]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/vec.h
[testsuite] Add missing dg-require-effective-target label_values
[thirdparty/gcc.git] / gcc / vec.h
1 /* Vector API for GNU compiler.
2 Copyright (C) 2004-2019 Free Software Foundation, Inc.
3 Contributed by Nathan Sidwell <nathan@codesourcery.com>
4 Re-implemented in C++ by Diego Novillo <dnovillo@google.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #ifndef GCC_VEC_H
23 #define GCC_VEC_H
24
25 /* Some gen* file have no ggc support as the header file gtype-desc.h is
26 missing. Provide these definitions in case ggc.h has not been included.
27 This is not a problem because any code that runs before gengtype is built
28 will never need to use GC vectors.*/
29
30 extern void ggc_free (void *);
31 extern size_t ggc_round_alloc_size (size_t requested_size);
32 extern void *ggc_realloc (void *, size_t MEM_STAT_DECL);
33
34 /* Templated vector type and associated interfaces.
35
36 The interface functions are typesafe and use inline functions,
37 sometimes backed by out-of-line generic functions. The vectors are
38 designed to interoperate with the GTY machinery.
39
40 There are both 'index' and 'iterate' accessors. The index accessor
41 is implemented by operator[]. The iterator returns a boolean
42 iteration condition and updates the iteration variable passed by
43 reference. Because the iterator will be inlined, the address-of
44 can be optimized away.
45
46 Each operation that increases the number of active elements is
47 available in 'quick' and 'safe' variants. The former presumes that
48 there is sufficient allocated space for the operation to succeed
49 (it dies if there is not). The latter will reallocate the
50 vector, if needed. Reallocation causes an exponential increase in
51 vector size. If you know you will be adding N elements, it would
52 be more efficient to use the reserve operation before adding the
53 elements with the 'quick' operation. This will ensure there are at
54 least as many elements as you ask for, it will exponentially
55 increase if there are too few spare slots. If you want reserve a
56 specific number of slots, but do not want the exponential increase
57 (for instance, you know this is the last allocation), use the
58 reserve_exact operation. You can also create a vector of a
59 specific size from the get go.
60
61 You should prefer the push and pop operations, as they append and
62 remove from the end of the vector. If you need to remove several
63 items in one go, use the truncate operation. The insert and remove
64 operations allow you to change elements in the middle of the
65 vector. There are two remove operations, one which preserves the
66 element ordering 'ordered_remove', and one which does not
67 'unordered_remove'. The latter function copies the end element
68 into the removed slot, rather than invoke a memmove operation. The
69 'lower_bound' function will determine where to place an item in the
70 array using insert that will maintain sorted order.
71
72 Vectors are template types with three arguments: the type of the
73 elements in the vector, the allocation strategy, and the physical
74 layout to use
75
76 Four allocation strategies are supported:
77
78 - Heap: allocation is done using malloc/free. This is the
79 default allocation strategy.
80
81 - GC: allocation is done using ggc_alloc/ggc_free.
82
83 - GC atomic: same as GC with the exception that the elements
84 themselves are assumed to be of an atomic type that does
85 not need to be garbage collected. This means that marking
86 routines do not need to traverse the array marking the
87 individual elements. This increases the performance of
88 GC activities.
89
90 Two physical layouts are supported:
91
92 - Embedded: The vector is structured using the trailing array
93 idiom. The last member of the structure is an array of size
94 1. When the vector is initially allocated, a single memory
95 block is created to hold the vector's control data and the
96 array of elements. These vectors cannot grow without
97 reallocation (see discussion on embeddable vectors below).
98
99 - Space efficient: The vector is structured as a pointer to an
100 embedded vector. This is the default layout. It means that
101 vectors occupy a single word of storage before initial
102 allocation. Vectors are allowed to grow (the internal
103 pointer is reallocated but the main vector instance does not
104 need to relocate).
105
106 The type, allocation and layout are specified when the vector is
107 declared.
108
109 If you need to directly manipulate a vector, then the 'address'
110 accessor will return the address of the start of the vector. Also
111 the 'space' predicate will tell you whether there is spare capacity
112 in the vector. You will not normally need to use these two functions.
113
114 Notes on the different layout strategies
115
116 * Embeddable vectors (vec<T, A, vl_embed>)
117
118 These vectors are suitable to be embedded in other data
119 structures so that they can be pre-allocated in a contiguous
120 memory block.
121
122 Embeddable vectors are implemented using the trailing array
123 idiom, thus they are not resizeable without changing the address
124 of the vector object itself. This means you cannot have
125 variables or fields of embeddable vector type -- always use a
126 pointer to a vector. The one exception is the final field of a
127 structure, which could be a vector type.
128
129 You will have to use the embedded_size & embedded_init calls to
130 create such objects, and they will not be resizeable (so the
131 'safe' allocation variants are not available).
132
133 Properties of embeddable vectors:
134
135 - The whole vector and control data are allocated in a single
136 contiguous block. It uses the trailing-vector idiom, so
137 allocation must reserve enough space for all the elements
138 in the vector plus its control data.
139 - The vector cannot be re-allocated.
140 - The vector cannot grow nor shrink.
141 - No indirections needed for access/manipulation.
142 - It requires 2 words of storage (prior to vector allocation).
143
144
145 * Space efficient vector (vec<T, A, vl_ptr>)
146
147 These vectors can grow dynamically and are allocated together
148 with their control data. They are suited to be included in data
149 structures. Prior to initial allocation, they only take a single
150 word of storage.
151
152 These vectors are implemented as a pointer to embeddable vectors.
153 The semantics allow for this pointer to be NULL to represent
154 empty vectors. This way, empty vectors occupy minimal space in
155 the structure containing them.
156
157 Properties:
158
159 - The whole vector and control data are allocated in a single
160 contiguous block.
161 - The whole vector may be re-allocated.
162 - Vector data may grow and shrink.
163 - Access and manipulation requires a pointer test and
164 indirection.
165 - It requires 1 word of storage (prior to vector allocation).
166
167 An example of their use would be,
168
169 struct my_struct {
170 // A space-efficient vector of tree pointers in GC memory.
171 vec<tree, va_gc, vl_ptr> v;
172 };
173
174 struct my_struct *s;
175
176 if (s->v.length ()) { we have some contents }
177 s->v.safe_push (decl); // append some decl onto the end
178 for (ix = 0; s->v.iterate (ix, &elt); ix++)
179 { do something with elt }
180 */
181
182 /* Support function for statistics. */
183 extern void dump_vec_loc_statistics (void);
184
185 /* Hashtable mapping vec addresses to descriptors. */
186 extern htab_t vec_mem_usage_hash;
187
188 /* Control data for vectors. This contains the number of allocated
189 and used slots inside a vector. */
190
191 struct vec_prefix
192 {
193 /* FIXME - These fields should be private, but we need to cater to
194 compilers that have stricter notions of PODness for types. */
195
196 /* Memory allocation support routines in vec.c. */
197 void register_overhead (void *, size_t, size_t CXX_MEM_STAT_INFO);
198 void release_overhead (void *, size_t, size_t, bool CXX_MEM_STAT_INFO);
199 static unsigned calculate_allocation (vec_prefix *, unsigned, bool);
200 static unsigned calculate_allocation_1 (unsigned, unsigned);
201
202 /* Note that vec_prefix should be a base class for vec, but we use
203 offsetof() on vector fields of tree structures (e.g.,
204 tree_binfo::base_binfos), and offsetof only supports base types.
205
206 To compensate, we make vec_prefix a field inside vec and make
207 vec a friend class of vec_prefix so it can access its fields. */
208 template <typename, typename, typename> friend struct vec;
209
210 /* The allocator types also need access to our internals. */
211 friend struct va_gc;
212 friend struct va_gc_atomic;
213 friend struct va_heap;
214
215 unsigned m_alloc : 31;
216 unsigned m_using_auto_storage : 1;
217 unsigned m_num;
218 };
219
220 /* Calculate the number of slots to reserve a vector, making sure that
221 RESERVE slots are free. If EXACT grow exactly, otherwise grow
222 exponentially. PFX is the control data for the vector. */
223
224 inline unsigned
225 vec_prefix::calculate_allocation (vec_prefix *pfx, unsigned reserve,
226 bool exact)
227 {
228 if (exact)
229 return (pfx ? pfx->m_num : 0) + reserve;
230 else if (!pfx)
231 return MAX (4, reserve);
232 return calculate_allocation_1 (pfx->m_alloc, pfx->m_num + reserve);
233 }
234
235 template<typename, typename, typename> struct vec;
236
237 /* Valid vector layouts
238
239 vl_embed - Embeddable vector that uses the trailing array idiom.
