]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/var-tracking.c
alias.c: Reorder #include statements and remove duplicates.
[thirdparty/gcc.git] / gcc / var-tracking.c
1 /* Variable tracking routines for the GNU compiler.
2 Copyright (C) 2002-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file contains the variable tracking pass. It computes where
21 variables are located (which registers or where in memory) at each position
22 in instruction stream and emits notes describing the locations.
23 Debug information (DWARF2 location lists) is finally generated from
24 these notes.
25 With this debug information, it is possible to show variables
26 even when debugging optimized code.
27
28 How does the variable tracking pass work?
29
30 First, it scans RTL code for uses, stores and clobbers (register/memory
31 references in instructions), for call insns and for stack adjustments
32 separately for each basic block and saves them to an array of micro
33 operations.
34 The micro operations of one instruction are ordered so that
35 pre-modifying stack adjustment < use < use with no var < call insn <
36 < clobber < set < post-modifying stack adjustment
37
38 Then, a forward dataflow analysis is performed to find out how locations
39 of variables change through code and to propagate the variable locations
40 along control flow graph.
41 The IN set for basic block BB is computed as a union of OUT sets of BB's
42 predecessors, the OUT set for BB is copied from the IN set for BB and
43 is changed according to micro operations in BB.
44
45 The IN and OUT sets for basic blocks consist of a current stack adjustment
46 (used for adjusting offset of variables addressed using stack pointer),
47 the table of structures describing the locations of parts of a variable
48 and for each physical register a linked list for each physical register.
49 The linked list is a list of variable parts stored in the register,
50 i.e. it is a list of triplets (reg, decl, offset) where decl is
51 REG_EXPR (reg) and offset is REG_OFFSET (reg). The linked list is used for
52 effective deleting appropriate variable parts when we set or clobber the
53 register.
54
55 There may be more than one variable part in a register. The linked lists
56 should be pretty short so it is a good data structure here.
57 For example in the following code, register allocator may assign same
58 register to variables A and B, and both of them are stored in the same
59 register in CODE:
60
61 if (cond)
62 set A;
63 else
64 set B;
65 CODE;
66 if (cond)
67 use A;
68 else
69 use B;
70
71 Finally, the NOTE_INSN_VAR_LOCATION notes describing the variable locations
72 are emitted to appropriate positions in RTL code. Each such a note describes
73 the location of one variable at the point in instruction stream where the
74 note is. There is no need to emit a note for each variable before each
75 instruction, we only emit these notes where the location of variable changes
76 (this means that we also emit notes for changes between the OUT set of the
77 previous block and the IN set of the current block).
78
79 The notes consist of two parts:
80 1. the declaration (from REG_EXPR or MEM_EXPR)
81 2. the location of a variable - it is either a simple register/memory
82 reference (for simple variables, for example int),
83 or a parallel of register/memory references (for a large variables
84 which consist of several parts, for example long long).
85
86 */
87
88 #include "config.h"
89 #include "system.h"
90 #include "coretypes.h"
91 #include "backend.h"
92 #include "target.h"
93 #include "rtl.h"
94 #include "tree.h"
95 #include "cfghooks.h"
96 #include "alloc-pool.h"
97 #include "tree-pass.h"
98 #include "tm_p.h"
99 #include "expmed.h"
100 #include "insn-config.h"
101 #include "regs.h"
102 #include "emit-rtl.h"
103 #include "recog.h"
104 #include "diagnostic.h"
105 #include "alias.h"
106 #include "varasm.h"
107 #include "stor-layout.h"
108 #include "cfgrtl.h"
109 #include "cfganal.h"
110 #include "flags.h"
111 #include "reload.h"
112 #include "dojump.h"
113 #include "explow.h"
114 #include "calls.h"
115 #include "stmt.h"
116 #include "expr.h"
117 #include "tree-dfa.h"
118 #include "tree-ssa.h"
119 #include "cselib.h"
120 #include "params.h"
121 #include "tree-pretty-print.h"
122 #include "rtl-iter.h"
123 #include "fibonacci_heap.h"
124
125 typedef fibonacci_heap <long, basic_block_def> bb_heap_t;
126 typedef fibonacci_node <long, basic_block_def> bb_heap_node_t;
127
128 /* var-tracking.c assumes that tree code with the same value as VALUE rtx code
129 has no chance to appear in REG_EXPR/MEM_EXPRs and isn't a decl.
130 Currently the value is the same as IDENTIFIER_NODE, which has such
131 a property. If this compile time assertion ever fails, make sure that
132 the new tree code that equals (int) VALUE has the same property. */
133 extern char check_value_val[(int) VALUE == (int) IDENTIFIER_NODE ? 1 : -1];
134
135 /* Type of micro operation. */
136 enum micro_operation_type
137 {
138 MO_USE, /* Use location (REG or MEM). */
139 MO_USE_NO_VAR,/* Use location which is not associated with a variable
140 or the variable is not trackable. */
141 MO_VAL_USE, /* Use location which is associated with a value. */
142 MO_VAL_LOC, /* Use location which appears in a debug insn. */
143 MO_VAL_SET, /* Set location associated with a value. */
144 MO_SET, /* Set location. */
145 MO_COPY, /* Copy the same portion of a variable from one
146 location to another. */
147 MO_CLOBBER, /* Clobber location. */
148 MO_CALL, /* Call insn. */
149 MO_ADJUST /* Adjust stack pointer. */
150
151 };
152
153 static const char * const ATTRIBUTE_UNUSED
154 micro_operation_type_name[] = {
155 "MO_USE",
156 "MO_USE_NO_VAR",
157 "MO_VAL_USE",
158 "MO_VAL_LOC",
159 "MO_VAL_SET",
160 "MO_SET",
161 "MO_COPY",
162 "MO_CLOBBER",
163 "MO_CALL",
164 "MO_ADJUST"
165 };
166
167 /* Where shall the note be emitted? BEFORE or AFTER the instruction.
168 Notes emitted as AFTER_CALL are to take effect during the call,
169 rather than after the call. */
170 enum emit_note_where
171 {
172 EMIT_NOTE_BEFORE_INSN,
173 EMIT_NOTE_AFTER_INSN,
174 EMIT_NOTE_AFTER_CALL_INSN
175 };
176
177 /* Structure holding information about micro operation. */
178 struct micro_operation
179 {
180 /* Type of micro operation. */
181 enum micro_operation_type type;
182
183 /* The instruction which the micro operation is in, for MO_USE,
184 MO_USE_NO_VAR, MO_CALL and MO_ADJUST, or the subsequent
185 instruction or note in the original flow (before any var-tracking
186 notes are inserted, to simplify emission of notes), for MO_SET
187 and MO_CLOBBER. */
188 rtx_insn *insn;
189
190 union {
191 /* Location. For MO_SET and MO_COPY, this is the SET that
192 performs the assignment, if known, otherwise it is the target
193 of the assignment. For MO_VAL_USE and MO_VAL_SET, it is a
194 CONCAT of the VALUE and the LOC associated with it. For
195 MO_VAL_LOC, it is a CONCAT of the VALUE and the VAR_LOCATION
196 associated with it. */
197 rtx loc;
198
199 /* Stack adjustment. */
200 HOST_WIDE_INT adjust;
201 } u;
202 };
203
204
205 /* A declaration of a variable, or an RTL value being handled like a
206 declaration. */
207 typedef void *decl_or_value;
208
209 /* Return true if a decl_or_value DV is a DECL or NULL. */
210 static inline bool
211 dv_is_decl_p (decl_or_value dv)
212 {
213 return !dv || (int) TREE_CODE ((tree) dv) != (int) VALUE;
214 }
215
216 /* Return true if a decl_or_value is a VALUE rtl. */
217 static inline bool
218 dv_is_value_p (decl_or_value dv)
219 {
220 return dv && !dv_is_decl_p (dv);
221 }
222
223 /* Return the decl in the decl_or_value. */
224 static inline tree
225 dv_as_decl (decl_or_value dv)
226 {
227 gcc_checking_assert (dv_is_decl_p (dv));
228 return (tree) dv;
229 }
230
231 /* Return the value in the decl_or_value. */
232 static inline rtx
233 dv_as_value (decl_or_value dv)
234 {
235 gcc_checking_assert (dv_is_value_p (dv));
236 return (rtx)dv;
237 }
238
239 /* Return the opaque pointer in the decl_or_value. */
240 static inline void *
241 dv_as_opaque (decl_or_value dv)
242 {
243 return dv;
244 }
245
246
247 /* Description of location of a part of a variable. The content of a physical
248 register is described by a chain of these structures.
249 The chains are pretty short (usually 1 or 2 elements) and thus
250 chain is the best data structure. */
251 struct attrs
252 {
253 /* Pointer to next member of the list. */
254 attrs *next;
255
256 /* The rtx of register. */
257 rtx loc;
258
259 /* The declaration corresponding to LOC. */
260 decl_or_value dv;
261
262 /* Offset from start of DECL. */
263 HOST_WIDE_INT offset;
264 };
265
266 /* Structure for chaining the locations. */
267 struct location_chain
268 {
269 /* Next element in the chain. */
270 location_chain *next;
271
272 /* The location (REG, MEM or VALUE). */
273 rtx loc;
274
275 /* The "value" stored in this location. */
276 rtx set_src;
277
278 /* Initialized? */
279 enum var_init_status init;
280 };
281
282 /* A vector of loc_exp_dep holds the active dependencies of a one-part
283 DV on VALUEs, i.e., the VALUEs expanded so as to form the current
284 location of DV. Each entry is also part of VALUE' s linked-list of
285 backlinks back to DV. */
286 struct loc_exp_dep
287 {
288 /* The dependent DV. */
289 decl_or_value dv;
290 /* The dependency VALUE or DECL_DEBUG. */
291 rtx value;
292 /* The next entry in VALUE's backlinks list. */
293 struct loc_exp_dep *next;
294 /* A pointer to the pointer to this entry (head or prev's next) in
295 the doubly-linked list. */
296 struct loc_exp_dep **pprev;
297 };
298
299
300 /* This data structure holds information about the depth of a variable
301 expansion. */
302 struct expand_depth
303 {
304 /* This measures the complexity of the expanded expression. It
305 grows by one for each level of expansion that adds more than one
306 operand. */
307 int complexity;
308 /* This counts the number of ENTRY_VALUE expressions in an
309 expansion. We want to minimize their use. */
310 int entryvals;
311 };
312
313 /* This data structure is allocated for one-part variables at the time
314 of emitting notes. */
315 struct onepart_aux
316 {
317 /* Doubly-linked list of dependent DVs. These are DVs whose cur_loc
318 computation used the expansion of this variable, and that ought
319 to be notified should this variable change. If the DV's cur_loc
320 expanded to NULL, all components of the loc list are regarded as
321 active, so that any changes in them give us a chance to get a
322 location. Otherwise, only components of the loc that expanded to
323 non-NULL are regarded as active dependencies. */
324 loc_exp_dep *backlinks;
325 /* This holds the LOC that was expanded into cur_loc. We need only
326 mark a one-part variable as changed if the FROM loc is removed,
327 or if it has no known location and a loc is added, or if it gets
328 a change notification from any of its active dependencies. */
329 rtx from;
330 /* The depth of the cur_loc expression. */
331 expand_depth depth;
332 /* Dependencies actively used when expand FROM into cur_loc. */
333 vec<loc_exp_dep, va_heap, vl_embed> deps;
334 };
335
336 /* Structure describing one part of variable. */
337 struct variable_part
338 {
339 /* Chain of locations of the part. */
340 location_chain *loc_chain;
341
342 /* Location which was last emitted to location list. */
343 rtx cur_loc;
344
345 union variable_aux
346 {
347 /* The offset in the variable, if !var->onepart. */
348 HOST_WIDE_INT offset;
349
350 /* Pointer to auxiliary data, if var->onepart and emit_notes. */
351 struct onepart_aux *onepaux;
352 } aux;
353 };
354
355 /* Maximum number of location parts. */
356 #define MAX_VAR_PARTS 16
357
358 /* Enumeration type used to discriminate various types of one-part
359 variables. */
360 enum onepart_enum
361 {
362 /* Not a one-part variable. */
363 NOT_ONEPART = 0,
364 /* A one-part DECL that is not a DEBUG_EXPR_DECL. */
365 ONEPART_VDECL = 1,
366 /* A DEBUG_EXPR_DECL. */
367 ONEPART_DEXPR = 2,
368 /* A VALUE. */
369 ONEPART_VALUE = 3
370 };
371
372 /* Structure describing where the variable is located. */
373 struct variable
374 {
375 /* The declaration of the variable, or an RTL value being handled
376 like a declaration. */
377 decl_or_value dv;
378
379 /* Reference count. */
380 int refcount;
381
382 /* Number of variable parts. */
383 char n_var_parts;
384
385 /* What type of DV this is, according to enum onepart_enum. */
386 ENUM_BITFIELD (onepart_enum) onepart : CHAR_BIT;
387
388 /* True if this variable_def struct is currently in the
389 changed_variables hash table. */
390 bool in_changed_variables;
391
392 /* The variable parts. */
393 variable_part var_part[1];
394 };
395
396 /* Pointer to the BB's information specific to variable tracking pass. */
397 #define VTI(BB) ((variable_tracking_info *) (BB)->aux)
398
399 /* Macro to access MEM_OFFSET as an HOST_WIDE_INT. Evaluates MEM twice. */
400 #define INT_MEM_OFFSET(mem) (MEM_OFFSET_KNOWN_P (mem) ? MEM_OFFSET (mem) : 0)
401
402 #if CHECKING_P && (GCC_VERSION >= 2007)
403
404 /* Access VAR's Ith part's offset, checking that it's not a one-part
405 variable. */
406 #define VAR_PART_OFFSET(var, i) __extension__ \
407 (*({ variable *const __v = (var); \
408 gcc_checking_assert (!__v->onepart); \
409 &__v->var_part[(i)].aux.offset; }))
410
411 /* Access VAR's one-part auxiliary data, checking that it is a
412 one-part variable. */
413 #define VAR_LOC_1PAUX(var) __extension__ \
414 (*({ variable *const __v = (var); \
415 gcc_checking_assert (__v->onepart); \
416 &__v->var_part[0].aux.onepaux; }))
417
418 #else
419 #define VAR_PART_OFFSET(var, i) ((var)->var_part[(i)].aux.offset)
420 #define VAR_LOC_1PAUX(var) ((var)->var_part[0].aux.onepaux)
421 #endif
422
423 /* These are accessor macros for the one-part auxiliary data. When
424 convenient for users, they're guarded by tests that the data was
425 allocated. */
426 #define VAR_LOC_DEP_LST(var) (VAR_LOC_1PAUX (var) \
427 ? VAR_LOC_1PAUX (var)->backlinks \
428 : NULL)
429 #define VAR_LOC_DEP_LSTP(var) (VAR_LOC_1PAUX (var) \
430 ? &VAR_LOC_1PAUX (var)->backlinks \
431 : NULL)
432 #define VAR_LOC_FROM(var) (VAR_LOC_1PAUX (var)->from)
433 #define VAR_LOC_DEPTH(var) (VAR_LOC_1PAUX (var)->depth)
434 #define VAR_LOC_DEP_VEC(var) (VAR_LOC_1PAUX (var) \
435 ? &VAR_LOC_1PAUX (var)->deps \
436 : NULL)
437
438
439
440 typedef unsigned int dvuid;
441
442 /* Return the uid of DV. */
443
444 static inline dvuid
445 dv_uid (decl_or_value dv)
446 {
447 if (dv_is_value_p (dv))
448 return CSELIB_VAL_PTR (dv_as_value (dv))->uid;
449 else
450 return DECL_UID (dv_as_decl (dv));
451 }
452
453 /* Compute the hash from the uid. */
454
455 static inline hashval_t
456 dv_uid2hash (dvuid uid)
457 {
458 return uid;
459 }
460
461 /* The hash function for a mask table in a shared_htab chain. */
462
463 static inline hashval_t
464 dv_htab_hash (decl_or_value dv)
465 {
466 return dv_uid2hash (dv_uid (dv));
467 }
468
469 static void variable_htab_free (void *);
470
471 /* Variable hashtable helpers. */
472
473 struct variable_hasher : pointer_hash <variable>
474 {
475 typedef void *compare_type;
476 static inline hashval_t hash (const variable *);
477 static inline bool equal (const variable *, const void *);
478 static inline void remove (variable *);
479 };
480
481 /* The hash function for variable_htab, computes the hash value
482 from the declaration of variable X. */
483
484 inline hashval_t
485 variable_hasher::hash (const variable *v)
486 {
487 return dv_htab_hash (v->dv);
488 }
489
490 /* Compare the declaration of variable X with declaration Y. */
491
492 inline bool
493 variable_hasher::equal (const variable *v, const void *y)
494 {
495 decl_or_value dv = CONST_CAST2 (decl_or_value, const void *, y);
496
497 return (dv_as_opaque (v->dv) == dv_as_opaque (dv));
498 }
499
500 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
501
502 inline void
503 variable_hasher::remove (variable *var)
504 {
505 variable_htab_free (var);
506 }
507
508 typedef hash_table<variable_hasher> variable_table_type;
509 typedef variable_table_type::iterator variable_iterator_type;
510
511 /* Structure for passing some other parameters to function
512 emit_note_insn_var_location. */
513 struct emit_note_data
514 {
515 /* The instruction which the note will be emitted before/after. */
516 rtx_insn *insn;
517
518 /* Where the note will be emitted (before/after insn)? */
519 enum emit_note_where where;
520
521 /* The variables and values active at this point. */
522 variable_table_type *vars;
523 };
524
525 /* Structure holding a refcounted hash table. If refcount > 1,
526 it must be first unshared before modified. */
527 struct shared_hash
528 {
529 /* Reference count. */
530 int refcount;
531
532 /* Actual hash table. */
533 variable_table_type *htab;
534 };
535
536 /* Structure holding the IN or OUT set for a basic block. */
537 struct dataflow_set
538 {
539 /* Adjustment of stack offset. */
540 HOST_WIDE_INT stack_adjust;
541
542 /* Attributes for registers (lists of attrs). */
543 attrs *regs[FIRST_PSEUDO_REGISTER];
544
545 /* Variable locations. */
546 shared_hash *vars;
547
548 /* Vars that is being traversed. */
549 shared_hash *traversed_vars;
550 };
551
552 /* The structure (one for each basic block) containing the information
553 needed for variable tracking. */
554 struct variable_tracking_info
555 {
556 /* The vector of micro operations. */
557 vec<micro_operation> mos;
558
559 /* The IN and OUT set for dataflow analysis. */
560 dataflow_set in;
561 dataflow_set out;
562
563 /* The permanent-in dataflow set for this block. This is used to
564 hold values for which we had to compute entry values. ??? This
565 should probably be dynamically allocated, to avoid using more
566 memory in non-debug builds. */
567 dataflow_set *permp;
568
569 /* Has the block been visited in DFS? */
570 bool visited;
571
572 /* Has the block been flooded in VTA? */
573 bool flooded;
574
575 };
576
577 /* Alloc pool for struct attrs_def. */
578 object_allocator<attrs> attrs_pool ("attrs pool");
579
580 /* Alloc pool for struct variable_def with MAX_VAR_PARTS entries. */
581
582 static pool_allocator var_pool
583 ("variable_def pool", sizeof (variable) +
584 (MAX_VAR_PARTS - 1) * sizeof (((variable *)NULL)->var_part[0]));
585
586 /* Alloc pool for struct variable_def with a single var_part entry. */
587 static pool_allocator valvar_pool
588 ("small variable_def pool", sizeof (variable));
589
590 /* Alloc pool for struct location_chain. */
591 static object_allocator<location_chain> location_chain_pool
592 ("location_chain pool");
593
594 /* Alloc pool for struct shared_hash. */
595 static object_allocator<shared_hash> shared_hash_pool ("shared_hash pool");
596
597 /* Alloc pool for struct loc_exp_dep_s for NOT_ONEPART variables. */
598 object_allocator<loc_exp_dep> loc_exp_dep_pool ("loc_exp_dep pool");
599
600 /* Changed variables, notes will be emitted for them. */
601 static variable_table_type *changed_variables;
602
603 /* Shall notes be emitted? */
604 static bool emit_notes;
605
606 /* Values whose dynamic location lists have gone empty, but whose
607 cselib location lists are still usable. Use this to hold the
608 current location, the backlinks, etc, during emit_notes. */
609 static variable_table_type *dropped_values;
610
611 /* Empty shared hashtable. */
612 static shared_hash *empty_shared_hash;
613
614 /* Scratch register bitmap used by cselib_expand_value_rtx. */
615 static bitmap scratch_regs = NULL;
616
617 #ifdef HAVE_window_save
618 struct GTY(()) parm_reg {
619 rtx outgoing;
620 rtx incoming;
621 };
622
623
624 /* Vector of windowed parameter registers, if any. */
625 static vec<parm_reg, va_gc> *windowed_parm_regs = NULL;
626 #endif
627
628 /* Variable used to tell whether cselib_process_insn called our hook. */
629 static bool cselib_hook_called;
630
631 /* Local function prototypes. */
632 static void stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
633 HOST_WIDE_INT *);
634 static void insn_stack_adjust_offset_pre_post (rtx_insn *, HOST_WIDE_INT *,
635 HOST_WIDE_INT *);
636 static bool vt_stack_adjustments (void);
637
638 static void init_attrs_list_set (attrs **);
639 static void attrs_list_clear (attrs **);
640 static attrs *attrs_list_member (attrs *, decl_or_value, HOST_WIDE_INT);
641 static void attrs_list_insert (attrs **, decl_or_value, HOST_WIDE_INT, rtx);
642 static void attrs_list_copy (attrs **, attrs *);
643 static void attrs_list_union (attrs **, attrs *);
644
645 static variable **unshare_variable (dataflow_set *set, variable **slot,
646 variable *var, enum var_init_status);
647 static void vars_copy (variable_table_type *, variable_table_type *);
648 static tree var_debug_decl (tree);
649 static void var_reg_set (dataflow_set *, rtx, enum var_init_status, rtx);
650 static void var_reg_delete_and_set (dataflow_set *, rtx, bool,
651 enum var_init_status, rtx);
652 static void var_reg_delete (dataflow_set *, rtx, bool);
653 static void var_regno_delete (dataflow_set *, int);
654 static void var_mem_set (dataflow_set *, rtx, enum var_init_status, rtx);
655 static void var_mem_delete_and_set (dataflow_set *, rtx, bool,
656 enum var_init_status, rtx);
657 static void var_mem_delete (dataflow_set *, rtx, bool);
658
659 static void dataflow_set_init (dataflow_set *);
660 static void dataflow_set_clear (dataflow_set *);
661 static void dataflow_set_copy (dataflow_set *, dataflow_set *);
662 static int variable_union_info_cmp_pos (const void *, const void *);
663 static void dataflow_set_union (dataflow_set *, dataflow_set *);
664 static location_chain *find_loc_in_1pdv (rtx, variable *,
665 variable_table_type *);
666 static bool canon_value_cmp (rtx, rtx);
667 static int loc_cmp (rtx, rtx);
668 static bool variable_part_different_p (variable_part *, variable_part *);
669 static bool onepart_variable_different_p (variable *, variable *);
670 static bool variable_different_p (variable *, variable *);
671 static bool dataflow_set_different (dataflow_set *, dataflow_set *);
672 static void dataflow_set_destroy (dataflow_set *);
673
674 static bool contains_symbol_ref (rtx);
675 static bool track_expr_p (tree, bool);
676 static bool same_variable_part_p (rtx, tree, HOST_WIDE_INT);
677 static void add_uses_1 (rtx *, void *);
678 static void add_stores (rtx, const_rtx, void *);
679 static bool compute_bb_dataflow (basic_block);
680 static bool vt_find_locations (void);
681
682 static void dump_attrs_list (attrs *);
683 static void dump_var (variable *);
684 static void dump_vars (variable_table_type *);
685 static void dump_dataflow_set (dataflow_set *);
686 static void dump_dataflow_sets (void);
687
688 static void set_dv_changed (decl_or_value, bool);
689 static void variable_was_changed (variable *, dataflow_set *);
690 static variable **set_slot_part (dataflow_set *, rtx, variable **,
691 decl_or_value, HOST_WIDE_INT,
692 enum var_init_status, rtx);
693 static void set_variable_part (dataflow_set *, rtx,
694 decl_or_value, HOST_WIDE_INT,
695 enum var_init_status, rtx, enum insert_option);
696 static variable **clobber_slot_part (dataflow_set *, rtx,
697 variable **, HOST_WIDE_INT, rtx);
698 static void clobber_variable_part (dataflow_set *, rtx,
699 decl_or_value, HOST_WIDE_INT, rtx);
700 static variable **delete_slot_part (dataflow_set *, rtx, variable **,
701 HOST_WIDE_INT);
702 static void delete_variable_part (dataflow_set *, rtx,
703 decl_or_value, HOST_WIDE_INT);
704 static void emit_notes_in_bb (basic_block, dataflow_set *);
705 static void vt_emit_notes (void);
706
707 static bool vt_get_decl_and_offset (rtx, tree *, HOST_WIDE_INT *);
708 static void vt_add_function_parameters (void);
709 static bool vt_initialize (void);
710 static void vt_finalize (void);
711
712 /* Callback for stack_adjust_offset_pre_post, called via for_each_inc_dec. */
713
714 static int
715 stack_adjust_offset_pre_post_cb (rtx, rtx op, rtx dest, rtx src, rtx srcoff,
716 void *arg)
717 {
718 if (dest != stack_pointer_rtx)
719 return 0;
720
721 switch (GET_CODE (op))
722 {
723 case PRE_INC:
724 case PRE_DEC:
725 ((HOST_WIDE_INT *)arg)[0] -= INTVAL (srcoff);
726 return 0;
727 case POST_INC:
728 case POST_DEC:
729 ((HOST_WIDE_INT *)arg)[1] -= INTVAL (srcoff);
730 return 0;
731 case PRE_MODIFY:
732 case POST_MODIFY:
733 /* We handle only adjustments by constant amount. */
734 gcc_assert (GET_CODE (src) == PLUS
735 && CONST_INT_P (XEXP (src, 1))
736 && XEXP (src, 0) == stack_pointer_rtx);
737 ((HOST_WIDE_INT *)arg)[GET_CODE (op) == POST_MODIFY]
738 -= INTVAL (XEXP (src, 1));
739 return 0;
740 default:
741 gcc_unreachable ();
742 }
743 }
744
745 /* Given a SET, calculate the amount of stack adjustment it contains
746 PRE- and POST-modifying stack pointer.
747 This function is similar to stack_adjust_offset. */
748
749 static void
750 stack_adjust_offset_pre_post (rtx pattern, HOST_WIDE_INT *pre,
751 HOST_WIDE_INT *post)
752 {
753 rtx src = SET_SRC (pattern);
754 rtx dest = SET_DEST (pattern);
755 enum rtx_code code;
756
757 if (dest == stack_pointer_rtx)
758 {
759 /* (set (reg sp) (plus (reg sp) (const_int))) */
760 code = GET_CODE (src);
761 if (! (code == PLUS || code == MINUS)
762 || XEXP (src, 0) != stack_pointer_rtx
763 || !CONST_INT_P (XEXP (src, 1)))
764 return;
765
766 if (code == MINUS)
767 *post += INTVAL (XEXP (src, 1));
768 else
769 *post -= INTVAL (XEXP (src, 1));
770 return;
771 }
772 HOST_WIDE_INT res[2] = { 0, 0 };
773 for_each_inc_dec (pattern, stack_adjust_offset_pre_post_cb, res);
774 *pre += res[0];
775 *post += res[1];
776 }
777
778 /* Given an INSN, calculate the amount of stack adjustment it contains
779 PRE- and POST-modifying stack pointer. */
780
781 static void
782 insn_stack_adjust_offset_pre_post (rtx_insn *insn, HOST_WIDE_INT *pre,
783 HOST_WIDE_INT *post)
784 {
785 rtx pattern;
786
787 *pre = 0;
788 *post = 0;
789
790 pattern = PATTERN (insn);
791 if (RTX_FRAME_RELATED_P (insn))
792 {
793 rtx expr = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
794 if (expr)
795 pattern = XEXP (expr, 0);
796 }
797
798 if (GET_CODE (pattern) == SET)
799 stack_adjust_offset_pre_post (pattern, pre, post);
800 else if (GET_CODE (pattern) == PARALLEL
801 || GET_CODE (pattern) == SEQUENCE)
802 {
803 int i;
804
805 /* There may be stack adjustments inside compound insns. Search
806 for them. */
807 for ( i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
808 if (GET_CODE (XVECEXP (pattern, 0, i)) == SET)
809 stack_adjust_offset_pre_post (XVECEXP (pattern, 0, i), pre, post);
810 }
811 }
812
813 /* Compute stack adjustments for all blocks by traversing DFS tree.
814 Return true when the adjustments on all incoming edges are consistent.
815 Heavily borrowed from pre_and_rev_post_order_compute. */
816
817 static bool
818 vt_stack_adjustments (void)
819 {
820 edge_iterator *stack;
821 int sp;
822
823 /* Initialize entry block. */
824 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->visited = true;
825 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->in.stack_adjust
826 = INCOMING_FRAME_SP_OFFSET;
827 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->out.stack_adjust
828 = INCOMING_FRAME_SP_OFFSET;
829
830 /* Allocate stack for back-tracking up CFG. */
831 stack = XNEWVEC (edge_iterator, n_basic_blocks_for_fn (cfun) + 1);
832 sp = 0;
833
834 /* Push the first edge on to the stack. */
835 stack[sp++] = ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs);
836
837 while (sp)
838 {
839 edge_iterator ei;
840 basic_block src;
841 basic_block dest;
842
843 /* Look at the edge on the top of the stack. */
844 ei = stack[sp - 1];
845 src = ei_edge (ei)->src;
846 dest = ei_edge (ei)->dest;
847
848 /* Check if the edge destination has been visited yet. */
849 if (!VTI (dest)->visited)
850 {
851 rtx_insn *insn;
852 HOST_WIDE_INT pre, post, offset;
853 VTI (dest)->visited = true;
854 VTI (dest)->in.stack_adjust = offset = VTI (src)->out.stack_adjust;
855
856 if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
857 for (insn = BB_HEAD (dest);
858 insn != NEXT_INSN (BB_END (dest));
859 insn = NEXT_INSN (insn))
860 if (INSN_P (insn))
861 {
862 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
863 offset += pre + post;
864 }
865
866 VTI (dest)->out.stack_adjust = offset;
867
868 if (EDGE_COUNT (dest->succs) > 0)
869 /* Since the DEST node has been visited for the first
870 time, check its successors. */
871 stack[sp++] = ei_start (dest->succs);
872 }
873 else
874 {
875 /* We can end up with different stack adjustments for the exit block
876 of a shrink-wrapped function if stack_adjust_offset_pre_post
877 doesn't understand the rtx pattern used to restore the stack
878 pointer in the epilogue. For example, on s390(x), the stack
879 pointer is often restored via a load-multiple instruction
880 and so no stack_adjust offset is recorded for it. This means
881 that the stack offset at the end of the epilogue block is the
882 the same as the offset before the epilogue, whereas other paths
883 to the exit block will have the correct stack_adjust.
884
885 It is safe to ignore these differences because (a) we never
886 use the stack_adjust for the exit block in this pass and
887 (b) dwarf2cfi checks whether the CFA notes in a shrink-wrapped
888 function are correct.
889
890 We must check whether the adjustments on other edges are
891 the same though. */
892 if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
893 && VTI (dest)->in.stack_adjust != VTI (src)->out.stack_adjust)
894 {
895 free (stack);
896 return false;
897 }
898
899 if (! ei_one_before_end_p (ei))
900 /* Go to the next edge. */
901 ei_next (&stack[sp - 1]);
902 else
903 /* Return to previous level if there are no more edges. */
904 sp--;
905 }
906 }
907
908 free (stack);
909 return true;
910 }
911
912 /* arg_pointer_rtx resp. frame_pointer_rtx if stack_pointer_rtx or
913 hard_frame_pointer_rtx is being mapped to it and offset for it. */
914 static rtx cfa_base_rtx;
915 static HOST_WIDE_INT cfa_base_offset;
916
917 /* Compute a CFA-based value for an ADJUSTMENT made to stack_pointer_rtx
918 or hard_frame_pointer_rtx. */
919
920 static inline rtx
921 compute_cfa_pointer (HOST_WIDE_INT adjustment)
922 {
923 return plus_constant (Pmode, cfa_base_rtx, adjustment + cfa_base_offset);
924 }
925
926 /* Adjustment for hard_frame_pointer_rtx to cfa base reg,
927 or -1 if the replacement shouldn't be done. */
928 static HOST_WIDE_INT hard_frame_pointer_adjustment = -1;
929
930 /* Data for adjust_mems callback. */
931
932 struct adjust_mem_data
933 {
934 bool store;
935 machine_mode mem_mode;
936 HOST_WIDE_INT stack_adjust;
937 rtx_expr_list *side_effects;
938 };
939
940 /* Helper for adjust_mems. Return true if X is suitable for
941 transformation of wider mode arithmetics to narrower mode. */
942
943 static bool
944 use_narrower_mode_test (rtx x, const_rtx subreg)
945 {
946 subrtx_var_iterator::array_type array;
947 FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
948 {
949 rtx x = *iter;
950 if (CONSTANT_P (x))
951 iter.skip_subrtxes ();
952 else
953 switch (GET_CODE (x))
954 {
955 case REG:
956 if (cselib_lookup (x, GET_MODE (SUBREG_REG (subreg)), 0, VOIDmode))
957 return false;
958 if (!validate_subreg (GET_MODE (subreg), GET_MODE (x), x,
959 subreg_lowpart_offset (GET_MODE (subreg),
960 GET_MODE (x))))
961 return false;
962 break;
963 case PLUS:
964 case MINUS:
965 case MULT:
966 break;
967 case ASHIFT:
968 iter.substitute (XEXP (x, 0));
969 break;
970 default:
971 return false;
972 }
973 }
974 return true;
975 }
976
977 /* Transform X into narrower mode MODE from wider mode WMODE. */
978
979 static rtx
980 use_narrower_mode (rtx x, machine_mode mode, machine_mode wmode)
981 {
982 rtx op0, op1;
983 if (CONSTANT_P (x))
984 return lowpart_subreg (mode, x, wmode);
985 switch (GET_CODE (x))
986 {
987 case REG:
988 return lowpart_subreg (mode, x, wmode);
989 case PLUS:
990 case MINUS:
991 case MULT:
992 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
993 op1 = use_narrower_mode (XEXP (x, 1), mode, wmode);
994 return simplify_gen_binary (GET_CODE (x), mode, op0, op1);
995 case ASHIFT:
996 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
997 op1 = XEXP (x, 1);
998 /* Ensure shift amount is not wider than mode. */
999 if (GET_MODE (op1) == VOIDmode)
1000 op1 = lowpart_subreg (mode, op1, wmode);
1001 else if (GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (GET_MODE (op1)))
1002 op1 = lowpart_subreg (mode, op1, GET_MODE (op1));
1003 return simplify_gen_binary (ASHIFT, mode, op0, op1);
1004 default:
1005 gcc_unreachable ();
1006 }
1007 }
1008
1009 /* Helper function for adjusting used MEMs. */
1010
1011 static rtx
1012 adjust_mems (rtx loc, const_rtx old_rtx, void *data)
1013 {
1014 struct adjust_mem_data *amd = (struct adjust_mem_data *) data;
1015 rtx mem, addr = loc, tem;
1016 machine_mode mem_mode_save;
1017 bool store_save;
1018 switch (GET_CODE (loc))
1019 {
1020 case REG:
1021 /* Don't do any sp or fp replacements outside of MEM addresses
1022 on the LHS. */
1023 if (amd->mem_mode == VOIDmode && amd->store)
1024 return loc;
1025 if (loc == stack_pointer_rtx
1026 && !frame_pointer_needed
1027 && cfa_base_rtx)
1028 return compute_cfa_pointer (amd->stack_adjust);
1029 else if (loc == hard_frame_pointer_rtx
1030 && frame_pointer_needed
1031 && hard_frame_pointer_adjustment != -1
1032 && cfa_base_rtx)
1033 return compute_cfa_pointer (hard_frame_pointer_adjustment);
1034 gcc_checking_assert (loc != virtual_incoming_args_rtx);
1035 return loc;
1036 case MEM:
1037 mem = loc;
1038 if (!amd->store)
1039 {
1040 mem = targetm.delegitimize_address (mem);
1041 if (mem != loc && !MEM_P (mem))
1042 return simplify_replace_fn_rtx (mem, old_rtx, adjust_mems, data);
1043 }
1044
1045 addr = XEXP (mem, 0);
1046 mem_mode_save = amd->mem_mode;
1047 amd->mem_mode = GET_MODE (mem);
1048 store_save = amd->store;
1049 amd->store = false;
1050 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1051 amd->store = store_save;
1052 amd->mem_mode = mem_mode_save;
1053 if (mem == loc)
1054 addr = targetm.delegitimize_address (addr);
1055 if (addr != XEXP (mem, 0))
1056 mem = replace_equiv_address_nv (mem, addr);
1057 if (!amd->store)
1058 mem = avoid_constant_pool_reference (mem);
1059 return mem;
1060 case PRE_INC:
1061 case PRE_DEC:
1062 addr = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
1063 gen_int_mode (GET_CODE (loc) == PRE_INC
1064 ? GET_MODE_SIZE (amd->mem_mode)
1065 : -GET_MODE_SIZE (amd->mem_mode),
1066 GET_MODE (loc)));
1067 case POST_INC:
1068 case POST_DEC:
1069 if (addr == loc)
1070 addr = XEXP (loc, 0);
1071 gcc_assert (amd->mem_mode != VOIDmode && amd->mem_mode != BLKmode);
1072 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1073 tem = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
1074 gen_int_mode ((GET_CODE (loc) == PRE_INC
1075 || GET_CODE (loc) == POST_INC)
1076 ? GET_MODE_SIZE (amd->mem_mode)
1077 : -GET_MODE_SIZE (amd->mem_mode),
1078 GET_MODE (loc)));
1079 store_save = amd->store;
1080 amd->store = false;
1081 tem = simplify_replace_fn_rtx (tem, old_rtx, adjust_mems, data);
1082 amd->store = store_save;
1083 amd->side_effects = alloc_EXPR_LIST (0,
1084 gen_rtx_SET (XEXP (loc, 0), tem),
1085 amd->side_effects);
1086 return addr;
1087 case PRE_MODIFY:
1088 addr = XEXP (loc, 1);
1089 case POST_MODIFY:
1090 if (addr == loc)
1091 addr = XEXP (loc, 0);
1092 gcc_assert (amd->mem_mode != VOIDmode);
1093 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1094 store_save = amd->store;
1095 amd->store = false;
1096 tem = simplify_replace_fn_rtx (XEXP (loc, 1), old_rtx,
1097 adjust_mems, data);
1098 amd->store = store_save;
1099 amd->side_effects = alloc_EXPR_LIST (0,
1100 gen_rtx_SET (XEXP (loc, 0), tem),
1101 amd->side_effects);
1102 return addr;
1103 case SUBREG:
1104 /* First try without delegitimization of whole MEMs and
1105 avoid_constant_pool_reference, which is more likely to succeed. */
1106 store_save = amd->store;
1107 amd->store = true;
1108 addr = simplify_replace_fn_rtx (SUBREG_REG (loc), old_rtx, adjust_mems,
1109 data);
1110 amd->store = store_save;
1111 mem = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1112 if (mem == SUBREG_REG (loc))
1113 {
1114 tem = loc;
1115 goto finish_subreg;
1116 }
1117 tem = simplify_gen_subreg (GET_MODE (loc), mem,
1118 GET_MODE (SUBREG_REG (loc)),
1119 SUBREG_BYTE (loc));
1120 if (tem)
1121 goto finish_subreg;
1122 tem = simplify_gen_subreg (GET_MODE (loc), addr,
1123 GET_MODE (SUBREG_REG (loc)),
1124 SUBREG_BYTE (loc));
1125 if (tem == NULL_RTX)
1126 tem = gen_rtx_raw_SUBREG (GET_MODE (loc), addr, SUBREG_BYTE (loc));
1127 finish_subreg:
1128 if (MAY_HAVE_DEBUG_INSNS
1129 && GET_CODE (tem) == SUBREG
1130 && (GET_CODE (SUBREG_REG (tem)) == PLUS
1131 || GET_CODE (SUBREG_REG (tem)) == MINUS
1132 || GET_CODE (SUBREG_REG (tem)) == MULT
1133 || GET_CODE (SUBREG_REG (tem)) == ASHIFT)
1134 && (GET_MODE_CLASS (GET_MODE (tem)) == MODE_INT
1135 || GET_MODE_CLASS (GET_MODE (tem)) == MODE_PARTIAL_INT)
1136 && (GET_MODE_CLASS (GET_MODE (SUBREG_REG (tem))) == MODE_INT
1137 || GET_MODE_CLASS (GET_MODE (SUBREG_REG (tem))) == MODE_PARTIAL_INT)
1138 && GET_MODE_PRECISION (GET_MODE (tem))
1139 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (tem)))
1140 && subreg_lowpart_p (tem)
1141 && use_narrower_mode_test (SUBREG_REG (tem), tem))
1142 return use_narrower_mode (SUBREG_REG (tem), GET_MODE (tem),
1143 GET_MODE (SUBREG_REG (tem)));
1144 return tem;
1145 case ASM_OPERANDS:
