]> git.ipfire.org Git - thirdparty/gcc.git/blob - libcpp/charset.cc
updat_bb_profile_for_threading TLC
[thirdparty/gcc.git] / libcpp / charset.cc
1 /* CPP Library - charsets
2 Copyright (C) 1998-2023 Free Software Foundation, Inc.
3
4 Broken out of c-lex.cc Apr 2003, adding valid C99 UCN ranges.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "cpplib.h"
23 #include "internal.h"
24
25 /* Character set handling for C-family languages.
26
27 Terminological note: In what follows, "charset" or "character set"
28 will be taken to mean both an abstract set of characters and an
29 encoding for that set.
30
31 The C99 standard discusses two character sets: source and execution.
32 The source character set is used for internal processing in translation
33 phases 1 through 4; the execution character set is used thereafter.
34 Both are required by 5.2.1.2p1 to be multibyte encodings, not wide
35 character encodings (see 3.7.2, 3.7.3 for the standardese meanings
36 of these terms). Furthermore, the "basic character set" (listed in
37 5.2.1p3) is to be encoded in each with values one byte wide, and is
38 to appear in the initial shift state.
39
40 It is not explicitly mentioned, but there is also a "wide execution
41 character set" used to encode wide character constants and wide
42 string literals; this is supposed to be the result of applying the
43 standard library function mbstowcs() to an equivalent narrow string
44 (6.4.5p5). However, the behavior of hexadecimal and octal
45 \-escapes is at odds with this; they are supposed to be translated
46 directly to wchar_t values (6.4.4.4p5,6).
47
48 The source character set is not necessarily the character set used
49 to encode physical source files on disk; translation phase 1 converts
50 from whatever that encoding is to the source character set.
51
52 The presence of universal character names in C99 (6.4.3 et seq.)
53 forces the source character set to be isomorphic to ISO 10646,
54 that is, Unicode. There is no such constraint on the execution
55 character set; note also that the conversion from source to
56 execution character set does not occur for identifiers (5.1.1.2p1#5).
57
58 For convenience of implementation, the source character set's
59 encoding of the basic character set should be identical to the
60 execution character set OF THE HOST SYSTEM's encoding of the basic
61 character set, and it should not be a state-dependent encoding.
62
63 cpplib uses UTF-8 or UTF-EBCDIC for the source character set,
64 depending on whether the host is based on ASCII or EBCDIC (see
65 respectively Unicode section 2.3/ISO10646 Amendment 2, and Unicode
66 Technical Report #16). With limited exceptions, it relies on the
67 system library's iconv() primitive to do charset conversion
68 (specified in SUSv2). */
69
70 #if !HAVE_ICONV
71 /* Make certain that the uses of iconv(), iconv_open(), iconv_close()
72 below, which are guarded only by if statements with compile-time
73 constant conditions, do not cause link errors. */
74 #define iconv_open(x, y) (errno = EINVAL, (iconv_t)-1)
75 #define iconv(a,b,c,d,e) (errno = EINVAL, (size_t)-1)
76 #define iconv_close(x) (void)0
77 #define ICONV_CONST
78 #endif
79
80 #if HOST_CHARSET == HOST_CHARSET_ASCII
81 #define SOURCE_CHARSET "UTF-8"
82 #define LAST_POSSIBLY_BASIC_SOURCE_CHAR 0x7e
83 #elif HOST_CHARSET == HOST_CHARSET_EBCDIC
84 #define SOURCE_CHARSET "UTF-EBCDIC"
85 #define LAST_POSSIBLY_BASIC_SOURCE_CHAR 0xFF
86 #else
87 #error "Unrecognized basic host character set"
88 #endif
89
90 #ifndef EILSEQ
91 #define EILSEQ EINVAL
92 #endif
93
94 /* This structure is used for a resizable string buffer throughout. */
95 /* Don't call it strbuf, as that conflicts with unistd.h on systems
96 such as DYNIX/ptx where unistd.h includes stropts.h. */
97 struct _cpp_strbuf
98 {
99 uchar *text;
100 size_t asize;
101 size_t len;
102 };
103
104 /* This is enough to hold any string that fits on a single 80-column
105 line, even if iconv quadruples its size (e.g. conversion from
106 ASCII to UTF-32) rounded up to a power of two. */
107 #define OUTBUF_BLOCK_SIZE 256
108
109 /* Conversions between UTF-8 and UTF-16/32 are implemented by custom
110 logic. This is because a depressing number of systems lack iconv,
111 or have have iconv libraries that do not do these conversions, so
112 we need a fallback implementation for them. To ensure the fallback
113 doesn't break due to neglect, it is used on all systems.
114
115 UTF-32 encoding is nice and simple: a four-byte binary number,
116 constrained to the range 00000000-7FFFFFFF to avoid questions of
117 signedness. We do have to cope with big- and little-endian
118 variants.
119
120 UTF-16 encoding uses two-byte binary numbers, again in big- and
121 little-endian variants, for all values in the 00000000-0000FFFF
122 range. Values in the 00010000-0010FFFF range are encoded as pairs
123 of two-byte numbers, called "surrogate pairs": given a number S in
124 this range, it is mapped to a pair (H, L) as follows:
125
126 H = (S - 0x10000) / 0x400 + 0xD800
127 L = (S - 0x10000) % 0x400 + 0xDC00
128
129 Two-byte values in the D800...DFFF range are ill-formed except as a
130 component of a surrogate pair. Even if the encoding within a
131 two-byte value is little-endian, the H member of the surrogate pair
132 comes first.
133
134 There is no way to encode values in the 00110000-7FFFFFFF range,
135 which is not currently a problem as there are no assigned code
136 points in that range; however, the author expects that it will
137 eventually become necessary to abandon UTF-16 due to this
138 limitation. Note also that, because of these pairs, UTF-16 does
139 not meet the requirements of the C standard for a wide character
140 encoding (see 3.7.3 and 6.4.4.4p11).
141
142 UTF-8 encoding looks like this:
143
144 value range encoded as
145 00000000-0000007F 0xxxxxxx
146 00000080-000007FF 110xxxxx 10xxxxxx
147 00000800-0000FFFF 1110xxxx 10xxxxxx 10xxxxxx
148 00010000-001FFFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
149 00200000-03FFFFFF 111110xx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx
150 04000000-7FFFFFFF 1111110x 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx
151
152 Values in the 0000D800 ... 0000DFFF range (surrogates) are invalid,
153 which means that three-byte sequences ED xx yy, with A0 <= xx <= BF,
154 never occur. Note also that any value that can be encoded by a
155 given row of the table can also be encoded by all successive rows,
156 but this is not done; only the shortest possible encoding for any
157 given value is valid. For instance, the character 07C0 could be
158 encoded as any of DF 80, E0 9F 80, F0 80 9F 80, F8 80 80 9F 80, or
159 FC 80 80 80 9F 80. Only the first is valid.
160
161 An implementation note: the transformation from UTF-16 to UTF-8, or
162 vice versa, is easiest done by using UTF-32 as an intermediary. */
163
164 /* Internal primitives which go from an UTF-8 byte stream to native-endian
165 UTF-32 in a cppchar_t, or vice versa; this avoids an extra marshal/unmarshal
166 operation in several places below. */
167 static inline int
168 one_utf8_to_cppchar (const uchar **inbufp, size_t *inbytesleftp,
169 cppchar_t *cp)
170 {
171 static const uchar masks[6] = { 0x7F, 0x1F, 0x0F, 0x07, 0x03, 0x01 };
172 static const uchar patns[6] = { 0x00, 0xC0, 0xE0, 0xF0, 0xF8, 0xFC };
173
174 cppchar_t c;
175 const uchar *inbuf = *inbufp;
176 size_t nbytes, i;
177
178 if (*inbytesleftp < 1)
179 return EINVAL;
180
181 c = *inbuf;
182 if (c < 0x80)
183 {
184 *cp = c;
185 *inbytesleftp -= 1;
186 *inbufp += 1;
187 return 0;
188 }
189
190 /* The number of leading 1-bits in the first byte indicates how many
191 bytes follow. */
192 for (nbytes = 2; nbytes < 7; nbytes++)
193 if ((c & ~masks[nbytes-1]) == patns[nbytes-1])
194 goto found;
195 return EILSEQ;
196 found:
197
198 if (*inbytesleftp < nbytes)
199 return EINVAL;
200
201 c = (c & masks[nbytes-1]);
202 inbuf++;
203 for (i = 1; i < nbytes; i++)
204 {
205 cppchar_t n = *inbuf++;
206 if ((n & 0xC0) != 0x80)
207 return EILSEQ;
208 c = ((c << 6) + (n & 0x3F));
209 }
210
211 /* Make sure the shortest possible encoding was used. */
212 if (c <= 0x7F && nbytes > 1) return EILSEQ;
213 if (c <= 0x7FF && nbytes > 2) return EILSEQ;
214 if (c <= 0xFFFF && nbytes > 3) return EILSEQ;
215 if (c <= 0x1FFFFF && nbytes > 4) return EILSEQ;
216 if (c <= 0x3FFFFFF && nbytes > 5) return EILSEQ;
217
218 /* Make sure the character is valid. */
219 if (c > 0x7FFFFFFF || (c >= 0xD800 && c <= 0xDFFF)) return EILSEQ;
220
221 *cp = c;
222 *inbufp = inbuf;
223 *inbytesleftp -= nbytes;
224 return 0;
225 }
226
227 static inline int
228 one_cppchar_to_utf8 (cppchar_t c, uchar **outbufp, size_t *outbytesleftp)
229 {
230 static const uchar masks[6] = { 0x00, 0xC0, 0xE0, 0xF0, 0xF8, 0xFC };
231 static const uchar limits[6] = { 0x80, 0xE0, 0xF0, 0xF8, 0xFC, 0xFE };
232 size_t nbytes;
233 uchar buf[6], *p = &buf[6];
234 uchar *outbuf = *outbufp;
235
236 nbytes = 1;
237 if (c < 0x80)
238 *--p = c;
239 else
240 {
241 do
242 {
243 *--p = ((c & 0x3F) | 0x80);
244 c >>= 6;
245 nbytes++;
246 }
247 while (c >= 0x3F || (c & limits[nbytes-1]));
248 *--p = (c | masks[nbytes-1]);
249 }
250
251 if (*outbytesleftp < nbytes)
252 return E2BIG;
253
254 while (p < &buf[6])
255 *outbuf++ = *p++;
256 *outbytesleftp -= nbytes;
257 *outbufp = outbuf;
258 return 0;
259 }
260
261 /* The following four functions transform one character between the two
262 encodings named in the function name. All have the signature
263 int (*)(iconv_t bigend, const uchar **inbufp, size_t *inbytesleftp,
264 uchar **outbufp, size_t *outbytesleftp)
265
266 BIGEND must have the value 0 or 1, coerced to (iconv_t); it is
267 interpreted as a boolean indicating whether big-endian or
268 little-endian encoding is to be used for the member of the pair
269 that is not UTF-8.
270
271 INBUFP, INBYTESLEFTP, OUTBUFP, OUTBYTESLEFTP work exactly as they
272 do for iconv.
273
274 The return value is either 0 for success, or an errno value for
275 failure, which may be E2BIG (need more space), EILSEQ (ill-formed
276 input sequence), ir EINVAL (incomplete input sequence). */
277
278 static inline int
279 one_utf8_to_utf32 (iconv_t bigend, const uchar **inbufp, size_t *inbytesleftp,
280 uchar **outbufp, size_t *outbytesleftp)
281 {
282 uchar *outbuf;
283 cppchar_t s = 0;
284 int rval;
285
286 /* Check for space first, since we know exactly how much we need. */
287 if (*outbytesleftp < 4)
288 return E2BIG;
289
290 rval = one_utf8_to_cppchar (inbufp, inbytesleftp, &s);
291 if (rval)
292 return rval;
293
294 outbuf = *outbufp;
295 outbuf[bigend ? 3 : 0] = (s & 0x000000FF);
296 outbuf[bigend ? 2 : 1] = (s & 0x0000FF00) >> 8;
297 outbuf[bigend ? 1 : 2] = (s & 0x00FF0000) >> 16;
298 outbuf[bigend ? 0 : 3] = (s & 0xFF000000) >> 24;
299
300 *outbufp += 4;
301 *outbytesleftp -= 4;
302 return 0;
303 }
304
305 static inline int
306 one_utf32_to_utf8 (iconv_t bigend, const uchar **inbufp, size_t *inbytesleftp,
307 uchar **outbufp, size_t *outbytesleftp)
308 {
309 cppchar_t s;
310 int rval;
311 const uchar *inbuf;
312
313 if (*inbytesleftp < 4)
314 return EINVAL;
315
316 inbuf = *inbufp;
317
318 s = inbuf[bigend ? 0 : 3] << 24;
319 s += inbuf[bigend ? 1 : 2] << 16;
320 s += inbuf[bigend ? 2 : 1] << 8;
321 s += inbuf[bigend ? 3 : 0];
322
323 if (s >= 0x7FFFFFFF || (s >= 0xD800 && s <= 0xDFFF))
324 return EILSEQ;
325
326 rval = one_cppchar_to_utf8 (s, outbufp, outbytesleftp);
327 if (rval)
328 return rval;
329
330 *inbufp += 4;
331 *inbytesleftp -= 4;
332 return 0;
333 }
334
335 static inline int
336 one_utf8_to_utf16 (iconv_t bigend, const uchar **inbufp, size_t *inbytesleftp,
337 uchar **outbufp, size_t *outbytesleftp)
338 {
339 int rval;
340 cppchar_t s = 0;
341 const uchar *save_inbuf = *inbufp;
342 size_t save_inbytesleft = *inbytesleftp;
343 uchar *outbuf = *outbufp;
344
345 rval = one_utf8_to_cppchar (inbufp, inbytesleftp, &s);
346 if (rval)
347 return rval;
348
349 if (s > 0x0010FFFF)
350 {
351 *inbufp = save_inbuf;
352 *inbytesleftp = save_inbytesleft;
353 return EILSEQ;
354 }
355
356 if (s <= 0xFFFF)
357 {
358 if (*outbytesleftp < 2)
359 {
360 *inbufp = save_inbuf;
361 *inbytesleftp = save_inbytesleft;
362 return E2BIG;
363 }
364 outbuf[bigend ? 1 : 0] = (s & 0x00FF);
365 outbuf[bigend ? 0 : 1] = (s & 0xFF00) >> 8;
366
367 *outbufp += 2;
368 *outbytesleftp -= 2;
369 return 0;
370 }
371 else
372 {
373 cppchar_t hi, lo;
374
375 if (*outbytesleftp < 4)
376 {
377 *inbufp = save_inbuf;
378 *inbytesleftp = save_inbytesleft;
379 return E2BIG;
380 }
381
382 hi = (s - 0x10000) / 0x400 + 0xD800;
383 lo = (s - 0x10000) % 0x400 + 0xDC00;
384
385 /* Even if we are little-endian, put the high surrogate first.
