]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/var-tracking.c
Update copyright years.
[thirdparty/gcc.git] / gcc / var-tracking.c
1 /* Variable tracking routines for the GNU compiler.
2 Copyright (C) 2002-2021 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file contains the variable tracking pass. It computes where
21 variables are located (which registers or where in memory) at each position
22 in instruction stream and emits notes describing the locations.
23 Debug information (DWARF2 location lists) is finally generated from
24 these notes.
25 With this debug information, it is possible to show variables
26 even when debugging optimized code.
27
28 How does the variable tracking pass work?
29
30 First, it scans RTL code for uses, stores and clobbers (register/memory
31 references in instructions), for call insns and for stack adjustments
32 separately for each basic block and saves them to an array of micro
33 operations.
34 The micro operations of one instruction are ordered so that
35 pre-modifying stack adjustment < use < use with no var < call insn <
36 < clobber < set < post-modifying stack adjustment
37
38 Then, a forward dataflow analysis is performed to find out how locations
39 of variables change through code and to propagate the variable locations
40 along control flow graph.
41 The IN set for basic block BB is computed as a union of OUT sets of BB's
42 predecessors, the OUT set for BB is copied from the IN set for BB and
43 is changed according to micro operations in BB.
44
45 The IN and OUT sets for basic blocks consist of a current stack adjustment
46 (used for adjusting offset of variables addressed using stack pointer),
47 the table of structures describing the locations of parts of a variable
48 and for each physical register a linked list for each physical register.
49 The linked list is a list of variable parts stored in the register,
50 i.e. it is a list of triplets (reg, decl, offset) where decl is
51 REG_EXPR (reg) and offset is REG_OFFSET (reg). The linked list is used for
52 effective deleting appropriate variable parts when we set or clobber the
53 register.
54
55 There may be more than one variable part in a register. The linked lists
56 should be pretty short so it is a good data structure here.
57 For example in the following code, register allocator may assign same
58 register to variables A and B, and both of them are stored in the same
59 register in CODE:
60
61 if (cond)
62 set A;
63 else
64 set B;
65 CODE;
66 if (cond)
67 use A;
68 else
69 use B;
70
71 Finally, the NOTE_INSN_VAR_LOCATION notes describing the variable locations
72 are emitted to appropriate positions in RTL code. Each such a note describes
73 the location of one variable at the point in instruction stream where the
74 note is. There is no need to emit a note for each variable before each
75 instruction, we only emit these notes where the location of variable changes
76 (this means that we also emit notes for changes between the OUT set of the
77 previous block and the IN set of the current block).
78
79 The notes consist of two parts:
80 1. the declaration (from REG_EXPR or MEM_EXPR)
81 2. the location of a variable - it is either a simple register/memory
82 reference (for simple variables, for example int),
83 or a parallel of register/memory references (for a large variables
84 which consist of several parts, for example long long).
85
86 */
87
88 #include "config.h"
89 #include "system.h"
90 #include "coretypes.h"
91 #include "backend.h"
92 #include "target.h"
93 #include "rtl.h"
94 #include "tree.h"
95 #include "cfghooks.h"
96 #include "alloc-pool.h"
97 #include "tree-pass.h"
98 #include "memmodel.h"
99 #include "tm_p.h"
100 #include "insn-config.h"
101 #include "regs.h"
102 #include "emit-rtl.h"
103 #include "recog.h"
104 #include "diagnostic.h"
105 #include "varasm.h"
106 #include "stor-layout.h"
107 #include "cfgrtl.h"
108 #include "cfganal.h"
109 #include "reload.h"
110 #include "calls.h"
111 #include "tree-dfa.h"
112 #include "tree-ssa.h"
113 #include "cselib.h"
114 #include "tree-pretty-print.h"
115 #include "rtl-iter.h"
116 #include "fibonacci_heap.h"
117 #include "print-rtl.h"
118 #include "function-abi.h"
119
120 typedef fibonacci_heap <long, basic_block_def> bb_heap_t;
121
122 /* var-tracking.c assumes that tree code with the same value as VALUE rtx code
123 has no chance to appear in REG_EXPR/MEM_EXPRs and isn't a decl.
124 Currently the value is the same as IDENTIFIER_NODE, which has such
125 a property. If this compile time assertion ever fails, make sure that
126 the new tree code that equals (int) VALUE has the same property. */
127 extern char check_value_val[(int) VALUE == (int) IDENTIFIER_NODE ? 1 : -1];
128
129 /* Type of micro operation. */
130 enum micro_operation_type
131 {
132 MO_USE, /* Use location (REG or MEM). */
133 MO_USE_NO_VAR,/* Use location which is not associated with a variable
134 or the variable is not trackable. */
135 MO_VAL_USE, /* Use location which is associated with a value. */
136 MO_VAL_LOC, /* Use location which appears in a debug insn. */
137 MO_VAL_SET, /* Set location associated with a value. */
138 MO_SET, /* Set location. */
139 MO_COPY, /* Copy the same portion of a variable from one
140 location to another. */
141 MO_CLOBBER, /* Clobber location. */
142 MO_CALL, /* Call insn. */
143 MO_ADJUST /* Adjust stack pointer. */
144
145 };
146
147 static const char * const ATTRIBUTE_UNUSED
148 micro_operation_type_name[] = {
149 "MO_USE",
150 "MO_USE_NO_VAR",
151 "MO_VAL_USE",
152 "MO_VAL_LOC",
153 "MO_VAL_SET",
154 "MO_SET",
155 "MO_COPY",
156 "MO_CLOBBER",
157 "MO_CALL",
158 "MO_ADJUST"
159 };
160
161 /* Where shall the note be emitted? BEFORE or AFTER the instruction.
162 Notes emitted as AFTER_CALL are to take effect during the call,
163 rather than after the call. */
164 enum emit_note_where
165 {
166 EMIT_NOTE_BEFORE_INSN,
167 EMIT_NOTE_AFTER_INSN,
168 EMIT_NOTE_AFTER_CALL_INSN
169 };
170
171 /* Structure holding information about micro operation. */
172 struct micro_operation
173 {
174 /* Type of micro operation. */
175 enum micro_operation_type type;
176
177 /* The instruction which the micro operation is in, for MO_USE,
178 MO_USE_NO_VAR, MO_CALL and MO_ADJUST, or the subsequent
179 instruction or note in the original flow (before any var-tracking
180 notes are inserted, to simplify emission of notes), for MO_SET
181 and MO_CLOBBER. */
182 rtx_insn *insn;
183
184 union {
185 /* Location. For MO_SET and MO_COPY, this is the SET that
186 performs the assignment, if known, otherwise it is the target
187 of the assignment. For MO_VAL_USE and MO_VAL_SET, it is a
188 CONCAT of the VALUE and the LOC associated with it. For
189 MO_VAL_LOC, it is a CONCAT of the VALUE and the VAR_LOCATION
190 associated with it. */
191 rtx loc;
192
193 /* Stack adjustment. */
194 HOST_WIDE_INT adjust;
195 } u;
196 };
197
198
199 /* A declaration of a variable, or an RTL value being handled like a
200 declaration. */
201 typedef void *decl_or_value;
202
203 /* Return true if a decl_or_value DV is a DECL or NULL. */
204 static inline bool
205 dv_is_decl_p (decl_or_value dv)
206 {
207 return !dv || (int) TREE_CODE ((tree) dv) != (int) VALUE;
208 }
209
210 /* Return true if a decl_or_value is a VALUE rtl. */
211 static inline bool
212 dv_is_value_p (decl_or_value dv)
213 {
214 return dv && !dv_is_decl_p (dv);
215 }
216
217 /* Return the decl in the decl_or_value. */
218 static inline tree
219 dv_as_decl (decl_or_value dv)
220 {
221 gcc_checking_assert (dv_is_decl_p (dv));
222 return (tree) dv;
223 }
224
225 /* Return the value in the decl_or_value. */
226 static inline rtx
227 dv_as_value (decl_or_value dv)
228 {
229 gcc_checking_assert (dv_is_value_p (dv));
230 return (rtx)dv;
231 }
232
233 /* Return the opaque pointer in the decl_or_value. */
234 static inline void *
235 dv_as_opaque (decl_or_value dv)
236 {
237 return dv;
238 }
239
240
241 /* Description of location of a part of a variable. The content of a physical
242 register is described by a chain of these structures.
243 The chains are pretty short (usually 1 or 2 elements) and thus
244 chain is the best data structure. */
245 struct attrs
246 {
247 /* Pointer to next member of the list. */
248 attrs *next;
249
250 /* The rtx of register. */
251 rtx loc;
252
253 /* The declaration corresponding to LOC. */
254 decl_or_value dv;
255
256 /* Offset from start of DECL. */
257 HOST_WIDE_INT offset;
258 };
259
260 /* Structure for chaining the locations. */
261 struct location_chain
262 {
263 /* Next element in the chain. */
264 location_chain *next;
265
266 /* The location (REG, MEM or VALUE). */
267 rtx loc;
268
269 /* The "value" stored in this location. */
270 rtx set_src;
271
272 /* Initialized? */
273 enum var_init_status init;
274 };
275
276 /* A vector of loc_exp_dep holds the active dependencies of a one-part
277 DV on VALUEs, i.e., the VALUEs expanded so as to form the current
278 location of DV. Each entry is also part of VALUE' s linked-list of
279 backlinks back to DV. */
280 struct loc_exp_dep
281 {
282 /* The dependent DV. */
283 decl_or_value dv;
284 /* The dependency VALUE or DECL_DEBUG. */
285 rtx value;
286 /* The next entry in VALUE's backlinks list. */
287 struct loc_exp_dep *next;
288 /* A pointer to the pointer to this entry (head or prev's next) in
289 the doubly-linked list. */
290 struct loc_exp_dep **pprev;
291 };
292
293
294 /* This data structure holds information about the depth of a variable
295 expansion. */
296 struct expand_depth
297 {
298 /* This measures the complexity of the expanded expression. It
299 grows by one for each level of expansion that adds more than one
300 operand. */
301 int complexity;
302 /* This counts the number of ENTRY_VALUE expressions in an
303 expansion. We want to minimize their use. */
304 int entryvals;
305 };
306
307 /* Type for dependencies actively used when expand FROM into cur_loc. */
308 typedef vec<loc_exp_dep, va_heap, vl_embed> deps_vec;
309
310 /* This data structure is allocated for one-part variables at the time
311 of emitting notes. */
312 struct onepart_aux
313 {
314 /* Doubly-linked list of dependent DVs. These are DVs whose cur_loc
315 computation used the expansion of this variable, and that ought
316 to be notified should this variable change. If the DV's cur_loc
317 expanded to NULL, all components of the loc list are regarded as
318 active, so that any changes in them give us a chance to get a
319 location. Otherwise, only components of the loc that expanded to
320 non-NULL are regarded as active dependencies. */
321 loc_exp_dep *backlinks;
322 /* This holds the LOC that was expanded into cur_loc. We need only
323 mark a one-part variable as changed if the FROM loc is removed,
324 or if it has no known location and a loc is added, or if it gets
325 a change notification from any of its active dependencies. */
326 rtx from;
327 /* The depth of the cur_loc expression. */
328 expand_depth depth;
329 /* Dependencies actively used when expand FROM into cur_loc. */
330 deps_vec deps;
331 };
332
333 /* Structure describing one part of variable. */
334 struct variable_part
335 {
336 /* Chain of locations of the part. */
337 location_chain *loc_chain;
338
339 /* Location which was last emitted to location list. */
340 rtx cur_loc;
341
342 union variable_aux
343 {
344 /* The offset in the variable, if !var->onepart. */
345 HOST_WIDE_INT offset;
346
347 /* Pointer to auxiliary data, if var->onepart and emit_notes. */
348 struct onepart_aux *onepaux;
349 } aux;
350 };
351
352 /* Maximum number of location parts. */
353 #define MAX_VAR_PARTS 16
354
355 /* Enumeration type used to discriminate various types of one-part
356 variables. */
357 enum onepart_enum
358 {
359 /* Not a one-part variable. */
360 NOT_ONEPART = 0,
361 /* A one-part DECL that is not a DEBUG_EXPR_DECL. */
362 ONEPART_VDECL = 1,
363 /* A DEBUG_EXPR_DECL. */
364 ONEPART_DEXPR = 2,
365 /* A VALUE. */
366 ONEPART_VALUE = 3
367 };
368
369 /* Structure describing where the variable is located. */
370 struct variable
371 {
372 /* The declaration of the variable, or an RTL value being handled
373 like a declaration. */
374 decl_or_value dv;
375
376 /* Reference count. */
377 int refcount;
378
379 /* Number of variable parts. */
380 char n_var_parts;
381
382 /* What type of DV this is, according to enum onepart_enum. */
383 ENUM_BITFIELD (onepart_enum) onepart : CHAR_BIT;
384
385 /* True if this variable_def struct is currently in the
386 changed_variables hash table. */
387 bool in_changed_variables;
388
389 /* The variable parts. */
390 variable_part var_part[1];
391 };
392
393 /* Pointer to the BB's information specific to variable tracking pass. */
394 #define VTI(BB) ((variable_tracking_info *) (BB)->aux)
395
396 /* Return MEM_OFFSET (MEM) as a HOST_WIDE_INT, or 0 if we can't. */
397
398 static inline HOST_WIDE_INT
399 int_mem_offset (const_rtx mem)
400 {
401 HOST_WIDE_INT offset;
402 if (MEM_OFFSET_KNOWN_P (mem) && MEM_OFFSET (mem).is_constant (&offset))
403 return offset;
404 return 0;
405 }
406
407 #if CHECKING_P && (GCC_VERSION >= 2007)
408
409 /* Access VAR's Ith part's offset, checking that it's not a one-part
410 variable. */
411 #define VAR_PART_OFFSET(var, i) __extension__ \
412 (*({ variable *const __v = (var); \
413 gcc_checking_assert (!__v->onepart); \
414 &__v->var_part[(i)].aux.offset; }))
415
416 /* Access VAR's one-part auxiliary data, checking that it is a
417 one-part variable. */
418 #define VAR_LOC_1PAUX(var) __extension__ \
419 (*({ variable *const __v = (var); \
420 gcc_checking_assert (__v->onepart); \
421 &__v->var_part[0].aux.onepaux; }))
422
423 #else
424 #define VAR_PART_OFFSET(var, i) ((var)->var_part[(i)].aux.offset)
425 #define VAR_LOC_1PAUX(var) ((var)->var_part[0].aux.onepaux)
426 #endif
427
428 /* These are accessor macros for the one-part auxiliary data. When
429 convenient for users, they're guarded by tests that the data was
430 allocated. */
431 #define VAR_LOC_DEP_LST(var) (VAR_LOC_1PAUX (var) \
432 ? VAR_LOC_1PAUX (var)->backlinks \
433 : NULL)
434 #define VAR_LOC_DEP_LSTP(var) (VAR_LOC_1PAUX (var) \
435 ? &VAR_LOC_1PAUX (var)->backlinks \
436 : NULL)
437 #define VAR_LOC_FROM(var) (VAR_LOC_1PAUX (var)->from)
438 #define VAR_LOC_DEPTH(var) (VAR_LOC_1PAUX (var)->depth)
439 #define VAR_LOC_DEP_VEC(var) var_loc_dep_vec (var)
440
441 /* Implements the VAR_LOC_DEP_VEC above as a function to work around
442 a bogus -Wnonnull (PR c/95554). */
443
444 static inline deps_vec*
445 var_loc_dep_vec (variable *var)
446 {
447 return VAR_LOC_1PAUX (var) ? &VAR_LOC_1PAUX (var)->deps : NULL;
448 }
449
450
451 typedef unsigned int dvuid;
452
453 /* Return the uid of DV. */
454
455 static inline dvuid
456 dv_uid (decl_or_value dv)
457 {
458 if (dv_is_value_p (dv))
459 return CSELIB_VAL_PTR (dv_as_value (dv))->uid;
460 else
461 return DECL_UID (dv_as_decl (dv));
462 }
463
464 /* Compute the hash from the uid. */
465
466 static inline hashval_t
467 dv_uid2hash (dvuid uid)
468 {
469 return uid;
470 }
471
472 /* The hash function for a mask table in a shared_htab chain. */
473
474 static inline hashval_t
475 dv_htab_hash (decl_or_value dv)
476 {
477 return dv_uid2hash (dv_uid (dv));
478 }
479
480 static void variable_htab_free (void *);
481
482 /* Variable hashtable helpers. */
483
484 struct variable_hasher : pointer_hash <variable>
485 {
486 typedef void *compare_type;
487 static inline hashval_t hash (const variable *);
488 static inline bool equal (const variable *, const void *);
489 static inline void remove (variable *);
490 };
491
492 /* The hash function for variable_htab, computes the hash value
493 from the declaration of variable X. */
494
495 inline hashval_t
496 variable_hasher::hash (const variable *v)
497 {
498 return dv_htab_hash (v->dv);
499 }
500
501 /* Compare the declaration of variable X with declaration Y. */
502
503 inline bool
504 variable_hasher::equal (const variable *v, const void *y)
505 {
506 decl_or_value dv = CONST_CAST2 (decl_or_value, const void *, y);
507
508 return (dv_as_opaque (v->dv) == dv_as_opaque (dv));
509 }
510
511 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
512
513 inline void
514 variable_hasher::remove (variable *var)
515 {
516 variable_htab_free (var);
517 }
518
519 typedef hash_table<variable_hasher> variable_table_type;
520 typedef variable_table_type::iterator variable_iterator_type;
521
522 /* Structure for passing some other parameters to function
523 emit_note_insn_var_location. */
524 struct emit_note_data
525 {
526 /* The instruction which the note will be emitted before/after. */
527 rtx_insn *insn;
528
529 /* Where the note will be emitted (before/after insn)? */
530 enum emit_note_where where;
531
532 /* The variables and values active at this point. */
533 variable_table_type *vars;
534 };
535
536 /* Structure holding a refcounted hash table. If refcount > 1,
537 it must be first unshared before modified. */
538 struct shared_hash
539 {
540 /* Reference count. */
541 int refcount;
542
543 /* Actual hash table. */
544 variable_table_type *htab;
545 };
546
547 /* Structure holding the IN or OUT set for a basic block. */
548 struct dataflow_set
549 {
550 /* Adjustment of stack offset. */
551 HOST_WIDE_INT stack_adjust;
552
553 /* Attributes for registers (lists of attrs). */
554 attrs *regs[FIRST_PSEUDO_REGISTER];
555
556 /* Variable locations. */
557 shared_hash *vars;
558
559 /* Vars that is being traversed. */
560 shared_hash *traversed_vars;
561 };
562
563 /* The structure (one for each basic block) containing the information
564 needed for variable tracking. */
565 struct variable_tracking_info
566 {
567 /* The vector of micro operations. */
568 vec<micro_operation> mos;
569
570 /* The IN and OUT set for dataflow analysis. */
571 dataflow_set in;
572 dataflow_set out;
573
574 /* The permanent-in dataflow set for this block. This is used to
575 hold values for which we had to compute entry values. ??? This
576 should probably be dynamically allocated, to avoid using more
577 memory in non-debug builds. */
578 dataflow_set *permp;
579
580 /* Has the block been visited in DFS? */
581 bool visited;
582
583 /* Has the block been flooded in VTA? */
584 bool flooded;
585
586 };
587
588 /* Alloc pool for struct attrs_def. */
589 object_allocator<attrs> attrs_pool ("attrs pool");
590
591 /* Alloc pool for struct variable_def with MAX_VAR_PARTS entries. */
592
593 static pool_allocator var_pool
594 ("variable_def pool", sizeof (variable) +
595 (MAX_VAR_PARTS - 1) * sizeof (((variable *)NULL)->var_part[0]));
596
597 /* Alloc pool for struct variable_def with a single var_part entry. */
598 static pool_allocator valvar_pool
599 ("small variable_def pool", sizeof (variable));
600
601 /* Alloc pool for struct location_chain. */
602 static object_allocator<location_chain> location_chain_pool
603 ("location_chain pool");
604
605 /* Alloc pool for struct shared_hash. */
606 static object_allocator<shared_hash> shared_hash_pool ("shared_hash pool");
607
608 /* Alloc pool for struct loc_exp_dep_s for NOT_ONEPART variables. */
609 object_allocator<loc_exp_dep> loc_exp_dep_pool ("loc_exp_dep pool");
610
611 /* Changed variables, notes will be emitted for them. */
612 static variable_table_type *changed_variables;
613
614 /* Shall notes be emitted? */
615 static bool emit_notes;
616
617 /* Values whose dynamic location lists have gone empty, but whose
618 cselib location lists are still usable. Use this to hold the
619 current location, the backlinks, etc, during emit_notes. */
620 static variable_table_type *dropped_values;
621
622 /* Empty shared hashtable. */
623 static shared_hash *empty_shared_hash;
624
625 /* Scratch register bitmap used by cselib_expand_value_rtx. */
626 static bitmap scratch_regs = NULL;
627
628 #ifdef HAVE_window_save
629 struct GTY(()) parm_reg {
630 rtx outgoing;
631 rtx incoming;
632 };
633
634
635 /* Vector of windowed parameter registers, if any. */
636 static vec<parm_reg, va_gc> *windowed_parm_regs = NULL;
637 #endif
638
639 /* Variable used to tell whether cselib_process_insn called our hook. */
640 static bool cselib_hook_called;
641
642 /* Local function prototypes. */
643 static void stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
644 HOST_WIDE_INT *);
645 static void insn_stack_adjust_offset_pre_post (rtx_insn *, HOST_WIDE_INT *,
646 HOST_WIDE_INT *);
647 static bool vt_stack_adjustments (void);
648
649 static void init_attrs_list_set (attrs **);
650 static void attrs_list_clear (attrs **);
651 static attrs *attrs_list_member (attrs *, decl_or_value, HOST_WIDE_INT);
652 static void attrs_list_insert (attrs **, decl_or_value, HOST_WIDE_INT, rtx);
653 static void attrs_list_copy (attrs **, attrs *);
654 static void attrs_list_union (attrs **, attrs *);
655
656 static variable **unshare_variable (dataflow_set *set, variable **slot,
657 variable *var, enum var_init_status);
658 static void vars_copy (variable_table_type *, variable_table_type *);
659 static tree var_debug_decl (tree);
660 static void var_reg_set (dataflow_set *, rtx, enum var_init_status, rtx);
661 static void var_reg_delete_and_set (dataflow_set *, rtx, bool,
662 enum var_init_status, rtx);
663 static void var_reg_delete (dataflow_set *, rtx, bool);
664 static void var_regno_delete (dataflow_set *, int);
665 static void var_mem_set (dataflow_set *, rtx, enum var_init_status, rtx);
666 static void var_mem_delete_and_set (dataflow_set *, rtx, bool,
667 enum var_init_status, rtx);
668 static void var_mem_delete (dataflow_set *, rtx, bool);
669
670 static void dataflow_set_init (dataflow_set *);
671 static void dataflow_set_clear (dataflow_set *);
672 static void dataflow_set_copy (dataflow_set *, dataflow_set *);
673 static int variable_union_info_cmp_pos (const void *, const void *);
674 static void dataflow_set_union (dataflow_set *, dataflow_set *);
675 static location_chain *find_loc_in_1pdv (rtx, variable *,
676 variable_table_type *);
677 static bool canon_value_cmp (rtx, rtx);
678 static int loc_cmp (rtx, rtx);
679 static bool variable_part_different_p (variable_part *, variable_part *);
680 static bool onepart_variable_different_p (variable *, variable *);
681 static bool variable_different_p (variable *, variable *);
682 static bool dataflow_set_different (dataflow_set *, dataflow_set *);
683 static void dataflow_set_destroy (dataflow_set *);
684
685 static bool track_expr_p (tree, bool);
686 static void add_uses_1 (rtx *, void *);
687 static void add_stores (rtx, const_rtx, void *);
688 static bool compute_bb_dataflow (basic_block);
689 static bool vt_find_locations (void);
690
691 static void dump_attrs_list (attrs *);
692 static void dump_var (variable *);
693 static void dump_vars (variable_table_type *);
694 static void dump_dataflow_set (dataflow_set *);
695 static void dump_dataflow_sets (void);
696
697 static void set_dv_changed (decl_or_value, bool);
698 static void variable_was_changed (variable *, dataflow_set *);
699 static variable **set_slot_part (dataflow_set *, rtx, variable **,
700 decl_or_value, HOST_WIDE_INT,
701 enum var_init_status, rtx);
702 static void set_variable_part (dataflow_set *, rtx,
703 decl_or_value, HOST_WIDE_INT,
704 enum var_init_status, rtx, enum insert_option);
705 static variable **clobber_slot_part (dataflow_set *, rtx,
706 variable **, HOST_WIDE_INT, rtx);
707 static void clobber_variable_part (dataflow_set *, rtx,
708 decl_or_value, HOST_WIDE_INT, rtx);
709 static variable **delete_slot_part (dataflow_set *, rtx, variable **,
710 HOST_WIDE_INT);
711 static void delete_variable_part (dataflow_set *, rtx,
712 decl_or_value, HOST_WIDE_INT);
713 static void emit_notes_in_bb (basic_block, dataflow_set *);
714 static void vt_emit_notes (void);
715
716 static void vt_add_function_parameters (void);
717 static bool vt_initialize (void);
718 static void vt_finalize (void);
719
720 /* Callback for stack_adjust_offset_pre_post, called via for_each_inc_dec. */
721
722 static int
723 stack_adjust_offset_pre_post_cb (rtx, rtx op, rtx dest, rtx src, rtx srcoff,
724 void *arg)
725 {
726 if (dest != stack_pointer_rtx)
727 return 0;
728
729 switch (GET_CODE (op))
730 {
731 case PRE_INC:
732 case PRE_DEC:
733 ((HOST_WIDE_INT *)arg)[0] -= INTVAL (srcoff);
734 return 0;
735 case POST_INC:
736 case POST_DEC:
737 ((HOST_WIDE_INT *)arg)[1] -= INTVAL (srcoff);
738 return 0;
739 case PRE_MODIFY:
740 case POST_MODIFY:
741 /* We handle only adjustments by constant amount. */
742 gcc_assert (GET_CODE (src) == PLUS
743 && CONST_INT_P (XEXP (src, 1))
744 && XEXP (src, 0) == stack_pointer_rtx);
745 ((HOST_WIDE_INT *)arg)[GET_CODE (op) == POST_MODIFY]
746 -= INTVAL (XEXP (src, 1));
747 return 0;
748 default:
749 gcc_unreachable ();
750 }
751 }
752
753 /* Given a SET, calculate the amount of stack adjustment it contains
754 PRE- and POST-modifying stack pointer.
755 This function is similar to stack_adjust_offset. */
756
757 static void
758 stack_adjust_offset_pre_post (rtx pattern, HOST_WIDE_INT *pre,
759 HOST_WIDE_INT *post)
760 {
761 rtx src = SET_SRC (pattern);
762 rtx dest = SET_DEST (pattern);
763 enum rtx_code code;
764
765 if (dest == stack_pointer_rtx)
766 {
767 /* (set (reg sp) (plus (reg sp) (const_int))) */
768 code = GET_CODE (src);
769 if (! (code == PLUS || code == MINUS)
770 || XEXP (src, 0) != stack_pointer_rtx
771 || !CONST_INT_P (XEXP (src, 1)))
772 return;
773
774 if (code == MINUS)
775 *post += INTVAL (XEXP (src, 1));
776 else
777 *post -= INTVAL (XEXP (src, 1));
778 return;
779 }
780 HOST_WIDE_INT res[2] = { 0, 0 };
781 for_each_inc_dec (pattern, stack_adjust_offset_pre_post_cb, res);
782 *pre += res[0];
783 *post += res[1];
784 }
785
786 /* Given an INSN, calculate the amount of stack adjustment it contains
787 PRE- and POST-modifying stack pointer. */
788
789 static void
790 insn_stack_adjust_offset_pre_post (rtx_insn *insn, HOST_WIDE_INT *pre,
791 HOST_WIDE_INT *post)
792 {
793 rtx pattern;
794
795 *pre = 0;
796 *post = 0;
797
798 pattern = PATTERN (insn);
799 if (RTX_FRAME_RELATED_P (insn))
800 {
801 rtx expr = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
802 if (expr)
803 pattern = XEXP (expr, 0);
804 }
805
806 if (GET_CODE (pattern) == SET)
807 stack_adjust_offset_pre_post (pattern, pre, post);
808 else if (GET_CODE (pattern) == PARALLEL
809 || GET_CODE (pattern) == SEQUENCE)
810 {
811 int i;
812
813 /* There may be stack adjustments inside compound insns. Search
814 for them. */
815 for ( i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
816 if (GET_CODE (XVECEXP (pattern, 0, i)) == SET)
817 stack_adjust_offset_pre_post (XVECEXP (pattern, 0, i), pre, post);
818 }
819 }
820
821 /* Compute stack adjustments for all blocks by traversing DFS tree.
822 Return true when the adjustments on all incoming edges are consistent.
823 Heavily borrowed from pre_and_rev_post_order_compute. */
824
825 static bool
826 vt_stack_adjustments (void)
827 {
828 edge_iterator *stack;
829 int sp;
830
831 /* Initialize entry block. */
832 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->visited = true;
833 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->in.stack_adjust
834 = INCOMING_FRAME_SP_OFFSET;
835 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->out.stack_adjust
836 = INCOMING_FRAME_SP_OFFSET;
837
838 /* Allocate stack for back-tracking up CFG. */
839 stack = XNEWVEC (edge_iterator, n_basic_blocks_for_fn (cfun) + 1);
840 sp = 0;
841
842 /* Push the first edge on to the stack. */
843 stack[sp++] = ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs);
844
845 while (sp)
846 {
847 edge_iterator ei;
848 basic_block src;
849 basic_block dest;
850
851 /* Look at the edge on the top of the stack. */
852 ei = stack[sp - 1];
853 src = ei_edge (ei)->src;
854 dest = ei_edge (ei)->dest;
855
856 /* Check if the edge destination has been visited yet. */
857 if (!VTI (dest)->visited)
858 {
859 rtx_insn *insn;
860 HOST_WIDE_INT pre, post, offset;
861 VTI (dest)->visited = true;
862 VTI (dest)->in.stack_adjust = offset = VTI (src)->out.stack_adjust;
863
864 if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
865 for (insn = BB_HEAD (dest);
866 insn != NEXT_INSN (BB_END (dest));
867 insn = NEXT_INSN (insn))
868 if (INSN_P (insn))
869 {
870 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
871 offset += pre + post;
872 }
873
874 VTI (dest)->out.stack_adjust = offset;
875
876 if (EDGE_COUNT (dest->succs) > 0)
877 /* Since the DEST node has been visited for the first
878 time, check its successors. */
879 stack[sp++] = ei_start (dest->succs);
880 }
881 else
882 {
883 /* We can end up with different stack adjustments for the exit block
884 of a shrink-wrapped function if stack_adjust_offset_pre_post
885 doesn't understand the rtx pattern used to restore the stack
886 pointer in the epilogue. For example, on s390(x), the stack
887 pointer is often restored via a load-multiple instruction
888 and so no stack_adjust offset is recorded for it. This means
889 that the stack offset at the end of the epilogue block is the
890 same as the offset before the epilogue, whereas other paths
891 to the exit block will have the correct stack_adjust.
892
893 It is safe to ignore these differences because (a) we never
894 use the stack_adjust for the exit block in this pass and
895 (b) dwarf2cfi checks whether the CFA notes in a shrink-wrapped
896 function are correct.
897
898 We must check whether the adjustments on other edges are
899 the same though. */
900 if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
901 && VTI (dest)->in.stack_adjust != VTI (src)->out.stack_adjust)
902 {
903 free (stack);
904 return false;
905 }
906
907 if (! ei_one_before_end_p (ei))
908 /* Go to the next edge. */
909 ei_next (&stack[sp - 1]);
910 else
911 /* Return to previous level if there are no more edges. */
912 sp--;
913 }
914 }
915
916 free (stack);
917 return true;
918 }
919
920 /* arg_pointer_rtx resp. frame_pointer_rtx if stack_pointer_rtx or
921 hard_frame_pointer_rtx is being mapped to it and offset for it. */
922 static rtx cfa_base_rtx;
923 static HOST_WIDE_INT cfa_base_offset;
924
925 /* Compute a CFA-based value for an ADJUSTMENT made to stack_pointer_rtx
926 or hard_frame_pointer_rtx. */
927
928 static inline rtx
929 compute_cfa_pointer (poly_int64 adjustment)
930 {
931 return plus_constant (Pmode, cfa_base_rtx, adjustment + cfa_base_offset);
932 }
933
934 /* Adjustment for hard_frame_pointer_rtx to cfa base reg,
935 or -1 if the replacement shouldn't be done. */
936 static poly_int64 hard_frame_pointer_adjustment = -1;
937
938 /* Data for adjust_mems callback. */
939
940 class adjust_mem_data
941 {
942 public:
943 bool store;
944 machine_mode mem_mode;
945 HOST_WIDE_INT stack_adjust;
946 auto_vec<rtx> side_effects;
947 };
948
949 /* Helper for adjust_mems. Return true if X is suitable for
950 transformation of wider mode arithmetics to narrower mode. */
951
952 static bool
953 use_narrower_mode_test (rtx x, const_rtx subreg)
954 {
955 subrtx_var_iterator::array_type array;
956 FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
957 {
958 rtx x = *iter;
959 if (CONSTANT_P (x))
960 iter.skip_subrtxes ();
961 else
962 switch (GET_CODE (x))
963 {
964 case REG:
965 if (cselib_lookup (x, GET_MODE (SUBREG_REG (subreg)), 0, VOIDmode))
966 return false;
967 if (!validate_subreg (GET_MODE (subreg), GET_MODE (x), x,
968 subreg_lowpart_offset (GET_MODE (subreg),
969 GET_MODE (x))))
970 return false;
971 break;
972 case PLUS:
973 case MINUS:
974 case MULT:
975 break;
976 case ASHIFT:
977 if (GET_MODE (XEXP (x, 1)) != VOIDmode)
978 {
979 enum machine_mode mode = GET_MODE (subreg);
980 rtx op1 = XEXP (x, 1);
981 enum machine_mode op1_mode = GET_MODE (op1);
982 if (GET_MODE_PRECISION (as_a <scalar_int_mode> (mode))
983 < GET_MODE_PRECISION (as_a <scalar_int_mode> (op1_mode)))
984 {
985 poly_uint64 byte = subreg_lowpart_offset (mode, op1_mode);
986 if (GET_CODE (op1) == SUBREG || GET_CODE (op1) == CONCAT)
987 {
988 if (!simplify_subreg (mode, op1, op1_mode, byte))
989 return false;
990 }
991 else if (!validate_subreg (mode, op1_mode, op1, byte))
992 return false;
993 }
994 }
995 iter.substitute (XEXP (x, 0));
996 break;
997 default:
998 return false;
999 }
1000 }
1001 return true;
1002 }
1003
1004 /* Transform X into narrower mode MODE from wider mode WMODE. */
1005
1006 static rtx
1007 use_narrower_mode (rtx x, scalar_int_mode mode, scalar_int_mode wmode)
1008 {
1009 rtx op0, op1;
1010 if (CONSTANT_P (x))
1011 return lowpart_subreg (mode, x, wmode);
1012 switch (GET_CODE (x))
1013 {
1014 case REG:
1015 return lowpart_subreg (mode, x, wmode);
1016 case PLUS:
1017 case MINUS:
1018 case MULT:
1019 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
1020 op1 = use_narrower_mode (XEXP (x, 1), mode, wmode);
1021 return simplify_gen_binary (GET_CODE (x), mode, op0, op1);
1022 case ASHIFT:
1023 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
1024 op1 = XEXP (x, 1);
1025 /* Ensure shift amount is not wider than mode. */
1026 if (GET_MODE (op1) == VOIDmode)
1027 op1 = lowpart_subreg (mode, op1, wmode);
1028 else if (GET_MODE_PRECISION (mode)
1029 < GET_MODE_PRECISION (as_a <scalar_int_mode> (GET_MODE (op1))))
1030 op1 = lowpart_subreg (mode, op1, GET_MODE (op1));
1031 return simplify_gen_binary (ASHIFT, mode, op0, op1);
1032 default:
1033 gcc_unreachable ();
1034 }
1035 }
1036
1037 /* Helper function for adjusting used MEMs. */
1038
1039 static rtx
1040 adjust_mems (rtx loc, const_rtx old_rtx, void *data)
1041 {
1042 class adjust_mem_data *amd = (class adjust_mem_data *) data;
1043 rtx mem, addr = loc, tem;
1044 machine_mode mem_mode_save;
1045 bool store_save;
1046 scalar_int_mode tem_mode, tem_subreg_mode;
1047 poly_int64 size;
1048 switch (GET_CODE (loc))
1049 {
1050 case REG:
1051 /* Don't do any sp or fp replacements outside of MEM addresses
1052 on the LHS. */
1053 if (amd->mem_mode == VOIDmode && amd->store)
1054 return loc;
1055 if (loc == stack_pointer_rtx
1056 && !frame_pointer_needed
1057 && cfa_base_rtx)
1058 return compute_cfa_pointer (amd->stack_adjust);
1059 else if (loc == hard_frame_pointer_rtx
1060 && frame_pointer_needed
1061 && maybe_ne (hard_frame_pointer_adjustment, -1)
1062 && cfa_base_rtx)
1063 return compute_cfa_pointer (hard_frame_pointer_adjustment);
1064 gcc_checking_assert (loc != virtual_incoming_args_rtx);
1065 return loc;
1066 case MEM:
1067 mem = loc;
1068 if (!amd->store)
1069 {
1070 mem = targetm.delegitimize_address (mem);
1071 if (mem != loc && !MEM_P (mem))
1072 return simplify_replace_fn_rtx (mem, old_rtx, adjust_mems, data);
1073 }
1074
1075 addr = XEXP (mem, 0);
1076 mem_mode_save = amd->mem_mode;
1077 amd->mem_mode = GET_MODE (mem);
1078 store_save = amd->store;
1079 amd->store = false;
1080 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1081 amd->store = store_save;
1082 amd->mem_mode = mem_mode_save;
1083 if (mem == loc)
1084 addr = targetm.delegitimize_address (addr);
1085 if (addr != XEXP (mem, 0))
1086 mem = replace_equiv_address_nv (mem, addr);
1087 if (!amd->store)
1088 mem = avoid_constant_pool_reference (mem);
1089 return mem;
1090 case PRE_INC:
1091 case PRE_DEC:
1092 size = GET_MODE_SIZE (amd->mem_mode);
1093 addr = plus_constant (GET_MODE (loc), XEXP (loc, 0),
1094 GET_CODE (loc) == PRE_INC ? size : -size);
1095 /* FALLTHRU */
1096 case POST_INC:
1097 case POST_DEC:
1098 if (addr == loc)
1099 addr = XEXP (loc, 0);
1100 gcc_assert (amd->mem_mode != VOIDmode && amd->mem_mode != BLKmode);
1101 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1102 size = GET_MODE_SIZE (amd->mem_mode);
1103 tem = plus_constant (GET_MODE (loc), XEXP (loc, 0),
1104 (GET_CODE (loc) == PRE_INC
1105 || GET_CODE (loc) == POST_INC) ? size : -size);
1106 store_save = amd->store;
1107 amd->store = false;
1108 tem = simplify_replace_fn_rtx (tem, old_rtx, adjust_mems, data);
1109 amd->store = store_save;
1110 amd->side_effects.safe_push (gen_rtx_SET (XEXP (loc, 0), tem));
1111 return addr;
1112 case PRE_MODIFY:
1113 addr = XEXP (loc, 1);
1114 /* FALLTHRU */
1115 case POST_MODIFY:
1116 if (addr == loc)
1117 addr = XEXP (loc, 0);
1118 gcc_assert (amd->mem_mode != VOIDmode);
1119 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1120 store_save = amd->store;
1121 amd->store = false;
1122 tem = simplify_replace_fn_rtx (XEXP (loc, 1), old_rtx,
1123 adjust_mems, data);
1124 amd->store = store_save;
1125 amd->side_effects.safe_push (gen_rtx_SET (XEXP (loc, 0), tem));
1126 return addr;
1127 case SUBREG:
1128 /* First try without delegitimization of whole MEMs and
1129 avoid_constant_pool_reference, which is more likely to succeed. */
1130 store_save = amd->store;
1131 amd->store = true;
1132 addr = simplify_replace_fn_rtx (SUBREG_REG (loc), old_rtx, adjust_mems,
1133 data);
1134 amd->store = store_save;
1135 mem = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1136 if (mem == SUBREG_REG (loc))
1137 {
1138 tem = loc;
1139 goto finish_subreg;
1140 }
1141 tem = simplify_gen_subreg (GET_MODE (loc), mem,
1142 GET_MODE (SUBREG_REG (loc)),
1143 SUBREG_BYTE (loc));
1144 if (tem)
1145 goto finish_subreg;
1146 tem = simplify_gen_subreg (GET_MODE (loc), addr,
1147 GET_MODE (SUBREG_REG (loc)),
1148 SUBREG_BYTE (loc));
1149 if (tem == NULL_RTX)
1150 tem = gen_rtx_raw_SUBREG (GET_MODE (loc), addr, SUBREG_BYTE (loc));
1151 finish_subreg:
1152 if (MAY_HAVE_DEBUG_BIND_INSNS
1153 && GET_CODE (tem) == SUBREG
1154 && (GET_CODE (SUBREG_REG (tem)) == PLUS
1155 || GET_CODE (SUBREG_REG (tem)) == MINUS
1156 || GET_CODE (SUBREG_REG (tem)) == MULT
1157 || GET_CODE (SUBREG_REG (tem)) == ASHIFT)
1158 && is_a <scalar_int_mode> (GET_MODE (tem), &tem_mode)
1159 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (tem)),
1160 &tem_subreg_mode)
1161 && (GET_MODE_PRECISION (tem_mode)
1162 < GET_MODE_PRECISION (tem_subreg_mode))
1163 && subreg_lowpart_p (tem)
1164 && use_narrower_mode_test (SUBREG_REG (tem), tem))
1165 return use_narrower_mode (SUBREG_REG (tem), tem_mode, tem_subreg_mode);
1166 return tem;
1167 case ASM_OPERANDS:
