]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/var-tracking.c
Share memory blocks between pool allocators
[thirdparty/gcc.git] / gcc / var-tracking.c
1 /* Variable tracking routines for the GNU compiler.
2 Copyright (C) 2002-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file contains the variable tracking pass. It computes where
21 variables are located (which registers or where in memory) at each position
22 in instruction stream and emits notes describing the locations.
23 Debug information (DWARF2 location lists) is finally generated from
24 these notes.
25 With this debug information, it is possible to show variables
26 even when debugging optimized code.
27
28 How does the variable tracking pass work?
29
30 First, it scans RTL code for uses, stores and clobbers (register/memory
31 references in instructions), for call insns and for stack adjustments
32 separately for each basic block and saves them to an array of micro
33 operations.
34 The micro operations of one instruction are ordered so that
35 pre-modifying stack adjustment < use < use with no var < call insn <
36 < clobber < set < post-modifying stack adjustment
37
38 Then, a forward dataflow analysis is performed to find out how locations
39 of variables change through code and to propagate the variable locations
40 along control flow graph.
41 The IN set for basic block BB is computed as a union of OUT sets of BB's
42 predecessors, the OUT set for BB is copied from the IN set for BB and
43 is changed according to micro operations in BB.
44
45 The IN and OUT sets for basic blocks consist of a current stack adjustment
46 (used for adjusting offset of variables addressed using stack pointer),
47 the table of structures describing the locations of parts of a variable
48 and for each physical register a linked list for each physical register.
49 The linked list is a list of variable parts stored in the register,
50 i.e. it is a list of triplets (reg, decl, offset) where decl is
51 REG_EXPR (reg) and offset is REG_OFFSET (reg). The linked list is used for
52 effective deleting appropriate variable parts when we set or clobber the
53 register.
54
55 There may be more than one variable part in a register. The linked lists
56 should be pretty short so it is a good data structure here.
57 For example in the following code, register allocator may assign same
58 register to variables A and B, and both of them are stored in the same
59 register in CODE:
60
61 if (cond)
62 set A;
63 else
64 set B;
65 CODE;
66 if (cond)
67 use A;
68 else
69 use B;
70
71 Finally, the NOTE_INSN_VAR_LOCATION notes describing the variable locations
72 are emitted to appropriate positions in RTL code. Each such a note describes
73 the location of one variable at the point in instruction stream where the
74 note is. There is no need to emit a note for each variable before each
75 instruction, we only emit these notes where the location of variable changes
76 (this means that we also emit notes for changes between the OUT set of the
77 previous block and the IN set of the current block).
78
79 The notes consist of two parts:
80 1. the declaration (from REG_EXPR or MEM_EXPR)
81 2. the location of a variable - it is either a simple register/memory
82 reference (for simple variables, for example int),
83 or a parallel of register/memory references (for a large variables
84 which consist of several parts, for example long long).
85
86 */
87
88 #include "config.h"
89 #include "system.h"
90 #include "coretypes.h"
91 #include "backend.h"
92 #include "cfghooks.h"
93 #include "rtl.h"
94 #include "alias.h"
95 #include "tree.h"
96 #include "varasm.h"
97 #include "stor-layout.h"
98 #include "cfgrtl.h"
99 #include "cfganal.h"
100 #include "tm_p.h"
101 #include "flags.h"
102 #include "insn-config.h"
103 #include "reload.h"
104 #include "alloc-pool.h"
105 #include "regs.h"
106 #include "expmed.h"
107 #include "dojump.h"
108 #include "explow.h"
109 #include "calls.h"
110 #include "emit-rtl.h"
111 #include "stmt.h"
112 #include "expr.h"
113 #include "tree-pass.h"
114 #include "tree-dfa.h"
115 #include "tree-ssa.h"
116 #include "cselib.h"
117 #include "target.h"
118 #include "params.h"
119 #include "diagnostic.h"
120 #include "tree-pretty-print.h"
121 #include "recog.h"
122 #include "rtl-iter.h"
123 #include "fibonacci_heap.h"
124
125 typedef fibonacci_heap <long, basic_block_def> bb_heap_t;
126 typedef fibonacci_node <long, basic_block_def> bb_heap_node_t;
127
128 /* var-tracking.c assumes that tree code with the same value as VALUE rtx code
129 has no chance to appear in REG_EXPR/MEM_EXPRs and isn't a decl.
130 Currently the value is the same as IDENTIFIER_NODE, which has such
131 a property. If this compile time assertion ever fails, make sure that
132 the new tree code that equals (int) VALUE has the same property. */
133 extern char check_value_val[(int) VALUE == (int) IDENTIFIER_NODE ? 1 : -1];
134
135 /* Type of micro operation. */
136 enum micro_operation_type
137 {
138 MO_USE, /* Use location (REG or MEM). */
139 MO_USE_NO_VAR,/* Use location which is not associated with a variable
140 or the variable is not trackable. */
141 MO_VAL_USE, /* Use location which is associated with a value. */
142 MO_VAL_LOC, /* Use location which appears in a debug insn. */
143 MO_VAL_SET, /* Set location associated with a value. */
144 MO_SET, /* Set location. */
145 MO_COPY, /* Copy the same portion of a variable from one
146 location to another. */
147 MO_CLOBBER, /* Clobber location. */
148 MO_CALL, /* Call insn. */
149 MO_ADJUST /* Adjust stack pointer. */
150
151 };
152
153 static const char * const ATTRIBUTE_UNUSED
154 micro_operation_type_name[] = {
155 "MO_USE",
156 "MO_USE_NO_VAR",
157 "MO_VAL_USE",
158 "MO_VAL_LOC",
159 "MO_VAL_SET",
160 "MO_SET",
161 "MO_COPY",
162 "MO_CLOBBER",
163 "MO_CALL",
164 "MO_ADJUST"
165 };
166
167 /* Where shall the note be emitted? BEFORE or AFTER the instruction.
168 Notes emitted as AFTER_CALL are to take effect during the call,
169 rather than after the call. */
170 enum emit_note_where
171 {
172 EMIT_NOTE_BEFORE_INSN,
173 EMIT_NOTE_AFTER_INSN,
174 EMIT_NOTE_AFTER_CALL_INSN
175 };
176
177 /* Structure holding information about micro operation. */
178 struct micro_operation
179 {
180 /* Type of micro operation. */
181 enum micro_operation_type type;
182
183 /* The instruction which the micro operation is in, for MO_USE,
184 MO_USE_NO_VAR, MO_CALL and MO_ADJUST, or the subsequent
185 instruction or note in the original flow (before any var-tracking
186 notes are inserted, to simplify emission of notes), for MO_SET
187 and MO_CLOBBER. */
188 rtx_insn *insn;
189
190 union {
191 /* Location. For MO_SET and MO_COPY, this is the SET that
192 performs the assignment, if known, otherwise it is the target
193 of the assignment. For MO_VAL_USE and MO_VAL_SET, it is a
194 CONCAT of the VALUE and the LOC associated with it. For
195 MO_VAL_LOC, it is a CONCAT of the VALUE and the VAR_LOCATION
196 associated with it. */
197 rtx loc;
198
199 /* Stack adjustment. */
200 HOST_WIDE_INT adjust;
201 } u;
202 };
203
204
205 /* A declaration of a variable, or an RTL value being handled like a
206 declaration. */
207 typedef void *decl_or_value;
208
209 /* Return true if a decl_or_value DV is a DECL or NULL. */
210 static inline bool
211 dv_is_decl_p (decl_or_value dv)
212 {
213 return !dv || (int) TREE_CODE ((tree) dv) != (int) VALUE;
214 }
215
216 /* Return true if a decl_or_value is a VALUE rtl. */
217 static inline bool
218 dv_is_value_p (decl_or_value dv)
219 {
220 return dv && !dv_is_decl_p (dv);
221 }
222
223 /* Return the decl in the decl_or_value. */
224 static inline tree
225 dv_as_decl (decl_or_value dv)
226 {
227 gcc_checking_assert (dv_is_decl_p (dv));
228 return (tree) dv;
229 }
230
231 /* Return the value in the decl_or_value. */
232 static inline rtx
233 dv_as_value (decl_or_value dv)
234 {
235 gcc_checking_assert (dv_is_value_p (dv));
236 return (rtx)dv;
237 }
238
239 /* Return the opaque pointer in the decl_or_value. */
240 static inline void *
241 dv_as_opaque (decl_or_value dv)
242 {
243 return dv;
244 }
245
246
247 /* Description of location of a part of a variable. The content of a physical
248 register is described by a chain of these structures.
249 The chains are pretty short (usually 1 or 2 elements) and thus
250 chain is the best data structure. */
251 typedef struct attrs_def
252 {
253 /* Pointer to next member of the list. */
254 struct attrs_def *next;
255
256 /* The rtx of register. */
257 rtx loc;
258
259 /* The declaration corresponding to LOC. */
260 decl_or_value dv;
261
262 /* Offset from start of DECL. */
263 HOST_WIDE_INT offset;
264 } *attrs;
265
266 /* Structure for chaining the locations. */
267 struct location_chain
268 {
269 /* Next element in the chain. */
270 location_chain *next;
271
272 /* The location (REG, MEM or VALUE). */
273 rtx loc;
274
275 /* The "value" stored in this location. */
276 rtx set_src;
277
278 /* Initialized? */
279 enum var_init_status init;
280 };
281
282 /* A vector of loc_exp_dep holds the active dependencies of a one-part
283 DV on VALUEs, i.e., the VALUEs expanded so as to form the current
284 location of DV. Each entry is also part of VALUE' s linked-list of
285 backlinks back to DV. */
286 struct loc_exp_dep
287 {
288 /* The dependent DV. */
289 decl_or_value dv;
290 /* The dependency VALUE or DECL_DEBUG. */
291 rtx value;
292 /* The next entry in VALUE's backlinks list. */
293 struct loc_exp_dep *next;
294 /* A pointer to the pointer to this entry (head or prev's next) in
295 the doubly-linked list. */
296 struct loc_exp_dep **pprev;
297 };
298
299
300 /* This data structure holds information about the depth of a variable
301 expansion. */
302 struct expand_depth
303 {
304 /* This measures the complexity of the expanded expression. It
305 grows by one for each level of expansion that adds more than one
306 operand. */
307 int complexity;
308 /* This counts the number of ENTRY_VALUE expressions in an
309 expansion. We want to minimize their use. */
310 int entryvals;
311 };
312
313 /* This data structure is allocated for one-part variables at the time
314 of emitting notes. */
315 struct onepart_aux
316 {
317 /* Doubly-linked list of dependent DVs. These are DVs whose cur_loc
318 computation used the expansion of this variable, and that ought
319 to be notified should this variable change. If the DV's cur_loc
320 expanded to NULL, all components of the loc list are regarded as
321 active, so that any changes in them give us a chance to get a
322 location. Otherwise, only components of the loc that expanded to
323 non-NULL are regarded as active dependencies. */
324 loc_exp_dep *backlinks;
325 /* This holds the LOC that was expanded into cur_loc. We need only
326 mark a one-part variable as changed if the FROM loc is removed,
327 or if it has no known location and a loc is added, or if it gets
328 a change notification from any of its active dependencies. */
329 rtx from;
330 /* The depth of the cur_loc expression. */
331 expand_depth depth;
332 /* Dependencies actively used when expand FROM into cur_loc. */
333 vec<loc_exp_dep, va_heap, vl_embed> deps;
334 };
335
336 /* Structure describing one part of variable. */
337 struct variable_part
338 {
339 /* Chain of locations of the part. */
340 location_chain *loc_chain;
341
342 /* Location which was last emitted to location list. */
343 rtx cur_loc;
344
345 union variable_aux
346 {
347 /* The offset in the variable, if !var->onepart. */
348 HOST_WIDE_INT offset;
349
350 /* Pointer to auxiliary data, if var->onepart and emit_notes. */
351 struct onepart_aux *onepaux;
352 } aux;
353 };
354
355 /* Maximum number of location parts. */
356 #define MAX_VAR_PARTS 16
357
358 /* Enumeration type used to discriminate various types of one-part
359 variables. */
360 typedef enum onepart_enum
361 {
362 /* Not a one-part variable. */
363 NOT_ONEPART = 0,
364 /* A one-part DECL that is not a DEBUG_EXPR_DECL. */
365 ONEPART_VDECL = 1,
366 /* A DEBUG_EXPR_DECL. */
367 ONEPART_DEXPR = 2,
368 /* A VALUE. */
369 ONEPART_VALUE = 3
370 } onepart_enum_t;
371
372 /* Structure describing where the variable is located. */
373 typedef struct variable_def
374 {
375 /* The declaration of the variable, or an RTL value being handled
376 like a declaration. */
377 decl_or_value dv;
378
379 /* Reference count. */
380 int refcount;
381
382 /* Number of variable parts. */
383 char n_var_parts;
384
385 /* What type of DV this is, according to enum onepart_enum. */
386 ENUM_BITFIELD (onepart_enum) onepart : CHAR_BIT;
387
388 /* True if this variable_def struct is currently in the
389 changed_variables hash table. */
390 bool in_changed_variables;
391
392 /* The variable parts. */
393 variable_part var_part[1];
394 } *variable;
395 typedef const struct variable_def *const_variable;
396
397 /* Pointer to the BB's information specific to variable tracking pass. */
398 #define VTI(BB) ((variable_tracking_info) (BB)->aux)
399
400 /* Macro to access MEM_OFFSET as an HOST_WIDE_INT. Evaluates MEM twice. */
401 #define INT_MEM_OFFSET(mem) (MEM_OFFSET_KNOWN_P (mem) ? MEM_OFFSET (mem) : 0)
402
403 #if ENABLE_CHECKING && (GCC_VERSION >= 2007)
404
405 /* Access VAR's Ith part's offset, checking that it's not a one-part
406 variable. */
407 #define VAR_PART_OFFSET(var, i) __extension__ \
408 (*({ variable const __v = (var); \
409 gcc_checking_assert (!__v->onepart); \
410 &__v->var_part[(i)].aux.offset; }))
411
412 /* Access VAR's one-part auxiliary data, checking that it is a
413 one-part variable. */
414 #define VAR_LOC_1PAUX(var) __extension__ \
415 (*({ variable const __v = (var); \
416 gcc_checking_assert (__v->onepart); \
417 &__v->var_part[0].aux.onepaux; }))
418
419 #else
420 #define VAR_PART_OFFSET(var, i) ((var)->var_part[(i)].aux.offset)
421 #define VAR_LOC_1PAUX(var) ((var)->var_part[0].aux.onepaux)
422 #endif
423
424 /* These are accessor macros for the one-part auxiliary data. When
425 convenient for users, they're guarded by tests that the data was
426 allocated. */
427 #define VAR_LOC_DEP_LST(var) (VAR_LOC_1PAUX (var) \
428 ? VAR_LOC_1PAUX (var)->backlinks \
429 : NULL)
430 #define VAR_LOC_DEP_LSTP(var) (VAR_LOC_1PAUX (var) \
431 ? &VAR_LOC_1PAUX (var)->backlinks \
432 : NULL)
433 #define VAR_LOC_FROM(var) (VAR_LOC_1PAUX (var)->from)
434 #define VAR_LOC_DEPTH(var) (VAR_LOC_1PAUX (var)->depth)
435 #define VAR_LOC_DEP_VEC(var) (VAR_LOC_1PAUX (var) \
436 ? &VAR_LOC_1PAUX (var)->deps \
437 : NULL)
438
439
440
441 typedef unsigned int dvuid;
442
443 /* Return the uid of DV. */
444
445 static inline dvuid
446 dv_uid (decl_or_value dv)
447 {
448 if (dv_is_value_p (dv))
449 return CSELIB_VAL_PTR (dv_as_value (dv))->uid;
450 else
451 return DECL_UID (dv_as_decl (dv));
452 }
453
454 /* Compute the hash from the uid. */
455
456 static inline hashval_t
457 dv_uid2hash (dvuid uid)
458 {
459 return uid;
460 }
461
462 /* The hash function for a mask table in a shared_htab chain. */
463
464 static inline hashval_t
465 dv_htab_hash (decl_or_value dv)
466 {
467 return dv_uid2hash (dv_uid (dv));
468 }
469
470 static void variable_htab_free (void *);
471
472 /* Variable hashtable helpers. */
473
474 struct variable_hasher : pointer_hash <variable_def>
475 {
476 typedef void *compare_type;
477 static inline hashval_t hash (const variable_def *);
478 static inline bool equal (const variable_def *, const void *);
479 static inline void remove (variable_def *);
480 };
481
482 /* The hash function for variable_htab, computes the hash value
483 from the declaration of variable X. */
484
485 inline hashval_t
486 variable_hasher::hash (const variable_def *v)
487 {
488 return dv_htab_hash (v->dv);
489 }
490
491 /* Compare the declaration of variable X with declaration Y. */
492
493 inline bool
494 variable_hasher::equal (const variable_def *v, const void *y)
495 {
496 decl_or_value dv = CONST_CAST2 (decl_or_value, const void *, y);
497
498 return (dv_as_opaque (v->dv) == dv_as_opaque (dv));
499 }
500
501 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
502
503 inline void
504 variable_hasher::remove (variable_def *var)
505 {
506 variable_htab_free (var);
507 }
508
509 typedef hash_table<variable_hasher> variable_table_type;
510 typedef variable_table_type::iterator variable_iterator_type;
511
512 /* Structure for passing some other parameters to function
513 emit_note_insn_var_location. */
514 struct emit_note_data
515 {
516 /* The instruction which the note will be emitted before/after. */
517 rtx_insn *insn;
518
519 /* Where the note will be emitted (before/after insn)? */
520 enum emit_note_where where;
521
522 /* The variables and values active at this point. */
523 variable_table_type *vars;
524 };
525
526 /* Structure holding a refcounted hash table. If refcount > 1,
527 it must be first unshared before modified. */
528 struct shared_hash
529 {
530 /* Reference count. */
531 int refcount;
532
533 /* Actual hash table. */
534 variable_table_type *htab;
535 };
536
537 /* Structure holding the IN or OUT set for a basic block. */
538 struct dataflow_set
539 {
540 /* Adjustment of stack offset. */
541 HOST_WIDE_INT stack_adjust;
542
543 /* Attributes for registers (lists of attrs). */
544 attrs regs[FIRST_PSEUDO_REGISTER];
545
546 /* Variable locations. */
547 shared_hash *vars;
548
549 /* Vars that is being traversed. */
550 shared_hash *traversed_vars;
551 };
552
553 /* The structure (one for each basic block) containing the information
554 needed for variable tracking. */
555 typedef struct variable_tracking_info_def
556 {
557 /* The vector of micro operations. */
558 vec<micro_operation> mos;
559
560 /* The IN and OUT set for dataflow analysis. */
561 dataflow_set in;
562 dataflow_set out;
563
564 /* The permanent-in dataflow set for this block. This is used to
565 hold values for which we had to compute entry values. ??? This
566 should probably be dynamically allocated, to avoid using more
567 memory in non-debug builds. */
568 dataflow_set *permp;
569
570 /* Has the block been visited in DFS? */
571 bool visited;
572
573 /* Has the block been flooded in VTA? */
574 bool flooded;
575
576 } *variable_tracking_info;
577
578 /* Alloc pool for struct attrs_def. */
579 object_allocator<attrs_def> attrs_def_pool ("attrs_def pool");
580
581 /* Alloc pool for struct variable_def with MAX_VAR_PARTS entries. */
582
583 static pool_allocator var_pool
584 ("variable_def pool", sizeof (variable_def) +
585 (MAX_VAR_PARTS - 1) * sizeof (((variable)NULL)->var_part[0]));
586
587 /* Alloc pool for struct variable_def with a single var_part entry. */
588 static pool_allocator valvar_pool
589 ("small variable_def pool", sizeof (variable_def));
590
591 /* Alloc pool for struct location_chain. */
592 static object_allocator<location_chain> location_chain_pool
593 ("location_chain pool");
594
595 /* Alloc pool for struct shared_hash. */
596 static object_allocator<shared_hash> shared_hash_pool ("shared_hash pool");
597
598 /* Alloc pool for struct loc_exp_dep_s for NOT_ONEPART variables. */
599 object_allocator<loc_exp_dep> loc_exp_dep_pool ("loc_exp_dep pool");
600
601 /* Changed variables, notes will be emitted for them. */
602 static variable_table_type *changed_variables;
603
604 /* Shall notes be emitted? */
605 static bool emit_notes;
606
607 /* Values whose dynamic location lists have gone empty, but whose
608 cselib location lists are still usable. Use this to hold the
609 current location, the backlinks, etc, during emit_notes. */
610 static variable_table_type *dropped_values;
611
612 /* Empty shared hashtable. */
613 static shared_hash *empty_shared_hash;
614
615 /* Scratch register bitmap used by cselib_expand_value_rtx. */
616 static bitmap scratch_regs = NULL;
617
618 #ifdef HAVE_window_save
619 typedef struct GTY(()) parm_reg {
620 rtx outgoing;
621 rtx incoming;
622 } parm_reg_t;
623
624
625 /* Vector of windowed parameter registers, if any. */
626 static vec<parm_reg_t, va_gc> *windowed_parm_regs = NULL;
627 #endif
628
629 /* Variable used to tell whether cselib_process_insn called our hook. */
630 static bool cselib_hook_called;
631
632 /* Local function prototypes. */
633 static void stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
634 HOST_WIDE_INT *);
635 static void insn_stack_adjust_offset_pre_post (rtx_insn *, HOST_WIDE_INT *,
636 HOST_WIDE_INT *);
637 static bool vt_stack_adjustments (void);
638
639 static void init_attrs_list_set (attrs *);
640 static void attrs_list_clear (attrs *);
641 static attrs attrs_list_member (attrs, decl_or_value, HOST_WIDE_INT);
642 static void attrs_list_insert (attrs *, decl_or_value, HOST_WIDE_INT, rtx);
643 static void attrs_list_copy (attrs *, attrs);
644 static void attrs_list_union (attrs *, attrs);
645
646 static variable_def **unshare_variable (dataflow_set *set, variable_def **slot,
647 variable var, enum var_init_status);
648 static void vars_copy (variable_table_type *, variable_table_type *);
649 static tree var_debug_decl (tree);
650 static void var_reg_set (dataflow_set *, rtx, enum var_init_status, rtx);
651 static void var_reg_delete_and_set (dataflow_set *, rtx, bool,
652 enum var_init_status, rtx);
653 static void var_reg_delete (dataflow_set *, rtx, bool);
654 static void var_regno_delete (dataflow_set *, int);
655 static void var_mem_set (dataflow_set *, rtx, enum var_init_status, rtx);
656 static void var_mem_delete_and_set (dataflow_set *, rtx, bool,
657 enum var_init_status, rtx);
658 static void var_mem_delete (dataflow_set *, rtx, bool);
659
660 static void dataflow_set_init (dataflow_set *);
661 static void dataflow_set_clear (dataflow_set *);
662 static void dataflow_set_copy (dataflow_set *, dataflow_set *);
663 static int variable_union_info_cmp_pos (const void *, const void *);
664 static void dataflow_set_union (dataflow_set *, dataflow_set *);
665 static location_chain *find_loc_in_1pdv (rtx, variable, variable_table_type *);
666 static bool canon_value_cmp (rtx, rtx);
667 static int loc_cmp (rtx, rtx);
668 static bool variable_part_different_p (variable_part *, variable_part *);
669 static bool onepart_variable_different_p (variable, variable);
670 static bool variable_different_p (variable, variable);
671 static bool dataflow_set_different (dataflow_set *, dataflow_set *);
672 static void dataflow_set_destroy (dataflow_set *);
673
674 static bool contains_symbol_ref (rtx);
675 static bool track_expr_p (tree, bool);
676 static bool same_variable_part_p (rtx, tree, HOST_WIDE_INT);
677 static void add_uses_1 (rtx *, void *);
678 static void add_stores (rtx, const_rtx, void *);
679 static bool compute_bb_dataflow (basic_block);
680 static bool vt_find_locations (void);
681
682 static void dump_attrs_list (attrs);
683 static void dump_var (variable);
684 static void dump_vars (variable_table_type *);
685 static void dump_dataflow_set (dataflow_set *);
686 static void dump_dataflow_sets (void);
687
688 static void set_dv_changed (decl_or_value, bool);
689 static void variable_was_changed (variable, dataflow_set *);
690 static variable_def **set_slot_part (dataflow_set *, rtx, variable_def **,
691 decl_or_value, HOST_WIDE_INT,
692 enum var_init_status, rtx);
693 static void set_variable_part (dataflow_set *, rtx,
694 decl_or_value, HOST_WIDE_INT,
695 enum var_init_status, rtx, enum insert_option);
696 static variable_def **clobber_slot_part (dataflow_set *, rtx,
697 variable_def **, HOST_WIDE_INT, rtx);
698 static void clobber_variable_part (dataflow_set *, rtx,
699 decl_or_value, HOST_WIDE_INT, rtx);
700 static variable_def **delete_slot_part (dataflow_set *, rtx, variable_def **,
701 HOST_WIDE_INT);
702 static void delete_variable_part (dataflow_set *, rtx,
703 decl_or_value, HOST_WIDE_INT);
704 static void emit_notes_in_bb (basic_block, dataflow_set *);
705 static void vt_emit_notes (void);
706
707 static bool vt_get_decl_and_offset (rtx, tree *, HOST_WIDE_INT *);
708 static void vt_add_function_parameters (void);
709 static bool vt_initialize (void);
710 static void vt_finalize (void);
711
712 /* Callback for stack_adjust_offset_pre_post, called via for_each_inc_dec. */
713
714 static int
715 stack_adjust_offset_pre_post_cb (rtx, rtx op, rtx dest, rtx src, rtx srcoff,
716 void *arg)
717 {
718 if (dest != stack_pointer_rtx)
719 return 0;
720
721 switch (GET_CODE (op))
722 {
723 case PRE_INC:
724 case PRE_DEC:
725 ((HOST_WIDE_INT *)arg)[0] -= INTVAL (srcoff);
726 return 0;
727 case POST_INC:
728 case POST_DEC:
729 ((HOST_WIDE_INT *)arg)[1] -= INTVAL (srcoff);
730 return 0;
731 case PRE_MODIFY:
732 case POST_MODIFY:
733 /* We handle only adjustments by constant amount. */
734 gcc_assert (GET_CODE (src) == PLUS
735 && CONST_INT_P (XEXP (src, 1))
736 && XEXP (src, 0) == stack_pointer_rtx);
737 ((HOST_WIDE_INT *)arg)[GET_CODE (op) == POST_MODIFY]
738 -= INTVAL (XEXP (src, 1));
739 return 0;
740 default:
741 gcc_unreachable ();
742 }
743 }
744
745 /* Given a SET, calculate the amount of stack adjustment it contains
746 PRE- and POST-modifying stack pointer.
747 This function is similar to stack_adjust_offset. */
748
749 static void
750 stack_adjust_offset_pre_post (rtx pattern, HOST_WIDE_INT *pre,
751 HOST_WIDE_INT *post)
752 {
753 rtx src = SET_SRC (pattern);
754 rtx dest = SET_DEST (pattern);
755 enum rtx_code code;
756
757 if (dest == stack_pointer_rtx)
758 {
759 /* (set (reg sp) (plus (reg sp) (const_int))) */
760 code = GET_CODE (src);
761 if (! (code == PLUS || code == MINUS)
762 || XEXP (src, 0) != stack_pointer_rtx
763 || !CONST_INT_P (XEXP (src, 1)))
764 return;
765
766 if (code == MINUS)
767 *post += INTVAL (XEXP (src, 1));
768 else
769 *post -= INTVAL (XEXP (src, 1));
770 return;
771 }
772 HOST_WIDE_INT res[2] = { 0, 0 };
773 for_each_inc_dec (pattern, stack_adjust_offset_pre_post_cb, res);
774 *pre += res[0];
775 *post += res[1];
776 }
777
778 /* Given an INSN, calculate the amount of stack adjustment it contains
779 PRE- and POST-modifying stack pointer. */
780
781 static void
782 insn_stack_adjust_offset_pre_post (rtx_insn *insn, HOST_WIDE_INT *pre,
783 HOST_WIDE_INT *post)
784 {
785 rtx pattern;
786
787 *pre = 0;
788 *post = 0;
789
790 pattern = PATTERN (insn);
791 if (RTX_FRAME_RELATED_P (insn))
792 {
793 rtx expr = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
794 if (expr)
795 pattern = XEXP (expr, 0);
796 }
797
798 if (GET_CODE (pattern) == SET)
799 stack_adjust_offset_pre_post (pattern, pre, post);
800 else if (GET_CODE (pattern) == PARALLEL
801 || GET_CODE (pattern) == SEQUENCE)
802 {
803 int i;
804
805 /* There may be stack adjustments inside compound insns. Search
806 for them. */
807 for ( i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
808 if (GET_CODE (XVECEXP (pattern, 0, i)) == SET)
809 stack_adjust_offset_pre_post (XVECEXP (pattern, 0, i), pre, post);
810 }
811 }
812
813 /* Compute stack adjustments for all blocks by traversing DFS tree.
814 Return true when the adjustments on all incoming edges are consistent.
815 Heavily borrowed from pre_and_rev_post_order_compute. */
816
817 static bool
818 vt_stack_adjustments (void)
819 {
820 edge_iterator *stack;
821 int sp;
822
823 /* Initialize entry block. */
824 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->visited = true;
825 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->in.stack_adjust
826 = INCOMING_FRAME_SP_OFFSET;
827 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->out.stack_adjust
828 = INCOMING_FRAME_SP_OFFSET;
829
830 /* Allocate stack for back-tracking up CFG. */
831 stack = XNEWVEC (edge_iterator, n_basic_blocks_for_fn (cfun) + 1);
832 sp = 0;
833
834 /* Push the first edge on to the stack. */
835 stack[sp++] = ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs);
836
837 while (sp)
838 {
839 edge_iterator ei;
840 basic_block src;
841 basic_block dest;
842
843 /* Look at the edge on the top of the stack. */
844 ei = stack[sp - 1];
845 src = ei_edge (ei)->src;
846 dest = ei_edge (ei)->dest;
847
848 /* Check if the edge destination has been visited yet. */
849 if (!VTI (dest)->visited)
850 {
851 rtx_insn *insn;
852 HOST_WIDE_INT pre, post, offset;
853 VTI (dest)->visited = true;
854 VTI (dest)->in.stack_adjust = offset = VTI (src)->out.stack_adjust;
855
856 if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
857 for (insn = BB_HEAD (dest);
858 insn != NEXT_INSN (BB_END (dest));
859 insn = NEXT_INSN (insn))
860 if (INSN_P (insn))
861 {
862 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
863 offset += pre + post;
864 }
865
866 VTI (dest)->out.stack_adjust = offset;
867
868 if (EDGE_COUNT (dest->succs) > 0)
869 /* Since the DEST node has been visited for the first
870 time, check its successors. */
871 stack[sp++] = ei_start (dest->succs);
872 }
873 else
874 {
875 /* We can end up with different stack adjustments for the exit block
876 of a shrink-wrapped function if stack_adjust_offset_pre_post
877 doesn't understand the rtx pattern used to restore the stack
878 pointer in the epilogue. For example, on s390(x), the stack
879 pointer is often restored via a load-multiple instruction
880 and so no stack_adjust offset is recorded for it. This means
881 that the stack offset at the end of the epilogue block is the
882 the same as the offset before the epilogue, whereas other paths
883 to the exit block will have the correct stack_adjust.
884
885 It is safe to ignore these differences because (a) we never
886 use the stack_adjust for the exit block in this pass and
887 (b) dwarf2cfi checks whether the CFA notes in a shrink-wrapped
888 function are correct.
889
890 We must check whether the adjustments on other edges are
891 the same though. */
892 if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
893 && VTI (dest)->in.stack_adjust != VTI (src)->out.stack_adjust)
894 {
895 free (stack);
896 return false;
897 }
898
899 if (! ei_one_before_end_p (ei))
900 /* Go to the next edge. */
901 ei_next (&stack[sp - 1]);
902 else
903 /* Return to previous level if there are no more edges. */
904 sp--;
905 }
906 }
907
908 free (stack);
909 return true;
910 }
911
912 /* arg_pointer_rtx resp. frame_pointer_rtx if stack_pointer_rtx or
913 hard_frame_pointer_rtx is being mapped to it and offset for it. */
914 static rtx cfa_base_rtx;
915 static HOST_WIDE_INT cfa_base_offset;
916
917 /* Compute a CFA-based value for an ADJUSTMENT made to stack_pointer_rtx
918 or hard_frame_pointer_rtx. */
919
920 static inline rtx
921 compute_cfa_pointer (HOST_WIDE_INT adjustment)
922 {
923 return plus_constant (Pmode, cfa_base_rtx, adjustment + cfa_base_offset);
924 }
925
926 /* Adjustment for hard_frame_pointer_rtx to cfa base reg,
927 or -1 if the replacement shouldn't be done. */
928 static HOST_WIDE_INT hard_frame_pointer_adjustment = -1;
929
930 /* Data for adjust_mems callback. */
931
932 struct adjust_mem_data
933 {
934 bool store;
935 machine_mode mem_mode;
936 HOST_WIDE_INT stack_adjust;
937 rtx_expr_list *side_effects;
938 };
939
940 /* Helper for adjust_mems. Return true if X is suitable for
941 transformation of wider mode arithmetics to narrower mode. */
942
943 static bool
944 use_narrower_mode_test (rtx x, const_rtx subreg)
945 {
946 subrtx_var_iterator::array_type array;
947 FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
948 {
949 rtx x = *iter;
950 if (CONSTANT_P (x))
951 iter.skip_subrtxes ();
952 else
953 switch (GET_CODE (x))
954 {
955 case REG:
956 if (cselib_lookup (x, GET_MODE (SUBREG_REG (subreg)), 0, VOIDmode))
957 return false;
958 if (!validate_subreg (GET_MODE (subreg), GET_MODE (x), x,
959 subreg_lowpart_offset (GET_MODE (subreg),
960 GET_MODE (x))))
961 return false;
962 break;
963 case PLUS:
964 case MINUS:
965 case MULT:
966 break;
967 case ASHIFT:
968 iter.substitute (XEXP (x, 0));
969 break;
970 default:
971 return false;
972 }
973 }
974 return true;
975 }
976
977 /* Transform X into narrower mode MODE from wider mode WMODE. */
978
979 static rtx
980 use_narrower_mode (rtx x, machine_mode mode, machine_mode wmode)
981 {
982 rtx op0, op1;
983 if (CONSTANT_P (x))
984 return lowpart_subreg (mode, x, wmode);
985 switch (GET_CODE (x))
986 {
987 case REG:
988 return lowpart_subreg (mode, x, wmode);
989 case PLUS:
990 case MINUS:
991 case MULT:
992 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
993 op1 = use_narrower_mode (XEXP (x, 1), mode, wmode);
994 return simplify_gen_binary (GET_CODE (x), mode, op0, op1);
995 case ASHIFT:
996 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
997 op1 = XEXP (x, 1);
998 /* Ensure shift amount is not wider than mode. */
999 if (GET_MODE (op1) == VOIDmode)
1000 op1 = lowpart_subreg (mode, op1, wmode);
1001 else if (GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (GET_MODE (op1)))
1002 op1 = lowpart_subreg (mode, op1, GET_MODE (op1));
1003 return simplify_gen_binary (ASHIFT, mode, op0, op1);
1004 default:
1005 gcc_unreachable ();
1006 }
1007 }
1008
1009 /* Helper function for adjusting used MEMs. */
1010
1011 static rtx
1012 adjust_mems (rtx loc, const_rtx old_rtx, void *data)
1013 {
1014 struct adjust_mem_data *amd = (struct adjust_mem_data *) data;
1015 rtx mem, addr = loc, tem;
1016 machine_mode mem_mode_save;
1017 bool store_save;
1018 switch (GET_CODE (loc))
1019 {
1020 case REG:
1021 /* Don't do any sp or fp replacements outside of MEM addresses
1022 on the LHS. */
1023 if (amd->mem_mode == VOIDmode && amd->store)
1024 return loc;
1025 if (loc == stack_pointer_rtx
1026 && !frame_pointer_needed
1027 && cfa_base_rtx)
1028 return compute_cfa_pointer (amd->stack_adjust);
1029 else if (loc == hard_frame_pointer_rtx
1030 && frame_pointer_needed
1031 && hard_frame_pointer_adjustment != -1
1032 && cfa_base_rtx)
1033 return compute_cfa_pointer (hard_frame_pointer_adjustment);
1034 gcc_checking_assert (loc != virtual_incoming_args_rtx);
1035 return loc;
1036 case MEM:
1037 mem = loc;
1038 if (!amd->store)
1039 {
1040 mem = targetm.delegitimize_address (mem);
1041 if (mem != loc && !MEM_P (mem))
1042 return simplify_replace_fn_rtx (mem, old_rtx, adjust_mems, data);
1043 }
1044
1045 addr = XEXP (mem, 0);
1046 mem_mode_save = amd->mem_mode;
1047 amd->mem_mode = GET_MODE (mem);
1048 store_save = amd->store;
1049 amd->store = false;
1050 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1051 amd->store = store_save;
1052 amd->mem_mode = mem_mode_save;
1053 if (mem == loc)
1054 addr = targetm.delegitimize_address (addr);
1055 if (addr != XEXP (mem, 0))
1056 mem = replace_equiv_address_nv (mem, addr);
1057 if (!amd->store)
1058 mem = avoid_constant_pool_reference (mem);
1059 return mem;
1060 case PRE_INC:
1061 case PRE_DEC:
1062 addr = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
1063 gen_int_mode (GET_CODE (loc) == PRE_INC
1064 ? GET_MODE_SIZE (amd->mem_mode)
1065 : -GET_MODE_SIZE (amd->mem_mode),
1066 GET_MODE (loc)));
1067 case POST_INC:
1068 case POST_DEC:
1069 if (addr == loc)
1070 addr = XEXP (loc, 0);
1071 gcc_assert (amd->mem_mode != VOIDmode && amd->mem_mode != BLKmode);
1072 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1073 tem = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
1074 gen_int_mode ((GET_CODE (loc) == PRE_INC
1075 || GET_CODE (loc) == POST_INC)
1076 ? GET_MODE_SIZE (amd->mem_mode)
1077 : -GET_MODE_SIZE (amd->mem_mode),
1078 GET_MODE (loc)));
1079 store_save = amd->store;
1080 amd->store = false;
1081 tem = simplify_replace_fn_rtx (tem, old_rtx, adjust_mems, data);
1082 amd->store = store_save;
1083 amd->side_effects = alloc_EXPR_LIST (0,
1084 gen_rtx_SET (XEXP (loc, 0), tem),
1085 amd->side_effects);
1086 return addr;
1087 case PRE_MODIFY:
1088 addr = XEXP (loc, 1);
1089 case POST_MODIFY:
1090 if (addr == loc)
1091 addr = XEXP (loc, 0);
1092 gcc_assert (amd->mem_mode != VOIDmode);
1093 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1094 store_save = amd->store;
1095 amd->store = false;
1096 tem = simplify_replace_fn_rtx (XEXP (loc, 1), old_rtx,
1097 adjust_mems, data);
1098 amd->store = store_save;
1099 amd->side_effects = alloc_EXPR_LIST (0,
1100 gen_rtx_SET (XEXP (loc, 0), tem),
1101 amd->side_effects);
1102 return addr;
1103 case SUBREG:
1104 /* First try without delegitimization of whole MEMs and
1105 avoid_constant_pool_reference, which is more likely to succeed. */
1106 store_save = amd->store;
1107 amd->store = true;
1108 addr = simplify_replace_fn_rtx (SUBREG_REG (loc), old_rtx, adjust_mems,
1109 data);
1110 amd->store = store_save;
1111 mem = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1112 if (mem == SUBREG_REG (loc))
1113 {
1114 tem = loc;
1115 goto finish_subreg;
1116 }
1117 tem = simplify_gen_subreg (GET_MODE (loc), mem,
1118 GET_MODE (SUBREG_REG (loc)),
1119 SUBREG_BYTE (loc));
1120 if (tem)
1121 goto finish_subreg;
1122 tem = simplify_gen_subreg (GET_MODE (loc), addr,
1123 GET_MODE (SUBREG_REG (loc)),
1124 SUBREG_BYTE (loc));
1125 if (tem == NULL_RTX)
1126 tem = gen_rtx_raw_SUBREG (GET_MODE (loc), addr, SUBREG_BYTE (loc));
1127 finish_subreg:
1128 if (MAY_HAVE_DEBUG_INSNS
1129 && GET_CODE (tem) == SUBREG
1130 && (GET_CODE (SUBREG_REG (tem)) == PLUS
1131 || GET_CODE (SUBREG_REG (tem)) == MINUS
1132 || GET_CODE (SUBREG_REG (tem)) == MULT
1133 || GET_CODE (SUBREG_REG (tem)) == ASHIFT)
1134 && (GET_MODE_CLASS (GET_MODE (tem)) == MODE_INT
1135 || GET_MODE_CLASS (GET_MODE (tem)) == MODE_PARTIAL_INT)
1136 && (GET_MODE_CLASS (GET_MODE (SUBREG_REG (tem))) == MODE_INT
1137 || GET_MODE_CLASS (GET_MODE (SUBREG_REG (tem))) == MODE_PARTIAL_INT)
1138 && GET_MODE_PRECISION (GET_MODE (tem))
1139 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (tem)))
1140 && subreg_lowpart_p (tem)
1141 && use_narrower_mode_test (SUBREG_REG (tem), tem))
1142 return use_narrower_mode (SUBREG_REG (tem), GET_MODE (tem),
1143 GET_MODE (SUBREG_REG (tem)));
1144 return tem;
1145 case ASM_OPERANDS:
1146 /* Don't do any replacements in second and following
1147 ASM_OPERANDS of inline-asm with multiple sets.
1148 ASM_OPERANDS_INPUT_VEC, ASM_OPERANDS_INPUT_CONSTRAINT_VEC
1149 and ASM_OPERANDS_LABEL_VEC need to be equal between
1150 all the ASM_OPERANDs in the insn and adjust_insn will
1151 fix this up. */
1152 if (ASM_OPERANDS_OUTPUT_IDX (loc) != 0)
1153 return loc;
1154 break;
1155 default:
1156 break;
1157 }
1158 return NULL_RTX;
1159 }
1160
1161 /* Helper function for replacement of uses. */
1162
1163 static void
1164 adjust_mem_uses (rtx *x, void *data)
1165 {
1166 rtx new_x = simplify_replace_fn_rtx (*x, NULL_RTX, adjust_mems, data);
1167 if (new_x != *x)
1168 validate_change (NULL_RTX, x, new_x, true);
1169 }
1170
1171 /* Helper function for replacement of stores. */
1172
1173 static void
1174 adjust_mem_stores (rtx loc, const_rtx expr, void *data)
1175 {
1176 if (MEM_P (loc))
1177 {
1178 rtx new_dest = simplify_replace_fn_rtx (SET_DEST (expr), NULL_RTX,
1179 adjust_mems, data);
1180 if (new_dest != SET_DEST (expr))
1181 {
1182 rtx xexpr = CONST_CAST_RTX (expr);
1183 validate_change (NULL_RTX, &SET_DEST (xexpr), new_dest, true);
1184 }
1185 }
1186 }
1187
1188 /* Simplify INSN. Remove all {PRE,POST}_{INC,DEC,MODIFY} rtxes,
1189 replace them with their value in the insn and add the side-effects
1190 as other sets to the insn. */
1191
1192 static void
1193 adjust_insn (basic_block bb, rtx_insn *insn)
1194 {
1195 struct adjust_mem_data amd;
1196 rtx set;
1197
1198 #ifdef HAVE_window_save
1199 /* If the target machine has an explicit window save instruction, the
1200 transformation OUTGOING_REGNO -> INCOMING_REGNO is done there. */
1201 if (RTX_FRAME_RELATED_P (insn)
1202 && find_reg_note (insn, REG_CFA_WINDOW_SAVE, NULL_RTX))
1203 {
1204 unsigned int i, nregs = vec_safe_length (windowed_parm_regs);
1205 rtx rtl = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (nregs * 2));
1206 parm_reg_t *p;
1207
1208 FOR_EACH_VEC_SAFE_ELT (windowed_parm_regs, i, p)
1209 {
1210 XVECEXP (rtl, 0, i * 2)
1211 = gen_rtx_SET (p->incoming, p->outgoing);
1212 /* Do not clobber the attached DECL, but only the REG. */
1213 XVECEXP (rtl, 0, i * 2 + 1)
1214 = gen_rtx_CLOBBER (GET_MODE (p->outgoing),
1215 gen_raw_REG (GET_MODE (p->outgoing),
1216 REGNO (p->outgoing)));
1217 }
1218
1219 validate_change (NULL_RTX, &PATTERN (insn), rtl, true);
1220 return;
1221 }
1222 #endif
1223
1224 amd.mem_mode = VOIDmode;
1225 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
1226 amd.side_effects = NULL;
1227
1228 amd.store = true;
1229 note_stores (PATTERN (insn), adjust_mem_stores, &amd);
1230
1231 amd.store = false;
1232 if (GET_CODE (PATTERN (insn)) == PARALLEL
1233 && asm_noperands (PATTERN (insn)) > 0
1234 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1235 {
1236 rtx body, set0;
1237 int i;
1238
1239 /* inline-asm with multiple sets is tiny bit more complicated,
1240 because the 3 vectors in ASM_OPERANDS need to be shared between
1241 all ASM_OPERANDS in the instruction. adjust_mems will
1242 not touch ASM_OPERANDS other than the first one, asm_noperands
1243 test above needs to be called before that (otherwise it would fail)
1244 and afterwards this code fixes it up. */
1245 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1246 body = PATTERN (insn);
1247 set0 = XVECEXP (body, 0, 0);
1248 gcc_checking_assert (GET_CODE (set0) == SET
1249 && GET_CODE (SET_SRC (set0)) == ASM_OPERANDS
1250 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set0)) == 0);
1251 for (i = 1; i < XVECLEN (body, 0); i++)
1252 if (GET_CODE (XVECEXP (body, 0, i)) != SET)
1253 break;
1254 else
1255 {
1256 set = XVECEXP (body, 0, i);
1257 gcc_checking_assert (GET_CODE (SET_SRC (set)) == ASM_OPERANDS
1258 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set))
1259 == i);
1260 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (set))
1261 != ASM_OPERANDS_INPUT_VEC (SET_SRC (set0))
1262 || ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set))
1263 != ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0))
1264 || ASM_OPERANDS_LABEL_VEC (SET_SRC (set))
1265 != ASM_OPERANDS_LABEL_VEC (SET_SRC (set0)))
1266 {
1267 rtx newsrc = shallow_copy_rtx (SET_SRC (set));
1268 ASM_OPERANDS_INPUT_VEC (newsrc)
1269 = ASM_OPERANDS_INPUT_VEC (SET_SRC (set0));
1270 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (newsrc)
1271 = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0));
1272 ASM_OPERANDS_LABEL_VEC (newsrc)
1273 = ASM_OPERANDS_LABEL_VEC (SET_SRC (set0));
1274 validate_change (NULL_RTX, &SET_SRC (set), newsrc, true);
1275 }
1276 }
1277 }
1278 else
1279 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1280
1281 /* For read-only MEMs containing some constant, prefer those
1282 constants. */
1283 set = single_set (insn);
1284 if (set && MEM_P (SET_SRC (set)) && MEM_READONLY_P (SET_SRC (set)))
1285 {
1286 rtx note = find_reg_equal_equiv_note (insn);
1287
1288 if (note && CONSTANT_P (XEXP (note, 0)))
1289 validate_change (NULL_RTX, &SET_SRC (set), XEXP (note, 0), true);
1290 }
1291
1292 if (amd.side_effects)
1293 {
1294 rtx *pat, new_pat, s;
1295 int i, oldn, newn;
1296
1297 pat = &PATTERN (insn);
1298 if (GET_CODE (*pat) == COND_EXEC)
1299 pat = &COND_EXEC_CODE (*pat);
1300 if (GET_CODE (*pat) == PARALLEL)
1301 oldn = XVECLEN (*pat, 0);
1302 else
1303 oldn = 1;
1304 for (s = amd.side_effects, newn = 0; s; newn++)
1305 s = XEXP (s, 1);
1306 new_pat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (oldn + newn));
1307 if (GET_CODE (*pat) == PARALLEL)
1308 for (i = 0; i < oldn; i++)
1309 XVECEXP (new_pat, 0, i) = XVECEXP (*pat, 0, i);
1310 else
1311 XVECEXP (new_pat, 0, 0) = *pat;
1312 for (s = amd.side_effects, i = oldn; i < oldn + newn; i++, s = XEXP (s, 1))
1313 XVECEXP (new_pat, 0, i) = XEXP (s, 0);
1314 free_EXPR_LIST_list (&amd.side_effects);
1315 validate_change (NULL_RTX, pat, new_pat, true);
1316 }
1317 }
1318
1319 /* Return the DEBUG_EXPR of a DEBUG_EXPR_DECL or the VALUE in DV. */
1320 static inline rtx
1321 dv_as_rtx (decl_or_value dv)
1322 {
1323 tree decl;
1324
1325 if (dv_is_value_p (dv))
1326 return dv_as_value (dv);
1327
1328 decl = dv_as_decl (dv);
1329
1330 gcc_checking_assert (TREE_CODE (decl) == DEBUG_EXPR_DECL);
1331 return DECL_RTL_KNOWN_SET (decl);
1332 }
1333
1334 /* Return nonzero if a decl_or_value must not have more than one
1335 variable part. The returned value discriminates among various
1336 kinds of one-part DVs ccording to enum onepart_enum. */
1337 static inline onepart_enum_t
1338 dv_onepart_p (decl_or_value dv)
1339 {
1340 tree decl;
1341
1342 if (!MAY_HAVE_DEBUG_INSNS)
1343 return NOT_ONEPART;
1344
1345 if (dv_is_value_p (dv))
1346 return ONEPART_VALUE;
1347
1348 decl = dv_as_decl (dv);
1349
1350 if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
1351 return ONEPART_DEXPR;
1352
1353 if (target_for_debug_bind (decl) != NULL_TREE)
1354 return ONEPART_VDECL;
1355
1356 return NOT_ONEPART;
1357 }
1358
1359 /* Return the variable pool to be used for a dv of type ONEPART. */
1360 static inline pool_allocator &
1361 onepart_pool (onepart_enum_t onepart)
1362 {
1363 return onepart ? valvar_pool : var_pool;
1364 }
1365
1366 /* Allocate a variable_def from the corresponding variable pool. */
1367 static inline variable_def *
1368 onepart_pool_allocate (onepart_enum_t onepart)
1369 {
1370 return (variable_def*) onepart_pool (onepart).allocate ();
1371 }
1372
1373 /* Build a decl_or_value out of a decl. */
1374 static inline decl_or_value
1375 dv_from_decl (tree decl)
1376 {
1377 decl_or_value dv;
1378 dv = decl;
1379 gcc_checking_assert (dv_is_decl_p (dv));
1380 return dv;
1381 }
1382
1383 /* Build a decl_or_value out of a value. */
1384 static inline decl_or_value
1385 dv_from_value (rtx value)
1386 {
1387 decl_or_value dv;
1388 dv = value;
1389 gcc_checking_assert (dv_is_value_p (dv));
1390 return dv;
1391 }
1392
1393 /* Return a value or the decl of a debug_expr as a decl_or_value. */
1394 static inline decl_or_value
1395 dv_from_rtx (rtx x)
1396 {
1397 decl_or_value dv;
1398
1399 switch (GET_CODE (x))
1400 {
1401 case DEBUG_EXPR:
1402 dv = dv_from_decl (DEBUG_EXPR_TREE_DECL (x));
1403 gcc_checking_assert (DECL_RTL_KNOWN_SET (DEBUG_EXPR_TREE_DECL (x)) == x);
1404 break;
1405
1406 case VALUE:
1407 dv = dv_from_value (x);
1408 break;
1409
1410 default:
1411 gcc_unreachable ();
1412 }
1413
1414 return dv;
1415 }
1416
1417 extern void debug_dv (decl_or_value dv);
1418
1419 DEBUG_FUNCTION void
1420 debug_dv (decl_or_value dv)
1421 {
1422 if (dv_is_value_p (dv))
1423 debug_rtx (dv_as_value (dv));
1424 else
1425 debug_generic_stmt (dv_as_decl (dv));
1426 }
1427
1428 static void loc_exp_dep_clear (variable var);
1429
1430 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
1431
1432 static void
1433 variable_htab_free (void *elem)
1434 {
1435 int i;
1436 variable var = (variable) elem;
1437 location_chain *node, *next;
1438
1439 gcc_checking_assert (var->refcount > 0);
1440
1441 var->refcount--;
1442 if (var->refcount > 0)
1443 return;
1444
1445 for (i = 0; i < var->n_var_parts; i++)
1446 {
1447 for (node = var->var_part[i].loc_chain; node; node = next)
1448 {
1449 next = node->next;
1450 delete node;
1451 }
1452 var->var_part[i].loc_chain = NULL;
1453 }
1454 if (var->onepart && VAR_LOC_1PAUX (var))
1455 {
1456 loc_exp_dep_clear (var);
1457 if (VAR_LOC_DEP_LST (var))
1458 VAR_LOC_DEP_LST (var)->pprev = NULL;
1459 XDELETE (VAR_LOC_1PAUX (var));
1460 /* These may be reused across functions, so reset
1461 e.g. NO_LOC_P. */
1462 if (var->onepart == ONEPART_DEXPR)
1463 set_dv_changed (var->dv, true);
1464 }
1465 onepart_pool (var->onepart).remove (var);
1466 }
1467
1468 /* Initialize the set (array) SET of attrs to empty lists. */
1469
1470 static void
1471 init_attrs_list_set (attrs *set)
1472 {
1473 int i;
1474
1475 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1476 set[i] = NULL;
1477 }
1478
1479 /* Make the list *LISTP empty. */
1480
1481 static void
1482 attrs_list_clear (attrs *listp)
1483 {
1484 attrs list, next;
1485
1486 for (list = *listp; list; list = next)
1487 {
1488 next = list->next;
1489 delete list;
1490 }
1491 *listp = NULL;
1492 }
1493
1494 /* Return true if the pair of DECL and OFFSET is the member of the LIST. */
1495
1496 static attrs
1497 attrs_list_member (attrs list, decl_or_value dv, HOST_WIDE_INT offset)
1498 {
1499 for (; list; list = list->next)
1500 if (dv_as_opaque (list->dv) == dv_as_opaque (dv) && list->offset == offset)
1501 return list;
1502 return NULL;
1503 }
1504
1505 /* Insert the triplet DECL, OFFSET, LOC to the list *LISTP. */
1506
1507 static void
1508 attrs_list_insert (attrs *listp, decl_or_value dv,
1509 HOST_WIDE_INT offset, rtx loc)
1510 {
1511 attrs list = new attrs_def;
1512 list->loc = loc;
1513 list->dv = dv;
1514 list->offset = offset;
1515 list->next = *listp;
1516 *listp = list;
1517 }
1518
1519 /* Copy all nodes from SRC and create a list *DSTP of the copies. */
1520
1521 static void
1522 attrs_list_copy (attrs *dstp, attrs src)
1523 {
1524 attrs_list_clear (dstp);
1525 for (; src; src = src->next)
1526 {
1527 attrs n = new attrs_def;
1528 n->loc = src->loc;
1529 n->dv = src->dv;
1530 n->offset = src->offset;
1531 n->next = *dstp;
1532 *dstp = n;
1533 }
1534 }
1535
1536 /* Add all nodes from SRC which are not in *DSTP to *DSTP. */
1537
1538 static void
1539 attrs_list_union (attrs *dstp, attrs src)
1540 {
1541 for (; src; src = src->next)
1542 {
1543 if (!attrs_list_member (*dstp, src->dv, src->offset))
1544 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1545 }
1546 }
1547
1548 /* Combine nodes that are not onepart nodes from SRC and SRC2 into
1549 *DSTP. */
1550
1551 static void
1552 attrs_list_mpdv_union (attrs *dstp, attrs src, attrs src2)
1553 {
1554 gcc_assert (!*dstp);
1555 for (; src; src = src->next)
1556 {
1557 if (!dv_onepart_p (src->dv))
1558 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1559 }
1560 for (src = src2; src; src = src->next)
1561 {
1562 if (!dv_onepart_p (src->dv)
1563 && !attrs_list_member (*dstp, src->dv, src->offset))
1564 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1565 }
1566 }
1567
1568 /* Shared hashtable support. */
1569
1570 /* Return true if VARS is shared. */
1571
1572 static inline bool
1573 shared_hash_shared (shared_hash *vars)
1574 {
1575 return vars->refcount > 1;
1576 }
1577
1578 /* Return the hash table for VARS. */
1579
1580 static inline variable_table_type *
1581 shared_hash_htab (shared_hash *vars)
1582 {
1583 return vars->htab;
1584 }
1585
1586 /* Return true if VAR is shared, or maybe because VARS is shared. */
1587
1588 static inline bool
1589 shared_var_p (variable var, shared_hash *vars)
1590 {
1591 /* Don't count an entry in the changed_variables table as a duplicate. */
1592 return ((var->refcount > 1 + (int) var->in_changed_variables)
1593 || shared_hash_shared (vars));
1594 }
1595
1596 /* Copy variables into a new hash table. */
1597
1598 static shared_hash *
1599 shared_hash_unshare (shared_hash *vars)
1600 {
1601 shared_hash *new_vars = new shared_hash;
1602 gcc_assert (vars->refcount > 1);
1603 new_vars->refcount = 1;
1604 new_vars->htab = new variable_table_type (vars->htab->elements () + 3);
1605 vars_copy (new_vars->htab, vars->htab);
1606 vars->refcount--;
1607 return new_vars;
1608 }
1609
1610 /* Increment reference counter on VARS and return it. */
1611
1612 static inline shared_hash *
1613 shared_hash_copy (shared_hash *vars)
1614 {
1615 vars->refcount++;
1616 return vars;
1617 }
1618
1619 /* Decrement reference counter and destroy hash table if not shared
1620 anymore. */
1621
1622 static void
1623 shared_hash_destroy (shared_hash *vars)
1624 {
1625 gcc_checking_assert (vars->refcount > 0);
1626 if (--vars->refcount == 0)
1627 {
1628 delete vars->htab;
1629 delete vars;
1630 }
1631 }
1632
1633 /* Unshare *PVARS if shared and return slot for DV. If INS is
1634 INSERT, insert it if not already present. */
1635
1636 static inline variable_def **
1637 shared_hash_find_slot_unshare_1 (shared_hash **pvars, decl_or_value dv,
1638 hashval_t dvhash, enum insert_option ins)
1639 {
1640 if (shared_hash_shared (*pvars))
1641 *pvars = shared_hash_unshare (*pvars);
1642 return shared_hash_htab (*pvars)->find_slot_with_hash (dv, dvhash, ins);
1643 }
1644
1645 static inline variable_def **
1646 shared_hash_find_slot_unshare (shared_hash **pvars, decl_or_value dv,
1647 enum insert_option ins)
1648 {
1649 return shared_hash_find_slot_unshare_1 (pvars, dv, dv_htab_hash (dv), ins);
1650 }
1651
1652 /* Return slot for DV, if it is already present in the hash table.
1653 If it is not present, insert it only VARS is not shared, otherwise
1654 return NULL. */
1655
1656 static inline variable_def **
1657 shared_hash_find_slot_1 (shared_hash *vars, decl_or_value dv, hashval_t dvhash)
1658 {
1659 return shared_hash_htab (vars)->find_slot_with_hash (dv, dvhash,
1660 shared_hash_shared (vars)
1661 ? NO_INSERT : INSERT);
1662 }
1663
1664 static inline variable_def **
1665 shared_hash_find_slot (shared_hash *vars, decl_or_value dv)
1666 {
1667 return shared_hash_find_slot_1 (vars, dv, dv_htab_hash (dv));
1668 }
1669
1670 /* Return slot for DV only if it is already present in the hash table. */
1671
1672 static inline variable_def **
1673 shared_hash_find_slot_noinsert_1 (shared_hash *vars, decl_or_value dv,
1674 hashval_t dvhash)
1675 {
1676 return shared_hash_htab (vars)->find_slot_with_hash (dv, dvhash, NO_INSERT);
1677 }
1678
1679 static inline variable_def **
1680 shared_hash_find_slot_noinsert (shared_hash *vars, decl_or_value dv)
1681 {
1682 return shared_hash_find_slot_noinsert_1 (vars, dv, dv_htab_hash (dv));
1683 }
1684
1685 /* Return variable for DV or NULL if not already present in the hash
1686 table. */
1687
1688 static inline variable
1689 shared_hash_find_1 (shared_hash *vars, decl_or_value dv, hashval_t dvhash)
1690 {
1691 return shared_hash_htab (vars)->find_with_hash (dv, dvhash);
1692 }
1693
1694 static inline variable
1695 shared_hash_find (shared_hash *vars, decl_or_value dv)
1696 {
1697 return shared_hash_find_1 (vars, dv, dv_htab_hash (dv));
1698 }
1699
1700 /* Return true if TVAL is better than CVAL as a canonival value. We
1701 choose lowest-numbered VALUEs, using the RTX address as a
1702 tie-breaker. The idea is to arrange them into a star topology,
1703 such that all of them are at most one step away from the canonical
1704 value, and the canonical value has backlinks to all of them, in
1705 addition to all the actual locations. We don't enforce this
1706 topology throughout the entire dataflow analysis, though.
1707 */
1708
1709 static inline bool
1710 canon_value_cmp (rtx tval, rtx cval)
1711 {
1712 return !cval
1713 || CSELIB_VAL_PTR (tval)->uid < CSELIB_VAL_PTR (cval)->uid;
1714 }
1715
1716 static bool dst_can_be_shared;
1717
1718 /* Return a copy of a variable VAR and insert it to dataflow set SET. */
1719
1720 static variable_def **
1721 unshare_variable (dataflow_set *set, variable_def **slot, variable var,
1722 enum var_init_status initialized)
1723 {
1724 variable new_var;
1725 int i;
1726
1727 new_var = onepart_pool_allocate (var->onepart);
1728 new_var->dv = var->dv;
1729 new_var->refcount = 1;
1730 var->refcount--;
1731 new_var->n_var_parts = var->n_var_parts;
1732 new_var->onepart = var->onepart;
1733 new_var->in_changed_variables = false;
1734
1735 if (! flag_var_tracking_uninit)
1736 initialized = VAR_INIT_STATUS_INITIALIZED;
1737
1738 for (i = 0; i < var->n_var_parts; i++)
1739 {
1740 location_chain *node;
1741 location_chain **nextp;
1742
1743 if (i == 0 && var->onepart)
1744 {
1745 /* One-part auxiliary data is only used while emitting
1746 notes, so propagate it to the new variable in the active
1747 dataflow set. If we're not emitting notes, this will be
1748 a no-op. */
1749 gcc_checking_assert (!VAR_LOC_1PAUX (var) || emit_notes);
1750 VAR_LOC_1PAUX (new_var) = VAR_LOC_1PAUX (var);
1751 VAR_LOC_1PAUX (var) = NULL;
1752 }
1753 else
1754 VAR_PART_OFFSET (new_var, i) = VAR_PART_OFFSET (var, i);
1755 nextp = &new_var->var_part[i].loc_chain;
1756 for (node = var->var_part[i].loc_chain; node; node = node->next)
1757 {
1758 location_chain *new_lc;
1759
1760 new_lc = new location_chain;
1761 new_lc->next = NULL;
1762 if (node->init > initialized)
1763 new_lc->init = node->init;
1764 else
1765 new_lc->init = initialized;
1766 if (node->set_src && !(MEM_P (node->set_src)))
1767 new_lc->set_src = node->set_src;
1768 else
1769 new_lc->set_src = NULL;
1770 new_lc->loc = node->loc;
1771
1772 *nextp = new_lc;
1773 nextp = &new_lc->next;
1774 }
1775
1776 new_var->var_part[i].cur_loc = var->var_part[i].cur_loc;
1777 }
1778
1779 dst_can_be_shared = false;
1780 if (shared_hash_shared (set->vars))
1781 slot = shared_hash_find_slot_unshare (&set->vars, var->dv, NO_INSERT);
1782 else if (set->traversed_vars && set->vars != set->traversed_vars)
1783 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
1784 *slot = new_var;
1785 if (var->in_changed_variables)
1786 {
1787 variable_def **cslot
1788 = changed_variables->find_slot_with_hash (var->dv,
1789 dv_htab_hash (var->dv),
1790 NO_INSERT);
1791 gcc_assert (*cslot == (void *) var);
1792 var->in_changed_variables = false;
1793 variable_htab_free (var);
1794 *cslot = new_var;
1795 new_var->in_changed_variables = true;
1796 }
1797 return slot;
1798 }
1799
1800 /* Copy all variables from hash table SRC to hash table DST. */
1801
1802 static void
1803 vars_copy (variable_table_type *dst, variable_table_type *src)
1804 {
1805 variable_iterator_type hi;
1806 variable var;
1807
1808 FOR_EACH_HASH_TABLE_ELEMENT (*src, var, variable, hi)
1809 {
1810 variable_def **dstp;
1811 var->refcount++;
1812 dstp = dst->find_slot_with_hash (var->dv, dv_htab_hash (var->dv),
1813 INSERT);
1814 *dstp = var;
1815 }
1816 }
1817
1818 /* Map a decl to its main debug decl. */
1819
1820 static inline tree
1821 var_debug_decl (tree decl)
1822 {
1823 if (decl && TREE_CODE (decl) == VAR_DECL
1824 && DECL_HAS_DEBUG_EXPR_P (decl))
1825 {
1826 tree debugdecl = DECL_DEBUG_EXPR (decl);
1827 if (DECL_P (debugdecl))
1828 decl = debugdecl;
1829 }
1830
1831 return decl;
1832 }
1833
1834 /* Set the register LOC to contain DV, OFFSET. */
1835
1836 static void
1837 var_reg_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1838 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
1839 enum insert_option iopt)
1840 {
1841 attrs node;
1842 bool decl_p = dv_is_decl_p (dv);
1843
1844 if (decl_p)
1845 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
1846
1847 for (node = set->regs[REGNO (loc)]; node; node = node->next)
1848 if (dv_as_opaque (node->dv) == dv_as_opaque (dv)
1849 && node->offset == offset)
1850 break;
1851 if (!node)
1852 attrs_list_insert (&set->regs[REGNO (loc)], dv, offset, loc);
1853 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
1854 }
1855
1856 /* Set the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). */
1857
1858 static void
1859 var_reg_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1860 rtx set_src)
1861 {
1862 tree decl = REG_EXPR (loc);
1863 HOST_WIDE_INT offset = REG_OFFSET (loc);
1864
1865 var_reg_decl_set (set, loc, initialized,
1866 dv_from_decl (decl), offset, set_src, INSERT);
1867 }
1868
1869 static enum var_init_status
1870 get_init_value (dataflow_set *set, rtx loc, decl_or_value dv)
1871 {
1872 variable var;
1873 int i;
1874 enum var_init_status ret_val = VAR_INIT_STATUS_UNKNOWN;
1875
1876 if (! flag_var_tracking_uninit)
1877 return VAR_INIT_STATUS_INITIALIZED;
1878
1879 var = shared_hash_find (set->vars, dv);
1880 if (var)
1881 {
1882 for (i = 0; i < var->n_var_parts && ret_val == VAR_INIT_STATUS_UNKNOWN; i++)
1883 {
1884 location_chain *nextp;
1885 for (nextp = var->var_part[i].loc_chain; nextp; nextp = nextp->next)
1886 if (rtx_equal_p (nextp->loc, loc))
1887 {
1888 ret_val = nextp->init;
1889 break;
1890 }
1891 }
1892 }
1893
1894 return ret_val;
1895 }
1896
1897 /* Delete current content of register LOC in dataflow set SET and set
1898 the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). If
1899 MODIFY is true, any other live copies of the same variable part are
1900 also deleted from the dataflow set, otherwise the variable part is
1901 assumed to be copied from another location holding the same
1902 part. */
1903
1904 static void
1905 var_reg_delete_and_set (dataflow_set *set, rtx loc, bool modify,
1906 enum var_init_status initialized, rtx set_src)
1907 {
1908 tree decl = REG_EXPR (loc);
1909 HOST_WIDE_INT offset = REG_OFFSET (loc);
1910 attrs node, next;
1911 attrs *nextp;
1912
1913 decl = var_debug_decl (decl);
1914
1915 if (initialized == VAR_INIT_STATUS_UNKNOWN)
1916 initialized = get_init_value (set, loc, dv_from_decl (decl));
1917
1918 nextp = &set->regs[REGNO (loc)];
1919 for (node = *nextp; node; node = next)
1920 {
1921 next = node->next;
1922 if (dv_as_opaque (node->dv) != decl || node->offset != offset)
1923 {
1924 delete_variable_part (set, node->loc, node->dv, node->offset);
1925 delete node;
1926 *nextp = next;
1927 }
1928 else
1929 {
1930 node->loc = loc;
1931 nextp = &node->next;
1932 }
1933 }
1934 if (modify)
1935 clobber_variable_part (set, loc, dv_from_decl (decl), offset, set_src);
1936 var_reg_set (set, loc, initialized, set_src);
1937 }
1938
1939 /* Delete the association of register LOC in dataflow set SET with any
1940 variables that aren't onepart. If CLOBBER is true, also delete any
1941 other live copies of the same variable part, and delete the
1942 association with onepart dvs too. */
1943
1944 static void
1945 var_reg_delete (dataflow_set *set, rtx loc, bool clobber)
1946 {
1947 attrs *nextp = &set->regs[REGNO (loc)];
1948 attrs node, next;
1949
1950 if (clobber)
1951 {
1952 tree decl = REG_EXPR (loc);
1953 HOST_WIDE_INT offset = REG_OFFSET (loc);
1954
1955 decl = var_debug_decl (decl);
1956
1957 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
1958 }
1959
1960 for (node = *nextp; node; node = next)
1961 {
1962 next = node->next;
1963 if (clobber || !dv_onepart_p (node->dv))
1964 {
1965 delete_variable_part (set, node->loc, node->dv, node->offset);
1966 delete node;
1967 *nextp = next;
1968 }
1969 else
1970 nextp = &node->next;
1971 }
1972 }
1973
1974 /* Delete content of register with number REGNO in dataflow set SET. */
1975
1976 static void
1977 var_regno_delete (dataflow_set *set, int regno)
1978 {
1979 attrs *reg = &set->regs[regno];
1980 attrs node, next;
1981
1982 for (node = *reg; node; node = next)
1983 {
1984 next = node->next;
1985 delete_variable_part (set, node->loc, node->dv, node->offset);
1986 delete node;
1987 }
1988 *reg = NULL;
1989 }
1990
1991 /* Return true if I is the negated value of a power of two. */
1992 static bool
1993 negative_power_of_two_p (HOST_WIDE_INT i)
1994 {
1995 unsigned HOST_WIDE_INT x = -(unsigned HOST_WIDE_INT)i;
1996 return x == (x & -x);
1997 }
1998
1999 /* Strip constant offsets and alignments off of LOC. Return the base
2000 expression. */
2001
2002 static rtx
2003 vt_get_canonicalize_base (rtx loc)
2004 {
2005 while ((GET_CODE (loc) == PLUS
2006 || GET_CODE (loc) == AND)
2007 && GET_CODE (XEXP (loc, 1)) == CONST_INT
2008 && (GET_CODE (loc) != AND
2009 || negative_power_of_two_p (INTVAL (XEXP (loc, 1)))))
2010 loc = XEXP (loc, 0);
2011
2012 return loc;
2013 }
2014
2015 /* This caches canonicalized addresses for VALUEs, computed using
2016 information in the global cselib table. */
2017 static hash_map<rtx, rtx> *global_get_addr_cache;
2018
2019 /* This caches canonicalized addresses for VALUEs, computed using
2020 information from the global cache and information pertaining to a
2021 basic block being analyzed. */
2022 static hash_map<rtx, rtx> *local_get_addr_cache;
2023
2024 static rtx vt_canonicalize_addr (dataflow_set *, rtx);
2025
2026 /* Return the canonical address for LOC, that must be a VALUE, using a
2027 cached global equivalence or computing it and storing it in the
2028 global cache. */
2029
2030 static rtx
2031 get_addr_from_global_cache (rtx const loc)
2032 {
2033 rtx x;
2034
2035 gcc_checking_assert (GET_CODE (loc) == VALUE);
2036
2037 bool existed;
2038 rtx *slot = &global_get_addr_cache->get_or_insert (loc, &existed);
2039 if (existed)
2040 return *slot;
2041
2042 x = canon_rtx (get_addr (loc));
2043
2044 /* Tentative, avoiding infinite recursion. */
2045 *slot = x;
2046
2047 if (x != loc)
2048 {
2049 rtx nx = vt_canonicalize_addr (NULL, x);
2050 if (nx != x)
2051 {
2052 /* The table may have moved during recursion, recompute
2053 SLOT. */
2054 *global_get_addr_cache->get (loc) = x = nx;
2055 }
2056 }
2057
2058 return x;
2059 }
2060
2061 /* Return the canonical address for LOC, that must be a VALUE, using a
2062 cached local equivalence or computing it and storing it in the
2063 local cache. */
2064
2065 static rtx
2066 get_addr_from_local_cache (dataflow_set *set, rtx const loc)
2067 {
2068 rtx x;
2069 decl_or_value dv;
2070 variable var;
2071 location_chain *l;
2072
2073 gcc_checking_assert (GET_CODE (loc) == VALUE);
2074
2075 bool existed;
2076 rtx *slot = &local_get_addr_cache->get_or_insert (loc, &existed);
2077 if (existed)
2078 return *slot;
2079
2080 x = get_addr_from_global_cache (loc);
2081
2082 /* Tentative, avoiding infinite recursion. */
2083 *slot = x;
2084
2085 /* Recurse to cache local expansion of X, or if we need to search
2086 for a VALUE in the expansion. */
2087 if (x != loc)
2088 {
2089 rtx nx = vt_canonicalize_addr (set, x);
2090 if (nx != x)
2091 {
2092 slot = local_get_addr_cache->get (loc);
2093 *slot = x = nx;
2094 }
2095 return x;
2096 }
2097
2098 dv = dv_from_rtx (x);
2099 var = shared_hash_find (set->vars, dv);
2100 if (!var)
2101 return x;
2102
2103 /* Look for an improved equivalent expression. */
2104 for (l = var->var_part[0].loc_chain; l; l = l->next)
2105 {
2106 rtx base = vt_get_canonicalize_base (l->loc);
2107 if (GET_CODE (base) == VALUE
2108 && canon_value_cmp (base, loc))
2109 {
2110 rtx nx = vt_canonicalize_addr (set, l->loc);
2111 if (x != nx)
2112 {
2113 slot = local_get_addr_cache->get (loc);
2114 *slot = x = nx;
2115 }
2116 break;
2117 }
2118 }
2119
2120 return x;
2121 }
2122
2123 /* Canonicalize LOC using equivalences from SET in addition to those
2124 in the cselib static table. It expects a VALUE-based expression,
2125 and it will only substitute VALUEs with other VALUEs or
2126 function-global equivalences, so that, if two addresses have base
2127 VALUEs that are locally or globally related in ways that
2128 memrefs_conflict_p cares about, they will both canonicalize to
2129 expressions that have the same base VALUE.
2130
2131 The use of VALUEs as canonical base addresses enables the canonical
2132 RTXs to remain unchanged globally, if they resolve to a constant,
2133 or throughout a basic block otherwise, so that they can be cached
2134 and the cache needs not be invalidated when REGs, MEMs or such
2135 change. */
2136
2137 static rtx
2138 vt_canonicalize_addr (dataflow_set *set, rtx oloc)
2139 {
2140 HOST_WIDE_INT ofst = 0;
2141 machine_mode mode = GET_MODE (oloc);
2142 rtx loc = oloc;
2143 rtx x;
2144 bool retry = true;
2145
2146 while (retry)
2147 {
2148 while (GET_CODE (loc) == PLUS
2149 && GET_CODE (XEXP (loc, 1)) == CONST_INT)
2150 {
2151 ofst += INTVAL (XEXP (loc, 1));
2152 loc = XEXP (loc, 0);
2153 }
2154
2155 /* Alignment operations can't normally be combined, so just
2156 canonicalize the base and we're done. We'll normally have
2157 only one stack alignment anyway. */
2158 if (GET_CODE (loc) == AND
2159 && GET_CODE (XEXP (loc, 1)) == CONST_INT
2160 && negative_power_of_two_p (INTVAL (XEXP (loc, 1))))
2161 {
2162 x = vt_canonicalize_addr (set, XEXP (loc, 0));
2163 if (x != XEXP (loc, 0))
2164 loc = gen_rtx_AND (mode, x, XEXP (loc, 1));
2165 retry = false;
2166 }
2167
2168 if (GET_CODE (loc) == VALUE)
2169 {
2170 if (set)
2171 loc = get_addr_from_local_cache (set, loc);
2172 else
2173 loc = get_addr_from_global_cache (loc);
2174
2175 /* Consolidate plus_constants. */
2176 while (ofst && GET_CODE (loc) == PLUS
2177 && GET_CODE (XEXP (loc, 1)) == CONST_INT)
2178 {
2179 ofst += INTVAL (XEXP (loc, 1));
2180 loc = XEXP (loc, 0);
2181 }
2182
2183 retry = false;
2184 }
2185 else
2186 {
2187 x = canon_rtx (loc);
2188 if (retry)
2189 retry = (x != loc);
2190 loc = x;
2191 }
2192 }
2193
2194 /* Add OFST back in. */
2195 if (ofst)
2196 {
2197 /* Don't build new RTL if we can help it. */
2198 if (GET_CODE (oloc) == PLUS
2199 && XEXP (oloc, 0) == loc
2200 && INTVAL (XEXP (oloc, 1)) == ofst)
2201 return oloc;
2202
2203 loc = plus_constant (mode, loc, ofst);
2204 }
2205
2206 return loc;
2207 }
2208
2209 /* Return true iff there's a true dependence between MLOC and LOC.
2210 MADDR must be a canonicalized version of MLOC's address. */
2211
2212 static inline bool
2213 vt_canon_true_dep (dataflow_set *set, rtx mloc, rtx maddr, rtx loc)
2214 {
2215 if (GET_CODE (loc) != MEM)
2216 return false;
2217
2218 rtx addr = vt_canonicalize_addr (set, XEXP (loc, 0));
2219 if (!canon_true_dependence (mloc, GET_MODE (mloc), maddr, loc, addr))
2220 return false;
2221
2222 return true;
2223 }
2224
2225 /* Hold parameters for the hashtab traversal function
2226 drop_overlapping_mem_locs, see below. */
2227
2228 struct overlapping_mems
2229 {
2230 dataflow_set *set;
2231 rtx loc, addr;
2232 };
2233
2234 /* Remove all MEMs that overlap with COMS->LOC from the location list
2235 of a hash table entry for a value. COMS->ADDR must be a
2236 canonicalized form of COMS->LOC's address, and COMS->LOC must be
2237 canonicalized itself. */
2238
2239 int
2240 drop_overlapping_mem_locs (variable_def **slot, overlapping_mems *coms)
2241 {
2242 dataflow_set *set = coms->set;
2243 rtx mloc = coms->loc, addr = coms->addr;
2244 variable var = *slot;
2245
2246 if (var->onepart == ONEPART_VALUE)
2247 {
2248 location_chain *loc, **locp;
2249 bool changed = false;
2250 rtx cur_loc;
2251
2252 gcc_assert (var->n_var_parts == 1);
2253
2254 if (shared_var_p (var, set->vars))
2255 {
2256 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
2257 if (vt_canon_true_dep (set, mloc, addr, loc->loc))
2258 break;
2259
2260 if (!loc)
2261 return 1;
2262
2263 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
2264 var = *slot;
2265 gcc_assert (var->n_var_parts == 1);
2266 }
2267
2268 if (VAR_LOC_1PAUX (var))
2269 cur_loc = VAR_LOC_FROM (var);
2270 else
2271 cur_loc = var->var_part[0].cur_loc;
2272
2273 for (locp = &var->var_part[0].loc_chain, loc = *locp;
2274 loc; loc = *locp)
2275 {
2276 if (!vt_canon_true_dep (set, mloc, addr, loc->loc))
2277 {
2278 locp = &loc->next;
2279 continue;
2280 }
2281
2282 *locp = loc->next;
2283 /* If we have deleted the location which was last emitted
2284 we have to emit new location so add the variable to set
2285 of changed variables. */
2286 if (cur_loc == loc->loc)
2287 {
2288 changed = true;
2289 var->var_part[0].cur_loc = NULL;
2290 if (VAR_LOC_1PAUX (var))
2291 VAR_LOC_FROM (var) = NULL;
2292 }
2293 delete loc;
2294 }
2295
2296 if (!var->var_part[0].loc_chain)
2297 {
2298 var->n_var_parts--;
2299 changed = true;
2300 }
2301 if (changed)
2302 variable_was_changed (var, set);
2303 }
2304
2305 return 1;
2306 }
2307
2308 /* Remove from SET all VALUE bindings to MEMs that overlap with LOC. */
2309
2310 static void
2311 clobber_overlapping_mems (dataflow_set *set, rtx loc)
2312 {
2313 struct overlapping_mems coms;
2314
2315 gcc_checking_assert (GET_CODE (loc) == MEM);
2316
2317 coms.set = set;
2318 coms.loc = canon_rtx (loc);
2319 coms.addr = vt_canonicalize_addr (set, XEXP (loc, 0));
2320
2321 set->traversed_vars = set->vars;
2322 shared_hash_htab (set->vars)
2323 ->traverse <overlapping_mems*, drop_overlapping_mem_locs> (&coms);
2324 set->traversed_vars = NULL;
2325 }
2326
2327 /* Set the location of DV, OFFSET as the MEM LOC. */
2328
2329 static void
2330 var_mem_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
2331 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
2332 enum insert_option iopt)
2333 {
2334 if (dv_is_decl_p (dv))
2335 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
2336
2337 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
2338 }
2339
2340 /* Set the location part of variable MEM_EXPR (LOC) in dataflow set
2341 SET to LOC.
2342 Adjust the address first if it is stack pointer based. */
2343
2344 static void
2345 var_mem_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
2346 rtx set_src)
2347 {
2348 tree decl = MEM_EXPR (loc);
2349 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2350
2351 var_mem_decl_set (set, loc, initialized,
2352 dv_from_decl (decl), offset, set_src, INSERT);
2353 }
2354
2355 /* Delete and set the location part of variable MEM_EXPR (LOC) in
2356 dataflow set SET to LOC. If MODIFY is true, any other live copies
2357 of the same variable part are also deleted from the dataflow set,
2358 otherwise the variable part is assumed to be copied from another
2359 location holding the same part.
2360 Adjust the address first if it is stack pointer based. */
2361
2362 static void
2363 var_mem_delete_and_set (dataflow_set *set, rtx loc, bool modify,
2364 enum var_init_status initialized, rtx set_src)
2365 {
2366 tree decl = MEM_EXPR (loc);
2367 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2368
2369 clobber_overlapping_mems (set, loc);
2370 decl = var_debug_decl (decl);
2371
2372 if (initialized == VAR_INIT_STATUS_UNKNOWN)
2373 initialized = get_init_value (set, loc, dv_from_decl (decl));
2374
2375 if (modify)
2376 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, set_src);
2377 var_mem_set (set, loc, initialized, set_src);
2378 }
2379
2380 /* Delete the location part LOC from dataflow set SET. If CLOBBER is
2381 true, also delete any other live copies of the same variable part.
2382 Adjust the address first if it is stack pointer based. */
2383
2384 static void
2385 var_mem_delete (dataflow_set *set, rtx loc, bool clobber)
2386 {
2387 tree decl = MEM_EXPR (loc);
2388 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2389
2390 clobber_overlapping_mems (set, loc);
2391 decl = var_debug_decl (decl);
2392 if (clobber)
2393 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
2394 delete_variable_part (set, loc, dv_from_decl (decl), offset);
2395 }
2396
2397 /* Return true if LOC should not be expanded for location expressions,
2398 or used in them. */
2399
2400 static inline bool
2401 unsuitable_loc (rtx loc)
2402 {
2403 switch (GET_CODE (loc))
2404 {
2405 case PC:
2406 case SCRATCH:
2407 case CC0:
2408 case ASM_INPUT:
2409 case ASM_OPERANDS:
2410 return true;
2411
2412 default:
2413 return false;
2414 }
2415 }
2416
2417 /* Bind VAL to LOC in SET. If MODIFIED, detach LOC from any values
2418 bound to it. */
2419
2420 static inline void
2421 val_bind (dataflow_set *set, rtx val, rtx loc, bool modified)
2422 {
2423 if (REG_P (loc))
2424 {
2425 if (modified)
2426 var_regno_delete (set, REGNO (loc));
2427 var_reg_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2428 dv_from_value (val), 0, NULL_RTX, INSERT);
2429 }
2430 else if (MEM_P (loc))
2431 {
2432 struct elt_loc_list *l = CSELIB_VAL_PTR (val)->locs;
2433
2434 if (modified)
2435 clobber_overlapping_mems (set, loc);
2436
2437 if (l && GET_CODE (l->loc) == VALUE)
2438 l = canonical_cselib_val (CSELIB_VAL_PTR (l->loc))->locs;
2439
2440 /* If this MEM is a global constant, we don't need it in the
2441 dynamic tables. ??? We should test this before emitting the
2442 micro-op in the first place. */
2443 while (l)
2444 if (GET_CODE (l->loc) == MEM && XEXP (l->loc, 0) == XEXP (loc, 0))
2445 break;
2446 else
2447 l = l->next;
2448
2449 if (!l)
2450 var_mem_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2451 dv_from_value (val), 0, NULL_RTX, INSERT);
2452 }
2453 else
2454 {
2455 /* Other kinds of equivalences are necessarily static, at least
2456 so long as we do not perform substitutions while merging
2457 expressions. */
2458 gcc_unreachable ();
2459 set_variable_part (set, loc, dv_from_value (val), 0,
2460 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2461 }
2462 }
2463
2464 /* Bind a value to a location it was just stored in. If MODIFIED
2465 holds, assume the location was modified, detaching it from any
2466 values bound to it. */
2467
2468 static void
2469 val_store (dataflow_set *set, rtx val, rtx loc, rtx_insn *insn,
2470 bool modified)
2471 {
2472 cselib_val *v = CSELIB_VAL_PTR (val);
2473
2474 gcc_assert (cselib_preserved_value_p (v));
2475
2476 if (dump_file)
2477 {
2478 fprintf (dump_file, "%i: ", insn ? INSN_UID (insn) : 0);
2479 print_inline_rtx (dump_file, loc, 0);
2480 fprintf (dump_file, " evaluates to ");
2481 print_inline_rtx (dump_file, val, 0);
2482 if (v->locs)
2483 {
2484 struct elt_loc_list *l;
2485 for (l = v->locs; l; l = l->next)
2486 {
2487 fprintf (dump_file, "\n%i: ", INSN_UID (l->setting_insn));
2488 print_inline_rtx (dump_file, l->loc, 0);
2489 }
2490 }
2491 fprintf (dump_file, "\n");
2492 }
2493
2494 gcc_checking_assert (!unsuitable_loc (loc));
2495
2496 val_bind (set, val, loc, modified);
2497 }
2498
2499 /* Clear (canonical address) slots that reference X. */
2500
2501 bool
2502 local_get_addr_clear_given_value (rtx const &, rtx *slot, rtx x)
2503 {
2504 if (vt_get_canonicalize_base (*slot) == x)
2505 *slot = NULL;
2506 return true;
2507 }
2508
2509 /* Reset this node, detaching all its equivalences. Return the slot
2510 in the variable hash table that holds dv, if there is one. */
2511
2512 static void
2513 val_reset (dataflow_set *set, decl_or_value dv)
2514 {
2515 variable var = shared_hash_find (set->vars, dv) ;
2516 location_chain *node;
2517 rtx cval;
2518
2519 if (!var || !var->n_var_parts)
2520 return;
2521
2522 gcc_assert (var->n_var_parts == 1);
2523
2524 if (var->onepart == ONEPART_VALUE)
2525 {
2526 rtx x = dv_as_value (dv);
2527
2528 /* Relationships in the global cache don't change, so reset the
2529 local cache entry only. */
2530 rtx *slot = local_get_addr_cache->get (x);
2531 if (slot)
2532 {
2533 /* If the value resolved back to itself, odds are that other
2534 values may have cached it too. These entries now refer
2535 to the old X, so detach them too. Entries that used the
2536 old X but resolved to something else remain ok as long as
2537 that something else isn't also reset. */
2538 if (*slot == x)
2539 local_get_addr_cache
2540 ->traverse<rtx, local_get_addr_clear_given_value> (x);
2541 *slot = NULL;
2542 }
2543 }
2544
2545 cval = NULL;
2546 for (node = var->var_part[0].loc_chain; node; node = node->next)
2547 if (GET_CODE (node->loc) == VALUE
2548 && canon_value_cmp (node->loc, cval))
2549 cval = node->loc;
2550
2551 for (node = var->var_part[0].loc_chain; node; node = node->next)
2552 if (GET_CODE (node->loc) == VALUE && cval != node->loc)
2553 {
2554 /* Redirect the equivalence link to the new canonical
2555 value, or simply remove it if it would point at
2556 itself. */
2557 if (cval)
2558 set_variable_part (set, cval, dv_from_value (node->loc),
2559 0, node->init, node->set_src, NO_INSERT);
2560 delete_variable_part (set, dv_as_value (dv),
2561 dv_from_value (node->loc), 0);
2562 }
2563
2564 if (cval)
2565 {
2566 decl_or_value cdv = dv_from_value (cval);
2567
2568 /* Keep the remaining values connected, accummulating links
2569 in the canonical value. */
2570 for (node = var->var_part[0].loc_chain; node; node = node->next)
2571 {
2572 if (node->loc == cval)
2573 continue;
2574 else if (GET_CODE (node->loc) == REG)
2575 var_reg_decl_set (set, node->loc, node->init, cdv, 0,
2576 node->set_src, NO_INSERT);
2577 else if (GET_CODE (node->loc) == MEM)
2578 var_mem_decl_set (set, node->loc, node->init, cdv, 0,
2579 node->set_src, NO_INSERT);
2580 else
2581 set_variable_part (set, node->loc, cdv, 0,
2582 node->init, node->set_src, NO_INSERT);
2583 }
2584 }
2585
2586 /* We remove this last, to make sure that the canonical value is not
2587 removed to the point of requiring reinsertion. */
2588 if (cval)
2589 delete_variable_part (set, dv_as_value (dv), dv_from_value (cval), 0);
2590
2591 clobber_variable_part (set, NULL, dv, 0, NULL);
2592 }
2593
2594 /* Find the values in a given location and map the val to another
2595 value, if it is unique, or add the location as one holding the
2596 value. */
2597
2598 static void
2599 val_resolve (dataflow_set *set, rtx val, rtx loc, rtx_insn *insn)
2600 {
2601 decl_or_value dv = dv_from_value (val);
2602
2603 if (dump_file && (dump_flags & TDF_DETAILS))
2604 {
2605 if (insn)
2606 fprintf (dump_file, "%i: ", INSN_UID (insn));
2607 else
2608 fprintf (dump_file, "head: ");
2609 print_inline_rtx (dump_file, val, 0);
2610 fputs (" is at ", dump_file);
2611 print_inline_rtx (dump_file, loc, 0);
2612 fputc ('\n', dump_file);
2613 }
2614
2615 val_reset (set, dv);
2616
2617 gcc_checking_assert (!unsuitable_loc (loc));
2618
2619 if (REG_P (loc))
2620 {
2621 attrs node, found = NULL;
2622
2623 for (node = set->regs[REGNO (loc)]; node; node = node->next)
2624 if (dv_is_value_p (node->dv)
2625 && GET_MODE (dv_as_value (node->dv)) == GET_MODE (loc))
2626 {
2627 found = node;
2628
2629 /* Map incoming equivalences. ??? Wouldn't it be nice if
2630 we just started sharing the location lists? Maybe a
2631 circular list ending at the value itself or some
2632 such. */
2633 set_variable_part (set, dv_as_value (node->dv),
2634 dv_from_value (val), node->offset,
2635 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2636 set_variable_part (set, val, node->dv, node->offset,
2637 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2638 }
2639
2640 /* If we didn't find any equivalence, we need to remember that
2641 this value is held in the named register. */
2642 if (found)
2643 return;
2644 }
2645 /* ??? Attempt to find and merge equivalent MEMs or other
2646 expressions too. */
2647
2648 val_bind (set, val, loc, false);
2649 }
2650
2651 /* Initialize dataflow set SET to be empty.
