]> git.ipfire.org Git - thirdparty/gcc.git/blob - libgcc/generic-morestack.c
bpabi.S (__aeabi_uldivmod): Optimise stack pointer manipulation.
[thirdparty/gcc.git] / libgcc / generic-morestack.c
1 /* Library support for -fsplit-stack. */
2 /* Copyright (C) 2009-2014 Free Software Foundation, Inc.
3 Contributed by Ian Lance Taylor <iant@google.com>.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 Under Section 7 of GPL version 3, you are granted additional
18 permissions described in the GCC Runtime Library Exception, version
19 3.1, as published by the Free Software Foundation.
20
21 You should have received a copy of the GNU General Public License and
22 a copy of the GCC Runtime Library Exception along with this program;
23 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24 <http://www.gnu.org/licenses/>. */
25
26 #include "tconfig.h"
27 #include "tsystem.h"
28 #include "coretypes.h"
29 #include "tm.h"
30 #include "libgcc_tm.h"
31
32 /* If inhibit_libc is defined, we can not compile this file. The
33 effect is that people will not be able to use -fsplit-stack. That
34 is much better than failing the build particularly since people
35 will want to define inhibit_libc while building a compiler which
36 can build glibc. */
37
38 #ifndef inhibit_libc
39
40 #include <assert.h>
41 #include <errno.h>
42 #include <signal.h>
43 #include <stdlib.h>
44 #include <string.h>
45 #include <unistd.h>
46 #include <sys/mman.h>
47 #include <sys/uio.h>
48
49 #include "generic-morestack.h"
50
51 typedef unsigned uintptr_type __attribute__ ((mode (pointer)));
52
53 /* This file contains subroutines that are used by code compiled with
54 -fsplit-stack. */
55
56 /* Declare functions to avoid warnings--there is no header file for
57 these internal functions. We give most of these functions the
58 flatten attribute in order to minimize their stack usage--here we
59 must minimize stack usage even at the cost of code size, and in
60 general inlining everything will do that. */
61
62 extern void
63 __generic_morestack_set_initial_sp (void *sp, size_t len)
64 __attribute__ ((no_split_stack, flatten, visibility ("hidden")));
65
66 extern void *
67 __generic_morestack (size_t *frame_size, void *old_stack, size_t param_size)
68 __attribute__ ((no_split_stack, flatten, visibility ("hidden")));
69
70 extern void *
71 __generic_releasestack (size_t *pavailable)
72 __attribute__ ((no_split_stack, flatten, visibility ("hidden")));
73
74 extern void
75 __morestack_block_signals (void)
76 __attribute__ ((no_split_stack, flatten, visibility ("hidden")));
77
78 extern void
79 __morestack_unblock_signals (void)
80 __attribute__ ((no_split_stack, flatten, visibility ("hidden")));
81
82 extern size_t
83 __generic_findstack (void *stack)
84 __attribute__ ((no_split_stack, flatten, visibility ("hidden")));
85
86 extern void
87 __morestack_load_mmap (void)
88 __attribute__ ((no_split_stack, visibility ("hidden")));
89
90 extern void *
91 __morestack_allocate_stack_space (size_t size)
92 __attribute__ ((visibility ("hidden")));
93
94 /* These are functions which -fsplit-stack code can call. These are
95 not called by the compiler, and are not hidden. FIXME: These
96 should be in some header file somewhere, somehow. */
97
98 extern void *
99 __splitstack_find (void *, void *, size_t *, void **, void **, void **)
100 __attribute__ ((visibility ("default")));
101
102 extern void
103 __splitstack_block_signals (int *, int *)
104 __attribute__ ((visibility ("default")));
105
106 extern void
107 __splitstack_getcontext (void *context[10])
108 __attribute__ ((no_split_stack, visibility ("default")));
109
110 extern void
111 __splitstack_setcontext (void *context[10])
112 __attribute__ ((no_split_stack, visibility ("default")));
113
114 extern void *
115 __splitstack_makecontext (size_t, void *context[10], size_t *)
116 __attribute__ ((visibility ("default")));
117
118 extern void *
119 __splitstack_resetcontext (void *context[10], size_t *)
120 __attribute__ ((visibility ("default")));
121
122 extern void
123 __splitstack_releasecontext (void *context[10])
124 __attribute__ ((visibility ("default")));
125
126 extern void
127 __splitstack_block_signals_context (void *context[10], int *, int *)
128 __attribute__ ((visibility ("default")));
129
130 extern void *
131 __splitstack_find_context (void *context[10], size_t *, void **, void **,
132 void **)
133 __attribute__ ((visibility ("default")));
134
135 /* These functions must be defined by the processor specific code. */
136
137 extern void *__morestack_get_guard (void)
138 __attribute__ ((no_split_stack, visibility ("hidden")));
139
140 extern void __morestack_set_guard (void *)
141 __attribute__ ((no_split_stack, visibility ("hidden")));
142