1168 /* Don't do any replacements in second and following
1169 ASM_OPERANDS of inline-asm with multiple sets.
1170 ASM_OPERANDS_INPUT_VEC, ASM_OPERANDS_INPUT_CONSTRAINT_VEC
1171 and ASM_OPERANDS_LABEL_VEC need to be equal between
1172 all the ASM_OPERANDs in the insn and adjust_insn will
1173 fix this up. */
1174 if (ASM_OPERANDS_OUTPUT_IDX (loc) != 0)
1175 return loc;
1176 break;
1177 default:
1178 break;
1179 }
1180 return NULL_RTX;
1181 }
1182
1183 /* Helper function for replacement of uses. */
1184
1185 static void
1186 adjust_mem_uses (rtx *x, void *data)
1187 {
1188 rtx new_x = simplify_replace_fn_rtx (*x, NULL_RTX, adjust_mems, data);
1189 if (new_x != *x)
1190 validate_change (NULL_RTX, x, new_x, true);
1191 }
1192
1193 /* Helper function for replacement of stores. */
1194
1195 static void
1196 adjust_mem_stores (rtx loc, const_rtx expr, void *data)
1197 {
1198 if (MEM_P (loc))
1199 {
1200 rtx new_dest = simplify_replace_fn_rtx (SET_DEST (expr), NULL_RTX,
1201 adjust_mems, data);
1202 if (new_dest != SET_DEST (expr))
1203 {
1204 rtx xexpr = CONST_CAST_RTX (expr);
1205 validate_change (NULL_RTX, &SET_DEST (xexpr), new_dest, true);
1206 }
1207 }
1208 }
1209
1210 /* Simplify INSN. Remove all {PRE,POST}_{INC,DEC,MODIFY} rtxes,
1211 replace them with their value in the insn and add the side-effects
1212 as other sets to the insn. */
1213
1214 static void
1215 adjust_insn (basic_block bb, rtx_insn *insn)
1216 {
1217 rtx set;
1218
1219 #ifdef HAVE_window_save
1220 /* If the target machine has an explicit window save instruction, the
1221 transformation OUTGOING_REGNO -> INCOMING_REGNO is done there. */
1222 if (RTX_FRAME_RELATED_P (insn)
1223 && find_reg_note (insn, REG_CFA_WINDOW_SAVE, NULL_RTX))
1224 {
1225 unsigned int i, nregs = vec_safe_length (windowed_parm_regs);
1226 rtx rtl = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (nregs * 2));
1227 parm_reg *p;
1228
1229 FOR_EACH_VEC_SAFE_ELT (windowed_parm_regs, i, p)
1230 {
1231 XVECEXP (rtl, 0, i * 2)
1232 = gen_rtx_SET (p->incoming, p->outgoing);
1233 /* Do not clobber the attached DECL, but only the REG. */
1234 XVECEXP (rtl, 0, i * 2 + 1)
1235 = gen_rtx_CLOBBER (GET_MODE (p->outgoing),
1236 gen_raw_REG (GET_MODE (p->outgoing),
1237 REGNO (p->outgoing)));
1238 }
1239
1240 validate_change (NULL_RTX, &PATTERN (insn), rtl, true);
1241 return;
1242 }
1243 #endif
1244
1245 adjust_mem_data amd;
1246 amd.mem_mode = VOIDmode;
1247 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
1248
1249 amd.store = true;
1250 note_stores (insn, adjust_mem_stores, &amd);
1251
1252 amd.store = false;
1253 if (GET_CODE (PATTERN (insn)) == PARALLEL
1254 && asm_noperands (PATTERN (insn)) > 0
1255 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1256 {
1257 rtx body, set0;
1258 int i;
1259
1260 /* inline-asm with multiple sets is tiny bit more complicated,
1261 because the 3 vectors in ASM_OPERANDS need to be shared between
1262 all ASM_OPERANDS in the instruction. adjust_mems will
1263 not touch ASM_OPERANDS other than the first one, asm_noperands
1264 test above needs to be called before that (otherwise it would fail)
1265 and afterwards this code fixes it up. */
1266 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1267 body = PATTERN (insn);
1268 set0 = XVECEXP (body, 0, 0);
1269 gcc_checking_assert (GET_CODE (set0) == SET
1270 && GET_CODE (SET_SRC (set0)) == ASM_OPERANDS
1271 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set0)) == 0);
1272 for (i = 1; i < XVECLEN (body, 0); i++)
1273 if (GET_CODE (XVECEXP (body, 0, i)) != SET)
1274 break;
1275 else
1276 {
1277 set = XVECEXP (body, 0, i);
1278 gcc_checking_assert (GET_CODE (SET_SRC (set)) == ASM_OPERANDS
1279 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set))
1280 == i);
1281 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (set))
1282 != ASM_OPERANDS_INPUT_VEC (SET_SRC (set0))
1283 || ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set))
1284 != ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0))
1285 || ASM_OPERANDS_LABEL_VEC (SET_SRC (set))
1286 != ASM_OPERANDS_LABEL_VEC (SET_SRC (set0)))
1287 {
1288 rtx newsrc = shallow_copy_rtx (SET_SRC (set));
1289 ASM_OPERANDS_INPUT_VEC (newsrc)
1290 = ASM_OPERANDS_INPUT_VEC (SET_SRC (set0));
1291 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (newsrc)
1292 = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0));
1293 ASM_OPERANDS_LABEL_VEC (newsrc)
1294 = ASM_OPERANDS_LABEL_VEC (SET_SRC (set0));
1295 validate_change (NULL_RTX, &SET_SRC (set), newsrc, true);
1296 }
1297 }
1298 }
1299 else
1300 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1301
1302 /* For read-only MEMs containing some constant, prefer those
1303 constants. */
1304 set = single_set (insn);
1305 if (set && MEM_P (SET_SRC (set)) && MEM_READONLY_P (SET_SRC (set)))
1306 {
1307 rtx note = find_reg_equal_equiv_note (insn);
1308
1309 if (note && CONSTANT_P (XEXP (note, 0)))
1310 validate_change (NULL_RTX, &SET_SRC (set), XEXP (note, 0), true);
1311 }
1312
1313 if (!amd.side_effects.is_empty ())
1314 {
1315 rtx *pat, new_pat;
1316 int i, oldn;
1317
1318 pat = &PATTERN (insn);
1319 if (GET_CODE (*pat) == COND_EXEC)
1320 pat = &COND_EXEC_CODE (*pat);
1321 if (GET_CODE (*pat) == PARALLEL)
1322 oldn = XVECLEN (*pat, 0);
1323 else
1324 oldn = 1;
1325 unsigned int newn = amd.side_effects.length ();
1326 new_pat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (oldn + newn));
1327 if (GET_CODE (*pat) == PARALLEL)
1328 for (i = 0; i < oldn; i++)
1329 XVECEXP (new_pat, 0, i) = XVECEXP (*pat, 0, i);
1330 else
1331 XVECEXP (new_pat, 0, 0) = *pat;
1332
1333 rtx effect;
1334 unsigned int j;
1335 FOR_EACH_VEC_ELT_REVERSE (amd.side_effects, j, effect)
1336 XVECEXP (new_pat, 0, j + oldn) = effect;
1337 validate_change (NULL_RTX, pat, new_pat, true);
1338 }
1339 }
1340
1341 /* Return the DEBUG_EXPR of a DEBUG_EXPR_DECL or the VALUE in DV. */
1342 static inline rtx
1343 dv_as_rtx (decl_or_value dv)
1344 {
1345 tree decl;
1346
1347 if (dv_is_value_p (dv))
1348 return dv_as_value (dv);
1349
1350 decl = dv_as_decl (dv);
1351
1352 gcc_checking_assert (TREE_CODE (decl) == DEBUG_EXPR_DECL);
1353 return DECL_RTL_KNOWN_SET (decl);
1354 }
1355
1356 /* Return nonzero if a decl_or_value must not have more than one
1357 variable part. The returned value discriminates among various
1358 kinds of one-part DVs ccording to enum onepart_enum. */
1359 static inline onepart_enum
1360 dv_onepart_p (decl_or_value dv)
1361 {
1362 tree decl;
1363
1364 if (!MAY_HAVE_DEBUG_BIND_INSNS)
1365 return NOT_ONEPART;
1366
1367 if (dv_is_value_p (dv))
1368 return ONEPART_VALUE;
1369
1370 decl = dv_as_decl (dv);
1371
1372 if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
1373 return ONEPART_DEXPR;
1374
1375 if (target_for_debug_bind (decl) != NULL_TREE)
1376 return ONEPART_VDECL;
1377
1378 return NOT_ONEPART;
1379 }
1380
1381 /* Return the variable pool to be used for a dv of type ONEPART. */
1382 static inline pool_allocator &
1383 onepart_pool (onepart_enum onepart)
1384 {
1385 return onepart ? valvar_pool : var_pool;
1386 }
1387
1388 /* Allocate a variable_def from the corresponding variable pool. */
1389 static inline variable *
1390 onepart_pool_allocate (onepart_enum onepart)
1391 {
1392 return (variable*) onepart_pool (onepart).allocate ();
1393 }
1394
1395 /* Build a decl_or_value out of a decl. */
1396 static inline decl_or_value
1397 dv_from_decl (tree decl)
1398 {
1399 decl_or_value dv;
1400 dv = decl;
1401 gcc_checking_assert (dv_is_decl_p (dv));
1402 return dv;
1403 }
1404
1405 /* Build a decl_or_value out of a value. */
1406 static inline decl_or_value
1407 dv_from_value (rtx value)
1408 {
1409 decl_or_value dv;
1410 dv = value;
1411 gcc_checking_assert (dv_is_value_p (dv));
1412 return dv;
1413 }
1414
1415 /* Return a value or the decl of a debug_expr as a decl_or_value. */
1416 static inline decl_or_value
1417 dv_from_rtx (rtx x)
1418 {
1419 decl_or_value dv;
1420
1421 switch (GET_CODE (x))
1422 {
1423 case DEBUG_EXPR:
1424 dv = dv_from_decl (DEBUG_EXPR_TREE_DECL (x));
1425 gcc_checking_assert (DECL_RTL_KNOWN_SET (DEBUG_EXPR_TREE_DECL (x)) == x);
1426 break;
1427
1428 case VALUE:
1429 dv = dv_from_value (x);
1430 break;
1431
1432 default:
1433 gcc_unreachable ();
1434 }
1435
1436 return dv;
1437 }
1438
1439 extern void debug_dv (decl_or_value dv);
1440
1441 DEBUG_FUNCTION void
1442 debug_dv (decl_or_value dv)
1443 {
1444 if (dv_is_value_p (dv))
1445 debug_rtx (dv_as_value (dv));
1446 else
1447 debug_generic_stmt (dv_as_decl (dv));
1448 }
1449
1450 static void loc_exp_dep_clear (variable *var);
1451
1452 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
1453
1454 static void
1455 variable_htab_free (void *elem)
1456 {
1457 int i;
1458 variable *var = (variable *) elem;
1459 location_chain *node, *next;
1460
1461 gcc_checking_assert (var->refcount > 0);
1462
1463 var->refcount--;
1464 if (var->refcount > 0)
1465 return;
1466
1467 for (i = 0; i < var->n_var_parts; i++)
1468 {
1469 for (node = var->var_part[i].loc_chain; node; node = next)
1470 {
1471 next = node->next;
1472 delete node;
1473 }
1474 var->var_part[i].loc_chain = NULL;
1475 }
1476 if (var->onepart && VAR_LOC_1PAUX (var))
1477 {
1478 loc_exp_dep_clear (var);
1479 if (VAR_LOC_DEP_LST (var))
1480 VAR_LOC_DEP_LST (var)->pprev = NULL;
1481 XDELETE (VAR_LOC_1PAUX (var));
1482 /* These may be reused across functions, so reset
1483 e.g. NO_LOC_P. */
1484 if (var->onepart == ONEPART_DEXPR)
1485 set_dv_changed (var->dv, true);
1486 }
1487 onepart_pool (var->onepart).remove (var);
1488 }
1489
1490 /* Initialize the set (array) SET of attrs to empty lists. */
1491
1492 static void
1493 init_attrs_list_set (attrs **set)
1494 {
1495 int i;
1496
1497 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1498 set[i] = NULL;
1499 }
1500
1501 /* Make the list *LISTP empty. */
1502
1503 static void
1504 attrs_list_clear (attrs **listp)
1505 {
1506 attrs *list, *next;
1507
1508 for (list = *listp; list; list = next)
1509 {
1510 next = list->next;
1511 delete list;
1512 }
1513 *listp = NULL;
1514 }
1515
1516 /* Return true if the pair of DECL and OFFSET is the member of the LIST. */
1517
1518 static attrs *
1519 attrs_list_member (attrs *list, decl_or_value dv, HOST_WIDE_INT offset)
1520 {
1521 for (; list; list = list->next)
1522 if (dv_as_opaque (list->dv) == dv_as_opaque (dv) && list->offset == offset)
1523 return list;
1524 return NULL;
1525 }
1526
1527 /* Insert the triplet DECL, OFFSET, LOC to the list *LISTP. */
1528
1529 static void
1530 attrs_list_insert (attrs **listp, decl_or_value dv,
1531 HOST_WIDE_INT offset, rtx loc)
1532 {
1533 attrs *list = new attrs;
1534 list->loc = loc;
1535 list->dv = dv;
1536 list->offset = offset;
1537 list->next = *listp;
1538 *listp = list;
1539 }
1540
1541 /* Copy all nodes from SRC and create a list *DSTP of the copies. */
1542
1543 static void
1544 attrs_list_copy (attrs **dstp, attrs *src)
1545 {
1546 attrs_list_clear (dstp);
1547 for (; src; src = src->next)
1548 {
1549 attrs *n = new attrs;
1550 n->loc = src->loc;
1551 n->dv = src->dv;
1552 n->offset = src->offset;
1553 n->next = *dstp;
1554 *dstp = n;
1555 }
1556 }
1557
1558 /* Add all nodes from SRC which are not in *DSTP to *DSTP. */
1559
1560 static void
1561 attrs_list_union (attrs **dstp, attrs *src)
1562 {
1563 for (; src; src = src->next)
1564 {
1565 if (!attrs_list_member (*dstp, src->dv, src->offset))
1566 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1567 }
1568 }
1569
1570 /* Combine nodes that are not onepart nodes from SRC and SRC2 into
1571 *DSTP. */
1572
1573 static void
1574 attrs_list_mpdv_union (attrs **dstp, attrs *src, attrs *src2)
1575 {
1576 gcc_assert (!*dstp);
1577 for (; src; src = src->next)
1578 {
1579 if (!dv_onepart_p (src->dv))
1580 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1581 }
1582 for (src = src2; src; src = src->next)
1583 {
1584 if (!dv_onepart_p (src->dv)
1585 && !attrs_list_member (*dstp, src->dv, src->offset))
1586 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1587 }
1588 }
1589
1590 /* Shared hashtable support. */
1591
1592 /* Return true if VARS is shared. */
1593
1594 static inline bool
1595 shared_hash_shared (shared_hash *vars)
1596 {
1597 return vars->refcount > 1;
1598 }
1599
1600 /* Return the hash table for VARS. */
1601
1602 static inline variable_table_type *
1603 shared_hash_htab (shared_hash *vars)
1604 {
1605 return vars->htab;
1606 }
1607
1608 /* Return true if VAR is shared, or maybe because VARS is shared. */
1609
1610 static inline bool
1611 shared_var_p (variable *var, shared_hash *vars)
1612 {
1613 /* Don't count an entry in the changed_variables table as a duplicate. */
1614 return ((var->refcount > 1 + (int) var->in_changed_variables)
1615 || shared_hash_shared (vars));
1616 }
1617
1618 /* Copy variables into a new hash table. */
1619
1620 static shared_hash *
1621 shared_hash_unshare (shared_hash *vars)
1622 {
1623 shared_hash *new_vars = new shared_hash;
1624 gcc_assert (vars->refcount > 1);
1625 new_vars->refcount = 1;
1626 new_vars->htab = new variable_table_type (vars->htab->elements () + 3);
1627 vars_copy (new_vars->htab, vars->htab);
1628 vars->refcount--;
1629 return new_vars;
1630 }
1631
1632 /* Increment reference counter on VARS and return it. */
1633
1634 static inline shared_hash *
1635 shared_hash_copy (shared_hash *vars)
1636 {
1637 vars->refcount++;
1638 return vars;
1639 }
1640
1641 /* Decrement reference counter and destroy hash table if not shared
1642 anymore. */
1643
1644 static void
1645 shared_hash_destroy (shared_hash *vars)
1646 {
1647 gcc_checking_assert (vars->refcount > 0);
1648 if (--vars->refcount == 0)
1649 {
1650 delete vars->htab;
1651 delete vars;
1652 }
1653 }
1654
1655 /* Unshare *PVARS if shared and return slot for DV. If INS is
1656 INSERT, insert it if not already present. */
1657
1658 static inline variable **
1659 shared_hash_find_slot_unshare_1 (shared_hash **pvars, decl_or_value dv,
1660 hashval_t dvhash, enum insert_option ins)
1661 {
1662 if (shared_hash_shared (*pvars))
1663 *pvars = shared_hash_unshare (*pvars);
1664 return shared_hash_htab (*pvars)->find_slot_with_hash (dv, dvhash, ins);
1665 }
1666
1667 static inline variable **
1668 shared_hash_find_slot_unshare (shared_hash **pvars, decl_or_value dv,
1669 enum insert_option ins)
1670 {
1671 return shared_hash_find_slot_unshare_1 (pvars, dv, dv_htab_hash (dv), ins);
1672 }
1673
1674 /* Return slot for DV, if it is already present in the hash table.
1675 If it is not present, insert it only VARS is not shared, otherwise
1676 return NULL. */
1677
1678 static inline variable **
1679 shared_hash_find_slot_1 (shared_hash *vars, decl_or_value dv, hashval_t dvhash)
1680 {
1681 return shared_hash_htab (vars)->find_slot_with_hash (dv, dvhash,
1682 shared_hash_shared (vars)
1683 ? NO_INSERT : INSERT);
1684 }
1685
1686 static inline variable **
1687 shared_hash_find_slot (shared_hash *vars, decl_or_value dv)
1688 {
1689 return shared_hash_find_slot_1 (vars, dv, dv_htab_hash (dv));
1690 }
1691
1692 /* Return slot for DV only if it is already present in the hash table. */
1693
1694 static inline variable **
1695 shared_hash_find_slot_noinsert_1 (shared_hash *vars, decl_or_value dv,
1696 hashval_t dvhash)
1697 {
1698 return shared_hash_htab (vars)->find_slot_with_hash (dv, dvhash, NO_INSERT);
1699 }
1700
1701 static inline variable **
1702 shared_hash_find_slot_noinsert (shared_hash *vars, decl_or_value dv)
1703 {
1704 return shared_hash_find_slot_noinsert_1 (vars, dv, dv_htab_hash (dv));
1705 }
1706
1707 /* Return variable for DV or NULL if not already present in the hash
1708 table. */
1709
1710 static inline variable *
1711 shared_hash_find_1 (shared_hash *vars, decl_or_value dv, hashval_t dvhash)
1712 {
1713 return shared_hash_htab (vars)->find_with_hash (dv, dvhash);
1714 }
1715
1716 static inline variable *
1717 shared_hash_find (shared_hash *vars, decl_or_value dv)
1718 {
1719 return shared_hash_find_1 (vars, dv, dv_htab_hash (dv));
1720 }
1721
1722 /* Return true if TVAL is better than CVAL as a canonival value. We
1723 choose lowest-numbered VALUEs, using the RTX address as a
1724 tie-breaker. The idea is to arrange them into a star topology,
1725 such that all of them are at most one step away from the canonical
1726 value, and the canonical value has backlinks to all of them, in
1727 addition to all the actual locations. We don't enforce this
1728 topology throughout the entire dataflow analysis, though.
1729 */
1730
1731 static inline bool
1732 canon_value_cmp (rtx tval, rtx cval)
1733 {
1734 return !cval
1735 || CSELIB_VAL_PTR (tval)->uid < CSELIB_VAL_PTR (cval)->uid;
1736 }
1737
1738 static bool dst_can_be_shared;
1739
1740 /* Return a copy of a variable VAR and insert it to dataflow set SET. */
1741
1742 static variable **
1743 unshare_variable (dataflow_set *set, variable **slot, variable *var,
1744 enum var_init_status initialized)
1745 {
1746 variable *new_var;
1747 int i;
1748
1749 new_var = onepart_pool_allocate (var->onepart);
1750 new_var->dv = var->dv;
1751 new_var->refcount = 1;
1752 var->refcount--;
1753 new_var->n_var_parts = var->n_var_parts;
1754 new_var->onepart = var->onepart;
1755 new_var->in_changed_variables = false;
1756
1757 if (! flag_var_tracking_uninit)
1758 initialized = VAR_INIT_STATUS_INITIALIZED;
1759
1760 for (i = 0; i < var->n_var_parts; i++)
1761 {
1762 location_chain *node;
1763 location_chain **nextp;
1764
1765 if (i == 0 && var->onepart)
1766 {
1767 /* One-part auxiliary data is only used while emitting
1768 notes, so propagate it to the new variable in the active
1769 dataflow set. If we're not emitting notes, this will be
1770 a no-op. */
1771 gcc_checking_assert (!VAR_LOC_1PAUX (var) || emit_notes);
1772 VAR_LOC_1PAUX (new_var) = VAR_LOC_1PAUX (var);
1773 VAR_LOC_1PAUX (var) = NULL;
1774 }
1775 else
1776 VAR_PART_OFFSET (new_var, i) = VAR_PART_OFFSET (var, i);
1777 nextp = &new_var->var_part[i].loc_chain;
1778 for (node = var->var_part[i].loc_chain; node; node = node->next)
1779 {
1780 location_chain *new_lc;
1781
1782 new_lc = new location_chain;
1783 new_lc->next = NULL;
1784 if (node->init > initialized)
1785 new_lc->init = node->init;
1786 else
1787 new_lc->init = initialized;
1788 if (node->set_src && !(MEM_P (node->set_src)))
1789 new_lc->set_src = node->set_src;
1790 else
1791 new_lc->set_src = NULL;
1792 new_lc->loc = node->loc;
1793
1794 *nextp = new_lc;
1795 nextp = &new_lc->next;
1796 }
1797
1798 new_var->var_part[i].cur_loc = var->var_part[i].cur_loc;
1799 }
1800
1801 dst_can_be_shared = false;
1802 if (shared_hash_shared (set->vars))
1803 slot = shared_hash_find_slot_unshare (&set->vars, var->dv, NO_INSERT);
1804 else if (set->traversed_vars && set->vars != set->traversed_vars)
1805 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
1806 *slot = new_var;
1807 if (var->in_changed_variables)
1808 {
1809 variable **cslot
1810 = changed_variables->find_slot_with_hash (var->dv,
1811 dv_htab_hash (var->dv),
1812 NO_INSERT);
1813 gcc_assert (*cslot == (void *) var);
1814 var->in_changed_variables = false;
1815 variable_htab_free (var);
1816 *cslot = new_var;
1817 new_var->in_changed_variables = true;
1818 }
1819 return slot;
1820 }
1821
1822 /* Copy all variables from hash table SRC to hash table DST. */
1823
1824 static void
1825 vars_copy (variable_table_type *dst, variable_table_type *src)
1826 {
1827 variable_iterator_type hi;
1828 variable *var;
1829
1830 FOR_EACH_HASH_TABLE_ELEMENT (*src, var, variable, hi)
1831 {
1832 variable **dstp;
1833 var->refcount++;
1834 dstp = dst->find_slot_with_hash (var->dv, dv_htab_hash (var->dv),
1835 INSERT);
1836 *dstp = var;
1837 }
1838 }
1839
1840 /* Map a decl to its main debug decl. */
1841
1842 static inline tree
1843 var_debug_decl (tree decl)
1844 {
1845 if (decl && VAR_P (decl) && DECL_HAS_DEBUG_EXPR_P (decl))
1846 {
1847 tree debugdecl = DECL_DEBUG_EXPR (decl);
1848 if (DECL_P (debugdecl))
1849 decl = debugdecl;
1850 }
1851
1852 return decl;
1853 }
1854
1855 /* Set the register LOC to contain DV, OFFSET. */
1856
1857 static void
1858 var_reg_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1859 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
1860 enum insert_option iopt)
1861 {
1862 attrs *node;
1863 bool decl_p = dv_is_decl_p (dv);
1864
1865 if (decl_p)
1866 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
1867
1868 for (node = set->regs[REGNO (loc)]; node; node = node->next)
1869 if (dv_as_opaque (node->dv) == dv_as_opaque (dv)
1870 && node->offset == offset)
1871 break;
1872 if (!node)
1873 attrs_list_insert (&set->regs[REGNO (loc)], dv, offset, loc);
1874 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
1875 }
1876
1877 /* Return true if we should track a location that is OFFSET bytes from
1878 a variable. Store the constant offset in *OFFSET_OUT if so. */
1879
1880 static bool
1881 track_offset_p (poly_int64 offset, HOST_WIDE_INT *offset_out)
1882 {
1883 HOST_WIDE_INT const_offset;
1884 if (!offset.is_constant (&const_offset)
1885 || !IN_RANGE (const_offset, 0, MAX_VAR_PARTS - 1))
1886 return false;
1887 *offset_out = const_offset;
1888 return true;
1889 }
1890
1891 /* Return the offset of a register that track_offset_p says we
1892 should track. */
1893
1894 static HOST_WIDE_INT
1895 get_tracked_reg_offset (rtx loc)
1896 {
1897 HOST_WIDE_INT offset;
1898 if (!track_offset_p (REG_OFFSET (loc), &offset))
1899 gcc_unreachable ();
1900 return offset;
1901 }
1902
1903 /* Set the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). */
1904
1905 static void
1906 var_reg_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1907 rtx set_src)
1908 {
1909 tree decl = REG_EXPR (loc);
1910 HOST_WIDE_INT offset = get_tracked_reg_offset (loc);
1911
1912 var_reg_decl_set (set, loc, initialized,
1913 dv_from_decl (decl), offset, set_src, INSERT);
1914 }
1915
1916 static enum var_init_status
1917 get_init_value (dataflow_set *set, rtx loc, decl_or_value dv)
1918 {
1919 variable *var;
1920 int i;
1921 enum var_init_status ret_val = VAR_INIT_STATUS_UNKNOWN;
1922
1923 if (! flag_var_tracking_uninit)
1924 return VAR_INIT_STATUS_INITIALIZED;
1925
1926 var = shared_hash_find (set->vars, dv);
1927 if (var)
1928 {
1929 for (i = 0; i < var->n_var_parts && ret_val == VAR_INIT_STATUS_UNKNOWN; i++)
1930 {
1931 location_chain *nextp;
1932 for (nextp = var->var_part[i].loc_chain; nextp; nextp = nextp->next)
1933 if (rtx_equal_p (nextp->loc, loc))
1934 {
1935 ret_val = nextp->init;
1936 break;
1937 }
1938 }
1939 }
1940
1941 return ret_val;
1942 }
1943
1944 /* Delete current content of register LOC in dataflow set SET and set
1945 the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). If
1946 MODIFY is true, any other live copies of the same variable part are
1947 also deleted from the dataflow set, otherwise the variable part is
1948 assumed to be copied from another location holding the same
1949 part. */
1950
1951 static void
1952 var_reg_delete_and_set (dataflow_set *set, rtx loc, bool modify,
1953 enum var_init_status initialized, rtx set_src)
1954 {
1955 tree decl = REG_EXPR (loc);
1956 HOST_WIDE_INT offset = get_tracked_reg_offset (loc);
1957 attrs *node, *next;
1958 attrs **nextp;
1959
1960 decl = var_debug_decl (decl);
1961
1962 if (initialized == VAR_INIT_STATUS_UNKNOWN)
1963 initialized = get_init_value (set, loc, dv_from_decl (decl));
1964
1965 nextp = &set->regs[REGNO (loc)];
1966 for (node = *nextp; node; node = next)
1967 {
1968 next = node->next;
1969 if (dv_as_opaque (node->dv) != decl || node->offset != offset)
1970 {
1971 delete_variable_part (set, node->loc, node->dv, node->offset);
1972 delete node;
1973 *nextp = next;
1974 }
1975 else
1976 {
1977 node->loc = loc;
1978 nextp = &node->next;
1979 }
1980 }
1981 if (modify)
1982 clobber_variable_part (set, loc, dv_from_decl (decl), offset, set_src);
1983 var_reg_set (set, loc, initialized, set_src);
1984 }
1985
1986 /* Delete the association of register LOC in dataflow set SET with any
1987 variables that aren't onepart. If CLOBBER is true, also delete any
1988 other live copies of the same variable part, and delete the
1989 association with onepart dvs too. */
1990
1991 static void
1992 var_reg_delete (dataflow_set *set, rtx loc, bool clobber)
1993 {
1994 attrs **nextp = &set->regs[REGNO (loc)];
1995 attrs *node, *next;
1996
1997 HOST_WIDE_INT offset;
1998 if (clobber && track_offset_p (REG_OFFSET (loc), &offset))
1999 {
2000 tree decl = REG_EXPR (loc);
2001
2002 decl = var_debug_decl (decl);
2003
2004 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
2005 }
2006
2007 for (node = *nextp; node; node = next)
2008 {
2009 next = node->next;
2010 if (clobber || !dv_onepart_p (node->dv))
2011 {
2012 delete_variable_part (set, node->loc, node->dv, node->offset);
2013 delete node;
2014 *nextp = next;
2015 }
2016 else
2017 nextp = &node->next;
2018 }
2019 }
2020
2021 /* Delete content of register with number REGNO in dataflow set SET. */
2022
2023 static void
2024 var_regno_delete (dataflow_set *set, int regno)
2025 {
2026 attrs **reg = &set->regs[regno];
2027 attrs *node, *next;
2028
2029 for (node = *reg; node; node = next)
2030 {
2031 next = node->next;
2032 delete_variable_part (set, node->loc, node->dv, node->offset);
2033 delete node;
2034 }
2035 *reg = NULL;
2036 }
2037
2038 /* Return true if I is the negated value of a power of two. */
2039 static bool
2040 negative_power_of_two_p (HOST_WIDE_INT i)
2041 {
2042 unsigned HOST_WIDE_INT x = -(unsigned HOST_WIDE_INT)i;
2043 return pow2_or_zerop (x);
2044 }
2045
2046 /* Strip constant offsets and alignments off of LOC. Return the base
2047 expression. */
2048
2049 static rtx
2050 vt_get_canonicalize_base (rtx loc)
2051 {
2052 while ((GET_CODE (loc) == PLUS
2053 || GET_CODE (loc) == AND)
2054 && GET_CODE (XEXP (loc, 1)) == CONST_INT
2055 && (GET_CODE (loc) != AND
2056 || negative_power_of_two_p (INTVAL (XEXP (loc, 1)))))
2057 loc = XEXP (loc, 0);
2058
2059 return loc;
2060 }
2061
2062 /* This caches canonicalized addresses for VALUEs, computed using
2063 information in the global cselib table. */
2064 static hash_map<rtx, rtx> *global_get_addr_cache;
2065
2066 /* This caches canonicalized addresses for VALUEs, computed using
2067 information from the global cache and information pertaining to a
2068 basic block being analyzed. */
2069 static hash_map<rtx, rtx> *local_get_addr_cache;
2070
2071 static rtx vt_canonicalize_addr (dataflow_set *, rtx);
2072
2073 /* Return the canonical address for LOC, that must be a VALUE, using a
2074 cached global equivalence or computing it and storing it in the
2075 global cache. */
2076
2077 static rtx
2078 get_addr_from_global_cache (rtx const loc)
2079 {
2080 rtx x;
2081
2082 gcc_checking_assert (GET_CODE (loc) == VALUE);
2083
2084 bool existed;
2085 rtx *slot = &global_get_addr_cache->get_or_insert (loc, &existed);
2086 if (existed)
2087 return *slot;
2088
2089 x = canon_rtx (get_addr (loc));
2090
2091 /* Tentative, avoiding infinite recursion. */
2092 *slot = x;
2093
2094 if (x != loc)
2095 {
2096 rtx nx = vt_canonicalize_addr (NULL, x);
2097 if (nx != x)
2098 {
2099 /* The table may have moved during recursion, recompute
2100 SLOT. */
2101 *global_get_addr_cache->get (loc) = x = nx;
2102 }
2103 }
2104
2105 return x;
2106 }
2107
2108 /* Return the canonical address for LOC, that must be a VALUE, using a
2109 cached local equivalence or computing it and storing it in the
2110 local cache. */
2111
2112 static rtx
2113 get_addr_from_local_cache (dataflow_set *set, rtx const loc)
2114 {
2115 rtx x;
2116 decl_or_value dv;
2117 variable *var;
2118 location_chain *l;
2119
2120 gcc_checking_assert (GET_CODE (loc) == VALUE);
2121
2122 bool existed;
2123 rtx *slot = &local_get_addr_cache->get_or_insert (loc, &existed);
2124 if (existed)
2125 return *slot;
2126
2127 x = get_addr_from_global_cache (loc);
2128
2129 /* Tentative, avoiding infinite recursion. */
2130 *slot = x;
2131
2132 /* Recurse to cache local expansion of X, or if we need to search
2133 for a VALUE in the expansion. */
2134 if (x != loc)
2135 {
2136 rtx nx = vt_canonicalize_addr (set, x);
2137 if (nx != x)
2138 {
2139 slot = local_get_addr_cache->get (loc);
2140 *slot = x = nx;
2141 }
2142 return x;
2143 }
2144
2145 dv = dv_from_rtx (x);
2146 var = shared_hash_find (set->vars, dv);
2147 if (!var)
2148 return x;
2149
2150 /* Look for an improved equivalent expression. */
2151 for (l = var->var_part[0].loc_chain; l; l = l->next)
2152 {
2153 rtx base = vt_get_canonicalize_base (l->loc);
2154 if (GET_CODE (base) == VALUE
2155 && canon_value_cmp (base, loc))
2156 {
2157 rtx nx = vt_canonicalize_addr (set, l->loc);
2158 if (x != nx)
2159 {
2160 slot = local_get_addr_cache->get (loc);
2161 *slot = x = nx;
2162 }
2163 break;
2164 }
2165 }
2166
2167 return x;
2168 }
2169
2170 /* Canonicalize LOC using equivalences from SET in addition to those
2171 in the cselib static table. It expects a VALUE-based expression,
2172 and it will only substitute VALUEs with other VALUEs or
2173 function-global equivalences, so that, if two addresses have base
2174 VALUEs that are locally or globally related in ways that
2175 memrefs_conflict_p cares about, they will both canonicalize to
2176 expressions that have the same base VALUE.
2177
2178 The use of VALUEs as canonical base addresses enables the canonical
2179 RTXs to remain unchanged globally, if they resolve to a constant,
2180 or throughout a basic block otherwise, so that they can be cached
2181 and the cache needs not be invalidated when REGs, MEMs or such
2182 change. */
2183
2184 static rtx
2185 vt_canonicalize_addr (dataflow_set *set, rtx oloc)
2186 {
2187 poly_int64 ofst = 0, term;
2188 machine_mode mode = GET_MODE (oloc);
2189 rtx loc = oloc;
2190 rtx x;
2191 bool retry = true;
2192
2193 while (retry)
2194 {
2195 while (GET_CODE (loc) == PLUS
2196 && poly_int_rtx_p (XEXP (loc, 1), &term))
2197 {
2198 ofst += term;
2199 loc = XEXP (loc, 0);
2200 }
2201
2202 /* Alignment operations can't normally be combined, so just
2203 canonicalize the base and we're done. We'll normally have
2204 only one stack alignment anyway. */
2205 if (GET_CODE (loc) == AND
2206 && GET_CODE (XEXP (loc, 1)) == CONST_INT
2207 && negative_power_of_two_p (INTVAL (XEXP (loc, 1))))
2208 {
2209 x = vt_canonicalize_addr (set, XEXP (loc, 0));
2210 if (x != XEXP (loc, 0))
2211 loc = gen_rtx_AND (mode, x, XEXP (loc, 1));
2212 retry = false;
2213 }
2214
2215 if (GET_CODE (loc) == VALUE)
2216 {
2217 if (set)
2218 loc = get_addr_from_local_cache (set, loc);
2219 else
2220 loc = get_addr_from_global_cache (loc);
2221
2222 /* Consolidate plus_constants. */
2223 while (maybe_ne (ofst, 0)
2224 && GET_CODE (loc) == PLUS
2225 && poly_int_rtx_p (XEXP (loc, 1), &term))
2226 {
2227 ofst += term;
2228 loc = XEXP (loc, 0);
2229 }
2230
2231 retry = false;
2232 }
2233 else
2234 {
2235 x = canon_rtx (loc);
2236 if (retry)
2237 retry = (x != loc);
2238 loc = x;
2239 }
2240 }
2241
2242 /* Add OFST back in. */
2243 if (maybe_ne (ofst, 0))
2244 {
2245 /* Don't build new RTL if we can help it. */
2246 if (strip_offset (oloc, &term) == loc && known_eq (term, ofst))
2247 return oloc;
2248
2249 loc = plus_constant (mode, loc, ofst);
2250 }
2251
2252 return loc;
2253 }
2254
2255 /* Return true iff there's a true dependence between MLOC and LOC.
2256 MADDR must be a canonicalized version of MLOC's address. */
2257
2258 static inline bool
2259 vt_canon_true_dep (dataflow_set *set, rtx mloc, rtx maddr, rtx loc)
2260 {
2261 if (GET_CODE (loc) != MEM)
2262 return false;
2263
2264 rtx addr = vt_canonicalize_addr (set, XEXP (loc, 0));
2265 if (!canon_true_dependence (mloc, GET_MODE (mloc), maddr, loc, addr))
2266 return false;
2267
2268 return true;
2269 }
2270
2271 /* Hold parameters for the hashtab traversal function
2272 drop_overlapping_mem_locs, see below. */
2273
2274 struct overlapping_mems
2275 {
2276 dataflow_set *set;
2277 rtx loc, addr;
2278 };
2279
2280 /* Remove all MEMs that overlap with COMS->LOC from the location list
2281 of a hash table entry for a onepart variable. COMS->ADDR must be a
2282 canonicalized form of COMS->LOC's address, and COMS->LOC must be
2283 canonicalized itself. */
2284
2285 int
2286 drop_overlapping_mem_locs (variable **slot, overlapping_mems *coms)
2287 {
2288 dataflow_set *set = coms->set;
2289 rtx mloc = coms->loc, addr = coms->addr;
2290 variable *var = *slot;
2291
2292 if (var->onepart != NOT_ONEPART)
2293 {
2294 location_chain *loc, **locp;
2295 bool changed = false;
2296 rtx cur_loc;
2297
2298 gcc_assert (var->n_var_parts == 1);
2299
2300 if (shared_var_p (var, set->vars))
2301 {
2302 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
2303 if (vt_canon_true_dep (set, mloc, addr, loc->loc))
2304 break;
2305
2306 if (!loc)
2307 return 1;
2308
2309 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
2310 var = *slot;
2311 gcc_assert (var->n_var_parts == 1);
2312 }
2313
2314 if (VAR_LOC_1PAUX (var))
2315 cur_loc = VAR_LOC_FROM (var);
2316 else
2317 cur_loc = var->var_part[0].cur_loc;
2318
2319 for (locp = &var->var_part[0].loc_chain, loc = *locp;
2320 loc; loc = *locp)
2321 {
2322 if (!vt_canon_true_dep (set, mloc, addr, loc->loc))
2323 {
2324 locp = &loc->next;
2325 continue;
2326 }
2327
2328 *locp = loc->next;
2329 /* If we have deleted the location which was last emitted
2330 we have to emit new location so add the variable to set
2331 of changed variables. */
2332 if (cur_loc == loc->loc)
2333 {
2334 changed = true;
2335 var->var_part[0].cur_loc = NULL;
2336 if (VAR_LOC_1PAUX (var))
2337 VAR_LOC_FROM (var) = NULL;
2338 }
2339 delete loc;
2340 }
2341
2342 if (!var->var_part[0].loc_chain)
2343 {
2344 var->n_var_parts--;
2345 changed = true;
2346 }
2347 if (changed)
2348 variable_was_changed (var, set);
2349 }
2350
2351 return 1;
2352 }
2353
2354 /* Remove from SET all VALUE bindings to MEMs that overlap with LOC. */
2355
2356 static void
2357 clobber_overlapping_mems (dataflow_set *set, rtx loc)
2358 {
2359 struct overlapping_mems coms;
2360
2361 gcc_checking_assert (GET_CODE (loc) == MEM);
2362
2363 coms.set = set;
2364 coms.loc = canon_rtx (loc);
2365 coms.addr = vt_canonicalize_addr (set, XEXP (loc, 0));
2366
2367 set->traversed_vars = set->vars;
2368 shared_hash_htab (set->vars)
2369 ->traverse <overlapping_mems*, drop_overlapping_mem_locs> (&coms);
2370 set->traversed_vars = NULL;
2371 }
2372
2373 /* Set the location of DV, OFFSET as the MEM LOC. */
2374
2375 static void
2376 var_mem_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
2377 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
2378 enum insert_option iopt)
2379 {
2380 if (dv_is_decl_p (dv))
2381 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
2382
2383 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
2384 }
2385
2386 /* Set the location part of variable MEM_EXPR (LOC) in dataflow set
2387 SET to LOC.
2388 Adjust the address first if it is stack pointer based. */
2389
2390 static void
2391 var_mem_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
2392 rtx set_src)
2393 {
2394 tree decl = MEM_EXPR (loc);
2395 HOST_WIDE_INT offset = int_mem_offset (loc);
2396
2397 var_mem_decl_set (set, loc, initialized,
2398 dv_from_decl (decl), offset, set_src, INSERT);
2399 }
2400
2401 /* Delete and set the location part of variable MEM_EXPR (LOC) in
2402 dataflow set SET to LOC. If MODIFY is true, any other live copies
2403 of the same variable part are also deleted from the dataflow set,
2404 otherwise the variable part is assumed to be copied from another
2405 location holding the same part.
2406 Adjust the address first if it is stack pointer based. */
2407
2408 static void
2409 var_mem_delete_and_set (dataflow_set *set, rtx loc, bool modify,
2410 enum var_init_status initialized, rtx set_src)
2411 {
2412 tree decl = MEM_EXPR (loc);
2413 HOST_WIDE_INT offset = int_mem_offset (loc);
2414
2415 clobber_overlapping_mems (set, loc);
2416 decl = var_debug_decl (decl);
2417
2418 if (initialized == VAR_INIT_STATUS_UNKNOWN)
2419 initialized = get_init_value (set, loc, dv_from_decl (decl));
2420
2421 if (modify)
2422 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, set_src);
2423 var_mem_set (set, loc, initialized, set_src);
2424 }
2425
2426 /* Delete the location part LOC from dataflow set SET. If CLOBBER is
2427 true, also delete any other live copies of the same variable part.
2428 Adjust the address first if it is stack pointer based. */
2429
2430 static void
2431 var_mem_delete (dataflow_set *set, rtx loc, bool clobber)
2432 {
2433 tree decl = MEM_EXPR (loc);
2434 HOST_WIDE_INT offset = int_mem_offset (loc);
2435
2436 clobber_overlapping_mems (set, loc);
2437 decl = var_debug_decl (decl);
2438 if (clobber)
2439 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
2440 delete_variable_part (set, loc, dv_from_decl (decl), offset);
2441 }
2442
2443 /* Return true if LOC should not be expanded for location expressions,
2444 or used in them. */
2445
2446 static inline bool
2447 unsuitable_loc (rtx loc)
2448 {
2449 switch (GET_CODE (loc))
2450 {
2451 case PC:
2452 case SCRATCH:
2453 case CC0:
2454 case ASM_INPUT:
2455 case ASM_OPERANDS:
2456 return true;
2457
2458 default:
2459 return false;
2460 }
2461 }
2462
2463 /* Bind VAL to LOC in SET. If MODIFIED, detach LOC from any values
2464 bound to it. */
2465
2466 static inline void
2467 val_bind (dataflow_set *set, rtx val, rtx loc, bool modified)
2468 {
2469 if (REG_P (loc))
2470 {
2471 if (modified)
2472 var_regno_delete (set, REGNO (loc));
2473 var_reg_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2474 dv_from_value (val), 0, NULL_RTX, INSERT);
2475 }
2476 else if (MEM_P (loc))
2477 {
2478 struct elt_loc_list *l = CSELIB_VAL_PTR (val)->locs;
2479
2480 if (modified)
2481 clobber_overlapping_mems (set, loc);
2482
2483 if (l && GET_CODE (l->loc) == VALUE)
2484 l = canonical_cselib_val (CSELIB_VAL_PTR (l->loc))->locs;
2485
2486 /* If this MEM is a global constant, we don't need it in the
2487 dynamic tables. ??? We should test this before emitting the
2488 micro-op in the first place. */
2489 while (l)
2490 if (GET_CODE (l->loc) == MEM && XEXP (l->loc, 0) == XEXP (loc, 0))
2491 break;
2492 else
2493 l = l->next;
2494
2495 if (!l)
2496 var_mem_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2497 dv_from_value (val), 0, NULL_RTX, INSERT);
2498 }
2499 else
2500 {
2501 /* Other kinds of equivalences are necessarily static, at least
2502 so long as we do not perform substitutions while merging
2503 expressions. */
2504 gcc_unreachable ();
2505 set_variable_part (set, loc, dv_from_value (val), 0,
2506 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2507 }
2508 }
2509
2510 /* Bind a value to a location it was just stored in. If MODIFIED
2511 holds, assume the location was modified, detaching it from any
2512 values bound to it. */
2513
2514 static void
2515 val_store (dataflow_set *set, rtx val, rtx loc, rtx_insn *insn,
2516 bool modified)
2517 {
2518 cselib_val *v = CSELIB_VAL_PTR (val);
2519
2520 gcc_assert (cselib_preserved_value_p (v));
2521
2522 if (dump_file)
2523 {
2524 fprintf (dump_file, "%i: ", insn ? INSN_UID (insn) : 0);
2525 print_inline_rtx (dump_file, loc, 0);
2526 fprintf (dump_file, " evaluates to ");
2527 print_inline_rtx (dump_file, val, 0);
2528 if (v->locs)
2529 {
2530 struct elt_loc_list *l;
2531 for (l = v->locs; l; l = l->next)
2532 {
2533 fprintf (dump_file, "\n%i: ", INSN_UID (l->setting_insn));
2534 print_inline_rtx (dump_file, l->loc, 0);
2535 }
2536 }
2537 fprintf (dump_file, "\n");
2538 }
2539
2540 gcc_checking_assert (!unsuitable_loc (loc));
2541
2542 val_bind (set, val, loc, modified);
2543 }
2544
2545 /* Clear (canonical address) slots that reference X. */
2546
2547 bool
2548 local_get_addr_clear_given_value (rtx const &, rtx *slot, rtx x)
2549 {
2550 if (vt_get_canonicalize_base (*slot) == x)
2551 *slot = NULL;
2552 return true;
2553 }
2554
2555 /* Reset this node, detaching all its equivalences. Return the slot
2556 in the variable hash table that holds dv, if there is one. */
2557
2558 static void
2559 val_reset (dataflow_set *set, decl_or_value dv)
2560 {
2561 variable *var = shared_hash_find (set->vars, dv) ;
2562 location_chain *node;
2563 rtx cval;
2564
2565 if (!var || !var->n_var_parts)
2566 return;
2567
2568 gcc_assert (var->n_var_parts == 1);
2569
2570 if (var->onepart == ONEPART_VALUE)
2571 {
2572 rtx x = dv_as_value (dv);
2573
2574 /* Relationships in the global cache don't change, so reset the
2575 local cache entry only. */
2576 rtx *slot = local_get_addr_cache->get (x);
2577 if (slot)
2578 {
2579 /* If the value resolved back to itself, odds are that other
2580 values may have cached it too. These entries now refer
2581 to the old X, so detach them too. Entries that used the
2582 old X but resolved to something else remain ok as long as
2583 that something else isn't also reset. */
2584 if (*slot == x)
2585 local_get_addr_cache
2586 ->traverse<rtx, local_get_addr_clear_given_value> (x);
2587 *slot = NULL;
2588 }
2589 }
2590
2591 cval = NULL;
2592 for (node = var->var_part[0].loc_chain; node; node = node->next)
2593 if (GET_CODE (node->loc) == VALUE
2594 && canon_value_cmp (node->loc, cval))
2595 cval = node->loc;
2596
2597 for (node = var->var_part[0].loc_chain; node; node = node->next)
2598 if (GET_CODE (node->loc) == VALUE && cval != node->loc)
2599 {
2600 /* Redirect the equivalence link to the new canonical
2601 value, or simply remove it if it would point at
2602 itself. */
2603 if (cval)
2604 set_variable_part (set, cval, dv_from_value (node->loc),
2605 0, node->init, node->set_src, NO_INSERT);
2606 delete_variable_part (set, dv_as_value (dv),
2607 dv_from_value (node->loc), 0);
2608 }
2609
2610 if (cval)
2611 {
2612 decl_or_value cdv = dv_from_value (cval);
2613
2614 /* Keep the remaining values connected, accumulating links
2615 in the canonical value. */
2616 for (node = var->var_part[0].loc_chain; node; node = node->next)
2617 {
2618 if (node->loc == cval)
2619 continue;
2620 else if (GET_CODE (node->loc) == REG)
2621 var_reg_decl_set (set, node->loc, node->init, cdv, 0,
2622 node->set_src, NO_INSERT);
2623 else if (GET_CODE (node->loc) == MEM)
2624 var_mem_decl_set (set, node->loc, node->init, cdv, 0,
2625 node->set_src, NO_INSERT);
2626 else
2627 set_variable_part (set, node->loc, cdv, 0,
2628 node->init, node->set_src, NO_INSERT);
2629 }
2630 }
2631
2632 /* We remove this last, to make sure that the canonical value is not
2633 removed to the point of requiring reinsertion. */
2634 if (cval)
2635 delete_variable_part (set, dv_as_value (dv), dv_from_value (cval), 0);
2636
2637 clobber_variable_part (set, NULL, dv, 0, NULL);
2638 }
2639
2640 /* Find the values in a given location and map the val to another
2641 value, if it is unique, or add the location as one holding the
2642 value. */
2643
2644 static void
2645 val_resolve (dataflow_set *set, rtx val, rtx loc, rtx_insn *insn)
2646 {
2647 decl_or_value dv = dv_from_value (val);
2648
2649 if (dump_file && (dump_flags & TDF_DETAILS))
2650 {
2651 if (insn)
2652 fprintf (dump_file, "%i: ", INSN_UID (insn));
2653 else
2654 fprintf (dump_file, "head: ");
2655 print_inline_rtx (dump_file, val, 0);
2656 fputs (" is at ", dump_file);
2657 print_inline_rtx (dump_file, loc, 0);
2658 fputc ('\n', dump_file);
2659 }
2660
2661 val_reset (set, dv);
2662
2663 gcc_checking_assert (!unsuitable_loc (loc));
2664
2665 if (REG_P (loc))
2666 {
2667 attrs *node, *found = NULL;
2668
2669 for (node = set->regs[REGNO (loc)]; node; node = node->next)
2670 if (dv_is_value_p (node->dv)
2671 && GET_MODE (dv_as_value (node->dv)) == GET_MODE (loc))
2672 {
2673 found = node;
2674
2675 /* Map incoming equivalences. ??? Wouldn't it be nice if
2676 we just started sharing the location lists? Maybe a
2677 circular list ending at the value itself or some
2678 such. */
2679 set_variable_part (set, dv_as_value (node->dv),
2680 dv_from_value (val), node->offset,
2681 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2682 set_variable_part (set, val, node->dv, node->offset,
2683 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2684 }
2685
2686 /* If we didn't find any equivalence, we need to remember that
2687 this value is held in the named register. */
2688 if (found)
2689 return;
2690 }
2691 /* ??? Attempt to find and merge equivalent MEMs or other
2692 expressions too. */
2693
2694 val_bind (set, val, loc, false);
2695 }
2696
2697 /* Initialize dataflow set SET to be empty.
