]> git.ipfire.org Git - thirdparty/gcc.git/blob - libcpp/charset.c
Update copyright years.
[thirdparty/gcc.git] / libcpp / charset.c
1 /* CPP Library - charsets
2 Copyright (C) 1998-2022 Free Software Foundation, Inc.
3
4 Broken out of c-lex.c Apr 2003, adding valid C99 UCN ranges.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "cpplib.h"
23 #include "internal.h"
24
25 /* Character set handling for C-family languages.
26
27 Terminological note: In what follows, "charset" or "character set"
28 will be taken to mean both an abstract set of characters and an
29 encoding for that set.
30
31 The C99 standard discusses two character sets: source and execution.
32 The source character set is used for internal processing in translation
33 phases 1 through 4; the execution character set is used thereafter.
34 Both are required by 5.2.1.2p1 to be multibyte encodings, not wide
35 character encodings (see 3.7.2, 3.7.3 for the standardese meanings
36 of these terms). Furthermore, the "basic character set" (listed in
37 5.2.1p3) is to be encoded in each with values one byte wide, and is
38 to appear in the initial shift state.
39
40 It is not explicitly mentioned, but there is also a "wide execution
41 character set" used to encode wide character constants and wide
42 string literals; this is supposed to be the result of applying the
43 standard library function mbstowcs() to an equivalent narrow string
44 (6.4.5p5). However, the behavior of hexadecimal and octal
45 \-escapes is at odds with this; they are supposed to be translated
46 directly to wchar_t values (6.4.4.4p5,6).
47
48 The source character set is not necessarily the character set used
49 to encode physical source files on disk; translation phase 1 converts
50 from whatever that encoding is to the source character set.
51
52 The presence of universal character names in C99 (6.4.3 et seq.)
53 forces the source character set to be isomorphic to ISO 10646,
54 that is, Unicode. There is no such constraint on the execution
55 character set; note also that the conversion from source to
56 execution character set does not occur for identifiers (5.1.1.2p1#5).
57
58 For convenience of implementation, the source character set's
59 encoding of the basic character set should be identical to the
60 execution character set OF THE HOST SYSTEM's encoding of the basic
61 character set, and it should not be a state-dependent encoding.
62
63 cpplib uses UTF-8 or UTF-EBCDIC for the source character set,
64 depending on whether the host is based on ASCII or EBCDIC (see
65 respectively Unicode section 2.3/ISO10646 Amendment 2, and Unicode
66 Technical Report #16). With limited exceptions, it relies on the
67 system library's iconv() primitive to do charset conversion
68 (specified in SUSv2). */
69
70 #if !HAVE_ICONV
71 /* Make certain that the uses of iconv(), iconv_open(), iconv_close()
72 below, which are guarded only by if statements with compile-time
73 constant conditions, do not cause link errors. */
74 #define iconv_open(x, y) (errno = EINVAL, (iconv_t)-1)
75 #define iconv(a,b,c,d,e) (errno = EINVAL, (size_t)-1)
76 #define iconv_close(x) (void)0
77 #define ICONV_CONST
78 #endif
79
80 #if HOST_CHARSET == HOST_CHARSET_ASCII
81 #define SOURCE_CHARSET "UTF-8"
82 #define LAST_POSSIBLY_BASIC_SOURCE_CHAR 0x7e
83 #elif HOST_CHARSET == HOST_CHARSET_EBCDIC
84 #define SOURCE_CHARSET "UTF-EBCDIC"
85 #define LAST_POSSIBLY_BASIC_SOURCE_CHAR 0xFF
86 #else
87 #error "Unrecognized basic host character set"
88 #endif
89
90 #ifndef EILSEQ
91 #define EILSEQ EINVAL
92 #endif
93
94 /* This structure is used for a resizable string buffer throughout. */
95 /* Don't call it strbuf, as that conflicts with unistd.h on systems
96 such as DYNIX/ptx where unistd.h includes stropts.h. */
97 struct _cpp_strbuf
98 {
99 uchar *text;
100 size_t asize;
101 size_t len;
102 };
103
104 /* This is enough to hold any string that fits on a single 80-column
105 line, even if iconv quadruples its size (e.g. conversion from
106 ASCII to UTF-32) rounded up to a power of two. */
107 #define OUTBUF_BLOCK_SIZE 256
108
109 /* Conversions between UTF-8 and UTF-16/32 are implemented by custom
110 logic. This is because a depressing number of systems lack iconv,
111 or have have iconv libraries that do not do these conversions, so
112 we need a fallback implementation for them. To ensure the fallback
113 doesn't break due to neglect, it is used on all systems.
114
115 UTF-32 encoding is nice and simple: a four-byte binary number,
116 constrained to the range 00000000-7FFFFFFF to avoid questions of
117 signedness. We do have to cope with big- and little-endian
118 variants.
119
120 UTF-16 encoding uses two-byte binary numbers, again in big- and
121 little-endian variants, for all values in the 00000000-0000FFFF
122 range. Values in the 00010000-0010FFFF range are encoded as pairs
123 of two-byte numbers, called "surrogate pairs": given a number S in
124 this range, it is mapped to a pair (H, L) as follows:
125
126 H = (S - 0x10000) / 0x400 + 0xD800
127 L = (S - 0x10000) % 0x400 + 0xDC00
128
129 Two-byte values in the D800...DFFF range are ill-formed except as a
130 component of a surrogate pair. Even if the encoding within a
131 two-byte value is little-endian, the H member of the surrogate pair
132 comes first.
133
134 There is no way to encode values in the 00110000-7FFFFFFF range,
135 which is not currently a problem as there are no assigned code
136 points in that range; however, the author expects that it will
137 eventually become necessary to abandon UTF-16 due to this
138 limitation. Note also that, because of these pairs, UTF-16 does
139 not meet the requirements of the C standard for a wide character
140 encoding (see 3.7.3 and 6.4.4.4p11).
141
142 UTF-8 encoding looks like this:
143
144 value range encoded as
145 00000000-0000007F 0xxxxxxx
146 00000080-000007FF 110xxxxx 10xxxxxx
147 00000800-0000FFFF 1110xxxx 10xxxxxx 10xxxxxx
148 00010000-001FFFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
149 00200000-03FFFFFF 111110xx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx
150 04000000-7FFFFFFF 1111110x 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx
151
152 Values in the 0000D800 ... 0000DFFF range (surrogates) are invalid,
153 which means that three-byte sequences ED xx yy, with A0 <= xx <= BF,
154 never occur. Note also that any value that can be encoded by a
155 given row of the table can also be encoded by all successive rows,
156 but this is not done; only the shortest possible encoding for any
157 given value is valid. For instance, the character 07C0 could be
158 encoded as any of DF 80, E0 9F 80, F0 80 9F 80, F8 80 80 9F 80, or
159 FC 80 80 80 9F 80. Only the first is valid.
160
161 An implementation note: the transformation from UTF-16 to UTF-8, or
162 vice versa, is easiest done by using UTF-32 as an intermediary. */
163
164 /* Internal primitives which go from an UTF-8 byte stream to native-endian
165 UTF-32 in a cppchar_t, or vice versa; this avoids an extra marshal/unmarshal
166 operation in several places below. */
167 static inline int
168 one_utf8_to_cppchar (const uchar **inbufp, size_t *inbytesleftp,
169 cppchar_t *cp)
170 {
171 static const uchar masks[6] = { 0x7F, 0x1F, 0x0F, 0x07, 0x03, 0x01 };
172 static const uchar patns[6] = { 0x00, 0xC0, 0xE0, 0xF0, 0xF8, 0xFC };
173
174 cppchar_t c;
175 const uchar *inbuf = *inbufp;
176 size_t nbytes, i;
177
178 if (*inbytesleftp < 1)
179 return EINVAL;
180
181 c = *inbuf;
182 if (c < 0x80)
183 {
184 *cp = c;
185 *inbytesleftp -= 1;
186 *inbufp += 1;
187 return 0;
188 }
189
190 /* The number of leading 1-bits in the first byte indicates how many
191 bytes follow. */
192 for (nbytes = 2; nbytes < 7; nbytes++)
193 if ((c & ~masks[nbytes-1]) == patns[nbytes-1])
194 goto found;
195 return EILSEQ;
196 found:
197
198 if (*inbytesleftp < nbytes)
199 return EINVAL;
200
201 c = (c & masks[nbytes-1]);
202 inbuf++;
203 for (i = 1; i < nbytes; i++)
204 {
205 cppchar_t n = *inbuf++;
206 if ((n & 0xC0) != 0x80)
207 return EILSEQ;
208 c = ((c << 6) + (n & 0x3F));
209 }
210
211 /* Make sure the shortest possible encoding was used. */
212 if (c <= 0x7F && nbytes > 1) return EILSEQ;
213 if (c <= 0x7FF && nbytes > 2) return EILSEQ;
214 if (c <= 0xFFFF && nbytes > 3) return EILSEQ;
215 if (c <= 0x1FFFFF && nbytes > 4) return EILSEQ;
216 if (c <= 0x3FFFFFF && nbytes > 5) return EILSEQ;
217
218 /* Make sure the character is valid. */
219 if (c > 0x7FFFFFFF || (c >= 0xD800 && c <= 0xDFFF)) return EILSEQ;
220
221 *cp = c;
222 *inbufp = inbuf;
223 *inbytesleftp -= nbytes;
224 return 0;
225 }
226
227 static inline int
228 one_cppchar_to_utf8 (cppchar_t c, uchar **outbufp, size_t *outbytesleftp)
229 {
230 static const uchar masks[6] = { 0x00, 0xC0, 0xE0, 0xF0, 0xF8, 0xFC };
231 static const uchar limits[6] = { 0x80, 0xE0, 0xF0, 0xF8, 0xFC, 0xFE };
232 size_t nbytes;
233 uchar buf[6], *p = &buf[6];
234 uchar *outbuf = *outbufp;
235
236 nbytes = 1;
237 if (c < 0x80)
238 *--p = c;
239 else
240 {
241 do
242 {
243 *--p = ((c & 0x3F) | 0x80);
244 c >>= 6;
245 nbytes++;
246 }
247 while (c >= 0x3F || (c & limits[nbytes-1]));
248 *--p = (c | masks[nbytes-1]);
249 }
250
251 if (*outbytesleftp < nbytes)
252 return E2BIG;
253
254 while (p < &buf[6])
255 *outbuf++ = *p++;
256 *outbytesleftp -= nbytes;
257 *outbufp = outbuf;
258 return 0;
259 }
260
261 /* The following four functions transform one character between the two
262 encodings named in the function name. All have the signature
263 int (*)(iconv_t bigend, const uchar **inbufp, size_t *inbytesleftp,
264 uchar **outbufp, size_t *outbytesleftp)
265
266 BIGEND must have the value 0 or 1, coerced to (iconv_t); it is
267 interpreted as a boolean indicating whether big-endian or
268 little-endian encoding is to be used for the member of the pair
269 that is not UTF-8.
270
271 INBUFP, INBYTESLEFTP, OUTBUFP, OUTBYTESLEFTP work exactly as they
272 do for iconv.