240 vl_ptr - Space efficient vector that uses a pointer to an
241 embeddable vector. */
242 struct vl_embed { };
243 struct vl_ptr { };
244
245
246 /* Types of supported allocations
247
248 va_heap - Allocation uses malloc/free.
249 va_gc - Allocation uses ggc_alloc.
250 va_gc_atomic - Same as GC, but individual elements of the array
251 do not need to be marked during collection. */
252
253 /* Allocator type for heap vectors. */
254 struct va_heap
255 {
256 /* Heap vectors are frequently regular instances, so use the vl_ptr
257 layout for them. */
258 typedef vl_ptr default_layout;
259
260 template<typename T>
261 static void reserve (vec<T, va_heap, vl_embed> *&, unsigned, bool
262 CXX_MEM_STAT_INFO);
263
264 template<typename T>
265 static void release (vec<T, va_heap, vl_embed> *&);
266 };
267
268
269 /* Allocator for heap memory. Ensure there are at least RESERVE free
270 slots in V. If EXACT is true, grow exactly, else grow
271 exponentially. As a special case, if the vector had not been
272 allocated and RESERVE is 0, no vector will be created. */
273
274 template<typename T>
275 inline void
276 va_heap::reserve (vec<T, va_heap, vl_embed> *&v, unsigned reserve, bool exact
277 MEM_STAT_DECL)
278 {
279 size_t elt_size = sizeof (T);
280 unsigned alloc
281 = vec_prefix::calculate_allocation (v ? &v->m_vecpfx : 0, reserve, exact);
282 gcc_checking_assert (alloc);
283
284 if (GATHER_STATISTICS && v)
285 v->m_vecpfx.release_overhead (v, elt_size * v->allocated (),
286 v->allocated (), false);
287
288 size_t size = vec<T, va_heap, vl_embed>::embedded_size (alloc);
289 unsigned nelem = v ? v->length () : 0;
290 v = static_cast <vec<T, va_heap, vl_embed> *> (xrealloc (v, size));
291 v->embedded_init (alloc, nelem);
292
293 if (GATHER_STATISTICS)
294 v->m_vecpfx.register_overhead (v, alloc, elt_size PASS_MEM_STAT);
295 }
296
297
298 /* Free the heap space allocated for vector V. */
299
300 template<typename T>
301 void
302 va_heap::release (vec<T, va_heap, vl_embed> *&v)
303 {
304 size_t elt_size = sizeof (T);
305 if (v == NULL)
306 return;
307
308 if (GATHER_STATISTICS)
309 v->m_vecpfx.release_overhead (v, elt_size * v->allocated (),
310 v->allocated (), true);
311 ::free (v);
312 v = NULL;
313 }
314
315
316 /* Allocator type for GC vectors. Notice that we need the structure
317 declaration even if GC is not enabled. */
318
319 struct va_gc
320 {
321 /* Use vl_embed as the default layout for GC vectors. Due to GTY
322 limitations, GC vectors must always be pointers, so it is more
323 efficient to use a pointer to the vl_embed layout, rather than
324 using a pointer to a pointer as would be the case with vl_ptr. */
325 typedef vl_embed default_layout;
326
327 template<typename T, typename A>
328 static void reserve (vec<T, A, vl_embed> *&, unsigned, bool
329 CXX_MEM_STAT_INFO);
330
331 template<typename T, typename A>
332 static void release (vec<T, A, vl_embed> *&v);
333 };
334
335
336 /* Free GC memory used by V and reset V to NULL. */
337
338 template<typename T, typename A>
339 inline void
340 va_gc::release (vec<T, A, vl_embed> *&v)
341 {
342 if (v)
343 ::ggc_free (v);
344 v = NULL;
345 }
346
347
348 /* Allocator for GC memory. Ensure there are at least RESERVE free
349 slots in V. If EXACT is true, grow exactly, else grow
350 exponentially. As a special case, if the vector had not been
351 allocated and RESERVE is 0, no vector will be created. */
352
353 template<typename T, typename A>
354 void
355 va_gc::reserve (vec<T, A, vl_embed> *&v, unsigned reserve, bool exact
356 MEM_STAT_DECL)
357 {
358 unsigned alloc
359 = vec_prefix::calculate_allocation (v ? &v->m_vecpfx : 0, reserve, exact);
360 if (!alloc)
361 {
362 ::ggc_free (v);
363 v = NULL;
364 return;
365 }
366
367 /* Calculate the amount of space we want. */
368 size_t size = vec<T, A, vl_embed>::embedded_size (alloc);
369
370 /* Ask the allocator how much space it will really give us. */
371 size = ::ggc_round_alloc_size (size);
372
373 /* Adjust the number of slots accordingly. */
374 size_t vec_offset = sizeof (vec_prefix);
375 size_t elt_size = sizeof (T);
376 alloc = (size - vec_offset) / elt_size;
377
378 /* And finally, recalculate the amount of space we ask for. */
379 size = vec_offset + alloc * elt_size;
380
381 unsigned nelem = v ? v->length () : 0;
382 v = static_cast <vec<T, A, vl_embed> *> (::ggc_realloc (v, size
383 PASS_MEM_STAT));
384 v->embedded_init (alloc, nelem);
385 }
386
387
388 /* Allocator type for GC vectors. This is for vectors of types
389 atomics w.r.t. collection, so allocation and deallocation is
390 completely inherited from va_gc. */
391 struct va_gc_atomic : va_gc
392 {
393 };
394
395
396 /* Generic vector template. Default values for A and L indicate the
397 most commonly used strategies.
398
399 FIXME - Ideally, they would all be vl_ptr to encourage using regular
400 instances for vectors, but the existing GTY machinery is limited
401 in that it can only deal with GC objects that are pointers
402 themselves.
403
404 This means that vector operations that need to deal with
405 potentially NULL pointers, must be provided as free
406 functions (see the vec_safe_* functions above). */
407 template<typename T,
408 typename A = va_heap,
409 typename L = typename A::default_layout>
410 struct GTY((user)) vec
411 {
412 };
413
414 /* Generic vec<> debug helpers.
415
416 These need to be instantiated for each vec<TYPE> used throughout
417 the compiler like this:
418
419 DEFINE_DEBUG_VEC (TYPE)
420
421 The reason we have a debug_helper() is because GDB can't
422 disambiguate a plain call to debug(some_vec), and it must be called
423 like debug<TYPE>(some_vec). */
424
425 template<typename T>
426 void
427 debug_helper (vec<T> &ref)
428 {
429 unsigned i;
430 for (i = 0; i < ref.length (); ++i)
431 {
432 fprintf (stderr, "[%d] = ", i);
433 debug_slim (ref[i]);
434 fputc ('\n', stderr);
435 }
436 }
437
438 /* We need a separate va_gc variant here because default template
439 argument for functions cannot be used in c++-98. Once this
440 restriction is removed, those variant should be folded with the
441 above debug_helper. */
442
443 template<typename T>
444 void
445 debug_helper (vec<T, va_gc> &ref)
446 {
447 unsigned i;
448 for (i = 0; i < ref.length (); ++i)
449 {
450 fprintf (stderr, "[%d] = ", i);
451 debug_slim (ref[i]);
452 fputc ('\n', stderr);
453 }
454 }
455
456 /* Macro to define debug(vec<T>) and debug(vec<T, va_gc>) helper
457 functions for a type T. */
458
459 #define DEFINE_DEBUG_VEC(T) \
460 template void debug_helper (vec<T> &); \
461 template void debug_helper (vec<T, va_gc> &); \
462 /* Define the vec<T> debug functions. */ \
463 DEBUG_FUNCTION void \
464 debug (vec<T> &ref) \
465 { \
466 debug_helper <T> (ref); \
467 } \
468 DEBUG_FUNCTION void \
469 debug (vec<T> *ptr) \
470 { \
471 if (ptr) \
472 debug (*ptr); \
473 else \
474 fprintf (stderr, "<nil>\n"); \
475 } \
476 /* Define the vec<T, va_gc> debug functions. */ \
477 DEBUG_FUNCTION void \
478 debug (vec<T, va_gc> &ref) \
479 { \
480 debug_helper <T> (ref); \
481 } \
482 DEBUG_FUNCTION void \
483 debug (vec<T, va_gc> *ptr) \
484 { \
485 if (ptr) \
486 debug (*ptr); \
487 else \
488 fprintf (stderr, "<nil>\n"); \
489 }
490
491 /* Default-construct N elements in DST. */
492
493 template <typename T>
494 inline void
495 vec_default_construct (T *dst, unsigned n)
496 {
497 #ifdef BROKEN_VALUE_INITIALIZATION
498 /* Versions of GCC before 4.4 sometimes leave certain objects
499 uninitialized when value initialized, though if the type has
500 user defined default ctor, that ctor is invoked. As a workaround
501 perform clearing first and then the value initialization, which
502 fixes the case when value initialization doesn't initialize due to
503 the bugs and should initialize to all zeros, but still allows
504 vectors for types with user defined default ctor that initializes
505 some or all elements to non-zero. If T has no user defined
506 default ctor and some non-static data members have user defined
507 default ctors that initialize to non-zero the workaround will
508 still not work properly; in that case we just need to provide
509 user defined default ctor. */
510 memset (dst, '\0', sizeof (T) * n);
511 #endif
512 for ( ; n; ++dst, --n)
513 ::new (static_cast<void*>(dst)) T ();
514 }
515
516 /* Copy-construct N elements in DST from *SRC. */
517
518 template <typename T>
519 inline void
520 vec_copy_construct (T *dst, const T *src, unsigned n)
521 {
522 for ( ; n; ++dst, ++src, --n)
523 ::new (static_cast<void*>(dst)) T (*src);
524 }
525
526 /* Type to provide NULL values for vec<T, A, L>. This is used to
527 provide nil initializers for vec instances. Since vec must be
528 a POD, we cannot have proper ctor/dtor for it. To initialize
529 a vec instance, you can assign it the value vNULL. This isn't
530 needed for file-scope and function-local static vectors, which
531 are zero-initialized by default. */
532 struct vnull
533 {
534 template <typename T, typename A, typename L>
535 CONSTEXPR operator vec<T, A, L> () { return vec<T, A, L>(); }
536 };
537 extern vnull vNULL;
538
539
540 /* Embeddable vector. These vectors are suitable to be embedded
541 in other data structures so that they can be pre-allocated in a
542 contiguous memory block.
