]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/var-tracking.c
Move MEMMODEL_* from coretypes.h to memmodel.h
[thirdparty/gcc.git] / gcc / var-tracking.c
1 /* Variable tracking routines for the GNU compiler.
2 Copyright (C) 2002-2016 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file contains the variable tracking pass. It computes where
21 variables are located (which registers or where in memory) at each position
22 in instruction stream and emits notes describing the locations.
23 Debug information (DWARF2 location lists) is finally generated from
24 these notes.
25 With this debug information, it is possible to show variables
26 even when debugging optimized code.
27
28 How does the variable tracking pass work?
29
30 First, it scans RTL code for uses, stores and clobbers (register/memory
31 references in instructions), for call insns and for stack adjustments
32 separately for each basic block and saves them to an array of micro
33 operations.
34 The micro operations of one instruction are ordered so that
35 pre-modifying stack adjustment < use < use with no var < call insn <
36 < clobber < set < post-modifying stack adjustment
37
38 Then, a forward dataflow analysis is performed to find out how locations
39 of variables change through code and to propagate the variable locations
40 along control flow graph.
41 The IN set for basic block BB is computed as a union of OUT sets of BB's
42 predecessors, the OUT set for BB is copied from the IN set for BB and
43 is changed according to micro operations in BB.
44
45 The IN and OUT sets for basic blocks consist of a current stack adjustment
46 (used for adjusting offset of variables addressed using stack pointer),
47 the table of structures describing the locations of parts of a variable
48 and for each physical register a linked list for each physical register.
49 The linked list is a list of variable parts stored in the register,
50 i.e. it is a list of triplets (reg, decl, offset) where decl is
51 REG_EXPR (reg) and offset is REG_OFFSET (reg). The linked list is used for
52 effective deleting appropriate variable parts when we set or clobber the
53 register.
54
55 There may be more than one variable part in a register. The linked lists
56 should be pretty short so it is a good data structure here.
57 For example in the following code, register allocator may assign same
58 register to variables A and B, and both of them are stored in the same
59 register in CODE:
60
61 if (cond)
62 set A;
63 else
64 set B;
65 CODE;
66 if (cond)
67 use A;
68 else
69 use B;
70
71 Finally, the NOTE_INSN_VAR_LOCATION notes describing the variable locations
72 are emitted to appropriate positions in RTL code. Each such a note describes
73 the location of one variable at the point in instruction stream where the
74 note is. There is no need to emit a note for each variable before each
75 instruction, we only emit these notes where the location of variable changes
76 (this means that we also emit notes for changes between the OUT set of the
77 previous block and the IN set of the current block).
78
79 The notes consist of two parts:
80 1. the declaration (from REG_EXPR or MEM_EXPR)
81 2. the location of a variable - it is either a simple register/memory
82 reference (for simple variables, for example int),
83 or a parallel of register/memory references (for a large variables
84 which consist of several parts, for example long long).
85
86 */
87
88 #include "config.h"
89 #include "system.h"
90 #include "coretypes.h"
91 #include "backend.h"
92 #include "target.h"
93 #include "rtl.h"
94 #include "tree.h"
95 #include "cfghooks.h"
96 #include "alloc-pool.h"
97 #include "tree-pass.h"
98 #include "memmodel.h"
99 #include "tm_p.h"
100 #include "insn-config.h"
101 #include "regs.h"
102 #include "emit-rtl.h"
103 #include "recog.h"
104 #include "diagnostic.h"
105 #include "varasm.h"
106 #include "stor-layout.h"
107 #include "cfgrtl.h"
108 #include "cfganal.h"
109 #include "reload.h"
110 #include "calls.h"
111 #include "tree-dfa.h"
112 #include "tree-ssa.h"
113 #include "cselib.h"
114 #include "params.h"
115 #include "tree-pretty-print.h"
116 #include "rtl-iter.h"
117 #include "fibonacci_heap.h"
118
119 typedef fibonacci_heap <long, basic_block_def> bb_heap_t;
120 typedef fibonacci_node <long, basic_block_def> bb_heap_node_t;
121
122 /* var-tracking.c assumes that tree code with the same value as VALUE rtx code
123 has no chance to appear in REG_EXPR/MEM_EXPRs and isn't a decl.
124 Currently the value is the same as IDENTIFIER_NODE, which has such
125 a property. If this compile time assertion ever fails, make sure that
126 the new tree code that equals (int) VALUE has the same property. */
127 extern char check_value_val[(int) VALUE == (int) IDENTIFIER_NODE ? 1 : -1];
128
129 /* Type of micro operation. */
130 enum micro_operation_type
131 {
132 MO_USE, /* Use location (REG or MEM). */
133 MO_USE_NO_VAR,/* Use location which is not associated with a variable
134 or the variable is not trackable. */
135 MO_VAL_USE, /* Use location which is associated with a value. */
136 MO_VAL_LOC, /* Use location which appears in a debug insn. */
137 MO_VAL_SET, /* Set location associated with a value. */
138 MO_SET, /* Set location. */
139 MO_COPY, /* Copy the same portion of a variable from one
140 location to another. */
141 MO_CLOBBER, /* Clobber location. */
142 MO_CALL, /* Call insn. */
143 MO_ADJUST /* Adjust stack pointer. */
144
145 };
146
147 static const char * const ATTRIBUTE_UNUSED
148 micro_operation_type_name[] = {
149 "MO_USE",
150 "MO_USE_NO_VAR",
151 "MO_VAL_USE",
152 "MO_VAL_LOC",
153 "MO_VAL_SET",
154 "MO_SET",
155 "MO_COPY",
156 "MO_CLOBBER",
157 "MO_CALL",
158 "MO_ADJUST"
159 };
160
161 /* Where shall the note be emitted? BEFORE or AFTER the instruction.
162 Notes emitted as AFTER_CALL are to take effect during the call,
163 rather than after the call. */
164 enum emit_note_where
165 {
166 EMIT_NOTE_BEFORE_INSN,
167 EMIT_NOTE_AFTER_INSN,
168 EMIT_NOTE_AFTER_CALL_INSN
169 };
170
171 /* Structure holding information about micro operation. */
172 struct micro_operation
173 {
174 /* Type of micro operation. */
175 enum micro_operation_type type;
176
177 /* The instruction which the micro operation is in, for MO_USE,
178 MO_USE_NO_VAR, MO_CALL and MO_ADJUST, or the subsequent
179 instruction or note in the original flow (before any var-tracking
180 notes are inserted, to simplify emission of notes), for MO_SET
181 and MO_CLOBBER. */
182 rtx_insn *insn;
183
184 union {
185 /* Location. For MO_SET and MO_COPY, this is the SET that
186 performs the assignment, if known, otherwise it is the target
187 of the assignment. For MO_VAL_USE and MO_VAL_SET, it is a
188 CONCAT of the VALUE and the LOC associated with it. For
189 MO_VAL_LOC, it is a CONCAT of the VALUE and the VAR_LOCATION
190 associated with it. */
191 rtx loc;
192
193 /* Stack adjustment. */
194 HOST_WIDE_INT adjust;
195 } u;
196 };
197
198
199 /* A declaration of a variable, or an RTL value being handled like a
200 declaration. */
201 typedef void *decl_or_value;
202
203 /* Return true if a decl_or_value DV is a DECL or NULL. */
204 static inline bool
205 dv_is_decl_p (decl_or_value dv)
206 {
207 return !dv || (int) TREE_CODE ((tree) dv) != (int) VALUE;
208 }
209
210 /* Return true if a decl_or_value is a VALUE rtl. */
211 static inline bool
212 dv_is_value_p (decl_or_value dv)
213 {
214 return dv && !dv_is_decl_p (dv);
215 }
216
217 /* Return the decl in the decl_or_value. */
218 static inline tree
219 dv_as_decl (decl_or_value dv)
220 {
221 gcc_checking_assert (dv_is_decl_p (dv));
222 return (tree) dv;
223 }
224
225 /* Return the value in the decl_or_value. */
226 static inline rtx
227 dv_as_value (decl_or_value dv)
228 {
229 gcc_checking_assert (dv_is_value_p (dv));
230 return (rtx)dv;
231 }
232
233 /* Return the opaque pointer in the decl_or_value. */
234 static inline void *
235 dv_as_opaque (decl_or_value dv)
236 {
237 return dv;
238 }
239
240
241 /* Description of location of a part of a variable. The content of a physical
242 register is described by a chain of these structures.
243 The chains are pretty short (usually 1 or 2 elements) and thus
244 chain is the best data structure. */
245 struct attrs
246 {
247 /* Pointer to next member of the list. */
248 attrs *next;
249
250 /* The rtx of register. */
251 rtx loc;
252
253 /* The declaration corresponding to LOC. */
254 decl_or_value dv;
255
256 /* Offset from start of DECL. */
257 HOST_WIDE_INT offset;
258 };
259
260 /* Structure for chaining the locations. */
261 struct location_chain
262 {
263 /* Next element in the chain. */
264 location_chain *next;
265
266 /* The location (REG, MEM or VALUE). */
267 rtx loc;
268
269 /* The "value" stored in this location. */
270 rtx set_src;
271
272 /* Initialized? */
273 enum var_init_status init;
274 };
275
276 /* A vector of loc_exp_dep holds the active dependencies of a one-part
277 DV on VALUEs, i.e., the VALUEs expanded so as to form the current
278 location of DV. Each entry is also part of VALUE' s linked-list of
279 backlinks back to DV. */
280 struct loc_exp_dep
281 {
282 /* The dependent DV. */
283 decl_or_value dv;
284 /* The dependency VALUE or DECL_DEBUG. */
285 rtx value;
286 /* The next entry in VALUE's backlinks list. */
287 struct loc_exp_dep *next;
288 /* A pointer to the pointer to this entry (head or prev's next) in
289 the doubly-linked list. */
290 struct loc_exp_dep **pprev;
291 };
292
293
294 /* This data structure holds information about the depth of a variable
295 expansion. */
296 struct expand_depth
297 {
298 /* This measures the complexity of the expanded expression. It
299 grows by one for each level of expansion that adds more than one
300 operand. */
301 int complexity;
302 /* This counts the number of ENTRY_VALUE expressions in an
303 expansion. We want to minimize their use. */
304 int entryvals;
305 };
306
307 /* This data structure is allocated for one-part variables at the time
308 of emitting notes. */
309 struct onepart_aux
310 {
311 /* Doubly-linked list of dependent DVs. These are DVs whose cur_loc
312 computation used the expansion of this variable, and that ought
313 to be notified should this variable change. If the DV's cur_loc
314 expanded to NULL, all components of the loc list are regarded as
315 active, so that any changes in them give us a chance to get a
316 location. Otherwise, only components of the loc that expanded to
317 non-NULL are regarded as active dependencies. */
318 loc_exp_dep *backlinks;
319 /* This holds the LOC that was expanded into cur_loc. We need only
320 mark a one-part variable as changed if the FROM loc is removed,
321 or if it has no known location and a loc is added, or if it gets
322 a change notification from any of its active dependencies. */
323 rtx from;
324 /* The depth of the cur_loc expression. */
325 expand_depth depth;
326 /* Dependencies actively used when expand FROM into cur_loc. */
327 vec<loc_exp_dep, va_heap, vl_embed> deps;
328 };
329
330 /* Structure describing one part of variable. */
331 struct variable_part
332 {
333 /* Chain of locations of the part. */
334 location_chain *loc_chain;
335
336 /* Location which was last emitted to location list. */
337 rtx cur_loc;
338
339 union variable_aux
340 {
341 /* The offset in the variable, if !var->onepart. */
342 HOST_WIDE_INT offset;
343
344 /* Pointer to auxiliary data, if var->onepart and emit_notes. */
345 struct onepart_aux *onepaux;
346 } aux;
347 };
348
349 /* Maximum number of location parts. */
350 #define MAX_VAR_PARTS 16
351
352 /* Enumeration type used to discriminate various types of one-part
353 variables. */
354 enum onepart_enum
355 {
356 /* Not a one-part variable. */
357 NOT_ONEPART = 0,
358 /* A one-part DECL that is not a DEBUG_EXPR_DECL. */
359 ONEPART_VDECL = 1,
360 /* A DEBUG_EXPR_DECL. */
361 ONEPART_DEXPR = 2,
362 /* A VALUE. */
363 ONEPART_VALUE = 3
364 };
365
366 /* Structure describing where the variable is located. */
367 struct variable
368 {
369 /* The declaration of the variable, or an RTL value being handled
370 like a declaration. */
371 decl_or_value dv;
372
373 /* Reference count. */
374 int refcount;
375
376 /* Number of variable parts. */
377 char n_var_parts;
378
379 /* What type of DV this is, according to enum onepart_enum. */
380 ENUM_BITFIELD (onepart_enum) onepart : CHAR_BIT;
381
382 /* True if this variable_def struct is currently in the
383 changed_variables hash table. */
384 bool in_changed_variables;
385
386 /* The variable parts. */
387 variable_part var_part[1];
388 };
389
390 /* Pointer to the BB's information specific to variable tracking pass. */
391 #define VTI(BB) ((variable_tracking_info *) (BB)->aux)
392
393 /* Macro to access MEM_OFFSET as an HOST_WIDE_INT. Evaluates MEM twice. */
394 #define INT_MEM_OFFSET(mem) (MEM_OFFSET_KNOWN_P (mem) ? MEM_OFFSET (mem) : 0)
395
396 #if CHECKING_P && (GCC_VERSION >= 2007)
397
398 /* Access VAR's Ith part's offset, checking that it's not a one-part
399 variable. */
400 #define VAR_PART_OFFSET(var, i) __extension__ \
401 (*({ variable *const __v = (var); \
402 gcc_checking_assert (!__v->onepart); \
403 &__v->var_part[(i)].aux.offset; }))
404
405 /* Access VAR's one-part auxiliary data, checking that it is a
406 one-part variable. */
407 #define VAR_LOC_1PAUX(var) __extension__ \
408 (*({ variable *const __v = (var); \
409 gcc_checking_assert (__v->onepart); \
410 &__v->var_part[0].aux.onepaux; }))
411
412 #else
413 #define VAR_PART_OFFSET(var, i) ((var)->var_part[(i)].aux.offset)
414 #define VAR_LOC_1PAUX(var) ((var)->var_part[0].aux.onepaux)
415 #endif
416
417 /* These are accessor macros for the one-part auxiliary data. When
418 convenient for users, they're guarded by tests that the data was
419 allocated. */
420 #define VAR_LOC_DEP_LST(var) (VAR_LOC_1PAUX (var) \
421 ? VAR_LOC_1PAUX (var)->backlinks \
422 : NULL)
423 #define VAR_LOC_DEP_LSTP(var) (VAR_LOC_1PAUX (var) \
424 ? &VAR_LOC_1PAUX (var)->backlinks \
425 : NULL)
426 #define VAR_LOC_FROM(var) (VAR_LOC_1PAUX (var)->from)
427 #define VAR_LOC_DEPTH(var) (VAR_LOC_1PAUX (var)->depth)
428 #define VAR_LOC_DEP_VEC(var) (VAR_LOC_1PAUX (var) \
429 ? &VAR_LOC_1PAUX (var)->deps \
430 : NULL)
431
432
433
434 typedef unsigned int dvuid;
435
436 /* Return the uid of DV. */
437
438 static inline dvuid
439 dv_uid (decl_or_value dv)
440 {
441 if (dv_is_value_p (dv))
442 return CSELIB_VAL_PTR (dv_as_value (dv))->uid;
443 else
444 return DECL_UID (dv_as_decl (dv));
445 }
446
447 /* Compute the hash from the uid. */
448
449 static inline hashval_t
450 dv_uid2hash (dvuid uid)
451 {
452 return uid;
453 }
454
455 /* The hash function for a mask table in a shared_htab chain. */
456
457 static inline hashval_t
458 dv_htab_hash (decl_or_value dv)
459 {
460 return dv_uid2hash (dv_uid (dv));
461 }
462
463 static void variable_htab_free (void *);
464
465 /* Variable hashtable helpers. */
466
467 struct variable_hasher : pointer_hash <variable>
468 {
469 typedef void *compare_type;
470 static inline hashval_t hash (const variable *);
471 static inline bool equal (const variable *, const void *);
472 static inline void remove (variable *);
473 };
474
475 /* The hash function for variable_htab, computes the hash value
476 from the declaration of variable X. */
477
478 inline hashval_t
479 variable_hasher::hash (const variable *v)
480 {
481 return dv_htab_hash (v->dv);
482 }
483
484 /* Compare the declaration of variable X with declaration Y. */
485
486 inline bool
487 variable_hasher::equal (const variable *v, const void *y)
488 {
489 decl_or_value dv = CONST_CAST2 (decl_or_value, const void *, y);
490
491 return (dv_as_opaque (v->dv) == dv_as_opaque (dv));
492 }
493
494 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
495
496 inline void
497 variable_hasher::remove (variable *var)
498 {
499 variable_htab_free (var);
500 }
501
502 typedef hash_table<variable_hasher> variable_table_type;
503 typedef variable_table_type::iterator variable_iterator_type;
504
505 /* Structure for passing some other parameters to function
506 emit_note_insn_var_location. */
507 struct emit_note_data
508 {
509 /* The instruction which the note will be emitted before/after. */
510 rtx_insn *insn;
511
512 /* Where the note will be emitted (before/after insn)? */
513 enum emit_note_where where;
514
515 /* The variables and values active at this point. */
516 variable_table_type *vars;
517 };
518
519 /* Structure holding a refcounted hash table. If refcount > 1,
520 it must be first unshared before modified. */
521 struct shared_hash
522 {
523 /* Reference count. */
524 int refcount;
525
526 /* Actual hash table. */
527 variable_table_type *htab;
528 };
529
530 /* Structure holding the IN or OUT set for a basic block. */
531 struct dataflow_set
532 {
533 /* Adjustment of stack offset. */
534 HOST_WIDE_INT stack_adjust;
535
536 /* Attributes for registers (lists of attrs). */
537 attrs *regs[FIRST_PSEUDO_REGISTER];
538
539 /* Variable locations. */
540 shared_hash *vars;
541
542 /* Vars that is being traversed. */
543 shared_hash *traversed_vars;
544 };
545
546 /* The structure (one for each basic block) containing the information
547 needed for variable tracking. */
548 struct variable_tracking_info
549 {
550 /* The vector of micro operations. */
551 vec<micro_operation> mos;
552
553 /* The IN and OUT set for dataflow analysis. */
554 dataflow_set in;
555 dataflow_set out;
556
557 /* The permanent-in dataflow set for this block. This is used to
558 hold values for which we had to compute entry values. ??? This
559 should probably be dynamically allocated, to avoid using more
560 memory in non-debug builds. */
561 dataflow_set *permp;
562
563 /* Has the block been visited in DFS? */
564 bool visited;
565
566 /* Has the block been flooded in VTA? */
567 bool flooded;
568
569 };
570
571 /* Alloc pool for struct attrs_def. */
572 object_allocator<attrs> attrs_pool ("attrs pool");
573
574 /* Alloc pool for struct variable_def with MAX_VAR_PARTS entries. */
575
576 static pool_allocator var_pool
577 ("variable_def pool", sizeof (variable) +
578 (MAX_VAR_PARTS - 1) * sizeof (((variable *)NULL)->var_part[0]));
579
580 /* Alloc pool for struct variable_def with a single var_part entry. */
581 static pool_allocator valvar_pool
582 ("small variable_def pool", sizeof (variable));
583
584 /* Alloc pool for struct location_chain. */
585 static object_allocator<location_chain> location_chain_pool
586 ("location_chain pool");
587
588 /* Alloc pool for struct shared_hash. */
589 static object_allocator<shared_hash> shared_hash_pool ("shared_hash pool");
590
591 /* Alloc pool for struct loc_exp_dep_s for NOT_ONEPART variables. */
592 object_allocator<loc_exp_dep> loc_exp_dep_pool ("loc_exp_dep pool");
593
594 /* Changed variables, notes will be emitted for them. */
595 static variable_table_type *changed_variables;
596
597 /* Shall notes be emitted? */
598 static bool emit_notes;
599
600 /* Values whose dynamic location lists have gone empty, but whose
601 cselib location lists are still usable. Use this to hold the
602 current location, the backlinks, etc, during emit_notes. */
603 static variable_table_type *dropped_values;
604
605 /* Empty shared hashtable. */
606 static shared_hash *empty_shared_hash;
607
608 /* Scratch register bitmap used by cselib_expand_value_rtx. */
609 static bitmap scratch_regs = NULL;
610
611 #ifdef HAVE_window_save
612 struct GTY(()) parm_reg {
613 rtx outgoing;
614 rtx incoming;
615 };
616
617
618 /* Vector of windowed parameter registers, if any. */
619 static vec<parm_reg, va_gc> *windowed_parm_regs = NULL;
620 #endif
621
622 /* Variable used to tell whether cselib_process_insn called our hook. */
623 static bool cselib_hook_called;
624
625 /* Local function prototypes. */
626 static void stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
627 HOST_WIDE_INT *);
628 static void insn_stack_adjust_offset_pre_post (rtx_insn *, HOST_WIDE_INT *,
629 HOST_WIDE_INT *);
630 static bool vt_stack_adjustments (void);
631
632 static void init_attrs_list_set (attrs **);
633 static void attrs_list_clear (attrs **);
634 static attrs *attrs_list_member (attrs *, decl_or_value, HOST_WIDE_INT);
635 static void attrs_list_insert (attrs **, decl_or_value, HOST_WIDE_INT, rtx);
636 static void attrs_list_copy (attrs **, attrs *);
637 static void attrs_list_union (attrs **, attrs *);
638
639 static variable **unshare_variable (dataflow_set *set, variable **slot,
640 variable *var, enum var_init_status);
641 static void vars_copy (variable_table_type *, variable_table_type *);
642 static tree var_debug_decl (tree);
643 static void var_reg_set (dataflow_set *, rtx, enum var_init_status, rtx);
644 static void var_reg_delete_and_set (dataflow_set *, rtx, bool,
645 enum var_init_status, rtx);
646 static void var_reg_delete (dataflow_set *, rtx, bool);
647 static void var_regno_delete (dataflow_set *, int);
648 static void var_mem_set (dataflow_set *, rtx, enum var_init_status, rtx);
649 static void var_mem_delete_and_set (dataflow_set *, rtx, bool,
650 enum var_init_status, rtx);
651 static void var_mem_delete (dataflow_set *, rtx, bool);
652
653 static void dataflow_set_init (dataflow_set *);
654 static void dataflow_set_clear (dataflow_set *);
655 static void dataflow_set_copy (dataflow_set *, dataflow_set *);
656 static int variable_union_info_cmp_pos (const void *, const void *);
657 static void dataflow_set_union (dataflow_set *, dataflow_set *);
658 static location_chain *find_loc_in_1pdv (rtx, variable *,
659 variable_table_type *);
660 static bool canon_value_cmp (rtx, rtx);
661 static int loc_cmp (rtx, rtx);
662 static bool variable_part_different_p (variable_part *, variable_part *);
663 static bool onepart_variable_different_p (variable *, variable *);
664 static bool variable_different_p (variable *, variable *);
665 static bool dataflow_set_different (dataflow_set *, dataflow_set *);
666 static void dataflow_set_destroy (dataflow_set *);
667
668 static bool track_expr_p (tree, bool);
669 static bool same_variable_part_p (rtx, tree, HOST_WIDE_INT);
670 static void add_uses_1 (rtx *, void *);
671 static void add_stores (rtx, const_rtx, void *);
672 static bool compute_bb_dataflow (basic_block);
673 static bool vt_find_locations (void);
674
675 static void dump_attrs_list (attrs *);
676 static void dump_var (variable *);
677 static void dump_vars (variable_table_type *);
678 static void dump_dataflow_set (dataflow_set *);
679 static void dump_dataflow_sets (void);
680
681 static void set_dv_changed (decl_or_value, bool);
682 static void variable_was_changed (variable *, dataflow_set *);
683 static variable **set_slot_part (dataflow_set *, rtx, variable **,
684 decl_or_value, HOST_WIDE_INT,
685 enum var_init_status, rtx);
686 static void set_variable_part (dataflow_set *, rtx,
687 decl_or_value, HOST_WIDE_INT,
688 enum var_init_status, rtx, enum insert_option);
689 static variable **clobber_slot_part (dataflow_set *, rtx,
690 variable **, HOST_WIDE_INT, rtx);
691 static void clobber_variable_part (dataflow_set *, rtx,
692 decl_or_value, HOST_WIDE_INT, rtx);
693 static variable **delete_slot_part (dataflow_set *, rtx, variable **,
694 HOST_WIDE_INT);
695 static void delete_variable_part (dataflow_set *, rtx,
696 decl_or_value, HOST_WIDE_INT);
697 static void emit_notes_in_bb (basic_block, dataflow_set *);
698 static void vt_emit_notes (void);
699
700 static bool vt_get_decl_and_offset (rtx, tree *, HOST_WIDE_INT *);
701 static void vt_add_function_parameters (void);
702 static bool vt_initialize (void);
703 static void vt_finalize (void);
704
705 /* Callback for stack_adjust_offset_pre_post, called via for_each_inc_dec. */
706
707 static int
708 stack_adjust_offset_pre_post_cb (rtx, rtx op, rtx dest, rtx src, rtx srcoff,
709 void *arg)
710 {
711 if (dest != stack_pointer_rtx)
712 return 0;
713
714 switch (GET_CODE (op))
715 {
716 case PRE_INC:
717 case PRE_DEC:
718 ((HOST_WIDE_INT *)arg)[0] -= INTVAL (srcoff);
719 return 0;
720 case POST_INC:
721 case POST_DEC:
722 ((HOST_WIDE_INT *)arg)[1] -= INTVAL (srcoff);
723 return 0;
724 case PRE_MODIFY:
725 case POST_MODIFY:
726 /* We handle only adjustments by constant amount. */
727 gcc_assert (GET_CODE (src) == PLUS
728 && CONST_INT_P (XEXP (src, 1))
729 && XEXP (src, 0) == stack_pointer_rtx);
730 ((HOST_WIDE_INT *)arg)[GET_CODE (op) == POST_MODIFY]
731 -= INTVAL (XEXP (src, 1));
732 return 0;
733 default:
734 gcc_unreachable ();
735 }
736 }
737
738 /* Given a SET, calculate the amount of stack adjustment it contains
739 PRE- and POST-modifying stack pointer.
740 This function is similar to stack_adjust_offset. */
741
742 static void
743 stack_adjust_offset_pre_post (rtx pattern, HOST_WIDE_INT *pre,
744 HOST_WIDE_INT *post)
745 {
746 rtx src = SET_SRC (pattern);
747 rtx dest = SET_DEST (pattern);
748 enum rtx_code code;
749
750 if (dest == stack_pointer_rtx)
751 {
752 /* (set (reg sp) (plus (reg sp) (const_int))) */
753 code = GET_CODE (src);
754 if (! (code == PLUS || code == MINUS)
755 || XEXP (src, 0) != stack_pointer_rtx
756 || !CONST_INT_P (XEXP (src, 1)))
757 return;
758
759 if (code == MINUS)
760 *post += INTVAL (XEXP (src, 1));
761 else
762 *post -= INTVAL (XEXP (src, 1));
763 return;
764 }
765 HOST_WIDE_INT res[2] = { 0, 0 };
766 for_each_inc_dec (pattern, stack_adjust_offset_pre_post_cb, res);
767 *pre += res[0];
768 *post += res[1];
769 }
770
771 /* Given an INSN, calculate the amount of stack adjustment it contains
772 PRE- and POST-modifying stack pointer. */
773
774 static void
775 insn_stack_adjust_offset_pre_post (rtx_insn *insn, HOST_WIDE_INT *pre,
776 HOST_WIDE_INT *post)
777 {
778 rtx pattern;
779
780 *pre = 0;
781 *post = 0;
782
783 pattern = PATTERN (insn);
784 if (RTX_FRAME_RELATED_P (insn))
785 {
786 rtx expr = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
787 if (expr)
788 pattern = XEXP (expr, 0);
789 }
790
791 if (GET_CODE (pattern) == SET)
792 stack_adjust_offset_pre_post (pattern, pre, post);
793 else if (GET_CODE (pattern) == PARALLEL
794 || GET_CODE (pattern) == SEQUENCE)
795 {
796 int i;
797
798 /* There may be stack adjustments inside compound insns. Search
799 for them. */
800 for ( i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
801 if (GET_CODE (XVECEXP (pattern, 0, i)) == SET)
802 stack_adjust_offset_pre_post (XVECEXP (pattern, 0, i), pre, post);
803 }
804 }
805
806 /* Compute stack adjustments for all blocks by traversing DFS tree.
807 Return true when the adjustments on all incoming edges are consistent.
808 Heavily borrowed from pre_and_rev_post_order_compute. */
809
810 static bool
811 vt_stack_adjustments (void)
812 {
813 edge_iterator *stack;
814 int sp;
815
816 /* Initialize entry block. */
817 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->visited = true;
818 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->in.stack_adjust
819 = INCOMING_FRAME_SP_OFFSET;
820 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->out.stack_adjust
821 = INCOMING_FRAME_SP_OFFSET;
822
823 /* Allocate stack for back-tracking up CFG. */
824 stack = XNEWVEC (edge_iterator, n_basic_blocks_for_fn (cfun) + 1);
825 sp = 0;
826
827 /* Push the first edge on to the stack. */
828 stack[sp++] = ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs);
829
830 while (sp)
831 {
832 edge_iterator ei;
833 basic_block src;
834 basic_block dest;
835
836 /* Look at the edge on the top of the stack. */
837 ei = stack[sp - 1];
838 src = ei_edge (ei)->src;
839 dest = ei_edge (ei)->dest;
840
841 /* Check if the edge destination has been visited yet. */
842 if (!VTI (dest)->visited)
843 {
844 rtx_insn *insn;
845 HOST_WIDE_INT pre, post, offset;
846 VTI (dest)->visited = true;
847 VTI (dest)->in.stack_adjust = offset = VTI (src)->out.stack_adjust;
848
849 if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
850 for (insn = BB_HEAD (dest);
851 insn != NEXT_INSN (BB_END (dest));
852 insn = NEXT_INSN (insn))
853 if (INSN_P (insn))
854 {
855 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
856 offset += pre + post;
857 }
858
859 VTI (dest)->out.stack_adjust = offset;
860
861 if (EDGE_COUNT (dest->succs) > 0)
862 /* Since the DEST node has been visited for the first
863 time, check its successors. */
864 stack[sp++] = ei_start (dest->succs);
865 }
866 else
867 {
868 /* We can end up with different stack adjustments for the exit block
869 of a shrink-wrapped function if stack_adjust_offset_pre_post
870 doesn't understand the rtx pattern used to restore the stack
871 pointer in the epilogue. For example, on s390(x), the stack
872 pointer is often restored via a load-multiple instruction
873 and so no stack_adjust offset is recorded for it. This means
874 that the stack offset at the end of the epilogue block is the
875 same as the offset before the epilogue, whereas other paths
876 to the exit block will have the correct stack_adjust.
877
878 It is safe to ignore these differences because (a) we never
879 use the stack_adjust for the exit block in this pass and
880 (b) dwarf2cfi checks whether the CFA notes in a shrink-wrapped
881 function are correct.
882
883 We must check whether the adjustments on other edges are
884 the same though. */
885 if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
886 && VTI (dest)->in.stack_adjust != VTI (src)->out.stack_adjust)
887 {
888 free (stack);
889 return false;
890 }
891
892 if (! ei_one_before_end_p (ei))
893 /* Go to the next edge. */
894 ei_next (&stack[sp - 1]);
895 else
896 /* Return to previous level if there are no more edges. */
897 sp--;
898 }
899 }
900
901 free (stack);
902 return true;
903 }
904
905 /* arg_pointer_rtx resp. frame_pointer_rtx if stack_pointer_rtx or
906 hard_frame_pointer_rtx is being mapped to it and offset for it. */
907 static rtx cfa_base_rtx;
908 static HOST_WIDE_INT cfa_base_offset;
909
910 /* Compute a CFA-based value for an ADJUSTMENT made to stack_pointer_rtx
911 or hard_frame_pointer_rtx. */
912
913 static inline rtx
914 compute_cfa_pointer (HOST_WIDE_INT adjustment)
915 {
916 return plus_constant (Pmode, cfa_base_rtx, adjustment + cfa_base_offset);
917 }
918
919 /* Adjustment for hard_frame_pointer_rtx to cfa base reg,
920 or -1 if the replacement shouldn't be done. */
921 static HOST_WIDE_INT hard_frame_pointer_adjustment = -1;
922
923 /* Data for adjust_mems callback. */
924
925 struct adjust_mem_data
926 {
927 bool store;
928 machine_mode mem_mode;
929 HOST_WIDE_INT stack_adjust;
930 auto_vec<rtx> side_effects;
931 };
932
933 /* Helper for adjust_mems. Return true if X is suitable for
934 transformation of wider mode arithmetics to narrower mode. */
935
936 static bool
937 use_narrower_mode_test (rtx x, const_rtx subreg)
938 {
939 subrtx_var_iterator::array_type array;
940 FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
941 {
942 rtx x = *iter;
943 if (CONSTANT_P (x))
944 iter.skip_subrtxes ();
945 else
946 switch (GET_CODE (x))
947 {
948 case REG:
949 if (cselib_lookup (x, GET_MODE (SUBREG_REG (subreg)), 0, VOIDmode))
950 return false;
951 if (!validate_subreg (GET_MODE (subreg), GET_MODE (x), x,
952 subreg_lowpart_offset (GET_MODE (subreg),
953 GET_MODE (x))))
954 return false;
955 break;
956 case PLUS:
957 case MINUS:
958 case MULT:
959 break;
960 case ASHIFT:
961 iter.substitute (XEXP (x, 0));
962 break;
963 default:
964 return false;
965 }
966 }
967 return true;
968 }
969
970 /* Transform X into narrower mode MODE from wider mode WMODE. */
971
972 static rtx
973 use_narrower_mode (rtx x, machine_mode mode, machine_mode wmode)
974 {
975 rtx op0, op1;
976 if (CONSTANT_P (x))
977 return lowpart_subreg (mode, x, wmode);
978 switch (GET_CODE (x))
979 {
980 case REG:
981 return lowpart_subreg (mode, x, wmode);
982 case PLUS:
983 case MINUS:
984 case MULT:
985 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
986 op1 = use_narrower_mode (XEXP (x, 1), mode, wmode);
987 return simplify_gen_binary (GET_CODE (x), mode, op0, op1);
988 case ASHIFT:
989 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
990 op1 = XEXP (x, 1);
991 /* Ensure shift amount is not wider than mode. */
992 if (GET_MODE (op1) == VOIDmode)
993 op1 = lowpart_subreg (mode, op1, wmode);
994 else if (GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (GET_MODE (op1)))
995 op1 = lowpart_subreg (mode, op1, GET_MODE (op1));
996 return simplify_gen_binary (ASHIFT, mode, op0, op1);
997 default:
998 gcc_unreachable ();
999 }
1000 }
1001
1002 /* Helper function for adjusting used MEMs. */
1003
1004 static rtx
1005 adjust_mems (rtx loc, const_rtx old_rtx, void *data)
1006 {
1007 struct adjust_mem_data *amd = (struct adjust_mem_data *) data;
1008 rtx mem, addr = loc, tem;
1009 machine_mode mem_mode_save;
1010 bool store_save;
1011 switch (GET_CODE (loc))
1012 {
1013 case REG:
1014 /* Don't do any sp or fp replacements outside of MEM addresses
1015 on the LHS. */
1016 if (amd->mem_mode == VOIDmode && amd->store)
1017 return loc;
1018 if (loc == stack_pointer_rtx
1019 && !frame_pointer_needed
1020 && cfa_base_rtx)
1021 return compute_cfa_pointer (amd->stack_adjust);
1022 else if (loc == hard_frame_pointer_rtx
1023 && frame_pointer_needed
1024 && hard_frame_pointer_adjustment != -1
1025 && cfa_base_rtx)
1026 return compute_cfa_pointer (hard_frame_pointer_adjustment);
1027 gcc_checking_assert (loc != virtual_incoming_args_rtx);
1028 return loc;
1029 case MEM:
1030 mem = loc;
1031 if (!amd->store)
1032 {
1033 mem = targetm.delegitimize_address (mem);
1034 if (mem != loc && !MEM_P (mem))
1035 return simplify_replace_fn_rtx (mem, old_rtx, adjust_mems, data);
1036 }
1037
1038 addr = XEXP (mem, 0);
1039 mem_mode_save = amd->mem_mode;
1040 amd->mem_mode = GET_MODE (mem);
1041 store_save = amd->store;
1042 amd->store = false;
1043 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1044 amd->store = store_save;
1045 amd->mem_mode = mem_mode_save;
1046 if (mem == loc)
1047 addr = targetm.delegitimize_address (addr);
1048 if (addr != XEXP (mem, 0))
1049 mem = replace_equiv_address_nv (mem, addr);
1050 if (!amd->store)
1051 mem = avoid_constant_pool_reference (mem);
1052 return mem;
1053 case PRE_INC:
1054 case PRE_DEC:
1055 addr = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
1056 gen_int_mode (GET_CODE (loc) == PRE_INC
1057 ? GET_MODE_SIZE (amd->mem_mode)
1058 : -GET_MODE_SIZE (amd->mem_mode),
1059 GET_MODE (loc)));
1060 /* FALLTHRU */
1061 case POST_INC:
1062 case POST_DEC:
1063 if (addr == loc)
1064 addr = XEXP (loc, 0);
1065 gcc_assert (amd->mem_mode != VOIDmode && amd->mem_mode != BLKmode);
1066 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1067 tem = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
1068 gen_int_mode ((GET_CODE (loc) == PRE_INC
1069 || GET_CODE (loc) == POST_INC)
1070 ? GET_MODE_SIZE (amd->mem_mode)
1071 : -GET_MODE_SIZE (amd->mem_mode),
1072 GET_MODE (loc)));
1073 store_save = amd->store;
1074 amd->store = false;
1075 tem = simplify_replace_fn_rtx (tem, old_rtx, adjust_mems, data);
1076 amd->store = store_save;
1077 amd->side_effects.safe_push (gen_rtx_SET (XEXP (loc, 0), tem));
1078 return addr;
1079 case PRE_MODIFY:
1080 addr = XEXP (loc, 1);
1081 /* FALLTHRU */
1082 case POST_MODIFY:
1083 if (addr == loc)
1084 addr = XEXP (loc, 0);
1085 gcc_assert (amd->mem_mode != VOIDmode);
1086 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1087 store_save = amd->store;
1088 amd->store = false;
1089 tem = simplify_replace_fn_rtx (XEXP (loc, 1), old_rtx,
1090 adjust_mems, data);
1091 amd->store = store_save;
1092 amd->side_effects.safe_push (gen_rtx_SET (XEXP (loc, 0), tem));
1093 return addr;
1094 case SUBREG:
1095 /* First try without delegitimization of whole MEMs and
1096 avoid_constant_pool_reference, which is more likely to succeed. */
1097 store_save = amd->store;
1098 amd->store = true;
1099 addr = simplify_replace_fn_rtx (SUBREG_REG (loc), old_rtx, adjust_mems,
1100 data);
1101 amd->store = store_save;
1102 mem = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1103 if (mem == SUBREG_REG (loc))
1104 {
1105 tem = loc;
1106 goto finish_subreg;
1107 }
1108 tem = simplify_gen_subreg (GET_MODE (loc), mem,
1109 GET_MODE (SUBREG_REG (loc)),
1110 SUBREG_BYTE (loc));
1111 if (tem)
1112 goto finish_subreg;
1113 tem = simplify_gen_subreg (GET_MODE (loc), addr,
1114 GET_MODE (SUBREG_REG (loc)),
1115 SUBREG_BYTE (loc));
1116 if (tem == NULL_RTX)
1117 tem = gen_rtx_raw_SUBREG (GET_MODE (loc), addr, SUBREG_BYTE (loc));
1118 finish_subreg:
1119 if (MAY_HAVE_DEBUG_INSNS
1120 && GET_CODE (tem) == SUBREG
1121 && (GET_CODE (SUBREG_REG (tem)) == PLUS
1122 || GET_CODE (SUBREG_REG (tem)) == MINUS
1123 || GET_CODE (SUBREG_REG (tem)) == MULT
1124 || GET_CODE (SUBREG_REG (tem)) == ASHIFT)
1125 && (GET_MODE_CLASS (GET_MODE (tem)) == MODE_INT
1126 || GET_MODE_CLASS (GET_MODE (tem)) == MODE_PARTIAL_INT)
1127 && (GET_MODE_CLASS (GET_MODE (SUBREG_REG (tem))) == MODE_INT
1128 || GET_MODE_CLASS (GET_MODE (SUBREG_REG (tem))) == MODE_PARTIAL_INT)
1129 && GET_MODE_PRECISION (GET_MODE (tem))
1130 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (tem)))
1131 && subreg_lowpart_p (tem)
1132 && use_narrower_mode_test (SUBREG_REG (tem), tem))
1133 return use_narrower_mode (SUBREG_REG (tem), GET_MODE (tem),
1134 GET_MODE (SUBREG_REG (tem)));
1135 return tem;
1136 case ASM_OPERANDS:
1137 /* Don't do any replacements in second and following
1138 ASM_OPERANDS of inline-asm with multiple sets.
1139 ASM_OPERANDS_INPUT_VEC, ASM_OPERANDS_INPUT_CONSTRAINT_VEC
1140 and ASM_OPERANDS_LABEL_VEC need to be equal between
1141 all the ASM_OPERANDs in the insn and adjust_insn will
1142 fix this up. */
1143 if (ASM_OPERANDS_OUTPUT_IDX (loc) != 0)
1144 return loc;
1145 break;
1146 default:
1147 break;
1148 }
1149 return NULL_RTX;
1150 }
1151
1152 /* Helper function for replacement of uses. */
1153
1154 static void
1155 adjust_mem_uses (rtx *x, void *data)
1156 {
1157 rtx new_x = simplify_replace_fn_rtx (*x, NULL_RTX, adjust_mems, data);
1158 if (new_x != *x)
1159 validate_change (NULL_RTX, x, new_x, true);
1160 }
1161
1162 /* Helper function for replacement of stores. */
1163
1164 static void
1165 adjust_mem_stores (rtx loc, const_rtx expr, void *data)
1166 {
1167 if (MEM_P (loc))
1168 {
1169 rtx new_dest = simplify_replace_fn_rtx (SET_DEST (expr), NULL_RTX,
1170 adjust_mems, data);
1171 if (new_dest != SET_DEST (expr))
1172 {
1173 rtx xexpr = CONST_CAST_RTX (expr);
1174 validate_change (NULL_RTX, &SET_DEST (xexpr), new_dest, true);
1175 }
1176 }
1177 }
1178
1179 /* Simplify INSN. Remove all {PRE,POST}_{INC,DEC,MODIFY} rtxes,
1180 replace them with their value in the insn and add the side-effects
1181 as other sets to the insn. */
1182
1183 static void
1184 adjust_insn (basic_block bb, rtx_insn *insn)
1185 {
1186 rtx set;
1187
1188 #ifdef HAVE_window_save
1189 /* If the target machine has an explicit window save instruction, the
1190 transformation OUTGOING_REGNO -> INCOMING_REGNO is done there. */
1191 if (RTX_FRAME_RELATED_P (insn)
1192 && find_reg_note (insn, REG_CFA_WINDOW_SAVE, NULL_RTX))
1193 {
1194 unsigned int i, nregs = vec_safe_length (windowed_parm_regs);
1195 rtx rtl = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (nregs * 2));
1196 parm_reg *p;
1197
1198 FOR_EACH_VEC_SAFE_ELT (windowed_parm_regs, i, p)
1199 {
1200 XVECEXP (rtl, 0, i * 2)
1201 = gen_rtx_SET (p->incoming, p->outgoing);
1202 /* Do not clobber the attached DECL, but only the REG. */
1203 XVECEXP (rtl, 0, i * 2 + 1)
1204 = gen_rtx_CLOBBER (GET_MODE (p->outgoing),
1205 gen_raw_REG (GET_MODE (p->outgoing),
1206 REGNO (p->outgoing)));
1207 }
1208
1209 validate_change (NULL_RTX, &PATTERN (insn), rtl, true);
1210 return;
1211 }
1212 #endif
1213
1214 adjust_mem_data amd;
1215 amd.mem_mode = VOIDmode;
1216 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
1217
1218 amd.store = true;
1219 note_stores (PATTERN (insn), adjust_mem_stores, &amd);
1220
1221 amd.store = false;
1222 if (GET_CODE (PATTERN (insn)) == PARALLEL
1223 && asm_noperands (PATTERN (insn)) > 0
1224 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1225 {
1226 rtx body, set0;
1227 int i;
1228
1229 /* inline-asm with multiple sets is tiny bit more complicated,
1230 because the 3 vectors in ASM_OPERANDS need to be shared between
1231 all ASM_OPERANDS in the instruction. adjust_mems will
1232 not touch ASM_OPERANDS other than the first one, asm_noperands
1233 test above needs to be called before that (otherwise it would fail)
1234 and afterwards this code fixes it up. */
1235 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1236 body = PATTERN (insn);
1237 set0 = XVECEXP (body, 0, 0);
1238 gcc_checking_assert (GET_CODE (set0) == SET
1239 && GET_CODE (SET_SRC (set0)) == ASM_OPERANDS
1240 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set0)) == 0);
1241 for (i = 1; i < XVECLEN (body, 0); i++)
1242 if (GET_CODE (XVECEXP (body, 0, i)) != SET)
1243 break;
1244 else
1245 {
1246 set = XVECEXP (body, 0, i);
1247 gcc_checking_assert (GET_CODE (SET_SRC (set)) == ASM_OPERANDS
1248 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set))
1249 == i);
1250 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (set))
1251 != ASM_OPERANDS_INPUT_VEC (SET_SRC (set0))
1252 || ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set))
1253 != ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0))
1254 || ASM_OPERANDS_LABEL_VEC (SET_SRC (set))
1255 != ASM_OPERANDS_LABEL_VEC (SET_SRC (set0)))
1256 {
1257 rtx newsrc = shallow_copy_rtx (SET_SRC (set));
1258 ASM_OPERANDS_INPUT_VEC (newsrc)
1259 = ASM_OPERANDS_INPUT_VEC (SET_SRC (set0));
1260 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (newsrc)
1261 = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0));
1262 ASM_OPERANDS_LABEL_VEC (newsrc)
1263 = ASM_OPERANDS_LABEL_VEC (SET_SRC (set0));
1264 validate_change (NULL_RTX, &SET_SRC (set), newsrc, true);
1265 }
1266 }
1267 }
1268 else
1269 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1270
1271 /* For read-only MEMs containing some constant, prefer those
1272 constants. */
1273 set = single_set (insn);
1274 if (set && MEM_P (SET_SRC (set)) && MEM_READONLY_P (SET_SRC (set)))
1275 {
1276 rtx note = find_reg_equal_equiv_note (insn);
1277
1278 if (note && CONSTANT_P (XEXP (note, 0)))
1279 validate_change (NULL_RTX, &SET_SRC (set), XEXP (note, 0), true);
1280 }
1281
1282 if (!amd.side_effects.is_empty ())
1283 {
1284 rtx *pat, new_pat;
1285 int i, oldn;
1286
1287 pat = &PATTERN (insn);
1288 if (GET_CODE (*pat) == COND_EXEC)
1289 pat = &COND_EXEC_CODE (*pat);
1290 if (GET_CODE (*pat) == PARALLEL)
1291 oldn = XVECLEN (*pat, 0);
1292 else
1293 oldn = 1;
1294 unsigned int newn = amd.side_effects.length ();
1295 new_pat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (oldn + newn));
1296 if (GET_CODE (*pat) == PARALLEL)
1297 for (i = 0; i < oldn; i++)
1298 XVECEXP (new_pat, 0, i) = XVECEXP (*pat, 0, i);
1299 else
1300 XVECEXP (new_pat, 0, 0) = *pat;
1301
1302 rtx effect;
1303 unsigned int j;
1304 FOR_EACH_VEC_ELT_REVERSE (amd.side_effects, j, effect)
1305 XVECEXP (new_pat, 0, j + oldn) = effect;
1306 validate_change (NULL_RTX, pat, new_pat, true);
1307 }
1308 }
1309
1310 /* Return the DEBUG_EXPR of a DEBUG_EXPR_DECL or the VALUE in DV. */
1311 static inline rtx
1312 dv_as_rtx (decl_or_value dv)
1313 {
1314 tree decl;
1315
1316 if (dv_is_value_p (dv))
1317 return dv_as_value (dv);
1318
1319 decl = dv_as_decl (dv);
1320
1321 gcc_checking_assert (TREE_CODE (decl) == DEBUG_EXPR_DECL);
1322 return DECL_RTL_KNOWN_SET (decl);
1323 }
1324
1325 /* Return nonzero if a decl_or_value must not have more than one
1326 variable part. The returned value discriminates among various
1327 kinds of one-part DVs ccording to enum onepart_enum. */
1328 static inline onepart_enum
1329 dv_onepart_p (decl_or_value dv)
1330 {
1331 tree decl;
1332
1333 if (!MAY_HAVE_DEBUG_INSNS)
1334 return NOT_ONEPART;
1335
1336 if (dv_is_value_p (dv))
1337 return ONEPART_VALUE;
1338
1339 decl = dv_as_decl (dv);
1340
1341 if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
1342 return ONEPART_DEXPR;
1343
1344 if (target_for_debug_bind (decl) != NULL_TREE)
1345 return ONEPART_VDECL;
1346
1347 return NOT_ONEPART;
1348 }
1349
1350 /* Return the variable pool to be used for a dv of type ONEPART. */
1351 static inline pool_allocator &
1352 onepart_pool (onepart_enum onepart)
1353 {
1354 return onepart ? valvar_pool : var_pool;
1355 }
1356
1357 /* Allocate a variable_def from the corresponding variable pool. */
1358 static inline variable *
1359 onepart_pool_allocate (onepart_enum onepart)
1360 {
1361 return (variable*) onepart_pool (onepart).allocate ();
1362 }
1363
1364 /* Build a decl_or_value out of a decl. */
1365 static inline decl_or_value
1366 dv_from_decl (tree decl)
1367 {
1368 decl_or_value dv;
1369 dv = decl;
1370 gcc_checking_assert (dv_is_decl_p (dv));
1371 return dv;
1372 }
1373
1374 /* Build a decl_or_value out of a value. */
1375 static inline decl_or_value
1376 dv_from_value (rtx value)
1377 {
1378 decl_or_value dv;
1379 dv = value;
1380 gcc_checking_assert (dv_is_value_p (dv));
1381 return dv;
1382 }
1383
1384 /* Return a value or the decl of a debug_expr as a decl_or_value. */
1385 static inline decl_or_value
1386 dv_from_rtx (rtx x)
1387 {
1388 decl_or_value dv;
1389
1390 switch (GET_CODE (x))
1391 {
1392 case DEBUG_EXPR:
1393 dv = dv_from_decl (DEBUG_EXPR_TREE_DECL (x));
1394 gcc_checking_assert (DECL_RTL_KNOWN_SET (DEBUG_EXPR_TREE_DECL (x)) == x);
1395 break;
1396
1397 case VALUE:
1398 dv = dv_from_value (x);
1399 break;
1400
1401 default:
1402 gcc_unreachable ();
1403 }
1404
1405 return dv;
1406 }
1407
1408 extern void debug_dv (decl_or_value dv);
1409
1410 DEBUG_FUNCTION void
1411 debug_dv (decl_or_value dv)
1412 {
1413 if (dv_is_value_p (dv))
1414 debug_rtx (dv_as_value (dv));
1415 else
1416 debug_generic_stmt (dv_as_decl (dv));
1417 }
1418
1419 static void loc_exp_dep_clear (variable *var);
1420
1421 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
1422
1423 static void
1424 variable_htab_free (void *elem)
1425 {
1426 int i;
1427 variable *var = (variable *) elem;
1428 location_chain *node, *next;
1429
1430 gcc_checking_assert (var->refcount > 0);
1431
1432 var->refcount--;
1433 if (var->refcount > 0)
1434 return;
1435
1436 for (i = 0; i < var->n_var_parts; i++)
1437 {
1438 for (node = var->var_part[i].loc_chain; node; node = next)
1439 {
1440 next = node->next;
1441 delete node;
1442 }
1443 var->var_part[i].loc_chain = NULL;
1444 }
1445 if (var->onepart && VAR_LOC_1PAUX (var))
1446 {
1447 loc_exp_dep_clear (var);
1448 if (VAR_LOC_DEP_LST (var))
1449 VAR_LOC_DEP_LST (var)->pprev = NULL;
1450 XDELETE (VAR_LOC_1PAUX (var));
1451 /* These may be reused across functions, so reset
1452 e.g. NO_LOC_P. */
1453 if (var->onepart == ONEPART_DEXPR)
1454 set_dv_changed (var->dv, true);
1455 }
1456 onepart_pool (var->onepart).remove (var);
1457 }
1458
1459 /* Initialize the set (array) SET of attrs to empty lists. */
1460
1461 static void
1462 init_attrs_list_set (attrs **set)
1463 {
1464 int i;
1465
1466 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1467 set[i] = NULL;
1468 }
1469
1470 /* Make the list *LISTP empty. */
1471
1472 static void
1473 attrs_list_clear (attrs **listp)
1474 {
1475 attrs *list, *next;
1476
1477 for (list = *listp; list; list = next)
1478 {
1479 next = list->next;
1480 delete list;
1481 }
1482 *listp = NULL;
1483 }
1484
1485 /* Return true if the pair of DECL and OFFSET is the member of the LIST. */
1486
1487 static attrs *
1488 attrs_list_member (attrs *list, decl_or_value dv, HOST_WIDE_INT offset)
1489 {
1490 for (; list; list = list->next)
1491 if (dv_as_opaque (list->dv) == dv_as_opaque (dv) && list->offset == offset)
1492 return list;
1493 return NULL;
1494 }
1495
1496 /* Insert the triplet DECL, OFFSET, LOC to the list *LISTP. */
1497
1498 static void
1499 attrs_list_insert (attrs **listp, decl_or_value dv,
1500 HOST_WIDE_INT offset, rtx loc)
1501 {
1502 attrs *list = new attrs;
1503 list->loc = loc;
1504 list->dv = dv;
1505 list->offset = offset;
1506 list->next = *listp;
1507 *listp = list;
1508 }
1509
1510 /* Copy all nodes from SRC and create a list *DSTP of the copies. */
1511
1512 static void
1513 attrs_list_copy (attrs **dstp, attrs *src)
1514 {
1515 attrs_list_clear (dstp);
1516 for (; src; src = src->next)
1517 {
1518 attrs *n = new attrs;
1519 n->loc = src->loc;
1520 n->dv = src->dv;
1521 n->offset = src->offset;
1522 n->next = *dstp;
1523 *dstp = n;
1524 }
1525 }
1526
1527 /* Add all nodes from SRC which are not in *DSTP to *DSTP. */
1528
1529 static void
1530 attrs_list_union (attrs **dstp, attrs *src)
1531 {
1532 for (; src; src = src->next)
1533 {
1534 if (!attrs_list_member (*dstp, src->dv, src->offset))
1535 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1536 }
1537 }
1538
1539 /* Combine nodes that are not onepart nodes from SRC and SRC2 into
1540 *DSTP. */
1541
1542 static void
1543 attrs_list_mpdv_union (attrs **dstp, attrs *src, attrs *src2)
1544 {
1545 gcc_assert (!*dstp);
1546 for (; src; src = src->next)
1547 {
1548 if (!dv_onepart_p (src->dv))
1549 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1550 }
1551 for (src = src2; src; src = src->next)
1552 {
1553 if (!dv_onepart_p (src->dv)
1554 && !attrs_list_member (*dstp, src->dv, src->offset))
1555 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1556 }
1557 }
1558
1559 /* Shared hashtable support. */
1560
1561 /* Return true if VARS is shared. */
1562
1563 static inline bool
1564 shared_hash_shared (shared_hash *vars)
1565 {
1566 return vars->refcount > 1;
1567 }
1568
1569 /* Return the hash table for VARS. */
1570
1571 static inline variable_table_type *
1572 shared_hash_htab (shared_hash *vars)
1573 {
1574 return vars->htab;
1575 }
1576
1577 /* Return true if VAR is shared, or maybe because VARS is shared. */
1578
1579 static inline bool
1580 shared_var_p (variable *var, shared_hash *vars)
1581 {
1582 /* Don't count an entry in the changed_variables table as a duplicate. */
1583 return ((var->refcount > 1 + (int) var->in_changed_variables)
1584 || shared_hash_shared (vars));
1585 }
1586
1587 /* Copy variables into a new hash table. */
1588
1589 static shared_hash *
1590 shared_hash_unshare (shared_hash *vars)
1591 {
1592 shared_hash *new_vars = new shared_hash;
1593 gcc_assert (vars->refcount > 1);
1594 new_vars->refcount = 1;
1595 new_vars->htab = new variable_table_type (vars->htab->elements () + 3);
1596 vars_copy (new_vars->htab, vars->htab);
1597 vars->refcount--;
1598 return new_vars;
1599 }
1600
1601 /* Increment reference counter on VARS and return it. */
1602
1603 static inline shared_hash *
1604 shared_hash_copy (shared_hash *vars)
1605 {
1606 vars->refcount++;
1607 return vars;
1608 }
1609
1610 /* Decrement reference counter and destroy hash table if not shared
1611 anymore. */
1612
1613 static void
1614 shared_hash_destroy (shared_hash *vars)
1615 {
1616 gcc_checking_assert (vars->refcount > 0);
1617 if (--vars->refcount == 0)
1618 {
1619 delete vars->htab;
1620 delete vars;
1621 }
1622 }
1623
1624 /* Unshare *PVARS if shared and return slot for DV. If INS is
1625 INSERT, insert it if not already present. */
1626
1627 static inline variable **
1628 shared_hash_find_slot_unshare_1 (shared_hash **pvars, decl_or_value dv,
1629 hashval_t dvhash, enum insert_option ins)
1630 {
1631 if (shared_hash_shared (*pvars))
1632 *pvars = shared_hash_unshare (*pvars);
1633 return shared_hash_htab (*pvars)->find_slot_with_hash (dv, dvhash, ins);
1634 }
1635
1636 static inline variable **
1637 shared_hash_find_slot_unshare (shared_hash **pvars, decl_or_value dv,
1638 enum insert_option ins)
1639 {
1640 return shared_hash_find_slot_unshare_1 (pvars, dv, dv_htab_hash (dv), ins);
1641 }
1642
1643 /* Return slot for DV, if it is already present in the hash table.
1644 If it is not present, insert it only VARS is not shared, otherwise
1645 return NULL. */
1646
1647 static inline variable **
1648 shared_hash_find_slot_1 (shared_hash *vars, decl_or_value dv, hashval_t dvhash)
1649 {
1650 return shared_hash_htab (vars)->find_slot_with_hash (dv, dvhash,
1651 shared_hash_shared (vars)
1652 ? NO_INSERT : INSERT);
1653 }
1654
1655 static inline variable **
1656 shared_hash_find_slot (shared_hash *vars, decl_or_value dv)
1657 {
1658 return shared_hash_find_slot_1 (vars, dv, dv_htab_hash (dv));
1659 }
1660
1661 /* Return slot for DV only if it is already present in the hash table. */
1662
1663 static inline variable **
1664 shared_hash_find_slot_noinsert_1 (shared_hash *vars, decl_or_value dv,
1665 hashval_t dvhash)
1666 {
1667 return shared_hash_htab (vars)->find_slot_with_hash (dv, dvhash, NO_INSERT);
1668 }
1669
1670 static inline variable **
1671 shared_hash_find_slot_noinsert (shared_hash *vars, decl_or_value dv)
1672 {
1673 return shared_hash_find_slot_noinsert_1 (vars, dv, dv_htab_hash (dv));
1674 }
1675
1676 /* Return variable for DV or NULL if not already present in the hash
1677 table. */
1678
1679 static inline variable *
1680 shared_hash_find_1 (shared_hash *vars, decl_or_value dv, hashval_t dvhash)
1681 {
1682 return shared_hash_htab (vars)->find_with_hash (dv, dvhash);
1683 }
1684
1685 static inline variable *
1686 shared_hash_find (shared_hash *vars, decl_or_value dv)
1687 {
1688 return shared_hash_find_1 (vars, dv, dv_htab_hash (dv));
1689 }
1690
1691 /* Return true if TVAL is better than CVAL as a canonival value. We
1692 choose lowest-numbered VALUEs, using the RTX address as a
1693 tie-breaker. The idea is to arrange them into a star topology,
1694 such that all of them are at most one step away from the canonical
1695 value, and the canonical value has backlinks to all of them, in
1696 addition to all the actual locations. We don't enforce this
1697 topology throughout the entire dataflow analysis, though.
1698 */
1699
1700 static inline bool
1701 canon_value_cmp (rtx tval, rtx cval)
1702 {
1703 return !cval
1704 || CSELIB_VAL_PTR (tval)->uid < CSELIB_VAL_PTR (cval)->uid;
1705 }
1706
1707 static bool dst_can_be_shared;
1708
1709 /* Return a copy of a variable VAR and insert it to dataflow set SET. */
1710
1711 static variable **
1712 unshare_variable (dataflow_set *set, variable **slot, variable *var,
1713 enum var_init_status initialized)
1714 {
1715 variable *new_var;
1716 int i;
1717
1718 new_var = onepart_pool_allocate (var->onepart);
1719 new_var->dv = var->dv;
1720 new_var->refcount = 1;
1721 var->refcount--;
1722 new_var->n_var_parts = var->n_var_parts;
1723 new_var->onepart = var->onepart;
1724 new_var->in_changed_variables = false;
1725
1726 if (! flag_var_tracking_uninit)
1727 initialized = VAR_INIT_STATUS_INITIALIZED;
1728
1729 for (i = 0; i < var->n_var_parts; i++)
1730 {
1731 location_chain *node;
1732 location_chain **nextp;
1733
1734 if (i == 0 && var->onepart)
1735 {
1736 /* One-part auxiliary data is only used while emitting
1737 notes, so propagate it to the new variable in the active
1738 dataflow set. If we're not emitting notes, this will be
1739 a no-op. */
1740 gcc_checking_assert (!VAR_LOC_1PAUX (var) || emit_notes);
1741 VAR_LOC_1PAUX (new_var) = VAR_LOC_1PAUX (var);
1742 VAR_LOC_1PAUX (var) = NULL;
1743 }
1744 else
1745 VAR_PART_OFFSET (new_var, i) = VAR_PART_OFFSET (var, i);
1746 nextp = &new_var->var_part[i].loc_chain;
1747 for (node = var->var_part[i].loc_chain; node; node = node->next)
1748 {
1749 location_chain *new_lc;
1750
1751 new_lc = new location_chain;
1752 new_lc->next = NULL;
1753 if (node->init > initialized)
1754 new_lc->init = node->init;
1755 else
1756 new_lc->init = initialized;
1757 if (node->set_src && !(MEM_P (node->set_src)))
1758 new_lc->set_src = node->set_src;
1759 else
1760 new_lc->set_src = NULL;
1761 new_lc->loc = node->loc;
1762
1763 *nextp = new_lc;
1764 nextp = &new_lc->next;
1765 }
1766
1767 new_var->var_part[i].cur_loc = var->var_part[i].cur_loc;
1768 }
1769
1770 dst_can_be_shared = false;
1771 if (shared_hash_shared (set->vars))
1772 slot = shared_hash_find_slot_unshare (&set->vars, var->dv, NO_INSERT);
1773 else if (set->traversed_vars && set->vars != set->traversed_vars)
1774 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
1775 *slot = new_var;
1776 if (var->in_changed_variables)
1777 {
1778 variable **cslot
1779 = changed_variables->find_slot_with_hash (var->dv,
1780 dv_htab_hash (var->dv),
1781 NO_INSERT);
1782 gcc_assert (*cslot == (void *) var);
1783 var->in_changed_variables = false;
1784 variable_htab_free (var);
1785 *cslot = new_var;
1786 new_var->in_changed_variables = true;
1787 }
1788 return slot;
1789 }
1790
1791 /* Copy all variables from hash table SRC to hash table DST. */
1792
1793 static void
1794 vars_copy (variable_table_type *dst, variable_table_type *src)
1795 {
1796 variable_iterator_type hi;
1797 variable *var;
1798
1799 FOR_EACH_HASH_TABLE_ELEMENT (*src, var, variable, hi)
1800 {
1801 variable **dstp;
1802 var->refcount++;
1803 dstp = dst->find_slot_with_hash (var->dv, dv_htab_hash (var->dv),
1804 INSERT);
1805 *dstp = var;
1806 }
1807 }
1808
1809 /* Map a decl to its main debug decl. */
1810
1811 static inline tree
1812 var_debug_decl (tree decl)
1813 {
1814 if (decl && VAR_P (decl) && DECL_HAS_DEBUG_EXPR_P (decl))
1815 {
1816 tree debugdecl = DECL_DEBUG_EXPR (decl);
1817 if (DECL_P (debugdecl))
1818 decl = debugdecl;
1819 }
1820
1821 return decl;
1822 }
1823
1824 /* Set the register LOC to contain DV, OFFSET. */
1825
1826 static void
1827 var_reg_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1828 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
1829 enum insert_option iopt)
1830 {
1831 attrs *node;
1832 bool decl_p = dv_is_decl_p (dv);
1833
1834 if (decl_p)
1835 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
1836
1837 for (node = set->regs[REGNO (loc)]; node; node = node->next)
1838 if (dv_as_opaque (node->dv) == dv_as_opaque (dv)
1839 && node->offset == offset)
1840 break;
1841 if (!node)
1842 attrs_list_insert (&set->regs[REGNO (loc)], dv, offset, loc);
1843 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
1844 }
1845
1846 /* Set the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). */
1847
1848 static void
1849 var_reg_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1850 rtx set_src)
1851 {
1852 tree decl = REG_EXPR (loc);
1853 HOST_WIDE_INT offset = REG_OFFSET (loc);
1854
1855 var_reg_decl_set (set, loc, initialized,
1856 dv_from_decl (decl), offset, set_src, INSERT);
1857 }
1858
1859 static enum var_init_status
1860 get_init_value (dataflow_set *set, rtx loc, decl_or_value dv)
1861 {
1862 variable *var;
1863 int i;
1864 enum var_init_status ret_val = VAR_INIT_STATUS_UNKNOWN;
1865
1866 if (! flag_var_tracking_uninit)
1867 return VAR_INIT_STATUS_INITIALIZED;
1868
1869 var = shared_hash_find (set->vars, dv);
1870 if (var)
1871 {
1872 for (i = 0; i < var->n_var_parts && ret_val == VAR_INIT_STATUS_UNKNOWN; i++)
1873 {
1874 location_chain *nextp;
1875 for (nextp = var->var_part[i].loc_chain; nextp; nextp = nextp->next)
1876 if (rtx_equal_p (nextp->loc, loc))
1877 {
1878 ret_val = nextp->init;
1879 break;
1880 }
1881 }
1882 }
1883
1884 return ret_val;
1885 }
1886
1887 /* Delete current content of register LOC in dataflow set SET and set
1888 the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). If
1889 MODIFY is true, any other live copies of the same variable part are
1890 also deleted from the dataflow set, otherwise the variable part is
1891 assumed to be copied from another location holding the same
1892 part. */
1893
1894 static void
1895 var_reg_delete_and_set (dataflow_set *set, rtx loc, bool modify,
1896 enum var_init_status initialized, rtx set_src)
1897 {
1898 tree decl = REG_EXPR (loc);
1899 HOST_WIDE_INT offset = REG_OFFSET (loc);
1900 attrs *node, *next;
1901 attrs **nextp;
1902
1903 decl = var_debug_decl (decl);
1904
1905 if (initialized == VAR_INIT_STATUS_UNKNOWN)
1906 initialized = get_init_value (set, loc, dv_from_decl (decl));
1907
1908 nextp = &set->regs[REGNO (loc)];
1909 for (node = *nextp; node; node = next)
1910 {
1911 next = node->next;
1912 if (dv_as_opaque (node->dv) != decl || node->offset != offset)
1913 {
1914 delete_variable_part (set, node->loc, node->dv, node->offset);
1915 delete node;
1916 *nextp = next;
1917 }
1918 else
1919 {
1920 node->loc = loc;
1921 nextp = &node->next;
1922 }
1923 }
1924 if (modify)
1925 clobber_variable_part (set, loc, dv_from_decl (decl), offset, set_src);
1926 var_reg_set (set, loc, initialized, set_src);
1927 }
1928
1929 /* Delete the association of register LOC in dataflow set SET with any
1930 variables that aren't onepart. If CLOBBER is true, also delete any
1931 other live copies of the same variable part, and delete the
1932 association with onepart dvs too. */
1933
1934 static void
1935 var_reg_delete (dataflow_set *set, rtx loc, bool clobber)
1936 {
1937 attrs **nextp = &set->regs[REGNO (loc)];
1938 attrs *node, *next;
1939
1940 if (clobber)
1941 {
1942 tree decl = REG_EXPR (loc);
1943 HOST_WIDE_INT offset = REG_OFFSET (loc);
1944
1945 decl = var_debug_decl (decl);
1946
1947 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
1948 }
1949
1950 for (node = *nextp; node; node = next)
1951 {
1952 next = node->next;
1953 if (clobber || !dv_onepart_p (node->dv))
1954 {
1955 delete_variable_part (set, node->loc, node->dv, node->offset);
1956 delete node;
1957 *nextp = next;
1958 }
1959 else
1960 nextp = &node->next;
1961 }
1962 }
1963
1964 /* Delete content of register with number REGNO in dataflow set SET. */
1965
1966 static void
1967 var_regno_delete (dataflow_set *set, int regno)
1968 {
1969 attrs **reg = &set->regs[regno];
1970 attrs *node, *next;
1971
1972 for (node = *reg; node; node = next)
1973 {
1974 next = node->next;
1975 delete_variable_part (set, node->loc, node->dv, node->offset);
1976 delete node;
1977 }
1978 *reg = NULL;
1979 }
1980
1981 /* Return true if I is the negated value of a power of two. */
1982 static bool
1983 negative_power_of_two_p (HOST_WIDE_INT i)
1984 {
1985 unsigned HOST_WIDE_INT x = -(unsigned HOST_WIDE_INT)i;
1986 return pow2_or_zerop (x);
1987 }
1988
1989 /* Strip constant offsets and alignments off of LOC. Return the base
1990 expression. */
1991
1992 static rtx
1993 vt_get_canonicalize_base (rtx loc)
1994 {
1995 while ((GET_CODE (loc) == PLUS
1996 || GET_CODE (loc) == AND)
1997 && GET_CODE (XEXP (loc, 1)) == CONST_INT
1998 && (GET_CODE (loc) != AND
1999 || negative_power_of_two_p (INTVAL (XEXP (loc, 1)))))
2000 loc = XEXP (loc, 0);
2001
2002 return loc;
2003 }
2004
2005 /* This caches canonicalized addresses for VALUEs, computed using
2006 information in the global cselib table. */
2007 static hash_map<rtx, rtx> *global_get_addr_cache;
2008
2009 /* This caches canonicalized addresses for VALUEs, computed using
2010 information from the global cache and information pertaining to a
2011 basic block being analyzed. */
2012 static hash_map<rtx, rtx> *local_get_addr_cache;
2013
2014 static rtx vt_canonicalize_addr (dataflow_set *, rtx);
2015
2016 /* Return the canonical address for LOC, that must be a VALUE, using a
2017 cached global equivalence or computing it and storing it in the
2018 global cache. */
2019
2020 static rtx
2021 get_addr_from_global_cache (rtx const loc)
2022 {
2023 rtx x;
2024
2025 gcc_checking_assert (GET_CODE (loc) == VALUE);
2026
2027 bool existed;
2028 rtx *slot = &global_get_addr_cache->get_or_insert (loc, &existed);
2029 if (existed)
2030 return *slot;
2031
2032 x = canon_rtx (get_addr (loc));
2033
2034 /* Tentative, avoiding infinite recursion. */
2035 *slot = x;
2036
2037 if (x != loc)
2038 {
2039 rtx nx = vt_canonicalize_addr (NULL, x);
2040 if (nx != x)
2041 {
2042 /* The table may have moved during recursion, recompute
2043 SLOT. */
2044 *global_get_addr_cache->get (loc) = x = nx;
2045 }
2046 }
2047
2048 return x;
2049 }
2050
2051 /* Return the canonical address for LOC, that must be a VALUE, using a
2052 cached local equivalence or computing it and storing it in the
2053 local cache. */
2054
2055 static rtx
2056 get_addr_from_local_cache (dataflow_set *set, rtx const loc)
2057 {
2058 rtx x;
2059 decl_or_value dv;
2060 variable *var;
2061 location_chain *l;
2062
2063 gcc_checking_assert (GET_CODE (loc) == VALUE);
2064
2065 bool existed;
2066 rtx *slot = &local_get_addr_cache->get_or_insert (loc, &existed);
2067 if (existed)
2068 return *slot;
2069
2070 x = get_addr_from_global_cache (loc);
2071
2072 /* Tentative, avoiding infinite recursion. */
2073 *slot = x;
2074
2075 /* Recurse to cache local expansion of X, or if we need to search
2076 for a VALUE in the expansion. */
2077 if (x != loc)
2078 {
2079 rtx nx = vt_canonicalize_addr (set, x);
2080 if (nx != x)
2081 {
2082 slot = local_get_addr_cache->get (loc);
2083 *slot = x = nx;
2084 }
2085 return x;
2086 }
2087
2088 dv = dv_from_rtx (x);
2089 var = shared_hash_find (set->vars, dv);
2090 if (!var)
2091 return x;
2092
2093 /* Look for an improved equivalent expression. */
2094 for (l = var->var_part[0].loc_chain; l; l = l->next)
2095 {
2096 rtx base = vt_get_canonicalize_base (l->loc);
2097 if (GET_CODE (base) == VALUE
2098 && canon_value_cmp (base, loc))
2099 {
2100 rtx nx = vt_canonicalize_addr (set, l->loc);
2101 if (x != nx)
2102 {
2103 slot = local_get_addr_cache->get (loc);
2104 *slot = x = nx;
2105 }
2106 break;
2107 }
2108 }
2109
2110 return x;
2111 }
2112
2113 /* Canonicalize LOC using equivalences from SET in addition to those
2114 in the cselib static table. It expects a VALUE-based expression,
2115 and it will only substitute VALUEs with other VALUEs or
2116 function-global equivalences, so that, if two addresses have base
2117 VALUEs that are locally or globally related in ways that
2118 memrefs_conflict_p cares about, they will both canonicalize to
2119 expressions that have the same base VALUE.
2120
2121 The use of VALUEs as canonical base addresses enables the canonical
2122 RTXs to remain unchanged globally, if they resolve to a constant,
2123 or throughout a basic block otherwise, so that they can be cached
2124 and the cache needs not be invalidated when REGs, MEMs or such
2125 change. */
2126
2127 static rtx
2128 vt_canonicalize_addr (dataflow_set *set, rtx oloc)
2129 {
2130 HOST_WIDE_INT ofst = 0;
2131 machine_mode mode = GET_MODE (oloc);
2132 rtx loc = oloc;
2133 rtx x;
2134 bool retry = true;
2135
2136 while (retry)
2137 {
2138 while (GET_CODE (loc) == PLUS
2139 && GET_CODE (XEXP (loc, 1)) == CONST_INT)
2140 {
2141 ofst += INTVAL (XEXP (loc, 1));
2142 loc = XEXP (loc, 0);
2143 }
2144
2145 /* Alignment operations can't normally be combined, so just
2146 canonicalize the base and we're done. We'll normally have
2147 only one stack alignment anyway. */
2148 if (GET_CODE (loc) == AND
2149 && GET_CODE (XEXP (loc, 1)) == CONST_INT
2150 && negative_power_of_two_p (INTVAL (XEXP (loc, 1))))
2151 {
2152 x = vt_canonicalize_addr (set, XEXP (loc, 0));
2153 if (x != XEXP (loc, 0))
2154 loc = gen_rtx_AND (mode, x, XEXP (loc, 1));
2155 retry = false;
2156 }
2157
2158 if (GET_CODE (loc) == VALUE)
2159 {
2160 if (set)
2161 loc = get_addr_from_local_cache (set, loc);
2162 else
2163 loc = get_addr_from_global_cache (loc);
2164
2165 /* Consolidate plus_constants. */
2166 while (ofst && GET_CODE (loc) == PLUS
2167 && GET_CODE (XEXP (loc, 1)) == CONST_INT)
2168 {
2169 ofst += INTVAL (XEXP (loc, 1));
2170 loc = XEXP (loc, 0);
2171 }
2172
2173 retry = false;
2174 }
2175 else
2176 {
2177 x = canon_rtx (loc);
2178 if (retry)
2179 retry = (x != loc);
2180 loc = x;
2181 }
2182 }
2183
2184 /* Add OFST back in. */
2185 if (ofst)
2186 {
2187 /* Don't build new RTL if we can help it. */
2188 if (GET_CODE (oloc) == PLUS
2189 && XEXP (oloc, 0) == loc
2190 && INTVAL (XEXP (oloc, 1)) == ofst)
2191 return oloc;
2192
2193 loc = plus_constant (mode, loc, ofst);
2194 }
2195
2196 return loc;
2197 }
2198
2199 /* Return true iff there's a true dependence between MLOC and LOC.
2200 MADDR must be a canonicalized version of MLOC's address. */
2201
2202 static inline bool
2203 vt_canon_true_dep (dataflow_set *set, rtx mloc, rtx maddr, rtx loc)
2204 {
2205 if (GET_CODE (loc) != MEM)
2206 return false;
2207
2208 rtx addr = vt_canonicalize_addr (set, XEXP (loc, 0));
2209 if (!canon_true_dependence (mloc, GET_MODE (mloc), maddr, loc, addr))
2210 return false;
2211
2212 return true;
2213 }
2214
2215 /* Hold parameters for the hashtab traversal function
2216 drop_overlapping_mem_locs, see below. */
2217
2218 struct overlapping_mems
2219 {
2220 dataflow_set *set;
2221 rtx loc, addr;
2222 };
2223
2224 /* Remove all MEMs that overlap with COMS->LOC from the location list
2225 of a hash table entry for a onepart variable. COMS->ADDR must be a
2226 canonicalized form of COMS->LOC's address, and COMS->LOC must be
2227 canonicalized itself. */
2228
2229 int
2230 drop_overlapping_mem_locs (variable **slot, overlapping_mems *coms)
2231 {
2232 dataflow_set *set = coms->set;
2233 rtx mloc = coms->loc, addr = coms->addr;
2234 variable *var = *slot;
2235
2236 if (var->onepart != NOT_ONEPART)
2237 {
2238 location_chain *loc, **locp;
2239 bool changed = false;
2240 rtx cur_loc;
2241
2242 gcc_assert (var->n_var_parts == 1);
2243
2244 if (shared_var_p (var, set->vars))
2245 {
2246 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
2247 if (vt_canon_true_dep (set, mloc, addr, loc->loc))
2248 break;
2249
2250 if (!loc)
2251 return 1;
2252
2253 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
2254 var = *slot;
2255 gcc_assert (var->n_var_parts == 1);
2256 }
2257
2258 if (VAR_LOC_1PAUX (var))
2259 cur_loc = VAR_LOC_FROM (var);
2260 else
2261 cur_loc = var->var_part[0].cur_loc;
2262
2263 for (locp = &var->var_part[0].loc_chain, loc = *locp;
2264 loc; loc = *locp)
2265 {
2266 if (!vt_canon_true_dep (set, mloc, addr, loc->loc))
2267 {
2268 locp = &loc->next;
2269 continue;
2270 }
2271
2272 *locp = loc->next;
2273 /* If we have deleted the location which was last emitted
2274 we have to emit new location so add the variable to set
2275 of changed variables. */
2276 if (cur_loc == loc->loc)
2277 {
2278 changed = true;
2279 var->var_part[0].cur_loc = NULL;
2280 if (VAR_LOC_1PAUX (var))
2281 VAR_LOC_FROM (var) = NULL;
2282 }
2283 delete loc;
2284 }
2285
2286 if (!var->var_part[0].loc_chain)
2287 {
2288 var->n_var_parts--;
2289 changed = true;
2290 }
2291 if (changed)
2292 variable_was_changed (var, set);
2293 }
2294
2295 return 1;
2296 }
2297
2298 /* Remove from SET all VALUE bindings to MEMs that overlap with LOC. */
2299
2300 static void
2301 clobber_overlapping_mems (dataflow_set *set, rtx loc)
2302 {
2303 struct overlapping_mems coms;
2304
2305 gcc_checking_assert (GET_CODE (loc) == MEM);
2306
2307 coms.set = set;
2308 coms.loc = canon_rtx (loc);
2309 coms.addr = vt_canonicalize_addr (set, XEXP (loc, 0));
2310
2311 set->traversed_vars = set->vars;
2312 shared_hash_htab (set->vars)
2313 ->traverse <overlapping_mems*, drop_overlapping_mem_locs> (&coms);
2314 set->traversed_vars = NULL;
2315 }
2316
2317 /* Set the location of DV, OFFSET as the MEM LOC. */
2318
2319 static void
2320 var_mem_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
2321 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
2322 enum insert_option iopt)
2323 {
2324 if (dv_is_decl_p (dv))
2325 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
2326
2327 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
2328 }
2329
2330 /* Set the location part of variable MEM_EXPR (LOC) in dataflow set
2331 SET to LOC.
2332 Adjust the address first if it is stack pointer based. */
2333
2334 static void
2335 var_mem_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
2336 rtx set_src)
2337 {
2338 tree decl = MEM_EXPR (loc);
2339 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2340
2341 var_mem_decl_set (set, loc, initialized,
2342 dv_from_decl (decl), offset, set_src, INSERT);
2343 }
2344
2345 /* Delete and set the location part of variable MEM_EXPR (LOC) in
2346 dataflow set SET to LOC. If MODIFY is true, any other live copies
2347 of the same variable part are also deleted from the dataflow set,
2348 otherwise the variable part is assumed to be copied from another
2349 location holding the same part.
2350 Adjust the address first if it is stack pointer based. */
2351
2352 static void
2353 var_mem_delete_and_set (dataflow_set *set, rtx loc, bool modify,
2354 enum var_init_status initialized, rtx set_src)
2355 {
2356 tree decl = MEM_EXPR (loc);
2357 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2358
2359 clobber_overlapping_mems (set, loc);
2360 decl = var_debug_decl (decl);
2361
2362 if (initialized == VAR_INIT_STATUS_UNKNOWN)
2363 initialized = get_init_value (set, loc, dv_from_decl (decl));
2364
2365 if (modify)
2366 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, set_src);
2367 var_mem_set (set, loc, initialized, set_src);
2368 }
2369
2370 /* Delete the location part LOC from dataflow set SET. If CLOBBER is
2371 true, also delete any other live copies of the same variable part.
2372 Adjust the address first if it is stack pointer based. */
2373
2374 static void
2375 var_mem_delete (dataflow_set *set, rtx loc, bool clobber)
2376 {
2377 tree decl = MEM_EXPR (loc);
2378 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2379
2380 clobber_overlapping_mems (set, loc);
2381 decl = var_debug_decl (decl);
2382 if (clobber)
2383 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
2384 delete_variable_part (set, loc, dv_from_decl (decl), offset);
2385 }
2386
2387 /* Return true if LOC should not be expanded for location expressions,
2388 or used in them. */
2389
2390 static inline bool
2391 unsuitable_loc (rtx loc)
2392 {
2393 switch (GET_CODE (loc))
2394 {
2395 case PC:
2396 case SCRATCH:
2397 case CC0:
2398 case ASM_INPUT:
2399 case ASM_OPERANDS:
2400 return true;
2401
2402 default:
2403 return false;
2404 }
2405 }
2406
2407 /* Bind VAL to LOC in SET. If MODIFIED, detach LOC from any values
2408 bound to it. */
2409
2410 static inline void
2411 val_bind (dataflow_set *set, rtx val, rtx loc, bool modified)
2412 {
2413 if (REG_P (loc))
2414 {
2415 if (modified)
2416 var_regno_delete (set, REGNO (loc));
2417 var_reg_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2418 dv_from_value (val), 0, NULL_RTX, INSERT);
2419 }
2420 else if (MEM_P (loc))
2421 {
2422 struct elt_loc_list *l = CSELIB_VAL_PTR (val)->locs;
2423
2424 if (modified)
2425 clobber_overlapping_mems (set, loc);
2426
2427 if (l && GET_CODE (l->loc) == VALUE)
2428 l = canonical_cselib_val (CSELIB_VAL_PTR (l->loc))->locs;
2429
2430 /* If this MEM is a global constant, we don't need it in the
2431 dynamic tables. ??? We should test this before emitting the
2432 micro-op in the first place. */
2433 while (l)
2434 if (GET_CODE (l->loc) == MEM && XEXP (l->loc, 0) == XEXP (loc, 0))
2435 break;
2436 else
2437 l = l->next;
2438
2439 if (!l)
2440 var_mem_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2441 dv_from_value (val), 0, NULL_RTX, INSERT);
2442 }
2443 else
2444 {
2445 /* Other kinds of equivalences are necessarily static, at least
2446 so long as we do not perform substitutions while merging
2447 expressions. */
2448 gcc_unreachable ();
2449 set_variable_part (set, loc, dv_from_value (val), 0,
2450 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2451 }
2452 }
2453
2454 /* Bind a value to a location it was just stored in. If MODIFIED
2455 holds, assume the location was modified, detaching it from any
2456 values bound to it. */
2457
2458 static void
2459 val_store (dataflow_set *set, rtx val, rtx loc, rtx_insn *insn,
2460 bool modified)
2461 {
2462 cselib_val *v = CSELIB_VAL_PTR (val);
2463
2464 gcc_assert (cselib_preserved_value_p (v));
2465
2466 if (dump_file)
2467 {
2468 fprintf (dump_file, "%i: ", insn ? INSN_UID (insn) : 0);
2469 print_inline_rtx (dump_file, loc, 0);
2470 fprintf (dump_file, " evaluates to ");
2471 print_inline_rtx (dump_file, val, 0);
2472 if (v->locs)
2473 {
2474 struct elt_loc_list *l;
2475 for (l = v->locs; l; l = l->next)
2476 {
2477 fprintf (dump_file, "\n%i: ", INSN_UID (l->setting_insn));
2478 print_inline_rtx (dump_file, l->loc, 0);
2479 }
2480 }
2481 fprintf (dump_file, "\n");
2482 }
2483
2484 gcc_checking_assert (!unsuitable_loc (loc));
2485
2486 val_bind (set, val, loc, modified);
2487 }
2488
2489 /* Clear (canonical address) slots that reference X. */
2490
2491 bool
2492 local_get_addr_clear_given_value (rtx const &, rtx *slot, rtx x)
2493 {
2494 if (vt_get_canonicalize_base (*slot) == x)
2495 *slot = NULL;
2496 return true;
2497 }
2498
2499 /* Reset this node, detaching all its equivalences. Return the slot
2500 in the variable hash table that holds dv, if there is one. */
2501
2502 static void
2503 val_reset (dataflow_set *set, decl_or_value dv)
2504 {
2505 variable *var = shared_hash_find (set->vars, dv) ;
2506 location_chain *node;
2507 rtx cval;
2508
2509 if (!var || !var->n_var_parts)
2510 return;
2511
2512 gcc_assert (var->n_var_parts == 1);
2513
2514 if (var->onepart == ONEPART_VALUE)
2515 {
2516 rtx x = dv_as_value (dv);
2517
2518 /* Relationships in the global cache don't change, so reset the
2519 local cache entry only. */
2520 rtx *slot = local_get_addr_cache->get (x);
2521 if (slot)
2522 {
2523 /* If the value resolved back to itself, odds are that other
2524 values may have cached it too. These entries now refer
2525 to the old X, so detach them too. Entries that used the
2526 old X but resolved to something else remain ok as long as
2527 that something else isn't also reset. */
2528 if (*slot == x)
2529 local_get_addr_cache
2530 ->traverse<rtx, local_get_addr_clear_given_value> (x);
2531 *slot = NULL;
2532 }
2533 }
2534
2535 cval = NULL;
2536 for (node = var->var_part[0].loc_chain; node; node = node->next)
2537 if (GET_CODE (node->loc) == VALUE
2538 && canon_value_cmp (node->loc, cval))
2539 cval = node->loc;
2540
2541 for (node = var->var_part[0].loc_chain; node; node = node->next)
2542 if (GET_CODE (node->loc) == VALUE && cval != node->loc)
2543 {
2544 /* Redirect the equivalence link to the new canonical
2545 value, or simply remove it if it would point at
2546 itself. */
2547 if (cval)
2548 set_variable_part (set, cval, dv_from_value (node->loc),
2549 0, node->init, node->set_src, NO_INSERT);
2550 delete_variable_part (set, dv_as_value (dv),
2551 dv_from_value (node->loc), 0);
2552 }
2553
2554 if (cval)
2555 {
2556 decl_or_value cdv = dv_from_value (cval);
2557
2558 /* Keep the remaining values connected, accummulating links
2559 in the canonical value. */
2560 for (node = var->var_part[0].loc_chain; node; node = node->next)
2561 {
2562 if (node->loc == cval)
2563 continue;
2564 else if (GET_CODE (node->loc) == REG)
2565 var_reg_decl_set (set, node->loc, node->init, cdv, 0,
2566 node->set_src, NO_INSERT);
2567 else if (GET_CODE (node->loc) == MEM)
2568 var_mem_decl_set (set, node->loc, node->init, cdv, 0,
2569 node->set_src, NO_INSERT);
2570 else
2571 set_variable_part (set, node->loc, cdv, 0,
2572 node->init, node->set_src, NO_INSERT);
2573 }
2574 }
2575
2576 /* We remove this last, to make sure that the canonical value is not
2577 removed to the point of requiring reinsertion. */
2578 if (cval)
2579 delete_variable_part (set, dv_as_value (dv), dv_from_value (cval), 0);
2580
2581 clobber_variable_part (set, NULL, dv, 0, NULL);
2582 }
2583
2584 /* Find the values in a given location and map the val to another
2585 value, if it is unique, or add the location as one holding the
2586 value. */
2587
2588 static void
2589 val_resolve (dataflow_set *set, rtx val, rtx loc, rtx_insn *insn)
2590 {
2591 decl_or_value dv = dv_from_value (val);
2592
2593 if (dump_file && (dump_flags & TDF_DETAILS))
2594 {
2595 if (insn)
2596 fprintf (dump_file, "%i: ", INSN_UID (insn));
2597 else
2598 fprintf (dump_file, "head: ");
2599 print_inline_rtx (dump_file, val, 0);
2600 fputs (" is at ", dump_file);
2601 print_inline_rtx (dump_file, loc, 0);
2602 fputc ('\n', dump_file);
2603 }
2604
2605 val_reset (set, dv);
2606
2607 gcc_checking_assert (!unsuitable_loc (loc));
2608
2609 if (REG_P (loc))
2610 {
2611 attrs *node, *found = NULL;
2612
2613 for (node = set->regs[REGNO (loc)]; node; node = node->next)
2614 if (dv_is_value_p (node->dv)
2615 && GET_MODE (dv_as_value (node->dv)) == GET_MODE (loc))
2616 {
2617 found = node;
2618
2619 /* Map incoming equivalences. ??? Wouldn't it be nice if
2620 we just started sharing the location lists? Maybe a
2621 circular list ending at the value itself or some
2622 such. */
2623 set_variable_part (set, dv_as_value (node->dv),
2624 dv_from_value (val), node->offset,
2625 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2626 set_variable_part (set, val, node->dv, node->offset,
2627 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2628 }
2629
2630 /* If we didn't find any equivalence, we need to remember that
2631 this value is held in the named register. */
2632 if (found)
2633 return;
2634 }
2635 /* ??? Attempt to find and merge equivalent MEMs or other
2636 expressions too. */
2637
2638 val_bind (set, val, loc, false);
2639 }
2640
2641 /* Initialize dataflow set SET to be empty.