386 ??? Matches practice? */
387 outbuf[bigend ? 1 : 0] = (hi & 0x00FF);
388 outbuf[bigend ? 0 : 1] = (hi & 0xFF00) >> 8;
389 outbuf[bigend ? 3 : 2] = (lo & 0x00FF);
390 outbuf[bigend ? 2 : 3] = (lo & 0xFF00) >> 8;
391
392 *outbufp += 4;
393 *outbytesleftp -= 4;
394 return 0;
395 }
396 }
397
398 static inline int
399 one_utf16_to_utf8 (iconv_t bigend, const uchar **inbufp, size_t *inbytesleftp,
400 uchar **outbufp, size_t *outbytesleftp)
401 {
402 cppchar_t s;
403 const uchar *inbuf = *inbufp;
404 int rval;
405
406 if (*inbytesleftp < 2)
407 return EINVAL;
408 s = inbuf[bigend ? 0 : 1] << 8;
409 s += inbuf[bigend ? 1 : 0];
410
411 /* Low surrogate without immediately preceding high surrogate is invalid. */
412 if (s >= 0xDC00 && s <= 0xDFFF)
413 return EILSEQ;
414 /* High surrogate must have a following low surrogate. */
415 else if (s >= 0xD800 && s <= 0xDBFF)
416 {
417 cppchar_t hi = s, lo;
418 if (*inbytesleftp < 4)
419 return EINVAL;
420
421 lo = inbuf[bigend ? 2 : 3] << 8;
422 lo += inbuf[bigend ? 3 : 2];
423
424 if (lo < 0xDC00 || lo > 0xDFFF)
425 return EILSEQ;
426
427 s = (hi - 0xD800) * 0x400 + (lo - 0xDC00) + 0x10000;
428 }
429
430 rval = one_cppchar_to_utf8 (s, outbufp, outbytesleftp);
431 if (rval)
432 return rval;
433
434 /* Success - update the input pointers (one_cppchar_to_utf8 has done
435 the output pointers for us). */
436 if (s <= 0xFFFF)
437 {
438 *inbufp += 2;
439 *inbytesleftp -= 2;
440 }
441 else
442 {
443 *inbufp += 4;
444 *inbytesleftp -= 4;
445 }
446 return 0;
447 }
448
449 /* Helper routine for the next few functions. The 'const' on
450 one_conversion means that we promise not to modify what function is
451 pointed to, which lets the inliner see through it. */
452
453 static inline bool
454 conversion_loop (int (*const one_conversion)(iconv_t, const uchar **, size_t *,
455 uchar **, size_t *),
456 iconv_t cd, const uchar *from, size_t flen, struct _cpp_strbuf *to)
457 {
458 const uchar *inbuf;
459 uchar *outbuf;
460 size_t inbytesleft, outbytesleft;
461 int rval;
462
463 inbuf = from;
464 inbytesleft = flen;
465 outbuf = to->text + to->len;
466 outbytesleft = to->asize - to->len;
467
468 for (;;)
469 {
470 do
471 rval = one_conversion (cd, &inbuf, &inbytesleft,
472 &outbuf, &outbytesleft);
473 while (inbytesleft && !rval);
474
475 if (__builtin_expect (inbytesleft == 0, 1))
476 {
477 to->len = to->asize - outbytesleft;
478 return true;
479 }
480 if (rval != E2BIG)
481 {
482 errno = rval;
483 return false;
484 }
485
486 outbytesleft += OUTBUF_BLOCK_SIZE;
487 to->asize += OUTBUF_BLOCK_SIZE;
488 to->text = XRESIZEVEC (uchar, to->text, to->asize);
489 outbuf = to->text + to->asize - outbytesleft;
490 }
491 }
492
493
494 /* These functions convert entire strings between character sets.
495 They all have the signature
496
497 bool (*)(iconv_t cd, const uchar *from, size_t flen, struct _cpp_strbuf *to);
498
499 The input string FROM is converted as specified by the function
500 name plus the iconv descriptor CD (which may be fake), and the
501 result appended to TO. On any error, false is returned, otherwise true. */
502
503 /* These four use the custom conversion code above. */
504 static bool
505 convert_utf8_utf16 (iconv_t cd, const uchar *from, size_t flen,
506 struct _cpp_strbuf *to)
507 {
508 return conversion_loop (one_utf8_to_utf16, cd, from, flen, to);
509 }
510
511 static bool
512 convert_utf8_utf32 (iconv_t cd, const uchar *from, size_t flen,
513 struct _cpp_strbuf *to)
514 {
515 return conversion_loop (one_utf8_to_utf32, cd, from, flen, to);
516 }
517
518 static bool
519 convert_utf16_utf8 (iconv_t cd, const uchar *from, size_t flen,
520 struct _cpp_strbuf *to)
521 {
522 return conversion_loop (one_utf16_to_utf8, cd, from, flen, to);
523 }
524
525 static bool
526 convert_utf32_utf8 (iconv_t cd, const uchar *from, size_t flen,
527 struct _cpp_strbuf *to)
528 {
529 return conversion_loop (one_utf32_to_utf8, cd, from, flen, to);
530 }
531
532 /* Identity conversion, used when we have no alternative. */
533 static bool
534 convert_no_conversion (iconv_t cd ATTRIBUTE_UNUSED,
535 const uchar *from, size_t flen, struct _cpp_strbuf *to)
536 {
537 if (to->len + flen > to->asize)
538 {
539 to->asize = to->len + flen;
540 to->asize += to->asize / 4;
541 to->text = XRESIZEVEC (uchar, to->text, to->asize);
542 }
543 memcpy (to->text + to->len, from, flen);
544 to->len += flen;
545 return true;
546 }
547
548 /* And this one uses the system iconv primitive. It's a little
549 different, since iconv's interface is a little different. */
550 #if HAVE_ICONV
551
552 #define CONVERT_ICONV_GROW_BUFFER \
553 do { \
554 outbytesleft += OUTBUF_BLOCK_SIZE; \
555 to->asize += OUTBUF_BLOCK_SIZE; \
556 to->text = XRESIZEVEC (uchar, to->text, to->asize); \
557 outbuf = (char *)to->text + to->asize - outbytesleft; \
558 } while (0)
559
560 static bool
561 convert_using_iconv (iconv_t cd, const uchar *from, size_t flen,
562 struct _cpp_strbuf *to)
563 {
564 ICONV_CONST char *inbuf;
565 char *outbuf;
566 size_t inbytesleft, outbytesleft;
567
568 /* Reset conversion descriptor and check that it is valid. */
569 if (iconv (cd, 0, 0, 0, 0) == (size_t)-1)
570 return false;
571
572 inbuf = (ICONV_CONST char *)from;
573 inbytesleft = flen;
574 outbuf = (char *)to->text + to->len;
575 outbytesleft = to->asize - to->len;
576
577 for (;;)
578 {
579 iconv (cd, &inbuf, &inbytesleft, &outbuf, &outbytesleft);
580 if (__builtin_expect (inbytesleft == 0, 1))
581 {
582 /* Close out any shift states, returning to the initial state. */
583 if (iconv (cd, 0, 0, &outbuf, &outbytesleft) == (size_t)-1)
584 {
585 if (errno != E2BIG)
586 return false;
587
588 CONVERT_ICONV_GROW_BUFFER;
589 if (iconv (cd, 0, 0, &outbuf, &outbytesleft) == (size_t)-1)
590 return false;
591 }
592
593 to->len = to->asize - outbytesleft;
594 return true;
595 }
596 if (errno != E2BIG)
597 return false;
598
599 CONVERT_ICONV_GROW_BUFFER;
600 }
601 }
602 #else
603 #define convert_using_iconv 0 /* prevent undefined symbol error below */
604 #endif
605
606 /* Arrange for the above custom conversion logic to be used automatically
607 when conversion between a suitable pair of character sets is requested. */
608
609 #define APPLY_CONVERSION(CONVERTER, FROM, FLEN, TO) \
610 CONVERTER.func (CONVERTER.cd, FROM, FLEN, TO)
611
612 struct cpp_conversion
613 {
614 const char *pair;
615 convert_f func;
616 iconv_t fake_cd;
617 };
618 static const struct cpp_conversion conversion_tab[] = {
619 { "UTF-8/UTF-32LE", convert_utf8_utf32, (iconv_t)0 },
620 { "UTF-8/UTF-32BE", convert_utf8_utf32, (iconv_t)1 },
621 { "UTF-8/UTF-16LE", convert_utf8_utf16, (iconv_t)0 },
622 { "UTF-8/UTF-16BE", convert_utf8_utf16, (iconv_t)1 },
623 { "UTF-32LE/UTF-8", convert_utf32_utf8, (iconv_t)0 },
624 { "UTF-32BE/UTF-8", convert_utf32_utf8, (iconv_t)1 },
625 { "UTF-16LE/UTF-8", convert_utf16_utf8, (iconv_t)0 },
626 { "UTF-16BE/UTF-8", convert_utf16_utf8, (iconv_t)1 },
627 };
628
629 /* Subroutine of cpp_init_iconv: initialize and return a
630 cset_converter structure for conversion from FROM to TO. If
631 iconv_open() fails, issue an error and return an identity
632 converter. Silently return an identity converter if FROM and TO
633 are identical.
634
635 PFILE is only used for generating diagnostics; setting it to NULL
636 suppresses diagnostics. */
637
638 static struct cset_converter
639 init_iconv_desc (cpp_reader *pfile, const char *to, const char *from)
640 {
641 struct cset_converter ret;
642 char *pair;
643 size_t i;
644
645 ret.to = to;
646 ret.from = from;
647
648 if (!strcasecmp (to, from))
649 {
650 ret.func = convert_no_conversion;
651 ret.cd = (iconv_t) -1;
652 ret.width = -1;
653 return ret;
654 }
655
656 pair = (char *) alloca(strlen(to) + strlen(from) + 2);
657
658 strcpy(pair, from);
659 strcat(pair, "/");
660 strcat(pair, to);
661 for (i = 0; i < ARRAY_SIZE (conversion_tab); i++)
662 if (!strcasecmp (pair, conversion_tab[i].pair))
663 {
664 ret.func = conversion_tab[i].func;
665 ret.cd = conversion_tab[i].fake_cd;
666 ret.width = -1;
667 return ret;
668 }
669
670 /* No custom converter - try iconv. */
671 if (HAVE_ICONV)
672 {
673 ret.func = convert_using_iconv;
674 ret.cd = iconv_open (to, from);
675 ret.width = -1;
676
677 if (ret.cd == (iconv_t) -1)
678 {
679 if (pfile)
680 {
681 if (errno == EINVAL)
682 cpp_error (pfile, CPP_DL_ERROR, /* FIXME should be DL_SORRY */
683 "conversion from %s to %s not supported by iconv",
684 from, to);
685 else
686 cpp_errno (pfile, CPP_DL_ERROR, "iconv_open");
687 }
688 ret.func = convert_no_conversion;
689 }
690 }
691 else
692 {
693 if (pfile)
694 {
695 cpp_error (pfile, CPP_DL_ERROR, /* FIXME: should be DL_SORRY */
696 "no iconv implementation, cannot convert from %s to %s",
697 from, to);
698 }
699 ret.func = convert_no_conversion;
700 ret.cd = (iconv_t) -1;
701 ret.width = -1;
702 }
703
704 return ret;
705 }
706
707 /* If charset conversion is requested, initialize iconv(3) descriptors
708 for conversion from the source character set to the execution
709 character sets. If iconv is not present in the C library, and
710 conversion is requested, issue an error. */
711
712 void
713 cpp_init_iconv (cpp_reader *pfile)
714 {
715 const char *ncset = CPP_OPTION (pfile, narrow_charset);
716 const char *wcset = CPP_OPTION (pfile, wide_charset);
717 const char *default_wcset;
718
719 bool be = CPP_OPTION (pfile, bytes_big_endian);
720
721 if (CPP_OPTION (pfile, wchar_precision) >= 32)
722 default_wcset = be ? "UTF-32BE" : "UTF-32LE";
723 else if (CPP_OPTION (pfile, wchar_precision) >= 16)
724 default_wcset = be ? "UTF-16BE" : "UTF-16LE";
725 else
726 /* This effectively means that wide strings are not supported,
727 so don't do any conversion at all. */
728 default_wcset = SOURCE_CHARSET;
729
730 if (!ncset)
731 ncset = SOURCE_CHARSET;
732 if (!wcset)
733 wcset = default_wcset;
734
735 pfile->narrow_cset_desc = init_iconv_desc (pfile, ncset, SOURCE_CHARSET);
736 pfile->narrow_cset_desc.width = CPP_OPTION (pfile, char_precision);
737 pfile->utf8_cset_desc = init_iconv_desc (pfile, "UTF-8", SOURCE_CHARSET);
738 pfile->utf8_cset_desc.width = CPP_OPTION (pfile, char_precision);
739 pfile->char16_cset_desc = init_iconv_desc (pfile,
740 be ? "UTF-16BE" : "UTF-16LE",
741 SOURCE_CHARSET);
742 pfile->char16_cset_desc.width = 16;
743 pfile->char32_cset_desc = init_iconv_desc (pfile,
744 be ? "UTF-32BE" : "UTF-32LE",
745 SOURCE_CHARSET);
746 pfile->char32_cset_desc.width = 32;
747 pfile->wide_cset_desc = init_iconv_desc (pfile, wcset, SOURCE_CHARSET);
748 pfile->wide_cset_desc.width = CPP_OPTION (pfile, wchar_precision);
749 }
750
751 /* Destroy iconv(3) descriptors set up by cpp_init_iconv, if necessary. */
752 void
753 _cpp_destroy_iconv (cpp_reader *pfile)
754 {
755 if (HAVE_ICONV)
756 {
757 if (pfile->narrow_cset_desc.func == convert_using_iconv)
758 iconv_close (pfile->narrow_cset_desc.cd);
759 if (pfile->utf8_cset_desc.func == convert_using_iconv)
760 iconv_close (pfile->utf8_cset_desc.cd);
761 if (pfile->char16_cset_desc.func == convert_using_iconv)
762 iconv_close (pfile->char16_cset_desc.cd);
763 if (pfile->char32_cset_desc.func == convert_using_iconv)
764 iconv_close (pfile->char32_cset_desc.cd);
765 if (pfile->wide_cset_desc.func == convert_using_iconv)
766 iconv_close (pfile->wide_cset_desc.cd);
767 }
768 }
769
770 /* Utility routine for use by a full compiler. C is a character taken
771 from the *basic* source character set, encoded in the host's
772 execution encoding. Convert it to (the target's) execution
773 encoding, and return that value.