2698 VARS_SIZE is the initial size of hash table VARS. */
2699
2700 static void
2701 dataflow_set_init (dataflow_set *set)
2702 {
2703 init_attrs_list_set (set->regs);
2704 set->vars = shared_hash_copy (empty_shared_hash);
2705 set->stack_adjust = 0;
2706 set->traversed_vars = NULL;
2707 }
2708
2709 /* Delete the contents of dataflow set SET. */
2710
2711 static void
2712 dataflow_set_clear (dataflow_set *set)
2713 {
2714 int i;
2715
2716 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2717 attrs_list_clear (&set->regs[i]);
2718
2719 shared_hash_destroy (set->vars);
2720 set->vars = shared_hash_copy (empty_shared_hash);
2721 }
2722
2723 /* Copy the contents of dataflow set SRC to DST. */
2724
2725 static void
2726 dataflow_set_copy (dataflow_set *dst, dataflow_set *src)
2727 {
2728 int i;
2729
2730 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2731 attrs_list_copy (&dst->regs[i], src->regs[i]);
2732
2733 shared_hash_destroy (dst->vars);
2734 dst->vars = shared_hash_copy (src->vars);
2735 dst->stack_adjust = src->stack_adjust;
2736 }
2737
2738 /* Information for merging lists of locations for a given offset of variable.
2739 */
2740 struct variable_union_info
2741 {
2742 /* Node of the location chain. */
2743 location_chain *lc;
2744
2745 /* The sum of positions in the input chains. */
2746 int pos;
2747
2748 /* The position in the chain of DST dataflow set. */
2749 int pos_dst;
2750 };
2751
2752 /* Buffer for location list sorting and its allocated size. */
2753 static struct variable_union_info *vui_vec;
2754 static int vui_allocated;
2755
2756 /* Compare function for qsort, order the structures by POS element. */
2757
2758 static int
2759 variable_union_info_cmp_pos (const void *n1, const void *n2)
2760 {
2761 const struct variable_union_info *const i1 =
2762 (const struct variable_union_info *) n1;
2763 const struct variable_union_info *const i2 =
2764 ( const struct variable_union_info *) n2;
2765
2766 if (i1->pos != i2->pos)
2767 return i1->pos - i2->pos;
2768
2769 return (i1->pos_dst - i2->pos_dst);
2770 }
2771
2772 /* Compute union of location parts of variable *SLOT and the same variable
2773 from hash table DATA. Compute "sorted" union of the location chains
2774 for common offsets, i.e. the locations of a variable part are sorted by
2775 a priority where the priority is the sum of the positions in the 2 chains
2776 (if a location is only in one list the position in the second list is
2777 defined to be larger than the length of the chains).
2778 When we are updating the location parts the newest location is in the
2779 beginning of the chain, so when we do the described "sorted" union
2780 we keep the newest locations in the beginning. */
2781
2782 static int
2783 variable_union (variable *src, dataflow_set *set)
2784 {
2785 variable *dst;
2786 variable **dstp;
2787 int i, j, k;
2788
2789 dstp = shared_hash_find_slot (set->vars, src->dv);
2790 if (!dstp || !*dstp)
2791 {
2792 src->refcount++;
2793
2794 dst_can_be_shared = false;
2795 if (!dstp)
2796 dstp = shared_hash_find_slot_unshare (&set->vars, src->dv, INSERT);
2797
2798 *dstp = src;
2799
2800 /* Continue traversing the hash table. */
2801 return 1;
2802 }
2803 else
2804 dst = *dstp;
2805
2806 gcc_assert (src->n_var_parts);
2807 gcc_checking_assert (src->onepart == dst->onepart);
2808
2809 /* We can combine one-part variables very efficiently, because their
2810 entries are in canonical order. */
2811 if (src->onepart)
2812 {
2813 location_chain **nodep, *dnode, *snode;
2814
2815 gcc_assert (src->n_var_parts == 1
2816 && dst->n_var_parts == 1);
2817
2818 snode = src->var_part[0].loc_chain;
2819 gcc_assert (snode);
2820
2821 restart_onepart_unshared:
2822 nodep = &dst->var_part[0].loc_chain;
2823 dnode = *nodep;
2824 gcc_assert (dnode);
2825
2826 while (snode)
2827 {
2828 int r = dnode ? loc_cmp (dnode->loc, snode->loc) : 1;
2829
2830 if (r > 0)
2831 {
2832 location_chain *nnode;
2833
2834 if (shared_var_p (dst, set->vars))
2835 {
2836 dstp = unshare_variable (set, dstp, dst,
2837 VAR_INIT_STATUS_INITIALIZED);
2838 dst = *dstp;
2839 goto restart_onepart_unshared;
2840 }
2841
2842 *nodep = nnode = new location_chain;
2843 nnode->loc = snode->loc;
2844 nnode->init = snode->init;
2845 if (!snode->set_src || MEM_P (snode->set_src))
2846 nnode->set_src = NULL;
2847 else
2848 nnode->set_src = snode->set_src;
2849 nnode->next = dnode;
2850 dnode = nnode;
2851 }
2852 else if (r == 0)
2853 gcc_checking_assert (rtx_equal_p (dnode->loc, snode->loc));
2854
2855 if (r >= 0)
2856 snode = snode->next;
2857
2858 nodep = &dnode->next;
2859 dnode = *nodep;
2860 }
2861
2862 return 1;
2863 }
2864
2865 gcc_checking_assert (!src->onepart);
2866
2867 /* Count the number of location parts, result is K. */
2868 for (i = 0, j = 0, k = 0;
2869 i < src->n_var_parts && j < dst->n_var_parts; k++)
2870 {
2871 if (VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
2872 {
2873 i++;
2874 j++;
2875 }
2876 else if (VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
2877 i++;
2878 else
2879 j++;
2880 }
2881 k += src->n_var_parts - i;
2882 k += dst->n_var_parts - j;
2883
2884 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
2885 thus there are at most MAX_VAR_PARTS different offsets. */
2886 gcc_checking_assert (dst->onepart ? k == 1 : k <= MAX_VAR_PARTS);
2887
2888 if (dst->n_var_parts != k && shared_var_p (dst, set->vars))
2889 {
2890 dstp = unshare_variable (set, dstp, dst, VAR_INIT_STATUS_UNKNOWN);
2891 dst = *dstp;
2892 }
2893
2894 i = src->n_var_parts - 1;
2895 j = dst->n_var_parts - 1;
2896 dst->n_var_parts = k;
2897
2898 for (k--; k >= 0; k--)
2899 {
2900 location_chain *node, *node2;
2901
2902 if (i >= 0 && j >= 0
2903 && VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
2904 {
2905 /* Compute the "sorted" union of the chains, i.e. the locations which
2906 are in both chains go first, they are sorted by the sum of
2907 positions in the chains. */
2908 int dst_l, src_l;
2909 int ii, jj, n;
2910 struct variable_union_info *vui;
2911
2912 /* If DST is shared compare the location chains.
2913 If they are different we will modify the chain in DST with
2914 high probability so make a copy of DST. */
2915 if (shared_var_p (dst, set->vars))
2916 {
2917 for (node = src->var_part[i].loc_chain,
2918 node2 = dst->var_part[j].loc_chain; node && node2;
2919 node = node->next, node2 = node2->next)
2920 {
2921 if (!((REG_P (node2->loc)
2922 && REG_P (node->loc)
2923 && REGNO (node2->loc) == REGNO (node->loc))
2924 || rtx_equal_p (node2->loc, node->loc)))
2925 {
2926 if (node2->init < node->init)
2927 node2->init = node->init;
2928 break;
2929 }
2930 }
2931 if (node || node2)
2932 {
2933 dstp = unshare_variable (set, dstp, dst,
2934 VAR_INIT_STATUS_UNKNOWN);
2935 dst = (variable *)*dstp;
2936 }
2937 }
2938
2939 src_l = 0;
2940 for (node = src->var_part[i].loc_chain; node; node = node->next)
2941 src_l++;
2942 dst_l = 0;
2943 for (node = dst->var_part[j].loc_chain; node; node = node->next)
2944 dst_l++;
2945
2946 if (dst_l == 1)
2947 {
2948 /* The most common case, much simpler, no qsort is needed. */
2949 location_chain *dstnode = dst->var_part[j].loc_chain;
2950 dst->var_part[k].loc_chain = dstnode;
2951 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (dst, j);
2952 node2 = dstnode;
2953 for (node = src->var_part[i].loc_chain; node; node = node->next)
2954 if (!((REG_P (dstnode->loc)
2955 && REG_P (node->loc)
2956 && REGNO (dstnode->loc) == REGNO (node->loc))
2957 || rtx_equal_p (dstnode->loc, node->loc)))
2958 {
2959 location_chain *new_node;
2960
2961 /* Copy the location from SRC. */
2962 new_node = new location_chain;
2963 new_node->loc = node->loc;
2964 new_node->init = node->init;
2965 if (!node->set_src || MEM_P (node->set_src))
2966 new_node->set_src = NULL;
2967 else
2968 new_node->set_src = node->set_src;
2969 node2->next = new_node;
2970 node2 = new_node;
2971 }
2972 node2->next = NULL;
2973 }
2974 else
2975 {
2976 if (src_l + dst_l > vui_allocated)
2977 {
2978 vui_allocated = MAX (vui_allocated * 2, src_l + dst_l);
2979 vui_vec = XRESIZEVEC (struct variable_union_info, vui_vec,
2980 vui_allocated);
2981 }
2982 vui = vui_vec;
2983
2984 /* Fill in the locations from DST. */
2985 for (node = dst->var_part[j].loc_chain, jj = 0; node;
2986 node = node->next, jj++)
2987 {
2988 vui[jj].lc = node;
2989 vui[jj].pos_dst = jj;
2990
2991 /* Pos plus value larger than a sum of 2 valid positions. */
2992 vui[jj].pos = jj + src_l + dst_l;
2993 }
2994
2995 /* Fill in the locations from SRC. */
2996 n = dst_l;
2997 for (node = src->var_part[i].loc_chain, ii = 0; node;
2998 node = node->next, ii++)
2999 {
3000 /* Find location from NODE. */
3001 for (jj = 0; jj < dst_l; jj++)
3002 {
3003 if ((REG_P (vui[jj].lc->loc)
3004 && REG_P (node->loc)
3005 && REGNO (vui[jj].lc->loc) == REGNO (node->loc))
3006 || rtx_equal_p (vui[jj].lc->loc, node->loc))
3007 {
3008 vui[jj].pos = jj + ii;
3009 break;
3010 }
3011 }
3012 if (jj >= dst_l) /* The location has not been found. */
3013 {
3014 location_chain *new_node;
3015
3016 /* Copy the location from SRC. */
3017 new_node = new location_chain;
3018 new_node->loc = node->loc;
3019 new_node->init = node->init;
3020 if (!node->set_src || MEM_P (node->set_src))
3021 new_node->set_src = NULL;
3022 else
3023 new_node->set_src = node->set_src;
3024 vui[n].lc = new_node;
3025 vui[n].pos_dst = src_l + dst_l;
3026 vui[n].pos = ii + src_l + dst_l;
3027 n++;
3028 }
3029 }
3030
3031 if (dst_l == 2)
3032 {
3033 /* Special case still very common case. For dst_l == 2
3034 all entries dst_l ... n-1 are sorted, with for i >= dst_l
3035 vui[i].pos == i + src_l + dst_l. */
3036 if (vui[0].pos > vui[1].pos)
3037 {
3038 /* Order should be 1, 0, 2... */
3039 dst->var_part[k].loc_chain = vui[1].lc;
3040 vui[1].lc->next = vui[0].lc;
3041 if (n >= 3)
3042 {
3043 vui[0].lc->next = vui[2].lc;
3044 vui[n - 1].lc->next = NULL;
3045 }
3046 else
3047 vui[0].lc->next = NULL;
3048 ii = 3;
3049 }
3050 else
3051 {
3052 dst->var_part[k].loc_chain = vui[0].lc;
3053 if (n >= 3 && vui[2].pos < vui[1].pos)
3054 {
3055 /* Order should be 0, 2, 1, 3... */
3056 vui[0].lc->next = vui[2].lc;
3057 vui[2].lc->next = vui[1].lc;
3058 if (n >= 4)
3059 {
3060 vui[1].lc->next = vui[3].lc;
3061 vui[n - 1].lc->next = NULL;
3062 }
3063 else
3064 vui[1].lc->next = NULL;
3065 ii = 4;
3066 }
3067 else
3068 {
3069 /* Order should be 0, 1, 2... */
3070 ii = 1;
3071 vui[n - 1].lc->next = NULL;
3072 }
3073 }
3074 for (; ii < n; ii++)
3075 vui[ii - 1].lc->next = vui[ii].lc;
3076 }
3077 else
3078 {
3079 qsort (vui, n, sizeof (struct variable_union_info),
3080 variable_union_info_cmp_pos);
3081
3082 /* Reconnect the nodes in sorted order. */
3083 for (ii = 1; ii < n; ii++)
3084 vui[ii - 1].lc->next = vui[ii].lc;
3085 vui[n - 1].lc->next = NULL;
3086 dst->var_part[k].loc_chain = vui[0].lc;
3087 }
3088
3089 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (dst, j);
3090 }
3091 i--;
3092 j--;
3093 }
3094 else if ((i >= 0 && j >= 0
3095 && VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
3096 || i < 0)
3097 {
3098 dst->var_part[k] = dst->var_part[j];
3099 j--;
3100 }
3101 else if ((i >= 0 && j >= 0
3102 && VAR_PART_OFFSET (src, i) > VAR_PART_OFFSET (dst, j))
3103 || j < 0)
3104 {
3105 location_chain **nextp;
3106
3107 /* Copy the chain from SRC. */
3108 nextp = &dst->var_part[k].loc_chain;
3109 for (node = src->var_part[i].loc_chain; node; node = node->next)
3110 {
3111 location_chain *new_lc;
3112
3113 new_lc = new location_chain;
3114 new_lc->next = NULL;
3115 new_lc->init = node->init;
3116 if (!node->set_src || MEM_P (node->set_src))
3117 new_lc->set_src = NULL;
3118 else
3119 new_lc->set_src = node->set_src;
3120 new_lc->loc = node->loc;
3121
3122 *nextp = new_lc;
3123 nextp = &new_lc->next;
3124 }
3125
3126 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (src, i);
3127 i--;
3128 }
3129 dst->var_part[k].cur_loc = NULL;
3130 }
3131
3132 if (flag_var_tracking_uninit)
3133 for (i = 0; i < src->n_var_parts && i < dst->n_var_parts; i++)
3134 {
3135 location_chain *node, *node2;
3136 for (node = src->var_part[i].loc_chain; node; node = node->next)
3137 for (node2 = dst->var_part[i].loc_chain; node2; node2 = node2->next)
3138 if (rtx_equal_p (node->loc, node2->loc))
3139 {
3140 if (node->init > node2->init)
3141 node2->init = node->init;
3142 }
3143 }
3144
3145 /* Continue traversing the hash table. */
3146 return 1;
3147 }
3148
3149 /* Compute union of dataflow sets SRC and DST and store it to DST. */
3150
3151 static void
3152 dataflow_set_union (dataflow_set *dst, dataflow_set *src)
3153 {
3154 int i;
3155
3156 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3157 attrs_list_union (&dst->regs[i], src->regs[i]);
3158
3159 if (dst->vars == empty_shared_hash)
3160 {
3161 shared_hash_destroy (dst->vars);
3162 dst->vars = shared_hash_copy (src->vars);
3163 }
3164 else
3165 {
3166 variable_iterator_type hi;
3167 variable *var;
3168
3169 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (src->vars),
3170 var, variable, hi)
3171 variable_union (var, dst);
3172 }
3173 }
3174
3175 /* Whether the value is currently being expanded. */
3176 #define VALUE_RECURSED_INTO(x) \
3177 (RTL_FLAG_CHECK2 ("VALUE_RECURSED_INTO", (x), VALUE, DEBUG_EXPR)->used)
3178
3179 /* Whether no expansion was found, saving useless lookups.
3180 It must only be set when VALUE_CHANGED is clear. */
3181 #define NO_LOC_P(x) \
3182 (RTL_FLAG_CHECK2 ("NO_LOC_P", (x), VALUE, DEBUG_EXPR)->return_val)
3183
3184 /* Whether cur_loc in the value needs to be (re)computed. */
3185 #define VALUE_CHANGED(x) \
3186 (RTL_FLAG_CHECK1 ("VALUE_CHANGED", (x), VALUE)->frame_related)
3187 /* Whether cur_loc in the decl needs to be (re)computed. */
3188 #define DECL_CHANGED(x) TREE_VISITED (x)
3189
3190 /* Record (if NEWV) that DV needs to have its cur_loc recomputed. For
3191 user DECLs, this means they're in changed_variables. Values and
3192 debug exprs may be left with this flag set if no user variable
3193 requires them to be evaluated. */
3194
3195 static inline void
3196 set_dv_changed (decl_or_value dv, bool newv)
3197 {
3198 switch (dv_onepart_p (dv))
3199 {
3200 case ONEPART_VALUE:
3201 if (newv)
3202 NO_LOC_P (dv_as_value (dv)) = false;
3203 VALUE_CHANGED (dv_as_value (dv)) = newv;
3204 break;
3205
3206 case ONEPART_DEXPR:
3207 if (newv)
3208 NO_LOC_P (DECL_RTL_KNOWN_SET (dv_as_decl (dv))) = false;
3209 /* Fall through. */
3210
3211 default:
3212 DECL_CHANGED (dv_as_decl (dv)) = newv;
3213 break;
3214 }
3215 }
3216
3217 /* Return true if DV needs to have its cur_loc recomputed. */
3218
3219 static inline bool
3220 dv_changed_p (decl_or_value dv)
3221 {
3222 return (dv_is_value_p (dv)
3223 ? VALUE_CHANGED (dv_as_value (dv))
3224 : DECL_CHANGED (dv_as_decl (dv)));
3225 }
3226
3227 /* Return a location list node whose loc is rtx_equal to LOC, in the
3228 location list of a one-part variable or value VAR, or in that of
3229 any values recursively mentioned in the location lists. VARS must
3230 be in star-canonical form. */
3231
3232 static location_chain *
3233 find_loc_in_1pdv (rtx loc, variable *var, variable_table_type *vars)
3234 {
3235 location_chain *node;
3236 enum rtx_code loc_code;
3237
3238 if (!var)
3239 return NULL;
3240
3241 gcc_checking_assert (var->onepart);
3242
3243 if (!var->n_var_parts)
3244 return NULL;
3245
3246 gcc_checking_assert (loc != dv_as_opaque (var->dv));
3247
3248 loc_code = GET_CODE (loc);
3249 for (node = var->var_part[0].loc_chain; node; node = node->next)
3250 {
3251 decl_or_value dv;
3252 variable *rvar;
3253
3254 if (GET_CODE (node->loc) != loc_code)
3255 {
3256 if (GET_CODE (node->loc) != VALUE)
3257 continue;
3258 }
3259 else if (loc == node->loc)
3260 return node;
3261 else if (loc_code != VALUE)
3262 {
3263 if (rtx_equal_p (loc, node->loc))
3264 return node;
3265 continue;
3266 }
3267
3268 /* Since we're in star-canonical form, we don't need to visit
3269 non-canonical nodes: one-part variables and non-canonical
3270 values would only point back to the canonical node. */
3271 if (dv_is_value_p (var->dv)
3272 && !canon_value_cmp (node->loc, dv_as_value (var->dv)))
3273 {
3274 /* Skip all subsequent VALUEs. */
3275 while (node->next && GET_CODE (node->next->loc) == VALUE)
3276 {
3277 node = node->next;
3278 gcc_checking_assert (!canon_value_cmp (node->loc,
3279 dv_as_value (var->dv)));
3280 if (loc == node->loc)
3281 return node;
3282 }
3283 continue;
3284 }
3285
3286 gcc_checking_assert (node == var->var_part[0].loc_chain);
3287 gcc_checking_assert (!node->next);
3288
3289 dv = dv_from_value (node->loc);
3290 rvar = vars->find_with_hash (dv, dv_htab_hash (dv));
3291 return find_loc_in_1pdv (loc, rvar, vars);
3292 }
3293
3294 /* ??? Gotta look in cselib_val locations too. */
3295
3296 return NULL;
3297 }
3298
3299 /* Hash table iteration argument passed to variable_merge. */
3300 struct dfset_merge
3301 {
3302 /* The set in which the merge is to be inserted. */
3303 dataflow_set *dst;
3304 /* The set that we're iterating in. */
3305 dataflow_set *cur;
3306 /* The set that may contain the other dv we are to merge with. */
3307 dataflow_set *src;
3308 /* Number of onepart dvs in src. */
3309 int src_onepart_cnt;
3310 };
3311
3312 /* Insert LOC in *DNODE, if it's not there yet. The list must be in
3313 loc_cmp order, and it is maintained as such. */
3314
3315 static void
3316 insert_into_intersection (location_chain **nodep, rtx loc,
3317 enum var_init_status status)
3318 {
3319 location_chain *node;
3320 int r;
3321
3322 for (node = *nodep; node; nodep = &node->next, node = *nodep)
3323 if ((r = loc_cmp (node->loc, loc)) == 0)
3324 {
3325 node->init = MIN (node->init, status);
3326 return;
3327 }
3328 else if (r > 0)
3329 break;
3330
3331 node = new location_chain;
3332
3333 node->loc = loc;
3334 node->set_src = NULL;
3335 node->init = status;
3336 node->next = *nodep;
3337 *nodep = node;
3338 }
3339
3340 /* Insert in DEST the intersection of the locations present in both
3341 S1NODE and S2VAR, directly or indirectly. S1NODE is from a
3342 variable in DSM->cur, whereas S2VAR is from DSM->src. dvar is in
3343 DSM->dst. */
3344
3345 static void
3346 intersect_loc_chains (rtx val, location_chain **dest, struct dfset_merge *dsm,
3347 location_chain *s1node, variable *s2var)
3348 {
3349 dataflow_set *s1set = dsm->cur;
3350 dataflow_set *s2set = dsm->src;
3351 location_chain *found;
3352
3353 if (s2var)
3354 {
3355 location_chain *s2node;
3356
3357 gcc_checking_assert (s2var->onepart);
3358
3359 if (s2var->n_var_parts)
3360 {
3361 s2node = s2var->var_part[0].loc_chain;
3362
3363 for (; s1node && s2node;
3364 s1node = s1node->next, s2node = s2node->next)
3365 if (s1node->loc != s2node->loc)
3366 break;
3367 else if (s1node->loc == val)
3368 continue;
3369 else
3370 insert_into_intersection (dest, s1node->loc,
3371 MIN (s1node->init, s2node->init));
3372 }
3373 }
3374
3375 for (; s1node; s1node = s1node->next)
3376 {
3377 if (s1node->loc == val)
3378 continue;
3379
3380 if ((found = find_loc_in_1pdv (s1node->loc, s2var,
3381 shared_hash_htab (s2set->vars))))
3382 {
3383 insert_into_intersection (dest, s1node->loc,
3384 MIN (s1node->init, found->init));
3385 continue;
3386 }
3387
3388 if (GET_CODE (s1node->loc) == VALUE
3389 && !VALUE_RECURSED_INTO (s1node->loc))
3390 {
3391 decl_or_value dv = dv_from_value (s1node->loc);
3392 variable *svar = shared_hash_find (s1set->vars, dv);
3393 if (svar)
3394 {
3395 if (svar->n_var_parts == 1)
3396 {
3397 VALUE_RECURSED_INTO (s1node->loc) = true;
3398 intersect_loc_chains (val, dest, dsm,
3399 svar->var_part[0].loc_chain,
3400 s2var);
3401 VALUE_RECURSED_INTO (s1node->loc) = false;
3402 }
3403 }
3404 }
3405
3406 /* ??? gotta look in cselib_val locations too. */
3407
3408 /* ??? if the location is equivalent to any location in src,
3409 searched recursively
3410
3411 add to dst the values needed to represent the equivalence
3412
3413 telling whether locations S is equivalent to another dv's
3414 location list:
3415
3416 for each location D in the list
3417
3418 if S and D satisfy rtx_equal_p, then it is present
3419
3420 else if D is a value, recurse without cycles
3421
3422 else if S and D have the same CODE and MODE
3423
3424 for each operand oS and the corresponding oD
3425
3426 if oS and oD are not equivalent, then S an D are not equivalent
3427
3428 else if they are RTX vectors
3429
3430 if any vector oS element is not equivalent to its respective oD,
3431 then S and D are not equivalent
3432
3433 */
3434
3435
3436 }
3437 }
3438
3439 /* Return -1 if X should be before Y in a location list for a 1-part
3440 variable, 1 if Y should be before X, and 0 if they're equivalent
3441 and should not appear in the list. */
3442
3443 static int
3444 loc_cmp (rtx x, rtx y)
3445 {
3446 int i, j, r;
3447 RTX_CODE code = GET_CODE (x);
3448 const char *fmt;
3449
3450 if (x == y)
3451 return 0;
3452
3453 if (REG_P (x))
3454 {
3455 if (!REG_P (y))
3456 return -1;
3457 gcc_assert (GET_MODE (x) == GET_MODE (y));
3458 if (REGNO (x) == REGNO (y))
3459 return 0;
3460 else if (REGNO (x) < REGNO (y))
3461 return -1;
3462 else
3463 return 1;
3464 }
3465
3466 if (REG_P (y))
3467 return 1;
3468
3469 if (MEM_P (x))
3470 {
3471 if (!MEM_P (y))
3472 return -1;
3473 gcc_assert (GET_MODE (x) == GET_MODE (y));
3474 return loc_cmp (XEXP (x, 0), XEXP (y, 0));
3475 }
3476
3477 if (MEM_P (y))
3478 return 1;
3479
3480 if (GET_CODE (x) == VALUE)
3481 {
3482 if (GET_CODE (y) != VALUE)
3483 return -1;
3484 /* Don't assert the modes are the same, that is true only
3485 when not recursing. (subreg:QI (value:SI 1:1) 0)
3486 and (subreg:QI (value:DI 2:2) 0) can be compared,
3487 even when the modes are different. */
3488 if (canon_value_cmp (x, y))
3489 return -1;
3490 else
3491 return 1;
3492 }
3493
3494 if (GET_CODE (y) == VALUE)
3495 return 1;
3496
3497 /* Entry value is the least preferable kind of expression. */
3498 if (GET_CODE (x) == ENTRY_VALUE)
3499 {
3500 if (GET_CODE (y) != ENTRY_VALUE)
3501 return 1;
3502 gcc_assert (GET_MODE (x) == GET_MODE (y));
3503 return loc_cmp (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
3504 }
3505
3506 if (GET_CODE (y) == ENTRY_VALUE)
3507 return -1;
3508
3509 if (GET_CODE (x) == GET_CODE (y))
3510 /* Compare operands below. */;
3511 else if (GET_CODE (x) < GET_CODE (y))
3512 return -1;
3513 else
3514 return 1;
3515
3516 gcc_assert (GET_MODE (x) == GET_MODE (y));
3517
3518 if (GET_CODE (x) == DEBUG_EXPR)
3519 {
3520 if (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
3521 < DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)))
3522 return -1;
3523 gcc_checking_assert (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
3524 > DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)));
3525 return 1;
3526 }
3527
3528 fmt = GET_RTX_FORMAT (code);
3529 for (i = 0; i < GET_RTX_LENGTH (code); i++)
3530 switch (fmt[i])
3531 {
3532 case 'w':
3533 if (XWINT (x, i) == XWINT (y, i))
3534 break;
3535 else if (XWINT (x, i) < XWINT (y, i))
3536 return -1;
3537 else
3538 return 1;
3539
3540 case 'n':
3541 case 'i':
3542 if (XINT (x, i) == XINT (y, i))
3543 break;
3544 else if (XINT (x, i) < XINT (y, i))
3545 return -1;
3546 else
3547 return 1;
3548
3549 case 'p':
3550 r = compare_sizes_for_sort (SUBREG_BYTE (x), SUBREG_BYTE (y));
3551 if (r != 0)
3552 return r;
3553 break;
3554
3555 case 'V':
3556 case 'E':
3557 /* Compare the vector length first. */
3558 if (XVECLEN (x, i) == XVECLEN (y, i))
3559 /* Compare the vectors elements. */;
3560 else if (XVECLEN (x, i) < XVECLEN (y, i))
3561 return -1;
3562 else
3563 return 1;
3564
3565 for (j = 0; j < XVECLEN (x, i); j++)
3566 if ((r = loc_cmp (XVECEXP (x, i, j),
3567 XVECEXP (y, i, j))))
3568 return r;
3569 break;
3570
3571 case 'e':
3572 if ((r = loc_cmp (XEXP (x, i), XEXP (y, i))))
3573 return r;
3574 break;
3575
3576 case 'S':
3577 case 's':
3578 if (XSTR (x, i) == XSTR (y, i))
3579 break;
3580 if (!XSTR (x, i))
3581 return -1;
3582 if (!XSTR (y, i))
3583 return 1;
3584 if ((r = strcmp (XSTR (x, i), XSTR (y, i))) == 0)
3585 break;
3586 else if (r < 0)
3587 return -1;
3588 else
3589 return 1;
3590
3591 case 'u':
3592 /* These are just backpointers, so they don't matter. */
3593 break;
3594
3595 case '0':
3596 case 't':
3597 break;
3598
3599 /* It is believed that rtx's at this level will never
3600 contain anything but integers and other rtx's,
3601 except for within LABEL_REFs and SYMBOL_REFs. */
3602 default:
3603 gcc_unreachable ();
3604 }
3605 if (CONST_WIDE_INT_P (x))
3606 {
3607 /* Compare the vector length first. */
3608 if (CONST_WIDE_INT_NUNITS (x) >= CONST_WIDE_INT_NUNITS (y))
3609 return 1;
3610 else if (CONST_WIDE_INT_NUNITS (x) < CONST_WIDE_INT_NUNITS (y))
3611 return -1;
3612
3613 /* Compare the vectors elements. */;
3614 for (j = CONST_WIDE_INT_NUNITS (x) - 1; j >= 0 ; j--)
3615 {
3616 if (CONST_WIDE_INT_ELT (x, j) < CONST_WIDE_INT_ELT (y, j))
3617 return -1;
3618 if (CONST_WIDE_INT_ELT (x, j) > CONST_WIDE_INT_ELT (y, j))
3619 return 1;
3620 }
3621 }
3622
3623 return 0;
3624 }
3625
3626 /* Check the order of entries in one-part variables. */
3627
3628 int
3629 canonicalize_loc_order_check (variable **slot,
3630 dataflow_set *data ATTRIBUTE_UNUSED)
3631 {
3632 variable *var = *slot;
3633 location_chain *node, *next;
3634
3635 #ifdef ENABLE_RTL_CHECKING
3636 int i;
3637 for (i = 0; i < var->n_var_parts; i++)
3638 gcc_assert (var->var_part[0].cur_loc == NULL);
3639 gcc_assert (!var->in_changed_variables);
3640 #endif
3641
3642 if (!var->onepart)
3643 return 1;
3644
3645 gcc_assert (var->n_var_parts == 1);
3646 node = var->var_part[0].loc_chain;
3647 gcc_assert (node);
3648
3649 while ((next = node->next))
3650 {
3651 gcc_assert (loc_cmp (node->loc, next->loc) < 0);
3652 node = next;
3653 }
3654
3655 return 1;
3656 }
3657
3658 /* Mark with VALUE_RECURSED_INTO values that have neighbors that are
3659 more likely to be chosen as canonical for an equivalence set.
3660 Ensure less likely values can reach more likely neighbors, making
3661 the connections bidirectional. */
3662
3663 int
3664 canonicalize_values_mark (variable **slot, dataflow_set *set)
3665 {
3666 variable *var = *slot;
3667 decl_or_value dv = var->dv;
3668 rtx val;
3669 location_chain *node;
3670
3671 if (!dv_is_value_p (dv))
3672 return 1;
3673
3674 gcc_checking_assert (var->n_var_parts == 1);
3675
3676 val = dv_as_value (dv);
3677
3678 for (node = var->var_part[0].loc_chain; node; node = node->next)
3679 if (GET_CODE (node->loc) == VALUE)
3680 {
3681 if (canon_value_cmp (node->loc, val))
3682 VALUE_RECURSED_INTO (val) = true;
3683 else
3684 {
3685 decl_or_value odv = dv_from_value (node->loc);
3686 variable **oslot;
3687 oslot = shared_hash_find_slot_noinsert (set->vars, odv);
3688
3689 set_slot_part (set, val, oslot, odv, 0,
3690 node->init, NULL_RTX);
3691
3692 VALUE_RECURSED_INTO (node->loc) = true;
3693 }
3694 }
3695
3696 return 1;
3697 }
3698
3699 /* Remove redundant entries from equivalence lists in onepart
3700 variables, canonicalizing equivalence sets into star shapes. */
3701
3702 int
3703 canonicalize_values_star (variable **slot, dataflow_set *set)
3704 {
3705 variable *var = *slot;
3706 decl_or_value dv = var->dv;
3707 location_chain *node;
3708 decl_or_value cdv;
3709 rtx val, cval;
3710 variable **cslot;
3711 bool has_value;
3712 bool has_marks;
3713
3714 if (!var->onepart)
3715 return 1;
3716
3717 gcc_checking_assert (var->n_var_parts == 1);
3718
3719 if (dv_is_value_p (dv))
3720 {
3721 cval = dv_as_value (dv);
3722 if (!VALUE_RECURSED_INTO (cval))
3723 return 1;
3724 VALUE_RECURSED_INTO (cval) = false;
3725 }
3726 else
3727 cval = NULL_RTX;
3728
3729 restart:
3730 val = cval;
3731 has_value = false;
3732 has_marks = false;
3733
3734 gcc_assert (var->n_var_parts == 1);
3735
3736 for (node = var->var_part[0].loc_chain; node; node = node->next)
3737 if (GET_CODE (node->loc) == VALUE)
3738 {
3739 has_value = true;
3740 if (VALUE_RECURSED_INTO (node->loc))
3741 has_marks = true;
3742 if (canon_value_cmp (node->loc, cval))
3743 cval = node->loc;
3744 }
3745
3746 if (!has_value)
3747 return 1;
3748
3749 if (cval == val)
3750 {
3751 if (!has_marks || dv_is_decl_p (dv))
3752 return 1;
3753
3754 /* Keep it marked so that we revisit it, either after visiting a
3755 child node, or after visiting a new parent that might be
3756 found out. */
3757 VALUE_RECURSED_INTO (val) = true;
3758
3759 for (node = var->var_part[0].loc_chain; node; node = node->next)
3760 if (GET_CODE (node->loc) == VALUE
3761 && VALUE_RECURSED_INTO (node->loc))
3762 {
3763 cval = node->loc;
3764 restart_with_cval:
3765 VALUE_RECURSED_INTO (cval) = false;
3766 dv = dv_from_value (cval);
3767 slot = shared_hash_find_slot_noinsert (set->vars, dv);
3768 if (!slot)
3769 {
3770 gcc_assert (dv_is_decl_p (var->dv));
3771 /* The canonical value was reset and dropped.
3772 Remove it. */
3773 clobber_variable_part (set, NULL, var->dv, 0, NULL);
3774 return 1;
3775 }
3776 var = *slot;
3777 gcc_assert (dv_is_value_p (var->dv));
3778 if (var->n_var_parts == 0)
3779 return 1;
3780 gcc_assert (var->n_var_parts == 1);
3781 goto restart;
3782 }
3783
3784 VALUE_RECURSED_INTO (val) = false;
3785
3786 return 1;
3787 }
3788
3789 /* Push values to the canonical one. */
3790 cdv = dv_from_value (cval);
3791 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3792
3793 for (node = var->var_part[0].loc_chain; node; node = node->next)
3794 if (node->loc != cval)
3795 {
3796 cslot = set_slot_part (set, node->loc, cslot, cdv, 0,
3797 node->init, NULL_RTX);
3798 if (GET_CODE (node->loc) == VALUE)
3799 {
3800 decl_or_value ndv = dv_from_value (node->loc);
3801
3802 set_variable_part (set, cval, ndv, 0, node->init, NULL_RTX,
3803 NO_INSERT);
3804
3805 if (canon_value_cmp (node->loc, val))
3806 {
3807 /* If it could have been a local minimum, it's not any more,
3808 since it's now neighbor to cval, so it may have to push
3809 to it. Conversely, if it wouldn't have prevailed over
3810 val, then whatever mark it has is fine: if it was to
3811 push, it will now push to a more canonical node, but if
3812 it wasn't, then it has already pushed any values it might
3813 have to. */
3814 VALUE_RECURSED_INTO (node->loc) = true;
3815 /* Make sure we visit node->loc by ensuring we cval is
3816 visited too. */
3817 VALUE_RECURSED_INTO (cval) = true;
3818 }
3819 else if (!VALUE_RECURSED_INTO (node->loc))
3820 /* If we have no need to "recurse" into this node, it's
3821 already "canonicalized", so drop the link to the old
3822 parent. */
3823 clobber_variable_part (set, cval, ndv, 0, NULL);
3824 }
3825 else if (GET_CODE (node->loc) == REG)
3826 {
3827 attrs *list = set->regs[REGNO (node->loc)], **listp;
3828
3829 /* Change an existing attribute referring to dv so that it
3830 refers to cdv, removing any duplicate this might
3831 introduce, and checking that no previous duplicates
3832 existed, all in a single pass. */
3833
3834 while (list)
3835 {
3836 if (list->offset == 0
3837 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3838 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3839 break;
3840
3841 list = list->next;
3842 }
3843
3844 gcc_assert (list);
3845 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3846 {
3847 list->dv = cdv;
3848 for (listp = &list->next; (list = *listp); listp = &list->next)
3849 {
3850 if (list->offset)
3851 continue;
3852
3853 if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3854 {
3855 *listp = list->next;
3856 delete list;
3857 list = *listp;
3858 break;
3859 }
3860
3861 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (dv));
3862 }
3863 }
3864 else if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3865 {
3866 for (listp = &list->next; (list = *listp); listp = &list->next)
3867 {
3868 if (list->offset)
3869 continue;
3870
3871 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3872 {
3873 *listp = list->next;
3874 delete list;
3875 list = *listp;
3876 break;
3877 }
3878
3879 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (cdv));
3880 }
3881 }
3882 else
3883 gcc_unreachable ();
3884
3885 if (flag_checking)
3886 while (list)
3887 {
3888 if (list->offset == 0
3889 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3890 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3891 gcc_unreachable ();
3892
3893 list = list->next;
3894 }
3895 }
3896 }
3897
3898 if (val)
3899 set_slot_part (set, val, cslot, cdv, 0,
3900 VAR_INIT_STATUS_INITIALIZED, NULL_RTX);
3901
3902 slot = clobber_slot_part (set, cval, slot, 0, NULL);
3903
3904 /* Variable may have been unshared. */
3905 var = *slot;
3906 gcc_checking_assert (var->n_var_parts && var->var_part[0].loc_chain->loc == cval
3907 && var->var_part[0].loc_chain->next == NULL);
3908
3909 if (VALUE_RECURSED_INTO (cval))
3910 goto restart_with_cval;
3911
3912 return 1;
3913 }
3914
3915 /* Bind one-part variables to the canonical value in an equivalence
3916 set. Not doing this causes dataflow convergence failure in rare
3917 circumstances, see PR42873. Unfortunately we can't do this
3918 efficiently as part of canonicalize_values_star, since we may not
3919 have determined or even seen the canonical value of a set when we
3920 get to a variable that references another member of the set. */
3921
3922 int
3923 canonicalize_vars_star (variable **slot, dataflow_set *set)
3924 {
3925 variable *var = *slot;
3926 decl_or_value dv = var->dv;
3927 location_chain *node;
3928 rtx cval;
3929 decl_or_value cdv;
3930 variable **cslot;
3931 variable *cvar;
3932 location_chain *cnode;
3933
3934 if (!var->onepart || var->onepart == ONEPART_VALUE)
3935 return 1;
3936
3937 gcc_assert (var->n_var_parts == 1);
3938
3939 node = var->var_part[0].loc_chain;
3940
3941 if (GET_CODE (node->loc) != VALUE)
3942 return 1;
3943
3944 gcc_assert (!node->next);
3945 cval = node->loc;
3946
3947 /* Push values to the canonical one. */
3948 cdv = dv_from_value (cval);
3949 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3950 if (!cslot)
3951 return 1;
3952 cvar = *cslot;
3953 gcc_assert (cvar->n_var_parts == 1);
3954
3955 cnode = cvar->var_part[0].loc_chain;
3956
3957 /* CVAL is canonical if its value list contains non-VALUEs or VALUEs
3958 that are not “more canonical” than it. */
3959 if (GET_CODE (cnode->loc) != VALUE
3960 || !canon_value_cmp (cnode->loc, cval))
3961 return 1;
3962
3963 /* CVAL was found to be non-canonical. Change the variable to point
3964 to the canonical VALUE. */
3965 gcc_assert (!cnode->next);
3966 cval = cnode->loc;
3967
3968 slot = set_slot_part (set, cval, slot, dv, 0,
3969 node->init, node->set_src);
3970 clobber_slot_part (set, cval, slot, 0, node->set_src);
3971
3972 return 1;
3973 }
3974
3975 /* Combine variable or value in *S1SLOT (in DSM->cur) with the
3976 corresponding entry in DSM->src. Multi-part variables are combined
3977 with variable_union, whereas onepart dvs are combined with
3978 intersection. */
3979
3980 static int
3981 variable_merge_over_cur (variable *s1var, struct dfset_merge *dsm)
3982 {
3983 dataflow_set *dst = dsm->dst;
3984 variable **dstslot;
3985 variable *s2var, *dvar = NULL;
3986 decl_or_value dv = s1var->dv;
3987 onepart_enum onepart = s1var->onepart;
3988 rtx val;
3989 hashval_t dvhash;
3990 location_chain *node, **nodep;
3991
3992 /* If the incoming onepart variable has an empty location list, then
3993 the intersection will be just as empty. For other variables,
3994 it's always union. */
3995 gcc_checking_assert (s1var->n_var_parts
3996 && s1var->var_part[0].loc_chain);
3997
3998 if (!onepart)
3999 return variable_union (s1var, dst);
4000
4001 gcc_checking_assert (s1var->n_var_parts == 1);
4002
4003 dvhash = dv_htab_hash (dv);
4004 if (dv_is_value_p (dv))
4005 val = dv_as_value (dv);
4006 else
4007 val = NULL;
4008
4009 s2var = shared_hash_find_1 (dsm->src->vars, dv, dvhash);
4010 if (!s2var)
4011 {
4012 dst_can_be_shared = false;
4013 return 1;
4014 }
4015
4016 dsm->src_onepart_cnt--;
4017 gcc_assert (s2var->var_part[0].loc_chain
4018 && s2var->onepart == onepart
4019 && s2var->n_var_parts == 1);
4020
4021 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
4022 if (dstslot)
4023 {
4024 dvar = *dstslot;
4025 gcc_assert (dvar->refcount == 1
4026 && dvar->onepart == onepart
4027 && dvar->n_var_parts == 1);
4028 nodep = &dvar->var_part[0].loc_chain;
4029 }
4030 else
4031 {
4032 nodep = &node;
4033 node = NULL;
4034 }
4035
4036 if (!dstslot && !onepart_variable_different_p (s1var, s2var))
4037 {
4038 dstslot = shared_hash_find_slot_unshare_1 (&dst->vars, dv,
4039 dvhash, INSERT);
4040 *dstslot = dvar = s2var;
4041 dvar->refcount++;
4042 }
4043 else
4044 {
4045 dst_can_be_shared = false;
4046
4047 intersect_loc_chains (val, nodep, dsm,
4048 s1var->var_part[0].loc_chain, s2var);
4049
4050 if (!dstslot)
4051 {
4052 if (node)
4053 {
4054 dvar = onepart_pool_allocate (onepart);
4055 dvar->dv = dv;
4056 dvar->refcount = 1;
4057 dvar->n_var_parts = 1;
4058 dvar->onepart = onepart;
4059 dvar->in_changed_variables = false;
4060 dvar->var_part[0].loc_chain = node;
4061 dvar->var_part[0].cur_loc = NULL;
4062 if (onepart)
4063 VAR_LOC_1PAUX (dvar) = NULL;
4064 else
4065 VAR_PART_OFFSET (dvar, 0) = 0;
4066
4067 dstslot
4068 = shared_hash_find_slot_unshare_1 (&dst->vars, dv, dvhash,
4069 INSERT);
4070 gcc_assert (!*dstslot);
4071 *dstslot = dvar;
4072 }
4073 else
4074 return 1;
4075 }
4076 }
4077
4078 nodep = &dvar->var_part[0].loc_chain;
4079 while ((node = *nodep))
4080 {
4081 location_chain **nextp = &node->next;
4082
4083 if (GET_CODE (node->loc) == REG)
4084 {
4085 attrs *list;
4086
4087 for (list = dst->regs[REGNO (node->loc)]; list; list = list->next)
4088 if (GET_MODE (node->loc) == GET_MODE (list->loc)
4089 && dv_is_value_p (list->dv))
4090 break;
4091
4092 if (!list)
4093 attrs_list_insert (&dst->regs[REGNO (node->loc)],
4094 dv, 0, node->loc);
4095 /* If this value became canonical for another value that had
4096 this register, we want to leave it alone. */
4097 else if (dv_as_value (list->dv) != val)
4098 {
4099 dstslot = set_slot_part (dst, dv_as_value (list->dv),
4100 dstslot, dv, 0,
4101 node->init, NULL_RTX);
4102 dstslot = delete_slot_part (dst, node->loc, dstslot, 0);
4103
4104 /* Since nextp points into the removed node, we can't
4105 use it. The pointer to the next node moved to nodep.
