]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/wide-int.h
Correct a function pre/postcondition [PR102403].
[thirdparty/gcc.git] / gcc / wide-int.h
1 /* Operations with very long integers. -*- C++ -*-
2 Copyright (C) 2012-2021 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #ifndef WIDE_INT_H
21 #define WIDE_INT_H
22
23 /* wide-int.[cc|h] implements a class that efficiently performs
24 mathematical operations on finite precision integers. wide_ints
25 are designed to be transient - they are not for long term storage
26 of values. There is tight integration between wide_ints and the
27 other longer storage GCC representations (rtl and tree).
28
29 The actual precision of a wide_int depends on the flavor. There
30 are three predefined flavors:
31
32 1) wide_int (the default). This flavor does the math in the
33 precision of its input arguments. It is assumed (and checked)
34 that the precisions of the operands and results are consistent.
35 This is the most efficient flavor. It is not possible to examine
36 bits above the precision that has been specified. Because of
37 this, the default flavor has semantics that are simple to
38 understand and in general model the underlying hardware that the
39 compiler is targetted for.
40
41 This flavor must be used at the RTL level of gcc because there
42 is, in general, not enough information in the RTL representation
43 to extend a value beyond the precision specified in the mode.
44
45 This flavor should also be used at the TREE and GIMPLE levels of
46 the compiler except for the circumstances described in the
47 descriptions of the other two flavors.
48
49 The default wide_int representation does not contain any
50 information inherent about signedness of the represented value,
51 so it can be used to represent both signed and unsigned numbers.
52 For operations where the results depend on signedness (full width
53 multiply, division, shifts, comparisons, and operations that need
54 overflow detected), the signedness must be specified separately.
55
56 2) offset_int. This is a fixed-precision integer that can hold
57 any address offset, measured in either bits or bytes, with at
58 least one extra sign bit. At the moment the maximum address
59 size GCC supports is 64 bits. With 8-bit bytes and an extra
60 sign bit, offset_int therefore needs to have at least 68 bits
61 of precision. We round this up to 128 bits for efficiency.
62 Values of type T are converted to this precision by sign- or
63 zero-extending them based on the signedness of T.
64
65 The extra sign bit means that offset_int is effectively a signed
66 128-bit integer, i.e. it behaves like int128_t.
67
68 Since the values are logically signed, there is no need to
69 distinguish between signed and unsigned operations. Sign-sensitive
70 comparison operators <, <=, > and >= are therefore supported.
71 Shift operators << and >> are also supported, with >> being
72 an _arithmetic_ right shift.
73
74 [ Note that, even though offset_int is effectively int128_t,
75 it can still be useful to use unsigned comparisons like
76 wi::leu_p (a, b) as a more efficient short-hand for
77 "a >= 0 && a <= b". ]
78
79 3) widest_int. This representation is an approximation of
80 infinite precision math. However, it is not really infinite
81 precision math as in the GMP library. It is really finite
82 precision math where the precision is 4 times the size of the
83 largest integer that the target port can represent.
84
85 Like offset_int, widest_int is wider than all the values that
86 it needs to represent, so the integers are logically signed.
87 Sign-sensitive comparison operators <, <=, > and >= are supported,
88 as are << and >>.
89
90 There are several places in the GCC where this should/must be used:
91
92 * Code that does induction variable optimizations. This code
93 works with induction variables of many different types at the
94 same time. Because of this, it ends up doing many different
95 calculations where the operands are not compatible types. The
96 widest_int makes this easy, because it provides a field where
97 nothing is lost when converting from any variable,
98
99 * There are a small number of passes that currently use the
100 widest_int that should use the default. These should be
101 changed.
102
103 There are surprising features of offset_int and widest_int
104 that the users should be careful about:
105
106 1) Shifts and rotations are just weird. You have to specify a
107 precision in which the shift or rotate is to happen in. The bits
108 above this precision are zeroed. While this is what you
109 want, it is clearly non obvious.
110
111 2) Larger precision math sometimes does not produce the same
112 answer as would be expected for doing the math at the proper
113 precision. In particular, a multiply followed by a divide will
114 produce a different answer if the first product is larger than
115 what can be represented in the input precision.
116
117 The offset_int and the widest_int flavors are more expensive
118 than the default wide int, so in addition to the caveats with these
119 two, the default is the prefered representation.
120
121 All three flavors of wide_int are represented as a vector of
122 HOST_WIDE_INTs. The default and widest_int vectors contain enough elements
123 to hold a value of MAX_BITSIZE_MODE_ANY_INT bits. offset_int contains only
124 enough elements to hold ADDR_MAX_PRECISION bits. The values are stored
125 in the vector with the least significant HOST_BITS_PER_WIDE_INT bits
126 in element 0.
127
128 The default wide_int contains three fields: the vector (VAL),
129 the precision and a length (LEN). The length is the number of HWIs
130 needed to represent the value. widest_int and offset_int have a
131 constant precision that cannot be changed, so they only store the
132 VAL and LEN fields.
133
134 Since most integers used in a compiler are small values, it is
135 generally profitable to use a representation of the value that is
136 as small as possible. LEN is used to indicate the number of
137 elements of the vector that are in use. The numbers are stored as
138 sign extended numbers as a means of compression. Leading
139 HOST_WIDE_INTs that contain strings of either -1 or 0 are removed
140 as long as they can be reconstructed from the top bit that is being
141 represented.
142
143 The precision and length of a wide_int are always greater than 0.
144 Any bits in a wide_int above the precision are sign-extended from the
145 most significant bit. For example, a 4-bit value 0x8 is represented as
146 VAL = { 0xf...fff8 }. However, as an optimization, we allow other integer
147 constants to be represented with undefined bits above the precision.
148 This allows INTEGER_CSTs to be pre-extended according to TYPE_SIGN,
149 so that the INTEGER_CST representation can be used both in TYPE_PRECISION
150 and in wider precisions.
151
152 There are constructors to create the various forms of wide_int from
153 trees, rtl and constants. For trees the options are:
154
155 tree t = ...;
156 wi::to_wide (t) // Treat T as a wide_int
157 wi::to_offset (t) // Treat T as an offset_int
158 wi::to_widest (t) // Treat T as a widest_int
159
160 All three are light-weight accessors that should have no overhead
161 in release builds. If it is useful for readability reasons to
162 store the result in a temporary variable, the preferred method is:
163
164 wi::tree_to_wide_ref twide = wi::to_wide (t);
165 wi::tree_to_offset_ref toffset = wi::to_offset (t);
166 wi::tree_to_widest_ref twidest = wi::to_widest (t);
167
168 To make an rtx into a wide_int, you have to pair it with a mode.
169 The canonical way to do this is with rtx_mode_t as in:
170
171 rtx r = ...
172 wide_int x = rtx_mode_t (r, mode);
173
174 Similarly, a wide_int can only be constructed from a host value if
175 the target precision is given explicitly, such as in:
176
177 wide_int x = wi::shwi (c, prec); // sign-extend C if necessary
178 wide_int y = wi::uhwi (c, prec); // zero-extend C if necessary
179
180 However, offset_int and widest_int have an inherent precision and so
181 can be initialized directly from a host value:
182
183 offset_int x = (int) c; // sign-extend C
184 widest_int x = (unsigned int) c; // zero-extend C
185
186 It is also possible to do arithmetic directly on rtx_mode_ts and
187 constants. For example:
188
189 wi::add (r1, r2); // add equal-sized rtx_mode_ts r1 and r2
190 wi::add (r1, 1); // add 1 to rtx_mode_t r1
191 wi::lshift (1, 100); // 1 << 100 as a widest_int
192
193 Many binary operations place restrictions on the combinations of inputs,
194 using the following rules:
195
196 - {rtx, wide_int} op {rtx, wide_int} -> wide_int
197 The inputs must be the same precision. The result is a wide_int
198 of the same precision
199
200 - {rtx, wide_int} op (un)signed HOST_WIDE_INT -> wide_int
201 (un)signed HOST_WIDE_INT op {rtx, wide_int} -> wide_int
202 The HOST_WIDE_INT is extended or truncated to the precision of
203 the other input. The result is a wide_int of the same precision
204 as that input.
205
206 - (un)signed HOST_WIDE_INT op (un)signed HOST_WIDE_INT -> widest_int
207 The inputs are extended to widest_int precision and produce a
208 widest_int result.
209
210 - offset_int op offset_int -> offset_int
211 offset_int op (un)signed HOST_WIDE_INT -> offset_int
212 (un)signed HOST_WIDE_INT op offset_int -> offset_int
213
214 - widest_int op widest_int -> widest_int
215 widest_int op (un)signed HOST_WIDE_INT -> widest_int
216 (un)signed HOST_WIDE_INT op widest_int -> widest_int
217
218 Other combinations like:
219
220 - widest_int op offset_int and
221 - wide_int op offset_int
222
223 are not allowed. The inputs should instead be extended or truncated
224 so that they match.
225
226 The inputs to comparison functions like wi::eq_p and wi::lts_p
227 follow the same compatibility rules, although their return types
228 are different. Unary functions on X produce the same result as
229 a binary operation X + X. Shift functions X op Y also produce
230 the same result as X + X; the precision of the shift amount Y
231 can be arbitrarily different from X. */
232
233 /* The MAX_BITSIZE_MODE_ANY_INT is automatically generated by a very
234 early examination of the target's mode file. The WIDE_INT_MAX_ELTS
235 can accomodate at least 1 more bit so that unsigned numbers of that
236 mode can be represented as a signed value. Note that it is still
237 possible to create fixed_wide_ints that have precisions greater than
238 MAX_BITSIZE_MODE_ANY_INT. This can be useful when representing a
239 double-width multiplication result, for example. */
240 #define WIDE_INT_MAX_ELTS \
241 ((MAX_BITSIZE_MODE_ANY_INT + HOST_BITS_PER_WIDE_INT) / HOST_BITS_PER_WIDE_INT)
242
243 #define WIDE_INT_MAX_PRECISION (WIDE_INT_MAX_ELTS * HOST_BITS_PER_WIDE_INT)
244
245 /* This is the max size of any pointer on any machine. It does not
246 seem to be as easy to sniff this out of the machine description as
247 it is for MAX_BITSIZE_MODE_ANY_INT since targets may support
248 multiple address sizes and may have different address sizes for
249 different address spaces. However, currently the largest pointer
250 on any platform is 64 bits. When that changes, then it is likely
251 that a target hook should be defined so that targets can make this
252 value larger for those targets. */
253 #define ADDR_MAX_BITSIZE 64
254
255 /* This is the internal precision used when doing any address
256 arithmetic. The '4' is really 3 + 1. Three of the bits are for
257 the number of extra bits needed to do bit addresses and the other bit
258 is to allow everything to be signed without loosing any precision.
259 Then everything is rounded up to the next HWI for efficiency. */
260 #define ADDR_MAX_PRECISION \
261 ((ADDR_MAX_BITSIZE + 4 + HOST_BITS_PER_WIDE_INT - 1) \
262 & ~(HOST_BITS_PER_WIDE_INT - 1))
263
264 /* The number of HWIs needed to store an offset_int. */
265 #define OFFSET_INT_ELTS (ADDR_MAX_PRECISION / HOST_BITS_PER_WIDE_INT)
266
267 /* The type of result produced by a binary operation on types T1 and T2.
268 Defined purely for brevity. */
269 #define WI_BINARY_RESULT(T1, T2) \
270 typename wi::binary_traits <T1, T2>::result_type
271
272 /* Likewise for binary operators, which excludes the case in which neither
273 T1 nor T2 is a wide-int-based type. */
274 #define WI_BINARY_OPERATOR_RESULT(T1, T2) \
275 typename wi::binary_traits <T1, T2>::operator_result
276
277 /* The type of result produced by T1 << T2. Leads to substitution failure
278 if the operation isn't supported. Defined purely for brevity. */
279 #define WI_SIGNED_SHIFT_RESULT(T1, T2) \
280 typename wi::binary_traits <T1, T2>::signed_shift_result_type
281
282 /* The type of result produced by a sign-agnostic binary predicate on
283 types T1 and T2. This is bool if wide-int operations make sense for
284 T1 and T2 and leads to substitution failure otherwise. */
285 #define WI_BINARY_PREDICATE_RESULT(T1, T2) \
286 typename wi::binary_traits <T1, T2>::predicate_result
287
288 /* The type of result produced by a signed binary predicate on types T1 and T2.
289 This is bool if signed comparisons make sense for T1 and T2 and leads to
290 substitution failure otherwise. */
291 #define WI_SIGNED_BINARY_PREDICATE_RESULT(T1, T2) \
292 typename wi::binary_traits <T1, T2>::signed_predicate_result
293
294 /* The type of result produced by a unary operation on type T. */
295 #define WI_UNARY_RESULT(T) \
296 typename wi::binary_traits <T, T>::result_type
297
298 /* Define a variable RESULT to hold the result of a binary operation on
299 X and Y, which have types T1 and T2 respectively. Define VAL to
300 point to the blocks of RESULT. Once the user of the macro has
301 filled in VAL, it should call RESULT.set_len to set the number
302 of initialized blocks. */
303 #define WI_BINARY_RESULT_VAR(RESULT, VAL, T1, X, T2, Y) \
304 WI_BINARY_RESULT (T1, T2) RESULT = \
305 wi::int_traits <WI_BINARY_RESULT (T1, T2)>::get_binary_result (X, Y); \
306 HOST_WIDE_INT *VAL = RESULT.write_val ()
307
308 /* Similar for the result of a unary operation on X, which has type T. */
309 #define WI_UNARY_RESULT_VAR(RESULT, VAL, T, X) \
310 WI_UNARY_RESULT (T) RESULT = \
311 wi::int_traits <WI_UNARY_RESULT (T)>::get_binary_result (X, X); \
312 HOST_WIDE_INT *VAL = RESULT.write_val ()
313
314 template <typename T> class generic_wide_int;
315 template <int N> class fixed_wide_int_storage;
316 class wide_int_storage;
317
318 /* An N-bit integer. Until we can use typedef templates, use this instead. */
319 #define FIXED_WIDE_INT(N) \
320 generic_wide_int < fixed_wide_int_storage <N> >
321
322 typedef generic_wide_int <wide_int_storage> wide_int;
323 typedef FIXED_WIDE_INT (ADDR_MAX_PRECISION) offset_int;
324 typedef FIXED_WIDE_INT (WIDE_INT_MAX_PRECISION) widest_int;
325 /* Spelled out explicitly (rather than through FIXED_WIDE_INT)
326 so as not to confuse gengtype. */
327 typedef generic_wide_int < fixed_wide_int_storage <WIDE_INT_MAX_PRECISION * 2> > widest2_int;
328
329 /* wi::storage_ref can be a reference to a primitive type,
330 so this is the conservatively-correct setting. */
331 template <bool SE, bool HDP = true>
332 class wide_int_ref_storage;
333
334 typedef generic_wide_int <wide_int_ref_storage <false> > wide_int_ref;
335
336 /* This can be used instead of wide_int_ref if the referenced value is
337 known to have type T. It carries across properties of T's representation,
338 such as whether excess upper bits in a HWI are defined, and can therefore
339 help avoid redundant work.
340
341 The macro could be replaced with a template typedef, once we're able
342 to use those. */
343 #define WIDE_INT_REF_FOR(T) \
344 generic_wide_int \
345 <wide_int_ref_storage <wi::int_traits <T>::is_sign_extended, \
346 wi::int_traits <T>::host_dependent_precision> >
347
348 namespace wi
349 {
350 /* Operations that calculate overflow do so even for
351 TYPE_OVERFLOW_WRAPS types. For example, adding 1 to +MAX_INT in
352 an unsigned int is 0 and does not overflow in C/C++, but wi::add
353 will set the overflow argument in case it's needed for further
354 analysis.
355
356 For operations that require overflow, these are the different
357 types of overflow. */
358 enum overflow_type {
359 OVF_NONE = 0,
360 OVF_UNDERFLOW = -1,
361 OVF_OVERFLOW = 1,
362 /* There was an overflow, but we are unsure whether it was an
363 overflow or an underflow. */
364 OVF_UNKNOWN = 2
365 };
366
367 /* Classifies an integer based on its precision. */
368 enum precision_type {
369 /* The integer has both a precision and defined signedness. This allows
370 the integer to be converted to any width, since we know whether to fill
371 any extra bits with zeros or signs. */
372 FLEXIBLE_PRECISION,
373
374 /* The integer has a variable precision but no defined signedness. */
375 VAR_PRECISION,
376
377 /* The integer has a constant precision (known at GCC compile time)
378 and is signed. */
379 CONST_PRECISION
380 };
381
382 /* This class, which has no default implementation, is expected to
383 provide the following members:
384
385 static const enum precision_type precision_type;
386 Classifies the type of T.
387
388 static const unsigned int precision;
389 Only defined if precision_type == CONST_PRECISION. Specifies the
390 precision of all integers of type T.
391
392 static const bool host_dependent_precision;
393 True if the precision of T depends (or can depend) on the host.
394
395 static unsigned int get_precision (const T &x)
396 Return the number of bits in X.
397
398 static wi::storage_ref *decompose (HOST_WIDE_INT *scratch,
399 unsigned int precision, const T &x)
400 Decompose X as a PRECISION-bit integer, returning the associated
401 wi::storage_ref. SCRATCH is available as scratch space if needed.
