]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/var-tracking.c
[IEPM] Introduce inline entry point markers
[thirdparty/gcc.git] / gcc / var-tracking.c
1 /* Variable tracking routines for the GNU compiler.
2 Copyright (C) 2002-2018 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file contains the variable tracking pass. It computes where
21 variables are located (which registers or where in memory) at each position
22 in instruction stream and emits notes describing the locations.
23 Debug information (DWARF2 location lists) is finally generated from
24 these notes.
25 With this debug information, it is possible to show variables
26 even when debugging optimized code.
27
28 How does the variable tracking pass work?
29
30 First, it scans RTL code for uses, stores and clobbers (register/memory
31 references in instructions), for call insns and for stack adjustments
32 separately for each basic block and saves them to an array of micro
33 operations.
34 The micro operations of one instruction are ordered so that
35 pre-modifying stack adjustment < use < use with no var < call insn <
36 < clobber < set < post-modifying stack adjustment
37
38 Then, a forward dataflow analysis is performed to find out how locations
39 of variables change through code and to propagate the variable locations
40 along control flow graph.
41 The IN set for basic block BB is computed as a union of OUT sets of BB's
42 predecessors, the OUT set for BB is copied from the IN set for BB and
43 is changed according to micro operations in BB.
44
45 The IN and OUT sets for basic blocks consist of a current stack adjustment
46 (used for adjusting offset of variables addressed using stack pointer),
47 the table of structures describing the locations of parts of a variable
48 and for each physical register a linked list for each physical register.
49 The linked list is a list of variable parts stored in the register,
50 i.e. it is a list of triplets (reg, decl, offset) where decl is
51 REG_EXPR (reg) and offset is REG_OFFSET (reg). The linked list is used for
52 effective deleting appropriate variable parts when we set or clobber the
53 register.
54
55 There may be more than one variable part in a register. The linked lists
56 should be pretty short so it is a good data structure here.
57 For example in the following code, register allocator may assign same
58 register to variables A and B, and both of them are stored in the same
59 register in CODE:
60
61 if (cond)
62 set A;
63 else
64 set B;
65 CODE;
66 if (cond)
67 use A;
68 else
69 use B;
70
71 Finally, the NOTE_INSN_VAR_LOCATION notes describing the variable locations
72 are emitted to appropriate positions in RTL code. Each such a note describes
73 the location of one variable at the point in instruction stream where the
74 note is. There is no need to emit a note for each variable before each
75 instruction, we only emit these notes where the location of variable changes
76 (this means that we also emit notes for changes between the OUT set of the
77 previous block and the IN set of the current block).
78
79 The notes consist of two parts:
80 1. the declaration (from REG_EXPR or MEM_EXPR)
81 2. the location of a variable - it is either a simple register/memory
82 reference (for simple variables, for example int),
83 or a parallel of register/memory references (for a large variables
84 which consist of several parts, for example long long).
85
86 */
87
88 #include "config.h"
89 #include "system.h"
90 #include "coretypes.h"
91 #include "backend.h"
92 #include "target.h"
93 #include "rtl.h"
94 #include "tree.h"
95 #include "cfghooks.h"
96 #include "alloc-pool.h"
97 #include "tree-pass.h"
98 #include "memmodel.h"
99 #include "tm_p.h"
100 #include "insn-config.h"
101 #include "regs.h"
102 #include "emit-rtl.h"
103 #include "recog.h"
104 #include "diagnostic.h"
105 #include "varasm.h"
106 #include "stor-layout.h"
107 #include "cfgrtl.h"
108 #include "cfganal.h"
109 #include "reload.h"
110 #include "calls.h"
111 #include "tree-dfa.h"
112 #include "tree-ssa.h"
113 #include "cselib.h"
114 #include "params.h"
115 #include "tree-pretty-print.h"
116 #include "rtl-iter.h"
117 #include "fibonacci_heap.h"
118
119 typedef fibonacci_heap <long, basic_block_def> bb_heap_t;
120 typedef fibonacci_node <long, basic_block_def> bb_heap_node_t;
121
122 /* var-tracking.c assumes that tree code with the same value as VALUE rtx code
123 has no chance to appear in REG_EXPR/MEM_EXPRs and isn't a decl.
124 Currently the value is the same as IDENTIFIER_NODE, which has such
125 a property. If this compile time assertion ever fails, make sure that
126 the new tree code that equals (int) VALUE has the same property. */
127 extern char check_value_val[(int) VALUE == (int) IDENTIFIER_NODE ? 1 : -1];
128
129 /* Type of micro operation. */
130 enum micro_operation_type
131 {
132 MO_USE, /* Use location (REG or MEM). */
133 MO_USE_NO_VAR,/* Use location which is not associated with a variable
134 or the variable is not trackable. */
135 MO_VAL_USE, /* Use location which is associated with a value. */
136 MO_VAL_LOC, /* Use location which appears in a debug insn. */
137 MO_VAL_SET, /* Set location associated with a value. */
138 MO_SET, /* Set location. */
139 MO_COPY, /* Copy the same portion of a variable from one
140 location to another. */
141 MO_CLOBBER, /* Clobber location. */
142 MO_CALL, /* Call insn. */
143 MO_ADJUST /* Adjust stack pointer. */
144
145 };
146
147 static const char * const ATTRIBUTE_UNUSED
148 micro_operation_type_name[] = {
149 "MO_USE",
150 "MO_USE_NO_VAR",
151 "MO_VAL_USE",
152 "MO_VAL_LOC",
153 "MO_VAL_SET",
154 "MO_SET",
155 "MO_COPY",
156 "MO_CLOBBER",
157 "MO_CALL",
158 "MO_ADJUST"
159 };
160
161 /* Where shall the note be emitted? BEFORE or AFTER the instruction.
162 Notes emitted as AFTER_CALL are to take effect during the call,
163 rather than after the call. */
164 enum emit_note_where
165 {
166 EMIT_NOTE_BEFORE_INSN,
167 EMIT_NOTE_AFTER_INSN,
168 EMIT_NOTE_AFTER_CALL_INSN
169 };
170
171 /* Structure holding information about micro operation. */
172 struct micro_operation
173 {
174 /* Type of micro operation. */
175 enum micro_operation_type type;
176
177 /* The instruction which the micro operation is in, for MO_USE,
178 MO_USE_NO_VAR, MO_CALL and MO_ADJUST, or the subsequent
179 instruction or note in the original flow (before any var-tracking
180 notes are inserted, to simplify emission of notes), for MO_SET
181 and MO_CLOBBER. */
182 rtx_insn *insn;
183
184 union {
185 /* Location. For MO_SET and MO_COPY, this is the SET that
186 performs the assignment, if known, otherwise it is the target
187 of the assignment. For MO_VAL_USE and MO_VAL_SET, it is a
188 CONCAT of the VALUE and the LOC associated with it. For
189 MO_VAL_LOC, it is a CONCAT of the VALUE and the VAR_LOCATION
190 associated with it. */
191 rtx loc;
192
193 /* Stack adjustment. */
194 HOST_WIDE_INT adjust;
195 } u;
196 };
197
198
199 /* A declaration of a variable, or an RTL value being handled like a
200 declaration. */
201 typedef void *decl_or_value;
202
203 /* Return true if a decl_or_value DV is a DECL or NULL. */
204 static inline bool
205 dv_is_decl_p (decl_or_value dv)
206 {
207 return !dv || (int) TREE_CODE ((tree) dv) != (int) VALUE;
208 }
209
210 /* Return true if a decl_or_value is a VALUE rtl. */
211 static inline bool
212 dv_is_value_p (decl_or_value dv)
213 {
214 return dv && !dv_is_decl_p (dv);
215 }
216
217 /* Return the decl in the decl_or_value. */
218 static inline tree
219 dv_as_decl (decl_or_value dv)
220 {
221 gcc_checking_assert (dv_is_decl_p (dv));
222 return (tree) dv;
223 }
224
225 /* Return the value in the decl_or_value. */
226 static inline rtx
227 dv_as_value (decl_or_value dv)
228 {
229 gcc_checking_assert (dv_is_value_p (dv));
230 return (rtx)dv;
231 }
232
233 /* Return the opaque pointer in the decl_or_value. */
234 static inline void *
235 dv_as_opaque (decl_or_value dv)
236 {
237 return dv;
238 }
239
240
241 /* Description of location of a part of a variable. The content of a physical
242 register is described by a chain of these structures.
243 The chains are pretty short (usually 1 or 2 elements) and thus
244 chain is the best data structure. */
245 struct attrs
246 {
247 /* Pointer to next member of the list. */
248 attrs *next;
249
250 /* The rtx of register. */
251 rtx loc;
252
253 /* The declaration corresponding to LOC. */
254 decl_or_value dv;
255
256 /* Offset from start of DECL. */
257 HOST_WIDE_INT offset;
258 };
259
260 /* Structure for chaining the locations. */
261 struct location_chain
262 {
263 /* Next element in the chain. */
264 location_chain *next;
265
266 /* The location (REG, MEM or VALUE). */
267 rtx loc;
268
269 /* The "value" stored in this location. */
270 rtx set_src;
271
272 /* Initialized? */
273 enum var_init_status init;
274 };
275
276 /* A vector of loc_exp_dep holds the active dependencies of a one-part
277 DV on VALUEs, i.e., the VALUEs expanded so as to form the current
278 location of DV. Each entry is also part of VALUE' s linked-list of
279 backlinks back to DV. */
280 struct loc_exp_dep
281 {
282 /* The dependent DV. */
283 decl_or_value dv;
284 /* The dependency VALUE or DECL_DEBUG. */
285 rtx value;
286 /* The next entry in VALUE's backlinks list. */
287 struct loc_exp_dep *next;
288 /* A pointer to the pointer to this entry (head or prev's next) in
289 the doubly-linked list. */
290 struct loc_exp_dep **pprev;
291 };
292
293
294 /* This data structure holds information about the depth of a variable
295 expansion. */
296 struct expand_depth
297 {
298 /* This measures the complexity of the expanded expression. It
299 grows by one for each level of expansion that adds more than one
300 operand. */
301 int complexity;
302 /* This counts the number of ENTRY_VALUE expressions in an
303 expansion. We want to minimize their use. */
304 int entryvals;
305 };
306
307 /* This data structure is allocated for one-part variables at the time
308 of emitting notes. */
309 struct onepart_aux
310 {
311 /* Doubly-linked list of dependent DVs. These are DVs whose cur_loc
312 computation used the expansion of this variable, and that ought
313 to be notified should this variable change. If the DV's cur_loc
314 expanded to NULL, all components of the loc list are regarded as
315 active, so that any changes in them give us a chance to get a
316 location. Otherwise, only components of the loc that expanded to
317 non-NULL are regarded as active dependencies. */
318 loc_exp_dep *backlinks;
319 /* This holds the LOC that was expanded into cur_loc. We need only
320 mark a one-part variable as changed if the FROM loc is removed,
321 or if it has no known location and a loc is added, or if it gets
322 a change notification from any of its active dependencies. */
323 rtx from;
324 /* The depth of the cur_loc expression. */
325 expand_depth depth;
326 /* Dependencies actively used when expand FROM into cur_loc. */
327 vec<loc_exp_dep, va_heap, vl_embed> deps;
328 };
329
330 /* Structure describing one part of variable. */
331 struct variable_part
332 {
333 /* Chain of locations of the part. */
334 location_chain *loc_chain;
335
336 /* Location which was last emitted to location list. */
337 rtx cur_loc;
338
339 union variable_aux
340 {
341 /* The offset in the variable, if !var->onepart. */
342 HOST_WIDE_INT offset;
343
344 /* Pointer to auxiliary data, if var->onepart and emit_notes. */
345 struct onepart_aux *onepaux;
346 } aux;
347 };
348
349 /* Maximum number of location parts. */
350 #define MAX_VAR_PARTS 16
351
352 /* Enumeration type used to discriminate various types of one-part
353 variables. */
354 enum onepart_enum
355 {
356 /* Not a one-part variable. */
357 NOT_ONEPART = 0,
358 /* A one-part DECL that is not a DEBUG_EXPR_DECL. */
359 ONEPART_VDECL = 1,
360 /* A DEBUG_EXPR_DECL. */
361 ONEPART_DEXPR = 2,
362 /* A VALUE. */
363 ONEPART_VALUE = 3
364 };
365
366 /* Structure describing where the variable is located. */
367 struct variable
368 {
369 /* The declaration of the variable, or an RTL value being handled
370 like a declaration. */
371 decl_or_value dv;
372
373 /* Reference count. */
374 int refcount;
375
376 /* Number of variable parts. */
377 char n_var_parts;
378
379 /* What type of DV this is, according to enum onepart_enum. */
380 ENUM_BITFIELD (onepart_enum) onepart : CHAR_BIT;
381
382 /* True if this variable_def struct is currently in the
383 changed_variables hash table. */
384 bool in_changed_variables;
385
386 /* The variable parts. */
387 variable_part var_part[1];
388 };
389
390 /* Pointer to the BB's information specific to variable tracking pass. */
391 #define VTI(BB) ((variable_tracking_info *) (BB)->aux)
392
393 /* Return MEM_OFFSET (MEM) as a HOST_WIDE_INT, or 0 if we can't. */
394
395 static inline HOST_WIDE_INT
396 int_mem_offset (const_rtx mem)
397 {
398 HOST_WIDE_INT offset;
399 if (MEM_OFFSET_KNOWN_P (mem) && MEM_OFFSET (mem).is_constant (&offset))
400 return offset;
401 return 0;
402 }
403
404 #if CHECKING_P && (GCC_VERSION >= 2007)
405
406 /* Access VAR's Ith part's offset, checking that it's not a one-part
407 variable. */
408 #define VAR_PART_OFFSET(var, i) __extension__ \
409 (*({ variable *const __v = (var); \
410 gcc_checking_assert (!__v->onepart); \
411 &__v->var_part[(i)].aux.offset; }))
412
413 /* Access VAR's one-part auxiliary data, checking that it is a
414 one-part variable. */
415 #define VAR_LOC_1PAUX(var) __extension__ \
416 (*({ variable *const __v = (var); \
417 gcc_checking_assert (__v->onepart); \
418 &__v->var_part[0].aux.onepaux; }))
419
420 #else
421 #define VAR_PART_OFFSET(var, i) ((var)->var_part[(i)].aux.offset)
422 #define VAR_LOC_1PAUX(var) ((var)->var_part[0].aux.onepaux)
423 #endif
424
425 /* These are accessor macros for the one-part auxiliary data. When
426 convenient for users, they're guarded by tests that the data was
427 allocated. */
428 #define VAR_LOC_DEP_LST(var) (VAR_LOC_1PAUX (var) \
429 ? VAR_LOC_1PAUX (var)->backlinks \
430 : NULL)
431 #define VAR_LOC_DEP_LSTP(var) (VAR_LOC_1PAUX (var) \
432 ? &VAR_LOC_1PAUX (var)->backlinks \
433 : NULL)
434 #define VAR_LOC_FROM(var) (VAR_LOC_1PAUX (var)->from)
435 #define VAR_LOC_DEPTH(var) (VAR_LOC_1PAUX (var)->depth)
436 #define VAR_LOC_DEP_VEC(var) (VAR_LOC_1PAUX (var) \
437 ? &VAR_LOC_1PAUX (var)->deps \
438 : NULL)
439
440
441
442 typedef unsigned int dvuid;
443
444 /* Return the uid of DV. */
445
446 static inline dvuid
447 dv_uid (decl_or_value dv)
448 {
449 if (dv_is_value_p (dv))
450 return CSELIB_VAL_PTR (dv_as_value (dv))->uid;
451 else
452 return DECL_UID (dv_as_decl (dv));
453 }
454
455 /* Compute the hash from the uid. */
456
457 static inline hashval_t
458 dv_uid2hash (dvuid uid)
459 {
460 return uid;
461 }
462
463 /* The hash function for a mask table in a shared_htab chain. */
464
465 static inline hashval_t
466 dv_htab_hash (decl_or_value dv)
467 {
468 return dv_uid2hash (dv_uid (dv));
469 }
470
471 static void variable_htab_free (void *);
472
473 /* Variable hashtable helpers. */
474
475 struct variable_hasher : pointer_hash <variable>
476 {
477 typedef void *compare_type;
478 static inline hashval_t hash (const variable *);
479 static inline bool equal (const variable *, const void *);
480 static inline void remove (variable *);
481 };
482
483 /* The hash function for variable_htab, computes the hash value
484 from the declaration of variable X. */
485
486 inline hashval_t
487 variable_hasher::hash (const variable *v)
488 {
489 return dv_htab_hash (v->dv);
490 }
491
492 /* Compare the declaration of variable X with declaration Y. */
493
494 inline bool
495 variable_hasher::equal (const variable *v, const void *y)
496 {
497 decl_or_value dv = CONST_CAST2 (decl_or_value, const void *, y);
498
499 return (dv_as_opaque (v->dv) == dv_as_opaque (dv));
500 }
501
502 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
503
504 inline void
505 variable_hasher::remove (variable *var)
506 {
507 variable_htab_free (var);
508 }
509
510 typedef hash_table<variable_hasher> variable_table_type;
511 typedef variable_table_type::iterator variable_iterator_type;
512
513 /* Structure for passing some other parameters to function
514 emit_note_insn_var_location. */
515 struct emit_note_data
516 {
517 /* The instruction which the note will be emitted before/after. */
518 rtx_insn *insn;
519
520 /* Where the note will be emitted (before/after insn)? */
521 enum emit_note_where where;
522
523 /* The variables and values active at this point. */
524 variable_table_type *vars;
525 };
526
527 /* Structure holding a refcounted hash table. If refcount > 1,
528 it must be first unshared before modified. */
529 struct shared_hash
530 {
531 /* Reference count. */
532 int refcount;
533
534 /* Actual hash table. */
535 variable_table_type *htab;
536 };
537
538 /* Structure holding the IN or OUT set for a basic block. */
539 struct dataflow_set
540 {
541 /* Adjustment of stack offset. */
542 HOST_WIDE_INT stack_adjust;
543
544 /* Attributes for registers (lists of attrs). */
545 attrs *regs[FIRST_PSEUDO_REGISTER];
546
547 /* Variable locations. */
548 shared_hash *vars;
549
550 /* Vars that is being traversed. */
551 shared_hash *traversed_vars;
552 };
553
554 /* The structure (one for each basic block) containing the information
555 needed for variable tracking. */
556 struct variable_tracking_info
557 {
558 /* The vector of micro operations. */
559 vec<micro_operation> mos;
560
561 /* The IN and OUT set for dataflow analysis. */
562 dataflow_set in;
563 dataflow_set out;
564
565 /* The permanent-in dataflow set for this block. This is used to
566 hold values for which we had to compute entry values. ??? This
567 should probably be dynamically allocated, to avoid using more
568 memory in non-debug builds. */
569 dataflow_set *permp;
570
571 /* Has the block been visited in DFS? */
572 bool visited;
573
574 /* Has the block been flooded in VTA? */
575 bool flooded;
576
577 };
578
579 /* Alloc pool for struct attrs_def. */
580 object_allocator<attrs> attrs_pool ("attrs pool");
581
582 /* Alloc pool for struct variable_def with MAX_VAR_PARTS entries. */
583
584 static pool_allocator var_pool
585 ("variable_def pool", sizeof (variable) +
586 (MAX_VAR_PARTS - 1) * sizeof (((variable *)NULL)->var_part[0]));
587
588 /* Alloc pool for struct variable_def with a single var_part entry. */
589 static pool_allocator valvar_pool
590 ("small variable_def pool", sizeof (variable));
591
592 /* Alloc pool for struct location_chain. */
593 static object_allocator<location_chain> location_chain_pool
594 ("location_chain pool");
595
596 /* Alloc pool for struct shared_hash. */
597 static object_allocator<shared_hash> shared_hash_pool ("shared_hash pool");
598
599 /* Alloc pool for struct loc_exp_dep_s for NOT_ONEPART variables. */
600 object_allocator<loc_exp_dep> loc_exp_dep_pool ("loc_exp_dep pool");
601
602 /* Changed variables, notes will be emitted for them. */
603 static variable_table_type *changed_variables;
604
605 /* Shall notes be emitted? */
606 static bool emit_notes;
607
608 /* Values whose dynamic location lists have gone empty, but whose
609 cselib location lists are still usable. Use this to hold the
610 current location, the backlinks, etc, during emit_notes. */
611 static variable_table_type *dropped_values;
612
613 /* Empty shared hashtable. */
614 static shared_hash *empty_shared_hash;
615
616 /* Scratch register bitmap used by cselib_expand_value_rtx. */
617 static bitmap scratch_regs = NULL;
618
619 #ifdef HAVE_window_save
620 struct GTY(()) parm_reg {
621 rtx outgoing;
622 rtx incoming;
623 };
624
625
626 /* Vector of windowed parameter registers, if any. */
627 static vec<parm_reg, va_gc> *windowed_parm_regs = NULL;
628 #endif
629
630 /* Variable used to tell whether cselib_process_insn called our hook. */
631 static bool cselib_hook_called;
632
633 /* Local function prototypes. */
634 static void stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
635 HOST_WIDE_INT *);
636 static void insn_stack_adjust_offset_pre_post (rtx_insn *, HOST_WIDE_INT *,
637 HOST_WIDE_INT *);
638 static bool vt_stack_adjustments (void);
639
640 static void init_attrs_list_set (attrs **);
641 static void attrs_list_clear (attrs **);
642 static attrs *attrs_list_member (attrs *, decl_or_value, HOST_WIDE_INT);
643 static void attrs_list_insert (attrs **, decl_or_value, HOST_WIDE_INT, rtx);
644 static void attrs_list_copy (attrs **, attrs *);
645 static void attrs_list_union (attrs **, attrs *);
646
647 static variable **unshare_variable (dataflow_set *set, variable **slot,
648 variable *var, enum var_init_status);
649 static void vars_copy (variable_table_type *, variable_table_type *);
650 static tree var_debug_decl (tree);
651 static void var_reg_set (dataflow_set *, rtx, enum var_init_status, rtx);
652 static void var_reg_delete_and_set (dataflow_set *, rtx, bool,
653 enum var_init_status, rtx);
654 static void var_reg_delete (dataflow_set *, rtx, bool);
655 static void var_regno_delete (dataflow_set *, int);
656 static void var_mem_set (dataflow_set *, rtx, enum var_init_status, rtx);
657 static void var_mem_delete_and_set (dataflow_set *, rtx, bool,
658 enum var_init_status, rtx);
659 static void var_mem_delete (dataflow_set *, rtx, bool);
660
661 static void dataflow_set_init (dataflow_set *);
662 static void dataflow_set_clear (dataflow_set *);
663 static void dataflow_set_copy (dataflow_set *, dataflow_set *);
664 static int variable_union_info_cmp_pos (const void *, const void *);
665 static void dataflow_set_union (dataflow_set *, dataflow_set *);
666 static location_chain *find_loc_in_1pdv (rtx, variable *,
667 variable_table_type *);
668 static bool canon_value_cmp (rtx, rtx);
669 static int loc_cmp (rtx, rtx);
670 static bool variable_part_different_p (variable_part *, variable_part *);
671 static bool onepart_variable_different_p (variable *, variable *);
672 static bool variable_different_p (variable *, variable *);
673 static bool dataflow_set_different (dataflow_set *, dataflow_set *);
674 static void dataflow_set_destroy (dataflow_set *);
675
676 static bool track_expr_p (tree, bool);
677 static void add_uses_1 (rtx *, void *);
678 static void add_stores (rtx, const_rtx, void *);
679 static bool compute_bb_dataflow (basic_block);
680 static bool vt_find_locations (void);
681
682 static void dump_attrs_list (attrs *);
683 static void dump_var (variable *);
684 static void dump_vars (variable_table_type *);
685 static void dump_dataflow_set (dataflow_set *);
686 static void dump_dataflow_sets (void);
687
688 static void set_dv_changed (decl_or_value, bool);
689 static void variable_was_changed (variable *, dataflow_set *);
690 static variable **set_slot_part (dataflow_set *, rtx, variable **,
691 decl_or_value, HOST_WIDE_INT,
692 enum var_init_status, rtx);
693 static void set_variable_part (dataflow_set *, rtx,
694 decl_or_value, HOST_WIDE_INT,
695 enum var_init_status, rtx, enum insert_option);
696 static variable **clobber_slot_part (dataflow_set *, rtx,
697 variable **, HOST_WIDE_INT, rtx);
698 static void clobber_variable_part (dataflow_set *, rtx,
699 decl_or_value, HOST_WIDE_INT, rtx);
700 static variable **delete_slot_part (dataflow_set *, rtx, variable **,
701 HOST_WIDE_INT);
702 static void delete_variable_part (dataflow_set *, rtx,
703 decl_or_value, HOST_WIDE_INT);
704 static void emit_notes_in_bb (basic_block, dataflow_set *);
705 static void vt_emit_notes (void);
706
707 static void vt_add_function_parameters (void);
708 static bool vt_initialize (void);
709 static void vt_finalize (void);
710
711 /* Callback for stack_adjust_offset_pre_post, called via for_each_inc_dec. */
712
713 static int
714 stack_adjust_offset_pre_post_cb (rtx, rtx op, rtx dest, rtx src, rtx srcoff,
715 void *arg)
716 {
717 if (dest != stack_pointer_rtx)
718 return 0;
719
720 switch (GET_CODE (op))
721 {
722 case PRE_INC:
723 case PRE_DEC:
724 ((HOST_WIDE_INT *)arg)[0] -= INTVAL (srcoff);
725 return 0;
726 case POST_INC:
727 case POST_DEC:
728 ((HOST_WIDE_INT *)arg)[1] -= INTVAL (srcoff);
729 return 0;
730 case PRE_MODIFY:
731 case POST_MODIFY:
732 /* We handle only adjustments by constant amount. */
733 gcc_assert (GET_CODE (src) == PLUS
734 && CONST_INT_P (XEXP (src, 1))
735 && XEXP (src, 0) == stack_pointer_rtx);
736 ((HOST_WIDE_INT *)arg)[GET_CODE (op) == POST_MODIFY]
737 -= INTVAL (XEXP (src, 1));
738 return 0;
739 default:
740 gcc_unreachable ();
741 }
742 }
743
744 /* Given a SET, calculate the amount of stack adjustment it contains
745 PRE- and POST-modifying stack pointer.
746 This function is similar to stack_adjust_offset. */
747
748 static void
749 stack_adjust_offset_pre_post (rtx pattern, HOST_WIDE_INT *pre,
750 HOST_WIDE_INT *post)
751 {
752 rtx src = SET_SRC (pattern);
753 rtx dest = SET_DEST (pattern);
754 enum rtx_code code;
755
756 if (dest == stack_pointer_rtx)
757 {
758 /* (set (reg sp) (plus (reg sp) (const_int))) */
759 code = GET_CODE (src);
760 if (! (code == PLUS || code == MINUS)
761 || XEXP (src, 0) != stack_pointer_rtx
762 || !CONST_INT_P (XEXP (src, 1)))
763 return;
764
765 if (code == MINUS)
766 *post += INTVAL (XEXP (src, 1));
767 else
768 *post -= INTVAL (XEXP (src, 1));
769 return;
770 }
771 HOST_WIDE_INT res[2] = { 0, 0 };
772 for_each_inc_dec (pattern, stack_adjust_offset_pre_post_cb, res);
773 *pre += res[0];
774 *post += res[1];
775 }
776
777 /* Given an INSN, calculate the amount of stack adjustment it contains
778 PRE- and POST-modifying stack pointer. */
779
780 static void
781 insn_stack_adjust_offset_pre_post (rtx_insn *insn, HOST_WIDE_INT *pre,
782 HOST_WIDE_INT *post)
783 {
784 rtx pattern;
785
786 *pre = 0;
787 *post = 0;
788
789 pattern = PATTERN (insn);
790 if (RTX_FRAME_RELATED_P (insn))
791 {
792 rtx expr = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
793 if (expr)
794 pattern = XEXP (expr, 0);
795 }
796
797 if (GET_CODE (pattern) == SET)
798 stack_adjust_offset_pre_post (pattern, pre, post);
799 else if (GET_CODE (pattern) == PARALLEL
800 || GET_CODE (pattern) == SEQUENCE)
801 {
802 int i;
803
804 /* There may be stack adjustments inside compound insns. Search
805 for them. */
806 for ( i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
807 if (GET_CODE (XVECEXP (pattern, 0, i)) == SET)
808 stack_adjust_offset_pre_post (XVECEXP (pattern, 0, i), pre, post);
809 }
810 }
811
812 /* Compute stack adjustments for all blocks by traversing DFS tree.
813 Return true when the adjustments on all incoming edges are consistent.
814 Heavily borrowed from pre_and_rev_post_order_compute. */
815
816 static bool
817 vt_stack_adjustments (void)
818 {
819 edge_iterator *stack;
820 int sp;
821
822 /* Initialize entry block. */
823 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->visited = true;
824 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->in.stack_adjust
825 = INCOMING_FRAME_SP_OFFSET;
826 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->out.stack_adjust
827 = INCOMING_FRAME_SP_OFFSET;
828
829 /* Allocate stack for back-tracking up CFG. */
830 stack = XNEWVEC (edge_iterator, n_basic_blocks_for_fn (cfun) + 1);
831 sp = 0;
832
833 /* Push the first edge on to the stack. */
834 stack[sp++] = ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs);
835
836 while (sp)
837 {
838 edge_iterator ei;
839 basic_block src;
840 basic_block dest;
841
842 /* Look at the edge on the top of the stack. */
843 ei = stack[sp - 1];
844 src = ei_edge (ei)->src;
845 dest = ei_edge (ei)->dest;
846
847 /* Check if the edge destination has been visited yet. */
848 if (!VTI (dest)->visited)
849 {
850 rtx_insn *insn;
851 HOST_WIDE_INT pre, post, offset;
852 VTI (dest)->visited = true;
853 VTI (dest)->in.stack_adjust = offset = VTI (src)->out.stack_adjust;
854
855 if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
856 for (insn = BB_HEAD (dest);
857 insn != NEXT_INSN (BB_END (dest));
858 insn = NEXT_INSN (insn))
859 if (INSN_P (insn))
860 {
861 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
862 offset += pre + post;
863 }
864
865 VTI (dest)->out.stack_adjust = offset;
866
867 if (EDGE_COUNT (dest->succs) > 0)
868 /* Since the DEST node has been visited for the first
869 time, check its successors. */
870 stack[sp++] = ei_start (dest->succs);
871 }
872 else
873 {
874 /* We can end up with different stack adjustments for the exit block
875 of a shrink-wrapped function if stack_adjust_offset_pre_post
876 doesn't understand the rtx pattern used to restore the stack
877 pointer in the epilogue. For example, on s390(x), the stack
878 pointer is often restored via a load-multiple instruction
879 and so no stack_adjust offset is recorded for it. This means
880 that the stack offset at the end of the epilogue block is the
881 same as the offset before the epilogue, whereas other paths
882 to the exit block will have the correct stack_adjust.
883
884 It is safe to ignore these differences because (a) we never
885 use the stack_adjust for the exit block in this pass and
886 (b) dwarf2cfi checks whether the CFA notes in a shrink-wrapped
887 function are correct.
888
889 We must check whether the adjustments on other edges are
890 the same though. */
891 if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
892 && VTI (dest)->in.stack_adjust != VTI (src)->out.stack_adjust)
893 {
894 free (stack);
895 return false;
896 }
897
898 if (! ei_one_before_end_p (ei))
899 /* Go to the next edge. */
900 ei_next (&stack[sp - 1]);
901 else
902 /* Return to previous level if there are no more edges. */
903 sp--;
904 }
905 }
906
907 free (stack);
908 return true;
909 }
910
911 /* arg_pointer_rtx resp. frame_pointer_rtx if stack_pointer_rtx or
912 hard_frame_pointer_rtx is being mapped to it and offset for it. */
913 static rtx cfa_base_rtx;
914 static HOST_WIDE_INT cfa_base_offset;
915
916 /* Compute a CFA-based value for an ADJUSTMENT made to stack_pointer_rtx
917 or hard_frame_pointer_rtx. */
918
919 static inline rtx
920 compute_cfa_pointer (HOST_WIDE_INT adjustment)
921 {
922 return plus_constant (Pmode, cfa_base_rtx, adjustment + cfa_base_offset);
923 }
924
925 /* Adjustment for hard_frame_pointer_rtx to cfa base reg,
926 or -1 if the replacement shouldn't be done. */
927 static HOST_WIDE_INT hard_frame_pointer_adjustment = -1;
928
929 /* Data for adjust_mems callback. */
930
931 struct adjust_mem_data
932 {
933 bool store;
934 machine_mode mem_mode;
935 HOST_WIDE_INT stack_adjust;
936 auto_vec<rtx> side_effects;
937 };
938
939 /* Helper for adjust_mems. Return true if X is suitable for
940 transformation of wider mode arithmetics to narrower mode. */
941
942 static bool
943 use_narrower_mode_test (rtx x, const_rtx subreg)
944 {
945 subrtx_var_iterator::array_type array;
946 FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
947 {
948 rtx x = *iter;
949 if (CONSTANT_P (x))
950 iter.skip_subrtxes ();
951 else
952 switch (GET_CODE (x))
953 {
954 case REG:
955 if (cselib_lookup (x, GET_MODE (SUBREG_REG (subreg)), 0, VOIDmode))
956 return false;
957 if (!validate_subreg (GET_MODE (subreg), GET_MODE (x), x,
958 subreg_lowpart_offset (GET_MODE (subreg),
959 GET_MODE (x))))
960 return false;
961 break;
962 case PLUS:
963 case MINUS:
964 case MULT:
965 break;
966 case ASHIFT:
967 iter.substitute (XEXP (x, 0));
968 break;
969 default:
970 return false;
971 }
972 }
973 return true;
974 }
975
976 /* Transform X into narrower mode MODE from wider mode WMODE. */
977
978 static rtx
979 use_narrower_mode (rtx x, scalar_int_mode mode, scalar_int_mode wmode)
980 {
981 rtx op0, op1;
982 if (CONSTANT_P (x))
983 return lowpart_subreg (mode, x, wmode);
984 switch (GET_CODE (x))
985 {
986 case REG:
987 return lowpart_subreg (mode, x, wmode);
988 case PLUS:
989 case MINUS:
990 case MULT:
991 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
992 op1 = use_narrower_mode (XEXP (x, 1), mode, wmode);
993 return simplify_gen_binary (GET_CODE (x), mode, op0, op1);
994 case ASHIFT:
995 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
996 op1 = XEXP (x, 1);
997 /* Ensure shift amount is not wider than mode. */
998 if (GET_MODE (op1) == VOIDmode)
999 op1 = lowpart_subreg (mode, op1, wmode);
1000 else if (GET_MODE_PRECISION (mode)
1001 < GET_MODE_PRECISION (as_a <scalar_int_mode> (GET_MODE (op1))))
1002 op1 = lowpart_subreg (mode, op1, GET_MODE (op1));
1003 return simplify_gen_binary (ASHIFT, mode, op0, op1);
1004 default:
1005 gcc_unreachable ();
1006 }
1007 }
1008
1009 /* Helper function for adjusting used MEMs. */
1010
1011 static rtx
1012 adjust_mems (rtx loc, const_rtx old_rtx, void *data)
1013 {
1014 struct adjust_mem_data *amd = (struct adjust_mem_data *) data;
1015 rtx mem, addr = loc, tem;
1016 machine_mode mem_mode_save;
1017 bool store_save;
1018 scalar_int_mode tem_mode, tem_subreg_mode;
1019 poly_int64 size;
1020 switch (GET_CODE (loc))
1021 {
1022 case REG:
1023 /* Don't do any sp or fp replacements outside of MEM addresses
1024 on the LHS. */
1025 if (amd->mem_mode == VOIDmode && amd->store)
1026 return loc;
1027 if (loc == stack_pointer_rtx
1028 && !frame_pointer_needed
1029 && cfa_base_rtx)
1030 return compute_cfa_pointer (amd->stack_adjust);
1031 else if (loc == hard_frame_pointer_rtx
1032 && frame_pointer_needed
1033 && hard_frame_pointer_adjustment != -1
1034 && cfa_base_rtx)
1035 return compute_cfa_pointer (hard_frame_pointer_adjustment);
1036 gcc_checking_assert (loc != virtual_incoming_args_rtx);
1037 return loc;
1038 case MEM:
1039 mem = loc;
1040 if (!amd->store)
1041 {
1042 mem = targetm.delegitimize_address (mem);
1043 if (mem != loc && !MEM_P (mem))
1044 return simplify_replace_fn_rtx (mem, old_rtx, adjust_mems, data);
1045 }
1046
1047 addr = XEXP (mem, 0);
1048 mem_mode_save = amd->mem_mode;
1049 amd->mem_mode = GET_MODE (mem);
1050 store_save = amd->store;
1051 amd->store = false;
1052 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1053 amd->store = store_save;
1054 amd->mem_mode = mem_mode_save;
1055 if (mem == loc)
1056 addr = targetm.delegitimize_address (addr);
1057 if (addr != XEXP (mem, 0))
1058 mem = replace_equiv_address_nv (mem, addr);
1059 if (!amd->store)
1060 mem = avoid_constant_pool_reference (mem);
1061 return mem;
1062 case PRE_INC:
1063 case PRE_DEC:
1064 size = GET_MODE_SIZE (amd->mem_mode);
1065 addr = plus_constant (GET_MODE (loc), XEXP (loc, 0),
1066 GET_CODE (loc) == PRE_INC ? size : -size);
1067 /* FALLTHRU */
1068 case POST_INC:
1069 case POST_DEC:
1070 if (addr == loc)
1071 addr = XEXP (loc, 0);
1072 gcc_assert (amd->mem_mode != VOIDmode && amd->mem_mode != BLKmode);
1073 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1074 size = GET_MODE_SIZE (amd->mem_mode);
1075 tem = plus_constant (GET_MODE (loc), XEXP (loc, 0),
1076 (GET_CODE (loc) == PRE_INC
1077 || GET_CODE (loc) == POST_INC) ? size : -size);
1078 store_save = amd->store;
1079 amd->store = false;
1080 tem = simplify_replace_fn_rtx (tem, old_rtx, adjust_mems, data);
1081 amd->store = store_save;
1082 amd->side_effects.safe_push (gen_rtx_SET (XEXP (loc, 0), tem));
1083 return addr;
1084 case PRE_MODIFY:
1085 addr = XEXP (loc, 1);
1086 /* FALLTHRU */
1087 case POST_MODIFY:
1088 if (addr == loc)
1089 addr = XEXP (loc, 0);
1090 gcc_assert (amd->mem_mode != VOIDmode);
1091 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1092 store_save = amd->store;
1093 amd->store = false;
1094 tem = simplify_replace_fn_rtx (XEXP (loc, 1), old_rtx,
1095 adjust_mems, data);
1096 amd->store = store_save;
1097 amd->side_effects.safe_push (gen_rtx_SET (XEXP (loc, 0), tem));
1098 return addr;
1099 case SUBREG:
1100 /* First try without delegitimization of whole MEMs and
1101 avoid_constant_pool_reference, which is more likely to succeed. */
1102 store_save = amd->store;
1103 amd->store = true;
1104 addr = simplify_replace_fn_rtx (SUBREG_REG (loc), old_rtx, adjust_mems,
1105 data);
1106 amd->store = store_save;
1107 mem = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1108 if (mem == SUBREG_REG (loc))
1109 {
1110 tem = loc;
1111 goto finish_subreg;
1112 }
1113 tem = simplify_gen_subreg (GET_MODE (loc), mem,
1114 GET_MODE (SUBREG_REG (loc)),
1115 SUBREG_BYTE (loc));
1116 if (tem)
1117 goto finish_subreg;
1118 tem = simplify_gen_subreg (GET_MODE (loc), addr,
1119 GET_MODE (SUBREG_REG (loc)),
1120 SUBREG_BYTE (loc));
1121 if (tem == NULL_RTX)
1122 tem = gen_rtx_raw_SUBREG (GET_MODE (loc), addr, SUBREG_BYTE (loc));
1123 finish_subreg:
1124 if (MAY_HAVE_DEBUG_BIND_INSNS
1125 && GET_CODE (tem) == SUBREG
1126 && (GET_CODE (SUBREG_REG (tem)) == PLUS
1127 || GET_CODE (SUBREG_REG (tem)) == MINUS
1128 || GET_CODE (SUBREG_REG (tem)) == MULT
1129 || GET_CODE (SUBREG_REG (tem)) == ASHIFT)
1130 && is_a <scalar_int_mode> (GET_MODE (tem), &tem_mode)
1131 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (tem)),
1132 &tem_subreg_mode)
1133 && (GET_MODE_PRECISION (tem_mode)
1134 < GET_MODE_PRECISION (tem_subreg_mode))
1135 && subreg_lowpart_p (tem)
1136 && use_narrower_mode_test (SUBREG_REG (tem), tem))
1137 return use_narrower_mode (SUBREG_REG (tem), tem_mode, tem_subreg_mode);
1138 return tem;
1139 case ASM_OPERANDS:
