]> git.ipfire.org Git - thirdparty/gcc.git/blob - libcpp/charset.c
diagnostics: Support for -finput-charset [PR93067]
[thirdparty/gcc.git] / libcpp / charset.c
1 /* CPP Library - charsets
2 Copyright (C) 1998-2021 Free Software Foundation, Inc.
3
4 Broken out of c-lex.c Apr 2003, adding valid C99 UCN ranges.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "cpplib.h"
23 #include "internal.h"
24
25 /* Character set handling for C-family languages.
26
27 Terminological note: In what follows, "charset" or "character set"
28 will be taken to mean both an abstract set of characters and an
29 encoding for that set.
30
31 The C99 standard discusses two character sets: source and execution.
32 The source character set is used for internal processing in translation
33 phases 1 through 4; the execution character set is used thereafter.
34 Both are required by 5.2.1.2p1 to be multibyte encodings, not wide
35 character encodings (see 3.7.2, 3.7.3 for the standardese meanings
36 of these terms). Furthermore, the "basic character set" (listed in
37 5.2.1p3) is to be encoded in each with values one byte wide, and is
38 to appear in the initial shift state.
39
40 It is not explicitly mentioned, but there is also a "wide execution
41 character set" used to encode wide character constants and wide
42 string literals; this is supposed to be the result of applying the
43 standard library function mbstowcs() to an equivalent narrow string
44 (6.4.5p5). However, the behavior of hexadecimal and octal
45 \-escapes is at odds with this; they are supposed to be translated
46 directly to wchar_t values (6.4.4.4p5,6).
47
48 The source character set is not necessarily the character set used
49 to encode physical source files on disk; translation phase 1 converts
50 from whatever that encoding is to the source character set.
51
52 The presence of universal character names in C99 (6.4.3 et seq.)
53 forces the source character set to be isomorphic to ISO 10646,
54 that is, Unicode. There is no such constraint on the execution
55 character set; note also that the conversion from source to
56 execution character set does not occur for identifiers (5.1.1.2p1#5).
57
58 For convenience of implementation, the source character set's
59 encoding of the basic character set should be identical to the
60 execution character set OF THE HOST SYSTEM's encoding of the basic
61 character set, and it should not be a state-dependent encoding.
62
63 cpplib uses UTF-8 or UTF-EBCDIC for the source character set,
64 depending on whether the host is based on ASCII or EBCDIC (see
65 respectively Unicode section 2.3/ISO10646 Amendment 2, and Unicode
66 Technical Report #16). With limited exceptions, it relies on the
67 system library's iconv() primitive to do charset conversion
68 (specified in SUSv2). */
69
70 #if !HAVE_ICONV
71 /* Make certain that the uses of iconv(), iconv_open(), iconv_close()
72 below, which are guarded only by if statements with compile-time
73 constant conditions, do not cause link errors. */
74 #define iconv_open(x, y) (errno = EINVAL, (iconv_t)-1)
75 #define iconv(a,b,c,d,e) (errno = EINVAL, (size_t)-1)
76 #define iconv_close(x) (void)0
77 #define ICONV_CONST
78 #endif
79
80 #if HOST_CHARSET == HOST_CHARSET_ASCII
81 #define SOURCE_CHARSET "UTF-8"
82 #define LAST_POSSIBLY_BASIC_SOURCE_CHAR 0x7e
83 #elif HOST_CHARSET == HOST_CHARSET_EBCDIC
84 #define SOURCE_CHARSET "UTF-EBCDIC"
85 #define LAST_POSSIBLY_BASIC_SOURCE_CHAR 0xFF
86 #else
87 #error "Unrecognized basic host character set"
88 #endif
89
90 #ifndef EILSEQ
91 #define EILSEQ EINVAL
92 #endif
93
94 /* This structure is used for a resizable string buffer throughout. */
95 /* Don't call it strbuf, as that conflicts with unistd.h on systems
96 such as DYNIX/ptx where unistd.h includes stropts.h. */
97 struct _cpp_strbuf
98 {
99 uchar *text;
100 size_t asize;
101 size_t len;
102 };
103
104 /* This is enough to hold any string that fits on a single 80-column
105 line, even if iconv quadruples its size (e.g. conversion from
106 ASCII to UTF-32) rounded up to a power of two. */
107 #define OUTBUF_BLOCK_SIZE 256
108
109 /* Conversions between UTF-8 and UTF-16/32 are implemented by custom
110 logic. This is because a depressing number of systems lack iconv,
111 or have have iconv libraries that do not do these conversions, so
112 we need a fallback implementation for them. To ensure the fallback
113 doesn't break due to neglect, it is used on all systems.
114
115 UTF-32 encoding is nice and simple: a four-byte binary number,
116 constrained to the range 00000000-7FFFFFFF to avoid questions of
117 signedness. We do have to cope with big- and little-endian
118 variants.
119
120 UTF-16 encoding uses two-byte binary numbers, again in big- and
121 little-endian variants, for all values in the 00000000-0000FFFF
122 range. Values in the 00010000-0010FFFF range are encoded as pairs
123 of two-byte numbers, called "surrogate pairs": given a number S in
124 this range, it is mapped to a pair (H, L) as follows:
125
126 H = (S - 0x10000) / 0x400 + 0xD800
127 L = (S - 0x10000) % 0x400 + 0xDC00
128
129 Two-byte values in the D800...DFFF range are ill-formed except as a
130 component of a surrogate pair. Even if the encoding within a
131 two-byte value is little-endian, the H member of the surrogate pair
132 comes first.
133
134 There is no way to encode values in the 00110000-7FFFFFFF range,
135 which is not currently a problem as there are no assigned code
136 points in that range; however, the author expects that it will
137 eventually become necessary to abandon UTF-16 due to this
138 limitation. Note also that, because of these pairs, UTF-16 does
139 not meet the requirements of the C standard for a wide character
140 encoding (see 3.7.3 and 6.4.4.4p11).
141
142 UTF-8 encoding looks like this:
143
144 value range encoded as
145 00000000-0000007F 0xxxxxxx
146 00000080-000007FF 110xxxxx 10xxxxxx
147 00000800-0000FFFF 1110xxxx 10xxxxxx 10xxxxxx
148 00010000-001FFFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
149 00200000-03FFFFFF 111110xx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx
150 04000000-7FFFFFFF 1111110x 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx
151
152 Values in the 0000D800 ... 0000DFFF range (surrogates) are invalid,
153 which means that three-byte sequences ED xx yy, with A0 <= xx <= BF,
154 never occur. Note also that any value that can be encoded by a
155 given row of the table can also be encoded by all successive rows,
156 but this is not done; only the shortest possible encoding for any
157 given value is valid. For instance, the character 07C0 could be
158 encoded as any of DF 80, E0 9F 80, F0 80 9F 80, F8 80 80 9F 80, or
159 FC 80 80 80 9F 80. Only the first is valid.
160
161 An implementation note: the transformation from UTF-16 to UTF-8, or
162 vice versa, is easiest done by using UTF-32 as an intermediary. */
163
164 /* Internal primitives which go from an UTF-8 byte stream to native-endian
165 UTF-32 in a cppchar_t, or vice versa; this avoids an extra marshal/unmarshal
166 operation in several places below. */
167 static inline int
168 one_utf8_to_cppchar (const uchar **inbufp, size_t *inbytesleftp,
169 cppchar_t *cp)
170 {
171 static const uchar masks[6] = { 0x7F, 0x1F, 0x0F, 0x07, 0x03, 0x01 };
172 static const uchar patns[6] = { 0x00, 0xC0, 0xE0, 0xF0, 0xF8, 0xFC };
173
174 cppchar_t c;
175 const uchar *inbuf = *inbufp;
176 size_t nbytes, i;
177
178 if (*inbytesleftp < 1)
179 return EINVAL;
180
181 c = *inbuf;
182 if (c < 0x80)
183 {
184 *cp = c;
185 *inbytesleftp -= 1;
186 *inbufp += 1;
187 return 0;
188 }
189
190 /* The number of leading 1-bits in the first byte indicates how many
191 bytes follow. */
192 for (nbytes = 2; nbytes < 7; nbytes++)
193 if ((c & ~masks[nbytes-1]) == patns[nbytes-1])
194 goto found;
195 return EILSEQ;
196 found:
197
198 if (*inbytesleftp < nbytes)
199 return EINVAL;
200
201 c = (c & masks[nbytes-1]);
202 inbuf++;
203 for (i = 1; i < nbytes; i++)
204 {
205 cppchar_t n = *inbuf++;
206 if ((n & 0xC0) != 0x80)
207 return EILSEQ;
208 c = ((c << 6) + (n & 0x3F));
209 }
210
211 /* Make sure the shortest possible encoding was used. */
212 if (c <= 0x7F && nbytes > 1) return EILSEQ;
213 if (c <= 0x7FF && nbytes > 2) return EILSEQ;
214 if (c <= 0xFFFF && nbytes > 3) return EILSEQ;
215 if (c <= 0x1FFFFF && nbytes > 4) return EILSEQ;
216 if (c <= 0x3FFFFFF && nbytes > 5) return EILSEQ;
217
218 /* Make sure the character is valid. */
219 if (c > 0x7FFFFFFF || (c >= 0xD800 && c <= 0xDFFF)) return EILSEQ;
220
221 *cp = c;
222 *inbufp = inbuf;
223 *inbytesleftp -= nbytes;
224 return 0;
225 }
226
227 static inline int
228 one_cppchar_to_utf8 (cppchar_t c, uchar **outbufp, size_t *outbytesleftp)
229 {
230 static const uchar masks[6] = { 0x00, 0xC0, 0xE0, 0xF0, 0xF8, 0xFC };
231 static const uchar limits[6] = { 0x80, 0xE0, 0xF0, 0xF8, 0xFC, 0xFE };
232 size_t nbytes;
233 uchar buf[6], *p = &buf[6];
234 uchar *outbuf = *outbufp;
235
236 nbytes = 1;
237 if (c < 0x80)
238 *--p = c;
239 else
240 {
241 do
242 {
243 *--p = ((c & 0x3F) | 0x80);
244 c >>= 6;
245 nbytes++;
246 }
247 while (c >= 0x3F || (c & limits[nbytes-1]));
248 *--p = (c | masks[nbytes-1]);
249 }
250
251 if (*outbytesleftp < nbytes)
252 return E2BIG;
253
254 while (p < &buf[6])
255 *outbuf++ = *p++;
256 *outbytesleftp -= nbytes;
257 *outbufp = outbuf;
258 return 0;
259 }
260
261 /* The following four functions transform one character between the two
262 encodings named in the function name. All have the signature
263 int (*)(iconv_t bigend, const uchar **inbufp, size_t *inbytesleftp,
264 uchar **outbufp, size_t *outbytesleftp)
265
266 BIGEND must have the value 0 or 1, coerced to (iconv_t); it is
267 interpreted as a boolean indicating whether big-endian or
268 little-endian encoding is to be used for the member of the pair
269 that is not UTF-8.
270
271 INBUFP, INBYTESLEFTP, OUTBUFP, OUTBYTESLEFTP work exactly as they
272 do for iconv.
