }
3069
3070 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (src, i);
3071 i--;
3072 }
3073 dst->var_part[k].cur_loc = NULL;
3074 }
3075
3076 if (flag_var_tracking_uninit)
3077 for (i = 0; i < src->n_var_parts && i < dst->n_var_parts; i++)
3078 {
3079 location_chain *node, *node2;
3080 for (node = src->var_part[i].loc_chain; node; node = node->next)
3081 for (node2 = dst->var_part[i].loc_chain; node2; node2 = node2->next)
3082 if (rtx_equal_p (node->loc, node2->loc))
3083 {
3084 if (node->init > node2->init)
3085 node2->init = node->init;
3086 }
3087 }
3088
3089 /* Continue traversing the hash table. */
3090 return 1;
3091 }
3092
3093 /* Compute union of dataflow sets SRC and DST and store it to DST. */
3094
3095 static void
3096 dataflow_set_union (dataflow_set *dst, dataflow_set *src)
3097 {
3098 int i;
3099
3100 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3101 attrs_list_union (&dst->regs[i], src->regs[i]);
3102
3103 if (dst->vars == empty_shared_hash)
3104 {
3105 shared_hash_destroy (dst->vars);
3106 dst->vars = shared_hash_copy (src->vars);
3107 }
3108 else
3109 {
3110 variable_iterator_type hi;
3111 variable *var;
3112
3113 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (src->vars),
3114 var, variable, hi)
3115 variable_union (var, dst);
3116 }
3117 }
3118
3119 /* Whether the value is currently being expanded. */
3120 #define VALUE_RECURSED_INTO(x) \
3121 (RTL_FLAG_CHECK2 ("VALUE_RECURSED_INTO", (x), VALUE, DEBUG_EXPR)->used)
3122
3123 /* Whether no expansion was found, saving useless lookups.
3124 It must only be set when VALUE_CHANGED is clear. */
3125 #define NO_LOC_P(x) \
3126 (RTL_FLAG_CHECK2 ("NO_LOC_P", (x), VALUE, DEBUG_EXPR)->return_val)
3127
3128 /* Whether cur_loc in the value needs to be (re)computed. */
3129 #define VALUE_CHANGED(x) \
3130 (RTL_FLAG_CHECK1 ("VALUE_CHANGED", (x), VALUE)->frame_related)
3131 /* Whether cur_loc in the decl needs to be (re)computed. */
3132 #define DECL_CHANGED(x) TREE_VISITED (x)
3133
3134 /* Record (if NEWV) that DV needs to have its cur_loc recomputed. For
3135 user DECLs, this means they're in changed_variables. Values and
3136 debug exprs may be left with this flag set if no user variable
3137 requires them to be evaluated. */
3138
3139 static inline void
3140 set_dv_changed (decl_or_value dv, bool newv)
3141 {
3142 switch (dv_onepart_p (dv))
3143 {
3144 case ONEPART_VALUE:
3145 if (newv)
3146 NO_LOC_P (dv_as_value (dv)) = false;
3147 VALUE_CHANGED (dv_as_value (dv)) = newv;
3148 break;
3149
3150 case ONEPART_DEXPR:
3151 if (newv)
3152 NO_LOC_P (DECL_RTL_KNOWN_SET (dv_as_decl (dv))) = false;
3153 /* Fall through. */
3154
3155 default:
3156 DECL_CHANGED (dv_as_decl (dv)) = newv;
3157 break;
3158 }
3159 }
3160
3161 /* Return true if DV needs to have its cur_loc recomputed. */
3162
3163 static inline bool
3164 dv_changed_p (decl_or_value dv)
3165 {
3166 return (dv_is_value_p (dv)
3167 ? VALUE_CHANGED (dv_as_value (dv))
3168 : DECL_CHANGED (dv_as_decl (dv)));
3169 }
3170
3171 /* Return a location list node whose loc is rtx_equal to LOC, in the
3172 location list of a one-part variable or value VAR, or in that of
3173 any values recursively mentioned in the location lists. VARS must
3174 be in star-canonical form. */
3175
3176 static location_chain *
3177 find_loc_in_1pdv (rtx loc, variable *var, variable_table_type *vars)
3178 {
3179 location_chain *node;
3180 enum rtx_code loc_code;
3181
3182 if (!var)
3183 return NULL;
3184
3185 gcc_checking_assert (var->onepart);
3186
3187 if (!var->n_var_parts)
3188 return NULL;
3189
3190 gcc_checking_assert (loc != dv_as_opaque (var->dv));
3191
3192 loc_code = GET_CODE (loc);
3193 for (node = var->var_part[0].loc_chain; node; node = node->next)
3194 {
3195 decl_or_value dv;
3196 variable *rvar;
3197
3198 if (GET_CODE (node->loc) != loc_code)
3199 {
3200 if (GET_CODE (node->loc) != VALUE)
3201 continue;
3202 }
3203 else if (loc == node->loc)
3204 return node;
3205 else if (loc_code != VALUE)
3206 {
3207 if (rtx_equal_p (loc, node->loc))
3208 return node;
3209 continue;
3210 }
3211
3212 /* Since we're in star-canonical form, we don't need to visit
3213 non-canonical nodes: one-part variables and non-canonical
3214 values would only point back to the canonical node. */
3215 if (dv_is_value_p (var->dv)
3216 && !canon_value_cmp (node->loc, dv_as_value (var->dv)))
3217 {
3218 /* Skip all subsequent VALUEs. */
3219 while (node->next && GET_CODE (node->next->loc) == VALUE)
3220 {
3221 node = node->next;
3222 gcc_checking_assert (!canon_value_cmp (node->loc,
3223 dv_as_value (var->dv)));
3224 if (loc == node->loc)
3225 return node;
3226 }
3227 continue;
3228 }
3229
3230 gcc_checking_assert (node == var->var_part[0].loc_chain);
3231 gcc_checking_assert (!node->next);
3232
3233 dv = dv_from_value (node->loc);
3234 rvar = vars->find_with_hash (dv, dv_htab_hash (dv));
3235 return find_loc_in_1pdv (loc, rvar, vars);
3236 }
3237
3238 /* ??? Gotta look in cselib_val locations too. */
3239
3240 return NULL;
3241 }
3242
3243 /* Hash table iteration argument passed to variable_merge. */
3244 struct dfset_merge
3245 {
3246 /* The set in which the merge is to be inserted. */
3247 dataflow_set *dst;
3248 /* The set that we're iterating in. */
3249 dataflow_set *cur;
3250 /* The set that may contain the other dv we are to merge with. */
3251 dataflow_set *src;
3252 /* Number of onepart dvs in src. */
3253 int src_onepart_cnt;
3254 };
3255
3256 /* Insert LOC in *DNODE, if it's not there yet. The list must be in
3257 loc_cmp order, and it is maintained as such. */
3258
3259 static void
3260 insert_into_intersection (location_chain **nodep, rtx loc,
3261 enum var_init_status status)
3262 {
3263 location_chain *node;
3264 int r;
3265
3266 for (node = *nodep; node; nodep = &node->next, node = *nodep)
3267 if ((r = loc_cmp (node->loc, loc)) == 0)
3268 {
3269 node->init = MIN (node->init, status);
3270 return;
3271 }
3272 else if (r > 0)
3273 break;
3274
3275 node = new location_chain;
3276
3277 node->loc = loc;
3278 node->set_src = NULL;
3279 node->init = status;
3280 node->next = *nodep;
3281 *nodep = node;
3282 }
3283
3284 /* Insert in DEST the intersection of the locations present in both
3285 S1NODE and S2VAR, directly or indirectly. S1NODE is from a
3286 variable in DSM->cur, whereas S2VAR is from DSM->src. dvar is in
3287 DSM->dst. */
3288
3289 static void
3290 intersect_loc_chains (rtx val, location_chain **dest, struct dfset_merge *dsm,
3291 location_chain *s1node, variable *s2var)
3292 {
3293 dataflow_set *s1set = dsm->cur;
3294 dataflow_set *s2set = dsm->src;
3295 location_chain *found;
3296
3297 if (s2var)
3298 {
3299 location_chain *s2node;
3300
3301 gcc_checking_assert (s2var->onepart);
3302
3303 if (s2var->n_var_parts)
3304 {
3305 s2node = s2var->var_part[0].loc_chain;
3306
3307 for (; s1node && s2node;
3308 s1node = s1node->next, s2node = s2node->next)
3309 if (s1node->loc != s2node->loc)
3310 break;
3311 else if (s1node->loc == val)
3312 continue;
3313 else
3314 insert_into_intersection (dest, s1node->loc,
3315 MIN (s1node->init, s2node->init));
3316 }
3317 }
3318
3319 for (; s1node; s1node = s1node->next)
3320 {
3321 if (s1node->loc == val)
3322 continue;
3323
3324 if ((found = find_loc_in_1pdv (s1node->loc, s2var,
3325 shared_hash_htab (s2set->vars))))
3326 {
3327 insert_into_intersection (dest, s1node->loc,
3328 MIN (s1node->init, found->init));
3329 continue;
3330 }
3331
3332 if (GET_CODE (s1node->loc) == VALUE
3333 && !VALUE_RECURSED_INTO (s1node->loc))
3334 {
3335 decl_or_value dv = dv_from_value (s1node->loc);
3336 variable *svar = shared_hash_find (s1set->vars, dv);
3337 if (svar)
3338 {
3339 if (svar->n_var_parts == 1)
3340 {
3341 VALUE_RECURSED_INTO (s1node->loc) = true;
3342 intersect_loc_chains (val, dest, dsm,
3343 svar->var_part[0].loc_chain,
3344 s2var);
3345 VALUE_RECURSED_INTO (s1node->loc) = false;
3346 }
3347 }
3348 }
3349
3350 /* ??? gotta look in cselib_val locations too. */
3351
3352 /* ??? if the location is equivalent to any location in src,
3353 searched recursively
3354
3355 add to dst the values needed to represent the equivalence
3356
3357 telling whether locations S is equivalent to another dv's
3358 location list:
3359
3360 for each location D in the list
3361
3362 if S and D satisfy rtx_equal_p, then it is present
3363
3364 else if D is a value, recurse without cycles
3365
3366 else if S and D have the same CODE and MODE
3367
3368 for each operand oS and the corresponding oD
3369
3370 if oS and oD are not equivalent, then S an D are not equivalent
3371
3372 else if they are RTX vectors
3373
3374 if any vector oS element is not equivalent to its respective oD,
3375 then S and D are not equivalent
3376
3377 */
3378
3379
3380 }
3381 }
3382
3383 /* Return -1 if X should be before Y in a location list for a 1-part
3384 variable, 1 if Y should be before X, and 0 if they're equivalent
3385 and should not appear in the list. */
3386
3387 static int
3388 loc_cmp (rtx x, rtx y)
3389 {
3390 int i, j, r;
3391 RTX_CODE code = GET_CODE (x);
3392 const char *fmt;
3393
3394 if (x == y)
3395 return 0;
3396
3397 if (REG_P (x))
3398 {
3399 if (!REG_P (y))
3400 return -1;
3401 gcc_assert (GET_MODE (x) == GET_MODE (y));
3402 if (REGNO (x) == REGNO (y))
3403 return 0;
3404 else if (REGNO (x) < REGNO (y))
3405 return -1;
3406 else
3407 return 1;
3408 }
3409
3410 if (REG_P (y))
3411 return 1;
3412
3413 if (MEM_P (x))
3414 {
3415 if (!MEM_P (y))
3416 return -1;
3417 gcc_assert (GET_MODE (x) == GET_MODE (y));
3418 return loc_cmp (XEXP (x, 0), XEXP (y, 0));
3419 }
3420
3421 if (MEM_P (y))
3422 return 1;
3423
3424 if (GET_CODE (x) == VALUE)
3425 {
3426 if (GET_CODE (y) != VALUE)
3427 return -1;
3428 /* Don't assert the modes are the same, that is true only
3429 when not recursing. (subreg:QI (value:SI 1:1) 0)
3430 and (subreg:QI (value:DI 2:2) 0) can be compared,
3431 even when the modes are different. */
3432 if (canon_value_cmp (x, y))
3433 return -1;
3434 else
3435 return 1;
3436 }
3437
3438 if (GET_CODE (y) == VALUE)
3439 return 1;
3440
3441 /* Entry value is the least preferable kind of expression. */
3442 if (GET_CODE (x) == ENTRY_VALUE)
3443 {
3444 if (GET_CODE (y) != ENTRY_VALUE)
3445 return 1;
3446 gcc_assert (GET_MODE (x) == GET_MODE (y));
3447 return loc_cmp (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
3448 }
3449
3450 if (GET_CODE (y) == ENTRY_VALUE)
3451 return -1;
3452
3453 if (GET_CODE (x) == GET_CODE (y))
3454 /* Compare operands below. */;
3455 else if (GET_CODE (x) < GET_CODE (y))
3456 return -1;
3457 else
3458 return 1;
3459
3460 gcc_assert (GET_MODE (x) == GET_MODE (y));
3461
3462 if (GET_CODE (x) == DEBUG_EXPR)
3463 {
3464 if (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
3465 < DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)))
3466 return -1;
3467 gcc_checking_assert (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
3468 > DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)));
3469 return 1;
3470 }
3471
3472 fmt = GET_RTX_FORMAT (code);
3473 for (i = 0; i < GET_RTX_LENGTH (code); i++)
3474 switch (fmt[i])
3475 {
3476 case 'w':
3477 if (XWINT (x, i) == XWINT (y, i))
3478 break;
3479 else if (XWINT (x, i) < XWINT (y, i))
3480 return -1;
3481 else
3482 return 1;
3483
3484 case 'n':
3485 case 'i':
3486 if (XINT (x, i) == XINT (y, i))
3487 break;
3488 else if (XINT (x, i) < XINT (y, i))
3489 return -1;
3490 else
3491 return 1;
3492
3493 case 'V':
3494 case 'E':
3495 /* Compare the vector length first. */
3496 if (XVECLEN (x, i) == XVECLEN (y, i))
3497 /* Compare the vectors elements. */;
3498 else if (XVECLEN (x, i) < XVECLEN (y, i))
3499 return -1;
3500 else
3501 return 1;
3502
3503 for (j = 0; j < XVECLEN (x, i); j++)
3504 if ((r = loc_cmp (XVECEXP (x, i, j),
3505 XVECEXP (y, i, j))))
3506 return r;
3507 break;
3508
3509 case 'e':
3510 if ((r = loc_cmp (XEXP (x, i), XEXP (y, i))))
3511 return r;
3512 break;
3513
3514 case 'S':
3515 case 's':
3516 if (XSTR (x, i) == XSTR (y, i))
3517 break;
3518 if (!XSTR (x, i))
3519 return -1;
3520 if (!XSTR (y, i))
3521 return 1;
3522 if ((r = strcmp (XSTR (x, i), XSTR (y, i))) == 0)
3523 break;
3524 else if (r < 0)
3525 return -1;
3526 else
3527 return 1;
3528
3529 case 'u':
3530 /* These are just backpointers, so they don't matter. */
3531 break;
3532
3533 case '0':
3534 case 't':
3535 break;
3536
3537 /* It is believed that rtx's at this level will never
3538 contain anything but integers and other rtx's,
3539 except for within LABEL_REFs and SYMBOL_REFs. */
3540 default:
3541 gcc_unreachable ();
3542 }
3543 if (CONST_WIDE_INT_P (x))
3544 {
3545 /* Compare the vector length first. */
3546 if (CONST_WIDE_INT_NUNITS (x) >= CONST_WIDE_INT_NUNITS (y))
3547 return 1;
3548 else if (CONST_WIDE_INT_NUNITS (x) < CONST_WIDE_INT_NUNITS (y))
3549 return -1;
3550
3551 /* Compare the vectors elements. */;
3552 for (j = CONST_WIDE_INT_NUNITS (x) - 1; j >= 0 ; j--)
3553 {
3554 if (CONST_WIDE_INT_ELT (x, j) < CONST_WIDE_INT_ELT (y, j))
3555 return -1;
3556 if (CONST_WIDE_INT_ELT (x, j) > CONST_WIDE_INT_ELT (y, j))
3557 return 1;
3558 }
3559 }
3560
3561 return 0;
3562 }
3563
3564 /* Check the order of entries in one-part variables. */
3565
3566 int
3567 canonicalize_loc_order_check (variable **slot,
3568 dataflow_set *data ATTRIBUTE_UNUSED)
3569 {
3570 variable *var = *slot;
3571 location_chain *node, *next;
3572
3573 #ifdef ENABLE_RTL_CHECKING
3574 int i;
3575 for (i = 0; i < var->n_var_parts; i++)
3576 gcc_assert (var->var_part[0].cur_loc == NULL);
3577 gcc_assert (!var->in_changed_variables);
3578 #endif
3579
3580 if (!var->onepart)
3581 return 1;
3582
3583 gcc_assert (var->n_var_parts == 1);
3584 node = var->var_part[0].loc_chain;
3585 gcc_assert (node);
3586
3587 while ((next = node->next))
3588 {
3589 gcc_assert (loc_cmp (node->loc, next->loc) < 0);
3590 node = next;
3591 }
3592
3593 return 1;
3594 }
3595
3596 /* Mark with VALUE_RECURSED_INTO values that have neighbors that are
3597 more likely to be chosen as canonical for an equivalence set.
3598 Ensure less likely values can reach more likely neighbors, making
3599 the connections bidirectional. */
3600
3601 int
3602 canonicalize_values_mark (variable **slot, dataflow_set *set)
3603 {
3604 variable *var = *slot;
3605 decl_or_value dv = var->dv;
3606 rtx val;
3607 location_chain *node;
3608
3609 if (!dv_is_value_p (dv))
3610 return 1;
3611
3612 gcc_checking_assert (var->n_var_parts == 1);
3613
3614 val = dv_as_value (dv);
3615
3616 for (node = var->var_part[0].loc_chain; node; node = node->next)
3617 if (GET_CODE (node->loc) == VALUE)
3618 {
3619 if (canon_value_cmp (node->loc, val))
3620 VALUE_RECURSED_INTO (val) = true;
3621 else
3622 {
3623 decl_or_value odv = dv_from_value (node->loc);
3624 variable **oslot;
3625 oslot = shared_hash_find_slot_noinsert (set->vars, odv);
3626
3627 set_slot_part (set, val, oslot, odv, 0,
3628 node->init, NULL_RTX);
3629
3630 VALUE_RECURSED_INTO (node->loc) = true;
3631 }
3632 }
3633
3634 return 1;
3635 }
3636
3637 /* Remove redundant entries from equivalence lists in onepart
3638 variables, canonicalizing equivalence sets into star shapes. */
3639
3640 int
3641 canonicalize_values_star (variable **slot, dataflow_set *set)
3642 {
3643 variable *var = *slot;
3644 decl_or_value dv = var->dv;
3645 location_chain *node;
3646 decl_or_value cdv;
3647 rtx val, cval;
3648 variable **cslot;
3649 bool has_value;
3650 bool has_marks;
3651
3652 if (!var->onepart)
3653 return 1;
3654
3655 gcc_checking_assert (var->n_var_parts == 1);
3656
3657 if (dv_is_value_p (dv))
3658 {
3659 cval = dv_as_value (dv);
3660 if (!VALUE_RECURSED_INTO (cval))
3661 return 1;
3662 VALUE_RECURSED_INTO (cval) = false;
3663 }
3664 else
3665 cval = NULL_RTX;
3666
3667 restart:
3668 val = cval;
3669 has_value = false;
3670 has_marks = false;
3671
3672 gcc_assert (var->n_var_parts == 1);
3673
3674 for (node = var->var_part[0].loc_chain; node; node = node->next)
3675 if (GET_CODE (node->loc) == VALUE)
3676 {
3677 has_value = true;
3678 if (VALUE_RECURSED_INTO (node->loc))
3679 has_marks = true;
3680 if (canon_value_cmp (node->loc, cval))
3681 cval = node->loc;
3682 }
3683
3684 if (!has_value)
3685 return 1;
3686
3687 if (cval == val)
3688 {
3689 if (!has_marks || dv_is_decl_p (dv))
3690 return 1;
3691
3692 /* Keep it marked so that we revisit it, either after visiting a
3693 child node, or after visiting a new parent that might be
3694 found out. */
3695 VALUE_RECURSED_INTO (val) = true;
3696
3697 for (node = var->var_part[0].loc_chain; node; node = node->next)
3698 if (GET_CODE (node->loc) == VALUE
3699 && VALUE_RECURSED_INTO (node->loc))
3700 {
3701 cval = node->loc;
3702 restart_with_cval:
3703 VALUE_RECURSED_INTO (cval) = false;
3704 dv = dv_from_value (cval);
3705 slot = shared_hash_find_slot_noinsert (set->vars, dv);
3706 if (!slot)
3707 {
3708 gcc_assert (dv_is_decl_p (var->dv));
3709 /* The canonical value was reset and dropped.
3710 Remove it. */
3711 clobber_variable_part (set, NULL, var->dv, 0, NULL);
3712 return 1;
3713 }
3714 var = *slot;
3715 gcc_assert (dv_is_value_p (var->dv));
3716 if (var->n_var_parts == 0)
3717 return 1;
3718 gcc_assert (var->n_var_parts == 1);
3719 goto restart;
3720 }
3721
3722 VALUE_RECURSED_INTO (val) = false;
3723
3724 return 1;
3725 }
3726
3727 /* Push values to the canonical one. */
3728 cdv = dv_from_value (cval);
3729 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3730
3731 for (node = var->var_part[0].loc_chain; node; node = node->next)
3732 if (node->loc != cval)
3733 {
3734 cslot = set_slot_part (set, node->loc, cslot, cdv, 0,
3735 node->init, NULL_RTX);
3736 if (GET_CODE (node->loc) == VALUE)
3737 {
3738 decl_or_value ndv = dv_from_value (node->loc);
3739
3740 set_variable_part (set, cval, ndv, 0, node->init, NULL_RTX,
3741 NO_INSERT);
3742
3743 if (canon_value_cmp (node->loc, val))
3744 {
3745 /* If it could have been a local minimum, it's not any more,
3746 since it's now neighbor to cval, so it may have to push
3747 to it. Conversely, if it wouldn't have prevailed over
3748 val, then whatever mark it has is fine: if it was to
3749 push, it will now push to a more canonical node, but if
3750 it wasn't, then it has already pushed any values it might
3751 have to. */
3752 VALUE_RECURSED_INTO (node->loc) = true;
3753 /* Make sure we visit node->loc by ensuring we cval is
3754 visited too. */
3755 VALUE_RECURSED_INTO (cval) = true;
3756 }
3757 else if (!VALUE_RECURSED_INTO (node->loc))
3758 /* If we have no need to "recurse" into this node, it's
3759 already "canonicalized", so drop the link to the old
3760 parent. */
3761 clobber_variable_part (set, cval, ndv, 0, NULL);
3762 }
3763 else if (GET_CODE (node->loc) == REG)
3764 {
3765 attrs *list = set->regs[REGNO (node->loc)], **listp;
3766
3767 /* Change an existing attribute referring to dv so that it
3768 refers to cdv, removing any duplicate this might
3769 introduce, and checking that no previous duplicates
3770 existed, all in a single pass. */
3771
3772 while (list)
3773 {
3774 if (list->offset == 0
3775 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3776 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3777 break;
3778
3779 list = list->next;
3780 }
3781
3782 gcc_assert (list);
3783 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3784 {
3785 list->dv = cdv;
3786 for (listp = &list->next; (list = *listp); listp = &list->next)
3787 {
3788 if (list->offset)
3789 continue;
3790
3791 if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3792 {
3793 *listp = list->next;
3794 delete list;
3795 list = *listp;
3796 break;
3797 }
3798
3799 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (dv));
3800 }
3801 }
3802 else if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3803 {
3804 for (listp = &list->next; (list = *listp); listp = &list->next)
3805 {
3806 if (list->offset)
3807 continue;
3808
3809 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3810 {
3811 *listp = list->next;
3812 delete list;
3813 list = *listp;
3814 break;
3815 }
3816
3817 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (cdv));
3818 }
3819 }
3820 else
3821 gcc_unreachable ();
3822
3823 if (flag_checking)
3824 while (list)
3825 {
3826 if (list->offset == 0
3827 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3828 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3829 gcc_unreachable ();
3830
3831 list = list->next;
3832 }
3833 }
3834 }
3835
3836 if (val)
3837 set_slot_part (set, val, cslot, cdv, 0,
3838 VAR_INIT_STATUS_INITIALIZED, NULL_RTX);
3839
3840 slot = clobber_slot_part (set, cval, slot, 0, NULL);
3841
3842 /* Variable may have been unshared. */
3843 var = *slot;
3844 gcc_checking_assert (var->n_var_parts && var->var_part[0].loc_chain->loc == cval
3845 && var->var_part[0].loc_chain->next == NULL);
3846
3847 if (VALUE_RECURSED_INTO (cval))
3848 goto restart_with_cval;
3849
3850 return 1;
3851 }
3852
3853 /* Bind one-part variables to the canonical value in an equivalence
3854 set. Not doing this causes dataflow convergence failure in rare
3855 circumstances, see PR42873. Unfortunately we can't do this
3856 efficiently as part of canonicalize_values_star, since we may not
3857 have determined or even seen the canonical value of a set when we
3858 get to a variable that references another member of the set. */
3859
3860 int
3861 canonicalize_vars_star (variable **slot, dataflow_set *set)
3862 {
3863 variable *var = *slot;
3864 decl_or_value dv = var->dv;
3865 location_chain *node;
3866 rtx cval;
3867 decl_or_value cdv;
3868 variable **cslot;
3869 variable *cvar;
3870 location_chain *cnode;
3871
3872 if (!var->onepart || var->onepart == ONEPART_VALUE)
3873 return 1;
3874
3875 gcc_assert (var->n_var_parts == 1);
3876
3877 node = var->var_part[0].loc_chain;
3878
3879 if (GET_CODE (node->loc) != VALUE)
3880 return 1;
3881
3882 gcc_assert (!node->next);
3883 cval = node->loc;
3884
3885 /* Push values to the canonical one. */
3886 cdv = dv_from_value (cval);
3887 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3888 if (!cslot)
3889 return 1;
3890 cvar = *cslot;
3891 gcc_assert (cvar->n_var_parts == 1);
3892
3893 cnode = cvar->var_part[0].loc_chain;
3894
3895 /* CVAL is canonical if its value list contains non-VALUEs or VALUEs
3896 that are not “more canonical” than it. */
3897 if (GET_CODE (cnode->loc) != VALUE
3898 || !canon_value_cmp (cnode->loc, cval))
3899 return 1;
3900
3901 /* CVAL was found to be non-canonical. Change the variable to point
3902 to the canonical VALUE. */
3903 gcc_assert (!cnode->next);
3904 cval = cnode->loc;
3905
3906 slot = set_slot_part (set, cval, slot, dv, 0,
3907 node->init, node->set_src);
3908 clobber_slot_part (set, cval, slot, 0, node->set_src);
3909
3910 return 1;
3911 }
3912
3913 /* Combine variable or value in *S1SLOT (in DSM->cur) with the
3914 corresponding entry in DSM->src. Multi-part variables are combined
3915 with variable_union, whereas onepart dvs are combined with
3916 intersection. */
3917
3918 static int
3919 variable_merge_over_cur (variable *s1var, struct dfset_merge *dsm)
3920 {
3921 dataflow_set *dst = dsm->dst;
3922 variable **dstslot;
3923 variable *s2var, *dvar = NULL;
3924 decl_or_value dv = s1var->dv;
3925 onepart_enum onepart = s1var->onepart;
3926 rtx val;
3927 hashval_t dvhash;
3928 location_chain *node, **nodep;
3929
3930 /* If the incoming onepart variable has an empty location list, then
3931 the intersection will be just as empty. For other variables,
3932 it's always union. */
3933 gcc_checking_assert (s1var->n_var_parts
3934 && s1var->var_part[0].loc_chain);
3935
3936 if (!onepart)
3937 return variable_union (s1var, dst);
3938
3939 gcc_checking_assert (s1var->n_var_parts == 1);
3940
3941 dvhash = dv_htab_hash (dv);
3942 if (dv_is_value_p (dv))
3943 val = dv_as_value (dv);
3944 else
3945 val = NULL;
3946
3947 s2var = shared_hash_find_1 (dsm->src->vars, dv, dvhash);
3948 if (!s2var)
3949 {
3950 dst_can_be_shared = false;
3951 return 1;
3952 }
3953
3954 dsm->src_onepart_cnt--;
3955 gcc_assert (s2var->var_part[0].loc_chain
3956 && s2var->onepart == onepart
3957 && s2var->n_var_parts == 1);
3958
3959 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
3960 if (dstslot)
3961 {
3962 dvar = *dstslot;
3963 gcc_assert (dvar->refcount == 1
3964 && dvar->onepart == onepart
3965 && dvar->n_var_parts == 1);
3966 nodep = &dvar->var_part[0].loc_chain;
3967 }
3968 else
3969 {
3970 nodep = &node;
3971 node = NULL;
3972 }
3973
3974 if (!dstslot && !onepart_variable_different_p (s1var, s2var))
3975 {
3976 dstslot = shared_hash_find_slot_unshare_1 (&dst->vars, dv,
3977 dvhash, INSERT);
3978 *dstslot = dvar = s2var;
3979 dvar->refcount++;
3980 }
3981 else
3982 {
3983 dst_can_be_shared = false;
3984
3985 intersect_loc_chains (val, nodep, dsm,
3986 s1var->var_part[0].loc_chain, s2var);
3987
3988 if (!dstslot)
3989 {
3990 if (node)
3991 {
3992 dvar = onepart_pool_allocate (onepart);
3993 dvar->dv = dv;
3994 dvar->refcount = 1;
3995 dvar->n_var_parts = 1;
3996 dvar->onepart = onepart;
3997 dvar->in_changed_variables = false;
3998 dvar->var_part[0].loc_chain = node;
3999 dvar->var_part[0].cur_loc = NULL;
4000 if (onepart)
4001 VAR_LOC_1PAUX (dvar) = NULL;
4002 else
4003 VAR_PART_OFFSET (dvar, 0) = 0;
4004
4005 dstslot
4006 = shared_hash_find_slot_unshare_1 (&dst->vars, dv, dvhash,
4007 INSERT);
4008 gcc_assert (!*dstslot);
4009 *dstslot = dvar;
4010 }
4011 else
4012 return 1;
4013 }
4014 }
4015
4016 nodep = &dvar->var_part[0].loc_chain;
4017 while ((node = *nodep))
4018 {
4019 location_chain **nextp = &node->next;
4020
4021 if (GET_CODE (node->loc) == REG)
4022 {
4023 attrs *list;
4024
4025 for (list = dst->regs[REGNO (node->loc)]; list; list = list->next)
4026 if (GET_MODE (node->loc) == GET_MODE (list->loc)
4027 && dv_is_value_p (list->dv))
4028 break;
4029
4030 if (!list)
4031 attrs_list_insert (&dst->regs[REGNO (node->loc)],
4032 dv, 0, node->loc);
4033 /* If this value became canonical for another value that had
4034 this register, we want to leave it alone. */
4035 else if (dv_as_value (list->dv) != val)
4036 {
4037 dstslot = set_slot_part (dst, dv_as_value (list->dv),
4038 dstslot, dv, 0,
4039 node->init, NULL_RTX);
4040 dstslot = delete_slot_part (dst, node->loc, dstslot, 0);
4041
4042 /* Since nextp points into the removed node, we can't
4043 use it. The pointer to the next node moved to nodep.
