]> git.ipfire.org Git - thirdparty/gcc.git/blob - libdecnumber/decNumber.c
* decLibrary.c (__dec_byte_swap): Use uint32_t for argument and
[thirdparty/gcc.git] / libdecnumber / decNumber.c
1 /* Decimal Number module for the decNumber C Library
2 Copyright (C) 2005 Free Software Foundation, Inc.
3 Contributed by IBM Corporation. Author Mike Cowlishaw.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22 /* ------------------------------------------------------------------ */
23 /* This module comprises the routines for Standard Decimal Arithmetic */
24 /* as defined in the specification which may be found on the */
25 /* http://www2.hursley.ibm.com/decimal web pages. It implements both */
26 /* the full ('extended') arithmetic and the simpler ('subset') */
27 /* arithmetic. */
28 /* */
29 /* Usage notes: */
30 /* */
31 /* 1. This code is ANSI C89 except: */
32 /* */
33 /* a) Line comments (double forward slash) are used. (Most C */
34 /* compilers accept these. If yours does not, a simple script */
35 /* can be used to convert them to ANSI C comments.) */
36 /* */
37 /* b) Types from C99 stdint.h are used. If you do not have this */
38 /* header file, see the User's Guide section of the decNumber */
39 /* documentation; this lists the necessary definitions. */
40 /* */
41 /* c) If DECDPUN>4, non-ANSI 64-bit 'long long' types are used. */
42 /* To avoid these, set DECDPUN <= 4 (see documentation). */
43 /* */
44 /* 2. The decNumber format which this library uses is optimized for */
45 /* efficient processing of relatively short numbers; in particular */
46 /* it allows the use of fixed sized structures and minimizes copy */
47 /* and move operations. It does, however, support arbitrary */
48 /* precision (up to 999,999,999 digits) and arbitrary exponent */
49 /* range (Emax in the range 0 through 999,999,999 and Emin in the */
50 /* range -999,999,999 through 0). */
51 /* */
52 /* 3. Operands to operator functions are never modified unless they */
53 /* are also specified to be the result number (which is always */
54 /* permitted). Other than that case, operands may not overlap. */
55 /* */
56 /* 4. Error handling: the type of the error is ORed into the status */
57 /* flags in the current context (decContext structure). The */
58 /* SIGFPE signal is then raised if the corresponding trap-enabler */
59 /* flag in the decContext is set (is 1). */
60 /* */
61 /* It is the responsibility of the caller to clear the status */
62 /* flags as required. */
63 /* */
64 /* The result of any routine which returns a number will always */
65 /* be a valid number (which may be a special value, such as an */
66 /* Infinity or NaN). */
67 /* */
68 /* 5. The decNumber format is not an exchangeable concrete */
69 /* representation as it comprises fields which may be machine- */
70 /* dependent (big-endian or little-endian, for example). */
71 /* Canonical conversions to and from strings are provided; other */
72 /* conversions are available in separate modules. */
73 /* */
74 /* 6. Normally, input operands are assumed to be valid. Set DECCHECK */
75 /* to 1 for extended operand checking (including NULL operands). */
76 /* Results are undefined if a badly-formed structure (or a NULL */
77 /* NULL pointer to a structure) is provided, though with DECCHECK */
78 /* enabled the operator routines are protected against exceptions. */
79 /* (Except if the result pointer is NULL, which is unrecoverable.) */
80 /* */
81 /* However, the routines will never cause exceptions if they are */
82 /* given well-formed operands, even if the value of the operands */
83 /* is inappropriate for the operation and DECCHECK is not set. */
84 /* */
85 /* 7. Subset arithmetic is available only if DECSUBSET is set to 1. */
86 /* ------------------------------------------------------------------ */
87 /* Implementation notes for maintenance of this module: */
88 /* */
89 /* 1. Storage leak protection: Routines which use malloc are not */
90 /* permitted to use return for fastpath or error exits (i.e., */
91 /* they follow strict structured programming conventions). */
92 /* Instead they have a do{}while(0); construct surrounding the */
93 /* code which is protected -- break may be used from this. */
94 /* Other routines are allowed to use the return statement inline. */
95 /* */
96 /* Storage leak accounting can be enabled using DECALLOC. */
97 /* */
98 /* 2. All loops use the for(;;) construct. Any do construct is for */
99 /* protection as just described. */
100 /* */
101 /* 3. Setting status in the context must always be the very last */
102 /* action in a routine, as non-0 status may raise a trap and hence */
103 /* the call to set status may not return (if the handler uses long */
104 /* jump). Therefore all cleanup must be done first. In general, */
105 /* to achieve this we accumulate status and only finally apply it */
106 /* by calling decContextSetStatus (via decStatus). */
107 /* */
108 /* Routines which allocate storage cannot, therefore, use the */
109 /* 'top level' routines which could cause a non-returning */
110 /* transfer of control. The decXxxxOp routines are safe (do not */
111 /* call decStatus even if traps are set in the context) and should */
112 /* be used instead (they are also a little faster). */
113 /* */
114 /* 4. Exponent checking is minimized by allowing the exponent to */
115 /* grow outside its limits during calculations, provided that */
116 /* the decFinalize function is called later. Multiplication and */
117 /* division, and intermediate calculations in exponentiation, */
118 /* require more careful checks because of the risk of 31-bit */
119 /* overflow (the most negative valid exponent is -1999999997, for */
120 /* a 999999999-digit number with adjusted exponent of -999999999). */
121 /* */
122 /* 5. Rounding is deferred until finalization of results, with any */
123 /* 'off to the right' data being represented as a single digit */
124 /* residue (in the range -1 through 9). This avoids any double- */
125 /* rounding when more than one shortening takes place (for */
126 /* example, when a result is subnormal). */
127 /* */
128 /* 6. The digits count is allowed to rise to a multiple of DECDPUN */
129 /* during many operations, so whole Units are handled and exact */
130 /* accounting of digits is not needed. The correct digits value */
131 /* is found by decGetDigits, which accounts for leading zeros. */
132 /* This must be called before any rounding if the number of digits */
133 /* is not known exactly. */
134 /* */
135 /* 7. We use the multiply-by-reciprocal 'trick' for partitioning */
136 /* numbers up to four digits, using appropriate constants. This */
137 /* is not useful for longer numbers because overflow of 32 bits */
138 /* would lead to 4 multiplies, which is almost as expensive as */
139 /* a divide (unless we assumed floating-point multiply available). */
140 /* */
141 /* 8. Unusual abbreviations possibly used in the commentary: */
142 /* lhs -- left hand side (operand, of an operation) */
143 /* lsd -- least significant digit (of coefficient) */
144 /* lsu -- least significant Unit (of coefficient) */
145 /* msd -- most significant digit (of coefficient) */
146 /* msu -- most significant Unit (of coefficient) */
147 /* rhs -- right hand side (operand, of an operation) */
148 /* +ve -- positive */
149 /* -ve -- negative */
150 /* ------------------------------------------------------------------ */
151
152 /* Some of glibc's string inlines cause warnings. Plus we'd rather
153 rely on (and therefore test) GCC's string builtins. */
154 #define __NO_STRING_INLINES
155
156 #include <stdlib.h> /* for malloc, free, etc. */
157 #include <stdio.h> /* for printf [if needed] */
158 #include <string.h> /* for strcpy */
159 #include <ctype.h> /* for lower */
160 #include "config.h"
161 #include "decNumber.h" /* base number library */
162 #include "decNumberLocal.h" /* decNumber local types, etc. */
163
164 /* Constants */
165 /* Public constant array: powers of ten (powers[n]==10**n) */
166 const uInt powers[] = { 1, 10, 100, 1000, 10000, 100000, 1000000,
167 10000000, 100000000, 1000000000
168 };
169
170 /* Local constants */
171 #define DIVIDE 0x80 /* Divide operators */
172 #define REMAINDER 0x40 /* .. */
173 #define DIVIDEINT 0x20 /* .. */
174 #define REMNEAR 0x10 /* .. */
175 #define COMPARE 0x01 /* Compare operators */
176 #define COMPMAX 0x02 /* .. */
177 #define COMPMIN 0x03 /* .. */
178 #define COMPNAN 0x04 /* .. [NaN processing] */
179
180 #define DEC_sNaN 0x40000000 /* local status: sNaN signal */
181 #define BADINT (Int)0x80000000 /* most-negative Int; error indicator */
182
183 static Unit one[] = { 1 }; /* Unit array of 1, used for incrementing */
184
185 /* Granularity-dependent code */
186 #if DECDPUN<=4
187 #define eInt Int /* extended integer */
188 #define ueInt uInt /* unsigned extended integer */
189 /* Constant multipliers for divide-by-power-of five using reciprocal */
190 /* multiply, after removing powers of 2 by shifting, and final shift */
191 /* of 17 [we only need up to **4] */
192 static const uInt multies[] = { 131073, 26215, 5243, 1049, 210 };
193
194 /* QUOT10 -- macro to return the quotient of unit u divided by 10**n */
195 #define QUOT10(u, n) ((((uInt)(u)>>(n))*multies[n])>>17)
196 #else
197 /* For DECDPUN>4 we currently use non-ANSI 64-bit types. These could */
198 /* be replaced by subroutine calls later. */
199 #ifdef long
200 #undef long
201 #endif
202 typedef signed long long Long;
203 typedef unsigned long long uLong;
204 #define eInt Long /* extended integer */
205 #define ueInt uLong /* unsigned extended integer */
206 #endif
207
208 /* Local routines */
209 static decNumber *decAddOp (decNumber *, decNumber *, decNumber *,
210 decContext *, uByte, uInt *);
211 static void decApplyRound (decNumber *, decContext *, Int, uInt *);
212 static Int decCompare (decNumber * lhs, decNumber * rhs);
213 static decNumber *decCompareOp (decNumber *, decNumber *, decNumber *,
214 decContext *, Flag, uInt *);
215 static void decCopyFit (decNumber *, decNumber *, decContext *,
216 Int *, uInt *);
217 static decNumber *decDivideOp (decNumber *, decNumber *, decNumber *,
218 decContext *, Flag, uInt *);
219 static void decFinalize (decNumber *, decContext *, Int *, uInt *);
220 static Int decGetDigits (Unit *, Int);
221 #if DECSUBSET
222 static Int decGetInt (decNumber *, decContext *);
223 #else
224 static Int decGetInt (decNumber *);
225 #endif
226 static decNumber *decMultiplyOp (decNumber *, decNumber *, decNumber *,
227 decContext *, uInt *);
228 static decNumber *decNaNs (decNumber *, decNumber *, decNumber *, uInt *);
229 static decNumber *decQuantizeOp (decNumber *, decNumber *, decNumber *,
230 decContext *, Flag, uInt *);
231 static void decSetCoeff (decNumber *, decContext *, Unit *,
232 Int, Int *, uInt *);
233 static void decSetOverflow (decNumber *, decContext *, uInt *);
234 static void decSetSubnormal (decNumber *, decContext *, Int *, uInt *);
235 static Int decShiftToLeast (Unit *, Int, Int);
236 static Int decShiftToMost (Unit *, Int, Int);
237 static void decStatus (decNumber *, uInt, decContext *);
238 static Flag decStrEq (const char *, const char *);
239 static void decToString (decNumber *, char[], Flag);
240 static decNumber *decTrim (decNumber *, Flag, Int *);
241 static Int decUnitAddSub (Unit *, Int, Unit *, Int, Int, Unit *, Int);
242 static Int decUnitCompare (Unit *, Int, Unit *, Int, Int);
243
244 #if !DECSUBSET
245 /* decFinish == decFinalize when no subset arithmetic needed */
246 #define decFinish(a,b,c,d) decFinalize(a,b,c,d)
247 #else
248 static void decFinish (decNumber *, decContext *, Int *, uInt *);
249 static decNumber *decRoundOperand (decNumber *, decContext *, uInt *);
250 #endif
251
252 /* Diagnostic macros, etc. */
253 #if DECALLOC
254 /* Handle malloc/free accounting. If enabled, our accountable routines */
255 /* are used; otherwise the code just goes straight to the system malloc */
256 /* and free routines. */
257 #define malloc(a) decMalloc(a)
258 #define free(a) decFree(a)
259 #define DECFENCE 0x5a /* corruption detector */
260 /* 'Our' malloc and free: */
261 static void *decMalloc (size_t);
262 static void decFree (void *);
263 uInt decAllocBytes = 0; /* count of bytes allocated */
264 /* Note that DECALLOC code only checks for storage buffer overflow. */
265 /* To check for memory leaks, the decAllocBytes variable should be */
266 /* checked to be 0 at appropriate times (e.g., after the test */
267 /* harness completes a set of tests). This checking may be unreliable */
268 /* if the testing is done in a multi-thread environment. */
269 #endif
270
271 #if DECCHECK
272 /* Optional operand checking routines. Enabling these means that */
273 /* decNumber and decContext operands to operator routines are checked */
274 /* for correctness. This roughly doubles the execution time of the */
275 /* fastest routines (and adds 600+ bytes), so should not normally be */
276 /* used in 'production'. */
277 #define DECUNUSED (void *)(0xffffffff)
278 static Flag decCheckOperands (decNumber *, decNumber *, decNumber *,
279 decContext *);
280 static Flag decCheckNumber (decNumber *, decContext *);
281 #endif
282
283 #if DECTRACE || DECCHECK
284 /* Optional trace/debugging routines. */
285 void decNumberShow (decNumber *); /* displays the components of a number */
286 static void decDumpAr (char, Unit *, Int);
287 #endif
288
289 /* ================================================================== */
290 /* Conversions */
291 /* ================================================================== */
292
293 /* ------------------------------------------------------------------ */
294 /* to-scientific-string -- conversion to numeric string */
295 /* to-engineering-string -- conversion to numeric string */
296 /* */
297 /* decNumberToString(dn, string); */
298 /* decNumberToEngString(dn, string); */
299 /* */
300 /* dn is the decNumber to convert */
301 /* string is the string where the result will be laid out */
302 /* */
303 /* string must be at least dn->digits+14 characters long */
304 /* */
305 /* No error is possible, and no status can be set. */
306 /* ------------------------------------------------------------------ */
307 char *
308 decNumberToString (decNumber * dn, char *string)
309 {
310 decToString (dn, string, 0);
311 return string;
312 }
313
314 char *
315 decNumberToEngString (decNumber * dn, char *string)
316 {
317 decToString (dn, string, 1);
318 return string;
319 }
320
321 /* ------------------------------------------------------------------ */
322 /* to-number -- conversion from numeric string */
323 /* */
324 /* decNumberFromString -- convert string to decNumber */
325 /* dn -- the number structure to fill */
326 /* chars[] -- the string to convert ('\0' terminated) */
327 /* set -- the context used for processing any error, */
328 /* determining the maximum precision available */
329 /* (set.digits), determining the maximum and minimum */
330 /* exponent (set.emax and set.emin), determining if */
331 /* extended values are allowed, and checking the */
332 /* rounding mode if overflow occurs or rounding is */
333 /* needed. */
334 /* */
335 /* The length of the coefficient and the size of the exponent are */
336 /* checked by this routine, so the correct error (Underflow or */
337 /* Overflow) can be reported or rounding applied, as necessary. */
338 /* */
339 /* If bad syntax is detected, the result will be a quiet NaN. */
340 /* ------------------------------------------------------------------ */
341 decNumber *
342 decNumberFromString (decNumber * dn, char chars[], decContext * set)
343 {
344 Int exponent = 0; /* working exponent [assume 0] */
345 uByte bits = 0; /* working flags [assume +ve] */
346 Unit *res; /* where result will be built */
347 Unit resbuff[D2U (DECBUFFER + 1)]; /* local buffer in case need temporary */
348 Unit *allocres = NULL; /* -> allocated result, iff allocated */
349 Int need; /* units needed for result */
350 Int d = 0; /* count of digits found in decimal part */
351 char *dotchar = NULL; /* where dot was found */
352 char *cfirst; /* -> first character of decimal part */
353 char *last = NULL; /* -> last digit of decimal part */
354 char *firstexp; /* -> first significant exponent digit */
355 char *c; /* work */
356 Unit *up; /* .. */
357 #if DECDPUN>1
358 Int i; /* .. */
359 #endif
360 Int residue = 0; /* rounding residue */
361 uInt status = 0; /* error code */
362
363 #if DECCHECK
364 if (decCheckOperands (DECUNUSED, DECUNUSED, DECUNUSED, set))
365 return decNumberZero (dn);
366 #endif
367
368 do
369 { /* status & malloc protection */
370 c = chars; /* -> input character */
371 if (*c == '-')
372 { /* handle leading '-' */
373 bits = DECNEG;
374 c++;
375 }
376 else if (*c == '+')
377 c++; /* step over leading '+' */
378 /* We're at the start of the number [we think] */
379 cfirst = c; /* save */
380 for (;; c++)
381 {
382 if (*c >= '0' && *c <= '9')
383 { /* test for Arabic digit */
384 last = c;
385 d++; /* count of real digits */
386 continue; /* still in decimal part */
387 }
388 if (*c != '.')
389 break; /* done with decimal part */
390 /* dot: record, check, and ignore */
391 if (dotchar != NULL)
392 { /* two dots */
393 last = NULL; /* indicate bad */
394 break;
395 } /* .. and go report */
396 dotchar = c; /* offset into decimal part */
397 } /* c */
398
399 if (last == NULL)
400 { /* no decimal digits, or >1 . */
401 #if DECSUBSET
402 /* If subset then infinities and NaNs are not allowed */
403 if (!set->extended)
404 {
405 status = DEC_Conversion_syntax;
406 break; /* all done */
407 }
408 else
409 {
410 #endif
411 /* Infinities and NaNs are possible, here */
412 decNumberZero (dn); /* be optimistic */
413 if (decStrEq (c, "Infinity") || decStrEq (c, "Inf"))
414 {
415 dn->bits = bits | DECINF;
416 break; /* all done */
417 }
418 else
419 { /* a NaN expected */
420 /* 2003.09.10 NaNs are now permitted to have a sign */
421 status = DEC_Conversion_syntax; /* assume the worst */
422 dn->bits = bits | DECNAN; /* assume simple NaN */
423 if (*c == 's' || *c == 'S')
424 { /* looks like an` sNaN */
425 c++;
426 dn->bits = bits | DECSNAN;
427 }
428 if (*c != 'n' && *c != 'N')
429 break; /* check caseless "NaN" */
430 c++;
431 if (*c != 'a' && *c != 'A')
432 break; /* .. */
433 c++;
434 if (*c != 'n' && *c != 'N')
435 break; /* .. */
436 c++;
437 /* now nothing, or nnnn, expected */
438 /* -> start of integer and skip leading 0s [including plain 0] */
439 for (cfirst = c; *cfirst == '0';)
440 cfirst++;
441 if (*cfirst == '\0')
442 { /* "NaN" or "sNaN", maybe with all 0s */
443 status = 0; /* it's good */
444 break; /* .. */
445 }
446 /* something other than 0s; setup last and d as usual [no dots] */
447 for (c = cfirst;; c++, d++)
448 {
449 if (*c < '0' || *c > '9')
450 break; /* test for Arabic digit */
451 last = c;
452 }
453 if (*c != '\0')
454 break; /* not all digits */
455 if (d > set->digits)
456 break; /* too many digits */
457 /* good; drop through and convert the integer */
458 status = 0;
459 bits = dn->bits; /* for copy-back */
460 } /* NaN expected */
461 #if DECSUBSET
462 }
463 #endif
464 } /* last==NULL */
465
466 if (*c != '\0')
467 { /* more there; exponent expected... */
468 Flag nege = 0; /* 1=negative exponent */
469 if (*c != 'e' && *c != 'E')
470 {
471 status = DEC_Conversion_syntax;
472 break;
473 }
474
475 /* Found 'e' or 'E' -- now process explicit exponent */
476 /* 1998.07.11: sign no longer required */
477 c++; /* to (expected) sign */
478 if (*c == '-')
479 {
480 nege = 1;
481 c++;
482 }
483 else if (*c == '+')
484 c++;
485 if (*c == '\0')
486 {
487 status = DEC_Conversion_syntax;
488 break;
489 }
490
491 for (; *c == '0' && *(c + 1) != '\0';)
492 c++; /* strip insignificant zeros */
493 firstexp = c; /* save exponent digit place */
494 for (;; c++)
495 {
496 if (*c < '0' || *c > '9')
497 break; /* not a digit */
498 exponent = X10 (exponent) + (Int) * c - (Int) '0';
499 } /* c */
500 /* if we didn't end on '\0' must not be a digit */
501 if (*c != '\0')
502 {
503 status = DEC_Conversion_syntax;
504 break;
505 }
506
507 /* (this next test must be after the syntax check) */
508 /* if it was too long the exponent may have wrapped, so check */
509 /* carefully and set it to a certain overflow if wrap possible */
510 if (c >= firstexp + 9 + 1)
511 {
512 if (c > firstexp + 9 + 1 || *firstexp > '1')
513 exponent = DECNUMMAXE * 2;
514 /* [up to 1999999999 is OK, for example 1E-1000000998] */
515 }
516 if (nege)
517 exponent = -exponent; /* was negative */
518 } /* had exponent */
519 /* Here when all inspected; syntax is good */
520
521 /* Handle decimal point... */
522 if (dotchar != NULL && dotchar < last) /* embedded . found, so */
523 exponent = exponent - (last - dotchar); /* .. adjust exponent */
524 /* [we can now ignore the .] */
525
526 /* strip leading zeros/dot (leave final if all 0's) */
527 for (c = cfirst; c < last; c++)
528 {
529 if (*c == '0')
530 d--; /* 0 stripped */
531 else if (*c != '.')
532 break;
533 cfirst++; /* step past leader */
534 } /* c */
535
536 #if DECSUBSET
537 /* We can now make a rapid exit for zeros if !extended */
538 if (*cfirst == '0' && !set->extended)
539 {
540 decNumberZero (dn); /* clean result */
541 break; /* [could be return] */
542 }
543 #endif
544
545 /* OK, the digits string is good. Copy to the decNumber, or to
546 a temporary decNumber if rounding is needed */
547 if (d <= set->digits)
548 res = dn->lsu; /* fits into given decNumber */
549 else
550 { /* rounding needed */
551 need = D2U (d); /* units needed */
552 res = resbuff; /* assume use local buffer */
553 if (need * sizeof (Unit) > sizeof (resbuff))
554 { /* too big for local */
555 allocres = (Unit *) malloc (need * sizeof (Unit));
556 if (allocres == NULL)
557 {
558 status |= DEC_Insufficient_storage;
559 break;
560 }
561 res = allocres;
562 }
563 }
564 /* res now -> number lsu, buffer, or allocated storage for Unit array */
565
566 /* Place the coefficient into the selected Unit array */
567 #if DECDPUN>1
568 i = d % DECDPUN; /* digits in top unit */
569 if (i == 0)
570 i = DECDPUN;
571 up = res + D2U (d) - 1; /* -> msu */
572 *up = 0;
573 for (c = cfirst;; c++)
574 { /* along the digits */
575 if (*c == '.')
576 { /* ignore . [don't decrement i] */
577 if (c != last)
578 continue;
579 break;
580 }
581 *up = (Unit) (X10 (*up) + (Int) * c - (Int) '0');
582 i--;
583 if (i > 0)
584 continue; /* more for this unit */
585 if (up == res)
586 break; /* just filled the last unit */
587 i = DECDPUN;
588 up--;
589 *up = 0;
590 } /* c */
591 #else
592 /* DECDPUN==1 */
593 up = res; /* -> lsu */
594 for (c = last; c >= cfirst; c--)
595 { /* over each character, from least */
596 if (*c == '.')
