]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/vec.h
Correct a function pre/postcondition [PR102403].
[thirdparty/gcc.git] / gcc / vec.h
1 /* Vector API for GNU compiler.
2 Copyright (C) 2004-2021 Free Software Foundation, Inc.
3 Contributed by Nathan Sidwell <nathan@codesourcery.com>
4 Re-implemented in C++ by Diego Novillo <dnovillo@google.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #ifndef GCC_VEC_H
23 #define GCC_VEC_H
24
25 /* Some gen* file have no ggc support as the header file gtype-desc.h is
26 missing. Provide these definitions in case ggc.h has not been included.
27 This is not a problem because any code that runs before gengtype is built
28 will never need to use GC vectors.*/
29
30 extern void ggc_free (void *);
31 extern size_t ggc_round_alloc_size (size_t requested_size);
32 extern void *ggc_realloc (void *, size_t MEM_STAT_DECL);
33
34 /* Templated vector type and associated interfaces.
35
36 The interface functions are typesafe and use inline functions,
37 sometimes backed by out-of-line generic functions. The vectors are
38 designed to interoperate with the GTY machinery.
39
40 There are both 'index' and 'iterate' accessors. The index accessor
41 is implemented by operator[]. The iterator returns a boolean
42 iteration condition and updates the iteration variable passed by
43 reference. Because the iterator will be inlined, the address-of
44 can be optimized away.
45
46 Each operation that increases the number of active elements is
47 available in 'quick' and 'safe' variants. The former presumes that
48 there is sufficient allocated space for the operation to succeed
49 (it dies if there is not). The latter will reallocate the
50 vector, if needed. Reallocation causes an exponential increase in
51 vector size. If you know you will be adding N elements, it would
52 be more efficient to use the reserve operation before adding the
53 elements with the 'quick' operation. This will ensure there are at
54 least as many elements as you ask for, it will exponentially
55 increase if there are too few spare slots. If you want reserve a
56 specific number of slots, but do not want the exponential increase
57 (for instance, you know this is the last allocation), use the
58 reserve_exact operation. You can also create a vector of a
59 specific size from the get go.
60
61 You should prefer the push and pop operations, as they append and
62 remove from the end of the vector. If you need to remove several
63 items in one go, use the truncate operation. The insert and remove
64 operations allow you to change elements in the middle of the
65 vector. There are two remove operations, one which preserves the
66 element ordering 'ordered_remove', and one which does not
67 'unordered_remove'. The latter function copies the end element
68 into the removed slot, rather than invoke a memmove operation. The
69 'lower_bound' function will determine where to place an item in the
70 array using insert that will maintain sorted order.
71
72 Vectors are template types with three arguments: the type of the
73 elements in the vector, the allocation strategy, and the physical
74 layout to use
75
76 Four allocation strategies are supported:
77
78 - Heap: allocation is done using malloc/free. This is the
79 default allocation strategy.
80
81 - GC: allocation is done using ggc_alloc/ggc_free.
82
83 - GC atomic: same as GC with the exception that the elements
84 themselves are assumed to be of an atomic type that does
85 not need to be garbage collected. This means that marking
86 routines do not need to traverse the array marking the
87 individual elements. This increases the performance of
88 GC activities.
89
90 Two physical layouts are supported:
91
92 - Embedded: The vector is structured using the trailing array
93 idiom. The last member of the structure is an array of size
94 1. When the vector is initially allocated, a single memory
95 block is created to hold the vector's control data and the
96 array of elements. These vectors cannot grow without
97 reallocation (see discussion on embeddable vectors below).
98
99 - Space efficient: The vector is structured as a pointer to an
100 embedded vector. This is the default layout. It means that
101 vectors occupy a single word of storage before initial
102 allocation. Vectors are allowed to grow (the internal
103 pointer is reallocated but the main vector instance does not
104 need to relocate).
105
106 The type, allocation and layout are specified when the vector is
107 declared.
108
109 If you need to directly manipulate a vector, then the 'address'
110 accessor will return the address of the start of the vector. Also
111 the 'space' predicate will tell you whether there is spare capacity
112 in the vector. You will not normally need to use these two functions.
113
114 Notes on the different layout strategies
115
116 * Embeddable vectors (vec<T, A, vl_embed>)
117
118 These vectors are suitable to be embedded in other data
119 structures so that they can be pre-allocated in a contiguous
120 memory block.
121
122 Embeddable vectors are implemented using the trailing array
123 idiom, thus they are not resizeable without changing the address
124 of the vector object itself. This means you cannot have
125 variables or fields of embeddable vector type -- always use a
126 pointer to a vector. The one exception is the final field of a
127 structure, which could be a vector type.
128
129 You will have to use the embedded_size & embedded_init calls to
130 create such objects, and they will not be resizeable (so the
131 'safe' allocation variants are not available).
132
133 Properties of embeddable vectors:
134
135 - The whole vector and control data are allocated in a single
136 contiguous block. It uses the trailing-vector idiom, so
137 allocation must reserve enough space for all the elements
138 in the vector plus its control data.
139 - The vector cannot be re-allocated.
140 - The vector cannot grow nor shrink.
141 - No indirections needed for access/manipulation.
142 - It requires 2 words of storage (prior to vector allocation).
143
144
145 * Space efficient vector (vec<T, A, vl_ptr>)
146
147 These vectors can grow dynamically and are allocated together
148 with their control data. They are suited to be included in data
149 structures. Prior to initial allocation, they only take a single
150 word of storage.
151
152 These vectors are implemented as a pointer to embeddable vectors.
153 The semantics allow for this pointer to be NULL to represent
154 empty vectors. This way, empty vectors occupy minimal space in
155 the structure containing them.
156
157 Properties:
158
159 - The whole vector and control data are allocated in a single
160 contiguous block.
161 - The whole vector may be re-allocated.
162 - Vector data may grow and shrink.
163 - Access and manipulation requires a pointer test and
164 indirection.
165 - It requires 1 word of storage (prior to vector allocation).
166
167 An example of their use would be,
168
169 struct my_struct {
170 // A space-efficient vector of tree pointers in GC memory.
171 vec<tree, va_gc, vl_ptr> v;
172 };
173
174 struct my_struct *s;
175
176 if (s->v.length ()) { we have some contents }
177 s->v.safe_push (decl); // append some decl onto the end
178 for (ix = 0; s->v.iterate (ix, &elt); ix++)
179 { do something with elt }
180 */
181
182 /* Support function for statistics. */
183 extern void dump_vec_loc_statistics (void);
184
185 /* Hashtable mapping vec addresses to descriptors. */
186 extern htab_t vec_mem_usage_hash;
187
188 /* Control data for vectors. This contains the number of allocated
189 and used slots inside a vector. */
190
191 struct vec_prefix
192 {
193 /* FIXME - These fields should be private, but we need to cater to
194 compilers that have stricter notions of PODness for types. */
195
196 /* Memory allocation support routines in vec.c. */
197 void register_overhead (void *, size_t, size_t CXX_MEM_STAT_INFO);
198 void release_overhead (void *, size_t, size_t, bool CXX_MEM_STAT_INFO);
199 static unsigned calculate_allocation (vec_prefix *, unsigned, bool);
200 static unsigned calculate_allocation_1 (unsigned, unsigned);
201
202 /* Note that vec_prefix should be a base class for vec, but we use
203 offsetof() on vector fields of tree structures (e.g.,
204 tree_binfo::base_binfos), and offsetof only supports base types.
205
206 To compensate, we make vec_prefix a field inside vec and make
207 vec a friend class of vec_prefix so it can access its fields. */
208 template <typename, typename, typename> friend struct vec;
209
210 /* The allocator types also need access to our internals. */
211 friend struct va_gc;
212 friend struct va_gc_atomic;
213 friend struct va_heap;
214
215 unsigned m_alloc : 31;
216 unsigned m_using_auto_storage : 1;
217 unsigned m_num;
218 };
219
220 /* Calculate the number of slots to reserve a vector, making sure that
221 RESERVE slots are free. If EXACT grow exactly, otherwise grow
222 exponentially. PFX is the control data for the vector. */
223
224 inline unsigned
225 vec_prefix::calculate_allocation (vec_prefix *pfx, unsigned reserve,
226 bool exact)
227 {
228 if (exact)
229 return (pfx ? pfx->m_num : 0) + reserve;
230 else if (!pfx)
231 return MAX (4, reserve);
232 return calculate_allocation_1 (pfx->m_alloc, pfx->m_num + reserve);
233 }
234
235 template<typename, typename, typename> struct vec;
236
237 /* Valid vector layouts
238
239 vl_embed - Embeddable vector that uses the trailing array idiom.
240 vl_ptr - Space efficient vector that uses a pointer to an
241 embeddable vector. */
242 struct vl_embed { };
243 struct vl_ptr { };
244
245
246 /* Types of supported allocations
247
248 va_heap - Allocation uses malloc/free.
249 va_gc - Allocation uses ggc_alloc.
