]> git.ipfire.org Git - thirdparty/gcc.git/blob - libgfortran/generated/maxloc0_4_i4.c
re PR libfortran/19106 ([4.0 only] segfault in executable for print *,sum(a,dim=2...
[thirdparty/gcc.git] / libgfortran / generated / maxloc0_4_i4.c
1 /* Implementation of the MAXLOC intrinsic
2 Copyright 2002 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
4
5 This file is part of the GNU Fortran 95 runtime library (libgfortran).
6
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public
9 License as published by the Free Software Foundation; either
10 version 2 of the License, or (at your option) any later version.
11
12 In addition to the permissions in the GNU General Public License, the
13 Free Software Foundation gives you unlimited permission to link the
14 compiled version of this file into combinations with other programs,
15 and to distribute those combinations without any restriction coming
16 from the use of this file. (The General Public License restrictions
17 do apply in other respects; for example, they cover modification of
18 the file, and distribution when not linked into a combine
19 executable.)
20
21 Libgfortran is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
25
26 You should have received a copy of the GNU General Public
27 License along with libgfortran; see the file COPYING. If not,
28 write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
29 Boston, MA 02111-1307, USA. */
30
31 #include "config.h"
32 #include <stdlib.h>
33 #include <assert.h>
34 #include <float.h>
35 #include <limits.h>
36 #include "libgfortran.h"
37
38
39
40 extern void maxloc0_4_i4 (gfc_array_i4 * retarray, gfc_array_i4 *array);
41 export_proto(maxloc0_4_i4);
42
43 void
44 maxloc0_4_i4 (gfc_array_i4 * retarray, gfc_array_i4 *array)
45 {
46 index_type count[GFC_MAX_DIMENSIONS];
47 index_type extent[GFC_MAX_DIMENSIONS];
48 index_type sstride[GFC_MAX_DIMENSIONS];
49 index_type dstride;
50 GFC_INTEGER_4 *base;
51 GFC_INTEGER_4 *dest;
52 index_type rank;
53 index_type n;
54
55 rank = GFC_DESCRIPTOR_RANK (array);
56 if (rank <= 0)
57 runtime_error ("Rank of array needs to be > 0");
58
59 if (retarray->data == NULL)
60 {
61 retarray->dim[0].lbound = 0;
62 retarray->dim[0].ubound = rank-1;
63 retarray->dim[0].stride = 1;
64 retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
65 retarray->base = 0;
66 retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_4) * rank);
67 }
68 else
69 {
70 if (GFC_DESCRIPTOR_RANK (retarray) != 1)
71 runtime_error ("rank of return array does not equal 1");
72
73 if (retarray->dim[0].ubound + 1 - retarray->dim[0].lbound != rank)
74 runtime_error ("dimension of return array incorrect");
75
76 if (retarray->dim[0].stride == 0)
77 retarray->dim[0].stride = 1;
78 }
79 if (array->dim[0].stride == 0)
80 array->dim[0].stride = 1;
81
82 dstride = retarray->dim[0].stride;
83 dest = retarray->data;
84 for (n = 0; n < rank; n++)
85 {
86 sstride[n] = array->dim[n].stride;
87 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
88 count[n] = 0;
89 if (extent[n] <= 0)
90 {
91 /* Set the return value. */
92 for (n = 0; n < rank; n++)
93 dest[n * dstride] = 0;
94 return;
95 }
96 }
97
98 base = array->data;
99
100 /* Initialize the return value. */
101 for (n = 0; n < rank; n++)
102 dest[n * dstride] = 1;
103 {
104
105 GFC_INTEGER_4 maxval;
106
107 maxval = -GFC_INTEGER_4_HUGE;
108
109 while (base)
110 {
111 {
112 /* Implementation start. */
113
114 if (*base > maxval)
115 {
116 maxval = *base;
117 for (n = 0; n < rank; n++)
118 dest[n * dstride] = count[n] + 1;
119 }
120 /* Implementation end. */
121 }
122 /* Advance to the next element. */
123 count[0]++;
124 base += sstride[0];
125 n = 0;
126 while (count[n] == extent[n])