1146 /* Don't do any replacements in second and following
1147 ASM_OPERANDS of inline-asm with multiple sets.
1148 ASM_OPERANDS_INPUT_VEC, ASM_OPERANDS_INPUT_CONSTRAINT_VEC
1149 and ASM_OPERANDS_LABEL_VEC need to be equal between
1150 all the ASM_OPERANDs in the insn and adjust_insn will
1151 fix this up. */
1152 if (ASM_OPERANDS_OUTPUT_IDX (loc) != 0)
1153 return loc;
1154 break;
1155 default:
1156 break;
1157 }
1158 return NULL_RTX;
1159 }
1160
1161 /* Helper function for replacement of uses. */
1162
1163 static void
1164 adjust_mem_uses (rtx *x, void *data)
1165 {
1166 rtx new_x = simplify_replace_fn_rtx (*x, NULL_RTX, adjust_mems, data);
1167 if (new_x != *x)
1168 validate_change (NULL_RTX, x, new_x, true);
1169 }
1170
1171 /* Helper function for replacement of stores. */
1172
1173 static void
1174 adjust_mem_stores (rtx loc, const_rtx expr, void *data)
1175 {
1176 if (MEM_P (loc))
1177 {
1178 rtx new_dest = simplify_replace_fn_rtx (SET_DEST (expr), NULL_RTX,
1179 adjust_mems, data);
1180 if (new_dest != SET_DEST (expr))
1181 {
1182 rtx xexpr = CONST_CAST_RTX (expr);
1183 validate_change (NULL_RTX, &SET_DEST (xexpr), new_dest, true);
1184 }
1185 }
1186 }
1187
1188 /* Simplify INSN. Remove all {PRE,POST}_{INC,DEC,MODIFY} rtxes,
1189 replace them with their value in the insn and add the side-effects
1190 as other sets to the insn. */
1191
1192 static void
1193 adjust_insn (basic_block bb, rtx_insn *insn)
1194 {
1195 struct adjust_mem_data amd;
1196 rtx set;
1197
1198 #ifdef HAVE_window_save
1199 /* If the target machine has an explicit window save instruction, the
1200 transformation OUTGOING_REGNO -> INCOMING_REGNO is done there. */
1201 if (RTX_FRAME_RELATED_P (insn)
1202 && find_reg_note (insn, REG_CFA_WINDOW_SAVE, NULL_RTX))
1203 {
1204 unsigned int i, nregs = vec_safe_length (windowed_parm_regs);
1205 rtx rtl = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (nregs * 2));
1206 parm_reg *p;
1207
1208 FOR_EACH_VEC_SAFE_ELT (windowed_parm_regs, i, p)
1209 {
1210 XVECEXP (rtl, 0, i * 2)
1211 = gen_rtx_SET (p->incoming, p->outgoing);
1212 /* Do not clobber the attached DECL, but only the REG. */
1213 XVECEXP (rtl, 0, i * 2 + 1)
1214 = gen_rtx_CLOBBER (GET_MODE (p->outgoing),
1215 gen_raw_REG (GET_MODE (p->outgoing),
1216 REGNO (p->outgoing)));
1217 }
1218
1219 validate_change (NULL_RTX, &PATTERN (insn), rtl, true);
1220 return;
1221 }
1222 #endif
1223
1224 amd.mem_mode = VOIDmode;
1225 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
1226 amd.side_effects = NULL;
1227
1228 amd.store = true;
1229 note_stores (PATTERN (insn), adjust_mem_stores, &amd);
1230
1231 amd.store = false;
1232 if (GET_CODE (PATTERN (insn)) == PARALLEL
1233 && asm_noperands (PATTERN (insn)) > 0
1234 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1235 {
1236 rtx body, set0;
1237 int i;
1238
1239 /* inline-asm with multiple sets is tiny bit more complicated,
1240 because the 3 vectors in ASM_OPERANDS need to be shared between
1241 all ASM_OPERANDS in the instruction. adjust_mems will
1242 not touch ASM_OPERANDS other than the first one, asm_noperands
1243 test above needs to be called before that (otherwise it would fail)
1244 and afterwards this code fixes it up. */
1245 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1246 body = PATTERN (insn);
1247 set0 = XVECEXP (body, 0, 0);
1248 gcc_checking_assert (GET_CODE (set0) == SET
1249 && GET_CODE (SET_SRC (set0)) == ASM_OPERANDS
1250 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set0)) == 0);
1251 for (i = 1; i < XVECLEN (body, 0); i++)
1252 if (GET_CODE (XVECEXP (body, 0, i)) != SET)
1253 break;
1254 else
1255 {
1256 set = XVECEXP (body, 0, i);
1257 gcc_checking_assert (GET_CODE (SET_SRC (set)) == ASM_OPERANDS
1258 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set))
1259 == i);
1260 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (set))
1261 != ASM_OPERANDS_INPUT_VEC (SET_SRC (set0))
1262 || ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set))
1263 != ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0))
1264 || ASM_OPERANDS_LABEL_VEC (SET_SRC (set))
1265 != ASM_OPERANDS_LABEL_VEC (SET_SRC (set0)))
1266 {
1267 rtx newsrc = shallow_copy_rtx (SET_SRC (set));
1268 ASM_OPERANDS_INPUT_VEC (newsrc)
1269 = ASM_OPERANDS_INPUT_VEC (SET_SRC (set0));
1270 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (newsrc)
1271 = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0));
1272 ASM_OPERANDS_LABEL_VEC (newsrc)
1273 = ASM_OPERANDS_LABEL_VEC (SET_SRC (set0));
1274 validate_change (NULL_RTX, &SET_SRC (set), newsrc, true);
1275 }
1276 }
1277 }
1278 else
1279 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1280
1281 /* For read-only MEMs containing some constant, prefer those
1282 constants. */
1283 set = single_set (insn);
1284 if (set && MEM_P (SET_SRC (set)) && MEM_READONLY_P (SET_SRC (set)))
1285 {
1286 rtx note = find_reg_equal_equiv_note (insn);
1287
1288 if (note && CONSTANT_P (XEXP (note, 0)))
1289 validate_change (NULL_RTX, &SET_SRC (set), XEXP (note, 0), true);
1290 }
1291
1292 if (amd.side_effects)
1293 {
1294 rtx *pat, new_pat, s;
1295 int i, oldn, newn;
1296
1297 pat = &PATTERN (insn);
1298 if (GET_CODE (*pat) == COND_EXEC)
1299 pat = &COND_EXEC_CODE (*pat);
1300 if (GET_CODE (*pat) == PARALLEL)
1301 oldn = XVECLEN (*pat, 0);
1302 else
1303 oldn = 1;
1304 for (s = amd.side_effects, newn = 0; s; newn++)
1305 s = XEXP (s, 1);
1306 new_pat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (oldn + newn));
1307 if (GET_CODE (*pat) == PARALLEL)
1308 for (i = 0; i < oldn; i++)
1309 XVECEXP (new_pat, 0, i) = XVECEXP (*pat, 0, i);
1310 else
1311 XVECEXP (new_pat, 0, 0) = *pat;
1312 for (s = amd.side_effects, i = oldn; i < oldn + newn; i++, s = XEXP (s, 1))
1313 XVECEXP (new_pat, 0, i) = XEXP (s, 0);
1314 free_EXPR_LIST_list (&amd.side_effects);
1315 validate_change (NULL_RTX, pat, new_pat, true);
1316 }
1317 }
1318
1319 /* Return the DEBUG_EXPR of a DEBUG_EXPR_DECL or the VALUE in DV. */
1320 static inline rtx
1321 dv_as_rtx (decl_or_value dv)
1322 {
1323 tree decl;
1324
1325 if (dv_is_value_p (dv))
1326 return dv_as_value (dv);
1327
1328 decl = dv_as_decl (dv);
1329
1330 gcc_checking_assert (TREE_CODE (decl) == DEBUG_EXPR_DECL);
1331 return DECL_RTL_KNOWN_SET (decl);
1332 }
1333
1334 /* Return nonzero if a decl_or_value must not have more than one
1335 variable part. The returned value discriminates among various
1336 kinds of one-part DVs ccording to enum onepart_enum. */
1337 static inline onepart_enum
1338 dv_onepart_p (decl_or_value dv)
1339 {
1340 tree decl;
1341
1342 if (!MAY_HAVE_DEBUG_INSNS)
1343 return NOT_ONEPART;
1344
1345 if (dv_is_value_p (dv))
1346 return ONEPART_VALUE;
1347
1348 decl = dv_as_decl (dv);
1349
1350 if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
1351 return ONEPART_DEXPR;
1352
1353 if (target_for_debug_bind (decl) != NULL_TREE)
1354 return ONEPART_VDECL;
1355
1356 return NOT_ONEPART;
1357 }
1358
1359 /* Return the variable pool to be used for a dv of type ONEPART. */
1360 static inline pool_allocator &
1361 onepart_pool (onepart_enum onepart)
1362 {
1363 return onepart ? valvar_pool : var_pool;
1364 }
1365
1366 /* Allocate a variable_def from the corresponding variable pool. */
1367 static inline variable *
1368 onepart_pool_allocate (onepart_enum onepart)
1369 {
1370 return (variable*) onepart_pool (onepart).allocate ();
1371 }
1372
1373 /* Build a decl_or_value out of a decl. */
1374 static inline decl_or_value
1375 dv_from_decl (tree decl)
1376 {
1377 decl_or_value dv;
1378 dv = decl;
1379 gcc_checking_assert (dv_is_decl_p (dv));
1380 return dv;
1381 }
1382
1383 /* Build a decl_or_value out of a value. */
1384 static inline decl_or_value
1385 dv_from_value (rtx value)
1386 {
1387 decl_or_value dv;
1388 dv = value;
1389 gcc_checking_assert (dv_is_value_p (dv));
1390 return dv;
1391 }
1392
1393 /* Return a value or the decl of a debug_expr as a decl_or_value. */
1394 static inline decl_or_value
1395 dv_from_rtx (rtx x)
1396 {
1397 decl_or_value dv;
1398
1399 switch (GET_CODE (x))
1400 {
1401 case DEBUG_EXPR:
1402 dv = dv_from_decl (DEBUG_EXPR_TREE_DECL (x));
1403 gcc_checking_assert (DECL_RTL_KNOWN_SET (DEBUG_EXPR_TREE_DECL (x)) == x);
1404 break;
1405
1406 case VALUE:
1407 dv = dv_from_value (x);
1408 break;
1409
1410 default:
1411 gcc_unreachable ();
1412 }
1413
1414 return dv;
1415 }
1416
1417 extern void debug_dv (decl_or_value dv);
1418
1419 DEBUG_FUNCTION void
1420 debug_dv (decl_or_value dv)
1421 {
1422 if (dv_is_value_p (dv))
1423 debug_rtx (dv_as_value (dv));
1424 else
1425 debug_generic_stmt (dv_as_decl (dv));
1426 }
1427
1428 static void loc_exp_dep_clear (variable *var);
1429
1430 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
1431
1432 static void
1433 variable_htab_free (void *elem)
1434 {
1435 int i;
1436 variable *var = (variable *) elem;
1437 location_chain *node, *next;
1438
1439 gcc_checking_assert (var->refcount > 0);
1440
1441 var->refcount--;
1442 if (var->refcount > 0)
1443 return;
1444
1445 for (i = 0; i < var->n_var_parts; i++)
1446 {
1447 for (node = var->var_part[i].loc_chain; node; node = next)
1448 {
1449 next = node->next;
1450 delete node;
1451 }
1452 var->var_part[i].loc_chain = NULL;
1453 }
1454 if (var->onepart && VAR_LOC_1PAUX (var))
1455 {
1456 loc_exp_dep_clear (var);
1457 if (VAR_LOC_DEP_LST (var))
1458 VAR_LOC_DEP_LST (var)->pprev = NULL;
1459 XDELETE (VAR_LOC_1PAUX (var));
1460 /* These may be reused across functions, so reset
1461 e.g. NO_LOC_P. */
1462 if (var->onepart == ONEPART_DEXPR)
1463 set_dv_changed (var->dv, true);
1464 }
1465 onepart_pool (var->onepart).remove (var);
1466 }
1467
1468 /* Initialize the set (array) SET of attrs to empty lists. */
1469
1470 static void
1471 init_attrs_list_set (attrs **set)
1472 {
1473 int i;
1474
1475 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1476 set[i] = NULL;
1477 }
1478
1479 /* Make the list *LISTP empty. */
1480
1481 static void
1482 attrs_list_clear (attrs **listp)
1483 {
1484 attrs *list, *next;
1485
1486 for (list = *listp; list; list = next)
1487 {
1488 next = list->next;
1489 delete list;
1490 }
1491 *listp = NULL;
1492 }
1493
1494 /* Return true if the pair of DECL and OFFSET is the member of the LIST. */
1495
1496 static attrs *
1497 attrs_list_member (attrs *list, decl_or_value dv, HOST_WIDE_INT offset)
1498 {
1499 for (; list; list = list->next)
1500 if (dv_as_opaque (list->dv) == dv_as_opaque (dv) && list->offset == offset)
1501 return list;
1502 return NULL;
1503 }
1504
1505 /* Insert the triplet DECL, OFFSET, LOC to the list *LISTP. */
1506
1507 static void
1508 attrs_list_insert (attrs **listp, decl_or_value dv,
1509 HOST_WIDE_INT offset, rtx loc)
1510 {
1511 attrs *list = new attrs;
1512 list->loc = loc;
1513 list->dv = dv;
1514 list->offset = offset;
1515 list->next = *listp;
1516 *listp = list;
1517 }
1518
1519 /* Copy all nodes from SRC and create a list *DSTP of the copies. */
1520
1521 static void
1522 attrs_list_copy (attrs **dstp, attrs *src)
1523 {
1524 attrs_list_clear (dstp);
1525 for (; src; src = src->next)
1526 {
1527 attrs *n = new attrs;
1528 n->loc = src->loc;
1529 n->dv = src->dv;
1530 n->offset = src->offset;
1531 n->next = *dstp;
1532 *dstp = n;
1533 }
1534 }
1535
1536 /* Add all nodes from SRC which are not in *DSTP to *DSTP. */
1537
1538 static void
1539 attrs_list_union (attrs **dstp, attrs *src)
1540 {
1541 for (; src; src = src->next)
1542 {
1543 if (!attrs_list_member (*dstp, src->dv, src->offset))
1544 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1545 }
1546 }
1547
1548 /* Combine nodes that are not onepart nodes from SRC and SRC2 into
1549 *DSTP. */
1550
1551 static void
1552 attrs_list_mpdv_union (attrs **dstp, attrs *src, attrs *src2)
1553 {
1554 gcc_assert (!*dstp);
1555 for (; src; src = src->next)
1556 {
1557 if (!dv_onepart_p (src->dv))
1558 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1559 }
1560 for (src = src2; src; src = src->next)
1561 {
1562 if (!dv_onepart_p (src->dv)
1563 && !attrs_list_member (*dstp, src->dv, src->offset))
1564 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1565 }
1566 }
1567
1568 /* Shared hashtable support. */
1569
1570 /* Return true if VARS is shared. */
1571
1572 static inline bool
1573 shared_hash_shared (shared_hash *vars)
1574 {
1575 return vars->refcount > 1;
1576 }
1577
1578 /* Return the hash table for VARS. */
1579
1580 static inline variable_table_type *
1581 shared_hash_htab (shared_hash *vars)
1582 {
1583 return vars->htab;
1584 }
1585
1586 /* Return true if VAR is shared, or maybe because VARS is shared. */
1587
1588 static inline bool
1589 shared_var_p (variable *var, shared_hash *vars)
1590 {
1591 /* Don't count an entry in the changed_variables table as a duplicate. */
1592 return ((var->refcount > 1 + (int) var->in_changed_variables)
1593 || shared_hash_shared (vars));
1594 }
1595
1596 /* Copy variables into a new hash table. */
1597
1598 static shared_hash *
1599 shared_hash_unshare (shared_hash *vars)
1600 {
1601 shared_hash *new_vars = new shared_hash;
1602 gcc_assert (vars->refcount > 1);
1603 new_vars->refcount = 1;
1604 new_vars->htab = new variable_table_type (vars->htab->elements () + 3);
1605 vars_copy (new_vars->htab, vars->htab);
1606 vars->refcount--;
1607 return new_vars;
1608 }
1609
1610 /* Increment reference counter on VARS and return it. */
1611
1612 static inline shared_hash *
1613 shared_hash_copy (shared_hash *vars)
1614 {
1615 vars->refcount++;
1616 return vars;
1617 }
1618
1619 /* Decrement reference counter and destroy hash table if not shared
1620 anymore. */
1621
1622 static void
1623 shared_hash_destroy (shared_hash *vars)
1624 {
1625 gcc_checking_assert (vars->refcount > 0);
1626 if (--vars->refcount == 0)
1627 {
1628 delete vars->htab;
1629 delete vars;
1630 }
1631 }
1632
1633 /* Unshare *PVARS if shared and return slot for DV. If INS is
1634 INSERT, insert it if not already present. */
1635
1636 static inline variable **
1637 shared_hash_find_slot_unshare_1 (shared_hash **pvars, decl_or_value dv,
1638 hashval_t dvhash, enum insert_option ins)
1639 {
1640 if (shared_hash_shared (*pvars))
1641 *pvars = shared_hash_unshare (*pvars);
1642 return shared_hash_htab (*pvars)->find_slot_with_hash (dv, dvhash, ins);
1643 }
1644
1645 static inline variable **
1646 shared_hash_find_slot_unshare (shared_hash **pvars, decl_or_value dv,
1647 enum insert_option ins)
1648 {
1649 return shared_hash_find_slot_unshare_1 (pvars, dv, dv_htab_hash (dv), ins);
1650 }
1651
1652 /* Return slot for DV, if it is already present in the hash table.
1653 If it is not present, insert it only VARS is not shared, otherwise
1654 return NULL. */
1655
1656 static inline variable **
1657 shared_hash_find_slot_1 (shared_hash *vars, decl_or_value dv, hashval_t dvhash)
1658 {
1659 return shared_hash_htab (vars)->find_slot_with_hash (dv, dvhash,
1660 shared_hash_shared (vars)
1661 ? NO_INSERT : INSERT);
1662 }
1663
1664 static inline variable **
1665 shared_hash_find_slot (shared_hash *vars, decl_or_value dv)
1666 {
1667 return shared_hash_find_slot_1 (vars, dv, dv_htab_hash (dv));
1668 }
1669
1670 /* Return slot for DV only if it is already present in the hash table. */
1671
1672 static inline variable **
1673 shared_hash_find_slot_noinsert_1 (shared_hash *vars, decl_or_value dv,
1674 hashval_t dvhash)
1675 {
1676 return shared_hash_htab (vars)->find_slot_with_hash (dv, dvhash, NO_INSERT);
1677 }
1678
1679 static inline variable **
1680 shared_hash_find_slot_noinsert (shared_hash *vars, decl_or_value dv)
1681 {
1682 return shared_hash_find_slot_noinsert_1 (vars, dv, dv_htab_hash (dv));
1683 }
1684
1685 /* Return variable for DV or NULL if not already present in the hash
1686 table. */
1687
1688 static inline variable *
1689 shared_hash_find_1 (shared_hash *vars, decl_or_value dv, hashval_t dvhash)
1690 {
1691 return shared_hash_htab (vars)->find_with_hash (dv, dvhash);
1692 }
1693
1694 static inline variable *
1695 shared_hash_find (shared_hash *vars, decl_or_value dv)
1696 {
1697 return shared_hash_find_1 (vars, dv, dv_htab_hash (dv));
1698 }
1699
1700 /* Return true if TVAL is better than CVAL as a canonival value. We
1701 choose lowest-numbered VALUEs, using the RTX address as a
1702 tie-breaker. The idea is to arrange them into a star topology,
1703 such that all of them are at most one step away from the canonical
1704 value, and the canonical value has backlinks to all of them, in
1705 addition to all the actual locations. We don't enforce this
1706 topology throughout the entire dataflow analysis, though.
1707 */
1708
1709 static inline bool
1710 canon_value_cmp (rtx tval, rtx cval)
1711 {
1712 return !cval
1713 || CSELIB_VAL_PTR (tval)->uid < CSELIB_VAL_PTR (cval)->uid;
1714 }
1715
1716 static bool dst_can_be_shared;
1717
1718 /* Return a copy of a variable VAR and insert it to dataflow set SET. */
1719
1720 static variable **
1721 unshare_variable (dataflow_set *set, variable **slot, variable *var,
1722 enum var_init_status initialized)
1723 {
1724 variable *new_var;
1725 int i;
1726
1727 new_var = onepart_pool_allocate (var->onepart);
1728 new_var->dv = var->dv;
1729 new_var->refcount = 1;
1730 var->refcount--;
1731 new_var->n_var_parts = var->n_var_parts;
1732 new_var->onepart = var->onepart;
1733 new_var->in_changed_variables = false;
1734
1735 if (! flag_var_tracking_uninit)
1736 initialized = VAR_INIT_STATUS_INITIALIZED;
1737
1738 for (i = 0; i < var->n_var_parts; i++)
1739 {
1740 location_chain *node;
1741 location_chain **nextp;
1742
1743 if (i == 0 && var->onepart)
1744 {
1745 /* One-part auxiliary data is only used while emitting
1746 notes, so propagate it to the new variable in the active
1747 dataflow set. If we're not emitting notes, this will be
1748 a no-op. */
1749 gcc_checking_assert (!VAR_LOC_1PAUX (var) || emit_notes);
1750 VAR_LOC_1PAUX (new_var) = VAR_LOC_1PAUX (var);
1751 VAR_LOC_1PAUX (var) = NULL;
1752 }
1753 else
1754 VAR_PART_OFFSET (new_var, i) = VAR_PART_OFFSET (var, i);
1755 nextp = &new_var->var_part[i].loc_chain;
1756 for (node = var->var_part[i].loc_chain; node; node = node->next)
1757 {
1758 location_chain *new_lc;
1759
1760 new_lc = new location_chain;
1761 new_lc->next = NULL;
1762 if (node->init > initialized)
1763 new_lc->init = node->init;
1764 else
1765 new_lc->init = initialized;
1766 if (node->set_src && !(MEM_P (node->set_src)))
1767 new_lc->set_src = node->set_src;
1768 else
1769 new_lc->set_src = NULL;
1770 new_lc->loc = node->loc;
1771
1772 *nextp = new_lc;
1773 nextp = &new_lc->next;
1774 }
1775
1776 new_var->var_part[i].cur_loc = var->var_part[i].cur_loc;
1777 }
1778
1779 dst_can_be_shared = false;
1780 if (shared_hash_shared (set->vars))
1781 slot = shared_hash_find_slot_unshare (&set->vars, var->dv, NO_INSERT);
1782 else if (set->traversed_vars && set->vars != set->traversed_vars)
1783 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
1784 *slot = new_var;
1785 if (var->in_changed_variables)
1786 {
1787 variable **cslot
1788 = changed_variables->find_slot_with_hash (var->dv,
1789 dv_htab_hash (var->dv),
1790 NO_INSERT);
1791 gcc_assert (*cslot == (void *) var);
1792 var->in_changed_variables = false;
1793 variable_htab_free (var);
1794 *cslot = new_var;
1795 new_var->in_changed_variables = true;
1796 }
1797 return slot;
1798 }
1799
1800 /* Copy all variables from hash table SRC to hash table DST. */
1801
1802 static void
1803 vars_copy (variable_table_type *dst, variable_table_type *src)
1804 {
1805 variable_iterator_type hi;
1806 variable *var;
1807
1808 FOR_EACH_HASH_TABLE_ELEMENT (*src, var, variable, hi)
1809 {
1810 variable **dstp;
1811 var->refcount++;
1812 dstp = dst->find_slot_with_hash (var->dv, dv_htab_hash (var->dv),
1813 INSERT);
1814 *dstp = var;
1815 }
1816 }
1817
1818 /* Map a decl to its main debug decl. */
1819
1820 static inline tree
1821 var_debug_decl (tree decl)
1822 {
1823 if (decl && TREE_CODE (decl) == VAR_DECL
1824 && DECL_HAS_DEBUG_EXPR_P (decl))
1825 {
1826 tree debugdecl = DECL_DEBUG_EXPR (decl);
1827 if (DECL_P (debugdecl))
1828 decl = debugdecl;
1829 }
1830
1831 return decl;
1832 }
1833
1834 /* Set the register LOC to contain DV, OFFSET. */
1835
1836 static void
1837 var_reg_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1838 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
1839 enum insert_option iopt)
1840 {
1841 attrs *node;
1842 bool decl_p = dv_is_decl_p (dv);
1843
1844 if (decl_p)
1845 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
1846
1847 for (node = set->regs[REGNO (loc)]; node; node = node->next)
1848 if (dv_as_opaque (node->dv) == dv_as_opaque (dv)
1849 && node->offset == offset)
1850 break;
1851 if (!node)
1852 attrs_list_insert (&set->regs[REGNO (loc)], dv, offset, loc);
1853 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
1854 }
1855
1856 /* Set the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). */
1857
1858 static void
1859 var_reg_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1860 rtx set_src)
1861 {
1862 tree decl = REG_EXPR (loc);
1863 HOST_WIDE_INT offset = REG_OFFSET (loc);
1864
1865 var_reg_decl_set (set, loc, initialized,
1866 dv_from_decl (decl), offset, set_src, INSERT);
1867 }
1868
1869 static enum var_init_status
1870 get_init_value (dataflow_set *set, rtx loc, decl_or_value dv)
1871 {
1872 variable *var;
1873 int i;
1874 enum var_init_status ret_val = VAR_INIT_STATUS_UNKNOWN;
1875
1876 if (! flag_var_tracking_uninit)
1877 return VAR_INIT_STATUS_INITIALIZED;
1878
1879 var = shared_hash_find (set->vars, dv);
1880 if (var)
1881 {
1882 for (i = 0; i < var->n_var_parts && ret_val == VAR_INIT_STATUS_UNKNOWN; i++)
1883 {
1884 location_chain *nextp;
1885 for (nextp = var->var_part[i].loc_chain; nextp; nextp = nextp->next)
1886 if (rtx_equal_p (nextp->loc, loc))
1887 {
1888 ret_val = nextp->init;
1889 break;
1890 }
1891 }
1892 }
1893
1894 return ret_val;
1895 }
1896
1897 /* Delete current content of register LOC in dataflow set SET and set
1898 the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). If
1899 MODIFY is true, any other live copies of the same variable part are
1900 also deleted from the dataflow set, otherwise the variable part is
1901 assumed to be copied from another location holding the same
1902 part. */
1903
1904 static void
1905 var_reg_delete_and_set (dataflow_set *set, rtx loc, bool modify,
1906 enum var_init_status initialized, rtx set_src)
1907 {
1908 tree decl = REG_EXPR (loc);
1909 HOST_WIDE_INT offset = REG_OFFSET (loc);
1910 attrs *node, *next;
1911 attrs **nextp;
1912
1913 decl = var_debug_decl (decl);
1914
1915 if (initialized == VAR_INIT_STATUS_UNKNOWN)
1916 initialized = get_init_value (set, loc, dv_from_decl (decl));
1917
1918 nextp = &set->regs[REGNO (loc)];
1919 for (node = *nextp; node; node = next)
1920 {
1921 next = node->next;
1922 if (dv_as_opaque (node->dv) != decl || node->offset != offset)
1923 {
1924 delete_variable_part (set, node->loc, node->dv, node->offset);
1925 delete node;
1926 *nextp = next;
1927 }
1928 else
1929 {
1930 node->loc = loc;
1931 nextp = &node->next;
1932 }
1933 }
1934 if (modify)
1935 clobber_variable_part (set, loc, dv_from_decl (decl), offset, set_src);
1936 var_reg_set (set, loc, initialized, set_src);
1937 }
1938
1939 /* Delete the association of register LOC in dataflow set SET with any
1940 variables that aren't onepart. If CLOBBER is true, also delete any
1941 other live copies of the same variable part, and delete the
1942 association with onepart dvs too. */
1943
1944 static void
1945 var_reg_delete (dataflow_set *set, rtx loc, bool clobber)
1946 {
1947 attrs **nextp = &set->regs[REGNO (loc)];
1948 attrs *node, *next;
1949
1950 if (clobber)
1951 {
1952 tree decl = REG_EXPR (loc);
1953 HOST_WIDE_INT offset = REG_OFFSET (loc);
1954
1955 decl = var_debug_decl (decl);
1956
1957 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
1958 }
1959
1960 for (node = *nextp; node; node = next)
1961 {
1962 next = node->next;
1963 if (clobber || !dv_onepart_p (node->dv))
1964 {
1965 delete_variable_part (set, node->loc, node->dv, node->offset);
1966 delete node;
1967 *nextp = next;
1968 }
1969 else
1970 nextp = &node->next;
1971 }
1972 }
1973
1974 /* Delete content of register with number REGNO in dataflow set SET. */
1975
1976 static void
1977 var_regno_delete (dataflow_set *set, int regno)
1978 {
1979 attrs **reg = &set->regs[regno];
1980 attrs *node, *next;
1981
1982 for (node = *reg; node; node = next)
1983 {
1984 next = node->next;
1985 delete_variable_part (set, node->loc, node->dv, node->offset);
1986 delete node;
1987 }
1988 *reg = NULL;
1989 }
1990
1991 /* Return true if I is the negated value of a power of two. */
1992 static bool
1993 negative_power_of_two_p (HOST_WIDE_INT i)
1994 {
1995 unsigned HOST_WIDE_INT x = -(unsigned HOST_WIDE_INT)i;
1996 return x == (x & -x);
1997 }
1998
1999 /* Strip constant offsets and alignments off of LOC. Return the base
2000 expression. */
2001
2002 static rtx
2003 vt_get_canonicalize_base (rtx loc)
2004 {
2005 while ((GET_CODE (loc) == PLUS
2006 || GET_CODE (loc) == AND)
2007 && GET_CODE (XEXP (loc, 1)) == CONST_INT
2008 && (GET_CODE (loc) != AND
2009 || negative_power_of_two_p (INTVAL (XEXP (loc, 1)))))
2010 loc = XEXP (loc, 0);
2011
2012 return loc;
2013 }
2014
2015 /* This caches canonicalized addresses for VALUEs, computed using
2016 information in the global cselib table. */
2017 static hash_map<rtx, rtx> *global_get_addr_cache;
2018
2019 /* This caches canonicalized addresses for VALUEs, computed using
2020 information from the global cache and information pertaining to a
2021 basic block being analyzed. */
2022 static hash_map<rtx, rtx> *local_get_addr_cache;
2023
2024 static rtx vt_canonicalize_addr (dataflow_set *, rtx);
2025
2026 /* Return the canonical address for LOC, that must be a VALUE, using a
2027 cached global equivalence or computing it and storing it in the
2028 global cache. */
2029
2030 static rtx
2031 get_addr_from_global_cache (rtx const loc)
2032 {
2033 rtx x;
2034
2035 gcc_checking_assert (GET_CODE (loc) == VALUE);
2036
2037 bool existed;
2038 rtx *slot = &global_get_addr_cache->get_or_insert (loc, &existed);
2039 if (existed)
2040 return *slot;
2041
2042 x = canon_rtx (get_addr (loc));
2043
2044 /* Tentative, avoiding infinite recursion. */
2045 *slot = x;
2046
2047 if (x != loc)
2048 {
2049 rtx nx = vt_canonicalize_addr (NULL, x);
2050 if (nx != x)
2051 {
2052 /* The table may have moved during recursion, recompute
2053 SLOT. */
2054 *global_get_addr_cache->get (loc) = x = nx;
2055 }
2056 }
2057
2058 return x;
2059 }
2060
2061 /* Return the canonical address for LOC, that must be a VALUE, using a
2062 cached local equivalence or computing it and storing it in the
2063 local cache. */
2064
2065 static rtx
2066 get_addr_from_local_cache (dataflow_set *set, rtx const loc)
2067 {
2068 rtx x;
2069 decl_or_value dv;
2070 variable *var;
2071 location_chain *l;
2072
2073 gcc_checking_assert (GET_CODE (loc) == VALUE);
2074
2075 bool existed;
2076 rtx *slot = &local_get_addr_cache->get_or_insert (loc, &existed);
2077 if (existed)
2078 return *slot;
2079
2080 x = get_addr_from_global_cache (loc);
2081
2082 /* Tentative, avoiding infinite recursion. */
2083 *slot = x;
2084
2085 /* Recurse to cache local expansion of X, or if we need to search
2086 for a VALUE in the expansion. */
2087 if (x != loc)
2088 {
2089 rtx nx = vt_canonicalize_addr (set, x);
2090 if (nx != x)
2091 {
2092 slot = local_get_addr_cache->get (loc);
2093 *slot = x = nx;
2094 }
2095 return x;
2096 }
2097
2098 dv = dv_from_rtx (x);
2099 var = shared_hash_find (set->vars, dv);
2100 if (!var)
2101 return x;
2102
2103 /* Look for an improved equivalent expression. */
2104 for (l = var->var_part[0].loc_chain; l; l = l->next)
2105 {
2106 rtx base = vt_get_canonicalize_base (l->loc);
2107 if (GET_CODE (base) == VALUE
2108 && canon_value_cmp (base, loc))
2109 {
2110 rtx nx = vt_canonicalize_addr (set, l->loc);
2111 if (x != nx)
2112 {
2113 slot = local_get_addr_cache->get (loc);
2114 *slot = x = nx;
2115 }
2116 break;
2117 }
2118 }
2119
2120 return x;
2121 }
2122
2123 /* Canonicalize LOC using equivalences from SET in addition to those
2124 in the cselib static table. It expects a VALUE-based expression,
2125 and it will only substitute VALUEs with other VALUEs or
2126 function-global equivalences, so that, if two addresses have base
2127 VALUEs that are locally or globally related in ways that
2128 memrefs_conflict_p cares about, they will both canonicalize to
2129 expressions that have the same base VALUE.
2130
2131 The use of VALUEs as canonical base addresses enables the canonical
2132 RTXs to remain unchanged globally, if they resolve to a constant,
2133 or throughout a basic block otherwise, so that they can be cached
2134 and the cache needs not be invalidated when REGs, MEMs or such
2135 change. */
2136
2137 static rtx
2138 vt_canonicalize_addr (dataflow_set *set, rtx oloc)
2139 {
2140 HOST_WIDE_INT ofst = 0;
2141 machine_mode mode = GET_MODE (oloc);
2142 rtx loc = oloc;
2143 rtx x;
2144 bool retry = true;
2145
2146 while (retry)
2147 {
2148 while (GET_CODE (loc) == PLUS
2149 && GET_CODE (XEXP (loc, 1)) == CONST_INT)
2150 {
2151 ofst += INTVAL (XEXP (loc, 1));
2152 loc = XEXP (loc, 0);
2153 }
2154
2155 /* Alignment operations can't normally be combined, so just
2156 canonicalize the base and we're done. We'll normally have
2157 only one stack alignment anyway. */
2158 if (GET_CODE (loc) == AND
2159 && GET_CODE (XEXP (loc, 1)) == CONST_INT
2160 && negative_power_of_two_p (INTVAL (XEXP (loc, 1))))
2161 {
2162 x = vt_canonicalize_addr (set, XEXP (loc, 0));
2163 if (x != XEXP (loc, 0))
2164 loc = gen_rtx_AND (mode, x, XEXP (loc, 1));
2165 retry = false;
2166 }
2167
2168 if (GET_CODE (loc) == VALUE)
2169 {
2170 if (set)
2171 loc = get_addr_from_local_cache (set, loc);
2172 else
2173 loc = get_addr_from_global_cache (loc);
2174
2175 /* Consolidate plus_constants. */
2176 while (ofst && GET_CODE (loc) == PLUS
2177 && GET_CODE (XEXP (loc, 1)) == CONST_INT)
2178 {
2179 ofst += INTVAL (XEXP (loc, 1));
2180 loc = XEXP (loc, 0);
2181 }
2182
2183 retry = false;
2184 }
2185 else
2186 {
2187 x = canon_rtx (loc);
2188 if (retry)
2189 retry = (x != loc);
2190 loc = x;
2191 }
2192 }
2193
2194 /* Add OFST back in. */
2195 if (ofst)
2196 {
2197 /* Don't build new RTL if we can help it. */
2198 if (GET_CODE (oloc) == PLUS
2199 && XEXP (oloc, 0) == loc
2200 && INTVAL (XEXP (oloc, 1)) == ofst)
2201 return oloc;
2202
2203 loc = plus_constant (mode, loc, ofst);
2204 }
2205
2206 return loc;
2207 }
2208
2209 /* Return true iff there's a true dependence between MLOC and LOC.
2210 MADDR must be a canonicalized version of MLOC's address. */
2211
2212 static inline bool
2213 vt_canon_true_dep (dataflow_set *set, rtx mloc, rtx maddr, rtx loc)
2214 {
2215 if (GET_CODE (loc) != MEM)
2216 return false;
2217
2218 rtx addr = vt_canonicalize_addr (set, XEXP (loc, 0));
2219 if (!canon_true_dependence (mloc, GET_MODE (mloc), maddr, loc, addr))
2220 return false;
2221
2222 return true;
2223 }
2224
2225 /* Hold parameters for the hashtab traversal function
2226 drop_overlapping_mem_locs, see below. */
2227
2228 struct overlapping_mems
2229 {
2230 dataflow_set *set;
2231 rtx loc, addr;
2232 };
2233
2234 /* Remove all MEMs that overlap with COMS->LOC from the location list
2235 of a hash table entry for a value. COMS->ADDR must be a
2236 canonicalized form of COMS->LOC's address, and COMS->LOC must be
2237 canonicalized itself. */
2238
2239 int
2240 drop_overlapping_mem_locs (variable **slot, overlapping_mems *coms)
2241 {
2242 dataflow_set *set = coms->set;
2243 rtx mloc = coms->loc, addr = coms->addr;
2244 variable *var = *slot;
2245
2246 if (var->onepart == ONEPART_VALUE)
2247 {
2248 location_chain *loc, **locp;
2249 bool changed = false;
2250 rtx cur_loc;
2251
2252 gcc_assert (var->n_var_parts == 1);
2253
2254 if (shared_var_p (var, set->vars))
2255 {
2256 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
2257 if (vt_canon_true_dep (set, mloc, addr, loc->loc))
2258 break;
2259
2260 if (!loc)
2261 return 1;
2262
2263 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
2264 var = *slot;
2265 gcc_assert (var->n_var_parts == 1);
2266 }
2267
2268 if (VAR_LOC_1PAUX (var))
2269 cur_loc = VAR_LOC_FROM (var);
2270 else
2271 cur_loc = var->var_part[0].cur_loc;
2272
2273 for (locp = &var->var_part[0].loc_chain, loc = *locp;
2274 loc; loc = *locp)
2275 {
2276 if (!vt_canon_true_dep (set, mloc, addr, loc->loc))
2277 {
2278 locp = &loc->next;
2279 continue;
2280 }
2281
2282 *locp = loc->next;
2283 /* If we have deleted the location which was last emitted
2284 we have to emit new location so add the variable to set
2285 of changed variables. */
2286 if (cur_loc == loc->loc)
2287 {
2288 changed = true;
2289 var->var_part[0].cur_loc = NULL;
2290 if (VAR_LOC_1PAUX (var))
2291 VAR_LOC_FROM (var) = NULL;
2292 }
2293 delete loc;
2294 }
2295
2296 if (!var->var_part[0].loc_chain)
2297 {
2298 var->n_var_parts--;
2299 changed = true;
2300 }
2301 if (changed)
2302 variable_was_changed (var, set);
2303 }
2304
2305 return 1;
2306 }
2307
2308 /* Remove from SET all VALUE bindings to MEMs that overlap with LOC. */
2309
2310 static void
2311 clobber_overlapping_mems (dataflow_set *set, rtx loc)
2312 {
2313 struct overlapping_mems coms;
2314
2315 gcc_checking_assert (GET_CODE (loc) == MEM);
2316
2317 coms.set = set;
2318 coms.loc = canon_rtx (loc);
2319 coms.addr = vt_canonicalize_addr (set, XEXP (loc, 0));
2320
2321 set->traversed_vars = set->vars;
2322 shared_hash_htab (set->vars)
2323 ->traverse <overlapping_mems*, drop_overlapping_mem_locs> (&coms);
2324 set->traversed_vars = NULL;
2325 }
2326
2327 /* Set the location of DV, OFFSET as the MEM LOC. */
2328
2329 static void
2330 var_mem_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
2331 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
2332 enum insert_option iopt)
2333 {
2334 if (dv_is_decl_p (dv))
2335 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
2336
2337 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
2338 }
2339
2340 /* Set the location part of variable MEM_EXPR (LOC) in dataflow set
2341 SET to LOC.
2342 Adjust the address first if it is stack pointer based. */
2343
2344 static void
2345 var_mem_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
2346 rtx set_src)
2347 {
2348 tree decl = MEM_EXPR (loc);
2349 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2350
2351 var_mem_decl_set (set, loc, initialized,
2352 dv_from_decl (decl), offset, set_src, INSERT);
2353 }
2354
2355 /* Delete and set the location part of variable MEM_EXPR (LOC) in
2356 dataflow set SET to LOC. If MODIFY is true, any other live copies
2357 of the same variable part are also deleted from the dataflow set,
2358 otherwise the variable part is assumed to be copied from another
2359 location holding the same part.
2360 Adjust the address first if it is stack pointer based. */
2361
2362 static void
2363 var_mem_delete_and_set (dataflow_set *set, rtx loc, bool modify,
2364 enum var_init_status initialized, rtx set_src)
2365 {
2366 tree decl = MEM_EXPR (loc);
2367 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2368
2369 clobber_overlapping_mems (set, loc);
2370 decl = var_debug_decl (decl);
2371
2372 if (initialized == VAR_INIT_STATUS_UNKNOWN)
2373 initialized = get_init_value (set, loc, dv_from_decl (decl));
2374
2375 if (modify)
2376 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, set_src);
2377 var_mem_set (set, loc, initialized, set_src);
2378 }
2379
2380 /* Delete the location part LOC from dataflow set SET. If CLOBBER is
2381 true, also delete any other live copies of the same variable part.
2382 Adjust the address first if it is stack pointer based. */
2383
2384 static void
2385 var_mem_delete (dataflow_set *set, rtx loc, bool clobber)
2386 {
2387 tree decl = MEM_EXPR (loc);
2388 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2389
2390 clobber_overlapping_mems (set, loc);
2391 decl = var_debug_decl (decl);
2392 if (clobber)
2393 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
2394 delete_variable_part (set, loc, dv_from_decl (decl), offset);
2395 }
2396
2397 /* Return true if LOC should not be expanded for location expressions,
2398 or used in them. */
2399
2400 static inline bool
2401 unsuitable_loc (rtx loc)
2402 {
2403 switch (GET_CODE (loc))
2404 {
2405 case PC:
2406 case SCRATCH:
2407 case CC0:
2408 case ASM_INPUT:
2409 case ASM_OPERANDS:
2410 return true;
2411
2412 default:
2413 return false;
2414 }
2415 }
2416
2417 /* Bind VAL to LOC in SET. If MODIFIED, detach LOC from any values
2418 bound to it. */
2419
2420 static inline void
2421 val_bind (dataflow_set *set, rtx val, rtx loc, bool modified)
2422 {
2423 if (REG_P (loc))
2424 {
2425 if (modified)
2426 var_regno_delete (set, REGNO (loc));
2427 var_reg_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2428 dv_from_value (val), 0, NULL_RTX, INSERT);
2429 }
2430 else if (MEM_P (loc))
2431 {
2432 struct elt_loc_list *l = CSELIB_VAL_PTR (val)->locs;
2433
2434 if (modified)
2435 clobber_overlapping_mems (set, loc);
2436
2437 if (l && GET_CODE (l->loc) == VALUE)
2438 l = canonical_cselib_val (CSELIB_VAL_PTR (l->loc))->locs;
2439
2440 /* If this MEM is a global constant, we don't need it in the
2441 dynamic tables. ??? We should test this before emitting the
2442 micro-op in the first place. */
2443 while (l)
2444 if (GET_CODE (l->loc) == MEM && XEXP (l->loc, 0) == XEXP (loc, 0))
2445 break;
2446 else
2447 l = l->next;
2448
2449 if (!l)
2450 var_mem_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2451 dv_from_value (val), 0, NULL_RTX, INSERT);
2452 }
2453 else
2454 {
2455 /* Other kinds of equivalences are necessarily static, at least
2456 so long as we do not perform substitutions while merging
2457 expressions. */
2458 gcc_unreachable ();
2459 set_variable_part (set, loc, dv_from_value (val), 0,
2460 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2461 }
2462 }
2463
2464 /* Bind a value to a location it was just stored in. If MODIFIED
2465 holds, assume the location was modified, detaching it from any
2466 values bound to it. */
2467
2468 static void
2469 val_store (dataflow_set *set, rtx val, rtx loc, rtx_insn *insn,
2470 bool modified)
2471 {
2472 cselib_val *v = CSELIB_VAL_PTR (val);
2473
2474 gcc_assert (cselib_preserved_value_p (v));
2475
2476 if (dump_file)
2477 {
2478 fprintf (dump_file, "%i: ", insn ? INSN_UID (insn) : 0);
2479 print_inline_rtx (dump_file, loc, 0);
2480 fprintf (dump_file, " evaluates to ");
2481 print_inline_rtx (dump_file, val, 0);
2482 if (v->locs)
2483 {
2484 struct elt_loc_list *l;
2485 for (l = v->locs; l; l = l->next)
2486 {
2487 fprintf (dump_file, "\n%i: ", INSN_UID (l->setting_insn));
2488 print_inline_rtx (dump_file, l->loc, 0);
2489 }
2490 }
2491 fprintf (dump_file, "\n");
2492 }
2493
2494 gcc_checking_assert (!unsuitable_loc (loc));
2495
2496 val_bind (set, val, loc, modified);
2497 }
2498
2499 /* Clear (canonical address) slots that reference X. */
2500
2501 bool
2502 local_get_addr_clear_given_value (rtx const &, rtx *slot, rtx x)
2503 {
2504 if (vt_get_canonicalize_base (*slot) == x)
2505 *slot = NULL;
2506 return true;
2507 }
2508
2509 /* Reset this node, detaching all its equivalences. Return the slot
2510 in the variable hash table that holds dv, if there is one. */
2511
2512 static void
2513 val_reset (dataflow_set *set, decl_or_value dv)
2514 {
2515 variable *var = shared_hash_find (set->vars, dv) ;
2516 location_chain *node;
2517 rtx cval;
2518
2519 if (!var || !var->n_var_parts)
2520 return;
2521
2522 gcc_assert (var->n_var_parts == 1);
2523
2524 if (var->onepart == ONEPART_VALUE)
2525 {
2526 rtx x = dv_as_value (dv);
2527
2528 /* Relationships in the global cache don't change, so reset the
2529 local cache entry only. */
2530 rtx *slot = local_get_addr_cache->get (x);
2531 if (slot)
2532 {
2533 /* If the value resolved back to itself, odds are that other
2534 values may have cached it too. These entries now refer
2535 to the old X, so detach them too. Entries that used the
2536 old X but resolved to something else remain ok as long as
2537 that something else isn't also reset. */
2538 if (*slot == x)
2539 local_get_addr_cache
2540 ->traverse<rtx, local_get_addr_clear_given_value> (x);
2541 *slot = NULL;
2542 }
2543 }
2544
2545 cval = NULL;
2546 for (node = var->var_part[0].loc_chain; node; node = node->next)
2547 if (GET_CODE (node->loc) == VALUE
2548 && canon_value_cmp (node->loc, cval))
2549 cval = node->loc;
2550
2551 for (node = var->var_part[0].loc_chain; node; node = node->next)
2552 if (GET_CODE (node->loc) == VALUE && cval != node->loc)
2553 {
2554 /* Redirect the equivalence link to the new canonical
2555 value, or simply remove it if it would point at
2556 itself. */
2557 if (cval)
2558 set_variable_part (set, cval, dv_from_value (node->loc),
2559 0, node->init, node->set_src, NO_INSERT);
2560 delete_variable_part (set, dv_as_value (dv),
2561 dv_from_value (node->loc), 0);
2562 }
2563
2564 if (cval)
2565 {
2566 decl_or_value cdv = dv_from_value (cval);
2567
2568 /* Keep the remaining values connected, accummulating links
2569 in the canonical value. */
2570 for (node = var->var_part[0].loc_chain; node; node = node->next)
2571 {
2572 if (node->loc == cval)
2573 continue;
2574 else if (GET_CODE (node->loc) == REG)
2575 var_reg_decl_set (set, node->loc, node->init, cdv, 0,
2576 node->set_src, NO_INSERT);
2577 else if (GET_CODE (node->loc) == MEM)
2578 var_mem_decl_set (set, node->loc, node->init, cdv, 0,
2579 node->set_src, NO_INSERT);
2580 else
2581 set_variable_part (set, node->loc, cdv, 0,
2582 node->init, node->set_src, NO_INSERT);
2583 }
2584 }
2585
2586 /* We remove this last, to make sure that the canonical value is not
2587 removed to the point of requiring reinsertion. */
2588 if (cval)
2589 delete_variable_part (set, dv_as_value (dv), dv_from_value (cval), 0);
2590
2591 clobber_variable_part (set, NULL, dv, 0, NULL);
2592 }
2593
2594 /* Find the values in a given location and map the val to another
2595 value, if it is unique, or add the location as one holding the
2596 value. */
2597
2598 static void
2599 val_resolve (dataflow_set *set, rtx val, rtx loc, rtx_insn *insn)
2600 {
2601 decl_or_value dv = dv_from_value (val);
2602
2603 if (dump_file && (dump_flags & TDF_DETAILS))
2604 {
2605 if (insn)
2606 fprintf (dump_file, "%i: ", INSN_UID (insn));
2607 else
2608 fprintf (dump_file, "head: ");
2609 print_inline_rtx (dump_file, val, 0);
2610 fputs (" is at ", dump_file);
2611 print_inline_rtx (dump_file, loc, 0);
2612 fputc ('\n', dump_file);
2613 }
2614
2615 val_reset (set, dv);
2616
2617 gcc_checking_assert (!unsuitable_loc (loc));
2618
2619 if (REG_P (loc))
2620 {
2621 attrs *node, *found = NULL;
2622
2623 for (node = set->regs[REGNO (loc)]; node; node = node->next)
2624 if (dv_is_value_p (node->dv)
2625 && GET_MODE (dv_as_value (node->dv)) == GET_MODE (loc))
2626 {
2627 found = node;
2628
2629 /* Map incoming equivalences. ??? Wouldn't it be nice if
2630 we just started sharing the location lists? Maybe a
2631 circular list ending at the value itself or some
2632 such. */
2633 set_variable_part (set, dv_as_value (node->dv),
2634 dv_from_value (val), node->offset,
2635 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2636 set_variable_part (set, val, node->dv, node->offset,
2637 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2638 }
2639
2640 /* If we didn't find any equivalence, we need to remember that
2641 this value is held in the named register. */
2642 if (found)
2643 return;
2644 }
2645 /* ??? Attempt to find and merge equivalent MEMs or other
2646 expressions too. */
2647
2648 val_bind (set, val, loc, false);
2649 }
2650
2651 /* Initialize dataflow set SET to be empty.