250 va_gc_atomic - Same as GC, but individual elements of the array
251 do not need to be marked during collection. */
252
253 /* Allocator type for heap vectors. */
254 struct va_heap
255 {
256 /* Heap vectors are frequently regular instances, so use the vl_ptr
257 layout for them. */
258 typedef vl_ptr default_layout;
259
260 template<typename T>
261 static void reserve (vec<T, va_heap, vl_embed> *&, unsigned, bool
262 CXX_MEM_STAT_INFO);
263
264 template<typename T>
265 static void release (vec<T, va_heap, vl_embed> *&);
266 };
267
268
269 /* Allocator for heap memory. Ensure there are at least RESERVE free
270 slots in V. If EXACT is true, grow exactly, else grow
271 exponentially. As a special case, if the vector had not been
272 allocated and RESERVE is 0, no vector will be created. */
273
274 template<typename T>
275 inline void
276 va_heap::reserve (vec<T, va_heap, vl_embed> *&v, unsigned reserve, bool exact
277 MEM_STAT_DECL)
278 {
279 size_t elt_size = sizeof (T);
280 unsigned alloc
281 = vec_prefix::calculate_allocation (v ? &v->m_vecpfx : 0, reserve, exact);
282 gcc_checking_assert (alloc);
283
284 if (GATHER_STATISTICS && v)
285 v->m_vecpfx.release_overhead (v, elt_size * v->allocated (),
286 v->allocated (), false);
287
288 size_t size = vec<T, va_heap, vl_embed>::embedded_size (alloc);
289 unsigned nelem = v ? v->length () : 0;
290 v = static_cast <vec<T, va_heap, vl_embed> *> (xrealloc (v, size));
291 v->embedded_init (alloc, nelem);
292
293 if (GATHER_STATISTICS)
294 v->m_vecpfx.register_overhead (v, alloc, elt_size PASS_MEM_STAT);
295 }
296
297
298 #if GCC_VERSION >= 4007
299 #pragma GCC diagnostic push
300 #pragma GCC diagnostic ignored "-Wfree-nonheap-object"
301 #endif
302
303 /* Free the heap space allocated for vector V. */
304
305 template<typename T>
306 void
307 va_heap::release (vec<T, va_heap, vl_embed> *&v)
308 {
309 size_t elt_size = sizeof (T);
310 if (v == NULL)
311 return;
312
313 if (GATHER_STATISTICS)
314 v->m_vecpfx.release_overhead (v, elt_size * v->allocated (),
315 v->allocated (), true);
316 ::free (v);
317 v = NULL;
318 }
319
320 #if GCC_VERSION >= 4007
321 #pragma GCC diagnostic pop
322 #endif
323
324 /* Allocator type for GC vectors. Notice that we need the structure
325 declaration even if GC is not enabled. */
326
327 struct va_gc
328 {
329 /* Use vl_embed as the default layout for GC vectors. Due to GTY
330 limitations, GC vectors must always be pointers, so it is more
331 efficient to use a pointer to the vl_embed layout, rather than
332 using a pointer to a pointer as would be the case with vl_ptr. */
333 typedef vl_embed default_layout;
334
335 template<typename T, typename A>
336 static void reserve (vec<T, A, vl_embed> *&, unsigned, bool
337 CXX_MEM_STAT_INFO);
338
339 template<typename T, typename A>
340 static void release (vec<T, A, vl_embed> *&v);
341 };
342
343
344 /* Free GC memory used by V and reset V to NULL. */
345
346 template<typename T, typename A>
347 inline void
348 va_gc::release (vec<T, A, vl_embed> *&v)
349 {
350 if (v)
351 ::ggc_free (v);
352 v = NULL;
353 }
354
355
356 /* Allocator for GC memory. Ensure there are at least RESERVE free
357 slots in V. If EXACT is true, grow exactly, else grow
358 exponentially. As a special case, if the vector had not been
359 allocated and RESERVE is 0, no vector will be created. */
360
361 template<typename T, typename A>
362 void
363 va_gc::reserve (vec<T, A, vl_embed> *&v, unsigned reserve, bool exact
364 MEM_STAT_DECL)
365 {
366 unsigned alloc
367 = vec_prefix::calculate_allocation (v ? &v->m_vecpfx : 0, reserve, exact);
368 if (!alloc)
369 {
370 ::ggc_free (v);
371 v = NULL;
372 return;
373 }
374
375 /* Calculate the amount of space we want. */
376 size_t size = vec<T, A, vl_embed>::embedded_size (alloc);
377
378 /* Ask the allocator how much space it will really give us. */
379 size = ::ggc_round_alloc_size (size);
380
381 /* Adjust the number of slots accordingly. */
382 size_t vec_offset = sizeof (vec_prefix);
383 size_t elt_size = sizeof (T);
384 alloc = (size - vec_offset) / elt_size;
385
386 /* And finally, recalculate the amount of space we ask for. */
387 size = vec_offset + alloc * elt_size;
388
389 unsigned nelem = v ? v->length () : 0;
390 v = static_cast <vec<T, A, vl_embed> *> (::ggc_realloc (v, size
391 PASS_MEM_STAT));
392 v->embedded_init (alloc, nelem);
393 }
394
395
396 /* Allocator type for GC vectors. This is for vectors of types
397 atomics w.r.t. collection, so allocation and deallocation is
398 completely inherited from va_gc. */
399 struct va_gc_atomic : va_gc
400 {
401 };
402
403
404 /* Generic vector template. Default values for A and L indicate the
405 most commonly used strategies.
406
407 FIXME - Ideally, they would all be vl_ptr to encourage using regular
408 instances for vectors, but the existing GTY machinery is limited
409 in that it can only deal with GC objects that are pointers
410 themselves.
411
412 This means that vector operations that need to deal with
413 potentially NULL pointers, must be provided as free
414 functions (see the vec_safe_* functions above). */
415 template<typename T,
416 typename A = va_heap,
417 typename L = typename A::default_layout>
418 struct GTY((user)) vec
419 {
420 };
421
422 /* Allow C++11 range-based 'for' to work directly on vec<T>*. */
423 template<typename T, typename A, typename L>
424 T* begin (vec<T,A,L> *v) { return v ? v->begin () : nullptr; }
425 template<typename T, typename A, typename L>
426 T* end (vec<T,A,L> *v) { return v ? v->end () : nullptr; }
427 template<typename T, typename A, typename L>
428 const T* begin (const vec<T,A,L> *v) { return v ? v->begin () : nullptr; }
429 template<typename T, typename A, typename L>
430 const T* end (const vec<T,A,L> *v) { return v ? v->end () : nullptr; }
431
432 /* Generic vec<> debug helpers.
433
434 These need to be instantiated for each vec<TYPE> used throughout
435 the compiler like this:
436
437 DEFINE_DEBUG_VEC (TYPE)
438
439 The reason we have a debug_helper() is because GDB can't
440 disambiguate a plain call to debug(some_vec), and it must be called
441 like debug<TYPE>(some_vec). */
442
443 template<typename T>
444 void
445 debug_helper (vec<T> &ref)
446 {
447 unsigned i;
448 for (i = 0; i < ref.length (); ++i)
449 {
450 fprintf (stderr, "[%d] = ", i);
451 debug_slim (ref[i]);
452 fputc ('\n', stderr);
453 }
454 }
455
456 /* We need a separate va_gc variant here because default template
457 argument for functions cannot be used in c++-98. Once this
458 restriction is removed, those variant should be folded with the
459 above debug_helper. */
460
461 template<typename T>
462 void
463 debug_helper (vec<T, va_gc> &ref)
464 {
465 unsigned i;
466 for (i = 0; i < ref.length (); ++i)
467 {
468 fprintf (stderr, "[%d] = ", i);
469 debug_slim (ref[i]);
470 fputc ('\n', stderr);
471 }
472 }
473
474 /* Macro to define debug(vec<T>) and debug(vec<T, va_gc>) helper
475 functions for a type T. */
476
477 #define DEFINE_DEBUG_VEC(T) \
478 template void debug_helper (vec<T> &); \
479 template void debug_helper (vec<T, va_gc> &); \
480 /* Define the vec<T> debug functions. */ \
481 DEBUG_FUNCTION void \
482 debug (vec<T> &ref) \
483 { \
484 debug_helper <T> (ref); \
485 } \
486 DEBUG_FUNCTION void \
487 debug (vec<T> *ptr) \
488 { \
489 if (ptr) \
490 debug (*ptr); \
491 else \
492 fprintf (stderr, "<nil>\n"); \
493 } \
494 /* Define the vec<T, va_gc> debug functions. */ \
495 DEBUG_FUNCTION void \
496 debug (vec<T, va_gc> &ref) \
497 { \
498 debug_helper <T> (ref); \
499 } \
500 DEBUG_FUNCTION void \
501 debug (vec<T, va_gc> *ptr) \
502 { \
503 if (ptr) \
504 debug (*ptr); \
505 else \
506 fprintf (stderr, "<nil>\n"); \
507 }
508
509 /* Default-construct N elements in DST. */
510
511 template <typename T>
512 inline void
513 vec_default_construct (T *dst, unsigned n)
514 {
515 #ifdef BROKEN_VALUE_INITIALIZATION
516 /* Versions of GCC before 4.4 sometimes leave certain objects
517 uninitialized when value initialized, though if the type has
518 user defined default ctor, that ctor is invoked. As a workaround
519 perform clearing first and then the value initialization, which
520 fixes the case when value initialization doesn't initialize due to
521 the bugs and should initialize to all zeros, but still allows
522 vectors for types with user defined default ctor that initializes
523 some or all elements to non-zero. If T has no user defined
524 default ctor and some non-static data members have user defined
525 default ctors that initialize to non-zero the workaround will
526 still not work properly; in that case we just need to provide
527 user defined default ctor. */
528 memset (dst, '\0', sizeof (T) * n);
529 #endif
530 for ( ; n; ++dst, --n)
531 ::new (static_cast<void*>(dst)) T ();
532 }
533
534 /* Copy-construct N elements in DST from *SRC. */
535
536 template <typename T>
537 inline void
538 vec_copy_construct (T *dst, const T *src, unsigned n)
539 {
540 for ( ; n; ++dst, ++src, --n)
541 ::new (static_cast<void*>(dst)) T (*src);
542 }
543
544 /* Type to provide zero-initialized values for vec<T, A, L>. This is
545 used to provide nil initializers for vec instances. Since vec must
546 be a trivially copyable type that can be copied by memcpy and zeroed
547 out by memset, it must have defaulted default and copy ctor and copy
548 assignment. To initialize a vec either use value initialization
549 (e.g., vec() or vec v{ };) or assign it the value vNULL. This isn't
550 needed for file-scope and function-local static vectors, which are
551 zero-initialized by default. */
552 struct vnull { };
553 constexpr vnull vNULL{ };
554
555
556 /* Embeddable vector. These vectors are suitable to be embedded
557 in other data structures so that they can be pre-allocated in a
558 contiguous memory block.
559
560 Embeddable vectors are implemented using the trailing array idiom,
561 thus they are not resizeable without changing the address of the
562 vector object itself. This means you cannot have variables or
563 fields of embeddable vector type -- always use a pointer to a
564 vector. The one exception is the final field of a structure, which
565 could be a vector type.
566
567 You will have to use the embedded_size & embedded_init calls to
568 create such objects, and they will not be resizeable (so the 'safe'
569 allocation variants are not available).