2652 VARS_SIZE is the initial size of hash table VARS. */
2653
2654 static void
2655 dataflow_set_init (dataflow_set *set)
2656 {
2657 init_attrs_list_set (set->regs);
2658 set->vars = shared_hash_copy (empty_shared_hash);
2659 set->stack_adjust = 0;
2660 set->traversed_vars = NULL;
2661 }
2662
2663 /* Delete the contents of dataflow set SET. */
2664
2665 static void
2666 dataflow_set_clear (dataflow_set *set)
2667 {
2668 int i;
2669
2670 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2671 attrs_list_clear (&set->regs[i]);
2672
2673 shared_hash_destroy (set->vars);
2674 set->vars = shared_hash_copy (empty_shared_hash);
2675 }
2676
2677 /* Copy the contents of dataflow set SRC to DST. */
2678
2679 static void
2680 dataflow_set_copy (dataflow_set *dst, dataflow_set *src)
2681 {
2682 int i;
2683
2684 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2685 attrs_list_copy (&dst->regs[i], src->regs[i]);
2686
2687 shared_hash_destroy (dst->vars);
2688 dst->vars = shared_hash_copy (src->vars);
2689 dst->stack_adjust = src->stack_adjust;
2690 }
2691
2692 /* Information for merging lists of locations for a given offset of variable.
2693 */
2694 struct variable_union_info
2695 {
2696 /* Node of the location chain. */
2697 location_chain *lc;
2698
2699 /* The sum of positions in the input chains. */
2700 int pos;
2701
2702 /* The position in the chain of DST dataflow set. */
2703 int pos_dst;
2704 };
2705
2706 /* Buffer for location list sorting and its allocated size. */
2707 static struct variable_union_info *vui_vec;
2708 static int vui_allocated;
2709
2710 /* Compare function for qsort, order the structures by POS element. */
2711
2712 static int
2713 variable_union_info_cmp_pos (const void *n1, const void *n2)
2714 {
2715 const struct variable_union_info *const i1 =
2716 (const struct variable_union_info *) n1;
2717 const struct variable_union_info *const i2 =
2718 ( const struct variable_union_info *) n2;
2719
2720 if (i1->pos != i2->pos)
2721 return i1->pos - i2->pos;
2722
2723 return (i1->pos_dst - i2->pos_dst);
2724 }
2725
2726 /* Compute union of location parts of variable *SLOT and the same variable
2727 from hash table DATA. Compute "sorted" union of the location chains
2728 for common offsets, i.e. the locations of a variable part are sorted by
2729 a priority where the priority is the sum of the positions in the 2 chains
2730 (if a location is only in one list the position in the second list is
2731 defined to be larger than the length of the chains).
2732 When we are updating the location parts the newest location is in the
2733 beginning of the chain, so when we do the described "sorted" union
2734 we keep the newest locations in the beginning. */
2735
2736 static int
2737 variable_union (variable src, dataflow_set *set)
2738 {
2739 variable dst;
2740 variable_def **dstp;
2741 int i, j, k;
2742
2743 dstp = shared_hash_find_slot (set->vars, src->dv);
2744 if (!dstp || !*dstp)
2745 {
2746 src->refcount++;
2747
2748 dst_can_be_shared = false;
2749 if (!dstp)
2750 dstp = shared_hash_find_slot_unshare (&set->vars, src->dv, INSERT);
2751
2752 *dstp = src;
2753
2754 /* Continue traversing the hash table. */
2755 return 1;
2756 }
2757 else
2758 dst = *dstp;
2759
2760 gcc_assert (src->n_var_parts);
2761 gcc_checking_assert (src->onepart == dst->onepart);
2762
2763 /* We can combine one-part variables very efficiently, because their
2764 entries are in canonical order. */
2765 if (src->onepart)
2766 {
2767 location_chain **nodep, *dnode, *snode;
2768
2769 gcc_assert (src->n_var_parts == 1
2770 && dst->n_var_parts == 1);
2771
2772 snode = src->var_part[0].loc_chain;
2773 gcc_assert (snode);
2774
2775 restart_onepart_unshared:
2776 nodep = &dst->var_part[0].loc_chain;
2777 dnode = *nodep;
2778 gcc_assert (dnode);
2779
2780 while (snode)
2781 {
2782 int r = dnode ? loc_cmp (dnode->loc, snode->loc) : 1;
2783
2784 if (r > 0)
2785 {
2786 location_chain *nnode;
2787
2788 if (shared_var_p (dst, set->vars))
2789 {
2790 dstp = unshare_variable (set, dstp, dst,
2791 VAR_INIT_STATUS_INITIALIZED);
2792 dst = *dstp;
2793 goto restart_onepart_unshared;
2794 }
2795
2796 *nodep = nnode = new location_chain;
2797 nnode->loc = snode->loc;
2798 nnode->init = snode->init;
2799 if (!snode->set_src || MEM_P (snode->set_src))
2800 nnode->set_src = NULL;
2801 else
2802 nnode->set_src = snode->set_src;
2803 nnode->next = dnode;
2804 dnode = nnode;
2805 }
2806 else if (r == 0)
2807 gcc_checking_assert (rtx_equal_p (dnode->loc, snode->loc));
2808
2809 if (r >= 0)
2810 snode = snode->next;
2811
2812 nodep = &dnode->next;
2813 dnode = *nodep;
2814 }
2815
2816 return 1;
2817 }
2818
2819 gcc_checking_assert (!src->onepart);
2820
2821 /* Count the number of location parts, result is K. */
2822 for (i = 0, j = 0, k = 0;
2823 i < src->n_var_parts && j < dst->n_var_parts; k++)
2824 {
2825 if (VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
2826 {
2827 i++;
2828 j++;
2829 }
2830 else if (VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
2831 i++;
2832 else
2833 j++;
2834 }
2835 k += src->n_var_parts - i;
2836 k += dst->n_var_parts - j;
2837
2838 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
2839 thus there are at most MAX_VAR_PARTS different offsets. */
2840 gcc_checking_assert (dst->onepart ? k == 1 : k <= MAX_VAR_PARTS);
2841
2842 if (dst->n_var_parts != k && shared_var_p (dst, set->vars))
2843 {
2844 dstp = unshare_variable (set, dstp, dst, VAR_INIT_STATUS_UNKNOWN);
2845 dst = *dstp;
2846 }
2847
2848 i = src->n_var_parts - 1;
2849 j = dst->n_var_parts - 1;
2850 dst->n_var_parts = k;
2851
2852 for (k--; k >= 0; k--)
2853 {
2854 location_chain *node, *node2;
2855
2856 if (i >= 0 && j >= 0
2857 && VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
2858 {
2859 /* Compute the "sorted" union of the chains, i.e. the locations which
2860 are in both chains go first, they are sorted by the sum of
2861 positions in the chains. */
2862 int dst_l, src_l;
2863 int ii, jj, n;
2864 struct variable_union_info *vui;
2865
2866 /* If DST is shared compare the location chains.
2867 If they are different we will modify the chain in DST with
2868 high probability so make a copy of DST. */
2869 if (shared_var_p (dst, set->vars))
2870 {
2871 for (node = src->var_part[i].loc_chain,
2872 node2 = dst->var_part[j].loc_chain; node && node2;
2873 node = node->next, node2 = node2->next)
2874 {
2875 if (!((REG_P (node2->loc)
2876 && REG_P (node->loc)
2877 && REGNO (node2->loc) == REGNO (node->loc))
2878 || rtx_equal_p (node2->loc, node->loc)))
2879 {
2880 if (node2->init < node->init)
2881 node2->init = node->init;
2882 break;
2883 }
2884 }
2885 if (node || node2)
2886 {
2887 dstp = unshare_variable (set, dstp, dst,
2888 VAR_INIT_STATUS_UNKNOWN);
2889 dst = (variable)*dstp;
2890 }
2891 }
2892
2893 src_l = 0;
2894 for (node = src->var_part[i].loc_chain; node; node = node->next)
2895 src_l++;
2896 dst_l = 0;
2897 for (node = dst->var_part[j].loc_chain; node; node = node->next)
2898 dst_l++;
2899
2900 if (dst_l == 1)
2901 {
2902 /* The most common case, much simpler, no qsort is needed. */
2903 location_chain *dstnode = dst->var_part[j].loc_chain;
2904 dst->var_part[k].loc_chain = dstnode;
2905 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (dst, j);
2906 node2 = dstnode;
2907 for (node = src->var_part[i].loc_chain; node; node = node->next)
2908 if (!((REG_P (dstnode->loc)
2909 && REG_P (node->loc)
2910 && REGNO (dstnode->loc) == REGNO (node->loc))
2911 || rtx_equal_p (dstnode->loc, node->loc)))
2912 {
2913 location_chain *new_node;
2914
2915 /* Copy the location from SRC. */
2916 new_node = new location_chain;
2917 new_node->loc = node->loc;
2918 new_node->init = node->init;
2919 if (!node->set_src || MEM_P (node->set_src))
2920 new_node->set_src = NULL;
2921 else
2922 new_node->set_src = node->set_src;
2923 node2->next = new_node;
2924 node2 = new_node;
2925 }
2926 node2->next = NULL;
2927 }
2928 else
2929 {
2930 if (src_l + dst_l > vui_allocated)
2931 {
2932 vui_allocated = MAX (vui_allocated * 2, src_l + dst_l);
2933 vui_vec = XRESIZEVEC (struct variable_union_info, vui_vec,
2934 vui_allocated);
2935 }
2936 vui = vui_vec;
2937
2938 /* Fill in the locations from DST. */
2939 for (node = dst->var_part[j].loc_chain, jj = 0; node;
2940 node = node->next, jj++)
2941 {
2942 vui[jj].lc = node;
2943 vui[jj].pos_dst = jj;
2944
2945 /* Pos plus value larger than a sum of 2 valid positions. */
2946 vui[jj].pos = jj + src_l + dst_l;
2947 }
2948
2949 /* Fill in the locations from SRC. */
2950 n = dst_l;
2951 for (node = src->var_part[i].loc_chain, ii = 0; node;
2952 node = node->next, ii++)
2953 {
2954 /* Find location from NODE. */
2955 for (jj = 0; jj < dst_l; jj++)
2956 {
2957 if ((REG_P (vui[jj].lc->loc)
2958 && REG_P (node->loc)
2959 && REGNO (vui[jj].lc->loc) == REGNO (node->loc))
2960 || rtx_equal_p (vui[jj].lc->loc, node->loc))
2961 {
2962 vui[jj].pos = jj + ii;
2963 break;
2964 }
2965 }
2966 if (jj >= dst_l) /* The location has not been found. */
2967 {
2968 location_chain *new_node;
2969
2970 /* Copy the location from SRC. */
2971 new_node = new location_chain;
2972 new_node->loc = node->loc;
2973 new_node->init = node->init;
2974 if (!node->set_src || MEM_P (node->set_src))
2975 new_node->set_src = NULL;
2976 else
2977 new_node->set_src = node->set_src;
2978 vui[n].lc = new_node;
2979 vui[n].pos_dst = src_l + dst_l;
2980 vui[n].pos = ii + src_l + dst_l;
2981 n++;
2982 }
2983 }
2984
2985 if (dst_l == 2)
2986 {
2987 /* Special case still very common case. For dst_l == 2
2988 all entries dst_l ... n-1 are sorted, with for i >= dst_l
2989 vui[i].pos == i + src_l + dst_l. */
2990 if (vui[0].pos > vui[1].pos)
2991 {
2992 /* Order should be 1, 0, 2... */
2993 dst->var_part[k].loc_chain = vui[1].lc;
2994 vui[1].lc->next = vui[0].lc;
2995 if (n >= 3)
2996 {
2997 vui[0].lc->next = vui[2].lc;
2998 vui[n - 1].lc->next = NULL;
2999 }
3000 else
3001 vui[0].lc->next = NULL;
3002 ii = 3;
3003 }
3004 else
3005 {
3006 dst->var_part[k].loc_chain = vui[0].lc;
3007 if (n >= 3 && vui[2].pos < vui[1].pos)
3008 {
3009 /* Order should be 0, 2, 1, 3... */
3010 vui[0].lc->next = vui[2].lc;
3011 vui[2].lc->next = vui[1].lc;
3012 if (n >= 4)
3013 {
3014 vui[1].lc->next = vui[3].lc;
3015 vui[n - 1].lc->next = NULL;
3016 }
3017 else
3018 vui[1].lc->next = NULL;
3019 ii = 4;
3020 }
3021 else
3022 {
3023 /* Order should be 0, 1, 2... */
3024 ii = 1;
3025 vui[n - 1].lc->next = NULL;
3026 }
3027 }
3028 for (; ii < n; ii++)
3029 vui[ii - 1].lc->next = vui[ii].lc;
3030 }
3031 else
3032 {
3033 qsort (vui, n, sizeof (struct variable_union_info),
3034 variable_union_info_cmp_pos);
3035
3036 /* Reconnect the nodes in sorted order. */
3037 for (ii = 1; ii < n; ii++)
3038 vui[ii - 1].lc->next = vui[ii].lc;
3039 vui[n - 1].lc->next = NULL;
3040 dst->var_part[k].loc_chain = vui[0].lc;
3041 }
3042
3043 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (dst, j);
3044 }
3045 i--;
3046 j--;
3047 }
3048 else if ((i >= 0 && j >= 0
3049 && VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
3050 || i < 0)
3051 {
3052 dst->var_part[k] = dst->var_part[j];
3053 j--;
3054 }
3055 else if ((i >= 0 && j >= 0
3056 && VAR_PART_OFFSET (src, i) > VAR_PART_OFFSET (dst, j))
3057 || j < 0)
3058 {
3059 location_chain **nextp;
3060
3061 /* Copy the chain from SRC. */
3062 nextp = &dst->var_part[k].loc_chain;
3063 for (node = src->var_part[i].loc_chain; node; node = node->next)
3064 {
3065 location_chain *new_lc;
3066
3067 new_lc = new location_chain;
3068 new_lc->next = NULL;
3069 new_lc->init = node->init;
3070 if (!node->set_src || MEM_P (node->set_src))
3071 new_lc->set_src = NULL;
3072 else
3073 new_lc->set_src = node->set_src;
3074 new_lc->loc = node->loc;
3075
3076 *nextp = new_lc;
3077 nextp = &new_lc->next;
3078 }
3079
3080 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (src, i);
3081 i--;
3082 }
3083 dst->var_part[k].cur_loc = NULL;
3084 }
3085
3086 if (flag_var_tracking_uninit)
3087 for (i = 0; i < src->n_var_parts && i < dst->n_var_parts; i++)
3088 {
3089 location_chain *node, *node2;
3090 for (node = src->var_part[i].loc_chain; node; node = node->next)
3091 for (node2 = dst->var_part[i].loc_chain; node2; node2 = node2->next)
3092 if (rtx_equal_p (node->loc, node2->loc))
3093 {
3094 if (node->init > node2->init)
3095 node2->init = node->init;
3096 }
3097 }
3098
3099 /* Continue traversing the hash table. */
3100 return 1;
3101 }
3102
3103 /* Compute union of dataflow sets SRC and DST and store it to DST. */
3104
3105 static void
3106 dataflow_set_union (dataflow_set *dst, dataflow_set *src)
3107 {
3108 int i;
3109
3110 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3111 attrs_list_union (&dst->regs[i], src->regs[i]);
3112
3113 if (dst->vars == empty_shared_hash)
3114 {
3115 shared_hash_destroy (dst->vars);
3116 dst->vars = shared_hash_copy (src->vars);
3117 }
3118 else
3119 {
3120 variable_iterator_type hi;
3121 variable var;
3122
3123 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (src->vars),
3124 var, variable, hi)
3125 variable_union (var, dst);
3126 }
3127 }
3128
3129 /* Whether the value is currently being expanded. */
3130 #define VALUE_RECURSED_INTO(x) \
3131 (RTL_FLAG_CHECK2 ("VALUE_RECURSED_INTO", (x), VALUE, DEBUG_EXPR)->used)
3132
3133 /* Whether no expansion was found, saving useless lookups.
3134 It must only be set when VALUE_CHANGED is clear. */
3135 #define NO_LOC_P(x) \
3136 (RTL_FLAG_CHECK2 ("NO_LOC_P", (x), VALUE, DEBUG_EXPR)->return_val)
3137
3138 /* Whether cur_loc in the value needs to be (re)computed. */
3139 #define VALUE_CHANGED(x) \
3140 (RTL_FLAG_CHECK1 ("VALUE_CHANGED", (x), VALUE)->frame_related)
3141 /* Whether cur_loc in the decl needs to be (re)computed. */
3142 #define DECL_CHANGED(x) TREE_VISITED (x)
3143
3144 /* Record (if NEWV) that DV needs to have its cur_loc recomputed. For
3145 user DECLs, this means they're in changed_variables. Values and
3146 debug exprs may be left with this flag set if no user variable
3147 requires them to be evaluated. */
3148
3149 static inline void
3150 set_dv_changed (decl_or_value dv, bool newv)
3151 {
3152 switch (dv_onepart_p (dv))
3153 {
3154 case ONEPART_VALUE:
3155 if (newv)
3156 NO_LOC_P (dv_as_value (dv)) = false;
3157 VALUE_CHANGED (dv_as_value (dv)) = newv;
3158 break;
3159
3160 case ONEPART_DEXPR:
3161 if (newv)
3162 NO_LOC_P (DECL_RTL_KNOWN_SET (dv_as_decl (dv))) = false;
3163 /* Fall through... */
3164
3165 default:
3166 DECL_CHANGED (dv_as_decl (dv)) = newv;
3167 break;
3168 }
3169 }
3170
3171 /* Return true if DV needs to have its cur_loc recomputed. */
3172
3173 static inline bool
3174 dv_changed_p (decl_or_value dv)
3175 {
3176 return (dv_is_value_p (dv)
3177 ? VALUE_CHANGED (dv_as_value (dv))
3178 : DECL_CHANGED (dv_as_decl (dv)));
3179 }
3180
3181 /* Return a location list node whose loc is rtx_equal to LOC, in the
3182 location list of a one-part variable or value VAR, or in that of
3183 any values recursively mentioned in the location lists. VARS must
3184 be in star-canonical form. */
3185
3186 static location_chain *
3187 find_loc_in_1pdv (rtx loc, variable var, variable_table_type *vars)
3188 {
3189 location_chain *node;
3190 enum rtx_code loc_code;
3191
3192 if (!var)
3193 return NULL;
3194
3195 gcc_checking_assert (var->onepart);
3196
3197 if (!var->n_var_parts)
3198 return NULL;
3199
3200 gcc_checking_assert (loc != dv_as_opaque (var->dv));
3201
3202 loc_code = GET_CODE (loc);
3203 for (node = var->var_part[0].loc_chain; node; node = node->next)
3204 {
3205 decl_or_value dv;
3206 variable rvar;
3207
3208 if (GET_CODE (node->loc) != loc_code)
3209 {
3210 if (GET_CODE (node->loc) != VALUE)
3211 continue;
3212 }
3213 else if (loc == node->loc)
3214 return node;
3215 else if (loc_code != VALUE)
3216 {
3217 if (rtx_equal_p (loc, node->loc))
3218 return node;
3219 continue;
3220 }
3221
3222 /* Since we're in star-canonical form, we don't need to visit
3223 non-canonical nodes: one-part variables and non-canonical
3224 values would only point back to the canonical node. */
3225 if (dv_is_value_p (var->dv)
3226 && !canon_value_cmp (node->loc, dv_as_value (var->dv)))
3227 {
3228 /* Skip all subsequent VALUEs. */
3229 while (node->next && GET_CODE (node->next->loc) == VALUE)
3230 {
3231 node = node->next;
3232 gcc_checking_assert (!canon_value_cmp (node->loc,
3233 dv_as_value (var->dv)));
3234 if (loc == node->loc)
3235 return node;
3236 }
3237 continue;
3238 }
3239
3240 gcc_checking_assert (node == var->var_part[0].loc_chain);
3241 gcc_checking_assert (!node->next);
3242
3243 dv = dv_from_value (node->loc);
3244 rvar = vars->find_with_hash (dv, dv_htab_hash (dv));
3245 return find_loc_in_1pdv (loc, rvar, vars);
3246 }
3247
3248 /* ??? Gotta look in cselib_val locations too. */
3249
3250 return NULL;
3251 }
3252
3253 /* Hash table iteration argument passed to variable_merge. */
3254 struct dfset_merge
3255 {
3256 /* The set in which the merge is to be inserted. */
3257 dataflow_set *dst;
3258 /* The set that we're iterating in. */
3259 dataflow_set *cur;
3260 /* The set that may contain the other dv we are to merge with. */
3261 dataflow_set *src;
3262 /* Number of onepart dvs in src. */
3263 int src_onepart_cnt;
3264 };
3265
3266 /* Insert LOC in *DNODE, if it's not there yet. The list must be in
3267 loc_cmp order, and it is maintained as such. */
3268
3269 static void
3270 insert_into_intersection (location_chain **nodep, rtx loc,
3271 enum var_init_status status)
3272 {
3273 location_chain *node;
3274 int r;
3275
3276 for (node = *nodep; node; nodep = &node->next, node = *nodep)
3277 if ((r = loc_cmp (node->loc, loc)) == 0)
3278 {
3279 node->init = MIN (node->init, status);
3280 return;
3281 }
3282 else if (r > 0)
3283 break;
3284
3285 node = new location_chain;
3286
3287 node->loc = loc;
3288 node->set_src = NULL;
3289 node->init = status;
3290 node->next = *nodep;
3291 *nodep = node;
3292 }
3293
3294 /* Insert in DEST the intersection of the locations present in both
3295 S1NODE and S2VAR, directly or indirectly. S1NODE is from a
3296 variable in DSM->cur, whereas S2VAR is from DSM->src. dvar is in
3297 DSM->dst. */
3298
3299 static void
3300 intersect_loc_chains (rtx val, location_chain **dest, struct dfset_merge *dsm,
3301 location_chain *s1node, variable s2var)
3302 {
3303 dataflow_set *s1set = dsm->cur;
3304 dataflow_set *s2set = dsm->src;
3305 location_chain *found;
3306
3307 if (s2var)
3308 {
3309 location_chain *s2node;
3310
3311 gcc_checking_assert (s2var->onepart);
3312
3313 if (s2var->n_var_parts)
3314 {
3315 s2node = s2var->var_part[0].loc_chain;
3316
3317 for (; s1node && s2node;
3318 s1node = s1node->next, s2node = s2node->next)
3319 if (s1node->loc != s2node->loc)
3320 break;
3321 else if (s1node->loc == val)
3322 continue;
3323 else
3324 insert_into_intersection (dest, s1node->loc,
3325 MIN (s1node->init, s2node->init));
3326 }
3327 }
3328
3329 for (; s1node; s1node = s1node->next)
3330 {
3331 if (s1node->loc == val)
3332 continue;
3333
3334 if ((found = find_loc_in_1pdv (s1node->loc, s2var,
3335 shared_hash_htab (s2set->vars))))
3336 {
3337 insert_into_intersection (dest, s1node->loc,
3338 MIN (s1node->init, found->init));
3339 continue;
3340 }
3341
3342 if (GET_CODE (s1node->loc) == VALUE
3343 && !VALUE_RECURSED_INTO (s1node->loc))
3344 {
3345 decl_or_value dv = dv_from_value (s1node->loc);
3346 variable svar = shared_hash_find (s1set->vars, dv);
3347 if (svar)
3348 {
3349 if (svar->n_var_parts == 1)
3350 {
3351 VALUE_RECURSED_INTO (s1node->loc) = true;
3352 intersect_loc_chains (val, dest, dsm,
3353 svar->var_part[0].loc_chain,
3354 s2var);
3355 VALUE_RECURSED_INTO (s1node->loc) = false;
3356 }
3357 }
3358 }
3359
3360 /* ??? gotta look in cselib_val locations too. */
3361
3362 /* ??? if the location is equivalent to any location in src,
3363 searched recursively
3364
3365 add to dst the values needed to represent the equivalence
3366
3367 telling whether locations S is equivalent to another dv's
3368 location list:
3369
3370 for each location D in the list
3371
3372 if S and D satisfy rtx_equal_p, then it is present
3373
3374 else if D is a value, recurse without cycles
3375
3376 else if S and D have the same CODE and MODE
3377
3378 for each operand oS and the corresponding oD
3379
3380 if oS and oD are not equivalent, then S an D are not equivalent
3381
3382 else if they are RTX vectors
3383
3384 if any vector oS element is not equivalent to its respective oD,
3385 then S and D are not equivalent
3386
3387 */
3388
3389
3390 }
3391 }
3392
3393 /* Return -1 if X should be before Y in a location list for a 1-part
3394 variable, 1 if Y should be before X, and 0 if they're equivalent
3395 and should not appear in the list. */
3396
3397 static int
3398 loc_cmp (rtx x, rtx y)
3399 {
3400 int i, j, r;
3401 RTX_CODE code = GET_CODE (x);
3402 const char *fmt;
3403
3404 if (x == y)
3405 return 0;
3406
3407 if (REG_P (x))
3408 {
3409 if (!REG_P (y))
3410 return -1;
3411 gcc_assert (GET_MODE (x) == GET_MODE (y));
3412 if (REGNO (x) == REGNO (y))
3413 return 0;
3414 else if (REGNO (x) < REGNO (y))
3415 return -1;
3416 else
3417 return 1;
3418 }
3419
3420 if (REG_P (y))
3421 return 1;
3422
3423 if (MEM_P (x))
3424 {
3425 if (!MEM_P (y))
3426 return -1;
3427 gcc_assert (GET_MODE (x) == GET_MODE (y));
3428 return loc_cmp (XEXP (x, 0), XEXP (y, 0));
3429 }
3430
3431 if (MEM_P (y))
3432 return 1;
3433
3434 if (GET_CODE (x) == VALUE)
3435 {
3436 if (GET_CODE (y) != VALUE)
3437 return -1;
3438 /* Don't assert the modes are the same, that is true only
3439 when not recursing. (subreg:QI (value:SI 1:1) 0)
3440 and (subreg:QI (value:DI 2:2) 0) can be compared,
3441 even when the modes are different. */
3442 if (canon_value_cmp (x, y))
3443 return -1;
3444 else
3445 return 1;
3446 }
3447
3448 if (GET_CODE (y) == VALUE)
3449 return 1;
3450
3451 /* Entry value is the least preferable kind of expression. */
3452 if (GET_CODE (x) == ENTRY_VALUE)
3453 {
3454 if (GET_CODE (y) != ENTRY_VALUE)
3455 return 1;
3456 gcc_assert (GET_MODE (x) == GET_MODE (y));
3457 return loc_cmp (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
3458 }
3459
3460 if (GET_CODE (y) == ENTRY_VALUE)
3461 return -1;
3462
3463 if (GET_CODE (x) == GET_CODE (y))
3464 /* Compare operands below. */;
3465 else if (GET_CODE (x) < GET_CODE (y))
3466 return -1;
3467 else
3468 return 1;
3469
3470 gcc_assert (GET_MODE (x) == GET_MODE (y));
3471
3472 if (GET_CODE (x) == DEBUG_EXPR)
3473 {
3474 if (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
3475 < DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)))
3476 return -1;
3477 gcc_checking_assert (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
3478 > DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)));
3479 return 1;
3480 }
3481
3482 fmt = GET_RTX_FORMAT (code);
3483 for (i = 0; i < GET_RTX_LENGTH (code); i++)
3484 switch (fmt[i])
3485 {
3486 case 'w':
3487 if (XWINT (x, i) == XWINT (y, i))
3488 break;
3489 else if (XWINT (x, i) < XWINT (y, i))
3490 return -1;
3491 else
3492 return 1;
3493
3494 case 'n':
3495 case 'i':
3496 if (XINT (x, i) == XINT (y, i))
3497 break;
3498 else if (XINT (x, i) < XINT (y, i))
3499 return -1;
3500 else
3501 return 1;
3502
3503 case 'V':
3504 case 'E':
3505 /* Compare the vector length first. */
3506 if (XVECLEN (x, i) == XVECLEN (y, i))
3507 /* Compare the vectors elements. */;
3508 else if (XVECLEN (x, i) < XVECLEN (y, i))
3509 return -1;
3510 else
3511 return 1;
3512
3513 for (j = 0; j < XVECLEN (x, i); j++)
3514 if ((r = loc_cmp (XVECEXP (x, i, j),
3515 XVECEXP (y, i, j))))
3516 return r;
3517 break;
3518
3519 case 'e':
3520 if ((r = loc_cmp (XEXP (x, i), XEXP (y, i))))
3521 return r;
3522 break;
3523
3524 case 'S':
3525 case 's':
3526 if (XSTR (x, i) == XSTR (y, i))
3527 break;
3528 if (!XSTR (x, i))
3529 return -1;
3530 if (!XSTR (y, i))
3531 return 1;
3532 if ((r = strcmp (XSTR (x, i), XSTR (y, i))) == 0)
3533 break;
3534 else if (r < 0)
3535 return -1;
3536 else
3537 return 1;
3538
3539 case 'u':
3540 /* These are just backpointers, so they don't matter. */
3541 break;
3542
3543 case '0':
3544 case 't':
3545 break;
3546
3547 /* It is believed that rtx's at this level will never
3548 contain anything but integers and other rtx's,
3549 except for within LABEL_REFs and SYMBOL_REFs. */
3550 default:
3551 gcc_unreachable ();
3552 }
3553 if (CONST_WIDE_INT_P (x))
3554 {
3555 /* Compare the vector length first. */
3556 if (CONST_WIDE_INT_NUNITS (x) >= CONST_WIDE_INT_NUNITS (y))
3557 return 1;
3558 else if (CONST_WIDE_INT_NUNITS (x) < CONST_WIDE_INT_NUNITS (y))
3559 return -1;
3560
3561 /* Compare the vectors elements. */;
3562 for (j = CONST_WIDE_INT_NUNITS (x) - 1; j >= 0 ; j--)
3563 {
3564 if (CONST_WIDE_INT_ELT (x, j) < CONST_WIDE_INT_ELT (y, j))
3565 return -1;
3566 if (CONST_WIDE_INT_ELT (x, j) > CONST_WIDE_INT_ELT (y, j))
3567 return 1;
3568 }
3569 }
3570
3571 return 0;
3572 }
3573
3574 #if ENABLE_CHECKING
3575 /* Check the order of entries in one-part variables. */
3576
3577 int
3578 canonicalize_loc_order_check (variable_def **slot,
3579 dataflow_set *data ATTRIBUTE_UNUSED)
3580 {
3581 variable var = *slot;
3582 location_chain *node, *next;
3583
3584 #ifdef ENABLE_RTL_CHECKING
3585 int i;
3586 for (i = 0; i < var->n_var_parts; i++)
3587 gcc_assert (var->var_part[0].cur_loc == NULL);
3588 gcc_assert (!var->in_changed_variables);
3589 #endif
3590
3591 if (!var->onepart)
3592 return 1;
3593
3594 gcc_assert (var->n_var_parts == 1);
3595 node = var->var_part[0].loc_chain;
3596 gcc_assert (node);
3597
3598 while ((next = node->next))
3599 {
3600 gcc_assert (loc_cmp (node->loc, next->loc) < 0);
3601 node = next;
3602 }
3603
3604 return 1;
3605 }
3606 #endif
3607
3608 /* Mark with VALUE_RECURSED_INTO values that have neighbors that are
3609 more likely to be chosen as canonical for an equivalence set.
3610 Ensure less likely values can reach more likely neighbors, making
3611 the connections bidirectional. */
3612
3613 int
3614 canonicalize_values_mark (variable_def **slot, dataflow_set *set)
3615 {
3616 variable var = *slot;
3617 decl_or_value dv = var->dv;
3618 rtx val;
3619 location_chain *node;
3620
3621 if (!dv_is_value_p (dv))
3622 return 1;
3623
3624 gcc_checking_assert (var->n_var_parts == 1);
3625
3626 val = dv_as_value (dv);
3627
3628 for (node = var->var_part[0].loc_chain; node; node = node->next)
3629 if (GET_CODE (node->loc) == VALUE)
3630 {
3631 if (canon_value_cmp (node->loc, val))
3632 VALUE_RECURSED_INTO (val) = true;
3633 else
3634 {
3635 decl_or_value odv = dv_from_value (node->loc);
3636 variable_def **oslot;
3637 oslot = shared_hash_find_slot_noinsert (set->vars, odv);
3638
3639 set_slot_part (set, val, oslot, odv, 0,
3640 node->init, NULL_RTX);
3641
3642 VALUE_RECURSED_INTO (node->loc) = true;
3643 }
3644 }
3645
3646 return 1;
3647 }
3648
3649 /* Remove redundant entries from equivalence lists in onepart
3650 variables, canonicalizing equivalence sets into star shapes. */
3651
3652 int
3653 canonicalize_values_star (variable_def **slot, dataflow_set *set)
3654 {
3655 variable var = *slot;
3656 decl_or_value dv = var->dv;
3657 location_chain *node;
3658 decl_or_value cdv;
3659 rtx val, cval;
3660 variable_def **cslot;
3661 bool has_value;
3662 bool has_marks;
3663
3664 if (!var->onepart)
3665 return 1;
3666
3667 gcc_checking_assert (var->n_var_parts == 1);
3668
3669 if (dv_is_value_p (dv))
3670 {
3671 cval = dv_as_value (dv);
3672 if (!VALUE_RECURSED_INTO (cval))
3673 return 1;
3674 VALUE_RECURSED_INTO (cval) = false;
3675 }
3676 else
3677 cval = NULL_RTX;
3678
3679 restart:
3680 val = cval;
3681 has_value = false;
3682 has_marks = false;
3683
3684 gcc_assert (var->n_var_parts == 1);
3685
3686 for (node = var->var_part[0].loc_chain; node; node = node->next)
3687 if (GET_CODE (node->loc) == VALUE)
3688 {
3689 has_value = true;
3690 if (VALUE_RECURSED_INTO (node->loc))
3691 has_marks = true;
3692 if (canon_value_cmp (node->loc, cval))
3693 cval = node->loc;
3694 }
3695
3696 if (!has_value)
3697 return 1;
3698
3699 if (cval == val)
3700 {
3701 if (!has_marks || dv_is_decl_p (dv))
3702 return 1;
3703
3704 /* Keep it marked so that we revisit it, either after visiting a
3705 child node, or after visiting a new parent that might be
3706 found out. */
3707 VALUE_RECURSED_INTO (val) = true;
3708
3709 for (node = var->var_part[0].loc_chain; node; node = node->next)
3710 if (GET_CODE (node->loc) == VALUE
3711 && VALUE_RECURSED_INTO (node->loc))
3712 {
3713 cval = node->loc;
3714 restart_with_cval:
3715 VALUE_RECURSED_INTO (cval) = false;
3716 dv = dv_from_value (cval);
3717 slot = shared_hash_find_slot_noinsert (set->vars, dv);
3718 if (!slot)
3719 {
3720 gcc_assert (dv_is_decl_p (var->dv));
3721 /* The canonical value was reset and dropped.
3722 Remove it. */
3723 clobber_variable_part (set, NULL, var->dv, 0, NULL);
3724 return 1;
3725 }
3726 var = *slot;
3727 gcc_assert (dv_is_value_p (var->dv));
3728 if (var->n_var_parts == 0)
3729 return 1;
3730 gcc_assert (var->n_var_parts == 1);
3731 goto restart;
3732 }
3733
3734 VALUE_RECURSED_INTO (val) = false;
3735
3736 return 1;
3737 }
3738
3739 /* Push values to the canonical one. */
3740 cdv = dv_from_value (cval);
3741 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3742
3743 for (node = var->var_part[0].loc_chain; node; node = node->next)
3744 if (node->loc != cval)
3745 {
3746 cslot = set_slot_part (set, node->loc, cslot, cdv, 0,
3747 node->init, NULL_RTX);
3748 if (GET_CODE (node->loc) == VALUE)
3749 {
3750 decl_or_value ndv = dv_from_value (node->loc);
3751
3752 set_variable_part (set, cval, ndv, 0, node->init, NULL_RTX,
3753 NO_INSERT);
3754
3755 if (canon_value_cmp (node->loc, val))
3756 {
3757 /* If it could have been a local minimum, it's not any more,
3758 since it's now neighbor to cval, so it may have to push
3759 to it. Conversely, if it wouldn't have prevailed over
3760 val, then whatever mark it has is fine: if it was to
3761 push, it will now push to a more canonical node, but if
3762 it wasn't, then it has already pushed any values it might
3763 have to. */
3764 VALUE_RECURSED_INTO (node->loc) = true;
3765 /* Make sure we visit node->loc by ensuring we cval is
3766 visited too. */
3767 VALUE_RECURSED_INTO (cval) = true;
3768 }
3769 else if (!VALUE_RECURSED_INTO (node->loc))
3770 /* If we have no need to "recurse" into this node, it's
3771 already "canonicalized", so drop the link to the old
3772 parent. */
3773 clobber_variable_part (set, cval, ndv, 0, NULL);
3774 }
3775 else if (GET_CODE (node->loc) == REG)
3776 {
3777 attrs list = set->regs[REGNO (node->loc)], *listp;
3778
3779 /* Change an existing attribute referring to dv so that it
3780 refers to cdv, removing any duplicate this might
3781 introduce, and checking that no previous duplicates
3782 existed, all in a single pass. */
3783
3784 while (list)
3785 {
3786 if (list->offset == 0
3787 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3788 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3789 break;
3790
3791 list = list->next;
3792 }
3793
3794 gcc_assert (list);
3795 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3796 {
3797 list->dv = cdv;
3798 for (listp = &list->next; (list = *listp); listp = &list->next)
3799 {
3800 if (list->offset)
3801 continue;
3802
3803 if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3804 {
3805 *listp = list->next;
3806 delete list;
3807 list = *listp;
3808 break;
3809 }
3810
3811 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (dv));
3812 }
3813 }
3814 else if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3815 {
3816 for (listp = &list->next; (list = *listp); listp = &list->next)
3817 {
3818 if (list->offset)
3819 continue;
3820
3821 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3822 {
3823 *listp = list->next;
3824 delete list;
3825 list = *listp;
3826 break;
3827 }
3828
3829 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (cdv));
3830 }
3831 }
3832 else
3833 gcc_unreachable ();
3834
3835 #if ENABLE_CHECKING
3836 while (list)
3837 {
3838 if (list->offset == 0
3839 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3840 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3841 gcc_unreachable ();
3842
3843 list = list->next;
3844 }
3845 #endif
3846 }
3847 }
3848
3849 if (val)
3850 set_slot_part (set, val, cslot, cdv, 0,
3851 VAR_INIT_STATUS_INITIALIZED, NULL_RTX);
3852
3853 slot = clobber_slot_part (set, cval, slot, 0, NULL);
3854
3855 /* Variable may have been unshared. */
3856 var = *slot;
3857 gcc_checking_assert (var->n_var_parts && var->var_part[0].loc_chain->loc == cval
3858 && var->var_part[0].loc_chain->next == NULL);
3859
3860 if (VALUE_RECURSED_INTO (cval))
3861 goto restart_with_cval;
3862
3863 return 1;
3864 }
3865
3866 /* Bind one-part variables to the canonical value in an equivalence
3867 set. Not doing this causes dataflow convergence failure in rare
3868 circumstances, see PR42873. Unfortunately we can't do this
3869 efficiently as part of canonicalize_values_star, since we may not
3870 have determined or even seen the canonical value of a set when we
3871 get to a variable that references another member of the set. */
3872
3873 int
3874 canonicalize_vars_star (variable_def **slot, dataflow_set *set)
3875 {
3876 variable var = *slot;
3877 decl_or_value dv = var->dv;
3878 location_chain *node;
3879 rtx cval;
3880 decl_or_value cdv;
3881 variable_def **cslot;
3882 variable cvar;
3883 location_chain *cnode;
3884
3885 if (!var->onepart || var->onepart == ONEPART_VALUE)
3886 return 1;
3887
3888 gcc_assert (var->n_var_parts == 1);
3889
3890 node = var->var_part[0].loc_chain;
3891
3892 if (GET_CODE (node->loc) != VALUE)
3893 return 1;
3894
3895 gcc_assert (!node->next);
3896 cval = node->loc;
3897
3898 /* Push values to the canonical one. */
3899 cdv = dv_from_value (cval);
3900 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3901 if (!cslot)
3902 return 1;
3903 cvar = *cslot;
3904 gcc_assert (cvar->n_var_parts == 1);
3905
3906 cnode = cvar->var_part[0].loc_chain;
3907
3908 /* CVAL is canonical if its value list contains non-VALUEs or VALUEs
3909 that are not “more canonical” than it. */
3910 if (GET_CODE (cnode->loc) != VALUE
3911 || !canon_value_cmp (cnode->loc, cval))
3912 return 1;
3913
3914 /* CVAL was found to be non-canonical. Change the variable to point
3915 to the canonical VALUE. */
3916 gcc_assert (!cnode->next);
3917 cval = cnode->loc;
3918
3919 slot = set_slot_part (set, cval, slot, dv, 0,
3920 node->init, node->set_src);
3921 clobber_slot_part (set, cval, slot, 0, node->set_src);
3922
3923 return 1;
3924 }
3925
3926 /* Combine variable or value in *S1SLOT (in DSM->cur) with the
3927 corresponding entry in DSM->src. Multi-part variables are combined
3928 with variable_union, whereas onepart dvs are combined with
3929 intersection. */
3930
3931 static int
3932 variable_merge_over_cur (variable s1var, struct dfset_merge *dsm)
3933 {
3934 dataflow_set *dst = dsm->dst;
3935 variable_def **dstslot;
3936 variable s2var, dvar = NULL;
3937 decl_or_value dv = s1var->dv;
3938 onepart_enum_t onepart = s1var->onepart;
3939 rtx val;
3940 hashval_t dvhash;
3941 location_chain *node, **nodep;
3942
3943 /* If the incoming onepart variable has an empty location list, then
3944 the intersection will be just as empty. For other variables,
3945 it's always union. */
3946 gcc_checking_assert (s1var->n_var_parts
3947 && s1var->var_part[0].loc_chain);
3948
3949 if (!onepart)
3950 return variable_union (s1var, dst);
3951
3952 gcc_checking_assert (s1var->n_var_parts == 1);
3953
3954 dvhash = dv_htab_hash (dv);
3955 if (dv_is_value_p (dv))
3956 val = dv_as_value (dv);
3957 else
3958 val = NULL;
3959
3960 s2var = shared_hash_find_1 (dsm->src->vars, dv, dvhash);
3961 if (!s2var)
3962 {
3963 dst_can_be_shared = false;
3964 return 1;
3965 }
3966
3967 dsm->src_onepart_cnt--;
3968 gcc_assert (s2var->var_part[0].loc_chain
3969 && s2var->onepart == onepart
3970 && s2var->n_var_parts == 1);
3971
3972 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
3973 if (dstslot)
3974 {
3975 dvar = *dstslot;
3976 gcc_assert (dvar->refcount == 1
3977 && dvar->onepart == onepart
3978 && dvar->n_var_parts == 1);
3979 nodep = &dvar->var_part[0].loc_chain;
3980 }
3981 else
3982 {
3983 nodep = &node;
3984 node = NULL;
3985 }
3986
3987 if (!dstslot && !onepart_variable_different_p (s1var, s2var))
3988 {
3989 dstslot = shared_hash_find_slot_unshare_1 (&dst->vars, dv,
3990 dvhash, INSERT);
3991 *dstslot = dvar = s2var;
3992 dvar->refcount++;
3993 }
3994 else
3995 {
3996 dst_can_be_shared = false;
3997
3998 intersect_loc_chains (val, nodep, dsm,
3999 s1var->var_part[0].loc_chain, s2var);
4000
4001 if (!dstslot)
4002 {
4003 if (node)
4004 {
4005 dvar = onepart_pool_allocate (onepart);
4006 dvar->dv = dv;
4007 dvar->refcount = 1;
4008 dvar->n_var_parts = 1;
4009 dvar->onepart = onepart;
4010 dvar->in_changed_variables = false;
4011 dvar->var_part[0].loc_chain = node;
4012 dvar->var_part[0].cur_loc = NULL;
4013 if (onepart)
4014 VAR_LOC_1PAUX (dvar) = NULL;
4015 else
4016 VAR_PART_OFFSET (dvar, 0) = 0;
4017
4018 dstslot
4019 = shared_hash_find_slot_unshare_1 (&dst->vars, dv, dvhash,
4020 INSERT);
4021 gcc_assert (!*dstslot);
4022 *dstslot = dvar;
4023 }
4024 else
4025 return 1;
4026 }
4027 }
4028
4029 nodep = &dvar->var_part[0].loc_chain;
4030 while ((node = *nodep))
4031 {
4032 location_chain **nextp = &node->next;
4033
4034 if (GET_CODE (node->loc) == REG)
4035 {
4036 attrs list;
4037
4038 for (list = dst->regs[REGNO (node->loc)]; list; list = list->next)
4039 if (GET_MODE (node->loc) == GET_MODE (list->loc)
4040 && dv_is_value_p (list->dv))
4041 break;
4042
4043 if (!list)
4044 attrs_list_insert (&dst->regs[REGNO (node->loc)],
4045 dv, 0, node->loc);
4046 /* If this value became canonical for another value that had
4047 this register, we want to leave it alone. */
4048 else if (dv_as_value (list->dv) != val)
4049 {
4050 dstslot = set_slot_part (dst, dv_as_value (list->dv),
4051 dstslot, dv, 0,
4052 node->init, NULL_RTX);
4053 dstslot = delete_slot_part (dst, node->loc, dstslot, 0);
4054
4055 /* Since nextp points into the removed node, we can't
4056 use it. The pointer to the next node moved to nodep.