4044 However, if the variable we're walking is unshared
4045 during our walk, we'll keep walking the location list
4046 of the previously-shared variable, in which case the
4047 node won't have been removed, and we'll want to skip
4048 it. That's why we test *nodep here. */
4049 if (*nodep != node)
4050 nextp = nodep;
4051 }
4052 }
4053 else
4054 /* Canonicalization puts registers first, so we don't have to
4055 walk it all. */
4056 break;
4057 nodep = nextp;
4058 }
4059
4060 if (dvar != *dstslot)
4061 dvar = *dstslot;
4062 nodep = &dvar->var_part[0].loc_chain;
4063
4064 if (val)
4065 {
4066 /* Mark all referenced nodes for canonicalization, and make sure
4067 we have mutual equivalence links. */
4068 VALUE_RECURSED_INTO (val) = true;
4069 for (node = *nodep; node; node = node->next)
4070 if (GET_CODE (node->loc) == VALUE)
4071 {
4072 VALUE_RECURSED_INTO (node->loc) = true;
4073 set_variable_part (dst, val, dv_from_value (node->loc), 0,
4074 node->init, NULL, INSERT);
4075 }
4076
4077 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
4078 gcc_assert (*dstslot == dvar);
4079 canonicalize_values_star (dstslot, dst);
4080 gcc_checking_assert (dstslot
4081 == shared_hash_find_slot_noinsert_1 (dst->vars,
4082 dv, dvhash));
4083 dvar = *dstslot;
4084 }
4085 else
4086 {
4087 bool has_value = false, has_other = false;
4088
4089 /* If we have one value and anything else, we're going to
4090 canonicalize this, so make sure all values have an entry in
4091 the table and are marked for canonicalization. */
4092 for (node = *nodep; node; node = node->next)
4093 {
4094 if (GET_CODE (node->loc) == VALUE)
4095 {
4096 /* If this was marked during register canonicalization,
4097 we know we have to canonicalize values. */
4098 if (has_value)
4099 has_other = true;
4100 has_value = true;
4101 if (has_other)
4102 break;
4103 }
4104 else
4105 {
4106 has_other = true;
4107 if (has_value)
4108 break;
4109 }
4110 }
4111
4112 if (has_value && has_other)
4113 {
4114 for (node = *nodep; node; node = node->next)
4115 {
4116 if (GET_CODE (node->loc) == VALUE)
4117 {
4118 decl_or_value dv = dv_from_value (node->loc);
4119 variable **slot = NULL;
4120
4121 if (shared_hash_shared (dst->vars))
4122 slot = shared_hash_find_slot_noinsert (dst->vars, dv);
4123 if (!slot)
4124 slot = shared_hash_find_slot_unshare (&dst->vars, dv,
4125 INSERT);
4126 if (!*slot)
4127 {
4128 variable *var = onepart_pool_allocate (ONEPART_VALUE);
4129 var->dv = dv;
4130 var->refcount = 1;
4131 var->n_var_parts = 1;
4132 var->onepart = ONEPART_VALUE;
4133 var->in_changed_variables = false;
4134 var->var_part[0].loc_chain = NULL;
4135 var->var_part[0].cur_loc = NULL;
4136 VAR_LOC_1PAUX (var) = NULL;
4137 *slot = var;
4138 }
4139
4140 VALUE_RECURSED_INTO (node->loc) = true;
4141 }
4142 }
4143
4144 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
4145 gcc_assert (*dstslot == dvar);
4146 canonicalize_values_star (dstslot, dst);
4147 gcc_checking_assert (dstslot
4148 == shared_hash_find_slot_noinsert_1 (dst->vars,
4149 dv, dvhash));
4150 dvar = *dstslot;
4151 }
4152 }
4153
4154 if (!onepart_variable_different_p (dvar, s2var))
4155 {
4156 variable_htab_free (dvar);
4157 *dstslot = dvar = s2var;
4158 dvar->refcount++;
4159 }
4160 else if (s2var != s1var && !onepart_variable_different_p (dvar, s1var))
4161 {
4162 variable_htab_free (dvar);
4163 *dstslot = dvar = s1var;
4164 dvar->refcount++;
4165 dst_can_be_shared = false;
4166 }
4167 else
4168 dst_can_be_shared = false;
4169
4170 return 1;
4171 }
4172
4173 /* Copy s2slot (in DSM->src) to DSM->dst if the variable is a
4174 multi-part variable. Unions of multi-part variables and
4175 intersections of one-part ones will be handled in
4176 variable_merge_over_cur(). */
4177
4178 static int
4179 variable_merge_over_src (variable *s2var, struct dfset_merge *dsm)
4180 {
4181 dataflow_set *dst = dsm->dst;
4182 decl_or_value dv = s2var->dv;
4183
4184 if (!s2var->onepart)
4185 {
4186 variable **dstp = shared_hash_find_slot (dst->vars, dv);
4187 *dstp = s2var;
4188 s2var->refcount++;
4189 return 1;
4190 }
4191
4192 dsm->src_onepart_cnt++;
4193 return 1;
4194 }
4195
4196 /* Combine dataflow set information from SRC2 into DST, using PDST
4197 to carry over information across passes. */
4198
4199 static void
4200 dataflow_set_merge (dataflow_set *dst, dataflow_set *src2)
4201 {
4202 dataflow_set cur = *dst;
4203 dataflow_set *src1 = &cur;
4204 struct dfset_merge dsm;
4205 int i;
4206 size_t src1_elems, src2_elems;
4207 variable_iterator_type hi;
4208 variable *var;
4209
4210 src1_elems = shared_hash_htab (src1->vars)->elements ();
4211 src2_elems = shared_hash_htab (src2->vars)->elements ();
4212 dataflow_set_init (dst);
4213 dst->stack_adjust = cur.stack_adjust;
4214 shared_hash_destroy (dst->vars);
4215 dst->vars = new shared_hash;
4216 dst->vars->refcount = 1;
4217 dst->vars->htab = new variable_table_type (MAX (src1_elems, src2_elems));
4218
4219 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4220 attrs_list_mpdv_union (&dst->regs[i], src1->regs[i], src2->regs[i]);
4221
4222 dsm.dst = dst;
4223 dsm.src = src2;
4224 dsm.cur = src1;
4225 dsm.src_onepart_cnt = 0;
4226
4227 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (dsm.src->vars),
4228 var, variable, hi)
4229 variable_merge_over_src (var, &dsm);
4230 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (dsm.cur->vars),
4231 var, variable, hi)
4232 variable_merge_over_cur (var, &dsm);
4233
4234 if (dsm.src_onepart_cnt)
4235 dst_can_be_shared = false;
4236
4237 dataflow_set_destroy (src1);
4238 }
4239
4240 /* Mark register equivalences. */
4241
4242 static void
4243 dataflow_set_equiv_regs (dataflow_set *set)
4244 {
4245 int i;
4246 attrs *list, **listp;
4247
4248 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4249 {
4250 rtx canon[NUM_MACHINE_MODES];
4251
4252 /* If the list is empty or one entry, no need to canonicalize
4253 anything. */
4254 if (set->regs[i] == NULL || set->regs[i]->next == NULL)
4255 continue;
4256
4257 memset (canon, 0, sizeof (canon));
4258
4259 for (list = set->regs[i]; list; list = list->next)
4260 if (list->offset == 0 && dv_is_value_p (list->dv))
4261 {
4262 rtx val = dv_as_value (list->dv);
4263 rtx *cvalp = &canon[(int)GET_MODE (val)];
4264 rtx cval = *cvalp;
4265
4266 if (canon_value_cmp (val, cval))
4267 *cvalp = val;
4268 }
4269
4270 for (list = set->regs[i]; list; list = list->next)
4271 if (list->offset == 0 && dv_onepart_p (list->dv))
4272 {
4273 rtx cval = canon[(int)GET_MODE (list->loc)];
4274
4275 if (!cval)
4276 continue;
4277
4278 if (dv_is_value_p (list->dv))
4279 {
4280 rtx val = dv_as_value (list->dv);
4281
4282 if (val == cval)
4283 continue;
4284
4285 VALUE_RECURSED_INTO (val) = true;
4286 set_variable_part (set, val, dv_from_value (cval), 0,
4287 VAR_INIT_STATUS_INITIALIZED,
4288 NULL, NO_INSERT);
4289 }
4290
4291 VALUE_RECURSED_INTO (cval) = true;
4292 set_variable_part (set, cval, list->dv, 0,
4293 VAR_INIT_STATUS_INITIALIZED, NULL, NO_INSERT);
4294 }
4295
4296 for (listp = &set->regs[i]; (list = *listp);
4297 listp = list ? &list->next : listp)
4298 if (list->offset == 0 && dv_onepart_p (list->dv))
4299 {
4300 rtx cval = canon[(int)GET_MODE (list->loc)];
4301 variable **slot;
4302
4303 if (!cval)
4304 continue;
4305
4306 if (dv_is_value_p (list->dv))
4307 {
4308 rtx val = dv_as_value (list->dv);
4309 if (!VALUE_RECURSED_INTO (val))
4310 continue;
4311 }
4312
4313 slot = shared_hash_find_slot_noinsert (set->vars, list->dv);
4314 canonicalize_values_star (slot, set);
4315 if (*listp != list)
4316 list = NULL;
4317 }
4318 }
4319 }
4320
4321 /* Remove any redundant values in the location list of VAR, which must
4322 be unshared and 1-part. */
4323
4324 static void
4325 remove_duplicate_values (variable *var)
4326 {
4327 location_chain *node, **nodep;
4328
4329 gcc_assert (var->onepart);
4330 gcc_assert (var->n_var_parts == 1);
4331 gcc_assert (var->refcount == 1);
4332
4333 for (nodep = &var->var_part[0].loc_chain; (node = *nodep); )
4334 {
4335 if (GET_CODE (node->loc) == VALUE)
4336 {
4337 if (VALUE_RECURSED_INTO (node->loc))
4338 {
4339 /* Remove duplicate value node. */
4340 *nodep = node->next;
4341 delete node;
4342 continue;
4343 }
4344 else
4345 VALUE_RECURSED_INTO (node->loc) = true;
4346 }
4347 nodep = &node->next;
4348 }
4349
4350 for (node = var->var_part[0].loc_chain; node; node = node->next)
4351 if (GET_CODE (node->loc) == VALUE)
4352 {
4353 gcc_assert (VALUE_RECURSED_INTO (node->loc));
4354 VALUE_RECURSED_INTO (node->loc) = false;
4355 }
4356 }
4357
4358
4359 /* Hash table iteration argument passed to variable_post_merge. */
4360 struct dfset_post_merge
4361 {
4362 /* The new input set for the current block. */
4363 dataflow_set *set;
4364 /* Pointer to the permanent input set for the current block, or
4365 NULL. */
4366 dataflow_set **permp;
4367 };
4368
4369 /* Create values for incoming expressions associated with one-part
4370 variables that don't have value numbers for them. */
4371
4372 int
4373 variable_post_merge_new_vals (variable **slot, dfset_post_merge *dfpm)
4374 {
4375 dataflow_set *set = dfpm->set;
4376 variable *var = *slot;
4377 location_chain *node;
4378
4379 if (!var->onepart || !var->n_var_parts)
4380 return 1;
4381
4382 gcc_assert (var->n_var_parts == 1);
4383
4384 if (dv_is_decl_p (var->dv))
4385 {
4386 bool check_dupes = false;
4387
4388 restart:
4389 for (node = var->var_part[0].loc_chain; node; node = node->next)
4390 {
4391 if (GET_CODE (node->loc) == VALUE)
4392 gcc_assert (!VALUE_RECURSED_INTO (node->loc));
4393 else if (GET_CODE (node->loc) == REG)
4394 {
4395 attrs *att, **attp, **curp = NULL;
4396
4397 if (var->refcount != 1)
4398 {
4399 slot = unshare_variable (set, slot, var,
4400 VAR_INIT_STATUS_INITIALIZED);
4401 var = *slot;
4402 goto restart;
4403 }
4404
4405 for (attp = &set->regs[REGNO (node->loc)]; (att = *attp);
4406 attp = &att->next)
4407 if (att->offset == 0
4408 && GET_MODE (att->loc) == GET_MODE (node->loc))
4409 {
4410 if (dv_is_value_p (att->dv))
4411 {
4412 rtx cval = dv_as_value (att->dv);
4413 node->loc = cval;
4414 check_dupes = true;
4415 break;
4416 }
4417 else if (dv_as_opaque (att->dv) == dv_as_opaque (var->dv))
4418 curp = attp;
4419 }
4420
4421 if (!curp)
4422 {
4423 curp = attp;
4424 while (*curp)
4425 if ((*curp)->offset == 0
4426 && GET_MODE ((*curp)->loc) == GET_MODE (node->loc)
4427 && dv_as_opaque ((*curp)->dv) == dv_as_opaque (var->dv))
4428 break;
4429 else
4430 curp = &(*curp)->next;
4431 gcc_assert (*curp);
4432 }
4433
4434 if (!att)
4435 {
4436 decl_or_value cdv;
4437 rtx cval;
4438
4439 if (!*dfpm->permp)
4440 {
4441 *dfpm->permp = XNEW (dataflow_set);
4442 dataflow_set_init (*dfpm->permp);
4443 }
4444
4445 for (att = (*dfpm->permp)->regs[REGNO (node->loc)];
4446 att; att = att->next)
4447 if (GET_MODE (att->loc) == GET_MODE (node->loc))
4448 {
4449 gcc_assert (att->offset == 0
4450 && dv_is_value_p (att->dv));
4451 val_reset (set, att->dv);
4452 break;
4453 }
4454
4455 if (att)
4456 {
4457 cdv = att->dv;
4458 cval = dv_as_value (cdv);
4459 }
4460 else
4461 {
4462 /* Create a unique value to hold this register,
4463 that ought to be found and reused in
4464 subsequent rounds. */
4465 cselib_val *v;
4466 gcc_assert (!cselib_lookup (node->loc,
4467 GET_MODE (node->loc), 0,
4468 VOIDmode));
4469 v = cselib_lookup (node->loc, GET_MODE (node->loc), 1,
4470 VOIDmode);
4471 cselib_preserve_value (v);
4472 cselib_invalidate_rtx (node->loc);
4473 cval = v->val_rtx;
4474 cdv = dv_from_value (cval);
4475 if (dump_file)
4476 fprintf (dump_file,
4477 "Created new value %u:%u for reg %i\n",
4478 v->uid, v->hash, REGNO (node->loc));
4479 }
4480
4481 var_reg_decl_set (*dfpm->permp, node->loc,
4482 VAR_INIT_STATUS_INITIALIZED,
4483 cdv, 0, NULL, INSERT);
4484
4485 node->loc = cval;
4486 check_dupes = true;
4487 }
4488
4489 /* Remove attribute referring to the decl, which now
4490 uses the value for the register, already existing or
4491 to be added when we bring perm in. */
4492 att = *curp;
4493 *curp = att->next;
4494 delete att;
4495 }
4496 }
4497
4498 if (check_dupes)
4499 remove_duplicate_values (var);
4500 }
4501
4502 return 1;
4503 }
4504
4505 /* Reset values in the permanent set that are not associated with the
4506 chosen expression. */
4507
4508 int
4509 variable_post_merge_perm_vals (variable **pslot, dfset_post_merge *dfpm)
4510 {
4511 dataflow_set *set = dfpm->set;
4512 variable *pvar = *pslot, *var;
4513 location_chain *pnode;
4514 decl_or_value dv;
4515 attrs *att;
4516
4517 gcc_assert (dv_is_value_p (pvar->dv)
4518 && pvar->n_var_parts == 1);
4519 pnode = pvar->var_part[0].loc_chain;
4520 gcc_assert (pnode
4521 && !pnode->next
4522 && REG_P (pnode->loc));
4523
4524 dv = pvar->dv;
4525
4526 var = shared_hash_find (set->vars, dv);
4527 if (var)
4528 {
4529 /* Although variable_post_merge_new_vals may have made decls
4530 non-star-canonical, values that pre-existed in canonical form
4531 remain canonical, and newly-created values reference a single
4532 REG, so they are canonical as well. Since VAR has the
4533 location list for a VALUE, using find_loc_in_1pdv for it is
4534 fine, since VALUEs don't map back to DECLs. */
4535 if (find_loc_in_1pdv (pnode->loc, var, shared_hash_htab (set->vars)))
4536 return 1;
4537 val_reset (set, dv);
4538 }
4539
4540 for (att = set->regs[REGNO (pnode->loc)]; att; att = att->next)
4541 if (att->offset == 0
4542 && GET_MODE (att->loc) == GET_MODE (pnode->loc)
4543 && dv_is_value_p (att->dv))
4544 break;
4545
4546 /* If there is a value associated with this register already, create
4547 an equivalence. */
4548 if (att && dv_as_value (att->dv) != dv_as_value (dv))
4549 {
4550 rtx cval = dv_as_value (att->dv);
4551 set_variable_part (set, cval, dv, 0, pnode->init, NULL, INSERT);
4552 set_variable_part (set, dv_as_value (dv), att->dv, 0, pnode->init,
4553 NULL, INSERT);
4554 }
4555 else if (!att)
4556 {
4557 attrs_list_insert (&set->regs[REGNO (pnode->loc)],
4558 dv, 0, pnode->loc);
4559 variable_union (pvar, set);
4560 }
4561
4562 return 1;
4563 }
4564
4565 /* Just checking stuff and registering register attributes for
4566 now. */
4567
4568 static void
4569 dataflow_post_merge_adjust (dataflow_set *set, dataflow_set **permp)
4570 {
4571 struct dfset_post_merge dfpm;
4572
4573 dfpm.set = set;
4574 dfpm.permp = permp;
4575
4576 shared_hash_htab (set->vars)
4577 ->traverse <dfset_post_merge*, variable_post_merge_new_vals> (&dfpm);
4578 if (*permp)
4579 shared_hash_htab ((*permp)->vars)
4580 ->traverse <dfset_post_merge*, variable_post_merge_perm_vals> (&dfpm);
4581 shared_hash_htab (set->vars)
4582 ->traverse <dataflow_set *, canonicalize_values_star> (set);
4583 shared_hash_htab (set->vars)
4584 ->traverse <dataflow_set *, canonicalize_vars_star> (set);
4585 }
4586
4587 /* Return a node whose loc is a MEM that refers to EXPR in the
4588 location list of a one-part variable or value VAR, or in that of
4589 any values recursively mentioned in the location lists. */
4590
4591 static location_chain *
4592 find_mem_expr_in_1pdv (tree expr, rtx val, variable_table_type *vars)
4593 {
4594 location_chain *node;
4595 decl_or_value dv;
4596 variable *var;
4597 location_chain *where = NULL;
4598
4599 if (!val)
4600 return NULL;
4601
4602 gcc_assert (GET_CODE (val) == VALUE
4603 && !VALUE_RECURSED_INTO (val));
4604
4605 dv = dv_from_value (val);
4606 var = vars->find_with_hash (dv, dv_htab_hash (dv));
4607
4608 if (!var)
4609 return NULL;
4610
4611 gcc_assert (var->onepart);
4612
4613 if (!var->n_var_parts)
4614 return NULL;
4615
4616 VALUE_RECURSED_INTO (val) = true;
4617
4618 for (node = var->var_part[0].loc_chain; node; node = node->next)
4619 if (MEM_P (node->loc)
4620 && MEM_EXPR (node->loc) == expr
4621 && INT_MEM_OFFSET (node->loc) == 0)
4622 {
4623 where = node;
4624 break;
4625 }
4626 else if (GET_CODE (node->loc) == VALUE
4627 && !VALUE_RECURSED_INTO (node->loc)
4628 && (where = find_mem_expr_in_1pdv (expr, node->loc, vars)))
4629 break;
4630
4631 VALUE_RECURSED_INTO (val) = false;
4632
4633 return where;
4634 }
4635
4636 /* Return TRUE if the value of MEM may vary across a call. */
4637
4638 static bool
4639 mem_dies_at_call (rtx mem)
4640 {
4641 tree expr = MEM_EXPR (mem);
4642 tree decl;
4643
4644 if (!expr)
4645 return true;
4646
4647 decl = get_base_address (expr);
4648
4649 if (!decl)
4650 return true;
4651
4652 if (!DECL_P (decl))
4653 return true;
4654
4655 return (may_be_aliased (decl)
4656 || (!TREE_READONLY (decl) && is_global_var (decl)));
4657 }
4658
4659 /* Remove all MEMs from the location list of a hash table entry for a
4660 one-part variable, except those whose MEM attributes map back to
4661 the variable itself, directly or within a VALUE. */
4662
4663 int
4664 dataflow_set_preserve_mem_locs (variable **slot, dataflow_set *set)
4665 {
4666 variable *var = *slot;
4667
4668 if (var->onepart == ONEPART_VDECL || var->onepart == ONEPART_DEXPR)
4669 {
4670 tree decl = dv_as_decl (var->dv);
4671 location_chain *loc, **locp;
4672 bool changed = false;
4673
4674 if (!var->n_var_parts)
4675 return 1;
4676
4677 gcc_assert (var->n_var_parts == 1);
4678
4679 if (shared_var_p (var, set->vars))
4680 {
4681 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4682 {
4683 /* We want to remove dying MEMs that don't refer to DECL. */
4684 if (GET_CODE (loc->loc) == MEM
4685 && (MEM_EXPR (loc->loc) != decl
4686 || INT_MEM_OFFSET (loc->loc) != 0)
4687 && mem_dies_at_call (loc->loc))
4688 break;
4689 /* We want to move here MEMs that do refer to DECL. */
4690 else if (GET_CODE (loc->loc) == VALUE
4691 && find_mem_expr_in_1pdv (decl, loc->loc,
4692 shared_hash_htab (set->vars)))
4693 break;
4694 }
4695
4696 if (!loc)
4697 return 1;
4698
4699 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4700 var = *slot;
4701 gcc_assert (var->n_var_parts == 1);
4702 }
4703
4704 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4705 loc; loc = *locp)
4706 {
4707 rtx old_loc = loc->loc;
4708 if (GET_CODE (old_loc) == VALUE)
4709 {
4710 location_chain *mem_node
4711 = find_mem_expr_in_1pdv (decl, loc->loc,
4712 shared_hash_htab (set->vars));
4713
4714 /* ??? This picks up only one out of multiple MEMs that
4715 refer to the same variable. Do we ever need to be
4716 concerned about dealing with more than one, or, given
4717 that they should all map to the same variable
4718 location, their addresses will have been merged and
4719 they will be regarded as equivalent? */
4720 if (mem_node)
4721 {
4722 loc->loc = mem_node->loc;
4723 loc->set_src = mem_node->set_src;
4724 loc->init = MIN (loc->init, mem_node->init);
4725 }
4726 }
4727
4728 if (GET_CODE (loc->loc) != MEM
4729 || (MEM_EXPR (loc->loc) == decl
4730 && INT_MEM_OFFSET (loc->loc) == 0)
4731 || !mem_dies_at_call (loc->loc))
4732 {
4733 if (old_loc != loc->loc && emit_notes)
4734 {
4735 if (old_loc == var->var_part[0].cur_loc)
4736 {
4737 changed = true;
4738 var->var_part[0].cur_loc = NULL;
4739 }
4740 }
4741 locp = &loc->next;
4742 continue;
4743 }
4744
4745 if (emit_notes)
4746 {
4747 if (old_loc == var->var_part[0].cur_loc)
4748 {
4749 changed = true;
4750 var->var_part[0].cur_loc = NULL;
4751 }
4752 }
4753 *locp = loc->next;
4754 delete loc;
4755 }
4756
4757 if (!var->var_part[0].loc_chain)
4758 {
4759 var->n_var_parts--;
4760 changed = true;
4761 }
4762 if (changed)
4763 variable_was_changed (var, set);
4764 }
4765
4766 return 1;
4767 }
4768
4769 /* Remove all MEMs from the location list of a hash table entry for a
4770 onepart variable. */
4771
4772 int
4773 dataflow_set_remove_mem_locs (variable **slot, dataflow_set *set)
4774 {
4775 variable *var = *slot;
4776
4777 if (var->onepart != NOT_ONEPART)
4778 {
4779 location_chain *loc, **locp;
4780 bool changed = false;
4781 rtx cur_loc;
4782
4783 gcc_assert (var->n_var_parts == 1);
4784
4785 if (shared_var_p (var, set->vars))
4786 {
4787 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4788 if (GET_CODE (loc->loc) == MEM
4789 && mem_dies_at_call (loc->loc))
4790 break;
4791
4792 if (!loc)
4793 return 1;
4794
4795 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4796 var = *slot;
4797 gcc_assert (var->n_var_parts == 1);
4798 }
4799
4800 if (VAR_LOC_1PAUX (var))
4801 cur_loc = VAR_LOC_FROM (var);
4802 else
4803 cur_loc = var->var_part[0].cur_loc;
4804
4805 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4806 loc; loc = *locp)
4807 {
4808 if (GET_CODE (loc->loc) != MEM
4809 || !mem_dies_at_call (loc->loc))
4810 {
4811 locp = &loc->next;
4812 continue;
4813 }
4814
4815 *locp = loc->next;
4816 /* If we have deleted the location which was last emitted
4817 we have to emit new location so add the variable to set
4818 of changed variables. */
4819 if (cur_loc == loc->loc)
4820 {
4821 changed = true;
4822 var->var_part[0].cur_loc = NULL;
4823 if (VAR_LOC_1PAUX (var))
4824 VAR_LOC_FROM (var) = NULL;
4825 }
4826 delete loc;
4827 }
4828
4829 if (!var->var_part[0].loc_chain)
4830 {
4831 var->n_var_parts--;
4832 changed = true;
4833 }
4834 if (changed)
4835 variable_was_changed (var, set);
4836 }
4837
4838 return 1;
4839 }
4840
4841 /* Remove all variable-location information about call-clobbered
4842 registers, as well as associations between MEMs and VALUEs. */
4843
4844 static void
4845 dataflow_set_clear_at_call (dataflow_set *set, rtx_insn *call_insn)
4846 {
4847 unsigned int r;
4848 hard_reg_set_iterator hrsi;
4849 HARD_REG_SET invalidated_regs;
4850
4851 get_call_reg_set_usage (call_insn, &invalidated_regs,
4852 regs_invalidated_by_call);
4853
4854 EXECUTE_IF_SET_IN_HARD_REG_SET (invalidated_regs, 0, r, hrsi)
4855 var_regno_delete (set, r);
4856
4857 if (MAY_HAVE_DEBUG_INSNS)
4858 {
4859 set->traversed_vars = set->vars;
4860 shared_hash_htab (set->vars)
4861 ->traverse <dataflow_set *, dataflow_set_preserve_mem_locs> (set);
4862 set->traversed_vars = set->vars;
4863 shared_hash_htab (set->vars)
4864 ->traverse <dataflow_set *, dataflow_set_remove_mem_locs> (set);
4865 set->traversed_vars = NULL;
4866 }
4867 }
4868
4869 static bool
4870 variable_part_different_p (variable_part *vp1, variable_part *vp2)
4871 {
4872 location_chain *lc1, *lc2;
4873
4874 for (lc1 = vp1->loc_chain; lc1; lc1 = lc1->next)
4875 {
4876 for (lc2 = vp2->loc_chain; lc2; lc2 = lc2->next)
4877 {
4878 if (REG_P (lc1->loc) && REG_P (lc2->loc))
4879 {
4880 if (REGNO (lc1->loc) == REGNO (lc2->loc))
4881 break;
4882 }
4883 if (rtx_equal_p (lc1->loc, lc2->loc))
4884 break;
4885 }
4886 if (!lc2)
4887 return true;
4888 }
4889 return false;
4890 }
4891
4892 /* Return true if one-part variables VAR1 and VAR2 are different.
4893 They must be in canonical order. */
4894
4895 static bool
4896 onepart_variable_different_p (variable *var1, variable *var2)
4897 {
4898 location_chain *lc1, *lc2;
4899
4900 if (var1 == var2)
4901 return false;
4902
4903 gcc_assert (var1->n_var_parts == 1
4904 && var2->n_var_parts == 1);
4905
4906 lc1 = var1->var_part[0].loc_chain;
4907 lc2 = var2->var_part[0].loc_chain;
4908
4909 gcc_assert (lc1 && lc2);
4910
4911 while (lc1 && lc2)
4912 {
4913 if (loc_cmp (lc1->loc, lc2->loc))
4914 return true;
4915 lc1 = lc1->next;
4916 lc2 = lc2->next;
4917 }
4918
4919 return lc1 != lc2;
4920 }
4921
4922 /* Return true if one-part variables VAR1 and VAR2 are different.