273
274 The return value is either 0 for success, or an errno value for
275 failure, which may be E2BIG (need more space), EILSEQ (ill-formed
276 input sequence), ir EINVAL (incomplete input sequence). */
277
278 static inline int
279 one_utf8_to_utf32 (iconv_t bigend, const uchar **inbufp, size_t *inbytesleftp,
280 uchar **outbufp, size_t *outbytesleftp)
281 {
282 uchar *outbuf;
283 cppchar_t s = 0;
284 int rval;
285
286 /* Check for space first, since we know exactly how much we need. */
287 if (*outbytesleftp < 4)
288 return E2BIG;
289
290 rval = one_utf8_to_cppchar (inbufp, inbytesleftp, &s);
291 if (rval)
292 return rval;
293
294 outbuf = *outbufp;
295 outbuf[bigend ? 3 : 0] = (s & 0x000000FF);
296 outbuf[bigend ? 2 : 1] = (s & 0x0000FF00) >> 8;
297 outbuf[bigend ? 1 : 2] = (s & 0x00FF0000) >> 16;
298 outbuf[bigend ? 0 : 3] = (s & 0xFF000000) >> 24;
299
300 *outbufp += 4;
301 *outbytesleftp -= 4;
302 return 0;
303 }
304
305 static inline int
306 one_utf32_to_utf8 (iconv_t bigend, const uchar **inbufp, size_t *inbytesleftp,
307 uchar **outbufp, size_t *outbytesleftp)
308 {
309 cppchar_t s;
310 int rval;
311 const uchar *inbuf;
312
313 if (*inbytesleftp < 4)
314 return EINVAL;
315
316 inbuf = *inbufp;
317
318 s = inbuf[bigend ? 0 : 3] << 24;
319 s += inbuf[bigend ? 1 : 2] << 16;
320 s += inbuf[bigend ? 2 : 1] << 8;
321 s += inbuf[bigend ? 3 : 0];
322
323 if (s >= 0x7FFFFFFF || (s >= 0xD800 && s <= 0xDFFF))
324 return EILSEQ;
325
326 rval = one_cppchar_to_utf8 (s, outbufp, outbytesleftp);
327 if (rval)
328 return rval;
329
330 *inbufp += 4;
331 *inbytesleftp -= 4;
332 return 0;
333 }
334
335 static inline int
336 one_utf8_to_utf16 (iconv_t bigend, const uchar **inbufp, size_t *inbytesleftp,
337 uchar **outbufp, size_t *outbytesleftp)
338 {
339 int rval;
340 cppchar_t s = 0;
341 const uchar *save_inbuf = *inbufp;
342 size_t save_inbytesleft = *inbytesleftp;
343 uchar *outbuf = *outbufp;
344
345 rval = one_utf8_to_cppchar (inbufp, inbytesleftp, &s);
346 if (rval)
347 return rval;
348
349 if (s > 0x0010FFFF)
350 {
351 *inbufp = save_inbuf;
352 *inbytesleftp = save_inbytesleft;
353 return EILSEQ;
354 }
355
356 if (s <= 0xFFFF)
357 {
358 if (*outbytesleftp < 2)
359 {
360 *inbufp = save_inbuf;
361 *inbytesleftp = save_inbytesleft;
362 return E2BIG;
363 }
364 outbuf[bigend ? 1 : 0] = (s & 0x00FF);
365 outbuf[bigend ? 0 : 1] = (s & 0xFF00) >> 8;
366
367 *outbufp += 2;
368 *outbytesleftp -= 2;
369 return 0;
370 }
371 else
372 {
373 cppchar_t hi, lo;
374
375 if (*outbytesleftp < 4)
376 {
377 *inbufp = save_inbuf;
378 *inbytesleftp = save_inbytesleft;
379 return E2BIG;
380 }
381
382 hi = (s - 0x10000) / 0x400 + 0xD800;
383 lo = (s - 0x10000) % 0x400 + 0xDC00;
384
385 /* Even if we are little-endian, put the high surrogate first.
386 ??? Matches practice? */
387 outbuf[bigend ? 1 : 0] = (hi & 0x00FF);
388 outbuf[bigend ? 0 : 1] = (hi & 0xFF00) >> 8;
389 outbuf[bigend ? 3 : 2] = (lo & 0x00FF);
390 outbuf[bigend ? 2 : 3] = (lo & 0xFF00) >> 8;
391
392 *outbufp += 4;
393 *outbytesleftp -= 4;
394 return 0;
395 }
396 }
397
398 static inline int
399 one_utf16_to_utf8 (iconv_t bigend, const uchar **inbufp, size_t *inbytesleftp,
400 uchar **outbufp, size_t *outbytesleftp)
401 {
402 cppchar_t s;
403 const uchar *inbuf = *inbufp;
404 int rval;
405
406 if (*inbytesleftp < 2)
407 return EINVAL;
408 s = inbuf[bigend ? 0 : 1] << 8;
409 s += inbuf[bigend ? 1 : 0];
410
411 /* Low surrogate without immediately preceding high surrogate is invalid. */
412 if (s >= 0xDC00 && s <= 0xDFFF)
413 return EILSEQ;
414 /* High surrogate must have a following low surrogate. */
415 else if (s >= 0xD800 && s <= 0xDBFF)
416 {
417 cppchar_t hi = s, lo;
418 if (*inbytesleftp < 4)
419 return EINVAL;
420
421 lo = inbuf[bigend ? 2 : 3] << 8;
422 lo += inbuf[bigend ? 3 : 2];
423
424 if (lo < 0xDC00 || lo > 0xDFFF)
425 return EILSEQ;
426
427 s = (hi - 0xD800) * 0x400 + (lo - 0xDC00) + 0x10000;
428 }
429
430 rval = one_cppchar_to_utf8 (s, outbufp, outbytesleftp);
431 if (rval)
432 return rval;
433
434 /* Success - update the input pointers (one_cppchar_to_utf8 has done
435 the output pointers for us). */
436 if (s <= 0xFFFF)
437 {
438 *inbufp += 2;
439 *inbytesleftp -= 2;
440 }
441 else
442 {
443 *inbufp += 4;
444 *inbytesleftp -= 4;
445 }
446 return 0;
447 }
448
449 /* Helper routine for the next few functions. The 'const' on
450 one_conversion means that we promise not to modify what function is
451 pointed to, which lets the inliner see through it. */
452
453 static inline bool
454 conversion_loop (int (*const one_conversion)(iconv_t, const uchar **, size_t *,
455 uchar **, size_t *),
456 iconv_t cd, const uchar *from, size_t flen, struct _cpp_strbuf *to)
457 {
458 const uchar *inbuf;
459 uchar *outbuf;
460 size_t inbytesleft, outbytesleft;
461 int rval;
462
463 inbuf = from;
464 inbytesleft = flen;
465 outbuf = to->text + to->len;
466 outbytesleft = to->asize - to->len;
467
468 for (;;)
469 {
470 do
471 rval = one_conversion (cd, &inbuf, &inbytesleft,
472 &outbuf, &outbytesleft);
473 while (inbytesleft && !rval);
474
475 if (__builtin_expect (inbytesleft == 0, 1))
476 {
477 to->len = to->asize - outbytesleft;
478 return true;
479 }
480 if (rval != E2BIG)
481 {
482 errno = rval;
483 return false;
484 }
485
486 outbytesleft += OUTBUF_BLOCK_SIZE;
487 to->asize += OUTBUF_BLOCK_SIZE;
488 to->text = XRESIZEVEC (uchar, to->text, to->asize);
489 outbuf = to->text + to->asize - outbytesleft;
490 }
491 }
492
493
494 /* These functions convert entire strings between character sets.
495 They all have the signature
496
497 bool (*)(iconv_t cd, const uchar *from, size_t flen, struct _cpp_strbuf *to);
498
499 The input string FROM is converted as specified by the function
500 name plus the iconv descriptor CD (which may be fake), and the
501 result appended to TO. On any error, false is returned, otherwise true. */
502
503 /* These four use the custom conversion code above. */
504 static bool
505 convert_utf8_utf16 (iconv_t cd, const uchar *from, size_t flen,
506 struct _cpp_strbuf *to)
507 {
508 return conversion_loop (one_utf8_to_utf16, cd, from, flen, to);
509 }
510
511 static bool
512 convert_utf8_utf32 (iconv_t cd, const uchar *from, size_t flen,
513 struct _cpp_strbuf *to)
514 {
515 return conversion_loop (one_utf8_to_utf32, cd, from, flen, to);
516 }
517
518 static bool
519 convert_utf16_utf8 (iconv_t cd, const uchar *from, size_t flen,
520 struct _cpp_strbuf *to)
521 {
522 return conversion_loop (one_utf16_to_utf8, cd, from, flen, to);
523 }
524
525 static bool
526 convert_utf32_utf8 (iconv_t cd, const uchar *from, size_t flen,
527 struct _cpp_strbuf *to)
528 {
529 return conversion_loop (one_utf32_to_utf8, cd, from, flen, to);
530 }
531
532 /* Identity conversion, used when we have no alternative. */
533 static bool
534 convert_no_conversion (iconv_t cd ATTRIBUTE_UNUSED,
535 const uchar *from, size_t flen, struct _cpp_strbuf *to)
536 {
537 if (to->len + flen > to->asize)
538 {
539 to->asize = to->len + flen;
540 to->asize += to->asize / 4;
541 to->text = XRESIZEVEC (uchar, to->text, to->asize);
542 }
543 memcpy (to->text + to->len, from, flen);
544 to->len += flen;
545 return true;
546 }
547
548 /* And this one uses the system iconv primitive. It's a little
549 different, since iconv's interface is a little different. */
550 #if HAVE_ICONV
551
552 #define CONVERT_ICONV_GROW_BUFFER \
553 do { \
554 outbytesleft += OUTBUF_BLOCK_SIZE; \
555 to->asize += OUTBUF_BLOCK_SIZE; \
556 to->text = XRESIZEVEC (uchar, to->text, to->asize); \
557 outbuf = (char *)to->text + to->asize - outbytesleft; \
558 } while (0)
559
560 static bool
561 convert_using_iconv (iconv_t cd, const uchar *from, size_t flen,
562 struct _cpp_strbuf *to)
563 {
564 ICONV_CONST char *inbuf;
565 char *outbuf;
566 size_t inbytesleft, outbytesleft;
567
568 /* Reset conversion descriptor and check that it is valid. */
569 if (iconv (cd, 0, 0, 0, 0) == (size_t)-1)
570 return false;
571
572 inbuf = (ICONV_CONST char *)from;
573 inbytesleft = flen;
574 outbuf = (char *)to->text + to->len;
575 outbytesleft = to->asize - to->len;
576
577 for (;;)
578 {
579 iconv (cd, &inbuf, &inbytesleft, &outbuf, &outbytesleft);
580 if (__builtin_expect (inbytesleft == 0, 1))
581 {
582 /* Close out any shift states, returning to the initial state. */
583 if (iconv (cd, 0, 0, &outbuf, &outbytesleft) == (size_t)-1)
584 {
585 if (errno != E2BIG)
586 return false;
587
588 CONVERT_ICONV_GROW_BUFFER;
589 if (iconv (cd, 0, 0, &outbuf, &outbytesleft) == (size_t)-1)
590 return false;
591 }
592
593 to->len = to->asize - outbytesleft;
594 return true;
595 }
596 if (errno != E2BIG)
597 return false;
598
599 CONVERT_ICONV_GROW_BUFFER;
600 }
601 }
602 #else
603 #define convert_using_iconv 0 /* prevent undefined symbol error below */
604 #endif
605
606 /* Arrange for the above custom conversion logic to be used automatically
607 when conversion between a suitable pair of character sets is requested. */
608
609 #define APPLY_CONVERSION(CONVERTER, FROM, FLEN, TO) \
610 CONVERTER.func (CONVERTER.cd, FROM, FLEN, TO)
611
612 struct cpp_conversion
613 {
614 const char *pair;
615 convert_f func;
616 iconv_t fake_cd;
617 };
618 static const struct cpp_conversion conversion_tab[] = {
619 { "UTF-8/UTF-32LE", convert_utf8_utf32, (iconv_t)0 },
620 { "UTF-8/UTF-32BE", convert_utf8_utf32, (iconv_t)1 },
621 { "UTF-8/UTF-16LE", convert_utf8_utf16, (iconv_t)0 },
622 { "UTF-8/UTF-16BE", convert_utf8_utf16, (iconv_t)1 },
623 { "UTF-32LE/UTF-8", convert_utf32_utf8, (iconv_t)0 },
624 { "UTF-32BE/UTF-8", convert_utf32_utf8, (iconv_t)1 },
625 { "UTF-16LE/UTF-8", convert_utf16_utf8, (iconv_t)0 },
626 { "UTF-16BE/UTF-8", convert_utf16_utf8, (iconv_t)1 },
627 };
628
629 /* Subroutine of cpp_init_iconv: initialize and return a
630 cset_converter structure for conversion from FROM to TO. If
631 iconv_open() fails, issue an error and return an identity
632 converter. Silently return an identity converter if FROM and TO
633 are identical.