4057 However, if the variable we're walking is unshared
4058 during our walk, we'll keep walking the location list
4059 of the previously-shared variable, in which case the
4060 node won't have been removed, and we'll want to skip
4061 it. That's why we test *nodep here. */
4062 if (*nodep != node)
4063 nextp = nodep;
4064 }
4065 }
4066 else
4067 /* Canonicalization puts registers first, so we don't have to
4068 walk it all. */
4069 break;
4070 nodep = nextp;
4071 }
4072
4073 if (dvar != *dstslot)
4074 dvar = *dstslot;
4075 nodep = &dvar->var_part[0].loc_chain;
4076
4077 if (val)
4078 {
4079 /* Mark all referenced nodes for canonicalization, and make sure
4080 we have mutual equivalence links. */
4081 VALUE_RECURSED_INTO (val) = true;
4082 for (node = *nodep; node; node = node->next)
4083 if (GET_CODE (node->loc) == VALUE)
4084 {
4085 VALUE_RECURSED_INTO (node->loc) = true;
4086 set_variable_part (dst, val, dv_from_value (node->loc), 0,
4087 node->init, NULL, INSERT);
4088 }
4089
4090 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
4091 gcc_assert (*dstslot == dvar);
4092 canonicalize_values_star (dstslot, dst);
4093 gcc_checking_assert (dstslot
4094 == shared_hash_find_slot_noinsert_1 (dst->vars,
4095 dv, dvhash));
4096 dvar = *dstslot;
4097 }
4098 else
4099 {
4100 bool has_value = false, has_other = false;
4101
4102 /* If we have one value and anything else, we're going to
4103 canonicalize this, so make sure all values have an entry in
4104 the table and are marked for canonicalization. */
4105 for (node = *nodep; node; node = node->next)
4106 {
4107 if (GET_CODE (node->loc) == VALUE)
4108 {
4109 /* If this was marked during register canonicalization,
4110 we know we have to canonicalize values. */
4111 if (has_value)
4112 has_other = true;
4113 has_value = true;
4114 if (has_other)
4115 break;
4116 }
4117 else
4118 {
4119 has_other = true;
4120 if (has_value)
4121 break;
4122 }
4123 }
4124
4125 if (has_value && has_other)
4126 {
4127 for (node = *nodep; node; node = node->next)
4128 {
4129 if (GET_CODE (node->loc) == VALUE)
4130 {
4131 decl_or_value dv = dv_from_value (node->loc);
4132 variable_def **slot = NULL;
4133
4134 if (shared_hash_shared (dst->vars))
4135 slot = shared_hash_find_slot_noinsert (dst->vars, dv);
4136 if (!slot)
4137 slot = shared_hash_find_slot_unshare (&dst->vars, dv,
4138 INSERT);
4139 if (!*slot)
4140 {
4141 variable var = onepart_pool_allocate (ONEPART_VALUE);
4142 var->dv = dv;
4143 var->refcount = 1;
4144 var->n_var_parts = 1;
4145 var->onepart = ONEPART_VALUE;
4146 var->in_changed_variables = false;
4147 var->var_part[0].loc_chain = NULL;
4148 var->var_part[0].cur_loc = NULL;
4149 VAR_LOC_1PAUX (var) = NULL;
4150 *slot = var;
4151 }
4152
4153 VALUE_RECURSED_INTO (node->loc) = true;
4154 }
4155 }
4156
4157 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
4158 gcc_assert (*dstslot == dvar);
4159 canonicalize_values_star (dstslot, dst);
4160 gcc_checking_assert (dstslot
4161 == shared_hash_find_slot_noinsert_1 (dst->vars,
4162 dv, dvhash));
4163 dvar = *dstslot;
4164 }
4165 }
4166
4167 if (!onepart_variable_different_p (dvar, s2var))
4168 {
4169 variable_htab_free (dvar);
4170 *dstslot = dvar = s2var;
4171 dvar->refcount++;
4172 }
4173 else if (s2var != s1var && !onepart_variable_different_p (dvar, s1var))
4174 {
4175 variable_htab_free (dvar);
4176 *dstslot = dvar = s1var;
4177 dvar->refcount++;
4178 dst_can_be_shared = false;
4179 }
4180 else
4181 dst_can_be_shared = false;
4182
4183 return 1;
4184 }
4185
4186 /* Copy s2slot (in DSM->src) to DSM->dst if the variable is a
4187 multi-part variable. Unions of multi-part variables and
4188 intersections of one-part ones will be handled in
4189 variable_merge_over_cur(). */
4190
4191 static int
4192 variable_merge_over_src (variable s2var, struct dfset_merge *dsm)
4193 {
4194 dataflow_set *dst = dsm->dst;
4195 decl_or_value dv = s2var->dv;
4196
4197 if (!s2var->onepart)
4198 {
4199 variable_def **dstp = shared_hash_find_slot (dst->vars, dv);
4200 *dstp = s2var;
4201 s2var->refcount++;
4202 return 1;
4203 }
4204
4205 dsm->src_onepart_cnt++;
4206 return 1;
4207 }
4208
4209 /* Combine dataflow set information from SRC2 into DST, using PDST
4210 to carry over information across passes. */
4211
4212 static void
4213 dataflow_set_merge (dataflow_set *dst, dataflow_set *src2)
4214 {
4215 dataflow_set cur = *dst;
4216 dataflow_set *src1 = &cur;
4217 struct dfset_merge dsm;
4218 int i;
4219 size_t src1_elems, src2_elems;
4220 variable_iterator_type hi;
4221 variable var;
4222
4223 src1_elems = shared_hash_htab (src1->vars)->elements ();
4224 src2_elems = shared_hash_htab (src2->vars)->elements ();
4225 dataflow_set_init (dst);
4226 dst->stack_adjust = cur.stack_adjust;
4227 shared_hash_destroy (dst->vars);
4228 dst->vars = new shared_hash;
4229 dst->vars->refcount = 1;
4230 dst->vars->htab = new variable_table_type (MAX (src1_elems, src2_elems));
4231
4232 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4233 attrs_list_mpdv_union (&dst->regs[i], src1->regs[i], src2->regs[i]);
4234
4235 dsm.dst = dst;
4236 dsm.src = src2;
4237 dsm.cur = src1;
4238 dsm.src_onepart_cnt = 0;
4239
4240 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (dsm.src->vars),
4241 var, variable, hi)
4242 variable_merge_over_src (var, &dsm);
4243 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (dsm.cur->vars),
4244 var, variable, hi)
4245 variable_merge_over_cur (var, &dsm);
4246
4247 if (dsm.src_onepart_cnt)
4248 dst_can_be_shared = false;
4249
4250 dataflow_set_destroy (src1);
4251 }
4252
4253 /* Mark register equivalences. */
4254
4255 static void
4256 dataflow_set_equiv_regs (dataflow_set *set)
4257 {
4258 int i;
4259 attrs list, *listp;
4260
4261 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4262 {
4263 rtx canon[NUM_MACHINE_MODES];
4264
4265 /* If the list is empty or one entry, no need to canonicalize
4266 anything. */
4267 if (set->regs[i] == NULL || set->regs[i]->next == NULL)
4268 continue;
4269
4270 memset (canon, 0, sizeof (canon));
4271
4272 for (list = set->regs[i]; list; list = list->next)
4273 if (list->offset == 0 && dv_is_value_p (list->dv))
4274 {
4275 rtx val = dv_as_value (list->dv);
4276 rtx *cvalp = &canon[(int)GET_MODE (val)];
4277 rtx cval = *cvalp;
4278
4279 if (canon_value_cmp (val, cval))
4280 *cvalp = val;
4281 }
4282
4283 for (list = set->regs[i]; list; list = list->next)
4284 if (list->offset == 0 && dv_onepart_p (list->dv))
4285 {
4286 rtx cval = canon[(int)GET_MODE (list->loc)];
4287
4288 if (!cval)
4289 continue;
4290
4291 if (dv_is_value_p (list->dv))
4292 {
4293 rtx val = dv_as_value (list->dv);
4294
4295 if (val == cval)
4296 continue;
4297
4298 VALUE_RECURSED_INTO (val) = true;
4299 set_variable_part (set, val, dv_from_value (cval), 0,
4300 VAR_INIT_STATUS_INITIALIZED,
4301 NULL, NO_INSERT);
4302 }
4303
4304 VALUE_RECURSED_INTO (cval) = true;
4305 set_variable_part (set, cval, list->dv, 0,
4306 VAR_INIT_STATUS_INITIALIZED, NULL, NO_INSERT);
4307 }
4308
4309 for (listp = &set->regs[i]; (list = *listp);
4310 listp = list ? &list->next : listp)
4311 if (list->offset == 0 && dv_onepart_p (list->dv))
4312 {
4313 rtx cval = canon[(int)GET_MODE (list->loc)];
4314 variable_def **slot;
4315
4316 if (!cval)
4317 continue;
4318
4319 if (dv_is_value_p (list->dv))
4320 {
4321 rtx val = dv_as_value (list->dv);
4322 if (!VALUE_RECURSED_INTO (val))
4323 continue;
4324 }
4325
4326 slot = shared_hash_find_slot_noinsert (set->vars, list->dv);
4327 canonicalize_values_star (slot, set);
4328 if (*listp != list)
4329 list = NULL;
4330 }
4331 }
4332 }
4333
4334 /* Remove any redundant values in the location list of VAR, which must
4335 be unshared and 1-part. */
4336
4337 static void
4338 remove_duplicate_values (variable var)
4339 {
4340 location_chain *node, **nodep;
4341
4342 gcc_assert (var->onepart);
4343 gcc_assert (var->n_var_parts == 1);
4344 gcc_assert (var->refcount == 1);
4345
4346 for (nodep = &var->var_part[0].loc_chain; (node = *nodep); )
4347 {
4348 if (GET_CODE (node->loc) == VALUE)
4349 {
4350 if (VALUE_RECURSED_INTO (node->loc))
4351 {
4352 /* Remove duplicate value node. */
4353 *nodep = node->next;
4354 delete node;
4355 continue;
4356 }
4357 else
4358 VALUE_RECURSED_INTO (node->loc) = true;
4359 }
4360 nodep = &node->next;
4361 }
4362
4363 for (node = var->var_part[0].loc_chain; node; node = node->next)
4364 if (GET_CODE (node->loc) == VALUE)
4365 {
4366 gcc_assert (VALUE_RECURSED_INTO (node->loc));
4367 VALUE_RECURSED_INTO (node->loc) = false;
4368 }
4369 }
4370
4371
4372 /* Hash table iteration argument passed to variable_post_merge. */
4373 struct dfset_post_merge
4374 {
4375 /* The new input set for the current block. */
4376 dataflow_set *set;
4377 /* Pointer to the permanent input set for the current block, or
4378 NULL. */
4379 dataflow_set **permp;
4380 };
4381
4382 /* Create values for incoming expressions associated with one-part
4383 variables that don't have value numbers for them. */
4384
4385 int
4386 variable_post_merge_new_vals (variable_def **slot, dfset_post_merge *dfpm)
4387 {
4388 dataflow_set *set = dfpm->set;
4389 variable var = *slot;
4390 location_chain *node;
4391
4392 if (!var->onepart || !var->n_var_parts)
4393 return 1;
4394
4395 gcc_assert (var->n_var_parts == 1);
4396
4397 if (dv_is_decl_p (var->dv))
4398 {
4399 bool check_dupes = false;
4400
4401 restart:
4402 for (node = var->var_part[0].loc_chain; node; node = node->next)
4403 {
4404 if (GET_CODE (node->loc) == VALUE)
4405 gcc_assert (!VALUE_RECURSED_INTO (node->loc));
4406 else if (GET_CODE (node->loc) == REG)
4407 {
4408 attrs att, *attp, *curp = NULL;
4409
4410 if (var->refcount != 1)
4411 {
4412 slot = unshare_variable (set, slot, var,
4413 VAR_INIT_STATUS_INITIALIZED);
4414 var = *slot;
4415 goto restart;
4416 }
4417
4418 for (attp = &set->regs[REGNO (node->loc)]; (att = *attp);
4419 attp = &att->next)
4420 if (att->offset == 0
4421 && GET_MODE (att->loc) == GET_MODE (node->loc))
4422 {
4423 if (dv_is_value_p (att->dv))
4424 {
4425 rtx cval = dv_as_value (att->dv);
4426 node->loc = cval;
4427 check_dupes = true;
4428 break;
4429 }
4430 else if (dv_as_opaque (att->dv) == dv_as_opaque (var->dv))
4431 curp = attp;
4432 }
4433
4434 if (!curp)
4435 {
4436 curp = attp;
4437 while (*curp)
4438 if ((*curp)->offset == 0
4439 && GET_MODE ((*curp)->loc) == GET_MODE (node->loc)
4440 && dv_as_opaque ((*curp)->dv) == dv_as_opaque (var->dv))
4441 break;
4442 else
4443 curp = &(*curp)->next;
4444 gcc_assert (*curp);
4445 }
4446
4447 if (!att)
4448 {
4449 decl_or_value cdv;
4450 rtx cval;
4451
4452 if (!*dfpm->permp)
4453 {
4454 *dfpm->permp = XNEW (dataflow_set);
4455 dataflow_set_init (*dfpm->permp);
4456 }
4457
4458 for (att = (*dfpm->permp)->regs[REGNO (node->loc)];
4459 att; att = att->next)
4460 if (GET_MODE (att->loc) == GET_MODE (node->loc))
4461 {
4462 gcc_assert (att->offset == 0
4463 && dv_is_value_p (att->dv));
4464 val_reset (set, att->dv);
4465 break;
4466 }
4467
4468 if (att)
4469 {
4470 cdv = att->dv;
4471 cval = dv_as_value (cdv);
4472 }
4473 else
4474 {
4475 /* Create a unique value to hold this register,
4476 that ought to be found and reused in
4477 subsequent rounds. */
4478 cselib_val *v;
4479 gcc_assert (!cselib_lookup (node->loc,
4480 GET_MODE (node->loc), 0,
4481 VOIDmode));
4482 v = cselib_lookup (node->loc, GET_MODE (node->loc), 1,
4483 VOIDmode);
4484 cselib_preserve_value (v);
4485 cselib_invalidate_rtx (node->loc);
4486 cval = v->val_rtx;
4487 cdv = dv_from_value (cval);
4488 if (dump_file)
4489 fprintf (dump_file,
4490 "Created new value %u:%u for reg %i\n",
4491 v->uid, v->hash, REGNO (node->loc));
4492 }
4493
4494 var_reg_decl_set (*dfpm->permp, node->loc,
4495 VAR_INIT_STATUS_INITIALIZED,
4496 cdv, 0, NULL, INSERT);
4497
4498 node->loc = cval;
4499 check_dupes = true;
4500 }
4501
4502 /* Remove attribute referring to the decl, which now
4503 uses the value for the register, already existing or
4504 to be added when we bring perm in. */
4505 att = *curp;
4506 *curp = att->next;
4507 delete att;
4508 }
4509 }
4510
4511 if (check_dupes)
4512 remove_duplicate_values (var);
4513 }
4514
4515 return 1;
4516 }
4517
4518 /* Reset values in the permanent set that are not associated with the
4519 chosen expression. */
4520
4521 int
4522 variable_post_merge_perm_vals (variable_def **pslot, dfset_post_merge *dfpm)
4523 {
4524 dataflow_set *set = dfpm->set;
4525 variable pvar = *pslot, var;
4526 location_chain *pnode;
4527 decl_or_value dv;
4528 attrs att;
4529
4530 gcc_assert (dv_is_value_p (pvar->dv)
4531 && pvar->n_var_parts == 1);
4532 pnode = pvar->var_part[0].loc_chain;
4533 gcc_assert (pnode
4534 && !pnode->next
4535 && REG_P (pnode->loc));
4536
4537 dv = pvar->dv;
4538
4539 var = shared_hash_find (set->vars, dv);
4540 if (var)
4541 {
4542 /* Although variable_post_merge_new_vals may have made decls
4543 non-star-canonical, values that pre-existed in canonical form
4544 remain canonical, and newly-created values reference a single
4545 REG, so they are canonical as well. Since VAR has the
4546 location list for a VALUE, using find_loc_in_1pdv for it is
4547 fine, since VALUEs don't map back to DECLs. */
4548 if (find_loc_in_1pdv (pnode->loc, var, shared_hash_htab (set->vars)))
4549 return 1;
4550 val_reset (set, dv);
4551 }
4552
4553 for (att = set->regs[REGNO (pnode->loc)]; att; att = att->next)
4554 if (att->offset == 0
4555 && GET_MODE (att->loc) == GET_MODE (pnode->loc)
4556 && dv_is_value_p (att->dv))
4557 break;
4558
4559 /* If there is a value associated with this register already, create
4560 an equivalence. */
4561 if (att && dv_as_value (att->dv) != dv_as_value (dv))
4562 {
4563 rtx cval = dv_as_value (att->dv);
4564 set_variable_part (set, cval, dv, 0, pnode->init, NULL, INSERT);
4565 set_variable_part (set, dv_as_value (dv), att->dv, 0, pnode->init,
4566 NULL, INSERT);
4567 }
4568 else if (!att)
4569 {
4570 attrs_list_insert (&set->regs[REGNO (pnode->loc)],
4571 dv, 0, pnode->loc);
4572 variable_union (pvar, set);
4573 }
4574
4575 return 1;
4576 }
4577
4578 /* Just checking stuff and registering register attributes for
4579 now. */
4580
4581 static void
4582 dataflow_post_merge_adjust (dataflow_set *set, dataflow_set **permp)
4583 {
4584 struct dfset_post_merge dfpm;
4585
4586 dfpm.set = set;
4587 dfpm.permp = permp;
4588
4589 shared_hash_htab (set->vars)
4590 ->traverse <dfset_post_merge*, variable_post_merge_new_vals> (&dfpm);
4591 if (*permp)
4592 shared_hash_htab ((*permp)->vars)
4593 ->traverse <dfset_post_merge*, variable_post_merge_perm_vals> (&dfpm);
4594 shared_hash_htab (set->vars)
4595 ->traverse <dataflow_set *, canonicalize_values_star> (set);
4596 shared_hash_htab (set->vars)
4597 ->traverse <dataflow_set *, canonicalize_vars_star> (set);
4598 }
4599
4600 /* Return a node whose loc is a MEM that refers to EXPR in the
4601 location list of a one-part variable or value VAR, or in that of
4602 any values recursively mentioned in the location lists. */
4603
4604 static location_chain *
4605 find_mem_expr_in_1pdv (tree expr, rtx val, variable_table_type *vars)
4606 {
4607 location_chain *node;
4608 decl_or_value dv;
4609 variable var;
4610 location_chain *where = NULL;
4611
4612 if (!val)
4613 return NULL;
4614
4615 gcc_assert (GET_CODE (val) == VALUE
4616 && !VALUE_RECURSED_INTO (val));
4617
4618 dv = dv_from_value (val);
4619 var = vars->find_with_hash (dv, dv_htab_hash (dv));
4620
4621 if (!var)
4622 return NULL;
4623
4624 gcc_assert (var->onepart);
4625
4626 if (!var->n_var_parts)
4627 return NULL;
4628
4629 VALUE_RECURSED_INTO (val) = true;
4630
4631 for (node = var->var_part[0].loc_chain; node; node = node->next)
4632 if (MEM_P (node->loc)
4633 && MEM_EXPR (node->loc) == expr
4634 && INT_MEM_OFFSET (node->loc) == 0)
4635 {
4636 where = node;
4637 break;
4638 }
4639 else if (GET_CODE (node->loc) == VALUE
4640 && !VALUE_RECURSED_INTO (node->loc)
4641 && (where = find_mem_expr_in_1pdv (expr, node->loc, vars)))
4642 break;
4643
4644 VALUE_RECURSED_INTO (val) = false;
4645
4646 return where;
4647 }
4648
4649 /* Return TRUE if the value of MEM may vary across a call. */
4650
4651 static bool
4652 mem_dies_at_call (rtx mem)
4653 {
4654 tree expr = MEM_EXPR (mem);
4655 tree decl;
4656
4657 if (!expr)
4658 return true;
4659
4660 decl = get_base_address (expr);
4661
4662 if (!decl)
4663 return true;
4664
4665 if (!DECL_P (decl))
4666 return true;
4667
4668 return (may_be_aliased (decl)
4669 || (!TREE_READONLY (decl) && is_global_var (decl)));
4670 }
4671
4672 /* Remove all MEMs from the location list of a hash table entry for a
4673 one-part variable, except those whose MEM attributes map back to
4674 the variable itself, directly or within a VALUE. */
4675
4676 int
4677 dataflow_set_preserve_mem_locs (variable_def **slot, dataflow_set *set)
4678 {
4679 variable var = *slot;
4680
4681 if (var->onepart == ONEPART_VDECL || var->onepart == ONEPART_DEXPR)
4682 {
4683 tree decl = dv_as_decl (var->dv);
4684 location_chain *loc, **locp;
4685 bool changed = false;
4686
4687 if (!var->n_var_parts)
4688 return 1;
4689
4690 gcc_assert (var->n_var_parts == 1);
4691
4692 if (shared_var_p (var, set->vars))
4693 {
4694 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4695 {
4696 /* We want to remove dying MEMs that doesn't refer to DECL. */
4697 if (GET_CODE (loc->loc) == MEM
4698 && (MEM_EXPR (loc->loc) != decl
4699 || INT_MEM_OFFSET (loc->loc) != 0)
4700 && !mem_dies_at_call (loc->loc))
4701 break;
4702 /* We want to move here MEMs that do refer to DECL. */
4703 else if (GET_CODE (loc->loc) == VALUE
4704 && find_mem_expr_in_1pdv (decl, loc->loc,
4705 shared_hash_htab (set->vars)))
4706 break;
4707 }
4708
4709 if (!loc)
4710 return 1;
4711
4712 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4713 var = *slot;
4714 gcc_assert (var->n_var_parts == 1);
4715 }
4716
4717 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4718 loc; loc = *locp)
4719 {
4720 rtx old_loc = loc->loc;
4721 if (GET_CODE (old_loc) == VALUE)
4722 {
4723 location_chain *mem_node
4724 = find_mem_expr_in_1pdv (decl, loc->loc,
4725 shared_hash_htab (set->vars));
4726
4727 /* ??? This picks up only one out of multiple MEMs that
4728 refer to the same variable. Do we ever need to be
4729 concerned about dealing with more than one, or, given
4730 that they should all map to the same variable
4731 location, their addresses will have been merged and
4732 they will be regarded as equivalent? */
4733 if (mem_node)
4734 {
4735 loc->loc = mem_node->loc;
4736 loc->set_src = mem_node->set_src;
4737 loc->init = MIN (loc->init, mem_node->init);
4738 }
4739 }
4740
4741 if (GET_CODE (loc->loc) != MEM
4742 || (MEM_EXPR (loc->loc) == decl
4743 && INT_MEM_OFFSET (loc->loc) == 0)
4744 || !mem_dies_at_call (loc->loc))
4745 {
4746 if (old_loc != loc->loc && emit_notes)
4747 {
4748 if (old_loc == var->var_part[0].cur_loc)
4749 {
4750 changed = true;
4751 var->var_part[0].cur_loc = NULL;
4752 }
4753 }
4754 locp = &loc->next;
4755 continue;
4756 }
4757
4758 if (emit_notes)
4759 {
4760 if (old_loc == var->var_part[0].cur_loc)
4761 {
4762 changed = true;
4763 var->var_part[0].cur_loc = NULL;
4764 }
4765 }
4766 *locp = loc->next;
4767 delete loc;
4768 }
4769
4770 if (!var->var_part[0].loc_chain)
4771 {
4772 var->n_var_parts--;
4773 changed = true;
4774 }
4775 if (changed)
4776 variable_was_changed (var, set);
4777 }
4778
4779 return 1;
4780 }
4781
4782 /* Remove all MEMs from the location list of a hash table entry for a
4783 value. */
4784
4785 int
4786 dataflow_set_remove_mem_locs (variable_def **slot, dataflow_set *set)
4787 {
4788 variable var = *slot;
4789
4790 if (var->onepart == ONEPART_VALUE)
4791 {
4792 location_chain *loc, **locp;
4793 bool changed = false;
4794 rtx cur_loc;
4795
4796 gcc_assert (var->n_var_parts == 1);
4797
4798 if (shared_var_p (var, set->vars))
4799 {
4800 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4801 if (GET_CODE (loc->loc) == MEM
4802 && mem_dies_at_call (loc->loc))
4803 break;
4804
4805 if (!loc)
4806 return 1;
4807
4808 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4809 var = *slot;
4810 gcc_assert (var->n_var_parts == 1);
4811 }
4812
4813 if (VAR_LOC_1PAUX (var))
4814 cur_loc = VAR_LOC_FROM (var);
4815 else
4816 cur_loc = var->var_part[0].cur_loc;
4817
4818 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4819 loc; loc = *locp)
4820 {
4821 if (GET_CODE (loc->loc) != MEM
4822 || !mem_dies_at_call (loc->loc))
4823 {
4824 locp = &loc->next;
4825 continue;
4826 }
4827
4828 *locp = loc->next;
4829 /* If we have deleted the location which was last emitted
4830 we have to emit new location so add the variable to set
4831 of changed variables. */
4832 if (cur_loc == loc->loc)
4833 {
4834 changed = true;
4835 var->var_part[0].cur_loc = NULL;
4836 if (VAR_LOC_1PAUX (var))
4837 VAR_LOC_FROM (var) = NULL;
4838 }
4839 delete loc;
4840 }
4841
4842 if (!var->var_part[0].loc_chain)
4843 {
4844 var->n_var_parts--;
4845 changed = true;
4846 }
4847 if (changed)
4848 variable_was_changed (var, set);
4849 }
4850
4851 return 1;
4852 }
4853
4854 /* Remove all variable-location information about call-clobbered
4855 registers, as well as associations between MEMs and VALUEs. */
4856
4857 static void
4858 dataflow_set_clear_at_call (dataflow_set *set, rtx_insn *call_insn)
4859 {
4860 unsigned int r;
4861 hard_reg_set_iterator hrsi;
4862 HARD_REG_SET invalidated_regs;
4863
4864 get_call_reg_set_usage (call_insn, &invalidated_regs,
4865 regs_invalidated_by_call);
4866
4867 EXECUTE_IF_SET_IN_HARD_REG_SET (invalidated_regs, 0, r, hrsi)
4868 var_regno_delete (set, r);
4869
4870 if (MAY_HAVE_DEBUG_INSNS)
4871 {
4872 set->traversed_vars = set->vars;
4873 shared_hash_htab (set->vars)
4874 ->traverse <dataflow_set *, dataflow_set_preserve_mem_locs> (set);
4875 set->traversed_vars = set->vars;
4876 shared_hash_htab (set->vars)
4877 ->traverse <dataflow_set *, dataflow_set_remove_mem_locs> (set);
4878 set->traversed_vars = NULL;
4879 }
4880 }
4881
4882 static bool
4883 variable_part_different_p (variable_part *vp1, variable_part *vp2)
4884 {
4885 location_chain *lc1, *lc2;
4886
4887 for (lc1 = vp1->loc_chain; lc1; lc1 = lc1->next)
4888 {
4889 for (lc2 = vp2->loc_chain; lc2; lc2 = lc2->next)
4890 {
4891 if (REG_P (lc1->loc) && REG_P (lc2->loc))
4892 {
4893 if (REGNO (lc1->loc) == REGNO (lc2->loc))
4894 break;
4895 }
4896 if (rtx_equal_p (lc1->loc, lc2->loc))
4897 break;
4898 }
4899 if (!lc2)
4900 return true;
4901 }
4902 return false;
4903 }
4904
4905 /* Return true if one-part variables VAR1 and VAR2 are different.
4906 They must be in canonical order. */
4907
4908 static bool
4909 onepart_variable_different_p (variable var1, variable var2)
4910 {
4911 location_chain *lc1, *lc2;
4912
4913 if (var1 == var2)
4914 return false;
4915
4916 gcc_assert (var1->n_var_parts == 1
4917 && var2->n_var_parts == 1);
4918
4919 lc1 = var1->var_part[0].loc_chain;
4920 lc2 = var2->var_part[0].loc_chain;
4921
4922 gcc_assert (lc1 && lc2);
4923
4924 while (lc1 && lc2)
4925 {
4926 if (loc_cmp (lc1->loc, lc2->loc))
4927 return true;
4928 lc1 = lc1->next;
4929 lc2 = lc2->next;
4930 }
4931
4932 return lc1 != lc2;
4933 }
4934
4935 /* Return true if variables VAR1 and VAR2 are different. */
4936
4937 static bool
4938 variable_different_p (variable var1, variable var2)
4939 {
4940 int i;
4941
4942 if (var1 == var2)
4943 return false;
4944
4945 if (var1->onepart != var2->onepart)
4946 return true;
4947
4948 if (var1->n_var_parts != var2->n_var_parts)
4949 return true;
4950
4951 if (var1->onepart && var1->n_var_parts)
4952 {
4953 gcc_checking_assert (dv_as_opaque (var1->dv) == dv_as_opaque (var2->dv)
4954 && var1->n_var_parts == 1);
4955 /* One-part values have locations in a canonical order. */
4956 return onepart_variable_different_p (var1, var2);
4957 }
4958
4959 for (i = 0; i < var1->n_var_parts; i++)
4960 {
4961 if (VAR_PART_OFFSET (var1, i) != VAR_PART_OFFSET (var2, i))
4962 return true;
4963 if (variable_part_different_p (&var1->var_part[i], &var2->var_part[i]))
4964 return true;
4965 if (variable_part_different_p (&var2->var_part[i], &var1->var_part[i]))
4966 return true;
4967 }
4968 return false;
4969 }
4970
4971 /* Return true if dataflow sets OLD_SET and NEW_SET differ. */
4972
4973 static bool
4974 dataflow_set_different (dataflow_set *old_set, dataflow_set *new_set)
4975 {
4976 variable_iterator_type hi;
4977 variable var1;
4978
4979 if (old_set->vars == new_set->vars)
4980 return false;
4981
4982 if (shared_hash_htab (old_set->vars)->elements ()
4983 != shared_hash_htab (new_set->vars)->elements ())
4984 return true;
4985
4986 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (old_set->vars),
4987 var1, variable, hi)
4988 {
4989 variable_table_type *htab = shared_hash_htab (new_set->vars);
4990 variable var2 = htab->find_with_hash (var1->dv, dv_htab_hash (var1->dv));
4991 if (!var2)
4992 {
4993 if (dump_file && (dump_flags & TDF_DETAILS))
4994 {
4995 fprintf (dump_file, "dataflow difference found: removal of:\n");
4996 dump_var (var1);
4997 }
4998 return true;
4999 }
5000
5001 if (variable_different_p (var1, var2))
5002 {
5003 if (dump_file && (dump_flags & TDF_DETAILS))
5004 {
5005 fprintf (dump_file, "dataflow difference found: "
5006 "old and new follow:\n");
5007 dump_var (var1);
5008 dump_var (var2);
5009 }
5010 return true;
5011 }
5012 }
5013
5014 /* No need to traverse the second hashtab, if both have the same number
5015 of elements and the second one had all entries found in the first one,
5016 then it can't have any extra entries. */
5017 return false;
5018 }
5019
5020 /* Free the contents of dataflow set SET. */
5021
5022 static void
5023 dataflow_set_destroy (dataflow_set *set)
5024 {
5025 int i;
5026
5027 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5028 attrs_list_clear (&set->regs[i]);
5029
5030 shared_hash_destroy (set->vars);
5031 set->vars = NULL;
5032 }
5033
5034 /* Return true if RTL X contains a SYMBOL_REF. */
5035
5036 static bool
5037 contains_symbol_ref (rtx x)
5038 {
5039 const char *fmt;
5040 RTX_CODE code;
5041 int i;
5042
5043 if (!x)
5044 return false;
5045
5046 code = GET_CODE (x);
5047 if (code == SYMBOL_REF)
5048 return true;
5049
5050 fmt = GET_RTX_FORMAT (code);
5051 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5052 {
5053 if (fmt[i] == 'e')
5054 {
5055 if (contains_symbol_ref (XEXP (x, i)))
5056 return true;
5057 }
5058 else if (fmt[i] == 'E')
5059 {
5060 int j;
5061 for (j = 0; j < XVECLEN (x, i); j++)
5062 if (contains_symbol_ref (XVECEXP (x, i, j)))
5063 return true;
5064 }
5065 }
5066
5067 return false;
5068 }
5069
5070 /* Shall EXPR be tracked? */
5071
5072 static bool
5073 track_expr_p (tree expr, bool need_rtl)
5074 {
5075 rtx decl_rtl;
5076 tree realdecl;
5077
5078 if (TREE_CODE (expr) == DEBUG_EXPR_DECL)
5079 return DECL_RTL_SET_P (expr);
5080
5081 /* If EXPR is not a parameter or a variable do not track it. */
5082 if (TREE_CODE (expr) != VAR_DECL && TREE_CODE (expr) != PARM_DECL)
5083 return 0;
5084
5085 /* It also must have a name... */
5086 if (!DECL_NAME (expr) && need_rtl)
5087 return 0;
5088
5089 /* ... and a RTL assigned to it. */
5090 decl_rtl = DECL_RTL_IF_SET (expr);
5091 if (!decl_rtl && need_rtl)
5092 return 0;
5093
5094 /* If this expression is really a debug alias of some other declaration, we
5095 don't need to track this expression if the ultimate declaration is
5096 ignored. */
5097 realdecl = expr;
5098 if (TREE_CODE (realdecl) == VAR_DECL && DECL_HAS_DEBUG_EXPR_P (realdecl))
5099 {
5100 realdecl = DECL_DEBUG_EXPR (realdecl);
5101 if (!DECL_P (realdecl))
5102 {
5103 if (handled_component_p (realdecl)
5104 || (TREE_CODE (realdecl) == MEM_REF
5105 && TREE_CODE (TREE_OPERAND (realdecl, 0)) == ADDR_EXPR))
5106 {
5107 HOST_WIDE_INT bitsize, bitpos, maxsize;
5108 tree innerdecl
5109 = get_ref_base_and_extent (realdecl, &bitpos, &bitsize,
5110 &maxsize);
5111 if (!DECL_P (innerdecl)
5112 || DECL_IGNORED_P (innerdecl)
5113 /* Do not track declarations for parts of tracked parameters
5114 since we want to track them as a whole instead. */
5115 || (TREE_CODE (innerdecl) == PARM_DECL
5116 && DECL_MODE (innerdecl) != BLKmode
5117 && TREE_CODE (TREE_TYPE (innerdecl)) != UNION_TYPE)
5118 || TREE_STATIC (innerdecl)
5119 || bitsize <= 0
5120 || bitpos + bitsize > 256
5121 || bitsize != maxsize)
5122 return 0;
5123 else
5124 realdecl = expr;
5125 }
5126 else
5127 return 0;
5128 }
5129 }
5130
5131 /* Do not track EXPR if REALDECL it should be ignored for debugging
5132 purposes. */
5133 if (DECL_IGNORED_P (realdecl))
5134 return 0;
5135
5136 /* Do not track global variables until we are able to emit correct location
5137 list for them. */
5138 if (TREE_STATIC (realdecl))
5139 return 0;
5140
5141 /* When the EXPR is a DECL for alias of some variable (see example)
5142 the TREE_STATIC flag is not used. Disable tracking all DECLs whose
5143 DECL_RTL contains SYMBOL_REF.
5144
5145 Example:
5146 extern char **_dl_argv_internal __attribute__ ((alias ("_dl_argv")));
5147 char **_dl_argv;
5148 */
5149 if (decl_rtl && MEM_P (decl_rtl)
5150 && contains_symbol_ref (XEXP (decl_rtl, 0)))
5151 return 0;
5152
5153 /* If RTX is a memory it should not be very large (because it would be
5154 an array or struct). */
5155 if (decl_rtl && MEM_P (decl_rtl))
5156 {
5157 /* Do not track structures and arrays. */
5158 if (GET_MODE (decl_rtl) == BLKmode
5159 || AGGREGATE_TYPE_P (TREE_TYPE (realdecl)))
5160 return 0;
5161 if (MEM_SIZE_KNOWN_P (decl_rtl)
5162 && MEM_SIZE (decl_rtl) > MAX_VAR_PARTS)
5163 return 0;
5164 }
5165
5166 DECL_CHANGED (expr) = 0;
5167 DECL_CHANGED (realdecl) = 0;
5168 return 1;
5169 }
5170
5171 /* Determine whether a given LOC refers to the same variable part as
5172 EXPR+OFFSET. */
5173
5174 static bool
5175 same_variable_part_p (rtx loc, tree expr, HOST_WIDE_INT offset)
5176 {
5177 tree expr2;
5178 HOST_WIDE_INT offset2;
5179
5180 if (! DECL_P (expr))
5181 return false;
5182
5183 if (REG_P (loc))
5184 {
5185 expr2 = REG_EXPR (loc);
5186 offset2 = REG_OFFSET (loc);
5187 }
5188 else if (MEM_P (loc))
5189 {
5190 expr2 = MEM_EXPR (loc);
5191 offset2 = INT_MEM_OFFSET (loc);
5192 }
5193 else
5194 return false;
5195
5196 if (! expr2 || ! DECL_P (expr2))
5197 return false;
5198
5199 expr = var_debug_decl (expr);
5200 expr2 = var_debug_decl (expr2);
5201
5202 return (expr == expr2 && offset == offset2);
5203 }
5204
5205 /* LOC is a REG or MEM that we would like to track if possible.
5206 If EXPR is null, we don't know what expression LOC refers to,
5207 otherwise it refers to EXPR + OFFSET. STORE_REG_P is true if
5208 LOC is an lvalue register.
5209
5210 Return true if EXPR is nonnull and if LOC, or some lowpart of it,
5211 is something we can track. When returning true, store the mode of
5212 the lowpart we can track in *MODE_OUT (if nonnull) and its offset
5213 from EXPR in *OFFSET_OUT (if nonnull). */
5214
5215 static bool
5216 track_loc_p (rtx loc, tree expr, HOST_WIDE_INT offset, bool store_reg_p,
5217 machine_mode *mode_out, HOST_WIDE_INT *offset_out)
5218 {
5219 machine_mode mode;
5220
5221 if (expr == NULL || !track_expr_p (expr, true))
5222 return false;
5223
5224 /* If REG was a paradoxical subreg, its REG_ATTRS will describe the
5225 whole subreg, but only the old inner part is really relevant. */
5226 mode = GET_MODE (loc);
5227 if (REG_P (loc) && !HARD_REGISTER_NUM_P (ORIGINAL_REGNO (loc)))
5228 {
5229 machine_mode pseudo_mode;
5230
5231 pseudo_mode = PSEUDO_REGNO_MODE (ORIGINAL_REGNO (loc));
5232 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (pseudo_mode))
5233 {
5234 offset += byte_lowpart_offset (pseudo_mode, mode);
5235 mode = pseudo_mode;
5236 }
5237 }
5238
5239 /* If LOC is a paradoxical lowpart of EXPR, refer to EXPR itself.