2642 VARS_SIZE is the initial size of hash table VARS. */
2643
2644 static void
2645 dataflow_set_init (dataflow_set *set)
2646 {
2647 init_attrs_list_set (set->regs);
2648 set->vars = shared_hash_copy (empty_shared_hash);
2649 set->stack_adjust = 0;
2650 set->traversed_vars = NULL;
2651 }
2652
2653 /* Delete the contents of dataflow set SET. */
2654
2655 static void
2656 dataflow_set_clear (dataflow_set *set)
2657 {
2658 int i;
2659
2660 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2661 attrs_list_clear (&set->regs[i]);
2662
2663 shared_hash_destroy (set->vars);
2664 set->vars = shared_hash_copy (empty_shared_hash);
2665 }
2666
2667 /* Copy the contents of dataflow set SRC to DST. */
2668
2669 static void
2670 dataflow_set_copy (dataflow_set *dst, dataflow_set *src)
2671 {
2672 int i;
2673
2674 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2675 attrs_list_copy (&dst->regs[i], src->regs[i]);
2676
2677 shared_hash_destroy (dst->vars);
2678 dst->vars = shared_hash_copy (src->vars);
2679 dst->stack_adjust = src->stack_adjust;
2680 }
2681
2682 /* Information for merging lists of locations for a given offset of variable.
2683 */
2684 struct variable_union_info
2685 {
2686 /* Node of the location chain. */
2687 location_chain *lc;
2688
2689 /* The sum of positions in the input chains. */
2690 int pos;
2691
2692 /* The position in the chain of DST dataflow set. */
2693 int pos_dst;
2694 };
2695
2696 /* Buffer for location list sorting and its allocated size. */
2697 static struct variable_union_info *vui_vec;
2698 static int vui_allocated;
2699
2700 /* Compare function for qsort, order the structures by POS element. */
2701
2702 static int
2703 variable_union_info_cmp_pos (const void *n1, const void *n2)
2704 {
2705 const struct variable_union_info *const i1 =
2706 (const struct variable_union_info *) n1;
2707 const struct variable_union_info *const i2 =
2708 ( const struct variable_union_info *) n2;
2709
2710 if (i1->pos != i2->pos)
2711 return i1->pos - i2->pos;
2712
2713 return (i1->pos_dst - i2->pos_dst);
2714 }
2715
2716 /* Compute union of location parts of variable *SLOT and the same variable
2717 from hash table DATA. Compute "sorted" union of the location chains
2718 for common offsets, i.e. the locations of a variable part are sorted by
2719 a priority where the priority is the sum of the positions in the 2 chains
2720 (if a location is only in one list the position in the second list is
2721 defined to be larger than the length of the chains).
2722 When we are updating the location parts the newest location is in the
2723 beginning of the chain, so when we do the described "sorted" union
2724 we keep the newest locations in the beginning. */
2725
2726 static int
2727 variable_union (variable *src, dataflow_set *set)
2728 {
2729 variable *dst;
2730 variable **dstp;
2731 int i, j, k;
2732
2733 dstp = shared_hash_find_slot (set->vars, src->dv);
2734 if (!dstp || !*dstp)
2735 {
2736 src->refcount++;
2737
2738 dst_can_be_shared = false;
2739 if (!dstp)
2740 dstp = shared_hash_find_slot_unshare (&set->vars, src->dv, INSERT);
2741
2742 *dstp = src;
2743
2744 /* Continue traversing the hash table. */
2745 return 1;
2746 }
2747 else
2748 dst = *dstp;
2749
2750 gcc_assert (src->n_var_parts);
2751 gcc_checking_assert (src->onepart == dst->onepart);
2752
2753 /* We can combine one-part variables very efficiently, because their
2754 entries are in canonical order. */
2755 if (src->onepart)
2756 {
2757 location_chain **nodep, *dnode, *snode;
2758
2759 gcc_assert (src->n_var_parts == 1
2760 && dst->n_var_parts == 1);
2761
2762 snode = src->var_part[0].loc_chain;
2763 gcc_assert (snode);
2764
2765 restart_onepart_unshared:
2766 nodep = &dst->var_part[0].loc_chain;
2767 dnode = *nodep;
2768 gcc_assert (dnode);
2769
2770 while (snode)
2771 {
2772 int r = dnode ? loc_cmp (dnode->loc, snode->loc) : 1;
2773
2774 if (r > 0)
2775 {
2776 location_chain *nnode;
2777
2778 if (shared_var_p (dst, set->vars))
2779 {
2780 dstp = unshare_variable (set, dstp, dst,
2781 VAR_INIT_STATUS_INITIALIZED);
2782 dst = *dstp;
2783 goto restart_onepart_unshared;
2784 }
2785
2786 *nodep = nnode = new location_chain;
2787 nnode->loc = snode->loc;
2788 nnode->init = snode->init;
2789 if (!snode->set_src || MEM_P (snode->set_src))
2790 nnode->set_src = NULL;
2791 else
2792 nnode->set_src = snode->set_src;
2793 nnode->next = dnode;
2794 dnode = nnode;
2795 }
2796 else if (r == 0)
2797 gcc_checking_assert (rtx_equal_p (dnode->loc, snode->loc));
2798
2799 if (r >= 0)
2800 snode = snode->next;
2801
2802 nodep = &dnode->next;
2803 dnode = *nodep;
2804 }
2805
2806 return 1;
2807 }
2808
2809 gcc_checking_assert (!src->onepart);
2810
2811 /* Count the number of location parts, result is K. */
2812 for (i = 0, j = 0, k = 0;
2813 i < src->n_var_parts && j < dst->n_var_parts; k++)
2814 {
2815 if (VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
2816 {
2817 i++;
2818 j++;
2819 }
2820 else if (VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
2821 i++;
2822 else
2823 j++;
2824 }
2825 k += src->n_var_parts - i;
2826 k += dst->n_var_parts - j;
2827
2828 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
2829 thus there are at most MAX_VAR_PARTS different offsets. */
2830 gcc_checking_assert (dst->onepart ? k == 1 : k <= MAX_VAR_PARTS);
2831
2832 if (dst->n_var_parts != k && shared_var_p (dst, set->vars))
2833 {
2834 dstp = unshare_variable (set, dstp, dst, VAR_INIT_STATUS_UNKNOWN);
2835 dst = *dstp;
2836 }
2837
2838 i = src->n_var_parts - 1;
2839 j = dst->n_var_parts - 1;
2840 dst->n_var_parts = k;
2841
2842 for (k--; k >= 0; k--)
2843 {
2844 location_chain *node, *node2;
2845
2846 if (i >= 0 && j >= 0
2847 && VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
2848 {
2849 /* Compute the "sorted" union of the chains, i.e. the locations which
2850 are in both chains go first, they are sorted by the sum of
2851 positions in the chains. */
2852 int dst_l, src_l;
2853 int ii, jj, n;
2854 struct variable_union_info *vui;
2855
2856 /* If DST is shared compare the location chains.
2857 If they are different we will modify the chain in DST with
2858 high probability so make a copy of DST. */
2859 if (shared_var_p (dst, set->vars))
2860 {
2861 for (node = src->var_part[i].loc_chain,
2862 node2 = dst->var_part[j].loc_chain; node && node2;
2863 node = node->next, node2 = node2->next)
2864 {
2865 if (!((REG_P (node2->loc)
2866 && REG_P (node->loc)
2867 && REGNO (node2->loc) == REGNO (node->loc))
2868 || rtx_equal_p (node2->loc, node->loc)))
2869 {
2870 if (node2->init < node->init)
2871 node2->init = node->init;
2872 break;
2873 }
2874 }
2875 if (node || node2)
2876 {
2877 dstp = unshare_variable (set, dstp, dst,
2878 VAR_INIT_STATUS_UNKNOWN);
2879 dst = (variable *)*dstp;
2880 }
2881 }
2882
2883 src_l = 0;
2884 for (node = src->var_part[i].loc_chain; node; node = node->next)
2885 src_l++;
2886 dst_l = 0;
2887 for (node = dst->var_part[j].loc_chain; node; node = node->next)
2888 dst_l++;
2889
2890 if (dst_l == 1)
2891 {
2892 /* The most common case, much simpler, no qsort is needed. */
2893 location_chain *dstnode = dst->var_part[j].loc_chain;
2894 dst->var_part[k].loc_chain = dstnode;
2895 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (dst, j);
2896 node2 = dstnode;
2897 for (node = src->var_part[i].loc_chain; node; node = node->next)
2898 if (!((REG_P (dstnode->loc)
2899 && REG_P (node->loc)
2900 && REGNO (dstnode->loc) == REGNO (node->loc))
2901 || rtx_equal_p (dstnode->loc, node->loc)))
2902 {
2903 location_chain *new_node;
2904
2905 /* Copy the location from SRC. */
2906 new_node = new location_chain;
2907 new_node->loc = node->loc;
2908 new_node->init = node->init;
2909 if (!node->set_src || MEM_P (node->set_src))
2910 new_node->set_src = NULL;
2911 else
2912 new_node->set_src = node->set_src;
2913 node2->next = new_node;
2914 node2 = new_node;
2915 }
2916 node2->next = NULL;
2917 }
2918 else
2919 {
2920 if (src_l + dst_l > vui_allocated)
2921 {
2922 vui_allocated = MAX (vui_allocated * 2, src_l + dst_l);
2923 vui_vec = XRESIZEVEC (struct variable_union_info, vui_vec,
2924 vui_allocated);
2925 }
2926 vui = vui_vec;
2927
2928 /* Fill in the locations from DST. */
2929 for (node = dst->var_part[j].loc_chain, jj = 0; node;
2930 node = node->next, jj++)
2931 {
2932 vui[jj].lc = node;
2933 vui[jj].pos_dst = jj;
2934
2935 /* Pos plus value larger than a sum of 2 valid positions. */
2936 vui[jj].pos = jj + src_l + dst_l;
2937 }
2938
2939 /* Fill in the locations from SRC. */
2940 n = dst_l;
2941 for (node = src->var_part[i].loc_chain, ii = 0; node;
2942 node = node->next, ii++)
2943 {
2944 /* Find location from NODE. */
2945 for (jj = 0; jj < dst_l; jj++)
2946 {
2947 if ((REG_P (vui[jj].lc->loc)
2948 && REG_P (node->loc)
2949 && REGNO (vui[jj].lc->loc) == REGNO (node->loc))
2950 || rtx_equal_p (vui[jj].lc->loc, node->loc))
2951 {
2952 vui[jj].pos = jj + ii;
2953 break;
2954 }
2955 }
2956 if (jj >= dst_l) /* The location has not been found. */
2957 {
2958 location_chain *new_node;
2959
2960 /* Copy the location from SRC. */
2961 new_node = new location_chain;
2962 new_node->loc = node->loc;
2963 new_node->init = node->init;
2964 if (!node->set_src || MEM_P (node->set_src))
2965 new_node->set_src = NULL;
2966 else
2967 new_node->set_src = node->set_src;
2968 vui[n].lc = new_node;
2969 vui[n].pos_dst = src_l + dst_l;
2970 vui[n].pos = ii + src_l + dst_l;
2971 n++;
2972 }
2973 }
2974
2975 if (dst_l == 2)
2976 {
2977 /* Special case still very common case. For dst_l == 2
2978 all entries dst_l ... n-1 are sorted, with for i >= dst_l
2979 vui[i].pos == i + src_l + dst_l. */
2980 if (vui[0].pos > vui[1].pos)
2981 {
2982 /* Order should be 1, 0, 2... */
2983 dst->var_part[k].loc_chain = vui[1].lc;
2984 vui[1].lc->next = vui[0].lc;
2985 if (n >= 3)
2986 {
2987 vui[0].lc->next = vui[2].lc;
2988 vui[n - 1].lc->next = NULL;
2989 }
2990 else
2991 vui[0].lc->next = NULL;
2992 ii = 3;
2993 }
2994 else
2995 {
2996 dst->var_part[k].loc_chain = vui[0].lc;
2997 if (n >= 3 && vui[2].pos < vui[1].pos)
2998 {
2999 /* Order should be 0, 2, 1, 3... */
3000 vui[0].lc->next = vui[2].lc;
3001 vui[2].lc->next = vui[1].lc;
3002 if (n >= 4)
3003 {
3004 vui[1].lc->next = vui[3].lc;
3005 vui[n - 1].lc->next = NULL;
3006 }
3007 else
3008 vui[1].lc->next = NULL;
3009 ii = 4;
3010 }
3011 else
3012 {
3013 /* Order should be 0, 1, 2... */
3014 ii = 1;
3015 vui[n - 1].lc->next = NULL;
3016 }
3017 }
3018 for (; ii < n; ii++)
3019 vui[ii - 1].lc->next = vui[ii].lc;
3020 }
3021 else
3022 {
3023 qsort (vui, n, sizeof (struct variable_union_info),
3024 variable_union_info_cmp_pos);
3025
3026 /* Reconnect the nodes in sorted order. */
3027 for (ii = 1; ii < n; ii++)
3028 vui[ii - 1].lc->next = vui[ii].lc;
3029 vui[n - 1].lc->next = NULL;
3030 dst->var_part[k].loc_chain = vui[0].lc;
3031 }
3032
3033 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (dst, j);
3034 }
3035 i--;
3036 j--;
3037 }
3038 else if ((i >= 0 && j >= 0
3039 && VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
3040 || i < 0)
3041 {
3042 dst->var_part[k] = dst->var_part[j];
3043 j--;
3044 }
3045 else if ((i >= 0 && j >= 0
3046 && VAR_PART_OFFSET (src, i) > VAR_PART_OFFSET (dst, j))
3047 || j < 0)
3048 {
3049 location_chain **nextp;
3050
3051 /* Copy the chain from SRC. */
3052 nextp = &dst->var_part[k].loc_chain;
3053 for (node = src->var_part[i].loc_chain; node; node = node->next)
3054 {
3055 location_chain *new_lc;
3056
3057 new_lc = new location_chain;
3058 new_lc->next = NULL;
3059 new_lc->init = node->init;
3060 if (!node->set_src || MEM_P (node->set_src))
3061 new_lc->set_src = NULL;
3062 else
3063 new_lc->set_src = node->set_src;
3064 new_lc->loc = node->loc;
3065
3066 *nextp = new_lc;
3067 nextp = &new_lc->next;
3068 }
3069
3070 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (src, i);
3071 i--;
3072 }
3073 dst->var_part[k].cur_loc = NULL;
3074 }
3075
3076 if (flag_var_tracking_uninit)
3077 for (i = 0; i < src->n_var_parts && i < dst->n_var_parts; i++)
3078 {
3079 location_chain *node, *node2;
3080 for (node = src->var_part[i].loc_chain; node; node = node->next)
3081 for (node2 = dst->var_part[i].loc_chain; node2; node2 = node2->next)
3082 if (rtx_equal_p (node->loc, node2->loc))
3083 {
3084 if (node->init > node2->init)
3085 node2->init = node->init;
3086 }
3087 }
3088
3089 /* Continue traversing the hash table. */
3090 return 1;
3091 }
3092
3093 /* Compute union of dataflow sets SRC and DST and store it to DST. */
3094
3095 static void
3096 dataflow_set_union (dataflow_set *dst, dataflow_set *src)
3097 {
3098 int i;
3099
3100 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3101 attrs_list_union (&dst->regs[i], src->regs[i]);
3102
3103 if (dst->vars == empty_shared_hash)
3104 {
3105 shared_hash_destroy (dst->vars);
3106 dst->vars = shared_hash_copy (src->vars);
3107 }
3108 else
3109 {
3110 variable_iterator_type hi;
3111 variable *var;
3112
3113 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (src->vars),
3114 var, variable, hi)
3115 variable_union (var, dst);
3116 }
3117 }
3118
3119 /* Whether the value is currently being expanded. */
3120 #define VALUE_RECURSED_INTO(x) \
3121 (RTL_FLAG_CHECK2 ("VALUE_RECURSED_INTO", (x), VALUE, DEBUG_EXPR)->used)
3122
3123 /* Whether no expansion was found, saving useless lookups.
3124 It must only be set when VALUE_CHANGED is clear. */
3125 #define NO_LOC_P(x) \
3126 (RTL_FLAG_CHECK2 ("NO_LOC_P", (x), VALUE, DEBUG_EXPR)->return_val)
3127
3128 /* Whether cur_loc in the value needs to be (re)computed. */
3129 #define VALUE_CHANGED(x) \
3130 (RTL_FLAG_CHECK1 ("VALUE_CHANGED", (x), VALUE)->frame_related)
3131 /* Whether cur_loc in the decl needs to be (re)computed. */
3132 #define DECL_CHANGED(x) TREE_VISITED (x)
3133
3134 /* Record (if NEWV) that DV needs to have its cur_loc recomputed. For
3135 user DECLs, this means they're in changed_variables. Values and
3136 debug exprs may be left with this flag set if no user variable
3137 requires them to be evaluated. */
3138
3139 static inline void
3140 set_dv_changed (decl_or_value dv, bool newv)
3141 {
3142 switch (dv_onepart_p (dv))
3143 {
3144 case ONEPART_VALUE:
3145 if (newv)
3146 NO_LOC_P (dv_as_value (dv)) = false;
3147 VALUE_CHANGED (dv_as_value (dv)) = newv;
3148 break;
3149
3150 case ONEPART_DEXPR:
3151 if (newv)
3152 NO_LOC_P (DECL_RTL_KNOWN_SET (dv_as_decl (dv))) = false;
3153 /* Fall through. */
3154
3155 default:
3156 DECL_CHANGED (dv_as_decl (dv)) = newv;
3157 break;
3158 }
3159 }
3160
3161 /* Return true if DV needs to have its cur_loc recomputed. */
3162
3163 static inline bool
3164 dv_changed_p (decl_or_value dv)
3165 {
3166 return (dv_is_value_p (dv)
3167 ? VALUE_CHANGED (dv_as_value (dv))
3168 : DECL_CHANGED (dv_as_decl (dv)));
3169 }
3170
3171 /* Return a location list node whose loc is rtx_equal to LOC, in the
3172 location list of a one-part variable or value VAR, or in that of
3173 any values recursively mentioned in the location lists. VARS must
3174 be in star-canonical form. */
3175
3176 static location_chain *
3177 find_loc_in_1pdv (rtx loc, variable *var, variable_table_type *vars)
3178 {
3179 location_chain *node;
3180 enum rtx_code loc_code;
3181
3182 if (!var)
3183 return NULL;
3184
3185 gcc_checking_assert (var->onepart);
3186
3187 if (!var->n_var_parts)
3188 return NULL;
3189
3190 gcc_checking_assert (loc != dv_as_opaque (var->dv));
3191
3192 loc_code = GET_CODE (loc);
3193 for (node = var->var_part[0].loc_chain; node; node = node->next)
3194 {
3195 decl_or_value dv;
3196 variable *rvar;
3197
3198 if (GET_CODE (node->loc) != loc_code)
3199 {
3200 if (GET_CODE (node->loc) != VALUE)
3201 continue;
3202 }
3203 else if (loc == node->loc)
3204 return node;
3205 else if (loc_code != VALUE)
3206 {
3207 if (rtx_equal_p (loc, node->loc))
3208 return node;
3209 continue;
3210 }
3211
3212 /* Since we're in star-canonical form, we don't need to visit
3213 non-canonical nodes: one-part variables and non-canonical
3214 values would only point back to the canonical node. */
3215 if (dv_is_value_p (var->dv)
3216 && !canon_value_cmp (node->loc, dv_as_value (var->dv)))
3217 {
3218 /* Skip all subsequent VALUEs. */
3219 while (node->next && GET_CODE (node->next->loc) == VALUE)
3220 {
3221 node = node->next;
3222 gcc_checking_assert (!canon_value_cmp (node->loc,
3223 dv_as_value (var->dv)));
3224 if (loc == node->loc)
3225 return node;
3226 }
3227 continue;
3228 }
3229
3230 gcc_checking_assert (node == var->var_part[0].loc_chain);
3231 gcc_checking_assert (!node->next);
3232
3233 dv = dv_from_value (node->loc);
3234 rvar = vars->find_with_hash (dv, dv_htab_hash (dv));
3235 return find_loc_in_1pdv (loc, rvar, vars);
3236 }
3237
3238 /* ??? Gotta look in cselib_val locations too. */
3239
3240 return NULL;
3241 }
3242
3243 /* Hash table iteration argument passed to variable_merge. */
3244 struct dfset_merge
3245 {
3246 /* The set in which the merge is to be inserted. */
3247 dataflow_set *dst;
3248 /* The set that we're iterating in. */
3249 dataflow_set *cur;
3250 /* The set that may contain the other dv we are to merge with. */
3251 dataflow_set *src;
3252 /* Number of onepart dvs in src. */
3253 int src_onepart_cnt;
3254 };
3255
3256 /* Insert LOC in *DNODE, if it's not there yet. The list must be in
3257 loc_cmp order, and it is maintained as such. */
3258
3259 static void
3260 insert_into_intersection (location_chain **nodep, rtx loc,
3261 enum var_init_status status)
3262 {
3263 location_chain *node;
3264 int r;
3265
3266 for (node = *nodep; node; nodep = &node->next, node = *nodep)
3267 if ((r = loc_cmp (node->loc, loc)) == 0)
3268 {
3269 node->init = MIN (node->init, status);
3270 return;
3271 }
3272 else if (r > 0)
3273 break;
3274
3275 node = new location_chain;
3276
3277 node->loc = loc;
3278 node->set_src = NULL;
3279 node->init = status;
3280 node->next = *nodep;
3281 *nodep = node;
3282 }
3283
3284 /* Insert in DEST the intersection of the locations present in both
3285 S1NODE and S2VAR, directly or indirectly. S1NODE is from a
3286 variable in DSM->cur, whereas S2VAR is from DSM->src. dvar is in
3287 DSM->dst. */
3288
3289 static void
3290 intersect_loc_chains (rtx val, location_chain **dest, struct dfset_merge *dsm,
3291 location_chain *s1node, variable *s2var)
3292 {
3293 dataflow_set *s1set = dsm->cur;
3294 dataflow_set *s2set = dsm->src;
3295 location_chain *found;
3296
3297 if (s2var)
3298 {
3299 location_chain *s2node;
3300
3301 gcc_checking_assert (s2var->onepart);
3302
3303 if (s2var->n_var_parts)
3304 {
3305 s2node = s2var->var_part[0].loc_chain;
3306
3307 for (; s1node && s2node;
3308 s1node = s1node->next, s2node = s2node->next)
3309 if (s1node->loc != s2node->loc)
3310 break;
3311 else if (s1node->loc == val)
3312 continue;
3313 else
3314 insert_into_intersection (dest, s1node->loc,
3315 MIN (s1node->init, s2node->init));
3316 }
3317 }
3318
3319 for (; s1node; s1node = s1node->next)
3320 {
3321 if (s1node->loc == val)
3322 continue;
3323
3324 if ((found = find_loc_in_1pdv (s1node->loc, s2var,
3325 shared_hash_htab (s2set->vars))))
3326 {
3327 insert_into_intersection (dest, s1node->loc,
3328 MIN (s1node->init, found->init));
3329 continue;
3330 }
3331
3332 if (GET_CODE (s1node->loc) == VALUE
3333 && !VALUE_RECURSED_INTO (s1node->loc))
3334 {
3335 decl_or_value dv = dv_from_value (s1node->loc);
3336 variable *svar = shared_hash_find (s1set->vars, dv);
3337 if (svar)
3338 {
3339 if (svar->n_var_parts == 1)
3340 {
3341 VALUE_RECURSED_INTO (s1node->loc) = true;
3342 intersect_loc_chains (val, dest, dsm,
3343 svar->var_part[0].loc_chain,
3344 s2var);
3345 VALUE_RECURSED_INTO (s1node->loc) = false;
3346 }
3347 }
3348 }
3349
3350 /* ??? gotta look in cselib_val locations too. */
3351
3352 /* ??? if the location is equivalent to any location in src,
3353 searched recursively
3354
3355 add to dst the values needed to represent the equivalence
3356
3357 telling whether locations S is equivalent to another dv's
3358 location list:
3359
3360 for each location D in the list
3361
3362 if S and D satisfy rtx_equal_p, then it is present
3363
3364 else if D is a value, recurse without cycles
3365
3366 else if S and D have the same CODE and MODE
3367
3368 for each operand oS and the corresponding oD
3369
3370 if oS and oD are not equivalent, then S an D are not equivalent
3371
3372 else if they are RTX vectors
3373
3374 if any vector oS element is not equivalent to its respective oD,
3375 then S and D are not equivalent
3376
3377 */
3378
3379
3380 }
3381 }
3382
3383 /* Return -1 if X should be before Y in a location list for a 1-part
3384 variable, 1 if Y should be before X, and 0 if they're equivalent
3385 and should not appear in the list. */
3386
3387 static int
3388 loc_cmp (rtx x, rtx y)
3389 {
3390 int i, j, r;
3391 RTX_CODE code = GET_CODE (x);
3392 const char *fmt;
3393
3394 if (x == y)
3395 return 0;
3396
3397 if (REG_P (x))
3398 {
3399 if (!REG_P (y))
3400 return -1;
3401 gcc_assert (GET_MODE (x) == GET_MODE (y));
3402 if (REGNO (x) == REGNO (y))
3403 return 0;
3404 else if (REGNO (x) < REGNO (y))
3405 return -1;
3406 else
3407 return 1;
3408 }
3409
3410 if (REG_P (y))
3411 return 1;
3412
3413 if (MEM_P (x))
3414 {
3415 if (!MEM_P (y))
3416 return -1;
3417 gcc_assert (GET_MODE (x) == GET_MODE (y));
3418 return loc_cmp (XEXP (x, 0), XEXP (y, 0));
3419 }
3420
3421 if (MEM_P (y))
3422 return 1;
3423
3424 if (GET_CODE (x) == VALUE)
3425 {
3426 if (GET_CODE (y) != VALUE)
3427 return -1;
3428 /* Don't assert the modes are the same, that is true only
3429 when not recursing. (subreg:QI (value:SI 1:1) 0)
3430 and (subreg:QI (value:DI 2:2) 0) can be compared,
3431 even when the modes are different. */
3432 if (canon_value_cmp (x, y))
3433 return -1;
3434 else
3435 return 1;
3436 }
3437
3438 if (GET_CODE (y) == VALUE)
3439 return 1;
3440
3441 /* Entry value is the least preferable kind of expression. */
3442 if (GET_CODE (x) == ENTRY_VALUE)
3443 {
3444 if (GET_CODE (y) != ENTRY_VALUE)
3445 return 1;
3446 gcc_assert (GET_MODE (x) == GET_MODE (y));
3447 return loc_cmp (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
3448 }
3449
3450 if (GET_CODE (y) == ENTRY_VALUE)
3451 return -1;
3452
3453 if (GET_CODE (x) == GET_CODE (y))
3454 /* Compare operands below. */;
3455 else if (GET_CODE (x) < GET_CODE (y))
3456 return -1;
3457 else
3458 return 1;
3459
3460 gcc_assert (GET_MODE (x) == GET_MODE (y));
3461
3462 if (GET_CODE (x) == DEBUG_EXPR)
3463 {
3464 if (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
3465 < DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)))
3466 return -1;
3467 gcc_checking_assert (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
3468 > DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)));
3469 return 1;
3470 }
3471
3472 fmt = GET_RTX_FORMAT (code);
3473 for (i = 0; i < GET_RTX_LENGTH (code); i++)
3474 switch (fmt[i])
3475 {
3476 case 'w':
3477 if (XWINT (x, i) == XWINT (y, i))
3478 break;
3479 else if (XWINT (x, i) < XWINT (y, i))
3480 return -1;
3481 else
3482 return 1;
3483
3484 case 'n':
3485 case 'i':
3486 if (XINT (x, i) == XINT (y, i))
3487 break;
3488 else if (XINT (x, i) < XINT (y, i))
3489 return -1;
3490 else
3491 return 1;
3492
3493 case 'V':
3494 case 'E':
3495 /* Compare the vector length first. */
3496 if (XVECLEN (x, i) == XVECLEN (y, i))
3497 /* Compare the vectors elements. */;
3498 else if (XVECLEN (x, i) < XVECLEN (y, i))
3499 return -1;
3500 else
3501 return 1;
3502
3503 for (j = 0; j < XVECLEN (x, i); j++)
3504 if ((r = loc_cmp (XVECEXP (x, i, j),
3505 XVECEXP (y, i, j))))
3506 return r;
3507 break;
3508
3509 case 'e':
3510 if ((r = loc_cmp (XEXP (x, i), XEXP (y, i))))
3511 return r;
3512 break;
3513
3514 case 'S':
3515 case 's':
3516 if (XSTR (x, i) == XSTR (y, i))
3517 break;
3518 if (!XSTR (x, i))
3519 return -1;
3520 if (!XSTR (y, i))
3521 return 1;
3522 if ((r = strcmp (XSTR (x, i), XSTR (y, i))) == 0)
3523 break;
3524 else if (r < 0)
3525 return -1;
3526 else
3527 return 1;
3528
3529 case 'u':
3530 /* These are just backpointers, so they don't matter. */
3531 break;
3532
3533 case '0':
3534 case 't':
3535 break;
3536
3537 /* It is believed that rtx's at this level will never
3538 contain anything but integers and other rtx's,
3539 except for within LABEL_REFs and SYMBOL_REFs. */
3540 default:
3541 gcc_unreachable ();
3542 }
3543 if (CONST_WIDE_INT_P (x))
3544 {
3545 /* Compare the vector length first. */
3546 if (CONST_WIDE_INT_NUNITS (x) >= CONST_WIDE_INT_NUNITS (y))
3547 return 1;
3548 else if (CONST_WIDE_INT_NUNITS (x) < CONST_WIDE_INT_NUNITS (y))
3549 return -1;
3550
3551 /* Compare the vectors elements. */;
3552 for (j = CONST_WIDE_INT_NUNITS (x) - 1; j >= 0 ; j--)
3553 {
3554 if (CONST_WIDE_INT_ELT (x, j) < CONST_WIDE_INT_ELT (y, j))
3555 return -1;
3556 if (CONST_WIDE_INT_ELT (x, j) > CONST_WIDE_INT_ELT (y, j))
3557 return 1;
3558 }
3559 }
3560
3561 return 0;
3562 }
3563
3564 /* Check the order of entries in one-part variables. */
3565
3566 int
3567 canonicalize_loc_order_check (variable **slot,
3568 dataflow_set *data ATTRIBUTE_UNUSED)
3569 {
3570 variable *var = *slot;
3571 location_chain *node, *next;
3572
3573 #ifdef ENABLE_RTL_CHECKING
3574 int i;
3575 for (i = 0; i < var->n_var_parts; i++)
3576 gcc_assert (var->var_part[0].cur_loc == NULL);
3577 gcc_assert (!var->in_changed_variables);
3578 #endif
3579
3580 if (!var->onepart)
3581 return 1;
3582
3583 gcc_assert (var->n_var_parts == 1);
3584 node = var->var_part[0].loc_chain;
3585 gcc_assert (node);
3586
3587 while ((next = node->next))
3588 {
3589 gcc_assert (loc_cmp (node->loc, next->loc) < 0);
3590 node = next;
3591 }
3592
3593 return 1;
3594 }
3595
3596 /* Mark with VALUE_RECURSED_INTO values that have neighbors that are
3597 more likely to be chosen as canonical for an equivalence set.
3598 Ensure less likely values can reach more likely neighbors, making
3599 the connections bidirectional. */
3600
3601 int
3602 canonicalize_values_mark (variable **slot, dataflow_set *set)
3603 {
3604 variable *var = *slot;
3605 decl_or_value dv = var->dv;
3606 rtx val;
3607 location_chain *node;
3608
3609 if (!dv_is_value_p (dv))
3610 return 1;
3611
3612 gcc_checking_assert (var->n_var_parts == 1);
3613
3614 val = dv_as_value (dv);
3615
3616 for (node = var->var_part[0].loc_chain; node; node = node->next)
3617 if (GET_CODE (node->loc) == VALUE)
3618 {
3619 if (canon_value_cmp (node->loc, val))
3620 VALUE_RECURSED_INTO (val) = true;
3621 else
3622 {
3623 decl_or_value odv = dv_from_value (node->loc);
3624 variable **oslot;
3625 oslot = shared_hash_find_slot_noinsert (set->vars, odv);
3626
3627 set_slot_part (set, val, oslot, odv, 0,
3628 node->init, NULL_RTX);
3629
3630 VALUE_RECURSED_INTO (node->loc) = true;
3631 }
3632 }
3633
3634 return 1;
3635 }
3636
3637 /* Remove redundant entries from equivalence lists in onepart
3638 variables, canonicalizing equivalence sets into star shapes. */
3639
3640 int
3641 canonicalize_values_star (variable **slot, dataflow_set *set)
3642 {
3643 variable *var = *slot;
3644 decl_or_value dv = var->dv;
3645 location_chain *node;
3646 decl_or_value cdv;
3647 rtx val, cval;
3648 variable **cslot;
3649 bool has_value;
3650 bool has_marks;
3651
3652 if (!var->onepart)
3653 return 1;
3654
3655 gcc_checking_assert (var->n_var_parts == 1);
3656
3657 if (dv_is_value_p (dv))
3658 {
3659 cval = dv_as_value (dv);
3660 if (!VALUE_RECURSED_INTO (cval))
3661 return 1;
3662 VALUE_RECURSED_INTO (cval) = false;
3663 }
3664 else
3665 cval = NULL_RTX;
3666
3667 restart:
3668 val = cval;
3669 has_value = false;
3670 has_marks = false;
3671
3672 gcc_assert (var->n_var_parts == 1);
3673
3674 for (node = var->var_part[0].loc_chain; node; node = node->next)
3675 if (GET_CODE (node->loc) == VALUE)
3676 {
3677 has_value = true;
3678 if (VALUE_RECURSED_INTO (node->loc))
3679 has_marks = true;
3680 if (canon_value_cmp (node->loc, cval))
3681 cval = node->loc;
3682 }
3683
3684 if (!has_value)
3685 return 1;
3686
3687 if (cval == val)
3688 {
3689 if (!has_marks || dv_is_decl_p (dv))
3690 return 1;
3691
3692 /* Keep it marked so that we revisit it, either after visiting a
3693 child node, or after visiting a new parent that might be
3694 found out. */
3695 VALUE_RECURSED_INTO (val) = true;
3696
3697 for (node = var->var_part[0].loc_chain; node; node = node->next)
3698 if (GET_CODE (node->loc) == VALUE
3699 && VALUE_RECURSED_INTO (node->loc))
3700 {
3701 cval = node->loc;
3702 restart_with_cval:
3703 VALUE_RECURSED_INTO (cval) = false;
3704 dv = dv_from_value (cval);
3705 slot = shared_hash_find_slot_noinsert (set->vars, dv);
3706 if (!slot)
3707 {
3708 gcc_assert (dv_is_decl_p (var->dv));
3709 /* The canonical value was reset and dropped.
3710 Remove it. */
3711 clobber_variable_part (set, NULL, var->dv, 0, NULL);
3712 return 1;
3713 }
3714 var = *slot;
3715 gcc_assert (dv_is_value_p (var->dv));
3716 if (var->n_var_parts == 0)
3717 return 1;
3718 gcc_assert (var->n_var_parts == 1);
3719 goto restart;
3720 }
3721
3722 VALUE_RECURSED_INTO (val) = false;
3723
3724 return 1;
3725 }
3726
3727 /* Push values to the canonical one. */
3728 cdv = dv_from_value (cval);
3729 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3730
3731 for (node = var->var_part[0].loc_chain; node; node = node->next)
3732 if (node->loc != cval)
3733 {
3734 cslot = set_slot_part (set, node->loc, cslot, cdv, 0,
3735 node->init, NULL_RTX);
3736 if (GET_CODE (node->loc) == VALUE)
3737 {
3738 decl_or_value ndv = dv_from_value (node->loc);
3739
3740 set_variable_part (set, cval, ndv, 0, node->init, NULL_RTX,
3741 NO_INSERT);
3742
3743 if (canon_value_cmp (node->loc, val))
3744 {
3745 /* If it could have been a local minimum, it's not any more,
3746 since it's now neighbor to cval, so it may have to push
3747 to it. Conversely, if it wouldn't have prevailed over
3748 val, then whatever mark it has is fine: if it was to
3749 push, it will now push to a more canonical node, but if
3750 it wasn't, then it has already pushed any values it might
3751 have to. */
3752 VALUE_RECURSED_INTO (node->loc) = true;
3753 /* Make sure we visit node->loc by ensuring we cval is
3754 visited too. */
3755 VALUE_RECURSED_INTO (cval) = true;
3756 }
3757 else if (!VALUE_RECURSED_INTO (node->loc))
3758 /* If we have no need to "recurse" into this node, it's
3759 already "canonicalized", so drop the link to the old
3760 parent. */
3761 clobber_variable_part (set, cval, ndv, 0, NULL);
3762 }
3763 else if (GET_CODE (node->loc) == REG)
3764 {
3765 attrs *list = set->regs[REGNO (node->loc)], **listp;
3766
3767 /* Change an existing attribute referring to dv so that it
3768 refers to cdv, removing any duplicate this might
3769 introduce, and checking that no previous duplicates
3770 existed, all in a single pass. */
3771
3772 while (list)
3773 {
3774 if (list->offset == 0
3775 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3776 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3777 break;
3778
3779 list = list->next;
3780 }
3781
3782 gcc_assert (list);
3783 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3784 {
3785 list->dv = cdv;
3786 for (listp = &list->next; (list = *listp); listp = &list->next)
3787 {
3788 if (list->offset)
3789 continue;
3790
3791 if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3792 {
3793 *listp = list->next;
3794 delete list;
3795 list = *listp;
3796 break;
3797 }
3798
3799 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (dv));
3800 }
3801 }
3802 else if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3803 {
3804 for (listp = &list->next; (list = *listp); listp = &list->next)
3805 {
3806 if (list->offset)
3807 continue;
3808
3809 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3810 {
3811 *listp = list->next;
3812 delete list;
3813 list = *listp;
3814 break;
3815 }
3816
3817 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (cdv));
3818 }
3819 }
3820 else
3821 gcc_unreachable ();
3822
3823 if (flag_checking)
3824 while (list)
3825 {
3826 if (list->offset == 0
3827 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3828 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3829 gcc_unreachable ();
3830
3831 list = list->next;
3832 }
3833 }
3834 }
3835
3836 if (val)
3837 set_slot_part (set, val, cslot, cdv, 0,
3838 VAR_INIT_STATUS_INITIALIZED, NULL_RTX);
3839
3840 slot = clobber_slot_part (set, cval, slot, 0, NULL);
3841
3842 /* Variable may have been unshared. */
3843 var = *slot;
3844 gcc_checking_assert (var->n_var_parts && var->var_part[0].loc_chain->loc == cval
3845 && var->var_part[0].loc_chain->next == NULL);
3846
3847 if (VALUE_RECURSED_INTO (cval))
3848 goto restart_with_cval;
3849
3850 return 1;
3851 }
3852
3853 /* Bind one-part variables to the canonical value in an equivalence
3854 set. Not doing this causes dataflow convergence failure in rare
3855 circumstances, see PR42873. Unfortunately we can't do this
3856 efficiently as part of canonicalize_values_star, since we may not
3857 have determined or even seen the canonical value of a set when we
3858 get to a variable that references another member of the set. */
3859
3860 int
3861 canonicalize_vars_star (variable **slot, dataflow_set *set)
3862 {
3863 variable *var = *slot;
3864 decl_or_value dv = var->dv;
3865 location_chain *node;
3866 rtx cval;
3867 decl_or_value cdv;
3868 variable **cslot;
3869 variable *cvar;
3870 location_chain *cnode;
3871
3872 if (!var->onepart || var->onepart == ONEPART_VALUE)
3873 return 1;
3874
3875 gcc_assert (var->n_var_parts == 1);
3876
3877 node = var->var_part[0].loc_chain;
3878
3879 if (GET_CODE (node->loc) != VALUE)
3880 return 1;
3881
3882 gcc_assert (!node->next);
3883 cval = node->loc;
3884
3885 /* Push values to the canonical one. */
3886 cdv = dv_from_value (cval);
3887 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3888 if (!cslot)
3889 return 1;
3890 cvar = *cslot;
3891 gcc_assert (cvar->n_var_parts == 1);
3892
3893 cnode = cvar->var_part[0].loc_chain;
3894
3895 /* CVAL is canonical if its value list contains non-VALUEs or VALUEs
3896 that are not “more canonical” than it. */
3897 if (GET_CODE (cnode->loc) != VALUE
3898 || !canon_value_cmp (cnode->loc, cval))
3899 return 1;
3900
3901 /* CVAL was found to be non-canonical. Change the variable to point
3902 to the canonical VALUE. */
3903 gcc_assert (!cnode->next);
3904 cval = cnode->loc;
3905
3906 slot = set_slot_part (set, cval, slot, dv, 0,
3907 node->init, node->set_src);
3908 clobber_slot_part (set, cval, slot, 0, node->set_src);
3909
3910 return 1;
3911 }
3912
3913 /* Combine variable or value in *S1SLOT (in DSM->cur) with the
3914 corresponding entry in DSM->src. Multi-part variables are combined
3915 with variable_union, whereas onepart dvs are combined with
3916 intersection. */
3917
3918 static int
3919 variable_merge_over_cur (variable *s1var, struct dfset_merge *dsm)
3920 {
3921 dataflow_set *dst = dsm->dst;
3922 variable **dstslot;
3923 variable *s2var, *dvar = NULL;
3924 decl_or_value dv = s1var->dv;
3925 onepart_enum onepart = s1var->onepart;
3926 rtx val;
3927 hashval_t dvhash;
3928 location_chain *node, **nodep;
3929
3930 /* If the incoming onepart variable has an empty location list, then
3931 the intersection will be just as empty. For other variables,
3932 it's always union. */
3933 gcc_checking_assert (s1var->n_var_parts
3934 && s1var->var_part[0].loc_chain);
3935
3936 if (!onepart)
3937 return variable_union (s1var, dst);
3938
3939 gcc_checking_assert (s1var->n_var_parts == 1);
3940
3941 dvhash = dv_htab_hash (dv);
3942 if (dv_is_value_p (dv))
3943 val = dv_as_value (dv);
3944 else
3945 val = NULL;
3946
3947 s2var = shared_hash_find_1 (dsm->src->vars, dv, dvhash);
3948 if (!s2var)
3949 {
3950 dst_can_be_shared = false;
3951 return 1;
3952 }
3953
3954 dsm->src_onepart_cnt--;
3955 gcc_assert (s2var->var_part[0].loc_chain
3956 && s2var->onepart == onepart
3957 && s2var->n_var_parts == 1);
3958
3959 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
3960 if (dstslot)
3961 {
3962 dvar = *dstslot;
3963 gcc_assert (dvar->refcount == 1
3964 && dvar->onepart == onepart
3965 && dvar->n_var_parts == 1);
3966 nodep = &dvar->var_part[0].loc_chain;
3967 }
3968 else
3969 {
3970 nodep = &node;
3971 node = NULL;
3972 }
3973
3974 if (!dstslot && !onepart_variable_different_p (s1var, s2var))
3975 {
3976 dstslot = shared_hash_find_slot_unshare_1 (&dst->vars, dv,
3977 dvhash, INSERT);
3978 *dstslot = dvar = s2var;
3979 dvar->refcount++;
3980 }
3981 else
3982 {
3983 dst_can_be_shared = false;
3984
3985 intersect_loc_chains (val, nodep, dsm,
3986 s1var->var_part[0].loc_chain, s2var);
3987
3988 if (!dstslot)
3989 {
3990 if (node)
3991 {
3992 dvar = onepart_pool_allocate (onepart);
3993 dvar->dv = dv;
3994 dvar->refcount = 1;
3995 dvar->n_var_parts = 1;
3996 dvar->onepart = onepart;
3997 dvar->in_changed_variables = false;
3998 dvar->var_part[0].loc_chain = node;
3999 dvar->var_part[0].cur_loc = NULL;
4000 if (onepart)
4001 VAR_LOC_1PAUX (dvar) = NULL;
4002 else
4003 VAR_PART_OFFSET (dvar, 0) = 0;
4004
4005 dstslot
4006 = shared_hash_find_slot_unshare_1 (&dst->vars, dv, dvhash,
4007 INSERT);
4008 gcc_assert (!*dstslot);
4009 *dstslot = dvar;
4010 }
4011 else
4012 return 1;
4013 }
4014 }
4015
4016 nodep = &dvar->var_part[0].loc_chain;
4017 while ((node = *nodep))
4018 {
4019 location_chain **nextp = &node->next;
4020
4021 if (GET_CODE (node->loc) == REG)
4022 {
4023 attrs *list;
4024
4025 for (list = dst->regs[REGNO (node->loc)]; list; list = list->next)
4026 if (GET_MODE (node->loc) == GET_MODE (list->loc)
4027 && dv_is_value_p (list->dv))
4028 break;
4029
4030 if (!list)
4031 attrs_list_insert (&dst->regs[REGNO (node->loc)],
4032 dv, 0, node->loc);
4033 /* If this value became canonical for another value that had
4034 this register, we want to leave it alone. */
4035 else if (dv_as_value (list->dv) != val)
4036 {
4037 dstslot = set_slot_part (dst, dv_as_value (list->dv),
4038 dstslot, dv, 0,
4039 node->init, NULL_RTX);
4040 dstslot = delete_slot_part (dst, node->loc, dstslot, 0);
4041
4042 /* Since nextp points into the removed node, we can't
4043 use it. The pointer to the next node moved to nodep.