634
635 PFILE is only used for generating diagnostics; setting it to NULL
636 suppresses diagnostics. */
637
638 static struct cset_converter
639 init_iconv_desc (cpp_reader *pfile, const char *to, const char *from)
640 {
641 struct cset_converter ret;
642 char *pair;
643 size_t i;
644
645 ret.to = to;
646 ret.from = from;
647
648 if (!strcasecmp (to, from))
649 {
650 ret.func = convert_no_conversion;
651 ret.cd = (iconv_t) -1;
652 ret.width = -1;
653 return ret;
654 }
655
656 pair = (char *) alloca(strlen(to) + strlen(from) + 2);
657
658 strcpy(pair, from);
659 strcat(pair, "/");
660 strcat(pair, to);
661 for (i = 0; i < ARRAY_SIZE (conversion_tab); i++)
662 if (!strcasecmp (pair, conversion_tab[i].pair))
663 {
664 ret.func = conversion_tab[i].func;
665 ret.cd = conversion_tab[i].fake_cd;
666 ret.width = -1;
667 return ret;
668 }
669
670 /* No custom converter - try iconv. */
671 if (HAVE_ICONV)
672 {
673 ret.func = convert_using_iconv;
674 ret.cd = iconv_open (to, from);
675 ret.width = -1;
676
677 if (ret.cd == (iconv_t) -1)
678 {
679 if (pfile)
680 {
681 if (errno == EINVAL)
682 cpp_error (pfile, CPP_DL_ERROR, /* FIXME should be DL_SORRY */
683 "conversion from %s to %s not supported by iconv",
684 from, to);
685 else
686 cpp_errno (pfile, CPP_DL_ERROR, "iconv_open");
687 }
688 ret.func = convert_no_conversion;
689 }
690 }
691 else
692 {
693 if (pfile)
694 {
695 cpp_error (pfile, CPP_DL_ERROR, /* FIXME: should be DL_SORRY */
696 "no iconv implementation, cannot convert from %s to %s",
697 from, to);
698 }
699 ret.func = convert_no_conversion;
700 ret.cd = (iconv_t) -1;
701 ret.width = -1;
702 }
703
704 return ret;
705 }
706
707 /* If charset conversion is requested, initialize iconv(3) descriptors
708 for conversion from the source character set to the execution
709 character sets. If iconv is not present in the C library, and
710 conversion is requested, issue an error. */
711
712 void
713 cpp_init_iconv (cpp_reader *pfile)
714 {
715 const char *ncset = CPP_OPTION (pfile, narrow_charset);
716 const char *wcset = CPP_OPTION (pfile, wide_charset);
717 const char *default_wcset;
718
719 bool be = CPP_OPTION (pfile, bytes_big_endian);
720
721 if (CPP_OPTION (pfile, wchar_precision) >= 32)
722 default_wcset = be ? "UTF-32BE" : "UTF-32LE";
723 else if (CPP_OPTION (pfile, wchar_precision) >= 16)
724 default_wcset = be ? "UTF-16BE" : "UTF-16LE";
725 else
726 /* This effectively means that wide strings are not supported,
727 so don't do any conversion at all. */
728 default_wcset = SOURCE_CHARSET;
729
730 if (!ncset)
731 ncset = SOURCE_CHARSET;
732 if (!wcset)
733 wcset = default_wcset;
734
735 pfile->narrow_cset_desc = init_iconv_desc (pfile, ncset, SOURCE_CHARSET);
736 pfile->narrow_cset_desc.width = CPP_OPTION (pfile, char_precision);
737 pfile->utf8_cset_desc = init_iconv_desc (pfile, "UTF-8", SOURCE_CHARSET);
738 pfile->utf8_cset_desc.width = CPP_OPTION (pfile, char_precision);
739 pfile->char16_cset_desc = init_iconv_desc (pfile,
740 be ? "UTF-16BE" : "UTF-16LE",
741 SOURCE_CHARSET);
742 pfile->char16_cset_desc.width = 16;
743 pfile->char32_cset_desc = init_iconv_desc (pfile,
744 be ? "UTF-32BE" : "UTF-32LE",
745 SOURCE_CHARSET);
746 pfile->char32_cset_desc.width = 32;
747 pfile->wide_cset_desc = init_iconv_desc (pfile, wcset, SOURCE_CHARSET);
748 pfile->wide_cset_desc.width = CPP_OPTION (pfile, wchar_precision);
749 }
750
751 /* Destroy iconv(3) descriptors set up by cpp_init_iconv, if necessary. */
752 void
753 _cpp_destroy_iconv (cpp_reader *pfile)
754 {
755 if (HAVE_ICONV)
756 {
757 if (pfile->narrow_cset_desc.func == convert_using_iconv)
758 iconv_close (pfile->narrow_cset_desc.cd);
759 if (pfile->utf8_cset_desc.func == convert_using_iconv)
760 iconv_close (pfile->utf8_cset_desc.cd);
761 if (pfile->char16_cset_desc.func == convert_using_iconv)
762 iconv_close (pfile->char16_cset_desc.cd);
763 if (pfile->char32_cset_desc.func == convert_using_iconv)
764 iconv_close (pfile->char32_cset_desc.cd);
765 if (pfile->wide_cset_desc.func == convert_using_iconv)
766 iconv_close (pfile->wide_cset_desc.cd);
767 }
768 }
769
770 /* Utility routine for use by a full compiler. C is a character taken
771 from the *basic* source character set, encoded in the host's
772 execution encoding. Convert it to (the target's) execution
773 encoding, and return that value.
774
775 Issues an internal error if C's representation in the narrow
776 execution character set fails to be a single-byte value (C99
777 5.2.1p3: "The representation of each member of the source and
778 execution character sets shall fit in a byte.") May also issue an
779 internal error if C fails to be a member of the basic source
780 character set (testing this exactly is too hard, especially when
781 the host character set is EBCDIC). */
782 cppchar_t
783 cpp_host_to_exec_charset (cpp_reader *pfile, cppchar_t c)
784 {
785 uchar sbuf[1];
786 struct _cpp_strbuf tbuf;
787
788 /* This test is merely an approximation, but it suffices to catch
789 the most important thing, which is that we don't get handed a
790 character outside the unibyte range of the host character set. */
791 if (c > LAST_POSSIBLY_BASIC_SOURCE_CHAR)
792 {
793 cpp_error (pfile, CPP_DL_ICE,
794 "character 0x%lx is not in the basic source character set\n",
795 (unsigned long)c);
796 return 0;
797 }
798
799 /* Being a character in the unibyte range of the host character set,
800 we can safely splat it into a one-byte buffer and trust that that
801 is a well-formed string. */
802 sbuf[0] = c;
803
804 /* This should never need to reallocate, but just in case... */
805 tbuf.asize = 1;
806 tbuf.text = XNEWVEC (uchar, tbuf.asize);
807 tbuf.len = 0;
808
809 if (!APPLY_CONVERSION (pfile->narrow_cset_desc, sbuf, 1, &tbuf))
810 {
811 cpp_errno (pfile, CPP_DL_ICE, "converting to execution character set");
812 return 0;
813 }
814 if (tbuf.len != 1)
815 {
816 cpp_error (pfile, CPP_DL_ICE,
817 "character 0x%lx is not unibyte in execution character set",
818 (unsigned long)c);
819 return 0;
820 }
821 c = tbuf.text[0];
822 free(tbuf.text);
823 return c;
824 }
825
826 \f
827
828 /* cpp_substring_ranges's constructor. */
829
830 cpp_substring_ranges::cpp_substring_ranges () :
831 m_ranges (NULL),
832 m_num_ranges (0),
833 m_alloc_ranges (8)
834 {
835 m_ranges = XNEWVEC (source_range, m_alloc_ranges);
836 }
837
838 /* cpp_substring_ranges's destructor. */
839
840 cpp_substring_ranges::~cpp_substring_ranges ()
841 {
842 free (m_ranges);
843 }
844
845 /* Add RANGE to the vector of source_range information. */
846
847 void
848 cpp_substring_ranges::add_range (source_range range)
849 {
850 if (m_num_ranges >= m_alloc_ranges)
851 {
852 m_alloc_ranges *= 2;
853 m_ranges
854 = (source_range *)xrealloc (m_ranges,
855 sizeof (source_range) * m_alloc_ranges);
856 }
857 m_ranges[m_num_ranges++] = range;
858 }
859
860 /* Read NUM ranges from LOC_READER, adding them to the vector of source_range
861 information. */
862
863 void
864 cpp_substring_ranges::add_n_ranges (int num,
865 cpp_string_location_reader &loc_reader)
866 {
867 for (int i = 0; i < num; i++)
868 add_range (loc_reader.get_next ());
869 }
870
871 \f
872
873 /* Utility routine that computes a mask of the form 0000...111... with
874 WIDTH 1-bits. */
875 static inline size_t
876 width_to_mask (size_t width)
877 {
878 width = MIN (width, BITS_PER_CPPCHAR_T);
879 if (width >= CHAR_BIT * sizeof (size_t))
880 return ~(size_t) 0;
881 else
882 return ((size_t) 1 << width) - 1;
883 }
884
885 /* A large table of unicode character information. */
886 enum {
887 /* Valid in a C99 identifier? */
888 C99 = 1,
889 /* Valid in a C99 identifier, but not as the first character? */
890 N99 = 2,
891 /* Valid in a C++ identifier? */
892 CXX = 4,
893 /* Valid in a C11/C++11 identifier? */
894 C11 = 8,
895 /* Valid in a C11/C++11 identifier, but not as the first character? */
896 N11 = 16,
897 /* NFC representation is not valid in an identifier? */
898 CID = 32,
899 /* Might be valid NFC form? */
900 NFC = 64,
901 /* Might be valid NFKC form? */
902 NKC = 128,
903 /* Certain preceding characters might make it not valid NFC/NKFC form? */
904 CTX = 256
905 };
906
907 struct ucnrange {
908 /* Bitmap of flags above. */
909 unsigned short flags;
910 /* Combining class of the character. */
911 unsigned char combine;
912 /* Last character in the range described by this entry. */
913 unsigned int end;
914 };
915 #include "ucnid.h"
916
917 /* ISO 10646 defines the UCS codespace as the range 0-0x10FFFF inclusive. */
918 #define UCS_LIMIT 0x10FFFF
919
920 /* Returns 1 if C is valid in an identifier, 2 if C is valid except at
921 the start of an identifier, and 0 if C is not valid in an
922 identifier. We assume C has already gone through the checks of
923 _cpp_valid_ucn. Also update NST for C if returning nonzero. The
924 algorithm is a simple binary search on the table defined in
925 ucnid.h. */
926
927 static int
928 ucn_valid_in_identifier (cpp_reader *pfile, cppchar_t c,
929 struct normalize_state *nst)
930 {
931 int mn, mx, md;
932 unsigned short valid_flags, invalid_start_flags;
933
934 if (c > UCS_LIMIT)
935 return 0;
936
937 mn = 0;
938 mx = ARRAY_SIZE (ucnranges) - 1;
939 while (mx != mn)
940 {
941 md = (mn + mx) / 2;
942 if (c <= ucnranges[md].end)
943 mx = md;
944 else
945 mn = md + 1;
946 }
947
948 /* When -pedantic, we require the character to have been listed by
949 the standard for the current language. Otherwise, we accept the
950 union of the acceptable sets for all supported language versions. */
951 valid_flags = C99 | CXX | C11;
952 if (CPP_PEDANTIC (pfile))
953 {
954 if (CPP_OPTION (pfile, c11_identifiers))
955 valid_flags = C11;
956 else if (CPP_OPTION (pfile, c99))
957 valid_flags = C99;
958 else if (CPP_OPTION (pfile, cplusplus))
959 valid_flags = CXX;
960 }
961 if (! (ucnranges[mn].flags & valid_flags))
962 return 0;
963 if (CPP_OPTION (pfile, c11_identifiers))
964 invalid_start_flags = N11;
965 else if (CPP_OPTION (pfile, c99))
966 invalid_start_flags = N99;
967 else
968 invalid_start_flags = 0;
969
970 /* Update NST. */
971 if (ucnranges[mn].combine != 0 && ucnranges[mn].combine < nst->prev_class)
972 nst->level = normalized_none;
973 else if (ucnranges[mn].flags & CTX)
974 {
975 bool safe;
976 cppchar_t p = nst->previous;
977
978 /* For Hangul, characters in the range AC00-D7A3 are NFC/NFKC,
979 and are combined algorithmically from a sequence of the form
980 1100-1112 1161-1175 11A8-11C2
981 (if the third is not present, it is treated as 11A7, which is not
982 really a valid character).
