]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/var-tracking.c
Update copyright years.
[thirdparty/gcc.git] / gcc / var-tracking.c
1 /* Variable tracking routines for the GNU compiler.
2 Copyright (C) 2002-2022 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file contains the variable tracking pass. It computes where
21 variables are located (which registers or where in memory) at each position
22 in instruction stream and emits notes describing the locations.
23 Debug information (DWARF2 location lists) is finally generated from
24 these notes.
25 With this debug information, it is possible to show variables
26 even when debugging optimized code.
27
28 How does the variable tracking pass work?
29
30 First, it scans RTL code for uses, stores and clobbers (register/memory
31 references in instructions), for call insns and for stack adjustments
32 separately for each basic block and saves them to an array of micro
33 operations.
34 The micro operations of one instruction are ordered so that
35 pre-modifying stack adjustment < use < use with no var < call insn <
36 < clobber < set < post-modifying stack adjustment
37
38 Then, a forward dataflow analysis is performed to find out how locations
39 of variables change through code and to propagate the variable locations
40 along control flow graph.
41 The IN set for basic block BB is computed as a union of OUT sets of BB's
42 predecessors, the OUT set for BB is copied from the IN set for BB and
43 is changed according to micro operations in BB.
44
45 The IN and OUT sets for basic blocks consist of a current stack adjustment
46 (used for adjusting offset of variables addressed using stack pointer),
47 the table of structures describing the locations of parts of a variable
48 and for each physical register a linked list for each physical register.
49 The linked list is a list of variable parts stored in the register,
50 i.e. it is a list of triplets (reg, decl, offset) where decl is
51 REG_EXPR (reg) and offset is REG_OFFSET (reg). The linked list is used for
52 effective deleting appropriate variable parts when we set or clobber the
53 register.
54
55 There may be more than one variable part in a register. The linked lists
56 should be pretty short so it is a good data structure here.
57 For example in the following code, register allocator may assign same
58 register to variables A and B, and both of them are stored in the same
59 register in CODE:
60
61 if (cond)
62 set A;
63 else
64 set B;
65 CODE;
66 if (cond)
67 use A;
68 else
69 use B;
70
71 Finally, the NOTE_INSN_VAR_LOCATION notes describing the variable locations
72 are emitted to appropriate positions in RTL code. Each such a note describes
73 the location of one variable at the point in instruction stream where the
74 note is. There is no need to emit a note for each variable before each
75 instruction, we only emit these notes where the location of variable changes
76 (this means that we also emit notes for changes between the OUT set of the
77 previous block and the IN set of the current block).
78
79 The notes consist of two parts:
80 1. the declaration (from REG_EXPR or MEM_EXPR)
81 2. the location of a variable - it is either a simple register/memory
82 reference (for simple variables, for example int),
83 or a parallel of register/memory references (for a large variables
84 which consist of several parts, for example long long).
85
86 */
87
88 #include "config.h"
89 #include "system.h"
90 #include "coretypes.h"
91 #include "backend.h"
92 #include "target.h"
93 #include "rtl.h"
94 #include "tree.h"
95 #include "cfghooks.h"
96 #include "alloc-pool.h"
97 #include "tree-pass.h"
98 #include "memmodel.h"
99 #include "tm_p.h"
100 #include "insn-config.h"
101 #include "regs.h"
102 #include "emit-rtl.h"
103 #include "recog.h"
104 #include "diagnostic.h"
105 #include "varasm.h"
106 #include "stor-layout.h"
107 #include "cfgrtl.h"
108 #include "cfganal.h"
109 #include "reload.h"
110 #include "calls.h"
111 #include "tree-dfa.h"
112 #include "tree-ssa.h"
113 #include "cselib.h"
114 #include "tree-pretty-print.h"
115 #include "rtl-iter.h"
116 #include "fibonacci_heap.h"
117 #include "print-rtl.h"
118 #include "function-abi.h"
119
120 typedef fibonacci_heap <long, basic_block_def> bb_heap_t;
121
122 /* var-tracking.c assumes that tree code with the same value as VALUE rtx code
123 has no chance to appear in REG_EXPR/MEM_EXPRs and isn't a decl.
124 Currently the value is the same as IDENTIFIER_NODE, which has such
125 a property. If this compile time assertion ever fails, make sure that
126 the new tree code that equals (int) VALUE has the same property. */
127 extern char check_value_val[(int) VALUE == (int) IDENTIFIER_NODE ? 1 : -1];
128
129 /* Type of micro operation. */
130 enum micro_operation_type
131 {
132 MO_USE, /* Use location (REG or MEM). */
133 MO_USE_NO_VAR,/* Use location which is not associated with a variable
134 or the variable is not trackable. */
135 MO_VAL_USE, /* Use location which is associated with a value. */
136 MO_VAL_LOC, /* Use location which appears in a debug insn. */
137 MO_VAL_SET, /* Set location associated with a value. */
138 MO_SET, /* Set location. */
139 MO_COPY, /* Copy the same portion of a variable from one
140 location to another. */
141 MO_CLOBBER, /* Clobber location. */
142 MO_CALL, /* Call insn. */
143 MO_ADJUST /* Adjust stack pointer. */
144
145 };
146
147 static const char * const ATTRIBUTE_UNUSED
148 micro_operation_type_name[] = {
149 "MO_USE",
150 "MO_USE_NO_VAR",
151 "MO_VAL_USE",
152 "MO_VAL_LOC",
153 "MO_VAL_SET",
154 "MO_SET",
155 "MO_COPY",
156 "MO_CLOBBER",
157 "MO_CALL",
158 "MO_ADJUST"
159 };
160
161 /* Where shall the note be emitted? BEFORE or AFTER the instruction.
162 Notes emitted as AFTER_CALL are to take effect during the call,
163 rather than after the call. */
164 enum emit_note_where
165 {
166 EMIT_NOTE_BEFORE_INSN,
167 EMIT_NOTE_AFTER_INSN,
168 EMIT_NOTE_AFTER_CALL_INSN
169 };
170
171 /* Structure holding information about micro operation. */
172 struct micro_operation
173 {
174 /* Type of micro operation. */
175 enum micro_operation_type type;
176
177 /* The instruction which the micro operation is in, for MO_USE,
178 MO_USE_NO_VAR, MO_CALL and MO_ADJUST, or the subsequent
179 instruction or note in the original flow (before any var-tracking
180 notes are inserted, to simplify emission of notes), for MO_SET
181 and MO_CLOBBER. */
182 rtx_insn *insn;
183
184 union {
185 /* Location. For MO_SET and MO_COPY, this is the SET that
186 performs the assignment, if known, otherwise it is the target
187 of the assignment. For MO_VAL_USE and MO_VAL_SET, it is a
188 CONCAT of the VALUE and the LOC associated with it. For
189 MO_VAL_LOC, it is a CONCAT of the VALUE and the VAR_LOCATION
190 associated with it. */
191 rtx loc;
192
193 /* Stack adjustment. */
194 HOST_WIDE_INT adjust;
195 } u;
196 };
197
198
199 /* A declaration of a variable, or an RTL value being handled like a
200 declaration. */
201 typedef void *decl_or_value;
202
203 /* Return true if a decl_or_value DV is a DECL or NULL. */
204 static inline bool
205 dv_is_decl_p (decl_or_value dv)
206 {
207 return !dv || (int) TREE_CODE ((tree) dv) != (int) VALUE;
208 }
209
210 /* Return true if a decl_or_value is a VALUE rtl. */
211 static inline bool
212 dv_is_value_p (decl_or_value dv)
213 {
214 return dv && !dv_is_decl_p (dv);
215 }
216
217 /* Return the decl in the decl_or_value. */
218 static inline tree
219 dv_as_decl (decl_or_value dv)
220 {
221 gcc_checking_assert (dv_is_decl_p (dv));
222 return (tree) dv;
223 }
224
225 /* Return the value in the decl_or_value. */
226 static inline rtx
227 dv_as_value (decl_or_value dv)
228 {
229 gcc_checking_assert (dv_is_value_p (dv));
230 return (rtx)dv;
231 }
232
233 /* Return the opaque pointer in the decl_or_value. */
234 static inline void *
235 dv_as_opaque (decl_or_value dv)
236 {
237 return dv;
238 }
239
240
241 /* Description of location of a part of a variable. The content of a physical
242 register is described by a chain of these structures.
243 The chains are pretty short (usually 1 or 2 elements) and thus
244 chain is the best data structure. */
245 struct attrs
246 {
247 /* Pointer to next member of the list. */
248 attrs *next;
249
250 /* The rtx of register. */
251 rtx loc;
252
253 /* The declaration corresponding to LOC. */
254 decl_or_value dv;
255
256 /* Offset from start of DECL. */
257 HOST_WIDE_INT offset;
258 };
259
260 /* Structure for chaining the locations. */
261 struct location_chain
262 {
263 /* Next element in the chain. */
264 location_chain *next;
265
266 /* The location (REG, MEM or VALUE). */
267 rtx loc;
268
269 /* The "value" stored in this location. */
270 rtx set_src;
271
272 /* Initialized? */
273 enum var_init_status init;
274 };
275
276 /* A vector of loc_exp_dep holds the active dependencies of a one-part
277 DV on VALUEs, i.e., the VALUEs expanded so as to form the current
278 location of DV. Each entry is also part of VALUE' s linked-list of
279 backlinks back to DV. */
280 struct loc_exp_dep
281 {
282 /* The dependent DV. */
283 decl_or_value dv;
284 /* The dependency VALUE or DECL_DEBUG. */
285 rtx value;
286 /* The next entry in VALUE's backlinks list. */
287 struct loc_exp_dep *next;
288 /* A pointer to the pointer to this entry (head or prev's next) in
289 the doubly-linked list. */
290 struct loc_exp_dep **pprev;
291 };
292
293
294 /* This data structure holds information about the depth of a variable
295 expansion. */
296 struct expand_depth
297 {
298 /* This measures the complexity of the expanded expression. It
299 grows by one for each level of expansion that adds more than one
300 operand. */
301 int complexity;
302 /* This counts the number of ENTRY_VALUE expressions in an
303 expansion. We want to minimize their use. */
304 int entryvals;
305 };
306
307 /* Type for dependencies actively used when expand FROM into cur_loc. */
308 typedef vec<loc_exp_dep, va_heap, vl_embed> deps_vec;
309
310 /* This data structure is allocated for one-part variables at the time
311 of emitting notes. */
312 struct onepart_aux
313 {
314 /* Doubly-linked list of dependent DVs. These are DVs whose cur_loc
315 computation used the expansion of this variable, and that ought
316 to be notified should this variable change. If the DV's cur_loc
317 expanded to NULL, all components of the loc list are regarded as
318 active, so that any changes in them give us a chance to get a
319 location. Otherwise, only components of the loc that expanded to
320 non-NULL are regarded as active dependencies. */
321 loc_exp_dep *backlinks;
322 /* This holds the LOC that was expanded into cur_loc. We need only
323 mark a one-part variable as changed if the FROM loc is removed,
324 or if it has no known location and a loc is added, or if it gets
325 a change notification from any of its active dependencies. */
326 rtx from;
327 /* The depth of the cur_loc expression. */
328 expand_depth depth;
329 /* Dependencies actively used when expand FROM into cur_loc. */
330 deps_vec deps;
331 };
332
333 /* Structure describing one part of variable. */
334 struct variable_part
335 {
336 /* Chain of locations of the part. */
337 location_chain *loc_chain;
338
339 /* Location which was last emitted to location list. */
340 rtx cur_loc;
341
342 union variable_aux
343 {
344 /* The offset in the variable, if !var->onepart. */
345 HOST_WIDE_INT offset;
346
347 /* Pointer to auxiliary data, if var->onepart and emit_notes. */
348 struct onepart_aux *onepaux;
349 } aux;
350 };
351
352 /* Maximum number of location parts. */
353 #define MAX_VAR_PARTS 16
354
355 /* Enumeration type used to discriminate various types of one-part
356 variables. */
357 enum onepart_enum
358 {
359 /* Not a one-part variable. */
360 NOT_ONEPART = 0,
361 /* A one-part DECL that is not a DEBUG_EXPR_DECL. */
362 ONEPART_VDECL = 1,
363 /* A DEBUG_EXPR_DECL. */
364 ONEPART_DEXPR = 2,
365 /* A VALUE. */
366 ONEPART_VALUE = 3
367 };
368
369 /* Structure describing where the variable is located. */
370 struct variable
371 {
372 /* The declaration of the variable, or an RTL value being handled
373 like a declaration. */
374 decl_or_value dv;
375
376 /* Reference count. */
377 int refcount;
378
379 /* Number of variable parts. */
380 char n_var_parts;
381
382 /* What type of DV this is, according to enum onepart_enum. */
383 ENUM_BITFIELD (onepart_enum) onepart : CHAR_BIT;
384
385 /* True if this variable_def struct is currently in the
386 changed_variables hash table. */
387 bool in_changed_variables;
388
389 /* The variable parts. */
390 variable_part var_part[1];
391 };
392
393 /* Pointer to the BB's information specific to variable tracking pass. */
394 #define VTI(BB) ((variable_tracking_info *) (BB)->aux)
395
396 /* Return MEM_OFFSET (MEM) as a HOST_WIDE_INT, or 0 if we can't. */
397
398 static inline HOST_WIDE_INT
399 int_mem_offset (const_rtx mem)
400 {
401 HOST_WIDE_INT offset;
402 if (MEM_OFFSET_KNOWN_P (mem) && MEM_OFFSET (mem).is_constant (&offset))
403 return offset;
404 return 0;
405 }
406
407 #if CHECKING_P && (GCC_VERSION >= 2007)
408
409 /* Access VAR's Ith part's offset, checking that it's not a one-part
410 variable. */
411 #define VAR_PART_OFFSET(var, i) __extension__ \
412 (*({ variable *const __v = (var); \
413 gcc_checking_assert (!__v->onepart); \
414 &__v->var_part[(i)].aux.offset; }))
415
416 /* Access VAR's one-part auxiliary data, checking that it is a
417 one-part variable. */
418 #define VAR_LOC_1PAUX(var) __extension__ \
419 (*({ variable *const __v = (var); \
420 gcc_checking_assert (__v->onepart); \
421 &__v->var_part[0].aux.onepaux; }))
422
423 #else
424 #define VAR_PART_OFFSET(var, i) ((var)->var_part[(i)].aux.offset)
425 #define VAR_LOC_1PAUX(var) ((var)->var_part[0].aux.onepaux)
426 #endif
427
428 /* These are accessor macros for the one-part auxiliary data. When
429 convenient for users, they're guarded by tests that the data was
430 allocated. */
431 #define VAR_LOC_DEP_LST(var) (VAR_LOC_1PAUX (var) \
432 ? VAR_LOC_1PAUX (var)->backlinks \
433 : NULL)
434 #define VAR_LOC_DEP_LSTP(var) (VAR_LOC_1PAUX (var) \
435 ? &VAR_LOC_1PAUX (var)->backlinks \
436 : NULL)
437 #define VAR_LOC_FROM(var) (VAR_LOC_1PAUX (var)->from)
438 #define VAR_LOC_DEPTH(var) (VAR_LOC_1PAUX (var)->depth)
439 #define VAR_LOC_DEP_VEC(var) var_loc_dep_vec (var)
440
441 /* Implements the VAR_LOC_DEP_VEC above as a function to work around
442 a bogus -Wnonnull (PR c/95554). */
443
444 static inline deps_vec*
445 var_loc_dep_vec (variable *var)
446 {
447 return VAR_LOC_1PAUX (var) ? &VAR_LOC_1PAUX (var)->deps : NULL;
448 }
449
450
451 typedef unsigned int dvuid;
452
453 /* Return the uid of DV. */
454
455 static inline dvuid
456 dv_uid (decl_or_value dv)
457 {
458 if (dv_is_value_p (dv))
459 return CSELIB_VAL_PTR (dv_as_value (dv))->uid;
460 else
461 return DECL_UID (dv_as_decl (dv));
462 }
463
464 /* Compute the hash from the uid. */
465
466 static inline hashval_t
467 dv_uid2hash (dvuid uid)
468 {
469 return uid;
470 }
471
472 /* The hash function for a mask table in a shared_htab chain. */
473
474 static inline hashval_t
475 dv_htab_hash (decl_or_value dv)
476 {
477 return dv_uid2hash (dv_uid (dv));
478 }
479
480 static void variable_htab_free (void *);
481
482 /* Variable hashtable helpers. */
483
484 struct variable_hasher : pointer_hash <variable>
485 {
486 typedef void *compare_type;
487 static inline hashval_t hash (const variable *);
488 static inline bool equal (const variable *, const void *);
489 static inline void remove (variable *);
490 };
491
492 /* The hash function for variable_htab, computes the hash value
493 from the declaration of variable X. */
494
495 inline hashval_t
496 variable_hasher::hash (const variable *v)
497 {
498 return dv_htab_hash (v->dv);
499 }
500
501 /* Compare the declaration of variable X with declaration Y. */
502
503 inline bool
504 variable_hasher::equal (const variable *v, const void *y)
505 {
506 decl_or_value dv = CONST_CAST2 (decl_or_value, const void *, y);
507
508 return (dv_as_opaque (v->dv) == dv_as_opaque (dv));
509 }
510
511 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
512
513 inline void
514 variable_hasher::remove (variable *var)
515 {
516 variable_htab_free (var);
517 }
518
519 typedef hash_table<variable_hasher> variable_table_type;
520 typedef variable_table_type::iterator variable_iterator_type;
521
522 /* Structure for passing some other parameters to function
523 emit_note_insn_var_location. */
524 struct emit_note_data
525 {
526 /* The instruction which the note will be emitted before/after. */
527 rtx_insn *insn;
528
529 /* Where the note will be emitted (before/after insn)? */
530 enum emit_note_where where;
531
532 /* The variables and values active at this point. */
533 variable_table_type *vars;
534 };
535
536 /* Structure holding a refcounted hash table. If refcount > 1,
537 it must be first unshared before modified. */
538 struct shared_hash
539 {
540 /* Reference count. */
541 int refcount;
542
543 /* Actual hash table. */
544 variable_table_type *htab;
545 };
546
547 /* Structure holding the IN or OUT set for a basic block. */
548 struct dataflow_set
549 {
550 /* Adjustment of stack offset. */
551 HOST_WIDE_INT stack_adjust;
552
553 /* Attributes for registers (lists of attrs). */
554 attrs *regs[FIRST_PSEUDO_REGISTER];
555
556 /* Variable locations. */
557 shared_hash *vars;
558
559 /* Vars that is being traversed. */
560 shared_hash *traversed_vars;
561 };
562
563 /* The structure (one for each basic block) containing the information
564 needed for variable tracking. */
565 struct variable_tracking_info
566 {
567 /* The vector of micro operations. */
568 vec<micro_operation> mos;
569
570 /* The IN and OUT set for dataflow analysis. */
571 dataflow_set in;
572 dataflow_set out;
573
574 /* The permanent-in dataflow set for this block. This is used to
575 hold values for which we had to compute entry values. ??? This
576 should probably be dynamically allocated, to avoid using more
577 memory in non-debug builds. */
578 dataflow_set *permp;
579
580 /* Has the block been visited in DFS? */
581 bool visited;
582
583 /* Has the block been flooded in VTA? */
584 bool flooded;
585
586 };
587
588 /* Alloc pool for struct attrs_def. */
589 object_allocator<attrs> attrs_pool ("attrs pool");
590
591 /* Alloc pool for struct variable_def with MAX_VAR_PARTS entries. */
592
593 static pool_allocator var_pool
594 ("variable_def pool", sizeof (variable) +
595 (MAX_VAR_PARTS - 1) * sizeof (((variable *)NULL)->var_part[0]));
596
597 /* Alloc pool for struct variable_def with a single var_part entry. */
598 static pool_allocator valvar_pool
599 ("small variable_def pool", sizeof (variable));
600
601 /* Alloc pool for struct location_chain. */
602 static object_allocator<location_chain> location_chain_pool
603 ("location_chain pool");
604
605 /* Alloc pool for struct shared_hash. */
606 static object_allocator<shared_hash> shared_hash_pool ("shared_hash pool");
607
608 /* Alloc pool for struct loc_exp_dep_s for NOT_ONEPART variables. */
609 object_allocator<loc_exp_dep> loc_exp_dep_pool ("loc_exp_dep pool");
610
611 /* Changed variables, notes will be emitted for them. */
612 static variable_table_type *changed_variables;
613
614 /* Shall notes be emitted? */
615 static bool emit_notes;
616
617 /* Values whose dynamic location lists have gone empty, but whose
618 cselib location lists are still usable. Use this to hold the
619 current location, the backlinks, etc, during emit_notes. */
620 static variable_table_type *dropped_values;
621
622 /* Empty shared hashtable. */
623 static shared_hash *empty_shared_hash;
624
625 /* Scratch register bitmap used by cselib_expand_value_rtx. */
626 static bitmap scratch_regs = NULL;
627
628 #ifdef HAVE_window_save
629 struct GTY(()) parm_reg {
630 rtx outgoing;
631 rtx incoming;
632 };
633
634
635 /* Vector of windowed parameter registers, if any. */
636 static vec<parm_reg, va_gc> *windowed_parm_regs = NULL;
637 #endif
638
639 /* Variable used to tell whether cselib_process_insn called our hook. */
640 static bool cselib_hook_called;
641
642 /* Local function prototypes. */
643 static void stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
644 HOST_WIDE_INT *);
645 static void insn_stack_adjust_offset_pre_post (rtx_insn *, HOST_WIDE_INT *,
646 HOST_WIDE_INT *);
647 static bool vt_stack_adjustments (void);
648
649 static void init_attrs_list_set (attrs **);
650 static void attrs_list_clear (attrs **);
651 static attrs *attrs_list_member (attrs *, decl_or_value, HOST_WIDE_INT);
652 static void attrs_list_insert (attrs **, decl_or_value, HOST_WIDE_INT, rtx);
653 static void attrs_list_copy (attrs **, attrs *);
654 static void attrs_list_union (attrs **, attrs *);
655
656 static variable **unshare_variable (dataflow_set *set, variable **slot,
657 variable *var, enum var_init_status);
658 static void vars_copy (variable_table_type *, variable_table_type *);
659 static tree var_debug_decl (tree);
660 static void var_reg_set (dataflow_set *, rtx, enum var_init_status, rtx);
661 static void var_reg_delete_and_set (dataflow_set *, rtx, bool,
662 enum var_init_status, rtx);
663 static void var_reg_delete (dataflow_set *, rtx, bool);
664 static void var_regno_delete (dataflow_set *, int);
665 static void var_mem_set (dataflow_set *, rtx, enum var_init_status, rtx);
666 static void var_mem_delete_and_set (dataflow_set *, rtx, bool,
667 enum var_init_status, rtx);
668 static void var_mem_delete (dataflow_set *, rtx, bool);
669
670 static void dataflow_set_init (dataflow_set *);
671 static void dataflow_set_clear (dataflow_set *);
672 static void dataflow_set_copy (dataflow_set *, dataflow_set *);
673 static int variable_union_info_cmp_pos (const void *, const void *);
674 static void dataflow_set_union (dataflow_set *, dataflow_set *);
675 static location_chain *find_loc_in_1pdv (rtx, variable *,
676 variable_table_type *);
677 static bool canon_value_cmp (rtx, rtx);
678 static int loc_cmp (rtx, rtx);
679 static bool variable_part_different_p (variable_part *, variable_part *);
680 static bool onepart_variable_different_p (variable *, variable *);
681 static bool variable_different_p (variable *, variable *);
682 static bool dataflow_set_different (dataflow_set *, dataflow_set *);
683 static void dataflow_set_destroy (dataflow_set *);
684
685 static bool track_expr_p (tree, bool);
686 static void add_uses_1 (rtx *, void *);
687 static void add_stores (rtx, const_rtx, void *);
688 static bool compute_bb_dataflow (basic_block);
689 static bool vt_find_locations (void);
690
691 static void dump_attrs_list (attrs *);
692 static void dump_var (variable *);
693 static void dump_vars (variable_table_type *);
694 static void dump_dataflow_set (dataflow_set *);
695 static void dump_dataflow_sets (void);
696
697 static void set_dv_changed (decl_or_value, bool);
698 static void variable_was_changed (variable *, dataflow_set *);
699 static variable **set_slot_part (dataflow_set *, rtx, variable **,
700 decl_or_value, HOST_WIDE_INT,
701 enum var_init_status, rtx);
702 static void set_variable_part (dataflow_set *, rtx,
703 decl_or_value, HOST_WIDE_INT,
704 enum var_init_status, rtx, enum insert_option);
705 static variable **clobber_slot_part (dataflow_set *, rtx,
706 variable **, HOST_WIDE_INT, rtx);
707 static void clobber_variable_part (dataflow_set *, rtx,
708 decl_or_value, HOST_WIDE_INT, rtx);
709 static variable **delete_slot_part (dataflow_set *, rtx, variable **,
710 HOST_WIDE_INT);
711 static void delete_variable_part (dataflow_set *, rtx,
712 decl_or_value, HOST_WIDE_INT);
713 static void emit_notes_in_bb (basic_block, dataflow_set *);
714 static void vt_emit_notes (void);
715
716 static void vt_add_function_parameters (void);
717 static bool vt_initialize (void);
718 static void vt_finalize (void);
719
720 /* Callback for stack_adjust_offset_pre_post, called via for_each_inc_dec. */
721
722 static int
723 stack_adjust_offset_pre_post_cb (rtx, rtx op, rtx dest, rtx src, rtx srcoff,
724 void *arg)
725 {
726 if (dest != stack_pointer_rtx)
727 return 0;
728
729 switch (GET_CODE (op))
730 {
731 case PRE_INC:
732 case PRE_DEC:
733 ((HOST_WIDE_INT *)arg)[0] -= INTVAL (srcoff);
734 return 0;
735 case POST_INC:
736 case POST_DEC:
737 ((HOST_WIDE_INT *)arg)[1] -= INTVAL (srcoff);
738 return 0;
739 case PRE_MODIFY:
740 case POST_MODIFY:
741 /* We handle only adjustments by constant amount. */
742 gcc_assert (GET_CODE (src) == PLUS
743 && CONST_INT_P (XEXP (src, 1))
744 && XEXP (src, 0) == stack_pointer_rtx);
745 ((HOST_WIDE_INT *)arg)[GET_CODE (op) == POST_MODIFY]
746 -= INTVAL (XEXP (src, 1));
747 return 0;
748 default:
749 gcc_unreachable ();
750 }
751 }
752
753 /* Given a SET, calculate the amount of stack adjustment it contains
754 PRE- and POST-modifying stack pointer.
755 This function is similar to stack_adjust_offset. */
756
757 static void
758 stack_adjust_offset_pre_post (rtx pattern, HOST_WIDE_INT *pre,
759 HOST_WIDE_INT *post)
760 {
761 rtx src = SET_SRC (pattern);
762 rtx dest = SET_DEST (pattern);
763 enum rtx_code code;
764
765 if (dest == stack_pointer_rtx)
766 {
767 /* (set (reg sp) (plus (reg sp) (const_int))) */
768 code = GET_CODE (src);
769 if (! (code == PLUS || code == MINUS)
770 || XEXP (src, 0) != stack_pointer_rtx
771 || !CONST_INT_P (XEXP (src, 1)))
772 return;
773
774 if (code == MINUS)
775 *post += INTVAL (XEXP (src, 1));
776 else
777 *post -= INTVAL (XEXP (src, 1));
778 return;
779 }
780 HOST_WIDE_INT res[2] = { 0, 0 };
781 for_each_inc_dec (pattern, stack_adjust_offset_pre_post_cb, res);
782 *pre += res[0];
783 *post += res[1];
784 }
785
786 /* Given an INSN, calculate the amount of stack adjustment it contains
787 PRE- and POST-modifying stack pointer. */
788
789 static void
790 insn_stack_adjust_offset_pre_post (rtx_insn *insn, HOST_WIDE_INT *pre,
791 HOST_WIDE_INT *post)
792 {
793 rtx pattern;
794
795 *pre = 0;
796 *post = 0;
797
798 pattern = PATTERN (insn);
799 if (RTX_FRAME_RELATED_P (insn))
800 {
801 rtx expr = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
802 if (expr)
803 pattern = XEXP (expr, 0);
804 }
805
806 if (GET_CODE (pattern) == SET)
807 stack_adjust_offset_pre_post (pattern, pre, post);
808 else if (GET_CODE (pattern) == PARALLEL
809 || GET_CODE (pattern) == SEQUENCE)
810 {
811 int i;
812
813 /* There may be stack adjustments inside compound insns. Search
814 for them. */
815 for ( i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
816 if (GET_CODE (XVECEXP (pattern, 0, i)) == SET)
817 stack_adjust_offset_pre_post (XVECEXP (pattern, 0, i), pre, post);
818 }
819 }
820
821 /* Compute stack adjustments for all blocks by traversing DFS tree.
822 Return true when the adjustments on all incoming edges are consistent.
823 Heavily borrowed from pre_and_rev_post_order_compute. */
824
825 static bool
826 vt_stack_adjustments (void)
827 {
828 edge_iterator *stack;
829 int sp;
830
831 /* Initialize entry block. */
832 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->visited = true;
833 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->in.stack_adjust
834 = INCOMING_FRAME_SP_OFFSET;
835 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->out.stack_adjust
836 = INCOMING_FRAME_SP_OFFSET;
837
838 /* Allocate stack for back-tracking up CFG. */
839 stack = XNEWVEC (edge_iterator, n_basic_blocks_for_fn (cfun) + 1);
840 sp = 0;
841
842 /* Push the first edge on to the stack. */
843 stack[sp++] = ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs);
844
845 while (sp)
846 {
847 edge_iterator ei;
848 basic_block src;
849 basic_block dest;
850
851 /* Look at the edge on the top of the stack. */
852 ei = stack[sp - 1];
853 src = ei_edge (ei)->src;
854 dest = ei_edge (ei)->dest;
855
856 /* Check if the edge destination has been visited yet. */
857 if (!VTI (dest)->visited)
858 {
859 rtx_insn *insn;
860 HOST_WIDE_INT pre, post, offset;
861 VTI (dest)->visited = true;
862 VTI (dest)->in.stack_adjust = offset = VTI (src)->out.stack_adjust;
863
864 if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
865 for (insn = BB_HEAD (dest);
866 insn != NEXT_INSN (BB_END (dest));
867 insn = NEXT_INSN (insn))
868 if (INSN_P (insn))
869 {
870 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
871 offset += pre + post;
872 }
873
874 VTI (dest)->out.stack_adjust = offset;
875
876 if (EDGE_COUNT (dest->succs) > 0)
877 /* Since the DEST node has been visited for the first
878 time, check its successors. */
879 stack[sp++] = ei_start (dest->succs);
880 }
881 else
882 {
883 /* We can end up with different stack adjustments for the exit block
884 of a shrink-wrapped function if stack_adjust_offset_pre_post
885 doesn't understand the rtx pattern used to restore the stack
886 pointer in the epilogue. For example, on s390(x), the stack
887 pointer is often restored via a load-multiple instruction
888 and so no stack_adjust offset is recorded for it. This means
889 that the stack offset at the end of the epilogue block is the
890 same as the offset before the epilogue, whereas other paths
891 to the exit block will have the correct stack_adjust.
892
893 It is safe to ignore these differences because (a) we never
894 use the stack_adjust for the exit block in this pass and
895 (b) dwarf2cfi checks whether the CFA notes in a shrink-wrapped
896 function are correct.
897
898 We must check whether the adjustments on other edges are
899 the same though. */
900 if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
901 && VTI (dest)->in.stack_adjust != VTI (src)->out.stack_adjust)
902 {
903 free (stack);
904 return false;
905 }
906
907 if (! ei_one_before_end_p (ei))
908 /* Go to the next edge. */
909 ei_next (&stack[sp - 1]);
910 else
911 /* Return to previous level if there are no more edges. */
912 sp--;
913 }
914 }
915
916 free (stack);
917 return true;
918 }
919
920 /* arg_pointer_rtx resp. frame_pointer_rtx if stack_pointer_rtx or
921 hard_frame_pointer_rtx is being mapped to it and offset for it. */
922 static rtx cfa_base_rtx;
923 static HOST_WIDE_INT cfa_base_offset;
924
925 /* Compute a CFA-based value for an ADJUSTMENT made to stack_pointer_rtx
926 or hard_frame_pointer_rtx. */
927
928 static inline rtx
929 compute_cfa_pointer (poly_int64 adjustment)
930 {
931 return plus_constant (Pmode, cfa_base_rtx, adjustment + cfa_base_offset);
932 }
933
934 /* Adjustment for hard_frame_pointer_rtx to cfa base reg,
935 or -1 if the replacement shouldn't be done. */
936 static poly_int64 hard_frame_pointer_adjustment = -1;
937
938 /* Data for adjust_mems callback. */
939
940 class adjust_mem_data
941 {
942 public:
943 bool store;
944 machine_mode mem_mode;
945 HOST_WIDE_INT stack_adjust;
946 auto_vec<rtx> side_effects;
947 };
948
949 /* Helper for adjust_mems. Return true if X is suitable for
950 transformation of wider mode arithmetics to narrower mode. */
951
952 static bool
953 use_narrower_mode_test (rtx x, const_rtx subreg)
954 {
955 subrtx_var_iterator::array_type array;
956 FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
957 {
958 rtx x = *iter;
959 if (CONSTANT_P (x))
960 iter.skip_subrtxes ();
961 else
962 switch (GET_CODE (x))
963 {
964 case REG:
965 if (cselib_lookup (x, GET_MODE (SUBREG_REG (subreg)), 0, VOIDmode))
966 return false;
967 if (!validate_subreg (GET_MODE (subreg), GET_MODE (x), x,
968 subreg_lowpart_offset (GET_MODE (subreg),
969 GET_MODE (x))))
970 return false;
971 break;
972 case PLUS:
973 case MINUS:
974 case MULT:
975 break;
976 case ASHIFT:
977 if (GET_MODE (XEXP (x, 1)) != VOIDmode)
978 {
979 enum machine_mode mode = GET_MODE (subreg);
980 rtx op1 = XEXP (x, 1);
981 enum machine_mode op1_mode = GET_MODE (op1);
982 if (GET_MODE_PRECISION (as_a <scalar_int_mode> (mode))
983 < GET_MODE_PRECISION (as_a <scalar_int_mode> (op1_mode)))
984 {
985 poly_uint64 byte = subreg_lowpart_offset (mode, op1_mode);
986 if (GET_CODE (op1) == SUBREG || GET_CODE (op1) == CONCAT)
987 {
988 if (!simplify_subreg (mode, op1, op1_mode, byte))
989 return false;
990 }
991 else if (!validate_subreg (mode, op1_mode, op1, byte))
992 return false;
993 }
994 }
995 iter.substitute (XEXP (x, 0));
996 break;
997 default:
998 return false;
999 }
1000 }
1001 return true;
1002 }
1003
1004 /* Transform X into narrower mode MODE from wider mode WMODE. */
1005
1006 static rtx
1007 use_narrower_mode (rtx x, scalar_int_mode mode, scalar_int_mode wmode)
1008 {
1009 rtx op0, op1;
1010 if (CONSTANT_P (x))
1011 return lowpart_subreg (mode, x, wmode);
1012 switch (GET_CODE (x))
1013 {
1014 case REG:
1015 return lowpart_subreg (mode, x, wmode);
1016 case PLUS:
1017 case MINUS:
1018 case MULT:
1019 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
1020 op1 = use_narrower_mode (XEXP (x, 1), mode, wmode);
1021 return simplify_gen_binary (GET_CODE (x), mode, op0, op1);
1022 case ASHIFT:
1023 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
1024 op1 = XEXP (x, 1);
1025 /* Ensure shift amount is not wider than mode. */
1026 if (GET_MODE (op1) == VOIDmode)
1027 op1 = lowpart_subreg (mode, op1, wmode);
1028 else if (GET_MODE_PRECISION (mode)
1029 < GET_MODE_PRECISION (as_a <scalar_int_mode> (GET_MODE (op1))))
1030 op1 = lowpart_subreg (mode, op1, GET_MODE (op1));
1031 return simplify_gen_binary (ASHIFT, mode, op0, op1);
1032 default:
1033 gcc_unreachable ();
1034 }
1035 }
1036
1037 /* Helper function for adjusting used MEMs. */
1038
1039 static rtx
1040 adjust_mems (rtx loc, const_rtx old_rtx, void *data)
1041 {
1042 class adjust_mem_data *amd = (class adjust_mem_data *) data;
1043 rtx mem, addr = loc, tem;
1044 machine_mode mem_mode_save;
1045 bool store_save;
1046 scalar_int_mode tem_mode, tem_subreg_mode;
1047 poly_int64 size;
1048 switch (GET_CODE (loc))
1049 {
1050 case REG:
1051 /* Don't do any sp or fp replacements outside of MEM addresses
1052 on the LHS. */
1053 if (amd->mem_mode == VOIDmode && amd->store)
1054 return loc;
1055 if (loc == stack_pointer_rtx
1056 && !frame_pointer_needed
1057 && cfa_base_rtx)
1058 return compute_cfa_pointer (amd->stack_adjust);
1059 else if (loc == hard_frame_pointer_rtx
1060 && frame_pointer_needed
1061 && maybe_ne (hard_frame_pointer_adjustment, -1)
1062 && cfa_base_rtx)
1063 return compute_cfa_pointer (hard_frame_pointer_adjustment);
1064 gcc_checking_assert (loc != virtual_incoming_args_rtx);
1065 return loc;
1066 case MEM:
1067 mem = loc;
1068 if (!amd->store)
1069 {
1070 mem = targetm.delegitimize_address (mem);
1071 if (mem != loc && !MEM_P (mem))
1072 return simplify_replace_fn_rtx (mem, old_rtx, adjust_mems, data);
1073 }
1074
1075 addr = XEXP (mem, 0);
1076 mem_mode_save = amd->mem_mode;
1077 amd->mem_mode = GET_MODE (mem);
1078 store_save = amd->store;
1079 amd->store = false;
1080 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1081 amd->store = store_save;
1082 amd->mem_mode = mem_mode_save;
1083 if (mem == loc)
1084 addr = targetm.delegitimize_address (addr);
1085 if (addr != XEXP (mem, 0))
1086 mem = replace_equiv_address_nv (mem, addr);
1087 if (!amd->store)
1088 mem = avoid_constant_pool_reference (mem);
1089 return mem;
1090 case PRE_INC:
1091 case PRE_DEC:
1092 size = GET_MODE_SIZE (amd->mem_mode);
1093 addr = plus_constant (GET_MODE (loc), XEXP (loc, 0),
1094 GET_CODE (loc) == PRE_INC ? size : -size);
1095 /* FALLTHRU */
1096 case POST_INC:
1097 case POST_DEC:
1098 if (addr == loc)
1099 addr = XEXP (loc, 0);
1100 gcc_assert (amd->mem_mode != VOIDmode && amd->mem_mode != BLKmode);
1101 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1102 size = GET_MODE_SIZE (amd->mem_mode);
1103 tem = plus_constant (GET_MODE (loc), XEXP (loc, 0),
1104 (GET_CODE (loc) == PRE_INC
1105 || GET_CODE (loc) == POST_INC) ? size : -size);
1106 store_save = amd->store;
1107 amd->store = false;
1108 tem = simplify_replace_fn_rtx (tem, old_rtx, adjust_mems, data);
1109 amd->store = store_save;
1110 amd->side_effects.safe_push (gen_rtx_SET (XEXP (loc, 0), tem));
1111 return addr;
1112 case PRE_MODIFY:
1113 addr = XEXP (loc, 1);
1114 /* FALLTHRU */
1115 case POST_MODIFY:
1116 if (addr == loc)
1117 addr = XEXP (loc, 0);
1118 gcc_assert (amd->mem_mode != VOIDmode);
1119 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1120 store_save = amd->store;
1121 amd->store = false;
1122 tem = simplify_replace_fn_rtx (XEXP (loc, 1), old_rtx,
1123 adjust_mems, data);
1124 amd->store = store_save;
1125 amd->side_effects.safe_push (gen_rtx_SET (XEXP (loc, 0), tem));
1126 return addr;
1127 case SUBREG:
1128 /* First try without delegitimization of whole MEMs and
1129 avoid_constant_pool_reference, which is more likely to succeed. */
1130 store_save = amd->store;
1131 amd->store = true;
1132 addr = simplify_replace_fn_rtx (SUBREG_REG (loc), old_rtx, adjust_mems,
1133 data);
1134 amd->store = store_save;
1135 mem = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1136 if (mem == SUBREG_REG (loc))
1137 {
1138 tem = loc;
1139 goto finish_subreg;
1140 }
1141 tem = simplify_gen_subreg (GET_MODE (loc), mem,
1142 GET_MODE (SUBREG_REG (loc)),
1143 SUBREG_BYTE (loc));
1144 if (tem)
1145 goto finish_subreg;
1146 tem = simplify_gen_subreg (GET_MODE (loc), addr,
1147 GET_MODE (SUBREG_REG (loc)),
1148 SUBREG_BYTE (loc));
1149 if (tem == NULL_RTX)
1150 tem = gen_rtx_raw_SUBREG (GET_MODE (loc), addr, SUBREG_BYTE (loc));
1151 finish_subreg:
1152 if (MAY_HAVE_DEBUG_BIND_INSNS
1153 && GET_CODE (tem) == SUBREG
1154 && (GET_CODE (SUBREG_REG (tem)) == PLUS
1155 || GET_CODE (SUBREG_REG (tem)) == MINUS
1156 || GET_CODE (SUBREG_REG (tem)) == MULT
1157 || GET_CODE (SUBREG_REG (tem)) == ASHIFT)
1158 && is_a <scalar_int_mode> (GET_MODE (tem), &tem_mode)
1159 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (tem)),
1160 &tem_subreg_mode)
1161 && (GET_MODE_PRECISION (tem_mode)
1162 < GET_MODE_PRECISION (tem_subreg_mode))
1163 && subreg_lowpart_p (tem)
1164 && use_narrower_mode_test (SUBREG_REG (tem), tem))
1165 return use_narrower_mode (SUBREG_REG (tem), tem_mode, tem_subreg_mode);
1166 return tem;
1167 case ASM_OPERANDS:
1168 /* Don't do any replacements in second and following
1169 ASM_OPERANDS of inline-asm with multiple sets.
1170 ASM_OPERANDS_INPUT_VEC, ASM_OPERANDS_INPUT_CONSTRAINT_VEC
1171 and ASM_OPERANDS_LABEL_VEC need to be equal between
1172 all the ASM_OPERANDs in the insn and adjust_insn will
1173 fix this up. */
1174 if (ASM_OPERANDS_OUTPUT_IDX (loc) != 0)
1175 return loc;
1176 break;
1177 default:
1178 break;
1179 }
1180 return NULL_RTX;
1181 }
1182
1183 /* Helper function for replacement of uses. */
1184
1185 static void
1186 adjust_mem_uses (rtx *x, void *data)
1187 {
1188 rtx new_x = simplify_replace_fn_rtx (*x, NULL_RTX, adjust_mems, data);
1189 if (new_x != *x)
1190 validate_change (NULL_RTX, x, new_x, true);
1191 }
1192
1193 /* Helper function for replacement of stores. */
1194
1195 static void
1196 adjust_mem_stores (rtx loc, const_rtx expr, void *data)
1197 {
1198 if (MEM_P (loc))
1199 {
1200 rtx new_dest = simplify_replace_fn_rtx (SET_DEST (expr), NULL_RTX,
1201 adjust_mems, data);
1202 if (new_dest != SET_DEST (expr))
1203 {
1204 rtx xexpr = CONST_CAST_RTX (expr);
1205 validate_change (NULL_RTX, &SET_DEST (xexpr), new_dest, true);
1206 }
1207 }
1208 }
1209
1210 /* Simplify INSN. Remove all {PRE,POST}_{INC,DEC,MODIFY} rtxes,
1211 replace them with their value in the insn and add the side-effects
1212 as other sets to the insn. */
1213
1214 static void
1215 adjust_insn (basic_block bb, rtx_insn *insn)
1216 {
1217 rtx set;
1218
1219 #ifdef HAVE_window_save
1220 /* If the target machine has an explicit window save instruction, the
1221 transformation OUTGOING_REGNO -> INCOMING_REGNO is done there. */
1222 if (RTX_FRAME_RELATED_P (insn)
1223 && find_reg_note (insn, REG_CFA_WINDOW_SAVE, NULL_RTX))
1224 {
1225 unsigned int i, nregs = vec_safe_length (windowed_parm_regs);
1226 rtx rtl = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (nregs * 2));
1227 parm_reg *p;
1228
1229 FOR_EACH_VEC_SAFE_ELT (windowed_parm_regs, i, p)
1230 {
1231 XVECEXP (rtl, 0, i * 2)
1232 = gen_rtx_SET (p->incoming, p->outgoing);
1233 /* Do not clobber the attached DECL, but only the REG. */
1234 XVECEXP (rtl, 0, i * 2 + 1)
1235 = gen_rtx_CLOBBER (GET_MODE (p->outgoing),
1236 gen_raw_REG (GET_MODE (p->outgoing),
1237 REGNO (p->outgoing)));
1238 }
1239
1240 validate_change (NULL_RTX, &PATTERN (insn), rtl, true);
1241 return;
1242 }
1243 #endif
1244
1245 adjust_mem_data amd;
1246 amd.mem_mode = VOIDmode;
1247 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
1248
1249 amd.store = true;
1250 note_stores (insn, adjust_mem_stores, &amd);
1251
1252 amd.store = false;
1253 if (GET_CODE (PATTERN (insn)) == PARALLEL
1254 && asm_noperands (PATTERN (insn)) > 0
1255 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1256 {
1257 rtx body, set0;
1258 int i;
1259
1260 /* inline-asm with multiple sets is tiny bit more complicated,
1261 because the 3 vectors in ASM_OPERANDS need to be shared between
1262 all ASM_OPERANDS in the instruction. adjust_mems will
1263 not touch ASM_OPERANDS other than the first one, asm_noperands
1264 test above needs to be called before that (otherwise it would fail)
1265 and afterwards this code fixes it up. */
1266 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1267 body = PATTERN (insn);
1268 set0 = XVECEXP (body, 0, 0);
1269 gcc_checking_assert (GET_CODE (set0) == SET
1270 && GET_CODE (SET_SRC (set0)) == ASM_OPERANDS
1271 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set0)) == 0);
1272 for (i = 1; i < XVECLEN (body, 0); i++)
1273 if (GET_CODE (XVECEXP (body, 0, i)) != SET)
1274 break;
1275 else
1276 {
1277 set = XVECEXP (body, 0, i);
1278 gcc_checking_assert (GET_CODE (SET_SRC (set)) == ASM_OPERANDS
1279 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set))
1280 == i);
1281 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (set))
1282 != ASM_OPERANDS_INPUT_VEC (SET_SRC (set0))
1283 || ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set))
1284 != ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0))
1285 || ASM_OPERANDS_LABEL_VEC (SET_SRC (set))
1286 != ASM_OPERANDS_LABEL_VEC (SET_SRC (set0)))
1287 {
1288 rtx newsrc = shallow_copy_rtx (SET_SRC (set));
1289 ASM_OPERANDS_INPUT_VEC (newsrc)
1290 = ASM_OPERANDS_INPUT_VEC (SET_SRC (set0));
1291 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (newsrc)
1292 = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0));
1293 ASM_OPERANDS_LABEL_VEC (newsrc)
1294 = ASM_OPERANDS_LABEL_VEC (SET_SRC (set0));
1295 validate_change (NULL_RTX, &SET_SRC (set), newsrc, true);
1296 }
1297 }
1298 }
1299 else
1300 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1301
1302 /* For read-only MEMs containing some constant, prefer those
1303 constants. */
1304 set = single_set (insn);
1305 if (set && MEM_P (SET_SRC (set)) && MEM_READONLY_P (SET_SRC (set)))
1306 {
1307 rtx note = find_reg_equal_equiv_note (insn);
1308
1309 if (note && CONSTANT_P (XEXP (note, 0)))
1310 validate_change (NULL_RTX, &SET_SRC (set), XEXP (note, 0), true);
1311 }
1312
1313 if (!amd.side_effects.is_empty ())
1314 {
1315 rtx *pat, new_pat;
1316 int i, oldn;
1317
1318 pat = &PATTERN (insn);
1319 if (GET_CODE (*pat) == COND_EXEC)
1320 pat = &COND_EXEC_CODE (*pat);
1321 if (GET_CODE (*pat) == PARALLEL)
1322 oldn = XVECLEN (*pat, 0);
1323 else
1324 oldn = 1;
1325 unsigned int newn = amd.side_effects.length ();
1326 new_pat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (oldn + newn));
1327 if (GET_CODE (*pat) == PARALLEL)
1328 for (i = 0; i < oldn; i++)
1329 XVECEXP (new_pat, 0, i) = XVECEXP (*pat, 0, i);
1330 else
1331 XVECEXP (new_pat, 0, 0) = *pat;
1332
1333 rtx effect;
1334 unsigned int j;
1335 FOR_EACH_VEC_ELT_REVERSE (amd.side_effects, j, effect)
1336 XVECEXP (new_pat, 0, j + oldn) = effect;
1337 validate_change (NULL_RTX, pat, new_pat, true);
1338 }
1339 }
1340
1341 /* Return the DEBUG_EXPR of a DEBUG_EXPR_DECL or the VALUE in DV. */
1342 static inline rtx
1343 dv_as_rtx (decl_or_value dv)
1344 {
1345 tree decl;
1346
1347 if (dv_is_value_p (dv))
1348 return dv_as_value (dv);
1349
1350 decl = dv_as_decl (dv);
1351
1352 gcc_checking_assert (TREE_CODE (decl) == DEBUG_EXPR_DECL);
1353 return DECL_RTL_KNOWN_SET (decl);
1354 }
1355
1356 /* Return nonzero if a decl_or_value must not have more than one
1357 variable part. The returned value discriminates among various
1358 kinds of one-part DVs ccording to enum onepart_enum. */
1359 static inline onepart_enum
1360 dv_onepart_p (decl_or_value dv)
1361 {
1362 tree decl;
1363
1364 if (!MAY_HAVE_DEBUG_BIND_INSNS)
1365 return NOT_ONEPART;
1366
1367 if (dv_is_value_p (dv))
1368 return ONEPART_VALUE;
1369
1370 decl = dv_as_decl (dv);
1371
1372 if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
1373 return ONEPART_DEXPR;
1374
1375 if (target_for_debug_bind (decl) != NULL_TREE)
1376 return ONEPART_VDECL;
1377
1378 return NOT_ONEPART;
1379 }
1380
1381 /* Return the variable pool to be used for a dv of type ONEPART. */
1382 static inline pool_allocator &
1383 onepart_pool (onepart_enum onepart)
1384 {
1385 return onepart ? valvar_pool : var_pool;
1386 }
1387
1388 /* Allocate a variable_def from the corresponding variable pool. */
1389 static inline variable *
1390 onepart_pool_allocate (onepart_enum onepart)
1391 {
1392 return (variable*) onepart_pool (onepart).allocate ();
1393 }
1394
1395 /* Build a decl_or_value out of a decl. */
1396 static inline decl_or_value
1397 dv_from_decl (tree decl)
1398 {
1399 decl_or_value dv;
1400 dv = decl;
1401 gcc_checking_assert (dv_is_decl_p (dv));
1402 return dv;
1403 }
1404
1405 /* Build a decl_or_value out of a value. */
1406 static inline decl_or_value
1407 dv_from_value (rtx value)
1408 {
1409 decl_or_value dv;
1410 dv = value;
1411 gcc_checking_assert (dv_is_value_p (dv));
1412 return dv;
1413 }
1414
1415 /* Return a value or the decl of a debug_expr as a decl_or_value. */
1416 static inline decl_or_value
1417 dv_from_rtx (rtx x)
1418 {
1419 decl_or_value dv;
1420
1421 switch (GET_CODE (x))
1422 {
1423 case DEBUG_EXPR:
1424 dv = dv_from_decl (DEBUG_EXPR_TREE_DECL (x));
1425 gcc_checking_assert (DECL_RTL_KNOWN_SET (DEBUG_EXPR_TREE_DECL (x)) == x);
1426 break;
1427
1428 case VALUE:
1429 dv = dv_from_value (x);
1430 break;
1431
1432 default:
1433 gcc_unreachable ();
1434 }
1435
1436 return dv;
1437 }
1438
1439 extern void debug_dv (decl_or_value dv);
1440
1441 DEBUG_FUNCTION void
1442 debug_dv (decl_or_value dv)
1443 {
1444 if (dv_is_value_p (dv))
1445 debug_rtx (dv_as_value (dv));
1446 else
1447 debug_generic_stmt (dv_as_decl (dv));
1448 }
1449
1450 static void loc_exp_dep_clear (variable *var);
1451
1452 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
1453
1454 static void
1455 variable_htab_free (void *elem)
1456 {
1457 int i;
1458 variable *var = (variable *) elem;
1459 location_chain *node, *next;
1460
1461 gcc_checking_assert (var->refcount > 0);
1462
1463 var->refcount--;
1464 if (var->refcount > 0)
1465 return;
1466
1467 for (i = 0; i < var->n_var_parts; i++)
1468 {
1469 for (node = var->var_part[i].loc_chain; node; node = next)
1470 {
1471 next = node->next;
1472 delete node;
1473 }
1474 var->var_part[i].loc_chain = NULL;
1475 }
1476 if (var->onepart && VAR_LOC_1PAUX (var))
1477 {
1478 loc_exp_dep_clear (var);
1479 if (VAR_LOC_DEP_LST (var))
1480 VAR_LOC_DEP_LST (var)->pprev = NULL;
1481 XDELETE (VAR_LOC_1PAUX (var));
1482 /* These may be reused across functions, so reset
1483 e.g. NO_LOC_P. */
1484 if (var->onepart == ONEPART_DEXPR)
1485 set_dv_changed (var->dv, true);
1486 }
1487 onepart_pool (var->onepart).remove (var);
1488 }
1489
1490 /* Initialize the set (array) SET of attrs to empty lists. */
1491
1492 static void
1493 init_attrs_list_set (attrs **set)
1494 {
1495 int i;
1496
1497 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1498 set[i] = NULL;
1499 }
1500
1501 /* Make the list *LISTP empty. */
1502
1503 static void
1504 attrs_list_clear (attrs **listp)
1505 {
1506 attrs *list, *next;
1507
1508 for (list = *listp; list; list = next)
1509 {
1510 next = list->next;
1511 delete list;
1512 }
1513 *listp = NULL;
1514 }
1515
1516 /* Return true if the pair of DECL and OFFSET is the member of the LIST. */
1517
1518 static attrs *
1519 attrs_list_member (attrs *list, decl_or_value dv, HOST_WIDE_INT offset)
1520 {
1521 for (; list; list = list->next)
1522 if (dv_as_opaque (list->dv) == dv_as_opaque (dv) && list->offset == offset)
1523 return list;
1524 return NULL;
1525 }
1526
1527 /* Insert the triplet DECL, OFFSET, LOC to the list *LISTP. */
1528
1529 static void
1530 attrs_list_insert (attrs **listp, decl_or_value dv,
1531 HOST_WIDE_INT offset, rtx loc)
1532 {
1533 attrs *list = new attrs;
1534 list->loc = loc;
1535 list->dv = dv;
1536 list->offset = offset;
1537 list->next = *listp;
1538 *listp = list;
1539 }
1540
1541 /* Copy all nodes from SRC and create a list *DSTP of the copies. */
1542
1543 static void
1544 attrs_list_copy (attrs **dstp, attrs *src)
1545 {
1546 attrs_list_clear (dstp);
1547 for (; src; src = src->next)
1548 {
1549 attrs *n = new attrs;
1550 n->loc = src->loc;
1551 n->dv = src->dv;
1552 n->offset = src->offset;
1553 n->next = *dstp;
1554 *dstp = n;
1555 }
1556 }
1557
1558 /* Add all nodes from SRC which are not in *DSTP to *DSTP. */
1559
1560 static void
1561 attrs_list_union (attrs **dstp, attrs *src)
1562 {
1563 for (; src; src = src->next)
1564 {
1565 if (!attrs_list_member (*dstp, src->dv, src->offset))
1566 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1567 }
1568 }
1569
1570 /* Combine nodes that are not onepart nodes from SRC and SRC2 into
1571 *DSTP. */
1572
1573 static void
1574 attrs_list_mpdv_union (attrs **dstp, attrs *src, attrs *src2)
1575 {
1576 gcc_assert (!*dstp);
1577 for (; src; src = src->next)
1578 {
1579 if (!dv_onepart_p (src->dv))
1580 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1581 }
1582 for (src = src2; src; src = src->next)
1583 {
1584 if (!dv_onepart_p (src->dv)
1585 && !attrs_list_member (*dstp, src->dv, src->offset))
1586 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1587 }
1588 }
1589
1590 /* Shared hashtable support. */
1591
1592 /* Return true if VARS is shared. */
1593
1594 static inline bool
1595 shared_hash_shared (shared_hash *vars)
1596 {
1597 return vars->refcount > 1;
1598 }
1599
1600 /* Return the hash table for VARS. */
1601
1602 static inline variable_table_type *
1603 shared_hash_htab (shared_hash *vars)
1604 {
1605 return vars->htab;
1606 }
1607
1608 /* Return true if VAR is shared, or maybe because VARS is shared. */
1609
1610 static inline bool
1611 shared_var_p (variable *var, shared_hash *vars)
1612 {
1613 /* Don't count an entry in the changed_variables table as a duplicate. */
1614 return ((var->refcount > 1 + (int) var->in_changed_variables)
1615 || shared_hash_shared (vars));
1616 }
1617
1618 /* Copy variables into a new hash table. */
1619
1620 static shared_hash *
1621 shared_hash_unshare (shared_hash *vars)
1622 {
1623 shared_hash *new_vars = new shared_hash;
1624 gcc_assert (vars->refcount > 1);
1625 new_vars->refcount = 1;
1626 new_vars->htab = new variable_table_type (vars->htab->elements () + 3);
1627 vars_copy (new_vars->htab, vars->htab);
1628 vars->refcount--;
1629 return new_vars;
1630 }
1631
1632 /* Increment reference counter on VARS and return it. */
1633
1634 static inline shared_hash *
1635 shared_hash_copy (shared_hash *vars)
1636 {
1637 vars->refcount++;
1638 return vars;
1639 }
1640
1641 /* Decrement reference counter and destroy hash table if not shared
1642 anymore. */
1643
1644 static void
1645 shared_hash_destroy (shared_hash *vars)
1646 {
1647 gcc_checking_assert (vars->refcount > 0);
1648 if (--vars->refcount == 0)
1649 {
1650 delete vars->htab;
1651 delete vars;
1652 }
1653 }
1654
1655 /* Unshare *PVARS if shared and return slot for DV. If INS is
1656 INSERT, insert it if not already present. */
1657
1658 static inline variable **
1659 shared_hash_find_slot_unshare_1 (shared_hash **pvars, decl_or_value dv,
1660 hashval_t dvhash, enum insert_option ins)
1661 {
1662 if (shared_hash_shared (*pvars))
1663 *pvars = shared_hash_unshare (*pvars);
1664 return shared_hash_htab (*pvars)->find_slot_with_hash (dv, dvhash, ins);
1665 }
1666
1667 static inline variable **
1668 shared_hash_find_slot_unshare (shared_hash **pvars, decl_or_value dv,
1669 enum insert_option ins)
1670 {
1671 return shared_hash_find_slot_unshare_1 (pvars, dv, dv_htab_hash (dv), ins);
1672 }
1673
1674 /* Return slot for DV, if it is already present in the hash table.
1675 If it is not present, insert it only VARS is not shared, otherwise
1676 return NULL. */
1677
1678 static inline variable **
1679 shared_hash_find_slot_1 (shared_hash *vars, decl_or_value dv, hashval_t dvhash)
1680 {
1681 return shared_hash_htab (vars)->find_slot_with_hash (dv, dvhash,
1682 shared_hash_shared (vars)
1683 ? NO_INSERT : INSERT);
1684 }
1685
1686 static inline variable **
1687 shared_hash_find_slot (shared_hash *vars, decl_or_value dv)
1688 {
1689 return shared_hash_find_slot_1 (vars, dv, dv_htab_hash (dv));
1690 }
1691
1692 /* Return slot for DV only if it is already present in the hash table. */
1693
1694 static inline variable **
1695 shared_hash_find_slot_noinsert_1 (shared_hash *vars, decl_or_value dv,
1696 hashval_t dvhash)
1697 {
1698 return shared_hash_htab (vars)->find_slot_with_hash (dv, dvhash, NO_INSERT);
1699 }
1700
1701 static inline variable **
1702 shared_hash_find_slot_noinsert (shared_hash *vars, decl_or_value dv)
1703 {
1704 return shared_hash_find_slot_noinsert_1 (vars, dv, dv_htab_hash (dv));
1705 }
1706
1707 /* Return variable for DV or NULL if not already present in the hash
1708 table. */
1709
1710 static inline variable *
1711 shared_hash_find_1 (shared_hash *vars, decl_or_value dv, hashval_t dvhash)
1712 {
1713 return shared_hash_htab (vars)->find_with_hash (dv, dvhash);
1714 }
1715
1716 static inline variable *
1717 shared_hash_find (shared_hash *vars, decl_or_value dv)
1718 {
1719 return shared_hash_find_1 (vars, dv, dv_htab_hash (dv));
1720 }
1721
1722 /* Return true if TVAL is better than CVAL as a canonival value. We
1723 choose lowest-numbered VALUEs, using the RTX address as a
1724 tie-breaker. The idea is to arrange them into a star topology,
1725 such that all of them are at most one step away from the canonical
1726 value, and the canonical value has backlinks to all of them, in
1727 addition to all the actual locations. We don't enforce this
1728 topology throughout the entire dataflow analysis, though.
1729 */
1730
1731 static inline bool
1732 canon_value_cmp (rtx tval, rtx cval)
1733 {
1734 return !cval
1735 || CSELIB_VAL_PTR (tval)->uid < CSELIB_VAL_PTR (cval)->uid;
1736 }
1737
1738 static bool dst_can_be_shared;
1739
1740 /* Return a copy of a variable VAR and insert it to dataflow set SET. */
1741
1742 static variable **
1743 unshare_variable (dataflow_set *set, variable **slot, variable *var,
1744 enum var_init_status initialized)
1745 {
1746 variable *new_var;
1747 int i;
1748
1749 new_var = onepart_pool_allocate (var->onepart);
1750 new_var->dv = var->dv;
1751 new_var->refcount = 1;
1752 var->refcount--;
1753 new_var->n_var_parts = var->n_var_parts;
1754 new_var->onepart = var->onepart;
1755 new_var->in_changed_variables = false;
1756
1757 if (! flag_var_tracking_uninit)
1758 initialized = VAR_INIT_STATUS_INITIALIZED;
1759
1760 for (i = 0; i < var->n_var_parts; i++)
1761 {
1762 location_chain *node;
1763 location_chain **nextp;
1764
1765 if (i == 0 && var->onepart)
1766 {
1767 /* One-part auxiliary data is only used while emitting
1768 notes, so propagate it to the new variable in the active
1769 dataflow set. If we're not emitting notes, this will be
1770 a no-op. */
1771 gcc_checking_assert (!VAR_LOC_1PAUX (var) || emit_notes);
1772 VAR_LOC_1PAUX (new_var) = VAR_LOC_1PAUX (var);
1773 VAR_LOC_1PAUX (var) = NULL;
1774 }
1775 else
1776 VAR_PART_OFFSET (new_var, i) = VAR_PART_OFFSET (var, i);
1777 nextp = &new_var->var_part[i].loc_chain;
1778 for (node = var->var_part[i].loc_chain; node; node = node->next)
1779 {
1780 location_chain *new_lc;
1781
1782 new_lc = new location_chain;
1783 new_lc->next = NULL;
1784 if (node->init > initialized)
1785 new_lc->init = node->init;
1786 else
1787 new_lc->init = initialized;
1788 if (node->set_src && !(MEM_P (node->set_src)))
1789 new_lc->set_src = node->set_src;
1790 else
1791 new_lc->set_src = NULL;
1792 new_lc->loc = node->loc;
1793
1794 *nextp = new_lc;
1795 nextp = &new_lc->next;
1796 }
1797
1798 new_var->var_part[i].cur_loc = var->var_part[i].cur_loc;
1799 }
1800
1801 dst_can_be_shared = false;
1802 if (shared_hash_shared (set->vars))
1803 slot = shared_hash_find_slot_unshare (&set->vars, var->dv, NO_INSERT);
1804 else if (set->traversed_vars && set->vars != set->traversed_vars)
1805 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
1806 *slot = new_var;
1807 if (var->in_changed_variables)
1808 {
1809 variable **cslot
1810 = changed_variables->find_slot_with_hash (var->dv,
1811 dv_htab_hash (var->dv),
1812 NO_INSERT);
1813 gcc_assert (*cslot == (void *) var);
1814 var->in_changed_variables = false;
1815 variable_htab_free (var);
1816 *cslot = new_var;
1817 new_var->in_changed_variables = true;
1818 }
1819 return slot;
1820 }
1821
1822 /* Copy all variables from hash table SRC to hash table DST. */
1823
1824 static void
1825 vars_copy (variable_table_type *dst, variable_table_type *src)
1826 {
1827 variable_iterator_type hi;
1828 variable *var;
1829
1830 FOR_EACH_HASH_TABLE_ELEMENT (*src, var, variable, hi)
1831 {
1832 variable **dstp;
1833 var->refcount++;
1834 dstp = dst->find_slot_with_hash (var->dv, dv_htab_hash (var->dv),
1835 INSERT);
1836 *dstp = var;
1837 }
1838 }
1839
1840 /* Map a decl to its main debug decl. */
1841
1842 static inline tree
1843 var_debug_decl (tree decl)
1844 {
1845 if (decl && VAR_P (decl) && DECL_HAS_DEBUG_EXPR_P (decl))
1846 {
1847 tree debugdecl = DECL_DEBUG_EXPR (decl);
1848 if (DECL_P (debugdecl))
1849 decl = debugdecl;
1850 }
1851
1852 return decl;
1853 }
1854
1855 /* Set the register LOC to contain DV, OFFSET. */
1856
1857 static void
1858 var_reg_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1859 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
1860 enum insert_option iopt)
1861 {
1862 attrs *node;
1863 bool decl_p = dv_is_decl_p (dv);
1864
1865 if (decl_p)
1866 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
1867
1868 for (node = set->regs[REGNO (loc)]; node; node = node->next)
1869 if (dv_as_opaque (node->dv) == dv_as_opaque (dv)
1870 && node->offset == offset)
1871 break;
1872 if (!node)
1873 attrs_list_insert (&set->regs[REGNO (loc)], dv, offset, loc);
1874 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
1875 }
1876
1877 /* Return true if we should track a location that is OFFSET bytes from
1878 a variable. Store the constant offset in *OFFSET_OUT if so. */
1879
1880 static bool
1881 track_offset_p (poly_int64 offset, HOST_WIDE_INT *offset_out)
1882 {
1883 HOST_WIDE_INT const_offset;
1884 if (!offset.is_constant (&const_offset)
1885 || !IN_RANGE (const_offset, 0, MAX_VAR_PARTS - 1))
1886 return false;
1887 *offset_out = const_offset;
1888 return true;
1889 }
1890
1891 /* Return the offset of a register that track_offset_p says we
1892 should track. */
1893
1894 static HOST_WIDE_INT
1895 get_tracked_reg_offset (rtx loc)
1896 {
1897 HOST_WIDE_INT offset;
1898 if (!track_offset_p (REG_OFFSET (loc), &offset))
1899 gcc_unreachable ();
1900 return offset;
1901 }
1902
1903 /* Set the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). */
1904
1905 static void
1906 var_reg_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1907 rtx set_src)
1908 {
1909 tree decl = REG_EXPR (loc);
1910 HOST_WIDE_INT offset = get_tracked_reg_offset (loc);
1911
1912 var_reg_decl_set (set, loc, initialized,
1913 dv_from_decl (decl), offset, set_src, INSERT);
1914 }
1915
1916 static enum var_init_status
1917 get_init_value (dataflow_set *set, rtx loc, decl_or_value dv)
1918 {
1919 variable *var;
1920 int i;
1921 enum var_init_status ret_val = VAR_INIT_STATUS_UNKNOWN;
1922
1923 if (! flag_var_tracking_uninit)
1924 return VAR_INIT_STATUS_INITIALIZED;
1925
1926 var = shared_hash_find (set->vars, dv);
1927 if (var)
1928 {
1929 for (i = 0; i < var->n_var_parts && ret_val == VAR_INIT_STATUS_UNKNOWN; i++)
1930 {
1931 location_chain *nextp;
1932 for (nextp = var->var_part[i].loc_chain; nextp; nextp = nextp->next)
1933 if (rtx_equal_p (nextp->loc, loc))
1934 {
1935 ret_val = nextp->init;
1936 break;
1937 }
1938 }
1939 }
1940
1941 return ret_val;
1942 }
1943
1944 /* Delete current content of register LOC in dataflow set SET and set
1945 the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). If
1946 MODIFY is true, any other live copies of the same variable part are
1947 also deleted from the dataflow set, otherwise the variable part is
1948 assumed to be copied from another location holding the same
1949 part. */
1950
1951 static void
1952 var_reg_delete_and_set (dataflow_set *set, rtx loc, bool modify,
1953 enum var_init_status initialized, rtx set_src)
1954 {
1955 tree decl = REG_EXPR (loc);
1956 HOST_WIDE_INT offset = get_tracked_reg_offset (loc);
1957 attrs *node, *next;
1958 attrs **nextp;
1959
1960 decl = var_debug_decl (decl);
1961
1962 if (initialized == VAR_INIT_STATUS_UNKNOWN)
1963 initialized = get_init_value (set, loc, dv_from_decl (decl));
1964
1965 nextp = &set->regs[REGNO (loc)];
1966 for (node = *nextp; node; node = next)
1967 {
1968 next = node->next;
1969 if (dv_as_opaque (node->dv) != decl || node->offset != offset)
1970 {
1971 delete_variable_part (set, node->loc, node->dv, node->offset);
1972 delete node;
1973 *nextp = next;
1974 }
1975 else
1976 {
1977 node->loc = loc;
1978 nextp = &node->next;
1979 }
1980 }
1981 if (modify)
1982 clobber_variable_part (set, loc, dv_from_decl (decl), offset, set_src);
1983 var_reg_set (set, loc, initialized, set_src);
1984 }
1985
1986 /* Delete the association of register LOC in dataflow set SET with any
1987 variables that aren't onepart. If CLOBBER is true, also delete any
1988 other live copies of the same variable part, and delete the
1989 association with onepart dvs too. */
1990
1991 static void
1992 var_reg_delete (dataflow_set *set, rtx loc, bool clobber)
1993 {
1994 attrs **nextp = &set->regs[REGNO (loc)];
1995 attrs *node, *next;
1996
1997 HOST_WIDE_INT offset;
1998 if (clobber && track_offset_p (REG_OFFSET (loc), &offset))
1999 {
2000 tree decl = REG_EXPR (loc);
2001
2002 decl = var_debug_decl (decl);
2003
2004 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
2005 }
2006
2007 for (node = *nextp; node; node = next)
2008 {
2009 next = node->next;
2010 if (clobber || !dv_onepart_p (node->dv))
2011 {
2012 delete_variable_part (set, node->loc, node->dv, node->offset);
2013 delete node;
2014 *nextp = next;
2015 }
2016 else
2017 nextp = &node->next;
2018 }
2019 }
2020
2021 /* Delete content of register with number REGNO in dataflow set SET. */
2022
2023 static void
2024 var_regno_delete (dataflow_set *set, int regno)
2025 {
2026 attrs **reg = &set->regs[regno];
2027 attrs *node, *next;
2028
2029 for (node = *reg; node; node = next)
2030 {
2031 next = node->next;
2032 delete_variable_part (set, node->loc, node->dv, node->offset);
2033 delete node;
2034 }
2035 *reg = NULL;
2036 }
2037
2038 /* Return true if I is the negated value of a power of two. */
2039 static bool
2040 negative_power_of_two_p (HOST_WIDE_INT i)
2041 {
2042 unsigned HOST_WIDE_INT x = -(unsigned HOST_WIDE_INT)i;
2043 return pow2_or_zerop (x);
2044 }
2045
2046 /* Strip constant offsets and alignments off of LOC. Return the base
2047 expression. */
2048
2049 static rtx
2050 vt_get_canonicalize_base (rtx loc)
2051 {
2052 while ((GET_CODE (loc) == PLUS
2053 || GET_CODE (loc) == AND)
2054 && GET_CODE (XEXP (loc, 1)) == CONST_INT
2055 && (GET_CODE (loc) != AND
2056 || negative_power_of_two_p (INTVAL (XEXP (loc, 1)))))
2057 loc = XEXP (loc, 0);
2058
2059 return loc;
2060 }
2061
2062 /* This caches canonicalized addresses for VALUEs, computed using
2063 information in the global cselib table. */
2064 static hash_map<rtx, rtx> *global_get_addr_cache;
2065
2066 /* This caches canonicalized addresses for VALUEs, computed using
2067 information from the global cache and information pertaining to a
2068 basic block being analyzed. */
2069 static hash_map<rtx, rtx> *local_get_addr_cache;
2070
2071 static rtx vt_canonicalize_addr (dataflow_set *, rtx);
2072
2073 /* Return the canonical address for LOC, that must be a VALUE, using a
2074 cached global equivalence or computing it and storing it in the
2075 global cache. */
2076
2077 static rtx
2078 get_addr_from_global_cache (rtx const loc)
2079 {
2080 rtx x;
2081
2082 gcc_checking_assert (GET_CODE (loc) == VALUE);
2083
2084 bool existed;
2085 rtx *slot = &global_get_addr_cache->get_or_insert (loc, &existed);
2086 if (existed)
2087 return *slot;
2088
2089 x = canon_rtx (get_addr (loc));
2090
2091 /* Tentative, avoiding infinite recursion. */
2092 *slot = x;
2093
2094 if (x != loc)
2095 {
2096 rtx nx = vt_canonicalize_addr (NULL, x);
2097 if (nx != x)
2098 {
2099 /* The table may have moved during recursion, recompute
2100 SLOT. */
2101 *global_get_addr_cache->get (loc) = x = nx;
2102 }
2103 }
2104
2105 return x;
2106 }
2107
2108 /* Return the canonical address for LOC, that must be a VALUE, using a
2109 cached local equivalence or computing it and storing it in the
2110 local cache. */
2111
2112 static rtx
2113 get_addr_from_local_cache (dataflow_set *set, rtx const loc)
2114 {
2115 rtx x;
2116 decl_or_value dv;
2117 variable *var;
2118 location_chain *l;
2119
2120 gcc_checking_assert (GET_CODE (loc) == VALUE);
2121
2122 bool existed;
2123 rtx *slot = &local_get_addr_cache->get_or_insert (loc, &existed);
2124 if (existed)
2125 return *slot;
2126
2127 x = get_addr_from_global_cache (loc);
2128
2129 /* Tentative, avoiding infinite recursion. */
2130 *slot = x;
2131
2132 /* Recurse to cache local expansion of X, or if we need to search
2133 for a VALUE in the expansion. */
2134 if (x != loc)
2135 {
2136 rtx nx = vt_canonicalize_addr (set, x);
2137 if (nx != x)
2138 {
2139 slot = local_get_addr_cache->get (loc);
2140 *slot = x = nx;
2141 }
2142 return x;
2143 }
2144
2145 dv = dv_from_rtx (x);
2146 var = shared_hash_find (set->vars, dv);
2147 if (!var)
2148 return x;
2149
2150 /* Look for an improved equivalent expression. */
2151 for (l = var->var_part[0].loc_chain; l; l = l->next)
2152 {
2153 rtx base = vt_get_canonicalize_base (l->loc);
2154 if (GET_CODE (base) == VALUE
2155 && canon_value_cmp (base, loc))
2156 {
2157 rtx nx = vt_canonicalize_addr (set, l->loc);
2158 if (x != nx)
2159 {
2160 slot = local_get_addr_cache->get (loc);
2161 *slot = x = nx;
2162 }
2163 break;
2164 }
2165 }
2166
2167 return x;
2168 }
2169
2170 /* Canonicalize LOC using equivalences from SET in addition to those
2171 in the cselib static table. It expects a VALUE-based expression,
2172 and it will only substitute VALUEs with other VALUEs or
2173 function-global equivalences, so that, if two addresses have base
2174 VALUEs that are locally or globally related in ways that
2175 memrefs_conflict_p cares about, they will both canonicalize to
2176 expressions that have the same base VALUE.
2177
2178 The use of VALUEs as canonical base addresses enables the canonical
2179 RTXs to remain unchanged globally, if they resolve to a constant,
2180 or throughout a basic block otherwise, so that they can be cached
2181 and the cache needs not be invalidated when REGs, MEMs or such
2182 change. */
2183
2184 static rtx
2185 vt_canonicalize_addr (dataflow_set *set, rtx oloc)
2186 {
2187 poly_int64 ofst = 0, term;
2188 machine_mode mode = GET_MODE (oloc);
2189 rtx loc = oloc;
2190 rtx x;
2191 bool retry = true;
2192
2193 while (retry)
2194 {
2195 while (GET_CODE (loc) == PLUS
2196 && poly_int_rtx_p (XEXP (loc, 1), &term))
2197 {
2198 ofst += term;
2199 loc = XEXP (loc, 0);
2200 }
2201
2202 /* Alignment operations can't normally be combined, so just
2203 canonicalize the base and we're done. We'll normally have
2204 only one stack alignment anyway. */
2205 if (GET_CODE (loc) == AND
2206 && GET_CODE (XEXP (loc, 1)) == CONST_INT
2207 && negative_power_of_two_p (INTVAL (XEXP (loc, 1))))
2208 {
2209 x = vt_canonicalize_addr (set, XEXP (loc, 0));
2210 if (x != XEXP (loc, 0))
2211 loc = gen_rtx_AND (mode, x, XEXP (loc, 1));
2212 retry = false;
2213 }
2214
2215 if (GET_CODE (loc) == VALUE)
2216 {
2217 if (set)
2218 loc = get_addr_from_local_cache (set, loc);
2219 else
2220 loc = get_addr_from_global_cache (loc);
2221
2222 /* Consolidate plus_constants. */
2223 while (maybe_ne (ofst, 0)
2224 && GET_CODE (loc) == PLUS
2225 && poly_int_rtx_p (XEXP (loc, 1), &term))
2226 {
2227 ofst += term;
2228 loc = XEXP (loc, 0);
2229 }
2230
2231 retry = false;
2232 }
2233 else
2234 {
2235 x = canon_rtx (loc);
2236 if (retry)
2237 retry = (x != loc);
2238 loc = x;
2239 }
2240 }
2241
2242 /* Add OFST back in. */
2243 if (maybe_ne (ofst, 0))
2244 {
2245 /* Don't build new RTL if we can help it. */
2246 if (strip_offset (oloc, &term) == loc && known_eq (term, ofst))
2247 return oloc;
2248
2249 loc = plus_constant (mode, loc, ofst);
2250 }
2251
2252 return loc;
2253 }
2254
2255 /* Return true iff there's a true dependence between MLOC and LOC.
2256 MADDR must be a canonicalized version of MLOC's address. */
2257
2258 static inline bool
2259 vt_canon_true_dep (dataflow_set *set, rtx mloc, rtx maddr, rtx loc)
2260 {
2261 if (GET_CODE (loc) != MEM)
2262 return false;
2263
2264 rtx addr = vt_canonicalize_addr (set, XEXP (loc, 0));
2265 if (!canon_true_dependence (mloc, GET_MODE (mloc), maddr, loc, addr))
2266 return false;
2267
2268 return true;
2269 }
2270
2271 /* Hold parameters for the hashtab traversal function
2272 drop_overlapping_mem_locs, see below. */
2273
2274 struct overlapping_mems
2275 {
2276 dataflow_set *set;
2277 rtx loc, addr;
2278 };
2279
2280 /* Remove all MEMs that overlap with COMS->LOC from the location list
2281 of a hash table entry for a onepart variable. COMS->ADDR must be a
2282 canonicalized form of COMS->LOC's address, and COMS->LOC must be
2283 canonicalized itself. */
2284
2285 int
2286 drop_overlapping_mem_locs (variable **slot, overlapping_mems *coms)
2287 {
2288 dataflow_set *set = coms->set;
2289 rtx mloc = coms->loc, addr = coms->addr;
2290 variable *var = *slot;
2291
2292 if (var->onepart != NOT_ONEPART)
2293 {
2294 location_chain *loc, **locp;
2295 bool changed = false;
2296 rtx cur_loc;
2297
2298 gcc_assert (var->n_var_parts == 1);
2299
2300 if (shared_var_p (var, set->vars))
2301 {
2302 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
2303 if (vt_canon_true_dep (set, mloc, addr, loc->loc))
2304 break;
2305
2306 if (!loc)
2307 return 1;
2308
2309 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
2310 var = *slot;
2311 gcc_assert (var->n_var_parts == 1);
2312 }
2313
2314 if (VAR_LOC_1PAUX (var))
2315 cur_loc = VAR_LOC_FROM (var);
2316 else
2317 cur_loc = var->var_part[0].cur_loc;
2318
2319 for (locp = &var->var_part[0].loc_chain, loc = *locp;
2320 loc; loc = *locp)
2321 {
2322 if (!vt_canon_true_dep (set, mloc, addr, loc->loc))
2323 {
2324 locp = &loc->next;
2325 continue;
2326 }
2327
2328 *locp = loc->next;
2329 /* If we have deleted the location which was last emitted
2330 we have to emit new location so add the variable to set
2331 of changed variables. */
2332 if (cur_loc == loc->loc)
2333 {
2334 changed = true;
2335 var->var_part[0].cur_loc = NULL;
2336 if (VAR_LOC_1PAUX (var))
2337 VAR_LOC_FROM (var) = NULL;
2338 }
2339 delete loc;
2340 }
2341
2342 if (!var->var_part[0].loc_chain)
2343 {
2344 var->n_var_parts--;
2345 changed = true;
2346 }
2347 if (changed)
2348 variable_was_changed (var, set);
2349 }
2350
2351 return 1;
2352 }
2353
2354 /* Remove from SET all VALUE bindings to MEMs that overlap with LOC. */
2355
2356 static void
2357 clobber_overlapping_mems (dataflow_set *set, rtx loc)
2358 {
2359 struct overlapping_mems coms;
2360
2361 gcc_checking_assert (GET_CODE (loc) == MEM);
2362
2363 coms.set = set;
2364 coms.loc = canon_rtx (loc);
2365 coms.addr = vt_canonicalize_addr (set, XEXP (loc, 0));
2366
2367 set->traversed_vars = set->vars;
2368 shared_hash_htab (set->vars)
2369 ->traverse <overlapping_mems*, drop_overlapping_mem_locs> (&coms);
2370 set->traversed_vars = NULL;
2371 }
2372
2373 /* Set the location of DV, OFFSET as the MEM LOC. */
2374
2375 static void
2376 var_mem_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
2377 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
2378 enum insert_option iopt)
2379 {
2380 if (dv_is_decl_p (dv))
2381 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
2382
2383 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
2384 }
2385
2386 /* Set the location part of variable MEM_EXPR (LOC) in dataflow set
2387 SET to LOC.
2388 Adjust the address first if it is stack pointer based. */
2389
2390 static void
2391 var_mem_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
2392 rtx set_src)
2393 {
2394 tree decl = MEM_EXPR (loc);
2395 HOST_WIDE_INT offset = int_mem_offset (loc);
2396
2397 var_mem_decl_set (set, loc, initialized,
2398 dv_from_decl (decl), offset, set_src, INSERT);
2399 }
2400
2401 /* Delete and set the location part of variable MEM_EXPR (LOC) in
2402 dataflow set SET to LOC. If MODIFY is true, any other live copies
2403 of the same variable part are also deleted from the dataflow set,
2404 otherwise the variable part is assumed to be copied from another
2405 location holding the same part.
2406 Adjust the address first if it is stack pointer based. */
2407
2408 static void
2409 var_mem_delete_and_set (dataflow_set *set, rtx loc, bool modify,
2410 enum var_init_status initialized, rtx set_src)
2411 {
2412 tree decl = MEM_EXPR (loc);
2413 HOST_WIDE_INT offset = int_mem_offset (loc);
2414
2415 clobber_overlapping_mems (set, loc);
2416 decl = var_debug_decl (decl);
2417
2418 if (initialized == VAR_INIT_STATUS_UNKNOWN)
2419 initialized = get_init_value (set, loc, dv_from_decl (decl));
2420
2421 if (modify)
2422 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, set_src);
2423 var_mem_set (set, loc, initialized, set_src);
2424 }
2425
2426 /* Delete the location part LOC from dataflow set SET. If CLOBBER is
2427 true, also delete any other live copies of the same variable part.
2428 Adjust the address first if it is stack pointer based. */
2429
2430 static void
2431 var_mem_delete (dataflow_set *set, rtx loc, bool clobber)
2432 {
2433 tree decl = MEM_EXPR (loc);
2434 HOST_WIDE_INT offset = int_mem_offset (loc);
2435
2436 clobber_overlapping_mems (set, loc);
2437 decl = var_debug_decl (decl);
2438 if (clobber)
2439 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
2440 delete_variable_part (set, loc, dv_from_decl (decl), offset);
2441 }
2442
2443 /* Return true if LOC should not be expanded for location expressions,
2444 or used in them. */
2445
2446 static inline bool
2447 unsuitable_loc (rtx loc)
2448 {
2449 switch (GET_CODE (loc))
2450 {
2451 case PC:
2452 case SCRATCH:
2453 case ASM_INPUT:
2454 case ASM_OPERANDS:
2455 return true;
2456
2457 default:
2458 return false;
2459 }
2460 }
2461
2462 /* Bind VAL to LOC in SET. If MODIFIED, detach LOC from any values
2463 bound to it. */
2464
2465 static inline void
2466 val_bind (dataflow_set *set, rtx val, rtx loc, bool modified)
2467 {
2468 if (REG_P (loc))
2469 {
2470 if (modified)
2471 var_regno_delete (set, REGNO (loc));
2472 var_reg_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2473 dv_from_value (val), 0, NULL_RTX, INSERT);
2474 }
2475 else if (MEM_P (loc))
2476 {
2477 struct elt_loc_list *l = CSELIB_VAL_PTR (val)->locs;
2478
2479 if (modified)
2480 clobber_overlapping_mems (set, loc);
2481
2482 if (l && GET_CODE (l->loc) == VALUE)
2483 l = canonical_cselib_val (CSELIB_VAL_PTR (l->loc))->locs;
2484
2485 /* If this MEM is a global constant, we don't need it in the
2486 dynamic tables. ??? We should test this before emitting the
2487 micro-op in the first place. */
2488 while (l)
2489 if (GET_CODE (l->loc) == MEM && XEXP (l->loc, 0) == XEXP (loc, 0))
2490 break;
2491 else
2492 l = l->next;
2493
2494 if (!l)
2495 var_mem_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2496 dv_from_value (val), 0, NULL_RTX, INSERT);
2497 }
2498 else
2499 {
2500 /* Other kinds of equivalences are necessarily static, at least
2501 so long as we do not perform substitutions while merging
2502 expressions. */
2503 gcc_unreachable ();
2504 set_variable_part (set, loc, dv_from_value (val), 0,
2505 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2506 }
2507 }
2508
2509 /* Bind a value to a location it was just stored in. If MODIFIED
2510 holds, assume the location was modified, detaching it from any
2511 values bound to it. */
2512
2513 static void
2514 val_store (dataflow_set *set, rtx val, rtx loc, rtx_insn *insn,
2515 bool modified)
2516 {
2517 cselib_val *v = CSELIB_VAL_PTR (val);
2518
2519 gcc_assert (cselib_preserved_value_p (v));
2520
2521 if (dump_file)
2522 {
2523 fprintf (dump_file, "%i: ", insn ? INSN_UID (insn) : 0);
2524 print_inline_rtx (dump_file, loc, 0);
2525 fprintf (dump_file, " evaluates to ");
2526 print_inline_rtx (dump_file, val, 0);
2527 if (v->locs)
2528 {
2529 struct elt_loc_list *l;
2530 for (l = v->locs; l; l = l->next)
2531 {
2532 fprintf (dump_file, "\n%i: ", INSN_UID (l->setting_insn));
2533 print_inline_rtx (dump_file, l->loc, 0);
2534 }
2535 }
2536 fprintf (dump_file, "\n");
2537 }
2538
2539 gcc_checking_assert (!unsuitable_loc (loc));
2540
2541 val_bind (set, val, loc, modified);
2542 }
2543
2544 /* Clear (canonical address) slots that reference X. */
2545
2546 bool
2547 local_get_addr_clear_given_value (rtx const &, rtx *slot, rtx x)
2548 {
2549 if (vt_get_canonicalize_base (*slot) == x)
2550 *slot = NULL;
2551 return true;
2552 }
2553
2554 /* Reset this node, detaching all its equivalences. Return the slot
2555 in the variable hash table that holds dv, if there is one. */
2556
2557 static void
2558 val_reset (dataflow_set *set, decl_or_value dv)
2559 {
2560 variable *var = shared_hash_find (set->vars, dv) ;
2561 location_chain *node;
2562 rtx cval;
2563
2564 if (!var || !var->n_var_parts)
2565 return;
2566
2567 gcc_assert (var->n_var_parts == 1);
2568
2569 if (var->onepart == ONEPART_VALUE)
2570 {
2571 rtx x = dv_as_value (dv);
2572
2573 /* Relationships in the global cache don't change, so reset the
2574 local cache entry only. */
2575 rtx *slot = local_get_addr_cache->get (x);
2576 if (slot)
2577 {
2578 /* If the value resolved back to itself, odds are that other
2579 values may have cached it too. These entries now refer
2580 to the old X, so detach them too. Entries that used the
2581 old X but resolved to something else remain ok as long as
2582 that something else isn't also reset. */
2583 if (*slot == x)
2584 local_get_addr_cache
2585 ->traverse<rtx, local_get_addr_clear_given_value> (x);
2586 *slot = NULL;
2587 }
2588 }
2589
2590 cval = NULL;
2591 for (node = var->var_part[0].loc_chain; node; node = node->next)
2592 if (GET_CODE (node->loc) == VALUE
2593 && canon_value_cmp (node->loc, cval))
2594 cval = node->loc;
2595
2596 for (node = var->var_part[0].loc_chain; node; node = node->next)
2597 if (GET_CODE (node->loc) == VALUE && cval != node->loc)
2598 {
2599 /* Redirect the equivalence link to the new canonical
2600 value, or simply remove it if it would point at
2601 itself. */
2602 if (cval)
2603 set_variable_part (set, cval, dv_from_value (node->loc),
2604 0, node->init, node->set_src, NO_INSERT);
2605 delete_variable_part (set, dv_as_value (dv),
2606 dv_from_value (node->loc), 0);
2607 }
2608
2609 if (cval)
2610 {
2611 decl_or_value cdv = dv_from_value (cval);
2612
2613 /* Keep the remaining values connected, accumulating links
2614 in the canonical value. */
2615 for (node = var->var_part[0].loc_chain; node; node = node->next)
2616 {
2617 if (node->loc == cval)
2618 continue;
2619 else if (GET_CODE (node->loc) == REG)
2620 var_reg_decl_set (set, node->loc, node->init, cdv, 0,
2621 node->set_src, NO_INSERT);
2622 else if (GET_CODE (node->loc) == MEM)
2623 var_mem_decl_set (set, node->loc, node->init, cdv, 0,
2624 node->set_src, NO_INSERT);
2625 else
2626 set_variable_part (set, node->loc, cdv, 0,
2627 node->init, node->set_src, NO_INSERT);
2628 }
2629 }
2630
2631 /* We remove this last, to make sure that the canonical value is not
2632 removed to the point of requiring reinsertion. */
2633 if (cval)
2634 delete_variable_part (set, dv_as_value (dv), dv_from_value (cval), 0);
2635
2636 clobber_variable_part (set, NULL, dv, 0, NULL);
2637 }
2638
2639 /* Find the values in a given location and map the val to another
2640 value, if it is unique, or add the location as one holding the
2641 value. */
2642
2643 static void
2644 val_resolve (dataflow_set *set, rtx val, rtx loc, rtx_insn *insn)
2645 {
2646 decl_or_value dv = dv_from_value (val);
2647
2648 if (dump_file && (dump_flags & TDF_DETAILS))
2649 {
2650 if (insn)
2651 fprintf (dump_file, "%i: ", INSN_UID (insn));
2652 else
2653 fprintf (dump_file, "head: ");
2654 print_inline_rtx (dump_file, val, 0);
2655 fputs (" is at ", dump_file);
2656 print_inline_rtx (dump_file, loc, 0);
2657 fputc ('\n', dump_file);
2658 }
2659
2660 val_reset (set, dv);
2661
2662 gcc_checking_assert (!unsuitable_loc (loc));
2663
2664 if (REG_P (loc))
2665 {
2666 attrs *node, *found = NULL;
2667
2668 for (node = set->regs[REGNO (loc)]; node; node = node->next)
2669 if (dv_is_value_p (node->dv)
2670 && GET_MODE (dv_as_value (node->dv)) == GET_MODE (loc))
2671 {
2672 found = node;
2673
2674 /* Map incoming equivalences. ??? Wouldn't it be nice if
2675 we just started sharing the location lists? Maybe a
2676 circular list ending at the value itself or some
2677 such. */
2678 set_variable_part (set, dv_as_value (node->dv),
2679 dv_from_value (val), node->offset,
2680 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2681 set_variable_part (set, val, node->dv, node->offset,
2682 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2683 }
2684
2685 /* If we didn't find any equivalence, we need to remember that
2686 this value is held in the named register. */
2687 if (found)
2688 return;
2689 }
2690 /* ??? Attempt to find and merge equivalent MEMs or other
2691 expressions too. */
2692
2693 val_bind (set, val, loc, false);
2694 }
2695
2696 /* Initialize dataflow set SET to be empty.