4106 However, if the variable we're walking is unshared
4107 during our walk, we'll keep walking the location list
4108 of the previously-shared variable, in which case the
4109 node won't have been removed, and we'll want to skip
4110 it. That's why we test *nodep here. */
4111 if (*nodep != node)
4112 nextp = nodep;
4113 }
4114 }
4115 else
4116 /* Canonicalization puts registers first, so we don't have to
4117 walk it all. */
4118 break;
4119 nodep = nextp;
4120 }
4121
4122 if (dvar != *dstslot)
4123 dvar = *dstslot;
4124 nodep = &dvar->var_part[0].loc_chain;
4125
4126 if (val)
4127 {
4128 /* Mark all referenced nodes for canonicalization, and make sure
4129 we have mutual equivalence links. */
4130 VALUE_RECURSED_INTO (val) = true;
4131 for (node = *nodep; node; node = node->next)
4132 if (GET_CODE (node->loc) == VALUE)
4133 {
4134 VALUE_RECURSED_INTO (node->loc) = true;
4135 set_variable_part (dst, val, dv_from_value (node->loc), 0,
4136 node->init, NULL, INSERT);
4137 }
4138
4139 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
4140 gcc_assert (*dstslot == dvar);
4141 canonicalize_values_star (dstslot, dst);
4142 gcc_checking_assert (dstslot
4143 == shared_hash_find_slot_noinsert_1 (dst->vars,
4144 dv, dvhash));
4145 dvar = *dstslot;
4146 }
4147 else
4148 {
4149 bool has_value = false, has_other = false;
4150
4151 /* If we have one value and anything else, we're going to
4152 canonicalize this, so make sure all values have an entry in
4153 the table and are marked for canonicalization. */
4154 for (node = *nodep; node; node = node->next)
4155 {
4156 if (GET_CODE (node->loc) == VALUE)
4157 {
4158 /* If this was marked during register canonicalization,
4159 we know we have to canonicalize values. */
4160 if (has_value)
4161 has_other = true;
4162 has_value = true;
4163 if (has_other)
4164 break;
4165 }
4166 else
4167 {
4168 has_other = true;
4169 if (has_value)
4170 break;
4171 }
4172 }
4173
4174 if (has_value && has_other)
4175 {
4176 for (node = *nodep; node; node = node->next)
4177 {
4178 if (GET_CODE (node->loc) == VALUE)
4179 {
4180 decl_or_value dv = dv_from_value (node->loc);
4181 variable **slot = NULL;
4182
4183 if (shared_hash_shared (dst->vars))
4184 slot = shared_hash_find_slot_noinsert (dst->vars, dv);
4185 if (!slot)
4186 slot = shared_hash_find_slot_unshare (&dst->vars, dv,
4187 INSERT);
4188 if (!*slot)
4189 {
4190 variable *var = onepart_pool_allocate (ONEPART_VALUE);
4191 var->dv = dv;
4192 var->refcount = 1;
4193 var->n_var_parts = 1;
4194 var->onepart = ONEPART_VALUE;
4195 var->in_changed_variables = false;
4196 var->var_part[0].loc_chain = NULL;
4197 var->var_part[0].cur_loc = NULL;
4198 VAR_LOC_1PAUX (var) = NULL;
4199 *slot = var;
4200 }
4201
4202 VALUE_RECURSED_INTO (node->loc) = true;
4203 }
4204 }
4205
4206 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
4207 gcc_assert (*dstslot == dvar);
4208 canonicalize_values_star (dstslot, dst);
4209 gcc_checking_assert (dstslot
4210 == shared_hash_find_slot_noinsert_1 (dst->vars,
4211 dv, dvhash));
4212 dvar = *dstslot;
4213 }
4214 }
4215
4216 if (!onepart_variable_different_p (dvar, s2var))
4217 {
4218 variable_htab_free (dvar);
4219 *dstslot = dvar = s2var;
4220 dvar->refcount++;
4221 }
4222 else if (s2var != s1var && !onepart_variable_different_p (dvar, s1var))
4223 {
4224 variable_htab_free (dvar);
4225 *dstslot = dvar = s1var;
4226 dvar->refcount++;
4227 dst_can_be_shared = false;
4228 }
4229 else
4230 dst_can_be_shared = false;
4231
4232 return 1;
4233 }
4234
4235 /* Copy s2slot (in DSM->src) to DSM->dst if the variable is a
4236 multi-part variable. Unions of multi-part variables and
4237 intersections of one-part ones will be handled in
4238 variable_merge_over_cur(). */
4239
4240 static int
4241 variable_merge_over_src (variable *s2var, struct dfset_merge *dsm)
4242 {
4243 dataflow_set *dst = dsm->dst;
4244 decl_or_value dv = s2var->dv;
4245
4246 if (!s2var->onepart)
4247 {
4248 variable **dstp = shared_hash_find_slot (dst->vars, dv);
4249 *dstp = s2var;
4250 s2var->refcount++;
4251 return 1;
4252 }
4253
4254 dsm->src_onepart_cnt++;
4255 return 1;
4256 }
4257
4258 /* Combine dataflow set information from SRC2 into DST, using PDST
4259 to carry over information across passes. */
4260
4261 static void
4262 dataflow_set_merge (dataflow_set *dst, dataflow_set *src2)
4263 {
4264 dataflow_set cur = *dst;
4265 dataflow_set *src1 = &cur;
4266 struct dfset_merge dsm;
4267 int i;
4268 size_t src1_elems, src2_elems;
4269 variable_iterator_type hi;
4270 variable *var;
4271
4272 src1_elems = shared_hash_htab (src1->vars)->elements ();
4273 src2_elems = shared_hash_htab (src2->vars)->elements ();
4274 dataflow_set_init (dst);
4275 dst->stack_adjust = cur.stack_adjust;
4276 shared_hash_destroy (dst->vars);
4277 dst->vars = new shared_hash;
4278 dst->vars->refcount = 1;
4279 dst->vars->htab = new variable_table_type (MAX (src1_elems, src2_elems));
4280
4281 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4282 attrs_list_mpdv_union (&dst->regs[i], src1->regs[i], src2->regs[i]);
4283
4284 dsm.dst = dst;
4285 dsm.src = src2;
4286 dsm.cur = src1;
4287 dsm.src_onepart_cnt = 0;
4288
4289 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (dsm.src->vars),
4290 var, variable, hi)
4291 variable_merge_over_src (var, &dsm);
4292 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (dsm.cur->vars),
4293 var, variable, hi)
4294 variable_merge_over_cur (var, &dsm);
4295
4296 if (dsm.src_onepart_cnt)
4297 dst_can_be_shared = false;
4298
4299 dataflow_set_destroy (src1);
4300 }
4301
4302 /* Mark register equivalences. */
4303
4304 static void
4305 dataflow_set_equiv_regs (dataflow_set *set)
4306 {
4307 int i;
4308 attrs *list, **listp;
4309
4310 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4311 {
4312 rtx canon[NUM_MACHINE_MODES];
4313
4314 /* If the list is empty or one entry, no need to canonicalize
4315 anything. */
4316 if (set->regs[i] == NULL || set->regs[i]->next == NULL)
4317 continue;
4318
4319 memset (canon, 0, sizeof (canon));
4320
4321 for (list = set->regs[i]; list; list = list->next)
4322 if (list->offset == 0 && dv_is_value_p (list->dv))
4323 {
4324 rtx val = dv_as_value (list->dv);
4325 rtx *cvalp = &canon[(int)GET_MODE (val)];
4326 rtx cval = *cvalp;
4327
4328 if (canon_value_cmp (val, cval))
4329 *cvalp = val;
4330 }
4331
4332 for (list = set->regs[i]; list; list = list->next)
4333 if (list->offset == 0 && dv_onepart_p (list->dv))
4334 {
4335 rtx cval = canon[(int)GET_MODE (list->loc)];
4336
4337 if (!cval)
4338 continue;
4339
4340 if (dv_is_value_p (list->dv))
4341 {
4342 rtx val = dv_as_value (list->dv);
4343
4344 if (val == cval)
4345 continue;
4346
4347 VALUE_RECURSED_INTO (val) = true;
4348 set_variable_part (set, val, dv_from_value (cval), 0,
4349 VAR_INIT_STATUS_INITIALIZED,
4350 NULL, NO_INSERT);
4351 }
4352
4353 VALUE_RECURSED_INTO (cval) = true;
4354 set_variable_part (set, cval, list->dv, 0,
4355 VAR_INIT_STATUS_INITIALIZED, NULL, NO_INSERT);
4356 }
4357
4358 for (listp = &set->regs[i]; (list = *listp);
4359 listp = list ? &list->next : listp)
4360 if (list->offset == 0 && dv_onepart_p (list->dv))
4361 {
4362 rtx cval = canon[(int)GET_MODE (list->loc)];
4363 variable **slot;
4364
4365 if (!cval)
4366 continue;
4367
4368 if (dv_is_value_p (list->dv))
4369 {
4370 rtx val = dv_as_value (list->dv);
4371 if (!VALUE_RECURSED_INTO (val))
4372 continue;
4373 }
4374
4375 slot = shared_hash_find_slot_noinsert (set->vars, list->dv);
4376 canonicalize_values_star (slot, set);
4377 if (*listp != list)
4378 list = NULL;
4379 }
4380 }
4381 }
4382
4383 /* Remove any redundant values in the location list of VAR, which must
4384 be unshared and 1-part. */
4385
4386 static void
4387 remove_duplicate_values (variable *var)
4388 {
4389 location_chain *node, **nodep;
4390
4391 gcc_assert (var->onepart);
4392 gcc_assert (var->n_var_parts == 1);
4393 gcc_assert (var->refcount == 1);
4394
4395 for (nodep = &var->var_part[0].loc_chain; (node = *nodep); )
4396 {
4397 if (GET_CODE (node->loc) == VALUE)
4398 {
4399 if (VALUE_RECURSED_INTO (node->loc))
4400 {
4401 /* Remove duplicate value node. */
4402 *nodep = node->next;
4403 delete node;
4404 continue;
4405 }
4406 else
4407 VALUE_RECURSED_INTO (node->loc) = true;
4408 }
4409 nodep = &node->next;
4410 }
4411
4412 for (node = var->var_part[0].loc_chain; node; node = node->next)
4413 if (GET_CODE (node->loc) == VALUE)
4414 {
4415 gcc_assert (VALUE_RECURSED_INTO (node->loc));
4416 VALUE_RECURSED_INTO (node->loc) = false;
4417 }
4418 }
4419
4420
4421 /* Hash table iteration argument passed to variable_post_merge. */
4422 struct dfset_post_merge
4423 {
4424 /* The new input set for the current block. */
4425 dataflow_set *set;
4426 /* Pointer to the permanent input set for the current block, or
4427 NULL. */
4428 dataflow_set **permp;
4429 };
4430
4431 /* Create values for incoming expressions associated with one-part
4432 variables that don't have value numbers for them. */
4433
4434 int
4435 variable_post_merge_new_vals (variable **slot, dfset_post_merge *dfpm)
4436 {
4437 dataflow_set *set = dfpm->set;
4438 variable *var = *slot;
4439 location_chain *node;
4440
4441 if (!var->onepart || !var->n_var_parts)
4442 return 1;
4443
4444 gcc_assert (var->n_var_parts == 1);
4445
4446 if (dv_is_decl_p (var->dv))
4447 {
4448 bool check_dupes = false;
4449
4450 restart:
4451 for (node = var->var_part[0].loc_chain; node; node = node->next)
4452 {
4453 if (GET_CODE (node->loc) == VALUE)
4454 gcc_assert (!VALUE_RECURSED_INTO (node->loc));
4455 else if (GET_CODE (node->loc) == REG)
4456 {
4457 attrs *att, **attp, **curp = NULL;
4458
4459 if (var->refcount != 1)
4460 {
4461 slot = unshare_variable (set, slot, var,
4462 VAR_INIT_STATUS_INITIALIZED);
4463 var = *slot;
4464 goto restart;
4465 }
4466
4467 for (attp = &set->regs[REGNO (node->loc)]; (att = *attp);
4468 attp = &att->next)
4469 if (att->offset == 0
4470 && GET_MODE (att->loc) == GET_MODE (node->loc))
4471 {
4472 if (dv_is_value_p (att->dv))
4473 {
4474 rtx cval = dv_as_value (att->dv);
4475 node->loc = cval;
4476 check_dupes = true;
4477 break;
4478 }
4479 else if (dv_as_opaque (att->dv) == dv_as_opaque (var->dv))
4480 curp = attp;
4481 }
4482
4483 if (!curp)
4484 {
4485 curp = attp;
4486 while (*curp)
4487 if ((*curp)->offset == 0
4488 && GET_MODE ((*curp)->loc) == GET_MODE (node->loc)
4489 && dv_as_opaque ((*curp)->dv) == dv_as_opaque (var->dv))
4490 break;
4491 else
4492 curp = &(*curp)->next;
4493 gcc_assert (*curp);
4494 }
4495
4496 if (!att)
4497 {
4498 decl_or_value cdv;
4499 rtx cval;
4500
4501 if (!*dfpm->permp)
4502 {
4503 *dfpm->permp = XNEW (dataflow_set);
4504 dataflow_set_init (*dfpm->permp);
4505 }
4506
4507 for (att = (*dfpm->permp)->regs[REGNO (node->loc)];
4508 att; att = att->next)
4509 if (GET_MODE (att->loc) == GET_MODE (node->loc))
4510 {
4511 gcc_assert (att->offset == 0
4512 && dv_is_value_p (att->dv));
4513 val_reset (set, att->dv);
4514 break;
4515 }
4516
4517 if (att)
4518 {
4519 cdv = att->dv;
4520 cval = dv_as_value (cdv);
4521 }
4522 else
4523 {
4524 /* Create a unique value to hold this register,
4525 that ought to be found and reused in
4526 subsequent rounds. */
4527 cselib_val *v;
4528 gcc_assert (!cselib_lookup (node->loc,
4529 GET_MODE (node->loc), 0,
4530 VOIDmode));
4531 v = cselib_lookup (node->loc, GET_MODE (node->loc), 1,
4532 VOIDmode);
4533 cselib_preserve_value (v);
4534 cselib_invalidate_rtx (node->loc);
4535 cval = v->val_rtx;
4536 cdv = dv_from_value (cval);
4537 if (dump_file)
4538 fprintf (dump_file,
4539 "Created new value %u:%u for reg %i\n",
4540 v->uid, v->hash, REGNO (node->loc));
4541 }
4542
4543 var_reg_decl_set (*dfpm->permp, node->loc,
4544 VAR_INIT_STATUS_INITIALIZED,
4545 cdv, 0, NULL, INSERT);
4546
4547 node->loc = cval;
4548 check_dupes = true;
4549 }
4550
4551 /* Remove attribute referring to the decl, which now
4552 uses the value for the register, already existing or
4553 to be added when we bring perm in. */
4554 att = *curp;
4555 *curp = att->next;
4556 delete att;
4557 }
4558 }
4559
4560 if (check_dupes)
4561 remove_duplicate_values (var);
4562 }
4563
4564 return 1;
4565 }
4566
4567 /* Reset values in the permanent set that are not associated with the
4568 chosen expression. */
4569
4570 int
4571 variable_post_merge_perm_vals (variable **pslot, dfset_post_merge *dfpm)
4572 {
4573 dataflow_set *set = dfpm->set;
4574 variable *pvar = *pslot, *var;
4575 location_chain *pnode;
4576 decl_or_value dv;
4577 attrs *att;
4578
4579 gcc_assert (dv_is_value_p (pvar->dv)
4580 && pvar->n_var_parts == 1);
4581 pnode = pvar->var_part[0].loc_chain;
4582 gcc_assert (pnode
4583 && !pnode->next
4584 && REG_P (pnode->loc));
4585
4586 dv = pvar->dv;
4587
4588 var = shared_hash_find (set->vars, dv);
4589 if (var)
4590 {
4591 /* Although variable_post_merge_new_vals may have made decls
4592 non-star-canonical, values that pre-existed in canonical form
4593 remain canonical, and newly-created values reference a single
4594 REG, so they are canonical as well. Since VAR has the
4595 location list for a VALUE, using find_loc_in_1pdv for it is
4596 fine, since VALUEs don't map back to DECLs. */
4597 if (find_loc_in_1pdv (pnode->loc, var, shared_hash_htab (set->vars)))
4598 return 1;
4599 val_reset (set, dv);
4600 }
4601
4602 for (att = set->regs[REGNO (pnode->loc)]; att; att = att->next)
4603 if (att->offset == 0
4604 && GET_MODE (att->loc) == GET_MODE (pnode->loc)
4605 && dv_is_value_p (att->dv))
4606 break;
4607
4608 /* If there is a value associated with this register already, create
4609 an equivalence. */
4610 if (att && dv_as_value (att->dv) != dv_as_value (dv))
4611 {
4612 rtx cval = dv_as_value (att->dv);
4613 set_variable_part (set, cval, dv, 0, pnode->init, NULL, INSERT);
4614 set_variable_part (set, dv_as_value (dv), att->dv, 0, pnode->init,
4615 NULL, INSERT);
4616 }
4617 else if (!att)
4618 {
4619 attrs_list_insert (&set->regs[REGNO (pnode->loc)],
4620 dv, 0, pnode->loc);
4621 variable_union (pvar, set);
4622 }
4623
4624 return 1;
4625 }
4626
4627 /* Just checking stuff and registering register attributes for
4628 now. */
4629
4630 static void
4631 dataflow_post_merge_adjust (dataflow_set *set, dataflow_set **permp)
4632 {
4633 struct dfset_post_merge dfpm;
4634
4635 dfpm.set = set;
4636 dfpm.permp = permp;
4637
4638 shared_hash_htab (set->vars)
4639 ->traverse <dfset_post_merge*, variable_post_merge_new_vals> (&dfpm);
4640 if (*permp)
4641 shared_hash_htab ((*permp)->vars)
4642 ->traverse <dfset_post_merge*, variable_post_merge_perm_vals> (&dfpm);
4643 shared_hash_htab (set->vars)
4644 ->traverse <dataflow_set *, canonicalize_values_star> (set);
4645 shared_hash_htab (set->vars)
4646 ->traverse <dataflow_set *, canonicalize_vars_star> (set);
4647 }
4648
4649 /* Return a node whose loc is a MEM that refers to EXPR in the
4650 location list of a one-part variable or value VAR, or in that of
4651 any values recursively mentioned in the location lists. */
4652
4653 static location_chain *
4654 find_mem_expr_in_1pdv (tree expr, rtx val, variable_table_type *vars)
4655 {
4656 location_chain *node;
4657 decl_or_value dv;
4658 variable *var;
4659 location_chain *where = NULL;
4660
4661 if (!val)
4662 return NULL;
4663
4664 gcc_assert (GET_CODE (val) == VALUE
4665 && !VALUE_RECURSED_INTO (val));
4666
4667 dv = dv_from_value (val);
4668 var = vars->find_with_hash (dv, dv_htab_hash (dv));
4669
4670 if (!var)
4671 return NULL;
4672
4673 gcc_assert (var->onepart);
4674
4675 if (!var->n_var_parts)
4676 return NULL;
4677
4678 VALUE_RECURSED_INTO (val) = true;
4679
4680 for (node = var->var_part[0].loc_chain; node; node = node->next)
4681 if (MEM_P (node->loc)
4682 && MEM_EXPR (node->loc) == expr
4683 && int_mem_offset (node->loc) == 0)
4684 {
4685 where = node;
4686 break;
4687 }
4688 else if (GET_CODE (node->loc) == VALUE
4689 && !VALUE_RECURSED_INTO (node->loc)
4690 && (where = find_mem_expr_in_1pdv (expr, node->loc, vars)))
4691 break;
4692
4693 VALUE_RECURSED_INTO (val) = false;
4694
4695 return where;
4696 }
4697
4698 /* Return TRUE if the value of MEM may vary across a call. */
4699
4700 static bool
4701 mem_dies_at_call (rtx mem)
4702 {
4703 tree expr = MEM_EXPR (mem);
4704 tree decl;
4705
4706 if (!expr)
4707 return true;
4708
4709 decl = get_base_address (expr);
4710
4711 if (!decl)
4712 return true;
4713
4714 if (!DECL_P (decl))
4715 return true;
4716
4717 return (may_be_aliased (decl)
4718 || (!TREE_READONLY (decl) && is_global_var (decl)));
4719 }
4720
4721 /* Remove all MEMs from the location list of a hash table entry for a
4722 one-part variable, except those whose MEM attributes map back to
4723 the variable itself, directly or within a VALUE. */
4724
4725 int
4726 dataflow_set_preserve_mem_locs (variable **slot, dataflow_set *set)
4727 {
4728 variable *var = *slot;
4729
4730 if (var->onepart == ONEPART_VDECL || var->onepart == ONEPART_DEXPR)
4731 {
4732 tree decl = dv_as_decl (var->dv);
4733 location_chain *loc, **locp;
4734 bool changed = false;
4735
4736 if (!var->n_var_parts)
4737 return 1;
4738
4739 gcc_assert (var->n_var_parts == 1);
4740
4741 if (shared_var_p (var, set->vars))
4742 {
4743 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4744 {
4745 /* We want to remove dying MEMs that don't refer to DECL. */
4746 if (GET_CODE (loc->loc) == MEM
4747 && (MEM_EXPR (loc->loc) != decl
4748 || int_mem_offset (loc->loc) != 0)
4749 && mem_dies_at_call (loc->loc))
4750 break;
4751 /* We want to move here MEMs that do refer to DECL. */
4752 else if (GET_CODE (loc->loc) == VALUE
4753 && find_mem_expr_in_1pdv (decl, loc->loc,
4754 shared_hash_htab (set->vars)))
4755 break;
4756 }
4757
4758 if (!loc)
4759 return 1;
4760
4761 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4762 var = *slot;
4763 gcc_assert (var->n_var_parts == 1);
4764 }
4765
4766 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4767 loc; loc = *locp)
4768 {
4769 rtx old_loc = loc->loc;
4770 if (GET_CODE (old_loc) == VALUE)
4771 {
4772 location_chain *mem_node
4773 = find_mem_expr_in_1pdv (decl, loc->loc,
4774 shared_hash_htab (set->vars));
4775
4776 /* ??? This picks up only one out of multiple MEMs that
4777 refer to the same variable. Do we ever need to be
4778 concerned about dealing with more than one, or, given
4779 that they should all map to the same variable
4780 location, their addresses will have been merged and
4781 they will be regarded as equivalent? */
4782 if (mem_node)
4783 {
4784 loc->loc = mem_node->loc;
4785 loc->set_src = mem_node->set_src;
4786 loc->init = MIN (loc->init, mem_node->init);
4787 }
4788 }
4789
4790 if (GET_CODE (loc->loc) != MEM
4791 || (MEM_EXPR (loc->loc) == decl
4792 && int_mem_offset (loc->loc) == 0)
4793 || !mem_dies_at_call (loc->loc))
4794 {
4795 if (old_loc != loc->loc && emit_notes)
4796 {
4797 if (old_loc == var->var_part[0].cur_loc)
4798 {
4799 changed = true;
4800 var->var_part[0].cur_loc = NULL;
4801 }
4802 }
4803 locp = &loc->next;
4804 continue;
4805 }
4806
4807 if (emit_notes)
4808 {
4809 if (old_loc == var->var_part[0].cur_loc)
4810 {
4811 changed = true;
4812 var->var_part[0].cur_loc = NULL;
4813 }
4814 }
4815 *locp = loc->next;
4816 delete loc;
4817 }
4818
4819 if (!var->var_part[0].loc_chain)
4820 {
4821 var->n_var_parts--;
4822 changed = true;
4823 }
4824 if (changed)
4825 variable_was_changed (var, set);
4826 }
4827
4828 return 1;
4829 }
4830
4831 /* Remove all MEMs from the location list of a hash table entry for a
4832 onepart variable. */
4833
4834 int
4835 dataflow_set_remove_mem_locs (variable **slot, dataflow_set *set)
4836 {
4837 variable *var = *slot;
4838
4839 if (var->onepart != NOT_ONEPART)
4840 {
4841 location_chain *loc, **locp;
4842 bool changed = false;
4843 rtx cur_loc;
4844
4845 gcc_assert (var->n_var_parts == 1);
4846
4847 if (shared_var_p (var, set->vars))
4848 {
4849 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4850 if (GET_CODE (loc->loc) == MEM
4851 && mem_dies_at_call (loc->loc))
4852 break;
4853
4854 if (!loc)
4855 return 1;
4856
4857 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4858 var = *slot;
4859 gcc_assert (var->n_var_parts == 1);
4860 }
4861
4862 if (VAR_LOC_1PAUX (var))
4863 cur_loc = VAR_LOC_FROM (var);
4864 else
4865 cur_loc = var->var_part[0].cur_loc;
4866
4867 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4868 loc; loc = *locp)
4869 {
4870 if (GET_CODE (loc->loc) != MEM
4871 || !mem_dies_at_call (loc->loc))
4872 {
4873 locp = &loc->next;
4874 continue;
4875 }
4876
4877 *locp = loc->next;
4878 /* If we have deleted the location which was last emitted
4879 we have to emit new location so add the variable to set
4880 of changed variables. */
4881 if (cur_loc == loc->loc)
4882 {
4883 changed = true;
4884 var->var_part[0].cur_loc = NULL;
4885 if (VAR_LOC_1PAUX (var))
4886 VAR_LOC_FROM (var) = NULL;
4887 }
4888 delete loc;
4889 }
4890
4891 if (!var->var_part[0].loc_chain)
4892 {
4893 var->n_var_parts--;
4894 changed = true;
4895 }
4896 if (changed)
4897 variable_was_changed (var, set);
4898 }
4899
4900 return 1;
4901 }
4902
4903 /* Remove all variable-location information about call-clobbered
4904 registers, as well as associations between MEMs and VALUEs. */
4905
4906 static void
4907 dataflow_set_clear_at_call (dataflow_set *set, rtx_insn *call_insn)
4908 {
4909 unsigned int r;
4910 hard_reg_set_iterator hrsi;
4911
4912 HARD_REG_SET callee_clobbers
4913 = insn_callee_abi (call_insn).full_reg_clobbers ();
4914
4915 EXECUTE_IF_SET_IN_HARD_REG_SET (callee_clobbers, 0, r, hrsi)
4916 var_regno_delete (set, r);
4917
4918 if (MAY_HAVE_DEBUG_BIND_INSNS)
4919 {
4920 set->traversed_vars = set->vars;
4921 shared_hash_htab (set->vars)
4922 ->traverse <dataflow_set *, dataflow_set_preserve_mem_locs> (set);
4923 set->traversed_vars = set->vars;
4924 shared_hash_htab (set->vars)
4925 ->traverse <dataflow_set *, dataflow_set_remove_mem_locs> (set);
4926 set->traversed_vars = NULL;
4927 }
4928 }
4929
4930 static bool
4931 variable_part_different_p (variable_part *vp1, variable_part *vp2)
4932 {
4933 location_chain *lc1, *lc2;
4934
4935 for (lc1 = vp1->loc_chain; lc1; lc1 = lc1->next)
4936 {
4937 for (lc2 = vp2->loc_chain; lc2; lc2 = lc2->next)
4938 {
4939 if (REG_P (lc1->loc) && REG_P (lc2->loc))
4940 {
4941 if (REGNO (lc1->loc) == REGNO (lc2->loc))
4942 break;
4943 }
4944 if (rtx_equal_p (lc1->loc, lc2->loc))
4945 break;
4946 }
4947 if (!lc2)
4948 return true;
4949 }
4950 return false;
4951 }
4952
4953 /* Return true if one-part variables VAR1 and VAR2 are different.
4954 They must be in canonical order. */
4955
4956 static bool
4957 onepart_variable_different_p (variable *var1, variable *var2)
4958 {
4959 location_chain *lc1, *lc2;
4960
4961 if (var1 == var2)
4962 return false;
4963
4964 gcc_assert (var1->n_var_parts == 1
4965 && var2->n_var_parts == 1);
4966
4967 lc1 = var1->var_part[0].loc_chain;
4968 lc2 = var2->var_part[0].loc_chain;
4969
4970 gcc_assert (lc1 && lc2);
4971
4972 while (lc1 && lc2)
4973 {
4974 if (loc_cmp (lc1->loc, lc2->loc))
4975 return true;
4976 lc1 = lc1->next;
4977 lc2 = lc2->next;
4978 }
4979
4980 return lc1 != lc2;
4981 }
4982
4983 /* Return true if one-part variables VAR1 and VAR2 are different.
4984 They must be in canonical order. */
4985
4986 static void
4987 dump_onepart_variable_differences (variable *var1, variable *var2)
4988 {
4989 location_chain *lc1, *lc2;
4990
4991 gcc_assert (var1 != var2);
4992 gcc_assert (dump_file);
4993 gcc_assert (dv_as_opaque (var1->dv) == dv_as_opaque (var2->dv));
4994 gcc_assert (var1->n_var_parts == 1
4995 && var2->n_var_parts == 1);
4996
4997 lc1 = var1->var_part[0].loc_chain;
4998 lc2 = var2->var_part[0].loc_chain;
4999
5000 gcc_assert (lc1 && lc2);
5001
5002 while (lc1 && lc2)
5003 {
5004 switch (loc_cmp (lc1->loc, lc2->loc))
5005 {
5006 case -1:
5007 fprintf (dump_file, "removed: ");
5008 print_rtl_single (dump_file, lc1->loc);
5009 lc1 = lc1->next;
5010 continue;
5011 case 0:
5012 break;
5013 case 1:
5014 fprintf (dump_file, "added: ");
5015 print_rtl_single (dump_file, lc2->loc);
5016 lc2 = lc2->next;
5017 continue;
5018 default:
5019 gcc_unreachable ();
5020 }
5021 lc1 = lc1->next;
5022 lc2 = lc2->next;
5023 }
5024
5025 while (lc1)
5026 {
5027 fprintf (dump_file, "removed: ");
5028 print_rtl_single (dump_file, lc1->loc);
5029 lc1 = lc1->next;
5030 }
5031
5032 while (lc2)
5033 {
5034 fprintf (dump_file, "added: ");
5035 print_rtl_single (dump_file, lc2->loc);
5036 lc2 = lc2->next;
5037 }
5038 }
5039
5040 /* Return true if variables VAR1 and VAR2 are different. */
5041
5042 static bool
5043 variable_different_p (variable *var1, variable *var2)
5044 {
5045 int i;
5046
5047 if (var1 == var2)
5048 return false;
5049
5050 if (var1->onepart != var2->onepart)
5051 return true;
5052
5053 if (var1->n_var_parts != var2->n_var_parts)
5054 return true;
5055
5056 if (var1->onepart && var1->n_var_parts)
5057 {
5058 gcc_checking_assert (dv_as_opaque (var1->dv) == dv_as_opaque (var2->dv)
5059 && var1->n_var_parts == 1);
5060 /* One-part values have locations in a canonical order. */
5061 return onepart_variable_different_p (var1, var2);
5062 }
5063
5064 for (i = 0; i < var1->n_var_parts; i++)
5065 {
5066 if (VAR_PART_OFFSET (var1, i) != VAR_PART_OFFSET (var2, i))
5067 return true;
5068 if (variable_part_different_p (&var1->var_part[i], &var2->var_part[i]))
5069 return true;
5070 if (variable_part_different_p (&var2->var_part[i], &var1->var_part[i]))
5071 return true;
5072 }
5073 return false;
5074 }
5075
5076 /* Return true if dataflow sets OLD_SET and NEW_SET differ. */
5077
5078 static bool
5079 dataflow_set_different (dataflow_set *old_set, dataflow_set *new_set)
5080 {
5081 variable_iterator_type hi;
5082 variable *var1;
5083 bool diffound = false;
5084 bool details = (dump_file && (dump_flags & TDF_DETAILS));
5085
5086 #define RETRUE \
5087 do \
5088 { \
5089 if (!details) \
5090 return true; \
5091 else \
5092 diffound = true; \
5093 } \
5094 while (0)
5095
5096 if (old_set->vars == new_set->vars)
5097 return false;
5098
5099 if (shared_hash_htab (old_set->vars)->elements ()
5100 != shared_hash_htab (new_set->vars)->elements ())
5101 RETRUE;
5102
5103 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (old_set->vars),
5104 var1, variable, hi)
5105 {
5106 variable_table_type *htab = shared_hash_htab (new_set->vars);
5107 variable *var2 = htab->find_with_hash (var1->dv, dv_htab_hash (var1->dv));
5108
5109 if (!var2)
5110 {
5111 if (dump_file && (dump_flags & TDF_DETAILS))
5112 {
5113 fprintf (dump_file, "dataflow difference found: removal of:\n");
5114 dump_var (var1);
5115 }
5116 RETRUE;
5117 }
5118 else if (variable_different_p (var1, var2))
5119 {
5120 if (details)
5121 {
5122 fprintf (dump_file, "dataflow difference found: "
5123 "old and new follow:\n");
5124 dump_var (var1);
5125 if (dv_onepart_p (var1->dv))
5126 dump_onepart_variable_differences (var1, var2);
5127 dump_var (var2);
5128 }
5129 RETRUE;
5130 }
5131 }
5132
5133 /* There's no need to traverse the second hashtab unless we want to
5134 print the details. If both have the same number of elements and
5135 the second one had all entries found in the first one, then the
5136 second can't have any extra entries. */
5137 if (!details)
5138 return diffound;
5139
5140 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (new_set->vars),
5141 var1, variable, hi)
5142 {
5143 variable_table_type *htab = shared_hash_htab (old_set->vars);
5144 variable *var2 = htab->find_with_hash (var1->dv, dv_htab_hash (var1->dv));
5145 if (!var2)
5146 {
5147 if (details)
5148 {
5149 fprintf (dump_file, "dataflow difference found: addition of:\n");
5150 dump_var (var1);
5151 }
5152 RETRUE;
5153 }
5154 }
5155
5156 #undef RETRUE
5157
5158 return diffound;
5159 }
5160
5161 /* Free the contents of dataflow set SET. */
5162
5163 static void
5164 dataflow_set_destroy (dataflow_set *set)
5165 {
5166 int i;
5167
5168 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5169 attrs_list_clear (&set->regs[i]);
5170
5171 shared_hash_destroy (set->vars);
5172 set->vars = NULL;
5173 }
5174
5175 /* Return true if T is a tracked parameter with non-degenerate record type. */
5176
5177 static bool
5178 tracked_record_parameter_p (tree t)
5179 {
5180 if (TREE_CODE (t) != PARM_DECL)
5181 return false;
5182
5183 if (DECL_MODE (t) == BLKmode)
5184 return false;
5185
5186 tree type = TREE_TYPE (t);
5187 if (TREE_CODE (type) != RECORD_TYPE)
5188 return false;
5189
5190 if (TYPE_FIELDS (type) == NULL_TREE
5191 || DECL_CHAIN (TYPE_FIELDS (type)) == NULL_TREE)
5192 return false;
5193
5194 return true;
5195 }
5196
5197 /* Shall EXPR be tracked? */
5198
5199 static bool
5200 track_expr_p (tree expr, bool need_rtl)
5201 {
5202 rtx decl_rtl;
5203 tree realdecl;
5204
5205 if (TREE_CODE (expr) == DEBUG_EXPR_DECL)
5206 return DECL_RTL_SET_P (expr);
5207
5208 /* If EXPR is not a parameter or a variable do not track it. */
5209 if (!VAR_P (expr) && TREE_CODE (expr) != PARM_DECL)
5210 return 0;
5211
5212 /* It also must have a name... */
5213 if (!DECL_NAME (expr) && need_rtl)
5214 return 0;
5215
5216 /* ... and a RTL assigned to it. */
5217 decl_rtl = DECL_RTL_IF_SET (expr);
5218 if (!decl_rtl && need_rtl)
5219 return 0;
5220
5221 /* If this expression is really a debug alias of some other declaration, we
5222 don't need to track this expression if the ultimate declaration is
5223 ignored. */
5224 realdecl = expr;
5225 if (VAR_P (realdecl) && DECL_HAS_DEBUG_EXPR_P (realdecl))
5226 {
5227 realdecl = DECL_DEBUG_EXPR (realdecl);
5228 if (!DECL_P (realdecl))
5229 {
5230 if (handled_component_p (realdecl)
5231 || (TREE_CODE (realdecl) == MEM_REF
5232 && TREE_CODE (TREE_OPERAND (realdecl, 0)) == ADDR_EXPR))
5233 {
5234 HOST_WIDE_INT bitsize, bitpos;
5235 bool reverse;
5236 tree innerdecl
5237 = get_ref_base_and_extent_hwi (realdecl, &bitpos,
5238 &bitsize, &reverse);
5239 if (!innerdecl
5240 || !DECL_P (innerdecl)
5241 || DECL_IGNORED_P (innerdecl)
5242 /* Do not track declarations for parts of tracked record
5243 parameters since we want to track them as a whole. */
5244 || tracked_record_parameter_p (innerdecl)
5245 || TREE_STATIC (innerdecl)
5246 || bitsize == 0
5247 || bitpos + bitsize > 256)
5248 return 0;
5249 else
5250 realdecl = expr;
5251 }
5252 else
5253 return 0;
5254 }
5255 }
5256
5257 /* Do not track EXPR if REALDECL it should be ignored for debugging
5258 purposes. */
5259 if (DECL_IGNORED_P (realdecl))
5260 return 0;
5261
5262 /* Do not track global variables until we are able to emit correct location
5263 list for them. */
5264 if (TREE_STATIC (realdecl))
5265 return 0;
5266
5267 /* When the EXPR is a DECL for alias of some variable (see example)
5268 the TREE_STATIC flag is not used. Disable tracking all DECLs whose
5269 DECL_RTL contains SYMBOL_REF.
5270
5271 Example:
5272 extern char **_dl_argv_internal __attribute__ ((alias ("_dl_argv")));
5273 char **_dl_argv;
5274 */
5275 if (decl_rtl && MEM_P (decl_rtl)
5276 && contains_symbol_ref_p (XEXP (decl_rtl, 0)))
5277 return 0;
5278
5279 /* If RTX is a memory it should not be very large (because it would be
5280 an array or struct). */
5281 if (decl_rtl && MEM_P (decl_rtl))
5282 {
5283 /* Do not track structures and arrays. */
5284 if ((GET_MODE (decl_rtl) == BLKmode
5285 || AGGREGATE_TYPE_P (TREE_TYPE (realdecl)))
5286 && !tracked_record_parameter_p (realdecl))
5287 return 0;
5288 if (MEM_SIZE_KNOWN_P (decl_rtl)
5289 && maybe_gt (MEM_SIZE (decl_rtl), MAX_VAR_PARTS))
5290 return 0;
5291 }
5292
5293 DECL_CHANGED (expr) = 0;
5294 DECL_CHANGED (realdecl) = 0;
5295 return 1;
5296 }
5297
5298 /* Determine whether a given LOC refers to the same variable part as
5299 EXPR+OFFSET. */
5300
5301 static bool
5302 same_variable_part_p (rtx loc, tree expr, poly_int64 offset)
5303 {
5304 tree expr2;
5305 poly_int64 offset2;
5306
5307 if (! DECL_P (expr))
5308 return false;
5309
5310 if (REG_P (loc))
5311 {
5312 expr2 = REG_EXPR (loc);
5313 offset2 = REG_OFFSET (loc);
5314 }
5315 else if (MEM_P (loc))
5316 {
5317 expr2 = MEM_EXPR (loc);
5318 offset2 = int_mem_offset (loc);
5319 }
5320 else
5321 return false;
5322
5323 if (! expr2 || ! DECL_P (expr2))
5324 return false;
5325
5326 expr = var_debug_decl (expr);
5327 expr2 = var_debug_decl (expr2);
5328
5329 return (expr == expr2 && known_eq (offset, offset2));
5330 }
5331
5332 /* LOC is a REG or MEM that we would like to track if possible.
5333 If EXPR is null, we don't know what expression LOC refers to,
5334 otherwise it refers to EXPR + OFFSET. STORE_REG_P is true if
5335 LOC is an lvalue register.
5336
5337 Return true if EXPR is nonnull and if LOC, or some lowpart of it,
5338 is something we can track. When returning true, store the mode of
5339 the lowpart we can track in *MODE_OUT (if nonnull) and its offset
5340 from EXPR in *OFFSET_OUT (if nonnull). */
5341
5342 static bool
5343 track_loc_p (rtx loc, tree expr, poly_int64 offset, bool store_reg_p,
5344 machine_mode *mode_out, HOST_WIDE_INT *offset_out)
5345 {
5346 machine_mode mode;
5347
5348 if (expr == NULL || !track_expr_p (expr, true))
5349 return false;
5350
5351 /* If REG was a paradoxical subreg, its REG_ATTRS will describe the
5352 whole subreg, but only the old inner part is really relevant. */
5353 mode = GET_MODE (loc);
5354 if (REG_P (loc) && !HARD_REGISTER_NUM_P (ORIGINAL_REGNO (loc)))
5355 {
5356 machine_mode pseudo_mode;
5357
5358 pseudo_mode = PSEUDO_REGNO_MODE (ORIGINAL_REGNO (loc));
5359 if (paradoxical_subreg_p (mode, pseudo_mode))
5360 {
5361 offset += byte_lowpart_offset (pseudo_mode, mode);
5362 mode = pseudo_mode;
5363 }
5364 }
5365
5366 /* If LOC is a paradoxical lowpart of EXPR, refer to EXPR itself.