1140 /* Don't do any replacements in second and following
1141 ASM_OPERANDS of inline-asm with multiple sets.
1142 ASM_OPERANDS_INPUT_VEC, ASM_OPERANDS_INPUT_CONSTRAINT_VEC
1143 and ASM_OPERANDS_LABEL_VEC need to be equal between
1144 all the ASM_OPERANDs in the insn and adjust_insn will
1145 fix this up. */
1146 if (ASM_OPERANDS_OUTPUT_IDX (loc) != 0)
1147 return loc;
1148 break;
1149 default:
1150 break;
1151 }
1152 return NULL_RTX;
1153 }
1154
1155 /* Helper function for replacement of uses. */
1156
1157 static void
1158 adjust_mem_uses (rtx *x, void *data)
1159 {
1160 rtx new_x = simplify_replace_fn_rtx (*x, NULL_RTX, adjust_mems, data);
1161 if (new_x != *x)
1162 validate_change (NULL_RTX, x, new_x, true);
1163 }
1164
1165 /* Helper function for replacement of stores. */
1166
1167 static void
1168 adjust_mem_stores (rtx loc, const_rtx expr, void *data)
1169 {
1170 if (MEM_P (loc))
1171 {
1172 rtx new_dest = simplify_replace_fn_rtx (SET_DEST (expr), NULL_RTX,
1173 adjust_mems, data);
1174 if (new_dest != SET_DEST (expr))
1175 {
1176 rtx xexpr = CONST_CAST_RTX (expr);
1177 validate_change (NULL_RTX, &SET_DEST (xexpr), new_dest, true);
1178 }
1179 }
1180 }
1181
1182 /* Simplify INSN. Remove all {PRE,POST}_{INC,DEC,MODIFY} rtxes,
1183 replace them with their value in the insn and add the side-effects
1184 as other sets to the insn. */
1185
1186 static void
1187 adjust_insn (basic_block bb, rtx_insn *insn)
1188 {
1189 rtx set;
1190
1191 #ifdef HAVE_window_save
1192 /* If the target machine has an explicit window save instruction, the
1193 transformation OUTGOING_REGNO -> INCOMING_REGNO is done there. */
1194 if (RTX_FRAME_RELATED_P (insn)
1195 && find_reg_note (insn, REG_CFA_WINDOW_SAVE, NULL_RTX))
1196 {
1197 unsigned int i, nregs = vec_safe_length (windowed_parm_regs);
1198 rtx rtl = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (nregs * 2));
1199 parm_reg *p;
1200
1201 FOR_EACH_VEC_SAFE_ELT (windowed_parm_regs, i, p)
1202 {
1203 XVECEXP (rtl, 0, i * 2)
1204 = gen_rtx_SET (p->incoming, p->outgoing);
1205 /* Do not clobber the attached DECL, but only the REG. */
1206 XVECEXP (rtl, 0, i * 2 + 1)
1207 = gen_rtx_CLOBBER (GET_MODE (p->outgoing),
1208 gen_raw_REG (GET_MODE (p->outgoing),
1209 REGNO (p->outgoing)));
1210 }
1211
1212 validate_change (NULL_RTX, &PATTERN (insn), rtl, true);
1213 return;
1214 }
1215 #endif
1216
1217 adjust_mem_data amd;
1218 amd.mem_mode = VOIDmode;
1219 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
1220
1221 amd.store = true;
1222 note_stores (PATTERN (insn), adjust_mem_stores, &amd);
1223
1224 amd.store = false;
1225 if (GET_CODE (PATTERN (insn)) == PARALLEL
1226 && asm_noperands (PATTERN (insn)) > 0
1227 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1228 {
1229 rtx body, set0;
1230 int i;
1231
1232 /* inline-asm with multiple sets is tiny bit more complicated,
1233 because the 3 vectors in ASM_OPERANDS need to be shared between
1234 all ASM_OPERANDS in the instruction. adjust_mems will
1235 not touch ASM_OPERANDS other than the first one, asm_noperands
1236 test above needs to be called before that (otherwise it would fail)
1237 and afterwards this code fixes it up. */
1238 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1239 body = PATTERN (insn);
1240 set0 = XVECEXP (body, 0, 0);
1241 gcc_checking_assert (GET_CODE (set0) == SET
1242 && GET_CODE (SET_SRC (set0)) == ASM_OPERANDS
1243 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set0)) == 0);
1244 for (i = 1; i < XVECLEN (body, 0); i++)
1245 if (GET_CODE (XVECEXP (body, 0, i)) != SET)
1246 break;
1247 else
1248 {
1249 set = XVECEXP (body, 0, i);
1250 gcc_checking_assert (GET_CODE (SET_SRC (set)) == ASM_OPERANDS
1251 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set))
1252 == i);
1253 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (set))
1254 != ASM_OPERANDS_INPUT_VEC (SET_SRC (set0))
1255 || ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set))
1256 != ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0))
1257 || ASM_OPERANDS_LABEL_VEC (SET_SRC (set))
1258 != ASM_OPERANDS_LABEL_VEC (SET_SRC (set0)))
1259 {
1260 rtx newsrc = shallow_copy_rtx (SET_SRC (set));
1261 ASM_OPERANDS_INPUT_VEC (newsrc)
1262 = ASM_OPERANDS_INPUT_VEC (SET_SRC (set0));
1263 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (newsrc)
1264 = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0));
1265 ASM_OPERANDS_LABEL_VEC (newsrc)
1266 = ASM_OPERANDS_LABEL_VEC (SET_SRC (set0));
1267 validate_change (NULL_RTX, &SET_SRC (set), newsrc, true);
1268 }
1269 }
1270 }
1271 else
1272 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1273
1274 /* For read-only MEMs containing some constant, prefer those
1275 constants. */
1276 set = single_set (insn);
1277 if (set && MEM_P (SET_SRC (set)) && MEM_READONLY_P (SET_SRC (set)))
1278 {
1279 rtx note = find_reg_equal_equiv_note (insn);
1280
1281 if (note && CONSTANT_P (XEXP (note, 0)))
1282 validate_change (NULL_RTX, &SET_SRC (set), XEXP (note, 0), true);
1283 }
1284
1285 if (!amd.side_effects.is_empty ())
1286 {
1287 rtx *pat, new_pat;
1288 int i, oldn;
1289
1290 pat = &PATTERN (insn);
1291 if (GET_CODE (*pat) == COND_EXEC)
1292 pat = &COND_EXEC_CODE (*pat);
1293 if (GET_CODE (*pat) == PARALLEL)
1294 oldn = XVECLEN (*pat, 0);
1295 else
1296 oldn = 1;
1297 unsigned int newn = amd.side_effects.length ();
1298 new_pat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (oldn + newn));
1299 if (GET_CODE (*pat) == PARALLEL)
1300 for (i = 0; i < oldn; i++)
1301 XVECEXP (new_pat, 0, i) = XVECEXP (*pat, 0, i);
1302 else
1303 XVECEXP (new_pat, 0, 0) = *pat;
1304
1305 rtx effect;
1306 unsigned int j;
1307 FOR_EACH_VEC_ELT_REVERSE (amd.side_effects, j, effect)
1308 XVECEXP (new_pat, 0, j + oldn) = effect;
1309 validate_change (NULL_RTX, pat, new_pat, true);
1310 }
1311 }
1312
1313 /* Return the DEBUG_EXPR of a DEBUG_EXPR_DECL or the VALUE in DV. */
1314 static inline rtx
1315 dv_as_rtx (decl_or_value dv)
1316 {
1317 tree decl;
1318
1319 if (dv_is_value_p (dv))
1320 return dv_as_value (dv);
1321
1322 decl = dv_as_decl (dv);
1323
1324 gcc_checking_assert (TREE_CODE (decl) == DEBUG_EXPR_DECL);
1325 return DECL_RTL_KNOWN_SET (decl);
1326 }
1327
1328 /* Return nonzero if a decl_or_value must not have more than one
1329 variable part. The returned value discriminates among various
1330 kinds of one-part DVs ccording to enum onepart_enum. */
1331 static inline onepart_enum
1332 dv_onepart_p (decl_or_value dv)
1333 {
1334 tree decl;
1335
1336 if (!MAY_HAVE_DEBUG_BIND_INSNS)
1337 return NOT_ONEPART;
1338
1339 if (dv_is_value_p (dv))
1340 return ONEPART_VALUE;
1341
1342 decl = dv_as_decl (dv);
1343
1344 if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
1345 return ONEPART_DEXPR;
1346
1347 if (target_for_debug_bind (decl) != NULL_TREE)
1348 return ONEPART_VDECL;
1349
1350 return NOT_ONEPART;
1351 }
1352
1353 /* Return the variable pool to be used for a dv of type ONEPART. */
1354 static inline pool_allocator &
1355 onepart_pool (onepart_enum onepart)
1356 {
1357 return onepart ? valvar_pool : var_pool;
1358 }
1359
1360 /* Allocate a variable_def from the corresponding variable pool. */
1361 static inline variable *
1362 onepart_pool_allocate (onepart_enum onepart)
1363 {
1364 return (variable*) onepart_pool (onepart).allocate ();
1365 }
1366
1367 /* Build a decl_or_value out of a decl. */
1368 static inline decl_or_value
1369 dv_from_decl (tree decl)
1370 {
1371 decl_or_value dv;
1372 dv = decl;
1373 gcc_checking_assert (dv_is_decl_p (dv));
1374 return dv;
1375 }
1376
1377 /* Build a decl_or_value out of a value. */
1378 static inline decl_or_value
1379 dv_from_value (rtx value)
1380 {
1381 decl_or_value dv;
1382 dv = value;
1383 gcc_checking_assert (dv_is_value_p (dv));
1384 return dv;
1385 }
1386
1387 /* Return a value or the decl of a debug_expr as a decl_or_value. */
1388 static inline decl_or_value
1389 dv_from_rtx (rtx x)
1390 {
1391 decl_or_value dv;
1392
1393 switch (GET_CODE (x))
1394 {
1395 case DEBUG_EXPR:
1396 dv = dv_from_decl (DEBUG_EXPR_TREE_DECL (x));
1397 gcc_checking_assert (DECL_RTL_KNOWN_SET (DEBUG_EXPR_TREE_DECL (x)) == x);
1398 break;
1399
1400 case VALUE:
1401 dv = dv_from_value (x);
1402 break;
1403
1404 default:
1405 gcc_unreachable ();
1406 }
1407
1408 return dv;
1409 }
1410
1411 extern void debug_dv (decl_or_value dv);
1412
1413 DEBUG_FUNCTION void
1414 debug_dv (decl_or_value dv)
1415 {
1416 if (dv_is_value_p (dv))
1417 debug_rtx (dv_as_value (dv));
1418 else
1419 debug_generic_stmt (dv_as_decl (dv));
1420 }
1421
1422 static void loc_exp_dep_clear (variable *var);
1423
1424 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
1425
1426 static void
1427 variable_htab_free (void *elem)
1428 {
1429 int i;
1430 variable *var = (variable *) elem;
1431 location_chain *node, *next;
1432
1433 gcc_checking_assert (var->refcount > 0);
1434
1435 var->refcount--;
1436 if (var->refcount > 0)
1437 return;
1438
1439 for (i = 0; i < var->n_var_parts; i++)
1440 {
1441 for (node = var->var_part[i].loc_chain; node; node = next)
1442 {
1443 next = node->next;
1444 delete node;
1445 }
1446 var->var_part[i].loc_chain = NULL;
1447 }
1448 if (var->onepart && VAR_LOC_1PAUX (var))
1449 {
1450 loc_exp_dep_clear (var);
1451 if (VAR_LOC_DEP_LST (var))
1452 VAR_LOC_DEP_LST (var)->pprev = NULL;
1453 XDELETE (VAR_LOC_1PAUX (var));
1454 /* These may be reused across functions, so reset
1455 e.g. NO_LOC_P. */
1456 if (var->onepart == ONEPART_DEXPR)
1457 set_dv_changed (var->dv, true);
1458 }
1459 onepart_pool (var->onepart).remove (var);
1460 }
1461
1462 /* Initialize the set (array) SET of attrs to empty lists. */
1463
1464 static void
1465 init_attrs_list_set (attrs **set)
1466 {
1467 int i;
1468
1469 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1470 set[i] = NULL;
1471 }
1472
1473 /* Make the list *LISTP empty. */
1474
1475 static void
1476 attrs_list_clear (attrs **listp)
1477 {
1478 attrs *list, *next;
1479
1480 for (list = *listp; list; list = next)
1481 {
1482 next = list->next;
1483 delete list;
1484 }
1485 *listp = NULL;
1486 }
1487
1488 /* Return true if the pair of DECL and OFFSET is the member of the LIST. */
1489
1490 static attrs *
1491 attrs_list_member (attrs *list, decl_or_value dv, HOST_WIDE_INT offset)
1492 {
1493 for (; list; list = list->next)
1494 if (dv_as_opaque (list->dv) == dv_as_opaque (dv) && list->offset == offset)
1495 return list;
1496 return NULL;
1497 }
1498
1499 /* Insert the triplet DECL, OFFSET, LOC to the list *LISTP. */
1500
1501 static void
1502 attrs_list_insert (attrs **listp, decl_or_value dv,
1503 HOST_WIDE_INT offset, rtx loc)
1504 {
1505 attrs *list = new attrs;
1506 list->loc = loc;
1507 list->dv = dv;
1508 list->offset = offset;
1509 list->next = *listp;
1510 *listp = list;
1511 }
1512
1513 /* Copy all nodes from SRC and create a list *DSTP of the copies. */
1514
1515 static void
1516 attrs_list_copy (attrs **dstp, attrs *src)
1517 {
1518 attrs_list_clear (dstp);
1519 for (; src; src = src->next)
1520 {
1521 attrs *n = new attrs;
1522 n->loc = src->loc;
1523 n->dv = src->dv;
1524 n->offset = src->offset;
1525 n->next = *dstp;
1526 *dstp = n;
1527 }
1528 }
1529
1530 /* Add all nodes from SRC which are not in *DSTP to *DSTP. */
1531
1532 static void
1533 attrs_list_union (attrs **dstp, attrs *src)
1534 {
1535 for (; src; src = src->next)
1536 {
1537 if (!attrs_list_member (*dstp, src->dv, src->offset))
1538 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1539 }
1540 }
1541
1542 /* Combine nodes that are not onepart nodes from SRC and SRC2 into
1543 *DSTP. */
1544
1545 static void
1546 attrs_list_mpdv_union (attrs **dstp, attrs *src, attrs *src2)
1547 {
1548 gcc_assert (!*dstp);
1549 for (; src; src = src->next)
1550 {
1551 if (!dv_onepart_p (src->dv))
1552 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1553 }
1554 for (src = src2; src; src = src->next)
1555 {
1556 if (!dv_onepart_p (src->dv)
1557 && !attrs_list_member (*dstp, src->dv, src->offset))
1558 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1559 }
1560 }
1561
1562 /* Shared hashtable support. */
1563
1564 /* Return true if VARS is shared. */
1565
1566 static inline bool
1567 shared_hash_shared (shared_hash *vars)
1568 {
1569 return vars->refcount > 1;
1570 }
1571
1572 /* Return the hash table for VARS. */
1573
1574 static inline variable_table_type *
1575 shared_hash_htab (shared_hash *vars)
1576 {
1577 return vars->htab;
1578 }
1579
1580 /* Return true if VAR is shared, or maybe because VARS is shared. */
1581
1582 static inline bool
1583 shared_var_p (variable *var, shared_hash *vars)
1584 {
1585 /* Don't count an entry in the changed_variables table as a duplicate. */
1586 return ((var->refcount > 1 + (int) var->in_changed_variables)
1587 || shared_hash_shared (vars));
1588 }
1589
1590 /* Copy variables into a new hash table. */
1591
1592 static shared_hash *
1593 shared_hash_unshare (shared_hash *vars)
1594 {
1595 shared_hash *new_vars = new shared_hash;
1596 gcc_assert (vars->refcount > 1);
1597 new_vars->refcount = 1;
1598 new_vars->htab = new variable_table_type (vars->htab->elements () + 3);
1599 vars_copy (new_vars->htab, vars->htab);
1600 vars->refcount--;
1601 return new_vars;
1602 }
1603
1604 /* Increment reference counter on VARS and return it. */
1605
1606 static inline shared_hash *
1607 shared_hash_copy (shared_hash *vars)
1608 {
1609 vars->refcount++;
1610 return vars;
1611 }
1612
1613 /* Decrement reference counter and destroy hash table if not shared
1614 anymore. */
1615
1616 static void
1617 shared_hash_destroy (shared_hash *vars)
1618 {
1619 gcc_checking_assert (vars->refcount > 0);
1620 if (--vars->refcount == 0)
1621 {
1622 delete vars->htab;
1623 delete vars;
1624 }
1625 }
1626
1627 /* Unshare *PVARS if shared and return slot for DV. If INS is
1628 INSERT, insert it if not already present. */
1629
1630 static inline variable **
1631 shared_hash_find_slot_unshare_1 (shared_hash **pvars, decl_or_value dv,
1632 hashval_t dvhash, enum insert_option ins)
1633 {
1634 if (shared_hash_shared (*pvars))
1635 *pvars = shared_hash_unshare (*pvars);
1636 return shared_hash_htab (*pvars)->find_slot_with_hash (dv, dvhash, ins);
1637 }
1638
1639 static inline variable **
1640 shared_hash_find_slot_unshare (shared_hash **pvars, decl_or_value dv,
1641 enum insert_option ins)
1642 {
1643 return shared_hash_find_slot_unshare_1 (pvars, dv, dv_htab_hash (dv), ins);
1644 }
1645
1646 /* Return slot for DV, if it is already present in the hash table.
1647 If it is not present, insert it only VARS is not shared, otherwise
1648 return NULL. */
1649
1650 static inline variable **
1651 shared_hash_find_slot_1 (shared_hash *vars, decl_or_value dv, hashval_t dvhash)
1652 {
1653 return shared_hash_htab (vars)->find_slot_with_hash (dv, dvhash,
1654 shared_hash_shared (vars)
1655 ? NO_INSERT : INSERT);
1656 }
1657
1658 static inline variable **
1659 shared_hash_find_slot (shared_hash *vars, decl_or_value dv)
1660 {
1661 return shared_hash_find_slot_1 (vars, dv, dv_htab_hash (dv));
1662 }
1663
1664 /* Return slot for DV only if it is already present in the hash table. */
1665
1666 static inline variable **
1667 shared_hash_find_slot_noinsert_1 (shared_hash *vars, decl_or_value dv,
1668 hashval_t dvhash)
1669 {
1670 return shared_hash_htab (vars)->find_slot_with_hash (dv, dvhash, NO_INSERT);
1671 }
1672
1673 static inline variable **
1674 shared_hash_find_slot_noinsert (shared_hash *vars, decl_or_value dv)
1675 {
1676 return shared_hash_find_slot_noinsert_1 (vars, dv, dv_htab_hash (dv));
1677 }
1678
1679 /* Return variable for DV or NULL if not already present in the hash
1680 table. */
1681
1682 static inline variable *
1683 shared_hash_find_1 (shared_hash *vars, decl_or_value dv, hashval_t dvhash)
1684 {
1685 return shared_hash_htab (vars)->find_with_hash (dv, dvhash);
1686 }
1687
1688 static inline variable *
1689 shared_hash_find (shared_hash *vars, decl_or_value dv)
1690 {
1691 return shared_hash_find_1 (vars, dv, dv_htab_hash (dv));
1692 }
1693
1694 /* Return true if TVAL is better than CVAL as a canonival value. We
1695 choose lowest-numbered VALUEs, using the RTX address as a
1696 tie-breaker. The idea is to arrange them into a star topology,
1697 such that all of them are at most one step away from the canonical
1698 value, and the canonical value has backlinks to all of them, in
1699 addition to all the actual locations. We don't enforce this
1700 topology throughout the entire dataflow analysis, though.
1701 */
1702
1703 static inline bool
1704 canon_value_cmp (rtx tval, rtx cval)
1705 {
1706 return !cval
1707 || CSELIB_VAL_PTR (tval)->uid < CSELIB_VAL_PTR (cval)->uid;
1708 }
1709
1710 static bool dst_can_be_shared;
1711
1712 /* Return a copy of a variable VAR and insert it to dataflow set SET. */
1713
1714 static variable **
1715 unshare_variable (dataflow_set *set, variable **slot, variable *var,
1716 enum var_init_status initialized)
1717 {
1718 variable *new_var;
1719 int i;
1720
1721 new_var = onepart_pool_allocate (var->onepart);
1722 new_var->dv = var->dv;
1723 new_var->refcount = 1;
1724 var->refcount--;
1725 new_var->n_var_parts = var->n_var_parts;
1726 new_var->onepart = var->onepart;
1727 new_var->in_changed_variables = false;
1728
1729 if (! flag_var_tracking_uninit)
1730 initialized = VAR_INIT_STATUS_INITIALIZED;
1731
1732 for (i = 0; i < var->n_var_parts; i++)
1733 {
1734 location_chain *node;
1735 location_chain **nextp;
1736
1737 if (i == 0 && var->onepart)
1738 {
1739 /* One-part auxiliary data is only used while emitting
1740 notes, so propagate it to the new variable in the active
1741 dataflow set. If we're not emitting notes, this will be
1742 a no-op. */
1743 gcc_checking_assert (!VAR_LOC_1PAUX (var) || emit_notes);
1744 VAR_LOC_1PAUX (new_var) = VAR_LOC_1PAUX (var);
1745 VAR_LOC_1PAUX (var) = NULL;
1746 }
1747 else
1748 VAR_PART_OFFSET (new_var, i) = VAR_PART_OFFSET (var, i);
1749 nextp = &new_var->var_part[i].loc_chain;
1750 for (node = var->var_part[i].loc_chain; node; node = node->next)
1751 {
1752 location_chain *new_lc;
1753
1754 new_lc = new location_chain;
1755 new_lc->next = NULL;
1756 if (node->init > initialized)
1757 new_lc->init = node->init;
1758 else
1759 new_lc->init = initialized;
1760 if (node->set_src && !(MEM_P (node->set_src)))
1761 new_lc->set_src = node->set_src;
1762 else
1763 new_lc->set_src = NULL;
1764 new_lc->loc = node->loc;
1765
1766 *nextp = new_lc;
1767 nextp = &new_lc->next;
1768 }
1769
1770 new_var->var_part[i].cur_loc = var->var_part[i].cur_loc;
1771 }
1772
1773 dst_can_be_shared = false;
1774 if (shared_hash_shared (set->vars))
1775 slot = shared_hash_find_slot_unshare (&set->vars, var->dv, NO_INSERT);
1776 else if (set->traversed_vars && set->vars != set->traversed_vars)
1777 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
1778 *slot = new_var;
1779 if (var->in_changed_variables)
1780 {
1781 variable **cslot
1782 = changed_variables->find_slot_with_hash (var->dv,
1783 dv_htab_hash (var->dv),
1784 NO_INSERT);
1785 gcc_assert (*cslot == (void *) var);
1786 var->in_changed_variables = false;
1787 variable_htab_free (var);
1788 *cslot = new_var;
1789 new_var->in_changed_variables = true;
1790 }
1791 return slot;
1792 }
1793
1794 /* Copy all variables from hash table SRC to hash table DST. */
1795
1796 static void
1797 vars_copy (variable_table_type *dst, variable_table_type *src)
1798 {
1799 variable_iterator_type hi;
1800 variable *var;
1801
1802 FOR_EACH_HASH_TABLE_ELEMENT (*src, var, variable, hi)
1803 {
1804 variable **dstp;
1805 var->refcount++;
1806 dstp = dst->find_slot_with_hash (var->dv, dv_htab_hash (var->dv),
1807 INSERT);
1808 *dstp = var;
1809 }
1810 }
1811
1812 /* Map a decl to its main debug decl. */
1813
1814 static inline tree
1815 var_debug_decl (tree decl)
1816 {
1817 if (decl && VAR_P (decl) && DECL_HAS_DEBUG_EXPR_P (decl))
1818 {
1819 tree debugdecl = DECL_DEBUG_EXPR (decl);
1820 if (DECL_P (debugdecl))
1821 decl = debugdecl;
1822 }
1823
1824 return decl;
1825 }
1826
1827 /* Set the register LOC to contain DV, OFFSET. */
1828
1829 static void
1830 var_reg_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1831 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
1832 enum insert_option iopt)
1833 {
1834 attrs *node;
1835 bool decl_p = dv_is_decl_p (dv);
1836
1837 if (decl_p)
1838 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
1839
1840 for (node = set->regs[REGNO (loc)]; node; node = node->next)
1841 if (dv_as_opaque (node->dv) == dv_as_opaque (dv)
1842 && node->offset == offset)
1843 break;
1844 if (!node)
1845 attrs_list_insert (&set->regs[REGNO (loc)], dv, offset, loc);
1846 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
1847 }
1848
1849 /* Return true if we should track a location that is OFFSET bytes from
1850 a variable. Store the constant offset in *OFFSET_OUT if so. */
1851
1852 static bool
1853 track_offset_p (poly_int64 offset, HOST_WIDE_INT *offset_out)
1854 {
1855 HOST_WIDE_INT const_offset;
1856 if (!offset.is_constant (&const_offset)
1857 || !IN_RANGE (const_offset, 0, MAX_VAR_PARTS - 1))
1858 return false;
1859 *offset_out = const_offset;
1860 return true;
1861 }
1862
1863 /* Return the offset of a register that track_offset_p says we
1864 should track. */
1865
1866 static HOST_WIDE_INT
1867 get_tracked_reg_offset (rtx loc)
1868 {
1869 HOST_WIDE_INT offset;
1870 if (!track_offset_p (REG_OFFSET (loc), &offset))
1871 gcc_unreachable ();
1872 return offset;
1873 }
1874
1875 /* Set the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). */
1876
1877 static void
1878 var_reg_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1879 rtx set_src)
1880 {
1881 tree decl = REG_EXPR (loc);
1882 HOST_WIDE_INT offset = get_tracked_reg_offset (loc);
1883
1884 var_reg_decl_set (set, loc, initialized,
1885 dv_from_decl (decl), offset, set_src, INSERT);
1886 }
1887
1888 static enum var_init_status
1889 get_init_value (dataflow_set *set, rtx loc, decl_or_value dv)
1890 {
1891 variable *var;
1892 int i;
1893 enum var_init_status ret_val = VAR_INIT_STATUS_UNKNOWN;
1894
1895 if (! flag_var_tracking_uninit)
1896 return VAR_INIT_STATUS_INITIALIZED;
1897
1898 var = shared_hash_find (set->vars, dv);
1899 if (var)
1900 {
1901 for (i = 0; i < var->n_var_parts && ret_val == VAR_INIT_STATUS_UNKNOWN; i++)
1902 {
1903 location_chain *nextp;
1904 for (nextp = var->var_part[i].loc_chain; nextp; nextp = nextp->next)
1905 if (rtx_equal_p (nextp->loc, loc))
1906 {
1907 ret_val = nextp->init;
1908 break;
1909 }
1910 }
1911 }
1912
1913 return ret_val;
1914 }
1915
1916 /* Delete current content of register LOC in dataflow set SET and set
1917 the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). If
1918 MODIFY is true, any other live copies of the same variable part are
1919 also deleted from the dataflow set, otherwise the variable part is
1920 assumed to be copied from another location holding the same
1921 part. */
1922
1923 static void
1924 var_reg_delete_and_set (dataflow_set *set, rtx loc, bool modify,
1925 enum var_init_status initialized, rtx set_src)
1926 {
1927 tree decl = REG_EXPR (loc);
1928 HOST_WIDE_INT offset = get_tracked_reg_offset (loc);
1929 attrs *node, *next;
1930 attrs **nextp;
1931
1932 decl = var_debug_decl (decl);
1933
1934 if (initialized == VAR_INIT_STATUS_UNKNOWN)
1935 initialized = get_init_value (set, loc, dv_from_decl (decl));
1936
1937 nextp = &set->regs[REGNO (loc)];
1938 for (node = *nextp; node; node = next)
1939 {
1940 next = node->next;
1941 if (dv_as_opaque (node->dv) != decl || node->offset != offset)
1942 {
1943 delete_variable_part (set, node->loc, node->dv, node->offset);
1944 delete node;
1945 *nextp = next;
1946 }
1947 else
1948 {
1949 node->loc = loc;
1950 nextp = &node->next;
1951 }
1952 }
1953 if (modify)
1954 clobber_variable_part (set, loc, dv_from_decl (decl), offset, set_src);
1955 var_reg_set (set, loc, initialized, set_src);
1956 }
1957
1958 /* Delete the association of register LOC in dataflow set SET with any
1959 variables that aren't onepart. If CLOBBER is true, also delete any
1960 other live copies of the same variable part, and delete the
1961 association with onepart dvs too. */
1962
1963 static void
1964 var_reg_delete (dataflow_set *set, rtx loc, bool clobber)
1965 {
1966 attrs **nextp = &set->regs[REGNO (loc)];
1967 attrs *node, *next;
1968
1969 HOST_WIDE_INT offset;
1970 if (clobber && track_offset_p (REG_OFFSET (loc), &offset))
1971 {
1972 tree decl = REG_EXPR (loc);
1973
1974 decl = var_debug_decl (decl);
1975
1976 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
1977 }
1978
1979 for (node = *nextp; node; node = next)
1980 {
1981 next = node->next;
1982 if (clobber || !dv_onepart_p (node->dv))
1983 {
1984 delete_variable_part (set, node->loc, node->dv, node->offset);
1985 delete node;
1986 *nextp = next;
1987 }
1988 else
1989 nextp = &node->next;
1990 }
1991 }
1992
1993 /* Delete content of register with number REGNO in dataflow set SET. */
1994
1995 static void
1996 var_regno_delete (dataflow_set *set, int regno)
1997 {
1998 attrs **reg = &set->regs[regno];
1999 attrs *node, *next;
2000
2001 for (node = *reg; node; node = next)
2002 {
2003 next = node->next;
2004 delete_variable_part (set, node->loc, node->dv, node->offset);
2005 delete node;
2006 }
2007 *reg = NULL;
2008 }
2009
2010 /* Return true if I is the negated value of a power of two. */
2011 static bool
2012 negative_power_of_two_p (HOST_WIDE_INT i)
2013 {
2014 unsigned HOST_WIDE_INT x = -(unsigned HOST_WIDE_INT)i;
2015 return pow2_or_zerop (x);
2016 }
2017
2018 /* Strip constant offsets and alignments off of LOC. Return the base
2019 expression. */
2020
2021 static rtx
2022 vt_get_canonicalize_base (rtx loc)
2023 {
2024 while ((GET_CODE (loc) == PLUS
2025 || GET_CODE (loc) == AND)
2026 && GET_CODE (XEXP (loc, 1)) == CONST_INT
2027 && (GET_CODE (loc) != AND
2028 || negative_power_of_two_p (INTVAL (XEXP (loc, 1)))))
2029 loc = XEXP (loc, 0);
2030
2031 return loc;
2032 }
2033
2034 /* This caches canonicalized addresses for VALUEs, computed using
2035 information in the global cselib table. */
2036 static hash_map<rtx, rtx> *global_get_addr_cache;
2037
2038 /* This caches canonicalized addresses for VALUEs, computed using
2039 information from the global cache and information pertaining to a
2040 basic block being analyzed. */
2041 static hash_map<rtx, rtx> *local_get_addr_cache;
2042
2043 static rtx vt_canonicalize_addr (dataflow_set *, rtx);
2044
2045 /* Return the canonical address for LOC, that must be a VALUE, using a
2046 cached global equivalence or computing it and storing it in the
2047 global cache. */
2048
2049 static rtx
2050 get_addr_from_global_cache (rtx const loc)
2051 {
2052 rtx x;
2053
2054 gcc_checking_assert (GET_CODE (loc) == VALUE);
2055
2056 bool existed;
2057 rtx *slot = &global_get_addr_cache->get_or_insert (loc, &existed);
2058 if (existed)
2059 return *slot;
2060
2061 x = canon_rtx (get_addr (loc));
2062
2063 /* Tentative, avoiding infinite recursion. */
2064 *slot = x;
2065
2066 if (x != loc)
2067 {
2068 rtx nx = vt_canonicalize_addr (NULL, x);
2069 if (nx != x)
2070 {
2071 /* The table may have moved during recursion, recompute
2072 SLOT. */
2073 *global_get_addr_cache->get (loc) = x = nx;
2074 }
2075 }
2076
2077 return x;
2078 }
2079
2080 /* Return the canonical address for LOC, that must be a VALUE, using a
2081 cached local equivalence or computing it and storing it in the
2082 local cache. */
2083
2084 static rtx
2085 get_addr_from_local_cache (dataflow_set *set, rtx const loc)
2086 {
2087 rtx x;
2088 decl_or_value dv;
2089 variable *var;
2090 location_chain *l;
2091
2092 gcc_checking_assert (GET_CODE (loc) == VALUE);
2093
2094 bool existed;
2095 rtx *slot = &local_get_addr_cache->get_or_insert (loc, &existed);
2096 if (existed)
2097 return *slot;
2098
2099 x = get_addr_from_global_cache (loc);
2100
2101 /* Tentative, avoiding infinite recursion. */
2102 *slot = x;
2103
2104 /* Recurse to cache local expansion of X, or if we need to search
2105 for a VALUE in the expansion. */
2106 if (x != loc)
2107 {
2108 rtx nx = vt_canonicalize_addr (set, x);
2109 if (nx != x)
2110 {
2111 slot = local_get_addr_cache->get (loc);
2112 *slot = x = nx;
2113 }
2114 return x;
2115 }
2116
2117 dv = dv_from_rtx (x);
2118 var = shared_hash_find (set->vars, dv);
2119 if (!var)
2120 return x;
2121
2122 /* Look for an improved equivalent expression. */
2123 for (l = var->var_part[0].loc_chain; l; l = l->next)
2124 {
2125 rtx base = vt_get_canonicalize_base (l->loc);
2126 if (GET_CODE (base) == VALUE
2127 && canon_value_cmp (base, loc))
2128 {
2129 rtx nx = vt_canonicalize_addr (set, l->loc);
2130 if (x != nx)
2131 {
2132 slot = local_get_addr_cache->get (loc);
2133 *slot = x = nx;
2134 }
2135 break;
2136 }
2137 }
2138
2139 return x;
2140 }
2141
2142 /* Canonicalize LOC using equivalences from SET in addition to those
2143 in the cselib static table. It expects a VALUE-based expression,
2144 and it will only substitute VALUEs with other VALUEs or
2145 function-global equivalences, so that, if two addresses have base
2146 VALUEs that are locally or globally related in ways that
2147 memrefs_conflict_p cares about, they will both canonicalize to
2148 expressions that have the same base VALUE.
2149
2150 The use of VALUEs as canonical base addresses enables the canonical
2151 RTXs to remain unchanged globally, if they resolve to a constant,
2152 or throughout a basic block otherwise, so that they can be cached
2153 and the cache needs not be invalidated when REGs, MEMs or such
2154 change. */
2155
2156 static rtx
2157 vt_canonicalize_addr (dataflow_set *set, rtx oloc)
2158 {
2159 HOST_WIDE_INT ofst = 0;
2160 machine_mode mode = GET_MODE (oloc);
2161 rtx loc = oloc;
2162 rtx x;
2163 bool retry = true;
2164
2165 while (retry)
2166 {
2167 while (GET_CODE (loc) == PLUS
2168 && GET_CODE (XEXP (loc, 1)) == CONST_INT)
2169 {
2170 ofst += INTVAL (XEXP (loc, 1));
2171 loc = XEXP (loc, 0);
2172 }
2173
2174 /* Alignment operations can't normally be combined, so just
2175 canonicalize the base and we're done. We'll normally have
2176 only one stack alignment anyway. */
2177 if (GET_CODE (loc) == AND
2178 && GET_CODE (XEXP (loc, 1)) == CONST_INT
2179 && negative_power_of_two_p (INTVAL (XEXP (loc, 1))))
2180 {
2181 x = vt_canonicalize_addr (set, XEXP (loc, 0));
2182 if (x != XEXP (loc, 0))
2183 loc = gen_rtx_AND (mode, x, XEXP (loc, 1));
2184 retry = false;
2185 }
2186
2187 if (GET_CODE (loc) == VALUE)
2188 {
2189 if (set)
2190 loc = get_addr_from_local_cache (set, loc);
2191 else
2192 loc = get_addr_from_global_cache (loc);
2193
2194 /* Consolidate plus_constants. */
2195 while (ofst && GET_CODE (loc) == PLUS
2196 && GET_CODE (XEXP (loc, 1)) == CONST_INT)
2197 {
2198 ofst += INTVAL (XEXP (loc, 1));
2199 loc = XEXP (loc, 0);
2200 }
2201
2202 retry = false;
2203 }
2204 else
2205 {
2206 x = canon_rtx (loc);
2207 if (retry)
2208 retry = (x != loc);
2209 loc = x;
2210 }
2211 }
2212
2213 /* Add OFST back in. */
2214 if (ofst)
2215 {
2216 /* Don't build new RTL if we can help it. */
2217 if (GET_CODE (oloc) == PLUS
2218 && XEXP (oloc, 0) == loc
2219 && INTVAL (XEXP (oloc, 1)) == ofst)
2220 return oloc;
2221
2222 loc = plus_constant (mode, loc, ofst);
2223 }
2224
2225 return loc;
2226 }
2227
2228 /* Return true iff there's a true dependence between MLOC and LOC.
2229 MADDR must be a canonicalized version of MLOC's address. */
2230
2231 static inline bool
2232 vt_canon_true_dep (dataflow_set *set, rtx mloc, rtx maddr, rtx loc)
2233 {
2234 if (GET_CODE (loc) != MEM)
2235 return false;
2236
2237 rtx addr = vt_canonicalize_addr (set, XEXP (loc, 0));
2238 if (!canon_true_dependence (mloc, GET_MODE (mloc), maddr, loc, addr))
2239 return false;
2240
2241 return true;
2242 }
2243
2244 /* Hold parameters for the hashtab traversal function
2245 drop_overlapping_mem_locs, see below. */
2246
2247 struct overlapping_mems
2248 {
2249 dataflow_set *set;
2250 rtx loc, addr;
2251 };
2252
2253 /* Remove all MEMs that overlap with COMS->LOC from the location list
2254 of a hash table entry for a onepart variable. COMS->ADDR must be a
2255 canonicalized form of COMS->LOC's address, and COMS->LOC must be
2256 canonicalized itself. */
2257
2258 int
2259 drop_overlapping_mem_locs (variable **slot, overlapping_mems *coms)
2260 {
2261 dataflow_set *set = coms->set;
2262 rtx mloc = coms->loc, addr = coms->addr;
2263 variable *var = *slot;
2264
2265 if (var->onepart != NOT_ONEPART)
2266 {
2267 location_chain *loc, **locp;
2268 bool changed = false;
2269 rtx cur_loc;
2270
2271 gcc_assert (var->n_var_parts == 1);
2272
2273 if (shared_var_p (var, set->vars))
2274 {
2275 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
2276 if (vt_canon_true_dep (set, mloc, addr, loc->loc))
2277 break;
2278
2279 if (!loc)
2280 return 1;
2281
2282 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
2283 var = *slot;
2284 gcc_assert (var->n_var_parts == 1);
2285 }
2286
2287 if (VAR_LOC_1PAUX (var))
2288 cur_loc = VAR_LOC_FROM (var);
2289 else
2290 cur_loc = var->var_part[0].cur_loc;
2291
2292 for (locp = &var->var_part[0].loc_chain, loc = *locp;
2293 loc; loc = *locp)
2294 {
2295 if (!vt_canon_true_dep (set, mloc, addr, loc->loc))
2296 {
2297 locp = &loc->next;
2298 continue;
2299 }
2300
2301 *locp = loc->next;
2302 /* If we have deleted the location which was last emitted
2303 we have to emit new location so add the variable to set
2304 of changed variables. */
2305 if (cur_loc == loc->loc)
2306 {
2307 changed = true;
2308 var->var_part[0].cur_loc = NULL;
2309 if (VAR_LOC_1PAUX (var))
2310 VAR_LOC_FROM (var) = NULL;
2311 }
2312 delete loc;
2313 }
2314
2315 if (!var->var_part[0].loc_chain)
2316 {
2317 var->n_var_parts--;
2318 changed = true;
2319 }
2320 if (changed)
2321 variable_was_changed (var, set);
2322 }
2323
2324 return 1;
2325 }
2326
2327 /* Remove from SET all VALUE bindings to MEMs that overlap with LOC. */
2328
2329 static void
2330 clobber_overlapping_mems (dataflow_set *set, rtx loc)
2331 {
2332 struct overlapping_mems coms;
2333
2334 gcc_checking_assert (GET_CODE (loc) == MEM);
2335
2336 coms.set = set;
2337 coms.loc = canon_rtx (loc);
2338 coms.addr = vt_canonicalize_addr (set, XEXP (loc, 0));
2339
2340 set->traversed_vars = set->vars;
2341 shared_hash_htab (set->vars)
2342 ->traverse <overlapping_mems*, drop_overlapping_mem_locs> (&coms);
2343 set->traversed_vars = NULL;
2344 }
2345
2346 /* Set the location of DV, OFFSET as the MEM LOC. */
2347
2348 static void
2349 var_mem_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
2350 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
2351 enum insert_option iopt)
2352 {
2353 if (dv_is_decl_p (dv))
2354 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
2355
2356 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
2357 }
2358
2359 /* Set the location part of variable MEM_EXPR (LOC) in dataflow set
2360 SET to LOC.
2361 Adjust the address first if it is stack pointer based. */
2362
2363 static void
2364 var_mem_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
2365 rtx set_src)
2366 {
2367 tree decl = MEM_EXPR (loc);
2368 HOST_WIDE_INT offset = int_mem_offset (loc);
2369
2370 var_mem_decl_set (set, loc, initialized,
2371 dv_from_decl (decl), offset, set_src, INSERT);
2372 }
2373
2374 /* Delete and set the location part of variable MEM_EXPR (LOC) in
2375 dataflow set SET to LOC. If MODIFY is true, any other live copies
2376 of the same variable part are also deleted from the dataflow set,
2377 otherwise the variable part is assumed to be copied from another
2378 location holding the same part.
2379 Adjust the address first if it is stack pointer based. */
2380
2381 static void
2382 var_mem_delete_and_set (dataflow_set *set, rtx loc, bool modify,
2383 enum var_init_status initialized, rtx set_src)
2384 {
2385 tree decl = MEM_EXPR (loc);
2386 HOST_WIDE_INT offset = int_mem_offset (loc);
2387
2388 clobber_overlapping_mems (set, loc);
2389 decl = var_debug_decl (decl);
2390
2391 if (initialized == VAR_INIT_STATUS_UNKNOWN)
2392 initialized = get_init_value (set, loc, dv_from_decl (decl));
2393
2394 if (modify)
2395 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, set_src);
2396 var_mem_set (set, loc, initialized, set_src);
2397 }
2398
2399 /* Delete the location part LOC from dataflow set SET. If CLOBBER is
2400 true, also delete any other live copies of the same variable part.
2401 Adjust the address first if it is stack pointer based. */
2402
2403 static void
2404 var_mem_delete (dataflow_set *set, rtx loc, bool clobber)
2405 {
2406 tree decl = MEM_EXPR (loc);
2407 HOST_WIDE_INT offset = int_mem_offset (loc);
2408
2409 clobber_overlapping_mems (set, loc);
2410 decl = var_debug_decl (decl);
2411 if (clobber)
2412 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
2413 delete_variable_part (set, loc, dv_from_decl (decl), offset);
2414 }
2415
2416 /* Return true if LOC should not be expanded for location expressions,
2417 or used in them. */
2418
2419 static inline bool
2420 unsuitable_loc (rtx loc)
2421 {
2422 switch (GET_CODE (loc))
2423 {
2424 case PC:
2425 case SCRATCH:
2426 case CC0:
2427 case ASM_INPUT:
2428 case ASM_OPERANDS:
2429 return true;
2430
2431 default:
2432 return false;
2433 }
2434 }
2435
2436 /* Bind VAL to LOC in SET. If MODIFIED, detach LOC from any values
2437 bound to it. */
2438
2439 static inline void
2440 val_bind (dataflow_set *set, rtx val, rtx loc, bool modified)
2441 {
2442 if (REG_P (loc))
2443 {
2444 if (modified)
2445 var_regno_delete (set, REGNO (loc));
2446 var_reg_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2447 dv_from_value (val), 0, NULL_RTX, INSERT);
2448 }
2449 else if (MEM_P (loc))
2450 {
2451 struct elt_loc_list *l = CSELIB_VAL_PTR (val)->locs;
2452
2453 if (modified)
2454 clobber_overlapping_mems (set, loc);
2455
2456 if (l && GET_CODE (l->loc) == VALUE)
2457 l = canonical_cselib_val (CSELIB_VAL_PTR (l->loc))->locs;
2458
2459 /* If this MEM is a global constant, we don't need it in the
2460 dynamic tables. ??? We should test this before emitting the
2461 micro-op in the first place. */
2462 while (l)
2463 if (GET_CODE (l->loc) == MEM && XEXP (l->loc, 0) == XEXP (loc, 0))
2464 break;
2465 else
2466 l = l->next;
2467
2468 if (!l)
2469 var_mem_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2470 dv_from_value (val), 0, NULL_RTX, INSERT);
2471 }
2472 else
2473 {
2474 /* Other kinds of equivalences are necessarily static, at least
2475 so long as we do not perform substitutions while merging
2476 expressions. */
2477 gcc_unreachable ();
2478 set_variable_part (set, loc, dv_from_value (val), 0,
2479 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2480 }
2481 }
2482
2483 /* Bind a value to a location it was just stored in. If MODIFIED
2484 holds, assume the location was modified, detaching it from any
2485 values bound to it. */
2486
2487 static void
2488 val_store (dataflow_set *set, rtx val, rtx loc, rtx_insn *insn,
2489 bool modified)
2490 {
2491 cselib_val *v = CSELIB_VAL_PTR (val);
2492
2493 gcc_assert (cselib_preserved_value_p (v));
2494
2495 if (dump_file)
2496 {
2497 fprintf (dump_file, "%i: ", insn ? INSN_UID (insn) : 0);
2498 print_inline_rtx (dump_file, loc, 0);
2499 fprintf (dump_file, " evaluates to ");
2500 print_inline_rtx (dump_file, val, 0);
2501 if (v->locs)
2502 {
2503 struct elt_loc_list *l;
2504 for (l = v->locs; l; l = l->next)
2505 {
2506 fprintf (dump_file, "\n%i: ", INSN_UID (l->setting_insn));
2507 print_inline_rtx (dump_file, l->loc, 0);
2508 }
2509 }
2510 fprintf (dump_file, "\n");
2511 }
2512
2513 gcc_checking_assert (!unsuitable_loc (loc));
2514
2515 val_bind (set, val, loc, modified);
2516 }
2517
2518 /* Clear (canonical address) slots that reference X. */
2519
2520 bool
2521 local_get_addr_clear_given_value (rtx const &, rtx *slot, rtx x)
2522 {
2523 if (vt_get_canonicalize_base (*slot) == x)
2524 *slot = NULL;
2525 return true;
2526 }
2527
2528 /* Reset this node, detaching all its equivalences. Return the slot
2529 in the variable hash table that holds dv, if there is one. */
2530
2531 static void
2532 val_reset (dataflow_set *set, decl_or_value dv)
2533 {
2534 variable *var = shared_hash_find (set->vars, dv) ;
2535 location_chain *node;
2536 rtx cval;
2537
2538 if (!var || !var->n_var_parts)
2539 return;
2540
2541 gcc_assert (var->n_var_parts == 1);
2542
2543 if (var->onepart == ONEPART_VALUE)
2544 {
2545 rtx x = dv_as_value (dv);
2546
2547 /* Relationships in the global cache don't change, so reset the
2548 local cache entry only. */
2549 rtx *slot = local_get_addr_cache->get (x);
2550 if (slot)
2551 {
2552 /* If the value resolved back to itself, odds are that other
2553 values may have cached it too. These entries now refer
2554 to the old X, so detach them too. Entries that used the
2555 old X but resolved to something else remain ok as long as
2556 that something else isn't also reset. */
2557 if (*slot == x)
2558 local_get_addr_cache
2559 ->traverse<rtx, local_get_addr_clear_given_value> (x);
2560 *slot = NULL;
2561 }
2562 }
2563
2564 cval = NULL;
2565 for (node = var->var_part[0].loc_chain; node; node = node->next)
2566 if (GET_CODE (node->loc) == VALUE
2567 && canon_value_cmp (node->loc, cval))
2568 cval = node->loc;
2569
2570 for (node = var->var_part[0].loc_chain; node; node = node->next)
2571 if (GET_CODE (node->loc) == VALUE && cval != node->loc)
2572 {
2573 /* Redirect the equivalence link to the new canonical
2574 value, or simply remove it if it would point at
2575 itself. */
2576 if (cval)
2577 set_variable_part (set, cval, dv_from_value (node->loc),
2578 0, node->init, node->set_src, NO_INSERT);
2579 delete_variable_part (set, dv_as_value (dv),
2580 dv_from_value (node->loc), 0);
2581 }
2582
2583 if (cval)
2584 {
2585 decl_or_value cdv = dv_from_value (cval);
2586
2587 /* Keep the remaining values connected, accumulating links
2588 in the canonical value. */
2589 for (node = var->var_part[0].loc_chain; node; node = node->next)
2590 {
2591 if (node->loc == cval)
2592 continue;
2593 else if (GET_CODE (node->loc) == REG)
2594 var_reg_decl_set (set, node->loc, node->init, cdv, 0,
2595 node->set_src, NO_INSERT);
2596 else if (GET_CODE (node->loc) == MEM)
2597 var_mem_decl_set (set, node->loc, node->init, cdv, 0,
2598 node->set_src, NO_INSERT);
2599 else
2600 set_variable_part (set, node->loc, cdv, 0,
2601 node->init, node->set_src, NO_INSERT);
2602 }
2603 }
2604
2605 /* We remove this last, to make sure that the canonical value is not
2606 removed to the point of requiring reinsertion. */
2607 if (cval)
2608 delete_variable_part (set, dv_as_value (dv), dv_from_value (cval), 0);
2609
2610 clobber_variable_part (set, NULL, dv, 0, NULL);
2611 }
2612
2613 /* Find the values in a given location and map the val to another
2614 value, if it is unique, or add the location as one holding the
2615 value. */
2616
2617 static void
2618 val_resolve (dataflow_set *set, rtx val, rtx loc, rtx_insn *insn)
2619 {
2620 decl_or_value dv = dv_from_value (val);
2621
2622 if (dump_file && (dump_flags & TDF_DETAILS))
2623 {
2624 if (insn)
2625 fprintf (dump_file, "%i: ", INSN_UID (insn));
2626 else
2627 fprintf (dump_file, "head: ");
2628 print_inline_rtx (dump_file, val, 0);
2629 fputs (" is at ", dump_file);
2630 print_inline_rtx (dump_file, loc, 0);
2631 fputc ('\n', dump_file);
2632 }
2633
2634 val_reset (set, dv);
2635
2636 gcc_checking_assert (!unsuitable_loc (loc));
2637
2638 if (REG_P (loc))
2639 {
2640 attrs *node, *found = NULL;
2641
2642 for (node = set->regs[REGNO (loc)]; node; node = node->next)
2643 if (dv_is_value_p (node->dv)
2644 && GET_MODE (dv_as_value (node->dv)) == GET_MODE (loc))
2645 {
2646 found = node;
2647
2648 /* Map incoming equivalences. ??? Wouldn't it be nice if
2649 we just started sharing the location lists? Maybe a
2650 circular list ending at the value itself or some
2651 such. */
2652 set_variable_part (set, dv_as_value (node->dv),
2653 dv_from_value (val), node->offset,
2654 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2655 set_variable_part (set, val, node->dv, node->offset,
2656 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2657 }
2658
2659 /* If we didn't find any equivalence, we need to remember that
2660 this value is held in the named register. */
2661 if (found)
2662 return;
2663 }
2664 /* ??? Attempt to find and merge equivalent MEMs or other
2665 expressions too. */
2666
2667 val_bind (set, val, loc, false);
2668 }
2669
2670 /* Initialize dataflow set SET to be empty.