4923 They must be in canonical order. */
4924
4925 static void
4926 dump_onepart_variable_differences (variable *var1, variable *var2)
4927 {
4928 location_chain *lc1, *lc2;
4929
4930 gcc_assert (var1 != var2);
4931 gcc_assert (dump_file);
4932 gcc_assert (dv_as_opaque (var1->dv) == dv_as_opaque (var2->dv));
4933 gcc_assert (var1->n_var_parts == 1
4934 && var2->n_var_parts == 1);
4935
4936 lc1 = var1->var_part[0].loc_chain;
4937 lc2 = var2->var_part[0].loc_chain;
4938
4939 gcc_assert (lc1 && lc2);
4940
4941 while (lc1 && lc2)
4942 {
4943 switch (loc_cmp (lc1->loc, lc2->loc))
4944 {
4945 case -1:
4946 fprintf (dump_file, "removed: ");
4947 print_rtl_single (dump_file, lc1->loc);
4948 lc1 = lc1->next;
4949 continue;
4950 case 0:
4951 break;
4952 case 1:
4953 fprintf (dump_file, "added: ");
4954 print_rtl_single (dump_file, lc2->loc);
4955 lc2 = lc2->next;
4956 continue;
4957 default:
4958 gcc_unreachable ();
4959 }
4960 lc1 = lc1->next;
4961 lc2 = lc2->next;
4962 }
4963
4964 while (lc1)
4965 {
4966 fprintf (dump_file, "removed: ");
4967 print_rtl_single (dump_file, lc1->loc);
4968 lc1 = lc1->next;
4969 }
4970
4971 while (lc2)
4972 {
4973 fprintf (dump_file, "added: ");
4974 print_rtl_single (dump_file, lc2->loc);
4975 lc2 = lc2->next;
4976 }
4977 }
4978
4979 /* Return true if variables VAR1 and VAR2 are different. */
4980
4981 static bool
4982 variable_different_p (variable *var1, variable *var2)
4983 {
4984 int i;
4985
4986 if (var1 == var2)
4987 return false;
4988
4989 if (var1->onepart != var2->onepart)
4990 return true;
4991
4992 if (var1->n_var_parts != var2->n_var_parts)
4993 return true;
4994
4995 if (var1->onepart && var1->n_var_parts)
4996 {
4997 gcc_checking_assert (dv_as_opaque (var1->dv) == dv_as_opaque (var2->dv)
4998 && var1->n_var_parts == 1);
4999 /* One-part values have locations in a canonical order. */
5000 return onepart_variable_different_p (var1, var2);
5001 }
5002
5003 for (i = 0; i < var1->n_var_parts; i++)
5004 {
5005 if (VAR_PART_OFFSET (var1, i) != VAR_PART_OFFSET (var2, i))
5006 return true;
5007 if (variable_part_different_p (&var1->var_part[i], &var2->var_part[i]))
5008 return true;
5009 if (variable_part_different_p (&var2->var_part[i], &var1->var_part[i]))
5010 return true;
5011 }
5012 return false;
5013 }
5014
5015 /* Return true if dataflow sets OLD_SET and NEW_SET differ. */
5016
5017 static bool
5018 dataflow_set_different (dataflow_set *old_set, dataflow_set *new_set)
5019 {
5020 variable_iterator_type hi;
5021 variable *var1;
5022 bool diffound = false;
5023 bool details = (dump_file && (dump_flags & TDF_DETAILS));
5024
5025 #define RETRUE \
5026 do \
5027 { \
5028 if (!details) \
5029 return true; \
5030 else \
5031 diffound = true; \
5032 } \
5033 while (0)
5034
5035 if (old_set->vars == new_set->vars)
5036 return false;
5037
5038 if (shared_hash_htab (old_set->vars)->elements ()
5039 != shared_hash_htab (new_set->vars)->elements ())
5040 RETRUE;
5041
5042 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (old_set->vars),
5043 var1, variable, hi)
5044 {
5045 variable_table_type *htab = shared_hash_htab (new_set->vars);
5046 variable *var2 = htab->find_with_hash (var1->dv, dv_htab_hash (var1->dv));
5047
5048 if (!var2)
5049 {
5050 if (dump_file && (dump_flags & TDF_DETAILS))
5051 {
5052 fprintf (dump_file, "dataflow difference found: removal of:\n");
5053 dump_var (var1);
5054 }
5055 RETRUE;
5056 }
5057 else if (variable_different_p (var1, var2))
5058 {
5059 if (details)
5060 {
5061 fprintf (dump_file, "dataflow difference found: "
5062 "old and new follow:\n");
5063 dump_var (var1);
5064 if (dv_onepart_p (var1->dv))
5065 dump_onepart_variable_differences (var1, var2);
5066 dump_var (var2);
5067 }
5068 RETRUE;
5069 }
5070 }
5071
5072 /* There's no need to traverse the second hashtab unless we want to
5073 print the details. If both have the same number of elements and
5074 the second one had all entries found in the first one, then the
5075 second can't have any extra entries. */
5076 if (!details)
5077 return diffound;
5078
5079 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (new_set->vars),
5080 var1, variable, hi)
5081 {
5082 variable_table_type *htab = shared_hash_htab (old_set->vars);
5083 variable *var2 = htab->find_with_hash (var1->dv, dv_htab_hash (var1->dv));
5084 if (!var2)
5085 {
5086 if (details)
5087 {
5088 fprintf (dump_file, "dataflow difference found: addition of:\n");
5089 dump_var (var1);
5090 }
5091 RETRUE;
5092 }
5093 }
5094
5095 #undef RETRUE
5096
5097 return diffound;
5098 }
5099
5100 /* Free the contents of dataflow set SET. */
5101
5102 static void
5103 dataflow_set_destroy (dataflow_set *set)
5104 {
5105 int i;
5106
5107 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5108 attrs_list_clear (&set->regs[i]);
5109
5110 shared_hash_destroy (set->vars);
5111 set->vars = NULL;
5112 }
5113
5114 /* Return true if T is a tracked parameter with non-degenerate record type. */
5115
5116 static bool
5117 tracked_record_parameter_p (tree t)
5118 {
5119 if (TREE_CODE (t) != PARM_DECL)
5120 return false;
5121
5122 if (DECL_MODE (t) == BLKmode)
5123 return false;
5124
5125 tree type = TREE_TYPE (t);
5126 if (TREE_CODE (type) != RECORD_TYPE)
5127 return false;
5128
5129 if (TYPE_FIELDS (type) == NULL_TREE
5130 || DECL_CHAIN (TYPE_FIELDS (type)) == NULL_TREE)
5131 return false;
5132
5133 return true;
5134 }
5135
5136 /* Shall EXPR be tracked? */
5137
5138 static bool
5139 track_expr_p (tree expr, bool need_rtl)
5140 {
5141 rtx decl_rtl;
5142 tree realdecl;
5143
5144 if (TREE_CODE (expr) == DEBUG_EXPR_DECL)
5145 return DECL_RTL_SET_P (expr);
5146
5147 /* If EXPR is not a parameter or a variable do not track it. */
5148 if (!VAR_P (expr) && TREE_CODE (expr) != PARM_DECL)
5149 return 0;
5150
5151 /* It also must have a name... */
5152 if (!DECL_NAME (expr) && need_rtl)
5153 return 0;
5154
5155 /* ... and a RTL assigned to it. */
5156 decl_rtl = DECL_RTL_IF_SET (expr);
5157 if (!decl_rtl && need_rtl)
5158 return 0;
5159
5160 /* If this expression is really a debug alias of some other declaration, we
5161 don't need to track this expression if the ultimate declaration is
5162 ignored. */
5163 realdecl = expr;
5164 if (VAR_P (realdecl) && DECL_HAS_DEBUG_EXPR_P (realdecl))
5165 {
5166 realdecl = DECL_DEBUG_EXPR (realdecl);
5167 if (!DECL_P (realdecl))
5168 {
5169 if (handled_component_p (realdecl)
5170 || (TREE_CODE (realdecl) == MEM_REF
5171 && TREE_CODE (TREE_OPERAND (realdecl, 0)) == ADDR_EXPR))
5172 {
5173 HOST_WIDE_INT bitsize, bitpos, maxsize;
5174 bool reverse;
5175 tree innerdecl
5176 = get_ref_base_and_extent (realdecl, &bitpos, &bitsize,
5177 &maxsize, &reverse);
5178 if (!DECL_P (innerdecl)
5179 || DECL_IGNORED_P (innerdecl)
5180 /* Do not track declarations for parts of tracked record
5181 parameters since we want to track them as a whole. */
5182 || tracked_record_parameter_p (innerdecl)
5183 || TREE_STATIC (innerdecl)
5184 || bitsize <= 0
5185 || bitpos + bitsize > 256
5186 || bitsize != maxsize)
5187 return 0;
5188 else
5189 realdecl = expr;
5190 }
5191 else
5192 return 0;
5193 }
5194 }
5195
5196 /* Do not track EXPR if REALDECL it should be ignored for debugging
5197 purposes. */
5198 if (DECL_IGNORED_P (realdecl))
5199 return 0;
5200
5201 /* Do not track global variables until we are able to emit correct location
5202 list for them. */
5203 if (TREE_STATIC (realdecl))
5204 return 0;
5205
5206 /* When the EXPR is a DECL for alias of some variable (see example)
5207 the TREE_STATIC flag is not used. Disable tracking all DECLs whose
5208 DECL_RTL contains SYMBOL_REF.
5209
5210 Example:
5211 extern char **_dl_argv_internal __attribute__ ((alias ("_dl_argv")));
5212 char **_dl_argv;
5213 */
5214 if (decl_rtl && MEM_P (decl_rtl)
5215 && contains_symbol_ref_p (XEXP (decl_rtl, 0)))
5216 return 0;
5217
5218 /* If RTX is a memory it should not be very large (because it would be
5219 an array or struct). */
5220 if (decl_rtl && MEM_P (decl_rtl))
5221 {
5222 /* Do not track structures and arrays. */
5223 if ((GET_MODE (decl_rtl) == BLKmode
5224 || AGGREGATE_TYPE_P (TREE_TYPE (realdecl)))
5225 && !tracked_record_parameter_p (realdecl))
5226 return 0;
5227 if (MEM_SIZE_KNOWN_P (decl_rtl)
5228 && MEM_SIZE (decl_rtl) > MAX_VAR_PARTS)
5229 return 0;
5230 }
5231
5232 DECL_CHANGED (expr) = 0;
5233 DECL_CHANGED (realdecl) = 0;
5234 return 1;
5235 }
5236
5237 /* Determine whether a given LOC refers to the same variable part as
5238 EXPR+OFFSET. */
5239
5240 static bool
5241 same_variable_part_p (rtx loc, tree expr, HOST_WIDE_INT offset)
5242 {
5243 tree expr2;
5244 HOST_WIDE_INT offset2;
5245
5246 if (! DECL_P (expr))
5247 return false;
5248
5249 if (REG_P (loc))
5250 {
5251 expr2 = REG_EXPR (loc);
5252 offset2 = REG_OFFSET (loc);
5253 }
5254 else if (MEM_P (loc))
5255 {
5256 expr2 = MEM_EXPR (loc);
5257 offset2 = INT_MEM_OFFSET (loc);
5258 }
5259 else
5260 return false;
5261
5262 if (! expr2 || ! DECL_P (expr2))
5263 return false;
5264
5265 expr = var_debug_decl (expr);
5266 expr2 = var_debug_decl (expr2);
5267
5268 return (expr == expr2 && offset == offset2);
5269 }
5270
5271 /* LOC is a REG or MEM that we would like to track if possible.
5272 If EXPR is null, we don't know what expression LOC refers to,
5273 otherwise it refers to EXPR + OFFSET. STORE_REG_P is true if
5274 LOC is an lvalue register.
5275
5276 Return true if EXPR is nonnull and if LOC, or some lowpart of it,
5277 is something we can track. When returning true, store the mode of
5278 the lowpart we can track in *MODE_OUT (if nonnull) and its offset
5279 from EXPR in *OFFSET_OUT (if nonnull). */
5280
5281 static bool
5282 track_loc_p (rtx loc, tree expr, HOST_WIDE_INT offset, bool store_reg_p,
5283 machine_mode *mode_out, HOST_WIDE_INT *offset_out)
5284 {
5285 machine_mode mode;
5286
5287 if (expr == NULL || !track_expr_p (expr, true))
5288 return false;
5289
5290 /* If REG was a paradoxical subreg, its REG_ATTRS will describe the
5291 whole subreg, but only the old inner part is really relevant. */
5292 mode = GET_MODE (loc);
5293 if (REG_P (loc) && !HARD_REGISTER_NUM_P (ORIGINAL_REGNO (loc)))
5294 {
5295 machine_mode pseudo_mode;
5296
5297 pseudo_mode = PSEUDO_REGNO_MODE (ORIGINAL_REGNO (loc));
5298 if (paradoxical_subreg_p (mode, pseudo_mode))
5299 {
5300 offset += byte_lowpart_offset (pseudo_mode, mode);
5301 mode = pseudo_mode;
5302 }
5303 }
5304
5305 /* If LOC is a paradoxical lowpart of EXPR, refer to EXPR itself.
5306 Do the same if we are storing to a register and EXPR occupies
5307 the whole of register LOC; in that case, the whole of EXPR is
5308 being changed. We exclude complex modes from the second case
5309 because the real and imaginary parts are represented as separate
5310 pseudo registers, even if the whole complex value fits into one
5311 hard register. */
5312 if ((paradoxical_subreg_p (mode, DECL_MODE (expr))
5313 || (store_reg_p
5314 && !COMPLEX_MODE_P (DECL_MODE (expr))
5315 && hard_regno_nregs[REGNO (loc)][DECL_MODE (expr)] == 1))
5316 && offset + byte_lowpart_offset (DECL_MODE (expr), mode) == 0)
5317 {
5318 mode = DECL_MODE (expr);
5319 offset = 0;
5320 }
5321
5322 if (offset < 0 || offset >= MAX_VAR_PARTS)
5323 return false;
5324
5325 if (mode_out)
5326 *mode_out = mode;
5327 if (offset_out)
5328 *offset_out = offset;
5329 return true;
5330 }
5331
5332 /* Return the MODE lowpart of LOC, or null if LOC is not something we
5333 want to track. When returning nonnull, make sure that the attributes
5334 on the returned value are updated. */
5335
5336 static rtx
5337 var_lowpart (machine_mode mode, rtx loc)
5338 {
5339 unsigned int offset, reg_offset, regno;
5340
5341 if (GET_MODE (loc) == mode)
5342 return loc;
5343
5344 if (!REG_P (loc) && !MEM_P (loc))
5345 return NULL;
5346
5347 offset = byte_lowpart_offset (mode, GET_MODE (loc));
5348
5349 if (MEM_P (loc))
5350 return adjust_address_nv (loc, mode, offset);
5351
5352 reg_offset = subreg_lowpart_offset (mode, GET_MODE (loc));
5353 regno = REGNO (loc) + subreg_regno_offset (REGNO (loc), GET_MODE (loc),
5354 reg_offset, mode);
5355 return gen_rtx_REG_offset (loc, mode, regno, offset);
5356 }
5357
5358 /* Carry information about uses and stores while walking rtx. */
5359
5360 struct count_use_info
5361 {
5362 /* The insn where the RTX is. */
5363 rtx_insn *insn;
5364
5365 /* The basic block where insn is. */
5366 basic_block bb;
5367
5368 /* The array of n_sets sets in the insn, as determined by cselib. */
5369 struct cselib_set *sets;
5370 int n_sets;
5371
5372 /* True if we're counting stores, false otherwise. */
5373 bool store_p;
5374 };
5375
5376 /* Find a VALUE corresponding to X. */
5377
5378 static inline cselib_val *
5379 find_use_val (rtx x, machine_mode mode, struct count_use_info *cui)
5380 {
5381 int i;
5382
5383 if (cui->sets)
5384 {
5385 /* This is called after uses are set up and before stores are
5386 processed by cselib, so it's safe to look up srcs, but not
5387 dsts. So we look up expressions that appear in srcs or in
5388 dest expressions, but we search the sets array for dests of
5389 stores. */
5390 if (cui->store_p)
5391 {
5392 /* Some targets represent memset and memcpy patterns
5393 by (set (mem:BLK ...) (reg:[QHSD]I ...)) or
5394 (set (mem:BLK ...) (const_int ...)) or
5395 (set (mem:BLK ...) (mem:BLK ...)). Don't return anything
5396 in that case, otherwise we end up with mode mismatches. */
5397 if (mode == BLKmode && MEM_P (x))
5398 return NULL;
5399 for (i = 0; i < cui->n_sets; i++)
5400 if (cui->sets[i].dest == x)
5401 return cui->sets[i].src_elt;
5402 }
5403 else
5404 return cselib_lookup (x, mode, 0, VOIDmode);
5405 }
5406
5407 return NULL;
5408 }
5409
5410 /* Replace all registers and addresses in an expression with VALUE
5411 expressions that map back to them, unless the expression is a
5412 register. If no mapping is or can be performed, returns NULL. */
5413
5414 static rtx
5415 replace_expr_with_values (rtx loc)
5416 {
5417 if (REG_P (loc) || GET_CODE (loc) == ENTRY_VALUE)
5418 return NULL;
5419 else if (MEM_P (loc))
5420 {
5421 cselib_val *addr = cselib_lookup (XEXP (loc, 0),
5422 get_address_mode (loc), 0,
5423 GET_MODE (loc));
5424 if (addr)
5425 return replace_equiv_address_nv (loc, addr->val_rtx);
5426 else
5427 return NULL;
5428 }
5429 else
5430 return cselib_subst_to_values (loc, VOIDmode);
5431 }
5432
5433 /* Return true if X contains a DEBUG_EXPR. */
5434
5435 static bool
5436 rtx_debug_expr_p (const_rtx x)
5437 {
5438 subrtx_iterator::array_type array;
5439 FOR_EACH_SUBRTX (iter, array, x, ALL)
5440 if (GET_CODE (*iter) == DEBUG_EXPR)
5441 return true;
5442 return false;
5443 }
5444
5445 /* Determine what kind of micro operation to choose for a USE. Return
5446 MO_CLOBBER if no micro operation is to be generated. */
5447
5448 static enum micro_operation_type
5449 use_type (rtx loc, struct count_use_info *cui, machine_mode *modep)
5450 {
5451 tree expr;
5452
5453 if (cui && cui->sets)
5454 {
5455 if (GET_CODE (loc) == VAR_LOCATION)
5456 {
5457 if (track_expr_p (PAT_VAR_LOCATION_DECL (loc), false))
5458 {
5459 rtx ploc = PAT_VAR_LOCATION_LOC (loc);
5460 if (! VAR_LOC_UNKNOWN_P (ploc))
5461 {
5462 cselib_val *val = cselib_lookup (ploc, GET_MODE (loc), 1,
5463 VOIDmode);
5464
5465 /* ??? flag_float_store and volatile mems are never
5466 given values, but we could in theory use them for
5467 locations. */
5468 gcc_assert (val || 1);
5469 }
5470 return MO_VAL_LOC;
5471 }
5472 else
5473 return MO_CLOBBER;
5474 }
5475
5476 if (REG_P (loc) || MEM_P (loc))
5477 {
5478 if (modep)
5479 *modep = GET_MODE (loc);
5480 if (cui->store_p)
5481 {
5482 if (REG_P (loc)
5483 || (find_use_val (loc, GET_MODE (loc), cui)
5484 && cselib_lookup (XEXP (loc, 0),
5485 get_address_mode (loc), 0,
5486 GET_MODE (loc))))
5487 return MO_VAL_SET;
5488 }
5489 else
5490 {
5491 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5492
5493 if (val && !cselib_preserved_value_p (val))
5494 return MO_VAL_USE;
5495 }
5496 }
5497 }
5498
5499 if (REG_P (loc))
5500 {
5501 gcc_assert (REGNO (loc) < FIRST_PSEUDO_REGISTER);
5502
5503 if (loc == cfa_base_rtx)
5504 return MO_CLOBBER;
5505 expr = REG_EXPR (loc);
5506
5507 if (!expr)
5508 return MO_USE_NO_VAR;
5509 else if (target_for_debug_bind (var_debug_decl (expr)))
5510 return MO_CLOBBER;
5511 else if (track_loc_p (loc, expr, REG_OFFSET (loc),
5512 false, modep, NULL))
5513 return MO_USE;
5514 else
5515 return MO_USE_NO_VAR;
5516 }
5517 else if (MEM_P (loc))
5518 {
5519 expr = MEM_EXPR (loc);
5520
5521 if (!expr)
5522 return MO_CLOBBER;
5523 else if (target_for_debug_bind (var_debug_decl (expr)))
5524 return MO_CLOBBER;
5525 else if (track_loc_p (loc, expr, INT_MEM_OFFSET (loc),
5526 false, modep, NULL)
5527 /* Multi-part variables shouldn't refer to one-part
5528 variable names such as VALUEs (never happens) or
5529 DEBUG_EXPRs (only happens in the presence of debug
5530 insns). */
5531 && (!MAY_HAVE_DEBUG_INSNS
5532 || !rtx_debug_expr_p (XEXP (loc, 0))))
5533 return MO_USE;
5534 else
5535 return MO_CLOBBER;
5536 }
5537
5538 return MO_CLOBBER;
5539 }
5540
5541 /* Log to OUT information about micro-operation MOPT involving X in
5542 INSN of BB. */
5543
5544 static inline void
5545 log_op_type (rtx x, basic_block bb, rtx_insn *insn,
5546 enum micro_operation_type mopt, FILE *out)
5547 {
5548 fprintf (out, "bb %i op %i insn %i %s ",
5549 bb->index, VTI (bb)->mos.length (),
5550 INSN_UID (insn), micro_operation_type_name[mopt]);
5551 print_inline_rtx (out, x, 2);
5552 fputc ('\n', out);
5553 }
5554
5555 /* Tell whether the CONCAT used to holds a VALUE and its location
5556 needs value resolution, i.e., an attempt of mapping the location
5557 back to other incoming values. */
5558 #define VAL_NEEDS_RESOLUTION(x) \
5559 (RTL_FLAG_CHECK1 ("VAL_NEEDS_RESOLUTION", (x), CONCAT)->volatil)
5560 /* Whether the location in the CONCAT is a tracked expression, that
5561 should also be handled like a MO_USE. */
5562 #define VAL_HOLDS_TRACK_EXPR(x) \
5563 (RTL_FLAG_CHECK1 ("VAL_HOLDS_TRACK_EXPR", (x), CONCAT)->used)
5564 /* Whether the location in the CONCAT should be handled like a MO_COPY
5565 as well. */
5566 #define VAL_EXPR_IS_COPIED(x) \
5567 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_COPIED", (x), CONCAT)->jump)
5568 /* Whether the location in the CONCAT should be handled like a
5569 MO_CLOBBER as well. */
5570 #define VAL_EXPR_IS_CLOBBERED(x) \
5571 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_CLOBBERED", (x), CONCAT)->unchanging)
5572
5573 /* All preserved VALUEs. */
5574 static vec<rtx> preserved_values;
5575
5576 /* Ensure VAL is preserved and remember it in a vector for vt_emit_notes. */
5577
5578 static void
5579 preserve_value (cselib_val *val)
5580 {
5581 cselib_preserve_value (val);
5582 preserved_values.safe_push (val->val_rtx);
5583 }
5584
5585 /* Helper function for MO_VAL_LOC handling. Return non-zero if
5586 any rtxes not suitable for CONST use not replaced by VALUEs
5587 are discovered. */
5588
5589 static bool
5590 non_suitable_const (const_rtx x)
5591 {
5592 subrtx_iterator::array_type array;
5593 FOR_EACH_SUBRTX (iter, array, x, ALL)
5594 {
5595 const_rtx x = *iter;
5596 switch (GET_CODE (x))
5597 {
5598 case REG:
5599 case DEBUG_EXPR:
5600 case PC:
5601 case SCRATCH:
5602 case CC0:
5603 case ASM_INPUT:
5604 case ASM_OPERANDS:
5605 return true;
5606 case MEM:
5607 if (!MEM_READONLY_P (x))
5608 return true;
5609 break;
5610 default:
5611 break;
5612 }
5613 }
5614 return false;
5615 }
5616
5617 /* Add uses (register and memory references) LOC which will be tracked
5618 to VTI (bb)->mos. */
5619
5620 static void
5621 add_uses (rtx loc, struct count_use_info *cui)
5622 {
5623 machine_mode mode = VOIDmode;
5624 enum micro_operation_type type = use_type (loc, cui, &mode);
5625
5626 if (type != MO_CLOBBER)
5627 {
5628 basic_block bb = cui->bb;
5629 micro_operation mo;
5630
5631 mo.type = type;
5632 mo.u.loc = type == MO_USE ? var_lowpart (mode, loc) : loc;
5633 mo.insn = cui->insn;
5634
5635 if (type == MO_VAL_LOC)
5636 {
5637 rtx oloc = loc;
5638 rtx vloc = PAT_VAR_LOCATION_LOC (oloc);
5639 cselib_val *val;
5640
5641 gcc_assert (cui->sets);
5642
5643 if (MEM_P (vloc)
5644 && !REG_P (XEXP (vloc, 0))
5645 && !MEM_P (XEXP (vloc, 0)))
5646 {
5647 rtx mloc = vloc;
5648 machine_mode address_mode = get_address_mode (mloc);
5649 cselib_val *val
5650 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5651 GET_MODE (mloc));
5652
5653 if (val && !cselib_preserved_value_p (val))
5654 preserve_value (val);
5655 }
5656
5657 if (CONSTANT_P (vloc)
5658 && (GET_CODE (vloc) != CONST || non_suitable_const (vloc)))
5659 /* For constants don't look up any value. */;
5660 else if (!VAR_LOC_UNKNOWN_P (vloc) && !unsuitable_loc (vloc)
5661 && (val = find_use_val (vloc, GET_MODE (oloc), cui)))
5662 {
5663 machine_mode mode2;
5664 enum micro_operation_type type2;
5665 rtx nloc = NULL;
5666 bool resolvable = REG_P (vloc) || MEM_P (vloc);
5667
5668 if (resolvable)
5669 nloc = replace_expr_with_values (vloc);
5670
5671 if (nloc)
5672 {
5673 oloc = shallow_copy_rtx (oloc);
5674 PAT_VAR_LOCATION_LOC (oloc) = nloc;
5675 }
5676
5677 oloc = gen_rtx_CONCAT (mode, val->val_rtx, oloc);
5678
5679 type2 = use_type (vloc, 0, &mode2);
5680
5681 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5682 || type2 == MO_CLOBBER);
5683
5684 if (type2 == MO_CLOBBER
5685 && !cselib_preserved_value_p (val))
5686 {
5687 VAL_NEEDS_RESOLUTION (oloc) = resolvable;
5688 preserve_value (val);
5689 }
5690 }
5691 else if (!VAR_LOC_UNKNOWN_P (vloc))
5692 {
5693 oloc = shallow_copy_rtx (oloc);
5694 PAT_VAR_LOCATION_LOC (oloc) = gen_rtx_UNKNOWN_VAR_LOC ();
5695 }
5696
5697 mo.u.loc = oloc;
5698 }
5699 else if (type == MO_VAL_USE)
5700 {
5701 machine_mode mode2 = VOIDmode;
5702 enum micro_operation_type type2;
5703 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5704 rtx vloc, oloc = loc, nloc;
5705
5706 gcc_assert (cui->sets);
5707
5708 if (MEM_P (oloc)
5709 && !REG_P (XEXP (oloc, 0))
5710 && !MEM_P (XEXP (oloc, 0)))
5711 {
5712 rtx mloc = oloc;
5713 machine_mode address_mode = get_address_mode (mloc);
5714 cselib_val *val
5715 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5716 GET_MODE (mloc));
5717
5718 if (val && !cselib_preserved_value_p (val))
5719 preserve_value (val);
5720 }
5721
5722 type2 = use_type (loc, 0, &mode2);
5723
5724 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5725 || type2 == MO_CLOBBER);
5726
5727 if (type2 == MO_USE)
5728 vloc = var_lowpart (mode2, loc);
5729 else
5730 vloc = oloc;
5731
5732 /* The loc of a MO_VAL_USE may have two forms:
5733
5734 (concat val src): val is at src, a value-based
5735 representation.
5736
5737 (concat (concat val use) src): same as above, with use as
5738 the MO_USE tracked value, if it differs from src.
5739
5740 */
5741
5742 gcc_checking_assert (REG_P (loc) || MEM_P (loc));
5743 nloc = replace_expr_with_values (loc);
5744 if (!nloc)
5745 nloc = oloc;
5746
5747 if (vloc != nloc)
5748 oloc = gen_rtx_CONCAT (mode2, val->val_rtx, vloc);
5749 else
5750 oloc = val->val_rtx;
5751
5752 mo.u.loc = gen_rtx_CONCAT (mode, oloc, nloc);
5753
5754 if (type2 == MO_USE)
5755 VAL_HOLDS_TRACK_EXPR (mo.u.loc) = 1;
5756 if (!cselib_preserved_value_p (val))
5757 {
5758 VAL_NEEDS_RESOLUTION (mo.u.loc) = 1;
5759 preserve_value (val);
5760 }
5761 }
5762 else
5763 gcc_assert (type == MO_USE || type == MO_USE_NO_VAR);
5764
5765 if (dump_file && (dump_flags & TDF_DETAILS))
5766 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
5767 VTI (bb)->mos.safe_push (mo);
5768 }
5769 }
5770
5771 /* Helper function for finding all uses of REG/MEM in X in insn INSN. */
5772
5773 static void
5774 add_uses_1 (rtx *x, void *cui)
5775 {
5776 subrtx_var_iterator::array_type array;
5777 FOR_EACH_SUBRTX_VAR (iter, array, *x, NONCONST)
5778 add_uses (*iter, (struct count_use_info *) cui);
5779 }
5780
5781 /* This is the value used during expansion of locations. We want it
5782 to be unbounded, so that variables expanded deep in a recursion
5783 nest are fully evaluated, so that their values are cached
5784 correctly. We avoid recursion cycles through other means, and we
5785 don't unshare RTL, so excess complexity is not a problem. */
5786 #define EXPR_DEPTH (INT_MAX)
5787 /* We use this to keep too-complex expressions from being emitted as
5788 location notes, and then to debug information. Users can trade
5789 compile time for ridiculously complex expressions, although they're
5790 seldom useful, and they may often have to be discarded as not
5791 representable anyway. */
5792 #define EXPR_USE_DEPTH (PARAM_VALUE (PARAM_MAX_VARTRACK_EXPR_DEPTH))
5793
5794 /* Attempt to reverse the EXPR operation in the debug info and record
5795 it in the cselib table. Say for reg1 = reg2 + 6 even when reg2 is
5796 no longer live we can express its value as VAL - 6. */
5797
5798 static void
5799 reverse_op (rtx val, const_rtx expr, rtx_insn *insn)
5800 {
5801 rtx src, arg, ret;
5802 cselib_val *v;
5803 struct elt_loc_list *l;
5804 enum rtx_code code;
5805 int count;
5806
5807 if (GET_CODE (expr) != SET)
5808 return;
5809
5810 if (!REG_P (SET_DEST (expr)) || GET_MODE (val) != GET_MODE (SET_DEST (expr)))
5811 return;
5812
5813 src = SET_SRC (expr);
5814 switch (GET_CODE (src))
5815 {
5816 case PLUS:
5817 case MINUS:
5818 case XOR:
5819 case NOT:
5820 case NEG:
5821 if (!REG_P (XEXP (src, 0)))
5822 return;
5823 break;
5824 case SIGN_EXTEND:
5825 case ZERO_EXTEND:
5826 if (!REG_P (XEXP (src, 0)) && !MEM_P (XEXP (src, 0)))
5827 return;
5828 break;
5829 default:
5830 return;
5831 }
5832
5833 if (!SCALAR_INT_MODE_P (GET_MODE (src)) || XEXP (src, 0) == cfa_base_rtx)
5834 return;
5835
5836 v = cselib_lookup (XEXP (src, 0), GET_MODE (XEXP (src, 0)), 0, VOIDmode);
5837 if (!v || !cselib_preserved_value_p (v))
5838 return;
5839
5840 /* Use canonical V to avoid creating multiple redundant expressions
5841 for different VALUES equivalent to V. */
5842 v = canonical_cselib_val (v);
5843
5844 /* Adding a reverse op isn't useful if V already has an always valid
5845 location. Ignore ENTRY_VALUE, while it is always constant, we should
5846 prefer non-ENTRY_VALUE locations whenever possible. */
5847 for (l = v->locs, count = 0; l; l = l->next, count++)
5848 if (CONSTANT_P (l->loc)
5849 && (GET_CODE (l->loc) != CONST || !references_value_p (l->loc, 0)))
5850 return;
5851 /* Avoid creating too large locs lists. */
5852 else if (count == PARAM_VALUE (PARAM_MAX_VARTRACK_REVERSE_OP_SIZE))
5853 return;
5854
5855 switch (GET_CODE (src))
5856 {
5857 case NOT:
5858 case NEG:
5859 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5860 return;
5861 ret = gen_rtx_fmt_e (GET_CODE (src), GET_MODE (val), val);
5862 break;
5863 case SIGN_EXTEND:
5864 case ZERO_EXTEND:
5865 ret = gen_lowpart_SUBREG (GET_MODE (v->val_rtx), val);
5866 break;
5867 case XOR:
5868 code = XOR;
5869 goto binary;
5870 case PLUS:
5871 code = MINUS;
5872 goto binary;
5873 case MINUS:
5874 code = PLUS;
5875 goto binary;
5876 binary:
5877 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5878 return;
5879 arg = XEXP (src, 1);
5880 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5881 {
5882 arg = cselib_expand_value_rtx (arg, scratch_regs, 5);
5883 if (arg == NULL_RTX)
5884 return;
5885 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5886 return;
5887 }
5888 ret = simplify_gen_binary (code, GET_MODE (val), val, arg);
5889 break;
5890 default:
5891 gcc_unreachable ();
5892 }
5893
5894 cselib_add_permanent_equiv (v, ret, insn);
5895 }
5896
5897 /* Add stores (register and memory references) LOC which will be tracked
5898 to VTI (bb)->mos. EXPR is the RTL expression containing the store.