543
544 Embeddable vectors are implemented using the trailing array idiom,
545 thus they are not resizeable without changing the address of the
546 vector object itself. This means you cannot have variables or
547 fields of embeddable vector type -- always use a pointer to a
548 vector. The one exception is the final field of a structure, which
549 could be a vector type.
550
551 You will have to use the embedded_size & embedded_init calls to
552 create such objects, and they will not be resizeable (so the 'safe'
553 allocation variants are not available).
554
555 Properties:
556
557 - The whole vector and control data are allocated in a single
558 contiguous block. It uses the trailing-vector idiom, so
559 allocation must reserve enough space for all the elements
560 in the vector plus its control data.
561 - The vector cannot be re-allocated.
562 - The vector cannot grow nor shrink.
563 - No indirections needed for access/manipulation.
564 - It requires 2 words of storage (prior to vector allocation). */
565
566 template<typename T, typename A>
567 struct GTY((user)) vec<T, A, vl_embed>
568 {
569 public:
570 unsigned allocated (void) const { return m_vecpfx.m_alloc; }
571 unsigned length (void) const { return m_vecpfx.m_num; }
572 bool is_empty (void) const { return m_vecpfx.m_num == 0; }
573 T *address (void) { return m_vecdata; }
574 const T *address (void) const { return m_vecdata; }
575 T *begin () { return address (); }
576 const T *begin () const { return address (); }
577 T *end () { return address () + length (); }
578 const T *end () const { return address () + length (); }
579 const T &operator[] (unsigned) const;
580 T &operator[] (unsigned);
581 T &last (void);
582 bool space (unsigned) const;
583 bool iterate (unsigned, T *) const;
584 bool iterate (unsigned, T **) const;
585 vec *copy (ALONE_CXX_MEM_STAT_INFO) const;
586 void splice (const vec &);
587 void splice (const vec *src);
588 T *quick_push (const T &);
589 T &pop (void);
590 void truncate (unsigned);
591 void quick_insert (unsigned, const T &);
592 void ordered_remove (unsigned);
593 void unordered_remove (unsigned);
594 void block_remove (unsigned, unsigned);
595 void qsort (int (*) (const void *, const void *));
596 T *bsearch (const void *key, int (*compar)(const void *, const void *));
597 unsigned lower_bound (T, bool (*)(const T &, const T &)) const;
598 bool contains (const T &search) const;
599 static size_t embedded_size (unsigned);
600 void embedded_init (unsigned, unsigned = 0, unsigned = 0);
601 void quick_grow (unsigned len);
602 void quick_grow_cleared (unsigned len);
603
604 /* vec class can access our internal data and functions. */
605 template <typename, typename, typename> friend struct vec;
606
607 /* The allocator types also need access to our internals. */
608 friend struct va_gc;
609 friend struct va_gc_atomic;
610 friend struct va_heap;
611
612 /* FIXME - These fields should be private, but we need to cater to
613 compilers that have stricter notions of PODness for types. */
614 vec_prefix m_vecpfx;
615 T m_vecdata[1];
616 };
617
618
619 /* Convenience wrapper functions to use when dealing with pointers to
620 embedded vectors. Some functionality for these vectors must be
621 provided via free functions for these reasons:
622
623 1- The pointer may be NULL (e.g., before initial allocation).
624
625 2- When the vector needs to grow, it must be reallocated, so
626 the pointer will change its value.
627
628 Because of limitations with the current GC machinery, all vectors
629 in GC memory *must* be pointers. */
630
631
632 /* If V contains no room for NELEMS elements, return false. Otherwise,
633 return true. */
634 template<typename T, typename A>
635 inline bool
636 vec_safe_space (const vec<T, A, vl_embed> *v, unsigned nelems)
637 {
638 return v ? v->space (nelems) : nelems == 0;
639 }
640
641
642 /* If V is NULL, return 0. Otherwise, return V->length(). */
643 template<typename T, typename A>
644 inline unsigned
645 vec_safe_length (const vec<T, A, vl_embed> *v)
646 {
647 return v ? v->length () : 0;
648 }
649
650
651 /* If V is NULL, return NULL. Otherwise, return V->address(). */
652 template<typename T, typename A>
653 inline T *
654 vec_safe_address (vec<T, A, vl_embed> *v)
655 {
656 return v ? v->address () : NULL;
657 }
658
659
660 /* If V is NULL, return true. Otherwise, return V->is_empty(). */
661 template<typename T, typename A>
662 inline bool
663 vec_safe_is_empty (vec<T, A, vl_embed> *v)
664 {
665 return v ? v->is_empty () : true;
666 }
667
668 /* If V does not have space for NELEMS elements, call
669 V->reserve(NELEMS, EXACT). */
670 template<typename T, typename A>
671 inline bool
672 vec_safe_reserve (vec<T, A, vl_embed> *&v, unsigned nelems, bool exact = false
673 CXX_MEM_STAT_INFO)
674 {
675 bool extend = nelems ? !vec_safe_space (v, nelems) : false;
676 if (extend)
677 A::reserve (v, nelems, exact PASS_MEM_STAT);
678 return extend;
679 }
680
681 template<typename T, typename A>
682 inline bool
683 vec_safe_reserve_exact (vec<T, A, vl_embed> *&v, unsigned nelems
684 CXX_MEM_STAT_INFO)
685 {
686 return vec_safe_reserve (v, nelems, true PASS_MEM_STAT);
687 }
688
689
690 /* Allocate GC memory for V with space for NELEMS slots. If NELEMS
691 is 0, V is initialized to NULL. */
692
693 template<typename T, typename A>
694 inline void
695 vec_alloc (vec<T, A, vl_embed> *&v, unsigned nelems CXX_MEM_STAT_INFO)
696 {
697 v = NULL;
698 vec_safe_reserve (v, nelems, false PASS_MEM_STAT);
699 }
700
701
702 /* Free the GC memory allocated by vector V and set it to NULL. */
703
704 template<typename T, typename A>
705 inline void
706 vec_free (vec<T, A, vl_embed> *&v)
707 {
708 A::release (v);
709 }
710
711
712 /* Grow V to length LEN. Allocate it, if necessary. */
713 template<typename T, typename A>
714 inline void
715 vec_safe_grow (vec<T, A, vl_embed> *&v, unsigned len CXX_MEM_STAT_INFO)
716 {
717 unsigned oldlen = vec_safe_length (v);
718 gcc_checking_assert (len >= oldlen);
719 vec_safe_reserve_exact (v, len - oldlen PASS_MEM_STAT);