4044 However, if the variable we're walking is unshared
4045 during our walk, we'll keep walking the location list
4046 of the previously-shared variable, in which case the
4047 node won't have been removed, and we'll want to skip
4048 it. That's why we test *nodep here. */
4049 if (*nodep != node)
4050 nextp = nodep;
4051 }
4052 }
4053 else
4054 /* Canonicalization puts registers first, so we don't have to
4055 walk it all. */
4056 break;
4057 nodep = nextp;
4058 }
4059
4060 if (dvar != *dstslot)
4061 dvar = *dstslot;
4062 nodep = &dvar->var_part[0].loc_chain;
4063
4064 if (val)
4065 {
4066 /* Mark all referenced nodes for canonicalization, and make sure
4067 we have mutual equivalence links. */
4068 VALUE_RECURSED_INTO (val) = true;
4069 for (node = *nodep; node; node = node->next)
4070 if (GET_CODE (node->loc) == VALUE)
4071 {
4072 VALUE_RECURSED_INTO (node->loc) = true;
4073 set_variable_part (dst, val, dv_from_value (node->loc), 0,
4074 node->init, NULL, INSERT);
4075 }
4076
4077 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
4078 gcc_assert (*dstslot == dvar);
4079 canonicalize_values_star (dstslot, dst);
4080 gcc_checking_assert (dstslot
4081 == shared_hash_find_slot_noinsert_1 (dst->vars,
4082 dv, dvhash));
4083 dvar = *dstslot;
4084 }
4085 else
4086 {
4087 bool has_value = false, has_other = false;
4088
4089 /* If we have one value and anything else, we're going to
4090 canonicalize this, so make sure all values have an entry in
4091 the table and are marked for canonicalization. */
4092 for (node = *nodep; node; node = node->next)
4093 {
4094 if (GET_CODE (node->loc) == VALUE)
4095 {
4096 /* If this was marked during register canonicalization,
4097 we know we have to canonicalize values. */
4098 if (has_value)
4099 has_other = true;
4100 has_value = true;
4101 if (has_other)
4102 break;
4103 }
4104 else
4105 {
4106 has_other = true;
4107 if (has_value)
4108 break;
4109 }
4110 }
4111
4112 if (has_value && has_other)
4113 {
4114 for (node = *nodep; node; node = node->next)
4115 {
4116 if (GET_CODE (node->loc) == VALUE)
4117 {
4118 decl_or_value dv = dv_from_value (node->loc);
4119 variable **slot = NULL;
4120
4121 if (shared_hash_shared (dst->vars))
4122 slot = shared_hash_find_slot_noinsert (dst->vars, dv);
4123 if (!slot)
4124 slot = shared_hash_find_slot_unshare (&dst->vars, dv,
4125 INSERT);
4126 if (!*slot)
4127 {
4128 variable *var = onepart_pool_allocate (ONEPART_VALUE);
4129 var->dv = dv;
4130 var->refcount = 1;
4131 var->n_var_parts = 1;
4132 var->onepart = ONEPART_VALUE;
4133 var->in_changed_variables = false;
4134 var->var_part[0].loc_chain = NULL;
4135 var->var_part[0].cur_loc = NULL;
4136 VAR_LOC_1PAUX (var) = NULL;
4137 *slot = var;
4138 }
4139
4140 VALUE_RECURSED_INTO (node->loc) = true;
4141 }
4142 }
4143
4144 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
4145 gcc_assert (*dstslot == dvar);
4146 canonicalize_values_star (dstslot, dst);
4147 gcc_checking_assert (dstslot
4148 == shared_hash_find_slot_noinsert_1 (dst->vars,
4149 dv, dvhash));
4150 dvar = *dstslot;
4151 }
4152 }
4153
4154 if (!onepart_variable_different_p (dvar, s2var))
4155 {
4156 variable_htab_free (dvar);
4157 *dstslot = dvar = s2var;
4158 dvar->refcount++;
4159 }
4160 else if (s2var != s1var && !onepart_variable_different_p (dvar, s1var))
4161 {
4162 variable_htab_free (dvar);
4163 *dstslot = dvar = s1var;
4164 dvar->refcount++;
4165 dst_can_be_shared = false;
4166 }
4167 else
4168 dst_can_be_shared = false;
4169
4170 return 1;
4171 }
4172
4173 /* Copy s2slot (in DSM->src) to DSM->dst if the variable is a
4174 multi-part variable. Unions of multi-part variables and
4175 intersections of one-part ones will be handled in
4176 variable_merge_over_cur(). */
4177
4178 static int
4179 variable_merge_over_src (variable *s2var, struct dfset_merge *dsm)
4180 {
4181 dataflow_set *dst = dsm->dst;
4182 decl_or_value dv = s2var->dv;
4183
4184 if (!s2var->onepart)
4185 {
4186 variable **dstp = shared_hash_find_slot (dst->vars, dv);
4187 *dstp = s2var;
4188 s2var->refcount++;
4189 return 1;
4190 }
4191
4192 dsm->src_onepart_cnt++;
4193 return 1;
4194 }
4195
4196 /* Combine dataflow set information from SRC2 into DST, using PDST
4197 to carry over information across passes. */
4198
4199 static void
4200 dataflow_set_merge (dataflow_set *dst, dataflow_set *src2)
4201 {
4202 dataflow_set cur = *dst;
4203 dataflow_set *src1 = &cur;
4204 struct dfset_merge dsm;
4205 int i;
4206 size_t src1_elems, src2_elems;
4207 variable_iterator_type hi;
4208 variable *var;
4209
4210 src1_elems = shared_hash_htab (src1->vars)->elements ();
4211 src2_elems = shared_hash_htab (src2->vars)->elements ();
4212 dataflow_set_init (dst);
4213 dst->stack_adjust = cur.stack_adjust;
4214 shared_hash_destroy (dst->vars);
4215 dst->vars = new shared_hash;
4216 dst->vars->refcount = 1;
4217 dst->vars->htab = new variable_table_type (MAX (src1_elems, src2_elems));
4218
4219 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4220 attrs_list_mpdv_union (&dst->regs[i], src1->regs[i], src2->regs[i]);
4221
4222 dsm.dst = dst;
4223 dsm.src = src2;
4224 dsm.cur = src1;
4225 dsm.src_onepart_cnt = 0;
4226
4227 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (dsm.src->vars),
4228 var, variable, hi)
4229 variable_merge_over_src (var, &dsm);
4230 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (dsm.cur->vars),
4231 var, variable, hi)
4232 variable_merge_over_cur (var, &dsm);
4233
4234 if (dsm.src_onepart_cnt)
4235 dst_can_be_shared = false;
4236
4237 dataflow_set_destroy (src1);
4238 }
4239
4240 /* Mark register equivalences. */
4241
4242 static void
4243 dataflow_set_equiv_regs (dataflow_set *set)
4244 {
4245 int i;
4246 attrs *list, **listp;
4247
4248 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4249 {
4250 rtx canon[NUM_MACHINE_MODES];
4251
4252 /* If the list is empty or one entry, no need to canonicalize
4253 anything. */
4254 if (set->regs[i] == NULL || set->regs[i]->next == NULL)
4255 continue;
4256
4257 memset (canon, 0, sizeof (canon));
4258
4259 for (list = set->regs[i]; list; list = list->next)
4260 if (list->offset == 0 && dv_is_value_p (list->dv))
4261 {
4262 rtx val = dv_as_value (list->dv);
4263 rtx *cvalp = &canon[(int)GET_MODE (val)];
4264 rtx cval = *cvalp;
4265
4266 if (canon_value_cmp (val, cval))
4267 *cvalp = val;
4268 }
4269
4270 for (list = set->regs[i]; list; list = list->next)
4271 if (list->offset == 0 && dv_onepart_p (list->dv))
4272 {
4273 rtx cval = canon[(int)GET_MODE (list->loc)];
4274
4275 if (!cval)
4276 continue;
4277
4278 if (dv_is_value_p (list->dv))
4279 {
4280 rtx val = dv_as_value (list->dv);
4281
4282 if (val == cval)
4283 continue;
4284
4285 VALUE_RECURSED_INTO (val) = true;
4286 set_variable_part (set, val, dv_from_value (cval), 0,
4287 VAR_INIT_STATUS_INITIALIZED,
4288 NULL, NO_INSERT);
4289 }
4290
4291 VALUE_RECURSED_INTO (cval) = true;
4292 set_variable_part (set, cval, list->dv, 0,
4293 VAR_INIT_STATUS_INITIALIZED, NULL, NO_INSERT);
4294 }
4295
4296 for (listp = &set->regs[i]; (list = *listp);
4297 listp = list ? &list->next : listp)
4298 if (list->offset == 0 && dv_onepart_p (list->dv))
4299 {
4300 rtx cval = canon[(int)GET_MODE (list->loc)];
4301 variable **slot;
4302
4303 if (!cval)
4304 continue;
4305
4306 if (dv_is_value_p (list->dv))
4307 {
4308 rtx val = dv_as_value (list->dv);
4309 if (!VALUE_RECURSED_INTO (val))
4310 continue;
4311 }
4312
4313 slot = shared_hash_find_slot_noinsert (set->vars, list->dv);
4314 canonicalize_values_star (slot, set);
4315 if (*listp != list)
4316 list = NULL;
4317 }
4318 }
4319 }
4320
4321 /* Remove any redundant values in the location list of VAR, which must
4322 be unshared and 1-part. */
4323
4324 static void
4325 remove_duplicate_values (variable *var)
4326 {
4327 location_chain *node, **nodep;
4328
4329 gcc_assert (var->onepart);
4330 gcc_assert (var->n_var_parts == 1);
4331 gcc_assert (var->refcount == 1);
4332
4333 for (nodep = &var->var_part[0].loc_chain; (node = *nodep); )
4334 {
4335 if (GET_CODE (node->loc) == VALUE)
4336 {
4337 if (VALUE_RECURSED_INTO (node->loc))
4338 {
4339 /* Remove duplicate value node. */
4340 *nodep = node->next;
4341 delete node;
4342 continue;
4343 }
4344 else
4345 VALUE_RECURSED_INTO (node->loc) = true;
4346 }
4347 nodep = &node->next;
4348 }
4349
4350 for (node = var->var_part[0].loc_chain; node; node = node->next)
4351 if (GET_CODE (node->loc) == VALUE)
4352 {
4353 gcc_assert (VALUE_RECURSED_INTO (node->loc));
4354 VALUE_RECURSED_INTO (node->loc) = false;
4355 }
4356 }
4357
4358
4359 /* Hash table iteration argument passed to variable_post_merge. */
4360 struct dfset_post_merge
4361 {
4362 /* The new input set for the current block. */
4363 dataflow_set *set;
4364 /* Pointer to the permanent input set for the current block, or
4365 NULL. */
4366 dataflow_set **permp;
4367 };
4368
4369 /* Create values for incoming expressions associated with one-part
4370 variables that don't have value numbers for them. */
4371
4372 int
4373 variable_post_merge_new_vals (variable **slot, dfset_post_merge *dfpm)
4374 {
4375 dataflow_set *set = dfpm->set;
4376 variable *var = *slot;
4377 location_chain *node;
4378
4379 if (!var->onepart || !var->n_var_parts)
4380 return 1;
4381
4382 gcc_assert (var->n_var_parts == 1);
4383
4384 if (dv_is_decl_p (var->dv))
4385 {
4386 bool check_dupes = false;
4387
4388 restart:
4389 for (node = var->var_part[0].loc_chain; node; node = node->next)
4390 {
4391 if (GET_CODE (node->loc) == VALUE)
4392 gcc_assert (!VALUE_RECURSED_INTO (node->loc));
4393 else if (GET_CODE (node->loc) == REG)
4394 {
4395 attrs *att, **attp, **curp = NULL;
4396
4397 if (var->refcount != 1)
4398 {
4399 slot = unshare_variable (set, slot, var,
4400 VAR_INIT_STATUS_INITIALIZED);
4401 var = *slot;
4402 goto restart;
4403 }
4404
4405 for (attp = &set->regs[REGNO (node->loc)]; (att = *attp);
4406 attp = &att->next)
4407 if (att->offset == 0
4408 && GET_MODE (att->loc) == GET_MODE (node->loc))
4409 {
4410 if (dv_is_value_p (att->dv))
4411 {
4412 rtx cval = dv_as_value (att->dv);
4413 node->loc = cval;
4414 check_dupes = true;
4415 break;
4416 }
4417 else if (dv_as_opaque (att->dv) == dv_as_opaque (var->dv))
4418 curp = attp;
4419 }
4420
4421 if (!curp)
4422 {
4423 curp = attp;
4424 while (*curp)
4425 if ((*curp)->offset == 0
4426 && GET_MODE ((*curp)->loc) == GET_MODE (node->loc)
4427 && dv_as_opaque ((*curp)->dv) == dv_as_opaque (var->dv))
4428 break;
4429 else
4430 curp = &(*curp)->next;
4431 gcc_assert (*curp);
4432 }
4433
4434 if (!att)
4435 {
4436 decl_or_value cdv;
4437 rtx cval;
4438
4439 if (!*dfpm->permp)
4440 {
4441 *dfpm->permp = XNEW (dataflow_set);
4442 dataflow_set_init (*dfpm->permp);
4443 }
4444
4445 for (att = (*dfpm->permp)->regs[REGNO (node->loc)];
4446 att; att = att->next)
4447 if (GET_MODE (att->loc) == GET_MODE (node->loc))
4448 {
4449 gcc_assert (att->offset == 0
4450 && dv_is_value_p (att->dv));
4451 val_reset (set, att->dv);
4452 break;
4453 }
4454
4455 if (att)
4456 {
4457 cdv = att->dv;
4458 cval = dv_as_value (cdv);
4459 }
4460 else
4461 {
4462 /* Create a unique value to hold this register,
4463 that ought to be found and reused in
4464 subsequent rounds. */
4465 cselib_val *v;
4466 gcc_assert (!cselib_lookup (node->loc,
4467 GET_MODE (node->loc), 0,
4468 VOIDmode));
4469 v = cselib_lookup (node->loc, GET_MODE (node->loc), 1,
4470 VOIDmode);
4471 cselib_preserve_value (v);
4472 cselib_invalidate_rtx (node->loc);
4473 cval = v->val_rtx;
4474 cdv = dv_from_value (cval);
4475 if (dump_file)
4476 fprintf (dump_file,
4477 "Created new value %u:%u for reg %i\n",
4478 v->uid, v->hash, REGNO (node->loc));
4479 }
4480
4481 var_reg_decl_set (*dfpm->permp, node->loc,
4482 VAR_INIT_STATUS_INITIALIZED,
4483 cdv, 0, NULL, INSERT);
4484
4485 node->loc = cval;
4486 check_dupes = true;
4487 }
4488
4489 /* Remove attribute referring to the decl, which now
4490 uses the value for the register, already existing or
4491 to be added when we bring perm in. */
4492 att = *curp;
4493 *curp = att->next;
4494 delete att;
4495 }
4496 }
4497
4498 if (check_dupes)
4499 remove_duplicate_values (var);
4500 }
4501
4502 return 1;
4503 }
4504
4505 /* Reset values in the permanent set that are not associated with the
4506 chosen expression. */
4507
4508 int
4509 variable_post_merge_perm_vals (variable **pslot, dfset_post_merge *dfpm)
4510 {
4511 dataflow_set *set = dfpm->set;
4512 variable *pvar = *pslot, *var;
4513 location_chain *pnode;
4514 decl_or_value dv;
4515 attrs *att;
4516
4517 gcc_assert (dv_is_value_p (pvar->dv)
4518 && pvar->n_var_parts == 1);
4519 pnode = pvar->var_part[0].loc_chain;
4520 gcc_assert (pnode
4521 && !pnode->next
4522 && REG_P (pnode->loc));
4523
4524 dv = pvar->dv;
4525
4526 var = shared_hash_find (set->vars, dv);
4527 if (var)
4528 {
4529 /* Although variable_post_merge_new_vals may have made decls
4530 non-star-canonical, values that pre-existed in canonical form
4531 remain canonical, and newly-created values reference a single
4532 REG, so they are canonical as well. Since VAR has the
4533 location list for a VALUE, using find_loc_in_1pdv for it is
4534 fine, since VALUEs don't map back to DECLs. */
4535 if (find_loc_in_1pdv (pnode->loc, var, shared_hash_htab (set->vars)))
4536 return 1;
4537 val_reset (set, dv);
4538 }
4539
4540 for (att = set->regs[REGNO (pnode->loc)]; att; att = att->next)
4541 if (att->offset == 0
4542 && GET_MODE (att->loc) == GET_MODE (pnode->loc)
4543 && dv_is_value_p (att->dv))
4544 break;
4545
4546 /* If there is a value associated with this register already, create
4547 an equivalence. */
4548 if (att && dv_as_value (att->dv) != dv_as_value (dv))
4549 {
4550 rtx cval = dv_as_value (att->dv);
4551 set_variable_part (set, cval, dv, 0, pnode->init, NULL, INSERT);
4552 set_variable_part (set, dv_as_value (dv), att->dv, 0, pnode->init,
4553 NULL, INSERT);
4554 }
4555 else if (!att)
4556 {
4557 attrs_list_insert (&set->regs[REGNO (pnode->loc)],
4558 dv, 0, pnode->loc);
4559 variable_union (pvar, set);
4560 }
4561
4562 return 1;
4563 }
4564
4565 /* Just checking stuff and registering register attributes for
4566 now. */
4567
4568 static void
4569 dataflow_post_merge_adjust (dataflow_set *set, dataflow_set **permp)
4570 {
4571 struct dfset_post_merge dfpm;
4572
4573 dfpm.set = set;
4574 dfpm.permp = permp;
4575
4576 shared_hash_htab (set->vars)
4577 ->traverse <dfset_post_merge*, variable_post_merge_new_vals> (&dfpm);
4578 if (*permp)
4579 shared_hash_htab ((*permp)->vars)
4580 ->traverse <dfset_post_merge*, variable_post_merge_perm_vals> (&dfpm);
4581 shared_hash_htab (set->vars)
4582 ->traverse <dataflow_set *, canonicalize_values_star> (set);
4583 shared_hash_htab (set->vars)
4584 ->traverse <dataflow_set *, canonicalize_vars_star> (set);
4585 }
4586
4587 /* Return a node whose loc is a MEM that refers to EXPR in the
4588 location list of a one-part variable or value VAR, or in that of
4589 any values recursively mentioned in the location lists. */
4590
4591 static location_chain *
4592 find_mem_expr_in_1pdv (tree expr, rtx val, variable_table_type *vars)
4593 {
4594 location_chain *node;
4595 decl_or_value dv;
4596 variable *var;
4597 location_chain *where = NULL;
4598
4599 if (!val)
4600 return NULL;
4601
4602 gcc_assert (GET_CODE (val) == VALUE
4603 && !VALUE_RECURSED_INTO (val));
4604
4605 dv = dv_from_value (val);
4606 var = vars->find_with_hash (dv, dv_htab_hash (dv));
4607
4608 if (!var)
4609 return NULL;
4610
4611 gcc_assert (var->onepart);
4612
4613 if (!var->n_var_parts)
4614 return NULL;
4615
4616 VALUE_RECURSED_INTO (val) = true;
4617
4618 for (node = var->var_part[0].loc_chain; node; node = node->next)
4619 if (MEM_P (node->loc)
4620 && MEM_EXPR (node->loc) == expr
4621 && INT_MEM_OFFSET (node->loc) == 0)
4622 {
4623 where = node;
4624 break;
4625 }
4626 else if (GET_CODE (node->loc) == VALUE
4627 && !VALUE_RECURSED_INTO (node->loc)
4628 && (where = find_mem_expr_in_1pdv (expr, node->loc, vars)))
4629 break;
4630
4631 VALUE_RECURSED_INTO (val) = false;
4632
4633 return where;
4634 }
4635
4636 /* Return TRUE if the value of MEM may vary across a call. */
4637
4638 static bool
4639 mem_dies_at_call (rtx mem)
4640 {
4641 tree expr = MEM_EXPR (mem);
4642 tree decl;
4643
4644 if (!expr)
4645 return true;
4646
4647 decl = get_base_address (expr);
4648
4649 if (!decl)
4650 return true;
4651
4652 if (!DECL_P (decl))
4653 return true;
4654
4655 return (may_be_aliased (decl)
4656 || (!TREE_READONLY (decl) && is_global_var (decl)));
4657 }
4658
4659 /* Remove all MEMs from the location list of a hash table entry for a
4660 one-part variable, except those whose MEM attributes map back to
4661 the variable itself, directly or within a VALUE. */
4662
4663 int
4664 dataflow_set_preserve_mem_locs (variable **slot, dataflow_set *set)
4665 {
4666 variable *var = *slot;
4667
4668 if (var->onepart == ONEPART_VDECL || var->onepart == ONEPART_DEXPR)
4669 {
4670 tree decl = dv_as_decl (var->dv);
4671 location_chain *loc, **locp;
4672 bool changed = false;
4673
4674 if (!var->n_var_parts)
4675 return 1;
4676
4677 gcc_assert (var->n_var_parts == 1);
4678
4679 if (shared_var_p (var, set->vars))
4680 {
4681 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4682 {
4683 /* We want to remove dying MEMs that don't refer to DECL. */
4684 if (GET_CODE (loc->loc) == MEM
4685 && (MEM_EXPR (loc->loc) != decl
4686 || INT_MEM_OFFSET (loc->loc) != 0)
4687 && mem_dies_at_call (loc->loc))
4688 break;
4689 /* We want to move here MEMs that do refer to DECL. */
4690 else if (GET_CODE (loc->loc) == VALUE
4691 && find_mem_expr_in_1pdv (decl, loc->loc,
4692 shared_hash_htab (set->vars)))
4693 break;
4694 }
4695
4696 if (!loc)
4697 return 1;
4698
4699 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4700 var = *slot;
4701 gcc_assert (var->n_var_parts == 1);
4702 }
4703
4704 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4705 loc; loc = *locp)
4706 {
4707 rtx old_loc = loc->loc;
4708 if (GET_CODE (old_loc) == VALUE)
4709 {
4710 location_chain *mem_node
4711 = find_mem_expr_in_1pdv (decl, loc->loc,
4712 shared_hash_htab (set->vars));
4713
4714 /* ??? This picks up only one out of multiple MEMs that
4715 refer to the same variable. Do we ever need to be
4716 concerned about dealing with more than one, or, given
4717 that they should all map to the same variable
4718 location, their addresses will have been merged and
4719 they will be regarded as equivalent? */
4720 if (mem_node)
4721 {
4722 loc->loc = mem_node->loc;
4723 loc->set_src = mem_node->set_src;
4724 loc->init = MIN (loc->init, mem_node->init);
4725 }
4726 }
4727
4728 if (GET_CODE (loc->loc) != MEM
4729 || (MEM_EXPR (loc->loc) == decl
4730 && INT_MEM_OFFSET (loc->loc) == 0)
4731 || !mem_dies_at_call (loc->loc))
4732 {
4733 if (old_loc != loc->loc && emit_notes)
4734 {
4735 if (old_loc == var->var_part[0].cur_loc)
4736 {
4737 changed = true;
4738 var->var_part[0].cur_loc = NULL;
4739 }
4740 }
4741 locp = &loc->next;
4742 continue;
4743 }
4744
4745 if (emit_notes)
4746 {
4747 if (old_loc == var->var_part[0].cur_loc)
4748 {
4749 changed = true;
4750 var->var_part[0].cur_loc = NULL;
4751 }
4752 }
4753 *locp = loc->next;
4754 delete loc;
4755 }
4756
4757 if (!var->var_part[0].loc_chain)
4758 {
4759 var->n_var_parts--;
4760 changed = true;
4761 }
4762 if (changed)
4763 variable_was_changed (var, set);
4764 }
4765
4766 return 1;
4767 }
4768
4769 /* Remove all MEMs from the location list of a hash table entry for a
4770 onepart variable. */
4771
4772 int
4773 dataflow_set_remove_mem_locs (variable **slot, dataflow_set *set)
4774 {
4775 variable *var = *slot;
4776
4777 if (var->onepart != NOT_ONEPART)
4778 {
4779 location_chain *loc, **locp;
4780 bool changed = false;
4781 rtx cur_loc;
4782
4783 gcc_assert (var->n_var_parts == 1);
4784
4785 if (shared_var_p (var, set->vars))
4786 {
4787 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4788 if (GET_CODE (loc->loc) == MEM
4789 && mem_dies_at_call (loc->loc))
4790 break;
4791
4792 if (!loc)
4793 return 1;
4794
4795 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4796 var = *slot;
4797 gcc_assert (var->n_var_parts == 1);
4798 }
4799
4800 if (VAR_LOC_1PAUX (var))
4801 cur_loc = VAR_LOC_FROM (var);
4802 else
4803 cur_loc = var->var_part[0].cur_loc;
4804
4805 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4806 loc; loc = *locp)
4807 {
4808 if (GET_CODE (loc->loc) != MEM
4809 || !mem_dies_at_call (loc->loc))
4810 {
4811 locp = &loc->next;
4812 continue;
4813 }
4814
4815 *locp = loc->next;
4816 /* If we have deleted the location which was last emitted
4817 we have to emit new location so add the variable to set
4818 of changed variables. */
4819 if (cur_loc == loc->loc)
4820 {
4821 changed = true;
4822 var->var_part[0].cur_loc = NULL;
4823 if (VAR_LOC_1PAUX (var))
4824 VAR_LOC_FROM (var) = NULL;
4825 }
4826 delete loc;
4827 }
4828
4829 if (!var->var_part[0].loc_chain)
4830 {
4831 var->n_var_parts--;
4832 changed = true;
4833 }
4834 if (changed)
4835 variable_was_changed (var, set);
4836 }
4837
4838 return 1;
4839 }
4840
4841 /* Remove all variable-location information about call-clobbered
4842 registers, as well as associations between MEMs and VALUEs. */
4843
4844 static void
4845 dataflow_set_clear_at_call (dataflow_set *set, rtx_insn *call_insn)
4846 {
4847 unsigned int r;
4848 hard_reg_set_iterator hrsi;
4849 HARD_REG_SET invalidated_regs;
4850
4851 get_call_reg_set_usage (call_insn, &invalidated_regs,
4852 regs_invalidated_by_call);
4853
4854 EXECUTE_IF_SET_IN_HARD_REG_SET (invalidated_regs, 0, r, hrsi)
4855 var_regno_delete (set, r);
4856
4857 if (MAY_HAVE_DEBUG_INSNS)
4858 {
4859 set->traversed_vars = set->vars;
4860 shared_hash_htab (set->vars)
4861 ->traverse <dataflow_set *, dataflow_set_preserve_mem_locs> (set);
4862 set->traversed_vars = set->vars;
4863 shared_hash_htab (set->vars)
4864 ->traverse <dataflow_set *, dataflow_set_remove_mem_locs> (set);
4865 set->traversed_vars = NULL;
4866 }
4867 }
4868
4869 static bool
4870 variable_part_different_p (variable_part *vp1, variable_part *vp2)
4871 {
4872 location_chain *lc1, *lc2;
4873
4874 for (lc1 = vp1->loc_chain; lc1; lc1 = lc1->next)
4875 {
4876 for (lc2 = vp2->loc_chain; lc2; lc2 = lc2->next)
4877 {
4878 if (REG_P (lc1->loc) && REG_P (lc2->loc))
4879 {
4880 if (REGNO (lc1->loc) == REGNO (lc2->loc))
4881 break;
4882 }
4883 if (rtx_equal_p (lc1->loc, lc2->loc))
4884 break;
4885 }
4886 if (!lc2)
4887 return true;
4888 }
4889 return false;
4890 }
4891
4892 /* Return true if one-part variables VAR1 and VAR2 are different.
4893 They must be in canonical order. */
4894
4895 static bool
4896 onepart_variable_different_p (variable *var1, variable *var2)
4897 {
4898 location_chain *lc1, *lc2;
4899
4900 if (var1 == var2)
4901 return false;
4902
4903 gcc_assert (var1->n_var_parts == 1
4904 && var2->n_var_parts == 1);
4905
4906 lc1 = var1->var_part[0].loc_chain;
4907 lc2 = var2->var_part[0].loc_chain;
4908
4909 gcc_assert (lc1 && lc2);
4910
4911 while (lc1 && lc2)
4912 {
4913 if (loc_cmp (lc1->loc, lc2->loc))
4914 return true;
4915 lc1 = lc1->next;
4916 lc2 = lc2->next;
4917 }
4918
4919 return lc1 != lc2;
4920 }
4921
4922 /* Return true if one-part variables VAR1 and VAR2 are different.
4923 They must be in canonical order. */
4924
4925 static void
4926 dump_onepart_variable_differences (variable *var1, variable *var2)
4927 {
4928 location_chain *lc1, *lc2;
4929
4930 gcc_assert (var1 != var2);
4931 gcc_assert (dump_file);
4932 gcc_assert (dv_as_opaque (var1->dv) == dv_as_opaque (var2->dv));
4933 gcc_assert (var1->n_var_parts == 1
4934 && var2->n_var_parts == 1);
4935
4936 lc1 = var1->var_part[0].loc_chain;
4937 lc2 = var2->var_part[0].loc_chain;
4938
4939 gcc_assert (lc1 && lc2);
4940
4941 while (lc1 && lc2)
4942 {
4943 switch (loc_cmp (lc1->loc, lc2->loc))
4944 {
4945 case -1:
4946 fprintf (dump_file, "removed: ");
4947 print_rtl_single (dump_file, lc1->loc);
4948 lc1 = lc1->next;
4949 continue;
4950 case 0:
4951 break;
4952 case 1:
4953 fprintf (dump_file, "added: ");
4954 print_rtl_single (dump_file, lc2->loc);
4955 lc2 = lc2->next;
4956 continue;
4957 default:
4958 gcc_unreachable ();
4959 }
4960 lc1 = lc1->next;
4961 lc2 = lc2->next;
4962 }
4963
4964 while (lc1)
4965 {
4966 fprintf (dump_file, "removed: ");
4967 print_rtl_single (dump_file, lc1->loc);
4968 lc1 = lc1->next;
4969 }
4970
4971 while (lc2)
4972 {
4973 fprintf (dump_file, "added: ");
4974 print_rtl_single (dump_file, lc2->loc);
4975 lc2 = lc2->next;
4976 }
4977 }
4978
4979 /* Return true if variables VAR1 and VAR2 are different. */
4980
4981 static bool
4982 variable_different_p (variable *var1, variable *var2)
4983 {
4984 int i;
4985
4986 if (var1 == var2)
4987 return false;
4988
4989 if (var1->onepart != var2->onepart)
4990 return true;
4991
4992 if (var1->n_var_parts != var2->n_var_parts)
4993 return true;
4994
4995 if (var1->onepart && var1->n_var_parts)
4996 {
4997 gcc_checking_assert (dv_as_opaque (var1->dv) == dv_as_opaque (var2->dv)
4998 && var1->n_var_parts == 1);
4999 /* One-part values have locations in a canonical order. */
5000 return onepart_variable_different_p (var1, var2);
5001 }
5002
5003 for (i = 0; i < var1->n_var_parts; i++)
5004 {
5005 if (VAR_PART_OFFSET (var1, i) != VAR_PART_OFFSET (var2, i))
5006 return true;
5007 if (variable_part_different_p (&var1->var_part[i], &var2->var_part[i]))
5008 return true;
5009 if (variable_part_different_p (&var2->var_part[i], &var1->var_part[i]))
5010 return true;
5011 }
5012 return false;
5013 }
5014
5015 /* Return true if dataflow sets OLD_SET and NEW_SET differ. */
5016
5017 static bool
5018 dataflow_set_different (dataflow_set *old_set, dataflow_set *new_set)
5019 {
5020 variable_iterator_type hi;
5021 variable *var1;
5022 bool diffound = false;
5023 bool details = (dump_file && (dump_flags & TDF_DETAILS));
5024
5025 #define RETRUE \
5026 do \
5027 { \
5028 if (!details) \
5029 return true; \
5030 else \
5031 diffound = true; \
5032 } \
5033 while (0)
5034
5035 if (old_set->vars == new_set->vars)
5036 return false;
5037
5038 if (shared_hash_htab (old_set->vars)->elements ()
5039 != shared_hash_htab (new_set->vars)->elements ())
5040 RETRUE;
5041
5042 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (old_set->vars),
5043 var1, variable, hi)
5044 {
5045 variable_table_type *htab = shared_hash_htab (new_set->vars);
5046 variable *var2 = htab->find_with_hash (var1->dv, dv_htab_hash (var1->dv));
5047
5048 if (!var2)
5049 {
5050 if (dump_file && (dump_flags & TDF_DETAILS))
5051 {
5052 fprintf (dump_file, "dataflow difference found: removal of:\n");
5053 dump_var (var1);
5054 }
5055 RETRUE;
5056 }
5057 else if (variable_different_p (var1, var2))
5058 {
5059 if (details)
5060 {
5061 fprintf (dump_file, "dataflow difference found: "
5062 "old and new follow:\n");
5063 dump_var (var1);
5064 if (dv_onepart_p (var1->dv))
5065 dump_onepart_variable_differences (var1, var2);
5066 dump_var (var2);
5067 }
5068 RETRUE;
5069 }
5070 }
5071
5072 /* There's no need to traverse the second hashtab unless we want to
5073 print the details. If both have the same number of elements and
5074 the second one had all entries found in the first one, then the
5075 second can't have any extra entries. */
5076 if (!details)
5077 return diffound;
5078
5079 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (new_set->vars),
5080 var1, variable, hi)
5081 {
5082 variable_table_type *htab = shared_hash_htab (old_set->vars);
5083 variable *var2 = htab->find_with_hash (var1->dv, dv_htab_hash (var1->dv));
5084 if (!var2)
5085 {
5086 if (details)
5087 {
5088 fprintf (dump_file, "dataflow difference found: addition of:\n");
5089 dump_var (var1);
5090 }
5091 RETRUE;
5092 }
5093 }
5094
5095 #undef RETRUE
5096
5097 return diffound;
5098 }
5099
5100 /* Free the contents of dataflow set SET. */
5101
5102 static void
5103 dataflow_set_destroy (dataflow_set *set)
5104 {
5105 int i;
5106
5107 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5108 attrs_list_clear (&set->regs[i]);
5109
5110 shared_hash_destroy (set->vars);
5111 set->vars = NULL;
5112 }
5113
5114 /* Return true if T is a tracked parameter with non-degenerate record type. */
5115
5116 static bool
5117 tracked_record_parameter_p (tree t)
5118 {
5119 if (TREE_CODE (t) != PARM_DECL)
5120 return false;
5121
5122 if (DECL_MODE (t) == BLKmode)
5123 return false;
5124
5125 tree type = TREE_TYPE (t);
5126 if (TREE_CODE (type) != RECORD_TYPE)
5127 return false;
5128
5129 if (TYPE_FIELDS (type) == NULL_TREE
5130 || DECL_CHAIN (TYPE_FIELDS (type)) == NULL_TREE)
5131 return false;
5132
5133 return true;
5134 }
5135
5136 /* Shall EXPR be tracked? */
5137
5138 static bool
5139 track_expr_p (tree expr, bool need_rtl)
5140 {
5141 rtx decl_rtl;
5142 tree realdecl;
5143
5144 if (TREE_CODE (expr) == DEBUG_EXPR_DECL)
5145 return DECL_RTL_SET_P (expr);
5146
5147 /* If EXPR is not a parameter or a variable do not track it. */
5148 if (!VAR_P (expr) && TREE_CODE (expr) != PARM_DECL)
5149 return 0;
5150
5151 /* It also must have a name... */
5152 if (!DECL_NAME (expr) && need_rtl)
5153 return 0;
5154
5155 /* ... and a RTL assigned to it. */
5156 decl_rtl = DECL_RTL_IF_SET (expr);
5157 if (!decl_rtl && need_rtl)
5158 return 0;
5159
5160 /* If this expression is really a debug alias of some other declaration, we
5161 don't need to track this expression if the ultimate declaration is
5162 ignored. */
5163 realdecl = expr;
5164 if (VAR_P (realdecl) && DECL_HAS_DEBUG_EXPR_P (realdecl))
5165 {
5166 realdecl = DECL_DEBUG_EXPR (realdecl);
5167 if (!DECL_P (realdecl))
5168 {
5169 if (handled_component_p (realdecl)
5170 || (TREE_CODE (realdecl) == MEM_REF
5171 && TREE_CODE (TREE_OPERAND (realdecl, 0)) == ADDR_EXPR))
5172 {
5173 HOST_WIDE_INT bitsize, bitpos, maxsize;
5174 bool reverse;
5175 tree innerdecl
5176 = get_ref_base_and_extent (realdecl, &bitpos, &bitsize,
5177 &maxsize, &reverse);
5178 if (!DECL_P (innerdecl)
5179 || DECL_IGNORED_P (innerdecl)
5180 /* Do not track declarations for parts of tracked record
5181 parameters since we want to track them as a whole. */
5182 || tracked_record_parameter_p (innerdecl)
5183 || TREE_STATIC (innerdecl)
5184 || bitsize <= 0
5185 || bitpos + bitsize > 256
5186 || bitsize != maxsize)
5187 return 0;
5188 else
5189 realdecl = expr;
5190 }
5191 else
5192 return 0;
5193 }
5194 }
5195
5196 /* Do not track EXPR if REALDECL it should be ignored for debugging
5197 purposes. */
5198 if (DECL_IGNORED_P (realdecl))
5199 return 0;
5200
5201 /* Do not track global variables until we are able to emit correct location
5202 list for them. */
5203 if (TREE_STATIC (realdecl))
5204 return 0;
5205
5206 /* When the EXPR is a DECL for alias of some variable (see example)
5207 the TREE_STATIC flag is not used. Disable tracking all DECLs whose
5208 DECL_RTL contains SYMBOL_REF.
5209
5210 Example:
5211 extern char **_dl_argv_internal __attribute__ ((alias ("_dl_argv")));
5212 char **_dl_argv;
5213 */
5214 if (decl_rtl && MEM_P (decl_rtl)
5215 && contains_symbol_ref_p (XEXP (decl_rtl, 0)))
5216 return 0;
5217
5218 /* If RTX is a memory it should not be very large (because it would be
5219 an array or struct). */
5220 if (decl_rtl && MEM_P (decl_rtl))
5221 {
5222 /* Do not track structures and arrays. */
5223 if (GET_MODE (decl_rtl) == BLKmode
5224 || AGGREGATE_TYPE_P (TREE_TYPE (realdecl)))
5225 return 0;
5226 if (MEM_SIZE_KNOWN_P (decl_rtl)
5227 && MEM_SIZE (decl_rtl) > MAX_VAR_PARTS)
5228 return 0;
5229 }
5230
5231 DECL_CHANGED (expr) = 0;
5232 DECL_CHANGED (realdecl) = 0;
5233 return 1;
5234 }
5235
5236 /* Determine whether a given LOC refers to the same variable part as
5237 EXPR+OFFSET. */
5238
5239 static bool
5240 same_variable_part_p (rtx loc, tree expr, HOST_WIDE_INT offset)
5241 {
5242 tree expr2;
5243 HOST_WIDE_INT offset2;
5244
5245 if (! DECL_P (expr))
5246 return false;
5247
5248 if (REG_P (loc))
5249 {
5250 expr2 = REG_EXPR (loc);
5251 offset2 = REG_OFFSET (loc);
5252 }
5253 else if (MEM_P (loc))
5254 {
5255 expr2 = MEM_EXPR (loc);
5256 offset2 = INT_MEM_OFFSET (loc);
5257 }
5258 else
5259 return false;
5260
5261 if (! expr2 || ! DECL_P (expr2))
5262 return false;
5263
5264 expr = var_debug_decl (expr);
5265 expr2 = var_debug_decl (expr2);
5266
5267 return (expr == expr2 && offset == offset2);
5268 }
5269
5270 /* LOC is a REG or MEM that we would like to track if possible.
5271 If EXPR is null, we don't know what expression LOC refers to,
5272 otherwise it refers to EXPR + OFFSET. STORE_REG_P is true if
5273 LOC is an lvalue register.
5274
5275 Return true if EXPR is nonnull and if LOC, or some lowpart of it,
5276 is something we can track. When returning true, store the mode of
5277 the lowpart we can track in *MODE_OUT (if nonnull) and its offset
5278 from EXPR in *OFFSET_OUT (if nonnull). */
5279
5280 static bool
5281 track_loc_p (rtx loc, tree expr, HOST_WIDE_INT offset, bool store_reg_p,
5282 machine_mode *mode_out, HOST_WIDE_INT *offset_out)
5283 {
5284 machine_mode mode;
5285
5286 if (expr == NULL || !track_expr_p (expr, true))
5287 return false;
5288
5289 /* If REG was a paradoxical subreg, its REG_ATTRS will describe the
5290 whole subreg, but only the old inner part is really relevant. */
5291 mode = GET_MODE (loc);
5292 if (REG_P (loc) && !HARD_REGISTER_NUM_P (ORIGINAL_REGNO (loc)))
5293 {
5294 machine_mode pseudo_mode;
5295
5296 pseudo_mode = PSEUDO_REGNO_MODE (ORIGINAL_REGNO (loc));
5297 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (pseudo_mode))
5298 {
5299 offset += byte_lowpart_offset (pseudo_mode, mode);
5300 mode = pseudo_mode;
5301 }
5302 }
5303
5304 /* If LOC is a paradoxical lowpart of EXPR, refer to EXPR itself.