597 continue; /* ignore . [don't step b] */
598 *up = (Unit) ((Int) * c - (Int) '0');
599 up++;
600 } /* c */
601 #endif
602
603 dn->bits = bits;
604 dn->exponent = exponent;
605 dn->digits = d;
606
607 /* if not in number (too long) shorten into the number */
608 if (d > set->digits)
609 decSetCoeff (dn, set, res, d, &residue, &status);
610
611 /* Finally check for overflow or subnormal and round as needed */
612 decFinalize (dn, set, &residue, &status);
613 /* decNumberShow(dn); */
614 }
615 while (0); /* [for break] */
616
617 if (allocres != NULL)
618 free (allocres); /* drop any storage we used */
619 if (status != 0)
620 decStatus (dn, status, set);
621 return dn;
622 }
623
624 /* ================================================================== */
625 /* Operators */
626 /* ================================================================== */
627
628 /* ------------------------------------------------------------------ */
629 /* decNumberAbs -- absolute value operator */
630 /* */
631 /* This computes C = abs(A) */
632 /* */
633 /* res is C, the result. C may be A */
634 /* rhs is A */
635 /* set is the context */
636 /* */
637 /* C must have space for set->digits digits. */
638 /* ------------------------------------------------------------------ */
639 /* This has the same effect as decNumberPlus unless A is negative, */
640 /* in which case it has the same effect as decNumberMinus. */
641 /* ------------------------------------------------------------------ */
642 decNumber *
643 decNumberAbs (decNumber * res, decNumber * rhs, decContext * set)
644 {
645 decNumber dzero; /* for 0 */
646 uInt status = 0; /* accumulator */
647
648 #if DECCHECK
649 if (decCheckOperands (res, DECUNUSED, rhs, set))
650 return res;
651 #endif
652
653 decNumberZero (&dzero); /* set 0 */
654 dzero.exponent = rhs->exponent; /* [no coefficient expansion] */
655 decAddOp (res, &dzero, rhs, set, (uByte) (rhs->bits & DECNEG), &status);
656 if (status != 0)
657 decStatus (res, status, set);
658 return res;
659 }
660
661 /* ------------------------------------------------------------------ */
662 /* decNumberAdd -- add two Numbers */
663 /* */
664 /* This computes C = A + B */
665 /* */
666 /* res is C, the result. C may be A and/or B (e.g., X=X+X) */
667 /* lhs is A */
668 /* rhs is B */
669 /* set is the context */
670 /* */
671 /* C must have space for set->digits digits. */
672 /* ------------------------------------------------------------------ */
673 /* This just calls the routine shared with Subtract */
674 decNumber *
675 decNumberAdd (decNumber * res, decNumber * lhs, decNumber * rhs,
676 decContext * set)
677 {
678 uInt status = 0; /* accumulator */
679 decAddOp (res, lhs, rhs, set, 0, &status);
680 if (status != 0)
681 decStatus (res, status, set);
682 return res;
683 }
684
685 /* ------------------------------------------------------------------ */
686 /* decNumberCompare -- compare two Numbers */
687 /* */
688 /* This computes C = A ? B */
689 /* */
690 /* res is C, the result. C may be A and/or B (e.g., X=X?X) */
691 /* lhs is A */
692 /* rhs is B */
693 /* set is the context */
694 /* */
695 /* C must have space for one digit. */
696 /* ------------------------------------------------------------------ */
697 decNumber *
698 decNumberCompare (decNumber * res, decNumber * lhs, decNumber * rhs,
699 decContext * set)
700 {
701 uInt status = 0; /* accumulator */
702 decCompareOp (res, lhs, rhs, set, COMPARE, &status);
703 if (status != 0)
704 decStatus (res, status, set);
705 return res;
706 }
707
708 /* ------------------------------------------------------------------ */
709 /* decNumberDivide -- divide one number by another */
710 /* */
711 /* This computes C = A / B */
712 /* */
713 /* res is C, the result. C may be A and/or B (e.g., X=X/X) */
714 /* lhs is A */
715 /* rhs is B */
716 /* set is the context */
717 /* */
718 /* C must have space for set->digits digits. */
719 /* ------------------------------------------------------------------ */
720 decNumber *
721 decNumberDivide (decNumber * res, decNumber * lhs,
722 decNumber * rhs, decContext * set)
723 {
724 uInt status = 0; /* accumulator */
725 decDivideOp (res, lhs, rhs, set, DIVIDE, &status);
726 if (status != 0)
727 decStatus (res, status, set);
728 return res;
729 }
730
731 /* ------------------------------------------------------------------ */
732 /* decNumberDivideInteger -- divide and return integer quotient */
733 /* */
734 /* This computes C = A # B, where # is the integer divide operator */
735 /* */
736 /* res is C, the result. C may be A and/or B (e.g., X=X#X) */
737 /* lhs is A */
738 /* rhs is B */
739 /* set is the context */
740 /* */
741 /* C must have space for set->digits digits. */
742 /* ------------------------------------------------------------------ */
743 decNumber *
744 decNumberDivideInteger (decNumber * res, decNumber * lhs,
745 decNumber * rhs, decContext * set)
746 {
747 uInt status = 0; /* accumulator */
748 decDivideOp (res, lhs, rhs, set, DIVIDEINT, &status);
749 if (status != 0)
750 decStatus (res, status, set);
751 return res;
752 }
753
754 /* ------------------------------------------------------------------ */
755 /* decNumberMax -- compare two Numbers and return the maximum */
756 /* */
757 /* This computes C = A ? B, returning the maximum or A if equal */
758 /* */
759 /* res is C, the result. C may be A and/or B (e.g., X=X?X) */
760 /* lhs is A */
761 /* rhs is B */
762 /* set is the context */
763 /* */
764 /* C must have space for set->digits digits. */
765 /* ------------------------------------------------------------------ */
766 decNumber *
767 decNumberMax (decNumber * res, decNumber * lhs, decNumber * rhs,
768 decContext * set)
769 {
770 uInt status = 0; /* accumulator */
771 decCompareOp (res, lhs, rhs, set, COMPMAX, &status);
772 if (status != 0)
773 decStatus (res, status, set);
774 return res;
775 }
776
777 /* ------------------------------------------------------------------ */
778 /* decNumberMin -- compare two Numbers and return the minimum */
779 /* */
780 /* This computes C = A ? B, returning the minimum or A if equal */
781 /* */
782 /* res is C, the result. C may be A and/or B (e.g., X=X?X) */
783 /* lhs is A */
784 /* rhs is B */
785 /* set is the context */
786 /* */
787 /* C must have space for set->digits digits. */
788 /* ------------------------------------------------------------------ */
789 decNumber *
790 decNumberMin (decNumber * res, decNumber * lhs, decNumber * rhs,
791 decContext * set)
792 {
793 uInt status = 0; /* accumulator */
794 decCompareOp (res, lhs, rhs, set, COMPMIN, &status);
795 if (status != 0)
796 decStatus (res, status, set);
797 return res;
798 }
799
800 /* ------------------------------------------------------------------ */
801 /* decNumberMinus -- prefix minus operator */
802 /* */
803 /* This computes C = 0 - A */
804 /* */
805 /* res is C, the result. C may be A */
806 /* rhs is A */
807 /* set is the context */
808 /* */
809 /* C must have space for set->digits digits. */
810 /* ------------------------------------------------------------------ */
811 /* We simply use AddOp for the subtract, which will do the necessary. */
812 /* ------------------------------------------------------------------ */
813 decNumber *
814 decNumberMinus (decNumber * res, decNumber * rhs, decContext * set)
815 {
816 decNumber dzero;
817 uInt status = 0; /* accumulator */
818
819 #if DECCHECK
820 if (decCheckOperands (res, DECUNUSED, rhs, set))
821 return res;
822 #endif
823
824 decNumberZero (&dzero); /* make 0 */
825 dzero.exponent = rhs->exponent; /* [no coefficient expansion] */
826 decAddOp (res, &dzero, rhs, set, DECNEG, &status);
827 if (status != 0)
828 decStatus (res, status, set);
829 return res;
830 }
831
832 /* ------------------------------------------------------------------ */
833 /* decNumberPlus -- prefix plus operator */
834 /* */
835 /* This computes C = 0 + A */
836 /* */
837 /* res is C, the result. C may be A */
838 /* rhs is A */
839 /* set is the context */
840 /* */
841 /* C must have space for set->digits digits. */
842 /* ------------------------------------------------------------------ */
843 /* We simply use AddOp; Add will take fast path after preparing A. */
844 /* Performance is a concern here, as this routine is often used to */
845 /* check operands and apply rounding and overflow/underflow testing. */
846 /* ------------------------------------------------------------------ */
847 decNumber *
848 decNumberPlus (decNumber * res, decNumber * rhs, decContext * set)
849 {
850 decNumber dzero;
851 uInt status = 0; /* accumulator */
852
853 #if DECCHECK
854 if (decCheckOperands (res, DECUNUSED, rhs, set))
855 return res;
856 #endif
857
858 decNumberZero (&dzero); /* make 0 */
859 dzero.exponent = rhs->exponent; /* [no coefficient expansion] */
860 decAddOp (res, &dzero, rhs, set, 0, &status);
861 if (status != 0)
862 decStatus (res, status, set);
863 return res;
864 }
865
866 /* ------------------------------------------------------------------ */
867 /* decNumberMultiply -- multiply two Numbers */
868 /* */
869 /* This computes C = A x B */
870 /* */
871 /* res is C, the result. C may be A and/or B (e.g., X=X+X) */
872 /* lhs is A */
873 /* rhs is B */
874 /* set is the context */
875 /* */
876 /* C must have space for set->digits digits. */
877 /* ------------------------------------------------------------------ */
878 decNumber *
879 decNumberMultiply (decNumber * res, decNumber * lhs,
880 decNumber * rhs, decContext * set)
881 {
882 uInt status = 0; /* accumulator */
883 decMultiplyOp (res, lhs, rhs, set, &status);
884 if (status != 0)
885 decStatus (res, status, set);
886 return res;
887 }
888
889 /* ------------------------------------------------------------------ */
890 /* decNumberNormalize -- remove trailing zeros */
891 /* */
892 /* This computes C = 0 + A, and normalizes the result */
893 /* */
894 /* res is C, the result. C may be A */
895 /* rhs is A */
896 /* set is the context */
897 /* */
898 /* C must have space for set->digits digits. */
899 /* ------------------------------------------------------------------ */
900 decNumber *
901 decNumberNormalize (decNumber * res, decNumber * rhs, decContext * set)
902 {
903 decNumber *allocrhs = NULL; /* non-NULL if rounded rhs allocated */
904 uInt status = 0; /* as usual */
905 Int residue = 0; /* as usual */
906 Int dropped; /* work */
907
908 #if DECCHECK
909 if (decCheckOperands (res, DECUNUSED, rhs, set))
910 return res;
911 #endif
912
913 do
914 { /* protect allocated storage */
915 #if DECSUBSET
916 if (!set->extended)
917 {
918 /* reduce operand and set lostDigits status, as needed */
919 if (rhs->digits > set->digits)
920 {
921 allocrhs = decRoundOperand (rhs, set, &status);
922 if (allocrhs == NULL)
923 break;
924 rhs = allocrhs;
925 }
926 }
927 #endif
928 /* [following code does not require input rounding] */
929
930 /* specials copy through, except NaNs need care */
931 if (decNumberIsNaN (rhs))
932 {
933 decNaNs (res, rhs, NULL, &status);
934 break;
935 }
936
937 /* reduce result to the requested length and copy to result */
938 decCopyFit (res, rhs, set, &residue, &status); /* copy & round */
939 decFinish (res, set, &residue, &status); /* cleanup/set flags */
940 decTrim (res, 1, &dropped); /* normalize in place */
941 }
942 while (0); /* end protected */
943
944 if (allocrhs != NULL)
945 free (allocrhs); /* .. */
946 if (status != 0)
947 decStatus (res, status, set); /* then report status */
948 return res;
949 }
950
951 /* ------------------------------------------------------------------ */
952 /* decNumberPower -- raise a number to an integer power */
953 /* */
954 /* This computes C = A ** B */
955 /* */
956 /* res is C, the result. C may be A and/or B (e.g., X=X**X) */
957 /* lhs is A */
958 /* rhs is B */
959 /* set is the context */
960 /* */
961 /* C must have space for set->digits digits. */
962 /* */
963 /* Specification restriction: abs(n) must be <=999999999 */
964 /* ------------------------------------------------------------------ */
965 decNumber *
966 decNumberPower (decNumber * res, decNumber * lhs,
967 decNumber * rhs, decContext * set)
968 {
969 decNumber *alloclhs = NULL; /* non-NULL if rounded lhs allocated */
970 decNumber *allocrhs = NULL; /* .., rhs */
971 decNumber *allocdac = NULL; /* -> allocated acc buffer, iff used */
972 decNumber *inrhs = rhs; /* save original rhs */
973 Int reqdigits = set->digits; /* requested DIGITS */
974 Int n; /* RHS in binary */
975 Int i; /* work */
976 #if DECSUBSET
977 Int dropped; /* .. */
978 #endif
979 uInt needbytes; /* buffer size needed */
980 Flag seenbit; /* seen a bit while powering */
981 Int residue = 0; /* rounding residue */
982 uInt status = 0; /* accumulator */
983 uByte bits = 0; /* result sign if errors */
984 decContext workset; /* working context */
985 decNumber dnOne; /* work value 1... */
986 /* local accumulator buffer [a decNumber, with digits+elength+1 digits] */
987 uByte dacbuff[sizeof (decNumber) + D2U (DECBUFFER + 9) * sizeof (Unit)];
988 /* same again for possible 1/lhs calculation */
989 uByte lhsbuff[sizeof (decNumber) + D2U (DECBUFFER + 9) * sizeof (Unit)];
990 decNumber *dac = (decNumber *) dacbuff; /* -> result accumulator */
991
992 #if DECCHECK
993 if (decCheckOperands (res, lhs, rhs, set))
994 return res;
995 #endif
996
997 do
998 { /* protect allocated storage */
999 #if DECSUBSET
1000 if (!set->extended)
1001 {
1002 /* reduce operands and set lostDigits status, as needed */
1003 if (lhs->digits > reqdigits)
1004 {
1005 alloclhs = decRoundOperand (lhs, set, &status);
1006 if (alloclhs == NULL)
1007 break;
1008 lhs = alloclhs;
1009 }
1010 /* rounding won't affect the result, but we might signal lostDigits */
1011 /* as well as the error for non-integer [x**y would need this too] */
1012 if (rhs->digits > reqdigits)
1013 {
1014 allocrhs = decRoundOperand (rhs, set, &status);
1015 if (allocrhs == NULL)
1016 break;
1017 rhs = allocrhs;
1018 }
1019 }
1020 #endif
1021 /* [following code does not require input rounding] */
1022
1023 /* handle rhs Infinity */
1024 if (decNumberIsInfinite (rhs))
1025 {
1026 status |= DEC_Invalid_operation; /* bad */
1027 break;
1028 }
1029 /* handle NaNs */
1030 if ((lhs->bits | rhs->bits) & (DECNAN | DECSNAN))
1031 {
1032 decNaNs (res, lhs, rhs, &status);
1033 break;
1034 }
1035
1036 /* Original rhs must be an integer that fits and is in range */
1037 #if DECSUBSET
1038 n = decGetInt (inrhs, set);
1039 #else
1040 n = decGetInt (inrhs);
1041 #endif
1042 if (n == BADINT || n > 999999999 || n < -999999999)
1043 {
1044 status |= DEC_Invalid_operation;
1045 break;
1046 }
1047 if (n < 0)
1048 { /* negative */
1049 n = -n; /* use the absolute value */
1050 }
1051 if (decNumberIsNegative (lhs) /* -x .. */
1052 && (n & 0x00000001))
1053 bits = DECNEG; /* .. to an odd power */
1054
1055 /* handle LHS infinity */
1056 if (decNumberIsInfinite (lhs))
1057 { /* [NaNs already handled] */
1058 uByte rbits = rhs->bits; /* save */
1059 decNumberZero (res);
1060 if (n == 0)
1061 *res->lsu = 1; /* [-]Inf**0 => 1 */
1062 else
1063 {
1064 if (!(rbits & DECNEG))
1065 bits |= DECINF; /* was not a **-n */
1066 /* [otherwise will be 0 or -0] */
1067 res->bits = bits;
1068 }
1069 break;
1070 }
1071
1072 /* clone the context */
1073 workset = *set; /* copy all fields */
1074 /* calculate the working DIGITS */
1075 workset.digits = reqdigits + (inrhs->digits + inrhs->exponent) + 1;
1076 /* it's an error if this is more than we can handle */
1077 if (workset.digits > DECNUMMAXP)
1078 {
1079 status |= DEC_Invalid_operation;
1080 break;
1081 }
1082
1083 /* workset.digits is the count of digits for the accumulator we need */
1084 /* if accumulator is too long for local storage, then allocate */
1085 needbytes =
1086 sizeof (decNumber) + (D2U (workset.digits) - 1) * sizeof (Unit);
1087 /* [needbytes also used below if 1/lhs needed] */
1088 if (needbytes > sizeof (dacbuff))
1089 {
1090 allocdac = (decNumber *) malloc (needbytes);
1091 if (allocdac == NULL)
1092 { /* hopeless -- abandon */
1093 status |= DEC_Insufficient_storage;
1094 break;
1095 }
1096 dac = allocdac; /* use the allocated space */
1097 }
1098 decNumberZero (dac); /* acc=1 */
1099 *dac->lsu = 1; /* .. */
1100
1101 if (n == 0)
1102 { /* x**0 is usually 1 */
1103 /* 0**0 is bad unless subset, when it becomes 1 */
1104 if (ISZERO (lhs)
1105 #if DECSUBSET
1106 && set->extended
1107 #endif
1108 )
1109 status |= DEC_Invalid_operation;
1110 else
1111 decNumberCopy (res, dac); /* copy the 1 */
1112 break;
1113 }
1114
1115 /* if a negative power we'll need the constant 1, and if not subset */
1116 /* we'll invert the lhs now rather than inverting the result later */
1117 if (decNumberIsNegative (rhs))
1118 { /* was a **-n [hence digits>0] */
1119 decNumberCopy (&dnOne, dac); /* dnOne=1; [needed now or later] */
1120 #if DECSUBSET
1121 if (set->extended)
1122 { /* need to calculate 1/lhs */
1123 #endif
1124 /* divide lhs into 1, putting result in dac [dac=1/dac] */
1125 decDivideOp (dac, &dnOne, lhs, &workset, DIVIDE, &status);
1126 if (alloclhs != NULL)
1127 {
1128 free (alloclhs); /* done with intermediate */
1129 alloclhs = NULL; /* indicate freed */
1130 }
1131 /* now locate or allocate space for the inverted lhs */
1132 if (needbytes > sizeof (lhsbuff))
1133 {
1134 alloclhs = (decNumber *) malloc (needbytes);
1135 if (alloclhs == NULL)
1136 { /* hopeless -- abandon */
1137 status |= DEC_Insufficient_storage;
1138 break;
1139 }
1140 lhs = alloclhs; /* use the allocated space */
1141 }
1142 else
1143 lhs = (decNumber *) lhsbuff; /* use stack storage */
1144 /* [lhs now points to buffer or allocated storage] */
1145 decNumberCopy (lhs, dac); /* copy the 1/lhs */
1146 decNumberCopy (dac, &dnOne); /* restore acc=1 */
1147 #if DECSUBSET
1148 }
1149 #endif
1150 }
1151
1152 /* Raise-to-the-power loop... */
1153 seenbit = 0; /* set once we've seen a 1-bit */
1154 for (i = 1;; i++)
1155 { /* for each bit [top bit ignored] */
1156 /* abandon if we have had overflow or terminal underflow */
1157 if (status & (DEC_Overflow | DEC_Underflow))
1158 { /* interesting? */
1159 if (status & DEC_Overflow || ISZERO (dac))
1160 break;
1161 }
1162 /* [the following two lines revealed an optimizer bug in a C++ */
1163 /* compiler, with symptom: 5**3 -> 25, when n=n+n was used] */
1164 n = n << 1; /* move next bit to testable position */
1165 if (n < 0)
1166 { /* top bit is set */
1167 seenbit = 1; /* OK, we're off */
1168 decMultiplyOp (dac, dac, lhs, &workset, &status); /* dac=dac*x */
1169 }
1170 if (i == 31)
1171 break; /* that was the last bit */
1172 if (!seenbit)
1173 continue; /* we don't have to square 1 */
1174 decMultiplyOp (dac, dac, dac, &workset, &status); /* dac=dac*dac [square] */
1175 } /*i *//* 32 bits */
1176
1177 /* complete internal overflow or underflow processing */
1178 if (status & (DEC_Overflow | DEC_Subnormal))
1179 {
1180 #if DECSUBSET
1181 /* If subset, and power was negative, reverse the kind of -erflow */
1182 /* [1/x not yet done] */
1183 if (!set->extended && decNumberIsNegative (rhs))
1184 {
1185 if (status & DEC_Overflow)
1186 status ^= DEC_Overflow | DEC_Underflow | DEC_Subnormal;
1187 else
1188 { /* trickier -- Underflow may or may not be set */
1189 status &= ~(DEC_Underflow | DEC_Subnormal); /* [one or both] */
1190 status |= DEC_Overflow;
1191 }
1192 }
1193 #endif
1194 dac->bits = (dac->bits & ~DECNEG) | bits; /* force correct sign */
1195 /* round subnormals [to set.digits rather than workset.digits] */
1196 /* or set overflow result similarly as required */
1197 decFinalize (dac, set, &residue, &status);
1198 decNumberCopy (res, dac); /* copy to result (is now OK length) */
1199 break;
1200 }
1201
1202 #if DECSUBSET
1203 if (!set->extended && /* subset math */
1204 decNumberIsNegative (rhs))
1205 { /* was a **-n [hence digits>0] */
1206 /* so divide result into 1 [dac=1/dac] */
1207 decDivideOp (dac, &dnOne, dac, &workset, DIVIDE, &status);
1208 }
1209 #endif
1210
1211 /* reduce result to the requested length and copy to result */
1212 decCopyFit (res, dac, set, &residue, &status);
1213 decFinish (res, set, &residue, &status); /* final cleanup */
1214 #if DECSUBSET
1215 if (!set->extended)
1216 decTrim (res, 0, &dropped); /* trailing zeros */
1217 #endif
1218 }
1219 while (0); /* end protected */
1220
1221 if (allocdac != NULL)
1222 free (allocdac); /* drop any storage we used */
1223 if (allocrhs != NULL)
1224 free (allocrhs); /* .. */
1225 if (alloclhs != NULL)
1226 free (alloclhs); /* .. */
1227 if (status != 0)
1228 decStatus (res, status, set);
1229 return res;
1230 }
1231
1232 /* ------------------------------------------------------------------ */
1233 /* decNumberQuantize -- force exponent to requested value */
1234 /* */
1235 /* This computes C = op(A, B), where op adjusts the coefficient */
1236 /* of C (by rounding or shifting) such that the exponent (-scale) */
1237 /* of C has exponent of B. The numerical value of C will equal A, */
1238 /* except for the effects of any rounding that occurred. */
1239 /* */
1240 /* res is C, the result. C may be A or B */
1241 /* lhs is A, the number to adjust */
1242 /* rhs is B, the number with exponent to match */
1243 /* set is the context */
1244 /* */
1245 /* C must have space for set->digits digits. */
1246 /* */
1247 /* Unless there is an error or the result is infinite, the exponent */
1248 /* after the operation is guaranteed to be equal to that of B. */
1249 /* ------------------------------------------------------------------ */
1250 decNumber *
1251 decNumberQuantize (decNumber * res, decNumber * lhs,
1252 decNumber * rhs, decContext * set)
1253 {
1254 uInt status = 0; /* accumulator */
1255 decQuantizeOp (res, lhs, rhs, set, 1, &status);
1256 if (status != 0)
1257 decStatus (res, status, set);
1258 return res;
1259 }
1260
1261 /* ------------------------------------------------------------------ */
1262 /* decNumberRescale -- force exponent to requested value */
1263 /* */
1264 /* This computes C = op(A, B), where op adjusts the coefficient */
1265 /* of C (by rounding or shifting) such that the exponent (-scale) */
1266 /* of C has the value B. The numerical value of C will equal A, */
1267 /* except for the effects of any rounding that occurred. */
1268 /* */
1269 /* res is C, the result. C may be A or B */
1270 /* lhs is A, the number to adjust */
1271 /* rhs is B, the requested exponent */
1272 /* set is the context */
1273 /* */
1274 /* C must have space for set->digits digits. */
1275 /* */
1276 /* Unless there is an error or the result is infinite, the exponent */
1277 /* after the operation is guaranteed to be equal to B. */
1278 /* ------------------------------------------------------------------ */
1279 decNumber *
1280 decNumberRescale (decNumber * res, decNumber * lhs,
1281 decNumber * rhs, decContext * set)
1282 {
1283 uInt status = 0; /* accumulator */
1284 decQuantizeOp (res, lhs, rhs, set, 0, &status);
1285 if (status != 0)
1286 decStatus (res, status, set);
1287 return res;
1288 }
1289
1290 /* ------------------------------------------------------------------ */
1291 /* decNumberRemainder -- divide and return remainder */
1292 /* */
1293 /* This computes C = A % B */
1294 /* */
1295 /* res is C, the result. C may be A and/or B (e.g., X=X%X) */
1296 /* lhs is A */
1297 /* rhs is B */
1298 /* set is the context */
1299 /* */
1300 /* C must have space for set->digits digits. */
1301 /* ------------------------------------------------------------------ */
1302 decNumber *
1303 decNumberRemainder (decNumber * res, decNumber * lhs,
1304 decNumber * rhs, decContext * set)
1305 {
1306 uInt status = 0; /* accumulator */
1307 decDivideOp (res, lhs, rhs, set, REMAINDER, &status);
1308 if (status != 0)
1309 decStatus (res, status, set);
1310 return res;
1311 }
1312
1313 /* ------------------------------------------------------------------ */
1314 /* decNumberRemainderNear -- divide and return remainder from nearest */
1315 /* */
1316 /* This computes C = A % B, where % is the IEEE remainder operator */
1317 /* */
1318 /* res is C, the result. C may be A and/or B (e.g., X=X%X) */
1319 /* lhs is A */
1320 /* rhs is B */
1321 /* set is the context */
1322 /* */
1323 /* C must have space for set->digits digits. */
1324 /* ------------------------------------------------------------------ */
1325 decNumber *
1326 decNumberRemainderNear (decNumber * res, decNumber * lhs,
1327 decNumber * rhs, decContext * set)
1328 {
1329 uInt status = 0; /* accumulator */
1330 decDivideOp (res, lhs, rhs, set, REMNEAR, &status);
1331 if (status != 0)
1332 decStatus (res, status, set);
1333 return res;
1334 }
1335
1336 /* ------------------------------------------------------------------ */
1337 /* decNumberSameQuantum -- test for equal exponents */
1338 /* */
1339 /* res is the result number, which will contain either 0 or 1 */
1340 /* lhs is a number to test */
1341 /* rhs is the second (usually a pattern) */
1342 /* */
1343 /* No errors are possible and no context is needed. */
1344 /* ------------------------------------------------------------------ */
1345 decNumber *
1346 decNumberSameQuantum (decNumber * res, decNumber * lhs, decNumber * rhs)
1347 {
1348 uByte merged; /* merged flags */
1349 Unit ret = 0; /* return value */
1350
1351 #if DECCHECK
1352 if (decCheckOperands (res, lhs, rhs, DECUNUSED))
1353 return res;
1354 #endif
1355
1356 merged = (lhs->bits | rhs->bits) & DECSPECIAL;
1357 if (merged)
1358 {
1359 if (decNumberIsNaN (lhs) && decNumberIsNaN (rhs))
1360 ret = 1;
1361 else if (decNumberIsInfinite (lhs) && decNumberIsInfinite (rhs))
1362 ret = 1;
1363 /* [anything else with a special gives 0] */
1364 }
1365 else if (lhs->exponent == rhs->exponent)
1366 ret = 1;
1367
1368 decNumberZero (res); /* OK to overwrite an operand */
1369 *res->lsu = ret;
1370 return res;
1371 }
1372
1373 /* ------------------------------------------------------------------ */
1374 /* decNumberSquareRoot -- square root operator */
1375 /* */
1376 /* This computes C = squareroot(A) */
1377 /* */
1378 /* res is C, the result. C may be A */
1379 /* rhs is A */
1380 /* set is the context; note that rounding mode has no effect */
1381 /* */
1382 /* C must have space for set->digits digits. */
1383 /* ------------------------------------------------------------------ */
1384 /* This uses the following varying-precision algorithm in: */
1385 /* */
1386 /* Properly Rounded Variable Precision Square Root, T. E. Hull and */
1387 /* A. Abrham, ACM Transactions on Mathematical Software, Vol 11 #3, */
1388 /* pp229-237, ACM, September 1985. */
1389 /* */
1390 /* % [Reformatted original Numerical Turing source code follows.] */
1391 /* function sqrt(x : real) : real */
1392 /* % sqrt(x) returns the properly rounded approximation to the square */
1393 /* % root of x, in the precision of the calling environment, or it */
1394 /* % fails if x < 0. */
1395 /* % t e hull and a abrham, august, 1984 */
1396 /* if x <= 0 then */
1397 /* if x < 0 then */
1398 /* assert false */
1399 /* else */
1400 /* result 0 */
1401 /* end if */
1402 /* end if */
1403 /* var f := setexp(x, 0) % fraction part of x [0.1 <= x < 1] */
1404 /* var e := getexp(x) % exponent part of x */
1405 /* var approx : real */
1406 /* if e mod 2 = 0 then */
1407 /* approx := .259 + .819 * f % approx to root of f */
1408 /* else */
1409 /* f := f/l0 % adjustments */
1410 /* e := e + 1 % for odd */
1411 /* approx := .0819 + 2.59 * f % exponent */
1412 /* end if */
1413 /* */
1414 /* var p:= 3 */
1415 /* const maxp := currentprecision + 2 */
1416 /* loop */
1417 /* p := min(2*p - 2, maxp) % p = 4,6,10, . . . , maxp */
1418 /* precision p */
1419 /* approx := .5 * (approx + f/approx) */
1420 /* exit when p = maxp */
1421 /* end loop */
1422 /* */
1423 /* % approx is now within 1 ulp of the properly rounded square root */
1424 /* % of f; to ensure proper rounding, compare squares of (approx - */
1425 /* % l/2 ulp) and (approx + l/2 ulp) with f. */
1426 /* p := currentprecision */
1427 /* begin */
1428 /* precision p + 2 */
1429 /* const approxsubhalf := approx - setexp(.5, -p) */
1430 /* if mulru(approxsubhalf, approxsubhalf) > f then */
1431 /* approx := approx - setexp(.l, -p + 1) */
1432 /* else */
1433 /* const approxaddhalf := approx + setexp(.5, -p) */
1434 /* if mulrd(approxaddhalf, approxaddhalf) < f then */
1435 /* approx := approx + setexp(.l, -p + 1) */
1436 /* end if */
1437 /* end if */
1438 /* end */
1439 /* result setexp(approx, e div 2) % fix exponent */
1440 /* end sqrt */
1441 /* ------------------------------------------------------------------ */
1442 decNumber *
1443 decNumberSquareRoot (decNumber * res, decNumber * rhs, decContext * set)
1444 {
1445 decContext workset, approxset; /* work contexts */
1446 decNumber dzero; /* used for constant zero */
1447 Int maxp = set->digits + 2; /* largest working precision */
1448 Int residue = 0; /* rounding residue */
1449 uInt status = 0, ignore = 0; /* status accumulators */
1450 Int exp; /* working exponent */
1451 Int ideal; /* ideal (preferred) exponent */
1452 uInt needbytes; /* work */
1453 Int dropped; /* .. */
1454
1455 decNumber *allocrhs = NULL; /* non-NULL if rounded rhs allocated */
1456 /* buffer for f [needs +1 in case DECBUFFER 0] */
1457 uByte buff[sizeof (decNumber) + (D2U (DECBUFFER + 1) - 1) * sizeof (Unit)];
1458 /* buffer for a [needs +2 to match maxp] */
1459 uByte bufa[sizeof (decNumber) + (D2U (DECBUFFER + 2) - 1) * sizeof (Unit)];
1460 /* buffer for temporary, b [must be same size as a] */
1461 uByte bufb[sizeof (decNumber) + (D2U (DECBUFFER + 2) - 1) * sizeof (Unit)];
1462 decNumber *allocbuff = NULL; /* -> allocated buff, iff allocated */
1463 decNumber *allocbufa = NULL; /* -> allocated bufa, iff allocated */
1464 decNumber *allocbufb = NULL; /* -> allocated bufb, iff allocated */
1465 decNumber *f = (decNumber *) buff; /* reduced fraction */
1466 decNumber *a = (decNumber *) bufa; /* approximation to result */
1467 decNumber *b = (decNumber *) bufb; /* intermediate result */
1468 /* buffer for temporary variable, up to 3 digits */
1469 uByte buft[sizeof (decNumber) + (D2U (3) - 1) * sizeof (Unit)];
1470 decNumber *t = (decNumber *) buft; /* up-to-3-digit constant or work */
1471
1472 #if DECCHECK
1473 if (decCheckOperands (res, DECUNUSED, rhs, set))
1474 return res;
1475 #endif
1476
1477 do
1478 { /* protect allocated storage */
1479 #if DECSUBSET
1480 if (!set->extended)
1481 {
1482 /* reduce operand and set lostDigits status, as needed */
1483 if (rhs->digits > set->digits)
1484 {
1485 allocrhs = decRoundOperand (rhs, set, &status);
1486 if (allocrhs == NULL)
1487 break;
1488 /* [Note: 'f' allocation below could reuse this buffer if */
1489 /* used, but as this is rare we keep them separate for clarity.] */
1490 rhs = allocrhs;
1491 }
1492 }
1493 #endif