2697 VARS_SIZE is the initial size of hash table VARS. */
2698
2699 static void
2700 dataflow_set_init (dataflow_set *set)
2701 {
2702 init_attrs_list_set (set->regs);
2703 set->vars = shared_hash_copy (empty_shared_hash);
2704 set->stack_adjust = 0;
2705 set->traversed_vars = NULL;
2706 }
2707
2708 /* Delete the contents of dataflow set SET. */
2709
2710 static void
2711 dataflow_set_clear (dataflow_set *set)
2712 {
2713 int i;
2714
2715 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2716 attrs_list_clear (&set->regs[i]);
2717
2718 shared_hash_destroy (set->vars);
2719 set->vars = shared_hash_copy (empty_shared_hash);
2720 }
2721
2722 /* Copy the contents of dataflow set SRC to DST. */
2723
2724 static void
2725 dataflow_set_copy (dataflow_set *dst, dataflow_set *src)
2726 {
2727 int i;
2728
2729 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2730 attrs_list_copy (&dst->regs[i], src->regs[i]);
2731
2732 shared_hash_destroy (dst->vars);
2733 dst->vars = shared_hash_copy (src->vars);
2734 dst->stack_adjust = src->stack_adjust;
2735 }
2736
2737 /* Information for merging lists of locations for a given offset of variable.
2738 */
2739 struct variable_union_info
2740 {
2741 /* Node of the location chain. */
2742 location_chain *lc;
2743
2744 /* The sum of positions in the input chains. */
2745 int pos;
2746
2747 /* The position in the chain of DST dataflow set. */
2748 int pos_dst;
2749 };
2750
2751 /* Buffer for location list sorting and its allocated size. */
2752 static struct variable_union_info *vui_vec;
2753 static int vui_allocated;
2754
2755 /* Compare function for qsort, order the structures by POS element. */
2756
2757 static int
2758 variable_union_info_cmp_pos (const void *n1, const void *n2)
2759 {
2760 const struct variable_union_info *const i1 =
2761 (const struct variable_union_info *) n1;
2762 const struct variable_union_info *const i2 =
2763 ( const struct variable_union_info *) n2;
2764
2765 if (i1->pos != i2->pos)
2766 return i1->pos - i2->pos;
2767
2768 return (i1->pos_dst - i2->pos_dst);
2769 }
2770
2771 /* Compute union of location parts of variable *SLOT and the same variable
2772 from hash table DATA. Compute "sorted" union of the location chains
2773 for common offsets, i.e. the locations of a variable part are sorted by
2774 a priority where the priority is the sum of the positions in the 2 chains
2775 (if a location is only in one list the position in the second list is
2776 defined to be larger than the length of the chains).
2777 When we are updating the location parts the newest location is in the
2778 beginning of the chain, so when we do the described "sorted" union
2779 we keep the newest locations in the beginning. */
2780
2781 static int
2782 variable_union (variable *src, dataflow_set *set)
2783 {
2784 variable *dst;
2785 variable **dstp;
2786 int i, j, k;
2787
2788 dstp = shared_hash_find_slot (set->vars, src->dv);
2789 if (!dstp || !*dstp)
2790 {
2791 src->refcount++;
2792
2793 dst_can_be_shared = false;
2794 if (!dstp)
2795 dstp = shared_hash_find_slot_unshare (&set->vars, src->dv, INSERT);
2796
2797 *dstp = src;
2798
2799 /* Continue traversing the hash table. */
2800 return 1;
2801 }
2802 else
2803 dst = *dstp;
2804
2805 gcc_assert (src->n_var_parts);
2806 gcc_checking_assert (src->onepart == dst->onepart);
2807
2808 /* We can combine one-part variables very efficiently, because their
2809 entries are in canonical order. */
2810 if (src->onepart)
2811 {
2812 location_chain **nodep, *dnode, *snode;
2813
2814 gcc_assert (src->n_var_parts == 1
2815 && dst->n_var_parts == 1);
2816
2817 snode = src->var_part[0].loc_chain;
2818 gcc_assert (snode);
2819
2820 restart_onepart_unshared:
2821 nodep = &dst->var_part[0].loc_chain;
2822 dnode = *nodep;
2823 gcc_assert (dnode);
2824
2825 while (snode)
2826 {
2827 int r = dnode ? loc_cmp (dnode->loc, snode->loc) : 1;
2828
2829 if (r > 0)
2830 {
2831 location_chain *nnode;
2832
2833 if (shared_var_p (dst, set->vars))
2834 {
2835 dstp = unshare_variable (set, dstp, dst,
2836 VAR_INIT_STATUS_INITIALIZED);
2837 dst = *dstp;
2838 goto restart_onepart_unshared;
2839 }
2840
2841 *nodep = nnode = new location_chain;
2842 nnode->loc = snode->loc;
2843 nnode->init = snode->init;
2844 if (!snode->set_src || MEM_P (snode->set_src))
2845 nnode->set_src = NULL;
2846 else
2847 nnode->set_src = snode->set_src;
2848 nnode->next = dnode;
2849 dnode = nnode;
2850 }
2851 else if (r == 0)
2852 gcc_checking_assert (rtx_equal_p (dnode->loc, snode->loc));
2853
2854 if (r >= 0)
2855 snode = snode->next;
2856
2857 nodep = &dnode->next;
2858 dnode = *nodep;
2859 }
2860
2861 return 1;
2862 }
2863
2864 gcc_checking_assert (!src->onepart);
2865
2866 /* Count the number of location parts, result is K. */
2867 for (i = 0, j = 0, k = 0;
2868 i < src->n_var_parts && j < dst->n_var_parts; k++)
2869 {
2870 if (VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
2871 {
2872 i++;
2873 j++;
2874 }
2875 else if (VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
2876 i++;
2877 else
2878 j++;
2879 }
2880 k += src->n_var_parts - i;
2881 k += dst->n_var_parts - j;
2882
2883 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
2884 thus there are at most MAX_VAR_PARTS different offsets. */
2885 gcc_checking_assert (dst->onepart ? k == 1 : k <= MAX_VAR_PARTS);
2886
2887 if (dst->n_var_parts != k && shared_var_p (dst, set->vars))
2888 {
2889 dstp = unshare_variable (set, dstp, dst, VAR_INIT_STATUS_UNKNOWN);
2890 dst = *dstp;
2891 }
2892
2893 i = src->n_var_parts - 1;
2894 j = dst->n_var_parts - 1;
2895 dst->n_var_parts = k;
2896
2897 for (k--; k >= 0; k--)
2898 {
2899 location_chain *node, *node2;
2900
2901 if (i >= 0 && j >= 0
2902 && VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
2903 {
2904 /* Compute the "sorted" union of the chains, i.e. the locations which
2905 are in both chains go first, they are sorted by the sum of
2906 positions in the chains. */
2907 int dst_l, src_l;
2908 int ii, jj, n;
2909 struct variable_union_info *vui;
2910
2911 /* If DST is shared compare the location chains.
2912 If they are different we will modify the chain in DST with
2913 high probability so make a copy of DST. */
2914 if (shared_var_p (dst, set->vars))
2915 {
2916 for (node = src->var_part[i].loc_chain,
2917 node2 = dst->var_part[j].loc_chain; node && node2;
2918 node = node->next, node2 = node2->next)
2919 {
2920 if (!((REG_P (node2->loc)
2921 && REG_P (node->loc)
2922 && REGNO (node2->loc) == REGNO (node->loc))
2923 || rtx_equal_p (node2->loc, node->loc)))
2924 {
2925 if (node2->init < node->init)
2926 node2->init = node->init;
2927 break;
2928 }
2929 }
2930 if (node || node2)
2931 {
2932 dstp = unshare_variable (set, dstp, dst,
2933 VAR_INIT_STATUS_UNKNOWN);
2934 dst = (variable *)*dstp;
2935 }
2936 }
2937
2938 src_l = 0;
2939 for (node = src->var_part[i].loc_chain; node; node = node->next)
2940 src_l++;
2941 dst_l = 0;
2942 for (node = dst->var_part[j].loc_chain; node; node = node->next)
2943 dst_l++;
2944
2945 if (dst_l == 1)
2946 {
2947 /* The most common case, much simpler, no qsort is needed. */
2948 location_chain *dstnode = dst->var_part[j].loc_chain;
2949 dst->var_part[k].loc_chain = dstnode;
2950 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (dst, j);
2951 node2 = dstnode;
2952 for (node = src->var_part[i].loc_chain; node; node = node->next)
2953 if (!((REG_P (dstnode->loc)
2954 && REG_P (node->loc)
2955 && REGNO (dstnode->loc) == REGNO (node->loc))
2956 || rtx_equal_p (dstnode->loc, node->loc)))
2957 {
2958 location_chain *new_node;
2959
2960 /* Copy the location from SRC. */
2961 new_node = new location_chain;
2962 new_node->loc = node->loc;
2963 new_node->init = node->init;
2964 if (!node->set_src || MEM_P (node->set_src))
2965 new_node->set_src = NULL;
2966 else
2967 new_node->set_src = node->set_src;
2968 node2->next = new_node;
2969 node2 = new_node;
2970 }
2971 node2->next = NULL;
2972 }
2973 else
2974 {
2975 if (src_l + dst_l > vui_allocated)
2976 {
2977 vui_allocated = MAX (vui_allocated * 2, src_l + dst_l);
2978 vui_vec = XRESIZEVEC (struct variable_union_info, vui_vec,
2979 vui_allocated);
2980 }
2981 vui = vui_vec;
2982
2983 /* Fill in the locations from DST. */
2984 for (node = dst->var_part[j].loc_chain, jj = 0; node;
2985 node = node->next, jj++)
2986 {
2987 vui[jj].lc = node;
2988 vui[jj].pos_dst = jj;
2989
2990 /* Pos plus value larger than a sum of 2 valid positions. */
2991 vui[jj].pos = jj + src_l + dst_l;
2992 }
2993
2994 /* Fill in the locations from SRC. */
2995 n = dst_l;
2996 for (node = src->var_part[i].loc_chain, ii = 0; node;
2997 node = node->next, ii++)
2998 {
2999 /* Find location from NODE. */
3000 for (jj = 0; jj < dst_l; jj++)
3001 {
3002 if ((REG_P (vui[jj].lc->loc)
3003 && REG_P (node->loc)
3004 && REGNO (vui[jj].lc->loc) == REGNO (node->loc))
3005 || rtx_equal_p (vui[jj].lc->loc, node->loc))
3006 {
3007 vui[jj].pos = jj + ii;
3008 break;
3009 }
3010 }
3011 if (jj >= dst_l) /* The location has not been found. */
3012 {
3013 location_chain *new_node;
3014
3015 /* Copy the location from SRC. */
3016 new_node = new location_chain;
3017 new_node->loc = node->loc;
3018 new_node->init = node->init;
3019 if (!node->set_src || MEM_P (node->set_src))
3020 new_node->set_src = NULL;
3021 else
3022 new_node->set_src = node->set_src;
3023 vui[n].lc = new_node;
3024 vui[n].pos_dst = src_l + dst_l;
3025 vui[n].pos = ii + src_l + dst_l;
3026 n++;
3027 }
3028 }
3029
3030 if (dst_l == 2)
3031 {
3032 /* Special case still very common case. For dst_l == 2
3033 all entries dst_l ... n-1 are sorted, with for i >= dst_l
3034 vui[i].pos == i + src_l + dst_l. */
3035 if (vui[0].pos > vui[1].pos)
3036 {
3037 /* Order should be 1, 0, 2... */
3038 dst->var_part[k].loc_chain = vui[1].lc;
3039 vui[1].lc->next = vui[0].lc;
3040 if (n >= 3)
3041 {
3042 vui[0].lc->next = vui[2].lc;
3043 vui[n - 1].lc->next = NULL;
3044 }
3045 else
3046 vui[0].lc->next = NULL;
3047 ii = 3;
3048 }
3049 else
3050 {
3051 dst->var_part[k].loc_chain = vui[0].lc;
3052 if (n >= 3 && vui[2].pos < vui[1].pos)
3053 {
3054 /* Order should be 0, 2, 1, 3... */
3055 vui[0].lc->next = vui[2].lc;
3056 vui[2].lc->next = vui[1].lc;
3057 if (n >= 4)
3058 {
3059 vui[1].lc->next = vui[3].lc;
3060 vui[n - 1].lc->next = NULL;
3061 }
3062 else
3063 vui[1].lc->next = NULL;
3064 ii = 4;
3065 }
3066 else
3067 {
3068 /* Order should be 0, 1, 2... */
3069 ii = 1;
3070 vui[n - 1].lc->next = NULL;
3071 }
3072 }
3073 for (; ii < n; ii++)
3074 vui[ii - 1].lc->next = vui[ii].lc;
3075 }
3076 else
3077 {
3078 qsort (vui, n, sizeof (struct variable_union_info),
3079 variable_union_info_cmp_pos);
3080
3081 /* Reconnect the nodes in sorted order. */
3082 for (ii = 1; ii < n; ii++)
3083 vui[ii - 1].lc->next = vui[ii].lc;
3084 vui[n - 1].lc->next = NULL;
3085 dst->var_part[k].loc_chain = vui[0].lc;
3086 }
3087
3088 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (dst, j);
3089 }
3090 i--;
3091 j--;
3092 }
3093 else if ((i >= 0 && j >= 0
3094 && VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
3095 || i < 0)
3096 {
3097 dst->var_part[k] = dst->var_part[j];
3098 j--;
3099 }
3100 else if ((i >= 0 && j >= 0
3101 && VAR_PART_OFFSET (src, i) > VAR_PART_OFFSET (dst, j))
3102 || j < 0)
3103 {
3104 location_chain **nextp;
3105
3106 /* Copy the chain from SRC. */
3107 nextp = &dst->var_part[k].loc_chain;
3108 for (node = src->var_part[i].loc_chain; node; node = node->next)
3109 {
3110 location_chain *new_lc;
3111
3112 new_lc = new location_chain;
3113 new_lc->next = NULL;
3114 new_lc->init = node->init;
3115 if (!node->set_src || MEM_P (node->set_src))
3116 new_lc->set_src = NULL;
3117 else
3118 new_lc->set_src = node->set_src;
3119 new_lc->loc = node->loc;
3120
3121 *nextp = new_lc;
3122 nextp = &new_lc->next;
3123 }
3124
3125 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (src, i);
3126 i--;
3127 }
3128 dst->var_part[k].cur_loc = NULL;
3129 }
3130
3131 if (flag_var_tracking_uninit)
3132 for (i = 0; i < src->n_var_parts && i < dst->n_var_parts; i++)
3133 {
3134 location_chain *node, *node2;
3135 for (node = src->var_part[i].loc_chain; node; node = node->next)
3136 for (node2 = dst->var_part[i].loc_chain; node2; node2 = node2->next)
3137 if (rtx_equal_p (node->loc, node2->loc))
3138 {
3139 if (node->init > node2->init)
3140 node2->init = node->init;
3141 }
3142 }
3143
3144 /* Continue traversing the hash table. */
3145 return 1;
3146 }
3147
3148 /* Compute union of dataflow sets SRC and DST and store it to DST. */
3149
3150 static void
3151 dataflow_set_union (dataflow_set *dst, dataflow_set *src)
3152 {
3153 int i;
3154
3155 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3156 attrs_list_union (&dst->regs[i], src->regs[i]);
3157
3158 if (dst->vars == empty_shared_hash)
3159 {
3160 shared_hash_destroy (dst->vars);
3161 dst->vars = shared_hash_copy (src->vars);
3162 }
3163 else
3164 {
3165 variable_iterator_type hi;
3166 variable *var;
3167
3168 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (src->vars),
3169 var, variable, hi)
3170 variable_union (var, dst);
3171 }
3172 }
3173
3174 /* Whether the value is currently being expanded. */
3175 #define VALUE_RECURSED_INTO(x) \
3176 (RTL_FLAG_CHECK2 ("VALUE_RECURSED_INTO", (x), VALUE, DEBUG_EXPR)->used)
3177
3178 /* Whether no expansion was found, saving useless lookups.
3179 It must only be set when VALUE_CHANGED is clear. */
3180 #define NO_LOC_P(x) \
3181 (RTL_FLAG_CHECK2 ("NO_LOC_P", (x), VALUE, DEBUG_EXPR)->return_val)
3182
3183 /* Whether cur_loc in the value needs to be (re)computed. */
3184 #define VALUE_CHANGED(x) \
3185 (RTL_FLAG_CHECK1 ("VALUE_CHANGED", (x), VALUE)->frame_related)
3186 /* Whether cur_loc in the decl needs to be (re)computed. */
3187 #define DECL_CHANGED(x) TREE_VISITED (x)
3188
3189 /* Record (if NEWV) that DV needs to have its cur_loc recomputed. For
3190 user DECLs, this means they're in changed_variables. Values and
3191 debug exprs may be left with this flag set if no user variable
3192 requires them to be evaluated. */
3193
3194 static inline void
3195 set_dv_changed (decl_or_value dv, bool newv)
3196 {
3197 switch (dv_onepart_p (dv))
3198 {
3199 case ONEPART_VALUE:
3200 if (newv)
3201 NO_LOC_P (dv_as_value (dv)) = false;
3202 VALUE_CHANGED (dv_as_value (dv)) = newv;
3203 break;
3204
3205 case ONEPART_DEXPR:
3206 if (newv)
3207 NO_LOC_P (DECL_RTL_KNOWN_SET (dv_as_decl (dv))) = false;
3208 /* Fall through. */
3209
3210 default:
3211 DECL_CHANGED (dv_as_decl (dv)) = newv;
3212 break;
3213 }
3214 }
3215
3216 /* Return true if DV needs to have its cur_loc recomputed. */
3217
3218 static inline bool
3219 dv_changed_p (decl_or_value dv)
3220 {
3221 return (dv_is_value_p (dv)
3222 ? VALUE_CHANGED (dv_as_value (dv))
3223 : DECL_CHANGED (dv_as_decl (dv)));
3224 }
3225
3226 /* Return a location list node whose loc is rtx_equal to LOC, in the
3227 location list of a one-part variable or value VAR, or in that of
3228 any values recursively mentioned in the location lists. VARS must
3229 be in star-canonical form. */
3230
3231 static location_chain *
3232 find_loc_in_1pdv (rtx loc, variable *var, variable_table_type *vars)
3233 {
3234 location_chain *node;
3235 enum rtx_code loc_code;
3236
3237 if (!var)
3238 return NULL;
3239
3240 gcc_checking_assert (var->onepart);
3241
3242 if (!var->n_var_parts)
3243 return NULL;
3244
3245 gcc_checking_assert (loc != dv_as_opaque (var->dv));
3246
3247 loc_code = GET_CODE (loc);
3248 for (node = var->var_part[0].loc_chain; node; node = node->next)
3249 {
3250 decl_or_value dv;
3251 variable *rvar;
3252
3253 if (GET_CODE (node->loc) != loc_code)
3254 {
3255 if (GET_CODE (node->loc) != VALUE)
3256 continue;
3257 }
3258 else if (loc == node->loc)
3259 return node;
3260 else if (loc_code != VALUE)
3261 {
3262 if (rtx_equal_p (loc, node->loc))
3263 return node;
3264 continue;
3265 }
3266
3267 /* Since we're in star-canonical form, we don't need to visit
3268 non-canonical nodes: one-part variables and non-canonical
3269 values would only point back to the canonical node. */
3270 if (dv_is_value_p (var->dv)
3271 && !canon_value_cmp (node->loc, dv_as_value (var->dv)))
3272 {
3273 /* Skip all subsequent VALUEs. */
3274 while (node->next && GET_CODE (node->next->loc) == VALUE)
3275 {
3276 node = node->next;
3277 gcc_checking_assert (!canon_value_cmp (node->loc,
3278 dv_as_value (var->dv)));
3279 if (loc == node->loc)
3280 return node;
3281 }
3282 continue;
3283 }
3284
3285 gcc_checking_assert (node == var->var_part[0].loc_chain);
3286 gcc_checking_assert (!node->next);
3287
3288 dv = dv_from_value (node->loc);
3289 rvar = vars->find_with_hash (dv, dv_htab_hash (dv));
3290 return find_loc_in_1pdv (loc, rvar, vars);
3291 }
3292
3293 /* ??? Gotta look in cselib_val locations too. */
3294
3295 return NULL;
3296 }
3297
3298 /* Hash table iteration argument passed to variable_merge. */
3299 struct dfset_merge
3300 {
3301 /* The set in which the merge is to be inserted. */
3302 dataflow_set *dst;
3303 /* The set that we're iterating in. */
3304 dataflow_set *cur;
3305 /* The set that may contain the other dv we are to merge with. */
3306 dataflow_set *src;
3307 /* Number of onepart dvs in src. */
3308 int src_onepart_cnt;
3309 };
3310
3311 /* Insert LOC in *DNODE, if it's not there yet. The list must be in
3312 loc_cmp order, and it is maintained as such. */
3313
3314 static void
3315 insert_into_intersection (location_chain **nodep, rtx loc,
3316 enum var_init_status status)
3317 {
3318 location_chain *node;
3319 int r;
3320
3321 for (node = *nodep; node; nodep = &node->next, node = *nodep)
3322 if ((r = loc_cmp (node->loc, loc)) == 0)
3323 {
3324 node->init = MIN (node->init, status);
3325 return;
3326 }
3327 else if (r > 0)
3328 break;
3329
3330 node = new location_chain;
3331
3332 node->loc = loc;
3333 node->set_src = NULL;
3334 node->init = status;
3335 node->next = *nodep;
3336 *nodep = node;
3337 }
3338
3339 /* Insert in DEST the intersection of the locations present in both
3340 S1NODE and S2VAR, directly or indirectly. S1NODE is from a
3341 variable in DSM->cur, whereas S2VAR is from DSM->src. dvar is in
3342 DSM->dst. */
3343
3344 static void
3345 intersect_loc_chains (rtx val, location_chain **dest, struct dfset_merge *dsm,
3346 location_chain *s1node, variable *s2var)
3347 {
3348 dataflow_set *s1set = dsm->cur;
3349 dataflow_set *s2set = dsm->src;
3350 location_chain *found;
3351
3352 if (s2var)
3353 {
3354 location_chain *s2node;
3355
3356 gcc_checking_assert (s2var->onepart);
3357
3358 if (s2var->n_var_parts)
3359 {
3360 s2node = s2var->var_part[0].loc_chain;
3361
3362 for (; s1node && s2node;
3363 s1node = s1node->next, s2node = s2node->next)
3364 if (s1node->loc != s2node->loc)
3365 break;
3366 else if (s1node->loc == val)
3367 continue;
3368 else
3369 insert_into_intersection (dest, s1node->loc,
3370 MIN (s1node->init, s2node->init));
3371 }
3372 }
3373
3374 for (; s1node; s1node = s1node->next)
3375 {
3376 if (s1node->loc == val)
3377 continue;
3378
3379 if ((found = find_loc_in_1pdv (s1node->loc, s2var,
3380 shared_hash_htab (s2set->vars))))
3381 {
3382 insert_into_intersection (dest, s1node->loc,
3383 MIN (s1node->init, found->init));
3384 continue;
3385 }
3386
3387 if (GET_CODE (s1node->loc) == VALUE
3388 && !VALUE_RECURSED_INTO (s1node->loc))
3389 {
3390 decl_or_value dv = dv_from_value (s1node->loc);
3391 variable *svar = shared_hash_find (s1set->vars, dv);
3392 if (svar)
3393 {
3394 if (svar->n_var_parts == 1)
3395 {
3396 VALUE_RECURSED_INTO (s1node->loc) = true;
3397 intersect_loc_chains (val, dest, dsm,
3398 svar->var_part[0].loc_chain,
3399 s2var);
3400 VALUE_RECURSED_INTO (s1node->loc) = false;
3401 }
3402 }
3403 }
3404
3405 /* ??? gotta look in cselib_val locations too. */
3406
3407 /* ??? if the location is equivalent to any location in src,
3408 searched recursively
3409
3410 add to dst the values needed to represent the equivalence
3411
3412 telling whether locations S is equivalent to another dv's
3413 location list:
3414
3415 for each location D in the list
3416
3417 if S and D satisfy rtx_equal_p, then it is present
3418
3419 else if D is a value, recurse without cycles
3420
3421 else if S and D have the same CODE and MODE
3422
3423 for each operand oS and the corresponding oD
3424
3425 if oS and oD are not equivalent, then S an D are not equivalent
3426
3427 else if they are RTX vectors
3428
3429 if any vector oS element is not equivalent to its respective oD,
3430 then S and D are not equivalent
3431
3432 */
3433
3434
3435 }
3436 }
3437
3438 /* Return -1 if X should be before Y in a location list for a 1-part
3439 variable, 1 if Y should be before X, and 0 if they're equivalent
3440 and should not appear in the list. */
3441
3442 static int
3443 loc_cmp (rtx x, rtx y)
3444 {
3445 int i, j, r;
3446 RTX_CODE code = GET_CODE (x);
3447 const char *fmt;
3448
3449 if (x == y)
3450 return 0;
3451
3452 if (REG_P (x))
3453 {
3454 if (!REG_P (y))
3455 return -1;
3456 gcc_assert (GET_MODE (x) == GET_MODE (y));
3457 if (REGNO (x) == REGNO (y))
3458 return 0;
3459 else if (REGNO (x) < REGNO (y))
3460 return -1;
3461 else
3462 return 1;
3463 }
3464
3465 if (REG_P (y))
3466 return 1;
3467
3468 if (MEM_P (x))
3469 {
3470 if (!MEM_P (y))
3471 return -1;
3472 gcc_assert (GET_MODE (x) == GET_MODE (y));
3473 return loc_cmp (XEXP (x, 0), XEXP (y, 0));
3474 }
3475
3476 if (MEM_P (y))
3477 return 1;
3478
3479 if (GET_CODE (x) == VALUE)
3480 {
3481 if (GET_CODE (y) != VALUE)
3482 return -1;
3483 /* Don't assert the modes are the same, that is true only
3484 when not recursing. (subreg:QI (value:SI 1:1) 0)
3485 and (subreg:QI (value:DI 2:2) 0) can be compared,
3486 even when the modes are different. */
3487 if (canon_value_cmp (x, y))
3488 return -1;
3489 else
3490 return 1;
3491 }
3492
3493 if (GET_CODE (y) == VALUE)
3494 return 1;
3495
3496 /* Entry value is the least preferable kind of expression. */
3497 if (GET_CODE (x) == ENTRY_VALUE)
3498 {
3499 if (GET_CODE (y) != ENTRY_VALUE)
3500 return 1;
3501 gcc_assert (GET_MODE (x) == GET_MODE (y));
3502 return loc_cmp (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
3503 }
3504
3505 if (GET_CODE (y) == ENTRY_VALUE)
3506 return -1;
3507
3508 if (GET_CODE (x) == GET_CODE (y))
3509 /* Compare operands below. */;
3510 else if (GET_CODE (x) < GET_CODE (y))
3511 return -1;
3512 else
3513 return 1;
3514
3515 gcc_assert (GET_MODE (x) == GET_MODE (y));
3516
3517 if (GET_CODE (x) == DEBUG_EXPR)
3518 {
3519 if (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
3520 < DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)))
3521 return -1;
3522 gcc_checking_assert (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
3523 > DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)));
3524 return 1;
3525 }
3526
3527 fmt = GET_RTX_FORMAT (code);
3528 for (i = 0; i < GET_RTX_LENGTH (code); i++)
3529 switch (fmt[i])
3530 {
3531 case 'w':
3532 if (XWINT (x, i) == XWINT (y, i))
3533 break;
3534 else if (XWINT (x, i) < XWINT (y, i))
3535 return -1;
3536 else
3537 return 1;
3538
3539 case 'n':
3540 case 'i':
3541 if (XINT (x, i) == XINT (y, i))
3542 break;
3543 else if (XINT (x, i) < XINT (y, i))
3544 return -1;
3545 else
3546 return 1;
3547
3548 case 'p':
3549 r = compare_sizes_for_sort (SUBREG_BYTE (x), SUBREG_BYTE (y));
3550 if (r != 0)
3551 return r;
3552 break;
3553
3554 case 'V':
3555 case 'E':
3556 /* Compare the vector length first. */
3557 if (XVECLEN (x, i) == XVECLEN (y, i))
3558 /* Compare the vectors elements. */;
3559 else if (XVECLEN (x, i) < XVECLEN (y, i))
3560 return -1;
3561 else
3562 return 1;
3563
3564 for (j = 0; j < XVECLEN (x, i); j++)
3565 if ((r = loc_cmp (XVECEXP (x, i, j),
3566 XVECEXP (y, i, j))))
3567 return r;
3568 break;
3569
3570 case 'e':
3571 if ((r = loc_cmp (XEXP (x, i), XEXP (y, i))))
3572 return r;
3573 break;
3574
3575 case 'S':
3576 case 's':
3577 if (XSTR (x, i) == XSTR (y, i))
3578 break;
3579 if (!XSTR (x, i))
3580 return -1;
3581 if (!XSTR (y, i))
3582 return 1;
3583 if ((r = strcmp (XSTR (x, i), XSTR (y, i))) == 0)
3584 break;
3585 else if (r < 0)
3586 return -1;
3587 else
3588 return 1;
3589
3590 case 'u':
3591 /* These are just backpointers, so they don't matter. */
3592 break;
3593
3594 case '0':
3595 case 't':
3596 break;
3597
3598 /* It is believed that rtx's at this level will never
3599 contain anything but integers and other rtx's,
3600 except for within LABEL_REFs and SYMBOL_REFs. */
3601 default:
3602 gcc_unreachable ();
3603 }
3604 if (CONST_WIDE_INT_P (x))
3605 {
3606 /* Compare the vector length first. */
3607 if (CONST_WIDE_INT_NUNITS (x) >= CONST_WIDE_INT_NUNITS (y))
3608 return 1;
3609 else if (CONST_WIDE_INT_NUNITS (x) < CONST_WIDE_INT_NUNITS (y))
3610 return -1;
3611
3612 /* Compare the vectors elements. */;
3613 for (j = CONST_WIDE_INT_NUNITS (x) - 1; j >= 0 ; j--)
3614 {
3615 if (CONST_WIDE_INT_ELT (x, j) < CONST_WIDE_INT_ELT (y, j))
3616 return -1;
3617 if (CONST_WIDE_INT_ELT (x, j) > CONST_WIDE_INT_ELT (y, j))
3618 return 1;
3619 }
3620 }
3621
3622 return 0;
3623 }
3624
3625 /* Check the order of entries in one-part variables. */
3626
3627 int
3628 canonicalize_loc_order_check (variable **slot,
3629 dataflow_set *data ATTRIBUTE_UNUSED)
3630 {
3631 variable *var = *slot;
3632 location_chain *node, *next;
3633
3634 #ifdef ENABLE_RTL_CHECKING
3635 int i;
3636 for (i = 0; i < var->n_var_parts; i++)
3637 gcc_assert (var->var_part[0].cur_loc == NULL);
3638 gcc_assert (!var->in_changed_variables);
3639 #endif
3640
3641 if (!var->onepart)
3642 return 1;
3643
3644 gcc_assert (var->n_var_parts == 1);
3645 node = var->var_part[0].loc_chain;
3646 gcc_assert (node);
3647
3648 while ((next = node->next))
3649 {
3650 gcc_assert (loc_cmp (node->loc, next->loc) < 0);
3651 node = next;
3652 }
3653
3654 return 1;
3655 }
3656
3657 /* Mark with VALUE_RECURSED_INTO values that have neighbors that are
3658 more likely to be chosen as canonical for an equivalence set.
3659 Ensure less likely values can reach more likely neighbors, making
3660 the connections bidirectional. */
3661
3662 int
3663 canonicalize_values_mark (variable **slot, dataflow_set *set)
3664 {
3665 variable *var = *slot;
3666 decl_or_value dv = var->dv;
3667 rtx val;
3668 location_chain *node;
3669
3670 if (!dv_is_value_p (dv))
3671 return 1;
3672
3673 gcc_checking_assert (var->n_var_parts == 1);
3674
3675 val = dv_as_value (dv);
3676
3677 for (node = var->var_part[0].loc_chain; node; node = node->next)
3678 if (GET_CODE (node->loc) == VALUE)
3679 {
3680 if (canon_value_cmp (node->loc, val))
3681 VALUE_RECURSED_INTO (val) = true;
3682 else
3683 {
3684 decl_or_value odv = dv_from_value (node->loc);
3685 variable **oslot;
3686 oslot = shared_hash_find_slot_noinsert (set->vars, odv);
3687
3688 set_slot_part (set, val, oslot, odv, 0,
3689 node->init, NULL_RTX);
3690
3691 VALUE_RECURSED_INTO (node->loc) = true;
3692 }
3693 }
3694
3695 return 1;
3696 }
3697
3698 /* Remove redundant entries from equivalence lists in onepart
3699 variables, canonicalizing equivalence sets into star shapes. */
3700
3701 int
3702 canonicalize_values_star (variable **slot, dataflow_set *set)
3703 {
3704 variable *var = *slot;
3705 decl_or_value dv = var->dv;
3706 location_chain *node;
3707 decl_or_value cdv;
3708 rtx val, cval;
3709 variable **cslot;
3710 bool has_value;
3711 bool has_marks;
3712
3713 if (!var->onepart)
3714 return 1;
3715
3716 gcc_checking_assert (var->n_var_parts == 1);
3717
3718 if (dv_is_value_p (dv))
3719 {
3720 cval = dv_as_value (dv);
3721 if (!VALUE_RECURSED_INTO (cval))
3722 return 1;
3723 VALUE_RECURSED_INTO (cval) = false;
3724 }
3725 else
3726 cval = NULL_RTX;
3727
3728 restart:
3729 val = cval;
3730 has_value = false;
3731 has_marks = false;
3732
3733 gcc_assert (var->n_var_parts == 1);
3734
3735 for (node = var->var_part[0].loc_chain; node; node = node->next)
3736 if (GET_CODE (node->loc) == VALUE)
3737 {
3738 has_value = true;
3739 if (VALUE_RECURSED_INTO (node->loc))
3740 has_marks = true;
3741 if (canon_value_cmp (node->loc, cval))
3742 cval = node->loc;
3743 }
3744
3745 if (!has_value)
3746 return 1;
3747
3748 if (cval == val)
3749 {
3750 if (!has_marks || dv_is_decl_p (dv))
3751 return 1;
3752
3753 /* Keep it marked so that we revisit it, either after visiting a
3754 child node, or after visiting a new parent that might be
3755 found out. */
3756 VALUE_RECURSED_INTO (val) = true;
3757
3758 for (node = var->var_part[0].loc_chain; node; node = node->next)
3759 if (GET_CODE (node->loc) == VALUE
3760 && VALUE_RECURSED_INTO (node->loc))
3761 {
3762 cval = node->loc;
3763 restart_with_cval:
3764 VALUE_RECURSED_INTO (cval) = false;
3765 dv = dv_from_value (cval);
3766 slot = shared_hash_find_slot_noinsert (set->vars, dv);
3767 if (!slot)
3768 {
3769 gcc_assert (dv_is_decl_p (var->dv));
3770 /* The canonical value was reset and dropped.
3771 Remove it. */
3772 clobber_variable_part (set, NULL, var->dv, 0, NULL);
3773 return 1;
3774 }
3775 var = *slot;
3776 gcc_assert (dv_is_value_p (var->dv));
3777 if (var->n_var_parts == 0)
3778 return 1;
3779 gcc_assert (var->n_var_parts == 1);
3780 goto restart;
3781 }
3782
3783 VALUE_RECURSED_INTO (val) = false;
3784
3785 return 1;
3786 }
3787
3788 /* Push values to the canonical one. */
3789 cdv = dv_from_value (cval);
3790 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3791
3792 for (node = var->var_part[0].loc_chain; node; node = node->next)
3793 if (node->loc != cval)
3794 {
3795 cslot = set_slot_part (set, node->loc, cslot, cdv, 0,
3796 node->init, NULL_RTX);
3797 if (GET_CODE (node->loc) == VALUE)
3798 {
3799 decl_or_value ndv = dv_from_value (node->loc);
3800
3801 set_variable_part (set, cval, ndv, 0, node->init, NULL_RTX,
3802 NO_INSERT);
3803
3804 if (canon_value_cmp (node->loc, val))
3805 {
3806 /* If it could have been a local minimum, it's not any more,
3807 since it's now neighbor to cval, so it may have to push
3808 to it. Conversely, if it wouldn't have prevailed over
3809 val, then whatever mark it has is fine: if it was to
3810 push, it will now push to a more canonical node, but if
3811 it wasn't, then it has already pushed any values it might
3812 have to. */
3813 VALUE_RECURSED_INTO (node->loc) = true;
3814 /* Make sure we visit node->loc by ensuring we cval is
3815 visited too. */
3816 VALUE_RECURSED_INTO (cval) = true;
3817 }
3818 else if (!VALUE_RECURSED_INTO (node->loc))
3819 /* If we have no need to "recurse" into this node, it's
3820 already "canonicalized", so drop the link to the old
3821 parent. */
3822 clobber_variable_part (set, cval, ndv, 0, NULL);
3823 }
3824 else if (GET_CODE (node->loc) == REG)
3825 {
3826 attrs *list = set->regs[REGNO (node->loc)], **listp;
3827
3828 /* Change an existing attribute referring to dv so that it
3829 refers to cdv, removing any duplicate this might
3830 introduce, and checking that no previous duplicates
3831 existed, all in a single pass. */
3832
3833 while (list)
3834 {
3835 if (list->offset == 0
3836 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3837 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3838 break;
3839
3840 list = list->next;
3841 }
3842
3843 gcc_assert (list);
3844 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3845 {
3846 list->dv = cdv;
3847 for (listp = &list->next; (list = *listp); listp = &list->next)
3848 {
3849 if (list->offset)
3850 continue;
3851
3852 if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3853 {
3854 *listp = list->next;
3855 delete list;
3856 list = *listp;
3857 break;
3858 }
3859
3860 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (dv));
3861 }
3862 }
3863 else if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3864 {
3865 for (listp = &list->next; (list = *listp); listp = &list->next)
3866 {
3867 if (list->offset)
3868 continue;
3869
3870 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3871 {
3872 *listp = list->next;
3873 delete list;
3874 list = *listp;
3875 break;
3876 }
3877
3878 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (cdv));
3879 }
3880 }
3881 else
3882 gcc_unreachable ();
3883
3884 if (flag_checking)
3885 while (list)
3886 {
3887 if (list->offset == 0
3888 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3889 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3890 gcc_unreachable ();
3891
3892 list = list->next;
3893 }
3894 }
3895 }
3896
3897 if (val)
3898 set_slot_part (set, val, cslot, cdv, 0,
3899 VAR_INIT_STATUS_INITIALIZED, NULL_RTX);
3900
3901 slot = clobber_slot_part (set, cval, slot, 0, NULL);
3902
3903 /* Variable may have been unshared. */
3904 var = *slot;
3905 gcc_checking_assert (var->n_var_parts && var->var_part[0].loc_chain->loc == cval
3906 && var->var_part[0].loc_chain->next == NULL);
3907
3908 if (VALUE_RECURSED_INTO (cval))
3909 goto restart_with_cval;
3910
3911 return 1;
3912 }
3913
3914 /* Bind one-part variables to the canonical value in an equivalence
3915 set. Not doing this causes dataflow convergence failure in rare
3916 circumstances, see PR42873. Unfortunately we can't do this
3917 efficiently as part of canonicalize_values_star, since we may not
3918 have determined or even seen the canonical value of a set when we
3919 get to a variable that references another member of the set. */
3920
3921 int
3922 canonicalize_vars_star (variable **slot, dataflow_set *set)
3923 {
3924 variable *var = *slot;
3925 decl_or_value dv = var->dv;
3926 location_chain *node;
3927 rtx cval;
3928 decl_or_value cdv;
3929 variable **cslot;
3930 variable *cvar;
3931 location_chain *cnode;
3932
3933 if (!var->onepart || var->onepart == ONEPART_VALUE)
3934 return 1;
3935
3936 gcc_assert (var->n_var_parts == 1);
3937
3938 node = var->var_part[0].loc_chain;
3939
3940 if (GET_CODE (node->loc) != VALUE)
3941 return 1;
3942
3943 gcc_assert (!node->next);
3944 cval = node->loc;
3945
3946 /* Push values to the canonical one. */
3947 cdv = dv_from_value (cval);
3948 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3949 if (!cslot)
3950 return 1;
3951 cvar = *cslot;
3952 gcc_assert (cvar->n_var_parts == 1);
3953
3954 cnode = cvar->var_part[0].loc_chain;
3955
3956 /* CVAL is canonical if its value list contains non-VALUEs or VALUEs
3957 that are not “more canonical” than it. */
3958 if (GET_CODE (cnode->loc) != VALUE
3959 || !canon_value_cmp (cnode->loc, cval))
3960 return 1;
3961
3962 /* CVAL was found to be non-canonical. Change the variable to point
3963 to the canonical VALUE. */
3964 gcc_assert (!cnode->next);
3965 cval = cnode->loc;
3966
3967 slot = set_slot_part (set, cval, slot, dv, 0,
3968 node->init, node->set_src);
3969 clobber_slot_part (set, cval, slot, 0, node->set_src);
3970
3971 return 1;
3972 }
3973
3974 /* Combine variable or value in *S1SLOT (in DSM->cur) with the
3975 corresponding entry in DSM->src. Multi-part variables are combined
3976 with variable_union, whereas onepart dvs are combined with
3977 intersection. */
3978
3979 static int
3980 variable_merge_over_cur (variable *s1var, struct dfset_merge *dsm)
3981 {
3982 dataflow_set *dst = dsm->dst;
3983 variable **dstslot;
3984 variable *s2var, *dvar = NULL;
3985 decl_or_value dv = s1var->dv;
3986 onepart_enum onepart = s1var->onepart;
3987 rtx val;
3988 hashval_t dvhash;
3989 location_chain *node, **nodep;
3990
3991 /* If the incoming onepart variable has an empty location list, then
3992 the intersection will be just as empty. For other variables,
3993 it's always union. */
3994 gcc_checking_assert (s1var->n_var_parts
3995 && s1var->var_part[0].loc_chain);
3996
3997 if (!onepart)
3998 return variable_union (s1var, dst);
3999
4000 gcc_checking_assert (s1var->n_var_parts == 1);
4001
4002 dvhash = dv_htab_hash (dv);
4003 if (dv_is_value_p (dv))
4004 val = dv_as_value (dv);
4005 else
4006 val = NULL;
4007
4008 s2var = shared_hash_find_1 (dsm->src->vars, dv, dvhash);
4009 if (!s2var)
4010 {
4011 dst_can_be_shared = false;
4012 return 1;
4013 }
4014
4015 dsm->src_onepart_cnt--;
4016 gcc_assert (s2var->var_part[0].loc_chain
4017 && s2var->onepart == onepart
4018 && s2var->n_var_parts == 1);
4019
4020 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
4021 if (dstslot)
4022 {
4023 dvar = *dstslot;
4024 gcc_assert (dvar->refcount == 1
4025 && dvar->onepart == onepart
4026 && dvar->n_var_parts == 1);
4027 nodep = &dvar->var_part[0].loc_chain;
4028 }
4029 else
4030 {
4031 nodep = &node;
4032 node = NULL;
4033 }
4034
4035 if (!dstslot && !onepart_variable_different_p (s1var, s2var))
4036 {
4037 dstslot = shared_hash_find_slot_unshare_1 (&dst->vars, dv,
4038 dvhash, INSERT);
4039 *dstslot = dvar = s2var;
4040 dvar->refcount++;
4041 }
4042 else
4043 {
4044 dst_can_be_shared = false;
4045
4046 intersect_loc_chains (val, nodep, dsm,
4047 s1var->var_part[0].loc_chain, s2var);
4048
4049 if (!dstslot)
4050 {
4051 if (node)
4052 {
4053 dvar = onepart_pool_allocate (onepart);
4054 dvar->dv = dv;
4055 dvar->refcount = 1;
4056 dvar->n_var_parts = 1;
4057 dvar->onepart = onepart;
4058 dvar->in_changed_variables = false;
4059 dvar->var_part[0].loc_chain = node;
4060 dvar->var_part[0].cur_loc = NULL;
4061 if (onepart)
4062 VAR_LOC_1PAUX (dvar) = NULL;
4063 else
4064 VAR_PART_OFFSET (dvar, 0) = 0;
4065
4066 dstslot
4067 = shared_hash_find_slot_unshare_1 (&dst->vars, dv, dvhash,
4068 INSERT);
4069 gcc_assert (!*dstslot);
4070 *dstslot = dvar;
4071 }
4072 else
4073 return 1;
4074 }
4075 }
4076
4077 nodep = &dvar->var_part[0].loc_chain;
4078 while ((node = *nodep))
4079 {
4080 location_chain **nextp = &node->next;
4081
4082 if (GET_CODE (node->loc) == REG)
4083 {
4084 attrs *list;
4085
4086 for (list = dst->regs[REGNO (node->loc)]; list; list = list->next)
4087 if (GET_MODE (node->loc) == GET_MODE (list->loc)
4088 && dv_is_value_p (list->dv))
4089 break;
4090
4091 if (!list)
4092 attrs_list_insert (&dst->regs[REGNO (node->loc)],
4093 dv, 0, node->loc);
4094 /* If this value became canonical for another value that had
4095 this register, we want to leave it alone. */
4096 else if (dv_as_value (list->dv) != val)
4097 {
4098 dstslot = set_slot_part (dst, dv_as_value (list->dv),
4099 dstslot, dv, 0,
4100 node->init, NULL_RTX);
4101 dstslot = delete_slot_part (dst, node->loc, dstslot, 0);
4102
4103 /* Since nextp points into the removed node, we can't
4104 use it. The pointer to the next node moved to nodep.