2652 VARS_SIZE is the initial size of hash table VARS. */
2653
2654 static void
2655 dataflow_set_init (dataflow_set *set)
2656 {
2657 init_attrs_list_set (set->regs);
2658 set->vars = shared_hash_copy (empty_shared_hash);
2659 set->stack_adjust = 0;
2660 set->traversed_vars = NULL;
2661 }
2662
2663 /* Delete the contents of dataflow set SET. */
2664
2665 static void
2666 dataflow_set_clear (dataflow_set *set)
2667 {
2668 int i;
2669
2670 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2671 attrs_list_clear (&set->regs[i]);
2672
2673 shared_hash_destroy (set->vars);
2674 set->vars = shared_hash_copy (empty_shared_hash);
2675 }
2676
2677 /* Copy the contents of dataflow set SRC to DST. */
2678
2679 static void
2680 dataflow_set_copy (dataflow_set *dst, dataflow_set *src)
2681 {
2682 int i;
2683
2684 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2685 attrs_list_copy (&dst->regs[i], src->regs[i]);
2686
2687 shared_hash_destroy (dst->vars);
2688 dst->vars = shared_hash_copy (src->vars);
2689 dst->stack_adjust = src->stack_adjust;
2690 }
2691
2692 /* Information for merging lists of locations for a given offset of variable.
2693 */
2694 struct variable_union_info
2695 {
2696 /* Node of the location chain. */
2697 location_chain *lc;
2698
2699 /* The sum of positions in the input chains. */
2700 int pos;
2701
2702 /* The position in the chain of DST dataflow set. */
2703 int pos_dst;
2704 };
2705
2706 /* Buffer for location list sorting and its allocated size. */
2707 static struct variable_union_info *vui_vec;
2708 static int vui_allocated;
2709
2710 /* Compare function for qsort, order the structures by POS element. */
2711
2712 static int
2713 variable_union_info_cmp_pos (const void *n1, const void *n2)
2714 {
2715 const struct variable_union_info *const i1 =
2716 (const struct variable_union_info *) n1;
2717 const struct variable_union_info *const i2 =
2718 ( const struct variable_union_info *) n2;
2719
2720 if (i1->pos != i2->pos)
2721 return i1->pos - i2->pos;
2722
2723 return (i1->pos_dst - i2->pos_dst);
2724 }
2725
2726 /* Compute union of location parts of variable *SLOT and the same variable
2727 from hash table DATA. Compute "sorted" union of the location chains
2728 for common offsets, i.e. the locations of a variable part are sorted by
2729 a priority where the priority is the sum of the positions in the 2 chains
2730 (if a location is only in one list the position in the second list is
2731 defined to be larger than the length of the chains).
2732 When we are updating the location parts the newest location is in the
2733 beginning of the chain, so when we do the described "sorted" union
2734 we keep the newest locations in the beginning. */
2735
2736 static int
2737 variable_union (variable *src, dataflow_set *set)
2738 {
2739 variable *dst;
2740 variable **dstp;
2741 int i, j, k;
2742
2743 dstp = shared_hash_find_slot (set->vars, src->dv);
2744 if (!dstp || !*dstp)
2745 {
2746 src->refcount++;
2747
2748 dst_can_be_shared = false;
2749 if (!dstp)
2750 dstp = shared_hash_find_slot_unshare (&set->vars, src->dv, INSERT);
2751
2752 *dstp = src;
2753
2754 /* Continue traversing the hash table. */
2755 return 1;
2756 }
2757 else
2758 dst = *dstp;
2759
2760 gcc_assert (src->n_var_parts);
2761 gcc_checking_assert (src->onepart == dst->onepart);
2762
2763 /* We can combine one-part variables very efficiently, because their
2764 entries are in canonical order. */
2765 if (src->onepart)
2766 {
2767 location_chain **nodep, *dnode, *snode;
2768
2769 gcc_assert (src->n_var_parts == 1
2770 && dst->n_var_parts == 1);
2771
2772 snode = src->var_part[0].loc_chain;
2773 gcc_assert (snode);
2774
2775 restart_onepart_unshared:
2776 nodep = &dst->var_part[0].loc_chain;
2777 dnode = *nodep;
2778 gcc_assert (dnode);
2779
2780 while (snode)
2781 {
2782 int r = dnode ? loc_cmp (dnode->loc, snode->loc) : 1;
2783
2784 if (r > 0)
2785 {
2786 location_chain *nnode;
2787
2788 if (shared_var_p (dst, set->vars))
2789 {
2790 dstp = unshare_variable (set, dstp, dst,
2791 VAR_INIT_STATUS_INITIALIZED);
2792 dst = *dstp;
2793 goto restart_onepart_unshared;
2794 }
2795
2796 *nodep = nnode = new location_chain;
2797 nnode->loc = snode->loc;
2798 nnode->init = snode->init;
2799 if (!snode->set_src || MEM_P (snode->set_src))
2800 nnode->set_src = NULL;
2801 else
2802 nnode->set_src = snode->set_src;
2803 nnode->next = dnode;
2804 dnode = nnode;
2805 }
2806 else if (r == 0)
2807 gcc_checking_assert (rtx_equal_p (dnode->loc, snode->loc));
2808
2809 if (r >= 0)
2810 snode = snode->next;
2811
2812 nodep = &dnode->next;
2813 dnode = *nodep;
2814 }
2815
2816 return 1;
2817 }
2818
2819 gcc_checking_assert (!src->onepart);
2820
2821 /* Count the number of location parts, result is K. */
2822 for (i = 0, j = 0, k = 0;
2823 i < src->n_var_parts && j < dst->n_var_parts; k++)
2824 {
2825 if (VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
2826 {
2827 i++;
2828 j++;
2829 }
2830 else if (VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
2831 i++;
2832 else
2833 j++;
2834 }
2835 k += src->n_var_parts - i;
2836 k += dst->n_var_parts - j;
2837
2838 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
2839 thus there are at most MAX_VAR_PARTS different offsets. */
2840 gcc_checking_assert (dst->onepart ? k == 1 : k <= MAX_VAR_PARTS);
2841
2842 if (dst->n_var_parts != k && shared_var_p (dst, set->vars))
2843 {
2844 dstp = unshare_variable (set, dstp, dst, VAR_INIT_STATUS_UNKNOWN);
2845 dst = *dstp;
2846 }
2847
2848 i = src->n_var_parts - 1;
2849 j = dst->n_var_parts - 1;
2850 dst->n_var_parts = k;
2851
2852 for (k--; k >= 0; k--)
2853 {
2854 location_chain *node, *node2;
2855
2856 if (i >= 0 && j >= 0
2857 && VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
2858 {
2859 /* Compute the "sorted" union of the chains, i.e. the locations which
2860 are in both chains go first, they are sorted by the sum of
2861 positions in the chains. */
2862 int dst_l, src_l;
2863 int ii, jj, n;
2864 struct variable_union_info *vui;
2865
2866 /* If DST is shared compare the location chains.
2867 If they are different we will modify the chain in DST with
2868 high probability so make a copy of DST. */
2869 if (shared_var_p (dst, set->vars))
2870 {
2871 for (node = src->var_part[i].loc_chain,
2872 node2 = dst->var_part[j].loc_chain; node && node2;
2873 node = node->next, node2 = node2->next)
2874 {
2875 if (!((REG_P (node2->loc)
2876 && REG_P (node->loc)
2877 && REGNO (node2->loc) == REGNO (node->loc))
2878 || rtx_equal_p (node2->loc, node->loc)))
2879 {
2880 if (node2->init < node->init)
2881 node2->init = node->init;
2882 break;
2883 }
2884 }
2885 if (node || node2)
2886 {
2887 dstp = unshare_variable (set, dstp, dst,
2888 VAR_INIT_STATUS_UNKNOWN);
2889 dst = (variable *)*dstp;
2890 }
2891 }
2892
2893 src_l = 0;
2894 for (node = src->var_part[i].loc_chain; node; node = node->next)
2895 src_l++;
2896 dst_l = 0;
2897 for (node = dst->var_part[j].loc_chain; node; node = node->next)
2898 dst_l++;
2899
2900 if (dst_l == 1)
2901 {
2902 /* The most common case, much simpler, no qsort is needed. */
2903 location_chain *dstnode = dst->var_part[j].loc_chain;
2904 dst->var_part[k].loc_chain = dstnode;
2905 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (dst, j);
2906 node2 = dstnode;
2907 for (node = src->var_part[i].loc_chain; node; node = node->next)
2908 if (!((REG_P (dstnode->loc)
2909 && REG_P (node->loc)
2910 && REGNO (dstnode->loc) == REGNO (node->loc))
2911 || rtx_equal_p (dstnode->loc, node->loc)))
2912 {
2913 location_chain *new_node;
2914
2915 /* Copy the location from SRC. */
2916 new_node = new location_chain;
2917 new_node->loc = node->loc;
2918 new_node->init = node->init;
2919 if (!node->set_src || MEM_P (node->set_src))
2920 new_node->set_src = NULL;
2921 else
2922 new_node->set_src = node->set_src;
2923 node2->next = new_node;
2924 node2 = new_node;
2925 }
2926 node2->next = NULL;
2927 }
2928 else
2929 {
2930 if (src_l + dst_l > vui_allocated)
2931 {
2932 vui_allocated = MAX (vui_allocated * 2, src_l + dst_l);
2933 vui_vec = XRESIZEVEC (struct variable_union_info, vui_vec,
2934 vui_allocated);
2935 }
2936 vui = vui_vec;
2937
2938 /* Fill in the locations from DST. */
2939 for (node = dst->var_part[j].loc_chain, jj = 0; node;
2940 node = node->next, jj++)
2941 {
2942 vui[jj].lc = node;
2943 vui[jj].pos_dst = jj;
2944
2945 /* Pos plus value larger than a sum of 2 valid positions. */
2946 vui[jj].pos = jj + src_l + dst_l;
2947 }
2948
2949 /* Fill in the locations from SRC. */
2950 n = dst_l;
2951 for (node = src->var_part[i].loc_chain, ii = 0; node;
2952 node = node->next, ii++)
2953 {
2954 /* Find location from NODE. */
2955 for (jj = 0; jj < dst_l; jj++)
2956 {
2957 if ((REG_P (vui[jj].lc->loc)
2958 && REG_P (node->loc)
2959 && REGNO (vui[jj].lc->loc) == REGNO (node->loc))
2960 || rtx_equal_p (vui[jj].lc->loc, node->loc))
2961 {
2962 vui[jj].pos = jj + ii;
2963 break;
2964 }
2965 }
2966 if (jj >= dst_l) /* The location has not been found. */
2967 {
2968 location_chain *new_node;
2969
2970 /* Copy the location from SRC. */
2971 new_node = new location_chain;
2972 new_node->loc = node->loc;
2973 new_node->init = node->init;
2974 if (!node->set_src || MEM_P (node->set_src))
2975 new_node->set_src = NULL;
2976 else
2977 new_node->set_src = node->set_src;
2978 vui[n].lc = new_node;
2979 vui[n].pos_dst = src_l + dst_l;
2980 vui[n].pos = ii + src_l + dst_l;
2981 n++;
2982 }
2983 }
2984
2985 if (dst_l == 2)
2986 {
2987 /* Special case still very common case. For dst_l == 2
2988 all entries dst_l ... n-1 are sorted, with for i >= dst_l
2989 vui[i].pos == i + src_l + dst_l. */
2990 if (vui[0].pos > vui[1].pos)
2991 {
2992 /* Order should be 1, 0, 2... */
2993 dst->var_part[k].loc_chain = vui[1].lc;
2994 vui[1].lc->next = vui[0].lc;
2995 if (n >= 3)
2996 {
2997 vui[0].lc->next = vui[2].lc;
2998 vui[n - 1].lc->next = NULL;
2999 }
3000 else
3001 vui[0].lc->next = NULL;
3002 ii = 3;
3003 }
3004 else
3005 {
3006 dst->var_part[k].loc_chain = vui[0].lc;
3007 if (n >= 3 && vui[2].pos < vui[1].pos)
3008 {
3009 /* Order should be 0, 2, 1, 3... */
3010 vui[0].lc->next = vui[2].lc;
3011 vui[2].lc->next = vui[1].lc;
3012 if (n >= 4)
3013 {
3014 vui[1].lc->next = vui[3].lc;
3015 vui[n - 1].lc->next = NULL;
3016 }
3017 else
3018 vui[1].lc->next = NULL;
3019 ii = 4;
3020 }
3021 else
3022 {
3023 /* Order should be 0, 1, 2... */
3024 ii = 1;
3025 vui[n - 1].lc->next = NULL;
3026 }
3027 }
3028 for (; ii < n; ii++)
3029 vui[ii - 1].lc->next = vui[ii].lc;
3030 }
3031 else
3032 {
3033 qsort (vui, n, sizeof (struct variable_union_info),
3034 variable_union_info_cmp_pos);
3035
3036 /* Reconnect the nodes in sorted order. */
3037 for (ii = 1; ii < n; ii++)
3038 vui[ii - 1].lc->next = vui[ii].lc;
3039 vui[n - 1].lc->next = NULL;
3040 dst->var_part[k].loc_chain = vui[0].lc;
3041 }
3042
3043 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (dst, j);
3044 }
3045 i--;
3046 j--;
3047 }
3048 else if ((i >= 0 && j >= 0
3049 && VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
3050 || i < 0)
3051 {
3052 dst->var_part[k] = dst->var_part[j];
3053 j--;
3054 }
3055 else if ((i >= 0 && j >= 0
3056 && VAR_PART_OFFSET (src, i) > VAR_PART_OFFSET (dst, j))
3057 || j < 0)
3058 {
3059 location_chain **nextp;
3060
3061 /* Copy the chain from SRC. */
3062 nextp = &dst->var_part[k].loc_chain;
3063 for (node = src->var_part[i].loc_chain; node; node = node->next)
3064 {
3065 location_chain *new_lc;
3066
3067 new_lc = new location_chain;
3068 new_lc->next = NULL;
3069 new_lc->init = node->init;
3070 if (!node->set_src || MEM_P (node->set_src))
3071 new_lc->set_src = NULL;
3072 else
3073 new_lc->set_src = node->set_src;
3074 new_lc->loc = node->loc;
3075
3076 *nextp = new_lc;
3077 nextp = &new_lc->next;
3078 }
3079
3080 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (src, i);
3081 i--;
3082 }
3083 dst->var_part[k].cur_loc = NULL;
3084 }
3085
3086 if (flag_var_tracking_uninit)
3087 for (i = 0; i < src->n_var_parts && i < dst->n_var_parts; i++)
3088 {
3089 location_chain *node, *node2;
3090 for (node = src->var_part[i].loc_chain; node; node = node->next)
3091 for (node2 = dst->var_part[i].loc_chain; node2; node2 = node2->next)
3092 if (rtx_equal_p (node->loc, node2->loc))
3093 {
3094 if (node->init > node2->init)
3095 node2->init = node->init;
3096 }
3097 }
3098
3099 /* Continue traversing the hash table. */
3100 return 1;
3101 }
3102
3103 /* Compute union of dataflow sets SRC and DST and store it to DST. */
3104
3105 static void
3106 dataflow_set_union (dataflow_set *dst, dataflow_set *src)
3107 {
3108 int i;
3109
3110 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3111 attrs_list_union (&dst->regs[i], src->regs[i]);
3112
3113 if (dst->vars == empty_shared_hash)
3114 {
3115 shared_hash_destroy (dst->vars);
3116 dst->vars = shared_hash_copy (src->vars);
3117 }
3118 else
3119 {
3120 variable_iterator_type hi;
3121 variable *var;
3122
3123 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (src->vars),
3124 var, variable, hi)
3125 variable_union (var, dst);
3126 }
3127 }
3128
3129 /* Whether the value is currently being expanded. */
3130 #define VALUE_RECURSED_INTO(x) \
3131 (RTL_FLAG_CHECK2 ("VALUE_RECURSED_INTO", (x), VALUE, DEBUG_EXPR)->used)
3132
3133 /* Whether no expansion was found, saving useless lookups.
3134 It must only be set when VALUE_CHANGED is clear. */
3135 #define NO_LOC_P(x) \
3136 (RTL_FLAG_CHECK2 ("NO_LOC_P", (x), VALUE, DEBUG_EXPR)->return_val)
3137
3138 /* Whether cur_loc in the value needs to be (re)computed. */
3139 #define VALUE_CHANGED(x) \
3140 (RTL_FLAG_CHECK1 ("VALUE_CHANGED", (x), VALUE)->frame_related)
3141 /* Whether cur_loc in the decl needs to be (re)computed. */
3142 #define DECL_CHANGED(x) TREE_VISITED (x)
3143
3144 /* Record (if NEWV) that DV needs to have its cur_loc recomputed. For
3145 user DECLs, this means they're in changed_variables. Values and
3146 debug exprs may be left with this flag set if no user variable
3147 requires them to be evaluated. */
3148
3149 static inline void
3150 set_dv_changed (decl_or_value dv, bool newv)
3151 {
3152 switch (dv_onepart_p (dv))
3153 {
3154 case ONEPART_VALUE:
3155 if (newv)
3156 NO_LOC_P (dv_as_value (dv)) = false;
3157 VALUE_CHANGED (dv_as_value (dv)) = newv;
3158 break;
3159
3160 case ONEPART_DEXPR:
3161 if (newv)
3162 NO_LOC_P (DECL_RTL_KNOWN_SET (dv_as_decl (dv))) = false;
3163 /* Fall through... */
3164
3165 default:
3166 DECL_CHANGED (dv_as_decl (dv)) = newv;
3167 break;
3168 }
3169 }
3170
3171 /* Return true if DV needs to have its cur_loc recomputed. */
3172
3173 static inline bool
3174 dv_changed_p (decl_or_value dv)
3175 {
3176 return (dv_is_value_p (dv)
3177 ? VALUE_CHANGED (dv_as_value (dv))
3178 : DECL_CHANGED (dv_as_decl (dv)));
3179 }
3180
3181 /* Return a location list node whose loc is rtx_equal to LOC, in the
3182 location list of a one-part variable or value VAR, or in that of
3183 any values recursively mentioned in the location lists. VARS must
3184 be in star-canonical form. */
3185
3186 static location_chain *
3187 find_loc_in_1pdv (rtx loc, variable *var, variable_table_type *vars)
3188 {
3189 location_chain *node;
3190 enum rtx_code loc_code;
3191
3192 if (!var)
3193 return NULL;
3194
3195 gcc_checking_assert (var->onepart);
3196
3197 if (!var->n_var_parts)
3198 return NULL;
3199
3200 gcc_checking_assert (loc != dv_as_opaque (var->dv));
3201
3202 loc_code = GET_CODE (loc);
3203 for (node = var->var_part[0].loc_chain; node; node = node->next)
3204 {
3205 decl_or_value dv;
3206 variable *rvar;
3207
3208 if (GET_CODE (node->loc) != loc_code)
3209 {
3210 if (GET_CODE (node->loc) != VALUE)
3211 continue;
3212 }
3213 else if (loc == node->loc)
3214 return node;
3215 else if (loc_code != VALUE)
3216 {
3217 if (rtx_equal_p (loc, node->loc))
3218 return node;
3219 continue;
3220 }
3221
3222 /* Since we're in star-canonical form, we don't need to visit
3223 non-canonical nodes: one-part variables and non-canonical
3224 values would only point back to the canonical node. */
3225 if (dv_is_value_p (var->dv)
3226 && !canon_value_cmp (node->loc, dv_as_value (var->dv)))
3227 {
3228 /* Skip all subsequent VALUEs. */
3229 while (node->next && GET_CODE (node->next->loc) == VALUE)
3230 {
3231 node = node->next;
3232 gcc_checking_assert (!canon_value_cmp (node->loc,
3233 dv_as_value (var->dv)));
3234 if (loc == node->loc)
3235 return node;
3236 }
3237 continue;
3238 }
3239
3240 gcc_checking_assert (node == var->var_part[0].loc_chain);
3241 gcc_checking_assert (!node->next);
3242
3243 dv = dv_from_value (node->loc);
3244 rvar = vars->find_with_hash (dv, dv_htab_hash (dv));
3245 return find_loc_in_1pdv (loc, rvar, vars);
3246 }
3247
3248 /* ??? Gotta look in cselib_val locations too. */
3249
3250 return NULL;
3251 }
3252
3253 /* Hash table iteration argument passed to variable_merge. */
3254 struct dfset_merge
3255 {
3256 /* The set in which the merge is to be inserted. */
3257 dataflow_set *dst;
3258 /* The set that we're iterating in. */
3259 dataflow_set *cur;
3260 /* The set that may contain the other dv we are to merge with. */
3261 dataflow_set *src;
3262 /* Number of onepart dvs in src. */
3263 int src_onepart_cnt;
3264 };
3265
3266 /* Insert LOC in *DNODE, if it's not there yet. The list must be in
3267 loc_cmp order, and it is maintained as such. */
3268
3269 static void
3270 insert_into_intersection (location_chain **nodep, rtx loc,
3271 enum var_init_status status)
3272 {
3273 location_chain *node;
3274 int r;
3275
3276 for (node = *nodep; node; nodep = &node->next, node = *nodep)
3277 if ((r = loc_cmp (node->loc, loc)) == 0)
3278 {
3279 node->init = MIN (node->init, status);
3280 return;
3281 }
3282 else if (r > 0)
3283 break;
3284
3285 node = new location_chain;
3286
3287 node->loc = loc;
3288 node->set_src = NULL;
3289 node->init = status;
3290 node->next = *nodep;
3291 *nodep = node;
3292 }
3293
3294 /* Insert in DEST the intersection of the locations present in both
3295 S1NODE and S2VAR, directly or indirectly. S1NODE is from a
3296 variable in DSM->cur, whereas S2VAR is from DSM->src. dvar is in
3297 DSM->dst. */
3298
3299 static void
3300 intersect_loc_chains (rtx val, location_chain **dest, struct dfset_merge *dsm,
3301 location_chain *s1node, variable *s2var)
3302 {
3303 dataflow_set *s1set = dsm->cur;
3304 dataflow_set *s2set = dsm->src;
3305 location_chain *found;
3306
3307 if (s2var)
3308 {
3309 location_chain *s2node;
3310
3311 gcc_checking_assert (s2var->onepart);
3312
3313 if (s2var->n_var_parts)
3314 {
3315 s2node = s2var->var_part[0].loc_chain;
3316
3317 for (; s1node && s2node;
3318 s1node = s1node->next, s2node = s2node->next)
3319 if (s1node->loc != s2node->loc)
3320 break;
3321 else if (s1node->loc == val)
3322 continue;
3323 else
3324 insert_into_intersection (dest, s1node->loc,
3325 MIN (s1node->init, s2node->init));
3326 }
3327 }
3328
3329 for (; s1node; s1node = s1node->next)
3330 {
3331 if (s1node->loc == val)
3332 continue;
3333
3334 if ((found = find_loc_in_1pdv (s1node->loc, s2var,
3335 shared_hash_htab (s2set->vars))))
3336 {
3337 insert_into_intersection (dest, s1node->loc,
3338 MIN (s1node->init, found->init));
3339 continue;
3340 }
3341
3342 if (GET_CODE (s1node->loc) == VALUE
3343 && !VALUE_RECURSED_INTO (s1node->loc))
3344 {
3345 decl_or_value dv = dv_from_value (s1node->loc);
3346 variable *svar = shared_hash_find (s1set->vars, dv);
3347 if (svar)
3348 {
3349 if (svar->n_var_parts == 1)
3350 {
3351 VALUE_RECURSED_INTO (s1node->loc) = true;
3352 intersect_loc_chains (val, dest, dsm,
3353 svar->var_part[0].loc_chain,
3354 s2var);
3355 VALUE_RECURSED_INTO (s1node->loc) = false;
3356 }
3357 }
3358 }
3359
3360 /* ??? gotta look in cselib_val locations too. */
3361
3362 /* ??? if the location is equivalent to any location in src,
3363 searched recursively
3364
3365 add to dst the values needed to represent the equivalence
3366
3367 telling whether locations S is equivalent to another dv's
3368 location list:
3369
3370 for each location D in the list
3371
3372 if S and D satisfy rtx_equal_p, then it is present
3373
3374 else if D is a value, recurse without cycles
3375
3376 else if S and D have the same CODE and MODE
3377
3378 for each operand oS and the corresponding oD
3379
3380 if oS and oD are not equivalent, then S an D are not equivalent
3381
3382 else if they are RTX vectors
3383
3384 if any vector oS element is not equivalent to its respective oD,
3385 then S and D are not equivalent
3386
3387 */
3388
3389
3390 }
3391 }
3392
3393 /* Return -1 if X should be before Y in a location list for a 1-part
3394 variable, 1 if Y should be before X, and 0 if they're equivalent
3395 and should not appear in the list. */
3396
3397 static int
3398 loc_cmp (rtx x, rtx y)
3399 {
3400 int i, j, r;
3401 RTX_CODE code = GET_CODE (x);
3402 const char *fmt;
3403
3404 if (x == y)
3405 return 0;
3406
3407 if (REG_P (x))
3408 {
3409 if (!REG_P (y))
3410 return -1;
3411 gcc_assert (GET_MODE (x) == GET_MODE (y));
3412 if (REGNO (x) == REGNO (y))
3413 return 0;
3414 else if (REGNO (x) < REGNO (y))
3415 return -1;
3416 else
3417 return 1;
3418 }
3419
3420 if (REG_P (y))
3421 return 1;
3422
3423 if (MEM_P (x))
3424 {
3425 if (!MEM_P (y))
3426 return -1;
3427 gcc_assert (GET_MODE (x) == GET_MODE (y));
3428 return loc_cmp (XEXP (x, 0), XEXP (y, 0));
3429 }
3430
3431 if (MEM_P (y))
3432 return 1;
3433
3434 if (GET_CODE (x) == VALUE)
3435 {
3436 if (GET_CODE (y) != VALUE)
3437 return -1;
3438 /* Don't assert the modes are the same, that is true only
3439 when not recursing. (subreg:QI (value:SI 1:1) 0)
3440 and (subreg:QI (value:DI 2:2) 0) can be compared,
3441 even when the modes are different. */
3442 if (canon_value_cmp (x, y))
3443 return -1;
3444 else
3445 return 1;
3446 }
3447
3448 if (GET_CODE (y) == VALUE)
3449 return 1;
3450
3451 /* Entry value is the least preferable kind of expression. */
3452 if (GET_CODE (x) == ENTRY_VALUE)
3453 {
3454 if (GET_CODE (y) != ENTRY_VALUE)
3455 return 1;
3456 gcc_assert (GET_MODE (x) == GET_MODE (y));
3457 return loc_cmp (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
3458 }
3459
3460 if (GET_CODE (y) == ENTRY_VALUE)
3461 return -1;
3462
3463 if (GET_CODE (x) == GET_CODE (y))
3464 /* Compare operands below. */;
3465 else if (GET_CODE (x) < GET_CODE (y))
3466 return -1;
3467 else
3468 return 1;
3469
3470 gcc_assert (GET_MODE (x) == GET_MODE (y));
3471
3472 if (GET_CODE (x) == DEBUG_EXPR)
3473 {
3474 if (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
3475 < DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)))
3476 return -1;
3477 gcc_checking_assert (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
3478 > DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)));
3479 return 1;
3480 }
3481
3482 fmt = GET_RTX_FORMAT (code);
3483 for (i = 0; i < GET_RTX_LENGTH (code); i++)
3484 switch (fmt[i])
3485 {
3486 case 'w':
3487 if (XWINT (x, i) == XWINT (y, i))
3488 break;
3489 else if (XWINT (x, i) < XWINT (y, i))
3490 return -1;
3491 else
3492 return 1;
3493
3494 case 'n':
3495 case 'i':
3496 if (XINT (x, i) == XINT (y, i))
3497 break;
3498 else if (XINT (x, i) < XINT (y, i))
3499 return -1;
3500 else
3501 return 1;
3502
3503 case 'V':
3504 case 'E':
3505 /* Compare the vector length first. */
3506 if (XVECLEN (x, i) == XVECLEN (y, i))
3507 /* Compare the vectors elements. */;
3508 else if (XVECLEN (x, i) < XVECLEN (y, i))
3509 return -1;
3510 else
3511 return 1;
3512
3513 for (j = 0; j < XVECLEN (x, i); j++)
3514 if ((r = loc_cmp (XVECEXP (x, i, j),
3515 XVECEXP (y, i, j))))
3516 return r;
3517 break;
3518
3519 case 'e':
3520 if ((r = loc_cmp (XEXP (x, i), XEXP (y, i))))
3521 return r;
3522 break;
3523
3524 case 'S':
3525 case 's':
3526 if (XSTR (x, i) == XSTR (y, i))
3527 break;
3528 if (!XSTR (x, i))
3529 return -1;
3530 if (!XSTR (y, i))
3531 return 1;
3532 if ((r = strcmp (XSTR (x, i), XSTR (y, i))) == 0)
3533 break;
3534 else if (r < 0)
3535 return -1;
3536 else
3537 return 1;
3538
3539 case 'u':
3540 /* These are just backpointers, so they don't matter. */
3541 break;
3542
3543 case '0':
3544 case 't':
3545 break;
3546
3547 /* It is believed that rtx's at this level will never
3548 contain anything but integers and other rtx's,
3549 except for within LABEL_REFs and SYMBOL_REFs. */
3550 default:
3551 gcc_unreachable ();
3552 }
3553 if (CONST_WIDE_INT_P (x))
3554 {
3555 /* Compare the vector length first. */
3556 if (CONST_WIDE_INT_NUNITS (x) >= CONST_WIDE_INT_NUNITS (y))
3557 return 1;
3558 else if (CONST_WIDE_INT_NUNITS (x) < CONST_WIDE_INT_NUNITS (y))
3559 return -1;
3560
3561 /* Compare the vectors elements. */;
3562 for (j = CONST_WIDE_INT_NUNITS (x) - 1; j >= 0 ; j--)
3563 {
3564 if (CONST_WIDE_INT_ELT (x, j) < CONST_WIDE_INT_ELT (y, j))
3565 return -1;
3566 if (CONST_WIDE_INT_ELT (x, j) > CONST_WIDE_INT_ELT (y, j))
3567 return 1;
3568 }
3569 }
3570
3571 return 0;
3572 }
3573
3574 /* Check the order of entries in one-part variables. */
3575
3576 int
3577 canonicalize_loc_order_check (variable **slot,
3578 dataflow_set *data ATTRIBUTE_UNUSED)
3579 {
3580 variable *var = *slot;
3581 location_chain *node, *next;
3582
3583 #ifdef ENABLE_RTL_CHECKING
3584 int i;
3585 for (i = 0; i < var->n_var_parts; i++)
3586 gcc_assert (var->var_part[0].cur_loc == NULL);
3587 gcc_assert (!var->in_changed_variables);
3588 #endif
3589
3590 if (!var->onepart)
3591 return 1;
3592
3593 gcc_assert (var->n_var_parts == 1);
3594 node = var->var_part[0].loc_chain;
3595 gcc_assert (node);
3596
3597 while ((next = node->next))
3598 {
3599 gcc_assert (loc_cmp (node->loc, next->loc) < 0);
3600 node = next;
3601 }
3602
3603 return 1;
3604 }
3605
3606 /* Mark with VALUE_RECURSED_INTO values that have neighbors that are
3607 more likely to be chosen as canonical for an equivalence set.
3608 Ensure less likely values can reach more likely neighbors, making
3609 the connections bidirectional. */
3610
3611 int
3612 canonicalize_values_mark (variable **slot, dataflow_set *set)
3613 {
3614 variable *var = *slot;
3615 decl_or_value dv = var->dv;
3616 rtx val;
3617 location_chain *node;
3618
3619 if (!dv_is_value_p (dv))
3620 return 1;
3621
3622 gcc_checking_assert (var->n_var_parts == 1);
3623
3624 val = dv_as_value (dv);
3625
3626 for (node = var->var_part[0].loc_chain; node; node = node->next)
3627 if (GET_CODE (node->loc) == VALUE)
3628 {
3629 if (canon_value_cmp (node->loc, val))
3630 VALUE_RECURSED_INTO (val) = true;
3631 else
3632 {
3633 decl_or_value odv = dv_from_value (node->loc);
3634 variable **oslot;
3635 oslot = shared_hash_find_slot_noinsert (set->vars, odv);
3636
3637 set_slot_part (set, val, oslot, odv, 0,
3638 node->init, NULL_RTX);
3639
3640 VALUE_RECURSED_INTO (node->loc) = true;
3641 }
3642 }
3643
3644 return 1;
3645 }
3646
3647 /* Remove redundant entries from equivalence lists in onepart
3648 variables, canonicalizing equivalence sets into star shapes. */
3649
3650 int
3651 canonicalize_values_star (variable **slot, dataflow_set *set)
3652 {
3653 variable *var = *slot;
3654 decl_or_value dv = var->dv;
3655 location_chain *node;
3656 decl_or_value cdv;
3657 rtx val, cval;
3658 variable **cslot;
3659 bool has_value;
3660 bool has_marks;
3661
3662 if (!var->onepart)
3663 return 1;
3664
3665 gcc_checking_assert (var->n_var_parts == 1);
3666
3667 if (dv_is_value_p (dv))
3668 {
3669 cval = dv_as_value (dv);
3670 if (!VALUE_RECURSED_INTO (cval))
3671 return 1;
3672 VALUE_RECURSED_INTO (cval) = false;
3673 }
3674 else
3675 cval = NULL_RTX;
3676
3677 restart:
3678 val = cval;
3679 has_value = false;
3680 has_marks = false;
3681
3682 gcc_assert (var->n_var_parts == 1);
3683
3684 for (node = var->var_part[0].loc_chain; node; node = node->next)
3685 if (GET_CODE (node->loc) == VALUE)
3686 {
3687 has_value = true;
3688 if (VALUE_RECURSED_INTO (node->loc))
3689 has_marks = true;
3690 if (canon_value_cmp (node->loc, cval))
3691 cval = node->loc;
3692 }
3693
3694 if (!has_value)
3695 return 1;
3696
3697 if (cval == val)
3698 {
3699 if (!has_marks || dv_is_decl_p (dv))
3700 return 1;
3701
3702 /* Keep it marked so that we revisit it, either after visiting a
3703 child node, or after visiting a new parent that might be
3704 found out. */
3705 VALUE_RECURSED_INTO (val) = true;
3706
3707 for (node = var->var_part[0].loc_chain; node; node = node->next)
3708 if (GET_CODE (node->loc) == VALUE
3709 && VALUE_RECURSED_INTO (node->loc))
3710 {
3711 cval = node->loc;
3712 restart_with_cval:
3713 VALUE_RECURSED_INTO (cval) = false;
3714 dv = dv_from_value (cval);
3715 slot = shared_hash_find_slot_noinsert (set->vars, dv);
3716 if (!slot)
3717 {
3718 gcc_assert (dv_is_decl_p (var->dv));
3719 /* The canonical value was reset and dropped.
3720 Remove it. */
3721 clobber_variable_part (set, NULL, var->dv, 0, NULL);
3722 return 1;
3723 }
3724 var = *slot;
3725 gcc_assert (dv_is_value_p (var->dv));
3726 if (var->n_var_parts == 0)
3727 return 1;
3728 gcc_assert (var->n_var_parts == 1);
3729 goto restart;
3730 }
3731
3732 VALUE_RECURSED_INTO (val) = false;
3733
3734 return 1;
3735 }
3736
3737 /* Push values to the canonical one. */
3738 cdv = dv_from_value (cval);
3739 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3740
3741 for (node = var->var_part[0].loc_chain; node; node = node->next)
3742 if (node->loc != cval)
3743 {
3744 cslot = set_slot_part (set, node->loc, cslot, cdv, 0,
3745 node->init, NULL_RTX);
3746 if (GET_CODE (node->loc) == VALUE)
3747 {
3748 decl_or_value ndv = dv_from_value (node->loc);
3749
3750 set_variable_part (set, cval, ndv, 0, node->init, NULL_RTX,
3751 NO_INSERT);
3752
3753 if (canon_value_cmp (node->loc, val))
3754 {
3755 /* If it could have been a local minimum, it's not any more,
3756 since it's now neighbor to cval, so it may have to push
3757 to it. Conversely, if it wouldn't have prevailed over
3758 val, then whatever mark it has is fine: if it was to
3759 push, it will now push to a more canonical node, but if
3760 it wasn't, then it has already pushed any values it might
3761 have to. */
3762 VALUE_RECURSED_INTO (node->loc) = true;
3763 /* Make sure we visit node->loc by ensuring we cval is
3764 visited too. */
3765 VALUE_RECURSED_INTO (cval) = true;
3766 }
3767 else if (!VALUE_RECURSED_INTO (node->loc))
3768 /* If we have no need to "recurse" into this node, it's
3769 already "canonicalized", so drop the link to the old
3770 parent. */
3771 clobber_variable_part (set, cval, ndv, 0, NULL);
3772 }
3773 else if (GET_CODE (node->loc) == REG)
3774 {
3775 attrs *list = set->regs[REGNO (node->loc)], **listp;
3776
3777 /* Change an existing attribute referring to dv so that it
3778 refers to cdv, removing any duplicate this might
3779 introduce, and checking that no previous duplicates
3780 existed, all in a single pass. */
3781
3782 while (list)
3783 {
3784 if (list->offset == 0
3785 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3786 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3787 break;
3788
3789 list = list->next;
3790 }
3791
3792 gcc_assert (list);
3793 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3794 {
3795 list->dv = cdv;
3796 for (listp = &list->next; (list = *listp); listp = &list->next)
3797 {
3798 if (list->offset)
3799 continue;
3800
3801 if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3802 {
3803 *listp = list->next;
3804 delete list;
3805 list = *listp;
3806 break;
3807 }
3808
3809 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (dv));
3810 }
3811 }
3812 else if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3813 {
3814 for (listp = &list->next; (list = *listp); listp = &list->next)
3815 {
3816 if (list->offset)
3817 continue;
3818
3819 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3820 {
3821 *listp = list->next;
3822 delete list;
3823 list = *listp;
3824 break;
3825 }
3826
3827 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (cdv));
3828 }
3829 }
3830 else
3831 gcc_unreachable ();
3832
3833 if (flag_checking)
3834 while (list)
3835 {
3836 if (list->offset == 0
3837 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3838 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3839 gcc_unreachable ();
3840
3841 list = list->next;
3842 }
3843 }
3844 }
3845
3846 if (val)
3847 set_slot_part (set, val, cslot, cdv, 0,
3848 VAR_INIT_STATUS_INITIALIZED, NULL_RTX);
3849
3850 slot = clobber_slot_part (set, cval, slot, 0, NULL);
3851
3852 /* Variable may have been unshared. */
3853 var = *slot;
3854 gcc_checking_assert (var->n_var_parts && var->var_part[0].loc_chain->loc == cval
3855 && var->var_part[0].loc_chain->next == NULL);
3856
3857 if (VALUE_RECURSED_INTO (cval))
3858 goto restart_with_cval;
3859
3860 return 1;
3861 }
3862
3863 /* Bind one-part variables to the canonical value in an equivalence
3864 set. Not doing this causes dataflow convergence failure in rare
3865 circumstances, see PR42873. Unfortunately we can't do this
3866 efficiently as part of canonicalize_values_star, since we may not
3867 have determined or even seen the canonical value of a set when we
3868 get to a variable that references another member of the set. */
3869
3870 int
3871 canonicalize_vars_star (variable **slot, dataflow_set *set)
3872 {
3873 variable *var = *slot;
3874 decl_or_value dv = var->dv;
3875 location_chain *node;
3876 rtx cval;
3877 decl_or_value cdv;
3878 variable **cslot;
3879 variable *cvar;
3880 location_chain *cnode;
3881
3882 if (!var->onepart || var->onepart == ONEPART_VALUE)
3883 return 1;
3884
3885 gcc_assert (var->n_var_parts == 1);
3886
3887 node = var->var_part[0].loc_chain;
3888
3889 if (GET_CODE (node->loc) != VALUE)
3890 return 1;
3891
3892 gcc_assert (!node->next);
3893 cval = node->loc;
3894
3895 /* Push values to the canonical one. */
3896 cdv = dv_from_value (cval);
3897 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3898 if (!cslot)
3899 return 1;
3900 cvar = *cslot;
3901 gcc_assert (cvar->n_var_parts == 1);
3902
3903 cnode = cvar->var_part[0].loc_chain;
3904
3905 /* CVAL is canonical if its value list contains non-VALUEs or VALUEs
3906 that are not “more canonical” than it. */
3907 if (GET_CODE (cnode->loc) != VALUE
3908 || !canon_value_cmp (cnode->loc, cval))
3909 return 1;
3910
3911 /* CVAL was found to be non-canonical. Change the variable to point
3912 to the canonical VALUE. */
3913 gcc_assert (!cnode->next);
3914 cval = cnode->loc;
3915
3916 slot = set_slot_part (set, cval, slot, dv, 0,
3917 node->init, node->set_src);
3918 clobber_slot_part (set, cval, slot, 0, node->set_src);
3919
3920 return 1;
3921 }
3922
3923 /* Combine variable or value in *S1SLOT (in DSM->cur) with the
3924 corresponding entry in DSM->src. Multi-part variables are combined
3925 with variable_union, whereas onepart dvs are combined with
3926 intersection. */
3927
3928 static int
3929 variable_merge_over_cur (variable *s1var, struct dfset_merge *dsm)
3930 {
3931 dataflow_set *dst = dsm->dst;
3932 variable **dstslot;
3933 variable *s2var, *dvar = NULL;
3934 decl_or_value dv = s1var->dv;
3935 onepart_enum onepart = s1var->onepart;
3936 rtx val;
3937 hashval_t dvhash;
3938 location_chain *node, **nodep;
3939
3940 /* If the incoming onepart variable has an empty location list, then
3941 the intersection will be just as empty. For other variables,
3942 it's always union. */
3943 gcc_checking_assert (s1var->n_var_parts
3944 && s1var->var_part[0].loc_chain);
3945
3946 if (!onepart)
3947 return variable_union (s1var, dst);
3948
3949 gcc_checking_assert (s1var->n_var_parts == 1);
3950
3951 dvhash = dv_htab_hash (dv);
3952 if (dv_is_value_p (dv))
3953 val = dv_as_value (dv);
3954 else
3955 val = NULL;
3956
3957 s2var = shared_hash_find_1 (dsm->src->vars, dv, dvhash);
3958 if (!s2var)
3959 {
3960 dst_can_be_shared = false;
3961 return 1;
3962 }
3963
3964 dsm->src_onepart_cnt--;
3965 gcc_assert (s2var->var_part[0].loc_chain
3966 && s2var->onepart == onepart
3967 && s2var->n_var_parts == 1);
3968
3969 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
3970 if (dstslot)
3971 {
3972 dvar = *dstslot;
3973 gcc_assert (dvar->refcount == 1
3974 && dvar->onepart == onepart
3975 && dvar->n_var_parts == 1);
3976 nodep = &dvar->var_part[0].loc_chain;
3977 }
3978 else
3979 {
3980 nodep = &node;
3981 node = NULL;
3982 }
3983
3984 if (!dstslot && !onepart_variable_different_p (s1var, s2var))
3985 {
3986 dstslot = shared_hash_find_slot_unshare_1 (&dst->vars, dv,
3987 dvhash, INSERT);
3988 *dstslot = dvar = s2var;
3989 dvar->refcount++;
3990 }
3991 else
3992 {
3993 dst_can_be_shared = false;
3994
3995 intersect_loc_chains (val, nodep, dsm,
3996 s1var->var_part[0].loc_chain, s2var);
3997
3998 if (!dstslot)
3999 {
4000 if (node)
4001 {
4002 dvar = onepart_pool_allocate (onepart);
4003 dvar->dv = dv;
4004 dvar->refcount = 1;
4005 dvar->n_var_parts = 1;
4006 dvar->onepart = onepart;
4007 dvar->in_changed_variables = false;
4008 dvar->var_part[0].loc_chain = node;
4009 dvar->var_part[0].cur_loc = NULL;
4010 if (onepart)
4011 VAR_LOC_1PAUX (dvar) = NULL;
4012 else
4013 VAR_PART_OFFSET (dvar, 0) = 0;
4014
4015 dstslot
4016 = shared_hash_find_slot_unshare_1 (&dst->vars, dv, dvhash,
4017 INSERT);
4018 gcc_assert (!*dstslot);
4019 *dstslot = dvar;
4020 }
4021 else
4022 return 1;
4023 }
4024 }
4025
4026 nodep = &dvar->var_part[0].loc_chain;
4027 while ((node = *nodep))
4028 {
4029 location_chain **nextp = &node->next;
4030
4031 if (GET_CODE (node->loc) == REG)
4032 {
4033 attrs *list;
4034
4035 for (list = dst->regs[REGNO (node->loc)]; list; list = list->next)
4036 if (GET_MODE (node->loc) == GET_MODE (list->loc)
4037 && dv_is_value_p (list->dv))
4038 break;
4039
4040 if (!list)
4041 attrs_list_insert (&dst->regs[REGNO (node->loc)],
4042 dv, 0, node->loc);
4043 /* If this value became canonical for another value that had
4044 this register, we want to leave it alone. */
4045 else if (dv_as_value (list->dv) != val)
4046 {
4047 dstslot = set_slot_part (dst, dv_as_value (list->dv),
4048 dstslot, dv, 0,
4049 node->init, NULL_RTX);
4050 dstslot = delete_slot_part (dst, node->loc, dstslot, 0);
4051
4052 /* Since nextp points into the removed node, we can't
4053 use it. The pointer to the next node moved to nodep.