570
571 Properties:
572
573 - The whole vector and control data are allocated in a single
574 contiguous block. It uses the trailing-vector idiom, so
575 allocation must reserve enough space for all the elements
576 in the vector plus its control data.
577 - The vector cannot be re-allocated.
578 - The vector cannot grow nor shrink.
579 - No indirections needed for access/manipulation.
580 - It requires 2 words of storage (prior to vector allocation). */
581
582 template<typename T, typename A>
583 struct GTY((user)) vec<T, A, vl_embed>
584 {
585 public:
586 unsigned allocated (void) const { return m_vecpfx.m_alloc; }
587 unsigned length (void) const { return m_vecpfx.m_num; }
588 bool is_empty (void) const { return m_vecpfx.m_num == 0; }
589 T *address (void) { return m_vecdata; }
590 const T *address (void) const { return m_vecdata; }
591 T *begin () { return address (); }
592 const T *begin () const { return address (); }
593 T *end () { return address () + length (); }
594 const T *end () const { return address () + length (); }
595 const T &operator[] (unsigned) const;
596 T &operator[] (unsigned);
597 T &last (void);
598 bool space (unsigned) const;
599 bool iterate (unsigned, T *) const;
600 bool iterate (unsigned, T **) const;
601 vec *copy (ALONE_CXX_MEM_STAT_INFO) const;
602 void splice (const vec &);
603 void splice (const vec *src);
604 T *quick_push (const T &);
605 T &pop (void);
606 void truncate (unsigned);
607 void quick_insert (unsigned, const T &);
608 void ordered_remove (unsigned);
609 void unordered_remove (unsigned);
610 void block_remove (unsigned, unsigned);
611 void qsort (int (*) (const void *, const void *));
612 void sort (int (*) (const void *, const void *, void *), void *);
613 void stablesort (int (*) (const void *, const void *, void *), void *);
614 T *bsearch (const void *key, int (*compar)(const void *, const void *));
615 T *bsearch (const void *key,
616 int (*compar)(const void *, const void *, void *), void *);
617 unsigned lower_bound (T, bool (*)(const T &, const T &)) const;
618 bool contains (const T &search) const;
619 static size_t embedded_size (unsigned);
620 void embedded_init (unsigned, unsigned = 0, unsigned = 0);
621 void quick_grow (unsigned len);
622 void quick_grow_cleared (unsigned len);
623
624 /* vec class can access our internal data and functions. */
625 template <typename, typename, typename> friend struct vec;
626
627 /* The allocator types also need access to our internals. */
628 friend struct va_gc;
629 friend struct va_gc_atomic;
630 friend struct va_heap;
631
632 /* FIXME - These fields should be private, but we need to cater to
633 compilers that have stricter notions of PODness for types. */
634 vec_prefix m_vecpfx;
635 T m_vecdata[1];
636 };
637
638
639 /* Convenience wrapper functions to use when dealing with pointers to
640 embedded vectors. Some functionality for these vectors must be
641 provided via free functions for these reasons:
642
643 1- The pointer may be NULL (e.g., before initial allocation).
644
645 2- When the vector needs to grow, it must be reallocated, so
646 the pointer will change its value.
647
648 Because of limitations with the current GC machinery, all vectors
649 in GC memory *must* be pointers. */
650
651
652 /* If V contains no room for NELEMS elements, return false. Otherwise,
653 return true. */
654 template<typename T, typename A>
655 inline bool
656 vec_safe_space (const vec<T, A, vl_embed> *v, unsigned nelems)
657 {
658 return v ? v->space (nelems) : nelems == 0;
659 }
660
661
662 /* If V is NULL, return 0. Otherwise, return V->length(). */
663 template<typename T, typename A>
664 inline unsigned
665 vec_safe_length (const vec<T, A, vl_embed> *v)
666 {
667 return v ? v->length () : 0;
668 }
669
670
671 /* If V is NULL, return NULL. Otherwise, return V->address(). */
672 template<typename T, typename A>
673 inline T *
674 vec_safe_address (vec<T, A, vl_embed> *v)
675 {
676 return v ? v->address () : NULL;
677 }
678
679
680 /* If V is NULL, return true. Otherwise, return V->is_empty(). */
681 template<typename T, typename A>
682 inline bool
683 vec_safe_is_empty (vec<T, A, vl_embed> *v)
684 {
685 return v ? v->is_empty () : true;
686 }
687
688 /* If V does not have space for NELEMS elements, call
689 V->reserve(NELEMS, EXACT). */
690 template<typename T, typename A>
691 inline bool
692 vec_safe_reserve (vec<T, A, vl_embed> *&v, unsigned nelems, bool exact = false
693 CXX_MEM_STAT_INFO)
694 {
695 bool extend = nelems ? !vec_safe_space (v, nelems) : false;
696 if (extend)
697 A::reserve (v, nelems, exact PASS_MEM_STAT);
698 return extend;
699 }
700
701 template<typename T, typename A>
702 inline bool
703 vec_safe_reserve_exact (vec<T, A, vl_embed> *&v, unsigned nelems
704 CXX_MEM_STAT_INFO)
705 {
706 return vec_safe_reserve (v, nelems, true PASS_MEM_STAT);
707 }
708
709
710 /* Allocate GC memory for V with space for NELEMS slots. If NELEMS
711 is 0, V is initialized to NULL. */
712
713 template<typename T, typename A>
714 inline void
715 vec_alloc (vec<T, A, vl_embed> *&v, unsigned nelems CXX_MEM_STAT_INFO)
716 {
717 v = NULL;
718 vec_safe_reserve (v, nelems, false PASS_MEM_STAT);
719 }
720
721
722 /* Free the GC memory allocated by vector V and set it to NULL. */
723
724 template<typename T, typename A>
725 inline void
726 vec_free (vec<T, A, vl_embed> *&v)
727 {
728 A::release (v);
729 }
730
731
732 /* Grow V to length LEN. Allocate it, if necessary. */
733 template<typename T, typename A>
734 inline void
735 vec_safe_grow (vec<T, A, vl_embed> *&v, unsigned len,
736 bool exact = false CXX_MEM_STAT_INFO)
737 {
738 unsigned oldlen = vec_safe_length (v);
739 gcc_checking_assert (len >= oldlen);
740 vec_safe_reserve (v, len - oldlen, exact PASS_MEM_STAT);
741 v->quick_grow (len);
742 }
743
744
745 /* If V is NULL, allocate it. Call V->safe_grow_cleared(LEN). */
746 template<typename T, typename A>
747 inline void
748 vec_safe_grow_cleared (vec<T, A, vl_embed> *&v, unsigned len,
749 bool exact = false CXX_MEM_STAT_INFO)
750 {
751 unsigned oldlen = vec_safe_length (v);
752 vec_safe_grow (v, len, exact PASS_MEM_STAT);
753 vec_default_construct (v->address () + oldlen, len - oldlen);
754 }
755
756
757 /* Assume V is not NULL. */
758
759 template<typename T>
760 inline void
761 vec_safe_grow_cleared (vec<T, va_heap, vl_ptr> *&v,
762 unsigned len, bool exact = false CXX_MEM_STAT_INFO)
763 {
764 v->safe_grow_cleared (len, exact PASS_MEM_STAT);
765 }
766
767 /* If V does not have space for NELEMS elements, call
768 V->reserve(NELEMS, EXACT). */
769
770 template<typename T>
771 inline bool
772 vec_safe_reserve (vec<T, va_heap, vl_ptr> *&v, unsigned nelems, bool exact = false
773 CXX_MEM_STAT_INFO)
774 {
775 return v->reserve (nelems, exact);
776 }
777
778
779 /* If V is NULL return false, otherwise return V->iterate(IX, PTR). */
780 template<typename T, typename A>
781 inline bool
782 vec_safe_iterate (const vec<T, A, vl_embed> *v, unsigned ix, T **ptr)
783 {
784 if (v)
785 return v->iterate (ix, ptr);
786 else
787 {
788 *ptr = 0;
789 return false;
790 }
791 }
792
793 template<typename T, typename A>
794 inline bool
795 vec_safe_iterate (const vec<T, A, vl_embed> *v, unsigned ix, T *ptr)
796 {
797 if (v)
798 return v->iterate (ix, ptr);
799 else
800 {
801 *ptr = 0;
802 return false;
803 }
804 }
805
806
807 /* If V has no room for one more element, reallocate it. Then call
808 V->quick_push(OBJ). */
809 template<typename T, typename A>
810 inline T *
811 vec_safe_push (vec<T, A, vl_embed> *&v, const T &obj CXX_MEM_STAT_INFO)
812 {
813 vec_safe_reserve (v, 1, false PASS_MEM_STAT);
814 return v->quick_push (obj);
815 }
816
817
818 /* if V has no room for one more element, reallocate it. Then call
819 V->quick_insert(IX, OBJ). */
820 template<typename T, typename A>
821 inline void
822 vec_safe_insert (vec<T, A, vl_embed> *&v, unsigned ix, const T &obj
823 CXX_MEM_STAT_INFO)
824 {
825 vec_safe_reserve (v, 1, false PASS_MEM_STAT);
826 v->quick_insert (ix, obj);
827 }
828
829
830 /* If V is NULL, do nothing. Otherwise, call V->truncate(SIZE). */
831 template<typename T, typename A>
832 inline void
833 vec_safe_truncate (vec<T, A, vl_embed> *v, unsigned size)
834 {
835 if (v)
836 v->truncate (size);
837 }
838
839
840 /* If SRC is not NULL, return a pointer to a copy of it. */
841 template<typename T, typename A>
842 inline vec<T, A, vl_embed> *
843 vec_safe_copy (vec<T, A, vl_embed> *src CXX_MEM_STAT_INFO)
844 {
845 return src ? src->copy (ALONE_PASS_MEM_STAT) : NULL;
846 }
847
848 /* Copy the elements from SRC to the end of DST as if by memcpy.