5305 Do the same if we are storing to a register and EXPR occupies
5306 the whole of register LOC; in that case, the whole of EXPR is
5307 being changed. We exclude complex modes from the second case
5308 because the real and imaginary parts are represented as separate
5309 pseudo registers, even if the whole complex value fits into one
5310 hard register. */
5311 if ((GET_MODE_SIZE (mode) > GET_MODE_SIZE (DECL_MODE (expr))
5312 || (store_reg_p
5313 && !COMPLEX_MODE_P (DECL_MODE (expr))
5314 && hard_regno_nregs[REGNO (loc)][DECL_MODE (expr)] == 1))
5315 && offset + byte_lowpart_offset (DECL_MODE (expr), mode) == 0)
5316 {
5317 mode = DECL_MODE (expr);
5318 offset = 0;
5319 }
5320
5321 if (offset < 0 || offset >= MAX_VAR_PARTS)
5322 return false;
5323
5324 if (mode_out)
5325 *mode_out = mode;
5326 if (offset_out)
5327 *offset_out = offset;
5328 return true;
5329 }
5330
5331 /* Return the MODE lowpart of LOC, or null if LOC is not something we
5332 want to track. When returning nonnull, make sure that the attributes
5333 on the returned value are updated. */
5334
5335 static rtx
5336 var_lowpart (machine_mode mode, rtx loc)
5337 {
5338 unsigned int offset, reg_offset, regno;
5339
5340 if (GET_MODE (loc) == mode)
5341 return loc;
5342
5343 if (!REG_P (loc) && !MEM_P (loc))
5344 return NULL;
5345
5346 offset = byte_lowpart_offset (mode, GET_MODE (loc));
5347
5348 if (MEM_P (loc))
5349 return adjust_address_nv (loc, mode, offset);
5350
5351 reg_offset = subreg_lowpart_offset (mode, GET_MODE (loc));
5352 regno = REGNO (loc) + subreg_regno_offset (REGNO (loc), GET_MODE (loc),
5353 reg_offset, mode);
5354 return gen_rtx_REG_offset (loc, mode, regno, offset);
5355 }
5356
5357 /* Carry information about uses and stores while walking rtx. */
5358
5359 struct count_use_info
5360 {
5361 /* The insn where the RTX is. */
5362 rtx_insn *insn;
5363
5364 /* The basic block where insn is. */
5365 basic_block bb;
5366
5367 /* The array of n_sets sets in the insn, as determined by cselib. */
5368 struct cselib_set *sets;
5369 int n_sets;
5370
5371 /* True if we're counting stores, false otherwise. */
5372 bool store_p;
5373 };
5374
5375 /* Find a VALUE corresponding to X. */
5376
5377 static inline cselib_val *
5378 find_use_val (rtx x, machine_mode mode, struct count_use_info *cui)
5379 {
5380 int i;
5381
5382 if (cui->sets)
5383 {
5384 /* This is called after uses are set up and before stores are
5385 processed by cselib, so it's safe to look up srcs, but not
5386 dsts. So we look up expressions that appear in srcs or in
5387 dest expressions, but we search the sets array for dests of
5388 stores. */
5389 if (cui->store_p)
5390 {
5391 /* Some targets represent memset and memcpy patterns
5392 by (set (mem:BLK ...) (reg:[QHSD]I ...)) or
5393 (set (mem:BLK ...) (const_int ...)) or
5394 (set (mem:BLK ...) (mem:BLK ...)). Don't return anything
5395 in that case, otherwise we end up with mode mismatches. */
5396 if (mode == BLKmode && MEM_P (x))
5397 return NULL;
5398 for (i = 0; i < cui->n_sets; i++)
5399 if (cui->sets[i].dest == x)
5400 return cui->sets[i].src_elt;
5401 }
5402 else
5403 return cselib_lookup (x, mode, 0, VOIDmode);
5404 }
5405
5406 return NULL;
5407 }
5408
5409 /* Replace all registers and addresses in an expression with VALUE
5410 expressions that map back to them, unless the expression is a
5411 register. If no mapping is or can be performed, returns NULL. */
5412
5413 static rtx
5414 replace_expr_with_values (rtx loc)
5415 {
5416 if (REG_P (loc) || GET_CODE (loc) == ENTRY_VALUE)
5417 return NULL;
5418 else if (MEM_P (loc))
5419 {
5420 cselib_val *addr = cselib_lookup (XEXP (loc, 0),
5421 get_address_mode (loc), 0,
5422 GET_MODE (loc));
5423 if (addr)
5424 return replace_equiv_address_nv (loc, addr->val_rtx);
5425 else
5426 return NULL;
5427 }
5428 else
5429 return cselib_subst_to_values (loc, VOIDmode);
5430 }
5431
5432 /* Return true if X contains a DEBUG_EXPR. */
5433
5434 static bool
5435 rtx_debug_expr_p (const_rtx x)
5436 {
5437 subrtx_iterator::array_type array;
5438 FOR_EACH_SUBRTX (iter, array, x, ALL)
5439 if (GET_CODE (*iter) == DEBUG_EXPR)
5440 return true;
5441 return false;
5442 }
5443
5444 /* Determine what kind of micro operation to choose for a USE. Return
5445 MO_CLOBBER if no micro operation is to be generated. */
5446
5447 static enum micro_operation_type
5448 use_type (rtx loc, struct count_use_info *cui, machine_mode *modep)
5449 {
5450 tree expr;
5451
5452 if (cui && cui->sets)
5453 {
5454 if (GET_CODE (loc) == VAR_LOCATION)
5455 {
5456 if (track_expr_p (PAT_VAR_LOCATION_DECL (loc), false))
5457 {
5458 rtx ploc = PAT_VAR_LOCATION_LOC (loc);
5459 if (! VAR_LOC_UNKNOWN_P (ploc))
5460 {
5461 cselib_val *val = cselib_lookup (ploc, GET_MODE (loc), 1,
5462 VOIDmode);
5463
5464 /* ??? flag_float_store and volatile mems are never
5465 given values, but we could in theory use them for
5466 locations. */
5467 gcc_assert (val || 1);
5468 }
5469 return MO_VAL_LOC;
5470 }
5471 else
5472 return MO_CLOBBER;
5473 }
5474
5475 if (REG_P (loc) || MEM_P (loc))
5476 {
5477 if (modep)
5478 *modep = GET_MODE (loc);
5479 if (cui->store_p)
5480 {
5481 if (REG_P (loc)
5482 || (find_use_val (loc, GET_MODE (loc), cui)
5483 && cselib_lookup (XEXP (loc, 0),
5484 get_address_mode (loc), 0,
5485 GET_MODE (loc))))
5486 return MO_VAL_SET;
5487 }
5488 else
5489 {
5490 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5491
5492 if (val && !cselib_preserved_value_p (val))
5493 return MO_VAL_USE;
5494 }
5495 }
5496 }
5497
5498 if (REG_P (loc))
5499 {
5500 gcc_assert (REGNO (loc) < FIRST_PSEUDO_REGISTER);
5501
5502 if (loc == cfa_base_rtx)
5503 return MO_CLOBBER;
5504 expr = REG_EXPR (loc);
5505
5506 if (!expr)
5507 return MO_USE_NO_VAR;
5508 else if (target_for_debug_bind (var_debug_decl (expr)))
5509 return MO_CLOBBER;
5510 else if (track_loc_p (loc, expr, REG_OFFSET (loc),
5511 false, modep, NULL))
5512 return MO_USE;
5513 else
5514 return MO_USE_NO_VAR;
5515 }
5516 else if (MEM_P (loc))
5517 {
5518 expr = MEM_EXPR (loc);
5519
5520 if (!expr)
5521 return MO_CLOBBER;
5522 else if (target_for_debug_bind (var_debug_decl (expr)))
5523 return MO_CLOBBER;
5524 else if (track_loc_p (loc, expr, INT_MEM_OFFSET (loc),
5525 false, modep, NULL)
5526 /* Multi-part variables shouldn't refer to one-part
5527 variable names such as VALUEs (never happens) or
5528 DEBUG_EXPRs (only happens in the presence of debug
5529 insns). */
5530 && (!MAY_HAVE_DEBUG_INSNS
5531 || !rtx_debug_expr_p (XEXP (loc, 0))))
5532 return MO_USE;
5533 else
5534 return MO_CLOBBER;
5535 }
5536
5537 return MO_CLOBBER;
5538 }
5539
5540 /* Log to OUT information about micro-operation MOPT involving X in
5541 INSN of BB. */
5542
5543 static inline void
5544 log_op_type (rtx x, basic_block bb, rtx_insn *insn,
5545 enum micro_operation_type mopt, FILE *out)
5546 {
5547 fprintf (out, "bb %i op %i insn %i %s ",
5548 bb->index, VTI (bb)->mos.length (),
5549 INSN_UID (insn), micro_operation_type_name[mopt]);
5550 print_inline_rtx (out, x, 2);
5551 fputc ('\n', out);
5552 }
5553
5554 /* Tell whether the CONCAT used to holds a VALUE and its location
5555 needs value resolution, i.e., an attempt of mapping the location
5556 back to other incoming values. */
5557 #define VAL_NEEDS_RESOLUTION(x) \
5558 (RTL_FLAG_CHECK1 ("VAL_NEEDS_RESOLUTION", (x), CONCAT)->volatil)
5559 /* Whether the location in the CONCAT is a tracked expression, that
5560 should also be handled like a MO_USE. */
5561 #define VAL_HOLDS_TRACK_EXPR(x) \
5562 (RTL_FLAG_CHECK1 ("VAL_HOLDS_TRACK_EXPR", (x), CONCAT)->used)
5563 /* Whether the location in the CONCAT should be handled like a MO_COPY
5564 as well. */
5565 #define VAL_EXPR_IS_COPIED(x) \
5566 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_COPIED", (x), CONCAT)->jump)
5567 /* Whether the location in the CONCAT should be handled like a
5568 MO_CLOBBER as well. */
5569 #define VAL_EXPR_IS_CLOBBERED(x) \
5570 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_CLOBBERED", (x), CONCAT)->unchanging)
5571
5572 /* All preserved VALUEs. */
5573 static vec<rtx> preserved_values;
5574
5575 /* Ensure VAL is preserved and remember it in a vector for vt_emit_notes. */
5576
5577 static void
5578 preserve_value (cselib_val *val)
5579 {
5580 cselib_preserve_value (val);
5581 preserved_values.safe_push (val->val_rtx);
5582 }
5583
5584 /* Helper function for MO_VAL_LOC handling. Return non-zero if
5585 any rtxes not suitable for CONST use not replaced by VALUEs
5586 are discovered. */
5587
5588 static bool
5589 non_suitable_const (const_rtx x)
5590 {
5591 subrtx_iterator::array_type array;
5592 FOR_EACH_SUBRTX (iter, array, x, ALL)
5593 {
5594 const_rtx x = *iter;
5595 switch (GET_CODE (x))
5596 {
5597 case REG:
5598 case DEBUG_EXPR:
5599 case PC:
5600 case SCRATCH:
5601 case CC0:
5602 case ASM_INPUT:
5603 case ASM_OPERANDS:
5604 return true;
5605 case MEM:
5606 if (!MEM_READONLY_P (x))
5607 return true;
5608 break;
5609 default:
5610 break;
5611 }
5612 }
5613 return false;
5614 }
5615
5616 /* Add uses (register and memory references) LOC which will be tracked
5617 to VTI (bb)->mos. */
5618
5619 static void
5620 add_uses (rtx loc, struct count_use_info *cui)
5621 {
5622 machine_mode mode = VOIDmode;
5623 enum micro_operation_type type = use_type (loc, cui, &mode);
5624
5625 if (type != MO_CLOBBER)
5626 {
5627 basic_block bb = cui->bb;
5628 micro_operation mo;
5629
5630 mo.type = type;
5631 mo.u.loc = type == MO_USE ? var_lowpart (mode, loc) : loc;
5632 mo.insn = cui->insn;
5633
5634 if (type == MO_VAL_LOC)
5635 {
5636 rtx oloc = loc;
5637 rtx vloc = PAT_VAR_LOCATION_LOC (oloc);
5638 cselib_val *val;
5639
5640 gcc_assert (cui->sets);
5641
5642 if (MEM_P (vloc)
5643 && !REG_P (XEXP (vloc, 0))
5644 && !MEM_P (XEXP (vloc, 0)))
5645 {
5646 rtx mloc = vloc;
5647 machine_mode address_mode = get_address_mode (mloc);
5648 cselib_val *val
5649 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5650 GET_MODE (mloc));
5651
5652 if (val && !cselib_preserved_value_p (val))
5653 preserve_value (val);
5654 }
5655
5656 if (CONSTANT_P (vloc)
5657 && (GET_CODE (vloc) != CONST || non_suitable_const (vloc)))
5658 /* For constants don't look up any value. */;
5659 else if (!VAR_LOC_UNKNOWN_P (vloc) && !unsuitable_loc (vloc)
5660 && (val = find_use_val (vloc, GET_MODE (oloc), cui)))
5661 {
5662 machine_mode mode2;
5663 enum micro_operation_type type2;
5664 rtx nloc = NULL;
5665 bool resolvable = REG_P (vloc) || MEM_P (vloc);
5666
5667 if (resolvable)
5668 nloc = replace_expr_with_values (vloc);
5669
5670 if (nloc)
5671 {
5672 oloc = shallow_copy_rtx (oloc);
5673 PAT_VAR_LOCATION_LOC (oloc) = nloc;
5674 }
5675
5676 oloc = gen_rtx_CONCAT (mode, val->val_rtx, oloc);
5677
5678 type2 = use_type (vloc, 0, &mode2);
5679
5680 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5681 || type2 == MO_CLOBBER);
5682
5683 if (type2 == MO_CLOBBER
5684 && !cselib_preserved_value_p (val))
5685 {
5686 VAL_NEEDS_RESOLUTION (oloc) = resolvable;
5687 preserve_value (val);
5688 }
5689 }
5690 else if (!VAR_LOC_UNKNOWN_P (vloc))
5691 {
5692 oloc = shallow_copy_rtx (oloc);
5693 PAT_VAR_LOCATION_LOC (oloc) = gen_rtx_UNKNOWN_VAR_LOC ();
5694 }
5695
5696 mo.u.loc = oloc;
5697 }
5698 else if (type == MO_VAL_USE)
5699 {
5700 machine_mode mode2 = VOIDmode;
5701 enum micro_operation_type type2;
5702 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5703 rtx vloc, oloc = loc, nloc;
5704
5705 gcc_assert (cui->sets);
5706
5707 if (MEM_P (oloc)
5708 && !REG_P (XEXP (oloc, 0))
5709 && !MEM_P (XEXP (oloc, 0)))
5710 {
5711 rtx mloc = oloc;
5712 machine_mode address_mode = get_address_mode (mloc);
5713 cselib_val *val
5714 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5715 GET_MODE (mloc));
5716
5717 if (val && !cselib_preserved_value_p (val))
5718 preserve_value (val);
5719 }
5720
5721 type2 = use_type (loc, 0, &mode2);
5722
5723 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5724 || type2 == MO_CLOBBER);
5725
5726 if (type2 == MO_USE)
5727 vloc = var_lowpart (mode2, loc);
5728 else
5729 vloc = oloc;
5730
5731 /* The loc of a MO_VAL_USE may have two forms:
5732
5733 (concat val src): val is at src, a value-based
5734 representation.
5735
5736 (concat (concat val use) src): same as above, with use as
5737 the MO_USE tracked value, if it differs from src.
5738
5739 */
5740
5741 gcc_checking_assert (REG_P (loc) || MEM_P (loc));
5742 nloc = replace_expr_with_values (loc);
5743 if (!nloc)
5744 nloc = oloc;
5745
5746 if (vloc != nloc)
5747 oloc = gen_rtx_CONCAT (mode2, val->val_rtx, vloc);
5748 else
5749 oloc = val->val_rtx;
5750
5751 mo.u.loc = gen_rtx_CONCAT (mode, oloc, nloc);
5752
5753 if (type2 == MO_USE)
5754 VAL_HOLDS_TRACK_EXPR (mo.u.loc) = 1;
5755 if (!cselib_preserved_value_p (val))
5756 {
5757 VAL_NEEDS_RESOLUTION (mo.u.loc) = 1;
5758 preserve_value (val);
5759 }
5760 }
5761 else
5762 gcc_assert (type == MO_USE || type == MO_USE_NO_VAR);
5763
5764 if (dump_file && (dump_flags & TDF_DETAILS))
5765 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
5766 VTI (bb)->mos.safe_push (mo);
5767 }
5768 }
5769
5770 /* Helper function for finding all uses of REG/MEM in X in insn INSN. */
5771
5772 static void
5773 add_uses_1 (rtx *x, void *cui)
5774 {
5775 subrtx_var_iterator::array_type array;
5776 FOR_EACH_SUBRTX_VAR (iter, array, *x, NONCONST)
5777 add_uses (*iter, (struct count_use_info *) cui);
5778 }
5779
5780 /* This is the value used during expansion of locations. We want it
5781 to be unbounded, so that variables expanded deep in a recursion
5782 nest are fully evaluated, so that their values are cached
5783 correctly. We avoid recursion cycles through other means, and we
5784 don't unshare RTL, so excess complexity is not a problem. */
5785 #define EXPR_DEPTH (INT_MAX)
5786 /* We use this to keep too-complex expressions from being emitted as
5787 location notes, and then to debug information. Users can trade
5788 compile time for ridiculously complex expressions, although they're
5789 seldom useful, and they may often have to be discarded as not
5790 representable anyway. */
5791 #define EXPR_USE_DEPTH (PARAM_VALUE (PARAM_MAX_VARTRACK_EXPR_DEPTH))
5792
5793 /* Attempt to reverse the EXPR operation in the debug info and record
5794 it in the cselib table. Say for reg1 = reg2 + 6 even when reg2 is
5795 no longer live we can express its value as VAL - 6. */
5796
5797 static void
5798 reverse_op (rtx val, const_rtx expr, rtx_insn *insn)
5799 {
5800 rtx src, arg, ret;
5801 cselib_val *v;
5802 struct elt_loc_list *l;
5803 enum rtx_code code;
5804 int count;
5805
5806 if (GET_CODE (expr) != SET)
5807 return;
5808
5809 if (!REG_P (SET_DEST (expr)) || GET_MODE (val) != GET_MODE (SET_DEST (expr)))
5810 return;
5811
5812 src = SET_SRC (expr);
5813 switch (GET_CODE (src))
5814 {
5815 case PLUS:
5816 case MINUS:
5817 case XOR:
5818 case NOT:
5819 case NEG:
5820 if (!REG_P (XEXP (src, 0)))
5821 return;
5822 break;
5823 case SIGN_EXTEND:
5824 case ZERO_EXTEND:
5825 if (!REG_P (XEXP (src, 0)) && !MEM_P (XEXP (src, 0)))
5826 return;
5827 break;
5828 default:
5829 return;
5830 }
5831
5832 if (!SCALAR_INT_MODE_P (GET_MODE (src)) || XEXP (src, 0) == cfa_base_rtx)
5833 return;
5834
5835 v = cselib_lookup (XEXP (src, 0), GET_MODE (XEXP (src, 0)), 0, VOIDmode);
5836 if (!v || !cselib_preserved_value_p (v))
5837 return;
5838
5839 /* Use canonical V to avoid creating multiple redundant expressions
5840 for different VALUES equivalent to V. */
5841 v = canonical_cselib_val (v);
5842
5843 /* Adding a reverse op isn't useful if V already has an always valid
5844 location. Ignore ENTRY_VALUE, while it is always constant, we should
5845 prefer non-ENTRY_VALUE locations whenever possible. */
5846 for (l = v->locs, count = 0; l; l = l->next, count++)
5847 if (CONSTANT_P (l->loc)
5848 && (GET_CODE (l->loc) != CONST || !references_value_p (l->loc, 0)))
5849 return;
5850 /* Avoid creating too large locs lists. */
5851 else if (count == PARAM_VALUE (PARAM_MAX_VARTRACK_REVERSE_OP_SIZE))
5852 return;
5853
5854 switch (GET_CODE (src))
5855 {
5856 case NOT:
5857 case NEG:
5858 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5859 return;
5860 ret = gen_rtx_fmt_e (GET_CODE (src), GET_MODE (val), val);
5861 break;
5862 case SIGN_EXTEND:
5863 case ZERO_EXTEND:
5864 ret = gen_lowpart_SUBREG (GET_MODE (v->val_rtx), val);
5865 break;
5866 case XOR:
5867 code = XOR;
5868 goto binary;
5869 case PLUS:
5870 code = MINUS;
5871 goto binary;
5872 case MINUS:
5873 code = PLUS;
5874 goto binary;
5875 binary:
5876 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5877 return;
5878 arg = XEXP (src, 1);
5879 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5880 {
5881 arg = cselib_expand_value_rtx (arg, scratch_regs, 5);
5882 if (arg == NULL_RTX)
5883 return;
5884 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5885 return;
5886 }
5887 ret = simplify_gen_binary (code, GET_MODE (val), val, arg);
5888 break;
5889 default:
5890 gcc_unreachable ();
5891 }
5892
5893 cselib_add_permanent_equiv (v, ret, insn);
5894 }
5895
5896 /* Add stores (register and memory references) LOC which will be tracked
5897 to VTI (bb)->mos. EXPR is the RTL expression containing the store.
5898 CUIP->insn is instruction which the LOC is part of. */
5899
5900 static void
5901 add_stores (rtx loc, const_rtx expr, void *cuip)
5902 {
5903 machine_mode mode = VOIDmode, mode2;
5904 struct count_use_info *cui = (struct count_use_info *)cuip;
5905 basic_block bb = cui->bb;
5906 micro_operation mo;
5907 rtx oloc = loc, nloc, src = NULL;
5908 enum micro_operation_type type = use_type (loc, cui, &mode);
5909 bool track_p = false;
5910 cselib_val *v;
5911 bool resolve, preserve;
5912
5913 if (type == MO_CLOBBER)
5914 return;
5915
5916 mode2 = mode;
5917
5918 if (REG_P (loc))
5919 {
5920 gcc_assert (loc != cfa_base_rtx);
5921 if ((GET_CODE (expr) == CLOBBER && type != MO_VAL_SET)
5922 || !(track_p = use_type (loc, NULL, &mode2) == MO_USE)
5923 || GET_CODE (expr) == CLOBBER)
5924 {
5925 mo.type = MO_CLOBBER;
5926 mo.u.loc = loc;
5927 if (GET_CODE (expr) == SET
5928 && SET_DEST (expr) == loc
5929 && !unsuitable_loc (SET_SRC (expr))
5930 && find_use_val (loc, mode, cui))
5931 {
5932 gcc_checking_assert (type == MO_VAL_SET);
5933 mo.u.loc = gen_rtx_SET (loc, SET_SRC (expr));
5934 }
5935 }
5936 else
5937 {
5938 if (GET_CODE (expr) == SET
5939 && SET_DEST (expr) == loc
5940 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
5941 src = var_lowpart (mode2, SET_SRC (expr));
5942 loc = var_lowpart (mode2, loc);
5943
5944 if (src == NULL)
5945 {
5946 mo.type = MO_SET;
5947 mo.u.loc = loc;
5948 }
5949 else
5950 {
5951 rtx xexpr = gen_rtx_SET (loc, src);
5952 if (same_variable_part_p (src, REG_EXPR (loc), REG_OFFSET (loc)))
5953 {
5954 /* If this is an instruction copying (part of) a parameter
5955 passed by invisible reference to its register location,
5956 pretend it's a SET so that the initial memory location
5957 is discarded, as the parameter register can be reused
5958 for other purposes and we do not track locations based
5959 on generic registers. */
5960 if (MEM_P (src)
5961 && REG_EXPR (loc)
5962 && TREE_CODE (REG_EXPR (loc)) == PARM_DECL
5963 && DECL_MODE (REG_EXPR (loc)) != BLKmode
5964 && MEM_P (DECL_INCOMING_RTL (REG_EXPR (loc)))
5965 && XEXP (DECL_INCOMING_RTL (REG_EXPR (loc)), 0)
5966 != arg_pointer_rtx)
5967 mo.type = MO_SET;
5968 else
5969 mo.type = MO_COPY;
5970 }
5971 else
5972 mo.type = MO_SET;
5973 mo.u.loc = xexpr;
5974 }
5975 }
5976 mo.insn = cui->insn;
5977 }
5978 else if (MEM_P (loc)
5979 && ((track_p = use_type (loc, NULL, &mode2) == MO_USE)
5980 || cui->sets))
5981 {
5982 if (MEM_P (loc) && type == MO_VAL_SET
5983 && !REG_P (XEXP (loc, 0))
5984 && !MEM_P (XEXP (loc, 0)))
5985 {
5986 rtx mloc = loc;
5987 machine_mode address_mode = get_address_mode (mloc);
5988 cselib_val *val = cselib_lookup (XEXP (mloc, 0),
5989 address_mode, 0,
5990 GET_MODE (mloc));
5991
5992 if (val && !cselib_preserved_value_p (val))
5993 preserve_value (val);
5994 }
5995
5996 if (GET_CODE (expr) == CLOBBER || !track_p)
5997 {
5998 mo.type = MO_CLOBBER;
5999 mo.u.loc = track_p ? var_lowpart (mode2, loc) : loc;
6000 }
6001 else
6002 {
6003 if (GET_CODE (expr) == SET
6004 && SET_DEST (expr) == loc
6005 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
6006 src = var_lowpart (mode2, SET_SRC (expr));
6007 loc = var_lowpart (mode2, loc);
6008
6009 if (src == NULL)
6010 {
6011 mo.type = MO_SET;
6012 mo.u.loc = loc;
6013 }
6014 else
6015 {
6016 rtx xexpr = gen_rtx_SET (loc, src);
6017 if (same_variable_part_p (SET_SRC (xexpr),
6018 MEM_EXPR (loc),
6019 INT_MEM_OFFSET (loc)))
6020 mo.type = MO_COPY;
6021 else
6022 mo.type = MO_SET;
6023 mo.u.loc = xexpr;
6024 }
6025 }
6026 mo.insn = cui->insn;
6027 }
6028 else
6029 return;
6030
6031 if (type != MO_VAL_SET)
6032 goto log_and_return;
6033
6034 v = find_use_val (oloc, mode, cui);
6035
6036 if (!v)
6037 goto log_and_return;
6038
6039 resolve = preserve = !cselib_preserved_value_p (v);
6040
6041 /* We cannot track values for multiple-part variables, so we track only
6042 locations for tracked record parameters. */
6043 if (track_p
6044 && REG_P (loc)
6045 && REG_EXPR (loc)
6046 && tracked_record_parameter_p (REG_EXPR (loc)))
6047 {
6048 /* Although we don't use the value here, it could be used later by the
6049 mere virtue of its existence as the operand of the reverse operation
6050 that gave rise to it (typically extension/truncation). Make sure it
6051 is preserved as required by vt_expand_var_loc_chain. */
6052 if (preserve)
6053 preserve_value (v);
6054 goto log_and_return;
6055 }
6056
6057 if (loc == stack_pointer_rtx
6058 && hard_frame_pointer_adjustment != -1
6059 && preserve)
6060 cselib_set_value_sp_based (v);
6061
6062 nloc = replace_expr_with_values (oloc);
6063 if (nloc)
6064 oloc = nloc;
6065
6066 if (GET_CODE (PATTERN (cui->insn)) == COND_EXEC)
6067 {
6068 cselib_val *oval = cselib_lookup (oloc, GET_MODE (oloc), 0, VOIDmode);
6069
6070 if (oval == v)
6071 return;
6072 gcc_assert (REG_P (oloc) || MEM_P (oloc));
6073
6074 if (oval && !cselib_preserved_value_p (oval))
6075 {
6076 micro_operation moa;
6077
6078 preserve_value (oval);
6079
6080 moa.type = MO_VAL_USE;
6081 moa.u.loc = gen_rtx_CONCAT (mode, oval->val_rtx, oloc);
6082 VAL_NEEDS_RESOLUTION (moa.u.loc) = 1;
6083 moa.insn = cui->insn;
6084
6085 if (dump_file && (dump_flags & TDF_DETAILS))
6086 log_op_type (moa.u.loc, cui->bb, cui->insn,
6087 moa.type, dump_file);
6088 VTI (bb)->mos.safe_push (moa);
6089 }
6090
6091 resolve = false;
6092 }
6093 else if (resolve && GET_CODE (mo.u.loc) == SET)
6094 {
6095 if (REG_P (SET_SRC (expr)) || MEM_P (SET_SRC (expr)))
6096 nloc = replace_expr_with_values (SET_SRC (expr));
6097 else
6098 nloc = NULL_RTX;
6099
6100 /* Avoid the mode mismatch between oexpr and expr. */
6101 if (!nloc && mode != mode2)
6102 {
6103 nloc = SET_SRC (expr);
6104 gcc_assert (oloc == SET_DEST (expr));
6105 }
6106
6107 if (nloc && nloc != SET_SRC (mo.u.loc))
6108 oloc = gen_rtx_SET (oloc, nloc);
6109 else
6110 {
6111 if (oloc == SET_DEST (mo.u.loc))
6112 /* No point in duplicating. */
6113 oloc = mo.u.loc;
6114 if (!REG_P (SET_SRC (mo.u.loc)))
6115 resolve = false;
6116 }
6117 }
6118 else if (!resolve)
6119 {
6120 if (GET_CODE (mo.u.loc) == SET
6121 && oloc == SET_DEST (mo.u.loc))
6122 /* No point in duplicating. */
6123 oloc = mo.u.loc;
6124 }
6125 else
6126 resolve = false;
6127
6128 loc = gen_rtx_CONCAT (mode, v->val_rtx, oloc);
6129
6130 if (mo.u.loc != oloc)
6131 loc = gen_rtx_CONCAT (GET_MODE (mo.u.loc), loc, mo.u.loc);
6132
6133 /* The loc of a MO_VAL_SET may have various forms:
6134
6135 (concat val dst): dst now holds val
6136
6137 (concat val (set dst src)): dst now holds val, copied from src
6138
6139 (concat (concat val dstv) dst): dst now holds val; dstv is dst
6140 after replacing mems and non-top-level regs with values.
6141
6142 (concat (concat val dstv) (set dst src)): dst now holds val,
6143 copied from src. dstv is a value-based representation of dst, if
6144 it differs from dst. If resolution is needed, src is a REG, and
6145 its mode is the same as that of val.
6146
6147 (concat (concat val (set dstv srcv)) (set dst src)): src
6148 copied to dst, holding val. dstv and srcv are value-based
6149 representations of dst and src, respectively.
6150
6151 */
6152
6153 if (GET_CODE (PATTERN (cui->insn)) != COND_EXEC)
6154 reverse_op (v->val_rtx, expr, cui->insn);
6155
6156 mo.u.loc = loc;
6157
6158 if (track_p)
6159 VAL_HOLDS_TRACK_EXPR (loc) = 1;
6160 if (preserve)
6161 {
6162 VAL_NEEDS_RESOLUTION (loc) = resolve;
6163 preserve_value (v);
6164 }
6165 if (mo.type == MO_CLOBBER)
6166 VAL_EXPR_IS_CLOBBERED (loc) = 1;
6167 if (mo.type == MO_COPY)
6168 VAL_EXPR_IS_COPIED (loc) = 1;
6169
6170 mo.type = MO_VAL_SET;
6171
6172 log_and_return:
6173 if (dump_file && (dump_flags & TDF_DETAILS))
6174 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
6175 VTI (bb)->mos.safe_push (mo);
6176 }
6177
6178 /* Arguments to the call. */
6179 static rtx call_arguments;
6180
6181 /* Compute call_arguments. */
6182
6183 static void
6184 prepare_call_arguments (basic_block bb, rtx_insn *insn)
6185 {
6186 rtx link, x, call;
6187 rtx prev, cur, next;
6188 rtx this_arg = NULL_RTX;
6189 tree type = NULL_TREE, t, fndecl = NULL_TREE;
6190 tree obj_type_ref = NULL_TREE;
6191 CUMULATIVE_ARGS args_so_far_v;
6192 cumulative_args_t args_so_far;
6193
6194 memset (&args_so_far_v, 0, sizeof (args_so_far_v));
6195 args_so_far = pack_cumulative_args (&args_so_far_v);
6196 call = get_call_rtx_from (insn);
6197 if (call)
6198 {
6199 if (GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
6200 {
6201 rtx symbol = XEXP (XEXP (call, 0), 0);
6202 if (SYMBOL_REF_DECL (symbol))
6203 fndecl = SYMBOL_REF_DECL (symbol);
6204 }
6205 if (fndecl == NULL_TREE)
6206 fndecl = MEM_EXPR (XEXP (call, 0));
6207 if (fndecl
6208 && TREE_CODE (TREE_TYPE (fndecl)) != FUNCTION_TYPE
6209 && TREE_CODE (TREE_TYPE (fndecl)) != METHOD_TYPE)
6210 fndecl = NULL_TREE;
6211 if (fndecl && TYPE_ARG_TYPES (TREE_TYPE (fndecl)))
6212 type = TREE_TYPE (fndecl);
6213 if (fndecl && TREE_CODE (fndecl) != FUNCTION_DECL)
6214 {
6215 if (TREE_CODE (fndecl) == INDIRECT_REF
6216 && TREE_CODE (TREE_OPERAND (fndecl, 0)) == OBJ_TYPE_REF)
6217 obj_type_ref = TREE_OPERAND (fndecl, 0);
6218 fndecl = NULL_TREE;
6219 }
6220 if (type)
6221 {
6222 for (t = TYPE_ARG_TYPES (type); t && t != void_list_node;
6223 t = TREE_CHAIN (t))
6224 if (TREE_CODE (TREE_VALUE (t)) == REFERENCE_TYPE
6225 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_VALUE (t))))
6226 break;
6227 if ((t == NULL || t == void_list_node) && obj_type_ref == NULL_TREE)
6228 type = NULL;
6229 else
6230 {
6231 int nargs ATTRIBUTE_UNUSED = list_length (TYPE_ARG_TYPES (type));
6232 link = CALL_INSN_FUNCTION_USAGE (insn);
6233 #ifndef PCC_STATIC_STRUCT_RETURN
6234 if (aggregate_value_p (TREE_TYPE (type), type)
6235 && targetm.calls.struct_value_rtx (type, 0) == 0)
6236 {
6237 tree struct_addr = build_pointer_type (TREE_TYPE (type));
6238 machine_mode mode = TYPE_MODE (struct_addr);
6239 rtx reg;
6240 INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
6241 nargs + 1);
6242 reg = targetm.calls.function_arg (args_so_far, mode,
6243 struct_addr, true);
6244 targetm.calls.function_arg_advance (args_so_far, mode,
6245 struct_addr, true);
6246 if (reg == NULL_RTX)
6247 {
6248 for (; link; link = XEXP (link, 1))
6249 if (GET_CODE (XEXP (link, 0)) == USE
6250 && MEM_P (XEXP (XEXP (link, 0), 0)))
6251 {
6252 link = XEXP (link, 1);
6253 break;
6254 }
6255 }
6256 }
6257 else
6258 #endif
6259 INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
6260 nargs);
6261 if (obj_type_ref && TYPE_ARG_TYPES (type) != void_list_node)
6262 {
6263 machine_mode mode;
6264 t = TYPE_ARG_TYPES (type);
6265 mode = TYPE_MODE (TREE_VALUE (t));
6266 this_arg = targetm.calls.function_arg (args_so_far, mode,
6267 TREE_VALUE (t), true);
6268 if (this_arg && !REG_P (this_arg))
6269 this_arg = NULL_RTX;
6270 else if (this_arg == NULL_RTX)
6271 {
6272 for (; link; link = XEXP (link, 1))
6273 if (GET_CODE (XEXP (link, 0)) == USE
6274 && MEM_P (XEXP (XEXP (link, 0), 0)))
6275 {
6276 this_arg = XEXP (XEXP (link, 0), 0);
6277 break;
6278 }
6279 }
6280 }
6281 }
6282 }
6283 }
6284 t = type ? TYPE_ARG_TYPES (type) : NULL_TREE;
6285
6286 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
6287 if (GET_CODE (XEXP (link, 0)) == USE)
6288 {
6289 rtx item = NULL_RTX;
6290 x = XEXP (XEXP (link, 0), 0);
6291 if (GET_MODE (link) == VOIDmode
6292 || GET_MODE (link) == BLKmode
6293 || (GET_MODE (link) != GET_MODE (x)
6294 && ((GET_MODE_CLASS (GET_MODE (link)) != MODE_INT
6295 && GET_MODE_CLASS (GET_MODE (link)) != MODE_PARTIAL_INT)
6296 || (GET_MODE_CLASS (GET_MODE (x)) != MODE_INT
6297 && GET_MODE_CLASS (GET_MODE (x)) != MODE_PARTIAL_INT))))
6298 /* Can't do anything for these, if the original type mode
6299 isn't known or can't be converted. */;
6300 else if (REG_P (x))
6301 {
6302 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
6303 if (val && cselib_preserved_value_p (val))
6304 item = val->val_rtx;
6305 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
6306 || GET_MODE_CLASS (GET_MODE (x)) == MODE_PARTIAL_INT)
6307 {
6308 machine_mode mode = GET_MODE (x);
6309
6310 while ((mode = GET_MODE_WIDER_MODE (mode)) != VOIDmode
6311 && GET_MODE_BITSIZE (mode) <= BITS_PER_WORD)
6312 {
6313 rtx reg = simplify_subreg (mode, x, GET_MODE (x), 0);
6314
6315 if (reg == NULL_RTX || !REG_P (reg))
6316 continue;
6317 val = cselib_lookup (reg, mode, 0, VOIDmode);
6318 if (val && cselib_preserved_value_p (val))
6319 {
6320 item = val->val_rtx;
6321 break;
6322 }
6323 }
6324 }
6325 }
6326 else if (MEM_P (x))
6327 {
6328 rtx mem = x;
6329 cselib_val *val;
6330
6331 if (!frame_pointer_needed)
6332 {
6333 struct adjust_mem_data amd;
6334 amd.mem_mode = VOIDmode;
6335 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
6336 amd.store = true;
6337 mem = simplify_replace_fn_rtx (mem, NULL_RTX, adjust_mems,
6338 &amd);
6339 gcc_assert (amd.side_effects.is_empty ());
6340 }
6341 val = cselib_lookup (mem, GET_MODE (mem), 0, VOIDmode);
6342 if (val && cselib_preserved_value_p (val))
6343 item = val->val_rtx;
6344 else if (GET_MODE_CLASS (GET_MODE (mem)) != MODE_INT
6345 && GET_MODE_CLASS (GET_MODE (mem)) != MODE_PARTIAL_INT)
6346 {
6347 /* For non-integer stack argument see also if they weren't
6348 initialized by integers. */
6349 machine_mode imode = int_mode_for_mode (GET_MODE (mem));
6350 if (imode != GET_MODE (mem) && imode != BLKmode)
6351 {
6352 val = cselib_lookup (adjust_address_nv (mem, imode, 0),
6353 imode, 0, VOIDmode);
6354 if (val && cselib_preserved_value_p (val))
6355 item = lowpart_subreg (GET_MODE (x), val->val_rtx,
6356 imode);
6357 }
6358 }
6359 }
6360 if (item)
6361 {
6362 rtx x2 = x;
6363 if (GET_MODE (item) != GET_MODE (link))
6364 item = lowpart_subreg (GET_MODE (link), item, GET_MODE (item));
6365 if (GET_MODE (x2) != GET_MODE (link))
6366 x2 = lowpart_subreg (GET_MODE (link), x2, GET_MODE (x2));
6367 item = gen_rtx_CONCAT (GET_MODE (link), x2, item);
6368 call_arguments
6369 = gen_rtx_EXPR_LIST (VOIDmode, item, call_arguments);
6370 }
6371 if (t && t != void_list_node)
6372 {
6373 tree argtype = TREE_VALUE (t);
6374 machine_mode mode = TYPE_MODE (argtype);
6375 rtx reg;
6376 if (pass_by_reference (&args_so_far_v, mode, argtype, true))
6377 {
6378 argtype = build_pointer_type (argtype);
6379 mode = TYPE_MODE (argtype);
6380 }
6381 reg = targetm.calls.function_arg (args_so_far, mode,
6382 argtype, true);
6383 if (TREE_CODE (argtype) == REFERENCE_TYPE
6384 && INTEGRAL_TYPE_P (TREE_TYPE (argtype))
6385 && reg
6386 && REG_P (reg)
6387 && GET_MODE (reg) == mode
6388 && (GET_MODE_CLASS (mode) == MODE_INT
6389 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
6390 && REG_P (x)
6391 && REGNO (x) == REGNO (reg)
6392 && GET_MODE (x) == mode
6393 && item)
6394 {
6395 machine_mode indmode
6396 = TYPE_MODE (TREE_TYPE (argtype));
6397 rtx mem = gen_rtx_MEM (indmode, x);
6398 cselib_val *val = cselib_lookup (mem, indmode, 0, VOIDmode);
6399 if (val && cselib_preserved_value_p (val))
6400 {
6401 item = gen_rtx_CONCAT (indmode, mem, val->val_rtx);
6402 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
6403 call_arguments);
6404 }
6405 else
6406 {
6407 struct elt_loc_list *l;
6408 tree initial;
6409
6410 /* Try harder, when passing address of a constant
6411 pool integer it can be easily read back. */
6412 item = XEXP (item, 1);
6413 if (GET_CODE (item) == SUBREG)
6414 item = SUBREG_REG (item);
6415 gcc_assert (GET_CODE (item) == VALUE);
6416 val = CSELIB_VAL_PTR (item);
6417 for (l = val->locs; l; l = l->next)
6418 if (GET_CODE (l->loc) == SYMBOL_REF
6419 && TREE_CONSTANT_POOL_ADDRESS_P (l->loc)
6420 && SYMBOL_REF_DECL (l->loc)
6421 && DECL_INITIAL (SYMBOL_REF_DECL (l->loc)))
6422 {
6423 initial = DECL_INITIAL (SYMBOL_REF_DECL (l->loc));
6424 if (tree_fits_shwi_p (initial))
6425 {
6426 item = GEN_INT (tree_to_shwi (initial));
6427 item = gen_rtx_CONCAT (indmode, mem, item);
6428 call_arguments
6429 = gen_rtx_EXPR_LIST (VOIDmode, item,
6430 call_arguments);
6431 }
6432 break;
6433 }
6434 }
6435 }
6436 targetm.calls.function_arg_advance (args_so_far, mode,
6437 argtype, true);
6438 t = TREE_CHAIN (t);
6439 }
6440 }
6441
6442 /* Add debug arguments. */
6443 if (fndecl
6444 && TREE_CODE (fndecl) == FUNCTION_DECL
6445 && DECL_HAS_DEBUG_ARGS_P (fndecl))
6446 {
6447 vec<tree, va_gc> **debug_args = decl_debug_args_lookup (fndecl);
6448 if (debug_args)
6449 {
6450 unsigned int ix;
6451 tree param;
6452 for (ix = 0; vec_safe_iterate (*debug_args, ix, &param); ix += 2)
6453 {
6454 rtx item;
6455 tree dtemp = (**debug_args)[ix + 1];
6456 machine_mode mode = DECL_MODE (dtemp);
6457 item = gen_rtx_DEBUG_PARAMETER_REF (mode, param);
6458 item = gen_rtx_CONCAT (mode, item, DECL_RTL_KNOWN_SET (dtemp));
6459 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
6460 call_arguments);
6461 }
6462 }
6463 }
6464
6465 /* Reverse call_arguments chain. */
6466 prev = NULL_RTX;
6467 for (cur = call_arguments; cur; cur = next)
6468 {
6469 next = XEXP (cur, 1);
6470 XEXP (cur, 1) = prev;
6471 prev = cur;
6472 }
6473 call_arguments = prev;
6474
6475 x = get_call_rtx_from (insn);
6476 if (x)
6477 {
6478 x = XEXP (XEXP (x, 0), 0);
6479 if (GET_CODE (x) == SYMBOL_REF)
6480 /* Don't record anything. */;
6481 else if (CONSTANT_P (x))
6482 {
6483 x = gen_rtx_CONCAT (GET_MODE (x) == VOIDmode ? Pmode : GET_MODE (x),
6484 pc_rtx, x);
6485 call_arguments
6486 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6487 }
6488 else
6489 {
6490 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
6491 if (val && cselib_preserved_value_p (val))
6492 {
6493 x = gen_rtx_CONCAT (GET_MODE (x), pc_rtx, val->val_rtx);
6494 call_arguments
6495 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6496 }
6497 }
6498 }
6499 if (this_arg)
6500 {
6501 machine_mode mode
6502 = TYPE_MODE (TREE_TYPE (OBJ_TYPE_REF_EXPR (obj_type_ref)));
6503 rtx clobbered = gen_rtx_MEM (mode, this_arg);
6504 HOST_WIDE_INT token
6505 = tree_to_shwi (OBJ_TYPE_REF_TOKEN (obj_type_ref));
6506 if (token)
6507 clobbered = plus_constant (mode, clobbered,
6508 token * GET_MODE_SIZE (mode));
6509 clobbered = gen_rtx_MEM (mode, clobbered);
6510 x = gen_rtx_CONCAT (mode, gen_rtx_CLOBBER (VOIDmode, pc_rtx), clobbered);
6511 call_arguments