2671 VARS_SIZE is the initial size of hash table VARS. */
2672
2673 static void
2674 dataflow_set_init (dataflow_set *set)
2675 {
2676 init_attrs_list_set (set->regs);
2677 set->vars = shared_hash_copy (empty_shared_hash);
2678 set->stack_adjust = 0;
2679 set->traversed_vars = NULL;
2680 }
2681
2682 /* Delete the contents of dataflow set SET. */
2683
2684 static void
2685 dataflow_set_clear (dataflow_set *set)
2686 {
2687 int i;
2688
2689 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2690 attrs_list_clear (&set->regs[i]);
2691
2692 shared_hash_destroy (set->vars);
2693 set->vars = shared_hash_copy (empty_shared_hash);
2694 }
2695
2696 /* Copy the contents of dataflow set SRC to DST. */
2697
2698 static void
2699 dataflow_set_copy (dataflow_set *dst, dataflow_set *src)
2700 {
2701 int i;
2702
2703 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2704 attrs_list_copy (&dst->regs[i], src->regs[i]);
2705
2706 shared_hash_destroy (dst->vars);
2707 dst->vars = shared_hash_copy (src->vars);
2708 dst->stack_adjust = src->stack_adjust;
2709 }
2710
2711 /* Information for merging lists of locations for a given offset of variable.
2712 */
2713 struct variable_union_info
2714 {
2715 /* Node of the location chain. */
2716 location_chain *lc;
2717
2718 /* The sum of positions in the input chains. */
2719 int pos;
2720
2721 /* The position in the chain of DST dataflow set. */
2722 int pos_dst;
2723 };
2724
2725 /* Buffer for location list sorting and its allocated size. */
2726 static struct variable_union_info *vui_vec;
2727 static int vui_allocated;
2728
2729 /* Compare function for qsort, order the structures by POS element. */
2730
2731 static int
2732 variable_union_info_cmp_pos (const void *n1, const void *n2)
2733 {
2734 const struct variable_union_info *const i1 =
2735 (const struct variable_union_info *) n1;
2736 const struct variable_union_info *const i2 =
2737 ( const struct variable_union_info *) n2;
2738
2739 if (i1->pos != i2->pos)
2740 return i1->pos - i2->pos;
2741
2742 return (i1->pos_dst - i2->pos_dst);
2743 }
2744
2745 /* Compute union of location parts of variable *SLOT and the same variable
2746 from hash table DATA. Compute "sorted" union of the location chains
2747 for common offsets, i.e. the locations of a variable part are sorted by
2748 a priority where the priority is the sum of the positions in the 2 chains
2749 (if a location is only in one list the position in the second list is
2750 defined to be larger than the length of the chains).
2751 When we are updating the location parts the newest location is in the
2752 beginning of the chain, so when we do the described "sorted" union
2753 we keep the newest locations in the beginning. */
2754
2755 static int
2756 variable_union (variable *src, dataflow_set *set)
2757 {
2758 variable *dst;
2759 variable **dstp;
2760 int i, j, k;
2761
2762 dstp = shared_hash_find_slot (set->vars, src->dv);
2763 if (!dstp || !*dstp)
2764 {
2765 src->refcount++;
2766
2767 dst_can_be_shared = false;
2768 if (!dstp)
2769 dstp = shared_hash_find_slot_unshare (&set->vars, src->dv, INSERT);
2770
2771 *dstp = src;
2772
2773 /* Continue traversing the hash table. */
2774 return 1;
2775 }
2776 else
2777 dst = *dstp;
2778
2779 gcc_assert (src->n_var_parts);
2780 gcc_checking_assert (src->onepart == dst->onepart);
2781
2782 /* We can combine one-part variables very efficiently, because their
2783 entries are in canonical order. */
2784 if (src->onepart)
2785 {
2786 location_chain **nodep, *dnode, *snode;
2787
2788 gcc_assert (src->n_var_parts == 1
2789 && dst->n_var_parts == 1);
2790
2791 snode = src->var_part[0].loc_chain;
2792 gcc_assert (snode);
2793
2794 restart_onepart_unshared:
2795 nodep = &dst->var_part[0].loc_chain;
2796 dnode = *nodep;
2797 gcc_assert (dnode);
2798
2799 while (snode)
2800 {
2801 int r = dnode ? loc_cmp (dnode->loc, snode->loc) : 1;
2802
2803 if (r > 0)
2804 {
2805 location_chain *nnode;
2806
2807 if (shared_var_p (dst, set->vars))
2808 {
2809 dstp = unshare_variable (set, dstp, dst,
2810 VAR_INIT_STATUS_INITIALIZED);
2811 dst = *dstp;
2812 goto restart_onepart_unshared;
2813 }
2814
2815 *nodep = nnode = new location_chain;
2816 nnode->loc = snode->loc;
2817 nnode->init = snode->init;
2818 if (!snode->set_src || MEM_P (snode->set_src))
2819 nnode->set_src = NULL;
2820 else
2821 nnode->set_src = snode->set_src;
2822 nnode->next = dnode;
2823 dnode = nnode;
2824 }
2825 else if (r == 0)
2826 gcc_checking_assert (rtx_equal_p (dnode->loc, snode->loc));
2827
2828 if (r >= 0)
2829 snode = snode->next;
2830
2831 nodep = &dnode->next;
2832 dnode = *nodep;
2833 }
2834
2835 return 1;
2836 }
2837
2838 gcc_checking_assert (!src->onepart);
2839
2840 /* Count the number of location parts, result is K. */
2841 for (i = 0, j = 0, k = 0;
2842 i < src->n_var_parts && j < dst->n_var_parts; k++)
2843 {
2844 if (VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
2845 {
2846 i++;
2847 j++;
2848 }
2849 else if (VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
2850 i++;
2851 else
2852 j++;
2853 }
2854 k += src->n_var_parts - i;
2855 k += dst->n_var_parts - j;
2856
2857 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
2858 thus there are at most MAX_VAR_PARTS different offsets. */
2859 gcc_checking_assert (dst->onepart ? k == 1 : k <= MAX_VAR_PARTS);
2860
2861 if (dst->n_var_parts != k && shared_var_p (dst, set->vars))
2862 {
2863 dstp = unshare_variable (set, dstp, dst, VAR_INIT_STATUS_UNKNOWN);
2864 dst = *dstp;
2865 }
2866
2867 i = src->n_var_parts - 1;
2868 j = dst->n_var_parts - 1;
2869 dst->n_var_parts = k;
2870
2871 for (k--; k >= 0; k--)
2872 {
2873 location_chain *node, *node2;
2874
2875 if (i >= 0 && j >= 0
2876 && VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
2877 {
2878 /* Compute the "sorted" union of the chains, i.e. the locations which
2879 are in both chains go first, they are sorted by the sum of
2880 positions in the chains. */
2881 int dst_l, src_l;
2882 int ii, jj, n;
2883 struct variable_union_info *vui;
2884
2885 /* If DST is shared compare the location chains.
2886 If they are different we will modify the chain in DST with
2887 high probability so make a copy of DST. */
2888 if (shared_var_p (dst, set->vars))
2889 {
2890 for (node = src->var_part[i].loc_chain,
2891 node2 = dst->var_part[j].loc_chain; node && node2;
2892 node = node->next, node2 = node2->next)
2893 {
2894 if (!((REG_P (node2->loc)
2895 && REG_P (node->loc)
2896 && REGNO (node2->loc) == REGNO (node->loc))
2897 || rtx_equal_p (node2->loc, node->loc)))
2898 {
2899 if (node2->init < node->init)
2900 node2->init = node->init;
2901 break;
2902 }
2903 }
2904 if (node || node2)
2905 {
2906 dstp = unshare_variable (set, dstp, dst,
2907 VAR_INIT_STATUS_UNKNOWN);
2908 dst = (variable *)*dstp;
2909 }
2910 }
2911
2912 src_l = 0;
2913 for (node = src->var_part[i].loc_chain; node; node = node->next)
2914 src_l++;
2915 dst_l = 0;
2916 for (node = dst->var_part[j].loc_chain; node; node = node->next)
2917 dst_l++;
2918
2919 if (dst_l == 1)
2920 {
2921 /* The most common case, much simpler, no qsort is needed. */
2922 location_chain *dstnode = dst->var_part[j].loc_chain;
2923 dst->var_part[k].loc_chain = dstnode;
2924 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (dst, j);
2925 node2 = dstnode;
2926 for (node = src->var_part[i].loc_chain; node; node = node->next)
2927 if (!((REG_P (dstnode->loc)
2928 && REG_P (node->loc)
2929 && REGNO (dstnode->loc) == REGNO (node->loc))
2930 || rtx_equal_p (dstnode->loc, node->loc)))
2931 {
2932 location_chain *new_node;
2933
2934 /* Copy the location from SRC. */
2935 new_node = new location_chain;
2936 new_node->loc = node->loc;
2937 new_node->init = node->init;
2938 if (!node->set_src || MEM_P (node->set_src))
2939 new_node->set_src = NULL;
2940 else
2941 new_node->set_src = node->set_src;
2942 node2->next = new_node;
2943 node2 = new_node;
2944 }
2945 node2->next = NULL;
2946 }
2947 else
2948 {
2949 if (src_l + dst_l > vui_allocated)
2950 {
2951 vui_allocated = MAX (vui_allocated * 2, src_l + dst_l);
2952 vui_vec = XRESIZEVEC (struct variable_union_info, vui_vec,
2953 vui_allocated);
2954 }
2955 vui = vui_vec;
2956
2957 /* Fill in the locations from DST. */
2958 for (node = dst->var_part[j].loc_chain, jj = 0; node;
2959 node = node->next, jj++)
2960 {
2961 vui[jj].lc = node;
2962 vui[jj].pos_dst = jj;
2963
2964 /* Pos plus value larger than a sum of 2 valid positions. */
2965 vui[jj].pos = jj + src_l + dst_l;
2966 }
2967
2968 /* Fill in the locations from SRC. */
2969 n = dst_l;
2970 for (node = src->var_part[i].loc_chain, ii = 0; node;
2971 node = node->next, ii++)
2972 {
2973 /* Find location from NODE. */
2974 for (jj = 0; jj < dst_l; jj++)
2975 {
2976 if ((REG_P (vui[jj].lc->loc)
2977 && REG_P (node->loc)
2978 && REGNO (vui[jj].lc->loc) == REGNO (node->loc))
2979 || rtx_equal_p (vui[jj].lc->loc, node->loc))
2980 {
2981 vui[jj].pos = jj + ii;
2982 break;
2983 }
2984 }
2985 if (jj >= dst_l) /* The location has not been found. */
2986 {
2987 location_chain *new_node;
2988
2989 /* Copy the location from SRC. */
2990 new_node = new location_chain;
2991 new_node->loc = node->loc;
2992 new_node->init = node->init;
2993 if (!node->set_src || MEM_P (node->set_src))
2994 new_node->set_src = NULL;
2995 else
2996 new_node->set_src = node->set_src;
2997 vui[n].lc = new_node;
2998 vui[n].pos_dst = src_l + dst_l;
2999 vui[n].pos = ii + src_l + dst_l;
3000 n++;
3001 }
3002 }
3003
3004 if (dst_l == 2)
3005 {
3006 /* Special case still very common case. For dst_l == 2
3007 all entries dst_l ... n-1 are sorted, with for i >= dst_l
3008 vui[i].pos == i + src_l + dst_l. */
3009 if (vui[0].pos > vui[1].pos)
3010 {
3011 /* Order should be 1, 0, 2... */
3012 dst->var_part[k].loc_chain = vui[1].lc;
3013 vui[1].lc->next = vui[0].lc;
3014 if (n >= 3)
3015 {
3016 vui[0].lc->next = vui[2].lc;
3017 vui[n - 1].lc->next = NULL;
3018 }
3019 else
3020 vui[0].lc->next = NULL;
3021 ii = 3;
3022 }
3023 else
3024 {
3025 dst->var_part[k].loc_chain = vui[0].lc;
3026 if (n >= 3 && vui[2].pos < vui[1].pos)
3027 {
3028 /* Order should be 0, 2, 1, 3... */
3029 vui[0].lc->next = vui[2].lc;
3030 vui[2].lc->next = vui[1].lc;
3031 if (n >= 4)
3032 {
3033 vui[1].lc->next = vui[3].lc;
3034 vui[n - 1].lc->next = NULL;
3035 }
3036 else
3037 vui[1].lc->next = NULL;
3038 ii = 4;
3039 }
3040 else
3041 {
3042 /* Order should be 0, 1, 2... */
3043 ii = 1;
3044 vui[n - 1].lc->next = NULL;
3045 }
3046 }
3047 for (; ii < n; ii++)
3048 vui[ii - 1].lc->next = vui[ii].lc;
3049 }
3050 else
3051 {
3052 qsort (vui, n, sizeof (struct variable_union_info),
3053 variable_union_info_cmp_pos);
3054
3055 /* Reconnect the nodes in sorted order. */
3056 for (ii = 1; ii < n; ii++)
3057 vui[ii - 1].lc->next = vui[ii].lc;
3058 vui[n - 1].lc->next = NULL;
3059 dst->var_part[k].loc_chain = vui[0].lc;
3060 }
3061
3062 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (dst, j);
3063 }
3064 i--;
3065 j--;
3066 }
3067 else if ((i >= 0 && j >= 0
3068 && VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
3069 || i < 0)
3070 {
3071 dst->var_part[k] = dst->var_part[j];
3072 j--;
3073 }
3074 else if ((i >= 0 && j >= 0
3075 && VAR_PART_OFFSET (src, i) > VAR_PART_OFFSET (dst, j))
3076 || j < 0)
3077 {
3078 location_chain **nextp;
3079
3080 /* Copy the chain from SRC. */
3081 nextp = &dst->var_part[k].loc_chain;
3082 for (node = src->var_part[i].loc_chain; node; node = node->next)
3083 {
3084 location_chain *new_lc;
3085
3086 new_lc = new location_chain;
3087 new_lc->next = NULL;
3088 new_lc->init = node->init;
3089 if (!node->set_src || MEM_P (node->set_src))
3090 new_lc->set_src = NULL;
3091 else
3092 new_lc->set_src = node->set_src;
3093 new_lc->loc = node->loc;
3094
3095 *nextp = new_lc;
3096 nextp = &new_lc->next;
3097 }
3098
3099 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (src, i);
3100 i--;
3101 }
3102 dst->var_part[k].cur_loc = NULL;
3103 }
3104
3105 if (flag_var_tracking_uninit)
3106 for (i = 0; i < src->n_var_parts && i < dst->n_var_parts; i++)
3107 {
3108 location_chain *node, *node2;
3109 for (node = src->var_part[i].loc_chain; node; node = node->next)
3110 for (node2 = dst->var_part[i].loc_chain; node2; node2 = node2->next)
3111 if (rtx_equal_p (node->loc, node2->loc))
3112 {
3113 if (node->init > node2->init)
3114 node2->init = node->init;
3115 }
3116 }
3117
3118 /* Continue traversing the hash table. */
3119 return 1;
3120 }
3121
3122 /* Compute union of dataflow sets SRC and DST and store it to DST. */
3123
3124 static void
3125 dataflow_set_union (dataflow_set *dst, dataflow_set *src)
3126 {
3127 int i;
3128
3129 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3130 attrs_list_union (&dst->regs[i], src->regs[i]);
3131
3132 if (dst->vars == empty_shared_hash)
3133 {
3134 shared_hash_destroy (dst->vars);
3135 dst->vars = shared_hash_copy (src->vars);
3136 }
3137 else
3138 {
3139 variable_iterator_type hi;
3140 variable *var;
3141
3142 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (src->vars),
3143 var, variable, hi)
3144 variable_union (var, dst);
3145 }
3146 }
3147
3148 /* Whether the value is currently being expanded. */
3149 #define VALUE_RECURSED_INTO(x) \
3150 (RTL_FLAG_CHECK2 ("VALUE_RECURSED_INTO", (x), VALUE, DEBUG_EXPR)->used)
3151
3152 /* Whether no expansion was found, saving useless lookups.
3153 It must only be set when VALUE_CHANGED is clear. */
3154 #define NO_LOC_P(x) \
3155 (RTL_FLAG_CHECK2 ("NO_LOC_P", (x), VALUE, DEBUG_EXPR)->return_val)
3156
3157 /* Whether cur_loc in the value needs to be (re)computed. */
3158 #define VALUE_CHANGED(x) \
3159 (RTL_FLAG_CHECK1 ("VALUE_CHANGED", (x), VALUE)->frame_related)
3160 /* Whether cur_loc in the decl needs to be (re)computed. */
3161 #define DECL_CHANGED(x) TREE_VISITED (x)
3162
3163 /* Record (if NEWV) that DV needs to have its cur_loc recomputed. For
3164 user DECLs, this means they're in changed_variables. Values and
3165 debug exprs may be left with this flag set if no user variable
3166 requires them to be evaluated. */
3167
3168 static inline void
3169 set_dv_changed (decl_or_value dv, bool newv)
3170 {
3171 switch (dv_onepart_p (dv))
3172 {
3173 case ONEPART_VALUE:
3174 if (newv)
3175 NO_LOC_P (dv_as_value (dv)) = false;
3176 VALUE_CHANGED (dv_as_value (dv)) = newv;
3177 break;
3178
3179 case ONEPART_DEXPR:
3180 if (newv)
3181 NO_LOC_P (DECL_RTL_KNOWN_SET (dv_as_decl (dv))) = false;
3182 /* Fall through. */
3183
3184 default:
3185 DECL_CHANGED (dv_as_decl (dv)) = newv;
3186 break;
3187 }
3188 }
3189
3190 /* Return true if DV needs to have its cur_loc recomputed. */
3191
3192 static inline bool
3193 dv_changed_p (decl_or_value dv)
3194 {
3195 return (dv_is_value_p (dv)
3196 ? VALUE_CHANGED (dv_as_value (dv))
3197 : DECL_CHANGED (dv_as_decl (dv)));
3198 }
3199
3200 /* Return a location list node whose loc is rtx_equal to LOC, in the
3201 location list of a one-part variable or value VAR, or in that of
3202 any values recursively mentioned in the location lists. VARS must
3203 be in star-canonical form. */
3204
3205 static location_chain *
3206 find_loc_in_1pdv (rtx loc, variable *var, variable_table_type *vars)
3207 {
3208 location_chain *node;
3209 enum rtx_code loc_code;
3210
3211 if (!var)
3212 return NULL;
3213
3214 gcc_checking_assert (var->onepart);
3215
3216 if (!var->n_var_parts)
3217 return NULL;
3218
3219 gcc_checking_assert (loc != dv_as_opaque (var->dv));
3220
3221 loc_code = GET_CODE (loc);
3222 for (node = var->var_part[0].loc_chain; node; node = node->next)
3223 {
3224 decl_or_value dv;
3225 variable *rvar;
3226
3227 if (GET_CODE (node->loc) != loc_code)
3228 {
3229 if (GET_CODE (node->loc) != VALUE)
3230 continue;
3231 }
3232 else if (loc == node->loc)
3233 return node;
3234 else if (loc_code != VALUE)
3235 {
3236 if (rtx_equal_p (loc, node->loc))
3237 return node;
3238 continue;
3239 }
3240
3241 /* Since we're in star-canonical form, we don't need to visit
3242 non-canonical nodes: one-part variables and non-canonical
3243 values would only point back to the canonical node. */
3244 if (dv_is_value_p (var->dv)
3245 && !canon_value_cmp (node->loc, dv_as_value (var->dv)))
3246 {
3247 /* Skip all subsequent VALUEs. */
3248 while (node->next && GET_CODE (node->next->loc) == VALUE)
3249 {
3250 node = node->next;
3251 gcc_checking_assert (!canon_value_cmp (node->loc,
3252 dv_as_value (var->dv)));
3253 if (loc == node->loc)
3254 return node;
3255 }
3256 continue;
3257 }
3258
3259 gcc_checking_assert (node == var->var_part[0].loc_chain);
3260 gcc_checking_assert (!node->next);
3261
3262 dv = dv_from_value (node->loc);
3263 rvar = vars->find_with_hash (dv, dv_htab_hash (dv));
3264 return find_loc_in_1pdv (loc, rvar, vars);
3265 }
3266
3267 /* ??? Gotta look in cselib_val locations too. */
3268
3269 return NULL;
3270 }
3271
3272 /* Hash table iteration argument passed to variable_merge. */
3273 struct dfset_merge
3274 {
3275 /* The set in which the merge is to be inserted. */
3276 dataflow_set *dst;
3277 /* The set that we're iterating in. */
3278 dataflow_set *cur;
3279 /* The set that may contain the other dv we are to merge with. */
3280 dataflow_set *src;
3281 /* Number of onepart dvs in src. */
3282 int src_onepart_cnt;
3283 };
3284
3285 /* Insert LOC in *DNODE, if it's not there yet. The list must be in
3286 loc_cmp order, and it is maintained as such. */
3287
3288 static void
3289 insert_into_intersection (location_chain **nodep, rtx loc,
3290 enum var_init_status status)
3291 {
3292 location_chain *node;
3293 int r;
3294
3295 for (node = *nodep; node; nodep = &node->next, node = *nodep)
3296 if ((r = loc_cmp (node->loc, loc)) == 0)
3297 {
3298 node->init = MIN (node->init, status);
3299 return;
3300 }
3301 else if (r > 0)
3302 break;
3303
3304 node = new location_chain;
3305
3306 node->loc = loc;
3307 node->set_src = NULL;
3308 node->init = status;
3309 node->next = *nodep;
3310 *nodep = node;
3311 }
3312
3313 /* Insert in DEST the intersection of the locations present in both
3314 S1NODE and S2VAR, directly or indirectly. S1NODE is from a
3315 variable in DSM->cur, whereas S2VAR is from DSM->src. dvar is in
3316 DSM->dst. */
3317
3318 static void
3319 intersect_loc_chains (rtx val, location_chain **dest, struct dfset_merge *dsm,
3320 location_chain *s1node, variable *s2var)
3321 {
3322 dataflow_set *s1set = dsm->cur;
3323 dataflow_set *s2set = dsm->src;
3324 location_chain *found;
3325
3326 if (s2var)
3327 {
3328 location_chain *s2node;
3329
3330 gcc_checking_assert (s2var->onepart);
3331
3332 if (s2var->n_var_parts)
3333 {
3334 s2node = s2var->var_part[0].loc_chain;
3335
3336 for (; s1node && s2node;
3337 s1node = s1node->next, s2node = s2node->next)
3338 if (s1node->loc != s2node->loc)
3339 break;
3340 else if (s1node->loc == val)
3341 continue;
3342 else
3343 insert_into_intersection (dest, s1node->loc,
3344 MIN (s1node->init, s2node->init));
3345 }
3346 }
3347
3348 for (; s1node; s1node = s1node->next)
3349 {
3350 if (s1node->loc == val)
3351 continue;
3352
3353 if ((found = find_loc_in_1pdv (s1node->loc, s2var,
3354 shared_hash_htab (s2set->vars))))
3355 {
3356 insert_into_intersection (dest, s1node->loc,
3357 MIN (s1node->init, found->init));
3358 continue;
3359 }
3360
3361 if (GET_CODE (s1node->loc) == VALUE
3362 && !VALUE_RECURSED_INTO (s1node->loc))
3363 {
3364 decl_or_value dv = dv_from_value (s1node->loc);
3365 variable *svar = shared_hash_find (s1set->vars, dv);
3366 if (svar)
3367 {
3368 if (svar->n_var_parts == 1)
3369 {
3370 VALUE_RECURSED_INTO (s1node->loc) = true;
3371 intersect_loc_chains (val, dest, dsm,
3372 svar->var_part[0].loc_chain,
3373 s2var);
3374 VALUE_RECURSED_INTO (s1node->loc) = false;
3375 }
3376 }
3377 }
3378
3379 /* ??? gotta look in cselib_val locations too. */
3380
3381 /* ??? if the location is equivalent to any location in src,
3382 searched recursively
3383
3384 add to dst the values needed to represent the equivalence
3385
3386 telling whether locations S is equivalent to another dv's
3387 location list:
3388
3389 for each location D in the list
3390
3391 if S and D satisfy rtx_equal_p, then it is present
3392
3393 else if D is a value, recurse without cycles
3394
3395 else if S and D have the same CODE and MODE
3396
3397 for each operand oS and the corresponding oD
3398
3399 if oS and oD are not equivalent, then S an D are not equivalent
3400
3401 else if they are RTX vectors
3402
3403 if any vector oS element is not equivalent to its respective oD,
3404 then S and D are not equivalent
3405
3406 */
3407
3408
3409 }
3410 }
3411
3412 /* Return -1 if X should be before Y in a location list for a 1-part
3413 variable, 1 if Y should be before X, and 0 if they're equivalent
3414 and should not appear in the list. */
3415
3416 static int
3417 loc_cmp (rtx x, rtx y)
3418 {
3419 int i, j, r;
3420 RTX_CODE code = GET_CODE (x);
3421 const char *fmt;
3422
3423 if (x == y)
3424 return 0;
3425
3426 if (REG_P (x))
3427 {
3428 if (!REG_P (y))
3429 return -1;
3430 gcc_assert (GET_MODE (x) == GET_MODE (y));
3431 if (REGNO (x) == REGNO (y))
3432 return 0;
3433 else if (REGNO (x) < REGNO (y))
3434 return -1;
3435 else
3436 return 1;
3437 }
3438
3439 if (REG_P (y))
3440 return 1;
3441
3442 if (MEM_P (x))
3443 {
3444 if (!MEM_P (y))
3445 return -1;
3446 gcc_assert (GET_MODE (x) == GET_MODE (y));
3447 return loc_cmp (XEXP (x, 0), XEXP (y, 0));
3448 }
3449
3450 if (MEM_P (y))
3451 return 1;
3452
3453 if (GET_CODE (x) == VALUE)
3454 {
3455 if (GET_CODE (y) != VALUE)
3456 return -1;
3457 /* Don't assert the modes are the same, that is true only
3458 when not recursing. (subreg:QI (value:SI 1:1) 0)
3459 and (subreg:QI (value:DI 2:2) 0) can be compared,
3460 even when the modes are different. */
3461 if (canon_value_cmp (x, y))
3462 return -1;
3463 else
3464 return 1;
3465 }
3466
3467 if (GET_CODE (y) == VALUE)
3468 return 1;
3469
3470 /* Entry value is the least preferable kind of expression. */
3471 if (GET_CODE (x) == ENTRY_VALUE)
3472 {
3473 if (GET_CODE (y) != ENTRY_VALUE)
3474 return 1;
3475 gcc_assert (GET_MODE (x) == GET_MODE (y));
3476 return loc_cmp (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
3477 }
3478
3479 if (GET_CODE (y) == ENTRY_VALUE)
3480 return -1;
3481
3482 if (GET_CODE (x) == GET_CODE (y))
3483 /* Compare operands below. */;
3484 else if (GET_CODE (x) < GET_CODE (y))
3485 return -1;
3486 else
3487 return 1;
3488
3489 gcc_assert (GET_MODE (x) == GET_MODE (y));
3490
3491 if (GET_CODE (x) == DEBUG_EXPR)
3492 {
3493 if (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
3494 < DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)))
3495 return -1;
3496 gcc_checking_assert (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
3497 > DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)));
3498 return 1;
3499 }
3500
3501 fmt = GET_RTX_FORMAT (code);
3502 for (i = 0; i < GET_RTX_LENGTH (code); i++)
3503 switch (fmt[i])
3504 {
3505 case 'w':
3506 if (XWINT (x, i) == XWINT (y, i))
3507 break;
3508 else if (XWINT (x, i) < XWINT (y, i))
3509 return -1;
3510 else
3511 return 1;
3512
3513 case 'n':
3514 case 'i':
3515 if (XINT (x, i) == XINT (y, i))
3516 break;
3517 else if (XINT (x, i) < XINT (y, i))
3518 return -1;
3519 else
3520 return 1;
3521
3522 case 'p':
3523 r = compare_sizes_for_sort (SUBREG_BYTE (x), SUBREG_BYTE (y));
3524 if (r != 0)
3525 return r;
3526 break;
3527
3528 case 'V':
3529 case 'E':
3530 /* Compare the vector length first. */
3531 if (XVECLEN (x, i) == XVECLEN (y, i))
3532 /* Compare the vectors elements. */;
3533 else if (XVECLEN (x, i) < XVECLEN (y, i))
3534 return -1;
3535 else
3536 return 1;
3537
3538 for (j = 0; j < XVECLEN (x, i); j++)
3539 if ((r = loc_cmp (XVECEXP (x, i, j),
3540 XVECEXP (y, i, j))))
3541 return r;
3542 break;
3543
3544 case 'e':
3545 if ((r = loc_cmp (XEXP (x, i), XEXP (y, i))))
3546 return r;
3547 break;
3548
3549 case 'S':
3550 case 's':
3551 if (XSTR (x, i) == XSTR (y, i))
3552 break;
3553 if (!XSTR (x, i))
3554 return -1;
3555 if (!XSTR (y, i))
3556 return 1;
3557 if ((r = strcmp (XSTR (x, i), XSTR (y, i))) == 0)
3558 break;
3559 else if (r < 0)
3560 return -1;
3561 else
3562 return 1;
3563
3564 case 'u':
3565 /* These are just backpointers, so they don't matter. */
3566 break;
3567
3568 case '0':
3569 case 't':
3570 break;
3571
3572 /* It is believed that rtx's at this level will never
3573 contain anything but integers and other rtx's,
3574 except for within LABEL_REFs and SYMBOL_REFs. */
3575 default:
3576 gcc_unreachable ();
3577 }
3578 if (CONST_WIDE_INT_P (x))
3579 {
3580 /* Compare the vector length first. */
3581 if (CONST_WIDE_INT_NUNITS (x) >= CONST_WIDE_INT_NUNITS (y))
3582 return 1;
3583 else if (CONST_WIDE_INT_NUNITS (x) < CONST_WIDE_INT_NUNITS (y))
3584 return -1;
3585
3586 /* Compare the vectors elements. */;
3587 for (j = CONST_WIDE_INT_NUNITS (x) - 1; j >= 0 ; j--)
3588 {
3589 if (CONST_WIDE_INT_ELT (x, j) < CONST_WIDE_INT_ELT (y, j))
3590 return -1;
3591 if (CONST_WIDE_INT_ELT (x, j) > CONST_WIDE_INT_ELT (y, j))
3592 return 1;
3593 }
3594 }
3595
3596 return 0;
3597 }
3598
3599 /* Check the order of entries in one-part variables. */
3600
3601 int
3602 canonicalize_loc_order_check (variable **slot,
3603 dataflow_set *data ATTRIBUTE_UNUSED)
3604 {
3605 variable *var = *slot;
3606 location_chain *node, *next;
3607
3608 #ifdef ENABLE_RTL_CHECKING
3609 int i;
3610 for (i = 0; i < var->n_var_parts; i++)
3611 gcc_assert (var->var_part[0].cur_loc == NULL);
3612 gcc_assert (!var->in_changed_variables);
3613 #endif
3614
3615 if (!var->onepart)
3616 return 1;
3617
3618 gcc_assert (var->n_var_parts == 1);
3619 node = var->var_part[0].loc_chain;
3620 gcc_assert (node);
3621
3622 while ((next = node->next))
3623 {
3624 gcc_assert (loc_cmp (node->loc, next->loc) < 0);
3625 node = next;
3626 }
3627
3628 return 1;
3629 }
3630
3631 /* Mark with VALUE_RECURSED_INTO values that have neighbors that are
3632 more likely to be chosen as canonical for an equivalence set.
3633 Ensure less likely values can reach more likely neighbors, making
3634 the connections bidirectional. */
3635
3636 int
3637 canonicalize_values_mark (variable **slot, dataflow_set *set)
3638 {
3639 variable *var = *slot;
3640 decl_or_value dv = var->dv;
3641 rtx val;
3642 location_chain *node;
3643
3644 if (!dv_is_value_p (dv))
3645 return 1;
3646
3647 gcc_checking_assert (var->n_var_parts == 1);
3648
3649 val = dv_as_value (dv);
3650
3651 for (node = var->var_part[0].loc_chain; node; node = node->next)
3652 if (GET_CODE (node->loc) == VALUE)
3653 {
3654 if (canon_value_cmp (node->loc, val))
3655 VALUE_RECURSED_INTO (val) = true;
3656 else
3657 {
3658 decl_or_value odv = dv_from_value (node->loc);
3659 variable **oslot;
3660 oslot = shared_hash_find_slot_noinsert (set->vars, odv);
3661
3662 set_slot_part (set, val, oslot, odv, 0,
3663 node->init, NULL_RTX);
3664
3665 VALUE_RECURSED_INTO (node->loc) = true;
3666 }
3667 }
3668
3669 return 1;
3670 }
3671
3672 /* Remove redundant entries from equivalence lists in onepart
3673 variables, canonicalizing equivalence sets into star shapes. */
3674
3675 int
3676 canonicalize_values_star (variable **slot, dataflow_set *set)
3677 {
3678 variable *var = *slot;
3679 decl_or_value dv = var->dv;
3680 location_chain *node;
3681 decl_or_value cdv;
3682 rtx val, cval;
3683 variable **cslot;
3684 bool has_value;
3685 bool has_marks;
3686
3687 if (!var->onepart)
3688 return 1;
3689
3690 gcc_checking_assert (var->n_var_parts == 1);
3691
3692 if (dv_is_value_p (dv))
3693 {
3694 cval = dv_as_value (dv);
3695 if (!VALUE_RECURSED_INTO (cval))
3696 return 1;
3697 VALUE_RECURSED_INTO (cval) = false;
3698 }
3699 else
3700 cval = NULL_RTX;
3701
3702 restart:
3703 val = cval;
3704 has_value = false;
3705 has_marks = false;
3706
3707 gcc_assert (var->n_var_parts == 1);
3708
3709 for (node = var->var_part[0].loc_chain; node; node = node->next)
3710 if (GET_CODE (node->loc) == VALUE)
3711 {
3712 has_value = true;
3713 if (VALUE_RECURSED_INTO (node->loc))
3714 has_marks = true;
3715 if (canon_value_cmp (node->loc, cval))
3716 cval = node->loc;
3717 }
3718
3719 if (!has_value)
3720 return 1;
3721
3722 if (cval == val)
3723 {
3724 if (!has_marks || dv_is_decl_p (dv))
3725 return 1;
3726
3727 /* Keep it marked so that we revisit it, either after visiting a
3728 child node, or after visiting a new parent that might be
3729 found out. */
3730 VALUE_RECURSED_INTO (val) = true;
3731
3732 for (node = var->var_part[0].loc_chain; node; node = node->next)
3733 if (GET_CODE (node->loc) == VALUE
3734 && VALUE_RECURSED_INTO (node->loc))
3735 {
3736 cval = node->loc;
3737 restart_with_cval:
3738 VALUE_RECURSED_INTO (cval) = false;
3739 dv = dv_from_value (cval);
3740 slot = shared_hash_find_slot_noinsert (set->vars, dv);
3741 if (!slot)
3742 {
3743 gcc_assert (dv_is_decl_p (var->dv));
3744 /* The canonical value was reset and dropped.
3745 Remove it. */
3746 clobber_variable_part (set, NULL, var->dv, 0, NULL);
3747 return 1;
3748 }
3749 var = *slot;
3750 gcc_assert (dv_is_value_p (var->dv));
3751 if (var->n_var_parts == 0)
3752 return 1;
3753 gcc_assert (var->n_var_parts == 1);
3754 goto restart;
3755 }
3756
3757 VALUE_RECURSED_INTO (val) = false;
3758
3759 return 1;
3760 }
3761
3762 /* Push values to the canonical one. */
3763 cdv = dv_from_value (cval);
3764 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3765
3766 for (node = var->var_part[0].loc_chain; node; node = node->next)
3767 if (node->loc != cval)
3768 {
3769 cslot = set_slot_part (set, node->loc, cslot, cdv, 0,
3770 node->init, NULL_RTX);
3771 if (GET_CODE (node->loc) == VALUE)
3772 {
3773 decl_or_value ndv = dv_from_value (node->loc);
3774
3775 set_variable_part (set, cval, ndv, 0, node->init, NULL_RTX,
3776 NO_INSERT);
3777
3778 if (canon_value_cmp (node->loc, val))
3779 {
3780 /* If it could have been a local minimum, it's not any more,
3781 since it's now neighbor to cval, so it may have to push
3782 to it. Conversely, if it wouldn't have prevailed over
3783 val, then whatever mark it has is fine: if it was to
3784 push, it will now push to a more canonical node, but if
3785 it wasn't, then it has already pushed any values it might
3786 have to. */
3787 VALUE_RECURSED_INTO (node->loc) = true;
3788 /* Make sure we visit node->loc by ensuring we cval is
3789 visited too. */
3790 VALUE_RECURSED_INTO (cval) = true;
3791 }
3792 else if (!VALUE_RECURSED_INTO (node->loc))
3793 /* If we have no need to "recurse" into this node, it's
3794 already "canonicalized", so drop the link to the old
3795 parent. */
3796 clobber_variable_part (set, cval, ndv, 0, NULL);
3797 }
3798 else if (GET_CODE (node->loc) == REG)
3799 {
3800 attrs *list = set->regs[REGNO (node->loc)], **listp;
3801
3802 /* Change an existing attribute referring to dv so that it
3803 refers to cdv, removing any duplicate this might
3804 introduce, and checking that no previous duplicates
3805 existed, all in a single pass. */
3806
3807 while (list)
3808 {
3809 if (list->offset == 0
3810 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3811 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3812 break;
3813
3814 list = list->next;
3815 }
3816
3817 gcc_assert (list);
3818 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3819 {
3820 list->dv = cdv;
3821 for (listp = &list->next; (list = *listp); listp = &list->next)
3822 {
3823 if (list->offset)
3824 continue;
3825
3826 if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3827 {
3828 *listp = list->next;
3829 delete list;
3830 list = *listp;
3831 break;
3832 }
3833
3834 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (dv));
3835 }
3836 }
3837 else if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3838 {
3839 for (listp = &list->next; (list = *listp); listp = &list->next)
3840 {
3841 if (list->offset)
3842 continue;
3843
3844 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3845 {
3846 *listp = list->next;
3847 delete list;
3848 list = *listp;
3849 break;
3850 }
3851
3852 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (cdv));
3853 }
3854 }
3855 else
3856 gcc_unreachable ();
3857
3858 if (flag_checking)
3859 while (list)
3860 {
3861 if (list->offset == 0
3862 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3863 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3864 gcc_unreachable ();
3865
3866 list = list->next;
3867 }
3868 }
3869 }
3870
3871 if (val)
3872 set_slot_part (set, val, cslot, cdv, 0,
3873 VAR_INIT_STATUS_INITIALIZED, NULL_RTX);
3874
3875 slot = clobber_slot_part (set, cval, slot, 0, NULL);
3876
3877 /* Variable may have been unshared. */
3878 var = *slot;
3879 gcc_checking_assert (var->n_var_parts && var->var_part[0].loc_chain->loc == cval
3880 && var->var_part[0].loc_chain->next == NULL);
3881
3882 if (VALUE_RECURSED_INTO (cval))
3883 goto restart_with_cval;
3884
3885 return 1;
3886 }
3887
3888 /* Bind one-part variables to the canonical value in an equivalence
3889 set. Not doing this causes dataflow convergence failure in rare
3890 circumstances, see PR42873. Unfortunately we can't do this
3891 efficiently as part of canonicalize_values_star, since we may not
3892 have determined or even seen the canonical value of a set when we
3893 get to a variable that references another member of the set. */
3894
3895 int
3896 canonicalize_vars_star (variable **slot, dataflow_set *set)
3897 {
3898 variable *var = *slot;
3899 decl_or_value dv = var->dv;
3900 location_chain *node;
3901 rtx cval;
3902 decl_or_value cdv;
3903 variable **cslot;
3904 variable *cvar;
3905 location_chain *cnode;
3906
3907 if (!var->onepart || var->onepart == ONEPART_VALUE)
3908 return 1;
3909
3910 gcc_assert (var->n_var_parts == 1);
3911
3912 node = var->var_part[0].loc_chain;
3913
3914 if (GET_CODE (node->loc) != VALUE)
3915 return 1;
3916
3917 gcc_assert (!node->next);
3918 cval = node->loc;
3919
3920 /* Push values to the canonical one. */
3921 cdv = dv_from_value (cval);
3922 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3923 if (!cslot)
3924 return 1;
3925 cvar = *cslot;
3926 gcc_assert (cvar->n_var_parts == 1);
3927
3928 cnode = cvar->var_part[0].loc_chain;
3929
3930 /* CVAL is canonical if its value list contains non-VALUEs or VALUEs
3931 that are not “more canonical” than it. */
3932 if (GET_CODE (cnode->loc) != VALUE
3933 || !canon_value_cmp (cnode->loc, cval))
3934 return 1;
3935
3936 /* CVAL was found to be non-canonical. Change the variable to point
3937 to the canonical VALUE. */
3938 gcc_assert (!cnode->next);
3939 cval = cnode->loc;
3940
3941 slot = set_slot_part (set, cval, slot, dv, 0,
3942 node->init, node->set_src);
3943 clobber_slot_part (set, cval, slot, 0, node->set_src);
3944
3945 return 1;
3946 }
3947
3948 /* Combine variable or value in *S1SLOT (in DSM->cur) with the
3949 corresponding entry in DSM->src. Multi-part variables are combined
3950 with variable_union, whereas onepart dvs are combined with
3951 intersection. */
3952
3953 static int
3954 variable_merge_over_cur (variable *s1var, struct dfset_merge *dsm)
3955 {
3956 dataflow_set *dst = dsm->dst;
3957 variable **dstslot;
3958 variable *s2var, *dvar = NULL;
3959 decl_or_value dv = s1var->dv;
3960 onepart_enum onepart = s1var->onepart;
3961 rtx val;
3962 hashval_t dvhash;
3963 location_chain *node, **nodep;
3964
3965 /* If the incoming onepart variable has an empty location list, then
3966 the intersection will be just as empty. For other variables,
3967 it's always union. */
3968 gcc_checking_assert (s1var->n_var_parts
3969 && s1var->var_part[0].loc_chain);
3970
3971 if (!onepart)
3972 return variable_union (s1var, dst);
3973
3974 gcc_checking_assert (s1var->n_var_parts == 1);
3975
3976 dvhash = dv_htab_hash (dv);
3977 if (dv_is_value_p (dv))
3978 val = dv_as_value (dv);
3979 else
3980 val = NULL;
3981
3982 s2var = shared_hash_find_1 (dsm->src->vars, dv, dvhash);
3983 if (!s2var)
3984 {
3985 dst_can_be_shared = false;
3986 return 1;
3987 }
3988
3989 dsm->src_onepart_cnt--;
3990 gcc_assert (s2var->var_part[0].loc_chain
3991 && s2var->onepart == onepart
3992 && s2var->n_var_parts == 1);
3993
3994 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
3995 if (dstslot)
3996 {
3997 dvar = *dstslot;
3998 gcc_assert (dvar->refcount == 1
3999 && dvar->onepart == onepart
4000 && dvar->n_var_parts == 1);
4001 nodep = &dvar->var_part[0].loc_chain;
4002 }
4003 else
4004 {
4005 nodep = &node;
4006 node = NULL;
4007 }
4008
4009 if (!dstslot && !onepart_variable_different_p (s1var, s2var))
4010 {
4011 dstslot = shared_hash_find_slot_unshare_1 (&dst->vars, dv,
4012 dvhash, INSERT);
4013 *dstslot = dvar = s2var;
4014 dvar->refcount++;
4015 }
4016 else
4017 {
4018 dst_can_be_shared = false;
4019
4020 intersect_loc_chains (val, nodep, dsm,
4021 s1var->var_part[0].loc_chain, s2var);
4022
4023 if (!dstslot)
4024 {
4025 if (node)
4026 {
4027 dvar = onepart_pool_allocate (onepart);
4028 dvar->dv = dv;
4029 dvar->refcount = 1;
4030 dvar->n_var_parts = 1;
4031 dvar->onepart = onepart;
4032 dvar->in_changed_variables = false;
4033 dvar->var_part[0].loc_chain = node;
4034 dvar->var_part[0].cur_loc = NULL;
4035 if (onepart)
4036 VAR_LOC_1PAUX (dvar) = NULL;
4037 else
4038 VAR_PART_OFFSET (dvar, 0) = 0;
4039
4040 dstslot
4041 = shared_hash_find_slot_unshare_1 (&dst->vars, dv, dvhash,
4042 INSERT);
4043 gcc_assert (!*dstslot);
4044 *dstslot = dvar;
4045 }
4046 else
4047 return 1;
4048 }
4049 }
4050
4051 nodep = &dvar->var_part[0].loc_chain;
4052 while ((node = *nodep))
4053 {
4054 location_chain **nextp = &node->next;
4055
4056 if (GET_CODE (node->loc) == REG)
4057 {
4058 attrs *list;
4059
4060 for (list = dst->regs[REGNO (node->loc)]; list; list = list->next)
4061 if (GET_MODE (node->loc) == GET_MODE (list->loc)
4062 && dv_is_value_p (list->dv))
4063 break;
4064
4065 if (!list)
4066 attrs_list_insert (&dst->regs[REGNO (node->loc)],
4067 dv, 0, node->loc);
4068 /* If this value became canonical for another value that had
4069 this register, we want to leave it alone. */
4070 else if (dv_as_value (list->dv) != val)
4071 {
4072 dstslot = set_slot_part (dst, dv_as_value (list->dv),
4073 dstslot, dv, 0,
4074 node->init, NULL_RTX);
4075 dstslot = delete_slot_part (dst, node->loc, dstslot, 0);
4076
4077 /* Since nextp points into the removed node, we can't
4078 use it. The pointer to the next node moved to nodep.
