]> git.ipfire.org Git - thirdparty/bird.git/blob - lib/md5.c
OSPF: Support for graceful restart
[thirdparty/bird.git] / lib / md5.c
1 /*
2 * BIRD Library -- MD5 Hash Function and HMAC-MD5 Function
3 *
4 * (c) 2015 CZ.NIC z.s.p.o.
5 *
6 * The code was written by Colin Plumb in 1993, no copyright is claimed.
7 *
8 * Adapted for BIRD by Martin Mares <mj@ucw.cz>
9 *
10 * Can be freely distributed and used under the terms of the GNU GPL.
11 */
12
13 #include "lib/md5.h"
14
15 #ifdef CPU_LITTLE_ENDIAN
16 #define byteReverse(buf, len) /* Nothing */
17 #else
18 void byteReverse(byte *buf, uint longs);
19
20 /*
21 * Note: this code is harmless on little-endian machines.
22 */
23 void byteReverse(byte *buf, uint longs)
24 {
25 u32 t;
26 do {
27 t = (u32) ((uint) buf[3] << 8 | buf[2]) << 16 |
28 ((uint) buf[1] << 8 | buf[0]);
29 *(u32 *) buf = t;
30 buf += 4;
31 } while (--longs);
32 }
33 #endif
34
35 static void md5_transform(u32 buf[4], u32 const in[16]);
36
37 /*
38 * Start MD5 accumulation. Set bit count to 0 and buffer to mysterious
39 * initialization constants.
40 */
41 void
42 md5_init(struct hash_context *CTX)
43 {
44 struct md5_context *ctx = (void *) CTX;
45
46 ctx->buf[0] = 0x67452301;
47 ctx->buf[1] = 0xefcdab89;
48 ctx->buf[2] = 0x98badcfe;
49 ctx->buf[3] = 0x10325476;
50
51 ctx->bits[0] = 0;
52 ctx->bits[1] = 0;
53 }
54
55 /*
56 * Update context to reflect the concatenation of another buffer full
57 * of bytes.
58 */
59 void
60 md5_update(struct hash_context *CTX, const byte *buf, uint len)
61 {
62 struct md5_context *ctx = (void *) CTX;
63 u32 t;
64
65 /* Update bitcount */
66
67 t = ctx->bits[0];
68 if ((ctx->bits[0] = t + ((u32) len << 3)) < t)
69 ctx->bits[1]++; /* Carry from low to high */
70 ctx->bits[1] += len >> 29;
71
72 t = (t >> 3) & 0x3f; /* Bytes already in shsInfo->data */
73
74 /* Handle any leading odd-sized chunks */
75 if (t)
76 {
77 byte *p = (byte *) ctx->in + t;
78
79 t = 64 - t;
80 if (len < t)
81 {
82 memcpy(p, buf, len);
83 return;
84 }
85 memcpy(p, buf, t);
86 byteReverse(ctx->in, 16);
87 md5_transform(ctx->buf, (u32 *) ctx->in);
88 buf += t;
89 len -= t;
90 }
91
92 /* Process data in 64-byte chunks */
93 while (len >= 64)
94 {
95 memcpy(ctx->in, buf, 64);
96 byteReverse(ctx->in, 16);
97 md5_transform(ctx->buf, (u32 *) ctx->in);
98 buf += 64;
99 len -= 64;
100 }
101
102 /* Handle any remaining bytes of data. */
103 memcpy(ctx->in, buf, len);
104 }
105
106 /*
107 * Final wrapup - pad to 64-byte boundary with the bit pattern
108 * 1 0* (64-bit count of bits processed, MSB-first)
109 */
110 byte *
111 md5_final(struct hash_context *CTX)
112 {
113 struct md5_context *ctx = (void *) CTX;
114 uint count;
115 byte *p;
116
117 /* Compute number of bytes mod 64 */
118 count = (ctx->bits[0] >> 3) & 0x3F;
119
120 /* Set the first char of padding to 0x80. This is safe since there is
121 always at least one byte free */
122 p = ctx->in + count;
123 *p++ = 0x80;
124
125 /* Bytes of padding needed to make 64 bytes */
126 count = 64 - 1 - count;
127
128 /* Pad out to 56 mod 64 */
129 if (count < 8)
130 {
131 /* Two lots of padding: Pad the first block to 64 bytes */
132 memset(p, 0, count);
133 byteReverse(ctx->in, 16);
134 md5_transform(ctx->buf, (u32 *) ctx->in);
135
136 /* Now fill the next block with 56 bytes */
137 memset(ctx->in, 0, 56);
138 }
139 else
140 {
141 /* Pad block to 56 bytes */
142 memset(p, 0, count - 8);
143 }
144 byteReverse(ctx->in, 14);
145
146 /* Append length in bits and transform */
147 ((u32 *) ctx->in)[14] = ctx->bits[0];
148 ((u32 *) ctx->in)[15] = ctx->bits[1];
149
150 md5_transform(ctx->buf, (u32 *) ctx->in);
151 byteReverse((byte *) ctx->buf, 4);
152
153 return (byte*) ctx->buf;
154 }
155
156 /* The four core functions - F1 is optimized somewhat */
157
158 /* #define F1(x, y, z) (x & y | ~x & z) */
159 #define F1(x, y, z) (z ^ (x & (y ^ z)))
160 #define F2(x, y, z) F1(z, x, y)
161 #define F3(x, y, z) (x ^ y ^ z)
162 #define F4(x, y, z) (y ^ (x | ~z))
163
164 /* This is the central step in the MD5 algorithm. */
165 #define MD5STEP(f, w, x, y, z, data, s) \
166 ( w += f(x, y, z) + data, w = w<<s | w>>(32-s), w += x )
167
168 /*
169 * The core of the MD5 algorithm, this alters an existing MD5 hash to
170 * reflect the addition of 16 longwords of new data. MD5Update blocks
171 * the data and converts bytes into longwords for this routine.
172 */
173 void
174 md5_transform(u32 buf[4], u32 const in[16])
175 {
176 register u32 a, b, c, d;
177
178 a = buf[0];
179 b = buf[1];
180 c = buf[2];
181 d = buf[3];
182
183 MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
184 MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
185 MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
186 MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
187 MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
188 MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
189 MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
190 MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
191 MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
192 MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
193 MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
194 MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
195 MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
196 MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
197 MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
198 MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
199
200 MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
201 MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
202 MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
203 MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
204 MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
205 MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
206 MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
207 MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
208 MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
209 MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
210 MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
211 MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
212 MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
213 MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
214 MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
215 MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
216
217 MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
218 MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
219 MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
220 MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
221 MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
222 MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
223 MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
224 MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
225 MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
226 MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
227 MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
228 MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
229 MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
230 MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
231 MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
232 MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);
233
234 MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
235 MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
236 MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
237 MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
238 MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
239 MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
240 MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
241 MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
242 MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
243 MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
244 MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
245 MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
246 MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
247 MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
248 MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
249 MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);
250
251 buf[0] += a;
252 buf[1] += b;
253 buf[2] += c;
254 buf[3] += d;
255 }