143 extern void *__morestack_make_guard (void *, size_t)
144 __attribute__ ((no_split_stack, visibility ("hidden")));
145
146 /* When we allocate a stack segment we put this header at the
147 start. */
148
149 struct stack_segment
150 {
151 /* The previous stack segment--when a function running on this stack
152 segment returns, it will run on the previous one. */
153 struct stack_segment *prev;
154 /* The next stack segment, if it has been allocated--when a function
155 is running on this stack segment, the next one is not being
156 used. */
157 struct stack_segment *next;
158 /* The total size of this stack segment. */
159 size_t size;
160 /* The stack address when this stack was created. This is used when
161 popping the stack. */
162 void *old_stack;
163 /* A list of memory blocks allocated by dynamic stack
164 allocation. */
165 struct dynamic_allocation_blocks *dynamic_allocation;
166 /* A list of dynamic memory blocks no longer needed. */
167 struct dynamic_allocation_blocks *free_dynamic_allocation;
168 /* An extra pointer in case we need some more information some
169 day. */
170 void *extra;
171 };
172
173 /* This structure holds the (approximate) initial stack pointer and
174 size for the system supplied stack for a thread. This is set when
175 the thread is created. We also store a sigset_t here to hold the
176 signal mask while splitting the stack, since we don't want to store
177 that on the stack. */
178
179 struct initial_sp
180 {
181 /* The initial stack pointer. */
182 void *sp;
183 /* The stack length. */
184 size_t len;
185 /* A signal mask, put here so that the thread can use it without
186 needing stack space. */
187 sigset_t mask;
188 /* Non-zero if we should not block signals. This is a reversed flag
189 so that the default zero value is the safe value. The type is
190 uintptr_type because it replaced one of the void * pointers in
191 extra. */
192 uintptr_type dont_block_signals;
193 /* Some extra space for later extensibility. */
194 void *extra[4];
195 };
196
197 /* A list of memory blocks allocated by dynamic stack allocation.
198 This is used for code that calls alloca or uses variably sized
199 arrays. */
200
201 struct dynamic_allocation_blocks
202 {
203 /* The next block in the list. */
204 struct dynamic_allocation_blocks *next;
205 /* The size of the allocated memory. */
206 size_t size;
207 /* The allocated memory. */
208 void *block;
209 };
210
211 /* These thread local global variables must be shared by all split
212 stack code across shared library boundaries. Therefore, they have
213 default visibility. They have extensibility fields if needed for
214 new versions. If more radical changes are needed, new code can be
215 written using new variable names, while still using the existing
216 variables in a backward compatible manner. Symbol versioning is
217 also used, although, since these variables are only referenced by
218 code in this file and generic-morestack-thread.c, it is likely that
219 simply using new names will suffice. */
220
221 /* The first stack segment allocated for this thread. */
222
223 __thread struct stack_segment *__morestack_segments
224 __attribute__ ((visibility ("default")));
225
226 /* The stack segment that we think we are currently using. This will
227 be correct in normal usage, but will be incorrect if an exception
228 unwinds into a different stack segment or if longjmp jumps to a
229 different stack segment. */
230
231 __thread struct stack_segment *__morestack_current_segment
232 __attribute__ ((visibility ("default")));
233
234 /* The initial stack pointer and size for this thread. */
235
236 __thread struct initial_sp __morestack_initial_sp
237 __attribute__ ((visibility ("default")));
238
239 /* A static signal mask, to avoid taking up stack space. */
240
241 static sigset_t __morestack_fullmask;
242
243 /* Convert an integer to a decimal string without using much stack
244 space. Return a pointer to the part of the buffer to use. We this
245 instead of sprintf because sprintf will require too much stack
246 space. */
247
248 static char *
249 print_int (int val, char *buf, int buflen, size_t *print_len)
250 {
251 int is_negative;
252 int i;
253 unsigned int uval;
254
255 uval = (unsigned int) val;
256 if (val >= 0)
257 is_negative = 0;
258 else
259 {
260 is_negative = 1;
261 uval = - uval;
262 }
263
264 i = buflen;
265 do
266 {
267 --i;
268 buf[i] = '0' + (uval % 10);
269 uval /= 10;
270 }
271 while (uval != 0 && i > 0);
272
273 if (is_negative)
274 {
275 if (i > 0)
276 --i;
277 buf[i] = '-';
278 }
279
280 *print_len = buflen - i;
281 return buf + i;
282 }
283
284 /* Print the string MSG/LEN, the errno number ERR, and a newline on
285 stderr. Then crash. */
286
287 void