1494 /* [following code does not require input rounding] */
1495
1496 /* handle infinities and NaNs */
1497 if (rhs->bits & DECSPECIAL)
1498 {
1499 if (decNumberIsInfinite (rhs))
1500 { /* an infinity */
1501 if (decNumberIsNegative (rhs))
1502 status |= DEC_Invalid_operation;
1503 else
1504 decNumberCopy (res, rhs); /* +Infinity */
1505 }
1506 else
1507 decNaNs (res, rhs, NULL, &status); /* a NaN */
1508 break;
1509 }
1510
1511 /* calculate the ideal (preferred) exponent [floor(exp/2)] */
1512 /* [We would like to write: ideal=rhs->exponent>>1, but this */
1513 /* generates a compiler warning. Generated code is the same.] */
1514 ideal = (rhs->exponent & ~1) / 2; /* target */
1515
1516 /* handle zeros */
1517 if (ISZERO (rhs))
1518 {
1519 decNumberCopy (res, rhs); /* could be 0 or -0 */
1520 res->exponent = ideal; /* use the ideal [safe] */
1521 break;
1522 }
1523
1524 /* any other -x is an oops */
1525 if (decNumberIsNegative (rhs))
1526 {
1527 status |= DEC_Invalid_operation;
1528 break;
1529 }
1530
1531 /* we need space for three working variables */
1532 /* f -- the same precision as the RHS, reduced to 0.01->0.99... */
1533 /* a -- Hull's approx -- precision, when assigned, is */
1534 /* currentprecision (we allow +2 for use as temporary) */
1535 /* b -- intermediate temporary result */
1536 /* if any is too long for local storage, then allocate */
1537 needbytes =
1538 sizeof (decNumber) + (D2U (rhs->digits) - 1) * sizeof (Unit);
1539 if (needbytes > sizeof (buff))
1540 {
1541 allocbuff = (decNumber *) malloc (needbytes);
1542 if (allocbuff == NULL)
1543 { /* hopeless -- abandon */
1544 status |= DEC_Insufficient_storage;
1545 break;
1546 }
1547 f = allocbuff; /* use the allocated space */
1548 }
1549 /* a and b both need to be able to hold a maxp-length number */
1550 needbytes = sizeof (decNumber) + (D2U (maxp) - 1) * sizeof (Unit);
1551 if (needbytes > sizeof (bufa))
1552 { /* [same applies to b] */
1553 allocbufa = (decNumber *) malloc (needbytes);
1554 allocbufb = (decNumber *) malloc (needbytes);
1555 if (allocbufa == NULL || allocbufb == NULL)
1556 { /* hopeless */
1557 status |= DEC_Insufficient_storage;
1558 break;
1559 }
1560 a = allocbufa; /* use the allocated space */
1561 b = allocbufb; /* .. */
1562 }
1563
1564 /* copy rhs -> f, save exponent, and reduce so 0.1 <= f < 1 */
1565 decNumberCopy (f, rhs);
1566 exp = f->exponent + f->digits; /* adjusted to Hull rules */
1567 f->exponent = -(f->digits); /* to range */
1568
1569 /* set up working contexts (the second is used for Numerical */
1570 /* Turing assignment) */
1571 decContextDefault (&workset, DEC_INIT_DECIMAL64);
1572 decContextDefault (&approxset, DEC_INIT_DECIMAL64);
1573 approxset.digits = set->digits; /* approx's length */
1574
1575 /* [Until further notice, no error is possible and status bits */
1576 /* (Rounded, etc.) should be ignored, not accumulated.] */
1577
1578 /* Calculate initial approximation, and allow for odd exponent */
1579 workset.digits = set->digits; /* p for initial calculation */
1580 t->bits = 0;
1581 t->digits = 3;
1582 a->bits = 0;
1583 a->digits = 3;
1584 if ((exp & 1) == 0)
1585 { /* even exponent */
1586 /* Set t=0.259, a=0.819 */
1587 t->exponent = -3;
1588 a->exponent = -3;
1589 #if DECDPUN>=3
1590 t->lsu[0] = 259;
1591 a->lsu[0] = 819;
1592 #elif DECDPUN==2
1593 t->lsu[0] = 59;
1594 t->lsu[1] = 2;
1595 a->lsu[0] = 19;
1596 a->lsu[1] = 8;
1597 #else
1598 t->lsu[0] = 9;
1599 t->lsu[1] = 5;
1600 t->lsu[2] = 2;
1601 a->lsu[0] = 9;
1602 a->lsu[1] = 1;
1603 a->lsu[2] = 8;
1604 #endif
1605 }
1606 else
1607 { /* odd exponent */
1608 /* Set t=0.0819, a=2.59 */
1609 f->exponent--; /* f=f/10 */
1610 exp++; /* e=e+1 */
1611 t->exponent = -4;
1612 a->exponent = -2;
1613 #if DECDPUN>=3
1614 t->lsu[0] = 819;
1615 a->lsu[0] = 259;
1616 #elif DECDPUN==2
1617 t->lsu[0] = 19;
1618 t->lsu[1] = 8;
1619 a->lsu[0] = 59;
1620 a->lsu[1] = 2;
1621 #else
1622 t->lsu[0] = 9;
1623 t->lsu[1] = 1;
1624 t->lsu[2] = 8;
1625 a->lsu[0] = 9;
1626 a->lsu[1] = 5;
1627 a->lsu[2] = 2;
1628 #endif
1629 }
1630 decMultiplyOp (a, a, f, &workset, &ignore); /* a=a*f */
1631 decAddOp (a, a, t, &workset, 0, &ignore); /* ..+t */
1632 /* [a is now the initial approximation for sqrt(f), calculated with */
1633 /* currentprecision, which is also a's precision.] */
1634
1635 /* the main calculation loop */
1636 decNumberZero (&dzero); /* make 0 */
1637 decNumberZero (t); /* set t = 0.5 */
1638 t->lsu[0] = 5; /* .. */
1639 t->exponent = -1; /* .. */
1640 workset.digits = 3; /* initial p */
1641 for (;;)
1642 {
1643 /* set p to min(2*p - 2, maxp) [hence 3; or: 4, 6, 10, ... , maxp] */
1644 workset.digits = workset.digits * 2 - 2;
1645 if (workset.digits > maxp)
1646 workset.digits = maxp;
1647 /* a = 0.5 * (a + f/a) */
1648 /* [calculated at p then rounded to currentprecision] */
1649 decDivideOp (b, f, a, &workset, DIVIDE, &ignore); /* b=f/a */
1650 decAddOp (b, b, a, &workset, 0, &ignore); /* b=b+a */
1651 decMultiplyOp (a, b, t, &workset, &ignore); /* a=b*0.5 */
1652 /* assign to approx [round to length] */
1653 decAddOp (a, &dzero, a, &approxset, 0, &ignore);
1654 if (workset.digits == maxp)
1655 break; /* just did final */
1656 } /* loop */
1657
1658 /* a is now at currentprecision and within 1 ulp of the properly */
1659 /* rounded square root of f; to ensure proper rounding, compare */
1660 /* squares of (a - l/2 ulp) and (a + l/2 ulp) with f. */
1661 /* Here workset.digits=maxp and t=0.5 */
1662 workset.digits--; /* maxp-1 is OK now */
1663 t->exponent = -set->digits - 1; /* make 0.5 ulp */
1664 decNumberCopy (b, a);
1665 decAddOp (b, b, t, &workset, DECNEG, &ignore); /* b = a - 0.5 ulp */
1666 workset.round = DEC_ROUND_UP;
1667 decMultiplyOp (b, b, b, &workset, &ignore); /* b = mulru(b, b) */
1668 decCompareOp (b, f, b, &workset, COMPARE, &ignore); /* b ? f, reversed */
1669 if (decNumberIsNegative (b))
1670 { /* f < b [i.e., b > f] */
1671 /* this is the more common adjustment, though both are rare */
1672 t->exponent++; /* make 1.0 ulp */
1673 t->lsu[0] = 1; /* .. */
1674 decAddOp (a, a, t, &workset, DECNEG, &ignore); /* a = a - 1 ulp */
1675 /* assign to approx [round to length] */
1676 decAddOp (a, &dzero, a, &approxset, 0, &ignore);
1677 }
1678 else
1679 {
1680 decNumberCopy (b, a);
1681 decAddOp (b, b, t, &workset, 0, &ignore); /* b = a + 0.5 ulp */
1682 workset.round = DEC_ROUND_DOWN;
1683 decMultiplyOp (b, b, b, &workset, &ignore); /* b = mulrd(b, b) */
1684 decCompareOp (b, b, f, &workset, COMPARE, &ignore); /* b ? f */
1685 if (decNumberIsNegative (b))
1686 { /* b < f */
1687 t->exponent++; /* make 1.0 ulp */
1688 t->lsu[0] = 1; /* .. */
1689 decAddOp (a, a, t, &workset, 0, &ignore); /* a = a + 1 ulp */
1690 /* assign to approx [round to length] */
1691 decAddOp (a, &dzero, a, &approxset, 0, &ignore);
1692 }
1693 }
1694 /* [no errors are possible in the above, and rounding/inexact during */
1695 /* estimation are irrelevant, so status was not accumulated] */
1696
1697 /* Here, 0.1 <= a < 1 [Hull] */
1698 a->exponent += exp / 2; /* set correct exponent */
1699
1700 /* Process Subnormals */
1701 decFinalize (a, set, &residue, &status);
1702
1703 /* count dropable zeros [after any subnormal rounding] */
1704 decNumberCopy (b, a);
1705 decTrim (b, 1, &dropped); /* [drops trailing zeros] */
1706
1707 /* Finally set Inexact and Rounded. The answer can only be exact if */
1708 /* it is short enough so that squaring it could fit in set->digits, */
1709 /* so this is the only (relatively rare) time we have to check */
1710 /* carefully */
1711 if (b->digits * 2 - 1 > set->digits)
1712 { /* cannot fit */
1713 status |= DEC_Inexact | DEC_Rounded;
1714 }
1715 else
1716 { /* could be exact/unrounded */
1717 uInt mstatus = 0; /* local status */
1718 decMultiplyOp (b, b, b, &workset, &mstatus); /* try the multiply */
1719 if (mstatus != 0)
1720 { /* result won't fit */
1721 status |= DEC_Inexact | DEC_Rounded;
1722 }
1723 else
1724 { /* plausible */
1725 decCompareOp (t, b, rhs, &workset, COMPARE, &mstatus); /* b ? rhs */
1726 if (!ISZERO (t))
1727 {
1728 status |= DEC_Inexact | DEC_Rounded;
1729 }
1730 else
1731 { /* is Exact */
1732 /* here, dropped is the count of trailing zeros in 'a' */
1733 /* use closest exponent to ideal... */
1734 Int todrop = ideal - a->exponent; /* most we can drop */
1735
1736 if (todrop < 0)
1737 { /* ideally would add 0s */
1738 status |= DEC_Rounded;
1739 }
1740 else
1741 { /* unrounded */
1742 if (dropped < todrop)
1743 todrop = dropped; /* clamp to those available */
1744 if (todrop > 0)
1745 { /* OK, some to drop */
1746 decShiftToLeast (a->lsu, D2U (a->digits), todrop);
1747 a->exponent += todrop; /* maintain numerical value */
1748 a->digits -= todrop; /* new length */
1749 }
1750 }
1751 }
1752 }
1753 }
1754 decNumberCopy (res, a); /* assume this is the result */
1755 }
1756 while (0); /* end protected */
1757
1758 if (allocbuff != NULL)
1759 free (allocbuff); /* drop any storage we used */
1760 if (allocbufa != NULL)
1761 free (allocbufa); /* .. */
1762 if (allocbufb != NULL)
1763 free (allocbufb); /* .. */
1764 if (allocrhs != NULL)
1765 free (allocrhs); /* .. */
1766 if (status != 0)
1767 decStatus (res, status, set); /* then report status */
1768 return res;
1769 }
1770
1771 /* ------------------------------------------------------------------ */
1772 /* decNumberSubtract -- subtract two Numbers */
1773 /* */
1774 /* This computes C = A - B */
1775 /* */
1776 /* res is C, the result. C may be A and/or B (e.g., X=X-X) */
1777 /* lhs is A */
1778 /* rhs is B */
1779 /* set is the context */
1780 /* */
1781 /* C must have space for set->digits digits. */
1782 /* ------------------------------------------------------------------ */
1783 decNumber *
1784 decNumberSubtract (decNumber * res, decNumber * lhs,
1785 decNumber * rhs, decContext * set)
1786 {
1787 uInt status = 0; /* accumulator */
1788
1789 decAddOp (res, lhs, rhs, set, DECNEG, &status);
1790 if (status != 0)
1791 decStatus (res, status, set);
1792 return res;
1793 }
1794
1795 /* ------------------------------------------------------------------ */
1796 /* decNumberToIntegralValue -- round-to-integral-value */
1797 /* */
1798 /* res is the result */
1799 /* rhs is input number */
1800 /* set is the context */
1801 /* */
1802 /* res must have space for any value of rhs. */
1803 /* */
1804 /* This implements the IEEE special operator and therefore treats */
1805 /* special values as valid, and also never sets Inexact. For finite */
1806 /* numbers it returns rescale(rhs, 0) if rhs->exponent is <0. */
1807 /* Otherwise the result is rhs (so no error is possible). */
1808 /* */
1809 /* The context is used for rounding mode and status after sNaN, but */
1810 /* the digits setting is ignored. */
1811 /* ------------------------------------------------------------------ */
1812 decNumber *
1813 decNumberToIntegralValue (decNumber * res, decNumber * rhs, decContext * set)
1814 {
1815 decNumber dn;
1816 decContext workset; /* working context */
1817
1818 #if DECCHECK
1819 if (decCheckOperands (res, DECUNUSED, rhs, set))
1820 return res;
1821 #endif
1822
1823 /* handle infinities and NaNs */
1824 if (rhs->bits & DECSPECIAL)
1825 {
1826 uInt status = 0;
1827 if (decNumberIsInfinite (rhs))
1828 decNumberCopy (res, rhs); /* an Infinity */
1829 else
1830 decNaNs (res, rhs, NULL, &status); /* a NaN */
1831 if (status != 0)
1832 decStatus (res, status, set);
1833 return res;
1834 }
1835
1836 /* we have a finite number; no error possible */
1837 if (rhs->exponent >= 0)
1838 return decNumberCopy (res, rhs);
1839 /* that was easy, but if negative exponent we have work to do... */
1840 workset = *set; /* clone rounding, etc. */
1841 workset.digits = rhs->digits; /* no length rounding */
1842 workset.traps = 0; /* no traps */
1843 decNumberZero (&dn); /* make a number with exponent 0 */
1844 return decNumberQuantize (res, rhs, &dn, &workset);
1845 }
1846
1847 /* ================================================================== */
1848 /* Utility routines */
1849 /* ================================================================== */
1850
1851 /* ------------------------------------------------------------------ */
1852 /* decNumberCopy -- copy a number */
1853 /* */
1854 /* dest is the target decNumber */
1855 /* src is the source decNumber */
1856 /* returns dest */
1857 /* */
1858 /* (dest==src is allowed and is a no-op) */
1859 /* All fields are updated as required. This is a utility operation, */
1860 /* so special values are unchanged and no error is possible. */
1861 /* ------------------------------------------------------------------ */
1862 decNumber *
1863 decNumberCopy (decNumber * dest, decNumber * src)
1864 {
1865
1866 #if DECCHECK
1867 if (src == NULL)
1868 return decNumberZero (dest);
1869 #endif
1870
1871 if (dest == src)
1872 return dest; /* no copy required */
1873
1874 /* We use explicit assignments here as structure assignment can copy */
1875 /* more than just the lsu (for small DECDPUN). This would not affect */
1876 /* the value of the results, but would disturb test harness spill */
1877 /* checking. */
1878 dest->bits = src->bits;
1879 dest->exponent = src->exponent;
1880 dest->digits = src->digits;
1881 dest->lsu[0] = src->lsu[0];
1882 if (src->digits > DECDPUN)
1883 { /* more Units to come */
1884 Unit *s, *d, *smsup; /* work */
1885 /* memcpy for the remaining Units would be safe as they cannot */
1886 /* overlap. However, this explicit loop is faster in short cases. */
1887 d = dest->lsu + 1; /* -> first destination */
1888 smsup = src->lsu + D2U (src->digits); /* -> source msu+1 */
1889 for (s = src->lsu + 1; s < smsup; s++, d++)
1890 *d = *s;
1891 }
1892 return dest;
1893 }
1894
1895 /* ------------------------------------------------------------------ */
1896 /* decNumberTrim -- remove insignificant zeros */
1897 /* */
1898 /* dn is the number to trim */
1899 /* returns dn */
1900 /* */
1901 /* All fields are updated as required. This is a utility operation, */
1902 /* so special values are unchanged and no error is possible. */
1903 /* ------------------------------------------------------------------ */
1904 decNumber *
1905 decNumberTrim (decNumber * dn)
1906 {
1907 Int dropped; /* work */
1908 return decTrim (dn, 0, &dropped);
1909 }
1910
1911 /* ------------------------------------------------------------------ */
1912 /* decNumberVersion -- return the name and version of this module */
1913 /* */
1914 /* No error is possible. */
1915 /* ------------------------------------------------------------------ */
1916 const char *
1917 decNumberVersion (void)
1918 {
1919 return DECVERSION;
1920 }
1921
1922 /* ------------------------------------------------------------------ */
1923 /* decNumberZero -- set a number to 0 */
1924 /* */
1925 /* dn is the number to set, with space for one digit */
1926 /* returns dn */
1927 /* */
1928 /* No error is possible. */
1929 /* ------------------------------------------------------------------ */
1930 /* Memset is not used as it is much slower in some environments. */
1931 decNumber *
1932 decNumberZero (decNumber * dn)
1933 {
1934
1935 #if DECCHECK
1936 if (decCheckOperands (dn, DECUNUSED, DECUNUSED, DECUNUSED))
1937 return dn;
1938 #endif
1939
1940 dn->bits = 0;
1941 dn->exponent = 0;
1942 dn->digits = 1;
1943 dn->lsu[0] = 0;
1944 return dn;
1945 }
1946
1947 /* ================================================================== */
1948 /* Local routines */
1949 /* ================================================================== */
1950
1951 /* ------------------------------------------------------------------ */
1952 /* decToString -- lay out a number into a string */
1953 /* */
1954 /* dn is the number to lay out */
1955 /* string is where to lay out the number */
1956 /* eng is 1 if Engineering, 0 if Scientific */
1957 /* */
1958 /* str must be at least dn->digits+14 characters long */
1959 /* No error is possible. */
1960 /* */
1961 /* Note that this routine can generate a -0 or 0.000. These are */
1962 /* never generated in subset to-number or arithmetic, but can occur */
1963 /* in non-subset arithmetic (e.g., -1*0 or 1.234-1.234). */
1964 /* ------------------------------------------------------------------ */
1965 /* If DECCHECK is enabled the string "?" is returned if a number is */
1966 /* invalid. */
1967
1968 /* TODIGIT -- macro to remove the leading digit from the unsigned */
1969 /* integer u at column cut (counting from the right, LSD=0) and place */
1970 /* it as an ASCII character into the character pointed to by c. Note */
1971 /* that cut must be <= 9, and the maximum value for u is 2,000,000,000 */
1972 /* (as is needed for negative exponents of subnormals). The unsigned */
1973 /* integer pow is used as a temporary variable. */
1974 #define TODIGIT(u, cut, c) { \
1975 *(c)='0'; \
1976 pow=powers[cut]*2; \
1977 if ((u)>pow) { \
1978 pow*=4; \
1979 if ((u)>=pow) {(u)-=pow; *(c)+=8;} \
1980 pow/=2; \
1981 if ((u)>=pow) {(u)-=pow; *(c)+=4;} \
1982 pow/=2; \
1983 } \
1984 if ((u)>=pow) {(u)-=pow; *(c)+=2;} \
1985 pow/=2; \
1986 if ((u)>=pow) {(u)-=pow; *(c)+=1;} \
1987 }
1988
1989 static void
1990 decToString (decNumber * dn, char *string, Flag eng)
1991 {
1992 Int exp = dn->exponent; /* local copy */
1993 Int e; /* E-part value */
1994 Int pre; /* digits before the '.' */
1995 Int cut; /* for counting digits in a Unit */
1996 char *c = string; /* work [output pointer] */
1997 Unit *up = dn->lsu + D2U (dn->digits) - 1; /* -> msu [input pointer] */
1998 uInt u, pow; /* work */
1999
2000 #if DECCHECK
2001 if (decCheckOperands (DECUNUSED, dn, DECUNUSED, DECUNUSED))
2002 {
2003 strcpy (string, "?");
2004 return;
2005 }
2006 #endif
2007
2008 if (decNumberIsNegative (dn))
2009 { /* Negatives get a minus (except */
2010 *c = '-'; /* NaNs, which remove the '-' below) */
2011 c++;
2012 }
2013 if (dn->bits & DECSPECIAL)
2014 { /* Is a special value */
2015 if (decNumberIsInfinite (dn))
2016 {
2017 strcpy (c, "Infinity");
2018 return;
2019 }
2020 /* a NaN */
2021 if (dn->bits & DECSNAN)
2022 { /* signalling NaN */
2023 *c = 's';
2024 c++;
2025 }
2026 strcpy (c, "NaN");
2027 c += 3; /* step past */
2028 /* if not a clean non-zero coefficient, that's all we have in a */
2029 /* NaN string */
2030 if (exp != 0 || (*dn->lsu == 0 && dn->digits == 1))
2031 return;
2032 /* [drop through to add integer] */
2033 }
2034
2035 /* calculate how many digits in msu, and hence first cut */
2036 cut = dn->digits % DECDPUN;
2037 if (cut == 0)
2038 cut = DECDPUN; /* msu is full */
2039 cut--; /* power of ten for digit */
2040
2041 if (exp == 0)
2042 { /* simple integer [common fastpath, */
2043 /* used for NaNs, too] */
2044 for (; up >= dn->lsu; up--)
2045 { /* each Unit from msu */
2046 u = *up; /* contains DECDPUN digits to lay out */
2047 for (; cut >= 0; c++, cut--)
2048 TODIGIT (u, cut, c);
2049 cut = DECDPUN - 1; /* next Unit has all digits */
2050 }
2051 *c = '\0'; /* terminate the string */
2052 return;
2053 }
2054
2055 /* non-0 exponent -- assume plain form */
2056 pre = dn->digits + exp; /* digits before '.' */
2057 e = 0; /* no E */
2058 if ((exp > 0) || (pre < -5))
2059 { /* need exponential form */
2060 e = exp + dn->digits - 1; /* calculate E value */
2061 pre = 1; /* assume one digit before '.' */
2062 if (eng && (e != 0))
2063 { /* may need to adjust */
2064 Int adj; /* adjustment */
2065 /* The C remainder operator is undefined for negative numbers, so */
2066 /* we must use positive remainder calculation here */
2067 if (e < 0)
2068 {
2069 adj = (-e) % 3;
2070 if (adj != 0)
2071 adj = 3 - adj;
2072 }
2073 else
2074 { /* e>0 */
2075 adj = e % 3;
2076 }
2077 e = e - adj;
2078 /* if we are dealing with zero we will use exponent which is a */
2079 /* multiple of three, as expected, but there will only be the */
2080 /* one zero before the E, still. Otherwise note the padding. */
2081 if (!ISZERO (dn))
2082 pre += adj;
2083 else
2084 { /* is zero */
2085 if (adj != 0)
2086 { /* 0.00Esnn needed */
2087 e = e + 3;
2088 pre = -(2 - adj);
2089 }
2090 } /* zero */
2091 } /* eng */
2092 }
2093
2094 /* lay out the digits of the coefficient, adding 0s and . as needed */
2095 u = *up;
2096 if (pre > 0)
2097 { /* xxx.xxx or xx00 (engineering) form */
2098 for (; pre > 0; pre--, c++, cut--)
2099 {
2100 if (cut < 0)
2101 { /* need new Unit */
2102 if (up == dn->lsu)
2103 break; /* out of input digits (pre>digits) */
2104 up--;
2105 cut = DECDPUN - 1;
2106 u = *up;
2107 }
2108 TODIGIT (u, cut, c);
2109 }
2110 if (up > dn->lsu || (up == dn->lsu && cut >= 0))
2111 { /* more to come, after '.' */
2112 *c = '.';
2113 c++;
2114 for (;; c++, cut--)
2115 {
2116 if (cut < 0)
2117 { /* need new Unit */
2118 if (up == dn->lsu)
2119 break; /* out of input digits */
2120 up--;
2121 cut = DECDPUN - 1;
2122 u = *up;
2123 }
2124 TODIGIT (u, cut, c);
2125 }
2126 }
2127 else
2128 for (; pre > 0; pre--, c++)
2129 *c = '0'; /* 0 padding (for engineering) needed */
2130 }
2131 else
2132 { /* 0.xxx or 0.000xxx form */
2133 *c = '0';
2134 c++;
2135 *c = '.';
2136 c++;
2137 for (; pre < 0; pre++, c++)
2138 *c = '0'; /* add any 0's after '.' */
2139 for (;; c++, cut--)
2140 {
2141 if (cut < 0)
2142 { /* need new Unit */
2143 if (up == dn->lsu)
2144 break; /* out of input digits */
2145 up--;
2146 cut = DECDPUN - 1;
2147 u = *up;
2148 }
2149 TODIGIT (u, cut, c);
2150 }
2151 }
2152
2153 /* Finally add the E-part, if needed. It will never be 0, has a
2154 base maximum and minimum of +999999999 through -999999999, but
2155 could range down to -1999999998 for subnormal numbers */
2156 if (e != 0)
2157 {
2158 Flag had = 0; /* 1=had non-zero */
2159 *c = 'E';
2160 c++;
2161 *c = '+';
2162 c++; /* assume positive */
2163 u = e; /* .. */
2164 if (e < 0)
2165 {
2166 *(c - 1) = '-'; /* oops, need - */
2167 u = -e; /* uInt, please */
2168 }
2169 /* layout the exponent (_itoa is not ANSI C) */
2170 for (cut = 9; cut >= 0; cut--)
2171 {
2172 TODIGIT (u, cut, c);
2173 if (*c == '0' && !had)
2174 continue; /* skip leading zeros */
2175 had = 1; /* had non-0 */
2176 c++; /* step for next */
2177 } /* cut */
2178 }
2179 *c = '\0'; /* terminate the string (all paths) */
2180 return;
2181 }
2182
2183 /* ------------------------------------------------------------------ */
2184 /* decAddOp -- add/subtract operation */
2185 /* */
2186 /* This computes C = A + B */
2187 /* */
2188 /* res is C, the result. C may be A and/or B (e.g., X=X+X) */
2189 /* lhs is A */
2190 /* rhs is B */
2191 /* set is the context */
2192 /* negate is DECNEG if rhs should be negated, or 0 otherwise */
2193 /* status accumulates status for the caller */
2194 /* */
2195 /* C must have space for set->digits digits. */
2196 /* ------------------------------------------------------------------ */
2197 /* If possible, we calculate the coefficient directly into C. */
2198 /* However, if: */
2199 /* -- we need a digits+1 calculation because numbers are unaligned */
2200 /* and span more than set->digits digits */
2201 /* -- a carry to digits+1 digits looks possible */
2202 /* -- C is the same as A or B, and the result would destructively */
2203 /* overlap the A or B coefficient */
2204 /* then we must calculate into a temporary buffer. In this latter */
2205 /* case we use the local (stack) buffer if possible, and only if too */
2206 /* long for that do we resort to malloc. */
2207 /* */
2208 /* Misalignment is handled as follows: */
2209 /* Apad: (AExp>BExp) Swap operands and proceed as for BExp>AExp. */
2210 /* BPad: Apply the padding by a combination of shifting (whole */
2211 /* units) and multiplication (part units). */
2212 /* */
2213 /* Addition, especially x=x+1, is speed-critical, so we take pains */
2214 /* to make returning as fast as possible, by flagging any allocation. */
2215 /* ------------------------------------------------------------------ */
2216 static decNumber *
2217 decAddOp (decNumber * res, decNumber * lhs,
2218 decNumber * rhs, decContext * set, uByte negate, uInt * status)
2219 {
2220 decNumber *alloclhs = NULL; /* non-NULL if rounded lhs allocated */
2221 decNumber *allocrhs = NULL; /* .., rhs */
2222 Int rhsshift; /* working shift (in Units) */
2223 Int maxdigits; /* longest logical length */
2224 Int mult; /* multiplier */
2225 Int residue; /* rounding accumulator */
2226 uByte bits; /* result bits */
2227 Flag diffsign; /* non-0 if arguments have different sign */
2228 Unit *acc; /* accumulator for result */
2229 Unit accbuff[D2U (DECBUFFER + 1)]; /* local buffer [+1 is for possible */
2230 /* final carry digit or DECBUFFER=0] */
2231 Unit *allocacc = NULL; /* -> allocated acc buffer, iff allocated */
2232 Flag alloced = 0; /* set non-0 if any allocations */
2233 Int reqdigits = set->digits; /* local copy; requested DIGITS */
2234 uByte merged; /* merged flags */
2235 Int padding; /* work */
2236
2237 #if DECCHECK
2238 if (decCheckOperands (res, lhs, rhs, set))
2239 return res;
2240 #endif
2241
2242 do
2243 { /* protect allocated storage */
2244 #if DECSUBSET
2245 if (!set->extended)
2246 {
2247 /* reduce operands and set lostDigits status, as needed */
2248 if (lhs->digits > reqdigits)
2249 {
2250 alloclhs = decRoundOperand (lhs, set, status);
2251 if (alloclhs == NULL)
2252 break;
2253 lhs = alloclhs;
2254 alloced = 1;
2255 }
2256 if (rhs->digits > reqdigits)
2257 {
2258 allocrhs = decRoundOperand (rhs, set, status);
2259 if (allocrhs == NULL)
2260 break;
2261 rhs = allocrhs;
2262 alloced = 1;
2263 }
2264 }
2265 #endif
2266 /* [following code does not require input rounding] */
2267
2268 /* note whether signs differ */
2269 diffsign = (Flag) ((lhs->bits ^ rhs->bits ^ negate) & DECNEG);
2270
2271 /* handle infinities and NaNs */
2272 merged = (lhs->bits | rhs->bits) & DECSPECIAL;
2273 if (merged)
2274 { /* a special bit set */
2275 if (merged & (DECSNAN | DECNAN)) /* a NaN */
2276 decNaNs (res, lhs, rhs, status);
2277 else
2278 { /* one or two infinities */
2279 if (decNumberIsInfinite (lhs))
2280 { /* LHS is infinity */
2281 /* two infinities with different signs is invalid */
2282 if (decNumberIsInfinite (rhs) && diffsign)
2283 {
2284 *status |= DEC_Invalid_operation;
2285 break;
2286 }
2287 bits = lhs->bits & DECNEG; /* get sign from LHS */
2288 }
2289 else
2290 bits = (rhs->bits ^ negate) & DECNEG; /* RHS must be Infinity */
2291 bits |= DECINF;
2292 decNumberZero (res);
2293 res->bits = bits; /* set +/- infinity */
2294 } /* an infinity */
2295 break;
2296 }
2297
2298 /* Quick exit for add 0s; return the non-0, modified as need be */
2299 if (ISZERO (lhs))
2300 {
2301 Int adjust; /* work */
2302 Int lexp = lhs->exponent; /* save in case LHS==RES */
2303 bits = lhs->bits; /* .. */
2304 residue = 0; /* clear accumulator */
2305 decCopyFit (res, rhs, set, &residue, status); /* copy (as needed) */
2306 res->bits ^= negate; /* flip if rhs was negated */
2307 #if DECSUBSET
2308 if (set->extended)
2309 { /* exponents on zeros count */
2310 #endif
2311 /* exponent will be the lower of the two */
2312 adjust = lexp - res->exponent; /* adjustment needed [if -ve] */
2313 if (ISZERO (res))
2314 { /* both 0: special IEEE 854 rules */
2315 if (adjust < 0)
2316 res->exponent = lexp; /* set exponent */
2317 /* 0-0 gives +0 unless rounding to -infinity, and -0-0 gives -0 */
2318 if (diffsign)
2319 {
2320 if (set->round != DEC_ROUND_FLOOR)
2321 res->bits = 0;
2322 else
2323 res->bits = DECNEG; /* preserve 0 sign */
2324 }
2325 }
2326 else
2327 { /* non-0 res */
2328 if (adjust < 0)
2329 { /* 0-padding needed */
2330 if ((res->digits - adjust) > set->digits)
2331 {
2332 adjust = res->digits - set->digits; /* to fit exactly */
2333 *status |= DEC_Rounded; /* [but exact] */
2334 }
2335 res->digits =
2336 decShiftToMost (res->lsu, res->digits, -adjust);
2337 res->exponent += adjust; /* set the exponent. */
2338 }
2339 } /* non-0 res */
2340 #if DECSUBSET
2341 } /* extended */
2342 #endif
2343 decFinish (res, set, &residue, status); /* clean and finalize */
2344 break;
2345 }
2346
2347 if (ISZERO (rhs))
2348 { /* [lhs is non-zero] */
2349 Int adjust; /* work */
2350 Int rexp = rhs->exponent; /* save in case RHS==RES */
2351 bits = rhs->bits; /* be clean */
2352 residue = 0; /* clear accumulator */
2353 decCopyFit (res, lhs, set, &residue, status); /* copy (as needed) */
2354 #if DECSUBSET
2355 if (set->extended)
2356 { /* exponents on zeros count */
2357 #endif
2358 /* exponent will be the lower of the two */
2359 /* [0-0 case handled above] */
2360 adjust = rexp - res->exponent; /* adjustment needed [if -ve] */
2361 if (adjust < 0)
2362 { /* 0-padding needed */
2363 if ((res->digits - adjust) > set->digits)
2364 {
2365 adjust = res->digits - set->digits; /* to fit exactly */
2366 *status |= DEC_Rounded; /* [but exact] */
2367 }
2368 res->digits =
2369 decShiftToMost (res->lsu, res->digits, -adjust);
2370 res->exponent += adjust; /* set the exponent. */
2371 }
2372 #if DECSUBSET
2373 } /* extended */
2374 #endif
2375 decFinish (res, set, &residue, status); /* clean and finalize */
2376 break;
2377 }
2378 /* [both fastpath and mainpath code below assume these cases */
2379 /* (notably 0-0) have already been handled] */
2380
2381 /* calculate the padding needed to align the operands */
2382 padding = rhs->exponent - lhs->exponent;
2383
2384 /* Fastpath cases where the numbers are aligned and normal, the RHS */
2385 /* is all in one unit, no operand rounding is needed, and no carry, */
2386 /* lengthening, or borrow is needed */
2387 if (rhs->digits <= DECDPUN && padding == 0 && rhs->exponent >= set->emin /* [some normals drop through] */
2388 && rhs->digits <= reqdigits && lhs->digits <= reqdigits)
2389 {
2390 Int partial = *lhs->lsu;
2391 if (!diffsign)
2392 { /* adding */
2393 Int maxv = DECDPUNMAX; /* highest no-overflow */
2394 if (lhs->digits < DECDPUN)
2395 maxv = powers[lhs->digits] - 1;
2396 partial += *rhs->lsu;
2397 if (partial <= maxv)
2398 { /* no carry */
2399 if (res != lhs)
2400 decNumberCopy (res, lhs); /* not in place */
2401 *res->lsu = (Unit) partial; /* [copy could have overwritten RHS] */
2402 break;
2403 }
2404 /* else drop out for careful add */
2405 }
2406 else
2407 { /* signs differ */
2408 partial -= *rhs->lsu;
2409 if (partial > 0)
2410 { /* no borrow needed, and non-0 result */
2411 if (res != lhs)
2412 decNumberCopy (res, lhs); /* not in place */
2413 *res->lsu = (Unit) partial;
2414 /* this could have reduced digits [but result>0] */
2415 res->digits = decGetDigits (res->lsu, D2U (res->digits));
2416 break;
2417 }
2418 /* else drop out for careful subtract */
2419 }
2420 }
2421
2422 /* Now align (pad) the lhs or rhs so we can add or subtract them, as
2423 necessary. If one number is much larger than the other (that is,
2424 if in plain form there is a least one digit between the lowest
2425 digit or one and the highest of the other) we need to pad with up
2426 to DIGITS-1 trailing zeros, and then apply rounding (as exotic
2427 rounding modes may be affected by the residue).