402 The routine should assert that PRECISION is acceptable. */
403 template <typename T> struct int_traits;
404
405 /* This class provides a single type, result_type, which specifies the
406 type of integer produced by a binary operation whose inputs have
407 types T1 and T2. The definition should be symmetric. */
408 template <typename T1, typename T2,
409 enum precision_type P1 = int_traits <T1>::precision_type,
410 enum precision_type P2 = int_traits <T2>::precision_type>
411 struct binary_traits;
412
413 /* Specify the result type for each supported combination of binary
414 inputs. Note that CONST_PRECISION and VAR_PRECISION cannot be
415 mixed, in order to give stronger type checking. When both inputs
416 are CONST_PRECISION, they must have the same precision. */
417 template <typename T1, typename T2>
418 struct binary_traits <T1, T2, FLEXIBLE_PRECISION, FLEXIBLE_PRECISION>
419 {
420 typedef widest_int result_type;
421 /* Don't define operators for this combination. */
422 };
423
424 template <typename T1, typename T2>
425 struct binary_traits <T1, T2, FLEXIBLE_PRECISION, VAR_PRECISION>
426 {
427 typedef wide_int result_type;
428 typedef result_type operator_result;
429 typedef bool predicate_result;
430 };
431
432 template <typename T1, typename T2>
433 struct binary_traits <T1, T2, FLEXIBLE_PRECISION, CONST_PRECISION>
434 {
435 /* Spelled out explicitly (rather than through FIXED_WIDE_INT)
436 so as not to confuse gengtype. */
437 typedef generic_wide_int < fixed_wide_int_storage
438 <int_traits <T2>::precision> > result_type;
439 typedef result_type operator_result;
440 typedef bool predicate_result;
441 typedef result_type signed_shift_result_type;
442 typedef bool signed_predicate_result;
443 };
444
445 template <typename T1, typename T2>
446 struct binary_traits <T1, T2, VAR_PRECISION, FLEXIBLE_PRECISION>
447 {
448 typedef wide_int result_type;
449 typedef result_type operator_result;
450 typedef bool predicate_result;
451 };
452
453 template <typename T1, typename T2>
454 struct binary_traits <T1, T2, CONST_PRECISION, FLEXIBLE_PRECISION>
455 {
456 /* Spelled out explicitly (rather than through FIXED_WIDE_INT)
457 so as not to confuse gengtype. */
458 typedef generic_wide_int < fixed_wide_int_storage
459 <int_traits <T1>::precision> > result_type;
460 typedef result_type operator_result;
461 typedef bool predicate_result;
462 typedef result_type signed_shift_result_type;
463 typedef bool signed_predicate_result;
464 };
465
466 template <typename T1, typename T2>
467 struct binary_traits <T1, T2, CONST_PRECISION, CONST_PRECISION>
468 {
469 STATIC_ASSERT (int_traits <T1>::precision == int_traits <T2>::precision);
470 /* Spelled out explicitly (rather than through FIXED_WIDE_INT)
471 so as not to confuse gengtype. */
472 typedef generic_wide_int < fixed_wide_int_storage
473 <int_traits <T1>::precision> > result_type;
474 typedef result_type operator_result;
475 typedef bool predicate_result;
476 typedef result_type signed_shift_result_type;
477 typedef bool signed_predicate_result;
478 };
479
480 template <typename T1, typename T2>
481 struct binary_traits <T1, T2, VAR_PRECISION, VAR_PRECISION>
482 {
483 typedef wide_int result_type;
484 typedef result_type operator_result;
485 typedef bool predicate_result;
486 };
487 }
488
489 /* Public functions for querying and operating on integers. */
490 namespace wi
491 {
492 template <typename T>
493 unsigned int get_precision (const T &);
494
495 template <typename T1, typename T2>
496 unsigned int get_binary_precision (const T1 &, const T2 &);
497
498 template <typename T1, typename T2>
499 void copy (T1 &, const T2 &);
500
501 #define UNARY_PREDICATE \
502 template <typename T> bool
503 #define UNARY_FUNCTION \
504 template <typename T> WI_UNARY_RESULT (T)
505 #define BINARY_PREDICATE \
506 template <typename T1, typename T2> bool
507 #define BINARY_FUNCTION \
508 template <typename T1, typename T2> WI_BINARY_RESULT (T1, T2)
509 #define SHIFT_FUNCTION \
510 template <typename T1, typename T2> WI_UNARY_RESULT (T1)
511
512 UNARY_PREDICATE fits_shwi_p (const T &);
513 UNARY_PREDICATE fits_uhwi_p (const T &);
514 UNARY_PREDICATE neg_p (const T &, signop = SIGNED);
515
516 template <typename T>
517 HOST_WIDE_INT sign_mask (const T &);
518
519 BINARY_PREDICATE eq_p (const T1 &, const T2 &);
520 BINARY_PREDICATE ne_p (const T1 &, const T2 &);
521 BINARY_PREDICATE lt_p (const T1 &, const T2 &, signop);
522 BINARY_PREDICATE lts_p (const T1 &, const T2 &);
523 BINARY_PREDICATE ltu_p (const T1 &, const T2 &);
524 BINARY_PREDICATE le_p (const T1 &, const T2 &, signop);
525 BINARY_PREDICATE les_p (const T1 &, const T2 &);
526 BINARY_PREDICATE leu_p (const T1 &, const T2 &);
527 BINARY_PREDICATE gt_p (const T1 &, const T2 &, signop);
528 BINARY_PREDICATE gts_p (const T1 &, const T2 &);
529 BINARY_PREDICATE gtu_p (const T1 &, const T2 &);
530 BINARY_PREDICATE ge_p (const T1 &, const T2 &, signop);
531 BINARY_PREDICATE ges_p (const T1 &, const T2 &);
532 BINARY_PREDICATE geu_p (const T1 &, const T2 &);
533
534 template <typename T1, typename T2>
535 int cmp (const T1 &, const T2 &, signop);
536
537 template <typename T1, typename T2>
538 int cmps (const T1 &, const T2 &);
539
540 template <typename T1, typename T2>
541 int cmpu (const T1 &, const T2 &);
542
543 UNARY_FUNCTION bit_not (const T &);
544 UNARY_FUNCTION neg (const T &);
545 UNARY_FUNCTION neg (const T &, overflow_type *);
546 UNARY_FUNCTION abs (const T &);
547 UNARY_FUNCTION ext (const T &, unsigned int, signop);
548 UNARY_FUNCTION sext (const T &, unsigned int);
549 UNARY_FUNCTION zext (const T &, unsigned int);
550 UNARY_FUNCTION set_bit (const T &, unsigned int);
551
552 BINARY_FUNCTION min (const T1 &, const T2 &, signop);
553 BINARY_FUNCTION smin (const T1 &, const T2 &);
554 BINARY_FUNCTION umin (const T1 &, const T2 &);
555 BINARY_FUNCTION max (const T1 &, const T2 &, signop);
556 BINARY_FUNCTION smax (const T1 &, const T2 &);
557 BINARY_FUNCTION umax (const T1 &, const T2 &);
558
559 BINARY_FUNCTION bit_and (const T1 &, const T2 &);
560 BINARY_FUNCTION bit_and_not (const T1 &, const T2 &);
561 BINARY_FUNCTION bit_or (const T1 &, const T2 &);
562 BINARY_FUNCTION bit_or_not (const T1 &, const T2 &);
563 BINARY_FUNCTION bit_xor (const T1 &, const T2 &);
564 BINARY_FUNCTION add (const T1 &, const T2 &);
565 BINARY_FUNCTION add (const T1 &, const T2 &, signop, overflow_type *);
566 BINARY_FUNCTION sub (const T1 &, const T2 &);
567 BINARY_FUNCTION sub (const T1 &, const T2 &, signop, overflow_type *);
568 BINARY_FUNCTION mul (const T1 &, const T2 &);
569 BINARY_FUNCTION mul (const T1 &, const T2 &, signop, overflow_type *);
570 BINARY_FUNCTION smul (const T1 &, const T2 &, overflow_type *);
571 BINARY_FUNCTION umul (const T1 &, const T2 &, overflow_type *);
572 BINARY_FUNCTION mul_high (const T1 &, const T2 &, signop);
573 BINARY_FUNCTION div_trunc (const T1 &, const T2 &, signop,
574 overflow_type * = 0);
575 BINARY_FUNCTION sdiv_trunc (const T1 &, const T2 &);
576 BINARY_FUNCTION udiv_trunc (const T1 &, const T2 &);
577 BINARY_FUNCTION div_floor (const T1 &, const T2 &, signop,
578 overflow_type * = 0);
579 BINARY_FUNCTION udiv_floor (const T1 &, const T2 &);
580 BINARY_FUNCTION sdiv_floor (const T1 &, const T2 &);
581 BINARY_FUNCTION div_ceil (const T1 &, const T2 &, signop,
582 overflow_type * = 0);
583 BINARY_FUNCTION udiv_ceil (const T1 &, const T2 &);
584 BINARY_FUNCTION div_round (const T1 &, const T2 &, signop,
585 overflow_type * = 0);
586 BINARY_FUNCTION divmod_trunc (const T1 &, const T2 &, signop,
587 WI_BINARY_RESULT (T1, T2) *);
588 BINARY_FUNCTION gcd (const T1 &, const T2 &, signop = UNSIGNED);
589 BINARY_FUNCTION mod_trunc (const T1 &, const T2 &, signop,
590 overflow_type * = 0);
591 BINARY_FUNCTION smod_trunc (const T1 &, const T2 &);
592 BINARY_FUNCTION umod_trunc (const T1 &, const T2 &);
593 BINARY_FUNCTION mod_floor (const T1 &, const T2 &, signop,
594 overflow_type * = 0);
595 BINARY_FUNCTION umod_floor (const T1 &, const T2 &);
596 BINARY_FUNCTION mod_ceil (const T1 &, const T2 &, signop,
597 overflow_type * = 0);
598 BINARY_FUNCTION mod_round (const T1 &, const T2 &, signop,
599 overflow_type * = 0);
600
601 template <typename T1, typename T2>
602 bool multiple_of_p (const T1 &, const T2 &, signop);
603
604 template <typename T1, typename T2>
605 bool multiple_of_p (const T1 &, const T2 &, signop,
606 WI_BINARY_RESULT (T1, T2) *);
607
608 SHIFT_FUNCTION lshift (const T1 &, const T2 &);
609 SHIFT_FUNCTION lrshift (const T1 &, const T2 &);
610 SHIFT_FUNCTION arshift (const T1 &, const T2 &);
611 SHIFT_FUNCTION rshift (const T1 &, const T2 &, signop sgn);
612 SHIFT_FUNCTION lrotate (const T1 &, const T2 &, unsigned int = 0);
613 SHIFT_FUNCTION rrotate (const T1 &, const T2 &, unsigned int = 0);
614
615 #undef SHIFT_FUNCTION
616 #undef BINARY_PREDICATE
617 #undef BINARY_FUNCTION
618 #undef UNARY_PREDICATE
619 #undef UNARY_FUNCTION
620
621 bool only_sign_bit_p (const wide_int_ref &, unsigned int);
622 bool only_sign_bit_p (const wide_int_ref &);
623 int clz (const wide_int_ref &);
624 int clrsb (const wide_int_ref &);
625 int ctz (const wide_int_ref &);
626 int exact_log2 (const wide_int_ref &);
627 int floor_log2 (const wide_int_ref &);
628 int ffs (const wide_int_ref &);
629 int popcount (const wide_int_ref &);
630 int parity (const wide_int_ref &);
631
632 template <typename T>
633 unsigned HOST_WIDE_INT extract_uhwi (const T &, unsigned int, unsigned int);
634
635 template <typename T>
636 unsigned int min_precision (const T &, signop);
637
638 static inline void accumulate_overflow (overflow_type &, overflow_type);
639 }
640
641 namespace wi
642 {
643 /* Contains the components of a decomposed integer for easy, direct
644 access. */
645 class storage_ref
646 {
647 public:
648 storage_ref () {}
649 storage_ref (const HOST_WIDE_INT *, unsigned int, unsigned int);
650
651 const HOST_WIDE_INT *val;
652 unsigned int len;
653 unsigned int precision;
654
655 /* Provide enough trappings for this class to act as storage for
656 generic_wide_int. */
657 unsigned int get_len () const;
658 unsigned int get_precision () const;
659 const HOST_WIDE_INT *get_val () const;
660 };
661 }
662
663 inline::wi::storage_ref::storage_ref (const HOST_WIDE_INT *val_in,
664 unsigned int len_in,
665 unsigned int precision_in)
666 : val (val_in), len (len_in), precision (precision_in)
667 {
668 }
669
670 inline unsigned int
671 wi::storage_ref::get_len () const
672 {
673 return len;
674 }
675
676 inline unsigned int
677 wi::storage_ref::get_precision () const
678 {
679 return precision;
680 }
681
682 inline const HOST_WIDE_INT *
683 wi::storage_ref::get_val () const
684 {
685 return val;
686 }
687
688 /* This class defines an integer type using the storage provided by the
689 template argument. The storage class must provide the following
690 functions:
691
692 unsigned int get_precision () const
693 Return the number of bits in the integer.
694
695 HOST_WIDE_INT *get_val () const
696 Return a pointer to the array of blocks that encodes the integer.
697
698 unsigned int get_len () const
699 Return the number of blocks in get_val (). If this is smaller
700 than the number of blocks implied by get_precision (), the
701 remaining blocks are sign extensions of block get_len () - 1.
702
703 Although not required by generic_wide_int itself, writable storage
704 classes can also provide the following functions:
705
706 HOST_WIDE_INT *write_val ()
707 Get a modifiable version of get_val ()
708
709 unsigned int set_len (unsigned int len)
710 Set the value returned by get_len () to LEN. */
711 template <typename storage>
712 class GTY(()) generic_wide_int : public storage
713 {
714 public:
715 generic_wide_int ();
716
717 template <typename T>
718 generic_wide_int (const T &);
719
720 template <typename T>
721 generic_wide_int (const T &, unsigned int);
722
723 /* Conversions. */
724 HOST_WIDE_INT to_shwi (unsigned int) const;
725 HOST_WIDE_INT to_shwi () const;
726 unsigned HOST_WIDE_INT to_uhwi (unsigned int) const;
727 unsigned HOST_WIDE_INT to_uhwi () const;
728 HOST_WIDE_INT to_short_addr () const;
729
730 /* Public accessors for the interior of a wide int. */
731 HOST_WIDE_INT sign_mask () const;
732 HOST_WIDE_INT elt (unsigned int) const;
733 HOST_WIDE_INT sext_elt (unsigned int) const;
734 unsigned HOST_WIDE_INT ulow () const;
735 unsigned HOST_WIDE_INT uhigh () const;
736 HOST_WIDE_INT slow () const;
737 HOST_WIDE_INT shigh () const;
738
739 template <typename T>
740 generic_wide_int &operator = (const T &);
741
742 #define ASSIGNMENT_OPERATOR(OP, F) \
743 template <typename T> \
744 generic_wide_int &OP (const T &c) { return (*this = wi::F (*this, c)); }
745
746 /* Restrict these to cases where the shift operator is defined. */
747 #define SHIFT_ASSIGNMENT_OPERATOR(OP, OP2) \
748 template <typename T> \
749 generic_wide_int &OP (const T &c) { return (*this = *this OP2 c); }
750
751 #define INCDEC_OPERATOR(OP, DELTA) \
752 generic_wide_int &OP () { *this += DELTA; return *this; }
753
754 ASSIGNMENT_OPERATOR (operator &=, bit_and)
755 ASSIGNMENT_OPERATOR (operator |=, bit_or)
756 ASSIGNMENT_OPERATOR (operator ^=, bit_xor)
757 ASSIGNMENT_OPERATOR (operator +=, add)
758 ASSIGNMENT_OPERATOR (operator -=, sub)
759 ASSIGNMENT_OPERATOR (operator *=, mul)
760 ASSIGNMENT_OPERATOR (operator <<=, lshift)
761 SHIFT_ASSIGNMENT_OPERATOR (operator >>=, >>)
762 INCDEC_OPERATOR (operator ++, 1)
763 INCDEC_OPERATOR (operator --, -1)
764
765 #undef SHIFT_ASSIGNMENT_OPERATOR
766 #undef ASSIGNMENT_OPERATOR
767 #undef INCDEC_OPERATOR
768
769 /* Debugging functions. */
770 void dump () const;
771
772 static const bool is_sign_extended
773 = wi::int_traits <generic_wide_int <storage> >::is_sign_extended;
774 };
775
776 template <typename storage>
777 inline generic_wide_int <storage>::generic_wide_int () {}
778
779 template <typename storage>
780 template <typename T>
781 inline generic_wide_int <storage>::generic_wide_int (const T &x)
782 : storage (x)
783 {
784 }
785
786 template <typename storage>
787 template <typename T>
788 inline generic_wide_int <storage>::generic_wide_int (const T &x,
789 unsigned int precision)
790 : storage (x, precision)
791 {
792 }
793
794 /* Return THIS as a signed HOST_WIDE_INT, sign-extending from PRECISION.
795 If THIS does not fit in PRECISION, the information is lost. */
796 template <typename storage>
797 inline HOST_WIDE_INT
798 generic_wide_int <storage>::to_shwi (unsigned int precision) const
799 {
800 if (precision < HOST_BITS_PER_WIDE_INT)
801 return sext_hwi (this->get_val ()[0], precision);
802 else
803 return this->get_val ()[0];
804 }
805
806 /* Return THIS as a signed HOST_WIDE_INT, in its natural precision. */
807 template <typename storage>
808 inline HOST_WIDE_INT
809 generic_wide_int <storage>::to_shwi () const
810 {
811 if (is_sign_extended)
812 return this->get_val ()[0];
813 else
814 return to_shwi (this->get_precision ());
815 }
816
817 /* Return THIS as an unsigned HOST_WIDE_INT, zero-extending from
818 PRECISION. If THIS does not fit in PRECISION, the information
819 is lost. */
820 template <typename storage>
821 inline unsigned HOST_WIDE_INT
822 generic_wide_int <storage>::to_uhwi (unsigned int precision) const
823 {
824 if (precision < HOST_BITS_PER_WIDE_INT)
825 return zext_hwi (this->get_val ()[0], precision);
826 else
827 return this->get_val ()[0];
828 }
829
830 /* Return THIS as an signed HOST_WIDE_INT, in its natural precision. */
831 template <typename storage>
832 inline unsigned HOST_WIDE_INT
833 generic_wide_int <storage>::to_uhwi () const
834 {
835 return to_uhwi (this->get_precision ());
836 }
837
838 /* TODO: The compiler is half converted from using HOST_WIDE_INT to
839 represent addresses to using offset_int to represent addresses.