6512 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6513 }
6514 }
6515
6516 /* Callback for cselib_record_sets_hook, that records as micro
6517 operations uses and stores in an insn after cselib_record_sets has
6518 analyzed the sets in an insn, but before it modifies the stored
6519 values in the internal tables, unless cselib_record_sets doesn't
6520 call it directly (perhaps because we're not doing cselib in the
6521 first place, in which case sets and n_sets will be 0). */
6522
6523 static void
6524 add_with_sets (rtx_insn *insn, struct cselib_set *sets, int n_sets)
6525 {
6526 basic_block bb = BLOCK_FOR_INSN (insn);
6527 int n1, n2;
6528 struct count_use_info cui;
6529 micro_operation *mos;
6530
6531 cselib_hook_called = true;
6532
6533 cui.insn = insn;
6534 cui.bb = bb;
6535 cui.sets = sets;
6536 cui.n_sets = n_sets;
6537
6538 n1 = VTI (bb)->mos.length ();
6539 cui.store_p = false;
6540 note_uses (&PATTERN (insn), add_uses_1, &cui);
6541 n2 = VTI (bb)->mos.length () - 1;
6542 mos = VTI (bb)->mos.address ();
6543
6544 /* Order the MO_USEs to be before MO_USE_NO_VARs and MO_VAL_USE, and
6545 MO_VAL_LOC last. */
6546 while (n1 < n2)
6547 {
6548 while (n1 < n2 && mos[n1].type == MO_USE)
6549 n1++;
6550 while (n1 < n2 && mos[n2].type != MO_USE)
6551 n2--;
6552 if (n1 < n2)
6553 std::swap (mos[n1], mos[n2]);
6554 }
6555
6556 n2 = VTI (bb)->mos.length () - 1;
6557 while (n1 < n2)
6558 {
6559 while (n1 < n2 && mos[n1].type != MO_VAL_LOC)
6560 n1++;
6561 while (n1 < n2 && mos[n2].type == MO_VAL_LOC)
6562 n2--;
6563 if (n1 < n2)
6564 std::swap (mos[n1], mos[n2]);
6565 }
6566
6567 if (CALL_P (insn))
6568 {
6569 micro_operation mo;
6570
6571 mo.type = MO_CALL;
6572 mo.insn = insn;
6573 mo.u.loc = call_arguments;
6574 call_arguments = NULL_RTX;
6575
6576 if (dump_file && (dump_flags & TDF_DETAILS))
6577 log_op_type (PATTERN (insn), bb, insn, mo.type, dump_file);
6578 VTI (bb)->mos.safe_push (mo);
6579 }
6580
6581 n1 = VTI (bb)->mos.length ();
6582 /* This will record NEXT_INSN (insn), such that we can
6583 insert notes before it without worrying about any
6584 notes that MO_USEs might emit after the insn. */
6585 cui.store_p = true;
6586 note_stores (PATTERN (insn), add_stores, &cui);
6587 n2 = VTI (bb)->mos.length () - 1;
6588 mos = VTI (bb)->mos.address ();
6589
6590 /* Order the MO_VAL_USEs first (note_stores does nothing
6591 on DEBUG_INSNs, so there are no MO_VAL_LOCs from this
6592 insn), then MO_CLOBBERs, then MO_SET/MO_COPY/MO_VAL_SET. */
6593 while (n1 < n2)
6594 {
6595 while (n1 < n2 && mos[n1].type == MO_VAL_USE)
6596 n1++;
6597 while (n1 < n2 && mos[n2].type != MO_VAL_USE)
6598 n2--;
6599 if (n1 < n2)
6600 std::swap (mos[n1], mos[n2]);
6601 }
6602
6603 n2 = VTI (bb)->mos.length () - 1;
6604 while (n1 < n2)
6605 {
6606 while (n1 < n2 && mos[n1].type == MO_CLOBBER)
6607 n1++;
6608 while (n1 < n2 && mos[n2].type != MO_CLOBBER)
6609 n2--;
6610 if (n1 < n2)
6611 std::swap (mos[n1], mos[n2]);
6612 }
6613 }
6614
6615 static enum var_init_status
6616 find_src_status (dataflow_set *in, rtx src)
6617 {
6618 tree decl = NULL_TREE;
6619 enum var_init_status status = VAR_INIT_STATUS_UNINITIALIZED;
6620
6621 if (! flag_var_tracking_uninit)
6622 status = VAR_INIT_STATUS_INITIALIZED;
6623
6624 if (src && REG_P (src))
6625 decl = var_debug_decl (REG_EXPR (src));
6626 else if (src && MEM_P (src))
6627 decl = var_debug_decl (MEM_EXPR (src));
6628
6629 if (src && decl)
6630 status = get_init_value (in, src, dv_from_decl (decl));
6631
6632 return status;
6633 }
6634
6635 /* SRC is the source of an assignment. Use SET to try to find what
6636 was ultimately assigned to SRC. Return that value if known,
6637 otherwise return SRC itself. */
6638
6639 static rtx
6640 find_src_set_src (dataflow_set *set, rtx src)
6641 {
6642 tree decl = NULL_TREE; /* The variable being copied around. */
6643 rtx set_src = NULL_RTX; /* The value for "decl" stored in "src". */
6644 variable *var;
6645 location_chain *nextp;
6646 int i;
6647 bool found;
6648
6649 if (src && REG_P (src))
6650 decl = var_debug_decl (REG_EXPR (src));
6651 else if (src && MEM_P (src))
6652 decl = var_debug_decl (MEM_EXPR (src));
6653
6654 if (src && decl)
6655 {
6656 decl_or_value dv = dv_from_decl (decl);
6657
6658 var = shared_hash_find (set->vars, dv);
6659 if (var)
6660 {
6661 found = false;
6662 for (i = 0; i < var->n_var_parts && !found; i++)
6663 for (nextp = var->var_part[i].loc_chain; nextp && !found;
6664 nextp = nextp->next)
6665 if (rtx_equal_p (nextp->loc, src))
6666 {
6667 set_src = nextp->set_src;
6668 found = true;
6669 }
6670
6671 }
6672 }
6673
6674 return set_src;
6675 }
6676
6677 /* Compute the changes of variable locations in the basic block BB. */
6678
6679 static bool
6680 compute_bb_dataflow (basic_block bb)
6681 {
6682 unsigned int i;
6683 micro_operation *mo;
6684 bool changed;
6685 dataflow_set old_out;
6686 dataflow_set *in = &VTI (bb)->in;
6687 dataflow_set *out = &VTI (bb)->out;
6688
6689 dataflow_set_init (&old_out);
6690 dataflow_set_copy (&old_out, out);
6691 dataflow_set_copy (out, in);
6692
6693 if (MAY_HAVE_DEBUG_INSNS)
6694 local_get_addr_cache = new hash_map<rtx, rtx>;
6695
6696 FOR_EACH_VEC_ELT (VTI (bb)->mos, i, mo)
6697 {
6698 rtx_insn *insn = mo->insn;
6699
6700 switch (mo->type)
6701 {
6702 case MO_CALL:
6703 dataflow_set_clear_at_call (out, insn);
6704 break;
6705
6706 case MO_USE:
6707 {
6708 rtx loc = mo->u.loc;
6709
6710 if (REG_P (loc))
6711 var_reg_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6712 else if (MEM_P (loc))
6713 var_mem_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6714 }
6715 break;
6716
6717 case MO_VAL_LOC:
6718 {
6719 rtx loc = mo->u.loc;
6720 rtx val, vloc;
6721 tree var;
6722
6723 if (GET_CODE (loc) == CONCAT)
6724 {
6725 val = XEXP (loc, 0);
6726 vloc = XEXP (loc, 1);
6727 }
6728 else
6729 {
6730 val = NULL_RTX;
6731 vloc = loc;
6732 }
6733
6734 var = PAT_VAR_LOCATION_DECL (vloc);
6735
6736 clobber_variable_part (out, NULL_RTX,
6737 dv_from_decl (var), 0, NULL_RTX);
6738 if (val)
6739 {
6740 if (VAL_NEEDS_RESOLUTION (loc))
6741 val_resolve (out, val, PAT_VAR_LOCATION_LOC (vloc), insn);
6742 set_variable_part (out, val, dv_from_decl (var), 0,
6743 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6744 INSERT);
6745 }
6746 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
6747 set_variable_part (out, PAT_VAR_LOCATION_LOC (vloc),
6748 dv_from_decl (var), 0,
6749 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6750 INSERT);
6751 }
6752 break;
6753
6754 case MO_VAL_USE:
6755 {
6756 rtx loc = mo->u.loc;
6757 rtx val, vloc, uloc;
6758
6759 vloc = uloc = XEXP (loc, 1);
6760 val = XEXP (loc, 0);
6761
6762 if (GET_CODE (val) == CONCAT)
6763 {
6764 uloc = XEXP (val, 1);
6765 val = XEXP (val, 0);
6766 }
6767
6768 if (VAL_NEEDS_RESOLUTION (loc))
6769 val_resolve (out, val, vloc, insn);
6770 else
6771 val_store (out, val, uloc, insn, false);
6772
6773 if (VAL_HOLDS_TRACK_EXPR (loc))
6774 {
6775 if (GET_CODE (uloc) == REG)
6776 var_reg_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6777 NULL);
6778 else if (GET_CODE (uloc) == MEM)
6779 var_mem_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6780 NULL);
6781 }
6782 }
6783 break;
6784
6785 case MO_VAL_SET:
6786 {
6787 rtx loc = mo->u.loc;
6788 rtx val, vloc, uloc;
6789 rtx dstv, srcv;
6790
6791 vloc = loc;
6792 uloc = XEXP (vloc, 1);
6793 val = XEXP (vloc, 0);
6794 vloc = uloc;
6795
6796 if (GET_CODE (uloc) == SET)
6797 {
6798 dstv = SET_DEST (uloc);
6799 srcv = SET_SRC (uloc);
6800 }
6801 else
6802 {
6803 dstv = uloc;
6804 srcv = NULL;
6805 }
6806
6807 if (GET_CODE (val) == CONCAT)
6808 {
6809 dstv = vloc = XEXP (val, 1);
6810 val = XEXP (val, 0);
6811 }
6812
6813 if (GET_CODE (vloc) == SET)
6814 {
6815 srcv = SET_SRC (vloc);
6816
6817 gcc_assert (val != srcv);
6818 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
6819
6820 dstv = vloc = SET_DEST (vloc);
6821
6822 if (VAL_NEEDS_RESOLUTION (loc))
6823 val_resolve (out, val, srcv, insn);
6824 }
6825 else if (VAL_NEEDS_RESOLUTION (loc))
6826 {
6827 gcc_assert (GET_CODE (uloc) == SET
6828 && GET_CODE (SET_SRC (uloc)) == REG);
6829 val_resolve (out, val, SET_SRC (uloc), insn);
6830 }
6831
6832 if (VAL_HOLDS_TRACK_EXPR (loc))
6833 {
6834 if (VAL_EXPR_IS_CLOBBERED (loc))
6835 {
6836 if (REG_P (uloc))
6837 var_reg_delete (out, uloc, true);
6838 else if (MEM_P (uloc))
6839 {
6840 gcc_assert (MEM_P (dstv));
6841 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (uloc));
6842 var_mem_delete (out, dstv, true);
6843 }
6844 }
6845 else
6846 {
6847 bool copied_p = VAL_EXPR_IS_COPIED (loc);
6848 rtx src = NULL, dst = uloc;
6849 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
6850
6851 if (GET_CODE (uloc) == SET)
6852 {
6853 src = SET_SRC (uloc);
6854 dst = SET_DEST (uloc);
6855 }
6856
6857 if (copied_p)
6858 {
6859 if (flag_var_tracking_uninit)
6860 {
6861 status = find_src_status (in, src);
6862
6863 if (status == VAR_INIT_STATUS_UNKNOWN)
6864 status = find_src_status (out, src);
6865 }
6866
6867 src = find_src_set_src (in, src);
6868 }
6869
6870 if (REG_P (dst))
6871 var_reg_delete_and_set (out, dst, !copied_p,
6872 status, srcv);
6873 else if (MEM_P (dst))
6874 {
6875 gcc_assert (MEM_P (dstv));
6876 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (dst));
6877 var_mem_delete_and_set (out, dstv, !copied_p,
6878 status, srcv);
6879 }
6880 }
6881 }
6882 else if (REG_P (uloc))
6883 var_regno_delete (out, REGNO (uloc));
6884 else if (MEM_P (uloc))
6885 {
6886 gcc_checking_assert (GET_CODE (vloc) == MEM);
6887 gcc_checking_assert (dstv == vloc);
6888 if (dstv != vloc)
6889 clobber_overlapping_mems (out, vloc);
6890 }
6891
6892 val_store (out, val, dstv, insn, true);
6893 }
6894 break;
6895
6896 case MO_SET:
6897 {
6898 rtx loc = mo->u.loc;
6899 rtx set_src = NULL;
6900
6901 if (GET_CODE (loc) == SET)
6902 {
6903 set_src = SET_SRC (loc);
6904 loc = SET_DEST (loc);
6905 }
6906
6907 if (REG_P (loc))
6908 var_reg_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6909 set_src);
6910 else if (MEM_P (loc))
6911 var_mem_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6912 set_src);
6913 }
6914 break;
6915
6916 case MO_COPY:
6917 {
6918 rtx loc = mo->u.loc;
6919 enum var_init_status src_status;
6920 rtx set_src = NULL;
6921
6922 if (GET_CODE (loc) == SET)
6923 {
6924 set_src = SET_SRC (loc);
6925 loc = SET_DEST (loc);
6926 }
6927
6928 if (! flag_var_tracking_uninit)
6929 src_status = VAR_INIT_STATUS_INITIALIZED;
6930 else
6931 {
6932 src_status = find_src_status (in, set_src);
6933
6934 if (src_status == VAR_INIT_STATUS_UNKNOWN)
6935 src_status = find_src_status (out, set_src);
6936 }
6937
6938 set_src = find_src_set_src (in, set_src);
6939
6940 if (REG_P (loc))
6941 var_reg_delete_and_set (out, loc, false, src_status, set_src);
6942 else if (MEM_P (loc))
6943 var_mem_delete_and_set (out, loc, false, src_status, set_src);
6944 }
6945 break;
6946
6947 case MO_USE_NO_VAR:
6948 {
6949 rtx loc = mo->u.loc;
6950
6951 if (REG_P (loc))
6952 var_reg_delete (out, loc, false);
6953 else if (MEM_P (loc))
6954 var_mem_delete (out, loc, false);
6955 }
6956 break;
6957
6958 case MO_CLOBBER:
6959 {
6960 rtx loc = mo->u.loc;
6961
6962 if (REG_P (loc))
6963 var_reg_delete (out, loc, true);
6964 else if (MEM_P (loc))
6965 var_mem_delete (out, loc, true);
6966 }
6967 break;
6968
6969 case MO_ADJUST:
6970 out->stack_adjust += mo->u.adjust;
6971 break;
6972 }
6973 }
6974
6975 if (MAY_HAVE_DEBUG_INSNS)
6976 {
6977 delete local_get_addr_cache;
6978 local_get_addr_cache = NULL;
6979
6980 dataflow_set_equiv_regs (out);
6981 shared_hash_htab (out->vars)
6982 ->traverse <dataflow_set *, canonicalize_values_mark> (out);
6983 shared_hash_htab (out->vars)
6984 ->traverse <dataflow_set *, canonicalize_values_star> (out);
6985 if (flag_checking)
6986 shared_hash_htab (out->vars)
6987 ->traverse <dataflow_set *, canonicalize_loc_order_check> (out);
6988 }
6989 changed = dataflow_set_different (&old_out, out);
6990 dataflow_set_destroy (&old_out);
6991 return changed;
6992 }
6993
6994 /* Find the locations of variables in the whole function. */
6995
6996 static bool
6997 vt_find_locations (void)
6998 {
6999 bb_heap_t *worklist = new bb_heap_t (LONG_MIN);
7000 bb_heap_t *pending = new bb_heap_t (LONG_MIN);
7001 sbitmap in_worklist, in_pending;
7002 basic_block bb;
7003 edge e;
7004 int *bb_order;
7005 int *rc_order;
7006 int i;
7007 int htabsz = 0;
7008 int htabmax = PARAM_VALUE (PARAM_MAX_VARTRACK_SIZE);
7009 bool success = true;
7010
7011 timevar_push (TV_VAR_TRACKING_DATAFLOW);
7012 /* Compute reverse completion order of depth first search of the CFG
7013 so that the data-flow runs faster. */
7014 rc_order = XNEWVEC (int, n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS);
7015 bb_order = XNEWVEC (int, last_basic_block_for_fn (cfun));
7016 pre_and_rev_post_order_compute (NULL, rc_order, false);
7017 for (i = 0; i < n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS; i++)
7018 bb_order[rc_order[i]] = i;
7019 free (rc_order);
7020
7021 auto_sbitmap visited (last_basic_block_for_fn (cfun));
7022 in_worklist = sbitmap_alloc (last_basic_block_for_fn (cfun));
7023 in_pending = sbitmap_alloc (last_basic_block_for_fn (cfun));
7024 bitmap_clear (in_worklist);
7025
7026 FOR_EACH_BB_FN (bb, cfun)
7027 pending->insert (bb_order[bb->index], bb);
7028 bitmap_ones (in_pending);
7029
7030 while (success && !pending->empty ())
7031 {
7032 std::swap (worklist, pending);
7033 std::swap (in_worklist, in_pending);
7034
7035 bitmap_clear (visited);
7036
7037 while (!worklist->empty ())
7038 {
7039 bb = worklist->extract_min ();
7040 bitmap_clear_bit (in_worklist, bb->index);
7041 gcc_assert (!bitmap_bit_p (visited, bb->index));
7042 if (!bitmap_bit_p (visited, bb->index))
7043 {
7044 bool changed;
7045 edge_iterator ei;
7046 int oldinsz, oldoutsz;
7047
7048 bitmap_set_bit (visited, bb->index);
7049
7050 if (VTI (bb)->in.vars)
7051 {
7052 htabsz
7053 -= shared_hash_htab (VTI (bb)->in.vars)->size ()
7054 + shared_hash_htab (VTI (bb)->out.vars)->size ();
7055 oldinsz = shared_hash_htab (VTI (bb)->in.vars)->elements ();
7056 oldoutsz
7057 = shared_hash_htab (VTI (bb)->out.vars)->elements ();
7058 }
7059 else
7060 oldinsz = oldoutsz = 0;
7061
7062 if (MAY_HAVE_DEBUG_INSNS)
7063 {
7064 dataflow_set *in = &VTI (bb)->in, *first_out = NULL;
7065 bool first = true, adjust = false;
7066
7067 /* Calculate the IN set as the intersection of
7068 predecessor OUT sets. */
7069
7070 dataflow_set_clear (in);
7071 dst_can_be_shared = true;
7072
7073 FOR_EACH_EDGE (e, ei, bb->preds)
7074 if (!VTI (e->src)->flooded)
7075 gcc_assert (bb_order[bb->index]
7076 <= bb_order[e->src->index]);
7077 else if (first)
7078 {
7079 dataflow_set_copy (in, &VTI (e->src)->out);
7080 first_out = &VTI (e->src)->out;
7081 first = false;
7082 }
7083 else
7084 {
7085 dataflow_set_merge (in, &VTI (e->src)->out);
7086 adjust = true;
7087 }
7088
7089 if (adjust)
7090 {
7091 dataflow_post_merge_adjust (in, &VTI (bb)->permp);
7092
7093 if (flag_checking)
7094 /* Merge and merge_adjust should keep entries in
7095 canonical order. */
7096 shared_hash_htab (in->vars)
7097 ->traverse <dataflow_set *,
7098 canonicalize_loc_order_check> (in);
7099
7100 if (dst_can_be_shared)
7101 {
7102 shared_hash_destroy (in->vars);
7103 in->vars = shared_hash_copy (first_out->vars);
7104 }
7105 }
7106
7107 VTI (bb)->flooded = true;
7108 }
7109 else
7110 {
7111 /* Calculate the IN set as union of predecessor OUT sets. */
7112 dataflow_set_clear (&VTI (bb)->in);
7113 FOR_EACH_EDGE (e, ei, bb->preds)
7114 dataflow_set_union (&VTI (bb)->in, &VTI (e->src)->out);
7115 }
7116
7117 changed = compute_bb_dataflow (bb);
7118 htabsz += shared_hash_htab (VTI (bb)->in.vars)->size ()
7119 + shared_hash_htab (VTI (bb)->out.vars)->size ();
7120
7121 if (htabmax && htabsz > htabmax)
7122 {
7123 if (MAY_HAVE_DEBUG_INSNS)
7124 inform (DECL_SOURCE_LOCATION (cfun->decl),
7125 "variable tracking size limit exceeded with "
7126 "-fvar-tracking-assignments, retrying without");
7127 else
7128 inform (DECL_SOURCE_LOCATION (cfun->decl),
7129 "variable tracking size limit exceeded");
7130 success = false;
7131 break;
7132 }
7133
7134 if (changed)
7135 {
7136 FOR_EACH_EDGE (e, ei, bb->succs)
7137 {
7138 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
7139 continue;
7140
7141 if (bitmap_bit_p (visited, e->dest->index))
7142 {
7143 if (!bitmap_bit_p (in_pending, e->dest->index))
7144 {
7145 /* Send E->DEST to next round. */
7146 bitmap_set_bit (in_pending, e->dest->index);
7147 pending->insert (bb_order[e->dest->index],
7148 e->dest);
7149 }
7150 }
7151 else if (!bitmap_bit_p (in_worklist, e->dest->index))
7152 {
7153 /* Add E->DEST to current round. */
7154 bitmap_set_bit (in_worklist, e->dest->index);
7155 worklist->insert (bb_order[e->dest->index],
7156 e->dest);
7157 }
7158 }
7159 }
7160
7161 if (dump_file)
7162 fprintf (dump_file,
7163 "BB %i: in %i (was %i), out %i (was %i), rem %i + %i, tsz %i\n",
7164 bb->index,
7165 (int)shared_hash_htab (VTI (bb)->in.vars)->size (),
7166 oldinsz,
7167 (int)shared_hash_htab (VTI (bb)->out.vars)->size (),
7168 oldoutsz,
7169 (int)worklist->nodes (), (int)pending->nodes (),
7170 htabsz);
7171
7172 if (dump_file && (dump_flags & TDF_DETAILS))
7173 {
7174 fprintf (dump_file, "BB %i IN:\n", bb->index);
7175 dump_dataflow_set (&VTI (bb)->in);
7176 fprintf (dump_file, "BB %i OUT:\n", bb->index);
7177 dump_dataflow_set (&VTI (bb)->out);
7178 }
7179 }
7180 }
7181 }
7182
7183 if (success && MAY_HAVE_DEBUG_INSNS)
7184 FOR_EACH_BB_FN (bb, cfun)
7185 gcc_assert (VTI (bb)->flooded);
7186
7187 free (bb_order);
7188 delete worklist;
7189 delete pending;
7190 sbitmap_free (in_worklist);
7191 sbitmap_free (in_pending);
7192
7193 timevar_pop (TV_VAR_TRACKING_DATAFLOW);
7194 return success;
7195 }
7196
7197 /* Print the content of the LIST to dump file. */
7198
7199 static void
7200 dump_attrs_list (attrs *list)
7201 {
7202 for (; list; list = list->next)
7203 {
7204 if (dv_is_decl_p (list->dv))
7205 print_mem_expr (dump_file, dv_as_decl (list->dv));
7206 else
7207 print_rtl_single (dump_file, dv_as_value (list->dv));
7208 fprintf (dump_file, "+" HOST_WIDE_INT_PRINT_DEC, list->offset);
7209 }
7210 fprintf (dump_file, "\n");
7211 }
7212
7213 /* Print the information about variable *SLOT to dump file. */
7214
7215 int
7216 dump_var_tracking_slot (variable **slot, void *data ATTRIBUTE_UNUSED)
7217 {
7218 variable *var = *slot;
7219
7220 dump_var (var);
7221
7222 /* Continue traversing the hash table. */
7223 return 1;
7224 }
7225
7226 /* Print the information about variable VAR to dump file. */
7227
7228 static void
7229 dump_var (variable *var)
7230 {
7231 int i;
7232 location_chain *node;
7233
7234 if (dv_is_decl_p (var->dv))
7235 {
7236 const_tree decl = dv_as_decl (var->dv);
7237
7238 if (DECL_NAME (decl))
7239 {
7240 fprintf (dump_file, " name: %s",
7241 IDENTIFIER_POINTER (DECL_NAME (decl)));
7242 if (dump_flags & TDF_UID)
7243 fprintf (dump_file, "D.%u", DECL_UID (decl));
7244 }
7245 else if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
7246 fprintf (dump_file, " name: D#%u", DEBUG_TEMP_UID (decl));
7247 else
7248 fprintf (dump_file, " name: D.%u", DECL_UID (decl));
7249 fprintf (dump_file, "\n");
7250 }
7251 else
7252 {
7253 fputc (' ', dump_file);
7254 print_rtl_single (dump_file, dv_as_value (var->dv));
7255 }
7256
7257 for (i = 0; i < var->n_var_parts; i++)
7258 {
7259 fprintf (dump_file, " offset %ld\n",
7260 (long)(var->onepart ? 0 : VAR_PART_OFFSET (var, i)));
7261 for (node = var->var_part[i].loc_chain; node; node = node->next)
7262 {
7263 fprintf (dump_file, " ");
7264 if (node->init == VAR_INIT_STATUS_UNINITIALIZED)
7265 fprintf (dump_file, "[uninit]");
7266 print_rtl_single (dump_file, node->loc);
7267 }
7268 }
7269 }
7270
7271 /* Print the information about variables from hash table VARS to dump file. */
7272
7273 static void
7274 dump_vars (variable_table_type *vars)
7275 {
7276 if (vars->elements () > 0)
7277 {
7278 fprintf (dump_file, "Variables:\n");
7279 vars->traverse <void *, dump_var_tracking_slot> (NULL);
7280 }
7281 }
7282
7283 /* Print the dataflow set SET to dump file. */
7284
7285 static void
7286 dump_dataflow_set (dataflow_set *set)
7287 {
7288 int i;
7289
7290 fprintf (dump_file, "Stack adjustment: " HOST_WIDE_INT_PRINT_DEC "\n",
7291 set->stack_adjust);
7292 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
7293 {
7294 if (set->regs[i])
7295 {
7296 fprintf (dump_file, "Reg %d:", i);
7297 dump_attrs_list (set->regs[i]);
7298 }
7299 }
7300 dump_vars (shared_hash_htab (set->vars));
7301 fprintf (dump_file, "\n");
7302 }
7303
7304 /* Print the IN and OUT sets for each basic block to dump file. */
7305
7306 static void
7307 dump_dataflow_sets (void)
7308 {
7309 basic_block bb;
7310
7311 FOR_EACH_BB_FN (bb, cfun)
7312 {
7313 fprintf (dump_file, "\nBasic block %d:\n", bb->index);
7314 fprintf (dump_file, "IN:\n");
7315 dump_dataflow_set (&VTI (bb)->in);
7316 fprintf (dump_file, "OUT:\n");
7317 dump_dataflow_set (&VTI (bb)->out);
7318 }
7319 }
7320
7321 /* Return the variable for DV in dropped_values, inserting one if
7322 requested with INSERT. */
7323
7324 static inline variable *
7325 variable_from_dropped (decl_or_value dv, enum insert_option insert)
7326 {
7327 variable **slot;
7328 variable *empty_var;
7329 onepart_enum onepart;
7330
7331 slot = dropped_values->find_slot_with_hash (dv, dv_htab_hash (dv), insert);
7332
7333 if (!slot)
7334 return NULL;
7335
7336 if (*slot)
7337 return *slot;
7338
7339 gcc_checking_assert (insert == INSERT);
7340
7341 onepart = dv_onepart_p (dv);
7342
7343 gcc_checking_assert (onepart == ONEPART_VALUE || onepart == ONEPART_DEXPR);
7344
7345 empty_var = onepart_pool_allocate (onepart);
7346 empty_var->dv = dv;
7347 empty_var->refcount = 1;
7348 empty_var->n_var_parts = 0;
7349 empty_var->onepart = onepart;
7350 empty_var->in_changed_variables = false;
7351 empty_var->var_part[0].loc_chain = NULL;
7352 empty_var->var_part[0].cur_loc = NULL;
7353 VAR_LOC_1PAUX (empty_var) = NULL;
7354 set_dv_changed (dv, true);
7355
7356 *slot = empty_var;
7357
7358 return empty_var;
7359 }
7360
7361 /* Recover the one-part aux from dropped_values. */
7362
7363 static struct onepart_aux *
7364 recover_dropped_1paux (variable *var)
7365 {
7366 variable *dvar;
7367
7368 gcc_checking_assert (var->onepart);
7369
7370 if (VAR_LOC_1PAUX (var))
7371 return VAR_LOC_1PAUX (var);
7372
7373 if (var->onepart == ONEPART_VDECL)
7374 return NULL;
7375
7376 dvar = variable_from_dropped (var->dv, NO_INSERT);
7377
7378 if (!dvar)
7379 return NULL;
7380
7381 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (dvar);
7382 VAR_LOC_1PAUX (dvar) = NULL;
7383
7384 return VAR_LOC_1PAUX (var);
7385 }
7386
7387 /* Add variable VAR to the hash table of changed variables and
7388 if it has no locations delete it from SET's hash table. */
7389
7390 static void
7391 variable_was_changed (variable *var, dataflow_set *set)
7392 {
7393 hashval_t hash = dv_htab_hash (var->dv);
7394
7395 if (emit_notes)
7396 {
7397 variable **slot;
7398
7399 /* Remember this decl or VALUE has been added to changed_variables. */
7400 set_dv_changed (var->dv, true);
7401
7402 slot = changed_variables->find_slot_with_hash (var->dv, hash, INSERT);
7403
7404 if (*slot)
7405 {
7406 variable *old_var = *slot;
7407 gcc_assert (old_var->in_changed_variables);
7408 old_var->in_changed_variables = false;
7409 if (var != old_var && var->onepart)
7410 {
7411 /* Restore the auxiliary info from an empty variable
7412 previously created for changed_variables, so it is
7413 not lost. */
7414 gcc_checking_assert (!VAR_LOC_1PAUX (var));
7415 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (old_var);
7416 VAR_LOC_1PAUX (old_var) = NULL;
7417 }
7418 variable_htab_free (*slot);
7419 }
7420
7421 if (set && var->n_var_parts == 0)
7422 {
7423 onepart_enum onepart = var->onepart;
7424 variable *empty_var = NULL;
7425 variable **dslot = NULL;
7426
7427 if (onepart == ONEPART_VALUE || onepart == ONEPART_DEXPR)
7428 {
7429 dslot = dropped_values->find_slot_with_hash (var->dv,
7430 dv_htab_hash (var->dv),
7431 INSERT);
7432 empty_var = *dslot;
7433
7434 if (empty_var)
7435 {
7436 gcc_checking_assert (!empty_var->in_changed_variables);
7437 if (!VAR_LOC_1PAUX (var))
7438 {
7439 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (empty_var);
7440 VAR_LOC_1PAUX (empty_var) = NULL;
7441 }
7442 else
7443 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var));
7444 }
7445 }
7446
7447 if (!empty_var)
7448 {
7449 empty_var = onepart_pool_allocate (onepart);
7450 empty_var->dv = var->dv;
7451 empty_var->refcount = 1;
7452 empty_var->n_var_parts = 0;
7453 empty_var->onepart = onepart;
7454 if (dslot)
7455 {
7456 empty_var->refcount++;
7457 *dslot = empty_var;
7458 }
7459 }
7460 else
7461 empty_var->refcount++;
7462 empty_var->in_changed_variables = true;
7463 *slot = empty_var;
7464 if (onepart)
7465 {
7466 empty_var->var_part[0].loc_chain = NULL;
7467 empty_var->var_part[0].cur_loc = NULL;
7468 VAR_LOC_1PAUX (empty_var) = VAR_LOC_1PAUX (var);
7469 VAR_LOC_1PAUX (var) = NULL;
7470 }
7471 goto drop_var;
7472 }
7473 else
7474 {
7475 if (var->onepart && !VAR_LOC_1PAUX (var))
7476 recover_dropped_1paux (var);
7477 var->refcount++;
7478 var->in_changed_variables = true;
7479 *slot = var;
7480 }
7481 }
7482 else
7483 {
7484 gcc_assert (set);
7485 if (var->n_var_parts == 0)
7486 {
7487 variable **slot;
7488
7489 drop_var:
7490 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
7491 if (slot)
7492 {
7493 if (shared_hash_shared (set->vars))
7494 slot = shared_hash_find_slot_unshare (&set->vars, var->dv,
7495 NO_INSERT);
7496 shared_hash_htab (set->vars)->clear_slot (slot);
7497 }
7498 }
7499 }
7500 }
7501
7502 /* Look for the index in VAR->var_part corresponding to OFFSET.
7503 Return -1 if not found. If INSERTION_POINT is non-NULL, the
7504 referenced int will be set to the index that the part has or should
7505 have, if it should be inserted. */
7506
7507 static inline int
7508 find_variable_location_part (variable *var, HOST_WIDE_INT offset,
7509 int *insertion_point)
7510 {
7511 int pos, low, high;
7512
7513 if (var->onepart)
7514 {
7515 if (offset != 0)
7516 return -1;
7517
7518 if (insertion_point)
7519 *insertion_point = 0;
7520
7521 return var->n_var_parts - 1;
7522 }
7523
7524 /* Find the location part. */
7525 low = 0;
7526 high = var->n_var_parts;
7527 while (low != high)
7528 {
7529 pos = (low + high) / 2;
7530 if (VAR_PART_OFFSET (var, pos) < offset)
7531 low = pos + 1;
7532 else
7533 high = pos;
7534 }
7535 pos = low;
7536
7537 if (insertion_point)
7538 *insertion_point = pos;
7539
7540 if (pos < var->n_var_parts && VAR_PART_OFFSET (var, pos) == offset)
7541 return pos;
7542
7543 return -1;
7544 }
7545
7546 static variable **
7547 set_slot_part (dataflow_set *set, rtx loc, variable **slot,
7548 decl_or_value dv, HOST_WIDE_INT offset,
7549 enum var_init_status initialized, rtx set_src)
7550 {
7551 int pos;
7552 location_chain *node, *next;
7553 location_chain **nextp;
7554 variable *var;
7555 onepart_enum onepart;
7556
7557 var = *slot;
7558
7559 if (var)
7560 onepart = var->onepart;
7561 else
7562 onepart = dv_onepart_p (dv);
7563
7564 gcc_checking_assert (offset == 0 || !onepart);
7565 gcc_checking_assert (loc != dv_as_opaque (dv));
7566
7567 if (! flag_var_tracking_uninit)
7568 initialized = VAR_INIT_STATUS_INITIALIZED;
7569
7570 if (!var)
7571 {
7572 /* Create new variable information. */
7573 var = onepart_pool_allocate (onepart);
7574 var->dv = dv;
7575 var->refcount = 1;
7576 var->n_var_parts = 1;
7577 var->onepart = onepart;
7578 var->in_changed_variables = false;
7579 if (var->onepart)
7580 VAR_LOC_1PAUX (var) = NULL;
7581 else
7582 VAR_PART_OFFSET (var, 0) = offset;
7583 var->var_part[0].loc_chain = NULL;
7584 var->var_part[0].cur_loc = NULL;
7585 *slot = var;
7586 pos = 0;
7587 nextp = &var->var_part[0].loc_chain;
7588 }
7589 else if (onepart)
7590 {
7591 int r = -1, c = 0;
7592
7593 gcc_assert (dv_as_opaque (var->dv) == dv_as_opaque (dv));
7594
7595 pos = 0;
7596
7597 if (GET_CODE (loc) == VALUE)
7598 {
7599 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7600 nextp = &node->next)
7601 if (GET_CODE (node->loc) == VALUE)
7602 {
7603 if (node->loc == loc)
7604 {
7605 r = 0;
7606 break;
7607 }
7608 if (canon_value_cmp (node->loc, loc))
7609 c++;
7610 else
7611 {
7612 r = 1;
7613 break;
7614 }
7615 }
7616 else if (REG_P (node->loc) || MEM_P (node->loc))
7617 c++;
7618 else
7619 {
7620 r = 1;
7621 break;
7622 }
7623 }
7624 else if (REG_P (loc))
7625 {
7626 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7627 nextp = &node->next)
7628 if (REG_P (node->loc))
7629 {
7630 if (REGNO (node->loc) < REGNO (loc))
7631 c++;
7632 else
7633 {
7634 if (REGNO (node->loc) == REGNO (loc))
7635 r = 0;
7636 else
7637 r = 1;
7638 break;
7639 }
7640 }
7641 else
7642 {
7643 r = 1;
7644 break;
7645 }
7646 }
7647 else if (MEM_P (loc))
7648 {
7649 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7650 nextp = &node->next)
7651 if (REG_P (node->loc))
7652 c++;
7653 else if (MEM_P (node->loc))
7654 {
7655 if ((r = loc_cmp (XEXP (node->loc, 0), XEXP (loc, 0))) >= 0)
7656 break;
7657 else
7658 c++;
7659 }
7660 else
7661 {
7662 r = 1;
7663 break;
7664 }
7665 }
7666 else
7667 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7668 nextp = &node->next)
7669 if ((r = loc_cmp (node->loc, loc)) >= 0)
7670 break;
7671 else
7672 c++;
7673
7674 if (r == 0)
7675 return slot;
7676
7677 if (shared_var_p (var, set->vars))
7678 {
7679 slot = unshare_variable (set, slot, var, initialized);
7680 var = *slot;
7681 for (nextp = &var->var_part[0].loc_chain; c;
7682 nextp = &(*nextp)->next)
7683 c--;
7684 gcc_assert ((!node && !*nextp) || node->loc == (*nextp)->loc);
7685 }
7686 }
7687 else
7688 {
7689 int inspos = 0;
7690
7691 gcc_assert (dv_as_decl (var->dv) == dv_as_decl (dv));
7692
7693 pos = find_variable_location_part (var, offset, &inspos);
7694
7695 if (pos >= 0)
7696 {
7697 node = var->var_part[pos].loc_chain;
7698
7699 if (node
7700 && ((REG_P (node->loc) && REG_P (loc)
7701 && REGNO (node->loc) == REGNO (loc))
7702 || rtx_equal_p (node->loc, loc)))
7703 {
7704 /* LOC is in the beginning of the chain so we have nothing
7705 to do. */
7706 if (node->init < initialized)
7707 node->init = initialized;
7708 if (set_src != NULL)
7709 node->set_src = set_src;
7710
7711 return slot;
7712 }
7713 else
7714 {
7715 /* We have to make a copy of a shared variable. */
7716 if (shared_var_p (var, set->vars))
7717 {
7718 slot = unshare_variable (set, slot, var, initialized);
7719 var = *slot;
7720 }
7721 }
7722 }
7723 else
7724 {
7725 /* We have not found the location part, new one will be created. */
7726
7727 /* We have to make a copy of the shared variable. */
7728 if (shared_var_p (var, set->vars))
7729 {
7730 slot = unshare_variable (set, slot, var, initialized);
7731 var = *slot;
7732 }
7733
7734 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
7735 thus there are at most MAX_VAR_PARTS different offsets. */
7736 gcc_assert (var->n_var_parts < MAX_VAR_PARTS
7737 && (!var->n_var_parts || !onepart));
7738
7739 /* We have to move the elements of array starting at index
7740 inspos to the next position. */
7741 for (pos = var->n_var_parts; pos > inspos; pos--)
7742 var->var_part[pos] = var->var_part[pos - 1];
7743
7744 var->n_var_parts++;
7745 gcc_checking_assert (!onepart);
7746 VAR_PART_OFFSET (var, pos) = offset;
7747 var->var_part[pos].loc_chain = NULL;
7748 var->var_part[pos].cur_loc = NULL;
7749 }
7750
7751 /* Delete the location from the list. */
7752 nextp = &var->var_part[pos].loc_chain;
7753 for (node = var->var_part[pos].loc_chain; node; node = next)
7754 {
7755 next = node->next;
7756 if ((REG_P (node->loc) && REG_P (loc)
7757 && REGNO (node->loc) == REGNO (loc))
7758 || rtx_equal_p (node->loc, loc))
7759 {
7760 /* Save these values, to assign to the new node, before
7761 deleting this one. */
7762 if (node->init > initialized)
7763 initialized = node->init;
7764 if (node->set_src != NULL && set_src == NULL)
7765 set_src = node->set_src;
7766 if (var->var_part[pos].cur_loc == node->loc)
7767 var->var_part[pos].cur_loc = NULL;
7768 delete node;
7769 *nextp = next;
7770 break;
7771 }
7772 else
7773 nextp = &node->next;
7774 }
7775
7776 nextp = &var->var_part[pos].loc_chain;
7777 }
7778
7779 /* Add the location to the beginning. */
7780 node = new location_chain;
7781 node->loc = loc;
7782 node->init = initialized;
7783 node->set_src = set_src;
7784 node->next = *nextp;
7785 *nextp = node;
7786
7787 /* If no location was emitted do so. */
7788 if (var->var_part[pos].cur_loc == NULL)
7789 variable_was_changed (var, set);
7790
7791 return slot;
7792 }
7793
7794 /* Set the part of variable's location in the dataflow set SET. The
7795 variable part is specified by variable's declaration in DV and
7796 offset OFFSET and the part's location by LOC. IOPT should be
7797 NO_INSERT if the variable is known to be in SET already and the
7798 variable hash table must not be resized, and INSERT otherwise. */
7799
7800 static void
7801 set_variable_part (dataflow_set *set, rtx loc,
7802 decl_or_value dv, HOST_WIDE_INT offset,
7803 enum var_init_status initialized, rtx set_src,
7804 enum insert_option iopt)
7805 {
7806 variable **slot;
7807
7808 if (iopt == NO_INSERT)
7809 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7810 else
7811 {
7812 slot = shared_hash_find_slot (set->vars, dv);
7813 if (!slot)
7814 slot = shared_hash_find_slot_unshare (&set->vars, dv, iopt);
7815 }
7816 set_slot_part (set, loc, slot, dv, offset, initialized, set_src);
7817 }
7818
7819 /* Remove all recorded register locations for the given variable part
7820 from dataflow set SET, except for those that are identical to loc.
7821 The variable part is specified by variable's declaration or value
7822 DV and offset OFFSET. */
7823
7824 static variable **
7825 clobber_slot_part (dataflow_set *set, rtx loc, variable **slot,
7826 HOST_WIDE_INT offset, rtx set_src)
7827 {
7828 variable *var = *slot;
7829 int pos = find_variable_location_part (var, offset, NULL);
7830
7831 if (pos >= 0)
7832 {
7833 location_chain *node, *next;
7834
7835 /* Remove the register locations from the dataflow set. */
7836 next = var->var_part[pos].loc_chain;
7837 for (node = next; node; node = next)
7838 {
7839 next = node->next;
7840 if (node->loc != loc
7841 && (!flag_var_tracking_uninit
7842 || !set_src
7843 || MEM_P (set_src)
7844 || !rtx_equal_p (set_src, node->set_src)))
7845 {
7846 if (REG_P (node->loc))
7847 {
7848 attrs *anode, *anext;
7849 attrs **anextp;
7850
7851 /* Remove the variable part from the register's
7852 list, but preserve any other variable parts
7853 that might be regarded as live in that same
7854 register. */
7855 anextp = &set->regs[REGNO (node->loc)];
7856 for (anode = *anextp; anode; anode = anext)
7857 {
7858 anext = anode->next;
7859 if (dv_as_opaque (anode->dv) == dv_as_opaque (var->dv)
7860 && anode->offset == offset)
7861 {
7862 delete anode;
7863 *anextp = anext;
7864 }
7865 else
7866 anextp = &anode->next;
7867 }
7868 }
7869
7870 slot = delete_slot_part (set, node->loc, slot, offset);
7871 }
7872 }
7873 }
7874
7875 return slot;
7876 }
7877
7878 /* Remove all recorded register locations for the given variable part
7879 from dataflow set SET, except for those that are identical to loc.