5899 CUIP->insn is instruction which the LOC is part of. */
5900
5901 static void
5902 add_stores (rtx loc, const_rtx expr, void *cuip)
5903 {
5904 machine_mode mode = VOIDmode, mode2;
5905 struct count_use_info *cui = (struct count_use_info *)cuip;
5906 basic_block bb = cui->bb;
5907 micro_operation mo;
5908 rtx oloc = loc, nloc, src = NULL;
5909 enum micro_operation_type type = use_type (loc, cui, &mode);
5910 bool track_p = false;
5911 cselib_val *v;
5912 bool resolve, preserve;
5913
5914 if (type == MO_CLOBBER)
5915 return;
5916
5917 mode2 = mode;
5918
5919 if (REG_P (loc))
5920 {
5921 gcc_assert (loc != cfa_base_rtx);
5922 if ((GET_CODE (expr) == CLOBBER && type != MO_VAL_SET)
5923 || !(track_p = use_type (loc, NULL, &mode2) == MO_USE)
5924 || GET_CODE (expr) == CLOBBER)
5925 {
5926 mo.type = MO_CLOBBER;
5927 mo.u.loc = loc;
5928 if (GET_CODE (expr) == SET
5929 && SET_DEST (expr) == loc
5930 && !unsuitable_loc (SET_SRC (expr))
5931 && find_use_val (loc, mode, cui))
5932 {
5933 gcc_checking_assert (type == MO_VAL_SET);
5934 mo.u.loc = gen_rtx_SET (loc, SET_SRC (expr));
5935 }
5936 }
5937 else
5938 {
5939 if (GET_CODE (expr) == SET
5940 && SET_DEST (expr) == loc
5941 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
5942 src = var_lowpart (mode2, SET_SRC (expr));
5943 loc = var_lowpart (mode2, loc);
5944
5945 if (src == NULL)
5946 {
5947 mo.type = MO_SET;
5948 mo.u.loc = loc;
5949 }
5950 else
5951 {
5952 rtx xexpr = gen_rtx_SET (loc, src);
5953 if (same_variable_part_p (src, REG_EXPR (loc), REG_OFFSET (loc)))
5954 {
5955 /* If this is an instruction copying (part of) a parameter
5956 passed by invisible reference to its register location,
5957 pretend it's a SET so that the initial memory location
5958 is discarded, as the parameter register can be reused
5959 for other purposes and we do not track locations based
5960 on generic registers. */
5961 if (MEM_P (src)
5962 && REG_EXPR (loc)
5963 && TREE_CODE (REG_EXPR (loc)) == PARM_DECL
5964 && DECL_MODE (REG_EXPR (loc)) != BLKmode
5965 && MEM_P (DECL_INCOMING_RTL (REG_EXPR (loc)))
5966 && XEXP (DECL_INCOMING_RTL (REG_EXPR (loc)), 0)
5967 != arg_pointer_rtx)
5968 mo.type = MO_SET;
5969 else
5970 mo.type = MO_COPY;
5971 }
5972 else
5973 mo.type = MO_SET;
5974 mo.u.loc = xexpr;
5975 }
5976 }
5977 mo.insn = cui->insn;
5978 }
5979 else if (MEM_P (loc)
5980 && ((track_p = use_type (loc, NULL, &mode2) == MO_USE)
5981 || cui->sets))
5982 {
5983 if (MEM_P (loc) && type == MO_VAL_SET
5984 && !REG_P (XEXP (loc, 0))
5985 && !MEM_P (XEXP (loc, 0)))
5986 {
5987 rtx mloc = loc;
5988 machine_mode address_mode = get_address_mode (mloc);
5989 cselib_val *val = cselib_lookup (XEXP (mloc, 0),
5990 address_mode, 0,
5991 GET_MODE (mloc));
5992
5993 if (val && !cselib_preserved_value_p (val))
5994 preserve_value (val);
5995 }
5996
5997 if (GET_CODE (expr) == CLOBBER || !track_p)
5998 {
5999 mo.type = MO_CLOBBER;
6000 mo.u.loc = track_p ? var_lowpart (mode2, loc) : loc;
6001 }
6002 else
6003 {
6004 if (GET_CODE (expr) == SET
6005 && SET_DEST (expr) == loc
6006 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
6007 src = var_lowpart (mode2, SET_SRC (expr));
6008 loc = var_lowpart (mode2, loc);
6009
6010 if (src == NULL)
6011 {
6012 mo.type = MO_SET;
6013 mo.u.loc = loc;
6014 }
6015 else
6016 {
6017 rtx xexpr = gen_rtx_SET (loc, src);
6018 if (same_variable_part_p (SET_SRC (xexpr),
6019 MEM_EXPR (loc),
6020 INT_MEM_OFFSET (loc)))
6021 mo.type = MO_COPY;
6022 else
6023 mo.type = MO_SET;
6024 mo.u.loc = xexpr;
6025 }
6026 }
6027 mo.insn = cui->insn;
6028 }
6029 else
6030 return;
6031
6032 if (type != MO_VAL_SET)
6033 goto log_and_return;
6034
6035 v = find_use_val (oloc, mode, cui);
6036
6037 if (!v)
6038 goto log_and_return;
6039
6040 resolve = preserve = !cselib_preserved_value_p (v);
6041
6042 /* We cannot track values for multiple-part variables, so we track only
6043 locations for tracked record parameters. */
6044 if (track_p
6045 && REG_P (loc)
6046 && REG_EXPR (loc)
6047 && tracked_record_parameter_p (REG_EXPR (loc)))
6048 {
6049 /* Although we don't use the value here, it could be used later by the
6050 mere virtue of its existence as the operand of the reverse operation
6051 that gave rise to it (typically extension/truncation). Make sure it
6052 is preserved as required by vt_expand_var_loc_chain. */
6053 if (preserve)
6054 preserve_value (v);
6055 goto log_and_return;
6056 }
6057
6058 if (loc == stack_pointer_rtx
6059 && hard_frame_pointer_adjustment != -1
6060 && preserve)
6061 cselib_set_value_sp_based (v);
6062
6063 nloc = replace_expr_with_values (oloc);
6064 if (nloc)
6065 oloc = nloc;
6066
6067 if (GET_CODE (PATTERN (cui->insn)) == COND_EXEC)
6068 {
6069 cselib_val *oval = cselib_lookup (oloc, GET_MODE (oloc), 0, VOIDmode);
6070
6071 if (oval == v)
6072 return;
6073 gcc_assert (REG_P (oloc) || MEM_P (oloc));
6074
6075 if (oval && !cselib_preserved_value_p (oval))
6076 {
6077 micro_operation moa;
6078
6079 preserve_value (oval);
6080
6081 moa.type = MO_VAL_USE;
6082 moa.u.loc = gen_rtx_CONCAT (mode, oval->val_rtx, oloc);
6083 VAL_NEEDS_RESOLUTION (moa.u.loc) = 1;
6084 moa.insn = cui->insn;
6085
6086 if (dump_file && (dump_flags & TDF_DETAILS))
6087 log_op_type (moa.u.loc, cui->bb, cui->insn,
6088 moa.type, dump_file);
6089 VTI (bb)->mos.safe_push (moa);
6090 }
6091
6092 resolve = false;
6093 }
6094 else if (resolve && GET_CODE (mo.u.loc) == SET)
6095 {
6096 if (REG_P (SET_SRC (expr)) || MEM_P (SET_SRC (expr)))
6097 nloc = replace_expr_with_values (SET_SRC (expr));
6098 else
6099 nloc = NULL_RTX;
6100
6101 /* Avoid the mode mismatch between oexpr and expr. */
6102 if (!nloc && mode != mode2)
6103 {
6104 nloc = SET_SRC (expr);
6105 gcc_assert (oloc == SET_DEST (expr));
6106 }
6107
6108 if (nloc && nloc != SET_SRC (mo.u.loc))
6109 oloc = gen_rtx_SET (oloc, nloc);
6110 else
6111 {
6112 if (oloc == SET_DEST (mo.u.loc))
6113 /* No point in duplicating. */
6114 oloc = mo.u.loc;
6115 if (!REG_P (SET_SRC (mo.u.loc)))
6116 resolve = false;
6117 }
6118 }
6119 else if (!resolve)
6120 {
6121 if (GET_CODE (mo.u.loc) == SET
6122 && oloc == SET_DEST (mo.u.loc))
6123 /* No point in duplicating. */
6124 oloc = mo.u.loc;
6125 }
6126 else
6127 resolve = false;
6128
6129 loc = gen_rtx_CONCAT (mode, v->val_rtx, oloc);
6130
6131 if (mo.u.loc != oloc)
6132 loc = gen_rtx_CONCAT (GET_MODE (mo.u.loc), loc, mo.u.loc);
6133
6134 /* The loc of a MO_VAL_SET may have various forms:
6135
6136 (concat val dst): dst now holds val
6137
6138 (concat val (set dst src)): dst now holds val, copied from src
6139
6140 (concat (concat val dstv) dst): dst now holds val; dstv is dst
6141 after replacing mems and non-top-level regs with values.
6142
6143 (concat (concat val dstv) (set dst src)): dst now holds val,
6144 copied from src. dstv is a value-based representation of dst, if
6145 it differs from dst. If resolution is needed, src is a REG, and
6146 its mode is the same as that of val.
6147
6148 (concat (concat val (set dstv srcv)) (set dst src)): src
6149 copied to dst, holding val. dstv and srcv are value-based
6150 representations of dst and src, respectively.
6151
6152 */
6153
6154 if (GET_CODE (PATTERN (cui->insn)) != COND_EXEC)
6155 reverse_op (v->val_rtx, expr, cui->insn);
6156
6157 mo.u.loc = loc;
6158
6159 if (track_p)
6160 VAL_HOLDS_TRACK_EXPR (loc) = 1;
6161 if (preserve)
6162 {
6163 VAL_NEEDS_RESOLUTION (loc) = resolve;
6164 preserve_value (v);
6165 }
6166 if (mo.type == MO_CLOBBER)
6167 VAL_EXPR_IS_CLOBBERED (loc) = 1;
6168 if (mo.type == MO_COPY)
6169 VAL_EXPR_IS_COPIED (loc) = 1;
6170
6171 mo.type = MO_VAL_SET;
6172
6173 log_and_return:
6174 if (dump_file && (dump_flags & TDF_DETAILS))
6175 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
6176 VTI (bb)->mos.safe_push (mo);
6177 }
6178
6179 /* Arguments to the call. */
6180 static rtx call_arguments;
6181
6182 /* Compute call_arguments. */
6183
6184 static void
6185 prepare_call_arguments (basic_block bb, rtx_insn *insn)
6186 {
6187 rtx link, x, call;
6188 rtx prev, cur, next;
6189 rtx this_arg = NULL_RTX;
6190 tree type = NULL_TREE, t, fndecl = NULL_TREE;
6191 tree obj_type_ref = NULL_TREE;
6192 CUMULATIVE_ARGS args_so_far_v;
6193 cumulative_args_t args_so_far;
6194
6195 memset (&args_so_far_v, 0, sizeof (args_so_far_v));
6196 args_so_far = pack_cumulative_args (&args_so_far_v);
6197 call = get_call_rtx_from (insn);
6198 if (call)
6199 {
6200 if (GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
6201 {
6202 rtx symbol = XEXP (XEXP (call, 0), 0);
6203 if (SYMBOL_REF_DECL (symbol))
6204 fndecl = SYMBOL_REF_DECL (symbol);
6205 }
6206 if (fndecl == NULL_TREE)
6207 fndecl = MEM_EXPR (XEXP (call, 0));
6208 if (fndecl
6209 && TREE_CODE (TREE_TYPE (fndecl)) != FUNCTION_TYPE
6210 && TREE_CODE (TREE_TYPE (fndecl)) != METHOD_TYPE)
6211 fndecl = NULL_TREE;
6212 if (fndecl && TYPE_ARG_TYPES (TREE_TYPE (fndecl)))
6213 type = TREE_TYPE (fndecl);
6214 if (fndecl && TREE_CODE (fndecl) != FUNCTION_DECL)
6215 {
6216 if (TREE_CODE (fndecl) == INDIRECT_REF
6217 && TREE_CODE (TREE_OPERAND (fndecl, 0)) == OBJ_TYPE_REF)
6218 obj_type_ref = TREE_OPERAND (fndecl, 0);
6219 fndecl = NULL_TREE;
6220 }
6221 if (type)
6222 {
6223 for (t = TYPE_ARG_TYPES (type); t && t != void_list_node;
6224 t = TREE_CHAIN (t))
6225 if (TREE_CODE (TREE_VALUE (t)) == REFERENCE_TYPE
6226 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_VALUE (t))))
6227 break;
6228 if ((t == NULL || t == void_list_node) && obj_type_ref == NULL_TREE)
6229 type = NULL;
6230 else
6231 {
6232 int nargs ATTRIBUTE_UNUSED = list_length (TYPE_ARG_TYPES (type));
6233 link = CALL_INSN_FUNCTION_USAGE (insn);
6234 #ifndef PCC_STATIC_STRUCT_RETURN
6235 if (aggregate_value_p (TREE_TYPE (type), type)
6236 && targetm.calls.struct_value_rtx (type, 0) == 0)
6237 {
6238 tree struct_addr = build_pointer_type (TREE_TYPE (type));
6239 machine_mode mode = TYPE_MODE (struct_addr);
6240 rtx reg;
6241 INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
6242 nargs + 1);
6243 reg = targetm.calls.function_arg (args_so_far, mode,
6244 struct_addr, true);
6245 targetm.calls.function_arg_advance (args_so_far, mode,
6246 struct_addr, true);
6247 if (reg == NULL_RTX)
6248 {
6249 for (; link; link = XEXP (link, 1))
6250 if (GET_CODE (XEXP (link, 0)) == USE
6251 && MEM_P (XEXP (XEXP (link, 0), 0)))
6252 {
6253 link = XEXP (link, 1);
6254 break;
6255 }
6256 }
6257 }
6258 else
6259 #endif
6260 INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
6261 nargs);
6262 if (obj_type_ref && TYPE_ARG_TYPES (type) != void_list_node)
6263 {
6264 machine_mode mode;
6265 t = TYPE_ARG_TYPES (type);
6266 mode = TYPE_MODE (TREE_VALUE (t));
6267 this_arg = targetm.calls.function_arg (args_so_far, mode,
6268 TREE_VALUE (t), true);
6269 if (this_arg && !REG_P (this_arg))
6270 this_arg = NULL_RTX;
6271 else if (this_arg == NULL_RTX)
6272 {
6273 for (; link; link = XEXP (link, 1))
6274 if (GET_CODE (XEXP (link, 0)) == USE
6275 && MEM_P (XEXP (XEXP (link, 0), 0)))
6276 {
6277 this_arg = XEXP (XEXP (link, 0), 0);
6278 break;
6279 }
6280 }
6281 }
6282 }
6283 }
6284 }
6285 t = type ? TYPE_ARG_TYPES (type) : NULL_TREE;
6286
6287 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
6288 if (GET_CODE (XEXP (link, 0)) == USE)
6289 {
6290 rtx item = NULL_RTX;
6291 x = XEXP (XEXP (link, 0), 0);
6292 if (GET_MODE (link) == VOIDmode
6293 || GET_MODE (link) == BLKmode
6294 || (GET_MODE (link) != GET_MODE (x)
6295 && ((GET_MODE_CLASS (GET_MODE (link)) != MODE_INT
6296 && GET_MODE_CLASS (GET_MODE (link)) != MODE_PARTIAL_INT)
6297 || (GET_MODE_CLASS (GET_MODE (x)) != MODE_INT
6298 && GET_MODE_CLASS (GET_MODE (x)) != MODE_PARTIAL_INT))))
6299 /* Can't do anything for these, if the original type mode
6300 isn't known or can't be converted. */;
6301 else if (REG_P (x))
6302 {
6303 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
6304 if (val && cselib_preserved_value_p (val))
6305 item = val->val_rtx;
6306 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
6307 || GET_MODE_CLASS (GET_MODE (x)) == MODE_PARTIAL_INT)
6308 {
6309 machine_mode mode = GET_MODE (x);
6310
6311 while ((mode = GET_MODE_WIDER_MODE (mode)) != VOIDmode
6312 && GET_MODE_BITSIZE (mode) <= BITS_PER_WORD)
6313 {
6314 rtx reg = simplify_subreg (mode, x, GET_MODE (x), 0);
6315
6316 if (reg == NULL_RTX || !REG_P (reg))
6317 continue;
6318 val = cselib_lookup (reg, mode, 0, VOIDmode);
6319 if (val && cselib_preserved_value_p (val))
6320 {
6321 item = val->val_rtx;
6322 break;
6323 }
6324 }
6325 }
6326 }
6327 else if (MEM_P (x))
6328 {
6329 rtx mem = x;
6330 cselib_val *val;
6331
6332 if (!frame_pointer_needed)
6333 {
6334 struct adjust_mem_data amd;
6335 amd.mem_mode = VOIDmode;
6336 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
6337 amd.store = true;
6338 mem = simplify_replace_fn_rtx (mem, NULL_RTX, adjust_mems,
6339 &amd);
6340 gcc_assert (amd.side_effects.is_empty ());
6341 }
6342 val = cselib_lookup (mem, GET_MODE (mem), 0, VOIDmode);
6343 if (val && cselib_preserved_value_p (val))
6344 item = val->val_rtx;
6345 else if (GET_MODE_CLASS (GET_MODE (mem)) != MODE_INT
6346 && GET_MODE_CLASS (GET_MODE (mem)) != MODE_PARTIAL_INT)
6347 {
6348 /* For non-integer stack argument see also if they weren't
6349 initialized by integers. */
6350 machine_mode imode = int_mode_for_mode (GET_MODE (mem));
6351 if (imode != GET_MODE (mem) && imode != BLKmode)
6352 {
6353 val = cselib_lookup (adjust_address_nv (mem, imode, 0),
6354 imode, 0, VOIDmode);
6355 if (val && cselib_preserved_value_p (val))
6356 item = lowpart_subreg (GET_MODE (x), val->val_rtx,
6357 imode);
6358 }
6359 }
6360 }
6361 if (item)
6362 {
6363 rtx x2 = x;
6364 if (GET_MODE (item) != GET_MODE (link))
6365 item = lowpart_subreg (GET_MODE (link), item, GET_MODE (item));
6366 if (GET_MODE (x2) != GET_MODE (link))
6367 x2 = lowpart_subreg (GET_MODE (link), x2, GET_MODE (x2));
6368 item = gen_rtx_CONCAT (GET_MODE (link), x2, item);
6369 call_arguments
6370 = gen_rtx_EXPR_LIST (VOIDmode, item, call_arguments);
6371 }
6372 if (t && t != void_list_node)
6373 {
6374 tree argtype = TREE_VALUE (t);
6375 machine_mode mode = TYPE_MODE (argtype);
6376 rtx reg;
6377 if (pass_by_reference (&args_so_far_v, mode, argtype, true))
6378 {
6379 argtype = build_pointer_type (argtype);
6380 mode = TYPE_MODE (argtype);
6381 }
6382 reg = targetm.calls.function_arg (args_so_far, mode,
6383 argtype, true);
6384 if (TREE_CODE (argtype) == REFERENCE_TYPE
6385 && INTEGRAL_TYPE_P (TREE_TYPE (argtype))
6386 && reg
6387 && REG_P (reg)
6388 && GET_MODE (reg) == mode
6389 && (GET_MODE_CLASS (mode) == MODE_INT
6390 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
6391 && REG_P (x)
6392 && REGNO (x) == REGNO (reg)
6393 && GET_MODE (x) == mode
6394 && item)
6395 {
6396 machine_mode indmode
6397 = TYPE_MODE (TREE_TYPE (argtype));
6398 rtx mem = gen_rtx_MEM (indmode, x);
6399 cselib_val *val = cselib_lookup (mem, indmode, 0, VOIDmode);
6400 if (val && cselib_preserved_value_p (val))
6401 {
6402 item = gen_rtx_CONCAT (indmode, mem, val->val_rtx);
6403 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
6404 call_arguments);
6405 }
6406 else
6407 {
6408 struct elt_loc_list *l;
6409 tree initial;
6410
6411 /* Try harder, when passing address of a constant
6412 pool integer it can be easily read back. */
6413 item = XEXP (item, 1);
6414 if (GET_CODE (item) == SUBREG)
6415 item = SUBREG_REG (item);
6416 gcc_assert (GET_CODE (item) == VALUE);
6417 val = CSELIB_VAL_PTR (item);
6418 for (l = val->locs; l; l = l->next)
6419 if (GET_CODE (l->loc) == SYMBOL_REF
6420 && TREE_CONSTANT_POOL_ADDRESS_P (l->loc)
6421 && SYMBOL_REF_DECL (l->loc)
6422 && DECL_INITIAL (SYMBOL_REF_DECL (l->loc)))
6423 {
6424 initial = DECL_INITIAL (SYMBOL_REF_DECL (l->loc));
6425 if (tree_fits_shwi_p (initial))
6426 {
6427 item = GEN_INT (tree_to_shwi (initial));
6428 item = gen_rtx_CONCAT (indmode, mem, item);
6429 call_arguments
6430 = gen_rtx_EXPR_LIST (VOIDmode, item,
6431 call_arguments);
6432 }
6433 break;
6434 }
6435 }
6436 }
6437 targetm.calls.function_arg_advance (args_so_far, mode,
6438 argtype, true);
6439 t = TREE_CHAIN (t);
6440 }
6441 }
6442
6443 /* Add debug arguments. */
6444 if (fndecl
6445 && TREE_CODE (fndecl) == FUNCTION_DECL
6446 && DECL_HAS_DEBUG_ARGS_P (fndecl))
6447 {
6448 vec<tree, va_gc> **debug_args = decl_debug_args_lookup (fndecl);
6449 if (debug_args)
6450 {
6451 unsigned int ix;
6452 tree param;
6453 for (ix = 0; vec_safe_iterate (*debug_args, ix, &param); ix += 2)
6454 {
6455 rtx item;
6456 tree dtemp = (**debug_args)[ix + 1];
6457 machine_mode mode = DECL_MODE (dtemp);
6458 item = gen_rtx_DEBUG_PARAMETER_REF (mode, param);
6459 item = gen_rtx_CONCAT (mode, item, DECL_RTL_KNOWN_SET (dtemp));
6460 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
6461 call_arguments);
6462 }
6463 }
6464 }
6465
6466 /* Reverse call_arguments chain. */
6467 prev = NULL_RTX;
6468 for (cur = call_arguments; cur; cur = next)
6469 {
6470 next = XEXP (cur, 1);
6471 XEXP (cur, 1) = prev;
6472 prev = cur;
6473 }
6474 call_arguments = prev;
6475
6476 x = get_call_rtx_from (insn);
6477 if (x)
6478 {
6479 x = XEXP (XEXP (x, 0), 0);
6480 if (GET_CODE (x) == SYMBOL_REF)
6481 /* Don't record anything. */;
6482 else if (CONSTANT_P (x))
6483 {
6484 x = gen_rtx_CONCAT (GET_MODE (x) == VOIDmode ? Pmode : GET_MODE (x),
6485 pc_rtx, x);
6486 call_arguments
6487 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6488 }
6489 else
6490 {
6491 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
6492 if (val && cselib_preserved_value_p (val))
6493 {
6494 x = gen_rtx_CONCAT (GET_MODE (x), pc_rtx, val->val_rtx);
6495 call_arguments
6496 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6497 }
6498 }
6499 }
6500 if (this_arg)
6501 {
6502 machine_mode mode
6503 = TYPE_MODE (TREE_TYPE (OBJ_TYPE_REF_EXPR (obj_type_ref)));
6504 rtx clobbered = gen_rtx_MEM (mode, this_arg);
6505 HOST_WIDE_INT token
6506 = tree_to_shwi (OBJ_TYPE_REF_TOKEN (obj_type_ref));
6507 if (token)
6508 clobbered = plus_constant (mode, clobbered,
6509 token * GET_MODE_SIZE (mode));
6510 clobbered = gen_rtx_MEM (mode, clobbered);
6511 x = gen_rtx_CONCAT (mode, gen_rtx_CLOBBER (VOIDmode, pc_rtx), clobbered);
6512 call_arguments
6513 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6514 }
6515 }
6516
6517 /* Callback for cselib_record_sets_hook, that records as micro
6518 operations uses and stores in an insn after cselib_record_sets has
6519 analyzed the sets in an insn, but before it modifies the stored
6520 values in the internal tables, unless cselib_record_sets doesn't
6521 call it directly (perhaps because we're not doing cselib in the
6522 first place, in which case sets and n_sets will be 0). */
6523
6524 static void
6525 add_with_sets (rtx_insn *insn, struct cselib_set *sets, int n_sets)
6526 {
6527 basic_block bb = BLOCK_FOR_INSN (insn);
6528 int n1, n2;
6529 struct count_use_info cui;
6530 micro_operation *mos;
6531
6532 cselib_hook_called = true;
6533
6534 cui.insn = insn;
6535 cui.bb = bb;
6536 cui.sets = sets;
6537 cui.n_sets = n_sets;
6538
6539 n1 = VTI (bb)->mos.length ();
6540 cui.store_p = false;
6541 note_uses (&PATTERN (insn), add_uses_1, &cui);
6542 n2 = VTI (bb)->mos.length () - 1;
6543 mos = VTI (bb)->mos.address ();
6544
6545 /* Order the MO_USEs to be before MO_USE_NO_VARs and MO_VAL_USE, and
6546 MO_VAL_LOC last. */
6547 while (n1 < n2)
6548 {
6549 while (n1 < n2 && mos[n1].type == MO_USE)
6550 n1++;
6551 while (n1 < n2 && mos[n2].type != MO_USE)
6552 n2--;
6553 if (n1 < n2)
6554 std::swap (mos[n1], mos[n2]);
6555 }
6556
6557 n2 = VTI (bb)->mos.length () - 1;
6558 while (n1 < n2)
6559 {
6560 while (n1 < n2 && mos[n1].type != MO_VAL_LOC)
6561 n1++;
6562 while (n1 < n2 && mos[n2].type == MO_VAL_LOC)
6563 n2--;
6564 if (n1 < n2)
6565 std::swap (mos[n1], mos[n2]);
6566 }
6567
6568 if (CALL_P (insn))
6569 {
6570 micro_operation mo;
6571
6572 mo.type = MO_CALL;
6573 mo.insn = insn;
6574 mo.u.loc = call_arguments;
6575 call_arguments = NULL_RTX;
6576
6577 if (dump_file && (dump_flags & TDF_DETAILS))
6578 log_op_type (PATTERN (insn), bb, insn, mo.type, dump_file);
6579 VTI (bb)->mos.safe_push (mo);
6580 }
6581
6582 n1 = VTI (bb)->mos.length ();
6583 /* This will record NEXT_INSN (insn), such that we can
6584 insert notes before it without worrying about any
6585 notes that MO_USEs might emit after the insn. */
6586 cui.store_p = true;
6587 note_stores (PATTERN (insn), add_stores, &cui);
6588 n2 = VTI (bb)->mos.length () - 1;
6589 mos = VTI (bb)->mos.address ();
6590
6591 /* Order the MO_VAL_USEs first (note_stores does nothing
6592 on DEBUG_INSNs, so there are no MO_VAL_LOCs from this
6593 insn), then MO_CLOBBERs, then MO_SET/MO_COPY/MO_VAL_SET. */
6594 while (n1 < n2)
6595 {
6596 while (n1 < n2 && mos[n1].type == MO_VAL_USE)
6597 n1++;
6598 while (n1 < n2 && mos[n2].type != MO_VAL_USE)
6599 n2--;
6600 if (n1 < n2)
6601 std::swap (mos[n1], mos[n2]);
6602 }
6603
6604 n2 = VTI (bb)->mos.length () - 1;
6605 while (n1 < n2)
6606 {
6607 while (n1 < n2 && mos[n1].type == MO_CLOBBER)
6608 n1++;
6609 while (n1 < n2 && mos[n2].type != MO_CLOBBER)
6610 n2--;
6611 if (n1 < n2)
6612 std::swap (mos[n1], mos[n2]);
6613 }
6614 }
6615
6616 static enum var_init_status
6617 find_src_status (dataflow_set *in, rtx src)
6618 {
6619 tree decl = NULL_TREE;
6620 enum var_init_status status = VAR_INIT_STATUS_UNINITIALIZED;
6621
6622 if (! flag_var_tracking_uninit)
6623 status = VAR_INIT_STATUS_INITIALIZED;
6624
6625 if (src && REG_P (src))
6626 decl = var_debug_decl (REG_EXPR (src));
6627 else if (src && MEM_P (src))
6628 decl = var_debug_decl (MEM_EXPR (src));
6629
6630 if (src && decl)
6631 status = get_init_value (in, src, dv_from_decl (decl));
6632
6633 return status;
6634 }
6635
6636 /* SRC is the source of an assignment. Use SET to try to find what
6637 was ultimately assigned to SRC. Return that value if known,
6638 otherwise return SRC itself. */
6639
6640 static rtx
6641 find_src_set_src (dataflow_set *set, rtx src)
6642 {
6643 tree decl = NULL_TREE; /* The variable being copied around. */
6644 rtx set_src = NULL_RTX; /* The value for "decl" stored in "src". */
6645 variable *var;
6646 location_chain *nextp;
6647 int i;
6648 bool found;
6649
6650 if (src && REG_P (src))
6651 decl = var_debug_decl (REG_EXPR (src));
6652 else if (src && MEM_P (src))
6653 decl = var_debug_decl (MEM_EXPR (src));
6654
6655 if (src && decl)
6656 {
6657 decl_or_value dv = dv_from_decl (decl);
6658
6659 var = shared_hash_find (set->vars, dv);
6660 if (var)
6661 {
6662 found = false;
6663 for (i = 0; i < var->n_var_parts && !found; i++)
6664 for (nextp = var->var_part[i].loc_chain; nextp && !found;
6665 nextp = nextp->next)
6666 if (rtx_equal_p (nextp->loc, src))
6667 {
6668 set_src = nextp->set_src;
6669 found = true;
6670 }
6671
6672 }
6673 }
6674
6675 return set_src;
6676 }
6677
6678 /* Compute the changes of variable locations in the basic block BB. */
6679
6680 static bool
6681 compute_bb_dataflow (basic_block bb)
6682 {
6683 unsigned int i;
6684 micro_operation *mo;
6685 bool changed;
6686 dataflow_set old_out;
6687 dataflow_set *in = &VTI (bb)->in;
6688 dataflow_set *out = &VTI (bb)->out;
6689
6690 dataflow_set_init (&old_out);
6691 dataflow_set_copy (&old_out, out);
6692 dataflow_set_copy (out, in);
6693
6694 if (MAY_HAVE_DEBUG_INSNS)
6695 local_get_addr_cache = new hash_map<rtx, rtx>;
6696
6697 FOR_EACH_VEC_ELT (VTI (bb)->mos, i, mo)
6698 {
6699 rtx_insn *insn = mo->insn;
6700
6701 switch (mo->type)
6702 {
6703 case MO_CALL:
6704 dataflow_set_clear_at_call (out, insn);
6705 break;
6706
6707 case MO_USE:
6708 {
6709 rtx loc = mo->u.loc;
6710
6711 if (REG_P (loc))
6712 var_reg_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6713 else if (MEM_P (loc))
6714 var_mem_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6715 }
6716 break;
6717
6718 case MO_VAL_LOC:
6719 {
6720 rtx loc = mo->u.loc;
6721 rtx val, vloc;
6722 tree var;
6723
6724 if (GET_CODE (loc) == CONCAT)
6725 {
6726 val = XEXP (loc, 0);
6727 vloc = XEXP (loc, 1);
6728 }
6729 else
6730 {
6731 val = NULL_RTX;
6732 vloc = loc;
6733 }
6734
6735 var = PAT_VAR_LOCATION_DECL (vloc);
6736
6737 clobber_variable_part (out, NULL_RTX,
6738 dv_from_decl (var), 0, NULL_RTX);
6739 if (val)
6740 {
6741 if (VAL_NEEDS_RESOLUTION (loc))
6742 val_resolve (out, val, PAT_VAR_LOCATION_LOC (vloc), insn);
6743 set_variable_part (out, val, dv_from_decl (var), 0,
6744 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6745 INSERT);
6746 }
6747 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
6748 set_variable_part (out, PAT_VAR_LOCATION_LOC (vloc),
6749 dv_from_decl (var), 0,
6750 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6751 INSERT);
6752 }
6753 break;
6754
6755 case MO_VAL_USE:
6756 {
6757 rtx loc = mo->u.loc;
6758 rtx val, vloc, uloc;
6759
6760 vloc = uloc = XEXP (loc, 1);
6761 val = XEXP (loc, 0);
6762
6763 if (GET_CODE (val) == CONCAT)
6764 {
6765 uloc = XEXP (val, 1);
6766 val = XEXP (val, 0);
6767 }
6768
6769 if (VAL_NEEDS_RESOLUTION (loc))
6770 val_resolve (out, val, vloc, insn);
6771 else
6772 val_store (out, val, uloc, insn, false);
6773
6774 if (VAL_HOLDS_TRACK_EXPR (loc))
6775 {
6776 if (GET_CODE (uloc) == REG)
6777 var_reg_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6778 NULL);
6779 else if (GET_CODE (uloc) == MEM)
6780 var_mem_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6781 NULL);
6782 }
6783 }
6784 break;
6785
6786 case MO_VAL_SET:
6787 {
6788 rtx loc = mo->u.loc;
6789 rtx val, vloc, uloc;
6790 rtx dstv, srcv;
6791
6792 vloc = loc;
6793 uloc = XEXP (vloc, 1);
6794 val = XEXP (vloc, 0);
6795 vloc = uloc;
6796
6797 if (GET_CODE (uloc) == SET)
6798 {
6799 dstv = SET_DEST (uloc);
6800 srcv = SET_SRC (uloc);
6801 }
6802 else
6803 {
6804 dstv = uloc;
6805 srcv = NULL;
6806 }
6807
6808 if (GET_CODE (val) == CONCAT)
6809 {
6810 dstv = vloc = XEXP (val, 1);
6811 val = XEXP (val, 0);
6812 }
6813
6814 if (GET_CODE (vloc) == SET)
6815 {
6816 srcv = SET_SRC (vloc);
6817
6818 gcc_assert (val != srcv);