127 {
128 /* When we get to the end of a dimension, reset it and increment
129 the next dimension. */
130 count[n] = 0;
131 /* We could precalculate these products, but this is a less
132 frequently used path so proabably not worth it. */
133 base -= sstride[n] * extent[n];
134 n++;
135 if (n == rank)
136 {
137 /* Break out of the loop. */
138 base = NULL;
139 break;
140 }
141 else
142 {
143 count[n]++;
144 base += sstride[n];
145 }
146 }
147 }
148 }
149 }
150
151
152 extern void mmaxloc0_4_i4 (gfc_array_i4 *, gfc_array_i4 *, gfc_array_l4 *);
153 export_proto(mmaxloc0_4_i4);
154
155 void
156 mmaxloc0_4_i4 (gfc_array_i4 * retarray, gfc_array_i4 *array,
157 gfc_array_l4 * mask)
158 {
159 index_type count[GFC_MAX_DIMENSIONS];
160 index_type extent[GFC_MAX_DIMENSIONS];
161 index_type sstride[GFC_MAX_DIMENSIONS];
162 index_type mstride[GFC_MAX_DIMENSIONS];
163 index_type dstride;
164 GFC_INTEGER_4 *dest;
165 GFC_INTEGER_4 *base;
166 GFC_LOGICAL_4 *mbase;
167 int rank;
168 index_type n;
169
170 rank = GFC_DESCRIPTOR_RANK (array);
171 if (rank <= 0)
172 runtime_error ("Rank of array needs to be > 0");
173
174 if (retarray->data == NULL)
175 {
176 retarray->dim[0].lbound = 0;
177 retarray->dim[0].ubound = rank-1;
178 retarray->dim[0].stride = 1;
179 retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
180 retarray->base = 0;
181 retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_4) * rank);
182 }
183 else
184 {
185 if (GFC_DESCRIPTOR_RANK (retarray) != 1)
186 runtime_error ("rank of return array does not equal 1");
187
188 if (retarray->dim[0].ubound + 1 - retarray->dim[0].lbound != rank)
189 runtime_error ("dimension of return array incorrect");
190
191 if (retarray->dim[0].stride == 0)
192 retarray->dim[0].stride = 1;
193 }
194
195 if (array->dim[0].stride == 0)
196 array->dim[0].stride = 1;
197
198 if (mask->dim[0].stride == 0)
199 mask->dim[0].stride = 1;
200
201 dstride = retarray->dim[0].stride;
202 dest = retarray->data;
203 for (n = 0; n < rank; n++)
204 {
205 sstride[n] = array->dim[n].stride;
206 mstride[n] = mask->dim[n].stride;
207 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
208 count[n] = 0;
209 if (extent[n] <= 0)
210 {
211 /* Set the return value. */
212 for (n = 0; n < rank; n++)
213 dest[n * dstride] = 0;
214 return;
215 }
216 }
217
218 base = array->data;
219 mbase = mask->data;
220
221 if (GFC_DESCRIPTOR_SIZE (mask) != 4)
222 {
223 /* This allows the same loop to be used for all logical types. */
224 assert (GFC_DESCRIPTOR_SIZE (mask) == 8);
225 for (n = 0; n < rank; n++)
226 mstride[n] <<= 1;
227 mbase = (GFOR_POINTER_L8_TO_L4 (mbase));
228 }
229
230
231 /* Initialize the return value. */
232 for (n = 0; n < rank; n++)
233 dest[n * dstride] = 1;
234 {
235
236 GFC_INTEGER_4 maxval;
237
238 maxval = -GFC_INTEGER_4_HUGE;
239
240 while (base)
241 {
242 {
243 /* Implementation start. */
244
245 if (*mbase && *base > maxval)
246 {
247 maxval = *base;
248 for (n = 0; n < rank; n++)
249 dest[n * dstride] = count[n] + 1;
250 }
251 /* Implementation end. */
252 }
253 /* Advance to the next element. */
254 count[0]++;
255 base += sstride[0];
256 mbase += mstride[0];
257 n = 0;
258 while (count[n] == extent[n])
259 {
260 /* When we get to the end of a dimension, reset it and increment
261 the next dimension. */
262 count[n] = 0;
263 /* We could precalculate these products, but this is a less
264 frequently used path so proabably not worth it. */
265 base -= sstride[n] * extent[n];
266 mbase -= mstride[n] * extent[n];
267 n++;
268 if (n == rank)
269 {
270 /* Break out of the loop. */
271 base = NULL;
272 break;
273 }
274 else
275 {
276 count[n]++;
277 base += sstride[n];
278 mbase += mstride[n];
279 }
280 }
281 }
282 }
283 }