5240 Do the same if we are storing to a register and EXPR occupies
5241 the whole of register LOC; in that case, the whole of EXPR is
5242 being changed. We exclude complex modes from the second case
5243 because the real and imaginary parts are represented as separate
5244 pseudo registers, even if the whole complex value fits into one
5245 hard register. */
5246 if ((GET_MODE_SIZE (mode) > GET_MODE_SIZE (DECL_MODE (expr))
5247 || (store_reg_p
5248 && !COMPLEX_MODE_P (DECL_MODE (expr))
5249 && hard_regno_nregs[REGNO (loc)][DECL_MODE (expr)] == 1))
5250 && offset + byte_lowpart_offset (DECL_MODE (expr), mode) == 0)
5251 {
5252 mode = DECL_MODE (expr);
5253 offset = 0;
5254 }
5255
5256 if (offset < 0 || offset >= MAX_VAR_PARTS)
5257 return false;
5258
5259 if (mode_out)
5260 *mode_out = mode;
5261 if (offset_out)
5262 *offset_out = offset;
5263 return true;
5264 }
5265
5266 /* Return the MODE lowpart of LOC, or null if LOC is not something we
5267 want to track. When returning nonnull, make sure that the attributes
5268 on the returned value are updated. */
5269
5270 static rtx
5271 var_lowpart (machine_mode mode, rtx loc)
5272 {
5273 unsigned int offset, reg_offset, regno;
5274
5275 if (GET_MODE (loc) == mode)
5276 return loc;
5277
5278 if (!REG_P (loc) && !MEM_P (loc))
5279 return NULL;
5280
5281 offset = byte_lowpart_offset (mode, GET_MODE (loc));
5282
5283 if (MEM_P (loc))
5284 return adjust_address_nv (loc, mode, offset);
5285
5286 reg_offset = subreg_lowpart_offset (mode, GET_MODE (loc));
5287 regno = REGNO (loc) + subreg_regno_offset (REGNO (loc), GET_MODE (loc),
5288 reg_offset, mode);
5289 return gen_rtx_REG_offset (loc, mode, regno, offset);
5290 }
5291
5292 /* Carry information about uses and stores while walking rtx. */
5293
5294 struct count_use_info
5295 {
5296 /* The insn where the RTX is. */
5297 rtx_insn *insn;
5298
5299 /* The basic block where insn is. */
5300 basic_block bb;
5301
5302 /* The array of n_sets sets in the insn, as determined by cselib. */
5303 struct cselib_set *sets;
5304 int n_sets;
5305
5306 /* True if we're counting stores, false otherwise. */
5307 bool store_p;
5308 };
5309
5310 /* Find a VALUE corresponding to X. */
5311
5312 static inline cselib_val *
5313 find_use_val (rtx x, machine_mode mode, struct count_use_info *cui)
5314 {
5315 int i;
5316
5317 if (cui->sets)
5318 {
5319 /* This is called after uses are set up and before stores are
5320 processed by cselib, so it's safe to look up srcs, but not
5321 dsts. So we look up expressions that appear in srcs or in
5322 dest expressions, but we search the sets array for dests of
5323 stores. */
5324 if (cui->store_p)
5325 {
5326 /* Some targets represent memset and memcpy patterns
5327 by (set (mem:BLK ...) (reg:[QHSD]I ...)) or
5328 (set (mem:BLK ...) (const_int ...)) or
5329 (set (mem:BLK ...) (mem:BLK ...)). Don't return anything
5330 in that case, otherwise we end up with mode mismatches. */
5331 if (mode == BLKmode && MEM_P (x))
5332 return NULL;
5333 for (i = 0; i < cui->n_sets; i++)
5334 if (cui->sets[i].dest == x)
5335 return cui->sets[i].src_elt;
5336 }
5337 else
5338 return cselib_lookup (x, mode, 0, VOIDmode);
5339 }
5340
5341 return NULL;
5342 }
5343
5344 /* Replace all registers and addresses in an expression with VALUE
5345 expressions that map back to them, unless the expression is a
5346 register. If no mapping is or can be performed, returns NULL. */
5347
5348 static rtx
5349 replace_expr_with_values (rtx loc)
5350 {
5351 if (REG_P (loc) || GET_CODE (loc) == ENTRY_VALUE)
5352 return NULL;
5353 else if (MEM_P (loc))
5354 {
5355 cselib_val *addr = cselib_lookup (XEXP (loc, 0),
5356 get_address_mode (loc), 0,
5357 GET_MODE (loc));
5358 if (addr)
5359 return replace_equiv_address_nv (loc, addr->val_rtx);
5360 else
5361 return NULL;
5362 }
5363 else
5364 return cselib_subst_to_values (loc, VOIDmode);
5365 }
5366
5367 /* Return true if X contains a DEBUG_EXPR. */
5368
5369 static bool
5370 rtx_debug_expr_p (const_rtx x)
5371 {
5372 subrtx_iterator::array_type array;
5373 FOR_EACH_SUBRTX (iter, array, x, ALL)
5374 if (GET_CODE (*iter) == DEBUG_EXPR)
5375 return true;
5376 return false;
5377 }
5378
5379 /* Determine what kind of micro operation to choose for a USE. Return
5380 MO_CLOBBER if no micro operation is to be generated. */
5381
5382 static enum micro_operation_type
5383 use_type (rtx loc, struct count_use_info *cui, machine_mode *modep)
5384 {
5385 tree expr;
5386
5387 if (cui && cui->sets)
5388 {
5389 if (GET_CODE (loc) == VAR_LOCATION)
5390 {
5391 if (track_expr_p (PAT_VAR_LOCATION_DECL (loc), false))
5392 {
5393 rtx ploc = PAT_VAR_LOCATION_LOC (loc);
5394 if (! VAR_LOC_UNKNOWN_P (ploc))
5395 {
5396 cselib_val *val = cselib_lookup (ploc, GET_MODE (loc), 1,
5397 VOIDmode);
5398
5399 /* ??? flag_float_store and volatile mems are never
5400 given values, but we could in theory use them for
5401 locations. */
5402 gcc_assert (val || 1);
5403 }
5404 return MO_VAL_LOC;
5405 }
5406 else
5407 return MO_CLOBBER;
5408 }
5409
5410 if (REG_P (loc) || MEM_P (loc))
5411 {
5412 if (modep)
5413 *modep = GET_MODE (loc);
5414 if (cui->store_p)
5415 {
5416 if (REG_P (loc)
5417 || (find_use_val (loc, GET_MODE (loc), cui)
5418 && cselib_lookup (XEXP (loc, 0),
5419 get_address_mode (loc), 0,
5420 GET_MODE (loc))))
5421 return MO_VAL_SET;
5422 }
5423 else
5424 {
5425 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5426
5427 if (val && !cselib_preserved_value_p (val))
5428 return MO_VAL_USE;
5429 }
5430 }
5431 }
5432
5433 if (REG_P (loc))
5434 {
5435 gcc_assert (REGNO (loc) < FIRST_PSEUDO_REGISTER);
5436
5437 if (loc == cfa_base_rtx)
5438 return MO_CLOBBER;
5439 expr = REG_EXPR (loc);
5440
5441 if (!expr)
5442 return MO_USE_NO_VAR;
5443 else if (target_for_debug_bind (var_debug_decl (expr)))
5444 return MO_CLOBBER;
5445 else if (track_loc_p (loc, expr, REG_OFFSET (loc),
5446 false, modep, NULL))
5447 return MO_USE;
5448 else
5449 return MO_USE_NO_VAR;
5450 }
5451 else if (MEM_P (loc))
5452 {
5453 expr = MEM_EXPR (loc);
5454
5455 if (!expr)
5456 return MO_CLOBBER;
5457 else if (target_for_debug_bind (var_debug_decl (expr)))
5458 return MO_CLOBBER;
5459 else if (track_loc_p (loc, expr, INT_MEM_OFFSET (loc),
5460 false, modep, NULL)
5461 /* Multi-part variables shouldn't refer to one-part
5462 variable names such as VALUEs (never happens) or
5463 DEBUG_EXPRs (only happens in the presence of debug
5464 insns). */
5465 && (!MAY_HAVE_DEBUG_INSNS
5466 || !rtx_debug_expr_p (XEXP (loc, 0))))
5467 return MO_USE;
5468 else
5469 return MO_CLOBBER;
5470 }
5471
5472 return MO_CLOBBER;
5473 }
5474
5475 /* Log to OUT information about micro-operation MOPT involving X in
5476 INSN of BB. */
5477
5478 static inline void
5479 log_op_type (rtx x, basic_block bb, rtx_insn *insn,
5480 enum micro_operation_type mopt, FILE *out)
5481 {
5482 fprintf (out, "bb %i op %i insn %i %s ",
5483 bb->index, VTI (bb)->mos.length (),
5484 INSN_UID (insn), micro_operation_type_name[mopt]);
5485 print_inline_rtx (out, x, 2);
5486 fputc ('\n', out);
5487 }
5488
5489 /* Tell whether the CONCAT used to holds a VALUE and its location
5490 needs value resolution, i.e., an attempt of mapping the location
5491 back to other incoming values. */
5492 #define VAL_NEEDS_RESOLUTION(x) \
5493 (RTL_FLAG_CHECK1 ("VAL_NEEDS_RESOLUTION", (x), CONCAT)->volatil)
5494 /* Whether the location in the CONCAT is a tracked expression, that
5495 should also be handled like a MO_USE. */
5496 #define VAL_HOLDS_TRACK_EXPR(x) \
5497 (RTL_FLAG_CHECK1 ("VAL_HOLDS_TRACK_EXPR", (x), CONCAT)->used)
5498 /* Whether the location in the CONCAT should be handled like a MO_COPY
5499 as well. */
5500 #define VAL_EXPR_IS_COPIED(x) \
5501 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_COPIED", (x), CONCAT)->jump)
5502 /* Whether the location in the CONCAT should be handled like a
5503 MO_CLOBBER as well. */
5504 #define VAL_EXPR_IS_CLOBBERED(x) \
5505 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_CLOBBERED", (x), CONCAT)->unchanging)
5506
5507 /* All preserved VALUEs. */
5508 static vec<rtx> preserved_values;
5509
5510 /* Ensure VAL is preserved and remember it in a vector for vt_emit_notes. */
5511
5512 static void
5513 preserve_value (cselib_val *val)
5514 {
5515 cselib_preserve_value (val);
5516 preserved_values.safe_push (val->val_rtx);
5517 }
5518
5519 /* Helper function for MO_VAL_LOC handling. Return non-zero if
5520 any rtxes not suitable for CONST use not replaced by VALUEs
5521 are discovered. */
5522
5523 static bool
5524 non_suitable_const (const_rtx x)
5525 {
5526 subrtx_iterator::array_type array;
5527 FOR_EACH_SUBRTX (iter, array, x, ALL)
5528 {
5529 const_rtx x = *iter;
5530 switch (GET_CODE (x))
5531 {
5532 case REG:
5533 case DEBUG_EXPR:
5534 case PC:
5535 case SCRATCH:
5536 case CC0:
5537 case ASM_INPUT:
5538 case ASM_OPERANDS:
5539 return true;
5540 case MEM:
5541 if (!MEM_READONLY_P (x))
5542 return true;
5543 break;
5544 default:
5545 break;
5546 }
5547 }
5548 return false;
5549 }
5550
5551 /* Add uses (register and memory references) LOC which will be tracked
5552 to VTI (bb)->mos. */
5553
5554 static void
5555 add_uses (rtx loc, struct count_use_info *cui)
5556 {
5557 machine_mode mode = VOIDmode;
5558 enum micro_operation_type type = use_type (loc, cui, &mode);
5559
5560 if (type != MO_CLOBBER)
5561 {
5562 basic_block bb = cui->bb;
5563 micro_operation mo;
5564
5565 mo.type = type;
5566 mo.u.loc = type == MO_USE ? var_lowpart (mode, loc) : loc;
5567 mo.insn = cui->insn;
5568
5569 if (type == MO_VAL_LOC)
5570 {
5571 rtx oloc = loc;
5572 rtx vloc = PAT_VAR_LOCATION_LOC (oloc);
5573 cselib_val *val;
5574
5575 gcc_assert (cui->sets);
5576
5577 if (MEM_P (vloc)
5578 && !REG_P (XEXP (vloc, 0))
5579 && !MEM_P (XEXP (vloc, 0)))
5580 {
5581 rtx mloc = vloc;
5582 machine_mode address_mode = get_address_mode (mloc);
5583 cselib_val *val
5584 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5585 GET_MODE (mloc));
5586
5587 if (val && !cselib_preserved_value_p (val))
5588 preserve_value (val);
5589 }
5590
5591 if (CONSTANT_P (vloc)
5592 && (GET_CODE (vloc) != CONST || non_suitable_const (vloc)))
5593 /* For constants don't look up any value. */;
5594 else if (!VAR_LOC_UNKNOWN_P (vloc) && !unsuitable_loc (vloc)
5595 && (val = find_use_val (vloc, GET_MODE (oloc), cui)))
5596 {
5597 machine_mode mode2;
5598 enum micro_operation_type type2;
5599 rtx nloc = NULL;
5600 bool resolvable = REG_P (vloc) || MEM_P (vloc);
5601
5602 if (resolvable)
5603 nloc = replace_expr_with_values (vloc);
5604
5605 if (nloc)
5606 {
5607 oloc = shallow_copy_rtx (oloc);
5608 PAT_VAR_LOCATION_LOC (oloc) = nloc;
5609 }
5610
5611 oloc = gen_rtx_CONCAT (mode, val->val_rtx, oloc);
5612
5613 type2 = use_type (vloc, 0, &mode2);
5614
5615 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5616 || type2 == MO_CLOBBER);
5617
5618 if (type2 == MO_CLOBBER
5619 && !cselib_preserved_value_p (val))
5620 {
5621 VAL_NEEDS_RESOLUTION (oloc) = resolvable;
5622 preserve_value (val);
5623 }
5624 }
5625 else if (!VAR_LOC_UNKNOWN_P (vloc))
5626 {
5627 oloc = shallow_copy_rtx (oloc);
5628 PAT_VAR_LOCATION_LOC (oloc) = gen_rtx_UNKNOWN_VAR_LOC ();
5629 }
5630
5631 mo.u.loc = oloc;
5632 }
5633 else if (type == MO_VAL_USE)
5634 {
5635 machine_mode mode2 = VOIDmode;
5636 enum micro_operation_type type2;
5637 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5638 rtx vloc, oloc = loc, nloc;
5639
5640 gcc_assert (cui->sets);
5641
5642 if (MEM_P (oloc)
5643 && !REG_P (XEXP (oloc, 0))
5644 && !MEM_P (XEXP (oloc, 0)))
5645 {
5646 rtx mloc = oloc;
5647 machine_mode address_mode = get_address_mode (mloc);
5648 cselib_val *val
5649 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5650 GET_MODE (mloc));
5651
5652 if (val && !cselib_preserved_value_p (val))
5653 preserve_value (val);
5654 }
5655
5656 type2 = use_type (loc, 0, &mode2);
5657
5658 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5659 || type2 == MO_CLOBBER);
5660
5661 if (type2 == MO_USE)
5662 vloc = var_lowpart (mode2, loc);
5663 else
5664 vloc = oloc;
5665
5666 /* The loc of a MO_VAL_USE may have two forms:
5667
5668 (concat val src): val is at src, a value-based
5669 representation.
5670
5671 (concat (concat val use) src): same as above, with use as
5672 the MO_USE tracked value, if it differs from src.
5673
5674 */
5675
5676 gcc_checking_assert (REG_P (loc) || MEM_P (loc));
5677 nloc = replace_expr_with_values (loc);
5678 if (!nloc)
5679 nloc = oloc;
5680
5681 if (vloc != nloc)
5682 oloc = gen_rtx_CONCAT (mode2, val->val_rtx, vloc);
5683 else
5684 oloc = val->val_rtx;
5685
5686 mo.u.loc = gen_rtx_CONCAT (mode, oloc, nloc);
5687
5688 if (type2 == MO_USE)
5689 VAL_HOLDS_TRACK_EXPR (mo.u.loc) = 1;
5690 if (!cselib_preserved_value_p (val))
5691 {
5692 VAL_NEEDS_RESOLUTION (mo.u.loc) = 1;
5693 preserve_value (val);
5694 }
5695 }
5696 else
5697 gcc_assert (type == MO_USE || type == MO_USE_NO_VAR);
5698
5699 if (dump_file && (dump_flags & TDF_DETAILS))
5700 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
5701 VTI (bb)->mos.safe_push (mo);
5702 }
5703 }
5704
5705 /* Helper function for finding all uses of REG/MEM in X in insn INSN. */
5706
5707 static void
5708 add_uses_1 (rtx *x, void *cui)
5709 {
5710 subrtx_var_iterator::array_type array;
5711 FOR_EACH_SUBRTX_VAR (iter, array, *x, NONCONST)
5712 add_uses (*iter, (struct count_use_info *) cui);
5713 }
5714
5715 /* This is the value used during expansion of locations. We want it
5716 to be unbounded, so that variables expanded deep in a recursion
5717 nest are fully evaluated, so that their values are cached
5718 correctly. We avoid recursion cycles through other means, and we
5719 don't unshare RTL, so excess complexity is not a problem. */
5720 #define EXPR_DEPTH (INT_MAX)
5721 /* We use this to keep too-complex expressions from being emitted as
5722 location notes, and then to debug information. Users can trade
5723 compile time for ridiculously complex expressions, although they're
5724 seldom useful, and they may often have to be discarded as not
5725 representable anyway. */
5726 #define EXPR_USE_DEPTH (PARAM_VALUE (PARAM_MAX_VARTRACK_EXPR_DEPTH))
5727
5728 /* Attempt to reverse the EXPR operation in the debug info and record
5729 it in the cselib table. Say for reg1 = reg2 + 6 even when reg2 is
5730 no longer live we can express its value as VAL - 6. */
5731
5732 static void
5733 reverse_op (rtx val, const_rtx expr, rtx_insn *insn)
5734 {
5735 rtx src, arg, ret;
5736 cselib_val *v;
5737 struct elt_loc_list *l;
5738 enum rtx_code code;
5739 int count;
5740
5741 if (GET_CODE (expr) != SET)
5742 return;
5743
5744 if (!REG_P (SET_DEST (expr)) || GET_MODE (val) != GET_MODE (SET_DEST (expr)))
5745 return;
5746
5747 src = SET_SRC (expr);
5748 switch (GET_CODE (src))
5749 {
5750 case PLUS:
5751 case MINUS:
5752 case XOR:
5753 case NOT:
5754 case NEG:
5755 if (!REG_P (XEXP (src, 0)))
5756 return;
5757 break;
5758 case SIGN_EXTEND:
5759 case ZERO_EXTEND:
5760 if (!REG_P (XEXP (src, 0)) && !MEM_P (XEXP (src, 0)))
5761 return;
5762 break;
5763 default:
5764 return;
5765 }
5766
5767 if (!SCALAR_INT_MODE_P (GET_MODE (src)) || XEXP (src, 0) == cfa_base_rtx)
5768 return;
5769
5770 v = cselib_lookup (XEXP (src, 0), GET_MODE (XEXP (src, 0)), 0, VOIDmode);
5771 if (!v || !cselib_preserved_value_p (v))
5772 return;
5773
5774 /* Use canonical V to avoid creating multiple redundant expressions
5775 for different VALUES equivalent to V. */
5776 v = canonical_cselib_val (v);
5777
5778 /* Adding a reverse op isn't useful if V already has an always valid
5779 location. Ignore ENTRY_VALUE, while it is always constant, we should
5780 prefer non-ENTRY_VALUE locations whenever possible. */
5781 for (l = v->locs, count = 0; l; l = l->next, count++)
5782 if (CONSTANT_P (l->loc)
5783 && (GET_CODE (l->loc) != CONST || !references_value_p (l->loc, 0)))
5784 return;
5785 /* Avoid creating too large locs lists. */
5786 else if (count == PARAM_VALUE (PARAM_MAX_VARTRACK_REVERSE_OP_SIZE))
5787 return;
5788
5789 switch (GET_CODE (src))
5790 {
5791 case NOT:
5792 case NEG:
5793 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5794 return;
5795 ret = gen_rtx_fmt_e (GET_CODE (src), GET_MODE (val), val);
5796 break;
5797 case SIGN_EXTEND:
5798 case ZERO_EXTEND:
5799 ret = gen_lowpart_SUBREG (GET_MODE (v->val_rtx), val);
5800 break;
5801 case XOR:
5802 code = XOR;
5803 goto binary;
5804 case PLUS:
5805 code = MINUS;
5806 goto binary;
5807 case MINUS:
5808 code = PLUS;
5809 goto binary;
5810 binary:
5811 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5812 return;
5813 arg = XEXP (src, 1);
5814 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5815 {
5816 arg = cselib_expand_value_rtx (arg, scratch_regs, 5);
5817 if (arg == NULL_RTX)
5818 return;
5819 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5820 return;
5821 }
5822 ret = simplify_gen_binary (code, GET_MODE (val), val, arg);
5823 if (ret == val)
5824 /* Ensure ret isn't VALUE itself (which can happen e.g. for
5825 (plus (reg1) (reg2)) when reg2 is known to be 0), as that
5826 breaks a lot of routines during var-tracking. */
5827 ret = gen_rtx_fmt_ee (PLUS, GET_MODE (val), val, const0_rtx);
5828 break;
5829 default:
5830 gcc_unreachable ();
5831 }
5832
5833 cselib_add_permanent_equiv (v, ret, insn);
5834 }
5835
5836 /* Add stores (register and memory references) LOC which will be tracked
5837 to VTI (bb)->mos. EXPR is the RTL expression containing the store.
5838 CUIP->insn is instruction which the LOC is part of. */
5839
5840 static void
5841 add_stores (rtx loc, const_rtx expr, void *cuip)
5842 {
5843 machine_mode mode = VOIDmode, mode2;
5844 struct count_use_info *cui = (struct count_use_info *)cuip;
5845 basic_block bb = cui->bb;
5846 micro_operation mo;
5847 rtx oloc = loc, nloc, src = NULL;
5848 enum micro_operation_type type = use_type (loc, cui, &mode);
5849 bool track_p = false;
5850 cselib_val *v;
5851 bool resolve, preserve;
5852
5853 if (type == MO_CLOBBER)
5854 return;
5855
5856 mode2 = mode;
5857
5858 if (REG_P (loc))
5859 {
5860 gcc_assert (loc != cfa_base_rtx);
5861 if ((GET_CODE (expr) == CLOBBER && type != MO_VAL_SET)
5862 || !(track_p = use_type (loc, NULL, &mode2) == MO_USE)
5863 || GET_CODE (expr) == CLOBBER)
5864 {
5865 mo.type = MO_CLOBBER;
5866 mo.u.loc = loc;
5867 if (GET_CODE (expr) == SET
5868 && SET_DEST (expr) == loc
5869 && !unsuitable_loc (SET_SRC (expr))
5870 && find_use_val (loc, mode, cui))
5871 {
5872 gcc_checking_assert (type == MO_VAL_SET);
5873 mo.u.loc = gen_rtx_SET (loc, SET_SRC (expr));
5874 }
5875 }
5876 else
5877 {
5878 if (GET_CODE (expr) == SET
5879 && SET_DEST (expr) == loc
5880 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
5881 src = var_lowpart (mode2, SET_SRC (expr));
5882 loc = var_lowpart (mode2, loc);
5883
5884 if (src == NULL)
5885 {
5886 mo.type = MO_SET;
5887 mo.u.loc = loc;
5888 }
5889 else
5890 {
5891 rtx xexpr = gen_rtx_SET (loc, src);
5892 if (same_variable_part_p (src, REG_EXPR (loc), REG_OFFSET (loc)))
5893 {
5894 /* If this is an instruction copying (part of) a parameter
5895 passed by invisible reference to its register location,
5896 pretend it's a SET so that the initial memory location
5897 is discarded, as the parameter register can be reused
5898 for other purposes and we do not track locations based
5899 on generic registers. */
5900 if (MEM_P (src)
5901 && REG_EXPR (loc)
5902 && TREE_CODE (REG_EXPR (loc)) == PARM_DECL
5903 && DECL_MODE (REG_EXPR (loc)) != BLKmode
5904 && MEM_P (DECL_INCOMING_RTL (REG_EXPR (loc)))
5905 && XEXP (DECL_INCOMING_RTL (REG_EXPR (loc)), 0)
5906 != arg_pointer_rtx)
5907 mo.type = MO_SET;
5908 else
5909 mo.type = MO_COPY;
5910 }
5911 else
5912 mo.type = MO_SET;
5913 mo.u.loc = xexpr;
5914 }
5915 }
5916 mo.insn = cui->insn;
5917 }
5918 else if (MEM_P (loc)
5919 && ((track_p = use_type (loc, NULL, &mode2) == MO_USE)
5920 || cui->sets))
5921 {
5922 if (MEM_P (loc) && type == MO_VAL_SET
5923 && !REG_P (XEXP (loc, 0))
5924 && !MEM_P (XEXP (loc, 0)))
5925 {
5926 rtx mloc = loc;
5927 machine_mode address_mode = get_address_mode (mloc);
5928 cselib_val *val = cselib_lookup (XEXP (mloc, 0),
5929 address_mode, 0,
5930 GET_MODE (mloc));
5931
5932 if (val && !cselib_preserved_value_p (val))
5933 preserve_value (val);
5934 }
5935
5936 if (GET_CODE (expr) == CLOBBER || !track_p)
5937 {
5938 mo.type = MO_CLOBBER;
5939 mo.u.loc = track_p ? var_lowpart (mode2, loc) : loc;
5940 }
5941 else
5942 {
5943 if (GET_CODE (expr) == SET
5944 && SET_DEST (expr) == loc
5945 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
5946 src = var_lowpart (mode2, SET_SRC (expr));
5947 loc = var_lowpart (mode2, loc);
5948
5949 if (src == NULL)
5950 {
5951 mo.type = MO_SET;
5952 mo.u.loc = loc;
5953 }
5954 else
5955 {
5956 rtx xexpr = gen_rtx_SET (loc, src);
5957 if (same_variable_part_p (SET_SRC (xexpr),
5958 MEM_EXPR (loc),
5959 INT_MEM_OFFSET (loc)))
5960 mo.type = MO_COPY;
5961 else
5962 mo.type = MO_SET;
5963 mo.u.loc = xexpr;
5964 }
5965 }
5966 mo.insn = cui->insn;
5967 }
5968 else
5969 return;
5970
5971 if (type != MO_VAL_SET)
5972 goto log_and_return;
5973
5974 v = find_use_val (oloc, mode, cui);
5975
5976 if (!v)
5977 goto log_and_return;
5978
5979 resolve = preserve = !cselib_preserved_value_p (v);
5980
5981 /* We cannot track values for multiple-part variables, so we track only
5982 locations for tracked parameters passed either by invisible reference
5983 or directly in multiple locations. */
5984 if (track_p
5985 && REG_P (loc)
5986 && REG_EXPR (loc)
5987 && TREE_CODE (REG_EXPR (loc)) == PARM_DECL
5988 && DECL_MODE (REG_EXPR (loc)) != BLKmode
5989 && TREE_CODE (TREE_TYPE (REG_EXPR (loc))) != UNION_TYPE
5990 && ((MEM_P (DECL_INCOMING_RTL (REG_EXPR (loc)))
5991 && XEXP (DECL_INCOMING_RTL (REG_EXPR (loc)), 0) != arg_pointer_rtx)
5992 || (GET_CODE (DECL_INCOMING_RTL (REG_EXPR (loc))) == PARALLEL
5993 && XVECLEN (DECL_INCOMING_RTL (REG_EXPR (loc)), 0) > 1)))
5994 {
5995 /* Although we don't use the value here, it could be used later by the
5996 mere virtue of its existence as the operand of the reverse operation
5997 that gave rise to it (typically extension/truncation). Make sure it
5998 is preserved as required by vt_expand_var_loc_chain. */
5999 if (preserve)
6000 preserve_value (v);
6001 goto log_and_return;
6002 }
6003
6004 if (loc == stack_pointer_rtx
6005 && hard_frame_pointer_adjustment != -1
6006 && preserve)
6007 cselib_set_value_sp_based (v);
6008
6009 nloc = replace_expr_with_values (oloc);
6010 if (nloc)
6011 oloc = nloc;
6012
6013 if (GET_CODE (PATTERN (cui->insn)) == COND_EXEC)
6014 {
6015 cselib_val *oval = cselib_lookup (oloc, GET_MODE (oloc), 0, VOIDmode);
6016
6017 if (oval == v)
6018 return;
6019 gcc_assert (REG_P (oloc) || MEM_P (oloc));
6020
6021 if (oval && !cselib_preserved_value_p (oval))
6022 {
6023 micro_operation moa;
6024
6025 preserve_value (oval);
6026
6027 moa.type = MO_VAL_USE;
6028 moa.u.loc = gen_rtx_CONCAT (mode, oval->val_rtx, oloc);
6029 VAL_NEEDS_RESOLUTION (moa.u.loc) = 1;
6030 moa.insn = cui->insn;
6031
6032 if (dump_file && (dump_flags & TDF_DETAILS))
6033 log_op_type (moa.u.loc, cui->bb, cui->insn,
6034 moa.type, dump_file);
6035 VTI (bb)->mos.safe_push (moa);
6036 }
6037
6038 resolve = false;
6039 }
6040 else if (resolve && GET_CODE (mo.u.loc) == SET)
6041 {
6042 if (REG_P (SET_SRC (expr)) || MEM_P (SET_SRC (expr)))
6043 nloc = replace_expr_with_values (SET_SRC (expr));
6044 else
6045 nloc = NULL_RTX;
6046
6047 /* Avoid the mode mismatch between oexpr and expr. */
6048 if (!nloc && mode != mode2)
6049 {
6050 nloc = SET_SRC (expr);
6051 gcc_assert (oloc == SET_DEST (expr));
6052 }
6053
6054 if (nloc && nloc != SET_SRC (mo.u.loc))
6055 oloc = gen_rtx_SET (oloc, nloc);
6056 else
6057 {
6058 if (oloc == SET_DEST (mo.u.loc))
6059 /* No point in duplicating. */
6060 oloc = mo.u.loc;
6061 if (!REG_P (SET_SRC (mo.u.loc)))
6062 resolve = false;
6063 }
6064 }
6065 else if (!resolve)
6066 {
6067 if (GET_CODE (mo.u.loc) == SET
6068 && oloc == SET_DEST (mo.u.loc))
6069 /* No point in duplicating. */
6070 oloc = mo.u.loc;
6071 }
6072 else
6073 resolve = false;
6074
6075 loc = gen_rtx_CONCAT (mode, v->val_rtx, oloc);
6076
6077 if (mo.u.loc != oloc)
6078 loc = gen_rtx_CONCAT (GET_MODE (mo.u.loc), loc, mo.u.loc);
6079
6080 /* The loc of a MO_VAL_SET may have various forms:
6081
6082 (concat val dst): dst now holds val
6083
6084 (concat val (set dst src)): dst now holds val, copied from src
6085
6086 (concat (concat val dstv) dst): dst now holds val; dstv is dst
6087 after replacing mems and non-top-level regs with values.
6088
6089 (concat (concat val dstv) (set dst src)): dst now holds val,
6090 copied from src. dstv is a value-based representation of dst, if
6091 it differs from dst. If resolution is needed, src is a REG, and
6092 its mode is the same as that of val.
6093
6094 (concat (concat val (set dstv srcv)) (set dst src)): src
6095 copied to dst, holding val. dstv and srcv are value-based
6096 representations of dst and src, respectively.
6097
6098 */
6099
6100 if (GET_CODE (PATTERN (cui->insn)) != COND_EXEC)
6101 reverse_op (v->val_rtx, expr, cui->insn);
6102
6103 mo.u.loc = loc;
6104
6105 if (track_p)
6106 VAL_HOLDS_TRACK_EXPR (loc) = 1;
6107 if (preserve)
6108 {
6109 VAL_NEEDS_RESOLUTION (loc) = resolve;
6110 preserve_value (v);
6111 }
6112 if (mo.type == MO_CLOBBER)
6113 VAL_EXPR_IS_CLOBBERED (loc) = 1;
6114 if (mo.type == MO_COPY)
6115 VAL_EXPR_IS_COPIED (loc) = 1;
6116
6117 mo.type = MO_VAL_SET;
6118
6119 log_and_return:
6120 if (dump_file && (dump_flags & TDF_DETAILS))
6121 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
6122 VTI (bb)->mos.safe_push (mo);
6123 }
6124
6125 /* Arguments to the call. */
6126 static rtx call_arguments;
6127
6128 /* Compute call_arguments. */
6129
6130 static void
6131 prepare_call_arguments (basic_block bb, rtx_insn *insn)
6132 {
6133 rtx link, x, call;
6134 rtx prev, cur, next;
6135 rtx this_arg = NULL_RTX;
6136 tree type = NULL_TREE, t, fndecl = NULL_TREE;
6137 tree obj_type_ref = NULL_TREE;
6138 CUMULATIVE_ARGS args_so_far_v;
6139 cumulative_args_t args_so_far;
6140
6141 memset (&args_so_far_v, 0, sizeof (args_so_far_v));
6142 args_so_far = pack_cumulative_args (&args_so_far_v);
6143 call = get_call_rtx_from (insn);
6144 if (call)
6145 {
6146 if (GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
6147 {
6148 rtx symbol = XEXP (XEXP (call, 0), 0);
6149 if (SYMBOL_REF_DECL (symbol))
6150 fndecl = SYMBOL_REF_DECL (symbol);
6151 }
6152 if (fndecl == NULL_TREE)
6153 fndecl = MEM_EXPR (XEXP (call, 0));
6154 if (fndecl
6155 && TREE_CODE (TREE_TYPE (fndecl)) != FUNCTION_TYPE
6156 && TREE_CODE (TREE_TYPE (fndecl)) != METHOD_TYPE)
6157 fndecl = NULL_TREE;
6158 if (fndecl && TYPE_ARG_TYPES (TREE_TYPE (fndecl)))
6159 type = TREE_TYPE (fndecl);
6160 if (fndecl && TREE_CODE (fndecl) != FUNCTION_DECL)
6161 {
6162 if (TREE_CODE (fndecl) == INDIRECT_REF
6163 && TREE_CODE (TREE_OPERAND (fndecl, 0)) == OBJ_TYPE_REF)
6164 obj_type_ref = TREE_OPERAND (fndecl, 0);
6165 fndecl = NULL_TREE;
6166 }
6167 if (type)
6168 {
6169 for (t = TYPE_ARG_TYPES (type); t && t != void_list_node;
6170 t = TREE_CHAIN (t))
6171 if (TREE_CODE (TREE_VALUE (t)) == REFERENCE_TYPE
6172 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_VALUE (t))))
6173 break;
6174 if ((t == NULL || t == void_list_node) && obj_type_ref == NULL_TREE)
6175 type = NULL;
6176 else
6177 {
6178 int nargs ATTRIBUTE_UNUSED = list_length (TYPE_ARG_TYPES (type));
6179 link = CALL_INSN_FUNCTION_USAGE (insn);
6180 #ifndef PCC_STATIC_STRUCT_RETURN
6181 if (aggregate_value_p (TREE_TYPE (type), type)
6182 && targetm.calls.struct_value_rtx (type, 0) == 0)
6183 {
6184 tree struct_addr = build_pointer_type (TREE_TYPE (type));
6185 machine_mode mode = TYPE_MODE (struct_addr);
6186 rtx reg;
6187 INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
6188 nargs + 1);
6189 reg = targetm.calls.function_arg (args_so_far, mode,
6190 struct_addr, true);
6191 targetm.calls.function_arg_advance (args_so_far, mode,
6192 struct_addr, true);
6193 if (reg == NULL_RTX)
6194 {
6195 for (; link; link = XEXP (link, 1))
6196 if (GET_CODE (XEXP (link, 0)) == USE
6197 && MEM_P (XEXP (XEXP (link, 0), 0)))
6198 {
6199 link = XEXP (link, 1);
6200 break;
6201 }
6202 }
6203 }
6204 else
6205 #endif
6206 INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
6207 nargs);
6208 if (obj_type_ref && TYPE_ARG_TYPES (type) != void_list_node)
6209 {
6210 machine_mode mode;
6211 t = TYPE_ARG_TYPES (type);
6212 mode = TYPE_MODE (TREE_VALUE (t));
6213 this_arg = targetm.calls.function_arg (args_so_far, mode,
6214 TREE_VALUE (t), true);
6215 if (this_arg && !REG_P (this_arg))
6216 this_arg = NULL_RTX;
6217 else if (this_arg == NULL_RTX)
6218 {
6219 for (; link; link = XEXP (link, 1))
6220 if (GET_CODE (XEXP (link, 0)) == USE
6221 && MEM_P (XEXP (XEXP (link, 0), 0)))
6222 {
6223 this_arg = XEXP (XEXP (link, 0), 0);
6224 break;
6225 }
6226 }
6227 }
6228 }
6229 }
6230 }
6231 t = type ? TYPE_ARG_TYPES (type) : NULL_TREE;
6232
6233 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
6234 if (GET_CODE (XEXP (link, 0)) == USE)
6235 {
6236 rtx item = NULL_RTX;
6237 x = XEXP (XEXP (link, 0), 0);
6238 if (GET_MODE (link) == VOIDmode
6239 || GET_MODE (link) == BLKmode
6240 || (GET_MODE (link) != GET_MODE (x)
6241 && ((GET_MODE_CLASS (GET_MODE (link)) != MODE_INT
6242 && GET_MODE_CLASS (GET_MODE (link)) != MODE_PARTIAL_INT)
6243 || (GET_MODE_CLASS (GET_MODE (x)) != MODE_INT
6244 && GET_MODE_CLASS (GET_MODE (x)) != MODE_PARTIAL_INT))))
6245 /* Can't do anything for these, if the original type mode
6246 isn't known or can't be converted. */;
6247 else if (REG_P (x))
6248 {
6249 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
6250 if (val && cselib_preserved_value_p (val))
6251 item = val->val_rtx;
6252 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
6253 || GET_MODE_CLASS (GET_MODE (x)) == MODE_PARTIAL_INT)
6254 {
6255 machine_mode mode = GET_MODE (x);
6256
6257 while ((mode = GET_MODE_WIDER_MODE (mode)) != VOIDmode
6258 && GET_MODE_BITSIZE (mode) <= BITS_PER_WORD)
6259 {
6260 rtx reg = simplify_subreg (mode, x, GET_MODE (x), 0);
6261
6262 if (reg == NULL_RTX || !REG_P (reg))
6263 continue;
6264 val = cselib_lookup (reg, mode, 0, VOIDmode);
6265 if (val && cselib_preserved_value_p (val))
6266 {
6267 item = val->val_rtx;
6268 break;
6269 }
6270 }
6271 }
6272 }
6273 else if (MEM_P (x))
6274 {
6275 rtx mem = x;
6276 cselib_val *val;
6277
6278 if (!frame_pointer_needed)
6279 {
6280 struct adjust_mem_data amd;
6281 amd.mem_mode = VOIDmode;
6282 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
6283 amd.side_effects = NULL;
6284 amd.store = true;
6285 mem = simplify_replace_fn_rtx (mem, NULL_RTX, adjust_mems,
6286 &amd);
6287 gcc_assert (amd.side_effects == NULL_RTX);
6288 }
6289 val = cselib_lookup (mem, GET_MODE (mem), 0, VOIDmode);
6290 if (val && cselib_preserved_value_p (val))
6291 item = val->val_rtx;
6292 else if (GET_MODE_CLASS (GET_MODE (mem)) != MODE_INT
6293 && GET_MODE_CLASS (GET_MODE (mem)) != MODE_PARTIAL_INT)
6294 {
6295 /* For non-integer stack argument see also if they weren't
6296 initialized by integers. */
6297 machine_mode imode = int_mode_for_mode (GET_MODE (mem));
6298 if (imode != GET_MODE (mem) && imode != BLKmode)
6299 {
6300 val = cselib_lookup (adjust_address_nv (mem, imode, 0),
6301 imode, 0, VOIDmode);
6302 if (val && cselib_preserved_value_p (val))
6303 item = lowpart_subreg (GET_MODE (x), val->val_rtx,
6304 imode);
6305 }
6306 }
6307 }
6308 if (item)
6309 {
6310 rtx x2 = x;
6311 if (GET_MODE (item) != GET_MODE (link))
6312 item = lowpart_subreg (GET_MODE (link), item, GET_MODE (item));
6313 if (GET_MODE (x2) != GET_MODE (link))
6314 x2 = lowpart_subreg (GET_MODE (link), x2, GET_MODE (x2));
6315 item = gen_rtx_CONCAT (GET_MODE (link), x2, item);
6316 call_arguments
6317 = gen_rtx_EXPR_LIST (VOIDmode, item, call_arguments);
6318 }
6319 if (t && t != void_list_node)
6320 {
6321 tree argtype = TREE_VALUE (t);
6322 machine_mode mode = TYPE_MODE (argtype);
6323 rtx reg;
6324 if (pass_by_reference (&args_so_far_v, mode, argtype, true))
6325 {
6326 argtype = build_pointer_type (argtype);
6327 mode = TYPE_MODE (argtype);
6328 }
6329 reg = targetm.calls.function_arg (args_so_far, mode,
6330 argtype, true);
6331 if (TREE_CODE (argtype) == REFERENCE_TYPE
6332 && INTEGRAL_TYPE_P (TREE_TYPE (argtype))
6333 && reg
6334 && REG_P (reg)
6335 && GET_MODE (reg) == mode
6336 && (GET_MODE_CLASS (mode) == MODE_INT
6337 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
6338 && REG_P (x)
6339 && REGNO (x) == REGNO (reg)
6340 && GET_MODE (x) == mode
6341 && item)
6342 {
6343 machine_mode indmode
6344 = TYPE_MODE (TREE_TYPE (argtype));
6345 rtx mem = gen_rtx_MEM (indmode, x);
6346 cselib_val *val = cselib_lookup (mem, indmode, 0, VOIDmode);
6347 if (val && cselib_preserved_value_p (val))
6348 {
6349 item = gen_rtx_CONCAT (indmode, mem, val->val_rtx);
6350 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
6351 call_arguments);
6352 }
6353 else
6354 {
6355 struct elt_loc_list *l;
6356 tree initial;
6357
6358 /* Try harder, when passing address of a constant
6359 pool integer it can be easily read back. */
6360 item = XEXP (item, 1);
6361 if (GET_CODE (item) == SUBREG)
6362 item = SUBREG_REG (item);
6363 gcc_assert (GET_CODE (item) == VALUE);
6364 val = CSELIB_VAL_PTR (item);
6365 for (l = val->locs; l; l = l->next)
6366 if (GET_CODE (l->loc) == SYMBOL_REF
6367 && TREE_CONSTANT_POOL_ADDRESS_P (l->loc)
6368 && SYMBOL_REF_DECL (l->loc)
6369 && DECL_INITIAL (SYMBOL_REF_DECL (l->loc)))
6370 {
6371 initial = DECL_INITIAL (SYMBOL_REF_DECL (l->loc));
6372 if (tree_fits_shwi_p (initial))
6373 {
6374 item = GEN_INT (tree_to_shwi (initial));
6375 item = gen_rtx_CONCAT (indmode, mem, item);
6376 call_arguments
6377 = gen_rtx_EXPR_LIST (VOIDmode, item,
6378 call_arguments);
6379 }
6380 break;
6381 }
6382 }
6383 }
6384 targetm.calls.function_arg_advance (args_so_far, mode,
6385 argtype, true);
6386 t = TREE_CHAIN (t);
6387 }
6388 }
6389
6390 /* Add debug arguments. */
6391 if (fndecl
6392 && TREE_CODE (fndecl) == FUNCTION_DECL
6393 && DECL_HAS_DEBUG_ARGS_P (fndecl))
6394 {
6395 vec<tree, va_gc> **debug_args = decl_debug_args_lookup (fndecl);
6396 if (debug_args)
6397 {
6398 unsigned int ix;
6399 tree param;
6400 for (ix = 0; vec_safe_iterate (*debug_args, ix, &param); ix += 2)
6401 {
6402 rtx item;
6403 tree dtemp = (**debug_args)[ix + 1];
6404 machine_mode mode = DECL_MODE (dtemp);
6405 item = gen_rtx_DEBUG_PARAMETER_REF (mode, param);
6406 item = gen_rtx_CONCAT (mode, item, DECL_RTL_KNOWN_SET (dtemp));
6407 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
6408 call_arguments);
6409 }
6410 }
6411 }
6412
6413 /* Reverse call_arguments chain. */
6414 prev = NULL_RTX;
6415 for (cur = call_arguments; cur; cur = next)
6416 {
6417 next = XEXP (cur, 1);
6418 XEXP (cur, 1) = prev;
6419 prev = cur;
6420 }
6421 call_arguments = prev;
6422
6423 x = get_call_rtx_from (insn);
6424 if (x)
6425 {
6426 x = XEXP (XEXP (x, 0), 0);
6427 if (GET_CODE (x) == SYMBOL_REF)
6428 /* Don't record anything. */;
6429 else if (CONSTANT_P (x))
6430 {
6431 x = gen_rtx_CONCAT (GET_MODE (x) == VOIDmode ? Pmode : GET_MODE (x),
6432 pc_rtx, x);
6433 call_arguments
6434 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6435 }
6436 else
6437 {
6438 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
6439 if (val && cselib_preserved_value_p (val))
6440 {
6441 x = gen_rtx_CONCAT (GET_MODE (x), pc_rtx, val->val_rtx);
6442 call_arguments
6443 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6444 }
6445 }
6446 }
6447 if (this_arg)
6448 {
6449 machine_mode mode
6450 = TYPE_MODE (TREE_TYPE (OBJ_TYPE_REF_EXPR (obj_type_ref)));
6451 rtx clobbered = gen_rtx_MEM (mode, this_arg);