273
274 The return value is either 0 for success, or an errno value for
275 failure, which may be E2BIG (need more space), EILSEQ (ill-formed
276 input sequence), ir EINVAL (incomplete input sequence). */
277
278 static inline int
279 one_utf8_to_utf32 (iconv_t bigend, const uchar **inbufp, size_t *inbytesleftp,
280 uchar **outbufp, size_t *outbytesleftp)
281 {
282 uchar *outbuf;
283 cppchar_t s = 0;
284 int rval;
285
286 /* Check for space first, since we know exactly how much we need. */
287 if (*outbytesleftp < 4)
288 return E2BIG;
289
290 rval = one_utf8_to_cppchar (inbufp, inbytesleftp, &s);
291 if (rval)
292 return rval;
293
294 outbuf = *outbufp;
295 outbuf[bigend ? 3 : 0] = (s & 0x000000FF);
296 outbuf[bigend ? 2 : 1] = (s & 0x0000FF00) >> 8;
297 outbuf[bigend ? 1 : 2] = (s & 0x00FF0000) >> 16;
298 outbuf[bigend ? 0 : 3] = (s & 0xFF000000) >> 24;
299
300 *outbufp += 4;
301 *outbytesleftp -= 4;
302 return 0;
303 }
304
305 static inline int
306 one_utf32_to_utf8 (iconv_t bigend, const uchar **inbufp, size_t *inbytesleftp,
307 uchar **outbufp, size_t *outbytesleftp)
308 {
309 cppchar_t s;
310 int rval;
311 const uchar *inbuf;
312
313 if (*inbytesleftp < 4)
314 return EINVAL;
315
316 inbuf = *inbufp;
317
318 s = inbuf[bigend ? 0 : 3] << 24;
319 s += inbuf[bigend ? 1 : 2] << 16;
320 s += inbuf[bigend ? 2 : 1] << 8;
321 s += inbuf[bigend ? 3 : 0];
322
323 if (s >= 0x7FFFFFFF || (s >= 0xD800 && s <= 0xDFFF))
324 return EILSEQ;
325
326 rval = one_cppchar_to_utf8 (s, outbufp, outbytesleftp);
327 if (rval)
328 return rval;
329
330 *inbufp += 4;
331 *inbytesleftp -= 4;
332 return 0;
333 }
334
335 static inline int
336 one_utf8_to_utf16 (iconv_t bigend, const uchar **inbufp, size_t *inbytesleftp,
337 uchar **outbufp, size_t *outbytesleftp)
338 {
339 int rval;
340 cppchar_t s = 0;
341 const uchar *save_inbuf = *inbufp;
342 size_t save_inbytesleft = *inbytesleftp;
343 uchar *outbuf = *outbufp;
344
345 rval = one_utf8_to_cppchar (inbufp, inbytesleftp, &s);
346 if (rval)
347 return rval;
348
349 if (s > 0x0010FFFF)
350 {
351 *inbufp = save_inbuf;
352 *inbytesleftp = save_inbytesleft;
353 return EILSEQ;
354 }
355
356 if (s <= 0xFFFF)
357 {
358 if (*outbytesleftp < 2)
359 {
360 *inbufp = save_inbuf;
361 *inbytesleftp = save_inbytesleft;
362 return E2BIG;
363 }
364 outbuf[bigend ? 1 : 0] = (s & 0x00FF);
365 outbuf[bigend ? 0 : 1] = (s & 0xFF00) >> 8;
366
367 *outbufp += 2;
368 *outbytesleftp -= 2;
369 return 0;
370 }
371 else
372 {
373 cppchar_t hi, lo;
374
375 if (*outbytesleftp < 4)
376 {
377 *inbufp = save_inbuf;
378 *inbytesleftp = save_inbytesleft;
379 return E2BIG;
380 }
381
382 hi = (s - 0x10000) / 0x400 + 0xD800;
383 lo = (s - 0x10000) % 0x400 + 0xDC00;
384
385 /* Even if we are little-endian, put the high surrogate first.
386 ??? Matches practice? */
387 outbuf[bigend ? 1 : 0] = (hi & 0x00FF);
388 outbuf[bigend ? 0 : 1] = (hi & 0xFF00) >> 8;
389 outbuf[bigend ? 3 : 2] = (lo & 0x00FF);
390 outbuf[bigend ? 2 : 3] = (lo & 0xFF00) >> 8;
391
392 *outbufp += 4;
393 *outbytesleftp -= 4;
394 return 0;
395 }
396 }
397
398 static inline int
399 one_utf16_to_utf8 (iconv_t bigend, const uchar **inbufp, size_t *inbytesleftp,
400 uchar **outbufp, size_t *outbytesleftp)
401 {
402 cppchar_t s;
403 const uchar *inbuf = *inbufp;
404 int rval;
405
406 if (*inbytesleftp < 2)
407 return EINVAL;
408 s = inbuf[bigend ? 0 : 1] << 8;
409 s += inbuf[bigend ? 1 : 0];
410
411 /* Low surrogate without immediately preceding high surrogate is invalid. */
412 if (s >= 0xDC00 && s <= 0xDFFF)
413 return EILSEQ;
414 /* High surrogate must have a following low surrogate. */
415 else if (s >= 0xD800 && s <= 0xDBFF)
416 {
417 cppchar_t hi = s, lo;
418 if (*inbytesleftp < 4)
419 return EINVAL;
420
421 lo = inbuf[bigend ? 2 : 3] << 8;
422 lo += inbuf[bigend ? 3 : 2];
423
424 if (lo < 0xDC00 || lo > 0xDFFF)
425 return EILSEQ;
426
427 s = (hi - 0xD800) * 0x400 + (lo - 0xDC00) + 0x10000;
428 }
429
430 rval = one_cppchar_to_utf8 (s, outbufp, outbytesleftp);
431 if (rval)
432 return rval;
433
434 /* Success - update the input pointers (one_cppchar_to_utf8 has done
435 the output pointers for us). */
436 if (s <= 0xFFFF)
437 {
438 *inbufp += 2;
439 *inbytesleftp -= 2;
440 }
441 else
442 {
443 *inbufp += 4;
444 *inbytesleftp -= 4;
445 }
446 return 0;
447 }
448
449 /* Helper routine for the next few functions. The 'const' on
450 one_conversion means that we promise not to modify what function is
451 pointed to, which lets the inliner see through it. */
452
453 static inline bool
454 conversion_loop (int (*const one_conversion)(iconv_t, const uchar **, size_t *,
455 uchar **, size_t *),
456 iconv_t cd, const uchar *from, size_t flen, struct _cpp_strbuf *to)
457 {
458 const uchar *inbuf;
459 uchar *outbuf;
460 size_t inbytesleft, outbytesleft;
461 int rval;
462
463 inbuf = from;
464 inbytesleft = flen;
465 outbuf = to->text + to->len;
466 outbytesleft = to->asize - to->len;
467
468 for (;;)
469 {
470 do
471 rval = one_conversion (cd, &inbuf, &inbytesleft,
472 &outbuf, &outbytesleft);
473 while (inbytesleft && !rval);
474
475 if (__builtin_expect (inbytesleft == 0, 1))
476 {
477 to->len = to->asize - outbytesleft;
478 return true;
479 }
480 if (rval != E2BIG)
481 {
482 errno = rval;
483 return false;
484 }
485
486 outbytesleft += OUTBUF_BLOCK_SIZE;
487 to->asize += OUTBUF_BLOCK_SIZE;
488 to->text = XRESIZEVEC (uchar, to->text, to->asize);
489 outbuf = to->text + to->asize - outbytesleft;
490 }
491 }
492
493
494 /* These functions convert entire strings between character sets.
495 They all have the signature
496
497 bool (*)(iconv_t cd, const uchar *from, size_t flen, struct _cpp_strbuf *to);
498
499 The input string FROM is converted as specified by the function
500 name plus the iconv descriptor CD (which may be fake), and the
501 result appended to TO. On any error, false is returned, otherwise true. */
502
503 /* These four use the custom conversion code above. */
504 static bool
505 convert_utf8_utf16 (iconv_t cd, const uchar *from, size_t flen,
506 struct _cpp_strbuf *to)
507 {
508 return conversion_loop (one_utf8_to_utf16, cd, from, flen, to);
509 }
510
511 static bool
512 convert_utf8_utf32 (iconv_t cd, const uchar *from, size_t flen,
513 struct _cpp_strbuf *to)
514 {
515 return conversion_loop (one_utf8_to_utf32, cd, from, flen, to);
516 }
517
518 static bool
519 convert_utf16_utf8 (iconv_t cd, const uchar *from, size_t flen,
520 struct _cpp_strbuf *to)
521 {
522 return conversion_loop (one_utf16_to_utf8, cd, from, flen, to);
523 }
524
525 static bool
526 convert_utf32_utf8 (iconv_t cd, const uchar *from, size_t flen,
527 struct _cpp_strbuf *to)
528 {
529 return conversion_loop (one_utf32_to_utf8, cd, from, flen, to);
530 }
531
532 /* Identity conversion, used when we have no alternative. */
533 static bool
534 convert_no_conversion (iconv_t cd ATTRIBUTE_UNUSED,
535 const uchar *from, size_t flen, struct _cpp_strbuf *to)
536 {
537 if (to->len + flen > to->asize)
538 {
539 to->asize = to->len + flen;
540 to->asize += to->asize / 4;
541 to->text = XRESIZEVEC (uchar, to->text, to->asize);
542 }
543 memcpy (to->text + to->len, from, flen);
544 to->len += flen;
545 return true;
546 }
547
548 /* And this one uses the system iconv primitive. It's a little
549 different, since iconv's interface is a little different. */
550 #if HAVE_ICONV
551
552 #define CONVERT_ICONV_GROW_BUFFER \
553 do { \
554 outbytesleft += OUTBUF_BLOCK_SIZE; \
555 to->asize += OUTBUF_BLOCK_SIZE; \
556 to->text = XRESIZEVEC (uchar, to->text, to->asize); \
557 outbuf = (char *)to->text + to->asize - outbytesleft; \
558 } while (0)
559
560 static bool
561 convert_using_iconv (iconv_t cd, const uchar *from, size_t flen,
562 struct _cpp_strbuf *to)
563 {
564 ICONV_CONST char *inbuf;
565 char *outbuf;
566 size_t inbytesleft, outbytesleft;
567
568 /* Reset conversion descriptor and check that it is valid. */
569 if (iconv (cd, 0, 0, 0, 0) == (size_t)-1)
570 return false;
571
572 inbuf = (ICONV_CONST char *)from;
573 inbytesleft = flen;
574 outbuf = (char *)to->text + to->len;
575 outbytesleft = to->asize - to->len;
576
577 for (;;)
578 {
579 iconv (cd, &inbuf, &inbytesleft, &outbuf, &outbytesleft);
580 if (__builtin_expect (inbytesleft == 0, 1))
581 {
582 /* Close out any shift states, returning to the initial state. */
583 if (iconv (cd, 0, 0, &outbuf, &outbytesleft) == (size_t)-1)
584 {
585 if (errno != E2BIG)
586 return false;
587
588 CONVERT_ICONV_GROW_BUFFER;
589 if (iconv (cd, 0, 0, &outbuf, &outbytesleft) == (size_t)-1)
590 return false;
591 }
592
593 to->len = to->asize - outbytesleft;
594 return true;
595 }
596 if (errno != E2BIG)
597 return false;
598
599 CONVERT_ICONV_GROW_BUFFER;
600 }
601 }
602 #else
603 #define convert_using_iconv 0 /* prevent undefined symbol error below */
604 #endif
605
606 /* Arrange for the above custom conversion logic to be used automatically
607 when conversion between a suitable pair of character sets is requested. */
608
609 #define APPLY_CONVERSION(CONVERTER, FROM, FLEN, TO) \
610 CONVERTER.func (CONVERTER.cd, FROM, FLEN, TO)
611
612 struct cpp_conversion
613 {
614 const char *pair;
615 convert_f func;
616 iconv_t fake_cd;
617 };
618 static const struct cpp_conversion conversion_tab[] = {
619 { "UTF-8/UTF-32LE", convert_utf8_utf32, (iconv_t)0 },
620 { "UTF-8/UTF-32BE", convert_utf8_utf32, (iconv_t)1 },
621 { "UTF-8/UTF-16LE", convert_utf8_utf16, (iconv_t)0 },
622 { "UTF-8/UTF-16BE", convert_utf8_utf16, (iconv_t)1 },
623 { "UTF-32LE/UTF-8", convert_utf32_utf8, (iconv_t)0 },
624 { "UTF-32BE/UTF-8", convert_utf32_utf8, (iconv_t)1 },
625 { "UTF-16LE/UTF-8", convert_utf16_utf8, (iconv_t)0 },
626 { "UTF-16BE/UTF-8", convert_utf16_utf8, (iconv_t)1 },
627 };
628
629 /* Subroutine of cpp_init_iconv: initialize and return a
630 cset_converter structure for conversion from FROM to TO. If
631 iconv_open() fails, issue an error and return an identity
632 converter. Silently return an identity converter if FROM and TO
633 are identical.