849 Reallocate DST, if necessary. */
850 template<typename T, typename A>
851 inline void
852 vec_safe_splice (vec<T, A, vl_embed> *&dst, const vec<T, A, vl_embed> *src
853 CXX_MEM_STAT_INFO)
854 {
855 unsigned src_len = vec_safe_length (src);
856 if (src_len)
857 {
858 vec_safe_reserve_exact (dst, vec_safe_length (dst) + src_len
859 PASS_MEM_STAT);
860 dst->splice (*src);
861 }
862 }
863
864 /* Return true if SEARCH is an element of V. Note that this is O(N) in the
865 size of the vector and so should be used with care. */
866
867 template<typename T, typename A>
868 inline bool
869 vec_safe_contains (vec<T, A, vl_embed> *v, const T &search)
870 {
871 return v ? v->contains (search) : false;
872 }
873
874 /* Index into vector. Return the IX'th element. IX must be in the
875 domain of the vector. */
876
877 template<typename T, typename A>
878 inline const T &
879 vec<T, A, vl_embed>::operator[] (unsigned ix) const
880 {
881 gcc_checking_assert (ix < m_vecpfx.m_num);
882 return m_vecdata[ix];
883 }
884
885 template<typename T, typename A>
886 inline T &
887 vec<T, A, vl_embed>::operator[] (unsigned ix)
888 {
889 gcc_checking_assert (ix < m_vecpfx.m_num);
890 return m_vecdata[ix];
891 }
892
893
894 /* Get the final element of the vector, which must not be empty. */
895
896 template<typename T, typename A>
897 inline T &
898 vec<T, A, vl_embed>::last (void)
899 {
900 gcc_checking_assert (m_vecpfx.m_num > 0);
901 return (*this)[m_vecpfx.m_num - 1];
902 }
903
904
905 /* If this vector has space for NELEMS additional entries, return
906 true. You usually only need to use this if you are doing your
907 own vector reallocation, for instance on an embedded vector. This
908 returns true in exactly the same circumstances that vec::reserve
909 will. */
910
911 template<typename T, typename A>
912 inline bool
913 vec<T, A, vl_embed>::space (unsigned nelems) const
914 {
915 return m_vecpfx.m_alloc - m_vecpfx.m_num >= nelems;
916 }
917
918
919 /* Return iteration condition and update PTR to point to the IX'th
920 element of this vector. Use this to iterate over the elements of a
921 vector as follows,
922
923 for (ix = 0; vec<T, A>::iterate (v, ix, &ptr); ix++)
924 continue; */
925
926 template<typename T, typename A>
927 inline bool
928 vec<T, A, vl_embed>::iterate (unsigned ix, T *ptr) const
929 {
930 if (ix < m_vecpfx.m_num)
931 {
932 *ptr = m_vecdata[ix];
933 return true;
934 }
935 else
936 {
937 *ptr = 0;
938 return false;
939 }
940 }
941
942
943 /* Return iteration condition and update *PTR to point to the
944 IX'th element of this vector. Use this to iterate over the
945 elements of a vector as follows,
946
947 for (ix = 0; v->iterate (ix, &ptr); ix++)
948 continue;
949
950 This variant is for vectors of objects. */
951
952 template<typename T, typename A>
953 inline bool
954 vec<T, A, vl_embed>::iterate (unsigned ix, T **ptr) const
955 {
956 if (ix < m_vecpfx.m_num)
957 {
958 *ptr = CONST_CAST (T *, &m_vecdata[ix]);
959 return true;
960 }
961 else
962 {
963 *ptr = 0;
964 return false;
965 }
966 }
967
968
969 /* Return a pointer to a copy of this vector. */
970
971 template<typename T, typename A>
972 inline vec<T, A, vl_embed> *
973 vec<T, A, vl_embed>::copy (ALONE_MEM_STAT_DECL) const
974 {
975 vec<T, A, vl_embed> *new_vec = NULL;
976 unsigned len = length ();
977 if (len)
978 {
979 vec_alloc (new_vec, len PASS_MEM_STAT);
980 new_vec->embedded_init (len, len);
981 vec_copy_construct (new_vec->address (), m_vecdata, len);
982 }
983 return new_vec;
984 }
985
986
987 /* Copy the elements from SRC to the end of this vector as if by memcpy.
988 The vector must have sufficient headroom available. */
989
990 template<typename T, typename A>
991 inline void
992 vec<T, A, vl_embed>::splice (const vec<T, A, vl_embed> &src)
993 {
994 unsigned len = src.length ();
995 if (len)
996 {
997 gcc_checking_assert (space (len));
998 vec_copy_construct (end (), src.address (), len);
999 m_vecpfx.m_num += len;
1000 }
1001 }
1002
1003 template<typename T, typename A>
1004 inline void
1005 vec<T, A, vl_embed>::splice (const vec<T, A, vl_embed> *src)
1006 {
1007 if (src)
1008 splice (*src);
1009 }
1010
1011
1012 /* Push OBJ (a new element) onto the end of the vector. There must be
1013 sufficient space in the vector. Return a pointer to the slot
1014 where OBJ was inserted. */
1015
1016 template<typename T, typename A>
1017 inline T *
1018 vec<T, A, vl_embed>::quick_push (const T &obj)
1019 {
1020 gcc_checking_assert (space (1));
1021 T *slot = &m_vecdata[m_vecpfx.m_num++];
1022 *slot = obj;
1023 return slot;
1024 }
1025
1026
1027 /* Pop and return the last element off the end of the vector. */
1028
1029 template<typename T, typename A>
1030 inline T &
1031 vec<T, A, vl_embed>::pop (void)
1032 {
1033 gcc_checking_assert (length () > 0);
1034 return m_vecdata[--m_vecpfx.m_num];
1035 }
1036
1037
1038 /* Set the length of the vector to SIZE. The new length must be less
1039 than or equal to the current length. This is an O(1) operation. */
1040
1041 template<typename T, typename A>
1042 inline void
1043 vec<T, A, vl_embed>::truncate (unsigned size)
1044 {
1045 gcc_checking_assert (length () >= size);
1046 m_vecpfx.m_num = size;
1047 }
1048
1049
1050 /* Insert an element, OBJ, at the IXth position of this vector. There
1051 must be sufficient space. */
1052
1053 template<typename T, typename A>
1054 inline void
1055 vec<T, A, vl_embed>::quick_insert (unsigned ix, const T &obj)
1056 {
1057 gcc_checking_assert (length () < allocated ());
1058 gcc_checking_assert (ix <= length ());
1059 T *slot = &m_vecdata[ix];
1060 memmove (slot + 1, slot, (m_vecpfx.m_num++ - ix) * sizeof (T));
1061 *slot = obj;
1062 }
1063
1064
1065 /* Remove an element from the IXth position of this vector. Ordering of
1066 remaining elements is preserved. This is an O(N) operation due to
1067 memmove. */
1068
1069 template<typename T, typename A>
1070 inline void
1071 vec<T, A, vl_embed>::ordered_remove (unsigned ix)
1072 {
1073 gcc_checking_assert (ix < length ());
1074 T *slot = &m_vecdata[ix];
1075 memmove (slot, slot + 1, (--m_vecpfx.m_num - ix) * sizeof (T));
1076 }
1077
1078
1079 /* Remove elements in [START, END) from VEC for which COND holds. Ordering of
1080 remaining elements is preserved. This is an O(N) operation. */
1081
1082 #define VEC_ORDERED_REMOVE_IF_FROM_TO(vec, read_index, write_index, \
1083 elem_ptr, start, end, cond) \
1084 { \
1085 gcc_assert ((end) <= (vec).length ()); \
1086 for (read_index = write_index = (start); read_index < (end); \
1087 ++read_index) \
1088 { \
1089 elem_ptr = &(vec)[read_index]; \
1090 bool remove_p = (cond); \
1091 if (remove_p) \
1092 continue; \
1093 \
1094 if (read_index != write_index) \
1095 (vec)[write_index] = (vec)[read_index]; \
1096 \
1097 write_index++; \
1098 } \
1099 \
1100 if (read_index - write_index > 0) \
1101 (vec).block_remove (write_index, read_index - write_index); \
1102 }
1103
1104
1105 /* Remove elements from VEC for which COND holds. Ordering of remaining
1106 elements is preserved. This is an O(N) operation. */
1107
1108 #define VEC_ORDERED_REMOVE_IF(vec, read_index, write_index, elem_ptr, \
1109 cond) \
1110 VEC_ORDERED_REMOVE_IF_FROM_TO ((vec), read_index, write_index, \
1111 elem_ptr, 0, (vec).length (), (cond))
1112
1113 /* Remove an element from the IXth position of this vector. Ordering of
1114 remaining elements is destroyed. This is an O(1) operation. */
1115
1116 template<typename T, typename A>
1117 inline void
1118 vec<T, A, vl_embed>::unordered_remove (unsigned ix)
1119 {
1120 gcc_checking_assert (ix < length ());
1121 m_vecdata[ix] = m_vecdata[--m_vecpfx.m_num];
1122 }
1123
1124
1125 /* Remove LEN elements starting at the IXth. Ordering is retained.
1126 This is an O(N) operation due to memmove. */
1127
1128 template<typename T, typename A>
1129 inline void
1130 vec<T, A, vl_embed>::block_remove (unsigned ix, unsigned len)
1131 {
1132 gcc_checking_assert (ix + len <= length ());
1133 T *slot = &m_vecdata[ix];
1134 m_vecpfx.m_num -= len;
1135 memmove (slot, slot + len, (m_vecpfx.m_num - ix) * sizeof (T));
1136 }
1137
1138
1139 /* Sort the contents of this vector with qsort. CMP is the comparison
1140 function to pass to qsort. */
1141
1142 template<typename T, typename A>
1143 inline void
1144 vec<T, A, vl_embed>::qsort (int (*cmp) (const void *, const void *))
1145 {
1146 if (length () > 1)
1147 gcc_qsort (address (), length (), sizeof (T), cmp);
1148 }
1149
1150 /* Sort the contents of this vector with qsort. CMP is the comparison
1151 function to pass to qsort. */
1152
1153 template<typename T, typename A>
1154 inline void
1155 vec<T, A, vl_embed>::sort (int (*cmp) (const void *, const void *, void *),
1156 void *data)
1157 {
1158 if (length () > 1)
1159 gcc_sort_r (address (), length (), sizeof (T), cmp, data);
1160 }
1161
1162 /* Sort the contents of this vector with gcc_stablesort_r. CMP is the
1163 comparison function to pass to qsort. */
1164
1165 template<typename T, typename A>
1166 inline void
1167 vec<T, A, vl_embed>::stablesort (int (*cmp) (const void *, const void *,
1168 void *), void *data)
1169 {
1170 if (length () > 1)
1171 gcc_stablesort_r (address (), length (), sizeof (T), cmp, data);
1172 }
1173
1174 /* Search the contents of the sorted vector with a binary search.