840 We use to_short_addr at the interface from new code to old,
841 unconverted code. */
842 template <typename storage>
843 inline HOST_WIDE_INT
844 generic_wide_int <storage>::to_short_addr () const
845 {
846 return this->get_val ()[0];
847 }
848
849 /* Return the implicit value of blocks above get_len (). */
850 template <typename storage>
851 inline HOST_WIDE_INT
852 generic_wide_int <storage>::sign_mask () const
853 {
854 unsigned int len = this->get_len ();
855 gcc_assert (len > 0);
856
857 unsigned HOST_WIDE_INT high = this->get_val ()[len - 1];
858 if (!is_sign_extended)
859 {
860 unsigned int precision = this->get_precision ();
861 int excess = len * HOST_BITS_PER_WIDE_INT - precision;
862 if (excess > 0)
863 high <<= excess;
864 }
865 return (HOST_WIDE_INT) (high) < 0 ? -1 : 0;
866 }
867
868 /* Return the signed value of the least-significant explicitly-encoded
869 block. */
870 template <typename storage>
871 inline HOST_WIDE_INT
872 generic_wide_int <storage>::slow () const
873 {
874 return this->get_val ()[0];
875 }
876
877 /* Return the signed value of the most-significant explicitly-encoded
878 block. */
879 template <typename storage>
880 inline HOST_WIDE_INT
881 generic_wide_int <storage>::shigh () const
882 {
883 return this->get_val ()[this->get_len () - 1];
884 }
885
886 /* Return the unsigned value of the least-significant
887 explicitly-encoded block. */
888 template <typename storage>
889 inline unsigned HOST_WIDE_INT
890 generic_wide_int <storage>::ulow () const
891 {
892 return this->get_val ()[0];
893 }
894
895 /* Return the unsigned value of the most-significant
896 explicitly-encoded block. */
897 template <typename storage>
898 inline unsigned HOST_WIDE_INT
899 generic_wide_int <storage>::uhigh () const
900 {
901 return this->get_val ()[this->get_len () - 1];
902 }
903
904 /* Return block I, which might be implicitly or explicit encoded. */
905 template <typename storage>
906 inline HOST_WIDE_INT
907 generic_wide_int <storage>::elt (unsigned int i) const
908 {
909 if (i >= this->get_len ())
910 return sign_mask ();
911 else
912 return this->get_val ()[i];
913 }
914
915 /* Like elt, but sign-extend beyond the upper bit, instead of returning
916 the raw encoding. */
917 template <typename storage>
918 inline HOST_WIDE_INT
919 generic_wide_int <storage>::sext_elt (unsigned int i) const
920 {
921 HOST_WIDE_INT elt_i = elt (i);
922 if (!is_sign_extended)
923 {
924 unsigned int precision = this->get_precision ();
925 unsigned int lsb = i * HOST_BITS_PER_WIDE_INT;
926 if (precision - lsb < HOST_BITS_PER_WIDE_INT)
927 elt_i = sext_hwi (elt_i, precision - lsb);
928 }
929 return elt_i;
930 }
931
932 template <typename storage>
933 template <typename T>
934 inline generic_wide_int <storage> &
935 generic_wide_int <storage>::operator = (const T &x)
936 {
937 storage::operator = (x);
938 return *this;
939 }
940
941 /* Dump the contents of the integer to stderr, for debugging. */
942 template <typename storage>
943 void
944 generic_wide_int <storage>::dump () const
945 {
946 unsigned int len = this->get_len ();
947 const HOST_WIDE_INT *val = this->get_val ();
948 unsigned int precision = this->get_precision ();
949 fprintf (stderr, "[");
950 if (len * HOST_BITS_PER_WIDE_INT < precision)
951 fprintf (stderr, "...,");
952 for (unsigned int i = 0; i < len - 1; ++i)
953 fprintf (stderr, HOST_WIDE_INT_PRINT_HEX ",", val[len - 1 - i]);
954 fprintf (stderr, HOST_WIDE_INT_PRINT_HEX "], precision = %d\n",
955 val[0], precision);
956 }
957
958 namespace wi
959 {
960 template <typename storage>
961 struct int_traits < generic_wide_int <storage> >
962 : public wi::int_traits <storage>
963 {
964 static unsigned int get_precision (const generic_wide_int <storage> &);
965 static wi::storage_ref decompose (HOST_WIDE_INT *, unsigned int,
966 const generic_wide_int <storage> &);
967 };
968 }
969
970 template <typename storage>
971 inline unsigned int
972 wi::int_traits < generic_wide_int <storage> >::
973 get_precision (const generic_wide_int <storage> &x)
974 {
975 return x.get_precision ();
976 }
977
978 template <typename storage>
979 inline wi::storage_ref
980 wi::int_traits < generic_wide_int <storage> >::
981 decompose (HOST_WIDE_INT *, unsigned int precision,
982 const generic_wide_int <storage> &x)
983 {
984 gcc_checking_assert (precision == x.get_precision ());
985 return wi::storage_ref (x.get_val (), x.get_len (), precision);
986 }
987
988 /* Provide the storage for a wide_int_ref. This acts like a read-only
989 wide_int, with the optimization that VAL is normally a pointer to
990 another integer's storage, so that no array copy is needed. */
991 template <bool SE, bool HDP>
992 class wide_int_ref_storage : public wi::storage_ref
993 {
994 private:
995 /* Scratch space that can be used when decomposing the original integer.
996 It must live as long as this object. */
997 HOST_WIDE_INT scratch[2];
998
999 public:
1000 wide_int_ref_storage () {}
1001
1002 wide_int_ref_storage (const wi::storage_ref &);
1003
1004 template <typename T>
1005 wide_int_ref_storage (const T &);
1006
1007 template <typename T>
1008 wide_int_ref_storage (const T &, unsigned int);
1009 };
1010
1011 /* Create a reference from an existing reference. */
1012 template <bool SE, bool HDP>
1013 inline wide_int_ref_storage <SE, HDP>::
1014 wide_int_ref_storage (const wi::storage_ref &x)
1015 : storage_ref (x)
1016 {}
1017
1018 /* Create a reference to integer X in its natural precision. Note
1019 that the natural precision is host-dependent for primitive
1020 types. */
1021 template <bool SE, bool HDP>
1022 template <typename T>
1023 inline wide_int_ref_storage <SE, HDP>::wide_int_ref_storage (const T &x)
1024 : storage_ref (wi::int_traits <T>::decompose (scratch,
1025 wi::get_precision (x), x))
1026 {
1027 }
1028
1029 /* Create a reference to integer X in precision PRECISION. */
1030 template <bool SE, bool HDP>
1031 template <typename T>
1032 inline wide_int_ref_storage <SE, HDP>::
1033 wide_int_ref_storage (const T &x, unsigned int precision)
1034 : storage_ref (wi::int_traits <T>::decompose (scratch, precision, x))
1035 {
1036 }
1037
1038 namespace wi
1039 {
1040 template <bool SE, bool HDP>
1041 struct int_traits <wide_int_ref_storage <SE, HDP> >
1042 {
1043 static const enum precision_type precision_type = VAR_PRECISION;
1044 static const bool host_dependent_precision = HDP;
1045 static const bool is_sign_extended = SE;
1046 };
1047 }
1048
1049 namespace wi
1050 {
1051 unsigned int force_to_size (HOST_WIDE_INT *, const HOST_WIDE_INT *,
1052 unsigned int, unsigned int, unsigned int,
1053 signop sgn);
1054 unsigned int from_array (HOST_WIDE_INT *, const HOST_WIDE_INT *,
1055 unsigned int, unsigned int, bool = true);
1056 }
1057
1058 /* The storage used by wide_int. */
1059 class GTY(()) wide_int_storage
1060 {
1061 private:
1062 HOST_WIDE_INT val[WIDE_INT_MAX_ELTS];
1063 unsigned int len;
1064 unsigned int precision;
1065
1066 public:
1067 wide_int_storage ();
1068 template <typename T>
1069 wide_int_storage (const T &);
1070
1071 /* The standard generic_wide_int storage methods. */
1072 unsigned int get_precision () const;
1073 const HOST_WIDE_INT *get_val () const;
1074 unsigned int get_len () const;
1075 HOST_WIDE_INT *write_val ();
1076 void set_len (unsigned int, bool = false);
1077
1078 template <typename T>
1079 wide_int_storage &operator = (const T &);
1080
1081 static wide_int from (const wide_int_ref &, unsigned int, signop);
1082 static wide_int from_array (const HOST_WIDE_INT *, unsigned int,
1083 unsigned int, bool = true);
1084 static wide_int create (unsigned int);
1085
1086 /* FIXME: target-dependent, so should disappear. */
1087 wide_int bswap () const;
1088 };
1089
1090 namespace wi
1091 {
1092 template <>
1093 struct int_traits <wide_int_storage>
1094 {
1095 static const enum precision_type precision_type = VAR_PRECISION;
1096 /* Guaranteed by a static assert in the wide_int_storage constructor. */
1097 static const bool host_dependent_precision = false;
1098 static const bool is_sign_extended = true;
1099 template <typename T1, typename T2>
1100 static wide_int get_binary_result (const T1 &, const T2 &);
1101 };
1102 }
1103
1104 inline wide_int_storage::wide_int_storage () {}
1105
1106 /* Initialize the storage from integer X, in its natural precision.
1107 Note that we do not allow integers with host-dependent precision
1108 to become wide_ints; wide_ints must always be logically independent
1109 of the host. */
1110 template <typename T>
1111 inline wide_int_storage::wide_int_storage (const T &x)
1112 {
1113 { STATIC_ASSERT (!wi::int_traits<T>::host_dependent_precision); }
1114 { STATIC_ASSERT (wi::int_traits<T>::precision_type != wi::CONST_PRECISION); }
1115 WIDE_INT_REF_FOR (T) xi (x);
1116 precision = xi.precision;
1117 wi::copy (*this, xi);
1118 }
1119
1120 template <typename T>
1121 inline wide_int_storage&
1122 wide_int_storage::operator = (const T &x)
1123 {
1124 { STATIC_ASSERT (!wi::int_traits<T>::host_dependent_precision); }
1125 { STATIC_ASSERT (wi::int_traits<T>::precision_type != wi::CONST_PRECISION); }
1126 WIDE_INT_REF_FOR (T) xi (x);
1127 precision = xi.precision;
1128 wi::copy (*this, xi);
1129 return *this;
1130 }
1131
1132 inline unsigned int
1133 wide_int_storage::get_precision () const
1134 {
1135 return precision;
1136 }
1137
1138 inline const HOST_WIDE_INT *
1139 wide_int_storage::get_val () const
1140 {
1141 return val;
1142 }
1143
1144 inline unsigned int
1145 wide_int_storage::get_len () const
1146 {
1147 return len;
1148 }
1149
1150 inline HOST_WIDE_INT *
1151 wide_int_storage::write_val ()
1152 {
1153 return val;
1154 }
1155
1156 inline void
1157 wide_int_storage::set_len (unsigned int l, bool is_sign_extended)
1158 {
1159 len = l;
1160 if (!is_sign_extended && len * HOST_BITS_PER_WIDE_INT > precision)
1161 val[len - 1] = sext_hwi (val[len - 1],
1162 precision % HOST_BITS_PER_WIDE_INT);
1163 }
1164
1165 /* Treat X as having signedness SGN and convert it to a PRECISION-bit
1166 number. */
1167 inline wide_int
1168 wide_int_storage::from (const wide_int_ref &x, unsigned int precision,
1169 signop sgn)
1170 {
1171 wide_int result = wide_int::create (precision);
1172 result.set_len (wi::force_to_size (result.write_val (), x.val, x.len,
1173 x.precision, precision, sgn));
1174 return result;
1175 }
1176
1177 /* Create a wide_int from the explicit block encoding given by VAL and
1178 LEN. PRECISION is the precision of the integer. NEED_CANON_P is
1179 true if the encoding may have redundant trailing blocks. */
1180 inline wide_int
1181 wide_int_storage::from_array (const HOST_WIDE_INT *val, unsigned int len,
1182 unsigned int precision, bool need_canon_p)
1183 {
1184 wide_int result = wide_int::create (precision);
1185 result.set_len (wi::from_array (result.write_val (), val, len, precision,
1186 need_canon_p));
1187 return result;
1188 }
1189
1190 /* Return an uninitialized wide_int with precision PRECISION. */
1191 inline wide_int
1192 wide_int_storage::create (unsigned int precision)
1193 {
1194 wide_int x;
1195 x.precision = precision;
1196 return x;
1197 }
1198
1199 template <typename T1, typename T2>
1200 inline wide_int
1201 wi::int_traits <wide_int_storage>::get_binary_result (const T1 &x, const T2 &y)
1202 {
1203 /* This shouldn't be used for two flexible-precision inputs. */
1204 STATIC_ASSERT (wi::int_traits <T1>::precision_type != FLEXIBLE_PRECISION
1205 || wi::int_traits <T2>::precision_type != FLEXIBLE_PRECISION);
1206 if (wi::int_traits <T1>::precision_type == FLEXIBLE_PRECISION)
1207 return wide_int::create (wi::get_precision (y));
1208 else
1209 return wide_int::create (wi::get_precision (x));
1210 }
1211
1212 /* The storage used by FIXED_WIDE_INT (N). */
1213 template <int N>
1214 class GTY(()) fixed_wide_int_storage
1215 {
1216 private:
1217 HOST_WIDE_INT val[(N + HOST_BITS_PER_WIDE_INT + 1) / HOST_BITS_PER_WIDE_INT];
1218 unsigned int len;
1219
1220 public:
1221 fixed_wide_int_storage ();
1222 template <typename T>
1223 fixed_wide_int_storage (const T &);
1224
1225 /* The standard generic_wide_int storage methods. */
1226 unsigned int get_precision () const;
1227 const HOST_WIDE_INT *get_val () const;
1228 unsigned int get_len () const;
1229 HOST_WIDE_INT *write_val ();
1230 void set_len (unsigned int, bool = false);
1231
1232 static FIXED_WIDE_INT (N) from (const wide_int_ref &, signop);
1233 static FIXED_WIDE_INT (N) from_array (const HOST_WIDE_INT *, unsigned int,
1234 bool = true);
1235 };
1236
1237 namespace wi
1238 {
1239 template <int N>
1240 struct int_traits < fixed_wide_int_storage <N> >
1241 {
1242 static const enum precision_type precision_type = CONST_PRECISION;
1243 static const bool host_dependent_precision = false;
1244 static const bool is_sign_extended = true;
1245 static const unsigned int precision = N;
1246 template <typename T1, typename T2>
1247 static FIXED_WIDE_INT (N) get_binary_result (const T1 &, const T2 &);
1248 };
1249 }
1250
1251 template <int N>
1252 inline fixed_wide_int_storage <N>::fixed_wide_int_storage () {}
1253
1254 /* Initialize the storage from integer X, in precision N. */
1255 template <int N>
1256 template <typename T>
1257 inline fixed_wide_int_storage <N>::fixed_wide_int_storage (const T &x)
1258 {
1259 /* Check for type compatibility. We don't want to initialize a
1260 fixed-width integer from something like a wide_int. */
1261 WI_BINARY_RESULT (T, FIXED_WIDE_INT (N)) *assertion ATTRIBUTE_UNUSED;
1262 wi::copy (*this, WIDE_INT_REF_FOR (T) (x, N));
1263 }
1264
1265 template <int N>
1266 inline unsigned int
1267 fixed_wide_int_storage <N>::get_precision () const
1268 {
1269 return N;
1270 }
1271
1272 template <int N>
1273 inline const HOST_WIDE_INT *
1274 fixed_wide_int_storage <N>::get_val () const
1275 {
1276 return val;
1277 }
1278
1279 template <int N>
1280 inline unsigned int
1281 fixed_wide_int_storage <N>::get_len () const
1282 {
1283 return len;
1284 }
1285
1286 template <int N>
1287 inline HOST_WIDE_INT *
1288 fixed_wide_int_storage <N>::write_val ()
1289 {
1290 return val;
1291 }
1292
1293 template <int N>
1294 inline void
1295 fixed_wide_int_storage <N>::set_len (unsigned int l, bool)
1296 {
1297 len = l;
1298 /* There are no excess bits in val[len - 1]. */
1299 STATIC_ASSERT (N % HOST_BITS_PER_WIDE_INT == 0);
1300 }
1301
1302 /* Treat X as having signedness SGN and convert it to an N-bit number. */
1303 template <int N>
1304 inline FIXED_WIDE_INT (N)
1305 fixed_wide_int_storage <N>::from (const wide_int_ref &x, signop sgn)
1306 {
1307 FIXED_WIDE_INT (N) result;
1308 result.set_len (wi::force_to_size (result.write_val (), x.val, x.len,
1309 x.precision, N, sgn));
1310 return result;
1311 }
1312
1313 /* Create a FIXED_WIDE_INT (N) from the explicit block encoding given by
1314 VAL and LEN. NEED_CANON_P is true if the encoding may have redundant
1315 trailing blocks. */
1316 template <int N>
1317 inline FIXED_WIDE_INT (N)
1318 fixed_wide_int_storage <N>::from_array (const HOST_WIDE_INT *val,
1319 unsigned int len,
1320 bool need_canon_p)
1321 {
1322 FIXED_WIDE_INT (N) result;
1323 result.set_len (wi::from_array (result.write_val (), val, len,
1324 N, need_canon_p));
1325 return result;
1326 }
1327
1328 template <int N>
1329 template <typename T1, typename T2>
1330 inline FIXED_WIDE_INT (N)
1331 wi::int_traits < fixed_wide_int_storage <N> >::
1332 get_binary_result (const T1 &, const T2 &)
1333 {
1334 return FIXED_WIDE_INT (N) ();
1335 }
1336
1337 /* A reference to one element of a trailing_wide_ints structure. */
1338 class trailing_wide_int_storage
1339 {
1340 private:
1341 /* The precision of the integer, which is a fixed property of the
1342 parent trailing_wide_ints. */
1343 unsigned int m_precision;
1344
1345 /* A pointer to the length field. */
1346 unsigned char *m_len;
1347
1348 /* A pointer to the HWI array. There are enough elements to hold all
1349 values of precision M_PRECISION. */
1350 HOST_WIDE_INT *m_val;
1351
1352 public:
1353 trailing_wide_int_storage (unsigned int, unsigned char *, HOST_WIDE_INT *);
1354
1355 /* The standard generic_wide_int storage methods. */
1356 unsigned int get_len () const;
1357 unsigned int get_precision () const;
1358 const HOST_WIDE_INT *get_val () const;
1359 HOST_WIDE_INT *write_val ();
1360 void set_len (unsigned int, bool = false);
1361
1362 template <typename T>
1363 trailing_wide_int_storage &operator = (const T &);
1364 };
1365
1366 typedef generic_wide_int <trailing_wide_int_storage> trailing_wide_int;
1367
1368 /* trailing_wide_int behaves like a wide_int. */
1369 namespace wi
1370 {
1371 template <>
1372 struct int_traits <trailing_wide_int_storage>
1373 : public int_traits <wide_int_storage> {};
1374 }
1375
1376 /* An array of N wide_int-like objects that can be put at the end of
1377 a variable-sized structure. Use extra_size to calculate how many
1378 bytes beyond the sizeof need to be allocated. Use set_precision
1379 to initialize the structure. */
1380 template <int N>
1381 struct GTY((user)) trailing_wide_ints
1382 {
1383 private:
1384 /* The shared precision of each number. */
1385 unsigned short m_precision;
1386
1387 /* The shared maximum length of each number. */
1388 unsigned char m_max_len;
1389
1390 /* The current length of each number.