4054 However, if the variable we're walking is unshared
4055 during our walk, we'll keep walking the location list
4056 of the previously-shared variable, in which case the
4057 node won't have been removed, and we'll want to skip
4058 it. That's why we test *nodep here. */
4059 if (*nodep != node)
4060 nextp = nodep;
4061 }
4062 }
4063 else
4064 /* Canonicalization puts registers first, so we don't have to
4065 walk it all. */
4066 break;
4067 nodep = nextp;
4068 }
4069
4070 if (dvar != *dstslot)
4071 dvar = *dstslot;
4072 nodep = &dvar->var_part[0].loc_chain;
4073
4074 if (val)
4075 {
4076 /* Mark all referenced nodes for canonicalization, and make sure
4077 we have mutual equivalence links. */
4078 VALUE_RECURSED_INTO (val) = true;
4079 for (node = *nodep; node; node = node->next)
4080 if (GET_CODE (node->loc) == VALUE)
4081 {
4082 VALUE_RECURSED_INTO (node->loc) = true;
4083 set_variable_part (dst, val, dv_from_value (node->loc), 0,
4084 node->init, NULL, INSERT);
4085 }
4086
4087 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
4088 gcc_assert (*dstslot == dvar);
4089 canonicalize_values_star (dstslot, dst);
4090 gcc_checking_assert (dstslot
4091 == shared_hash_find_slot_noinsert_1 (dst->vars,
4092 dv, dvhash));
4093 dvar = *dstslot;
4094 }
4095 else
4096 {
4097 bool has_value = false, has_other = false;
4098
4099 /* If we have one value and anything else, we're going to
4100 canonicalize this, so make sure all values have an entry in
4101 the table and are marked for canonicalization. */
4102 for (node = *nodep; node; node = node->next)
4103 {
4104 if (GET_CODE (node->loc) == VALUE)
4105 {
4106 /* If this was marked during register canonicalization,
4107 we know we have to canonicalize values. */
4108 if (has_value)
4109 has_other = true;
4110 has_value = true;
4111 if (has_other)
4112 break;
4113 }
4114 else
4115 {
4116 has_other = true;
4117 if (has_value)
4118 break;
4119 }
4120 }
4121
4122 if (has_value && has_other)
4123 {
4124 for (node = *nodep; node; node = node->next)
4125 {
4126 if (GET_CODE (node->loc) == VALUE)
4127 {
4128 decl_or_value dv = dv_from_value (node->loc);
4129 variable **slot = NULL;
4130
4131 if (shared_hash_shared (dst->vars))
4132 slot = shared_hash_find_slot_noinsert (dst->vars, dv);
4133 if (!slot)
4134 slot = shared_hash_find_slot_unshare (&dst->vars, dv,
4135 INSERT);
4136 if (!*slot)
4137 {
4138 variable *var = onepart_pool_allocate (ONEPART_VALUE);
4139 var->dv = dv;
4140 var->refcount = 1;
4141 var->n_var_parts = 1;
4142 var->onepart = ONEPART_VALUE;
4143 var->in_changed_variables = false;
4144 var->var_part[0].loc_chain = NULL;
4145 var->var_part[0].cur_loc = NULL;
4146 VAR_LOC_1PAUX (var) = NULL;
4147 *slot = var;
4148 }
4149
4150 VALUE_RECURSED_INTO (node->loc) = true;
4151 }
4152 }
4153
4154 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
4155 gcc_assert (*dstslot == dvar);
4156 canonicalize_values_star (dstslot, dst);
4157 gcc_checking_assert (dstslot
4158 == shared_hash_find_slot_noinsert_1 (dst->vars,
4159 dv, dvhash));
4160 dvar = *dstslot;
4161 }
4162 }
4163
4164 if (!onepart_variable_different_p (dvar, s2var))
4165 {
4166 variable_htab_free (dvar);
4167 *dstslot = dvar = s2var;
4168 dvar->refcount++;
4169 }
4170 else if (s2var != s1var && !onepart_variable_different_p (dvar, s1var))
4171 {
4172 variable_htab_free (dvar);
4173 *dstslot = dvar = s1var;
4174 dvar->refcount++;
4175 dst_can_be_shared = false;
4176 }
4177 else
4178 dst_can_be_shared = false;
4179
4180 return 1;
4181 }
4182
4183 /* Copy s2slot (in DSM->src) to DSM->dst if the variable is a
4184 multi-part variable. Unions of multi-part variables and
4185 intersections of one-part ones will be handled in
4186 variable_merge_over_cur(). */
4187
4188 static int
4189 variable_merge_over_src (variable *s2var, struct dfset_merge *dsm)
4190 {
4191 dataflow_set *dst = dsm->dst;
4192 decl_or_value dv = s2var->dv;
4193
4194 if (!s2var->onepart)
4195 {
4196 variable **dstp = shared_hash_find_slot (dst->vars, dv);
4197 *dstp = s2var;
4198 s2var->refcount++;
4199 return 1;
4200 }
4201
4202 dsm->src_onepart_cnt++;
4203 return 1;
4204 }
4205
4206 /* Combine dataflow set information from SRC2 into DST, using PDST
4207 to carry over information across passes. */
4208
4209 static void
4210 dataflow_set_merge (dataflow_set *dst, dataflow_set *src2)
4211 {
4212 dataflow_set cur = *dst;
4213 dataflow_set *src1 = &cur;
4214 struct dfset_merge dsm;
4215 int i;
4216 size_t src1_elems, src2_elems;
4217 variable_iterator_type hi;
4218 variable *var;
4219
4220 src1_elems = shared_hash_htab (src1->vars)->elements ();
4221 src2_elems = shared_hash_htab (src2->vars)->elements ();
4222 dataflow_set_init (dst);
4223 dst->stack_adjust = cur.stack_adjust;
4224 shared_hash_destroy (dst->vars);
4225 dst->vars = new shared_hash;
4226 dst->vars->refcount = 1;
4227 dst->vars->htab = new variable_table_type (MAX (src1_elems, src2_elems));
4228
4229 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4230 attrs_list_mpdv_union (&dst->regs[i], src1->regs[i], src2->regs[i]);
4231
4232 dsm.dst = dst;
4233 dsm.src = src2;
4234 dsm.cur = src1;
4235 dsm.src_onepart_cnt = 0;
4236
4237 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (dsm.src->vars),
4238 var, variable, hi)
4239 variable_merge_over_src (var, &dsm);
4240 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (dsm.cur->vars),
4241 var, variable, hi)
4242 variable_merge_over_cur (var, &dsm);
4243
4244 if (dsm.src_onepart_cnt)
4245 dst_can_be_shared = false;
4246
4247 dataflow_set_destroy (src1);
4248 }
4249
4250 /* Mark register equivalences. */
4251
4252 static void
4253 dataflow_set_equiv_regs (dataflow_set *set)
4254 {
4255 int i;
4256 attrs *list, **listp;
4257
4258 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4259 {
4260 rtx canon[NUM_MACHINE_MODES];
4261
4262 /* If the list is empty or one entry, no need to canonicalize
4263 anything. */
4264 if (set->regs[i] == NULL || set->regs[i]->next == NULL)
4265 continue;
4266
4267 memset (canon, 0, sizeof (canon));
4268
4269 for (list = set->regs[i]; list; list = list->next)
4270 if (list->offset == 0 && dv_is_value_p (list->dv))
4271 {
4272 rtx val = dv_as_value (list->dv);
4273 rtx *cvalp = &canon[(int)GET_MODE (val)];
4274 rtx cval = *cvalp;
4275
4276 if (canon_value_cmp (val, cval))
4277 *cvalp = val;
4278 }
4279
4280 for (list = set->regs[i]; list; list = list->next)
4281 if (list->offset == 0 && dv_onepart_p (list->dv))
4282 {
4283 rtx cval = canon[(int)GET_MODE (list->loc)];
4284
4285 if (!cval)
4286 continue;
4287
4288 if (dv_is_value_p (list->dv))
4289 {
4290 rtx val = dv_as_value (list->dv);
4291
4292 if (val == cval)
4293 continue;
4294
4295 VALUE_RECURSED_INTO (val) = true;
4296 set_variable_part (set, val, dv_from_value (cval), 0,
4297 VAR_INIT_STATUS_INITIALIZED,
4298 NULL, NO_INSERT);
4299 }
4300
4301 VALUE_RECURSED_INTO (cval) = true;
4302 set_variable_part (set, cval, list->dv, 0,
4303 VAR_INIT_STATUS_INITIALIZED, NULL, NO_INSERT);
4304 }
4305
4306 for (listp = &set->regs[i]; (list = *listp);
4307 listp = list ? &list->next : listp)
4308 if (list->offset == 0 && dv_onepart_p (list->dv))
4309 {
4310 rtx cval = canon[(int)GET_MODE (list->loc)];
4311 variable **slot;
4312
4313 if (!cval)
4314 continue;
4315
4316 if (dv_is_value_p (list->dv))
4317 {
4318 rtx val = dv_as_value (list->dv);
4319 if (!VALUE_RECURSED_INTO (val))
4320 continue;
4321 }
4322
4323 slot = shared_hash_find_slot_noinsert (set->vars, list->dv);
4324 canonicalize_values_star (slot, set);
4325 if (*listp != list)
4326 list = NULL;
4327 }
4328 }
4329 }
4330
4331 /* Remove any redundant values in the location list of VAR, which must
4332 be unshared and 1-part. */
4333
4334 static void
4335 remove_duplicate_values (variable *var)
4336 {
4337 location_chain *node, **nodep;
4338
4339 gcc_assert (var->onepart);
4340 gcc_assert (var->n_var_parts == 1);
4341 gcc_assert (var->refcount == 1);
4342
4343 for (nodep = &var->var_part[0].loc_chain; (node = *nodep); )
4344 {
4345 if (GET_CODE (node->loc) == VALUE)
4346 {
4347 if (VALUE_RECURSED_INTO (node->loc))
4348 {
4349 /* Remove duplicate value node. */
4350 *nodep = node->next;
4351 delete node;
4352 continue;
4353 }
4354 else
4355 VALUE_RECURSED_INTO (node->loc) = true;
4356 }
4357 nodep = &node->next;
4358 }
4359
4360 for (node = var->var_part[0].loc_chain; node; node = node->next)
4361 if (GET_CODE (node->loc) == VALUE)
4362 {
4363 gcc_assert (VALUE_RECURSED_INTO (node->loc));
4364 VALUE_RECURSED_INTO (node->loc) = false;
4365 }
4366 }
4367
4368
4369 /* Hash table iteration argument passed to variable_post_merge. */
4370 struct dfset_post_merge
4371 {
4372 /* The new input set for the current block. */
4373 dataflow_set *set;
4374 /* Pointer to the permanent input set for the current block, or
4375 NULL. */
4376 dataflow_set **permp;
4377 };
4378
4379 /* Create values for incoming expressions associated with one-part
4380 variables that don't have value numbers for them. */
4381
4382 int
4383 variable_post_merge_new_vals (variable **slot, dfset_post_merge *dfpm)
4384 {
4385 dataflow_set *set = dfpm->set;
4386 variable *var = *slot;
4387 location_chain *node;
4388
4389 if (!var->onepart || !var->n_var_parts)
4390 return 1;
4391
4392 gcc_assert (var->n_var_parts == 1);
4393
4394 if (dv_is_decl_p (var->dv))
4395 {
4396 bool check_dupes = false;
4397
4398 restart:
4399 for (node = var->var_part[0].loc_chain; node; node = node->next)
4400 {
4401 if (GET_CODE (node->loc) == VALUE)
4402 gcc_assert (!VALUE_RECURSED_INTO (node->loc));
4403 else if (GET_CODE (node->loc) == REG)
4404 {
4405 attrs *att, **attp, **curp = NULL;
4406
4407 if (var->refcount != 1)
4408 {
4409 slot = unshare_variable (set, slot, var,
4410 VAR_INIT_STATUS_INITIALIZED);
4411 var = *slot;
4412 goto restart;
4413 }
4414
4415 for (attp = &set->regs[REGNO (node->loc)]; (att = *attp);
4416 attp = &att->next)
4417 if (att->offset == 0
4418 && GET_MODE (att->loc) == GET_MODE (node->loc))
4419 {
4420 if (dv_is_value_p (att->dv))
4421 {
4422 rtx cval = dv_as_value (att->dv);
4423 node->loc = cval;
4424 check_dupes = true;
4425 break;
4426 }
4427 else if (dv_as_opaque (att->dv) == dv_as_opaque (var->dv))
4428 curp = attp;
4429 }
4430
4431 if (!curp)
4432 {
4433 curp = attp;
4434 while (*curp)
4435 if ((*curp)->offset == 0
4436 && GET_MODE ((*curp)->loc) == GET_MODE (node->loc)
4437 && dv_as_opaque ((*curp)->dv) == dv_as_opaque (var->dv))
4438 break;
4439 else
4440 curp = &(*curp)->next;
4441 gcc_assert (*curp);
4442 }
4443
4444 if (!att)
4445 {
4446 decl_or_value cdv;
4447 rtx cval;
4448
4449 if (!*dfpm->permp)
4450 {
4451 *dfpm->permp = XNEW (dataflow_set);
4452 dataflow_set_init (*dfpm->permp);
4453 }
4454
4455 for (att = (*dfpm->permp)->regs[REGNO (node->loc)];
4456 att; att = att->next)
4457 if (GET_MODE (att->loc) == GET_MODE (node->loc))
4458 {
4459 gcc_assert (att->offset == 0
4460 && dv_is_value_p (att->dv));
4461 val_reset (set, att->dv);
4462 break;
4463 }
4464
4465 if (att)
4466 {
4467 cdv = att->dv;
4468 cval = dv_as_value (cdv);
4469 }
4470 else
4471 {
4472 /* Create a unique value to hold this register,
4473 that ought to be found and reused in
4474 subsequent rounds. */
4475 cselib_val *v;
4476 gcc_assert (!cselib_lookup (node->loc,
4477 GET_MODE (node->loc), 0,
4478 VOIDmode));
4479 v = cselib_lookup (node->loc, GET_MODE (node->loc), 1,
4480 VOIDmode);
4481 cselib_preserve_value (v);
4482 cselib_invalidate_rtx (node->loc);
4483 cval = v->val_rtx;
4484 cdv = dv_from_value (cval);
4485 if (dump_file)
4486 fprintf (dump_file,
4487 "Created new value %u:%u for reg %i\n",
4488 v->uid, v->hash, REGNO (node->loc));
4489 }
4490
4491 var_reg_decl_set (*dfpm->permp, node->loc,
4492 VAR_INIT_STATUS_INITIALIZED,
4493 cdv, 0, NULL, INSERT);
4494
4495 node->loc = cval;
4496 check_dupes = true;
4497 }
4498
4499 /* Remove attribute referring to the decl, which now
4500 uses the value for the register, already existing or
4501 to be added when we bring perm in. */
4502 att = *curp;
4503 *curp = att->next;
4504 delete att;
4505 }
4506 }
4507
4508 if (check_dupes)
4509 remove_duplicate_values (var);
4510 }
4511
4512 return 1;
4513 }
4514
4515 /* Reset values in the permanent set that are not associated with the
4516 chosen expression. */
4517
4518 int
4519 variable_post_merge_perm_vals (variable **pslot, dfset_post_merge *dfpm)
4520 {
4521 dataflow_set *set = dfpm->set;
4522 variable *pvar = *pslot, *var;
4523 location_chain *pnode;
4524 decl_or_value dv;
4525 attrs *att;
4526
4527 gcc_assert (dv_is_value_p (pvar->dv)
4528 && pvar->n_var_parts == 1);
4529 pnode = pvar->var_part[0].loc_chain;
4530 gcc_assert (pnode
4531 && !pnode->next
4532 && REG_P (pnode->loc));
4533
4534 dv = pvar->dv;
4535
4536 var = shared_hash_find (set->vars, dv);
4537 if (var)
4538 {
4539 /* Although variable_post_merge_new_vals may have made decls
4540 non-star-canonical, values that pre-existed in canonical form
4541 remain canonical, and newly-created values reference a single
4542 REG, so they are canonical as well. Since VAR has the
4543 location list for a VALUE, using find_loc_in_1pdv for it is
4544 fine, since VALUEs don't map back to DECLs. */
4545 if (find_loc_in_1pdv (pnode->loc, var, shared_hash_htab (set->vars)))
4546 return 1;
4547 val_reset (set, dv);
4548 }
4549
4550 for (att = set->regs[REGNO (pnode->loc)]; att; att = att->next)
4551 if (att->offset == 0
4552 && GET_MODE (att->loc) == GET_MODE (pnode->loc)
4553 && dv_is_value_p (att->dv))
4554 break;
4555
4556 /* If there is a value associated with this register already, create
4557 an equivalence. */
4558 if (att && dv_as_value (att->dv) != dv_as_value (dv))
4559 {
4560 rtx cval = dv_as_value (att->dv);
4561 set_variable_part (set, cval, dv, 0, pnode->init, NULL, INSERT);
4562 set_variable_part (set, dv_as_value (dv), att->dv, 0, pnode->init,
4563 NULL, INSERT);
4564 }
4565 else if (!att)
4566 {
4567 attrs_list_insert (&set->regs[REGNO (pnode->loc)],
4568 dv, 0, pnode->loc);
4569 variable_union (pvar, set);
4570 }
4571
4572 return 1;
4573 }
4574
4575 /* Just checking stuff and registering register attributes for
4576 now. */
4577
4578 static void
4579 dataflow_post_merge_adjust (dataflow_set *set, dataflow_set **permp)
4580 {
4581 struct dfset_post_merge dfpm;
4582
4583 dfpm.set = set;
4584 dfpm.permp = permp;
4585
4586 shared_hash_htab (set->vars)
4587 ->traverse <dfset_post_merge*, variable_post_merge_new_vals> (&dfpm);
4588 if (*permp)
4589 shared_hash_htab ((*permp)->vars)
4590 ->traverse <dfset_post_merge*, variable_post_merge_perm_vals> (&dfpm);
4591 shared_hash_htab (set->vars)
4592 ->traverse <dataflow_set *, canonicalize_values_star> (set);
4593 shared_hash_htab (set->vars)
4594 ->traverse <dataflow_set *, canonicalize_vars_star> (set);
4595 }
4596
4597 /* Return a node whose loc is a MEM that refers to EXPR in the
4598 location list of a one-part variable or value VAR, or in that of
4599 any values recursively mentioned in the location lists. */
4600
4601 static location_chain *
4602 find_mem_expr_in_1pdv (tree expr, rtx val, variable_table_type *vars)
4603 {
4604 location_chain *node;
4605 decl_or_value dv;
4606 variable *var;
4607 location_chain *where = NULL;
4608
4609 if (!val)
4610 return NULL;
4611
4612 gcc_assert (GET_CODE (val) == VALUE
4613 && !VALUE_RECURSED_INTO (val));
4614
4615 dv = dv_from_value (val);
4616 var = vars->find_with_hash (dv, dv_htab_hash (dv));
4617
4618 if (!var)
4619 return NULL;
4620
4621 gcc_assert (var->onepart);
4622
4623 if (!var->n_var_parts)
4624 return NULL;
4625
4626 VALUE_RECURSED_INTO (val) = true;
4627
4628 for (node = var->var_part[0].loc_chain; node; node = node->next)
4629 if (MEM_P (node->loc)
4630 && MEM_EXPR (node->loc) == expr
4631 && INT_MEM_OFFSET (node->loc) == 0)
4632 {
4633 where = node;
4634 break;
4635 }
4636 else if (GET_CODE (node->loc) == VALUE
4637 && !VALUE_RECURSED_INTO (node->loc)
4638 && (where = find_mem_expr_in_1pdv (expr, node->loc, vars)))
4639 break;
4640
4641 VALUE_RECURSED_INTO (val) = false;
4642
4643 return where;
4644 }
4645
4646 /* Return TRUE if the value of MEM may vary across a call. */
4647
4648 static bool
4649 mem_dies_at_call (rtx mem)
4650 {
4651 tree expr = MEM_EXPR (mem);
4652 tree decl;
4653
4654 if (!expr)
4655 return true;
4656
4657 decl = get_base_address (expr);
4658
4659 if (!decl)
4660 return true;
4661
4662 if (!DECL_P (decl))
4663 return true;
4664
4665 return (may_be_aliased (decl)
4666 || (!TREE_READONLY (decl) && is_global_var (decl)));
4667 }
4668
4669 /* Remove all MEMs from the location list of a hash table entry for a
4670 one-part variable, except those whose MEM attributes map back to
4671 the variable itself, directly or within a VALUE. */
4672
4673 int
4674 dataflow_set_preserve_mem_locs (variable **slot, dataflow_set *set)
4675 {
4676 variable *var = *slot;
4677
4678 if (var->onepart == ONEPART_VDECL || var->onepart == ONEPART_DEXPR)
4679 {
4680 tree decl = dv_as_decl (var->dv);
4681 location_chain *loc, **locp;
4682 bool changed = false;
4683
4684 if (!var->n_var_parts)
4685 return 1;
4686
4687 gcc_assert (var->n_var_parts == 1);
4688
4689 if (shared_var_p (var, set->vars))
4690 {
4691 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4692 {
4693 /* We want to remove dying MEMs that doesn't refer to DECL. */
4694 if (GET_CODE (loc->loc) == MEM
4695 && (MEM_EXPR (loc->loc) != decl
4696 || INT_MEM_OFFSET (loc->loc) != 0)
4697 && !mem_dies_at_call (loc->loc))
4698 break;
4699 /* We want to move here MEMs that do refer to DECL. */
4700 else if (GET_CODE (loc->loc) == VALUE
4701 && find_mem_expr_in_1pdv (decl, loc->loc,
4702 shared_hash_htab (set->vars)))
4703 break;
4704 }
4705
4706 if (!loc)
4707 return 1;
4708
4709 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4710 var = *slot;
4711 gcc_assert (var->n_var_parts == 1);
4712 }
4713
4714 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4715 loc; loc = *locp)
4716 {
4717 rtx old_loc = loc->loc;
4718 if (GET_CODE (old_loc) == VALUE)
4719 {
4720 location_chain *mem_node
4721 = find_mem_expr_in_1pdv (decl, loc->loc,
4722 shared_hash_htab (set->vars));
4723
4724 /* ??? This picks up only one out of multiple MEMs that
4725 refer to the same variable. Do we ever need to be
4726 concerned about dealing with more than one, or, given
4727 that they should all map to the same variable
4728 location, their addresses will have been merged and
4729 they will be regarded as equivalent? */
4730 if (mem_node)
4731 {
4732 loc->loc = mem_node->loc;
4733 loc->set_src = mem_node->set_src;
4734 loc->init = MIN (loc->init, mem_node->init);
4735 }
4736 }
4737
4738 if (GET_CODE (loc->loc) != MEM
4739 || (MEM_EXPR (loc->loc) == decl
4740 && INT_MEM_OFFSET (loc->loc) == 0)
4741 || !mem_dies_at_call (loc->loc))
4742 {
4743 if (old_loc != loc->loc && emit_notes)
4744 {
4745 if (old_loc == var->var_part[0].cur_loc)
4746 {
4747 changed = true;
4748 var->var_part[0].cur_loc = NULL;
4749 }
4750 }
4751 locp = &loc->next;
4752 continue;
4753 }
4754
4755 if (emit_notes)
4756 {
4757 if (old_loc == var->var_part[0].cur_loc)
4758 {
4759 changed = true;
4760 var->var_part[0].cur_loc = NULL;
4761 }
4762 }
4763 *locp = loc->next;
4764 delete loc;
4765 }
4766
4767 if (!var->var_part[0].loc_chain)
4768 {
4769 var->n_var_parts--;
4770 changed = true;
4771 }
4772 if (changed)
4773 variable_was_changed (var, set);
4774 }
4775
4776 return 1;
4777 }
4778
4779 /* Remove all MEMs from the location list of a hash table entry for a
4780 value. */
4781
4782 int
4783 dataflow_set_remove_mem_locs (variable **slot, dataflow_set *set)
4784 {
4785 variable *var = *slot;
4786
4787 if (var->onepart == ONEPART_VALUE)
4788 {
4789 location_chain *loc, **locp;
4790 bool changed = false;
4791 rtx cur_loc;
4792
4793 gcc_assert (var->n_var_parts == 1);
4794
4795 if (shared_var_p (var, set->vars))
4796 {
4797 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4798 if (GET_CODE (loc->loc) == MEM
4799 && mem_dies_at_call (loc->loc))
4800 break;
4801
4802 if (!loc)
4803 return 1;
4804
4805 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4806 var = *slot;
4807 gcc_assert (var->n_var_parts == 1);
4808 }
4809
4810 if (VAR_LOC_1PAUX (var))
4811 cur_loc = VAR_LOC_FROM (var);
4812 else
4813 cur_loc = var->var_part[0].cur_loc;
4814
4815 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4816 loc; loc = *locp)
4817 {
4818 if (GET_CODE (loc->loc) != MEM
4819 || !mem_dies_at_call (loc->loc))
4820 {
4821 locp = &loc->next;
4822 continue;
4823 }
4824
4825 *locp = loc->next;
4826 /* If we have deleted the location which was last emitted
4827 we have to emit new location so add the variable to set
4828 of changed variables. */
4829 if (cur_loc == loc->loc)
4830 {
4831 changed = true;
4832 var->var_part[0].cur_loc = NULL;
4833 if (VAR_LOC_1PAUX (var))
4834 VAR_LOC_FROM (var) = NULL;
4835 }
4836 delete loc;
4837 }
4838
4839 if (!var->var_part[0].loc_chain)
4840 {
4841 var->n_var_parts--;
4842 changed = true;
4843 }
4844 if (changed)
4845 variable_was_changed (var, set);
4846 }
4847
4848 return 1;
4849 }
4850
4851 /* Remove all variable-location information about call-clobbered
4852 registers, as well as associations between MEMs and VALUEs. */
4853
4854 static void
4855 dataflow_set_clear_at_call (dataflow_set *set, rtx_insn *call_insn)
4856 {
4857 unsigned int r;
4858 hard_reg_set_iterator hrsi;
4859 HARD_REG_SET invalidated_regs;
4860
4861 get_call_reg_set_usage (call_insn, &invalidated_regs,
4862 regs_invalidated_by_call);
4863
4864 EXECUTE_IF_SET_IN_HARD_REG_SET (invalidated_regs, 0, r, hrsi)
4865 var_regno_delete (set, r);
4866
4867 if (MAY_HAVE_DEBUG_INSNS)
4868 {
4869 set->traversed_vars = set->vars;
4870 shared_hash_htab (set->vars)
4871 ->traverse <dataflow_set *, dataflow_set_preserve_mem_locs> (set);
4872 set->traversed_vars = set->vars;
4873 shared_hash_htab (set->vars)
4874 ->traverse <dataflow_set *, dataflow_set_remove_mem_locs> (set);
4875 set->traversed_vars = NULL;
4876 }
4877 }
4878
4879 static bool
4880 variable_part_different_p (variable_part *vp1, variable_part *vp2)
4881 {
4882 location_chain *lc1, *lc2;
4883
4884 for (lc1 = vp1->loc_chain; lc1; lc1 = lc1->next)
4885 {
4886 for (lc2 = vp2->loc_chain; lc2; lc2 = lc2->next)
4887 {
4888 if (REG_P (lc1->loc) && REG_P (lc2->loc))
4889 {
4890 if (REGNO (lc1->loc) == REGNO (lc2->loc))
4891 break;
4892 }
4893 if (rtx_equal_p (lc1->loc, lc2->loc))
4894 break;
4895 }
4896 if (!lc2)
4897 return true;
4898 }
4899 return false;
4900 }
4901
4902 /* Return true if one-part variables VAR1 and VAR2 are different.
4903 They must be in canonical order. */
4904
4905 static bool
4906 onepart_variable_different_p (variable *var1, variable *var2)
4907 {
4908 location_chain *lc1, *lc2;
4909
4910 if (var1 == var2)
4911 return false;
4912
4913 gcc_assert (var1->n_var_parts == 1
4914 && var2->n_var_parts == 1);
4915
4916 lc1 = var1->var_part[0].loc_chain;
4917 lc2 = var2->var_part[0].loc_chain;
4918
4919 gcc_assert (lc1 && lc2);
4920
4921 while (lc1 && lc2)
4922 {
4923 if (loc_cmp (lc1->loc, lc2->loc))
4924 return true;
4925 lc1 = lc1->next;
4926 lc2 = lc2->next;
4927 }
4928
4929 return lc1 != lc2;
4930 }
4931
4932 /* Return true if variables VAR1 and VAR2 are different. */
4933
4934 static bool
4935 variable_different_p (variable *var1, variable *var2)
4936 {
4937 int i;
4938
4939 if (var1 == var2)
4940 return false;
4941
4942 if (var1->onepart != var2->onepart)
4943 return true;
4944
4945 if (var1->n_var_parts != var2->n_var_parts)
4946 return true;
4947
4948 if (var1->onepart && var1->n_var_parts)
4949 {
4950 gcc_checking_assert (dv_as_opaque (var1->dv) == dv_as_opaque (var2->dv)
4951 && var1->n_var_parts == 1);
4952 /* One-part values have locations in a canonical order. */
4953 return onepart_variable_different_p (var1, var2);
4954 }
4955
4956 for (i = 0; i < var1->n_var_parts; i++)
4957 {
4958 if (VAR_PART_OFFSET (var1, i) != VAR_PART_OFFSET (var2, i))
4959 return true;
4960 if (variable_part_different_p (&var1->var_part[i], &var2->var_part[i]))
4961 return true;
4962 if (variable_part_different_p (&var2->var_part[i], &var1->var_part[i]))
4963 return true;
4964 }
4965 return false;
4966 }
4967
4968 /* Return true if dataflow sets OLD_SET and NEW_SET differ. */
4969
4970 static bool
4971 dataflow_set_different (dataflow_set *old_set, dataflow_set *new_set)
4972 {
4973 variable_iterator_type hi;
4974 variable *var1;
4975
4976 if (old_set->vars == new_set->vars)
4977 return false;
4978
4979 if (shared_hash_htab (old_set->vars)->elements ()
4980 != shared_hash_htab (new_set->vars)->elements ())
4981 return true;
4982
4983 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (old_set->vars),
4984 var1, variable, hi)
4985 {
4986 variable_table_type *htab = shared_hash_htab (new_set->vars);
4987 variable *var2 = htab->find_with_hash (var1->dv, dv_htab_hash (var1->dv));
4988 if (!var2)
4989 {
4990 if (dump_file && (dump_flags & TDF_DETAILS))
4991 {
4992 fprintf (dump_file, "dataflow difference found: removal of:\n");
4993 dump_var (var1);
4994 }
4995 return true;
4996 }
4997
4998 if (variable_different_p (var1, var2))
4999 {
5000 if (dump_file && (dump_flags & TDF_DETAILS))
5001 {
5002 fprintf (dump_file, "dataflow difference found: "
5003 "old and new follow:\n");
5004 dump_var (var1);
5005 dump_var (var2);
5006 }
5007 return true;
5008 }
5009 }
5010
5011 /* No need to traverse the second hashtab, if both have the same number
5012 of elements and the second one had all entries found in the first one,
5013 then it can't have any extra entries. */
5014 return false;
5015 }
5016
5017 /* Free the contents of dataflow set SET. */
5018
5019 static void
5020 dataflow_set_destroy (dataflow_set *set)
5021 {
5022 int i;
5023
5024 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5025 attrs_list_clear (&set->regs[i]);
5026
5027 shared_hash_destroy (set->vars);
5028 set->vars = NULL;
5029 }
5030
5031 /* Return true if RTL X contains a SYMBOL_REF. */
5032
5033 static bool
5034 contains_symbol_ref (rtx x)
5035 {
5036 const char *fmt;
5037 RTX_CODE code;
5038 int i;
5039
5040 if (!x)
5041 return false;
5042
5043 code = GET_CODE (x);
5044 if (code == SYMBOL_REF)
5045 return true;
5046
5047 fmt = GET_RTX_FORMAT (code);
5048 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5049 {
5050 if (fmt[i] == 'e')
5051 {
5052 if (contains_symbol_ref (XEXP (x, i)))
5053 return true;
5054 }
5055 else if (fmt[i] == 'E')
5056 {
5057 int j;
5058 for (j = 0; j < XVECLEN (x, i); j++)
5059 if (contains_symbol_ref (XVECEXP (x, i, j)))
5060 return true;
5061 }
5062 }
5063
5064 return false;
5065 }
5066
5067 /* Shall EXPR be tracked? */
5068
5069 static bool
5070 track_expr_p (tree expr, bool need_rtl)
5071 {
5072 rtx decl_rtl;
5073 tree realdecl;
5074
5075 if (TREE_CODE (expr) == DEBUG_EXPR_DECL)
5076 return DECL_RTL_SET_P (expr);
5077
5078 /* If EXPR is not a parameter or a variable do not track it. */
5079 if (TREE_CODE (expr) != VAR_DECL && TREE_CODE (expr) != PARM_DECL)
5080 return 0;
5081
5082 /* It also must have a name... */
5083 if (!DECL_NAME (expr) && need_rtl)
5084 return 0;
5085
5086 /* ... and a RTL assigned to it. */
5087 decl_rtl = DECL_RTL_IF_SET (expr);
5088 if (!decl_rtl && need_rtl)
5089 return 0;
5090
5091 /* If this expression is really a debug alias of some other declaration, we
5092 don't need to track this expression if the ultimate declaration is
5093 ignored. */
5094 realdecl = expr;
5095 if (TREE_CODE (realdecl) == VAR_DECL && DECL_HAS_DEBUG_EXPR_P (realdecl))
5096 {
5097 realdecl = DECL_DEBUG_EXPR (realdecl);
5098 if (!DECL_P (realdecl))
5099 {
5100 if (handled_component_p (realdecl)
5101 || (TREE_CODE (realdecl) == MEM_REF
5102 && TREE_CODE (TREE_OPERAND (realdecl, 0)) == ADDR_EXPR))
5103 {
5104 HOST_WIDE_INT bitsize, bitpos, maxsize;
5105 tree innerdecl
5106 = get_ref_base_and_extent (realdecl, &bitpos, &bitsize,
5107 &maxsize);
5108 if (!DECL_P (innerdecl)
5109 || DECL_IGNORED_P (innerdecl)
5110 /* Do not track declarations for parts of tracked parameters
5111 since we want to track them as a whole instead. */
5112 || (TREE_CODE (innerdecl) == PARM_DECL
5113 && DECL_MODE (innerdecl) != BLKmode
5114 && TREE_CODE (TREE_TYPE (innerdecl)) != UNION_TYPE)
5115 || TREE_STATIC (innerdecl)
5116 || bitsize <= 0
5117 || bitpos + bitsize > 256
5118 || bitsize != maxsize)
5119 return 0;
5120 else
5121 realdecl = expr;
5122 }
5123 else
5124 return 0;
5125 }
5126 }
5127
5128 /* Do not track EXPR if REALDECL it should be ignored for debugging
5129 purposes. */
5130 if (DECL_IGNORED_P (realdecl))
5131 return 0;
5132
5133 /* Do not track global variables until we are able to emit correct location
5134 list for them. */
5135 if (TREE_STATIC (realdecl))
5136 return 0;
5137
5138 /* When the EXPR is a DECL for alias of some variable (see example)
5139 the TREE_STATIC flag is not used. Disable tracking all DECLs whose
5140 DECL_RTL contains SYMBOL_REF.
5141
5142 Example:
5143 extern char **_dl_argv_internal __attribute__ ((alias ("_dl_argv")));
5144 char **_dl_argv;
5145 */
5146 if (decl_rtl && MEM_P (decl_rtl)
5147 && contains_symbol_ref (XEXP (decl_rtl, 0)))
5148 return 0;
5149
5150 /* If RTX is a memory it should not be very large (because it would be
5151 an array or struct). */
5152 if (decl_rtl && MEM_P (decl_rtl))
5153 {
5154 /* Do not track structures and arrays. */
5155 if (GET_MODE (decl_rtl) == BLKmode
5156 || AGGREGATE_TYPE_P (TREE_TYPE (realdecl)))
5157 return 0;
5158 if (MEM_SIZE_KNOWN_P (decl_rtl)
5159 && MEM_SIZE (decl_rtl) > MAX_VAR_PARTS)
5160 return 0;
5161 }
5162
5163 DECL_CHANGED (expr) = 0;
5164 DECL_CHANGED (realdecl) = 0;
5165 return 1;
5166 }
5167
5168 /* Determine whether a given LOC refers to the same variable part as
5169 EXPR+OFFSET. */
5170
5171 static bool
5172 same_variable_part_p (rtx loc, tree expr, HOST_WIDE_INT offset)
5173 {
5174 tree expr2;
5175 HOST_WIDE_INT offset2;
5176
5177 if (! DECL_P (expr))
5178 return false;
5179
5180 if (REG_P (loc))
5181 {
5182 expr2 = REG_EXPR (loc);
5183 offset2 = REG_OFFSET (loc);
5184 }
5185 else if (MEM_P (loc))
5186 {
5187 expr2 = MEM_EXPR (loc);
5188 offset2 = INT_MEM_OFFSET (loc);
5189 }
5190 else
5191 return false;
5192
5193 if (! expr2 || ! DECL_P (expr2))
5194 return false;
5195
5196 expr = var_debug_decl (expr);
5197 expr2 = var_debug_decl (expr2);
5198
5199 return (expr == expr2 && offset == offset2);
5200 }
5201
5202 /* LOC is a REG or MEM that we would like to track if possible.
5203 If EXPR is null, we don't know what expression LOC refers to,
5204 otherwise it refers to EXPR + OFFSET. STORE_REG_P is true if
5205 LOC is an lvalue register.
5206
5207 Return true if EXPR is nonnull and if LOC, or some lowpart of it,
5208 is something we can track. When returning true, store the mode of
5209 the lowpart we can track in *MODE_OUT (if nonnull) and its offset
5210 from EXPR in *OFFSET_OUT (if nonnull). */
5211
5212 static bool
5213 track_loc_p (rtx loc, tree expr, HOST_WIDE_INT offset, bool store_reg_p,
5214 machine_mode *mode_out, HOST_WIDE_INT *offset_out)
5215 {
5216 machine_mode mode;
5217
5218 if (expr == NULL || !track_expr_p (expr, true))
5219 return false;
5220
5221 /* If REG was a paradoxical subreg, its REG_ATTRS will describe the
5222 whole subreg, but only the old inner part is really relevant. */
5223 mode = GET_MODE (loc);
5224 if (REG_P (loc) && !HARD_REGISTER_NUM_P (ORIGINAL_REGNO (loc)))
5225 {
5226 machine_mode pseudo_mode;
5227
5228 pseudo_mode = PSEUDO_REGNO_MODE (ORIGINAL_REGNO (loc));
5229 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (pseudo_mode))
5230 {
5231 offset += byte_lowpart_offset (pseudo_mode, mode);
5232 mode = pseudo_mode;
5233 }
5234 }
5235
5236 /* If LOC is a paradoxical lowpart of EXPR, refer to EXPR itself.