634
635 PFILE is only used for generating diagnostics; setting it to NULL
636 suppresses diagnostics. */
637
638 static struct cset_converter
639 init_iconv_desc (cpp_reader *pfile, const char *to, const char *from)
640 {
641 struct cset_converter ret;
642 char *pair;
643 size_t i;
644
645 ret.to = to;
646 ret.from = from;
647
648 if (!strcasecmp (to, from))
649 {
650 ret.func = convert_no_conversion;
651 ret.cd = (iconv_t) -1;
652 ret.width = -1;
653 return ret;
654 }
655
656 pair = (char *) alloca(strlen(to) + strlen(from) + 2);
657
658 strcpy(pair, from);
659 strcat(pair, "/");
660 strcat(pair, to);
661 for (i = 0; i < ARRAY_SIZE (conversion_tab); i++)
662 if (!strcasecmp (pair, conversion_tab[i].pair))
663 {
664 ret.func = conversion_tab[i].func;
665 ret.cd = conversion_tab[i].fake_cd;
666 ret.width = -1;
667 return ret;
668 }
669
670 /* No custom converter - try iconv. */
671 if (HAVE_ICONV)
672 {
673 ret.func = convert_using_iconv;
674 ret.cd = iconv_open (to, from);
675 ret.width = -1;
676
677 if (ret.cd == (iconv_t) -1)
678 {
679 if (pfile)
680 {
681 if (errno == EINVAL)
682 cpp_error (pfile, CPP_DL_ERROR, /* FIXME should be DL_SORRY */
683 "conversion from %s to %s not supported by iconv",
684 from, to);
685 else
686 cpp_errno (pfile, CPP_DL_ERROR, "iconv_open");
687 }
688 ret.func = convert_no_conversion;
689 }
690 }
691 else
692 {
693 if (pfile)
694 {
695 cpp_error (pfile, CPP_DL_ERROR, /* FIXME: should be DL_SORRY */
696 "no iconv implementation, cannot convert from %s to %s",
697 from, to);
698 }
699 ret.func = convert_no_conversion;
700 ret.cd = (iconv_t) -1;
701 ret.width = -1;
702 }
703
704 return ret;
705 }
706
707 /* If charset conversion is requested, initialize iconv(3) descriptors
708 for conversion from the source character set to the execution
709 character sets. If iconv is not present in the C library, and
710 conversion is requested, issue an error. */
711
712 void
713 cpp_init_iconv (cpp_reader *pfile)
714 {
715 const char *ncset = CPP_OPTION (pfile, narrow_charset);
716 const char *wcset = CPP_OPTION (pfile, wide_charset);
717 const char *default_wcset;
718
719 bool be = CPP_OPTION (pfile, bytes_big_endian);
720
721 if (CPP_OPTION (pfile, wchar_precision) >= 32)
722 default_wcset = be ? "UTF-32BE" : "UTF-32LE";
723 else if (CPP_OPTION (pfile, wchar_precision) >= 16)
724 default_wcset = be ? "UTF-16BE" : "UTF-16LE";
725 else
726 /* This effectively means that wide strings are not supported,
727 so don't do any conversion at all. */
728 default_wcset = SOURCE_CHARSET;
729
730 if (!ncset)
731 ncset = SOURCE_CHARSET;
732 if (!wcset)
733 wcset = default_wcset;
734
735 pfile->narrow_cset_desc = init_iconv_desc (pfile, ncset, SOURCE_CHARSET);
736 pfile->narrow_cset_desc.width = CPP_OPTION (pfile, char_precision);
737 pfile->utf8_cset_desc = init_iconv_desc (pfile, "UTF-8", SOURCE_CHARSET);
738 pfile->utf8_cset_desc.width = CPP_OPTION (pfile, char_precision);
739 pfile->char16_cset_desc = init_iconv_desc (pfile,
740 be ? "UTF-16BE" : "UTF-16LE",
741 SOURCE_CHARSET);
742 pfile->char16_cset_desc.width = 16;
743 pfile->char32_cset_desc = init_iconv_desc (pfile,
744 be ? "UTF-32BE" : "UTF-32LE",
745 SOURCE_CHARSET);
746 pfile->char32_cset_desc.width = 32;
747 pfile->wide_cset_desc = init_iconv_desc (pfile, wcset, SOURCE_CHARSET);
748 pfile->wide_cset_desc.width = CPP_OPTION (pfile, wchar_precision);
749 }
750
751 /* Destroy iconv(3) descriptors set up by cpp_init_iconv, if necessary. */
752 void
753 _cpp_destroy_iconv (cpp_reader *pfile)
754 {
755 if (HAVE_ICONV)
756 {
757 if (pfile->narrow_cset_desc.func == convert_using_iconv)
758 iconv_close (pfile->narrow_cset_desc.cd);
759 if (pfile->utf8_cset_desc.func == convert_using_iconv)
760 iconv_close (pfile->utf8_cset_desc.cd);
761 if (pfile->char16_cset_desc.func == convert_using_iconv)
762 iconv_close (pfile->char16_cset_desc.cd);
763 if (pfile->char32_cset_desc.func == convert_using_iconv)
764 iconv_close (pfile->char32_cset_desc.cd);
765 if (pfile->wide_cset_desc.func == convert_using_iconv)
766 iconv_close (pfile->wide_cset_desc.cd);
767 }
768 }
769
770 /* Utility routine for use by a full compiler. C is a character taken
771 from the *basic* source character set, encoded in the host's
772 execution encoding. Convert it to (the target's) execution
773 encoding, and return that value.
774
775 Issues an internal error if C's representation in the narrow
776 execution character set fails to be a single-byte value (C99
777 5.2.1p3: "The representation of each member of the source and
778 execution character sets shall fit in a byte.") May also issue an
779 internal error if C fails to be a member of the basic source
780 character set (testing this exactly is too hard, especially when
781 the host character set is EBCDIC). */
782 cppchar_t
783 cpp_host_to_exec_charset (cpp_reader *pfile, cppchar_t c)
784 {
785 uchar sbuf[1];
786 struct _cpp_strbuf tbuf;
787
788 /* This test is merely an approximation, but it suffices to catch
789 the most important thing, which is that we don't get handed a
790 character outside the unibyte range of the host character set. */
791 if (c > LAST_POSSIBLY_BASIC_SOURCE_CHAR)
792 {
793 cpp_error (pfile, CPP_DL_ICE,
794 "character 0x%lx is not in the basic source character set\n",
795 (unsigned long)c);
796 return 0;
797 }
798
799 /* Being a character in the unibyte range of the host character set,
800 we can safely splat it into a one-byte buffer and trust that that
801 is a well-formed string. */
802 sbuf[0] = c;
803
804 /* This should never need to reallocate, but just in case... */
805 tbuf.asize = 1;
806 tbuf.text = XNEWVEC (uchar, tbuf.asize);
807 tbuf.len = 0;
808
809 if (!APPLY_CONVERSION (pfile->narrow_cset_desc, sbuf, 1, &tbuf))
810 {
811 cpp_errno (pfile, CPP_DL_ICE, "converting to execution character set");
812 return 0;
813 }
814 if (tbuf.len != 1)
815 {
816 cpp_error (pfile, CPP_DL_ICE,
817 "character 0x%lx is not unibyte in execution character set",
818 (unsigned long)c);
819 return 0;
820 }
821 c = tbuf.text[0];
822 free(tbuf.text);
823 return c;
824 }
825
826 \f
827
828 /* cpp_substring_ranges's constructor. */
829
830 cpp_substring_ranges::cpp_substring_ranges () :
831 m_ranges (NULL),
832 m_num_ranges (0),
833 m_alloc_ranges (8)
834 {
835 m_ranges = XNEWVEC (source_range, m_alloc_ranges);
836 }
837
838 /* cpp_substring_ranges's destructor. */
839
840 cpp_substring_ranges::~cpp_substring_ranges ()
841 {
842 free (m_ranges);
843 }
844
845 /* Add RANGE to the vector of source_range information. */
846
847 void
848 cpp_substring_ranges::add_range (source_range range)
849 {
850 if (m_num_ranges >= m_alloc_ranges)
851 {
852 m_alloc_ranges *= 2;
853 m_ranges
854 = (source_range *)xrealloc (m_ranges,
855 sizeof (source_range) * m_alloc_ranges);
856 }
857 m_ranges[m_num_ranges++] = range;
858 }
859
860 /* Read NUM ranges from LOC_READER, adding them to the vector of source_range
861 information. */
862
863 void
864 cpp_substring_ranges::add_n_ranges (int num,
865 cpp_string_location_reader &loc_reader)
866 {
867 for (int i = 0; i < num; i++)
868 add_range (loc_reader.get_next ());
869 }
870
871 \f
872
873 /* Utility routine that computes a mask of the form 0000...111... with
874 WIDTH 1-bits. */
875 static inline size_t
876 width_to_mask (size_t width)
877 {
878 width = MIN (width, BITS_PER_CPPCHAR_T);
879 if (width >= CHAR_BIT * sizeof (size_t))
880 return ~(size_t) 0;
881 else
882 return ((size_t) 1 << width) - 1;
883 }
884
885 /* A large table of unicode character information. */
886 enum {
887 /* Valid in a C99 identifier? */
888 C99 = 1,
889 /* Valid in a C99 identifier, but not as the first character? */
890 N99 = 2,
891 /* Valid in a C++ identifier? */
892 CXX = 4,
893 /* Valid in a C11/C++11 identifier? */
894 C11 = 8,
895 /* Valid in a C11/C++11 identifier, but not as the first character? */
896 N11 = 16,
897 /* Valid in a C++23 identifier? */
898 CXX23 = 32,
899 /* Valid in a C++23 identifier, but not as the first character? */
900 NXX23 = 64,
901 /* NFC representation is not valid in an identifier? */
902 CID = 128,
903 /* Might be valid NFC form? */
904 NFC = 256,
905 /* Might be valid NFKC form? */
906 NKC = 512,
907 /* Certain preceding characters might make it not valid NFC/NKFC form? */
908 CTX = 1024
909 };
910
911 struct ucnrange {
912 /* Bitmap of flags above. */
913 unsigned short flags;
914 /* Combining class of the character. */
915 unsigned char combine;
916 /* Last character in the range described by this entry. */
917 unsigned int end;
918 };
919 #include "ucnid.h"
920
921 /* ISO 10646 defines the UCS codespace as the range 0-0x10FFFF inclusive. */
922 #define UCS_LIMIT 0x10FFFF
923
924 /* Returns 1 if C is valid in an identifier, 2 if C is valid except at
925 the start of an identifier, and 0 if C is not valid in an
926 identifier. We assume C has already gone through the checks of
927 _cpp_valid_ucn. Also update NST for C if returning nonzero. The
928 algorithm is a simple binary search on the table defined in
929 ucnid.h. */
930
931 static int
932 ucn_valid_in_identifier (cpp_reader *pfile, cppchar_t c,
933 struct normalize_state *nst)
934 {
935 int mn, mx, md;
936 unsigned short valid_flags, invalid_start_flags;
937
938 if (c > UCS_LIMIT)
939 return 0;
940
941 mn = 0;
942 mx = ARRAY_SIZE (ucnranges) - 1;
943 while (mx != mn)
944 {
945 md = (mn + mx) / 2;
946 if (c <= ucnranges[md].end)
947 mx = md;
948 else
949 mn = md + 1;
950 }
951
952 /* When -pedantic, we require the character to have been listed by
953 the standard for the current language. Otherwise, we accept the
954 union of the acceptable sets for all supported language versions. */
955 valid_flags = C99 | CXX | C11 | CXX23;
956 if (CPP_PEDANTIC (pfile))
957 {
958 if (CPP_OPTION (pfile, cplusplus))
959 valid_flags = CXX23;
960 else if (CPP_OPTION (pfile, c11_identifiers))
961 valid_flags = C11;
962 else if (CPP_OPTION (pfile, c99))
963 valid_flags = C99;
964 }
965 if (! (ucnranges[mn].flags & valid_flags))
966 return 0;
967
968 /* Update NST. */
969 if (ucnranges[mn].combine != 0 && ucnranges[mn].combine < nst->prev_class)
970 nst->level = normalized_none;
971 else if (ucnranges[mn].flags & CTX)
972 {
973 bool safe;
974 cppchar_t p = nst->previous;
975
976 /* For Hangul, characters in the range AC00-D7A3 are NFC/NFKC,
977 and are combined algorithmically from a sequence of the form
978 1100-1112 1161-1175 11A8-11C2
979 (if the third is not present, it is treated as 11A7, which is not
980 really a valid character).