6452 HOST_WIDE_INT token
6453 = tree_to_shwi (OBJ_TYPE_REF_TOKEN (obj_type_ref));
6454 if (token)
6455 clobbered = plus_constant (mode, clobbered,
6456 token * GET_MODE_SIZE (mode));
6457 clobbered = gen_rtx_MEM (mode, clobbered);
6458 x = gen_rtx_CONCAT (mode, gen_rtx_CLOBBER (VOIDmode, pc_rtx), clobbered);
6459 call_arguments
6460 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6461 }
6462 }
6463
6464 /* Callback for cselib_record_sets_hook, that records as micro
6465 operations uses and stores in an insn after cselib_record_sets has
6466 analyzed the sets in an insn, but before it modifies the stored
6467 values in the internal tables, unless cselib_record_sets doesn't
6468 call it directly (perhaps because we're not doing cselib in the
6469 first place, in which case sets and n_sets will be 0). */
6470
6471 static void
6472 add_with_sets (rtx_insn *insn, struct cselib_set *sets, int n_sets)
6473 {
6474 basic_block bb = BLOCK_FOR_INSN (insn);
6475 int n1, n2;
6476 struct count_use_info cui;
6477 micro_operation *mos;
6478
6479 cselib_hook_called = true;
6480
6481 cui.insn = insn;
6482 cui.bb = bb;
6483 cui.sets = sets;
6484 cui.n_sets = n_sets;
6485
6486 n1 = VTI (bb)->mos.length ();
6487 cui.store_p = false;
6488 note_uses (&PATTERN (insn), add_uses_1, &cui);
6489 n2 = VTI (bb)->mos.length () - 1;
6490 mos = VTI (bb)->mos.address ();
6491
6492 /* Order the MO_USEs to be before MO_USE_NO_VARs and MO_VAL_USE, and
6493 MO_VAL_LOC last. */
6494 while (n1 < n2)
6495 {
6496 while (n1 < n2 && mos[n1].type == MO_USE)
6497 n1++;
6498 while (n1 < n2 && mos[n2].type != MO_USE)
6499 n2--;
6500 if (n1 < n2)
6501 std::swap (mos[n1], mos[n2]);
6502 }
6503
6504 n2 = VTI (bb)->mos.length () - 1;
6505 while (n1 < n2)
6506 {
6507 while (n1 < n2 && mos[n1].type != MO_VAL_LOC)
6508 n1++;
6509 while (n1 < n2 && mos[n2].type == MO_VAL_LOC)
6510 n2--;
6511 if (n1 < n2)
6512 std::swap (mos[n1], mos[n2]);
6513 }
6514
6515 if (CALL_P (insn))
6516 {
6517 micro_operation mo;
6518
6519 mo.type = MO_CALL;
6520 mo.insn = insn;
6521 mo.u.loc = call_arguments;
6522 call_arguments = NULL_RTX;
6523
6524 if (dump_file && (dump_flags & TDF_DETAILS))
6525 log_op_type (PATTERN (insn), bb, insn, mo.type, dump_file);
6526 VTI (bb)->mos.safe_push (mo);
6527 }
6528
6529 n1 = VTI (bb)->mos.length ();
6530 /* This will record NEXT_INSN (insn), such that we can
6531 insert notes before it without worrying about any
6532 notes that MO_USEs might emit after the insn. */
6533 cui.store_p = true;
6534 note_stores (PATTERN (insn), add_stores, &cui);
6535 n2 = VTI (bb)->mos.length () - 1;
6536 mos = VTI (bb)->mos.address ();
6537
6538 /* Order the MO_VAL_USEs first (note_stores does nothing
6539 on DEBUG_INSNs, so there are no MO_VAL_LOCs from this
6540 insn), then MO_CLOBBERs, then MO_SET/MO_COPY/MO_VAL_SET. */
6541 while (n1 < n2)
6542 {
6543 while (n1 < n2 && mos[n1].type == MO_VAL_USE)
6544 n1++;
6545 while (n1 < n2 && mos[n2].type != MO_VAL_USE)
6546 n2--;
6547 if (n1 < n2)
6548 std::swap (mos[n1], mos[n2]);
6549 }
6550
6551 n2 = VTI (bb)->mos.length () - 1;
6552 while (n1 < n2)
6553 {
6554 while (n1 < n2 && mos[n1].type == MO_CLOBBER)
6555 n1++;
6556 while (n1 < n2 && mos[n2].type != MO_CLOBBER)
6557 n2--;
6558 if (n1 < n2)
6559 std::swap (mos[n1], mos[n2]);
6560 }
6561 }
6562
6563 static enum var_init_status
6564 find_src_status (dataflow_set *in, rtx src)
6565 {
6566 tree decl = NULL_TREE;
6567 enum var_init_status status = VAR_INIT_STATUS_UNINITIALIZED;
6568
6569 if (! flag_var_tracking_uninit)
6570 status = VAR_INIT_STATUS_INITIALIZED;
6571
6572 if (src && REG_P (src))
6573 decl = var_debug_decl (REG_EXPR (src));
6574 else if (src && MEM_P (src))
6575 decl = var_debug_decl (MEM_EXPR (src));
6576
6577 if (src && decl)
6578 status = get_init_value (in, src, dv_from_decl (decl));
6579
6580 return status;
6581 }
6582
6583 /* SRC is the source of an assignment. Use SET to try to find what
6584 was ultimately assigned to SRC. Return that value if known,
6585 otherwise return SRC itself. */
6586
6587 static rtx
6588 find_src_set_src (dataflow_set *set, rtx src)
6589 {
6590 tree decl = NULL_TREE; /* The variable being copied around. */
6591 rtx set_src = NULL_RTX; /* The value for "decl" stored in "src". */
6592 variable var;
6593 location_chain *nextp;
6594 int i;
6595 bool found;
6596
6597 if (src && REG_P (src))
6598 decl = var_debug_decl (REG_EXPR (src));
6599 else if (src && MEM_P (src))
6600 decl = var_debug_decl (MEM_EXPR (src));
6601
6602 if (src && decl)
6603 {
6604 decl_or_value dv = dv_from_decl (decl);
6605
6606 var = shared_hash_find (set->vars, dv);
6607 if (var)
6608 {
6609 found = false;
6610 for (i = 0; i < var->n_var_parts && !found; i++)
6611 for (nextp = var->var_part[i].loc_chain; nextp && !found;
6612 nextp = nextp->next)
6613 if (rtx_equal_p (nextp->loc, src))
6614 {
6615 set_src = nextp->set_src;
6616 found = true;
6617 }
6618
6619 }
6620 }
6621
6622 return set_src;
6623 }
6624
6625 /* Compute the changes of variable locations in the basic block BB. */
6626
6627 static bool
6628 compute_bb_dataflow (basic_block bb)
6629 {
6630 unsigned int i;
6631 micro_operation *mo;
6632 bool changed;
6633 dataflow_set old_out;
6634 dataflow_set *in = &VTI (bb)->in;
6635 dataflow_set *out = &VTI (bb)->out;
6636
6637 dataflow_set_init (&old_out);
6638 dataflow_set_copy (&old_out, out);
6639 dataflow_set_copy (out, in);
6640
6641 if (MAY_HAVE_DEBUG_INSNS)
6642 local_get_addr_cache = new hash_map<rtx, rtx>;
6643
6644 FOR_EACH_VEC_ELT (VTI (bb)->mos, i, mo)
6645 {
6646 rtx_insn *insn = mo->insn;
6647
6648 switch (mo->type)
6649 {
6650 case MO_CALL:
6651 dataflow_set_clear_at_call (out, insn);
6652 break;
6653
6654 case MO_USE:
6655 {
6656 rtx loc = mo->u.loc;
6657
6658 if (REG_P (loc))
6659 var_reg_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6660 else if (MEM_P (loc))
6661 var_mem_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6662 }
6663 break;
6664
6665 case MO_VAL_LOC:
6666 {
6667 rtx loc = mo->u.loc;
6668 rtx val, vloc;
6669 tree var;
6670
6671 if (GET_CODE (loc) == CONCAT)
6672 {
6673 val = XEXP (loc, 0);
6674 vloc = XEXP (loc, 1);
6675 }
6676 else
6677 {
6678 val = NULL_RTX;
6679 vloc = loc;
6680 }
6681
6682 var = PAT_VAR_LOCATION_DECL (vloc);
6683
6684 clobber_variable_part (out, NULL_RTX,
6685 dv_from_decl (var), 0, NULL_RTX);
6686 if (val)
6687 {
6688 if (VAL_NEEDS_RESOLUTION (loc))
6689 val_resolve (out, val, PAT_VAR_LOCATION_LOC (vloc), insn);
6690 set_variable_part (out, val, dv_from_decl (var), 0,
6691 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6692 INSERT);
6693 }
6694 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
6695 set_variable_part (out, PAT_VAR_LOCATION_LOC (vloc),
6696 dv_from_decl (var), 0,
6697 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6698 INSERT);
6699 }
6700 break;
6701
6702 case MO_VAL_USE:
6703 {
6704 rtx loc = mo->u.loc;
6705 rtx val, vloc, uloc;
6706
6707 vloc = uloc = XEXP (loc, 1);
6708 val = XEXP (loc, 0);
6709
6710 if (GET_CODE (val) == CONCAT)
6711 {
6712 uloc = XEXP (val, 1);
6713 val = XEXP (val, 0);
6714 }
6715
6716 if (VAL_NEEDS_RESOLUTION (loc))
6717 val_resolve (out, val, vloc, insn);
6718 else
6719 val_store (out, val, uloc, insn, false);
6720
6721 if (VAL_HOLDS_TRACK_EXPR (loc))
6722 {
6723 if (GET_CODE (uloc) == REG)
6724 var_reg_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6725 NULL);
6726 else if (GET_CODE (uloc) == MEM)
6727 var_mem_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6728 NULL);
6729 }
6730 }
6731 break;
6732
6733 case MO_VAL_SET:
6734 {
6735 rtx loc = mo->u.loc;
6736 rtx val, vloc, uloc;
6737 rtx dstv, srcv;
6738
6739 vloc = loc;
6740 uloc = XEXP (vloc, 1);
6741 val = XEXP (vloc, 0);
6742 vloc = uloc;
6743
6744 if (GET_CODE (uloc) == SET)
6745 {
6746 dstv = SET_DEST (uloc);
6747 srcv = SET_SRC (uloc);
6748 }
6749 else
6750 {
6751 dstv = uloc;
6752 srcv = NULL;
6753 }
6754
6755 if (GET_CODE (val) == CONCAT)
6756 {
6757 dstv = vloc = XEXP (val, 1);
6758 val = XEXP (val, 0);
6759 }
6760
6761 if (GET_CODE (vloc) == SET)
6762 {
6763 srcv = SET_SRC (vloc);
6764
6765 gcc_assert (val != srcv);
6766 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
6767
6768 dstv = vloc = SET_DEST (vloc);
6769
6770 if (VAL_NEEDS_RESOLUTION (loc))
6771 val_resolve (out, val, srcv, insn);
6772 }
6773 else if (VAL_NEEDS_RESOLUTION (loc))
6774 {
6775 gcc_assert (GET_CODE (uloc) == SET
6776 && GET_CODE (SET_SRC (uloc)) == REG);
6777 val_resolve (out, val, SET_SRC (uloc), insn);
6778 }
6779
6780 if (VAL_HOLDS_TRACK_EXPR (loc))
6781 {
6782 if (VAL_EXPR_IS_CLOBBERED (loc))
6783 {
6784 if (REG_P (uloc))
6785 var_reg_delete (out, uloc, true);
6786 else if (MEM_P (uloc))
6787 {
6788 gcc_assert (MEM_P (dstv));
6789 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (uloc));
6790 var_mem_delete (out, dstv, true);
6791 }
6792 }
6793 else
6794 {
6795 bool copied_p = VAL_EXPR_IS_COPIED (loc);
6796 rtx src = NULL, dst = uloc;
6797 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
6798
6799 if (GET_CODE (uloc) == SET)
6800 {
6801 src = SET_SRC (uloc);
6802 dst = SET_DEST (uloc);
6803 }
6804
6805 if (copied_p)
6806 {
6807 if (flag_var_tracking_uninit)
6808 {
6809 status = find_src_status (in, src);
6810
6811 if (status == VAR_INIT_STATUS_UNKNOWN)
6812 status = find_src_status (out, src);
6813 }
6814
6815 src = find_src_set_src (in, src);
6816 }
6817
6818 if (REG_P (dst))
6819 var_reg_delete_and_set (out, dst, !copied_p,
6820 status, srcv);
6821 else if (MEM_P (dst))
6822 {
6823 gcc_assert (MEM_P (dstv));
6824 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (dst));
6825 var_mem_delete_and_set (out, dstv, !copied_p,
6826 status, srcv);
6827 }
6828 }
6829 }
6830 else if (REG_P (uloc))
6831 var_regno_delete (out, REGNO (uloc));
6832 else if (MEM_P (uloc))
6833 {
6834 gcc_checking_assert (GET_CODE (vloc) == MEM);
6835 gcc_checking_assert (dstv == vloc);
6836 if (dstv != vloc)
6837 clobber_overlapping_mems (out, vloc);
6838 }
6839
6840 val_store (out, val, dstv, insn, true);
6841 }
6842 break;
6843
6844 case MO_SET:
6845 {
6846 rtx loc = mo->u.loc;
6847 rtx set_src = NULL;
6848
6849 if (GET_CODE (loc) == SET)
6850 {
6851 set_src = SET_SRC (loc);
6852 loc = SET_DEST (loc);
6853 }
6854
6855 if (REG_P (loc))
6856 var_reg_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6857 set_src);
6858 else if (MEM_P (loc))
6859 var_mem_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6860 set_src);
6861 }
6862 break;
6863
6864 case MO_COPY:
6865 {
6866 rtx loc = mo->u.loc;
6867 enum var_init_status src_status;
6868 rtx set_src = NULL;
6869
6870 if (GET_CODE (loc) == SET)
6871 {
6872 set_src = SET_SRC (loc);
6873 loc = SET_DEST (loc);
6874 }
6875
6876 if (! flag_var_tracking_uninit)
6877 src_status = VAR_INIT_STATUS_INITIALIZED;
6878 else
6879 {
6880 src_status = find_src_status (in, set_src);
6881
6882 if (src_status == VAR_INIT_STATUS_UNKNOWN)
6883 src_status = find_src_status (out, set_src);
6884 }
6885
6886 set_src = find_src_set_src (in, set_src);
6887
6888 if (REG_P (loc))
6889 var_reg_delete_and_set (out, loc, false, src_status, set_src);
6890 else if (MEM_P (loc))
6891 var_mem_delete_and_set (out, loc, false, src_status, set_src);
6892 }
6893 break;
6894
6895 case MO_USE_NO_VAR:
6896 {
6897 rtx loc = mo->u.loc;
6898
6899 if (REG_P (loc))
6900 var_reg_delete (out, loc, false);
6901 else if (MEM_P (loc))
6902 var_mem_delete (out, loc, false);
6903 }
6904 break;
6905
6906 case MO_CLOBBER:
6907 {
6908 rtx loc = mo->u.loc;
6909
6910 if (REG_P (loc))
6911 var_reg_delete (out, loc, true);
6912 else if (MEM_P (loc))
6913 var_mem_delete (out, loc, true);
6914 }
6915 break;
6916
6917 case MO_ADJUST:
6918 out->stack_adjust += mo->u.adjust;
6919 break;
6920 }
6921 }
6922
6923 if (MAY_HAVE_DEBUG_INSNS)
6924 {
6925 delete local_get_addr_cache;
6926 local_get_addr_cache = NULL;
6927
6928 dataflow_set_equiv_regs (out);
6929 shared_hash_htab (out->vars)
6930 ->traverse <dataflow_set *, canonicalize_values_mark> (out);
6931 shared_hash_htab (out->vars)
6932 ->traverse <dataflow_set *, canonicalize_values_star> (out);
6933 #if ENABLE_CHECKING
6934 shared_hash_htab (out->vars)
6935 ->traverse <dataflow_set *, canonicalize_loc_order_check> (out);
6936 #endif
6937 }
6938 changed = dataflow_set_different (&old_out, out);
6939 dataflow_set_destroy (&old_out);
6940 return changed;
6941 }
6942
6943 /* Find the locations of variables in the whole function. */
6944
6945 static bool
6946 vt_find_locations (void)
6947 {
6948 bb_heap_t *worklist = new bb_heap_t (LONG_MIN);
6949 bb_heap_t *pending = new bb_heap_t (LONG_MIN);
6950 sbitmap visited, in_worklist, in_pending;
6951 basic_block bb;
6952 edge e;
6953 int *bb_order;
6954 int *rc_order;
6955 int i;
6956 int htabsz = 0;
6957 int htabmax = PARAM_VALUE (PARAM_MAX_VARTRACK_SIZE);
6958 bool success = true;
6959
6960 timevar_push (TV_VAR_TRACKING_DATAFLOW);
6961 /* Compute reverse completion order of depth first search of the CFG
6962 so that the data-flow runs faster. */
6963 rc_order = XNEWVEC (int, n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS);
6964 bb_order = XNEWVEC (int, last_basic_block_for_fn (cfun));
6965 pre_and_rev_post_order_compute (NULL, rc_order, false);
6966 for (i = 0; i < n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS; i++)
6967 bb_order[rc_order[i]] = i;
6968 free (rc_order);
6969
6970 visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
6971 in_worklist = sbitmap_alloc (last_basic_block_for_fn (cfun));
6972 in_pending = sbitmap_alloc (last_basic_block_for_fn (cfun));
6973 bitmap_clear (in_worklist);
6974
6975 FOR_EACH_BB_FN (bb, cfun)
6976 pending->insert (bb_order[bb->index], bb);
6977 bitmap_ones (in_pending);
6978
6979 while (success && !pending->empty ())
6980 {
6981 std::swap (worklist, pending);
6982 std::swap (in_worklist, in_pending);
6983
6984 bitmap_clear (visited);
6985
6986 while (!worklist->empty ())
6987 {
6988 bb = worklist->extract_min ();
6989 bitmap_clear_bit (in_worklist, bb->index);
6990 gcc_assert (!bitmap_bit_p (visited, bb->index));
6991 if (!bitmap_bit_p (visited, bb->index))
6992 {
6993 bool changed;
6994 edge_iterator ei;
6995 int oldinsz, oldoutsz;
6996
6997 bitmap_set_bit (visited, bb->index);
6998
6999 if (VTI (bb)->in.vars)
7000 {
7001 htabsz
7002 -= shared_hash_htab (VTI (bb)->in.vars)->size ()
7003 + shared_hash_htab (VTI (bb)->out.vars)->size ();
7004 oldinsz = shared_hash_htab (VTI (bb)->in.vars)->elements ();
7005 oldoutsz
7006 = shared_hash_htab (VTI (bb)->out.vars)->elements ();
7007 }
7008 else
7009 oldinsz = oldoutsz = 0;
7010
7011 if (MAY_HAVE_DEBUG_INSNS)
7012 {
7013 dataflow_set *in = &VTI (bb)->in, *first_out = NULL;
7014 bool first = true, adjust = false;
7015
7016 /* Calculate the IN set as the intersection of
7017 predecessor OUT sets. */
7018
7019 dataflow_set_clear (in);
7020 dst_can_be_shared = true;
7021
7022 FOR_EACH_EDGE (e, ei, bb->preds)
7023 if (!VTI (e->src)->flooded)
7024 gcc_assert (bb_order[bb->index]
7025 <= bb_order[e->src->index]);
7026 else if (first)
7027 {
7028 dataflow_set_copy (in, &VTI (e->src)->out);
7029 first_out = &VTI (e->src)->out;
7030 first = false;
7031 }
7032 else
7033 {
7034 dataflow_set_merge (in, &VTI (e->src)->out);
7035 adjust = true;
7036 }
7037
7038 if (adjust)
7039 {
7040 dataflow_post_merge_adjust (in, &VTI (bb)->permp);
7041 #if ENABLE_CHECKING
7042 /* Merge and merge_adjust should keep entries in
7043 canonical order. */
7044 shared_hash_htab (in->vars)
7045 ->traverse <dataflow_set *,
7046 canonicalize_loc_order_check> (in);
7047 #endif
7048 if (dst_can_be_shared)
7049 {
7050 shared_hash_destroy (in->vars);
7051 in->vars = shared_hash_copy (first_out->vars);
7052 }
7053 }
7054
7055 VTI (bb)->flooded = true;
7056 }
7057 else
7058 {
7059 /* Calculate the IN set as union of predecessor OUT sets. */
7060 dataflow_set_clear (&VTI (bb)->in);
7061 FOR_EACH_EDGE (e, ei, bb->preds)
7062 dataflow_set_union (&VTI (bb)->in, &VTI (e->src)->out);
7063 }
7064
7065 changed = compute_bb_dataflow (bb);
7066 htabsz += shared_hash_htab (VTI (bb)->in.vars)->size ()
7067 + shared_hash_htab (VTI (bb)->out.vars)->size ();
7068
7069 if (htabmax && htabsz > htabmax)
7070 {
7071 if (MAY_HAVE_DEBUG_INSNS)
7072 inform (DECL_SOURCE_LOCATION (cfun->decl),
7073 "variable tracking size limit exceeded with "
7074 "-fvar-tracking-assignments, retrying without");
7075 else
7076 inform (DECL_SOURCE_LOCATION (cfun->decl),
7077 "variable tracking size limit exceeded");
7078 success = false;
7079 break;
7080 }
7081
7082 if (changed)
7083 {
7084 FOR_EACH_EDGE (e, ei, bb->succs)
7085 {
7086 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
7087 continue;
7088
7089 if (bitmap_bit_p (visited, e->dest->index))
7090 {
7091 if (!bitmap_bit_p (in_pending, e->dest->index))
7092 {
7093 /* Send E->DEST to next round. */
7094 bitmap_set_bit (in_pending, e->dest->index);
7095 pending->insert (bb_order[e->dest->index],
7096 e->dest);
7097 }
7098 }
7099 else if (!bitmap_bit_p (in_worklist, e->dest->index))
7100 {
7101 /* Add E->DEST to current round. */
7102 bitmap_set_bit (in_worklist, e->dest->index);
7103 worklist->insert (bb_order[e->dest->index],
7104 e->dest);
7105 }
7106 }
7107 }
7108
7109 if (dump_file)
7110 fprintf (dump_file,
7111 "BB %i: in %i (was %i), out %i (was %i), rem %i + %i, tsz %i\n",
7112 bb->index,
7113 (int)shared_hash_htab (VTI (bb)->in.vars)->size (),
7114 oldinsz,
7115 (int)shared_hash_htab (VTI (bb)->out.vars)->size (),
7116 oldoutsz,
7117 (int)worklist->nodes (), (int)pending->nodes (),
7118 htabsz);
7119
7120 if (dump_file && (dump_flags & TDF_DETAILS))
7121 {
7122 fprintf (dump_file, "BB %i IN:\n", bb->index);
7123 dump_dataflow_set (&VTI (bb)->in);
7124 fprintf (dump_file, "BB %i OUT:\n", bb->index);
7125 dump_dataflow_set (&VTI (bb)->out);
7126 }
7127 }
7128 }
7129 }
7130
7131 if (success && MAY_HAVE_DEBUG_INSNS)
7132 FOR_EACH_BB_FN (bb, cfun)
7133 gcc_assert (VTI (bb)->flooded);
7134
7135 free (bb_order);
7136 delete worklist;
7137 delete pending;
7138 sbitmap_free (visited);
7139 sbitmap_free (in_worklist);
7140 sbitmap_free (in_pending);
7141
7142 timevar_pop (TV_VAR_TRACKING_DATAFLOW);
7143 return success;
7144 }
7145
7146 /* Print the content of the LIST to dump file. */
7147
7148 static void
7149 dump_attrs_list (attrs list)
7150 {
7151 for (; list; list = list->next)
7152 {
7153 if (dv_is_decl_p (list->dv))
7154 print_mem_expr (dump_file, dv_as_decl (list->dv));
7155 else
7156 print_rtl_single (dump_file, dv_as_value (list->dv));
7157 fprintf (dump_file, "+" HOST_WIDE_INT_PRINT_DEC, list->offset);
7158 }
7159 fprintf (dump_file, "\n");
7160 }
7161
7162 /* Print the information about variable *SLOT to dump file. */
7163
7164 int
7165 dump_var_tracking_slot (variable_def **slot, void *data ATTRIBUTE_UNUSED)
7166 {
7167 variable var = *slot;
7168
7169 dump_var (var);
7170
7171 /* Continue traversing the hash table. */
7172 return 1;
7173 }
7174
7175 /* Print the information about variable VAR to dump file. */
7176
7177 static void
7178 dump_var (variable var)
7179 {
7180 int i;
7181 location_chain *node;
7182
7183 if (dv_is_decl_p (var->dv))
7184 {
7185 const_tree decl = dv_as_decl (var->dv);
7186
7187 if (DECL_NAME (decl))
7188 {
7189 fprintf (dump_file, " name: %s",
7190 IDENTIFIER_POINTER (DECL_NAME (decl)));
7191 if (dump_flags & TDF_UID)
7192 fprintf (dump_file, "D.%u", DECL_UID (decl));
7193 }
7194 else if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
7195 fprintf (dump_file, " name: D#%u", DEBUG_TEMP_UID (decl));
7196 else
7197 fprintf (dump_file, " name: D.%u", DECL_UID (decl));
7198 fprintf (dump_file, "\n");
7199 }
7200 else
7201 {
7202 fputc (' ', dump_file);
7203 print_rtl_single (dump_file, dv_as_value (var->dv));
7204 }
7205
7206 for (i = 0; i < var->n_var_parts; i++)
7207 {
7208 fprintf (dump_file, " offset %ld\n",
7209 (long)(var->onepart ? 0 : VAR_PART_OFFSET (var, i)));
7210 for (node = var->var_part[i].loc_chain; node; node = node->next)
7211 {
7212 fprintf (dump_file, " ");
7213 if (node->init == VAR_INIT_STATUS_UNINITIALIZED)
7214 fprintf (dump_file, "[uninit]");
7215 print_rtl_single (dump_file, node->loc);
7216 }
7217 }
7218 }
7219
7220 /* Print the information about variables from hash table VARS to dump file. */
7221
7222 static void
7223 dump_vars (variable_table_type *vars)
7224 {
7225 if (vars->elements () > 0)
7226 {
7227 fprintf (dump_file, "Variables:\n");
7228 vars->traverse <void *, dump_var_tracking_slot> (NULL);
7229 }
7230 }
7231
7232 /* Print the dataflow set SET to dump file. */
7233
7234 static void
7235 dump_dataflow_set (dataflow_set *set)
7236 {
7237 int i;
7238
7239 fprintf (dump_file, "Stack adjustment: " HOST_WIDE_INT_PRINT_DEC "\n",
7240 set->stack_adjust);
7241 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
7242 {
7243 if (set->regs[i])
7244 {
7245 fprintf (dump_file, "Reg %d:", i);
7246 dump_attrs_list (set->regs[i]);
7247 }
7248 }
7249 dump_vars (shared_hash_htab (set->vars));
7250 fprintf (dump_file, "\n");
7251 }
7252
7253 /* Print the IN and OUT sets for each basic block to dump file. */
7254
7255 static void
7256 dump_dataflow_sets (void)
7257 {
7258 basic_block bb;
7259
7260 FOR_EACH_BB_FN (bb, cfun)
7261 {
7262 fprintf (dump_file, "\nBasic block %d:\n", bb->index);
7263 fprintf (dump_file, "IN:\n");
7264 dump_dataflow_set (&VTI (bb)->in);
7265 fprintf (dump_file, "OUT:\n");
7266 dump_dataflow_set (&VTI (bb)->out);
7267 }
7268 }
7269
7270 /* Return the variable for DV in dropped_values, inserting one if
7271 requested with INSERT. */
7272
7273 static inline variable
7274 variable_from_dropped (decl_or_value dv, enum insert_option insert)
7275 {
7276 variable_def **slot;
7277 variable empty_var;
7278 onepart_enum_t onepart;
7279
7280 slot = dropped_values->find_slot_with_hash (dv, dv_htab_hash (dv), insert);
7281
7282 if (!slot)
7283 return NULL;
7284
7285 if (*slot)
7286 return *slot;
7287
7288 gcc_checking_assert (insert == INSERT);
7289
7290 onepart = dv_onepart_p (dv);
7291
7292 gcc_checking_assert (onepart == ONEPART_VALUE || onepart == ONEPART_DEXPR);
7293
7294 empty_var = onepart_pool_allocate (onepart);
7295 empty_var->dv = dv;
7296 empty_var->refcount = 1;
7297 empty_var->n_var_parts = 0;
7298 empty_var->onepart = onepart;
7299 empty_var->in_changed_variables = false;
7300 empty_var->var_part[0].loc_chain = NULL;
7301 empty_var->var_part[0].cur_loc = NULL;
7302 VAR_LOC_1PAUX (empty_var) = NULL;
7303 set_dv_changed (dv, true);
7304
7305 *slot = empty_var;
7306
7307 return empty_var;
7308 }
7309
7310 /* Recover the one-part aux from dropped_values. */
7311
7312 static struct onepart_aux *
7313 recover_dropped_1paux (variable var)
7314 {
7315 variable dvar;
7316
7317 gcc_checking_assert (var->onepart);
7318
7319 if (VAR_LOC_1PAUX (var))
7320 return VAR_LOC_1PAUX (var);
7321
7322 if (var->onepart == ONEPART_VDECL)
7323 return NULL;
7324
7325 dvar = variable_from_dropped (var->dv, NO_INSERT);
7326
7327 if (!dvar)
7328 return NULL;
7329
7330 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (dvar);
7331 VAR_LOC_1PAUX (dvar) = NULL;
7332
7333 return VAR_LOC_1PAUX (var);
7334 }
7335
7336 /* Add variable VAR to the hash table of changed variables and
7337 if it has no locations delete it from SET's hash table. */
7338
7339 static void
7340 variable_was_changed (variable var, dataflow_set *set)
7341 {
7342 hashval_t hash = dv_htab_hash (var->dv);
7343
7344 if (emit_notes)
7345 {
7346 variable_def **slot;
7347
7348 /* Remember this decl or VALUE has been added to changed_variables. */
7349 set_dv_changed (var->dv, true);
7350
7351 slot = changed_variables->find_slot_with_hash (var->dv, hash, INSERT);
7352
7353 if (*slot)
7354 {
7355 variable old_var = *slot;
7356 gcc_assert (old_var->in_changed_variables);
7357 old_var->in_changed_variables = false;
7358 if (var != old_var && var->onepart)
7359 {
7360 /* Restore the auxiliary info from an empty variable
7361 previously created for changed_variables, so it is
7362 not lost. */
7363 gcc_checking_assert (!VAR_LOC_1PAUX (var));
7364 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (old_var);
7365 VAR_LOC_1PAUX (old_var) = NULL;
7366 }
7367 variable_htab_free (*slot);
7368 }
7369
7370 if (set && var->n_var_parts == 0)
7371 {
7372 onepart_enum_t onepart = var->onepart;
7373 variable empty_var = NULL;
7374 variable_def **dslot = NULL;
7375
7376 if (onepart == ONEPART_VALUE || onepart == ONEPART_DEXPR)
7377 {
7378 dslot = dropped_values->find_slot_with_hash (var->dv,
7379 dv_htab_hash (var->dv),
7380 INSERT);
7381 empty_var = *dslot;
7382
7383 if (empty_var)
7384 {
7385 gcc_checking_assert (!empty_var->in_changed_variables);
7386 if (!VAR_LOC_1PAUX (var))
7387 {
7388 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (empty_var);
7389 VAR_LOC_1PAUX (empty_var) = NULL;
7390 }
7391 else
7392 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var));
7393 }
7394 }
7395
7396 if (!empty_var)
7397 {
7398 empty_var = onepart_pool_allocate (onepart);
7399 empty_var->dv = var->dv;
7400 empty_var->refcount = 1;
7401 empty_var->n_var_parts = 0;
7402 empty_var->onepart = onepart;
7403 if (dslot)
7404 {
7405 empty_var->refcount++;
7406 *dslot = empty_var;
7407 }
7408 }
7409 else
7410 empty_var->refcount++;
7411 empty_var->in_changed_variables = true;
7412 *slot = empty_var;
7413 if (onepart)
7414 {
7415 empty_var->var_part[0].loc_chain = NULL;
7416 empty_var->var_part[0].cur_loc = NULL;
7417 VAR_LOC_1PAUX (empty_var) = VAR_LOC_1PAUX (var);
7418 VAR_LOC_1PAUX (var) = NULL;
7419 }
7420 goto drop_var;
7421 }
7422 else
7423 {
7424 if (var->onepart && !VAR_LOC_1PAUX (var))
7425 recover_dropped_1paux (var);
7426 var->refcount++;
7427 var->in_changed_variables = true;
7428 *slot = var;
7429 }
7430 }
7431 else
7432 {
7433 gcc_assert (set);
7434 if (var->n_var_parts == 0)
7435 {
7436 variable_def **slot;
7437
7438 drop_var:
7439 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
7440 if (slot)
7441 {
7442 if (shared_hash_shared (set->vars))
7443 slot = shared_hash_find_slot_unshare (&set->vars, var->dv,
7444 NO_INSERT);
7445 shared_hash_htab (set->vars)->clear_slot (slot);
7446 }
7447 }
7448 }
7449 }
7450
7451 /* Look for the index in VAR->var_part corresponding to OFFSET.
7452 Return -1 if not found. If INSERTION_POINT is non-NULL, the
7453 referenced int will be set to the index that the part has or should
7454 have, if it should be inserted. */
7455
7456 static inline int
7457 find_variable_location_part (variable var, HOST_WIDE_INT offset,
7458 int *insertion_point)
7459 {
7460 int pos, low, high;
7461
7462 if (var->onepart)
7463 {
7464 if (offset != 0)
7465 return -1;
7466
7467 if (insertion_point)
7468 *insertion_point = 0;
7469
7470 return var->n_var_parts - 1;
7471 }
7472
7473 /* Find the location part. */
7474 low = 0;
7475 high = var->n_var_parts;
7476 while (low != high)
7477 {
7478 pos = (low + high) / 2;
7479 if (VAR_PART_OFFSET (var, pos) < offset)
7480 low = pos + 1;
7481 else
7482 high = pos;
7483 }
7484 pos = low;
7485
7486 if (insertion_point)
7487 *insertion_point = pos;
7488
7489 if (pos < var->n_var_parts && VAR_PART_OFFSET (var, pos) == offset)
7490 return pos;
7491
7492 return -1;
7493 }
7494
7495 static variable_def **
7496 set_slot_part (dataflow_set *set, rtx loc, variable_def **slot,
7497 decl_or_value dv, HOST_WIDE_INT offset,
7498 enum var_init_status initialized, rtx set_src)
7499 {
7500 int pos;
7501 location_chain *node, *next;
7502 location_chain **nextp;
7503 variable var;
7504 onepart_enum_t onepart;
7505
7506 var = *slot;
7507
7508 if (var)
7509 onepart = var->onepart;
7510 else
7511 onepart = dv_onepart_p (dv);
7512
7513 gcc_checking_assert (offset == 0 || !onepart);
7514 gcc_checking_assert (loc != dv_as_opaque (dv));
7515
7516 if (! flag_var_tracking_uninit)
7517 initialized = VAR_INIT_STATUS_INITIALIZED;
7518
7519 if (!var)
7520 {
7521 /* Create new variable information. */
7522 var = onepart_pool_allocate (onepart);
7523 var->dv = dv;
7524 var->refcount = 1;
7525 var->n_var_parts = 1;
7526 var->onepart = onepart;
7527 var->in_changed_variables = false;
7528 if (var->onepart)
7529 VAR_LOC_1PAUX (var) = NULL;
7530 else
7531 VAR_PART_OFFSET (var, 0) = offset;
7532 var->var_part[0].loc_chain = NULL;
7533 var->var_part[0].cur_loc = NULL;
7534 *slot = var;
7535 pos = 0;
7536 nextp = &var->var_part[0].loc_chain;
7537 }
7538 else if (onepart)
7539 {
7540 int r = -1, c = 0;
7541
7542 gcc_assert (dv_as_opaque (var->dv) == dv_as_opaque (dv));
7543
7544 pos = 0;
7545
7546 if (GET_CODE (loc) == VALUE)
7547 {
7548 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7549 nextp = &node->next)
7550 if (GET_CODE (node->loc) == VALUE)
7551 {
7552 if (node->loc == loc)
7553 {
7554 r = 0;
7555 break;
7556 }
7557 if (canon_value_cmp (node->loc, loc))
7558 c++;
7559 else
7560 {
7561 r = 1;
7562 break;
7563 }
7564 }
7565 else if (REG_P (node->loc) || MEM_P (node->loc))
7566 c++;
7567 else
7568 {
7569 r = 1;
7570 break;
7571 }
7572 }
7573 else if (REG_P (loc))
7574 {
7575 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7576 nextp = &node->next)
7577 if (REG_P (node->loc))
7578 {
7579 if (REGNO (node->loc) < REGNO (loc))
7580 c++;
7581 else
7582 {
7583 if (REGNO (node->loc) == REGNO (loc))
7584 r = 0;
7585 else
7586 r = 1;
7587 break;
7588 }
7589 }
7590 else
7591 {
7592 r = 1;
7593 break;
7594 }
7595 }
7596 else if (MEM_P (loc))
7597 {
7598 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7599 nextp = &node->next)
7600 if (REG_P (node->loc))
7601 c++;
7602 else if (MEM_P (node->loc))
7603 {
7604 if ((r = loc_cmp (XEXP (node->loc, 0), XEXP (loc, 0))) >= 0)
7605 break;
7606 else
7607 c++;
7608 }
7609 else
7610 {
7611 r = 1;
7612 break;
7613 }
7614 }
7615 else
7616 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7617 nextp = &node->next)
7618 if ((r = loc_cmp (node->loc, loc)) >= 0)
7619 break;
7620 else
7621 c++;
7622
7623 if (r == 0)
7624 return slot;
7625
7626 if (shared_var_p (var, set->vars))
7627 {
7628 slot = unshare_variable (set, slot, var, initialized);
7629 var = *slot;
7630 for (nextp = &var->var_part[0].loc_chain; c;
7631 nextp = &(*nextp)->next)
7632 c--;
7633 gcc_assert ((!node && !*nextp) || node->loc == (*nextp)->loc);
7634 }
7635 }
7636 else
7637 {
7638 int inspos = 0;
7639
7640 gcc_assert (dv_as_decl (var->dv) == dv_as_decl (dv));
7641
7642 pos = find_variable_location_part (var, offset, &inspos);
7643
7644 if (pos >= 0)
7645 {
7646 node = var->var_part[pos].loc_chain;
7647
7648 if (node
7649 && ((REG_P (node->loc) && REG_P (loc)
7650 && REGNO (node->loc) == REGNO (loc))
7651 || rtx_equal_p (node->loc, loc)))
7652 {
7653 /* LOC is in the beginning of the chain so we have nothing
7654 to do. */
7655 if (node->init < initialized)
7656 node->init = initialized;
7657 if (set_src != NULL)
7658 node->set_src = set_src;
7659
7660 return slot;
7661 }
7662 else
7663 {
7664 /* We have to make a copy of a shared variable. */
7665 if (shared_var_p (var, set->vars))
7666 {
7667 slot = unshare_variable (set, slot, var, initialized);
7668 var = *slot;
7669 }
7670 }
7671 }
7672 else
7673 {
7674 /* We have not found the location part, new one will be created. */
7675
7676 /* We have to make a copy of the shared variable. */
7677 if (shared_var_p (var, set->vars))
7678 {
7679 slot = unshare_variable (set, slot, var, initialized);
7680 var = *slot;
7681 }
7682
7683 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
7684 thus there are at most MAX_VAR_PARTS different offsets. */
7685 gcc_assert (var->n_var_parts < MAX_VAR_PARTS
7686 && (!var->n_var_parts || !onepart));
7687
7688 /* We have to move the elements of array starting at index
7689 inspos to the next position. */
7690 for (pos = var->n_var_parts; pos > inspos; pos--)
7691 var->var_part[pos] = var->var_part[pos - 1];
7692
7693 var->n_var_parts++;
7694 gcc_checking_assert (!onepart);
7695 VAR_PART_OFFSET (var, pos) = offset;
7696 var->var_part[pos].loc_chain = NULL;
7697 var->var_part[pos].cur_loc = NULL;
7698 }
7699
7700 /* Delete the location from the list. */
7701 nextp = &var->var_part[pos].loc_chain;
7702 for (node = var->var_part[pos].loc_chain; node; node = next)
7703 {
7704 next = node->next;
7705 if ((REG_P (node->loc) && REG_P (loc)
7706 && REGNO (node->loc) == REGNO (loc))
7707 || rtx_equal_p (node->loc, loc))
7708 {
7709 /* Save these values, to assign to the new node, before
7710 deleting this one. */
7711 if (node->init > initialized)
7712 initialized = node->init;
7713 if (node->set_src != NULL && set_src == NULL)
7714 set_src = node->set_src;
7715 if (var->var_part[pos].cur_loc == node->loc)
7716 var->var_part[pos].cur_loc = NULL;
7717 delete node;
7718 *nextp = next;
7719 break;
7720 }
7721 else
7722 nextp = &node->next;
7723 }
7724
7725 nextp = &var->var_part[pos].loc_chain;
7726 }
7727
7728 /* Add the location to the beginning. */
7729 node = new location_chain;
7730 node->loc = loc;
7731 node->init = initialized;
7732 node->set_src = set_src;
7733 node->next = *nextp;
7734 *nextp = node;
7735
7736 /* If no location was emitted do so. */
7737 if (var->var_part[pos].cur_loc == NULL)
7738 variable_was_changed (var, set);
7739
7740 return slot;
7741 }
7742
7743 /* Set the part of variable's location in the dataflow set SET. The
7744 variable part is specified by variable's declaration in DV and
7745 offset OFFSET and the part's location by LOC. IOPT should be
7746 NO_INSERT if the variable is known to be in SET already and the
7747 variable hash table must not be resized, and INSERT otherwise. */
7748
7749 static void
7750 set_variable_part (dataflow_set *set, rtx loc,
7751 decl_or_value dv, HOST_WIDE_INT offset,
7752 enum var_init_status initialized, rtx set_src,
7753 enum insert_option iopt)
7754 {
7755 variable_def **slot;
7756
7757 if (iopt == NO_INSERT)
7758 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7759 else
7760 {
7761 slot = shared_hash_find_slot (set->vars, dv);
7762 if (!slot)
7763 slot = shared_hash_find_slot_unshare (&set->vars, dv, iopt);
7764 }
7765 set_slot_part (set, loc, slot, dv, offset, initialized, set_src);
7766 }
7767
7768 /* Remove all recorded register locations for the given variable part
7769 from dataflow set SET, except for those that are identical to loc.
7770 The variable part is specified by variable's declaration or value
7771 DV and offset OFFSET. */
7772
7773 static variable_def **
7774 clobber_slot_part (dataflow_set *set, rtx loc, variable_def **slot,
7775 HOST_WIDE_INT offset, rtx set_src)
7776 {
7777 variable var = *slot;
7778 int pos = find_variable_location_part (var, offset, NULL);
7779
7780 if (pos >= 0)
7781 {
7782 location_chain *node, *next;
7783
7784 /* Remove the register locations from the dataflow set. */
7785 next = var->var_part[pos].loc_chain;
7786 for (node = next; node; node = next)
7787 {
7788 next = node->next;
7789 if (node->loc != loc
7790 && (!flag_var_tracking_uninit
7791 || !set_src
7792 || MEM_P (set_src)
7793 || !rtx_equal_p (set_src, node->set_src)))
7794 {
7795 if (REG_P (node->loc))
7796 {
7797 attrs anode, anext;
7798 attrs *anextp;
7799
7800 /* Remove the variable part from the register's
7801 list, but preserve any other variable parts
7802 that might be regarded as live in that same
7803 register. */
7804 anextp = &set->regs[REGNO (node->loc)];
7805 for (anode = *anextp; anode; anode = anext)
7806 {
7807 anext = anode->next;
7808 if (dv_as_opaque (anode->dv) == dv_as_opaque (var->dv)
7809 && anode->offset == offset)
7810 {
7811 delete anode;
7812 *anextp = anext;
7813 }
7814 else
7815 anextp = &anode->next;
7816 }
7817 }
7818
7819 slot = delete_slot_part (set, node->loc, slot, offset);
7820 }
7821 }
7822 }
7823
7824 return slot;
7825 }
7826
7827 /* Remove all recorded register locations for the given variable part
7828 from dataflow set SET, except for those that are identical to loc.