4105 However, if the variable we're walking is unshared
4106 during our walk, we'll keep walking the location list
4107 of the previously-shared variable, in which case the
4108 node won't have been removed, and we'll want to skip
4109 it. That's why we test *nodep here. */
4110 if (*nodep != node)
4111 nextp = nodep;
4112 }
4113 }
4114 else
4115 /* Canonicalization puts registers first, so we don't have to
4116 walk it all. */
4117 break;
4118 nodep = nextp;
4119 }
4120
4121 if (dvar != *dstslot)
4122 dvar = *dstslot;
4123 nodep = &dvar->var_part[0].loc_chain;
4124
4125 if (val)
4126 {
4127 /* Mark all referenced nodes for canonicalization, and make sure
4128 we have mutual equivalence links. */
4129 VALUE_RECURSED_INTO (val) = true;
4130 for (node = *nodep; node; node = node->next)
4131 if (GET_CODE (node->loc) == VALUE)
4132 {
4133 VALUE_RECURSED_INTO (node->loc) = true;
4134 set_variable_part (dst, val, dv_from_value (node->loc), 0,
4135 node->init, NULL, INSERT);
4136 }
4137
4138 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
4139 gcc_assert (*dstslot == dvar);
4140 canonicalize_values_star (dstslot, dst);
4141 gcc_checking_assert (dstslot
4142 == shared_hash_find_slot_noinsert_1 (dst->vars,
4143 dv, dvhash));
4144 dvar = *dstslot;
4145 }
4146 else
4147 {
4148 bool has_value = false, has_other = false;
4149
4150 /* If we have one value and anything else, we're going to
4151 canonicalize this, so make sure all values have an entry in
4152 the table and are marked for canonicalization. */
4153 for (node = *nodep; node; node = node->next)
4154 {
4155 if (GET_CODE (node->loc) == VALUE)
4156 {
4157 /* If this was marked during register canonicalization,
4158 we know we have to canonicalize values. */
4159 if (has_value)
4160 has_other = true;
4161 has_value = true;
4162 if (has_other)
4163 break;
4164 }
4165 else
4166 {
4167 has_other = true;
4168 if (has_value)
4169 break;
4170 }
4171 }
4172
4173 if (has_value && has_other)
4174 {
4175 for (node = *nodep; node; node = node->next)
4176 {
4177 if (GET_CODE (node->loc) == VALUE)
4178 {
4179 decl_or_value dv = dv_from_value (node->loc);
4180 variable **slot = NULL;
4181
4182 if (shared_hash_shared (dst->vars))
4183 slot = shared_hash_find_slot_noinsert (dst->vars, dv);
4184 if (!slot)
4185 slot = shared_hash_find_slot_unshare (&dst->vars, dv,
4186 INSERT);
4187 if (!*slot)
4188 {
4189 variable *var = onepart_pool_allocate (ONEPART_VALUE);
4190 var->dv = dv;
4191 var->refcount = 1;
4192 var->n_var_parts = 1;
4193 var->onepart = ONEPART_VALUE;
4194 var->in_changed_variables = false;
4195 var->var_part[0].loc_chain = NULL;
4196 var->var_part[0].cur_loc = NULL;
4197 VAR_LOC_1PAUX (var) = NULL;
4198 *slot = var;
4199 }
4200
4201 VALUE_RECURSED_INTO (node->loc) = true;
4202 }
4203 }
4204
4205 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
4206 gcc_assert (*dstslot == dvar);
4207 canonicalize_values_star (dstslot, dst);
4208 gcc_checking_assert (dstslot
4209 == shared_hash_find_slot_noinsert_1 (dst->vars,
4210 dv, dvhash));
4211 dvar = *dstslot;
4212 }
4213 }
4214
4215 if (!onepart_variable_different_p (dvar, s2var))
4216 {
4217 variable_htab_free (dvar);
4218 *dstslot = dvar = s2var;
4219 dvar->refcount++;
4220 }
4221 else if (s2var != s1var && !onepart_variable_different_p (dvar, s1var))
4222 {
4223 variable_htab_free (dvar);
4224 *dstslot = dvar = s1var;
4225 dvar->refcount++;
4226 dst_can_be_shared = false;
4227 }
4228 else
4229 dst_can_be_shared = false;
4230
4231 return 1;
4232 }
4233
4234 /* Copy s2slot (in DSM->src) to DSM->dst if the variable is a
4235 multi-part variable. Unions of multi-part variables and
4236 intersections of one-part ones will be handled in
4237 variable_merge_over_cur(). */
4238
4239 static int
4240 variable_merge_over_src (variable *s2var, struct dfset_merge *dsm)
4241 {
4242 dataflow_set *dst = dsm->dst;
4243 decl_or_value dv = s2var->dv;
4244
4245 if (!s2var->onepart)
4246 {
4247 variable **dstp = shared_hash_find_slot (dst->vars, dv);
4248 *dstp = s2var;
4249 s2var->refcount++;
4250 return 1;
4251 }
4252
4253 dsm->src_onepart_cnt++;
4254 return 1;
4255 }
4256
4257 /* Combine dataflow set information from SRC2 into DST, using PDST
4258 to carry over information across passes. */
4259
4260 static void
4261 dataflow_set_merge (dataflow_set *dst, dataflow_set *src2)
4262 {
4263 dataflow_set cur = *dst;
4264 dataflow_set *src1 = &cur;
4265 struct dfset_merge dsm;
4266 int i;
4267 size_t src1_elems, src2_elems;
4268 variable_iterator_type hi;
4269 variable *var;
4270
4271 src1_elems = shared_hash_htab (src1->vars)->elements ();
4272 src2_elems = shared_hash_htab (src2->vars)->elements ();
4273 dataflow_set_init (dst);
4274 dst->stack_adjust = cur.stack_adjust;
4275 shared_hash_destroy (dst->vars);
4276 dst->vars = new shared_hash;
4277 dst->vars->refcount = 1;
4278 dst->vars->htab = new variable_table_type (MAX (src1_elems, src2_elems));
4279
4280 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4281 attrs_list_mpdv_union (&dst->regs[i], src1->regs[i], src2->regs[i]);
4282
4283 dsm.dst = dst;
4284 dsm.src = src2;
4285 dsm.cur = src1;
4286 dsm.src_onepart_cnt = 0;
4287
4288 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (dsm.src->vars),
4289 var, variable, hi)
4290 variable_merge_over_src (var, &dsm);
4291 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (dsm.cur->vars),
4292 var, variable, hi)
4293 variable_merge_over_cur (var, &dsm);
4294
4295 if (dsm.src_onepart_cnt)
4296 dst_can_be_shared = false;
4297
4298 dataflow_set_destroy (src1);
4299 }
4300
4301 /* Mark register equivalences. */
4302
4303 static void
4304 dataflow_set_equiv_regs (dataflow_set *set)
4305 {
4306 int i;
4307 attrs *list, **listp;
4308
4309 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4310 {
4311 rtx canon[NUM_MACHINE_MODES];
4312
4313 /* If the list is empty or one entry, no need to canonicalize
4314 anything. */
4315 if (set->regs[i] == NULL || set->regs[i]->next == NULL)
4316 continue;
4317
4318 memset (canon, 0, sizeof (canon));
4319
4320 for (list = set->regs[i]; list; list = list->next)
4321 if (list->offset == 0 && dv_is_value_p (list->dv))
4322 {
4323 rtx val = dv_as_value (list->dv);
4324 rtx *cvalp = &canon[(int)GET_MODE (val)];
4325 rtx cval = *cvalp;
4326
4327 if (canon_value_cmp (val, cval))
4328 *cvalp = val;
4329 }
4330
4331 for (list = set->regs[i]; list; list = list->next)
4332 if (list->offset == 0 && dv_onepart_p (list->dv))
4333 {
4334 rtx cval = canon[(int)GET_MODE (list->loc)];
4335
4336 if (!cval)
4337 continue;
4338
4339 if (dv_is_value_p (list->dv))
4340 {
4341 rtx val = dv_as_value (list->dv);
4342
4343 if (val == cval)
4344 continue;
4345
4346 VALUE_RECURSED_INTO (val) = true;
4347 set_variable_part (set, val, dv_from_value (cval), 0,
4348 VAR_INIT_STATUS_INITIALIZED,
4349 NULL, NO_INSERT);
4350 }
4351
4352 VALUE_RECURSED_INTO (cval) = true;
4353 set_variable_part (set, cval, list->dv, 0,
4354 VAR_INIT_STATUS_INITIALIZED, NULL, NO_INSERT);
4355 }
4356
4357 for (listp = &set->regs[i]; (list = *listp);
4358 listp = list ? &list->next : listp)
4359 if (list->offset == 0 && dv_onepart_p (list->dv))
4360 {
4361 rtx cval = canon[(int)GET_MODE (list->loc)];
4362 variable **slot;
4363
4364 if (!cval)
4365 continue;
4366
4367 if (dv_is_value_p (list->dv))
4368 {
4369 rtx val = dv_as_value (list->dv);
4370 if (!VALUE_RECURSED_INTO (val))
4371 continue;
4372 }
4373
4374 slot = shared_hash_find_slot_noinsert (set->vars, list->dv);
4375 canonicalize_values_star (slot, set);
4376 if (*listp != list)
4377 list = NULL;
4378 }
4379 }
4380 }
4381
4382 /* Remove any redundant values in the location list of VAR, which must
4383 be unshared and 1-part. */
4384
4385 static void
4386 remove_duplicate_values (variable *var)
4387 {
4388 location_chain *node, **nodep;
4389
4390 gcc_assert (var->onepart);
4391 gcc_assert (var->n_var_parts == 1);
4392 gcc_assert (var->refcount == 1);
4393
4394 for (nodep = &var->var_part[0].loc_chain; (node = *nodep); )
4395 {
4396 if (GET_CODE (node->loc) == VALUE)
4397 {
4398 if (VALUE_RECURSED_INTO (node->loc))
4399 {
4400 /* Remove duplicate value node. */
4401 *nodep = node->next;
4402 delete node;
4403 continue;
4404 }
4405 else
4406 VALUE_RECURSED_INTO (node->loc) = true;
4407 }
4408 nodep = &node->next;
4409 }
4410
4411 for (node = var->var_part[0].loc_chain; node; node = node->next)
4412 if (GET_CODE (node->loc) == VALUE)
4413 {
4414 gcc_assert (VALUE_RECURSED_INTO (node->loc));
4415 VALUE_RECURSED_INTO (node->loc) = false;
4416 }
4417 }
4418
4419
4420 /* Hash table iteration argument passed to variable_post_merge. */
4421 struct dfset_post_merge
4422 {
4423 /* The new input set for the current block. */
4424 dataflow_set *set;
4425 /* Pointer to the permanent input set for the current block, or
4426 NULL. */
4427 dataflow_set **permp;
4428 };
4429
4430 /* Create values for incoming expressions associated with one-part
4431 variables that don't have value numbers for them. */
4432
4433 int
4434 variable_post_merge_new_vals (variable **slot, dfset_post_merge *dfpm)
4435 {
4436 dataflow_set *set = dfpm->set;
4437 variable *var = *slot;
4438 location_chain *node;
4439
4440 if (!var->onepart || !var->n_var_parts)
4441 return 1;
4442
4443 gcc_assert (var->n_var_parts == 1);
4444
4445 if (dv_is_decl_p (var->dv))
4446 {
4447 bool check_dupes = false;
4448
4449 restart:
4450 for (node = var->var_part[0].loc_chain; node; node = node->next)
4451 {
4452 if (GET_CODE (node->loc) == VALUE)
4453 gcc_assert (!VALUE_RECURSED_INTO (node->loc));
4454 else if (GET_CODE (node->loc) == REG)
4455 {
4456 attrs *att, **attp, **curp = NULL;
4457
4458 if (var->refcount != 1)
4459 {
4460 slot = unshare_variable (set, slot, var,
4461 VAR_INIT_STATUS_INITIALIZED);
4462 var = *slot;
4463 goto restart;
4464 }
4465
4466 for (attp = &set->regs[REGNO (node->loc)]; (att = *attp);
4467 attp = &att->next)
4468 if (att->offset == 0
4469 && GET_MODE (att->loc) == GET_MODE (node->loc))
4470 {
4471 if (dv_is_value_p (att->dv))
4472 {
4473 rtx cval = dv_as_value (att->dv);
4474 node->loc = cval;
4475 check_dupes = true;
4476 break;
4477 }
4478 else if (dv_as_opaque (att->dv) == dv_as_opaque (var->dv))
4479 curp = attp;
4480 }
4481
4482 if (!curp)
4483 {
4484 curp = attp;
4485 while (*curp)
4486 if ((*curp)->offset == 0
4487 && GET_MODE ((*curp)->loc) == GET_MODE (node->loc)
4488 && dv_as_opaque ((*curp)->dv) == dv_as_opaque (var->dv))
4489 break;
4490 else
4491 curp = &(*curp)->next;
4492 gcc_assert (*curp);
4493 }
4494
4495 if (!att)
4496 {
4497 decl_or_value cdv;
4498 rtx cval;
4499
4500 if (!*dfpm->permp)
4501 {
4502 *dfpm->permp = XNEW (dataflow_set);
4503 dataflow_set_init (*dfpm->permp);
4504 }
4505
4506 for (att = (*dfpm->permp)->regs[REGNO (node->loc)];
4507 att; att = att->next)
4508 if (GET_MODE (att->loc) == GET_MODE (node->loc))
4509 {
4510 gcc_assert (att->offset == 0
4511 && dv_is_value_p (att->dv));
4512 val_reset (set, att->dv);
4513 break;
4514 }
4515
4516 if (att)
4517 {
4518 cdv = att->dv;
4519 cval = dv_as_value (cdv);
4520 }
4521 else
4522 {
4523 /* Create a unique value to hold this register,
4524 that ought to be found and reused in
4525 subsequent rounds. */
4526 cselib_val *v;
4527 gcc_assert (!cselib_lookup (node->loc,
4528 GET_MODE (node->loc), 0,
4529 VOIDmode));
4530 v = cselib_lookup (node->loc, GET_MODE (node->loc), 1,
4531 VOIDmode);
4532 cselib_preserve_value (v);
4533 cselib_invalidate_rtx (node->loc);
4534 cval = v->val_rtx;
4535 cdv = dv_from_value (cval);
4536 if (dump_file)
4537 fprintf (dump_file,
4538 "Created new value %u:%u for reg %i\n",
4539 v->uid, v->hash, REGNO (node->loc));
4540 }
4541
4542 var_reg_decl_set (*dfpm->permp, node->loc,
4543 VAR_INIT_STATUS_INITIALIZED,
4544 cdv, 0, NULL, INSERT);
4545
4546 node->loc = cval;
4547 check_dupes = true;
4548 }
4549
4550 /* Remove attribute referring to the decl, which now
4551 uses the value for the register, already existing or
4552 to be added when we bring perm in. */
4553 att = *curp;
4554 *curp = att->next;
4555 delete att;
4556 }
4557 }
4558
4559 if (check_dupes)
4560 remove_duplicate_values (var);
4561 }
4562
4563 return 1;
4564 }
4565
4566 /* Reset values in the permanent set that are not associated with the
4567 chosen expression. */
4568
4569 int
4570 variable_post_merge_perm_vals (variable **pslot, dfset_post_merge *dfpm)
4571 {
4572 dataflow_set *set = dfpm->set;
4573 variable *pvar = *pslot, *var;
4574 location_chain *pnode;
4575 decl_or_value dv;
4576 attrs *att;
4577
4578 gcc_assert (dv_is_value_p (pvar->dv)
4579 && pvar->n_var_parts == 1);
4580 pnode = pvar->var_part[0].loc_chain;
4581 gcc_assert (pnode
4582 && !pnode->next
4583 && REG_P (pnode->loc));
4584
4585 dv = pvar->dv;
4586
4587 var = shared_hash_find (set->vars, dv);
4588 if (var)
4589 {
4590 /* Although variable_post_merge_new_vals may have made decls
4591 non-star-canonical, values that pre-existed in canonical form
4592 remain canonical, and newly-created values reference a single
4593 REG, so they are canonical as well. Since VAR has the
4594 location list for a VALUE, using find_loc_in_1pdv for it is
4595 fine, since VALUEs don't map back to DECLs. */
4596 if (find_loc_in_1pdv (pnode->loc, var, shared_hash_htab (set->vars)))
4597 return 1;
4598 val_reset (set, dv);
4599 }
4600
4601 for (att = set->regs[REGNO (pnode->loc)]; att; att = att->next)
4602 if (att->offset == 0
4603 && GET_MODE (att->loc) == GET_MODE (pnode->loc)
4604 && dv_is_value_p (att->dv))
4605 break;
4606
4607 /* If there is a value associated with this register already, create
4608 an equivalence. */
4609 if (att && dv_as_value (att->dv) != dv_as_value (dv))
4610 {
4611 rtx cval = dv_as_value (att->dv);
4612 set_variable_part (set, cval, dv, 0, pnode->init, NULL, INSERT);
4613 set_variable_part (set, dv_as_value (dv), att->dv, 0, pnode->init,
4614 NULL, INSERT);
4615 }
4616 else if (!att)
4617 {
4618 attrs_list_insert (&set->regs[REGNO (pnode->loc)],
4619 dv, 0, pnode->loc);
4620 variable_union (pvar, set);
4621 }
4622
4623 return 1;
4624 }
4625
4626 /* Just checking stuff and registering register attributes for
4627 now. */
4628
4629 static void
4630 dataflow_post_merge_adjust (dataflow_set *set, dataflow_set **permp)
4631 {
4632 struct dfset_post_merge dfpm;
4633
4634 dfpm.set = set;
4635 dfpm.permp = permp;
4636
4637 shared_hash_htab (set->vars)
4638 ->traverse <dfset_post_merge*, variable_post_merge_new_vals> (&dfpm);
4639 if (*permp)
4640 shared_hash_htab ((*permp)->vars)
4641 ->traverse <dfset_post_merge*, variable_post_merge_perm_vals> (&dfpm);
4642 shared_hash_htab (set->vars)
4643 ->traverse <dataflow_set *, canonicalize_values_star> (set);
4644 shared_hash_htab (set->vars)
4645 ->traverse <dataflow_set *, canonicalize_vars_star> (set);
4646 }
4647
4648 /* Return a node whose loc is a MEM that refers to EXPR in the
4649 location list of a one-part variable or value VAR, or in that of
4650 any values recursively mentioned in the location lists. */
4651
4652 static location_chain *
4653 find_mem_expr_in_1pdv (tree expr, rtx val, variable_table_type *vars)
4654 {
4655 location_chain *node;
4656 decl_or_value dv;
4657 variable *var;
4658 location_chain *where = NULL;
4659
4660 if (!val)
4661 return NULL;
4662
4663 gcc_assert (GET_CODE (val) == VALUE
4664 && !VALUE_RECURSED_INTO (val));
4665
4666 dv = dv_from_value (val);
4667 var = vars->find_with_hash (dv, dv_htab_hash (dv));
4668
4669 if (!var)
4670 return NULL;
4671
4672 gcc_assert (var->onepart);
4673
4674 if (!var->n_var_parts)
4675 return NULL;
4676
4677 VALUE_RECURSED_INTO (val) = true;
4678
4679 for (node = var->var_part[0].loc_chain; node; node = node->next)
4680 if (MEM_P (node->loc)
4681 && MEM_EXPR (node->loc) == expr
4682 && int_mem_offset (node->loc) == 0)
4683 {
4684 where = node;
4685 break;
4686 }
4687 else if (GET_CODE (node->loc) == VALUE
4688 && !VALUE_RECURSED_INTO (node->loc)
4689 && (where = find_mem_expr_in_1pdv (expr, node->loc, vars)))
4690 break;
4691
4692 VALUE_RECURSED_INTO (val) = false;
4693
4694 return where;
4695 }
4696
4697 /* Return TRUE if the value of MEM may vary across a call. */
4698
4699 static bool
4700 mem_dies_at_call (rtx mem)
4701 {
4702 tree expr = MEM_EXPR (mem);
4703 tree decl;
4704
4705 if (!expr)
4706 return true;
4707
4708 decl = get_base_address (expr);
4709
4710 if (!decl)
4711 return true;
4712
4713 if (!DECL_P (decl))
4714 return true;
4715
4716 return (may_be_aliased (decl)
4717 || (!TREE_READONLY (decl) && is_global_var (decl)));
4718 }
4719
4720 /* Remove all MEMs from the location list of a hash table entry for a
4721 one-part variable, except those whose MEM attributes map back to
4722 the variable itself, directly or within a VALUE. */
4723
4724 int
4725 dataflow_set_preserve_mem_locs (variable **slot, dataflow_set *set)
4726 {
4727 variable *var = *slot;
4728
4729 if (var->onepart == ONEPART_VDECL || var->onepart == ONEPART_DEXPR)
4730 {
4731 tree decl = dv_as_decl (var->dv);
4732 location_chain *loc, **locp;
4733 bool changed = false;
4734
4735 if (!var->n_var_parts)
4736 return 1;
4737
4738 gcc_assert (var->n_var_parts == 1);
4739
4740 if (shared_var_p (var, set->vars))
4741 {
4742 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4743 {
4744 /* We want to remove dying MEMs that don't refer to DECL. */
4745 if (GET_CODE (loc->loc) == MEM
4746 && (MEM_EXPR (loc->loc) != decl
4747 || int_mem_offset (loc->loc) != 0)
4748 && mem_dies_at_call (loc->loc))
4749 break;
4750 /* We want to move here MEMs that do refer to DECL. */
4751 else if (GET_CODE (loc->loc) == VALUE
4752 && find_mem_expr_in_1pdv (decl, loc->loc,
4753 shared_hash_htab (set->vars)))
4754 break;
4755 }
4756
4757 if (!loc)
4758 return 1;
4759
4760 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4761 var = *slot;
4762 gcc_assert (var->n_var_parts == 1);
4763 }
4764
4765 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4766 loc; loc = *locp)
4767 {
4768 rtx old_loc = loc->loc;
4769 if (GET_CODE (old_loc) == VALUE)
4770 {
4771 location_chain *mem_node
4772 = find_mem_expr_in_1pdv (decl, loc->loc,
4773 shared_hash_htab (set->vars));
4774
4775 /* ??? This picks up only one out of multiple MEMs that
4776 refer to the same variable. Do we ever need to be
4777 concerned about dealing with more than one, or, given
4778 that they should all map to the same variable
4779 location, their addresses will have been merged and
4780 they will be regarded as equivalent? */
4781 if (mem_node)
4782 {
4783 loc->loc = mem_node->loc;
4784 loc->set_src = mem_node->set_src;
4785 loc->init = MIN (loc->init, mem_node->init);
4786 }
4787 }
4788
4789 if (GET_CODE (loc->loc) != MEM
4790 || (MEM_EXPR (loc->loc) == decl
4791 && int_mem_offset (loc->loc) == 0)
4792 || !mem_dies_at_call (loc->loc))
4793 {
4794 if (old_loc != loc->loc && emit_notes)
4795 {
4796 if (old_loc == var->var_part[0].cur_loc)
4797 {
4798 changed = true;
4799 var->var_part[0].cur_loc = NULL;
4800 }
4801 }
4802 locp = &loc->next;
4803 continue;
4804 }
4805
4806 if (emit_notes)
4807 {
4808 if (old_loc == var->var_part[0].cur_loc)
4809 {
4810 changed = true;
4811 var->var_part[0].cur_loc = NULL;
4812 }
4813 }
4814 *locp = loc->next;
4815 delete loc;
4816 }
4817
4818 if (!var->var_part[0].loc_chain)
4819 {
4820 var->n_var_parts--;
4821 changed = true;
4822 }
4823 if (changed)
4824 variable_was_changed (var, set);
4825 }
4826
4827 return 1;
4828 }
4829
4830 /* Remove all MEMs from the location list of a hash table entry for a
4831 onepart variable. */
4832
4833 int
4834 dataflow_set_remove_mem_locs (variable **slot, dataflow_set *set)
4835 {
4836 variable *var = *slot;
4837
4838 if (var->onepart != NOT_ONEPART)
4839 {
4840 location_chain *loc, **locp;
4841 bool changed = false;
4842 rtx cur_loc;
4843
4844 gcc_assert (var->n_var_parts == 1);
4845
4846 if (shared_var_p (var, set->vars))
4847 {
4848 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4849 if (GET_CODE (loc->loc) == MEM
4850 && mem_dies_at_call (loc->loc))
4851 break;
4852
4853 if (!loc)
4854 return 1;
4855
4856 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4857 var = *slot;
4858 gcc_assert (var->n_var_parts == 1);
4859 }
4860
4861 if (VAR_LOC_1PAUX (var))
4862 cur_loc = VAR_LOC_FROM (var);
4863 else
4864 cur_loc = var->var_part[0].cur_loc;
4865
4866 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4867 loc; loc = *locp)
4868 {
4869 if (GET_CODE (loc->loc) != MEM
4870 || !mem_dies_at_call (loc->loc))
4871 {
4872 locp = &loc->next;
4873 continue;
4874 }
4875
4876 *locp = loc->next;
4877 /* If we have deleted the location which was last emitted
4878 we have to emit new location so add the variable to set
4879 of changed variables. */
4880 if (cur_loc == loc->loc)
4881 {
4882 changed = true;
4883 var->var_part[0].cur_loc = NULL;
4884 if (VAR_LOC_1PAUX (var))
4885 VAR_LOC_FROM (var) = NULL;
4886 }
4887 delete loc;
4888 }
4889
4890 if (!var->var_part[0].loc_chain)
4891 {
4892 var->n_var_parts--;
4893 changed = true;
4894 }
4895 if (changed)
4896 variable_was_changed (var, set);
4897 }
4898
4899 return 1;
4900 }
4901
4902 /* Remove all variable-location information about call-clobbered
4903 registers, as well as associations between MEMs and VALUEs. */
4904
4905 static void
4906 dataflow_set_clear_at_call (dataflow_set *set, rtx_insn *call_insn)
4907 {
4908 unsigned int r;
4909 hard_reg_set_iterator hrsi;
4910
4911 HARD_REG_SET callee_clobbers
4912 = insn_callee_abi (call_insn).full_reg_clobbers ();
4913
4914 EXECUTE_IF_SET_IN_HARD_REG_SET (callee_clobbers, 0, r, hrsi)
4915 var_regno_delete (set, r);
4916
4917 if (MAY_HAVE_DEBUG_BIND_INSNS)
4918 {
4919 set->traversed_vars = set->vars;
4920 shared_hash_htab (set->vars)
4921 ->traverse <dataflow_set *, dataflow_set_preserve_mem_locs> (set);
4922 set->traversed_vars = set->vars;
4923 shared_hash_htab (set->vars)
4924 ->traverse <dataflow_set *, dataflow_set_remove_mem_locs> (set);
4925 set->traversed_vars = NULL;
4926 }
4927 }
4928
4929 static bool
4930 variable_part_different_p (variable_part *vp1, variable_part *vp2)
4931 {
4932 location_chain *lc1, *lc2;
4933
4934 for (lc1 = vp1->loc_chain; lc1; lc1 = lc1->next)
4935 {
4936 for (lc2 = vp2->loc_chain; lc2; lc2 = lc2->next)
4937 {
4938 if (REG_P (lc1->loc) && REG_P (lc2->loc))
4939 {
4940 if (REGNO (lc1->loc) == REGNO (lc2->loc))
4941 break;
4942 }
4943 if (rtx_equal_p (lc1->loc, lc2->loc))
4944 break;
4945 }
4946 if (!lc2)
4947 return true;
4948 }
4949 return false;
4950 }
4951
4952 /* Return true if one-part variables VAR1 and VAR2 are different.
4953 They must be in canonical order. */
4954
4955 static bool
4956 onepart_variable_different_p (variable *var1, variable *var2)
4957 {
4958 location_chain *lc1, *lc2;
4959
4960 if (var1 == var2)
4961 return false;
4962
4963 gcc_assert (var1->n_var_parts == 1
4964 && var2->n_var_parts == 1);
4965
4966 lc1 = var1->var_part[0].loc_chain;
4967 lc2 = var2->var_part[0].loc_chain;
4968
4969 gcc_assert (lc1 && lc2);
4970
4971 while (lc1 && lc2)
4972 {
4973 if (loc_cmp (lc1->loc, lc2->loc))
4974 return true;
4975 lc1 = lc1->next;
4976 lc2 = lc2->next;
4977 }
4978
4979 return lc1 != lc2;
4980 }
4981
4982 /* Return true if one-part variables VAR1 and VAR2 are different.
4983 They must be in canonical order. */
4984
4985 static void
4986 dump_onepart_variable_differences (variable *var1, variable *var2)
4987 {
4988 location_chain *lc1, *lc2;
4989
4990 gcc_assert (var1 != var2);
4991 gcc_assert (dump_file);
4992 gcc_assert (dv_as_opaque (var1->dv) == dv_as_opaque (var2->dv));
4993 gcc_assert (var1->n_var_parts == 1
4994 && var2->n_var_parts == 1);
4995
4996 lc1 = var1->var_part[0].loc_chain;
4997 lc2 = var2->var_part[0].loc_chain;
4998
4999 gcc_assert (lc1 && lc2);
5000
5001 while (lc1 && lc2)
5002 {
5003 switch (loc_cmp (lc1->loc, lc2->loc))
5004 {
5005 case -1:
5006 fprintf (dump_file, "removed: ");
5007 print_rtl_single (dump_file, lc1->loc);
5008 lc1 = lc1->next;
5009 continue;
5010 case 0:
5011 break;
5012 case 1:
5013 fprintf (dump_file, "added: ");
5014 print_rtl_single (dump_file, lc2->loc);
5015 lc2 = lc2->next;
5016 continue;
5017 default:
5018 gcc_unreachable ();
5019 }
5020 lc1 = lc1->next;
5021 lc2 = lc2->next;
5022 }
5023
5024 while (lc1)
5025 {
5026 fprintf (dump_file, "removed: ");
5027 print_rtl_single (dump_file, lc1->loc);
5028 lc1 = lc1->next;
5029 }
5030
5031 while (lc2)
5032 {
5033 fprintf (dump_file, "added: ");
5034 print_rtl_single (dump_file, lc2->loc);
5035 lc2 = lc2->next;
5036 }
5037 }
5038
5039 /* Return true if variables VAR1 and VAR2 are different. */
5040
5041 static bool
5042 variable_different_p (variable *var1, variable *var2)
5043 {
5044 int i;
5045
5046 if (var1 == var2)
5047 return false;
5048
5049 if (var1->onepart != var2->onepart)
5050 return true;
5051
5052 if (var1->n_var_parts != var2->n_var_parts)
5053 return true;
5054
5055 if (var1->onepart && var1->n_var_parts)
5056 {
5057 gcc_checking_assert (dv_as_opaque (var1->dv) == dv_as_opaque (var2->dv)
5058 && var1->n_var_parts == 1);
5059 /* One-part values have locations in a canonical order. */
5060 return onepart_variable_different_p (var1, var2);
5061 }
5062
5063 for (i = 0; i < var1->n_var_parts; i++)
5064 {
5065 if (VAR_PART_OFFSET (var1, i) != VAR_PART_OFFSET (var2, i))
5066 return true;
5067 if (variable_part_different_p (&var1->var_part[i], &var2->var_part[i]))
5068 return true;
5069 if (variable_part_different_p (&var2->var_part[i], &var1->var_part[i]))
5070 return true;
5071 }
5072 return false;
5073 }
5074
5075 /* Return true if dataflow sets OLD_SET and NEW_SET differ. */
5076
5077 static bool
5078 dataflow_set_different (dataflow_set *old_set, dataflow_set *new_set)
5079 {
5080 variable_iterator_type hi;
5081 variable *var1;
5082 bool diffound = false;
5083 bool details = (dump_file && (dump_flags & TDF_DETAILS));
5084
5085 #define RETRUE \
5086 do \
5087 { \
5088 if (!details) \
5089 return true; \
5090 else \
5091 diffound = true; \
5092 } \
5093 while (0)
5094
5095 if (old_set->vars == new_set->vars)
5096 return false;
5097
5098 if (shared_hash_htab (old_set->vars)->elements ()
5099 != shared_hash_htab (new_set->vars)->elements ())
5100 RETRUE;
5101
5102 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (old_set->vars),
5103 var1, variable, hi)
5104 {
5105 variable_table_type *htab = shared_hash_htab (new_set->vars);
5106 variable *var2 = htab->find_with_hash (var1->dv, dv_htab_hash (var1->dv));
5107
5108 if (!var2)
5109 {
5110 if (dump_file && (dump_flags & TDF_DETAILS))
5111 {
5112 fprintf (dump_file, "dataflow difference found: removal of:\n");
5113 dump_var (var1);
5114 }
5115 RETRUE;
5116 }
5117 else if (variable_different_p (var1, var2))
5118 {
5119 if (details)
5120 {
5121 fprintf (dump_file, "dataflow difference found: "
5122 "old and new follow:\n");
5123 dump_var (var1);
5124 if (dv_onepart_p (var1->dv))
5125 dump_onepart_variable_differences (var1, var2);
5126 dump_var (var2);
5127 }
5128 RETRUE;
5129 }
5130 }
5131
5132 /* There's no need to traverse the second hashtab unless we want to
5133 print the details. If both have the same number of elements and
5134 the second one had all entries found in the first one, then the
5135 second can't have any extra entries. */
5136 if (!details)
5137 return diffound;
5138
5139 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (new_set->vars),
5140 var1, variable, hi)
5141 {
5142 variable_table_type *htab = shared_hash_htab (old_set->vars);
5143 variable *var2 = htab->find_with_hash (var1->dv, dv_htab_hash (var1->dv));
5144 if (!var2)
5145 {
5146 if (details)
5147 {
5148 fprintf (dump_file, "dataflow difference found: addition of:\n");
5149 dump_var (var1);
5150 }
5151 RETRUE;
5152 }
5153 }
5154
5155 #undef RETRUE
5156
5157 return diffound;
5158 }
5159
5160 /* Free the contents of dataflow set SET. */
5161
5162 static void
5163 dataflow_set_destroy (dataflow_set *set)
5164 {
5165 int i;
5166
5167 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5168 attrs_list_clear (&set->regs[i]);
5169
5170 shared_hash_destroy (set->vars);
5171 set->vars = NULL;
5172 }
5173
5174 /* Return true if T is a tracked parameter with non-degenerate record type. */
5175
5176 static bool
5177 tracked_record_parameter_p (tree t)
5178 {
5179 if (TREE_CODE (t) != PARM_DECL)
5180 return false;
5181
5182 if (DECL_MODE (t) == BLKmode)
5183 return false;
5184
5185 tree type = TREE_TYPE (t);
5186 if (TREE_CODE (type) != RECORD_TYPE)
5187 return false;
5188
5189 if (TYPE_FIELDS (type) == NULL_TREE
5190 || DECL_CHAIN (TYPE_FIELDS (type)) == NULL_TREE)
5191 return false;
5192
5193 return true;
5194 }
5195
5196 /* Shall EXPR be tracked? */
5197
5198 static bool
5199 track_expr_p (tree expr, bool need_rtl)
5200 {
5201 rtx decl_rtl;
5202 tree realdecl;
5203
5204 if (TREE_CODE (expr) == DEBUG_EXPR_DECL)
5205 return DECL_RTL_SET_P (expr);
5206
5207 /* If EXPR is not a parameter or a variable do not track it. */
5208 if (!VAR_P (expr) && TREE_CODE (expr) != PARM_DECL)
5209 return 0;
5210
5211 /* It also must have a name... */
5212 if (!DECL_NAME (expr) && need_rtl)
5213 return 0;
5214
5215 /* ... and a RTL assigned to it. */
5216 decl_rtl = DECL_RTL_IF_SET (expr);
5217 if (!decl_rtl && need_rtl)
5218 return 0;
5219
5220 /* If this expression is really a debug alias of some other declaration, we
5221 don't need to track this expression if the ultimate declaration is
5222 ignored. */
5223 realdecl = expr;
5224 if (VAR_P (realdecl) && DECL_HAS_DEBUG_EXPR_P (realdecl))
5225 {
5226 realdecl = DECL_DEBUG_EXPR (realdecl);
5227 if (!DECL_P (realdecl))
5228 {
5229 if (handled_component_p (realdecl)
5230 || (TREE_CODE (realdecl) == MEM_REF
5231 && TREE_CODE (TREE_OPERAND (realdecl, 0)) == ADDR_EXPR))
5232 {
5233 HOST_WIDE_INT bitsize, bitpos;
5234 bool reverse;
5235 tree innerdecl
5236 = get_ref_base_and_extent_hwi (realdecl, &bitpos,
5237 &bitsize, &reverse);
5238 if (!innerdecl
5239 || !DECL_P (innerdecl)
5240 || DECL_IGNORED_P (innerdecl)
5241 /* Do not track declarations for parts of tracked record
5242 parameters since we want to track them as a whole. */
5243 || tracked_record_parameter_p (innerdecl)
5244 || TREE_STATIC (innerdecl)
5245 || bitsize == 0
5246 || bitpos + bitsize > 256)
5247 return 0;
5248 else
5249 realdecl = expr;
5250 }
5251 else
5252 return 0;
5253 }
5254 }
5255
5256 /* Do not track EXPR if REALDECL it should be ignored for debugging
5257 purposes. */
5258 if (DECL_IGNORED_P (realdecl))
5259 return 0;
5260
5261 /* Do not track global variables until we are able to emit correct location
5262 list for them. */
5263 if (TREE_STATIC (realdecl))
5264 return 0;
5265
5266 /* When the EXPR is a DECL for alias of some variable (see example)
5267 the TREE_STATIC flag is not used. Disable tracking all DECLs whose
5268 DECL_RTL contains SYMBOL_REF.
5269
5270 Example:
5271 extern char **_dl_argv_internal __attribute__ ((alias ("_dl_argv")));
5272 char **_dl_argv;
5273 */
5274 if (decl_rtl && MEM_P (decl_rtl)
5275 && contains_symbol_ref_p (XEXP (decl_rtl, 0)))
5276 return 0;
5277
5278 /* If RTX is a memory it should not be very large (because it would be
5279 an array or struct). */
5280 if (decl_rtl && MEM_P (decl_rtl))
5281 {
5282 /* Do not track structures and arrays. */
5283 if ((GET_MODE (decl_rtl) == BLKmode
5284 || AGGREGATE_TYPE_P (TREE_TYPE (realdecl)))
5285 && !tracked_record_parameter_p (realdecl))
5286 return 0;
5287 if (MEM_SIZE_KNOWN_P (decl_rtl)
5288 && maybe_gt (MEM_SIZE (decl_rtl), MAX_VAR_PARTS))
5289 return 0;
5290 }
5291
5292 DECL_CHANGED (expr) = 0;
5293 DECL_CHANGED (realdecl) = 0;
5294 return 1;
5295 }
5296
5297 /* Determine whether a given LOC refers to the same variable part as
5298 EXPR+OFFSET. */
5299
5300 static bool
5301 same_variable_part_p (rtx loc, tree expr, poly_int64 offset)
5302 {
5303 tree expr2;
5304 poly_int64 offset2;
5305
5306 if (! DECL_P (expr))
5307 return false;
5308
5309 if (REG_P (loc))
5310 {
5311 expr2 = REG_EXPR (loc);
5312 offset2 = REG_OFFSET (loc);
5313 }
5314 else if (MEM_P (loc))
5315 {
5316 expr2 = MEM_EXPR (loc);
5317 offset2 = int_mem_offset (loc);
5318 }
5319 else
5320 return false;
5321
5322 if (! expr2 || ! DECL_P (expr2))
5323 return false;
5324
5325 expr = var_debug_decl (expr);
5326 expr2 = var_debug_decl (expr2);
5327
5328 return (expr == expr2 && known_eq (offset, offset2));
5329 }
5330
5331 /* LOC is a REG or MEM that we would like to track if possible.
5332 If EXPR is null, we don't know what expression LOC refers to,
5333 otherwise it refers to EXPR + OFFSET. STORE_REG_P is true if
5334 LOC is an lvalue register.
5335
5336 Return true if EXPR is nonnull and if LOC, or some lowpart of it,
5337 is something we can track. When returning true, store the mode of
5338 the lowpart we can track in *MODE_OUT (if nonnull) and its offset
5339 from EXPR in *OFFSET_OUT (if nonnull). */
5340
5341 static bool
5342 track_loc_p (rtx loc, tree expr, poly_int64 offset, bool store_reg_p,
5343 machine_mode *mode_out, HOST_WIDE_INT *offset_out)
5344 {
5345 machine_mode mode;
5346
5347 if (expr == NULL || !track_expr_p (expr, true))
5348 return false;
5349
5350 /* If REG was a paradoxical subreg, its REG_ATTRS will describe the
5351 whole subreg, but only the old inner part is really relevant. */
5352 mode = GET_MODE (loc);
5353 if (REG_P (loc) && !HARD_REGISTER_NUM_P (ORIGINAL_REGNO (loc)))
5354 {
5355 machine_mode pseudo_mode;
5356
5357 pseudo_mode = PSEUDO_REGNO_MODE (ORIGINAL_REGNO (loc));
5358 if (paradoxical_subreg_p (mode, pseudo_mode))
5359 {
5360 offset += byte_lowpart_offset (pseudo_mode, mode);
5361 mode = pseudo_mode;
5362 }
5363 }
5364
5365 /* If LOC is a paradoxical lowpart of EXPR, refer to EXPR itself.