981 Unfortunately, C99 allows (only) the NFC form, but C++ allows
982 only the combining characters. */
983 if (c >= 0x1161 && c <= 0x1175)
984 safe = p < 0x1100 || p > 0x1112;
985 else if (c >= 0x11A8 && c <= 0x11C2)
986 safe = (p < 0xAC00 || p > 0xD7A3 || (p - 0xAC00) % 28 != 0);
987 else
988 safe = check_nfc (pfile, c, p);
989 if (!safe)
990 {
991 if ((c >= 0x1161 && c <= 0x1175) || (c >= 0x11A8 && c <= 0x11C2))
992 nst->level = MAX (nst->level, normalized_identifier_C);
993 else
994 nst->level = normalized_none;
995 }
996 }
997 else if (ucnranges[mn].flags & NKC)
998 ;
999 else if (ucnranges[mn].flags & NFC)
1000 nst->level = MAX (nst->level, normalized_C);
1001 else if (ucnranges[mn].flags & CID)
1002 nst->level = MAX (nst->level, normalized_identifier_C);
1003 else
1004 nst->level = normalized_none;
1005 if (ucnranges[mn].combine == 0)
1006 nst->previous = c;
1007 nst->prev_class = ucnranges[mn].combine;
1008
1009 if (!CPP_PEDANTIC (pfile))
1010 {
1011 /* If not -pedantic, accept as character that may
1012 begin an identifier a union of characters allowed
1013 at that position in each of the character sets. */
1014 if ((ucnranges[mn].flags & (C99 | N99)) == C99
1015 || (ucnranges[mn].flags & CXX) != 0
1016 || (ucnranges[mn].flags & (C11 | N11)) == C11
1017 || (ucnranges[mn].flags & (CXX23 | NXX23)) == CXX23)
1018 return 1;
1019 return 2;
1020 }
1021
1022 if (CPP_OPTION (pfile, cplusplus))
1023 invalid_start_flags = NXX23;
1024 else if (CPP_OPTION (pfile, c11_identifiers))
1025 invalid_start_flags = N11;
1026 else if (CPP_OPTION (pfile, c99))
1027 invalid_start_flags = N99;
1028 else
1029 invalid_start_flags = 0;
1030
1031 /* In C99, UCN digits may not begin identifiers. In C11 and C++11,
1032 UCN combining characters may not begin identifiers. */
1033 if (ucnranges[mn].flags & invalid_start_flags)
1034 return 2;
1035
1036 return 1;
1037 }
1038
1039 /* [lex.charset]: The character designated by the universal character
1040 name \UNNNNNNNN is that character whose character short name in
1041 ISO/IEC 10646 is NNNNNNNN; the character designated by the
1042 universal character name \uNNNN is that character whose character
1043 short name in ISO/IEC 10646 is 0000NNNN. If the hexadecimal value
1044 for a universal character name corresponds to a surrogate code point
1045 (in the range 0xD800-0xDFFF, inclusive), the program is ill-formed.
1046 Additionally, if the hexadecimal value for a universal-character-name
1047 outside a character or string literal corresponds to a control character
1048 (in either of the ranges 0x00-0x1F or 0x7F-0x9F, both inclusive) or to a
1049 character in the basic source character set, the program is ill-formed.
1050
1051 C99 6.4.3: A universal character name shall not specify a character
1052 whose short identifier is less than 00A0 other than 0024 ($), 0040 (@),
1053 or 0060 (`), nor one in the range D800 through DFFF inclusive.
1054
1055 If the hexadecimal value is larger than the upper bound of the UCS
1056 codespace specified in ISO/IEC 10646, a pedantic warning is issued
1057 in all versions of C and in the C++20 or later versions of C++.
1058
1059 *PSTR must be preceded by "\u" or "\U"; it is assumed that the
1060 buffer end is delimited by a non-hex digit. Returns false if the
1061 UCN has not been consumed, true otherwise.
1062
1063 The value of the UCN, whether valid or invalid, is returned in *CP.
1064 Diagnostics are emitted for invalid values. PSTR is updated to point
1065 one beyond the UCN, or to the syntactically invalid character.
1066
1067 IDENTIFIER_POS is 0 when not in an identifier, 1 for the start of
1068 an identifier, or 2 otherwise.
1069
1070 If LOC_READER is non-NULL, then position information is
1071 read from *LOC_READER and CHAR_RANGE->m_finish is updated accordingly. */
1072
1073 bool
1074 _cpp_valid_ucn (cpp_reader *pfile, const uchar **pstr,
1075 const uchar *limit, int identifier_pos,
1076 struct normalize_state *nst, cppchar_t *cp,
1077 source_range *char_range,
1078 cpp_string_location_reader *loc_reader)
1079 {
1080 cppchar_t result, c;
1081 unsigned int length;
1082 const uchar *str = *pstr;
1083 const uchar *base = str - 2;
1084
1085 if (!CPP_OPTION (pfile, cplusplus) && !CPP_OPTION (pfile, c99))
1086 cpp_error (pfile, CPP_DL_WARNING,
1087 "universal character names are only valid in C++ and C99");
1088 else if (CPP_OPTION (pfile, cpp_warn_c90_c99_compat) > 0
1089 && !CPP_OPTION (pfile, cplusplus))
1090 cpp_error (pfile, CPP_DL_WARNING,
1091 "C99's universal character names are incompatible with C90");
1092 else if (CPP_WTRADITIONAL (pfile) && identifier_pos == 0)
1093 cpp_warning (pfile, CPP_W_TRADITIONAL,
1094 "the meaning of '\\%c' is different in traditional C",
1095 (int) str[-1]);
1096
1097 if (str[-1] == 'u')
1098 length = 4;
1099 else if (str[-1] == 'U')
1100 length = 8;
1101 else
1102 {
1103 cpp_error (pfile, CPP_DL_ICE, "In _cpp_valid_ucn but not a UCN");
1104 length = 4;
1105 }
1106
1107 result = 0;
1108 do
1109 {
1110 c = *str;
1111 if (!ISXDIGIT (c))
1112 break;
1113 str++;
1114 if (loc_reader)
1115 {
1116 gcc_assert (char_range);
1117 char_range->m_finish = loc_reader->get_next ().m_finish;
1118 }
1119 result = (result << 4) + hex_value (c);
1120 }
1121 while (--length && str < limit);
1122
1123 /* Partial UCNs are not valid in strings, but decompose into
1124 multiple tokens in identifiers, so we can't give a helpful
1125 error message in that case. */
1126 if (length && identifier_pos)
1127 {
1128 *cp = 0;
1129 return false;
1130 }
1131
1132 *pstr = str;
1133 if (length)
1134 {
1135 cpp_error (pfile, CPP_DL_ERROR,
1136 "incomplete universal character name %.*s",
1137 (int) (str - base), base);
1138 result = 1;
1139 }
1140 /* The C99 standard permits $, @ and ` to be specified as UCNs. We use
1141 hex escapes so that this also works with EBCDIC hosts.
1142 C++0x permits everything below 0xa0 within literals;
1143 ucn_valid_in_identifier will complain about identifiers. */
1144 else if ((result < 0xa0
1145 && !CPP_OPTION (pfile, cplusplus)
1146 && (result != 0x24 && result != 0x40 && result != 0x60))
1147 || (result & 0x80000000)
1148 || (result >= 0xD800 && result <= 0xDFFF))
1149 {
1150 cpp_error (pfile, CPP_DL_ERROR,
1151 "%.*s is not a valid universal character",
1152 (int) (str - base), base);
1153 result = 1;
1154 }
1155 else if (identifier_pos && result == 0x24
1156 && CPP_OPTION (pfile, dollars_in_ident))
1157 {
1158 if (CPP_OPTION (pfile, warn_dollars) && !pfile->state.skipping)
1159 {
1160 CPP_OPTION (pfile, warn_dollars) = 0;
1161 cpp_error (pfile, CPP_DL_PEDWARN, "'$' in identifier or number");
1162 }
1163 NORMALIZE_STATE_UPDATE_IDNUM (nst, result);
1164 }
1165 else if (identifier_pos)
1166 {
1167 int validity = ucn_valid_in_identifier (pfile, result, nst);
1168
1169 if (validity == 0)
1170 cpp_error (pfile, CPP_DL_ERROR,
1171 "universal character %.*s is not valid in an identifier",
1172 (int) (str - base), base);
1173 else if (validity == 2 && identifier_pos == 1)
1174 cpp_error (pfile, CPP_DL_ERROR,
1175 "universal character %.*s is not valid at the start of an identifier",
1176 (int) (str - base), base);
1177 }
1178 else if (result > UCS_LIMIT
1179 && (!CPP_OPTION (pfile, cplusplus)
1180 || CPP_OPTION (pfile, lang) > CLK_CXX17))
1181 cpp_error (pfile, CPP_DL_PEDWARN,
1182 "%.*s is outside the UCS codespace",
1183 (int) (str - base), base);
1184
1185 *cp = result;
1186 return true;
1187 }
1188
1189 /* Convert an UCN, pointed to by FROM, to UTF-8 encoding, then translate
1190 it to the execution character set and write the result into TBUF,
1191 if TBUF is non-NULL.
1192 An advanced pointer is returned. Issues all relevant diagnostics.
1193 If LOC_READER is non-NULL, then RANGES must be non-NULL and CHAR_RANGE
1194 contains the location of the character so far: location information
1195 is read from *LOC_READER, and *RANGES is updated accordingly. */
1196 static const uchar *
1197 convert_ucn (cpp_reader *pfile, const uchar *from, const uchar *limit,
1198 struct _cpp_strbuf *tbuf, struct cset_converter cvt,
1199 source_range char_range,
1200 cpp_string_location_reader *loc_reader,
1201 cpp_substring_ranges *ranges)
1202 {
1203 cppchar_t ucn;
1204 uchar buf[6];
1205 uchar *bufp = buf;
1206 size_t bytesleft = 6;
1207 int rval;
1208 struct normalize_state nst = INITIAL_NORMALIZE_STATE;
1209
1210 /* loc_reader and ranges must either be both NULL, or both be non-NULL. */
1211 gcc_assert ((loc_reader != NULL) == (ranges != NULL));
1212
1213 from++; /* Skip u/U. */
1214
1215 if (loc_reader)
1216 /* The u/U is part of the spelling of this character. */
1217 char_range.m_finish = loc_reader->get_next ().m_finish;
1218
1219 _cpp_valid_ucn (pfile, &from, limit, 0, &nst,
1220 &ucn, &char_range, loc_reader);
1221
1222 rval = one_cppchar_to_utf8 (ucn, &bufp, &bytesleft);
1223 if (rval)
1224 {
1225 errno = rval;
1226 cpp_errno (pfile, CPP_DL_ERROR,
1227 "converting UCN to source character set");
1228 }
1229 else
1230 {
1231 if (tbuf)
1232 if (!APPLY_CONVERSION (cvt, buf, 6 - bytesleft, tbuf))
1233 cpp_errno (pfile, CPP_DL_ERROR,
1234 "converting UCN to execution character set");
1235
1236 if (loc_reader)
1237 {
1238 int num_encoded_bytes = 6 - bytesleft;
1239 for (int i = 0; i < num_encoded_bytes; i++)
1240 ranges->add_range (char_range);
1241 }
1242 }
1243
1244 return from;
1245 }
1246
1247 /* Performs a similar task as _cpp_valid_ucn, but parses UTF-8-encoded
1248 extended characters rather than UCNs. If the return value is TRUE, then a
1249 character was successfully decoded and stored in *CP; *PSTR has been
1250 updated to point one past the valid UTF-8 sequence. Diagnostics may have
1251 been emitted if the character parsed is not allowed in the current context.
1252 If the return value is FALSE, then *PSTR has not been modified and *CP may
1253 equal 0, to indicate that *PSTR does not form a valid UTF-8 sequence, or it
1254 may, when processing an identifier in C mode, equal a codepoint that was
1255 validly encoded but is not allowed to appear in an identifier. In either
1256 case, no diagnostic is emitted, and the return value of FALSE should cause
1257 a new token to be formed.