5237 Do the same if we are storing to a register and EXPR occupies
5238 the whole of register LOC; in that case, the whole of EXPR is
5239 being changed. We exclude complex modes from the second case
5240 because the real and imaginary parts are represented as separate
5241 pseudo registers, even if the whole complex value fits into one
5242 hard register. */
5243 if ((GET_MODE_SIZE (mode) > GET_MODE_SIZE (DECL_MODE (expr))
5244 || (store_reg_p
5245 && !COMPLEX_MODE_P (DECL_MODE (expr))
5246 && hard_regno_nregs[REGNO (loc)][DECL_MODE (expr)] == 1))
5247 && offset + byte_lowpart_offset (DECL_MODE (expr), mode) == 0)
5248 {
5249 mode = DECL_MODE (expr);
5250 offset = 0;
5251 }
5252
5253 if (offset < 0 || offset >= MAX_VAR_PARTS)
5254 return false;
5255
5256 if (mode_out)
5257 *mode_out = mode;
5258 if (offset_out)
5259 *offset_out = offset;
5260 return true;
5261 }
5262
5263 /* Return the MODE lowpart of LOC, or null if LOC is not something we
5264 want to track. When returning nonnull, make sure that the attributes
5265 on the returned value are updated. */
5266
5267 static rtx
5268 var_lowpart (machine_mode mode, rtx loc)
5269 {
5270 unsigned int offset, reg_offset, regno;
5271
5272 if (GET_MODE (loc) == mode)
5273 return loc;
5274
5275 if (!REG_P (loc) && !MEM_P (loc))
5276 return NULL;
5277
5278 offset = byte_lowpart_offset (mode, GET_MODE (loc));
5279
5280 if (MEM_P (loc))
5281 return adjust_address_nv (loc, mode, offset);
5282
5283 reg_offset = subreg_lowpart_offset (mode, GET_MODE (loc));
5284 regno = REGNO (loc) + subreg_regno_offset (REGNO (loc), GET_MODE (loc),
5285 reg_offset, mode);
5286 return gen_rtx_REG_offset (loc, mode, regno, offset);
5287 }
5288
5289 /* Carry information about uses and stores while walking rtx. */
5290
5291 struct count_use_info
5292 {
5293 /* The insn where the RTX is. */
5294 rtx_insn *insn;
5295
5296 /* The basic block where insn is. */
5297 basic_block bb;
5298
5299 /* The array of n_sets sets in the insn, as determined by cselib. */
5300 struct cselib_set *sets;
5301 int n_sets;
5302
5303 /* True if we're counting stores, false otherwise. */
5304 bool store_p;
5305 };
5306
5307 /* Find a VALUE corresponding to X. */
5308
5309 static inline cselib_val *
5310 find_use_val (rtx x, machine_mode mode, struct count_use_info *cui)
5311 {
5312 int i;
5313
5314 if (cui->sets)
5315 {
5316 /* This is called after uses are set up and before stores are
5317 processed by cselib, so it's safe to look up srcs, but not
5318 dsts. So we look up expressions that appear in srcs or in
5319 dest expressions, but we search the sets array for dests of
5320 stores. */
5321 if (cui->store_p)
5322 {
5323 /* Some targets represent memset and memcpy patterns
5324 by (set (mem:BLK ...) (reg:[QHSD]I ...)) or
5325 (set (mem:BLK ...) (const_int ...)) or
5326 (set (mem:BLK ...) (mem:BLK ...)). Don't return anything
5327 in that case, otherwise we end up with mode mismatches. */
5328 if (mode == BLKmode && MEM_P (x))
5329 return NULL;
5330 for (i = 0; i < cui->n_sets; i++)
5331 if (cui->sets[i].dest == x)
5332 return cui->sets[i].src_elt;
5333 }
5334 else
5335 return cselib_lookup (x, mode, 0, VOIDmode);
5336 }
5337
5338 return NULL;
5339 }
5340
5341 /* Replace all registers and addresses in an expression with VALUE
5342 expressions that map back to them, unless the expression is a
5343 register. If no mapping is or can be performed, returns NULL. */
5344
5345 static rtx
5346 replace_expr_with_values (rtx loc)
5347 {
5348 if (REG_P (loc) || GET_CODE (loc) == ENTRY_VALUE)
5349 return NULL;
5350 else if (MEM_P (loc))
5351 {
5352 cselib_val *addr = cselib_lookup (XEXP (loc, 0),
5353 get_address_mode (loc), 0,
5354 GET_MODE (loc));
5355 if (addr)
5356 return replace_equiv_address_nv (loc, addr->val_rtx);
5357 else
5358 return NULL;
5359 }
5360 else
5361 return cselib_subst_to_values (loc, VOIDmode);
5362 }
5363
5364 /* Return true if X contains a DEBUG_EXPR. */
5365
5366 static bool
5367 rtx_debug_expr_p (const_rtx x)
5368 {
5369 subrtx_iterator::array_type array;
5370 FOR_EACH_SUBRTX (iter, array, x, ALL)
5371 if (GET_CODE (*iter) == DEBUG_EXPR)
5372 return true;
5373 return false;
5374 }
5375
5376 /* Determine what kind of micro operation to choose for a USE. Return
5377 MO_CLOBBER if no micro operation is to be generated. */
5378
5379 static enum micro_operation_type
5380 use_type (rtx loc, struct count_use_info *cui, machine_mode *modep)
5381 {
5382 tree expr;
5383
5384 if (cui && cui->sets)
5385 {
5386 if (GET_CODE (loc) == VAR_LOCATION)
5387 {
5388 if (track_expr_p (PAT_VAR_LOCATION_DECL (loc), false))
5389 {
5390 rtx ploc = PAT_VAR_LOCATION_LOC (loc);
5391 if (! VAR_LOC_UNKNOWN_P (ploc))
5392 {
5393 cselib_val *val = cselib_lookup (ploc, GET_MODE (loc), 1,
5394 VOIDmode);
5395
5396 /* ??? flag_float_store and volatile mems are never
5397 given values, but we could in theory use them for
5398 locations. */
5399 gcc_assert (val || 1);
5400 }
5401 return MO_VAL_LOC;
5402 }
5403 else
5404 return MO_CLOBBER;
5405 }
5406
5407 if (REG_P (loc) || MEM_P (loc))
5408 {
5409 if (modep)
5410 *modep = GET_MODE (loc);
5411 if (cui->store_p)
5412 {
5413 if (REG_P (loc)
5414 || (find_use_val (loc, GET_MODE (loc), cui)
5415 && cselib_lookup (XEXP (loc, 0),
5416 get_address_mode (loc), 0,
5417 GET_MODE (loc))))
5418 return MO_VAL_SET;
5419 }
5420 else
5421 {
5422 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5423
5424 if (val && !cselib_preserved_value_p (val))
5425 return MO_VAL_USE;
5426 }
5427 }
5428 }
5429
5430 if (REG_P (loc))
5431 {
5432 gcc_assert (REGNO (loc) < FIRST_PSEUDO_REGISTER);
5433
5434 if (loc == cfa_base_rtx)
5435 return MO_CLOBBER;
5436 expr = REG_EXPR (loc);
5437
5438 if (!expr)
5439 return MO_USE_NO_VAR;
5440 else if (target_for_debug_bind (var_debug_decl (expr)))
5441 return MO_CLOBBER;
5442 else if (track_loc_p (loc, expr, REG_OFFSET (loc),
5443 false, modep, NULL))
5444 return MO_USE;
5445 else
5446 return MO_USE_NO_VAR;
5447 }
5448 else if (MEM_P (loc))
5449 {
5450 expr = MEM_EXPR (loc);
5451
5452 if (!expr)
5453 return MO_CLOBBER;
5454 else if (target_for_debug_bind (var_debug_decl (expr)))
5455 return MO_CLOBBER;
5456 else if (track_loc_p (loc, expr, INT_MEM_OFFSET (loc),
5457 false, modep, NULL)
5458 /* Multi-part variables shouldn't refer to one-part
5459 variable names such as VALUEs (never happens) or
5460 DEBUG_EXPRs (only happens in the presence of debug
5461 insns). */
5462 && (!MAY_HAVE_DEBUG_INSNS
5463 || !rtx_debug_expr_p (XEXP (loc, 0))))
5464 return MO_USE;
5465 else
5466 return MO_CLOBBER;
5467 }
5468
5469 return MO_CLOBBER;
5470 }
5471
5472 /* Log to OUT information about micro-operation MOPT involving X in
5473 INSN of BB. */
5474
5475 static inline void
5476 log_op_type (rtx x, basic_block bb, rtx_insn *insn,
5477 enum micro_operation_type mopt, FILE *out)
5478 {
5479 fprintf (out, "bb %i op %i insn %i %s ",
5480 bb->index, VTI (bb)->mos.length (),
5481 INSN_UID (insn), micro_operation_type_name[mopt]);
5482 print_inline_rtx (out, x, 2);
5483 fputc ('\n', out);
5484 }
5485
5486 /* Tell whether the CONCAT used to holds a VALUE and its location
5487 needs value resolution, i.e., an attempt of mapping the location
5488 back to other incoming values. */
5489 #define VAL_NEEDS_RESOLUTION(x) \
5490 (RTL_FLAG_CHECK1 ("VAL_NEEDS_RESOLUTION", (x), CONCAT)->volatil)
5491 /* Whether the location in the CONCAT is a tracked expression, that
5492 should also be handled like a MO_USE. */
5493 #define VAL_HOLDS_TRACK_EXPR(x) \
5494 (RTL_FLAG_CHECK1 ("VAL_HOLDS_TRACK_EXPR", (x), CONCAT)->used)
5495 /* Whether the location in the CONCAT should be handled like a MO_COPY
5496 as well. */
5497 #define VAL_EXPR_IS_COPIED(x) \
5498 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_COPIED", (x), CONCAT)->jump)
5499 /* Whether the location in the CONCAT should be handled like a
5500 MO_CLOBBER as well. */
5501 #define VAL_EXPR_IS_CLOBBERED(x) \
5502 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_CLOBBERED", (x), CONCAT)->unchanging)
5503
5504 /* All preserved VALUEs. */
5505 static vec<rtx> preserved_values;
5506
5507 /* Ensure VAL is preserved and remember it in a vector for vt_emit_notes. */
5508
5509 static void
5510 preserve_value (cselib_val *val)
5511 {
5512 cselib_preserve_value (val);
5513 preserved_values.safe_push (val->val_rtx);
5514 }
5515
5516 /* Helper function for MO_VAL_LOC handling. Return non-zero if
5517 any rtxes not suitable for CONST use not replaced by VALUEs
5518 are discovered. */
5519
5520 static bool
5521 non_suitable_const (const_rtx x)
5522 {
5523 subrtx_iterator::array_type array;
5524 FOR_EACH_SUBRTX (iter, array, x, ALL)
5525 {
5526 const_rtx x = *iter;
5527 switch (GET_CODE (x))
5528 {
5529 case REG:
5530 case DEBUG_EXPR:
5531 case PC:
5532 case SCRATCH:
5533 case CC0:
5534 case ASM_INPUT:
5535 case ASM_OPERANDS:
5536 return true;
5537 case MEM:
5538 if (!MEM_READONLY_P (x))
5539 return true;
5540 break;
5541 default:
5542 break;
5543 }
5544 }
5545 return false;
5546 }
5547
5548 /* Add uses (register and memory references) LOC which will be tracked
5549 to VTI (bb)->mos. */
5550
5551 static void
5552 add_uses (rtx loc, struct count_use_info *cui)
5553 {
5554 machine_mode mode = VOIDmode;
5555 enum micro_operation_type type = use_type (loc, cui, &mode);
5556
5557 if (type != MO_CLOBBER)
5558 {
5559 basic_block bb = cui->bb;
5560 micro_operation mo;
5561
5562 mo.type = type;
5563 mo.u.loc = type == MO_USE ? var_lowpart (mode, loc) : loc;
5564 mo.insn = cui->insn;
5565
5566 if (type == MO_VAL_LOC)
5567 {
5568 rtx oloc = loc;
5569 rtx vloc = PAT_VAR_LOCATION_LOC (oloc);
5570 cselib_val *val;
5571
5572 gcc_assert (cui->sets);
5573
5574 if (MEM_P (vloc)
5575 && !REG_P (XEXP (vloc, 0))
5576 && !MEM_P (XEXP (vloc, 0)))
5577 {
5578 rtx mloc = vloc;
5579 machine_mode address_mode = get_address_mode (mloc);
5580 cselib_val *val
5581 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5582 GET_MODE (mloc));
5583
5584 if (val && !cselib_preserved_value_p (val))
5585 preserve_value (val);
5586 }
5587
5588 if (CONSTANT_P (vloc)
5589 && (GET_CODE (vloc) != CONST || non_suitable_const (vloc)))
5590 /* For constants don't look up any value. */;
5591 else if (!VAR_LOC_UNKNOWN_P (vloc) && !unsuitable_loc (vloc)
5592 && (val = find_use_val (vloc, GET_MODE (oloc), cui)))
5593 {
5594 machine_mode mode2;
5595 enum micro_operation_type type2;
5596 rtx nloc = NULL;
5597 bool resolvable = REG_P (vloc) || MEM_P (vloc);
5598
5599 if (resolvable)
5600 nloc = replace_expr_with_values (vloc);
5601
5602 if (nloc)
5603 {
5604 oloc = shallow_copy_rtx (oloc);
5605 PAT_VAR_LOCATION_LOC (oloc) = nloc;
5606 }
5607
5608 oloc = gen_rtx_CONCAT (mode, val->val_rtx, oloc);
5609
5610 type2 = use_type (vloc, 0, &mode2);
5611
5612 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5613 || type2 == MO_CLOBBER);
5614
5615 if (type2 == MO_CLOBBER
5616 && !cselib_preserved_value_p (val))
5617 {
5618 VAL_NEEDS_RESOLUTION (oloc) = resolvable;
5619 preserve_value (val);
5620 }
5621 }
5622 else if (!VAR_LOC_UNKNOWN_P (vloc))
5623 {
5624 oloc = shallow_copy_rtx (oloc);
5625 PAT_VAR_LOCATION_LOC (oloc) = gen_rtx_UNKNOWN_VAR_LOC ();
5626 }
5627
5628 mo.u.loc = oloc;
5629 }
5630 else if (type == MO_VAL_USE)
5631 {
5632 machine_mode mode2 = VOIDmode;
5633 enum micro_operation_type type2;
5634 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5635 rtx vloc, oloc = loc, nloc;
5636
5637 gcc_assert (cui->sets);
5638
5639 if (MEM_P (oloc)
5640 && !REG_P (XEXP (oloc, 0))
5641 && !MEM_P (XEXP (oloc, 0)))
5642 {
5643 rtx mloc = oloc;
5644 machine_mode address_mode = get_address_mode (mloc);
5645 cselib_val *val
5646 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5647 GET_MODE (mloc));
5648
5649 if (val && !cselib_preserved_value_p (val))
5650 preserve_value (val);
5651 }
5652
5653 type2 = use_type (loc, 0, &mode2);
5654
5655 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5656 || type2 == MO_CLOBBER);
5657
5658 if (type2 == MO_USE)
5659 vloc = var_lowpart (mode2, loc);
5660 else
5661 vloc = oloc;
5662
5663 /* The loc of a MO_VAL_USE may have two forms:
5664
5665 (concat val src): val is at src, a value-based
5666 representation.
5667
5668 (concat (concat val use) src): same as above, with use as
5669 the MO_USE tracked value, if it differs from src.
5670
5671 */
5672
5673 gcc_checking_assert (REG_P (loc) || MEM_P (loc));
5674 nloc = replace_expr_with_values (loc);
5675 if (!nloc)
5676 nloc = oloc;
5677
5678 if (vloc != nloc)
5679 oloc = gen_rtx_CONCAT (mode2, val->val_rtx, vloc);
5680 else
5681 oloc = val->val_rtx;
5682
5683 mo.u.loc = gen_rtx_CONCAT (mode, oloc, nloc);
5684
5685 if (type2 == MO_USE)
5686 VAL_HOLDS_TRACK_EXPR (mo.u.loc) = 1;
5687 if (!cselib_preserved_value_p (val))
5688 {
5689 VAL_NEEDS_RESOLUTION (mo.u.loc) = 1;
5690 preserve_value (val);
5691 }
5692 }
5693 else
5694 gcc_assert (type == MO_USE || type == MO_USE_NO_VAR);
5695
5696 if (dump_file && (dump_flags & TDF_DETAILS))
5697 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
5698 VTI (bb)->mos.safe_push (mo);
5699 }
5700 }
5701
5702 /* Helper function for finding all uses of REG/MEM in X in insn INSN. */
5703
5704 static void
5705 add_uses_1 (rtx *x, void *cui)
5706 {
5707 subrtx_var_iterator::array_type array;
5708 FOR_EACH_SUBRTX_VAR (iter, array, *x, NONCONST)
5709 add_uses (*iter, (struct count_use_info *) cui);
5710 }
5711
5712 /* This is the value used during expansion of locations. We want it
5713 to be unbounded, so that variables expanded deep in a recursion
5714 nest are fully evaluated, so that their values are cached
5715 correctly. We avoid recursion cycles through other means, and we
5716 don't unshare RTL, so excess complexity is not a problem. */
5717 #define EXPR_DEPTH (INT_MAX)
5718 /* We use this to keep too-complex expressions from being emitted as
5719 location notes, and then to debug information. Users can trade
5720 compile time for ridiculously complex expressions, although they're
5721 seldom useful, and they may often have to be discarded as not
5722 representable anyway. */
5723 #define EXPR_USE_DEPTH (PARAM_VALUE (PARAM_MAX_VARTRACK_EXPR_DEPTH))
5724
5725 /* Attempt to reverse the EXPR operation in the debug info and record
5726 it in the cselib table. Say for reg1 = reg2 + 6 even when reg2 is
5727 no longer live we can express its value as VAL - 6. */
5728
5729 static void
5730 reverse_op (rtx val, const_rtx expr, rtx_insn *insn)
5731 {
5732 rtx src, arg, ret;
5733 cselib_val *v;
5734 struct elt_loc_list *l;
5735 enum rtx_code code;
5736 int count;
5737
5738 if (GET_CODE (expr) != SET)
5739 return;
5740
5741 if (!REG_P (SET_DEST (expr)) || GET_MODE (val) != GET_MODE (SET_DEST (expr)))
5742 return;
5743
5744 src = SET_SRC (expr);
5745 switch (GET_CODE (src))
5746 {
5747 case PLUS:
5748 case MINUS:
5749 case XOR:
5750 case NOT:
5751 case NEG:
5752 if (!REG_P (XEXP (src, 0)))
5753 return;
5754 break;
5755 case SIGN_EXTEND:
5756 case ZERO_EXTEND:
5757 if (!REG_P (XEXP (src, 0)) && !MEM_P (XEXP (src, 0)))
5758 return;
5759 break;
5760 default:
5761 return;
5762 }
5763
5764 if (!SCALAR_INT_MODE_P (GET_MODE (src)) || XEXP (src, 0) == cfa_base_rtx)
5765 return;
5766
5767 v = cselib_lookup (XEXP (src, 0), GET_MODE (XEXP (src, 0)), 0, VOIDmode);
5768 if (!v || !cselib_preserved_value_p (v))
5769 return;
5770
5771 /* Use canonical V to avoid creating multiple redundant expressions
5772 for different VALUES equivalent to V. */
5773 v = canonical_cselib_val (v);
5774
5775 /* Adding a reverse op isn't useful if V already has an always valid
5776 location. Ignore ENTRY_VALUE, while it is always constant, we should
5777 prefer non-ENTRY_VALUE locations whenever possible. */
5778 for (l = v->locs, count = 0; l; l = l->next, count++)
5779 if (CONSTANT_P (l->loc)
5780 && (GET_CODE (l->loc) != CONST || !references_value_p (l->loc, 0)))
5781 return;
5782 /* Avoid creating too large locs lists. */
5783 else if (count == PARAM_VALUE (PARAM_MAX_VARTRACK_REVERSE_OP_SIZE))
5784 return;
5785
5786 switch (GET_CODE (src))
5787 {
5788 case NOT:
5789 case NEG:
5790 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5791 return;
5792 ret = gen_rtx_fmt_e (GET_CODE (src), GET_MODE (val), val);
5793 break;
5794 case SIGN_EXTEND:
5795 case ZERO_EXTEND:
5796 ret = gen_lowpart_SUBREG (GET_MODE (v->val_rtx), val);
5797 break;
5798 case XOR:
5799 code = XOR;
5800 goto binary;
5801 case PLUS:
5802 code = MINUS;
5803 goto binary;
5804 case MINUS:
5805 code = PLUS;
5806 goto binary;
5807 binary:
5808 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5809 return;
5810 arg = XEXP (src, 1);
5811 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5812 {
5813 arg = cselib_expand_value_rtx (arg, scratch_regs, 5);
5814 if (arg == NULL_RTX)
5815 return;
5816 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5817 return;
5818 }
5819 ret = simplify_gen_binary (code, GET_MODE (val), val, arg);
5820 if (ret == val)
5821 /* Ensure ret isn't VALUE itself (which can happen e.g. for
5822 (plus (reg1) (reg2)) when reg2 is known to be 0), as that
5823 breaks a lot of routines during var-tracking. */
5824 ret = gen_rtx_fmt_ee (PLUS, GET_MODE (val), val, const0_rtx);
5825 break;
5826 default:
5827 gcc_unreachable ();
5828 }
5829
5830 cselib_add_permanent_equiv (v, ret, insn);
5831 }
5832
5833 /* Add stores (register and memory references) LOC which will be tracked
5834 to VTI (bb)->mos. EXPR is the RTL expression containing the store.
5835 CUIP->insn is instruction which the LOC is part of. */
5836
5837 static void
5838 add_stores (rtx loc, const_rtx expr, void *cuip)
5839 {
5840 machine_mode mode = VOIDmode, mode2;
5841 struct count_use_info *cui = (struct count_use_info *)cuip;
5842 basic_block bb = cui->bb;
5843 micro_operation mo;
5844 rtx oloc = loc, nloc, src = NULL;
5845 enum micro_operation_type type = use_type (loc, cui, &mode);
5846 bool track_p = false;
5847 cselib_val *v;
5848 bool resolve, preserve;
5849
5850 if (type == MO_CLOBBER)
5851 return;
5852
5853 mode2 = mode;
5854
5855 if (REG_P (loc))
5856 {
5857 gcc_assert (loc != cfa_base_rtx);
5858 if ((GET_CODE (expr) == CLOBBER && type != MO_VAL_SET)
5859 || !(track_p = use_type (loc, NULL, &mode2) == MO_USE)
5860 || GET_CODE (expr) == CLOBBER)
5861 {
5862 mo.type = MO_CLOBBER;
5863 mo.u.loc = loc;
5864 if (GET_CODE (expr) == SET
5865 && SET_DEST (expr) == loc
5866 && !unsuitable_loc (SET_SRC (expr))
5867 && find_use_val (loc, mode, cui))
5868 {
5869 gcc_checking_assert (type == MO_VAL_SET);
5870 mo.u.loc = gen_rtx_SET (loc, SET_SRC (expr));
5871 }
5872 }
5873 else
5874 {
5875 if (GET_CODE (expr) == SET
5876 && SET_DEST (expr) == loc
5877 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
5878 src = var_lowpart (mode2, SET_SRC (expr));
5879 loc = var_lowpart (mode2, loc);
5880
5881 if (src == NULL)
5882 {
5883 mo.type = MO_SET;
5884 mo.u.loc = loc;
5885 }
5886 else
5887 {
5888 rtx xexpr = gen_rtx_SET (loc, src);
5889 if (same_variable_part_p (src, REG_EXPR (loc), REG_OFFSET (loc)))
5890 {
5891 /* If this is an instruction copying (part of) a parameter
5892 passed by invisible reference to its register location,
5893 pretend it's a SET so that the initial memory location
5894 is discarded, as the parameter register can be reused
5895 for other purposes and we do not track locations based
5896 on generic registers. */
5897 if (MEM_P (src)
5898 && REG_EXPR (loc)
5899 && TREE_CODE (REG_EXPR (loc)) == PARM_DECL
5900 && DECL_MODE (REG_EXPR (loc)) != BLKmode
5901 && MEM_P (DECL_INCOMING_RTL (REG_EXPR (loc)))
5902 && XEXP (DECL_INCOMING_RTL (REG_EXPR (loc)), 0)
5903 != arg_pointer_rtx)
5904 mo.type = MO_SET;
5905 else
5906 mo.type = MO_COPY;
5907 }
5908 else
5909 mo.type = MO_SET;
5910 mo.u.loc = xexpr;
5911 }
5912 }
5913 mo.insn = cui->insn;
5914 }
5915 else if (MEM_P (loc)
5916 && ((track_p = use_type (loc, NULL, &mode2) == MO_USE)
5917 || cui->sets))
5918 {
5919 if (MEM_P (loc) && type == MO_VAL_SET
5920 && !REG_P (XEXP (loc, 0))
5921 && !MEM_P (XEXP (loc, 0)))
5922 {
5923 rtx mloc = loc;
5924 machine_mode address_mode = get_address_mode (mloc);
5925 cselib_val *val = cselib_lookup (XEXP (mloc, 0),
5926 address_mode, 0,
5927 GET_MODE (mloc));
5928
5929 if (val && !cselib_preserved_value_p (val))
5930 preserve_value (val);
5931 }
5932
5933 if (GET_CODE (expr) == CLOBBER || !track_p)
5934 {
5935 mo.type = MO_CLOBBER;
5936 mo.u.loc = track_p ? var_lowpart (mode2, loc) : loc;
5937 }
5938 else
5939 {
5940 if (GET_CODE (expr) == SET
5941 && SET_DEST (expr) == loc
5942 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
5943 src = var_lowpart (mode2, SET_SRC (expr));
5944 loc = var_lowpart (mode2, loc);
5945
5946 if (src == NULL)
5947 {
5948 mo.type = MO_SET;
5949 mo.u.loc = loc;
5950 }
5951 else
5952 {
5953 rtx xexpr = gen_rtx_SET (loc, src);
5954 if (same_variable_part_p (SET_SRC (xexpr),
5955 MEM_EXPR (loc),
5956 INT_MEM_OFFSET (loc)))
5957 mo.type = MO_COPY;
5958 else
5959 mo.type = MO_SET;
5960 mo.u.loc = xexpr;
5961 }
5962 }
5963 mo.insn = cui->insn;
5964 }
5965 else
5966 return;
5967
5968 if (type != MO_VAL_SET)
5969 goto log_and_return;
5970
5971 v = find_use_val (oloc, mode, cui);
5972
5973 if (!v)
5974 goto log_and_return;
5975
5976 resolve = preserve = !cselib_preserved_value_p (v);
5977
5978 /* We cannot track values for multiple-part variables, so we track only
5979 locations for tracked parameters passed either by invisible reference
5980 or directly in multiple locations. */
5981 if (track_p
5982 && REG_P (loc)
5983 && REG_EXPR (loc)
5984 && TREE_CODE (REG_EXPR (loc)) == PARM_DECL
5985 && DECL_MODE (REG_EXPR (loc)) != BLKmode
5986 && TREE_CODE (TREE_TYPE (REG_EXPR (loc))) != UNION_TYPE
5987 && ((MEM_P (DECL_INCOMING_RTL (REG_EXPR (loc)))
5988 && XEXP (DECL_INCOMING_RTL (REG_EXPR (loc)), 0) != arg_pointer_rtx)
5989 || (GET_CODE (DECL_INCOMING_RTL (REG_EXPR (loc))) == PARALLEL
5990 && XVECLEN (DECL_INCOMING_RTL (REG_EXPR (loc)), 0) > 1)))
5991 {
5992 /* Although we don't use the value here, it could be used later by the
5993 mere virtue of its existence as the operand of the reverse operation
5994 that gave rise to it (typically extension/truncation). Make sure it
5995 is preserved as required by vt_expand_var_loc_chain. */
5996 if (preserve)
5997 preserve_value (v);
5998 goto log_and_return;
5999 }
6000
6001 if (loc == stack_pointer_rtx
6002 && hard_frame_pointer_adjustment != -1
6003 && preserve)
6004 cselib_set_value_sp_based (v);
6005
6006 nloc = replace_expr_with_values (oloc);
6007 if (nloc)
6008 oloc = nloc;
6009
6010 if (GET_CODE (PATTERN (cui->insn)) == COND_EXEC)
6011 {
6012 cselib_val *oval = cselib_lookup (oloc, GET_MODE (oloc), 0, VOIDmode);
6013
6014 if (oval == v)
6015 return;
6016 gcc_assert (REG_P (oloc) || MEM_P (oloc));
6017
6018 if (oval && !cselib_preserved_value_p (oval))
6019 {
6020 micro_operation moa;
6021
6022 preserve_value (oval);
6023
6024 moa.type = MO_VAL_USE;
6025 moa.u.loc = gen_rtx_CONCAT (mode, oval->val_rtx, oloc);
6026 VAL_NEEDS_RESOLUTION (moa.u.loc) = 1;
6027 moa.insn = cui->insn;
6028
6029 if (dump_file && (dump_flags & TDF_DETAILS))
6030 log_op_type (moa.u.loc, cui->bb, cui->insn,
6031 moa.type, dump_file);
6032 VTI (bb)->mos.safe_push (moa);
6033 }
6034
6035 resolve = false;
6036 }
6037 else if (resolve && GET_CODE (mo.u.loc) == SET)
6038 {
6039 if (REG_P (SET_SRC (expr)) || MEM_P (SET_SRC (expr)))
6040 nloc = replace_expr_with_values (SET_SRC (expr));
6041 else
6042 nloc = NULL_RTX;
6043
6044 /* Avoid the mode mismatch between oexpr and expr. */
6045 if (!nloc && mode != mode2)
6046 {
6047 nloc = SET_SRC (expr);
6048 gcc_assert (oloc == SET_DEST (expr));
6049 }
6050
6051 if (nloc && nloc != SET_SRC (mo.u.loc))
6052 oloc = gen_rtx_SET (oloc, nloc);
6053 else
6054 {
6055 if (oloc == SET_DEST (mo.u.loc))
6056 /* No point in duplicating. */
6057 oloc = mo.u.loc;
6058 if (!REG_P (SET_SRC (mo.u.loc)))
6059 resolve = false;
6060 }
6061 }
6062 else if (!resolve)
6063 {
6064 if (GET_CODE (mo.u.loc) == SET
6065 && oloc == SET_DEST (mo.u.loc))
6066 /* No point in duplicating. */
6067 oloc = mo.u.loc;
6068 }
6069 else
6070 resolve = false;
6071
6072 loc = gen_rtx_CONCAT (mode, v->val_rtx, oloc);
6073
6074 if (mo.u.loc != oloc)
6075 loc = gen_rtx_CONCAT (GET_MODE (mo.u.loc), loc, mo.u.loc);
6076
6077 /* The loc of a MO_VAL_SET may have various forms:
6078
6079 (concat val dst): dst now holds val
6080
6081 (concat val (set dst src)): dst now holds val, copied from src
6082
6083 (concat (concat val dstv) dst): dst now holds val; dstv is dst
6084 after replacing mems and non-top-level regs with values.
6085
6086 (concat (concat val dstv) (set dst src)): dst now holds val,
6087 copied from src. dstv is a value-based representation of dst, if
6088 it differs from dst. If resolution is needed, src is a REG, and
6089 its mode is the same as that of val.
6090
6091 (concat (concat val (set dstv srcv)) (set dst src)): src
6092 copied to dst, holding val. dstv and srcv are value-based
6093 representations of dst and src, respectively.
6094
6095 */
6096
6097 if (GET_CODE (PATTERN (cui->insn)) != COND_EXEC)
6098 reverse_op (v->val_rtx, expr, cui->insn);
6099
6100 mo.u.loc = loc;
6101
6102 if (track_p)
6103 VAL_HOLDS_TRACK_EXPR (loc) = 1;
6104 if (preserve)
6105 {
6106 VAL_NEEDS_RESOLUTION (loc) = resolve;
6107 preserve_value (v);
6108 }
6109 if (mo.type == MO_CLOBBER)
6110 VAL_EXPR_IS_CLOBBERED (loc) = 1;
6111 if (mo.type == MO_COPY)
6112 VAL_EXPR_IS_COPIED (loc) = 1;
6113
6114 mo.type = MO_VAL_SET;
6115
6116 log_and_return:
6117 if (dump_file && (dump_flags & TDF_DETAILS))
6118 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
6119 VTI (bb)->mos.safe_push (mo);
6120 }
6121
6122 /* Arguments to the call. */
6123 static rtx call_arguments;
6124
6125 /* Compute call_arguments. */
6126
6127 static void
6128 prepare_call_arguments (basic_block bb, rtx_insn *insn)
6129 {
6130 rtx link, x, call;
6131 rtx prev, cur, next;
6132 rtx this_arg = NULL_RTX;
6133 tree type = NULL_TREE, t, fndecl = NULL_TREE;
6134 tree obj_type_ref = NULL_TREE;
6135 CUMULATIVE_ARGS args_so_far_v;
6136 cumulative_args_t args_so_far;
6137
6138 memset (&args_so_far_v, 0, sizeof (args_so_far_v));
6139 args_so_far = pack_cumulative_args (&args_so_far_v);
6140 call = get_call_rtx_from (insn);
6141 if (call)
6142 {
6143 if (GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
6144 {
6145 rtx symbol = XEXP (XEXP (call, 0), 0);
6146 if (SYMBOL_REF_DECL (symbol))
6147 fndecl = SYMBOL_REF_DECL (symbol);
6148 }
6149 if (fndecl == NULL_TREE)
6150 fndecl = MEM_EXPR (XEXP (call, 0));
6151 if (fndecl
6152 && TREE_CODE (TREE_TYPE (fndecl)) != FUNCTION_TYPE
6153 && TREE_CODE (TREE_TYPE (fndecl)) != METHOD_TYPE)
6154 fndecl = NULL_TREE;
6155 if (fndecl && TYPE_ARG_TYPES (TREE_TYPE (fndecl)))
6156 type = TREE_TYPE (fndecl);
6157 if (fndecl && TREE_CODE (fndecl) != FUNCTION_DECL)
6158 {
6159 if (TREE_CODE (fndecl) == INDIRECT_REF
6160 && TREE_CODE (TREE_OPERAND (fndecl, 0)) == OBJ_TYPE_REF)
6161 obj_type_ref = TREE_OPERAND (fndecl, 0);
6162 fndecl = NULL_TREE;
6163 }
6164 if (type)
6165 {
6166 for (t = TYPE_ARG_TYPES (type); t && t != void_list_node;
6167 t = TREE_CHAIN (t))
6168 if (TREE_CODE (TREE_VALUE (t)) == REFERENCE_TYPE
6169 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_VALUE (t))))
6170 break;
6171 if ((t == NULL || t == void_list_node) && obj_type_ref == NULL_TREE)
6172 type = NULL;
6173 else
6174 {
6175 int nargs ATTRIBUTE_UNUSED = list_length (TYPE_ARG_TYPES (type));
6176 link = CALL_INSN_FUNCTION_USAGE (insn);
6177 #ifndef PCC_STATIC_STRUCT_RETURN
6178 if (aggregate_value_p (TREE_TYPE (type), type)
6179 && targetm.calls.struct_value_rtx (type, 0) == 0)
6180 {
6181 tree struct_addr = build_pointer_type (TREE_TYPE (type));
6182 machine_mode mode = TYPE_MODE (struct_addr);
6183 rtx reg;
6184 INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
6185 nargs + 1);
6186 reg = targetm.calls.function_arg (args_so_far, mode,
6187 struct_addr, true);
6188 targetm.calls.function_arg_advance (args_so_far, mode,
6189 struct_addr, true);
6190 if (reg == NULL_RTX)
6191 {
6192 for (; link; link = XEXP (link, 1))
6193 if (GET_CODE (XEXP (link, 0)) == USE
6194 && MEM_P (XEXP (XEXP (link, 0), 0)))
6195 {
6196 link = XEXP (link, 1);
6197 break;
6198 }
6199 }
6200 }
6201 else
6202 #endif
6203 INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
6204 nargs);
6205 if (obj_type_ref && TYPE_ARG_TYPES (type) != void_list_node)
6206 {
6207 machine_mode mode;
6208 t = TYPE_ARG_TYPES (type);
6209 mode = TYPE_MODE (TREE_VALUE (t));
6210 this_arg = targetm.calls.function_arg (args_so_far, mode,
6211 TREE_VALUE (t), true);
6212 if (this_arg && !REG_P (this_arg))
6213 this_arg = NULL_RTX;
6214 else if (this_arg == NULL_RTX)
6215 {
6216 for (; link; link = XEXP (link, 1))
6217 if (GET_CODE (XEXP (link, 0)) == USE
6218 && MEM_P (XEXP (XEXP (link, 0), 0)))
6219 {
6220 this_arg = XEXP (XEXP (link, 0), 0);
6221 break;
6222 }
6223 }
6224 }
6225 }
6226 }
6227 }
6228 t = type ? TYPE_ARG_TYPES (type) : NULL_TREE;
6229
6230 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
6231 if (GET_CODE (XEXP (link, 0)) == USE)
6232 {
6233 rtx item = NULL_RTX;
6234 x = XEXP (XEXP (link, 0), 0);
6235 if (GET_MODE (link) == VOIDmode
6236 || GET_MODE (link) == BLKmode
6237 || (GET_MODE (link) != GET_MODE (x)
6238 && ((GET_MODE_CLASS (GET_MODE (link)) != MODE_INT
6239 && GET_MODE_CLASS (GET_MODE (link)) != MODE_PARTIAL_INT)
6240 || (GET_MODE_CLASS (GET_MODE (x)) != MODE_INT
6241 && GET_MODE_CLASS (GET_MODE (x)) != MODE_PARTIAL_INT))))
6242 /* Can't do anything for these, if the original type mode
6243 isn't known or can't be converted. */;
6244 else if (REG_P (x))
6245 {
6246 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
6247 if (val && cselib_preserved_value_p (val))
6248 item = val->val_rtx;
6249 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
6250 || GET_MODE_CLASS (GET_MODE (x)) == MODE_PARTIAL_INT)
6251 {
6252 machine_mode mode = GET_MODE (x);
6253
6254 while ((mode = GET_MODE_WIDER_MODE (mode)) != VOIDmode
6255 && GET_MODE_BITSIZE (mode) <= BITS_PER_WORD)
6256 {
6257 rtx reg = simplify_subreg (mode, x, GET_MODE (x), 0);
6258
6259 if (reg == NULL_RTX || !REG_P (reg))
6260 continue;
6261 val = cselib_lookup (reg, mode, 0, VOIDmode);
6262 if (val && cselib_preserved_value_p (val))
6263 {
6264 item = val->val_rtx;
6265 break;
6266 }
6267 }
6268 }
6269 }
6270 else if (MEM_P (x))
6271 {
6272 rtx mem = x;
6273 cselib_val *val;
6274
6275 if (!frame_pointer_needed)
6276 {
6277 struct adjust_mem_data amd;
6278 amd.mem_mode = VOIDmode;
6279 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
6280 amd.side_effects = NULL;
6281 amd.store = true;
6282 mem = simplify_replace_fn_rtx (mem, NULL_RTX, adjust_mems,
6283 &amd);
6284 gcc_assert (amd.side_effects == NULL_RTX);
6285 }
6286 val = cselib_lookup (mem, GET_MODE (mem), 0, VOIDmode);
6287 if (val && cselib_preserved_value_p (val))
6288 item = val->val_rtx;
6289 else if (GET_MODE_CLASS (GET_MODE (mem)) != MODE_INT
6290 && GET_MODE_CLASS (GET_MODE (mem)) != MODE_PARTIAL_INT)
6291 {
6292 /* For non-integer stack argument see also if they weren't
6293 initialized by integers. */
6294 machine_mode imode = int_mode_for_mode (GET_MODE (mem));
6295 if (imode != GET_MODE (mem) && imode != BLKmode)
6296 {
6297 val = cselib_lookup (adjust_address_nv (mem, imode, 0),
6298 imode, 0, VOIDmode);
6299 if (val && cselib_preserved_value_p (val))
6300 item = lowpart_subreg (GET_MODE (x), val->val_rtx,
6301 imode);
6302 }
6303 }
6304 }
6305 if (item)
6306 {
6307 rtx x2 = x;
6308 if (GET_MODE (item) != GET_MODE (link))
6309 item = lowpart_subreg (GET_MODE (link), item, GET_MODE (item));
6310 if (GET_MODE (x2) != GET_MODE (link))
6311 x2 = lowpart_subreg (GET_MODE (link), x2, GET_MODE (x2));
6312 item = gen_rtx_CONCAT (GET_MODE (link), x2, item);
6313 call_arguments
6314 = gen_rtx_EXPR_LIST (VOIDmode, item, call_arguments);
6315 }
6316 if (t && t != void_list_node)
6317 {
6318 tree argtype = TREE_VALUE (t);
6319 machine_mode mode = TYPE_MODE (argtype);
6320 rtx reg;
6321 if (pass_by_reference (&args_so_far_v, mode, argtype, true))
6322 {
6323 argtype = build_pointer_type (argtype);
6324 mode = TYPE_MODE (argtype);
6325 }
6326 reg = targetm.calls.function_arg (args_so_far, mode,
6327 argtype, true);
6328 if (TREE_CODE (argtype) == REFERENCE_TYPE
6329 && INTEGRAL_TYPE_P (TREE_TYPE (argtype))
6330 && reg
6331 && REG_P (reg)
6332 && GET_MODE (reg) == mode
6333 && (GET_MODE_CLASS (mode) == MODE_INT
6334 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
6335 && REG_P (x)
6336 && REGNO (x) == REGNO (reg)
6337 && GET_MODE (x) == mode
6338 && item)
6339 {
6340 machine_mode indmode
6341 = TYPE_MODE (TREE_TYPE (argtype));
6342 rtx mem = gen_rtx_MEM (indmode, x);
6343 cselib_val *val = cselib_lookup (mem, indmode, 0, VOIDmode);
6344 if (val && cselib_preserved_value_p (val))
6345 {
6346 item = gen_rtx_CONCAT (indmode, mem, val->val_rtx);
6347 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
6348 call_arguments);
6349 }
6350 else
6351 {
6352 struct elt_loc_list *l;
6353 tree initial;
6354
6355 /* Try harder, when passing address of a constant
6356 pool integer it can be easily read back. */
6357 item = XEXP (item, 1);
6358 if (GET_CODE (item) == SUBREG)
6359 item = SUBREG_REG (item);
6360 gcc_assert (GET_CODE (item) == VALUE);
6361 val = CSELIB_VAL_PTR (item);
6362 for (l = val->locs; l; l = l->next)
6363 if (GET_CODE (l->loc) == SYMBOL_REF
6364 && TREE_CONSTANT_POOL_ADDRESS_P (l->loc)
6365 && SYMBOL_REF_DECL (l->loc)
6366 && DECL_INITIAL (SYMBOL_REF_DECL (l->loc)))
6367 {
6368 initial = DECL_INITIAL (SYMBOL_REF_DECL (l->loc));
6369 if (tree_fits_shwi_p (initial))
6370 {
6371 item = GEN_INT (tree_to_shwi (initial));
6372 item = gen_rtx_CONCAT (indmode, mem, item);
6373 call_arguments
6374 = gen_rtx_EXPR_LIST (VOIDmode, item,
6375 call_arguments);
6376 }
6377 break;
6378 }
6379 }
6380 }
6381 targetm.calls.function_arg_advance (args_so_far, mode,
6382 argtype, true);
6383 t = TREE_CHAIN (t);
6384 }
6385 }
6386
6387 /* Add debug arguments. */
6388 if (fndecl
6389 && TREE_CODE (fndecl) == FUNCTION_DECL
6390 && DECL_HAS_DEBUG_ARGS_P (fndecl))
6391 {
6392 vec<tree, va_gc> **debug_args = decl_debug_args_lookup (fndecl);
6393 if (debug_args)
6394 {
6395 unsigned int ix;
6396 tree param;
6397 for (ix = 0; vec_safe_iterate (*debug_args, ix, &param); ix += 2)
6398 {
6399 rtx item;
6400 tree dtemp = (**debug_args)[ix + 1];
6401 machine_mode mode = DECL_MODE (dtemp);
6402 item = gen_rtx_DEBUG_PARAMETER_REF (mode, param);
6403 item = gen_rtx_CONCAT (mode, item, DECL_RTL_KNOWN_SET (dtemp));
6404 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
6405 call_arguments);
6406 }
6407 }
6408 }
6409
6410 /* Reverse call_arguments chain. */
6411 prev = NULL_RTX;
6412 for (cur = call_arguments; cur; cur = next)
6413 {
6414 next = XEXP (cur, 1);
6415 XEXP (cur, 1) = prev;
6416 prev = cur;
6417 }
6418 call_arguments = prev;
6419
6420 x = get_call_rtx_from (insn);
6421 if (x)
6422 {
6423 x = XEXP (XEXP (x, 0), 0);
6424 if (GET_CODE (x) == SYMBOL_REF)
6425 /* Don't record anything. */;
6426 else if (CONSTANT_P (x))
6427 {
6428 x = gen_rtx_CONCAT (GET_MODE (x) == VOIDmode ? Pmode : GET_MODE (x),
6429 pc_rtx, x);
6430 call_arguments
6431 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6432 }
6433 else
6434 {
6435 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
6436 if (val && cselib_preserved_value_p (val))
6437 {
6438 x = gen_rtx_CONCAT (GET_MODE (x), pc_rtx, val->val_rtx);
6439 call_arguments
6440 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6441 }
6442 }
6443 }
6444 if (this_arg)
6445 {
6446 machine_mode mode
6447 = TYPE_MODE (TREE_TYPE (OBJ_TYPE_REF_EXPR (obj_type_ref)));
6448 rtx clobbered = gen_rtx_MEM (mode, this_arg);