1391 Avoid char array so the whole structure is not a typeless storage
1392 that will, in turn, turn off TBAA on gimple, trees and RTL. */
1393 struct {unsigned char len;} m_len[N];
1394
1395 /* The variable-length part of the structure, which always contains
1396 at least one HWI. Element I starts at index I * M_MAX_LEN. */
1397 HOST_WIDE_INT m_val[1];
1398
1399 public:
1400 typedef WIDE_INT_REF_FOR (trailing_wide_int_storage) const_reference;
1401
1402 void set_precision (unsigned int);
1403 unsigned int get_precision () const { return m_precision; }
1404 trailing_wide_int operator [] (unsigned int);
1405 const_reference operator [] (unsigned int) const;
1406 static size_t extra_size (unsigned int);
1407 size_t extra_size () const { return extra_size (m_precision); }
1408 };
1409
1410 inline trailing_wide_int_storage::
1411 trailing_wide_int_storage (unsigned int precision, unsigned char *len,
1412 HOST_WIDE_INT *val)
1413 : m_precision (precision), m_len (len), m_val (val)
1414 {
1415 }
1416
1417 inline unsigned int
1418 trailing_wide_int_storage::get_len () const
1419 {
1420 return *m_len;
1421 }
1422
1423 inline unsigned int
1424 trailing_wide_int_storage::get_precision () const
1425 {
1426 return m_precision;
1427 }
1428
1429 inline const HOST_WIDE_INT *
1430 trailing_wide_int_storage::get_val () const
1431 {
1432 return m_val;
1433 }
1434
1435 inline HOST_WIDE_INT *
1436 trailing_wide_int_storage::write_val ()
1437 {
1438 return m_val;
1439 }
1440
1441 inline void
1442 trailing_wide_int_storage::set_len (unsigned int len, bool is_sign_extended)
1443 {
1444 *m_len = len;
1445 if (!is_sign_extended && len * HOST_BITS_PER_WIDE_INT > m_precision)
1446 m_val[len - 1] = sext_hwi (m_val[len - 1],
1447 m_precision % HOST_BITS_PER_WIDE_INT);
1448 }
1449
1450 template <typename T>
1451 inline trailing_wide_int_storage &
1452 trailing_wide_int_storage::operator = (const T &x)
1453 {
1454 WIDE_INT_REF_FOR (T) xi (x, m_precision);
1455 wi::copy (*this, xi);
1456 return *this;
1457 }
1458
1459 /* Initialize the structure and record that all elements have precision
1460 PRECISION. */
1461 template <int N>
1462 inline void
1463 trailing_wide_ints <N>::set_precision (unsigned int precision)
1464 {
1465 m_precision = precision;
1466 m_max_len = ((precision + HOST_BITS_PER_WIDE_INT - 1)
1467 / HOST_BITS_PER_WIDE_INT);
1468 }
1469
1470 /* Return a reference to element INDEX. */
1471 template <int N>
1472 inline trailing_wide_int
1473 trailing_wide_ints <N>::operator [] (unsigned int index)
1474 {
1475 return trailing_wide_int_storage (m_precision, &m_len[index].len,
1476 &m_val[index * m_max_len]);
1477 }
1478
1479 template <int N>
1480 inline typename trailing_wide_ints <N>::const_reference
1481 trailing_wide_ints <N>::operator [] (unsigned int index) const
1482 {
1483 return wi::storage_ref (&m_val[index * m_max_len],
1484 m_len[index].len, m_precision);
1485 }
1486
1487 /* Return how many extra bytes need to be added to the end of the structure
1488 in order to handle N wide_ints of precision PRECISION. */
1489 template <int N>
1490 inline size_t
1491 trailing_wide_ints <N>::extra_size (unsigned int precision)
1492 {
1493 unsigned int max_len = ((precision + HOST_BITS_PER_WIDE_INT - 1)
1494 / HOST_BITS_PER_WIDE_INT);
1495 return (N * max_len - 1) * sizeof (HOST_WIDE_INT);
1496 }
1497
1498 /* This macro is used in structures that end with a trailing_wide_ints field
1499 called FIELD. It declares get_NAME() and set_NAME() methods to access
1500 element I of FIELD. */
1501 #define TRAILING_WIDE_INT_ACCESSOR(NAME, FIELD, I) \
1502 trailing_wide_int get_##NAME () { return FIELD[I]; } \
1503 template <typename T> void set_##NAME (const T &x) { FIELD[I] = x; }
1504
1505 namespace wi
1506 {
1507 /* Implementation of int_traits for primitive integer types like "int". */
1508 template <typename T, bool signed_p>
1509 struct primitive_int_traits
1510 {
1511 static const enum precision_type precision_type = FLEXIBLE_PRECISION;
1512 static const bool host_dependent_precision = true;
1513 static const bool is_sign_extended = true;
1514 static unsigned int get_precision (T);
1515 static wi::storage_ref decompose (HOST_WIDE_INT *, unsigned int, T);
1516 };
1517 }
1518
1519 template <typename T, bool signed_p>
1520 inline unsigned int
1521 wi::primitive_int_traits <T, signed_p>::get_precision (T)
1522 {
1523 return sizeof (T) * CHAR_BIT;
1524 }
1525
1526 template <typename T, bool signed_p>
1527 inline wi::storage_ref
1528 wi::primitive_int_traits <T, signed_p>::decompose (HOST_WIDE_INT *scratch,
1529 unsigned int precision, T x)
1530 {
1531 scratch[0] = x;
1532 if (signed_p || scratch[0] >= 0 || precision <= HOST_BITS_PER_WIDE_INT)
1533 return wi::storage_ref (scratch, 1, precision);
1534 scratch[1] = 0;
1535 return wi::storage_ref (scratch, 2, precision);
1536 }
1537
1538 /* Allow primitive C types to be used in wi:: routines. */
1539 namespace wi
1540 {
1541 template <>
1542 struct int_traits <unsigned char>
1543 : public primitive_int_traits <unsigned char, false> {};
1544
1545 template <>
1546 struct int_traits <unsigned short>
1547 : public primitive_int_traits <unsigned short, false> {};
1548
1549 template <>
1550 struct int_traits <int>
1551 : public primitive_int_traits <int, true> {};
1552
1553 template <>
1554 struct int_traits <unsigned int>
1555 : public primitive_int_traits <unsigned int, false> {};
1556
1557 template <>
1558 struct int_traits <long>
1559 : public primitive_int_traits <long, true> {};
1560
1561 template <>
1562 struct int_traits <unsigned long>
1563 : public primitive_int_traits <unsigned long, false> {};
1564
1565 #if defined HAVE_LONG_LONG
1566 template <>
1567 struct int_traits <long long>
1568 : public primitive_int_traits <long long, true> {};
1569
1570 template <>
1571 struct int_traits <unsigned long long>
1572 : public primitive_int_traits <unsigned long long, false> {};
1573 #endif
1574 }
1575
1576 namespace wi
1577 {
1578 /* Stores HWI-sized integer VAL, treating it as having signedness SGN
1579 and precision PRECISION. */
1580 class hwi_with_prec
1581 {
1582 public:
1583 hwi_with_prec () {}
1584 hwi_with_prec (HOST_WIDE_INT, unsigned int, signop);
1585 HOST_WIDE_INT val;
1586 unsigned int precision;
1587 signop sgn;
1588 };
1589
1590 hwi_with_prec shwi (HOST_WIDE_INT, unsigned int);
1591 hwi_with_prec uhwi (unsigned HOST_WIDE_INT, unsigned int);
1592
1593 hwi_with_prec minus_one (unsigned int);
1594 hwi_with_prec zero (unsigned int);
1595 hwi_with_prec one (unsigned int);
1596 hwi_with_prec two (unsigned int);
1597 }
1598
1599 inline wi::hwi_with_prec::hwi_with_prec (HOST_WIDE_INT v, unsigned int p,
1600 signop s)
1601 : precision (p), sgn (s)
1602 {
1603 if (precision < HOST_BITS_PER_WIDE_INT)
1604 val = sext_hwi (v, precision);
1605 else
1606 val = v;
1607 }
1608
1609 /* Return a signed integer that has value VAL and precision PRECISION. */
1610 inline wi::hwi_with_prec
1611 wi::shwi (HOST_WIDE_INT val, unsigned int precision)
1612 {
1613 return hwi_with_prec (val, precision, SIGNED);
1614 }
1615
1616 /* Return an unsigned integer that has value VAL and precision PRECISION. */
1617 inline wi::hwi_with_prec
1618 wi::uhwi (unsigned HOST_WIDE_INT val, unsigned int precision)
1619 {
1620 return hwi_with_prec (val, precision, UNSIGNED);
1621 }
1622
1623 /* Return a wide int of -1 with precision PRECISION. */
1624 inline wi::hwi_with_prec
1625 wi::minus_one (unsigned int precision)
1626 {
1627 return wi::shwi (-1, precision);
1628 }
1629
1630 /* Return a wide int of 0 with precision PRECISION. */
1631 inline wi::hwi_with_prec
1632 wi::zero (unsigned int precision)
1633 {
1634 return wi::shwi (0, precision);
1635 }
1636
1637 /* Return a wide int of 1 with precision PRECISION. */
1638 inline wi::hwi_with_prec
1639 wi::one (unsigned int precision)
1640 {
1641 return wi::shwi (1, precision);
1642 }
1643
1644 /* Return a wide int of 2 with precision PRECISION. */
1645 inline wi::hwi_with_prec
1646 wi::two (unsigned int precision)
1647 {
1648 return wi::shwi (2, precision);
1649 }
1650
1651 namespace wi
1652 {
1653 /* ints_for<T>::zero (X) returns a zero that, when asssigned to a T,
1654 gives that T the same precision as X. */
1655 template<typename T, precision_type = int_traits<T>::precision_type>
1656 struct ints_for
1657 {
1658 static int zero (const T &) { return 0; }
1659 };
1660
1661 template<typename T>
1662 struct ints_for<T, VAR_PRECISION>
1663 {
1664 static hwi_with_prec zero (const T &);
1665 };
1666 }
1667
1668 template<typename T>
1669 inline wi::hwi_with_prec
1670 wi::ints_for<T, wi::VAR_PRECISION>::zero (const T &x)
1671 {
1672 return wi::zero (wi::get_precision (x));
1673 }
1674
1675 namespace wi
1676 {
1677 template <>
1678 struct int_traits <wi::hwi_with_prec>
1679 {
1680 static const enum precision_type precision_type = VAR_PRECISION;
1681 /* hwi_with_prec has an explicitly-given precision, rather than the
1682 precision of HOST_WIDE_INT. */
1683 static const bool host_dependent_precision = false;
1684 static const bool is_sign_extended = true;
1685 static unsigned int get_precision (const wi::hwi_with_prec &);
1686 static wi::storage_ref decompose (HOST_WIDE_INT *, unsigned int,
1687 const wi::hwi_with_prec &);
1688 };
1689 }
1690
1691 inline unsigned int
1692 wi::int_traits <wi::hwi_with_prec>::get_precision (const wi::hwi_with_prec &x)
1693 {
1694 return x.precision;
1695 }
1696
1697 inline wi::storage_ref
1698 wi::int_traits <wi::hwi_with_prec>::
1699 decompose (HOST_WIDE_INT *scratch, unsigned int precision,
1700 const wi::hwi_with_prec &x)
1701 {
1702 gcc_checking_assert (precision == x.precision);
1703 scratch[0] = x.val;
1704 if (x.sgn == SIGNED || x.val >= 0 || precision <= HOST_BITS_PER_WIDE_INT)
1705 return wi::storage_ref (scratch, 1, precision);
1706 scratch[1] = 0;
1707 return wi::storage_ref (scratch, 2, precision);
1708 }
1709
1710 /* Private functions for handling large cases out of line. They take
1711 individual length and array parameters because that is cheaper for
1712 the inline caller than constructing an object on the stack and
1713 passing a reference to it. (Although many callers use wide_int_refs,
1714 we generally want those to be removed by SRA.) */
1715 namespace wi
1716 {
1717 bool eq_p_large (const HOST_WIDE_INT *, unsigned int,
1718 const HOST_WIDE_INT *, unsigned int, unsigned int);
1719 bool lts_p_large (const HOST_WIDE_INT *, unsigned int, unsigned int,
1720 const HOST_WIDE_INT *, unsigned int);
1721 bool ltu_p_large (const HOST_WIDE_INT *, unsigned int, unsigned int,
1722 const HOST_WIDE_INT *, unsigned int);
1723 int cmps_large (const HOST_WIDE_INT *, unsigned int, unsigned int,
1724 const HOST_WIDE_INT *, unsigned int);
1725 int cmpu_large (const HOST_WIDE_INT *, unsigned int, unsigned int,
1726 const HOST_WIDE_INT *, unsigned int);
1727 unsigned int sext_large (HOST_WIDE_INT *, const HOST_WIDE_INT *,
1728 unsigned int,
1729 unsigned int, unsigned int);
1730 unsigned int zext_large (HOST_WIDE_INT *, const HOST_WIDE_INT *,
1731 unsigned int,
1732 unsigned int, unsigned int);
1733 unsigned int set_bit_large (HOST_WIDE_INT *, const HOST_WIDE_INT *,
1734 unsigned int, unsigned int, unsigned int);
1735 unsigned int lshift_large (HOST_WIDE_INT *, const HOST_WIDE_INT *,
1736 unsigned int, unsigned int, unsigned int);
1737 unsigned int lrshift_large (HOST_WIDE_INT *, const HOST_WIDE_INT *,
1738 unsigned int, unsigned int, unsigned int,
1739 unsigned int);
1740 unsigned int arshift_large (HOST_WIDE_INT *, const HOST_WIDE_INT *,
1741 unsigned int, unsigned int, unsigned int,
1742 unsigned int);
1743 unsigned int and_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, unsigned int,
1744 const HOST_WIDE_INT *, unsigned int, unsigned int);
1745 unsigned int and_not_large (HOST_WIDE_INT *, const HOST_WIDE_INT *,
1746 unsigned int, const HOST_WIDE_INT *,
1747 unsigned int, unsigned int);
1748 unsigned int or_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, unsigned int,
1749 const HOST_WIDE_INT *, unsigned int, unsigned int);
1750 unsigned int or_not_large (HOST_WIDE_INT *, const HOST_WIDE_INT *,
1751 unsigned int, const HOST_WIDE_INT *,
1752 unsigned int, unsigned int);
1753 unsigned int xor_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, unsigned int,
1754 const HOST_WIDE_INT *, unsigned int, unsigned int);
1755 unsigned int add_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, unsigned int,
1756 const HOST_WIDE_INT *, unsigned int, unsigned int,
1757 signop, overflow_type *);
1758 unsigned int sub_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, unsigned int,
1759 const HOST_WIDE_INT *, unsigned int, unsigned int,
1760 signop, overflow_type *);
1761 unsigned int mul_internal (HOST_WIDE_INT *, const HOST_WIDE_INT *,
1762 unsigned int, const HOST_WIDE_INT *,
1763 unsigned int, unsigned int, signop,
1764 overflow_type *, bool);
1765 unsigned int divmod_internal (HOST_WIDE_INT *, unsigned int *,
1766 HOST_WIDE_INT *, const HOST_WIDE_INT *,
1767 unsigned int, unsigned int,
1768 const HOST_WIDE_INT *,
1769 unsigned int, unsigned int,
1770 signop, overflow_type *);
1771 }
1772
1773 /* Return the number of bits that integer X can hold. */
1774 template <typename T>
1775 inline unsigned int
1776 wi::get_precision (const T &x)
1777 {
1778 return wi::int_traits <T>::get_precision (x);
1779 }
1780
1781 /* Return the number of bits that the result of a binary operation can
1782 hold when the input operands are X and Y. */
1783 template <typename T1, typename T2>
1784 inline unsigned int
1785 wi::get_binary_precision (const T1 &x, const T2 &y)
1786 {
1787 return get_precision (wi::int_traits <WI_BINARY_RESULT (T1, T2)>::
1788 get_binary_result (x, y));
1789 }
1790
1791 /* Copy the contents of Y to X, but keeping X's current precision. */
1792 template <typename T1, typename T2>
1793 inline void
1794 wi::copy (T1 &x, const T2 &y)
1795 {
1796 HOST_WIDE_INT *xval = x.write_val ();
1797 const HOST_WIDE_INT *yval = y.get_val ();
1798 unsigned int len = y.get_len ();
1799 unsigned int i = 0;
1800 do
1801 xval[i] = yval[i];
1802 while (++i < len);
1803 x.set_len (len, y.is_sign_extended);
1804 }
1805
1806 /* Return true if X fits in a HOST_WIDE_INT with no loss of precision. */
1807 template <typename T>
1808 inline bool
1809 wi::fits_shwi_p (const T &x)
1810 {
1811 WIDE_INT_REF_FOR (T) xi (x);
1812 return xi.len == 1;
1813 }
1814
1815 /* Return true if X fits in an unsigned HOST_WIDE_INT with no loss of
1816 precision. */
1817 template <typename T>
1818 inline bool
1819 wi::fits_uhwi_p (const T &x)
1820 {
1821 WIDE_INT_REF_FOR (T) xi (x);
1822 if (xi.precision <= HOST_BITS_PER_WIDE_INT)
1823 return true;
1824 if (xi.len == 1)
1825 return xi.slow () >= 0;
1826 return xi.len == 2 && xi.uhigh () == 0;
1827 }
1828
1829 /* Return true if X is negative based on the interpretation of SGN.