983 Unfortunately, C99 allows (only) the NFC form, but C++ allows
984 only the combining characters. */
985 if (c >= 0x1161 && c <= 0x1175)
986 safe = p < 0x1100 || p > 0x1112;
987 else if (c >= 0x11A8 && c <= 0x11C2)
988 safe = (p < 0xAC00 || p > 0xD7A3 || (p - 0xAC00) % 28 != 0);
989 else
990 safe = check_nfc (pfile, c, p);
991 if (!safe)
992 {
993 if ((c >= 0x1161 && c <= 0x1175) || (c >= 0x11A8 && c <= 0x11C2))
994 nst->level = MAX (nst->level, normalized_identifier_C);
995 else
996 nst->level = normalized_none;
997 }
998 }
999 else if (ucnranges[mn].flags & NKC)
1000 ;
1001 else if (ucnranges[mn].flags & NFC)
1002 nst->level = MAX (nst->level, normalized_C);
1003 else if (ucnranges[mn].flags & CID)
1004 nst->level = MAX (nst->level, normalized_identifier_C);
1005 else
1006 nst->level = normalized_none;
1007 if (ucnranges[mn].combine == 0)
1008 nst->previous = c;
1009 nst->prev_class = ucnranges[mn].combine;
1010
1011 /* In C99, UCN digits may not begin identifiers. In C11 and C++11,
1012 UCN combining characters may not begin identifiers. */
1013 if (ucnranges[mn].flags & invalid_start_flags)
1014 return 2;
1015
1016 return 1;
1017 }
1018
1019 /* [lex.charset]: The character designated by the universal character
1020 name \UNNNNNNNN is that character whose character short name in
1021 ISO/IEC 10646 is NNNNNNNN; the character designated by the
1022 universal character name \uNNNN is that character whose character
1023 short name in ISO/IEC 10646 is 0000NNNN. If the hexadecimal value
1024 for a universal character name corresponds to a surrogate code point
1025 (in the range 0xD800-0xDFFF, inclusive), the program is ill-formed.
1026 Additionally, if the hexadecimal value for a universal-character-name
1027 outside a character or string literal corresponds to a control character
1028 (in either of the ranges 0x00-0x1F or 0x7F-0x9F, both inclusive) or to a
1029 character in the basic source character set, the program is ill-formed.
1030
1031 C99 6.4.3: A universal character name shall not specify a character
1032 whose short identifier is less than 00A0 other than 0024 ($), 0040 (@),
1033 or 0060 (`), nor one in the range D800 through DFFF inclusive.
1034
1035 If the hexadecimal value is larger than the upper bound of the UCS
1036 codespace specified in ISO/IEC 10646, a pedantic warning is issued
1037 in all versions of C and in the C++20 or later versions of C++.
1038
1039 *PSTR must be preceded by "\u" or "\U"; it is assumed that the
1040 buffer end is delimited by a non-hex digit. Returns false if the
1041 UCN has not been consumed, true otherwise.
1042
1043 The value of the UCN, whether valid or invalid, is returned in *CP.
1044 Diagnostics are emitted for invalid values. PSTR is updated to point
1045 one beyond the UCN, or to the syntactically invalid character.
1046
1047 IDENTIFIER_POS is 0 when not in an identifier, 1 for the start of
1048 an identifier, or 2 otherwise.
1049
1050 If LOC_READER is non-NULL, then position information is
1051 read from *LOC_READER and CHAR_RANGE->m_finish is updated accordingly. */
1052
1053 bool
1054 _cpp_valid_ucn (cpp_reader *pfile, const uchar **pstr,
1055 const uchar *limit, int identifier_pos,
1056 struct normalize_state *nst, cppchar_t *cp,
1057 source_range *char_range,
1058 cpp_string_location_reader *loc_reader)
1059 {
1060 cppchar_t result, c;
1061 unsigned int length;
1062 const uchar *str = *pstr;
1063 const uchar *base = str - 2;
1064
1065 if (!CPP_OPTION (pfile, cplusplus) && !CPP_OPTION (pfile, c99))
1066 cpp_error (pfile, CPP_DL_WARNING,
1067 "universal character names are only valid in C++ and C99");
1068 else if (CPP_OPTION (pfile, cpp_warn_c90_c99_compat) > 0
1069 && !CPP_OPTION (pfile, cplusplus))
1070 cpp_error (pfile, CPP_DL_WARNING,
1071 "C99's universal character names are incompatible with C90");
1072 else if (CPP_WTRADITIONAL (pfile) && identifier_pos == 0)
1073 cpp_warning (pfile, CPP_W_TRADITIONAL,
1074 "the meaning of '\\%c' is different in traditional C",
1075 (int) str[-1]);
1076
1077 if (str[-1] == 'u')
1078 length = 4;
1079 else if (str[-1] == 'U')
1080 length = 8;
1081 else
1082 {
1083 cpp_error (pfile, CPP_DL_ICE, "In _cpp_valid_ucn but not a UCN");
1084 length = 4;
1085 }
1086
1087 result = 0;
1088 do
1089 {
1090 c = *str;
1091 if (!ISXDIGIT (c))
1092 break;
1093 str++;
1094 if (loc_reader)
1095 {
1096 gcc_assert (char_range);
1097 char_range->m_finish = loc_reader->get_next ().m_finish;
1098 }
1099 result = (result << 4) + hex_value (c);
1100 }
1101 while (--length && str < limit);
1102
1103 /* Partial UCNs are not valid in strings, but decompose into
1104 multiple tokens in identifiers, so we can't give a helpful
1105 error message in that case. */
1106 if (length && identifier_pos)
1107 {
1108 *cp = 0;
1109 return false;
1110 }
1111
1112 *pstr = str;
1113 if (length)
1114 {
1115 cpp_error (pfile, CPP_DL_ERROR,
1116 "incomplete universal character name %.*s",
1117 (int) (str - base), base);
1118 result = 1;
1119 }
1120 /* The C99 standard permits $, @ and ` to be specified as UCNs. We use
1121 hex escapes so that this also works with EBCDIC hosts.
1122 C++0x permits everything below 0xa0 within literals;
1123 ucn_valid_in_identifier will complain about identifiers. */
1124 else if ((result < 0xa0
1125 && !CPP_OPTION (pfile, cplusplus)
1126 && (result != 0x24 && result != 0x40 && result != 0x60))
1127 || (result & 0x80000000)
1128 || (result >= 0xD800 && result <= 0xDFFF))
1129 {
1130 cpp_error (pfile, CPP_DL_ERROR,
1131 "%.*s is not a valid universal character",
1132 (int) (str - base), base);
1133 result = 1;
1134 }
1135 else if (identifier_pos && result == 0x24
1136 && CPP_OPTION (pfile, dollars_in_ident))
1137 {
1138 if (CPP_OPTION (pfile, warn_dollars) && !pfile->state.skipping)
1139 {
1140 CPP_OPTION (pfile, warn_dollars) = 0;
1141 cpp_error (pfile, CPP_DL_PEDWARN, "'$' in identifier or number");
1142 }
1143 NORMALIZE_STATE_UPDATE_IDNUM (nst, result);
1144 }
1145 else if (identifier_pos)
1146 {
1147 int validity = ucn_valid_in_identifier (pfile, result, nst);
1148
1149 if (validity == 0)
1150 cpp_error (pfile, CPP_DL_ERROR,
1151 "universal character %.*s is not valid in an identifier",
1152 (int) (str - base), base);
1153 else if (validity == 2 && identifier_pos == 1)
1154 cpp_error (pfile, CPP_DL_ERROR,
1155 "universal character %.*s is not valid at the start of an identifier",
1156 (int) (str - base), base);
1157 }
1158 else if (result > UCS_LIMIT
1159 && (!CPP_OPTION (pfile, cplusplus)
1160 || CPP_OPTION (pfile, lang) > CLK_CXX17))
1161 cpp_error (pfile, CPP_DL_PEDWARN,
1162 "%.*s is outside the UCS codespace",
1163 (int) (str - base), base);
1164
1165 *cp = result;
1166 return true;
1167 }
1168
1169 /* Convert an UCN, pointed to by FROM, to UTF-8 encoding, then translate
1170 it to the execution character set and write the result into TBUF,
1171 if TBUF is non-NULL.
1172 An advanced pointer is returned. Issues all relevant diagnostics.
1173 If LOC_READER is non-NULL, then RANGES must be non-NULL and CHAR_RANGE
1174 contains the location of the character so far: location information
1175 is read from *LOC_READER, and *RANGES is updated accordingly. */
1176 static const uchar *
1177 convert_ucn (cpp_reader *pfile, const uchar *from, const uchar *limit,
1178 struct _cpp_strbuf *tbuf, struct cset_converter cvt,
1179 source_range char_range,
1180 cpp_string_location_reader *loc_reader,
1181 cpp_substring_ranges *ranges)
1182 {
1183 cppchar_t ucn;
1184 uchar buf[6];
1185 uchar *bufp = buf;
1186 size_t bytesleft = 6;
1187 int rval;
1188 struct normalize_state nst = INITIAL_NORMALIZE_STATE;
1189
1190 /* loc_reader and ranges must either be both NULL, or both be non-NULL. */
1191 gcc_assert ((loc_reader != NULL) == (ranges != NULL));
1192
1193 from++; /* Skip u/U. */
1194
1195 if (loc_reader)
1196 /* The u/U is part of the spelling of this character. */
1197 char_range.m_finish = loc_reader->get_next ().m_finish;
1198
1199 _cpp_valid_ucn (pfile, &from, limit, 0, &nst,
1200 &ucn, &char_range, loc_reader);
1201
1202 rval = one_cppchar_to_utf8 (ucn, &bufp, &bytesleft);
1203 if (rval)
1204 {
1205 errno = rval;
1206 cpp_errno (pfile, CPP_DL_ERROR,
1207 "converting UCN to source character set");
1208 }
1209 else
1210 {
1211 if (tbuf)
1212 if (!APPLY_CONVERSION (cvt, buf, 6 - bytesleft, tbuf))
1213 cpp_errno (pfile, CPP_DL_ERROR,
1214 "converting UCN to execution character set");
1215
1216 if (loc_reader)
1217 {
1218 int num_encoded_bytes = 6 - bytesleft;
1219 for (int i = 0; i < num_encoded_bytes; i++)
1220 ranges->add_range (char_range);
1221 }
1222 }
1223
1224 return from;
1225 }
1226
1227 /* Performs a similar task as _cpp_valid_ucn, but parses UTF-8-encoded
1228 extended characters rather than UCNs. If the return value is TRUE, then a
1229 character was successfully decoded and stored in *CP; *PSTR has been
1230 updated to point one past the valid UTF-8 sequence. Diagnostics may have
1231 been emitted if the character parsed is not allowed in the current context.
1232 If the return value is FALSE, then *PSTR has not been modified and *CP may
1233 equal 0, to indicate that *PSTR does not form a valid UTF-8 sequence, or it
1234 may, when processing an identifier in C mode, equal a codepoint that was
1235 validly encoded but is not allowed to appear in an identifier. In either
1236 case, no diagnostic is emitted, and the return value of FALSE should cause
1237 a new token to be formed.