7880 The variable part is specified by variable's declaration or value
7881 DV and offset OFFSET. */
7882
7883 static void
7884 clobber_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
7885 HOST_WIDE_INT offset, rtx set_src)
7886 {
7887 variable **slot;
7888
7889 if (!dv_as_opaque (dv)
7890 || (!dv_is_value_p (dv) && ! DECL_P (dv_as_decl (dv))))
7891 return;
7892
7893 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7894 if (!slot)
7895 return;
7896
7897 clobber_slot_part (set, loc, slot, offset, set_src);
7898 }
7899
7900 /* Delete the part of variable's location from dataflow set SET. The
7901 variable part is specified by its SET->vars slot SLOT and offset
7902 OFFSET and the part's location by LOC. */
7903
7904 static variable **
7905 delete_slot_part (dataflow_set *set, rtx loc, variable **slot,
7906 HOST_WIDE_INT offset)
7907 {
7908 variable *var = *slot;
7909 int pos = find_variable_location_part (var, offset, NULL);
7910
7911 if (pos >= 0)
7912 {
7913 location_chain *node, *next;
7914 location_chain **nextp;
7915 bool changed;
7916 rtx cur_loc;
7917
7918 if (shared_var_p (var, set->vars))
7919 {
7920 /* If the variable contains the location part we have to
7921 make a copy of the variable. */
7922 for (node = var->var_part[pos].loc_chain; node;
7923 node = node->next)
7924 {
7925 if ((REG_P (node->loc) && REG_P (loc)
7926 && REGNO (node->loc) == REGNO (loc))
7927 || rtx_equal_p (node->loc, loc))
7928 {
7929 slot = unshare_variable (set, slot, var,
7930 VAR_INIT_STATUS_UNKNOWN);
7931 var = *slot;
7932 break;
7933 }
7934 }
7935 }
7936
7937 if (pos == 0 && var->onepart && VAR_LOC_1PAUX (var))
7938 cur_loc = VAR_LOC_FROM (var);
7939 else
7940 cur_loc = var->var_part[pos].cur_loc;
7941
7942 /* Delete the location part. */
7943 changed = false;
7944 nextp = &var->var_part[pos].loc_chain;
7945 for (node = *nextp; node; node = next)
7946 {
7947 next = node->next;
7948 if ((REG_P (node->loc) && REG_P (loc)
7949 && REGNO (node->loc) == REGNO (loc))
7950 || rtx_equal_p (node->loc, loc))
7951 {
7952 /* If we have deleted the location which was last emitted
7953 we have to emit new location so add the variable to set
7954 of changed variables. */
7955 if (cur_loc == node->loc)
7956 {
7957 changed = true;
7958 var->var_part[pos].cur_loc = NULL;
7959 if (pos == 0 && var->onepart && VAR_LOC_1PAUX (var))
7960 VAR_LOC_FROM (var) = NULL;
7961 }
7962 delete node;
7963 *nextp = next;
7964 break;
7965 }
7966 else
7967 nextp = &node->next;
7968 }
7969
7970 if (var->var_part[pos].loc_chain == NULL)
7971 {
7972 changed = true;
7973 var->n_var_parts--;
7974 while (pos < var->n_var_parts)
7975 {
7976 var->var_part[pos] = var->var_part[pos + 1];
7977 pos++;
7978 }
7979 }
7980 if (changed)
7981 variable_was_changed (var, set);
7982 }
7983
7984 return slot;
7985 }
7986
7987 /* Delete the part of variable's location from dataflow set SET. The
7988 variable part is specified by variable's declaration or value DV
7989 and offset OFFSET and the part's location by LOC. */
7990
7991 static void
7992 delete_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
7993 HOST_WIDE_INT offset)
7994 {
7995 variable **slot = shared_hash_find_slot_noinsert (set->vars, dv);
7996 if (!slot)
7997 return;
7998
7999 delete_slot_part (set, loc, slot, offset);
8000 }
8001
8002
8003 /* Structure for passing some other parameters to function
8004 vt_expand_loc_callback. */
8005 struct expand_loc_callback_data
8006 {
8007 /* The variables and values active at this point. */
8008 variable_table_type *vars;
8009
8010 /* Stack of values and debug_exprs under expansion, and their
8011 children. */
8012 auto_vec<rtx, 4> expanding;
8013
8014 /* Stack of values and debug_exprs whose expansion hit recursion
8015 cycles. They will have VALUE_RECURSED_INTO marked when added to
8016 this list. This flag will be cleared if any of its dependencies
8017 resolves to a valid location. So, if the flag remains set at the
8018 end of the search, we know no valid location for this one can
8019 possibly exist. */
8020 auto_vec<rtx, 4> pending;
8021
8022 /* The maximum depth among the sub-expressions under expansion.
8023 Zero indicates no expansion so far. */
8024 expand_depth depth;
8025 };
8026
8027 /* Allocate the one-part auxiliary data structure for VAR, with enough
8028 room for COUNT dependencies. */
8029
8030 static void
8031 loc_exp_dep_alloc (variable *var, int count)
8032 {
8033 size_t allocsize;
8034
8035 gcc_checking_assert (var->onepart);
8036
8037 /* We can be called with COUNT == 0 to allocate the data structure
8038 without any dependencies, e.g. for the backlinks only. However,
8039 if we are specifying a COUNT, then the dependency list must have
8040 been emptied before. It would be possible to adjust pointers or
8041 force it empty here, but this is better done at an earlier point
8042 in the algorithm, so we instead leave an assertion to catch
8043 errors. */
8044 gcc_checking_assert (!count
8045 || VAR_LOC_DEP_VEC (var) == NULL
8046 || VAR_LOC_DEP_VEC (var)->is_empty ());
8047
8048 if (VAR_LOC_1PAUX (var) && VAR_LOC_DEP_VEC (var)->space (count))
8049 return;
8050
8051 allocsize = offsetof (struct onepart_aux, deps)
8052 + vec<loc_exp_dep, va_heap, vl_embed>::embedded_size (count);
8053
8054 if (VAR_LOC_1PAUX (var))
8055 {
8056 VAR_LOC_1PAUX (var) = XRESIZEVAR (struct onepart_aux,
8057 VAR_LOC_1PAUX (var), allocsize);
8058 /* If the reallocation moves the onepaux structure, the
8059 back-pointer to BACKLINKS in the first list member will still
8060 point to its old location. Adjust it. */
8061 if (VAR_LOC_DEP_LST (var))
8062 VAR_LOC_DEP_LST (var)->pprev = VAR_LOC_DEP_LSTP (var);
8063 }
8064 else
8065 {
8066 VAR_LOC_1PAUX (var) = XNEWVAR (struct onepart_aux, allocsize);
8067 *VAR_LOC_DEP_LSTP (var) = NULL;
8068 VAR_LOC_FROM (var) = NULL;
8069 VAR_LOC_DEPTH (var).complexity = 0;
8070 VAR_LOC_DEPTH (var).entryvals = 0;
8071 }
8072 VAR_LOC_DEP_VEC (var)->embedded_init (count);
8073 }
8074
8075 /* Remove all entries from the vector of active dependencies of VAR,
8076 removing them from the back-links lists too. */
8077
8078 static void
8079 loc_exp_dep_clear (variable *var)
8080 {
8081 while (VAR_LOC_DEP_VEC (var) && !VAR_LOC_DEP_VEC (var)->is_empty ())
8082 {
8083 loc_exp_dep *led = &VAR_LOC_DEP_VEC (var)->last ();
8084 if (led->next)
8085 led->next->pprev = led->pprev;
8086 if (led->pprev)
8087 *led->pprev = led->next;
8088 VAR_LOC_DEP_VEC (var)->pop ();
8089 }
8090 }
8091
8092 /* Insert an active dependency from VAR on X to the vector of
8093 dependencies, and add the corresponding back-link to X's list of
8094 back-links in VARS. */
8095
8096 static void
8097 loc_exp_insert_dep (variable *var, rtx x, variable_table_type *vars)
8098 {
8099 decl_or_value dv;
8100 variable *xvar;
8101 loc_exp_dep *led;
8102
8103 dv = dv_from_rtx (x);
8104
8105 /* ??? Build a vector of variables parallel to EXPANDING, to avoid
8106 an additional look up? */
8107 xvar = vars->find_with_hash (dv, dv_htab_hash (dv));
8108
8109 if (!xvar)
8110 {
8111 xvar = variable_from_dropped (dv, NO_INSERT);
8112 gcc_checking_assert (xvar);
8113 }
8114
8115 /* No point in adding the same backlink more than once. This may
8116 arise if say the same value appears in two complex expressions in
8117 the same loc_list, or even more than once in a single
8118 expression. */
8119 if (VAR_LOC_DEP_LST (xvar) && VAR_LOC_DEP_LST (xvar)->dv == var->dv)
8120 return;
8121
8122 if (var->onepart == NOT_ONEPART)
8123 led = new loc_exp_dep;
8124 else
8125 {
8126 loc_exp_dep empty;
8127 memset (&empty, 0, sizeof (empty));
8128 VAR_LOC_DEP_VEC (var)->quick_push (empty);
8129 led = &VAR_LOC_DEP_VEC (var)->last ();
8130 }
8131 led->dv = var->dv;
8132 led->value = x;
8133
8134 loc_exp_dep_alloc (xvar, 0);
8135 led->pprev = VAR_LOC_DEP_LSTP (xvar);
8136 led->next = *led->pprev;
8137 if (led->next)
8138 led->next->pprev = &led->next;
8139 *led->pprev = led;
8140 }
8141
8142 /* Create active dependencies of VAR on COUNT values starting at
8143 VALUE, and corresponding back-links to the entries in VARS. Return
8144 true if we found any pending-recursion results. */
8145
8146 static bool
8147 loc_exp_dep_set (variable *var, rtx result, rtx *value, int count,
8148 variable_table_type *vars)
8149 {
8150 bool pending_recursion = false;
8151
8152 gcc_checking_assert (VAR_LOC_DEP_VEC (var) == NULL
8153 || VAR_LOC_DEP_VEC (var)->is_empty ());
8154
8155 /* Set up all dependencies from last_child (as set up at the end of
8156 the loop above) to the end. */
8157 loc_exp_dep_alloc (var, count);
8158
8159 while (count--)
8160 {
8161 rtx x = *value++;
8162
8163 if (!pending_recursion)
8164 pending_recursion = !result && VALUE_RECURSED_INTO (x);
8165
8166 loc_exp_insert_dep (var, x, vars);
8167 }
8168
8169 return pending_recursion;
8170 }
8171
8172 /* Notify the back-links of IVAR that are pending recursion that we
8173 have found a non-NIL value for it, so they are cleared for another
8174 attempt to compute a current location. */
8175
8176 static void
8177 notify_dependents_of_resolved_value (variable *ivar, variable_table_type *vars)
8178 {
8179 loc_exp_dep *led, *next;
8180
8181 for (led = VAR_LOC_DEP_LST (ivar); led; led = next)
8182 {
8183 decl_or_value dv = led->dv;
8184 variable *var;
8185
8186 next = led->next;
8187
8188 if (dv_is_value_p (dv))
8189 {
8190 rtx value = dv_as_value (dv);
8191
8192 /* If we have already resolved it, leave it alone. */
8193 if (!VALUE_RECURSED_INTO (value))
8194 continue;
8195
8196 /* Check that VALUE_RECURSED_INTO, true from the test above,
8197 implies NO_LOC_P. */
8198 gcc_checking_assert (NO_LOC_P (value));
8199
8200 /* We won't notify variables that are being expanded,
8201 because their dependency list is cleared before
8202 recursing. */
8203 NO_LOC_P (value) = false;
8204 VALUE_RECURSED_INTO (value) = false;
8205
8206 gcc_checking_assert (dv_changed_p (dv));
8207 }
8208 else
8209 {
8210 gcc_checking_assert (dv_onepart_p (dv) != NOT_ONEPART);
8211 if (!dv_changed_p (dv))
8212 continue;
8213 }
8214
8215 var = vars->find_with_hash (dv, dv_htab_hash (dv));
8216
8217 if (!var)
8218 var = variable_from_dropped (dv, NO_INSERT);
8219
8220 if (var)
8221 notify_dependents_of_resolved_value (var, vars);
8222
8223 if (next)
8224 next->pprev = led->pprev;
8225 if (led->pprev)
8226 *led->pprev = next;
8227 led->next = NULL;
8228 led->pprev = NULL;
8229 }
8230 }
8231
8232 static rtx vt_expand_loc_callback (rtx x, bitmap regs,
8233 int max_depth, void *data);
8234
8235 /* Return the combined depth, when one sub-expression evaluated to
8236 BEST_DEPTH and the previous known depth was SAVED_DEPTH. */
8237
8238 static inline expand_depth
8239 update_depth (expand_depth saved_depth, expand_depth best_depth)
8240 {
8241 /* If we didn't find anything, stick with what we had. */
8242 if (!best_depth.complexity)
8243 return saved_depth;
8244
8245 /* If we found hadn't found anything, use the depth of the current
8246 expression. Do NOT add one extra level, we want to compute the
8247 maximum depth among sub-expressions. We'll increment it later,
8248 if appropriate. */
8249 if (!saved_depth.complexity)
8250 return best_depth;
8251
8252 /* Combine the entryval count so that regardless of which one we
8253 return, the entryval count is accurate. */
8254 best_depth.entryvals = saved_depth.entryvals
8255 = best_depth.entryvals + saved_depth.entryvals;
8256
8257 if (saved_depth.complexity < best_depth.complexity)
8258 return best_depth;
8259 else
8260 return saved_depth;
8261 }
8262
8263 /* Expand VAR to a location RTX, updating its cur_loc. Use REGS and
8264 DATA for cselib expand callback. If PENDRECP is given, indicate in
8265 it whether any sub-expression couldn't be fully evaluated because
8266 it is pending recursion resolution. */
8267
8268 static inline rtx
8269 vt_expand_var_loc_chain (variable *var, bitmap regs, void *data,
8270 bool *pendrecp)
8271 {
8272 struct expand_loc_callback_data *elcd
8273 = (struct expand_loc_callback_data *) data;
8274 location_chain *loc, *next;
8275 rtx result = NULL;
8276 int first_child, result_first_child, last_child;
8277 bool pending_recursion;
8278 rtx loc_from = NULL;
8279 struct elt_loc_list *cloc = NULL;
8280 expand_depth depth = { 0, 0 }, saved_depth = elcd->depth;
8281 int wanted_entryvals, found_entryvals = 0;
8282
8283 /* Clear all backlinks pointing at this, so that we're not notified
8284 while we're active. */
8285 loc_exp_dep_clear (var);
8286
8287 retry:
8288 if (var->onepart == ONEPART_VALUE)
8289 {
8290 cselib_val *val = CSELIB_VAL_PTR (dv_as_value (var->dv));
8291
8292 gcc_checking_assert (cselib_preserved_value_p (val));
8293
8294 cloc = val->locs;
8295 }
8296
8297 first_child = result_first_child = last_child
8298 = elcd->expanding.length ();
8299
8300 wanted_entryvals = found_entryvals;
8301
8302 /* Attempt to expand each available location in turn. */
8303 for (next = loc = var->n_var_parts ? var->var_part[0].loc_chain : NULL;
8304 loc || cloc; loc = next)
8305 {
8306 result_first_child = last_child;
8307
8308 if (!loc)
8309 {
8310 loc_from = cloc->loc;
8311 next = loc;
8312 cloc = cloc->next;
8313 if (unsuitable_loc (loc_from))
8314 continue;
8315 }
8316 else
8317 {
8318 loc_from = loc->loc;
8319 next = loc->next;
8320 }
8321
8322 gcc_checking_assert (!unsuitable_loc (loc_from));
8323
8324 elcd->depth.complexity = elcd->depth.entryvals = 0;
8325 result = cselib_expand_value_rtx_cb (loc_from, regs, EXPR_DEPTH,
8326 vt_expand_loc_callback, data);
8327 last_child = elcd->expanding.length ();
8328
8329 if (result)
8330 {
8331 depth = elcd->depth;
8332
8333 gcc_checking_assert (depth.complexity
8334 || result_first_child == last_child);
8335
8336 if (last_child - result_first_child != 1)
8337 {
8338 if (!depth.complexity && GET_CODE (result) == ENTRY_VALUE)
8339 depth.entryvals++;
8340 depth.complexity++;
8341 }
8342
8343 if (depth.complexity <= EXPR_USE_DEPTH)
8344 {
8345 if (depth.entryvals <= wanted_entryvals)
8346 break;
8347 else if (!found_entryvals || depth.entryvals < found_entryvals)
8348 found_entryvals = depth.entryvals;
8349 }
8350
8351 result = NULL;
8352 }
8353
8354 /* Set it up in case we leave the loop. */
8355 depth.complexity = depth.entryvals = 0;
8356 loc_from = NULL;
8357 result_first_child = first_child;
8358 }
8359
8360 if (!loc_from && wanted_entryvals < found_entryvals)
8361 {
8362 /* We found entries with ENTRY_VALUEs and skipped them. Since
8363 we could not find any expansions without ENTRY_VALUEs, but we
8364 found at least one with them, go back and get an entry with
8365 the minimum number ENTRY_VALUE count that we found. We could
8366 avoid looping, but since each sub-loc is already resolved,
8367 the re-expansion should be trivial. ??? Should we record all
8368 attempted locs as dependencies, so that we retry the
8369 expansion should any of them change, in the hope it can give
8370 us a new entry without an ENTRY_VALUE? */
8371 elcd->expanding.truncate (first_child);
8372 goto retry;
8373 }
8374
8375 /* Register all encountered dependencies as active. */
8376 pending_recursion = loc_exp_dep_set
8377 (var, result, elcd->expanding.address () + result_first_child,
8378 last_child - result_first_child, elcd->vars);
8379
8380 elcd->expanding.truncate (first_child);
8381
8382 /* Record where the expansion came from. */
8383 gcc_checking_assert (!result || !pending_recursion);
8384 VAR_LOC_FROM (var) = loc_from;
8385 VAR_LOC_DEPTH (var) = depth;
8386
8387 gcc_checking_assert (!depth.complexity == !result);
8388
8389 elcd->depth = update_depth (saved_depth, depth);
8390
8391 /* Indicate whether any of the dependencies are pending recursion
8392 resolution. */
8393 if (pendrecp)
8394 *pendrecp = pending_recursion;
8395
8396 if (!pendrecp || !pending_recursion)
8397 var->var_part[0].cur_loc = result;
8398
8399 return result;
8400 }
8401
8402 /* Callback for cselib_expand_value, that looks for expressions
8403 holding the value in the var-tracking hash tables. Return X for
8404 standard processing, anything else is to be used as-is. */
8405
8406 static rtx
8407 vt_expand_loc_callback (rtx x, bitmap regs,
8408 int max_depth ATTRIBUTE_UNUSED,
8409 void *data)
8410 {
8411 struct expand_loc_callback_data *elcd
8412 = (struct expand_loc_callback_data *) data;
8413 decl_or_value dv;
8414 variable *var;
8415 rtx result, subreg;
8416 bool pending_recursion = false;
8417 bool from_empty = false;
8418
8419 switch (GET_CODE (x))
8420 {
8421 case SUBREG:
8422 subreg = cselib_expand_value_rtx_cb (SUBREG_REG (x), regs,
8423 EXPR_DEPTH,
8424 vt_expand_loc_callback, data);
8425
8426 if (!subreg)
8427 return NULL;
8428
8429 result = simplify_gen_subreg (GET_MODE (x), subreg,
8430 GET_MODE (SUBREG_REG (x)),
8431 SUBREG_BYTE (x));
8432
8433 /* Invalid SUBREGs are ok in debug info. ??? We could try
8434 alternate expansions for the VALUE as well. */
8435 if (!result)
8436 result = gen_rtx_raw_SUBREG (GET_MODE (x), subreg, SUBREG_BYTE (x));
8437
8438 return result;
8439
8440 case DEBUG_EXPR:
8441 case VALUE:
8442 dv = dv_from_rtx (x);
8443 break;
8444
8445 default:
8446 return x;
8447 }
8448
8449 elcd->expanding.safe_push (x);
8450
8451 /* Check that VALUE_RECURSED_INTO implies NO_LOC_P. */
8452 gcc_checking_assert (!VALUE_RECURSED_INTO (x) || NO_LOC_P (x));
8453
8454 if (NO_LOC_P (x))
8455 {
8456 gcc_checking_assert (VALUE_RECURSED_INTO (x) || !dv_changed_p (dv));
8457 return NULL;
8458 }
8459
8460 var = elcd->vars->find_with_hash (dv, dv_htab_hash (dv));
8461
8462 if (!var)
8463 {
8464 from_empty = true;
8465 var = variable_from_dropped (dv, INSERT);
8466 }
8467
8468 gcc_checking_assert (var);
8469
8470 if (!dv_changed_p (dv))
8471 {
8472 gcc_checking_assert (!NO_LOC_P (x));
8473 gcc_checking_assert (var->var_part[0].cur_loc);
8474 gcc_checking_assert (VAR_LOC_1PAUX (var));
8475 gcc_checking_assert (VAR_LOC_1PAUX (var)->depth.complexity);
8476
8477 elcd->depth = update_depth (elcd->depth, VAR_LOC_1PAUX (var)->depth);
8478
8479 return var->var_part[0].cur_loc;
8480 }
8481
8482 VALUE_RECURSED_INTO (x) = true;
8483 /* This is tentative, but it makes some tests simpler. */
8484 NO_LOC_P (x) = true;
8485
8486 gcc_checking_assert (var->n_var_parts == 1 || from_empty);
8487
8488 result = vt_expand_var_loc_chain (var, regs, data, &pending_recursion);
8489
8490 if (pending_recursion)
8491 {
8492 gcc_checking_assert (!result);
8493 elcd->pending.safe_push (x);
8494 }
8495 else
8496 {
8497 NO_LOC_P (x) = !result;
8498 VALUE_RECURSED_INTO (x) = false;
8499 set_dv_changed (dv, false);
8500
8501 if (result)
8502 notify_dependents_of_resolved_value (var, elcd->vars);
8503 }
8504
8505 return result;
8506 }
8507
8508 /* While expanding variables, we may encounter recursion cycles
8509 because of mutual (possibly indirect) dependencies between two
8510 particular variables (or values), say A and B. If we're trying to
8511 expand A when we get to B, which in turn attempts to expand A, if
8512 we can't find any other expansion for B, we'll add B to this
8513 pending-recursion stack, and tentatively return NULL for its
8514 location. This tentative value will be used for any other
8515 occurrences of B, unless A gets some other location, in which case
8516 it will notify B that it is worth another try at computing a
8517 location for it, and it will use the location computed for A then.
8518 At the end of the expansion, the tentative NULL locations become
8519 final for all members of PENDING that didn't get a notification.
8520 This function performs this finalization of NULL locations. */
8521
8522 static void
8523 resolve_expansions_pending_recursion (vec<rtx, va_heap> *pending)
8524 {
8525 while (!pending->is_empty ())
8526 {
8527 rtx x = pending->pop ();
8528 decl_or_value dv;
8529
8530 if (!VALUE_RECURSED_INTO (x))
8531 continue;
8532
8533 gcc_checking_assert (NO_LOC_P (x));
8534 VALUE_RECURSED_INTO (x) = false;
8535 dv = dv_from_rtx (x);
8536 gcc_checking_assert (dv_changed_p (dv));
8537 set_dv_changed (dv, false);
8538 }
8539 }
8540
8541 /* Initialize expand_loc_callback_data D with variable hash table V.
8542 It must be a macro because of alloca (vec stack). */
8543 #define INIT_ELCD(d, v) \
8544 do \
8545 { \
8546 (d).vars = (v); \
8547 (d).depth.complexity = (d).depth.entryvals = 0; \
8548 } \
8549 while (0)
8550 /* Finalize expand_loc_callback_data D, resolved to location L. */
8551 #define FINI_ELCD(d, l) \
8552 do \
8553 { \
8554 resolve_expansions_pending_recursion (&(d).pending); \
8555 (d).pending.release (); \
8556 (d).expanding.release (); \
8557 \
8558 if ((l) && MEM_P (l)) \
8559 (l) = targetm.delegitimize_address (l); \
8560 } \
8561 while (0)
8562
8563 /* Expand VALUEs and DEBUG_EXPRs in LOC to a location, using the
8564 equivalences in VARS, updating their CUR_LOCs in the process. */
8565
8566 static rtx
8567 vt_expand_loc (rtx loc, variable_table_type *vars)
8568 {
8569 struct expand_loc_callback_data data;
8570 rtx result;
8571
8572 if (!MAY_HAVE_DEBUG_INSNS)
8573 return loc;
8574
8575 INIT_ELCD (data, vars);
8576
8577 result = cselib_expand_value_rtx_cb (loc, scratch_regs, EXPR_DEPTH,
8578 vt_expand_loc_callback, &data);
8579
8580 FINI_ELCD (data, result);
8581
8582 return result;
8583 }
8584
8585 /* Expand the one-part VARiable to a location, using the equivalences
8586 in VARS, updating their CUR_LOCs in the process. */
8587
8588 static rtx
8589 vt_expand_1pvar (variable *var, variable_table_type *vars)
8590 {
8591 struct expand_loc_callback_data data;
8592 rtx loc;
8593
8594 gcc_checking_assert (var->onepart && var->n_var_parts == 1);
8595
8596 if (!dv_changed_p (var->dv))
8597 return var->var_part[0].cur_loc;
8598
8599 INIT_ELCD (data, vars);
8600
8601 loc = vt_expand_var_loc_chain (var, scratch_regs, &data, NULL);
8602
8603 gcc_checking_assert (data.expanding.is_empty ());
8604
8605 FINI_ELCD (data, loc);
8606
8607 return loc;
8608 }
8609
8610 /* Emit the NOTE_INSN_VAR_LOCATION for variable *VARP. DATA contains
8611 additional parameters: WHERE specifies whether the note shall be emitted
8612 before or after instruction INSN. */
8613
8614 int
8615 emit_note_insn_var_location (variable **varp, emit_note_data *data)
8616 {
8617 variable *var = *varp;
8618 rtx_insn *insn = data->insn;
8619 enum emit_note_where where = data->where;
8620 variable_table_type *vars = data->vars;
8621 rtx_note *note;
8622 rtx note_vl;
8623 int i, j, n_var_parts;
8624 bool complete;
8625 enum var_init_status initialized = VAR_INIT_STATUS_UNINITIALIZED;
8626 HOST_WIDE_INT last_limit;
8627 tree type_size_unit;
8628 HOST_WIDE_INT offsets[MAX_VAR_PARTS];
8629 rtx loc[MAX_VAR_PARTS];
8630 tree decl;
8631 location_chain *lc;
8632
8633 gcc_checking_assert (var->onepart == NOT_ONEPART
8634 || var->onepart == ONEPART_VDECL);
8635
8636 decl = dv_as_decl (var->dv);
8637
8638 complete = true;
8639 last_limit = 0;
8640 n_var_parts = 0;
8641 if (!var->onepart)
8642 for (i = 0; i < var->n_var_parts; i++)
8643 if (var->var_part[i].cur_loc == NULL && var->var_part[i].loc_chain)
8644 var->var_part[i].cur_loc = var->var_part[i].loc_chain->loc;
8645 for (i = 0; i < var->n_var_parts; i++)
8646 {
8647 machine_mode mode, wider_mode;
8648 rtx loc2;
8649 HOST_WIDE_INT offset;
8650
8651 if (i == 0 && var->onepart)
8652 {
8653 gcc_checking_assert (var->n_var_parts == 1);
8654 offset = 0;
8655 initialized = VAR_INIT_STATUS_INITIALIZED;
8656 loc2 = vt_expand_1pvar (var, vars);
8657 }
8658 else
8659 {
8660 if (last_limit < VAR_PART_OFFSET (var, i))
8661 {
8662 complete = false;
8663 break;
8664 }
8665 else if (last_limit > VAR_PART_OFFSET (var, i))
8666 continue;
8667 offset = VAR_PART_OFFSET (var, i);
8668 loc2 = var->var_part[i].cur_loc;
8669 if (loc2 && GET_CODE (loc2) == MEM
8670 && GET_CODE (XEXP (loc2, 0)) == VALUE)
8671 {
8672 rtx depval = XEXP (loc2, 0);
8673
8674 loc2 = vt_expand_loc (loc2, vars);
8675
8676 if (loc2)
8677 loc_exp_insert_dep (var, depval, vars);
8678 }
8679 if (!loc2)
8680 {
8681 complete = false;
8682 continue;
8683 }
8684 gcc_checking_assert (GET_CODE (loc2) != VALUE);
8685 for (lc = var->var_part[i].loc_chain; lc; lc = lc->next)
8686 if (var->var_part[i].cur_loc == lc->loc)
8687 {
8688 initialized = lc->init;
8689 break;
8690 }
8691 gcc_assert (lc);
8692 }
8693
8694 offsets[n_var_parts] = offset;
8695 if (!loc2)
8696 {
8697 complete = false;
8698 continue;
8699 }
8700 loc[n_var_parts] = loc2;
8701 mode = GET_MODE (var->var_part[i].cur_loc);
8702 if (mode == VOIDmode && var->onepart)
8703 mode = DECL_MODE (decl);
8704 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
8705
8706 /* Attempt to merge adjacent registers or memory. */
8707 wider_mode = GET_MODE_WIDER_MODE (mode);
8708 for (j = i + 1; j < var->n_var_parts; j++)
8709 if (last_limit <= VAR_PART_OFFSET (var, j))
8710 break;
8711 if (j < var->n_var_parts
8712 && wider_mode != VOIDmode
8713 && var->var_part[j].cur_loc
8714 && mode == GET_MODE (var->var_part[j].cur_loc)
8715 && (REG_P (loc[n_var_parts]) || MEM_P (loc[n_var_parts]))
8716 && last_limit == (var->onepart ? 0 : VAR_PART_OFFSET (var, j))
8717 && (loc2 = vt_expand_loc (var->var_part[j].cur_loc, vars))
8718 && GET_CODE (loc[n_var_parts]) == GET_CODE (loc2))
8719 {
8720 rtx new_loc = NULL;
8721
8722 if (REG_P (loc[n_var_parts])
8723 && hard_regno_nregs[REGNO (loc[n_var_parts])][mode] * 2
8724 == hard_regno_nregs[REGNO (loc[n_var_parts])][wider_mode]
8725 && end_hard_regno (mode, REGNO (loc[n_var_parts]))
8726 == REGNO (loc2))
8727 {
8728 if (! WORDS_BIG_ENDIAN && ! BYTES_BIG_ENDIAN)
8729 new_loc = simplify_subreg (wider_mode, loc[n_var_parts],
8730 mode, 0);
8731 else if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
8732 new_loc = simplify_subreg (wider_mode, loc2, mode, 0);
8733 if (new_loc)
8734 {
8735 if (!REG_P (new_loc)
8736 || REGNO (new_loc) != REGNO (loc[n_var_parts]))
8737 new_loc = NULL;
8738 else
8739 REG_ATTRS (new_loc) = REG_ATTRS (loc[n_var_parts]);
8740 }
8741 }
8742 else if (MEM_P (loc[n_var_parts])
8743 && GET_CODE (XEXP (loc2, 0)) == PLUS
8744 && REG_P (XEXP (XEXP (loc2, 0), 0))
8745 && CONST_INT_P (XEXP (XEXP (loc2, 0), 1)))
8746 {
8747 if ((REG_P (XEXP (loc[n_var_parts], 0))
8748 && rtx_equal_p (XEXP (loc[n_var_parts], 0),
8749 XEXP (XEXP (loc2, 0), 0))
8750 && INTVAL (XEXP (XEXP (loc2, 0), 1))
8751 == GET_MODE_SIZE (mode))
8752 || (GET_CODE (XEXP (loc[n_var_parts], 0)) == PLUS
8753 && CONST_INT_P (XEXP (XEXP (loc[n_var_parts], 0), 1))
8754 && rtx_equal_p (XEXP (XEXP (loc[n_var_parts], 0), 0),
8755 XEXP (XEXP (loc2, 0), 0))
8756 && INTVAL (XEXP (XEXP (loc[n_var_parts], 0), 1))
8757 + GET_MODE_SIZE (mode)
8758 == INTVAL (XEXP (XEXP (loc2, 0), 1))))
8759 new_loc = adjust_address_nv (loc[n_var_parts],
8760 wider_mode, 0);
8761 }
8762
8763 if (new_loc)
8764 {
8765 loc[n_var_parts] = new_loc;
8766 mode = wider_mode;
8767 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
8768 i = j;
8769 }
8770 }
8771 ++n_var_parts;
8772 }
8773 type_size_unit = TYPE_SIZE_UNIT (TREE_TYPE (decl));
8774 if ((unsigned HOST_WIDE_INT) last_limit < TREE_INT_CST_LOW (type_size_unit))
8775 complete = false;
8776
8777 if (! flag_var_tracking_uninit)
8778 initialized = VAR_INIT_STATUS_INITIALIZED;
8779
8780 note_vl = NULL_RTX;
8781 if (!complete)
8782 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, NULL_RTX, initialized);
8783 else if (n_var_parts == 1)
8784 {
8785 rtx expr_list;
8786
8787 if (offsets[0] || GET_CODE (loc[0]) == PARALLEL)
8788 expr_list = gen_rtx_EXPR_LIST (VOIDmode, loc[0], GEN_INT (offsets[0]));
8789 else
8790 expr_list = loc[0];
8791
8792 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, expr_list, initialized);
8793 }
8794 else if (n_var_parts)
8795 {
8796 rtx parallel;
8797
8798 for (i = 0; i < n_var_parts; i++)
8799 loc[i]
8800 = gen_rtx_EXPR_LIST (VOIDmode, loc[i], GEN_INT (offsets[i]));
8801
8802 parallel = gen_rtx_PARALLEL (VOIDmode,
8803 gen_rtvec_v (n_var_parts, loc));
8804 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl,
8805 parallel, initialized);
8806 }
8807
8808 if (where != EMIT_NOTE_BEFORE_INSN)
8809 {
8810 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
8811 if (where == EMIT_NOTE_AFTER_CALL_INSN)
8812 NOTE_DURING_CALL_P (note) = true;
8813 }
8814 else
8815 {
8816 /* Make sure that the call related notes come first. */
8817 while (NEXT_INSN (insn)
8818 && NOTE_P (insn)
8819 && ((NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
8820 && NOTE_DURING_CALL_P (insn))
8821 || NOTE_KIND (insn) == NOTE_INSN_CALL_ARG_LOCATION))
8822 insn = NEXT_INSN (insn);
8823 if (NOTE_P (insn)
8824 && ((NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
8825 && NOTE_DURING_CALL_P (insn))
8826 || NOTE_KIND (insn) == NOTE_INSN_CALL_ARG_LOCATION))
8827 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
8828 else
8829 note = emit_note_before (NOTE_INSN_VAR_LOCATION, insn);
8830 }
8831 NOTE_VAR_LOCATION (note) = note_vl;
8832
8833 set_dv_changed (var->dv, false);
8834 gcc_assert (var->in_changed_variables);
8835 var->in_changed_variables = false;
8836 changed_variables->clear_slot (varp);
8837
8838 /* Continue traversing the hash table. */
8839 return 1;
8840 }
8841
8842 /* While traversing changed_variables, push onto DATA (a stack of RTX
8843 values) entries that aren't user variables. */
8844
8845 int
8846 var_track_values_to_stack (variable **slot,
8847 vec<rtx, va_heap> *changed_values_stack)
8848 {
8849 variable *var = *slot;
8850
8851 if (var->onepart == ONEPART_VALUE)
8852 changed_values_stack->safe_push (dv_as_value (var->dv));
8853 else if (var->onepart == ONEPART_DEXPR)
8854 changed_values_stack->safe_push (DECL_RTL_KNOWN_SET (dv_as_decl (var->dv)));
8855
8856 return 1;
8857 }
8858
8859 /* Remove from changed_variables the entry whose DV corresponds to
8860 value or debug_expr VAL. */
8861 static void
8862 remove_value_from_changed_variables (rtx val)
8863 {
8864 decl_or_value dv = dv_from_rtx (val);
8865 variable **slot;
8866 variable *var;
8867
8868 slot = changed_variables->find_slot_with_hash (dv, dv_htab_hash (dv),
8869 NO_INSERT);
8870 var = *slot;
8871 var->in_changed_variables = false;
8872 changed_variables->clear_slot (slot);
8873 }
8874
8875 /* If VAL (a value or debug_expr) has backlinks to variables actively
8876 dependent on it in HTAB or in CHANGED_VARIABLES, mark them as
8877 changed, adding to CHANGED_VALUES_STACK any dependencies that may
8878 have dependencies of their own to notify. */
8879
8880 static void
8881 notify_dependents_of_changed_value (rtx val, variable_table_type *htab,
8882 vec<rtx, va_heap> *changed_values_stack)
8883 {
8884 variable **slot;
8885 variable *var;
8886 loc_exp_dep *led;
8887 decl_or_value dv = dv_from_rtx (val);
8888
8889 slot = changed_variables->find_slot_with_hash (dv, dv_htab_hash (dv),
8890 NO_INSERT);
8891 if (!slot)
8892 slot = htab->find_slot_with_hash (dv, dv_htab_hash (dv), NO_INSERT);
8893 if (!slot)
8894 slot = dropped_values->find_slot_with_hash (dv, dv_htab_hash (dv),
8895 NO_INSERT);
8896 var = *slot;
8897
8898 while ((led = VAR_LOC_DEP_LST (var)))
8899 {
8900 decl_or_value ldv = led->dv;
8901 variable *ivar;
8902
8903 /* Deactivate and remove the backlink, as it was “used up”. It
8904 makes no sense to attempt to notify the same entity again:
8905 either it will be recomputed and re-register an active
8906 dependency, or it will still have the changed mark. */
8907 if (led->next)
8908 led->next->pprev = led->pprev;
8909 if (led->pprev)
8910 *led->pprev = led->next;
8911 led->next = NULL;
8912 led->pprev = NULL;
8913
8914 if (dv_changed_p (ldv))
8915 continue;
8916
8917 switch (dv_onepart_p (ldv))
8918 {
8919 case ONEPART_VALUE:
8920 case ONEPART_DEXPR:
8921 set_dv_changed (ldv, true);
8922 changed_values_stack->safe_push (dv_as_rtx (ldv));
8923 break;
8924
8925 case ONEPART_VDECL:
8926 ivar = htab->find_with_hash (ldv, dv_htab_hash (ldv));
8927 gcc_checking_assert (!VAR_LOC_DEP_LST (ivar));
8928 variable_was_changed (ivar, NULL);
8929 break;
8930
8931 case NOT_ONEPART:
8932 delete led;
8933 ivar = htab->find_with_hash (ldv, dv_htab_hash (ldv));
8934 if (ivar)
8935 {
8936 int i = ivar->n_var_parts;
8937 while (i--)
8938 {
8939 rtx loc = ivar->var_part[i].cur_loc;
8940
8941 if (loc && GET_CODE (loc) == MEM
8942 && XEXP (loc, 0) == val)
8943 {
8944 variable_was_changed (ivar, NULL);
8945 break;
8946 }
8947 }
8948 }
8949 break;
8950
8951 default:
8952 gcc_unreachable ();
8953 }
8954 }
8955 }
8956
8957 /* Take out of changed_variables any entries that don't refer to use
8958 variables. Back-propagate change notifications from values and
8959 debug_exprs to their active dependencies in HTAB or in
8960 CHANGED_VARIABLES. */
8961
8962 static void
8963 process_changed_values (variable_table_type *htab)
8964 {
8965 int i, n;
8966 rtx val;
8967 auto_vec<rtx, 20> changed_values_stack;
8968
8969 /* Move values from changed_variables to changed_values_stack. */
8970 changed_variables
8971 ->traverse <vec<rtx, va_heap>*, var_track_values_to_stack>
8972 (&changed_values_stack);
8973
8974 /* Back-propagate change notifications in values while popping
8975 them from the stack. */
8976 for (n = i = changed_values_stack.length ();
8977 i > 0; i = changed_values_stack.length ())
8978 {
8979 val = changed_values_stack.pop ();
8980 notify_dependents_of_changed_value (val, htab, &changed_values_stack);
8981
8982 /* This condition will hold when visiting each of the entries
8983 originally in changed_variables. We can't remove them
8984 earlier because this could drop the backlinks before we got a
8985 chance to use them. */
8986 if (i == n)
8987 {
8988 remove_value_from_changed_variables (val);
8989 n--;
8990 }
8991 }
8992 }
8993
8994 /* Emit NOTE_INSN_VAR_LOCATION note for each variable from a chain
8995 CHANGED_VARIABLES and delete this chain. WHERE specifies whether
8996 the notes shall be emitted before of after instruction INSN. */
8997
8998 static void
8999 emit_notes_for_changes (rtx_insn *insn, enum emit_note_where where,
9000 shared_hash *vars)
9001 {
9002 emit_note_data data;
9003 variable_table_type *htab = shared_hash_htab (vars);
9004
9005 if (!changed_variables->elements ())
9006 return;
9007
9008 if (MAY_HAVE_DEBUG_INSNS)
9009 process_changed_values (htab);
9010
9011 data.insn = insn;
9012 data.where = where;
9013 data.vars = htab;
9014
9015 changed_variables
9016 ->traverse <emit_note_data*, emit_note_insn_var_location> (&data);
9017 }
9018
9019 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it differs from the
9020 same variable in hash table DATA or is not there at all. */
9021
9022 int
9023 emit_notes_for_differences_1 (variable **slot, variable_table_type *new_vars)
9024 {
9025 variable *old_var, *new_var;
9026
9027 old_var = *slot;
9028 new_var = new_vars->find_with_hash (old_var->dv, dv_htab_hash (old_var->dv));
9029
9030 if (!new_var)
9031 {
9032 /* Variable has disappeared. */
9033 variable *empty_var = NULL;
9034
9035 if (old_var->onepart == ONEPART_VALUE
9036 || old_var->onepart == ONEPART_DEXPR)
9037 {
9038 empty_var = variable_from_dropped (old_var->dv, NO_INSERT);
9039 if (empty_var)
9040 {
9041 gcc_checking_assert (!empty_var->in_changed_variables);
9042 if (!VAR_LOC_1PAUX (old_var))
9043 {
9044 VAR_LOC_1PAUX (old_var) = VAR_LOC_1PAUX (empty_var);
9045 VAR_LOC_1PAUX (empty_var) = NULL;
9046 }
9047 else
9048 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var));
9049 }
9050 }
9051
9052 if (!empty_var)
9053 {
9054 empty_var = onepart_pool_allocate (old_var->onepart);
9055 empty_var->dv = old_var->dv;
9056 empty_var->refcount = 0;
9057 empty_var->n_var_parts = 0;
9058 empty_var->onepart = old_var->onepart;
9059 empty_var->in_changed_variables = false;
9060 }
9061
9062 if (empty_var->onepart)
9063 {
9064 /* Propagate the auxiliary data to (ultimately)
9065 changed_variables. */
9066 empty_var->var_part[0].loc_chain = NULL;
9067 empty_var->var_part[0].cur_loc = NULL;
9068 VAR_LOC_1PAUX (empty_var) = VAR_LOC_1PAUX (old_var);
9069 VAR_LOC_1PAUX (old_var) = NULL;
9070 }
9071 variable_was_changed (empty_var, NULL);
9072 /* Continue traversing the hash table. */
9073 return 1;
9074 }
9075 /* Update cur_loc and one-part auxiliary data, before new_var goes
9076 through variable_was_changed. */
9077 if (old_var != new_var && new_var->onepart)
9078 {
9079 gcc_checking_assert (VAR_LOC_1PAUX (new_var) == NULL);
9080 VAR_LOC_1PAUX (new_var) = VAR_LOC_1PAUX (old_var);
9081 VAR_LOC_1PAUX (old_var) = NULL;
9082 new_var->var_part[0].cur_loc = old_var->var_part[0].cur_loc;
9083 }
9084 if (variable_different_p (old_var, new_var))
9085 variable_was_changed (new_var, NULL);