1830 For UNSIGNED, this is always false. */
1831 template <typename T>
1832 inline bool
1833 wi::neg_p (const T &x, signop sgn)
1834 {
1835 WIDE_INT_REF_FOR (T) xi (x);
1836 if (sgn == UNSIGNED)
1837 return false;
1838 return xi.sign_mask () < 0;
1839 }
1840
1841 /* Return -1 if the top bit of X is set and 0 if the top bit is clear. */
1842 template <typename T>
1843 inline HOST_WIDE_INT
1844 wi::sign_mask (const T &x)
1845 {
1846 WIDE_INT_REF_FOR (T) xi (x);
1847 return xi.sign_mask ();
1848 }
1849
1850 /* Return true if X == Y. X and Y must be binary-compatible. */
1851 template <typename T1, typename T2>
1852 inline bool
1853 wi::eq_p (const T1 &x, const T2 &y)
1854 {
1855 unsigned int precision = get_binary_precision (x, y);
1856 WIDE_INT_REF_FOR (T1) xi (x, precision);
1857 WIDE_INT_REF_FOR (T2) yi (y, precision);
1858 if (xi.is_sign_extended && yi.is_sign_extended)
1859 {
1860 /* This case reduces to array equality. */
1861 if (xi.len != yi.len)
1862 return false;
1863 unsigned int i = 0;
1864 do
1865 if (xi.val[i] != yi.val[i])
1866 return false;
1867 while (++i != xi.len);
1868 return true;
1869 }
1870 if (__builtin_expect (yi.len == 1, true))
1871 {
1872 /* XI is only equal to YI if it too has a single HWI. */
1873 if (xi.len != 1)
1874 return false;
1875 /* Excess bits in xi.val[0] will be signs or zeros, so comparisons
1876 with 0 are simple. */
1877 if (STATIC_CONSTANT_P (yi.val[0] == 0))
1878 return xi.val[0] == 0;
1879 /* Otherwise flush out any excess bits first. */
1880 unsigned HOST_WIDE_INT diff = xi.val[0] ^ yi.val[0];
1881 int excess = HOST_BITS_PER_WIDE_INT - precision;
1882 if (excess > 0)
1883 diff <<= excess;
1884 return diff == 0;
1885 }
1886 return eq_p_large (xi.val, xi.len, yi.val, yi.len, precision);
1887 }
1888
1889 /* Return true if X != Y. X and Y must be binary-compatible. */
1890 template <typename T1, typename T2>
1891 inline bool
1892 wi::ne_p (const T1 &x, const T2 &y)
1893 {
1894 return !eq_p (x, y);
1895 }
1896
1897 /* Return true if X < Y when both are treated as signed values. */
1898 template <typename T1, typename T2>
1899 inline bool
1900 wi::lts_p (const T1 &x, const T2 &y)
1901 {
1902 unsigned int precision = get_binary_precision (x, y);
1903 WIDE_INT_REF_FOR (T1) xi (x, precision);
1904 WIDE_INT_REF_FOR (T2) yi (y, precision);
1905 /* We optimize x < y, where y is 64 or fewer bits. */
1906 if (wi::fits_shwi_p (yi))
1907 {
1908 /* Make lts_p (x, 0) as efficient as wi::neg_p (x). */
1909 if (STATIC_CONSTANT_P (yi.val[0] == 0))
1910 return neg_p (xi);
1911 /* If x fits directly into a shwi, we can compare directly. */
1912 if (wi::fits_shwi_p (xi))
1913 return xi.to_shwi () < yi.to_shwi ();
1914 /* If x doesn't fit and is negative, then it must be more
1915 negative than any value in y, and hence smaller than y. */
1916 if (neg_p (xi))
1917 return true;
1918 /* If x is positive, then it must be larger than any value in y,
1919 and hence greater than y. */
1920 return false;
1921 }
1922 /* Optimize the opposite case, if it can be detected at compile time. */
1923 if (STATIC_CONSTANT_P (xi.len == 1))
1924 /* If YI is negative it is lower than the least HWI.
1925 If YI is positive it is greater than the greatest HWI. */
1926 return !neg_p (yi);
1927 return lts_p_large (xi.val, xi.len, precision, yi.val, yi.len);
1928 }
1929
1930 /* Return true if X < Y when both are treated as unsigned values. */
1931 template <typename T1, typename T2>
1932 inline bool
1933 wi::ltu_p (const T1 &x, const T2 &y)
1934 {
1935 unsigned int precision = get_binary_precision (x, y);
1936 WIDE_INT_REF_FOR (T1) xi (x, precision);
1937 WIDE_INT_REF_FOR (T2) yi (y, precision);
1938 /* Optimize comparisons with constants. */
1939 if (STATIC_CONSTANT_P (yi.len == 1 && yi.val[0] >= 0))
1940 return xi.len == 1 && xi.to_uhwi () < (unsigned HOST_WIDE_INT) yi.val[0];
1941 if (STATIC_CONSTANT_P (xi.len == 1 && xi.val[0] >= 0))
1942 return yi.len != 1 || yi.to_uhwi () > (unsigned HOST_WIDE_INT) xi.val[0];
1943 /* Optimize the case of two HWIs. The HWIs are implicitly sign-extended
1944 for precisions greater than HOST_BITS_WIDE_INT, but sign-extending both
1945 values does not change the result. */
1946 if (__builtin_expect (xi.len + yi.len == 2, true))
1947 {
1948 unsigned HOST_WIDE_INT xl = xi.to_uhwi ();
1949 unsigned HOST_WIDE_INT yl = yi.to_uhwi ();
1950 return xl < yl;
1951 }
1952 return ltu_p_large (xi.val, xi.len, precision, yi.val, yi.len);
1953 }
1954
1955 /* Return true if X < Y. Signedness of X and Y is indicated by SGN. */
1956 template <typename T1, typename T2>
1957 inline bool
1958 wi::lt_p (const T1 &x, const T2 &y, signop sgn)
1959 {
1960 if (sgn == SIGNED)
1961 return lts_p (x, y);
1962 else
1963 return ltu_p (x, y);
1964 }
1965
1966 /* Return true if X <= Y when both are treated as signed values. */
1967 template <typename T1, typename T2>
1968 inline bool
1969 wi::les_p (const T1 &x, const T2 &y)
1970 {
1971 return !lts_p (y, x);
1972 }
1973
1974 /* Return true if X <= Y when both are treated as unsigned values. */
1975 template <typename T1, typename T2>
1976 inline bool
1977 wi::leu_p (const T1 &x, const T2 &y)
1978 {
1979 return !ltu_p (y, x);
1980 }
1981
1982 /* Return true if X <= Y. Signedness of X and Y is indicated by SGN. */
1983 template <typename T1, typename T2>
1984 inline bool
1985 wi::le_p (const T1 &x, const T2 &y, signop sgn)
1986 {
1987 if (sgn == SIGNED)
1988 return les_p (x, y);
1989 else
1990 return leu_p (x, y);
1991 }
1992
1993 /* Return true if X > Y when both are treated as signed values. */
1994 template <typename T1, typename T2>
1995 inline bool
1996 wi::gts_p (const T1 &x, const T2 &y)
1997 {
1998 return lts_p (y, x);
1999 }
2000
2001 /* Return true if X > Y when both are treated as unsigned values. */
2002 template <typename T1, typename T2>
2003 inline bool
2004 wi::gtu_p (const T1 &x, const T2 &y)
2005 {
2006 return ltu_p (y, x);
2007 }
2008
2009 /* Return true if X > Y. Signedness of X and Y is indicated by SGN. */
2010 template <typename T1, typename T2>
2011 inline bool
2012 wi::gt_p (const T1 &x, const T2 &y, signop sgn)
2013 {
2014 if (sgn == SIGNED)
2015 return gts_p (x, y);
2016 else
2017 return gtu_p (x, y);
2018 }
2019
2020 /* Return true if X >= Y when both are treated as signed values. */
2021 template <typename T1, typename T2>
2022 inline bool
2023 wi::ges_p (const T1 &x, const T2 &y)
2024 {
2025 return !lts_p (x, y);
2026 }
2027
2028 /* Return true if X >= Y when both are treated as unsigned values. */
2029 template <typename T1, typename T2>
2030 inline bool
2031 wi::geu_p (const T1 &x, const T2 &y)
2032 {
2033 return !ltu_p (x, y);
2034 }
2035
2036 /* Return true if X >= Y. Signedness of X and Y is indicated by SGN. */
2037 template <typename T1, typename T2>
2038 inline bool
2039 wi::ge_p (const T1 &x, const T2 &y, signop sgn)
2040 {
2041 if (sgn == SIGNED)
2042 return ges_p (x, y);
2043 else
2044 return geu_p (x, y);
2045 }
2046
2047 /* Return -1 if X < Y, 0 if X == Y and 1 if X > Y. Treat both X and Y
2048 as signed values. */
2049 template <typename T1, typename T2>
2050 inline int
2051 wi::cmps (const T1 &x, const T2 &y)
2052 {
2053 unsigned int precision = get_binary_precision (x, y);
2054 WIDE_INT_REF_FOR (T1) xi (x, precision);
2055 WIDE_INT_REF_FOR (T2) yi (y, precision);
2056 if (wi::fits_shwi_p (yi))
2057 {
2058 /* Special case for comparisons with 0. */
2059 if (STATIC_CONSTANT_P (yi.val[0] == 0))
2060 return neg_p (xi) ? -1 : !(xi.len == 1 && xi.val[0] == 0);
2061 /* If x fits into a signed HWI, we can compare directly. */
2062 if (wi::fits_shwi_p (xi))
2063 {
2064 HOST_WIDE_INT xl = xi.to_shwi ();
2065 HOST_WIDE_INT yl = yi.to_shwi ();
2066 return xl < yl ? -1 : xl > yl;
2067 }
2068 /* If x doesn't fit and is negative, then it must be more
2069 negative than any signed HWI, and hence smaller than y. */
2070 if (neg_p (xi))
2071 return -1;
2072 /* If x is positive, then it must be larger than any signed HWI,
2073 and hence greater than y. */
2074 return 1;
2075 }
2076 /* Optimize the opposite case, if it can be detected at compile time. */
2077 if (STATIC_CONSTANT_P (xi.len == 1))
2078 /* If YI is negative it is lower than the least HWI.
2079 If YI is positive it is greater than the greatest HWI. */
2080 return neg_p (yi) ? 1 : -1;
2081 return cmps_large (xi.val, xi.len, precision, yi.val, yi.len);
2082 }
2083
2084 /* Return -1 if X < Y, 0 if X == Y and 1 if X > Y. Treat both X and Y
2085 as unsigned values. */
2086 template <typename T1, typename T2>
2087 inline int
2088 wi::cmpu (const T1 &x, const T2 &y)
2089 {
2090 unsigned int precision = get_binary_precision (x, y);
2091 WIDE_INT_REF_FOR (T1) xi (x, precision);
2092 WIDE_INT_REF_FOR (T2) yi (y, precision);
2093 /* Optimize comparisons with constants. */
2094 if (STATIC_CONSTANT_P (yi.len == 1 && yi.val[0] >= 0))
2095 {
2096 /* If XI doesn't fit in a HWI then it must be larger than YI. */
2097 if (xi.len != 1)
2098 return 1;
2099 /* Otherwise compare directly. */
2100 unsigned HOST_WIDE_INT xl = xi.to_uhwi ();
2101 unsigned HOST_WIDE_INT yl = yi.val[0];
2102 return xl < yl ? -1 : xl > yl;
2103 }
2104 if (STATIC_CONSTANT_P (xi.len == 1 && xi.val[0] >= 0))
2105 {
2106 /* If YI doesn't fit in a HWI then it must be larger than XI. */
2107 if (yi.len != 1)
2108 return -1;
2109 /* Otherwise compare directly. */
2110 unsigned HOST_WIDE_INT xl = xi.val[0];
2111 unsigned HOST_WIDE_INT yl = yi.to_uhwi ();
2112 return xl < yl ? -1 : xl > yl;
2113 }
2114 /* Optimize the case of two HWIs. The HWIs are implicitly sign-extended
2115 for precisions greater than HOST_BITS_WIDE_INT, but sign-extending both
2116 values does not change the result. */
2117 if (__builtin_expect (xi.len + yi.len == 2, true))
2118 {
2119 unsigned HOST_WIDE_INT xl = xi.to_uhwi ();
2120 unsigned HOST_WIDE_INT yl = yi.to_uhwi ();
2121 return xl < yl ? -1 : xl > yl;
2122 }
2123 return cmpu_large (xi.val, xi.len, precision, yi.val, yi.len);
2124 }
2125
2126 /* Return -1 if X < Y, 0 if X == Y and 1 if X > Y. Signedness of
2127 X and Y indicated by SGN. */
2128 template <typename T1, typename T2>
2129 inline int
2130 wi::cmp (const T1 &x, const T2 &y, signop sgn)
2131 {
2132 if (sgn == SIGNED)
2133 return cmps (x, y);
2134 else
2135 return cmpu (x, y);
2136 }
2137
2138 /* Return ~x. */
2139 template <typename T>
2140 inline WI_UNARY_RESULT (T)
2141 wi::bit_not (const T &x)
2142 {
2143 WI_UNARY_RESULT_VAR (result, val, T, x);
2144 WIDE_INT_REF_FOR (T) xi (x, get_precision (result));
2145 for (unsigned int i = 0; i < xi.len; ++i)
2146 val[i] = ~xi.val[i];
2147 result.set_len (xi.len);
2148 return result;
2149 }
2150
2151 /* Return -x. */
2152 template <typename T>
2153 inline WI_UNARY_RESULT (T)
2154 wi::neg (const T &x)
2155 {
2156 return sub (0, x);
2157 }
2158
2159 /* Return -x. Indicate in *OVERFLOW if performing the negation would
2160 cause an overflow. */
2161 template <typename T>
2162 inline WI_UNARY_RESULT (T)
2163 wi::neg (const T &x, overflow_type *overflow)
2164 {
2165 *overflow = only_sign_bit_p (x) ? OVF_OVERFLOW : OVF_NONE;
2166 return sub (0, x);
2167 }
2168
2169 /* Return the absolute value of x. */
2170 template <typename T>
2171 inline WI_UNARY_RESULT (T)
2172 wi::abs (const T &x)
2173 {
2174 return neg_p (x) ? neg (x) : WI_UNARY_RESULT (T) (x);
2175 }
2176
2177 /* Return the result of sign-extending the low OFFSET bits of X. */
2178 template <typename T>
2179 inline WI_UNARY_RESULT (T)
2180 wi::sext (const T &x, unsigned int offset)
2181 {
2182 WI_UNARY_RESULT_VAR (result, val, T, x);
2183 unsigned int precision = get_precision (result);
2184 WIDE_INT_REF_FOR (T) xi (x, precision);
2185