774
775 Issues an internal error if C's representation in the narrow
776 execution character set fails to be a single-byte value (C99
777 5.2.1p3: "The representation of each member of the source and
778 execution character sets shall fit in a byte.") May also issue an
779 internal error if C fails to be a member of the basic source
780 character set (testing this exactly is too hard, especially when
781 the host character set is EBCDIC). */
782 cppchar_t
783 cpp_host_to_exec_charset (cpp_reader *pfile, cppchar_t c)
784 {
785 uchar sbuf[1];
786 struct _cpp_strbuf tbuf;
787
788 /* This test is merely an approximation, but it suffices to catch
789 the most important thing, which is that we don't get handed a
790 character outside the unibyte range of the host character set. */
791 if (c > LAST_POSSIBLY_BASIC_SOURCE_CHAR)
792 {
793 cpp_error (pfile, CPP_DL_ICE,
794 "character 0x%lx is not in the basic source character set\n",
795 (unsigned long)c);
796 return 0;
797 }
798
799 /* Being a character in the unibyte range of the host character set,
800 we can safely splat it into a one-byte buffer and trust that that
801 is a well-formed string. */
802 sbuf[0] = c;
803
804 /* This should never need to reallocate, but just in case... */
805 tbuf.asize = 1;
806 tbuf.text = XNEWVEC (uchar, tbuf.asize);
807 tbuf.len = 0;
808
809 if (!APPLY_CONVERSION (pfile->narrow_cset_desc, sbuf, 1, &tbuf))
810 {
811 cpp_errno (pfile, CPP_DL_ICE, "converting to execution character set");
812 return 0;
813 }
814 if (tbuf.len != 1)
815 {
816 cpp_error (pfile, CPP_DL_ICE,
817 "character 0x%lx is not unibyte in execution character set",
818 (unsigned long)c);
819 return 0;
820 }
821 c = tbuf.text[0];
822 free(tbuf.text);
823 return c;
824 }
825
826 \f
827
828 /* cpp_substring_ranges's constructor. */
829
830 cpp_substring_ranges::cpp_substring_ranges () :
831 m_ranges (NULL),
832 m_num_ranges (0),
833 m_alloc_ranges (8)
834 {
835 m_ranges = XNEWVEC (source_range, m_alloc_ranges);
836 }
837
838 /* cpp_substring_ranges's destructor. */
839
840 cpp_substring_ranges::~cpp_substring_ranges ()
841 {
842 free (m_ranges);
843 }
844
845 /* Add RANGE to the vector of source_range information. */
846
847 void
848 cpp_substring_ranges::add_range (source_range range)
849 {
850 if (m_num_ranges >= m_alloc_ranges)
851 {
852 m_alloc_ranges *= 2;
853 m_ranges
854 = (source_range *)xrealloc (m_ranges,
855 sizeof (source_range) * m_alloc_ranges);
856 }
857 m_ranges[m_num_ranges++] = range;
858 }
859
860 /* Read NUM ranges from LOC_READER, adding them to the vector of source_range
861 information. */
862
863 void
864 cpp_substring_ranges::add_n_ranges (int num,
865 cpp_string_location_reader &loc_reader)
866 {
867 for (int i = 0; i < num; i++)
868 add_range (loc_reader.get_next ());
869 }
870
871 \f
872
873 /* Utility routine that computes a mask of the form 0000...111... with
874 WIDTH 1-bits. */
875 static inline size_t
876 width_to_mask (size_t width)
877 {
878 width = MIN (width, BITS_PER_CPPCHAR_T);
879 if (width >= CHAR_BIT * sizeof (size_t))
880 return ~(size_t) 0;
881 else
882 return ((size_t) 1 << width) - 1;
883 }
884
885 /* A large table of unicode character information. */
886 enum {
887 /* Valid in a C99 identifier? */
888 C99 = 1,
889 /* Valid in a C99 identifier, but not as the first character? */
890 N99 = 2,
891 /* Valid in a C++ identifier? */
892 CXX = 4,
893 /* Valid in a C11/C++11 identifier? */
894 C11 = 8,
895 /* Valid in a C11/C++11 identifier, but not as the first character? */
896 N11 = 16,
897 /* Valid in a C++23 identifier? */
898 CXX23 = 32,
899 /* Valid in a C++23 identifier, but not as the first character? */
900 NXX23 = 64,
901 /* NFC representation is not valid in an identifier? */
902 CID = 128,
903 /* Might be valid NFC form? */
904 NFC = 256,
905 /* Might be valid NFKC form? */
906 NKC = 512,
907 /* Certain preceding characters might make it not valid NFC/NKFC form? */
908 CTX = 1024
909 };
910
911 struct ucnrange {
912 /* Bitmap of flags above. */
913 unsigned short flags;
914 /* Combining class of the character. */
915 unsigned char combine;
916 /* Last character in the range described by this entry. */
917 unsigned int end;
918 };
919 #include "ucnid.h"
920
921 /* ISO 10646 defines the UCS codespace as the range 0-0x10FFFF inclusive. */
922 #define UCS_LIMIT 0x10FFFF
923
924 #include "uname2c.h"
925
926 static const char hangul_syllables[][4] = {
927 /* L */
928 "G", "GG", "N", "D", "DD", "R", "M", "B", "BB", "S", "SS", "",
929 "J", "JJ", "C", "K", "T", "P", "H",
930 /* V */
931 "A", "AE", "YA", "YAE", "EO", "E", "YEO", "YE", "O", "WA", "WAE",
932 "OE", "YO", "U", "WEO", "WE", "WI", "YU", "EU", "YI", "I",
933 /* T */
934 "", "G", "GG", "GS", "N", "NJ", "NH", "D", "L", "LG", "LM", "LB",
935 "LS", "LT", "LP", "LH", "M", "B", "BS", "S", "SS", "NG", "J", "C",
936 "K", "T", "P", "H"
937 };
938
939 static const short hangul_count[6] = { 19, 21, 28 };
940
941 /* Used for Unicode loose matching rule UAX44-LM2 matching. */
942
943 struct uname2c_data
944 {
945 char *canon_name;
946 char prev_char;
947 };
948
949 /* Map NAME, a Unicode character name or correction/control/alternate
950 alias, to a Unicode codepoint, or return (cppchar_t) -1 if
951 not found. This uses a space optimized radix tree precomputed
952 by the makeuname2c utility, with binary format documented in its
953 source makeuname2c.cc. */
954
955 static cppchar_t
956 _cpp_uname2c (const char *name, size_t len, const unsigned char *n,
957 struct uname2c_data *data)
958 {
959 do
960 {
961 char k;
962 const char *key;
963 size_t key_len, len_adj;
964 bool has_value = *n & 0x40;
965 bool has_children, no_sibling = false;
966 cppchar_t codepoint = -1;
967 const unsigned char *child = NULL;
968 int ret;
969
970 if (*n & 0x80)
971 {
972 k = ' ' + (*n++ & 0x3f);
973 key = &k;
974 key_len = 1;
975 }
976 else
977 {
978 key_len = *n++ & 0x3f;
979 key = &uname2c_dict[*n++];
980 key += (*n++ << 8);
981 }
982 if (has_value)
983 {
984 codepoint = *n + (n[1] << 8) + ((n[2] & 0x1f) << 16);
985 has_children = n[2] & 0x80;
986 no_sibling = n[2] & 0x40;
987 n += 3;
988 }
989 else
990 has_children = true;
991 if (has_children)
992 {
993 unsigned int shift = 0;
994 size_t child_off = 0;
995
996 do
997 {
998 child_off |= (*n & 0x7f) << shift;
999 shift += 7;
1000 }
1001 while ((*n++ & 0x80) != 0);
1002 child = n + child_off;
1003 }
1004 if (__builtin_expect (data == NULL, 1))
1005 {
1006 ret = memcmp (name, key, len > key_len ? key_len : len);
1007 len_adj = key_len;
1008 }
1009 else
1010 {
1011 const char *p = name, *q = key;
1012
1013 while (1)
1014 {
1015 if ((size_t) (p - name) == len || (size_t) (q - key) == key_len)
1016 break;
1017 if (*q == ' ')
1018 {
1019 ++q;
1020 continue;
1021 }
1022 if (*q == '-')
1023 {
1024 /* This is the hard case. Only medial hyphens
1025 should be removed, where medial means preceded
1026 and followed by alnum. */
1027 if (ISALNUM (q == key ? data->prev_char : q[-1]))
1028 {
1029 if (q + 1 == key + key_len)
1030 {
1031 /* We don't know what the next letter will be.
1032 It could be ISALNUM, then we are supposed
1033 to omit it, or it could be a space and then
1034 we should not omit it and need to compare it.
1035 Fortunately the only 3 names with hyphen
1036 followed by non-letter are
1037 U+0F0A TIBETAN MARK BKA- SHOG YIG MGO
1038 U+0FD0 TIBETAN MARK BKA- SHOG GI MGO RGYAN
1039 U+0FD0 TIBETAN MARK BSKA- SHOG GI MGO RGYAN
1040 Furthermore, prefixes of NR2 generated
1041 ranges all end with a hyphen, but the generated
1042 part is then followed by alpha-numeric.
1043 So, let's just assume that - at the end of
1044 key is always followed by alphanumeric and
1045 so should be omitted.
1046 makeuname2c.cc verifies that this is true. */
1047 ++q;
1048 continue;
1049 }
1050 else if (ISALNUM (q[1]))
1051 {
1052 ++q;
1053 continue;
1054 }
1055 }
1056 }
1057 if (*p != *q)
1058 break;
1059 ++p;
1060 ++q;
1061 }
1062 len_adj = p - name;
1063 /* If we don't consume the whole key, signal a mismatch,
1064 but always with ret = 1, so that we keep looking through
1065 siblings. */
1066 ret = q < key + key_len;
1067 }
1068 if (ret < 0)
1069 return -1;
1070 else if (ret == 0)
1071 {
1072 if (len < len_adj)
1073 return -1;
1074 else if (codepoint >= 0xd800
1075 && codepoint < 0xd800 + ARRAY_SIZE (uname2c_generated))
1076 {
1077 name += len_adj;
1078 len -= len_adj;
1079 if (codepoint == 0xd800)
1080 {
1081 /* NR1 - Hangul syllables. */
1082 size_t start = 0, end, i, j;
1083 int this_len, max_len;
1084 char winner[3];
1085
1086 for (i = 0; i < 3; ++i)
1087 {
1088 end = start + hangul_count[i];
1089 max_len = -1;
1090 winner[i] = -1;
1091 for (j = start; j < end; j++)
1092 {
1093 this_len = strlen (hangul_syllables[j]);
1094 if (len >= (size_t) this_len
1095 && this_len > max_len
1096 && memcmp (name, hangul_syllables[j],
1097 this_len) == 0)
1098 {
1099 max_len = this_len;
1100 winner[i] = j - start;
1101 }
1102 }
1103 if (max_len == -1)
1104 return -1;
1105 name += max_len;
1106 len -= max_len;
1107 start = end;
1108 }
1109 if (__builtin_expect (data != NULL, 0))
1110 {
1111 memcpy (data->canon_name, key, key_len);
1112 data->canon_name[key_len] = '\0';
1113 for (i = 0, start = 0; i < 3; ++i)
1114 {
1115 strcat (data->canon_name,
1116 hangul_syllables[start + winner[i]]);
1117 start += hangul_count[i];
1118 }
1119 }
1120 return (0xac00 + 21 * 28 * winner[0]
1121 + 28 * winner[1] + winner[2]);
1122 }
1123 else
1124 {
1125 /* NR2 - prefix followed by hexadecimal codepoint. */
1126 const cppchar_t *p;
1127 size_t i;
1128
1129 if (len < 4 || len > 5)
1130 return -1;
1131 p = uname2c_pairs + uname2c_generated[codepoint - 0xd800];
1132 codepoint = 0;
1133 for (i = 0; i < len; ++i)
1134 {
1135 codepoint <<= 4;
1136 if (!ISXDIGIT (name[i]))
1137 return -1;
1138 codepoint += hex_value (name[i]);
1139 }
1140 for (; *p; p += 2)
1141 if (codepoint < *p)
1142 return -1;
1143 else if (codepoint <= p[1])
1144 {
1145 if (__builtin_expect (data != NULL, 0))
1146 {
1147 memcpy (data->canon_name, key, key_len);
1148 memcpy (data->canon_name + key_len, name, len);
1149 data->canon_name[key_len + len] = '\0';
1150 }
1151 return codepoint;
1152 }
1153 return -1;
1154 }
1155 }
1156 else if (__builtin_expect (data != NULL, 0))
1157 {
1158 if (len == len_adj)
1159 {
1160 memcpy (data->canon_name, key, key_len);
1161 data->canon_name[key_len] = '\0';
1162 return codepoint;
1163 }
1164 if (has_children)
1165 {
1166 struct uname2c_data save = *data;
1167 memcpy (data->canon_name, key, key_len);
1168 data->canon_name += key_len;
1169 data->prev_char = key[key_len - 1];
1170 codepoint = _cpp_uname2c (name + len_adj, len - len_adj,
1171 child, data);
1172 if (codepoint != (cppchar_t) -1)
1173 return codepoint;
1174 *data = save;
1175 }
1176 }
1177 else if (len == len_adj)
1178 return codepoint;
1179 else if (!has_children)
1180 return -1;
1181 else
1182 {
1183 name += len_adj;
1184 len -= len_adj;
1185 n = child;
1186 continue;
1187 }
1188 }
1189 if (no_sibling || (!has_value && *n == 0xff))
1190 break;
1191 }
1192 while (1);
1193 return -1;
1194 }
1195
1196 /* Try to do a loose name lookup according to Unicode loose matching rule
1197 UAX44-LM2. First ignore medial hyphens, whitespace, underscore
1198 characters and convert to upper case. */
1199
1200 static cppchar_t
1201 _cpp_uname2c_uax44_lm2 (const char *name, size_t len, char *canon_name)
1202 {
1203 char name_after_uax44_lm2[uname2c_max_name_len];
1204 char *q = name_after_uax44_lm2;
1205 const char *p;
1206
1207 for (p = name; p < name + len; p++)
1208 if (*p == '_' || *p == ' ')
1209 continue;
1210 else if (*p == '-' && p != name && ISALNUM (p[-1]) && ISALNUM (p[1]))
1211 continue;
1212 else if (q == name_after_uax44_lm2 + uname2c_max_name_len)
1213 return -1;
1214 else if (ISLOWER (*p))
1215 *q++ = TOUPPER (*p);
1216 else
1217 *q++ = *p;
1218
1219 struct uname2c_data data;
1220 data.canon_name = canon_name;
1221 data.prev_char = ' ';
1222 /* Hangul Jungseong O- E after UAX44-LM2 should be HANGULJUNGSEONGO-E
1223 and so should match U+1180. */
1224 if (q - name_after_uax44_lm2 == sizeof ("HANGULJUNGSEONGO-E") - 1
1225 && memcmp (name_after_uax44_lm2, "HANGULJUNGSEONGO-E",
1226 sizeof ("HANGULJUNGSEONGO-E") - 1) == 0)
1227 {
1228 name_after_uax44_lm2[sizeof ("HANGULJUNGSEONGO") - 1] = 'E';
1229 --q;
1230 }
1231 cppchar_t result
1232 = _cpp_uname2c (name_after_uax44_lm2, q - name_after_uax44_lm2,
1233 uname2c_tree, &data);
1234
1235 /* Unicode UAX44-LM2 exception:
1236 U+116C HANGUL JUNGSEONG OE
1237 U+1180 HANGUL JUNGSEONG O-E
1238 We remove all medial hyphens when we shouldn't remote the U+1180 one.
1239 The U+1180 entry sorts before U+116C lexicographilly, so we get U+1180
1240 in both cases. Thus, if result is U+1180, check if user's name doesn't
1241 have a hyphen there and adjust. */
1242 if (result == 0x1180)
1243 {
1244 while (p[-1] == ' ' || p[-1] == '_')
1245 --p;
1246 gcc_assert (TOUPPER (p[-1]) == 'E');
1247 --p;
1248 while (p[-1] == ' ' || p[-1] == '_')
1249 --p;
1250 if (p[-1] != '-')
1251 {
1252 result = 0x116c;
1253 memcpy (canon_name + sizeof ("HANGUL JUNGSEONG O") - 1, "E", 2);
1254 }
1255 }
1256 return result;
1257 }
1258
1259
1260 /* Returns 1 if C is valid in an identifier, 2 if C is valid except at
1261 the start of an identifier, and 0 if C is not valid in an
1262 identifier. We assume C has already gone through the checks of
1263 _cpp_valid_ucn. Also update NST for C if returning nonzero. The
1264 algorithm is a simple binary search on the table defined in
1265 ucnid.h. */
1266
1267 static int
1268 ucn_valid_in_identifier (cpp_reader *pfile, cppchar_t c,
1269 struct normalize_state *nst)
1270 {
1271 int mn, mx, md;
1272 unsigned short valid_flags, invalid_start_flags;
1273
1274 if (c > UCS_LIMIT)
1275 return 0;
1276
1277 mn = 0;
1278 mx = ARRAY_SIZE (ucnranges) - 1;
1279 while (mx != mn)
1280 {
1281 md = (mn + mx) / 2;
1282 if (c <= ucnranges[md].end)
1283 mx = md;
1284 else
1285 mn = md + 1;
1286 }
1287
1288 /* When -pedantic, we require the character to have been listed by
1289 the standard for the current language. Otherwise, we accept the
1290 union of the acceptable sets for all supported language versions. */
1291 valid_flags = C99 | CXX | C11 | CXX23;
1292 if (CPP_PEDANTIC (pfile))
1293 {
1294 if (CPP_OPTION (pfile, xid_identifiers))
1295 valid_flags = CXX23;
1296 else if (CPP_OPTION (pfile, c11_identifiers))
1297 valid_flags = C11;
1298 else if (CPP_OPTION (pfile, c99))
1299 valid_flags = C99;
1300 }
1301 if (! (ucnranges[mn].flags & valid_flags))
1302 return 0;
1303
1304 /* Update NST. */
1305 if (ucnranges[mn].combine != 0 && ucnranges[mn].combine < nst->prev_class)
1306 nst->level = normalized_none;
1307 else if (ucnranges[mn].flags & CTX)
1308 {
1309 bool safe;
1310 cppchar_t p = nst->previous;
1311
1312 /* For Hangul, characters in the range AC00-D7A3 are NFC/NFKC,
1313 and are combined algorithmically from a sequence of the form
1314 1100-1112 1161-1175 11A8-11C2
1315 (if the third is not present, it is treated as 11A7, which is not
1316 really a valid character).
1317 Unfortunately, C99 allows (only) the NFC form, but C++ allows
1318 only the combining characters. */
1319 if (c >= 0x1161 && c <= 0x1175)
1320 safe = p < 0x1100 || p > 0x1112;
1321 else if (c >= 0x11A8 && c <= 0x11C2)
1322 safe = (p < 0xAC00 || p > 0xD7A3 || (p - 0xAC00) % 28 != 0);
1323 else
1324 safe = check_nfc (pfile, c, p);
1325 if (!safe)
1326 {
1327 if ((c >= 0x1161 && c <= 0x1175) || (c >= 0x11A8 && c <= 0x11C2))
1328 nst->level = MAX (nst->level, normalized_identifier_C);
1329 else
1330 nst->level = normalized_none;
1331 }
1332 }
1333 else if (ucnranges[mn].flags & NKC)
1334 ;
1335 else if (ucnranges[mn].flags & NFC)
1336 nst->level = MAX (nst->level, normalized_C);
1337 else if (ucnranges[mn].flags & CID)
1338 nst->level = MAX (nst->level, normalized_identifier_C);
1339 else
1340 nst->level = normalized_none;
1341 if (ucnranges[mn].combine == 0)
1342 nst->previous = c;
1343 nst->prev_class = ucnranges[mn].combine;
1344
1345 if (!CPP_PEDANTIC (pfile))
1346 {
1347 /* If not -pedantic, accept as character that may
1348 begin an identifier a union of characters allowed
1349 at that position in each of the character sets. */
1350 if ((ucnranges[mn].flags & (C99 | N99)) == C99
1351 || (ucnranges[mn].flags & CXX) != 0
1352 || (ucnranges[mn].flags & (C11 | N11)) == C11
1353 || (ucnranges[mn].flags & (CXX23 | NXX23)) == CXX23)
1354 return 1;
1355 return 2;
1356 }
1357
1358 if (CPP_OPTION (pfile, xid_identifiers))
1359 invalid_start_flags = NXX23;
1360 else if (CPP_OPTION (pfile, c11_identifiers))
1361 invalid_start_flags = N11;
1362 else if (CPP_OPTION (pfile, c99))
1363 invalid_start_flags = N99;
1364 else
1365 invalid_start_flags = 0;
1366
1367 /* In C99, UCN digits may not begin identifiers. In C11 and C++11,
1368 UCN combining characters may not begin identifiers. */
1369 if (ucnranges[mn].flags & invalid_start_flags)
1370 return 2;
1371
1372 return 1;
1373 }
1374
1375 /* Increment char_range->m_finish by a single character. */
1376
1377 static void
1378 extend_char_range (source_range *char_range,
1379 cpp_string_location_reader *loc_reader)
1380 {
1381 if (loc_reader)
1382 {
1383 gcc_assert (char_range);
1384 char_range->m_finish = loc_reader->get_next ().m_finish;
1385 }
1386 }
1387
1388 /* [lex.charset]: The character designated by the universal character
1389 name \UNNNNNNNN is that character whose character short name in
1390 ISO/IEC 10646 is NNNNNNNN; the character designated by the
1391 universal character name \uNNNN is that character whose character
1392 short name in ISO/IEC 10646 is 0000NNNN. If the hexadecimal value
1393 for a universal character name corresponds to a surrogate code point
1394 (in the range 0xD800-0xDFFF, inclusive), the program is ill-formed.
1395 Additionally, if the hexadecimal value for a universal-character-name
1396 outside a character or string literal corresponds to a control character
1397 (in either of the ranges 0x00-0x1F or 0x7F-0x9F, both inclusive) or to a
1398 character in the basic source character set, the program is ill-formed.
1399
1400 C99 6.4.3: A universal character name shall not specify a character
1401 whose short identifier is less than 00A0 other than 0024 ($), 0040 (@),
1402 or 0060 (`), nor one in the range D800 through DFFF inclusive.
1403
1404 If the hexadecimal value is larger than the upper bound of the UCS
1405 codespace specified in ISO/IEC 10646, a pedantic warning is issued
1406 in all versions of C and in the C++20 or later versions of C++.
1407
1408 *PSTR must be preceded by "\u" or "\U"; it is assumed that the
1409 buffer end is delimited by a non-hex digit. Returns false if the
1410 UCN has not been consumed, true otherwise.
1411
1412 The value of the UCN, whether valid or invalid, is returned in *CP.
1413 Diagnostics are emitted for invalid values. PSTR is updated to point
1414 one beyond the UCN, or to the syntactically invalid character.
1415
1416 IDENTIFIER_POS is 0 when not in an identifier, 1 for the start of
1417 an identifier, or 2 otherwise.
1418
1419 If LOC_READER is non-NULL, then position information is
1420 read from *LOC_READER and CHAR_RANGE->m_finish is updated accordingly. */
1421
1422 bool
1423 _cpp_valid_ucn (cpp_reader *pfile, const uchar **pstr,
1424 const uchar *limit, int identifier_pos,
1425 struct normalize_state *nst, cppchar_t *cp,
1426 source_range *char_range,
1427 cpp_string_location_reader *loc_reader)
1428 {
1429 cppchar_t result, c;
1430 unsigned int length;
1431 const uchar *str = *pstr;
1432 const uchar *base = str - 2;
1433 bool delimited = false, named = false;
1434
1435 if (!CPP_OPTION (pfile, cplusplus) && !CPP_OPTION (pfile, c99))
1436 cpp_error (pfile, CPP_DL_WARNING,
1437 "universal character names are only valid in C++ and C99");
1438 else if (CPP_OPTION (pfile, cpp_warn_c90_c99_compat) > 0
1439 && !CPP_OPTION (pfile, cplusplus))
1440 cpp_error (pfile, CPP_DL_WARNING,
1441 "C99's universal character names are incompatible with C90");
1442 else if (CPP_WTRADITIONAL (pfile) && identifier_pos == 0)
1443 cpp_warning (pfile, CPP_W_TRADITIONAL,
1444 "the meaning of '\\%c' is different in traditional C",
1445 (int) str[-1]);
1446
1447 result = 0;
1448 if (str[-1] == 'u')
1449 {
1450 length = 4;
1451 if (str < limit
1452 && *str == '{'
1453 && (!identifier_pos
1454 || CPP_OPTION (pfile, delimited_escape_seqs)
1455 || !CPP_OPTION (pfile, std)))
1456 {
1457 str++;
1458 /* Magic value to indicate no digits seen. */
1459 length = 32;
1460 delimited = true;
1461 extend_char_range (char_range, loc_reader);
1462 }
1463 }
1464 else if (str[-1] == 'U')
1465 length = 8;
1466 else if (str[-1] == 'N')
1467 {
1468 length = 4;
1469 if (identifier_pos
1470 && !CPP_OPTION (pfile, delimited_escape_seqs)
1471 && CPP_OPTION (pfile, std))
1472 {
1473 *cp = 0;
1474 return false;
1475 }
1476 if (str == limit || *str != '{')
1477 {
1478 if (identifier_pos)
1479 {
1480 *cp = 0;
1481 return false;
1482 }
1483 cpp_error (pfile, CPP_DL_ERROR, "'\\N' not followed by '{'");
1484 }
1485 else
1486 {
1487 str++;
1488 named = true;
1489 extend_char_range (char_range, loc_reader);
1490 length = 0;
1491 const uchar *name = str;
1492 bool strict = true;
1493
1494 do
1495 {
1496 if (str == limit)
1497 break;
1498 c = *str;
1499 if (!ISIDNUM (c) && c != ' ' && c != '-')
1500 break;
1501 if (ISLOWER (c) || c == '_')
1502 strict = false;
1503 str++;
1504 extend_char_range (char_range, loc_reader);
1505 }
1506 while (1);
1507
1508 if (str < limit && *str == '}')
1509 {
1510 if (identifier_pos && name == str)
1511 {
1512 cpp_warning (pfile, CPP_W_UNICODE,
1513 "empty named universal character escape "
1514 "sequence; treating it as separate tokens");
1515 *cp = 0;
1516 return false;
1517 }
1518 if (name == str)
1519 cpp_error (pfile, CPP_DL_ERROR,
1520 "empty named universal character escape sequence");
1521 else if ((!identifier_pos || strict)
1522 && !CPP_OPTION (pfile, delimited_escape_seqs)
1523 && CPP_OPTION (pfile, cpp_pedantic))
1524 cpp_error (pfile, CPP_DL_PEDWARN,
1525 "named universal character escapes are only valid "
1526 "in C++23");
1527 if (name == str)
1528 result = 0x40;
1529 else
1530 {
1531 /* If the name is longer than maximum length of a Unicode
1532 name, it can't be strictly valid. */
1533 if ((size_t) (str - name) > uname2c_max_name_len || !strict)
1534 result = -1;
1535 else
1536 result = _cpp_uname2c ((const char *) name, str - name,
1537 uname2c_tree, NULL);
1538 if (result == (cppchar_t) -1)
1539 {
1540 bool ret = true;
1541 if (identifier_pos
1542 && (!CPP_OPTION (pfile, delimited_escape_seqs)
1543 || !strict))
1544 ret = cpp_warning (pfile, CPP_W_UNICODE,
1545 "\\N{%.*s} is not a valid "
1546 "universal character; treating it "
1547 "as separate tokens",
1548 (int) (str - name), name);
1549 else
1550 cpp_error (pfile, CPP_DL_ERROR,
1551 "\\N{%.*s} is not a valid universal "
1552 "character", (int) (str - name), name);
1553
1554 /* Try to do a loose name lookup according to
1555 Unicode loose matching rule UAX44-LM2. */
1556 char canon_name[uname2c_max_name_len + 1];
1557 result = _cpp_uname2c_uax44_lm2 ((const char *) name,
1558 str - name, canon_name);
1559 if (result != (cppchar_t) -1 && ret)
1560 cpp_error (pfile, CPP_DL_NOTE,
1561 "did you mean \\N{%s}?", canon_name);
1562 else
1563 result = 0xC0;
1564 if (identifier_pos
1565 && (!CPP_OPTION (pfile, delimited_escape_seqs)
1566 || !strict))
1567 {
1568 *cp = 0;
1569 return false;
1570 }
1571 }
1572 }
1573 str++;
1574 extend_char_range (char_range, loc_reader);
1575 }
1576 else if (identifier_pos)
1577 {
1578 cpp_warning (pfile, CPP_W_UNICODE,
1579 "'\\N{' not terminated with '}' after %.*s; "
1580 "treating it as separate tokens",
1581 (int) (str - base), base);
1582 *cp = 0;
1583 return false;
1584 }
1585 else
1586 {
1587 cpp_error (pfile, CPP_DL_ERROR,
1588 "'\\N{' not terminated with '}' after %.*s",
1589 (int) (str - base), base);
1590 result = 1;
1591 }
1592 }
1593 }
1594 else
1595 {
1596 cpp_error (pfile, CPP_DL_ICE, "In _cpp_valid_ucn but not a UCN");
1597 length = 4;
1598 }
1599
1600 if (!named)
1601 do
1602 {
1603 if (str == limit)
1604 break;
1605 c = *str;
1606 if (!ISXDIGIT (c))
1607 break;
1608 str++;
1609 extend_char_range (char_range, loc_reader);
1610 if (delimited)
1611 {
1612 if (!result)
1613 /* Accept arbitrary number of leading zeros.
1614 16 is another magic value, smaller than 32 above
1615 and bigger than 8, so that upon encountering first
1616 non-zero digit we can count 8 digits and after that
1617 or in overflow bit and ensure length doesn't decrease
1618 to 0, as delimited escape sequence doesn't have upper
1619 bound on the number of hex digits. */
1620 length = 16;
1621 else if (length == 16 - 8)
1622 {
1623 /* Make sure we detect overflows. */
1624 result |= 0x8000000;
1625 ++length;
1626 }
1627 }
1628
1629 result = (result << 4) + hex_value (c);
1630 }
1631 while (--length);
1632
1633 if (delimited && str < limit && *str == '}')
1634 {
1635 if (length == 32 && identifier_pos)
1636 {
1637 cpp_warning (pfile, CPP_W_UNICODE,
1638 "empty delimited escape sequence; "
1639 "treating it as separate tokens");
1640 *cp = 0;
1641 return false;
1642 }
1643 else if (length == 32)
1644 cpp_error (pfile, CPP_DL_ERROR,
1645 "empty delimited escape sequence");
1646 else if (!CPP_OPTION (pfile, delimited_escape_seqs)
1647 && CPP_OPTION (pfile, cpp_pedantic))
1648 cpp_error (pfile, CPP_DL_PEDWARN,
1649 "delimited escape sequences are only valid in C++23");
1650 str++;
1651 length = 0;
1652 delimited = false;
1653 extend_char_range (char_range, loc_reader);
1654 }
1655
1656 /* Partial UCNs are not valid in strings, but decompose into
1657 multiple tokens in identifiers, so we can't give a helpful
1658 error message in that case. */
1659 if (length && identifier_pos)
1660 {
1661 if (delimited)
1662 cpp_warning (pfile, CPP_W_UNICODE,
1663 "'\\u{' not terminated with '}' after %.*s; "
1664 "treating it as separate tokens",
1665 (int) (str - base), base);
1666 *cp = 0;
1667 return false;
1668 }
1669
1670 *pstr = str;
1671 if (length)
1672 {
1673 if (!delimited)
1674 cpp_error (pfile, CPP_DL_ERROR,
1675 "incomplete universal character name %.*s",
1676 (int) (str - base), base);
1677 else
1678 cpp_error (pfile, CPP_DL_ERROR,
1679 "'\\u{' not terminated with '}' after %.*s",
1680 (int) (str - base), base);
1681 result = 1;
1682 }
1683 /* The C99 standard permits $, @ and ` to be specified as UCNs. We use
1684 hex escapes so that this also works with EBCDIC hosts.