1258
1259 Unlike _cpp_valid_ucn, this will never be called when lexing a string; only
1260 a potential identifier, or a CPP_OTHER token. NST is unused in the latter
1261 case.
1262
1263 As in _cpp_valid_ucn, IDENTIFIER_POS is 0 when not in an identifier, 1 for
1264 the start of an identifier, or 2 otherwise. */
1265
1266 extern bool
1267 _cpp_valid_utf8 (cpp_reader *pfile,
1268 const uchar **pstr,
1269 const uchar *limit,
1270 int identifier_pos,
1271 struct normalize_state *nst,
1272 cppchar_t *cp)
1273 {
1274 const uchar *base = *pstr;
1275 size_t inbytesleft = limit - base;
1276 if (one_utf8_to_cppchar (pstr, &inbytesleft, cp))
1277 {
1278 /* No diagnostic here as this byte will rather become a
1279 new token. */
1280 *cp = 0;
1281 return false;
1282 }
1283
1284 if (identifier_pos)
1285 {
1286 switch (ucn_valid_in_identifier (pfile, *cp, nst))
1287 {
1288
1289 case 0:
1290 /* In C++, this is an error for invalid character in an identifier
1291 because logically, the UTF-8 was converted to a UCN during
1292 translation phase 1 (even though we don't physically do it that
1293 way). In C, this byte rather becomes grammatically a separate
1294 token. */
1295
1296 if (CPP_OPTION (pfile, cplusplus))
1297 cpp_error (pfile, CPP_DL_ERROR,
1298 "extended character %.*s is not valid in an identifier",
1299 (int) (*pstr - base), base);
1300 else
1301 {
1302 *pstr = base;
1303 return false;
1304 }
1305
1306 break;
1307
1308 case 2:
1309 if (identifier_pos == 1)
1310 {
1311 /* This is treated the same way in C++ or C99 -- lexed as an
1312 identifier which is then invalid because an identifier is
1313 not allowed to start with this character. */
1314 cpp_error (pfile, CPP_DL_ERROR,
1315 "extended character %.*s is not valid at the start of an identifier",
1316 (int) (*pstr - base), base);
1317 }
1318 break;
1319 }
1320 }
1321
1322 return true;
1323 }
1324
1325 /* Subroutine of convert_hex and convert_oct. N is the representation
1326 in the execution character set of a numeric escape; write it into the
1327 string buffer TBUF and update the end-of-string pointer therein. WIDE
1328 is true if it's a wide string that's being assembled in TBUF. This
1329 function issues no diagnostics and never fails. */
1330 static void
1331 emit_numeric_escape (cpp_reader *pfile, cppchar_t n,
1332 struct _cpp_strbuf *tbuf, struct cset_converter cvt)
1333 {
1334 size_t width = cvt.width;
1335
1336 if (width != CPP_OPTION (pfile, char_precision))
1337 {
1338 /* We have to render this into the target byte order, which may not
1339 be our byte order. */
1340 bool bigend = CPP_OPTION (pfile, bytes_big_endian);
1341 size_t cwidth = CPP_OPTION (pfile, char_precision);
1342 size_t cmask = width_to_mask (cwidth);
1343 size_t nbwc = width / cwidth;
1344 size_t i;
1345 size_t off = tbuf->len;
1346 cppchar_t c;
1347
1348 if (tbuf->len + nbwc > tbuf->asize)
1349 {
1350 tbuf->asize += OUTBUF_BLOCK_SIZE;
1351 tbuf->text = XRESIZEVEC (uchar, tbuf->text, tbuf->asize);
1352 }
1353
1354 for (i = 0; i < nbwc; i++)
1355 {
1356 c = n & cmask;
1357 n >>= cwidth;
1358 tbuf->text[off + (bigend ? nbwc - i - 1 : i)] = c;
1359 }
1360 tbuf->len += nbwc;
1361 }
1362 else
1363 {
1364 /* Note: this code does not handle the case where the target
1365 and host have a different number of bits in a byte. */
1366 if (tbuf->len + 1 > tbuf->asize)
1367 {
1368 tbuf->asize += OUTBUF_BLOCK_SIZE;
1369 tbuf->text = XRESIZEVEC (uchar, tbuf->text, tbuf->asize);
1370 }
1371 tbuf->text[tbuf->len++] = n;
1372 }
1373 }
1374
1375 /* Convert a hexadecimal escape, pointed to by FROM, to the execution
1376 character set and write it into the string buffer TBUF (if non-NULL).
1377 Returns an advanced pointer, and issues diagnostics as necessary.
1378 No character set translation occurs; this routine always produces the
1379 execution-set character with numeric value equal to the given hex
1380 number. You can, e.g. generate surrogate pairs this way.
1381 If LOC_READER is non-NULL, then RANGES must be non-NULL and CHAR_RANGE
1382 contains the location of the character so far: location information
1383 is read from *LOC_READER, and *RANGES is updated accordingly. */
1384 static const uchar *
1385 convert_hex (cpp_reader *pfile, const uchar *from, const uchar *limit,
1386 struct _cpp_strbuf *tbuf, struct cset_converter cvt,
1387 source_range char_range,
1388 cpp_string_location_reader *loc_reader,
1389 cpp_substring_ranges *ranges)
1390 {
1391 cppchar_t c, n = 0, overflow = 0;
1392 int digits_found = 0;
1393 size_t width = cvt.width;
1394 size_t mask = width_to_mask (width);
1395
1396 /* loc_reader and ranges must either be both NULL, or both be non-NULL. */
1397 gcc_assert ((loc_reader != NULL) == (ranges != NULL));
1398
1399 if (CPP_WTRADITIONAL (pfile))
1400 cpp_warning (pfile, CPP_W_TRADITIONAL,
1401 "the meaning of '\\x' is different in traditional C");
1402
1403 /* Skip 'x'. */
1404 from++;
1405
1406 /* The 'x' is part of the spelling of this character. */
1407 if (loc_reader)
1408 char_range.m_finish = loc_reader->get_next ().m_finish;
1409
1410 while (from < limit)
1411 {
1412 c = *from;
1413 if (! hex_p (c))
1414 break;
1415 from++;
1416 if (loc_reader)
1417 char_range.m_finish = loc_reader->get_next ().m_finish;
1418 overflow |= n ^ (n << 4 >> 4);
1419 n = (n << 4) + hex_value (c);
1420 digits_found = 1;
1421 }
1422
1423 if (!digits_found)
1424 {
1425 cpp_error (pfile, CPP_DL_ERROR,
1426 "\\x used with no following hex digits");
1427 return from;
1428 }
1429
1430 if (overflow | (n != (n & mask)))
1431 {
1432 cpp_error (pfile, CPP_DL_PEDWARN,
1433 "hex escape sequence out of range");
1434 n &= mask;
1435 }
1436
1437 if (tbuf)
1438 emit_numeric_escape (pfile, n, tbuf, cvt);
1439 if (ranges)
1440 ranges->add_range (char_range);
1441
1442 return from;
1443 }
1444
1445 /* Convert an octal escape, pointed to by FROM, to the execution
1446 character set and write it into the string buffer TBUF. Returns an
1447 advanced pointer, and issues diagnostics as necessary.
1448 No character set translation occurs; this routine always produces the
1449 execution-set character with numeric value equal to the given octal
1450 number.
1451 If LOC_READER is non-NULL, then RANGES must be non-NULL and CHAR_RANGE
1452 contains the location of the character so far: location information
1453 is read from *LOC_READER, and *RANGES is updated accordingly. */
1454 static const uchar *
1455 convert_oct (cpp_reader *pfile, const uchar *from, const uchar *limit,
1456 struct _cpp_strbuf *tbuf, struct cset_converter cvt,
1457 source_range char_range,
1458 cpp_string_location_reader *loc_reader,
1459 cpp_substring_ranges *ranges)
1460 {
1461 size_t count = 0;
1462 cppchar_t c, n = 0;
1463 size_t width = cvt.width;
1464 size_t mask = width_to_mask (width);
1465
1466 /* loc_reader and ranges must either be both NULL, or both be non-NULL. */
1467 gcc_assert ((loc_reader != NULL) == (ranges != NULL));
1468
1469 while (from < limit && count++ < 3)
1470 {
1471 c = *from;
1472 if (c < '0' || c > '7')
1473 break;
1474 from++;
1475 if (loc_reader)
1476 char_range.m_finish = loc_reader->get_next ().m_finish;
1477 n = (n << 3) + c - '0';
1478 }
1479
1480 if (n != (n & mask))
1481 {
1482 cpp_error (pfile, CPP_DL_PEDWARN,
1483 "octal escape sequence out of range");
1484 n &= mask;
1485 }
1486
1487 if (tbuf)
1488 emit_numeric_escape (pfile, n, tbuf, cvt);
1489 if (ranges)
1490 ranges->add_range (char_range);
1491
1492 return from;
1493 }
1494
1495 /* Convert an escape sequence (pointed to by FROM) to its value on
1496 the target, and to the execution character set. Do not scan past
1497 LIMIT. Write the converted value into TBUF, if TBUF is non-NULL.
1498 Returns an advanced pointer. Handles all relevant diagnostics.
1499 If LOC_READER is non-NULL, then RANGES must be non-NULL: location
1500 information is read from *LOC_READER, and *RANGES is updated
1501 accordingly. */
1502 static const uchar *
1503 convert_escape (cpp_reader *pfile, const uchar *from, const uchar *limit,
1504 struct _cpp_strbuf *tbuf, struct cset_converter cvt,
1505 cpp_string_location_reader *loc_reader,
1506 cpp_substring_ranges *ranges)
1507 {
1508 /* Values of \a \b \e \f \n \r \t \v respectively. */
1509 #if HOST_CHARSET == HOST_CHARSET_ASCII
1510 static const uchar charconsts[] = { 7, 8, 27, 12, 10, 13, 9, 11 };
1511 #elif HOST_CHARSET == HOST_CHARSET_EBCDIC
1512 static const uchar charconsts[] = { 47, 22, 39, 12, 21, 13, 5, 11 };
1513 #else
1514 #error "unknown host character set"
1515 #endif
1516
1517 uchar c;
1518
1519 /* Record the location of the backslash. */
1520 source_range char_range;
1521 if (loc_reader)
1522 char_range = loc_reader->get_next ();
1523
1524 c = *from;
1525 switch (c)
1526 {
1527 /* UCNs, hex escapes, and octal escapes are processed separately. */
1528 case 'u': case 'U':
1529 return convert_ucn (pfile, from, limit, tbuf, cvt,
1530 char_range, loc_reader, ranges);
1531
1532 case 'x':
1533 return convert_hex (pfile, from, limit, tbuf, cvt,
1534 char_range, loc_reader, ranges);
1535
1536 case '0': case '1': case '2': case '3':
1537 case '4': case '5': case '6': case '7':
1538 return convert_oct (pfile, from, limit, tbuf, cvt,
1539 char_range, loc_reader, ranges);
1540
1541 /* Various letter escapes. Get the appropriate host-charset
1542 value into C. */
1543 case '\\': case '\'': case '"': case '?': break;
1544
1545 case '(': case '{': case '[': case '%':
1546 /* '\(', etc, can be used at the beginning of a line in a long
1547 string split onto multiple lines with \-newline, to prevent
1548 Emacs or other text editors from getting confused. '\%' can
1549 be used to prevent SCCS from mangling printf format strings. */
1550 if (CPP_PEDANTIC (pfile))
1551 goto unknown;
1552 break;
1553
1554 case 'b': c = charconsts[1]; break;
1555 case 'f': c = charconsts[3]; break;
1556 case 'n': c = charconsts[4]; break;
1557 case 'r': c = charconsts[5]; break;
1558 case 't': c = charconsts[6]; break;
1559 case 'v': c = charconsts[7]; break;
1560
1561 case 'a':
1562 if (CPP_WTRADITIONAL (pfile))
1563 cpp_warning (pfile, CPP_W_TRADITIONAL,
1564 "the meaning of '\\a' is different in traditional C");
1565 c = charconsts[0];
1566 break;
1567
1568 case 'e': case 'E':
1569 if (CPP_PEDANTIC (pfile))
1570 cpp_error (pfile, CPP_DL_PEDWARN,
1571 "non-ISO-standard escape sequence, '\\%c'", (int) c);
1572 c = charconsts[2];
1573 break;
1574
1575 default:
1576 unknown:
1577 if (ISGRAPH (c))
1578 cpp_error (pfile, CPP_DL_PEDWARN,
1579 "unknown escape sequence: '\\%c'", (int) c);
1580 else
1581 {
1582 encoding_rich_location rich_loc (pfile);
1583
1584 /* diagnostic.c does not support "%03o". When it does, this
1585 code can use %03o directly in the diagnostic again. */
1586 char buf[32];
1587 sprintf(buf, "%03o", (int) c);
1588 cpp_error_at (pfile, CPP_DL_PEDWARN, &rich_loc,
1589 "unknown escape sequence: '\\%s'", buf);
1590 }
1591 }
1592
1593 if (tbuf)
1594 /* Now convert what we have to the execution character set. */
1595 if (!APPLY_CONVERSION (cvt, &c, 1, tbuf))
1596 cpp_errno (pfile, CPP_DL_ERROR,
1597 "converting escape sequence to execution character set");
1598
1599 if (loc_reader)
1600 {
1601 char_range.m_finish = loc_reader->get_next ().m_finish;
1602 ranges->add_range (char_range);
1603 }
1604
1605 return from + 1;
1606 }
1607 \f
1608 /* TYPE is a token type. The return value is the conversion needed to
1609 convert from source to execution character set for the given type. */
1610 static struct cset_converter
1611 converter_for_type (cpp_reader *pfile, enum cpp_ttype type)
1612 {
1613 switch (type)
1614 {
1615 default:
1616 return pfile->narrow_cset_desc;
1617 case CPP_UTF8CHAR:
1618 case CPP_UTF8STRING:
1619 return pfile->utf8_cset_desc;
1620 case CPP_CHAR16:
1621 case CPP_STRING16:
1622 return pfile->char16_cset_desc;
1623 case CPP_CHAR32:
1624 case CPP_STRING32:
1625 return pfile->char32_cset_desc;
1626 case CPP_WCHAR:
1627 case CPP_WSTRING:
1628 return pfile->wide_cset_desc;
1629 }
1630 }
1631
1632 /* FROM is an array of cpp_string structures of length COUNT. These
1633 are to be converted from the source to the execution character set,
1634 escape sequences translated, and finally all are to be
1635 concatenated. WIDE indicates whether or not to produce a wide
1636 string. If TO is non-NULL, the result is written into TO.