288 __morestack_fail (const char *, size_t, int) __attribute__ ((noreturn));
289
290 void
291 __morestack_fail (const char *msg, size_t len, int err)
292 {
293 char buf[24];
294 static const char nl[] = "\n";
295 struct iovec iov[3];
296 union { char *p; const char *cp; } const_cast;
297
298 const_cast.cp = msg;
299 iov[0].iov_base = const_cast.p;
300 iov[0].iov_len = len;
301 /* We can't call strerror, because it may try to translate the error
302 message, and that would use too much stack space. */
303 iov[1].iov_base = print_int (err, buf, sizeof buf, &iov[1].iov_len);
304 const_cast.cp = &nl[0];
305 iov[2].iov_base = const_cast.p;
306 iov[2].iov_len = sizeof nl - 1;
307 /* FIXME: On systems without writev we need to issue three write
308 calls, or punt on printing errno. For now this is irrelevant
309 since stack splitting only works on GNU/Linux anyhow. */
310 writev (2, iov, 3);
311 abort ();
312 }
313
314 /* Allocate a new stack segment. FRAME_SIZE is the required frame
315 size. */
316
317 static struct stack_segment *
318 allocate_segment (size_t frame_size)
319 {
320 static unsigned int static_pagesize;
321 static int use_guard_page;
322 unsigned int pagesize;
323 unsigned int overhead;
324 unsigned int allocate;
325 void *space;
326 struct stack_segment *pss;
327
328 pagesize = static_pagesize;
329 if (pagesize == 0)
330 {
331 unsigned int p;
332
333 pagesize = getpagesize ();
334
335 #ifdef __GCC_HAVE_SYNC_COMPARE_AND_SWAP_4
336 p = __sync_val_compare_and_swap (&static_pagesize, 0, pagesize);
337 #else
338 /* Just hope this assignment is atomic. */
339 static_pagesize = pagesize;
340 p = 0;
341 #endif
342
343 use_guard_page = getenv ("SPLIT_STACK_GUARD") != 0;
344
345 /* FIXME: I'm not sure this assert should be in the released
346 code. */
347 assert (p == 0 || p == pagesize);
348 }
349
350 overhead = sizeof (struct stack_segment);
351
352 allocate = pagesize;
353 if (allocate < MINSIGSTKSZ)
354 allocate = ((MINSIGSTKSZ + overhead + pagesize - 1)
355 & ~ (pagesize - 1));
356 if (allocate < frame_size)
357 allocate = ((frame_size + overhead + pagesize - 1)
358 & ~ (pagesize - 1));
359
360 if (use_guard_page)
361 allocate += pagesize;
362
363 /* FIXME: If this binary requires an executable stack, then we need
364 to set PROT_EXEC. Unfortunately figuring that out is complicated
365 and target dependent. We would need to use dl_iterate_phdr to
366 see if there is any object which does not have a PT_GNU_STACK
367 phdr, though only for architectures which use that mechanism. */
368 space = mmap (NULL, allocate, PROT_READ | PROT_WRITE,
369 MAP_ANONYMOUS | MAP_PRIVATE, -1, 0);
370 if (space == MAP_FAILED)
371 {
372 static const char msg[] =
373 "unable to allocate additional stack space: errno ";
374 __morestack_fail (msg, sizeof msg - 1, errno);
375 }
376
377 if (use_guard_page)
378 {
379 void *guard;
380
381 #ifdef STACK_GROWS_DOWNWARD
382 guard = space;
383 space = (char *) space + pagesize;
384 #else
385 guard = space + allocate - pagesize;
386 #endif
387
388 mprotect (guard, pagesize, PROT_NONE);
389 allocate -= pagesize;
390 }
391
392 pss = (struct stack_segment *) space;
393
394 pss->prev = NULL;
395 pss->next = NULL;
396 pss->size = allocate - overhead;
397 pss->dynamic_allocation = NULL;
398 pss->free_dynamic_allocation = NULL;
399 pss->extra = NULL;
400
401 return pss;
402 }
403
404 /* Free a list of dynamic blocks. */
405
406 static void
407 free_dynamic_blocks (struct dynamic_allocation_blocks *p)
408 {
409 while (p != NULL)
410 {
411 struct dynamic_allocation_blocks *next;
412
413 next = p->next;
414 free (p->block);
415 free (p);
416 p = next;
417 }
418 }
419
420 /* Merge two lists of dynamic blocks. */
421
422 static struct dynamic_allocation_blocks *
423 merge_dynamic_blocks (struct dynamic_allocation_blocks *a,
424 struct dynamic_allocation_blocks *b)
425 {
426 struct dynamic_allocation_blocks **pp;
427
428 if (a == NULL)
429 return b;
430 if (b == NULL)
431 return a;
432 for (pp = &a->next; *pp != NULL; pp = &(*pp)->next)
433 ;
434 *pp = b;
435 return a;
436 }
437
438 /* Release stack segments. If FREE_DYNAMIC is non-zero, we also free
439 any dynamic blocks. Otherwise we return them. */
440
441 struct dynamic_allocation_blocks *
442 __morestack_release_segments (struct stack_segment **pp, int free_dynamic)
443 {
444 struct dynamic_allocation_blocks *ret;
445 struct stack_segment *pss;
446
447 ret = NULL;
448 pss = *pp;
449 while (pss != NULL)
450 {
451 struct stack_segment *next;
452 unsigned int allocate;
453
454 next = pss->next;
455
456 if (pss->dynamic_allocation != NULL
457 || pss->free_dynamic_allocation != NULL)
458 {
459 if (free_dynamic)
460 {
461 free_dynamic_blocks (pss->dynamic_allocation);
462 free_dynamic_blocks (pss->free_dynamic_allocation);
463 }