5367 Do the same if we are storing to a register and EXPR occupies
5368 the whole of register LOC; in that case, the whole of EXPR is
5369 being changed. We exclude complex modes from the second case
5370 because the real and imaginary parts are represented as separate
5371 pseudo registers, even if the whole complex value fits into one
5372 hard register. */
5373 if ((paradoxical_subreg_p (mode, DECL_MODE (expr))
5374 || (store_reg_p
5375 && !COMPLEX_MODE_P (DECL_MODE (expr))
5376 && hard_regno_nregs (REGNO (loc), DECL_MODE (expr)) == 1))
5377 && known_eq (offset + byte_lowpart_offset (DECL_MODE (expr), mode), 0))
5378 {
5379 mode = DECL_MODE (expr);
5380 offset = 0;
5381 }
5382
5383 HOST_WIDE_INT const_offset;
5384 if (!track_offset_p (offset, &const_offset))
5385 return false;
5386
5387 if (mode_out)
5388 *mode_out = mode;
5389 if (offset_out)
5390 *offset_out = const_offset;
5391 return true;
5392 }
5393
5394 /* Return the MODE lowpart of LOC, or null if LOC is not something we
5395 want to track. When returning nonnull, make sure that the attributes
5396 on the returned value are updated. */
5397
5398 static rtx
5399 var_lowpart (machine_mode mode, rtx loc)
5400 {
5401 unsigned int regno;
5402
5403 if (GET_MODE (loc) == mode)
5404 return loc;
5405
5406 if (!REG_P (loc) && !MEM_P (loc))
5407 return NULL;
5408
5409 poly_uint64 offset = byte_lowpart_offset (mode, GET_MODE (loc));
5410
5411 if (MEM_P (loc))
5412 return adjust_address_nv (loc, mode, offset);
5413
5414 poly_uint64 reg_offset = subreg_lowpart_offset (mode, GET_MODE (loc));
5415 regno = REGNO (loc) + subreg_regno_offset (REGNO (loc), GET_MODE (loc),
5416 reg_offset, mode);
5417 return gen_rtx_REG_offset (loc, mode, regno, offset);
5418 }
5419
5420 /* Carry information about uses and stores while walking rtx. */
5421
5422 struct count_use_info
5423 {
5424 /* The insn where the RTX is. */
5425 rtx_insn *insn;
5426
5427 /* The basic block where insn is. */
5428 basic_block bb;
5429
5430 /* The array of n_sets sets in the insn, as determined by cselib. */
5431 struct cselib_set *sets;
5432 int n_sets;
5433
5434 /* True if we're counting stores, false otherwise. */
5435 bool store_p;
5436 };
5437
5438 /* Find a VALUE corresponding to X. */
5439
5440 static inline cselib_val *
5441 find_use_val (rtx x, machine_mode mode, struct count_use_info *cui)
5442 {
5443 int i;
5444
5445 if (cui->sets)
5446 {
5447 /* This is called after uses are set up and before stores are
5448 processed by cselib, so it's safe to look up srcs, but not
5449 dsts. So we look up expressions that appear in srcs or in
5450 dest expressions, but we search the sets array for dests of
5451 stores. */
5452 if (cui->store_p)
5453 {
5454 /* Some targets represent memset and memcpy patterns
5455 by (set (mem:BLK ...) (reg:[QHSD]I ...)) or
5456 (set (mem:BLK ...) (const_int ...)) or
5457 (set (mem:BLK ...) (mem:BLK ...)). Don't return anything
5458 in that case, otherwise we end up with mode mismatches. */
5459 if (mode == BLKmode && MEM_P (x))
5460 return NULL;
5461 for (i = 0; i < cui->n_sets; i++)
5462 if (cui->sets[i].dest == x)
5463 return cui->sets[i].src_elt;
5464 }
5465 else
5466 return cselib_lookup (x, mode, 0, VOIDmode);
5467 }
5468
5469 return NULL;
5470 }
5471
5472 /* Replace all registers and addresses in an expression with VALUE
5473 expressions that map back to them, unless the expression is a
5474 register. If no mapping is or can be performed, returns NULL. */
5475
5476 static rtx
5477 replace_expr_with_values (rtx loc)
5478 {
5479 if (REG_P (loc) || GET_CODE (loc) == ENTRY_VALUE)
5480 return NULL;
5481 else if (MEM_P (loc))
5482 {
5483 cselib_val *addr = cselib_lookup (XEXP (loc, 0),
5484 get_address_mode (loc), 0,
5485 GET_MODE (loc));
5486 if (addr)
5487 return replace_equiv_address_nv (loc, addr->val_rtx);
5488 else
5489 return NULL;
5490 }
5491 else
5492 return cselib_subst_to_values (loc, VOIDmode);
5493 }
5494
5495 /* Return true if X contains a DEBUG_EXPR. */
5496
5497 static bool
5498 rtx_debug_expr_p (const_rtx x)
5499 {
5500 subrtx_iterator::array_type array;
5501 FOR_EACH_SUBRTX (iter, array, x, ALL)
5502 if (GET_CODE (*iter) == DEBUG_EXPR)
5503 return true;
5504 return false;
5505 }
5506
5507 /* Determine what kind of micro operation to choose for a USE. Return
5508 MO_CLOBBER if no micro operation is to be generated. */
5509
5510 static enum micro_operation_type
5511 use_type (rtx loc, struct count_use_info *cui, machine_mode *modep)
5512 {
5513 tree expr;
5514
5515 if (cui && cui->sets)
5516 {
5517 if (GET_CODE (loc) == VAR_LOCATION)
5518 {
5519 if (track_expr_p (PAT_VAR_LOCATION_DECL (loc), false))
5520 {
5521 rtx ploc = PAT_VAR_LOCATION_LOC (loc);
5522 if (! VAR_LOC_UNKNOWN_P (ploc))
5523 {
5524 cselib_val *val = cselib_lookup (ploc, GET_MODE (loc), 1,
5525 VOIDmode);
5526
5527 /* ??? flag_float_store and volatile mems are never
5528 given values, but we could in theory use them for
5529 locations. */
5530 gcc_assert (val || 1);
5531 }
5532 return MO_VAL_LOC;
5533 }
5534 else
5535 return MO_CLOBBER;
5536 }
5537
5538 if (REG_P (loc) || MEM_P (loc))
5539 {
5540 if (modep)
5541 *modep = GET_MODE (loc);
5542 if (cui->store_p)
5543 {
5544 if (REG_P (loc)
5545 || (find_use_val (loc, GET_MODE (loc), cui)
5546 && cselib_lookup (XEXP (loc, 0),
5547 get_address_mode (loc), 0,
5548 GET_MODE (loc))))
5549 return MO_VAL_SET;
5550 }
5551 else
5552 {
5553 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5554
5555 if (val && !cselib_preserved_value_p (val))
5556 return MO_VAL_USE;
5557 }
5558 }
5559 }
5560
5561 if (REG_P (loc))
5562 {
5563 gcc_assert (REGNO (loc) < FIRST_PSEUDO_REGISTER);
5564
5565 if (loc == cfa_base_rtx)
5566 return MO_CLOBBER;
5567 expr = REG_EXPR (loc);
5568
5569 if (!expr)
5570 return MO_USE_NO_VAR;
5571 else if (target_for_debug_bind (var_debug_decl (expr)))
5572 return MO_CLOBBER;
5573 else if (track_loc_p (loc, expr, REG_OFFSET (loc),
5574 false, modep, NULL))
5575 return MO_USE;
5576 else
5577 return MO_USE_NO_VAR;
5578 }
5579 else if (MEM_P (loc))
5580 {
5581 expr = MEM_EXPR (loc);
5582
5583 if (!expr)
5584 return MO_CLOBBER;
5585 else if (target_for_debug_bind (var_debug_decl (expr)))
5586 return MO_CLOBBER;
5587 else if (track_loc_p (loc, expr, int_mem_offset (loc),
5588 false, modep, NULL)
5589 /* Multi-part variables shouldn't refer to one-part
5590 variable names such as VALUEs (never happens) or
5591 DEBUG_EXPRs (only happens in the presence of debug
5592 insns). */
5593 && (!MAY_HAVE_DEBUG_BIND_INSNS
5594 || !rtx_debug_expr_p (XEXP (loc, 0))))
5595 return MO_USE;
5596 else
5597 return MO_CLOBBER;
5598 }
5599
5600 return MO_CLOBBER;
5601 }
5602
5603 /* Log to OUT information about micro-operation MOPT involving X in
5604 INSN of BB. */
5605
5606 static inline void
5607 log_op_type (rtx x, basic_block bb, rtx_insn *insn,
5608 enum micro_operation_type mopt, FILE *out)
5609 {
5610 fprintf (out, "bb %i op %i insn %i %s ",
5611 bb->index, VTI (bb)->mos.length (),
5612 INSN_UID (insn), micro_operation_type_name[mopt]);
5613 print_inline_rtx (out, x, 2);
5614 fputc ('\n', out);
5615 }
5616
5617 /* Tell whether the CONCAT used to holds a VALUE and its location
5618 needs value resolution, i.e., an attempt of mapping the location
5619 back to other incoming values. */
5620 #define VAL_NEEDS_RESOLUTION(x) \
5621 (RTL_FLAG_CHECK1 ("VAL_NEEDS_RESOLUTION", (x), CONCAT)->volatil)
5622 /* Whether the location in the CONCAT is a tracked expression, that
5623 should also be handled like a MO_USE. */
5624 #define VAL_HOLDS_TRACK_EXPR(x) \
5625 (RTL_FLAG_CHECK1 ("VAL_HOLDS_TRACK_EXPR", (x), CONCAT)->used)
5626 /* Whether the location in the CONCAT should be handled like a MO_COPY
5627 as well. */
5628 #define VAL_EXPR_IS_COPIED(x) \
5629 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_COPIED", (x), CONCAT)->jump)
5630 /* Whether the location in the CONCAT should be handled like a
5631 MO_CLOBBER as well. */
5632 #define VAL_EXPR_IS_CLOBBERED(x) \
5633 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_CLOBBERED", (x), CONCAT)->unchanging)
5634
5635 /* All preserved VALUEs. */
5636 static vec<rtx> preserved_values;
5637
5638 /* Ensure VAL is preserved and remember it in a vector for vt_emit_notes. */
5639
5640 static void
5641 preserve_value (cselib_val *val)
5642 {
5643 cselib_preserve_value (val);
5644 preserved_values.safe_push (val->val_rtx);
5645 }
5646
5647 /* Helper function for MO_VAL_LOC handling. Return non-zero if
5648 any rtxes not suitable for CONST use not replaced by VALUEs
5649 are discovered. */
5650
5651 static bool
5652 non_suitable_const (const_rtx x)
5653 {
5654 subrtx_iterator::array_type array;
5655 FOR_EACH_SUBRTX (iter, array, x, ALL)
5656 {
5657 const_rtx x = *iter;
5658 switch (GET_CODE (x))
5659 {
5660 case REG:
5661 case DEBUG_EXPR:
5662 case PC:
5663 case SCRATCH:
5664 case CC0:
5665 case ASM_INPUT:
5666 case ASM_OPERANDS:
5667 return true;
5668 case MEM:
5669 if (!MEM_READONLY_P (x))
5670 return true;
5671 break;
5672 default:
5673 break;
5674 }
5675 }
5676 return false;
5677 }
5678
5679 /* Add uses (register and memory references) LOC which will be tracked
5680 to VTI (bb)->mos. */
5681
5682 static void
5683 add_uses (rtx loc, struct count_use_info *cui)
5684 {
5685 machine_mode mode = VOIDmode;
5686 enum micro_operation_type type = use_type (loc, cui, &mode);
5687
5688 if (type != MO_CLOBBER)
5689 {
5690 basic_block bb = cui->bb;
5691 micro_operation mo;
5692
5693 mo.type = type;
5694 mo.u.loc = type == MO_USE ? var_lowpart (mode, loc) : loc;
5695 mo.insn = cui->insn;
5696
5697 if (type == MO_VAL_LOC)
5698 {
5699 rtx oloc = loc;
5700 rtx vloc = PAT_VAR_LOCATION_LOC (oloc);
5701 cselib_val *val;
5702
5703 gcc_assert (cui->sets);
5704
5705 if (MEM_P (vloc)
5706 && !REG_P (XEXP (vloc, 0))
5707 && !MEM_P (XEXP (vloc, 0)))
5708 {
5709 rtx mloc = vloc;
5710 machine_mode address_mode = get_address_mode (mloc);
5711 cselib_val *val
5712 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5713 GET_MODE (mloc));
5714
5715 if (val && !cselib_preserved_value_p (val))
5716 preserve_value (val);
5717 }
5718
5719 if (CONSTANT_P (vloc)
5720 && (GET_CODE (vloc) != CONST || non_suitable_const (vloc)))
5721 /* For constants don't look up any value. */;
5722 else if (!VAR_LOC_UNKNOWN_P (vloc) && !unsuitable_loc (vloc)
5723 && (val = find_use_val (vloc, GET_MODE (oloc), cui)))
5724 {
5725 machine_mode mode2;
5726 enum micro_operation_type type2;
5727 rtx nloc = NULL;
5728 bool resolvable = REG_P (vloc) || MEM_P (vloc);
5729
5730 if (resolvable)
5731 nloc = replace_expr_with_values (vloc);
5732
5733 if (nloc)
5734 {
5735 oloc = shallow_copy_rtx (oloc);
5736 PAT_VAR_LOCATION_LOC (oloc) = nloc;
5737 }
5738
5739 oloc = gen_rtx_CONCAT (mode, val->val_rtx, oloc);
5740
5741 type2 = use_type (vloc, 0, &mode2);
5742
5743 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5744 || type2 == MO_CLOBBER);
5745
5746 if (type2 == MO_CLOBBER
5747 && !cselib_preserved_value_p (val))
5748 {
5749 VAL_NEEDS_RESOLUTION (oloc) = resolvable;
5750 preserve_value (val);
5751 }
5752 }
5753 else if (!VAR_LOC_UNKNOWN_P (vloc))
5754 {
5755 oloc = shallow_copy_rtx (oloc);
5756 PAT_VAR_LOCATION_LOC (oloc) = gen_rtx_UNKNOWN_VAR_LOC ();
5757 }
5758
5759 mo.u.loc = oloc;
5760 }
5761 else if (type == MO_VAL_USE)
5762 {
5763 machine_mode mode2 = VOIDmode;
5764 enum micro_operation_type type2;
5765 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5766 rtx vloc, oloc = loc, nloc;
5767
5768 gcc_assert (cui->sets);
5769
5770 if (MEM_P (oloc)
5771 && !REG_P (XEXP (oloc, 0))
5772 && !MEM_P (XEXP (oloc, 0)))
5773 {
5774 rtx mloc = oloc;
5775 machine_mode address_mode = get_address_mode (mloc);
5776 cselib_val *val
5777 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5778 GET_MODE (mloc));
5779
5780 if (val && !cselib_preserved_value_p (val))
5781 preserve_value (val);
5782 }
5783
5784 type2 = use_type (loc, 0, &mode2);
5785
5786 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5787 || type2 == MO_CLOBBER);
5788
5789 if (type2 == MO_USE)
5790 vloc = var_lowpart (mode2, loc);
5791 else
5792 vloc = oloc;
5793
5794 /* The loc of a MO_VAL_USE may have two forms:
5795
5796 (concat val src): val is at src, a value-based
5797 representation.
5798
5799 (concat (concat val use) src): same as above, with use as
5800 the MO_USE tracked value, if it differs from src.
5801
5802 */
5803
5804 gcc_checking_assert (REG_P (loc) || MEM_P (loc));
5805 nloc = replace_expr_with_values (loc);
5806 if (!nloc)
5807 nloc = oloc;
5808
5809 if (vloc != nloc)
5810 oloc = gen_rtx_CONCAT (mode2, val->val_rtx, vloc);
5811 else
5812 oloc = val->val_rtx;
5813
5814 mo.u.loc = gen_rtx_CONCAT (mode, oloc, nloc);
5815
5816 if (type2 == MO_USE)
5817 VAL_HOLDS_TRACK_EXPR (mo.u.loc) = 1;
5818 if (!cselib_preserved_value_p (val))
5819 {
5820 VAL_NEEDS_RESOLUTION (mo.u.loc) = 1;
5821 preserve_value (val);
5822 }
5823 }
5824 else
5825 gcc_assert (type == MO_USE || type == MO_USE_NO_VAR);
5826
5827 if (dump_file && (dump_flags & TDF_DETAILS))
5828 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
5829 VTI (bb)->mos.safe_push (mo);
5830 }
5831 }
5832
5833 /* Helper function for finding all uses of REG/MEM in X in insn INSN. */
5834
5835 static void
5836 add_uses_1 (rtx *x, void *cui)
5837 {
5838 subrtx_var_iterator::array_type array;
5839 FOR_EACH_SUBRTX_VAR (iter, array, *x, NONCONST)
5840 add_uses (*iter, (struct count_use_info *) cui);
5841 }
5842
5843 /* This is the value used during expansion of locations. We want it
5844 to be unbounded, so that variables expanded deep in a recursion
5845 nest are fully evaluated, so that their values are cached
5846 correctly. We avoid recursion cycles through other means, and we
5847 don't unshare RTL, so excess complexity is not a problem. */
5848 #define EXPR_DEPTH (INT_MAX)
5849 /* We use this to keep too-complex expressions from being emitted as
5850 location notes, and then to debug information. Users can trade
5851 compile time for ridiculously complex expressions, although they're
5852 seldom useful, and they may often have to be discarded as not
5853 representable anyway. */
5854 #define EXPR_USE_DEPTH (param_max_vartrack_expr_depth)
5855
5856 /* Attempt to reverse the EXPR operation in the debug info and record
5857 it in the cselib table. Say for reg1 = reg2 + 6 even when reg2 is
5858 no longer live we can express its value as VAL - 6. */
5859
5860 static void
5861 reverse_op (rtx val, const_rtx expr, rtx_insn *insn)
5862 {
5863 rtx src, arg, ret;
5864 cselib_val *v;
5865 struct elt_loc_list *l;
5866 enum rtx_code code;
5867 int count;
5868
5869 if (GET_CODE (expr) != SET)
5870 return;
5871
5872 if (!REG_P (SET_DEST (expr)) || GET_MODE (val) != GET_MODE (SET_DEST (expr)))
5873 return;
5874
5875 src = SET_SRC (expr);
5876 switch (GET_CODE (src))
5877 {
5878 case PLUS:
5879 case MINUS:
5880 case XOR:
5881 case NOT:
5882 case NEG:
5883 if (!REG_P (XEXP (src, 0)))
5884 return;
5885 break;
5886 case SIGN_EXTEND:
5887 case ZERO_EXTEND:
5888 if (!REG_P (XEXP (src, 0)) && !MEM_P (XEXP (src, 0)))
5889 return;
5890 break;
5891 default:
5892 return;
5893 }
5894
5895 if (!SCALAR_INT_MODE_P (GET_MODE (src)) || XEXP (src, 0) == cfa_base_rtx)
5896 return;
5897
5898 v = cselib_lookup (XEXP (src, 0), GET_MODE (XEXP (src, 0)), 0, VOIDmode);
5899 if (!v || !cselib_preserved_value_p (v))
5900 return;
5901
5902 /* Use canonical V to avoid creating multiple redundant expressions
5903 for different VALUES equivalent to V. */
5904 v = canonical_cselib_val (v);
5905
5906 /* Adding a reverse op isn't useful if V already has an always valid
5907 location. Ignore ENTRY_VALUE, while it is always constant, we should
5908 prefer non-ENTRY_VALUE locations whenever possible. */
5909 for (l = v->locs, count = 0; l; l = l->next, count++)
5910 if (CONSTANT_P (l->loc)
5911 && (GET_CODE (l->loc) != CONST || !references_value_p (l->loc, 0)))
5912 return;
5913 /* Avoid creating too large locs lists. */
5914 else if (count == param_max_vartrack_reverse_op_size)
5915 return;
5916
5917 switch (GET_CODE (src))
5918 {
5919 case NOT:
5920 case NEG:
5921 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5922 return;
5923 ret = gen_rtx_fmt_e (GET_CODE (src), GET_MODE (val), val);
5924 break;
5925 case SIGN_EXTEND:
5926 case ZERO_EXTEND:
5927 ret = gen_lowpart_SUBREG (GET_MODE (v->val_rtx), val);
5928 break;
5929 case XOR:
5930 code = XOR;
5931 goto binary;
5932 case PLUS:
5933 code = MINUS;
5934 goto binary;
5935 case MINUS:
5936 code = PLUS;
5937 goto binary;
5938 binary:
5939 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5940 return;
5941 arg = XEXP (src, 1);
5942 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5943 {
5944 arg = cselib_expand_value_rtx (arg, scratch_regs, 5);
5945 if (arg == NULL_RTX)
5946 return;
5947 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5948 return;
5949 }
5950 ret = simplify_gen_binary (code, GET_MODE (val), val, arg);
5951 break;
5952 default:
5953 gcc_unreachable ();
5954 }
5955
5956 cselib_add_permanent_equiv (v, ret, insn);
5957 }
5958
5959 /* Add stores (register and memory references) LOC which will be tracked
5960 to VTI (bb)->mos. EXPR is the RTL expression containing the store.
5961 CUIP->insn is instruction which the LOC is part of. */
5962
5963 static void
5964 add_stores (rtx loc, const_rtx expr, void *cuip)
5965 {
5966 machine_mode mode = VOIDmode, mode2;
5967 struct count_use_info *cui = (struct count_use_info *)cuip;
5968 basic_block bb = cui->bb;
5969 micro_operation mo;
5970 rtx oloc = loc, nloc, src = NULL;
5971 enum micro_operation_type type = use_type (loc, cui, &mode);
5972 bool track_p = false;
5973 cselib_val *v;
5974 bool resolve, preserve;
5975
5976 if (type == MO_CLOBBER)
5977 return;
5978
5979 mode2 = mode;
5980
5981 if (REG_P (loc))
5982 {
5983 gcc_assert (loc != cfa_base_rtx);
5984 if ((GET_CODE (expr) == CLOBBER && type != MO_VAL_SET)
5985 || !(track_p = use_type (loc, NULL, &mode2) == MO_USE)
5986 || GET_CODE (expr) == CLOBBER)
5987 {
5988 mo.type = MO_CLOBBER;
5989 mo.u.loc = loc;
5990 if (GET_CODE (expr) == SET
5991 && (SET_DEST (expr) == loc
5992 || (GET_CODE (SET_DEST (expr)) == STRICT_LOW_PART
5993 && XEXP (SET_DEST (expr), 0) == loc))
5994 && !unsuitable_loc (SET_SRC (expr))
5995 && find_use_val (loc, mode, cui))
5996 {
5997 gcc_checking_assert (type == MO_VAL_SET);
5998 mo.u.loc = gen_rtx_SET (loc, SET_SRC (expr));
5999 }
6000 }
6001 else
6002 {
6003 if (GET_CODE (expr) == SET
6004 && SET_DEST (expr) == loc
6005 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
6006 src = var_lowpart (mode2, SET_SRC (expr));
6007 loc = var_lowpart (mode2, loc);
6008
6009 if (src == NULL)
6010 {
6011 mo.type = MO_SET;
6012 mo.u.loc = loc;
6013 }
6014 else
6015 {
6016 rtx xexpr = gen_rtx_SET (loc, src);
6017 if (same_variable_part_p (src, REG_EXPR (loc), REG_OFFSET (loc)))
6018 {
6019 /* If this is an instruction copying (part of) a parameter
6020 passed by invisible reference to its register location,
6021 pretend it's a SET so that the initial memory location
6022 is discarded, as the parameter register can be reused
6023 for other purposes and we do not track locations based
6024 on generic registers. */
6025 if (MEM_P (src)
6026 && REG_EXPR (loc)
6027 && TREE_CODE (REG_EXPR (loc)) == PARM_DECL
6028 && DECL_MODE (REG_EXPR (loc)) != BLKmode
6029 && MEM_P (DECL_INCOMING_RTL (REG_EXPR (loc)))
6030 && XEXP (DECL_INCOMING_RTL (REG_EXPR (loc)), 0)
6031 != arg_pointer_rtx)
6032 mo.type = MO_SET;
6033 else
6034 mo.type = MO_COPY;
6035 }
6036 else
6037 mo.type = MO_SET;
6038 mo.u.loc = xexpr;
6039 }
6040 }
6041 mo.insn = cui->insn;
6042 }
6043 else if (MEM_P (loc)
6044 && ((track_p = use_type (loc, NULL, &mode2) == MO_USE)
6045 || cui->sets))
6046 {
6047 if (MEM_P (loc) && type == MO_VAL_SET
6048 && !REG_P (XEXP (loc, 0))
6049 && !MEM_P (XEXP (loc, 0)))
6050 {
6051 rtx mloc = loc;
6052 machine_mode address_mode = get_address_mode (mloc);
6053 cselib_val *val = cselib_lookup (XEXP (mloc, 0),
6054 address_mode, 0,
6055 GET_MODE (mloc));
6056
6057 if (val && !cselib_preserved_value_p (val))
6058 preserve_value (val);
6059 }
6060
6061 if (GET_CODE (expr) == CLOBBER || !track_p)
6062 {
6063 mo.type = MO_CLOBBER;
6064 mo.u.loc = track_p ? var_lowpart (mode2, loc) : loc;
6065 }
6066 else
6067 {
6068 if (GET_CODE (expr) == SET
6069 && SET_DEST (expr) == loc
6070 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
6071 src = var_lowpart (mode2, SET_SRC (expr));
6072 loc = var_lowpart (mode2, loc);
6073
6074 if (src == NULL)
6075 {
6076 mo.type = MO_SET;
6077 mo.u.loc = loc;
6078 }
6079 else
6080 {
6081 rtx xexpr = gen_rtx_SET (loc, src);
6082 if (same_variable_part_p (SET_SRC (xexpr),
6083 MEM_EXPR (loc),
6084 int_mem_offset (loc)))
6085 mo.type = MO_COPY;
6086 else
6087 mo.type = MO_SET;
6088 mo.u.loc = xexpr;
6089 }
6090 }
6091 mo.insn = cui->insn;
6092 }
6093 else
6094 return;
6095
6096 if (type != MO_VAL_SET)
6097 goto log_and_return;
6098
6099 v = find_use_val (oloc, mode, cui);
6100
6101 if (!v)
6102 goto log_and_return;
6103
6104 resolve = preserve = !cselib_preserved_value_p (v);
6105
6106 /* We cannot track values for multiple-part variables, so we track only
6107 locations for tracked record parameters. */
6108 if (track_p
6109 && REG_P (loc)
6110 && REG_EXPR (loc)
6111 && tracked_record_parameter_p (REG_EXPR (loc)))
6112 {
6113 /* Although we don't use the value here, it could be used later by the
6114 mere virtue of its existence as the operand of the reverse operation
6115 that gave rise to it (typically extension/truncation). Make sure it
6116 is preserved as required by vt_expand_var_loc_chain. */
6117 if (preserve)
6118 preserve_value (v);
6119 goto log_and_return;
6120 }
6121
6122 if (loc == stack_pointer_rtx
6123 && (maybe_ne (hard_frame_pointer_adjustment, -1)
6124 || (!frame_pointer_needed && !ACCUMULATE_OUTGOING_ARGS))
6125 && preserve)
6126 cselib_set_value_sp_based (v);
6127
6128 /* Don't record MO_VAL_SET for VALUEs that can be described using
6129 cfa_base_rtx or cfa_base_rtx + CONST_INT, cselib already knows
6130 all the needed equivalences and they shouldn't change depending
6131 on which register holds that VALUE in some instruction. */
6132 if (!frame_pointer_needed
6133 && cfa_base_rtx
6134 && cselib_sp_derived_value_p (v))
6135 {
6136 if (preserve)
6137 preserve_value (v);
6138 return;
6139 }
6140
6141 nloc = replace_expr_with_values (oloc);
6142 if (nloc)
6143 oloc = nloc;
6144
6145 if (GET_CODE (PATTERN (cui->insn)) == COND_EXEC)
6146 {
6147 cselib_val *oval = cselib_lookup (oloc, GET_MODE (oloc), 0, VOIDmode);
6148
6149 if (oval == v)
6150 return;
6151 gcc_assert (REG_P (oloc) || MEM_P (oloc));
6152
6153 if (oval && !cselib_preserved_value_p (oval))
6154 {
6155 micro_operation moa;
6156
6157 preserve_value (oval);
6158
6159 moa.type = MO_VAL_USE;
6160 moa.u.loc = gen_rtx_CONCAT (mode, oval->val_rtx, oloc);
6161 VAL_NEEDS_RESOLUTION (moa.u.loc) = 1;
6162 moa.insn = cui->insn;
6163
6164 if (dump_file && (dump_flags & TDF_DETAILS))
6165 log_op_type (moa.u.loc, cui->bb, cui->insn,
6166 moa.type, dump_file);
6167 VTI (bb)->mos.safe_push (moa);
6168 }
6169
6170 resolve = false;
6171 }
6172 else if (resolve && GET_CODE (mo.u.loc) == SET)
6173 {
6174 if (REG_P (SET_SRC (expr)) || MEM_P (SET_SRC (expr)))
6175 nloc = replace_expr_with_values (SET_SRC (expr));
6176 else
6177 nloc = NULL_RTX;
6178
6179 /* Avoid the mode mismatch between oexpr and expr. */
6180 if (!nloc && mode != mode2)
6181 {
6182 nloc = SET_SRC (expr);
6183 gcc_assert (oloc == SET_DEST (expr));
6184 }
6185
6186 if (nloc && nloc != SET_SRC (mo.u.loc))
6187 oloc = gen_rtx_SET (oloc, nloc);
6188 else
6189 {
6190 if (oloc == SET_DEST (mo.u.loc))
6191 /* No point in duplicating. */
6192 oloc = mo.u.loc;
6193 if (!REG_P (SET_SRC (mo.u.loc)))
6194 resolve = false;
6195 }
6196 }
6197 else if (!resolve)
6198 {
6199 if (GET_CODE (mo.u.loc) == SET
6200 && oloc == SET_DEST (mo.u.loc))
6201 /* No point in duplicating. */
6202 oloc = mo.u.loc;
6203 }
6204 else
6205 resolve = false;
6206
6207 loc = gen_rtx_CONCAT (mode, v->val_rtx, oloc);
6208
6209 if (mo.u.loc != oloc)
6210 loc = gen_rtx_CONCAT (GET_MODE (mo.u.loc), loc, mo.u.loc);
6211
6212 /* The loc of a MO_VAL_SET may have various forms:
6213
6214 (concat val dst): dst now holds val
6215
6216 (concat val (set dst src)): dst now holds val, copied from src
6217
6218 (concat (concat val dstv) dst): dst now holds val; dstv is dst
6219 after replacing mems and non-top-level regs with values.
6220
6221 (concat (concat val dstv) (set dst src)): dst now holds val,
6222 copied from src. dstv is a value-based representation of dst, if
6223 it differs from dst. If resolution is needed, src is a REG, and
6224 its mode is the same as that of val.
6225
6226 (concat (concat val (set dstv srcv)) (set dst src)): src
6227 copied to dst, holding val. dstv and srcv are value-based
6228 representations of dst and src, respectively.
6229
6230 */
6231
6232 if (GET_CODE (PATTERN (cui->insn)) != COND_EXEC)
6233 reverse_op (v->val_rtx, expr, cui->insn);
6234
6235 mo.u.loc = loc;
6236
6237 if (track_p)
6238 VAL_HOLDS_TRACK_EXPR (loc) = 1;
6239 if (preserve)
6240 {
6241 VAL_NEEDS_RESOLUTION (loc) = resolve;
6242 preserve_value (v);
6243 }
6244 if (mo.type == MO_CLOBBER)
6245 VAL_EXPR_IS_CLOBBERED (loc) = 1;
6246 if (mo.type == MO_COPY)
6247 VAL_EXPR_IS_COPIED (loc) = 1;
6248
6249 mo.type = MO_VAL_SET;
6250
6251 log_and_return:
6252 if (dump_file && (dump_flags & TDF_DETAILS))
6253 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
6254 VTI (bb)->mos.safe_push (mo);
6255 }
6256
6257 /* Arguments to the call. */
6258 static rtx call_arguments;
6259
6260 /* Compute call_arguments. */
6261
6262 static void
6263 prepare_call_arguments (basic_block bb, rtx_insn *insn)
6264 {
6265 rtx link, x, call;
6266 rtx prev, cur, next;
6267 rtx this_arg = NULL_RTX;
6268 tree type = NULL_TREE, t, fndecl = NULL_TREE;
6269 tree obj_type_ref = NULL_TREE;
6270 CUMULATIVE_ARGS args_so_far_v;
6271 cumulative_args_t args_so_far;
6272
6273 memset (&args_so_far_v, 0, sizeof (args_so_far_v));
6274 args_so_far = pack_cumulative_args (&args_so_far_v);
6275 call = get_call_rtx_from (insn);
6276 if (call)
6277 {
6278 if (GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
6279 {
6280 rtx symbol = XEXP (XEXP (call, 0), 0);
6281 if (SYMBOL_REF_DECL (symbol))
6282 fndecl = SYMBOL_REF_DECL (symbol);
6283 }
6284 if (fndecl == NULL_TREE)
6285 fndecl = MEM_EXPR (XEXP (call, 0));
6286 if (fndecl
6287 && TREE_CODE (TREE_TYPE (fndecl)) != FUNCTION_TYPE
6288 && TREE_CODE (TREE_TYPE (fndecl)) != METHOD_TYPE)
6289 fndecl = NULL_TREE;
6290 if (fndecl && TYPE_ARG_TYPES (TREE_TYPE (fndecl)))
6291 type = TREE_TYPE (fndecl);
6292 if (fndecl && TREE_CODE (fndecl) != FUNCTION_DECL)
6293 {
6294 if (TREE_CODE (fndecl) == INDIRECT_REF
6295 && TREE_CODE (TREE_OPERAND (fndecl, 0)) == OBJ_TYPE_REF)
6296 obj_type_ref = TREE_OPERAND (fndecl, 0);
6297 fndecl = NULL_TREE;
6298 }
6299 if (type)
6300 {
6301 for (t = TYPE_ARG_TYPES (type); t && t != void_list_node;
6302 t = TREE_CHAIN (t))
6303 if (TREE_CODE (TREE_VALUE (t)) == REFERENCE_TYPE
6304 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_VALUE (t))))
6305 break;
6306 if ((t == NULL || t == void_list_node) && obj_type_ref == NULL_TREE)
6307 type = NULL;
6308 else
6309 {
6310 int nargs ATTRIBUTE_UNUSED = list_length (TYPE_ARG_TYPES (type));
6311 link = CALL_INSN_FUNCTION_USAGE (insn);
6312 #ifndef PCC_STATIC_STRUCT_RETURN
6313 if (aggregate_value_p (TREE_TYPE (type), type)
6314 && targetm.calls.struct_value_rtx (type, 0) == 0)
6315 {
6316 tree struct_addr = build_pointer_type (TREE_TYPE (type));
6317 function_arg_info arg (struct_addr, /*named=*/true);
6318 rtx reg;
6319 INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
6320 nargs + 1);
6321 reg = targetm.calls.function_arg (args_so_far, arg);
6322 targetm.calls.function_arg_advance (args_so_far, arg);
6323 if (reg == NULL_RTX)
6324 {
6325 for (; link; link = XEXP (link, 1))
6326 if (GET_CODE (XEXP (link, 0)) == USE
6327 && MEM_P (XEXP (XEXP (link, 0), 0)))
6328 {
6329 link = XEXP (link, 1);
6330 break;
6331 }
6332 }
6333 }
6334 else
6335 #endif
6336 INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
6337 nargs);
6338 if (obj_type_ref && TYPE_ARG_TYPES (type) != void_list_node)
6339 {
6340 t = TYPE_ARG_TYPES (type);
6341 function_arg_info arg (TREE_VALUE (t), /*named=*/true);
6342 this_arg = targetm.calls.function_arg (args_so_far, arg);
6343 if (this_arg && !REG_P (this_arg))
6344 this_arg = NULL_RTX;
6345 else if (this_arg == NULL_RTX)
6346 {
6347 for (; link; link = XEXP (link, 1))
6348 if (GET_CODE (XEXP (link, 0)) == USE
6349 && MEM_P (XEXP (XEXP (link, 0), 0)))
6350 {
6351 this_arg = XEXP (XEXP (link, 0), 0);
6352 break;
6353 }
6354 }
6355 }
6356 }
6357 }
6358 }
6359 t = type ? TYPE_ARG_TYPES (type) : NULL_TREE;
6360
6361 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
6362 if (GET_CODE (XEXP (link, 0)) == USE)
6363 {
6364 rtx item = NULL_RTX;
6365 x = XEXP (XEXP (link, 0), 0);
6366 if (GET_MODE (link) == VOIDmode
6367 || GET_MODE (link) == BLKmode
6368 || (GET_MODE (link) != GET_MODE (x)
6369 && ((GET_MODE_CLASS (GET_MODE (link)) != MODE_INT
6370 && GET_MODE_CLASS (GET_MODE (link)) != MODE_PARTIAL_INT)
6371 || (GET_MODE_CLASS (GET_MODE (x)) != MODE_INT
6372 && GET_MODE_CLASS (GET_MODE (x)) != MODE_PARTIAL_INT))))
6373 /* Can't do anything for these, if the original type mode
6374 isn't known or can't be converted. */;
6375 else if (REG_P (x))
6376 {
6377 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
6378 scalar_int_mode mode;
6379 if (val && cselib_preserved_value_p (val))
6380 item = val->val_rtx;
6381 else if (is_a <scalar_int_mode> (GET_MODE (x), &mode))
6382 {
6383 opt_scalar_int_mode mode_iter;
6384 FOR_EACH_WIDER_MODE (mode_iter, mode)
6385 {
6386 mode = mode_iter.require ();
6387 if (GET_MODE_BITSIZE (mode) > BITS_PER_WORD)
6388 break;
6389
6390 rtx reg = simplify_subreg (mode, x, GET_MODE (x), 0);
6391 if (reg == NULL_RTX || !REG_P (reg))
6392 continue;
6393 val = cselib_lookup (reg, mode, 0, VOIDmode);
6394 if (val && cselib_preserved_value_p (val))
6395 {
6396 item = val->val_rtx;
6397 break;
6398 }
6399 }
6400 }
6401 }
6402 else if (MEM_P (x))
6403 {
6404 rtx mem = x;
6405 cselib_val *val;
6406
6407 if (!frame_pointer_needed)
6408 {
6409 class adjust_mem_data amd;
6410 amd.mem_mode = VOIDmode;
6411 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
6412 amd.store = true;
6413 mem = simplify_replace_fn_rtx (mem, NULL_RTX, adjust_mems,
6414 &amd);
6415 gcc_assert (amd.side_effects.is_empty ());
6416 }
6417 val = cselib_lookup (mem, GET_MODE (mem), 0, VOIDmode);
6418 if (val && cselib_preserved_value_p (val))
6419 item = val->val_rtx;
6420 else if (GET_MODE_CLASS (GET_MODE (mem)) != MODE_INT
6421 && GET_MODE_CLASS (GET_MODE (mem)) != MODE_PARTIAL_INT)
6422 {
6423 /* For non-integer stack argument see also if they weren't
6424 initialized by integers. */
6425 scalar_int_mode imode;
6426 if (int_mode_for_mode (GET_MODE (mem)).exists (&imode)
6427 && imode != GET_MODE (mem))
6428 {
6429 val = cselib_lookup (adjust_address_nv (mem, imode, 0),
6430 imode, 0, VOIDmode);
6431 if (val && cselib_preserved_value_p (val))
6432 item = lowpart_subreg (GET_MODE (x), val->val_rtx,
6433 imode);
6434 }
6435 }
6436 }
6437 if (item)
6438 {
6439 rtx x2 = x;
6440 if (GET_MODE (item) != GET_MODE (link))
6441 item = lowpart_subreg (GET_MODE (link), item, GET_MODE (item));
6442 if (GET_MODE (x2) != GET_MODE (link))
6443 x2 = lowpart_subreg (GET_MODE (link), x2, GET_MODE (x2));
6444 item = gen_rtx_CONCAT (GET_MODE (link), x2, item);
6445 call_arguments
6446 = gen_rtx_EXPR_LIST (VOIDmode, item, call_arguments);
6447 }
6448 if (t && t != void_list_node)
6449 {
6450 rtx reg;
6451 function_arg_info arg (TREE_VALUE (t), /*named=*/true);
6452 apply_pass_by_reference_rules (&args_so_far_v, arg);
6453 reg = targetm.calls.function_arg (args_so_far, arg);
6454 if (TREE_CODE (arg.type) == REFERENCE_TYPE
6455 && INTEGRAL_TYPE_P (TREE_TYPE (arg.type))
6456 && reg
6457 && REG_P (reg)
6458 && GET_MODE (reg) == arg.mode
6459 && (GET_MODE_CLASS (arg.mode) == MODE_INT
6460 || GET_MODE_CLASS (arg.mode) == MODE_PARTIAL_INT)
6461 && REG_P (x)
6462 && REGNO (x) == REGNO (reg)
6463 && GET_MODE (x) == arg.mode
6464 && item)
6465 {
6466 machine_mode indmode
6467 = TYPE_MODE (TREE_TYPE (arg.type));
6468 rtx mem = gen_rtx_MEM (indmode, x);
6469 cselib_val *val = cselib_lookup (mem, indmode, 0, VOIDmode);
6470 if (val && cselib_preserved_value_p (val))
6471 {
6472 item = gen_rtx_CONCAT (indmode, mem, val->val_rtx);
6473 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
6474 call_arguments);
6475 }
6476 else
6477 {
6478 struct elt_loc_list *l;
6479 tree initial;
6480
6481 /* Try harder, when passing address of a constant
6482 pool integer it can be easily read back. */
6483 item = XEXP (item, 1);
6484 if (GET_CODE (item) == SUBREG)
6485 item = SUBREG_REG (item);
6486 gcc_assert (GET_CODE (item) == VALUE);
6487 val = CSELIB_VAL_PTR (item);
6488 for (l = val->locs; l; l = l->next)
6489 if (GET_CODE (l->loc) == SYMBOL_REF
6490 && TREE_CONSTANT_POOL_ADDRESS_P (l->loc)
6491 && SYMBOL_REF_DECL (l->loc)
6492 && DECL_INITIAL (SYMBOL_REF_DECL (l->loc)))
6493 {
6494 initial = DECL_INITIAL (SYMBOL_REF_DECL (l->loc));
6495 if (tree_fits_shwi_p (initial))
6496 {
6497 item = GEN_INT (tree_to_shwi (initial));
6498 item = gen_rtx_CONCAT (indmode, mem, item);
6499 call_arguments
6500 = gen_rtx_EXPR_LIST (VOIDmode, item,
6501 call_arguments);
6502 }
6503 break;
6504 }
6505 }
6506 }
6507 targetm.calls.function_arg_advance (args_so_far, arg);
6508 t = TREE_CHAIN (t);
6509 }
6510 }
6511
6512 /* Add debug arguments. */
6513 if (fndecl
6514 && TREE_CODE (fndecl) == FUNCTION_DECL
6515 && DECL_HAS_DEBUG_ARGS_P (fndecl))
6516 {
6517 vec<tree, va_gc> **debug_args = decl_debug_args_lookup (fndecl);
6518 if (debug_args)
6519 {
6520 unsigned int ix;
6521 tree param;
6522 for (ix = 0; vec_safe_iterate (*debug_args, ix, &param); ix += 2)
6523 {
6524 rtx item;
6525 tree dtemp = (**debug_args)[ix + 1];
6526 machine_mode mode = DECL_MODE (dtemp);
6527 item = gen_rtx_DEBUG_PARAMETER_REF (mode, param);
6528 item = gen_rtx_CONCAT (mode, item, DECL_RTL_KNOWN_SET (dtemp));
6529 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
6530 call_arguments);
6531 }
6532 }
6533 }
6534
6535 /* Reverse call_arguments chain. */
6536 prev = NULL_RTX;
6537 for (cur = call_arguments; cur; cur = next)
6538 {
6539 next = XEXP (cur, 1);
6540 XEXP (cur, 1) = prev;
6541 prev = cur;
6542 }
6543 call_arguments = prev;
6544
6545 x = get_call_rtx_from (insn);
6546 if (x)
6547 {
6548 x = XEXP (XEXP (x, 0), 0);
6549 if (GET_CODE (x) == SYMBOL_REF)
6550 /* Don't record anything. */;
6551 else if (CONSTANT_P (x))
6552 {
6553 x = gen_rtx_CONCAT (GET_MODE (x) == VOIDmode ? Pmode : GET_MODE (x),
6554 pc_rtx, x);
6555 call_arguments
6556 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6557 }
6558 else
6559 {
6560 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
6561 if (val && cselib_preserved_value_p (val))
6562 {
6563 x = gen_rtx_CONCAT (GET_MODE (x), pc_rtx, val->val_rtx);
6564 call_arguments
6565 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6566 }
6567 }
6568 }
6569 if (this_arg)
6570 {
6571 machine_mode mode
6572 = TYPE_MODE (TREE_TYPE (OBJ_TYPE_REF_EXPR (obj_type_ref)));
6573 rtx clobbered = gen_rtx_MEM (mode, this_arg);
6574 HOST_WIDE_INT token
6575 = tree_to_shwi (OBJ_TYPE_REF_TOKEN (obj_type_ref));
6576 if (token)
6577 clobbered = plus_constant (mode, clobbered,
6578 token * GET_MODE_SIZE (mode));
6579 clobbered = gen_rtx_MEM (mode, clobbered);
6580 x = gen_rtx_CONCAT (mode, gen_rtx_CLOBBER (VOIDmode, pc_rtx), clobbered);
6581 call_arguments
6582 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6583 }
6584 }
6585
6586 /* Callback for cselib_record_sets_hook, that records as micro
6587 operations uses and stores in an insn after cselib_record_sets has
6588 analyzed the sets in an insn, but before it modifies the stored