2428 */
2429 rhsshift = 0; /* rhs shift to left (padding) in Units */
2430 bits = lhs->bits; /* assume sign is that of LHS */
2431 mult = 1; /* likely multiplier */
2432
2433 /* if padding==0 the operands are aligned; no padding needed */
2434 if (padding != 0)
2435 {
2436 /* some padding needed */
2437 /* We always pad the RHS, as we can then effect any required */
2438 /* padding by a combination of shifts and a multiply */
2439 Flag swapped = 0;
2440 if (padding < 0)
2441 { /* LHS needs the padding */
2442 decNumber *t;
2443 padding = -padding; /* will be +ve */
2444 bits = (uByte) (rhs->bits ^ negate); /* assumed sign is now that of RHS */
2445 t = lhs;
2446 lhs = rhs;
2447 rhs = t;
2448 swapped = 1;
2449 }
2450
2451 /* If, after pad, rhs would be longer than lhs by digits+1 or */
2452 /* more then lhs cannot affect the answer, except as a residue, */
2453 /* so we only need to pad up to a length of DIGITS+1. */
2454 if (rhs->digits + padding > lhs->digits + reqdigits + 1)
2455 {
2456 /* The RHS is sufficient */
2457 /* for residue we use the relative sign indication... */
2458 Int shift = reqdigits - rhs->digits; /* left shift needed */
2459 residue = 1; /* residue for rounding */
2460 if (diffsign)
2461 residue = -residue; /* signs differ */
2462 /* copy, shortening if necessary */
2463 decCopyFit (res, rhs, set, &residue, status);
2464 /* if it was already shorter, then need to pad with zeros */
2465 if (shift > 0)
2466 {
2467 res->digits = decShiftToMost (res->lsu, res->digits, shift);
2468 res->exponent -= shift; /* adjust the exponent. */
2469 }
2470 /* flip the result sign if unswapped and rhs was negated */
2471 if (!swapped)
2472 res->bits ^= negate;
2473 decFinish (res, set, &residue, status); /* done */
2474 break;
2475 }
2476
2477 /* LHS digits may affect result */
2478 rhsshift = D2U (padding + 1) - 1; /* this much by Unit shift .. */
2479 mult = powers[padding - (rhsshift * DECDPUN)]; /* .. this by multiplication */
2480 } /* padding needed */
2481
2482 if (diffsign)
2483 mult = -mult; /* signs differ */
2484
2485 /* determine the longer operand */
2486 maxdigits = rhs->digits + padding; /* virtual length of RHS */
2487 if (lhs->digits > maxdigits)
2488 maxdigits = lhs->digits;
2489
2490 /* Decide on the result buffer to use; if possible place directly */
2491 /* into result. */
2492 acc = res->lsu; /* assume build direct */
2493 /* If destructive overlap, or the number is too long, or a carry or */
2494 /* borrow to DIGITS+1 might be possible we must use a buffer. */
2495 /* [Might be worth more sophisticated tests when maxdigits==reqdigits] */
2496 if ((maxdigits >= reqdigits) /* is, or could be, too large */
2497 || (res == rhs && rhsshift > 0))
2498 { /* destructive overlap */
2499 /* buffer needed; choose it */
2500 /* we'll need units for maxdigits digits, +1 Unit for carry or borrow */
2501 Int need = D2U (maxdigits) + 1;
2502 acc = accbuff; /* assume use local buffer */
2503 if (need * sizeof (Unit) > sizeof (accbuff))
2504 {
2505 allocacc = (Unit *) malloc (need * sizeof (Unit));
2506 if (allocacc == NULL)
2507 { /* hopeless -- abandon */
2508 *status |= DEC_Insufficient_storage;
2509 break;
2510 }
2511 acc = allocacc;
2512 alloced = 1;
2513 }
2514 }
2515
2516 res->bits = (uByte) (bits & DECNEG); /* it's now safe to overwrite.. */
2517 res->exponent = lhs->exponent; /* .. operands (even if aliased) */
2518
2519 #if DECTRACE
2520 decDumpAr ('A', lhs->lsu, D2U (lhs->digits));
2521 decDumpAr ('B', rhs->lsu, D2U (rhs->digits));
2522 printf (" :h: %d %d\n", rhsshift, mult);
2523 #endif
2524
2525 /* add [A+B*m] or subtract [A+B*(-m)] */
2526 res->digits = decUnitAddSub (lhs->lsu, D2U (lhs->digits), rhs->lsu, D2U (rhs->digits), rhsshift, acc, mult) * DECDPUN; /* [units -> digits] */
2527 if (res->digits < 0)
2528 { /* we borrowed */
2529 res->digits = -res->digits;
2530 res->bits ^= DECNEG; /* flip the sign */
2531 }
2532 #if DECTRACE
2533 decDumpAr ('+', acc, D2U (res->digits));
2534 #endif
2535
2536 /* If we used a buffer we need to copy back, possibly shortening */
2537 /* (If we didn't use buffer it must have fit, so can't need rounding */
2538 /* and residue must be 0.) */
2539 residue = 0; /* clear accumulator */
2540 if (acc != res->lsu)
2541 {
2542 #if DECSUBSET
2543 if (set->extended)
2544 { /* round from first significant digit */
2545 #endif
2546 /* remove leading zeros that we added due to rounding up to */
2547 /* integral Units -- before the test for rounding. */
2548 if (res->digits > reqdigits)
2549 res->digits = decGetDigits (acc, D2U (res->digits));
2550 decSetCoeff (res, set, acc, res->digits, &residue, status);
2551 #if DECSUBSET
2552 }
2553 else
2554 { /* subset arithmetic rounds from original significant digit */
2555 /* We may have an underestimate. This only occurs when both */
2556 /* numbers fit in DECDPUN digits and we are padding with a */
2557 /* negative multiple (-10, -100...) and the top digit(s) become */
2558 /* 0. (This only matters if we are using X3.274 rules where the */
2559 /* leading zero could be included in the rounding.) */
2560 if (res->digits < maxdigits)
2561 {
2562 *(acc + D2U (res->digits)) = 0; /* ensure leading 0 is there */
2563 res->digits = maxdigits;
2564 }
2565 else
2566 {
2567 /* remove leading zeros that we added due to rounding up to */
2568 /* integral Units (but only those in excess of the original */
2569 /* maxdigits length, unless extended) before test for rounding. */
2570 if (res->digits > reqdigits)
2571 {
2572 res->digits = decGetDigits (acc, D2U (res->digits));
2573 if (res->digits < maxdigits)
2574 res->digits = maxdigits;
2575 }
2576 }
2577 decSetCoeff (res, set, acc, res->digits, &residue, status);
2578 /* Now apply rounding if needed before removing leading zeros. */
2579 /* This is safe because subnormals are not a possibility */
2580 if (residue != 0)
2581 {
2582 decApplyRound (res, set, residue, status);
2583 residue = 0; /* we did what we had to do */
2584 }
2585 } /* subset */
2586 #endif
2587 } /* used buffer */
2588
2589 /* strip leading zeros [these were left on in case of subset subtract] */
2590 res->digits = decGetDigits (res->lsu, D2U (res->digits));
2591
2592 /* apply checks and rounding */
2593 decFinish (res, set, &residue, status);
2594
2595 /* "When the sum of two operands with opposite signs is exactly */
2596 /* zero, the sign of that sum shall be '+' in all rounding modes */
2597 /* except round toward -Infinity, in which mode that sign shall be */
2598 /* '-'." [Subset zeros also never have '-', set by decFinish.] */
2599 if (ISZERO (res) && diffsign
2600 #if DECSUBSET
2601 && set->extended
2602 #endif
2603 && (*status & DEC_Inexact) == 0)
2604 {
2605 if (set->round == DEC_ROUND_FLOOR)
2606 res->bits |= DECNEG; /* sign - */
2607 else
2608 res->bits &= ~DECNEG; /* sign + */
2609 }
2610 }
2611 while (0); /* end protected */
2612
2613 if (alloced)
2614 {
2615 if (allocacc != NULL)
2616 free (allocacc); /* drop any storage we used */
2617 if (allocrhs != NULL)
2618 free (allocrhs); /* .. */
2619 if (alloclhs != NULL)
2620 free (alloclhs); /* .. */
2621 }
2622 return res;
2623 }
2624
2625 /* ------------------------------------------------------------------ */
2626 /* decDivideOp -- division operation */
2627 /* */
2628 /* This routine performs the calculations for all four division */
2629 /* operators (divide, divideInteger, remainder, remainderNear). */
2630 /* */
2631 /* C=A op B */
2632 /* */
2633 /* res is C, the result. C may be A and/or B (e.g., X=X/X) */
2634 /* lhs is A */
2635 /* rhs is B */
2636 /* set is the context */
2637 /* op is DIVIDE, DIVIDEINT, REMAINDER, or REMNEAR respectively. */
2638 /* status is the usual accumulator */
2639 /* */
2640 /* C must have space for set->digits digits. */
2641 /* */
2642 /* ------------------------------------------------------------------ */
2643 /* The underlying algorithm of this routine is the same as in the */
2644 /* 1981 S/370 implementation, that is, non-restoring long division */
2645 /* with bi-unit (rather than bi-digit) estimation for each unit */
2646 /* multiplier. In this pseudocode overview, complications for the */
2647 /* Remainder operators and division residues for exact rounding are */
2648 /* omitted for clarity. */
2649 /* */
2650 /* Prepare operands and handle special values */
2651 /* Test for x/0 and then 0/x */
2652 /* Exp =Exp1 - Exp2 */
2653 /* Exp =Exp +len(var1) -len(var2) */
2654 /* Sign=Sign1 * Sign2 */
2655 /* Pad accumulator (Var1) to double-length with 0's (pad1) */
2656 /* Pad Var2 to same length as Var1 */
2657 /* msu2pair/plus=1st 2 or 1 units of var2, +1 to allow for round */
2658 /* have=0 */
2659 /* Do until (have=digits+1 OR residue=0) */
2660 /* if exp<0 then if integer divide/residue then leave */
2661 /* this_unit=0 */
2662 /* Do forever */
2663 /* compare numbers */
2664 /* if <0 then leave inner_loop */
2665 /* if =0 then (* quick exit without subtract *) do */
2666 /* this_unit=this_unit+1; output this_unit */
2667 /* leave outer_loop; end */
2668 /* Compare lengths of numbers (mantissae): */
2669 /* If same then tops2=msu2pair -- {units 1&2 of var2} */
2670 /* else tops2=msu2plus -- {0, unit 1 of var2} */
2671 /* tops1=first_unit_of_Var1*10**DECDPUN +second_unit_of_var1 */
2672 /* mult=tops1/tops2 -- Good and safe guess at divisor */
2673 /* if mult=0 then mult=1 */
2674 /* this_unit=this_unit+mult */
2675 /* subtract */
2676 /* end inner_loop */
2677 /* if have\=0 | this_unit\=0 then do */
2678 /* output this_unit */
2679 /* have=have+1; end */
2680 /* var2=var2/10 */
2681 /* exp=exp-1 */
2682 /* end outer_loop */
2683 /* exp=exp+1 -- set the proper exponent */
2684 /* if have=0 then generate answer=0 */
2685 /* Return (Result is defined by Var1) */
2686 /* */
2687 /* ------------------------------------------------------------------ */
2688 /* We need two working buffers during the long division; one (digits+ */
2689 /* 1) to accumulate the result, and the other (up to 2*digits+1) for */
2690 /* long subtractions. These are acc and var1 respectively. */
2691 /* var1 is a copy of the lhs coefficient, var2 is the rhs coefficient.*/
2692 /* ------------------------------------------------------------------ */
2693 static decNumber *
2694 decDivideOp (decNumber * res,
2695 decNumber * lhs, decNumber * rhs,
2696 decContext * set, Flag op, uInt * status)
2697 {
2698 decNumber *alloclhs = NULL; /* non-NULL if rounded lhs allocated */
2699 decNumber *allocrhs = NULL; /* .., rhs */
2700 Unit accbuff[D2U (DECBUFFER + DECDPUN)]; /* local buffer */
2701 Unit *acc = accbuff; /* -> accumulator array for result */
2702 Unit *allocacc = NULL; /* -> allocated buffer, iff allocated */
2703 Unit *accnext; /* -> where next digit will go */
2704 Int acclength; /* length of acc needed [Units] */
2705 Int accunits; /* count of units accumulated */
2706 Int accdigits; /* count of digits accumulated */
2707
2708 Unit varbuff[D2U (DECBUFFER * 2 + DECDPUN) * sizeof (Unit)]; /* buffer for var1 */
2709 Unit *var1 = varbuff; /* -> var1 array for long subtraction */
2710 Unit *varalloc = NULL; /* -> allocated buffer, iff used */
2711
2712 Unit *var2; /* -> var2 array */
2713
2714 Int var1units, var2units; /* actual lengths */
2715 Int var2ulen; /* logical length (units) */
2716 Int var1initpad = 0; /* var1 initial padding (digits) */
2717 Unit *msu1, *msu2; /* -> msu of each var */
2718 Int msu2plus; /* msu2 plus one [does not vary] */
2719 eInt msu2pair; /* msu2 pair plus one [does not vary] */
2720 Int maxdigits; /* longest LHS or required acc length */
2721 Int mult; /* multiplier for subtraction */
2722 Unit thisunit; /* current unit being accumulated */
2723 Int residue; /* for rounding */
2724 Int reqdigits = set->digits; /* requested DIGITS */
2725 Int exponent; /* working exponent */
2726 Int maxexponent = 0; /* DIVIDE maximum exponent if unrounded */
2727 uByte bits; /* working sign */
2728 uByte merged; /* merged flags */
2729 Unit *target, *source; /* work */
2730 uInt const *pow; /* .. */
2731 Int shift, cut; /* .. */
2732 #if DECSUBSET
2733 Int dropped; /* work */
2734 #endif
2735
2736 #if DECCHECK
2737 if (decCheckOperands (res, lhs, rhs, set))
2738 return res;
2739 #endif
2740
2741 do
2742 { /* protect allocated storage */
2743 #if DECSUBSET
2744 if (!set->extended)
2745 {
2746 /* reduce operands and set lostDigits status, as needed */
2747 if (lhs->digits > reqdigits)
2748 {
2749 alloclhs = decRoundOperand (lhs, set, status);
2750 if (alloclhs == NULL)
2751 break;
2752 lhs = alloclhs;
2753 }
2754 if (rhs->digits > reqdigits)
2755 {
2756 allocrhs = decRoundOperand (rhs, set, status);
2757 if (allocrhs == NULL)
2758 break;
2759 rhs = allocrhs;
2760 }
2761 }
2762 #endif
2763 /* [following code does not require input rounding] */
2764
2765 bits = (lhs->bits ^ rhs->bits) & DECNEG; /* assumed sign for divisions */
2766
2767 /* handle infinities and NaNs */
2768 merged = (lhs->bits | rhs->bits) & DECSPECIAL;
2769 if (merged)
2770 { /* a special bit set */
2771 if (merged & (DECSNAN | DECNAN))
2772 { /* one or two NaNs */
2773 decNaNs (res, lhs, rhs, status);
2774 break;
2775 }
2776 /* one or two infinities */
2777 if (decNumberIsInfinite (lhs))
2778 { /* LHS (dividend) is infinite */
2779 if (decNumberIsInfinite (rhs) || /* two infinities are invalid .. */
2780 op & (REMAINDER | REMNEAR))
2781 { /* as is remainder of infinity */
2782 *status |= DEC_Invalid_operation;
2783 break;
2784 }
2785 /* [Note that infinity/0 raises no exceptions] */
2786 decNumberZero (res);
2787 res->bits = bits | DECINF; /* set +/- infinity */
2788 break;
2789 }
2790 else
2791 { /* RHS (divisor) is infinite */
2792 residue = 0;
2793 if (op & (REMAINDER | REMNEAR))
2794 {
2795 /* result is [finished clone of] lhs */
2796 decCopyFit (res, lhs, set, &residue, status);
2797 }
2798 else
2799 { /* a division */
2800 decNumberZero (res);
2801 res->bits = bits; /* set +/- zero */
2802 /* for DIVIDEINT the exponent is always 0. For DIVIDE, result */
2803 /* is a 0 with infinitely negative exponent, clamped to minimum */
2804 if (op & DIVIDE)
2805 {
2806 res->exponent = set->emin - set->digits + 1;
2807 *status |= DEC_Clamped;
2808 }
2809 }
2810 decFinish (res, set, &residue, status);
2811 break;
2812 }
2813 }
2814
2815 /* handle 0 rhs (x/0) */
2816 if (ISZERO (rhs))
2817 { /* x/0 is always exceptional */
2818 if (ISZERO (lhs))
2819 {
2820 decNumberZero (res); /* [after lhs test] */
2821 *status |= DEC_Division_undefined; /* 0/0 will become NaN */
2822 }
2823 else
2824 {
2825 decNumberZero (res);
2826 if (op & (REMAINDER | REMNEAR))
2827 *status |= DEC_Invalid_operation;
2828 else
2829 {
2830 *status |= DEC_Division_by_zero; /* x/0 */
2831 res->bits = bits | DECINF; /* .. is +/- Infinity */
2832 }
2833 }
2834 break;
2835 }
2836
2837 /* handle 0 lhs (0/x) */
2838 if (ISZERO (lhs))
2839 { /* 0/x [x!=0] */
2840 #if DECSUBSET
2841 if (!set->extended)
2842 decNumberZero (res);
2843 else
2844 {
2845 #endif
2846 if (op & DIVIDE)
2847 {
2848 residue = 0;
2849 exponent = lhs->exponent - rhs->exponent; /* ideal exponent */
2850 decNumberCopy (res, lhs); /* [zeros always fit] */
2851 res->bits = bits; /* sign as computed */
2852 res->exponent = exponent; /* exponent, too */
2853 decFinalize (res, set, &residue, status); /* check exponent */
2854 }
2855 else if (op & DIVIDEINT)
2856 {
2857 decNumberZero (res); /* integer 0 */
2858 res->bits = bits; /* sign as computed */
2859 }
2860 else
2861 { /* a remainder */
2862 exponent = rhs->exponent; /* [save in case overwrite] */
2863 decNumberCopy (res, lhs); /* [zeros always fit] */
2864 if (exponent < res->exponent)
2865 res->exponent = exponent; /* use lower */
2866 }
2867 #if DECSUBSET
2868 }
2869 #endif
2870 break;
2871 }
2872
2873 /* Precalculate exponent. This starts off adjusted (and hence fits */
2874 /* in 31 bits) and becomes the usual unadjusted exponent as the */
2875 /* division proceeds. The order of evaluation is important, here, */
2876 /* to avoid wrap. */
2877 exponent =
2878 (lhs->exponent + lhs->digits) - (rhs->exponent + rhs->digits);
2879
2880 /* If the working exponent is -ve, then some quick exits are */
2881 /* possible because the quotient is known to be <1 */
2882 /* [for REMNEAR, it needs to be < -1, as -0.5 could need work] */
2883 if (exponent < 0 && !(op == DIVIDE))
2884 {
2885 if (op & DIVIDEINT)
2886 {
2887 decNumberZero (res); /* integer part is 0 */
2888 #if DECSUBSET
2889 if (set->extended)
2890 #endif
2891 res->bits = bits; /* set +/- zero */
2892 break;
2893 }
2894 /* we can fastpath remainders so long as the lhs has the */
2895 /* smaller (or equal) exponent */
2896 if (lhs->exponent <= rhs->exponent)
2897 {
2898 if (op & REMAINDER || exponent < -1)
2899 {
2900 /* It is REMAINDER or safe REMNEAR; result is [finished */
2901 /* clone of] lhs (r = x - 0*y) */
2902 residue = 0;
2903 decCopyFit (res, lhs, set, &residue, status);
2904 decFinish (res, set, &residue, status);
2905 break;
2906 }
2907 /* [unsafe REMNEAR drops through] */
2908 }
2909 } /* fastpaths */
2910
2911 /* We need long (slow) division; roll up the sleeves... */
2912
2913 /* The accumulator will hold the quotient of the division. */
2914 /* If it needs to be too long for stack storage, then allocate. */
2915 acclength = D2U (reqdigits + DECDPUN); /* in Units */
2916 if (acclength * sizeof (Unit) > sizeof (accbuff))
2917 {
2918 allocacc = (Unit *) malloc (acclength * sizeof (Unit));
2919 if (allocacc == NULL)
2920 { /* hopeless -- abandon */
2921 *status |= DEC_Insufficient_storage;
2922 break;
2923 }
2924 acc = allocacc; /* use the allocated space */
2925 }
2926
2927 /* var1 is the padded LHS ready for subtractions. */
2928 /* If it needs to be too long for stack storage, then allocate. */
2929 /* The maximum units we need for var1 (long subtraction) is: */
2930 /* Enough for */
2931 /* (rhs->digits+reqdigits-1) -- to allow full slide to right */
2932 /* or (lhs->digits) -- to allow for long lhs */
2933 /* whichever is larger */
2934 /* +1 -- for rounding of slide to right */
2935 /* +1 -- for leading 0s */
2936 /* +1 -- for pre-adjust if a remainder or DIVIDEINT */
2937 /* [Note: unused units do not participate in decUnitAddSub data] */
2938 maxdigits = rhs->digits + reqdigits - 1;
2939 if (lhs->digits > maxdigits)
2940 maxdigits = lhs->digits;
2941 var1units = D2U (maxdigits) + 2;
2942 /* allocate a guard unit above msu1 for REMAINDERNEAR */
2943 if (!(op & DIVIDE))
2944 var1units++;
2945 if ((var1units + 1) * sizeof (Unit) > sizeof (varbuff))
2946 {
2947 varalloc = (Unit *) malloc ((var1units + 1) * sizeof (Unit));
2948 if (varalloc == NULL)
2949 { /* hopeless -- abandon */
2950 *status |= DEC_Insufficient_storage;
2951 break;
2952 }
2953 var1 = varalloc; /* use the allocated space */
2954 }
2955
2956 /* Extend the lhs and rhs to full long subtraction length. The lhs */
2957 /* is truly extended into the var1 buffer, with 0 padding, so we can */
2958 /* subtract in place. The rhs (var2) has virtual padding */
2959 /* (implemented by decUnitAddSub). */
2960 /* We allocated one guard unit above msu1 for rem=rem+rem in REMAINDERNEAR */
2961 msu1 = var1 + var1units - 1; /* msu of var1 */
2962 source = lhs->lsu + D2U (lhs->digits) - 1; /* msu of input array */
2963 for (target = msu1; source >= lhs->lsu; source--, target--)
2964 *target = *source;
2965 for (; target >= var1; target--)
2966 *target = 0;
2967
2968 /* rhs (var2) is left-aligned with var1 at the start */
2969 var2ulen = var1units; /* rhs logical length (units) */
2970 var2units = D2U (rhs->digits); /* rhs actual length (units) */
2971 var2 = rhs->lsu; /* -> rhs array */
2972 msu2 = var2 + var2units - 1; /* -> msu of var2 [never changes] */
2973 /* now set up the variables which we'll use for estimating the */
2974 /* multiplication factor. If these variables are not exact, we add */
2975 /* 1 to make sure that we never overestimate the multiplier. */
2976 msu2plus = *msu2; /* it's value .. */
2977 if (var2units > 1)
2978 msu2plus++; /* .. +1 if any more */
2979 msu2pair = (eInt) * msu2 * (DECDPUNMAX + 1); /* top two pair .. */
2980 if (var2units > 1)
2981 { /* .. [else treat 2nd as 0] */
2982 msu2pair += *(msu2 - 1); /* .. */
2983 if (var2units > 2)
2984 msu2pair++; /* .. +1 if any more */
2985 }
2986
2987 /* Since we are working in units, the units may have leading zeros, */
2988 /* but we calculated the exponent on the assumption that they are */
2989 /* both left-aligned. Adjust the exponent to compensate: add the */
2990 /* number of leading zeros in var1 msu and subtract those in var2 msu. */
2991 /* [We actually do this by counting the digits and negating, as */
2992 /* lead1=DECDPUN-digits1, and similarly for lead2.] */
2993 for (pow = &powers[1]; *msu1 >= *pow; pow++)
2994 exponent--;
2995 for (pow = &powers[1]; *msu2 >= *pow; pow++)
2996 exponent++;
2997
2998 /* Now, if doing an integer divide or remainder, we want to ensure */
2999 /* that the result will be Unit-aligned. To do this, we shift the */
3000 /* var1 accumulator towards least if need be. (It's much easier to */
3001 /* do this now than to reassemble the residue afterwards, if we are */
3002 /* doing a remainder.) Also ensure the exponent is not negative. */
3003 if (!(op & DIVIDE))
3004 {
3005 Unit *u;
3006 /* save the initial 'false' padding of var1, in digits */
3007 var1initpad = (var1units - D2U (lhs->digits)) * DECDPUN;
3008 /* Determine the shift to do. */
3009 if (exponent < 0)
3010 cut = -exponent;
3011 else
3012 cut = DECDPUN - exponent % DECDPUN;
3013 decShiftToLeast (var1, var1units, cut);
3014 exponent += cut; /* maintain numerical value */
3015 var1initpad -= cut; /* .. and reduce padding */
3016 /* clean any most-significant units we just emptied */
3017 for (u = msu1; cut >= DECDPUN; cut -= DECDPUN, u--)
3018 *u = 0;
3019 } /* align */
3020 else
3021 { /* is DIVIDE */
3022 maxexponent = lhs->exponent - rhs->exponent; /* save */
3023 /* optimization: if the first iteration will just produce 0, */
3024 /* preadjust to skip it [valid for DIVIDE only] */
3025 if (*msu1 < *msu2)
3026 {
3027 var2ulen--; /* shift down */
3028 exponent -= DECDPUN; /* update the exponent */
3029 }
3030 }
3031
3032 /* ---- start the long-division loops ------------------------------ */
3033 accunits = 0; /* no units accumulated yet */
3034 accdigits = 0; /* .. or digits */
3035 accnext = acc + acclength - 1; /* -> msu of acc [NB: allows digits+1] */
3036 for (;;)
3037 { /* outer forever loop */
3038 thisunit = 0; /* current unit assumed 0 */
3039 /* find the next unit */
3040 for (;;)
3041 { /* inner forever loop */
3042 /* strip leading zero units [from either pre-adjust or from */
3043 /* subtract last time around]. Leave at least one unit. */
3044 for (; *msu1 == 0 && msu1 > var1; msu1--)
3045 var1units--;
3046
3047 if (var1units < var2ulen)
3048 break; /* var1 too low for subtract */
3049 if (var1units == var2ulen)
3050 { /* unit-by-unit compare needed */
3051 /* compare the two numbers, from msu */
3052 Unit *pv1, *pv2, v2; /* units to compare */
3053 pv2 = msu2; /* -> msu */
3054 for (pv1 = msu1;; pv1--, pv2--)
3055 {
3056 /* v1=*pv1 -- always OK */
3057 v2 = 0; /* assume in padding */
3058 if (pv2 >= var2)
3059 v2 = *pv2; /* in range */
3060 if (*pv1 != v2)
3061 break; /* no longer the same */
3062 if (pv1 == var1)
3063 break; /* done; leave pv1 as is */
3064 }
3065 /* here when all inspected or a difference seen */
3066 if (*pv1 < v2)
3067 break; /* var1 too low to subtract */
3068 if (*pv1 == v2)
3069 { /* var1 == var2 */
3070 /* reach here if var1 and var2 are identical; subtraction */
3071 /* would increase digit by one, and the residue will be 0 so */
3072 /* we are done; leave the loop with residue set to 0. */
3073 thisunit++; /* as though subtracted */
3074 *var1 = 0; /* set var1 to 0 */