720 v->quick_grow (len);
721 }
722
723
724 /* If V is NULL, allocate it. Call V->safe_grow_cleared(LEN). */
725 template<typename T, typename A>
726 inline void
727 vec_safe_grow_cleared (vec<T, A, vl_embed> *&v, unsigned len CXX_MEM_STAT_INFO)
728 {
729 unsigned oldlen = vec_safe_length (v);
730 vec_safe_grow (v, len PASS_MEM_STAT);
731 vec_default_construct (v->address () + oldlen, len - oldlen);
732 }
733
734
735 /* Assume V is not NULL. */
736
737 template<typename T>
738 inline void
739 vec_safe_grow_cleared (vec<T, va_heap, vl_ptr> *&v,
740 unsigned len CXX_MEM_STAT_INFO)
741 {
742 v->safe_grow_cleared (len PASS_MEM_STAT);
743 }
744
745
746 /* If V is NULL return false, otherwise return V->iterate(IX, PTR). */
747 template<typename T, typename A>
748 inline bool
749 vec_safe_iterate (const vec<T, A, vl_embed> *v, unsigned ix, T **ptr)
750 {
751 if (v)
752 return v->iterate (ix, ptr);
753 else
754 {
755 *ptr = 0;
756 return false;
757 }
758 }
759
760 template<typename T, typename A>
761 inline bool
762 vec_safe_iterate (const vec<T, A, vl_embed> *v, unsigned ix, T *ptr)
763 {
764 if (v)
765 return v->iterate (ix, ptr);
766 else
767 {
768 *ptr = 0;
769 return false;
770 }
771 }
772
773
774 /* If V has no room for one more element, reallocate it. Then call
775 V->quick_push(OBJ). */
776 template<typename T, typename A>
777 inline T *
778 vec_safe_push (vec<T, A, vl_embed> *&v, const T &obj CXX_MEM_STAT_INFO)
779 {
780 vec_safe_reserve (v, 1, false PASS_MEM_STAT);
781 return v->quick_push (obj);
782 }
783
784
785 /* if V has no room for one more element, reallocate it. Then call
786 V->quick_insert(IX, OBJ). */
787 template<typename T, typename A>
788 inline void
789 vec_safe_insert (vec<T, A, vl_embed> *&v, unsigned ix, const T &obj
790 CXX_MEM_STAT_INFO)
791 {
792 vec_safe_reserve (v, 1, false PASS_MEM_STAT);
793 v->quick_insert (ix, obj);
794 }
795
796
797 /* If V is NULL, do nothing. Otherwise, call V->truncate(SIZE). */
798 template<typename T, typename A>
799 inline void
800 vec_safe_truncate (vec<T, A, vl_embed> *v, unsigned size)
801 {
802 if (v)
803 v->truncate (size);
804 }
805
806
807 /* If SRC is not NULL, return a pointer to a copy of it. */
808 template<typename T, typename A>
809 inline vec<T, A, vl_embed> *
810 vec_safe_copy (vec<T, A, vl_embed> *src CXX_MEM_STAT_INFO)
811 {
812 return src ? src->copy (ALONE_PASS_MEM_STAT) : NULL;
813 }
814
815 /* Copy the elements from SRC to the end of DST as if by memcpy.
816 Reallocate DST, if necessary. */
817 template<typename T, typename A>
818 inline void
819 vec_safe_splice (vec<T, A, vl_embed> *&dst, const vec<T, A, vl_embed> *src
820 CXX_MEM_STAT_INFO)
821 {
822 unsigned src_len = vec_safe_length (src);
823 if (src_len)
824 {
825 vec_safe_reserve_exact (dst, vec_safe_length (dst) + src_len
826 PASS_MEM_STAT);
827 dst->splice (*src);
828 }
829 }
830
831 /* Return true if SEARCH is an element of V. Note that this is O(N) in the
832 size of the vector and so should be used with care. */
833
834 template<typename T, typename A>
835 inline bool
836 vec_safe_contains (vec<T, A, vl_embed> *v, const T &search)
837 {
838 return v ? v->contains (search) : false;
839 }
840
841 /* Index into vector. Return the IX'th element. IX must be in the
842 domain of the vector. */
843
844 template<typename T, typename A>
845 inline const T &
846 vec<T, A, vl_embed>::operator[] (unsigned ix) const
847 {
848 gcc_checking_assert (ix < m_vecpfx.m_num);
849 return m_vecdata[ix];
850 }
851
852 template<typename T, typename A>
853 inline T &
854 vec<T, A, vl_embed>::operator[] (unsigned ix)
855 {
856 gcc_checking_assert (ix < m_vecpfx.m_num);
857 return m_vecdata[ix];
858 }
859
860
861 /* Get the final element of the vector, which must not be empty. */
862
863 template<typename T, typename A>
864 inline T &
865 vec<T, A, vl_embed>::last (void)
866 {
867 gcc_checking_assert (m_vecpfx.m_num > 0);
868 return (*this)[m_vecpfx.m_num - 1];
869 }
870
871
872 /* If this vector has space for NELEMS additional entries, return
873 true. You usually only need to use this if you are doing your
874 own vector reallocation, for instance on an embedded vector. This
875 returns true in exactly the same circumstances that vec::reserve
876 will. */
877
878 template<typename T, typename A>
879 inline bool
880 vec<T, A, vl_embed>::space (unsigned nelems) const
881 {
882 return m_vecpfx.m_alloc - m_vecpfx.m_num >= nelems;
883 }
884
885
886 /* Return iteration condition and update PTR to point to the IX'th
887 element of this vector. Use this to iterate over the elements of a
888 vector as follows,
889
890 for (ix = 0; vec<T, A>::iterate (v, ix, &ptr); ix++)
891 continue; */
892
893 template<typename T, typename A>
894 inline bool
895 vec<T, A, vl_embed>::iterate (unsigned ix, T *ptr) const
896 {
897 if (ix < m_vecpfx.m_num)
898 {
899 *ptr = m_vecdata[ix];
900 return true;
901 }
902 else
903 {
904 *ptr = 0;
905 return false;
906 }
907 }
908
909
910 /* Return iteration condition and update *PTR to point to the
911 IX'th element of this vector. Use this to iterate over the
912 elements of a vector as follows,
913
914 for (ix = 0; v->iterate (ix, &ptr); ix++)
915 continue;
916
917 This variant is for vectors of objects. */
918
919 template<typename T, typename A>
920 inline bool
921 vec<T, A, vl_embed>::iterate (unsigned ix, T **ptr) const
922 {
923 if (ix < m_vecpfx.m_num)
924 {
925 *ptr = CONST_CAST (T *, &m_vecdata[ix]);
926 return true;
927 }
928 else
929 {
930 *ptr = 0;
931 return false;
932 }
933 }
934
935
936 /* Return a pointer to a copy of this vector. */
937
938 template<typename T, typename A>
939 inline vec<T, A, vl_embed> *
940 vec<T, A, vl_embed>::copy (ALONE_MEM_STAT_DECL) const
941 {
942 vec<T, A, vl_embed> *new_vec = NULL;
943 unsigned len = length ();
944 if (len)
945 {
946 vec_alloc (new_vec, len PASS_MEM_STAT);
947 new_vec->embedded_init (len, len);
948 vec_copy_construct (new_vec->address (), m_vecdata, len);
949 }
950 return new_vec;
951 }
952
953
954 /* Copy the elements from SRC to the end of this vector as if by memcpy.