2186 if (offset <= HOST_BITS_PER_WIDE_INT)
2187 {
2188 val[0] = sext_hwi (xi.ulow (), offset);
2189 result.set_len (1, true);
2190 }
2191 else
2192 result.set_len (sext_large (val, xi.val, xi.len, precision, offset));
2193 return result;
2194 }
2195
2196 /* Return the result of zero-extending the low OFFSET bits of X. */
2197 template <typename T>
2198 inline WI_UNARY_RESULT (T)
2199 wi::zext (const T &x, unsigned int offset)
2200 {
2201 WI_UNARY_RESULT_VAR (result, val, T, x);
2202 unsigned int precision = get_precision (result);
2203 WIDE_INT_REF_FOR (T) xi (x, precision);
2204
2205 /* This is not just an optimization, it is actually required to
2206 maintain canonization. */
2207 if (offset >= precision)
2208 {
2209 wi::copy (result, xi);
2210 return result;
2211 }
2212
2213 /* In these cases we know that at least the top bit will be clear,
2214 so no sign extension is necessary. */
2215 if (offset < HOST_BITS_PER_WIDE_INT)
2216 {
2217 val[0] = zext_hwi (xi.ulow (), offset);
2218 result.set_len (1, true);
2219 }
2220 else
2221 result.set_len (zext_large (val, xi.val, xi.len, precision, offset), true);
2222 return result;
2223 }
2224
2225 /* Return the result of extending the low OFFSET bits of X according to
2226 signedness SGN. */
2227 template <typename T>
2228 inline WI_UNARY_RESULT (T)
2229 wi::ext (const T &x, unsigned int offset, signop sgn)
2230 {
2231 return sgn == SIGNED ? sext (x, offset) : zext (x, offset);
2232 }
2233
2234 /* Return an integer that represents X | (1 << bit). */
2235 template <typename T>
2236 inline WI_UNARY_RESULT (T)
2237 wi::set_bit (const T &x, unsigned int bit)
2238 {
2239 WI_UNARY_RESULT_VAR (result, val, T, x);
2240 unsigned int precision = get_precision (result);
2241 WIDE_INT_REF_FOR (T) xi (x, precision);
2242 if (precision <= HOST_BITS_PER_WIDE_INT)
2243 {
2244 val[0] = xi.ulow () | (HOST_WIDE_INT_1U << bit);
2245 result.set_len (1);
2246 }
2247 else
2248 result.set_len (set_bit_large (val, xi.val, xi.len, precision, bit));
2249 return result;
2250 }
2251
2252 /* Return the mininum of X and Y, treating them both as having
2253 signedness SGN. */
2254 template <typename T1, typename T2>
2255 inline WI_BINARY_RESULT (T1, T2)
2256 wi::min (const T1 &x, const T2 &y, signop sgn)
2257 {
2258 WI_BINARY_RESULT_VAR (result, val ATTRIBUTE_UNUSED, T1, x, T2, y);
2259 unsigned int precision = get_precision (result);
2260 if (wi::le_p (x, y, sgn))
2261 wi::copy (result, WIDE_INT_REF_FOR (T1) (x, precision));
2262 else
2263 wi::copy (result, WIDE_INT_REF_FOR (T2) (y, precision));
2264 return result;
2265 }
2266
2267 /* Return the minimum of X and Y, treating both as signed values. */
2268 template <typename T1, typename T2>
2269 inline WI_BINARY_RESULT (T1, T2)
2270 wi::smin (const T1 &x, const T2 &y)
2271 {
2272 return wi::min (x, y, SIGNED);
2273 }
2274
2275 /* Return the minimum of X and Y, treating both as unsigned values. */
2276 template <typename T1, typename T2>
2277 inline WI_BINARY_RESULT (T1, T2)
2278 wi::umin (const T1 &x, const T2 &y)
2279 {
2280 return wi::min (x, y, UNSIGNED);
2281 }
2282
2283 /* Return the maxinum of X and Y, treating them both as having
2284 signedness SGN. */
2285 template <typename T1, typename T2>
2286 inline WI_BINARY_RESULT (T1, T2)
2287 wi::max (const T1 &x, const T2 &y, signop sgn)
2288 {
2289 WI_BINARY_RESULT_VAR (result, val ATTRIBUTE_UNUSED, T1, x, T2, y);
2290 unsigned int precision = get_precision (result);
2291 if (wi::ge_p (x, y, sgn))
2292 wi::copy (result, WIDE_INT_REF_FOR (T1) (x, precision));
2293 else
2294 wi::copy (result, WIDE_INT_REF_FOR (T2) (y, precision));
2295 return result;
2296 }
2297
2298 /* Return the maximum of X and Y, treating both as signed values. */
2299 template <typename T1, typename T2>
2300 inline WI_BINARY_RESULT (T1, T2)
2301 wi::smax (const T1 &x, const T2 &y)
2302 {
2303 return wi::max (x, y, SIGNED);
2304 }
2305
2306 /* Return the maximum of X and Y, treating both as unsigned values. */
2307 template <typename T1, typename T2>
2308 inline WI_BINARY_RESULT (T1, T2)
2309 wi::umax (const T1 &x, const T2 &y)
2310 {
2311 return wi::max (x, y, UNSIGNED);
2312 }
2313
2314 /* Return X & Y. */
2315 template <typename T1, typename T2>
2316 inline WI_BINARY_RESULT (T1, T2)
2317 wi::bit_and (const T1 &x, const T2 &y)
2318 {
2319 WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
2320 unsigned int precision = get_precision (result);
2321 WIDE_INT_REF_FOR (T1) xi (x, precision);
2322 WIDE_INT_REF_FOR (T2) yi (y, precision);
2323 bool is_sign_extended = xi.is_sign_extended && yi.is_sign_extended;
2324 if (__builtin_expect (xi.len + yi.len == 2, true))
2325 {
2326 val[0] = xi.ulow () & yi.ulow ();
2327 result.set_len (1, is_sign_extended);
2328 }
2329 else
2330 result.set_len (and_large (val, xi.val, xi.len, yi.val, yi.len,
2331 precision), is_sign_extended);
2332 return result;
2333 }
2334
2335 /* Return X & ~Y. */
2336 template <typename T1, typename T2>
2337 inline WI_BINARY_RESULT (T1, T2)
2338 wi::bit_and_not (const T1 &x, const T2 &y)
2339 {
2340 WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
2341 unsigned int precision = get_precision (result);
2342 WIDE_INT_REF_FOR (T1) xi (x, precision);
2343 WIDE_INT_REF_FOR (T2) yi (y, precision);
2344 bool is_sign_extended = xi.is_sign_extended && yi.is_sign_extended;
2345 if (__builtin_expect (xi.len + yi.len == 2, true))
2346 {
2347 val[0] = xi.ulow () & ~yi.ulow ();
2348 result.set_len (1, is_sign_extended);
2349 }
2350 else
2351 result.set_len (and_not_large (val, xi.val, xi.len, yi.val, yi.len,
2352 precision), is_sign_extended);
2353 return result;
2354 }
2355
2356 /* Return X | Y. */
2357 template <typename T1, typename T2>
2358 inline WI_BINARY_RESULT (T1, T2)
2359 wi::bit_or (const T1 &x, const T2 &y)
2360 {
2361 WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
2362 unsigned int precision = get_precision (result);
2363 WIDE_INT_REF_FOR (T1) xi (x, precision);
2364 WIDE_INT_REF_FOR (T2) yi (y, precision);
2365 bool is_sign_extended = xi.is_sign_extended && yi.is_sign_extended;
2366 if (__builtin_expect (xi.len + yi.len == 2, true))
2367 {
2368 val[0] = xi.ulow () | yi.ulow ();
2369 result.set_len (1, is_sign_extended);
2370 }
2371 else
2372 result.set_len (or_large (val, xi.val, xi.len,
2373 yi.val, yi.len, precision), is_sign_extended);
2374 return result;
2375 }
2376
2377 /* Return X | ~Y. */
2378 template <typename T1, typename T2>
2379 inline WI_BINARY_RESULT (T1, T2)
2380 wi::bit_or_not (const T1 &x, const T2 &y)
2381 {
2382 WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
2383 unsigned int precision = get_precision (result);
2384 WIDE_INT_REF_FOR (T1) xi (x, precision);
2385 WIDE_INT_REF_FOR (T2) yi (y, precision);
2386 bool is_sign_extended = xi.is_sign_extended && yi.is_sign_extended;
2387 if (__builtin_expect (xi.len + yi.len == 2, true))
2388 {
2389 val[0] = xi.ulow () | ~yi.ulow ();
2390 result.set_len (1, is_sign_extended);
2391 }
2392 else
2393 result.set_len (or_not_large (val, xi.val, xi.len, yi.val, yi.len,
2394 precision), is_sign_extended);
2395 return result;
2396 }
2397
2398 /* Return X ^ Y. */
2399 template <typename T1, typename T2>
2400 inline WI_BINARY_RESULT (T1, T2)
2401 wi::bit_xor (const T1 &x, const T2 &y)
2402 {
2403 WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
2404 unsigned int precision = get_precision (result);
2405 WIDE_INT_REF_FOR (T1) xi (x, precision);
2406 WIDE_INT_REF_FOR (T2) yi (y, precision);
2407 bool is_sign_extended = xi.is_sign_extended && yi.is_sign_extended;
2408 if (__builtin_expect (xi.len + yi.len == 2, true))
2409 {
2410 val[0] = xi.ulow () ^ yi.ulow ();
2411 result.set_len (1, is_sign_extended);
2412 }
2413 else
2414 result.set_len (xor_large (val, xi.val, xi.len,
2415 yi.val, yi.len, precision), is_sign_extended);
2416 return result;
2417 }
2418
2419 /* Return X + Y. */
2420 template <typename T1, typename T2>
2421 inline WI_BINARY_RESULT (T1, T2)
2422 wi::add (const T1 &x, const T2 &y)
2423 {
2424 WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
2425 unsigned int precision = get_precision (result);
2426 WIDE_INT_REF_FOR (T1) xi (x, precision);
2427 WIDE_INT_REF_FOR (T2) yi (y, precision);
2428 if (precision <= HOST_BITS_PER_WIDE_INT)
2429 {
2430 val[0] = xi.ulow () + yi.ulow ();
2431 result.set_len (1);
2432 }
2433 /* If the precision is known at compile time to be greater than
2434 HOST_BITS_PER_WIDE_INT, we can optimize the single-HWI case
2435 knowing that (a) all bits in those HWIs are significant and
2436 (b) the result has room for at least two HWIs. This provides
2437 a fast path for things like offset_int and widest_int.
2438
2439 The STATIC_CONSTANT_P test prevents this path from being
2440 used for wide_ints. wide_ints with precisions greater than
2441 HOST_BITS_PER_WIDE_INT are relatively rare and there's not much
2442 point handling them inline. */
2443 else if (STATIC_CONSTANT_P (precision > HOST_BITS_PER_WIDE_INT)
2444 && __builtin_expect (xi.len + yi.len == 2, true))
2445 {
2446 unsigned HOST_WIDE_INT xl = xi.ulow ();
2447 unsigned HOST_WIDE_INT yl = yi.ulow ();
2448 unsigned HOST_WIDE_INT resultl = xl + yl;
2449 val[0] = resultl;
2450 val[1] = (HOST_WIDE_INT) resultl < 0 ? 0 : -1;
2451 result.set_len (1 + (((resultl ^ xl) & (resultl ^ yl))
2452 >> (HOST_BITS_PER_WIDE_INT - 1)));
2453 }
2454 else
2455 result.set_len (add_large (val, xi.val, xi.len,
2456 yi.val, yi.len, precision,
2457 UNSIGNED, 0));
2458 return result;
2459 }
2460
2461 /* Return X + Y. Treat X and Y as having the signednes given by SGN
2462 and indicate in *OVERFLOW whether the operation overflowed. */
2463 template <typename T1, typename T2>
2464 inline WI_BINARY_RESULT (T1, T2)
2465 wi::add (const T1 &x, const T2 &y, signop sgn, overflow_type *overflow)
2466 {
2467 WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
2468 unsigned int precision = get_precision (result);
2469 WIDE_INT_REF_FOR (T1) xi (x, precision);
2470 WIDE_INT_REF_FOR (T2) yi (y, precision);
2471 if (precision <= HOST_BITS_PER_WIDE_INT)
2472 {
2473 unsigned HOST_WIDE_INT xl = xi.ulow ();
2474 unsigned HOST_WIDE_INT yl = yi.ulow ();
2475 unsigned HOST_WIDE_INT resultl = xl + yl;
2476 if (sgn == SIGNED)
2477 {
2478 if ((((resultl ^ xl) & (resultl ^ yl))
2479 >> (precision - 1)) & 1)
2480 {
2481 if (xl > resultl)
2482 *overflow = OVF_UNDERFLOW;
2483 else if (xl < resultl)
2484 *overflow = OVF_OVERFLOW;
2485 else
2486 *overflow = OVF_NONE;
2487 }
2488 else
2489 *overflow = OVF_NONE;
2490 }
2491 else
2492 *overflow = ((resultl << (HOST_BITS_PER_WIDE_INT - precision))
2493 < (xl << (HOST_BITS_PER_WIDE_INT - precision)))
2494 ? OVF_OVERFLOW : OVF_NONE;
2495 val[0] = resultl;
2496 result.set_len (1);
2497 }
2498 else
2499 result.set_len (add_large (val, xi.val, xi.len,
2500 yi.val, yi.len, precision,
2501 sgn, overflow));
2502 return result;
2503 }
2504
2505 /* Return X - Y. */
2506 template <typename T1, typename T2>
2507 inline WI_BINARY_RESULT (T1, T2)
2508 wi::sub (const T1 &x, const T2 &y)
2509 {
2510 WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
2511 unsigned int precision = get_precision (result);
2512 WIDE_INT_REF_FOR (T1) xi (x, precision);
2513 WIDE_INT_REF_FOR (T2) yi (y, precision);
2514 if (precision <= HOST_BITS_PER_WIDE_INT)
2515 {
2516 val[0] = xi.ulow () - yi.ulow ();
2517 result.set_len (1);
2518 }
2519 /* If the precision is known at compile time to be greater than
2520 HOST_BITS_PER_WIDE_INT, we can optimize the single-HWI case
2521 knowing that (a) all bits in those HWIs are significant and
2522 (b) the result has room for at least two HWIs. This provides
2523 a fast path for things like offset_int and widest_int.