3075 var1units = 1; /* .. */
3076 break; /* from inner */
3077 } /* var1 == var2 */
3078 /* *pv1>v2. Prepare for real subtraction; the lengths are equal */
3079 /* Estimate the multiplier (there's always a msu1-1)... */
3080 /* Bring in two units of var2 to provide a good estimate. */
3081 mult =
3082 (Int) (((eInt) * msu1 * (DECDPUNMAX + 1) +
3083 *(msu1 - 1)) / msu2pair);
3084 } /* lengths the same */
3085 else
3086 { /* var1units > var2ulen, so subtraction is safe */
3087 /* The var2 msu is one unit towards the lsu of the var1 msu, */
3088 /* so we can only use one unit for var2. */
3089 mult =
3090 (Int) (((eInt) * msu1 * (DECDPUNMAX + 1) +
3091 *(msu1 - 1)) / msu2plus);
3092 }
3093 if (mult == 0)
3094 mult = 1; /* must always be at least 1 */
3095 /* subtraction needed; var1 is > var2 */
3096 thisunit = (Unit) (thisunit + mult); /* accumulate */
3097 /* subtract var1-var2, into var1; only the overlap needs */
3098 /* processing, as we are in place */
3099 shift = var2ulen - var2units;
3100 #if DECTRACE
3101 decDumpAr ('1', &var1[shift], var1units - shift);
3102 decDumpAr ('2', var2, var2units);
3103 printf ("m=%d\n", -mult);
3104 #endif
3105 decUnitAddSub (&var1[shift], var1units - shift,
3106 var2, var2units, 0, &var1[shift], -mult);
3107 #if DECTRACE
3108 decDumpAr ('#', &var1[shift], var1units - shift);
3109 #endif
3110 /* var1 now probably has leading zeros; these are removed at the */
3111 /* top of the inner loop. */
3112 } /* inner loop */
3113
3114 /* We have the next unit; unless it's a leading zero, add to acc */
3115 if (accunits != 0 || thisunit != 0)
3116 { /* put the unit we got */
3117 *accnext = thisunit; /* store in accumulator */
3118 /* account exactly for the digits we got */
3119 if (accunits == 0)
3120 {
3121 accdigits++; /* at least one */
3122 for (pow = &powers[1]; thisunit >= *pow; pow++)
3123 accdigits++;
3124 }
3125 else
3126 accdigits += DECDPUN;
3127 accunits++; /* update count */
3128 accnext--; /* ready for next */
3129 if (accdigits > reqdigits)
3130 break; /* we have all we need */
3131 }
3132
3133 /* if the residue is zero, we're done (unless divide or */
3134 /* divideInteger and we haven't got enough digits yet) */
3135 if (*var1 == 0 && var1units == 1)
3136 { /* residue is 0 */
3137 if (op & (REMAINDER | REMNEAR))
3138 break;
3139 if ((op & DIVIDE) && (exponent <= maxexponent))
3140 break;
3141 /* [drop through if divideInteger] */
3142 }
3143 /* we've also done enough if calculating remainder or integer */
3144 /* divide and we just did the last ('units') unit */
3145 if (exponent == 0 && !(op & DIVIDE))
3146 break;
3147
3148 /* to get here, var1 is less than var2, so divide var2 by the per- */
3149 /* Unit power of ten and go for the next digit */
3150 var2ulen--; /* shift down */
3151 exponent -= DECDPUN; /* update the exponent */
3152 } /* outer loop */
3153
3154 /* ---- division is complete --------------------------------------- */
3155 /* here: acc has at least reqdigits+1 of good results (or fewer */
3156 /* if early stop), starting at accnext+1 (its lsu) */
3157 /* var1 has any residue at the stopping point */
3158 /* accunits is the number of digits we collected in acc */
3159 if (accunits == 0)
3160 { /* acc is 0 */
3161 accunits = 1; /* show we have one .. */
3162 accdigits = 1; /* .. */
3163 *accnext = 0; /* .. whose value is 0 */
3164 }
3165 else
3166 accnext++; /* back to last placed */
3167 /* accnext now -> lowest unit of result */
3168
3169 residue = 0; /* assume no residue */
3170 if (op & DIVIDE)
3171 {
3172 /* record the presence of any residue, for rounding */
3173 if (*var1 != 0 || var1units > 1)
3174 residue = 1;
3175 else
3176 { /* no residue */
3177 /* We had an exact division; clean up spurious trailing 0s. */
3178 /* There will be at most DECDPUN-1, from the final multiply, */
3179 /* and then only if the result is non-0 (and even) and the */
3180 /* exponent is 'loose'. */
3181 #if DECDPUN>1
3182 Unit lsu = *accnext;
3183 if (!(lsu & 0x01) && (lsu != 0))
3184 {
3185 /* count the trailing zeros */
3186 Int drop = 0;
3187 for (;; drop++)
3188 { /* [will terminate because lsu!=0] */
3189 if (exponent >= maxexponent)
3190 break; /* don't chop real 0s */
3191 #if DECDPUN<=4
3192 if ((lsu - QUOT10 (lsu, drop + 1)
3193 * powers[drop + 1]) != 0)
3194 break; /* found non-0 digit */
3195 #else
3196 if (lsu % powers[drop + 1] != 0)
3197 break; /* found non-0 digit */
3198 #endif
3199 exponent++;
3200 }
3201 if (drop > 0)
3202 {
3203 accunits = decShiftToLeast (accnext, accunits, drop);
3204 accdigits = decGetDigits (accnext, accunits);
3205 accunits = D2U (accdigits);
3206 /* [exponent was adjusted in the loop] */
3207 }
3208 } /* neither odd nor 0 */
3209 #endif
3210 } /* exact divide */
3211 } /* divide */
3212 else /* op!=DIVIDE */
3213 {
3214 /* check for coefficient overflow */
3215 if (accdigits + exponent > reqdigits)
3216 {
3217 *status |= DEC_Division_impossible;
3218 break;
3219 }
3220 if (op & (REMAINDER | REMNEAR))
3221 {
3222 /* [Here, the exponent will be 0, because we adjusted var1 */
3223 /* appropriately.] */
3224 Int postshift; /* work */
3225 Flag wasodd = 0; /* integer was odd */
3226 Unit *quotlsu; /* for save */
3227 Int quotdigits; /* .. */
3228
3229 /* Fastpath when residue is truly 0 is worthwhile [and */
3230 /* simplifies the code below] */
3231 if (*var1 == 0 && var1units == 1)
3232 { /* residue is 0 */
3233 Int exp = lhs->exponent; /* save min(exponents) */
3234 if (rhs->exponent < exp)
3235 exp = rhs->exponent;
3236 decNumberZero (res); /* 0 coefficient */
3237 #if DECSUBSET
3238 if (set->extended)
3239 #endif
3240 res->exponent = exp; /* .. with proper exponent */
3241 break;
3242 }
3243 /* note if the quotient was odd */
3244 if (*accnext & 0x01)
3245 wasodd = 1; /* acc is odd */
3246 quotlsu = accnext; /* save in case need to reinspect */
3247 quotdigits = accdigits; /* .. */
3248
3249 /* treat the residue, in var1, as the value to return, via acc */
3250 /* calculate the unused zero digits. This is the smaller of: */
3251 /* var1 initial padding (saved above) */
3252 /* var2 residual padding, which happens to be given by: */
3253 postshift =
3254 var1initpad + exponent - lhs->exponent + rhs->exponent;
3255 /* [the 'exponent' term accounts for the shifts during divide] */
3256 if (var1initpad < postshift)
3257 postshift = var1initpad;
3258
3259 /* shift var1 the requested amount, and adjust its digits */
3260 var1units = decShiftToLeast (var1, var1units, postshift);
3261 accnext = var1;
3262 accdigits = decGetDigits (var1, var1units);
3263 accunits = D2U (accdigits);
3264
3265 exponent = lhs->exponent; /* exponent is smaller of lhs & rhs */
3266 if (rhs->exponent < exponent)
3267 exponent = rhs->exponent;
3268 bits = lhs->bits; /* remainder sign is always as lhs */
3269
3270 /* Now correct the result if we are doing remainderNear; if it */
3271 /* (looking just at coefficients) is > rhs/2, or == rhs/2 and */
3272 /* the integer was odd then the result should be rem-rhs. */
3273 if (op & REMNEAR)
3274 {
3275 Int compare, tarunits; /* work */
3276 Unit *up; /* .. */
3277
3278
3279 /* calculate remainder*2 into the var1 buffer (which has */
3280 /* 'headroom' of an extra unit and hence enough space) */
3281 /* [a dedicated 'double' loop would be faster, here] */
3282 tarunits =
3283 decUnitAddSub (accnext, accunits, accnext, accunits, 0,
3284 accnext, 1);
3285 /* decDumpAr('r', accnext, tarunits); */
3286
3287 /* Here, accnext (var1) holds tarunits Units with twice the */
3288 /* remainder's coefficient, which we must now compare to the */
3289 /* RHS. The remainder's exponent may be smaller than the RHS's. */
3290 compare =
3291 decUnitCompare (accnext, tarunits, rhs->lsu,
3292 D2U (rhs->digits),
3293 rhs->exponent - exponent);
3294 if (compare == BADINT)
3295 { /* deep trouble */
3296 *status |= DEC_Insufficient_storage;
3297 break;
3298 }
3299
3300 /* now restore the remainder by dividing by two; we know the */
3301 /* lsu is even. */
3302 for (up = accnext; up < accnext + tarunits; up++)
3303 {
3304 Int half; /* half to add to lower unit */
3305 half = *up & 0x01;
3306 *up /= 2; /* [shift] */
3307 if (!half)
3308 continue;
3309 *(up - 1) += (DECDPUNMAX + 1) / 2;
3310 }
3311 /* [accunits still describes the original remainder length] */
3312
3313 if (compare > 0 || (compare == 0 && wasodd))
3314 { /* adjustment needed */
3315 Int exp, expunits, exprem; /* work */
3316 /* This is effectively causing round-up of the quotient, */
3317 /* so if it was the rare case where it was full and all */
3318 /* nines, it would overflow and hence division-impossible */
3319 /* should be raised */
3320 Flag allnines = 0; /* 1 if quotient all nines */
3321 if (quotdigits == reqdigits)
3322 { /* could be borderline */
3323 for (up = quotlsu;; up++)
3324 {
3325 if (quotdigits > DECDPUN)
3326 {
3327 if (*up != DECDPUNMAX)
3328 break; /* non-nines */
3329 }
3330 else
3331 { /* this is the last Unit */
3332 if (*up == powers[quotdigits] - 1)
3333 allnines = 1;
3334 break;
3335 }
3336 quotdigits -= DECDPUN; /* checked those digits */
3337 } /* up */
3338 } /* borderline check */
3339 if (allnines)
3340 {
3341 *status |= DEC_Division_impossible;
3342 break;
3343 }
3344
3345 /* we need rem-rhs; the sign will invert. Again we can */
3346 /* safely use var1 for the working Units array. */
3347 exp = rhs->exponent - exponent; /* RHS padding needed */
3348 /* Calculate units and remainder from exponent. */
3349 expunits = exp / DECDPUN;
3350 exprem = exp % DECDPUN;
3351 /* subtract [A+B*(-m)]; the result will always be negative */
3352 accunits = -decUnitAddSub (accnext, accunits,
3353 rhs->lsu, D2U (rhs->digits),
3354 expunits, accnext,
3355 -(Int) powers[exprem]);
3356 accdigits = decGetDigits (accnext, accunits); /* count digits exactly */
3357 accunits = D2U (accdigits); /* and recalculate the units for copy */
3358 /* [exponent is as for original remainder] */
3359 bits ^= DECNEG; /* flip the sign */
3360 }
3361 } /* REMNEAR */
3362 } /* REMAINDER or REMNEAR */
3363 } /* not DIVIDE */
3364
3365 /* Set exponent and bits */
3366 res->exponent = exponent;
3367 res->bits = (uByte) (bits & DECNEG); /* [cleaned] */
3368
3369 /* Now the coefficient. */
3370 decSetCoeff (res, set, accnext, accdigits, &residue, status);
3371
3372 decFinish (res, set, &residue, status); /* final cleanup */
3373
3374 #if DECSUBSET
3375 /* If a divide then strip trailing zeros if subset [after round] */
3376 if (!set->extended && (op == DIVIDE))
3377 decTrim (res, 0, &dropped);
3378 #endif
3379 }
3380 while (0); /* end protected */
3381
3382 if (varalloc != NULL)
3383 free (varalloc); /* drop any storage we used */
3384 if (allocacc != NULL)
3385 free (allocacc); /* .. */
3386 if (allocrhs != NULL)
3387 free (allocrhs); /* .. */
3388 if (alloclhs != NULL)
3389 free (alloclhs); /* .. */
3390 return res;
3391 }
3392
3393 /* ------------------------------------------------------------------ */
3394 /* decMultiplyOp -- multiplication operation */
3395 /* */
3396 /* This routine performs the multiplication C=A x B. */
3397 /* */
3398 /* res is C, the result. C may be A and/or B (e.g., X=X*X) */
3399 /* lhs is A */
3400 /* rhs is B */
3401 /* set is the context */
3402 /* status is the usual accumulator */
3403 /* */
3404 /* C must have space for set->digits digits. */
3405 /* */
3406 /* ------------------------------------------------------------------ */
3407 /* Note: We use 'long' multiplication rather than Karatsuba, as the */
3408 /* latter would give only a minor improvement for the short numbers */
3409 /* we expect to handle most (and uses much more memory). */
3410 /* */
3411 /* We always have to use a buffer for the accumulator. */
3412 /* ------------------------------------------------------------------ */
3413 static decNumber *
3414 decMultiplyOp (decNumber * res, decNumber * lhs,
3415 decNumber * rhs, decContext * set, uInt * status)
3416 {
3417 decNumber *alloclhs = NULL; /* non-NULL if rounded lhs allocated */
3418 decNumber *allocrhs = NULL; /* .., rhs */
3419 Unit accbuff[D2U (DECBUFFER * 2 + 1)]; /* local buffer (+1 in case DECBUFFER==0) */
3420 Unit *acc = accbuff; /* -> accumulator array for exact result */
3421 Unit *allocacc = NULL; /* -> allocated buffer, iff allocated */
3422 Unit *mer, *mermsup; /* work */
3423 Int accunits; /* Units of accumulator in use */
3424 Int madlength; /* Units in multiplicand */
3425 Int shift; /* Units to shift multiplicand by */
3426 Int need; /* Accumulator units needed */
3427 Int exponent; /* work */
3428 Int residue = 0; /* rounding residue */
3429 uByte bits; /* result sign */
3430 uByte merged; /* merged flags */
3431
3432 #if DECCHECK
3433 if (decCheckOperands (res, lhs, rhs, set))
3434 return res;
3435 #endif
3436
3437 do
3438 { /* protect allocated storage */
3439 #if DECSUBSET
3440 if (!set->extended)
3441 {
3442 /* reduce operands and set lostDigits status, as needed */
3443 if (lhs->digits > set->digits)
3444 {
3445 alloclhs = decRoundOperand (lhs, set, status);
3446 if (alloclhs == NULL)
3447 break;
3448 lhs = alloclhs;
3449 }
3450 if (rhs->digits > set->digits)
3451 {
3452 allocrhs = decRoundOperand (rhs, set, status);
3453 if (allocrhs == NULL)
3454 break;
3455 rhs = allocrhs;
3456 }
3457 }
3458 #endif
3459 /* [following code does not require input rounding] */
3460
3461 /* precalculate result sign */
3462 bits = (uByte) ((lhs->bits ^ rhs->bits) & DECNEG);
3463
3464 /* handle infinities and NaNs */
3465 merged = (lhs->bits | rhs->bits) & DECSPECIAL;
3466 if (merged)
3467 { /* a special bit set */
3468 if (merged & (DECSNAN | DECNAN))
3469 { /* one or two NaNs */
3470 decNaNs (res, lhs, rhs, status);
3471 break;
3472 }
3473 /* one or two infinities. Infinity * 0 is invalid */
3474 if (((lhs->bits & DECSPECIAL) == 0 && ISZERO (lhs))
3475 || ((rhs->bits & DECSPECIAL) == 0 && ISZERO (rhs)))
3476 {
3477 *status |= DEC_Invalid_operation;
3478 break;
3479 }
3480 decNumberZero (res);
3481 res->bits = bits | DECINF; /* infinity */
3482 break;
3483 }
3484
3485 /* For best speed, as in DMSRCN, we use the shorter number as the */
3486 /* multiplier (rhs) and the longer as the multiplicand (lhs) */
3487 if (lhs->digits < rhs->digits)
3488 { /* swap... */
3489 decNumber *hold = lhs;
3490 lhs = rhs;
3491 rhs = hold;
3492 }
3493
3494 /* if accumulator is too long for local storage, then allocate */
3495 need = D2U (lhs->digits) + D2U (rhs->digits); /* maximum units in result */
3496 if (need * sizeof (Unit) > sizeof (accbuff))
3497 {
3498 allocacc = (Unit *) malloc (need * sizeof (Unit));
3499 if (allocacc == NULL)
3500 {
3501 *status |= DEC_Insufficient_storage;
3502 break;
3503 }
3504 acc = allocacc; /* use the allocated space */
3505 }
3506
3507 /* Now the main long multiplication loop */
3508 /* Unlike the equivalent in the IBM Java implementation, there */
3509 /* is no advantage in calculating from msu to lsu. So we do it */
3510 /* by the book, as it were. */
3511 /* Each iteration calculates ACC=ACC+MULTAND*MULT */
3512 accunits = 1; /* accumulator starts at '0' */
3513 *acc = 0; /* .. (lsu=0) */
3514 shift = 0; /* no multiplicand shift at first */
3515 madlength = D2U (lhs->digits); /* we know this won't change */
3516 mermsup = rhs->lsu + D2U (rhs->digits); /* -> msu+1 of multiplier */
3517
3518 for (mer = rhs->lsu; mer < mermsup; mer++)
3519 {
3520 /* Here, *mer is the next Unit in the multiplier to use */
3521 /* If non-zero [optimization] add it... */
3522 if (*mer != 0)
3523 {
3524 accunits =
3525 decUnitAddSub (&acc[shift], accunits - shift, lhs->lsu,
3526 madlength, 0, &acc[shift], *mer) + shift;
3527 }
3528 else
3529 { /* extend acc with a 0; we'll use it shortly */
3530 /* [this avoids length of <=0 later] */
3531 *(acc + accunits) = 0;
3532 accunits++;
3533 }
3534 /* multiply multiplicand by 10**DECDPUN for next Unit to left */
3535 shift++; /* add this for 'logical length' */
3536 } /* n */
3537 #if DECTRACE
3538 /* Show exact result */
3539 decDumpAr ('*', acc, accunits);
3540 #endif
3541
3542 /* acc now contains the exact result of the multiplication */
3543 /* Build a decNumber from it, noting if any residue */
3544 res->bits = bits; /* set sign */
3545 res->digits = decGetDigits (acc, accunits); /* count digits exactly */
3546
3547 /* We might have a 31-bit wrap in calculating the exponent. */
3548 /* This can only happen if both input exponents are negative and */
3549 /* both their magnitudes are large. If we did wrap, we set a safe */
3550 /* very negative exponent, from which decFinalize() will raise a */
3551 /* hard underflow. */
3552 exponent = lhs->exponent + rhs->exponent; /* calculate exponent */
3553 if (lhs->exponent < 0 && rhs->exponent < 0 && exponent > 0)
3554 exponent = -2 * DECNUMMAXE; /* force underflow */
3555 res->exponent = exponent; /* OK to overwrite now */
3556
3557 /* Set the coefficient. If any rounding, residue records */
3558 decSetCoeff (res, set, acc, res->digits, &residue, status);
3559
3560 decFinish (res, set, &residue, status); /* final cleanup */
3561 }
3562 while (0); /* end protected */
3563
3564 if (allocacc != NULL)
3565 free (allocacc); /* drop any storage we used */
3566 if (allocrhs != NULL)
3567 free (allocrhs); /* .. */
3568 if (alloclhs != NULL)
3569 free (alloclhs); /* .. */
3570 return res;
3571 }
3572
3573 /* ------------------------------------------------------------------ */
3574 /* decQuantizeOp -- force exponent to requested value */
3575 /* */
3576 /* This computes C = op(A, B), where op adjusts the coefficient */
3577 /* of C (by rounding or shifting) such that the exponent (-scale) */
3578 /* of C has the value B or matches the exponent of B. */
3579 /* The numerical value of C will equal A, except for the effects of */
3580 /* any rounding that occurred. */
3581 /* */
3582 /* res is C, the result. C may be A or B */
3583 /* lhs is A, the number to adjust */
3584 /* rhs is B, the requested exponent */
3585 /* set is the context */
3586 /* quant is 1 for quantize or 0 for rescale */
3587 /* status is the status accumulator (this can be called without */
3588 /* risk of control loss) */
3589 /* */
3590 /* C must have space for set->digits digits. */
3591 /* */
3592 /* Unless there is an error or the result is infinite, the exponent */
3593 /* after the operation is guaranteed to be that requested. */
3594 /* ------------------------------------------------------------------ */
3595 static decNumber *
3596 decQuantizeOp (decNumber * res, decNumber * lhs,
3597 decNumber * rhs, decContext * set, Flag quant, uInt * status)
3598 {
3599 decNumber *alloclhs = NULL; /* non-NULL if rounded lhs allocated */
3600 decNumber *allocrhs = NULL; /* .., rhs */
3601 decNumber *inrhs = rhs; /* save original rhs */
3602 Int reqdigits = set->digits; /* requested DIGITS */
3603 Int reqexp; /* requested exponent [-scale] */
3604 Int residue = 0; /* rounding residue */
3605 uByte merged; /* merged flags */
3606 Int etiny = set->emin - (set->digits - 1);
3607
3608 #if DECCHECK
3609 if (decCheckOperands (res, lhs, rhs, set))
3610 return res;
3611 #endif
3612
3613 do
3614 { /* protect allocated storage */
3615 #if DECSUBSET
3616 if (!set->extended)
3617 {
3618 /* reduce operands and set lostDigits status, as needed */
3619 if (lhs->digits > reqdigits)
3620 {
3621 alloclhs = decRoundOperand (lhs, set, status);
3622 if (alloclhs == NULL)
3623 break;
3624 lhs = alloclhs;
3625 }
3626 if (rhs->digits > reqdigits)
3627 { /* [this only checks lostDigits] */
3628 allocrhs = decRoundOperand (rhs, set, status);
3629 if (allocrhs == NULL)
3630 break;
3631 rhs = allocrhs;
3632 }
3633 }
3634 #endif
3635 /* [following code does not require input rounding] */
3636
3637 /* Handle special values */
3638 merged = (lhs->bits | rhs->bits) & DECSPECIAL;
3639 if ((lhs->bits | rhs->bits) & DECSPECIAL)
3640 {
3641 /* NaNs get usual processing */
3642 if (merged & (DECSNAN | DECNAN))
3643 decNaNs (res, lhs, rhs, status);
3644 /* one infinity but not both is bad */
3645 else if ((lhs->bits ^ rhs->bits) & DECINF)
3646 *status |= DEC_Invalid_operation;
3647 /* both infinity: return lhs */
3648 else
3649 decNumberCopy (res, lhs); /* [nop if in place] */
3650 break;
3651 }
3652
3653 /* set requested exponent */
3654 if (quant)
3655 reqexp = inrhs->exponent; /* quantize -- match exponents */
3656 else
3657 { /* rescale -- use value of rhs */
3658 /* Original rhs must be an integer that fits and is in range */
3659 #if DECSUBSET
3660 reqexp = decGetInt (inrhs, set);
3661 #else
3662 reqexp = decGetInt (inrhs);
3663 #endif
3664 }
3665
3666 #if DECSUBSET
3667 if (!set->extended)
3668 etiny = set->emin; /* no subnormals */
3669 #endif
3670
3671 if (reqexp == BADINT /* bad (rescale only) or .. */
3672 || (reqexp < etiny) /* < lowest */
3673 || (reqexp > set->emax))
3674 { /* > Emax */
3675 *status |= DEC_Invalid_operation;
3676 break;
3677 }
3678
3679 /* we've processed the RHS, so we can overwrite it now if necessary */
3680 if (ISZERO (lhs))
3681 { /* zero coefficient unchanged */
3682 decNumberCopy (res, lhs); /* [nop if in place] */
3683 res->exponent = reqexp; /* .. just set exponent */
3684 #if DECSUBSET
3685 if (!set->extended)
3686 res->bits = 0; /* subset specification; no -0 */
3687 #endif
3688 }
3689 else
3690 { /* non-zero lhs */
3691 Int adjust = reqexp - lhs->exponent; /* digit adjustment needed */
3692 /* if adjusted coefficient will not fit, give up now */
3693 if ((lhs->digits - adjust) > reqdigits)
3694 {
3695 *status |= DEC_Invalid_operation;
3696 break;
3697 }
3698
3699 if (adjust > 0)
3700 { /* increasing exponent */
3701 /* this will decrease the length of the coefficient by adjust */
3702 /* digits, and must round as it does so */
3703 decContext workset; /* work */
3704 workset = *set; /* clone rounding, etc. */
3705 workset.digits = lhs->digits - adjust; /* set requested length */
3706 /* [note that the latter can be <1, here] */
3707 decCopyFit (res, lhs, &workset, &residue, status); /* fit to result */
3708 decApplyRound (res, &workset, residue, status); /* .. and round */
3709 residue = 0; /* [used] */
3710 /* If we rounded a 999s case, exponent will be off by one; */
3711 /* adjust back if so. */
3712 if (res->exponent > reqexp)
3713 {
3714 res->digits = decShiftToMost (res->lsu, res->digits, 1); /* shift */
3715 res->exponent--; /* (re)adjust the exponent. */
3716 }
3717 #if DECSUBSET
3718 if (ISZERO (res) && !set->extended)
3719 res->bits = 0; /* subset; no -0 */
3720 #endif
3721 } /* increase */
3722 else /* adjust<=0 */
3723 { /* decreasing or = exponent */
3724 /* this will increase the length of the coefficient by -adjust */
3725 /* digits, by adding trailing zeros. */
3726 decNumberCopy (res, lhs); /* [it will fit] */
3727 /* if padding needed (adjust<0), add it now... */
3728 if (adjust < 0)
3729 {
3730 res->digits =
3731 decShiftToMost (res->lsu, res->digits, -adjust);
3732 res->exponent += adjust; /* adjust the exponent */
3733 }
3734 } /* decrease */
3735 } /* non-zero */
3736
3737 /* Check for overflow [do not use Finalize in this case, as an */
3738 /* overflow here is a "don't fit" situation] */
3739 if (res->exponent > set->emax - res->digits + 1)
3740 { /* too big */
3741 *status |= DEC_Invalid_operation;
3742 break;
3743 }
3744 else
3745 {
3746 decFinalize (res, set, &residue, status); /* set subnormal flags */
3747 *status &= ~DEC_Underflow; /* suppress Underflow [754r] */
3748 }
3749 }
3750 while (0); /* end protected */
3751
3752 if (allocrhs != NULL)
3753 free (allocrhs); /* drop any storage we used */
3754 if (alloclhs != NULL)
3755 free (alloclhs); /* .. */
3756 return res;
3757 }
3758
3759 /* ------------------------------------------------------------------ */
3760 /* decCompareOp -- compare, min, or max two Numbers */
3761 /* */