464 else
465 {
466 ret = merge_dynamic_blocks (pss->dynamic_allocation, ret);
467 ret = merge_dynamic_blocks (pss->free_dynamic_allocation, ret);
468 }
469 }
470
471 allocate = pss->size + sizeof (struct stack_segment);
472 if (munmap (pss, allocate) < 0)
473 {
474 static const char msg[] = "munmap of stack space failed: errno ";
475 __morestack_fail (msg, sizeof msg - 1, errno);
476 }
477
478 pss = next;
479 }
480 *pp = NULL;
481
482 return ret;
483 }
484
485 /* This function is called by a processor specific function to set the
486 initial stack pointer for a thread. The operating system will
487 always create a stack for a thread. Here we record a stack pointer
488 near the base of that stack. The size argument lets the processor
489 specific code estimate how much stack space is available on this
490 initial stack. */
491
492 void
493 __generic_morestack_set_initial_sp (void *sp, size_t len)
494 {
495 /* The stack pointer most likely starts on a page boundary. Adjust
496 to the nearest 512 byte boundary. It's not essential that we be
497 precise here; getting it wrong will just leave some stack space
498 unused. */
499 #ifdef STACK_GROWS_DOWNWARD
500 sp = (void *) ((((__UINTPTR_TYPE__) sp + 511U) / 512U) * 512U);
501 #else
502 sp = (void *) ((((__UINTPTR_TYPE__) sp - 511U) / 512U) * 512U);
503 #endif
504
505 __morestack_initial_sp.sp = sp;
506 __morestack_initial_sp.len = len;
507 sigemptyset (&__morestack_initial_sp.mask);
508
509 sigfillset (&__morestack_fullmask);
510 #if defined(__GLIBC__) && defined(__linux__)
511 /* In glibc, the first two real time signals are used by the NPTL
512 threading library. By taking them out of the set of signals, we
513 avoiding copying the signal mask in pthread_sigmask. More
514 importantly, pthread_sigmask uses less stack space on x86_64. */
515 sigdelset (&__morestack_fullmask, __SIGRTMIN);
516 sigdelset (&__morestack_fullmask, __SIGRTMIN + 1);
517 #endif
518 }
519
520 /* This function is called by a processor specific function which is
521 run in the prologue when more stack is needed. The processor
522 specific function handles the details of saving registers and
523 frobbing the actual stack pointer. This function is responsible
524 for allocating a new stack segment and for copying a parameter
525 block from the old stack to the new one. On function entry
526 *PFRAME_SIZE is the size of the required stack frame--the returned
527 stack must be at least this large. On function exit *PFRAME_SIZE
528 is the amount of space remaining on the allocated stack. OLD_STACK
529 points at the parameters the old stack (really the current one
530 while this function is running). OLD_STACK is saved so that it can
531 be returned by a later call to __generic_releasestack. PARAM_SIZE
532 is the size in bytes of parameters to copy to the new stack. This
533 function returns a pointer to the new stack segment, pointing to
534 the memory after the parameters have been copied. The returned
535 value minus the returned *PFRAME_SIZE (or plus if the stack grows
536 upward) is the first address on the stack which should not be used.
537
538 This function is running on the old stack and has only a limited
539 amount of stack space available. */
540
541 void *
542 __generic_morestack (size_t *pframe_size, void *old_stack, size_t param_size)
543 {
544 size_t frame_size = *pframe_size;
545 struct stack_segment *current;
546 struct stack_segment **pp;
547 struct dynamic_allocation_blocks *dynamic;
548 char *from;
549 char *to;
550 void *ret;
551 size_t i;
552 size_t aligned;
553
554 current = __morestack_current_segment;
555
556 pp = current != NULL ? &current->next : &__morestack_segments;
557 if (*pp != NULL && (*pp)->size < frame_size)
558 dynamic = __morestack_release_segments (pp, 0);
559 else
560 dynamic = NULL;
561 current = *pp;
562
563 if (current == NULL)
564 {
565 current = allocate_segment (frame_size + param_size);
566 current->prev = __morestack_current_segment;
567 *pp = current;
568 }
569
570 current->old_stack = old_stack;
571
572 __morestack_current_segment = current;
573
574 if (dynamic != NULL)
575 {
576 /* Move the free blocks onto our list. We don't want to call
577 free here, as we are short on stack space. */
578 current->free_dynamic_allocation =
579 merge_dynamic_blocks (dynamic, current->free_dynamic_allocation);
580 }
581
582 *pframe_size = current->size - param_size;
583
584 /* Align the returned stack to a 32-byte boundary. */
585 aligned = (param_size + 31) & ~ (size_t) 31;
586
587 #ifdef STACK_GROWS_DOWNWARD
588 {
589 char *bottom = (char *) (current + 1) + current->size;
590 to = bottom - aligned;
591 ret = bottom - aligned;
592 }
593 #else
594 to = current + 1;
595 to += aligned - param_size;