4079 However, if the variable we're walking is unshared
4080 during our walk, we'll keep walking the location list
4081 of the previously-shared variable, in which case the
4082 node won't have been removed, and we'll want to skip
4083 it. That's why we test *nodep here. */
4084 if (*nodep != node)
4085 nextp = nodep;
4086 }
4087 }
4088 else
4089 /* Canonicalization puts registers first, so we don't have to
4090 walk it all. */
4091 break;
4092 nodep = nextp;
4093 }
4094
4095 if (dvar != *dstslot)
4096 dvar = *dstslot;
4097 nodep = &dvar->var_part[0].loc_chain;
4098
4099 if (val)
4100 {
4101 /* Mark all referenced nodes for canonicalization, and make sure
4102 we have mutual equivalence links. */
4103 VALUE_RECURSED_INTO (val) = true;
4104 for (node = *nodep; node; node = node->next)
4105 if (GET_CODE (node->loc) == VALUE)
4106 {
4107 VALUE_RECURSED_INTO (node->loc) = true;
4108 set_variable_part (dst, val, dv_from_value (node->loc), 0,
4109 node->init, NULL, INSERT);
4110 }
4111
4112 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
4113 gcc_assert (*dstslot == dvar);
4114 canonicalize_values_star (dstslot, dst);
4115 gcc_checking_assert (dstslot
4116 == shared_hash_find_slot_noinsert_1 (dst->vars,
4117 dv, dvhash));
4118 dvar = *dstslot;
4119 }
4120 else
4121 {
4122 bool has_value = false, has_other = false;
4123
4124 /* If we have one value and anything else, we're going to
4125 canonicalize this, so make sure all values have an entry in
4126 the table and are marked for canonicalization. */
4127 for (node = *nodep; node; node = node->next)
4128 {
4129 if (GET_CODE (node->loc) == VALUE)
4130 {
4131 /* If this was marked during register canonicalization,
4132 we know we have to canonicalize values. */
4133 if (has_value)
4134 has_other = true;
4135 has_value = true;
4136 if (has_other)
4137 break;
4138 }
4139 else
4140 {
4141 has_other = true;
4142 if (has_value)
4143 break;
4144 }
4145 }
4146
4147 if (has_value && has_other)
4148 {
4149 for (node = *nodep; node; node = node->next)
4150 {
4151 if (GET_CODE (node->loc) == VALUE)
4152 {
4153 decl_or_value dv = dv_from_value (node->loc);
4154 variable **slot = NULL;
4155
4156 if (shared_hash_shared (dst->vars))
4157 slot = shared_hash_find_slot_noinsert (dst->vars, dv);
4158 if (!slot)
4159 slot = shared_hash_find_slot_unshare (&dst->vars, dv,
4160 INSERT);
4161 if (!*slot)
4162 {
4163 variable *var = onepart_pool_allocate (ONEPART_VALUE);
4164 var->dv = dv;
4165 var->refcount = 1;
4166 var->n_var_parts = 1;
4167 var->onepart = ONEPART_VALUE;
4168 var->in_changed_variables = false;
4169 var->var_part[0].loc_chain = NULL;
4170 var->var_part[0].cur_loc = NULL;
4171 VAR_LOC_1PAUX (var) = NULL;
4172 *slot = var;
4173 }
4174
4175 VALUE_RECURSED_INTO (node->loc) = true;
4176 }
4177 }
4178
4179 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
4180 gcc_assert (*dstslot == dvar);
4181 canonicalize_values_star (dstslot, dst);
4182 gcc_checking_assert (dstslot
4183 == shared_hash_find_slot_noinsert_1 (dst->vars,
4184 dv, dvhash));
4185 dvar = *dstslot;
4186 }
4187 }
4188
4189 if (!onepart_variable_different_p (dvar, s2var))
4190 {
4191 variable_htab_free (dvar);
4192 *dstslot = dvar = s2var;
4193 dvar->refcount++;
4194 }
4195 else if (s2var != s1var && !onepart_variable_different_p (dvar, s1var))
4196 {
4197 variable_htab_free (dvar);
4198 *dstslot = dvar = s1var;
4199 dvar->refcount++;
4200 dst_can_be_shared = false;
4201 }
4202 else
4203 dst_can_be_shared = false;
4204
4205 return 1;
4206 }
4207
4208 /* Copy s2slot (in DSM->src) to DSM->dst if the variable is a
4209 multi-part variable. Unions of multi-part variables and
4210 intersections of one-part ones will be handled in
4211 variable_merge_over_cur(). */
4212
4213 static int
4214 variable_merge_over_src (variable *s2var, struct dfset_merge *dsm)
4215 {
4216 dataflow_set *dst = dsm->dst;
4217 decl_or_value dv = s2var->dv;
4218
4219 if (!s2var->onepart)
4220 {
4221 variable **dstp = shared_hash_find_slot (dst->vars, dv);
4222 *dstp = s2var;
4223 s2var->refcount++;
4224 return 1;
4225 }
4226
4227 dsm->src_onepart_cnt++;
4228 return 1;
4229 }
4230
4231 /* Combine dataflow set information from SRC2 into DST, using PDST
4232 to carry over information across passes. */
4233
4234 static void
4235 dataflow_set_merge (dataflow_set *dst, dataflow_set *src2)
4236 {
4237 dataflow_set cur = *dst;
4238 dataflow_set *src1 = &cur;
4239 struct dfset_merge dsm;
4240 int i;
4241 size_t src1_elems, src2_elems;
4242 variable_iterator_type hi;
4243 variable *var;
4244
4245 src1_elems = shared_hash_htab (src1->vars)->elements ();
4246 src2_elems = shared_hash_htab (src2->vars)->elements ();
4247 dataflow_set_init (dst);
4248 dst->stack_adjust = cur.stack_adjust;
4249 shared_hash_destroy (dst->vars);
4250 dst->vars = new shared_hash;
4251 dst->vars->refcount = 1;
4252 dst->vars->htab = new variable_table_type (MAX (src1_elems, src2_elems));
4253
4254 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4255 attrs_list_mpdv_union (&dst->regs[i], src1->regs[i], src2->regs[i]);
4256
4257 dsm.dst = dst;
4258 dsm.src = src2;
4259 dsm.cur = src1;
4260 dsm.src_onepart_cnt = 0;
4261
4262 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (dsm.src->vars),
4263 var, variable, hi)
4264 variable_merge_over_src (var, &dsm);
4265 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (dsm.cur->vars),
4266 var, variable, hi)
4267 variable_merge_over_cur (var, &dsm);
4268
4269 if (dsm.src_onepart_cnt)
4270 dst_can_be_shared = false;
4271
4272 dataflow_set_destroy (src1);
4273 }
4274
4275 /* Mark register equivalences. */
4276
4277 static void
4278 dataflow_set_equiv_regs (dataflow_set *set)
4279 {
4280 int i;
4281 attrs *list, **listp;
4282
4283 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4284 {
4285 rtx canon[NUM_MACHINE_MODES];
4286
4287 /* If the list is empty or one entry, no need to canonicalize
4288 anything. */
4289 if (set->regs[i] == NULL || set->regs[i]->next == NULL)
4290 continue;
4291
4292 memset (canon, 0, sizeof (canon));
4293
4294 for (list = set->regs[i]; list; list = list->next)
4295 if (list->offset == 0 && dv_is_value_p (list->dv))
4296 {
4297 rtx val = dv_as_value (list->dv);
4298 rtx *cvalp = &canon[(int)GET_MODE (val)];
4299 rtx cval = *cvalp;
4300
4301 if (canon_value_cmp (val, cval))
4302 *cvalp = val;
4303 }
4304
4305 for (list = set->regs[i]; list; list = list->next)
4306 if (list->offset == 0 && dv_onepart_p (list->dv))
4307 {
4308 rtx cval = canon[(int)GET_MODE (list->loc)];
4309
4310 if (!cval)
4311 continue;
4312
4313 if (dv_is_value_p (list->dv))
4314 {
4315 rtx val = dv_as_value (list->dv);
4316
4317 if (val == cval)
4318 continue;
4319
4320 VALUE_RECURSED_INTO (val) = true;
4321 set_variable_part (set, val, dv_from_value (cval), 0,
4322 VAR_INIT_STATUS_INITIALIZED,
4323 NULL, NO_INSERT);
4324 }
4325
4326 VALUE_RECURSED_INTO (cval) = true;
4327 set_variable_part (set, cval, list->dv, 0,
4328 VAR_INIT_STATUS_INITIALIZED, NULL, NO_INSERT);
4329 }
4330
4331 for (listp = &set->regs[i]; (list = *listp);
4332 listp = list ? &list->next : listp)
4333 if (list->offset == 0 && dv_onepart_p (list->dv))
4334 {
4335 rtx cval = canon[(int)GET_MODE (list->loc)];
4336 variable **slot;
4337
4338 if (!cval)
4339 continue;
4340
4341 if (dv_is_value_p (list->dv))
4342 {
4343 rtx val = dv_as_value (list->dv);
4344 if (!VALUE_RECURSED_INTO (val))
4345 continue;
4346 }
4347
4348 slot = shared_hash_find_slot_noinsert (set->vars, list->dv);
4349 canonicalize_values_star (slot, set);
4350 if (*listp != list)
4351 list = NULL;
4352 }
4353 }
4354 }
4355
4356 /* Remove any redundant values in the location list of VAR, which must
4357 be unshared and 1-part. */
4358
4359 static void
4360 remove_duplicate_values (variable *var)
4361 {
4362 location_chain *node, **nodep;
4363
4364 gcc_assert (var->onepart);
4365 gcc_assert (var->n_var_parts == 1);
4366 gcc_assert (var->refcount == 1);
4367
4368 for (nodep = &var->var_part[0].loc_chain; (node = *nodep); )
4369 {
4370 if (GET_CODE (node->loc) == VALUE)
4371 {
4372 if (VALUE_RECURSED_INTO (node->loc))
4373 {
4374 /* Remove duplicate value node. */
4375 *nodep = node->next;
4376 delete node;
4377 continue;
4378 }
4379 else
4380 VALUE_RECURSED_INTO (node->loc) = true;
4381 }
4382 nodep = &node->next;
4383 }
4384
4385 for (node = var->var_part[0].loc_chain; node; node = node->next)
4386 if (GET_CODE (node->loc) == VALUE)
4387 {
4388 gcc_assert (VALUE_RECURSED_INTO (node->loc));
4389 VALUE_RECURSED_INTO (node->loc) = false;
4390 }
4391 }
4392
4393
4394 /* Hash table iteration argument passed to variable_post_merge. */
4395 struct dfset_post_merge
4396 {
4397 /* The new input set for the current block. */
4398 dataflow_set *set;
4399 /* Pointer to the permanent input set for the current block, or
4400 NULL. */
4401 dataflow_set **permp;
4402 };
4403
4404 /* Create values for incoming expressions associated with one-part
4405 variables that don't have value numbers for them. */
4406
4407 int
4408 variable_post_merge_new_vals (variable **slot, dfset_post_merge *dfpm)
4409 {
4410 dataflow_set *set = dfpm->set;
4411 variable *var = *slot;
4412 location_chain *node;
4413
4414 if (!var->onepart || !var->n_var_parts)
4415 return 1;
4416
4417 gcc_assert (var->n_var_parts == 1);
4418
4419 if (dv_is_decl_p (var->dv))
4420 {
4421 bool check_dupes = false;
4422
4423 restart:
4424 for (node = var->var_part[0].loc_chain; node; node = node->next)
4425 {
4426 if (GET_CODE (node->loc) == VALUE)
4427 gcc_assert (!VALUE_RECURSED_INTO (node->loc));
4428 else if (GET_CODE (node->loc) == REG)
4429 {
4430 attrs *att, **attp, **curp = NULL;
4431
4432 if (var->refcount != 1)
4433 {
4434 slot = unshare_variable (set, slot, var,
4435 VAR_INIT_STATUS_INITIALIZED);
4436 var = *slot;
4437 goto restart;
4438 }
4439
4440 for (attp = &set->regs[REGNO (node->loc)]; (att = *attp);
4441 attp = &att->next)
4442 if (att->offset == 0
4443 && GET_MODE (att->loc) == GET_MODE (node->loc))
4444 {
4445 if (dv_is_value_p (att->dv))
4446 {
4447 rtx cval = dv_as_value (att->dv);
4448 node->loc = cval;
4449 check_dupes = true;
4450 break;
4451 }
4452 else if (dv_as_opaque (att->dv) == dv_as_opaque (var->dv))
4453 curp = attp;
4454 }
4455
4456 if (!curp)
4457 {
4458 curp = attp;
4459 while (*curp)
4460 if ((*curp)->offset == 0
4461 && GET_MODE ((*curp)->loc) == GET_MODE (node->loc)
4462 && dv_as_opaque ((*curp)->dv) == dv_as_opaque (var->dv))
4463 break;
4464 else
4465 curp = &(*curp)->next;
4466 gcc_assert (*curp);
4467 }
4468
4469 if (!att)
4470 {
4471 decl_or_value cdv;
4472 rtx cval;
4473
4474 if (!*dfpm->permp)
4475 {
4476 *dfpm->permp = XNEW (dataflow_set);
4477 dataflow_set_init (*dfpm->permp);
4478 }
4479
4480 for (att = (*dfpm->permp)->regs[REGNO (node->loc)];
4481 att; att = att->next)
4482 if (GET_MODE (att->loc) == GET_MODE (node->loc))
4483 {
4484 gcc_assert (att->offset == 0
4485 && dv_is_value_p (att->dv));
4486 val_reset (set, att->dv);
4487 break;
4488 }
4489
4490 if (att)
4491 {
4492 cdv = att->dv;
4493 cval = dv_as_value (cdv);
4494 }
4495 else
4496 {
4497 /* Create a unique value to hold this register,
4498 that ought to be found and reused in
4499 subsequent rounds. */
4500 cselib_val *v;
4501 gcc_assert (!cselib_lookup (node->loc,
4502 GET_MODE (node->loc), 0,
4503 VOIDmode));
4504 v = cselib_lookup (node->loc, GET_MODE (node->loc), 1,
4505 VOIDmode);
4506 cselib_preserve_value (v);
4507 cselib_invalidate_rtx (node->loc);
4508 cval = v->val_rtx;
4509 cdv = dv_from_value (cval);
4510 if (dump_file)
4511 fprintf (dump_file,
4512 "Created new value %u:%u for reg %i\n",
4513 v->uid, v->hash, REGNO (node->loc));
4514 }
4515
4516 var_reg_decl_set (*dfpm->permp, node->loc,
4517 VAR_INIT_STATUS_INITIALIZED,
4518 cdv, 0, NULL, INSERT);
4519
4520 node->loc = cval;
4521 check_dupes = true;
4522 }
4523
4524 /* Remove attribute referring to the decl, which now
4525 uses the value for the register, already existing or
4526 to be added when we bring perm in. */
4527 att = *curp;
4528 *curp = att->next;
4529 delete att;
4530 }
4531 }
4532
4533 if (check_dupes)
4534 remove_duplicate_values (var);
4535 }
4536
4537 return 1;
4538 }
4539
4540 /* Reset values in the permanent set that are not associated with the
4541 chosen expression. */
4542
4543 int
4544 variable_post_merge_perm_vals (variable **pslot, dfset_post_merge *dfpm)
4545 {
4546 dataflow_set *set = dfpm->set;
4547 variable *pvar = *pslot, *var;
4548 location_chain *pnode;
4549 decl_or_value dv;
4550 attrs *att;
4551
4552 gcc_assert (dv_is_value_p (pvar->dv)
4553 && pvar->n_var_parts == 1);
4554 pnode = pvar->var_part[0].loc_chain;
4555 gcc_assert (pnode
4556 && !pnode->next
4557 && REG_P (pnode->loc));
4558
4559 dv = pvar->dv;
4560
4561 var = shared_hash_find (set->vars, dv);
4562 if (var)
4563 {
4564 /* Although variable_post_merge_new_vals may have made decls
4565 non-star-canonical, values that pre-existed in canonical form
4566 remain canonical, and newly-created values reference a single
4567 REG, so they are canonical as well. Since VAR has the
4568 location list for a VALUE, using find_loc_in_1pdv for it is
4569 fine, since VALUEs don't map back to DECLs. */
4570 if (find_loc_in_1pdv (pnode->loc, var, shared_hash_htab (set->vars)))
4571 return 1;
4572 val_reset (set, dv);
4573 }
4574
4575 for (att = set->regs[REGNO (pnode->loc)]; att; att = att->next)
4576 if (att->offset == 0
4577 && GET_MODE (att->loc) == GET_MODE (pnode->loc)
4578 && dv_is_value_p (att->dv))
4579 break;
4580
4581 /* If there is a value associated with this register already, create
4582 an equivalence. */
4583 if (att && dv_as_value (att->dv) != dv_as_value (dv))
4584 {
4585 rtx cval = dv_as_value (att->dv);
4586 set_variable_part (set, cval, dv, 0, pnode->init, NULL, INSERT);
4587 set_variable_part (set, dv_as_value (dv), att->dv, 0, pnode->init,
4588 NULL, INSERT);
4589 }
4590 else if (!att)
4591 {
4592 attrs_list_insert (&set->regs[REGNO (pnode->loc)],
4593 dv, 0, pnode->loc);
4594 variable_union (pvar, set);
4595 }
4596
4597 return 1;
4598 }
4599
4600 /* Just checking stuff and registering register attributes for
4601 now. */
4602
4603 static void
4604 dataflow_post_merge_adjust (dataflow_set *set, dataflow_set **permp)
4605 {
4606 struct dfset_post_merge dfpm;
4607
4608 dfpm.set = set;
4609 dfpm.permp = permp;
4610
4611 shared_hash_htab (set->vars)
4612 ->traverse <dfset_post_merge*, variable_post_merge_new_vals> (&dfpm);
4613 if (*permp)
4614 shared_hash_htab ((*permp)->vars)
4615 ->traverse <dfset_post_merge*, variable_post_merge_perm_vals> (&dfpm);
4616 shared_hash_htab (set->vars)
4617 ->traverse <dataflow_set *, canonicalize_values_star> (set);
4618 shared_hash_htab (set->vars)
4619 ->traverse <dataflow_set *, canonicalize_vars_star> (set);
4620 }
4621
4622 /* Return a node whose loc is a MEM that refers to EXPR in the
4623 location list of a one-part variable or value VAR, or in that of
4624 any values recursively mentioned in the location lists. */
4625
4626 static location_chain *
4627 find_mem_expr_in_1pdv (tree expr, rtx val, variable_table_type *vars)
4628 {
4629 location_chain *node;
4630 decl_or_value dv;
4631 variable *var;
4632 location_chain *where = NULL;
4633
4634 if (!val)
4635 return NULL;
4636
4637 gcc_assert (GET_CODE (val) == VALUE
4638 && !VALUE_RECURSED_INTO (val));
4639
4640 dv = dv_from_value (val);
4641 var = vars->find_with_hash (dv, dv_htab_hash (dv));
4642
4643 if (!var)
4644 return NULL;
4645
4646 gcc_assert (var->onepart);
4647
4648 if (!var->n_var_parts)
4649 return NULL;
4650
4651 VALUE_RECURSED_INTO (val) = true;
4652
4653 for (node = var->var_part[0].loc_chain; node; node = node->next)
4654 if (MEM_P (node->loc)
4655 && MEM_EXPR (node->loc) == expr
4656 && int_mem_offset (node->loc) == 0)
4657 {
4658 where = node;
4659 break;
4660 }
4661 else if (GET_CODE (node->loc) == VALUE
4662 && !VALUE_RECURSED_INTO (node->loc)
4663 && (where = find_mem_expr_in_1pdv (expr, node->loc, vars)))
4664 break;
4665
4666 VALUE_RECURSED_INTO (val) = false;
4667
4668 return where;
4669 }
4670
4671 /* Return TRUE if the value of MEM may vary across a call. */
4672
4673 static bool
4674 mem_dies_at_call (rtx mem)
4675 {
4676 tree expr = MEM_EXPR (mem);
4677 tree decl;
4678
4679 if (!expr)
4680 return true;
4681
4682 decl = get_base_address (expr);
4683
4684 if (!decl)
4685 return true;
4686
4687 if (!DECL_P (decl))
4688 return true;
4689
4690 return (may_be_aliased (decl)
4691 || (!TREE_READONLY (decl) && is_global_var (decl)));
4692 }
4693
4694 /* Remove all MEMs from the location list of a hash table entry for a
4695 one-part variable, except those whose MEM attributes map back to
4696 the variable itself, directly or within a VALUE. */
4697
4698 int
4699 dataflow_set_preserve_mem_locs (variable **slot, dataflow_set *set)
4700 {
4701 variable *var = *slot;
4702
4703 if (var->onepart == ONEPART_VDECL || var->onepart == ONEPART_DEXPR)
4704 {
4705 tree decl = dv_as_decl (var->dv);
4706 location_chain *loc, **locp;
4707 bool changed = false;
4708
4709 if (!var->n_var_parts)
4710 return 1;
4711
4712 gcc_assert (var->n_var_parts == 1);
4713
4714 if (shared_var_p (var, set->vars))
4715 {
4716 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4717 {
4718 /* We want to remove dying MEMs that don't refer to DECL. */
4719 if (GET_CODE (loc->loc) == MEM
4720 && (MEM_EXPR (loc->loc) != decl
4721 || int_mem_offset (loc->loc) != 0)
4722 && mem_dies_at_call (loc->loc))
4723 break;
4724 /* We want to move here MEMs that do refer to DECL. */
4725 else if (GET_CODE (loc->loc) == VALUE
4726 && find_mem_expr_in_1pdv (decl, loc->loc,
4727 shared_hash_htab (set->vars)))
4728 break;
4729 }
4730
4731 if (!loc)
4732 return 1;
4733
4734 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4735 var = *slot;
4736 gcc_assert (var->n_var_parts == 1);
4737 }
4738
4739 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4740 loc; loc = *locp)
4741 {
4742 rtx old_loc = loc->loc;
4743 if (GET_CODE (old_loc) == VALUE)
4744 {
4745 location_chain *mem_node
4746 = find_mem_expr_in_1pdv (decl, loc->loc,
4747 shared_hash_htab (set->vars));
4748
4749 /* ??? This picks up only one out of multiple MEMs that
4750 refer to the same variable. Do we ever need to be
4751 concerned about dealing with more than one, or, given
4752 that they should all map to the same variable
4753 location, their addresses will have been merged and
4754 they will be regarded as equivalent? */
4755 if (mem_node)
4756 {
4757 loc->loc = mem_node->loc;
4758 loc->set_src = mem_node->set_src;
4759 loc->init = MIN (loc->init, mem_node->init);
4760 }
4761 }
4762
4763 if (GET_CODE (loc->loc) != MEM
4764 || (MEM_EXPR (loc->loc) == decl
4765 && int_mem_offset (loc->loc) == 0)
4766 || !mem_dies_at_call (loc->loc))
4767 {
4768 if (old_loc != loc->loc && emit_notes)
4769 {
4770 if (old_loc == var->var_part[0].cur_loc)
4771 {
4772 changed = true;
4773 var->var_part[0].cur_loc = NULL;
4774 }
4775 }
4776 locp = &loc->next;
4777 continue;
4778 }
4779
4780 if (emit_notes)
4781 {
4782 if (old_loc == var->var_part[0].cur_loc)
4783 {
4784 changed = true;
4785 var->var_part[0].cur_loc = NULL;
4786 }
4787 }
4788 *locp = loc->next;
4789 delete loc;
4790 }
4791
4792 if (!var->var_part[0].loc_chain)
4793 {
4794 var->n_var_parts--;
4795 changed = true;
4796 }
4797 if (changed)
4798 variable_was_changed (var, set);
4799 }
4800
4801 return 1;
4802 }
4803
4804 /* Remove all MEMs from the location list of a hash table entry for a
4805 onepart variable. */
4806
4807 int
4808 dataflow_set_remove_mem_locs (variable **slot, dataflow_set *set)
4809 {
4810 variable *var = *slot;
4811
4812 if (var->onepart != NOT_ONEPART)
4813 {
4814 location_chain *loc, **locp;
4815 bool changed = false;
4816 rtx cur_loc;
4817
4818 gcc_assert (var->n_var_parts == 1);
4819
4820 if (shared_var_p (var, set->vars))
4821 {
4822 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4823 if (GET_CODE (loc->loc) == MEM
4824 && mem_dies_at_call (loc->loc))
4825 break;
4826
4827 if (!loc)
4828 return 1;
4829
4830 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4831 var = *slot;
4832 gcc_assert (var->n_var_parts == 1);
4833 }
4834
4835 if (VAR_LOC_1PAUX (var))
4836 cur_loc = VAR_LOC_FROM (var);
4837 else
4838 cur_loc = var->var_part[0].cur_loc;
4839
4840 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4841 loc; loc = *locp)
4842 {
4843 if (GET_CODE (loc->loc) != MEM
4844 || !mem_dies_at_call (loc->loc))
4845 {
4846 locp = &loc->next;
4847 continue;
4848 }
4849
4850 *locp = loc->next;
4851 /* If we have deleted the location which was last emitted
4852 we have to emit new location so add the variable to set
4853 of changed variables. */
4854 if (cur_loc == loc->loc)
4855 {
4856 changed = true;
4857 var->var_part[0].cur_loc = NULL;
4858 if (VAR_LOC_1PAUX (var))
4859 VAR_LOC_FROM (var) = NULL;
4860 }
4861 delete loc;
4862 }
4863
4864 if (!var->var_part[0].loc_chain)
4865 {
4866 var->n_var_parts--;
4867 changed = true;
4868 }
4869 if (changed)
4870 variable_was_changed (var, set);
4871 }
4872
4873 return 1;
4874 }
4875
4876 /* Remove all variable-location information about call-clobbered
4877 registers, as well as associations between MEMs and VALUEs. */
4878
4879 static void
4880 dataflow_set_clear_at_call (dataflow_set *set, rtx_insn *call_insn)
4881 {
4882 unsigned int r;
4883 hard_reg_set_iterator hrsi;
4884 HARD_REG_SET invalidated_regs;
4885
4886 get_call_reg_set_usage (call_insn, &invalidated_regs,
4887 regs_invalidated_by_call);
4888
4889 EXECUTE_IF_SET_IN_HARD_REG_SET (invalidated_regs, 0, r, hrsi)
4890 var_regno_delete (set, r);
4891
4892 if (MAY_HAVE_DEBUG_BIND_INSNS)
4893 {
4894 set->traversed_vars = set->vars;
4895 shared_hash_htab (set->vars)
4896 ->traverse <dataflow_set *, dataflow_set_preserve_mem_locs> (set);
4897 set->traversed_vars = set->vars;
4898 shared_hash_htab (set->vars)
4899 ->traverse <dataflow_set *, dataflow_set_remove_mem_locs> (set);
4900 set->traversed_vars = NULL;
4901 }
4902 }
4903
4904 static bool
4905 variable_part_different_p (variable_part *vp1, variable_part *vp2)
4906 {
4907 location_chain *lc1, *lc2;
4908
4909 for (lc1 = vp1->loc_chain; lc1; lc1 = lc1->next)
4910 {
4911 for (lc2 = vp2->loc_chain; lc2; lc2 = lc2->next)
4912 {
4913 if (REG_P (lc1->loc) && REG_P (lc2->loc))
4914 {
4915 if (REGNO (lc1->loc) == REGNO (lc2->loc))
4916 break;
4917 }
4918 if (rtx_equal_p (lc1->loc, lc2->loc))
4919 break;
4920 }
4921 if (!lc2)
4922 return true;
4923 }
4924 return false;
4925 }
4926
4927 /* Return true if one-part variables VAR1 and VAR2 are different.
4928 They must be in canonical order. */
4929
4930 static bool
4931 onepart_variable_different_p (variable *var1, variable *var2)
4932 {
4933 location_chain *lc1, *lc2;
4934
4935 if (var1 == var2)
4936 return false;
4937
4938 gcc_assert (var1->n_var_parts == 1
4939 && var2->n_var_parts == 1);
4940
4941 lc1 = var1->var_part[0].loc_chain;
4942 lc2 = var2->var_part[0].loc_chain;
4943
4944 gcc_assert (lc1 && lc2);
4945
4946 while (lc1 && lc2)
4947 {
4948 if (loc_cmp (lc1->loc, lc2->loc))
4949 return true;
4950 lc1 = lc1->next;
4951 lc2 = lc2->next;
4952 }
4953
4954 return lc1 != lc2;
4955 }
4956
4957 /* Return true if one-part variables VAR1 and VAR2 are different.
4958 They must be in canonical order. */
4959
4960 static void
4961 dump_onepart_variable_differences (variable *var1, variable *var2)
4962 {
4963 location_chain *lc1, *lc2;
4964
4965 gcc_assert (var1 != var2);
4966 gcc_assert (dump_file);
4967 gcc_assert (dv_as_opaque (var1->dv) == dv_as_opaque (var2->dv));
4968 gcc_assert (var1->n_var_parts == 1
4969 && var2->n_var_parts == 1);
4970
4971 lc1 = var1->var_part[0].loc_chain;
4972 lc2 = var2->var_part[0].loc_chain;
4973
4974 gcc_assert (lc1 && lc2);
4975
4976 while (lc1 && lc2)
4977 {
4978 switch (loc_cmp (lc1->loc, lc2->loc))
4979 {
4980 case -1:
4981 fprintf (dump_file, "removed: ");
4982 print_rtl_single (dump_file, lc1->loc);
4983 lc1 = lc1->next;
4984 continue;
4985 case 0:
4986 break;
4987 case 1:
4988 fprintf (dump_file, "added: ");
4989 print_rtl_single (dump_file, lc2->loc);
4990 lc2 = lc2->next;
4991 continue;
4992 default:
4993 gcc_unreachable ();
4994 }
4995 lc1 = lc1->next;
4996 lc2 = lc2->next;
4997 }
4998
4999 while (lc1)
5000 {
5001 fprintf (dump_file, "removed: ");
5002 print_rtl_single (dump_file, lc1->loc);
5003 lc1 = lc1->next;
5004 }
5005
5006 while (lc2)
5007 {
5008 fprintf (dump_file, "added: ");
5009 print_rtl_single (dump_file, lc2->loc);
5010 lc2 = lc2->next;
5011 }
5012 }
5013
5014 /* Return true if variables VAR1 and VAR2 are different. */
5015
5016 static bool
5017 variable_different_p (variable *var1, variable *var2)
5018 {
5019 int i;
5020
5021 if (var1 == var2)
5022 return false;
5023
5024 if (var1->onepart != var2->onepart)
5025 return true;
5026
5027 if (var1->n_var_parts != var2->n_var_parts)
5028 return true;
5029
5030 if (var1->onepart && var1->n_var_parts)
5031 {
5032 gcc_checking_assert (dv_as_opaque (var1->dv) == dv_as_opaque (var2->dv)
5033 && var1->n_var_parts == 1);
5034 /* One-part values have locations in a canonical order. */
5035 return onepart_variable_different_p (var1, var2);
5036 }
5037
5038 for (i = 0; i < var1->n_var_parts; i++)
5039 {
5040 if (VAR_PART_OFFSET (var1, i) != VAR_PART_OFFSET (var2, i))
5041 return true;
5042 if (variable_part_different_p (&var1->var_part[i], &var2->var_part[i]))
5043 return true;
5044 if (variable_part_different_p (&var2->var_part[i], &var1->var_part[i]))
5045 return true;
5046 }
5047 return false;
5048 }
5049
5050 /* Return true if dataflow sets OLD_SET and NEW_SET differ. */
5051
5052 static bool
5053 dataflow_set_different (dataflow_set *old_set, dataflow_set *new_set)
5054 {
5055 variable_iterator_type hi;
5056 variable *var1;
5057 bool diffound = false;
5058 bool details = (dump_file && (dump_flags & TDF_DETAILS));
5059
5060 #define RETRUE \
5061 do \
5062 { \
5063 if (!details) \
5064 return true; \
5065 else \
5066 diffound = true; \
5067 } \
5068 while (0)
5069
5070 if (old_set->vars == new_set->vars)
5071 return false;
5072
5073 if (shared_hash_htab (old_set->vars)->elements ()
5074 != shared_hash_htab (new_set->vars)->elements ())
5075 RETRUE;
5076
5077 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (old_set->vars),
5078 var1, variable, hi)
5079 {
5080 variable_table_type *htab = shared_hash_htab (new_set->vars);
5081 variable *var2 = htab->find_with_hash (var1->dv, dv_htab_hash (var1->dv));
5082
5083 if (!var2)
5084 {
5085 if (dump_file && (dump_flags & TDF_DETAILS))
5086 {
5087 fprintf (dump_file, "dataflow difference found: removal of:\n");
5088 dump_var (var1);
5089 }
5090 RETRUE;
5091 }
5092 else if (variable_different_p (var1, var2))
5093 {
5094 if (details)
5095 {
5096 fprintf (dump_file, "dataflow difference found: "
5097 "old and new follow:\n");
5098 dump_var (var1);
5099 if (dv_onepart_p (var1->dv))
5100 dump_onepart_variable_differences (var1, var2);
5101 dump_var (var2);
5102 }
5103 RETRUE;
5104 }
5105 }
5106
5107 /* There's no need to traverse the second hashtab unless we want to
5108 print the details. If both have the same number of elements and
5109 the second one had all entries found in the first one, then the
5110 second can't have any extra entries. */
5111 if (!details)
5112 return diffound;
5113
5114 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (new_set->vars),
5115 var1, variable, hi)
5116 {
5117 variable_table_type *htab = shared_hash_htab (old_set->vars);
5118 variable *var2 = htab->find_with_hash (var1->dv, dv_htab_hash (var1->dv));
5119 if (!var2)
5120 {
5121 if (details)
5122 {
5123 fprintf (dump_file, "dataflow difference found: addition of:\n");
5124 dump_var (var1);
5125 }
5126 RETRUE;
5127 }
5128 }
5129
5130 #undef RETRUE
5131
5132 return diffound;
5133 }
5134
5135 /* Free the contents of dataflow set SET. */
5136
5137 static void
5138 dataflow_set_destroy (dataflow_set *set)
5139 {
5140 int i;
5141
5142 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5143 attrs_list_clear (&set->regs[i]);
5144
5145 shared_hash_destroy (set->vars);
5146 set->vars = NULL;
5147 }
5148
5149 /* Return true if T is a tracked parameter with non-degenerate record type. */
5150
5151 static bool
5152 tracked_record_parameter_p (tree t)
5153 {
5154 if (TREE_CODE (t) != PARM_DECL)
5155 return false;
5156
5157 if (DECL_MODE (t) == BLKmode)
5158 return false;
5159
5160 tree type = TREE_TYPE (t);
5161 if (TREE_CODE (type) != RECORD_TYPE)
5162 return false;
5163
5164 if (TYPE_FIELDS (type) == NULL_TREE
5165 || DECL_CHAIN (TYPE_FIELDS (type)) == NULL_TREE)
5166 return false;
5167
5168 return true;
5169 }
5170
5171 /* Shall EXPR be tracked? */
5172
5173 static bool
5174 track_expr_p (tree expr, bool need_rtl)
5175 {
5176 rtx decl_rtl;
5177 tree realdecl;
5178
5179 if (TREE_CODE (expr) == DEBUG_EXPR_DECL)
5180 return DECL_RTL_SET_P (expr);
5181
5182 /* If EXPR is not a parameter or a variable do not track it. */
5183 if (!VAR_P (expr) && TREE_CODE (expr) != PARM_DECL)
5184 return 0;
5185
5186 /* It also must have a name... */
5187 if (!DECL_NAME (expr) && need_rtl)
5188 return 0;
5189
5190 /* ... and a RTL assigned to it. */
5191 decl_rtl = DECL_RTL_IF_SET (expr);
5192 if (!decl_rtl && need_rtl)
5193 return 0;
5194
5195 /* If this expression is really a debug alias of some other declaration, we
5196 don't need to track this expression if the ultimate declaration is
5197 ignored. */
5198 realdecl = expr;
5199 if (VAR_P (realdecl) && DECL_HAS_DEBUG_EXPR_P (realdecl))
5200 {
5201 realdecl = DECL_DEBUG_EXPR (realdecl);
5202 if (!DECL_P (realdecl))
5203 {
5204 if (handled_component_p (realdecl)
5205 || (TREE_CODE (realdecl) == MEM_REF
5206 && TREE_CODE (TREE_OPERAND (realdecl, 0)) == ADDR_EXPR))
5207 {
5208 HOST_WIDE_INT bitsize, bitpos;
5209 bool reverse;
5210 tree innerdecl
5211 = get_ref_base_and_extent_hwi (realdecl, &bitpos,
5212 &bitsize, &reverse);
5213 if (!innerdecl
5214 || !DECL_P (innerdecl)
5215 || DECL_IGNORED_P (innerdecl)
5216 /* Do not track declarations for parts of tracked record
5217 parameters since we want to track them as a whole. */
5218 || tracked_record_parameter_p (innerdecl)
5219 || TREE_STATIC (innerdecl)
5220 || bitsize == 0
5221 || bitpos + bitsize > 256)
5222 return 0;
5223 else
5224 realdecl = expr;
5225 }
5226 else
5227 return 0;
5228 }
5229 }
5230
5231 /* Do not track EXPR if REALDECL it should be ignored for debugging
5232 purposes. */
5233 if (DECL_IGNORED_P (realdecl))
5234 return 0;
5235
5236 /* Do not track global variables until we are able to emit correct location
5237 list for them. */
5238 if (TREE_STATIC (realdecl))
5239 return 0;
5240
5241 /* When the EXPR is a DECL for alias of some variable (see example)
5242 the TREE_STATIC flag is not used. Disable tracking all DECLs whose
5243 DECL_RTL contains SYMBOL_REF.
5244
5245 Example:
5246 extern char **_dl_argv_internal __attribute__ ((alias ("_dl_argv")));
5247 char **_dl_argv;
5248 */
5249 if (decl_rtl && MEM_P (decl_rtl)
5250 && contains_symbol_ref_p (XEXP (decl_rtl, 0)))
5251 return 0;
5252
5253 /* If RTX is a memory it should not be very large (because it would be
5254 an array or struct). */
5255 if (decl_rtl && MEM_P (decl_rtl))
5256 {
5257 /* Do not track structures and arrays. */
5258 if ((GET_MODE (decl_rtl) == BLKmode
5259 || AGGREGATE_TYPE_P (TREE_TYPE (realdecl)))
5260 && !tracked_record_parameter_p (realdecl))
5261 return 0;
5262 if (MEM_SIZE_KNOWN_P (decl_rtl)
5263 && maybe_gt (MEM_SIZE (decl_rtl), MAX_VAR_PARTS))
5264 return 0;
5265 }
5266
5267 DECL_CHANGED (expr) = 0;
5268 DECL_CHANGED (realdecl) = 0;
5269 return 1;
5270 }
5271
5272 /* Determine whether a given LOC refers to the same variable part as
5273 EXPR+OFFSET. */
5274
5275 static bool
5276 same_variable_part_p (rtx loc, tree expr, poly_int64 offset)
5277 {
5278 tree expr2;
5279 poly_int64 offset2;
5280
5281 if (! DECL_P (expr))
5282 return false;
5283
5284 if (REG_P (loc))
5285 {
5286 expr2 = REG_EXPR (loc);
5287 offset2 = REG_OFFSET (loc);
5288 }
5289 else if (MEM_P (loc))
5290 {
5291 expr2 = MEM_EXPR (loc);
5292 offset2 = int_mem_offset (loc);
5293 }
5294 else
5295 return false;
5296
5297 if (! expr2 || ! DECL_P (expr2))
5298 return false;
5299
5300 expr = var_debug_decl (expr);
5301 expr2 = var_debug_decl (expr2);
5302
5303 return (expr == expr2 && known_eq (offset, offset2));
5304 }
5305
5306 /* LOC is a REG or MEM that we would like to track if possible.
5307 If EXPR is null, we don't know what expression LOC refers to,
5308 otherwise it refers to EXPR + OFFSET. STORE_REG_P is true if
5309 LOC is an lvalue register.
5310
5311 Return true if EXPR is nonnull and if LOC, or some lowpart of it,
5312 is something we can track. When returning true, store the mode of
5313 the lowpart we can track in *MODE_OUT (if nonnull) and its offset
5314 from EXPR in *OFFSET_OUT (if nonnull). */
5315
5316 static bool
5317 track_loc_p (rtx loc, tree expr, poly_int64 offset, bool store_reg_p,
5318 machine_mode *mode_out, HOST_WIDE_INT *offset_out)
5319 {
5320 machine_mode mode;
5321
5322 if (expr == NULL || !track_expr_p (expr, true))
5323 return false;
5324
5325 /* If REG was a paradoxical subreg, its REG_ATTRS will describe the
5326 whole subreg, but only the old inner part is really relevant. */
5327 mode = GET_MODE (loc);
5328 if (REG_P (loc) && !HARD_REGISTER_NUM_P (ORIGINAL_REGNO (loc)))
5329 {
5330 machine_mode pseudo_mode;
5331
5332 pseudo_mode = PSEUDO_REGNO_MODE (ORIGINAL_REGNO (loc));
5333 if (paradoxical_subreg_p (mode, pseudo_mode))
5334 {
5335 offset += byte_lowpart_offset (pseudo_mode, mode);
5336 mode = pseudo_mode;
5337 }
5338 }
5339
5340 /* If LOC is a paradoxical lowpart of EXPR, refer to EXPR itself.