1175 CMP is the comparison function to pass to bsearch. */
1176
1177 template<typename T, typename A>
1178 inline T *
1179 vec<T, A, vl_embed>::bsearch (const void *key,
1180 int (*compar) (const void *, const void *))
1181 {
1182 const void *base = this->address ();
1183 size_t nmemb = this->length ();
1184 size_t size = sizeof (T);
1185 /* The following is a copy of glibc stdlib-bsearch.h. */
1186 size_t l, u, idx;
1187 const void *p;
1188 int comparison;
1189
1190 l = 0;
1191 u = nmemb;
1192 while (l < u)
1193 {
1194 idx = (l + u) / 2;
1195 p = (const void *) (((const char *) base) + (idx * size));
1196 comparison = (*compar) (key, p);
1197 if (comparison < 0)
1198 u = idx;
1199 else if (comparison > 0)
1200 l = idx + 1;
1201 else
1202 return (T *)const_cast<void *>(p);
1203 }
1204
1205 return NULL;
1206 }
1207
1208 /* Search the contents of the sorted vector with a binary search.
1209 CMP is the comparison function to pass to bsearch. */
1210
1211 template<typename T, typename A>
1212 inline T *
1213 vec<T, A, vl_embed>::bsearch (const void *key,
1214 int (*compar) (const void *, const void *,
1215 void *), void *data)
1216 {
1217 const void *base = this->address ();
1218 size_t nmemb = this->length ();
1219 size_t size = sizeof (T);
1220 /* The following is a copy of glibc stdlib-bsearch.h. */
1221 size_t l, u, idx;
1222 const void *p;
1223 int comparison;
1224
1225 l = 0;
1226 u = nmemb;
1227 while (l < u)
1228 {
1229 idx = (l + u) / 2;
1230 p = (const void *) (((const char *) base) + (idx * size));
1231 comparison = (*compar) (key, p, data);
1232 if (comparison < 0)
1233 u = idx;
1234 else if (comparison > 0)
1235 l = idx + 1;
1236 else
1237 return (T *)const_cast<void *>(p);
1238 }
1239
1240 return NULL;
1241 }
1242
1243 /* Return true if SEARCH is an element of V. Note that this is O(N) in the
1244 size of the vector and so should be used with care. */
1245
1246 template<typename T, typename A>
1247 inline bool
1248 vec<T, A, vl_embed>::contains (const T &search) const
1249 {
1250 unsigned int len = length ();
1251 for (unsigned int i = 0; i < len; i++)
1252 if ((*this)[i] == search)
1253 return true;
1254
1255 return false;
1256 }
1257
1258 /* Find and return the first position in which OBJ could be inserted
1259 without changing the ordering of this vector. LESSTHAN is a
1260 function that returns true if the first argument is strictly less
1261 than the second. */
1262
1263 template<typename T, typename A>
1264 unsigned
1265 vec<T, A, vl_embed>::lower_bound (T obj, bool (*lessthan)(const T &, const T &))
1266 const
1267 {
1268 unsigned int len = length ();
1269 unsigned int half, middle;
1270 unsigned int first = 0;
1271 while (len > 0)
1272 {
1273 half = len / 2;
1274 middle = first;
1275 middle += half;
1276 T middle_elem = (*this)[middle];
1277 if (lessthan (middle_elem, obj))
1278 {
1279 first = middle;
1280 ++first;
1281 len = len - half - 1;
1282 }
1283 else
1284 len = half;
1285 }
1286 return first;
1287 }
1288
1289
1290 /* Return the number of bytes needed to embed an instance of an
1291 embeddable vec inside another data structure.
1292
1293 Use these methods to determine the required size and initialization
1294 of a vector V of type T embedded within another structure (as the
1295 final member):
1296
1297 size_t vec<T, A, vl_embed>::embedded_size (unsigned alloc);
1298 void v->embedded_init (unsigned alloc, unsigned num);
1299
1300 These allow the caller to perform the memory allocation. */
1301
1302 template<typename T, typename A>
1303 inline size_t
1304 vec<T, A, vl_embed>::embedded_size (unsigned alloc)
1305 {
1306 struct alignas (T) U { char data[sizeof (T)]; };
1307 typedef vec<U, A, vl_embed> vec_embedded;
1308 typedef typename std::conditional<std::is_standard_layout<T>::value,
1309 vec, vec_embedded>::type vec_stdlayout;
1310 static_assert (sizeof (vec_stdlayout) == sizeof (vec), "");
1311 static_assert (alignof (vec_stdlayout) == alignof (vec), "");
1312 return offsetof (vec_stdlayout, m_vecdata) + alloc * sizeof (T);
1313 }
1314
1315
1316 /* Initialize the vector to contain room for ALLOC elements and
1317 NUM active elements. */
1318
1319 template<typename T, typename A>
1320 inline void
1321 vec<T, A, vl_embed>::embedded_init (unsigned alloc, unsigned num, unsigned aut)
1322 {
1323 m_vecpfx.m_alloc = alloc;
1324 m_vecpfx.m_using_auto_storage = aut;
1325 m_vecpfx.m_num = num;
1326 }
1327
1328
1329 /* Grow the vector to a specific length. LEN must be as long or longer than
1330 the current length. The new elements are uninitialized. */
1331
1332 template<typename T, typename A>
1333 inline void
1334 vec<T, A, vl_embed>::quick_grow (unsigned len)
1335 {
1336 gcc_checking_assert (length () <= len && len <= m_vecpfx.m_alloc);
1337 m_vecpfx.m_num = len;
1338 }
1339
1340
1341 /* Grow the vector to a specific length. LEN must be as long or longer than
1342 the current length. The new elements are initialized to zero. */
1343
1344 template<typename T, typename A>
1345 inline void
1346 vec<T, A, vl_embed>::quick_grow_cleared (unsigned len)
1347 {
1348 unsigned oldlen = length ();
1349 size_t growby = len - oldlen;
1350 quick_grow (len);
1351 if (growby != 0)
1352 vec_default_construct (address () + oldlen, growby);
1353 }
1354
1355 /* Garbage collection support for vec<T, A, vl_embed>. */
1356
1357 template<typename T>
1358 void
1359 gt_ggc_mx (vec<T, va_gc> *v)
1360 {
1361 extern void gt_ggc_mx (T &);
1362 for (unsigned i = 0; i < v->length (); i++)
1363 gt_ggc_mx ((*v)[i]);
1364 }
1365
1366 template<typename T>
1367 void
1368 gt_ggc_mx (vec<T, va_gc_atomic, vl_embed> *v ATTRIBUTE_UNUSED)
1369 {
1370 /* Nothing to do. Vectors of atomic types wrt GC do not need to
1371 be traversed. */
1372 }
1373
1374
1375 /* PCH support for vec<T, A, vl_embed>. */
1376
1377 template<typename T, typename A>
1378 void
1379 gt_pch_nx (vec<T, A, vl_embed> *v)
1380 {
1381 extern void gt_pch_nx (T &);
1382 for (unsigned i = 0; i < v->length (); i++)
1383 gt_pch_nx ((*v)[i]);
1384 }
1385
1386 template<typename T, typename A>
1387 void
1388 gt_pch_nx (vec<T *, A, vl_embed> *v, gt_pointer_operator op, void *cookie)
1389 {
1390 for (unsigned i = 0; i < v->length (); i++)
1391 op (&((*v)[i]), cookie);
1392 }
1393
1394 template<typename T, typename A>
1395 void
1396 gt_pch_nx (vec<T, A, vl_embed> *v, gt_pointer_operator op, void *cookie)
1397 {
1398 extern void gt_pch_nx (T *, gt_pointer_operator, void *);
1399 for (unsigned i = 0; i < v->length (); i++)
1400 gt_pch_nx (&((*v)[i]), op, cookie);
1401 }
1402
1403
1404 /* Space efficient vector. These vectors can grow dynamically and are
1405 allocated together with their control data. They are suited to be
1406 included in data structures. Prior to initial allocation, they
1407 only take a single word of storage.
1408
1409 These vectors are implemented as a pointer to an embeddable vector.
1410 The semantics allow for this pointer to be NULL to represent empty
1411 vectors. This way, empty vectors occupy minimal space in the
1412 structure containing them.
1413
1414 Properties:
1415
1416 - The whole vector and control data are allocated in a single
1417 contiguous block.
1418 - The whole vector may be re-allocated.
1419 - Vector data may grow and shrink.
1420 - Access and manipulation requires a pointer test and
1421 indirection.
1422 - It requires 1 word of storage (prior to vector allocation).
1423
1424
1425 Limitations:
1426
1427 These vectors must be PODs because they are stored in unions.
1428 (http://en.wikipedia.org/wiki/Plain_old_data_structures).
1429 As long as we use C++03, we cannot have constructors nor
1430 destructors in classes that are stored in unions. */
1431
1432 template<typename T, size_t N = 0>
1433 class auto_vec;
1434
1435 template<typename T>
1436 struct vec<T, va_heap, vl_ptr>
1437 {
1438 public:
1439 /* Default ctors to ensure triviality. Use value-initialization
1440 (e.g., vec() or vec v{ };) or vNULL to create a zero-initialized
1441 instance. */
1442 vec () = default;
1443 vec (const vec &) = default;
1444 /* Initialization from the generic vNULL. */
1445 vec (vnull): m_vec () { }
1446 /* Same as default ctor: vec storage must be released manually. */
1447 ~vec () = default;
1448
1449 /* Defaulted same as copy ctor. */
1450 vec& operator= (const vec &) = default;
1451
1452 /* Prevent implicit conversion from auto_vec. Use auto_vec::to_vec()
1453 instead. */
1454 template <size_t N>
1455 vec (auto_vec<T, N> &) = delete;
1456
1457 template <size_t N>
1458 void operator= (auto_vec<T, N> &) = delete;
1459
1460 /* Memory allocation and deallocation for the embedded vector.