3762 /* This computes C = A ? B and returns the signum (as a Number) */
3763 /* for COMPARE or the maximum or minimum (for COMPMAX and COMPMIN). */
3764 /* */
3765 /* res is C, the result. C may be A and/or B (e.g., X=X?X) */
3766 /* lhs is A */
3767 /* rhs is B */
3768 /* set is the context */
3769 /* op is the operation flag */
3770 /* status is the usual accumulator */
3771 /* */
3772 /* C must have space for one digit for COMPARE or set->digits for */
3773 /* COMPMAX and COMPMIN. */
3774 /* ------------------------------------------------------------------ */
3775 /* The emphasis here is on speed for common cases, and avoiding */
3776 /* coefficient comparison if possible. */
3777 /* ------------------------------------------------------------------ */
3778 decNumber *
3779 decCompareOp (decNumber * res, decNumber * lhs, decNumber * rhs,
3780 decContext * set, Flag op, uInt * status)
3781 {
3782 decNumber *alloclhs = NULL; /* non-NULL if rounded lhs allocated */
3783 decNumber *allocrhs = NULL; /* .., rhs */
3784 Int result = 0; /* default result value */
3785 uByte merged; /* merged flags */
3786 uByte bits = 0; /* non-0 for NaN */
3787
3788 #if DECCHECK
3789 if (decCheckOperands (res, lhs, rhs, set))
3790 return res;
3791 #endif
3792
3793 do
3794 { /* protect allocated storage */
3795 #if DECSUBSET
3796 if (!set->extended)
3797 {
3798 /* reduce operands and set lostDigits status, as needed */
3799 if (lhs->digits > set->digits)
3800 {
3801 alloclhs = decRoundOperand (lhs, set, status);
3802 if (alloclhs == NULL)
3803 {
3804 result = BADINT;
3805 break;
3806 }
3807 lhs = alloclhs;
3808 }
3809 if (rhs->digits > set->digits)
3810 {
3811 allocrhs = decRoundOperand (rhs, set, status);
3812 if (allocrhs == NULL)
3813 {
3814 result = BADINT;
3815 break;
3816 }
3817 rhs = allocrhs;
3818 }
3819 }
3820 #endif
3821 /* [following code does not require input rounding] */
3822
3823 /* handle NaNs now; let infinities drop through */
3824 /* +++ review sNaN handling with 754r, for now assumes sNaN */
3825 /* (even just one) leads to NaN. */
3826 merged = (lhs->bits | rhs->bits) & (DECSNAN | DECNAN);
3827 if (merged)
3828 { /* a NaN bit set */
3829 if (op == COMPARE);
3830 else if (merged & DECSNAN);
3831 else
3832 { /* 754r rules for MIN and MAX ignore single NaN */
3833 /* here if MIN or MAX, and one or two quiet NaNs */
3834 if (lhs->bits & rhs->bits & DECNAN);
3835 else
3836 { /* just one quiet NaN */
3837 /* force choice to be the non-NaN operand */
3838 op = COMPMAX;
3839 if (lhs->bits & DECNAN)
3840 result = -1; /* pick rhs */
3841 else
3842 result = +1; /* pick lhs */
3843 break;
3844 }
3845 }
3846 op = COMPNAN; /* use special path */
3847 decNaNs (res, lhs, rhs, status);
3848 break;
3849 }
3850
3851 result = decCompare (lhs, rhs); /* we have numbers */
3852 }
3853 while (0); /* end protected */
3854
3855 if (result == BADINT)
3856 *status |= DEC_Insufficient_storage; /* rare */
3857 else
3858 {
3859 if (op == COMPARE)
3860 { /* return signum */
3861 decNumberZero (res); /* [always a valid result] */
3862 if (result == 0)
3863 res->bits = bits; /* (maybe qNaN) */
3864 else
3865 {
3866 *res->lsu = 1;
3867 if (result < 0)
3868 res->bits = DECNEG;
3869 }
3870 }
3871 else if (op == COMPNAN); /* special, drop through */
3872 else
3873 { /* MAX or MIN, non-NaN result */
3874 Int residue = 0; /* rounding accumulator */
3875 /* choose the operand for the result */
3876 decNumber *choice;
3877 if (result == 0)
3878 { /* operands are numerically equal */
3879 /* choose according to sign then exponent (see 754r) */
3880 uByte slhs = (lhs->bits & DECNEG);
3881 uByte srhs = (rhs->bits & DECNEG);
3882 #if DECSUBSET
3883 if (!set->extended)
3884 { /* subset: force left-hand */
3885 op = COMPMAX;
3886 result = +1;
3887 }
3888 else
3889 #endif
3890 if (slhs != srhs)
3891 { /* signs differ */
3892 if (slhs)
3893 result = -1; /* rhs is max */
3894 else
3895 result = +1; /* lhs is max */
3896 }
3897 else if (slhs && srhs)
3898 { /* both negative */
3899 if (lhs->exponent < rhs->exponent)
3900 result = +1;
3901 else
3902 result = -1;
3903 /* [if equal, we use lhs, technically identical] */
3904 }
3905 else
3906 { /* both positive */
3907 if (lhs->exponent > rhs->exponent)
3908 result = +1;
3909 else
3910 result = -1;
3911 /* [ditto] */
3912 }
3913 } /* numerically equal */
3914 /* here result will be non-0 */
3915 if (op == COMPMIN)
3916 result = -result; /* reverse if looking for MIN */
3917 choice = (result > 0 ? lhs : rhs); /* choose */
3918 /* copy chosen to result, rounding if need be */
3919 decCopyFit (res, choice, set, &residue, status);
3920 decFinish (res, set, &residue, status);
3921 }
3922 }
3923 if (allocrhs != NULL)
3924 free (allocrhs); /* free any storage we used */
3925 if (alloclhs != NULL)
3926 free (alloclhs); /* .. */
3927 return res;
3928 }
3929
3930 /* ------------------------------------------------------------------ */
3931 /* decCompare -- compare two decNumbers by numerical value */
3932 /* */
3933 /* This routine compares A ? B without altering them. */
3934 /* */
3935 /* Arg1 is A, a decNumber which is not a NaN */
3936 /* Arg2 is B, a decNumber which is not a NaN */
3937 /* */
3938 /* returns -1, 0, or 1 for A<B, A==B, or A>B, or BADINT if failure */
3939 /* (the only possible failure is an allocation error) */
3940 /* ------------------------------------------------------------------ */
3941 /* This could be merged into decCompareOp */
3942 static Int
3943 decCompare (decNumber * lhs, decNumber * rhs)
3944 {
3945 Int result; /* result value */
3946 Int sigr; /* rhs signum */
3947 Int compare; /* work */
3948 result = 1; /* assume signum(lhs) */
3949 if (ISZERO (lhs))
3950 result = 0;
3951 else if (decNumberIsNegative (lhs))
3952 result = -1;
3953 sigr = 1; /* compute signum(rhs) */
3954 if (ISZERO (rhs))
3955 sigr = 0;
3956 else if (decNumberIsNegative (rhs))
3957 sigr = -1;
3958 if (result > sigr)
3959 return +1; /* L > R, return 1 */
3960 if (result < sigr)
3961 return -1; /* R < L, return -1 */
3962
3963 /* signums are the same */
3964 if (result == 0)
3965 return 0; /* both 0 */
3966 /* Both non-zero */
3967 if ((lhs->bits | rhs->bits) & DECINF)
3968 { /* one or more infinities */
3969 if (lhs->bits == rhs->bits)
3970 result = 0; /* both the same */
3971 else if (decNumberIsInfinite (rhs))
3972 result = -result;
3973 return result;
3974 }
3975
3976 /* we must compare the coefficients, allowing for exponents */
3977 if (lhs->exponent > rhs->exponent)
3978 { /* LHS exponent larger */
3979 /* swap sides, and sign */
3980 decNumber *temp = lhs;
3981 lhs = rhs;
3982 rhs = temp;
3983 result = -result;
3984 }
3985
3986 compare = decUnitCompare (lhs->lsu, D2U (lhs->digits),
3987 rhs->lsu, D2U (rhs->digits),
3988 rhs->exponent - lhs->exponent);
3989
3990 if (compare != BADINT)
3991 compare *= result; /* comparison succeeded */
3992 return compare; /* what we got */
3993 }
3994
3995 /* ------------------------------------------------------------------ */
3996 /* decUnitCompare -- compare two >=0 integers in Unit arrays */
3997 /* */
3998 /* This routine compares A ? B*10**E where A and B are unit arrays */
3999 /* A is a plain integer */
4000 /* B has an exponent of E (which must be non-negative) */
4001 /* */
4002 /* Arg1 is A first Unit (lsu) */
4003 /* Arg2 is A length in Units */
4004 /* Arg3 is B first Unit (lsu) */
4005 /* Arg4 is B length in Units */
4006 /* Arg5 is E */
4007 /* */
4008 /* returns -1, 0, or 1 for A<B, A==B, or A>B, or BADINT if failure */
4009 /* (the only possible failure is an allocation error) */
4010 /* ------------------------------------------------------------------ */
4011 static Int
4012 decUnitCompare (Unit * a, Int alength, Unit * b, Int blength, Int exp)
4013 {
4014 Unit *acc; /* accumulator for result */
4015 Unit accbuff[D2U (DECBUFFER + 1)]; /* local buffer */
4016 Unit *allocacc = NULL; /* -> allocated acc buffer, iff allocated */
4017 Int accunits, need; /* units in use or needed for acc */
4018 Unit *l, *r, *u; /* work */
4019 Int expunits, exprem, result; /* .. */
4020
4021 if (exp == 0)
4022 { /* aligned; fastpath */
4023 if (alength > blength)
4024 return 1;
4025 if (alength < blength)
4026 return -1;
4027 /* same number of units in both -- need unit-by-unit compare */
4028 l = a + alength - 1;
4029 r = b + alength - 1;
4030 for (; l >= a; l--, r--)
4031 {
4032 if (*l > *r)
4033 return 1;
4034 if (*l < *r)
4035 return -1;
4036 }
4037 return 0; /* all units match */
4038 } /* aligned */
4039
4040 /* Unaligned. If one is >1 unit longer than the other, padded */
4041 /* approximately, then we can return easily */
4042 if (alength > blength + (Int) D2U (exp))
4043 return 1;
4044 if (alength + 1 < blength + (Int) D2U (exp))
4045 return -1;
4046
4047 /* We need to do a real subtract. For this, we need a result buffer */
4048 /* even though we only are interested in the sign. Its length needs */
4049 /* to be the larger of alength and padded blength, +2 */
4050 need = blength + D2U (exp); /* maximum real length of B */
4051 if (need < alength)
4052 need = alength;
4053 need += 2;
4054 acc = accbuff; /* assume use local buffer */
4055 if (need * sizeof (Unit) > sizeof (accbuff))
4056 {
4057 allocacc = (Unit *) malloc (need * sizeof (Unit));
4058 if (allocacc == NULL)
4059 return BADINT; /* hopeless -- abandon */
4060 acc = allocacc;
4061 }
4062 /* Calculate units and remainder from exponent. */
4063 expunits = exp / DECDPUN;
4064 exprem = exp % DECDPUN;
4065 /* subtract [A+B*(-m)] */
4066 accunits = decUnitAddSub (a, alength, b, blength, expunits, acc,
4067 -(Int) powers[exprem]);
4068 /* [UnitAddSub result may have leading zeros, even on zero] */
4069 if (accunits < 0)
4070 result = -1; /* negative result */
4071 else
4072 { /* non-negative result */
4073 /* check units of the result before freeing any storage */
4074 for (u = acc; u < acc + accunits - 1 && *u == 0;)
4075 u++;
4076 result = (*u == 0 ? 0 : +1);
4077 }
4078 /* clean up and return the result */
4079 if (allocacc != NULL)
4080 free (allocacc); /* drop any storage we used */
4081 return result;
4082 }
4083
4084 /* ------------------------------------------------------------------ */
4085 /* decUnitAddSub -- add or subtract two >=0 integers in Unit arrays */
4086 /* */
4087 /* This routine performs the calculation: */
4088 /* */
4089 /* C=A+(B*M) */
4090 /* */
4091 /* Where M is in the range -DECDPUNMAX through +DECDPUNMAX. */
4092 /* */
4093 /* A may be shorter or longer than B. */
4094 /* */
4095 /* Leading zeros are not removed after a calculation. The result is */
4096 /* either the same length as the longer of A and B (adding any */
4097 /* shift), or one Unit longer than that (if a Unit carry occurred). */
4098 /* */
4099 /* A and B content are not altered unless C is also A or B. */
4100 /* C may be the same array as A or B, but only if no zero padding is */
4101 /* requested (that is, C may be B only if bshift==0). */
4102 /* C is filled from the lsu; only those units necessary to complete */
4103 /* the calculation are referenced. */
4104 /* */
4105 /* Arg1 is A first Unit (lsu) */
4106 /* Arg2 is A length in Units */
4107 /* Arg3 is B first Unit (lsu) */
4108 /* Arg4 is B length in Units */
4109 /* Arg5 is B shift in Units (>=0; pads with 0 units if positive) */
4110 /* Arg6 is C first Unit (lsu) */
4111 /* Arg7 is M, the multiplier */
4112 /* */
4113 /* returns the count of Units written to C, which will be non-zero */
4114 /* and negated if the result is negative. That is, the sign of the */
4115 /* returned Int is the sign of the result (positive for zero) and */
4116 /* the absolute value of the Int is the count of Units. */
4117 /* */
4118 /* It is the caller's responsibility to make sure that C size is */
4119 /* safe, allowing space if necessary for a one-Unit carry. */
4120 /* */
4121 /* This routine is severely performance-critical; *any* change here */
4122 /* must be measured (timed) to assure no performance degradation. */
4123 /* In particular, trickery here tends to be counter-productive, as */
4124 /* increased complexity of code hurts register optimizations on */
4125 /* register-poor architectures. Avoiding divisions is nearly */
4126 /* always a Good Idea, however. */
4127 /* */
4128 /* Special thanks to Rick McGuire (IBM Cambridge, MA) and Dave Clark */
4129 /* (IBM Warwick, UK) for some of the ideas used in this routine. */
4130 /* ------------------------------------------------------------------ */
4131 static Int
4132 decUnitAddSub (Unit * a, Int alength,
4133 Unit * b, Int blength, Int bshift, Unit * c, Int m)
4134 {
4135 Unit *alsu = a; /* A lsu [need to remember it] */
4136 Unit *clsu = c; /* C ditto */
4137 Unit *minC; /* low water mark for C */
4138 Unit *maxC; /* high water mark for C */
4139 eInt carry = 0; /* carry integer (could be Long) */
4140 Int add; /* work */
4141 #if DECDPUN==4 /* myriadal */
4142 Int est; /* estimated quotient */
4143 #endif
4144
4145 #if DECTRACE
4146 if (alength < 1 || blength < 1)
4147 printf ("decUnitAddSub: alen blen m %d %d [%d]\n", alength, blength, m);
4148 #endif
4149
4150 maxC = c + alength; /* A is usually the longer */
4151 minC = c + blength; /* .. and B the shorter */
4152 if (bshift != 0)
4153 { /* B is shifted; low As copy across */
4154 minC += bshift;
4155 /* if in place [common], skip copy unless there's a gap [rare] */
4156 if (a == c && bshift <= alength)
4157 {
4158 c += bshift;
4159 a += bshift;
4160 }
4161 else
4162 for (; c < clsu + bshift; a++, c++)
4163 { /* copy needed */
4164 if (a < alsu + alength)
4165 *c = *a;
4166 else
4167 *c = 0;
4168 }
4169 }
4170 if (minC > maxC)
4171 { /* swap */
4172 Unit *hold = minC;
4173 minC = maxC;
4174 maxC = hold;
4175 }
4176
4177 /* For speed, we do the addition as two loops; the first where both A */
4178 /* and B contribute, and the second (if necessary) where only one or */
4179 /* other of the numbers contribute. */
4180 /* Carry handling is the same (i.e., duplicated) in each case. */
4181 for (; c < minC; c++)
4182 {
4183 carry += *a;
4184 a++;
4185 carry += ((eInt) * b) * m; /* [special-casing m=1/-1 */
4186 b++; /* here is not a win] */
4187 /* here carry is new Unit of digits; it could be +ve or -ve */
4188 if ((ueInt) carry <= DECDPUNMAX)
4189 { /* fastpath 0-DECDPUNMAX */
4190 *c = (Unit) carry;
4191 carry = 0;
4192 continue;
4193 }
4194 /* remainder operator is undefined if negative, so we must test */
4195 #if DECDPUN==4 /* use divide-by-multiply */
4196 if (carry >= 0)
4197 {
4198 est = (((ueInt) carry >> 11) * 53687) >> 18;
4199 *c = (Unit) (carry - est * (DECDPUNMAX + 1)); /* remainder */
4200 carry = est; /* likely quotient [89%] */
4201 if (*c < DECDPUNMAX + 1)
4202 continue; /* estimate was correct */
4203 carry++;
4204 *c -= DECDPUNMAX + 1;
4205 continue;
4206 }
4207 /* negative case */
4208 carry = carry + (eInt) (DECDPUNMAX + 1) * (DECDPUNMAX + 1); /* make positive */
4209 est = (((ueInt) carry >> 11) * 53687) >> 18;
4210 *c = (Unit) (carry - est * (DECDPUNMAX + 1));
4211 carry = est - (DECDPUNMAX + 1); /* correctly negative */
4212 if (*c < DECDPUNMAX + 1)
4213 continue; /* was OK */
4214 carry++;
4215 *c -= DECDPUNMAX + 1;
4216 #else
4217 if ((ueInt) carry < (DECDPUNMAX + 1) * 2)
4218 { /* fastpath carry +1 */
4219 *c = (Unit) (carry - (DECDPUNMAX + 1)); /* [helps additions] */
4220 carry = 1;
4221 continue;
4222 }
4223 if (carry >= 0)
4224 {
4225 *c = (Unit) (carry % (DECDPUNMAX + 1));
4226 carry = carry / (DECDPUNMAX + 1);
4227 continue;
4228 }
4229 /* negative case */
4230 carry = carry + (eInt) (DECDPUNMAX + 1) * (DECDPUNMAX + 1); /* make positive */
4231 *c = (Unit) (carry % (DECDPUNMAX + 1));
4232 carry = carry / (DECDPUNMAX + 1) - (DECDPUNMAX + 1);
4233 #endif
4234 } /* c */
4235
4236 /* we now may have one or other to complete */
4237 /* [pretest to avoid loop setup/shutdown] */
4238 if (c < maxC)
4239 for (; c < maxC; c++)
4240 {
4241 if (a < alsu + alength)
4242 { /* still in A */
4243 carry += *a;
4244 a++;
4245 }
4246 else
4247 { /* inside B */
4248 carry += ((eInt) * b) * m;
4249 b++;
4250 }
4251 /* here carry is new Unit of digits; it could be +ve or -ve and */
4252 /* magnitude up to DECDPUNMAX squared */
4253 if ((ueInt) carry <= DECDPUNMAX)
4254 { /* fastpath 0-DECDPUNMAX */
4255 *c = (Unit) carry;
4256 carry = 0;
4257 continue;
4258 }
4259 /* result for this unit is negative or >DECDPUNMAX */
4260 #if DECDPUN==4 /* use divide-by-multiply */
4261 /* remainder is undefined if negative, so we must test */
4262 if (carry >= 0)
4263 {
4264 est = (((ueInt) carry >> 11) * 53687) >> 18;
4265 *c = (Unit) (carry - est * (DECDPUNMAX + 1)); /* remainder */
4266 carry = est; /* likely quotient [79.7%] */
4267 if (*c < DECDPUNMAX + 1)
4268 continue; /* estimate was correct */
4269 carry++;
4270 *c -= DECDPUNMAX + 1;
4271 continue;
4272 }
4273 /* negative case */
4274 carry = carry + (eInt) (DECDPUNMAX + 1) * (DECDPUNMAX + 1); /* make positive */
4275 est = (((ueInt) carry >> 11) * 53687) >> 18;
4276 *c = (Unit) (carry - est * (DECDPUNMAX + 1));
4277 carry = est - (DECDPUNMAX + 1); /* correctly negative */
4278 if (*c < DECDPUNMAX + 1)
4279 continue; /* was OK */
4280 carry++;
4281 *c -= DECDPUNMAX + 1;
4282 #else
4283 if ((ueInt) carry < (DECDPUNMAX + 1) * 2)
4284 { /* fastpath carry 1 */
4285 *c = (Unit) (carry - (DECDPUNMAX + 1));
4286 carry = 1;
4287 continue;
4288 }
4289 /* remainder is undefined if negative, so we must test */
4290 if (carry >= 0)
4291 {
4292 *c = (Unit) (carry % (DECDPUNMAX + 1));
4293 carry = carry / (DECDPUNMAX + 1);
4294 continue;
4295 }
4296 /* negative case */
4297 carry = carry + (eInt) (DECDPUNMAX + 1) * (DECDPUNMAX + 1); /* make positive */
4298 *c = (Unit) (carry % (DECDPUNMAX + 1));
4299 carry = carry / (DECDPUNMAX + 1) - (DECDPUNMAX + 1);
4300 #endif
4301 } /* c */
4302
4303 /* OK, all A and B processed; might still have carry or borrow */
4304 /* return number of Units in the result, negated if a borrow */
4305 if (carry == 0)
4306 return c - clsu; /* no carry, we're done */
4307 if (carry > 0)
4308 { /* positive carry */
4309 *c = (Unit) carry; /* place as new unit */
4310 c++; /* .. */
4311 return c - clsu;
4312 }
4313 /* -ve carry: it's a borrow; complement needed */
4314 add = 1; /* temporary carry... */
4315 for (c = clsu; c < maxC; c++)
4316 {
4317 add = DECDPUNMAX + add - *c;
4318 if (add <= DECDPUNMAX)
4319 {
4320 *c = (Unit) add;
4321 add = 0;
4322 }
4323 else
4324 {
4325 *c = 0;
4326 add = 1;
4327 }
4328 }
4329 /* add an extra unit iff it would be non-zero */
4330 #if DECTRACE
4331 printf ("UAS borrow: add %d, carry %d\n", add, carry);
4332 #endif
4333 if ((add - carry - 1) != 0)
4334 {
4335 *c = (Unit) (add - carry - 1);
4336 c++; /* interesting, include it */
4337 }
4338 return clsu - c; /* -ve result indicates borrowed */
4339 }
4340
4341 /* ------------------------------------------------------------------ */
4342 /* decTrim -- trim trailing zeros or normalize */
4343 /* */
4344 /* dn is the number to trim or normalize */
4345 /* all is 1 to remove all trailing zeros, 0 for just fraction ones */
4346 /* dropped returns the number of discarded trailing zeros */
4347 /* returns dn */
4348 /* */
4349 /* All fields are updated as required. This is a utility operation, */
4350 /* so special values are unchanged and no error is possible. */
4351 /* ------------------------------------------------------------------ */
4352 static decNumber *
4353 decTrim (decNumber * dn, Flag all, Int * dropped)
4354 {
4355 Int d, exp; /* work */
4356 uInt cut; /* .. */
4357 Unit *up; /* -> current Unit */
4358
4359 #if DECCHECK
4360 if (decCheckOperands (dn, DECUNUSED, DECUNUSED, DECUNUSED))
4361 return dn;
4362 #endif
4363
4364 *dropped = 0; /* assume no zeros dropped */
4365 if ((dn->bits & DECSPECIAL) /* fast exit if special .. */
4366 || (*dn->lsu & 0x01))
4367 return dn; /* .. or odd */
4368 if (ISZERO (dn))
4369 { /* .. or 0 */
4370 dn->exponent = 0; /* (sign is preserved) */
4371 return dn;
4372 }
4373
4374 /* we have a finite number which is even */
4375 exp = dn->exponent;
4376 cut = 1; /* digit (1-DECDPUN) in Unit */
4377 up = dn->lsu; /* -> current Unit */
4378 for (d = 0; d < dn->digits - 1; d++)
4379 { /* [don't strip the final digit] */
4380 /* slice by powers */
4381 #if DECDPUN<=4
4382 uInt quot = QUOT10 (*up, cut);
4383 if ((*up - quot * powers[cut]) != 0)
4384 break; /* found non-0 digit */
4385 #else
4386 if (*up % powers[cut] != 0)
4387 break; /* found non-0 digit */
4388 #endif
4389 /* have a trailing 0 */
4390 if (!all)
4391 { /* trimming */
4392 /* [if exp>0 then all trailing 0s are significant for trim] */
4393 if (exp <= 0)
4394 { /* if digit might be significant */
4395 if (exp == 0)
4396 break; /* then quit */
4397 exp++; /* next digit might be significant */
4398 }
4399 }
4400 cut++; /* next power */
4401 if (cut > DECDPUN)
4402 { /* need new Unit */
4403 up++;
4404 cut = 1;
4405 }
4406 } /* d */
4407 if (d == 0)
4408 return dn; /* none dropped */
4409
4410 /* effect the drop */
4411 decShiftToLeast (dn->lsu, D2U (dn->digits), d);
4412 dn->exponent += d; /* maintain numerical value */
4413 dn->digits -= d; /* new length */
4414 *dropped = d; /* report the count */
4415 return dn;
4416 }
4417
4418 /* ------------------------------------------------------------------ */
4419 /* decShiftToMost -- shift digits in array towards most significant */
4420 /* */
4421 /* uar is the array */
4422 /* digits is the count of digits in use in the array */
4423 /* shift is the number of zeros to pad with (least significant); */
4424 /* it must be zero or positive */
4425 /* */
4426 /* returns the new length of the integer in the array, in digits */
4427 /* */
4428 /* No overflow is permitted (that is, the uar array must be known to */
4429 /* be large enough to hold the result, after shifting). */
4430 /* ------------------------------------------------------------------ */
4431 static Int
4432 decShiftToMost (Unit * uar, Int digits, Int shift)
4433 {
4434 Unit *target, *source, *first; /* work */
4435 uInt rem; /* for division */
4436 Int cut; /* odd 0's to add */
4437 uInt next; /* work */
4438
4439 if (shift == 0)
4440 return digits; /* [fastpath] nothing to do */
4441 if ((digits + shift) <= DECDPUN)
4442 { /* [fastpath] single-unit case */
4443 *uar = (Unit) (*uar * powers[shift]);
4444 return digits + shift;
4445 }
4446
4447 cut = (DECDPUN - shift % DECDPUN) % DECDPUN;
4448 source = uar + D2U (digits) - 1; /* where msu comes from */
4449 first = uar + D2U (digits + shift) - 1; /* where msu of source will end up */
4450 target = source + D2U (shift); /* where upper part of first cut goes */
4451 next = 0;
4452
4453 for (; source >= uar; source--, target--)
4454 {
4455 /* split the source Unit and accumulate remainder for next */
4456 #if DECDPUN<=4
4457 uInt quot = QUOT10 (*source, cut);
4458 rem = *source - quot * powers[cut];
4459 next += quot;
4460 #else
4461 rem = *source % powers[cut];
4462 next += *source / powers[cut];
4463 #endif
4464 if (target <= first)
4465 *target = (Unit) next; /* write to target iff valid */
4466 next = rem * powers[DECDPUN - cut]; /* save remainder for next Unit */
4467 }
4468 /* propagate to one below and clear the rest */
4469 for (; target >= uar; target--)
4470 {
4471 *target = (Unit) next;
4472 next = 0;
4473 }
4474 return digits + shift;
4475 }
4476
4477 /* ------------------------------------------------------------------ */
4478 /* decShiftToLeast -- shift digits in array towards least significant */
4479 /* */
4480 /* uar is the array */
4481 /* units is length of the array, in units */
4482 /* shift is the number of digits to remove from the lsu end; it */
4483 /* must be zero or positive and less than units*DECDPUN. */
4484 /* */
4485 /* returns the new length of the integer in the array, in units */