6819 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
6820
6821 dstv = vloc = SET_DEST (vloc);
6822
6823 if (VAL_NEEDS_RESOLUTION (loc))
6824 val_resolve (out, val, srcv, insn);
6825 }
6826 else if (VAL_NEEDS_RESOLUTION (loc))
6827 {
6828 gcc_assert (GET_CODE (uloc) == SET
6829 && GET_CODE (SET_SRC (uloc)) == REG);
6830 val_resolve (out, val, SET_SRC (uloc), insn);
6831 }
6832
6833 if (VAL_HOLDS_TRACK_EXPR (loc))
6834 {
6835 if (VAL_EXPR_IS_CLOBBERED (loc))
6836 {
6837 if (REG_P (uloc))
6838 var_reg_delete (out, uloc, true);
6839 else if (MEM_P (uloc))
6840 {
6841 gcc_assert (MEM_P (dstv));
6842 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (uloc));
6843 var_mem_delete (out, dstv, true);
6844 }
6845 }
6846 else
6847 {
6848 bool copied_p = VAL_EXPR_IS_COPIED (loc);
6849 rtx src = NULL, dst = uloc;
6850 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
6851
6852 if (GET_CODE (uloc) == SET)
6853 {
6854 src = SET_SRC (uloc);
6855 dst = SET_DEST (uloc);
6856 }
6857
6858 if (copied_p)
6859 {
6860 if (flag_var_tracking_uninit)
6861 {
6862 status = find_src_status (in, src);
6863
6864 if (status == VAR_INIT_STATUS_UNKNOWN)
6865 status = find_src_status (out, src);
6866 }
6867
6868 src = find_src_set_src (in, src);
6869 }
6870
6871 if (REG_P (dst))
6872 var_reg_delete_and_set (out, dst, !copied_p,
6873 status, srcv);
6874 else if (MEM_P (dst))
6875 {
6876 gcc_assert (MEM_P (dstv));
6877 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (dst));
6878 var_mem_delete_and_set (out, dstv, !copied_p,
6879 status, srcv);
6880 }
6881 }
6882 }
6883 else if (REG_P (uloc))
6884 var_regno_delete (out, REGNO (uloc));
6885 else if (MEM_P (uloc))
6886 {
6887 gcc_checking_assert (GET_CODE (vloc) == MEM);
6888 gcc_checking_assert (dstv == vloc);
6889 if (dstv != vloc)
6890 clobber_overlapping_mems (out, vloc);
6891 }
6892
6893 val_store (out, val, dstv, insn, true);
6894 }
6895 break;
6896
6897 case MO_SET:
6898 {
6899 rtx loc = mo->u.loc;
6900 rtx set_src = NULL;
6901
6902 if (GET_CODE (loc) == SET)
6903 {
6904 set_src = SET_SRC (loc);
6905 loc = SET_DEST (loc);
6906 }
6907
6908 if (REG_P (loc))
6909 var_reg_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6910 set_src);
6911 else if (MEM_P (loc))
6912 var_mem_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6913 set_src);
6914 }
6915 break;
6916
6917 case MO_COPY:
6918 {
6919 rtx loc = mo->u.loc;
6920 enum var_init_status src_status;
6921 rtx set_src = NULL;
6922
6923 if (GET_CODE (loc) == SET)
6924 {
6925 set_src = SET_SRC (loc);
6926 loc = SET_DEST (loc);
6927 }
6928
6929 if (! flag_var_tracking_uninit)
6930 src_status = VAR_INIT_STATUS_INITIALIZED;
6931 else
6932 {
6933 src_status = find_src_status (in, set_src);
6934
6935 if (src_status == VAR_INIT_STATUS_UNKNOWN)
6936 src_status = find_src_status (out, set_src);
6937 }
6938
6939 set_src = find_src_set_src (in, set_src);
6940
6941 if (REG_P (loc))
6942 var_reg_delete_and_set (out, loc, false, src_status, set_src);
6943 else if (MEM_P (loc))
6944 var_mem_delete_and_set (out, loc, false, src_status, set_src);
6945 }
6946 break;
6947
6948 case MO_USE_NO_VAR:
6949 {
6950 rtx loc = mo->u.loc;
6951
6952 if (REG_P (loc))
6953 var_reg_delete (out, loc, false);
6954 else if (MEM_P (loc))
6955 var_mem_delete (out, loc, false);
6956 }
6957 break;
6958
6959 case MO_CLOBBER:
6960 {
6961 rtx loc = mo->u.loc;
6962
6963 if (REG_P (loc))
6964 var_reg_delete (out, loc, true);
6965 else if (MEM_P (loc))
6966 var_mem_delete (out, loc, true);
6967 }
6968 break;
6969
6970 case MO_ADJUST:
6971 out->stack_adjust += mo->u.adjust;
6972 break;
6973 }
6974 }
6975
6976 if (MAY_HAVE_DEBUG_INSNS)
6977 {
6978 delete local_get_addr_cache;
6979 local_get_addr_cache = NULL;
6980
6981 dataflow_set_equiv_regs (out);
6982 shared_hash_htab (out->vars)
6983 ->traverse <dataflow_set *, canonicalize_values_mark> (out);
6984 shared_hash_htab (out->vars)
6985 ->traverse <dataflow_set *, canonicalize_values_star> (out);
6986 if (flag_checking)
6987 shared_hash_htab (out->vars)
6988 ->traverse <dataflow_set *, canonicalize_loc_order_check> (out);
6989 }
6990 changed = dataflow_set_different (&old_out, out);
6991 dataflow_set_destroy (&old_out);
6992 return changed;
6993 }
6994
6995 /* Find the locations of variables in the whole function. */
6996
6997 static bool
6998 vt_find_locations (void)
6999 {
7000 bb_heap_t *worklist = new bb_heap_t (LONG_MIN);
7001 bb_heap_t *pending = new bb_heap_t (LONG_MIN);
7002 sbitmap in_worklist, in_pending;
7003 basic_block bb;
7004 edge e;
7005 int *bb_order;
7006 int *rc_order;
7007 int i;
7008 int htabsz = 0;
7009 int htabmax = PARAM_VALUE (PARAM_MAX_VARTRACK_SIZE);
7010 bool success = true;
7011
7012 timevar_push (TV_VAR_TRACKING_DATAFLOW);
7013 /* Compute reverse completion order of depth first search of the CFG
7014 so that the data-flow runs faster. */
7015 rc_order = XNEWVEC (int, n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS);
7016 bb_order = XNEWVEC (int, last_basic_block_for_fn (cfun));
7017 pre_and_rev_post_order_compute (NULL, rc_order, false);
7018 for (i = 0; i < n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS; i++)
7019 bb_order[rc_order[i]] = i;
7020 free (rc_order);
7021
7022 auto_sbitmap visited (last_basic_block_for_fn (cfun));
7023 in_worklist = sbitmap_alloc (last_basic_block_for_fn (cfun));
7024 in_pending = sbitmap_alloc (last_basic_block_for_fn (cfun));
7025 bitmap_clear (in_worklist);
7026
7027 FOR_EACH_BB_FN (bb, cfun)
7028 pending->insert (bb_order[bb->index], bb);
7029 bitmap_ones (in_pending);
7030
7031 while (success && !pending->empty ())
7032 {
7033 std::swap (worklist, pending);
7034 std::swap (in_worklist, in_pending);
7035
7036 bitmap_clear (visited);
7037
7038 while (!worklist->empty ())
7039 {
7040 bb = worklist->extract_min ();
7041 bitmap_clear_bit (in_worklist, bb->index);
7042 gcc_assert (!bitmap_bit_p (visited, bb->index));
7043 if (!bitmap_bit_p (visited, bb->index))
7044 {
7045 bool changed;
7046 edge_iterator ei;
7047 int oldinsz, oldoutsz;
7048
7049 bitmap_set_bit (visited, bb->index);
7050
7051 if (VTI (bb)->in.vars)
7052 {
7053 htabsz
7054 -= shared_hash_htab (VTI (bb)->in.vars)->size ()
7055 + shared_hash_htab (VTI (bb)->out.vars)->size ();
7056 oldinsz = shared_hash_htab (VTI (bb)->in.vars)->elements ();
7057 oldoutsz
7058 = shared_hash_htab (VTI (bb)->out.vars)->elements ();
7059 }
7060 else
7061 oldinsz = oldoutsz = 0;
7062
7063 if (MAY_HAVE_DEBUG_INSNS)
7064 {
7065 dataflow_set *in = &VTI (bb)->in, *first_out = NULL;
7066 bool first = true, adjust = false;
7067
7068 /* Calculate the IN set as the intersection of
7069 predecessor OUT sets. */
7070
7071 dataflow_set_clear (in);
7072 dst_can_be_shared = true;
7073
7074 FOR_EACH_EDGE (e, ei, bb->preds)
7075 if (!VTI (e->src)->flooded)
7076 gcc_assert (bb_order[bb->index]
7077 <= bb_order[e->src->index]);
7078 else if (first)
7079 {
7080 dataflow_set_copy (in, &VTI (e->src)->out);
7081 first_out = &VTI (e->src)->out;
7082 first = false;
7083 }
7084 else
7085 {
7086 dataflow_set_merge (in, &VTI (e->src)->out);
7087 adjust = true;
7088 }
7089
7090 if (adjust)
7091 {
7092 dataflow_post_merge_adjust (in, &VTI (bb)->permp);
7093
7094 if (flag_checking)
7095 /* Merge and merge_adjust should keep entries in
7096 canonical order. */
7097 shared_hash_htab (in->vars)
7098 ->traverse <dataflow_set *,
7099 canonicalize_loc_order_check> (in);
7100
7101 if (dst_can_be_shared)
7102 {
7103 shared_hash_destroy (in->vars);
7104 in->vars = shared_hash_copy (first_out->vars);
7105 }
7106 }
7107
7108 VTI (bb)->flooded = true;
7109 }
7110 else
7111 {
7112 /* Calculate the IN set as union of predecessor OUT sets. */
7113 dataflow_set_clear (&VTI (bb)->in);
7114 FOR_EACH_EDGE (e, ei, bb->preds)
7115 dataflow_set_union (&VTI (bb)->in, &VTI (e->src)->out);
7116 }
7117
7118 changed = compute_bb_dataflow (bb);
7119 htabsz += shared_hash_htab (VTI (bb)->in.vars)->size ()
7120 + shared_hash_htab (VTI (bb)->out.vars)->size ();
7121
7122 if (htabmax && htabsz > htabmax)
7123 {
7124 if (MAY_HAVE_DEBUG_INSNS)
7125 inform (DECL_SOURCE_LOCATION (cfun->decl),
7126 "variable tracking size limit exceeded with "
7127 "-fvar-tracking-assignments, retrying without");
7128 else
7129 inform (DECL_SOURCE_LOCATION (cfun->decl),
7130 "variable tracking size limit exceeded");
7131 success = false;
7132 break;
7133 }
7134
7135 if (changed)
7136 {
7137 FOR_EACH_EDGE (e, ei, bb->succs)
7138 {
7139 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
7140 continue;
7141
7142 if (bitmap_bit_p (visited, e->dest->index))
7143 {
7144 if (!bitmap_bit_p (in_pending, e->dest->index))
7145 {
7146 /* Send E->DEST to next round. */
7147 bitmap_set_bit (in_pending, e->dest->index);
7148 pending->insert (bb_order[e->dest->index],
7149 e->dest);
7150 }
7151 }
7152 else if (!bitmap_bit_p (in_worklist, e->dest->index))
7153 {
7154 /* Add E->DEST to current round. */
7155 bitmap_set_bit (in_worklist, e->dest->index);
7156 worklist->insert (bb_order[e->dest->index],
7157 e->dest);
7158 }
7159 }
7160 }
7161
7162 if (dump_file)
7163 fprintf (dump_file,
7164 "BB %i: in %i (was %i), out %i (was %i), rem %i + %i, tsz %i\n",
7165 bb->index,
7166 (int)shared_hash_htab (VTI (bb)->in.vars)->size (),
7167 oldinsz,
7168 (int)shared_hash_htab (VTI (bb)->out.vars)->size (),
7169 oldoutsz,
7170 (int)worklist->nodes (), (int)pending->nodes (),
7171 htabsz);
7172
7173 if (dump_file && (dump_flags & TDF_DETAILS))
7174 {
7175 fprintf (dump_file, "BB %i IN:\n", bb->index);
7176 dump_dataflow_set (&VTI (bb)->in);
7177 fprintf (dump_file, "BB %i OUT:\n", bb->index);
7178 dump_dataflow_set (&VTI (bb)->out);
7179 }
7180 }
7181 }
7182 }
7183
7184 if (success && MAY_HAVE_DEBUG_INSNS)
7185 FOR_EACH_BB_FN (bb, cfun)
7186 gcc_assert (VTI (bb)->flooded);
7187
7188 free (bb_order);
7189 delete worklist;
7190 delete pending;
7191 sbitmap_free (in_worklist);
7192 sbitmap_free (in_pending);
7193
7194 timevar_pop (TV_VAR_TRACKING_DATAFLOW);
7195 return success;
7196 }
7197
7198 /* Print the content of the LIST to dump file. */
7199
7200 static void
7201 dump_attrs_list (attrs *list)
7202 {
7203 for (; list; list = list->next)
7204 {
7205 if (dv_is_decl_p (list->dv))
7206 print_mem_expr (dump_file, dv_as_decl (list->dv));
7207 else
7208 print_rtl_single (dump_file, dv_as_value (list->dv));
7209 fprintf (dump_file, "+" HOST_WIDE_INT_PRINT_DEC, list->offset);
7210 }
7211 fprintf (dump_file, "\n");
7212 }
7213
7214 /* Print the information about variable *SLOT to dump file. */
7215
7216 int
7217 dump_var_tracking_slot (variable **slot, void *data ATTRIBUTE_UNUSED)
7218 {
7219 variable *var = *slot;
7220
7221 dump_var (var);
7222
7223 /* Continue traversing the hash table. */
7224 return 1;
7225 }
7226
7227 /* Print the information about variable VAR to dump file. */
7228
7229 static void
7230 dump_var (variable *var)
7231 {
7232 int i;
7233 location_chain *node;
7234
7235 if (dv_is_decl_p (var->dv))
7236 {
7237 const_tree decl = dv_as_decl (var->dv);
7238
7239 if (DECL_NAME (decl))
7240 {
7241 fprintf (dump_file, " name: %s",
7242 IDENTIFIER_POINTER (DECL_NAME (decl)));
7243 if (dump_flags & TDF_UID)
7244 fprintf (dump_file, "D.%u", DECL_UID (decl));
7245 }
7246 else if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
7247 fprintf (dump_file, " name: D#%u", DEBUG_TEMP_UID (decl));
7248 else
7249 fprintf (dump_file, " name: D.%u", DECL_UID (decl));
7250 fprintf (dump_file, "\n");
7251 }
7252 else
7253 {
7254 fputc (' ', dump_file);
7255 print_rtl_single (dump_file, dv_as_value (var->dv));
7256 }
7257
7258 for (i = 0; i < var->n_var_parts; i++)
7259 {
7260 fprintf (dump_file, " offset %ld\n",
7261 (long)(var->onepart ? 0 : VAR_PART_OFFSET (var, i)));
7262 for (node = var->var_part[i].loc_chain; node; node = node->next)
7263 {
7264 fprintf (dump_file, " ");
7265 if (node->init == VAR_INIT_STATUS_UNINITIALIZED)
7266 fprintf (dump_file, "[uninit]");
7267 print_rtl_single (dump_file, node->loc);
7268 }
7269 }
7270 }
7271
7272 /* Print the information about variables from hash table VARS to dump file. */
7273
7274 static void
7275 dump_vars (variable_table_type *vars)
7276 {
7277 if (vars->elements () > 0)
7278 {
7279 fprintf (dump_file, "Variables:\n");
7280 vars->traverse <void *, dump_var_tracking_slot> (NULL);
7281 }
7282 }
7283
7284 /* Print the dataflow set SET to dump file. */
7285
7286 static void
7287 dump_dataflow_set (dataflow_set *set)
7288 {
7289 int i;
7290
7291 fprintf (dump_file, "Stack adjustment: " HOST_WIDE_INT_PRINT_DEC "\n",
7292 set->stack_adjust);
7293 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
7294 {
7295 if (set->regs[i])
7296 {
7297 fprintf (dump_file, "Reg %d:", i);
7298 dump_attrs_list (set->regs[i]);
7299 }
7300 }
7301 dump_vars (shared_hash_htab (set->vars));
7302 fprintf (dump_file, "\n");
7303 }
7304
7305 /* Print the IN and OUT sets for each basic block to dump file. */
7306
7307 static void
7308 dump_dataflow_sets (void)
7309 {
7310 basic_block bb;
7311
7312 FOR_EACH_BB_FN (bb, cfun)
7313 {
7314 fprintf (dump_file, "\nBasic block %d:\n", bb->index);
7315 fprintf (dump_file, "IN:\n");
7316 dump_dataflow_set (&VTI (bb)->in);
7317 fprintf (dump_file, "OUT:\n");
7318 dump_dataflow_set (&VTI (bb)->out);
7319 }
7320 }
7321
7322 /* Return the variable for DV in dropped_values, inserting one if
7323 requested with INSERT. */
7324
7325 static inline variable *
7326 variable_from_dropped (decl_or_value dv, enum insert_option insert)
7327 {
7328 variable **slot;
7329 variable *empty_var;
7330 onepart_enum onepart;
7331
7332 slot = dropped_values->find_slot_with_hash (dv, dv_htab_hash (dv), insert);
7333
7334 if (!slot)
7335 return NULL;
7336
7337 if (*slot)
7338 return *slot;
7339
7340 gcc_checking_assert (insert == INSERT);
7341
7342 onepart = dv_onepart_p (dv);
7343
7344 gcc_checking_assert (onepart == ONEPART_VALUE || onepart == ONEPART_DEXPR);
7345
7346 empty_var = onepart_pool_allocate (onepart);
7347 empty_var->dv = dv;
7348 empty_var->refcount = 1;
7349 empty_var->n_var_parts = 0;
7350 empty_var->onepart = onepart;
7351 empty_var->in_changed_variables = false;
7352 empty_var->var_part[0].loc_chain = NULL;
7353 empty_var->var_part[0].cur_loc = NULL;
7354 VAR_LOC_1PAUX (empty_var) = NULL;
7355 set_dv_changed (dv, true);
7356
7357 *slot = empty_var;
7358
7359 return empty_var;
7360 }
7361
7362 /* Recover the one-part aux from dropped_values. */
7363
7364 static struct onepart_aux *
7365 recover_dropped_1paux (variable *var)
7366 {
7367 variable *dvar;
7368
7369 gcc_checking_assert (var->onepart);
7370
7371 if (VAR_LOC_1PAUX (var))
7372 return VAR_LOC_1PAUX (var);
7373
7374 if (var->onepart == ONEPART_VDECL)
7375 return NULL;
7376
7377 dvar = variable_from_dropped (var->dv, NO_INSERT);
7378
7379 if (!dvar)
7380 return NULL;
7381
7382 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (dvar);
7383 VAR_LOC_1PAUX (dvar) = NULL;
7384
7385 return VAR_LOC_1PAUX (var);
7386 }
7387
7388 /* Add variable VAR to the hash table of changed variables and
7389 if it has no locations delete it from SET's hash table. */
7390
7391 static void
7392 variable_was_changed (variable *var, dataflow_set *set)
7393 {
7394 hashval_t hash = dv_htab_hash (var->dv);
7395
7396 if (emit_notes)
7397 {
7398 variable **slot;
7399
7400 /* Remember this decl or VALUE has been added to changed_variables. */
7401 set_dv_changed (var->dv, true);
7402
7403 slot = changed_variables->find_slot_with_hash (var->dv, hash, INSERT);
7404
7405 if (*slot)
7406 {
7407 variable *old_var = *slot;
7408 gcc_assert (old_var->in_changed_variables);
7409 old_var->in_changed_variables = false;
7410 if (var != old_var && var->onepart)
7411 {
7412 /* Restore the auxiliary info from an empty variable
7413 previously created for changed_variables, so it is
7414 not lost. */
7415 gcc_checking_assert (!VAR_LOC_1PAUX (var));
7416 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (old_var);
7417 VAR_LOC_1PAUX (old_var) = NULL;
7418 }
7419 variable_htab_free (*slot);
7420 }
7421
7422 if (set && var->n_var_parts == 0)
7423 {
7424 onepart_enum onepart = var->onepart;
7425 variable *empty_var = NULL;
7426 variable **dslot = NULL;
7427
7428 if (onepart == ONEPART_VALUE || onepart == ONEPART_DEXPR)
7429 {
7430 dslot = dropped_values->find_slot_with_hash (var->dv,
7431 dv_htab_hash (var->dv),
7432 INSERT);
7433 empty_var = *dslot;
7434
7435 if (empty_var)
7436 {
7437 gcc_checking_assert (!empty_var->in_changed_variables);
7438 if (!VAR_LOC_1PAUX (var))
7439 {
7440 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (empty_var);
7441 VAR_LOC_1PAUX (empty_var) = NULL;
7442 }
7443 else
7444 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var));
7445 }
7446 }
7447
7448 if (!empty_var)
7449 {
7450 empty_var = onepart_pool_allocate (onepart);
7451 empty_var->dv = var->dv;
7452 empty_var->refcount = 1;
7453 empty_var->n_var_parts = 0;
7454 empty_var->onepart = onepart;
7455 if (dslot)
7456 {
7457 empty_var->refcount++;
7458 *dslot = empty_var;
7459 }
7460 }
7461 else
7462 empty_var->refcount++;
7463 empty_var->in_changed_variables = true;
7464 *slot = empty_var;
7465 if (onepart)
7466 {
7467 empty_var->var_part[0].loc_chain = NULL;
7468 empty_var->var_part[0].cur_loc = NULL;
7469 VAR_LOC_1PAUX (empty_var) = VAR_LOC_1PAUX (var);
7470 VAR_LOC_1PAUX (var) = NULL;
7471 }
7472 goto drop_var;
7473 }
7474 else
7475 {
7476 if (var->onepart && !VAR_LOC_1PAUX (var))
7477 recover_dropped_1paux (var);
7478 var->refcount++;
7479 var->in_changed_variables = true;
7480 *slot = var;
7481 }
7482 }
7483 else
7484 {
7485 gcc_assert (set);
7486 if (var->n_var_parts == 0)
7487 {
7488 variable **slot;
7489
7490 drop_var:
7491 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
7492 if (slot)
7493 {
7494 if (shared_hash_shared (set->vars))
7495 slot = shared_hash_find_slot_unshare (&set->vars, var->dv,
7496 NO_INSERT);
7497 shared_hash_htab (set->vars)->clear_slot (slot);
7498 }
7499 }
7500 }
7501 }
7502
7503 /* Look for the index in VAR->var_part corresponding to OFFSET.
7504 Return -1 if not found. If INSERTION_POINT is non-NULL, the
7505 referenced int will be set to the index that the part has or should
7506 have, if it should be inserted. */
7507
7508 static inline int
7509 find_variable_location_part (variable *var, HOST_WIDE_INT offset,
7510 int *insertion_point)
7511 {
7512 int pos, low, high;
7513
7514 if (var->onepart)
7515 {
7516 if (offset != 0)
7517 return -1;
7518
7519 if (insertion_point)
7520 *insertion_point = 0;
7521
7522 return var->n_var_parts - 1;
7523 }
7524
7525 /* Find the location part. */
7526 low = 0;
7527 high = var->n_var_parts;
7528 while (low != high)
7529 {
7530 pos = (low + high) / 2;
7531 if (VAR_PART_OFFSET (var, pos) < offset)
7532 low = pos + 1;
7533 else
7534 high = pos;
7535 }
7536 pos = low;
7537
7538 if (insertion_point)
7539 *insertion_point = pos;
7540
7541 if (pos < var->n_var_parts && VAR_PART_OFFSET (var, pos) == offset)
7542 return pos;
7543
7544 return -1;
7545 }
7546
7547 static variable **
7548 set_slot_part (dataflow_set *set, rtx loc, variable **slot,
7549 decl_or_value dv, HOST_WIDE_INT offset,
7550 enum var_init_status initialized, rtx set_src)
7551 {
7552 int pos;
7553 location_chain *node, *next;
7554 location_chain **nextp;
7555 variable *var;
7556 onepart_enum onepart;
7557
7558 var = *slot;
7559
7560 if (var)
7561 onepart = var->onepart;
7562 else
7563 onepart = dv_onepart_p (dv);
7564
7565 gcc_checking_assert (offset == 0 || !onepart);
7566 gcc_checking_assert (loc != dv_as_opaque (dv));
7567
7568 if (! flag_var_tracking_uninit)
7569 initialized = VAR_INIT_STATUS_INITIALIZED;
7570
7571 if (!var)
7572 {
7573 /* Create new variable information. */
7574 var = onepart_pool_allocate (onepart);
7575 var->dv = dv;
7576 var->refcount = 1;
7577 var->n_var_parts = 1;
7578 var->onepart = onepart;
7579 var->in_changed_variables = false;
7580 if (var->onepart)
7581 VAR_LOC_1PAUX (var) = NULL;
7582 else
7583 VAR_PART_OFFSET (var, 0) = offset;
7584 var->var_part[0].loc_chain = NULL;
7585 var->var_part[0].cur_loc = NULL;
7586 *slot = var;
7587 pos = 0;
7588 nextp = &var->var_part[0].loc_chain;
7589 }
7590 else if (onepart)
7591 {
7592 int r = -1, c = 0;
7593
7594 gcc_assert (dv_as_opaque (var->dv) == dv_as_opaque (dv));
7595
7596 pos = 0;
7597
7598 if (GET_CODE (loc) == VALUE)
7599 {
7600 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7601 nextp = &node->next)
7602 if (GET_CODE (node->loc) == VALUE)
7603 {
7604 if (node->loc == loc)
7605 {
7606 r = 0;
7607 break;
7608 }
7609 if (canon_value_cmp (node->loc, loc))
7610 c++;
7611 else
7612 {
7613 r = 1;
7614 break;
7615 }
7616 }
7617 else if (REG_P (node->loc) || MEM_P (node->loc))
7618 c++;
7619 else
7620 {
7621 r = 1;
7622 break;
7623 }
7624 }
7625 else if (REG_P (loc))
7626 {
7627 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7628 nextp = &node->next)
7629 if (REG_P (node->loc))
7630 {
7631 if (REGNO (node->loc) < REGNO (loc))
7632 c++;
7633 else
7634 {
7635 if (REGNO (node->loc) == REGNO (loc))
7636 r = 0;
7637 else
7638 r = 1;
7639 break;
7640 }
7641 }
7642 else
7643 {
7644 r = 1;
7645 break;
7646 }
7647 }
7648 else if (MEM_P (loc))
7649 {
7650 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7651 nextp = &node->next)
7652 if (REG_P (node->loc))
7653 c++;
7654 else if (MEM_P (node->loc))
7655 {
7656 if ((r = loc_cmp (XEXP (node->loc, 0), XEXP (loc, 0))) >= 0)
7657 break;
7658 else
7659 c++;
7660 }
7661 else
7662 {
7663 r = 1;
7664 break;
7665 }
7666 }
7667 else
7668 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7669 nextp = &node->next)
7670 if ((r = loc_cmp (node->loc, loc)) >= 0)
7671 break;
7672 else
7673 c++;
7674
7675 if (r == 0)
7676 return slot;
7677
7678 if (shared_var_p (var, set->vars))
7679 {
7680 slot = unshare_variable (set, slot, var, initialized);
7681 var = *slot;
7682 for (nextp = &var->var_part[0].loc_chain; c;
7683 nextp = &(*nextp)->next)
7684 c--;
7685 gcc_assert ((!node && !*nextp) || node->loc == (*nextp)->loc);
7686 }
7687 }
7688 else
7689 {
7690 int inspos = 0;
7691
7692 gcc_assert (dv_as_decl (var->dv) == dv_as_decl (dv));
7693
7694 pos = find_variable_location_part (var, offset, &inspos);
7695
7696 if (pos >= 0)
7697 {
7698 node = var->var_part[pos].loc_chain;
7699
7700 if (node
7701 && ((REG_P (node->loc) && REG_P (loc)
7702 && REGNO (node->loc) == REGNO (loc))
7703 || rtx_equal_p (node->loc, loc)))
7704 {
7705 /* LOC is in the beginning of the chain so we have nothing
7706 to do. */
7707 if (node->init < initialized)
7708 node->init = initialized;
7709 if (set_src != NULL)
7710 node->set_src = set_src;
7711
7712 return slot;
7713 }
7714 else
7715 {
7716 /* We have to make a copy of a shared variable. */
7717 if (shared_var_p (var, set->vars))
7718 {
7719 slot = unshare_variable (set, slot, var, initialized);
7720 var = *slot;
7721 }
7722 }
7723 }
7724 else
7725 {
7726 /* We have not found the location part, new one will be created. */
7727
7728 /* We have to make a copy of the shared variable. */
7729 if (shared_var_p (var, set->vars))
7730 {
7731 slot = unshare_variable (set, slot, var, initialized);
7732 var = *slot;
7733 }
7734
7735 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
7736 thus there are at most MAX_VAR_PARTS different offsets. */
7737 gcc_assert (var->n_var_parts < MAX_VAR_PARTS
7738 && (!var->n_var_parts || !onepart));
7739
7740 /* We have to move the elements of array starting at index
7741 inspos to the next position. */
7742 for (pos = var->n_var_parts; pos > inspos; pos--)
7743 var->var_part[pos] = var->var_part[pos - 1];
7744
7745 var->n_var_parts++;
7746 gcc_checking_assert (!onepart);
7747 VAR_PART_OFFSET (var, pos) = offset;
7748 var->var_part[pos].loc_chain = NULL;
7749 var->var_part[pos].cur_loc = NULL;
7750 }
7751
7752 /* Delete the location from the list. */
7753 nextp = &var->var_part[pos].loc_chain;
7754 for (node = var->var_part[pos].loc_chain; node; node = next)
7755 {
7756 next = node->next;
7757 if ((REG_P (node->loc) && REG_P (loc)
7758 && REGNO (node->loc) == REGNO (loc))
7759 || rtx_equal_p (node->loc, loc))
7760 {
7761 /* Save these values, to assign to the new node, before
7762 deleting this one. */
7763 if (node->init > initialized)
7764 initialized = node->init;
7765 if (node->set_src != NULL && set_src == NULL)
7766 set_src = node->set_src;
7767 if (var->var_part[pos].cur_loc == node->loc)
7768 var->var_part[pos].cur_loc = NULL;
7769 delete node;
7770 *nextp = next;
7771 break;
7772 }
7773 else
7774 nextp = &node->next;
7775 }
7776
7777 nextp = &var->var_part[pos].loc_chain;
7778 }
7779
7780 /* Add the location to the beginning. */
7781 node = new location_chain;
7782 node->loc = loc;
7783 node->init = initialized;
7784 node->set_src = set_src;
7785 node->next = *nextp;
7786 *nextp = node;
7787
7788 /* If no location was emitted do so. */
7789 if (var->var_part[pos].cur_loc == NULL)
7790 variable_was_changed (var, set);
7791
7792 return slot;
7793 }
7794
7795 /* Set the part of variable's location in the dataflow set SET. The
7796 variable part is specified by variable's declaration in DV and
7797 offset OFFSET and the part's location by LOC. IOPT should be
7798 NO_INSERT if the variable is known to be in SET already and the
7799 variable hash table must not be resized, and INSERT otherwise. */
7800
7801 static void
7802 set_variable_part (dataflow_set *set, rtx loc,
7803 decl_or_value dv, HOST_WIDE_INT offset,
7804 enum var_init_status initialized, rtx set_src,
7805 enum insert_option iopt)
7806 {
7807 variable **slot;
7808
7809 if (iopt == NO_INSERT)
7810 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7811 else
7812 {
7813 slot = shared_hash_find_slot (set->vars, dv);
7814 if (!slot)
7815 slot = shared_hash_find_slot_unshare (&set->vars, dv, iopt);
7816 }
7817 set_slot_part (set, loc, slot, dv, offset, initialized, set_src);
7818 }
7819
7820 /* Remove all recorded register locations for the given variable part
7821 from dataflow set SET, except for those that are identical to loc.