6449 HOST_WIDE_INT token
6450 = tree_to_shwi (OBJ_TYPE_REF_TOKEN (obj_type_ref));
6451 if (token)
6452 clobbered = plus_constant (mode, clobbered,
6453 token * GET_MODE_SIZE (mode));
6454 clobbered = gen_rtx_MEM (mode, clobbered);
6455 x = gen_rtx_CONCAT (mode, gen_rtx_CLOBBER (VOIDmode, pc_rtx), clobbered);
6456 call_arguments
6457 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6458 }
6459 }
6460
6461 /* Callback for cselib_record_sets_hook, that records as micro
6462 operations uses and stores in an insn after cselib_record_sets has
6463 analyzed the sets in an insn, but before it modifies the stored
6464 values in the internal tables, unless cselib_record_sets doesn't
6465 call it directly (perhaps because we're not doing cselib in the
6466 first place, in which case sets and n_sets will be 0). */
6467
6468 static void
6469 add_with_sets (rtx_insn *insn, struct cselib_set *sets, int n_sets)
6470 {
6471 basic_block bb = BLOCK_FOR_INSN (insn);
6472 int n1, n2;
6473 struct count_use_info cui;
6474 micro_operation *mos;
6475
6476 cselib_hook_called = true;
6477
6478 cui.insn = insn;
6479 cui.bb = bb;
6480 cui.sets = sets;
6481 cui.n_sets = n_sets;
6482
6483 n1 = VTI (bb)->mos.length ();
6484 cui.store_p = false;
6485 note_uses (&PATTERN (insn), add_uses_1, &cui);
6486 n2 = VTI (bb)->mos.length () - 1;
6487 mos = VTI (bb)->mos.address ();
6488
6489 /* Order the MO_USEs to be before MO_USE_NO_VARs and MO_VAL_USE, and
6490 MO_VAL_LOC last. */
6491 while (n1 < n2)
6492 {
6493 while (n1 < n2 && mos[n1].type == MO_USE)
6494 n1++;
6495 while (n1 < n2 && mos[n2].type != MO_USE)
6496 n2--;
6497 if (n1 < n2)
6498 std::swap (mos[n1], mos[n2]);
6499 }
6500
6501 n2 = VTI (bb)->mos.length () - 1;
6502 while (n1 < n2)
6503 {
6504 while (n1 < n2 && mos[n1].type != MO_VAL_LOC)
6505 n1++;
6506 while (n1 < n2 && mos[n2].type == MO_VAL_LOC)
6507 n2--;
6508 if (n1 < n2)
6509 std::swap (mos[n1], mos[n2]);
6510 }
6511
6512 if (CALL_P (insn))
6513 {
6514 micro_operation mo;
6515
6516 mo.type = MO_CALL;
6517 mo.insn = insn;
6518 mo.u.loc = call_arguments;
6519 call_arguments = NULL_RTX;
6520
6521 if (dump_file && (dump_flags & TDF_DETAILS))
6522 log_op_type (PATTERN (insn), bb, insn, mo.type, dump_file);
6523 VTI (bb)->mos.safe_push (mo);
6524 }
6525
6526 n1 = VTI (bb)->mos.length ();
6527 /* This will record NEXT_INSN (insn), such that we can
6528 insert notes before it without worrying about any
6529 notes that MO_USEs might emit after the insn. */
6530 cui.store_p = true;
6531 note_stores (PATTERN (insn), add_stores, &cui);
6532 n2 = VTI (bb)->mos.length () - 1;
6533 mos = VTI (bb)->mos.address ();
6534
6535 /* Order the MO_VAL_USEs first (note_stores does nothing
6536 on DEBUG_INSNs, so there are no MO_VAL_LOCs from this
6537 insn), then MO_CLOBBERs, then MO_SET/MO_COPY/MO_VAL_SET. */
6538 while (n1 < n2)
6539 {
6540 while (n1 < n2 && mos[n1].type == MO_VAL_USE)
6541 n1++;
6542 while (n1 < n2 && mos[n2].type != MO_VAL_USE)
6543 n2--;
6544 if (n1 < n2)
6545 std::swap (mos[n1], mos[n2]);
6546 }
6547
6548 n2 = VTI (bb)->mos.length () - 1;
6549 while (n1 < n2)
6550 {
6551 while (n1 < n2 && mos[n1].type == MO_CLOBBER)
6552 n1++;
6553 while (n1 < n2 && mos[n2].type != MO_CLOBBER)
6554 n2--;
6555 if (n1 < n2)
6556 std::swap (mos[n1], mos[n2]);
6557 }
6558 }
6559
6560 static enum var_init_status
6561 find_src_status (dataflow_set *in, rtx src)
6562 {
6563 tree decl = NULL_TREE;
6564 enum var_init_status status = VAR_INIT_STATUS_UNINITIALIZED;
6565
6566 if (! flag_var_tracking_uninit)
6567 status = VAR_INIT_STATUS_INITIALIZED;
6568
6569 if (src && REG_P (src))
6570 decl = var_debug_decl (REG_EXPR (src));
6571 else if (src && MEM_P (src))
6572 decl = var_debug_decl (MEM_EXPR (src));
6573
6574 if (src && decl)
6575 status = get_init_value (in, src, dv_from_decl (decl));
6576
6577 return status;
6578 }
6579
6580 /* SRC is the source of an assignment. Use SET to try to find what
6581 was ultimately assigned to SRC. Return that value if known,
6582 otherwise return SRC itself. */
6583
6584 static rtx
6585 find_src_set_src (dataflow_set *set, rtx src)
6586 {
6587 tree decl = NULL_TREE; /* The variable being copied around. */
6588 rtx set_src = NULL_RTX; /* The value for "decl" stored in "src". */
6589 variable *var;
6590 location_chain *nextp;
6591 int i;
6592 bool found;
6593
6594 if (src && REG_P (src))
6595 decl = var_debug_decl (REG_EXPR (src));
6596 else if (src && MEM_P (src))
6597 decl = var_debug_decl (MEM_EXPR (src));
6598
6599 if (src && decl)
6600 {
6601 decl_or_value dv = dv_from_decl (decl);
6602
6603 var = shared_hash_find (set->vars, dv);
6604 if (var)
6605 {
6606 found = false;
6607 for (i = 0; i < var->n_var_parts && !found; i++)
6608 for (nextp = var->var_part[i].loc_chain; nextp && !found;
6609 nextp = nextp->next)
6610 if (rtx_equal_p (nextp->loc, src))
6611 {
6612 set_src = nextp->set_src;
6613 found = true;
6614 }
6615
6616 }
6617 }
6618
6619 return set_src;
6620 }
6621
6622 /* Compute the changes of variable locations in the basic block BB. */
6623
6624 static bool
6625 compute_bb_dataflow (basic_block bb)
6626 {
6627 unsigned int i;
6628 micro_operation *mo;
6629 bool changed;
6630 dataflow_set old_out;
6631 dataflow_set *in = &VTI (bb)->in;
6632 dataflow_set *out = &VTI (bb)->out;
6633
6634 dataflow_set_init (&old_out);
6635 dataflow_set_copy (&old_out, out);
6636 dataflow_set_copy (out, in);
6637
6638 if (MAY_HAVE_DEBUG_INSNS)
6639 local_get_addr_cache = new hash_map<rtx, rtx>;
6640
6641 FOR_EACH_VEC_ELT (VTI (bb)->mos, i, mo)
6642 {
6643 rtx_insn *insn = mo->insn;
6644
6645 switch (mo->type)
6646 {
6647 case MO_CALL:
6648 dataflow_set_clear_at_call (out, insn);
6649 break;
6650
6651 case MO_USE:
6652 {
6653 rtx loc = mo->u.loc;
6654
6655 if (REG_P (loc))
6656 var_reg_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6657 else if (MEM_P (loc))
6658 var_mem_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6659 }
6660 break;
6661
6662 case MO_VAL_LOC:
6663 {
6664 rtx loc = mo->u.loc;
6665 rtx val, vloc;
6666 tree var;
6667
6668 if (GET_CODE (loc) == CONCAT)
6669 {
6670 val = XEXP (loc, 0);
6671 vloc = XEXP (loc, 1);
6672 }
6673 else
6674 {
6675 val = NULL_RTX;
6676 vloc = loc;
6677 }
6678
6679 var = PAT_VAR_LOCATION_DECL (vloc);
6680
6681 clobber_variable_part (out, NULL_RTX,
6682 dv_from_decl (var), 0, NULL_RTX);
6683 if (val)
6684 {
6685 if (VAL_NEEDS_RESOLUTION (loc))
6686 val_resolve (out, val, PAT_VAR_LOCATION_LOC (vloc), insn);
6687 set_variable_part (out, val, dv_from_decl (var), 0,
6688 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6689 INSERT);
6690 }
6691 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
6692 set_variable_part (out, PAT_VAR_LOCATION_LOC (vloc),
6693 dv_from_decl (var), 0,
6694 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6695 INSERT);
6696 }
6697 break;
6698
6699 case MO_VAL_USE:
6700 {
6701 rtx loc = mo->u.loc;
6702 rtx val, vloc, uloc;
6703
6704 vloc = uloc = XEXP (loc, 1);
6705 val = XEXP (loc, 0);
6706
6707 if (GET_CODE (val) == CONCAT)
6708 {
6709 uloc = XEXP (val, 1);
6710 val = XEXP (val, 0);
6711 }
6712
6713 if (VAL_NEEDS_RESOLUTION (loc))
6714 val_resolve (out, val, vloc, insn);
6715 else
6716 val_store (out, val, uloc, insn, false);
6717
6718 if (VAL_HOLDS_TRACK_EXPR (loc))
6719 {
6720 if (GET_CODE (uloc) == REG)
6721 var_reg_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6722 NULL);
6723 else if (GET_CODE (uloc) == MEM)
6724 var_mem_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6725 NULL);
6726 }
6727 }
6728 break;
6729
6730 case MO_VAL_SET:
6731 {
6732 rtx loc = mo->u.loc;
6733 rtx val, vloc, uloc;
6734 rtx dstv, srcv;
6735
6736 vloc = loc;
6737 uloc = XEXP (vloc, 1);
6738 val = XEXP (vloc, 0);
6739 vloc = uloc;
6740
6741 if (GET_CODE (uloc) == SET)
6742 {
6743 dstv = SET_DEST (uloc);
6744 srcv = SET_SRC (uloc);
6745 }
6746 else
6747 {
6748 dstv = uloc;
6749 srcv = NULL;
6750 }
6751
6752 if (GET_CODE (val) == CONCAT)
6753 {
6754 dstv = vloc = XEXP (val, 1);
6755 val = XEXP (val, 0);
6756 }
6757
6758 if (GET_CODE (vloc) == SET)
6759 {
6760 srcv = SET_SRC (vloc);
6761
6762 gcc_assert (val != srcv);
6763 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
6764
6765 dstv = vloc = SET_DEST (vloc);
6766
6767 if (VAL_NEEDS_RESOLUTION (loc))
6768 val_resolve (out, val, srcv, insn);
6769 }
6770 else if (VAL_NEEDS_RESOLUTION (loc))
6771 {
6772 gcc_assert (GET_CODE (uloc) == SET
6773 && GET_CODE (SET_SRC (uloc)) == REG);
6774 val_resolve (out, val, SET_SRC (uloc), insn);
6775 }
6776
6777 if (VAL_HOLDS_TRACK_EXPR (loc))
6778 {
6779 if (VAL_EXPR_IS_CLOBBERED (loc))
6780 {
6781 if (REG_P (uloc))
6782 var_reg_delete (out, uloc, true);
6783 else if (MEM_P (uloc))
6784 {
6785 gcc_assert (MEM_P (dstv));
6786 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (uloc));
6787 var_mem_delete (out, dstv, true);
6788 }
6789 }
6790 else
6791 {
6792 bool copied_p = VAL_EXPR_IS_COPIED (loc);
6793 rtx src = NULL, dst = uloc;
6794 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
6795
6796 if (GET_CODE (uloc) == SET)
6797 {
6798 src = SET_SRC (uloc);
6799 dst = SET_DEST (uloc);
6800 }
6801
6802 if (copied_p)
6803 {
6804 if (flag_var_tracking_uninit)
6805 {
6806 status = find_src_status (in, src);
6807
6808 if (status == VAR_INIT_STATUS_UNKNOWN)
6809 status = find_src_status (out, src);
6810 }
6811
6812 src = find_src_set_src (in, src);
6813 }
6814
6815 if (REG_P (dst))
6816 var_reg_delete_and_set (out, dst, !copied_p,
6817 status, srcv);
6818 else if (MEM_P (dst))
6819 {
6820 gcc_assert (MEM_P (dstv));
6821 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (dst));
6822 var_mem_delete_and_set (out, dstv, !copied_p,
6823 status, srcv);
6824 }
6825 }
6826 }
6827 else if (REG_P (uloc))
6828 var_regno_delete (out, REGNO (uloc));
6829 else if (MEM_P (uloc))
6830 {
6831 gcc_checking_assert (GET_CODE (vloc) == MEM);
6832 gcc_checking_assert (dstv == vloc);
6833 if (dstv != vloc)
6834 clobber_overlapping_mems (out, vloc);
6835 }
6836
6837 val_store (out, val, dstv, insn, true);
6838 }
6839 break;
6840
6841 case MO_SET:
6842 {
6843 rtx loc = mo->u.loc;
6844 rtx set_src = NULL;
6845
6846 if (GET_CODE (loc) == SET)
6847 {
6848 set_src = SET_SRC (loc);
6849 loc = SET_DEST (loc);
6850 }
6851
6852 if (REG_P (loc))
6853 var_reg_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6854 set_src);
6855 else if (MEM_P (loc))
6856 var_mem_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6857 set_src);
6858 }
6859 break;
6860
6861 case MO_COPY:
6862 {
6863 rtx loc = mo->u.loc;
6864 enum var_init_status src_status;
6865 rtx set_src = NULL;
6866
6867 if (GET_CODE (loc) == SET)
6868 {
6869 set_src = SET_SRC (loc);
6870 loc = SET_DEST (loc);
6871 }
6872
6873 if (! flag_var_tracking_uninit)
6874 src_status = VAR_INIT_STATUS_INITIALIZED;
6875 else
6876 {
6877 src_status = find_src_status (in, set_src);
6878
6879 if (src_status == VAR_INIT_STATUS_UNKNOWN)
6880 src_status = find_src_status (out, set_src);
6881 }
6882
6883 set_src = find_src_set_src (in, set_src);
6884
6885 if (REG_P (loc))
6886 var_reg_delete_and_set (out, loc, false, src_status, set_src);
6887 else if (MEM_P (loc))
6888 var_mem_delete_and_set (out, loc, false, src_status, set_src);
6889 }
6890 break;
6891
6892 case MO_USE_NO_VAR:
6893 {
6894 rtx loc = mo->u.loc;
6895
6896 if (REG_P (loc))
6897 var_reg_delete (out, loc, false);
6898 else if (MEM_P (loc))
6899 var_mem_delete (out, loc, false);
6900 }
6901 break;
6902
6903 case MO_CLOBBER:
6904 {
6905 rtx loc = mo->u.loc;
6906
6907 if (REG_P (loc))
6908 var_reg_delete (out, loc, true);
6909 else if (MEM_P (loc))
6910 var_mem_delete (out, loc, true);
6911 }
6912 break;
6913
6914 case MO_ADJUST:
6915 out->stack_adjust += mo->u.adjust;
6916 break;
6917 }
6918 }
6919
6920 if (MAY_HAVE_DEBUG_INSNS)
6921 {
6922 delete local_get_addr_cache;
6923 local_get_addr_cache = NULL;
6924
6925 dataflow_set_equiv_regs (out);
6926 shared_hash_htab (out->vars)
6927 ->traverse <dataflow_set *, canonicalize_values_mark> (out);
6928 shared_hash_htab (out->vars)
6929 ->traverse <dataflow_set *, canonicalize_values_star> (out);
6930 if (flag_checking)
6931 shared_hash_htab (out->vars)
6932 ->traverse <dataflow_set *, canonicalize_loc_order_check> (out);
6933 }
6934 changed = dataflow_set_different (&old_out, out);
6935 dataflow_set_destroy (&old_out);
6936 return changed;
6937 }
6938
6939 /* Find the locations of variables in the whole function. */
6940
6941 static bool
6942 vt_find_locations (void)
6943 {
6944 bb_heap_t *worklist = new bb_heap_t (LONG_MIN);
6945 bb_heap_t *pending = new bb_heap_t (LONG_MIN);
6946 sbitmap visited, in_worklist, in_pending;
6947 basic_block bb;
6948 edge e;
6949 int *bb_order;
6950 int *rc_order;
6951 int i;
6952 int htabsz = 0;
6953 int htabmax = PARAM_VALUE (PARAM_MAX_VARTRACK_SIZE);
6954 bool success = true;
6955
6956 timevar_push (TV_VAR_TRACKING_DATAFLOW);
6957 /* Compute reverse completion order of depth first search of the CFG
6958 so that the data-flow runs faster. */
6959 rc_order = XNEWVEC (int, n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS);
6960 bb_order = XNEWVEC (int, last_basic_block_for_fn (cfun));
6961 pre_and_rev_post_order_compute (NULL, rc_order, false);
6962 for (i = 0; i < n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS; i++)
6963 bb_order[rc_order[i]] = i;
6964 free (rc_order);
6965
6966 visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
6967 in_worklist = sbitmap_alloc (last_basic_block_for_fn (cfun));
6968 in_pending = sbitmap_alloc (last_basic_block_for_fn (cfun));
6969 bitmap_clear (in_worklist);
6970
6971 FOR_EACH_BB_FN (bb, cfun)
6972 pending->insert (bb_order[bb->index], bb);
6973 bitmap_ones (in_pending);
6974
6975 while (success && !pending->empty ())
6976 {
6977 std::swap (worklist, pending);
6978 std::swap (in_worklist, in_pending);
6979
6980 bitmap_clear (visited);
6981
6982 while (!worklist->empty ())
6983 {
6984 bb = worklist->extract_min ();
6985 bitmap_clear_bit (in_worklist, bb->index);
6986 gcc_assert (!bitmap_bit_p (visited, bb->index));
6987 if (!bitmap_bit_p (visited, bb->index))
6988 {
6989 bool changed;
6990 edge_iterator ei;
6991 int oldinsz, oldoutsz;
6992
6993 bitmap_set_bit (visited, bb->index);
6994
6995 if (VTI (bb)->in.vars)
6996 {
6997 htabsz
6998 -= shared_hash_htab (VTI (bb)->in.vars)->size ()
6999 + shared_hash_htab (VTI (bb)->out.vars)->size ();
7000 oldinsz = shared_hash_htab (VTI (bb)->in.vars)->elements ();
7001 oldoutsz
7002 = shared_hash_htab (VTI (bb)->out.vars)->elements ();
7003 }
7004 else
7005 oldinsz = oldoutsz = 0;
7006
7007 if (MAY_HAVE_DEBUG_INSNS)
7008 {
7009 dataflow_set *in = &VTI (bb)->in, *first_out = NULL;
7010 bool first = true, adjust = false;
7011
7012 /* Calculate the IN set as the intersection of
7013 predecessor OUT sets. */
7014
7015 dataflow_set_clear (in);
7016 dst_can_be_shared = true;
7017
7018 FOR_EACH_EDGE (e, ei, bb->preds)
7019 if (!VTI (e->src)->flooded)
7020 gcc_assert (bb_order[bb->index]
7021 <= bb_order[e->src->index]);
7022 else if (first)
7023 {
7024 dataflow_set_copy (in, &VTI (e->src)->out);
7025 first_out = &VTI (e->src)->out;
7026 first = false;
7027 }
7028 else
7029 {
7030 dataflow_set_merge (in, &VTI (e->src)->out);
7031 adjust = true;
7032 }
7033
7034 if (adjust)
7035 {
7036 dataflow_post_merge_adjust (in, &VTI (bb)->permp);
7037
7038 if (flag_checking)
7039 /* Merge and merge_adjust should keep entries in
7040 canonical order. */
7041 shared_hash_htab (in->vars)
7042 ->traverse <dataflow_set *,
7043 canonicalize_loc_order_check> (in);
7044
7045 if (dst_can_be_shared)
7046 {
7047 shared_hash_destroy (in->vars);
7048 in->vars = shared_hash_copy (first_out->vars);
7049 }
7050 }
7051
7052 VTI (bb)->flooded = true;
7053 }
7054 else
7055 {
7056 /* Calculate the IN set as union of predecessor OUT sets. */
7057 dataflow_set_clear (&VTI (bb)->in);
7058 FOR_EACH_EDGE (e, ei, bb->preds)
7059 dataflow_set_union (&VTI (bb)->in, &VTI (e->src)->out);
7060 }
7061
7062 changed = compute_bb_dataflow (bb);
7063 htabsz += shared_hash_htab (VTI (bb)->in.vars)->size ()
7064 + shared_hash_htab (VTI (bb)->out.vars)->size ();
7065
7066 if (htabmax && htabsz > htabmax)
7067 {
7068 if (MAY_HAVE_DEBUG_INSNS)
7069 inform (DECL_SOURCE_LOCATION (cfun->decl),
7070 "variable tracking size limit exceeded with "
7071 "-fvar-tracking-assignments, retrying without");
7072 else
7073 inform (DECL_SOURCE_LOCATION (cfun->decl),
7074 "variable tracking size limit exceeded");
7075 success = false;
7076 break;
7077 }
7078
7079 if (changed)
7080 {
7081 FOR_EACH_EDGE (e, ei, bb->succs)
7082 {
7083 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
7084 continue;
7085
7086 if (bitmap_bit_p (visited, e->dest->index))
7087 {
7088 if (!bitmap_bit_p (in_pending, e->dest->index))
7089 {
7090 /* Send E->DEST to next round. */
7091 bitmap_set_bit (in_pending, e->dest->index);
7092 pending->insert (bb_order[e->dest->index],
7093 e->dest);
7094 }
7095 }
7096 else if (!bitmap_bit_p (in_worklist, e->dest->index))
7097 {
7098 /* Add E->DEST to current round. */
7099 bitmap_set_bit (in_worklist, e->dest->index);
7100 worklist->insert (bb_order[e->dest->index],
7101 e->dest);
7102 }
7103 }
7104 }
7105
7106 if (dump_file)
7107 fprintf (dump_file,
7108 "BB %i: in %i (was %i), out %i (was %i), rem %i + %i, tsz %i\n",
7109 bb->index,
7110 (int)shared_hash_htab (VTI (bb)->in.vars)->size (),
7111 oldinsz,
7112 (int)shared_hash_htab (VTI (bb)->out.vars)->size (),
7113 oldoutsz,
7114 (int)worklist->nodes (), (int)pending->nodes (),
7115 htabsz);
7116
7117 if (dump_file && (dump_flags & TDF_DETAILS))
7118 {
7119 fprintf (dump_file, "BB %i IN:\n", bb->index);
7120 dump_dataflow_set (&VTI (bb)->in);
7121 fprintf (dump_file, "BB %i OUT:\n", bb->index);
7122 dump_dataflow_set (&VTI (bb)->out);
7123 }
7124 }
7125 }
7126 }
7127
7128 if (success && MAY_HAVE_DEBUG_INSNS)
7129 FOR_EACH_BB_FN (bb, cfun)
7130 gcc_assert (VTI (bb)->flooded);
7131
7132 free (bb_order);
7133 delete worklist;
7134 delete pending;
7135 sbitmap_free (visited);
7136 sbitmap_free (in_worklist);
7137 sbitmap_free (in_pending);
7138
7139 timevar_pop (TV_VAR_TRACKING_DATAFLOW);
7140 return success;
7141 }
7142
7143 /* Print the content of the LIST to dump file. */
7144
7145 static void
7146 dump_attrs_list (attrs *list)
7147 {
7148 for (; list; list = list->next)
7149 {
7150 if (dv_is_decl_p (list->dv))
7151 print_mem_expr (dump_file, dv_as_decl (list->dv));
7152 else
7153 print_rtl_single (dump_file, dv_as_value (list->dv));
7154 fprintf (dump_file, "+" HOST_WIDE_INT_PRINT_DEC, list->offset);
7155 }
7156 fprintf (dump_file, "\n");
7157 }
7158
7159 /* Print the information about variable *SLOT to dump file. */
7160
7161 int
7162 dump_var_tracking_slot (variable **slot, void *data ATTRIBUTE_UNUSED)
7163 {
7164 variable *var = *slot;
7165
7166 dump_var (var);
7167
7168 /* Continue traversing the hash table. */
7169 return 1;
7170 }
7171
7172 /* Print the information about variable VAR to dump file. */
7173
7174 static void
7175 dump_var (variable *var)
7176 {
7177 int i;
7178 location_chain *node;
7179
7180 if (dv_is_decl_p (var->dv))
7181 {
7182 const_tree decl = dv_as_decl (var->dv);
7183
7184 if (DECL_NAME (decl))
7185 {
7186 fprintf (dump_file, " name: %s",
7187 IDENTIFIER_POINTER (DECL_NAME (decl)));
7188 if (dump_flags & TDF_UID)
7189 fprintf (dump_file, "D.%u", DECL_UID (decl));
7190 }
7191 else if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
7192 fprintf (dump_file, " name: D#%u", DEBUG_TEMP_UID (decl));
7193 else
7194 fprintf (dump_file, " name: D.%u", DECL_UID (decl));
7195 fprintf (dump_file, "\n");
7196 }
7197 else
7198 {
7199 fputc (' ', dump_file);
7200 print_rtl_single (dump_file, dv_as_value (var->dv));
7201 }
7202
7203 for (i = 0; i < var->n_var_parts; i++)
7204 {
7205 fprintf (dump_file, " offset %ld\n",
7206 (long)(var->onepart ? 0 : VAR_PART_OFFSET (var, i)));
7207 for (node = var->var_part[i].loc_chain; node; node = node->next)
7208 {
7209 fprintf (dump_file, " ");
7210 if (node->init == VAR_INIT_STATUS_UNINITIALIZED)
7211 fprintf (dump_file, "[uninit]");
7212 print_rtl_single (dump_file, node->loc);
7213 }
7214 }
7215 }
7216
7217 /* Print the information about variables from hash table VARS to dump file. */
7218
7219 static void
7220 dump_vars (variable_table_type *vars)
7221 {
7222 if (vars->elements () > 0)
7223 {
7224 fprintf (dump_file, "Variables:\n");
7225 vars->traverse <void *, dump_var_tracking_slot> (NULL);
7226 }
7227 }
7228
7229 /* Print the dataflow set SET to dump file. */
7230
7231 static void
7232 dump_dataflow_set (dataflow_set *set)
7233 {
7234 int i;
7235
7236 fprintf (dump_file, "Stack adjustment: " HOST_WIDE_INT_PRINT_DEC "\n",
7237 set->stack_adjust);
7238 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
7239 {
7240 if (set->regs[i])
7241 {
7242 fprintf (dump_file, "Reg %d:", i);
7243 dump_attrs_list (set->regs[i]);
7244 }
7245 }
7246 dump_vars (shared_hash_htab (set->vars));
7247 fprintf (dump_file, "\n");
7248 }
7249
7250 /* Print the IN and OUT sets for each basic block to dump file. */
7251
7252 static void
7253 dump_dataflow_sets (void)
7254 {
7255 basic_block bb;
7256
7257 FOR_EACH_BB_FN (bb, cfun)
7258 {
7259 fprintf (dump_file, "\nBasic block %d:\n", bb->index);
7260 fprintf (dump_file, "IN:\n");
7261 dump_dataflow_set (&VTI (bb)->in);
7262 fprintf (dump_file, "OUT:\n");
7263 dump_dataflow_set (&VTI (bb)->out);
7264 }
7265 }
7266
7267 /* Return the variable for DV in dropped_values, inserting one if
7268 requested with INSERT. */
7269
7270 static inline variable *
7271 variable_from_dropped (decl_or_value dv, enum insert_option insert)
7272 {
7273 variable **slot;
7274 variable *empty_var;
7275 onepart_enum onepart;
7276
7277 slot = dropped_values->find_slot_with_hash (dv, dv_htab_hash (dv), insert);
7278
7279 if (!slot)
7280 return NULL;
7281
7282 if (*slot)
7283 return *slot;
7284
7285 gcc_checking_assert (insert == INSERT);
7286
7287 onepart = dv_onepart_p (dv);
7288
7289 gcc_checking_assert (onepart == ONEPART_VALUE || onepart == ONEPART_DEXPR);
7290
7291 empty_var = onepart_pool_allocate (onepart);
7292 empty_var->dv = dv;
7293 empty_var->refcount = 1;
7294 empty_var->n_var_parts = 0;
7295 empty_var->onepart = onepart;
7296 empty_var->in_changed_variables = false;
7297 empty_var->var_part[0].loc_chain = NULL;
7298 empty_var->var_part[0].cur_loc = NULL;
7299 VAR_LOC_1PAUX (empty_var) = NULL;
7300 set_dv_changed (dv, true);
7301
7302 *slot = empty_var;
7303
7304 return empty_var;
7305 }
7306
7307 /* Recover the one-part aux from dropped_values. */
7308
7309 static struct onepart_aux *
7310 recover_dropped_1paux (variable *var)
7311 {
7312 variable *dvar;
7313
7314 gcc_checking_assert (var->onepart);
7315
7316 if (VAR_LOC_1PAUX (var))
7317 return VAR_LOC_1PAUX (var);
7318
7319 if (var->onepart == ONEPART_VDECL)
7320 return NULL;
7321
7322 dvar = variable_from_dropped (var->dv, NO_INSERT);
7323
7324 if (!dvar)
7325 return NULL;
7326
7327 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (dvar);
7328 VAR_LOC_1PAUX (dvar) = NULL;
7329
7330 return VAR_LOC_1PAUX (var);
7331 }
7332
7333 /* Add variable VAR to the hash table of changed variables and
7334 if it has no locations delete it from SET's hash table. */
7335
7336 static void
7337 variable_was_changed (variable *var, dataflow_set *set)
7338 {
7339 hashval_t hash = dv_htab_hash (var->dv);
7340
7341 if (emit_notes)
7342 {
7343 variable **slot;
7344
7345 /* Remember this decl or VALUE has been added to changed_variables. */
7346 set_dv_changed (var->dv, true);
7347
7348 slot = changed_variables->find_slot_with_hash (var->dv, hash, INSERT);
7349
7350 if (*slot)
7351 {
7352 variable *old_var = *slot;
7353 gcc_assert (old_var->in_changed_variables);
7354 old_var->in_changed_variables = false;
7355 if (var != old_var && var->onepart)
7356 {
7357 /* Restore the auxiliary info from an empty variable
7358 previously created for changed_variables, so it is
7359 not lost. */
7360 gcc_checking_assert (!VAR_LOC_1PAUX (var));
7361 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (old_var);
7362 VAR_LOC_1PAUX (old_var) = NULL;
7363 }
7364 variable_htab_free (*slot);
7365 }
7366
7367 if (set && var->n_var_parts == 0)
7368 {
7369 onepart_enum onepart = var->onepart;
7370 variable *empty_var = NULL;
7371 variable **dslot = NULL;
7372
7373 if (onepart == ONEPART_VALUE || onepart == ONEPART_DEXPR)
7374 {
7375 dslot = dropped_values->find_slot_with_hash (var->dv,
7376 dv_htab_hash (var->dv),
7377 INSERT);
7378 empty_var = *dslot;
7379
7380 if (empty_var)
7381 {
7382 gcc_checking_assert (!empty_var->in_changed_variables);
7383 if (!VAR_LOC_1PAUX (var))
7384 {
7385 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (empty_var);
7386 VAR_LOC_1PAUX (empty_var) = NULL;
7387 }
7388 else
7389 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var));
7390 }
7391 }
7392
7393 if (!empty_var)
7394 {
7395 empty_var = onepart_pool_allocate (onepart);
7396 empty_var->dv = var->dv;
7397 empty_var->refcount = 1;
7398 empty_var->n_var_parts = 0;
7399 empty_var->onepart = onepart;
7400 if (dslot)
7401 {
7402 empty_var->refcount++;
7403 *dslot = empty_var;
7404 }
7405 }
7406 else
7407 empty_var->refcount++;
7408 empty_var->in_changed_variables = true;
7409 *slot = empty_var;
7410 if (onepart)
7411 {
7412 empty_var->var_part[0].loc_chain = NULL;
7413 empty_var->var_part[0].cur_loc = NULL;
7414 VAR_LOC_1PAUX (empty_var) = VAR_LOC_1PAUX (var);
7415 VAR_LOC_1PAUX (var) = NULL;
7416 }
7417 goto drop_var;
7418 }
7419 else
7420 {
7421 if (var->onepart && !VAR_LOC_1PAUX (var))
7422 recover_dropped_1paux (var);
7423 var->refcount++;
7424 var->in_changed_variables = true;
7425 *slot = var;
7426 }
7427 }
7428 else
7429 {
7430 gcc_assert (set);
7431 if (var->n_var_parts == 0)
7432 {
7433 variable **slot;
7434
7435 drop_var:
7436 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
7437 if (slot)
7438 {
7439 if (shared_hash_shared (set->vars))
7440 slot = shared_hash_find_slot_unshare (&set->vars, var->dv,
7441 NO_INSERT);
7442 shared_hash_htab (set->vars)->clear_slot (slot);
7443 }
7444 }
7445 }
7446 }
7447
7448 /* Look for the index in VAR->var_part corresponding to OFFSET.
7449 Return -1 if not found. If INSERTION_POINT is non-NULL, the
7450 referenced int will be set to the index that the part has or should
7451 have, if it should be inserted. */
7452
7453 static inline int
7454 find_variable_location_part (variable *var, HOST_WIDE_INT offset,
7455 int *insertion_point)
7456 {
7457 int pos, low, high;
7458
7459 if (var->onepart)
7460 {
7461 if (offset != 0)
7462 return -1;
7463
7464 if (insertion_point)
7465 *insertion_point = 0;
7466
7467 return var->n_var_parts - 1;
7468 }
7469
7470 /* Find the location part. */
7471 low = 0;
7472 high = var->n_var_parts;
7473 while (low != high)
7474 {
7475 pos = (low + high) / 2;
7476 if (VAR_PART_OFFSET (var, pos) < offset)
7477 low = pos + 1;
7478 else
7479 high = pos;
7480 }
7481 pos = low;
7482
7483 if (insertion_point)
7484 *insertion_point = pos;
7485
7486 if (pos < var->n_var_parts && VAR_PART_OFFSET (var, pos) == offset)
7487 return pos;
7488
7489 return -1;
7490 }
7491
7492 static variable **
7493 set_slot_part (dataflow_set *set, rtx loc, variable **slot,
7494 decl_or_value dv, HOST_WIDE_INT offset,
7495 enum var_init_status initialized, rtx set_src)
7496 {
7497 int pos;
7498 location_chain *node, *next;
7499 location_chain **nextp;
7500 variable *var;
7501 onepart_enum onepart;
7502
7503 var = *slot;
7504
7505 if (var)
7506 onepart = var->onepart;
7507 else
7508 onepart = dv_onepart_p (dv);
7509
7510 gcc_checking_assert (offset == 0 || !onepart);
7511 gcc_checking_assert (loc != dv_as_opaque (dv));
7512
7513 if (! flag_var_tracking_uninit)
7514 initialized = VAR_INIT_STATUS_INITIALIZED;
7515
7516 if (!var)
7517 {
7518 /* Create new variable information. */
7519 var = onepart_pool_allocate (onepart);
7520 var->dv = dv;
7521 var->refcount = 1;
7522 var->n_var_parts = 1;
7523 var->onepart = onepart;
7524 var->in_changed_variables = false;
7525 if (var->onepart)
7526 VAR_LOC_1PAUX (var) = NULL;
7527 else
7528 VAR_PART_OFFSET (var, 0) = offset;
7529 var->var_part[0].loc_chain = NULL;
7530 var->var_part[0].cur_loc = NULL;
7531 *slot = var;
7532 pos = 0;
7533 nextp = &var->var_part[0].loc_chain;
7534 }
7535 else if (onepart)
7536 {
7537 int r = -1, c = 0;
7538
7539 gcc_assert (dv_as_opaque (var->dv) == dv_as_opaque (dv));
7540
7541 pos = 0;
7542
7543 if (GET_CODE (loc) == VALUE)
7544 {
7545 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7546 nextp = &node->next)
7547 if (GET_CODE (node->loc) == VALUE)
7548 {
7549 if (node->loc == loc)
7550 {
7551 r = 0;
7552 break;
7553 }
7554 if (canon_value_cmp (node->loc, loc))
7555 c++;
7556 else
7557 {
7558 r = 1;
7559 break;
7560 }
7561 }
7562 else if (REG_P (node->loc) || MEM_P (node->loc))
7563 c++;
7564 else
7565 {
7566 r = 1;
7567 break;
7568 }
7569 }
7570 else if (REG_P (loc))
7571 {
7572 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7573 nextp = &node->next)
7574 if (REG_P (node->loc))
7575 {
7576 if (REGNO (node->loc) < REGNO (loc))
7577 c++;
7578 else
7579 {
7580 if (REGNO (node->loc) == REGNO (loc))
7581 r = 0;
7582 else
7583 r = 1;
7584 break;
7585 }
7586 }
7587 else
7588 {
7589 r = 1;
7590 break;
7591 }
7592 }
7593 else if (MEM_P (loc))
7594 {
7595 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7596 nextp = &node->next)
7597 if (REG_P (node->loc))
7598 c++;
7599 else if (MEM_P (node->loc))
7600 {
7601 if ((r = loc_cmp (XEXP (node->loc, 0), XEXP (loc, 0))) >= 0)
7602 break;
7603 else
7604 c++;
7605 }
7606 else
7607 {
7608 r = 1;
7609 break;
7610 }
7611 }
7612 else
7613 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7614 nextp = &node->next)
7615 if ((r = loc_cmp (node->loc, loc)) >= 0)
7616 break;
7617 else
7618 c++;
7619
7620 if (r == 0)
7621 return slot;
7622
7623 if (shared_var_p (var, set->vars))
7624 {
7625 slot = unshare_variable (set, slot, var, initialized);
7626 var = *slot;
7627 for (nextp = &var->var_part[0].loc_chain; c;
7628 nextp = &(*nextp)->next)
7629 c--;
7630 gcc_assert ((!node && !*nextp) || node->loc == (*nextp)->loc);
7631 }
7632 }
7633 else
7634 {
7635 int inspos = 0;
7636
7637 gcc_assert (dv_as_decl (var->dv) == dv_as_decl (dv));
7638
7639 pos = find_variable_location_part (var, offset, &inspos);
7640
7641 if (pos >= 0)
7642 {
7643 node = var->var_part[pos].loc_chain;
7644
7645 if (node
7646 && ((REG_P (node->loc) && REG_P (loc)
7647 && REGNO (node->loc) == REGNO (loc))
7648 || rtx_equal_p (node->loc, loc)))
7649 {
7650 /* LOC is in the beginning of the chain so we have nothing
7651 to do. */
7652 if (node->init < initialized)
7653 node->init = initialized;
7654 if (set_src != NULL)
7655 node->set_src = set_src;
7656
7657 return slot;
7658 }
7659 else
7660 {
7661 /* We have to make a copy of a shared variable. */
7662 if (shared_var_p (var, set->vars))
7663 {
7664 slot = unshare_variable (set, slot, var, initialized);
7665 var = *slot;
7666 }
7667 }
7668 }
7669 else
7670 {
7671 /* We have not found the location part, new one will be created. */
7672
7673 /* We have to make a copy of the shared variable. */
7674 if (shared_var_p (var, set->vars))
7675 {
7676 slot = unshare_variable (set, slot, var, initialized);
7677 var = *slot;
7678 }
7679
7680 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
7681 thus there are at most MAX_VAR_PARTS different offsets. */
7682 gcc_assert (var->n_var_parts < MAX_VAR_PARTS
7683 && (!var->n_var_parts || !onepart));
7684
7685 /* We have to move the elements of array starting at index
7686 inspos to the next position. */
7687 for (pos = var->n_var_parts; pos > inspos; pos--)
7688 var->var_part[pos] = var->var_part[pos - 1];
7689
7690 var->n_var_parts++;
7691 gcc_checking_assert (!onepart);
7692 VAR_PART_OFFSET (var, pos) = offset;
7693 var->var_part[pos].loc_chain = NULL;
7694 var->var_part[pos].cur_loc = NULL;
7695 }
7696
7697 /* Delete the location from the list. */
7698 nextp = &var->var_part[pos].loc_chain;
7699 for (node = var->var_part[pos].loc_chain; node; node = next)
7700 {
7701 next = node->next;
7702 if ((REG_P (node->loc) && REG_P (loc)
7703 && REGNO (node->loc) == REGNO (loc))
7704 || rtx_equal_p (node->loc, loc))
7705 {
7706 /* Save these values, to assign to the new node, before
7707 deleting this one. */
7708 if (node->init > initialized)
7709 initialized = node->init;
7710 if (node->set_src != NULL && set_src == NULL)
7711 set_src = node->set_src;
7712 if (var->var_part[pos].cur_loc == node->loc)
7713 var->var_part[pos].cur_loc = NULL;
7714 delete node;
7715 *nextp = next;
7716 break;
7717 }
7718 else
7719 nextp = &node->next;
7720 }
7721
7722 nextp = &var->var_part[pos].loc_chain;
7723 }
7724
7725 /* Add the location to the beginning. */
7726 node = new location_chain;
7727 node->loc = loc;
7728 node->init = initialized;
7729 node->set_src = set_src;
7730 node->next = *nextp;
7731 *nextp = node;
7732
7733 /* If no location was emitted do so. */
7734 if (var->var_part[pos].cur_loc == NULL)
7735 variable_was_changed (var, set);
7736
7737 return slot;
7738 }
7739
7740 /* Set the part of variable's location in the dataflow set SET. The
7741 variable part is specified by variable's declaration in DV and
7742 offset OFFSET and the part's location by LOC. IOPT should be
7743 NO_INSERT if the variable is known to be in SET already and the
7744 variable hash table must not be resized, and INSERT otherwise. */
7745
7746 static void
7747 set_variable_part (dataflow_set *set, rtx loc,
7748 decl_or_value dv, HOST_WIDE_INT offset,
7749 enum var_init_status initialized, rtx set_src,
7750 enum insert_option iopt)
7751 {
7752 variable **slot;
7753
7754 if (iopt == NO_INSERT)
7755 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7756 else
7757 {
7758 slot = shared_hash_find_slot (set->vars, dv);
7759 if (!slot)
7760 slot = shared_hash_find_slot_unshare (&set->vars, dv, iopt);
7761 }
7762 set_slot_part (set, loc, slot, dv, offset, initialized, set_src);
7763 }
7764
7765 /* Remove all recorded register locations for the given variable part
7766 from dataflow set SET, except for those that are identical to loc.
7767 The variable part is specified by variable's declaration or value
7768 DV and offset OFFSET. */
7769
7770 static variable **
7771 clobber_slot_part (dataflow_set *set, rtx loc, variable **slot,
7772 HOST_WIDE_INT offset, rtx set_src)
7773 {
7774 variable *var = *slot;
7775 int pos = find_variable_location_part (var, offset, NULL);
7776
7777 if (pos >= 0)
7778 {
7779 location_chain *node, *next;
7780
7781 /* Remove the register locations from the dataflow set. */
7782 next = var->var_part[pos].loc_chain;
7783 for (node = next; node; node = next)
7784 {
7785 next = node->next;
7786 if (node->loc != loc
7787 && (!flag_var_tracking_uninit
7788 || !set_src
7789 || MEM_P (set_src)
7790 || !rtx_equal_p (set_src, node->set_src)))
7791 {
7792 if (REG_P (node->loc))
7793 {
7794 attrs *anode, *anext;
7795 attrs **anextp;
7796
7797 /* Remove the variable part from the register's
7798 list, but preserve any other variable parts
7799 that might be regarded as live in that same
7800 register. */
7801 anextp = &set->regs[REGNO (node->loc)];
7802 for (anode = *anextp; anode; anode = anext)
7803 {
7804 anext = anode->next;
7805 if (dv_as_opaque (anode->dv) == dv_as_opaque (var->dv)
7806 && anode->offset == offset)
7807 {
7808 delete anode;
7809 *anextp = anext;
7810 }
7811 else
7812 anextp = &anode->next;
7813 }
7814 }
7815
7816 slot = delete_slot_part (set, node->loc, slot, offset);
7817 }
7818 }
7819 }
7820
7821 return slot;
7822 }
7823
7824 /* Remove all recorded register locations for the given variable part
7825 from dataflow set SET, except for those that are identical to loc.