2524
2525 The STATIC_CONSTANT_P test prevents this path from being
2526 used for wide_ints. wide_ints with precisions greater than
2527 HOST_BITS_PER_WIDE_INT are relatively rare and there's not much
2528 point handling them inline. */
2529 else if (STATIC_CONSTANT_P (precision > HOST_BITS_PER_WIDE_INT)
2530 && __builtin_expect (xi.len + yi.len == 2, true))
2531 {
2532 unsigned HOST_WIDE_INT xl = xi.ulow ();
2533 unsigned HOST_WIDE_INT yl = yi.ulow ();
2534 unsigned HOST_WIDE_INT resultl = xl - yl;
2535 val[0] = resultl;
2536 val[1] = (HOST_WIDE_INT) resultl < 0 ? 0 : -1;
2537 result.set_len (1 + (((resultl ^ xl) & (xl ^ yl))
2538 >> (HOST_BITS_PER_WIDE_INT - 1)));
2539 }
2540 else
2541 result.set_len (sub_large (val, xi.val, xi.len,
2542 yi.val, yi.len, precision,
2543 UNSIGNED, 0));
2544 return result;
2545 }
2546
2547 /* Return X - Y. Treat X and Y as having the signednes given by SGN
2548 and indicate in *OVERFLOW whether the operation overflowed. */
2549 template <typename T1, typename T2>
2550 inline WI_BINARY_RESULT (T1, T2)
2551 wi::sub (const T1 &x, const T2 &y, signop sgn, overflow_type *overflow)
2552 {
2553 WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
2554 unsigned int precision = get_precision (result);
2555 WIDE_INT_REF_FOR (T1) xi (x, precision);
2556 WIDE_INT_REF_FOR (T2) yi (y, precision);
2557 if (precision <= HOST_BITS_PER_WIDE_INT)
2558 {
2559 unsigned HOST_WIDE_INT xl = xi.ulow ();
2560 unsigned HOST_WIDE_INT yl = yi.ulow ();
2561 unsigned HOST_WIDE_INT resultl = xl - yl;
2562 if (sgn == SIGNED)
2563 {
2564 if ((((xl ^ yl) & (resultl ^ xl)) >> (precision - 1)) & 1)
2565 {
2566 if (xl > yl)
2567 *overflow = OVF_UNDERFLOW;
2568 else if (xl < yl)
2569 *overflow = OVF_OVERFLOW;
2570 else
2571 *overflow = OVF_NONE;
2572 }
2573 else
2574 *overflow = OVF_NONE;
2575 }
2576 else
2577 *overflow = ((resultl << (HOST_BITS_PER_WIDE_INT - precision))
2578 > (xl << (HOST_BITS_PER_WIDE_INT - precision)))
2579 ? OVF_UNDERFLOW : OVF_NONE;
2580 val[0] = resultl;
2581 result.set_len (1);
2582 }
2583 else
2584 result.set_len (sub_large (val, xi.val, xi.len,
2585 yi.val, yi.len, precision,
2586 sgn, overflow));
2587 return result;
2588 }
2589
2590 /* Return X * Y. */
2591 template <typename T1, typename T2>
2592 inline WI_BINARY_RESULT (T1, T2)
2593 wi::mul (const T1 &x, const T2 &y)
2594 {
2595 WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
2596 unsigned int precision = get_precision (result);
2597 WIDE_INT_REF_FOR (T1) xi (x, precision);
2598 WIDE_INT_REF_FOR (T2) yi (y, precision);
2599 if (precision <= HOST_BITS_PER_WIDE_INT)
2600 {
2601 val[0] = xi.ulow () * yi.ulow ();
2602 result.set_len (1);
2603 }
2604 else
2605 result.set_len (mul_internal (val, xi.val, xi.len, yi.val, yi.len,
2606 precision, UNSIGNED, 0, false));
2607 return result;
2608 }
2609
2610 /* Return X * Y. Treat X and Y as having the signednes given by SGN
2611 and indicate in *OVERFLOW whether the operation overflowed. */
2612 template <typename T1, typename T2>
2613 inline WI_BINARY_RESULT (T1, T2)
2614 wi::mul (const T1 &x, const T2 &y, signop sgn, overflow_type *overflow)
2615 {
2616 WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
2617 unsigned int precision = get_precision (result);
2618 WIDE_INT_REF_FOR (T1) xi (x, precision);
2619 WIDE_INT_REF_FOR (T2) yi (y, precision);
2620 result.set_len (mul_internal (val, xi.val, xi.len,
2621 yi.val, yi.len, precision,
2622 sgn, overflow, false));
2623 return result;
2624 }
2625
2626 /* Return X * Y, treating both X and Y as signed values. Indicate in
2627 *OVERFLOW whether the operation overflowed. */
2628 template <typename T1, typename T2>
2629 inline WI_BINARY_RESULT (T1, T2)
2630 wi::smul (const T1 &x, const T2 &y, overflow_type *overflow)
2631 {
2632 return mul (x, y, SIGNED, overflow);
2633 }
2634
2635 /* Return X * Y, treating both X and Y as unsigned values. Indicate in
2636 *OVERFLOW if the result overflows. */
2637 template <typename T1, typename T2>
2638 inline WI_BINARY_RESULT (T1, T2)
2639 wi::umul (const T1 &x, const T2 &y, overflow_type *overflow)
2640 {
2641 return mul (x, y, UNSIGNED, overflow);
2642 }
2643
2644 /* Perform a widening multiplication of X and Y, extending the values
2645 according to SGN, and return the high part of the result. */
2646 template <typename T1, typename T2>
2647 inline WI_BINARY_RESULT (T1, T2)
2648 wi::mul_high (const T1 &x, const T2 &y, signop sgn)
2649 {
2650 WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
2651 unsigned int precision = get_precision (result);
2652 WIDE_INT_REF_FOR (T1) xi (x, precision);
2653 WIDE_INT_REF_FOR (T2) yi (y, precision);
2654 result.set_len (mul_internal (val, xi.val, xi.len,
2655 yi.val, yi.len, precision,
2656 sgn, 0, true));
2657 return result;
2658 }
2659
2660 /* Return X / Y, rouding towards 0. Treat X and Y as having the
2661 signedness given by SGN. Indicate in *OVERFLOW if the result
2662 overflows. */
2663 template <typename T1, typename T2>
2664 inline WI_BINARY_RESULT (T1, T2)
2665 wi::div_trunc (const T1 &x, const T2 &y, signop sgn, overflow_type *overflow)
2666 {
2667 WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y);
2668 unsigned int precision = get_precision (quotient);
2669 WIDE_INT_REF_FOR (T1) xi (x, precision);
2670 WIDE_INT_REF_FOR (T2) yi (y);
2671
2672 quotient.set_len (divmod_internal (quotient_val, 0, 0, xi.val, xi.len,
2673 precision,
2674 yi.val, yi.len, yi.precision,
2675 sgn, overflow));
2676 return quotient;
2677 }
2678
2679 /* Return X / Y, rouding towards 0. Treat X and Y as signed values. */
2680 template <typename T1, typename T2>
2681 inline WI_BINARY_RESULT (T1, T2)
2682 wi::sdiv_trunc (const T1 &x, const T2 &y)
2683 {
2684 return div_trunc (x, y, SIGNED);
2685 }
2686
2687 /* Return X / Y, rouding towards 0. Treat X and Y as unsigned values. */
2688 template <typename T1, typename T2>
2689 inline WI_BINARY_RESULT (T1, T2)
2690 wi::udiv_trunc (const T1 &x, const T2 &y)
2691 {
2692 return div_trunc (x, y, UNSIGNED);
2693 }
2694
2695 /* Return X / Y, rouding towards -inf. Treat X and Y as having the
2696 signedness given by SGN. Indicate in *OVERFLOW if the result
2697 overflows. */
2698 template <typename T1, typename T2>
2699 inline WI_BINARY_RESULT (T1, T2)
2700 wi::div_floor (const T1 &x, const T2 &y, signop sgn, overflow_type *overflow)
2701 {
2702 WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y);
2703 WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y);
2704 unsigned int precision = get_precision (quotient);
2705 WIDE_INT_REF_FOR (T1) xi (x, precision);
2706 WIDE_INT_REF_FOR (T2) yi (y);
2707
2708 unsigned int remainder_len;
2709 quotient.set_len (divmod_internal (quotient_val,
2710 &remainder_len, remainder_val,
2711 xi.val, xi.len, precision,
2712 yi.val, yi.len, yi.precision, sgn,
2713 overflow));
2714 remainder.set_len (remainder_len);
2715 if (wi::neg_p (x, sgn) != wi::neg_p (y, sgn) && remainder != 0)
2716 return quotient - 1;
2717 return quotient;
2718 }
2719
2720 /* Return X / Y, rouding towards -inf. Treat X and Y as signed values. */
2721 template <typename T1, typename T2>
2722 inline WI_BINARY_RESULT (T1, T2)
2723 wi::sdiv_floor (const T1 &x, const T2 &y)
2724 {
2725 return div_floor (x, y, SIGNED);
2726 }
2727
2728 /* Return X / Y, rouding towards -inf. Treat X and Y as unsigned values. */
2729 /* ??? Why do we have both this and udiv_trunc. Aren't they the same? */
2730 template <typename T1, typename T2>
2731 inline WI_BINARY_RESULT (T1, T2)
2732 wi::udiv_floor (const T1 &x, const T2 &y)
2733 {
2734 return div_floor (x, y, UNSIGNED);
2735 }
2736
2737 /* Return X / Y, rouding towards +inf. Treat X and Y as having the
2738 signedness given by SGN. Indicate in *OVERFLOW if the result
2739 overflows. */
2740 template <typename T1, typename T2>
2741 inline WI_BINARY_RESULT (T1, T2)
2742 wi::div_ceil (const T1 &x, const T2 &y, signop sgn, overflow_type *overflow)
2743 {
2744 WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y);
2745 WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y);
2746 unsigned int precision = get_precision (quotient);
2747 WIDE_INT_REF_FOR (T1) xi (x, precision);
2748 WIDE_INT_REF_FOR (T2) yi (y);
2749
2750 unsigned int remainder_len;
2751 quotient.set_len (divmod_internal (quotient_val,
2752 &remainder_len, remainder_val,
2753 xi.val, xi.len, precision,
2754 yi.val, yi.len, yi.precision, sgn,
2755 overflow));
2756 remainder.set_len (remainder_len);
2757 if (wi::neg_p (x, sgn) == wi::neg_p (y, sgn) && remainder != 0)
2758 return quotient + 1;
2759 return quotient;
2760 }
2761
2762 /* Return X / Y, rouding towards +inf. Treat X and Y as unsigned values. */
2763 template <typename T1, typename T2>
2764 inline WI_BINARY_RESULT (T1, T2)
2765 wi::udiv_ceil (const T1 &x, const T2 &y)
2766 {
2767 return div_ceil (x, y, UNSIGNED);
2768 }
2769
2770 /* Return X / Y, rouding towards nearest with ties away from zero.
2771 Treat X and Y as having the signedness given by SGN. Indicate
2772 in *OVERFLOW if the result overflows. */
2773 template <typename T1, typename T2>
2774 inline WI_BINARY_RESULT (T1, T2)
2775 wi::div_round (const T1 &x, const T2 &y, signop sgn, overflow_type *overflow)
2776 {
2777 WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y);
2778 WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y);
2779 unsigned int precision = get_precision (quotient);
2780 WIDE_INT_REF_FOR (T1) xi (x, precision);
2781 WIDE_INT_REF_FOR (T2) yi (y);
2782
2783 unsigned int remainder_len;
2784 quotient.set_len (divmod_internal (quotient_val,
2785 &remainder_len, remainder_val,
2786 xi.val, xi.len, precision,
2787 yi.val, yi.len, yi.precision, sgn,
2788 overflow));
2789 remainder.set_len (remainder_len);
2790
2791 if (remainder != 0)
2792 {
2793 if (sgn == SIGNED)
2794 {
2795 WI_BINARY_RESULT (T1, T2) abs_remainder = wi::abs (remainder);
2796 if (wi::geu_p (abs_remainder, wi::sub (wi::abs (y), abs_remainder)))
2797 {
2798 if (wi::neg_p (x, sgn) != wi::neg_p (y, sgn))
2799 return quotient - 1;
2800 else
2801 return quotient + 1;
2802 }
2803 }
2804 else
2805 {
2806 if (wi::geu_p (remainder, wi::sub (y, remainder)))
2807 return quotient + 1;
2808 }
2809 }
2810 return quotient;
2811 }
2812
2813 /* Return X / Y, rouding towards 0. Treat X and Y as having the
2814 signedness given by SGN. Store the remainder in *REMAINDER_PTR. */
2815 template <typename T1, typename T2>
2816 inline WI_BINARY_RESULT (T1, T2)
2817 wi::divmod_trunc (const T1 &x, const T2 &y, signop sgn,
2818 WI_BINARY_RESULT (T1, T2) *remainder_ptr)
2819 {
2820 WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y);
2821 WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y);
2822 unsigned int precision = get_precision (quotient);
2823 WIDE_INT_REF_FOR (T1) xi (x, precision);
2824 WIDE_INT_REF_FOR (T2) yi (y);
2825
2826 unsigned int remainder_len;
2827 quotient.set_len (divmod_internal (quotient_val,
2828 &remainder_len, remainder_val,
2829 xi.val, xi.len, precision,
2830 yi.val, yi.len, yi.precision, sgn, 0));
2831 remainder.set_len (remainder_len);
2832
2833 *remainder_ptr = remainder;
2834 return quotient;
2835 }
2836
2837 /* Compute the greatest common divisor of two numbers A and B using
2838 Euclid's algorithm. */
2839 template <typename T1, typename T2>
2840 inline WI_BINARY_RESULT (T1, T2)
2841 wi::gcd (const T1 &a, const T2 &b, signop sgn)
2842 {
2843 T1 x, y, z;
2844
2845 x = wi::abs (a);
2846 y = wi::abs (b);
2847
2848 while (gt_p (x, 0, sgn))
2849 {
2850 z = mod_trunc (y, x, sgn);
2851 y = x;
2852 x = z;
2853 }
2854
2855 return y;
2856 }
2857
2858 /* Compute X / Y, rouding towards 0, and return the remainder.
2859 Treat X and Y as having the signedness given by SGN. Indicate
2860 in *OVERFLOW if the division overflows. */
2861 template <typename T1, typename T2>
2862 inline WI_BINARY_RESULT (T1, T2)
2863 wi::mod_trunc (const T1 &x, const T2 &y, signop sgn, overflow_type *overflow)
2864 {
2865 WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y);
2866 unsigned int precision = get_precision (remainder);
2867 WIDE_INT_REF_FOR (T1) xi (x, precision);
2868 WIDE_INT_REF_FOR (T2) yi (y);
2869
2870 unsigned int remainder_len;
2871 divmod_internal (0, &remainder_len, remainder_val,
2872 xi.val, xi.len, precision,
2873 yi.val, yi.len, yi.precision, sgn, overflow);
2874 remainder.set_len (remainder_len);
2875
2876 return remainder;
2877 }
2878
2879 /* Compute X / Y, rouding towards 0, and return the remainder.
2880 Treat X and Y as signed values. */
2881 template <typename T1, typename T2>
2882 inline WI_BINARY_RESULT (T1, T2)
2883 wi::smod_trunc (const T1 &x, const T2 &y)
2884 {
2885 return mod_trunc (x, y, SIGNED);
2886 }
2887
2888 /* Compute X / Y, rouding towards 0, and return the remainder.
2889 Treat X and Y as unsigned values. */
2890 template <typename T1, typename T2>
2891 inline WI_BINARY_RESULT (T1, T2)
2892 wi::umod_trunc (const T1 &x, const T2 &y)
2893 {
2894 return mod_trunc (x, y, UNSIGNED);
2895 }
2896
2897 /* Compute X / Y, rouding towards -inf, and return the remainder.
2898 Treat X and Y as having the signedness given by SGN. Indicate
2899 in *OVERFLOW if the division overflows. */
2900 template <typename T1, typename T2>
2901 inline WI_BINARY_RESULT (T1, T2)
2902 wi::mod_floor (const T1 &x, const T2 &y, signop sgn, overflow_type *overflow)
2903 {
2904 WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y);
2905 WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y);
2906 unsigned int precision = get_precision (quotient);
2907 WIDE_INT_REF_FOR (T1) xi (x, precision);
2908 WIDE_INT_REF_FOR (T2) yi (y);
2909
2910 unsigned int remainder_len;
2911 quotient.set_len (divmod_internal (quotient_val,
2912 &remainder_len, remainder_val,
2913 xi.val, xi.len, precision,
2914 yi.val, yi.len, yi.precision, sgn,
2915 overflow));
2916 remainder.set_len (remainder_len);
2917
2918 if (wi::neg_p (x, sgn) != wi::neg_p (y, sgn) && remainder != 0)
2919 return remainder + y;
2920 return remainder;
2921 }
2922
2923 /* Compute X / Y, rouding towards -inf, and return the remainder.
2924 Treat X and Y as unsigned values. */
2925 /* ??? Why do we have both this and umod_trunc. Aren't they the same? */
2926 template <typename T1, typename T2>
2927 inline WI_BINARY_RESULT (T1, T2)
2928 wi::umod_floor (const T1 &x, const T2 &y)
2929 {
2930 return mod_floor (x, y, UNSIGNED);
2931 }
2932
2933 /* Compute X / Y, rouding towards +inf, and return the remainder.
2934 Treat X and Y as having the signedness given by SGN. Indicate
2935 in *OVERFLOW if the division overflows. */
2936 template <typename T1, typename T2>
2937 inline WI_BINARY_RESULT (T1, T2)
2938 wi::mod_ceil (const T1 &x, const T2 &y, signop sgn, overflow_type *overflow)
2939 {
2940 WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y);
2941 WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y);
2942 unsigned int precision = get_precision (quotient);
2943 WIDE_INT_REF_FOR (T1) xi (x, precision);
2944 WIDE_INT_REF_FOR (T2) yi (y);
2945
2946 unsigned int remainder_len;
2947 quotient.set_len (divmod_internal (quotient_val,
2948 &remainder_len, remainder_val,
2949 xi.val, xi.len, precision,
2950 yi.val, yi.len, yi.precision, sgn,
2951 overflow));
2952 remainder.set_len (remainder_len);
2953
2954 if (wi::neg_p (x, sgn) == wi::neg_p (y, sgn) && remainder != 0)
2955 return remainder - y;
2956 return remainder;
2957 }
2958
2959 /* Compute X / Y, rouding towards nearest with ties away from zero,
2960 and return the remainder. Treat X and Y as having the signedness
2961 given by SGN. Indicate in *OVERFLOW if the division overflows. */
2962 template <typename T1, typename T2>
2963 inline WI_BINARY_RESULT (T1, T2)
2964 wi::mod_round (const T1 &x, const T2 &y, signop sgn, overflow_type *overflow)
2965 {
2966 WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y);
2967 WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y);
2968 unsigned int precision = get_precision (quotient);
2969 WIDE_INT_REF_FOR (T1) xi (x, precision);
2970 WIDE_INT_REF_FOR (T2) yi (y);
2971
2972 unsigned int remainder_len;
2973 quotient.set_len (divmod_internal (quotient_val,
2974 &remainder_len, remainder_val,
2975 xi.val, xi.len, precision,
2976 yi.val, yi.len, yi.precision, sgn,
2977 overflow));
2978 remainder.set_len (remainder_len);
2979
2980 if (remainder != 0)
2981 {
2982 if (sgn == SIGNED)
2983 {
2984 WI_BINARY_RESULT (T1, T2) abs_remainder = wi::abs (remainder);
2985 if (wi::geu_p (abs_remainder, wi::sub (wi::abs (y), abs_remainder)))
2986 {
2987 if (wi::neg_p (x, sgn) != wi::neg_p (y, sgn))
2988 return remainder + y;
2989 else
2990 return remainder - y;
2991 }
2992 }
2993 else
2994 {
2995 if (wi::geu_p (remainder, wi::sub (y, remainder)))
2996 return remainder - y;
2997 }
2998 }
2999 return remainder;
3000 }
3001
3002 /* Return true if X is a multiple of Y. Treat X and Y as having the
3003 signedness given by SGN. */
3004 template <typename T1, typename T2>
3005 inline bool
3006 wi::multiple_of_p (const T1 &x, const T2 &y, signop sgn)
3007 {
3008 return wi::mod_trunc (x, y, sgn) == 0;
3009 }
3010
3011 /* Return true if X is a multiple of Y, storing X / Y in *RES if so.
3012 Treat X and Y as having the signedness given by SGN. */
3013 template <typename T1, typename T2>
3014 inline bool
3015 wi::multiple_of_p (const T1 &x, const T2 &y, signop sgn,
3016 WI_BINARY_RESULT (T1, T2) *res)
3017 {
3018 WI_BINARY_RESULT (T1, T2) remainder;
3019 WI_BINARY_RESULT (T1, T2) quotient
3020 = divmod_trunc (x, y, sgn, &remainder);
3021 if (remainder == 0)
3022 {
3023 *res = quotient;
3024 return true;
3025 }
3026 return false;
3027 }
3028
3029 /* Return X << Y. Return 0 if Y is greater than or equal to
3030 the precision of X. */
3031 template <typename T1, typename T2>
3032 inline WI_UNARY_RESULT (T1)
3033 wi::lshift (const T1 &x, const T2 &y)
3034 {
3035 WI_UNARY_RESULT_VAR (result, val, T1, x);
3036 unsigned int precision = get_precision (result);
3037 WIDE_INT_REF_FOR (T1) xi (x, precision);
3038 WIDE_INT_REF_FOR (T2) yi (y);
3039 /* Handle the simple cases quickly. */
3040 if (geu_p (yi, precision))
3041 {
3042 val[0] = 0;
3043 result.set_len (1);
3044 }
3045 else
3046 {
3047 unsigned int shift = yi.to_uhwi ();
3048 /* For fixed-precision integers like offset_int and widest_int,
3049 handle the case where the shift value is constant and the
3050 result is a single nonnegative HWI (meaning that we don't
3051 need to worry about val[1]). This is particularly common
3052 for converting a byte count to a bit count.