596 ret = (char *) (current + 1) + aligned;
597 #endif
598
599 /* We don't call memcpy to avoid worrying about the dynamic linker
600 trying to resolve it. */
601 from = (char *) old_stack;
602 for (i = 0; i < param_size; i++)
603 *to++ = *from++;
604
605 return ret;
606 }
607
608 /* This function is called by a processor specific function when it is
609 ready to release a stack segment. We don't actually release the
610 stack segment, we just move back to the previous one. The current
611 stack segment will still be available if we need it in
612 __generic_morestack. This returns a pointer to the new stack
613 segment to use, which is the one saved by a previous call to
614 __generic_morestack. The processor specific function is then
615 responsible for actually updating the stack pointer. This sets
616 *PAVAILABLE to the amount of stack space now available. */
617
618 void *
619 __generic_releasestack (size_t *pavailable)
620 {
621 struct stack_segment *current;
622 void *old_stack;
623
624 current = __morestack_current_segment;
625 old_stack = current->old_stack;
626 current = current->prev;
627 __morestack_current_segment = current;
628
629 if (current != NULL)
630 {
631 #ifdef STACK_GROWS_DOWNWARD
632 *pavailable = (char *) old_stack - (char *) (current + 1);
633 #else
634 *pavailable = (char *) (current + 1) + current->size - (char *) old_stack;
635 #endif
636 }
637 else
638 {
639 size_t used;
640
641 /* We have popped back to the original stack. */
642 #ifdef STACK_GROWS_DOWNWARD
643 if ((char *) old_stack >= (char *) __morestack_initial_sp.sp)
644 used = 0;
645 else
646 used = (char *) __morestack_initial_sp.sp - (char *) old_stack;
647 #else
648 if ((char *) old_stack <= (char *) __morestack_initial_sp.sp)
649 used = 0;
650 else
651 used = (char *) old_stack - (char *) __morestack_initial_sp.sp;
652 #endif
653
654 if (used > __morestack_initial_sp.len)
655 *pavailable = 0;
656 else
657 *pavailable = __morestack_initial_sp.len - used;
658 }
659
660 return old_stack;
661 }
662
663 /* Block signals while splitting the stack. This avoids trouble if we
664 try to invoke a signal handler which itself wants to split the
665 stack. */
666
667 extern int pthread_sigmask (int, const sigset_t *, sigset_t *)
668 __attribute__ ((weak));
669
670 void
671 __morestack_block_signals (void)
672 {
673 if (__morestack_initial_sp.dont_block_signals)
674 ;
675 else if (pthread_sigmask)
676 pthread_sigmask (SIG_BLOCK, &__morestack_fullmask,
677 &__morestack_initial_sp.mask);
678 else
679 sigprocmask (SIG_BLOCK, &__morestack_fullmask,
680 &__morestack_initial_sp.mask);
681 }
682
683 /* Unblock signals while splitting the stack. */
684
685 void
686 __morestack_unblock_signals (void)
687 {
688 if (__morestack_initial_sp.dont_block_signals)
689 ;
690 else if (pthread_sigmask)
691 pthread_sigmask (SIG_SETMASK, &__morestack_initial_sp.mask, NULL);
692 else
693 sigprocmask (SIG_SETMASK, &__morestack_initial_sp.mask, NULL);
694 }
695
696 /* This function is called to allocate dynamic stack space, for alloca
697 or a variably sized array. This is a regular function with
698 sufficient stack space, so we just use malloc to allocate the
699 space. We attach the allocated blocks to the current stack
700 segment, so that they will eventually be reused or freed. */
701
702 void *
703 __morestack_allocate_stack_space (size_t size)
704 {
705 struct stack_segment *seg, *current;
706 struct dynamic_allocation_blocks *p;
707
708 /* We have to block signals to avoid getting confused if we get
709 interrupted by a signal whose handler itself uses alloca or a
710 variably sized array. */
711 __morestack_block_signals ();
712
713 /* Since we don't want to call free while we are low on stack space,
714 we may have a list of already allocated blocks waiting to be
715 freed. Release them all, unless we find one that is large
716 enough. We don't look at every block to see if one is large
717 enough, just the first one, because we aren't trying to build a
718 memory allocator here, we're just trying to speed up common
719 cases. */
720
721 current = __morestack_current_segment;
722 p = NULL;
723 for (seg = __morestack_segments; seg != NULL; seg = seg->next)
724 {
725 p = seg->free_dynamic_allocation;
726 if (p != NULL)
727 {
728 if (p->size >= size)
729 {
730 seg->free_dynamic_allocation = p->next;
731 break;
732 }
733
734 free_dynamic_blocks (p);
735 seg->free_dynamic_allocation = NULL;
736 p = NULL;
737 }
738 }
739
740 if (p == NULL)
741 {
742 /* We need to allocate additional memory. */
743 p = malloc (sizeof (*p));
744 if (p == NULL)
745 abort ();
746 p->size = size;
747 p->block = malloc (size);
748 if (p->block == NULL)
749 abort ();
750 }
751
752 /* If we are still on the initial stack, then we have a space leak.