1238
1239 Unlike _cpp_valid_ucn, this will never be called when lexing a string; only
1240 a potential identifier, or a CPP_OTHER token. NST is unused in the latter
1241 case.
1242
1243 As in _cpp_valid_ucn, IDENTIFIER_POS is 0 when not in an identifier, 1 for
1244 the start of an identifier, or 2 otherwise. */
1245
1246 extern bool
1247 _cpp_valid_utf8 (cpp_reader *pfile,
1248 const uchar **pstr,
1249 const uchar *limit,
1250 int identifier_pos,
1251 struct normalize_state *nst,
1252 cppchar_t *cp)
1253 {
1254 const uchar *base = *pstr;
1255 size_t inbytesleft = limit - base;
1256 if (one_utf8_to_cppchar (pstr, &inbytesleft, cp))
1257 {
1258 /* No diagnostic here as this byte will rather become a
1259 new token. */
1260 *cp = 0;
1261 return false;
1262 }
1263
1264 if (identifier_pos)
1265 {
1266 switch (ucn_valid_in_identifier (pfile, *cp, nst))
1267 {
1268
1269 case 0:
1270 /* In C++, this is an error for invalid character in an identifier
1271 because logically, the UTF-8 was converted to a UCN during
1272 translation phase 1 (even though we don't physically do it that
1273 way). In C, this byte rather becomes grammatically a separate
1274 token. */
1275
1276 if (CPP_OPTION (pfile, cplusplus))
1277 cpp_error (pfile, CPP_DL_ERROR,
1278 "extended character %.*s is not valid in an identifier",
1279 (int) (*pstr - base), base);
1280 else
1281 {
1282 *pstr = base;
1283 return false;
1284 }
1285
1286 break;
1287
1288 case 2:
1289 if (identifier_pos == 1)
1290 {
1291 /* This is treated the same way in C++ or C99 -- lexed as an
1292 identifier which is then invalid because an identifier is
1293 not allowed to start with this character. */
1294 cpp_error (pfile, CPP_DL_ERROR,
1295 "extended character %.*s is not valid at the start of an identifier",
1296 (int) (*pstr - base), base);
1297 }
1298 break;
1299 }
1300 }
1301
1302 return true;
1303 }
1304
1305 /* Subroutine of convert_hex and convert_oct. N is the representation
1306 in the execution character set of a numeric escape; write it into the
1307 string buffer TBUF and update the end-of-string pointer therein. WIDE
1308 is true if it's a wide string that's being assembled in TBUF. This
1309 function issues no diagnostics and never fails. */
1310 static void
1311 emit_numeric_escape (cpp_reader *pfile, cppchar_t n,
1312 struct _cpp_strbuf *tbuf, struct cset_converter cvt)
1313 {
1314 size_t width = cvt.width;
1315
1316 if (width != CPP_OPTION (pfile, char_precision))
1317 {
1318 /* We have to render this into the target byte order, which may not
1319 be our byte order. */
1320 bool bigend = CPP_OPTION (pfile, bytes_big_endian);
1321 size_t cwidth = CPP_OPTION (pfile, char_precision);
1322 size_t cmask = width_to_mask (cwidth);
1323 size_t nbwc = width / cwidth;
1324 size_t i;
1325 size_t off = tbuf->len;
1326 cppchar_t c;
1327
1328 if (tbuf->len + nbwc > tbuf->asize)
1329 {
1330 tbuf->asize += OUTBUF_BLOCK_SIZE;
1331 tbuf->text = XRESIZEVEC (uchar, tbuf->text, tbuf->asize);
1332 }
1333
1334 for (i = 0; i < nbwc; i++)
1335 {
1336 c = n & cmask;
1337 n >>= cwidth;
1338 tbuf->text[off + (bigend ? nbwc - i - 1 : i)] = c;
1339 }
1340 tbuf->len += nbwc;
1341 }
1342 else
1343 {
1344 /* Note: this code does not handle the case where the target
1345 and host have a different number of bits in a byte. */
1346 if (tbuf->len + 1 > tbuf->asize)
1347 {
1348 tbuf->asize += OUTBUF_BLOCK_SIZE;
1349 tbuf->text = XRESIZEVEC (uchar, tbuf->text, tbuf->asize);
1350 }
1351 tbuf->text[tbuf->len++] = n;
1352 }
1353 }
1354
1355 /* Convert a hexadecimal escape, pointed to by FROM, to the execution
1356 character set and write it into the string buffer TBUF (if non-NULL).
1357 Returns an advanced pointer, and issues diagnostics as necessary.
1358 No character set translation occurs; this routine always produces the
1359 execution-set character with numeric value equal to the given hex
1360 number. You can, e.g. generate surrogate pairs this way.
1361 If LOC_READER is non-NULL, then RANGES must be non-NULL and CHAR_RANGE
1362 contains the location of the character so far: location information
1363 is read from *LOC_READER, and *RANGES is updated accordingly. */
1364 static const uchar *
1365 convert_hex (cpp_reader *pfile, const uchar *from, const uchar *limit,
1366 struct _cpp_strbuf *tbuf, struct cset_converter cvt,
1367 source_range char_range,
1368 cpp_string_location_reader *loc_reader,
1369 cpp_substring_ranges *ranges)
1370 {
1371 cppchar_t c, n = 0, overflow = 0;
1372 int digits_found = 0;
1373 size_t width = cvt.width;
1374 size_t mask = width_to_mask (width);
1375
1376 /* loc_reader and ranges must either be both NULL, or both be non-NULL. */
1377 gcc_assert ((loc_reader != NULL) == (ranges != NULL));
1378
1379 if (CPP_WTRADITIONAL (pfile))
1380 cpp_warning (pfile, CPP_W_TRADITIONAL,
1381 "the meaning of '\\x' is different in traditional C");
1382
1383 /* Skip 'x'. */
1384 from++;
1385
1386 /* The 'x' is part of the spelling of this character. */
1387 if (loc_reader)
1388 char_range.m_finish = loc_reader->get_next ().m_finish;
1389
1390 while (from < limit)
1391 {
1392 c = *from;
1393 if (! hex_p (c))
1394 break;
1395 from++;
1396 if (loc_reader)
1397 char_range.m_finish = loc_reader->get_next ().m_finish;
1398 overflow |= n ^ (n << 4 >> 4);
1399 n = (n << 4) + hex_value (c);
1400 digits_found = 1;
1401 }
1402
1403 if (!digits_found)
1404 {
1405 cpp_error (pfile, CPP_DL_ERROR,
1406 "\\x used with no following hex digits");
1407 return from;
1408 }
1409
1410 if (overflow | (n != (n & mask)))
1411 {
1412 cpp_error (pfile, CPP_DL_PEDWARN,
1413 "hex escape sequence out of range");
1414 n &= mask;
1415 }
1416
1417 if (tbuf)
1418 emit_numeric_escape (pfile, n, tbuf, cvt);
1419 if (ranges)
1420 ranges->add_range (char_range);
1421
1422 return from;
1423 }
1424
1425 /* Convert an octal escape, pointed to by FROM, to the execution
1426 character set and write it into the string buffer TBUF. Returns an
1427 advanced pointer, and issues diagnostics as necessary.
1428 No character set translation occurs; this routine always produces the
1429 execution-set character with numeric value equal to the given octal
1430 number.
1431 If LOC_READER is non-NULL, then RANGES must be non-NULL and CHAR_RANGE
1432 contains the location of the character so far: location information
1433 is read from *LOC_READER, and *RANGES is updated accordingly. */
1434 static const uchar *
1435 convert_oct (cpp_reader *pfile, const uchar *from, const uchar *limit,
1436 struct _cpp_strbuf *tbuf, struct cset_converter cvt,
1437 source_range char_range,
1438 cpp_string_location_reader *loc_reader,
1439 cpp_substring_ranges *ranges)
1440 {
1441 size_t count = 0;
1442 cppchar_t c, n = 0;
1443 size_t width = cvt.width;
1444 size_t mask = width_to_mask (width);
1445 bool overflow = false;
1446
1447 /* loc_reader and ranges must either be both NULL, or both be non-NULL. */
1448 gcc_assert ((loc_reader != NULL) == (ranges != NULL));
1449
1450 while (from < limit && count++ < 3)
1451 {
1452 c = *from;
1453 if (c < '0' || c > '7')
1454 break;
1455 from++;
1456 if (loc_reader)
1457 char_range.m_finish = loc_reader->get_next ().m_finish;
1458 overflow |= n ^ (n << 3 >> 3);
1459 n = (n << 3) + c - '0';
1460 }
1461
1462 if (n != (n & mask))
1463 {
1464 cpp_error (pfile, CPP_DL_PEDWARN,
1465 "octal escape sequence out of range");
1466 n &= mask;
1467 }
1468
1469 if (tbuf)
1470 emit_numeric_escape (pfile, n, tbuf, cvt);
1471 if (ranges)
1472 ranges->add_range (char_range);
1473
1474 return from;
1475 }
1476
1477 /* Convert an escape sequence (pointed to by FROM) to its value on
1478 the target, and to the execution character set. Do not scan past
1479 LIMIT. Write the converted value into TBUF, if TBUF is non-NULL.
1480 Returns an advanced pointer. Handles all relevant diagnostics.
1481 If LOC_READER is non-NULL, then RANGES must be non-NULL: location
1482 information is read from *LOC_READER, and *RANGES is updated
1483 accordingly. */
1484 static const uchar *
1485 convert_escape (cpp_reader *pfile, const uchar *from, const uchar *limit,
1486 struct _cpp_strbuf *tbuf, struct cset_converter cvt,
1487 cpp_string_location_reader *loc_reader,
1488 cpp_substring_ranges *ranges)
1489 {
1490 /* Values of \a \b \e \f \n \r \t \v respectively. */
1491 #if HOST_CHARSET == HOST_CHARSET_ASCII
1492 static const uchar charconsts[] = { 7, 8, 27, 12, 10, 13, 9, 11 };
1493 #elif HOST_CHARSET == HOST_CHARSET_EBCDIC
1494 static const uchar charconsts[] = { 47, 22, 39, 12, 21, 13, 5, 11 };
1495 #else
1496 #error "unknown host character set"
1497 #endif
1498
1499 uchar c;
1500
1501 /* Record the location of the backslash. */
1502 source_range char_range;
1503 if (loc_reader)
1504 char_range = loc_reader->get_next ();
1505
1506 c = *from;
1507 switch (c)
1508 {
1509 /* UCNs, hex escapes, and octal escapes are processed separately. */
1510 case 'u': case 'U':
1511 return convert_ucn (pfile, from, limit, tbuf, cvt,
1512 char_range, loc_reader, ranges);
1513
1514 case 'x':
1515 return convert_hex (pfile, from, limit, tbuf, cvt,
1516 char_range, loc_reader, ranges);
1517 break;
1518
1519 case '0': case '1': case '2': case '3':
1520 case '4': case '5': case '6': case '7':
1521 return convert_oct (pfile, from, limit, tbuf, cvt,
1522 char_range, loc_reader, ranges);
1523
1524 /* Various letter escapes. Get the appropriate host-charset
1525 value into C. */
1526 case '\\': case '\'': case '"': case '?': break;
1527
1528 case '(': case '{': case '[': case '%':
1529 /* '\(', etc, can be used at the beginning of a line in a long
1530 string split onto multiple lines with \-newline, to prevent
1531 Emacs or other text editors from getting confused. '\%' can
1532 be used to prevent SCCS from mangling printf format strings. */
1533 if (CPP_PEDANTIC (pfile))
1534 goto unknown;
1535 break;
1536
1537 case 'b': c = charconsts[1]; break;
1538 case 'f': c = charconsts[3]; break;
1539 case 'n': c = charconsts[4]; break;
1540 case 'r': c = charconsts[5]; break;
1541 case 't': c = charconsts[6]; break;
1542 case 'v': c = charconsts[7]; break;
1543
1544 case 'a':
1545 if (CPP_WTRADITIONAL (pfile))
1546 cpp_warning (pfile, CPP_W_TRADITIONAL,
1547 "the meaning of '\\a' is different in traditional C");
1548 c = charconsts[0];
1549 break;
1550
1551 case 'e': case 'E':
1552 if (CPP_PEDANTIC (pfile))
1553 cpp_error (pfile, CPP_DL_PEDWARN,
1554 "non-ISO-standard escape sequence, '\\%c'", (int) c);
1555 c = charconsts[2];
1556 break;
1557
1558 default:
1559 unknown:
1560 if (ISGRAPH (c))
1561 cpp_error (pfile, CPP_DL_PEDWARN,
1562 "unknown escape sequence: '\\%c'", (int) c);
1563 else
1564 {
1565 /* diagnostic.c does not support "%03o". When it does, this
1566 code can use %03o directly in the diagnostic again. */
1567 char buf[32];
1568 sprintf(buf, "%03o", (int) c);
1569 cpp_error (pfile, CPP_DL_PEDWARN,
1570 "unknown escape sequence: '\\%s'", buf);
1571 }
1572 }
1573
1574 if (tbuf)
1575 /* Now convert what we have to the execution character set. */
1576 if (!APPLY_CONVERSION (cvt, &c, 1, tbuf))
1577 cpp_errno (pfile, CPP_DL_ERROR,
1578 "converting escape sequence to execution character set");
1579
1580 if (loc_reader)
1581 {
1582 char_range.m_finish = loc_reader->get_next ().m_finish;
1583 ranges->add_range (char_range);
1584 }
1585
1586 return from + 1;
1587 }
1588 \f
1589 /* TYPE is a token type. The return value is the conversion needed to
1590 convert from source to execution character set for the given type. */
1591 static struct cset_converter
1592 converter_for_type (cpp_reader *pfile, enum cpp_ttype type)
1593 {
1594 switch (type)
1595 {
1596 default:
1597 return pfile->narrow_cset_desc;
1598 case CPP_UTF8CHAR:
1599 case CPP_UTF8STRING:
1600 return pfile->utf8_cset_desc;
1601 case CPP_CHAR16:
1602 case CPP_STRING16:
1603 return pfile->char16_cset_desc;
1604 case CPP_CHAR32:
1605 case CPP_STRING32:
1606 return pfile->char32_cset_desc;
1607 case CPP_WCHAR:
1608 case CPP_WSTRING:
1609 return pfile->wide_cset_desc;
1610 }
1611 }
1612
1613 /* FROM is an array of cpp_string structures of length COUNT. These
1614 are to be converted from the source to the execution character set,
1615 escape sequences translated, and finally all are to be
1616 concatenated. WIDE indicates whether or not to produce a wide
1617 string. If TO is non-NULL, the result is written into TO.