955 The vector must have sufficient headroom available. */
956
957 template<typename T, typename A>
958 inline void
959 vec<T, A, vl_embed>::splice (const vec<T, A, vl_embed> &src)
960 {
961 unsigned len = src.length ();
962 if (len)
963 {
964 gcc_checking_assert (space (len));
965 vec_copy_construct (end (), src.address (), len);
966 m_vecpfx.m_num += len;
967 }
968 }
969
970 template<typename T, typename A>
971 inline void
972 vec<T, A, vl_embed>::splice (const vec<T, A, vl_embed> *src)
973 {
974 if (src)
975 splice (*src);
976 }
977
978
979 /* Push OBJ (a new element) onto the end of the vector. There must be
980 sufficient space in the vector. Return a pointer to the slot
981 where OBJ was inserted. */
982
983 template<typename T, typename A>
984 inline T *
985 vec<T, A, vl_embed>::quick_push (const T &obj)
986 {
987 gcc_checking_assert (space (1));
988 T *slot = &m_vecdata[m_vecpfx.m_num++];
989 *slot = obj;
990 return slot;
991 }
992
993
994 /* Pop and return the last element off the end of the vector. */
995
996 template<typename T, typename A>
997 inline T &
998 vec<T, A, vl_embed>::pop (void)
999 {
1000 gcc_checking_assert (length () > 0);
1001 return m_vecdata[--m_vecpfx.m_num];
1002 }
1003
1004
1005 /* Set the length of the vector to SIZE. The new length must be less
1006 than or equal to the current length. This is an O(1) operation. */
1007
1008 template<typename T, typename A>
1009 inline void
1010 vec<T, A, vl_embed>::truncate (unsigned size)
1011 {
1012 gcc_checking_assert (length () >= size);
1013 m_vecpfx.m_num = size;
1014 }
1015
1016
1017 /* Insert an element, OBJ, at the IXth position of this vector. There
1018 must be sufficient space. */
1019
1020 template<typename T, typename A>
1021 inline void
1022 vec<T, A, vl_embed>::quick_insert (unsigned ix, const T &obj)
1023 {
1024 gcc_checking_assert (length () < allocated ());
1025 gcc_checking_assert (ix <= length ());
1026 T *slot = &m_vecdata[ix];
1027 memmove (slot + 1, slot, (m_vecpfx.m_num++ - ix) * sizeof (T));
1028 *slot = obj;
1029 }
1030
1031
1032 /* Remove an element from the IXth position of this vector. Ordering of
1033 remaining elements is preserved. This is an O(N) operation due to
1034 memmove. */
1035
1036 template<typename T, typename A>
1037 inline void
1038 vec<T, A, vl_embed>::ordered_remove (unsigned ix)
1039 {
1040 gcc_checking_assert (ix < length ());
1041 T *slot = &m_vecdata[ix];
1042 memmove (slot, slot + 1, (--m_vecpfx.m_num - ix) * sizeof (T));
1043 }
1044
1045
1046 /* Remove elements in [START, END) from VEC for which COND holds. Ordering of
1047 remaining elements is preserved. This is an O(N) operation. */
1048
1049 #define VEC_ORDERED_REMOVE_IF_FROM_TO(vec, read_index, write_index, \
1050 elem_ptr, start, end, cond) \
1051 { \
1052 gcc_assert ((end) <= (vec).length ()); \
1053 for (read_index = write_index = (start); read_index < (end); \
1054 ++read_index) \
1055 { \
1056 elem_ptr = &(vec)[read_index]; \
1057 bool remove_p = (cond); \
1058 if (remove_p) \
1059 continue; \
1060 \
1061 if (read_index != write_index) \
1062 (vec)[write_index] = (vec)[read_index]; \
1063 \
1064 write_index++; \
1065 } \
1066 \
1067 if (read_index - write_index > 0) \
1068 (vec).block_remove (write_index, read_index - write_index); \
1069 }
1070
1071
1072 /* Remove elements from VEC for which COND holds. Ordering of remaining
1073 elements is preserved. This is an O(N) operation. */
1074
1075 #define VEC_ORDERED_REMOVE_IF(vec, read_index, write_index, elem_ptr, \
1076 cond) \
1077 VEC_ORDERED_REMOVE_IF_FROM_TO ((vec), read_index, write_index, \
1078 elem_ptr, 0, (vec).length (), (cond))
1079
1080 /* Remove an element from the IXth position of this vector. Ordering of
1081 remaining elements is destroyed. This is an O(1) operation. */
1082
1083 template<typename T, typename A>
1084 inline void
1085 vec<T, A, vl_embed>::unordered_remove (unsigned ix)
1086 {
1087 gcc_checking_assert (ix < length ());
1088 m_vecdata[ix] = m_vecdata[--m_vecpfx.m_num];
1089 }
1090
1091
1092 /* Remove LEN elements starting at the IXth. Ordering is retained.
1093 This is an O(N) operation due to memmove. */
1094
1095 template<typename T, typename A>
1096 inline void
1097 vec<T, A, vl_embed>::block_remove (unsigned ix, unsigned len)
1098 {
1099 gcc_checking_assert (ix + len <= length ());
1100 T *slot = &m_vecdata[ix];
1101 m_vecpfx.m_num -= len;
1102 memmove (slot, slot + len, (m_vecpfx.m_num - ix) * sizeof (T));
1103 }
1104
1105
1106 /* Sort the contents of this vector with qsort. CMP is the comparison
1107 function to pass to qsort. */
1108
1109 template<typename T, typename A>
1110 inline void
1111 vec<T, A, vl_embed>::qsort (int (*cmp) (const void *, const void *))
1112 {
1113 if (length () > 1)
1114 ::qsort (address (), length (), sizeof (T), cmp);
1115 }
1116
1117
1118 /* Search the contents of the sorted vector with a binary search.
1119 CMP is the comparison function to pass to bsearch. */
1120
1121 template<typename T, typename A>
1122 inline T *
1123 vec<T, A, vl_embed>::bsearch (const void *key,
1124 int (*compar) (const void *, const void *))
1125 {
1126 const void *base = this->address ();
1127 size_t nmemb = this->length ();
1128 size_t size = sizeof (T);
1129 /* The following is a copy of glibc stdlib-bsearch.h. */
1130 size_t l, u, idx;
1131 const void *p;
1132 int comparison;
1133
1134 l = 0;
1135 u = nmemb;
1136 while (l < u)
1137 {
1138 idx = (l + u) / 2;
1139 p = (const void *) (((const char *) base) + (idx * size));
1140 comparison = (*compar) (key, p);
1141 if (comparison < 0)
1142 u = idx;
1143 else if (comparison > 0)
1144 l = idx + 1;
1145 else
1146 return (T *)const_cast<void *>(p);
1147 }
1148
1149 return NULL;
1150 }
1151
1152 /* Return true if SEARCH is an element of V. Note that this is O(N) in the
1153 size of the vector and so should be used with care. */
1154
1155 template<typename T, typename A>
1156 inline bool
1157 vec<T, A, vl_embed>::contains (const T &search) const
1158 {
1159 unsigned int len = length ();
1160 for (unsigned int i = 0; i < len; i++)
1161 if ((*this)[i] == search)
1162 return true;
1163
1164 return false;
1165 }
1166
1167 /* Find and return the first position in which OBJ could be inserted
1168 without changing the ordering of this vector. LESSTHAN is a
1169 function that returns true if the first argument is strictly less
1170 than the second. */
1171
1172 template<typename T, typename A>
1173 unsigned
1174 vec<T, A, vl_embed>::lower_bound (T obj, bool (*lessthan)(const T &, const T &))
1175 const
1176 {
1177 unsigned int len = length ();
1178 unsigned int half, middle;
1179 unsigned int first = 0;
1180 while (len > 0)
1181 {
1182 half = len / 2;
1183 middle = first;
1184 middle += half;
1185 T middle_elem = (*this)[middle];
1186 if (lessthan (middle_elem, obj))
1187 {
1188 first = middle;
1189 ++first;
1190 len = len - half - 1;
1191 }
1192 else
1193 len = half;
1194 }
1195 return first;
1196 }
1197
1198
1199 /* Return the number of bytes needed to embed an instance of an
1200 embeddable vec inside another data structure.