5366 Do the same if we are storing to a register and EXPR occupies
5367 the whole of register LOC; in that case, the whole of EXPR is
5368 being changed. We exclude complex modes from the second case
5369 because the real and imaginary parts are represented as separate
5370 pseudo registers, even if the whole complex value fits into one
5371 hard register. */
5372 if ((paradoxical_subreg_p (mode, DECL_MODE (expr))
5373 || (store_reg_p
5374 && !COMPLEX_MODE_P (DECL_MODE (expr))
5375 && hard_regno_nregs (REGNO (loc), DECL_MODE (expr)) == 1))
5376 && known_eq (offset + byte_lowpart_offset (DECL_MODE (expr), mode), 0))
5377 {
5378 mode = DECL_MODE (expr);
5379 offset = 0;
5380 }
5381
5382 HOST_WIDE_INT const_offset;
5383 if (!track_offset_p (offset, &const_offset))
5384 return false;
5385
5386 if (mode_out)
5387 *mode_out = mode;
5388 if (offset_out)
5389 *offset_out = const_offset;
5390 return true;
5391 }
5392
5393 /* Return the MODE lowpart of LOC, or null if LOC is not something we
5394 want to track. When returning nonnull, make sure that the attributes
5395 on the returned value are updated. */
5396
5397 static rtx
5398 var_lowpart (machine_mode mode, rtx loc)
5399 {
5400 unsigned int regno;
5401
5402 if (GET_MODE (loc) == mode)
5403 return loc;
5404
5405 if (!REG_P (loc) && !MEM_P (loc))
5406 return NULL;
5407
5408 poly_uint64 offset = byte_lowpart_offset (mode, GET_MODE (loc));
5409
5410 if (MEM_P (loc))
5411 return adjust_address_nv (loc, mode, offset);
5412
5413 poly_uint64 reg_offset = subreg_lowpart_offset (mode, GET_MODE (loc));
5414 regno = REGNO (loc) + subreg_regno_offset (REGNO (loc), GET_MODE (loc),
5415 reg_offset, mode);
5416 return gen_rtx_REG_offset (loc, mode, regno, offset);
5417 }
5418
5419 /* Carry information about uses and stores while walking rtx. */
5420
5421 struct count_use_info
5422 {
5423 /* The insn where the RTX is. */
5424 rtx_insn *insn;
5425
5426 /* The basic block where insn is. */
5427 basic_block bb;
5428
5429 /* The array of n_sets sets in the insn, as determined by cselib. */
5430 struct cselib_set *sets;
5431 int n_sets;
5432
5433 /* True if we're counting stores, false otherwise. */
5434 bool store_p;
5435 };
5436
5437 /* Find a VALUE corresponding to X. */
5438
5439 static inline cselib_val *
5440 find_use_val (rtx x, machine_mode mode, struct count_use_info *cui)
5441 {
5442 int i;
5443
5444 if (cui->sets)
5445 {
5446 /* This is called after uses are set up and before stores are
5447 processed by cselib, so it's safe to look up srcs, but not
5448 dsts. So we look up expressions that appear in srcs or in
5449 dest expressions, but we search the sets array for dests of
5450 stores. */
5451 if (cui->store_p)
5452 {
5453 /* Some targets represent memset and memcpy patterns
5454 by (set (mem:BLK ...) (reg:[QHSD]I ...)) or
5455 (set (mem:BLK ...) (const_int ...)) or
5456 (set (mem:BLK ...) (mem:BLK ...)). Don't return anything
5457 in that case, otherwise we end up with mode mismatches. */
5458 if (mode == BLKmode && MEM_P (x))
5459 return NULL;
5460 for (i = 0; i < cui->n_sets; i++)
5461 if (cui->sets[i].dest == x)
5462 return cui->sets[i].src_elt;
5463 }
5464 else
5465 return cselib_lookup (x, mode, 0, VOIDmode);
5466 }
5467
5468 return NULL;
5469 }
5470
5471 /* Replace all registers and addresses in an expression with VALUE
5472 expressions that map back to them, unless the expression is a
5473 register. If no mapping is or can be performed, returns NULL. */
5474
5475 static rtx
5476 replace_expr_with_values (rtx loc)
5477 {
5478 if (REG_P (loc) || GET_CODE (loc) == ENTRY_VALUE)
5479 return NULL;
5480 else if (MEM_P (loc))
5481 {
5482 cselib_val *addr = cselib_lookup (XEXP (loc, 0),
5483 get_address_mode (loc), 0,
5484 GET_MODE (loc));
5485 if (addr)
5486 return replace_equiv_address_nv (loc, addr->val_rtx);
5487 else
5488 return NULL;
5489 }
5490 else
5491 return cselib_subst_to_values (loc, VOIDmode);
5492 }
5493
5494 /* Return true if X contains a DEBUG_EXPR. */
5495
5496 static bool
5497 rtx_debug_expr_p (const_rtx x)
5498 {
5499 subrtx_iterator::array_type array;
5500 FOR_EACH_SUBRTX (iter, array, x, ALL)
5501 if (GET_CODE (*iter) == DEBUG_EXPR)
5502 return true;
5503 return false;
5504 }
5505
5506 /* Determine what kind of micro operation to choose for a USE. Return
5507 MO_CLOBBER if no micro operation is to be generated. */
5508
5509 static enum micro_operation_type
5510 use_type (rtx loc, struct count_use_info *cui, machine_mode *modep)
5511 {
5512 tree expr;
5513
5514 if (cui && cui->sets)
5515 {
5516 if (GET_CODE (loc) == VAR_LOCATION)
5517 {
5518 if (track_expr_p (PAT_VAR_LOCATION_DECL (loc), false))
5519 {
5520 rtx ploc = PAT_VAR_LOCATION_LOC (loc);
5521 if (! VAR_LOC_UNKNOWN_P (ploc))
5522 {
5523 cselib_val *val = cselib_lookup (ploc, GET_MODE (loc), 1,
5524 VOIDmode);
5525
5526 /* ??? flag_float_store and volatile mems are never
5527 given values, but we could in theory use them for
5528 locations. */
5529 gcc_assert (val || 1);
5530 }
5531 return MO_VAL_LOC;
5532 }
5533 else
5534 return MO_CLOBBER;
5535 }
5536
5537 if (REG_P (loc) || MEM_P (loc))
5538 {
5539 if (modep)
5540 *modep = GET_MODE (loc);
5541 if (cui->store_p)
5542 {
5543 if (REG_P (loc)
5544 || (find_use_val (loc, GET_MODE (loc), cui)
5545 && cselib_lookup (XEXP (loc, 0),
5546 get_address_mode (loc), 0,
5547 GET_MODE (loc))))
5548 return MO_VAL_SET;
5549 }
5550 else
5551 {
5552 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5553
5554 if (val && !cselib_preserved_value_p (val))
5555 return MO_VAL_USE;
5556 }
5557 }
5558 }
5559
5560 if (REG_P (loc))
5561 {
5562 gcc_assert (REGNO (loc) < FIRST_PSEUDO_REGISTER);
5563
5564 if (loc == cfa_base_rtx)
5565 return MO_CLOBBER;
5566 expr = REG_EXPR (loc);
5567
5568 if (!expr)
5569 return MO_USE_NO_VAR;
5570 else if (target_for_debug_bind (var_debug_decl (expr)))
5571 return MO_CLOBBER;
5572 else if (track_loc_p (loc, expr, REG_OFFSET (loc),
5573 false, modep, NULL))
5574 return MO_USE;
5575 else
5576 return MO_USE_NO_VAR;
5577 }
5578 else if (MEM_P (loc))
5579 {
5580 expr = MEM_EXPR (loc);
5581
5582 if (!expr)
5583 return MO_CLOBBER;
5584 else if (target_for_debug_bind (var_debug_decl (expr)))
5585 return MO_CLOBBER;
5586 else if (track_loc_p (loc, expr, int_mem_offset (loc),
5587 false, modep, NULL)
5588 /* Multi-part variables shouldn't refer to one-part
5589 variable names such as VALUEs (never happens) or
5590 DEBUG_EXPRs (only happens in the presence of debug
5591 insns). */
5592 && (!MAY_HAVE_DEBUG_BIND_INSNS
5593 || !rtx_debug_expr_p (XEXP (loc, 0))))
5594 return MO_USE;
5595 else
5596 return MO_CLOBBER;
5597 }
5598
5599 return MO_CLOBBER;
5600 }
5601
5602 /* Log to OUT information about micro-operation MOPT involving X in
5603 INSN of BB. */
5604
5605 static inline void
5606 log_op_type (rtx x, basic_block bb, rtx_insn *insn,
5607 enum micro_operation_type mopt, FILE *out)
5608 {
5609 fprintf (out, "bb %i op %i insn %i %s ",
5610 bb->index, VTI (bb)->mos.length (),
5611 INSN_UID (insn), micro_operation_type_name[mopt]);
5612 print_inline_rtx (out, x, 2);
5613 fputc ('\n', out);
5614 }
5615
5616 /* Tell whether the CONCAT used to holds a VALUE and its location
5617 needs value resolution, i.e., an attempt of mapping the location
5618 back to other incoming values. */
5619 #define VAL_NEEDS_RESOLUTION(x) \
5620 (RTL_FLAG_CHECK1 ("VAL_NEEDS_RESOLUTION", (x), CONCAT)->volatil)
5621 /* Whether the location in the CONCAT is a tracked expression, that
5622 should also be handled like a MO_USE. */
5623 #define VAL_HOLDS_TRACK_EXPR(x) \
5624 (RTL_FLAG_CHECK1 ("VAL_HOLDS_TRACK_EXPR", (x), CONCAT)->used)
5625 /* Whether the location in the CONCAT should be handled like a MO_COPY
5626 as well. */
5627 #define VAL_EXPR_IS_COPIED(x) \
5628 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_COPIED", (x), CONCAT)->jump)
5629 /* Whether the location in the CONCAT should be handled like a
5630 MO_CLOBBER as well. */
5631 #define VAL_EXPR_IS_CLOBBERED(x) \
5632 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_CLOBBERED", (x), CONCAT)->unchanging)
5633
5634 /* All preserved VALUEs. */
5635 static vec<rtx> preserved_values;
5636
5637 /* Ensure VAL is preserved and remember it in a vector for vt_emit_notes. */
5638
5639 static void
5640 preserve_value (cselib_val *val)
5641 {
5642 cselib_preserve_value (val);
5643 preserved_values.safe_push (val->val_rtx);
5644 }
5645
5646 /* Helper function for MO_VAL_LOC handling. Return non-zero if
5647 any rtxes not suitable for CONST use not replaced by VALUEs
5648 are discovered. */
5649
5650 static bool
5651 non_suitable_const (const_rtx x)
5652 {
5653 subrtx_iterator::array_type array;
5654 FOR_EACH_SUBRTX (iter, array, x, ALL)
5655 {
5656 const_rtx x = *iter;
5657 switch (GET_CODE (x))
5658 {
5659 case REG:
5660 case DEBUG_EXPR:
5661 case PC:
5662 case SCRATCH:
5663 case ASM_INPUT:
5664 case ASM_OPERANDS:
5665 return true;
5666 case MEM:
5667 if (!MEM_READONLY_P (x))
5668 return true;
5669 break;
5670 default:
5671 break;
5672 }
5673 }
5674 return false;
5675 }
5676
5677 /* Add uses (register and memory references) LOC which will be tracked
5678 to VTI (bb)->mos. */
5679
5680 static void
5681 add_uses (rtx loc, struct count_use_info *cui)
5682 {
5683 machine_mode mode = VOIDmode;
5684 enum micro_operation_type type = use_type (loc, cui, &mode);
5685
5686 if (type != MO_CLOBBER)
5687 {
5688 basic_block bb = cui->bb;
5689 micro_operation mo;
5690
5691 mo.type = type;
5692 mo.u.loc = type == MO_USE ? var_lowpart (mode, loc) : loc;
5693 mo.insn = cui->insn;
5694
5695 if (type == MO_VAL_LOC)
5696 {
5697 rtx oloc = loc;
5698 rtx vloc = PAT_VAR_LOCATION_LOC (oloc);
5699 cselib_val *val;
5700
5701 gcc_assert (cui->sets);
5702
5703 if (MEM_P (vloc)
5704 && !REG_P (XEXP (vloc, 0))
5705 && !MEM_P (XEXP (vloc, 0)))
5706 {
5707 rtx mloc = vloc;
5708 machine_mode address_mode = get_address_mode (mloc);
5709 cselib_val *val
5710 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5711 GET_MODE (mloc));
5712
5713 if (val && !cselib_preserved_value_p (val))
5714 preserve_value (val);
5715 }
5716
5717 if (CONSTANT_P (vloc)
5718 && (GET_CODE (vloc) != CONST || non_suitable_const (vloc)))
5719 /* For constants don't look up any value. */;
5720 else if (!VAR_LOC_UNKNOWN_P (vloc) && !unsuitable_loc (vloc)
5721 && (val = find_use_val (vloc, GET_MODE (oloc), cui)))
5722 {
5723 machine_mode mode2;
5724 enum micro_operation_type type2;
5725 rtx nloc = NULL;
5726 bool resolvable = REG_P (vloc) || MEM_P (vloc);
5727
5728 if (resolvable)
5729 nloc = replace_expr_with_values (vloc);
5730
5731 if (nloc)
5732 {
5733 oloc = shallow_copy_rtx (oloc);
5734 PAT_VAR_LOCATION_LOC (oloc) = nloc;
5735 }
5736
5737 oloc = gen_rtx_CONCAT (mode, val->val_rtx, oloc);
5738
5739 type2 = use_type (vloc, 0, &mode2);
5740
5741 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5742 || type2 == MO_CLOBBER);
5743
5744 if (type2 == MO_CLOBBER
5745 && !cselib_preserved_value_p (val))
5746 {
5747 VAL_NEEDS_RESOLUTION (oloc) = resolvable;
5748 preserve_value (val);
5749 }
5750 }
5751 else if (!VAR_LOC_UNKNOWN_P (vloc))
5752 {
5753 oloc = shallow_copy_rtx (oloc);
5754 PAT_VAR_LOCATION_LOC (oloc) = gen_rtx_UNKNOWN_VAR_LOC ();
5755 }
5756
5757 mo.u.loc = oloc;
5758 }
5759 else if (type == MO_VAL_USE)
5760 {
5761 machine_mode mode2 = VOIDmode;
5762 enum micro_operation_type type2;
5763 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5764 rtx vloc, oloc = loc, nloc;
5765
5766 gcc_assert (cui->sets);
5767
5768 if (MEM_P (oloc)
5769 && !REG_P (XEXP (oloc, 0))
5770 && !MEM_P (XEXP (oloc, 0)))
5771 {
5772 rtx mloc = oloc;
5773 machine_mode address_mode = get_address_mode (mloc);
5774 cselib_val *val
5775 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5776 GET_MODE (mloc));
5777
5778 if (val && !cselib_preserved_value_p (val))
5779 preserve_value (val);
5780 }
5781
5782 type2 = use_type (loc, 0, &mode2);
5783
5784 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5785 || type2 == MO_CLOBBER);
5786
5787 if (type2 == MO_USE)
5788 vloc = var_lowpart (mode2, loc);
5789 else
5790 vloc = oloc;
5791
5792 /* The loc of a MO_VAL_USE may have two forms:
5793
5794 (concat val src): val is at src, a value-based
5795 representation.
5796
5797 (concat (concat val use) src): same as above, with use as
5798 the MO_USE tracked value, if it differs from src.
5799
5800 */
5801
5802 gcc_checking_assert (REG_P (loc) || MEM_P (loc));
5803 nloc = replace_expr_with_values (loc);
5804 if (!nloc)
5805 nloc = oloc;
5806
5807 if (vloc != nloc)
5808 oloc = gen_rtx_CONCAT (mode2, val->val_rtx, vloc);
5809 else
5810 oloc = val->val_rtx;
5811
5812 mo.u.loc = gen_rtx_CONCAT (mode, oloc, nloc);
5813
5814 if (type2 == MO_USE)
5815 VAL_HOLDS_TRACK_EXPR (mo.u.loc) = 1;
5816 if (!cselib_preserved_value_p (val))
5817 {
5818 VAL_NEEDS_RESOLUTION (mo.u.loc) = 1;
5819 preserve_value (val);
5820 }
5821 }
5822 else
5823 gcc_assert (type == MO_USE || type == MO_USE_NO_VAR);
5824
5825 if (dump_file && (dump_flags & TDF_DETAILS))
5826 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
5827 VTI (bb)->mos.safe_push (mo);
5828 }
5829 }
5830
5831 /* Helper function for finding all uses of REG/MEM in X in insn INSN. */
5832
5833 static void
5834 add_uses_1 (rtx *x, void *cui)
5835 {
5836 subrtx_var_iterator::array_type array;
5837 FOR_EACH_SUBRTX_VAR (iter, array, *x, NONCONST)
5838 add_uses (*iter, (struct count_use_info *) cui);
5839 }
5840
5841 /* This is the value used during expansion of locations. We want it
5842 to be unbounded, so that variables expanded deep in a recursion
5843 nest are fully evaluated, so that their values are cached
5844 correctly. We avoid recursion cycles through other means, and we
5845 don't unshare RTL, so excess complexity is not a problem. */
5846 #define EXPR_DEPTH (INT_MAX)
5847 /* We use this to keep too-complex expressions from being emitted as
5848 location notes, and then to debug information. Users can trade
5849 compile time for ridiculously complex expressions, although they're
5850 seldom useful, and they may often have to be discarded as not
5851 representable anyway. */
5852 #define EXPR_USE_DEPTH (param_max_vartrack_expr_depth)
5853
5854 /* Attempt to reverse the EXPR operation in the debug info and record
5855 it in the cselib table. Say for reg1 = reg2 + 6 even when reg2 is
5856 no longer live we can express its value as VAL - 6. */
5857
5858 static void
5859 reverse_op (rtx val, const_rtx expr, rtx_insn *insn)
5860 {
5861 rtx src, arg, ret;
5862 cselib_val *v;
5863 struct elt_loc_list *l;
5864 enum rtx_code code;
5865 int count;
5866
5867 if (GET_CODE (expr) != SET)
5868 return;
5869
5870 if (!REG_P (SET_DEST (expr)) || GET_MODE (val) != GET_MODE (SET_DEST (expr)))
5871 return;
5872
5873 src = SET_SRC (expr);
5874 switch (GET_CODE (src))
5875 {
5876 case PLUS:
5877 case MINUS:
5878 case XOR:
5879 case NOT:
5880 case NEG:
5881 if (!REG_P (XEXP (src, 0)))
5882 return;
5883 break;
5884 case SIGN_EXTEND:
5885 case ZERO_EXTEND:
5886 if (!REG_P (XEXP (src, 0)) && !MEM_P (XEXP (src, 0)))
5887 return;
5888 break;
5889 default:
5890 return;
5891 }
5892
5893 if (!SCALAR_INT_MODE_P (GET_MODE (src)) || XEXP (src, 0) == cfa_base_rtx)
5894 return;
5895
5896 v = cselib_lookup (XEXP (src, 0), GET_MODE (XEXP (src, 0)), 0, VOIDmode);
5897 if (!v || !cselib_preserved_value_p (v))
5898 return;
5899
5900 /* Use canonical V to avoid creating multiple redundant expressions
5901 for different VALUES equivalent to V. */
5902 v = canonical_cselib_val (v);
5903
5904 /* Adding a reverse op isn't useful if V already has an always valid
5905 location. Ignore ENTRY_VALUE, while it is always constant, we should
5906 prefer non-ENTRY_VALUE locations whenever possible. */
5907 for (l = v->locs, count = 0; l; l = l->next, count++)
5908 if (CONSTANT_P (l->loc)
5909 && (GET_CODE (l->loc) != CONST || !references_value_p (l->loc, 0)))
5910 return;
5911 /* Avoid creating too large locs lists. */
5912 else if (count == param_max_vartrack_reverse_op_size)
5913 return;
5914
5915 switch (GET_CODE (src))
5916 {
5917 case NOT:
5918 case NEG:
5919 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5920 return;
5921 ret = gen_rtx_fmt_e (GET_CODE (src), GET_MODE (val), val);
5922 break;
5923 case SIGN_EXTEND:
5924 case ZERO_EXTEND:
5925 ret = gen_lowpart_SUBREG (GET_MODE (v->val_rtx), val);
5926 break;
5927 case XOR:
5928 code = XOR;
5929 goto binary;
5930 case PLUS:
5931 code = MINUS;
5932 goto binary;
5933 case MINUS:
5934 code = PLUS;
5935 goto binary;
5936 binary:
5937 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5938 return;
5939 arg = XEXP (src, 1);
5940 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5941 {
5942 arg = cselib_expand_value_rtx (arg, scratch_regs, 5);
5943 if (arg == NULL_RTX)
5944 return;
5945 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5946 return;
5947 }
5948 ret = simplify_gen_binary (code, GET_MODE (val), val, arg);
5949 break;
5950 default:
5951 gcc_unreachable ();
5952 }
5953
5954 cselib_add_permanent_equiv (v, ret, insn);
5955 }
5956
5957 /* Add stores (register and memory references) LOC which will be tracked
5958 to VTI (bb)->mos. EXPR is the RTL expression containing the store.
5959 CUIP->insn is instruction which the LOC is part of. */
5960
5961 static void
5962 add_stores (rtx loc, const_rtx expr, void *cuip)
5963 {
5964 machine_mode mode = VOIDmode, mode2;
5965 struct count_use_info *cui = (struct count_use_info *)cuip;
5966 basic_block bb = cui->bb;
5967 micro_operation mo;
5968 rtx oloc = loc, nloc, src = NULL;
5969 enum micro_operation_type type = use_type (loc, cui, &mode);
5970 bool track_p = false;
5971 cselib_val *v;
5972 bool resolve, preserve;
5973
5974 if (type == MO_CLOBBER)
5975 return;
5976
5977 mode2 = mode;
5978
5979 if (REG_P (loc))
5980 {
5981 gcc_assert (loc != cfa_base_rtx);
5982 if ((GET_CODE (expr) == CLOBBER && type != MO_VAL_SET)
5983 || !(track_p = use_type (loc, NULL, &mode2) == MO_USE)
5984 || GET_CODE (expr) == CLOBBER)
5985 {
5986 mo.type = MO_CLOBBER;
5987 mo.u.loc = loc;
5988 if (GET_CODE (expr) == SET
5989 && (SET_DEST (expr) == loc
5990 || (GET_CODE (SET_DEST (expr)) == STRICT_LOW_PART
5991 && XEXP (SET_DEST (expr), 0) == loc))
5992 && !unsuitable_loc (SET_SRC (expr))
5993 && find_use_val (loc, mode, cui))
5994 {
5995 gcc_checking_assert (type == MO_VAL_SET);
5996 mo.u.loc = gen_rtx_SET (loc, SET_SRC (expr));
5997 }
5998 }
5999 else
6000 {
6001 if (GET_CODE (expr) == SET
6002 && SET_DEST (expr) == loc
6003 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
6004 src = var_lowpart (mode2, SET_SRC (expr));
6005 loc = var_lowpart (mode2, loc);
6006
6007 if (src == NULL)
6008 {
6009 mo.type = MO_SET;
6010 mo.u.loc = loc;
6011 }
6012 else
6013 {
6014 rtx xexpr = gen_rtx_SET (loc, src);
6015 if (same_variable_part_p (src, REG_EXPR (loc), REG_OFFSET (loc)))
6016 {
6017 /* If this is an instruction copying (part of) a parameter
6018 passed by invisible reference to its register location,
6019 pretend it's a SET so that the initial memory location
6020 is discarded, as the parameter register can be reused
6021 for other purposes and we do not track locations based
6022 on generic registers. */
6023 if (MEM_P (src)
6024 && REG_EXPR (loc)
6025 && TREE_CODE (REG_EXPR (loc)) == PARM_DECL
6026 && DECL_MODE (REG_EXPR (loc)) != BLKmode
6027 && MEM_P (DECL_INCOMING_RTL (REG_EXPR (loc)))
6028 && XEXP (DECL_INCOMING_RTL (REG_EXPR (loc)), 0)
6029 != arg_pointer_rtx)
6030 mo.type = MO_SET;
6031 else
6032 mo.type = MO_COPY;
6033 }
6034 else
6035 mo.type = MO_SET;
6036 mo.u.loc = xexpr;
6037 }
6038 }
6039 mo.insn = cui->insn;
6040 }
6041 else if (MEM_P (loc)
6042 && ((track_p = use_type (loc, NULL, &mode2) == MO_USE)
6043 || cui->sets))
6044 {
6045 if (MEM_P (loc) && type == MO_VAL_SET
6046 && !REG_P (XEXP (loc, 0))
6047 && !MEM_P (XEXP (loc, 0)))
6048 {
6049 rtx mloc = loc;
6050 machine_mode address_mode = get_address_mode (mloc);
6051 cselib_val *val = cselib_lookup (XEXP (mloc, 0),
6052 address_mode, 0,
6053 GET_MODE (mloc));
6054
6055 if (val && !cselib_preserved_value_p (val))
6056 preserve_value (val);
6057 }
6058
6059 if (GET_CODE (expr) == CLOBBER || !track_p)
6060 {
6061 mo.type = MO_CLOBBER;
6062 mo.u.loc = track_p ? var_lowpart (mode2, loc) : loc;
6063 }
6064 else
6065 {
6066 if (GET_CODE (expr) == SET
6067 && SET_DEST (expr) == loc
6068 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
6069 src = var_lowpart (mode2, SET_SRC (expr));
6070 loc = var_lowpart (mode2, loc);
6071
6072 if (src == NULL)
6073 {
6074 mo.type = MO_SET;
6075 mo.u.loc = loc;
6076 }
6077 else
6078 {
6079 rtx xexpr = gen_rtx_SET (loc, src);
6080 if (same_variable_part_p (SET_SRC (xexpr),
6081 MEM_EXPR (loc),
6082 int_mem_offset (loc)))
6083 mo.type = MO_COPY;
6084 else
6085 mo.type = MO_SET;
6086 mo.u.loc = xexpr;
6087 }
6088 }
6089 mo.insn = cui->insn;
6090 }
6091 else
6092 return;
6093
6094 if (type != MO_VAL_SET)
6095 goto log_and_return;
6096
6097 v = find_use_val (oloc, mode, cui);
6098
6099 if (!v)
6100 goto log_and_return;
6101
6102 resolve = preserve = !cselib_preserved_value_p (v);
6103
6104 /* We cannot track values for multiple-part variables, so we track only
6105 locations for tracked record parameters. */
6106 if (track_p
6107 && REG_P (loc)
6108 && REG_EXPR (loc)
6109 && tracked_record_parameter_p (REG_EXPR (loc)))
6110 {
6111 /* Although we don't use the value here, it could be used later by the
6112 mere virtue of its existence as the operand of the reverse operation
6113 that gave rise to it (typically extension/truncation). Make sure it
6114 is preserved as required by vt_expand_var_loc_chain. */
6115 if (preserve)
6116 preserve_value (v);
6117 goto log_and_return;
6118 }
6119
6120 if (loc == stack_pointer_rtx
6121 && (maybe_ne (hard_frame_pointer_adjustment, -1)
6122 || (!frame_pointer_needed && !ACCUMULATE_OUTGOING_ARGS))
6123 && preserve)
6124 cselib_set_value_sp_based (v);
6125
6126 /* Don't record MO_VAL_SET for VALUEs that can be described using
6127 cfa_base_rtx or cfa_base_rtx + CONST_INT, cselib already knows
6128 all the needed equivalences and they shouldn't change depending
6129 on which register holds that VALUE in some instruction. */
6130 if (!frame_pointer_needed
6131 && cfa_base_rtx
6132 && cselib_sp_derived_value_p (v)
6133 && loc == stack_pointer_rtx)
6134 {
6135 if (preserve)
6136 preserve_value (v);
6137 return;
6138 }
6139
6140 nloc = replace_expr_with_values (oloc);
6141 if (nloc)
6142 oloc = nloc;
6143
6144 if (GET_CODE (PATTERN (cui->insn)) == COND_EXEC)
6145 {
6146 cselib_val *oval = cselib_lookup (oloc, GET_MODE (oloc), 0, VOIDmode);
6147
6148 if (oval == v)
6149 return;
6150 gcc_assert (REG_P (oloc) || MEM_P (oloc));
6151
6152 if (oval && !cselib_preserved_value_p (oval))
6153 {
6154 micro_operation moa;
6155
6156 preserve_value (oval);
6157
6158 moa.type = MO_VAL_USE;
6159 moa.u.loc = gen_rtx_CONCAT (mode, oval->val_rtx, oloc);
6160 VAL_NEEDS_RESOLUTION (moa.u.loc) = 1;
6161 moa.insn = cui->insn;
6162
6163 if (dump_file && (dump_flags & TDF_DETAILS))
6164 log_op_type (moa.u.loc, cui->bb, cui->insn,
6165 moa.type, dump_file);
6166 VTI (bb)->mos.safe_push (moa);
6167 }
6168
6169 resolve = false;
6170 }
6171 else if (resolve && GET_CODE (mo.u.loc) == SET)
6172 {
6173 if (REG_P (SET_SRC (expr)) || MEM_P (SET_SRC (expr)))
6174 nloc = replace_expr_with_values (SET_SRC (expr));
6175 else
6176 nloc = NULL_RTX;
6177
6178 /* Avoid the mode mismatch between oexpr and expr. */
6179 if (!nloc && mode != mode2)
6180 {
6181 nloc = SET_SRC (expr);
6182 gcc_assert (oloc == SET_DEST (expr));
6183 }
6184
6185 if (nloc && nloc != SET_SRC (mo.u.loc))
6186 oloc = gen_rtx_SET (oloc, nloc);
6187 else
6188 {
6189 if (oloc == SET_DEST (mo.u.loc))
6190 /* No point in duplicating. */
6191 oloc = mo.u.loc;
6192 if (!REG_P (SET_SRC (mo.u.loc)))
6193 resolve = false;
6194 }
6195 }
6196 else if (!resolve)
6197 {
6198 if (GET_CODE (mo.u.loc) == SET
6199 && oloc == SET_DEST (mo.u.loc))
6200 /* No point in duplicating. */
6201 oloc = mo.u.loc;
6202 }
6203 else
6204 resolve = false;
6205
6206 loc = gen_rtx_CONCAT (mode, v->val_rtx, oloc);
6207
6208 if (mo.u.loc != oloc)
6209 loc = gen_rtx_CONCAT (GET_MODE (mo.u.loc), loc, mo.u.loc);
6210
6211 /* The loc of a MO_VAL_SET may have various forms:
6212
6213 (concat val dst): dst now holds val
6214
6215 (concat val (set dst src)): dst now holds val, copied from src
6216
6217 (concat (concat val dstv) dst): dst now holds val; dstv is dst
6218 after replacing mems and non-top-level regs with values.
6219
6220 (concat (concat val dstv) (set dst src)): dst now holds val,
6221 copied from src. dstv is a value-based representation of dst, if
6222 it differs from dst. If resolution is needed, src is a REG, and
6223 its mode is the same as that of val.
6224
6225 (concat (concat val (set dstv srcv)) (set dst src)): src
6226 copied to dst, holding val. dstv and srcv are value-based
6227 representations of dst and src, respectively.
6228
6229 */
6230
6231 if (GET_CODE (PATTERN (cui->insn)) != COND_EXEC)
6232 reverse_op (v->val_rtx, expr, cui->insn);
6233
6234 mo.u.loc = loc;
6235
6236 if (track_p)
6237 VAL_HOLDS_TRACK_EXPR (loc) = 1;
6238 if (preserve)
6239 {
6240 VAL_NEEDS_RESOLUTION (loc) = resolve;
6241 preserve_value (v);
6242 }
6243 if (mo.type == MO_CLOBBER)
6244 VAL_EXPR_IS_CLOBBERED (loc) = 1;
6245 if (mo.type == MO_COPY)
6246 VAL_EXPR_IS_COPIED (loc) = 1;
6247
6248 mo.type = MO_VAL_SET;
6249
6250 log_and_return:
6251 if (dump_file && (dump_flags & TDF_DETAILS))
6252 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
6253 VTI (bb)->mos.safe_push (mo);
6254 }
6255
6256 /* Arguments to the call. */
6257 static rtx call_arguments;
6258
6259 /* Compute call_arguments. */
6260
6261 static void
6262 prepare_call_arguments (basic_block bb, rtx_insn *insn)
6263 {
6264 rtx link, x, call;
6265 rtx prev, cur, next;
6266 rtx this_arg = NULL_RTX;
6267 tree type = NULL_TREE, t, fndecl = NULL_TREE;
6268 tree obj_type_ref = NULL_TREE;
6269 CUMULATIVE_ARGS args_so_far_v;
6270 cumulative_args_t args_so_far;
6271
6272 memset (&args_so_far_v, 0, sizeof (args_so_far_v));
6273 args_so_far = pack_cumulative_args (&args_so_far_v);
6274 call = get_call_rtx_from (insn);
6275 if (call)
6276 {
6277 if (GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
6278 {
6279 rtx symbol = XEXP (XEXP (call, 0), 0);
6280 if (SYMBOL_REF_DECL (symbol))
6281 fndecl = SYMBOL_REF_DECL (symbol);
6282 }
6283 if (fndecl == NULL_TREE)
6284 fndecl = MEM_EXPR (XEXP (call, 0));
6285 if (fndecl
6286 && TREE_CODE (TREE_TYPE (fndecl)) != FUNCTION_TYPE
6287 && TREE_CODE (TREE_TYPE (fndecl)) != METHOD_TYPE)
6288 fndecl = NULL_TREE;
6289 if (fndecl && TYPE_ARG_TYPES (TREE_TYPE (fndecl)))
6290 type = TREE_TYPE (fndecl);
6291 if (fndecl && TREE_CODE (fndecl) != FUNCTION_DECL)
6292 {
6293 if (TREE_CODE (fndecl) == INDIRECT_REF
6294 && TREE_CODE (TREE_OPERAND (fndecl, 0)) == OBJ_TYPE_REF)
6295 obj_type_ref = TREE_OPERAND (fndecl, 0);
6296 fndecl = NULL_TREE;
6297 }
6298 if (type)
6299 {
6300 for (t = TYPE_ARG_TYPES (type); t && t != void_list_node;
6301 t = TREE_CHAIN (t))
6302 if (TREE_CODE (TREE_VALUE (t)) == REFERENCE_TYPE
6303 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_VALUE (t))))
6304 break;
6305 if ((t == NULL || t == void_list_node) && obj_type_ref == NULL_TREE)
6306 type = NULL;
6307 else
6308 {
6309 int nargs ATTRIBUTE_UNUSED = list_length (TYPE_ARG_TYPES (type));
6310 link = CALL_INSN_FUNCTION_USAGE (insn);
6311 #ifndef PCC_STATIC_STRUCT_RETURN
6312 if (aggregate_value_p (TREE_TYPE (type), type)
6313 && targetm.calls.struct_value_rtx (type, 0) == 0)
6314 {
6315 tree struct_addr = build_pointer_type (TREE_TYPE (type));
6316 function_arg_info arg (struct_addr, /*named=*/true);
6317 rtx reg;
6318 INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
6319 nargs + 1);
6320 reg = targetm.calls.function_arg (args_so_far, arg);
6321 targetm.calls.function_arg_advance (args_so_far, arg);
6322 if (reg == NULL_RTX)
6323 {
6324 for (; link; link = XEXP (link, 1))
6325 if (GET_CODE (XEXP (link, 0)) == USE
6326 && MEM_P (XEXP (XEXP (link, 0), 0)))
6327 {
6328 link = XEXP (link, 1);
6329 break;
6330 }
6331 }
6332 }
6333 else
6334 #endif
6335 INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
6336 nargs);
6337 if (obj_type_ref && TYPE_ARG_TYPES (type) != void_list_node)
6338 {
6339 t = TYPE_ARG_TYPES (type);
6340 function_arg_info arg (TREE_VALUE (t), /*named=*/true);
6341 this_arg = targetm.calls.function_arg (args_so_far, arg);
6342 if (this_arg && !REG_P (this_arg))
6343 this_arg = NULL_RTX;
6344 else if (this_arg == NULL_RTX)
6345 {
6346 for (; link; link = XEXP (link, 1))
6347 if (GET_CODE (XEXP (link, 0)) == USE
6348 && MEM_P (XEXP (XEXP (link, 0), 0)))
6349 {
6350 this_arg = XEXP (XEXP (link, 0), 0);
6351 break;
6352 }
6353 }
6354 }
6355 }
6356 }
6357 }
6358 t = type ? TYPE_ARG_TYPES (type) : NULL_TREE;
6359
6360 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
6361 if (GET_CODE (XEXP (link, 0)) == USE)
6362 {
6363 rtx item = NULL_RTX;
6364 x = XEXP (XEXP (link, 0), 0);
6365 if (GET_MODE (link) == VOIDmode
6366 || GET_MODE (link) == BLKmode
6367 || (GET_MODE (link) != GET_MODE (x)
6368 && ((GET_MODE_CLASS (GET_MODE (link)) != MODE_INT
6369 && GET_MODE_CLASS (GET_MODE (link)) != MODE_PARTIAL_INT)
6370 || (GET_MODE_CLASS (GET_MODE (x)) != MODE_INT
6371 && GET_MODE_CLASS (GET_MODE (x)) != MODE_PARTIAL_INT))))
6372 /* Can't do anything for these, if the original type mode
6373 isn't known or can't be converted. */;
6374 else if (REG_P (x))
6375 {
6376 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
6377 scalar_int_mode mode;
6378 if (val && cselib_preserved_value_p (val))
6379 item = val->val_rtx;
6380 else if (is_a <scalar_int_mode> (GET_MODE (x), &mode))
6381 {
6382 opt_scalar_int_mode mode_iter;
6383 FOR_EACH_WIDER_MODE (mode_iter, mode)
6384 {
6385 mode = mode_iter.require ();
6386 if (GET_MODE_BITSIZE (mode) > BITS_PER_WORD)
6387 break;
6388
6389 rtx reg = simplify_subreg (mode, x, GET_MODE (x), 0);
6390 if (reg == NULL_RTX || !REG_P (reg))
6391 continue;
6392 val = cselib_lookup (reg, mode, 0, VOIDmode);
6393 if (val && cselib_preserved_value_p (val))
6394 {
6395 item = val->val_rtx;
6396 break;
6397 }
6398 }
6399 }
6400 }
6401 else if (MEM_P (x))
6402 {
6403 rtx mem = x;
6404 cselib_val *val;
6405
6406 if (!frame_pointer_needed)
6407 {
6408 class adjust_mem_data amd;
6409 amd.mem_mode = VOIDmode;
6410 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
6411 amd.store = true;
6412 mem = simplify_replace_fn_rtx (mem, NULL_RTX, adjust_mems,
6413 &amd);
6414 gcc_assert (amd.side_effects.is_empty ());
6415 }
6416 val = cselib_lookup (mem, GET_MODE (mem), 0, VOIDmode);
6417 if (val && cselib_preserved_value_p (val))
6418 item = val->val_rtx;
6419 else if (GET_MODE_CLASS (GET_MODE (mem)) != MODE_INT
6420 && GET_MODE_CLASS (GET_MODE (mem)) != MODE_PARTIAL_INT)
6421 {
6422 /* For non-integer stack argument see also if they weren't
6423 initialized by integers. */
6424 scalar_int_mode imode;
6425 if (int_mode_for_mode (GET_MODE (mem)).exists (&imode)
6426 && imode != GET_MODE (mem))
6427 {
6428 val = cselib_lookup (adjust_address_nv (mem, imode, 0),
6429 imode, 0, VOIDmode);
6430 if (val && cselib_preserved_value_p (val))
6431 item = lowpart_subreg (GET_MODE (x), val->val_rtx,
6432 imode);
6433 }
6434 }
6435 }
6436 if (item)
6437 {
6438 rtx x2 = x;
6439 if (GET_MODE (item) != GET_MODE (link))
6440 item = lowpart_subreg (GET_MODE (link), item, GET_MODE (item));
6441 if (GET_MODE (x2) != GET_MODE (link))
6442 x2 = lowpart_subreg (GET_MODE (link), x2, GET_MODE (x2));
6443 item = gen_rtx_CONCAT (GET_MODE (link), x2, item);
6444 call_arguments
6445 = gen_rtx_EXPR_LIST (VOIDmode, item, call_arguments);
6446 }
6447 if (t && t != void_list_node)
6448 {
6449 rtx reg;
6450 function_arg_info arg (TREE_VALUE (t), /*named=*/true);
6451 apply_pass_by_reference_rules (&args_so_far_v, arg);
6452 reg = targetm.calls.function_arg (args_so_far, arg);
6453 if (TREE_CODE (arg.type) == REFERENCE_TYPE
6454 && INTEGRAL_TYPE_P (TREE_TYPE (arg.type))
6455 && reg
6456 && REG_P (reg)
6457 && GET_MODE (reg) == arg.mode
6458 && (GET_MODE_CLASS (arg.mode) == MODE_INT
6459 || GET_MODE_CLASS (arg.mode) == MODE_PARTIAL_INT)
6460 && REG_P (x)
6461 && REGNO (x) == REGNO (reg)
6462 && GET_MODE (x) == arg.mode
6463 && item)
6464 {
6465 machine_mode indmode
6466 = TYPE_MODE (TREE_TYPE (arg.type));
6467 rtx mem = gen_rtx_MEM (indmode, x);
6468 cselib_val *val = cselib_lookup (mem, indmode, 0, VOIDmode);
6469 if (val && cselib_preserved_value_p (val))
6470 {
6471 item = gen_rtx_CONCAT (indmode, mem, val->val_rtx);
6472 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
6473 call_arguments);
6474 }
6475 else
6476 {
6477 struct elt_loc_list *l;
6478 tree initial;
6479
6480 /* Try harder, when passing address of a constant
6481 pool integer it can be easily read back. */
6482 item = XEXP (item, 1);
6483 if (GET_CODE (item) == SUBREG)
6484 item = SUBREG_REG (item);
6485 gcc_assert (GET_CODE (item) == VALUE);
6486 val = CSELIB_VAL_PTR (item);
6487 for (l = val->locs; l; l = l->next)
6488 if (GET_CODE (l->loc) == SYMBOL_REF
6489 && TREE_CONSTANT_POOL_ADDRESS_P (l->loc)
6490 && SYMBOL_REF_DECL (l->loc)
6491 && DECL_INITIAL (SYMBOL_REF_DECL (l->loc)))
6492 {
6493 initial = DECL_INITIAL (SYMBOL_REF_DECL (l->loc));
6494 if (tree_fits_shwi_p (initial))
6495 {
6496 item = GEN_INT (tree_to_shwi (initial));
6497 item = gen_rtx_CONCAT (indmode, mem, item);
6498 call_arguments
6499 = gen_rtx_EXPR_LIST (VOIDmode, item,
6500 call_arguments);
6501 }
6502 break;
6503 }
6504 }
6505 }
6506 targetm.calls.function_arg_advance (args_so_far, arg);
6507 t = TREE_CHAIN (t);
6508 }
6509 }
6510
6511 /* Add debug arguments. */
6512 if (fndecl
6513 && TREE_CODE (fndecl) == FUNCTION_DECL
6514 && DECL_HAS_DEBUG_ARGS_P (fndecl))
6515 {
6516 vec<tree, va_gc> **debug_args = decl_debug_args_lookup (fndecl);
6517 if (debug_args)
6518 {
6519 unsigned int ix;
6520 tree param;
6521 for (ix = 0; vec_safe_iterate (*debug_args, ix, &param); ix += 2)
6522 {
6523 rtx item;
6524 tree dtemp = (**debug_args)[ix + 1];
6525 machine_mode mode = DECL_MODE (dtemp);
6526 item = gen_rtx_DEBUG_PARAMETER_REF (mode, param);
6527 item = gen_rtx_CONCAT (mode, item, DECL_RTL_KNOWN_SET (dtemp));
6528 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
6529 call_arguments);
6530 }
6531 }
6532 }
6533
6534 /* Reverse call_arguments chain. */
6535 prev = NULL_RTX;
6536 for (cur = call_arguments; cur; cur = next)
6537 {
6538 next = XEXP (cur, 1);
6539 XEXP (cur, 1) = prev;
6540 prev = cur;
6541 }
6542 call_arguments = prev;
6543
6544 x = get_call_rtx_from (insn);
6545 if (x)
6546 {
6547 x = XEXP (XEXP (x, 0), 0);
6548 if (GET_CODE (x) == SYMBOL_REF)
6549 /* Don't record anything. */;
6550 else if (CONSTANT_P (x))
6551 {
6552 x = gen_rtx_CONCAT (GET_MODE (x) == VOIDmode ? Pmode : GET_MODE (x),
6553 pc_rtx, x);
6554 call_arguments
6555 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6556 }
6557 else
6558 {
6559 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
6560 if (val && cselib_preserved_value_p (val))
6561 {
6562 x = gen_rtx_CONCAT (GET_MODE (x), pc_rtx, val->val_rtx);
6563 call_arguments
6564 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6565 }
6566 }
6567 }
6568 if (this_arg)
6569 {
6570 machine_mode mode
6571 = TYPE_MODE (TREE_TYPE (OBJ_TYPE_REF_EXPR (obj_type_ref)));
6572 rtx clobbered = gen_rtx_MEM (mode, this_arg);
6573 HOST_WIDE_INT token
6574 = tree_to_shwi (OBJ_TYPE_REF_TOKEN (obj_type_ref));
6575 if (token)
6576 clobbered = plus_constant (mode, clobbered,
6577 token * GET_MODE_SIZE (mode));
6578 clobbered = gen_rtx_MEM (mode, clobbered);
6579 x = gen_rtx_CONCAT (mode, gen_rtx_CLOBBER (VOIDmode, pc_rtx), clobbered);
6580 call_arguments
6581 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6582 }
6583 }
6584
6585 /* Callback for cselib_record_sets_hook, that records as micro
6586 operations uses and stores in an insn after cselib_record_sets has
6587 analyzed the sets in an insn, but before it modifies the stored