1618 If LOC_READERS and OUT are non-NULL, then location information
1619 is read from LOC_READERS (which must be an array of length COUNT),
1620 and location information is written to *RANGES.
1621
1622 Returns true for success, false for failure. */
1623
1624 static bool
1625 cpp_interpret_string_1 (cpp_reader *pfile, const cpp_string *from, size_t count,
1626 cpp_string *to, enum cpp_ttype type,
1627 cpp_string_location_reader *loc_readers,
1628 cpp_substring_ranges *out)
1629 {
1630 struct _cpp_strbuf tbuf;
1631 const uchar *p, *base, *limit;
1632 size_t i;
1633 struct cset_converter cvt = converter_for_type (pfile, type);
1634
1635 /* loc_readers and out must either be both NULL, or both be non-NULL. */
1636 gcc_assert ((loc_readers != NULL) == (out != NULL));
1637
1638 if (to)
1639 {
1640 tbuf.asize = MAX (OUTBUF_BLOCK_SIZE, from->len);
1641 tbuf.text = XNEWVEC (uchar, tbuf.asize);
1642 tbuf.len = 0;
1643 }
1644
1645 cpp_string_location_reader *loc_reader = NULL;
1646 for (i = 0; i < count; i++)
1647 {
1648 if (loc_readers)
1649 loc_reader = &loc_readers[i];
1650
1651 p = from[i].text;
1652 if (*p == 'u')
1653 {
1654 p++;
1655 if (loc_reader)
1656 loc_reader->get_next ();
1657 if (*p == '8')
1658 {
1659 p++;
1660 if (loc_reader)
1661 loc_reader->get_next ();
1662 }
1663 }
1664 else if (*p == 'L' || *p == 'U') p++;
1665 if (*p == 'R')
1666 {
1667 const uchar *prefix;
1668
1669 /* Skip over 'R"'. */
1670 p += 2;
1671 if (loc_reader)
1672 {
1673 loc_reader->get_next ();
1674 loc_reader->get_next ();
1675 }
1676 prefix = p;
1677 while (*p != '(')
1678 {
1679 p++;
1680 if (loc_reader)
1681 loc_reader->get_next ();
1682 }
1683 p++;
1684 if (loc_reader)
1685 loc_reader->get_next ();
1686 limit = from[i].text + from[i].len;
1687 if (limit >= p + (p - prefix) + 1)
1688 limit -= (p - prefix) + 1;
1689
1690 /* Raw strings are all normal characters; these can be fed
1691 directly to convert_cset. */
1692 if (to)
1693 if (!APPLY_CONVERSION (cvt, p, limit - p, &tbuf))
1694 goto fail;
1695
1696 if (loc_reader)
1697 {
1698 /* If generating source ranges, assume we have a 1:1
1699 correspondence between bytes in the source encoding and bytes
1700 in the execution encoding (e.g. if we have a UTF-8 to UTF-8
1701 conversion), so that this run of bytes in the source file
1702 corresponds to a run of bytes in the execution string.
1703 This requirement is guaranteed by an early-reject in
1704 cpp_interpret_string_ranges. */
1705 gcc_assert (cvt.func == convert_no_conversion);
1706 out->add_n_ranges (limit - p, *loc_reader);
1707 }
1708
1709 continue;
1710 }
1711
1712 /* If we don't now have a leading quote, something has gone wrong.
1713 This can occur if cpp_interpret_string_ranges is handling a
1714 stringified macro argument, but should not be possible otherwise. */
1715 if (*p != '"' && *p != '\'')
1716 {
1717 gcc_assert (out != NULL);
1718 cpp_error (pfile, CPP_DL_ERROR, "missing open quote");
1719 if (to)
1720 free (tbuf.text);
1721 return false;
1722 }
1723
1724 /* Skip leading quote. */
1725 p++;
1726 if (loc_reader)
1727 loc_reader->get_next ();
1728
1729 limit = from[i].text + from[i].len - 1; /* Skip trailing quote. */
1730
1731 for (;;)
1732 {
1733 base = p;
1734 while (p < limit && *p != '\\')
1735 p++;
1736 if (p > base)
1737 {
1738 /* We have a run of normal characters; these can be fed
1739 directly to convert_cset. */
1740 if (to)
1741 if (!APPLY_CONVERSION (cvt, base, p - base, &tbuf))
1742 goto fail;
1743 /* Similar to above: assumes we have a 1:1 correspondence
1744 between bytes in the source encoding and bytes in the
1745 execution encoding. */
1746 if (loc_reader)
1747 {
1748 gcc_assert (cvt.func == convert_no_conversion);
1749 out->add_n_ranges (p - base, *loc_reader);
1750 }
1751 }
1752 if (p >= limit)
1753 break;
1754
1755 struct _cpp_strbuf *tbuf_ptr = to ? &tbuf : NULL;
1756 p = convert_escape (pfile, p + 1, limit, tbuf_ptr, cvt,
1757 loc_reader, out);
1758 }
1759 }
1760
1761 if (to)
1762 {
1763 /* NUL-terminate the 'to' buffer and translate it to a cpp_string
1764 structure. */
1765 emit_numeric_escape (pfile, 0, &tbuf, cvt);
1766 tbuf.text = XRESIZEVEC (uchar, tbuf.text, tbuf.len);
1767 to->text = tbuf.text;
1768 to->len = tbuf.len;
1769 }
1770 /* Use the location of the trailing quote as the location of the
1771 NUL-terminator. */
1772 if (loc_reader)
1773 {
1774 source_range range = loc_reader->get_next ();
1775 out->add_range (range);
1776 }
1777
1778 return true;
1779
1780 fail:
1781 cpp_errno (pfile, CPP_DL_ERROR, "converting to execution character set");
1782 if (to)
1783 free (tbuf.text);
1784 return false;
1785 }
1786
1787 /* FROM is an array of cpp_string structures of length COUNT. These
1788 are to be converted from the source to the execution character set,
1789 escape sequences translated, and finally all are to be
1790 concatenated. WIDE indicates whether or not to produce a wide
1791 string. The result is written into TO. Returns true for success,
1792 false for failure. */
1793 bool
1794 cpp_interpret_string (cpp_reader *pfile, const cpp_string *from, size_t count,
1795 cpp_string *to, enum cpp_ttype type)
1796 {
1797 return cpp_interpret_string_1 (pfile, from, count, to, type, NULL, NULL);
1798 }
1799
1800 /* A "do nothing" diagnostic-handling callback for use by
1801 cpp_interpret_string_ranges, so that it can temporarily suppress
1802 diagnostic-handling. */
1803
1804 static bool
1805 noop_diagnostic_cb (cpp_reader *, enum cpp_diagnostic_level,
1806 enum cpp_warning_reason, rich_location *,
1807 const char *, va_list *)
1808 {
1809 /* no-op. */
1810 return true;
1811 }
1812
1813 /* This function mimics the behavior of cpp_interpret_string, but
1814 rather than generating a string in the execution character set,
1815 *OUT is written to with the source code ranges of the characters
1816 in such a string.
1817 FROM and LOC_READERS should both be arrays of length COUNT.
1818 Returns NULL for success, or an error message for failure. */
1819
1820 const char *
1821 cpp_interpret_string_ranges (cpp_reader *pfile, const cpp_string *from,
1822 cpp_string_location_reader *loc_readers,
1823 size_t count,
1824 cpp_substring_ranges *out,
1825 enum cpp_ttype type)
1826 {
1827 /* There are a couple of cases in the range-handling in
1828 cpp_interpret_string_1 that rely on there being a 1:1 correspondence
1829 between bytes in the source encoding and bytes in the execution
1830 encoding, so that each byte in the execution string can correspond
1831 to the location of a byte in the source string.
1832
1833 This holds for the typical case of a UTF-8 to UTF-8 conversion.
1834 Enforce this requirement by only attempting to track substring
1835 locations if we have source encoding == execution encoding.
1836
1837 This is a stronger condition than we need, since we could e.g.
1838 have ASCII to EBCDIC (with 1 byte per character before and after),
1839 but it seems to be a reasonable restriction. */
1840 struct cset_converter cvt = converter_for_type (pfile, type);
1841 if (cvt.func != convert_no_conversion)
1842 return "execution character set != source character set";
1843
1844 /* For on-demand strings we have already lexed the strings, so there
1845 should be no diagnostics. However, if we have bogus source location
1846 data (or stringified macro arguments), the attempt to lex the
1847 strings could fail with an diagnostic. Temporarily install an
1848 diagnostic-handler to catch the diagnostic, so that it can lead to this call
1849 failing, rather than being emitted as a user-visible diagnostic.