1201
1202 Use these methods to determine the required size and initialization
1203 of a vector V of type T embedded within another structure (as the
1204 final member):
1205
1206 size_t vec<T, A, vl_embed>::embedded_size (unsigned alloc);
1207 void v->embedded_init (unsigned alloc, unsigned num);
1208
1209 These allow the caller to perform the memory allocation. */
1210
1211 template<typename T, typename A>
1212 inline size_t
1213 vec<T, A, vl_embed>::embedded_size (unsigned alloc)
1214 {
1215 typedef vec<T, A, vl_embed> vec_embedded;
1216 return offsetof (vec_embedded, m_vecdata) + alloc * sizeof (T);
1217 }
1218
1219
1220 /* Initialize the vector to contain room for ALLOC elements and
1221 NUM active elements. */
1222
1223 template<typename T, typename A>
1224 inline void
1225 vec<T, A, vl_embed>::embedded_init (unsigned alloc, unsigned num, unsigned aut)
1226 {
1227 m_vecpfx.m_alloc = alloc;
1228 m_vecpfx.m_using_auto_storage = aut;
1229 m_vecpfx.m_num = num;
1230 }
1231
1232
1233 /* Grow the vector to a specific length. LEN must be as long or longer than
1234 the current length. The new elements are uninitialized. */
1235
1236 template<typename T, typename A>
1237 inline void
1238 vec<T, A, vl_embed>::quick_grow (unsigned len)
1239 {
1240 gcc_checking_assert (length () <= len && len <= m_vecpfx.m_alloc);
1241 m_vecpfx.m_num = len;
1242 }
1243
1244
1245 /* Grow the vector to a specific length. LEN must be as long or longer than
1246 the current length. The new elements are initialized to zero. */
1247
1248 template<typename T, typename A>
1249 inline void
1250 vec<T, A, vl_embed>::quick_grow_cleared (unsigned len)
1251 {
1252 unsigned oldlen = length ();
1253 size_t growby = len - oldlen;
1254 quick_grow (len);
1255 if (growby != 0)
1256 vec_default_construct (address () + oldlen, growby);
1257 }
1258
1259 /* Garbage collection support for vec<T, A, vl_embed>. */
1260
1261 template<typename T>
1262 void
1263 gt_ggc_mx (vec<T, va_gc> *v)
1264 {
1265 extern void gt_ggc_mx (T &);
1266 for (unsigned i = 0; i < v->length (); i++)
1267 gt_ggc_mx ((*v)[i]);
1268 }
1269
1270 template<typename T>
1271 void
1272 gt_ggc_mx (vec<T, va_gc_atomic, vl_embed> *v ATTRIBUTE_UNUSED)
1273 {
1274 /* Nothing to do. Vectors of atomic types wrt GC do not need to
1275 be traversed. */
1276 }
1277
1278
1279 /* PCH support for vec<T, A, vl_embed>. */
1280
1281 template<typename T, typename A>
1282 void
1283 gt_pch_nx (vec<T, A, vl_embed> *v)
1284 {
1285 extern void gt_pch_nx (T &);
1286 for (unsigned i = 0; i < v->length (); i++)
1287 gt_pch_nx ((*v)[i]);
1288 }
1289
1290 template<typename T, typename A>
1291 void
1292 gt_pch_nx (vec<T *, A, vl_embed> *v, gt_pointer_operator op, void *cookie)
1293 {
1294 for (unsigned i = 0; i < v->length (); i++)
1295 op (&((*v)[i]), cookie);
1296 }
1297
1298 template<typename T, typename A>
1299 void
1300 gt_pch_nx (vec<T, A, vl_embed> *v, gt_pointer_operator op, void *cookie)
1301 {
1302 extern void gt_pch_nx (T *, gt_pointer_operator, void *);
1303 for (unsigned i = 0; i < v->length (); i++)
1304 gt_pch_nx (&((*v)[i]), op, cookie);
1305 }
1306
1307
1308 /* Space efficient vector. These vectors can grow dynamically and are
1309 allocated together with their control data. They are suited to be
1310 included in data structures. Prior to initial allocation, they
1311 only take a single word of storage.
1312
1313 These vectors are implemented as a pointer to an embeddable vector.
1314 The semantics allow for this pointer to be NULL to represent empty
1315 vectors. This way, empty vectors occupy minimal space in the
1316 structure containing them.
1317
1318 Properties:
1319
1320 - The whole vector and control data are allocated in a single
1321 contiguous block.
1322 - The whole vector may be re-allocated.
1323 - Vector data may grow and shrink.
1324 - Access and manipulation requires a pointer test and
1325 indirection.
1326 - It requires 1 word of storage (prior to vector allocation).
1327
1328
1329 Limitations:
1330
1331 These vectors must be PODs because they are stored in unions.
1332 (http://en.wikipedia.org/wiki/Plain_old_data_structures).
1333 As long as we use C++03, we cannot have constructors nor
1334 destructors in classes that are stored in unions. */
1335
1336 template<typename T>
1337 struct vec<T, va_heap, vl_ptr>
1338 {
1339 public:
1340 /* Memory allocation and deallocation for the embedded vector.
1341 Needed because we cannot have proper ctors/dtors defined. */
1342 void create (unsigned nelems CXX_MEM_STAT_INFO);
1343 void release (void);
1344
1345 /* Vector operations. */
1346 bool exists (void) const
1347 { return m_vec != NULL; }
1348
1349 bool is_empty (void) const
1350 { return m_vec ? m_vec->is_empty () : true; }
1351
1352 unsigned length (void) const
1353 { return m_vec ? m_vec->length () : 0; }
1354
1355 T *address (void)
1356 { return m_vec ? m_vec->m_vecdata : NULL; }
1357
1358 const T *address (void) const
1359 { return m_vec ? m_vec->m_vecdata : NULL; }
1360
1361 T *begin () { return address (); }
1362 const T *begin () const { return address (); }
1363 T *end () { return begin () + length (); }
1364 const T *end () const { return begin () + length (); }
1365 const T &operator[] (unsigned ix) const
1366 { return (*m_vec)[ix]; }
1367
1368 bool operator!=(const vec &other) const
1369 { return !(*this == other); }
1370
1371 bool operator==(const vec &other) const
1372 { return address () == other.address (); }
1373
1374 T &operator[] (unsigned ix)
1375 { return (*m_vec)[ix]; }
1376
1377 T &last (void)
1378 { return m_vec->last (); }
1379
1380 bool space (int nelems) const
1381 { return m_vec ? m_vec->space (nelems) : nelems == 0; }
1382
1383 bool iterate (unsigned ix, T *p) const;
1384 bool iterate (unsigned ix, T **p) const;
1385 vec copy (ALONE_CXX_MEM_STAT_INFO) const;
1386 bool reserve (unsigned, bool = false CXX_MEM_STAT_INFO);
1387 bool reserve_exact (unsigned CXX_MEM_STAT_INFO);
1388 void splice (const vec &);
1389 void safe_splice (const vec & CXX_MEM_STAT_INFO);
1390 T *quick_push (const T &);
1391 T *safe_push (const T &CXX_MEM_STAT_INFO);
1392 T &pop (void);
1393 void truncate (unsigned);
1394 void safe_grow (unsigned CXX_MEM_STAT_INFO);
1395 void safe_grow_cleared (unsigned CXX_MEM_STAT_INFO);
1396 void quick_grow (unsigned);
1397 void quick_grow_cleared (unsigned);
1398 void quick_insert (unsigned, const T &);
1399 void safe_insert (unsigned, const T & CXX_MEM_STAT_INFO);
1400 void ordered_remove (unsigned);
1401 void unordered_remove (unsigned);
1402 void block_remove (unsigned, unsigned);
1403 void qsort (int (*) (const void *, const void *));
1404 T *bsearch (const void *key, int (*compar)(const void *, const void *));
1405 unsigned lower_bound (T, bool (*)(const T &, const T &)) const;
1406 bool contains (const T &search) const;
1407 void reverse (void);
1408
1409 bool using_auto_storage () const;
1410
1411 /* FIXME - This field should be private, but we need to cater to
1412 compilers that have stricter notions of PODness for types. */
1413 vec<T, va_heap, vl_embed> *m_vec;
1414 };
1415
1416
1417 /* auto_vec is a subclass of vec that automatically manages creating and
1418 releasing the internal vector. If N is non zero then it has N elements of
1419 internal storage. The default is no internal storage, and you probably only
1420 want to ask for internal storage for vectors on the stack because if the
1421 size of the vector is larger than the internal storage that space is wasted.