1461 Needed because we cannot have proper ctors/dtors defined. */
1462 void create (unsigned nelems CXX_MEM_STAT_INFO);
1463 void release (void);
1464
1465 /* Vector operations. */
1466 bool exists (void) const
1467 { return m_vec != NULL; }
1468
1469 bool is_empty (void) const
1470 { return m_vec ? m_vec->is_empty () : true; }
1471
1472 unsigned length (void) const
1473 { return m_vec ? m_vec->length () : 0; }
1474
1475 T *address (void)
1476 { return m_vec ? m_vec->m_vecdata : NULL; }
1477
1478 const T *address (void) const
1479 { return m_vec ? m_vec->m_vecdata : NULL; }
1480
1481 T *begin () { return address (); }
1482 const T *begin () const { return address (); }
1483 T *end () { return begin () + length (); }
1484 const T *end () const { return begin () + length (); }
1485 const T &operator[] (unsigned ix) const
1486 { return (*m_vec)[ix]; }
1487
1488 bool operator!=(const vec &other) const
1489 { return !(*this == other); }
1490
1491 bool operator==(const vec &other) const
1492 { return address () == other.address (); }
1493
1494 T &operator[] (unsigned ix)
1495 { return (*m_vec)[ix]; }
1496
1497 T &last (void)
1498 { return m_vec->last (); }
1499
1500 bool space (int nelems) const
1501 { return m_vec ? m_vec->space (nelems) : nelems == 0; }
1502
1503 bool iterate (unsigned ix, T *p) const;
1504 bool iterate (unsigned ix, T **p) const;
1505 vec copy (ALONE_CXX_MEM_STAT_INFO) const;
1506 bool reserve (unsigned, bool = false CXX_MEM_STAT_INFO);
1507 bool reserve_exact (unsigned CXX_MEM_STAT_INFO);
1508 void splice (const vec &);
1509 void safe_splice (const vec & CXX_MEM_STAT_INFO);
1510 T *quick_push (const T &);
1511 T *safe_push (const T &CXX_MEM_STAT_INFO);
1512 T &pop (void);
1513 void truncate (unsigned);
1514 void safe_grow (unsigned, bool = false CXX_MEM_STAT_INFO);
1515 void safe_grow_cleared (unsigned, bool = false CXX_MEM_STAT_INFO);
1516 void quick_grow (unsigned);
1517 void quick_grow_cleared (unsigned);
1518 void quick_insert (unsigned, const T &);
1519 void safe_insert (unsigned, const T & CXX_MEM_STAT_INFO);
1520 void ordered_remove (unsigned);
1521 void unordered_remove (unsigned);
1522 void block_remove (unsigned, unsigned);
1523 void qsort (int (*) (const void *, const void *));
1524 void sort (int (*) (const void *, const void *, void *), void *);
1525 void stablesort (int (*) (const void *, const void *, void *), void *);
1526 T *bsearch (const void *key, int (*compar)(const void *, const void *));
1527 T *bsearch (const void *key,
1528 int (*compar)(const void *, const void *, void *), void *);
1529 unsigned lower_bound (T, bool (*)(const T &, const T &)) const;
1530 bool contains (const T &search) const;
1531 void reverse (void);
1532
1533 bool using_auto_storage () const;
1534
1535 /* FIXME - This field should be private, but we need to cater to
1536 compilers that have stricter notions of PODness for types. */
1537 vec<T, va_heap, vl_embed> *m_vec;
1538 };
1539
1540
1541 /* auto_vec is a subclass of vec that automatically manages creating and
1542 releasing the internal vector. If N is non zero then it has N elements of
1543 internal storage. The default is no internal storage, and you probably only
1544 want to ask for internal storage for vectors on the stack because if the
1545 size of the vector is larger than the internal storage that space is wasted.
1546 */
1547 template<typename T, size_t N /* = 0 */>
1548 class auto_vec : public vec<T, va_heap>
1549 {
1550 public:
1551 auto_vec ()
1552 {
1553 m_auto.embedded_init (MAX (N, 2), 0, 1);
1554 this->m_vec = &m_auto;
1555 }
1556
1557 auto_vec (size_t s CXX_MEM_STAT_INFO)
1558 {
1559 if (s > N)
1560 {
1561 this->create (s PASS_MEM_STAT);
1562 return;
1563 }
1564
1565 m_auto.embedded_init (MAX (N, 2), 0, 1);
1566 this->m_vec = &m_auto;
1567 }
1568
1569 ~auto_vec ()
1570 {
1571 this->release ();
1572 }
1573
1574 /* Explicitly convert to the base class. There is no conversion
1575 from a const auto_vec because a copy of the returned vec can
1576 be used to modify *THIS.
1577 This is a legacy function not to be used in new code. */
1578 vec<T, va_heap> to_vec_legacy () {
1579 return *static_cast<vec<T, va_heap> *>(this);
1580 }
1581
1582 private:
1583 vec<T, va_heap, vl_embed> m_auto;
1584 T m_data[MAX (N - 1, 1)];
1585 };
1586
1587 /* auto_vec is a sub class of vec whose storage is released when it is
1588 destroyed. */
1589 template<typename T>
1590 class auto_vec<T, 0> : public vec<T, va_heap>
1591 {
1592 public:
1593 auto_vec () { this->m_vec = NULL; }
1594 auto_vec (size_t n CXX_MEM_STAT_INFO) { this->create (n PASS_MEM_STAT); }
1595 ~auto_vec () { this->release (); }
1596
1597 auto_vec (vec<T, va_heap>&& r)
1598 {
1599 gcc_assert (!r.using_auto_storage ());
1600 this->m_vec = r.m_vec;
1601 r.m_vec = NULL;
1602 }
1603
1604 auto_vec (auto_vec<T> &&r)
1605 {
1606 gcc_assert (!r.using_auto_storage ());
1607 this->m_vec = r.m_vec;
1608 r.m_vec = NULL;
1609 }
1610
1611 auto_vec& operator= (vec<T, va_heap>&& r)
1612 {
1613 if (this == &r)
1614 return *this;
1615
1616 gcc_assert (!r.using_auto_storage ());
1617 this->release ();
1618 this->m_vec = r.m_vec;
1619 r.m_vec = NULL;
1620 return *this;
1621 }
1622
1623 auto_vec& operator= (auto_vec<T> &&r)
1624 {
1625 if (this == &r)
1626 return *this;
1627
1628 gcc_assert (!r.using_auto_storage ());
1629 this->release ();
1630 this->m_vec = r.m_vec;
1631 r.m_vec = NULL;
1632 return *this;
1633 }
1634
1635 /* Explicitly convert to the base class. There is no conversion
1636 from a const auto_vec because a copy of the returned vec can
1637 be used to modify *THIS.
1638 This is a legacy function not to be used in new code. */
1639 vec<T, va_heap> to_vec_legacy () {
1640 return *static_cast<vec<T, va_heap> *>(this);
1641 }
1642
1643 // You probably don't want to copy a vector, so these are deleted to prevent
1644 // unintentional use. If you really need a copy of the vectors contents you
1645 // can use copy ().
1646 auto_vec(const auto_vec &) = delete;
1647 auto_vec &operator= (const auto_vec &) = delete;
1648 };
1649
1650
1651 /* Allocate heap memory for pointer V and create the internal vector
1652 with space for NELEMS elements. If NELEMS is 0, the internal
1653 vector is initialized to empty. */
1654
1655 template<typename T>
1656 inline void
1657 vec_alloc (vec<T> *&v, unsigned nelems CXX_MEM_STAT_INFO)
1658 {
1659 v = new vec<T>;
1660 v->create (nelems PASS_MEM_STAT);
1661 }
1662
1663
1664 /* A subclass of auto_vec <char *> that frees all of its elements on
1665 deletion. */
1666
1667 class auto_string_vec : public auto_vec <char *>
1668 {
1669 public:
1670 ~auto_string_vec ();
1671 };
1672
1673 /* A subclass of auto_vec <T *> that deletes all of its elements on
1674 destruction.
1675
1676 This is a crude way for a vec to "own" the objects it points to
1677 and clean up automatically.
1678
1679 For example, no attempt is made to delete elements when an item
1680 within the vec is overwritten.