1850 If an diagnostic does occur, we should see it via the return value of
1851 cpp_interpret_string_1. */
1852 bool (*saved_diagnostic_handler) (cpp_reader *, enum cpp_diagnostic_level,
1853 enum cpp_warning_reason, rich_location *,
1854 const char *, va_list *)
1855 ATTRIBUTE_FPTR_PRINTF(5,0);
1856
1857 saved_diagnostic_handler = pfile->cb.diagnostic;
1858 pfile->cb.diagnostic = noop_diagnostic_cb;
1859
1860 bool result = cpp_interpret_string_1 (pfile, from, count, NULL, type,
1861 loc_readers, out);
1862
1863 /* Restore the saved diagnostic-handler. */
1864 pfile->cb.diagnostic = saved_diagnostic_handler;
1865
1866 if (!result)
1867 return "cpp_interpret_string_1 failed";
1868
1869 /* Success. */
1870 return NULL;
1871 }
1872
1873 /* Subroutine of do_line and do_linemarker. Convert escape sequences
1874 in a string, but do not perform character set conversion. */
1875 bool
1876 cpp_interpret_string_notranslate (cpp_reader *pfile, const cpp_string *from,
1877 size_t count, cpp_string *to,
1878 enum cpp_ttype type ATTRIBUTE_UNUSED)
1879 {
1880 struct cset_converter save_narrow_cset_desc = pfile->narrow_cset_desc;
1881 bool retval;
1882
1883 pfile->narrow_cset_desc.func = convert_no_conversion;
1884 pfile->narrow_cset_desc.cd = (iconv_t) -1;
1885 pfile->narrow_cset_desc.width = CPP_OPTION (pfile, char_precision);
1886
1887 retval = cpp_interpret_string (pfile, from, count, to, CPP_STRING);
1888
1889 pfile->narrow_cset_desc = save_narrow_cset_desc;
1890 return retval;
1891 }
1892
1893 \f
1894 /* Subroutine of cpp_interpret_charconst which performs the conversion
1895 to a number, for narrow strings. STR is the string structure returned
1896 by cpp_interpret_string. PCHARS_SEEN and UNSIGNEDP are as for
1897 cpp_interpret_charconst. TYPE is the token type. */
1898 static cppchar_t
1899 narrow_str_to_charconst (cpp_reader *pfile, cpp_string str,
1900 unsigned int *pchars_seen, int *unsignedp,
1901 enum cpp_ttype type)
1902 {
1903 size_t width = CPP_OPTION (pfile, char_precision);
1904 size_t max_chars = CPP_OPTION (pfile, int_precision) / width;
1905 size_t mask = width_to_mask (width);
1906 size_t i;
1907 cppchar_t result, c;
1908 bool unsigned_p;
1909
1910 /* The value of a multi-character character constant, or a
1911 single-character character constant whose representation in the
1912 execution character set is more than one byte long, is
1913 implementation defined. This implementation defines it to be the
1914 number formed by interpreting the byte sequence in memory as a
1915 big-endian binary number. If overflow occurs, the high bytes are
1916 lost, and a warning is issued.
1917
1918 We don't want to process the NUL terminator handed back by
1919 cpp_interpret_string. */
1920 result = 0;
1921 for (i = 0; i < str.len - 1; i++)
1922 {
1923 c = str.text[i] & mask;
1924 if (width < BITS_PER_CPPCHAR_T)
1925 result = (result << width) | c;
1926 else
1927 result = c;
1928 }
1929
1930 if (type == CPP_UTF8CHAR)
1931 max_chars = 1;
1932 if (i > max_chars)
1933 {
1934 i = max_chars;
1935 cpp_error (pfile, type == CPP_UTF8CHAR ? CPP_DL_ERROR : CPP_DL_WARNING,
1936 "character constant too long for its type");
1937 }
1938 else if (i > 1 && CPP_OPTION (pfile, warn_multichar))
1939 cpp_warning (pfile, CPP_W_MULTICHAR, "multi-character character constant");
1940
1941 /* Multichar constants are of type int and therefore signed. */
1942 if (i > 1)
1943 unsigned_p = 0;
1944 else if (type == CPP_UTF8CHAR && !CPP_OPTION (pfile, cplusplus))
1945 unsigned_p = 1;
1946 else
1947 unsigned_p = CPP_OPTION (pfile, unsigned_char);
1948
1949 /* Truncate the constant to its natural width, and simultaneously
1950 sign- or zero-extend to the full width of cppchar_t.
1951 For single-character constants, the value is WIDTH bits wide.
1952 For multi-character constants, the value is INT_PRECISION bits wide. */
1953 if (i > 1)
1954 width = CPP_OPTION (pfile, int_precision);
1955 if (width < BITS_PER_CPPCHAR_T)
1956 {
1957 mask = ((cppchar_t) 1 << width) - 1;
1958 if (unsigned_p || !(result & (1 << (width - 1))))
1959 result &= mask;
1960 else
1961 result |= ~mask;
1962 }
1963 *pchars_seen = i;
1964 *unsignedp = unsigned_p;
1965 return result;
1966 }
1967
1968 /* Subroutine of cpp_interpret_charconst which performs the conversion
1969 to a number, for wide strings. STR is the string structure returned
1970 by cpp_interpret_string. PCHARS_SEEN and UNSIGNEDP are as for
1971 cpp_interpret_charconst. TYPE is the token type. */
1972 static cppchar_t
1973 wide_str_to_charconst (cpp_reader *pfile, cpp_string str,
1974 unsigned int *pchars_seen, int *unsignedp,
1975 enum cpp_ttype type)
1976 {
1977 bool bigend = CPP_OPTION (pfile, bytes_big_endian);
1978 size_t width = converter_for_type (pfile, type).width;
1979 size_t cwidth = CPP_OPTION (pfile, char_precision);
1980 size_t mask = width_to_mask (width);
1981 size_t cmask = width_to_mask (cwidth);
1982 size_t nbwc = width / cwidth;
1983 size_t off, i;
1984 cppchar_t result = 0, c;
1985
1986 if (str.len <= nbwc)
1987 {
1988 /* Error recovery, if no errors have been diagnosed previously,
1989 there should be at least two wide characters. Empty literals
1990 are diagnosed earlier and we can get just the zero terminator
1991 only if there were errors diagnosed during conversion. */
1992 *pchars_seen = 0;
1993 *unsignedp = 0;
1994 return 0;
1995 }
1996
1997 /* This is finicky because the string is in the target's byte order,
1998 which may not be our byte order. Only the last character, ignoring
1999 the NUL terminator, is relevant. */
2000 off = str.len - (nbwc * 2);
2001 result = 0;
2002 for (i = 0; i < nbwc; i++)
2003 {
2004 c = bigend ? str.text[off + i] : str.text[off + nbwc - i - 1];
2005 result = (result << cwidth) | (c & cmask);
2006 }
2007
2008 /* Wide character constants have type wchar_t, and a single
2009 character exactly fills a wchar_t, so a multi-character wide
2010 character constant is guaranteed to overflow. */
2011 if (str.len > nbwc * 2)
2012 cpp_error (pfile, (CPP_OPTION (pfile, cplusplus)
2013 && (type == CPP_CHAR16 || type == CPP_CHAR32))
2014 ? CPP_DL_ERROR : CPP_DL_WARNING,
2015 "character constant too long for its type");
2016
2017 /* Truncate the constant to its natural width, and simultaneously
2018 sign- or zero-extend to the full width of cppchar_t. */
2019 if (width < BITS_PER_CPPCHAR_T)
2020 {
2021 if (type == CPP_CHAR16 || type == CPP_CHAR32
2022 || CPP_OPTION (pfile, unsigned_wchar)
2023 || !(result & (1 << (width - 1))))
2024 result &= mask;
2025 else
2026 result |= ~mask;
2027 }
2028
2029 if (type == CPP_CHAR16 || type == CPP_CHAR32
2030 || CPP_OPTION (pfile, unsigned_wchar))
2031 *unsignedp = 1;
2032 else
2033 *unsignedp = 0;
2034
2035 *pchars_seen = 1;
2036 return result;
2037 }
2038
2039 /* Interpret a (possibly wide) character constant in TOKEN.
2040 PCHARS_SEEN points to a variable that is filled in with the number
2041 of characters seen, and UNSIGNEDP to a variable that indicates
2042 whether the result has signed type. */
2043 cppchar_t
2044 cpp_interpret_charconst (cpp_reader *pfile, const cpp_token *token,
2045 unsigned int *pchars_seen, int *unsignedp)
2046 {
2047 cpp_string str = { 0, 0 };
2048 bool wide = (token->type != CPP_CHAR && token->type != CPP_UTF8CHAR);
2049 int u8 = 2 * int(token->type == CPP_UTF8CHAR);
2050 cppchar_t result;
2051
2052 /* An empty constant will appear as L'', u'', U'', u8'', or '' */
2053 if (token->val.str.len == (size_t) (2 + wide + u8))
2054 {
2055 cpp_error (pfile, CPP_DL_ERROR, "empty character constant");
2056 *pchars_seen = 0;
2057 *unsignedp = 0;
2058 return 0;
2059 }
2060 else if (!cpp_interpret_string (pfile, &token->val.str, 1, &str,
2061 token->type))
2062 {
2063 *pchars_seen = 0;
2064 *unsignedp = 0;
2065 return 0;
2066 }
2067
2068 if (wide)
2069 result = wide_str_to_charconst (pfile, str, pchars_seen, unsignedp,
2070 token->type);
2071 else
2072 result = narrow_str_to_charconst (pfile, str, pchars_seen, unsignedp,
2073 token->type);
2074
2075 if (str.text != token->val.str.text)
2076 free ((void *)str.text);
2077
2078 return result;
2079 }
2080 \f
2081 /* Convert an identifier denoted by ID and LEN, which might contain
2082 UCN escapes or UTF-8 multibyte chars, to the source character set,
2083 either UTF-8 or UTF-EBCDIC. Assumes that the identifier is actually
2084 a valid identifier. */
2085 cpp_hashnode *
2086 _cpp_interpret_identifier (cpp_reader *pfile, const uchar *id, size_t len)
2087 {
2088 /* It turns out that a UCN escape always turns into fewer characters
2089 than the escape itself, so we can allocate a temporary in advance. */
2090 uchar * buf = (uchar *) alloca (len + 1);
2091 uchar * bufp = buf;
2092 size_t idp;
2093
2094 for (idp = 0; idp < len; idp++)
2095 if (id[idp] != '\\')
2096 *bufp++ = id[idp];
2097 else
2098 {
2099 unsigned length = id[idp+1] == 'u' ? 4 : 8;
2100 cppchar_t value = 0;
2101 size_t bufleft = len - (bufp - buf);
2102 int rval;
2103
2104 idp += 2;
2105 while (length && idp < len && ISXDIGIT (id[idp]))
2106 {
2107 value = (value << 4) + hex_value (id[idp]);
2108 idp++;
2109 length--;
2110 }
2111 idp--;
2112
2113 /* Special case for EBCDIC: if the identifier contains
2114 a '$' specified using a UCN, translate it to EBCDIC. */
2115 if (value == 0x24)
2116 {
2117 *bufp++ = '$';
2118 continue;
2119 }
2120
2121 rval = one_cppchar_to_utf8 (value, &bufp, &bufleft);
2122 if (rval)
2123 {
2124 errno = rval;
2125 cpp_errno (pfile, CPP_DL_ERROR,
2126 "converting UCN to source character set");
2127 break;
2128 }
2129 }
2130
2131 return CPP_HASHNODE (ht_lookup (pfile->hash_table,
2132 buf, bufp - buf, HT_ALLOC));
2133 }
2134 \f
2135
2136 /* Utility to strip a UTF-8 byte order marking from the beginning
2137 of a buffer. Returns the number of bytes to skip, which currently
2138 will be either 0 or 3. */
2139 int
2140 cpp_check_utf8_bom (const char *data, size_t data_length)
2141 {
2142
2143 #if HOST_CHARSET == HOST_CHARSET_ASCII
2144 const unsigned char *udata = (const unsigned char *) data;
2145 if (data_length >= 3 && udata[0] == 0xef && udata[1] == 0xbb
2146 && udata[2] == 0xbf)
2147 return 3;
2148 #endif
2149
2150 return 0;
2151 }
2152
2153
2154 /* Convert an input buffer (containing the complete contents of one
2155 source file) from INPUT_CHARSET to the source character set. INPUT
2156 points to the input buffer, SIZE is its allocated size, and LEN is
2157 the length of the meaningful data within the buffer. The
2158 translated buffer is returned, *ST_SIZE is set to the length of
2159 the meaningful data within the translated buffer, and *BUFFER_START
2160 is set to the start of the returned buffer. *BUFFER_START may
2161 differ from the return value in the case of a BOM or other ignored
2162 marker information.