753 FIXME. */
754 if (current != NULL)
755 {
756 p->next = current->dynamic_allocation;
757 current->dynamic_allocation = p;
758 }
759
760 __morestack_unblock_signals ();
761
762 return p->block;
763 }
764
765 /* Find the stack segment for STACK and return the amount of space
766 available. This is used when unwinding the stack because of an
767 exception, in order to reset the stack guard correctly. */
768
769 size_t
770 __generic_findstack (void *stack)
771 {
772 struct stack_segment *pss;
773 size_t used;
774
775 for (pss = __morestack_current_segment; pss != NULL; pss = pss->prev)
776 {
777 if ((char *) pss < (char *) stack
778 && (char *) pss + pss->size > (char *) stack)
779 {
780 __morestack_current_segment = pss;
781 #ifdef STACK_GROWS_DOWNWARD
782 return (char *) stack - (char *) (pss + 1);
783 #else
784 return (char *) (pss + 1) + pss->size - (char *) stack;
785 #endif
786 }
787 }
788
789 /* We have popped back to the original stack. */
790
791 if (__morestack_initial_sp.sp == NULL)
792 return 0;
793
794 #ifdef STACK_GROWS_DOWNWARD
795 if ((char *) stack >= (char *) __morestack_initial_sp.sp)
796 used = 0;
797 else
798 used = (char *) __morestack_initial_sp.sp - (char *) stack;
799 #else
800 if ((char *) stack <= (char *) __morestack_initial_sp.sp)
801 used = 0;
802 else
803 used = (char *) stack - (char *) __morestack_initial_sp.sp;
804 #endif
805
806 if (used > __morestack_initial_sp.len)
807 return 0;
808 else
809 return __morestack_initial_sp.len - used;
810 }
811
812 /* This function is called at program startup time to make sure that
813 mmap, munmap, and getpagesize are resolved if linking dynamically.
814 We want to resolve them while we have enough stack for them, rather
815 than calling into the dynamic linker while low on stack space. */
816
817 void
818 __morestack_load_mmap (void)
819 {
820 /* Call with bogus values to run faster. We don't care if the call
821 fails. Pass __MORESTACK_CURRENT_SEGMENT to make sure that any
822 TLS accessor function is resolved. */
823 mmap (__morestack_current_segment, 0, PROT_READ, MAP_ANONYMOUS, -1, 0);
824 mprotect (NULL, 0, 0);
825 munmap (0, getpagesize ());
826 }
827
828 /* This function may be used to iterate over the stack segments.
829 This can be called like this.
830 void *next_segment = NULL;
831 void *next_sp = NULL;
832 void *initial_sp = NULL;
833 void *stack;
834 size_t stack_size;
835 while ((stack = __splitstack_find (next_segment, next_sp, &stack_size,
836 &next_segment, &next_sp,
837 &initial_sp)) != NULL)
838 {
839 // Stack segment starts at stack and is stack_size bytes long.
840 }
841
842 There is no way to iterate over the stack segments of a different
843 thread. However, what is permitted is for one thread to call this
844 with the first two values NULL, to pass next_segment, next_sp, and
845 initial_sp to a different thread, and then to suspend one way or
846 another. A different thread may run the subsequent
847 __morestack_find iterations. Of course, this will only work if the
848 first thread is suspended during the __morestack_find iterations.
849 If not, the second thread will be looking at the stack while it is
850 changing, and anything could happen.
851
852 FIXME: This should be declared in some header file, but where? */
853
854 void *
855 __splitstack_find (void *segment_arg, void *sp, size_t *len,
856 void **next_segment, void **next_sp,
857 void **initial_sp)
858 {
859 struct stack_segment *segment;
860 void *ret;
861 char *nsp;
862
863 if (segment_arg == (void *) (uintptr_type) 1)
864 {
865 char *isp = (char *) *initial_sp;
866
867 if (isp == NULL)
868 return NULL;
869
870 *next_segment = (void *) (uintptr_type) 2;
871 *next_sp = NULL;
872 #ifdef STACK_GROWS_DOWNWARD
873 if ((char *) sp >= isp)
874 return NULL;
875 *len = (char *) isp - (char *) sp;
876 return sp;
877 #else
878 if ((char *) sp <= (char *) isp)
879 return NULL;
880 *len = (char *) sp - (char *) isp;
881 return (void *) isp;
882 #endif
883 }
884 else if (segment_arg == (void *) (uintptr_type) 2)
885 return NULL;
886 else if (segment_arg != NULL)
887 segment = (struct stack_segment *) segment_arg;
888 else
889 {
890 *initial_sp = __morestack_initial_sp.sp;
891 segment = __morestack_current_segment;
892 sp = (void *) &segment;
893 while (1)
894 {
895 if (segment == NULL)
896 return __splitstack_find ((void *) (uintptr_type) 1, sp, len,
897 next_segment, next_sp, initial_sp);
898 if ((char *) sp >= (char *) (segment + 1)
899 && (char *) sp <= (char *) (segment + 1) + segment->size)
900 break;
901 segment = segment->prev;
902 }
903 }
904
905 if (segment->prev == NULL)