1685 C++0x permits everything below 0xa0 within literals;
1686 ucn_valid_in_identifier will complain about identifiers. */
1687 else if ((result < 0xa0
1688 && !CPP_OPTION (pfile, cplusplus)
1689 && (result != 0x24 && result != 0x40 && result != 0x60))
1690 || (result & 0x80000000)
1691 || (result >= 0xD800 && result <= 0xDFFF))
1692 {
1693 cpp_error (pfile, CPP_DL_ERROR,
1694 "%.*s is not a valid universal character",
1695 (int) (str - base), base);
1696 result = 1;
1697 }
1698 else if (identifier_pos && result == 0x24
1699 && CPP_OPTION (pfile, dollars_in_ident))
1700 {
1701 if (CPP_OPTION (pfile, warn_dollars) && !pfile->state.skipping)
1702 {
1703 CPP_OPTION (pfile, warn_dollars) = 0;
1704 cpp_error (pfile, CPP_DL_PEDWARN, "'$' in identifier or number");
1705 }
1706 NORMALIZE_STATE_UPDATE_IDNUM (nst, result);
1707 }
1708 else if (identifier_pos)
1709 {
1710 int validity = ucn_valid_in_identifier (pfile, result, nst);
1711
1712 if (validity == 0)
1713 cpp_error (pfile, CPP_DL_ERROR,
1714 "universal character %.*s is not valid in an identifier",
1715 (int) (str - base), base);
1716 else if (validity == 2 && identifier_pos == 1)
1717 cpp_error (pfile, CPP_DL_ERROR,
1718 "universal character %.*s is not valid at the start of an identifier",
1719 (int) (str - base), base);
1720 }
1721 else if (result > UCS_LIMIT
1722 && (!CPP_OPTION (pfile, cplusplus)
1723 || CPP_OPTION (pfile, lang) > CLK_CXX17))
1724 cpp_error (pfile, CPP_DL_PEDWARN,
1725 "%.*s is outside the UCS codespace",
1726 (int) (str - base), base);
1727
1728 *cp = result;
1729 return true;
1730 }
1731
1732 /* Convert an UCN, pointed to by FROM, to UTF-8 encoding, then translate
1733 it to the execution character set and write the result into TBUF,
1734 if TBUF is non-NULL.
1735 An advanced pointer is returned. Issues all relevant diagnostics.
1736 If LOC_READER is non-NULL, then RANGES must be non-NULL and CHAR_RANGE
1737 contains the location of the character so far: location information
1738 is read from *LOC_READER, and *RANGES is updated accordingly. */
1739 static const uchar *
1740 convert_ucn (cpp_reader *pfile, const uchar *from, const uchar *limit,
1741 struct _cpp_strbuf *tbuf, struct cset_converter cvt,
1742 source_range char_range,
1743 cpp_string_location_reader *loc_reader,
1744 cpp_substring_ranges *ranges)
1745 {
1746 cppchar_t ucn;
1747 uchar buf[6];
1748 uchar *bufp = buf;
1749 size_t bytesleft = 6;
1750 int rval;
1751 struct normalize_state nst = INITIAL_NORMALIZE_STATE;
1752
1753 /* loc_reader and ranges must either be both NULL, or both be non-NULL. */
1754 gcc_assert ((loc_reader != NULL) == (ranges != NULL));
1755
1756 from++; /* Skip u/U/N. */
1757
1758 /* The u/U is part of the spelling of this character. */
1759 extend_char_range (&char_range, loc_reader);
1760
1761 _cpp_valid_ucn (pfile, &from, limit, 0, &nst,
1762 &ucn, &char_range, loc_reader);
1763
1764 rval = one_cppchar_to_utf8 (ucn, &bufp, &bytesleft);
1765 if (rval)
1766 {
1767 errno = rval;
1768 cpp_errno (pfile, CPP_DL_ERROR,
1769 "converting UCN to source character set");
1770 }
1771 else
1772 {
1773 if (tbuf)
1774 if (!APPLY_CONVERSION (cvt, buf, 6 - bytesleft, tbuf))
1775 cpp_errno (pfile, CPP_DL_ERROR,
1776 "converting UCN to execution character set");
1777
1778 if (loc_reader)
1779 {
1780 int num_encoded_bytes = 6 - bytesleft;
1781 for (int i = 0; i < num_encoded_bytes; i++)
1782 ranges->add_range (char_range);
1783 }
1784 }
1785
1786 return from;
1787 }
1788
1789 /* Performs a similar task as _cpp_valid_ucn, but parses UTF-8-encoded
1790 extended characters rather than UCNs. If the return value is TRUE, then a
1791 character was successfully decoded and stored in *CP; *PSTR has been
1792 updated to point one past the valid UTF-8 sequence. Diagnostics may have
1793 been emitted if the character parsed is not allowed in the current context.
1794 If the return value is FALSE, then *PSTR has not been modified and *CP may
1795 equal 0, to indicate that *PSTR does not form a valid UTF-8 sequence, or it
1796 may, when processing an identifier in C mode, equal a codepoint that was
1797 validly encoded but is not allowed to appear in an identifier. In either
1798 case, no diagnostic is emitted, and the return value of FALSE should cause
1799 a new token to be formed.
1800
1801 _cpp_valid_utf8 can be called when lexing a potential identifier, or a
1802 CPP_OTHER token or for the purposes of -Winvalid-utf8 warning in string or
1803 character literals. NST is unused when not in a potential identifier.
1804
1805 As in _cpp_valid_ucn, IDENTIFIER_POS is 0 when not in an identifier, 1 for
1806 the start of an identifier, or 2 otherwise. */
1807
1808 extern bool
1809 _cpp_valid_utf8 (cpp_reader *pfile,
1810 const uchar **pstr,
1811 const uchar *limit,
1812 int identifier_pos,
1813 struct normalize_state *nst,
1814 cppchar_t *cp)
1815 {
1816 const uchar *base = *pstr;
1817 size_t inbytesleft = limit - base;
1818 if (one_utf8_to_cppchar (pstr, &inbytesleft, cp))
1819 {
1820 /* No diagnostic here as this byte will rather become a
1821 new token. */
1822 *cp = 0;
1823 return false;
1824 }
1825
1826 if (identifier_pos)
1827 {
1828 switch (ucn_valid_in_identifier (pfile, *cp, nst))
1829 {
1830
1831 case 0:
1832 /* In C++, this is an error for invalid character in an identifier
1833 because logically, the UTF-8 was converted to a UCN during
1834 translation phase 1 (even though we don't physically do it that
1835 way). In C, this byte rather becomes grammatically a separate
1836 token. */
1837
1838 if (CPP_OPTION (pfile, cplusplus))
1839 cpp_error (pfile, CPP_DL_ERROR,
1840 "extended character %.*s is not valid in an identifier",
1841 (int) (*pstr - base), base);
1842 else
1843 {
1844 *pstr = base;
1845 return false;
1846 }
1847
1848 break;
1849
1850 case 2:
1851 if (identifier_pos == 1)
1852 {
1853 /* This is treated the same way in C++ or C99 -- lexed as an
1854 identifier which is then invalid because an identifier is
1855 not allowed to start with this character. */
1856 cpp_error (pfile, CPP_DL_ERROR,
1857 "extended character %.*s is not valid at the start of an identifier",
1858 (int) (*pstr - base), base);
1859 }
1860 break;
1861 }
1862 }
1863
1864 return true;
1865 }
1866
1867 /* Return true iff BUFFER of size NUM_BYTES is validly-encoded UTF-8. */
1868
1869 extern bool
1870 cpp_valid_utf8_p (const char *buffer, size_t num_bytes)
1871 {
1872 const uchar *iter = (const uchar *)buffer;
1873 size_t bytesleft = num_bytes;
1874 while (bytesleft > 0)
1875 {
1876 /* one_utf8_to_cppchar implements 5-byte and 6 byte sequences as per
1877 RFC 2279, but this has been superceded by RFC 3629, which
1878 restricts UTF-8 to 1-byte through 4-byte sequences, and
1879 states "the octet values C0, C1, F5 to FF never appear".
1880
1881 Reject such values. */
1882 if (*iter >= 0xf4)
1883 return false;
1884
1885 cppchar_t cp;
1886 int err = one_utf8_to_cppchar (&iter, &bytesleft, &cp);
1887 if (err)
1888 return false;
1889
1890 /* Additionally, Unicode declares that all codepoints above 0010FFFF are
1891 invalid because they cannot be represented in UTF-16.
1892
1893 Reject such values.*/
1894 if (cp > UCS_LIMIT)
1895 return false;
1896 }
1897 /* No problems encountered. */
1898 return true;
1899 }
1900
1901 /* Subroutine of convert_hex and convert_oct. N is the representation
1902 in the execution character set of a numeric escape; write it into the
1903 string buffer TBUF and update the end-of-string pointer therein. WIDE
1904 is true if it's a wide string that's being assembled in TBUF. This
1905 function issues no diagnostics and never fails. */
1906 static void
1907 emit_numeric_escape (cpp_reader *pfile, cppchar_t n,
1908 struct _cpp_strbuf *tbuf, struct cset_converter cvt)
1909 {
1910 size_t width = cvt.width;
1911
1912 if (width != CPP_OPTION (pfile, char_precision))
1913 {
1914 /* We have to render this into the target byte order, which may not
1915 be our byte order. */
1916 bool bigend = CPP_OPTION (pfile, bytes_big_endian);
1917 size_t cwidth = CPP_OPTION (pfile, char_precision);
1918 size_t cmask = width_to_mask (cwidth);
1919 size_t nbwc = width / cwidth;
1920 size_t i;
1921 size_t off = tbuf->len;
1922 cppchar_t c;
1923
1924 if (tbuf->len + nbwc > tbuf->asize)
1925 {
1926 tbuf->asize += OUTBUF_BLOCK_SIZE;
1927 tbuf->text = XRESIZEVEC (uchar, tbuf->text, tbuf->asize);
1928 }
1929
1930 for (i = 0; i < nbwc; i++)
1931 {
1932 c = n & cmask;
1933 n >>= cwidth;
1934 tbuf->text[off + (bigend ? nbwc - i - 1 : i)] = c;
1935 }
1936 tbuf->len += nbwc;
1937 }
1938 else
1939 {
1940 /* Note: this code does not handle the case where the target
1941 and host have a different number of bits in a byte. */
1942 if (tbuf->len + 1 > tbuf->asize)
1943 {
1944 tbuf->asize += OUTBUF_BLOCK_SIZE;
1945 tbuf->text = XRESIZEVEC (uchar, tbuf->text, tbuf->asize);
1946 }
1947 tbuf->text[tbuf->len++] = n;
1948 }
1949 }
1950
1951 /* Convert a hexadecimal escape, pointed to by FROM, to the execution
1952 character set and write it into the string buffer TBUF (if non-NULL).
1953 Returns an advanced pointer, and issues diagnostics as necessary.
1954 No character set translation occurs; this routine always produces the
1955 execution-set character with numeric value equal to the given hex
1956 number. You can, e.g. generate surrogate pairs this way.
1957 If LOC_READER is non-NULL, then RANGES must be non-NULL and CHAR_RANGE
1958 contains the location of the character so far: location information
1959 is read from *LOC_READER, and *RANGES is updated accordingly. */
1960 static const uchar *
1961 convert_hex (cpp_reader *pfile, const uchar *from, const uchar *limit,
1962 struct _cpp_strbuf *tbuf, struct cset_converter cvt,
1963 source_range char_range,
1964 cpp_string_location_reader *loc_reader,
1965 cpp_substring_ranges *ranges)
1966 {
1967 cppchar_t c, n = 0, overflow = 0;
1968 int digits_found = 0;
1969 size_t width = cvt.width;
1970 size_t mask = width_to_mask (width);
1971 bool delimited = false;
1972 const uchar *base = from - 1;
1973
1974 /* loc_reader and ranges must either be both NULL, or both be non-NULL. */
1975 gcc_assert ((loc_reader != NULL) == (ranges != NULL));
1976
1977 if (CPP_WTRADITIONAL (pfile))
1978 cpp_warning (pfile, CPP_W_TRADITIONAL,
1979 "the meaning of '\\x' is different in traditional C");
1980
1981 /* Skip 'x'. */
1982 from++;
1983
1984 /* The 'x' is part of the spelling of this character. */
1985 extend_char_range (&char_range, loc_reader);
1986
1987 if (from < limit && *from == '{')
1988 {
1989 delimited = true;
1990 from++;
1991 extend_char_range (&char_range, loc_reader);
1992 }
1993
1994 while (from < limit)
1995 {
1996 c = *from;
1997 if (! hex_p (c))
1998 break;
1999 from++;
2000 extend_char_range (&char_range, loc_reader);
2001 overflow |= n ^ (n << 4 >> 4);
2002 n = (n << 4) + hex_value (c);
2003 digits_found = 1;
2004 }
2005
2006 if (delimited && from < limit && *from == '}')
2007 {
2008 from++;
2009 if (!digits_found)
2010 {
2011 cpp_error (pfile, CPP_DL_ERROR,
2012 "empty delimited escape sequence");
2013 return from;
2014 }
2015 else if (!CPP_OPTION (pfile, delimited_escape_seqs)
2016 && CPP_OPTION (pfile, cpp_pedantic))
2017 cpp_error (pfile, CPP_DL_PEDWARN,
2018 "delimited escape sequences are only valid in C++23");
2019 delimited = false;
2020 extend_char_range (&char_range, loc_reader);
2021 }
2022
2023 if (!digits_found)
2024 {
2025 cpp_error (pfile, CPP_DL_ERROR,
2026 "\\x used with no following hex digits");
2027 return from;
2028 }
2029 else if (delimited)
2030 {
2031 cpp_error (pfile, CPP_DL_ERROR,
2032 "'\\x{' not terminated with '}' after %.*s",
2033 (int) (from - base), base);
2034 return from;
2035 }
2036
2037 if (overflow | (n != (n & mask)))
2038 {
2039 cpp_error (pfile, CPP_DL_PEDWARN,
2040 "hex escape sequence out of range");
2041 n &= mask;
2042 }
2043
2044 if (tbuf)
2045 emit_numeric_escape (pfile, n, tbuf, cvt);
2046 if (ranges)
2047 ranges->add_range (char_range);
2048
2049 return from;
2050 }
2051
2052 /* Convert an octal escape, pointed to by FROM, to the execution
2053 character set and write it into the string buffer TBUF. Returns an
2054 advanced pointer, and issues diagnostics as necessary.