2163
2164 INPUT is expected to have been allocated with xmalloc. This
2165 function will either set *BUFFER_START to INPUT, or free it and set
2166 *BUFFER_START to a pointer to another xmalloc-allocated block of
2167 memory.
2168
2169 PFILE is only used to generate diagnostics; setting it to NULL suppresses
2170 diagnostics, and causes a return of NULL if there was any error instead. */
2171
2172 uchar *
2173 _cpp_convert_input (cpp_reader *pfile, const char *input_charset,
2174 uchar *input, size_t size, size_t len,
2175 const unsigned char **buffer_start, off_t *st_size)
2176 {
2177 struct cset_converter input_cset;
2178 struct _cpp_strbuf to;
2179 unsigned char *buffer;
2180
2181 input_cset = init_iconv_desc (pfile, SOURCE_CHARSET, input_charset);
2182 if (input_cset.func == convert_no_conversion)
2183 {
2184 to.text = input;
2185 to.asize = size;
2186 to.len = len;
2187 }
2188 else
2189 {
2190 to.asize = MAX (65536, len);
2191 to.text = XNEWVEC (uchar, to.asize);
2192 to.len = 0;
2193
2194 const bool ok = APPLY_CONVERSION (input_cset, input, len, &to);
2195 free (input);
2196
2197 /* Clean up the mess. */
2198 if (input_cset.func == convert_using_iconv)
2199 iconv_close (input_cset.cd);
2200
2201 /* Handle conversion failure. */
2202 if (!ok)
2203 {
2204 if (!pfile)
2205 {
2206 XDELETEVEC (to.text);
2207 *buffer_start = NULL;
2208 *st_size = 0;
2209 return NULL;
2210 }
2211 cpp_error (pfile, CPP_DL_ERROR, "failure to convert %s to %s",
2212 input_charset, SOURCE_CHARSET);
2213 }
2214 }
2215
2216 /* Resize buffer if we allocated substantially too much, or if we
2217 haven't enough space for the \n-terminator or following
2218 15 bytes of padding (used to quiet warnings from valgrind or
2219 Address Sanitizer, when the optimized lexer accesses aligned
2220 16-byte memory chunks, including the bytes after the malloced,
2221 area, and stops lexing on '\n'). */
2222 if (to.len + 4096 < to.asize || to.len + 16 > to.asize)
2223 to.text = XRESIZEVEC (uchar, to.text, to.len + 16);
2224
2225 memset (to.text + to.len, '\0', 16);
2226
2227 /* If the file is using old-school Mac line endings (\r only),
2228 terminate with another \r, not an \n, so that we do not mistake
2229 the \r\n sequence for a single DOS line ending and erroneously
2230 issue the "No newline at end of file" diagnostic. */
2231 if (to.len && to.text[to.len - 1] == '\r')
2232 to.text[to.len] = '\r';
2233 else
2234 to.text[to.len] = '\n';
2235
2236 buffer = to.text;
2237 *st_size = to.len;
2238
2239 /* Ignore a UTF-8 BOM if we see one and the source charset is UTF-8. Note
2240 that glib'c UTF-8 iconv() provider (as of glibc 2.7) does not ignore a
2241 BOM -- however, even if it did, we would still need this code due
2242 to the 'convert_no_conversion' case. */
2243 const int bom_len = cpp_check_utf8_bom ((const char *) to.text, to.len);
2244 *st_size -= bom_len;
2245 buffer += bom_len;
2246
2247 *buffer_start = to.text;
2248 return buffer;
2249 }
2250
2251 /* Decide on the default encoding to assume for input files. */
2252 const char *
2253 _cpp_default_encoding (void)
2254 {
2255 const char *current_encoding = NULL;
2256
2257 /* We disable this because the default codeset is 7-bit ASCII on
2258 most platforms, and this causes conversion failures on every
2259 file in GCC that happens to have one of the upper 128 characters
2260 in it -- most likely, as part of the name of a contributor.
2261 We should definitely recognize in-band markers of file encoding,
2262 like:
2263 - the appropriate Unicode byte-order mark (FE FF) to recognize
2264 UTF16 and UCS4 (in both big-endian and little-endian flavors)
2265 and UTF8
2266 - a "#i", "#d", "/ *", "//", " #p" or "#p" (for #pragma) to
2267 distinguish ASCII and EBCDIC.
2268 - now we can parse something like "#pragma GCC encoding <xyz>
2269 on the first line, or even Emacs/VIM's mode line tags (there's
2270 a problem here in that VIM uses the last line, and Emacs has
2271 its more elaborate "local variables" convention).
2272 - investigate whether Java has another common convention, which
2273 would be friendly to support.
2274 (Zack Weinberg and Paolo Bonzini, May 20th 2004) */
2275 #if defined (HAVE_LOCALE_H) && defined (HAVE_LANGINFO_CODESET) && 0
2276 setlocale (LC_CTYPE, "");
2277 current_encoding = nl_langinfo (CODESET);
2278 #endif
2279 if (current_encoding == NULL || *current_encoding == '\0')
2280 current_encoding = SOURCE_CHARSET;
2281
2282 return current_encoding;
2283 }
2284
2285 /* Check if the configured input charset requires no conversion, other than
2286 possibly stripping a UTF-8 BOM. */
2287 bool cpp_input_conversion_is_trivial (const char *input_charset)
2288 {
2289 return !strcasecmp (input_charset, SOURCE_CHARSET);
2290 }
2291
2292 /* Implementation of class cpp_string_location_reader. */
2293
2294 /* Constructor for cpp_string_location_reader. */
2295
2296 cpp_string_location_reader::
2297 cpp_string_location_reader (location_t src_loc,
2298 line_maps *line_table)
2299 {
2300 src_loc = get_range_from_loc (line_table, src_loc).m_start;
2301
2302 /* SRC_LOC might be a macro location. It only makes sense to do
2303 column-by-column calculations on ordinary maps, so get the
2304 corresponding location in an ordinary map. */
2305 m_loc
2306 = linemap_resolve_location (line_table, src_loc,
2307 LRK_SPELLING_LOCATION, NULL);
2308
2309 const line_map_ordinary *map
2310 = linemap_check_ordinary (linemap_lookup (line_table, m_loc));
2311 m_offset_per_column = (1 << map->m_range_bits);
2312 }
2313
2314 /* Get the range of the next source byte. */
2315
2316 source_range
2317 cpp_string_location_reader::get_next ()
2318 {
2319 source_range result;
2320 result.m_start = m_loc;
2321 result.m_finish = m_loc;
2322 if (m_loc <= LINE_MAP_MAX_LOCATION_WITH_COLS)
2323 m_loc += m_offset_per_column;
2324 return result;
2325 }
2326
2327 cpp_display_width_computation::
2328 cpp_display_width_computation (const char *data, int data_length, int tabstop) :
2329 m_begin (data),
2330 m_next (m_begin),
2331 m_bytes_left (data_length),
2332 m_tabstop (tabstop),
2333 m_display_cols (0)
2334 {
2335 gcc_assert (m_tabstop > 0);
2336 }
2337
2338
2339 /* The main implementation function for class cpp_display_width_computation.
2340 m_next points on entry to the start of the UTF-8 encoding of the next
2341 character, and is updated to point just after the last byte of the encoding.
2342 m_bytes_left contains on entry the remaining size of the buffer into which
2343 m_next points, and this is also updated accordingly. If m_next does not
2344 point to a valid UTF-8-encoded sequence, then it will be treated as a single
2345 byte with display width 1. m_cur_display_col is the current display column,
2346 relative to which tab stops should be expanded. Returns the display width of
2347 the codepoint just processed. */
2348
2349 int
2350 cpp_display_width_computation::process_next_codepoint ()
2351 {
2352 cppchar_t c;
2353 int next_width;
2354
2355 if (*m_next == '\t')
2356 {
2357 ++m_next;
2358 --m_bytes_left;
2359 next_width = m_tabstop - (m_display_cols % m_tabstop);
2360 }
2361 else if (one_utf8_to_cppchar ((const uchar **) &m_next, &m_bytes_left, &c)
2362 != 0)
2363 {
2364 /* Input is not convertible to UTF-8. This could be fine, e.g. in a
2365 string literal, so don't complain. Just treat it as if it has a width
2366 of one. */
2367 ++m_next;
2368 --m_bytes_left;
2369 next_width = 1;
2370 }
2371 else
2372 {
2373 /* one_utf8_to_cppchar() has updated m_next and m_bytes_left for us. */
2374 next_width = cpp_wcwidth (c);
2375 }
2376
2377 m_display_cols += next_width;
2378 return next_width;
2379 }
2380
2381 /* Utility to advance the byte stream by the minimum amount needed to consume
2382 N display columns. Returns the number of display columns that were
2383 actually skipped. This could be less than N, if there was not enough data,
2384 or more than N, if the last character to be skipped had a sufficiently large
2385 display width. */
2386 int
2387 cpp_display_width_computation::advance_display_cols (int n)
2388 {
2389 const int start = m_display_cols;
2390 const int target = start + n;
2391 while (m_display_cols < target && !done ())
2392 process_next_codepoint ();
2393 return m_display_cols - start;
2394 }
2395
2396 /* For the string of length DATA_LENGTH bytes that begins at DATA, compute
2397 how many display columns are occupied by the first COLUMN bytes. COLUMN
2398 may exceed DATA_LENGTH, in which case the phantom bytes at the end are
2399 treated as if they have display width 1. Tabs are expanded to the next tab
2400 stop, relative to the start of DATA. */
2401
2402 int
2403 cpp_byte_column_to_display_column (const char *data, int data_length,
2404 int column, int tabstop)
2405 {
2406 const int offset = MAX (0, column - data_length);
2407 cpp_display_width_computation dw (data, column - offset, tabstop);
2408 while (!dw.done ())
2409 dw.process_next_codepoint ();
2410 return dw.display_cols_processed () + offset;
2411 }
2412
2413 /* For the string of length DATA_LENGTH bytes that begins at DATA, compute
2414 the least number of bytes that will result in at least DISPLAY_COL display
2415 columns. The return value may exceed DATA_LENGTH if the entire string does
2416 not occupy enough display columns. */
2417
2418 int
2419 cpp_display_column_to_byte_column (const char *data, int data_length,
2420 int display_col, int tabstop)
2421 {
2422 cpp_display_width_computation dw (data, data_length, tabstop);
2423 const int avail_display = dw.advance_display_cols (display_col);
2424 return dw.bytes_processed () + MAX (0, display_col - avail_display);
2425 }
2426
2427 /* Our own version of wcwidth(). We don't use the actual wcwidth() in glibc,
2428 because that will inspect the user's locale, and in particular in an ASCII
2429 locale, it will not return anything useful for extended characters. But GCC
2430 in other respects (see e.g. _cpp_default_encoding()) behaves as if
2431 everything is UTF-8. We also make some tweaks that are useful for the way
2432 GCC needs to use this data, e.g. tabs and other control characters should be
2433 treated as having width 1. The lookup tables are generated from
2434 contrib/unicode/gen_wcwidth.py and were made by simply calling glibc
2435 wcwidth() on all codepoints, then applying the small tweaks. These tables
2436 are not highly optimized, but for the present purpose of outputting
2437 diagnostics, they are sufficient. */
2438
2439 #include "generated_cpp_wcwidth.h"
2440 int cpp_wcwidth (cppchar_t c)
2441 {
2442 if (__builtin_expect (c <= wcwidth_range_ends[0], true))
2443 return wcwidth_widths[0];
2444
2445 /* Binary search the tables. */
2446 int begin = 1;
2447 static const int end
2448 = sizeof wcwidth_range_ends / sizeof (*wcwidth_range_ends);
2449 int len = end - begin;
2450 do
2451 {
2452 int half = len/2;
2453 int middle = begin + half;
2454 if (c > wcwidth_range_ends[middle])
2455 {
2456 begin = middle + 1;
2457 len -= half + 1;
2458 }
2459 else
2460 len = half;
2461 } while (len);
2462
2463 if (__builtin_expect (begin != end, true))
2464 return wcwidth_widths[begin];
2465 return 1;
2466 }