7822 The variable part is specified by variable's declaration or value
7823 DV and offset OFFSET. */
7824
7825 static variable **
7826 clobber_slot_part (dataflow_set *set, rtx loc, variable **slot,
7827 HOST_WIDE_INT offset, rtx set_src)
7828 {
7829 variable *var = *slot;
7830 int pos = find_variable_location_part (var, offset, NULL);
7831
7832 if (pos >= 0)
7833 {
7834 location_chain *node, *next;
7835
7836 /* Remove the register locations from the dataflow set. */
7837 next = var->var_part[pos].loc_chain;
7838 for (node = next; node; node = next)
7839 {
7840 next = node->next;
7841 if (node->loc != loc
7842 && (!flag_var_tracking_uninit
7843 || !set_src
7844 || MEM_P (set_src)
7845 || !rtx_equal_p (set_src, node->set_src)))
7846 {
7847 if (REG_P (node->loc))
7848 {
7849 attrs *anode, *anext;
7850 attrs **anextp;
7851
7852 /* Remove the variable part from the register's
7853 list, but preserve any other variable parts
7854 that might be regarded as live in that same
7855 register. */
7856 anextp = &set->regs[REGNO (node->loc)];
7857 for (anode = *anextp; anode; anode = anext)
7858 {
7859 anext = anode->next;
7860 if (dv_as_opaque (anode->dv) == dv_as_opaque (var->dv)
7861 && anode->offset == offset)
7862 {
7863 delete anode;
7864 *anextp = anext;
7865 }
7866 else
7867 anextp = &anode->next;
7868 }
7869 }
7870
7871 slot = delete_slot_part (set, node->loc, slot, offset);
7872 }
7873 }
7874 }
7875
7876 return slot;
7877 }
7878
7879 /* Remove all recorded register locations for the given variable part
7880 from dataflow set SET, except for those that are identical to loc.
7881 The variable part is specified by variable's declaration or value
7882 DV and offset OFFSET. */
7883
7884 static void
7885 clobber_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
7886 HOST_WIDE_INT offset, rtx set_src)
7887 {
7888 variable **slot;
7889
7890 if (!dv_as_opaque (dv)
7891 || (!dv_is_value_p (dv) && ! DECL_P (dv_as_decl (dv))))
7892 return;
7893
7894 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7895 if (!slot)
7896 return;
7897
7898 clobber_slot_part (set, loc, slot, offset, set_src);
7899 }
7900
7901 /* Delete the part of variable's location from dataflow set SET. The
7902 variable part is specified by its SET->vars slot SLOT and offset
7903 OFFSET and the part's location by LOC. */
7904
7905 static variable **
7906 delete_slot_part (dataflow_set *set, rtx loc, variable **slot,
7907 HOST_WIDE_INT offset)
7908 {
7909 variable *var = *slot;
7910 int pos = find_variable_location_part (var, offset, NULL);
7911
7912 if (pos >= 0)
7913 {
7914 location_chain *node, *next;
7915 location_chain **nextp;
7916 bool changed;
7917 rtx cur_loc;
7918
7919 if (shared_var_p (var, set->vars))
7920 {
7921 /* If the variable contains the location part we have to
7922 make a copy of the variable. */
7923 for (node = var->var_part[pos].loc_chain; node;
7924 node = node->next)
7925 {
7926 if ((REG_P (node->loc) && REG_P (loc)
7927 && REGNO (node->loc) == REGNO (loc))
7928 || rtx_equal_p (node->loc, loc))
7929 {
7930 slot = unshare_variable (set, slot, var,
7931 VAR_INIT_STATUS_UNKNOWN);
7932 var = *slot;
7933 break;
7934 }
7935 }
7936 }
7937
7938 if (pos == 0 && var->onepart && VAR_LOC_1PAUX (var))
7939 cur_loc = VAR_LOC_FROM (var);
7940 else
7941 cur_loc = var->var_part[pos].cur_loc;
7942
7943 /* Delete the location part. */
7944 changed = false;
7945 nextp = &var->var_part[pos].loc_chain;
7946 for (node = *nextp; node; node = next)
7947 {
7948 next = node->next;
7949 if ((REG_P (node->loc) && REG_P (loc)
7950 && REGNO (node->loc) == REGNO (loc))
7951 || rtx_equal_p (node->loc, loc))
7952 {
7953 /* If we have deleted the location which was last emitted
7954 we have to emit new location so add the variable to set
7955 of changed variables. */
7956 if (cur_loc == node->loc)
7957 {
7958 changed = true;
7959 var->var_part[pos].cur_loc = NULL;
7960 if (pos == 0 && var->onepart && VAR_LOC_1PAUX (var))
7961 VAR_LOC_FROM (var) = NULL;
7962 }
7963 delete node;
7964 *nextp = next;
7965 break;
7966 }
7967 else
7968 nextp = &node->next;
7969 }
7970
7971 if (var->var_part[pos].loc_chain == NULL)
7972 {
7973 changed = true;
7974 var->n_var_parts--;
7975 while (pos < var->n_var_parts)
7976 {
7977 var->var_part[pos] = var->var_part[pos + 1];
7978 pos++;
7979 }
7980 }
7981 if (changed)
7982 variable_was_changed (var, set);
7983 }
7984
7985 return slot;
7986 }
7987
7988 /* Delete the part of variable's location from dataflow set SET. The
7989 variable part is specified by variable's declaration or value DV
7990 and offset OFFSET and the part's location by LOC. */
7991
7992 static void
7993 delete_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
7994 HOST_WIDE_INT offset)
7995 {
7996 variable **slot = shared_hash_find_slot_noinsert (set->vars, dv);
7997 if (!slot)
7998 return;
7999
8000 delete_slot_part (set, loc, slot, offset);
8001 }
8002
8003
8004 /* Structure for passing some other parameters to function
8005 vt_expand_loc_callback. */
8006 struct expand_loc_callback_data
8007 {
8008 /* The variables and values active at this point. */
8009 variable_table_type *vars;
8010
8011 /* Stack of values and debug_exprs under expansion, and their
8012 children. */
8013 auto_vec<rtx, 4> expanding;
8014
8015 /* Stack of values and debug_exprs whose expansion hit recursion
8016 cycles. They will have VALUE_RECURSED_INTO marked when added to
8017 this list. This flag will be cleared if any of its dependencies
8018 resolves to a valid location. So, if the flag remains set at the
8019 end of the search, we know no valid location for this one can
8020 possibly exist. */
8021 auto_vec<rtx, 4> pending;
8022
8023 /* The maximum depth among the sub-expressions under expansion.
8024 Zero indicates no expansion so far. */
8025 expand_depth depth;
8026 };
8027
8028 /* Allocate the one-part auxiliary data structure for VAR, with enough
8029 room for COUNT dependencies. */
8030
8031 static void
8032 loc_exp_dep_alloc (variable *var, int count)
8033 {
8034 size_t allocsize;
8035
8036 gcc_checking_assert (var->onepart);
8037
8038 /* We can be called with COUNT == 0 to allocate the data structure
8039 without any dependencies, e.g. for the backlinks only. However,
8040 if we are specifying a COUNT, then the dependency list must have
8041 been emptied before. It would be possible to adjust pointers or
8042 force it empty here, but this is better done at an earlier point
8043 in the algorithm, so we instead leave an assertion to catch
8044 errors. */
8045 gcc_checking_assert (!count
8046 || VAR_LOC_DEP_VEC (var) == NULL
8047 || VAR_LOC_DEP_VEC (var)->is_empty ());
8048
8049 if (VAR_LOC_1PAUX (var) && VAR_LOC_DEP_VEC (var)->space (count))
8050 return;
8051
8052 allocsize = offsetof (struct onepart_aux, deps)
8053 + vec<loc_exp_dep, va_heap, vl_embed>::embedded_size (count);
8054
8055 if (VAR_LOC_1PAUX (var))
8056 {
8057 VAR_LOC_1PAUX (var) = XRESIZEVAR (struct onepart_aux,
8058 VAR_LOC_1PAUX (var), allocsize);
8059 /* If the reallocation moves the onepaux structure, the
8060 back-pointer to BACKLINKS in the first list member will still
8061 point to its old location. Adjust it. */
8062 if (VAR_LOC_DEP_LST (var))
8063 VAR_LOC_DEP_LST (var)->pprev = VAR_LOC_DEP_LSTP (var);
8064 }
8065 else
8066 {
8067 VAR_LOC_1PAUX (var) = XNEWVAR (struct onepart_aux, allocsize);
8068 *VAR_LOC_DEP_LSTP (var) = NULL;
8069 VAR_LOC_FROM (var) = NULL;
8070 VAR_LOC_DEPTH (var).complexity = 0;
8071 VAR_LOC_DEPTH (var).entryvals = 0;
8072 }
8073 VAR_LOC_DEP_VEC (var)->embedded_init (count);
8074 }
8075
8076 /* Remove all entries from the vector of active dependencies of VAR,
8077 removing them from the back-links lists too. */
8078
8079 static void
8080 loc_exp_dep_clear (variable *var)
8081 {
8082 while (VAR_LOC_DEP_VEC (var) && !VAR_LOC_DEP_VEC (var)->is_empty ())
8083 {
8084 loc_exp_dep *led = &VAR_LOC_DEP_VEC (var)->last ();
8085 if (led->next)
8086 led->next->pprev = led->pprev;
8087 if (led->pprev)
8088 *led->pprev = led->next;
8089 VAR_LOC_DEP_VEC (var)->pop ();
8090 }
8091 }
8092
8093 /* Insert an active dependency from VAR on X to the vector of
8094 dependencies, and add the corresponding back-link to X's list of
8095 back-links in VARS. */
8096
8097 static void
8098 loc_exp_insert_dep (variable *var, rtx x, variable_table_type *vars)
8099 {
8100 decl_or_value dv;
8101 variable *xvar;
8102 loc_exp_dep *led;
8103
8104 dv = dv_from_rtx (x);
8105
8106 /* ??? Build a vector of variables parallel to EXPANDING, to avoid
8107 an additional look up? */
8108 xvar = vars->find_with_hash (dv, dv_htab_hash (dv));
8109
8110 if (!xvar)
8111 {
8112 xvar = variable_from_dropped (dv, NO_INSERT);
8113 gcc_checking_assert (xvar);
8114 }
8115
8116 /* No point in adding the same backlink more than once. This may
8117 arise if say the same value appears in two complex expressions in
8118 the same loc_list, or even more than once in a single
8119 expression. */
8120 if (VAR_LOC_DEP_LST (xvar) && VAR_LOC_DEP_LST (xvar)->dv == var->dv)
8121 return;
8122
8123 if (var->onepart == NOT_ONEPART)
8124 led = new loc_exp_dep;
8125 else
8126 {
8127 loc_exp_dep empty;
8128 memset (&empty, 0, sizeof (empty));
8129 VAR_LOC_DEP_VEC (var)->quick_push (empty);
8130 led = &VAR_LOC_DEP_VEC (var)->last ();
8131 }
8132 led->dv = var->dv;
8133 led->value = x;
8134
8135 loc_exp_dep_alloc (xvar, 0);
8136 led->pprev = VAR_LOC_DEP_LSTP (xvar);
8137 led->next = *led->pprev;
8138 if (led->next)
8139 led->next->pprev = &led->next;
8140 *led->pprev = led;
8141 }
8142
8143 /* Create active dependencies of VAR on COUNT values starting at
8144 VALUE, and corresponding back-links to the entries in VARS. Return
8145 true if we found any pending-recursion results. */
8146
8147 static bool
8148 loc_exp_dep_set (variable *var, rtx result, rtx *value, int count,
8149 variable_table_type *vars)
8150 {
8151 bool pending_recursion = false;
8152
8153 gcc_checking_assert (VAR_LOC_DEP_VEC (var) == NULL
8154 || VAR_LOC_DEP_VEC (var)->is_empty ());
8155
8156 /* Set up all dependencies from last_child (as set up at the end of
8157 the loop above) to the end. */
8158 loc_exp_dep_alloc (var, count);
8159
8160 while (count--)
8161 {
8162 rtx x = *value++;
8163
8164 if (!pending_recursion)
8165 pending_recursion = !result && VALUE_RECURSED_INTO (x);
8166
8167 loc_exp_insert_dep (var, x, vars);
8168 }
8169
8170 return pending_recursion;
8171 }
8172
8173 /* Notify the back-links of IVAR that are pending recursion that we
8174 have found a non-NIL value for it, so they are cleared for another
8175 attempt to compute a current location. */
8176
8177 static void
8178 notify_dependents_of_resolved_value (variable *ivar, variable_table_type *vars)
8179 {
8180 loc_exp_dep *led, *next;
8181
8182 for (led = VAR_LOC_DEP_LST (ivar); led; led = next)
8183 {
8184 decl_or_value dv = led->dv;
8185 variable *var;
8186
8187 next = led->next;
8188
8189 if (dv_is_value_p (dv))
8190 {
8191 rtx value = dv_as_value (dv);
8192
8193 /* If we have already resolved it, leave it alone. */
8194 if (!VALUE_RECURSED_INTO (value))
8195 continue;
8196
8197 /* Check that VALUE_RECURSED_INTO, true from the test above,
8198 implies NO_LOC_P. */
8199 gcc_checking_assert (NO_LOC_P (value));
8200
8201 /* We won't notify variables that are being expanded,
8202 because their dependency list is cleared before
8203 recursing. */
8204 NO_LOC_P (value) = false;
8205 VALUE_RECURSED_INTO (value) = false;
8206
8207 gcc_checking_assert (dv_changed_p (dv));
8208 }
8209 else
8210 {
8211 gcc_checking_assert (dv_onepart_p (dv) != NOT_ONEPART);
8212 if (!dv_changed_p (dv))
8213 continue;
8214 }
8215
8216 var = vars->find_with_hash (dv, dv_htab_hash (dv));
8217
8218 if (!var)
8219 var = variable_from_dropped (dv, NO_INSERT);
8220
8221 if (var)
8222 notify_dependents_of_resolved_value (var, vars);
8223
8224 if (next)
8225 next->pprev = led->pprev;
8226 if (led->pprev)
8227 *led->pprev = next;
8228 led->next = NULL;
8229 led->pprev = NULL;
8230 }
8231 }
8232
8233 static rtx vt_expand_loc_callback (rtx x, bitmap regs,
8234 int max_depth, void *data);
8235
8236 /* Return the combined depth, when one sub-expression evaluated to
8237 BEST_DEPTH and the previous known depth was SAVED_DEPTH. */
8238
8239 static inline expand_depth
8240 update_depth (expand_depth saved_depth, expand_depth best_depth)
8241 {
8242 /* If we didn't find anything, stick with what we had. */
8243 if (!best_depth.complexity)
8244 return saved_depth;
8245
8246 /* If we found hadn't found anything, use the depth of the current
8247 expression. Do NOT add one extra level, we want to compute the
8248 maximum depth among sub-expressions. We'll increment it later,
8249 if appropriate. */
8250 if (!saved_depth.complexity)
8251 return best_depth;
8252
8253 /* Combine the entryval count so that regardless of which one we
8254 return, the entryval count is accurate. */
8255 best_depth.entryvals = saved_depth.entryvals
8256 = best_depth.entryvals + saved_depth.entryvals;
8257
8258 if (saved_depth.complexity < best_depth.complexity)
8259 return best_depth;
8260 else
8261 return saved_depth;
8262 }
8263
8264 /* Expand VAR to a location RTX, updating its cur_loc. Use REGS and
8265 DATA for cselib expand callback. If PENDRECP is given, indicate in
8266 it whether any sub-expression couldn't be fully evaluated because
8267 it is pending recursion resolution. */
8268
8269 static inline rtx
8270 vt_expand_var_loc_chain (variable *var, bitmap regs, void *data,
8271 bool *pendrecp)
8272 {
8273 struct expand_loc_callback_data *elcd
8274 = (struct expand_loc_callback_data *) data;
8275 location_chain *loc, *next;
8276 rtx result = NULL;
8277 int first_child, result_first_child, last_child;
8278 bool pending_recursion;
8279 rtx loc_from = NULL;
8280 struct elt_loc_list *cloc = NULL;
8281 expand_depth depth = { 0, 0 }, saved_depth = elcd->depth;
8282 int wanted_entryvals, found_entryvals = 0;
8283
8284 /* Clear all backlinks pointing at this, so that we're not notified
8285 while we're active. */
8286 loc_exp_dep_clear (var);
8287
8288 retry:
8289 if (var->onepart == ONEPART_VALUE)
8290 {
8291 cselib_val *val = CSELIB_VAL_PTR (dv_as_value (var->dv));
8292
8293 gcc_checking_assert (cselib_preserved_value_p (val));
8294
8295 cloc = val->locs;
8296 }
8297
8298 first_child = result_first_child = last_child
8299 = elcd->expanding.length ();
8300
8301 wanted_entryvals = found_entryvals;
8302
8303 /* Attempt to expand each available location in turn. */
8304 for (next = loc = var->n_var_parts ? var->var_part[0].loc_chain : NULL;
8305 loc || cloc; loc = next)
8306 {
8307 result_first_child = last_child;
8308
8309 if (!loc)
8310 {
8311 loc_from = cloc->loc;
8312 next = loc;
8313 cloc = cloc->next;
8314 if (unsuitable_loc (loc_from))
8315 continue;
8316 }
8317 else
8318 {
8319 loc_from = loc->loc;
8320 next = loc->next;
8321 }
8322
8323 gcc_checking_assert (!unsuitable_loc (loc_from));
8324
8325 elcd->depth.complexity = elcd->depth.entryvals = 0;
8326 result = cselib_expand_value_rtx_cb (loc_from, regs, EXPR_DEPTH,
8327 vt_expand_loc_callback, data);
8328 last_child = elcd->expanding.length ();
8329
8330 if (result)
8331 {
8332 depth = elcd->depth;
8333
8334 gcc_checking_assert (depth.complexity
8335 || result_first_child == last_child);
8336
8337 if (last_child - result_first_child != 1)
8338 {
8339 if (!depth.complexity && GET_CODE (result) == ENTRY_VALUE)
8340 depth.entryvals++;
8341 depth.complexity++;
8342 }
8343
8344 if (depth.complexity <= EXPR_USE_DEPTH)
8345 {
8346 if (depth.entryvals <= wanted_entryvals)
8347 break;
8348 else if (!found_entryvals || depth.entryvals < found_entryvals)
8349 found_entryvals = depth.entryvals;
8350 }
8351
8352 result = NULL;
8353 }
8354
8355 /* Set it up in case we leave the loop. */
8356 depth.complexity = depth.entryvals = 0;
8357 loc_from = NULL;
8358 result_first_child = first_child;
8359 }
8360
8361 if (!loc_from && wanted_entryvals < found_entryvals)
8362 {
8363 /* We found entries with ENTRY_VALUEs and skipped them. Since
8364 we could not find any expansions without ENTRY_VALUEs, but we
8365 found at least one with them, go back and get an entry with
8366 the minimum number ENTRY_VALUE count that we found. We could
8367 avoid looping, but since each sub-loc is already resolved,
8368 the re-expansion should be trivial. ??? Should we record all
8369 attempted locs as dependencies, so that we retry the
8370 expansion should any of them change, in the hope it can give
8371 us a new entry without an ENTRY_VALUE? */
8372 elcd->expanding.truncate (first_child);
8373 goto retry;
8374 }
8375
8376 /* Register all encountered dependencies as active. */
8377 pending_recursion = loc_exp_dep_set
8378 (var, result, elcd->expanding.address () + result_first_child,
8379 last_child - result_first_child, elcd->vars);
8380
8381 elcd->expanding.truncate (first_child);
8382
8383 /* Record where the expansion came from. */
8384 gcc_checking_assert (!result || !pending_recursion);
8385 VAR_LOC_FROM (var) = loc_from;
8386 VAR_LOC_DEPTH (var) = depth;
8387
8388 gcc_checking_assert (!depth.complexity == !result);
8389
8390 elcd->depth = update_depth (saved_depth, depth);
8391
8392 /* Indicate whether any of the dependencies are pending recursion
8393 resolution. */
8394 if (pendrecp)
8395 *pendrecp = pending_recursion;
8396
8397 if (!pendrecp || !pending_recursion)
8398 var->var_part[0].cur_loc = result;
8399
8400 return result;
8401 }
8402
8403 /* Callback for cselib_expand_value, that looks for expressions
8404 holding the value in the var-tracking hash tables. Return X for
8405 standard processing, anything else is to be used as-is. */
8406
8407 static rtx
8408 vt_expand_loc_callback (rtx x, bitmap regs,
8409 int max_depth ATTRIBUTE_UNUSED,
8410 void *data)
8411 {
8412 struct expand_loc_callback_data *elcd
8413 = (struct expand_loc_callback_data *) data;
8414 decl_or_value dv;
8415 variable *var;
8416 rtx result, subreg;
8417 bool pending_recursion = false;
8418 bool from_empty = false;
8419
8420 switch (GET_CODE (x))
8421 {
8422 case SUBREG:
8423 subreg = cselib_expand_value_rtx_cb (SUBREG_REG (x), regs,
8424 EXPR_DEPTH,
8425 vt_expand_loc_callback, data);
8426
8427 if (!subreg)
8428 return NULL;
8429
8430 result = simplify_gen_subreg (GET_MODE (x), subreg,
8431 GET_MODE (SUBREG_REG (x)),
8432 SUBREG_BYTE (x));
8433
8434 /* Invalid SUBREGs are ok in debug info. ??? We could try
8435 alternate expansions for the VALUE as well. */
8436 if (!result)
8437 result = gen_rtx_raw_SUBREG (GET_MODE (x), subreg, SUBREG_BYTE (x));
8438
8439 return result;
8440
8441 case DEBUG_EXPR:
8442 case VALUE:
8443 dv = dv_from_rtx (x);
8444 break;
8445
8446 default:
8447 return x;
8448 }
8449
8450 elcd->expanding.safe_push (x);
8451
8452 /* Check that VALUE_RECURSED_INTO implies NO_LOC_P. */
8453 gcc_checking_assert (!VALUE_RECURSED_INTO (x) || NO_LOC_P (x));
8454
8455 if (NO_LOC_P (x))
8456 {
8457 gcc_checking_assert (VALUE_RECURSED_INTO (x) || !dv_changed_p (dv));
8458 return NULL;
8459 }
8460
8461 var = elcd->vars->find_with_hash (dv, dv_htab_hash (dv));
8462
8463 if (!var)
8464 {
8465 from_empty = true;
8466 var = variable_from_dropped (dv, INSERT);
8467 }
8468
8469 gcc_checking_assert (var);
8470
8471 if (!dv_changed_p (dv))
8472 {
8473 gcc_checking_assert (!NO_LOC_P (x));
8474 gcc_checking_assert (var->var_part[0].cur_loc);
8475 gcc_checking_assert (VAR_LOC_1PAUX (var));
8476 gcc_checking_assert (VAR_LOC_1PAUX (var)->depth.complexity);
8477
8478 elcd->depth = update_depth (elcd->depth, VAR_LOC_1PAUX (var)->depth);
8479
8480 return var->var_part[0].cur_loc;
8481 }
8482
8483 VALUE_RECURSED_INTO (x) = true;
8484 /* This is tentative, but it makes some tests simpler. */
8485 NO_LOC_P (x) = true;
8486
8487 gcc_checking_assert (var->n_var_parts == 1 || from_empty);
8488
8489 result = vt_expand_var_loc_chain (var, regs, data, &pending_recursion);
8490
8491 if (pending_recursion)
8492 {
8493 gcc_checking_assert (!result);
8494 elcd->pending.safe_push (x);
8495 }
8496 else
8497 {
8498 NO_LOC_P (x) = !result;
8499 VALUE_RECURSED_INTO (x) = false;
8500 set_dv_changed (dv, false);
8501
8502 if (result)
8503 notify_dependents_of_resolved_value (var, elcd->vars);
8504 }
8505
8506 return result;
8507 }
8508
8509 /* While expanding variables, we may encounter recursion cycles
8510 because of mutual (possibly indirect) dependencies between two
8511 particular variables (or values), say A and B. If we're trying to
8512 expand A when we get to B, which in turn attempts to expand A, if
8513 we can't find any other expansion for B, we'll add B to this
8514 pending-recursion stack, and tentatively return NULL for its
8515 location. This tentative value will be used for any other
8516 occurrences of B, unless A gets some other location, in which case
8517 it will notify B that it is worth another try at computing a
8518 location for it, and it will use the location computed for A then.
8519 At the end of the expansion, the tentative NULL locations become
8520 final for all members of PENDING that didn't get a notification.
8521 This function performs this finalization of NULL locations. */
8522
8523 static void
8524 resolve_expansions_pending_recursion (vec<rtx, va_heap> *pending)
8525 {
8526 while (!pending->is_empty ())
8527 {
8528 rtx x = pending->pop ();
8529 decl_or_value dv;
8530
8531 if (!VALUE_RECURSED_INTO (x))
8532 continue;
8533
8534 gcc_checking_assert (NO_LOC_P (x));
8535 VALUE_RECURSED_INTO (x) = false;
8536 dv = dv_from_rtx (x);
8537 gcc_checking_assert (dv_changed_p (dv));
8538 set_dv_changed (dv, false);
8539 }
8540 }
8541
8542 /* Initialize expand_loc_callback_data D with variable hash table V.