4486 /* */
4487 /* Removed digits are discarded (lost). Units not required to hold */
4488 /* the final result are unchanged. */
4489 /* ------------------------------------------------------------------ */
4490 static Int
4491 decShiftToLeast (Unit * uar, Int units, Int shift)
4492 {
4493 Unit *target, *up; /* work */
4494 Int cut, count; /* work */
4495 Int quot, rem; /* for division */
4496
4497 if (shift == 0)
4498 return units; /* [fastpath] nothing to do */
4499
4500 up = uar + shift / DECDPUN; /* source; allow for whole Units */
4501 cut = shift % DECDPUN; /* odd 0's to drop */
4502 target = uar; /* both paths */
4503 if (cut == 0)
4504 { /* whole units shift */
4505 for (; up < uar + units; target++, up++)
4506 *target = *up;
4507 return target - uar;
4508 }
4509 /* messier */
4510 count = units * DECDPUN - shift; /* the maximum new length */
4511 #if DECDPUN<=4
4512 quot = QUOT10 (*up, cut);
4513 #else
4514 quot = *up / powers[cut];
4515 #endif
4516 for (;; target++)
4517 {
4518 *target = (Unit) quot;
4519 count -= (DECDPUN - cut);
4520 if (count <= 0)
4521 break;
4522 up++;
4523 quot = *up;
4524 #if DECDPUN<=4
4525 quot = QUOT10 (quot, cut);
4526 rem = *up - quot * powers[cut];
4527 #else
4528 rem = quot % powers[cut];
4529 quot = quot / powers[cut];
4530 #endif
4531 *target = (Unit) (*target + rem * powers[DECDPUN - cut]);
4532 count -= cut;
4533 if (count <= 0)
4534 break;
4535 }
4536 return target - uar + 1;
4537 }
4538
4539 #if DECSUBSET
4540 /* ------------------------------------------------------------------ */
4541 /* decRoundOperand -- round an operand [used for subset only] */
4542 /* */
4543 /* dn is the number to round (dn->digits is > set->digits) */
4544 /* set is the relevant context */
4545 /* status is the status accumulator */
4546 /* */
4547 /* returns an allocated decNumber with the rounded result. */
4548 /* */
4549 /* lostDigits and other status may be set by this. */
4550 /* */
4551 /* Since the input is an operand, we are not permitted to modify it. */
4552 /* We therefore return an allocated decNumber, rounded as required. */
4553 /* It is the caller's responsibility to free the allocated storage. */
4554 /* */
4555 /* If no storage is available then the result cannot be used, so NULL */
4556 /* is returned. */
4557 /* ------------------------------------------------------------------ */
4558 static decNumber *
4559 decRoundOperand (decNumber * dn, decContext * set, uInt * status)
4560 {
4561 decNumber *res; /* result structure */
4562 uInt newstatus = 0; /* status from round */
4563 Int residue = 0; /* rounding accumulator */
4564
4565 /* Allocate storage for the returned decNumber, big enough for the */
4566 /* length specified by the context */
4567 res = (decNumber *) malloc (sizeof (decNumber)
4568 + (D2U (set->digits) - 1) * sizeof (Unit));
4569 if (res == NULL)
4570 {
4571 *status |= DEC_Insufficient_storage;
4572 return NULL;
4573 }
4574 decCopyFit (res, dn, set, &residue, &newstatus);
4575 decApplyRound (res, set, residue, &newstatus);
4576
4577 /* If that set Inexact then we "lost digits" */
4578 if (newstatus & DEC_Inexact)
4579 newstatus |= DEC_Lost_digits;
4580 *status |= newstatus;
4581 return res;
4582 }
4583 #endif
4584
4585 /* ------------------------------------------------------------------ */
4586 /* decCopyFit -- copy a number, shortening the coefficient if needed */
4587 /* */
4588 /* dest is the target decNumber */
4589 /* src is the source decNumber */
4590 /* set is the context [used for length (digits) and rounding mode] */
4591 /* residue is the residue accumulator */
4592 /* status contains the current status to be updated */
4593 /* */
4594 /* (dest==src is allowed and will be a no-op if fits) */
4595 /* All fields are updated as required. */
4596 /* ------------------------------------------------------------------ */
4597 static void
4598 decCopyFit (decNumber * dest, decNumber * src, decContext * set,
4599 Int * residue, uInt * status)
4600 {
4601 dest->bits = src->bits;
4602 dest->exponent = src->exponent;
4603 decSetCoeff (dest, set, src->lsu, src->digits, residue, status);
4604 }
4605
4606 /* ------------------------------------------------------------------ */
4607 /* decSetCoeff -- set the coefficient of a number */
4608 /* */
4609 /* dn is the number whose coefficient array is to be set. */
4610 /* It must have space for set->digits digits */
4611 /* set is the context [for size] */
4612 /* lsu -> lsu of the source coefficient [may be dn->lsu] */
4613 /* len is digits in the source coefficient [may be dn->digits] */
4614 /* residue is the residue accumulator. This has values as in */
4615 /* decApplyRound, and will be unchanged unless the */
4616 /* target size is less than len. In this case, the */
4617 /* coefficient is truncated and the residue is updated to */
4618 /* reflect the previous residue and the dropped digits. */
4619 /* status is the status accumulator, as usual */
4620 /* */
4621 /* The coefficient may already be in the number, or it can be an */
4622 /* external intermediate array. If it is in the number, lsu must == */
4623 /* dn->lsu and len must == dn->digits. */
4624 /* */
4625 /* Note that the coefficient length (len) may be < set->digits, and */
4626 /* in this case this merely copies the coefficient (or is a no-op */
4627 /* if dn->lsu==lsu). */
4628 /* */
4629 /* Note also that (only internally, from decNumberRescale and */
4630 /* decSetSubnormal) the value of set->digits may be less than one, */
4631 /* indicating a round to left. */
4632 /* This routine handles that case correctly; caller ensures space. */
4633 /* */
4634 /* dn->digits, dn->lsu (and as required), and dn->exponent are */
4635 /* updated as necessary. dn->bits (sign) is unchanged. */
4636 /* */
4637 /* DEC_Rounded status is set if any digits are discarded. */
4638 /* DEC_Inexact status is set if any non-zero digits are discarded, or */
4639 /* incoming residue was non-0 (implies rounded) */
4640 /* ------------------------------------------------------------------ */
4641 /* mapping array: maps 0-9 to canonical residues, so that we can */
4642 /* adjust by a residue in range [-1, +1] and achieve correct rounding */
4643 /* 0 1 2 3 4 5 6 7 8 9 */
4644 static const uByte resmap[10] = { 0, 3, 3, 3, 3, 5, 7, 7, 7, 7 };
4645 static void
4646 decSetCoeff (decNumber * dn, decContext * set, Unit * lsu,
4647 Int len, Int * residue, uInt * status)
4648 {
4649 Int discard; /* number of digits to discard */
4650 uInt discard1; /* first discarded digit */
4651 uInt cut; /* cut point in Unit */
4652 uInt quot, rem; /* for divisions */
4653 Unit *up, *target; /* work */
4654 Int count; /* .. */
4655 #if DECDPUN<=4
4656 uInt temp; /* .. */
4657 #endif
4658
4659 discard = len - set->digits; /* digits to discard */
4660 if (discard <= 0)
4661 { /* no digits are being discarded */
4662 if (dn->lsu != lsu)
4663 { /* copy needed */
4664 /* copy the coefficient array to the result number; no shift needed */
4665 up = lsu;
4666 for (target = dn->lsu; target < dn->lsu + D2U (len); target++, up++)
4667 {
4668 *target = *up;
4669 }
4670 dn->digits = len; /* set the new length */
4671 }
4672 /* dn->exponent and residue are unchanged */
4673 if (*residue != 0)
4674 *status |= (DEC_Inexact | DEC_Rounded); /* record inexactitude */
4675 return;
4676 }
4677
4678 /* we have to discard some digits */
4679 *status |= DEC_Rounded; /* accumulate Rounded status */
4680 if (*residue > 1)
4681 *residue = 1; /* previous residue now to right, so -1 to +1 */
4682
4683 if (discard > len)
4684 { /* everything, +1, is being discarded */
4685 /* guard digit is 0 */
4686 /* residue is all the number [NB could be all 0s] */
4687 if (*residue <= 0)
4688 for (up = lsu + D2U (len) - 1; up >= lsu; up--)
4689 {
4690 if (*up != 0)
4691 { /* found a non-0 */
4692 *residue = 1;
4693 break; /* no need to check any others */
4694 }
4695 }
4696 if (*residue != 0)
4697 *status |= DEC_Inexact; /* record inexactitude */
4698 *dn->lsu = 0; /* coefficient will now be 0 */
4699 dn->digits = 1; /* .. */
4700 dn->exponent += discard; /* maintain numerical value */
4701 return;
4702 } /* total discard */
4703
4704 /* partial discard [most common case] */
4705 /* here, at least the first (most significant) discarded digit exists */
4706
4707 /* spin up the number, noting residue as we pass, until we get to */
4708 /* the Unit with the first discarded digit. When we get there, */
4709 /* extract it and remember where we're at */
4710 count = 0;
4711 for (up = lsu;; up++)
4712 {
4713 count += DECDPUN;
4714 if (count >= discard)
4715 break; /* full ones all checked */
4716 if (*up != 0)
4717 *residue = 1;
4718 } /* up */
4719
4720 /* here up -> Unit with discarded digit */
4721 cut = discard - (count - DECDPUN) - 1;
4722 if (cut == DECDPUN - 1)
4723 { /* discard digit is at top */
4724 #if DECDPUN<=4
4725 discard1 = QUOT10 (*up, DECDPUN - 1);
4726 rem = *up - discard1 * powers[DECDPUN - 1];
4727 #else
4728 rem = *up % powers[DECDPUN - 1];
4729 discard1 = *up / powers[DECDPUN - 1];
4730 #endif
4731 if (rem != 0)
4732 *residue = 1;
4733 up++; /* move to next */
4734 cut = 0; /* bottom digit of result */
4735 quot = 0; /* keep a certain compiler happy */
4736 }
4737 else
4738 {
4739 /* discard digit is in low digit(s), not top digit */
4740 if (cut == 0)
4741 quot = *up;
4742 else /* cut>0 */
4743 { /* it's not at bottom of Unit */
4744 #if DECDPUN<=4
4745 quot = QUOT10 (*up, cut);
4746 rem = *up - quot * powers[cut];
4747 #else
4748 rem = *up % powers[cut];
4749 quot = *up / powers[cut];
4750 #endif
4751 if (rem != 0)
4752 *residue = 1;
4753 }
4754 /* discard digit is now at bottom of quot */
4755 #if DECDPUN<=4
4756 temp = (quot * 6554) >> 16; /* fast /10 */
4757 /* Vowels algorithm here not a win (9 instructions) */
4758 discard1 = quot - X10 (temp);
4759 quot = temp;
4760 #else
4761 discard1 = quot % 10;
4762 quot = quot / 10;
4763 #endif
4764 cut++; /* update cut */
4765 }
4766
4767 /* here: up -> Unit of the array with discarded digit */
4768 /* cut is the division point for each Unit */
4769 /* quot holds the uncut high-order digits for the current */
4770 /* Unit, unless cut==0 in which case it's still in *up */
4771 /* copy the coefficient array to the result number, shifting as we go */
4772 count = set->digits; /* digits to end up with */
4773 if (count <= 0)
4774 { /* special for Rescale/Subnormal :-( */
4775 *dn->lsu = 0; /* .. result is 0 */
4776 dn->digits = 1; /* .. */
4777 }
4778 else
4779 { /* shift to least */
4780 /* [this is similar to decShiftToLeast code, with copy] */
4781 dn->digits = count; /* set the new length */
4782 if (cut == 0)
4783 {
4784 /* on unit boundary, so simple shift down copy loop suffices */
4785 for (target = dn->lsu; target < dn->lsu + D2U (count);
4786 target++, up++)
4787 {
4788 *target = *up;
4789 }
4790 }
4791 else
4792 for (target = dn->lsu;; target++)
4793 {
4794 *target = (Unit) quot;
4795 count -= (DECDPUN - cut);
4796 if (count <= 0)
4797 break;
4798 up++;
4799 quot = *up;
4800 #if DECDPUN<=4
4801 quot = QUOT10 (quot, cut);
4802 rem = *up - quot * powers[cut];
4803 #else
4804 rem = quot % powers[cut];
4805 quot = quot / powers[cut];
4806 #endif
4807 *target = (Unit) (*target + rem * powers[DECDPUN - cut]);
4808 count -= cut;
4809 if (count <= 0)
4810 break;
4811 }
4812 } /* shift to least needed */
4813 dn->exponent += discard; /* maintain numerical value */
4814
4815 /* here, discard1 is the guard digit, and residue is everything else */
4816 /* [use mapping to accumulate residue safely] */
4817 *residue += resmap[discard1];
4818
4819 if (*residue != 0)
4820 *status |= DEC_Inexact; /* record inexactitude */
4821 return;
4822 }
4823
4824 /* ------------------------------------------------------------------ */
4825 /* decApplyRound -- apply pending rounding to a number */
4826 /* */
4827 /* dn is the number, with space for set->digits digits */
4828 /* set is the context [for size and rounding mode] */
4829 /* residue indicates pending rounding, being any accumulated */
4830 /* guard and sticky information. It may be: */
4831 /* 6-9: rounding digit is >5 */
4832 /* 5: rounding digit is exactly half-way */
4833 /* 1-4: rounding digit is <5 and >0 */
4834 /* 0: the coefficient is exact */
4835 /* -1: as 1, but the hidden digits are subtractive, that */
4836 /* is, of the opposite sign to dn. In this case the */
4837 /* coefficient must be non-0. */
4838 /* status is the status accumulator, as usual */
4839 /* */
4840 /* This routine applies rounding while keeping the length of the */
4841 /* coefficient constant. The exponent and status are unchanged */
4842 /* except if: */
4843 /* */
4844 /* -- the coefficient was increased and is all nines (in which */
4845 /* case Overflow could occur, and is handled directly here so */
4846 /* the caller does not need to re-test for overflow) */
4847 /* */
4848 /* -- the coefficient was decreased and becomes all nines (in which */
4849 /* case Underflow could occur, and is also handled directly). */
4850 /* */
4851 /* All fields in dn are updated as required. */
4852 /* */
4853 /* ------------------------------------------------------------------ */
4854 static void
4855 decApplyRound (decNumber * dn, decContext * set, Int residue, uInt * status)
4856 {
4857 Int bump; /* 1 if coefficient needs to be incremented */
4858 /* -1 if coefficient needs to be decremented */
4859
4860 if (residue == 0)
4861 return; /* nothing to apply */
4862
4863 bump = 0; /* assume a smooth ride */
4864
4865 /* now decide whether, and how, to round, depending on mode */
4866 switch (set->round)
4867 {
4868 case DEC_ROUND_DOWN:
4869 {
4870 /* no change, except if negative residue */
4871 if (residue < 0)
4872 bump = -1;
4873 break;
4874 } /* r-d */
4875
4876 case DEC_ROUND_HALF_DOWN:
4877 {
4878 if (residue > 5)
4879 bump = 1;
4880 break;
4881 } /* r-h-d */
4882
4883 case DEC_ROUND_HALF_EVEN:
4884 {
4885 if (residue > 5)
4886 bump = 1; /* >0.5 goes up */
4887 else if (residue == 5)
4888 { /* exactly 0.5000... */
4889 /* 0.5 goes up iff [new] lsd is odd */
4890 if (*dn->lsu & 0x01)
4891 bump = 1;
4892 }
4893 break;
4894 } /* r-h-e */
4895
4896 case DEC_ROUND_HALF_UP:
4897 {
4898 if (residue >= 5)
4899 bump = 1;
4900 break;
4901 } /* r-h-u */
4902
4903 case DEC_ROUND_UP:
4904 {
4905 if (residue > 0)
4906 bump = 1;
4907 break;
4908 } /* r-u */
4909
4910 case DEC_ROUND_CEILING:
4911 {
4912 /* same as _UP for positive numbers, and as _DOWN for negatives */
4913 /* [negative residue cannot occur on 0] */
4914 if (decNumberIsNegative (dn))
4915 {
4916 if (residue < 0)
4917 bump = -1;
4918 }
4919 else
4920 {
4921 if (residue > 0)
4922 bump = 1;
4923 }
4924 break;
4925 } /* r-c */
4926
4927 case DEC_ROUND_FLOOR:
4928 {
4929 /* same as _UP for negative numbers, and as _DOWN for positive */
4930 /* [negative residue cannot occur on 0] */
4931 if (!decNumberIsNegative (dn))
4932 {
4933 if (residue < 0)
4934 bump = -1;
4935 }
4936 else
4937 {
4938 if (residue > 0)
4939 bump = 1;
4940 }
4941 break;
4942 } /* r-f */
4943
4944 default:
4945 { /* e.g., DEC_ROUND_MAX */
4946 *status |= DEC_Invalid_context;
4947 #if DECTRACE
4948 printf ("Unknown rounding mode: %d\n", set->round);
4949 #endif
4950 break;
4951 }
4952 } /* switch */
4953
4954 /* now bump the number, up or down, if need be */
4955 if (bump == 0)
4956 return; /* no action required */
4957
4958 /* Simply use decUnitAddSub unless we are bumping up and the number */
4959 /* is all nines. In this special case we set to 1000... and adjust */
4960 /* the exponent by one (as otherwise we could overflow the array) */
4961 /* Similarly handle all-nines result if bumping down. */
4962 if (bump > 0)
4963 {
4964 Unit *up; /* work */
4965 uInt count = dn->digits; /* digits to be checked */
4966 for (up = dn->lsu;; up++)
4967 {
4968 if (count <= DECDPUN)
4969 {
4970 /* this is the last Unit (the msu) */
4971 if (*up != powers[count] - 1)
4972 break; /* not still 9s */
4973 /* here if it, too, is all nines */
4974 *up = (Unit) powers[count - 1]; /* here 999 -> 100 etc. */
4975 for (up = up - 1; up >= dn->lsu; up--)
4976 *up = 0; /* others all to 0 */
4977 dn->exponent++; /* and bump exponent */
4978 /* [which, very rarely, could cause Overflow...] */
4979 if ((dn->exponent + dn->digits) > set->emax + 1)
4980 {
4981 decSetOverflow (dn, set, status);
4982 }
4983 return; /* done */
4984 }
4985 /* a full unit to check, with more to come */
4986 if (*up != DECDPUNMAX)
4987 break; /* not still 9s */
4988 count -= DECDPUN;
4989 } /* up */
4990 } /* bump>0 */
4991 else
4992 { /* -1 */
4993 /* here we are lookng for a pre-bump of 1000... (leading 1, */
4994 /* all other digits zero) */
4995 Unit *up, *sup; /* work */
4996 uInt count = dn->digits; /* digits to be checked */
4997 for (up = dn->lsu;; up++)
4998 {
4999 if (count <= DECDPUN)
5000 {
5001 /* this is the last Unit (the msu) */
5002 if (*up != powers[count - 1])
5003 break; /* not 100.. */
5004 /* here if we have the 1000... case */
5005 sup = up; /* save msu pointer */
5006 *up = (Unit) powers[count] - 1; /* here 100 in msu -> 999 */
5007 /* others all to all-nines, too */
5008 for (up = up - 1; up >= dn->lsu; up--)
5009 *up = (Unit) powers[DECDPUN] - 1;
5010 dn->exponent--; /* and bump exponent */
5011
5012 /* iff the number was at the subnormal boundary (exponent=etiny) */
5013 /* then the exponent is now out of range, so it will in fact get */
5014 /* clamped to etiny and the final 9 dropped. */
5015 /* printf(">> emin=%d exp=%d sdig=%d\n", set->emin, */
5016 /* dn->exponent, set->digits); */
5017 if (dn->exponent + 1 == set->emin - set->digits + 1)
5018 {
5019 if (count == 1 && dn->digits == 1)
5020 *sup = 0; /* here 9 -> 0[.9] */
5021 else
5022 {
5023 *sup = (Unit) powers[count - 1] - 1; /* here 999.. in msu -> 99.. */
5024 dn->digits--;
5025 }
5026 dn->exponent++;
5027 *status |=
5028 DEC_Underflow | DEC_Subnormal | DEC_Inexact | DEC_Rounded;
5029 }
5030 return; /* done */
5031 }
5032
5033 /* a full unit to check, with more to come */
5034 if (*up != 0)
5035 break; /* not still 0s */
5036 count -= DECDPUN;
5037 } /* up */
5038
5039 } /* bump<0 */
5040
5041 /* Actual bump needed. Do it. */
5042 decUnitAddSub (dn->lsu, D2U (dn->digits), one, 1, 0, dn->lsu, bump);
5043 }
5044
5045 #if DECSUBSET
5046 /* ------------------------------------------------------------------ */
5047 /* decFinish -- finish processing a number */
5048 /* */
5049 /* dn is the number */
5050 /* set is the context */
5051 /* residue is the rounding accumulator (as in decApplyRound) */
5052 /* status is the accumulator */
5053 /* */
5054 /* This finishes off the current number by: */
5055 /* 1. If not extended: */
5056 /* a. Converting a zero result to clean '0' */
5057 /* b. Reducing positive exponents to 0, if would fit in digits */
5058 /* 2. Checking for overflow and subnormals (always) */
5059 /* Note this is just Finalize when no subset arithmetic. */
5060 /* All fields are updated as required. */
5061 /* ------------------------------------------------------------------ */
5062 static void
5063 decFinish (decNumber * dn, decContext * set, Int * residue, uInt * status)
5064 {
5065 if (!set->extended)
5066 {
5067 if ISZERO
5068 (dn)
5069 { /* value is zero */
5070 dn->exponent = 0; /* clean exponent .. */
5071 dn->bits = 0; /* .. and sign */
5072 return; /* no error possible */
5073 }
5074 if (dn->exponent >= 0)
5075 { /* non-negative exponent */
5076 /* >0; reduce to integer if possible */
5077 if (set->digits >= (dn->exponent + dn->digits))
5078 {
5079 dn->digits = decShiftToMost (dn->lsu, dn->digits, dn->exponent);
5080 dn->exponent = 0;
5081 }
5082 }
5083 } /* !extended */
5084
5085 decFinalize (dn, set, residue, status);
5086 }
5087 #endif
5088
5089 /* ------------------------------------------------------------------ */
5090 /* decFinalize -- final check, clamp, and round of a number */
5091 /* */
5092 /* dn is the number */
5093 /* set is the context */
5094 /* residue is the rounding accumulator (as in decApplyRound) */
5095 /* status is the status accumulator */
5096 /* */
5097 /* This finishes off the current number by checking for subnormal */
5098 /* results, applying any pending rounding, checking for overflow, */
5099 /* and applying any clamping. */
5100 /* Underflow and overflow conditions are raised as appropriate. */
5101 /* All fields are updated as required. */
5102 /* ------------------------------------------------------------------ */
5103 static void
5104 decFinalize (decNumber * dn, decContext * set, Int * residue, uInt * status)
5105 {
5106 Int shift; /* shift needed if clamping */
5107
5108 /* We have to be careful when checking the exponent as the adjusted */
5109 /* exponent could overflow 31 bits [because it may already be up */
5110 /* to twice the expected]. */
5111
5112 /* First test for subnormal. This must be done before any final */
5113 /* round as the result could be rounded to Nmin or 0. */
5114 if (dn->exponent < 0 /* negative exponent */
5115 && (dn->exponent < set->emin - dn->digits + 1))
5116 {
5117 /* Go handle subnormals; this will apply round if needed. */
5118 decSetSubnormal (dn, set, residue, status);
5119 return;
5120 }
5121
5122 /* now apply any pending round (this could raise overflow). */
5123 if (*residue != 0)
5124 decApplyRound (dn, set, *residue, status);
5125
5126 /* Check for overflow [redundant in the 'rare' case] or clamp */
5127 if (dn->exponent <= set->emax - set->digits + 1)
5128 return; /* neither needed */
5129
5130 /* here when we might have an overflow or clamp to do */
5131 if (dn->exponent > set->emax - dn->digits + 1)
5132 { /* too big */
5133 decSetOverflow (dn, set, status);
5134 return;
5135 }
5136 /* here when the result is normal but in clamp range */
5137 if (!set->clamp)
5138 return;
5139
5140 /* here when we need to apply the IEEE exponent clamp (fold-down) */
5141 shift = dn->exponent - (set->emax - set->digits + 1);
5142
5143 /* shift coefficient (if non-zero) */
5144 if (!ISZERO (dn))
5145 {
5146 dn->digits = decShiftToMost (dn->lsu, dn->digits, shift);
5147 }
5148 dn->exponent -= shift; /* adjust the exponent to match */
5149 *status |= DEC_Clamped; /* and record the dirty deed */
5150 return;
5151 }
5152
5153 /* ------------------------------------------------------------------ */
5154 /* decSetOverflow -- set number to proper overflow value */
5155 /* */
5156 /* dn is the number (used for sign [only] and result) */
5157 /* set is the context [used for the rounding mode] */
5158 /* status contains the current status to be updated */
5159 /* */
5160 /* This sets the sign of a number and sets its value to either */
5161 /* Infinity or the maximum finite value, depending on the sign of */
5162 /* dn and therounding mode, following IEEE 854 rules. */
5163 /* ------------------------------------------------------------------ */
5164 static void
5165 decSetOverflow (decNumber * dn, decContext * set, uInt * status)
5166 {
5167 Flag needmax = 0; /* result is maximum finite value */
5168 uByte sign = dn->bits & DECNEG; /* clean and save sign bit */
5169
5170 if (ISZERO (dn))
5171 { /* zero does not overflow magnitude */
5172 Int emax = set->emax; /* limit value */
5173 if (set->clamp)
5174 emax -= set->digits - 1; /* lower if clamping */
5175 if (dn->exponent > emax)
5176 { /* clamp required */
5177 dn->exponent = emax;
5178 *status |= DEC_Clamped;
5179 }
5180 return;
5181 }
5182
5183 decNumberZero (dn);
5184 switch (set->round)
5185 {
5186 case DEC_ROUND_DOWN:
5187 {
5188 needmax = 1; /* never Infinity */
5189 break;
5190 } /* r-d */
5191 case DEC_ROUND_CEILING:
5192 {
5193 if (sign)
5194 needmax = 1; /* Infinity if non-negative */
5195 break;
5196 } /* r-c */
5197 case DEC_ROUND_FLOOR:
5198 {
5199 if (!sign)