1681
1682 We can't rely on gnu::unique_ptr within a container,
1683 since we can't rely on move semantics in C++98. */
1684
1685 template <typename T>
1686 class auto_delete_vec : public auto_vec <T *>
1687 {
1688 public:
1689 auto_delete_vec () {}
1690 auto_delete_vec (size_t s) : auto_vec <T *> (s) {}
1691
1692 ~auto_delete_vec ();
1693
1694 private:
1695 DISABLE_COPY_AND_ASSIGN(auto_delete_vec);
1696 };
1697
1698 /* Conditionally allocate heap memory for VEC and its internal vector. */
1699
1700 template<typename T>
1701 inline void
1702 vec_check_alloc (vec<T, va_heap> *&vec, unsigned nelems CXX_MEM_STAT_INFO)
1703 {
1704 if (!vec)
1705 vec_alloc (vec, nelems PASS_MEM_STAT);
1706 }
1707
1708
1709 /* Free the heap memory allocated by vector V and set it to NULL. */
1710
1711 template<typename T>
1712 inline void
1713 vec_free (vec<T> *&v)
1714 {
1715 if (v == NULL)
1716 return;
1717
1718 v->release ();
1719 delete v;
1720 v = NULL;
1721 }
1722
1723
1724 /* Return iteration condition and update PTR to point to the IX'th
1725 element of this vector. Use this to iterate over the elements of a
1726 vector as follows,
1727
1728 for (ix = 0; v.iterate (ix, &ptr); ix++)
1729 continue; */
1730
1731 template<typename T>
1732 inline bool
1733 vec<T, va_heap, vl_ptr>::iterate (unsigned ix, T *ptr) const
1734 {
1735 if (m_vec)
1736 return m_vec->iterate (ix, ptr);
1737 else
1738 {
1739 *ptr = 0;
1740 return false;
1741 }
1742 }
1743
1744
1745 /* Return iteration condition and update *PTR to point to the
1746 IX'th element of this vector. Use this to iterate over the
1747 elements of a vector as follows,
1748
1749 for (ix = 0; v->iterate (ix, &ptr); ix++)
1750 continue;
1751
1752 This variant is for vectors of objects. */
1753
1754 template<typename T>
1755 inline bool
1756 vec<T, va_heap, vl_ptr>::iterate (unsigned ix, T **ptr) const
1757 {
1758 if (m_vec)
1759 return m_vec->iterate (ix, ptr);
1760 else
1761 {
1762 *ptr = 0;
1763 return false;
1764 }
1765 }
1766
1767
1768 /* Convenience macro for forward iteration. */
1769 #define FOR_EACH_VEC_ELT(V, I, P) \
1770 for (I = 0; (V).iterate ((I), &(P)); ++(I))
1771
1772 #define FOR_EACH_VEC_SAFE_ELT(V, I, P) \
1773 for (I = 0; vec_safe_iterate ((V), (I), &(P)); ++(I))
1774
1775 /* Likewise, but start from FROM rather than 0. */
1776 #define FOR_EACH_VEC_ELT_FROM(V, I, P, FROM) \
1777 for (I = (FROM); (V).iterate ((I), &(P)); ++(I))
1778
1779 /* Convenience macro for reverse iteration. */
1780 #define FOR_EACH_VEC_ELT_REVERSE(V, I, P) \
1781 for (I = (V).length () - 1; \
1782 (V).iterate ((I), &(P)); \
1783 (I)--)
1784
1785 #define FOR_EACH_VEC_SAFE_ELT_REVERSE(V, I, P) \
1786 for (I = vec_safe_length (V) - 1; \
1787 vec_safe_iterate ((V), (I), &(P)); \
1788 (I)--)
1789
1790 /* auto_string_vec's dtor, freeing all contained strings, automatically
1791 chaining up to ~auto_vec <char *>, which frees the internal buffer. */
1792
1793 inline
1794 auto_string_vec::~auto_string_vec ()
1795 {
1796 int i;
1797 char *str;
1798 FOR_EACH_VEC_ELT (*this, i, str)
1799 free (str);
1800 }
1801
1802 /* auto_delete_vec's dtor, deleting all contained items, automatically
1803 chaining up to ~auto_vec <T*>, which frees the internal buffer. */
1804
1805 template <typename T>
1806 inline
1807 auto_delete_vec<T>::~auto_delete_vec ()
1808 {
1809 int i;
1810 T *item;
1811 FOR_EACH_VEC_ELT (*this, i, item)
1812 delete item;
1813 }
1814
1815
1816 /* Return a copy of this vector. */
1817
1818 template<typename T>
1819 inline vec<T, va_heap, vl_ptr>
1820 vec<T, va_heap, vl_ptr>::copy (ALONE_MEM_STAT_DECL) const
1821 {
1822 vec<T, va_heap, vl_ptr> new_vec{ };
1823 if (length ())
1824 new_vec.m_vec = m_vec->copy (ALONE_PASS_MEM_STAT);
1825 return new_vec;
1826 }
1827
1828
1829 /* Ensure that the vector has at least RESERVE slots available (if
1830 EXACT is false), or exactly RESERVE slots available (if EXACT is
1831 true).
1832
1833 This may create additional headroom if EXACT is false.
1834
1835 Note that this can cause the embedded vector to be reallocated.
1836 Returns true iff reallocation actually occurred. */
1837
1838 template<typename T>
1839 inline bool
1840 vec<T, va_heap, vl_ptr>::reserve (unsigned nelems, bool exact MEM_STAT_DECL)
1841 {
1842 if (space (nelems))
1843 return false;
1844
1845 /* For now play a game with va_heap::reserve to hide our auto storage if any,
1846 this is necessary because it doesn't have enough information to know the
1847 embedded vector is in auto storage, and so should not be freed. */
1848 vec<T, va_heap, vl_embed> *oldvec = m_vec;
1849 unsigned int oldsize = 0;
1850 bool handle_auto_vec = m_vec && using_auto_storage ();
1851 if (handle_auto_vec)
1852 {
1853 m_vec = NULL;
1854 oldsize = oldvec->length ();
1855 nelems += oldsize;
1856 }
1857
1858 va_heap::reserve (m_vec, nelems, exact PASS_MEM_STAT);
1859 if (handle_auto_vec)
1860 {
1861 vec_copy_construct (m_vec->address (), oldvec->address (), oldsize);
1862 m_vec->m_vecpfx.m_num = oldsize;
1863 }
1864
1865 return true;
1866 }
1867
1868
1869 /* Ensure that this vector has exactly NELEMS slots available. This
1870 will not create additional headroom. Note this can cause the
1871 embedded vector to be reallocated. Returns true iff reallocation
1872 actually occurred. */
1873
1874 template<typename T>
1875 inline bool
1876 vec<T, va_heap, vl_ptr>::reserve_exact (unsigned nelems MEM_STAT_DECL)
1877 {
1878 return reserve (nelems, true PASS_MEM_STAT);
1879 }
1880
1881
1882 /* Create the internal vector and reserve NELEMS for it. This is
1883 exactly like vec::reserve, but the internal vector is
1884 unconditionally allocated from scratch. The old one, if it
1885 existed, is lost. */
1886
1887 template<typename T>
1888 inline void
1889 vec<T, va_heap, vl_ptr>::create (unsigned nelems MEM_STAT_DECL)
1890 {
1891 m_vec = NULL;
1892 if (nelems > 0)
1893 reserve_exact (nelems PASS_MEM_STAT);
1894 }
1895
1896
1897 /* Free the memory occupied by the embedded vector. */
1898
1899 template<typename T>
1900 inline void
1901 vec<T, va_heap, vl_ptr>::release (void)
1902 {
1903 if (!m_vec)
1904 return;
1905
1906 if (using_auto_storage ())
1907 {
1908 m_vec->m_vecpfx.m_num = 0;
1909 return;
1910 }
1911
1912 va_heap::release (m_vec);
1913 }
1914
1915 /* Copy the elements from SRC to the end of this vector as if by memcpy.
1916 SRC and this vector must be allocated with the same memory
1917 allocation mechanism. This vector is assumed to have sufficient
1918 headroom available. */
1919
1920 template<typename T>
1921 inline void
1922 vec<T, va_heap, vl_ptr>::splice (const vec<T, va_heap, vl_ptr> &src)
1923 {
1924 if (src.length ())
1925 m_vec->splice (*(src.m_vec));
1926 }
1927
1928
1929 /* Copy the elements in SRC to the end of this vector as if by memcpy.
1930 SRC and this vector must be allocated with the same mechanism.
1931 If there is not enough headroom in this vector, it will be reallocated
1932 as needed. */
1933
1934 template<typename T>
1935 inline void
1936 vec<T, va_heap, vl_ptr>::safe_splice (const vec<T, va_heap, vl_ptr> &src
1937 MEM_STAT_DECL)
1938 {
1939 if (src.length ())
1940 {
1941 reserve_exact (src.length ());
1942 splice (src);
1943 }
1944 }
1945
1946
1947 /* Push OBJ (a new element) onto the end of the vector. There must be
1948 sufficient space in the vector. Return a pointer to the slot
1949 where OBJ was inserted. */
1950
1951 template<typename T>
1952 inline T *
1953 vec<T, va_heap, vl_ptr>::quick_push (const T &obj)
1954 {
1955 return m_vec->quick_push (obj);
1956 }
1957
1958
1959 /* Push a new element OBJ onto the end of this vector. Reallocates
1960 the embedded vector, if needed. Return a pointer to the slot where
1961 OBJ was inserted. */
1962
1963 template<typename T>
1964 inline T *
1965 vec<T, va_heap, vl_ptr>::safe_push (const T &obj MEM_STAT_DECL)
1966 {
1967 reserve (1, false PASS_MEM_STAT);
1968 return quick_push (obj);
1969 }
1970
1971
1972 /* Pop and return the last element off the end of the vector. */
1973
1974 template<typename T>
1975 inline T &
1976 vec<T, va_heap, vl_ptr>::pop (void)
1977 {
1978 return m_vec->pop ();
1979 }
1980
1981
1982 /* Set the length of the vector to LEN. The new length must be less
1983 than or equal to the current length. This is an O(1) operation. */
1984
1985 template<typename T>
1986 inline void
1987 vec<T, va_heap, vl_ptr>::truncate (unsigned size)
1988 {
1989 if (m_vec)
1990 m_vec->truncate (size);
1991 else
1992 gcc_checking_assert (size == 0);
1993 }
1994
1995
1996 /* Grow the vector to a specific length. LEN must be as long or
1997 longer than the current length. The new elements are
1998 uninitialized. Reallocate the internal vector, if needed. */
1999
2000 template<typename T>
2001 inline void
2002 vec<T, va_heap, vl_ptr>::safe_grow (unsigned len, bool exact MEM_STAT_DECL)
2003 {
2004 unsigned oldlen = length ();
2005 gcc_checking_assert (oldlen <= len);
2006 reserve (len - oldlen, exact PASS_MEM_STAT);
2007 if (m_vec)
2008 m_vec->quick_grow (len);
2009 else
2010 gcc_checking_assert (len == 0);
2011 }
2012
2013
2014 /* Grow the embedded vector to a specific length. LEN must be as
2015 long or longer than the current length. The new elements are
2016 initialized to zero. Reallocate the internal vector, if needed. */
2017
2018 template<typename T>
2019 inline void
2020 vec<T, va_heap, vl_ptr>::safe_grow_cleared (unsigned len, bool exact
2021 MEM_STAT_DECL)
2022 {
2023 unsigned oldlen = length ();
2024 size_t growby = len - oldlen;
2025 safe_grow (len, exact PASS_MEM_STAT);
2026 if (growby != 0)
2027 vec_default_construct (address () + oldlen, growby);
2028 }
2029
2030
2031 /* Same as vec::safe_grow but without reallocation of the internal vector.