8543 It must be a macro because of alloca (vec stack). */
8544 #define INIT_ELCD(d, v) \
8545 do \
8546 { \
8547 (d).vars = (v); \
8548 (d).depth.complexity = (d).depth.entryvals = 0; \
8549 } \
8550 while (0)
8551 /* Finalize expand_loc_callback_data D, resolved to location L. */
8552 #define FINI_ELCD(d, l) \
8553 do \
8554 { \
8555 resolve_expansions_pending_recursion (&(d).pending); \
8556 (d).pending.release (); \
8557 (d).expanding.release (); \
8558 \
8559 if ((l) && MEM_P (l)) \
8560 (l) = targetm.delegitimize_address (l); \
8561 } \
8562 while (0)
8563
8564 /* Expand VALUEs and DEBUG_EXPRs in LOC to a location, using the
8565 equivalences in VARS, updating their CUR_LOCs in the process. */
8566
8567 static rtx
8568 vt_expand_loc (rtx loc, variable_table_type *vars)
8569 {
8570 struct expand_loc_callback_data data;
8571 rtx result;
8572
8573 if (!MAY_HAVE_DEBUG_INSNS)
8574 return loc;
8575
8576 INIT_ELCD (data, vars);
8577
8578 result = cselib_expand_value_rtx_cb (loc, scratch_regs, EXPR_DEPTH,
8579 vt_expand_loc_callback, &data);
8580
8581 FINI_ELCD (data, result);
8582
8583 return result;
8584 }
8585
8586 /* Expand the one-part VARiable to a location, using the equivalences
8587 in VARS, updating their CUR_LOCs in the process. */
8588
8589 static rtx
8590 vt_expand_1pvar (variable *var, variable_table_type *vars)
8591 {
8592 struct expand_loc_callback_data data;
8593 rtx loc;
8594
8595 gcc_checking_assert (var->onepart && var->n_var_parts == 1);
8596
8597 if (!dv_changed_p (var->dv))
8598 return var->var_part[0].cur_loc;
8599
8600 INIT_ELCD (data, vars);
8601
8602 loc = vt_expand_var_loc_chain (var, scratch_regs, &data, NULL);
8603
8604 gcc_checking_assert (data.expanding.is_empty ());
8605
8606 FINI_ELCD (data, loc);
8607
8608 return loc;
8609 }
8610
8611 /* Emit the NOTE_INSN_VAR_LOCATION for variable *VARP. DATA contains
8612 additional parameters: WHERE specifies whether the note shall be emitted
8613 before or after instruction INSN. */
8614
8615 int
8616 emit_note_insn_var_location (variable **varp, emit_note_data *data)
8617 {
8618 variable *var = *varp;
8619 rtx_insn *insn = data->insn;
8620 enum emit_note_where where = data->where;
8621 variable_table_type *vars = data->vars;
8622 rtx_note *note;
8623 rtx note_vl;
8624 int i, j, n_var_parts;
8625 bool complete;
8626 enum var_init_status initialized = VAR_INIT_STATUS_UNINITIALIZED;
8627 HOST_WIDE_INT last_limit;
8628 tree type_size_unit;
8629 HOST_WIDE_INT offsets[MAX_VAR_PARTS];
8630 rtx loc[MAX_VAR_PARTS];
8631 tree decl;
8632 location_chain *lc;
8633
8634 gcc_checking_assert (var->onepart == NOT_ONEPART
8635 || var->onepart == ONEPART_VDECL);
8636
8637 decl = dv_as_decl (var->dv);
8638
8639 complete = true;
8640 last_limit = 0;
8641 n_var_parts = 0;
8642 if (!var->onepart)
8643 for (i = 0; i < var->n_var_parts; i++)
8644 if (var->var_part[i].cur_loc == NULL && var->var_part[i].loc_chain)
8645 var->var_part[i].cur_loc = var->var_part[i].loc_chain->loc;
8646 for (i = 0; i < var->n_var_parts; i++)
8647 {
8648 machine_mode mode, wider_mode;
8649 rtx loc2;
8650 HOST_WIDE_INT offset;
8651
8652 if (i == 0 && var->onepart)
8653 {
8654 gcc_checking_assert (var->n_var_parts == 1);
8655 offset = 0;
8656 initialized = VAR_INIT_STATUS_INITIALIZED;
8657 loc2 = vt_expand_1pvar (var, vars);
8658 }
8659 else
8660 {
8661 if (last_limit < VAR_PART_OFFSET (var, i))
8662 {
8663 complete = false;
8664 break;
8665 }
8666 else if (last_limit > VAR_PART_OFFSET (var, i))
8667 continue;
8668 offset = VAR_PART_OFFSET (var, i);
8669 loc2 = var->var_part[i].cur_loc;
8670 if (loc2 && GET_CODE (loc2) == MEM
8671 && GET_CODE (XEXP (loc2, 0)) == VALUE)
8672 {
8673 rtx depval = XEXP (loc2, 0);
8674
8675 loc2 = vt_expand_loc (loc2, vars);
8676
8677 if (loc2)
8678 loc_exp_insert_dep (var, depval, vars);
8679 }
8680 if (!loc2)
8681 {
8682 complete = false;
8683 continue;
8684 }
8685 gcc_checking_assert (GET_CODE (loc2) != VALUE);
8686 for (lc = var->var_part[i].loc_chain; lc; lc = lc->next)
8687 if (var->var_part[i].cur_loc == lc->loc)
8688 {
8689 initialized = lc->init;
8690 break;
8691 }
8692 gcc_assert (lc);
8693 }
8694
8695 offsets[n_var_parts] = offset;
8696 if (!loc2)
8697 {
8698 complete = false;
8699 continue;
8700 }
8701 loc[n_var_parts] = loc2;
8702 mode = GET_MODE (var->var_part[i].cur_loc);
8703 if (mode == VOIDmode && var->onepart)
8704 mode = DECL_MODE (decl);
8705 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
8706
8707 /* Attempt to merge adjacent registers or memory. */
8708 wider_mode = GET_MODE_WIDER_MODE (mode);
8709 for (j = i + 1; j < var->n_var_parts; j++)
8710 if (last_limit <= VAR_PART_OFFSET (var, j))
8711 break;
8712 if (j < var->n_var_parts
8713 && wider_mode != VOIDmode
8714 && var->var_part[j].cur_loc
8715 && mode == GET_MODE (var->var_part[j].cur_loc)
8716 && (REG_P (loc[n_var_parts]) || MEM_P (loc[n_var_parts]))
8717 && last_limit == (var->onepart ? 0 : VAR_PART_OFFSET (var, j))
8718 && (loc2 = vt_expand_loc (var->var_part[j].cur_loc, vars))
8719 && GET_CODE (loc[n_var_parts]) == GET_CODE (loc2))
8720 {
8721 rtx new_loc = NULL;
8722
8723 if (REG_P (loc[n_var_parts])
8724 && hard_regno_nregs[REGNO (loc[n_var_parts])][mode] * 2
8725 == hard_regno_nregs[REGNO (loc[n_var_parts])][wider_mode]
8726 && end_hard_regno (mode, REGNO (loc[n_var_parts]))
8727 == REGNO (loc2))
8728 {
8729 if (! WORDS_BIG_ENDIAN && ! BYTES_BIG_ENDIAN)
8730 new_loc = simplify_subreg (wider_mode, loc[n_var_parts],
8731 mode, 0);
8732 else if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
8733 new_loc = simplify_subreg (wider_mode, loc2, mode, 0);
8734 if (new_loc)
8735 {
8736 if (!REG_P (new_loc)
8737 || REGNO (new_loc) != REGNO (loc[n_var_parts]))
8738 new_loc = NULL;
8739 else
8740 REG_ATTRS (new_loc) = REG_ATTRS (loc[n_var_parts]);
8741 }
8742 }
8743 else if (MEM_P (loc[n_var_parts])
8744 && GET_CODE (XEXP (loc2, 0)) == PLUS
8745 && REG_P (XEXP (XEXP (loc2, 0), 0))
8746 && CONST_INT_P (XEXP (XEXP (loc2, 0), 1)))
8747 {
8748 if ((REG_P (XEXP (loc[n_var_parts], 0))
8749 && rtx_equal_p (XEXP (loc[n_var_parts], 0),
8750 XEXP (XEXP (loc2, 0), 0))
8751 && INTVAL (XEXP (XEXP (loc2, 0), 1))
8752 == GET_MODE_SIZE (mode))
8753 || (GET_CODE (XEXP (loc[n_var_parts], 0)) == PLUS
8754 && CONST_INT_P (XEXP (XEXP (loc[n_var_parts], 0), 1))
8755 && rtx_equal_p (XEXP (XEXP (loc[n_var_parts], 0), 0),
8756 XEXP (XEXP (loc2, 0), 0))
8757 && INTVAL (XEXP (XEXP (loc[n_var_parts], 0), 1))
8758 + GET_MODE_SIZE (mode)
8759 == INTVAL (XEXP (XEXP (loc2, 0), 1))))
8760 new_loc = adjust_address_nv (loc[n_var_parts],
8761 wider_mode, 0);
8762 }
8763
8764 if (new_loc)
8765 {
8766 loc[n_var_parts] = new_loc;
8767 mode = wider_mode;
8768 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
8769 i = j;
8770 }
8771 }
8772 ++n_var_parts;
8773 }
8774 type_size_unit = TYPE_SIZE_UNIT (TREE_TYPE (decl));
8775 if ((unsigned HOST_WIDE_INT) last_limit < TREE_INT_CST_LOW (type_size_unit))
8776 complete = false;
8777
8778 if (! flag_var_tracking_uninit)
8779 initialized = VAR_INIT_STATUS_INITIALIZED;
8780
8781 note_vl = NULL_RTX;
8782 if (!complete)
8783 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, NULL_RTX, initialized);
8784 else if (n_var_parts == 1)
8785 {
8786 rtx expr_list;
8787
8788 if (offsets[0] || GET_CODE (loc[0]) == PARALLEL)
8789 expr_list = gen_rtx_EXPR_LIST (VOIDmode, loc[0], GEN_INT (offsets[0]));
8790 else
8791 expr_list = loc[0];
8792
8793 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, expr_list, initialized);
8794 }
8795 else if (n_var_parts)
8796 {
8797 rtx parallel;
8798
8799 for (i = 0; i < n_var_parts; i++)
8800 loc[i]
8801 = gen_rtx_EXPR_LIST (VOIDmode, loc[i], GEN_INT (offsets[i]));
8802
8803 parallel = gen_rtx_PARALLEL (VOIDmode,
8804 gen_rtvec_v (n_var_parts, loc));
8805 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl,
8806 parallel, initialized);
8807 }
8808
8809 if (where != EMIT_NOTE_BEFORE_INSN)
8810 {
8811 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
8812 if (where == EMIT_NOTE_AFTER_CALL_INSN)
8813 NOTE_DURING_CALL_P (note) = true;
8814 }
8815 else
8816 {
8817 /* Make sure that the call related notes come first. */
8818 while (NEXT_INSN (insn)
8819 && NOTE_P (insn)
8820 && ((NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
8821 && NOTE_DURING_CALL_P (insn))
8822 || NOTE_KIND (insn) == NOTE_INSN_CALL_ARG_LOCATION))
8823 insn = NEXT_INSN (insn);
8824 if (NOTE_P (insn)
8825 && ((NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
8826 && NOTE_DURING_CALL_P (insn))
8827 || NOTE_KIND (insn) == NOTE_INSN_CALL_ARG_LOCATION))
8828 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
8829 else
8830 note = emit_note_before (NOTE_INSN_VAR_LOCATION, insn);
8831 }
8832 NOTE_VAR_LOCATION (note) = note_vl;
8833
8834 set_dv_changed (var->dv, false);
8835 gcc_assert (var->in_changed_variables);
8836 var->in_changed_variables = false;
8837 changed_variables->clear_slot (varp);
8838
8839 /* Continue traversing the hash table. */
8840 return 1;
8841 }
8842
8843 /* While traversing changed_variables, push onto DATA (a stack of RTX
8844 values) entries that aren't user variables. */
8845
8846 int
8847 var_track_values_to_stack (variable **slot,
8848 vec<rtx, va_heap> *changed_values_stack)
8849 {
8850 variable *var = *slot;
8851
8852 if (var->onepart == ONEPART_VALUE)
8853 changed_values_stack->safe_push (dv_as_value (var->dv));
8854 else if (var->onepart == ONEPART_DEXPR)
8855 changed_values_stack->safe_push (DECL_RTL_KNOWN_SET (dv_as_decl (var->dv)));
8856
8857 return 1;
8858 }
8859
8860 /* Remove from changed_variables the entry whose DV corresponds to
8861 value or debug_expr VAL. */
8862 static void
8863 remove_value_from_changed_variables (rtx val)
8864 {
8865 decl_or_value dv = dv_from_rtx (val);
8866 variable **slot;
8867 variable *var;
8868
8869 slot = changed_variables->find_slot_with_hash (dv, dv_htab_hash (dv),
8870 NO_INSERT);
8871 var = *slot;
8872 var->in_changed_variables = false;
8873 changed_variables->clear_slot (slot);
8874 }
8875
8876 /* If VAL (a value or debug_expr) has backlinks to variables actively
8877 dependent on it in HTAB or in CHANGED_VARIABLES, mark them as
8878 changed, adding to CHANGED_VALUES_STACK any dependencies that may
8879 have dependencies of their own to notify. */
8880
8881 static void
8882 notify_dependents_of_changed_value (rtx val, variable_table_type *htab,
8883 vec<rtx, va_heap> *changed_values_stack)
8884 {
8885 variable **slot;
8886 variable *var;
8887 loc_exp_dep *led;
8888 decl_or_value dv = dv_from_rtx (val);
8889
8890 slot = changed_variables->find_slot_with_hash (dv, dv_htab_hash (dv),
8891 NO_INSERT);
8892 if (!slot)
8893 slot = htab->find_slot_with_hash (dv, dv_htab_hash (dv), NO_INSERT);
8894 if (!slot)
8895 slot = dropped_values->find_slot_with_hash (dv, dv_htab_hash (dv),
8896 NO_INSERT);
8897 var = *slot;
8898
8899 while ((led = VAR_LOC_DEP_LST (var)))
8900 {
8901 decl_or_value ldv = led->dv;
8902 variable *ivar;
8903
8904 /* Deactivate and remove the backlink, as it was “used up”. It
8905 makes no sense to attempt to notify the same entity again:
8906 either it will be recomputed and re-register an active
8907 dependency, or it will still have the changed mark. */
8908 if (led->next)
8909 led->next->pprev = led->pprev;
8910 if (led->pprev)
8911 *led->pprev = led->next;
8912 led->next = NULL;
8913 led->pprev = NULL;
8914
8915 if (dv_changed_p (ldv))
8916 continue;
8917
8918 switch (dv_onepart_p (ldv))
8919 {
8920 case ONEPART_VALUE:
8921 case ONEPART_DEXPR:
8922 set_dv_changed (ldv, true);
8923 changed_values_stack->safe_push (dv_as_rtx (ldv));
8924 break;
8925
8926 case ONEPART_VDECL:
8927 ivar = htab->find_with_hash (ldv, dv_htab_hash (ldv));
8928 gcc_checking_assert (!VAR_LOC_DEP_LST (ivar));
8929 variable_was_changed (ivar, NULL);
8930 break;
8931
8932 case NOT_ONEPART:
8933 delete led;
8934 ivar = htab->find_with_hash (ldv, dv_htab_hash (ldv));
8935 if (ivar)
8936 {
8937 int i = ivar->n_var_parts;
8938 while (i--)
8939 {
8940 rtx loc = ivar->var_part[i].cur_loc;
8941
8942 if (loc && GET_CODE (loc) == MEM
8943 && XEXP (loc, 0) == val)
8944 {
8945 variable_was_changed (ivar, NULL);
8946 break;
8947 }
8948 }
8949 }
8950 break;
8951
8952 default:
8953 gcc_unreachable ();
8954 }
8955 }
8956 }
8957
8958 /* Take out of changed_variables any entries that don't refer to use
8959 variables. Back-propagate change notifications from values and
8960 debug_exprs to their active dependencies in HTAB or in
8961 CHANGED_VARIABLES. */
8962
8963 static void
8964 process_changed_values (variable_table_type *htab)
8965 {
8966 int i, n;
8967 rtx val;
8968 auto_vec<rtx, 20> changed_values_stack;
8969
8970 /* Move values from changed_variables to changed_values_stack. */
8971 changed_variables
8972 ->traverse <vec<rtx, va_heap>*, var_track_values_to_stack>
8973 (&changed_values_stack);
8974
8975 /* Back-propagate change notifications in values while popping
8976 them from the stack. */
8977 for (n = i = changed_values_stack.length ();
8978 i > 0; i = changed_values_stack.length ())
8979 {
8980 val = changed_values_stack.pop ();
8981 notify_dependents_of_changed_value (val, htab, &changed_values_stack);
8982
8983 /* This condition will hold when visiting each of the entries
8984 originally in changed_variables. We can't remove them
8985 earlier because this could drop the backlinks before we got a
8986 chance to use them. */
8987 if (i == n)
8988 {
8989 remove_value_from_changed_variables (val);
8990 n--;
8991 }
8992 }
8993 }
8994
8995 /* Emit NOTE_INSN_VAR_LOCATION note for each variable from a chain
8996 CHANGED_VARIABLES and delete this chain. WHERE specifies whether
8997 the notes shall be emitted before of after instruction INSN. */
8998
8999 static void
9000 emit_notes_for_changes (rtx_insn *insn, enum emit_note_where where,
9001 shared_hash *vars)
9002 {
9003 emit_note_data data;
9004 variable_table_type *htab = shared_hash_htab (vars);
9005
9006 if (!changed_variables->elements ())
9007 return;
9008
9009 if (MAY_HAVE_DEBUG_INSNS)
9010 process_changed_values (htab);
9011
9012 data.insn = insn;
9013 data.where = where;
9014 data.vars = htab;
9015
9016 changed_variables
9017 ->traverse <emit_note_data*, emit_note_insn_var_location> (&data);
9018 }
9019
9020 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it differs from the
9021 same variable in hash table DATA or is not there at all. */
9022
9023 int
9024 emit_notes_for_differences_1 (variable **slot, variable_table_type *new_vars)
9025 {
9026 variable *old_var, *new_var;
9027
9028 old_var = *slot;
9029 new_var = new_vars->find_with_hash (old_var->dv, dv_htab_hash (old_var->dv));
9030
9031 if (!new_var)
9032 {
9033 /* Variable has disappeared. */
9034 variable *empty_var = NULL;
9035
9036 if (old_var->onepart == ONEPART_VALUE
9037 || old_var->onepart == ONEPART_DEXPR)
9038 {
9039 empty_var = variable_from_dropped (old_var->dv, NO_INSERT);
9040 if (empty_var)
9041 {
9042 gcc_checking_assert (!empty_var->in_changed_variables);
9043 if (!VAR_LOC_1PAUX (old_var))
9044 {
9045 VAR_LOC_1PAUX (old_var) = VAR_LOC_1PAUX (empty_var);
9046 VAR_LOC_1PAUX (empty_var) = NULL;
9047 }
9048 else
9049 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var));
9050 }
9051 }
9052
9053 if (!empty_var)
9054 {
9055 empty_var = onepart_pool_allocate (old_var->onepart);
9056 empty_var->dv = old_var->dv;
9057 empty_var->refcount = 0;
9058 empty_var->n_var_parts = 0;
9059 empty_var->onepart = old_var->onepart;
9060 empty_var->in_changed_variables = false;
9061 }
9062
9063 if (empty_var->onepart)
9064 {
9065 /* Propagate the auxiliary data to (ultimately)
9066 changed_variables. */
9067 empty_var->var_part[0].loc_chain = NULL;
9068 empty_var->var_part[0].cur_loc = NULL;
9069 VAR_LOC_1PAUX (empty_var) = VAR_LOC_1PAUX (old_var);
9070 VAR_LOC_1PAUX (old_var) = NULL;
9071 }
9072 variable_was_changed (empty_var, NULL);
9073 /* Continue traversing the hash table. */
9074 return 1;
9075 }
9076 /* Update cur_loc and one-part auxiliary data, before new_var goes
9077 through variable_was_changed. */
9078 if (old_var != new_var && new_var->onepart)
9079 {
9080 gcc_checking_assert (VAR_LOC_1PAUX (new_var) == NULL);
9081 VAR_LOC_1PAUX (new_var) = VAR_LOC_1PAUX (old_var);
9082 VAR_LOC_1PAUX (old_var) = NULL;
9083 new_var->var_part[0].cur_loc = old_var->var_part[0].cur_loc;
9084 }
9085 if (variable_different_p (old_var, new_var))
9086 variable_was_changed (new_var, NULL);
9087
9088 /* Continue traversing the hash table. */
9089 return 1;
9090 }
9091
9092 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it is not in hash
9093 table DATA. */
9094
9095 int
9096 emit_notes_for_differences_2 (variable **slot, variable_table_type *old_vars)
9097 {
9098 variable *old_var, *new_var;
9099
9100 new_var = *slot;
9101 old_var = old_vars->find_with_hash (new_var->dv, dv_htab_hash (new_var->dv));
9102 if (!old_var)
9103 {
9104 int i;
9105 for (i = 0; i < new_var->n_var_parts; i++)
9106 new_var->var_part[i].cur_loc = NULL;
9107 variable_was_changed (new_var, NULL);
9108 }
9109
9110 /* Continue traversing the hash table. */
9111 return 1;
9112 }
9113
9114 /* Emit notes before INSN for differences between dataflow sets OLD_SET and
9115 NEW_SET. */
9116
9117 static void
9118 emit_notes_for_differences (rtx_insn *insn, dataflow_set *old_set,
9119 dataflow_set *new_set)
9120 {
9121 shared_hash_htab (old_set->vars)
9122 ->traverse <variable_table_type *, emit_notes_for_differences_1>
9123 (shared_hash_htab (new_set->vars));
9124 shared_hash_htab (new_set->vars)
9125 ->traverse <variable_table_type *, emit_notes_for_differences_2>
9126 (shared_hash_htab (old_set->vars));
9127 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, new_set->vars);
9128 }
9129
9130 /* Return the next insn after INSN that is not a NOTE_INSN_VAR_LOCATION. */
9131
9132 static rtx_insn *
9133 next_non_note_insn_var_location (rtx_insn *insn)
9134 {
9135 while (insn)
9136 {
9137 insn = NEXT_INSN (insn);
9138 if (insn == 0
9139 || !NOTE_P (insn)
9140 || NOTE_KIND (insn) != NOTE_INSN_VAR_LOCATION)
9141 break;
9142 }
9143
9144 return insn;
9145 }
9146
9147 /* Emit the notes for changes of location parts in the basic block BB. */
9148
9149 static void
9150 emit_notes_in_bb (basic_block bb, dataflow_set *set)
9151 {
9152 unsigned int i;
9153 micro_operation *mo;
9154
9155 dataflow_set_clear (set);
9156 dataflow_set_copy (set, &VTI (bb)->in);
9157
9158 FOR_EACH_VEC_ELT (VTI (bb)->mos, i, mo)
9159 {
9160 rtx_insn *insn = mo->insn;
9161 rtx_insn *next_insn = next_non_note_insn_var_location (insn);
9162
9163 switch (mo->type)
9164 {
9165 case MO_CALL:
9166 dataflow_set_clear_at_call (set, insn);
9167 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_CALL_INSN, set->vars);
9168 {
9169 rtx arguments = mo->u.loc, *p = &arguments;
9170 rtx_note *note;
9171 while (*p)
9172 {
9173 XEXP (XEXP (*p, 0), 1)
9174 = vt_expand_loc (XEXP (XEXP (*p, 0), 1),
9175 shared_hash_htab (set->vars));
9176 /* If expansion is successful, keep it in the list. */
9177 if (XEXP (XEXP (*p, 0), 1))
9178 p = &XEXP (*p, 1);
9179 /* Otherwise, if the following item is data_value for it,
9180 drop it too too. */
9181 else if (XEXP (*p, 1)
9182 && REG_P (XEXP (XEXP (*p, 0), 0))
9183 && MEM_P (XEXP (XEXP (XEXP (*p, 1), 0), 0))
9184 && REG_P (XEXP (XEXP (XEXP (XEXP (*p, 1), 0), 0),
9185 0))
9186 && REGNO (XEXP (XEXP (*p, 0), 0))
9187 == REGNO (XEXP (XEXP (XEXP (XEXP (*p, 1), 0),
9188 0), 0)))
9189 *p = XEXP (XEXP (*p, 1), 1);
9190 /* Just drop this item. */
9191 else
9192 *p = XEXP (*p, 1);
9193 }
9194 note = emit_note_after (NOTE_INSN_CALL_ARG_LOCATION, insn);
9195 NOTE_VAR_LOCATION (note) = arguments;
9196 }
9197 break;
9198
9199 case MO_USE:
9200 {
9201 rtx loc = mo->u.loc;
9202
9203 if (REG_P (loc))
9204 var_reg_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
9205 else
9206 var_mem_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
9207
9208 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
9209 }
9210 break;
9211
9212 case MO_VAL_LOC:
9213 {
9214 rtx loc = mo->u.loc;
9215 rtx val, vloc;
9216 tree var;
9217
9218 if (GET_CODE (loc) == CONCAT)
9219 {
9220 val = XEXP (loc, 0);
9221 vloc = XEXP (loc, 1);
9222 }
9223 else
9224 {
9225 val = NULL_RTX;
9226 vloc = loc;
9227 }
9228
9229 var = PAT_VAR_LOCATION_DECL (vloc);
9230
9231 clobber_variable_part (set, NULL_RTX,
9232 dv_from_decl (var), 0, NULL_RTX);
9233 if (val)
9234 {
9235 if (VAL_NEEDS_RESOLUTION (loc))
9236 val_resolve (set, val, PAT_VAR_LOCATION_LOC (vloc), insn);
9237 set_variable_part (set, val, dv_from_decl (var), 0,
9238 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
9239 INSERT);
9240 }
9241 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
9242 set_variable_part (set, PAT_VAR_LOCATION_LOC (vloc),
9243 dv_from_decl (var), 0,
9244 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
9245 INSERT);
9246
9247 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
9248 }
9249 break;
9250
9251 case MO_VAL_USE:
9252 {
9253 rtx loc = mo->u.loc;
9254 rtx val, vloc, uloc;
9255
9256 vloc = uloc = XEXP (loc, 1);
9257 val = XEXP (loc, 0);
9258
9259 if (GET_CODE (val) == CONCAT)
9260 {
9261 uloc = XEXP (val, 1);
9262 val = XEXP (val, 0);
9263 }
9264
9265 if (VAL_NEEDS_RESOLUTION (loc))
9266 val_resolve (set, val, vloc, insn);
9267 else
9268 val_store (set, val, uloc, insn, false);
9269
9270 if (VAL_HOLDS_TRACK_EXPR (loc))
9271 {
9272 if (GET_CODE (uloc) == REG)
9273 var_reg_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
9274 NULL);
9275 else if (GET_CODE (uloc) == MEM)
9276 var_mem_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
9277 NULL);
9278 }
9279
9280 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
9281 }
9282 break;
9283
9284 case MO_VAL_SET:
9285 {
9286 rtx loc = mo->u.loc;
9287 rtx val, vloc, uloc;
9288 rtx dstv, srcv;
9289
9290 vloc = loc;
9291 uloc = XEXP (vloc, 1);
9292 val = XEXP (vloc, 0);
9293 vloc = uloc;
9294
9295 if (GET_CODE (uloc) == SET)
9296 {
9297 dstv = SET_DEST (uloc);
9298 srcv = SET_SRC (uloc);
9299 }
9300 else
9301 {
9302 dstv = uloc;
9303 srcv = NULL;
9304 }
9305
9306 if (GET_CODE (val) == CONCAT)
9307 {
9308 dstv = vloc = XEXP (val, 1);
9309 val = XEXP (val, 0);
9310 }
9311
9312 if (GET_CODE (vloc) == SET)
9313 {
9314 srcv = SET_SRC (vloc);
9315
9316 gcc_assert (val != srcv);
9317 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
9318
9319 dstv = vloc = SET_DEST (vloc);
9320
9321 if (VAL_NEEDS_RESOLUTION (loc))
9322 val_resolve (set, val, srcv, insn);
9323 }
9324 else if (VAL_NEEDS_RESOLUTION (loc))
9325 {
9326 gcc_assert (GET_CODE (uloc) == SET
9327 && GET_CODE (SET_SRC (uloc)) == REG);
9328 val_resolve (set, val, SET_SRC (uloc), insn);
9329 }
9330
9331 if (VAL_HOLDS_TRACK_EXPR (loc))
9332 {
9333 if (VAL_EXPR_IS_CLOBBERED (loc))
9334 {
9335 if (REG_P (uloc))
9336 var_reg_delete (set, uloc, true);
9337 else if (MEM_P (uloc))
9338 {
9339 gcc_assert (MEM_P (dstv));
9340 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (uloc));
9341 var_mem_delete (set, dstv, true);
9342 }
9343 }
9344 else
9345 {
9346 bool copied_p = VAL_EXPR_IS_COPIED (loc);
9347 rtx src = NULL, dst = uloc;
9348 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
9349
9350 if (GET_CODE (uloc) == SET)
9351 {
9352 src = SET_SRC (uloc);
9353 dst = SET_DEST (uloc);
9354 }
9355
9356 if (copied_p)
9357 {
9358 status = find_src_status (set, src);
9359
9360 src = find_src_set_src (set, src);
9361 }
9362
9363 if (REG_P (dst))
9364 var_reg_delete_and_set (set, dst, !copied_p,
9365 status, srcv);
9366 else if (MEM_P (dst))
9367 {
9368 gcc_assert (MEM_P (dstv));
9369 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (dst));
9370 var_mem_delete_and_set (set, dstv, !copied_p,
9371 status, srcv);
9372 }
9373 }
9374 }
9375 else if (REG_P (uloc))
9376 var_regno_delete (set, REGNO (uloc));
9377 else if (MEM_P (uloc))
9378 {
9379 gcc_checking_assert (GET_CODE (vloc) == MEM);
9380 gcc_checking_assert (vloc == dstv);
9381 if (vloc != dstv)
9382 clobber_overlapping_mems (set, vloc);
9383 }
9384
9385 val_store (set, val, dstv, insn, true);
9386
9387 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9388 set->vars);
9389 }
9390 break;
9391
9392 case MO_SET:
9393 {
9394 rtx loc = mo->u.loc;
9395 rtx set_src = NULL;
9396
9397 if (GET_CODE (loc) == SET)
9398 {
9399 set_src = SET_SRC (loc);
9400 loc = SET_DEST (loc);
9401 }
9402
9403 if (REG_P (loc))
9404 var_reg_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
9405 set_src);
9406 else
9407 var_mem_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
9408 set_src);
9409
9410 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9411 set->vars);
9412 }
9413 break;
9414
9415 case MO_COPY:
9416 {
9417 rtx loc = mo->u.loc;
9418 enum var_init_status src_status;
9419 rtx set_src = NULL;
9420
9421 if (GET_CODE (loc) == SET)
9422 {
9423 set_src = SET_SRC (loc);
9424 loc = SET_DEST (loc);
9425 }
9426
9427 src_status = find_src_status (set, set_src);
9428 set_src = find_src_set_src (set, set_src);
9429
9430 if (REG_P (loc))
9431 var_reg_delete_and_set (set, loc, false, src_status, set_src);
9432 else
9433 var_mem_delete_and_set (set, loc, false, src_status, set_src);
9434
9435 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9436 set->vars);
9437 }
9438 break;
9439
9440 case MO_USE_NO_VAR:
9441 {
9442 rtx loc = mo->u.loc;
9443
9444 if (REG_P (loc))
9445 var_reg_delete (set, loc, false);
9446 else
9447 var_mem_delete (set, loc, false);
9448
9449 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
9450 }
9451 break;
9452
9453 case MO_CLOBBER:
9454 {
9455 rtx loc = mo->u.loc;
9456
9457 if (REG_P (loc))
9458 var_reg_delete (set, loc, true);
9459 else
9460 var_mem_delete (set, loc, true);
9461
9462 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9463 set->vars);
9464 }
9465 break;
9466
9467 case MO_ADJUST:
9468 set->stack_adjust += mo->u.adjust;
9469 break;
9470 }
9471 }
9472 }
9473
9474 /* Emit notes for the whole function. */
9475
9476 static void
9477 vt_emit_notes (void)
9478 {
9479 basic_block bb;
9480 dataflow_set cur;
9481
9482 gcc_assert (!changed_variables->elements ());
9483
9484 /* Free memory occupied by the out hash tables, as they aren't used
9485 anymore. */
9486 FOR_EACH_BB_FN (bb, cfun)
9487 dataflow_set_clear (&VTI (bb)->out);
9488
9489 /* Enable emitting notes by functions (mainly by set_variable_part and
9490 delete_variable_part). */
9491 emit_notes = true;
9492
9493 if (MAY_HAVE_DEBUG_INSNS)
9494 {
9495 dropped_values = new variable_table_type (cselib_get_next_uid () * 2);
9496 }
9497
9498 dataflow_set_init (&cur);
9499
9500 FOR_EACH_BB_FN (bb, cfun)
9501 {
9502 /* Emit the notes for changes of variable locations between two
9503 subsequent basic blocks. */
9504 emit_notes_for_differences (BB_HEAD (bb), &cur, &VTI (bb)->in);
9505
9506 if (MAY_HAVE_DEBUG_INSNS)
9507 local_get_addr_cache = new hash_map<rtx, rtx>;
9508
9509 /* Emit the notes for the changes in the basic block itself. */
9510 emit_notes_in_bb (bb, &cur);
9511
9512 if (MAY_HAVE_DEBUG_INSNS)
9513 delete local_get_addr_cache;
9514 local_get_addr_cache = NULL;
9515
9516 /* Free memory occupied by the in hash table, we won't need it
9517 again. */
9518 dataflow_set_clear (&VTI (bb)->in);
9519 }
9520
9521 if (flag_checking)
9522 shared_hash_htab (cur.vars)
9523 ->traverse <variable_table_type *, emit_notes_for_differences_1>
9524 (shared_hash_htab (empty_shared_hash));
9525
9526 dataflow_set_destroy (&cur);
9527
9528 if (MAY_HAVE_DEBUG_INSNS)
9529 delete dropped_values;
9530 dropped_values = NULL;
9531
9532 emit_notes = false;
9533 }
9534
9535 /* If there is a declaration and offset associated with register/memory RTL
9536 assign declaration to *DECLP and offset to *OFFSETP, and return true. */
9537
9538 static bool
9539 vt_get_decl_and_offset (rtx rtl, tree *declp, HOST_WIDE_INT *offsetp)
9540 {
9541 if (REG_P (rtl))
9542 {
9543 if (REG_ATTRS (rtl))
9544 {
9545 *declp = REG_EXPR (rtl);
9546 *offsetp = REG_OFFSET (rtl);
9547 return true;
9548 }
9549 }
9550 else if (GET_CODE (rtl) == PARALLEL)
9551 {
9552 tree decl = NULL_TREE;
9553 HOST_WIDE_INT offset = MAX_VAR_PARTS;
9554 int len = XVECLEN (rtl, 0), i;
9555
9556 for (i = 0; i < len; i++)
9557 {
9558 rtx reg = XEXP (XVECEXP (rtl, 0, i), 0);
9559 if (!REG_P (reg) || !REG_ATTRS (reg))
9560 break;
9561 if (!decl)
9562 decl = REG_EXPR (reg);
9563 if (REG_EXPR (reg) != decl)
9564 break;
9565 if (REG_OFFSET (reg) < offset)
9566 offset = REG_OFFSET (reg);
9567 }
9568
9569 if (i == len)
9570 {
9571 *declp = decl;
9572 *offsetp = offset;
9573 return true;
9574 }
9575 }
9576 else if (MEM_P (rtl))
9577 {
9578 if (MEM_ATTRS (rtl))
9579 {
9580 *declp = MEM_EXPR (rtl);
9581 *offsetp = INT_MEM_OFFSET (rtl);
9582 return true;
9583 }
9584 }
9585 return false;
9586 }
9587
9588 /* Record the value for the ENTRY_VALUE of RTL as a global equivalence
9589 of VAL. */
9590
9591 static void
9592 record_entry_value (cselib_val *val, rtx rtl)
9593 {
9594 rtx ev = gen_rtx_ENTRY_VALUE (GET_MODE (rtl));
9595
9596 ENTRY_VALUE_EXP (ev) = rtl;
9597
9598 cselib_add_permanent_equiv (val, ev, get_insns ());
9599 }
9600
9601 /* Insert function parameter PARM in IN and OUT sets of ENTRY_BLOCK. */
9602
9603 static void
9604 vt_add_function_parameter (tree parm)
9605 {
9606 rtx decl_rtl = DECL_RTL_IF_SET (parm);
9607 rtx incoming = DECL_INCOMING_RTL (parm);
9608 tree decl;
9609 machine_mode mode;
9610 HOST_WIDE_INT offset;
9611 dataflow_set *out;
9612 decl_or_value dv;
9613
9614 if (TREE_CODE (parm) != PARM_DECL)
9615 return;
9616
9617 if (!decl_rtl || !incoming)
9618 return;
9619
9620 if (GET_MODE (decl_rtl) == BLKmode || GET_MODE (incoming) == BLKmode)
9621 return;
9622
9623 /* If there is a DRAP register or a pseudo in internal_arg_pointer,
9624 rewrite the incoming location of parameters passed on the stack
9625 into MEMs based on the argument pointer, so that incoming doesn't
9626 depend on a pseudo. */
9627 if (MEM_P (incoming)
9628 && (XEXP (incoming, 0) == crtl->args.internal_arg_pointer
9629 || (GET_CODE (XEXP (incoming, 0)) == PLUS
9630 && XEXP (XEXP (incoming, 0), 0)
9631 == crtl->args.internal_arg_pointer
9632 && CONST_INT_P (XEXP (XEXP (incoming, 0), 1)))))
9633 {
9634 HOST_WIDE_INT off = -FIRST_PARM_OFFSET (current_function_decl);
9635 if (GET_CODE (XEXP (incoming, 0)) == PLUS)
9636 off += INTVAL (XEXP (XEXP (incoming, 0), 1));
9637 incoming
9638 = replace_equiv_address_nv (incoming,
9639 plus_constant (Pmode,
9640 arg_pointer_rtx, off));
9641 }
9642
9643 #ifdef HAVE_window_save
9644 /* DECL_INCOMING_RTL uses the INCOMING_REGNO of parameter registers.