2055 No character set translation occurs; this routine always produces the
2056 execution-set character with numeric value equal to the given octal
2057 number.
2058 If LOC_READER is non-NULL, then RANGES must be non-NULL and CHAR_RANGE
2059 contains the location of the character so far: location information
2060 is read from *LOC_READER, and *RANGES is updated accordingly. */
2061 static const uchar *
2062 convert_oct (cpp_reader *pfile, const uchar *from, const uchar *limit,
2063 struct _cpp_strbuf *tbuf, struct cset_converter cvt,
2064 source_range char_range,
2065 cpp_string_location_reader *loc_reader,
2066 cpp_substring_ranges *ranges)
2067 {
2068 size_t count = 0;
2069 cppchar_t c, n = 0, overflow = 0;
2070 size_t width = cvt.width;
2071 size_t mask = width_to_mask (width);
2072 bool delimited = false;
2073 const uchar *base = from - 1;
2074
2075 /* loc_reader and ranges must either be both NULL, or both be non-NULL. */
2076 gcc_assert ((loc_reader != NULL) == (ranges != NULL));
2077
2078 if (from < limit && *from == 'o')
2079 {
2080 from++;
2081 extend_char_range (&char_range, loc_reader);
2082 if (from == limit || *from != '{')
2083 cpp_error (pfile, CPP_DL_ERROR, "'\\o' not followed by '{'");
2084 else
2085 {
2086 from++;
2087 extend_char_range (&char_range, loc_reader);
2088 delimited = true;
2089 }
2090 }
2091
2092 while (from < limit && count++ < 3)
2093 {
2094 c = *from;
2095 if (c < '0' || c > '7')
2096 break;
2097 from++;
2098 extend_char_range (&char_range, loc_reader);
2099 if (delimited)
2100 {
2101 count = 2;
2102 overflow |= n ^ (n << 3 >> 3);
2103 }
2104 n = (n << 3) + c - '0';
2105 }
2106
2107 if (delimited)
2108 {
2109 if (from < limit && *from == '}')
2110 {
2111 from++;
2112 if (count == 1)
2113 {
2114 cpp_error (pfile, CPP_DL_ERROR,
2115 "empty delimited escape sequence");
2116 return from;
2117 }
2118 else if (!CPP_OPTION (pfile, delimited_escape_seqs)
2119 && CPP_OPTION (pfile, cpp_pedantic))
2120 cpp_error (pfile, CPP_DL_PEDWARN,
2121 "delimited escape sequences are only valid in C++23");
2122 extend_char_range (&char_range, loc_reader);
2123 }
2124 else
2125 {
2126 cpp_error (pfile, CPP_DL_ERROR,
2127 "'\\o{' not terminated with '}' after %.*s",
2128 (int) (from - base), base);
2129 return from;
2130 }
2131 }
2132
2133 if (overflow | (n != (n & mask)))
2134 {
2135 cpp_error (pfile, CPP_DL_PEDWARN,
2136 "octal escape sequence out of range");
2137 n &= mask;
2138 }
2139
2140 if (tbuf)
2141 emit_numeric_escape (pfile, n, tbuf, cvt);
2142 if (ranges)
2143 ranges->add_range (char_range);
2144
2145 return from;
2146 }
2147
2148 /* Convert an escape sequence (pointed to by FROM) to its value on
2149 the target, and to the execution character set. Do not scan past
2150 LIMIT. Write the converted value into TBUF, if TBUF is non-NULL.
2151 Returns an advanced pointer. Handles all relevant diagnostics.
2152 If LOC_READER is non-NULL, then RANGES must be non-NULL: location
2153 information is read from *LOC_READER, and *RANGES is updated
2154 accordingly. */
2155 static const uchar *
2156 convert_escape (cpp_reader *pfile, const uchar *from, const uchar *limit,
2157 struct _cpp_strbuf *tbuf, struct cset_converter cvt,
2158 cpp_string_location_reader *loc_reader,
2159 cpp_substring_ranges *ranges)
2160 {
2161 /* Values of \a \b \e \f \n \r \t \v respectively. */
2162 #if HOST_CHARSET == HOST_CHARSET_ASCII
2163 static const uchar charconsts[] = { 7, 8, 27, 12, 10, 13, 9, 11 };
2164 #elif HOST_CHARSET == HOST_CHARSET_EBCDIC
2165 static const uchar charconsts[] = { 47, 22, 39, 12, 21, 13, 5, 11 };
2166 #else
2167 #error "unknown host character set"
2168 #endif
2169
2170 uchar c;
2171
2172 /* Record the location of the backslash. */
2173 source_range char_range;
2174 if (loc_reader)
2175 char_range = loc_reader->get_next ();
2176
2177 c = *from;
2178 switch (c)
2179 {
2180 /* UCNs, hex escapes, and octal escapes are processed separately. */
2181 case 'u': case 'U': case 'N':
2182 return convert_ucn (pfile, from, limit, tbuf, cvt,
2183 char_range, loc_reader, ranges);
2184
2185 case 'x':
2186 return convert_hex (pfile, from, limit, tbuf, cvt,
2187 char_range, loc_reader, ranges);
2188
2189 case '0': case '1': case '2': case '3':
2190 case '4': case '5': case '6': case '7':
2191 case 'o':
2192 return convert_oct (pfile, from, limit, tbuf, cvt,
2193 char_range, loc_reader, ranges);
2194
2195 /* Various letter escapes. Get the appropriate host-charset
2196 value into C. */
2197 case '\\': case '\'': case '"': case '?': break;
2198
2199 case '(': case '{': case '[': case '%':
2200 /* '\(', etc, can be used at the beginning of a line in a long
2201 string split onto multiple lines with \-newline, to prevent
2202 Emacs or other text editors from getting confused. '\%' can
2203 be used to prevent SCCS from mangling printf format strings. */
2204 if (CPP_PEDANTIC (pfile))
2205 goto unknown;
2206 break;
2207
2208 case 'b': c = charconsts[1]; break;
2209 case 'f': c = charconsts[3]; break;
2210 case 'n': c = charconsts[4]; break;
2211 case 'r': c = charconsts[5]; break;
2212 case 't': c = charconsts[6]; break;
2213 case 'v': c = charconsts[7]; break;
2214
2215 case 'a':
2216 if (CPP_WTRADITIONAL (pfile))
2217 cpp_warning (pfile, CPP_W_TRADITIONAL,
2218 "the meaning of '\\a' is different in traditional C");
2219 c = charconsts[0];
2220 break;
2221
2222 case 'e': case 'E':
2223 if (CPP_PEDANTIC (pfile))
2224 cpp_error (pfile, CPP_DL_PEDWARN,
2225 "non-ISO-standard escape sequence, '\\%c'", (int) c);
2226 c = charconsts[2];
2227 break;
2228
2229 default:
2230 unknown:
2231 if (ISGRAPH (c))
2232 cpp_error (pfile, CPP_DL_PEDWARN,
2233 "unknown escape sequence: '\\%c'", (int) c);
2234 else
2235 {
2236 encoding_rich_location rich_loc (pfile);
2237
2238 /* diagnostic.cc does not support "%03o". When it does, this
2239 code can use %03o directly in the diagnostic again. */
2240 char buf[32];
2241 sprintf(buf, "%03o", (int) c);
2242 cpp_error_at (pfile, CPP_DL_PEDWARN, &rich_loc,
2243 "unknown escape sequence: '\\%s'", buf);
2244 }
2245 }
2246
2247 if (tbuf)
2248 /* Now convert what we have to the execution character set. */
2249 if (!APPLY_CONVERSION (cvt, &c, 1, tbuf))
2250 cpp_errno (pfile, CPP_DL_ERROR,
2251 "converting escape sequence to execution character set");
2252
2253 if (loc_reader)
2254 {
2255 char_range.m_finish = loc_reader->get_next ().m_finish;
2256 ranges->add_range (char_range);
2257 }
2258
2259 return from + 1;
2260 }
2261 \f
2262 /* TYPE is a token type. The return value is the conversion needed to
2263 convert from source to execution character set for the given type. */
2264 static struct cset_converter
2265 converter_for_type (cpp_reader *pfile, enum cpp_ttype type)
2266 {
2267 switch (type)
2268 {
2269 default:
2270 return pfile->narrow_cset_desc;
2271 case CPP_UTF8CHAR:
2272 case CPP_UTF8STRING:
2273 return pfile->utf8_cset_desc;
2274 case CPP_CHAR16:
2275 case CPP_STRING16:
2276 return pfile->char16_cset_desc;
2277 case CPP_CHAR32:
2278 case CPP_STRING32:
2279 return pfile->char32_cset_desc;
2280 case CPP_WCHAR:
2281 case CPP_WSTRING:
2282 return pfile->wide_cset_desc;
2283 }
2284 }
2285
2286 /* FROM is an array of cpp_string structures of length COUNT. These
2287 are to be converted from the source to the execution character set,
2288 escape sequences translated, and finally all are to be
2289 concatenated. WIDE indicates whether or not to produce a wide
2290 string. If TO is non-NULL, the result is written into TO.
2291 If LOC_READERS and OUT are non-NULL, then location information
2292 is read from LOC_READERS (which must be an array of length COUNT),
2293 and location information is written to *RANGES.
2294
2295 Returns true for success, false for failure. */
2296
2297 static bool
2298 cpp_interpret_string_1 (cpp_reader *pfile, const cpp_string *from, size_t count,
2299 cpp_string *to, enum cpp_ttype type,
2300 cpp_string_location_reader *loc_readers,
2301 cpp_substring_ranges *out)
2302 {
2303 struct _cpp_strbuf tbuf;
2304 const uchar *p, *base, *limit;
2305 size_t i;
2306 struct cset_converter cvt = converter_for_type (pfile, type);
2307
2308 /* loc_readers and out must either be both NULL, or both be non-NULL. */
2309 gcc_assert ((loc_readers != NULL) == (out != NULL));
2310
2311 if (to)
2312 {
2313 tbuf.asize = MAX (OUTBUF_BLOCK_SIZE, from->len);
2314 tbuf.text = XNEWVEC (uchar, tbuf.asize);
2315 tbuf.len = 0;
2316 }
2317
2318 cpp_string_location_reader *loc_reader = NULL;
2319 for (i = 0; i < count; i++)
2320 {
2321 if (loc_readers)
2322 loc_reader = &loc_readers[i];
2323
2324 p = from[i].text;
2325 if (*p == 'u')
2326 {
2327 p++;
2328 if (loc_reader)
2329 loc_reader->get_next ();
2330 if (*p == '8')
2331 {
2332 p++;
2333 if (loc_reader)
2334 loc_reader->get_next ();
2335 }
2336 }
2337 else if (*p == 'L' || *p == 'U') p++;
2338 if (*p == 'R')
2339 {
2340 const uchar *prefix;
2341
2342 /* Skip over 'R"'. */
2343 p += 2;
2344 if (loc_reader)
2345 {
2346 loc_reader->get_next ();
2347 loc_reader->get_next ();
2348 }
2349 prefix = p;
2350 while (*p != '(')
2351 {
2352 p++;
2353 if (loc_reader)
2354 loc_reader->get_next ();
2355 }
2356 p++;
2357 if (loc_reader)
2358 loc_reader->get_next ();
2359 limit = from[i].text + from[i].len;
2360 if (limit >= p + (p - prefix) + 1)
2361 limit -= (p - prefix) + 1;
2362
2363 /* Raw strings are all normal characters; these can be fed
2364 directly to convert_cset. */
2365 if (to)
2366 if (!APPLY_CONVERSION (cvt, p, limit - p, &tbuf))
2367 goto fail;
2368
2369 if (loc_reader)
2370 {
2371 /* If generating source ranges, assume we have a 1:1
2372 correspondence between bytes in the source encoding and bytes
2373 in the execution encoding (e.g. if we have a UTF-8 to UTF-8
2374 conversion), so that this run of bytes in the source file
2375 corresponds to a run of bytes in the execution string.
2376 This requirement is guaranteed by an early-reject in
2377 cpp_interpret_string_ranges. */
2378 gcc_assert (cvt.func == convert_no_conversion);
2379 out->add_n_ranges (limit - p, *loc_reader);
2380 }
2381
2382 continue;
2383 }
2384
2385 /* If we don't now have a leading quote, something has gone wrong.
2386 This can occur if cpp_interpret_string_ranges is handling a
2387 stringified macro argument, but should not be possible otherwise. */
2388 if (*p != '"' && *p != '\'')
2389 {
2390 gcc_assert (out != NULL);
2391 cpp_error (pfile, CPP_DL_ERROR, "missing open quote");
2392 if (to)
2393 free (tbuf.text);
2394 return false;
2395 }
2396
2397 /* Skip leading quote. */
2398 p++;
2399 if (loc_reader)
2400 loc_reader->get_next ();
2401
2402 limit = from[i].text + from[i].len - 1; /* Skip trailing quote. */
2403
2404 for (;;)
2405 {
2406 base = p;
2407 while (p < limit && *p != '\\')
2408 p++;
2409 if (p > base)
2410 {
2411 /* We have a run of normal characters; these can be fed
2412 directly to convert_cset. */
2413 if (to)
2414 if (!APPLY_CONVERSION (cvt, base, p - base, &tbuf))
2415 goto fail;
2416 /* Similar to above: assumes we have a 1:1 correspondence
2417 between bytes in the source encoding and bytes in the
2418 execution encoding. */
2419 if (loc_reader)
2420 {
2421 gcc_assert (cvt.func == convert_no_conversion);
2422 out->add_n_ranges (p - base, *loc_reader);
2423 }
2424 }
2425 if (p >= limit)
2426 break;
2427
2428 struct _cpp_strbuf *tbuf_ptr = to ? &tbuf : NULL;
2429 p = convert_escape (pfile, p + 1, limit, tbuf_ptr, cvt,
2430 loc_reader, out);
2431 }
2432 }
2433
2434 if (to)
2435 {
2436 /* NUL-terminate the 'to' buffer and translate it to a cpp_string
2437 structure. */
2438 emit_numeric_escape (pfile, 0, &tbuf, cvt);
2439 tbuf.text = XRESIZEVEC (uchar, tbuf.text, tbuf.len);
2440 to->text = tbuf.text;
2441 to->len = tbuf.len;
2442 }
2443 /* Use the location of the trailing quote as the location of the
2444 NUL-terminator. */
2445 if (loc_reader)
2446 {
2447 source_range range = loc_reader->get_next ();
2448 out->add_range (range);
2449 }
2450
2451 return true;
2452
2453 fail:
2454 cpp_errno (pfile, CPP_DL_ERROR, "converting to execution character set");
2455 if (to)
2456 free (tbuf.text);
2457 return false;
2458 }
2459
2460 /* FROM is an array of cpp_string structures of length COUNT. These
2461 are to be converted from the source to the execution character set,
2462 escape sequences translated, and finally all are to be
2463 concatenated. WIDE indicates whether or not to produce a wide
2464 string. The result is written into TO. Returns true for success,
2465 false for failure. */
2466 bool
2467 cpp_interpret_string (cpp_reader *pfile, const cpp_string *from, size_t count,
2468 cpp_string *to, enum cpp_ttype type)
2469 {
2470 return cpp_interpret_string_1 (pfile, from, count, to, type, NULL, NULL);
2471 }
2472
2473 /* A "do nothing" diagnostic-handling callback for use by
2474 cpp_interpret_string_ranges, so that it can temporarily suppress
2475 diagnostic-handling. */
2476
2477 static bool
2478 noop_diagnostic_cb (cpp_reader *, enum cpp_diagnostic_level,
2479 enum cpp_warning_reason, rich_location *,
2480 const char *, va_list *)
2481 {
2482 /* no-op. */
2483 return true;
2484 }
2485
2486 /* This function mimics the behavior of cpp_interpret_string, but
2487 rather than generating a string in the execution character set,
2488 *OUT is written to with the source code ranges of the characters
2489 in such a string.