1637 If LOC_READERS and OUT are non-NULL, then location information
1638 is read from LOC_READERS (which must be an array of length COUNT),
1639 and location information is written to *RANGES.
1640
1641 Returns true for success, false for failure. */
1642
1643 static bool
1644 cpp_interpret_string_1 (cpp_reader *pfile, const cpp_string *from, size_t count,
1645 cpp_string *to, enum cpp_ttype type,
1646 cpp_string_location_reader *loc_readers,
1647 cpp_substring_ranges *out)
1648 {
1649 struct _cpp_strbuf tbuf;
1650 const uchar *p, *base, *limit;
1651 size_t i;
1652 struct cset_converter cvt = converter_for_type (pfile, type);
1653
1654 /* loc_readers and out must either be both NULL, or both be non-NULL. */
1655 gcc_assert ((loc_readers != NULL) == (out != NULL));
1656
1657 if (to)
1658 {
1659 tbuf.asize = MAX (OUTBUF_BLOCK_SIZE, from->len);
1660 tbuf.text = XNEWVEC (uchar, tbuf.asize);
1661 tbuf.len = 0;
1662 }
1663
1664 cpp_string_location_reader *loc_reader = NULL;
1665 for (i = 0; i < count; i++)
1666 {
1667 if (loc_readers)
1668 loc_reader = &loc_readers[i];
1669
1670 p = from[i].text;
1671 if (*p == 'u')
1672 {
1673 p++;
1674 if (loc_reader)
1675 loc_reader->get_next ();
1676 if (*p == '8')
1677 {
1678 p++;
1679 if (loc_reader)
1680 loc_reader->get_next ();
1681 }
1682 }
1683 else if (*p == 'L' || *p == 'U') p++;
1684 if (*p == 'R')
1685 {
1686 const uchar *prefix;
1687
1688 /* Skip over 'R"'. */
1689 p += 2;
1690 if (loc_reader)
1691 {
1692 loc_reader->get_next ();
1693 loc_reader->get_next ();
1694 }
1695 prefix = p;
1696 while (*p != '(')
1697 {
1698 p++;
1699 if (loc_reader)
1700 loc_reader->get_next ();
1701 }
1702 p++;
1703 if (loc_reader)
1704 loc_reader->get_next ();
1705 limit = from[i].text + from[i].len;
1706 if (limit >= p + (p - prefix) + 1)
1707 limit -= (p - prefix) + 1;
1708
1709 /* Raw strings are all normal characters; these can be fed
1710 directly to convert_cset. */
1711 if (to)
1712 if (!APPLY_CONVERSION (cvt, p, limit - p, &tbuf))
1713 goto fail;
1714
1715 if (loc_reader)
1716 {
1717 /* If generating source ranges, assume we have a 1:1
1718 correspondence between bytes in the source encoding and bytes
1719 in the execution encoding (e.g. if we have a UTF-8 to UTF-8
1720 conversion), so that this run of bytes in the source file
1721 corresponds to a run of bytes in the execution string.
1722 This requirement is guaranteed by an early-reject in
1723 cpp_interpret_string_ranges. */
1724 gcc_assert (cvt.func == convert_no_conversion);
1725 out->add_n_ranges (limit - p, *loc_reader);
1726 }
1727
1728 continue;
1729 }
1730
1731 /* If we don't now have a leading quote, something has gone wrong.
1732 This can occur if cpp_interpret_string_ranges is handling a
1733 stringified macro argument, but should not be possible otherwise. */
1734 if (*p != '"' && *p != '\'')
1735 {
1736 gcc_assert (out != NULL);
1737 cpp_error (pfile, CPP_DL_ERROR, "missing open quote");
1738 if (to)
1739 free (tbuf.text);
1740 return false;
1741 }
1742
1743 /* Skip leading quote. */
1744 p++;
1745 if (loc_reader)
1746 loc_reader->get_next ();
1747
1748 limit = from[i].text + from[i].len - 1; /* Skip trailing quote. */
1749
1750 for (;;)
1751 {
1752 base = p;
1753 while (p < limit && *p != '\\')
1754 p++;
1755 if (p > base)
1756 {
1757 /* We have a run of normal characters; these can be fed
1758 directly to convert_cset. */
1759 if (to)
1760 if (!APPLY_CONVERSION (cvt, base, p - base, &tbuf))
1761 goto fail;
1762 /* Similar to above: assumes we have a 1:1 correspondence
1763 between bytes in the source encoding and bytes in the
1764 execution encoding. */
1765 if (loc_reader)
1766 {
1767 gcc_assert (cvt.func == convert_no_conversion);
1768 out->add_n_ranges (p - base, *loc_reader);
1769 }
1770 }
1771 if (p >= limit)
1772 break;
1773
1774 struct _cpp_strbuf *tbuf_ptr = to ? &tbuf : NULL;
1775 p = convert_escape (pfile, p + 1, limit, tbuf_ptr, cvt,
1776 loc_reader, out);
1777 }
1778 }
1779
1780 if (to)
1781 {
1782 /* NUL-terminate the 'to' buffer and translate it to a cpp_string
1783 structure. */
1784 emit_numeric_escape (pfile, 0, &tbuf, cvt);
1785 tbuf.text = XRESIZEVEC (uchar, tbuf.text, tbuf.len);
1786 to->text = tbuf.text;
1787 to->len = tbuf.len;
1788 }
1789 /* Use the location of the trailing quote as the location of the
1790 NUL-terminator. */
1791 if (loc_reader)
1792 {
1793 source_range range = loc_reader->get_next ();
1794 out->add_range (range);
1795 }
1796
1797 return true;
1798
1799 fail:
1800 cpp_errno (pfile, CPP_DL_ERROR, "converting to execution character set");
1801 if (to)
1802 free (tbuf.text);
1803 return false;
1804 }
1805
1806 /* FROM is an array of cpp_string structures of length COUNT. These
1807 are to be converted from the source to the execution character set,
1808 escape sequences translated, and finally all are to be
1809 concatenated. WIDE indicates whether or not to produce a wide
1810 string. The result is written into TO. Returns true for success,
1811 false for failure. */
1812 bool
1813 cpp_interpret_string (cpp_reader *pfile, const cpp_string *from, size_t count,
1814 cpp_string *to, enum cpp_ttype type)
1815 {
1816 return cpp_interpret_string_1 (pfile, from, count, to, type, NULL, NULL);
1817 }
1818
1819 /* A "do nothing" diagnostic-handling callback for use by
1820 cpp_interpret_string_ranges, so that it can temporarily suppress
1821 diagnostic-handling. */
1822
1823 static bool
1824 noop_diagnostic_cb (cpp_reader *, enum cpp_diagnostic_level,
1825 enum cpp_warning_reason, rich_location *,
1826 const char *, va_list *)
1827 {
1828 /* no-op. */
1829 return true;
1830 }
1831
1832 /* This function mimics the behavior of cpp_interpret_string, but
1833 rather than generating a string in the execution character set,
1834 *OUT is written to with the source code ranges of the characters
1835 in such a string.
1836 FROM and LOC_READERS should both be arrays of length COUNT.
1837 Returns NULL for success, or an error message for failure. */
1838
1839 const char *
1840 cpp_interpret_string_ranges (cpp_reader *pfile, const cpp_string *from,
1841 cpp_string_location_reader *loc_readers,
1842 size_t count,
1843 cpp_substring_ranges *out,
1844 enum cpp_ttype type)
1845 {
1846 /* There are a couple of cases in the range-handling in
1847 cpp_interpret_string_1 that rely on there being a 1:1 correspondence
1848 between bytes in the source encoding and bytes in the execution
1849 encoding, so that each byte in the execution string can correspond
1850 to the location of a byte in the source string.
1851
1852 This holds for the typical case of a UTF-8 to UTF-8 conversion.
1853 Enforce this requirement by only attempting to track substring
1854 locations if we have source encoding == execution encoding.
1855
1856 This is a stronger condition than we need, since we could e.g.
1857 have ASCII to EBCDIC (with 1 byte per character before and after),
1858 but it seems to be a reasonable restriction. */
1859 struct cset_converter cvt = converter_for_type (pfile, type);
1860 if (cvt.func != convert_no_conversion)
1861 return "execution character set != source character set";
1862
1863 /* For on-demand strings we have already lexed the strings, so there
1864 should be no diagnostics. However, if we have bogus source location
1865 data (or stringified macro arguments), the attempt to lex the
1866 strings could fail with an diagnostic. Temporarily install an
1867 diagnostic-handler to catch the diagnostic, so that it can lead to this call
1868 failing, rather than being emitted as a user-visible diagnostic.