5341 Do the same if we are storing to a register and EXPR occupies
5342 the whole of register LOC; in that case, the whole of EXPR is
5343 being changed. We exclude complex modes from the second case
5344 because the real and imaginary parts are represented as separate
5345 pseudo registers, even if the whole complex value fits into one
5346 hard register. */
5347 if ((paradoxical_subreg_p (mode, DECL_MODE (expr))
5348 || (store_reg_p
5349 && !COMPLEX_MODE_P (DECL_MODE (expr))
5350 && hard_regno_nregs (REGNO (loc), DECL_MODE (expr)) == 1))
5351 && known_eq (offset + byte_lowpart_offset (DECL_MODE (expr), mode), 0))
5352 {
5353 mode = DECL_MODE (expr);
5354 offset = 0;
5355 }
5356
5357 HOST_WIDE_INT const_offset;
5358 if (!track_offset_p (offset, &const_offset))
5359 return false;
5360
5361 if (mode_out)
5362 *mode_out = mode;
5363 if (offset_out)
5364 *offset_out = const_offset;
5365 return true;
5366 }
5367
5368 /* Return the MODE lowpart of LOC, or null if LOC is not something we
5369 want to track. When returning nonnull, make sure that the attributes
5370 on the returned value are updated. */
5371
5372 static rtx
5373 var_lowpart (machine_mode mode, rtx loc)
5374 {
5375 unsigned int regno;
5376
5377 if (GET_MODE (loc) == mode)
5378 return loc;
5379
5380 if (!REG_P (loc) && !MEM_P (loc))
5381 return NULL;
5382
5383 poly_uint64 offset = byte_lowpart_offset (mode, GET_MODE (loc));
5384
5385 if (MEM_P (loc))
5386 return adjust_address_nv (loc, mode, offset);
5387
5388 poly_uint64 reg_offset = subreg_lowpart_offset (mode, GET_MODE (loc));
5389 regno = REGNO (loc) + subreg_regno_offset (REGNO (loc), GET_MODE (loc),
5390 reg_offset, mode);
5391 return gen_rtx_REG_offset (loc, mode, regno, offset);
5392 }
5393
5394 /* Carry information about uses and stores while walking rtx. */
5395
5396 struct count_use_info
5397 {
5398 /* The insn where the RTX is. */
5399 rtx_insn *insn;
5400
5401 /* The basic block where insn is. */
5402 basic_block bb;
5403
5404 /* The array of n_sets sets in the insn, as determined by cselib. */
5405 struct cselib_set *sets;
5406 int n_sets;
5407
5408 /* True if we're counting stores, false otherwise. */
5409 bool store_p;
5410 };
5411
5412 /* Find a VALUE corresponding to X. */
5413
5414 static inline cselib_val *
5415 find_use_val (rtx x, machine_mode mode, struct count_use_info *cui)
5416 {
5417 int i;
5418
5419 if (cui->sets)
5420 {
5421 /* This is called after uses are set up and before stores are
5422 processed by cselib, so it's safe to look up srcs, but not
5423 dsts. So we look up expressions that appear in srcs or in
5424 dest expressions, but we search the sets array for dests of
5425 stores. */
5426 if (cui->store_p)
5427 {
5428 /* Some targets represent memset and memcpy patterns
5429 by (set (mem:BLK ...) (reg:[QHSD]I ...)) or
5430 (set (mem:BLK ...) (const_int ...)) or
5431 (set (mem:BLK ...) (mem:BLK ...)). Don't return anything
5432 in that case, otherwise we end up with mode mismatches. */
5433 if (mode == BLKmode && MEM_P (x))
5434 return NULL;
5435 for (i = 0; i < cui->n_sets; i++)
5436 if (cui->sets[i].dest == x)
5437 return cui->sets[i].src_elt;
5438 }
5439 else
5440 return cselib_lookup (x, mode, 0, VOIDmode);
5441 }
5442
5443 return NULL;
5444 }
5445
5446 /* Replace all registers and addresses in an expression with VALUE
5447 expressions that map back to them, unless the expression is a
5448 register. If no mapping is or can be performed, returns NULL. */
5449
5450 static rtx
5451 replace_expr_with_values (rtx loc)
5452 {
5453 if (REG_P (loc) || GET_CODE (loc) == ENTRY_VALUE)
5454 return NULL;
5455 else if (MEM_P (loc))
5456 {
5457 cselib_val *addr = cselib_lookup (XEXP (loc, 0),
5458 get_address_mode (loc), 0,
5459 GET_MODE (loc));
5460 if (addr)
5461 return replace_equiv_address_nv (loc, addr->val_rtx);
5462 else
5463 return NULL;
5464 }
5465 else
5466 return cselib_subst_to_values (loc, VOIDmode);
5467 }
5468
5469 /* Return true if X contains a DEBUG_EXPR. */
5470
5471 static bool
5472 rtx_debug_expr_p (const_rtx x)
5473 {
5474 subrtx_iterator::array_type array;
5475 FOR_EACH_SUBRTX (iter, array, x, ALL)
5476 if (GET_CODE (*iter) == DEBUG_EXPR)
5477 return true;
5478 return false;
5479 }
5480
5481 /* Determine what kind of micro operation to choose for a USE. Return
5482 MO_CLOBBER if no micro operation is to be generated. */
5483
5484 static enum micro_operation_type
5485 use_type (rtx loc, struct count_use_info *cui, machine_mode *modep)
5486 {
5487 tree expr;
5488
5489 if (cui && cui->sets)
5490 {
5491 if (GET_CODE (loc) == VAR_LOCATION)
5492 {
5493 if (track_expr_p (PAT_VAR_LOCATION_DECL (loc), false))
5494 {
5495 rtx ploc = PAT_VAR_LOCATION_LOC (loc);
5496 if (! VAR_LOC_UNKNOWN_P (ploc))
5497 {
5498 cselib_val *val = cselib_lookup (ploc, GET_MODE (loc), 1,
5499 VOIDmode);
5500
5501 /* ??? flag_float_store and volatile mems are never
5502 given values, but we could in theory use them for
5503 locations. */
5504 gcc_assert (val || 1);
5505 }
5506 return MO_VAL_LOC;
5507 }
5508 else
5509 return MO_CLOBBER;
5510 }
5511
5512 if (REG_P (loc) || MEM_P (loc))
5513 {
5514 if (modep)
5515 *modep = GET_MODE (loc);
5516 if (cui->store_p)
5517 {
5518 if (REG_P (loc)
5519 || (find_use_val (loc, GET_MODE (loc), cui)
5520 && cselib_lookup (XEXP (loc, 0),
5521 get_address_mode (loc), 0,
5522 GET_MODE (loc))))
5523 return MO_VAL_SET;
5524 }
5525 else
5526 {
5527 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5528
5529 if (val && !cselib_preserved_value_p (val))
5530 return MO_VAL_USE;
5531 }
5532 }
5533 }
5534
5535 if (REG_P (loc))
5536 {
5537 gcc_assert (REGNO (loc) < FIRST_PSEUDO_REGISTER);
5538
5539 if (loc == cfa_base_rtx)
5540 return MO_CLOBBER;
5541 expr = REG_EXPR (loc);
5542
5543 if (!expr)
5544 return MO_USE_NO_VAR;
5545 else if (target_for_debug_bind (var_debug_decl (expr)))
5546 return MO_CLOBBER;
5547 else if (track_loc_p (loc, expr, REG_OFFSET (loc),
5548 false, modep, NULL))
5549 return MO_USE;
5550 else
5551 return MO_USE_NO_VAR;
5552 }
5553 else if (MEM_P (loc))
5554 {
5555 expr = MEM_EXPR (loc);
5556
5557 if (!expr)
5558 return MO_CLOBBER;
5559 else if (target_for_debug_bind (var_debug_decl (expr)))
5560 return MO_CLOBBER;
5561 else if (track_loc_p (loc, expr, int_mem_offset (loc),
5562 false, modep, NULL)
5563 /* Multi-part variables shouldn't refer to one-part
5564 variable names such as VALUEs (never happens) or
5565 DEBUG_EXPRs (only happens in the presence of debug
5566 insns). */
5567 && (!MAY_HAVE_DEBUG_BIND_INSNS
5568 || !rtx_debug_expr_p (XEXP (loc, 0))))
5569 return MO_USE;
5570 else
5571 return MO_CLOBBER;
5572 }
5573
5574 return MO_CLOBBER;
5575 }
5576
5577 /* Log to OUT information about micro-operation MOPT involving X in
5578 INSN of BB. */
5579
5580 static inline void
5581 log_op_type (rtx x, basic_block bb, rtx_insn *insn,
5582 enum micro_operation_type mopt, FILE *out)
5583 {
5584 fprintf (out, "bb %i op %i insn %i %s ",
5585 bb->index, VTI (bb)->mos.length (),
5586 INSN_UID (insn), micro_operation_type_name[mopt]);
5587 print_inline_rtx (out, x, 2);
5588 fputc ('\n', out);
5589 }
5590
5591 /* Tell whether the CONCAT used to holds a VALUE and its location
5592 needs value resolution, i.e., an attempt of mapping the location
5593 back to other incoming values. */
5594 #define VAL_NEEDS_RESOLUTION(x) \
5595 (RTL_FLAG_CHECK1 ("VAL_NEEDS_RESOLUTION", (x), CONCAT)->volatil)
5596 /* Whether the location in the CONCAT is a tracked expression, that
5597 should also be handled like a MO_USE. */
5598 #define VAL_HOLDS_TRACK_EXPR(x) \
5599 (RTL_FLAG_CHECK1 ("VAL_HOLDS_TRACK_EXPR", (x), CONCAT)->used)
5600 /* Whether the location in the CONCAT should be handled like a MO_COPY
5601 as well. */
5602 #define VAL_EXPR_IS_COPIED(x) \
5603 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_COPIED", (x), CONCAT)->jump)
5604 /* Whether the location in the CONCAT should be handled like a
5605 MO_CLOBBER as well. */
5606 #define VAL_EXPR_IS_CLOBBERED(x) \
5607 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_CLOBBERED", (x), CONCAT)->unchanging)
5608
5609 /* All preserved VALUEs. */
5610 static vec<rtx> preserved_values;
5611
5612 /* Ensure VAL is preserved and remember it in a vector for vt_emit_notes. */
5613
5614 static void
5615 preserve_value (cselib_val *val)
5616 {
5617 cselib_preserve_value (val);
5618 preserved_values.safe_push (val->val_rtx);
5619 }
5620
5621 /* Helper function for MO_VAL_LOC handling. Return non-zero if
5622 any rtxes not suitable for CONST use not replaced by VALUEs
5623 are discovered. */
5624
5625 static bool
5626 non_suitable_const (const_rtx x)
5627 {
5628 subrtx_iterator::array_type array;
5629 FOR_EACH_SUBRTX (iter, array, x, ALL)
5630 {
5631 const_rtx x = *iter;
5632 switch (GET_CODE (x))
5633 {
5634 case REG:
5635 case DEBUG_EXPR:
5636 case PC:
5637 case SCRATCH:
5638 case CC0:
5639 case ASM_INPUT:
5640 case ASM_OPERANDS:
5641 return true;
5642 case MEM:
5643 if (!MEM_READONLY_P (x))
5644 return true;
5645 break;
5646 default:
5647 break;
5648 }
5649 }
5650 return false;
5651 }
5652
5653 /* Add uses (register and memory references) LOC which will be tracked
5654 to VTI (bb)->mos. */
5655
5656 static void
5657 add_uses (rtx loc, struct count_use_info *cui)
5658 {
5659 machine_mode mode = VOIDmode;
5660 enum micro_operation_type type = use_type (loc, cui, &mode);
5661
5662 if (type != MO_CLOBBER)
5663 {
5664 basic_block bb = cui->bb;
5665 micro_operation mo;
5666
5667 mo.type = type;
5668 mo.u.loc = type == MO_USE ? var_lowpart (mode, loc) : loc;
5669 mo.insn = cui->insn;
5670
5671 if (type == MO_VAL_LOC)
5672 {
5673 rtx oloc = loc;
5674 rtx vloc = PAT_VAR_LOCATION_LOC (oloc);
5675 cselib_val *val;
5676
5677 gcc_assert (cui->sets);
5678
5679 if (MEM_P (vloc)
5680 && !REG_P (XEXP (vloc, 0))
5681 && !MEM_P (XEXP (vloc, 0)))
5682 {
5683 rtx mloc = vloc;
5684 machine_mode address_mode = get_address_mode (mloc);
5685 cselib_val *val
5686 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5687 GET_MODE (mloc));
5688
5689 if (val && !cselib_preserved_value_p (val))
5690 preserve_value (val);
5691 }
5692
5693 if (CONSTANT_P (vloc)
5694 && (GET_CODE (vloc) != CONST || non_suitable_const (vloc)))
5695 /* For constants don't look up any value. */;
5696 else if (!VAR_LOC_UNKNOWN_P (vloc) && !unsuitable_loc (vloc)
5697 && (val = find_use_val (vloc, GET_MODE (oloc), cui)))
5698 {
5699 machine_mode mode2;
5700 enum micro_operation_type type2;
5701 rtx nloc = NULL;
5702 bool resolvable = REG_P (vloc) || MEM_P (vloc);
5703
5704 if (resolvable)
5705 nloc = replace_expr_with_values (vloc);
5706
5707 if (nloc)
5708 {
5709 oloc = shallow_copy_rtx (oloc);
5710 PAT_VAR_LOCATION_LOC (oloc) = nloc;
5711 }
5712
5713 oloc = gen_rtx_CONCAT (mode, val->val_rtx, oloc);
5714
5715 type2 = use_type (vloc, 0, &mode2);
5716
5717 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5718 || type2 == MO_CLOBBER);
5719
5720 if (type2 == MO_CLOBBER
5721 && !cselib_preserved_value_p (val))
5722 {
5723 VAL_NEEDS_RESOLUTION (oloc) = resolvable;
5724 preserve_value (val);
5725 }
5726 }
5727 else if (!VAR_LOC_UNKNOWN_P (vloc))
5728 {
5729 oloc = shallow_copy_rtx (oloc);
5730 PAT_VAR_LOCATION_LOC (oloc) = gen_rtx_UNKNOWN_VAR_LOC ();
5731 }
5732
5733 mo.u.loc = oloc;
5734 }
5735 else if (type == MO_VAL_USE)
5736 {
5737 machine_mode mode2 = VOIDmode;
5738 enum micro_operation_type type2;
5739 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5740 rtx vloc, oloc = loc, nloc;
5741
5742 gcc_assert (cui->sets);
5743
5744 if (MEM_P (oloc)
5745 && !REG_P (XEXP (oloc, 0))
5746 && !MEM_P (XEXP (oloc, 0)))
5747 {
5748 rtx mloc = oloc;
5749 machine_mode address_mode = get_address_mode (mloc);
5750 cselib_val *val
5751 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5752 GET_MODE (mloc));
5753
5754 if (val && !cselib_preserved_value_p (val))
5755 preserve_value (val);
5756 }
5757
5758 type2 = use_type (loc, 0, &mode2);
5759
5760 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5761 || type2 == MO_CLOBBER);
5762
5763 if (type2 == MO_USE)
5764 vloc = var_lowpart (mode2, loc);
5765 else
5766 vloc = oloc;
5767
5768 /* The loc of a MO_VAL_USE may have two forms:
5769
5770 (concat val src): val is at src, a value-based
5771 representation.
5772
5773 (concat (concat val use) src): same as above, with use as
5774 the MO_USE tracked value, if it differs from src.
5775
5776 */
5777
5778 gcc_checking_assert (REG_P (loc) || MEM_P (loc));
5779 nloc = replace_expr_with_values (loc);
5780 if (!nloc)
5781 nloc = oloc;
5782
5783 if (vloc != nloc)
5784 oloc = gen_rtx_CONCAT (mode2, val->val_rtx, vloc);
5785 else
5786 oloc = val->val_rtx;
5787
5788 mo.u.loc = gen_rtx_CONCAT (mode, oloc, nloc);
5789
5790 if (type2 == MO_USE)
5791 VAL_HOLDS_TRACK_EXPR (mo.u.loc) = 1;
5792 if (!cselib_preserved_value_p (val))
5793 {
5794 VAL_NEEDS_RESOLUTION (mo.u.loc) = 1;
5795 preserve_value (val);
5796 }
5797 }
5798 else
5799 gcc_assert (type == MO_USE || type == MO_USE_NO_VAR);
5800
5801 if (dump_file && (dump_flags & TDF_DETAILS))
5802 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
5803 VTI (bb)->mos.safe_push (mo);
5804 }
5805 }
5806
5807 /* Helper function for finding all uses of REG/MEM in X in insn INSN. */
5808
5809 static void
5810 add_uses_1 (rtx *x, void *cui)
5811 {
5812 subrtx_var_iterator::array_type array;
5813 FOR_EACH_SUBRTX_VAR (iter, array, *x, NONCONST)
5814 add_uses (*iter, (struct count_use_info *) cui);
5815 }
5816
5817 /* This is the value used during expansion of locations. We want it
5818 to be unbounded, so that variables expanded deep in a recursion
5819 nest are fully evaluated, so that their values are cached
5820 correctly. We avoid recursion cycles through other means, and we
5821 don't unshare RTL, so excess complexity is not a problem. */
5822 #define EXPR_DEPTH (INT_MAX)
5823 /* We use this to keep too-complex expressions from being emitted as
5824 location notes, and then to debug information. Users can trade
5825 compile time for ridiculously complex expressions, although they're
5826 seldom useful, and they may often have to be discarded as not
5827 representable anyway. */
5828 #define EXPR_USE_DEPTH (PARAM_VALUE (PARAM_MAX_VARTRACK_EXPR_DEPTH))
5829
5830 /* Attempt to reverse the EXPR operation in the debug info and record
5831 it in the cselib table. Say for reg1 = reg2 + 6 even when reg2 is
5832 no longer live we can express its value as VAL - 6. */
5833
5834 static void
5835 reverse_op (rtx val, const_rtx expr, rtx_insn *insn)
5836 {
5837 rtx src, arg, ret;
5838 cselib_val *v;
5839 struct elt_loc_list *l;
5840 enum rtx_code code;
5841 int count;
5842
5843 if (GET_CODE (expr) != SET)
5844 return;
5845
5846 if (!REG_P (SET_DEST (expr)) || GET_MODE (val) != GET_MODE (SET_DEST (expr)))
5847 return;
5848
5849 src = SET_SRC (expr);
5850 switch (GET_CODE (src))
5851 {
5852 case PLUS:
5853 case MINUS:
5854 case XOR:
5855 case NOT:
5856 case NEG:
5857 if (!REG_P (XEXP (src, 0)))
5858 return;
5859 break;
5860 case SIGN_EXTEND:
5861 case ZERO_EXTEND:
5862 if (!REG_P (XEXP (src, 0)) && !MEM_P (XEXP (src, 0)))
5863 return;
5864 break;
5865 default:
5866 return;
5867 }
5868
5869 if (!SCALAR_INT_MODE_P (GET_MODE (src)) || XEXP (src, 0) == cfa_base_rtx)
5870 return;
5871
5872 v = cselib_lookup (XEXP (src, 0), GET_MODE (XEXP (src, 0)), 0, VOIDmode);
5873 if (!v || !cselib_preserved_value_p (v))
5874 return;
5875
5876 /* Use canonical V to avoid creating multiple redundant expressions
5877 for different VALUES equivalent to V. */
5878 v = canonical_cselib_val (v);
5879
5880 /* Adding a reverse op isn't useful if V already has an always valid
5881 location. Ignore ENTRY_VALUE, while it is always constant, we should
5882 prefer non-ENTRY_VALUE locations whenever possible. */
5883 for (l = v->locs, count = 0; l; l = l->next, count++)
5884 if (CONSTANT_P (l->loc)
5885 && (GET_CODE (l->loc) != CONST || !references_value_p (l->loc, 0)))
5886 return;
5887 /* Avoid creating too large locs lists. */
5888 else if (count == PARAM_VALUE (PARAM_MAX_VARTRACK_REVERSE_OP_SIZE))
5889 return;
5890
5891 switch (GET_CODE (src))
5892 {
5893 case NOT:
5894 case NEG:
5895 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5896 return;
5897 ret = gen_rtx_fmt_e (GET_CODE (src), GET_MODE (val), val);
5898 break;
5899 case SIGN_EXTEND:
5900 case ZERO_EXTEND:
5901 ret = gen_lowpart_SUBREG (GET_MODE (v->val_rtx), val);
5902 break;
5903 case XOR:
5904 code = XOR;
5905 goto binary;
5906 case PLUS:
5907 code = MINUS;
5908 goto binary;
5909 case MINUS:
5910 code = PLUS;
5911 goto binary;
5912 binary:
5913 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5914 return;
5915 arg = XEXP (src, 1);
5916 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5917 {
5918 arg = cselib_expand_value_rtx (arg, scratch_regs, 5);
5919 if (arg == NULL_RTX)
5920 return;
5921 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5922 return;
5923 }
5924 ret = simplify_gen_binary (code, GET_MODE (val), val, arg);
5925 break;
5926 default:
5927 gcc_unreachable ();
5928 }
5929
5930 cselib_add_permanent_equiv (v, ret, insn);
5931 }
5932
5933 /* Add stores (register and memory references) LOC which will be tracked
5934 to VTI (bb)->mos. EXPR is the RTL expression containing the store.
5935 CUIP->insn is instruction which the LOC is part of. */
5936
5937 static void
5938 add_stores (rtx loc, const_rtx expr, void *cuip)
5939 {
5940 machine_mode mode = VOIDmode, mode2;
5941 struct count_use_info *cui = (struct count_use_info *)cuip;
5942 basic_block bb = cui->bb;
5943 micro_operation mo;
5944 rtx oloc = loc, nloc, src = NULL;
5945 enum micro_operation_type type = use_type (loc, cui, &mode);
5946 bool track_p = false;
5947 cselib_val *v;
5948 bool resolve, preserve;
5949
5950 if (type == MO_CLOBBER)
5951 return;
5952
5953 mode2 = mode;
5954
5955 if (REG_P (loc))
5956 {
5957 gcc_assert (loc != cfa_base_rtx);
5958 if ((GET_CODE (expr) == CLOBBER && type != MO_VAL_SET)
5959 || !(track_p = use_type (loc, NULL, &mode2) == MO_USE)
5960 || GET_CODE (expr) == CLOBBER)
5961 {
5962 mo.type = MO_CLOBBER;
5963 mo.u.loc = loc;
5964 if (GET_CODE (expr) == SET
5965 && SET_DEST (expr) == loc
5966 && !unsuitable_loc (SET_SRC (expr))
5967 && find_use_val (loc, mode, cui))
5968 {
5969 gcc_checking_assert (type == MO_VAL_SET);
5970 mo.u.loc = gen_rtx_SET (loc, SET_SRC (expr));
5971 }
5972 }
5973 else
5974 {
5975 if (GET_CODE (expr) == SET
5976 && SET_DEST (expr) == loc
5977 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
5978 src = var_lowpart (mode2, SET_SRC (expr));
5979 loc = var_lowpart (mode2, loc);
5980
5981 if (src == NULL)
5982 {
5983 mo.type = MO_SET;
5984 mo.u.loc = loc;
5985 }
5986 else
5987 {
5988 rtx xexpr = gen_rtx_SET (loc, src);
5989 if (same_variable_part_p (src, REG_EXPR (loc), REG_OFFSET (loc)))
5990 {
5991 /* If this is an instruction copying (part of) a parameter
5992 passed by invisible reference to its register location,
5993 pretend it's a SET so that the initial memory location
5994 is discarded, as the parameter register can be reused
5995 for other purposes and we do not track locations based
5996 on generic registers. */
5997 if (MEM_P (src)
5998 && REG_EXPR (loc)
5999 && TREE_CODE (REG_EXPR (loc)) == PARM_DECL
6000 && DECL_MODE (REG_EXPR (loc)) != BLKmode
6001 && MEM_P (DECL_INCOMING_RTL (REG_EXPR (loc)))
6002 && XEXP (DECL_INCOMING_RTL (REG_EXPR (loc)), 0)
6003 != arg_pointer_rtx)
6004 mo.type = MO_SET;
6005 else
6006 mo.type = MO_COPY;
6007 }
6008 else
6009 mo.type = MO_SET;
6010 mo.u.loc = xexpr;
6011 }
6012 }
6013 mo.insn = cui->insn;
6014 }
6015 else if (MEM_P (loc)
6016 && ((track_p = use_type (loc, NULL, &mode2) == MO_USE)
6017 || cui->sets))
6018 {
6019 if (MEM_P (loc) && type == MO_VAL_SET
6020 && !REG_P (XEXP (loc, 0))
6021 && !MEM_P (XEXP (loc, 0)))
6022 {
6023 rtx mloc = loc;
6024 machine_mode address_mode = get_address_mode (mloc);
6025 cselib_val *val = cselib_lookup (XEXP (mloc, 0),
6026 address_mode, 0,
6027 GET_MODE (mloc));
6028
6029 if (val && !cselib_preserved_value_p (val))
6030 preserve_value (val);
6031 }
6032
6033 if (GET_CODE (expr) == CLOBBER || !track_p)
6034 {
6035 mo.type = MO_CLOBBER;
6036 mo.u.loc = track_p ? var_lowpart (mode2, loc) : loc;
6037 }
6038 else
6039 {
6040 if (GET_CODE (expr) == SET
6041 && SET_DEST (expr) == loc
6042 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
6043 src = var_lowpart (mode2, SET_SRC (expr));
6044 loc = var_lowpart (mode2, loc);
6045
6046 if (src == NULL)
6047 {
6048 mo.type = MO_SET;
6049 mo.u.loc = loc;
6050 }
6051 else
6052 {
6053 rtx xexpr = gen_rtx_SET (loc, src);
6054 if (same_variable_part_p (SET_SRC (xexpr),
6055 MEM_EXPR (loc),
6056 int_mem_offset (loc)))
6057 mo.type = MO_COPY;
6058 else
6059 mo.type = MO_SET;
6060 mo.u.loc = xexpr;
6061 }
6062 }
6063 mo.insn = cui->insn;
6064 }
6065 else
6066 return;
6067
6068 if (type != MO_VAL_SET)
6069 goto log_and_return;
6070
6071 v = find_use_val (oloc, mode, cui);
6072
6073 if (!v)
6074 goto log_and_return;
6075
6076 resolve = preserve = !cselib_preserved_value_p (v);
6077
6078 /* We cannot track values for multiple-part variables, so we track only
6079 locations for tracked record parameters. */
6080 if (track_p
6081 && REG_P (loc)
6082 && REG_EXPR (loc)
6083 && tracked_record_parameter_p (REG_EXPR (loc)))
6084 {
6085 /* Although we don't use the value here, it could be used later by the
6086 mere virtue of its existence as the operand of the reverse operation
6087 that gave rise to it (typically extension/truncation). Make sure it
6088 is preserved as required by vt_expand_var_loc_chain. */
6089 if (preserve)
6090 preserve_value (v);
6091 goto log_and_return;
6092 }
6093
6094 if (loc == stack_pointer_rtx
6095 && hard_frame_pointer_adjustment != -1
6096 && preserve)
6097 cselib_set_value_sp_based (v);
6098
6099 nloc = replace_expr_with_values (oloc);
6100 if (nloc)
6101 oloc = nloc;
6102
6103 if (GET_CODE (PATTERN (cui->insn)) == COND_EXEC)
6104 {
6105 cselib_val *oval = cselib_lookup (oloc, GET_MODE (oloc), 0, VOIDmode);
6106
6107 if (oval == v)
6108 return;
6109 gcc_assert (REG_P (oloc) || MEM_P (oloc));
6110
6111 if (oval && !cselib_preserved_value_p (oval))
6112 {
6113 micro_operation moa;
6114
6115 preserve_value (oval);
6116
6117 moa.type = MO_VAL_USE;
6118 moa.u.loc = gen_rtx_CONCAT (mode, oval->val_rtx, oloc);
6119 VAL_NEEDS_RESOLUTION (moa.u.loc) = 1;
6120 moa.insn = cui->insn;
6121
6122 if (dump_file && (dump_flags & TDF_DETAILS))
6123 log_op_type (moa.u.loc, cui->bb, cui->insn,
6124 moa.type, dump_file);
6125 VTI (bb)->mos.safe_push (moa);
6126 }
6127
6128 resolve = false;
6129 }
6130 else if (resolve && GET_CODE (mo.u.loc) == SET)
6131 {
6132 if (REG_P (SET_SRC (expr)) || MEM_P (SET_SRC (expr)))
6133 nloc = replace_expr_with_values (SET_SRC (expr));
6134 else
6135 nloc = NULL_RTX;
6136
6137 /* Avoid the mode mismatch between oexpr and expr. */
6138 if (!nloc && mode != mode2)
6139 {
6140 nloc = SET_SRC (expr);
6141 gcc_assert (oloc == SET_DEST (expr));
6142 }
6143
6144 if (nloc && nloc != SET_SRC (mo.u.loc))
6145 oloc = gen_rtx_SET (oloc, nloc);
6146 else
6147 {
6148 if (oloc == SET_DEST (mo.u.loc))
6149 /* No point in duplicating. */
6150 oloc = mo.u.loc;
6151 if (!REG_P (SET_SRC (mo.u.loc)))
6152 resolve = false;
6153 }
6154 }
6155 else if (!resolve)
6156 {
6157 if (GET_CODE (mo.u.loc) == SET
6158 && oloc == SET_DEST (mo.u.loc))
6159 /* No point in duplicating. */
6160 oloc = mo.u.loc;
6161 }
6162 else
6163 resolve = false;
6164
6165 loc = gen_rtx_CONCAT (mode, v->val_rtx, oloc);
6166
6167 if (mo.u.loc != oloc)
6168 loc = gen_rtx_CONCAT (GET_MODE (mo.u.loc), loc, mo.u.loc);
6169
6170 /* The loc of a MO_VAL_SET may have various forms:
6171
6172 (concat val dst): dst now holds val
6173
6174 (concat val (set dst src)): dst now holds val, copied from src
6175
6176 (concat (concat val dstv) dst): dst now holds val; dstv is dst
6177 after replacing mems and non-top-level regs with values.
6178
6179 (concat (concat val dstv) (set dst src)): dst now holds val,
6180 copied from src. dstv is a value-based representation of dst, if
6181 it differs from dst. If resolution is needed, src is a REG, and
6182 its mode is the same as that of val.
6183
6184 (concat (concat val (set dstv srcv)) (set dst src)): src
6185 copied to dst, holding val. dstv and srcv are value-based
6186 representations of dst and src, respectively.
6187
6188 */
6189
6190 if (GET_CODE (PATTERN (cui->insn)) != COND_EXEC)
6191 reverse_op (v->val_rtx, expr, cui->insn);
6192
6193 mo.u.loc = loc;
6194
6195 if (track_p)
6196 VAL_HOLDS_TRACK_EXPR (loc) = 1;
6197 if (preserve)
6198 {
6199 VAL_NEEDS_RESOLUTION (loc) = resolve;
6200 preserve_value (v);
6201 }
6202 if (mo.type == MO_CLOBBER)
6203 VAL_EXPR_IS_CLOBBERED (loc) = 1;
6204 if (mo.type == MO_COPY)
6205 VAL_EXPR_IS_COPIED (loc) = 1;
6206
6207 mo.type = MO_VAL_SET;
6208
6209 log_and_return:
6210 if (dump_file && (dump_flags & TDF_DETAILS))
6211 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
6212 VTI (bb)->mos.safe_push (mo);
6213 }
6214
6215 /* Arguments to the call. */
6216 static rtx call_arguments;
6217
6218 /* Compute call_arguments. */
6219
6220 static void
6221 prepare_call_arguments (basic_block bb, rtx_insn *insn)
6222 {
6223 rtx link, x, call;
6224 rtx prev, cur, next;
6225 rtx this_arg = NULL_RTX;
6226 tree type = NULL_TREE, t, fndecl = NULL_TREE;
6227 tree obj_type_ref = NULL_TREE;
6228 CUMULATIVE_ARGS args_so_far_v;
6229 cumulative_args_t args_so_far;
6230
6231 memset (&args_so_far_v, 0, sizeof (args_so_far_v));
6232 args_so_far = pack_cumulative_args (&args_so_far_v);
6233 call = get_call_rtx_from (insn);
6234 if (call)
6235 {
6236 if (GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
6237 {
6238 rtx symbol = XEXP (XEXP (call, 0), 0);
6239 if (SYMBOL_REF_DECL (symbol))
6240 fndecl = SYMBOL_REF_DECL (symbol);
6241 }
6242 if (fndecl == NULL_TREE)
6243 fndecl = MEM_EXPR (XEXP (call, 0));
6244 if (fndecl
6245 && TREE_CODE (TREE_TYPE (fndecl)) != FUNCTION_TYPE
6246 && TREE_CODE (TREE_TYPE (fndecl)) != METHOD_TYPE)
6247 fndecl = NULL_TREE;
6248 if (fndecl && TYPE_ARG_TYPES (TREE_TYPE (fndecl)))
6249 type = TREE_TYPE (fndecl);
6250 if (fndecl && TREE_CODE (fndecl) != FUNCTION_DECL)
6251 {
6252 if (TREE_CODE (fndecl) == INDIRECT_REF
6253 && TREE_CODE (TREE_OPERAND (fndecl, 0)) == OBJ_TYPE_REF)
6254 obj_type_ref = TREE_OPERAND (fndecl, 0);
6255 fndecl = NULL_TREE;
6256 }
6257 if (type)
6258 {
6259 for (t = TYPE_ARG_TYPES (type); t && t != void_list_node;
6260 t = TREE_CHAIN (t))
6261 if (TREE_CODE (TREE_VALUE (t)) == REFERENCE_TYPE
6262 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_VALUE (t))))
6263 break;
6264 if ((t == NULL || t == void_list_node) && obj_type_ref == NULL_TREE)
6265 type = NULL;
6266 else
6267 {
6268 int nargs ATTRIBUTE_UNUSED = list_length (TYPE_ARG_TYPES (type));
6269 link = CALL_INSN_FUNCTION_USAGE (insn);
6270 #ifndef PCC_STATIC_STRUCT_RETURN
6271 if (aggregate_value_p (TREE_TYPE (type), type)
6272 && targetm.calls.struct_value_rtx (type, 0) == 0)
6273 {
6274 tree struct_addr = build_pointer_type (TREE_TYPE (type));
6275 machine_mode mode = TYPE_MODE (struct_addr);
6276 rtx reg;
6277 INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
6278 nargs + 1);
6279 reg = targetm.calls.function_arg (args_so_far, mode,
6280 struct_addr, true);
6281 targetm.calls.function_arg_advance (args_so_far, mode,
6282 struct_addr, true);
6283 if (reg == NULL_RTX)
6284 {
6285 for (; link; link = XEXP (link, 1))
6286 if (GET_CODE (XEXP (link, 0)) == USE
6287 && MEM_P (XEXP (XEXP (link, 0), 0)))
6288 {
6289 link = XEXP (link, 1);
6290 break;
6291 }
6292 }
6293 }
6294 else
6295 #endif
6296 INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
6297 nargs);
6298 if (obj_type_ref && TYPE_ARG_TYPES (type) != void_list_node)
6299 {
6300 machine_mode mode;
6301 t = TYPE_ARG_TYPES (type);
6302 mode = TYPE_MODE (TREE_VALUE (t));
6303 this_arg = targetm.calls.function_arg (args_so_far, mode,
6304 TREE_VALUE (t), true);
6305 if (this_arg && !REG_P (this_arg))
6306 this_arg = NULL_RTX;
6307 else if (this_arg == NULL_RTX)
6308 {
6309 for (; link; link = XEXP (link, 1))
6310 if (GET_CODE (XEXP (link, 0)) == USE
6311 && MEM_P (XEXP (XEXP (link, 0), 0)))
6312 {
6313 this_arg = XEXP (XEXP (link, 0), 0);
6314 break;
6315 }
6316 }
6317 }
6318 }
6319 }
6320 }
6321 t = type ? TYPE_ARG_TYPES (type) : NULL_TREE;
6322
6323 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
6324 if (GET_CODE (XEXP (link, 0)) == USE)
6325 {
6326 rtx item = NULL_RTX;
6327 x = XEXP (XEXP (link, 0), 0);
6328 if (GET_MODE (link) == VOIDmode
6329 || GET_MODE (link) == BLKmode
6330 || (GET_MODE (link) != GET_MODE (x)
6331 && ((GET_MODE_CLASS (GET_MODE (link)) != MODE_INT
6332 && GET_MODE_CLASS (GET_MODE (link)) != MODE_PARTIAL_INT)
6333 || (GET_MODE_CLASS (GET_MODE (x)) != MODE_INT
6334 && GET_MODE_CLASS (GET_MODE (x)) != MODE_PARTIAL_INT))))
6335 /* Can't do anything for these, if the original type mode
6336 isn't known or can't be converted. */;
6337 else if (REG_P (x))
6338 {
6339 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
6340 scalar_int_mode mode;
6341 if (val && cselib_preserved_value_p (val))
6342 item = val->val_rtx;
6343 else if (is_a <scalar_int_mode> (GET_MODE (x), &mode))
6344 {
6345 opt_scalar_int_mode mode_iter;
6346 FOR_EACH_WIDER_MODE (mode_iter, mode)
6347 {
6348 mode = mode_iter.require ();
6349 if (GET_MODE_BITSIZE (mode) > BITS_PER_WORD)
6350 break;
6351
6352 rtx reg = simplify_subreg (mode, x, GET_MODE (x), 0);
6353 if (reg == NULL_RTX || !REG_P (reg))
6354 continue;
6355 val = cselib_lookup (reg, mode, 0, VOIDmode);
6356 if (val && cselib_preserved_value_p (val))
6357 {
6358 item = val->val_rtx;
6359 break;
6360 }
6361 }
6362 }
6363 }
6364 else if (MEM_P (x))
6365 {
6366 rtx mem = x;
6367 cselib_val *val;
6368
6369 if (!frame_pointer_needed)
6370 {
6371 struct adjust_mem_data amd;
6372 amd.mem_mode = VOIDmode;
6373 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
6374 amd.store = true;
6375 mem = simplify_replace_fn_rtx (mem, NULL_RTX, adjust_mems,
6376 &amd);
6377 gcc_assert (amd.side_effects.is_empty ());
6378 }
6379 val = cselib_lookup (mem, GET_MODE (mem), 0, VOIDmode);
6380 if (val && cselib_preserved_value_p (val))
6381 item = val->val_rtx;
6382 else if (GET_MODE_CLASS (GET_MODE (mem)) != MODE_INT
6383 && GET_MODE_CLASS (GET_MODE (mem)) != MODE_PARTIAL_INT)
6384 {
6385 /* For non-integer stack argument see also if they weren't
6386 initialized by integers. */
6387 scalar_int_mode imode;
6388 if (int_mode_for_mode (GET_MODE (mem)).exists (&imode)
6389 && imode != GET_MODE (mem))
6390 {
6391 val = cselib_lookup (adjust_address_nv (mem, imode, 0),
6392 imode, 0, VOIDmode);
6393 if (val && cselib_preserved_value_p (val))
6394 item = lowpart_subreg (GET_MODE (x), val->val_rtx,
6395 imode);
6396 }
6397 }
6398 }
6399 if (item)
6400 {
6401 rtx x2 = x;
6402 if (GET_MODE (item) != GET_MODE (link))
6403 item = lowpart_subreg (GET_MODE (link), item, GET_MODE (item));
6404 if (GET_MODE (x2) != GET_MODE (link))
6405 x2 = lowpart_subreg (GET_MODE (link), x2, GET_MODE (x2));
6406 item = gen_rtx_CONCAT (GET_MODE (link), x2, item);
6407 call_arguments
6408 = gen_rtx_EXPR_LIST (VOIDmode, item, call_arguments);
6409 }
6410 if (t && t != void_list_node)
6411 {
6412 tree argtype = TREE_VALUE (t);
6413 machine_mode mode = TYPE_MODE (argtype);
6414 rtx reg;
6415 if (pass_by_reference (&args_so_far_v, mode, argtype, true))
6416 {
6417 argtype = build_pointer_type (argtype);
6418 mode = TYPE_MODE (argtype);
6419 }
6420 reg = targetm.calls.function_arg (args_so_far, mode,
6421 argtype, true);
6422 if (TREE_CODE (argtype) == REFERENCE_TYPE
6423 && INTEGRAL_TYPE_P (TREE_TYPE (argtype))
6424 && reg
6425 && REG_P (reg)
6426 && GET_MODE (reg) == mode
6427 && (GET_MODE_CLASS (mode) == MODE_INT
6428 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
6429 && REG_P (x)
6430 && REGNO (x) == REGNO (reg)
6431 && GET_MODE (x) == mode
6432 && item)
6433 {
6434 machine_mode indmode
6435 = TYPE_MODE (TREE_TYPE (argtype));
6436 rtx mem = gen_rtx_MEM (indmode, x);
6437 cselib_val *val = cselib_lookup (mem, indmode, 0, VOIDmode);
6438 if (val && cselib_preserved_value_p (val))
6439 {
6440 item = gen_rtx_CONCAT (indmode, mem, val->val_rtx);
6441 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
6442 call_arguments);
6443 }
6444 else
6445 {
6446 struct elt_loc_list *l;
6447 tree initial;
6448
6449 /* Try harder, when passing address of a constant
6450 pool integer it can be easily read back. */
6451 item = XEXP (item, 1);
6452 if (GET_CODE (item) == SUBREG)
6453 item = SUBREG_REG (item);
6454 gcc_assert (GET_CODE (item) == VALUE);
6455 val = CSELIB_VAL_PTR (item);
6456 for (l = val->locs; l; l = l->next)
6457 if (GET_CODE (l->loc) == SYMBOL_REF
6458 && TREE_CONSTANT_POOL_ADDRESS_P (l->loc)
6459 && SYMBOL_REF_DECL (l->loc)
6460 && DECL_INITIAL (SYMBOL_REF_DECL (l->loc)))
6461 {
6462 initial = DECL_INITIAL (SYMBOL_REF_DECL (l->loc));
6463 if (tree_fits_shwi_p (initial))
6464 {
6465 item = GEN_INT (tree_to_shwi (initial));
6466 item = gen_rtx_CONCAT (indmode, mem, item);
6467 call_arguments
6468 = gen_rtx_EXPR_LIST (VOIDmode, item,
6469 call_arguments);
6470 }
6471 break;
6472 }
6473 }
6474 }
6475 targetm.calls.function_arg_advance (args_so_far, mode,
6476 argtype, true);
6477 t = TREE_CHAIN (t);
6478 }
6479 }
6480
6481 /* Add debug arguments. */
6482 if (fndecl
6483 && TREE_CODE (fndecl) == FUNCTION_DECL
6484 && DECL_HAS_DEBUG_ARGS_P (fndecl))
6485 {
6486 vec<tree, va_gc> **debug_args = decl_debug_args_lookup (fndecl);
6487 if (debug_args)
6488 {
6489 unsigned int ix;
6490 tree param;
6491 for (ix = 0; vec_safe_iterate (*debug_args, ix, &param); ix += 2)
6492 {
6493 rtx item;
6494 tree dtemp = (**debug_args)[ix + 1];
6495 machine_mode mode = DECL_MODE (dtemp);
6496 item = gen_rtx_DEBUG_PARAMETER_REF (mode, param);
6497 item = gen_rtx_CONCAT (mode, item, DECL_RTL_KNOWN_SET (dtemp));
6498 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
6499 call_arguments);
6500 }
6501 }
6502 }
6503
6504 /* Reverse call_arguments chain. */
6505 prev = NULL_RTX;
6506 for (cur = call_arguments; cur; cur = next)
6507 {
6508 next = XEXP (cur, 1);
6509 XEXP (cur, 1) = prev;
6510 prev = cur;
6511 }
6512 call_arguments = prev;
6513
6514 x = get_call_rtx_from (insn);
6515 if (x)
6516 {
6517 x = XEXP (XEXP (x, 0), 0);
6518 if (GET_CODE (x) == SYMBOL_REF)
6519 /* Don't record anything. */;
6520 else if (CONSTANT_P (x))
6521 {
6522 x = gen_rtx_CONCAT (GET_MODE (x) == VOIDmode ? Pmode : GET_MODE (x),
6523 pc_rtx, x);
6524 call_arguments
6525 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6526 }
6527 else
6528 {
6529 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
6530 if (val && cselib_preserved_value_p (val))
6531 {
6532 x = gen_rtx_CONCAT (GET_MODE (x), pc_rtx, val->val_rtx);
6533 call_arguments
6534 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6535 }
6536 }
6537 }
6538 if (this_arg)
6539 {
6540 machine_mode mode
6541 = TYPE_MODE (TREE_TYPE (OBJ_TYPE_REF_EXPR (obj_type_ref)));
6542 rtx clobbered = gen_rtx_MEM (mode, this_arg);
6543 HOST_WIDE_INT token
6544 = tree_to_shwi (OBJ_TYPE_REF_TOKEN (obj_type_ref));
6545 if (token)
6546 clobbered = plus_constant (mode, clobbered,
6547 token * GET_MODE_SIZE (mode));
6548 clobbered = gen_rtx_MEM (mode, clobbered);
6549 x = gen_rtx_CONCAT (mode, gen_rtx_CLOBBER (VOIDmode, pc_rtx), clobbered);
6550 call_arguments