906 *next_segment = (void *) (uintptr_type) 1;
907 else
908 *next_segment = segment->prev;
909
910 /* The old_stack value is the address of the function parameters of
911 the function which called __morestack. So if f1 called f2 which
912 called __morestack, the stack looks like this:
913
914 parameters <- old_stack
915 return in f1
916 return in f2
917 registers pushed by __morestack
918
919 The registers pushed by __morestack may not be visible on any
920 other stack, if we are being called by a signal handler
921 immediately after the call to __morestack_unblock_signals. We
922 want to adjust our return value to include those registers. This
923 is target dependent. */
924
925 nsp = (char *) segment->old_stack;
926
927 if (nsp == NULL)
928 {
929 /* We've reached the top of the stack. */
930 *next_segment = (void *) (uintptr_type) 2;
931 }
932 else
933 {
934 #if defined (__x86_64__)
935 nsp -= 12 * sizeof (void *);
936 #elif defined (__i386__)
937 nsp -= 6 * sizeof (void *);
938 #else
939 #error "unrecognized target"
940 #endif
941
942 *next_sp = (void *) nsp;
943 }
944
945 #ifdef STACK_GROWS_DOWNWARD
946 *len = (char *) (segment + 1) + segment->size - (char *) sp;
947 ret = (void *) sp;
948 #else
949 *len = (char *) sp - (char *) (segment + 1);
950 ret = (void *) (segment + 1);
951 #endif
952
953 return ret;
954 }
955
956 /* Tell the split stack code whether it has to block signals while
957 manipulating the stack. This is for programs in which some threads
958 block all signals. If a thread already blocks signals, there is no
959 need for the split stack code to block them as well. If NEW is not
960 NULL, then if *NEW is non-zero signals will be blocked while
961 splitting the stack, otherwise they will not. If OLD is not NULL,
962 *OLD will be set to the old value. */
963
964 void
965 __splitstack_block_signals (int *new, int *old)
966 {
967 if (old != NULL)
968 *old = __morestack_initial_sp.dont_block_signals ? 0 : 1;
969 if (new != NULL)
970 __morestack_initial_sp.dont_block_signals = *new ? 0 : 1;
971 }
972
973 /* The offsets into the arrays used by __splitstack_getcontext and
974 __splitstack_setcontext. */
975
976 enum __splitstack_context_offsets
977 {
978 MORESTACK_SEGMENTS = 0,
979 CURRENT_SEGMENT = 1,
980 CURRENT_STACK = 2,
981 STACK_GUARD = 3,
982 INITIAL_SP = 4,
983 INITIAL_SP_LEN = 5,
984 BLOCK_SIGNALS = 6,
985
986 NUMBER_OFFSETS = 10
987 };
988
989 /* Get the current split stack context. This may be used for
990 coroutine switching, similar to getcontext. The argument should
991 have at least 10 void *pointers for extensibility, although we
992 don't currently use all of them. This would normally be called
993 immediately before a call to getcontext or swapcontext or
994 setjmp. */
995
996 void
997 __splitstack_getcontext (void *context[NUMBER_OFFSETS])
998 {
999 memset (context, 0, NUMBER_OFFSETS * sizeof (void *));
1000 context[MORESTACK_SEGMENTS] = (void *) __morestack_segments;
1001 context[CURRENT_SEGMENT] = (void *) __morestack_current_segment;
1002 context[CURRENT_STACK] = (void *) &context;
1003 context[STACK_GUARD] = __morestack_get_guard ();
1004 context[INITIAL_SP] = (void *) __morestack_initial_sp.sp;
1005 context[INITIAL_SP_LEN] = (void *) (uintptr_type) __morestack_initial_sp.len;
1006 context[BLOCK_SIGNALS] = (void *) __morestack_initial_sp.dont_block_signals;
1007 }
1008
1009 /* Set the current split stack context. The argument should be a
1010 context previously passed to __splitstack_getcontext. This would
1011 normally be called immediately after a call to getcontext or
1012 swapcontext or setjmp if something jumped to it. */
1013
1014 void
1015 __splitstack_setcontext (void *context[NUMBER_OFFSETS])
1016 {
1017 __morestack_segments = (struct stack_segment *) context[MORESTACK_SEGMENTS];
1018 __morestack_current_segment =
1019 (struct stack_segment *) context[CURRENT_SEGMENT];
1020 __morestack_set_guard (context[STACK_GUARD]);
1021 __morestack_initial_sp.sp = context[INITIAL_SP];
1022 __morestack_initial_sp.len = (size_t) context[INITIAL_SP_LEN];
1023 __morestack_initial_sp.dont_block_signals =
1024 (uintptr_type) context[BLOCK_SIGNALS];
1025 }
1026
1027 /* Create a new split stack context. This will allocate a new stack
1028 segment which may be used by a coroutine. STACK_SIZE is the
1029 minimum size of the new stack. The caller is responsible for
1030 actually setting the stack pointer. This would normally be called
1031 before a call to makecontext, and the returned stack pointer and
1032 size would be used to set the uc_stack field. A function called
1033 via makecontext on a stack created by __splitstack_makecontext may