2490 FROM and LOC_READERS should both be arrays of length COUNT.
2491 Returns NULL for success, or an error message for failure. */
2492
2493 const char *
2494 cpp_interpret_string_ranges (cpp_reader *pfile, const cpp_string *from,
2495 cpp_string_location_reader *loc_readers,
2496 size_t count,
2497 cpp_substring_ranges *out,
2498 enum cpp_ttype type)
2499 {
2500 /* There are a couple of cases in the range-handling in
2501 cpp_interpret_string_1 that rely on there being a 1:1 correspondence
2502 between bytes in the source encoding and bytes in the execution
2503 encoding, so that each byte in the execution string can correspond
2504 to the location of a byte in the source string.
2505
2506 This holds for the typical case of a UTF-8 to UTF-8 conversion.
2507 Enforce this requirement by only attempting to track substring
2508 locations if we have source encoding == execution encoding.
2509
2510 This is a stronger condition than we need, since we could e.g.
2511 have ASCII to EBCDIC (with 1 byte per character before and after),
2512 but it seems to be a reasonable restriction. */
2513 struct cset_converter cvt = converter_for_type (pfile, type);
2514 if (cvt.func != convert_no_conversion)
2515 return "execution character set != source character set";
2516
2517 /* For on-demand strings we have already lexed the strings, so there
2518 should be no diagnostics. However, if we have bogus source location
2519 data (or stringified macro arguments), the attempt to lex the
2520 strings could fail with an diagnostic. Temporarily install an
2521 diagnostic-handler to catch the diagnostic, so that it can lead to this call
2522 failing, rather than being emitted as a user-visible diagnostic.
2523 If an diagnostic does occur, we should see it via the return value of
2524 cpp_interpret_string_1. */
2525 bool (*saved_diagnostic_handler) (cpp_reader *, enum cpp_diagnostic_level,
2526 enum cpp_warning_reason, rich_location *,
2527 const char *, va_list *)
2528 ATTRIBUTE_FPTR_PRINTF(5,0);
2529
2530 saved_diagnostic_handler = pfile->cb.diagnostic;
2531 pfile->cb.diagnostic = noop_diagnostic_cb;
2532
2533 bool result = cpp_interpret_string_1 (pfile, from, count, NULL, type,
2534 loc_readers, out);
2535
2536 /* Restore the saved diagnostic-handler. */
2537 pfile->cb.diagnostic = saved_diagnostic_handler;
2538
2539 if (!result)
2540 return "cpp_interpret_string_1 failed";
2541
2542 /* Success. */
2543 return NULL;
2544 }
2545
2546 /* Subroutine of do_line and do_linemarker. Convert escape sequences
2547 in a string, but do not perform character set conversion. */
2548 bool
2549 cpp_interpret_string_notranslate (cpp_reader *pfile, const cpp_string *from,
2550 size_t count, cpp_string *to,
2551 enum cpp_ttype type ATTRIBUTE_UNUSED)
2552 {
2553 struct cset_converter save_narrow_cset_desc = pfile->narrow_cset_desc;
2554 bool retval;
2555
2556 pfile->narrow_cset_desc.func = convert_no_conversion;
2557 pfile->narrow_cset_desc.cd = (iconv_t) -1;
2558 pfile->narrow_cset_desc.width = CPP_OPTION (pfile, char_precision);
2559
2560 retval = cpp_interpret_string (pfile, from, count, to, CPP_STRING);
2561
2562 pfile->narrow_cset_desc = save_narrow_cset_desc;
2563 return retval;
2564 }
2565
2566 \f
2567 /* Subroutine of cpp_interpret_charconst which performs the conversion
2568 to a number, for narrow strings. STR is the string structure returned
2569 by cpp_interpret_string. PCHARS_SEEN and UNSIGNEDP are as for
2570 cpp_interpret_charconst. TYPE is the token type. */
2571 static cppchar_t
2572 narrow_str_to_charconst (cpp_reader *pfile, cpp_string str,
2573 unsigned int *pchars_seen, int *unsignedp,
2574 enum cpp_ttype type)
2575 {
2576 size_t width = CPP_OPTION (pfile, char_precision);
2577 size_t max_chars = CPP_OPTION (pfile, int_precision) / width;
2578 size_t mask = width_to_mask (width);
2579 size_t i;
2580 cppchar_t result, c;
2581 bool unsigned_p;
2582
2583 /* The value of a multi-character character constant, or a
2584 single-character character constant whose representation in the
2585 execution character set is more than one byte long, is
2586 implementation defined. This implementation defines it to be the
2587 number formed by interpreting the byte sequence in memory as a
2588 big-endian binary number. If overflow occurs, the high bytes are
2589 lost, and a warning is issued.
2590
2591 We don't want to process the NUL terminator handed back by
2592 cpp_interpret_string. */
2593 result = 0;
2594 for (i = 0; i < str.len - 1; i++)
2595 {
2596 c = str.text[i] & mask;
2597 if (width < BITS_PER_CPPCHAR_T)
2598 result = (result << width) | c;
2599 else
2600 result = c;
2601 }
2602
2603 if (type == CPP_UTF8CHAR)
2604 max_chars = 1;
2605 if (i > max_chars)
2606 {
2607 i = max_chars;
2608 cpp_error (pfile, type == CPP_UTF8CHAR ? CPP_DL_ERROR : CPP_DL_WARNING,
2609 "character constant too long for its type");
2610 }
2611 else if (i > 1 && CPP_OPTION (pfile, warn_multichar))
2612 cpp_warning (pfile, CPP_W_MULTICHAR, "multi-character character constant");
2613
2614 /* Multichar constants are of type int and therefore signed. */
2615 if (i > 1)
2616 unsigned_p = 0;
2617 else if (type == CPP_UTF8CHAR)
2618 unsigned_p = CPP_OPTION (pfile, unsigned_utf8char);
2619 else
2620 unsigned_p = CPP_OPTION (pfile, unsigned_char);
2621
2622 /* Truncate the constant to its natural width, and simultaneously
2623 sign- or zero-extend to the full width of cppchar_t.
2624 For single-character constants, the value is WIDTH bits wide.
2625 For multi-character constants, the value is INT_PRECISION bits wide. */
2626 if (i > 1)
2627 width = CPP_OPTION (pfile, int_precision);
2628 if (width < BITS_PER_CPPCHAR_T)
2629 {
2630 mask = ((cppchar_t) 1 << width) - 1;
2631 if (unsigned_p || !(result & (1 << (width - 1))))
2632 result &= mask;
2633 else
2634 result |= ~mask;
2635 }
2636 *pchars_seen = i;
2637 *unsignedp = unsigned_p;
2638 return result;
2639 }
2640
2641 /* Subroutine of cpp_interpret_charconst which performs the conversion
2642 to a number, for wide strings. STR is the string structure returned
2643 by cpp_interpret_string. PCHARS_SEEN and UNSIGNEDP are as for
2644 cpp_interpret_charconst. TYPE is the token type. */
2645 static cppchar_t
2646 wide_str_to_charconst (cpp_reader *pfile, cpp_string str,
2647 unsigned int *pchars_seen, int *unsignedp,
2648 enum cpp_ttype type)
2649 {
2650 bool bigend = CPP_OPTION (pfile, bytes_big_endian);
2651 size_t width = converter_for_type (pfile, type).width;
2652 size_t cwidth = CPP_OPTION (pfile, char_precision);
2653 size_t mask = width_to_mask (width);
2654 size_t cmask = width_to_mask (cwidth);
2655 size_t nbwc = width / cwidth;
2656 size_t off, i;
2657 cppchar_t result = 0, c;
2658
2659 if (str.len <= nbwc)
2660 {
2661 /* Error recovery, if no errors have been diagnosed previously,
2662 there should be at least two wide characters. Empty literals
2663 are diagnosed earlier and we can get just the zero terminator
2664 only if there were errors diagnosed during conversion. */
2665 *pchars_seen = 0;
2666 *unsignedp = 0;
2667 return 0;
2668 }
2669
2670 /* This is finicky because the string is in the target's byte order,
2671 which may not be our byte order. Only the last character, ignoring
2672 the NUL terminator, is relevant. */
2673 off = str.len - (nbwc * 2);
2674 result = 0;
2675 for (i = 0; i < nbwc; i++)
2676 {
2677 c = bigend ? str.text[off + i] : str.text[off + nbwc - i - 1];
2678 result = (result << cwidth) | (c & cmask);
2679 }
2680
2681 /* Wide character constants have type wchar_t, and a single
2682 character exactly fills a wchar_t, so a multi-character wide
2683 character constant is guaranteed to overflow. */
2684 if (str.len > nbwc * 2)
2685 cpp_error (pfile, (CPP_OPTION (pfile, cplusplus)
2686 && (type == CPP_CHAR16
2687 || type == CPP_CHAR32
2688 /* In C++23 this is error even for L'ab'. */
2689 || (type == CPP_WCHAR
2690 && CPP_OPTION (pfile, size_t_literals))))
2691 ? CPP_DL_ERROR : CPP_DL_WARNING,
2692 "character constant too long for its type");
2693
2694 /* Truncate the constant to its natural width, and simultaneously
2695 sign- or zero-extend to the full width of cppchar_t. */
2696 if (width < BITS_PER_CPPCHAR_T)
2697 {
2698 if (type == CPP_CHAR16 || type == CPP_CHAR32
2699 || CPP_OPTION (pfile, unsigned_wchar)
2700 || !(result & (1 << (width - 1))))
2701 result &= mask;
2702 else
2703 result |= ~mask;
2704 }
2705
2706 if (type == CPP_CHAR16 || type == CPP_CHAR32
2707 || CPP_OPTION (pfile, unsigned_wchar))
2708 *unsignedp = 1;
2709 else
2710 *unsignedp = 0;
2711
2712 *pchars_seen = 1;
2713 return result;
2714 }
2715
2716 /* Interpret a (possibly wide) character constant in TOKEN.
2717 PCHARS_SEEN points to a variable that is filled in with the number
2718 of characters seen, and UNSIGNEDP to a variable that indicates
2719 whether the result has signed type. */
2720 cppchar_t
2721 cpp_interpret_charconst (cpp_reader *pfile, const cpp_token *token,
2722 unsigned int *pchars_seen, int *unsignedp)
2723 {
2724 cpp_string str = { 0, 0 };
2725 bool wide = (token->type != CPP_CHAR && token->type != CPP_UTF8CHAR);
2726 int u8 = 2 * int(token->type == CPP_UTF8CHAR);
2727 cppchar_t result;
2728
2729 /* An empty constant will appear as L'', u'', U'', u8'', or '' */
2730 if (token->val.str.len == (size_t) (2 + wide + u8))
2731 {
2732 cpp_error (pfile, CPP_DL_ERROR, "empty character constant");
2733 *pchars_seen = 0;
2734 *unsignedp = 0;
2735 return 0;
2736 }
2737 else if (!cpp_interpret_string (pfile, &token->val.str, 1, &str,
2738 token->type))
2739 {
2740 *pchars_seen = 0;
2741 *unsignedp = 0;
2742 return 0;
2743 }
2744
2745 if (wide)
2746 result = wide_str_to_charconst (pfile, str, pchars_seen, unsignedp,
2747 token->type);
2748 else
2749 result = narrow_str_to_charconst (pfile, str, pchars_seen, unsignedp,
2750 token->type);
2751
2752 if (str.text != token->val.str.text)
2753 free ((void *)str.text);
2754
2755 return result;
2756 }
2757 \f
2758 /* Convert an identifier denoted by ID and LEN, which might contain
2759 UCN escapes or UTF-8 multibyte chars, to the source character set,
2760 either UTF-8 or UTF-EBCDIC. Assumes that the identifier is actually
2761 a valid identifier. */
2762 cpp_hashnode *
2763 _cpp_interpret_identifier (cpp_reader *pfile, const uchar *id, size_t len)
2764 {
2765 /* It turns out that a UCN escape always turns into fewer characters
2766 than the escape itself, so we can allocate a temporary in advance. */
2767 uchar * buf = (uchar *) alloca (len + 1);
2768 uchar * bufp = buf;
2769 size_t idp;
2770
2771 for (idp = 0; idp < len; idp++)
2772 if (id[idp] != '\\')
2773 *bufp++ = id[idp];
2774 else
2775 {
2776 unsigned length = id[idp + 1] == 'u' ? 4 : 8;
2777 cppchar_t value = 0;
2778 size_t bufleft = len - (bufp - buf);
2779 int rval;
2780 bool delimited = false;
2781
2782 idp += 2;
2783 if (id[idp - 1] == 'N' && id[idp] == '{')
2784 {
2785 idp++;
2786 const uchar *name = &id[idp];
2787 while (idp < len
2788 && (ISIDNUM (id[idp]) || id[idp] == ' ' || id[idp] == '-'))
2789 idp++;
2790 if (id[idp] == '}')
2791 {
2792 value = _cpp_uname2c ((const char *) name, &id[idp] - name,
2793 uname2c_tree, NULL);
2794 if (value == (cppchar_t) -1)
2795 value = 1;
2796 }
2797 else
2798 idp--;
2799 }
2800 else
2801 {
2802 if (length == 4 && id[idp] == '{')
2803 {
2804 delimited = true;
2805 idp++;
2806 }
2807 while (length && idp < len && ISXDIGIT (id[idp]))
2808 {
2809 value = (value << 4) + hex_value (id[idp]);
2810 idp++;
2811 if (!delimited)
2812 length--;
2813 }
2814 if (!delimited || id[idp] != '}')
2815 idp--;
2816 }
2817
2818 /* Special case for EBCDIC: if the identifier contains
2819 a '$' specified using a UCN, translate it to EBCDIC. */
2820 if (value == 0x24)
2821 {
2822 *bufp++ = '$';
2823 continue;
2824 }
2825
2826 rval = one_cppchar_to_utf8 (value, &bufp, &bufleft);
2827 if (rval)
2828 {
2829 errno = rval;
2830 cpp_errno (pfile, CPP_DL_ERROR,
2831 "converting UCN to source character set");
2832 break;
2833 }
2834 }
2835
2836 return CPP_HASHNODE (ht_lookup (pfile->hash_table,
2837 buf, bufp - buf, HT_ALLOC));
2838 }
2839 \f
2840
2841 /* Utility to strip a UTF-8 byte order marking from the beginning
2842 of a buffer. Returns the number of bytes to skip, which currently
2843 will be either 0 or 3. */
2844 int
2845 cpp_check_utf8_bom (const char *data, size_t data_length)
2846 {
2847
2848 #if HOST_CHARSET == HOST_CHARSET_ASCII
2849 const unsigned char *udata = (const unsigned char *) data;
2850 if (data_length >= 3 && udata[0] == 0xef && udata[1] == 0xbb
2851 && udata[2] == 0xbf)
2852 return 3;
2853 #endif
2854
2855 return 0;
2856 }
2857
2858
2859 /* Convert an input buffer (containing the complete contents of one
2860 source file) from INPUT_CHARSET to the source character set. INPUT
2861 points to the input buffer, SIZE is its allocated size, and LEN is
2862 the length of the meaningful data within the buffer. The
2863 translated buffer is returned, *ST_SIZE is set to the length of
2864 the meaningful data within the translated buffer, and *BUFFER_START
2865 is set to the start of the returned buffer. *BUFFER_START may
2866 differ from the return value in the case of a BOM or other ignored
2867 marker information.