7829 The variable part is specified by variable's declaration or value
7830 DV and offset OFFSET. */
7831
7832 static void
7833 clobber_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
7834 HOST_WIDE_INT offset, rtx set_src)
7835 {
7836 variable_def **slot;
7837
7838 if (!dv_as_opaque (dv)
7839 || (!dv_is_value_p (dv) && ! DECL_P (dv_as_decl (dv))))
7840 return;
7841
7842 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7843 if (!slot)
7844 return;
7845
7846 clobber_slot_part (set, loc, slot, offset, set_src);
7847 }
7848
7849 /* Delete the part of variable's location from dataflow set SET. The
7850 variable part is specified by its SET->vars slot SLOT and offset
7851 OFFSET and the part's location by LOC. */
7852
7853 static variable_def **
7854 delete_slot_part (dataflow_set *set, rtx loc, variable_def **slot,
7855 HOST_WIDE_INT offset)
7856 {
7857 variable var = *slot;
7858 int pos = find_variable_location_part (var, offset, NULL);
7859
7860 if (pos >= 0)
7861 {
7862 location_chain *node, *next;
7863 location_chain **nextp;
7864 bool changed;
7865 rtx cur_loc;
7866
7867 if (shared_var_p (var, set->vars))
7868 {
7869 /* If the variable contains the location part we have to
7870 make a copy of the variable. */
7871 for (node = var->var_part[pos].loc_chain; node;
7872 node = node->next)
7873 {
7874 if ((REG_P (node->loc) && REG_P (loc)
7875 && REGNO (node->loc) == REGNO (loc))
7876 || rtx_equal_p (node->loc, loc))
7877 {
7878 slot = unshare_variable (set, slot, var,
7879 VAR_INIT_STATUS_UNKNOWN);
7880 var = *slot;
7881 break;
7882 }
7883 }
7884 }
7885
7886 if (pos == 0 && var->onepart && VAR_LOC_1PAUX (var))
7887 cur_loc = VAR_LOC_FROM (var);
7888 else
7889 cur_loc = var->var_part[pos].cur_loc;
7890
7891 /* Delete the location part. */
7892 changed = false;
7893 nextp = &var->var_part[pos].loc_chain;
7894 for (node = *nextp; node; node = next)
7895 {
7896 next = node->next;
7897 if ((REG_P (node->loc) && REG_P (loc)
7898 && REGNO (node->loc) == REGNO (loc))
7899 || rtx_equal_p (node->loc, loc))
7900 {
7901 /* If we have deleted the location which was last emitted
7902 we have to emit new location so add the variable to set
7903 of changed variables. */
7904 if (cur_loc == node->loc)
7905 {
7906 changed = true;
7907 var->var_part[pos].cur_loc = NULL;
7908 if (pos == 0 && var->onepart && VAR_LOC_1PAUX (var))
7909 VAR_LOC_FROM (var) = NULL;
7910 }
7911 delete node;
7912 *nextp = next;
7913 break;
7914 }
7915 else
7916 nextp = &node->next;
7917 }
7918
7919 if (var->var_part[pos].loc_chain == NULL)
7920 {
7921 changed = true;
7922 var->n_var_parts--;
7923 while (pos < var->n_var_parts)
7924 {
7925 var->var_part[pos] = var->var_part[pos + 1];
7926 pos++;
7927 }
7928 }
7929 if (changed)
7930 variable_was_changed (var, set);
7931 }
7932
7933 return slot;
7934 }
7935
7936 /* Delete the part of variable's location from dataflow set SET. The
7937 variable part is specified by variable's declaration or value DV
7938 and offset OFFSET and the part's location by LOC. */
7939
7940 static void
7941 delete_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
7942 HOST_WIDE_INT offset)
7943 {
7944 variable_def **slot = shared_hash_find_slot_noinsert (set->vars, dv);
7945 if (!slot)
7946 return;
7947
7948 delete_slot_part (set, loc, slot, offset);
7949 }
7950
7951
7952 /* Structure for passing some other parameters to function
7953 vt_expand_loc_callback. */
7954 struct expand_loc_callback_data
7955 {
7956 /* The variables and values active at this point. */
7957 variable_table_type *vars;
7958
7959 /* Stack of values and debug_exprs under expansion, and their
7960 children. */
7961 auto_vec<rtx, 4> expanding;
7962
7963 /* Stack of values and debug_exprs whose expansion hit recursion
7964 cycles. They will have VALUE_RECURSED_INTO marked when added to
7965 this list. This flag will be cleared if any of its dependencies
7966 resolves to a valid location. So, if the flag remains set at the
7967 end of the search, we know no valid location for this one can
7968 possibly exist. */
7969 auto_vec<rtx, 4> pending;
7970
7971 /* The maximum depth among the sub-expressions under expansion.
7972 Zero indicates no expansion so far. */
7973 expand_depth depth;
7974 };
7975
7976 /* Allocate the one-part auxiliary data structure for VAR, with enough
7977 room for COUNT dependencies. */
7978
7979 static void
7980 loc_exp_dep_alloc (variable var, int count)
7981 {
7982 size_t allocsize;
7983
7984 gcc_checking_assert (var->onepart);
7985
7986 /* We can be called with COUNT == 0 to allocate the data structure
7987 without any dependencies, e.g. for the backlinks only. However,
7988 if we are specifying a COUNT, then the dependency list must have
7989 been emptied before. It would be possible to adjust pointers or
7990 force it empty here, but this is better done at an earlier point
7991 in the algorithm, so we instead leave an assertion to catch
7992 errors. */
7993 gcc_checking_assert (!count
7994 || VAR_LOC_DEP_VEC (var) == NULL
7995 || VAR_LOC_DEP_VEC (var)->is_empty ());
7996
7997 if (VAR_LOC_1PAUX (var) && VAR_LOC_DEP_VEC (var)->space (count))
7998 return;
7999
8000 allocsize = offsetof (struct onepart_aux, deps)
8001 + vec<loc_exp_dep, va_heap, vl_embed>::embedded_size (count);
8002
8003 if (VAR_LOC_1PAUX (var))
8004 {
8005 VAR_LOC_1PAUX (var) = XRESIZEVAR (struct onepart_aux,
8006 VAR_LOC_1PAUX (var), allocsize);
8007 /* If the reallocation moves the onepaux structure, the
8008 back-pointer to BACKLINKS in the first list member will still
8009 point to its old location. Adjust it. */
8010 if (VAR_LOC_DEP_LST (var))
8011 VAR_LOC_DEP_LST (var)->pprev = VAR_LOC_DEP_LSTP (var);
8012 }
8013 else
8014 {
8015 VAR_LOC_1PAUX (var) = XNEWVAR (struct onepart_aux, allocsize);
8016 *VAR_LOC_DEP_LSTP (var) = NULL;
8017 VAR_LOC_FROM (var) = NULL;
8018 VAR_LOC_DEPTH (var).complexity = 0;
8019 VAR_LOC_DEPTH (var).entryvals = 0;
8020 }
8021 VAR_LOC_DEP_VEC (var)->embedded_init (count);
8022 }
8023
8024 /* Remove all entries from the vector of active dependencies of VAR,
8025 removing them from the back-links lists too. */
8026
8027 static void
8028 loc_exp_dep_clear (variable var)
8029 {
8030 while (VAR_LOC_DEP_VEC (var) && !VAR_LOC_DEP_VEC (var)->is_empty ())
8031 {
8032 loc_exp_dep *led = &VAR_LOC_DEP_VEC (var)->last ();
8033 if (led->next)
8034 led->next->pprev = led->pprev;
8035 if (led->pprev)
8036 *led->pprev = led->next;
8037 VAR_LOC_DEP_VEC (var)->pop ();
8038 }
8039 }
8040
8041 /* Insert an active dependency from VAR on X to the vector of
8042 dependencies, and add the corresponding back-link to X's list of
8043 back-links in VARS. */
8044
8045 static void
8046 loc_exp_insert_dep (variable var, rtx x, variable_table_type *vars)
8047 {
8048 decl_or_value dv;
8049 variable xvar;
8050 loc_exp_dep *led;
8051
8052 dv = dv_from_rtx (x);
8053
8054 /* ??? Build a vector of variables parallel to EXPANDING, to avoid
8055 an additional look up? */
8056 xvar = vars->find_with_hash (dv, dv_htab_hash (dv));
8057
8058 if (!xvar)
8059 {
8060 xvar = variable_from_dropped (dv, NO_INSERT);
8061 gcc_checking_assert (xvar);
8062 }
8063
8064 /* No point in adding the same backlink more than once. This may
8065 arise if say the same value appears in two complex expressions in
8066 the same loc_list, or even more than once in a single
8067 expression. */
8068 if (VAR_LOC_DEP_LST (xvar) && VAR_LOC_DEP_LST (xvar)->dv == var->dv)
8069 return;
8070
8071 if (var->onepart == NOT_ONEPART)
8072 led = new loc_exp_dep;
8073 else
8074 {
8075 loc_exp_dep empty;
8076 memset (&empty, 0, sizeof (empty));
8077 VAR_LOC_DEP_VEC (var)->quick_push (empty);
8078 led = &VAR_LOC_DEP_VEC (var)->last ();
8079 }
8080 led->dv = var->dv;
8081 led->value = x;
8082
8083 loc_exp_dep_alloc (xvar, 0);
8084 led->pprev = VAR_LOC_DEP_LSTP (xvar);
8085 led->next = *led->pprev;
8086 if (led->next)
8087 led->next->pprev = &led->next;
8088 *led->pprev = led;
8089 }
8090
8091 /* Create active dependencies of VAR on COUNT values starting at
8092 VALUE, and corresponding back-links to the entries in VARS. Return
8093 true if we found any pending-recursion results. */
8094
8095 static bool
8096 loc_exp_dep_set (variable var, rtx result, rtx *value, int count,
8097 variable_table_type *vars)
8098 {
8099 bool pending_recursion = false;
8100
8101 gcc_checking_assert (VAR_LOC_DEP_VEC (var) == NULL
8102 || VAR_LOC_DEP_VEC (var)->is_empty ());
8103
8104 /* Set up all dependencies from last_child (as set up at the end of
8105 the loop above) to the end. */
8106 loc_exp_dep_alloc (var, count);
8107
8108 while (count--)
8109 {
8110 rtx x = *value++;
8111
8112 if (!pending_recursion)
8113 pending_recursion = !result && VALUE_RECURSED_INTO (x);
8114
8115 loc_exp_insert_dep (var, x, vars);
8116 }
8117
8118 return pending_recursion;
8119 }
8120
8121 /* Notify the back-links of IVAR that are pending recursion that we
8122 have found a non-NIL value for it, so they are cleared for another
8123 attempt to compute a current location. */
8124
8125 static void
8126 notify_dependents_of_resolved_value (variable ivar, variable_table_type *vars)
8127 {
8128 loc_exp_dep *led, *next;
8129
8130 for (led = VAR_LOC_DEP_LST (ivar); led; led = next)
8131 {
8132 decl_or_value dv = led->dv;
8133 variable var;
8134
8135 next = led->next;
8136
8137 if (dv_is_value_p (dv))
8138 {
8139 rtx value = dv_as_value (dv);
8140
8141 /* If we have already resolved it, leave it alone. */
8142 if (!VALUE_RECURSED_INTO (value))
8143 continue;
8144
8145 /* Check that VALUE_RECURSED_INTO, true from the test above,
8146 implies NO_LOC_P. */
8147 gcc_checking_assert (NO_LOC_P (value));
8148
8149 /* We won't notify variables that are being expanded,
8150 because their dependency list is cleared before
8151 recursing. */
8152 NO_LOC_P (value) = false;
8153 VALUE_RECURSED_INTO (value) = false;
8154
8155 gcc_checking_assert (dv_changed_p (dv));
8156 }
8157 else
8158 {
8159 gcc_checking_assert (dv_onepart_p (dv) != NOT_ONEPART);
8160 if (!dv_changed_p (dv))
8161 continue;
8162 }
8163
8164 var = vars->find_with_hash (dv, dv_htab_hash (dv));
8165
8166 if (!var)
8167 var = variable_from_dropped (dv, NO_INSERT);
8168
8169 if (var)
8170 notify_dependents_of_resolved_value (var, vars);
8171
8172 if (next)
8173 next->pprev = led->pprev;
8174 if (led->pprev)
8175 *led->pprev = next;
8176 led->next = NULL;
8177 led->pprev = NULL;
8178 }
8179 }
8180
8181 static rtx vt_expand_loc_callback (rtx x, bitmap regs,
8182 int max_depth, void *data);
8183
8184 /* Return the combined depth, when one sub-expression evaluated to
8185 BEST_DEPTH and the previous known depth was SAVED_DEPTH. */
8186
8187 static inline expand_depth
8188 update_depth (expand_depth saved_depth, expand_depth best_depth)
8189 {
8190 /* If we didn't find anything, stick with what we had. */
8191 if (!best_depth.complexity)
8192 return saved_depth;
8193
8194 /* If we found hadn't found anything, use the depth of the current
8195 expression. Do NOT add one extra level, we want to compute the
8196 maximum depth among sub-expressions. We'll increment it later,
8197 if appropriate. */
8198 if (!saved_depth.complexity)
8199 return best_depth;
8200
8201 /* Combine the entryval count so that regardless of which one we
8202 return, the entryval count is accurate. */
8203 best_depth.entryvals = saved_depth.entryvals
8204 = best_depth.entryvals + saved_depth.entryvals;
8205
8206 if (saved_depth.complexity < best_depth.complexity)
8207 return best_depth;
8208 else
8209 return saved_depth;
8210 }
8211
8212 /* Expand VAR to a location RTX, updating its cur_loc. Use REGS and
8213 DATA for cselib expand callback. If PENDRECP is given, indicate in
8214 it whether any sub-expression couldn't be fully evaluated because
8215 it is pending recursion resolution. */
8216
8217 static inline rtx
8218 vt_expand_var_loc_chain (variable var, bitmap regs, void *data, bool *pendrecp)
8219 {
8220 struct expand_loc_callback_data *elcd
8221 = (struct expand_loc_callback_data *) data;
8222 location_chain *loc, *next;
8223 rtx result = NULL;
8224 int first_child, result_first_child, last_child;
8225 bool pending_recursion;
8226 rtx loc_from = NULL;
8227 struct elt_loc_list *cloc = NULL;
8228 expand_depth depth = { 0, 0 }, saved_depth = elcd->depth;
8229 int wanted_entryvals, found_entryvals = 0;
8230
8231 /* Clear all backlinks pointing at this, so that we're not notified
8232 while we're active. */
8233 loc_exp_dep_clear (var);
8234
8235 retry:
8236 if (var->onepart == ONEPART_VALUE)
8237 {
8238 cselib_val *val = CSELIB_VAL_PTR (dv_as_value (var->dv));
8239
8240 gcc_checking_assert (cselib_preserved_value_p (val));
8241
8242 cloc = val->locs;
8243 }
8244
8245 first_child = result_first_child = last_child
8246 = elcd->expanding.length ();
8247
8248 wanted_entryvals = found_entryvals;
8249
8250 /* Attempt to expand each available location in turn. */
8251 for (next = loc = var->n_var_parts ? var->var_part[0].loc_chain : NULL;
8252 loc || cloc; loc = next)
8253 {
8254 result_first_child = last_child;
8255
8256 if (!loc)
8257 {
8258 loc_from = cloc->loc;
8259 next = loc;
8260 cloc = cloc->next;
8261 if (unsuitable_loc (loc_from))
8262 continue;
8263 }
8264 else
8265 {
8266 loc_from = loc->loc;
8267 next = loc->next;
8268 }
8269
8270 gcc_checking_assert (!unsuitable_loc (loc_from));
8271
8272 elcd->depth.complexity = elcd->depth.entryvals = 0;
8273 result = cselib_expand_value_rtx_cb (loc_from, regs, EXPR_DEPTH,
8274 vt_expand_loc_callback, data);
8275 last_child = elcd->expanding.length ();
8276
8277 if (result)
8278 {
8279 depth = elcd->depth;
8280
8281 gcc_checking_assert (depth.complexity
8282 || result_first_child == last_child);
8283
8284 if (last_child - result_first_child != 1)
8285 {
8286 if (!depth.complexity && GET_CODE (result) == ENTRY_VALUE)
8287 depth.entryvals++;
8288 depth.complexity++;
8289 }
8290
8291 if (depth.complexity <= EXPR_USE_DEPTH)
8292 {
8293 if (depth.entryvals <= wanted_entryvals)
8294 break;
8295 else if (!found_entryvals || depth.entryvals < found_entryvals)
8296 found_entryvals = depth.entryvals;
8297 }
8298
8299 result = NULL;
8300 }
8301
8302 /* Set it up in case we leave the loop. */
8303 depth.complexity = depth.entryvals = 0;
8304 loc_from = NULL;
8305 result_first_child = first_child;
8306 }
8307
8308 if (!loc_from && wanted_entryvals < found_entryvals)
8309 {
8310 /* We found entries with ENTRY_VALUEs and skipped them. Since
8311 we could not find any expansions without ENTRY_VALUEs, but we
8312 found at least one with them, go back and get an entry with
8313 the minimum number ENTRY_VALUE count that we found. We could
8314 avoid looping, but since each sub-loc is already resolved,
8315 the re-expansion should be trivial. ??? Should we record all
8316 attempted locs as dependencies, so that we retry the
8317 expansion should any of them change, in the hope it can give
8318 us a new entry without an ENTRY_VALUE? */
8319 elcd->expanding.truncate (first_child);
8320 goto retry;
8321 }
8322
8323 /* Register all encountered dependencies as active. */
8324 pending_recursion = loc_exp_dep_set
8325 (var, result, elcd->expanding.address () + result_first_child,
8326 last_child - result_first_child, elcd->vars);
8327
8328 elcd->expanding.truncate (first_child);
8329
8330 /* Record where the expansion came from. */
8331 gcc_checking_assert (!result || !pending_recursion);
8332 VAR_LOC_FROM (var) = loc_from;
8333 VAR_LOC_DEPTH (var) = depth;
8334
8335 gcc_checking_assert (!depth.complexity == !result);
8336
8337 elcd->depth = update_depth (saved_depth, depth);
8338
8339 /* Indicate whether any of the dependencies are pending recursion
8340 resolution. */
8341 if (pendrecp)
8342 *pendrecp = pending_recursion;
8343
8344 if (!pendrecp || !pending_recursion)
8345 var->var_part[0].cur_loc = result;
8346
8347 return result;
8348 }
8349
8350 /* Callback for cselib_expand_value, that looks for expressions
8351 holding the value in the var-tracking hash tables. Return X for
8352 standard processing, anything else is to be used as-is. */
8353
8354 static rtx
8355 vt_expand_loc_callback (rtx x, bitmap regs,
8356 int max_depth ATTRIBUTE_UNUSED,
8357 void *data)
8358 {
8359 struct expand_loc_callback_data *elcd
8360 = (struct expand_loc_callback_data *) data;
8361 decl_or_value dv;
8362 variable var;
8363 rtx result, subreg;
8364 bool pending_recursion = false;
8365 bool from_empty = false;
8366
8367 switch (GET_CODE (x))
8368 {
8369 case SUBREG:
8370 subreg = cselib_expand_value_rtx_cb (SUBREG_REG (x), regs,
8371 EXPR_DEPTH,
8372 vt_expand_loc_callback, data);
8373
8374 if (!subreg)
8375 return NULL;
8376
8377 result = simplify_gen_subreg (GET_MODE (x), subreg,
8378 GET_MODE (SUBREG_REG (x)),
8379 SUBREG_BYTE (x));
8380
8381 /* Invalid SUBREGs are ok in debug info. ??? We could try
8382 alternate expansions for the VALUE as well. */
8383 if (!result)
8384 result = gen_rtx_raw_SUBREG (GET_MODE (x), subreg, SUBREG_BYTE (x));
8385
8386 return result;
8387
8388 case DEBUG_EXPR:
8389 case VALUE:
8390 dv = dv_from_rtx (x);
8391 break;
8392
8393 default:
8394 return x;
8395 }
8396
8397 elcd->expanding.safe_push (x);
8398
8399 /* Check that VALUE_RECURSED_INTO implies NO_LOC_P. */
8400 gcc_checking_assert (!VALUE_RECURSED_INTO (x) || NO_LOC_P (x));
8401
8402 if (NO_LOC_P (x))
8403 {
8404 gcc_checking_assert (VALUE_RECURSED_INTO (x) || !dv_changed_p (dv));
8405 return NULL;
8406 }
8407
8408 var = elcd->vars->find_with_hash (dv, dv_htab_hash (dv));
8409
8410 if (!var)
8411 {
8412 from_empty = true;
8413 var = variable_from_dropped (dv, INSERT);
8414 }
8415
8416 gcc_checking_assert (var);
8417
8418 if (!dv_changed_p (dv))
8419 {
8420 gcc_checking_assert (!NO_LOC_P (x));
8421 gcc_checking_assert (var->var_part[0].cur_loc);
8422 gcc_checking_assert (VAR_LOC_1PAUX (var));
8423 gcc_checking_assert (VAR_LOC_1PAUX (var)->depth.complexity);
8424
8425 elcd->depth = update_depth (elcd->depth, VAR_LOC_1PAUX (var)->depth);
8426
8427 return var->var_part[0].cur_loc;
8428 }
8429
8430 VALUE_RECURSED_INTO (x) = true;
8431 /* This is tentative, but it makes some tests simpler. */
8432 NO_LOC_P (x) = true;
8433
8434 gcc_checking_assert (var->n_var_parts == 1 || from_empty);
8435
8436 result = vt_expand_var_loc_chain (var, regs, data, &pending_recursion);
8437
8438 if (pending_recursion)
8439 {
8440 gcc_checking_assert (!result);
8441 elcd->pending.safe_push (x);
8442 }
8443 else
8444 {
8445 NO_LOC_P (x) = !result;
8446 VALUE_RECURSED_INTO (x) = false;
8447 set_dv_changed (dv, false);
8448
8449 if (result)
8450 notify_dependents_of_resolved_value (var, elcd->vars);
8451 }
8452
8453 return result;
8454 }
8455
8456 /* While expanding variables, we may encounter recursion cycles
8457 because of mutual (possibly indirect) dependencies between two
8458 particular variables (or values), say A and B. If we're trying to
8459 expand A when we get to B, which in turn attempts to expand A, if
8460 we can't find any other expansion for B, we'll add B to this
8461 pending-recursion stack, and tentatively return NULL for its
8462 location. This tentative value will be used for any other
8463 occurrences of B, unless A gets some other location, in which case
8464 it will notify B that it is worth another try at computing a
8465 location for it, and it will use the location computed for A then.
8466 At the end of the expansion, the tentative NULL locations become
8467 final for all members of PENDING that didn't get a notification.
8468 This function performs this finalization of NULL locations. */
8469
8470 static void
8471 resolve_expansions_pending_recursion (vec<rtx, va_heap> *pending)
8472 {
8473 while (!pending->is_empty ())
8474 {
8475 rtx x = pending->pop ();
8476 decl_or_value dv;
8477
8478 if (!VALUE_RECURSED_INTO (x))
8479 continue;
8480
8481 gcc_checking_assert (NO_LOC_P (x));
8482 VALUE_RECURSED_INTO (x) = false;
8483 dv = dv_from_rtx (x);
8484 gcc_checking_assert (dv_changed_p (dv));
8485 set_dv_changed (dv, false);
8486 }
8487 }
8488
8489 /* Initialize expand_loc_callback_data D with variable hash table V.
8490 It must be a macro because of alloca (vec stack). */
8491 #define INIT_ELCD(d, v) \
8492 do \
8493 { \
8494 (d).vars = (v); \
8495 (d).depth.complexity = (d).depth.entryvals = 0; \
8496 } \
8497 while (0)
8498 /* Finalize expand_loc_callback_data D, resolved to location L. */
8499 #define FINI_ELCD(d, l) \
8500 do \
8501 { \
8502 resolve_expansions_pending_recursion (&(d).pending); \
8503 (d).pending.release (); \
8504 (d).expanding.release (); \
8505 \
8506 if ((l) && MEM_P (l)) \
8507 (l) = targetm.delegitimize_address (l); \
8508 } \
8509 while (0)
8510
8511 /* Expand VALUEs and DEBUG_EXPRs in LOC to a location, using the
8512 equivalences in VARS, updating their CUR_LOCs in the process. */
8513
8514 static rtx
8515 vt_expand_loc (rtx loc, variable_table_type *vars)
8516 {
8517 struct expand_loc_callback_data data;
8518 rtx result;
8519
8520 if (!MAY_HAVE_DEBUG_INSNS)
8521 return loc;
8522
8523 INIT_ELCD (data, vars);
8524
8525 result = cselib_expand_value_rtx_cb (loc, scratch_regs, EXPR_DEPTH,
8526 vt_expand_loc_callback, &data);
8527
8528 FINI_ELCD (data, result);
8529
8530 return result;
8531 }
8532
8533 /* Expand the one-part VARiable to a location, using the equivalences
8534 in VARS, updating their CUR_LOCs in the process. */
8535
8536 static rtx
8537 vt_expand_1pvar (variable var, variable_table_type *vars)
8538 {
8539 struct expand_loc_callback_data data;
8540 rtx loc;
8541
8542 gcc_checking_assert (var->onepart && var->n_var_parts == 1);
8543
8544 if (!dv_changed_p (var->dv))
8545 return var->var_part[0].cur_loc;
8546
8547 INIT_ELCD (data, vars);
8548
8549 loc = vt_expand_var_loc_chain (var, scratch_regs, &data, NULL);
8550
8551 gcc_checking_assert (data.expanding.is_empty ());
8552
8553 FINI_ELCD (data, loc);
8554
8555 return loc;
8556 }
8557
8558 /* Emit the NOTE_INSN_VAR_LOCATION for variable *VARP. DATA contains
8559 additional parameters: WHERE specifies whether the note shall be emitted
8560 before or after instruction INSN. */
8561
8562 int
8563 emit_note_insn_var_location (variable_def **varp, emit_note_data *data)
8564 {
8565 variable var = *varp;
8566 rtx_insn *insn = data->insn;
8567 enum emit_note_where where = data->where;
8568 variable_table_type *vars = data->vars;
8569 rtx_note *note;
8570 rtx note_vl;
8571 int i, j, n_var_parts;
8572 bool complete;
8573 enum var_init_status initialized = VAR_INIT_STATUS_UNINITIALIZED;
8574 HOST_WIDE_INT last_limit;
8575 tree type_size_unit;
8576 HOST_WIDE_INT offsets[MAX_VAR_PARTS];
8577 rtx loc[MAX_VAR_PARTS];
8578 tree decl;
8579 location_chain *lc;
8580
8581 gcc_checking_assert (var->onepart == NOT_ONEPART
8582 || var->onepart == ONEPART_VDECL);
8583
8584 decl = dv_as_decl (var->dv);
8585
8586 complete = true;
8587 last_limit = 0;
8588 n_var_parts = 0;
8589 if (!var->onepart)
8590 for (i = 0; i < var->n_var_parts; i++)
8591 if (var->var_part[i].cur_loc == NULL && var->var_part[i].loc_chain)
8592 var->var_part[i].cur_loc = var->var_part[i].loc_chain->loc;
8593 for (i = 0; i < var->n_var_parts; i++)
8594 {
8595 machine_mode mode, wider_mode;
8596 rtx loc2;
8597 HOST_WIDE_INT offset;
8598
8599 if (i == 0 && var->onepart)
8600 {
8601 gcc_checking_assert (var->n_var_parts == 1);
8602 offset = 0;
8603 initialized = VAR_INIT_STATUS_INITIALIZED;
8604 loc2 = vt_expand_1pvar (var, vars);
8605 }
8606 else
8607 {
8608 if (last_limit < VAR_PART_OFFSET (var, i))
8609 {
8610 complete = false;
8611 break;
8612 }
8613 else if (last_limit > VAR_PART_OFFSET (var, i))
8614 continue;
8615 offset = VAR_PART_OFFSET (var, i);
8616 loc2 = var->var_part[i].cur_loc;
8617 if (loc2 && GET_CODE (loc2) == MEM
8618 && GET_CODE (XEXP (loc2, 0)) == VALUE)
8619 {
8620 rtx depval = XEXP (loc2, 0);
8621
8622 loc2 = vt_expand_loc (loc2, vars);
8623
8624 if (loc2)
8625 loc_exp_insert_dep (var, depval, vars);
8626 }
8627 if (!loc2)
8628 {
8629 complete = false;
8630 continue;
8631 }
8632 gcc_checking_assert (GET_CODE (loc2) != VALUE);
8633 for (lc = var->var_part[i].loc_chain; lc; lc = lc->next)
8634 if (var->var_part[i].cur_loc == lc->loc)
8635 {
8636 initialized = lc->init;
8637 break;
8638 }
8639 gcc_assert (lc);
8640 }
8641
8642 offsets[n_var_parts] = offset;
8643 if (!loc2)
8644 {
8645 complete = false;
8646 continue;
8647 }
8648 loc[n_var_parts] = loc2;
8649 mode = GET_MODE (var->var_part[i].cur_loc);
8650 if (mode == VOIDmode && var->onepart)
8651 mode = DECL_MODE (decl);
8652 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
8653
8654 /* Attempt to merge adjacent registers or memory. */
8655 wider_mode = GET_MODE_WIDER_MODE (mode);
8656 for (j = i + 1; j < var->n_var_parts; j++)
8657 if (last_limit <= VAR_PART_OFFSET (var, j))
8658 break;
8659 if (j < var->n_var_parts
8660 && wider_mode != VOIDmode
8661 && var->var_part[j].cur_loc
8662 && mode == GET_MODE (var->var_part[j].cur_loc)
8663 && (REG_P (loc[n_var_parts]) || MEM_P (loc[n_var_parts]))
8664 && last_limit == (var->onepart ? 0 : VAR_PART_OFFSET (var, j))
8665 && (loc2 = vt_expand_loc (var->var_part[j].cur_loc, vars))
8666 && GET_CODE (loc[n_var_parts]) == GET_CODE (loc2))
8667 {
8668 rtx new_loc = NULL;
8669
8670 if (REG_P (loc[n_var_parts])
8671 && hard_regno_nregs[REGNO (loc[n_var_parts])][mode] * 2
8672 == hard_regno_nregs[REGNO (loc[n_var_parts])][wider_mode]
8673 && end_hard_regno (mode, REGNO (loc[n_var_parts]))
8674 == REGNO (loc2))
8675 {
8676 if (! WORDS_BIG_ENDIAN && ! BYTES_BIG_ENDIAN)
8677 new_loc = simplify_subreg (wider_mode, loc[n_var_parts],
8678 mode, 0);
8679 else if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
8680 new_loc = simplify_subreg (wider_mode, loc2, mode, 0);
8681 if (new_loc)
8682 {
8683 if (!REG_P (new_loc)
8684 || REGNO (new_loc) != REGNO (loc[n_var_parts]))
8685 new_loc = NULL;
8686 else
8687 REG_ATTRS (new_loc) = REG_ATTRS (loc[n_var_parts]);
8688 }
8689 }
8690 else if (MEM_P (loc[n_var_parts])
8691 && GET_CODE (XEXP (loc2, 0)) == PLUS
8692 && REG_P (XEXP (XEXP (loc2, 0), 0))
8693 && CONST_INT_P (XEXP (XEXP (loc2, 0), 1)))
8694 {
8695 if ((REG_P (XEXP (loc[n_var_parts], 0))
8696 && rtx_equal_p (XEXP (loc[n_var_parts], 0),
8697 XEXP (XEXP (loc2, 0), 0))
8698 && INTVAL (XEXP (XEXP (loc2, 0), 1))
8699 == GET_MODE_SIZE (mode))
8700 || (GET_CODE (XEXP (loc[n_var_parts], 0)) == PLUS
8701 && CONST_INT_P (XEXP (XEXP (loc[n_var_parts], 0), 1))
8702 && rtx_equal_p (XEXP (XEXP (loc[n_var_parts], 0), 0),
8703 XEXP (XEXP (loc2, 0), 0))
8704 && INTVAL (XEXP (XEXP (loc[n_var_parts], 0), 1))
8705 + GET_MODE_SIZE (mode)
8706 == INTVAL (XEXP (XEXP (loc2, 0), 1))))
8707 new_loc = adjust_address_nv (loc[n_var_parts],
8708 wider_mode, 0);
8709 }
8710
8711 if (new_loc)
8712 {
8713 loc[n_var_parts] = new_loc;
8714 mode = wider_mode;
8715 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
8716 i = j;
8717 }
8718 }
8719 ++n_var_parts;
8720 }
8721 type_size_unit = TYPE_SIZE_UNIT (TREE_TYPE (decl));
8722 if ((unsigned HOST_WIDE_INT) last_limit < TREE_INT_CST_LOW (type_size_unit))
8723 complete = false;
8724
8725 if (! flag_var_tracking_uninit)
8726 initialized = VAR_INIT_STATUS_INITIALIZED;
8727
8728 note_vl = NULL_RTX;
8729 if (!complete)
8730 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, NULL_RTX, initialized);
8731 else if (n_var_parts == 1)
8732 {
8733 rtx expr_list;
8734
8735 if (offsets[0] || GET_CODE (loc[0]) == PARALLEL)
8736 expr_list = gen_rtx_EXPR_LIST (VOIDmode, loc[0], GEN_INT (offsets[0]));
8737 else
8738 expr_list = loc[0];
8739
8740 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, expr_list, initialized);
8741 }
8742 else if (n_var_parts)
8743 {
8744 rtx parallel;
8745
8746 for (i = 0; i < n_var_parts; i++)
8747 loc[i]
8748 = gen_rtx_EXPR_LIST (VOIDmode, loc[i], GEN_INT (offsets[i]));
8749
8750 parallel = gen_rtx_PARALLEL (VOIDmode,
8751 gen_rtvec_v (n_var_parts, loc));
8752 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl,
8753 parallel, initialized);
8754 }
8755
8756 if (where != EMIT_NOTE_BEFORE_INSN)
8757 {
8758 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
8759 if (where == EMIT_NOTE_AFTER_CALL_INSN)
8760 NOTE_DURING_CALL_P (note) = true;
8761 }
8762 else
8763 {
8764 /* Make sure that the call related notes come first. */
8765 while (NEXT_INSN (insn)
8766 && NOTE_P (insn)
8767 && ((NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
8768 && NOTE_DURING_CALL_P (insn))
8769 || NOTE_KIND (insn) == NOTE_INSN_CALL_ARG_LOCATION))
8770 insn = NEXT_INSN (insn);
8771 if (NOTE_P (insn)
8772 && ((NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
8773 && NOTE_DURING_CALL_P (insn))
8774 || NOTE_KIND (insn) == NOTE_INSN_CALL_ARG_LOCATION))
8775 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
8776 else
8777 note = emit_note_before (NOTE_INSN_VAR_LOCATION, insn);
8778 }
8779 NOTE_VAR_LOCATION (note) = note_vl;
8780
8781 set_dv_changed (var->dv, false);
8782 gcc_assert (var->in_changed_variables);
8783 var->in_changed_variables = false;
8784 changed_variables->clear_slot (varp);
8785
8786 /* Continue traversing the hash table. */
8787 return 1;
8788 }
8789
8790 /* While traversing changed_variables, push onto DATA (a stack of RTX
8791 values) entries that aren't user variables. */
8792
8793 int
8794 var_track_values_to_stack (variable_def **slot,
8795 vec<rtx, va_heap> *changed_values_stack)
8796 {
8797 variable var = *slot;
8798
8799 if (var->onepart == ONEPART_VALUE)
8800 changed_values_stack->safe_push (dv_as_value (var->dv));
8801 else if (var->onepart == ONEPART_DEXPR)
8802 changed_values_stack->safe_push (DECL_RTL_KNOWN_SET (dv_as_decl (var->dv)));
8803
8804 return 1;
8805 }
8806
8807 /* Remove from changed_variables the entry whose DV corresponds to
8808 value or debug_expr VAL. */
8809 static void
8810 remove_value_from_changed_variables (rtx val)
8811 {
8812 decl_or_value dv = dv_from_rtx (val);
8813 variable_def **slot;
8814 variable var;
8815
8816 slot = changed_variables->find_slot_with_hash (dv, dv_htab_hash (dv),
8817 NO_INSERT);
8818 var = *slot;
8819 var->in_changed_variables = false;
8820 changed_variables->clear_slot (slot);
8821 }
8822
8823 /* If VAL (a value or debug_expr) has backlinks to variables actively
8824 dependent on it in HTAB or in CHANGED_VARIABLES, mark them as
8825 changed, adding to CHANGED_VALUES_STACK any dependencies that may
8826 have dependencies of their own to notify. */
8827
8828 static void
8829 notify_dependents_of_changed_value (rtx val, variable_table_type *htab,
8830 vec<rtx, va_heap> *changed_values_stack)
8831 {
8832 variable_def **slot;
8833 variable var;
8834 loc_exp_dep *led;
8835 decl_or_value dv = dv_from_rtx (val);
8836
8837 slot = changed_variables->find_slot_with_hash (dv, dv_htab_hash (dv),
8838 NO_INSERT);
8839 if (!slot)
8840 slot = htab->find_slot_with_hash (dv, dv_htab_hash (dv), NO_INSERT);
8841 if (!slot)
8842 slot = dropped_values->find_slot_with_hash (dv, dv_htab_hash (dv),
8843 NO_INSERT);
8844 var = *slot;
8845
8846 while ((led = VAR_LOC_DEP_LST (var)))
8847 {
8848 decl_or_value ldv = led->dv;
8849 variable ivar;
8850
8851 /* Deactivate and remove the backlink, as it was “used up”. It
8852 makes no sense to attempt to notify the same entity again:
8853 either it will be recomputed and re-register an active
8854 dependency, or it will still have the changed mark. */
8855 if (led->next)
8856 led->next->pprev = led->pprev;
8857 if (led->pprev)
8858 *led->pprev = led->next;
8859 led->next = NULL;
8860 led->pprev = NULL;
8861
8862 if (dv_changed_p (ldv))
8863 continue;
8864
8865 switch (dv_onepart_p (ldv))
8866 {
8867 case ONEPART_VALUE:
8868 case ONEPART_DEXPR:
8869 set_dv_changed (ldv, true);
8870 changed_values_stack->safe_push (dv_as_rtx (ldv));
8871 break;
8872
8873 case ONEPART_VDECL:
8874 ivar = htab->find_with_hash (ldv, dv_htab_hash (ldv));
8875 gcc_checking_assert (!VAR_LOC_DEP_LST (ivar));
8876 variable_was_changed (ivar, NULL);
8877 break;
8878
8879 case NOT_ONEPART:
8880 delete led;
8881 ivar = htab->find_with_hash (ldv, dv_htab_hash (ldv));
8882 if (ivar)
8883 {
8884 int i = ivar->n_var_parts;
8885 while (i--)
8886 {
8887 rtx loc = ivar->var_part[i].cur_loc;
8888
8889 if (loc && GET_CODE (loc) == MEM
8890 && XEXP (loc, 0) == val)
8891 {
8892 variable_was_changed (ivar, NULL);
8893 break;
8894 }
8895 }
8896 }
8897 break;
8898
8899 default:
8900 gcc_unreachable ();
8901 }
8902 }
8903 }
8904
8905 /* Take out of changed_variables any entries that don't refer to use
8906 variables. Back-propagate change notifications from values and
8907 debug_exprs to their active dependencies in HTAB or in
8908 CHANGED_VARIABLES. */
8909
8910 static void
8911 process_changed_values (variable_table_type *htab)
8912 {
8913 int i, n;
8914 rtx val;
8915 auto_vec<rtx, 20> changed_values_stack;
8916
8917 /* Move values from changed_variables to changed_values_stack. */
8918 changed_variables
8919 ->traverse <vec<rtx, va_heap>*, var_track_values_to_stack>
8920 (&changed_values_stack);
8921
8922 /* Back-propagate change notifications in values while popping
8923 them from the stack. */
8924 for (n = i = changed_values_stack.length ();
8925 i > 0; i = changed_values_stack.length ())
8926 {
8927 val = changed_values_stack.pop ();
8928 notify_dependents_of_changed_value (val, htab, &changed_values_stack);
8929
8930 /* This condition will hold when visiting each of the entries
8931 originally in changed_variables. We can't remove them
8932 earlier because this could drop the backlinks before we got a
8933 chance to use them. */
8934 if (i == n)
8935 {
8936 remove_value_from_changed_variables (val);
8937 n--;
8938 }
8939 }
8940 }
8941
8942 /* Emit NOTE_INSN_VAR_LOCATION note for each variable from a chain
8943 CHANGED_VARIABLES and delete this chain. WHERE specifies whether
8944 the notes shall be emitted before of after instruction INSN. */
8945
8946 static void
8947 emit_notes_for_changes (rtx_insn *insn, enum emit_note_where where,
8948 shared_hash *vars)
8949 {
8950 emit_note_data data;
8951 variable_table_type *htab = shared_hash_htab (vars);
8952
8953 if (!changed_variables->elements ())
8954 return;
8955
8956 if (MAY_HAVE_DEBUG_INSNS)
8957 process_changed_values (htab);
8958
8959 data.insn = insn;
8960 data.where = where;
8961 data.vars = htab;
8962
8963 changed_variables
8964 ->traverse <emit_note_data*, emit_note_insn_var_location> (&data);
8965 }
8966
8967 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it differs from the
8968 same variable in hash table DATA or is not there at all. */
8969
8970 int
8971 emit_notes_for_differences_1 (variable_def **slot, variable_table_type *new_vars)
8972 {
8973 variable old_var, new_var;
8974
8975 old_var = *slot;
8976 new_var = new_vars->find_with_hash (old_var->dv, dv_htab_hash (old_var->dv));
8977
8978 if (!new_var)
8979 {
8980 /* Variable has disappeared. */
8981 variable empty_var = NULL;
8982
8983 if (old_var->onepart == ONEPART_VALUE
8984 || old_var->onepart == ONEPART_DEXPR)
8985 {
8986 empty_var = variable_from_dropped (old_var->dv, NO_INSERT);
8987 if (empty_var)
8988 {
8989 gcc_checking_assert (!empty_var->in_changed_variables);
8990 if (!VAR_LOC_1PAUX (old_var))
8991 {
8992 VAR_LOC_1PAUX (old_var) = VAR_LOC_1PAUX (empty_var);
8993 VAR_LOC_1PAUX (empty_var) = NULL;
8994 }
8995 else
8996 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var));
8997 }
8998 }
8999
9000 if (!empty_var)
9001 {
9002 empty_var = onepart_pool_allocate (old_var->onepart);
9003 empty_var->dv = old_var->dv;
9004 empty_var->refcount = 0;
9005 empty_var->n_var_parts = 0;
9006 empty_var->onepart = old_var->onepart;
9007 empty_var->in_changed_variables = false;
9008 }
9009
9010 if (empty_var->onepart)
9011 {
9012 /* Propagate the auxiliary data to (ultimately)
9013 changed_variables. */
9014 empty_var->var_part[0].loc_chain = NULL;
9015 empty_var->var_part[0].cur_loc = NULL;
9016 VAR_LOC_1PAUX (empty_var) = VAR_LOC_1PAUX (old_var);
9017 VAR_LOC_1PAUX (old_var) = NULL;
9018 }
9019 variable_was_changed (empty_var, NULL);
9020 /* Continue traversing the hash table. */
9021 return 1;
9022 }
9023 /* Update cur_loc and one-part auxiliary data, before new_var goes
9024 through variable_was_changed. */
9025 if (old_var != new_var && new_var->onepart)
9026 {
9027 gcc_checking_assert (VAR_LOC_1PAUX (new_var) == NULL);
9028 VAR_LOC_1PAUX (new_var) = VAR_LOC_1PAUX (old_var);
9029 VAR_LOC_1PAUX (old_var) = NULL;
9030 new_var->var_part[0].cur_loc = old_var->var_part[0].cur_loc;
9031 }
9032 if (variable_different_p (old_var, new_var))