2032 If the vector cannot be extended, a runtime assertion will be triggered. */
2033
2034 template<typename T>
2035 inline void
2036 vec<T, va_heap, vl_ptr>::quick_grow (unsigned len)
2037 {
2038 gcc_checking_assert (m_vec);
2039 m_vec->quick_grow (len);
2040 }
2041
2042
2043 /* Same as vec::quick_grow_cleared but without reallocation of the
2044 internal vector. If the vector cannot be extended, a runtime
2045 assertion will be triggered. */
2046
2047 template<typename T>
2048 inline void
2049 vec<T, va_heap, vl_ptr>::quick_grow_cleared (unsigned len)
2050 {
2051 gcc_checking_assert (m_vec);
2052 m_vec->quick_grow_cleared (len);
2053 }
2054
2055
2056 /* Insert an element, OBJ, at the IXth position of this vector. There
2057 must be sufficient space. */
2058
2059 template<typename T>
2060 inline void
2061 vec<T, va_heap, vl_ptr>::quick_insert (unsigned ix, const T &obj)
2062 {
2063 m_vec->quick_insert (ix, obj);
2064 }
2065
2066
2067 /* Insert an element, OBJ, at the IXth position of the vector.
2068 Reallocate the embedded vector, if necessary. */
2069
2070 template<typename T>
2071 inline void
2072 vec<T, va_heap, vl_ptr>::safe_insert (unsigned ix, const T &obj MEM_STAT_DECL)
2073 {
2074 reserve (1, false PASS_MEM_STAT);
2075 quick_insert (ix, obj);
2076 }
2077
2078
2079 /* Remove an element from the IXth position of this vector. Ordering of
2080 remaining elements is preserved. This is an O(N) operation due to
2081 a memmove. */
2082
2083 template<typename T>
2084 inline void
2085 vec<T, va_heap, vl_ptr>::ordered_remove (unsigned ix)
2086 {
2087 m_vec->ordered_remove (ix);
2088 }
2089
2090
2091 /* Remove an element from the IXth position of this vector. Ordering
2092 of remaining elements is destroyed. This is an O(1) operation. */
2093
2094 template<typename T>
2095 inline void
2096 vec<T, va_heap, vl_ptr>::unordered_remove (unsigned ix)
2097 {
2098 m_vec->unordered_remove (ix);
2099 }
2100
2101
2102 /* Remove LEN elements starting at the IXth. Ordering is retained.
2103 This is an O(N) operation due to memmove. */
2104
2105 template<typename T>
2106 inline void
2107 vec<T, va_heap, vl_ptr>::block_remove (unsigned ix, unsigned len)
2108 {
2109 m_vec->block_remove (ix, len);
2110 }
2111
2112
2113 /* Sort the contents of this vector with qsort. CMP is the comparison
2114 function to pass to qsort. */
2115
2116 template<typename T>
2117 inline void
2118 vec<T, va_heap, vl_ptr>::qsort (int (*cmp) (const void *, const void *))
2119 {
2120 if (m_vec)
2121 m_vec->qsort (cmp);
2122 }
2123
2124 /* Sort the contents of this vector with qsort. CMP is the comparison
2125 function to pass to qsort. */
2126
2127 template<typename T>
2128 inline void
2129 vec<T, va_heap, vl_ptr>::sort (int (*cmp) (const void *, const void *,
2130 void *), void *data)
2131 {
2132 if (m_vec)
2133 m_vec->sort (cmp, data);
2134 }
2135
2136 /* Sort the contents of this vector with gcc_stablesort_r. CMP is the
2137 comparison function to pass to qsort. */
2138
2139 template<typename T>
2140 inline void
2141 vec<T, va_heap, vl_ptr>::stablesort (int (*cmp) (const void *, const void *,
2142 void *), void *data)
2143 {
2144 if (m_vec)
2145 m_vec->stablesort (cmp, data);
2146 }
2147
2148 /* Search the contents of the sorted vector with a binary search.
2149 CMP is the comparison function to pass to bsearch. */
2150
2151 template<typename T>
2152 inline T *
2153 vec<T, va_heap, vl_ptr>::bsearch (const void *key,
2154 int (*cmp) (const void *, const void *))
2155 {
2156 if (m_vec)
2157 return m_vec->bsearch (key, cmp);
2158 return NULL;
2159 }
2160
2161 /* Search the contents of the sorted vector with a binary search.
2162 CMP is the comparison function to pass to bsearch. */
2163
2164 template<typename T>
2165 inline T *
2166 vec<T, va_heap, vl_ptr>::bsearch (const void *key,
2167 int (*cmp) (const void *, const void *,
2168 void *), void *data)
2169 {
2170 if (m_vec)
2171 return m_vec->bsearch (key, cmp, data);
2172 return NULL;
2173 }
2174
2175
2176 /* Find and return the first position in which OBJ could be inserted
2177 without changing the ordering of this vector. LESSTHAN is a
2178 function that returns true if the first argument is strictly less
2179 than the second. */
2180
2181 template<typename T>
2182 inline unsigned
2183 vec<T, va_heap, vl_ptr>::lower_bound (T obj,
2184 bool (*lessthan)(const T &, const T &))
2185 const
2186 {
2187 return m_vec ? m_vec->lower_bound (obj, lessthan) : 0;
2188 }
2189
2190 /* Return true if SEARCH is an element of V. Note that this is O(N) in the
2191 size of the vector and so should be used with care. */
2192
2193 template<typename T>
2194 inline bool
2195 vec<T, va_heap, vl_ptr>::contains (const T &search) const
2196 {
2197 return m_vec ? m_vec->contains (search) : false;
2198 }
2199
2200 /* Reverse content of the vector. */
2201
2202 template<typename T>
2203 inline void
2204 vec<T, va_heap, vl_ptr>::reverse (void)
2205 {
2206 unsigned l = length ();
2207 T *ptr = address ();
2208
2209 for (unsigned i = 0; i < l / 2; i++)
2210 std::swap (ptr[i], ptr[l - i - 1]);
2211 }
2212
2213 template<typename T>
2214 inline bool
2215 vec<T, va_heap, vl_ptr>::using_auto_storage () const
2216 {
2217 return m_vec ? m_vec->m_vecpfx.m_using_auto_storage : false;
2218 }
2219
2220 /* Release VEC and call release of all element vectors. */
2221
2222 template<typename T>
2223 inline void
2224 release_vec_vec (vec<vec<T> > &vec)
2225 {
2226 for (unsigned i = 0; i < vec.length (); i++)
2227 vec[i].release ();
2228
2229 vec.release ();
2230 }
2231
2232 // Provide a subset of the std::span functionality. (We can't use std::span
2233 // itself because it's a C++20 feature.)
2234 //
2235 // In addition, provide an invalid value that is distinct from all valid
2236 // sequences (including the empty sequence). This can be used to return
2237 // failure without having to use std::optional.
2238 //
2239 // There is no operator bool because it would be ambiguous whether it is
2240 // testing for a valid value or an empty sequence.
2241 template<typename T>
2242 class array_slice
2243 {
2244 template<typename OtherT> friend class array_slice;
2245
2246 public:
2247 using value_type = T;
2248 using iterator = T *;
2249 using const_iterator = const T *;
2250
2251 array_slice () : m_base (nullptr), m_size (0) {}
2252
2253 template<typename OtherT>
2254 array_slice (array_slice<OtherT> other)
2255 : m_base (other.m_base), m_size (other.m_size) {}
2256
2257 array_slice (iterator base, unsigned int size)
2258 : m_base (base), m_size (size) {}
2259
2260 template<size_t N>
2261 array_slice (T (&array)[N]) : m_base (array), m_size (N) {}
2262
2263 template<typename OtherT>
2264 array_slice (const vec<OtherT> &v)
2265 : m_base (v.address ()), m_size (v.length ()) {}
2266
2267 iterator begin () { return m_base; }
2268 iterator end () { return m_base + m_size; }
2269
2270 const_iterator begin () const { return m_base; }
2271 const_iterator end () const { return m_base + m_size; }
2272
2273 value_type &front ();
2274 value_type &back ();
2275 value_type &operator[] (unsigned int i);
2276
2277 const value_type &front () const;
2278 const value_type &back () const;
2279 const value_type &operator[] (unsigned int i) const;
2280
2281 size_t size () const { return m_size; }
2282 size_t size_bytes () const { return m_size * sizeof (T); }
2283 bool empty () const { return m_size == 0; }
2284
2285 // An invalid array_slice that represents a failed operation. This is
2286 // distinct from an empty slice, which is a valid result in some contexts.
2287 static array_slice invalid () { return { nullptr, ~0U }; }
2288
2289 // True if the array is valid, false if it is an array like INVALID.
2290 bool is_valid () const { return m_base || m_size == 0; }
2291
2292 private:
2293 iterator m_base;
2294 unsigned int m_size;
2295 };
2296
2297 template<typename T>
2298 inline typename array_slice<T>::value_type &
2299 array_slice<T>::front ()
2300 {
2301 gcc_checking_assert (m_size);
2302 return m_base[0];
2303 }
2304
2305 template<typename T>
2306 inline const typename array_slice<T>::value_type &
2307 array_slice<T>::front () const
2308 {
2309 gcc_checking_assert (m_size);
2310 return m_base[0];
2311 }
2312
2313 template<typename T>
2314 inline typename array_slice<T>::value_type &
2315 array_slice<T>::back ()
2316 {
2317 gcc_checking_assert (m_size);
2318 return m_base[m_size - 1];
2319 }
2320
2321 template<typename T>
2322 inline const typename array_slice<T>::value_type &
2323 array_slice<T>::back () const
2324 {
2325 gcc_checking_assert (m_size);
2326 return m_base[m_size - 1];
2327 }
2328
2329 template<typename T>
2330 inline typename array_slice<T>::value_type &
2331 array_slice<T>::operator[] (unsigned int i)
2332 {
2333 gcc_checking_assert (i < m_size);
2334 return m_base[i];
2335 }
2336
2337 template<typename T>
2338 inline const typename array_slice<T>::value_type &
2339 array_slice<T>::operator[] (unsigned int i) const
2340 {
2341 gcc_checking_assert (i < m_size);
2342 return m_base[i];
2343 }
2344
2345 template<typename T>
2346 array_slice<T>
2347 make_array_slice (T *base, unsigned int size)
2348 {
2349 return array_slice<T> (base, size);
2350 }
2351
2352 #if (GCC_VERSION >= 3000)
2353 # pragma GCC poison m_vec m_vecpfx m_vecdata
2354 #endif
2355
2356 #endif // GCC_VEC_H