7826 The variable part is specified by variable's declaration or value
7827 DV and offset OFFSET. */
7828
7829 static void
7830 clobber_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
7831 HOST_WIDE_INT offset, rtx set_src)
7832 {
7833 variable **slot;
7834
7835 if (!dv_as_opaque (dv)
7836 || (!dv_is_value_p (dv) && ! DECL_P (dv_as_decl (dv))))
7837 return;
7838
7839 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7840 if (!slot)
7841 return;
7842
7843 clobber_slot_part (set, loc, slot, offset, set_src);
7844 }
7845
7846 /* Delete the part of variable's location from dataflow set SET. The
7847 variable part is specified by its SET->vars slot SLOT and offset
7848 OFFSET and the part's location by LOC. */
7849
7850 static variable **
7851 delete_slot_part (dataflow_set *set, rtx loc, variable **slot,
7852 HOST_WIDE_INT offset)
7853 {
7854 variable *var = *slot;
7855 int pos = find_variable_location_part (var, offset, NULL);
7856
7857 if (pos >= 0)
7858 {
7859 location_chain *node, *next;
7860 location_chain **nextp;
7861 bool changed;
7862 rtx cur_loc;
7863
7864 if (shared_var_p (var, set->vars))
7865 {
7866 /* If the variable contains the location part we have to
7867 make a copy of the variable. */
7868 for (node = var->var_part[pos].loc_chain; node;
7869 node = node->next)
7870 {
7871 if ((REG_P (node->loc) && REG_P (loc)
7872 && REGNO (node->loc) == REGNO (loc))
7873 || rtx_equal_p (node->loc, loc))
7874 {
7875 slot = unshare_variable (set, slot, var,
7876 VAR_INIT_STATUS_UNKNOWN);
7877 var = *slot;
7878 break;
7879 }
7880 }
7881 }
7882
7883 if (pos == 0 && var->onepart && VAR_LOC_1PAUX (var))
7884 cur_loc = VAR_LOC_FROM (var);
7885 else
7886 cur_loc = var->var_part[pos].cur_loc;
7887
7888 /* Delete the location part. */
7889 changed = false;
7890 nextp = &var->var_part[pos].loc_chain;
7891 for (node = *nextp; node; node = next)
7892 {
7893 next = node->next;
7894 if ((REG_P (node->loc) && REG_P (loc)
7895 && REGNO (node->loc) == REGNO (loc))
7896 || rtx_equal_p (node->loc, loc))
7897 {
7898 /* If we have deleted the location which was last emitted
7899 we have to emit new location so add the variable to set
7900 of changed variables. */
7901 if (cur_loc == node->loc)
7902 {
7903 changed = true;
7904 var->var_part[pos].cur_loc = NULL;
7905 if (pos == 0 && var->onepart && VAR_LOC_1PAUX (var))
7906 VAR_LOC_FROM (var) = NULL;
7907 }
7908 delete node;
7909 *nextp = next;
7910 break;
7911 }
7912 else
7913 nextp = &node->next;
7914 }
7915
7916 if (var->var_part[pos].loc_chain == NULL)
7917 {
7918 changed = true;
7919 var->n_var_parts--;
7920 while (pos < var->n_var_parts)
7921 {
7922 var->var_part[pos] = var->var_part[pos + 1];
7923 pos++;
7924 }
7925 }
7926 if (changed)
7927 variable_was_changed (var, set);
7928 }
7929
7930 return slot;
7931 }
7932
7933 /* Delete the part of variable's location from dataflow set SET. The
7934 variable part is specified by variable's declaration or value DV
7935 and offset OFFSET and the part's location by LOC. */
7936
7937 static void
7938 delete_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
7939 HOST_WIDE_INT offset)
7940 {
7941 variable **slot = shared_hash_find_slot_noinsert (set->vars, dv);
7942 if (!slot)
7943 return;
7944
7945 delete_slot_part (set, loc, slot, offset);
7946 }
7947
7948
7949 /* Structure for passing some other parameters to function
7950 vt_expand_loc_callback. */
7951 struct expand_loc_callback_data
7952 {
7953 /* The variables and values active at this point. */
7954 variable_table_type *vars;
7955
7956 /* Stack of values and debug_exprs under expansion, and their
7957 children. */
7958 auto_vec<rtx, 4> expanding;
7959
7960 /* Stack of values and debug_exprs whose expansion hit recursion
7961 cycles. They will have VALUE_RECURSED_INTO marked when added to
7962 this list. This flag will be cleared if any of its dependencies
7963 resolves to a valid location. So, if the flag remains set at the
7964 end of the search, we know no valid location for this one can
7965 possibly exist. */
7966 auto_vec<rtx, 4> pending;
7967
7968 /* The maximum depth among the sub-expressions under expansion.
7969 Zero indicates no expansion so far. */
7970 expand_depth depth;
7971 };
7972
7973 /* Allocate the one-part auxiliary data structure for VAR, with enough
7974 room for COUNT dependencies. */
7975
7976 static void
7977 loc_exp_dep_alloc (variable *var, int count)
7978 {
7979 size_t allocsize;
7980
7981 gcc_checking_assert (var->onepart);
7982
7983 /* We can be called with COUNT == 0 to allocate the data structure
7984 without any dependencies, e.g. for the backlinks only. However,
7985 if we are specifying a COUNT, then the dependency list must have
7986 been emptied before. It would be possible to adjust pointers or
7987 force it empty here, but this is better done at an earlier point
7988 in the algorithm, so we instead leave an assertion to catch
7989 errors. */
7990 gcc_checking_assert (!count
7991 || VAR_LOC_DEP_VEC (var) == NULL
7992 || VAR_LOC_DEP_VEC (var)->is_empty ());
7993
7994 if (VAR_LOC_1PAUX (var) && VAR_LOC_DEP_VEC (var)->space (count))
7995 return;
7996
7997 allocsize = offsetof (struct onepart_aux, deps)
7998 + vec<loc_exp_dep, va_heap, vl_embed>::embedded_size (count);
7999
8000 if (VAR_LOC_1PAUX (var))
8001 {
8002 VAR_LOC_1PAUX (var) = XRESIZEVAR (struct onepart_aux,
8003 VAR_LOC_1PAUX (var), allocsize);
8004 /* If the reallocation moves the onepaux structure, the
8005 back-pointer to BACKLINKS in the first list member will still
8006 point to its old location. Adjust it. */
8007 if (VAR_LOC_DEP_LST (var))
8008 VAR_LOC_DEP_LST (var)->pprev = VAR_LOC_DEP_LSTP (var);
8009 }
8010 else
8011 {
8012 VAR_LOC_1PAUX (var) = XNEWVAR (struct onepart_aux, allocsize);
8013 *VAR_LOC_DEP_LSTP (var) = NULL;
8014 VAR_LOC_FROM (var) = NULL;
8015 VAR_LOC_DEPTH (var).complexity = 0;
8016 VAR_LOC_DEPTH (var).entryvals = 0;
8017 }
8018 VAR_LOC_DEP_VEC (var)->embedded_init (count);
8019 }
8020
8021 /* Remove all entries from the vector of active dependencies of VAR,
8022 removing them from the back-links lists too. */
8023
8024 static void
8025 loc_exp_dep_clear (variable *var)
8026 {
8027 while (VAR_LOC_DEP_VEC (var) && !VAR_LOC_DEP_VEC (var)->is_empty ())
8028 {
8029 loc_exp_dep *led = &VAR_LOC_DEP_VEC (var)->last ();
8030 if (led->next)
8031 led->next->pprev = led->pprev;
8032 if (led->pprev)
8033 *led->pprev = led->next;
8034 VAR_LOC_DEP_VEC (var)->pop ();
8035 }
8036 }
8037
8038 /* Insert an active dependency from VAR on X to the vector of
8039 dependencies, and add the corresponding back-link to X's list of
8040 back-links in VARS. */
8041
8042 static void
8043 loc_exp_insert_dep (variable *var, rtx x, variable_table_type *vars)
8044 {
8045 decl_or_value dv;
8046 variable *xvar;
8047 loc_exp_dep *led;
8048
8049 dv = dv_from_rtx (x);
8050
8051 /* ??? Build a vector of variables parallel to EXPANDING, to avoid
8052 an additional look up? */
8053 xvar = vars->find_with_hash (dv, dv_htab_hash (dv));
8054
8055 if (!xvar)
8056 {
8057 xvar = variable_from_dropped (dv, NO_INSERT);
8058 gcc_checking_assert (xvar);
8059 }
8060
8061 /* No point in adding the same backlink more than once. This may
8062 arise if say the same value appears in two complex expressions in
8063 the same loc_list, or even more than once in a single
8064 expression. */
8065 if (VAR_LOC_DEP_LST (xvar) && VAR_LOC_DEP_LST (xvar)->dv == var->dv)
8066 return;
8067
8068 if (var->onepart == NOT_ONEPART)
8069 led = new loc_exp_dep;
8070 else
8071 {
8072 loc_exp_dep empty;
8073 memset (&empty, 0, sizeof (empty));
8074 VAR_LOC_DEP_VEC (var)->quick_push (empty);
8075 led = &VAR_LOC_DEP_VEC (var)->last ();
8076 }
8077 led->dv = var->dv;
8078 led->value = x;
8079
8080 loc_exp_dep_alloc (xvar, 0);
8081 led->pprev = VAR_LOC_DEP_LSTP (xvar);
8082 led->next = *led->pprev;
8083 if (led->next)
8084 led->next->pprev = &led->next;
8085 *led->pprev = led;
8086 }
8087
8088 /* Create active dependencies of VAR on COUNT values starting at
8089 VALUE, and corresponding back-links to the entries in VARS. Return
8090 true if we found any pending-recursion results. */
8091
8092 static bool
8093 loc_exp_dep_set (variable *var, rtx result, rtx *value, int count,
8094 variable_table_type *vars)
8095 {
8096 bool pending_recursion = false;
8097
8098 gcc_checking_assert (VAR_LOC_DEP_VEC (var) == NULL
8099 || VAR_LOC_DEP_VEC (var)->is_empty ());
8100
8101 /* Set up all dependencies from last_child (as set up at the end of
8102 the loop above) to the end. */
8103 loc_exp_dep_alloc (var, count);
8104
8105 while (count--)
8106 {
8107 rtx x = *value++;
8108
8109 if (!pending_recursion)
8110 pending_recursion = !result && VALUE_RECURSED_INTO (x);
8111
8112 loc_exp_insert_dep (var, x, vars);
8113 }
8114
8115 return pending_recursion;
8116 }
8117
8118 /* Notify the back-links of IVAR that are pending recursion that we
8119 have found a non-NIL value for it, so they are cleared for another
8120 attempt to compute a current location. */
8121
8122 static void
8123 notify_dependents_of_resolved_value (variable *ivar, variable_table_type *vars)
8124 {
8125 loc_exp_dep *led, *next;
8126
8127 for (led = VAR_LOC_DEP_LST (ivar); led; led = next)
8128 {
8129 decl_or_value dv = led->dv;
8130 variable *var;
8131
8132 next = led->next;
8133
8134 if (dv_is_value_p (dv))
8135 {
8136 rtx value = dv_as_value (dv);
8137
8138 /* If we have already resolved it, leave it alone. */
8139 if (!VALUE_RECURSED_INTO (value))
8140 continue;
8141
8142 /* Check that VALUE_RECURSED_INTO, true from the test above,
8143 implies NO_LOC_P. */
8144 gcc_checking_assert (NO_LOC_P (value));
8145
8146 /* We won't notify variables that are being expanded,
8147 because their dependency list is cleared before
8148 recursing. */
8149 NO_LOC_P (value) = false;
8150 VALUE_RECURSED_INTO (value) = false;
8151
8152 gcc_checking_assert (dv_changed_p (dv));
8153 }
8154 else
8155 {
8156 gcc_checking_assert (dv_onepart_p (dv) != NOT_ONEPART);
8157 if (!dv_changed_p (dv))
8158 continue;
8159 }
8160
8161 var = vars->find_with_hash (dv, dv_htab_hash (dv));
8162
8163 if (!var)
8164 var = variable_from_dropped (dv, NO_INSERT);
8165
8166 if (var)
8167 notify_dependents_of_resolved_value (var, vars);
8168
8169 if (next)
8170 next->pprev = led->pprev;
8171 if (led->pprev)
8172 *led->pprev = next;
8173 led->next = NULL;
8174 led->pprev = NULL;
8175 }
8176 }
8177
8178 static rtx vt_expand_loc_callback (rtx x, bitmap regs,
8179 int max_depth, void *data);
8180
8181 /* Return the combined depth, when one sub-expression evaluated to
8182 BEST_DEPTH and the previous known depth was SAVED_DEPTH. */
8183
8184 static inline expand_depth
8185 update_depth (expand_depth saved_depth, expand_depth best_depth)
8186 {
8187 /* If we didn't find anything, stick with what we had. */
8188 if (!best_depth.complexity)
8189 return saved_depth;
8190
8191 /* If we found hadn't found anything, use the depth of the current
8192 expression. Do NOT add one extra level, we want to compute the
8193 maximum depth among sub-expressions. We'll increment it later,
8194 if appropriate. */
8195 if (!saved_depth.complexity)
8196 return best_depth;
8197
8198 /* Combine the entryval count so that regardless of which one we
8199 return, the entryval count is accurate. */
8200 best_depth.entryvals = saved_depth.entryvals
8201 = best_depth.entryvals + saved_depth.entryvals;
8202
8203 if (saved_depth.complexity < best_depth.complexity)
8204 return best_depth;
8205 else
8206 return saved_depth;
8207 }
8208
8209 /* Expand VAR to a location RTX, updating its cur_loc. Use REGS and
8210 DATA for cselib expand callback. If PENDRECP is given, indicate in
8211 it whether any sub-expression couldn't be fully evaluated because
8212 it is pending recursion resolution. */
8213
8214 static inline rtx
8215 vt_expand_var_loc_chain (variable *var, bitmap regs, void *data,
8216 bool *pendrecp)
8217 {
8218 struct expand_loc_callback_data *elcd
8219 = (struct expand_loc_callback_data *) data;
8220 location_chain *loc, *next;
8221 rtx result = NULL;
8222 int first_child, result_first_child, last_child;
8223 bool pending_recursion;
8224 rtx loc_from = NULL;
8225 struct elt_loc_list *cloc = NULL;
8226 expand_depth depth = { 0, 0 }, saved_depth = elcd->depth;
8227 int wanted_entryvals, found_entryvals = 0;
8228
8229 /* Clear all backlinks pointing at this, so that we're not notified
8230 while we're active. */
8231 loc_exp_dep_clear (var);
8232
8233 retry:
8234 if (var->onepart == ONEPART_VALUE)
8235 {
8236 cselib_val *val = CSELIB_VAL_PTR (dv_as_value (var->dv));
8237
8238 gcc_checking_assert (cselib_preserved_value_p (val));
8239
8240 cloc = val->locs;
8241 }
8242
8243 first_child = result_first_child = last_child
8244 = elcd->expanding.length ();
8245
8246 wanted_entryvals = found_entryvals;
8247
8248 /* Attempt to expand each available location in turn. */
8249 for (next = loc = var->n_var_parts ? var->var_part[0].loc_chain : NULL;
8250 loc || cloc; loc = next)
8251 {
8252 result_first_child = last_child;
8253
8254 if (!loc)
8255 {
8256 loc_from = cloc->loc;
8257 next = loc;
8258 cloc = cloc->next;
8259 if (unsuitable_loc (loc_from))
8260 continue;
8261 }
8262 else
8263 {
8264 loc_from = loc->loc;
8265 next = loc->next;
8266 }
8267
8268 gcc_checking_assert (!unsuitable_loc (loc_from));
8269
8270 elcd->depth.complexity = elcd->depth.entryvals = 0;
8271 result = cselib_expand_value_rtx_cb (loc_from, regs, EXPR_DEPTH,
8272 vt_expand_loc_callback, data);
8273 last_child = elcd->expanding.length ();
8274
8275 if (result)
8276 {
8277 depth = elcd->depth;
8278
8279 gcc_checking_assert (depth.complexity
8280 || result_first_child == last_child);
8281
8282 if (last_child - result_first_child != 1)
8283 {
8284 if (!depth.complexity && GET_CODE (result) == ENTRY_VALUE)
8285 depth.entryvals++;
8286 depth.complexity++;
8287 }
8288
8289 if (depth.complexity <= EXPR_USE_DEPTH)
8290 {
8291 if (depth.entryvals <= wanted_entryvals)
8292 break;
8293 else if (!found_entryvals || depth.entryvals < found_entryvals)
8294 found_entryvals = depth.entryvals;
8295 }
8296
8297 result = NULL;
8298 }
8299
8300 /* Set it up in case we leave the loop. */
8301 depth.complexity = depth.entryvals = 0;
8302 loc_from = NULL;
8303 result_first_child = first_child;
8304 }
8305
8306 if (!loc_from && wanted_entryvals < found_entryvals)
8307 {
8308 /* We found entries with ENTRY_VALUEs and skipped them. Since
8309 we could not find any expansions without ENTRY_VALUEs, but we
8310 found at least one with them, go back and get an entry with
8311 the minimum number ENTRY_VALUE count that we found. We could
8312 avoid looping, but since each sub-loc is already resolved,
8313 the re-expansion should be trivial. ??? Should we record all
8314 attempted locs as dependencies, so that we retry the
8315 expansion should any of them change, in the hope it can give
8316 us a new entry without an ENTRY_VALUE? */
8317 elcd->expanding.truncate (first_child);
8318 goto retry;
8319 }
8320
8321 /* Register all encountered dependencies as active. */
8322 pending_recursion = loc_exp_dep_set
8323 (var, result, elcd->expanding.address () + result_first_child,
8324 last_child - result_first_child, elcd->vars);
8325
8326 elcd->expanding.truncate (first_child);
8327
8328 /* Record where the expansion came from. */
8329 gcc_checking_assert (!result || !pending_recursion);
8330 VAR_LOC_FROM (var) = loc_from;
8331 VAR_LOC_DEPTH (var) = depth;
8332
8333 gcc_checking_assert (!depth.complexity == !result);
8334
8335 elcd->depth = update_depth (saved_depth, depth);
8336
8337 /* Indicate whether any of the dependencies are pending recursion
8338 resolution. */
8339 if (pendrecp)
8340 *pendrecp = pending_recursion;
8341
8342 if (!pendrecp || !pending_recursion)
8343 var->var_part[0].cur_loc = result;
8344
8345 return result;
8346 }
8347
8348 /* Callback for cselib_expand_value, that looks for expressions
8349 holding the value in the var-tracking hash tables. Return X for
8350 standard processing, anything else is to be used as-is. */
8351
8352 static rtx
8353 vt_expand_loc_callback (rtx x, bitmap regs,
8354 int max_depth ATTRIBUTE_UNUSED,
8355 void *data)
8356 {
8357 struct expand_loc_callback_data *elcd
8358 = (struct expand_loc_callback_data *) data;
8359 decl_or_value dv;
8360 variable *var;
8361 rtx result, subreg;
8362 bool pending_recursion = false;
8363 bool from_empty = false;
8364
8365 switch (GET_CODE (x))
8366 {
8367 case SUBREG:
8368 subreg = cselib_expand_value_rtx_cb (SUBREG_REG (x), regs,
8369 EXPR_DEPTH,
8370 vt_expand_loc_callback, data);
8371
8372 if (!subreg)
8373 return NULL;
8374
8375 result = simplify_gen_subreg (GET_MODE (x), subreg,
8376 GET_MODE (SUBREG_REG (x)),
8377 SUBREG_BYTE (x));
8378
8379 /* Invalid SUBREGs are ok in debug info. ??? We could try
8380 alternate expansions for the VALUE as well. */
8381 if (!result)
8382 result = gen_rtx_raw_SUBREG (GET_MODE (x), subreg, SUBREG_BYTE (x));
8383
8384 return result;
8385
8386 case DEBUG_EXPR:
8387 case VALUE:
8388 dv = dv_from_rtx (x);
8389 break;
8390
8391 default:
8392 return x;
8393 }
8394
8395 elcd->expanding.safe_push (x);
8396
8397 /* Check that VALUE_RECURSED_INTO implies NO_LOC_P. */
8398 gcc_checking_assert (!VALUE_RECURSED_INTO (x) || NO_LOC_P (x));
8399
8400 if (NO_LOC_P (x))
8401 {
8402 gcc_checking_assert (VALUE_RECURSED_INTO (x) || !dv_changed_p (dv));
8403 return NULL;
8404 }
8405
8406 var = elcd->vars->find_with_hash (dv, dv_htab_hash (dv));
8407
8408 if (!var)
8409 {
8410 from_empty = true;
8411 var = variable_from_dropped (dv, INSERT);
8412 }
8413
8414 gcc_checking_assert (var);
8415
8416 if (!dv_changed_p (dv))
8417 {
8418 gcc_checking_assert (!NO_LOC_P (x));
8419 gcc_checking_assert (var->var_part[0].cur_loc);
8420 gcc_checking_assert (VAR_LOC_1PAUX (var));
8421 gcc_checking_assert (VAR_LOC_1PAUX (var)->depth.complexity);
8422
8423 elcd->depth = update_depth (elcd->depth, VAR_LOC_1PAUX (var)->depth);
8424
8425 return var->var_part[0].cur_loc;
8426 }
8427
8428 VALUE_RECURSED_INTO (x) = true;
8429 /* This is tentative, but it makes some tests simpler. */
8430 NO_LOC_P (x) = true;
8431
8432 gcc_checking_assert (var->n_var_parts == 1 || from_empty);
8433
8434 result = vt_expand_var_loc_chain (var, regs, data, &pending_recursion);
8435
8436 if (pending_recursion)
8437 {
8438 gcc_checking_assert (!result);
8439 elcd->pending.safe_push (x);
8440 }
8441 else
8442 {
8443 NO_LOC_P (x) = !result;
8444 VALUE_RECURSED_INTO (x) = false;
8445 set_dv_changed (dv, false);
8446
8447 if (result)
8448 notify_dependents_of_resolved_value (var, elcd->vars);
8449 }
8450
8451 return result;
8452 }
8453
8454 /* While expanding variables, we may encounter recursion cycles
8455 because of mutual (possibly indirect) dependencies between two
8456 particular variables (or values), say A and B. If we're trying to
8457 expand A when we get to B, which in turn attempts to expand A, if
8458 we can't find any other expansion for B, we'll add B to this
8459 pending-recursion stack, and tentatively return NULL for its
8460 location. This tentative value will be used for any other
8461 occurrences of B, unless A gets some other location, in which case
8462 it will notify B that it is worth another try at computing a
8463 location for it, and it will use the location computed for A then.
8464 At the end of the expansion, the tentative NULL locations become
8465 final for all members of PENDING that didn't get a notification.
8466 This function performs this finalization of NULL locations. */
8467
8468 static void
8469 resolve_expansions_pending_recursion (vec<rtx, va_heap> *pending)
8470 {
8471 while (!pending->is_empty ())
8472 {
8473 rtx x = pending->pop ();
8474 decl_or_value dv;
8475
8476 if (!VALUE_RECURSED_INTO (x))
8477 continue;
8478
8479 gcc_checking_assert (NO_LOC_P (x));
8480 VALUE_RECURSED_INTO (x) = false;
8481 dv = dv_from_rtx (x);
8482 gcc_checking_assert (dv_changed_p (dv));
8483 set_dv_changed (dv, false);
8484 }
8485 }
8486
8487 /* Initialize expand_loc_callback_data D with variable hash table V.
8488 It must be a macro because of alloca (vec stack). */
8489 #define INIT_ELCD(d, v) \
8490 do \
8491 { \
8492 (d).vars = (v); \
8493 (d).depth.complexity = (d).depth.entryvals = 0; \
8494 } \
8495 while (0)
8496 /* Finalize expand_loc_callback_data D, resolved to location L. */
8497 #define FINI_ELCD(d, l) \
8498 do \
8499 { \
8500 resolve_expansions_pending_recursion (&(d).pending); \
8501 (d).pending.release (); \
8502 (d).expanding.release (); \
8503 \
8504 if ((l) && MEM_P (l)) \
8505 (l) = targetm.delegitimize_address (l); \
8506 } \
8507 while (0)
8508
8509 /* Expand VALUEs and DEBUG_EXPRs in LOC to a location, using the
8510 equivalences in VARS, updating their CUR_LOCs in the process. */
8511
8512 static rtx
8513 vt_expand_loc (rtx loc, variable_table_type *vars)
8514 {
8515 struct expand_loc_callback_data data;
8516 rtx result;
8517
8518 if (!MAY_HAVE_DEBUG_INSNS)
8519 return loc;
8520
8521 INIT_ELCD (data, vars);
8522
8523 result = cselib_expand_value_rtx_cb (loc, scratch_regs, EXPR_DEPTH,
8524 vt_expand_loc_callback, &data);
8525
8526 FINI_ELCD (data, result);
8527
8528 return result;
8529 }
8530
8531 /* Expand the one-part VARiable to a location, using the equivalences
8532 in VARS, updating their CUR_LOCs in the process. */
8533
8534 static rtx
8535 vt_expand_1pvar (variable *var, variable_table_type *vars)
8536 {
8537 struct expand_loc_callback_data data;
8538 rtx loc;
8539
8540 gcc_checking_assert (var->onepart && var->n_var_parts == 1);
8541
8542 if (!dv_changed_p (var->dv))
8543 return var->var_part[0].cur_loc;
8544
8545 INIT_ELCD (data, vars);
8546
8547 loc = vt_expand_var_loc_chain (var, scratch_regs, &data, NULL);
8548
8549 gcc_checking_assert (data.expanding.is_empty ());
8550
8551 FINI_ELCD (data, loc);
8552
8553 return loc;
8554 }
8555
8556 /* Emit the NOTE_INSN_VAR_LOCATION for variable *VARP. DATA contains
8557 additional parameters: WHERE specifies whether the note shall be emitted
8558 before or after instruction INSN. */
8559
8560 int
8561 emit_note_insn_var_location (variable **varp, emit_note_data *data)
8562 {
8563 variable *var = *varp;
8564 rtx_insn *insn = data->insn;
8565 enum emit_note_where where = data->where;
8566 variable_table_type *vars = data->vars;
8567 rtx_note *note;
8568 rtx note_vl;
8569 int i, j, n_var_parts;
8570 bool complete;
8571 enum var_init_status initialized = VAR_INIT_STATUS_UNINITIALIZED;
8572 HOST_WIDE_INT last_limit;
8573 tree type_size_unit;
8574 HOST_WIDE_INT offsets[MAX_VAR_PARTS];
8575 rtx loc[MAX_VAR_PARTS];
8576 tree decl;
8577 location_chain *lc;
8578
8579 gcc_checking_assert (var->onepart == NOT_ONEPART
8580 || var->onepart == ONEPART_VDECL);
8581
8582 decl = dv_as_decl (var->dv);
8583
8584 complete = true;
8585 last_limit = 0;
8586 n_var_parts = 0;
8587 if (!var->onepart)
8588 for (i = 0; i < var->n_var_parts; i++)
8589 if (var->var_part[i].cur_loc == NULL && var->var_part[i].loc_chain)
8590 var->var_part[i].cur_loc = var->var_part[i].loc_chain->loc;
8591 for (i = 0; i < var->n_var_parts; i++)
8592 {
8593 machine_mode mode, wider_mode;
8594 rtx loc2;
8595 HOST_WIDE_INT offset;
8596
8597 if (i == 0 && var->onepart)
8598 {
8599 gcc_checking_assert (var->n_var_parts == 1);
8600 offset = 0;
8601 initialized = VAR_INIT_STATUS_INITIALIZED;
8602 loc2 = vt_expand_1pvar (var, vars);
8603 }
8604 else
8605 {
8606 if (last_limit < VAR_PART_OFFSET (var, i))
8607 {
8608 complete = false;
8609 break;
8610 }
8611 else if (last_limit > VAR_PART_OFFSET (var, i))
8612 continue;
8613 offset = VAR_PART_OFFSET (var, i);
8614 loc2 = var->var_part[i].cur_loc;
8615 if (loc2 && GET_CODE (loc2) == MEM
8616 && GET_CODE (XEXP (loc2, 0)) == VALUE)
8617 {
8618 rtx depval = XEXP (loc2, 0);
8619
8620 loc2 = vt_expand_loc (loc2, vars);
8621
8622 if (loc2)
8623 loc_exp_insert_dep (var, depval, vars);
8624 }
8625 if (!loc2)
8626 {
8627 complete = false;
8628 continue;
8629 }
8630 gcc_checking_assert (GET_CODE (loc2) != VALUE);
8631 for (lc = var->var_part[i].loc_chain; lc; lc = lc->next)
8632 if (var->var_part[i].cur_loc == lc->loc)
8633 {
8634 initialized = lc->init;
8635 break;
8636 }
8637 gcc_assert (lc);
8638 }
8639
8640 offsets[n_var_parts] = offset;
8641 if (!loc2)
8642 {
8643 complete = false;
8644 continue;
8645 }
8646 loc[n_var_parts] = loc2;
8647 mode = GET_MODE (var->var_part[i].cur_loc);
8648 if (mode == VOIDmode && var->onepart)
8649 mode = DECL_MODE (decl);
8650 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
8651
8652 /* Attempt to merge adjacent registers or memory. */
8653 wider_mode = GET_MODE_WIDER_MODE (mode);
8654 for (j = i + 1; j < var->n_var_parts; j++)
8655 if (last_limit <= VAR_PART_OFFSET (var, j))
8656 break;
8657 if (j < var->n_var_parts
8658 && wider_mode != VOIDmode
8659 && var->var_part[j].cur_loc
8660 && mode == GET_MODE (var->var_part[j].cur_loc)
8661 && (REG_P (loc[n_var_parts]) || MEM_P (loc[n_var_parts]))
8662 && last_limit == (var->onepart ? 0 : VAR_PART_OFFSET (var, j))
8663 && (loc2 = vt_expand_loc (var->var_part[j].cur_loc, vars))
8664 && GET_CODE (loc[n_var_parts]) == GET_CODE (loc2))
8665 {
8666 rtx new_loc = NULL;
8667
8668 if (REG_P (loc[n_var_parts])
8669 && hard_regno_nregs[REGNO (loc[n_var_parts])][mode] * 2
8670 == hard_regno_nregs[REGNO (loc[n_var_parts])][wider_mode]
8671 && end_hard_regno (mode, REGNO (loc[n_var_parts]))
8672 == REGNO (loc2))
8673 {
8674 if (! WORDS_BIG_ENDIAN && ! BYTES_BIG_ENDIAN)
8675 new_loc = simplify_subreg (wider_mode, loc[n_var_parts],
8676 mode, 0);
8677 else if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
8678 new_loc = simplify_subreg (wider_mode, loc2, mode, 0);
8679 if (new_loc)
8680 {
8681 if (!REG_P (new_loc)
8682 || REGNO (new_loc) != REGNO (loc[n_var_parts]))
8683 new_loc = NULL;
8684 else
8685 REG_ATTRS (new_loc) = REG_ATTRS (loc[n_var_parts]);
8686 }
8687 }
8688 else if (MEM_P (loc[n_var_parts])
8689 && GET_CODE (XEXP (loc2, 0)) == PLUS
8690 && REG_P (XEXP (XEXP (loc2, 0), 0))
8691 && CONST_INT_P (XEXP (XEXP (loc2, 0), 1)))
8692 {
8693 if ((REG_P (XEXP (loc[n_var_parts], 0))
8694 && rtx_equal_p (XEXP (loc[n_var_parts], 0),
8695 XEXP (XEXP (loc2, 0), 0))
8696 && INTVAL (XEXP (XEXP (loc2, 0), 1))
8697 == GET_MODE_SIZE (mode))
8698 || (GET_CODE (XEXP (loc[n_var_parts], 0)) == PLUS
8699 && CONST_INT_P (XEXP (XEXP (loc[n_var_parts], 0), 1))
8700 && rtx_equal_p (XEXP (XEXP (loc[n_var_parts], 0), 0),
8701 XEXP (XEXP (loc2, 0), 0))
8702 && INTVAL (XEXP (XEXP (loc[n_var_parts], 0), 1))
8703 + GET_MODE_SIZE (mode)
8704 == INTVAL (XEXP (XEXP (loc2, 0), 1))))
8705 new_loc = adjust_address_nv (loc[n_var_parts],
8706 wider_mode, 0);
8707 }
8708
8709 if (new_loc)
8710 {
8711 loc[n_var_parts] = new_loc;
8712 mode = wider_mode;
8713 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
8714 i = j;
8715 }
8716 }
8717 ++n_var_parts;
8718 }
8719 type_size_unit = TYPE_SIZE_UNIT (TREE_TYPE (decl));
8720 if ((unsigned HOST_WIDE_INT) last_limit < TREE_INT_CST_LOW (type_size_unit))
8721 complete = false;
8722
8723 if (! flag_var_tracking_uninit)
8724 initialized = VAR_INIT_STATUS_INITIALIZED;
8725
8726 note_vl = NULL_RTX;
8727 if (!complete)
8728 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, NULL_RTX, initialized);
8729 else if (n_var_parts == 1)
8730 {
8731 rtx expr_list;
8732
8733 if (offsets[0] || GET_CODE (loc[0]) == PARALLEL)
8734 expr_list = gen_rtx_EXPR_LIST (VOIDmode, loc[0], GEN_INT (offsets[0]));
8735 else
8736 expr_list = loc[0];
8737
8738 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, expr_list, initialized);
8739 }
8740 else if (n_var_parts)
8741 {
8742 rtx parallel;
8743
8744 for (i = 0; i < n_var_parts; i++)
8745 loc[i]
8746 = gen_rtx_EXPR_LIST (VOIDmode, loc[i], GEN_INT (offsets[i]));
8747
8748 parallel = gen_rtx_PARALLEL (VOIDmode,
8749 gen_rtvec_v (n_var_parts, loc));
8750 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl,
8751 parallel, initialized);
8752 }
8753
8754 if (where != EMIT_NOTE_BEFORE_INSN)
8755 {
8756 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
8757 if (where == EMIT_NOTE_AFTER_CALL_INSN)
8758 NOTE_DURING_CALL_P (note) = true;
8759 }
8760 else
8761 {
8762 /* Make sure that the call related notes come first. */
8763 while (NEXT_INSN (insn)
8764 && NOTE_P (insn)
8765 && ((NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
8766 && NOTE_DURING_CALL_P (insn))
8767 || NOTE_KIND (insn) == NOTE_INSN_CALL_ARG_LOCATION))
8768 insn = NEXT_INSN (insn);
8769 if (NOTE_P (insn)
8770 && ((NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
8771 && NOTE_DURING_CALL_P (insn))
8772 || NOTE_KIND (insn) == NOTE_INSN_CALL_ARG_LOCATION))
8773 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
8774 else
8775 note = emit_note_before (NOTE_INSN_VAR_LOCATION, insn);
8776 }
8777 NOTE_VAR_LOCATION (note) = note_vl;
8778
8779 set_dv_changed (var->dv, false);
8780 gcc_assert (var->in_changed_variables);
8781 var->in_changed_variables = false;
8782 changed_variables->clear_slot (varp);
8783
8784 /* Continue traversing the hash table. */
8785 return 1;
8786 }
8787
8788 /* While traversing changed_variables, push onto DATA (a stack of RTX
8789 values) entries that aren't user variables. */
8790
8791 int
8792 var_track_values_to_stack (variable **slot,
8793 vec<rtx, va_heap> *changed_values_stack)
8794 {
8795 variable *var = *slot;
8796
8797 if (var->onepart == ONEPART_VALUE)
8798 changed_values_stack->safe_push (dv_as_value (var->dv));
8799 else if (var->onepart == ONEPART_DEXPR)
8800 changed_values_stack->safe_push (DECL_RTL_KNOWN_SET (dv_as_decl (var->dv)));
8801
8802 return 1;
8803 }
8804
8805 /* Remove from changed_variables the entry whose DV corresponds to
8806 value or debug_expr VAL. */
8807 static void
8808 remove_value_from_changed_variables (rtx val)
8809 {
8810 decl_or_value dv = dv_from_rtx (val);
8811 variable **slot;
8812 variable *var;
8813
8814 slot = changed_variables->find_slot_with_hash (dv, dv_htab_hash (dv),
8815 NO_INSERT);
8816 var = *slot;
8817 var->in_changed_variables = false;
8818 changed_variables->clear_slot (slot);
8819 }
8820
8821 /* If VAL (a value or debug_expr) has backlinks to variables actively
8822 dependent on it in HTAB or in CHANGED_VARIABLES, mark them as
8823 changed, adding to CHANGED_VALUES_STACK any dependencies that may
8824 have dependencies of their own to notify. */
8825
8826 static void
8827 notify_dependents_of_changed_value (rtx val, variable_table_type *htab,
8828 vec<rtx, va_heap> *changed_values_stack)
8829 {
8830 variable **slot;
8831 variable *var;
8832 loc_exp_dep *led;
8833 decl_or_value dv = dv_from_rtx (val);
8834
8835 slot = changed_variables->find_slot_with_hash (dv, dv_htab_hash (dv),
8836 NO_INSERT);
8837 if (!slot)
8838 slot = htab->find_slot_with_hash (dv, dv_htab_hash (dv), NO_INSERT);
8839 if (!slot)
8840 slot = dropped_values->find_slot_with_hash (dv, dv_htab_hash (dv),
8841 NO_INSERT);
8842 var = *slot;
8843
8844 while ((led = VAR_LOC_DEP_LST (var)))
8845 {
8846 decl_or_value ldv = led->dv;
8847 variable *ivar;
8848
8849 /* Deactivate and remove the backlink, as it was “used up”. It
8850 makes no sense to attempt to notify the same entity again:
8851 either it will be recomputed and re-register an active
8852 dependency, or it will still have the changed mark. */
8853 if (led->next)
8854 led->next->pprev = led->pprev;
8855 if (led->pprev)
8856 *led->pprev = led->next;
8857 led->next = NULL;
8858 led->pprev = NULL;
8859
8860 if (dv_changed_p (ldv))
8861 continue;
8862
8863 switch (dv_onepart_p (ldv))
8864 {
8865 case ONEPART_VALUE:
8866 case ONEPART_DEXPR:
8867 set_dv_changed (ldv, true);
8868 changed_values_stack->safe_push (dv_as_rtx (ldv));
8869 break;
8870
8871 case ONEPART_VDECL:
8872 ivar = htab->find_with_hash (ldv, dv_htab_hash (ldv));
8873 gcc_checking_assert (!VAR_LOC_DEP_LST (ivar));
8874 variable_was_changed (ivar, NULL);
8875 break;
8876
8877 case NOT_ONEPART:
8878 delete led;
8879 ivar = htab->find_with_hash (ldv, dv_htab_hash (ldv));
8880 if (ivar)
8881 {
8882 int i = ivar->n_var_parts;
8883 while (i--)
8884 {
8885 rtx loc = ivar->var_part[i].cur_loc;
8886
8887 if (loc && GET_CODE (loc) == MEM
8888 && XEXP (loc, 0) == val)
8889 {
8890 variable_was_changed (ivar, NULL);
8891 break;
8892 }
8893 }
8894 }
8895 break;
8896
8897 default:
8898 gcc_unreachable ();
8899 }
8900 }
8901 }
8902
8903 /* Take out of changed_variables any entries that don't refer to use
8904 variables. Back-propagate change notifications from values and
8905 debug_exprs to their active dependencies in HTAB or in
8906 CHANGED_VARIABLES. */
8907
8908 static void
8909 process_changed_values (variable_table_type *htab)
8910 {
8911 int i, n;
8912 rtx val;
8913 auto_vec<rtx, 20> changed_values_stack;
8914
8915 /* Move values from changed_variables to changed_values_stack. */
8916 changed_variables
8917 ->traverse <vec<rtx, va_heap>*, var_track_values_to_stack>
8918 (&changed_values_stack);
8919
8920 /* Back-propagate change notifications in values while popping
8921 them from the stack. */
8922 for (n = i = changed_values_stack.length ();
8923 i > 0; i = changed_values_stack.length ())
8924 {
8925 val = changed_values_stack.pop ();
8926 notify_dependents_of_changed_value (val, htab, &changed_values_stack);
8927
8928 /* This condition will hold when visiting each of the entries
8929 originally in changed_variables. We can't remove them
8930 earlier because this could drop the backlinks before we got a
8931 chance to use them. */
8932 if (i == n)
8933 {
8934 remove_value_from_changed_variables (val);
8935 n--;
8936 }
8937 }
8938 }
8939
8940 /* Emit NOTE_INSN_VAR_LOCATION note for each variable from a chain
8941 CHANGED_VARIABLES and delete this chain. WHERE specifies whether
8942 the notes shall be emitted before of after instruction INSN. */
8943
8944 static void
8945 emit_notes_for_changes (rtx_insn *insn, enum emit_note_where where,
8946 shared_hash *vars)
8947 {
8948 emit_note_data data;
8949 variable_table_type *htab = shared_hash_htab (vars);
8950
8951 if (!changed_variables->elements ())
8952 return;
8953
8954 if (MAY_HAVE_DEBUG_INSNS)
8955 process_changed_values (htab);
8956
8957 data.insn = insn;
8958 data.where = where;
8959 data.vars = htab;
8960
8961 changed_variables
8962 ->traverse <emit_note_data*, emit_note_insn_var_location> (&data);
8963 }
8964
8965 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it differs from the
8966 same variable in hash table DATA or is not there at all. */
8967
8968 int
8969 emit_notes_for_differences_1 (variable **slot, variable_table_type *new_vars)
8970 {
8971 variable *old_var, *new_var;
8972
8973 old_var = *slot;
8974 new_var = new_vars->find_with_hash (old_var->dv, dv_htab_hash (old_var->dv));
8975
8976 if (!new_var)
8977 {
8978 /* Variable has disappeared. */
8979 variable *empty_var = NULL;
8980
8981 if (old_var->onepart == ONEPART_VALUE
8982 || old_var->onepart == ONEPART_DEXPR)
8983 {
8984 empty_var = variable_from_dropped (old_var->dv, NO_INSERT);
8985 if (empty_var)
8986 {
8987 gcc_checking_assert (!empty_var->in_changed_variables);
8988 if (!VAR_LOC_1PAUX (old_var))
8989 {
8990 VAR_LOC_1PAUX (old_var) = VAR_LOC_1PAUX (empty_var);
8991 VAR_LOC_1PAUX (empty_var) = NULL;
8992 }
8993 else
8994 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var));
8995 }
8996 }
8997
8998 if (!empty_var)
8999 {
9000 empty_var = onepart_pool_allocate (old_var->onepart);
9001 empty_var->dv = old_var->dv;
9002 empty_var->refcount = 0;
9003 empty_var->n_var_parts = 0;
9004 empty_var->onepart = old_var->onepart;
9005 empty_var->in_changed_variables = false;
9006 }
9007
9008 if (empty_var->onepart)
9009 {
9010 /* Propagate the auxiliary data to (ultimately)
9011 changed_variables. */
9012 empty_var->var_part[0].loc_chain = NULL;
9013 empty_var->var_part[0].cur_loc = NULL;
9014 VAR_LOC_1PAUX (empty_var) = VAR_LOC_1PAUX (old_var);
9015 VAR_LOC_1PAUX (old_var) = NULL;
9016 }
9017 variable_was_changed (empty_var, NULL);
9018 /* Continue traversing the hash table. */
9019 return 1;
9020 }
9021 /* Update cur_loc and one-part auxiliary data, before new_var goes
9022 through variable_was_changed. */
9023 if (old_var != new_var && new_var->onepart)
9024 {
9025 gcc_checking_assert (VAR_LOC_1PAUX (new_var) == NULL);
9026 VAR_LOC_1PAUX (new_var) = VAR_LOC_1PAUX (old_var);
9027 VAR_LOC_1PAUX (old_var) = NULL;
9028 new_var->var_part[0].cur_loc = old_var->var_part[0].cur_loc;
9029 }
9030 if (variable_different_p (old_var, new_var))