3053
3054 For variable-precision integers like wide_int, handle HWI
3055 and sub-HWI integers inline. */
3056 if (STATIC_CONSTANT_P (xi.precision > HOST_BITS_PER_WIDE_INT)
3057 ? (STATIC_CONSTANT_P (shift < HOST_BITS_PER_WIDE_INT - 1)
3058 && xi.len == 1
3059 && IN_RANGE (xi.val[0], 0, HOST_WIDE_INT_MAX >> shift))
3060 : precision <= HOST_BITS_PER_WIDE_INT)
3061 {
3062 val[0] = xi.ulow () << shift;
3063 result.set_len (1);
3064 }
3065 else
3066 result.set_len (lshift_large (val, xi.val, xi.len,
3067 precision, shift));
3068 }
3069 return result;
3070 }
3071
3072 /* Return X >> Y, using a logical shift. Return 0 if Y is greater than
3073 or equal to the precision of X. */
3074 template <typename T1, typename T2>
3075 inline WI_UNARY_RESULT (T1)
3076 wi::lrshift (const T1 &x, const T2 &y)
3077 {
3078 WI_UNARY_RESULT_VAR (result, val, T1, x);
3079 /* Do things in the precision of the input rather than the output,
3080 since the result can be no larger than that. */
3081 WIDE_INT_REF_FOR (T1) xi (x);
3082 WIDE_INT_REF_FOR (T2) yi (y);
3083 /* Handle the simple cases quickly. */
3084 if (geu_p (yi, xi.precision))
3085 {
3086 val[0] = 0;
3087 result.set_len (1);
3088 }
3089 else
3090 {
3091 unsigned int shift = yi.to_uhwi ();
3092 /* For fixed-precision integers like offset_int and widest_int,
3093 handle the case where the shift value is constant and the
3094 shifted value is a single nonnegative HWI (meaning that all
3095 bits above the HWI are zero). This is particularly common
3096 for converting a bit count to a byte count.
3097
3098 For variable-precision integers like wide_int, handle HWI
3099 and sub-HWI integers inline. */
3100 if (STATIC_CONSTANT_P (xi.precision > HOST_BITS_PER_WIDE_INT)
3101 ? (shift < HOST_BITS_PER_WIDE_INT
3102 && xi.len == 1
3103 && xi.val[0] >= 0)
3104 : xi.precision <= HOST_BITS_PER_WIDE_INT)
3105 {
3106 val[0] = xi.to_uhwi () >> shift;
3107 result.set_len (1);
3108 }
3109 else
3110 result.set_len (lrshift_large (val, xi.val, xi.len, xi.precision,
3111 get_precision (result), shift));
3112 }
3113 return result;
3114 }
3115
3116 /* Return X >> Y, using an arithmetic shift. Return a sign mask if
3117 Y is greater than or equal to the precision of X. */
3118 template <typename T1, typename T2>
3119 inline WI_UNARY_RESULT (T1)
3120 wi::arshift (const T1 &x, const T2 &y)
3121 {
3122 WI_UNARY_RESULT_VAR (result, val, T1, x);
3123 /* Do things in the precision of the input rather than the output,
3124 since the result can be no larger than that. */
3125 WIDE_INT_REF_FOR (T1) xi (x);
3126 WIDE_INT_REF_FOR (T2) yi (y);
3127 /* Handle the simple cases quickly. */
3128 if (geu_p (yi, xi.precision))
3129 {
3130 val[0] = sign_mask (x);
3131 result.set_len (1);
3132 }
3133 else
3134 {
3135 unsigned int shift = yi.to_uhwi ();
3136 if (xi.precision <= HOST_BITS_PER_WIDE_INT)
3137 {
3138 val[0] = sext_hwi (xi.ulow () >> shift, xi.precision - shift);
3139 result.set_len (1, true);
3140 }
3141 else
3142 result.set_len (arshift_large (val, xi.val, xi.len, xi.precision,
3143 get_precision (result), shift));
3144 }
3145 return result;
3146 }
3147
3148 /* Return X >> Y, using an arithmetic shift if SGN is SIGNED and a
3149 logical shift otherwise. */
3150 template <typename T1, typename T2>
3151 inline WI_UNARY_RESULT (T1)
3152 wi::rshift (const T1 &x, const T2 &y, signop sgn)
3153 {
3154 if (sgn == UNSIGNED)
3155 return lrshift (x, y);
3156 else
3157 return arshift (x, y);
3158 }
3159
3160 /* Return the result of rotating the low WIDTH bits of X left by Y
3161 bits and zero-extending the result. Use a full-width rotate if
3162 WIDTH is zero. */
3163 template <typename T1, typename T2>
3164 WI_UNARY_RESULT (T1)
3165 wi::lrotate (const T1 &x, const T2 &y, unsigned int width)
3166 {
3167 unsigned int precision = get_binary_precision (x, x);
3168 if (width == 0)
3169 width = precision;
3170 WI_UNARY_RESULT (T2) ymod = umod_trunc (y, width);
3171 WI_UNARY_RESULT (T1) left = wi::lshift (x, ymod);
3172 WI_UNARY_RESULT (T1) right = wi::lrshift (x, wi::sub (width, ymod));
3173 if (width != precision)
3174 return wi::zext (left, width) | wi::zext (right, width);
3175 return left | right;
3176 }
3177
3178 /* Return the result of rotating the low WIDTH bits of X right by Y
3179 bits and zero-extending the result. Use a full-width rotate if
3180 WIDTH is zero. */
3181 template <typename T1, typename T2>
3182 WI_UNARY_RESULT (T1)
3183 wi::rrotate (const T1 &x, const T2 &y, unsigned int width)
3184 {
3185 unsigned int precision = get_binary_precision (x, x);
3186 if (width == 0)
3187 width = precision;
3188 WI_UNARY_RESULT (T2) ymod = umod_trunc (y, width);
3189 WI_UNARY_RESULT (T1) right = wi::lrshift (x, ymod);
3190 WI_UNARY_RESULT (T1) left = wi::lshift (x, wi::sub (width, ymod));
3191 if (width != precision)
3192 return wi::zext (left, width) | wi::zext (right, width);
3193 return left | right;
3194 }
3195
3196 /* Return 0 if the number of 1s in X is even and 1 if the number of 1s
3197 is odd. */
3198 inline int
3199 wi::parity (const wide_int_ref &x)
3200 {
3201 return popcount (x) & 1;
3202 }
3203
3204 /* Extract WIDTH bits from X, starting at BITPOS. */
3205 template <typename T>
3206 inline unsigned HOST_WIDE_INT
3207 wi::extract_uhwi (const T &x, unsigned int bitpos, unsigned int width)
3208 {
3209 unsigned precision = get_precision (x);
3210 if (precision < bitpos + width)
3211 precision = bitpos + width;
3212 WIDE_INT_REF_FOR (T) xi (x, precision);
3213
3214 /* Handle this rare case after the above, so that we assert about
3215 bogus BITPOS values. */
3216 if (width == 0)
3217 return 0;
3218
3219 unsigned int start = bitpos / HOST_BITS_PER_WIDE_INT;
3220 unsigned int shift = bitpos % HOST_BITS_PER_WIDE_INT;
3221 unsigned HOST_WIDE_INT res = xi.elt (start);
3222 res >>= shift;
3223 if (shift + width > HOST_BITS_PER_WIDE_INT)
3224 {
3225 unsigned HOST_WIDE_INT upper = xi.elt (start + 1);
3226 res |= upper << (-shift % HOST_BITS_PER_WIDE_INT);
3227 }
3228 return zext_hwi (res, width);
3229 }
3230
3231 /* Return the minimum precision needed to store X with sign SGN. */
3232 template <typename T>
3233 inline unsigned int
3234 wi::min_precision (const T &x, signop sgn)
3235 {
3236 if (sgn == SIGNED)
3237 return get_precision (x) - clrsb (x);
3238 else
3239 return get_precision (x) - clz (x);
3240 }
3241
3242 #define SIGNED_BINARY_PREDICATE(OP, F) \
3243 template <typename T1, typename T2> \
3244 inline WI_SIGNED_BINARY_PREDICATE_RESULT (T1, T2) \
3245 OP (const T1 &x, const T2 &y) \
3246 { \
3247 return wi::F (x, y); \
3248 }
3249
3250 SIGNED_BINARY_PREDICATE (operator <, lts_p)
3251 SIGNED_BINARY_PREDICATE (operator <=, les_p)
3252 SIGNED_BINARY_PREDICATE (operator >, gts_p)
3253 SIGNED_BINARY_PREDICATE (operator >=, ges_p)
3254
3255 #undef SIGNED_BINARY_PREDICATE
3256
3257 #define UNARY_OPERATOR(OP, F) \
3258 template<typename T> \
3259 WI_UNARY_RESULT (generic_wide_int<T>) \
3260 OP (const generic_wide_int<T> &x) \
3261 { \
3262 return wi::F (x); \
3263 }
3264
3265 #define BINARY_PREDICATE(OP, F) \
3266 template<typename T1, typename T2> \
3267 WI_BINARY_PREDICATE_RESULT (T1, T2) \
3268 OP (const T1 &x, const T2 &y) \
3269 { \
3270 return wi::F (x, y); \
3271 }
3272
3273 #define BINARY_OPERATOR(OP, F) \
3274 template<typename T1, typename T2> \
3275 WI_BINARY_OPERATOR_RESULT (T1, T2) \
3276 OP (const T1 &x, const T2 &y) \
3277 { \
3278 return wi::F (x, y); \
3279 }
3280
3281 #define SHIFT_OPERATOR(OP, F) \
3282 template<typename T1, typename T2> \
3283 WI_BINARY_OPERATOR_RESULT (T1, T1) \
3284 OP (const T1 &x, const T2 &y) \
3285 { \
3286 return wi::F (x, y); \
3287 }
3288
3289 UNARY_OPERATOR (operator ~, bit_not)
3290 UNARY_OPERATOR (operator -, neg)
3291 BINARY_PREDICATE (operator ==, eq_p)
3292 BINARY_PREDICATE (operator !=, ne_p)
3293 BINARY_OPERATOR (operator &, bit_and)
3294 BINARY_OPERATOR (operator |, bit_or)
3295 BINARY_OPERATOR (operator ^, bit_xor)
3296 BINARY_OPERATOR (operator +, add)
3297 BINARY_OPERATOR (operator -, sub)
3298 BINARY_OPERATOR (operator *, mul)
3299 SHIFT_OPERATOR (operator <<, lshift)
3300
3301 #undef UNARY_OPERATOR
3302 #undef BINARY_PREDICATE
3303 #undef BINARY_OPERATOR
3304 #undef SHIFT_OPERATOR
3305
3306 template <typename T1, typename T2>
3307 inline WI_SIGNED_SHIFT_RESULT (T1, T2)
3308 operator >> (const T1 &x, const T2 &y)
3309 {
3310 return wi::arshift (x, y);
3311 }
3312
3313 template <typename T1, typename T2>
3314 inline WI_SIGNED_SHIFT_RESULT (T1, T2)
3315 operator / (const T1 &x, const T2 &y)
3316 {
3317 return wi::sdiv_trunc (x, y);
3318 }
3319
3320 template <typename T1, typename T2>
3321 inline WI_SIGNED_SHIFT_RESULT (T1, T2)
3322 operator % (const T1 &x, const T2 &y)
3323 {
3324 return wi::smod_trunc (x, y);
3325 }
3326
3327 template<typename T>
3328 void
3329 gt_ggc_mx (generic_wide_int <T> *)
3330 {
3331 }
3332
3333 template<typename T>
3334 void
3335 gt_pch_nx (generic_wide_int <T> *)
3336 {
3337 }
3338
3339 template<typename T>
3340 void
3341 gt_pch_nx (generic_wide_int <T> *, void (*) (void *, void *), void *)
3342 {
3343 }
3344
3345 template<int N>
3346 void
3347 gt_ggc_mx (trailing_wide_ints <N> *)
3348 {
3349 }
3350
3351 template<int N>
3352 void
3353 gt_pch_nx (trailing_wide_ints <N> *)
3354 {
3355 }
3356
3357 template<int N>
3358 void
3359 gt_pch_nx (trailing_wide_ints <N> *, void (*) (void *, void *), void *)
3360 {
3361 }
3362
3363 namespace wi
3364 {
3365 /* Used for overloaded functions in which the only other acceptable
3366 scalar type is a pointer. It stops a plain 0 from being treated
3367 as a null pointer. */
3368 struct never_used1 {};
3369 struct never_used2 {};
3370
3371 wide_int min_value (unsigned int, signop);
3372 wide_int min_value (never_used1 *);
3373 wide_int min_value (never_used2 *);
3374 wide_int max_value (unsigned int, signop);
3375 wide_int max_value (never_used1 *);
3376 wide_int max_value (never_used2 *);
3377
3378 /* FIXME: this is target dependent, so should be elsewhere.
3379 It also seems to assume that CHAR_BIT == BITS_PER_UNIT. */
3380 wide_int from_buffer (const unsigned char *, unsigned int);
3381
3382 #ifndef GENERATOR_FILE
3383 void to_mpz (const wide_int_ref &, mpz_t, signop);
3384 #endif
3385
3386 wide_int mask (unsigned int, bool, unsigned int);
3387 wide_int shifted_mask (unsigned int, unsigned int, bool, unsigned int);
3388 wide_int set_bit_in_zero (unsigned int, unsigned int);
3389 wide_int insert (const wide_int &x, const wide_int &y, unsigned int,
3390 unsigned int);
3391 wide_int round_down_for_mask (const wide_int &, const wide_int &);
3392 wide_int round_up_for_mask (const wide_int &, const wide_int &);
3393
3394 wide_int mod_inv (const wide_int &a, const wide_int &b);
3395
3396 template <typename T>
3397 T mask (unsigned int, bool);
3398
3399 template <typename T>
3400 T shifted_mask (unsigned int, unsigned int, bool);
3401
3402 template <typename T>
3403 T set_bit_in_zero (unsigned int);
3404
3405 unsigned int mask (HOST_WIDE_INT *, unsigned int, bool, unsigned int);
3406 unsigned int shifted_mask (HOST_WIDE_INT *, unsigned int, unsigned int,
3407 bool, unsigned int);
3408 unsigned int from_array (HOST_WIDE_INT *, const HOST_WIDE_INT *,
3409 unsigned int, unsigned int, bool);
3410 }
3411
3412 /* Return a PRECISION-bit integer in which the low WIDTH bits are set
3413 and the other bits are clear, or the inverse if NEGATE_P. */
3414 inline wide_int
3415 wi::mask (unsigned int width, bool negate_p, unsigned int precision)
3416 {
3417 wide_int result = wide_int::create (precision);
3418 result.set_len (mask (result.write_val (), width, negate_p, precision));
3419 return result;
3420 }
3421
3422 /* Return a PRECISION-bit integer in which the low START bits are clear,
3423 the next WIDTH bits are set, and the other bits are clear,
3424 or the inverse if NEGATE_P. */
3425 inline wide_int
3426 wi::shifted_mask (unsigned int start, unsigned int width, bool negate_p,
3427 unsigned int precision)
3428 {
3429 wide_int result = wide_int::create (precision);
3430 result.set_len (shifted_mask (result.write_val (), start, width, negate_p,
3431 precision));
3432 return result;
3433 }
3434
3435 /* Return a PRECISION-bit integer in which bit BIT is set and all the
3436 others are clear. */
3437 inline wide_int
3438 wi::set_bit_in_zero (unsigned int bit, unsigned int precision)
3439 {
3440 return shifted_mask (bit, 1, false, precision);
3441 }
3442
3443 /* Return an integer of type T in which the low WIDTH bits are set
3444 and the other bits are clear, or the inverse if NEGATE_P. */
3445 template <typename T>
3446 inline T
3447 wi::mask (unsigned int width, bool negate_p)
3448 {
3449 STATIC_ASSERT (wi::int_traits<T>::precision);
3450 T result;
3451 result.set_len (mask (result.write_val (), width, negate_p,
3452 wi::int_traits <T>::precision));
3453 return result;
3454 }
3455
3456 /* Return an integer of type T in which the low START bits are clear,
3457 the next WIDTH bits are set, and the other bits are clear, or the
3458 inverse if NEGATE_P. */
3459 template <typename T>
3460 inline T
3461 wi::shifted_mask (unsigned int start, unsigned int width, bool negate_p)
3462 {
3463 STATIC_ASSERT (wi::int_traits<T>::precision);
3464 T result;
3465 result.set_len (shifted_mask (result.write_val (), start, width,
3466 negate_p,
3467 wi::int_traits <T>::precision));
3468 return result;
3469 }
3470
3471 /* Return an integer of type T in which bit BIT is set and all the
3472 others are clear. */
3473 template <typename T>
3474 inline T
3475 wi::set_bit_in_zero (unsigned int bit)
3476 {
3477 return shifted_mask <T> (bit, 1, false);
3478 }
3479
3480 /* Accumulate a set of overflows into OVERFLOW. */
3481
3482 static inline void
3483 wi::accumulate_overflow (wi::overflow_type &overflow,
3484 wi::overflow_type suboverflow)
3485 {
3486 if (!suboverflow)
3487 return;
3488 if (!overflow)
3489 overflow = suboverflow;
3490 else if (overflow != suboverflow)
3491 overflow = wi::OVF_UNKNOWN;
3492 }
3493
3494 #endif /* WIDE_INT_H */