5200 needmax = 1; /* Infinity if negative */
5201 break;
5202 } /* r-f */
5203 default:
5204 break; /* Infinity in all other cases */
5205 }
5206 if (needmax)
5207 {
5208 Unit *up; /* work */
5209 Int count = set->digits; /* nines to add */
5210 dn->digits = count;
5211 /* fill in all nines to set maximum value */
5212 for (up = dn->lsu;; up++)
5213 {
5214 if (count > DECDPUN)
5215 *up = DECDPUNMAX; /* unit full o'nines */
5216 else
5217 { /* this is the msu */
5218 *up = (Unit) (powers[count] - 1);
5219 break;
5220 }
5221 count -= DECDPUN; /* we filled those digits */
5222 } /* up */
5223 dn->bits = sign; /* sign */
5224 dn->exponent = set->emax - set->digits + 1;
5225 }
5226 else
5227 dn->bits = sign | DECINF; /* Value is +/-Infinity */
5228 *status |= DEC_Overflow | DEC_Inexact | DEC_Rounded;
5229 }
5230
5231 /* ------------------------------------------------------------------ */
5232 /* decSetSubnormal -- process value whose exponent is <Emin */
5233 /* */
5234 /* dn is the number (used as input as well as output; it may have */
5235 /* an allowed subnormal value, which may need to be rounded) */
5236 /* set is the context [used for the rounding mode] */
5237 /* residue is any pending residue */
5238 /* status contains the current status to be updated */
5239 /* */
5240 /* If subset mode, set result to zero and set Underflow flags. */
5241 /* */
5242 /* Value may be zero with a low exponent; this does not set Subnormal */
5243 /* but the exponent will be clamped to Etiny. */
5244 /* */
5245 /* Otherwise ensure exponent is not out of range, and round as */
5246 /* necessary. Underflow is set if the result is Inexact. */
5247 /* ------------------------------------------------------------------ */
5248 static void
5249 decSetSubnormal (decNumber * dn, decContext * set, Int * residue,
5250 uInt * status)
5251 {
5252 decContext workset; /* work */
5253 Int etiny, adjust; /* .. */
5254
5255 #if DECSUBSET
5256 /* simple set to zero and 'hard underflow' for subset */
5257 if (!set->extended)
5258 {
5259 decNumberZero (dn);
5260 /* always full overflow */
5261 *status |= DEC_Underflow | DEC_Subnormal | DEC_Inexact | DEC_Rounded;
5262 return;
5263 }
5264 #endif
5265
5266 /* Full arithmetic -- allow subnormals, rounded to minimum exponent */
5267 /* (Etiny) if needed */
5268 etiny = set->emin - (set->digits - 1); /* smallest allowed exponent */
5269
5270 if ISZERO
5271 (dn)
5272 { /* value is zero */
5273 /* residue can never be non-zero here */
5274 #if DECCHECK
5275 if (*residue != 0)
5276 {
5277 printf ("++ Subnormal 0 residue %d\n", *residue);
5278 *status |= DEC_Invalid_operation;
5279 }
5280 #endif
5281 if (dn->exponent < etiny)
5282 { /* clamp required */
5283 dn->exponent = etiny;
5284 *status |= DEC_Clamped;
5285 }
5286 return;
5287 }
5288
5289 *status |= DEC_Subnormal; /* we have a non-zero subnormal */
5290
5291 adjust = etiny - dn->exponent; /* calculate digits to remove */
5292 if (adjust <= 0)
5293 { /* not out of range; unrounded */
5294 /* residue can never be non-zero here, so fast-path out */
5295 #if DECCHECK
5296 if (*residue != 0)
5297 {
5298 printf ("++ Subnormal no-adjust residue %d\n", *residue);
5299 *status |= DEC_Invalid_operation;
5300 }
5301 #endif
5302 /* it may already be inexact (from setting the coefficient) */
5303 if (*status & DEC_Inexact)
5304 *status |= DEC_Underflow;
5305 return;
5306 }
5307
5308 /* adjust>0. we need to rescale the result so exponent becomes Etiny */
5309 /* [this code is similar to that in rescale] */
5310 workset = *set; /* clone rounding, etc. */
5311 workset.digits = dn->digits - adjust; /* set requested length */
5312 workset.emin -= adjust; /* and adjust emin to match */
5313 /* [note that the latter can be <1, here, similar to Rescale case] */
5314 decSetCoeff (dn, &workset, dn->lsu, dn->digits, residue, status);
5315 decApplyRound (dn, &workset, *residue, status);
5316
5317 /* Use 754R/854 default rule: Underflow is set iff Inexact */
5318 /* [independent of whether trapped] */
5319 if (*status & DEC_Inexact)
5320 *status |= DEC_Underflow;
5321
5322 /* if we rounded up a 999s case, exponent will be off by one; adjust */
5323 /* back if so [it will fit, because we shortened] */
5324 if (dn->exponent > etiny)
5325 {
5326 dn->digits = decShiftToMost (dn->lsu, dn->digits, 1);
5327 dn->exponent--; /* (re)adjust the exponent. */
5328 }
5329 }
5330
5331 /* ------------------------------------------------------------------ */
5332 /* decGetInt -- get integer from a number */
5333 /* */
5334 /* dn is the number [which will not be altered] */
5335 /* set is the context [requested digits], subset only */
5336 /* returns the converted integer, or BADINT if error */
5337 /* */
5338 /* This checks and gets a whole number from the input decNumber. */
5339 /* The magnitude of the integer must be <2^31. */
5340 /* Any discarded fractional part must be 0. */
5341 /* If subset it must also fit in set->digits */
5342 /* ------------------------------------------------------------------ */
5343 #if DECSUBSET
5344 static Int
5345 decGetInt (decNumber * dn, decContext * set)
5346 {
5347 #else
5348 static Int
5349 decGetInt (decNumber * dn)
5350 {
5351 #endif
5352 Int theInt; /* result accumulator */
5353 Unit *up; /* work */
5354 Int got; /* digits (real or not) processed */
5355 Int ilength = dn->digits + dn->exponent; /* integral length */
5356
5357 /* The number must be an integer that fits in 10 digits */
5358 /* Assert, here, that 10 is enough for any rescale Etiny */
5359 #if DEC_MAX_EMAX > 999999999
5360 #error GetInt may need updating [for Emax]
5361 #endif
5362 #if DEC_MIN_EMIN < -999999999
5363 #error GetInt may need updating [for Emin]
5364 #endif
5365 if (ISZERO (dn))
5366 return 0; /* zeros are OK, with any exponent */
5367 if (ilength > 10)
5368 return BADINT; /* always too big */
5369 #if DECSUBSET
5370 if (!set->extended && ilength > set->digits)
5371 return BADINT;
5372 #endif
5373
5374 up = dn->lsu; /* ready for lsu */
5375 theInt = 0; /* ready to accumulate */
5376 if (dn->exponent >= 0)
5377 { /* relatively easy */
5378 /* no fractional part [usual]; allow for positive exponent */
5379 got = dn->exponent;
5380 }
5381 else
5382 { /* -ve exponent; some fractional part to check and discard */
5383 Int count = -dn->exponent; /* digits to discard */
5384 /* spin up whole units until we get to the Unit with the unit digit */
5385 for (; count >= DECDPUN; up++)
5386 {
5387 if (*up != 0)
5388 return BADINT; /* non-zero Unit to discard */
5389 count -= DECDPUN;
5390 }
5391 if (count == 0)
5392 got = 0; /* [a multiple of DECDPUN] */
5393 else
5394 { /* [not multiple of DECDPUN] */
5395 Int rem; /* work */
5396 /* slice off fraction digits and check for non-zero */
5397 #if DECDPUN<=4
5398 theInt = QUOT10 (*up, count);
5399 rem = *up - theInt * powers[count];
5400 #else
5401 rem = *up % powers[count]; /* slice off discards */
5402 theInt = *up / powers[count];
5403 #endif
5404 if (rem != 0)
5405 return BADINT; /* non-zero fraction */
5406 /* OK, we're good */
5407 got = DECDPUN - count; /* number of digits so far */
5408 up++; /* ready for next */
5409 }
5410 }
5411 /* collect the rest */
5412 for (; got < ilength; up++)
5413 {
5414 theInt += *up * powers[got];
5415 got += DECDPUN;
5416 }
5417 if ((ilength == 10) /* check no wrap */
5418 && (theInt / (Int) powers[got - DECDPUN] != *(up - 1)))
5419 return BADINT;
5420 /* [that test also disallows the BADINT result case] */
5421
5422 /* apply any sign and return */
5423 if (decNumberIsNegative (dn))
5424 theInt = -theInt;
5425 return theInt;
5426 }
5427
5428 /* ------------------------------------------------------------------ */
5429 /* decStrEq -- caseless comparison of strings */
5430 /* */
5431 /* str1 is one of the strings to compare */
5432 /* str2 is the other */
5433 /* */
5434 /* returns 1 if strings caseless-compare equal, 0 otherwise */
5435 /* */
5436 /* Note that the strings must be the same length if they are to */
5437 /* compare equal; there is no padding. */
5438 /* ------------------------------------------------------------------ */
5439 /* [strcmpi is not in ANSI C] */
5440 static Flag
5441 decStrEq (const char *str1, const char *str2)
5442 {
5443 for (;; str1++, str2++)
5444 {
5445 unsigned char u1 = (unsigned char) *str1;
5446 unsigned char u2 = (unsigned char) *str2;
5447 if (u1 == u2)
5448 {
5449 if (u1 == '\0')
5450 break;
5451 }
5452 else
5453 {
5454 if (tolower (u1) != tolower (u2))
5455 return 0;
5456 }
5457 } /* stepping */
5458 return 1;
5459 }
5460
5461 /* ------------------------------------------------------------------ */
5462 /* decNaNs -- handle NaN operand or operands */
5463 /* */
5464 /* res is the result number */
5465 /* lhs is the first operand */
5466 /* rhs is the second operand, or NULL if none */
5467 /* status contains the current status */
5468 /* returns res in case convenient */
5469 /* */
5470 /* Called when one or both operands is a NaN, and propagates the */
5471 /* appropriate result to res. When an sNaN is found, it is changed */
5472 /* to a qNaN and Invalid operation is set. */
5473 /* ------------------------------------------------------------------ */
5474 static decNumber *
5475 decNaNs (decNumber * res, decNumber * lhs, decNumber * rhs, uInt * status)
5476 {
5477 /* This decision tree ends up with LHS being the source pointer, */
5478 /* and status updated if need be */
5479 if (lhs->bits & DECSNAN)
5480 *status |= DEC_Invalid_operation | DEC_sNaN;
5481 else if (rhs == NULL);
5482 else if (rhs->bits & DECSNAN)
5483 {
5484 lhs = rhs;
5485 *status |= DEC_Invalid_operation | DEC_sNaN;
5486 }
5487 else if (lhs->bits & DECNAN);
5488 else
5489 lhs = rhs;
5490
5491 decNumberCopy (res, lhs);
5492 res->bits &= ~DECSNAN; /* convert any sNaN to NaN, while */
5493 res->bits |= DECNAN; /* .. preserving sign */
5494 res->exponent = 0; /* clean exponent */
5495 /* [coefficient was copied] */
5496 return res;
5497 }
5498
5499 /* ------------------------------------------------------------------ */
5500 /* decStatus -- apply non-zero status */
5501 /* */
5502 /* dn is the number to set if error */
5503 /* status contains the current status (not yet in context) */
5504 /* set is the context */
5505 /* */
5506 /* If the status is an error status, the number is set to a NaN, */
5507 /* unless the error was an overflow, divide-by-zero, or underflow, */
5508 /* in which case the number will have already been set. */
5509 /* */
5510 /* The context status is then updated with the new status. Note that */
5511 /* this may raise a signal, so control may never return from this */
5512 /* routine (hence resources must be recovered before it is called). */
5513 /* ------------------------------------------------------------------ */
5514 static void
5515 decStatus (decNumber * dn, uInt status, decContext * set)
5516 {
5517 if (status & DEC_NaNs)
5518 { /* error status -> NaN */
5519 /* if cause was an sNaN, clear and propagate [NaN is already set up] */
5520 if (status & DEC_sNaN)
5521 status &= ~DEC_sNaN;
5522 else
5523 {
5524 decNumberZero (dn); /* other error: clean throughout */
5525 dn->bits = DECNAN; /* and make a quiet NaN */
5526 }
5527 }
5528 decContextSetStatus (set, status);
5529 return;
5530 }
5531
5532 /* ------------------------------------------------------------------ */
5533 /* decGetDigits -- count digits in a Units array */
5534 /* */
5535 /* uar is the Unit array holding the number [this is often an */
5536 /* accumulator of some sort] */
5537 /* len is the length of the array in units */
5538 /* */
5539 /* returns the number of (significant) digits in the array */
5540 /* */
5541 /* All leading zeros are excluded, except the last if the array has */
5542 /* only zero Units. */
5543 /* ------------------------------------------------------------------ */
5544 /* This may be called twice during some operations. */
5545 static Int
5546 decGetDigits (Unit * uar, Int len)
5547 {
5548 Unit *up = uar + len - 1; /* -> msu */
5549 Int digits = len * DECDPUN; /* maximum possible digits */
5550 uInt const *pow; /* work */
5551
5552 for (; up >= uar; up--)
5553 {
5554 digits -= DECDPUN;
5555 if (*up == 0)
5556 { /* unit is 0 */
5557 if (digits != 0)
5558 continue; /* more to check */
5559 /* all units were 0 */
5560 digits++; /* .. so bump digits to 1 */
5561 break;
5562 }
5563 /* found the first non-zero Unit */
5564 digits++;
5565 if (*up < 10)
5566 break; /* fastpath 1-9 */
5567 digits++;
5568 for (pow = &powers[2]; *up >= *pow; pow++)
5569 digits++;
5570 break;
5571 } /* up */
5572
5573 return digits;
5574 }
5575
5576
5577 #if DECTRACE | DECCHECK
5578 /* ------------------------------------------------------------------ */
5579 /* decNumberShow -- display a number [debug aid] */
5580 /* dn is the number to show */
5581 /* */
5582 /* Shows: sign, exponent, coefficient (msu first), digits */
5583 /* or: sign, special-value */
5584 /* ------------------------------------------------------------------ */
5585 /* this is public so other modules can use it */
5586 void
5587 decNumberShow (decNumber * dn)
5588 {
5589 Unit *up; /* work */
5590 uInt u, d; /* .. */
5591 Int cut; /* .. */
5592 char isign = '+'; /* main sign */
5593 if (dn == NULL)
5594 {
5595 printf ("NULL\n");
5596 return;
5597 }
5598 if (decNumberIsNegative (dn))
5599 isign = '-';
5600 printf (" >> %c ", isign);
5601 if (dn->bits & DECSPECIAL)
5602 { /* Is a special value */
5603 if (decNumberIsInfinite (dn))
5604 printf ("Infinity");
5605 else
5606 { /* a NaN */
5607 if (dn->bits & DECSNAN)
5608 printf ("sNaN"); /* signalling NaN */
5609 else
5610 printf ("NaN");
5611 }
5612 /* if coefficient and exponent are 0, we're done */
5613 if (dn->exponent == 0 && dn->digits == 1 && *dn->lsu == 0)
5614 {
5615 printf ("\n");
5616 return;
5617 }
5618 /* drop through to report other information */
5619 printf (" ");
5620 }
5621
5622 /* now carefully display the coefficient */
5623 up = dn->lsu + D2U (dn->digits) - 1; /* msu */
5624 printf ("%d", *up);
5625 for (up = up - 1; up >= dn->lsu; up--)
5626 {
5627 u = *up;
5628 printf (":");
5629 for (cut = DECDPUN - 1; cut >= 0; cut--)
5630 {
5631 d = u / powers[cut];
5632 u -= d * powers[cut];
5633 printf ("%d", d);
5634 } /* cut */
5635 } /* up */
5636 if (dn->exponent != 0)
5637 {
5638 char esign = '+';
5639 if (dn->exponent < 0)
5640 esign = '-';
5641 printf (" E%c%d", esign, abs (dn->exponent));
5642 }
5643 printf (" [%d]\n", dn->digits);
5644 }
5645 #endif
5646
5647 #if DECTRACE || DECCHECK
5648 /* ------------------------------------------------------------------ */
5649 /* decDumpAr -- display a unit array [debug aid] */
5650 /* name is a single-character tag name */
5651 /* ar is the array to display */
5652 /* len is the length of the array in Units */
5653 /* ------------------------------------------------------------------ */
5654 static void
5655 decDumpAr (char name, Unit * ar, Int len)
5656 {
5657 Int i;
5658 #if DECDPUN==4
5659 char *spec = "%04d ";
5660 #else
5661 char *spec = "%d ";
5662 #endif
5663 printf (" :%c: ", name);
5664 for (i = len - 1; i >= 0; i--)
5665 {
5666 if (i == len - 1)
5667 printf ("%d ", ar[i]);
5668 else
5669 printf (spec, ar[i]);
5670 }
5671 printf ("\n");
5672 return;
5673 }
5674 #endif
5675
5676 #if DECCHECK
5677 /* ------------------------------------------------------------------ */
5678 /* decCheckOperands -- check operand(s) to a routine */
5679 /* res is the result structure (not checked; it will be set to */
5680 /* quiet NaN if error found (and it is not NULL)) */
5681 /* lhs is the first operand (may be DECUNUSED) */
5682 /* rhs is the second (may be DECUNUSED) */
5683 /* set is the context (may be DECUNUSED) */
5684 /* returns 0 if both operands, and the context are clean, or 1 */
5685 /* otherwise (in which case the context will show an error, */
5686 /* unless NULL). Note that res is not cleaned; caller should */
5687 /* handle this so res=NULL case is safe. */
5688 /* The caller is expected to abandon immediately if 1 is returned. */
5689 /* ------------------------------------------------------------------ */
5690 static Flag
5691 decCheckOperands (decNumber * res, decNumber * lhs,
5692 decNumber * rhs, decContext * set)
5693 {
5694 Flag bad = 0;
5695 if (set == NULL)
5696 { /* oops; hopeless */
5697 #if DECTRACE
5698 printf ("Context is NULL.\n");
5699 #endif
5700 bad = 1;
5701 return 1;
5702 }
5703 else if (set != DECUNUSED
5704 && (set->digits < 1 || set->round < 0
5705 || set->round >= DEC_ROUND_MAX))
5706 {
5707 bad = 1;
5708 #if DECTRACE
5709 printf ("Bad context [digits=%d round=%d].\n", set->digits, set->round);
5710 #endif
5711 }
5712 else
5713 {
5714 if (res == NULL)
5715 {
5716 bad = 1;
5717 #if DECTRACE
5718 printf ("Bad result [is NULL].\n");
5719 #endif
5720 }
5721 if (!bad && lhs != DECUNUSED)
5722 bad = (decCheckNumber (lhs, set));
5723 if (!bad && rhs != DECUNUSED)
5724 bad = (decCheckNumber (rhs, set));
5725 }
5726 if (bad)
5727 {
5728 if (set != DECUNUSED)
5729 decContextSetStatus (set, DEC_Invalid_operation);
5730 if (res != DECUNUSED && res != NULL)
5731 {
5732 decNumberZero (res);
5733 res->bits = DECNAN; /* qNaN */
5734 }
5735 }
5736 return bad;
5737 }
5738
5739 /* ------------------------------------------------------------------ */
5740 /* decCheckNumber -- check a number */
5741 /* dn is the number to check */
5742 /* set is the context (may be DECUNUSED) */
5743 /* returns 0 if the number is clean, or 1 otherwise */
5744 /* */
5745 /* The number is considered valid if it could be a result from some */
5746 /* operation in some valid context (not necessarily the current one). */
5747 /* ------------------------------------------------------------------ */
5748 Flag
5749 decCheckNumber (decNumber * dn, decContext * set)
5750 {
5751 Unit *up; /* work */
5752 uInt maxuint; /* .. */
5753 Int ae, d, digits; /* .. */
5754 Int emin, emax; /* .. */
5755
5756 if (dn == NULL)
5757 { /* hopeless */
5758 #if DECTRACE
5759 printf ("Reference to decNumber is NULL.\n");
5760 #endif
5761 return 1;
5762 }
5763
5764 /* check special values */
5765 if (dn->bits & DECSPECIAL)
5766 {
5767 if (dn->exponent != 0)
5768 {
5769 #if DECTRACE
5770 printf ("Exponent %d (not 0) for a special value.\n", dn->exponent);
5771 #endif
5772 return 1;
5773 }
5774
5775 /* 2003.09.08: NaNs may now have coefficients, so next tests Inf only */
5776 if (decNumberIsInfinite (dn))
5777 {
5778 if (dn->digits != 1)
5779 {
5780 #if DECTRACE
5781 printf ("Digits %d (not 1) for an infinity.\n", dn->digits);
5782 #endif
5783 return 1;
5784 }
5785 if (*dn->lsu != 0)
5786 {
5787 #if DECTRACE
5788 printf ("LSU %d (not 0) for an infinity.\n", *dn->lsu);
5789 #endif
5790 return 1;
5791 }
5792 } /* Inf */
5793 /* 2002.12.26: negative NaNs can now appear through proposed IEEE */
5794 /* concrete formats (decimal64, etc.), though they are */
5795 /* never visible in strings. */
5796 return 0;
5797
5798 /* if ((dn->bits & DECINF) || (dn->bits & DECNEG)==0) return 0; */
5799 /* #if DECTRACE */
5800 /* printf("Negative NaN in number.\n"); */
5801 /* #endif */
5802 /* return 1; */
5803 }
5804
5805 /* check the coefficient */
5806 if (dn->digits < 1 || dn->digits > DECNUMMAXP)
5807 {
5808 #if DECTRACE
5809 printf ("Digits %d in number.\n", dn->digits);
5810 #endif
5811 return 1;
5812 }
5813
5814 d = dn->digits;
5815
5816 for (up = dn->lsu; d > 0; up++)
5817 {
5818 if (d > DECDPUN)
5819 maxuint = DECDPUNMAX;
5820 else
5821 { /* we are at the msu */
5822 maxuint = powers[d] - 1;
5823 if (dn->digits > 1 && *up < powers[d - 1])
5824 {
5825 #if DECTRACE
5826 printf ("Leading 0 in number.\n");
5827 decNumberShow (dn);
5828 #endif
5829 return 1;
5830 }
5831 }
5832 if (*up > maxuint)
5833 {
5834 #if DECTRACE
5835 printf ("Bad Unit [%08x] in number at offset %d [maxuint %d].\n",
5836 *up, up - dn->lsu, maxuint);
5837 #endif
5838 return 1;
5839 }
5840 d -= DECDPUN;
5841 }
5842
5843 /* check the exponent. Note that input operands can have exponents */
5844 /* which are out of the set->emin/set->emax and set->digits range */
5845 /* (just as they can have more digits than set->digits). */
5846 ae = dn->exponent + dn->digits - 1; /* adjusted exponent */
5847 emax = DECNUMMAXE;
5848 emin = DECNUMMINE;
5849 digits = DECNUMMAXP;
5850 if (ae < emin - (digits - 1))
5851 {
5852 #if DECTRACE
5853 printf ("Adjusted exponent underflow [%d].\n", ae);
5854 decNumberShow (dn);
5855 #endif
5856 return 1;
5857 }
5858 if (ae > +emax)
5859 {
5860 #if DECTRACE
5861 printf ("Adjusted exponent overflow [%d].\n", ae);
5862 decNumberShow (dn);
5863 #endif
5864 return 1;
5865 }
5866
5867 return 0; /* it's OK */
5868 }
5869 #endif
5870
5871 #if DECALLOC
5872 #undef malloc
5873 #undef free
5874 /* ------------------------------------------------------------------ */
5875 /* decMalloc -- accountable allocation routine */
5876 /* n is the number of bytes to allocate */
5877 /* */
5878 /* Semantics is the same as the stdlib malloc routine, but bytes */
5879 /* allocated are accounted for globally, and corruption fences are */
5880 /* added before and after the 'actual' storage. */
5881 /* ------------------------------------------------------------------ */
5882 /* This routine allocates storage with an extra twelve bytes; 8 are */
5883 /* at the start and hold: */
5884 /* 0-3 the original length requested */
5885 /* 4-7 buffer corruption detection fence (DECFENCE, x4) */
5886 /* The 4 bytes at the end also hold a corruption fence (DECFENCE, x4) */
5887 /* ------------------------------------------------------------------ */
5888 static void *
5889 decMalloc (uInt n)
5890 {
5891 uInt size = n + 12; /* true size */
5892 void *alloc; /* -> allocated storage */
5893 uInt *j; /* work */
5894 uByte *b, *b0; /* .. */
5895
5896 alloc = malloc (size); /* -> allocated storage */
5897 if (alloc == NULL)
5898 return NULL; /* out of strorage */
5899 b0 = (uByte *) alloc; /* as bytes */
5900 decAllocBytes += n; /* account for storage */
5901 j = (uInt *) alloc; /* -> first four bytes */
5902 *j = n; /* save n */
5903 /* printf("++ alloc(%d)\n", n); */
5904 for (b = b0 + 4; b < b0 + 8; b++)
5905 *b = DECFENCE;
5906 for (b = b0 + n + 8; b < b0 + n + 12; b++)
5907 *b = DECFENCE;
5908 return b0 + 8; /* -> play area */
5909 }
5910
5911 /* ------------------------------------------------------------------ */
5912 /* decFree -- accountable free routine */
5913 /* alloc is the storage to free */
5914 /* */
5915 /* Semantics is the same as the stdlib malloc routine, except that */
5916 /* the global storage accounting is updated and the fences are */
5917 /* checked to ensure that no routine has written 'out of bounds'. */
5918 /* ------------------------------------------------------------------ */
5919 /* This routine first checks that the fences have not been corrupted. */
5920 /* It then frees the storage using the 'truw' storage address (that */
5921 /* is, offset by 8). */
5922 /* ------------------------------------------------------------------ */
5923 static void
5924 decFree (void *alloc)
5925 {
5926 uInt *j, n; /* pointer, original length */
5927 uByte *b, *b0; /* work */
5928
5929 if (alloc == NULL)
5930 return; /* allowed; it's a nop */
5931 b0 = (uByte *) alloc; /* as bytes */
5932 b0 -= 8; /* -> true start of storage */
5933 j = (uInt *) b0; /* -> first four bytes */
5934 n = *j; /* lift */
5935 for (b = b0 + 4; b < b0 + 8; b++)
5936 if (*b != DECFENCE)
5937 printf ("=== Corrupt byte [%02x] at offset %d from %d ===\n", *b,
5938 b - b0 - 8, (Int) b0);
5939 for (b = b0 + n + 8; b < b0 + n + 12; b++)
5940 if (*b != DECFENCE)
5941 printf ("=== Corrupt byte [%02x] at offset +%d from %d, n=%d ===\n", *b,
5942 b - b0 - 8, (Int) b0, n);
5943 free (b0); /* drop the storage */
5944 decAllocBytes -= n; /* account for storage */
5945 }
5946 #endif