1869 If an diagnostic does occur, we should see it via the return value of
1870 cpp_interpret_string_1. */
1871 bool (*saved_diagnostic_handler) (cpp_reader *, enum cpp_diagnostic_level,
1872 enum cpp_warning_reason, rich_location *,
1873 const char *, va_list *)
1874 ATTRIBUTE_FPTR_PRINTF(5,0);
1875
1876 saved_diagnostic_handler = pfile->cb.diagnostic;
1877 pfile->cb.diagnostic = noop_diagnostic_cb;
1878
1879 bool result = cpp_interpret_string_1 (pfile, from, count, NULL, type,
1880 loc_readers, out);
1881
1882 /* Restore the saved diagnostic-handler. */
1883 pfile->cb.diagnostic = saved_diagnostic_handler;
1884
1885 if (!result)
1886 return "cpp_interpret_string_1 failed";
1887
1888 /* Success. */
1889 return NULL;
1890 }
1891
1892 /* Subroutine of do_line and do_linemarker. Convert escape sequences
1893 in a string, but do not perform character set conversion. */
1894 bool
1895 cpp_interpret_string_notranslate (cpp_reader *pfile, const cpp_string *from,
1896 size_t count, cpp_string *to,
1897 enum cpp_ttype type ATTRIBUTE_UNUSED)
1898 {
1899 struct cset_converter save_narrow_cset_desc = pfile->narrow_cset_desc;
1900 bool retval;
1901
1902 pfile->narrow_cset_desc.func = convert_no_conversion;
1903 pfile->narrow_cset_desc.cd = (iconv_t) -1;
1904 pfile->narrow_cset_desc.width = CPP_OPTION (pfile, char_precision);
1905
1906 retval = cpp_interpret_string (pfile, from, count, to, CPP_STRING);
1907
1908 pfile->narrow_cset_desc = save_narrow_cset_desc;
1909 return retval;
1910 }
1911
1912 \f
1913 /* Subroutine of cpp_interpret_charconst which performs the conversion
1914 to a number, for narrow strings. STR is the string structure returned
1915 by cpp_interpret_string. PCHARS_SEEN and UNSIGNEDP are as for
1916 cpp_interpret_charconst. TYPE is the token type. */
1917 static cppchar_t
1918 narrow_str_to_charconst (cpp_reader *pfile, cpp_string str,
1919 unsigned int *pchars_seen, int *unsignedp,
1920 enum cpp_ttype type)
1921 {
1922 size_t width = CPP_OPTION (pfile, char_precision);
1923 size_t max_chars = CPP_OPTION (pfile, int_precision) / width;
1924 size_t mask = width_to_mask (width);
1925 size_t i;
1926 cppchar_t result, c;
1927 bool unsigned_p;
1928
1929 /* The value of a multi-character character constant, or a
1930 single-character character constant whose representation in the
1931 execution character set is more than one byte long, is
1932 implementation defined. This implementation defines it to be the
1933 number formed by interpreting the byte sequence in memory as a
1934 big-endian binary number. If overflow occurs, the high bytes are
1935 lost, and a warning is issued.
1936
1937 We don't want to process the NUL terminator handed back by
1938 cpp_interpret_string. */
1939 result = 0;
1940 for (i = 0; i < str.len - 1; i++)
1941 {
1942 c = str.text[i] & mask;
1943 if (width < BITS_PER_CPPCHAR_T)
1944 result = (result << width) | c;
1945 else
1946 result = c;
1947 }
1948
1949 if (type == CPP_UTF8CHAR)
1950 max_chars = 1;
1951 if (i > max_chars)
1952 {
1953 i = max_chars;
1954 cpp_error (pfile, type == CPP_UTF8CHAR ? CPP_DL_ERROR : CPP_DL_WARNING,
1955 "character constant too long for its type");
1956 }
1957 else if (i > 1 && CPP_OPTION (pfile, warn_multichar))
1958 cpp_warning (pfile, CPP_W_MULTICHAR, "multi-character character constant");
1959
1960 /* Multichar constants are of type int and therefore signed. */
1961 if (i > 1)
1962 unsigned_p = 0;
1963 else if (type == CPP_UTF8CHAR && !CPP_OPTION (pfile, cplusplus))
1964 unsigned_p = 1;
1965 else
1966 unsigned_p = CPP_OPTION (pfile, unsigned_char);
1967
1968 /* Truncate the constant to its natural width, and simultaneously
1969 sign- or zero-extend to the full width of cppchar_t.
1970 For single-character constants, the value is WIDTH bits wide.
1971 For multi-character constants, the value is INT_PRECISION bits wide. */
1972 if (i > 1)
1973 width = CPP_OPTION (pfile, int_precision);
1974 if (width < BITS_PER_CPPCHAR_T)
1975 {
1976 mask = ((cppchar_t) 1 << width) - 1;
1977 if (unsigned_p || !(result & (1 << (width - 1))))
1978 result &= mask;
1979 else
1980 result |= ~mask;
1981 }
1982 *pchars_seen = i;
1983 *unsignedp = unsigned_p;
1984 return result;
1985 }
1986
1987 /* Subroutine of cpp_interpret_charconst which performs the conversion
1988 to a number, for wide strings. STR is the string structure returned
1989 by cpp_interpret_string. PCHARS_SEEN and UNSIGNEDP are as for
1990 cpp_interpret_charconst. TYPE is the token type. */
1991 static cppchar_t
1992 wide_str_to_charconst (cpp_reader *pfile, cpp_string str,
1993 unsigned int *pchars_seen, int *unsignedp,
1994 enum cpp_ttype type)
1995 {
1996 bool bigend = CPP_OPTION (pfile, bytes_big_endian);
1997 size_t width = converter_for_type (pfile, type).width;
1998 size_t cwidth = CPP_OPTION (pfile, char_precision);
1999 size_t mask = width_to_mask (width);
2000 size_t cmask = width_to_mask (cwidth);
2001 size_t nbwc = width / cwidth;
2002 size_t off, i;
2003 cppchar_t result = 0, c;
2004
2005 if (str.len <= nbwc)
2006 {
2007 /* Error recovery, if no errors have been diagnosed previously,
2008 there should be at least two wide characters. Empty literals
2009 are diagnosed earlier and we can get just the zero terminator
2010 only if there were errors diagnosed during conversion. */
2011 *pchars_seen = 0;
2012 *unsignedp = 0;
2013 return 0;
2014 }
2015
2016 /* This is finicky because the string is in the target's byte order,
2017 which may not be our byte order. Only the last character, ignoring
2018 the NUL terminator, is relevant. */
2019 off = str.len - (nbwc * 2);
2020 result = 0;
2021 for (i = 0; i < nbwc; i++)
2022 {
2023 c = bigend ? str.text[off + i] : str.text[off + nbwc - i - 1];
2024 result = (result << cwidth) | (c & cmask);
2025 }
2026
2027 /* Wide character constants have type wchar_t, and a single
2028 character exactly fills a wchar_t, so a multi-character wide
2029 character constant is guaranteed to overflow. */
2030 if (str.len > nbwc * 2)
2031 cpp_error (pfile, (CPP_OPTION (pfile, cplusplus)
2032 && (type == CPP_CHAR16 || type == CPP_CHAR32))
2033 ? CPP_DL_ERROR : CPP_DL_WARNING,
2034 "character constant too long for its type");
2035
2036 /* Truncate the constant to its natural width, and simultaneously
2037 sign- or zero-extend to the full width of cppchar_t. */
2038 if (width < BITS_PER_CPPCHAR_T)
2039 {
2040 if (type == CPP_CHAR16 || type == CPP_CHAR32
2041 || CPP_OPTION (pfile, unsigned_wchar)
2042 || !(result & (1 << (width - 1))))
2043 result &= mask;
2044 else
2045 result |= ~mask;
2046 }
2047
2048 if (type == CPP_CHAR16 || type == CPP_CHAR32
2049 || CPP_OPTION (pfile, unsigned_wchar))
2050 *unsignedp = 1;
2051 else
2052 *unsignedp = 0;
2053
2054 *pchars_seen = 1;
2055 return result;
2056 }
2057
2058 /* Interpret a (possibly wide) character constant in TOKEN.
2059 PCHARS_SEEN points to a variable that is filled in with the number
2060 of characters seen, and UNSIGNEDP to a variable that indicates
2061 whether the result has signed type. */
2062 cppchar_t
2063 cpp_interpret_charconst (cpp_reader *pfile, const cpp_token *token,
2064 unsigned int *pchars_seen, int *unsignedp)
2065 {
2066 cpp_string str = { 0, 0 };
2067 bool wide = (token->type != CPP_CHAR && token->type != CPP_UTF8CHAR);
2068 int u8 = 2 * int(token->type == CPP_UTF8CHAR);
2069 cppchar_t result;
2070
2071 /* An empty constant will appear as L'', u'', U'', u8'', or '' */
2072 if (token->val.str.len == (size_t) (2 + wide + u8))
2073 {
2074 cpp_error (pfile, CPP_DL_ERROR, "empty character constant");
2075 *pchars_seen = 0;
2076 *unsignedp = 0;
2077 return 0;
2078 }
2079 else if (!cpp_interpret_string (pfile, &token->val.str, 1, &str,
2080 token->type))
2081 {
2082 *pchars_seen = 0;
2083 *unsignedp = 0;
2084 return 0;
2085 }
2086
2087 if (wide)
2088 result = wide_str_to_charconst (pfile, str, pchars_seen, unsignedp,
2089 token->type);
2090 else
2091 result = narrow_str_to_charconst (pfile, str, pchars_seen, unsignedp,
2092 token->type);
2093
2094 if (str.text != token->val.str.text)
2095 free ((void *)str.text);
2096
2097 return result;
2098 }
2099 \f
2100 /* Convert an identifier denoted by ID and LEN, which might contain
2101 UCN escapes or UTF-8 multibyte chars, to the source character set,
2102 either UTF-8 or UTF-EBCDIC. Assumes that the identifier is actually
2103 a valid identifier. */
2104 cpp_hashnode *
2105 _cpp_interpret_identifier (cpp_reader *pfile, const uchar *id, size_t len)
2106 {
2107 /* It turns out that a UCN escape always turns into fewer characters
2108 than the escape itself, so we can allocate a temporary in advance. */
2109 uchar * buf = (uchar *) alloca (len + 1);
2110 uchar * bufp = buf;
2111 size_t idp;
2112
2113 for (idp = 0; idp < len; idp++)
2114 if (id[idp] != '\\')
2115 *bufp++ = id[idp];
2116 else
2117 {
2118 unsigned length = id[idp+1] == 'u' ? 4 : 8;
2119 cppchar_t value = 0;
2120 size_t bufleft = len - (bufp - buf);
2121 int rval;
2122
2123 idp += 2;
2124 while (length && idp < len && ISXDIGIT (id[idp]))
2125 {
2126 value = (value << 4) + hex_value (id[idp]);
2127 idp++;
2128 length--;
2129 }
2130 idp--;
2131
2132 /* Special case for EBCDIC: if the identifier contains
2133 a '$' specified using a UCN, translate it to EBCDIC. */
2134 if (value == 0x24)
2135 {
2136 *bufp++ = '$';
2137 continue;
2138 }
2139
2140 rval = one_cppchar_to_utf8 (value, &bufp, &bufleft);
2141 if (rval)
2142 {
2143 errno = rval;
2144 cpp_errno (pfile, CPP_DL_ERROR,
2145 "converting UCN to source character set");
2146 break;
2147 }
2148 }
2149
2150 return CPP_HASHNODE (ht_lookup (pfile->hash_table,
2151 buf, bufp - buf, HT_ALLOC));
2152 }
2153 \f
2154
2155 /* Utility to strip a UTF-8 byte order marking from the beginning
2156 of a buffer. Returns the number of bytes to skip, which currently
2157 will be either 0 or 3. */
2158 int
2159 cpp_check_utf8_bom (const char *data, size_t data_length)
2160 {
2161
2162 #if HOST_CHARSET == HOST_CHARSET_ASCII
2163 const unsigned char *udata = (const unsigned char *) data;
2164 if (data_length >= 3 && udata[0] == 0xef && udata[1] == 0xbb
2165 && udata[2] == 0xbf)
2166 return 3;
2167 #endif
2168
2169 return 0;
2170 }
2171
2172
2173 /* Convert an input buffer (containing the complete contents of one
2174 source file) from INPUT_CHARSET to the source character set. INPUT
2175 points to the input buffer, SIZE is its allocated size, and LEN is
2176 the length of the meaningful data within the buffer. The
2177 translated buffer is returned, *ST_SIZE is set to the length of
2178 the meaningful data within the translated buffer, and *BUFFER_START
2179 is set to the start of the returned buffer. *BUFFER_START may
2180 differ from the return value in the case of a BOM or other ignored
2181 marker information.
2182
2183 INPUT is expected to have been allocated with xmalloc. This
2184 function will either set *BUFFER_START to INPUT, or free it and set
2185 *BUFFER_START to a pointer to another xmalloc-allocated block of
2186 memory.