6551 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6552 }
6553 }
6554
6555 /* Callback for cselib_record_sets_hook, that records as micro
6556 operations uses and stores in an insn after cselib_record_sets has
6557 analyzed the sets in an insn, but before it modifies the stored
6558 values in the internal tables, unless cselib_record_sets doesn't
6559 call it directly (perhaps because we're not doing cselib in the
6560 first place, in which case sets and n_sets will be 0). */
6561
6562 static void
6563 add_with_sets (rtx_insn *insn, struct cselib_set *sets, int n_sets)
6564 {
6565 basic_block bb = BLOCK_FOR_INSN (insn);
6566 int n1, n2;
6567 struct count_use_info cui;
6568 micro_operation *mos;
6569
6570 cselib_hook_called = true;
6571
6572 cui.insn = insn;
6573 cui.bb = bb;
6574 cui.sets = sets;
6575 cui.n_sets = n_sets;
6576
6577 n1 = VTI (bb)->mos.length ();
6578 cui.store_p = false;
6579 note_uses (&PATTERN (insn), add_uses_1, &cui);
6580 n2 = VTI (bb)->mos.length () - 1;
6581 mos = VTI (bb)->mos.address ();
6582
6583 /* Order the MO_USEs to be before MO_USE_NO_VARs and MO_VAL_USE, and
6584 MO_VAL_LOC last. */
6585 while (n1 < n2)
6586 {
6587 while (n1 < n2 && mos[n1].type == MO_USE)
6588 n1++;
6589 while (n1 < n2 && mos[n2].type != MO_USE)
6590 n2--;
6591 if (n1 < n2)
6592 std::swap (mos[n1], mos[n2]);
6593 }
6594
6595 n2 = VTI (bb)->mos.length () - 1;
6596 while (n1 < n2)
6597 {
6598 while (n1 < n2 && mos[n1].type != MO_VAL_LOC)
6599 n1++;
6600 while (n1 < n2 && mos[n2].type == MO_VAL_LOC)
6601 n2--;
6602 if (n1 < n2)
6603 std::swap (mos[n1], mos[n2]);
6604 }
6605
6606 if (CALL_P (insn))
6607 {
6608 micro_operation mo;
6609
6610 mo.type = MO_CALL;
6611 mo.insn = insn;
6612 mo.u.loc = call_arguments;
6613 call_arguments = NULL_RTX;
6614
6615 if (dump_file && (dump_flags & TDF_DETAILS))
6616 log_op_type (PATTERN (insn), bb, insn, mo.type, dump_file);
6617 VTI (bb)->mos.safe_push (mo);
6618 }
6619
6620 n1 = VTI (bb)->mos.length ();
6621 /* This will record NEXT_INSN (insn), such that we can
6622 insert notes before it without worrying about any
6623 notes that MO_USEs might emit after the insn. */
6624 cui.store_p = true;
6625 note_stores (PATTERN (insn), add_stores, &cui);
6626 n2 = VTI (bb)->mos.length () - 1;
6627 mos = VTI (bb)->mos.address ();
6628
6629 /* Order the MO_VAL_USEs first (note_stores does nothing
6630 on DEBUG_INSNs, so there are no MO_VAL_LOCs from this
6631 insn), then MO_CLOBBERs, then MO_SET/MO_COPY/MO_VAL_SET. */
6632 while (n1 < n2)
6633 {
6634 while (n1 < n2 && mos[n1].type == MO_VAL_USE)
6635 n1++;
6636 while (n1 < n2 && mos[n2].type != MO_VAL_USE)
6637 n2--;
6638 if (n1 < n2)
6639 std::swap (mos[n1], mos[n2]);
6640 }
6641
6642 n2 = VTI (bb)->mos.length () - 1;
6643 while (n1 < n2)
6644 {
6645 while (n1 < n2 && mos[n1].type == MO_CLOBBER)
6646 n1++;
6647 while (n1 < n2 && mos[n2].type != MO_CLOBBER)
6648 n2--;
6649 if (n1 < n2)
6650 std::swap (mos[n1], mos[n2]);
6651 }
6652 }
6653
6654 static enum var_init_status
6655 find_src_status (dataflow_set *in, rtx src)
6656 {
6657 tree decl = NULL_TREE;
6658 enum var_init_status status = VAR_INIT_STATUS_UNINITIALIZED;
6659
6660 if (! flag_var_tracking_uninit)
6661 status = VAR_INIT_STATUS_INITIALIZED;
6662
6663 if (src && REG_P (src))
6664 decl = var_debug_decl (REG_EXPR (src));
6665 else if (src && MEM_P (src))
6666 decl = var_debug_decl (MEM_EXPR (src));
6667
6668 if (src && decl)
6669 status = get_init_value (in, src, dv_from_decl (decl));
6670
6671 return status;
6672 }
6673
6674 /* SRC is the source of an assignment. Use SET to try to find what
6675 was ultimately assigned to SRC. Return that value if known,
6676 otherwise return SRC itself. */
6677
6678 static rtx
6679 find_src_set_src (dataflow_set *set, rtx src)
6680 {
6681 tree decl = NULL_TREE; /* The variable being copied around. */
6682 rtx set_src = NULL_RTX; /* The value for "decl" stored in "src". */
6683 variable *var;
6684 location_chain *nextp;
6685 int i;
6686 bool found;
6687
6688 if (src && REG_P (src))
6689 decl = var_debug_decl (REG_EXPR (src));
6690 else if (src && MEM_P (src))
6691 decl = var_debug_decl (MEM_EXPR (src));
6692
6693 if (src && decl)
6694 {
6695 decl_or_value dv = dv_from_decl (decl);
6696
6697 var = shared_hash_find (set->vars, dv);
6698 if (var)
6699 {
6700 found = false;
6701 for (i = 0; i < var->n_var_parts && !found; i++)
6702 for (nextp = var->var_part[i].loc_chain; nextp && !found;
6703 nextp = nextp->next)
6704 if (rtx_equal_p (nextp->loc, src))
6705 {
6706 set_src = nextp->set_src;
6707 found = true;
6708 }
6709
6710 }
6711 }
6712
6713 return set_src;
6714 }
6715
6716 /* Compute the changes of variable locations in the basic block BB. */
6717
6718 static bool
6719 compute_bb_dataflow (basic_block bb)
6720 {
6721 unsigned int i;
6722 micro_operation *mo;
6723 bool changed;
6724 dataflow_set old_out;
6725 dataflow_set *in = &VTI (bb)->in;
6726 dataflow_set *out = &VTI (bb)->out;
6727
6728 dataflow_set_init (&old_out);
6729 dataflow_set_copy (&old_out, out);
6730 dataflow_set_copy (out, in);
6731
6732 if (MAY_HAVE_DEBUG_BIND_INSNS)
6733 local_get_addr_cache = new hash_map<rtx, rtx>;
6734
6735 FOR_EACH_VEC_ELT (VTI (bb)->mos, i, mo)
6736 {
6737 rtx_insn *insn = mo->insn;
6738
6739 switch (mo->type)
6740 {
6741 case MO_CALL:
6742 dataflow_set_clear_at_call (out, insn);
6743 break;
6744
6745 case MO_USE:
6746 {
6747 rtx loc = mo->u.loc;
6748
6749 if (REG_P (loc))
6750 var_reg_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6751 else if (MEM_P (loc))
6752 var_mem_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6753 }
6754 break;
6755
6756 case MO_VAL_LOC:
6757 {
6758 rtx loc = mo->u.loc;
6759 rtx val, vloc;
6760 tree var;
6761
6762 if (GET_CODE (loc) == CONCAT)
6763 {
6764 val = XEXP (loc, 0);
6765 vloc = XEXP (loc, 1);
6766 }
6767 else
6768 {
6769 val = NULL_RTX;
6770 vloc = loc;
6771 }
6772
6773 var = PAT_VAR_LOCATION_DECL (vloc);
6774
6775 clobber_variable_part (out, NULL_RTX,
6776 dv_from_decl (var), 0, NULL_RTX);
6777 if (val)
6778 {
6779 if (VAL_NEEDS_RESOLUTION (loc))
6780 val_resolve (out, val, PAT_VAR_LOCATION_LOC (vloc), insn);
6781 set_variable_part (out, val, dv_from_decl (var), 0,
6782 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6783 INSERT);
6784 }
6785 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
6786 set_variable_part (out, PAT_VAR_LOCATION_LOC (vloc),
6787 dv_from_decl (var), 0,
6788 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6789 INSERT);
6790 }
6791 break;
6792
6793 case MO_VAL_USE:
6794 {
6795 rtx loc = mo->u.loc;
6796 rtx val, vloc, uloc;
6797
6798 vloc = uloc = XEXP (loc, 1);
6799 val = XEXP (loc, 0);
6800
6801 if (GET_CODE (val) == CONCAT)
6802 {
6803 uloc = XEXP (val, 1);
6804 val = XEXP (val, 0);
6805 }
6806
6807 if (VAL_NEEDS_RESOLUTION (loc))
6808 val_resolve (out, val, vloc, insn);
6809 else
6810 val_store (out, val, uloc, insn, false);
6811
6812 if (VAL_HOLDS_TRACK_EXPR (loc))
6813 {
6814 if (GET_CODE (uloc) == REG)
6815 var_reg_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6816 NULL);
6817 else if (GET_CODE (uloc) == MEM)
6818 var_mem_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6819 NULL);
6820 }
6821 }
6822 break;
6823
6824 case MO_VAL_SET:
6825 {
6826 rtx loc = mo->u.loc;
6827 rtx val, vloc, uloc;
6828 rtx dstv, srcv;
6829
6830 vloc = loc;
6831 uloc = XEXP (vloc, 1);
6832 val = XEXP (vloc, 0);
6833 vloc = uloc;
6834
6835 if (GET_CODE (uloc) == SET)
6836 {
6837 dstv = SET_DEST (uloc);
6838 srcv = SET_SRC (uloc);
6839 }
6840 else
6841 {
6842 dstv = uloc;
6843 srcv = NULL;
6844 }
6845
6846 if (GET_CODE (val) == CONCAT)
6847 {
6848 dstv = vloc = XEXP (val, 1);
6849 val = XEXP (val, 0);
6850 }
6851
6852 if (GET_CODE (vloc) == SET)
6853 {
6854 srcv = SET_SRC (vloc);
6855
6856 gcc_assert (val != srcv);
6857 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
6858
6859 dstv = vloc = SET_DEST (vloc);
6860
6861 if (VAL_NEEDS_RESOLUTION (loc))
6862 val_resolve (out, val, srcv, insn);
6863 }
6864 else if (VAL_NEEDS_RESOLUTION (loc))
6865 {
6866 gcc_assert (GET_CODE (uloc) == SET
6867 && GET_CODE (SET_SRC (uloc)) == REG);
6868 val_resolve (out, val, SET_SRC (uloc), insn);
6869 }
6870
6871 if (VAL_HOLDS_TRACK_EXPR (loc))
6872 {
6873 if (VAL_EXPR_IS_CLOBBERED (loc))
6874 {
6875 if (REG_P (uloc))
6876 var_reg_delete (out, uloc, true);
6877 else if (MEM_P (uloc))
6878 {
6879 gcc_assert (MEM_P (dstv));
6880 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (uloc));
6881 var_mem_delete (out, dstv, true);
6882 }
6883 }
6884 else
6885 {
6886 bool copied_p = VAL_EXPR_IS_COPIED (loc);
6887 rtx src = NULL, dst = uloc;
6888 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
6889
6890 if (GET_CODE (uloc) == SET)
6891 {
6892 src = SET_SRC (uloc);
6893 dst = SET_DEST (uloc);
6894 }
6895
6896 if (copied_p)
6897 {
6898 if (flag_var_tracking_uninit)
6899 {
6900 status = find_src_status (in, src);
6901
6902 if (status == VAR_INIT_STATUS_UNKNOWN)
6903 status = find_src_status (out, src);
6904 }
6905
6906 src = find_src_set_src (in, src);
6907 }
6908
6909 if (REG_P (dst))
6910 var_reg_delete_and_set (out, dst, !copied_p,
6911 status, srcv);
6912 else if (MEM_P (dst))
6913 {
6914 gcc_assert (MEM_P (dstv));
6915 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (dst));
6916 var_mem_delete_and_set (out, dstv, !copied_p,
6917 status, srcv);
6918 }
6919 }
6920 }
6921 else if (REG_P (uloc))
6922 var_regno_delete (out, REGNO (uloc));
6923 else if (MEM_P (uloc))
6924 {
6925 gcc_checking_assert (GET_CODE (vloc) == MEM);
6926 gcc_checking_assert (dstv == vloc);
6927 if (dstv != vloc)
6928 clobber_overlapping_mems (out, vloc);
6929 }
6930
6931 val_store (out, val, dstv, insn, true);
6932 }
6933 break;
6934
6935 case MO_SET:
6936 {
6937 rtx loc = mo->u.loc;
6938 rtx set_src = NULL;
6939
6940 if (GET_CODE (loc) == SET)
6941 {
6942 set_src = SET_SRC (loc);
6943 loc = SET_DEST (loc);
6944 }
6945
6946 if (REG_P (loc))
6947 var_reg_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6948 set_src);
6949 else if (MEM_P (loc))
6950 var_mem_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6951 set_src);
6952 }
6953 break;
6954
6955 case MO_COPY:
6956 {
6957 rtx loc = mo->u.loc;
6958 enum var_init_status src_status;
6959 rtx set_src = NULL;
6960
6961 if (GET_CODE (loc) == SET)
6962 {
6963 set_src = SET_SRC (loc);
6964 loc = SET_DEST (loc);
6965 }
6966
6967 if (! flag_var_tracking_uninit)
6968 src_status = VAR_INIT_STATUS_INITIALIZED;
6969 else
6970 {
6971 src_status = find_src_status (in, set_src);
6972
6973 if (src_status == VAR_INIT_STATUS_UNKNOWN)
6974 src_status = find_src_status (out, set_src);
6975 }
6976
6977 set_src = find_src_set_src (in, set_src);
6978
6979 if (REG_P (loc))
6980 var_reg_delete_and_set (out, loc, false, src_status, set_src);
6981 else if (MEM_P (loc))
6982 var_mem_delete_and_set (out, loc, false, src_status, set_src);
6983 }
6984 break;
6985
6986 case MO_USE_NO_VAR:
6987 {
6988 rtx loc = mo->u.loc;
6989
6990 if (REG_P (loc))
6991 var_reg_delete (out, loc, false);
6992 else if (MEM_P (loc))
6993 var_mem_delete (out, loc, false);
6994 }
6995 break;
6996
6997 case MO_CLOBBER:
6998 {
6999 rtx loc = mo->u.loc;
7000
7001 if (REG_P (loc))
7002 var_reg_delete (out, loc, true);
7003 else if (MEM_P (loc))
7004 var_mem_delete (out, loc, true);
7005 }
7006 break;
7007
7008 case MO_ADJUST:
7009 out->stack_adjust += mo->u.adjust;
7010 break;
7011 }
7012 }
7013
7014 if (MAY_HAVE_DEBUG_BIND_INSNS)
7015 {
7016 delete local_get_addr_cache;
7017 local_get_addr_cache = NULL;
7018
7019 dataflow_set_equiv_regs (out);
7020 shared_hash_htab (out->vars)
7021 ->traverse <dataflow_set *, canonicalize_values_mark> (out);
7022 shared_hash_htab (out->vars)
7023 ->traverse <dataflow_set *, canonicalize_values_star> (out);
7024 if (flag_checking)
7025 shared_hash_htab (out->vars)
7026 ->traverse <dataflow_set *, canonicalize_loc_order_check> (out);
7027 }
7028 changed = dataflow_set_different (&old_out, out);
7029 dataflow_set_destroy (&old_out);
7030 return changed;
7031 }
7032
7033 /* Find the locations of variables in the whole function. */
7034
7035 static bool
7036 vt_find_locations (void)
7037 {
7038 bb_heap_t *worklist = new bb_heap_t (LONG_MIN);
7039 bb_heap_t *pending = new bb_heap_t (LONG_MIN);
7040 sbitmap in_worklist, in_pending;
7041 basic_block bb;
7042 edge e;
7043 int *bb_order;
7044 int *rc_order;
7045 int i;
7046 int htabsz = 0;
7047 int htabmax = PARAM_VALUE (PARAM_MAX_VARTRACK_SIZE);
7048 bool success = true;
7049
7050 timevar_push (TV_VAR_TRACKING_DATAFLOW);
7051 /* Compute reverse completion order of depth first search of the CFG
7052 so that the data-flow runs faster. */
7053 rc_order = XNEWVEC (int, n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS);
7054 bb_order = XNEWVEC (int, last_basic_block_for_fn (cfun));
7055 pre_and_rev_post_order_compute (NULL, rc_order, false);
7056 for (i = 0; i < n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS; i++)
7057 bb_order[rc_order[i]] = i;
7058 free (rc_order);
7059
7060 auto_sbitmap visited (last_basic_block_for_fn (cfun));
7061 in_worklist = sbitmap_alloc (last_basic_block_for_fn (cfun));
7062 in_pending = sbitmap_alloc (last_basic_block_for_fn (cfun));
7063 bitmap_clear (in_worklist);
7064
7065 FOR_EACH_BB_FN (bb, cfun)
7066 pending->insert (bb_order[bb->index], bb);
7067 bitmap_ones (in_pending);
7068
7069 while (success && !pending->empty ())
7070 {
7071 std::swap (worklist, pending);
7072 std::swap (in_worklist, in_pending);
7073
7074 bitmap_clear (visited);
7075
7076 while (!worklist->empty ())
7077 {
7078 bb = worklist->extract_min ();
7079 bitmap_clear_bit (in_worklist, bb->index);
7080 gcc_assert (!bitmap_bit_p (visited, bb->index));
7081 if (!bitmap_bit_p (visited, bb->index))
7082 {
7083 bool changed;
7084 edge_iterator ei;
7085 int oldinsz, oldoutsz;
7086
7087 bitmap_set_bit (visited, bb->index);
7088
7089 if (VTI (bb)->in.vars)
7090 {
7091 htabsz
7092 -= shared_hash_htab (VTI (bb)->in.vars)->size ()
7093 + shared_hash_htab (VTI (bb)->out.vars)->size ();
7094 oldinsz = shared_hash_htab (VTI (bb)->in.vars)->elements ();
7095 oldoutsz
7096 = shared_hash_htab (VTI (bb)->out.vars)->elements ();
7097 }
7098 else
7099 oldinsz = oldoutsz = 0;
7100
7101 if (MAY_HAVE_DEBUG_BIND_INSNS)
7102 {
7103 dataflow_set *in = &VTI (bb)->in, *first_out = NULL;
7104 bool first = true, adjust = false;
7105
7106 /* Calculate the IN set as the intersection of
7107 predecessor OUT sets. */
7108
7109 dataflow_set_clear (in);
7110 dst_can_be_shared = true;
7111
7112 FOR_EACH_EDGE (e, ei, bb->preds)
7113 if (!VTI (e->src)->flooded)
7114 gcc_assert (bb_order[bb->index]
7115 <= bb_order[e->src->index]);
7116 else if (first)
7117 {
7118 dataflow_set_copy (in, &VTI (e->src)->out);
7119 first_out = &VTI (e->src)->out;
7120 first = false;
7121 }
7122 else
7123 {
7124 dataflow_set_merge (in, &VTI (e->src)->out);
7125 adjust = true;
7126 }
7127
7128 if (adjust)
7129 {
7130 dataflow_post_merge_adjust (in, &VTI (bb)->permp);
7131
7132 if (flag_checking)
7133 /* Merge and merge_adjust should keep entries in
7134 canonical order. */
7135 shared_hash_htab (in->vars)
7136 ->traverse <dataflow_set *,
7137 canonicalize_loc_order_check> (in);
7138
7139 if (dst_can_be_shared)
7140 {
7141 shared_hash_destroy (in->vars);
7142 in->vars = shared_hash_copy (first_out->vars);
7143 }
7144 }
7145
7146 VTI (bb)->flooded = true;
7147 }
7148 else
7149 {
7150 /* Calculate the IN set as union of predecessor OUT sets. */
7151 dataflow_set_clear (&VTI (bb)->in);
7152 FOR_EACH_EDGE (e, ei, bb->preds)
7153 dataflow_set_union (&VTI (bb)->in, &VTI (e->src)->out);
7154 }
7155
7156 changed = compute_bb_dataflow (bb);
7157 htabsz += shared_hash_htab (VTI (bb)->in.vars)->size ()
7158 + shared_hash_htab (VTI (bb)->out.vars)->size ();
7159
7160 if (htabmax && htabsz > htabmax)
7161 {
7162 if (MAY_HAVE_DEBUG_BIND_INSNS)
7163 inform (DECL_SOURCE_LOCATION (cfun->decl),
7164 "variable tracking size limit exceeded with "
7165 "-fvar-tracking-assignments, retrying without");
7166 else
7167 inform (DECL_SOURCE_LOCATION (cfun->decl),
7168 "variable tracking size limit exceeded");
7169 success = false;
7170 break;
7171 }
7172
7173 if (changed)
7174 {
7175 FOR_EACH_EDGE (e, ei, bb->succs)
7176 {
7177 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
7178 continue;
7179
7180 if (bitmap_bit_p (visited, e->dest->index))
7181 {
7182 if (!bitmap_bit_p (in_pending, e->dest->index))
7183 {
7184 /* Send E->DEST to next round. */
7185 bitmap_set_bit (in_pending, e->dest->index);
7186 pending->insert (bb_order[e->dest->index],
7187 e->dest);
7188 }
7189 }
7190 else if (!bitmap_bit_p (in_worklist, e->dest->index))
7191 {
7192 /* Add E->DEST to current round. */
7193 bitmap_set_bit (in_worklist, e->dest->index);
7194 worklist->insert (bb_order[e->dest->index],
7195 e->dest);
7196 }
7197 }
7198 }
7199
7200 if (dump_file)
7201 fprintf (dump_file,
7202 "BB %i: in %i (was %i), out %i (was %i), rem %i + %i, tsz %i\n",
7203 bb->index,
7204 (int)shared_hash_htab (VTI (bb)->in.vars)->size (),
7205 oldinsz,
7206 (int)shared_hash_htab (VTI (bb)->out.vars)->size (),
7207 oldoutsz,
7208 (int)worklist->nodes (), (int)pending->nodes (),
7209 htabsz);
7210
7211 if (dump_file && (dump_flags & TDF_DETAILS))
7212 {
7213 fprintf (dump_file, "BB %i IN:\n", bb->index);
7214 dump_dataflow_set (&VTI (bb)->in);
7215 fprintf (dump_file, "BB %i OUT:\n", bb->index);
7216 dump_dataflow_set (&VTI (bb)->out);
7217 }
7218 }
7219 }
7220 }
7221
7222 if (success && MAY_HAVE_DEBUG_BIND_INSNS)
7223 FOR_EACH_BB_FN (bb, cfun)
7224 gcc_assert (VTI (bb)->flooded);
7225
7226 free (bb_order);
7227 delete worklist;
7228 delete pending;
7229 sbitmap_free (in_worklist);
7230 sbitmap_free (in_pending);
7231
7232 timevar_pop (TV_VAR_TRACKING_DATAFLOW);
7233 return success;
7234 }
7235
7236 /* Print the content of the LIST to dump file. */
7237
7238 static void
7239 dump_attrs_list (attrs *list)
7240 {
7241 for (; list; list = list->next)
7242 {
7243 if (dv_is_decl_p (list->dv))
7244 print_mem_expr (dump_file, dv_as_decl (list->dv));
7245 else
7246 print_rtl_single (dump_file, dv_as_value (list->dv));
7247 fprintf (dump_file, "+" HOST_WIDE_INT_PRINT_DEC, list->offset);
7248 }
7249 fprintf (dump_file, "\n");
7250 }
7251
7252 /* Print the information about variable *SLOT to dump file. */
7253
7254 int
7255 dump_var_tracking_slot (variable **slot, void *data ATTRIBUTE_UNUSED)
7256 {
7257 variable *var = *slot;
7258
7259 dump_var (var);
7260
7261 /* Continue traversing the hash table. */
7262 return 1;
7263 }
7264
7265 /* Print the information about variable VAR to dump file. */
7266
7267 static void
7268 dump_var (variable *var)
7269 {
7270 int i;
7271 location_chain *node;
7272
7273 if (dv_is_decl_p (var->dv))
7274 {
7275 const_tree decl = dv_as_decl (var->dv);
7276
7277 if (DECL_NAME (decl))
7278 {
7279 fprintf (dump_file, " name: %s",
7280 IDENTIFIER_POINTER (DECL_NAME (decl)));
7281 if (dump_flags & TDF_UID)
7282 fprintf (dump_file, "D.%u", DECL_UID (decl));
7283 }
7284 else if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
7285 fprintf (dump_file, " name: D#%u", DEBUG_TEMP_UID (decl));
7286 else
7287 fprintf (dump_file, " name: D.%u", DECL_UID (decl));
7288 fprintf (dump_file, "\n");
7289 }
7290 else
7291 {
7292 fputc (' ', dump_file);
7293 print_rtl_single (dump_file, dv_as_value (var->dv));
7294 }
7295
7296 for (i = 0; i < var->n_var_parts; i++)
7297 {
7298 fprintf (dump_file, " offset %ld\n",
7299 (long)(var->onepart ? 0 : VAR_PART_OFFSET (var, i)));
7300 for (node = var->var_part[i].loc_chain; node; node = node->next)
7301 {
7302 fprintf (dump_file, " ");
7303 if (node->init == VAR_INIT_STATUS_UNINITIALIZED)
7304 fprintf (dump_file, "[uninit]");
7305 print_rtl_single (dump_file, node->loc);
7306 }
7307 }
7308 }
7309
7310 /* Print the information about variables from hash table VARS to dump file. */
7311
7312 static void
7313 dump_vars (variable_table_type *vars)
7314 {
7315 if (vars->elements () > 0)
7316 {
7317 fprintf (dump_file, "Variables:\n");
7318 vars->traverse <void *, dump_var_tracking_slot> (NULL);
7319 }
7320 }
7321
7322 /* Print the dataflow set SET to dump file. */
7323
7324 static void
7325 dump_dataflow_set (dataflow_set *set)
7326 {
7327 int i;
7328
7329 fprintf (dump_file, "Stack adjustment: " HOST_WIDE_INT_PRINT_DEC "\n",
7330 set->stack_adjust);
7331 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
7332 {
7333 if (set->regs[i])
7334 {
7335 fprintf (dump_file, "Reg %d:", i);
7336 dump_attrs_list (set->regs[i]);
7337 }
7338 }
7339 dump_vars (shared_hash_htab (set->vars));
7340 fprintf (dump_file, "\n");
7341 }
7342
7343 /* Print the IN and OUT sets for each basic block to dump file. */
7344
7345 static void
7346 dump_dataflow_sets (void)
7347 {
7348 basic_block bb;
7349
7350 FOR_EACH_BB_FN (bb, cfun)
7351 {
7352 fprintf (dump_file, "\nBasic block %d:\n", bb->index);
7353 fprintf (dump_file, "IN:\n");
7354 dump_dataflow_set (&VTI (bb)->in);
7355 fprintf (dump_file, "OUT:\n");
7356 dump_dataflow_set (&VTI (bb)->out);
7357 }
7358 }
7359
7360 /* Return the variable for DV in dropped_values, inserting one if
7361 requested with INSERT. */
7362
7363 static inline variable *
7364 variable_from_dropped (decl_or_value dv, enum insert_option insert)
7365 {
7366 variable **slot;
7367 variable *empty_var;
7368 onepart_enum onepart;
7369
7370 slot = dropped_values->find_slot_with_hash (dv, dv_htab_hash (dv), insert);
7371
7372 if (!slot)
7373 return NULL;
7374
7375 if (*slot)
7376 return *slot;
7377
7378 gcc_checking_assert (insert == INSERT);
7379
7380 onepart = dv_onepart_p (dv);
7381
7382 gcc_checking_assert (onepart == ONEPART_VALUE || onepart == ONEPART_DEXPR);
7383
7384 empty_var = onepart_pool_allocate (onepart);
7385 empty_var->dv = dv;
7386 empty_var->refcount = 1;
7387 empty_var->n_var_parts = 0;
7388 empty_var->onepart = onepart;
7389 empty_var->in_changed_variables = false;
7390 empty_var->var_part[0].loc_chain = NULL;
7391 empty_var->var_part[0].cur_loc = NULL;
7392 VAR_LOC_1PAUX (empty_var) = NULL;
7393 set_dv_changed (dv, true);
7394
7395 *slot = empty_var;
7396
7397 return empty_var;
7398 }
7399
7400 /* Recover the one-part aux from dropped_values. */
7401
7402 static struct onepart_aux *
7403 recover_dropped_1paux (variable *var)
7404 {
7405 variable *dvar;
7406
7407 gcc_checking_assert (var->onepart);
7408
7409 if (VAR_LOC_1PAUX (var))
7410 return VAR_LOC_1PAUX (var);
7411
7412 if (var->onepart == ONEPART_VDECL)
7413 return NULL;
7414
7415 dvar = variable_from_dropped (var->dv, NO_INSERT);
7416
7417 if (!dvar)
7418 return NULL;
7419
7420 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (dvar);
7421 VAR_LOC_1PAUX (dvar) = NULL;
7422
7423 return VAR_LOC_1PAUX (var);
7424 }
7425
7426 /* Add variable VAR to the hash table of changed variables and
7427 if it has no locations delete it from SET's hash table. */
7428
7429 static void
7430 variable_was_changed (variable *var, dataflow_set *set)
7431 {
7432 hashval_t hash = dv_htab_hash (var->dv);
7433
7434 if (emit_notes)
7435 {
7436 variable **slot;
7437
7438 /* Remember this decl or VALUE has been added to changed_variables. */
7439 set_dv_changed (var->dv, true);
7440
7441 slot = changed_variables->find_slot_with_hash (var->dv, hash, INSERT);
7442
7443 if (*slot)
7444 {
7445 variable *old_var = *slot;
7446 gcc_assert (old_var->in_changed_variables);
7447 old_var->in_changed_variables = false;
7448 if (var != old_var && var->onepart)
7449 {
7450 /* Restore the auxiliary info from an empty variable
7451 previously created for changed_variables, so it is
7452 not lost. */
7453 gcc_checking_assert (!VAR_LOC_1PAUX (var));
7454 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (old_var);
7455 VAR_LOC_1PAUX (old_var) = NULL;
7456 }
7457 variable_htab_free (*slot);
7458 }
7459
7460 if (set && var->n_var_parts == 0)
7461 {
7462 onepart_enum onepart = var->onepart;
7463 variable *empty_var = NULL;
7464 variable **dslot = NULL;
7465
7466 if (onepart == ONEPART_VALUE || onepart == ONEPART_DEXPR)
7467 {
7468 dslot = dropped_values->find_slot_with_hash (var->dv,
7469 dv_htab_hash (var->dv),
7470 INSERT);
7471 empty_var = *dslot;
7472
7473 if (empty_var)
7474 {
7475 gcc_checking_assert (!empty_var->in_changed_variables);
7476 if (!VAR_LOC_1PAUX (var))
7477 {
7478 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (empty_var);
7479 VAR_LOC_1PAUX (empty_var) = NULL;
7480 }
7481 else
7482 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var));
7483 }
7484 }
7485
7486 if (!empty_var)
7487 {
7488 empty_var = onepart_pool_allocate (onepart);
7489 empty_var->dv = var->dv;
7490 empty_var->refcount = 1;
7491 empty_var->n_var_parts = 0;
7492 empty_var->onepart = onepart;
7493 if (dslot)
7494 {
7495 empty_var->refcount++;
7496 *dslot = empty_var;
7497 }
7498 }
7499 else
7500 empty_var->refcount++;
7501 empty_var->in_changed_variables = true;
7502 *slot = empty_var;
7503 if (onepart)
7504 {
7505 empty_var->var_part[0].loc_chain = NULL;
7506 empty_var->var_part[0].cur_loc = NULL;
7507 VAR_LOC_1PAUX (empty_var) = VAR_LOC_1PAUX (var);
7508 VAR_LOC_1PAUX (var) = NULL;
7509 }
7510 goto drop_var;
7511 }
7512 else
7513 {
7514 if (var->onepart && !VAR_LOC_1PAUX (var))
7515 recover_dropped_1paux (var);
7516 var->refcount++;
7517 var->in_changed_variables = true;
7518 *slot = var;
7519 }
7520 }
7521 else
7522 {
7523 gcc_assert (set);
7524 if (var->n_var_parts == 0)
7525 {
7526 variable **slot;
7527
7528 drop_var:
7529 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
7530 if (slot)
7531 {
7532 if (shared_hash_shared (set->vars))
7533 slot = shared_hash_find_slot_unshare (&set->vars, var->dv,
7534 NO_INSERT);
7535 shared_hash_htab (set->vars)->clear_slot (slot);
7536 }
7537 }
7538 }
7539 }
7540
7541 /* Look for the index in VAR->var_part corresponding to OFFSET.
7542 Return -1 if not found. If INSERTION_POINT is non-NULL, the
7543 referenced int will be set to the index that the part has or should
7544 have, if it should be inserted. */
7545
7546 static inline int
7547 find_variable_location_part (variable *var, HOST_WIDE_INT offset,
7548 int *insertion_point)
7549 {
7550 int pos, low, high;
7551
7552 if (var->onepart)
7553 {
7554 if (offset != 0)
7555 return -1;
7556
7557 if (insertion_point)
7558 *insertion_point = 0;
7559
7560 return var->n_var_parts - 1;
7561 }
7562
7563 /* Find the location part. */
7564 low = 0;
7565 high = var->n_var_parts;
7566 while (low != high)
7567 {
7568 pos = (low + high) / 2;
7569 if (VAR_PART_OFFSET (var, pos) < offset)
7570 low = pos + 1;
7571 else
7572 high = pos;
7573 }
7574 pos = low;
7575
7576 if (insertion_point)
7577 *insertion_point = pos;
7578
7579 if (pos < var->n_var_parts && VAR_PART_OFFSET (var, pos) == offset)
7580 return pos;
7581
7582 return -1;
7583 }
7584
7585 static variable **
7586 set_slot_part (dataflow_set *set, rtx loc, variable **slot,
7587 decl_or_value dv, HOST_WIDE_INT offset,
7588 enum var_init_status initialized, rtx set_src)
7589 {
7590 int pos;
7591 location_chain *node, *next;
7592 location_chain **nextp;
7593 variable *var;
7594 onepart_enum onepart;
7595
7596 var = *slot;
7597
7598 if (var)
7599 onepart = var->onepart;
7600 else
7601 onepart = dv_onepart_p (dv);
7602
7603 gcc_checking_assert (offset == 0 || !onepart);
7604 gcc_checking_assert (loc != dv_as_opaque (dv));
7605
7606 if (! flag_var_tracking_uninit)
7607 initialized = VAR_INIT_STATUS_INITIALIZED;
7608
7609 if (!var)
7610 {
7611 /* Create new variable information. */
7612 var = onepart_pool_allocate (onepart);
7613 var->dv = dv;
7614 var->refcount = 1;
7615 var->n_var_parts = 1;
7616 var->onepart = onepart;
7617 var->in_changed_variables = false;
7618 if (var->onepart)
7619 VAR_LOC_1PAUX (var) = NULL;
7620 else
7621 VAR_PART_OFFSET (var, 0) = offset;
7622 var->var_part[0].loc_chain = NULL;
7623 var->var_part[0].cur_loc = NULL;
7624 *slot = var;
7625 pos = 0;
7626 nextp = &var->var_part[0].loc_chain;
7627 }
7628 else if (onepart)
7629 {
7630 int r = -1, c = 0;
7631
7632 gcc_assert (dv_as_opaque (var->dv) == dv_as_opaque (dv));
7633
7634 pos = 0;
7635
7636 if (GET_CODE (loc) == VALUE)
7637 {
7638 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7639 nextp = &node->next)
7640 if (GET_CODE (node->loc) == VALUE)
7641 {
7642 if (node->loc == loc)
7643 {
7644 r = 0;
7645 break;
7646 }
7647 if (canon_value_cmp (node->loc, loc))
7648 c++;
7649 else
7650 {
7651 r = 1;
7652 break;
7653 }
7654 }
7655 else if (REG_P (node->loc) || MEM_P (node->loc))
7656 c++;
7657 else
7658 {
7659 r = 1;
7660 break;
7661 }
7662 }
7663 else if (REG_P (loc))
7664 {
7665 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7666 nextp = &node->next)
7667 if (REG_P (node->loc))
7668 {
7669 if (REGNO (node->loc) < REGNO (loc))
7670 c++;
7671 else
7672 {
7673 if (REGNO (node->loc) == REGNO (loc))
7674 r = 0;
7675 else
7676 r = 1;
7677 break;
7678 }
7679 }
7680 else
7681 {
7682 r = 1;
7683 break;
7684 }
7685 }
7686 else if (MEM_P (loc))
7687 {
7688 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7689 nextp = &node->next)
7690 if (REG_P (node->loc))
7691 c++;
7692 else if (MEM_P (node->loc))
7693 {
7694 if ((r = loc_cmp (XEXP (node->loc, 0), XEXP (loc, 0))) >= 0)
7695 break;
7696 else
7697 c++;
7698 }
7699 else
7700 {
7701 r = 1;
7702 break;
7703 }
7704 }
7705 else
7706 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7707 nextp = &node->next)
7708 if ((r = loc_cmp (node->loc, loc)) >= 0)
7709 break;
7710 else
7711 c++;
7712
7713 if (r == 0)
7714 return slot;
7715
7716 if (shared_var_p (var, set->vars))
7717 {
7718 slot = unshare_variable (set, slot, var, initialized);
7719 var = *slot;
7720 for (nextp = &var->var_part[0].loc_chain; c;
7721 nextp = &(*nextp)->next)
7722 c--;
7723 gcc_assert ((!node && !*nextp) || node->loc == (*nextp)->loc);
7724 }
7725 }
7726 else
7727 {
7728 int inspos = 0;
7729
7730 gcc_assert (dv_as_decl (var->dv) == dv_as_decl (dv));
7731
7732 pos = find_variable_location_part (var, offset, &inspos);
7733
7734 if (pos >= 0)
7735 {
7736 node = var->var_part[pos].loc_chain;
7737
7738 if (node
7739 && ((REG_P (node->loc) && REG_P (loc)
7740 && REGNO (node->loc) == REGNO (loc))
7741 || rtx_equal_p (node->loc, loc)))
7742 {
7743 /* LOC is in the beginning of the chain so we have nothing
7744 to do. */
7745 if (node->init < initialized)
7746 node->init = initialized;
7747 if (set_src != NULL)
7748 node->set_src = set_src;
7749
7750 return slot;
7751 }
7752 else
7753 {
7754 /* We have to make a copy of a shared variable. */
7755 if (shared_var_p (var, set->vars))
7756 {
7757 slot = unshare_variable (set, slot, var, initialized);
7758 var = *slot;
7759 }
7760 }
7761 }
7762 else
7763 {
7764 /* We have not found the location part, new one will be created. */
7765
7766 /* We have to make a copy of the shared variable. */
7767 if (shared_var_p (var, set->vars))
7768 {
7769 slot = unshare_variable (set, slot, var, initialized);
7770 var = *slot;
7771 }
7772
7773 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
7774 thus there are at most MAX_VAR_PARTS different offsets. */
7775 gcc_assert (var->n_var_parts < MAX_VAR_PARTS
7776 && (!var->n_var_parts || !onepart));
7777
7778 /* We have to move the elements of array starting at index
7779 inspos to the next position. */
7780 for (pos = var->n_var_parts; pos > inspos; pos--)
7781 var->var_part[pos] = var->var_part[pos - 1];
7782
7783 var->n_var_parts++;
7784 gcc_checking_assert (!onepart);
7785 VAR_PART_OFFSET (var, pos) = offset;
7786 var->var_part[pos].loc_chain = NULL;
7787 var->var_part[pos].cur_loc = NULL;
7788 }
7789
7790 /* Delete the location from the list. */
7791 nextp = &var->var_part[pos].loc_chain;
7792 for (node = var->var_part[pos].loc_chain; node; node = next)
7793 {
7794 next = node->next;
7795 if ((REG_P (node->loc) && REG_P (loc)
7796 && REGNO (node->loc) == REGNO (loc))
7797 || rtx_equal_p (node->loc, loc))
7798 {
7799 /* Save these values, to assign to the new node, before
7800 deleting this one. */
7801 if (node->init > initialized)
7802 initialized = node->init;
7803 if (node->set_src != NULL && set_src == NULL)
7804 set_src = node->set_src;
7805 if (var->var_part[pos].cur_loc == node->loc)
7806 var->var_part[pos].cur_loc = NULL;
7807 delete node;
7808 *nextp = next;
7809 break;
7810 }
7811 else
7812 nextp = &node->next;
7813 }
7814
7815 nextp = &var->var_part[pos].loc_chain;
7816 }
7817
7818 /* Add the location to the beginning. */
7819 node = new location_chain;
7820 node->loc = loc;
7821 node->init = initialized;
7822 node->set_src = set_src;
7823 node->next = *nextp;
7824 *nextp = node;
7825
7826 /* If no location was emitted do so. */
7827 if (var->var_part[pos].cur_loc == NULL)
7828 variable_was_changed (var, set);
7829
7830 return slot;
7831 }
7832
7833 /* Set the part of variable's location in the dataflow set SET. The
7834 variable part is specified by variable's declaration in DV and
7835 offset OFFSET and the part's location by LOC. IOPT should be
7836 NO_INSERT if the variable is known to be in SET already and the
7837 variable hash table must not be resized, and INSERT otherwise. */
7838
7839 static void
7840 set_variable_part (dataflow_set *set, rtx loc,
7841 decl_or_value dv, HOST_WIDE_INT offset,
7842 enum var_init_status initialized, rtx set_src,
7843 enum insert_option iopt)
7844 {
7845 variable **slot;
7846
7847 if (iopt == NO_INSERT)
7848 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7849 else
7850 {
7851 slot = shared_hash_find_slot (set->vars, dv);
7852 if (!slot)
7853 slot = shared_hash_find_slot_unshare (&set->vars, dv, iopt);
7854 }
7855 set_slot_part (set, loc, slot, dv, offset, initialized, set_src);
7856 }
7857
7858 /* Remove all recorded register locations for the given variable part
7859 from dataflow set SET, except for those that are identical to loc.
7860 The variable part is specified by variable's declaration or value
7861 DV and offset OFFSET. */
7862
7863 static variable **
7864 clobber_slot_part (dataflow_set *set, rtx loc, variable **slot,
7865 HOST_WIDE_INT offset, rtx set_src)
7866 {
7867 variable *var = *slot;
7868 int pos = find_variable_location_part (var, offset, NULL);
7869
7870 if (pos >= 0)
7871 {
7872 location_chain *node, *next;
7873
7874 /* Remove the register locations from the dataflow set. */
7875 next = var->var_part[pos].loc_chain;
7876 for (node = next; node; node = next)
7877 {
7878 next = node->next;
7879 if (node->loc != loc
7880 && (!flag_var_tracking_uninit
7881 || !set_src
7882 || MEM_P (set_src)
7883 || !rtx_equal_p (set_src, node->set_src)))
7884 {
7885 if (REG_P (node->loc))
7886 {
7887 attrs *anode, *anext;
7888 attrs **anextp;
7889
7890 /* Remove the variable part from the register's
7891 list, but preserve any other variable parts
7892 that might be regarded as live in that same
7893 register. */
7894 anextp = &set->regs[REGNO (node->loc)];
7895 for (anode = *anextp; anode; anode = anext)
7896 {
7897 anext = anode->next;
7898 if (dv_as_opaque (anode->dv) == dv_as_opaque (var->dv)
7899 && anode->offset == offset)
7900 {
7901 delete anode;
7902 *anextp = anext;
7903 }
7904 else
7905 anextp = &anode->next;
7906 }
7907 }
7908
7909 slot = delete_slot_part (set, node->loc, slot, offset);
7910 }
7911 }
7912 }
7913
7914 return slot;
7915 }
7916
7917 /* Remove all recorded register locations for the given variable part
7918 from dataflow set SET, except for those that are identical to loc.