1422 */
1423 template<typename T, size_t N = 0>
1424 class auto_vec : public vec<T, va_heap>
1425 {
1426 public:
1427 auto_vec ()
1428 {
1429 m_auto.embedded_init (MAX (N, 2), 0, 1);
1430 this->m_vec = &m_auto;
1431 }
1432
1433 auto_vec (size_t s)
1434 {
1435 if (s > N)
1436 {
1437 this->create (s);
1438 return;
1439 }
1440
1441 m_auto.embedded_init (MAX (N, 2), 0, 1);
1442 this->m_vec = &m_auto;
1443 }
1444
1445 ~auto_vec ()
1446 {
1447 this->release ();
1448 }
1449
1450 private:
1451 vec<T, va_heap, vl_embed> m_auto;
1452 T m_data[MAX (N - 1, 1)];
1453 };
1454
1455 /* auto_vec is a sub class of vec whose storage is released when it is
1456 destroyed. */
1457 template<typename T>
1458 class auto_vec<T, 0> : public vec<T, va_heap>
1459 {
1460 public:
1461 auto_vec () { this->m_vec = NULL; }
1462 auto_vec (size_t n) { this->create (n); }
1463 ~auto_vec () { this->release (); }
1464 };
1465
1466
1467 /* Allocate heap memory for pointer V and create the internal vector
1468 with space for NELEMS elements. If NELEMS is 0, the internal
1469 vector is initialized to empty. */
1470
1471 template<typename T>
1472 inline void
1473 vec_alloc (vec<T> *&v, unsigned nelems CXX_MEM_STAT_INFO)
1474 {
1475 v = new vec<T>;
1476 v->create (nelems PASS_MEM_STAT);
1477 }
1478
1479
1480 /* A subclass of auto_vec <char *> that frees all of its elements on
1481 deletion. */
1482
1483 class auto_string_vec : public auto_vec <char *>
1484 {
1485 public:
1486 ~auto_string_vec ();
1487 };
1488
1489 /* Conditionally allocate heap memory for VEC and its internal vector. */
1490
1491 template<typename T>
1492 inline void
1493 vec_check_alloc (vec<T, va_heap> *&vec, unsigned nelems CXX_MEM_STAT_INFO)
1494 {
1495 if (!vec)
1496 vec_alloc (vec, nelems PASS_MEM_STAT);
1497 }
1498
1499
1500 /* Free the heap memory allocated by vector V and set it to NULL. */
1501
1502 template<typename T>
1503 inline void
1504 vec_free (vec<T> *&v)
1505 {
1506 if (v == NULL)
1507 return;
1508
1509 v->release ();
1510 delete v;
1511 v = NULL;
1512 }
1513
1514
1515 /* Return iteration condition and update PTR to point to the IX'th
1516 element of this vector. Use this to iterate over the elements of a
1517 vector as follows,
1518
1519 for (ix = 0; v.iterate (ix, &ptr); ix++)
1520 continue; */
1521
1522 template<typename T>
1523 inline bool
1524 vec<T, va_heap, vl_ptr>::iterate (unsigned ix, T *ptr) const
1525 {
1526 if (m_vec)
1527 return m_vec->iterate (ix, ptr);
1528 else
1529 {
1530 *ptr = 0;
1531 return false;
1532 }
1533 }
1534
1535
1536 /* Return iteration condition and update *PTR to point to the
1537 IX'th element of this vector. Use this to iterate over the
1538 elements of a vector as follows,
1539
1540 for (ix = 0; v->iterate (ix, &ptr); ix++)
1541 continue;
1542
1543 This variant is for vectors of objects. */
1544
1545 template<typename T>
1546 inline bool
1547 vec<T, va_heap, vl_ptr>::iterate (unsigned ix, T **ptr) const
1548 {
1549 if (m_vec)
1550 return m_vec->iterate (ix, ptr);
1551 else
1552 {
1553 *ptr = 0;
1554 return false;
1555 }
1556 }
1557
1558
1559 /* Convenience macro for forward iteration. */
1560 #define FOR_EACH_VEC_ELT(V, I, P) \
1561 for (I = 0; (V).iterate ((I), &(P)); ++(I))
1562
1563 #define FOR_EACH_VEC_SAFE_ELT(V, I, P) \
1564 for (I = 0; vec_safe_iterate ((V), (I), &(P)); ++(I))
1565
1566 /* Likewise, but start from FROM rather than 0. */
1567 #define FOR_EACH_VEC_ELT_FROM(V, I, P, FROM) \
1568 for (I = (FROM); (V).iterate ((I), &(P)); ++(I))
1569
1570 /* Convenience macro for reverse iteration. */
1571 #define FOR_EACH_VEC_ELT_REVERSE(V, I, P) \
1572 for (I = (V).length () - 1; \
1573 (V).iterate ((I), &(P)); \
1574 (I)--)
1575
1576 #define FOR_EACH_VEC_SAFE_ELT_REVERSE(V, I, P) \
1577 for (I = vec_safe_length (V) - 1; \
1578 vec_safe_iterate ((V), (I), &(P)); \
1579 (I)--)
1580
1581 /* auto_string_vec's dtor, freeing all contained strings, automatically
1582 chaining up to ~auto_vec <char *>, which frees the internal buffer. */
1583
1584 inline
1585 auto_string_vec::~auto_string_vec ()
1586 {
1587 int i;
1588 char *str;
1589 FOR_EACH_VEC_ELT (*this, i, str)
1590 free (str);
1591 }
1592
1593
1594 /* Return a copy of this vector. */
1595
1596 template<typename T>
1597 inline vec<T, va_heap, vl_ptr>
1598 vec<T, va_heap, vl_ptr>::copy (ALONE_MEM_STAT_DECL) const
1599 {
1600 vec<T, va_heap, vl_ptr> new_vec = vNULL;
1601 if (length ())
1602 new_vec.m_vec = m_vec->copy ();
1603 return new_vec;
1604 }
1605
1606
1607 /* Ensure that the vector has at least RESERVE slots available (if
1608 EXACT is false), or exactly RESERVE slots available (if EXACT is
1609 true).
1610
1611 This may create additional headroom if EXACT is false.
1612
1613 Note that this can cause the embedded vector to be reallocated.
1614 Returns true iff reallocation actually occurred. */
1615
1616 template<typename T>
1617 inline bool
1618 vec<T, va_heap, vl_ptr>::reserve (unsigned nelems, bool exact MEM_STAT_DECL)
1619 {
1620 if (space (nelems))
1621 return false;
1622
1623 /* For now play a game with va_heap::reserve to hide our auto storage if any,
1624 this is necessary because it doesn't have enough information to know the
1625 embedded vector is in auto storage, and so should not be freed. */
1626 vec<T, va_heap, vl_embed> *oldvec = m_vec;
1627 unsigned int oldsize = 0;
1628 bool handle_auto_vec = m_vec && using_auto_storage ();
1629 if (handle_auto_vec)
1630 {
1631 m_vec = NULL;
1632 oldsize = oldvec->length ();
1633 nelems += oldsize;
1634 }
1635
1636 va_heap::reserve (m_vec, nelems, exact PASS_MEM_STAT);
1637 if (handle_auto_vec)
1638 {
1639 vec_copy_construct (m_vec->address (), oldvec->address (), oldsize);
1640 m_vec->m_vecpfx.m_num = oldsize;
1641 }
1642
1643 return true;
1644 }
1645
1646
1647 /* Ensure that this vector has exactly NELEMS slots available. This
1648 will not create additional headroom. Note this can cause the
1649 embedded vector to be reallocated. Returns true iff reallocation
1650 actually occurred. */
1651
1652 template<typename T>
1653 inline bool
1654 vec<T, va_heap, vl_ptr>::reserve_exact (unsigned nelems MEM_STAT_DECL)
1655 {
1656 return reserve (nelems, true PASS_MEM_STAT);
1657 }
1658
1659
1660 /* Create the internal vector and reserve NELEMS for it. This is
1661 exactly like vec::reserve, but the internal vector is
1662 unconditionally allocated from scratch. The old one, if it
1663 existed, is lost. */
1664
1665 template<typename T>
1666 inline void
1667 vec<T, va_heap, vl_ptr>::create (unsigned nelems MEM_STAT_DECL)
1668 {
1669 m_vec = NULL;
1670 if (nelems > 0)
1671 reserve_exact (nelems PASS_MEM_STAT);
1672 }
1673
1674
1675 /* Free the memory occupied by the embedded vector. */
1676
1677 template<typename T>
1678 inline void
1679 vec<T, va_heap, vl_ptr>::release (void)
1680 {
1681 if (!m_vec)
1682 return;
1683
1684 if (using_auto_storage ())
1685 {
1686 m_vec->m_vecpfx.m_num = 0;
1687 return;
1688 }
1689
1690 va_heap::release (m_vec);
1691 }
1692
1693 /* Copy the elements from SRC to the end of this vector as if by memcpy.
1694 SRC and this vector must be allocated with the same memory
1695 allocation mechanism. This vector is assumed to have sufficient
1696 headroom available. */
1697
1698 template<typename T>
1699 inline void
1700 vec<T, va_heap, vl_ptr>::splice (const vec<T, va_heap, vl_ptr> &src)
1701 {
1702 if (src.length ())
1703 m_vec->splice (*(src.m_vec));
1704 }
1705
1706
1707 /* Copy the elements in SRC to the end of this vector as if by memcpy.