9033 variable_was_changed (new_var, NULL);
9034
9035 /* Continue traversing the hash table. */
9036 return 1;
9037 }
9038
9039 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it is not in hash
9040 table DATA. */
9041
9042 int
9043 emit_notes_for_differences_2 (variable_def **slot, variable_table_type *old_vars)
9044 {
9045 variable old_var, new_var;
9046
9047 new_var = *slot;
9048 old_var = old_vars->find_with_hash (new_var->dv, dv_htab_hash (new_var->dv));
9049 if (!old_var)
9050 {
9051 int i;
9052 for (i = 0; i < new_var->n_var_parts; i++)
9053 new_var->var_part[i].cur_loc = NULL;
9054 variable_was_changed (new_var, NULL);
9055 }
9056
9057 /* Continue traversing the hash table. */
9058 return 1;
9059 }
9060
9061 /* Emit notes before INSN for differences between dataflow sets OLD_SET and
9062 NEW_SET. */
9063
9064 static void
9065 emit_notes_for_differences (rtx_insn *insn, dataflow_set *old_set,
9066 dataflow_set *new_set)
9067 {
9068 shared_hash_htab (old_set->vars)
9069 ->traverse <variable_table_type *, emit_notes_for_differences_1>
9070 (shared_hash_htab (new_set->vars));
9071 shared_hash_htab (new_set->vars)
9072 ->traverse <variable_table_type *, emit_notes_for_differences_2>
9073 (shared_hash_htab (old_set->vars));
9074 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, new_set->vars);
9075 }
9076
9077 /* Return the next insn after INSN that is not a NOTE_INSN_VAR_LOCATION. */
9078
9079 static rtx_insn *
9080 next_non_note_insn_var_location (rtx_insn *insn)
9081 {
9082 while (insn)
9083 {
9084 insn = NEXT_INSN (insn);
9085 if (insn == 0
9086 || !NOTE_P (insn)
9087 || NOTE_KIND (insn) != NOTE_INSN_VAR_LOCATION)
9088 break;
9089 }
9090
9091 return insn;
9092 }
9093
9094 /* Emit the notes for changes of location parts in the basic block BB. */
9095
9096 static void
9097 emit_notes_in_bb (basic_block bb, dataflow_set *set)
9098 {
9099 unsigned int i;
9100 micro_operation *mo;
9101
9102 dataflow_set_clear (set);
9103 dataflow_set_copy (set, &VTI (bb)->in);
9104
9105 FOR_EACH_VEC_ELT (VTI (bb)->mos, i, mo)
9106 {
9107 rtx_insn *insn = mo->insn;
9108 rtx_insn *next_insn = next_non_note_insn_var_location (insn);
9109
9110 switch (mo->type)
9111 {
9112 case MO_CALL:
9113 dataflow_set_clear_at_call (set, insn);
9114 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_CALL_INSN, set->vars);
9115 {
9116 rtx arguments = mo->u.loc, *p = &arguments;
9117 rtx_note *note;
9118 while (*p)
9119 {
9120 XEXP (XEXP (*p, 0), 1)
9121 = vt_expand_loc (XEXP (XEXP (*p, 0), 1),
9122 shared_hash_htab (set->vars));
9123 /* If expansion is successful, keep it in the list. */
9124 if (XEXP (XEXP (*p, 0), 1))
9125 p = &XEXP (*p, 1);
9126 /* Otherwise, if the following item is data_value for it,
9127 drop it too too. */
9128 else if (XEXP (*p, 1)
9129 && REG_P (XEXP (XEXP (*p, 0), 0))
9130 && MEM_P (XEXP (XEXP (XEXP (*p, 1), 0), 0))
9131 && REG_P (XEXP (XEXP (XEXP (XEXP (*p, 1), 0), 0),
9132 0))
9133 && REGNO (XEXP (XEXP (*p, 0), 0))
9134 == REGNO (XEXP (XEXP (XEXP (XEXP (*p, 1), 0),
9135 0), 0)))
9136 *p = XEXP (XEXP (*p, 1), 1);
9137 /* Just drop this item. */
9138 else
9139 *p = XEXP (*p, 1);
9140 }
9141 note = emit_note_after (NOTE_INSN_CALL_ARG_LOCATION, insn);
9142 NOTE_VAR_LOCATION (note) = arguments;
9143 }
9144 break;
9145
9146 case MO_USE:
9147 {
9148 rtx loc = mo->u.loc;
9149
9150 if (REG_P (loc))
9151 var_reg_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
9152 else
9153 var_mem_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
9154
9155 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
9156 }
9157 break;
9158
9159 case MO_VAL_LOC:
9160 {
9161 rtx loc = mo->u.loc;
9162 rtx val, vloc;
9163 tree var;
9164
9165 if (GET_CODE (loc) == CONCAT)
9166 {
9167 val = XEXP (loc, 0);
9168 vloc = XEXP (loc, 1);
9169 }
9170 else
9171 {
9172 val = NULL_RTX;
9173 vloc = loc;
9174 }
9175
9176 var = PAT_VAR_LOCATION_DECL (vloc);
9177
9178 clobber_variable_part (set, NULL_RTX,
9179 dv_from_decl (var), 0, NULL_RTX);
9180 if (val)
9181 {
9182 if (VAL_NEEDS_RESOLUTION (loc))
9183 val_resolve (set, val, PAT_VAR_LOCATION_LOC (vloc), insn);
9184 set_variable_part (set, val, dv_from_decl (var), 0,
9185 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
9186 INSERT);
9187 }
9188 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
9189 set_variable_part (set, PAT_VAR_LOCATION_LOC (vloc),
9190 dv_from_decl (var), 0,
9191 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
9192 INSERT);
9193
9194 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
9195 }
9196 break;
9197
9198 case MO_VAL_USE:
9199 {
9200 rtx loc = mo->u.loc;
9201 rtx val, vloc, uloc;
9202
9203 vloc = uloc = XEXP (loc, 1);
9204 val = XEXP (loc, 0);
9205
9206 if (GET_CODE (val) == CONCAT)
9207 {
9208 uloc = XEXP (val, 1);
9209 val = XEXP (val, 0);
9210 }
9211
9212 if (VAL_NEEDS_RESOLUTION (loc))
9213 val_resolve (set, val, vloc, insn);
9214 else
9215 val_store (set, val, uloc, insn, false);
9216
9217 if (VAL_HOLDS_TRACK_EXPR (loc))
9218 {
9219 if (GET_CODE (uloc) == REG)
9220 var_reg_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
9221 NULL);
9222 else if (GET_CODE (uloc) == MEM)
9223 var_mem_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
9224 NULL);
9225 }
9226
9227 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
9228 }
9229 break;
9230
9231 case MO_VAL_SET:
9232 {
9233 rtx loc = mo->u.loc;
9234 rtx val, vloc, uloc;
9235 rtx dstv, srcv;
9236
9237 vloc = loc;
9238 uloc = XEXP (vloc, 1);
9239 val = XEXP (vloc, 0);
9240 vloc = uloc;
9241
9242 if (GET_CODE (uloc) == SET)
9243 {
9244 dstv = SET_DEST (uloc);
9245 srcv = SET_SRC (uloc);
9246 }
9247 else
9248 {
9249 dstv = uloc;
9250 srcv = NULL;
9251 }
9252
9253 if (GET_CODE (val) == CONCAT)
9254 {
9255 dstv = vloc = XEXP (val, 1);
9256 val = XEXP (val, 0);
9257 }
9258
9259 if (GET_CODE (vloc) == SET)
9260 {
9261 srcv = SET_SRC (vloc);
9262
9263 gcc_assert (val != srcv);
9264 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
9265
9266 dstv = vloc = SET_DEST (vloc);
9267
9268 if (VAL_NEEDS_RESOLUTION (loc))
9269 val_resolve (set, val, srcv, insn);
9270 }
9271 else if (VAL_NEEDS_RESOLUTION (loc))
9272 {
9273 gcc_assert (GET_CODE (uloc) == SET
9274 && GET_CODE (SET_SRC (uloc)) == REG);
9275 val_resolve (set, val, SET_SRC (uloc), insn);
9276 }
9277
9278 if (VAL_HOLDS_TRACK_EXPR (loc))
9279 {
9280 if (VAL_EXPR_IS_CLOBBERED (loc))
9281 {
9282 if (REG_P (uloc))
9283 var_reg_delete (set, uloc, true);
9284 else if (MEM_P (uloc))
9285 {
9286 gcc_assert (MEM_P (dstv));
9287 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (uloc));
9288 var_mem_delete (set, dstv, true);
9289 }
9290 }
9291 else
9292 {
9293 bool copied_p = VAL_EXPR_IS_COPIED (loc);
9294 rtx src = NULL, dst = uloc;
9295 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
9296
9297 if (GET_CODE (uloc) == SET)
9298 {
9299 src = SET_SRC (uloc);
9300 dst = SET_DEST (uloc);
9301 }
9302
9303 if (copied_p)
9304 {
9305 status = find_src_status (set, src);
9306
9307 src = find_src_set_src (set, src);
9308 }
9309
9310 if (REG_P (dst))
9311 var_reg_delete_and_set (set, dst, !copied_p,
9312 status, srcv);
9313 else if (MEM_P (dst))
9314 {
9315 gcc_assert (MEM_P (dstv));
9316 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (dst));
9317 var_mem_delete_and_set (set, dstv, !copied_p,
9318 status, srcv);
9319 }
9320 }
9321 }
9322 else if (REG_P (uloc))
9323 var_regno_delete (set, REGNO (uloc));
9324 else if (MEM_P (uloc))
9325 {
9326 gcc_checking_assert (GET_CODE (vloc) == MEM);
9327 gcc_checking_assert (vloc == dstv);
9328 if (vloc != dstv)
9329 clobber_overlapping_mems (set, vloc);
9330 }
9331
9332 val_store (set, val, dstv, insn, true);
9333
9334 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9335 set->vars);
9336 }
9337 break;
9338
9339 case MO_SET:
9340 {
9341 rtx loc = mo->u.loc;
9342 rtx set_src = NULL;
9343
9344 if (GET_CODE (loc) == SET)
9345 {
9346 set_src = SET_SRC (loc);
9347 loc = SET_DEST (loc);
9348 }
9349
9350 if (REG_P (loc))
9351 var_reg_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
9352 set_src);
9353 else
9354 var_mem_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
9355 set_src);
9356
9357 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9358 set->vars);
9359 }
9360 break;
9361
9362 case MO_COPY:
9363 {
9364 rtx loc = mo->u.loc;
9365 enum var_init_status src_status;
9366 rtx set_src = NULL;
9367
9368 if (GET_CODE (loc) == SET)
9369 {
9370 set_src = SET_SRC (loc);
9371 loc = SET_DEST (loc);
9372 }
9373
9374 src_status = find_src_status (set, set_src);
9375 set_src = find_src_set_src (set, set_src);
9376
9377 if (REG_P (loc))
9378 var_reg_delete_and_set (set, loc, false, src_status, set_src);
9379 else
9380 var_mem_delete_and_set (set, loc, false, src_status, set_src);
9381
9382 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9383 set->vars);
9384 }
9385 break;
9386
9387 case MO_USE_NO_VAR:
9388 {
9389 rtx loc = mo->u.loc;
9390
9391 if (REG_P (loc))
9392 var_reg_delete (set, loc, false);
9393 else
9394 var_mem_delete (set, loc, false);
9395
9396 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
9397 }
9398 break;
9399
9400 case MO_CLOBBER:
9401 {
9402 rtx loc = mo->u.loc;
9403
9404 if (REG_P (loc))
9405 var_reg_delete (set, loc, true);
9406 else
9407 var_mem_delete (set, loc, true);
9408
9409 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9410 set->vars);
9411 }
9412 break;
9413
9414 case MO_ADJUST:
9415 set->stack_adjust += mo->u.adjust;
9416 break;
9417 }
9418 }
9419 }
9420
9421 /* Emit notes for the whole function. */
9422
9423 static void
9424 vt_emit_notes (void)
9425 {
9426 basic_block bb;
9427 dataflow_set cur;
9428
9429 gcc_assert (!changed_variables->elements ());
9430
9431 /* Free memory occupied by the out hash tables, as they aren't used
9432 anymore. */
9433 FOR_EACH_BB_FN (bb, cfun)
9434 dataflow_set_clear (&VTI (bb)->out);
9435
9436 /* Enable emitting notes by functions (mainly by set_variable_part and
9437 delete_variable_part). */
9438 emit_notes = true;
9439
9440 if (MAY_HAVE_DEBUG_INSNS)
9441 {
9442 dropped_values = new variable_table_type (cselib_get_next_uid () * 2);
9443 }
9444
9445 dataflow_set_init (&cur);
9446
9447 FOR_EACH_BB_FN (bb, cfun)
9448 {
9449 /* Emit the notes for changes of variable locations between two
9450 subsequent basic blocks. */
9451 emit_notes_for_differences (BB_HEAD (bb), &cur, &VTI (bb)->in);
9452
9453 if (MAY_HAVE_DEBUG_INSNS)
9454 local_get_addr_cache = new hash_map<rtx, rtx>;
9455
9456 /* Emit the notes for the changes in the basic block itself. */
9457 emit_notes_in_bb (bb, &cur);
9458
9459 if (MAY_HAVE_DEBUG_INSNS)
9460 delete local_get_addr_cache;
9461 local_get_addr_cache = NULL;
9462
9463 /* Free memory occupied by the in hash table, we won't need it
9464 again. */
9465 dataflow_set_clear (&VTI (bb)->in);
9466 }
9467 #ifdef ENABLE_CHECKING
9468 shared_hash_htab (cur.vars)
9469 ->traverse <variable_table_type *, emit_notes_for_differences_1>
9470 (shared_hash_htab (empty_shared_hash));
9471 #endif
9472 dataflow_set_destroy (&cur);
9473
9474 if (MAY_HAVE_DEBUG_INSNS)
9475 delete dropped_values;
9476 dropped_values = NULL;
9477
9478 emit_notes = false;
9479 }
9480
9481 /* If there is a declaration and offset associated with register/memory RTL
9482 assign declaration to *DECLP and offset to *OFFSETP, and return true. */
9483
9484 static bool
9485 vt_get_decl_and_offset (rtx rtl, tree *declp, HOST_WIDE_INT *offsetp)
9486 {
9487 if (REG_P (rtl))
9488 {
9489 if (REG_ATTRS (rtl))
9490 {
9491 *declp = REG_EXPR (rtl);
9492 *offsetp = REG_OFFSET (rtl);
9493 return true;
9494 }
9495 }
9496 else if (GET_CODE (rtl) == PARALLEL)
9497 {
9498 tree decl = NULL_TREE;
9499 HOST_WIDE_INT offset = MAX_VAR_PARTS;
9500 int len = XVECLEN (rtl, 0), i;
9501
9502 for (i = 0; i < len; i++)
9503 {
9504 rtx reg = XEXP (XVECEXP (rtl, 0, i), 0);
9505 if (!REG_P (reg) || !REG_ATTRS (reg))
9506 break;
9507 if (!decl)
9508 decl = REG_EXPR (reg);
9509 if (REG_EXPR (reg) != decl)
9510 break;
9511 if (REG_OFFSET (reg) < offset)
9512 offset = REG_OFFSET (reg);
9513 }
9514
9515 if (i == len)
9516 {
9517 *declp = decl;
9518 *offsetp = offset;
9519 return true;
9520 }
9521 }
9522 else if (MEM_P (rtl))
9523 {
9524 if (MEM_ATTRS (rtl))
9525 {
9526 *declp = MEM_EXPR (rtl);
9527 *offsetp = INT_MEM_OFFSET (rtl);
9528 return true;
9529 }
9530 }
9531 return false;
9532 }
9533
9534 /* Record the value for the ENTRY_VALUE of RTL as a global equivalence
9535 of VAL. */
9536
9537 static void
9538 record_entry_value (cselib_val *val, rtx rtl)
9539 {
9540 rtx ev = gen_rtx_ENTRY_VALUE (GET_MODE (rtl));
9541
9542 ENTRY_VALUE_EXP (ev) = rtl;
9543
9544 cselib_add_permanent_equiv (val, ev, get_insns ());
9545 }
9546
9547 /* Insert function parameter PARM in IN and OUT sets of ENTRY_BLOCK. */
9548
9549 static void
9550 vt_add_function_parameter (tree parm)
9551 {
9552 rtx decl_rtl = DECL_RTL_IF_SET (parm);
9553 rtx incoming = DECL_INCOMING_RTL (parm);
9554 tree decl;
9555 machine_mode mode;
9556 HOST_WIDE_INT offset;
9557 dataflow_set *out;
9558 decl_or_value dv;
9559
9560 if (TREE_CODE (parm) != PARM_DECL)
9561 return;
9562
9563 if (!decl_rtl || !incoming)
9564 return;
9565
9566 if (GET_MODE (decl_rtl) == BLKmode || GET_MODE (incoming) == BLKmode)
9567 return;
9568
9569 /* If there is a DRAP register or a pseudo in internal_arg_pointer,
9570 rewrite the incoming location of parameters passed on the stack
9571 into MEMs based on the argument pointer, so that incoming doesn't
9572 depend on a pseudo. */
9573 if (MEM_P (incoming)
9574 && (XEXP (incoming, 0) == crtl->args.internal_arg_pointer
9575 || (GET_CODE (XEXP (incoming, 0)) == PLUS
9576 && XEXP (XEXP (incoming, 0), 0)
9577 == crtl->args.internal_arg_pointer
9578 && CONST_INT_P (XEXP (XEXP (incoming, 0), 1)))))
9579 {
9580 HOST_WIDE_INT off = -FIRST_PARM_OFFSET (current_function_decl);
9581 if (GET_CODE (XEXP (incoming, 0)) == PLUS)
9582 off += INTVAL (XEXP (XEXP (incoming, 0), 1));
9583 incoming
9584 = replace_equiv_address_nv (incoming,
9585 plus_constant (Pmode,
9586 arg_pointer_rtx, off));
9587 }
9588
9589 #ifdef HAVE_window_save
9590 /* DECL_INCOMING_RTL uses the INCOMING_REGNO of parameter registers.
9591 If the target machine has an explicit window save instruction, the
9592 actual entry value is the corresponding OUTGOING_REGNO instead. */
9593 if (HAVE_window_save && !crtl->uses_only_leaf_regs)
9594 {
9595 if (REG_P (incoming)
9596 && HARD_REGISTER_P (incoming)
9597 && OUTGOING_REGNO (REGNO (incoming)) != REGNO (incoming))
9598 {
9599 parm_reg_t p;
9600 p.incoming = incoming;
9601 incoming
9602 = gen_rtx_REG_offset (incoming, GET_MODE (incoming),
9603 OUTGOING_REGNO (REGNO (incoming)), 0);
9604 p.outgoing = incoming;
9605 vec_safe_push (windowed_parm_regs, p);
9606 }
9607 else if (GET_CODE (incoming) == PARALLEL)
9608 {
9609 rtx outgoing
9610 = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (XVECLEN (incoming, 0)));
9611 int i;
9612
9613 for (i = 0; i < XVECLEN (incoming, 0); i++)
9614 {
9615 rtx reg = XEXP (XVECEXP (incoming, 0, i), 0);
9616 parm_reg_t p;
9617 p.incoming = reg;
9618 reg = gen_rtx_REG_offset (reg, GET_MODE (reg),
9619 OUTGOING_REGNO (REGNO (reg)), 0);
9620 p.outgoing = reg;
9621 XVECEXP (outgoing, 0, i)
9622 = gen_rtx_EXPR_LIST (VOIDmode, reg,
9623 XEXP (XVECEXP (incoming, 0, i), 1));
9624 vec_safe_push (windowed_parm_regs, p);
9625 }
9626
9627 incoming = outgoing;
9628 }
9629 else if (MEM_P (incoming)
9630 && REG_P (XEXP (incoming, 0))
9631 && HARD_REGISTER_P (XEXP (incoming, 0)))
9632 {
9633 rtx reg = XEXP (incoming, 0);
9634 if (OUTGOING_REGNO (REGNO (reg)) != REGNO (reg))
9635 {
9636 parm_reg_t p;
9637 p.incoming = reg;
9638 reg = gen_raw_REG (GET_MODE (reg), OUTGOING_REGNO (REGNO (reg)));
9639 p.outgoing = reg;
9640 vec_safe_push (windowed_parm_regs, p);
9641 incoming = replace_equiv_address_nv (incoming, reg);
9642 }
9643 }
9644 }
9645 #endif
9646
9647 if (!vt_get_decl_and_offset (incoming, &decl, &offset))
9648 {
9649 if (MEM_P (incoming))
9650 {
9651 /* This means argument is passed by invisible reference. */
9652 offset = 0;
9653 decl = parm;
9654 }
9655 else
9656 {
9657 if (!vt_get_decl_and_offset (decl_rtl, &decl, &offset))
9658 return;
9659 offset += byte_lowpart_offset (GET_MODE (incoming),
9660 GET_MODE (decl_rtl));
9661 }
9662 }
9663
9664 if (!decl)
9665 return;
9666
9667 if (parm != decl)
9668 {
9669 /* If that DECL_RTL wasn't a pseudo that got spilled to
9670 memory, bail out. Otherwise, the spill slot sharing code
9671 will force the memory to reference spill_slot_decl (%sfp),
9672 so we don't match above. That's ok, the pseudo must have
9673 referenced the entire parameter, so just reset OFFSET. */
9674 if (decl != get_spill_slot_decl (false))
9675 return;
9676 offset = 0;
9677 }
9678
9679 if (!track_loc_p (incoming, parm, offset, false, &mode, &offset))
9680 return;
9681
9682 out = &VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->out;
9683
9684 dv = dv_from_decl (parm);
9685
9686 if (target_for_debug_bind (parm)
9687 /* We can't deal with these right now, because this kind of
9688 variable is single-part. ??? We could handle parallels
9689 that describe multiple locations for the same single
9690 value, but ATM we don't. */
9691 && GET_CODE (incoming) != PARALLEL)
9692 {
9693 cselib_val *val;
9694 rtx lowpart;
9695
9696 /* ??? We shouldn't ever hit this, but it may happen because
9697 arguments passed by invisible reference aren't dealt with
9698 above: incoming-rtl will have Pmode rather than the
9699 expected mode for the type. */
9700 if (offset)
9701 return;
9702
9703 lowpart = var_lowpart (mode, incoming);
9704 if (!lowpart)
9705 return;
9706
9707 val = cselib_lookup_from_insn (lowpart, mode, true,
9708 VOIDmode, get_insns ());
9709
9710 /* ??? Float-typed values in memory are not handled by
9711 cselib. */
9712 if (val)
9713 {
9714 preserve_value (val);
9715 set_variable_part (out, val->val_rtx, dv, offset,
9716 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9717 dv = dv_from_value (val->val_rtx);
9718 }
9719
9720 if (MEM_P (incoming))
9721 {
9722 val = cselib_lookup_from_insn (XEXP (incoming, 0), mode, true,
9723 VOIDmode, get_insns ());
9724 if (val)
9725 {
9726 preserve_value (val);
9727 incoming = replace_equiv_address_nv (incoming, val->val_rtx);
9728 }
9729 }
9730 }
9731
9732 if (REG_P (incoming))
9733 {
9734 incoming = var_lowpart (mode, incoming);
9735 gcc_assert (REGNO (incoming) < FIRST_PSEUDO_REGISTER);
9736 attrs_list_insert (&out->regs[REGNO (incoming)], dv, offset,
9737 incoming);
9738 set_variable_part (out, incoming, dv, offset,
9739 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9740 if (dv_is_value_p (dv))
9741 {
9742 record_entry_value (CSELIB_VAL_PTR (dv_as_value (dv)), incoming);
9743 if (TREE_CODE (TREE_TYPE (parm)) == REFERENCE_TYPE
9744 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_TYPE (parm))))
9745 {
9746 machine_mode indmode
9747 = TYPE_MODE (TREE_TYPE (TREE_TYPE (parm)));
9748 rtx mem = gen_rtx_MEM (indmode, incoming);
9749 cselib_val *val = cselib_lookup_from_insn (mem, indmode, true,
9750 VOIDmode,
9751 get_insns ());
9752 if (val)
9753 {
9754 preserve_value (val);
9755 record_entry_value (val, mem);
9756 set_variable_part (out, mem, dv_from_value (val->val_rtx), 0,
9757 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9758 }
9759 }
9760 }
9761 }
9762 else if (GET_CODE (incoming) == PARALLEL && !dv_onepart_p (dv))
9763 {
9764 int i;
9765
9766 for (i = 0; i < XVECLEN (incoming, 0); i++)
9767 {
9768 rtx reg = XEXP (XVECEXP (incoming, 0, i), 0);
9769 offset = REG_OFFSET (reg);
9770 gcc_assert (REGNO (reg) < FIRST_PSEUDO_REGISTER);
9771 attrs_list_insert (&out->regs[REGNO (reg)], dv, offset, reg);
9772 set_variable_part (out, reg, dv, offset,
9773 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9774 }
9775 }
9776 else if (MEM_P (incoming))
9777 {
9778 incoming = var_lowpart (mode, incoming);
9779 set_variable_part (out, incoming, dv, offset,
9780 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9781 }
9782 }
9783
9784 /* Insert function parameters to IN and OUT sets of ENTRY_BLOCK. */
9785
9786 static void
9787 vt_add_function_parameters (void)
9788 {
9789 tree parm;
9790
9791 for (parm = DECL_ARGUMENTS (current_function_decl);
9792 parm; parm = DECL_CHAIN (parm))
9793 if (!POINTER_BOUNDS_P (parm))
9794 vt_add_function_parameter (parm);
9795
9796 if (DECL_HAS_VALUE_EXPR_P (DECL_RESULT (current_function_decl)))
9797 {
9798 tree vexpr = DECL_VALUE_EXPR (DECL_RESULT (current_function_decl));
9799
9800 if (TREE_CODE (vexpr) == INDIRECT_REF)
9801 vexpr = TREE_OPERAND (vexpr, 0);
9802
9803 if (TREE_CODE (vexpr) == PARM_DECL
9804 && DECL_ARTIFICIAL (vexpr)
9805 && !DECL_IGNORED_P (vexpr)
9806 && DECL_NAMELESS (vexpr))
9807 vt_add_function_parameter (vexpr);
9808 }
9809 }
9810
9811 /* Initialize cfa_base_rtx, create a preserved VALUE for it and
9812 ensure it isn't flushed during cselib_reset_table.
9813 Can be called only if frame_pointer_rtx resp. arg_pointer_rtx
9814 has been eliminated. */
9815
9816 static void
9817 vt_init_cfa_base (void)
9818 {
9819 cselib_val *val;
9820
9821 #ifdef FRAME_POINTER_CFA_OFFSET
9822 cfa_base_rtx = frame_pointer_rtx;
9823 cfa_base_offset = -FRAME_POINTER_CFA_OFFSET (current_function_decl);
9824 #else
9825 cfa_base_rtx = arg_pointer_rtx;
9826 cfa_base_offset = -ARG_POINTER_CFA_OFFSET (current_function_decl);
9827 #endif
9828 if (cfa_base_rtx == hard_frame_pointer_rtx
9829 || !fixed_regs[REGNO (cfa_base_rtx)])
9830 {
9831 cfa_base_rtx = NULL_RTX;
9832 return;
9833 }
9834 if (!MAY_HAVE_DEBUG_INSNS)
9835 return;
9836
9837 /* Tell alias analysis that cfa_base_rtx should share
9838 find_base_term value with stack pointer or hard frame pointer. */
9839 if (!frame_pointer_needed)
9840 vt_equate_reg_base_value (cfa_base_rtx, stack_pointer_rtx);
9841 else if (!crtl->stack_realign_tried)
9842 vt_equate_reg_base_value (cfa_base_rtx, hard_frame_pointer_rtx);
9843
9844 val = cselib_lookup_from_insn (cfa_base_rtx, GET_MODE (cfa_base_rtx), 1,
9845 VOIDmode, get_insns ());
9846 preserve_value (val);
9847 cselib_preserve_cfa_base_value (val, REGNO (cfa_base_rtx));
9848 }
9849
9850 /* Allocate and initialize the data structures for variable tracking
9851 and parse the RTL to get the micro operations. */
9852
9853 static bool
9854 vt_initialize (void)
9855 {
9856 basic_block bb;
9857 HOST_WIDE_INT fp_cfa_offset = -1;
9858
9859 alloc_aux_for_blocks (sizeof (struct variable_tracking_info_def));
9860
9861 empty_shared_hash = new shared_hash;
9862 empty_shared_hash->refcount = 1;
9863 empty_shared_hash->htab = new variable_table_type (1);
9864 changed_variables = new variable_table_type (10);
9865
9866 /* Init the IN and OUT sets. */
9867 FOR_ALL_BB_FN (bb, cfun)
9868 {
9869 VTI (bb)->visited = false;
9870 VTI (bb)->flooded = false;
9871 dataflow_set_init (&VTI (bb)->in);
9872 dataflow_set_init (&VTI (bb)->out);
9873 VTI (bb)->permp = NULL;
9874 }
9875
9876 if (MAY_HAVE_DEBUG_INSNS)
9877 {
9878 cselib_init (CSELIB_RECORD_MEMORY | CSELIB_PRESERVE_CONSTANTS);
9879 scratch_regs = BITMAP_ALLOC (NULL);
9880 preserved_values.create (256);
9881 global_get_addr_cache = new hash_map<rtx, rtx>;
9882 }
9883 else
9884 {
9885 scratch_regs = NULL;
9886 global_get_addr_cache = NULL;
9887 }
9888
9889 if (MAY_HAVE_DEBUG_INSNS)
9890 {
9891 rtx reg, expr;
9892 int ofst;
9893 cselib_val *val;
9894
9895 #ifdef FRAME_POINTER_CFA_OFFSET
9896 reg = frame_pointer_rtx;
9897 ofst = FRAME_POINTER_CFA_OFFSET (current_function_decl);
9898 #else
9899 reg = arg_pointer_rtx;
9900 ofst = ARG_POINTER_CFA_OFFSET (current_function_decl);
9901 #endif
9902
9903 ofst -= INCOMING_FRAME_SP_OFFSET;
9904
9905 val = cselib_lookup_from_insn (reg, GET_MODE (reg), 1,
9906 VOIDmode, get_insns ());
9907 preserve_value (val);
9908 if (reg != hard_frame_pointer_rtx && fixed_regs[REGNO (reg)])
9909 cselib_preserve_cfa_base_value (val, REGNO (reg));
9910 expr = plus_constant (GET_MODE (stack_pointer_rtx),
9911 stack_pointer_rtx, -ofst);
9912 cselib_add_permanent_equiv (val, expr, get_insns ());
9913
9914 if (ofst)
9915 {
9916 val = cselib_lookup_from_insn (stack_pointer_rtx,
9917 GET_MODE (stack_pointer_rtx), 1,
9918 VOIDmode, get_insns ());
9919 preserve_value (val);
9920 expr = plus_constant (GET_MODE (reg), reg, ofst);
9921 cselib_add_permanent_equiv (val, expr, get_insns ());
9922 }
9923 }
9924
9925 /* In order to factor out the adjustments made to the stack pointer or to
9926 the hard frame pointer and thus be able to use DW_OP_fbreg operations
9927 instead of individual location lists, we're going to rewrite MEMs based
9928 on them into MEMs based on the CFA by de-eliminating stack_pointer_rtx
9929 or hard_frame_pointer_rtx to the virtual CFA pointer frame_pointer_rtx
9930 resp. arg_pointer_rtx. We can do this either when there is no frame
9931 pointer in the function and stack adjustments are consistent for all
9932 basic blocks or when there is a frame pointer and no stack realignment.
9933 But we first have to check that frame_pointer_rtx resp. arg_pointer_rtx
9934 has been eliminated. */
9935 if (!frame_pointer_needed)
9936 {
9937 rtx reg, elim;
9938
9939 if (!vt_stack_adjustments ())
9940 return false;
9941
9942 #ifdef FRAME_POINTER_CFA_OFFSET
9943 reg = frame_pointer_rtx;
9944 #else
9945 reg = arg_pointer_rtx;
9946 #endif
9947 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
9948 if (elim != reg)
9949 {
9950 if (GET_CODE (elim) == PLUS)
9951 elim = XEXP (elim, 0);
9952 if (elim == stack_pointer_rtx)
9953 vt_init_cfa_base ();
9954 }
9955 }
9956 else if (!crtl->stack_realign_tried)
9957 {
9958 rtx reg, elim;
9959
9960 #ifdef FRAME_POINTER_CFA_OFFSET
9961 reg = frame_pointer_rtx;
9962 fp_cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
9963 #else
9964 reg = arg_pointer_rtx;
9965 fp_cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
9966 #endif
9967 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
9968 if (elim != reg)
9969 {
9970 if (GET_CODE (elim) == PLUS)
9971 {
9972 fp_cfa_offset -= INTVAL (XEXP (elim, 1));
9973 elim = XEXP (elim, 0);
9974 }
9975 if (elim != hard_frame_pointer_rtx)
9976 fp_cfa_offset = -1;
9977 }
9978 else
9979 fp_cfa_offset = -1;
9980 }
9981
9982 /* If the stack is realigned and a DRAP register is used, we're going to
9983 rewrite MEMs based on it representing incoming locations of parameters
9984 passed on the stack into MEMs based on the argument pointer. Although
9985 we aren't going to rewrite other MEMs, we still need to initialize the
9986 virtual CFA pointer in order to ensure that the argument pointer will
9987 be seen as a constant throughout the function.
9988
9989 ??? This doesn't work if FRAME_POINTER_CFA_OFFSET is defined. */
9990 else if (stack_realign_drap)
9991 {
9992 rtx reg, elim;
9993
9994 #ifdef FRAME_POINTER_CFA_OFFSET
9995 reg = frame_pointer_rtx;
9996 #else
9997 reg = arg_pointer_rtx;
9998 #endif
9999 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10000 if (elim != reg)
10001 {
10002 if (GET_CODE (elim) == PLUS)
10003 elim = XEXP (elim, 0);
10004 if (elim == hard_frame_pointer_rtx)
10005 vt_init_cfa_base ();
10006 }
10007 }
10008
10009 hard_frame_pointer_adjustment = -1;
10010
10011 vt_add_function_parameters ();
10012
10013 FOR_EACH_BB_FN (bb, cfun)
10014 {
10015 rtx_insn *insn;
10016 HOST_WIDE_INT pre, post = 0;
10017 basic_block first_bb, last_bb;
10018
10019 if (MAY_HAVE_DEBUG_INSNS)
10020 {
10021 cselib_record_sets_hook = add_with_sets;
10022 if (dump_file && (dump_flags & TDF_DETAILS))
10023 fprintf (dump_file, "first value: %i\n",
10024 cselib_get_next_uid ());
10025 }
10026
10027 first_bb = bb;
10028 for (;;)
10029 {
10030 edge e;
10031 if (bb->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
10032 || ! single_pred_p (bb->next_bb))
10033 break;
10034 e = find_edge (bb, bb->next_bb);
10035 if (! e || (e->flags & EDGE_FALLTHRU) == 0)
10036 break;
10037 bb = bb->next_bb;
10038 }
10039 last_bb = bb;
10040
10041 /* Add the micro-operations to the vector. */
10042 FOR_BB_BETWEEN (bb, first_bb, last_bb->next_bb, next_bb)
10043 {
10044 HOST_WIDE_INT offset = VTI (bb)->out.stack_adjust;
10045 VTI (bb)->out.stack_adjust = VTI (bb)->in.stack_adjust;
10046 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
10047 insn = NEXT_INSN (insn))
10048 {
10049 if (INSN_P (insn))
10050 {
10051 if (!frame_pointer_needed)
10052 {
10053 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
10054 if (pre)
10055 {
10056 micro_operation mo;
10057 mo.type = MO_ADJUST;
10058 mo.u.adjust = pre;
10059 mo.insn = insn;
10060 if (dump_file && (dump_flags & TDF_DETAILS))
10061 log_op_type (PATTERN (insn), bb, insn,
10062 MO_ADJUST, dump_file);
10063 VTI (bb)->mos.safe_push (mo);
10064 VTI (bb)->out.stack_adjust += pre;
10065 }
10066 }
10067
10068 cselib_hook_called = false;
10069 adjust_insn (bb, insn);
10070 if (MAY_HAVE_DEBUG_INSNS)
10071 {
10072 if (CALL_P (insn))
10073 prepare_call_arguments (bb, insn);
10074 cselib_process_insn (insn);
10075 if (dump_file && (dump_flags & TDF_DETAILS))
10076 {
10077 print_rtl_single (dump_file, insn);
10078 dump_cselib_table (dump_file);
10079 }
10080 }
10081 if (!cselib_hook_called)
10082 add_with_sets (insn, 0, 0);
10083 cancel_changes (0);
10084
10085 if (!frame_pointer_needed && post)
10086 {
10087 micro_operation mo;
10088 mo.type = MO_ADJUST;
10089 mo.u.adjust = post;
10090 mo.insn = insn;
10091 if (dump_file && (dump_flags & TDF_DETAILS))
10092 log_op_type (PATTERN (insn), bb, insn,
10093 MO_ADJUST, dump_file);
10094 VTI (bb)->mos.safe_push (mo);
10095 VTI (bb)->out.stack_adjust += post;
10096 }
10097
10098 if (fp_cfa_offset != -1
10099 && hard_frame_pointer_adjustment == -1
10100 && fp_setter_insn (insn))
10101 {
10102 vt_init_cfa_base ();
10103 hard_frame_pointer_adjustment = fp_cfa_offset;
10104 /* Disassociate sp from fp now. */
10105 if (MAY_HAVE_DEBUG_INSNS)
10106 {
10107 cselib_val *v;
10108 cselib_invalidate_rtx (stack_pointer_rtx);
10109 v = cselib_lookup (stack_pointer_rtx, Pmode, 1,
10110 VOIDmode);
10111 if (v && !cselib_preserved_value_p (v))
10112 {
10113 cselib_set_value_sp_based (v);
10114 preserve_value (v);
10115 }
10116 }
10117 }
10118 }
10119 }
10120 gcc_assert (offset == VTI (bb)->out.stack_adjust);
10121 }
10122
10123 bb = last_bb;
10124
10125 if (MAY_HAVE_DEBUG_INSNS)
10126 {
10127 cselib_preserve_only_values ();
10128 cselib_reset_table (cselib_get_next_uid ());
10129 cselib_record_sets_hook = NULL;
10130 }
10131 }
10132
10133 hard_frame_pointer_adjustment = -1;
10134 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->flooded = true;
10135 cfa_base_rtx = NULL_RTX;
10136 return true;
10137 }
10138
10139 /* This is *not* reset after each function. It gives each
10140 NOTE_INSN_DELETED_DEBUG_LABEL in the entire compilation
10141 a unique label number. */
10142
10143 static int debug_label_num = 1;
10144
10145 /* Get rid of all debug insns from the insn stream. */
10146
10147 static void
10148 delete_debug_insns (void)
10149 {
10150 basic_block bb;
10151 rtx_insn *insn, *next;
10152
10153 if (!MAY_HAVE_DEBUG_INSNS)
10154 return;
10155
10156 FOR_EACH_BB_FN (bb, cfun)
10157 {
10158 FOR_BB_INSNS_SAFE (bb, insn, next)
10159 if (DEBUG_INSN_P (insn))
10160 {
10161 tree decl = INSN_VAR_LOCATION_DECL (insn);
10162 if (TREE_CODE (decl) == LABEL_DECL
10163 && DECL_NAME (decl)
10164 && !DECL_RTL_SET_P (decl))
10165 {
10166 PUT_CODE (insn, NOTE);
10167 NOTE_KIND (insn) = NOTE_INSN_DELETED_DEBUG_LABEL;
10168 NOTE_DELETED_LABEL_NAME (insn)
10169 = IDENTIFIER_POINTER (DECL_NAME (decl));
10170 SET_DECL_RTL (decl, insn);
10171 CODE_LABEL_NUMBER (insn) = debug_label_num++;
10172 }
10173 else
10174 delete_insn (insn);
10175 }
10176 }
10177 }
10178
10179 /* Run a fast, BB-local only version of var tracking, to take care of
10180 information that we don't do global analysis on, such that not all
10181 information is lost. If SKIPPED holds, we're skipping the global
10182 pass entirely, so we should try to use information it would have
10183 handled as well.. */
10184
10185 static void
10186 vt_debug_insns_local (bool skipped ATTRIBUTE_UNUSED)
10187 {
10188 /* ??? Just skip it all for now. */
10189 delete_debug_insns ();
10190 }
10191
10192 /* Free the data structures needed for variable tracking. */
10193
10194 static void
10195 vt_finalize (void)
10196 {
10197 basic_block bb;
10198
10199 FOR_EACH_BB_FN (bb, cfun)
10200 {
10201 VTI (bb)->mos.release ();
10202 }
10203
10204 FOR_ALL_BB_FN (bb, cfun)
10205 {
10206 dataflow_set_destroy (&VTI (bb)->in);
10207 dataflow_set_destroy (&VTI (bb)->out);
10208 if (VTI (bb)->permp)
10209 {
10210 dataflow_set_destroy (VTI (bb)->permp);
10211 XDELETE (VTI (bb)->permp);
10212 }
10213 }
10214 free_aux_for_blocks ();
10215 delete empty_shared_hash->htab;
10216 empty_shared_hash->htab = NULL;
10217 delete changed_variables;
10218 changed_variables = NULL;
10219 attrs_def_pool.release ();
10220 var_pool.release ();
10221 location_chain_pool.release ();
10222 shared_hash_pool.release ();
10223
10224 if (MAY_HAVE_DEBUG_INSNS)
10225 {
10226 if (global_get_addr_cache)
10227 delete global_get_addr_cache;
10228 global_get_addr_cache = NULL;
10229 loc_exp_dep_pool.release ();
10230 valvar_pool.release ();
10231 preserved_values.release ();
10232 cselib_finish ();
10233 BITMAP_FREE (scratch_regs);
10234 scratch_regs = NULL;
10235 }
10236
10237 #ifdef HAVE_window_save
10238 vec_free (windowed_parm_regs);
10239 #endif
10240
10241 if (vui_vec)
10242 XDELETEVEC (vui_vec);
10243 vui_vec = NULL;
10244 vui_allocated = 0;
10245 }
10246
10247 /* The entry point to variable tracking pass. */
10248
10249 static inline unsigned int
10250 variable_tracking_main_1 (void)
10251 {
10252 bool success;
10253
10254 if (flag_var_tracking_assignments < 0
10255 /* Var-tracking right now assumes the IR doesn't contain
10256 any pseudos at this point. */
10257 || targetm.no_register_allocation)
10258 {
10259 delete_debug_insns ();
10260 return 0;
10261 }
10262
10263 if (n_basic_blocks_for_fn (cfun) > 500 &&
10264 n_edges_for_fn (cfun) / n_basic_blocks_for_fn (cfun) >= 20)
10265 {
10266 vt_debug_insns_local (true);
10267 return 0;
10268 }
10269
10270 mark_dfs_back_edges ();
10271 if (!vt_initialize ())
10272 {
10273 vt_finalize ();
10274 vt_debug_insns_local (true);
10275 return 0;
10276 }
10277
10278 success = vt_find_locations ();
10279
10280 if (!success && flag_var_tracking_assignments > 0)
10281 {
10282 vt_finalize ();
10283
10284 delete_debug_insns ();
10285
10286 /* This is later restored by our caller. */
10287 flag_var_tracking_assignments = 0;
10288
10289 success = vt_initialize ();
10290 gcc_assert (success);
10291
10292 success = vt_find_locations ();
10293 }
10294
10295 if (!success)
10296 {
10297 vt_finalize ();
10298 vt_debug_insns_local (false);
10299 return 0;
10300 }
10301
10302 if (dump_file && (dump_flags & TDF_DETAILS))
10303 {
10304 dump_dataflow_sets ();
10305 dump_reg_info (dump_file);
10306 dump_flow_info (dump_file, dump_flags);
10307 }
10308
10309 timevar_push (TV_VAR_TRACKING_EMIT);
10310 vt_emit_notes ();
10311 timevar_pop (TV_VAR_TRACKING_EMIT);
10312
10313 vt_finalize ();
10314 vt_debug_insns_local (false);
10315 return 0;
10316 }
10317
10318 unsigned int
10319 variable_tracking_main (void)
10320 {
10321 unsigned int ret;
10322 int save = flag_var_tracking_assignments;
10323
10324 ret = variable_tracking_main_1 ();
10325
10326 flag_var_tracking_assignments = save;
10327
10328 return ret;
10329 }
10330 \f
10331 namespace {
10332
10333 const pass_data pass_data_variable_tracking =
10334 {
10335 RTL_PASS, /* type */
10336 "vartrack", /* name */
10337 OPTGROUP_NONE, /* optinfo_flags */
10338 TV_VAR_TRACKING, /* tv_id */
10339 0, /* properties_required */
10340 0, /* properties_provided */
10341 0, /* properties_destroyed */
10342 0, /* todo_flags_start */
10343 0, /* todo_flags_finish */
10344 };
10345
10346 class pass_variable_tracking : public rtl_opt_pass
10347 {
10348 public:
10349 pass_variable_tracking (gcc::context *ctxt)
10350 : rtl_opt_pass (pass_data_variable_tracking, ctxt)
10351 {}
10352
10353 /* opt_pass methods: */
10354 virtual bool gate (function *)
10355 {
10356 return (flag_var_tracking && !targetm.delay_vartrack);
10357 }
10358
10359 virtual unsigned int execute (function *)
10360 {
10361 return variable_tracking_main ();
10362 }
10363
10364 }; // class pass_variable_tracking
10365
10366 } // anon namespace
10367
10368 rtl_opt_pass *
10369 make_pass_variable_tracking (gcc::context *ctxt)
10370 {
10371 return new pass_variable_tracking (ctxt);
10372 }