9086
9087 /* Continue traversing the hash table. */
9088 return 1;
9089 }
9090
9091 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it is not in hash
9092 table DATA. */
9093
9094 int
9095 emit_notes_for_differences_2 (variable **slot, variable_table_type *old_vars)
9096 {
9097 variable *old_var, *new_var;
9098
9099 new_var = *slot;
9100 old_var = old_vars->find_with_hash (new_var->dv, dv_htab_hash (new_var->dv));
9101 if (!old_var)
9102 {
9103 int i;
9104 for (i = 0; i < new_var->n_var_parts; i++)
9105 new_var->var_part[i].cur_loc = NULL;
9106 variable_was_changed (new_var, NULL);
9107 }
9108
9109 /* Continue traversing the hash table. */
9110 return 1;
9111 }
9112
9113 /* Emit notes before INSN for differences between dataflow sets OLD_SET and
9114 NEW_SET. */
9115
9116 static void
9117 emit_notes_for_differences (rtx_insn *insn, dataflow_set *old_set,
9118 dataflow_set *new_set)
9119 {
9120 shared_hash_htab (old_set->vars)
9121 ->traverse <variable_table_type *, emit_notes_for_differences_1>
9122 (shared_hash_htab (new_set->vars));
9123 shared_hash_htab (new_set->vars)
9124 ->traverse <variable_table_type *, emit_notes_for_differences_2>
9125 (shared_hash_htab (old_set->vars));
9126 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, new_set->vars);
9127 }
9128
9129 /* Return the next insn after INSN that is not a NOTE_INSN_VAR_LOCATION. */
9130
9131 static rtx_insn *
9132 next_non_note_insn_var_location (rtx_insn *insn)
9133 {
9134 while (insn)
9135 {
9136 insn = NEXT_INSN (insn);
9137 if (insn == 0
9138 || !NOTE_P (insn)
9139 || NOTE_KIND (insn) != NOTE_INSN_VAR_LOCATION)
9140 break;
9141 }
9142
9143 return insn;
9144 }
9145
9146 /* Emit the notes for changes of location parts in the basic block BB. */
9147
9148 static void
9149 emit_notes_in_bb (basic_block bb, dataflow_set *set)
9150 {
9151 unsigned int i;
9152 micro_operation *mo;
9153
9154 dataflow_set_clear (set);
9155 dataflow_set_copy (set, &VTI (bb)->in);
9156
9157 FOR_EACH_VEC_ELT (VTI (bb)->mos, i, mo)
9158 {
9159 rtx_insn *insn = mo->insn;
9160 rtx_insn *next_insn = next_non_note_insn_var_location (insn);
9161
9162 switch (mo->type)
9163 {
9164 case MO_CALL:
9165 dataflow_set_clear_at_call (set, insn);
9166 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_CALL_INSN, set->vars);
9167 {
9168 rtx arguments = mo->u.loc, *p = &arguments;
9169 rtx_note *note;
9170 while (*p)
9171 {
9172 XEXP (XEXP (*p, 0), 1)
9173 = vt_expand_loc (XEXP (XEXP (*p, 0), 1),
9174 shared_hash_htab (set->vars));
9175 /* If expansion is successful, keep it in the list. */
9176 if (XEXP (XEXP (*p, 0), 1))
9177 p = &XEXP (*p, 1);
9178 /* Otherwise, if the following item is data_value for it,
9179 drop it too too. */
9180 else if (XEXP (*p, 1)
9181 && REG_P (XEXP (XEXP (*p, 0), 0))
9182 && MEM_P (XEXP (XEXP (XEXP (*p, 1), 0), 0))
9183 && REG_P (XEXP (XEXP (XEXP (XEXP (*p, 1), 0), 0),
9184 0))
9185 && REGNO (XEXP (XEXP (*p, 0), 0))
9186 == REGNO (XEXP (XEXP (XEXP (XEXP (*p, 1), 0),
9187 0), 0)))
9188 *p = XEXP (XEXP (*p, 1), 1);
9189 /* Just drop this item. */
9190 else
9191 *p = XEXP (*p, 1);
9192 }
9193 note = emit_note_after (NOTE_INSN_CALL_ARG_LOCATION, insn);
9194 NOTE_VAR_LOCATION (note) = arguments;
9195 }
9196 break;
9197
9198 case MO_USE:
9199 {
9200 rtx loc = mo->u.loc;
9201
9202 if (REG_P (loc))
9203 var_reg_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
9204 else
9205 var_mem_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
9206
9207 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
9208 }
9209 break;
9210
9211 case MO_VAL_LOC:
9212 {
9213 rtx loc = mo->u.loc;
9214 rtx val, vloc;
9215 tree var;
9216
9217 if (GET_CODE (loc) == CONCAT)
9218 {
9219 val = XEXP (loc, 0);
9220 vloc = XEXP (loc, 1);
9221 }
9222 else
9223 {
9224 val = NULL_RTX;
9225 vloc = loc;
9226 }
9227
9228 var = PAT_VAR_LOCATION_DECL (vloc);
9229
9230 clobber_variable_part (set, NULL_RTX,
9231 dv_from_decl (var), 0, NULL_RTX);
9232 if (val)
9233 {
9234 if (VAL_NEEDS_RESOLUTION (loc))
9235 val_resolve (set, val, PAT_VAR_LOCATION_LOC (vloc), insn);
9236 set_variable_part (set, val, dv_from_decl (var), 0,
9237 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
9238 INSERT);
9239 }
9240 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
9241 set_variable_part (set, PAT_VAR_LOCATION_LOC (vloc),
9242 dv_from_decl (var), 0,
9243 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
9244 INSERT);
9245
9246 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
9247 }
9248 break;
9249
9250 case MO_VAL_USE:
9251 {
9252 rtx loc = mo->u.loc;
9253 rtx val, vloc, uloc;
9254
9255 vloc = uloc = XEXP (loc, 1);
9256 val = XEXP (loc, 0);
9257
9258 if (GET_CODE (val) == CONCAT)
9259 {
9260 uloc = XEXP (val, 1);
9261 val = XEXP (val, 0);
9262 }
9263
9264 if (VAL_NEEDS_RESOLUTION (loc))
9265 val_resolve (set, val, vloc, insn);
9266 else
9267 val_store (set, val, uloc, insn, false);
9268
9269 if (VAL_HOLDS_TRACK_EXPR (loc))
9270 {
9271 if (GET_CODE (uloc) == REG)
9272 var_reg_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
9273 NULL);
9274 else if (GET_CODE (uloc) == MEM)
9275 var_mem_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
9276 NULL);
9277 }
9278
9279 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
9280 }
9281 break;
9282
9283 case MO_VAL_SET:
9284 {
9285 rtx loc = mo->u.loc;
9286 rtx val, vloc, uloc;
9287 rtx dstv, srcv;
9288
9289 vloc = loc;
9290 uloc = XEXP (vloc, 1);
9291 val = XEXP (vloc, 0);
9292 vloc = uloc;
9293
9294 if (GET_CODE (uloc) == SET)
9295 {
9296 dstv = SET_DEST (uloc);
9297 srcv = SET_SRC (uloc);
9298 }
9299 else
9300 {
9301 dstv = uloc;
9302 srcv = NULL;
9303 }
9304
9305 if (GET_CODE (val) == CONCAT)
9306 {
9307 dstv = vloc = XEXP (val, 1);
9308 val = XEXP (val, 0);
9309 }
9310
9311 if (GET_CODE (vloc) == SET)
9312 {
9313 srcv = SET_SRC (vloc);
9314
9315 gcc_assert (val != srcv);
9316 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
9317
9318 dstv = vloc = SET_DEST (vloc);
9319
9320 if (VAL_NEEDS_RESOLUTION (loc))
9321 val_resolve (set, val, srcv, insn);
9322 }
9323 else if (VAL_NEEDS_RESOLUTION (loc))
9324 {
9325 gcc_assert (GET_CODE (uloc) == SET
9326 && GET_CODE (SET_SRC (uloc)) == REG);
9327 val_resolve (set, val, SET_SRC (uloc), insn);
9328 }
9329
9330 if (VAL_HOLDS_TRACK_EXPR (loc))
9331 {
9332 if (VAL_EXPR_IS_CLOBBERED (loc))
9333 {
9334 if (REG_P (uloc))
9335 var_reg_delete (set, uloc, true);
9336 else if (MEM_P (uloc))
9337 {
9338 gcc_assert (MEM_P (dstv));
9339 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (uloc));
9340 var_mem_delete (set, dstv, true);
9341 }
9342 }
9343 else
9344 {
9345 bool copied_p = VAL_EXPR_IS_COPIED (loc);
9346 rtx src = NULL, dst = uloc;
9347 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
9348
9349 if (GET_CODE (uloc) == SET)
9350 {
9351 src = SET_SRC (uloc);
9352 dst = SET_DEST (uloc);
9353 }
9354
9355 if (copied_p)
9356 {
9357 status = find_src_status (set, src);
9358
9359 src = find_src_set_src (set, src);
9360 }
9361
9362 if (REG_P (dst))
9363 var_reg_delete_and_set (set, dst, !copied_p,
9364 status, srcv);
9365 else if (MEM_P (dst))
9366 {
9367 gcc_assert (MEM_P (dstv));
9368 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (dst));
9369 var_mem_delete_and_set (set, dstv, !copied_p,
9370 status, srcv);
9371 }
9372 }
9373 }
9374 else if (REG_P (uloc))
9375 var_regno_delete (set, REGNO (uloc));
9376 else if (MEM_P (uloc))
9377 {
9378 gcc_checking_assert (GET_CODE (vloc) == MEM);
9379 gcc_checking_assert (vloc == dstv);
9380 if (vloc != dstv)
9381 clobber_overlapping_mems (set, vloc);
9382 }
9383
9384 val_store (set, val, dstv, insn, true);
9385
9386 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9387 set->vars);
9388 }
9389 break;
9390
9391 case MO_SET:
9392 {
9393 rtx loc = mo->u.loc;
9394 rtx set_src = NULL;
9395
9396 if (GET_CODE (loc) == SET)
9397 {
9398 set_src = SET_SRC (loc);
9399 loc = SET_DEST (loc);
9400 }
9401
9402 if (REG_P (loc))
9403 var_reg_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
9404 set_src);
9405 else
9406 var_mem_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
9407 set_src);
9408
9409 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9410 set->vars);
9411 }
9412 break;
9413
9414 case MO_COPY:
9415 {
9416 rtx loc = mo->u.loc;
9417 enum var_init_status src_status;
9418 rtx set_src = NULL;
9419
9420 if (GET_CODE (loc) == SET)
9421 {
9422 set_src = SET_SRC (loc);
9423 loc = SET_DEST (loc);
9424 }
9425
9426 src_status = find_src_status (set, set_src);
9427 set_src = find_src_set_src (set, set_src);
9428
9429 if (REG_P (loc))
9430 var_reg_delete_and_set (set, loc, false, src_status, set_src);
9431 else
9432 var_mem_delete_and_set (set, loc, false, src_status, set_src);
9433
9434 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9435 set->vars);
9436 }
9437 break;
9438
9439 case MO_USE_NO_VAR:
9440 {
9441 rtx loc = mo->u.loc;
9442
9443 if (REG_P (loc))
9444 var_reg_delete (set, loc, false);
9445 else
9446 var_mem_delete (set, loc, false);
9447
9448 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
9449 }
9450 break;
9451
9452 case MO_CLOBBER:
9453 {
9454 rtx loc = mo->u.loc;
9455
9456 if (REG_P (loc))
9457 var_reg_delete (set, loc, true);
9458 else
9459 var_mem_delete (set, loc, true);
9460
9461 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9462 set->vars);
9463 }
9464 break;
9465
9466 case MO_ADJUST:
9467 set->stack_adjust += mo->u.adjust;
9468 break;
9469 }
9470 }
9471 }
9472
9473 /* Emit notes for the whole function. */
9474
9475 static void
9476 vt_emit_notes (void)
9477 {
9478 basic_block bb;
9479 dataflow_set cur;
9480
9481 gcc_assert (!changed_variables->elements ());
9482
9483 /* Free memory occupied by the out hash tables, as they aren't used
9484 anymore. */
9485 FOR_EACH_BB_FN (bb, cfun)
9486 dataflow_set_clear (&VTI (bb)->out);
9487
9488 /* Enable emitting notes by functions (mainly by set_variable_part and
9489 delete_variable_part). */
9490 emit_notes = true;
9491
9492 if (MAY_HAVE_DEBUG_INSNS)
9493 {
9494 dropped_values = new variable_table_type (cselib_get_next_uid () * 2);
9495 }
9496
9497 dataflow_set_init (&cur);
9498
9499 FOR_EACH_BB_FN (bb, cfun)
9500 {
9501 /* Emit the notes for changes of variable locations between two
9502 subsequent basic blocks. */
9503 emit_notes_for_differences (BB_HEAD (bb), &cur, &VTI (bb)->in);
9504
9505 if (MAY_HAVE_DEBUG_INSNS)
9506 local_get_addr_cache = new hash_map<rtx, rtx>;
9507
9508 /* Emit the notes for the changes in the basic block itself. */
9509 emit_notes_in_bb (bb, &cur);
9510
9511 if (MAY_HAVE_DEBUG_INSNS)
9512 delete local_get_addr_cache;
9513 local_get_addr_cache = NULL;
9514
9515 /* Free memory occupied by the in hash table, we won't need it
9516 again. */
9517 dataflow_set_clear (&VTI (bb)->in);
9518 }
9519
9520 if (flag_checking)
9521 shared_hash_htab (cur.vars)
9522 ->traverse <variable_table_type *, emit_notes_for_differences_1>
9523 (shared_hash_htab (empty_shared_hash));
9524
9525 dataflow_set_destroy (&cur);
9526
9527 if (MAY_HAVE_DEBUG_INSNS)
9528 delete dropped_values;
9529 dropped_values = NULL;
9530
9531 emit_notes = false;
9532 }
9533
9534 /* If there is a declaration and offset associated with register/memory RTL
9535 assign declaration to *DECLP and offset to *OFFSETP, and return true. */
9536
9537 static bool
9538 vt_get_decl_and_offset (rtx rtl, tree *declp, HOST_WIDE_INT *offsetp)
9539 {
9540 if (REG_P (rtl))
9541 {
9542 if (REG_ATTRS (rtl))
9543 {
9544 *declp = REG_EXPR (rtl);
9545 *offsetp = REG_OFFSET (rtl);
9546 return true;
9547 }
9548 }
9549 else if (GET_CODE (rtl) == PARALLEL)
9550 {
9551 tree decl = NULL_TREE;
9552 HOST_WIDE_INT offset = MAX_VAR_PARTS;
9553 int len = XVECLEN (rtl, 0), i;
9554
9555 for (i = 0; i < len; i++)
9556 {
9557 rtx reg = XEXP (XVECEXP (rtl, 0, i), 0);
9558 if (!REG_P (reg) || !REG_ATTRS (reg))
9559 break;
9560 if (!decl)
9561 decl = REG_EXPR (reg);
9562 if (REG_EXPR (reg) != decl)
9563 break;
9564 if (REG_OFFSET (reg) < offset)
9565 offset = REG_OFFSET (reg);
9566 }
9567
9568 if (i == len)
9569 {
9570 *declp = decl;
9571 *offsetp = offset;
9572 return true;
9573 }
9574 }
9575 else if (MEM_P (rtl))
9576 {
9577 if (MEM_ATTRS (rtl))
9578 {
9579 *declp = MEM_EXPR (rtl);
9580 *offsetp = INT_MEM_OFFSET (rtl);
9581 return true;
9582 }
9583 }
9584 return false;
9585 }
9586
9587 /* Record the value for the ENTRY_VALUE of RTL as a global equivalence
9588 of VAL. */
9589
9590 static void
9591 record_entry_value (cselib_val *val, rtx rtl)
9592 {
9593 rtx ev = gen_rtx_ENTRY_VALUE (GET_MODE (rtl));
9594
9595 ENTRY_VALUE_EXP (ev) = rtl;
9596
9597 cselib_add_permanent_equiv (val, ev, get_insns ());
9598 }
9599
9600 /* Insert function parameter PARM in IN and OUT sets of ENTRY_BLOCK. */
9601
9602 static void
9603 vt_add_function_parameter (tree parm)
9604 {
9605 rtx decl_rtl = DECL_RTL_IF_SET (parm);
9606 rtx incoming = DECL_INCOMING_RTL (parm);
9607 tree decl;
9608 machine_mode mode;
9609 HOST_WIDE_INT offset;
9610 dataflow_set *out;
9611 decl_or_value dv;
9612
9613 if (TREE_CODE (parm) != PARM_DECL)
9614 return;
9615
9616 if (!decl_rtl || !incoming)
9617 return;
9618
9619 if (GET_MODE (decl_rtl) == BLKmode || GET_MODE (incoming) == BLKmode)
9620 return;
9621
9622 /* If there is a DRAP register or a pseudo in internal_arg_pointer,
9623 rewrite the incoming location of parameters passed on the stack
9624 into MEMs based on the argument pointer, so that incoming doesn't
9625 depend on a pseudo. */
9626 if (MEM_P (incoming)
9627 && (XEXP (incoming, 0) == crtl->args.internal_arg_pointer
9628 || (GET_CODE (XEXP (incoming, 0)) == PLUS
9629 && XEXP (XEXP (incoming, 0), 0)
9630 == crtl->args.internal_arg_pointer
9631 && CONST_INT_P (XEXP (XEXP (incoming, 0), 1)))))
9632 {
9633 HOST_WIDE_INT off = -FIRST_PARM_OFFSET (current_function_decl);
9634 if (GET_CODE (XEXP (incoming, 0)) == PLUS)
9635 off += INTVAL (XEXP (XEXP (incoming, 0), 1));
9636 incoming
9637 = replace_equiv_address_nv (incoming,
9638 plus_constant (Pmode,
9639 arg_pointer_rtx, off));
9640 }
9641
9642 #ifdef HAVE_window_save
9643 /* DECL_INCOMING_RTL uses the INCOMING_REGNO of parameter registers.
9644 If the target machine has an explicit window save instruction, the
9645 actual entry value is the corresponding OUTGOING_REGNO instead. */
9646 if (HAVE_window_save && !crtl->uses_only_leaf_regs)
9647 {
9648 if (REG_P (incoming)
9649 && HARD_REGISTER_P (incoming)
9650 && OUTGOING_REGNO (REGNO (incoming)) != REGNO (incoming))
9651 {
9652 parm_reg p;
9653 p.incoming = incoming;
9654 incoming
9655 = gen_rtx_REG_offset (incoming, GET_MODE (incoming),
9656 OUTGOING_REGNO (REGNO (incoming)), 0);
9657 p.outgoing = incoming;
9658 vec_safe_push (windowed_parm_regs, p);
9659 }
9660 else if (GET_CODE (incoming) == PARALLEL)
9661 {
9662 rtx outgoing
9663 = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (XVECLEN (incoming, 0)));
9664 int i;
9665
9666 for (i = 0; i < XVECLEN (incoming, 0); i++)
9667 {
9668 rtx reg = XEXP (XVECEXP (incoming, 0, i), 0);
9669 parm_reg p;
9670 p.incoming = reg;
9671 reg = gen_rtx_REG_offset (reg, GET_MODE (reg),
9672 OUTGOING_REGNO (REGNO (reg)), 0);
9673 p.outgoing = reg;
9674 XVECEXP (outgoing, 0, i)
9675 = gen_rtx_EXPR_LIST (VOIDmode, reg,
9676 XEXP (XVECEXP (incoming, 0, i), 1));
9677 vec_safe_push (windowed_parm_regs, p);
9678 }
9679
9680 incoming = outgoing;
9681 }
9682 else if (MEM_P (incoming)
9683 && REG_P (XEXP (incoming, 0))
9684 && HARD_REGISTER_P (XEXP (incoming, 0)))
9685 {
9686 rtx reg = XEXP (incoming, 0);
9687 if (OUTGOING_REGNO (REGNO (reg)) != REGNO (reg))
9688 {
9689 parm_reg p;
9690 p.incoming = reg;
9691 reg = gen_raw_REG (GET_MODE (reg), OUTGOING_REGNO (REGNO (reg)));
9692 p.outgoing = reg;
9693 vec_safe_push (windowed_parm_regs, p);
9694 incoming = replace_equiv_address_nv (incoming, reg);
9695 }
9696 }
9697 }
9698 #endif
9699
9700 if (!vt_get_decl_and_offset (incoming, &decl, &offset))
9701 {
9702 if (MEM_P (incoming))
9703 {
9704 /* This means argument is passed by invisible reference. */
9705 offset = 0;
9706 decl = parm;
9707 }
9708 else
9709 {
9710 if (!vt_get_decl_and_offset (decl_rtl, &decl, &offset))
9711 return;
9712 offset += byte_lowpart_offset (GET_MODE (incoming),
9713 GET_MODE (decl_rtl));
9714 }
9715 }
9716
9717 if (!decl)
9718 return;
9719
9720 if (parm != decl)
9721 {
9722 /* If that DECL_RTL wasn't a pseudo that got spilled to
9723 memory, bail out. Otherwise, the spill slot sharing code
9724 will force the memory to reference spill_slot_decl (%sfp),
9725 so we don't match above. That's ok, the pseudo must have
9726 referenced the entire parameter, so just reset OFFSET. */
9727 if (decl != get_spill_slot_decl (false))
9728 return;
9729 offset = 0;
9730 }
9731
9732 if (!track_loc_p (incoming, parm, offset, false, &mode, &offset))
9733 return;
9734
9735 out = &VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->out;
9736
9737 dv = dv_from_decl (parm);
9738
9739 if (target_for_debug_bind (parm)
9740 /* We can't deal with these right now, because this kind of
9741 variable is single-part. ??? We could handle parallels
9742 that describe multiple locations for the same single
9743 value, but ATM we don't. */
9744 && GET_CODE (incoming) != PARALLEL)
9745 {
9746 cselib_val *val;
9747 rtx lowpart;
9748
9749 /* ??? We shouldn't ever hit this, but it may happen because
9750 arguments passed by invisible reference aren't dealt with
9751 above: incoming-rtl will have Pmode rather than the
9752 expected mode for the type. */
9753 if (offset)
9754 return;
9755
9756 lowpart = var_lowpart (mode, incoming);
9757 if (!lowpart)
9758 return;
9759
9760 val = cselib_lookup_from_insn (lowpart, mode, true,
9761 VOIDmode, get_insns ());
9762
9763 /* ??? Float-typed values in memory are not handled by
9764 cselib. */
9765 if (val)
9766 {
9767 preserve_value (val);
9768 set_variable_part (out, val->val_rtx, dv, offset,
9769 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9770 dv = dv_from_value (val->val_rtx);
9771 }
9772
9773 if (MEM_P (incoming))
9774 {
9775 val = cselib_lookup_from_insn (XEXP (incoming, 0), mode, true,
9776 VOIDmode, get_insns ());
9777 if (val)
9778 {
9779 preserve_value (val);
9780 incoming = replace_equiv_address_nv (incoming, val->val_rtx);
9781 }
9782 }
9783 }
9784
9785 if (REG_P (incoming))
9786 {
9787 incoming = var_lowpart (mode, incoming);
9788 gcc_assert (REGNO (incoming) < FIRST_PSEUDO_REGISTER);
9789 attrs_list_insert (&out->regs[REGNO (incoming)], dv, offset,
9790 incoming);
9791 set_variable_part (out, incoming, dv, offset,
9792 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9793 if (dv_is_value_p (dv))
9794 {
9795 record_entry_value (CSELIB_VAL_PTR (dv_as_value (dv)), incoming);
9796 if (TREE_CODE (TREE_TYPE (parm)) == REFERENCE_TYPE
9797 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_TYPE (parm))))
9798 {
9799 machine_mode indmode
9800 = TYPE_MODE (TREE_TYPE (TREE_TYPE (parm)));
9801 rtx mem = gen_rtx_MEM (indmode, incoming);
9802 cselib_val *val = cselib_lookup_from_insn (mem, indmode, true,
9803 VOIDmode,
9804 get_insns ());
9805 if (val)
9806 {
9807 preserve_value (val);
9808 record_entry_value (val, mem);
9809 set_variable_part (out, mem, dv_from_value (val->val_rtx), 0,
9810 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9811 }
9812 }
9813 }
9814 }
9815 else if (GET_CODE (incoming) == PARALLEL && !dv_onepart_p (dv))
9816 {
9817 int i;
9818
9819 for (i = 0; i < XVECLEN (incoming, 0); i++)
9820 {
9821 rtx reg = XEXP (XVECEXP (incoming, 0, i), 0);
9822 offset = REG_OFFSET (reg);
9823 gcc_assert (REGNO (reg) < FIRST_PSEUDO_REGISTER);
9824 attrs_list_insert (&out->regs[REGNO (reg)], dv, offset, reg);
9825 set_variable_part (out, reg, dv, offset,
9826 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9827 }
9828 }
9829 else if (MEM_P (incoming))
9830 {
9831 incoming = var_lowpart (mode, incoming);
9832 set_variable_part (out, incoming, dv, offset,
9833 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9834 }
9835 }
9836
9837 /* Insert function parameters to IN and OUT sets of ENTRY_BLOCK. */
9838
9839 static void
9840 vt_add_function_parameters (void)
9841 {
9842 tree parm;
9843
9844 for (parm = DECL_ARGUMENTS (current_function_decl);
9845 parm; parm = DECL_CHAIN (parm))
9846 if (!POINTER_BOUNDS_P (parm))
9847 vt_add_function_parameter (parm);
9848
9849 if (DECL_HAS_VALUE_EXPR_P (DECL_RESULT (current_function_decl)))
9850 {
9851 tree vexpr = DECL_VALUE_EXPR (DECL_RESULT (current_function_decl));
9852
9853 if (TREE_CODE (vexpr) == INDIRECT_REF)
9854 vexpr = TREE_OPERAND (vexpr, 0);
9855
9856 if (TREE_CODE (vexpr) == PARM_DECL
9857 && DECL_ARTIFICIAL (vexpr)
9858 && !DECL_IGNORED_P (vexpr)
9859 && DECL_NAMELESS (vexpr))
9860 vt_add_function_parameter (vexpr);
9861 }
9862 }
9863
9864 /* Initialize cfa_base_rtx, create a preserved VALUE for it and
9865 ensure it isn't flushed during cselib_reset_table.
9866 Can be called only if frame_pointer_rtx resp. arg_pointer_rtx
9867 has been eliminated. */
9868
9869 static void
9870 vt_init_cfa_base (void)
9871 {
9872 cselib_val *val;
9873
9874 #ifdef FRAME_POINTER_CFA_OFFSET
9875 cfa_base_rtx = frame_pointer_rtx;
9876 cfa_base_offset = -FRAME_POINTER_CFA_OFFSET (current_function_decl);
9877 #else
9878 cfa_base_rtx = arg_pointer_rtx;
9879 cfa_base_offset = -ARG_POINTER_CFA_OFFSET (current_function_decl);
9880 #endif
9881 if (cfa_base_rtx == hard_frame_pointer_rtx
9882 || !fixed_regs[REGNO (cfa_base_rtx)])
9883 {
9884 cfa_base_rtx = NULL_RTX;
9885 return;
9886 }
9887 if (!MAY_HAVE_DEBUG_INSNS)
9888 return;
9889
9890 /* Tell alias analysis that cfa_base_rtx should share
9891 find_base_term value with stack pointer or hard frame pointer. */
9892 if (!frame_pointer_needed)
9893 vt_equate_reg_base_value (cfa_base_rtx, stack_pointer_rtx);
9894 else if (!crtl->stack_realign_tried)
9895 vt_equate_reg_base_value (cfa_base_rtx, hard_frame_pointer_rtx);
9896
9897 val = cselib_lookup_from_insn (cfa_base_rtx, GET_MODE (cfa_base_rtx), 1,
9898 VOIDmode, get_insns ());
9899 preserve_value (val);
9900 cselib_preserve_cfa_base_value (val, REGNO (cfa_base_rtx));
9901 }
9902
9903 /* Allocate and initialize the data structures for variable tracking
9904 and parse the RTL to get the micro operations. */
9905
9906 static bool
9907 vt_initialize (void)
9908 {
9909 basic_block bb;
9910 HOST_WIDE_INT fp_cfa_offset = -1;
9911
9912 alloc_aux_for_blocks (sizeof (variable_tracking_info));
9913
9914 empty_shared_hash = shared_hash_pool.allocate ();
9915 empty_shared_hash->refcount = 1;
9916 empty_shared_hash->htab = new variable_table_type (1);
9917 changed_variables = new variable_table_type (10);
9918
9919 /* Init the IN and OUT sets. */
9920 FOR_ALL_BB_FN (bb, cfun)
9921 {
9922 VTI (bb)->visited = false;
9923 VTI (bb)->flooded = false;
9924 dataflow_set_init (&VTI (bb)->in);
9925 dataflow_set_init (&VTI (bb)->out);
9926 VTI (bb)->permp = NULL;
9927 }
9928
9929 if (MAY_HAVE_DEBUG_INSNS)
9930 {
9931 cselib_init (CSELIB_RECORD_MEMORY | CSELIB_PRESERVE_CONSTANTS);
9932 scratch_regs = BITMAP_ALLOC (NULL);
9933 preserved_values.create (256);
9934 global_get_addr_cache = new hash_map<rtx, rtx>;
9935 }
9936 else
9937 {
9938 scratch_regs = NULL;
9939 global_get_addr_cache = NULL;
9940 }
9941
9942 if (MAY_HAVE_DEBUG_INSNS)
9943 {
9944 rtx reg, expr;
9945 int ofst;
9946 cselib_val *val;
9947
9948 #ifdef FRAME_POINTER_CFA_OFFSET
9949 reg = frame_pointer_rtx;
9950 ofst = FRAME_POINTER_CFA_OFFSET (current_function_decl);
9951 #else
9952 reg = arg_pointer_rtx;
9953 ofst = ARG_POINTER_CFA_OFFSET (current_function_decl);
9954 #endif
9955
9956 ofst -= INCOMING_FRAME_SP_OFFSET;
9957
9958 val = cselib_lookup_from_insn (reg, GET_MODE (reg), 1,
9959 VOIDmode, get_insns ());
9960 preserve_value (val);
9961 if (reg != hard_frame_pointer_rtx && fixed_regs[REGNO (reg)])
9962 cselib_preserve_cfa_base_value (val, REGNO (reg));
9963 expr = plus_constant (GET_MODE (stack_pointer_rtx),
9964 stack_pointer_rtx, -ofst);
9965 cselib_add_permanent_equiv (val, expr, get_insns ());
9966
9967 if (ofst)
9968 {
9969 val = cselib_lookup_from_insn (stack_pointer_rtx,
9970 GET_MODE (stack_pointer_rtx), 1,
9971 VOIDmode, get_insns ());
9972 preserve_value (val);
9973 expr = plus_constant (GET_MODE (reg), reg, ofst);
9974 cselib_add_permanent_equiv (val, expr, get_insns ());
9975 }
9976 }
9977
9978 /* In order to factor out the adjustments made to the stack pointer or to
9979 the hard frame pointer and thus be able to use DW_OP_fbreg operations
9980 instead of individual location lists, we're going to rewrite MEMs based
9981 on them into MEMs based on the CFA by de-eliminating stack_pointer_rtx
9982 or hard_frame_pointer_rtx to the virtual CFA pointer frame_pointer_rtx
9983 resp. arg_pointer_rtx. We can do this either when there is no frame
9984 pointer in the function and stack adjustments are consistent for all
9985 basic blocks or when there is a frame pointer and no stack realignment.
9986 But we first have to check that frame_pointer_rtx resp. arg_pointer_rtx
9987 has been eliminated. */
9988 if (!frame_pointer_needed)
9989 {
9990 rtx reg, elim;
9991
9992 if (!vt_stack_adjustments ())
9993 return false;
9994
9995 #ifdef FRAME_POINTER_CFA_OFFSET
9996 reg = frame_pointer_rtx;
9997 #else
9998 reg = arg_pointer_rtx;
9999 #endif
10000 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10001 if (elim != reg)
10002 {
10003 if (GET_CODE (elim) == PLUS)
10004 elim = XEXP (elim, 0);
10005 if (elim == stack_pointer_rtx)
10006 vt_init_cfa_base ();
10007 }
10008 }
10009 else if (!crtl->stack_realign_tried)
10010 {
10011 rtx reg, elim;
10012
10013 #ifdef FRAME_POINTER_CFA_OFFSET
10014 reg = frame_pointer_rtx;
10015 fp_cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
10016 #else
10017 reg = arg_pointer_rtx;
10018 fp_cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
10019 #endif
10020 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10021 if (elim != reg)
10022 {
10023 if (GET_CODE (elim) == PLUS)
10024 {
10025 fp_cfa_offset -= INTVAL (XEXP (elim, 1));
10026 elim = XEXP (elim, 0);
10027 }
10028 if (elim != hard_frame_pointer_rtx)
10029 fp_cfa_offset = -1;
10030 }
10031 else
10032 fp_cfa_offset = -1;
10033 }
10034
10035 /* If the stack is realigned and a DRAP register is used, we're going to
10036 rewrite MEMs based on it representing incoming locations of parameters
10037 passed on the stack into MEMs based on the argument pointer. Although
10038 we aren't going to rewrite other MEMs, we still need to initialize the
10039 virtual CFA pointer in order to ensure that the argument pointer will
10040 be seen as a constant throughout the function.
10041
10042 ??? This doesn't work if FRAME_POINTER_CFA_OFFSET is defined. */
10043 else if (stack_realign_drap)
10044 {
10045 rtx reg, elim;
10046
10047 #ifdef FRAME_POINTER_CFA_OFFSET
10048 reg = frame_pointer_rtx;
10049 #else
10050 reg = arg_pointer_rtx;
10051 #endif
10052 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10053 if (elim != reg)
10054 {
10055 if (GET_CODE (elim) == PLUS)
10056 elim = XEXP (elim, 0);
10057 if (elim == hard_frame_pointer_rtx)
10058 vt_init_cfa_base ();
10059 }
10060 }
10061
10062 hard_frame_pointer_adjustment = -1;
10063
10064 vt_add_function_parameters ();
10065
10066 FOR_EACH_BB_FN (bb, cfun)
10067 {
10068 rtx_insn *insn;
10069 HOST_WIDE_INT pre, post = 0;
10070 basic_block first_bb, last_bb;
10071
10072 if (MAY_HAVE_DEBUG_INSNS)
10073 {
10074 cselib_record_sets_hook = add_with_sets;
10075 if (dump_file && (dump_flags & TDF_DETAILS))
10076 fprintf (dump_file, "first value: %i\n",
10077 cselib_get_next_uid ());
10078 }
10079
10080 first_bb = bb;
10081 for (;;)
10082 {
10083 edge e;
10084 if (bb->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
10085 || ! single_pred_p (bb->next_bb))
10086 break;
10087 e = find_edge (bb, bb->next_bb);
10088 if (! e || (e->flags & EDGE_FALLTHRU) == 0)
10089 break;
10090 bb = bb->next_bb;
10091 }
10092 last_bb = bb;
10093
10094 /* Add the micro-operations to the vector. */
10095 FOR_BB_BETWEEN (bb, first_bb, last_bb->next_bb, next_bb)
10096 {
10097 HOST_WIDE_INT offset = VTI (bb)->out.stack_adjust;
10098 VTI (bb)->out.stack_adjust = VTI (bb)->in.stack_adjust;
10099 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
10100 insn = NEXT_INSN (insn))
10101 {
10102 if (INSN_P (insn))
10103 {
10104 if (!frame_pointer_needed)
10105 {
10106 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
10107 if (pre)
10108 {
10109 micro_operation mo;
10110 mo.type = MO_ADJUST;
10111 mo.u.adjust = pre;
10112 mo.insn = insn;
10113 if (dump_file && (dump_flags & TDF_DETAILS))
10114 log_op_type (PATTERN (insn), bb, insn,
10115 MO_ADJUST, dump_file);
10116 VTI (bb)->mos.safe_push (mo);
10117 VTI (bb)->out.stack_adjust += pre;
10118 }
10119 }
10120
10121 cselib_hook_called = false;
10122 adjust_insn (bb, insn);
10123 if (MAY_HAVE_DEBUG_INSNS)
10124 {
10125 if (CALL_P (insn))
10126 prepare_call_arguments (bb, insn);
10127 cselib_process_insn (insn);
10128 if (dump_file && (dump_flags & TDF_DETAILS))
10129 {
10130 print_rtl_single (dump_file, insn);
10131 dump_cselib_table (dump_file);
10132 }
10133 }
10134 if (!cselib_hook_called)
10135 add_with_sets (insn, 0, 0);
10136 cancel_changes (0);
10137
10138 if (!frame_pointer_needed && post)
10139 {
10140 micro_operation mo;
10141 mo.type = MO_ADJUST;
10142 mo.u.adjust = post;
10143 mo.insn = insn;
10144 if (dump_file && (dump_flags & TDF_DETAILS))
10145 log_op_type (PATTERN (insn), bb, insn,
10146 MO_ADJUST, dump_file);
10147 VTI (bb)->mos.safe_push (mo);
10148 VTI (bb)->out.stack_adjust += post;
10149 }
10150
10151 if (fp_cfa_offset != -1
10152 && hard_frame_pointer_adjustment == -1
10153 && fp_setter_insn (insn))
10154 {
10155 vt_init_cfa_base ();
10156 hard_frame_pointer_adjustment = fp_cfa_offset;
10157 /* Disassociate sp from fp now. */
10158 if (MAY_HAVE_DEBUG_INSNS)
10159 {
10160 cselib_val *v;
10161 cselib_invalidate_rtx (stack_pointer_rtx);
10162 v = cselib_lookup (stack_pointer_rtx, Pmode, 1,
10163 VOIDmode);
10164 if (v && !cselib_preserved_value_p (v))
10165 {
10166 cselib_set_value_sp_based (v);
10167 preserve_value (v);
10168 }
10169 }
10170 }
10171 }
10172 }
10173 gcc_assert (offset == VTI (bb)->out.stack_adjust);
10174 }
10175
10176 bb = last_bb;
10177
10178 if (MAY_HAVE_DEBUG_INSNS)
10179 {
10180 cselib_preserve_only_values ();
10181 cselib_reset_table (cselib_get_next_uid ());
10182 cselib_record_sets_hook = NULL;
10183 }
10184 }
10185
10186 hard_frame_pointer_adjustment = -1;
10187 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->flooded = true;
10188 cfa_base_rtx = NULL_RTX;
10189 return true;
10190 }
10191
10192 /* This is *not* reset after each function. It gives each
10193 NOTE_INSN_DELETED_DEBUG_LABEL in the entire compilation
10194 a unique label number. */
10195
10196 static int debug_label_num = 1;
10197
10198 /* Get rid of all debug insns from the insn stream. */
10199
10200 static void
10201 delete_debug_insns (void)
10202 {
10203 basic_block bb;
10204 rtx_insn *insn, *next;
10205
10206 if (!MAY_HAVE_DEBUG_INSNS)
10207 return;
10208
10209 FOR_EACH_BB_FN (bb, cfun)
10210 {
10211 FOR_BB_INSNS_SAFE (bb, insn, next)
10212 if (DEBUG_INSN_P (insn))
10213 {
10214 tree decl = INSN_VAR_LOCATION_DECL (insn);
10215 if (TREE_CODE (decl) == LABEL_DECL
10216 && DECL_NAME (decl)
10217 && !DECL_RTL_SET_P (decl))
10218 {
10219 PUT_CODE (insn, NOTE);
10220 NOTE_KIND (insn) = NOTE_INSN_DELETED_DEBUG_LABEL;
10221 NOTE_DELETED_LABEL_NAME (insn)
10222 = IDENTIFIER_POINTER (DECL_NAME (decl));
10223 SET_DECL_RTL (decl, insn);
10224 CODE_LABEL_NUMBER (insn) = debug_label_num++;
10225 }
10226 else
10227 delete_insn (insn);
10228 }
10229 }
10230 }
10231
10232 /* Run a fast, BB-local only version of var tracking, to take care of
10233 information that we don't do global analysis on, such that not all
10234 information is lost. If SKIPPED holds, we're skipping the global
10235 pass entirely, so we should try to use information it would have
10236 handled as well.. */
10237
10238 static void
10239 vt_debug_insns_local (bool skipped ATTRIBUTE_UNUSED)
10240 {
10241 /* ??? Just skip it all for now. */
10242 delete_debug_insns ();
10243 }
10244
10245 /* Free the data structures needed for variable tracking. */
10246
10247 static void
10248 vt_finalize (void)
10249 {
10250 basic_block bb;
10251
10252 FOR_EACH_BB_FN (bb, cfun)
10253 {
10254 VTI (bb)->mos.release ();
10255 }
10256
10257 FOR_ALL_BB_FN (bb, cfun)
10258 {
10259 dataflow_set_destroy (&VTI (bb)->in);
10260 dataflow_set_destroy (&VTI (bb)->out);
10261 if (VTI (bb)->permp)
10262 {
10263 dataflow_set_destroy (VTI (bb)->permp);
10264 XDELETE (VTI (bb)->permp);
10265 }
10266 }
10267 free_aux_for_blocks ();
10268 delete empty_shared_hash->htab;
10269 empty_shared_hash->htab = NULL;
10270 delete changed_variables;
10271 changed_variables = NULL;
10272 attrs_pool.release ();
10273 var_pool.release ();
10274 location_chain_pool.release ();
10275 shared_hash_pool.release ();
10276
10277 if (MAY_HAVE_DEBUG_INSNS)
10278 {
10279 if (global_get_addr_cache)
10280 delete global_get_addr_cache;
10281 global_get_addr_cache = NULL;
10282 loc_exp_dep_pool.release ();
10283 valvar_pool.release ();
10284 preserved_values.release ();
10285 cselib_finish ();
10286 BITMAP_FREE (scratch_regs);
10287 scratch_regs = NULL;
10288 }
10289
10290 #ifdef HAVE_window_save
10291 vec_free (windowed_parm_regs);
10292 #endif
10293
10294 if (vui_vec)
10295 XDELETEVEC (vui_vec);
10296 vui_vec = NULL;
10297 vui_allocated = 0;
10298 }
10299
10300 /* The entry point to variable tracking pass. */
10301
10302 static inline unsigned int
10303 variable_tracking_main_1 (void)
10304 {
10305 bool success;
10306
10307 if (flag_var_tracking_assignments < 0
10308 /* Var-tracking right now assumes the IR doesn't contain
10309 any pseudos at this point. */
10310 || targetm.no_register_allocation)
10311 {
10312 delete_debug_insns ();
10313 return 0;
10314 }
10315
10316 if (n_basic_blocks_for_fn (cfun) > 500 &&
10317 n_edges_for_fn (cfun) / n_basic_blocks_for_fn (cfun) >= 20)
10318 {
10319 vt_debug_insns_local (true);
10320 return 0;
10321 }
10322
10323 mark_dfs_back_edges ();
10324 if (!vt_initialize ())
10325 {
10326 vt_finalize ();
10327 vt_debug_insns_local (true);
10328 return 0;
10329 }
10330
10331 success = vt_find_locations ();
10332
10333 if (!success && flag_var_tracking_assignments > 0)
10334 {
10335 vt_finalize ();
10336
10337 delete_debug_insns ();
10338
10339 /* This is later restored by our caller. */
10340 flag_var_tracking_assignments = 0;
10341
10342 success = vt_initialize ();
10343 gcc_assert (success);
10344
10345 success = vt_find_locations ();
10346 }
10347
10348 if (!success)
10349 {
10350 vt_finalize ();
10351 vt_debug_insns_local (false);
10352 return 0;
10353 }
10354
10355 if (dump_file && (dump_flags & TDF_DETAILS))
10356 {
10357 dump_dataflow_sets ();
10358 dump_reg_info (dump_file);
10359 dump_flow_info (dump_file, dump_flags);
10360 }
10361
10362 timevar_push (TV_VAR_TRACKING_EMIT);
10363 vt_emit_notes ();
10364 timevar_pop (TV_VAR_TRACKING_EMIT);
10365
10366 vt_finalize ();
10367 vt_debug_insns_local (false);
10368 return 0;
10369 }
10370
10371 unsigned int
10372 variable_tracking_main (void)
10373 {
10374 unsigned int ret;
10375 int save = flag_var_tracking_assignments;
10376
10377 ret = variable_tracking_main_1 ();
10378
10379 flag_var_tracking_assignments = save;
10380
10381 return ret;
10382 }
10383 \f
10384 namespace {
10385
10386 const pass_data pass_data_variable_tracking =
10387 {
10388 RTL_PASS, /* type */
10389 "vartrack", /* name */
10390 OPTGROUP_NONE, /* optinfo_flags */
10391 TV_VAR_TRACKING, /* tv_id */
10392 0, /* properties_required */
10393 0, /* properties_provided */
10394 0, /* properties_destroyed */
10395 0, /* todo_flags_start */
10396 0, /* todo_flags_finish */
10397 };
10398
10399 class pass_variable_tracking : public rtl_opt_pass
10400 {
10401 public:
10402 pass_variable_tracking (gcc::context *ctxt)
10403 : rtl_opt_pass (pass_data_variable_tracking, ctxt)
10404 {}
10405
10406 /* opt_pass methods: */
10407 virtual bool gate (function *)
10408 {
10409 return (flag_var_tracking && !targetm.delay_vartrack);
10410 }
10411
10412 virtual unsigned int execute (function *)
10413 {
10414 return variable_tracking_main ();
10415 }
10416
10417 }; // class pass_variable_tracking
10418
10419 } // anon namespace
10420
10421 rtl_opt_pass *
10422 make_pass_variable_tracking (gcc::context *ctxt)
10423 {
10424 return new pass_variable_tracking (ctxt);
10425 }