6588 values in the internal tables, unless cselib_record_sets doesn't
6589 call it directly (perhaps because we're not doing cselib in the
6590 first place, in which case sets and n_sets will be 0). */
6591
6592 static void
6593 add_with_sets (rtx_insn *insn, struct cselib_set *sets, int n_sets)
6594 {
6595 basic_block bb = BLOCK_FOR_INSN (insn);
6596 int n1, n2;
6597 struct count_use_info cui;
6598 micro_operation *mos;
6599
6600 cselib_hook_called = true;
6601
6602 cui.insn = insn;
6603 cui.bb = bb;
6604 cui.sets = sets;
6605 cui.n_sets = n_sets;
6606
6607 n1 = VTI (bb)->mos.length ();
6608 cui.store_p = false;
6609 note_uses (&PATTERN (insn), add_uses_1, &cui);
6610 n2 = VTI (bb)->mos.length () - 1;
6611 mos = VTI (bb)->mos.address ();
6612
6613 /* Order the MO_USEs to be before MO_USE_NO_VARs and MO_VAL_USE, and
6614 MO_VAL_LOC last. */
6615 while (n1 < n2)
6616 {
6617 while (n1 < n2 && mos[n1].type == MO_USE)
6618 n1++;
6619 while (n1 < n2 && mos[n2].type != MO_USE)
6620 n2--;
6621 if (n1 < n2)
6622 std::swap (mos[n1], mos[n2]);
6623 }
6624
6625 n2 = VTI (bb)->mos.length () - 1;
6626 while (n1 < n2)
6627 {
6628 while (n1 < n2 && mos[n1].type != MO_VAL_LOC)
6629 n1++;
6630 while (n1 < n2 && mos[n2].type == MO_VAL_LOC)
6631 n2--;
6632 if (n1 < n2)
6633 std::swap (mos[n1], mos[n2]);
6634 }
6635
6636 if (CALL_P (insn))
6637 {
6638 micro_operation mo;
6639
6640 mo.type = MO_CALL;
6641 mo.insn = insn;
6642 mo.u.loc = call_arguments;
6643 call_arguments = NULL_RTX;
6644
6645 if (dump_file && (dump_flags & TDF_DETAILS))
6646 log_op_type (PATTERN (insn), bb, insn, mo.type, dump_file);
6647 VTI (bb)->mos.safe_push (mo);
6648 }
6649
6650 n1 = VTI (bb)->mos.length ();
6651 /* This will record NEXT_INSN (insn), such that we can
6652 insert notes before it without worrying about any
6653 notes that MO_USEs might emit after the insn. */
6654 cui.store_p = true;
6655 note_stores (insn, add_stores, &cui);
6656 n2 = VTI (bb)->mos.length () - 1;
6657 mos = VTI (bb)->mos.address ();
6658
6659 /* Order the MO_VAL_USEs first (note_stores does nothing
6660 on DEBUG_INSNs, so there are no MO_VAL_LOCs from this
6661 insn), then MO_CLOBBERs, then MO_SET/MO_COPY/MO_VAL_SET. */
6662 while (n1 < n2)
6663 {
6664 while (n1 < n2 && mos[n1].type == MO_VAL_USE)
6665 n1++;
6666 while (n1 < n2 && mos[n2].type != MO_VAL_USE)
6667 n2--;
6668 if (n1 < n2)
6669 std::swap (mos[n1], mos[n2]);
6670 }
6671
6672 n2 = VTI (bb)->mos.length () - 1;
6673 while (n1 < n2)
6674 {
6675 while (n1 < n2 && mos[n1].type == MO_CLOBBER)
6676 n1++;
6677 while (n1 < n2 && mos[n2].type != MO_CLOBBER)
6678 n2--;
6679 if (n1 < n2)
6680 std::swap (mos[n1], mos[n2]);
6681 }
6682 }
6683
6684 static enum var_init_status
6685 find_src_status (dataflow_set *in, rtx src)
6686 {
6687 tree decl = NULL_TREE;
6688 enum var_init_status status = VAR_INIT_STATUS_UNINITIALIZED;
6689
6690 if (! flag_var_tracking_uninit)
6691 status = VAR_INIT_STATUS_INITIALIZED;
6692
6693 if (src && REG_P (src))
6694 decl = var_debug_decl (REG_EXPR (src));
6695 else if (src && MEM_P (src))
6696 decl = var_debug_decl (MEM_EXPR (src));
6697
6698 if (src && decl)
6699 status = get_init_value (in, src, dv_from_decl (decl));
6700
6701 return status;
6702 }
6703
6704 /* SRC is the source of an assignment. Use SET to try to find what
6705 was ultimately assigned to SRC. Return that value if known,
6706 otherwise return SRC itself. */
6707
6708 static rtx
6709 find_src_set_src (dataflow_set *set, rtx src)
6710 {
6711 tree decl = NULL_TREE; /* The variable being copied around. */
6712 rtx set_src = NULL_RTX; /* The value for "decl" stored in "src". */
6713 variable *var;
6714 location_chain *nextp;
6715 int i;
6716 bool found;
6717
6718 if (src && REG_P (src))
6719 decl = var_debug_decl (REG_EXPR (src));
6720 else if (src && MEM_P (src))
6721 decl = var_debug_decl (MEM_EXPR (src));
6722
6723 if (src && decl)
6724 {
6725 decl_or_value dv = dv_from_decl (decl);
6726
6727 var = shared_hash_find (set->vars, dv);
6728 if (var)
6729 {
6730 found = false;
6731 for (i = 0; i < var->n_var_parts && !found; i++)
6732 for (nextp = var->var_part[i].loc_chain; nextp && !found;
6733 nextp = nextp->next)
6734 if (rtx_equal_p (nextp->loc, src))
6735 {
6736 set_src = nextp->set_src;
6737 found = true;
6738 }
6739
6740 }
6741 }
6742
6743 return set_src;
6744 }
6745
6746 /* Compute the changes of variable locations in the basic block BB. */
6747
6748 static bool
6749 compute_bb_dataflow (basic_block bb)
6750 {
6751 unsigned int i;
6752 micro_operation *mo;
6753 bool changed;
6754 dataflow_set old_out;
6755 dataflow_set *in = &VTI (bb)->in;
6756 dataflow_set *out = &VTI (bb)->out;
6757
6758 dataflow_set_init (&old_out);
6759 dataflow_set_copy (&old_out, out);
6760 dataflow_set_copy (out, in);
6761
6762 if (MAY_HAVE_DEBUG_BIND_INSNS)
6763 local_get_addr_cache = new hash_map<rtx, rtx>;
6764
6765 FOR_EACH_VEC_ELT (VTI (bb)->mos, i, mo)
6766 {
6767 rtx_insn *insn = mo->insn;
6768
6769 switch (mo->type)
6770 {
6771 case MO_CALL:
6772 dataflow_set_clear_at_call (out, insn);
6773 break;
6774
6775 case MO_USE:
6776 {
6777 rtx loc = mo->u.loc;
6778
6779 if (REG_P (loc))
6780 var_reg_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6781 else if (MEM_P (loc))
6782 var_mem_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6783 }
6784 break;
6785
6786 case MO_VAL_LOC:
6787 {
6788 rtx loc = mo->u.loc;
6789 rtx val, vloc;
6790 tree var;
6791
6792 if (GET_CODE (loc) == CONCAT)
6793 {
6794 val = XEXP (loc, 0);
6795 vloc = XEXP (loc, 1);
6796 }
6797 else
6798 {
6799 val = NULL_RTX;
6800 vloc = loc;
6801 }
6802
6803 var = PAT_VAR_LOCATION_DECL (vloc);
6804
6805 clobber_variable_part (out, NULL_RTX,
6806 dv_from_decl (var), 0, NULL_RTX);
6807 if (val)
6808 {
6809 if (VAL_NEEDS_RESOLUTION (loc))
6810 val_resolve (out, val, PAT_VAR_LOCATION_LOC (vloc), insn);
6811 set_variable_part (out, val, dv_from_decl (var), 0,
6812 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6813 INSERT);
6814 }
6815 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
6816 set_variable_part (out, PAT_VAR_LOCATION_LOC (vloc),
6817 dv_from_decl (var), 0,
6818 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6819 INSERT);
6820 }
6821 break;
6822
6823 case MO_VAL_USE:
6824 {
6825 rtx loc = mo->u.loc;
6826 rtx val, vloc, uloc;
6827
6828 vloc = uloc = XEXP (loc, 1);
6829 val = XEXP (loc, 0);
6830
6831 if (GET_CODE (val) == CONCAT)
6832 {
6833 uloc = XEXP (val, 1);
6834 val = XEXP (val, 0);
6835 }
6836
6837 if (VAL_NEEDS_RESOLUTION (loc))
6838 val_resolve (out, val, vloc, insn);
6839 else
6840 val_store (out, val, uloc, insn, false);
6841
6842 if (VAL_HOLDS_TRACK_EXPR (loc))
6843 {
6844 if (GET_CODE (uloc) == REG)
6845 var_reg_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6846 NULL);
6847 else if (GET_CODE (uloc) == MEM)
6848 var_mem_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6849 NULL);
6850 }
6851 }
6852 break;
6853
6854 case MO_VAL_SET:
6855 {
6856 rtx loc = mo->u.loc;
6857 rtx val, vloc, uloc;
6858 rtx dstv, srcv;
6859
6860 vloc = loc;
6861 uloc = XEXP (vloc, 1);
6862 val = XEXP (vloc, 0);
6863 vloc = uloc;
6864
6865 if (GET_CODE (uloc) == SET)
6866 {
6867 dstv = SET_DEST (uloc);
6868 srcv = SET_SRC (uloc);
6869 }
6870 else
6871 {
6872 dstv = uloc;
6873 srcv = NULL;
6874 }
6875
6876 if (GET_CODE (val) == CONCAT)
6877 {
6878 dstv = vloc = XEXP (val, 1);
6879 val = XEXP (val, 0);
6880 }
6881
6882 if (GET_CODE (vloc) == SET)
6883 {
6884 srcv = SET_SRC (vloc);
6885
6886 gcc_assert (val != srcv);
6887 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
6888
6889 dstv = vloc = SET_DEST (vloc);
6890
6891 if (VAL_NEEDS_RESOLUTION (loc))
6892 val_resolve (out, val, srcv, insn);
6893 }
6894 else if (VAL_NEEDS_RESOLUTION (loc))
6895 {
6896 gcc_assert (GET_CODE (uloc) == SET
6897 && GET_CODE (SET_SRC (uloc)) == REG);
6898 val_resolve (out, val, SET_SRC (uloc), insn);
6899 }
6900
6901 if (VAL_HOLDS_TRACK_EXPR (loc))
6902 {
6903 if (VAL_EXPR_IS_CLOBBERED (loc))
6904 {
6905 if (REG_P (uloc))
6906 var_reg_delete (out, uloc, true);
6907 else if (MEM_P (uloc))
6908 {
6909 gcc_assert (MEM_P (dstv));
6910 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (uloc));
6911 var_mem_delete (out, dstv, true);
6912 }
6913 }
6914 else
6915 {
6916 bool copied_p = VAL_EXPR_IS_COPIED (loc);
6917 rtx src = NULL, dst = uloc;
6918 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
6919
6920 if (GET_CODE (uloc) == SET)
6921 {
6922 src = SET_SRC (uloc);
6923 dst = SET_DEST (uloc);
6924 }
6925
6926 if (copied_p)
6927 {
6928 if (flag_var_tracking_uninit)
6929 {
6930 status = find_src_status (in, src);
6931
6932 if (status == VAR_INIT_STATUS_UNKNOWN)
6933 status = find_src_status (out, src);
6934 }
6935
6936 src = find_src_set_src (in, src);
6937 }
6938
6939 if (REG_P (dst))
6940 var_reg_delete_and_set (out, dst, !copied_p,
6941 status, srcv);
6942 else if (MEM_P (dst))
6943 {
6944 gcc_assert (MEM_P (dstv));
6945 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (dst));
6946 var_mem_delete_and_set (out, dstv, !copied_p,
6947 status, srcv);
6948 }
6949 }
6950 }
6951 else if (REG_P (uloc))
6952 var_regno_delete (out, REGNO (uloc));
6953 else if (MEM_P (uloc))
6954 {
6955 gcc_checking_assert (GET_CODE (vloc) == MEM);
6956 gcc_checking_assert (dstv == vloc);
6957 if (dstv != vloc)
6958 clobber_overlapping_mems (out, vloc);
6959 }
6960
6961 val_store (out, val, dstv, insn, true);
6962 }
6963 break;
6964
6965 case MO_SET:
6966 {
6967 rtx loc = mo->u.loc;
6968 rtx set_src = NULL;
6969
6970 if (GET_CODE (loc) == SET)
6971 {
6972 set_src = SET_SRC (loc);
6973 loc = SET_DEST (loc);
6974 }
6975
6976 if (REG_P (loc))
6977 var_reg_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6978 set_src);
6979 else if (MEM_P (loc))
6980 var_mem_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6981 set_src);
6982 }
6983 break;
6984
6985 case MO_COPY:
6986 {
6987 rtx loc = mo->u.loc;
6988 enum var_init_status src_status;
6989 rtx set_src = NULL;
6990
6991 if (GET_CODE (loc) == SET)
6992 {
6993 set_src = SET_SRC (loc);
6994 loc = SET_DEST (loc);
6995 }
6996
6997 if (! flag_var_tracking_uninit)
6998 src_status = VAR_INIT_STATUS_INITIALIZED;
6999 else
7000 {
7001 src_status = find_src_status (in, set_src);
7002
7003 if (src_status == VAR_INIT_STATUS_UNKNOWN)
7004 src_status = find_src_status (out, set_src);
7005 }
7006
7007 set_src = find_src_set_src (in, set_src);
7008
7009 if (REG_P (loc))
7010 var_reg_delete_and_set (out, loc, false, src_status, set_src);
7011 else if (MEM_P (loc))
7012 var_mem_delete_and_set (out, loc, false, src_status, set_src);
7013 }
7014 break;
7015
7016 case MO_USE_NO_VAR:
7017 {
7018 rtx loc = mo->u.loc;
7019
7020 if (REG_P (loc))
7021 var_reg_delete (out, loc, false);
7022 else if (MEM_P (loc))
7023 var_mem_delete (out, loc, false);
7024 }
7025 break;
7026
7027 case MO_CLOBBER:
7028 {
7029 rtx loc = mo->u.loc;
7030
7031 if (REG_P (loc))
7032 var_reg_delete (out, loc, true);
7033 else if (MEM_P (loc))
7034 var_mem_delete (out, loc, true);
7035 }
7036 break;
7037
7038 case MO_ADJUST:
7039 out->stack_adjust += mo->u.adjust;
7040 break;
7041 }
7042 }
7043
7044 if (MAY_HAVE_DEBUG_BIND_INSNS)
7045 {
7046 delete local_get_addr_cache;
7047 local_get_addr_cache = NULL;
7048
7049 dataflow_set_equiv_regs (out);
7050 shared_hash_htab (out->vars)
7051 ->traverse <dataflow_set *, canonicalize_values_mark> (out);
7052 shared_hash_htab (out->vars)
7053 ->traverse <dataflow_set *, canonicalize_values_star> (out);
7054 if (flag_checking)
7055 shared_hash_htab (out->vars)
7056 ->traverse <dataflow_set *, canonicalize_loc_order_check> (out);
7057 }
7058 changed = dataflow_set_different (&old_out, out);
7059 dataflow_set_destroy (&old_out);
7060 return changed;
7061 }
7062
7063 /* Find the locations of variables in the whole function. */
7064
7065 static bool
7066 vt_find_locations (void)
7067 {
7068 bb_heap_t *worklist = new bb_heap_t (LONG_MIN);
7069 bb_heap_t *pending = new bb_heap_t (LONG_MIN);
7070 sbitmap in_worklist, in_pending;
7071 basic_block bb;
7072 edge e;
7073 int *bb_order;
7074 int *rc_order;
7075 int i;
7076 int htabsz = 0;
7077 int htabmax = param_max_vartrack_size;
7078 bool success = true;
7079 unsigned int n_blocks_processed = 0;
7080
7081 timevar_push (TV_VAR_TRACKING_DATAFLOW);
7082 /* Compute reverse completion order of depth first search of the CFG
7083 so that the data-flow runs faster. */
7084 rc_order = XNEWVEC (int, n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS);
7085 bb_order = XNEWVEC (int, last_basic_block_for_fn (cfun));
7086 auto_bitmap exit_bbs;
7087 bitmap_set_bit (exit_bbs, EXIT_BLOCK);
7088 auto_vec<std::pair<int, int> > toplevel_scc_extents;
7089 int n = rev_post_order_and_mark_dfs_back_seme
7090 (cfun, single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun)), exit_bbs, true,
7091 rc_order, &toplevel_scc_extents);
7092 for (i = 0; i < n; i++)
7093 bb_order[rc_order[i]] = i;
7094
7095 in_worklist = sbitmap_alloc (last_basic_block_for_fn (cfun));
7096 in_pending = sbitmap_alloc (last_basic_block_for_fn (cfun));
7097 bitmap_clear (in_worklist);
7098 bitmap_clear (in_pending);
7099
7100 /* We're performing the dataflow iteration independently over the
7101 toplevel SCCs plus leading non-cyclic entry blocks and separately
7102 over the tail. That ensures best memory locality and the least
7103 number of visited blocks. */
7104 unsigned extent = 0;
7105 int curr_start = -1;
7106 int curr_end = -1;
7107 do
7108 {
7109 curr_start = curr_end + 1;
7110 if (toplevel_scc_extents.length () <= extent)
7111 curr_end = n - 1;
7112 else
7113 curr_end = toplevel_scc_extents[extent++].second;
7114
7115 for (int i = curr_start; i <= curr_end; ++i)
7116 {
7117 pending->insert (i, BASIC_BLOCK_FOR_FN (cfun, rc_order[i]));
7118 bitmap_set_bit (in_pending, rc_order[i]);
7119 }
7120
7121 while (success && !pending->empty ())
7122 {
7123 std::swap (worklist, pending);
7124 std::swap (in_worklist, in_pending);
7125
7126 while (!worklist->empty ())
7127 {
7128 bool changed;
7129 edge_iterator ei;
7130 int oldinsz, oldoutsz;
7131
7132 bb = worklist->extract_min ();
7133 bitmap_clear_bit (in_worklist, bb->index);
7134
7135 if (VTI (bb)->in.vars)
7136 {
7137 htabsz -= (shared_hash_htab (VTI (bb)->in.vars)->size ()
7138 + shared_hash_htab (VTI (bb)->out.vars)->size ());
7139 oldinsz = shared_hash_htab (VTI (bb)->in.vars)->elements ();
7140 oldoutsz = shared_hash_htab (VTI (bb)->out.vars)->elements ();
7141 }
7142 else
7143 oldinsz = oldoutsz = 0;
7144
7145 if (MAY_HAVE_DEBUG_BIND_INSNS)
7146 {
7147 dataflow_set *in = &VTI (bb)->in, *first_out = NULL;
7148 bool first = true, adjust = false;
7149
7150 /* Calculate the IN set as the intersection of
7151 predecessor OUT sets. */
7152
7153 dataflow_set_clear (in);
7154 dst_can_be_shared = true;
7155
7156 FOR_EACH_EDGE (e, ei, bb->preds)
7157 if (!VTI (e->src)->flooded)
7158 gcc_assert (bb_order[bb->index]
7159 <= bb_order[e->src->index]);
7160 else if (first)
7161 {
7162 dataflow_set_copy (in, &VTI (e->src)->out);
7163 first_out = &VTI (e->src)->out;
7164 first = false;
7165 }
7166 else
7167 {
7168 dataflow_set_merge (in, &VTI (e->src)->out);
7169 adjust = true;
7170 }
7171
7172 if (adjust)
7173 {
7174 dataflow_post_merge_adjust (in, &VTI (bb)->permp);
7175
7176 if (flag_checking)
7177 /* Merge and merge_adjust should keep entries in
7178 canonical order. */
7179 shared_hash_htab (in->vars)
7180 ->traverse <dataflow_set *,
7181 canonicalize_loc_order_check> (in);
7182
7183 if (dst_can_be_shared)
7184 {
7185 shared_hash_destroy (in->vars);
7186 in->vars = shared_hash_copy (first_out->vars);
7187 }
7188 }
7189
7190 VTI (bb)->flooded = true;
7191 }
7192 else
7193 {
7194 /* Calculate the IN set as union of predecessor OUT sets. */
7195 dataflow_set_clear (&VTI (bb)->in);
7196 FOR_EACH_EDGE (e, ei, bb->preds)
7197 dataflow_set_union (&VTI (bb)->in, &VTI (e->src)->out);
7198 }
7199
7200 changed = compute_bb_dataflow (bb);
7201 n_blocks_processed++;
7202 htabsz += (shared_hash_htab (VTI (bb)->in.vars)->size ()
7203 + shared_hash_htab (VTI (bb)->out.vars)->size ());
7204
7205 if (htabmax && htabsz > htabmax)
7206 {
7207 if (MAY_HAVE_DEBUG_BIND_INSNS)
7208 inform (DECL_SOURCE_LOCATION (cfun->decl),
7209 "variable tracking size limit exceeded with "
7210 "%<-fvar-tracking-assignments%>, retrying without");
7211 else
7212 inform (DECL_SOURCE_LOCATION (cfun->decl),
7213 "variable tracking size limit exceeded");
7214 success = false;
7215 break;
7216 }
7217
7218 if (changed)
7219 {
7220 FOR_EACH_EDGE (e, ei, bb->succs)
7221 {
7222 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
7223 continue;
7224
7225 /* Iterate to an earlier block in RPO in the next
7226 round, iterate to the same block immediately. */
7227 if (bb_order[e->dest->index] < bb_order[bb->index])
7228 {
7229 gcc_assert (bb_order[e->dest->index] >= curr_start);
7230 if (!bitmap_bit_p (in_pending, e->dest->index))
7231 {
7232 /* Send E->DEST to next round. */
7233 bitmap_set_bit (in_pending, e->dest->index);
7234 pending->insert (bb_order[e->dest->index],
7235 e->dest);
7236 }
7237 }
7238 else if (bb_order[e->dest->index] <= curr_end
7239 && !bitmap_bit_p (in_worklist, e->dest->index))
7240 {
7241 /* Add E->DEST to current round or delay
7242 processing if it is in the next SCC. */
7243 bitmap_set_bit (in_worklist, e->dest->index);
7244 worklist->insert (bb_order[e->dest->index],
7245 e->dest);
7246 }
7247 }
7248 }
7249
7250 if (dump_file)
7251 fprintf (dump_file,
7252 "BB %i: in %i (was %i), out %i (was %i), rem %i + %i, "
7253 "tsz %i\n", bb->index,
7254 (int)shared_hash_htab (VTI (bb)->in.vars)->size (),
7255 oldinsz,
7256 (int)shared_hash_htab (VTI (bb)->out.vars)->size (),
7257 oldoutsz,
7258 (int)worklist->nodes (), (int)pending->nodes (),
7259 htabsz);
7260
7261 if (dump_file && (dump_flags & TDF_DETAILS))
7262 {
7263 fprintf (dump_file, "BB %i IN:\n", bb->index);
7264 dump_dataflow_set (&VTI (bb)->in);
7265 fprintf (dump_file, "BB %i OUT:\n", bb->index);
7266 dump_dataflow_set (&VTI (bb)->out);
7267 }
7268 }
7269 }
7270 }
7271 while (curr_end != n - 1);
7272
7273 statistics_counter_event (cfun, "compute_bb_dataflow times",
7274 n_blocks_processed);
7275
7276 if (success && MAY_HAVE_DEBUG_BIND_INSNS)
7277 FOR_EACH_BB_FN (bb, cfun)
7278 gcc_assert (VTI (bb)->flooded);
7279
7280 free (rc_order);
7281 free (bb_order);
7282 delete worklist;
7283 delete pending;
7284 sbitmap_free (in_worklist);
7285 sbitmap_free (in_pending);
7286
7287 timevar_pop (TV_VAR_TRACKING_DATAFLOW);
7288 return success;
7289 }
7290
7291 /* Print the content of the LIST to dump file. */
7292
7293 static void
7294 dump_attrs_list (attrs *list)
7295 {
7296 for (; list; list = list->next)
7297 {
7298 if (dv_is_decl_p (list->dv))
7299 print_mem_expr (dump_file, dv_as_decl (list->dv));
7300 else
7301 print_rtl_single (dump_file, dv_as_value (list->dv));
7302 fprintf (dump_file, "+" HOST_WIDE_INT_PRINT_DEC, list->offset);
7303 }
7304 fprintf (dump_file, "\n");
7305 }
7306
7307 /* Print the information about variable *SLOT to dump file. */
7308
7309 int
7310 dump_var_tracking_slot (variable **slot, void *data ATTRIBUTE_UNUSED)
7311 {
7312 variable *var = *slot;
7313
7314 dump_var (var);
7315
7316 /* Continue traversing the hash table. */
7317 return 1;
7318 }
7319
7320 /* Print the information about variable VAR to dump file. */
7321
7322 static void
7323 dump_var (variable *var)
7324 {
7325 int i;
7326 location_chain *node;
7327
7328 if (dv_is_decl_p (var->dv))
7329 {
7330 const_tree decl = dv_as_decl (var->dv);
7331
7332 if (DECL_NAME (decl))
7333 {
7334 fprintf (dump_file, " name: %s",
7335 IDENTIFIER_POINTER (DECL_NAME (decl)));
7336 if (dump_flags & TDF_UID)
7337 fprintf (dump_file, "D.%u", DECL_UID (decl));
7338 }
7339 else if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
7340 fprintf (dump_file, " name: D#%u", DEBUG_TEMP_UID (decl));
7341 else
7342 fprintf (dump_file, " name: D.%u", DECL_UID (decl));
7343 fprintf (dump_file, "\n");
7344 }
7345 else
7346 {
7347 fputc (' ', dump_file);
7348 print_rtl_single (dump_file, dv_as_value (var->dv));
7349 }
7350
7351 for (i = 0; i < var->n_var_parts; i++)
7352 {
7353 fprintf (dump_file, " offset %ld\n",
7354 (long)(var->onepart ? 0 : VAR_PART_OFFSET (var, i)));
7355 for (node = var->var_part[i].loc_chain; node; node = node->next)
7356 {
7357 fprintf (dump_file, " ");
7358 if (node->init == VAR_INIT_STATUS_UNINITIALIZED)
7359 fprintf (dump_file, "[uninit]");
7360 print_rtl_single (dump_file, node->loc);
7361 }
7362 }
7363 }
7364
7365 /* Print the information about variables from hash table VARS to dump file. */
7366
7367 static void
7368 dump_vars (variable_table_type *vars)
7369 {
7370 if (!vars->is_empty ())
7371 {
7372 fprintf (dump_file, "Variables:\n");
7373 vars->traverse <void *, dump_var_tracking_slot> (NULL);
7374 }
7375 }
7376
7377 /* Print the dataflow set SET to dump file. */
7378
7379 static void
7380 dump_dataflow_set (dataflow_set *set)
7381 {
7382 int i;
7383
7384 fprintf (dump_file, "Stack adjustment: " HOST_WIDE_INT_PRINT_DEC "\n",
7385 set->stack_adjust);
7386 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
7387 {
7388 if (set->regs[i])
7389 {
7390 fprintf (dump_file, "Reg %d:", i);
7391 dump_attrs_list (set->regs[i]);
7392 }
7393 }
7394 dump_vars (shared_hash_htab (set->vars));
7395 fprintf (dump_file, "\n");
7396 }
7397
7398 /* Print the IN and OUT sets for each basic block to dump file. */
7399
7400 static void
7401 dump_dataflow_sets (void)
7402 {
7403 basic_block bb;
7404
7405 FOR_EACH_BB_FN (bb, cfun)
7406 {
7407 fprintf (dump_file, "\nBasic block %d:\n", bb->index);
7408 fprintf (dump_file, "IN:\n");
7409 dump_dataflow_set (&VTI (bb)->in);
7410 fprintf (dump_file, "OUT:\n");
7411 dump_dataflow_set (&VTI (bb)->out);
7412 }
7413 }
7414
7415 /* Return the variable for DV in dropped_values, inserting one if
7416 requested with INSERT. */
7417
7418 static inline variable *
7419 variable_from_dropped (decl_or_value dv, enum insert_option insert)
7420 {
7421 variable **slot;
7422 variable *empty_var;
7423 onepart_enum onepart;
7424
7425 slot = dropped_values->find_slot_with_hash (dv, dv_htab_hash (dv), insert);
7426
7427 if (!slot)
7428 return NULL;
7429
7430 if (*slot)
7431 return *slot;
7432
7433 gcc_checking_assert (insert == INSERT);
7434
7435 onepart = dv_onepart_p (dv);
7436
7437 gcc_checking_assert (onepart == ONEPART_VALUE || onepart == ONEPART_DEXPR);
7438
7439 empty_var = onepart_pool_allocate (onepart);
7440 empty_var->dv = dv;
7441 empty_var->refcount = 1;
7442 empty_var->n_var_parts = 0;
7443 empty_var->onepart = onepart;
7444 empty_var->in_changed_variables = false;
7445 empty_var->var_part[0].loc_chain = NULL;
7446 empty_var->var_part[0].cur_loc = NULL;
7447 VAR_LOC_1PAUX (empty_var) = NULL;
7448 set_dv_changed (dv, true);
7449
7450 *slot = empty_var;
7451
7452 return empty_var;
7453 }
7454
7455 /* Recover the one-part aux from dropped_values. */
7456
7457 static struct onepart_aux *
7458 recover_dropped_1paux (variable *var)
7459 {
7460 variable *dvar;
7461
7462 gcc_checking_assert (var->onepart);
7463
7464 if (VAR_LOC_1PAUX (var))
7465 return VAR_LOC_1PAUX (var);
7466
7467 if (var->onepart == ONEPART_VDECL)
7468 return NULL;
7469
7470 dvar = variable_from_dropped (var->dv, NO_INSERT);
7471
7472 if (!dvar)
7473 return NULL;
7474
7475 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (dvar);
7476 VAR_LOC_1PAUX (dvar) = NULL;
7477
7478 return VAR_LOC_1PAUX (var);
7479 }
7480
7481 /* Add variable VAR to the hash table of changed variables and
7482 if it has no locations delete it from SET's hash table. */
7483
7484 static void
7485 variable_was_changed (variable *var, dataflow_set *set)
7486 {
7487 hashval_t hash = dv_htab_hash (var->dv);
7488
7489 if (emit_notes)
7490 {
7491 variable **slot;
7492
7493 /* Remember this decl or VALUE has been added to changed_variables. */
7494 set_dv_changed (var->dv, true);
7495
7496 slot = changed_variables->find_slot_with_hash (var->dv, hash, INSERT);
7497
7498 if (*slot)
7499 {
7500 variable *old_var = *slot;
7501 gcc_assert (old_var->in_changed_variables);
7502 old_var->in_changed_variables = false;
7503 if (var != old_var && var->onepart)
7504 {
7505 /* Restore the auxiliary info from an empty variable
7506 previously created for changed_variables, so it is
7507 not lost. */
7508 gcc_checking_assert (!VAR_LOC_1PAUX (var));
7509 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (old_var);
7510 VAR_LOC_1PAUX (old_var) = NULL;
7511 }
7512 variable_htab_free (*slot);
7513 }
7514
7515 if (set && var->n_var_parts == 0)
7516 {
7517 onepart_enum onepart = var->onepart;
7518 variable *empty_var = NULL;
7519 variable **dslot = NULL;
7520
7521 if (onepart == ONEPART_VALUE || onepart == ONEPART_DEXPR)
7522 {
7523 dslot = dropped_values->find_slot_with_hash (var->dv,
7524 dv_htab_hash (var->dv),
7525 INSERT);
7526 empty_var = *dslot;
7527
7528 if (empty_var)
7529 {
7530 gcc_checking_assert (!empty_var->in_changed_variables);
7531 if (!VAR_LOC_1PAUX (var))
7532 {
7533 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (empty_var);
7534 VAR_LOC_1PAUX (empty_var) = NULL;
7535 }
7536 else
7537 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var));
7538 }
7539 }
7540
7541 if (!empty_var)
7542 {
7543 empty_var = onepart_pool_allocate (onepart);
7544 empty_var->dv = var->dv;
7545 empty_var->refcount = 1;
7546 empty_var->n_var_parts = 0;
7547 empty_var->onepart = onepart;
7548 if (dslot)
7549 {
7550 empty_var->refcount++;
7551 *dslot = empty_var;
7552 }
7553 }
7554 else
7555 empty_var->refcount++;
7556 empty_var->in_changed_variables = true;
7557 *slot = empty_var;
7558 if (onepart)
7559 {
7560 empty_var->var_part[0].loc_chain = NULL;
7561 empty_var->var_part[0].cur_loc = NULL;
7562 VAR_LOC_1PAUX (empty_var) = VAR_LOC_1PAUX (var);
7563 VAR_LOC_1PAUX (var) = NULL;
7564 }
7565 goto drop_var;
7566 }
7567 else
7568 {
7569 if (var->onepart && !VAR_LOC_1PAUX (var))
7570 recover_dropped_1paux (var);
7571 var->refcount++;
7572 var->in_changed_variables = true;
7573 *slot = var;
7574 }
7575 }
7576 else
7577 {
7578 gcc_assert (set);
7579 if (var->n_var_parts == 0)
7580 {
7581 variable **slot;
7582
7583 drop_var:
7584 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
7585 if (slot)
7586 {
7587 if (shared_hash_shared (set->vars))
7588 slot = shared_hash_find_slot_unshare (&set->vars, var->dv,
7589 NO_INSERT);
7590 shared_hash_htab (set->vars)->clear_slot (slot);
7591 }
7592 }
7593 }
7594 }
7595
7596 /* Look for the index in VAR->var_part corresponding to OFFSET.
7597 Return -1 if not found. If INSERTION_POINT is non-NULL, the
7598 referenced int will be set to the index that the part has or should
7599 have, if it should be inserted. */
7600
7601 static inline int
7602 find_variable_location_part (variable *var, HOST_WIDE_INT offset,
7603 int *insertion_point)
7604 {
7605 int pos, low, high;
7606
7607 if (var->onepart)
7608 {
7609 if (offset != 0)
7610 return -1;
7611
7612 if (insertion_point)
7613 *insertion_point = 0;
7614
7615 return var->n_var_parts - 1;
7616 }
7617
7618 /* Find the location part. */
7619 low = 0;
7620 high = var->n_var_parts;
7621 while (low != high)
7622 {
7623 pos = (low + high) / 2;
7624 if (VAR_PART_OFFSET (var, pos) < offset)
7625 low = pos + 1;
7626 else
7627 high = pos;
7628 }
7629 pos = low;
7630
7631 if (insertion_point)
7632 *insertion_point = pos;
7633
7634 if (pos < var->n_var_parts && VAR_PART_OFFSET (var, pos) == offset)
7635 return pos;
7636
7637 return -1;
7638 }
7639
7640 static variable **
7641 set_slot_part (dataflow_set *set, rtx loc, variable **slot,
7642 decl_or_value dv, HOST_WIDE_INT offset,
7643 enum var_init_status initialized, rtx set_src)
7644 {
7645 int pos;
7646 location_chain *node, *next;
7647 location_chain **nextp;
7648 variable *var;
7649 onepart_enum onepart;
7650
7651 var = *slot;
7652
7653 if (var)
7654 onepart = var->onepart;
7655 else
7656 onepart = dv_onepart_p (dv);
7657
7658 gcc_checking_assert (offset == 0 || !onepart);
7659 gcc_checking_assert (loc != dv_as_opaque (dv));
7660
7661 if (! flag_var_tracking_uninit)
7662 initialized = VAR_INIT_STATUS_INITIALIZED;
7663
7664 if (!var)
7665 {
7666 /* Create new variable information. */
7667 var = onepart_pool_allocate (onepart);
7668 var->dv = dv;
7669 var->refcount = 1;
7670 var->n_var_parts = 1;
7671 var->onepart = onepart;
7672 var->in_changed_variables = false;
7673 if (var->onepart)
7674 VAR_LOC_1PAUX (var) = NULL;
7675 else
7676 VAR_PART_OFFSET (var, 0) = offset;
7677 var->var_part[0].loc_chain = NULL;
7678 var->var_part[0].cur_loc = NULL;
7679 *slot = var;
7680 pos = 0;
7681 nextp = &var->var_part[0].loc_chain;
7682 }
7683 else if (onepart)
7684 {
7685 int r = -1, c = 0;
7686
7687 gcc_assert (dv_as_opaque (var->dv) == dv_as_opaque (dv));
7688
7689 pos = 0;
7690
7691 if (GET_CODE (loc) == VALUE)
7692 {
7693 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7694 nextp = &node->next)
7695 if (GET_CODE (node->loc) == VALUE)
7696 {
7697 if (node->loc == loc)
7698 {
7699 r = 0;
7700 break;
7701 }
7702 if (canon_value_cmp (node->loc, loc))
7703 c++;
7704 else
7705 {
7706 r = 1;
7707 break;
7708 }
7709 }
7710 else if (REG_P (node->loc) || MEM_P (node->loc))
7711 c++;
7712 else
7713 {
7714 r = 1;
7715 break;
7716 }
7717 }
7718 else if (REG_P (loc))
7719 {
7720 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7721 nextp = &node->next)
7722 if (REG_P (node->loc))
7723 {
7724 if (REGNO (node->loc) < REGNO (loc))
7725 c++;
7726 else
7727 {
7728 if (REGNO (node->loc) == REGNO (loc))
7729 r = 0;
7730 else
7731 r = 1;
7732 break;
7733 }
7734 }
7735 else
7736 {
7737 r = 1;
7738 break;
7739 }
7740 }
7741 else if (MEM_P (loc))
7742 {
7743 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7744 nextp = &node->next)
7745 if (REG_P (node->loc))
7746 c++;
7747 else if (MEM_P (node->loc))
7748 {
7749 if ((r = loc_cmp (XEXP (node->loc, 0), XEXP (loc, 0))) >= 0)
7750 break;
7751 else
7752 c++;
7753 }
7754 else
7755 {
7756 r = 1;
7757 break;
7758 }
7759 }
7760 else
7761 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7762 nextp = &node->next)
7763 if ((r = loc_cmp (node->loc, loc)) >= 0)
7764 break;
7765 else
7766 c++;
7767
7768 if (r == 0)
7769 return slot;
7770
7771 if (shared_var_p (var, set->vars))
7772 {
7773 slot = unshare_variable (set, slot, var, initialized);
7774 var = *slot;
7775 for (nextp = &var->var_part[0].loc_chain; c;
7776 nextp = &(*nextp)->next)
7777 c--;
7778 gcc_assert ((!node && !*nextp) || node->loc == (*nextp)->loc);
7779 }
7780 }
7781 else
7782 {
7783 int inspos = 0;
7784
7785 gcc_assert (dv_as_decl (var->dv) == dv_as_decl (dv));
7786
7787 pos = find_variable_location_part (var, offset, &inspos);
7788
7789 if (pos >= 0)
7790 {
7791 node = var->var_part[pos].loc_chain;
7792
7793 if (node
7794 && ((REG_P (node->loc) && REG_P (loc)
7795 && REGNO (node->loc) == REGNO (loc))
7796 || rtx_equal_p (node->loc, loc)))
7797 {
7798 /* LOC is in the beginning of the chain so we have nothing
7799 to do. */
7800 if (node->init < initialized)
7801 node->init = initialized;
7802 if (set_src != NULL)
7803 node->set_src = set_src;
7804
7805 return slot;
7806 }
7807 else
7808 {
7809 /* We have to make a copy of a shared variable. */
7810 if (shared_var_p (var, set->vars))
7811 {
7812 slot = unshare_variable (set, slot, var, initialized);
7813 var = *slot;
7814 }
7815 }
7816 }
7817 else
7818 {
7819 /* We have not found the location part, new one will be created. */
7820
7821 /* We have to make a copy of the shared variable. */
7822 if (shared_var_p (var, set->vars))
7823 {
7824 slot = unshare_variable (set, slot, var, initialized);
7825 var = *slot;
7826 }
7827
7828 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
7829 thus there are at most MAX_VAR_PARTS different offsets. */
7830 gcc_assert (var->n_var_parts < MAX_VAR_PARTS
7831 && (!var->n_var_parts || !onepart));
7832
7833 /* We have to move the elements of array starting at index
7834 inspos to the next position. */
7835 for (pos = var->n_var_parts; pos > inspos; pos--)
7836 var->var_part[pos] = var->var_part[pos - 1];
7837
7838 var->n_var_parts++;
7839 gcc_checking_assert (!onepart);
7840 VAR_PART_OFFSET (var, pos) = offset;
7841 var->var_part[pos].loc_chain = NULL;
7842 var->var_part[pos].cur_loc = NULL;
7843 }
7844
7845 /* Delete the location from the list. */
7846 nextp = &var->var_part[pos].loc_chain;
7847 for (node = var->var_part[pos].loc_chain; node; node = next)
7848 {
7849 next = node->next;
7850 if ((REG_P (node->loc) && REG_P (loc)
7851 && REGNO (node->loc) == REGNO (loc))
7852 || rtx_equal_p (node->loc, loc))
7853 {
7854 /* Save these values, to assign to the new node, before
7855 deleting this one. */
7856 if (node->init > initialized)
7857 initialized = node->init;
7858 if (node->set_src != NULL && set_src == NULL)
7859 set_src = node->set_src;
7860 if (var->var_part[pos].cur_loc == node->loc)
7861 var->var_part[pos].cur_loc = NULL;
7862 delete node;
7863 *nextp = next;
7864 break;
7865 }
7866 else
7867 nextp = &node->next;
7868 }
7869
7870 nextp = &var->var_part[pos].loc_chain;
7871 }
7872
7873 /* Add the location to the beginning. */
7874 node = new location_chain;
7875 node->loc = loc;
7876 node->init = initialized;
7877 node->set_src = set_src;
7878 node->next = *nextp;
7879 *nextp = node;
7880
7881 /* If no location was emitted do so. */
7882 if (var->var_part[pos].cur_loc == NULL)
7883 variable_was_changed (var, set);
7884
7885 return slot;
7886 }
7887
7888 /* Set the part of variable's location in the dataflow set SET. The
7889 variable part is specified by variable's declaration in DV and
7890 offset OFFSET and the part's location by LOC. IOPT should be
7891 NO_INSERT if the variable is known to be in SET already and the
7892 variable hash table must not be resized, and INSERT otherwise. */
7893
7894 static void
7895 set_variable_part (dataflow_set *set, rtx loc,
7896 decl_or_value dv, HOST_WIDE_INT offset,
7897 enum var_init_status initialized, rtx set_src,
7898 enum insert_option iopt)
7899 {
7900 variable **slot;
7901
7902 if (iopt == NO_INSERT)
7903 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7904 else
7905 {
7906 slot = shared_hash_find_slot (set->vars, dv);
7907 if (!slot)
7908 slot = shared_hash_find_slot_unshare (&set->vars, dv, iopt);
7909 }
7910 set_slot_part (set, loc, slot, dv, offset, initialized, set_src);
7911 }
7912
7913 /* Remove all recorded register locations for the given variable part
7914 from dataflow set SET, except for those that are identical to loc.
7915 The variable part is specified by variable's declaration or value
7916 DV and offset OFFSET. */
7917
7918 static variable **
7919 clobber_slot_part (dataflow_set *set, rtx loc, variable **slot,
7920 HOST_WIDE_INT offset, rtx set_src)
7921 {
7922 variable *var = *slot;
7923 int pos = find_variable_location_part (var, offset, NULL);
7924
7925 if (pos >= 0)
7926 {
7927 location_chain *node, *next;
7928
7929 /* Remove the register locations from the dataflow set. */
7930 next = var->var_part[pos].loc_chain;
7931 for (node = next; node; node = next)
7932 {
7933 next = node->next;
7934 if (node->loc != loc
7935 && (!flag_var_tracking_uninit
7936 || !set_src
7937 || MEM_P (set_src)
7938 || !rtx_equal_p (set_src, node->set_src)))
7939 {
7940 if (REG_P (node->loc))
7941 {
7942 attrs *anode, *anext;
7943 attrs **anextp;
7944
7945 /* Remove the variable part from the register's
7946 list, but preserve any other variable parts
7947 that might be regarded as live in that same
7948 register. */
7949 anextp = &set->regs[REGNO (node->loc)];
7950 for (anode = *anextp; anode; anode = anext)
7951 {
7952 anext = anode->next;
7953 if (dv_as_opaque (anode->dv) == dv_as_opaque (var->dv)
7954 && anode->offset == offset)
7955 {
7956 delete anode;
7957 *anextp = anext;
7958 }
7959 else
7960 anextp = &anode->next;
7961 }
7962 }
7963
7964 slot = delete_slot_part (set, node->loc, slot, offset);
7965 }
7966 }
7967 }
7968
7969 return slot;
7970 }
7971
7972 /* Remove all recorded register locations for the given variable part
7973 from dataflow set SET, except for those that are identical to loc.