7919 The variable part is specified by variable's declaration or value
7920 DV and offset OFFSET. */
7921
7922 static void
7923 clobber_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
7924 HOST_WIDE_INT offset, rtx set_src)
7925 {
7926 variable **slot;
7927
7928 if (!dv_as_opaque (dv)
7929 || (!dv_is_value_p (dv) && ! DECL_P (dv_as_decl (dv))))
7930 return;
7931
7932 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7933 if (!slot)
7934 return;
7935
7936 clobber_slot_part (set, loc, slot, offset, set_src);
7937 }
7938
7939 /* Delete the part of variable's location from dataflow set SET. The
7940 variable part is specified by its SET->vars slot SLOT and offset
7941 OFFSET and the part's location by LOC. */
7942
7943 static variable **
7944 delete_slot_part (dataflow_set *set, rtx loc, variable **slot,
7945 HOST_WIDE_INT offset)
7946 {
7947 variable *var = *slot;
7948 int pos = find_variable_location_part (var, offset, NULL);
7949
7950 if (pos >= 0)
7951 {
7952 location_chain *node, *next;
7953 location_chain **nextp;
7954 bool changed;
7955 rtx cur_loc;
7956
7957 if (shared_var_p (var, set->vars))
7958 {
7959 /* If the variable contains the location part we have to
7960 make a copy of the variable. */
7961 for (node = var->var_part[pos].loc_chain; node;
7962 node = node->next)
7963 {
7964 if ((REG_P (node->loc) && REG_P (loc)
7965 && REGNO (node->loc) == REGNO (loc))
7966 || rtx_equal_p (node->loc, loc))
7967 {
7968 slot = unshare_variable (set, slot, var,
7969 VAR_INIT_STATUS_UNKNOWN);
7970 var = *slot;
7971 break;
7972 }
7973 }
7974 }
7975
7976 if (pos == 0 && var->onepart && VAR_LOC_1PAUX (var))
7977 cur_loc = VAR_LOC_FROM (var);
7978 else
7979 cur_loc = var->var_part[pos].cur_loc;
7980
7981 /* Delete the location part. */
7982 changed = false;
7983 nextp = &var->var_part[pos].loc_chain;
7984 for (node = *nextp; node; node = next)
7985 {
7986 next = node->next;
7987 if ((REG_P (node->loc) && REG_P (loc)
7988 && REGNO (node->loc) == REGNO (loc))
7989 || rtx_equal_p (node->loc, loc))
7990 {
7991 /* If we have deleted the location which was last emitted
7992 we have to emit new location so add the variable to set
7993 of changed variables. */
7994 if (cur_loc == node->loc)
7995 {
7996 changed = true;
7997 var->var_part[pos].cur_loc = NULL;
7998 if (pos == 0 && var->onepart && VAR_LOC_1PAUX (var))
7999 VAR_LOC_FROM (var) = NULL;
8000 }
8001 delete node;
8002 *nextp = next;
8003 break;
8004 }
8005 else
8006 nextp = &node->next;
8007 }
8008
8009 if (var->var_part[pos].loc_chain == NULL)
8010 {
8011 changed = true;
8012 var->n_var_parts--;
8013 while (pos < var->n_var_parts)
8014 {
8015 var->var_part[pos] = var->var_part[pos + 1];
8016 pos++;
8017 }
8018 }
8019 if (changed)
8020 variable_was_changed (var, set);
8021 }
8022
8023 return slot;
8024 }
8025
8026 /* Delete the part of variable's location from dataflow set SET. The
8027 variable part is specified by variable's declaration or value DV
8028 and offset OFFSET and the part's location by LOC. */
8029
8030 static void
8031 delete_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
8032 HOST_WIDE_INT offset)
8033 {
8034 variable **slot = shared_hash_find_slot_noinsert (set->vars, dv);
8035 if (!slot)
8036 return;
8037
8038 delete_slot_part (set, loc, slot, offset);
8039 }
8040
8041
8042 /* Structure for passing some other parameters to function
8043 vt_expand_loc_callback. */
8044 struct expand_loc_callback_data
8045 {
8046 /* The variables and values active at this point. */
8047 variable_table_type *vars;
8048
8049 /* Stack of values and debug_exprs under expansion, and their
8050 children. */
8051 auto_vec<rtx, 4> expanding;
8052
8053 /* Stack of values and debug_exprs whose expansion hit recursion
8054 cycles. They will have VALUE_RECURSED_INTO marked when added to
8055 this list. This flag will be cleared if any of its dependencies
8056 resolves to a valid location. So, if the flag remains set at the
8057 end of the search, we know no valid location for this one can
8058 possibly exist. */
8059 auto_vec<rtx, 4> pending;
8060
8061 /* The maximum depth among the sub-expressions under expansion.
8062 Zero indicates no expansion so far. */
8063 expand_depth depth;
8064 };
8065
8066 /* Allocate the one-part auxiliary data structure for VAR, with enough
8067 room for COUNT dependencies. */
8068
8069 static void
8070 loc_exp_dep_alloc (variable *var, int count)
8071 {
8072 size_t allocsize;
8073
8074 gcc_checking_assert (var->onepart);
8075
8076 /* We can be called with COUNT == 0 to allocate the data structure
8077 without any dependencies, e.g. for the backlinks only. However,
8078 if we are specifying a COUNT, then the dependency list must have
8079 been emptied before. It would be possible to adjust pointers or
8080 force it empty here, but this is better done at an earlier point
8081 in the algorithm, so we instead leave an assertion to catch
8082 errors. */
8083 gcc_checking_assert (!count
8084 || VAR_LOC_DEP_VEC (var) == NULL
8085 || VAR_LOC_DEP_VEC (var)->is_empty ());
8086
8087 if (VAR_LOC_1PAUX (var) && VAR_LOC_DEP_VEC (var)->space (count))
8088 return;
8089
8090 allocsize = offsetof (struct onepart_aux, deps)
8091 + vec<loc_exp_dep, va_heap, vl_embed>::embedded_size (count);
8092
8093 if (VAR_LOC_1PAUX (var))
8094 {
8095 VAR_LOC_1PAUX (var) = XRESIZEVAR (struct onepart_aux,
8096 VAR_LOC_1PAUX (var), allocsize);
8097 /* If the reallocation moves the onepaux structure, the
8098 back-pointer to BACKLINKS in the first list member will still
8099 point to its old location. Adjust it. */
8100 if (VAR_LOC_DEP_LST (var))
8101 VAR_LOC_DEP_LST (var)->pprev = VAR_LOC_DEP_LSTP (var);
8102 }
8103 else
8104 {
8105 VAR_LOC_1PAUX (var) = XNEWVAR (struct onepart_aux, allocsize);
8106 *VAR_LOC_DEP_LSTP (var) = NULL;
8107 VAR_LOC_FROM (var) = NULL;
8108 VAR_LOC_DEPTH (var).complexity = 0;
8109 VAR_LOC_DEPTH (var).entryvals = 0;
8110 }
8111 VAR_LOC_DEP_VEC (var)->embedded_init (count);
8112 }
8113
8114 /* Remove all entries from the vector of active dependencies of VAR,
8115 removing them from the back-links lists too. */
8116
8117 static void
8118 loc_exp_dep_clear (variable *var)
8119 {
8120 while (VAR_LOC_DEP_VEC (var) && !VAR_LOC_DEP_VEC (var)->is_empty ())
8121 {
8122 loc_exp_dep *led = &VAR_LOC_DEP_VEC (var)->last ();
8123 if (led->next)
8124 led->next->pprev = led->pprev;
8125 if (led->pprev)
8126 *led->pprev = led->next;
8127 VAR_LOC_DEP_VEC (var)->pop ();
8128 }
8129 }
8130
8131 /* Insert an active dependency from VAR on X to the vector of
8132 dependencies, and add the corresponding back-link to X's list of
8133 back-links in VARS. */
8134
8135 static void
8136 loc_exp_insert_dep (variable *var, rtx x, variable_table_type *vars)
8137 {
8138 decl_or_value dv;
8139 variable *xvar;
8140 loc_exp_dep *led;
8141
8142 dv = dv_from_rtx (x);
8143
8144 /* ??? Build a vector of variables parallel to EXPANDING, to avoid
8145 an additional look up? */
8146 xvar = vars->find_with_hash (dv, dv_htab_hash (dv));
8147
8148 if (!xvar)
8149 {
8150 xvar = variable_from_dropped (dv, NO_INSERT);
8151 gcc_checking_assert (xvar);
8152 }
8153
8154 /* No point in adding the same backlink more than once. This may
8155 arise if say the same value appears in two complex expressions in
8156 the same loc_list, or even more than once in a single
8157 expression. */
8158 if (VAR_LOC_DEP_LST (xvar) && VAR_LOC_DEP_LST (xvar)->dv == var->dv)
8159 return;
8160
8161 if (var->onepart == NOT_ONEPART)
8162 led = new loc_exp_dep;
8163 else
8164 {
8165 loc_exp_dep empty;
8166 memset (&empty, 0, sizeof (empty));
8167 VAR_LOC_DEP_VEC (var)->quick_push (empty);
8168 led = &VAR_LOC_DEP_VEC (var)->last ();
8169 }
8170 led->dv = var->dv;
8171 led->value = x;
8172
8173 loc_exp_dep_alloc (xvar, 0);
8174 led->pprev = VAR_LOC_DEP_LSTP (xvar);
8175 led->next = *led->pprev;
8176 if (led->next)
8177 led->next->pprev = &led->next;
8178 *led->pprev = led;
8179 }
8180
8181 /* Create active dependencies of VAR on COUNT values starting at
8182 VALUE, and corresponding back-links to the entries in VARS. Return
8183 true if we found any pending-recursion results. */
8184
8185 static bool
8186 loc_exp_dep_set (variable *var, rtx result, rtx *value, int count,
8187 variable_table_type *vars)
8188 {
8189 bool pending_recursion = false;
8190
8191 gcc_checking_assert (VAR_LOC_DEP_VEC (var) == NULL
8192 || VAR_LOC_DEP_VEC (var)->is_empty ());
8193
8194 /* Set up all dependencies from last_child (as set up at the end of
8195 the loop above) to the end. */
8196 loc_exp_dep_alloc (var, count);
8197
8198 while (count--)
8199 {
8200 rtx x = *value++;
8201
8202 if (!pending_recursion)
8203 pending_recursion = !result && VALUE_RECURSED_INTO (x);
8204
8205 loc_exp_insert_dep (var, x, vars);
8206 }
8207
8208 return pending_recursion;
8209 }
8210
8211 /* Notify the back-links of IVAR that are pending recursion that we
8212 have found a non-NIL value for it, so they are cleared for another
8213 attempt to compute a current location. */
8214
8215 static void
8216 notify_dependents_of_resolved_value (variable *ivar, variable_table_type *vars)
8217 {
8218 loc_exp_dep *led, *next;
8219
8220 for (led = VAR_LOC_DEP_LST (ivar); led; led = next)
8221 {
8222 decl_or_value dv = led->dv;
8223 variable *var;
8224
8225 next = led->next;
8226
8227 if (dv_is_value_p (dv))
8228 {
8229 rtx value = dv_as_value (dv);
8230
8231 /* If we have already resolved it, leave it alone. */
8232 if (!VALUE_RECURSED_INTO (value))
8233 continue;
8234
8235 /* Check that VALUE_RECURSED_INTO, true from the test above,
8236 implies NO_LOC_P. */
8237 gcc_checking_assert (NO_LOC_P (value));
8238
8239 /* We won't notify variables that are being expanded,
8240 because their dependency list is cleared before
8241 recursing. */
8242 NO_LOC_P (value) = false;
8243 VALUE_RECURSED_INTO (value) = false;
8244
8245 gcc_checking_assert (dv_changed_p (dv));
8246 }
8247 else
8248 {
8249 gcc_checking_assert (dv_onepart_p (dv) != NOT_ONEPART);
8250 if (!dv_changed_p (dv))
8251 continue;
8252 }
8253
8254 var = vars->find_with_hash (dv, dv_htab_hash (dv));
8255
8256 if (!var)
8257 var = variable_from_dropped (dv, NO_INSERT);
8258
8259 if (var)
8260 notify_dependents_of_resolved_value (var, vars);
8261
8262 if (next)
8263 next->pprev = led->pprev;
8264 if (led->pprev)
8265 *led->pprev = next;
8266 led->next = NULL;
8267 led->pprev = NULL;
8268 }
8269 }
8270
8271 static rtx vt_expand_loc_callback (rtx x, bitmap regs,
8272 int max_depth, void *data);
8273
8274 /* Return the combined depth, when one sub-expression evaluated to
8275 BEST_DEPTH and the previous known depth was SAVED_DEPTH. */
8276
8277 static inline expand_depth
8278 update_depth (expand_depth saved_depth, expand_depth best_depth)
8279 {
8280 /* If we didn't find anything, stick with what we had. */
8281 if (!best_depth.complexity)
8282 return saved_depth;
8283
8284 /* If we found hadn't found anything, use the depth of the current
8285 expression. Do NOT add one extra level, we want to compute the
8286 maximum depth among sub-expressions. We'll increment it later,
8287 if appropriate. */
8288 if (!saved_depth.complexity)
8289 return best_depth;
8290
8291 /* Combine the entryval count so that regardless of which one we
8292 return, the entryval count is accurate. */
8293 best_depth.entryvals = saved_depth.entryvals
8294 = best_depth.entryvals + saved_depth.entryvals;
8295
8296 if (saved_depth.complexity < best_depth.complexity)
8297 return best_depth;
8298 else
8299 return saved_depth;
8300 }
8301
8302 /* Expand VAR to a location RTX, updating its cur_loc. Use REGS and
8303 DATA for cselib expand callback. If PENDRECP is given, indicate in
8304 it whether any sub-expression couldn't be fully evaluated because
8305 it is pending recursion resolution. */
8306
8307 static inline rtx
8308 vt_expand_var_loc_chain (variable *var, bitmap regs, void *data,
8309 bool *pendrecp)
8310 {
8311 struct expand_loc_callback_data *elcd
8312 = (struct expand_loc_callback_data *) data;
8313 location_chain *loc, *next;
8314 rtx result = NULL;
8315 int first_child, result_first_child, last_child;
8316 bool pending_recursion;
8317 rtx loc_from = NULL;
8318 struct elt_loc_list *cloc = NULL;
8319 expand_depth depth = { 0, 0 }, saved_depth = elcd->depth;
8320 int wanted_entryvals, found_entryvals = 0;
8321
8322 /* Clear all backlinks pointing at this, so that we're not notified
8323 while we're active. */
8324 loc_exp_dep_clear (var);
8325
8326 retry:
8327 if (var->onepart == ONEPART_VALUE)
8328 {
8329 cselib_val *val = CSELIB_VAL_PTR (dv_as_value (var->dv));
8330
8331 gcc_checking_assert (cselib_preserved_value_p (val));
8332
8333 cloc = val->locs;
8334 }
8335
8336 first_child = result_first_child = last_child
8337 = elcd->expanding.length ();
8338
8339 wanted_entryvals = found_entryvals;
8340
8341 /* Attempt to expand each available location in turn. */
8342 for (next = loc = var->n_var_parts ? var->var_part[0].loc_chain : NULL;
8343 loc || cloc; loc = next)
8344 {
8345 result_first_child = last_child;
8346
8347 if (!loc)
8348 {
8349 loc_from = cloc->loc;
8350 next = loc;
8351 cloc = cloc->next;
8352 if (unsuitable_loc (loc_from))
8353 continue;
8354 }
8355 else
8356 {
8357 loc_from = loc->loc;
8358 next = loc->next;
8359 }
8360
8361 gcc_checking_assert (!unsuitable_loc (loc_from));
8362
8363 elcd->depth.complexity = elcd->depth.entryvals = 0;
8364 result = cselib_expand_value_rtx_cb (loc_from, regs, EXPR_DEPTH,
8365 vt_expand_loc_callback, data);
8366 last_child = elcd->expanding.length ();
8367
8368 if (result)
8369 {
8370 depth = elcd->depth;
8371
8372 gcc_checking_assert (depth.complexity
8373 || result_first_child == last_child);
8374
8375 if (last_child - result_first_child != 1)
8376 {
8377 if (!depth.complexity && GET_CODE (result) == ENTRY_VALUE)
8378 depth.entryvals++;
8379 depth.complexity++;
8380 }
8381
8382 if (depth.complexity <= EXPR_USE_DEPTH)
8383 {
8384 if (depth.entryvals <= wanted_entryvals)
8385 break;
8386 else if (!found_entryvals || depth.entryvals < found_entryvals)
8387 found_entryvals = depth.entryvals;
8388 }
8389
8390 result = NULL;
8391 }
8392
8393 /* Set it up in case we leave the loop. */
8394 depth.complexity = depth.entryvals = 0;
8395 loc_from = NULL;
8396 result_first_child = first_child;
8397 }
8398
8399 if (!loc_from && wanted_entryvals < found_entryvals)
8400 {
8401 /* We found entries with ENTRY_VALUEs and skipped them. Since
8402 we could not find any expansions without ENTRY_VALUEs, but we
8403 found at least one with them, go back and get an entry with
8404 the minimum number ENTRY_VALUE count that we found. We could
8405 avoid looping, but since each sub-loc is already resolved,
8406 the re-expansion should be trivial. ??? Should we record all
8407 attempted locs as dependencies, so that we retry the
8408 expansion should any of them change, in the hope it can give
8409 us a new entry without an ENTRY_VALUE? */
8410 elcd->expanding.truncate (first_child);
8411 goto retry;
8412 }
8413
8414 /* Register all encountered dependencies as active. */
8415 pending_recursion = loc_exp_dep_set
8416 (var, result, elcd->expanding.address () + result_first_child,
8417 last_child - result_first_child, elcd->vars);
8418
8419 elcd->expanding.truncate (first_child);
8420
8421 /* Record where the expansion came from. */
8422 gcc_checking_assert (!result || !pending_recursion);
8423 VAR_LOC_FROM (var) = loc_from;
8424 VAR_LOC_DEPTH (var) = depth;
8425
8426 gcc_checking_assert (!depth.complexity == !result);
8427
8428 elcd->depth = update_depth (saved_depth, depth);
8429
8430 /* Indicate whether any of the dependencies are pending recursion
8431 resolution. */
8432 if (pendrecp)
8433 *pendrecp = pending_recursion;
8434
8435 if (!pendrecp || !pending_recursion)
8436 var->var_part[0].cur_loc = result;
8437
8438 return result;
8439 }
8440
8441 /* Callback for cselib_expand_value, that looks for expressions
8442 holding the value in the var-tracking hash tables. Return X for
8443 standard processing, anything else is to be used as-is. */
8444
8445 static rtx
8446 vt_expand_loc_callback (rtx x, bitmap regs,
8447 int max_depth ATTRIBUTE_UNUSED,
8448 void *data)
8449 {
8450 struct expand_loc_callback_data *elcd
8451 = (struct expand_loc_callback_data *) data;
8452 decl_or_value dv;
8453 variable *var;
8454 rtx result, subreg;
8455 bool pending_recursion = false;
8456 bool from_empty = false;
8457
8458 switch (GET_CODE (x))
8459 {
8460 case SUBREG:
8461 subreg = cselib_expand_value_rtx_cb (SUBREG_REG (x), regs,
8462 EXPR_DEPTH,
8463 vt_expand_loc_callback, data);
8464
8465 if (!subreg)
8466 return NULL;
8467
8468 result = simplify_gen_subreg (GET_MODE (x), subreg,
8469 GET_MODE (SUBREG_REG (x)),
8470 SUBREG_BYTE (x));
8471
8472 /* Invalid SUBREGs are ok in debug info. ??? We could try
8473 alternate expansions for the VALUE as well. */
8474 if (!result)
8475 result = gen_rtx_raw_SUBREG (GET_MODE (x), subreg, SUBREG_BYTE (x));
8476
8477 return result;
8478
8479 case DEBUG_EXPR:
8480 case VALUE:
8481 dv = dv_from_rtx (x);
8482 break;
8483
8484 default:
8485 return x;
8486 }
8487
8488 elcd->expanding.safe_push (x);
8489
8490 /* Check that VALUE_RECURSED_INTO implies NO_LOC_P. */
8491 gcc_checking_assert (!VALUE_RECURSED_INTO (x) || NO_LOC_P (x));
8492
8493 if (NO_LOC_P (x))
8494 {
8495 gcc_checking_assert (VALUE_RECURSED_INTO (x) || !dv_changed_p (dv));
8496 return NULL;
8497 }
8498
8499 var = elcd->vars->find_with_hash (dv, dv_htab_hash (dv));
8500
8501 if (!var)
8502 {
8503 from_empty = true;
8504 var = variable_from_dropped (dv, INSERT);
8505 }
8506
8507 gcc_checking_assert (var);
8508
8509 if (!dv_changed_p (dv))
8510 {
8511 gcc_checking_assert (!NO_LOC_P (x));
8512 gcc_checking_assert (var->var_part[0].cur_loc);
8513 gcc_checking_assert (VAR_LOC_1PAUX (var));
8514 gcc_checking_assert (VAR_LOC_1PAUX (var)->depth.complexity);
8515
8516 elcd->depth = update_depth (elcd->depth, VAR_LOC_1PAUX (var)->depth);
8517
8518 return var->var_part[0].cur_loc;
8519 }
8520
8521 VALUE_RECURSED_INTO (x) = true;
8522 /* This is tentative, but it makes some tests simpler. */
8523 NO_LOC_P (x) = true;
8524
8525 gcc_checking_assert (var->n_var_parts == 1 || from_empty);
8526
8527 result = vt_expand_var_loc_chain (var, regs, data, &pending_recursion);
8528
8529 if (pending_recursion)
8530 {
8531 gcc_checking_assert (!result);
8532 elcd->pending.safe_push (x);
8533 }
8534 else
8535 {
8536 NO_LOC_P (x) = !result;
8537 VALUE_RECURSED_INTO (x) = false;
8538 set_dv_changed (dv, false);
8539
8540 if (result)
8541 notify_dependents_of_resolved_value (var, elcd->vars);
8542 }
8543
8544 return result;
8545 }
8546
8547 /* While expanding variables, we may encounter recursion cycles
8548 because of mutual (possibly indirect) dependencies between two
8549 particular variables (or values), say A and B. If we're trying to
8550 expand A when we get to B, which in turn attempts to expand A, if
8551 we can't find any other expansion for B, we'll add B to this
8552 pending-recursion stack, and tentatively return NULL for its
8553 location. This tentative value will be used for any other
8554 occurrences of B, unless A gets some other location, in which case
8555 it will notify B that it is worth another try at computing a
8556 location for it, and it will use the location computed for A then.
8557 At the end of the expansion, the tentative NULL locations become
8558 final for all members of PENDING that didn't get a notification.
8559 This function performs this finalization of NULL locations. */
8560
8561 static void
8562 resolve_expansions_pending_recursion (vec<rtx, va_heap> *pending)
8563 {
8564 while (!pending->is_empty ())
8565 {
8566 rtx x = pending->pop ();
8567 decl_or_value dv;
8568
8569 if (!VALUE_RECURSED_INTO (x))
8570 continue;
8571
8572 gcc_checking_assert (NO_LOC_P (x));
8573 VALUE_RECURSED_INTO (x) = false;
8574 dv = dv_from_rtx (x);
8575 gcc_checking_assert (dv_changed_p (dv));
8576 set_dv_changed (dv, false);
8577 }
8578 }
8579
8580 /* Initialize expand_loc_callback_data D with variable hash table V.
8581 It must be a macro because of alloca (vec stack). */
8582 #define INIT_ELCD(d, v) \
8583 do \
8584 { \
8585 (d).vars = (v); \
8586 (d).depth.complexity = (d).depth.entryvals = 0; \
8587 } \
8588 while (0)
8589 /* Finalize expand_loc_callback_data D, resolved to location L. */
8590 #define FINI_ELCD(d, l) \
8591 do \
8592 { \
8593 resolve_expansions_pending_recursion (&(d).pending); \
8594 (d).pending.release (); \
8595 (d).expanding.release (); \
8596 \
8597 if ((l) && MEM_P (l)) \
8598 (l) = targetm.delegitimize_address (l); \
8599 } \
8600 while (0)
8601
8602 /* Expand VALUEs and DEBUG_EXPRs in LOC to a location, using the
8603 equivalences in VARS, updating their CUR_LOCs in the process. */
8604
8605 static rtx
8606 vt_expand_loc (rtx loc, variable_table_type *vars)
8607 {
8608 struct expand_loc_callback_data data;
8609 rtx result;
8610
8611 if (!MAY_HAVE_DEBUG_BIND_INSNS)
8612 return loc;
8613
8614 INIT_ELCD (data, vars);
8615
8616 result = cselib_expand_value_rtx_cb (loc, scratch_regs, EXPR_DEPTH,
8617 vt_expand_loc_callback, &data);
8618
8619 FINI_ELCD (data, result);
8620
8621 return result;
8622 }
8623
8624 /* Expand the one-part VARiable to a location, using the equivalences
8625 in VARS, updating their CUR_LOCs in the process. */
8626
8627 static rtx
8628 vt_expand_1pvar (variable *var, variable_table_type *vars)
8629 {
8630 struct expand_loc_callback_data data;
8631 rtx loc;
8632
8633 gcc_checking_assert (var->onepart && var->n_var_parts == 1);
8634
8635 if (!dv_changed_p (var->dv))
8636 return var->var_part[0].cur_loc;
8637
8638 INIT_ELCD (data, vars);
8639
8640 loc = vt_expand_var_loc_chain (var, scratch_regs, &data, NULL);
8641
8642 gcc_checking_assert (data.expanding.is_empty ());
8643
8644 FINI_ELCD (data, loc);
8645
8646 return loc;
8647 }
8648
8649 /* Emit the NOTE_INSN_VAR_LOCATION for variable *VARP. DATA contains
8650 additional parameters: WHERE specifies whether the note shall be emitted
8651 before or after instruction INSN. */
8652
8653 int
8654 emit_note_insn_var_location (variable **varp, emit_note_data *data)
8655 {
8656 variable *var = *varp;
8657 rtx_insn *insn = data->insn;
8658 enum emit_note_where where = data->where;
8659 variable_table_type *vars = data->vars;
8660 rtx_note *note;
8661 rtx note_vl;
8662 int i, j, n_var_parts;
8663 bool complete;
8664 enum var_init_status initialized = VAR_INIT_STATUS_UNINITIALIZED;
8665 HOST_WIDE_INT last_limit;
8666 tree type_size_unit;
8667 HOST_WIDE_INT offsets[MAX_VAR_PARTS];
8668 rtx loc[MAX_VAR_PARTS];
8669 tree decl;
8670 location_chain *lc;
8671
8672 gcc_checking_assert (var->onepart == NOT_ONEPART
8673 || var->onepart == ONEPART_VDECL);
8674
8675 decl = dv_as_decl (var->dv);
8676
8677 complete = true;
8678 last_limit = 0;
8679 n_var_parts = 0;
8680 if (!var->onepart)
8681 for (i = 0; i < var->n_var_parts; i++)
8682 if (var->var_part[i].cur_loc == NULL && var->var_part[i].loc_chain)
8683 var->var_part[i].cur_loc = var->var_part[i].loc_chain->loc;
8684 for (i = 0; i < var->n_var_parts; i++)
8685 {
8686 machine_mode mode, wider_mode;
8687 rtx loc2;
8688 HOST_WIDE_INT offset, size, wider_size;
8689
8690 if (i == 0 && var->onepart)
8691 {
8692 gcc_checking_assert (var->n_var_parts == 1);
8693 offset = 0;
8694 initialized = VAR_INIT_STATUS_INITIALIZED;
8695 loc2 = vt_expand_1pvar (var, vars);
8696 }
8697 else
8698 {
8699 if (last_limit < VAR_PART_OFFSET (var, i))
8700 {
8701 complete = false;
8702 break;
8703 }
8704 else if (last_limit > VAR_PART_OFFSET (var, i))
8705 continue;
8706 offset = VAR_PART_OFFSET (var, i);
8707 loc2 = var->var_part[i].cur_loc;
8708 if (loc2 && GET_CODE (loc2) == MEM
8709 && GET_CODE (XEXP (loc2, 0)) == VALUE)
8710 {
8711 rtx depval = XEXP (loc2, 0);
8712
8713 loc2 = vt_expand_loc (loc2, vars);
8714
8715 if (loc2)
8716 loc_exp_insert_dep (var, depval, vars);
8717 }
8718 if (!loc2)
8719 {
8720 complete = false;
8721 continue;
8722 }
8723 gcc_checking_assert (GET_CODE (loc2) != VALUE);
8724 for (lc = var->var_part[i].loc_chain; lc; lc = lc->next)
8725 if (var->var_part[i].cur_loc == lc->loc)
8726 {
8727 initialized = lc->init;
8728 break;
8729 }
8730 gcc_assert (lc);
8731 }
8732
8733 offsets[n_var_parts] = offset;
8734 if (!loc2)
8735 {
8736 complete = false;
8737 continue;
8738 }
8739 loc[n_var_parts] = loc2;
8740 mode = GET_MODE (var->var_part[i].cur_loc);
8741 if (mode == VOIDmode && var->onepart)
8742 mode = DECL_MODE (decl);
8743 /* We ony track subparts of constant-sized objects, since at present
8744 there's no representation for polynomial pieces. */
8745 if (!GET_MODE_SIZE (mode).is_constant (&size))
8746 {
8747 complete = false;
8748 continue;
8749 }
8750 last_limit = offsets[n_var_parts] + size;
8751
8752 /* Attempt to merge adjacent registers or memory. */
8753 for (j = i + 1; j < var->n_var_parts; j++)
8754 if (last_limit <= VAR_PART_OFFSET (var, j))
8755 break;
8756 if (j < var->n_var_parts
8757 && GET_MODE_WIDER_MODE (mode).exists (&wider_mode)
8758 && GET_MODE_SIZE (wider_mode).is_constant (&wider_size)
8759 && var->var_part[j].cur_loc
8760 && mode == GET_MODE (var->var_part[j].cur_loc)
8761 && (REG_P (loc[n_var_parts]) || MEM_P (loc[n_var_parts]))
8762 && last_limit == (var->onepart ? 0 : VAR_PART_OFFSET (var, j))
8763 && (loc2 = vt_expand_loc (var->var_part[j].cur_loc, vars))
8764 && GET_CODE (loc[n_var_parts]) == GET_CODE (loc2))
8765 {
8766 rtx new_loc = NULL;
8767
8768 if (REG_P (loc[n_var_parts])
8769 && hard_regno_nregs (REGNO (loc[n_var_parts]), mode) * 2
8770 == hard_regno_nregs (REGNO (loc[n_var_parts]), wider_mode)
8771 && end_hard_regno (mode, REGNO (loc[n_var_parts]))
8772 == REGNO (loc2))
8773 {
8774 if (! WORDS_BIG_ENDIAN && ! BYTES_BIG_ENDIAN)
8775 new_loc = simplify_subreg (wider_mode, loc[n_var_parts],
8776 mode, 0);
8777 else if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
8778 new_loc = simplify_subreg (wider_mode, loc2, mode, 0);
8779 if (new_loc)
8780 {
8781 if (!REG_P (new_loc)
8782 || REGNO (new_loc) != REGNO (loc[n_var_parts]))
8783 new_loc = NULL;
8784 else
8785 REG_ATTRS (new_loc) = REG_ATTRS (loc[n_var_parts]);
8786 }
8787 }
8788 else if (MEM_P (loc[n_var_parts])
8789 && GET_CODE (XEXP (loc2, 0)) == PLUS
8790 && REG_P (XEXP (XEXP (loc2, 0), 0))
8791 && CONST_INT_P (XEXP (XEXP (loc2, 0), 1)))
8792 {
8793 if ((REG_P (XEXP (loc[n_var_parts], 0))
8794 && rtx_equal_p (XEXP (loc[n_var_parts], 0),
8795 XEXP (XEXP (loc2, 0), 0))
8796 && INTVAL (XEXP (XEXP (loc2, 0), 1)) == size)
8797 || (GET_CODE (XEXP (loc[n_var_parts], 0)) == PLUS
8798 && CONST_INT_P (XEXP (XEXP (loc[n_var_parts], 0), 1))
8799 && rtx_equal_p (XEXP (XEXP (loc[n_var_parts], 0), 0),
8800 XEXP (XEXP (loc2, 0), 0))
8801 && INTVAL (XEXP (XEXP (loc[n_var_parts], 0), 1)) + size
8802 == INTVAL (XEXP (XEXP (loc2, 0), 1))))
8803 new_loc = adjust_address_nv (loc[n_var_parts],
8804 wider_mode, 0);
8805 }
8806
8807 if (new_loc)
8808 {
8809 loc[n_var_parts] = new_loc;
8810 mode = wider_mode;
8811 last_limit = offsets[n_var_parts] + wider_size;
8812 i = j;
8813 }
8814 }
8815 ++n_var_parts;
8816 }
8817 type_size_unit = TYPE_SIZE_UNIT (TREE_TYPE (decl));
8818 if ((unsigned HOST_WIDE_INT) last_limit < TREE_INT_CST_LOW (type_size_unit))
8819 complete = false;
8820
8821 if (! flag_var_tracking_uninit)
8822 initialized = VAR_INIT_STATUS_INITIALIZED;
8823
8824 note_vl = NULL_RTX;
8825 if (!complete)
8826 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, NULL_RTX, initialized);
8827 else if (n_var_parts == 1)
8828 {
8829 rtx expr_list;
8830
8831 if (offsets[0] || GET_CODE (loc[0]) == PARALLEL)
8832 expr_list = gen_rtx_EXPR_LIST (VOIDmode, loc[0], GEN_INT (offsets[0]));
8833 else
8834 expr_list = loc[0];
8835
8836 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, expr_list, initialized);
8837 }
8838 else if (n_var_parts)
8839 {
8840 rtx parallel;
8841
8842 for (i = 0; i < n_var_parts; i++)
8843 loc[i]
8844 = gen_rtx_EXPR_LIST (VOIDmode, loc[i], GEN_INT (offsets[i]));
8845
8846 parallel = gen_rtx_PARALLEL (VOIDmode,
8847 gen_rtvec_v (n_var_parts, loc));
8848 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl,
8849 parallel, initialized);
8850 }
8851
8852 if (where != EMIT_NOTE_BEFORE_INSN)
8853 {
8854 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
8855 if (where == EMIT_NOTE_AFTER_CALL_INSN)
8856 NOTE_DURING_CALL_P (note) = true;
8857 }
8858 else
8859 {
8860 /* Make sure that the call related notes come first. */
8861 while (NEXT_INSN (insn)
8862 && NOTE_P (insn)
8863 && ((NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
8864 && NOTE_DURING_CALL_P (insn))
8865 || NOTE_KIND (insn) == NOTE_INSN_CALL_ARG_LOCATION))
8866 insn = NEXT_INSN (insn);
8867 if (NOTE_P (insn)
8868 && ((NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
8869 && NOTE_DURING_CALL_P (insn))
8870 || NOTE_KIND (insn) == NOTE_INSN_CALL_ARG_LOCATION))
8871 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
8872 else
8873 note = emit_note_before (NOTE_INSN_VAR_LOCATION, insn);
8874 }
8875 NOTE_VAR_LOCATION (note) = note_vl;
8876
8877 set_dv_changed (var->dv, false);
8878 gcc_assert (var->in_changed_variables);
8879 var->in_changed_variables = false;
8880 changed_variables->clear_slot (varp);
8881
8882 /* Continue traversing the hash table. */
8883 return 1;
8884 }
8885
8886 /* While traversing changed_variables, push onto DATA (a stack of RTX
8887 values) entries that aren't user variables. */
8888
8889 int
8890 var_track_values_to_stack (variable **slot,
8891 vec<rtx, va_heap> *changed_values_stack)
8892 {
8893 variable *var = *slot;
8894
8895 if (var->onepart == ONEPART_VALUE)
8896 changed_values_stack->safe_push (dv_as_value (var->dv));
8897 else if (var->onepart == ONEPART_DEXPR)
8898 changed_values_stack->safe_push (DECL_RTL_KNOWN_SET (dv_as_decl (var->dv)));
8899
8900 return 1;
8901 }
8902
8903 /* Remove from changed_variables the entry whose DV corresponds to
8904 value or debug_expr VAL. */
8905 static void
8906 remove_value_from_changed_variables (rtx val)
8907 {
8908 decl_or_value dv = dv_from_rtx (val);
8909 variable **slot;
8910 variable *var;
8911
8912 slot = changed_variables->find_slot_with_hash (dv, dv_htab_hash (dv),
8913 NO_INSERT);
8914 var = *slot;
8915 var->in_changed_variables = false;
8916 changed_variables->clear_slot (slot);
8917 }
8918
8919 /* If VAL (a value or debug_expr) has backlinks to variables actively
8920 dependent on it in HTAB or in CHANGED_VARIABLES, mark them as
8921 changed, adding to CHANGED_VALUES_STACK any dependencies that may
8922 have dependencies of their own to notify. */
8923
8924 static void
8925 notify_dependents_of_changed_value (rtx val, variable_table_type *htab,
8926 vec<rtx, va_heap> *changed_values_stack)
8927 {
8928 variable **slot;
8929 variable *var;
8930 loc_exp_dep *led;
8931 decl_or_value dv = dv_from_rtx (val);
8932
8933 slot = changed_variables->find_slot_with_hash (dv, dv_htab_hash (dv),
8934 NO_INSERT);
8935 if (!slot)
8936 slot = htab->find_slot_with_hash (dv, dv_htab_hash (dv), NO_INSERT);
8937 if (!slot)
8938 slot = dropped_values->find_slot_with_hash (dv, dv_htab_hash (dv),
8939 NO_INSERT);
8940 var = *slot;
8941
8942 while ((led = VAR_LOC_DEP_LST (var)))
8943 {
8944 decl_or_value ldv = led->dv;
8945 variable *ivar;
8946
8947 /* Deactivate and remove the backlink, as it was “used up”. It
8948 makes no sense to attempt to notify the same entity again:
8949 either it will be recomputed and re-register an active
8950 dependency, or it will still have the changed mark. */
8951 if (led->next)
8952 led->next->pprev = led->pprev;
8953 if (led->pprev)
8954 *led->pprev = led->next;
8955 led->next = NULL;
8956 led->pprev = NULL;
8957
8958 if (dv_changed_p (ldv))
8959 continue;
8960
8961 switch (dv_onepart_p (ldv))
8962 {
8963 case ONEPART_VALUE:
8964 case ONEPART_DEXPR:
8965 set_dv_changed (ldv, true);
8966 changed_values_stack->safe_push (dv_as_rtx (ldv));
8967 break;
8968
8969 case ONEPART_VDECL:
8970 ivar = htab->find_with_hash (ldv, dv_htab_hash (ldv));
8971 gcc_checking_assert (!VAR_LOC_DEP_LST (ivar));
8972 variable_was_changed (ivar, NULL);
8973 break;
8974
8975 case NOT_ONEPART:
8976 delete led;
8977 ivar = htab->find_with_hash (ldv, dv_htab_hash (ldv));
8978 if (ivar)
8979 {
8980 int i = ivar->n_var_parts;
8981 while (i--)
8982 {
8983 rtx loc = ivar->var_part[i].cur_loc;
8984
8985 if (loc && GET_CODE (loc) == MEM
8986 && XEXP (loc, 0) == val)
8987 {
8988 variable_was_changed (ivar, NULL);
8989 break;
8990 }
8991 }
8992 }
8993 break;
8994
8995 default:
8996 gcc_unreachable ();
8997 }
8998 }
8999 }
9000
9001 /* Take out of changed_variables any entries that don't refer to use
9002 variables. Back-propagate change notifications from values and
9003 debug_exprs to their active dependencies in HTAB or in
9004 CHANGED_VARIABLES. */
9005
9006 static void
9007 process_changed_values (variable_table_type *htab)
9008 {
9009 int i, n;
9010 rtx val;
9011 auto_vec<rtx, 20> changed_values_stack;
9012
9013 /* Move values from changed_variables to changed_values_stack. */
9014 changed_variables
9015 ->traverse <vec<rtx, va_heap>*, var_track_values_to_stack>
9016 (&changed_values_stack);
9017
9018 /* Back-propagate change notifications in values while popping
9019 them from the stack. */
9020 for (n = i = changed_values_stack.length ();
9021 i > 0; i = changed_values_stack.length ())
9022 {
9023 val = changed_values_stack.pop ();
9024 notify_dependents_of_changed_value (val, htab, &changed_values_stack);
9025
9026 /* This condition will hold when visiting each of the entries
9027 originally in changed_variables. We can't remove them
9028 earlier because this could drop the backlinks before we got a
9029 chance to use them. */
9030 if (i == n)
9031 {
9032 remove_value_from_changed_variables (val);
9033 n--;
9034 }
9035 }
9036 }
9037
9038 /* Emit NOTE_INSN_VAR_LOCATION note for each variable from a chain
9039 CHANGED_VARIABLES and delete this chain. WHERE specifies whether
9040 the notes shall be emitted before of after instruction INSN. */
9041
9042 static void
9043 emit_notes_for_changes (rtx_insn *insn, enum emit_note_where where,
9044 shared_hash *vars)
9045 {
9046 emit_note_data data;
9047 variable_table_type *htab = shared_hash_htab (vars);
9048
9049 if (!changed_variables->elements ())
9050 return;
9051
9052 if (MAY_HAVE_DEBUG_BIND_INSNS)
9053 process_changed_values (htab);
9054
9055 data.insn = insn;
9056 data.where = where;
9057 data.vars = htab;
9058
9059 changed_variables
9060 ->traverse <emit_note_data*, emit_note_insn_var_location> (&data);
9061 }
9062
9063 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it differs from the
9064 same variable in hash table DATA or is not there at all. */
9065
9066 int
9067 emit_notes_for_differences_1 (variable **slot, variable_table_type *new_vars)
9068 {
9069 variable *old_var, *new_var;
9070
9071 old_var = *slot;
9072 new_var = new_vars->find_with_hash (old_var->dv, dv_htab_hash (old_var->dv));
9073
9074 if (!new_var)
9075 {
9076 /* Variable has disappeared. */
9077 variable *empty_var = NULL;
9078
9079 if (old_var->onepart == ONEPART_VALUE
9080 || old_var->onepart == ONEPART_DEXPR)
9081 {
9082 empty_var = variable_from_dropped (old_var->dv, NO_INSERT);
9083 if (empty_var)
9084 {
9085 gcc_checking_assert (!empty_var->in_changed_variables);
9086 if (!VAR_LOC_1PAUX (old_var))
9087 {
9088 VAR_LOC_1PAUX (old_var) = VAR_LOC_1PAUX (empty_var);
9089 VAR_LOC_1PAUX (empty_var) = NULL;
9090 }
9091 else
9092 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var));
9093 }
9094 }
9095
9096 if (!empty_var)
9097 {
9098 empty_var = onepart_pool_allocate (old_var->onepart);
9099 empty_var->dv = old_var->dv;
9100 empty_var->refcount = 0;
9101 empty_var->n_var_parts = 0;
9102 empty_var->onepart = old_var->onepart;
9103 empty_var->in_changed_variables = false;
9104 }
9105
9106 if (empty_var->onepart)
9107 {
9108 /* Propagate the auxiliary data to (ultimately)
9109 changed_variables. */
9110 empty_var->var_part[0].loc_chain = NULL;
9111 empty_var->var_part[0].cur_loc = NULL;
9112 VAR_LOC_1PAUX (empty_var) = VAR_LOC_1PAUX (old_var);
9113 VAR_LOC_1PAUX (old_var) = NULL;
9114 }
9115 variable_was_changed (empty_var, NULL);
9116 /* Continue traversing the hash table. */
9117 return 1;
9118 }
9119 /* Update cur_loc and one-part auxiliary data, before new_var goes
9120 through variable_was_changed. */
9121 if (old_var != new_var && new_var->onepart)
9122 {
9123 gcc_checking_assert (VAR_LOC_1PAUX (new_var) == NULL);
9124 VAR_LOC_1PAUX (new_var) = VAR_LOC_1PAUX (old_var);
9125 VAR_LOC_1PAUX (old_var) = NULL;
9126 new_var->var_part[0].cur_loc = old_var->var_part[0].cur_loc;
9127 }
9128 if (variable_different_p (old_var, new_var))
9129 variable_was_changed (new_var, NULL);
9130
9131 /* Continue traversing the hash table. */
9132 return 1;
9133 }
9134
9135 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it is not in hash
9136 table DATA. */
9137
9138 int
9139 emit_notes_for_differences_2 (variable **slot, variable_table_type *old_vars)
9140 {
9141 variable *old_var, *new_var;
9142
9143 new_var = *slot;
9144 old_var = old_vars->find_with_hash (new_var->dv, dv_htab_hash (new_var->dv));
9145 if (!old_var)
9146 {
9147 int i;
9148 for (i = 0; i < new_var->n_var_parts; i++)
9149 new_var->var_part[i].cur_loc = NULL;
9150 variable_was_changed (new_var, NULL);
9151 }
9152
9153 /* Continue traversing the hash table. */
9154 return 1;
9155 }
9156
9157 /* Emit notes before INSN for differences between dataflow sets OLD_SET and
9158 NEW_SET. */
9159
9160 static void
9161 emit_notes_for_differences (rtx_insn *insn, dataflow_set *old_set,
9162 dataflow_set *new_set)