2187
2188 PFILE is only used to generate diagnostics; setting it to NULL suppresses
2189 diagnostics, and causes a return of NULL if there was any error instead. */
2190
2191 uchar *
2192 _cpp_convert_input (cpp_reader *pfile, const char *input_charset,
2193 uchar *input, size_t size, size_t len,
2194 const unsigned char **buffer_start, off_t *st_size)
2195 {
2196 struct cset_converter input_cset;
2197 struct _cpp_strbuf to;
2198 unsigned char *buffer;
2199
2200 input_cset = init_iconv_desc (pfile, SOURCE_CHARSET, input_charset);
2201 if (input_cset.func == convert_no_conversion)
2202 {
2203 to.text = input;
2204 to.asize = size;
2205 to.len = len;
2206 }
2207 else
2208 {
2209 to.asize = MAX (65536, len);
2210 to.text = XNEWVEC (uchar, to.asize);
2211 to.len = 0;
2212
2213 const bool ok = APPLY_CONVERSION (input_cset, input, len, &to);
2214 free (input);
2215
2216 /* Clean up the mess. */
2217 if (input_cset.func == convert_using_iconv)
2218 iconv_close (input_cset.cd);
2219
2220 /* Handle conversion failure. */
2221 if (!ok)
2222 {
2223 if (!pfile)
2224 {
2225 XDELETEVEC (to.text);
2226 *buffer_start = NULL;
2227 *st_size = 0;
2228 return NULL;
2229 }
2230 cpp_error (pfile, CPP_DL_ERROR, "failure to convert %s to %s",
2231 input_charset, SOURCE_CHARSET);
2232 }
2233 }
2234
2235 /* Resize buffer if we allocated substantially too much, or if we
2236 haven't enough space for the \n-terminator or following
2237 15 bytes of padding (used to quiet warnings from valgrind or
2238 Address Sanitizer, when the optimized lexer accesses aligned
2239 16-byte memory chunks, including the bytes after the malloced,
2240 area, and stops lexing on '\n'). */
2241 if (to.len + 4096 < to.asize || to.len + 16 > to.asize)
2242 to.text = XRESIZEVEC (uchar, to.text, to.len + 16);
2243
2244 memset (to.text + to.len, '\0', 16);
2245
2246 /* If the file is using old-school Mac line endings (\r only),
2247 terminate with another \r, not an \n, so that we do not mistake
2248 the \r\n sequence for a single DOS line ending and erroneously
2249 issue the "No newline at end of file" diagnostic. */
2250 if (to.len && to.text[to.len - 1] == '\r')
2251 to.text[to.len] = '\r';
2252 else
2253 to.text[to.len] = '\n';
2254
2255 buffer = to.text;
2256 *st_size = to.len;
2257
2258 /* Ignore a UTF-8 BOM if we see one and the source charset is UTF-8. Note
2259 that glib'c UTF-8 iconv() provider (as of glibc 2.7) does not ignore a
2260 BOM -- however, even if it did, we would still need this code due
2261 to the 'convert_no_conversion' case. */
2262 const int bom_len = cpp_check_utf8_bom ((const char *) to.text, to.len);
2263 *st_size -= bom_len;
2264 buffer += bom_len;
2265
2266 *buffer_start = to.text;
2267 return buffer;
2268 }
2269
2270 /* Decide on the default encoding to assume for input files. */
2271 const char *
2272 _cpp_default_encoding (void)
2273 {
2274 const char *current_encoding = NULL;
2275
2276 /* We disable this because the default codeset is 7-bit ASCII on
2277 most platforms, and this causes conversion failures on every
2278 file in GCC that happens to have one of the upper 128 characters
2279 in it -- most likely, as part of the name of a contributor.
2280 We should definitely recognize in-band markers of file encoding,
2281 like:
2282 - the appropriate Unicode byte-order mark (FE FF) to recognize
2283 UTF16 and UCS4 (in both big-endian and little-endian flavors)
2284 and UTF8
2285 - a "#i", "#d", "/ *", "//", " #p" or "#p" (for #pragma) to
2286 distinguish ASCII and EBCDIC.
2287 - now we can parse something like "#pragma GCC encoding <xyz>
2288 on the first line, or even Emacs/VIM's mode line tags (there's
2289 a problem here in that VIM uses the last line, and Emacs has
2290 its more elaborate "local variables" convention).
2291 - investigate whether Java has another common convention, which
2292 would be friendly to support.
2293 (Zack Weinberg and Paolo Bonzini, May 20th 2004) */
2294 #if defined (HAVE_LOCALE_H) && defined (HAVE_LANGINFO_CODESET) && 0
2295 setlocale (LC_CTYPE, "");
2296 current_encoding = nl_langinfo (CODESET);
2297 #endif
2298 if (current_encoding == NULL || *current_encoding == '\0')
2299 current_encoding = SOURCE_CHARSET;
2300
2301 return current_encoding;
2302 }
2303
2304 /* Check if the configured input charset requires no conversion, other than
2305 possibly stripping a UTF-8 BOM. */
2306 bool cpp_input_conversion_is_trivial (const char *input_charset)
2307 {
2308 return !strcasecmp (input_charset, SOURCE_CHARSET);
2309 }
2310
2311 /* Implementation of class cpp_string_location_reader. */
2312
2313 /* Constructor for cpp_string_location_reader. */
2314
2315 cpp_string_location_reader::
2316 cpp_string_location_reader (location_t src_loc,
2317 line_maps *line_table)
2318 {
2319 src_loc = get_range_from_loc (line_table, src_loc).m_start;
2320
2321 /* SRC_LOC might be a macro location. It only makes sense to do
2322 column-by-column calculations on ordinary maps, so get the
2323 corresponding location in an ordinary map. */
2324 m_loc
2325 = linemap_resolve_location (line_table, src_loc,
2326 LRK_SPELLING_LOCATION, NULL);
2327
2328 const line_map_ordinary *map
2329 = linemap_check_ordinary (linemap_lookup (line_table, m_loc));
2330 m_offset_per_column = (1 << map->m_range_bits);
2331 }
2332
2333 /* Get the range of the next source byte. */
2334
2335 source_range
2336 cpp_string_location_reader::get_next ()
2337 {
2338 source_range result;
2339 result.m_start = m_loc;
2340 result.m_finish = m_loc;
2341 if (m_loc <= LINE_MAP_MAX_LOCATION_WITH_COLS)
2342 m_loc += m_offset_per_column;
2343 return result;
2344 }
2345
2346 cpp_display_width_computation::
2347 cpp_display_width_computation (const char *data, int data_length,
2348 const cpp_char_column_policy &policy) :
2349 m_begin (data),
2350 m_next (m_begin),
2351 m_bytes_left (data_length),
2352 m_policy (policy),
2353 m_display_cols (0)
2354 {
2355 gcc_assert (policy.m_tabstop > 0);
2356 gcc_assert (policy.m_width_cb);
2357 }
2358
2359
2360 /* The main implementation function for class cpp_display_width_computation.
2361 m_next points on entry to the start of the UTF-8 encoding of the next
2362 character, and is updated to point just after the last byte of the encoding.
2363 m_bytes_left contains on entry the remaining size of the buffer into which
2364 m_next points, and this is also updated accordingly. If m_next does not
2365 point to a valid UTF-8-encoded sequence, then it will be treated as a single
2366 byte with display width 1. m_cur_display_col is the current display column,
2367 relative to which tab stops should be expanded. Returns the display width of
2368 the codepoint just processed.
2369 If OUT is non-NULL, it is populated. */
2370
2371 int
2372 cpp_display_width_computation::process_next_codepoint (cpp_decoded_char *out)
2373 {
2374 cppchar_t c;
2375 int next_width;
2376
2377 if (out)
2378 out->m_start_byte = m_next;
2379
2380 if (*m_next == '\t')
2381 {
2382 ++m_next;
2383 --m_bytes_left;
2384 next_width = m_policy.m_tabstop - (m_display_cols % m_policy.m_tabstop);
2385 if (out)
2386 {
2387 out->m_ch = '\t';
2388 out->m_valid_ch = true;
2389 }
2390 }
2391 else if (one_utf8_to_cppchar ((const uchar **) &m_next, &m_bytes_left, &c)
2392 != 0)
2393 {
2394 /* Input is not convertible to UTF-8. This could be fine, e.g. in a
2395 string literal, so don't complain. Just treat it as if it has a width
2396 of one. */
2397 ++m_next;
2398 --m_bytes_left;
2399 next_width = m_policy.m_undecoded_byte_width;
2400 if (out)
2401 out->m_valid_ch = false;
2402 }
2403 else
2404 {
2405 /* one_utf8_to_cppchar() has updated m_next and m_bytes_left for us. */
2406 next_width = m_policy.m_width_cb (c);
2407 if (out)
2408 {
2409 out->m_ch = c;
2410 out->m_valid_ch = true;
2411 }
2412 }
2413
2414 if (out)
2415 out->m_next_byte = m_next;
2416
2417 m_display_cols += next_width;
2418 return next_width;
2419 }
2420
2421 /* Utility to advance the byte stream by the minimum amount needed to consume
2422 N display columns. Returns the number of display columns that were
2423 actually skipped. This could be less than N, if there was not enough data,
2424 or more than N, if the last character to be skipped had a sufficiently large
2425 display width. */
2426 int
2427 cpp_display_width_computation::advance_display_cols (int n)
2428 {
2429 const int start = m_display_cols;
2430 const int target = start + n;
2431 while (m_display_cols < target && !done ())
2432 process_next_codepoint (NULL);
2433 return m_display_cols - start;
2434 }
2435
2436 /* For the string of length DATA_LENGTH bytes that begins at DATA, compute
2437 how many display columns are occupied by the first COLUMN bytes. COLUMN
2438 may exceed DATA_LENGTH, in which case the phantom bytes at the end are
2439 treated as if they have display width 1. Tabs are expanded to the next tab
2440 stop, relative to the start of DATA, and non-printable-ASCII characters
2441 will be escaped as per POLICY. */
2442
2443 int
2444 cpp_byte_column_to_display_column (const char *data, int data_length,
2445 int column,
2446 const cpp_char_column_policy &policy)
2447 {
2448 const int offset = MAX (0, column - data_length);
2449 cpp_display_width_computation dw (data, column - offset, policy);
2450 while (!dw.done ())
2451 dw.process_next_codepoint (NULL);
2452 return dw.display_cols_processed () + offset;
2453 }
2454
2455 /* For the string of length DATA_LENGTH bytes that begins at DATA, compute
2456 the least number of bytes that will result in at least DISPLAY_COL display
2457 columns. The return value may exceed DATA_LENGTH if the entire string does
2458 not occupy enough display columns. Non-printable-ASCII characters
2459 will be escaped as per POLICY. */
2460
2461 int
2462 cpp_display_column_to_byte_column (const char *data, int data_length,
2463 int display_col,
2464 const cpp_char_column_policy &policy)
2465 {
2466 cpp_display_width_computation dw (data, data_length, policy);
2467 const int avail_display = dw.advance_display_cols (display_col);
2468 return dw.bytes_processed () + MAX (0, display_col - avail_display);
2469 }
2470
2471 /* Our own version of wcwidth(). We don't use the actual wcwidth() in glibc,
2472 because that will inspect the user's locale, and in particular in an ASCII
2473 locale, it will not return anything useful for extended characters. But GCC
2474 in other respects (see e.g. _cpp_default_encoding()) behaves as if
2475 everything is UTF-8. We also make some tweaks that are useful for the way
2476 GCC needs to use this data, e.g. tabs and other control characters should be
2477 treated as having width 1. The lookup tables are generated from
2478 contrib/unicode/gen_wcwidth.py and were made by simply calling glibc
2479 wcwidth() on all codepoints, then applying the small tweaks. These tables
2480 are not highly optimized, but for the present purpose of outputting
2481 diagnostics, they are sufficient. */
2482
2483 #include "generated_cpp_wcwidth.h"
2484 int cpp_wcwidth (cppchar_t c)
2485 {
2486 if (__builtin_expect (c <= wcwidth_range_ends[0], true))
2487 return wcwidth_widths[0];
2488
2489 /* Binary search the tables. */
2490 int begin = 1;
2491 static const int end
2492 = sizeof wcwidth_range_ends / sizeof (*wcwidth_range_ends);
2493 int len = end - begin;
2494 do
2495 {
2496 int half = len/2;
2497 int middle = begin + half;
2498 if (c > wcwidth_range_ends[middle])
2499 {
2500 begin = middle + 1;
2501 len -= half + 1;
2502 }
2503 else
2504 len = half;
2505 } while (len);
2506
2507 if (__builtin_expect (begin != end, true))
2508 return wcwidth_widths[begin];
2509 return 1;
2510 }