9645 If the target machine has an explicit window save instruction, the
9646 actual entry value is the corresponding OUTGOING_REGNO instead. */
9647 if (HAVE_window_save && !crtl->uses_only_leaf_regs)
9648 {
9649 if (REG_P (incoming)
9650 && HARD_REGISTER_P (incoming)
9651 && OUTGOING_REGNO (REGNO (incoming)) != REGNO (incoming))
9652 {
9653 parm_reg p;
9654 p.incoming = incoming;
9655 incoming
9656 = gen_rtx_REG_offset (incoming, GET_MODE (incoming),
9657 OUTGOING_REGNO (REGNO (incoming)), 0);
9658 p.outgoing = incoming;
9659 vec_safe_push (windowed_parm_regs, p);
9660 }
9661 else if (GET_CODE (incoming) == PARALLEL)
9662 {
9663 rtx outgoing
9664 = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (XVECLEN (incoming, 0)));
9665 int i;
9666
9667 for (i = 0; i < XVECLEN (incoming, 0); i++)
9668 {
9669 rtx reg = XEXP (XVECEXP (incoming, 0, i), 0);
9670 parm_reg p;
9671 p.incoming = reg;
9672 reg = gen_rtx_REG_offset (reg, GET_MODE (reg),
9673 OUTGOING_REGNO (REGNO (reg)), 0);
9674 p.outgoing = reg;
9675 XVECEXP (outgoing, 0, i)
9676 = gen_rtx_EXPR_LIST (VOIDmode, reg,
9677 XEXP (XVECEXP (incoming, 0, i), 1));
9678 vec_safe_push (windowed_parm_regs, p);
9679 }
9680
9681 incoming = outgoing;
9682 }
9683 else if (MEM_P (incoming)
9684 && REG_P (XEXP (incoming, 0))
9685 && HARD_REGISTER_P (XEXP (incoming, 0)))
9686 {
9687 rtx reg = XEXP (incoming, 0);
9688 if (OUTGOING_REGNO (REGNO (reg)) != REGNO (reg))
9689 {
9690 parm_reg p;
9691 p.incoming = reg;
9692 reg = gen_raw_REG (GET_MODE (reg), OUTGOING_REGNO (REGNO (reg)));
9693 p.outgoing = reg;
9694 vec_safe_push (windowed_parm_regs, p);
9695 incoming = replace_equiv_address_nv (incoming, reg);
9696 }
9697 }
9698 }
9699 #endif
9700
9701 if (!vt_get_decl_and_offset (incoming, &decl, &offset))
9702 {
9703 if (MEM_P (incoming))
9704 {
9705 /* This means argument is passed by invisible reference. */
9706 offset = 0;
9707 decl = parm;
9708 }
9709 else
9710 {
9711 if (!vt_get_decl_and_offset (decl_rtl, &decl, &offset))
9712 return;
9713 offset += byte_lowpart_offset (GET_MODE (incoming),
9714 GET_MODE (decl_rtl));
9715 }
9716 }
9717
9718 if (!decl)
9719 return;
9720
9721 if (parm != decl)
9722 {
9723 /* If that DECL_RTL wasn't a pseudo that got spilled to
9724 memory, bail out. Otherwise, the spill slot sharing code
9725 will force the memory to reference spill_slot_decl (%sfp),
9726 so we don't match above. That's ok, the pseudo must have
9727 referenced the entire parameter, so just reset OFFSET. */
9728 if (decl != get_spill_slot_decl (false))
9729 return;
9730 offset = 0;
9731 }
9732
9733 if (!track_loc_p (incoming, parm, offset, false, &mode, &offset))
9734 return;
9735
9736 out = &VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->out;
9737
9738 dv = dv_from_decl (parm);
9739
9740 if (target_for_debug_bind (parm)
9741 /* We can't deal with these right now, because this kind of
9742 variable is single-part. ??? We could handle parallels
9743 that describe multiple locations for the same single
9744 value, but ATM we don't. */
9745 && GET_CODE (incoming) != PARALLEL)
9746 {
9747 cselib_val *val;
9748 rtx lowpart;
9749
9750 /* ??? We shouldn't ever hit this, but it may happen because
9751 arguments passed by invisible reference aren't dealt with
9752 above: incoming-rtl will have Pmode rather than the
9753 expected mode for the type. */
9754 if (offset)
9755 return;
9756
9757 lowpart = var_lowpart (mode, incoming);
9758 if (!lowpart)
9759 return;
9760
9761 val = cselib_lookup_from_insn (lowpart, mode, true,
9762 VOIDmode, get_insns ());
9763
9764 /* ??? Float-typed values in memory are not handled by
9765 cselib. */
9766 if (val)
9767 {
9768 preserve_value (val);
9769 set_variable_part (out, val->val_rtx, dv, offset,
9770 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9771 dv = dv_from_value (val->val_rtx);
9772 }
9773
9774 if (MEM_P (incoming))
9775 {
9776 val = cselib_lookup_from_insn (XEXP (incoming, 0), mode, true,
9777 VOIDmode, get_insns ());
9778 if (val)
9779 {
9780 preserve_value (val);
9781 incoming = replace_equiv_address_nv (incoming, val->val_rtx);
9782 }
9783 }
9784 }
9785
9786 if (REG_P (incoming))
9787 {
9788 incoming = var_lowpart (mode, incoming);
9789 gcc_assert (REGNO (incoming) < FIRST_PSEUDO_REGISTER);
9790 attrs_list_insert (&out->regs[REGNO (incoming)], dv, offset,
9791 incoming);
9792 set_variable_part (out, incoming, dv, offset,
9793 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9794 if (dv_is_value_p (dv))
9795 {
9796 record_entry_value (CSELIB_VAL_PTR (dv_as_value (dv)), incoming);
9797 if (TREE_CODE (TREE_TYPE (parm)) == REFERENCE_TYPE
9798 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_TYPE (parm))))
9799 {
9800 machine_mode indmode
9801 = TYPE_MODE (TREE_TYPE (TREE_TYPE (parm)));
9802 rtx mem = gen_rtx_MEM (indmode, incoming);
9803 cselib_val *val = cselib_lookup_from_insn (mem, indmode, true,
9804 VOIDmode,
9805 get_insns ());
9806 if (val)
9807 {
9808 preserve_value (val);
9809 record_entry_value (val, mem);
9810 set_variable_part (out, mem, dv_from_value (val->val_rtx), 0,
9811 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9812 }
9813 }
9814 }
9815 }
9816 else if (GET_CODE (incoming) == PARALLEL && !dv_onepart_p (dv))
9817 {
9818 int i;
9819
9820 for (i = 0; i < XVECLEN (incoming, 0); i++)
9821 {
9822 rtx reg = XEXP (XVECEXP (incoming, 0, i), 0);
9823 offset = REG_OFFSET (reg);
9824 gcc_assert (REGNO (reg) < FIRST_PSEUDO_REGISTER);
9825 attrs_list_insert (&out->regs[REGNO (reg)], dv, offset, reg);
9826 set_variable_part (out, reg, dv, offset,
9827 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9828 }
9829 }
9830 else if (MEM_P (incoming))
9831 {
9832 incoming = var_lowpart (mode, incoming);
9833 set_variable_part (out, incoming, dv, offset,
9834 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9835 }
9836 }
9837
9838 /* Insert function parameters to IN and OUT sets of ENTRY_BLOCK. */
9839
9840 static void
9841 vt_add_function_parameters (void)
9842 {
9843 tree parm;
9844
9845 for (parm = DECL_ARGUMENTS (current_function_decl);
9846 parm; parm = DECL_CHAIN (parm))
9847 if (!POINTER_BOUNDS_P (parm))
9848 vt_add_function_parameter (parm);
9849
9850 if (DECL_HAS_VALUE_EXPR_P (DECL_RESULT (current_function_decl)))
9851 {
9852 tree vexpr = DECL_VALUE_EXPR (DECL_RESULT (current_function_decl));
9853
9854 if (TREE_CODE (vexpr) == INDIRECT_REF)
9855 vexpr = TREE_OPERAND (vexpr, 0);
9856
9857 if (TREE_CODE (vexpr) == PARM_DECL
9858 && DECL_ARTIFICIAL (vexpr)
9859 && !DECL_IGNORED_P (vexpr)
9860 && DECL_NAMELESS (vexpr))
9861 vt_add_function_parameter (vexpr);
9862 }
9863 }
9864
9865 /* Initialize cfa_base_rtx, create a preserved VALUE for it and
9866 ensure it isn't flushed during cselib_reset_table.
9867 Can be called only if frame_pointer_rtx resp. arg_pointer_rtx
9868 has been eliminated. */
9869
9870 static void
9871 vt_init_cfa_base (void)
9872 {
9873 cselib_val *val;
9874
9875 #ifdef FRAME_POINTER_CFA_OFFSET
9876 cfa_base_rtx = frame_pointer_rtx;
9877 cfa_base_offset = -FRAME_POINTER_CFA_OFFSET (current_function_decl);
9878 #else
9879 cfa_base_rtx = arg_pointer_rtx;
9880 cfa_base_offset = -ARG_POINTER_CFA_OFFSET (current_function_decl);
9881 #endif
9882 if (cfa_base_rtx == hard_frame_pointer_rtx
9883 || !fixed_regs[REGNO (cfa_base_rtx)])
9884 {
9885 cfa_base_rtx = NULL_RTX;
9886 return;
9887 }
9888 if (!MAY_HAVE_DEBUG_INSNS)
9889 return;
9890
9891 /* Tell alias analysis that cfa_base_rtx should share
9892 find_base_term value with stack pointer or hard frame pointer. */
9893 if (!frame_pointer_needed)
9894 vt_equate_reg_base_value (cfa_base_rtx, stack_pointer_rtx);
9895 else if (!crtl->stack_realign_tried)
9896 vt_equate_reg_base_value (cfa_base_rtx, hard_frame_pointer_rtx);
9897
9898 val = cselib_lookup_from_insn (cfa_base_rtx, GET_MODE (cfa_base_rtx), 1,
9899 VOIDmode, get_insns ());
9900 preserve_value (val);
9901 cselib_preserve_cfa_base_value (val, REGNO (cfa_base_rtx));
9902 }
9903
9904 /* Allocate and initialize the data structures for variable tracking
9905 and parse the RTL to get the micro operations. */
9906
9907 static bool
9908 vt_initialize (void)
9909 {
9910 basic_block bb;
9911 HOST_WIDE_INT fp_cfa_offset = -1;
9912
9913 alloc_aux_for_blocks (sizeof (variable_tracking_info));
9914
9915 empty_shared_hash = shared_hash_pool.allocate ();
9916 empty_shared_hash->refcount = 1;
9917 empty_shared_hash->htab = new variable_table_type (1);
9918 changed_variables = new variable_table_type (10);
9919
9920 /* Init the IN and OUT sets. */
9921 FOR_ALL_BB_FN (bb, cfun)
9922 {
9923 VTI (bb)->visited = false;
9924 VTI (bb)->flooded = false;
9925 dataflow_set_init (&VTI (bb)->in);
9926 dataflow_set_init (&VTI (bb)->out);
9927 VTI (bb)->permp = NULL;
9928 }
9929
9930 if (MAY_HAVE_DEBUG_INSNS)
9931 {
9932 cselib_init (CSELIB_RECORD_MEMORY | CSELIB_PRESERVE_CONSTANTS);
9933 scratch_regs = BITMAP_ALLOC (NULL);
9934 preserved_values.create (256);
9935 global_get_addr_cache = new hash_map<rtx, rtx>;
9936 }
9937 else
9938 {
9939 scratch_regs = NULL;
9940 global_get_addr_cache = NULL;
9941 }
9942
9943 if (MAY_HAVE_DEBUG_INSNS)
9944 {
9945 rtx reg, expr;
9946 int ofst;
9947 cselib_val *val;
9948
9949 #ifdef FRAME_POINTER_CFA_OFFSET
9950 reg = frame_pointer_rtx;
9951 ofst = FRAME_POINTER_CFA_OFFSET (current_function_decl);
9952 #else
9953 reg = arg_pointer_rtx;
9954 ofst = ARG_POINTER_CFA_OFFSET (current_function_decl);
9955 #endif
9956
9957 ofst -= INCOMING_FRAME_SP_OFFSET;
9958
9959 val = cselib_lookup_from_insn (reg, GET_MODE (reg), 1,
9960 VOIDmode, get_insns ());
9961 preserve_value (val);
9962 if (reg != hard_frame_pointer_rtx && fixed_regs[REGNO (reg)])
9963 cselib_preserve_cfa_base_value (val, REGNO (reg));
9964 expr = plus_constant (GET_MODE (stack_pointer_rtx),
9965 stack_pointer_rtx, -ofst);
9966 cselib_add_permanent_equiv (val, expr, get_insns ());
9967
9968 if (ofst)
9969 {
9970 val = cselib_lookup_from_insn (stack_pointer_rtx,
9971 GET_MODE (stack_pointer_rtx), 1,
9972 VOIDmode, get_insns ());
9973 preserve_value (val);
9974 expr = plus_constant (GET_MODE (reg), reg, ofst);
9975 cselib_add_permanent_equiv (val, expr, get_insns ());
9976 }
9977 }
9978
9979 /* In order to factor out the adjustments made to the stack pointer or to
9980 the hard frame pointer and thus be able to use DW_OP_fbreg operations
9981 instead of individual location lists, we're going to rewrite MEMs based
9982 on them into MEMs based on the CFA by de-eliminating stack_pointer_rtx
9983 or hard_frame_pointer_rtx to the virtual CFA pointer frame_pointer_rtx
9984 resp. arg_pointer_rtx. We can do this either when there is no frame
9985 pointer in the function and stack adjustments are consistent for all
9986 basic blocks or when there is a frame pointer and no stack realignment.
9987 But we first have to check that frame_pointer_rtx resp. arg_pointer_rtx
9988 has been eliminated. */
9989 if (!frame_pointer_needed)
9990 {
9991 rtx reg, elim;
9992
9993 if (!vt_stack_adjustments ())
9994 return false;
9995
9996 #ifdef FRAME_POINTER_CFA_OFFSET
9997 reg = frame_pointer_rtx;
9998 #else
9999 reg = arg_pointer_rtx;
10000 #endif
10001 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10002 if (elim != reg)
10003 {
10004 if (GET_CODE (elim) == PLUS)
10005 elim = XEXP (elim, 0);
10006 if (elim == stack_pointer_rtx)
10007 vt_init_cfa_base ();
10008 }
10009 }
10010 else if (!crtl->stack_realign_tried)
10011 {
10012 rtx reg, elim;
10013
10014 #ifdef FRAME_POINTER_CFA_OFFSET
10015 reg = frame_pointer_rtx;
10016 fp_cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
10017 #else
10018 reg = arg_pointer_rtx;
10019 fp_cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
10020 #endif
10021 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10022 if (elim != reg)
10023 {
10024 if (GET_CODE (elim) == PLUS)
10025 {
10026 fp_cfa_offset -= INTVAL (XEXP (elim, 1));
10027 elim = XEXP (elim, 0);
10028 }
10029 if (elim != hard_frame_pointer_rtx)
10030 fp_cfa_offset = -1;
10031 }
10032 else
10033 fp_cfa_offset = -1;
10034 }
10035
10036 /* If the stack is realigned and a DRAP register is used, we're going to
10037 rewrite MEMs based on it representing incoming locations of parameters
10038 passed on the stack into MEMs based on the argument pointer. Although
10039 we aren't going to rewrite other MEMs, we still need to initialize the
10040 virtual CFA pointer in order to ensure that the argument pointer will
10041 be seen as a constant throughout the function.
10042
10043 ??? This doesn't work if FRAME_POINTER_CFA_OFFSET is defined. */
10044 else if (stack_realign_drap)
10045 {
10046 rtx reg, elim;
10047
10048 #ifdef FRAME_POINTER_CFA_OFFSET
10049 reg = frame_pointer_rtx;
10050 #else
10051 reg = arg_pointer_rtx;
10052 #endif
10053 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10054 if (elim != reg)
10055 {
10056 if (GET_CODE (elim) == PLUS)
10057 elim = XEXP (elim, 0);
10058 if (elim == hard_frame_pointer_rtx)
10059 vt_init_cfa_base ();
10060 }
10061 }
10062
10063 hard_frame_pointer_adjustment = -1;
10064
10065 vt_add_function_parameters ();
10066
10067 FOR_EACH_BB_FN (bb, cfun)
10068 {
10069 rtx_insn *insn;
10070 HOST_WIDE_INT pre, post = 0;
10071 basic_block first_bb, last_bb;
10072
10073 if (MAY_HAVE_DEBUG_INSNS)
10074 {
10075 cselib_record_sets_hook = add_with_sets;
10076 if (dump_file && (dump_flags & TDF_DETAILS))
10077 fprintf (dump_file, "first value: %i\n",
10078 cselib_get_next_uid ());
10079 }
10080
10081 first_bb = bb;
10082 for (;;)
10083 {
10084 edge e;
10085 if (bb->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
10086 || ! single_pred_p (bb->next_bb))
10087 break;
10088 e = find_edge (bb, bb->next_bb);
10089 if (! e || (e->flags & EDGE_FALLTHRU) == 0)
10090 break;
10091 bb = bb->next_bb;
10092 }
10093 last_bb = bb;
10094
10095 /* Add the micro-operations to the vector. */
10096 FOR_BB_BETWEEN (bb, first_bb, last_bb->next_bb, next_bb)
10097 {
10098 HOST_WIDE_INT offset = VTI (bb)->out.stack_adjust;
10099 VTI (bb)->out.stack_adjust = VTI (bb)->in.stack_adjust;
10100 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
10101 insn = NEXT_INSN (insn))
10102 {
10103 if (INSN_P (insn))
10104 {
10105 if (!frame_pointer_needed)
10106 {
10107 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
10108 if (pre)
10109 {
10110 micro_operation mo;
10111 mo.type = MO_ADJUST;
10112 mo.u.adjust = pre;
10113 mo.insn = insn;
10114 if (dump_file && (dump_flags & TDF_DETAILS))
10115 log_op_type (PATTERN (insn), bb, insn,
10116 MO_ADJUST, dump_file);
10117 VTI (bb)->mos.safe_push (mo);
10118 VTI (bb)->out.stack_adjust += pre;
10119 }
10120 }
10121
10122 cselib_hook_called = false;
10123 adjust_insn (bb, insn);
10124 if (MAY_HAVE_DEBUG_INSNS)
10125 {
10126 if (CALL_P (insn))
10127 prepare_call_arguments (bb, insn);
10128 cselib_process_insn (insn);
10129 if (dump_file && (dump_flags & TDF_DETAILS))
10130 {
10131 print_rtl_single (dump_file, insn);
10132 dump_cselib_table (dump_file);
10133 }
10134 }
10135 if (!cselib_hook_called)
10136 add_with_sets (insn, 0, 0);
10137 cancel_changes (0);
10138
10139 if (!frame_pointer_needed && post)
10140 {
10141 micro_operation mo;
10142 mo.type = MO_ADJUST;
10143 mo.u.adjust = post;
10144 mo.insn = insn;
10145 if (dump_file && (dump_flags & TDF_DETAILS))
10146 log_op_type (PATTERN (insn), bb, insn,
10147 MO_ADJUST, dump_file);
10148 VTI (bb)->mos.safe_push (mo);
10149 VTI (bb)->out.stack_adjust += post;
10150 }
10151
10152 if (fp_cfa_offset != -1
10153 && hard_frame_pointer_adjustment == -1
10154 && fp_setter_insn (insn))
10155 {
10156 vt_init_cfa_base ();
10157 hard_frame_pointer_adjustment = fp_cfa_offset;
10158 /* Disassociate sp from fp now. */
10159 if (MAY_HAVE_DEBUG_INSNS)
10160 {
10161 cselib_val *v;
10162 cselib_invalidate_rtx (stack_pointer_rtx);
10163 v = cselib_lookup (stack_pointer_rtx, Pmode, 1,
10164 VOIDmode);
10165 if (v && !cselib_preserved_value_p (v))
10166 {
10167 cselib_set_value_sp_based (v);
10168 preserve_value (v);
10169 }
10170 }
10171 }
10172 }
10173 }
10174 gcc_assert (offset == VTI (bb)->out.stack_adjust);
10175 }
10176
10177 bb = last_bb;
10178
10179 if (MAY_HAVE_DEBUG_INSNS)
10180 {
10181 cselib_preserve_only_values ();
10182 cselib_reset_table (cselib_get_next_uid ());
10183 cselib_record_sets_hook = NULL;
10184 }
10185 }
10186
10187 hard_frame_pointer_adjustment = -1;
10188 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->flooded = true;
10189 cfa_base_rtx = NULL_RTX;
10190 return true;
10191 }
10192
10193 /* This is *not* reset after each function. It gives each
10194 NOTE_INSN_DELETED_DEBUG_LABEL in the entire compilation
10195 a unique label number. */
10196
10197 static int debug_label_num = 1;
10198
10199 /* Get rid of all debug insns from the insn stream. */
10200
10201 static void
10202 delete_debug_insns (void)
10203 {
10204 basic_block bb;
10205 rtx_insn *insn, *next;
10206
10207 if (!MAY_HAVE_DEBUG_INSNS)
10208 return;
10209
10210 FOR_EACH_BB_FN (bb, cfun)
10211 {
10212 FOR_BB_INSNS_SAFE (bb, insn, next)
10213 if (DEBUG_INSN_P (insn))
10214 {
10215 tree decl = INSN_VAR_LOCATION_DECL (insn);
10216 if (TREE_CODE (decl) == LABEL_DECL
10217 && DECL_NAME (decl)
10218 && !DECL_RTL_SET_P (decl))
10219 {
10220 PUT_CODE (insn, NOTE);
10221 NOTE_KIND (insn) = NOTE_INSN_DELETED_DEBUG_LABEL;
10222 NOTE_DELETED_LABEL_NAME (insn)
10223 = IDENTIFIER_POINTER (DECL_NAME (decl));
10224 SET_DECL_RTL (decl, insn);
10225 CODE_LABEL_NUMBER (insn) = debug_label_num++;
10226 }
10227 else
10228 delete_insn (insn);
10229 }
10230 }
10231 }
10232
10233 /* Run a fast, BB-local only version of var tracking, to take care of
10234 information that we don't do global analysis on, such that not all
10235 information is lost. If SKIPPED holds, we're skipping the global
10236 pass entirely, so we should try to use information it would have
10237 handled as well.. */
10238
10239 static void
10240 vt_debug_insns_local (bool skipped ATTRIBUTE_UNUSED)
10241 {
10242 /* ??? Just skip it all for now. */
10243 delete_debug_insns ();
10244 }
10245
10246 /* Free the data structures needed for variable tracking. */
10247
10248 static void
10249 vt_finalize (void)
10250 {
10251 basic_block bb;
10252
10253 FOR_EACH_BB_FN (bb, cfun)
10254 {
10255 VTI (bb)->mos.release ();
10256 }
10257
10258 FOR_ALL_BB_FN (bb, cfun)
10259 {
10260 dataflow_set_destroy (&VTI (bb)->in);
10261 dataflow_set_destroy (&VTI (bb)->out);
10262 if (VTI (bb)->permp)
10263 {
10264 dataflow_set_destroy (VTI (bb)->permp);
10265 XDELETE (VTI (bb)->permp);
10266 }
10267 }
10268 free_aux_for_blocks ();
10269 delete empty_shared_hash->htab;
10270 empty_shared_hash->htab = NULL;
10271 delete changed_variables;
10272 changed_variables = NULL;
10273 attrs_pool.release ();
10274 var_pool.release ();
10275 location_chain_pool.release ();
10276 shared_hash_pool.release ();
10277
10278 if (MAY_HAVE_DEBUG_INSNS)
10279 {
10280 if (global_get_addr_cache)
10281 delete global_get_addr_cache;
10282 global_get_addr_cache = NULL;
10283 loc_exp_dep_pool.release ();
10284 valvar_pool.release ();
10285 preserved_values.release ();
10286 cselib_finish ();
10287 BITMAP_FREE (scratch_regs);
10288 scratch_regs = NULL;
10289 }
10290
10291 #ifdef HAVE_window_save
10292 vec_free (windowed_parm_regs);
10293 #endif
10294
10295 if (vui_vec)
10296 XDELETEVEC (vui_vec);
10297 vui_vec = NULL;
10298 vui_allocated = 0;
10299 }
10300
10301 /* The entry point to variable tracking pass. */
10302
10303 static inline unsigned int
10304 variable_tracking_main_1 (void)
10305 {
10306 bool success;
10307
10308 if (flag_var_tracking_assignments < 0
10309 /* Var-tracking right now assumes the IR doesn't contain
10310 any pseudos at this point. */
10311 || targetm.no_register_allocation)
10312 {
10313 delete_debug_insns ();
10314 return 0;
10315 }
10316
10317 if (n_basic_blocks_for_fn (cfun) > 500 &&
10318 n_edges_for_fn (cfun) / n_basic_blocks_for_fn (cfun) >= 20)
10319 {
10320 vt_debug_insns_local (true);
10321 return 0;
10322 }
10323
10324 mark_dfs_back_edges ();
10325 if (!vt_initialize ())
10326 {
10327 vt_finalize ();
10328 vt_debug_insns_local (true);
10329 return 0;
10330 }
10331
10332 success = vt_find_locations ();
10333
10334 if (!success && flag_var_tracking_assignments > 0)
10335 {
10336 vt_finalize ();
10337
10338 delete_debug_insns ();
10339
10340 /* This is later restored by our caller. */
10341 flag_var_tracking_assignments = 0;
10342
10343 success = vt_initialize ();
10344 gcc_assert (success);
10345
10346 success = vt_find_locations ();
10347 }
10348
10349 if (!success)
10350 {
10351 vt_finalize ();
10352 vt_debug_insns_local (false);
10353 return 0;
10354 }
10355
10356 if (dump_file && (dump_flags & TDF_DETAILS))
10357 {
10358 dump_dataflow_sets ();
10359 dump_reg_info (dump_file);
10360 dump_flow_info (dump_file, dump_flags);
10361 }
10362
10363 timevar_push (TV_VAR_TRACKING_EMIT);
10364 vt_emit_notes ();
10365 timevar_pop (TV_VAR_TRACKING_EMIT);
10366
10367 vt_finalize ();
10368 vt_debug_insns_local (false);
10369 return 0;
10370 }
10371
10372 unsigned int
10373 variable_tracking_main (void)
10374 {
10375 unsigned int ret;
10376 int save = flag_var_tracking_assignments;
10377
10378 ret = variable_tracking_main_1 ();
10379
10380 flag_var_tracking_assignments = save;
10381
10382 return ret;
10383 }
10384 \f
10385 namespace {
10386
10387 const pass_data pass_data_variable_tracking =
10388 {
10389 RTL_PASS, /* type */
10390 "vartrack", /* name */
10391 OPTGROUP_NONE, /* optinfo_flags */
10392 TV_VAR_TRACKING, /* tv_id */
10393 0, /* properties_required */
10394 0, /* properties_provided */
10395 0, /* properties_destroyed */
10396 0, /* todo_flags_start */
10397 0, /* todo_flags_finish */
10398 };
10399
10400 class pass_variable_tracking : public rtl_opt_pass
10401 {
10402 public:
10403 pass_variable_tracking (gcc::context *ctxt)
10404 : rtl_opt_pass (pass_data_variable_tracking, ctxt)
10405 {}
10406
10407 /* opt_pass methods: */
10408 virtual bool gate (function *)
10409 {
10410 return (flag_var_tracking && !targetm.delay_vartrack);
10411 }
10412
10413 virtual unsigned int execute (function *)
10414 {
10415 return variable_tracking_main ();
10416 }
10417
10418 }; // class pass_variable_tracking
10419
10420 } // anon namespace
10421
10422 rtl_opt_pass *
10423 make_pass_variable_tracking (gcc::context *ctxt)
10424 {
10425 return new pass_variable_tracking (ctxt);
10426 }