6589 values in the internal tables, unless cselib_record_sets doesn't
6590 call it directly (perhaps because we're not doing cselib in the
6591 first place, in which case sets and n_sets will be 0). */
6592
6593 static void
6594 add_with_sets (rtx_insn *insn, struct cselib_set *sets, int n_sets)
6595 {
6596 basic_block bb = BLOCK_FOR_INSN (insn);
6597 int n1, n2;
6598 struct count_use_info cui;
6599 micro_operation *mos;
6600
6601 cselib_hook_called = true;
6602
6603 cui.insn = insn;
6604 cui.bb = bb;
6605 cui.sets = sets;
6606 cui.n_sets = n_sets;
6607
6608 n1 = VTI (bb)->mos.length ();
6609 cui.store_p = false;
6610 note_uses (&PATTERN (insn), add_uses_1, &cui);
6611 n2 = VTI (bb)->mos.length () - 1;
6612 mos = VTI (bb)->mos.address ();
6613
6614 /* Order the MO_USEs to be before MO_USE_NO_VARs and MO_VAL_USE, and
6615 MO_VAL_LOC last. */
6616 while (n1 < n2)
6617 {
6618 while (n1 < n2 && mos[n1].type == MO_USE)
6619 n1++;
6620 while (n1 < n2 && mos[n2].type != MO_USE)
6621 n2--;
6622 if (n1 < n2)
6623 std::swap (mos[n1], mos[n2]);
6624 }
6625
6626 n2 = VTI (bb)->mos.length () - 1;
6627 while (n1 < n2)
6628 {
6629 while (n1 < n2 && mos[n1].type != MO_VAL_LOC)
6630 n1++;
6631 while (n1 < n2 && mos[n2].type == MO_VAL_LOC)
6632 n2--;
6633 if (n1 < n2)
6634 std::swap (mos[n1], mos[n2]);
6635 }
6636
6637 if (CALL_P (insn))
6638 {
6639 micro_operation mo;
6640
6641 mo.type = MO_CALL;
6642 mo.insn = insn;
6643 mo.u.loc = call_arguments;
6644 call_arguments = NULL_RTX;
6645
6646 if (dump_file && (dump_flags & TDF_DETAILS))
6647 log_op_type (PATTERN (insn), bb, insn, mo.type, dump_file);
6648 VTI (bb)->mos.safe_push (mo);
6649 }
6650
6651 n1 = VTI (bb)->mos.length ();
6652 /* This will record NEXT_INSN (insn), such that we can
6653 insert notes before it without worrying about any
6654 notes that MO_USEs might emit after the insn. */
6655 cui.store_p = true;
6656 note_stores (insn, add_stores, &cui);
6657 n2 = VTI (bb)->mos.length () - 1;
6658 mos = VTI (bb)->mos.address ();
6659
6660 /* Order the MO_VAL_USEs first (note_stores does nothing
6661 on DEBUG_INSNs, so there are no MO_VAL_LOCs from this
6662 insn), then MO_CLOBBERs, then MO_SET/MO_COPY/MO_VAL_SET. */
6663 while (n1 < n2)
6664 {
6665 while (n1 < n2 && mos[n1].type == MO_VAL_USE)
6666 n1++;
6667 while (n1 < n2 && mos[n2].type != MO_VAL_USE)
6668 n2--;
6669 if (n1 < n2)
6670 std::swap (mos[n1], mos[n2]);
6671 }
6672
6673 n2 = VTI (bb)->mos.length () - 1;
6674 while (n1 < n2)
6675 {
6676 while (n1 < n2 && mos[n1].type == MO_CLOBBER)
6677 n1++;
6678 while (n1 < n2 && mos[n2].type != MO_CLOBBER)
6679 n2--;
6680 if (n1 < n2)
6681 std::swap (mos[n1], mos[n2]);
6682 }
6683 }
6684
6685 static enum var_init_status
6686 find_src_status (dataflow_set *in, rtx src)
6687 {
6688 tree decl = NULL_TREE;
6689 enum var_init_status status = VAR_INIT_STATUS_UNINITIALIZED;
6690
6691 if (! flag_var_tracking_uninit)
6692 status = VAR_INIT_STATUS_INITIALIZED;
6693
6694 if (src && REG_P (src))
6695 decl = var_debug_decl (REG_EXPR (src));
6696 else if (src && MEM_P (src))
6697 decl = var_debug_decl (MEM_EXPR (src));
6698
6699 if (src && decl)
6700 status = get_init_value (in, src, dv_from_decl (decl));
6701
6702 return status;
6703 }
6704
6705 /* SRC is the source of an assignment. Use SET to try to find what
6706 was ultimately assigned to SRC. Return that value if known,
6707 otherwise return SRC itself. */
6708
6709 static rtx
6710 find_src_set_src (dataflow_set *set, rtx src)
6711 {
6712 tree decl = NULL_TREE; /* The variable being copied around. */
6713 rtx set_src = NULL_RTX; /* The value for "decl" stored in "src". */
6714 variable *var;
6715 location_chain *nextp;
6716 int i;
6717 bool found;
6718
6719 if (src && REG_P (src))
6720 decl = var_debug_decl (REG_EXPR (src));
6721 else if (src && MEM_P (src))
6722 decl = var_debug_decl (MEM_EXPR (src));
6723
6724 if (src && decl)
6725 {
6726 decl_or_value dv = dv_from_decl (decl);
6727
6728 var = shared_hash_find (set->vars, dv);
6729 if (var)
6730 {
6731 found = false;
6732 for (i = 0; i < var->n_var_parts && !found; i++)
6733 for (nextp = var->var_part[i].loc_chain; nextp && !found;
6734 nextp = nextp->next)
6735 if (rtx_equal_p (nextp->loc, src))
6736 {
6737 set_src = nextp->set_src;
6738 found = true;
6739 }
6740
6741 }
6742 }
6743
6744 return set_src;
6745 }
6746
6747 /* Compute the changes of variable locations in the basic block BB. */
6748
6749 static bool
6750 compute_bb_dataflow (basic_block bb)
6751 {
6752 unsigned int i;
6753 micro_operation *mo;
6754 bool changed;
6755 dataflow_set old_out;
6756 dataflow_set *in = &VTI (bb)->in;
6757 dataflow_set *out = &VTI (bb)->out;
6758
6759 dataflow_set_init (&old_out);
6760 dataflow_set_copy (&old_out, out);
6761 dataflow_set_copy (out, in);
6762
6763 if (MAY_HAVE_DEBUG_BIND_INSNS)
6764 local_get_addr_cache = new hash_map<rtx, rtx>;
6765
6766 FOR_EACH_VEC_ELT (VTI (bb)->mos, i, mo)
6767 {
6768 rtx_insn *insn = mo->insn;
6769
6770 switch (mo->type)
6771 {
6772 case MO_CALL:
6773 dataflow_set_clear_at_call (out, insn);
6774 break;
6775
6776 case MO_USE:
6777 {
6778 rtx loc = mo->u.loc;
6779
6780 if (REG_P (loc))
6781 var_reg_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6782 else if (MEM_P (loc))
6783 var_mem_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6784 }
6785 break;
6786
6787 case MO_VAL_LOC:
6788 {
6789 rtx loc = mo->u.loc;
6790 rtx val, vloc;
6791 tree var;
6792
6793 if (GET_CODE (loc) == CONCAT)
6794 {
6795 val = XEXP (loc, 0);
6796 vloc = XEXP (loc, 1);
6797 }
6798 else
6799 {
6800 val = NULL_RTX;
6801 vloc = loc;
6802 }
6803
6804 var = PAT_VAR_LOCATION_DECL (vloc);
6805
6806 clobber_variable_part (out, NULL_RTX,
6807 dv_from_decl (var), 0, NULL_RTX);
6808 if (val)
6809 {
6810 if (VAL_NEEDS_RESOLUTION (loc))
6811 val_resolve (out, val, PAT_VAR_LOCATION_LOC (vloc), insn);
6812 set_variable_part (out, val, dv_from_decl (var), 0,
6813 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6814 INSERT);
6815 }
6816 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
6817 set_variable_part (out, PAT_VAR_LOCATION_LOC (vloc),
6818 dv_from_decl (var), 0,
6819 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6820 INSERT);
6821 }
6822 break;
6823
6824 case MO_VAL_USE:
6825 {
6826 rtx loc = mo->u.loc;
6827 rtx val, vloc, uloc;
6828
6829 vloc = uloc = XEXP (loc, 1);
6830 val = XEXP (loc, 0);
6831
6832 if (GET_CODE (val) == CONCAT)
6833 {
6834 uloc = XEXP (val, 1);
6835 val = XEXP (val, 0);
6836 }
6837
6838 if (VAL_NEEDS_RESOLUTION (loc))
6839 val_resolve (out, val, vloc, insn);
6840 else
6841 val_store (out, val, uloc, insn, false);
6842
6843 if (VAL_HOLDS_TRACK_EXPR (loc))
6844 {
6845 if (GET_CODE (uloc) == REG)
6846 var_reg_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6847 NULL);
6848 else if (GET_CODE (uloc) == MEM)
6849 var_mem_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6850 NULL);
6851 }
6852 }
6853 break;
6854
6855 case MO_VAL_SET:
6856 {
6857 rtx loc = mo->u.loc;
6858 rtx val, vloc, uloc;
6859 rtx dstv, srcv;
6860
6861 vloc = loc;
6862 uloc = XEXP (vloc, 1);
6863 val = XEXP (vloc, 0);
6864 vloc = uloc;
6865
6866 if (GET_CODE (uloc) == SET)
6867 {
6868 dstv = SET_DEST (uloc);
6869 srcv = SET_SRC (uloc);
6870 }
6871 else
6872 {
6873 dstv = uloc;
6874 srcv = NULL;
6875 }
6876
6877 if (GET_CODE (val) == CONCAT)
6878 {
6879 dstv = vloc = XEXP (val, 1);
6880 val = XEXP (val, 0);
6881 }
6882
6883 if (GET_CODE (vloc) == SET)
6884 {
6885 srcv = SET_SRC (vloc);
6886
6887 gcc_assert (val != srcv);
6888 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
6889
6890 dstv = vloc = SET_DEST (vloc);
6891
6892 if (VAL_NEEDS_RESOLUTION (loc))
6893 val_resolve (out, val, srcv, insn);
6894 }
6895 else if (VAL_NEEDS_RESOLUTION (loc))
6896 {
6897 gcc_assert (GET_CODE (uloc) == SET
6898 && GET_CODE (SET_SRC (uloc)) == REG);
6899 val_resolve (out, val, SET_SRC (uloc), insn);
6900 }
6901
6902 if (VAL_HOLDS_TRACK_EXPR (loc))
6903 {
6904 if (VAL_EXPR_IS_CLOBBERED (loc))
6905 {
6906 if (REG_P (uloc))
6907 var_reg_delete (out, uloc, true);
6908 else if (MEM_P (uloc))
6909 {
6910 gcc_assert (MEM_P (dstv));
6911 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (uloc));
6912 var_mem_delete (out, dstv, true);
6913 }
6914 }
6915 else
6916 {
6917 bool copied_p = VAL_EXPR_IS_COPIED (loc);
6918 rtx src = NULL, dst = uloc;
6919 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
6920
6921 if (GET_CODE (uloc) == SET)
6922 {
6923 src = SET_SRC (uloc);
6924 dst = SET_DEST (uloc);
6925 }
6926
6927 if (copied_p)
6928 {
6929 if (flag_var_tracking_uninit)
6930 {
6931 status = find_src_status (in, src);
6932
6933 if (status == VAR_INIT_STATUS_UNKNOWN)
6934 status = find_src_status (out, src);
6935 }
6936
6937 src = find_src_set_src (in, src);
6938 }
6939
6940 if (REG_P (dst))
6941 var_reg_delete_and_set (out, dst, !copied_p,
6942 status, srcv);
6943 else if (MEM_P (dst))
6944 {
6945 gcc_assert (MEM_P (dstv));
6946 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (dst));
6947 var_mem_delete_and_set (out, dstv, !copied_p,
6948 status, srcv);
6949 }
6950 }
6951 }
6952 else if (REG_P (uloc))
6953 var_regno_delete (out, REGNO (uloc));
6954 else if (MEM_P (uloc))
6955 {
6956 gcc_checking_assert (GET_CODE (vloc) == MEM);
6957 gcc_checking_assert (dstv == vloc);
6958 if (dstv != vloc)
6959 clobber_overlapping_mems (out, vloc);
6960 }
6961
6962 val_store (out, val, dstv, insn, true);
6963 }
6964 break;
6965
6966 case MO_SET:
6967 {
6968 rtx loc = mo->u.loc;
6969 rtx set_src = NULL;
6970
6971 if (GET_CODE (loc) == SET)
6972 {
6973 set_src = SET_SRC (loc);
6974 loc = SET_DEST (loc);
6975 }
6976
6977 if (REG_P (loc))
6978 var_reg_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6979 set_src);
6980 else if (MEM_P (loc))
6981 var_mem_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6982 set_src);
6983 }
6984 break;
6985
6986 case MO_COPY:
6987 {
6988 rtx loc = mo->u.loc;
6989 enum var_init_status src_status;
6990 rtx set_src = NULL;
6991
6992 if (GET_CODE (loc) == SET)
6993 {
6994 set_src = SET_SRC (loc);
6995 loc = SET_DEST (loc);
6996 }
6997
6998 if (! flag_var_tracking_uninit)
6999 src_status = VAR_INIT_STATUS_INITIALIZED;
7000 else
7001 {
7002 src_status = find_src_status (in, set_src);
7003
7004 if (src_status == VAR_INIT_STATUS_UNKNOWN)
7005 src_status = find_src_status (out, set_src);
7006 }
7007
7008 set_src = find_src_set_src (in, set_src);
7009
7010 if (REG_P (loc))
7011 var_reg_delete_and_set (out, loc, false, src_status, set_src);
7012 else if (MEM_P (loc))
7013 var_mem_delete_and_set (out, loc, false, src_status, set_src);
7014 }
7015 break;
7016
7017 case MO_USE_NO_VAR:
7018 {
7019 rtx loc = mo->u.loc;
7020
7021 if (REG_P (loc))
7022 var_reg_delete (out, loc, false);
7023 else if (MEM_P (loc))
7024 var_mem_delete (out, loc, false);
7025 }
7026 break;
7027
7028 case MO_CLOBBER:
7029 {
7030 rtx loc = mo->u.loc;
7031
7032 if (REG_P (loc))
7033 var_reg_delete (out, loc, true);
7034 else if (MEM_P (loc))
7035 var_mem_delete (out, loc, true);
7036 }
7037 break;
7038
7039 case MO_ADJUST:
7040 out->stack_adjust += mo->u.adjust;
7041 break;
7042 }
7043 }
7044
7045 if (MAY_HAVE_DEBUG_BIND_INSNS)
7046 {
7047 delete local_get_addr_cache;
7048 local_get_addr_cache = NULL;
7049
7050 dataflow_set_equiv_regs (out);
7051 shared_hash_htab (out->vars)
7052 ->traverse <dataflow_set *, canonicalize_values_mark> (out);
7053 shared_hash_htab (out->vars)
7054 ->traverse <dataflow_set *, canonicalize_values_star> (out);
7055 if (flag_checking)
7056 shared_hash_htab (out->vars)
7057 ->traverse <dataflow_set *, canonicalize_loc_order_check> (out);
7058 }
7059 changed = dataflow_set_different (&old_out, out);
7060 dataflow_set_destroy (&old_out);
7061 return changed;
7062 }
7063
7064 /* Find the locations of variables in the whole function. */
7065
7066 static bool
7067 vt_find_locations (void)
7068 {
7069 bb_heap_t *worklist = new bb_heap_t (LONG_MIN);
7070 bb_heap_t *pending = new bb_heap_t (LONG_MIN);
7071 sbitmap in_worklist, in_pending;
7072 basic_block bb;
7073 edge e;
7074 int *bb_order;
7075 int *rc_order;
7076 int i;
7077 int htabsz = 0;
7078 int htabmax = param_max_vartrack_size;
7079 bool success = true;
7080 unsigned int n_blocks_processed = 0;
7081
7082 timevar_push (TV_VAR_TRACKING_DATAFLOW);
7083 /* Compute reverse completion order of depth first search of the CFG
7084 so that the data-flow runs faster. */
7085 rc_order = XNEWVEC (int, n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS);
7086 bb_order = XNEWVEC (int, last_basic_block_for_fn (cfun));
7087 auto_bitmap exit_bbs;
7088 bitmap_set_bit (exit_bbs, EXIT_BLOCK);
7089 auto_vec<std::pair<int, int> > toplevel_scc_extents;
7090 int n = rev_post_order_and_mark_dfs_back_seme
7091 (cfun, single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun)), exit_bbs, true,
7092 rc_order, &toplevel_scc_extents);
7093 for (i = 0; i < n; i++)
7094 bb_order[rc_order[i]] = i;
7095
7096 in_worklist = sbitmap_alloc (last_basic_block_for_fn (cfun));
7097 in_pending = sbitmap_alloc (last_basic_block_for_fn (cfun));
7098 bitmap_clear (in_worklist);
7099 bitmap_clear (in_pending);
7100
7101 /* We're performing the dataflow iteration independently over the
7102 toplevel SCCs plus leading non-cyclic entry blocks and separately
7103 over the tail. That ensures best memory locality and the least
7104 number of visited blocks. */
7105 unsigned extent = 0;
7106 int curr_start = -1;
7107 int curr_end = -1;
7108 do
7109 {
7110 curr_start = curr_end + 1;
7111 if (toplevel_scc_extents.length () <= extent)
7112 curr_end = n - 1;
7113 else
7114 curr_end = toplevel_scc_extents[extent++].second;
7115
7116 for (int i = curr_start; i <= curr_end; ++i)
7117 {
7118 pending->insert (i, BASIC_BLOCK_FOR_FN (cfun, rc_order[i]));
7119 bitmap_set_bit (in_pending, rc_order[i]);
7120 }
7121
7122 while (success && !pending->empty ())
7123 {
7124 std::swap (worklist, pending);
7125 std::swap (in_worklist, in_pending);
7126
7127 while (!worklist->empty ())
7128 {
7129 bool changed;
7130 edge_iterator ei;
7131 int oldinsz, oldoutsz;
7132
7133 bb = worklist->extract_min ();
7134 bitmap_clear_bit (in_worklist, bb->index);
7135
7136 if (VTI (bb)->in.vars)
7137 {
7138 htabsz -= (shared_hash_htab (VTI (bb)->in.vars)->size ()
7139 + shared_hash_htab (VTI (bb)->out.vars)->size ());
7140 oldinsz = shared_hash_htab (VTI (bb)->in.vars)->elements ();
7141 oldoutsz = shared_hash_htab (VTI (bb)->out.vars)->elements ();
7142 }
7143 else
7144 oldinsz = oldoutsz = 0;
7145
7146 if (MAY_HAVE_DEBUG_BIND_INSNS)
7147 {
7148 dataflow_set *in = &VTI (bb)->in, *first_out = NULL;
7149 bool first = true, adjust = false;
7150
7151 /* Calculate the IN set as the intersection of
7152 predecessor OUT sets. */
7153
7154 dataflow_set_clear (in);
7155 dst_can_be_shared = true;
7156
7157 FOR_EACH_EDGE (e, ei, bb->preds)
7158 if (!VTI (e->src)->flooded)
7159 gcc_assert (bb_order[bb->index]
7160 <= bb_order[e->src->index]);
7161 else if (first)
7162 {
7163 dataflow_set_copy (in, &VTI (e->src)->out);
7164 first_out = &VTI (e->src)->out;
7165 first = false;
7166 }
7167 else
7168 {
7169 dataflow_set_merge (in, &VTI (e->src)->out);
7170 adjust = true;
7171 }
7172
7173 if (adjust)
7174 {
7175 dataflow_post_merge_adjust (in, &VTI (bb)->permp);
7176
7177 if (flag_checking)
7178 /* Merge and merge_adjust should keep entries in
7179 canonical order. */
7180 shared_hash_htab (in->vars)
7181 ->traverse <dataflow_set *,
7182 canonicalize_loc_order_check> (in);
7183
7184 if (dst_can_be_shared)
7185 {
7186 shared_hash_destroy (in->vars);
7187 in->vars = shared_hash_copy (first_out->vars);
7188 }
7189 }
7190
7191 VTI (bb)->flooded = true;
7192 }
7193 else
7194 {
7195 /* Calculate the IN set as union of predecessor OUT sets. */
7196 dataflow_set_clear (&VTI (bb)->in);
7197 FOR_EACH_EDGE (e, ei, bb->preds)
7198 dataflow_set_union (&VTI (bb)->in, &VTI (e->src)->out);
7199 }
7200
7201 changed = compute_bb_dataflow (bb);
7202 n_blocks_processed++;
7203 htabsz += (shared_hash_htab (VTI (bb)->in.vars)->size ()
7204 + shared_hash_htab (VTI (bb)->out.vars)->size ());
7205
7206 if (htabmax && htabsz > htabmax)
7207 {
7208 if (MAY_HAVE_DEBUG_BIND_INSNS)
7209 inform (DECL_SOURCE_LOCATION (cfun->decl),
7210 "variable tracking size limit exceeded with "
7211 "%<-fvar-tracking-assignments%>, retrying without");
7212 else
7213 inform (DECL_SOURCE_LOCATION (cfun->decl),
7214 "variable tracking size limit exceeded");
7215 success = false;
7216 break;
7217 }
7218
7219 if (changed)
7220 {
7221 FOR_EACH_EDGE (e, ei, bb->succs)
7222 {
7223 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
7224 continue;
7225
7226 /* Iterate to an earlier block in RPO in the next
7227 round, iterate to the same block immediately. */
7228 if (bb_order[e->dest->index] < bb_order[bb->index])
7229 {
7230 gcc_assert (bb_order[e->dest->index] >= curr_start);
7231 if (!bitmap_bit_p (in_pending, e->dest->index))
7232 {
7233 /* Send E->DEST to next round. */
7234 bitmap_set_bit (in_pending, e->dest->index);
7235 pending->insert (bb_order[e->dest->index],
7236 e->dest);
7237 }
7238 }
7239 else if (bb_order[e->dest->index] <= curr_end
7240 && !bitmap_bit_p (in_worklist, e->dest->index))
7241 {
7242 /* Add E->DEST to current round or delay
7243 processing if it is in the next SCC. */
7244 bitmap_set_bit (in_worklist, e->dest->index);
7245 worklist->insert (bb_order[e->dest->index],
7246 e->dest);
7247 }
7248 }
7249 }
7250
7251 if (dump_file)
7252 fprintf (dump_file,
7253 "BB %i: in %i (was %i), out %i (was %i), rem %i + %i, "
7254 "tsz %i\n", bb->index,
7255 (int)shared_hash_htab (VTI (bb)->in.vars)->size (),
7256 oldinsz,
7257 (int)shared_hash_htab (VTI (bb)->out.vars)->size (),
7258 oldoutsz,
7259 (int)worklist->nodes (), (int)pending->nodes (),
7260 htabsz);
7261
7262 if (dump_file && (dump_flags & TDF_DETAILS))
7263 {
7264 fprintf (dump_file, "BB %i IN:\n", bb->index);
7265 dump_dataflow_set (&VTI (bb)->in);
7266 fprintf (dump_file, "BB %i OUT:\n", bb->index);
7267 dump_dataflow_set (&VTI (bb)->out);
7268 }
7269 }
7270 }
7271 }
7272 while (curr_end != n - 1);
7273
7274 statistics_counter_event (cfun, "compute_bb_dataflow times",
7275 n_blocks_processed);
7276
7277 if (success && MAY_HAVE_DEBUG_BIND_INSNS)
7278 FOR_EACH_BB_FN (bb, cfun)
7279 gcc_assert (VTI (bb)->flooded);
7280
7281 free (rc_order);
7282 free (bb_order);
7283 delete worklist;
7284 delete pending;
7285 sbitmap_free (in_worklist);
7286 sbitmap_free (in_pending);
7287
7288 timevar_pop (TV_VAR_TRACKING_DATAFLOW);
7289 return success;
7290 }
7291
7292 /* Print the content of the LIST to dump file. */
7293
7294 static void
7295 dump_attrs_list (attrs *list)
7296 {
7297 for (; list; list = list->next)
7298 {
7299 if (dv_is_decl_p (list->dv))
7300 print_mem_expr (dump_file, dv_as_decl (list->dv));
7301 else
7302 print_rtl_single (dump_file, dv_as_value (list->dv));
7303 fprintf (dump_file, "+" HOST_WIDE_INT_PRINT_DEC, list->offset);
7304 }
7305 fprintf (dump_file, "\n");
7306 }
7307
7308 /* Print the information about variable *SLOT to dump file. */
7309
7310 int
7311 dump_var_tracking_slot (variable **slot, void *data ATTRIBUTE_UNUSED)
7312 {
7313 variable *var = *slot;
7314
7315 dump_var (var);
7316
7317 /* Continue traversing the hash table. */
7318 return 1;
7319 }
7320
7321 /* Print the information about variable VAR to dump file. */
7322
7323 static void
7324 dump_var (variable *var)
7325 {
7326 int i;
7327 location_chain *node;
7328
7329 if (dv_is_decl_p (var->dv))
7330 {
7331 const_tree decl = dv_as_decl (var->dv);
7332
7333 if (DECL_NAME (decl))
7334 {
7335 fprintf (dump_file, " name: %s",
7336 IDENTIFIER_POINTER (DECL_NAME (decl)));
7337 if (dump_flags & TDF_UID)
7338 fprintf (dump_file, "D.%u", DECL_UID (decl));
7339 }
7340 else if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
7341 fprintf (dump_file, " name: D#%u", DEBUG_TEMP_UID (decl));
7342 else
7343 fprintf (dump_file, " name: D.%u", DECL_UID (decl));
7344 fprintf (dump_file, "\n");
7345 }
7346 else
7347 {
7348 fputc (' ', dump_file);
7349 print_rtl_single (dump_file, dv_as_value (var->dv));
7350 }
7351
7352 for (i = 0; i < var->n_var_parts; i++)
7353 {
7354 fprintf (dump_file, " offset %ld\n",
7355 (long)(var->onepart ? 0 : VAR_PART_OFFSET (var, i)));
7356 for (node = var->var_part[i].loc_chain; node; node = node->next)
7357 {
7358 fprintf (dump_file, " ");
7359 if (node->init == VAR_INIT_STATUS_UNINITIALIZED)
7360 fprintf (dump_file, "[uninit]");
7361 print_rtl_single (dump_file, node->loc);
7362 }
7363 }
7364 }
7365
7366 /* Print the information about variables from hash table VARS to dump file. */
7367
7368 static void
7369 dump_vars (variable_table_type *vars)
7370 {
7371 if (!vars->is_empty ())
7372 {
7373 fprintf (dump_file, "Variables:\n");
7374 vars->traverse <void *, dump_var_tracking_slot> (NULL);
7375 }
7376 }
7377
7378 /* Print the dataflow set SET to dump file. */
7379
7380 static void
7381 dump_dataflow_set (dataflow_set *set)
7382 {
7383 int i;
7384
7385 fprintf (dump_file, "Stack adjustment: " HOST_WIDE_INT_PRINT_DEC "\n",
7386 set->stack_adjust);
7387 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
7388 {
7389 if (set->regs[i])
7390 {
7391 fprintf (dump_file, "Reg %d:", i);
7392 dump_attrs_list (set->regs[i]);
7393 }
7394 }
7395 dump_vars (shared_hash_htab (set->vars));
7396 fprintf (dump_file, "\n");
7397 }
7398
7399 /* Print the IN and OUT sets for each basic block to dump file. */
7400
7401 static void
7402 dump_dataflow_sets (void)
7403 {
7404 basic_block bb;
7405
7406 FOR_EACH_BB_FN (bb, cfun)
7407 {
7408 fprintf (dump_file, "\nBasic block %d:\n", bb->index);
7409 fprintf (dump_file, "IN:\n");
7410 dump_dataflow_set (&VTI (bb)->in);
7411 fprintf (dump_file, "OUT:\n");
7412 dump_dataflow_set (&VTI (bb)->out);
7413 }
7414 }
7415
7416 /* Return the variable for DV in dropped_values, inserting one if
7417 requested with INSERT. */
7418
7419 static inline variable *
7420 variable_from_dropped (decl_or_value dv, enum insert_option insert)
7421 {
7422 variable **slot;
7423 variable *empty_var;
7424 onepart_enum onepart;
7425
7426 slot = dropped_values->find_slot_with_hash (dv, dv_htab_hash (dv), insert);
7427
7428 if (!slot)
7429 return NULL;
7430
7431 if (*slot)
7432 return *slot;
7433
7434 gcc_checking_assert (insert == INSERT);
7435
7436 onepart = dv_onepart_p (dv);
7437
7438 gcc_checking_assert (onepart == ONEPART_VALUE || onepart == ONEPART_DEXPR);
7439
7440 empty_var = onepart_pool_allocate (onepart);
7441 empty_var->dv = dv;
7442 empty_var->refcount = 1;
7443 empty_var->n_var_parts = 0;
7444 empty_var->onepart = onepart;
7445 empty_var->in_changed_variables = false;
7446 empty_var->var_part[0].loc_chain = NULL;
7447 empty_var->var_part[0].cur_loc = NULL;
7448 VAR_LOC_1PAUX (empty_var) = NULL;
7449 set_dv_changed (dv, true);
7450
7451 *slot = empty_var;
7452
7453 return empty_var;
7454 }
7455
7456 /* Recover the one-part aux from dropped_values. */
7457
7458 static struct onepart_aux *
7459 recover_dropped_1paux (variable *var)
7460 {
7461 variable *dvar;
7462
7463 gcc_checking_assert (var->onepart);
7464
7465 if (VAR_LOC_1PAUX (var))
7466 return VAR_LOC_1PAUX (var);
7467
7468 if (var->onepart == ONEPART_VDECL)
7469 return NULL;
7470
7471 dvar = variable_from_dropped (var->dv, NO_INSERT);
7472
7473 if (!dvar)
7474 return NULL;
7475
7476 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (dvar);
7477 VAR_LOC_1PAUX (dvar) = NULL;
7478
7479 return VAR_LOC_1PAUX (var);
7480 }
7481
7482 /* Add variable VAR to the hash table of changed variables and
7483 if it has no locations delete it from SET's hash table. */
7484
7485 static void
7486 variable_was_changed (variable *var, dataflow_set *set)
7487 {
7488 hashval_t hash = dv_htab_hash (var->dv);
7489
7490 if (emit_notes)
7491 {
7492 variable **slot;
7493
7494 /* Remember this decl or VALUE has been added to changed_variables. */
7495 set_dv_changed (var->dv, true);
7496
7497 slot = changed_variables->find_slot_with_hash (var->dv, hash, INSERT);
7498
7499 if (*slot)
7500 {
7501 variable *old_var = *slot;
7502 gcc_assert (old_var->in_changed_variables);
7503 old_var->in_changed_variables = false;
7504 if (var != old_var && var->onepart)
7505 {
7506 /* Restore the auxiliary info from an empty variable
7507 previously created for changed_variables, so it is
7508 not lost. */
7509 gcc_checking_assert (!VAR_LOC_1PAUX (var));
7510 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (old_var);
7511 VAR_LOC_1PAUX (old_var) = NULL;
7512 }
7513 variable_htab_free (*slot);
7514 }
7515
7516 if (set && var->n_var_parts == 0)
7517 {
7518 onepart_enum onepart = var->onepart;
7519 variable *empty_var = NULL;
7520 variable **dslot = NULL;
7521
7522 if (onepart == ONEPART_VALUE || onepart == ONEPART_DEXPR)
7523 {
7524 dslot = dropped_values->find_slot_with_hash (var->dv,
7525 dv_htab_hash (var->dv),
7526 INSERT);
7527 empty_var = *dslot;
7528
7529 if (empty_var)
7530 {
7531 gcc_checking_assert (!empty_var->in_changed_variables);
7532 if (!VAR_LOC_1PAUX (var))
7533 {
7534 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (empty_var);
7535 VAR_LOC_1PAUX (empty_var) = NULL;
7536 }
7537 else
7538 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var));
7539 }
7540 }
7541
7542 if (!empty_var)
7543 {
7544 empty_var = onepart_pool_allocate (onepart);
7545 empty_var->dv = var->dv;
7546 empty_var->refcount = 1;
7547 empty_var->n_var_parts = 0;
7548 empty_var->onepart = onepart;
7549 if (dslot)
7550 {
7551 empty_var->refcount++;
7552 *dslot = empty_var;
7553 }
7554 }
7555 else
7556 empty_var->refcount++;
7557 empty_var->in_changed_variables = true;
7558 *slot = empty_var;
7559 if (onepart)
7560 {
7561 empty_var->var_part[0].loc_chain = NULL;
7562 empty_var->var_part[0].cur_loc = NULL;
7563 VAR_LOC_1PAUX (empty_var) = VAR_LOC_1PAUX (var);
7564 VAR_LOC_1PAUX (var) = NULL;
7565 }
7566 goto drop_var;
7567 }
7568 else
7569 {
7570 if (var->onepart && !VAR_LOC_1PAUX (var))
7571 recover_dropped_1paux (var);
7572 var->refcount++;
7573 var->in_changed_variables = true;
7574 *slot = var;
7575 }
7576 }
7577 else
7578 {
7579 gcc_assert (set);
7580 if (var->n_var_parts == 0)
7581 {
7582 variable **slot;
7583
7584 drop_var:
7585 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
7586 if (slot)
7587 {
7588 if (shared_hash_shared (set->vars))
7589 slot = shared_hash_find_slot_unshare (&set->vars, var->dv,
7590 NO_INSERT);
7591 shared_hash_htab (set->vars)->clear_slot (slot);
7592 }
7593 }
7594 }
7595 }
7596
7597 /* Look for the index in VAR->var_part corresponding to OFFSET.
7598 Return -1 if not found. If INSERTION_POINT is non-NULL, the
7599 referenced int will be set to the index that the part has or should
7600 have, if it should be inserted. */
7601
7602 static inline int
7603 find_variable_location_part (variable *var, HOST_WIDE_INT offset,
7604 int *insertion_point)
7605 {
7606 int pos, low, high;
7607
7608 if (var->onepart)
7609 {
7610 if (offset != 0)
7611 return -1;
7612
7613 if (insertion_point)
7614 *insertion_point = 0;
7615
7616 return var->n_var_parts - 1;
7617 }
7618
7619 /* Find the location part. */
7620 low = 0;
7621 high = var->n_var_parts;
7622 while (low != high)
7623 {
7624 pos = (low + high) / 2;
7625 if (VAR_PART_OFFSET (var, pos) < offset)
7626 low = pos + 1;
7627 else
7628 high = pos;
7629 }
7630 pos = low;
7631
7632 if (insertion_point)
7633 *insertion_point = pos;
7634
7635 if (pos < var->n_var_parts && VAR_PART_OFFSET (var, pos) == offset)
7636 return pos;
7637
7638 return -1;
7639 }
7640
7641 static variable **
7642 set_slot_part (dataflow_set *set, rtx loc, variable **slot,
7643 decl_or_value dv, HOST_WIDE_INT offset,
7644 enum var_init_status initialized, rtx set_src)
7645 {
7646 int pos;
7647 location_chain *node, *next;
7648 location_chain **nextp;
7649 variable *var;
7650 onepart_enum onepart;
7651
7652 var = *slot;
7653
7654 if (var)
7655 onepart = var->onepart;
7656 else
7657 onepart = dv_onepart_p (dv);
7658
7659 gcc_checking_assert (offset == 0 || !onepart);
7660 gcc_checking_assert (loc != dv_as_opaque (dv));
7661
7662 if (! flag_var_tracking_uninit)
7663 initialized = VAR_INIT_STATUS_INITIALIZED;
7664
7665 if (!var)
7666 {
7667 /* Create new variable information. */
7668 var = onepart_pool_allocate (onepart);
7669 var->dv = dv;
7670 var->refcount = 1;
7671 var->n_var_parts = 1;
7672 var->onepart = onepart;
7673 var->in_changed_variables = false;
7674 if (var->onepart)
7675 VAR_LOC_1PAUX (var) = NULL;
7676 else
7677 VAR_PART_OFFSET (var, 0) = offset;
7678 var->var_part[0].loc_chain = NULL;
7679 var->var_part[0].cur_loc = NULL;
7680 *slot = var;
7681 pos = 0;
7682 nextp = &var->var_part[0].loc_chain;
7683 }
7684 else if (onepart)
7685 {
7686 int r = -1, c = 0;
7687
7688 gcc_assert (dv_as_opaque (var->dv) == dv_as_opaque (dv));
7689
7690 pos = 0;
7691
7692 if (GET_CODE (loc) == VALUE)
7693 {
7694 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7695 nextp = &node->next)
7696 if (GET_CODE (node->loc) == VALUE)
7697 {
7698 if (node->loc == loc)
7699 {
7700 r = 0;
7701 break;
7702 }
7703 if (canon_value_cmp (node->loc, loc))
7704 c++;
7705 else
7706 {
7707 r = 1;
7708 break;
7709 }
7710 }
7711 else if (REG_P (node->loc) || MEM_P (node->loc))
7712 c++;
7713 else
7714 {
7715 r = 1;
7716 break;
7717 }
7718 }
7719 else if (REG_P (loc))
7720 {
7721 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7722 nextp = &node->next)
7723 if (REG_P (node->loc))
7724 {
7725 if (REGNO (node->loc) < REGNO (loc))
7726 c++;
7727 else
7728 {
7729 if (REGNO (node->loc) == REGNO (loc))
7730 r = 0;
7731 else
7732 r = 1;
7733 break;
7734 }
7735 }
7736 else
7737 {
7738 r = 1;
7739 break;
7740 }
7741 }
7742 else if (MEM_P (loc))
7743 {
7744 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7745 nextp = &node->next)
7746 if (REG_P (node->loc))
7747 c++;
7748 else if (MEM_P (node->loc))
7749 {
7750 if ((r = loc_cmp (XEXP (node->loc, 0), XEXP (loc, 0))) >= 0)
7751 break;
7752 else
7753 c++;
7754 }
7755 else
7756 {
7757 r = 1;
7758 break;
7759 }
7760 }
7761 else
7762 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7763 nextp = &node->next)
7764 if ((r = loc_cmp (node->loc, loc)) >= 0)
7765 break;
7766 else
7767 c++;
7768
7769 if (r == 0)
7770 return slot;
7771
7772 if (shared_var_p (var, set->vars))
7773 {
7774 slot = unshare_variable (set, slot, var, initialized);
7775 var = *slot;
7776 for (nextp = &var->var_part[0].loc_chain; c;
7777 nextp = &(*nextp)->next)
7778 c--;
7779 gcc_assert ((!node && !*nextp) || node->loc == (*nextp)->loc);
7780 }
7781 }
7782 else
7783 {
7784 int inspos = 0;
7785
7786 gcc_assert (dv_as_decl (var->dv) == dv_as_decl (dv));
7787
7788 pos = find_variable_location_part (var, offset, &inspos);
7789
7790 if (pos >= 0)
7791 {
7792 node = var->var_part[pos].loc_chain;
7793
7794 if (node
7795 && ((REG_P (node->loc) && REG_P (loc)
7796 && REGNO (node->loc) == REGNO (loc))
7797 || rtx_equal_p (node->loc, loc)))
7798 {
7799 /* LOC is in the beginning of the chain so we have nothing
7800 to do. */
7801 if (node->init < initialized)
7802 node->init = initialized;
7803 if (set_src != NULL)
7804 node->set_src = set_src;
7805
7806 return slot;
7807 }
7808 else
7809 {
7810 /* We have to make a copy of a shared variable. */
7811 if (shared_var_p (var, set->vars))
7812 {
7813 slot = unshare_variable (set, slot, var, initialized);
7814 var = *slot;
7815 }
7816 }
7817 }
7818 else
7819 {
7820 /* We have not found the location part, new one will be created. */
7821
7822 /* We have to make a copy of the shared variable. */
7823 if (shared_var_p (var, set->vars))
7824 {
7825 slot = unshare_variable (set, slot, var, initialized);
7826 var = *slot;
7827 }
7828
7829 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
7830 thus there are at most MAX_VAR_PARTS different offsets. */
7831 gcc_assert (var->n_var_parts < MAX_VAR_PARTS
7832 && (!var->n_var_parts || !onepart));
7833
7834 /* We have to move the elements of array starting at index
7835 inspos to the next position. */
7836 for (pos = var->n_var_parts; pos > inspos; pos--)
7837 var->var_part[pos] = var->var_part[pos - 1];
7838
7839 var->n_var_parts++;
7840 gcc_checking_assert (!onepart);
7841 VAR_PART_OFFSET (var, pos) = offset;
7842 var->var_part[pos].loc_chain = NULL;
7843 var->var_part[pos].cur_loc = NULL;
7844 }
7845
7846 /* Delete the location from the list. */
7847 nextp = &var->var_part[pos].loc_chain;
7848 for (node = var->var_part[pos].loc_chain; node; node = next)
7849 {
7850 next = node->next;
7851 if ((REG_P (node->loc) && REG_P (loc)
7852 && REGNO (node->loc) == REGNO (loc))
7853 || rtx_equal_p (node->loc, loc))
7854 {
7855 /* Save these values, to assign to the new node, before
7856 deleting this one. */
7857 if (node->init > initialized)
7858 initialized = node->init;
7859 if (node->set_src != NULL && set_src == NULL)
7860 set_src = node->set_src;
7861 if (var->var_part[pos].cur_loc == node->loc)
7862 var->var_part[pos].cur_loc = NULL;
7863 delete node;
7864 *nextp = next;
7865 break;
7866 }
7867 else
7868 nextp = &node->next;
7869 }
7870
7871 nextp = &var->var_part[pos].loc_chain;
7872 }
7873
7874 /* Add the location to the beginning. */
7875 node = new location_chain;
7876 node->loc = loc;
7877 node->init = initialized;
7878 node->set_src = set_src;
7879 node->next = *nextp;
7880 *nextp = node;
7881
7882 /* If no location was emitted do so. */
7883 if (var->var_part[pos].cur_loc == NULL)
7884 variable_was_changed (var, set);
7885
7886 return slot;
7887 }
7888
7889 /* Set the part of variable's location in the dataflow set SET. The
7890 variable part is specified by variable's declaration in DV and
7891 offset OFFSET and the part's location by LOC. IOPT should be
7892 NO_INSERT if the variable is known to be in SET already and the
7893 variable hash table must not be resized, and INSERT otherwise. */
7894
7895 static void
7896 set_variable_part (dataflow_set *set, rtx loc,
7897 decl_or_value dv, HOST_WIDE_INT offset,
7898 enum var_init_status initialized, rtx set_src,
7899 enum insert_option iopt)
7900 {
7901 variable **slot;
7902
7903 if (iopt == NO_INSERT)
7904 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7905 else
7906 {
7907 slot = shared_hash_find_slot (set->vars, dv);
7908 if (!slot)
7909 slot = shared_hash_find_slot_unshare (&set->vars, dv, iopt);
7910 }
7911 set_slot_part (set, loc, slot, dv, offset, initialized, set_src);
7912 }
7913
7914 /* Remove all recorded register locations for the given variable part
7915 from dataflow set SET, except for those that are identical to loc.
7916 The variable part is specified by variable's declaration or value
7917 DV and offset OFFSET. */
7918
7919 static variable **
7920 clobber_slot_part (dataflow_set *set, rtx loc, variable **slot,
7921 HOST_WIDE_INT offset, rtx set_src)
7922 {
7923 variable *var = *slot;
7924 int pos = find_variable_location_part (var, offset, NULL);
7925
7926 if (pos >= 0)
7927 {
7928 location_chain *node, *next;
7929
7930 /* Remove the register locations from the dataflow set. */
7931 next = var->var_part[pos].loc_chain;
7932 for (node = next; node; node = next)
7933 {
7934 next = node->next;
7935 if (node->loc != loc
7936 && (!flag_var_tracking_uninit
7937 || !set_src
7938 || MEM_P (set_src)
7939 || !rtx_equal_p (set_src, node->set_src)))
7940 {
7941 if (REG_P (node->loc))
7942 {
7943 attrs *anode, *anext;
7944 attrs **anextp;
7945
7946 /* Remove the variable part from the register's
7947 list, but preserve any other variable parts
7948 that might be regarded as live in that same
7949 register. */
7950 anextp = &set->regs[REGNO (node->loc)];
7951 for (anode = *anextp; anode; anode = anext)
7952 {
7953 anext = anode->next;
7954 if (dv_as_opaque (anode->dv) == dv_as_opaque (var->dv)
7955 && anode->offset == offset)
7956 {
7957 delete anode;
7958 *anextp = anext;
7959 }
7960 else
7961 anextp = &anode->next;
7962 }
7963 }
7964
7965 slot = delete_slot_part (set, node->loc, slot, offset);
7966 }
7967 }
7968 }
7969
7970 return slot;
7971 }
7972
7973 /* Remove all recorded register locations for the given variable part
7974 from dataflow set SET, except for those that are identical to loc.