1708 SRC and this vector must be allocated with the same mechanism.
1709 If there is not enough headroom in this vector, it will be reallocated
1710 as needed. */
1711
1712 template<typename T>
1713 inline void
1714 vec<T, va_heap, vl_ptr>::safe_splice (const vec<T, va_heap, vl_ptr> &src
1715 MEM_STAT_DECL)
1716 {
1717 if (src.length ())
1718 {
1719 reserve_exact (src.length ());
1720 splice (src);
1721 }
1722 }
1723
1724
1725 /* Push OBJ (a new element) onto the end of the vector. There must be
1726 sufficient space in the vector. Return a pointer to the slot
1727 where OBJ was inserted. */
1728
1729 template<typename T>
1730 inline T *
1731 vec<T, va_heap, vl_ptr>::quick_push (const T &obj)
1732 {
1733 return m_vec->quick_push (obj);
1734 }
1735
1736
1737 /* Push a new element OBJ onto the end of this vector. Reallocates
1738 the embedded vector, if needed. Return a pointer to the slot where
1739 OBJ was inserted. */
1740
1741 template<typename T>
1742 inline T *
1743 vec<T, va_heap, vl_ptr>::safe_push (const T &obj MEM_STAT_DECL)
1744 {
1745 reserve (1, false PASS_MEM_STAT);
1746 return quick_push (obj);
1747 }
1748
1749
1750 /* Pop and return the last element off the end of the vector. */
1751
1752 template<typename T>
1753 inline T &
1754 vec<T, va_heap, vl_ptr>::pop (void)
1755 {
1756 return m_vec->pop ();
1757 }
1758
1759
1760 /* Set the length of the vector to LEN. The new length must be less
1761 than or equal to the current length. This is an O(1) operation. */
1762
1763 template<typename T>
1764 inline void
1765 vec<T, va_heap, vl_ptr>::truncate (unsigned size)
1766 {
1767 if (m_vec)
1768 m_vec->truncate (size);
1769 else
1770 gcc_checking_assert (size == 0);
1771 }
1772
1773
1774 /* Grow the vector to a specific length. LEN must be as long or
1775 longer than the current length. The new elements are
1776 uninitialized. Reallocate the internal vector, if needed. */
1777
1778 template<typename T>
1779 inline void
1780 vec<T, va_heap, vl_ptr>::safe_grow (unsigned len MEM_STAT_DECL)
1781 {
1782 unsigned oldlen = length ();
1783 gcc_checking_assert (oldlen <= len);
1784 reserve_exact (len - oldlen PASS_MEM_STAT);
1785 if (m_vec)
1786 m_vec->quick_grow (len);
1787 else
1788 gcc_checking_assert (len == 0);
1789 }
1790
1791
1792 /* Grow the embedded vector to a specific length. LEN must be as
1793 long or longer than the current length. The new elements are
1794 initialized to zero. Reallocate the internal vector, if needed. */
1795
1796 template<typename T>
1797 inline void
1798 vec<T, va_heap, vl_ptr>::safe_grow_cleared (unsigned len MEM_STAT_DECL)
1799 {
1800 unsigned oldlen = length ();
1801 size_t growby = len - oldlen;
1802 safe_grow (len PASS_MEM_STAT);
1803 if (growby != 0)
1804 vec_default_construct (address () + oldlen, growby);
1805 }
1806
1807
1808 /* Same as vec::safe_grow but without reallocation of the internal vector.
1809 If the vector cannot be extended, a runtime assertion will be triggered. */
1810
1811 template<typename T>
1812 inline void
1813 vec<T, va_heap, vl_ptr>::quick_grow (unsigned len)
1814 {
1815 gcc_checking_assert (m_vec);
1816 m_vec->quick_grow (len);
1817 }
1818
1819
1820 /* Same as vec::quick_grow_cleared but without reallocation of the
1821 internal vector. If the vector cannot be extended, a runtime
1822 assertion will be triggered. */
1823
1824 template<typename T>
1825 inline void
1826 vec<T, va_heap, vl_ptr>::quick_grow_cleared (unsigned len)
1827 {
1828 gcc_checking_assert (m_vec);
1829 m_vec->quick_grow_cleared (len);
1830 }
1831
1832
1833 /* Insert an element, OBJ, at the IXth position of this vector. There
1834 must be sufficient space. */
1835
1836 template<typename T>
1837 inline void
1838 vec<T, va_heap, vl_ptr>::quick_insert (unsigned ix, const T &obj)
1839 {
1840 m_vec->quick_insert (ix, obj);
1841 }
1842
1843
1844 /* Insert an element, OBJ, at the IXth position of the vector.
1845 Reallocate the embedded vector, if necessary. */
1846
1847 template<typename T>
1848 inline void
1849 vec<T, va_heap, vl_ptr>::safe_insert (unsigned ix, const T &obj MEM_STAT_DECL)
1850 {
1851 reserve (1, false PASS_MEM_STAT);
1852 quick_insert (ix, obj);
1853 }
1854
1855
1856 /* Remove an element from the IXth position of this vector. Ordering of
1857 remaining elements is preserved. This is an O(N) operation due to
1858 a memmove. */
1859
1860 template<typename T>
1861 inline void
1862 vec<T, va_heap, vl_ptr>::ordered_remove (unsigned ix)
1863 {
1864 m_vec->ordered_remove (ix);
1865 }
1866
1867
1868 /* Remove an element from the IXth position of this vector. Ordering
1869 of remaining elements is destroyed. This is an O(1) operation. */
1870
1871 template<typename T>
1872 inline void
1873 vec<T, va_heap, vl_ptr>::unordered_remove (unsigned ix)
1874 {
1875 m_vec->unordered_remove (ix);
1876 }
1877
1878
1879 /* Remove LEN elements starting at the IXth. Ordering is retained.
1880 This is an O(N) operation due to memmove. */
1881
1882 template<typename T>
1883 inline void
1884 vec<T, va_heap, vl_ptr>::block_remove (unsigned ix, unsigned len)
1885 {
1886 m_vec->block_remove (ix, len);
1887 }
1888
1889
1890 /* Sort the contents of this vector with qsort. CMP is the comparison
1891 function to pass to qsort. */
1892
1893 template<typename T>
1894 inline void
1895 vec<T, va_heap, vl_ptr>::qsort (int (*cmp) (const void *, const void *))
1896 {
1897 if (m_vec)
1898 m_vec->qsort (cmp);
1899 }
1900
1901
1902 /* Search the contents of the sorted vector with a binary search.
1903 CMP is the comparison function to pass to bsearch. */
1904
1905 template<typename T>
1906 inline T *
1907 vec<T, va_heap, vl_ptr>::bsearch (const void *key,
1908 int (*cmp) (const void *, const void *))
1909 {
1910 if (m_vec)
1911 return m_vec->bsearch (key, cmp);
1912 return NULL;
1913 }
1914
1915
1916 /* Find and return the first position in which OBJ could be inserted
1917 without changing the ordering of this vector. LESSTHAN is a
1918 function that returns true if the first argument is strictly less
1919 than the second. */
1920
1921 template<typename T>
1922 inline unsigned
1923 vec<T, va_heap, vl_ptr>::lower_bound (T obj,
1924 bool (*lessthan)(const T &, const T &))
1925 const
1926 {
1927 return m_vec ? m_vec->lower_bound (obj, lessthan) : 0;
1928 }
1929
1930 /* Return true if SEARCH is an element of V. Note that this is O(N) in the
1931 size of the vector and so should be used with care. */
1932
1933 template<typename T>
1934 inline bool
1935 vec<T, va_heap, vl_ptr>::contains (const T &search) const
1936 {
1937 return m_vec ? m_vec->contains (search) : false;
1938 }
1939
1940 /* Reverse content of the vector. */
1941
1942 template<typename T>
1943 inline void
1944 vec<T, va_heap, vl_ptr>::reverse (void)
1945 {
1946 unsigned l = length ();
1947 T *ptr = address ();
1948
1949 for (unsigned i = 0; i < l / 2; i++)
1950 std::swap (ptr[i], ptr[l - i - 1]);
1951 }
1952
1953 template<typename T>
1954 inline bool
1955 vec<T, va_heap, vl_ptr>::using_auto_storage () const
1956 {
1957 return m_vec->m_vecpfx.m_using_auto_storage;
1958 }
1959
1960 /* Release VEC and call release of all element vectors. */
1961
1962 template<typename T>
1963 inline void
1964 release_vec_vec (vec<vec<T> > &vec)
1965 {
1966 for (unsigned i = 0; i < vec.length (); i++)
1967 vec[i].release ();
1968
1969 vec.release ();
1970 }
1971
1972 #if (GCC_VERSION >= 3000)
1973 # pragma GCC poison m_vec m_vecpfx m_vecdata
1974 #endif
1975
1976 #endif // GCC_VEC_H