7974 The variable part is specified by variable's declaration or value
7975 DV and offset OFFSET. */
7976
7977 static void
7978 clobber_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
7979 HOST_WIDE_INT offset, rtx set_src)
7980 {
7981 variable **slot;
7982
7983 if (!dv_as_opaque (dv)
7984 || (!dv_is_value_p (dv) && ! DECL_P (dv_as_decl (dv))))
7985 return;
7986
7987 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7988 if (!slot)
7989 return;
7990
7991 clobber_slot_part (set, loc, slot, offset, set_src);
7992 }
7993
7994 /* Delete the part of variable's location from dataflow set SET. The
7995 variable part is specified by its SET->vars slot SLOT and offset
7996 OFFSET and the part's location by LOC. */
7997
7998 static variable **
7999 delete_slot_part (dataflow_set *set, rtx loc, variable **slot,
8000 HOST_WIDE_INT offset)
8001 {
8002 variable *var = *slot;
8003 int pos = find_variable_location_part (var, offset, NULL);
8004
8005 if (pos >= 0)
8006 {
8007 location_chain *node, *next;
8008 location_chain **nextp;
8009 bool changed;
8010 rtx cur_loc;
8011
8012 if (shared_var_p (var, set->vars))
8013 {
8014 /* If the variable contains the location part we have to
8015 make a copy of the variable. */
8016 for (node = var->var_part[pos].loc_chain; node;
8017 node = node->next)
8018 {
8019 if ((REG_P (node->loc) && REG_P (loc)
8020 && REGNO (node->loc) == REGNO (loc))
8021 || rtx_equal_p (node->loc, loc))
8022 {
8023 slot = unshare_variable (set, slot, var,
8024 VAR_INIT_STATUS_UNKNOWN);
8025 var = *slot;
8026 break;
8027 }
8028 }
8029 }
8030
8031 if (pos == 0 && var->onepart && VAR_LOC_1PAUX (var))
8032 cur_loc = VAR_LOC_FROM (var);
8033 else
8034 cur_loc = var->var_part[pos].cur_loc;
8035
8036 /* Delete the location part. */
8037 changed = false;
8038 nextp = &var->var_part[pos].loc_chain;
8039 for (node = *nextp; node; node = next)
8040 {
8041 next = node->next;
8042 if ((REG_P (node->loc) && REG_P (loc)
8043 && REGNO (node->loc) == REGNO (loc))
8044 || rtx_equal_p (node->loc, loc))
8045 {
8046 /* If we have deleted the location which was last emitted
8047 we have to emit new location so add the variable to set
8048 of changed variables. */
8049 if (cur_loc == node->loc)
8050 {
8051 changed = true;
8052 var->var_part[pos].cur_loc = NULL;
8053 if (pos == 0 && var->onepart && VAR_LOC_1PAUX (var))
8054 VAR_LOC_FROM (var) = NULL;
8055 }
8056 delete node;
8057 *nextp = next;
8058 break;
8059 }
8060 else
8061 nextp = &node->next;
8062 }
8063
8064 if (var->var_part[pos].loc_chain == NULL)
8065 {
8066 changed = true;
8067 var->n_var_parts--;
8068 while (pos < var->n_var_parts)
8069 {
8070 var->var_part[pos] = var->var_part[pos + 1];
8071 pos++;
8072 }
8073 }
8074 if (changed)
8075 variable_was_changed (var, set);
8076 }
8077
8078 return slot;
8079 }
8080
8081 /* Delete the part of variable's location from dataflow set SET. The
8082 variable part is specified by variable's declaration or value DV
8083 and offset OFFSET and the part's location by LOC. */
8084
8085 static void
8086 delete_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
8087 HOST_WIDE_INT offset)
8088 {
8089 variable **slot = shared_hash_find_slot_noinsert (set->vars, dv);
8090 if (!slot)
8091 return;
8092
8093 delete_slot_part (set, loc, slot, offset);
8094 }
8095
8096
8097 /* Structure for passing some other parameters to function
8098 vt_expand_loc_callback. */
8099 class expand_loc_callback_data
8100 {
8101 public:
8102 /* The variables and values active at this point. */
8103 variable_table_type *vars;
8104
8105 /* Stack of values and debug_exprs under expansion, and their
8106 children. */
8107 auto_vec<rtx, 4> expanding;
8108
8109 /* Stack of values and debug_exprs whose expansion hit recursion
8110 cycles. They will have VALUE_RECURSED_INTO marked when added to
8111 this list. This flag will be cleared if any of its dependencies
8112 resolves to a valid location. So, if the flag remains set at the
8113 end of the search, we know no valid location for this one can
8114 possibly exist. */
8115 auto_vec<rtx, 4> pending;
8116
8117 /* The maximum depth among the sub-expressions under expansion.
8118 Zero indicates no expansion so far. */
8119 expand_depth depth;
8120 };
8121
8122 /* Allocate the one-part auxiliary data structure for VAR, with enough
8123 room for COUNT dependencies. */
8124
8125 static void
8126 loc_exp_dep_alloc (variable *var, int count)
8127 {
8128 size_t allocsize;
8129
8130 gcc_checking_assert (var->onepart);
8131
8132 /* We can be called with COUNT == 0 to allocate the data structure
8133 without any dependencies, e.g. for the backlinks only. However,
8134 if we are specifying a COUNT, then the dependency list must have
8135 been emptied before. It would be possible to adjust pointers or
8136 force it empty here, but this is better done at an earlier point
8137 in the algorithm, so we instead leave an assertion to catch
8138 errors. */
8139 gcc_checking_assert (!count
8140 || VAR_LOC_DEP_VEC (var) == NULL
8141 || VAR_LOC_DEP_VEC (var)->is_empty ());
8142
8143 if (VAR_LOC_1PAUX (var) && VAR_LOC_DEP_VEC (var)->space (count))
8144 return;
8145
8146 allocsize = offsetof (struct onepart_aux, deps)
8147 + deps_vec::embedded_size (count);
8148
8149 if (VAR_LOC_1PAUX (var))
8150 {
8151 VAR_LOC_1PAUX (var) = XRESIZEVAR (struct onepart_aux,
8152 VAR_LOC_1PAUX (var), allocsize);
8153 /* If the reallocation moves the onepaux structure, the
8154 back-pointer to BACKLINKS in the first list member will still
8155 point to its old location. Adjust it. */
8156 if (VAR_LOC_DEP_LST (var))
8157 VAR_LOC_DEP_LST (var)->pprev = VAR_LOC_DEP_LSTP (var);
8158 }
8159 else
8160 {
8161 VAR_LOC_1PAUX (var) = XNEWVAR (struct onepart_aux, allocsize);
8162 *VAR_LOC_DEP_LSTP (var) = NULL;
8163 VAR_LOC_FROM (var) = NULL;
8164 VAR_LOC_DEPTH (var).complexity = 0;
8165 VAR_LOC_DEPTH (var).entryvals = 0;
8166 }
8167 VAR_LOC_DEP_VEC (var)->embedded_init (count);
8168 }
8169
8170 /* Remove all entries from the vector of active dependencies of VAR,
8171 removing them from the back-links lists too. */
8172
8173 static void
8174 loc_exp_dep_clear (variable *var)
8175 {
8176 while (VAR_LOC_DEP_VEC (var) && !VAR_LOC_DEP_VEC (var)->is_empty ())
8177 {
8178 loc_exp_dep *led = &VAR_LOC_DEP_VEC (var)->last ();
8179 if (led->next)
8180 led->next->pprev = led->pprev;
8181 if (led->pprev)
8182 *led->pprev = led->next;
8183 VAR_LOC_DEP_VEC (var)->pop ();
8184 }
8185 }
8186
8187 /* Insert an active dependency from VAR on X to the vector of
8188 dependencies, and add the corresponding back-link to X's list of
8189 back-links in VARS. */
8190
8191 static void
8192 loc_exp_insert_dep (variable *var, rtx x, variable_table_type *vars)
8193 {
8194 decl_or_value dv;
8195 variable *xvar;
8196 loc_exp_dep *led;
8197
8198 dv = dv_from_rtx (x);
8199
8200 /* ??? Build a vector of variables parallel to EXPANDING, to avoid
8201 an additional look up? */
8202 xvar = vars->find_with_hash (dv, dv_htab_hash (dv));
8203
8204 if (!xvar)
8205 {
8206 xvar = variable_from_dropped (dv, NO_INSERT);
8207 gcc_checking_assert (xvar);
8208 }
8209
8210 /* No point in adding the same backlink more than once. This may
8211 arise if say the same value appears in two complex expressions in
8212 the same loc_list, or even more than once in a single
8213 expression. */
8214 if (VAR_LOC_DEP_LST (xvar) && VAR_LOC_DEP_LST (xvar)->dv == var->dv)
8215 return;
8216
8217 if (var->onepart == NOT_ONEPART)
8218 led = new loc_exp_dep;
8219 else
8220 {
8221 loc_exp_dep empty;
8222 memset (&empty, 0, sizeof (empty));
8223 VAR_LOC_DEP_VEC (var)->quick_push (empty);
8224 led = &VAR_LOC_DEP_VEC (var)->last ();
8225 }
8226 led->dv = var->dv;
8227 led->value = x;
8228
8229 loc_exp_dep_alloc (xvar, 0);
8230 led->pprev = VAR_LOC_DEP_LSTP (xvar);
8231 led->next = *led->pprev;
8232 if (led->next)
8233 led->next->pprev = &led->next;
8234 *led->pprev = led;
8235 }
8236
8237 /* Create active dependencies of VAR on COUNT values starting at
8238 VALUE, and corresponding back-links to the entries in VARS. Return
8239 true if we found any pending-recursion results. */
8240
8241 static bool
8242 loc_exp_dep_set (variable *var, rtx result, rtx *value, int count,
8243 variable_table_type *vars)
8244 {
8245 bool pending_recursion = false;
8246
8247 gcc_checking_assert (VAR_LOC_DEP_VEC (var) == NULL
8248 || VAR_LOC_DEP_VEC (var)->is_empty ());
8249
8250 /* Set up all dependencies from last_child (as set up at the end of
8251 the loop above) to the end. */
8252 loc_exp_dep_alloc (var, count);
8253
8254 while (count--)
8255 {
8256 rtx x = *value++;
8257
8258 if (!pending_recursion)
8259 pending_recursion = !result && VALUE_RECURSED_INTO (x);
8260
8261 loc_exp_insert_dep (var, x, vars);
8262 }
8263
8264 return pending_recursion;
8265 }
8266
8267 /* Notify the back-links of IVAR that are pending recursion that we
8268 have found a non-NIL value for it, so they are cleared for another
8269 attempt to compute a current location. */
8270
8271 static void
8272 notify_dependents_of_resolved_value (variable *ivar, variable_table_type *vars)
8273 {
8274 loc_exp_dep *led, *next;
8275
8276 for (led = VAR_LOC_DEP_LST (ivar); led; led = next)
8277 {
8278 decl_or_value dv = led->dv;
8279 variable *var;
8280
8281 next = led->next;
8282
8283 if (dv_is_value_p (dv))
8284 {
8285 rtx value = dv_as_value (dv);
8286
8287 /* If we have already resolved it, leave it alone. */
8288 if (!VALUE_RECURSED_INTO (value))
8289 continue;
8290
8291 /* Check that VALUE_RECURSED_INTO, true from the test above,
8292 implies NO_LOC_P. */
8293 gcc_checking_assert (NO_LOC_P (value));
8294
8295 /* We won't notify variables that are being expanded,
8296 because their dependency list is cleared before
8297 recursing. */
8298 NO_LOC_P (value) = false;
8299 VALUE_RECURSED_INTO (value) = false;
8300
8301 gcc_checking_assert (dv_changed_p (dv));
8302 }
8303 else
8304 {
8305 gcc_checking_assert (dv_onepart_p (dv) != NOT_ONEPART);
8306 if (!dv_changed_p (dv))
8307 continue;
8308 }
8309
8310 var = vars->find_with_hash (dv, dv_htab_hash (dv));
8311
8312 if (!var)
8313 var = variable_from_dropped (dv, NO_INSERT);
8314
8315 if (var)
8316 notify_dependents_of_resolved_value (var, vars);
8317
8318 if (next)
8319 next->pprev = led->pprev;
8320 if (led->pprev)
8321 *led->pprev = next;
8322 led->next = NULL;
8323 led->pprev = NULL;
8324 }
8325 }
8326
8327 static rtx vt_expand_loc_callback (rtx x, bitmap regs,
8328 int max_depth, void *data);
8329
8330 /* Return the combined depth, when one sub-expression evaluated to
8331 BEST_DEPTH and the previous known depth was SAVED_DEPTH. */
8332
8333 static inline expand_depth
8334 update_depth (expand_depth saved_depth, expand_depth best_depth)
8335 {
8336 /* If we didn't find anything, stick with what we had. */
8337 if (!best_depth.complexity)
8338 return saved_depth;
8339
8340 /* If we found hadn't found anything, use the depth of the current
8341 expression. Do NOT add one extra level, we want to compute the
8342 maximum depth among sub-expressions. We'll increment it later,
8343 if appropriate. */
8344 if (!saved_depth.complexity)
8345 return best_depth;
8346
8347 /* Combine the entryval count so that regardless of which one we
8348 return, the entryval count is accurate. */
8349 best_depth.entryvals = saved_depth.entryvals
8350 = best_depth.entryvals + saved_depth.entryvals;
8351
8352 if (saved_depth.complexity < best_depth.complexity)
8353 return best_depth;
8354 else
8355 return saved_depth;
8356 }
8357
8358 /* Expand VAR to a location RTX, updating its cur_loc. Use REGS and
8359 DATA for cselib expand callback. If PENDRECP is given, indicate in
8360 it whether any sub-expression couldn't be fully evaluated because
8361 it is pending recursion resolution. */
8362
8363 static inline rtx
8364 vt_expand_var_loc_chain (variable *var, bitmap regs, void *data,
8365 bool *pendrecp)
8366 {
8367 class expand_loc_callback_data *elcd
8368 = (class expand_loc_callback_data *) data;
8369 location_chain *loc, *next;
8370 rtx result = NULL;
8371 int first_child, result_first_child, last_child;
8372 bool pending_recursion;
8373 rtx loc_from = NULL;
8374 struct elt_loc_list *cloc = NULL;
8375 expand_depth depth = { 0, 0 }, saved_depth = elcd->depth;
8376 int wanted_entryvals, found_entryvals = 0;
8377
8378 /* Clear all backlinks pointing at this, so that we're not notified
8379 while we're active. */
8380 loc_exp_dep_clear (var);
8381
8382 retry:
8383 if (var->onepart == ONEPART_VALUE)
8384 {
8385 cselib_val *val = CSELIB_VAL_PTR (dv_as_value (var->dv));
8386
8387 gcc_checking_assert (cselib_preserved_value_p (val));
8388
8389 cloc = val->locs;
8390 }
8391
8392 first_child = result_first_child = last_child
8393 = elcd->expanding.length ();
8394
8395 wanted_entryvals = found_entryvals;
8396
8397 /* Attempt to expand each available location in turn. */
8398 for (next = loc = var->n_var_parts ? var->var_part[0].loc_chain : NULL;
8399 loc || cloc; loc = next)
8400 {
8401 result_first_child = last_child;
8402
8403 if (!loc)
8404 {
8405 loc_from = cloc->loc;
8406 next = loc;
8407 cloc = cloc->next;
8408 if (unsuitable_loc (loc_from))
8409 continue;
8410 }
8411 else
8412 {
8413 loc_from = loc->loc;
8414 next = loc->next;
8415 }
8416
8417 gcc_checking_assert (!unsuitable_loc (loc_from));
8418
8419 elcd->depth.complexity = elcd->depth.entryvals = 0;
8420 result = cselib_expand_value_rtx_cb (loc_from, regs, EXPR_DEPTH,
8421 vt_expand_loc_callback, data);
8422 last_child = elcd->expanding.length ();
8423
8424 if (result)
8425 {
8426 depth = elcd->depth;
8427
8428 gcc_checking_assert (depth.complexity
8429 || result_first_child == last_child);
8430
8431 if (last_child - result_first_child != 1)
8432 {
8433 if (!depth.complexity && GET_CODE (result) == ENTRY_VALUE)
8434 depth.entryvals++;
8435 depth.complexity++;
8436 }
8437
8438 if (depth.complexity <= EXPR_USE_DEPTH)
8439 {
8440 if (depth.entryvals <= wanted_entryvals)
8441 break;
8442 else if (!found_entryvals || depth.entryvals < found_entryvals)
8443 found_entryvals = depth.entryvals;
8444 }
8445
8446 result = NULL;
8447 }
8448
8449 /* Set it up in case we leave the loop. */
8450 depth.complexity = depth.entryvals = 0;
8451 loc_from = NULL;
8452 result_first_child = first_child;
8453 }
8454
8455 if (!loc_from && wanted_entryvals < found_entryvals)
8456 {
8457 /* We found entries with ENTRY_VALUEs and skipped them. Since
8458 we could not find any expansions without ENTRY_VALUEs, but we
8459 found at least one with them, go back and get an entry with
8460 the minimum number ENTRY_VALUE count that we found. We could
8461 avoid looping, but since each sub-loc is already resolved,
8462 the re-expansion should be trivial. ??? Should we record all
8463 attempted locs as dependencies, so that we retry the
8464 expansion should any of them change, in the hope it can give
8465 us a new entry without an ENTRY_VALUE? */
8466 elcd->expanding.truncate (first_child);
8467 goto retry;
8468 }
8469
8470 /* Register all encountered dependencies as active. */
8471 pending_recursion = loc_exp_dep_set
8472 (var, result, elcd->expanding.address () + result_first_child,
8473 last_child - result_first_child, elcd->vars);
8474
8475 elcd->expanding.truncate (first_child);
8476
8477 /* Record where the expansion came from. */
8478 gcc_checking_assert (!result || !pending_recursion);
8479 VAR_LOC_FROM (var) = loc_from;
8480 VAR_LOC_DEPTH (var) = depth;
8481
8482 gcc_checking_assert (!depth.complexity == !result);
8483
8484 elcd->depth = update_depth (saved_depth, depth);
8485
8486 /* Indicate whether any of the dependencies are pending recursion
8487 resolution. */
8488 if (pendrecp)
8489 *pendrecp = pending_recursion;
8490
8491 if (!pendrecp || !pending_recursion)
8492 var->var_part[0].cur_loc = result;
8493
8494 return result;
8495 }
8496
8497 /* Callback for cselib_expand_value, that looks for expressions
8498 holding the value in the var-tracking hash tables. Return X for
8499 standard processing, anything else is to be used as-is. */
8500
8501 static rtx
8502 vt_expand_loc_callback (rtx x, bitmap regs,
8503 int max_depth ATTRIBUTE_UNUSED,
8504 void *data)
8505 {
8506 class expand_loc_callback_data *elcd
8507 = (class expand_loc_callback_data *) data;
8508 decl_or_value dv;
8509 variable *var;
8510 rtx result, subreg;
8511 bool pending_recursion = false;
8512 bool from_empty = false;
8513
8514 switch (GET_CODE (x))
8515 {
8516 case SUBREG:
8517 subreg = cselib_expand_value_rtx_cb (SUBREG_REG (x), regs,
8518 EXPR_DEPTH,
8519 vt_expand_loc_callback, data);
8520
8521 if (!subreg)
8522 return NULL;
8523
8524 result = simplify_gen_subreg (GET_MODE (x), subreg,
8525 GET_MODE (SUBREG_REG (x)),
8526 SUBREG_BYTE (x));
8527
8528 /* Invalid SUBREGs are ok in debug info. ??? We could try
8529 alternate expansions for the VALUE as well. */
8530 if (!result && GET_MODE (subreg) != VOIDmode)
8531 result = gen_rtx_raw_SUBREG (GET_MODE (x), subreg, SUBREG_BYTE (x));
8532
8533 return result;
8534
8535 case DEBUG_EXPR:
8536 case VALUE:
8537 dv = dv_from_rtx (x);
8538 break;
8539
8540 default:
8541 return x;
8542 }
8543
8544 elcd->expanding.safe_push (x);
8545
8546 /* Check that VALUE_RECURSED_INTO implies NO_LOC_P. */
8547 gcc_checking_assert (!VALUE_RECURSED_INTO (x) || NO_LOC_P (x));
8548
8549 if (NO_LOC_P (x))
8550 {
8551 gcc_checking_assert (VALUE_RECURSED_INTO (x) || !dv_changed_p (dv));
8552 return NULL;
8553 }
8554
8555 var = elcd->vars->find_with_hash (dv, dv_htab_hash (dv));
8556
8557 if (!var)
8558 {
8559 from_empty = true;
8560 var = variable_from_dropped (dv, INSERT);
8561 }
8562
8563 gcc_checking_assert (var);
8564
8565 if (!dv_changed_p (dv))
8566 {
8567 gcc_checking_assert (!NO_LOC_P (x));
8568 gcc_checking_assert (var->var_part[0].cur_loc);
8569 gcc_checking_assert (VAR_LOC_1PAUX (var));
8570 gcc_checking_assert (VAR_LOC_1PAUX (var)->depth.complexity);
8571
8572 elcd->depth = update_depth (elcd->depth, VAR_LOC_1PAUX (var)->depth);
8573
8574 return var->var_part[0].cur_loc;
8575 }
8576
8577 VALUE_RECURSED_INTO (x) = true;
8578 /* This is tentative, but it makes some tests simpler. */
8579 NO_LOC_P (x) = true;
8580
8581 gcc_checking_assert (var->n_var_parts == 1 || from_empty);
8582
8583 result = vt_expand_var_loc_chain (var, regs, data, &pending_recursion);
8584
8585 if (pending_recursion)
8586 {
8587 gcc_checking_assert (!result);
8588 elcd->pending.safe_push (x);
8589 }
8590 else
8591 {
8592 NO_LOC_P (x) = !result;
8593 VALUE_RECURSED_INTO (x) = false;
8594 set_dv_changed (dv, false);
8595
8596 if (result)
8597 notify_dependents_of_resolved_value (var, elcd->vars);
8598 }
8599
8600 return result;
8601 }
8602
8603 /* While expanding variables, we may encounter recursion cycles
8604 because of mutual (possibly indirect) dependencies between two
8605 particular variables (or values), say A and B. If we're trying to
8606 expand A when we get to B, which in turn attempts to expand A, if
8607 we can't find any other expansion for B, we'll add B to this
8608 pending-recursion stack, and tentatively return NULL for its
8609 location. This tentative value will be used for any other
8610 occurrences of B, unless A gets some other location, in which case
8611 it will notify B that it is worth another try at computing a
8612 location for it, and it will use the location computed for A then.
8613 At the end of the expansion, the tentative NULL locations become
8614 final for all members of PENDING that didn't get a notification.
8615 This function performs this finalization of NULL locations. */
8616
8617 static void
8618 resolve_expansions_pending_recursion (vec<rtx, va_heap> *pending)
8619 {
8620 while (!pending->is_empty ())
8621 {
8622 rtx x = pending->pop ();
8623 decl_or_value dv;
8624
8625 if (!VALUE_RECURSED_INTO (x))
8626 continue;
8627
8628 gcc_checking_assert (NO_LOC_P (x));
8629 VALUE_RECURSED_INTO (x) = false;
8630 dv = dv_from_rtx (x);
8631 gcc_checking_assert (dv_changed_p (dv));
8632 set_dv_changed (dv, false);
8633 }
8634 }
8635
8636 /* Initialize expand_loc_callback_data D with variable hash table V.
8637 It must be a macro because of alloca (vec stack). */
8638 #define INIT_ELCD(d, v) \
8639 do \
8640 { \
8641 (d).vars = (v); \
8642 (d).depth.complexity = (d).depth.entryvals = 0; \
8643 } \
8644 while (0)
8645 /* Finalize expand_loc_callback_data D, resolved to location L. */
8646 #define FINI_ELCD(d, l) \
8647 do \
8648 { \
8649 resolve_expansions_pending_recursion (&(d).pending); \
8650 (d).pending.release (); \
8651 (d).expanding.release (); \
8652 \
8653 if ((l) && MEM_P (l)) \
8654 (l) = targetm.delegitimize_address (l); \
8655 } \
8656 while (0)
8657
8658 /* Expand VALUEs and DEBUG_EXPRs in LOC to a location, using the
8659 equivalences in VARS, updating their CUR_LOCs in the process. */
8660
8661 static rtx
8662 vt_expand_loc (rtx loc, variable_table_type *vars)
8663 {
8664 class expand_loc_callback_data data;
8665 rtx result;
8666
8667 if (!MAY_HAVE_DEBUG_BIND_INSNS)
8668 return loc;
8669
8670 INIT_ELCD (data, vars);
8671
8672 result = cselib_expand_value_rtx_cb (loc, scratch_regs, EXPR_DEPTH,
8673 vt_expand_loc_callback, &data);
8674
8675 FINI_ELCD (data, result);
8676
8677 return result;
8678 }
8679
8680 /* Expand the one-part VARiable to a location, using the equivalences
8681 in VARS, updating their CUR_LOCs in the process. */
8682
8683 static rtx
8684 vt_expand_1pvar (variable *var, variable_table_type *vars)
8685 {
8686 class expand_loc_callback_data data;
8687 rtx loc;
8688
8689 gcc_checking_assert (var->onepart && var->n_var_parts == 1);
8690
8691 if (!dv_changed_p (var->dv))
8692 return var->var_part[0].cur_loc;
8693
8694 INIT_ELCD (data, vars);
8695
8696 loc = vt_expand_var_loc_chain (var, scratch_regs, &data, NULL);
8697
8698 gcc_checking_assert (data.expanding.is_empty ());
8699
8700 FINI_ELCD (data, loc);
8701
8702 return loc;
8703 }
8704
8705 /* Emit the NOTE_INSN_VAR_LOCATION for variable *VARP. DATA contains
8706 additional parameters: WHERE specifies whether the note shall be emitted
8707 before or after instruction INSN. */
8708
8709 int
8710 emit_note_insn_var_location (variable **varp, emit_note_data *data)
8711 {
8712 variable *var = *varp;
8713 rtx_insn *insn = data->insn;
8714 enum emit_note_where where = data->where;
8715 variable_table_type *vars = data->vars;
8716 rtx_note *note;
8717 rtx note_vl;
8718 int i, j, n_var_parts;
8719 bool complete;
8720 enum var_init_status initialized = VAR_INIT_STATUS_UNINITIALIZED;
8721 HOST_WIDE_INT last_limit;
8722 HOST_WIDE_INT offsets[MAX_VAR_PARTS];
8723 rtx loc[MAX_VAR_PARTS];
8724 tree decl;
8725 location_chain *lc;
8726
8727 gcc_checking_assert (var->onepart == NOT_ONEPART
8728 || var->onepart == ONEPART_VDECL);
8729
8730 decl = dv_as_decl (var->dv);
8731
8732 complete = true;
8733 last_limit = 0;
8734 n_var_parts = 0;
8735 if (!var->onepart)
8736 for (i = 0; i < var->n_var_parts; i++)
8737 if (var->var_part[i].cur_loc == NULL && var->var_part[i].loc_chain)
8738 var->var_part[i].cur_loc = var->var_part[i].loc_chain->loc;
8739 for (i = 0; i < var->n_var_parts; i++)
8740 {
8741 machine_mode mode, wider_mode;
8742 rtx loc2;
8743 HOST_WIDE_INT offset, size, wider_size;
8744
8745 if (i == 0 && var->onepart)
8746 {
8747 gcc_checking_assert (var->n_var_parts == 1);
8748 offset = 0;
8749 initialized = VAR_INIT_STATUS_INITIALIZED;
8750 loc2 = vt_expand_1pvar (var, vars);
8751 }
8752 else
8753 {
8754 if (last_limit < VAR_PART_OFFSET (var, i))
8755 {
8756 complete = false;
8757 break;
8758 }
8759 else if (last_limit > VAR_PART_OFFSET (var, i))
8760 continue;
8761 offset = VAR_PART_OFFSET (var, i);
8762 loc2 = var->var_part[i].cur_loc;
8763 if (loc2 && GET_CODE (loc2) == MEM
8764 && GET_CODE (XEXP (loc2, 0)) == VALUE)
8765 {
8766 rtx depval = XEXP (loc2, 0);
8767
8768 loc2 = vt_expand_loc (loc2, vars);
8769
8770 if (loc2)
8771 loc_exp_insert_dep (var, depval, vars);
8772 }
8773 if (!loc2)
8774 {
8775 complete = false;
8776 continue;
8777 }
8778 gcc_checking_assert (GET_CODE (loc2) != VALUE);
8779 for (lc = var->var_part[i].loc_chain; lc; lc = lc->next)
8780 if (var->var_part[i].cur_loc == lc->loc)
8781 {
8782 initialized = lc->init;
8783 break;
8784 }
8785 gcc_assert (lc);
8786 }
8787
8788 offsets[n_var_parts] = offset;
8789 if (!loc2)
8790 {
8791 complete = false;
8792 continue;
8793 }
8794 loc[n_var_parts] = loc2;
8795 mode = GET_MODE (var->var_part[i].cur_loc);
8796 if (mode == VOIDmode && var->onepart)
8797 mode = DECL_MODE (decl);
8798 /* We ony track subparts of constant-sized objects, since at present
8799 there's no representation for polynomial pieces. */
8800 if (!GET_MODE_SIZE (mode).is_constant (&size))
8801 {
8802 complete = false;
8803 continue;
8804 }
8805 last_limit = offsets[n_var_parts] + size;
8806
8807 /* Attempt to merge adjacent registers or memory. */
8808 for (j = i + 1; j < var->n_var_parts; j++)
8809 if (last_limit <= VAR_PART_OFFSET (var, j))
8810 break;
8811 if (j < var->n_var_parts
8812 && GET_MODE_WIDER_MODE (mode).exists (&wider_mode)
8813 && GET_MODE_SIZE (wider_mode).is_constant (&wider_size)
8814 && var->var_part[j].cur_loc
8815 && mode == GET_MODE (var->var_part[j].cur_loc)
8816 && (REG_P (loc[n_var_parts]) || MEM_P (loc[n_var_parts]))
8817 && last_limit == (var->onepart ? 0 : VAR_PART_OFFSET (var, j))
8818 && (loc2 = vt_expand_loc (var->var_part[j].cur_loc, vars))
8819 && GET_CODE (loc[n_var_parts]) == GET_CODE (loc2))
8820 {
8821 rtx new_loc = NULL;
8822 poly_int64 offset2;
8823
8824 if (REG_P (loc[n_var_parts])
8825 && hard_regno_nregs (REGNO (loc[n_var_parts]), mode) * 2
8826 == hard_regno_nregs (REGNO (loc[n_var_parts]), wider_mode)
8827 && end_hard_regno (mode, REGNO (loc[n_var_parts]))
8828 == REGNO (loc2))
8829 {
8830 if (! WORDS_BIG_ENDIAN && ! BYTES_BIG_ENDIAN)
8831 new_loc = simplify_subreg (wider_mode, loc[n_var_parts],
8832 mode, 0);
8833 else if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
8834 new_loc = simplify_subreg (wider_mode, loc2, mode, 0);
8835 if (new_loc)
8836 {
8837 if (!REG_P (new_loc)
8838 || REGNO (new_loc) != REGNO (loc[n_var_parts]))
8839 new_loc = NULL;
8840 else
8841 REG_ATTRS (new_loc) = REG_ATTRS (loc[n_var_parts]);
8842 }
8843 }
8844 else if (MEM_P (loc[n_var_parts])
8845 && GET_CODE (XEXP (loc2, 0)) == PLUS
8846 && REG_P (XEXP (XEXP (loc2, 0), 0))
8847 && poly_int_rtx_p (XEXP (XEXP (loc2, 0), 1), &offset2))
8848 {
8849 poly_int64 end1 = size;
8850 rtx base1 = strip_offset_and_add (XEXP (loc[n_var_parts], 0),
8851 &end1);
8852 if (rtx_equal_p (base1, XEXP (XEXP (loc2, 0), 0))
8853 && known_eq (end1, offset2))
8854 new_loc = adjust_address_nv (loc[n_var_parts],
8855 wider_mode, 0);
8856 }
8857
8858 if (new_loc)
8859 {
8860 loc[n_var_parts] = new_loc;
8861 mode = wider_mode;
8862 last_limit = offsets[n_var_parts] + wider_size;
8863 i = j;
8864 }
8865 }
8866 ++n_var_parts;
8867 }
8868 poly_uint64 type_size_unit
8869 = tree_to_poly_uint64 (TYPE_SIZE_UNIT (TREE_TYPE (decl)));
8870 if (maybe_lt (poly_uint64 (last_limit), type_size_unit))
8871 complete = false;
8872
8873 if (! flag_var_tracking_uninit)
8874 initialized = VAR_INIT_STATUS_INITIALIZED;
8875
8876 note_vl = NULL_RTX;
8877 if (!complete)
8878 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, NULL_RTX, initialized);
8879 else if (n_var_parts == 1)
8880 {
8881 rtx expr_list;
8882
8883 if (offsets[0] || GET_CODE (loc[0]) == PARALLEL)
8884 expr_list = gen_rtx_EXPR_LIST (VOIDmode, loc[0], GEN_INT (offsets[0]));
8885 else
8886 expr_list = loc[0];
8887
8888 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, expr_list, initialized);
8889 }
8890 else if (n_var_parts)
8891 {
8892 rtx parallel;
8893
8894 for (i = 0; i < n_var_parts; i++)
8895 loc[i]
8896 = gen_rtx_EXPR_LIST (VOIDmode, loc[i], GEN_INT (offsets[i]));
8897
8898 parallel = gen_rtx_PARALLEL (VOIDmode,
8899 gen_rtvec_v (n_var_parts, loc));
8900 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl,
8901 parallel, initialized);
8902 }
8903
8904 if (where != EMIT_NOTE_BEFORE_INSN)
8905 {
8906 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
8907 if (where == EMIT_NOTE_AFTER_CALL_INSN)
8908 NOTE_DURING_CALL_P (note) = true;
8909 }
8910 else
8911 {
8912 /* Make sure that the call related notes come first. */
8913 while (NEXT_INSN (insn)
8914 && NOTE_P (insn)
8915 && NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
8916 && NOTE_DURING_CALL_P (insn))
8917 insn = NEXT_INSN (insn);
8918 if (NOTE_P (insn)
8919 && NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
8920 && NOTE_DURING_CALL_P (insn))
8921 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
8922 else
8923 note = emit_note_before (NOTE_INSN_VAR_LOCATION, insn);
8924 }
8925 NOTE_VAR_LOCATION (note) = note_vl;
8926
8927 set_dv_changed (var->dv, false);
8928 gcc_assert (var->in_changed_variables);
8929 var->in_changed_variables = false;
8930 changed_variables->clear_slot (varp);
8931
8932 /* Continue traversing the hash table. */
8933 return 1;
8934 }
8935
8936 /* While traversing changed_variables, push onto DATA (a stack of RTX
8937 values) entries that aren't user variables. */
8938
8939 int
8940 var_track_values_to_stack (variable **slot,
8941 vec<rtx, va_heap> *changed_values_stack)
8942 {
8943 variable *var = *slot;
8944
8945 if (var->onepart == ONEPART_VALUE)
8946 changed_values_stack->safe_push (dv_as_value (var->dv));
8947 else if (var->onepart == ONEPART_DEXPR)
8948 changed_values_stack->safe_push (DECL_RTL_KNOWN_SET (dv_as_decl (var->dv)));
8949
8950 return 1;
8951 }
8952
8953 /* Remove from changed_variables the entry whose DV corresponds to
8954 value or debug_expr VAL. */
8955 static void
8956 remove_value_from_changed_variables (rtx val)
8957 {
8958 decl_or_value dv = dv_from_rtx (val);
8959 variable **slot;
8960 variable *var;
8961
8962 slot = changed_variables->find_slot_with_hash (dv, dv_htab_hash (dv),
8963 NO_INSERT);
8964 var = *slot;
8965 var->in_changed_variables = false;
8966 changed_variables->clear_slot (slot);
8967 }
8968
8969 /* If VAL (a value or debug_expr) has backlinks to variables actively
8970 dependent on it in HTAB or in CHANGED_VARIABLES, mark them as
8971 changed, adding to CHANGED_VALUES_STACK any dependencies that may
8972 have dependencies of their own to notify. */
8973
8974 static void
8975 notify_dependents_of_changed_value (rtx val, variable_table_type *htab,
8976 vec<rtx, va_heap> *changed_values_stack)
8977 {
8978 variable **slot;
8979 variable *var;
8980 loc_exp_dep *led;
8981 decl_or_value dv = dv_from_rtx (val);
8982
8983 slot = changed_variables->find_slot_with_hash (dv, dv_htab_hash (dv),
8984 NO_INSERT);
8985 if (!slot)
8986 slot = htab->find_slot_with_hash (dv, dv_htab_hash (dv), NO_INSERT);
8987 if (!slot)
8988 slot = dropped_values->find_slot_with_hash (dv, dv_htab_hash (dv),
8989 NO_INSERT);
8990 var = *slot;
8991
8992 while ((led = VAR_LOC_DEP_LST (var)))
8993 {
8994 decl_or_value ldv = led->dv;
8995 variable *ivar;
8996
8997 /* Deactivate and remove the backlink, as it was “used up”. It
8998 makes no sense to attempt to notify the same entity again:
8999 either it will be recomputed and re-register an active
9000 dependency, or it will still have the changed mark. */
9001 if (led->next)
9002 led->next->pprev = led->pprev;
9003 if (led->pprev)
9004 *led->pprev = led->next;
9005 led->next = NULL;
9006 led->pprev = NULL;
9007
9008 if (dv_changed_p (ldv))
9009 continue;
9010
9011 switch (dv_onepart_p (ldv))
9012 {
9013 case ONEPART_VALUE:
9014 case ONEPART_DEXPR:
9015 set_dv_changed (ldv, true);
9016 changed_values_stack->safe_push (dv_as_rtx (ldv));
9017 break;
9018
9019 case ONEPART_VDECL:
9020 ivar = htab->find_with_hash (ldv, dv_htab_hash (ldv));
9021 gcc_checking_assert (!VAR_LOC_DEP_LST (ivar));
9022 variable_was_changed (ivar, NULL);
9023 break;
9024
9025 case NOT_ONEPART:
9026 delete led;
9027 ivar = htab->find_with_hash (ldv, dv_htab_hash (ldv));
9028 if (ivar)
9029 {
9030 int i = ivar->n_var_parts;
9031 while (i--)
9032 {
9033 rtx loc = ivar->var_part[i].cur_loc;
9034
9035 if (loc && GET_CODE (loc) == MEM
9036 && XEXP (loc, 0) == val)
9037 {
9038 variable_was_changed (ivar, NULL);
9039 break;
9040 }
9041 }
9042 }
9043 break;
9044
9045 default:
9046 gcc_unreachable ();
9047 }
9048 }
9049 }
9050
9051 /* Take out of changed_variables any entries that don't refer to use
9052 variables. Back-propagate change notifications from values and
9053 debug_exprs to their active dependencies in HTAB or in
9054 CHANGED_VARIABLES. */
9055
9056 static void
9057 process_changed_values (variable_table_type *htab)
9058 {
9059 int i, n;
9060 rtx val;
9061 auto_vec<rtx, 20> changed_values_stack;
9062
9063 /* Move values from changed_variables to changed_values_stack. */
9064 changed_variables
9065 ->traverse <vec<rtx, va_heap>*, var_track_values_to_stack>
9066 (&changed_values_stack);
9067
9068 /* Back-propagate change notifications in values while popping
9069 them from the stack. */
9070 for (n = i = changed_values_stack.length ();
9071 i > 0; i = changed_values_stack.length ())
9072 {
9073 val = changed_values_stack.pop ();
9074 notify_dependents_of_changed_value (val, htab, &changed_values_stack);
9075
9076 /* This condition will hold when visiting each of the entries
9077 originally in changed_variables. We can't remove them
9078 earlier because this could drop the backlinks before we got a
9079 chance to use them. */
9080 if (i == n)
9081 {
9082 remove_value_from_changed_variables (val);
9083 n--;
9084 }
9085 }
9086 }
9087
9088 /* Emit NOTE_INSN_VAR_LOCATION note for each variable from a chain
9089 CHANGED_VARIABLES and delete this chain. WHERE specifies whether
9090 the notes shall be emitted before of after instruction INSN. */
9091
9092 static void
9093 emit_notes_for_changes (rtx_insn *insn, enum emit_note_where where,
9094 shared_hash *vars)
9095 {
9096 emit_note_data data;
9097 variable_table_type *htab = shared_hash_htab (vars);
9098
9099 if (changed_variables->is_empty ())
9100 return;
9101
9102 if (MAY_HAVE_DEBUG_BIND_INSNS)
9103 process_changed_values (htab);
9104
9105 data.insn = insn;
9106 data.where = where;
9107 data.vars = htab;
9108
9109 changed_variables
9110 ->traverse <emit_note_data*, emit_note_insn_var_location> (&data);
9111 }
9112
9113 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it differs from the
9114 same variable in hash table DATA or is not there at all. */
9115
9116 int
9117 emit_notes_for_differences_1 (variable **slot, variable_table_type *new_vars)
9118 {
9119 variable *old_var, *new_var;
9120
9121 old_var = *slot;
9122 new_var = new_vars->find_with_hash (old_var->dv, dv_htab_hash (old_var->dv));
9123
9124 if (!new_var)
9125 {
9126 /* Variable has disappeared. */
9127 variable *empty_var = NULL;
9128
9129 if (old_var->onepart == ONEPART_VALUE
9130 || old_var->onepart == ONEPART_DEXPR)
9131 {
9132 empty_var = variable_from_dropped (old_var->dv, NO_INSERT);
9133 if (empty_var)
9134 {
9135 gcc_checking_assert (!empty_var->in_changed_variables);
9136 if (!VAR_LOC_1PAUX (old_var))
9137 {
9138 VAR_LOC_1PAUX (old_var) = VAR_LOC_1PAUX (empty_var);
9139 VAR_LOC_1PAUX (empty_var) = NULL;
9140 }
9141 else
9142 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var));
9143 }
9144 }
9145
9146 if (!empty_var)
9147 {
9148 empty_var = onepart_pool_allocate (old_var->onepart);
9149 empty_var->dv = old_var->dv;
9150 empty_var->refcount = 0;
9151 empty_var->n_var_parts = 0;
9152 empty_var->onepart = old_var->onepart;
9153 empty_var->in_changed_variables = false;
9154 }
9155
9156 if (empty_var->onepart)
9157 {
9158 /* Propagate the auxiliary data to (ultimately)
9159 changed_variables. */
9160 empty_var->var_part[0].loc_chain = NULL;
9161 empty_var->var_part[0].cur_loc = NULL;
9162 VAR_LOC_1PAUX (empty_var) = VAR_LOC_1PAUX (old_var);
9163 VAR_LOC_1PAUX (old_var) = NULL;
9164 }
9165 variable_was_changed (empty_var, NULL);
9166 /* Continue traversing the hash table. */
9167 return 1;
9168 }
9169 /* Update cur_loc and one-part auxiliary data, before new_var goes
9170 through variable_was_changed. */
9171 if (old_var != new_var && new_var->onepart)
9172 {
9173 gcc_checking_assert (VAR_LOC_1PAUX (new_var) == NULL);
9174 VAR_LOC_1PAUX (new_var) = VAR_LOC_1PAUX (old_var);
9175 VAR_LOC_1PAUX (old_var) = NULL;
9176 new_var->var_part[0].cur_loc = old_var->var_part[0].cur_loc;
9177 }
9178 if (variable_different_p (old_var, new_var))
9179 variable_was_changed (new_var, NULL);
9180
9181 /* Continue traversing the hash table. */
9182 return 1;
9183 }
9184
9185 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it is not in hash
9186 table DATA. */
9187
9188 int
9189 emit_notes_for_differences_2 (variable **slot, variable_table_type *old_vars)
9190 {
9191 variable *old_var, *new_var;
9192
9193 new_var = *slot;
9194 old_var = old_vars->find_with_hash (new_var->dv, dv_htab_hash (new_var->dv));
9195 if (!old_var)
9196 {
9197 int i;
9198 for (i = 0; i < new_var->n_var_parts; i++)
9199 new_var->var_part[i].cur_loc = NULL;
9200 variable_was_changed (new_var, NULL);
9201 }
9202
9203 /* Continue traversing the hash table. */
9204 return 1;
9205 }
9206
9207 /* Emit notes before INSN for differences between dataflow sets OLD_SET and
9208 NEW_SET. */
9209
9210 static void
9211 emit_notes_for_differences (rtx_insn *insn, dataflow_set *old_set,
9212 dataflow_set *new_set)
9213 {
9214 shared_hash_htab (old_set->vars)
9215 ->traverse <variable_table_type *, emit_notes_for_differences_1>
9216 (shared_hash_htab (new_set->vars));
9217 shared_hash_htab (new_set->vars)
9218 ->traverse <variable_table_type *, emit_notes_for_differences_2>
9219 (shared_hash_htab (old_set->vars));
9220 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, new_set->vars);
9221 }
9222
9223 /* Return the next insn after INSN that is not a NOTE_INSN_VAR_LOCATION. */
9224
9225 static rtx_insn *
9226 next_non_note_insn_var_location (rtx_insn *insn)
9227 {
9228 while (insn)
9229 {