7975 The variable part is specified by variable's declaration or value
7976 DV and offset OFFSET. */
7977
7978 static void
7979 clobber_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
7980 HOST_WIDE_INT offset, rtx set_src)
7981 {
7982 variable **slot;
7983
7984 if (!dv_as_opaque (dv)
7985 || (!dv_is_value_p (dv) && ! DECL_P (dv_as_decl (dv))))
7986 return;
7987
7988 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7989 if (!slot)
7990 return;
7991
7992 clobber_slot_part (set, loc, slot, offset, set_src);
7993 }
7994
7995 /* Delete the part of variable's location from dataflow set SET. The
7996 variable part is specified by its SET->vars slot SLOT and offset
7997 OFFSET and the part's location by LOC. */
7998
7999 static variable **
8000 delete_slot_part (dataflow_set *set, rtx loc, variable **slot,
8001 HOST_WIDE_INT offset)
8002 {
8003 variable *var = *slot;
8004 int pos = find_variable_location_part (var, offset, NULL);
8005
8006 if (pos >= 0)
8007 {
8008 location_chain *node, *next;
8009 location_chain **nextp;
8010 bool changed;
8011 rtx cur_loc;
8012
8013 if (shared_var_p (var, set->vars))
8014 {
8015 /* If the variable contains the location part we have to
8016 make a copy of the variable. */
8017 for (node = var->var_part[pos].loc_chain; node;
8018 node = node->next)
8019 {
8020 if ((REG_P (node->loc) && REG_P (loc)
8021 && REGNO (node->loc) == REGNO (loc))
8022 || rtx_equal_p (node->loc, loc))
8023 {
8024 slot = unshare_variable (set, slot, var,
8025 VAR_INIT_STATUS_UNKNOWN);
8026 var = *slot;
8027 break;
8028 }
8029 }
8030 }
8031
8032 if (pos == 0 && var->onepart && VAR_LOC_1PAUX (var))
8033 cur_loc = VAR_LOC_FROM (var);
8034 else
8035 cur_loc = var->var_part[pos].cur_loc;
8036
8037 /* Delete the location part. */
8038 changed = false;
8039 nextp = &var->var_part[pos].loc_chain;
8040 for (node = *nextp; node; node = next)
8041 {
8042 next = node->next;
8043 if ((REG_P (node->loc) && REG_P (loc)
8044 && REGNO (node->loc) == REGNO (loc))
8045 || rtx_equal_p (node->loc, loc))
8046 {
8047 /* If we have deleted the location which was last emitted
8048 we have to emit new location so add the variable to set
8049 of changed variables. */
8050 if (cur_loc == node->loc)
8051 {
8052 changed = true;
8053 var->var_part[pos].cur_loc = NULL;
8054 if (pos == 0 && var->onepart && VAR_LOC_1PAUX (var))
8055 VAR_LOC_FROM (var) = NULL;
8056 }
8057 delete node;
8058 *nextp = next;
8059 break;
8060 }
8061 else
8062 nextp = &node->next;
8063 }
8064
8065 if (var->var_part[pos].loc_chain == NULL)
8066 {
8067 changed = true;
8068 var->n_var_parts--;
8069 while (pos < var->n_var_parts)
8070 {
8071 var->var_part[pos] = var->var_part[pos + 1];
8072 pos++;
8073 }
8074 }
8075 if (changed)
8076 variable_was_changed (var, set);
8077 }
8078
8079 return slot;
8080 }
8081
8082 /* Delete the part of variable's location from dataflow set SET. The
8083 variable part is specified by variable's declaration or value DV
8084 and offset OFFSET and the part's location by LOC. */
8085
8086 static void
8087 delete_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
8088 HOST_WIDE_INT offset)
8089 {
8090 variable **slot = shared_hash_find_slot_noinsert (set->vars, dv);
8091 if (!slot)
8092 return;
8093
8094 delete_slot_part (set, loc, slot, offset);
8095 }
8096
8097
8098 /* Structure for passing some other parameters to function
8099 vt_expand_loc_callback. */
8100 class expand_loc_callback_data
8101 {
8102 public:
8103 /* The variables and values active at this point. */
8104 variable_table_type *vars;
8105
8106 /* Stack of values and debug_exprs under expansion, and their
8107 children. */
8108 auto_vec<rtx, 4> expanding;
8109
8110 /* Stack of values and debug_exprs whose expansion hit recursion
8111 cycles. They will have VALUE_RECURSED_INTO marked when added to
8112 this list. This flag will be cleared if any of its dependencies
8113 resolves to a valid location. So, if the flag remains set at the
8114 end of the search, we know no valid location for this one can
8115 possibly exist. */
8116 auto_vec<rtx, 4> pending;
8117
8118 /* The maximum depth among the sub-expressions under expansion.
8119 Zero indicates no expansion so far. */
8120 expand_depth depth;
8121 };
8122
8123 /* Allocate the one-part auxiliary data structure for VAR, with enough
8124 room for COUNT dependencies. */
8125
8126 static void
8127 loc_exp_dep_alloc (variable *var, int count)
8128 {
8129 size_t allocsize;
8130
8131 gcc_checking_assert (var->onepart);
8132
8133 /* We can be called with COUNT == 0 to allocate the data structure
8134 without any dependencies, e.g. for the backlinks only. However,
8135 if we are specifying a COUNT, then the dependency list must have
8136 been emptied before. It would be possible to adjust pointers or
8137 force it empty here, but this is better done at an earlier point
8138 in the algorithm, so we instead leave an assertion to catch
8139 errors. */
8140 gcc_checking_assert (!count
8141 || VAR_LOC_DEP_VEC (var) == NULL
8142 || VAR_LOC_DEP_VEC (var)->is_empty ());
8143
8144 if (VAR_LOC_1PAUX (var) && VAR_LOC_DEP_VEC (var)->space (count))
8145 return;
8146
8147 allocsize = offsetof (struct onepart_aux, deps)
8148 + deps_vec::embedded_size (count);
8149
8150 if (VAR_LOC_1PAUX (var))
8151 {
8152 VAR_LOC_1PAUX (var) = XRESIZEVAR (struct onepart_aux,
8153 VAR_LOC_1PAUX (var), allocsize);
8154 /* If the reallocation moves the onepaux structure, the
8155 back-pointer to BACKLINKS in the first list member will still
8156 point to its old location. Adjust it. */
8157 if (VAR_LOC_DEP_LST (var))
8158 VAR_LOC_DEP_LST (var)->pprev = VAR_LOC_DEP_LSTP (var);
8159 }
8160 else
8161 {
8162 VAR_LOC_1PAUX (var) = XNEWVAR (struct onepart_aux, allocsize);
8163 *VAR_LOC_DEP_LSTP (var) = NULL;
8164 VAR_LOC_FROM (var) = NULL;
8165 VAR_LOC_DEPTH (var).complexity = 0;
8166 VAR_LOC_DEPTH (var).entryvals = 0;
8167 }
8168 VAR_LOC_DEP_VEC (var)->embedded_init (count);
8169 }
8170
8171 /* Remove all entries from the vector of active dependencies of VAR,
8172 removing them from the back-links lists too. */
8173
8174 static void
8175 loc_exp_dep_clear (variable *var)
8176 {
8177 while (VAR_LOC_DEP_VEC (var) && !VAR_LOC_DEP_VEC (var)->is_empty ())
8178 {
8179 loc_exp_dep *led = &VAR_LOC_DEP_VEC (var)->last ();
8180 if (led->next)
8181 led->next->pprev = led->pprev;
8182 if (led->pprev)
8183 *led->pprev = led->next;
8184 VAR_LOC_DEP_VEC (var)->pop ();
8185 }
8186 }
8187
8188 /* Insert an active dependency from VAR on X to the vector of
8189 dependencies, and add the corresponding back-link to X's list of
8190 back-links in VARS. */
8191
8192 static void
8193 loc_exp_insert_dep (variable *var, rtx x, variable_table_type *vars)
8194 {
8195 decl_or_value dv;
8196 variable *xvar;
8197 loc_exp_dep *led;
8198
8199 dv = dv_from_rtx (x);
8200
8201 /* ??? Build a vector of variables parallel to EXPANDING, to avoid
8202 an additional look up? */
8203 xvar = vars->find_with_hash (dv, dv_htab_hash (dv));
8204
8205 if (!xvar)
8206 {
8207 xvar = variable_from_dropped (dv, NO_INSERT);
8208 gcc_checking_assert (xvar);
8209 }
8210
8211 /* No point in adding the same backlink more than once. This may
8212 arise if say the same value appears in two complex expressions in
8213 the same loc_list, or even more than once in a single
8214 expression. */
8215 if (VAR_LOC_DEP_LST (xvar) && VAR_LOC_DEP_LST (xvar)->dv == var->dv)
8216 return;
8217
8218 if (var->onepart == NOT_ONEPART)
8219 led = new loc_exp_dep;
8220 else
8221 {
8222 loc_exp_dep empty;
8223 memset (&empty, 0, sizeof (empty));
8224 VAR_LOC_DEP_VEC (var)->quick_push (empty);
8225 led = &VAR_LOC_DEP_VEC (var)->last ();
8226 }
8227 led->dv = var->dv;
8228 led->value = x;
8229
8230 loc_exp_dep_alloc (xvar, 0);
8231 led->pprev = VAR_LOC_DEP_LSTP (xvar);
8232 led->next = *led->pprev;
8233 if (led->next)
8234 led->next->pprev = &led->next;
8235 *led->pprev = led;
8236 }
8237
8238 /* Create active dependencies of VAR on COUNT values starting at
8239 VALUE, and corresponding back-links to the entries in VARS. Return
8240 true if we found any pending-recursion results. */
8241
8242 static bool
8243 loc_exp_dep_set (variable *var, rtx result, rtx *value, int count,
8244 variable_table_type *vars)
8245 {
8246 bool pending_recursion = false;
8247
8248 gcc_checking_assert (VAR_LOC_DEP_VEC (var) == NULL
8249 || VAR_LOC_DEP_VEC (var)->is_empty ());
8250
8251 /* Set up all dependencies from last_child (as set up at the end of
8252 the loop above) to the end. */
8253 loc_exp_dep_alloc (var, count);
8254
8255 while (count--)
8256 {
8257 rtx x = *value++;
8258
8259 if (!pending_recursion)
8260 pending_recursion = !result && VALUE_RECURSED_INTO (x);
8261
8262 loc_exp_insert_dep (var, x, vars);
8263 }
8264
8265 return pending_recursion;
8266 }
8267
8268 /* Notify the back-links of IVAR that are pending recursion that we
8269 have found a non-NIL value for it, so they are cleared for another
8270 attempt to compute a current location. */
8271
8272 static void
8273 notify_dependents_of_resolved_value (variable *ivar, variable_table_type *vars)
8274 {
8275 loc_exp_dep *led, *next;
8276
8277 for (led = VAR_LOC_DEP_LST (ivar); led; led = next)
8278 {
8279 decl_or_value dv = led->dv;
8280 variable *var;
8281
8282 next = led->next;
8283
8284 if (dv_is_value_p (dv))
8285 {
8286 rtx value = dv_as_value (dv);
8287
8288 /* If we have already resolved it, leave it alone. */
8289 if (!VALUE_RECURSED_INTO (value))
8290 continue;
8291
8292 /* Check that VALUE_RECURSED_INTO, true from the test above,
8293 implies NO_LOC_P. */
8294 gcc_checking_assert (NO_LOC_P (value));
8295
8296 /* We won't notify variables that are being expanded,
8297 because their dependency list is cleared before
8298 recursing. */
8299 NO_LOC_P (value) = false;
8300 VALUE_RECURSED_INTO (value) = false;
8301
8302 gcc_checking_assert (dv_changed_p (dv));
8303 }
8304 else
8305 {
8306 gcc_checking_assert (dv_onepart_p (dv) != NOT_ONEPART);
8307 if (!dv_changed_p (dv))
8308 continue;
8309 }
8310
8311 var = vars->find_with_hash (dv, dv_htab_hash (dv));
8312
8313 if (!var)
8314 var = variable_from_dropped (dv, NO_INSERT);
8315
8316 if (var)
8317 notify_dependents_of_resolved_value (var, vars);
8318
8319 if (next)
8320 next->pprev = led->pprev;
8321 if (led->pprev)
8322 *led->pprev = next;
8323 led->next = NULL;
8324 led->pprev = NULL;
8325 }
8326 }
8327
8328 static rtx vt_expand_loc_callback (rtx x, bitmap regs,
8329 int max_depth, void *data);
8330
8331 /* Return the combined depth, when one sub-expression evaluated to
8332 BEST_DEPTH and the previous known depth was SAVED_DEPTH. */
8333
8334 static inline expand_depth
8335 update_depth (expand_depth saved_depth, expand_depth best_depth)
8336 {
8337 /* If we didn't find anything, stick with what we had. */
8338 if (!best_depth.complexity)
8339 return saved_depth;
8340
8341 /* If we found hadn't found anything, use the depth of the current
8342 expression. Do NOT add one extra level, we want to compute the
8343 maximum depth among sub-expressions. We'll increment it later,
8344 if appropriate. */
8345 if (!saved_depth.complexity)
8346 return best_depth;
8347
8348 /* Combine the entryval count so that regardless of which one we
8349 return, the entryval count is accurate. */
8350 best_depth.entryvals = saved_depth.entryvals
8351 = best_depth.entryvals + saved_depth.entryvals;
8352
8353 if (saved_depth.complexity < best_depth.complexity)
8354 return best_depth;
8355 else
8356 return saved_depth;
8357 }
8358
8359 /* Expand VAR to a location RTX, updating its cur_loc. Use REGS and
8360 DATA for cselib expand callback. If PENDRECP is given, indicate in
8361 it whether any sub-expression couldn't be fully evaluated because
8362 it is pending recursion resolution. */
8363
8364 static inline rtx
8365 vt_expand_var_loc_chain (variable *var, bitmap regs, void *data,
8366 bool *pendrecp)
8367 {
8368 class expand_loc_callback_data *elcd
8369 = (class expand_loc_callback_data *) data;
8370 location_chain *loc, *next;
8371 rtx result = NULL;
8372 int first_child, result_first_child, last_child;
8373 bool pending_recursion;
8374 rtx loc_from = NULL;
8375 struct elt_loc_list *cloc = NULL;
8376 expand_depth depth = { 0, 0 }, saved_depth = elcd->depth;
8377 int wanted_entryvals, found_entryvals = 0;
8378
8379 /* Clear all backlinks pointing at this, so that we're not notified
8380 while we're active. */
8381 loc_exp_dep_clear (var);
8382
8383 retry:
8384 if (var->onepart == ONEPART_VALUE)
8385 {
8386 cselib_val *val = CSELIB_VAL_PTR (dv_as_value (var->dv));
8387
8388 gcc_checking_assert (cselib_preserved_value_p (val));
8389
8390 cloc = val->locs;
8391 }
8392
8393 first_child = result_first_child = last_child
8394 = elcd->expanding.length ();
8395
8396 wanted_entryvals = found_entryvals;
8397
8398 /* Attempt to expand each available location in turn. */
8399 for (next = loc = var->n_var_parts ? var->var_part[0].loc_chain : NULL;
8400 loc || cloc; loc = next)
8401 {
8402 result_first_child = last_child;
8403
8404 if (!loc)
8405 {
8406 loc_from = cloc->loc;
8407 next = loc;
8408 cloc = cloc->next;
8409 if (unsuitable_loc (loc_from))
8410 continue;
8411 }
8412 else
8413 {
8414 loc_from = loc->loc;
8415 next = loc->next;
8416 }
8417
8418 gcc_checking_assert (!unsuitable_loc (loc_from));
8419
8420 elcd->depth.complexity = elcd->depth.entryvals = 0;
8421 result = cselib_expand_value_rtx_cb (loc_from, regs, EXPR_DEPTH,
8422 vt_expand_loc_callback, data);
8423 last_child = elcd->expanding.length ();
8424
8425 if (result)
8426 {
8427 depth = elcd->depth;
8428
8429 gcc_checking_assert (depth.complexity
8430 || result_first_child == last_child);
8431
8432 if (last_child - result_first_child != 1)
8433 {
8434 if (!depth.complexity && GET_CODE (result) == ENTRY_VALUE)
8435 depth.entryvals++;
8436 depth.complexity++;
8437 }
8438
8439 if (depth.complexity <= EXPR_USE_DEPTH)
8440 {
8441 if (depth.entryvals <= wanted_entryvals)
8442 break;
8443 else if (!found_entryvals || depth.entryvals < found_entryvals)
8444 found_entryvals = depth.entryvals;
8445 }
8446
8447 result = NULL;
8448 }
8449
8450 /* Set it up in case we leave the loop. */
8451 depth.complexity = depth.entryvals = 0;
8452 loc_from = NULL;
8453 result_first_child = first_child;
8454 }
8455
8456 if (!loc_from && wanted_entryvals < found_entryvals)
8457 {
8458 /* We found entries with ENTRY_VALUEs and skipped them. Since
8459 we could not find any expansions without ENTRY_VALUEs, but we
8460 found at least one with them, go back and get an entry with
8461 the minimum number ENTRY_VALUE count that we found. We could
8462 avoid looping, but since each sub-loc is already resolved,
8463 the re-expansion should be trivial. ??? Should we record all
8464 attempted locs as dependencies, so that we retry the
8465 expansion should any of them change, in the hope it can give
8466 us a new entry without an ENTRY_VALUE? */
8467 elcd->expanding.truncate (first_child);
8468 goto retry;
8469 }
8470
8471 /* Register all encountered dependencies as active. */
8472 pending_recursion = loc_exp_dep_set
8473 (var, result, elcd->expanding.address () + result_first_child,
8474 last_child - result_first_child, elcd->vars);
8475
8476 elcd->expanding.truncate (first_child);
8477
8478 /* Record where the expansion came from. */
8479 gcc_checking_assert (!result || !pending_recursion);
8480 VAR_LOC_FROM (var) = loc_from;
8481 VAR_LOC_DEPTH (var) = depth;
8482
8483 gcc_checking_assert (!depth.complexity == !result);
8484
8485 elcd->depth = update_depth (saved_depth, depth);
8486
8487 /* Indicate whether any of the dependencies are pending recursion
8488 resolution. */
8489 if (pendrecp)
8490 *pendrecp = pending_recursion;
8491
8492 if (!pendrecp || !pending_recursion)
8493 var->var_part[0].cur_loc = result;
8494
8495 return result;
8496 }
8497
8498 /* Callback for cselib_expand_value, that looks for expressions
8499 holding the value in the var-tracking hash tables. Return X for
8500 standard processing, anything else is to be used as-is. */
8501
8502 static rtx
8503 vt_expand_loc_callback (rtx x, bitmap regs,
8504 int max_depth ATTRIBUTE_UNUSED,
8505 void *data)
8506 {
8507 class expand_loc_callback_data *elcd
8508 = (class expand_loc_callback_data *) data;
8509 decl_or_value dv;
8510 variable *var;
8511 rtx result, subreg;
8512 bool pending_recursion = false;
8513 bool from_empty = false;
8514
8515 switch (GET_CODE (x))
8516 {
8517 case SUBREG:
8518 subreg = cselib_expand_value_rtx_cb (SUBREG_REG (x), regs,
8519 EXPR_DEPTH,
8520 vt_expand_loc_callback, data);
8521
8522 if (!subreg)
8523 return NULL;
8524
8525 result = simplify_gen_subreg (GET_MODE (x), subreg,
8526 GET_MODE (SUBREG_REG (x)),
8527 SUBREG_BYTE (x));
8528
8529 /* Invalid SUBREGs are ok in debug info. ??? We could try
8530 alternate expansions for the VALUE as well. */
8531 if (!result && GET_MODE (subreg) != VOIDmode)
8532 result = gen_rtx_raw_SUBREG (GET_MODE (x), subreg, SUBREG_BYTE (x));
8533
8534 return result;
8535
8536 case DEBUG_EXPR:
8537 case VALUE:
8538 dv = dv_from_rtx (x);
8539 break;
8540
8541 default:
8542 return x;
8543 }
8544
8545 elcd->expanding.safe_push (x);
8546
8547 /* Check that VALUE_RECURSED_INTO implies NO_LOC_P. */
8548 gcc_checking_assert (!VALUE_RECURSED_INTO (x) || NO_LOC_P (x));
8549
8550 if (NO_LOC_P (x))
8551 {
8552 gcc_checking_assert (VALUE_RECURSED_INTO (x) || !dv_changed_p (dv));
8553 return NULL;
8554 }
8555
8556 var = elcd->vars->find_with_hash (dv, dv_htab_hash (dv));
8557
8558 if (!var)
8559 {
8560 from_empty = true;
8561 var = variable_from_dropped (dv, INSERT);
8562 }
8563
8564 gcc_checking_assert (var);
8565
8566 if (!dv_changed_p (dv))
8567 {
8568 gcc_checking_assert (!NO_LOC_P (x));
8569 gcc_checking_assert (var->var_part[0].cur_loc);
8570 gcc_checking_assert (VAR_LOC_1PAUX (var));
8571 gcc_checking_assert (VAR_LOC_1PAUX (var)->depth.complexity);
8572
8573 elcd->depth = update_depth (elcd->depth, VAR_LOC_1PAUX (var)->depth);
8574
8575 return var->var_part[0].cur_loc;
8576 }
8577
8578 VALUE_RECURSED_INTO (x) = true;
8579 /* This is tentative, but it makes some tests simpler. */
8580 NO_LOC_P (x) = true;
8581
8582 gcc_checking_assert (var->n_var_parts == 1 || from_empty);
8583
8584 result = vt_expand_var_loc_chain (var, regs, data, &pending_recursion);
8585
8586 if (pending_recursion)
8587 {
8588 gcc_checking_assert (!result);
8589 elcd->pending.safe_push (x);
8590 }
8591 else
8592 {
8593 NO_LOC_P (x) = !result;
8594 VALUE_RECURSED_INTO (x) = false;
8595 set_dv_changed (dv, false);
8596
8597 if (result)
8598 notify_dependents_of_resolved_value (var, elcd->vars);
8599 }
8600
8601 return result;
8602 }
8603
8604 /* While expanding variables, we may encounter recursion cycles
8605 because of mutual (possibly indirect) dependencies between two
8606 particular variables (or values), say A and B. If we're trying to
8607 expand A when we get to B, which in turn attempts to expand A, if
8608 we can't find any other expansion for B, we'll add B to this
8609 pending-recursion stack, and tentatively return NULL for its
8610 location. This tentative value will be used for any other
8611 occurrences of B, unless A gets some other location, in which case
8612 it will notify B that it is worth another try at computing a
8613 location for it, and it will use the location computed for A then.
8614 At the end of the expansion, the tentative NULL locations become
8615 final for all members of PENDING that didn't get a notification.
8616 This function performs this finalization of NULL locations. */
8617
8618 static void
8619 resolve_expansions_pending_recursion (vec<rtx, va_heap> *pending)
8620 {
8621 while (!pending->is_empty ())
8622 {
8623 rtx x = pending->pop ();
8624 decl_or_value dv;
8625
8626 if (!VALUE_RECURSED_INTO (x))
8627 continue;
8628
8629 gcc_checking_assert (NO_LOC_P (x));
8630 VALUE_RECURSED_INTO (x) = false;
8631 dv = dv_from_rtx (x);
8632 gcc_checking_assert (dv_changed_p (dv));
8633 set_dv_changed (dv, false);
8634 }
8635 }
8636
8637 /* Initialize expand_loc_callback_data D with variable hash table V.
8638 It must be a macro because of alloca (vec stack). */
8639 #define INIT_ELCD(d, v) \
8640 do \
8641 { \
8642 (d).vars = (v); \
8643 (d).depth.complexity = (d).depth.entryvals = 0; \
8644 } \
8645 while (0)
8646 /* Finalize expand_loc_callback_data D, resolved to location L. */
8647 #define FINI_ELCD(d, l) \
8648 do \
8649 { \
8650 resolve_expansions_pending_recursion (&(d).pending); \
8651 (d).pending.release (); \
8652 (d).expanding.release (); \
8653 \
8654 if ((l) && MEM_P (l)) \
8655 (l) = targetm.delegitimize_address (l); \
8656 } \
8657 while (0)
8658
8659 /* Expand VALUEs and DEBUG_EXPRs in LOC to a location, using the
8660 equivalences in VARS, updating their CUR_LOCs in the process. */
8661
8662 static rtx
8663 vt_expand_loc (rtx loc, variable_table_type *vars)
8664 {
8665 class expand_loc_callback_data data;
8666 rtx result;
8667
8668 if (!MAY_HAVE_DEBUG_BIND_INSNS)
8669 return loc;
8670
8671 INIT_ELCD (data, vars);
8672
8673 result = cselib_expand_value_rtx_cb (loc, scratch_regs, EXPR_DEPTH,
8674 vt_expand_loc_callback, &data);
8675
8676 FINI_ELCD (data, result);
8677
8678 return result;
8679 }
8680
8681 /* Expand the one-part VARiable to a location, using the equivalences
8682 in VARS, updating their CUR_LOCs in the process. */
8683
8684 static rtx
8685 vt_expand_1pvar (variable *var, variable_table_type *vars)
8686 {
8687 class expand_loc_callback_data data;
8688 rtx loc;
8689
8690 gcc_checking_assert (var->onepart && var->n_var_parts == 1);
8691
8692 if (!dv_changed_p (var->dv))
8693 return var->var_part[0].cur_loc;
8694
8695 INIT_ELCD (data, vars);
8696
8697 loc = vt_expand_var_loc_chain (var, scratch_regs, &data, NULL);
8698
8699 gcc_checking_assert (data.expanding.is_empty ());
8700
8701 FINI_ELCD (data, loc);
8702
8703 return loc;
8704 }
8705
8706 /* Emit the NOTE_INSN_VAR_LOCATION for variable *VARP. DATA contains
8707 additional parameters: WHERE specifies whether the note shall be emitted
8708 before or after instruction INSN. */
8709
8710 int
8711 emit_note_insn_var_location (variable **varp, emit_note_data *data)
8712 {
8713 variable *var = *varp;
8714 rtx_insn *insn = data->insn;
8715 enum emit_note_where where = data->where;
8716 variable_table_type *vars = data->vars;
8717 rtx_note *note;
8718 rtx note_vl;
8719 int i, j, n_var_parts;
8720 bool complete;
8721 enum var_init_status initialized = VAR_INIT_STATUS_UNINITIALIZED;
8722 HOST_WIDE_INT last_limit;
8723 HOST_WIDE_INT offsets[MAX_VAR_PARTS];
8724 rtx loc[MAX_VAR_PARTS];
8725 tree decl;
8726 location_chain *lc;
8727
8728 gcc_checking_assert (var->onepart == NOT_ONEPART
8729 || var->onepart == ONEPART_VDECL);
8730
8731 decl = dv_as_decl (var->dv);
8732
8733 complete = true;
8734 last_limit = 0;
8735 n_var_parts = 0;
8736 if (!var->onepart)
8737 for (i = 0; i < var->n_var_parts; i++)
8738 if (var->var_part[i].cur_loc == NULL && var->var_part[i].loc_chain)
8739 var->var_part[i].cur_loc = var->var_part[i].loc_chain->loc;
8740 for (i = 0; i < var->n_var_parts; i++)
8741 {
8742 machine_mode mode, wider_mode;
8743 rtx loc2;
8744 HOST_WIDE_INT offset, size, wider_size;
8745
8746 if (i == 0 && var->onepart)
8747 {
8748 gcc_checking_assert (var->n_var_parts == 1);
8749 offset = 0;
8750 initialized = VAR_INIT_STATUS_INITIALIZED;
8751 loc2 = vt_expand_1pvar (var, vars);
8752 }
8753 else
8754 {
8755 if (last_limit < VAR_PART_OFFSET (var, i))
8756 {
8757 complete = false;
8758 break;
8759 }
8760 else if (last_limit > VAR_PART_OFFSET (var, i))
8761 continue;
8762 offset = VAR_PART_OFFSET (var, i);
8763 loc2 = var->var_part[i].cur_loc;
8764 if (loc2 && GET_CODE (loc2) == MEM
8765 && GET_CODE (XEXP (loc2, 0)) == VALUE)
8766 {
8767 rtx depval = XEXP (loc2, 0);
8768
8769 loc2 = vt_expand_loc (loc2, vars);
8770
8771 if (loc2)
8772 loc_exp_insert_dep (var, depval, vars);
8773 }
8774 if (!loc2)
8775 {
8776 complete = false;
8777 continue;
8778 }
8779 gcc_checking_assert (GET_CODE (loc2) != VALUE);
8780 for (lc = var->var_part[i].loc_chain; lc; lc = lc->next)
8781 if (var->var_part[i].cur_loc == lc->loc)
8782 {
8783 initialized = lc->init;
8784 break;
8785 }
8786 gcc_assert (lc);
8787 }
8788
8789 offsets[n_var_parts] = offset;
8790 if (!loc2)
8791 {
8792 complete = false;
8793 continue;
8794 }
8795 loc[n_var_parts] = loc2;
8796 mode = GET_MODE (var->var_part[i].cur_loc);
8797 if (mode == VOIDmode && var->onepart)
8798 mode = DECL_MODE (decl);
8799 /* We ony track subparts of constant-sized objects, since at present
8800 there's no representation for polynomial pieces. */
8801 if (!GET_MODE_SIZE (mode).is_constant (&size))
8802 {
8803 complete = false;
8804 continue;
8805 }
8806 last_limit = offsets[n_var_parts] + size;
8807
8808 /* Attempt to merge adjacent registers or memory. */
8809 for (j = i + 1; j < var->n_var_parts; j++)
8810 if (last_limit <= VAR_PART_OFFSET (var, j))
8811 break;
8812 if (j < var->n_var_parts
8813 && GET_MODE_WIDER_MODE (mode).exists (&wider_mode)
8814 && GET_MODE_SIZE (wider_mode).is_constant (&wider_size)
8815 && var->var_part[j].cur_loc
8816 && mode == GET_MODE (var->var_part[j].cur_loc)
8817 && (REG_P (loc[n_var_parts]) || MEM_P (loc[n_var_parts]))
8818 && last_limit == (var->onepart ? 0 : VAR_PART_OFFSET (var, j))
8819 && (loc2 = vt_expand_loc (var->var_part[j].cur_loc, vars))
8820 && GET_CODE (loc[n_var_parts]) == GET_CODE (loc2))
8821 {
8822 rtx new_loc = NULL;
8823 poly_int64 offset2;
8824
8825 if (REG_P (loc[n_var_parts])
8826 && hard_regno_nregs (REGNO (loc[n_var_parts]), mode) * 2
8827 == hard_regno_nregs (REGNO (loc[n_var_parts]), wider_mode)
8828 && end_hard_regno (mode, REGNO (loc[n_var_parts]))
8829 == REGNO (loc2))
8830 {
8831 if (! WORDS_BIG_ENDIAN && ! BYTES_BIG_ENDIAN)
8832 new_loc = simplify_subreg (wider_mode, loc[n_var_parts],
8833 mode, 0);
8834 else if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
8835 new_loc = simplify_subreg (wider_mode, loc2, mode, 0);
8836 if (new_loc)
8837 {
8838 if (!REG_P (new_loc)
8839 || REGNO (new_loc) != REGNO (loc[n_var_parts]))
8840 new_loc = NULL;
8841 else
8842 REG_ATTRS (new_loc) = REG_ATTRS (loc[n_var_parts]);
8843 }
8844 }
8845 else if (MEM_P (loc[n_var_parts])
8846 && GET_CODE (XEXP (loc2, 0)) == PLUS
8847 && REG_P (XEXP (XEXP (loc2, 0), 0))
8848 && poly_int_rtx_p (XEXP (XEXP (loc2, 0), 1), &offset2))
8849 {
8850 poly_int64 end1 = size;
8851 rtx base1 = strip_offset_and_add (XEXP (loc[n_var_parts], 0),
8852 &end1);
8853 if (rtx_equal_p (base1, XEXP (XEXP (loc2, 0), 0))
8854 && known_eq (end1, offset2))
8855 new_loc = adjust_address_nv (loc[n_var_parts],
8856 wider_mode, 0);
8857 }
8858
8859 if (new_loc)
8860 {
8861 loc[n_var_parts] = new_loc;
8862 mode = wider_mode;
8863 last_limit = offsets[n_var_parts] + wider_size;
8864 i = j;
8865 }
8866 }
8867 ++n_var_parts;
8868 }
8869 poly_uint64 type_size_unit
8870 = tree_to_poly_uint64 (TYPE_SIZE_UNIT (TREE_TYPE (decl)));
8871 if (maybe_lt (poly_uint64 (last_limit), type_size_unit))
8872 complete = false;
8873
8874 if (! flag_var_tracking_uninit)
8875 initialized = VAR_INIT_STATUS_INITIALIZED;
8876
8877 note_vl = NULL_RTX;
8878 if (!complete)
8879 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, NULL_RTX, initialized);
8880 else if (n_var_parts == 1)
8881 {
8882 rtx expr_list;
8883
8884 if (offsets[0] || GET_CODE (loc[0]) == PARALLEL)
8885 expr_list = gen_rtx_EXPR_LIST (VOIDmode, loc[0], GEN_INT (offsets[0]));
8886 else
8887 expr_list = loc[0];
8888
8889 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, expr_list, initialized);
8890 }
8891 else if (n_var_parts)
8892 {
8893 rtx parallel;
8894
8895 for (i = 0; i < n_var_parts; i++)
8896 loc[i]
8897 = gen_rtx_EXPR_LIST (VOIDmode, loc[i], GEN_INT (offsets[i]));
8898
8899 parallel = gen_rtx_PARALLEL (VOIDmode,
8900 gen_rtvec_v (n_var_parts, loc));
8901 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl,
8902 parallel, initialized);
8903 }
8904
8905 if (where != EMIT_NOTE_BEFORE_INSN)
8906 {
8907 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
8908 if (where == EMIT_NOTE_AFTER_CALL_INSN)
8909 NOTE_DURING_CALL_P (note) = true;
8910 }
8911 else
8912 {
8913 /* Make sure that the call related notes come first. */
8914 while (NEXT_INSN (insn)
8915 && NOTE_P (insn)
8916 && NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
8917 && NOTE_DURING_CALL_P (insn))
8918 insn = NEXT_INSN (insn);
8919 if (NOTE_P (insn)
8920 && NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
8921 && NOTE_DURING_CALL_P (insn))
8922 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
8923 else
8924 note = emit_note_before (NOTE_INSN_VAR_LOCATION, insn);
8925 }
8926 NOTE_VAR_LOCATION (note) = note_vl;
8927
8928 set_dv_changed (var->dv, false);
8929 gcc_assert (var->in_changed_variables);
8930 var->in_changed_variables = false;
8931 changed_variables->clear_slot (varp);
8932
8933 /* Continue traversing the hash table. */
8934 return 1;
8935 }
8936
8937 /* While traversing changed_variables, push onto DATA (a stack of RTX
8938 values) entries that aren't user variables. */
8939
8940 int
8941 var_track_values_to_stack (variable **slot,
8942 vec<rtx, va_heap> *changed_values_stack)
8943 {
8944 variable *var = *slot;
8945
8946 if (var->onepart == ONEPART_VALUE)
8947 changed_values_stack->safe_push (dv_as_value (var->dv));
8948 else if (var->onepart == ONEPART_DEXPR)
8949 changed_values_stack->safe_push (DECL_RTL_KNOWN_SET (dv_as_decl (var->dv)));
8950
8951 return 1;
8952 }
8953
8954 /* Remove from changed_variables the entry whose DV corresponds to
8955 value or debug_expr VAL. */
8956 static void
8957 remove_value_from_changed_variables (rtx val)
8958 {
8959 decl_or_value dv = dv_from_rtx (val);
8960 variable **slot;
8961 variable *var;
8962
8963 slot = changed_variables->find_slot_with_hash (dv, dv_htab_hash (dv),
8964 NO_INSERT);
8965 var = *slot;
8966 var->in_changed_variables = false;
8967 changed_variables->clear_slot (slot);
8968 }
8969
8970 /* If VAL (a value or debug_expr) has backlinks to variables actively
8971 dependent on it in HTAB or in CHANGED_VARIABLES, mark them as
8972 changed, adding to CHANGED_VALUES_STACK any dependencies that may
8973 have dependencies of their own to notify. */
8974
8975 static void
8976 notify_dependents_of_changed_value (rtx val, variable_table_type *htab,
8977 vec<rtx, va_heap> *changed_values_stack)
8978 {
8979 variable **slot;
8980 variable *var;
8981 loc_exp_dep *led;
8982 decl_or_value dv = dv_from_rtx (val);
8983
8984 slot = changed_variables->find_slot_with_hash (dv, dv_htab_hash (dv),
8985 NO_INSERT);
8986 if (!slot)
8987 slot = htab->find_slot_with_hash (dv, dv_htab_hash (dv), NO_INSERT);
8988 if (!slot)
8989 slot = dropped_values->find_slot_with_hash (dv, dv_htab_hash (dv),
8990 NO_INSERT);
8991 var = *slot;
8992
8993 while ((led = VAR_LOC_DEP_LST (var)))
8994 {
8995 decl_or_value ldv = led->dv;
8996 variable *ivar;
8997
8998 /* Deactivate and remove the backlink, as it was “used up”. It
8999 makes no sense to attempt to notify the same entity again:
9000 either it will be recomputed and re-register an active
9001 dependency, or it will still have the changed mark. */
9002 if (led->next)
9003 led->next->pprev = led->pprev;
9004 if (led->pprev)
9005 *led->pprev = led->next;
9006 led->next = NULL;
9007 led->pprev = NULL;
9008
9009 if (dv_changed_p (ldv))
9010 continue;
9011
9012 switch (dv_onepart_p (ldv))
9013 {
9014 case ONEPART_VALUE:
9015 case ONEPART_DEXPR:
9016 set_dv_changed (ldv, true);
9017 changed_values_stack->safe_push (dv_as_rtx (ldv));
9018 break;
9019
9020 case ONEPART_VDECL:
9021 ivar = htab->find_with_hash (ldv, dv_htab_hash (ldv));
9022 gcc_checking_assert (!VAR_LOC_DEP_LST (ivar));
9023 variable_was_changed (ivar, NULL);
9024 break;
9025
9026 case NOT_ONEPART:
9027 delete led;
9028 ivar = htab->find_with_hash (ldv, dv_htab_hash (ldv));
9029 if (ivar)
9030 {
9031 int i = ivar->n_var_parts;
9032 while (i--)
9033 {
9034 rtx loc = ivar->var_part[i].cur_loc;
9035
9036 if (loc && GET_CODE (loc) == MEM
9037 && XEXP (loc, 0) == val)
9038 {
9039 variable_was_changed (ivar, NULL);
9040 break;
9041 }
9042 }
9043 }
9044 break;
9045
9046 default:
9047 gcc_unreachable ();
9048 }
9049 }
9050 }
9051
9052 /* Take out of changed_variables any entries that don't refer to use
9053 variables. Back-propagate change notifications from values and
9054 debug_exprs to their active dependencies in HTAB or in
9055 CHANGED_VARIABLES. */
9056
9057 static void
9058 process_changed_values (variable_table_type *htab)
9059 {
9060 int i, n;
9061 rtx val;
9062 auto_vec<rtx, 20> changed_values_stack;
9063
9064 /* Move values from changed_variables to changed_values_stack. */
9065 changed_variables
9066 ->traverse <vec<rtx, va_heap>*, var_track_values_to_stack>
9067 (&changed_values_stack);
9068
9069 /* Back-propagate change notifications in values while popping
9070 them from the stack. */
9071 for (n = i = changed_values_stack.length ();
9072 i > 0; i = changed_values_stack.length ())
9073 {
9074 val = changed_values_stack.pop ();
9075 notify_dependents_of_changed_value (val, htab, &changed_values_stack);
9076
9077 /* This condition will hold when visiting each of the entries
9078 originally in changed_variables. We can't remove them
9079 earlier because this could drop the backlinks before we got a
9080 chance to use them. */
9081 if (i == n)
9082 {
9083 remove_value_from_changed_variables (val);
9084 n--;
9085 }
9086 }
9087 }
9088
9089 /* Emit NOTE_INSN_VAR_LOCATION note for each variable from a chain
9090 CHANGED_VARIABLES and delete this chain. WHERE specifies whether
9091 the notes shall be emitted before of after instruction INSN. */
9092
9093 static void
9094 emit_notes_for_changes (rtx_insn *insn, enum emit_note_where where,
9095 shared_hash *vars)
9096 {
9097 emit_note_data data;
9098 variable_table_type *htab = shared_hash_htab (vars);
9099
9100 if (changed_variables->is_empty ())
9101 return;
9102
9103 if (MAY_HAVE_DEBUG_BIND_INSNS)
9104 process_changed_values (htab);
9105
9106 data.insn = insn;
9107 data.where = where;
9108 data.vars = htab;
9109
9110 changed_variables
9111 ->traverse <emit_note_data*, emit_note_insn_var_location> (&data);
9112 }
9113
9114 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it differs from the
9115 same variable in hash table DATA or is not there at all. */
9116
9117 int
9118 emit_notes_for_differences_1 (variable **slot, variable_table_type *new_vars)
9119 {
9120 variable *old_var, *new_var;
9121
9122 old_var = *slot;
9123 new_var = new_vars->find_with_hash (old_var->dv, dv_htab_hash (old_var->dv));
9124
9125 if (!new_var)
9126 {
9127 /* Variable has disappeared. */
9128 variable *empty_var = NULL;
9129
9130 if (old_var->onepart == ONEPART_VALUE
9131 || old_var->onepart == ONEPART_DEXPR)
9132 {
9133 empty_var = variable_from_dropped (old_var->dv, NO_INSERT);
9134 if (empty_var)
9135 {
9136 gcc_checking_assert (!empty_var->in_changed_variables);
9137 if (!VAR_LOC_1PAUX (old_var))
9138 {
9139 VAR_LOC_1PAUX (old_var) = VAR_LOC_1PAUX (empty_var);
9140 VAR_LOC_1PAUX (empty_var) = NULL;
9141 }
9142 else
9143 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var));
9144 }
9145 }
9146
9147 if (!empty_var)
9148 {
9149 empty_var = onepart_pool_allocate (old_var->onepart);
9150 empty_var->dv = old_var->dv;
9151 empty_var->refcount = 0;
9152 empty_var->n_var_parts = 0;
9153 empty_var->onepart = old_var->onepart;
9154 empty_var->in_changed_variables = false;
9155 }
9156
9157 if (empty_var->onepart)
9158 {
9159 /* Propagate the auxiliary data to (ultimately)
9160 changed_variables. */
9161 empty_var->var_part[0].loc_chain = NULL;
9162 empty_var->var_part[0].cur_loc = NULL;
9163 VAR_LOC_1PAUX (empty_var) = VAR_LOC_1PAUX (old_var);
9164 VAR_LOC_1PAUX (old_var) = NULL;
9165 }
9166 variable_was_changed (empty_var, NULL);
9167 /* Continue traversing the hash table. */
9168 return 1;
9169 }
9170 /* Update cur_loc and one-part auxiliary data, before new_var goes
9171 through variable_was_changed. */
9172 if (old_var != new_var && new_var->onepart)
9173 {
9174 gcc_checking_assert (VAR_LOC_1PAUX (new_var) == NULL);
9175 VAR_LOC_1PAUX (new_var) = VAR_LOC_1PAUX (old_var);
9176 VAR_LOC_1PAUX (old_var) = NULL;
9177 new_var->var_part[0].cur_loc = old_var->var_part[0].cur_loc;
9178 }
9179 if (variable_different_p (old_var, new_var))
9180 variable_was_changed (new_var, NULL);
9181
9182 /* Continue traversing the hash table. */
9183 return 1;
9184 }
9185
9186 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it is not in hash
9187 table DATA. */
9188
9189 int
9190 emit_notes_for_differences_2 (variable **slot, variable_table_type *old_vars)
9191 {
9192 variable *old_var, *new_var;
9193
9194 new_var = *slot;
9195 old_var = old_vars->find_with_hash (new_var->dv, dv_htab_hash (new_var->dv));
9196 if (!old_var)
9197 {
9198 int i;
9199 for (i = 0; i < new_var->n_var_parts; i++)
9200 new_var->var_part[i].cur_loc = NULL;
9201 variable_was_changed (new_var, NULL);
9202 }
9203
9204 /* Continue traversing the hash table. */
9205 return 1;
9206 }
9207
9208 /* Emit notes before INSN for differences between dataflow sets OLD_SET and
9209 NEW_SET. */
9210
9211 static void
9212 emit_notes_for_differences (rtx_insn *insn, dataflow_set *old_set,
9213 dataflow_set *new_set)
9214 {
9215 shared_hash_htab (old_set->vars)
9216 ->traverse <variable_table_type *, emit_notes_for_differences_1>
9217 (shared_hash_htab (new_set->vars));
9218 shared_hash_htab (new_set->vars)
9219 ->traverse <variable_table_type *, emit_notes_for_differences_2>
9220 (shared_hash_htab (old_set->vars));
9221 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, new_set->vars);
9222 }
9223
9224 /* Return the next insn after INSN that is not a NOTE_INSN_VAR_LOCATION. */
9225
9226 static rtx_insn *
9227 next_non_note_insn_var_location (rtx_insn *insn)
9228 {
9229 while (insn)
9230 {
