]> git.ipfire.org Git - thirdparty/gcc.git/blob - libgcc/config/arc/ieee-754/arc600-dsp/divsf3.S
Update copyright years.
[thirdparty/gcc.git] / libgcc / config / arc / ieee-754 / arc600-dsp / divsf3.S
1 /* Copyright (C) 2008-2016 Free Software Foundation, Inc.
2 Contributor: Joern Rennecke <joern.rennecke@embecosm.com>
3 on behalf of Synopsys Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 Under Section 7 of GPL version 3, you are granted additional
18 permissions described in the GCC Runtime Library Exception, version
19 3.1, as published by the Free Software Foundation.
20
21 You should have received a copy of the GNU General Public License and
22 a copy of the GCC Runtime Library Exception along with this program;
23 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24 <http://www.gnu.org/licenses/>. */
25
26 /*
27 - calculate 15..18 bit inverse using a table of approximating polynoms.
28 precision is higher for polynoms used to evaluate input with larger
29 value.
30 - do one newton-raphson iteration step to double the precision,
31 then multiply this with the divisor
32 -> more time to decide if dividend is subnormal
33 - the worst error propagation is on the side of the value range
34 with the least initial defect, thus giving us about 30 bits precision.
35 */
36 #include "../arc-ieee-754.h"
37 #define mlo acc2
38 #define mhi acc1
39 #define mul64(b,c) mullw 0,b,c` machlw 0,b,c
40 #define mulu64(b,c) mululw 0,b,c` machulw 0,b,c
41
42 #if 0 /* DEBUG */
43 .global __divsf3
44 FUNC(__divsf3)
45 .balign 4
46 __divsf3:
47 push_s blink
48 push_s r1
49 bl.d __divsf3_c
50 push_s r0
51 ld_s r1,[sp,4]
52 st_s r0,[sp,4]
53 bl.d __divsf3_asm
54 pop_s r0
55 pop_s r1
56 pop_s blink
57 cmp r0,r1
58 #if 1
59 bne abort
60 jeq_s [blink]
61 b abort
62 #else
63 bne abort
64 j_s [blink]
65 #endif
66 ENDFUNC(__divsf3)
67 #define __divsf3 __divsf3_asm
68 #endif /* DEBUG */
69
70 FUNC(__divsf3)
71 .balign 4
72 .Ldivtab:
73 .long 0xfc0ffff0
74 .long 0xf46ffefd
75 .long 0xed1ffd2a
76 .long 0xe627fa8e
77 .long 0xdf7ff73b
78 .long 0xd917f33b
79 .long 0xd2f7eea3
80 .long 0xcd1fe986
81 .long 0xc77fe3e7
82 .long 0xc21fdddb
83 .long 0xbcefd760
84 .long 0xb7f7d08c
85 .long 0xb32fc960
86 .long 0xae97c1ea
87 .long 0xaa27ba26
88 .long 0xa5e7b22e
89 .long 0xa1cfa9fe
90 .long 0x9ddfa1a0
91 .long 0x9a0f990c
92 .long 0x9667905d
93 .long 0x92df878a
94 .long 0x8f6f7e84
95 .long 0x8c27757e
96 .long 0x88f76c54
97 .long 0x85df630c
98 .long 0x82e759c5
99 .long 0x8007506d
100 .long 0x7d3f470a
101 .long 0x7a8f3da2
102 .long 0x77ef341e
103 .long 0x756f2abe
104 .long 0x72f7212d
105 .long 0x709717ad
106 .long 0x6e4f0e44
107 .long 0x6c1704d6
108 .long 0x69e6fb44
109 .long 0x67cef1d7
110 .long 0x65c6e872
111 .long 0x63cedf18
112 .long 0x61e6d5cd
113 .long 0x6006cc6d
114 .long 0x5e36c323
115 .long 0x5c76b9f3
116 .long 0x5abeb0b7
117 .long 0x5916a79b
118 .long 0x57769e77
119 .long 0x55de954d
120 .long 0x54568c4e
121 .long 0x52d6834d
122 .long 0x51667a7f
123 .long 0x4ffe71b5
124 .long 0x4e9e68f1
125 .long 0x4d466035
126 .long 0x4bf65784
127 .long 0x4aae4ede
128 .long 0x496e4646
129 .long 0x48363dbd
130 .long 0x47063547
131 .long 0x45de2ce5
132 .long 0x44be2498
133 .long 0x43a61c64
134 .long 0x4296144a
135 .long 0x41860c0e
136 .long 0x407e03ee
137 .L7f800000:
138 .long 0x7f800000
139 .balign 4
140 .global __divsf3_support
141 __divsf3_support:
142 .Linf_NaN:
143 bclr.f 0,r0,31 ; 0/0 -> NaN
144 xor_s r0,r0,r1
145 bmsk r1,r0,30
146 bic_s r0,r0,r1
147 sub.eq r0,r0,1
148 j_s.d [blink]
149 or r0,r0,r9
150 .Lret0:
151 xor_s r0,r0,r1
152 bmsk r1,r0,30
153 j_s.d [blink]
154 bic_s r0,r0,r1
155 /* N.B. the spacing between divtab and the sub3 to get its address must
156 be a multiple of 8. */
157 __divsf3:
158 ld.as r9,[pcl,-9]; [pcl,(-((.-.L7f800000) >> 2))] ; 0x7f800000
159 sub3 r3,pcl,37;(.-.Ldivtab) >> 3
160 lsr r2,r1,17
161 and.f r11,r1,r9
162 bmsk r5,r2,5
163 beq.d .Ldenorm_fp1
164 asl r6,r1,8
165 and.f r2,r0,r9
166 ld.as r5,[r3,r5]
167 asl r4,r1,9
168 bset r6,r6,31
169 breq.d r11,r9,.Linf_nan_fp1
170 .Lpast_denorm_fp1:
171 mululw 0,r5,r4
172 machulw r8,r5,r4
173 breq.d r2,r9,.Linf_nan_fp0
174 asl r5,r5,13
175 sub r7,r5,r8
176 mululw 0,r7,r6
177 machulw r8,r7,r6
178 beq.d .Ldenorm_fp0
179 asl r12,r0,8
180 mulu64 (r8,r7)
181 bset r3,r12,31
182 .Lpast_denorm_fp0:
183 cmp_s r3,r6
184 lsr.cc r3,r3,1
185 add_s r2,r2, /* wait for immediate */ \
186 0x3f000000
187 sub r7,r7,mhi ; u1.31 inverse, about 30 bit
188 mulu64 (r3,r7)
189 sbc r2,r2,r11
190 xor.f 0,r0,r1
191 and r0,r2,r9
192 bclr r3,r9,23 ; 0x7f000000
193 brhs.d r2,r3,.Linf_denorm
194 bxor.mi r0,r0,31
195 .Lpast_denorm:
196 add r3,mhi,0x22 ; round to nearest or higher
197 tst r3,0x3c ; check if rounding was unsafe
198 lsr r3,r3,6
199 jne.d [blink] ; return if rounding was safe.
200 add_s r0,r0,r3
201 /* work out exact rounding if we fall through here. */
202 /* We know that the exact result cannot be represented in single
203 precision. Find the mid-point between the two nearest
204 representable values, multiply with the divisor, and check if
205 the result is larger than the dividend. */
206 add_s r3,r3,r3
207 sub_s r3,r3,1
208 mulu64 (r3,r6)
209 asr.f 0,r0,1 ; for round-to-even in case this is a denorm
210 rsub r2,r9,25
211 asl_s r12,r12,r2
212 sub.f 0,r12,mlo
213 j_s.d [blink]
214 sub.mi r0,r0,1
215 .Linf_nan_fp1:
216 lsr_s r0,r0,31
217 bmsk.f 0,r1,22
218 asl_s r0,r0,31
219 bne_s 0f ; inf/inf -> nan
220 brne r2,r9,.Lsigned0 ; x/inf -> 0, but x/nan -> nan
221 0: j_s.d [blink]
222 mov r0,-1
223 .Lsigned0:
224 .Linf_nan_fp0:
225 tst_s r1,r1
226 j_s.d [blink]
227 bxor.mi r0,r0,31
228 .balign 4
229 .global __divsf3
230 /* For denormal results, it is possible that an exact result needs
231 rounding, and thus the round-to-even rule has to come into play. */
232 .Linf_denorm:
233 brlo r2,0xc0000000,.Linf
234 .Ldenorm:
235 asr_s r2,r2,23
236 bic r0,r0,r9
237 neg r9,r2
238 brlo.d r9,25,.Lpast_denorm
239 lsr r3,mlo,r9
240 /* Fall through: return +- 0 */
241 j_s [blink]
242 .Linf:
243 j_s.d [blink]
244 or r0,r0,r9
245 .balign 4
246 .Ldenorm_fp1:
247 norm.f r12,r6 ; flag for x/0 -> Inf check
248 add r6,r6,r6
249 rsub r5,r12,16
250 ror r5,r1,r5
251 bmsk r5,r5,5
252 bic.ne.f 0, \
253 0x60000000,r0 ; large number / denorm -> Inf
254 ld.as r5,[r3,r5]
255 asl r6,r6,r12
256 beq.d .Linf_NaN
257 and.f r2,r0,r9
258 add r4,r6,r6
259 asl_s r12,r12,23
260 bne.d .Lpast_denorm_fp1
261 add_s r2,r2,r12
262 .Ldenorm_fp0:
263 mulu64 (r8,r7)
264 bclr r12,r12,31
265 norm.f r3,r12 ; flag for 0/x -> 0 check
266 bic.ne.f 0,0x60000000,r1 ; denorm/large number -> 0
267 beq_s .Lret0
268 asl_s r12,r12,r3
269 asl_s r3,r3,23
270 add_s r12,r12,r12
271 add r11,r11,r3
272 b.d .Lpast_denorm_fp0
273 mov_s r3,r12
274 ENDFUNC(__divsf3)