9230 insn = NEXT_INSN (insn);
9231 if (insn == 0
9232 || !NOTE_P (insn)
9233 || NOTE_KIND (insn) != NOTE_INSN_VAR_LOCATION)
9234 break;
9235 }
9236
9237 return insn;
9238 }
9239
9240 /* Emit the notes for changes of location parts in the basic block BB. */
9241
9242 static void
9243 emit_notes_in_bb (basic_block bb, dataflow_set *set)
9244 {
9245 unsigned int i;
9246 micro_operation *mo;
9247
9248 dataflow_set_clear (set);
9249 dataflow_set_copy (set, &VTI (bb)->in);
9250
9251 FOR_EACH_VEC_ELT (VTI (bb)->mos, i, mo)
9252 {
9253 rtx_insn *insn = mo->insn;
9254 rtx_insn *next_insn = next_non_note_insn_var_location (insn);
9255
9256 switch (mo->type)
9257 {
9258 case MO_CALL:
9259 dataflow_set_clear_at_call (set, insn);
9260 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_CALL_INSN, set->vars);
9261 {
9262 rtx arguments = mo->u.loc, *p = &arguments;
9263 while (*p)
9264 {
9265 XEXP (XEXP (*p, 0), 1)
9266 = vt_expand_loc (XEXP (XEXP (*p, 0), 1),
9267 shared_hash_htab (set->vars));
9268 /* If expansion is successful, keep it in the list. */
9269 if (XEXP (XEXP (*p, 0), 1))
9270 {
9271 XEXP (XEXP (*p, 0), 1)
9272 = copy_rtx_if_shared (XEXP (XEXP (*p, 0), 1));
9273 p = &XEXP (*p, 1);
9274 }
9275 /* Otherwise, if the following item is data_value for it,
9276 drop it too too. */
9277 else if (XEXP (*p, 1)
9278 && REG_P (XEXP (XEXP (*p, 0), 0))
9279 && MEM_P (XEXP (XEXP (XEXP (*p, 1), 0), 0))
9280 && REG_P (XEXP (XEXP (XEXP (XEXP (*p, 1), 0), 0),
9281 0))
9282 && REGNO (XEXP (XEXP (*p, 0), 0))
9283 == REGNO (XEXP (XEXP (XEXP (XEXP (*p, 1), 0),
9284 0), 0)))
9285 *p = XEXP (XEXP (*p, 1), 1);
9286 /* Just drop this item. */
9287 else
9288 *p = XEXP (*p, 1);
9289 }
9290 add_reg_note (insn, REG_CALL_ARG_LOCATION, arguments);
9291 }
9292 break;
9293
9294 case MO_USE:
9295 {
9296 rtx loc = mo->u.loc;
9297
9298 if (REG_P (loc))
9299 var_reg_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
9300 else
9301 var_mem_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
9302
9303 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
9304 }
9305 break;
9306
9307 case MO_VAL_LOC:
9308 {
9309 rtx loc = mo->u.loc;
9310 rtx val, vloc;
9311 tree var;
9312
9313 if (GET_CODE (loc) == CONCAT)
9314 {
9315 val = XEXP (loc, 0);
9316 vloc = XEXP (loc, 1);
9317 }
9318 else
9319 {
9320 val = NULL_RTX;
9321 vloc = loc;
9322 }
9323
9324 var = PAT_VAR_LOCATION_DECL (vloc);
9325
9326 clobber_variable_part (set, NULL_RTX,
9327 dv_from_decl (var), 0, NULL_RTX);
9328 if (val)
9329 {
9330 if (VAL_NEEDS_RESOLUTION (loc))
9331 val_resolve (set, val, PAT_VAR_LOCATION_LOC (vloc), insn);
9332 set_variable_part (set, val, dv_from_decl (var), 0,
9333 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
9334 INSERT);
9335 }
9336 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
9337 set_variable_part (set, PAT_VAR_LOCATION_LOC (vloc),
9338 dv_from_decl (var), 0,
9339 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
9340 INSERT);
9341
9342 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
9343 }
9344 break;
9345
9346 case MO_VAL_USE:
9347 {
9348 rtx loc = mo->u.loc;
9349 rtx val, vloc, uloc;
9350
9351 vloc = uloc = XEXP (loc, 1);
9352 val = XEXP (loc, 0);
9353
9354 if (GET_CODE (val) == CONCAT)
9355 {
9356 uloc = XEXP (val, 1);
9357 val = XEXP (val, 0);
9358 }
9359
9360 if (VAL_NEEDS_RESOLUTION (loc))
9361 val_resolve (set, val, vloc, insn);
9362 else
9363 val_store (set, val, uloc, insn, false);
9364
9365 if (VAL_HOLDS_TRACK_EXPR (loc))
9366 {
9367 if (GET_CODE (uloc) == REG)
9368 var_reg_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
9369 NULL);
9370 else if (GET_CODE (uloc) == MEM)
9371 var_mem_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
9372 NULL);
9373 }
9374
9375 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
9376 }
9377 break;
9378
9379 case MO_VAL_SET:
9380 {
9381 rtx loc = mo->u.loc;
9382 rtx val, vloc, uloc;
9383 rtx dstv, srcv;
9384
9385 vloc = loc;
9386 uloc = XEXP (vloc, 1);
9387 val = XEXP (vloc, 0);
9388 vloc = uloc;
9389
9390 if (GET_CODE (uloc) == SET)
9391 {
9392 dstv = SET_DEST (uloc);
9393 srcv = SET_SRC (uloc);
9394 }
9395 else
9396 {
9397 dstv = uloc;
9398 srcv = NULL;
9399 }
9400
9401 if (GET_CODE (val) == CONCAT)
9402 {
9403 dstv = vloc = XEXP (val, 1);
9404 val = XEXP (val, 0);
9405 }
9406
9407 if (GET_CODE (vloc) == SET)
9408 {
9409 srcv = SET_SRC (vloc);
9410
9411 gcc_assert (val != srcv);
9412 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
9413
9414 dstv = vloc = SET_DEST (vloc);
9415
9416 if (VAL_NEEDS_RESOLUTION (loc))
9417 val_resolve (set, val, srcv, insn);
9418 }
9419 else if (VAL_NEEDS_RESOLUTION (loc))
9420 {
9421 gcc_assert (GET_CODE (uloc) == SET
9422 && GET_CODE (SET_SRC (uloc)) == REG);
9423 val_resolve (set, val, SET_SRC (uloc), insn);
9424 }
9425
9426 if (VAL_HOLDS_TRACK_EXPR (loc))
9427 {
9428 if (VAL_EXPR_IS_CLOBBERED (loc))
9429 {
9430 if (REG_P (uloc))
9431 var_reg_delete (set, uloc, true);
9432 else if (MEM_P (uloc))
9433 {
9434 gcc_assert (MEM_P (dstv));
9435 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (uloc));
9436 var_mem_delete (set, dstv, true);
9437 }
9438 }
9439 else
9440 {
9441 bool copied_p = VAL_EXPR_IS_COPIED (loc);
9442 rtx src = NULL, dst = uloc;
9443 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
9444
9445 if (GET_CODE (uloc) == SET)
9446 {
9447 src = SET_SRC (uloc);
9448 dst = SET_DEST (uloc);
9449 }
9450
9451 if (copied_p)
9452 {
9453 status = find_src_status (set, src);
9454
9455 src = find_src_set_src (set, src);
9456 }
9457
9458 if (REG_P (dst))
9459 var_reg_delete_and_set (set, dst, !copied_p,
9460 status, srcv);
9461 else if (MEM_P (dst))
9462 {
9463 gcc_assert (MEM_P (dstv));
9464 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (dst));
9465 var_mem_delete_and_set (set, dstv, !copied_p,
9466 status, srcv);
9467 }
9468 }
9469 }
9470 else if (REG_P (uloc))
9471 var_regno_delete (set, REGNO (uloc));
9472 else if (MEM_P (uloc))
9473 {
9474 gcc_checking_assert (GET_CODE (vloc) == MEM);
9475 gcc_checking_assert (vloc == dstv);
9476 if (vloc != dstv)
9477 clobber_overlapping_mems (set, vloc);
9478 }
9479
9480 val_store (set, val, dstv, insn, true);
9481
9482 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9483 set->vars);
9484 }
9485 break;
9486
9487 case MO_SET:
9488 {
9489 rtx loc = mo->u.loc;
9490 rtx set_src = NULL;
9491
9492 if (GET_CODE (loc) == SET)
9493 {
9494 set_src = SET_SRC (loc);
9495 loc = SET_DEST (loc);
9496 }
9497
9498 if (REG_P (loc))
9499 var_reg_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
9500 set_src);
9501 else
9502 var_mem_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
9503 set_src);
9504
9505 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9506 set->vars);
9507 }
9508 break;
9509
9510 case MO_COPY:
9511 {
9512 rtx loc = mo->u.loc;
9513 enum var_init_status src_status;
9514 rtx set_src = NULL;
9515
9516 if (GET_CODE (loc) == SET)
9517 {
9518 set_src = SET_SRC (loc);
9519 loc = SET_DEST (loc);
9520 }
9521
9522 src_status = find_src_status (set, set_src);
9523 set_src = find_src_set_src (set, set_src);
9524
9525 if (REG_P (loc))
9526 var_reg_delete_and_set (set, loc, false, src_status, set_src);
9527 else
9528 var_mem_delete_and_set (set, loc, false, src_status, set_src);
9529
9530 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9531 set->vars);
9532 }
9533 break;
9534
9535 case MO_USE_NO_VAR:
9536 {
9537 rtx loc = mo->u.loc;
9538
9539 if (REG_P (loc))
9540 var_reg_delete (set, loc, false);
9541 else
9542 var_mem_delete (set, loc, false);
9543
9544 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
9545 }
9546 break;
9547
9548 case MO_CLOBBER:
9549 {
9550 rtx loc = mo->u.loc;
9551
9552 if (REG_P (loc))
9553 var_reg_delete (set, loc, true);
9554 else
9555 var_mem_delete (set, loc, true);
9556
9557 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9558 set->vars);
9559 }
9560 break;
9561
9562 case MO_ADJUST:
9563 set->stack_adjust += mo->u.adjust;
9564 break;
9565 }
9566 }
9567 }
9568
9569 /* Emit notes for the whole function. */
9570
9571 static void
9572 vt_emit_notes (void)
9573 {
9574 basic_block bb;
9575 dataflow_set cur;
9576
9577 gcc_assert (changed_variables->is_empty ());
9578
9579 /* Free memory occupied by the out hash tables, as they aren't used
9580 anymore. */
9581 FOR_EACH_BB_FN (bb, cfun)
9582 dataflow_set_clear (&VTI (bb)->out);
9583
9584 /* Enable emitting notes by functions (mainly by set_variable_part and
9585 delete_variable_part). */
9586 emit_notes = true;
9587
9588 if (MAY_HAVE_DEBUG_BIND_INSNS)
9589 dropped_values = new variable_table_type (cselib_get_next_uid () * 2);
9590
9591 dataflow_set_init (&cur);
9592
9593 FOR_EACH_BB_FN (bb, cfun)
9594 {
9595 /* Emit the notes for changes of variable locations between two
9596 subsequent basic blocks. */
9597 emit_notes_for_differences (BB_HEAD (bb), &cur, &VTI (bb)->in);
9598
9599 if (MAY_HAVE_DEBUG_BIND_INSNS)
9600 local_get_addr_cache = new hash_map<rtx, rtx>;
9601
9602 /* Emit the notes for the changes in the basic block itself. */
9603 emit_notes_in_bb (bb, &cur);
9604
9605 if (MAY_HAVE_DEBUG_BIND_INSNS)
9606 delete local_get_addr_cache;
9607 local_get_addr_cache = NULL;
9608
9609 /* Free memory occupied by the in hash table, we won't need it
9610 again. */
9611 dataflow_set_clear (&VTI (bb)->in);
9612 }
9613
9614 if (flag_checking)
9615 shared_hash_htab (cur.vars)
9616 ->traverse <variable_table_type *, emit_notes_for_differences_1>
9617 (shared_hash_htab (empty_shared_hash));
9618
9619 dataflow_set_destroy (&cur);
9620
9621 if (MAY_HAVE_DEBUG_BIND_INSNS)
9622 delete dropped_values;
9623 dropped_values = NULL;
9624
9625 emit_notes = false;
9626 }
9627
9628 /* If there is a declaration and offset associated with register/memory RTL
9629 assign declaration to *DECLP and offset to *OFFSETP, and return true. */
9630
9631 static bool
9632 vt_get_decl_and_offset (rtx rtl, tree *declp, poly_int64 *offsetp)
9633 {
9634 if (REG_P (rtl))
9635 {
9636 if (REG_ATTRS (rtl))
9637 {
9638 *declp = REG_EXPR (rtl);
9639 *offsetp = REG_OFFSET (rtl);
9640 return true;
9641 }
9642 }
9643 else if (GET_CODE (rtl) == PARALLEL)
9644 {
9645 tree decl = NULL_TREE;
9646 HOST_WIDE_INT offset = MAX_VAR_PARTS;
9647 int len = XVECLEN (rtl, 0), i;
9648
9649 for (i = 0; i < len; i++)
9650 {
9651 rtx reg = XEXP (XVECEXP (rtl, 0, i), 0);
9652 if (!REG_P (reg) || !REG_ATTRS (reg))
9653 break;
9654 if (!decl)
9655 decl = REG_EXPR (reg);
9656 if (REG_EXPR (reg) != decl)
9657 break;
9658 HOST_WIDE_INT this_offset;
9659 if (!track_offset_p (REG_OFFSET (reg), &this_offset))
9660 break;
9661 offset = MIN (offset, this_offset);
9662 }
9663
9664 if (i == len)
9665 {
9666 *declp = decl;
9667 *offsetp = offset;
9668 return true;
9669 }
9670 }
9671 else if (MEM_P (rtl))
9672 {
9673 if (MEM_ATTRS (rtl))
9674 {
9675 *declp = MEM_EXPR (rtl);
9676 *offsetp = int_mem_offset (rtl);
9677 return true;
9678 }
9679 }
9680 return false;
9681 }
9682
9683 /* Record the value for the ENTRY_VALUE of RTL as a global equivalence
9684 of VAL. */
9685
9686 static void
9687 record_entry_value (cselib_val *val, rtx rtl)
9688 {
9689 rtx ev = gen_rtx_ENTRY_VALUE (GET_MODE (rtl));
9690
9691 ENTRY_VALUE_EXP (ev) = rtl;
9692
9693 cselib_add_permanent_equiv (val, ev, get_insns ());
9694 }
9695
9696 /* Insert function parameter PARM in IN and OUT sets of ENTRY_BLOCK. */
9697
9698 static void
9699 vt_add_function_parameter (tree parm)
9700 {
9701 rtx decl_rtl = DECL_RTL_IF_SET (parm);
9702 rtx incoming = DECL_INCOMING_RTL (parm);
9703 tree decl;
9704 machine_mode mode;
9705 poly_int64 offset;
9706 dataflow_set *out;
9707 decl_or_value dv;
9708 bool incoming_ok = true;
9709
9710 if (TREE_CODE (parm) != PARM_DECL)
9711 return;
9712
9713 if (!decl_rtl || !incoming)
9714 return;
9715
9716 if (GET_MODE (decl_rtl) == BLKmode || GET_MODE (incoming) == BLKmode)
9717 return;
9718
9719 /* If there is a DRAP register or a pseudo in internal_arg_pointer,
9720 rewrite the incoming location of parameters passed on the stack
9721 into MEMs based on the argument pointer, so that incoming doesn't
9722 depend on a pseudo. */
9723 poly_int64 incoming_offset = 0;
9724 if (MEM_P (incoming)
9725 && (strip_offset (XEXP (incoming, 0), &incoming_offset)
9726 == crtl->args.internal_arg_pointer))
9727 {
9728 HOST_WIDE_INT off = -FIRST_PARM_OFFSET (current_function_decl);
9729 incoming
9730 = replace_equiv_address_nv (incoming,
9731 plus_constant (Pmode,
9732 arg_pointer_rtx,
9733 off + incoming_offset));
9734 }
9735
9736 #ifdef HAVE_window_save
9737 /* DECL_INCOMING_RTL uses the INCOMING_REGNO of parameter registers.
9738 If the target machine has an explicit window save instruction, the
9739 actual entry value is the corresponding OUTGOING_REGNO instead. */
9740 if (HAVE_window_save && !crtl->uses_only_leaf_regs)
9741 {
9742 if (REG_P (incoming)
9743 && HARD_REGISTER_P (incoming)
9744 && OUTGOING_REGNO (REGNO (incoming)) != REGNO (incoming))
9745 {
9746 parm_reg p;
9747 p.incoming = incoming;
9748 incoming
9749 = gen_rtx_REG_offset (incoming, GET_MODE (incoming),
9750 OUTGOING_REGNO (REGNO (incoming)), 0);
9751 p.outgoing = incoming;
9752 vec_safe_push (windowed_parm_regs, p);
9753 }
9754 else if (GET_CODE (incoming) == PARALLEL)
9755 {
9756 rtx outgoing
9757 = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (XVECLEN (incoming, 0)));
9758 int i;
9759
9760 for (i = 0; i < XVECLEN (incoming, 0); i++)
9761 {
9762 rtx reg = XEXP (XVECEXP (incoming, 0, i), 0);
9763 parm_reg p;
9764 p.incoming = reg;
9765 reg = gen_rtx_REG_offset (reg, GET_MODE (reg),
9766 OUTGOING_REGNO (REGNO (reg)), 0);
9767 p.outgoing = reg;
9768 XVECEXP (outgoing, 0, i)
9769 = gen_rtx_EXPR_LIST (VOIDmode, reg,
9770 XEXP (XVECEXP (incoming, 0, i), 1));
9771 vec_safe_push (windowed_parm_regs, p);
9772 }
9773
9774 incoming = outgoing;
9775 }
9776 else if (MEM_P (incoming)
9777 && REG_P (XEXP (incoming, 0))
9778 && HARD_REGISTER_P (XEXP (incoming, 0)))
9779 {
9780 rtx reg = XEXP (incoming, 0);
9781 if (OUTGOING_REGNO (REGNO (reg)) != REGNO (reg))
9782 {
9783 parm_reg p;
9784 p.incoming = reg;
9785 reg = gen_raw_REG (GET_MODE (reg), OUTGOING_REGNO (REGNO (reg)));
9786 p.outgoing = reg;
9787 vec_safe_push (windowed_parm_regs, p);
9788 incoming = replace_equiv_address_nv (incoming, reg);
9789 }
9790 }
9791 }
9792 #endif
9793
9794 if (!vt_get_decl_and_offset (incoming, &decl, &offset))
9795 {
9796 incoming_ok = false;
9797 if (MEM_P (incoming))
9798 {
9799 /* This means argument is passed by invisible reference. */
9800 offset = 0;
9801 decl = parm;
9802 }
9803 else
9804 {
9805 if (!vt_get_decl_and_offset (decl_rtl, &decl, &offset))
9806 return;
9807 offset += byte_lowpart_offset (GET_MODE (incoming),
9808 GET_MODE (decl_rtl));
9809 }
9810 }
9811
9812 if (!decl)
9813 return;
9814
9815 if (parm != decl)
9816 {
9817 /* If that DECL_RTL wasn't a pseudo that got spilled to
9818 memory, bail out. Otherwise, the spill slot sharing code
9819 will force the memory to reference spill_slot_decl (%sfp),
9820 so we don't match above. That's ok, the pseudo must have
9821 referenced the entire parameter, so just reset OFFSET. */
9822 if (decl != get_spill_slot_decl (false))
9823 return;
9824 offset = 0;
9825 }
9826
9827 HOST_WIDE_INT const_offset;
9828 if (!track_loc_p (incoming, parm, offset, false, &mode, &const_offset))
9829 return;
9830
9831 out = &VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->out;
9832
9833 dv = dv_from_decl (parm);
9834
9835 if (target_for_debug_bind (parm)
9836 /* We can't deal with these right now, because this kind of
9837 variable is single-part. ??? We could handle parallels
9838 that describe multiple locations for the same single
9839 value, but ATM we don't. */
9840 && GET_CODE (incoming) != PARALLEL)
9841 {
9842 cselib_val *val;
9843 rtx lowpart;
9844
9845 /* ??? We shouldn't ever hit this, but it may happen because
9846 arguments passed by invisible reference aren't dealt with
9847 above: incoming-rtl will have Pmode rather than the
9848 expected mode for the type. */
9849 if (const_offset)
9850 return;
9851
9852 lowpart = var_lowpart (mode, incoming);
9853 if (!lowpart)
9854 return;
9855
9856 val = cselib_lookup_from_insn (lowpart, mode, true,
9857 VOIDmode, get_insns ());
9858
9859 /* ??? Float-typed values in memory are not handled by
9860 cselib. */
9861 if (val)
9862 {
9863 preserve_value (val);
9864 set_variable_part (out, val->val_rtx, dv, const_offset,
9865 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9866 dv = dv_from_value (val->val_rtx);
9867 }
9868
9869 if (MEM_P (incoming))
9870 {
9871 val = cselib_lookup_from_insn (XEXP (incoming, 0), mode, true,
9872 VOIDmode, get_insns ());
9873 if (val)
9874 {
9875 preserve_value (val);
9876 incoming = replace_equiv_address_nv (incoming, val->val_rtx);
9877 }
9878 }
9879 }
9880
9881 if (REG_P (incoming))
9882 {
9883 incoming = var_lowpart (mode, incoming);
9884 gcc_assert (REGNO (incoming) < FIRST_PSEUDO_REGISTER);
9885 attrs_list_insert (&out->regs[REGNO (incoming)], dv, const_offset,
9886 incoming);
9887 set_variable_part (out, incoming, dv, const_offset,
9888 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9889 if (dv_is_value_p (dv))
9890 {
9891 record_entry_value (CSELIB_VAL_PTR (dv_as_value (dv)), incoming);
9892 if (TREE_CODE (TREE_TYPE (parm)) == REFERENCE_TYPE
9893 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_TYPE (parm))))
9894 {
9895 machine_mode indmode
9896 = TYPE_MODE (TREE_TYPE (TREE_TYPE (parm)));
9897 rtx mem = gen_rtx_MEM (indmode, incoming);
9898 cselib_val *val = cselib_lookup_from_insn (mem, indmode, true,
9899 VOIDmode,
9900 get_insns ());
9901 if (val)
9902 {
9903 preserve_value (val);
9904 record_entry_value (val, mem);
9905 set_variable_part (out, mem, dv_from_value (val->val_rtx), 0,
9906 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9907 }
9908 }
9909 }
9910 }
9911 else if (GET_CODE (incoming) == PARALLEL && !dv_onepart_p (dv))
9912 {
9913 int i;
9914
9915 /* The following code relies on vt_get_decl_and_offset returning true for
9916 incoming, which might not be always the case. */
9917 if (!incoming_ok)
9918 return;
9919 for (i = 0; i < XVECLEN (incoming, 0); i++)
9920 {
9921 rtx reg = XEXP (XVECEXP (incoming, 0, i), 0);
9922 /* vt_get_decl_and_offset has already checked that the offset
9923 is a valid variable part. */
9924 const_offset = get_tracked_reg_offset (reg);
9925 gcc_assert (REGNO (reg) < FIRST_PSEUDO_REGISTER);
9926 attrs_list_insert (&out->regs[REGNO (reg)], dv, const_offset, reg);
9927 set_variable_part (out, reg, dv, const_offset,
9928 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9929 }
9930 }
9931 else if (MEM_P (incoming))
9932 {
9933 incoming = var_lowpart (mode, incoming);
9934 set_variable_part (out, incoming, dv, const_offset,
9935 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9936 }
9937 }
9938
9939 /* Insert function parameters to IN and OUT sets of ENTRY_BLOCK. */
9940
9941 static void
9942 vt_add_function_parameters (void)
9943 {
9944 tree parm;
9945
9946 for (parm = DECL_ARGUMENTS (current_function_decl);
9947 parm; parm = DECL_CHAIN (parm))
9948 vt_add_function_parameter (parm);
9949
9950 if (DECL_HAS_VALUE_EXPR_P (DECL_RESULT (current_function_decl)))
9951 {
9952 tree vexpr = DECL_VALUE_EXPR (DECL_RESULT (current_function_decl));
9953
9954 if (TREE_CODE (vexpr) == INDIRECT_REF)
9955 vexpr = TREE_OPERAND (vexpr, 0);
9956
9957 if (TREE_CODE (vexpr) == PARM_DECL
9958 && DECL_ARTIFICIAL (vexpr)
9959 && !DECL_IGNORED_P (vexpr)
9960 && DECL_NAMELESS (vexpr))
9961 vt_add_function_parameter (vexpr);
9962 }
9963 }
9964
9965 /* Initialize cfa_base_rtx, create a preserved VALUE for it and
9966 ensure it isn't flushed during cselib_reset_table.
9967 Can be called only if frame_pointer_rtx resp. arg_pointer_rtx
9968 has been eliminated. */
9969
9970 static void
9971 vt_init_cfa_base (void)
9972 {
9973 cselib_val *val;
9974
9975 #ifdef FRAME_POINTER_CFA_OFFSET
9976 cfa_base_rtx = frame_pointer_rtx;
9977 cfa_base_offset = -FRAME_POINTER_CFA_OFFSET (current_function_decl);
9978 #else
9979 cfa_base_rtx = arg_pointer_rtx;
9980 cfa_base_offset = -ARG_POINTER_CFA_OFFSET (current_function_decl);
9981 #endif
9982 if (cfa_base_rtx == hard_frame_pointer_rtx
9983 || !fixed_regs[REGNO (cfa_base_rtx)])
9984 {
9985 cfa_base_rtx = NULL_RTX;
9986 return;
9987 }
9988 if (!MAY_HAVE_DEBUG_BIND_INSNS)
9989 return;
9990
9991 /* Tell alias analysis that cfa_base_rtx should share
9992 find_base_term value with stack pointer or hard frame pointer. */
9993 if (!frame_pointer_needed)
9994 vt_equate_reg_base_value (cfa_base_rtx, stack_pointer_rtx);
9995 else if (!crtl->stack_realign_tried)
9996 vt_equate_reg_base_value (cfa_base_rtx, hard_frame_pointer_rtx);
9997
9998 val = cselib_lookup_from_insn (cfa_base_rtx, GET_MODE (cfa_base_rtx), 1,
9999 VOIDmode, get_insns ());
10000 preserve_value (val);
10001 cselib_preserve_cfa_base_value (val, REGNO (cfa_base_rtx));
10002 }
10003
10004 /* Reemit INSN, a MARKER_DEBUG_INSN, as a note. */
10005
10006 static rtx_insn *
10007 reemit_marker_as_note (rtx_insn *insn)
10008 {
10009 gcc_checking_assert (DEBUG_MARKER_INSN_P (insn));
10010
10011 enum insn_note kind = INSN_DEBUG_MARKER_KIND (insn);
10012
10013 switch (kind)
10014 {
10015 case NOTE_INSN_BEGIN_STMT:
10016 case NOTE_INSN_INLINE_ENTRY:
10017 {
10018 rtx_insn *note = NULL;
10019 if (cfun->debug_nonbind_markers)
10020 {
10021 note = emit_note_before (kind, insn);
10022 NOTE_MARKER_LOCATION (note) = INSN_LOCATION (insn);
10023 }
10024 delete_insn (insn);
10025 return note;
10026 }
10027
10028 default:
10029 gcc_unreachable ();
10030 }
10031 }
10032
10033 /* Allocate and initialize the data structures for variable tracking
10034 and parse the RTL to get the micro operations. */
10035
10036 static bool
10037 vt_initialize (void)
10038 {
10039 basic_block bb;
10040 poly_int64 fp_cfa_offset = -1;
10041
10042 alloc_aux_for_blocks (sizeof (variable_tracking_info));
10043
10044 empty_shared_hash = shared_hash_pool.allocate ();
10045 empty_shared_hash->refcount = 1;
10046 empty_shared_hash->htab = new variable_table_type (1);
10047 changed_variables = new variable_table_type (10);
10048
10049 /* Init the IN and OUT sets. */
10050 FOR_ALL_BB_FN (bb, cfun)
10051 {
10052 VTI (bb)->visited = false;
10053 VTI (bb)->flooded = false;
10054 dataflow_set_init (&VTI (bb)->in);
10055 dataflow_set_init (&VTI (bb)->out);
10056 VTI (bb)->permp = NULL;
10057 }
10058
10059 if (MAY_HAVE_DEBUG_BIND_INSNS)
10060 {
10061 cselib_init (CSELIB_RECORD_MEMORY | CSELIB_PRESERVE_CONSTANTS);
10062 scratch_regs = BITMAP_ALLOC (NULL);
10063 preserved_values.create (256);
10064 global_get_addr_cache = new hash_map<rtx, rtx>;
10065 }
10066 else
10067 {
10068 scratch_regs = NULL;
10069 global_get_addr_cache = NULL;
10070 }
10071
10072 if (MAY_HAVE_DEBUG_BIND_INSNS)
10073 {
10074 rtx reg, expr;
10075 int ofst;
10076 cselib_val *val;
10077
10078 #ifdef FRAME_POINTER_CFA_OFFSET
10079 reg = frame_pointer_rtx;
10080 ofst = FRAME_POINTER_CFA_OFFSET (current_function_decl);
10081 #else
10082 reg = arg_pointer_rtx;
10083 ofst = ARG_POINTER_CFA_OFFSET (current_function_decl);
10084 #endif
10085
10086 ofst -= INCOMING_FRAME_SP_OFFSET;
10087
10088 val = cselib_lookup_from_insn (reg, GET_MODE (reg), 1,
10089 VOIDmode, get_insns ());
10090 preserve_value (val);
10091 if (reg != hard_frame_pointer_rtx && fixed_regs[REGNO (reg)])
10092 cselib_preserve_cfa_base_value (val, REGNO (reg));
10093 if (ofst)
10094 {
10095 cselib_val *valsp
10096 = cselib_lookup_from_insn (stack_pointer_rtx,
10097 GET_MODE (stack_pointer_rtx), 1,
10098 VOIDmode, get_insns ());
10099 preserve_value (valsp);
10100 expr = plus_constant (GET_MODE (reg), reg, ofst);
10101 /* This cselib_add_permanent_equiv call needs to be done before
10102 the other cselib_add_permanent_equiv a few lines later,
10103 because after that one is done, cselib_lookup on this expr
10104 will due to the cselib SP_DERIVED_VALUE_P optimizations
10105 return valsp and so no permanent equivalency will be added. */
10106 cselib_add_permanent_equiv (valsp, expr, get_insns ());
10107 }
10108
10109 expr = plus_constant (GET_MODE (stack_pointer_rtx),
10110 stack_pointer_rtx, -ofst);
10111 cselib_add_permanent_equiv (val, expr, get_insns ());
10112 }
10113
10114 /* In order to factor out the adjustments made to the stack pointer or to
10115 the hard frame pointer and thus be able to use DW_OP_fbreg operations
10116 instead of individual location lists, we're going to rewrite MEMs based
10117 on them into MEMs based on the CFA by de-eliminating stack_pointer_rtx
10118 or hard_frame_pointer_rtx to the virtual CFA pointer frame_pointer_rtx
10119 resp. arg_pointer_rtx. We can do this either when there is no frame
10120 pointer in the function and stack adjustments are consistent for all
10121 basic blocks or when there is a frame pointer and no stack realignment.
10122 But we first have to check that frame_pointer_rtx resp. arg_pointer_rtx
10123 has been eliminated. */
10124 if (!frame_pointer_needed)
10125 {
10126 rtx reg, elim;
10127
10128 if (!vt_stack_adjustments ())
10129 return false;
10130
10131 #ifdef FRAME_POINTER_CFA_OFFSET
10132 reg = frame_pointer_rtx;
10133 #else
10134 reg = arg_pointer_rtx;
10135 #endif
10136 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10137 if (elim != reg)
10138 {
10139 if (GET_CODE (elim) == PLUS)
10140 elim = XEXP (elim, 0);
10141 if (elim == stack_pointer_rtx)
10142 vt_init_cfa_base ();
10143 }
10144 }
10145 else if (!crtl->stack_realign_tried)
10146 {
10147 rtx reg, elim;
10148
10149 #ifdef FRAME_POINTER_CFA_OFFSET
10150 reg = frame_pointer_rtx;
10151 fp_cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
10152 #else
10153 reg = arg_pointer_rtx;
10154 fp_cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
10155 #endif
10156 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10157 if (elim != reg)
10158 {
10159 if (GET_CODE (elim) == PLUS)
10160 {
10161 fp_cfa_offset -= rtx_to_poly_int64 (XEXP (elim, 1));
10162 elim = XEXP (elim, 0);
10163 }
10164 if (elim != hard_frame_pointer_rtx)
10165 fp_cfa_offset = -1;
10166 }
10167 else
10168 fp_cfa_offset = -1;
10169 }
10170
10171 /* If the stack is realigned and a DRAP register is used, we're going to
10172 rewrite MEMs based on it representing incoming locations of parameters
10173 passed on the stack into MEMs based on the argument pointer. Although
10174 we aren't going to rewrite other MEMs, we still need to initialize the
10175 virtual CFA pointer in order to ensure that the argument pointer will
10176 be seen as a constant throughout the function.
10177
10178 ??? This doesn't work if FRAME_POINTER_CFA_OFFSET is defined. */
10179 else if (stack_realign_drap)
10180 {
10181 rtx reg, elim;
10182
10183 #ifdef FRAME_POINTER_CFA_OFFSET
10184 reg = frame_pointer_rtx;
10185 #else
10186 reg = arg_pointer_rtx;
10187 #endif
10188 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10189 if (elim != reg)
10190 {
10191 if (GET_CODE (elim) == PLUS)
10192 elim = XEXP (elim, 0);
10193 if (elim == hard_frame_pointer_rtx)
10194 vt_init_cfa_base ();
10195 }
10196 }
10197
10198 hard_frame_pointer_adjustment = -1;
10199
10200 vt_add_function_parameters ();
10201
10202 bool record_sp_value = false;
10203 FOR_EACH_BB_FN (bb, cfun)
10204 {
10205 rtx_insn *insn;
10206 basic_block first_bb, last_bb;
10207
10208 if (MAY_HAVE_DEBUG_BIND_INSNS)
10209 {
10210 cselib_record_sets_hook = add_with_sets;
10211 if (dump_file && (dump_flags & TDF_DETAILS))
10212 fprintf (dump_file, "first value: %i\n",
10213 cselib_get_next_uid ());
10214 }
10215
10216 if (MAY_HAVE_DEBUG_BIND_INSNS
10217 && cfa_base_rtx
10218 && !frame_pointer_needed
10219 && record_sp_value)
10220 cselib_record_sp_cfa_base_equiv (-cfa_base_offset
10221 - VTI (bb)->in.stack_adjust,
10222 BB_HEAD (bb));
10223 record_sp_value = true;
10224
10225 first_bb = bb;
10226 for (;;)
10227 {
10228 edge e;
10229 if (bb->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
10230 || ! single_pred_p (bb->next_bb))
10231 break;
10232 e = find_edge (bb, bb->next_bb);
10233 if (! e || (e->flags & EDGE_FALLTHRU) == 0)
10234 break;
10235 bb = bb->next_bb;
10236 }
10237 last_bb = bb;
10238
10239 /* Add the micro-operations to the vector. */
10240 FOR_BB_BETWEEN (bb, first_bb, last_bb->next_bb, next_bb)
10241 {
10242 HOST_WIDE_INT offset = VTI (bb)->out.stack_adjust;
10243 VTI (bb)->out.stack_adjust = VTI (bb)->in.stack_adjust;
10244
10245 rtx_insn *next;
10246 FOR_BB_INSNS_SAFE (bb, insn, next)
10247 {
10248 if (INSN_P (insn))
10249 {
10250 HOST_WIDE_INT pre = 0, post = 0;
10251
10252 if (!frame_pointer_needed)
10253 {
10254 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
10255 if (pre)
10256 {
10257 micro_operation mo;
10258 mo.type = MO_ADJUST;
10259 mo.u.adjust = pre;
10260 mo.insn = insn;
10261 if (dump_file && (dump_flags & TDF_DETAILS))
10262 log_op_type (PATTERN (insn), bb, insn,
10263 MO_ADJUST, dump_file);
10264 VTI (bb)->mos.safe_push (mo);
10265 }
10266 }
10267
10268 cselib_hook_called = false;
10269 adjust_insn (bb, insn);
10270
10271 if (pre)
10272 VTI (bb)->out.stack_adjust += pre;
10273
10274 if (DEBUG_MARKER_INSN_P (insn))
10275 {
10276 reemit_marker_as_note (insn);
10277 continue;
10278 }
10279
10280 if (MAY_HAVE_DEBUG_BIND_INSNS)
10281 {
10282 if (CALL_P (insn))
10283 prepare_call_arguments (bb, insn);
10284 cselib_process_insn (insn);
10285 if (dump_file && (dump_flags & TDF_DETAILS))
10286 {
10287 if (dump_flags & TDF_SLIM)
10288 dump_insn_slim (dump_file, insn);
10289 else
10290 print_rtl_single (dump_file, insn);
10291 dump_cselib_table (dump_file);
10292 }
10293 }
10294 if (!cselib_hook_called)
10295 add_with_sets (insn, 0, 0);
10296 cancel_changes (0);
10297
10298 if (post)
10299 {
10300 micro_operation mo;
10301 mo.type = MO_ADJUST;
10302 mo.u.adjust = post;
10303 mo.insn = insn;
10304 if (dump_file && (dump_flags & TDF_DETAILS))
10305 log_op_type (PATTERN (insn), bb, insn,
10306 MO_ADJUST, dump_file);
10307 VTI (bb)->mos.safe_push (mo);
10308 VTI (bb)->out.stack_adjust += post;
10309 }
10310
10311 if (maybe_ne (fp_cfa_offset, -1)
10312 && known_eq (hard_frame_pointer_adjustment, -1)
10313 && fp_setter_insn (insn))
10314 {
10315 vt_init_cfa_base ();
10316 hard_frame_pointer_adjustment = fp_cfa_offset;
10317 /* Disassociate sp from fp now. */
10318 if (MAY_HAVE_DEBUG_BIND_INSNS)
10319 {
10320 cselib_val *v;
10321 cselib_invalidate_rtx (stack_pointer_rtx);
10322 v = cselib_lookup (stack_pointer_rtx, Pmode, 1,
10323 VOIDmode);
10324 if (v && !cselib_preserved_value_p (v))
10325 {
10326 cselib_set_value_sp_based (v);
10327 preserve_value (v);
10328 }
10329 }
10330 }
10331 }
10332 }
10333 gcc_assert (offset == VTI (bb)->out.stack_adjust);
10334 }
10335
10336 bb = last_bb;
10337
10338 if (MAY_HAVE_DEBUG_BIND_INSNS)
10339 {
10340 cselib_preserve_only_values ();
10341 cselib_reset_table (cselib_get_next_uid ());
10342 cselib_record_sets_hook = NULL;
10343 }
10344 }
10345
10346 hard_frame_pointer_adjustment = -1;
10347 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->flooded = true;
10348 cfa_base_rtx = NULL_RTX;
10349 return true;
10350 }
10351
10352 /* This is *not* reset after each function. It gives each
10353 NOTE_INSN_DELETED_DEBUG_LABEL in the entire compilation
10354 a unique label number. */
10355
10356 static int debug_label_num = 1;
10357
10358 /* Remove from the insn stream a single debug insn used for
10359 variable tracking at assignments. */
10360
10361 static inline void
10362 delete_vta_debug_insn (rtx_insn *insn)
10363 {
10364 if (DEBUG_MARKER_INSN_P (insn))
10365 {
10366 reemit_marker_as_note (insn);
10367 return;
10368 }
10369
10370 tree decl = INSN_VAR_LOCATION_DECL (insn);
10371 if (TREE_CODE (decl) == LABEL_DECL
10372 && DECL_NAME (decl)
10373 && !DECL_RTL_SET_P (decl))
10374 {
10375 PUT_CODE (insn, NOTE);
10376 NOTE_KIND (insn) = NOTE_INSN_DELETED_DEBUG_LABEL;
10377 NOTE_DELETED_LABEL_NAME (insn)
10378 = IDENTIFIER_POINTER (DECL_NAME (decl));
10379 SET_DECL_RTL (decl, insn);
10380 CODE_LABEL_NUMBER (insn) = debug_label_num++;
10381 }
10382 else
10383 delete_insn (insn);
10384 }
10385
10386 /* Remove from the insn stream all debug insns used for variable
10387 tracking at assignments. USE_CFG should be false if the cfg is no
10388 longer usable. */
10389
10390 void
10391 delete_vta_debug_insns (bool use_cfg)
10392 {
10393 basic_block bb;
10394 rtx_insn *insn, *next;
10395
10396 if (!MAY_HAVE_DEBUG_INSNS)
10397 return;
10398
10399 if (use_cfg)
10400 FOR_EACH_BB_FN (bb, cfun)
10401 {
10402 FOR_BB_INSNS_SAFE (bb, insn, next)
10403 if (DEBUG_INSN_P (insn))
10404 delete_vta_debug_insn (insn);
10405 }
10406 else
10407 for (insn = get_insns (); insn; insn = next)
10408 {
10409 next = NEXT_INSN (insn);
10410 if (DEBUG_INSN_P (insn))
10411 delete_vta_debug_insn (insn);
10412 }
10413 }
10414
10415 /* Run a fast, BB-local only version of var tracking, to take care of
10416 information that we don't do global analysis on, such that not all
10417 information is lost. If SKIPPED holds, we're skipping the global
10418 pass entirely, so we should try to use information it would have
10419 handled as well.. */
10420
10421 static void
10422 vt_debug_insns_local (bool skipped ATTRIBUTE_UNUSED)
10423 {
10424 /* ??? Just skip it all for now. */
10425 delete_vta_debug_insns (true);
10426 }
10427
10428 /* Free the data structures needed for variable tracking. */
10429
10430 static void
10431 vt_finalize (void)
10432 {
10433 basic_block bb;
10434
10435 FOR_EACH_BB_FN (bb, cfun)
10436 {
10437 VTI (bb)->mos.release ();
10438 }
10439
10440 FOR_ALL_BB_FN (bb, cfun)
10441 {
10442 dataflow_set_destroy (&VTI (bb)->in);
10443 dataflow_set_destroy (&VTI (bb)->out);
10444 if (VTI (bb)->permp)
10445 {
10446 dataflow_set_destroy (VTI (bb)->permp);
10447 XDELETE (VTI (bb)->permp);
10448 }
10449 }
10450 free_aux_for_blocks ();
10451 delete empty_shared_hash->htab;
10452 empty_shared_hash->htab = NULL;
10453 delete changed_variables;
10454 changed_variables = NULL;
10455 attrs_pool.release ();
10456 var_pool.release ();
10457 location_chain_pool.release ();
10458 shared_hash_pool.release ();
10459
10460 if (MAY_HAVE_DEBUG_BIND_INSNS)
10461 {
10462 if (global_get_addr_cache)
10463 delete global_get_addr_cache;
10464 global_get_addr_cache = NULL;
10465 loc_exp_dep_pool.release ();
10466 valvar_pool.release ();
10467 preserved_values.release ();
10468 cselib_finish ();
10469 BITMAP_FREE (scratch_regs);
10470 scratch_regs = NULL;
10471 }
10472
10473 #ifdef HAVE_window_save
10474 vec_free (windowed_parm_regs);
10475 #endif
10476
10477 if (vui_vec)
10478 XDELETEVEC (vui_vec);
10479 vui_vec = NULL;
10480 vui_allocated = 0;
10481 }
10482
10483 /* The entry point to variable tracking pass. */
10484
10485 static inline unsigned int
10486 variable_tracking_main_1 (void)
10487 {
10488 bool success;
10489
10490 /* We won't be called as a separate pass if flag_var_tracking is not
10491 set, but final may call us to turn debug markers into notes. */
10492 if ((!flag_var_tracking && MAY_HAVE_DEBUG_INSNS)
10493 || flag_var_tracking_assignments < 0
10494 /* Var-tracking right now assumes the IR doesn't contain
10495 any pseudos at this point. */
10496 || targetm.no_register_allocation)
10497 {
10498 delete_vta_debug_insns (true);
10499 return 0;
10500 }
10501
10502 if (!flag_var_tracking)
10503 return 0;
10504
10505 if (n_basic_blocks_for_fn (cfun) > 500
10506 && n_edges_for_fn (cfun) / n_basic_blocks_for_fn (cfun) >= 20)
10507 {
10508 vt_debug_insns_local (true);
10509 return 0;
10510 }
10511
10512 if (!vt_initialize ())
10513 {
10514 vt_finalize ();
10515 vt_debug_insns_local (true);
10516 return 0;
10517 }
10518
10519 success = vt_find_locations ();
10520
10521 if (!success && flag_var_tracking_assignments > 0)
10522 {
10523 vt_finalize ();
10524
10525 delete_vta_debug_insns (true);
10526
10527 /* This is later restored by our caller. */
10528 flag_var_tracking_assignments = 0;
10529
10530 success = vt_initialize ();
10531 gcc_assert (success);
10532
10533 success = vt_find_locations ();
10534 }
10535
10536 if (!success)
10537 {
10538 vt_finalize ();
10539 vt_debug_insns_local (false);
10540 return 0;
10541 }
10542
10543 if (dump_file && (dump_flags & TDF_DETAILS))
10544 {
10545 dump_dataflow_sets ();
10546 dump_reg_info (dump_file);
10547 dump_flow_info (dump_file, dump_flags);
10548 }
10549
10550 timevar_push (TV_VAR_TRACKING_EMIT);
10551 vt_emit_notes ();
10552 timevar_pop (TV_VAR_TRACKING_EMIT);
10553
10554 vt_finalize ();
10555 vt_debug_insns_local (false);
10556 return 0;
10557 }
10558
10559 unsigned int
10560 variable_tracking_main (void)
10561 {
10562 unsigned int ret;
10563 int save = flag_var_tracking_assignments;
10564
10565 ret = variable_tracking_main_1 ();
10566
10567 flag_var_tracking_assignments = save;
10568
10569 return ret;
10570 }
10571 \f
10572 namespace {
10573
10574 const pass_data pass_data_variable_tracking =
10575 {
10576 RTL_PASS, /* type */
10577 "vartrack", /* name */
10578 OPTGROUP_NONE, /* optinfo_flags */
10579 TV_VAR_TRACKING, /* tv_id */
10580 0, /* properties_required */
10581 0, /* properties_provided */
10582 0, /* properties_destroyed */
10583 0, /* todo_flags_start */
10584 0, /* todo_flags_finish */
10585 };
10586
10587 class pass_variable_tracking : public rtl_opt_pass
10588 {
10589 public:
10590 pass_variable_tracking (gcc::context *ctxt)
10591 : rtl_opt_pass (pass_data_variable_tracking, ctxt)
10592 {}
10593
10594 /* opt_pass methods: */
10595 virtual bool gate (function *)
10596 {
10597 return (flag_var_tracking && !targetm.delay_vartrack);
10598 }
10599
10600 virtual unsigned int execute (function *)
10601 {
10602 return variable_tracking_main ();
10603 }
10604
10605 }; // class pass_variable_tracking
10606
10607 } // anon namespace
10608
10609 rtl_opt_pass *
10610 make_pass_variable_tracking (gcc::context *ctxt)
10611 {
10612 return new pass_variable_tracking (ctxt);
10613 }