2868
2869 INPUT is expected to have been allocated with xmalloc. This
2870 function will either set *BUFFER_START to INPUT, or free it and set
2871 *BUFFER_START to a pointer to another xmalloc-allocated block of
2872 memory.
2873
2874 PFILE is only used to generate diagnostics; setting it to NULL suppresses
2875 diagnostics, and causes a return of NULL if there was any error instead. */
2876
2877 uchar *
2878 _cpp_convert_input (cpp_reader *pfile, const char *input_charset,
2879 uchar *input, size_t size, size_t len,
2880 const unsigned char **buffer_start, off_t *st_size)
2881 {
2882 struct cset_converter input_cset;
2883 struct _cpp_strbuf to;
2884 unsigned char *buffer;
2885
2886 input_cset = init_iconv_desc (pfile, SOURCE_CHARSET, input_charset);
2887 if (input_cset.func == convert_no_conversion)
2888 {
2889 to.text = input;
2890 to.asize = size;
2891 to.len = len;
2892 }
2893 else
2894 {
2895 to.asize = MAX (65536, len);
2896 to.text = XNEWVEC (uchar, to.asize);
2897 to.len = 0;
2898
2899 const bool ok = APPLY_CONVERSION (input_cset, input, len, &to);
2900 free (input);
2901
2902 /* Clean up the mess. */
2903 if (input_cset.func == convert_using_iconv)
2904 iconv_close (input_cset.cd);
2905
2906 /* Handle conversion failure. */
2907 if (!ok)
2908 {
2909 if (!pfile)
2910 {
2911 XDELETEVEC (to.text);
2912 *buffer_start = NULL;
2913 *st_size = 0;
2914 return NULL;
2915 }
2916 cpp_error (pfile, CPP_DL_ERROR, "failure to convert %s to %s",
2917 input_charset, SOURCE_CHARSET);
2918 }
2919 }
2920
2921 /* Resize buffer if we allocated substantially too much, or if we
2922 haven't enough space for the \n-terminator or following
2923 15 bytes of padding (used to quiet warnings from valgrind or
2924 Address Sanitizer, when the optimized lexer accesses aligned
2925 16-byte memory chunks, including the bytes after the malloced,
2926 area, and stops lexing on '\n'). */
2927 if (to.len + 4096 < to.asize || to.len + 16 > to.asize)
2928 to.text = XRESIZEVEC (uchar, to.text, to.len + 16);
2929
2930 memset (to.text + to.len, '\0', 16);
2931
2932 /* If the file is using old-school Mac line endings (\r only),
2933 terminate with another \r, not an \n, so that we do not mistake
2934 the \r\n sequence for a single DOS line ending and erroneously
2935 issue the "No newline at end of file" diagnostic. */
2936 if (to.len && to.text[to.len - 1] == '\r')
2937 to.text[to.len] = '\r';
2938 else
2939 to.text[to.len] = '\n';
2940
2941 buffer = to.text;
2942 *st_size = to.len;
2943
2944 /* Ignore a UTF-8 BOM if we see one and the source charset is UTF-8. Note
2945 that glib'c UTF-8 iconv() provider (as of glibc 2.7) does not ignore a
2946 BOM -- however, even if it did, we would still need this code due
2947 to the 'convert_no_conversion' case. */
2948 const int bom_len = cpp_check_utf8_bom ((const char *) to.text, to.len);
2949 *st_size -= bom_len;
2950 buffer += bom_len;
2951
2952 *buffer_start = to.text;
2953 return buffer;
2954 }
2955
2956 /* Decide on the default encoding to assume for input files. */
2957 const char *
2958 _cpp_default_encoding (void)
2959 {
2960 const char *current_encoding = NULL;
2961
2962 /* We disable this because the default codeset is 7-bit ASCII on
2963 most platforms, and this causes conversion failures on every
2964 file in GCC that happens to have one of the upper 128 characters
2965 in it -- most likely, as part of the name of a contributor.
2966 We should definitely recognize in-band markers of file encoding,
2967 like:
2968 - the appropriate Unicode byte-order mark (FE FF) to recognize
2969 UTF16 and UCS4 (in both big-endian and little-endian flavors)
2970 and UTF8
2971 - a "#i", "#d", "/ *", "//", " #p" or "#p" (for #pragma) to
2972 distinguish ASCII and EBCDIC.
2973 - now we can parse something like "#pragma GCC encoding <xyz>
2974 on the first line, or even Emacs/VIM's mode line tags (there's
2975 a problem here in that VIM uses the last line, and Emacs has
2976 its more elaborate "local variables" convention).
2977 - investigate whether Java has another common convention, which
2978 would be friendly to support.
2979 (Zack Weinberg and Paolo Bonzini, May 20th 2004) */
2980 #if defined (HAVE_LOCALE_H) && defined (HAVE_LANGINFO_CODESET) && 0
2981 setlocale (LC_CTYPE, "");
2982 current_encoding = nl_langinfo (CODESET);
2983 #endif
2984 if (current_encoding == NULL || *current_encoding == '\0')
2985 current_encoding = SOURCE_CHARSET;
2986
2987 return current_encoding;
2988 }
2989
2990 /* Check if the configured input charset requires no conversion, other than
2991 possibly stripping a UTF-8 BOM. */
2992 bool cpp_input_conversion_is_trivial (const char *input_charset)
2993 {
2994 return !strcasecmp (input_charset, SOURCE_CHARSET);
2995 }
2996
2997 /* Implementation of class cpp_string_location_reader. */
2998
2999 /* Constructor for cpp_string_location_reader. */
3000
3001 cpp_string_location_reader::
3002 cpp_string_location_reader (location_t src_loc,
3003 line_maps *line_table)
3004 {
3005 src_loc = get_range_from_loc (line_table, src_loc).m_start;
3006
3007 /* SRC_LOC might be a macro location. It only makes sense to do
3008 column-by-column calculations on ordinary maps, so get the
3009 corresponding location in an ordinary map. */
3010 m_loc
3011 = linemap_resolve_location (line_table, src_loc,
3012 LRK_SPELLING_LOCATION, NULL);
3013
3014 const line_map_ordinary *map
3015 = linemap_check_ordinary (linemap_lookup (line_table, m_loc));
3016 m_offset_per_column = (1 << map->m_range_bits);
3017 }
3018
3019 /* Get the range of the next source byte. */
3020
3021 source_range
3022 cpp_string_location_reader::get_next ()
3023 {
3024 source_range result;
3025 result.m_start = m_loc;
3026 result.m_finish = m_loc;
3027 if (m_loc <= LINE_MAP_MAX_LOCATION_WITH_COLS)
3028 m_loc += m_offset_per_column;
3029 return result;
3030 }
3031
3032 cpp_display_width_computation::
3033 cpp_display_width_computation (const char *data, int data_length,
3034 const cpp_char_column_policy &policy) :
3035 m_begin (data),
3036 m_next (m_begin),
3037 m_bytes_left (data_length),
3038 m_policy (policy),
3039 m_display_cols (0)
3040 {
3041 gcc_assert (policy.m_tabstop > 0);
3042 gcc_assert (policy.m_width_cb);
3043 }
3044
3045
3046 /* The main implementation function for class cpp_display_width_computation.
3047 m_next points on entry to the start of the UTF-8 encoding of the next
3048 character, and is updated to point just after the last byte of the encoding.
3049 m_bytes_left contains on entry the remaining size of the buffer into which
3050 m_next points, and this is also updated accordingly. If m_next does not
3051 point to a valid UTF-8-encoded sequence, then it will be treated as a single
3052 byte with display width 1. m_cur_display_col is the current display column,
3053 relative to which tab stops should be expanded. Returns the display width of
3054 the codepoint just processed.
3055 If OUT is non-NULL, it is populated. */
3056
3057 int
3058 cpp_display_width_computation::process_next_codepoint (cpp_decoded_char *out)
3059 {
3060 cppchar_t c;
3061 int next_width;
3062
3063 if (out)
3064 out->m_start_byte = m_next;
3065
3066 if (*m_next == '\t')
3067 {
3068 ++m_next;
3069 --m_bytes_left;
3070 next_width = m_policy.m_tabstop - (m_display_cols % m_policy.m_tabstop);
3071 if (out)
3072 {
3073 out->m_ch = '\t';
3074 out->m_valid_ch = true;
3075 }
3076 }
3077 else if (one_utf8_to_cppchar ((const uchar **) &m_next, &m_bytes_left, &c)
3078 != 0)
3079 {
3080 /* Input is not convertible to UTF-8. This could be fine, e.g. in a
3081 string literal, so don't complain. Just treat it as if it has a width
3082 of one. */
3083 ++m_next;
3084 --m_bytes_left;
3085 next_width = m_policy.m_undecoded_byte_width;
3086 if (out)
3087 out->m_valid_ch = false;
3088 }
3089 else
3090 {
3091 /* one_utf8_to_cppchar() has updated m_next and m_bytes_left for us. */
3092 next_width = m_policy.m_width_cb (c);
3093 if (out)
3094 {
3095 out->m_ch = c;
3096 out->m_valid_ch = true;
3097 }
3098 }
3099
3100 if (out)
3101 out->m_next_byte = m_next;
3102
3103 m_display_cols += next_width;
3104 return next_width;
3105 }
3106
3107 /* Utility to advance the byte stream by the minimum amount needed to consume
3108 N display columns. Returns the number of display columns that were
3109 actually skipped. This could be less than N, if there was not enough data,
3110 or more than N, if the last character to be skipped had a sufficiently large
3111 display width. */
3112 int
3113 cpp_display_width_computation::advance_display_cols (int n)
3114 {
3115 const int start = m_display_cols;
3116 const int target = start + n;
3117 while (m_display_cols < target && !done ())
3118 process_next_codepoint (NULL);
3119 return m_display_cols - start;
3120 }
3121
3122 /* For the string of length DATA_LENGTH bytes that begins at DATA, compute
3123 how many display columns are occupied by the first COLUMN bytes. COLUMN
3124 may exceed DATA_LENGTH, in which case the phantom bytes at the end are
3125 treated as if they have display width 1. Tabs are expanded to the next tab
3126 stop, relative to the start of DATA, and non-printable-ASCII characters
3127 will be escaped as per POLICY. */
3128
3129 int
3130 cpp_byte_column_to_display_column (const char *data, int data_length,
3131 int column,
3132 const cpp_char_column_policy &policy)
3133 {
3134 const int offset = MAX (0, column - data_length);
3135 cpp_display_width_computation dw (data, column - offset, policy);
3136 while (!dw.done ())
3137 dw.process_next_codepoint (NULL);
3138 return dw.display_cols_processed () + offset;
3139 }
3140
3141 /* For the string of length DATA_LENGTH bytes that begins at DATA, compute
3142 the least number of bytes that will result in at least DISPLAY_COL display
3143 columns. The return value may exceed DATA_LENGTH if the entire string does
3144 not occupy enough display columns. Non-printable-ASCII characters
3145 will be escaped as per POLICY. */
3146
3147 int
3148 cpp_display_column_to_byte_column (const char *data, int data_length,
3149 int display_col,
3150 const cpp_char_column_policy &policy)
3151 {
3152 cpp_display_width_computation dw (data, data_length, policy);
3153 const int avail_display = dw.advance_display_cols (display_col);
3154 return dw.bytes_processed () + MAX (0, display_col - avail_display);
3155 }
3156
3157 template <typename PropertyType>
3158 PropertyType
3159 get_cppchar_property (cppchar_t c,
3160 const cppchar_t *range_ends,
3161 const PropertyType *range_values,
3162 size_t num_ranges,
3163 PropertyType default_value)
3164 {
3165 if (__builtin_expect (c <= range_ends[0], true))
3166 return range_values[0];
3167
3168 /* Binary search the tables. */
3169 int begin = 1;
3170 static const int end = num_ranges;
3171 int len = end - begin;
3172 do
3173 {
3174 int half = len/2;
3175 int middle = begin + half;
3176 if (c > range_ends[middle])
3177 {
3178 begin = middle + 1;
3179 len -= half + 1;
3180 }
3181 else
3182 len = half;
3183 } while (len);
3184
3185 if (__builtin_expect (begin != end, true))
3186 return range_values[begin];
3187
3188 return default_value;
3189 }
3190
3191 /* Our own version of wcwidth(). We don't use the actual wcwidth() in glibc,
3192 because that will inspect the user's locale, and in particular in an ASCII
3193 locale, it will not return anything useful for extended characters. But GCC
3194 in other respects (see e.g. _cpp_default_encoding()) behaves as if
3195 everything is UTF-8. We also make some tweaks that are useful for the way
3196 GCC needs to use this data, e.g. tabs and other control characters should be
3197 treated as having width 1. The lookup tables are generated from
3198 contrib/unicode/gen_wcwidth.py and were made by simply calling glibc
3199 wcwidth() on all codepoints, then applying the small tweaks. These tables
3200 are not highly optimized, but for the present purpose of outputting
3201 diagnostics, they are sufficient. */
3202
3203 #include "generated_cpp_wcwidth.h"
3204
3205 int
3206 cpp_wcwidth (cppchar_t c)
3207 {
3208 const size_t num_ranges
3209 = sizeof wcwidth_range_ends / sizeof (*wcwidth_range_ends);
3210 return get_cppchar_property<unsigned char > (c,
3211 &wcwidth_range_ends[0],
3212 &wcwidth_widths[0],
3213 num_ranges,
3214 1);
3215 }
3216
3217 #include "combining-chars.inc"
3218
3219 bool
3220 cpp_is_combining_char (cppchar_t c)
3221 {
3222 const size_t num_ranges
3223 = sizeof combining_range_ends / sizeof (*combining_range_ends);
3224 return get_cppchar_property<bool> (c,
3225 &combining_range_ends[0],
3226 &is_combining[0],
3227 num_ranges,
3228 false);
3229 }
3230
3231 #include "printable-chars.inc"
3232
3233 bool
3234 cpp_is_printable_char (cppchar_t c)
3235 {
3236 const size_t num_ranges
3237 = sizeof printable_range_ends / sizeof (*printable_range_ends);
3238 return get_cppchar_property<bool> (c,
3239 &printable_range_ends[0],
3240 &is_printable[0],
3241 num_ranges,
3242 false);
3243 }