9163 {
9164 shared_hash_htab (old_set->vars)
9165 ->traverse <variable_table_type *, emit_notes_for_differences_1>
9166 (shared_hash_htab (new_set->vars));
9167 shared_hash_htab (new_set->vars)
9168 ->traverse <variable_table_type *, emit_notes_for_differences_2>
9169 (shared_hash_htab (old_set->vars));
9170 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, new_set->vars);
9171 }
9172
9173 /* Return the next insn after INSN that is not a NOTE_INSN_VAR_LOCATION. */
9174
9175 static rtx_insn *
9176 next_non_note_insn_var_location (rtx_insn *insn)
9177 {
9178 while (insn)
9179 {
9180 insn = NEXT_INSN (insn);
9181 if (insn == 0
9182 || !NOTE_P (insn)
9183 || NOTE_KIND (insn) != NOTE_INSN_VAR_LOCATION)
9184 break;
9185 }
9186
9187 return insn;
9188 }
9189
9190 /* Emit the notes for changes of location parts in the basic block BB. */
9191
9192 static void
9193 emit_notes_in_bb (basic_block bb, dataflow_set *set)
9194 {
9195 unsigned int i;
9196 micro_operation *mo;
9197
9198 dataflow_set_clear (set);
9199 dataflow_set_copy (set, &VTI (bb)->in);
9200
9201 FOR_EACH_VEC_ELT (VTI (bb)->mos, i, mo)
9202 {
9203 rtx_insn *insn = mo->insn;
9204 rtx_insn *next_insn = next_non_note_insn_var_location (insn);
9205
9206 switch (mo->type)
9207 {
9208 case MO_CALL:
9209 dataflow_set_clear_at_call (set, insn);
9210 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_CALL_INSN, set->vars);
9211 {
9212 rtx arguments = mo->u.loc, *p = &arguments;
9213 rtx_note *note;
9214 while (*p)
9215 {
9216 XEXP (XEXP (*p, 0), 1)
9217 = vt_expand_loc (XEXP (XEXP (*p, 0), 1),
9218 shared_hash_htab (set->vars));
9219 /* If expansion is successful, keep it in the list. */
9220 if (XEXP (XEXP (*p, 0), 1))
9221 p = &XEXP (*p, 1);
9222 /* Otherwise, if the following item is data_value for it,
9223 drop it too too. */
9224 else if (XEXP (*p, 1)
9225 && REG_P (XEXP (XEXP (*p, 0), 0))
9226 && MEM_P (XEXP (XEXP (XEXP (*p, 1), 0), 0))
9227 && REG_P (XEXP (XEXP (XEXP (XEXP (*p, 1), 0), 0),
9228 0))
9229 && REGNO (XEXP (XEXP (*p, 0), 0))
9230 == REGNO (XEXP (XEXP (XEXP (XEXP (*p, 1), 0),
9231 0), 0)))
9232 *p = XEXP (XEXP (*p, 1), 1);
9233 /* Just drop this item. */
9234 else
9235 *p = XEXP (*p, 1);
9236 }
9237 note = emit_note_after (NOTE_INSN_CALL_ARG_LOCATION, insn);
9238 NOTE_VAR_LOCATION (note) = arguments;
9239 }
9240 break;
9241
9242 case MO_USE:
9243 {
9244 rtx loc = mo->u.loc;
9245
9246 if (REG_P (loc))
9247 var_reg_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
9248 else
9249 var_mem_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
9250
9251 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
9252 }
9253 break;
9254
9255 case MO_VAL_LOC:
9256 {
9257 rtx loc = mo->u.loc;
9258 rtx val, vloc;
9259 tree var;
9260
9261 if (GET_CODE (loc) == CONCAT)
9262 {
9263 val = XEXP (loc, 0);
9264 vloc = XEXP (loc, 1);
9265 }
9266 else
9267 {
9268 val = NULL_RTX;
9269 vloc = loc;
9270 }
9271
9272 var = PAT_VAR_LOCATION_DECL (vloc);
9273
9274 clobber_variable_part (set, NULL_RTX,
9275 dv_from_decl (var), 0, NULL_RTX);
9276 if (val)
9277 {
9278 if (VAL_NEEDS_RESOLUTION (loc))
9279 val_resolve (set, val, PAT_VAR_LOCATION_LOC (vloc), insn);
9280 set_variable_part (set, val, dv_from_decl (var), 0,
9281 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
9282 INSERT);
9283 }
9284 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
9285 set_variable_part (set, PAT_VAR_LOCATION_LOC (vloc),
9286 dv_from_decl (var), 0,
9287 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
9288 INSERT);
9289
9290 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
9291 }
9292 break;
9293
9294 case MO_VAL_USE:
9295 {
9296 rtx loc = mo->u.loc;
9297 rtx val, vloc, uloc;
9298
9299 vloc = uloc = XEXP (loc, 1);
9300 val = XEXP (loc, 0);
9301
9302 if (GET_CODE (val) == CONCAT)
9303 {
9304 uloc = XEXP (val, 1);
9305 val = XEXP (val, 0);
9306 }
9307
9308 if (VAL_NEEDS_RESOLUTION (loc))
9309 val_resolve (set, val, vloc, insn);
9310 else
9311 val_store (set, val, uloc, insn, false);
9312
9313 if (VAL_HOLDS_TRACK_EXPR (loc))
9314 {
9315 if (GET_CODE (uloc) == REG)
9316 var_reg_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
9317 NULL);
9318 else if (GET_CODE (uloc) == MEM)
9319 var_mem_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
9320 NULL);
9321 }
9322
9323 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
9324 }
9325 break;
9326
9327 case MO_VAL_SET:
9328 {
9329 rtx loc = mo->u.loc;
9330 rtx val, vloc, uloc;
9331 rtx dstv, srcv;
9332
9333 vloc = loc;
9334 uloc = XEXP (vloc, 1);
9335 val = XEXP (vloc, 0);
9336 vloc = uloc;
9337
9338 if (GET_CODE (uloc) == SET)
9339 {
9340 dstv = SET_DEST (uloc);
9341 srcv = SET_SRC (uloc);
9342 }
9343 else
9344 {
9345 dstv = uloc;
9346 srcv = NULL;
9347 }
9348
9349 if (GET_CODE (val) == CONCAT)
9350 {
9351 dstv = vloc = XEXP (val, 1);
9352 val = XEXP (val, 0);
9353 }
9354
9355 if (GET_CODE (vloc) == SET)
9356 {
9357 srcv = SET_SRC (vloc);
9358
9359 gcc_assert (val != srcv);
9360 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
9361
9362 dstv = vloc = SET_DEST (vloc);
9363
9364 if (VAL_NEEDS_RESOLUTION (loc))
9365 val_resolve (set, val, srcv, insn);
9366 }
9367 else if (VAL_NEEDS_RESOLUTION (loc))
9368 {
9369 gcc_assert (GET_CODE (uloc) == SET
9370 && GET_CODE (SET_SRC (uloc)) == REG);
9371 val_resolve (set, val, SET_SRC (uloc), insn);
9372 }
9373
9374 if (VAL_HOLDS_TRACK_EXPR (loc))
9375 {
9376 if (VAL_EXPR_IS_CLOBBERED (loc))
9377 {
9378 if (REG_P (uloc))
9379 var_reg_delete (set, uloc, true);
9380 else if (MEM_P (uloc))
9381 {
9382 gcc_assert (MEM_P (dstv));
9383 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (uloc));
9384 var_mem_delete (set, dstv, true);
9385 }
9386 }
9387 else
9388 {
9389 bool copied_p = VAL_EXPR_IS_COPIED (loc);
9390 rtx src = NULL, dst = uloc;
9391 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
9392
9393 if (GET_CODE (uloc) == SET)
9394 {
9395 src = SET_SRC (uloc);
9396 dst = SET_DEST (uloc);
9397 }
9398
9399 if (copied_p)
9400 {
9401 status = find_src_status (set, src);
9402
9403 src = find_src_set_src (set, src);
9404 }
9405
9406 if (REG_P (dst))
9407 var_reg_delete_and_set (set, dst, !copied_p,
9408 status, srcv);
9409 else if (MEM_P (dst))
9410 {
9411 gcc_assert (MEM_P (dstv));
9412 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (dst));
9413 var_mem_delete_and_set (set, dstv, !copied_p,
9414 status, srcv);
9415 }
9416 }
9417 }
9418 else if (REG_P (uloc))
9419 var_regno_delete (set, REGNO (uloc));
9420 else if (MEM_P (uloc))
9421 {
9422 gcc_checking_assert (GET_CODE (vloc) == MEM);
9423 gcc_checking_assert (vloc == dstv);
9424 if (vloc != dstv)
9425 clobber_overlapping_mems (set, vloc);
9426 }
9427
9428 val_store (set, val, dstv, insn, true);
9429
9430 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9431 set->vars);
9432 }
9433 break;
9434
9435 case MO_SET:
9436 {
9437 rtx loc = mo->u.loc;
9438 rtx set_src = NULL;
9439
9440 if (GET_CODE (loc) == SET)
9441 {
9442 set_src = SET_SRC (loc);
9443 loc = SET_DEST (loc);
9444 }
9445
9446 if (REG_P (loc))
9447 var_reg_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
9448 set_src);
9449 else
9450 var_mem_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
9451 set_src);
9452
9453 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9454 set->vars);
9455 }
9456 break;
9457
9458 case MO_COPY:
9459 {
9460 rtx loc = mo->u.loc;
9461 enum var_init_status src_status;
9462 rtx set_src = NULL;
9463
9464 if (GET_CODE (loc) == SET)
9465 {
9466 set_src = SET_SRC (loc);
9467 loc = SET_DEST (loc);
9468 }
9469
9470 src_status = find_src_status (set, set_src);
9471 set_src = find_src_set_src (set, set_src);
9472
9473 if (REG_P (loc))
9474 var_reg_delete_and_set (set, loc, false, src_status, set_src);
9475 else
9476 var_mem_delete_and_set (set, loc, false, src_status, set_src);
9477
9478 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9479 set->vars);
9480 }
9481 break;
9482
9483 case MO_USE_NO_VAR:
9484 {
9485 rtx loc = mo->u.loc;
9486
9487 if (REG_P (loc))
9488 var_reg_delete (set, loc, false);
9489 else
9490 var_mem_delete (set, loc, false);
9491
9492 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
9493 }
9494 break;
9495
9496 case MO_CLOBBER:
9497 {
9498 rtx loc = mo->u.loc;
9499
9500 if (REG_P (loc))
9501 var_reg_delete (set, loc, true);
9502 else
9503 var_mem_delete (set, loc, true);
9504
9505 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9506 set->vars);
9507 }
9508 break;
9509
9510 case MO_ADJUST:
9511 set->stack_adjust += mo->u.adjust;
9512 break;
9513 }
9514 }
9515 }
9516
9517 /* Emit notes for the whole function. */
9518
9519 static void
9520 vt_emit_notes (void)
9521 {
9522 basic_block bb;
9523 dataflow_set cur;
9524
9525 gcc_assert (!changed_variables->elements ());
9526
9527 /* Free memory occupied by the out hash tables, as they aren't used
9528 anymore. */
9529 FOR_EACH_BB_FN (bb, cfun)
9530 dataflow_set_clear (&VTI (bb)->out);
9531
9532 /* Enable emitting notes by functions (mainly by set_variable_part and
9533 delete_variable_part). */
9534 emit_notes = true;
9535
9536 if (MAY_HAVE_DEBUG_BIND_INSNS)
9537 dropped_values = new variable_table_type (cselib_get_next_uid () * 2);
9538
9539 dataflow_set_init (&cur);
9540
9541 FOR_EACH_BB_FN (bb, cfun)
9542 {
9543 /* Emit the notes for changes of variable locations between two
9544 subsequent basic blocks. */
9545 emit_notes_for_differences (BB_HEAD (bb), &cur, &VTI (bb)->in);
9546
9547 if (MAY_HAVE_DEBUG_BIND_INSNS)
9548 local_get_addr_cache = new hash_map<rtx, rtx>;
9549
9550 /* Emit the notes for the changes in the basic block itself. */
9551 emit_notes_in_bb (bb, &cur);
9552
9553 if (MAY_HAVE_DEBUG_BIND_INSNS)
9554 delete local_get_addr_cache;
9555 local_get_addr_cache = NULL;
9556
9557 /* Free memory occupied by the in hash table, we won't need it
9558 again. */
9559 dataflow_set_clear (&VTI (bb)->in);
9560 }
9561
9562 if (flag_checking)
9563 shared_hash_htab (cur.vars)
9564 ->traverse <variable_table_type *, emit_notes_for_differences_1>
9565 (shared_hash_htab (empty_shared_hash));
9566
9567 dataflow_set_destroy (&cur);
9568
9569 if (MAY_HAVE_DEBUG_BIND_INSNS)
9570 delete dropped_values;
9571 dropped_values = NULL;
9572
9573 emit_notes = false;
9574 }
9575
9576 /* If there is a declaration and offset associated with register/memory RTL
9577 assign declaration to *DECLP and offset to *OFFSETP, and return true. */
9578
9579 static bool
9580 vt_get_decl_and_offset (rtx rtl, tree *declp, poly_int64 *offsetp)
9581 {
9582 if (REG_P (rtl))
9583 {
9584 if (REG_ATTRS (rtl))
9585 {
9586 *declp = REG_EXPR (rtl);
9587 *offsetp = REG_OFFSET (rtl);
9588 return true;
9589 }
9590 }
9591 else if (GET_CODE (rtl) == PARALLEL)
9592 {
9593 tree decl = NULL_TREE;
9594 HOST_WIDE_INT offset = MAX_VAR_PARTS;
9595 int len = XVECLEN (rtl, 0), i;
9596
9597 for (i = 0; i < len; i++)
9598 {
9599 rtx reg = XEXP (XVECEXP (rtl, 0, i), 0);
9600 if (!REG_P (reg) || !REG_ATTRS (reg))
9601 break;
9602 if (!decl)
9603 decl = REG_EXPR (reg);
9604 if (REG_EXPR (reg) != decl)
9605 break;
9606 HOST_WIDE_INT this_offset;
9607 if (!track_offset_p (REG_OFFSET (reg), &this_offset))
9608 break;
9609 offset = MIN (offset, this_offset);
9610 }
9611
9612 if (i == len)
9613 {
9614 *declp = decl;
9615 *offsetp = offset;
9616 return true;
9617 }
9618 }
9619 else if (MEM_P (rtl))
9620 {
9621 if (MEM_ATTRS (rtl))
9622 {
9623 *declp = MEM_EXPR (rtl);
9624 *offsetp = int_mem_offset (rtl);
9625 return true;
9626 }
9627 }
9628 return false;
9629 }
9630
9631 /* Record the value for the ENTRY_VALUE of RTL as a global equivalence
9632 of VAL. */
9633
9634 static void
9635 record_entry_value (cselib_val *val, rtx rtl)
9636 {
9637 rtx ev = gen_rtx_ENTRY_VALUE (GET_MODE (rtl));
9638
9639 ENTRY_VALUE_EXP (ev) = rtl;
9640
9641 cselib_add_permanent_equiv (val, ev, get_insns ());
9642 }
9643
9644 /* Insert function parameter PARM in IN and OUT sets of ENTRY_BLOCK. */
9645
9646 static void
9647 vt_add_function_parameter (tree parm)
9648 {
9649 rtx decl_rtl = DECL_RTL_IF_SET (parm);
9650 rtx incoming = DECL_INCOMING_RTL (parm);
9651 tree decl;
9652 machine_mode mode;
9653 poly_int64 offset;
9654 dataflow_set *out;
9655 decl_or_value dv;
9656
9657 if (TREE_CODE (parm) != PARM_DECL)
9658 return;
9659
9660 if (!decl_rtl || !incoming)
9661 return;
9662
9663 if (GET_MODE (decl_rtl) == BLKmode || GET_MODE (incoming) == BLKmode)
9664 return;
9665
9666 /* If there is a DRAP register or a pseudo in internal_arg_pointer,
9667 rewrite the incoming location of parameters passed on the stack
9668 into MEMs based on the argument pointer, so that incoming doesn't
9669 depend on a pseudo. */
9670 if (MEM_P (incoming)
9671 && (XEXP (incoming, 0) == crtl->args.internal_arg_pointer
9672 || (GET_CODE (XEXP (incoming, 0)) == PLUS
9673 && XEXP (XEXP (incoming, 0), 0)
9674 == crtl->args.internal_arg_pointer
9675 && CONST_INT_P (XEXP (XEXP (incoming, 0), 1)))))
9676 {
9677 HOST_WIDE_INT off = -FIRST_PARM_OFFSET (current_function_decl);
9678 if (GET_CODE (XEXP (incoming, 0)) == PLUS)
9679 off += INTVAL (XEXP (XEXP (incoming, 0), 1));
9680 incoming
9681 = replace_equiv_address_nv (incoming,
9682 plus_constant (Pmode,
9683 arg_pointer_rtx, off));
9684 }
9685
9686 #ifdef HAVE_window_save
9687 /* DECL_INCOMING_RTL uses the INCOMING_REGNO of parameter registers.
9688 If the target machine has an explicit window save instruction, the
9689 actual entry value is the corresponding OUTGOING_REGNO instead. */
9690 if (HAVE_window_save && !crtl->uses_only_leaf_regs)
9691 {
9692 if (REG_P (incoming)
9693 && HARD_REGISTER_P (incoming)
9694 && OUTGOING_REGNO (REGNO (incoming)) != REGNO (incoming))
9695 {
9696 parm_reg p;
9697 p.incoming = incoming;
9698 incoming
9699 = gen_rtx_REG_offset (incoming, GET_MODE (incoming),
9700 OUTGOING_REGNO (REGNO (incoming)), 0);
9701 p.outgoing = incoming;
9702 vec_safe_push (windowed_parm_regs, p);
9703 }
9704 else if (GET_CODE (incoming) == PARALLEL)
9705 {
9706 rtx outgoing
9707 = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (XVECLEN (incoming, 0)));
9708 int i;
9709
9710 for (i = 0; i < XVECLEN (incoming, 0); i++)
9711 {
9712 rtx reg = XEXP (XVECEXP (incoming, 0, i), 0);
9713 parm_reg p;
9714 p.incoming = reg;
9715 reg = gen_rtx_REG_offset (reg, GET_MODE (reg),
9716 OUTGOING_REGNO (REGNO (reg)), 0);
9717 p.outgoing = reg;
9718 XVECEXP (outgoing, 0, i)
9719 = gen_rtx_EXPR_LIST (VOIDmode, reg,
9720 XEXP (XVECEXP (incoming, 0, i), 1));
9721 vec_safe_push (windowed_parm_regs, p);
9722 }
9723
9724 incoming = outgoing;
9725 }
9726 else if (MEM_P (incoming)
9727 && REG_P (XEXP (incoming, 0))
9728 && HARD_REGISTER_P (XEXP (incoming, 0)))
9729 {
9730 rtx reg = XEXP (incoming, 0);
9731 if (OUTGOING_REGNO (REGNO (reg)) != REGNO (reg))
9732 {
9733 parm_reg p;
9734 p.incoming = reg;
9735 reg = gen_raw_REG (GET_MODE (reg), OUTGOING_REGNO (REGNO (reg)));
9736 p.outgoing = reg;
9737 vec_safe_push (windowed_parm_regs, p);
9738 incoming = replace_equiv_address_nv (incoming, reg);
9739 }
9740 }
9741 }
9742 #endif
9743
9744 if (!vt_get_decl_and_offset (incoming, &decl, &offset))
9745 {
9746 if (MEM_P (incoming))
9747 {
9748 /* This means argument is passed by invisible reference. */
9749 offset = 0;
9750 decl = parm;
9751 }
9752 else
9753 {
9754 if (!vt_get_decl_and_offset (decl_rtl, &decl, &offset))
9755 return;
9756 offset += byte_lowpart_offset (GET_MODE (incoming),
9757 GET_MODE (decl_rtl));
9758 }
9759 }
9760
9761 if (!decl)
9762 return;
9763
9764 if (parm != decl)
9765 {
9766 /* If that DECL_RTL wasn't a pseudo that got spilled to
9767 memory, bail out. Otherwise, the spill slot sharing code
9768 will force the memory to reference spill_slot_decl (%sfp),
9769 so we don't match above. That's ok, the pseudo must have
9770 referenced the entire parameter, so just reset OFFSET. */
9771 if (decl != get_spill_slot_decl (false))
9772 return;
9773 offset = 0;
9774 }
9775
9776 HOST_WIDE_INT const_offset;
9777 if (!track_loc_p (incoming, parm, offset, false, &mode, &const_offset))
9778 return;
9779
9780 out = &VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->out;
9781
9782 dv = dv_from_decl (parm);
9783
9784 if (target_for_debug_bind (parm)
9785 /* We can't deal with these right now, because this kind of
9786 variable is single-part. ??? We could handle parallels
9787 that describe multiple locations for the same single
9788 value, but ATM we don't. */
9789 && GET_CODE (incoming) != PARALLEL)
9790 {
9791 cselib_val *val;
9792 rtx lowpart;
9793
9794 /* ??? We shouldn't ever hit this, but it may happen because
9795 arguments passed by invisible reference aren't dealt with
9796 above: incoming-rtl will have Pmode rather than the
9797 expected mode for the type. */
9798 if (const_offset)
9799 return;
9800
9801 lowpart = var_lowpart (mode, incoming);
9802 if (!lowpart)
9803 return;
9804
9805 val = cselib_lookup_from_insn (lowpart, mode, true,
9806 VOIDmode, get_insns ());
9807
9808 /* ??? Float-typed values in memory are not handled by
9809 cselib. */
9810 if (val)
9811 {
9812 preserve_value (val);
9813 set_variable_part (out, val->val_rtx, dv, const_offset,
9814 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9815 dv = dv_from_value (val->val_rtx);
9816 }
9817
9818 if (MEM_P (incoming))
9819 {
9820 val = cselib_lookup_from_insn (XEXP (incoming, 0), mode, true,
9821 VOIDmode, get_insns ());
9822 if (val)
9823 {
9824 preserve_value (val);
9825 incoming = replace_equiv_address_nv (incoming, val->val_rtx);
9826 }
9827 }
9828 }
9829
9830 if (REG_P (incoming))
9831 {
9832 incoming = var_lowpart (mode, incoming);
9833 gcc_assert (REGNO (incoming) < FIRST_PSEUDO_REGISTER);
9834 attrs_list_insert (&out->regs[REGNO (incoming)], dv, const_offset,
9835 incoming);
9836 set_variable_part (out, incoming, dv, const_offset,
9837 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9838 if (dv_is_value_p (dv))
9839 {
9840 record_entry_value (CSELIB_VAL_PTR (dv_as_value (dv)), incoming);
9841 if (TREE_CODE (TREE_TYPE (parm)) == REFERENCE_TYPE
9842 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_TYPE (parm))))
9843 {
9844 machine_mode indmode
9845 = TYPE_MODE (TREE_TYPE (TREE_TYPE (parm)));
9846 rtx mem = gen_rtx_MEM (indmode, incoming);
9847 cselib_val *val = cselib_lookup_from_insn (mem, indmode, true,
9848 VOIDmode,
9849 get_insns ());
9850 if (val)
9851 {
9852 preserve_value (val);
9853 record_entry_value (val, mem);
9854 set_variable_part (out, mem, dv_from_value (val->val_rtx), 0,
9855 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9856 }
9857 }
9858 }
9859 }
9860 else if (GET_CODE (incoming) == PARALLEL && !dv_onepart_p (dv))
9861 {
9862 int i;
9863
9864 for (i = 0; i < XVECLEN (incoming, 0); i++)
9865 {
9866 rtx reg = XEXP (XVECEXP (incoming, 0, i), 0);
9867 /* vt_get_decl_and_offset has already checked that the offset
9868 is a valid variable part. */
9869 const_offset = get_tracked_reg_offset (reg);
9870 gcc_assert (REGNO (reg) < FIRST_PSEUDO_REGISTER);
9871 attrs_list_insert (&out->regs[REGNO (reg)], dv, const_offset, reg);
9872 set_variable_part (out, reg, dv, const_offset,
9873 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9874 }
9875 }
9876 else if (MEM_P (incoming))
9877 {
9878 incoming = var_lowpart (mode, incoming);
9879 set_variable_part (out, incoming, dv, const_offset,
9880 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9881 }
9882 }
9883
9884 /* Insert function parameters to IN and OUT sets of ENTRY_BLOCK. */
9885
9886 static void
9887 vt_add_function_parameters (void)
9888 {
9889 tree parm;
9890
9891 for (parm = DECL_ARGUMENTS (current_function_decl);
9892 parm; parm = DECL_CHAIN (parm))
9893 if (!POINTER_BOUNDS_P (parm))
9894 vt_add_function_parameter (parm);
9895
9896 if (DECL_HAS_VALUE_EXPR_P (DECL_RESULT (current_function_decl)))
9897 {
9898 tree vexpr = DECL_VALUE_EXPR (DECL_RESULT (current_function_decl));
9899
9900 if (TREE_CODE (vexpr) == INDIRECT_REF)
9901 vexpr = TREE_OPERAND (vexpr, 0);
9902
9903 if (TREE_CODE (vexpr) == PARM_DECL
9904 && DECL_ARTIFICIAL (vexpr)
9905 && !DECL_IGNORED_P (vexpr)
9906 && DECL_NAMELESS (vexpr))
9907 vt_add_function_parameter (vexpr);
9908 }
9909 }
9910
9911 /* Initialize cfa_base_rtx, create a preserved VALUE for it and
9912 ensure it isn't flushed during cselib_reset_table.
9913 Can be called only if frame_pointer_rtx resp. arg_pointer_rtx
9914 has been eliminated. */
9915
9916 static void
9917 vt_init_cfa_base (void)
9918 {
9919 cselib_val *val;
9920
9921 #ifdef FRAME_POINTER_CFA_OFFSET
9922 cfa_base_rtx = frame_pointer_rtx;
9923 cfa_base_offset = -FRAME_POINTER_CFA_OFFSET (current_function_decl);
9924 #else
9925 cfa_base_rtx = arg_pointer_rtx;
9926 cfa_base_offset = -ARG_POINTER_CFA_OFFSET (current_function_decl);
9927 #endif
9928 if (cfa_base_rtx == hard_frame_pointer_rtx
9929 || !fixed_regs[REGNO (cfa_base_rtx)])
9930 {
9931 cfa_base_rtx = NULL_RTX;
9932 return;
9933 }
9934 if (!MAY_HAVE_DEBUG_BIND_INSNS)
9935 return;
9936
9937 /* Tell alias analysis that cfa_base_rtx should share
9938 find_base_term value with stack pointer or hard frame pointer. */
9939 if (!frame_pointer_needed)
9940 vt_equate_reg_base_value (cfa_base_rtx, stack_pointer_rtx);
9941 else if (!crtl->stack_realign_tried)
9942 vt_equate_reg_base_value (cfa_base_rtx, hard_frame_pointer_rtx);
9943
9944 val = cselib_lookup_from_insn (cfa_base_rtx, GET_MODE (cfa_base_rtx), 1,
9945 VOIDmode, get_insns ());
9946 preserve_value (val);
9947 cselib_preserve_cfa_base_value (val, REGNO (cfa_base_rtx));
9948 }
9949
9950 /* Reemit INSN, a MARKER_DEBUG_INSN, as a note. */
9951
9952 static rtx_insn *
9953 reemit_marker_as_note (rtx_insn *insn)
9954 {
9955 gcc_checking_assert (DEBUG_MARKER_INSN_P (insn));
9956
9957 enum insn_note kind = INSN_DEBUG_MARKER_KIND (insn);
9958
9959 switch (kind)
9960 {
9961 case NOTE_INSN_BEGIN_STMT:
9962 case NOTE_INSN_INLINE_ENTRY:
9963 {
9964 rtx_insn *note = NULL;
9965 if (cfun->debug_nonbind_markers)
9966 {
9967 note = emit_note_before (kind, insn);
9968 NOTE_MARKER_LOCATION (note) = INSN_LOCATION (insn);
9969 }
9970 delete_insn (insn);
9971 return note;
9972 }
9973
9974 default:
9975 gcc_unreachable ();
9976 }
9977 }
9978
9979 /* Allocate and initialize the data structures for variable tracking
9980 and parse the RTL to get the micro operations. */
9981
9982 static bool
9983 vt_initialize (void)
9984 {
9985 basic_block bb;
9986 HOST_WIDE_INT fp_cfa_offset = -1;
9987
9988 alloc_aux_for_blocks (sizeof (variable_tracking_info));
9989
9990 empty_shared_hash = shared_hash_pool.allocate ();
9991 empty_shared_hash->refcount = 1;
9992 empty_shared_hash->htab = new variable_table_type (1);
9993 changed_variables = new variable_table_type (10);
9994
9995 /* Init the IN and OUT sets. */
9996 FOR_ALL_BB_FN (bb, cfun)
9997 {
9998 VTI (bb)->visited = false;
9999 VTI (bb)->flooded = false;
10000 dataflow_set_init (&VTI (bb)->in);
10001 dataflow_set_init (&VTI (bb)->out);
10002 VTI (bb)->permp = NULL;
10003 }
10004
10005 if (MAY_HAVE_DEBUG_BIND_INSNS)
10006 {
10007 cselib_init (CSELIB_RECORD_MEMORY | CSELIB_PRESERVE_CONSTANTS);
10008 scratch_regs = BITMAP_ALLOC (NULL);
10009 preserved_values.create (256);
10010 global_get_addr_cache = new hash_map<rtx, rtx>;
10011 }
10012 else
10013 {
10014 scratch_regs = NULL;
10015 global_get_addr_cache = NULL;
10016 }
10017
10018 if (MAY_HAVE_DEBUG_BIND_INSNS)
10019 {
10020 rtx reg, expr;
10021 int ofst;
10022 cselib_val *val;
10023
10024 #ifdef FRAME_POINTER_CFA_OFFSET
10025 reg = frame_pointer_rtx;
10026 ofst = FRAME_POINTER_CFA_OFFSET (current_function_decl);
10027 #else
10028 reg = arg_pointer_rtx;
10029 ofst = ARG_POINTER_CFA_OFFSET (current_function_decl);
10030 #endif
10031
10032 ofst -= INCOMING_FRAME_SP_OFFSET;
10033
10034 val = cselib_lookup_from_insn (reg, GET_MODE (reg), 1,
10035 VOIDmode, get_insns ());
10036 preserve_value (val);
10037 if (reg != hard_frame_pointer_rtx && fixed_regs[REGNO (reg)])
10038 cselib_preserve_cfa_base_value (val, REGNO (reg));
10039 expr = plus_constant (GET_MODE (stack_pointer_rtx),
10040 stack_pointer_rtx, -ofst);
10041 cselib_add_permanent_equiv (val, expr, get_insns ());
10042
10043 if (ofst)
10044 {
10045 val = cselib_lookup_from_insn (stack_pointer_rtx,
10046 GET_MODE (stack_pointer_rtx), 1,
10047 VOIDmode, get_insns ());
10048 preserve_value (val);
10049 expr = plus_constant (GET_MODE (reg), reg, ofst);
10050 cselib_add_permanent_equiv (val, expr, get_insns ());
10051 }
10052 }
10053
10054 /* In order to factor out the adjustments made to the stack pointer or to
10055 the hard frame pointer and thus be able to use DW_OP_fbreg operations
10056 instead of individual location lists, we're going to rewrite MEMs based
10057 on them into MEMs based on the CFA by de-eliminating stack_pointer_rtx
10058 or hard_frame_pointer_rtx to the virtual CFA pointer frame_pointer_rtx
10059 resp. arg_pointer_rtx. We can do this either when there is no frame
10060 pointer in the function and stack adjustments are consistent for all
10061 basic blocks or when there is a frame pointer and no stack realignment.
10062 But we first have to check that frame_pointer_rtx resp. arg_pointer_rtx
10063 has been eliminated. */
10064 if (!frame_pointer_needed)
10065 {
10066 rtx reg, elim;
10067
10068 if (!vt_stack_adjustments ())
10069 return false;
10070
10071 #ifdef FRAME_POINTER_CFA_OFFSET
10072 reg = frame_pointer_rtx;
10073 #else
10074 reg = arg_pointer_rtx;
10075 #endif
10076 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10077 if (elim != reg)
10078 {
10079 if (GET_CODE (elim) == PLUS)
10080 elim = XEXP (elim, 0);
10081 if (elim == stack_pointer_rtx)
10082 vt_init_cfa_base ();
10083 }
10084 }
10085 else if (!crtl->stack_realign_tried)
10086 {
10087 rtx reg, elim;
10088
10089 #ifdef FRAME_POINTER_CFA_OFFSET
10090 reg = frame_pointer_rtx;
10091 fp_cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
10092 #else
10093 reg = arg_pointer_rtx;
10094 fp_cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
10095 #endif
10096 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10097 if (elim != reg)
10098 {
10099 if (GET_CODE (elim) == PLUS)
10100 {
10101 fp_cfa_offset -= INTVAL (XEXP (elim, 1));
10102 elim = XEXP (elim, 0);
10103 }
10104 if (elim != hard_frame_pointer_rtx)
10105 fp_cfa_offset = -1;
10106 }
10107 else
10108 fp_cfa_offset = -1;
10109 }
10110
10111 /* If the stack is realigned and a DRAP register is used, we're going to
10112 rewrite MEMs based on it representing incoming locations of parameters
10113 passed on the stack into MEMs based on the argument pointer. Although
10114 we aren't going to rewrite other MEMs, we still need to initialize the
10115 virtual CFA pointer in order to ensure that the argument pointer will
10116 be seen as a constant throughout the function.
10117
10118 ??? This doesn't work if FRAME_POINTER_CFA_OFFSET is defined. */
10119 else if (stack_realign_drap)
10120 {
10121 rtx reg, elim;
10122
10123 #ifdef FRAME_POINTER_CFA_OFFSET
10124 reg = frame_pointer_rtx;
10125 #else
10126 reg = arg_pointer_rtx;
10127 #endif
10128 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10129 if (elim != reg)
10130 {
10131 if (GET_CODE (elim) == PLUS)
10132 elim = XEXP (elim, 0);
10133 if (elim == hard_frame_pointer_rtx)
10134 vt_init_cfa_base ();
10135 }
10136 }
10137
10138 hard_frame_pointer_adjustment = -1;
10139
10140 vt_add_function_parameters ();
10141
10142 FOR_EACH_BB_FN (bb, cfun)
10143 {
10144 rtx_insn *insn;
10145 HOST_WIDE_INT pre, post = 0;
10146 basic_block first_bb, last_bb;
10147
10148 if (MAY_HAVE_DEBUG_BIND_INSNS)
10149 {
10150 cselib_record_sets_hook = add_with_sets;
10151 if (dump_file && (dump_flags & TDF_DETAILS))
10152 fprintf (dump_file, "first value: %i\n",
10153 cselib_get_next_uid ());
10154 }
10155
10156 first_bb = bb;
10157 for (;;)
10158 {
10159 edge e;
10160 if (bb->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
10161 || ! single_pred_p (bb->next_bb))
10162 break;
10163 e = find_edge (bb, bb->next_bb);
10164 if (! e || (e->flags & EDGE_FALLTHRU) == 0)
10165 break;
10166 bb = bb->next_bb;
10167 }
10168 last_bb = bb;
10169
10170 /* Add the micro-operations to the vector. */
10171 FOR_BB_BETWEEN (bb, first_bb, last_bb->next_bb, next_bb)
10172 {
10173 HOST_WIDE_INT offset = VTI (bb)->out.stack_adjust;
10174 VTI (bb)->out.stack_adjust = VTI (bb)->in.stack_adjust;
10175
10176 rtx_insn *next;
10177 FOR_BB_INSNS_SAFE (bb, insn, next)
10178 {
10179 if (INSN_P (insn))
10180 {
10181 if (!frame_pointer_needed)
10182 {
10183 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
10184 if (pre)
10185 {
10186 micro_operation mo;
10187 mo.type = MO_ADJUST;
10188 mo.u.adjust = pre;
10189 mo.insn = insn;
10190 if (dump_file && (dump_flags & TDF_DETAILS))
10191 log_op_type (PATTERN (insn), bb, insn,
10192 MO_ADJUST, dump_file);
10193 VTI (bb)->mos.safe_push (mo);
10194 VTI (bb)->out.stack_adjust += pre;
10195 }
10196 }
10197
10198 cselib_hook_called = false;
10199 adjust_insn (bb, insn);
10200 if (DEBUG_MARKER_INSN_P (insn))
10201 {
10202 reemit_marker_as_note (insn);
10203 continue;
10204 }
10205
10206 if (MAY_HAVE_DEBUG_BIND_INSNS)
10207 {
10208 if (CALL_P (insn))
10209 prepare_call_arguments (bb, insn);
10210 cselib_process_insn (insn);
10211 if (dump_file && (dump_flags & TDF_DETAILS))
10212 {
10213 print_rtl_single (dump_file, insn);
10214 dump_cselib_table (dump_file);
10215 }
10216 }
10217 if (!cselib_hook_called)
10218 add_with_sets (insn, 0, 0);
10219 cancel_changes (0);
10220
10221 if (!frame_pointer_needed && post)
10222 {
10223 micro_operation mo;
10224 mo.type = MO_ADJUST;
10225 mo.u.adjust = post;
10226 mo.insn = insn;
10227 if (dump_file && (dump_flags & TDF_DETAILS))
10228 log_op_type (PATTERN (insn), bb, insn,
10229 MO_ADJUST, dump_file);
10230 VTI (bb)->mos.safe_push (mo);
10231 VTI (bb)->out.stack_adjust += post;
10232 }
10233
10234 if (fp_cfa_offset != -1
10235 && hard_frame_pointer_adjustment == -1
10236 && fp_setter_insn (insn))
10237 {
10238 vt_init_cfa_base ();
10239 hard_frame_pointer_adjustment = fp_cfa_offset;
10240 /* Disassociate sp from fp now. */
10241 if (MAY_HAVE_DEBUG_BIND_INSNS)
10242 {
10243 cselib_val *v;
10244 cselib_invalidate_rtx (stack_pointer_rtx);
10245 v = cselib_lookup (stack_pointer_rtx, Pmode, 1,
10246 VOIDmode);
10247 if (v && !cselib_preserved_value_p (v))
10248 {
10249 cselib_set_value_sp_based (v);
10250 preserve_value (v);
10251 }
10252 }
10253 }
10254 }
10255 }
10256 gcc_assert (offset == VTI (bb)->out.stack_adjust);
10257 }
10258
10259 bb = last_bb;
10260
10261 if (MAY_HAVE_DEBUG_BIND_INSNS)
10262 {
10263 cselib_preserve_only_values ();
10264 cselib_reset_table (cselib_get_next_uid ());
10265 cselib_record_sets_hook = NULL;
10266 }
10267 }
10268
10269 hard_frame_pointer_adjustment = -1;
10270 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->flooded = true;
10271 cfa_base_rtx = NULL_RTX;
10272 return true;
10273 }
10274
10275 /* This is *not* reset after each function. It gives each
10276 NOTE_INSN_DELETED_DEBUG_LABEL in the entire compilation
10277 a unique label number. */
10278
10279 static int debug_label_num = 1;
10280
10281 /* Remove from the insn stream a single debug insn used for
10282 variable tracking at assignments. */
10283
10284 static inline void
10285 delete_vta_debug_insn (rtx_insn *insn)
10286 {
10287 if (DEBUG_MARKER_INSN_P (insn))
10288 {
10289 reemit_marker_as_note (insn);
10290 return;
10291 }
10292
10293 tree decl = INSN_VAR_LOCATION_DECL (insn);
10294 if (TREE_CODE (decl) == LABEL_DECL
10295 && DECL_NAME (decl)
10296 && !DECL_RTL_SET_P (decl))
10297 {
10298 PUT_CODE (insn, NOTE);
10299 NOTE_KIND (insn) = NOTE_INSN_DELETED_DEBUG_LABEL;
10300 NOTE_DELETED_LABEL_NAME (insn)
10301 = IDENTIFIER_POINTER (DECL_NAME (decl));
10302 SET_DECL_RTL (decl, insn);
10303 CODE_LABEL_NUMBER (insn) = debug_label_num++;
10304 }
10305 else
10306 delete_insn (insn);
10307 }
10308
10309 /* Remove from the insn stream all debug insns used for variable
10310 tracking at assignments. USE_CFG should be false if the cfg is no
10311 longer usable. */
10312
10313 void
10314 delete_vta_debug_insns (bool use_cfg)
10315 {
10316 basic_block bb;
10317 rtx_insn *insn, *next;
10318
10319 if (!MAY_HAVE_DEBUG_INSNS)
10320 return;
10321
10322 if (use_cfg)
10323 FOR_EACH_BB_FN (bb, cfun)
10324 {
10325 FOR_BB_INSNS_SAFE (bb, insn, next)
10326 if (DEBUG_INSN_P (insn))
10327 delete_vta_debug_insn (insn);
10328 }
10329 else
10330 for (insn = get_insns (); insn; insn = next)
10331 {
10332 next = NEXT_INSN (insn);
10333 if (DEBUG_INSN_P (insn))
10334 delete_vta_debug_insn (insn);
10335 }
10336 }
10337
10338 /* Run a fast, BB-local only version of var tracking, to take care of
10339 information that we don't do global analysis on, such that not all
10340 information is lost. If SKIPPED holds, we're skipping the global
10341 pass entirely, so we should try to use information it would have
10342 handled as well.. */
10343
10344 static void
10345 vt_debug_insns_local (bool skipped ATTRIBUTE_UNUSED)
10346 {
10347 /* ??? Just skip it all for now. */
10348 delete_vta_debug_insns (true);
10349 }
10350
10351 /* Free the data structures needed for variable tracking. */
10352
10353 static void
10354 vt_finalize (void)
10355 {
10356 basic_block bb;
10357
10358 FOR_EACH_BB_FN (bb, cfun)
10359 {
10360 VTI (bb)->mos.release ();
10361 }
10362
10363 FOR_ALL_BB_FN (bb, cfun)
10364 {
10365 dataflow_set_destroy (&VTI (bb)->in);
10366 dataflow_set_destroy (&VTI (bb)->out);
10367 if (VTI (bb)->permp)
10368 {
10369 dataflow_set_destroy (VTI (bb)->permp);
10370 XDELETE (VTI (bb)->permp);
10371 }
10372 }
10373 free_aux_for_blocks ();
10374 delete empty_shared_hash->htab;
10375 empty_shared_hash->htab = NULL;
10376 delete changed_variables;
10377 changed_variables = NULL;
10378 attrs_pool.release ();
10379 var_pool.release ();
10380 location_chain_pool.release ();
10381 shared_hash_pool.release ();
10382
10383 if (MAY_HAVE_DEBUG_BIND_INSNS)
10384 {
10385 if (global_get_addr_cache)
10386 delete global_get_addr_cache;
10387 global_get_addr_cache = NULL;
10388 loc_exp_dep_pool.release ();
10389 valvar_pool.release ();
10390 preserved_values.release ();
10391 cselib_finish ();
10392 BITMAP_FREE (scratch_regs);
10393 scratch_regs = NULL;
10394 }
10395
10396 #ifdef HAVE_window_save
10397 vec_free (windowed_parm_regs);
10398 #endif
10399
10400 if (vui_vec)
10401 XDELETEVEC (vui_vec);
10402 vui_vec = NULL;
10403 vui_allocated = 0;
10404 }
10405
10406 /* The entry point to variable tracking pass. */
10407
10408 static inline unsigned int
10409 variable_tracking_main_1 (void)
10410 {
10411 bool success;
10412
10413 /* We won't be called as a separate pass if flag_var_tracking is not
10414 set, but final may call us to turn debug markers into notes. */
10415 if ((!flag_var_tracking && MAY_HAVE_DEBUG_INSNS)
10416 || flag_var_tracking_assignments < 0
10417 /* Var-tracking right now assumes the IR doesn't contain
10418 any pseudos at this point. */
10419 || targetm.no_register_allocation)
10420 {
10421 delete_vta_debug_insns (true);
10422 return 0;
10423 }
10424
10425 if (!flag_var_tracking)
10426 return 0;
10427
10428 if (n_basic_blocks_for_fn (cfun) > 500
10429 && n_edges_for_fn (cfun) / n_basic_blocks_for_fn (cfun) >= 20)
10430 {
10431 vt_debug_insns_local (true);
10432 return 0;
10433 }
10434
10435 mark_dfs_back_edges ();
10436 if (!vt_initialize ())
10437 {
10438 vt_finalize ();
10439 vt_debug_insns_local (true);
10440 return 0;
10441 }
10442
10443 success = vt_find_locations ();
10444
10445 if (!success && flag_var_tracking_assignments > 0)
10446 {
10447 vt_finalize ();
10448
10449 delete_vta_debug_insns (true);
10450
10451 /* This is later restored by our caller. */
10452 flag_var_tracking_assignments = 0;
10453
10454 success = vt_initialize ();
10455 gcc_assert (success);
10456
10457 success = vt_find_locations ();
10458 }
10459
10460 if (!success)
10461 {
10462 vt_finalize ();
10463 vt_debug_insns_local (false);
10464 return 0;
10465 }
10466
10467 if (dump_file && (dump_flags & TDF_DETAILS))
10468 {
10469 dump_dataflow_sets ();
10470 dump_reg_info (dump_file);
10471 dump_flow_info (dump_file, dump_flags);
10472 }
10473
10474 timevar_push (TV_VAR_TRACKING_EMIT);
10475 vt_emit_notes ();
10476 timevar_pop (TV_VAR_TRACKING_EMIT);
10477
10478 vt_finalize ();
10479 vt_debug_insns_local (false);
10480 return 0;
10481 }
10482
10483 unsigned int
10484 variable_tracking_main (void)
10485 {
10486 unsigned int ret;
10487 int save = flag_var_tracking_assignments;
10488
10489 ret = variable_tracking_main_1 ();
10490
10491 flag_var_tracking_assignments = save;
10492
10493 return ret;
10494 }
10495 \f
10496 namespace {
10497
10498 const pass_data pass_data_variable_tracking =
10499 {
10500 RTL_PASS, /* type */
10501 "vartrack", /* name */
10502 OPTGROUP_NONE, /* optinfo_flags */
10503 TV_VAR_TRACKING, /* tv_id */
10504 0, /* properties_required */
10505 0, /* properties_provided */
10506 0, /* properties_destroyed */
10507 0, /* todo_flags_start */
10508 0, /* todo_flags_finish */
10509 };
10510
10511 class pass_variable_tracking : public rtl_opt_pass
10512 {
10513 public:
10514 pass_variable_tracking (gcc::context *ctxt)
10515 : rtl_opt_pass (pass_data_variable_tracking, ctxt)
10516 {}
10517
10518 /* opt_pass methods: */
10519 virtual bool gate (function *)
10520 {
10521 return (flag_var_tracking && !targetm.delay_vartrack);
10522 }
10523
10524 virtual unsigned int execute (function *)
10525 {
10526 return variable_tracking_main ();
10527 }
10528
10529 }; // class pass_variable_tracking
10530
10531 } // anon namespace
10532
10533 rtl_opt_pass *
10534 make_pass_variable_tracking (gcc::context *ctxt)
10535 {
10536 return new pass_variable_tracking (ctxt);
10537 }