1034 not return. Note that the returned pointer points to the lowest
1035 address in the stack space, and thus may not be the value to which
1036 to set the stack pointer. */
1037
1038 void *
1039 __splitstack_makecontext (size_t stack_size, void *context[NUMBER_OFFSETS],
1040 size_t *size)
1041 {
1042 struct stack_segment *segment;
1043 void *initial_sp;
1044
1045 memset (context, 0, NUMBER_OFFSETS * sizeof (void *));
1046 segment = allocate_segment (stack_size);
1047 context[MORESTACK_SEGMENTS] = segment;
1048 context[CURRENT_SEGMENT] = segment;
1049 #ifdef STACK_GROWS_DOWNWARD
1050 initial_sp = (void *) ((char *) (segment + 1) + segment->size);
1051 #else
1052 initial_sp = (void *) (segment + 1);
1053 #endif
1054 context[STACK_GUARD] = __morestack_make_guard (initial_sp, segment->size);
1055 context[INITIAL_SP] = NULL;
1056 context[INITIAL_SP_LEN] = 0;
1057 *size = segment->size;
1058 return (void *) (segment + 1);
1059 }
1060
1061 /* Given an existing split stack context, reset it back to the start
1062 of the stack. Return the stack pointer and size, appropriate for
1063 use with makecontext. This may be used if a coroutine exits, in
1064 order to reuse the stack segments for a new coroutine. */
1065
1066 void *
1067 __splitstack_resetcontext (void *context[10], size_t *size)
1068 {
1069 struct stack_segment *segment;
1070 void *initial_sp;
1071 size_t initial_size;
1072 void *ret;
1073
1074 /* Reset the context assuming that MORESTACK_SEGMENTS, INITIAL_SP
1075 and INITIAL_SP_LEN are correct. */
1076
1077 segment = context[MORESTACK_SEGMENTS];
1078 context[CURRENT_SEGMENT] = segment;
1079 context[CURRENT_STACK] = NULL;
1080 if (segment == NULL)
1081 {
1082 initial_sp = context[INITIAL_SP];
1083 initial_size = (uintptr_type) context[INITIAL_SP_LEN];
1084 ret = initial_sp;
1085 #ifdef STACK_GROWS_DOWNWARD
1086 ret = (void *) ((char *) ret - initial_size);
1087 #endif
1088 }
1089 else
1090 {
1091 #ifdef STACK_GROWS_DOWNWARD
1092 initial_sp = (void *) ((char *) (segment + 1) + segment->size);
1093 #else
1094 initial_sp = (void *) (segment + 1);
1095 #endif
1096 initial_size = segment->size;
1097 ret = (void *) (segment + 1);
1098 }
1099 context[STACK_GUARD] = __morestack_make_guard (initial_sp, initial_size);
1100 context[BLOCK_SIGNALS] = NULL;
1101 *size = initial_size;
1102 return ret;
1103 }
1104
1105 /* Release all the memory associated with a splitstack context. This
1106 may be used if a coroutine exits and the associated stack should be
1107 freed. */
1108
1109 void
1110 __splitstack_releasecontext (void *context[10])
1111 {
1112 __morestack_release_segments (((struct stack_segment **)
1113 &context[MORESTACK_SEGMENTS]),
1114 1);
1115 }
1116
1117 /* Like __splitstack_block_signals, but operating on CONTEXT, rather
1118 than on the current state. */
1119
1120 void
1121 __splitstack_block_signals_context (void *context[NUMBER_OFFSETS], int *new,
1122 int *old)
1123 {
1124 if (old != NULL)
1125 *old = ((uintptr_type) context[BLOCK_SIGNALS]) != 0 ? 0 : 1;
1126 if (new != NULL)
1127 context[BLOCK_SIGNALS] = (void *) (uintptr_type) (*new ? 0 : 1);
1128 }
1129
1130 /* Find the stack segments associated with a split stack context.
1131 This will return the address of the first stack segment and set
1132 *STACK_SIZE to its size. It will set next_segment, next_sp, and
1133 initial_sp which may be passed to __splitstack_find to find the
1134 remaining segments. */
1135
1136 void *
1137 __splitstack_find_context (void *context[NUMBER_OFFSETS], size_t *stack_size,
1138 void **next_segment, void **next_sp,
1139 void **initial_sp)
1140 {
1141 void *sp;
1142 struct stack_segment *segment;
1143
1144 *initial_sp = context[INITIAL_SP];
1145
1146 sp = context[CURRENT_STACK];
1147 if (sp == NULL)
1148 {
1149 /* Most likely this context was created but was never used. The
1150 value 2 is a code used by __splitstack_find to mean that we
1151 have reached the end of the list of stacks. */
1152 *next_segment = (void *) (uintptr_type) 2;
1153 *next_sp = NULL;
1154 *initial_sp = NULL;
1155 return NULL;
1156 }
1157
1158 segment = context[CURRENT_SEGMENT];
1159 if (segment == NULL)
1160 {
1161 /* Most likely this context was saved by a thread which was not
1162 created using __splistack_makecontext and which has never
1163 split the stack. The value 1 is a code used by
1164 __splitstack_find to look at the initial stack. */
1165 segment = (struct stack_segment *) (uintptr_type) 1;
1166 }
1167
1168 return __splitstack_find (segment, sp, stack_size, next_segment, next_sp,
1169 initial_sp);
1170 }
1171
1172 #endif /* !defined (inhibit_libc) */