9231 insn = NEXT_INSN (insn);
9232 if (insn == 0
9233 || !NOTE_P (insn)
9234 || NOTE_KIND (insn) != NOTE_INSN_VAR_LOCATION)
9235 break;
9236 }
9237
9238 return insn;
9239 }
9240
9241 /* Emit the notes for changes of location parts in the basic block BB. */
9242
9243 static void
9244 emit_notes_in_bb (basic_block bb, dataflow_set *set)
9245 {
9246 unsigned int i;
9247 micro_operation *mo;
9248
9249 dataflow_set_clear (set);
9250 dataflow_set_copy (set, &VTI (bb)->in);
9251
9252 FOR_EACH_VEC_ELT (VTI (bb)->mos, i, mo)
9253 {
9254 rtx_insn *insn = mo->insn;
9255 rtx_insn *next_insn = next_non_note_insn_var_location (insn);
9256
9257 switch (mo->type)
9258 {
9259 case MO_CALL:
9260 dataflow_set_clear_at_call (set, insn);
9261 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_CALL_INSN, set->vars);
9262 {
9263 rtx arguments = mo->u.loc, *p = &arguments;
9264 while (*p)
9265 {
9266 XEXP (XEXP (*p, 0), 1)
9267 = vt_expand_loc (XEXP (XEXP (*p, 0), 1),
9268 shared_hash_htab (set->vars));
9269 /* If expansion is successful, keep it in the list. */
9270 if (XEXP (XEXP (*p, 0), 1))
9271 {
9272 XEXP (XEXP (*p, 0), 1)
9273 = copy_rtx_if_shared (XEXP (XEXP (*p, 0), 1));
9274 p = &XEXP (*p, 1);
9275 }
9276 /* Otherwise, if the following item is data_value for it,
9277 drop it too too. */
9278 else if (XEXP (*p, 1)
9279 && REG_P (XEXP (XEXP (*p, 0), 0))
9280 && MEM_P (XEXP (XEXP (XEXP (*p, 1), 0), 0))
9281 && REG_P (XEXP (XEXP (XEXP (XEXP (*p, 1), 0), 0),
9282 0))
9283 && REGNO (XEXP (XEXP (*p, 0), 0))
9284 == REGNO (XEXP (XEXP (XEXP (XEXP (*p, 1), 0),
9285 0), 0)))
9286 *p = XEXP (XEXP (*p, 1), 1);
9287 /* Just drop this item. */
9288 else
9289 *p = XEXP (*p, 1);
9290 }
9291 add_reg_note (insn, REG_CALL_ARG_LOCATION, arguments);
9292 }
9293 break;
9294
9295 case MO_USE:
9296 {
9297 rtx loc = mo->u.loc;
9298
9299 if (REG_P (loc))
9300 var_reg_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
9301 else
9302 var_mem_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
9303
9304 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
9305 }
9306 break;
9307
9308 case MO_VAL_LOC:
9309 {
9310 rtx loc = mo->u.loc;
9311 rtx val, vloc;
9312 tree var;
9313
9314 if (GET_CODE (loc) == CONCAT)
9315 {
9316 val = XEXP (loc, 0);
9317 vloc = XEXP (loc, 1);
9318 }
9319 else
9320 {
9321 val = NULL_RTX;
9322 vloc = loc;
9323 }
9324
9325 var = PAT_VAR_LOCATION_DECL (vloc);
9326
9327 clobber_variable_part (set, NULL_RTX,
9328 dv_from_decl (var), 0, NULL_RTX);
9329 if (val)
9330 {
9331 if (VAL_NEEDS_RESOLUTION (loc))
9332 val_resolve (set, val, PAT_VAR_LOCATION_LOC (vloc), insn);
9333 set_variable_part (set, val, dv_from_decl (var), 0,
9334 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
9335 INSERT);
9336 }
9337 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
9338 set_variable_part (set, PAT_VAR_LOCATION_LOC (vloc),
9339 dv_from_decl (var), 0,
9340 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
9341 INSERT);
9342
9343 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
9344 }
9345 break;
9346
9347 case MO_VAL_USE:
9348 {
9349 rtx loc = mo->u.loc;
9350 rtx val, vloc, uloc;
9351
9352 vloc = uloc = XEXP (loc, 1);
9353 val = XEXP (loc, 0);
9354
9355 if (GET_CODE (val) == CONCAT)
9356 {
9357 uloc = XEXP (val, 1);
9358 val = XEXP (val, 0);
9359 }
9360
9361 if (VAL_NEEDS_RESOLUTION (loc))
9362 val_resolve (set, val, vloc, insn);
9363 else
9364 val_store (set, val, uloc, insn, false);
9365
9366 if (VAL_HOLDS_TRACK_EXPR (loc))
9367 {
9368 if (GET_CODE (uloc) == REG)
9369 var_reg_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
9370 NULL);
9371 else if (GET_CODE (uloc) == MEM)
9372 var_mem_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
9373 NULL);
9374 }
9375
9376 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
9377 }
9378 break;
9379
9380 case MO_VAL_SET:
9381 {
9382 rtx loc = mo->u.loc;
9383 rtx val, vloc, uloc;
9384 rtx dstv, srcv;
9385
9386 vloc = loc;
9387 uloc = XEXP (vloc, 1);
9388 val = XEXP (vloc, 0);
9389 vloc = uloc;
9390
9391 if (GET_CODE (uloc) == SET)
9392 {
9393 dstv = SET_DEST (uloc);
9394 srcv = SET_SRC (uloc);
9395 }
9396 else
9397 {
9398 dstv = uloc;
9399 srcv = NULL;
9400 }
9401
9402 if (GET_CODE (val) == CONCAT)
9403 {
9404 dstv = vloc = XEXP (val, 1);
9405 val = XEXP (val, 0);
9406 }
9407
9408 if (GET_CODE (vloc) == SET)
9409 {
9410 srcv = SET_SRC (vloc);
9411
9412 gcc_assert (val != srcv);
9413 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
9414
9415 dstv = vloc = SET_DEST (vloc);
9416
9417 if (VAL_NEEDS_RESOLUTION (loc))
9418 val_resolve (set, val, srcv, insn);
9419 }
9420 else if (VAL_NEEDS_RESOLUTION (loc))
9421 {
9422 gcc_assert (GET_CODE (uloc) == SET
9423 && GET_CODE (SET_SRC (uloc)) == REG);
9424 val_resolve (set, val, SET_SRC (uloc), insn);
9425 }
9426
9427 if (VAL_HOLDS_TRACK_EXPR (loc))
9428 {
9429 if (VAL_EXPR_IS_CLOBBERED (loc))
9430 {
9431 if (REG_P (uloc))
9432 var_reg_delete (set, uloc, true);
9433 else if (MEM_P (uloc))
9434 {
9435 gcc_assert (MEM_P (dstv));
9436 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (uloc));
9437 var_mem_delete (set, dstv, true);
9438 }
9439 }
9440 else
9441 {
9442 bool copied_p = VAL_EXPR_IS_COPIED (loc);
9443 rtx src = NULL, dst = uloc;
9444 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
9445
9446 if (GET_CODE (uloc) == SET)
9447 {
9448 src = SET_SRC (uloc);
9449 dst = SET_DEST (uloc);
9450 }
9451
9452 if (copied_p)
9453 {
9454 status = find_src_status (set, src);
9455
9456 src = find_src_set_src (set, src);
9457 }
9458
9459 if (REG_P (dst))
9460 var_reg_delete_and_set (set, dst, !copied_p,
9461 status, srcv);
9462 else if (MEM_P (dst))
9463 {
9464 gcc_assert (MEM_P (dstv));
9465 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (dst));
9466 var_mem_delete_and_set (set, dstv, !copied_p,
9467 status, srcv);
9468 }
9469 }
9470 }
9471 else if (REG_P (uloc))
9472 var_regno_delete (set, REGNO (uloc));
9473 else if (MEM_P (uloc))
9474 {
9475 gcc_checking_assert (GET_CODE (vloc) == MEM);
9476 gcc_checking_assert (vloc == dstv);
9477 if (vloc != dstv)
9478 clobber_overlapping_mems (set, vloc);
9479 }
9480
9481 val_store (set, val, dstv, insn, true);
9482
9483 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9484 set->vars);
9485 }
9486 break;
9487
9488 case MO_SET:
9489 {
9490 rtx loc = mo->u.loc;
9491 rtx set_src = NULL;
9492
9493 if (GET_CODE (loc) == SET)
9494 {
9495 set_src = SET_SRC (loc);
9496 loc = SET_DEST (loc);
9497 }
9498
9499 if (REG_P (loc))
9500 var_reg_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
9501 set_src);
9502 else
9503 var_mem_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
9504 set_src);
9505
9506 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9507 set->vars);
9508 }
9509 break;
9510
9511 case MO_COPY:
9512 {
9513 rtx loc = mo->u.loc;
9514 enum var_init_status src_status;
9515 rtx set_src = NULL;
9516
9517 if (GET_CODE (loc) == SET)
9518 {
9519 set_src = SET_SRC (loc);
9520 loc = SET_DEST (loc);
9521 }
9522
9523 src_status = find_src_status (set, set_src);
9524 set_src = find_src_set_src (set, set_src);
9525
9526 if (REG_P (loc))
9527 var_reg_delete_and_set (set, loc, false, src_status, set_src);
9528 else
9529 var_mem_delete_and_set (set, loc, false, src_status, set_src);
9530
9531 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9532 set->vars);
9533 }
9534 break;
9535
9536 case MO_USE_NO_VAR:
9537 {
9538 rtx loc = mo->u.loc;
9539
9540 if (REG_P (loc))
9541 var_reg_delete (set, loc, false);
9542 else
9543 var_mem_delete (set, loc, false);
9544
9545 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
9546 }
9547 break;
9548
9549 case MO_CLOBBER:
9550 {
9551 rtx loc = mo->u.loc;
9552
9553 if (REG_P (loc))
9554 var_reg_delete (set, loc, true);
9555 else
9556 var_mem_delete (set, loc, true);
9557
9558 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9559 set->vars);
9560 }
9561 break;
9562
9563 case MO_ADJUST:
9564 set->stack_adjust += mo->u.adjust;
9565 break;
9566 }
9567 }
9568 }
9569
9570 /* Emit notes for the whole function. */
9571
9572 static void
9573 vt_emit_notes (void)
9574 {
9575 basic_block bb;
9576 dataflow_set cur;
9577
9578 gcc_assert (changed_variables->is_empty ());
9579
9580 /* Free memory occupied by the out hash tables, as they aren't used
9581 anymore. */
9582 FOR_EACH_BB_FN (bb, cfun)
9583 dataflow_set_clear (&VTI (bb)->out);
9584
9585 /* Enable emitting notes by functions (mainly by set_variable_part and
9586 delete_variable_part). */
9587 emit_notes = true;
9588
9589 if (MAY_HAVE_DEBUG_BIND_INSNS)
9590 dropped_values = new variable_table_type (cselib_get_next_uid () * 2);
9591
9592 dataflow_set_init (&cur);
9593
9594 FOR_EACH_BB_FN (bb, cfun)
9595 {
9596 /* Emit the notes for changes of variable locations between two
9597 subsequent basic blocks. */
9598 emit_notes_for_differences (BB_HEAD (bb), &cur, &VTI (bb)->in);
9599
9600 if (MAY_HAVE_DEBUG_BIND_INSNS)
9601 local_get_addr_cache = new hash_map<rtx, rtx>;
9602
9603 /* Emit the notes for the changes in the basic block itself. */
9604 emit_notes_in_bb (bb, &cur);
9605
9606 if (MAY_HAVE_DEBUG_BIND_INSNS)
9607 delete local_get_addr_cache;
9608 local_get_addr_cache = NULL;
9609
9610 /* Free memory occupied by the in hash table, we won't need it
9611 again. */
9612 dataflow_set_clear (&VTI (bb)->in);
9613 }
9614
9615 if (flag_checking)
9616 shared_hash_htab (cur.vars)
9617 ->traverse <variable_table_type *, emit_notes_for_differences_1>
9618 (shared_hash_htab (empty_shared_hash));
9619
9620 dataflow_set_destroy (&cur);
9621
9622 if (MAY_HAVE_DEBUG_BIND_INSNS)
9623 delete dropped_values;
9624 dropped_values = NULL;
9625
9626 emit_notes = false;
9627 }
9628
9629 /* If there is a declaration and offset associated with register/memory RTL
9630 assign declaration to *DECLP and offset to *OFFSETP, and return true. */
9631
9632 static bool
9633 vt_get_decl_and_offset (rtx rtl, tree *declp, poly_int64 *offsetp)
9634 {
9635 if (REG_P (rtl))
9636 {
9637 if (REG_ATTRS (rtl))
9638 {
9639 *declp = REG_EXPR (rtl);
9640 *offsetp = REG_OFFSET (rtl);
9641 return true;
9642 }
9643 }
9644 else if (GET_CODE (rtl) == PARALLEL)
9645 {
9646 tree decl = NULL_TREE;
9647 HOST_WIDE_INT offset = MAX_VAR_PARTS;
9648 int len = XVECLEN (rtl, 0), i;
9649
9650 for (i = 0; i < len; i++)
9651 {
9652 rtx reg = XEXP (XVECEXP (rtl, 0, i), 0);
9653 if (!REG_P (reg) || !REG_ATTRS (reg))
9654 break;
9655 if (!decl)
9656 decl = REG_EXPR (reg);
9657 if (REG_EXPR (reg) != decl)
9658 break;
9659 HOST_WIDE_INT this_offset;
9660 if (!track_offset_p (REG_OFFSET (reg), &this_offset))
9661 break;
9662 offset = MIN (offset, this_offset);
9663 }
9664
9665 if (i == len)
9666 {
9667 *declp = decl;
9668 *offsetp = offset;
9669 return true;
9670 }
9671 }
9672 else if (MEM_P (rtl))
9673 {
9674 if (MEM_ATTRS (rtl))
9675 {
9676 *declp = MEM_EXPR (rtl);
9677 *offsetp = int_mem_offset (rtl);
9678 return true;
9679 }
9680 }
9681 return false;
9682 }
9683
9684 /* Record the value for the ENTRY_VALUE of RTL as a global equivalence
9685 of VAL. */
9686
9687 static void
9688 record_entry_value (cselib_val *val, rtx rtl)
9689 {
9690 rtx ev = gen_rtx_ENTRY_VALUE (GET_MODE (rtl));
9691
9692 ENTRY_VALUE_EXP (ev) = rtl;
9693
9694 cselib_add_permanent_equiv (val, ev, get_insns ());
9695 }
9696
9697 /* Insert function parameter PARM in IN and OUT sets of ENTRY_BLOCK. */
9698
9699 static void
9700 vt_add_function_parameter (tree parm)
9701 {
9702 rtx decl_rtl = DECL_RTL_IF_SET (parm);
9703 rtx incoming = DECL_INCOMING_RTL (parm);
9704 tree decl;
9705 machine_mode mode;
9706 poly_int64 offset;
9707 dataflow_set *out;
9708 decl_or_value dv;
9709 bool incoming_ok = true;
9710
9711 if (TREE_CODE (parm) != PARM_DECL)
9712 return;
9713
9714 if (!decl_rtl || !incoming)
9715 return;
9716
9717 if (GET_MODE (decl_rtl) == BLKmode || GET_MODE (incoming) == BLKmode)
9718 return;
9719
9720 /* If there is a DRAP register or a pseudo in internal_arg_pointer,
9721 rewrite the incoming location of parameters passed on the stack
9722 into MEMs based on the argument pointer, so that incoming doesn't
9723 depend on a pseudo. */
9724 poly_int64 incoming_offset = 0;
9725 if (MEM_P (incoming)
9726 && (strip_offset (XEXP (incoming, 0), &incoming_offset)
9727 == crtl->args.internal_arg_pointer))
9728 {
9729 HOST_WIDE_INT off = -FIRST_PARM_OFFSET (current_function_decl);
9730 incoming
9731 = replace_equiv_address_nv (incoming,
9732 plus_constant (Pmode,
9733 arg_pointer_rtx,
9734 off + incoming_offset));
9735 }
9736
9737 #ifdef HAVE_window_save
9738 /* DECL_INCOMING_RTL uses the INCOMING_REGNO of parameter registers.
9739 If the target machine has an explicit window save instruction, the
9740 actual entry value is the corresponding OUTGOING_REGNO instead. */
9741 if (HAVE_window_save && !crtl->uses_only_leaf_regs)
9742 {
9743 if (REG_P (incoming)
9744 && HARD_REGISTER_P (incoming)
9745 && OUTGOING_REGNO (REGNO (incoming)) != REGNO (incoming))
9746 {
9747 parm_reg p;
9748 p.incoming = incoming;
9749 incoming
9750 = gen_rtx_REG_offset (incoming, GET_MODE (incoming),
9751 OUTGOING_REGNO (REGNO (incoming)), 0);
9752 p.outgoing = incoming;
9753 vec_safe_push (windowed_parm_regs, p);
9754 }
9755 else if (GET_CODE (incoming) == PARALLEL)
9756 {
9757 rtx outgoing
9758 = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (XVECLEN (incoming, 0)));
9759 int i;
9760
9761 for (i = 0; i < XVECLEN (incoming, 0); i++)
9762 {
9763 rtx reg = XEXP (XVECEXP (incoming, 0, i), 0);
9764 parm_reg p;
9765 p.incoming = reg;
9766 reg = gen_rtx_REG_offset (reg, GET_MODE (reg),
9767 OUTGOING_REGNO (REGNO (reg)), 0);
9768 p.outgoing = reg;
9769 XVECEXP (outgoing, 0, i)
9770 = gen_rtx_EXPR_LIST (VOIDmode, reg,
9771 XEXP (XVECEXP (incoming, 0, i), 1));
9772 vec_safe_push (windowed_parm_regs, p);
9773 }
9774
9775 incoming = outgoing;
9776 }
9777 else if (MEM_P (incoming)
9778 && REG_P (XEXP (incoming, 0))
9779 && HARD_REGISTER_P (XEXP (incoming, 0)))
9780 {
9781 rtx reg = XEXP (incoming, 0);
9782 if (OUTGOING_REGNO (REGNO (reg)) != REGNO (reg))
9783 {
9784 parm_reg p;
9785 p.incoming = reg;
9786 reg = gen_raw_REG (GET_MODE (reg), OUTGOING_REGNO (REGNO (reg)));
9787 p.outgoing = reg;
9788 vec_safe_push (windowed_parm_regs, p);
9789 incoming = replace_equiv_address_nv (incoming, reg);
9790 }
9791 }
9792 }
9793 #endif
9794
9795 if (!vt_get_decl_and_offset (incoming, &decl, &offset))
9796 {
9797 incoming_ok = false;
9798 if (MEM_P (incoming))
9799 {
9800 /* This means argument is passed by invisible reference. */
9801 offset = 0;
9802 decl = parm;
9803 }
9804 else
9805 {
9806 if (!vt_get_decl_and_offset (decl_rtl, &decl, &offset))
9807 return;
9808 offset += byte_lowpart_offset (GET_MODE (incoming),
9809 GET_MODE (decl_rtl));
9810 }
9811 }
9812
9813 if (!decl)
9814 return;
9815
9816 if (parm != decl)
9817 {
9818 /* If that DECL_RTL wasn't a pseudo that got spilled to
9819 memory, bail out. Otherwise, the spill slot sharing code
9820 will force the memory to reference spill_slot_decl (%sfp),
9821 so we don't match above. That's ok, the pseudo must have
9822 referenced the entire parameter, so just reset OFFSET. */
9823 if (decl != get_spill_slot_decl (false))
9824 return;
9825 offset = 0;
9826 }
9827
9828 HOST_WIDE_INT const_offset;
9829 if (!track_loc_p (incoming, parm, offset, false, &mode, &const_offset))
9830 return;
9831
9832 out = &VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->out;
9833
9834 dv = dv_from_decl (parm);
9835
9836 if (target_for_debug_bind (parm)
9837 /* We can't deal with these right now, because this kind of
9838 variable is single-part. ??? We could handle parallels
9839 that describe multiple locations for the same single
9840 value, but ATM we don't. */
9841 && GET_CODE (incoming) != PARALLEL)
9842 {
9843 cselib_val *val;
9844 rtx lowpart;
9845
9846 /* ??? We shouldn't ever hit this, but it may happen because
9847 arguments passed by invisible reference aren't dealt with
9848 above: incoming-rtl will have Pmode rather than the
9849 expected mode for the type. */
9850 if (const_offset)
9851 return;
9852
9853 lowpart = var_lowpart (mode, incoming);
9854 if (!lowpart)
9855 return;
9856
9857 val = cselib_lookup_from_insn (lowpart, mode, true,
9858 VOIDmode, get_insns ());
9859
9860 /* ??? Float-typed values in memory are not handled by
9861 cselib. */
9862 if (val)
9863 {
9864 preserve_value (val);
9865 set_variable_part (out, val->val_rtx, dv, const_offset,
9866 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9867 dv = dv_from_value (val->val_rtx);
9868 }
9869
9870 if (MEM_P (incoming))
9871 {
9872 val = cselib_lookup_from_insn (XEXP (incoming, 0), mode, true,
9873 VOIDmode, get_insns ());
9874 if (val)
9875 {
9876 preserve_value (val);
9877 incoming = replace_equiv_address_nv (incoming, val->val_rtx);
9878 }
9879 }
9880 }
9881
9882 if (REG_P (incoming))
9883 {
9884 incoming = var_lowpart (mode, incoming);
9885 gcc_assert (REGNO (incoming) < FIRST_PSEUDO_REGISTER);
9886 attrs_list_insert (&out->regs[REGNO (incoming)], dv, const_offset,
9887 incoming);
9888 set_variable_part (out, incoming, dv, const_offset,
9889 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9890 if (dv_is_value_p (dv))
9891 {
9892 record_entry_value (CSELIB_VAL_PTR (dv_as_value (dv)), incoming);
9893 if (TREE_CODE (TREE_TYPE (parm)) == REFERENCE_TYPE
9894 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_TYPE (parm))))
9895 {
9896 machine_mode indmode
9897 = TYPE_MODE (TREE_TYPE (TREE_TYPE (parm)));
9898 rtx mem = gen_rtx_MEM (indmode, incoming);
9899 cselib_val *val = cselib_lookup_from_insn (mem, indmode, true,
9900 VOIDmode,
9901 get_insns ());
9902 if (val)
9903 {
9904 preserve_value (val);
9905 record_entry_value (val, mem);
9906 set_variable_part (out, mem, dv_from_value (val->val_rtx), 0,
9907 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9908 }
9909 }
9910 }
9911 }
9912 else if (GET_CODE (incoming) == PARALLEL && !dv_onepart_p (dv))
9913 {
9914 int i;
9915
9916 /* The following code relies on vt_get_decl_and_offset returning true for
9917 incoming, which might not be always the case. */
9918 if (!incoming_ok)
9919 return;
9920 for (i = 0; i < XVECLEN (incoming, 0); i++)
9921 {
9922 rtx reg = XEXP (XVECEXP (incoming, 0, i), 0);
9923 /* vt_get_decl_and_offset has already checked that the offset
9924 is a valid variable part. */
9925 const_offset = get_tracked_reg_offset (reg);
9926 gcc_assert (REGNO (reg) < FIRST_PSEUDO_REGISTER);
9927 attrs_list_insert (&out->regs[REGNO (reg)], dv, const_offset, reg);
9928 set_variable_part (out, reg, dv, const_offset,
9929 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9930 }
9931 }
9932 else if (MEM_P (incoming))
9933 {
9934 incoming = var_lowpart (mode, incoming);
9935 set_variable_part (out, incoming, dv, const_offset,
9936 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9937 }
9938 }
9939
9940 /* Insert function parameters to IN and OUT sets of ENTRY_BLOCK. */
9941
9942 static void
9943 vt_add_function_parameters (void)
9944 {
9945 tree parm;
9946
9947 for (parm = DECL_ARGUMENTS (current_function_decl);
9948 parm; parm = DECL_CHAIN (parm))
9949 vt_add_function_parameter (parm);
9950
9951 if (DECL_HAS_VALUE_EXPR_P (DECL_RESULT (current_function_decl)))
9952 {
9953 tree vexpr = DECL_VALUE_EXPR (DECL_RESULT (current_function_decl));
9954
9955 if (TREE_CODE (vexpr) == INDIRECT_REF)
9956 vexpr = TREE_OPERAND (vexpr, 0);
9957
9958 if (TREE_CODE (vexpr) == PARM_DECL
9959 && DECL_ARTIFICIAL (vexpr)
9960 && !DECL_IGNORED_P (vexpr)
9961 && DECL_NAMELESS (vexpr))
9962 vt_add_function_parameter (vexpr);
9963 }
9964 }
9965
9966 /* Initialize cfa_base_rtx, create a preserved VALUE for it and
9967 ensure it isn't flushed during cselib_reset_table.
9968 Can be called only if frame_pointer_rtx resp. arg_pointer_rtx
9969 has been eliminated. */
9970
9971 static void
9972 vt_init_cfa_base (void)
9973 {
9974 cselib_val *val;
9975
9976 #ifdef FRAME_POINTER_CFA_OFFSET
9977 cfa_base_rtx = frame_pointer_rtx;
9978 cfa_base_offset = -FRAME_POINTER_CFA_OFFSET (current_function_decl);
9979 #else
9980 cfa_base_rtx = arg_pointer_rtx;
9981 cfa_base_offset = -ARG_POINTER_CFA_OFFSET (current_function_decl);
9982 #endif
9983 if (cfa_base_rtx == hard_frame_pointer_rtx
9984 || !fixed_regs[REGNO (cfa_base_rtx)])
9985 {
9986 cfa_base_rtx = NULL_RTX;
9987 return;
9988 }
9989 if (!MAY_HAVE_DEBUG_BIND_INSNS)
9990 return;
9991
9992 /* Tell alias analysis that cfa_base_rtx should share
9993 find_base_term value with stack pointer or hard frame pointer. */
9994 if (!frame_pointer_needed)
9995 vt_equate_reg_base_value (cfa_base_rtx, stack_pointer_rtx);
9996 else if (!crtl->stack_realign_tried)
9997 vt_equate_reg_base_value (cfa_base_rtx, hard_frame_pointer_rtx);
9998
9999 val = cselib_lookup_from_insn (cfa_base_rtx, GET_MODE (cfa_base_rtx), 1,
10000 VOIDmode, get_insns ());
10001 preserve_value (val);
10002 cselib_preserve_cfa_base_value (val, REGNO (cfa_base_rtx));
10003 }
10004
10005 /* Reemit INSN, a MARKER_DEBUG_INSN, as a note. */
10006
10007 static rtx_insn *
10008 reemit_marker_as_note (rtx_insn *insn)
10009 {
10010 gcc_checking_assert (DEBUG_MARKER_INSN_P (insn));
10011
10012 enum insn_note kind = INSN_DEBUG_MARKER_KIND (insn);
10013
10014 switch (kind)
10015 {
10016 case NOTE_INSN_BEGIN_STMT:
10017 case NOTE_INSN_INLINE_ENTRY:
10018 {
10019 rtx_insn *note = NULL;
10020 if (cfun->debug_nonbind_markers)
10021 {
10022 note = emit_note_before (kind, insn);
10023 NOTE_MARKER_LOCATION (note) = INSN_LOCATION (insn);
10024 }
10025 delete_insn (insn);
10026 return note;
10027 }
10028
10029 default:
10030 gcc_unreachable ();
10031 }
10032 }
10033
10034 /* Allocate and initialize the data structures for variable tracking
10035 and parse the RTL to get the micro operations. */
10036
10037 static bool
10038 vt_initialize (void)
10039 {
10040 basic_block bb;
10041 poly_int64 fp_cfa_offset = -1;
10042
10043 alloc_aux_for_blocks (sizeof (variable_tracking_info));
10044
10045 empty_shared_hash = shared_hash_pool.allocate ();
10046 empty_shared_hash->refcount = 1;
10047 empty_shared_hash->htab = new variable_table_type (1);
10048 changed_variables = new variable_table_type (10);
10049
10050 /* Init the IN and OUT sets. */
10051 FOR_ALL_BB_FN (bb, cfun)
10052 {
10053 VTI (bb)->visited = false;
10054 VTI (bb)->flooded = false;
10055 dataflow_set_init (&VTI (bb)->in);
10056 dataflow_set_init (&VTI (bb)->out);
10057 VTI (bb)->permp = NULL;
10058 }
10059
10060 if (MAY_HAVE_DEBUG_BIND_INSNS)
10061 {
10062 cselib_init (CSELIB_RECORD_MEMORY | CSELIB_PRESERVE_CONSTANTS);
10063 scratch_regs = BITMAP_ALLOC (NULL);
10064 preserved_values.create (256);
10065 global_get_addr_cache = new hash_map<rtx, rtx>;
10066 }
10067 else
10068 {
10069 scratch_regs = NULL;
10070 global_get_addr_cache = NULL;
10071 }
10072
10073 if (MAY_HAVE_DEBUG_BIND_INSNS)
10074 {
10075 rtx reg, expr;
10076 int ofst;
10077 cselib_val *val;
10078
10079 #ifdef FRAME_POINTER_CFA_OFFSET
10080 reg = frame_pointer_rtx;
10081 ofst = FRAME_POINTER_CFA_OFFSET (current_function_decl);
10082 #else
10083 reg = arg_pointer_rtx;
10084 ofst = ARG_POINTER_CFA_OFFSET (current_function_decl);
10085 #endif
10086
10087 ofst -= INCOMING_FRAME_SP_OFFSET;
10088
10089 val = cselib_lookup_from_insn (reg, GET_MODE (reg), 1,
10090 VOIDmode, get_insns ());
10091 preserve_value (val);
10092 if (reg != hard_frame_pointer_rtx && fixed_regs[REGNO (reg)])
10093 cselib_preserve_cfa_base_value (val, REGNO (reg));
10094 if (ofst)
10095 {
10096 cselib_val *valsp
10097 = cselib_lookup_from_insn (stack_pointer_rtx,
10098 GET_MODE (stack_pointer_rtx), 1,
10099 VOIDmode, get_insns ());
10100 preserve_value (valsp);
10101 expr = plus_constant (GET_MODE (reg), reg, ofst);
10102 /* This cselib_add_permanent_equiv call needs to be done before
10103 the other cselib_add_permanent_equiv a few lines later,
10104 because after that one is done, cselib_lookup on this expr
10105 will due to the cselib SP_DERIVED_VALUE_P optimizations
10106 return valsp and so no permanent equivalency will be added. */
10107 cselib_add_permanent_equiv (valsp, expr, get_insns ());
10108 }
10109
10110 expr = plus_constant (GET_MODE (stack_pointer_rtx),
10111 stack_pointer_rtx, -ofst);
10112 cselib_add_permanent_equiv (val, expr, get_insns ());
10113 }
10114
10115 /* In order to factor out the adjustments made to the stack pointer or to
10116 the hard frame pointer and thus be able to use DW_OP_fbreg operations
10117 instead of individual location lists, we're going to rewrite MEMs based
10118 on them into MEMs based on the CFA by de-eliminating stack_pointer_rtx
10119 or hard_frame_pointer_rtx to the virtual CFA pointer frame_pointer_rtx
10120 resp. arg_pointer_rtx. We can do this either when there is no frame
10121 pointer in the function and stack adjustments are consistent for all
10122 basic blocks or when there is a frame pointer and no stack realignment.
10123 But we first have to check that frame_pointer_rtx resp. arg_pointer_rtx
10124 has been eliminated. */
10125 if (!frame_pointer_needed)
10126 {
10127 rtx reg, elim;
10128
10129 if (!vt_stack_adjustments ())
10130 return false;
10131
10132 #ifdef FRAME_POINTER_CFA_OFFSET
10133 reg = frame_pointer_rtx;
10134 #else
10135 reg = arg_pointer_rtx;
10136 #endif
10137 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10138 if (elim != reg)
10139 {
10140 if (GET_CODE (elim) == PLUS)
10141 elim = XEXP (elim, 0);
10142 if (elim == stack_pointer_rtx)
10143 vt_init_cfa_base ();
10144 }
10145 }
10146 else if (!crtl->stack_realign_tried)
10147 {
10148 rtx reg, elim;
10149
10150 #ifdef FRAME_POINTER_CFA_OFFSET
10151 reg = frame_pointer_rtx;
10152 fp_cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
10153 #else
10154 reg = arg_pointer_rtx;
10155 fp_cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
10156 #endif
10157 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10158 if (elim != reg)
10159 {
10160 if (GET_CODE (elim) == PLUS)
10161 {
10162 fp_cfa_offset -= rtx_to_poly_int64 (XEXP (elim, 1));
10163 elim = XEXP (elim, 0);
10164 }
10165 if (elim != hard_frame_pointer_rtx)
10166 fp_cfa_offset = -1;
10167 }
10168 else
10169 fp_cfa_offset = -1;
10170 }
10171
10172 /* If the stack is realigned and a DRAP register is used, we're going to
10173 rewrite MEMs based on it representing incoming locations of parameters
10174 passed on the stack into MEMs based on the argument pointer. Although
10175 we aren't going to rewrite other MEMs, we still need to initialize the
10176 virtual CFA pointer in order to ensure that the argument pointer will
10177 be seen as a constant throughout the function.
10178
10179 ??? This doesn't work if FRAME_POINTER_CFA_OFFSET is defined. */
10180 else if (stack_realign_drap)
10181 {
10182 rtx reg, elim;
10183
10184 #ifdef FRAME_POINTER_CFA_OFFSET
10185 reg = frame_pointer_rtx;
10186 #else
10187 reg = arg_pointer_rtx;
10188 #endif
10189 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10190 if (elim != reg)
10191 {
10192 if (GET_CODE (elim) == PLUS)
10193 elim = XEXP (elim, 0);
10194 if (elim == hard_frame_pointer_rtx)
10195 vt_init_cfa_base ();
10196 }
10197 }
10198
10199 hard_frame_pointer_adjustment = -1;
10200
10201 vt_add_function_parameters ();
10202
10203 bool record_sp_value = false;
10204 FOR_EACH_BB_FN (bb, cfun)
10205 {
10206 rtx_insn *insn;
10207 basic_block first_bb, last_bb;
10208
10209 if (MAY_HAVE_DEBUG_BIND_INSNS)
10210 {
10211 cselib_record_sets_hook = add_with_sets;
10212 if (dump_file && (dump_flags & TDF_DETAILS))
10213 fprintf (dump_file, "first value: %i\n",
10214 cselib_get_next_uid ());
10215 }
10216
10217 if (MAY_HAVE_DEBUG_BIND_INSNS
10218 && cfa_base_rtx
10219 && !frame_pointer_needed
10220 && record_sp_value)
10221 cselib_record_sp_cfa_base_equiv (-cfa_base_offset
10222 - VTI (bb)->in.stack_adjust,
10223 BB_HEAD (bb));
10224 record_sp_value = true;
10225
10226 first_bb = bb;
10227 for (;;)
10228 {
10229 edge e;
10230 if (bb->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
10231 || ! single_pred_p (bb->next_bb))
10232 break;
10233 e = find_edge (bb, bb->next_bb);
10234 if (! e || (e->flags & EDGE_FALLTHRU) == 0)
10235 break;
10236 bb = bb->next_bb;
10237 }
10238 last_bb = bb;
10239
10240 /* Add the micro-operations to the vector. */
10241 FOR_BB_BETWEEN (bb, first_bb, last_bb->next_bb, next_bb)
10242 {
10243 HOST_WIDE_INT offset = VTI (bb)->out.stack_adjust;
10244 VTI (bb)->out.stack_adjust = VTI (bb)->in.stack_adjust;
10245
10246 rtx_insn *next;
10247 FOR_BB_INSNS_SAFE (bb, insn, next)
10248 {
10249 if (INSN_P (insn))
10250 {
10251 HOST_WIDE_INT pre = 0, post = 0;
10252
10253 if (!frame_pointer_needed)
10254 {
10255 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
10256 if (pre)
10257 {
10258 micro_operation mo;
10259 mo.type = MO_ADJUST;
10260 mo.u.adjust = pre;
10261 mo.insn = insn;
10262 if (dump_file && (dump_flags & TDF_DETAILS))
10263 log_op_type (PATTERN (insn), bb, insn,
10264 MO_ADJUST, dump_file);
10265 VTI (bb)->mos.safe_push (mo);
10266 }
10267 }
10268
10269 cselib_hook_called = false;
10270 adjust_insn (bb, insn);
10271
10272 if (pre)
10273 VTI (bb)->out.stack_adjust += pre;
10274
10275 if (DEBUG_MARKER_INSN_P (insn))
10276 {
10277 reemit_marker_as_note (insn);
10278 continue;
10279 }
10280
10281 if (MAY_HAVE_DEBUG_BIND_INSNS)
10282 {
10283 if (CALL_P (insn))
10284 prepare_call_arguments (bb, insn);
10285 cselib_process_insn (insn);
10286 if (dump_file && (dump_flags & TDF_DETAILS))
10287 {
10288 if (dump_flags & TDF_SLIM)
10289 dump_insn_slim (dump_file, insn);
10290 else
10291 print_rtl_single (dump_file, insn);
10292 dump_cselib_table (dump_file);
10293 }
10294 }
10295 if (!cselib_hook_called)
10296 add_with_sets (insn, 0, 0);
10297 cancel_changes (0);
10298
10299 if (post)
10300 {
10301 micro_operation mo;
10302 mo.type = MO_ADJUST;
10303 mo.u.adjust = post;
10304 mo.insn = insn;
10305 if (dump_file && (dump_flags & TDF_DETAILS))
10306 log_op_type (PATTERN (insn), bb, insn,
10307 MO_ADJUST, dump_file);
10308 VTI (bb)->mos.safe_push (mo);
10309 VTI (bb)->out.stack_adjust += post;
10310 }
10311
10312 if (maybe_ne (fp_cfa_offset, -1)
10313 && known_eq (hard_frame_pointer_adjustment, -1)
10314 && fp_setter_insn (insn))
10315 {
10316 vt_init_cfa_base ();
10317 hard_frame_pointer_adjustment = fp_cfa_offset;
10318 /* Disassociate sp from fp now. */
10319 if (MAY_HAVE_DEBUG_BIND_INSNS)
10320 {
10321 cselib_val *v;
10322 cselib_invalidate_rtx (stack_pointer_rtx);
10323 v = cselib_lookup (stack_pointer_rtx, Pmode, 1,
10324 VOIDmode);
10325 if (v && !cselib_preserved_value_p (v))
10326 {
10327 cselib_set_value_sp_based (v);
10328 preserve_value (v);
10329 }
10330 }
10331 }
10332 }
10333 }
10334 gcc_assert (offset == VTI (bb)->out.stack_adjust);
10335 }
10336
10337 bb = last_bb;
10338
10339 if (MAY_HAVE_DEBUG_BIND_INSNS)
10340 {
10341 cselib_preserve_only_values ();
10342 cselib_reset_table (cselib_get_next_uid ());
10343 cselib_record_sets_hook = NULL;
10344 }
10345 }
10346
10347 hard_frame_pointer_adjustment = -1;
10348 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->flooded = true;
10349 cfa_base_rtx = NULL_RTX;
10350 return true;
10351 }
10352
10353 /* This is *not* reset after each function. It gives each
10354 NOTE_INSN_DELETED_DEBUG_LABEL in the entire compilation
10355 a unique label number. */
10356
10357 static int debug_label_num = 1;
10358
10359 /* Remove from the insn stream a single debug insn used for
10360 variable tracking at assignments. */
10361
10362 static inline void
10363 delete_vta_debug_insn (rtx_insn *insn)
10364 {
10365 if (DEBUG_MARKER_INSN_P (insn))
10366 {
10367 reemit_marker_as_note (insn);
10368 return;
10369 }
10370
10371 tree decl = INSN_VAR_LOCATION_DECL (insn);
10372 if (TREE_CODE (decl) == LABEL_DECL
10373 && DECL_NAME (decl)
10374 && !DECL_RTL_SET_P (decl))
10375 {
10376 PUT_CODE (insn, NOTE);
10377 NOTE_KIND (insn) = NOTE_INSN_DELETED_DEBUG_LABEL;
10378 NOTE_DELETED_LABEL_NAME (insn)
10379 = IDENTIFIER_POINTER (DECL_NAME (decl));
10380 SET_DECL_RTL (decl, insn);
10381 CODE_LABEL_NUMBER (insn) = debug_label_num++;
10382 }
10383 else
10384 delete_insn (insn);
10385 }
10386
10387 /* Remove from the insn stream all debug insns used for variable
10388 tracking at assignments. USE_CFG should be false if the cfg is no
10389 longer usable. */
10390
10391 void
10392 delete_vta_debug_insns (bool use_cfg)
10393 {
10394 basic_block bb;
10395 rtx_insn *insn, *next;
10396
10397 if (!MAY_HAVE_DEBUG_INSNS)
10398 return;
10399
10400 if (use_cfg)
10401 FOR_EACH_BB_FN (bb, cfun)
10402 {
10403 FOR_BB_INSNS_SAFE (bb, insn, next)
10404 if (DEBUG_INSN_P (insn))
10405 delete_vta_debug_insn (insn);
10406 }
10407 else
10408 for (insn = get_insns (); insn; insn = next)
10409 {
10410 next = NEXT_INSN (insn);
10411 if (DEBUG_INSN_P (insn))
10412 delete_vta_debug_insn (insn);
10413 }
10414 }
10415
10416 /* Run a fast, BB-local only version of var tracking, to take care of
10417 information that we don't do global analysis on, such that not all
10418 information is lost. If SKIPPED holds, we're skipping the global
10419 pass entirely, so we should try to use information it would have
10420 handled as well.. */
10421
10422 static void
10423 vt_debug_insns_local (bool skipped ATTRIBUTE_UNUSED)
10424 {
10425 /* ??? Just skip it all for now. */
10426 delete_vta_debug_insns (true);
10427 }
10428
10429 /* Free the data structures needed for variable tracking. */
10430
10431 static void
10432 vt_finalize (void)
10433 {
10434 basic_block bb;
10435
10436 FOR_EACH_BB_FN (bb, cfun)
10437 {
10438 VTI (bb)->mos.release ();
10439 }
10440
10441 FOR_ALL_BB_FN (bb, cfun)
10442 {
10443 dataflow_set_destroy (&VTI (bb)->in);
10444 dataflow_set_destroy (&VTI (bb)->out);
10445 if (VTI (bb)->permp)
10446 {
10447 dataflow_set_destroy (VTI (bb)->permp);
10448 XDELETE (VTI (bb)->permp);
10449 }
10450 }
10451 free_aux_for_blocks ();
10452 delete empty_shared_hash->htab;
10453 empty_shared_hash->htab = NULL;
10454 delete changed_variables;
10455 changed_variables = NULL;
10456 attrs_pool.release ();
10457 var_pool.release ();
10458 location_chain_pool.release ();
10459 shared_hash_pool.release ();
10460
10461 if (MAY_HAVE_DEBUG_BIND_INSNS)
10462 {
10463 if (global_get_addr_cache)
10464 delete global_get_addr_cache;
10465 global_get_addr_cache = NULL;
10466 loc_exp_dep_pool.release ();
10467 valvar_pool.release ();
10468 preserved_values.release ();
10469 cselib_finish ();
10470 BITMAP_FREE (scratch_regs);
10471 scratch_regs = NULL;
10472 }
10473
10474 #ifdef HAVE_window_save
10475 vec_free (windowed_parm_regs);
10476 #endif
10477
10478 if (vui_vec)
10479 XDELETEVEC (vui_vec);
10480 vui_vec = NULL;
10481 vui_allocated = 0;
10482 }
10483
10484 /* The entry point to variable tracking pass. */
10485
10486 static inline unsigned int
10487 variable_tracking_main_1 (void)
10488 {
10489 bool success;
10490
10491 /* We won't be called as a separate pass if flag_var_tracking is not
10492 set, but final may call us to turn debug markers into notes. */
10493 if ((!flag_var_tracking && MAY_HAVE_DEBUG_INSNS)
10494 || flag_var_tracking_assignments < 0
10495 /* Var-tracking right now assumes the IR doesn't contain
10496 any pseudos at this point. */
10497 || targetm.no_register_allocation)
10498 {
10499 delete_vta_debug_insns (true);
10500 return 0;
10501 }
10502
10503 if (!flag_var_tracking)
10504 return 0;
10505
10506 if (n_basic_blocks_for_fn (cfun) > 500
10507 && n_edges_for_fn (cfun) / n_basic_blocks_for_fn (cfun) >= 20)
10508 {
10509 vt_debug_insns_local (true);
10510 return 0;
10511 }
10512
10513 if (!vt_initialize ())
10514 {
10515 vt_finalize ();
10516 vt_debug_insns_local (true);
10517 return 0;
10518 }
10519
10520 success = vt_find_locations ();
10521
10522 if (!success && flag_var_tracking_assignments > 0)
10523 {
10524 vt_finalize ();
10525
10526 delete_vta_debug_insns (true);
10527
10528 /* This is later restored by our caller. */
10529 flag_var_tracking_assignments = 0;
10530
10531 success = vt_initialize ();
10532 gcc_assert (success);
10533
10534 success = vt_find_locations ();
10535 }
10536
10537 if (!success)
10538 {
10539 vt_finalize ();
10540 vt_debug_insns_local (false);
10541 return 0;
10542 }
10543
10544 if (dump_file && (dump_flags & TDF_DETAILS))
10545 {
10546 dump_dataflow_sets ();
10547 dump_reg_info (dump_file);
10548 dump_flow_info (dump_file, dump_flags);
10549 }
10550
10551 timevar_push (TV_VAR_TRACKING_EMIT);
10552 vt_emit_notes ();
10553 timevar_pop (TV_VAR_TRACKING_EMIT);
10554
10555 vt_finalize ();
10556 vt_debug_insns_local (false);
10557 return 0;
10558 }
10559
10560 unsigned int
10561 variable_tracking_main (void)
10562 {
10563 unsigned int ret;
10564 int save = flag_var_tracking_assignments;
10565
10566 ret = variable_tracking_main_1 ();
10567
10568 flag_var_tracking_assignments = save;
10569
10570 return ret;
10571 }
10572 \f
10573 namespace {
10574
10575 const pass_data pass_data_variable_tracking =
10576 {
10577 RTL_PASS, /* type */
10578 "vartrack", /* name */
10579 OPTGROUP_NONE, /* optinfo_flags */
10580 TV_VAR_TRACKING, /* tv_id */
10581 0, /* properties_required */
10582 0, /* properties_provided */
10583 0, /* properties_destroyed */
10584 0, /* todo_flags_start */
10585 0, /* todo_flags_finish */
10586 };
10587
10588 class pass_variable_tracking : public rtl_opt_pass
10589 {
10590 public:
10591 pass_variable_tracking (gcc::context *ctxt)
10592 : rtl_opt_pass (pass_data_variable_tracking, ctxt)
10593 {}
10594
10595 /* opt_pass methods: */
10596 virtual bool gate (function *)
10597 {
10598 return (flag_var_tracking && !targetm.delay_vartrack);
10599 }
10600
10601 virtual unsigned int execute (function *)
10602 {
10603 return variable_tracking_main ();
10604 }
10605
10606 }; // class pass_variable_tracking
10607
10608 } // anon namespace
10609
10610 rtl_opt_pass *
10611 make_pass_variable_tracking (gcc::context *ctxt)
10612 {
10613 return new pass_variable_tracking (ctxt);
10614 }