9031 variable_was_changed (new_var, NULL);
9032
9033 /* Continue traversing the hash table. */
9034 return 1;
9035 }
9036
9037 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it is not in hash
9038 table DATA. */
9039
9040 int
9041 emit_notes_for_differences_2 (variable **slot, variable_table_type *old_vars)
9042 {
9043 variable *old_var, *new_var;
9044
9045 new_var = *slot;
9046 old_var = old_vars->find_with_hash (new_var->dv, dv_htab_hash (new_var->dv));
9047 if (!old_var)
9048 {
9049 int i;
9050 for (i = 0; i < new_var->n_var_parts; i++)
9051 new_var->var_part[i].cur_loc = NULL;
9052 variable_was_changed (new_var, NULL);
9053 }
9054
9055 /* Continue traversing the hash table. */
9056 return 1;
9057 }
9058
9059 /* Emit notes before INSN for differences between dataflow sets OLD_SET and
9060 NEW_SET. */
9061
9062 static void
9063 emit_notes_for_differences (rtx_insn *insn, dataflow_set *old_set,
9064 dataflow_set *new_set)
9065 {
9066 shared_hash_htab (old_set->vars)
9067 ->traverse <variable_table_type *, emit_notes_for_differences_1>
9068 (shared_hash_htab (new_set->vars));
9069 shared_hash_htab (new_set->vars)
9070 ->traverse <variable_table_type *, emit_notes_for_differences_2>
9071 (shared_hash_htab (old_set->vars));
9072 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, new_set->vars);
9073 }
9074
9075 /* Return the next insn after INSN that is not a NOTE_INSN_VAR_LOCATION. */
9076
9077 static rtx_insn *
9078 next_non_note_insn_var_location (rtx_insn *insn)
9079 {
9080 while (insn)
9081 {
9082 insn = NEXT_INSN (insn);
9083 if (insn == 0
9084 || !NOTE_P (insn)
9085 || NOTE_KIND (insn) != NOTE_INSN_VAR_LOCATION)
9086 break;
9087 }
9088
9089 return insn;
9090 }
9091
9092 /* Emit the notes for changes of location parts in the basic block BB. */
9093
9094 static void
9095 emit_notes_in_bb (basic_block bb, dataflow_set *set)
9096 {
9097 unsigned int i;
9098 micro_operation *mo;
9099
9100 dataflow_set_clear (set);
9101 dataflow_set_copy (set, &VTI (bb)->in);
9102
9103 FOR_EACH_VEC_ELT (VTI (bb)->mos, i, mo)
9104 {
9105 rtx_insn *insn = mo->insn;
9106 rtx_insn *next_insn = next_non_note_insn_var_location (insn);
9107
9108 switch (mo->type)
9109 {
9110 case MO_CALL:
9111 dataflow_set_clear_at_call (set, insn);
9112 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_CALL_INSN, set->vars);
9113 {
9114 rtx arguments = mo->u.loc, *p = &arguments;
9115 rtx_note *note;
9116 while (*p)
9117 {
9118 XEXP (XEXP (*p, 0), 1)
9119 = vt_expand_loc (XEXP (XEXP (*p, 0), 1),
9120 shared_hash_htab (set->vars));
9121 /* If expansion is successful, keep it in the list. */
9122 if (XEXP (XEXP (*p, 0), 1))
9123 p = &XEXP (*p, 1);
9124 /* Otherwise, if the following item is data_value for it,
9125 drop it too too. */
9126 else if (XEXP (*p, 1)
9127 && REG_P (XEXP (XEXP (*p, 0), 0))
9128 && MEM_P (XEXP (XEXP (XEXP (*p, 1), 0), 0))
9129 && REG_P (XEXP (XEXP (XEXP (XEXP (*p, 1), 0), 0),
9130 0))
9131 && REGNO (XEXP (XEXP (*p, 0), 0))
9132 == REGNO (XEXP (XEXP (XEXP (XEXP (*p, 1), 0),
9133 0), 0)))
9134 *p = XEXP (XEXP (*p, 1), 1);
9135 /* Just drop this item. */
9136 else
9137 *p = XEXP (*p, 1);
9138 }
9139 note = emit_note_after (NOTE_INSN_CALL_ARG_LOCATION, insn);
9140 NOTE_VAR_LOCATION (note) = arguments;
9141 }
9142 break;
9143
9144 case MO_USE:
9145 {
9146 rtx loc = mo->u.loc;
9147
9148 if (REG_P (loc))
9149 var_reg_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
9150 else
9151 var_mem_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
9152
9153 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
9154 }
9155 break;
9156
9157 case MO_VAL_LOC:
9158 {
9159 rtx loc = mo->u.loc;
9160 rtx val, vloc;
9161 tree var;
9162
9163 if (GET_CODE (loc) == CONCAT)
9164 {
9165 val = XEXP (loc, 0);
9166 vloc = XEXP (loc, 1);
9167 }
9168 else
9169 {
9170 val = NULL_RTX;
9171 vloc = loc;
9172 }
9173
9174 var = PAT_VAR_LOCATION_DECL (vloc);
9175
9176 clobber_variable_part (set, NULL_RTX,
9177 dv_from_decl (var), 0, NULL_RTX);
9178 if (val)
9179 {
9180 if (VAL_NEEDS_RESOLUTION (loc))
9181 val_resolve (set, val, PAT_VAR_LOCATION_LOC (vloc), insn);
9182 set_variable_part (set, val, dv_from_decl (var), 0,
9183 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
9184 INSERT);
9185 }
9186 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
9187 set_variable_part (set, PAT_VAR_LOCATION_LOC (vloc),
9188 dv_from_decl (var), 0,
9189 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
9190 INSERT);
9191
9192 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
9193 }
9194 break;
9195
9196 case MO_VAL_USE:
9197 {
9198 rtx loc = mo->u.loc;
9199 rtx val, vloc, uloc;
9200
9201 vloc = uloc = XEXP (loc, 1);
9202 val = XEXP (loc, 0);
9203
9204 if (GET_CODE (val) == CONCAT)
9205 {
9206 uloc = XEXP (val, 1);
9207 val = XEXP (val, 0);
9208 }
9209
9210 if (VAL_NEEDS_RESOLUTION (loc))
9211 val_resolve (set, val, vloc, insn);
9212 else
9213 val_store (set, val, uloc, insn, false);
9214
9215 if (VAL_HOLDS_TRACK_EXPR (loc))
9216 {
9217 if (GET_CODE (uloc) == REG)
9218 var_reg_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
9219 NULL);
9220 else if (GET_CODE (uloc) == MEM)
9221 var_mem_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
9222 NULL);
9223 }
9224
9225 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
9226 }
9227 break;
9228
9229 case MO_VAL_SET:
9230 {
9231 rtx loc = mo->u.loc;
9232 rtx val, vloc, uloc;
9233 rtx dstv, srcv;
9234
9235 vloc = loc;
9236 uloc = XEXP (vloc, 1);
9237 val = XEXP (vloc, 0);
9238 vloc = uloc;
9239
9240 if (GET_CODE (uloc) == SET)
9241 {
9242 dstv = SET_DEST (uloc);
9243 srcv = SET_SRC (uloc);
9244 }
9245 else
9246 {
9247 dstv = uloc;
9248 srcv = NULL;
9249 }
9250
9251 if (GET_CODE (val) == CONCAT)
9252 {
9253 dstv = vloc = XEXP (val, 1);
9254 val = XEXP (val, 0);
9255 }
9256
9257 if (GET_CODE (vloc) == SET)
9258 {
9259 srcv = SET_SRC (vloc);
9260
9261 gcc_assert (val != srcv);
9262 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
9263
9264 dstv = vloc = SET_DEST (vloc);
9265
9266 if (VAL_NEEDS_RESOLUTION (loc))
9267 val_resolve (set, val, srcv, insn);
9268 }
9269 else if (VAL_NEEDS_RESOLUTION (loc))
9270 {
9271 gcc_assert (GET_CODE (uloc) == SET
9272 && GET_CODE (SET_SRC (uloc)) == REG);
9273 val_resolve (set, val, SET_SRC (uloc), insn);
9274 }
9275
9276 if (VAL_HOLDS_TRACK_EXPR (loc))
9277 {
9278 if (VAL_EXPR_IS_CLOBBERED (loc))
9279 {
9280 if (REG_P (uloc))
9281 var_reg_delete (set, uloc, true);
9282 else if (MEM_P (uloc))
9283 {
9284 gcc_assert (MEM_P (dstv));
9285 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (uloc));
9286 var_mem_delete (set, dstv, true);
9287 }
9288 }
9289 else
9290 {
9291 bool copied_p = VAL_EXPR_IS_COPIED (loc);
9292 rtx src = NULL, dst = uloc;
9293 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
9294
9295 if (GET_CODE (uloc) == SET)
9296 {
9297 src = SET_SRC (uloc);
9298 dst = SET_DEST (uloc);
9299 }
9300
9301 if (copied_p)
9302 {
9303 status = find_src_status (set, src);
9304
9305 src = find_src_set_src (set, src);
9306 }
9307
9308 if (REG_P (dst))
9309 var_reg_delete_and_set (set, dst, !copied_p,
9310 status, srcv);
9311 else if (MEM_P (dst))
9312 {
9313 gcc_assert (MEM_P (dstv));
9314 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (dst));
9315 var_mem_delete_and_set (set, dstv, !copied_p,
9316 status, srcv);
9317 }
9318 }
9319 }
9320 else if (REG_P (uloc))
9321 var_regno_delete (set, REGNO (uloc));
9322 else if (MEM_P (uloc))
9323 {
9324 gcc_checking_assert (GET_CODE (vloc) == MEM);
9325 gcc_checking_assert (vloc == dstv);
9326 if (vloc != dstv)
9327 clobber_overlapping_mems (set, vloc);
9328 }
9329
9330 val_store (set, val, dstv, insn, true);
9331
9332 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9333 set->vars);
9334 }
9335 break;
9336
9337 case MO_SET:
9338 {
9339 rtx loc = mo->u.loc;
9340 rtx set_src = NULL;
9341
9342 if (GET_CODE (loc) == SET)
9343 {
9344 set_src = SET_SRC (loc);
9345 loc = SET_DEST (loc);
9346 }
9347
9348 if (REG_P (loc))
9349 var_reg_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
9350 set_src);
9351 else
9352 var_mem_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
9353 set_src);
9354
9355 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9356 set->vars);
9357 }
9358 break;
9359
9360 case MO_COPY:
9361 {
9362 rtx loc = mo->u.loc;
9363 enum var_init_status src_status;
9364 rtx set_src = NULL;
9365
9366 if (GET_CODE (loc) == SET)
9367 {
9368 set_src = SET_SRC (loc);
9369 loc = SET_DEST (loc);
9370 }
9371
9372 src_status = find_src_status (set, set_src);
9373 set_src = find_src_set_src (set, set_src);
9374
9375 if (REG_P (loc))
9376 var_reg_delete_and_set (set, loc, false, src_status, set_src);
9377 else
9378 var_mem_delete_and_set (set, loc, false, src_status, set_src);
9379
9380 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9381 set->vars);
9382 }
9383 break;
9384
9385 case MO_USE_NO_VAR:
9386 {
9387 rtx loc = mo->u.loc;
9388
9389 if (REG_P (loc))
9390 var_reg_delete (set, loc, false);
9391 else
9392 var_mem_delete (set, loc, false);
9393
9394 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
9395 }
9396 break;
9397
9398 case MO_CLOBBER:
9399 {
9400 rtx loc = mo->u.loc;
9401
9402 if (REG_P (loc))
9403 var_reg_delete (set, loc, true);
9404 else
9405 var_mem_delete (set, loc, true);
9406
9407 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9408 set->vars);
9409 }
9410 break;
9411
9412 case MO_ADJUST:
9413 set->stack_adjust += mo->u.adjust;
9414 break;
9415 }
9416 }
9417 }
9418
9419 /* Emit notes for the whole function. */
9420
9421 static void
9422 vt_emit_notes (void)
9423 {
9424 basic_block bb;
9425 dataflow_set cur;
9426
9427 gcc_assert (!changed_variables->elements ());
9428
9429 /* Free memory occupied by the out hash tables, as they aren't used
9430 anymore. */
9431 FOR_EACH_BB_FN (bb, cfun)
9432 dataflow_set_clear (&VTI (bb)->out);
9433
9434 /* Enable emitting notes by functions (mainly by set_variable_part and
9435 delete_variable_part). */
9436 emit_notes = true;
9437
9438 if (MAY_HAVE_DEBUG_INSNS)
9439 {
9440 dropped_values = new variable_table_type (cselib_get_next_uid () * 2);
9441 }
9442
9443 dataflow_set_init (&cur);
9444
9445 FOR_EACH_BB_FN (bb, cfun)
9446 {
9447 /* Emit the notes for changes of variable locations between two
9448 subsequent basic blocks. */
9449 emit_notes_for_differences (BB_HEAD (bb), &cur, &VTI (bb)->in);
9450
9451 if (MAY_HAVE_DEBUG_INSNS)
9452 local_get_addr_cache = new hash_map<rtx, rtx>;
9453
9454 /* Emit the notes for the changes in the basic block itself. */
9455 emit_notes_in_bb (bb, &cur);
9456
9457 if (MAY_HAVE_DEBUG_INSNS)
9458 delete local_get_addr_cache;
9459 local_get_addr_cache = NULL;
9460
9461 /* Free memory occupied by the in hash table, we won't need it
9462 again. */
9463 dataflow_set_clear (&VTI (bb)->in);
9464 }
9465
9466 if (flag_checking)
9467 shared_hash_htab (cur.vars)
9468 ->traverse <variable_table_type *, emit_notes_for_differences_1>
9469 (shared_hash_htab (empty_shared_hash));
9470
9471 dataflow_set_destroy (&cur);
9472
9473 if (MAY_HAVE_DEBUG_INSNS)
9474 delete dropped_values;
9475 dropped_values = NULL;
9476
9477 emit_notes = false;
9478 }
9479
9480 /* If there is a declaration and offset associated with register/memory RTL
9481 assign declaration to *DECLP and offset to *OFFSETP, and return true. */
9482
9483 static bool
9484 vt_get_decl_and_offset (rtx rtl, tree *declp, HOST_WIDE_INT *offsetp)
9485 {
9486 if (REG_P (rtl))
9487 {
9488 if (REG_ATTRS (rtl))
9489 {
9490 *declp = REG_EXPR (rtl);
9491 *offsetp = REG_OFFSET (rtl);
9492 return true;
9493 }
9494 }
9495 else if (GET_CODE (rtl) == PARALLEL)
9496 {
9497 tree decl = NULL_TREE;
9498 HOST_WIDE_INT offset = MAX_VAR_PARTS;
9499 int len = XVECLEN (rtl, 0), i;
9500
9501 for (i = 0; i < len; i++)
9502 {
9503 rtx reg = XEXP (XVECEXP (rtl, 0, i), 0);
9504 if (!REG_P (reg) || !REG_ATTRS (reg))
9505 break;
9506 if (!decl)
9507 decl = REG_EXPR (reg);
9508 if (REG_EXPR (reg) != decl)
9509 break;
9510 if (REG_OFFSET (reg) < offset)
9511 offset = REG_OFFSET (reg);
9512 }
9513
9514 if (i == len)
9515 {
9516 *declp = decl;
9517 *offsetp = offset;
9518 return true;
9519 }
9520 }
9521 else if (MEM_P (rtl))
9522 {
9523 if (MEM_ATTRS (rtl))
9524 {
9525 *declp = MEM_EXPR (rtl);
9526 *offsetp = INT_MEM_OFFSET (rtl);
9527 return true;
9528 }
9529 }
9530 return false;
9531 }
9532
9533 /* Record the value for the ENTRY_VALUE of RTL as a global equivalence
9534 of VAL. */
9535
9536 static void
9537 record_entry_value (cselib_val *val, rtx rtl)
9538 {
9539 rtx ev = gen_rtx_ENTRY_VALUE (GET_MODE (rtl));
9540
9541 ENTRY_VALUE_EXP (ev) = rtl;
9542
9543 cselib_add_permanent_equiv (val, ev, get_insns ());
9544 }
9545
9546 /* Insert function parameter PARM in IN and OUT sets of ENTRY_BLOCK. */
9547
9548 static void
9549 vt_add_function_parameter (tree parm)
9550 {
9551 rtx decl_rtl = DECL_RTL_IF_SET (parm);
9552 rtx incoming = DECL_INCOMING_RTL (parm);
9553 tree decl;
9554 machine_mode mode;
9555 HOST_WIDE_INT offset;
9556 dataflow_set *out;
9557 decl_or_value dv;
9558
9559 if (TREE_CODE (parm) != PARM_DECL)
9560 return;
9561
9562 if (!decl_rtl || !incoming)
9563 return;
9564
9565 if (GET_MODE (decl_rtl) == BLKmode || GET_MODE (incoming) == BLKmode)
9566 return;
9567
9568 /* If there is a DRAP register or a pseudo in internal_arg_pointer,
9569 rewrite the incoming location of parameters passed on the stack
9570 into MEMs based on the argument pointer, so that incoming doesn't
9571 depend on a pseudo. */
9572 if (MEM_P (incoming)
9573 && (XEXP (incoming, 0) == crtl->args.internal_arg_pointer
9574 || (GET_CODE (XEXP (incoming, 0)) == PLUS
9575 && XEXP (XEXP (incoming, 0), 0)
9576 == crtl->args.internal_arg_pointer
9577 && CONST_INT_P (XEXP (XEXP (incoming, 0), 1)))))
9578 {
9579 HOST_WIDE_INT off = -FIRST_PARM_OFFSET (current_function_decl);
9580 if (GET_CODE (XEXP (incoming, 0)) == PLUS)
9581 off += INTVAL (XEXP (XEXP (incoming, 0), 1));
9582 incoming
9583 = replace_equiv_address_nv (incoming,
9584 plus_constant (Pmode,
9585 arg_pointer_rtx, off));
9586 }
9587
9588 #ifdef HAVE_window_save
9589 /* DECL_INCOMING_RTL uses the INCOMING_REGNO of parameter registers.
9590 If the target machine has an explicit window save instruction, the
9591 actual entry value is the corresponding OUTGOING_REGNO instead. */
9592 if (HAVE_window_save && !crtl->uses_only_leaf_regs)
9593 {
9594 if (REG_P (incoming)
9595 && HARD_REGISTER_P (incoming)
9596 && OUTGOING_REGNO (REGNO (incoming)) != REGNO (incoming))
9597 {
9598 parm_reg p;
9599 p.incoming = incoming;
9600 incoming
9601 = gen_rtx_REG_offset (incoming, GET_MODE (incoming),
9602 OUTGOING_REGNO (REGNO (incoming)), 0);
9603 p.outgoing = incoming;
9604 vec_safe_push (windowed_parm_regs, p);
9605 }
9606 else if (GET_CODE (incoming) == PARALLEL)
9607 {
9608 rtx outgoing
9609 = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (XVECLEN (incoming, 0)));
9610 int i;
9611
9612 for (i = 0; i < XVECLEN (incoming, 0); i++)
9613 {
9614 rtx reg = XEXP (XVECEXP (incoming, 0, i), 0);
9615 parm_reg p;
9616 p.incoming = reg;
9617 reg = gen_rtx_REG_offset (reg, GET_MODE (reg),
9618 OUTGOING_REGNO (REGNO (reg)), 0);
9619 p.outgoing = reg;
9620 XVECEXP (outgoing, 0, i)
9621 = gen_rtx_EXPR_LIST (VOIDmode, reg,
9622 XEXP (XVECEXP (incoming, 0, i), 1));
9623 vec_safe_push (windowed_parm_regs, p);
9624 }
9625
9626 incoming = outgoing;
9627 }
9628 else if (MEM_P (incoming)
9629 && REG_P (XEXP (incoming, 0))
9630 && HARD_REGISTER_P (XEXP (incoming, 0)))
9631 {
9632 rtx reg = XEXP (incoming, 0);
9633 if (OUTGOING_REGNO (REGNO (reg)) != REGNO (reg))
9634 {
9635 parm_reg p;
9636 p.incoming = reg;
9637 reg = gen_raw_REG (GET_MODE (reg), OUTGOING_REGNO (REGNO (reg)));
9638 p.outgoing = reg;
9639 vec_safe_push (windowed_parm_regs, p);
9640 incoming = replace_equiv_address_nv (incoming, reg);
9641 }
9642 }
9643 }
9644 #endif
9645
9646 if (!vt_get_decl_and_offset (incoming, &decl, &offset))
9647 {
9648 if (MEM_P (incoming))
9649 {
9650 /* This means argument is passed by invisible reference. */
9651 offset = 0;
9652 decl = parm;
9653 }
9654 else
9655 {
9656 if (!vt_get_decl_and_offset (decl_rtl, &decl, &offset))
9657 return;
9658 offset += byte_lowpart_offset (GET_MODE (incoming),
9659 GET_MODE (decl_rtl));
9660 }
9661 }
9662
9663 if (!decl)
9664 return;
9665
9666 if (parm != decl)
9667 {
9668 /* If that DECL_RTL wasn't a pseudo that got spilled to
9669 memory, bail out. Otherwise, the spill slot sharing code
9670 will force the memory to reference spill_slot_decl (%sfp),
9671 so we don't match above. That's ok, the pseudo must have
9672 referenced the entire parameter, so just reset OFFSET. */
9673 if (decl != get_spill_slot_decl (false))
9674 return;
9675 offset = 0;
9676 }
9677
9678 if (!track_loc_p (incoming, parm, offset, false, &mode, &offset))
9679 return;
9680
9681 out = &VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->out;
9682
9683 dv = dv_from_decl (parm);
9684
9685 if (target_for_debug_bind (parm)
9686 /* We can't deal with these right now, because this kind of
9687 variable is single-part. ??? We could handle parallels
9688 that describe multiple locations for the same single
9689 value, but ATM we don't. */
9690 && GET_CODE (incoming) != PARALLEL)
9691 {
9692 cselib_val *val;
9693 rtx lowpart;
9694
9695 /* ??? We shouldn't ever hit this, but it may happen because
9696 arguments passed by invisible reference aren't dealt with
9697 above: incoming-rtl will have Pmode rather than the
9698 expected mode for the type. */
9699 if (offset)
9700 return;
9701
9702 lowpart = var_lowpart (mode, incoming);
9703 if (!lowpart)
9704 return;
9705
9706 val = cselib_lookup_from_insn (lowpart, mode, true,
9707 VOIDmode, get_insns ());
9708
9709 /* ??? Float-typed values in memory are not handled by
9710 cselib. */
9711 if (val)
9712 {
9713 preserve_value (val);
9714 set_variable_part (out, val->val_rtx, dv, offset,
9715 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9716 dv = dv_from_value (val->val_rtx);
9717 }
9718
9719 if (MEM_P (incoming))
9720 {
9721 val = cselib_lookup_from_insn (XEXP (incoming, 0), mode, true,
9722 VOIDmode, get_insns ());
9723 if (val)
9724 {
9725 preserve_value (val);
9726 incoming = replace_equiv_address_nv (incoming, val->val_rtx);
9727 }
9728 }
9729 }
9730
9731 if (REG_P (incoming))
9732 {
9733 incoming = var_lowpart (mode, incoming);
9734 gcc_assert (REGNO (incoming) < FIRST_PSEUDO_REGISTER);
9735 attrs_list_insert (&out->regs[REGNO (incoming)], dv, offset,
9736 incoming);
9737 set_variable_part (out, incoming, dv, offset,
9738 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9739 if (dv_is_value_p (dv))
9740 {
9741 record_entry_value (CSELIB_VAL_PTR (dv_as_value (dv)), incoming);
9742 if (TREE_CODE (TREE_TYPE (parm)) == REFERENCE_TYPE
9743 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_TYPE (parm))))
9744 {
9745 machine_mode indmode
9746 = TYPE_MODE (TREE_TYPE (TREE_TYPE (parm)));
9747 rtx mem = gen_rtx_MEM (indmode, incoming);
9748 cselib_val *val = cselib_lookup_from_insn (mem, indmode, true,
9749 VOIDmode,
9750 get_insns ());
9751 if (val)
9752 {
9753 preserve_value (val);
9754 record_entry_value (val, mem);
9755 set_variable_part (out, mem, dv_from_value (val->val_rtx), 0,
9756 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9757 }
9758 }
9759 }
9760 }
9761 else if (GET_CODE (incoming) == PARALLEL && !dv_onepart_p (dv))
9762 {
9763 int i;
9764
9765 for (i = 0; i < XVECLEN (incoming, 0); i++)
9766 {
9767 rtx reg = XEXP (XVECEXP (incoming, 0, i), 0);
9768 offset = REG_OFFSET (reg);
9769 gcc_assert (REGNO (reg) < FIRST_PSEUDO_REGISTER);
9770 attrs_list_insert (&out->regs[REGNO (reg)], dv, offset, reg);
9771 set_variable_part (out, reg, dv, offset,
9772 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9773 }
9774 }
9775 else if (MEM_P (incoming))
9776 {
9777 incoming = var_lowpart (mode, incoming);
9778 set_variable_part (out, incoming, dv, offset,
9779 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9780 }
9781 }
9782
9783 /* Insert function parameters to IN and OUT sets of ENTRY_BLOCK. */
9784
9785 static void
9786 vt_add_function_parameters (void)
9787 {
9788 tree parm;
9789
9790 for (parm = DECL_ARGUMENTS (current_function_decl);
9791 parm; parm = DECL_CHAIN (parm))
9792 if (!POINTER_BOUNDS_P (parm))
9793 vt_add_function_parameter (parm);
9794
9795 if (DECL_HAS_VALUE_EXPR_P (DECL_RESULT (current_function_decl)))
9796 {
9797 tree vexpr = DECL_VALUE_EXPR (DECL_RESULT (current_function_decl));
9798
9799 if (TREE_CODE (vexpr) == INDIRECT_REF)
9800 vexpr = TREE_OPERAND (vexpr, 0);
9801
9802 if (TREE_CODE (vexpr) == PARM_DECL
9803 && DECL_ARTIFICIAL (vexpr)
9804 && !DECL_IGNORED_P (vexpr)
9805 && DECL_NAMELESS (vexpr))
9806 vt_add_function_parameter (vexpr);
9807 }
9808 }
9809
9810 /* Initialize cfa_base_rtx, create a preserved VALUE for it and
9811 ensure it isn't flushed during cselib_reset_table.
9812 Can be called only if frame_pointer_rtx resp. arg_pointer_rtx
9813 has been eliminated. */
9814
9815 static void
9816 vt_init_cfa_base (void)
9817 {
9818 cselib_val *val;
9819
9820 #ifdef FRAME_POINTER_CFA_OFFSET
9821 cfa_base_rtx = frame_pointer_rtx;
9822 cfa_base_offset = -FRAME_POINTER_CFA_OFFSET (current_function_decl);
9823 #else
9824 cfa_base_rtx = arg_pointer_rtx;
9825 cfa_base_offset = -ARG_POINTER_CFA_OFFSET (current_function_decl);
9826 #endif
9827 if (cfa_base_rtx == hard_frame_pointer_rtx
9828 || !fixed_regs[REGNO (cfa_base_rtx)])
9829 {
9830 cfa_base_rtx = NULL_RTX;
9831 return;
9832 }
9833 if (!MAY_HAVE_DEBUG_INSNS)
9834 return;
9835
9836 /* Tell alias analysis that cfa_base_rtx should share
9837 find_base_term value with stack pointer or hard frame pointer. */
9838 if (!frame_pointer_needed)
9839 vt_equate_reg_base_value (cfa_base_rtx, stack_pointer_rtx);
9840 else if (!crtl->stack_realign_tried)
9841 vt_equate_reg_base_value (cfa_base_rtx, hard_frame_pointer_rtx);
9842
9843 val = cselib_lookup_from_insn (cfa_base_rtx, GET_MODE (cfa_base_rtx), 1,
9844 VOIDmode, get_insns ());
9845 preserve_value (val);
9846 cselib_preserve_cfa_base_value (val, REGNO (cfa_base_rtx));
9847 }
9848
9849 /* Allocate and initialize the data structures for variable tracking
9850 and parse the RTL to get the micro operations. */
9851
9852 static bool
9853 vt_initialize (void)
9854 {
9855 basic_block bb;
9856 HOST_WIDE_INT fp_cfa_offset = -1;
9857
9858 alloc_aux_for_blocks (sizeof (variable_tracking_info));
9859
9860 empty_shared_hash = new shared_hash;
9861 empty_shared_hash->refcount = 1;
9862 empty_shared_hash->htab = new variable_table_type (1);
9863 changed_variables = new variable_table_type (10);
9864
9865 /* Init the IN and OUT sets. */
9866 FOR_ALL_BB_FN (bb, cfun)
9867 {
9868 VTI (bb)->visited = false;
9869 VTI (bb)->flooded = false;
9870 dataflow_set_init (&VTI (bb)->in);
9871 dataflow_set_init (&VTI (bb)->out);
9872 VTI (bb)->permp = NULL;
9873 }
9874
9875 if (MAY_HAVE_DEBUG_INSNS)
9876 {
9877 cselib_init (CSELIB_RECORD_MEMORY | CSELIB_PRESERVE_CONSTANTS);
9878 scratch_regs = BITMAP_ALLOC (NULL);
9879 preserved_values.create (256);
9880 global_get_addr_cache = new hash_map<rtx, rtx>;
9881 }
9882 else
9883 {
9884 scratch_regs = NULL;
9885 global_get_addr_cache = NULL;
9886 }
9887
9888 if (MAY_HAVE_DEBUG_INSNS)
9889 {
9890 rtx reg, expr;
9891 int ofst;
9892 cselib_val *val;
9893
9894 #ifdef FRAME_POINTER_CFA_OFFSET
9895 reg = frame_pointer_rtx;
9896 ofst = FRAME_POINTER_CFA_OFFSET (current_function_decl);
9897 #else
9898 reg = arg_pointer_rtx;
9899 ofst = ARG_POINTER_CFA_OFFSET (current_function_decl);
9900 #endif
9901
9902 ofst -= INCOMING_FRAME_SP_OFFSET;
9903
9904 val = cselib_lookup_from_insn (reg, GET_MODE (reg), 1,
9905 VOIDmode, get_insns ());
9906 preserve_value (val);
9907 if (reg != hard_frame_pointer_rtx && fixed_regs[REGNO (reg)])
9908 cselib_preserve_cfa_base_value (val, REGNO (reg));
9909 expr = plus_constant (GET_MODE (stack_pointer_rtx),
9910 stack_pointer_rtx, -ofst);
9911 cselib_add_permanent_equiv (val, expr, get_insns ());
9912
9913 if (ofst)
9914 {
9915 val = cselib_lookup_from_insn (stack_pointer_rtx,
9916 GET_MODE (stack_pointer_rtx), 1,
9917 VOIDmode, get_insns ());
9918 preserve_value (val);
9919 expr = plus_constant (GET_MODE (reg), reg, ofst);
9920 cselib_add_permanent_equiv (val, expr, get_insns ());
9921 }
9922 }
9923
9924 /* In order to factor out the adjustments made to the stack pointer or to
9925 the hard frame pointer and thus be able to use DW_OP_fbreg operations
9926 instead of individual location lists, we're going to rewrite MEMs based
9927 on them into MEMs based on the CFA by de-eliminating stack_pointer_rtx
9928 or hard_frame_pointer_rtx to the virtual CFA pointer frame_pointer_rtx
9929 resp. arg_pointer_rtx. We can do this either when there is no frame
9930 pointer in the function and stack adjustments are consistent for all
9931 basic blocks or when there is a frame pointer and no stack realignment.
9932 But we first have to check that frame_pointer_rtx resp. arg_pointer_rtx
9933 has been eliminated. */
9934 if (!frame_pointer_needed)
9935 {
9936 rtx reg, elim;
9937
9938 if (!vt_stack_adjustments ())
9939 return false;
9940
9941 #ifdef FRAME_POINTER_CFA_OFFSET
9942 reg = frame_pointer_rtx;
9943 #else
9944 reg = arg_pointer_rtx;
9945 #endif
9946 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
9947 if (elim != reg)
9948 {
9949 if (GET_CODE (elim) == PLUS)
9950 elim = XEXP (elim, 0);
9951 if (elim == stack_pointer_rtx)
9952 vt_init_cfa_base ();
9953 }
9954 }
9955 else if (!crtl->stack_realign_tried)
9956 {
9957 rtx reg, elim;
9958
9959 #ifdef FRAME_POINTER_CFA_OFFSET
9960 reg = frame_pointer_rtx;
9961 fp_cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
9962 #else
9963 reg = arg_pointer_rtx;
9964 fp_cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
9965 #endif
9966 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
9967 if (elim != reg)
9968 {
9969 if (GET_CODE (elim) == PLUS)
9970 {
9971 fp_cfa_offset -= INTVAL (XEXP (elim, 1));
9972 elim = XEXP (elim, 0);
9973 }
9974 if (elim != hard_frame_pointer_rtx)
9975 fp_cfa_offset = -1;
9976 }
9977 else
9978 fp_cfa_offset = -1;
9979 }
9980
9981 /* If the stack is realigned and a DRAP register is used, we're going to
9982 rewrite MEMs based on it representing incoming locations of parameters
9983 passed on the stack into MEMs based on the argument pointer. Although
9984 we aren't going to rewrite other MEMs, we still need to initialize the
9985 virtual CFA pointer in order to ensure that the argument pointer will
9986 be seen as a constant throughout the function.
9987
9988 ??? This doesn't work if FRAME_POINTER_CFA_OFFSET is defined. */
9989 else if (stack_realign_drap)
9990 {
9991 rtx reg, elim;
9992
9993 #ifdef FRAME_POINTER_CFA_OFFSET
9994 reg = frame_pointer_rtx;
9995 #else
9996 reg = arg_pointer_rtx;
9997 #endif
9998 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
9999 if (elim != reg)
10000 {
10001 if (GET_CODE (elim) == PLUS)
10002 elim = XEXP (elim, 0);
10003 if (elim == hard_frame_pointer_rtx)
10004 vt_init_cfa_base ();
10005 }
10006 }
10007
10008 hard_frame_pointer_adjustment = -1;
10009
10010 vt_add_function_parameters ();
10011
10012 FOR_EACH_BB_FN (bb, cfun)
10013 {
10014 rtx_insn *insn;
10015 HOST_WIDE_INT pre, post = 0;
10016 basic_block first_bb, last_bb;
10017
10018 if (MAY_HAVE_DEBUG_INSNS)
10019 {
10020 cselib_record_sets_hook = add_with_sets;
10021 if (dump_file && (dump_flags & TDF_DETAILS))
10022 fprintf (dump_file, "first value: %i\n",
10023 cselib_get_next_uid ());
10024 }
10025
10026 first_bb = bb;
10027 for (;;)
10028 {
10029 edge e;
10030 if (bb->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
10031 || ! single_pred_p (bb->next_bb))
10032 break;
10033 e = find_edge (bb, bb->next_bb);
10034 if (! e || (e->flags & EDGE_FALLTHRU) == 0)
10035 break;
10036 bb = bb->next_bb;
10037 }
10038 last_bb = bb;
10039
10040 /* Add the micro-operations to the vector. */
10041 FOR_BB_BETWEEN (bb, first_bb, last_bb->next_bb, next_bb)
10042 {
10043 HOST_WIDE_INT offset = VTI (bb)->out.stack_adjust;
10044 VTI (bb)->out.stack_adjust = VTI (bb)->in.stack_adjust;
10045 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
10046 insn = NEXT_INSN (insn))
10047 {
10048 if (INSN_P (insn))
10049 {
10050 if (!frame_pointer_needed)
10051 {
10052 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
10053 if (pre)
10054 {
10055 micro_operation mo;
10056 mo.type = MO_ADJUST;
10057 mo.u.adjust = pre;
10058 mo.insn = insn;
10059 if (dump_file && (dump_flags & TDF_DETAILS))
10060 log_op_type (PATTERN (insn), bb, insn,
10061 MO_ADJUST, dump_file);
10062 VTI (bb)->mos.safe_push (mo);
10063 VTI (bb)->out.stack_adjust += pre;
10064 }
10065 }
10066
10067 cselib_hook_called = false;
10068 adjust_insn (bb, insn);
10069 if (MAY_HAVE_DEBUG_INSNS)
10070 {
10071 if (CALL_P (insn))
10072 prepare_call_arguments (bb, insn);
10073 cselib_process_insn (insn);
10074 if (dump_file && (dump_flags & TDF_DETAILS))
10075 {
10076 print_rtl_single (dump_file, insn);
10077 dump_cselib_table (dump_file);
10078 }
10079 }
10080 if (!cselib_hook_called)
10081 add_with_sets (insn, 0, 0);
10082 cancel_changes (0);
10083
10084 if (!frame_pointer_needed && post)
10085 {
10086 micro_operation mo;
10087 mo.type = MO_ADJUST;
10088 mo.u.adjust = post;
10089 mo.insn = insn;
10090 if (dump_file && (dump_flags & TDF_DETAILS))
10091 log_op_type (PATTERN (insn), bb, insn,
10092 MO_ADJUST, dump_file);
10093 VTI (bb)->mos.safe_push (mo);
10094 VTI (bb)->out.stack_adjust += post;
10095 }
10096
10097 if (fp_cfa_offset != -1
10098 && hard_frame_pointer_adjustment == -1
10099 && fp_setter_insn (insn))
10100 {
10101 vt_init_cfa_base ();
10102 hard_frame_pointer_adjustment = fp_cfa_offset;
10103 /* Disassociate sp from fp now. */
10104 if (MAY_HAVE_DEBUG_INSNS)
10105 {
10106 cselib_val *v;
10107 cselib_invalidate_rtx (stack_pointer_rtx);
10108 v = cselib_lookup (stack_pointer_rtx, Pmode, 1,
10109 VOIDmode);
10110 if (v && !cselib_preserved_value_p (v))
10111 {
10112 cselib_set_value_sp_based (v);
10113 preserve_value (v);
10114 }
10115 }
10116 }
10117 }
10118 }
10119 gcc_assert (offset == VTI (bb)->out.stack_adjust);
10120 }
10121
10122 bb = last_bb;
10123
10124 if (MAY_HAVE_DEBUG_INSNS)
10125 {
10126 cselib_preserve_only_values ();
10127 cselib_reset_table (cselib_get_next_uid ());
10128 cselib_record_sets_hook = NULL;
10129 }
10130 }
10131
10132 hard_frame_pointer_adjustment = -1;
10133 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->flooded = true;
10134 cfa_base_rtx = NULL_RTX;
10135 return true;
10136 }
10137
10138 /* This is *not* reset after each function. It gives each
10139 NOTE_INSN_DELETED_DEBUG_LABEL in the entire compilation
10140 a unique label number. */
10141
10142 static int debug_label_num = 1;
10143
10144 /* Get rid of all debug insns from the insn stream. */
10145
10146 static void
10147 delete_debug_insns (void)
10148 {
10149 basic_block bb;
10150 rtx_insn *insn, *next;
10151
10152 if (!MAY_HAVE_DEBUG_INSNS)
10153 return;
10154
10155 FOR_EACH_BB_FN (bb, cfun)
10156 {
10157 FOR_BB_INSNS_SAFE (bb, insn, next)
10158 if (DEBUG_INSN_P (insn))
10159 {
10160 tree decl = INSN_VAR_LOCATION_DECL (insn);
10161 if (TREE_CODE (decl) == LABEL_DECL
10162 && DECL_NAME (decl)
10163 && !DECL_RTL_SET_P (decl))
10164 {
10165 PUT_CODE (insn, NOTE);
10166 NOTE_KIND (insn) = NOTE_INSN_DELETED_DEBUG_LABEL;
10167 NOTE_DELETED_LABEL_NAME (insn)
10168 = IDENTIFIER_POINTER (DECL_NAME (decl));
10169 SET_DECL_RTL (decl, insn);
10170 CODE_LABEL_NUMBER (insn) = debug_label_num++;
10171 }
10172 else
10173 delete_insn (insn);
10174 }
10175 }
10176 }
10177
10178 /* Run a fast, BB-local only version of var tracking, to take care of
10179 information that we don't do global analysis on, such that not all
10180 information is lost. If SKIPPED holds, we're skipping the global
10181 pass entirely, so we should try to use information it would have
10182 handled as well.. */
10183
10184 static void
10185 vt_debug_insns_local (bool skipped ATTRIBUTE_UNUSED)
10186 {
10187 /* ??? Just skip it all for now. */
10188 delete_debug_insns ();
10189 }
10190
10191 /* Free the data structures needed for variable tracking. */
10192
10193 static void
10194 vt_finalize (void)
10195 {
10196 basic_block bb;
10197
10198 FOR_EACH_BB_FN (bb, cfun)
10199 {
10200 VTI (bb)->mos.release ();
10201 }
10202
10203 FOR_ALL_BB_FN (bb, cfun)
10204 {
10205 dataflow_set_destroy (&VTI (bb)->in);
10206 dataflow_set_destroy (&VTI (bb)->out);
10207 if (VTI (bb)->permp)
10208 {
10209 dataflow_set_destroy (VTI (bb)->permp);
10210 XDELETE (VTI (bb)->permp);
10211 }
10212 }
10213 free_aux_for_blocks ();
10214 delete empty_shared_hash->htab;
10215 empty_shared_hash->htab = NULL;
10216 delete changed_variables;
10217 changed_variables = NULL;
10218 attrs_pool.release ();
10219 var_pool.release ();
10220 location_chain_pool.release ();
10221 shared_hash_pool.release ();
10222
10223 if (MAY_HAVE_DEBUG_INSNS)
10224 {
10225 if (global_get_addr_cache)
10226 delete global_get_addr_cache;
10227 global_get_addr_cache = NULL;
10228 loc_exp_dep_pool.release ();
10229 valvar_pool.release ();
10230 preserved_values.release ();
10231 cselib_finish ();
10232 BITMAP_FREE (scratch_regs);
10233 scratch_regs = NULL;
10234 }
10235
10236 #ifdef HAVE_window_save
10237 vec_free (windowed_parm_regs);
10238 #endif
10239
10240 if (vui_vec)
10241 XDELETEVEC (vui_vec);
10242 vui_vec = NULL;
10243 vui_allocated = 0;
10244 }
10245
10246 /* The entry point to variable tracking pass. */
10247
10248 static inline unsigned int
10249 variable_tracking_main_1 (void)
10250 {
10251 bool success;
10252
10253 if (flag_var_tracking_assignments < 0
10254 /* Var-tracking right now assumes the IR doesn't contain
10255 any pseudos at this point. */
10256 || targetm.no_register_allocation)
10257 {
10258 delete_debug_insns ();
10259 return 0;
10260 }
10261
10262 if (n_basic_blocks_for_fn (cfun) > 500 &&
10263 n_edges_for_fn (cfun) / n_basic_blocks_for_fn (cfun) >= 20)
10264 {
10265 vt_debug_insns_local (true);
10266 return 0;
10267 }
10268
10269 mark_dfs_back_edges ();
10270 if (!vt_initialize ())
10271 {
10272 vt_finalize ();
10273 vt_debug_insns_local (true);
10274 return 0;
10275 }
10276
10277 success = vt_find_locations ();
10278
10279 if (!success && flag_var_tracking_assignments > 0)
10280 {
10281 vt_finalize ();
10282
10283 delete_debug_insns ();
10284
10285 /* This is later restored by our caller. */
10286 flag_var_tracking_assignments = 0;
10287
10288 success = vt_initialize ();
10289 gcc_assert (success);
10290
10291 success = vt_find_locations ();
10292 }
10293
10294 if (!success)
10295 {
10296 vt_finalize ();
10297 vt_debug_insns_local (false);
10298 return 0;
10299 }
10300
10301 if (dump_file && (dump_flags & TDF_DETAILS))
10302 {
10303 dump_dataflow_sets ();
10304 dump_reg_info (dump_file);
10305 dump_flow_info (dump_file, dump_flags);
10306 }
10307
10308 timevar_push (TV_VAR_TRACKING_EMIT);
10309 vt_emit_notes ();
10310 timevar_pop (TV_VAR_TRACKING_EMIT);
10311
10312 vt_finalize ();
10313 vt_debug_insns_local (false);
10314 return 0;
10315 }
10316
10317 unsigned int
10318 variable_tracking_main (void)
10319 {
10320 unsigned int ret;
10321 int save = flag_var_tracking_assignments;
10322
10323 ret = variable_tracking_main_1 ();
10324
10325 flag_var_tracking_assignments = save;
10326
10327 return ret;
10328 }
10329 \f
10330 namespace {
10331
10332 const pass_data pass_data_variable_tracking =
10333 {
10334 RTL_PASS, /* type */
10335 "vartrack", /* name */
10336 OPTGROUP_NONE, /* optinfo_flags */
10337 TV_VAR_TRACKING, /* tv_id */
10338 0, /* properties_required */
10339 0, /* properties_provided */
10340 0, /* properties_destroyed */
10341 0, /* todo_flags_start */
10342 0, /* todo_flags_finish */
10343 };
10344
10345 class pass_variable_tracking : public rtl_opt_pass
10346 {
10347 public:
10348 pass_variable_tracking (gcc::context *ctxt)
10349 : rtl_opt_pass (pass_data_variable_tracking, ctxt)
10350 {}
10351
10352 /* opt_pass methods: */
10353 virtual bool gate (function *)
10354 {
10355 return (flag_var_tracking && !targetm.delay_vartrack);
10356 }
10357
10358 virtual unsigned int execute (function *)
10359 {
10360 return variable_tracking_main ();
10361 }
10362
10363 }; // class pass_variable_tracking
10364
10365 } // anon namespace
10366
10367 rtl_opt_pass *
10368 make_pass_variable_tracking (gcc::context *ctxt)
10369 {
10370 return new pass_variable_tracking (ctxt);
10371 }