]> git.ipfire.org Git - thirdparty/gcc.git/blob - libgfortran/generated/maxloc0_4_i4.c
All files: Update FSF address.
[thirdparty/gcc.git] / libgfortran / generated / maxloc0_4_i4.c
1 /* Implementation of the MAXLOC intrinsic
2 Copyright 2002 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
4
5 This file is part of the GNU Fortran 95 runtime library (libgfortran).
6
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public
9 License as published by the Free Software Foundation; either
10 version 2 of the License, or (at your option) any later version.
11
12 In addition to the permissions in the GNU General Public License, the
13 Free Software Foundation gives you unlimited permission to link the
14 compiled version of this file into combinations with other programs,
15 and to distribute those combinations without any restriction coming
16 from the use of this file. (The General Public License restrictions
17 do apply in other respects; for example, they cover modification of
18 the file, and distribution when not linked into a combine
19 executable.)
20
21 Libgfortran is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
25
26 You should have received a copy of the GNU General Public
27 License along with libgfortran; see the file COPYING. If not,
28 write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
29 Boston, MA 02110-1301, USA. */
30
31 #include "config.h"
32 #include <stdlib.h>
33 #include <assert.h>
34 #include <float.h>
35 #include <limits.h>
36 #include "libgfortran.h"
37
38
39
40 extern void maxloc0_4_i4 (gfc_array_i4 * retarray, gfc_array_i4 *array);
41 export_proto(maxloc0_4_i4);
42
43 void
44 maxloc0_4_i4 (gfc_array_i4 * retarray, gfc_array_i4 *array)
45 {
46 index_type count[GFC_MAX_DIMENSIONS];
47 index_type extent[GFC_MAX_DIMENSIONS];
48 index_type sstride[GFC_MAX_DIMENSIONS];
49 index_type dstride;
50 GFC_INTEGER_4 *base;
51 GFC_INTEGER_4 *dest;
52 index_type rank;
53 index_type n;
54
55 rank = GFC_DESCRIPTOR_RANK (array);
56 if (rank <= 0)
57 runtime_error ("Rank of array needs to be > 0");
58
59 if (retarray->data == NULL)
60 {
61 retarray->dim[0].lbound = 0;
62 retarray->dim[0].ubound = rank-1;
63 retarray->dim[0].stride = 1;
64 retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
65 retarray->offset = 0;
66 retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_4) * rank);
67 }
68 else
69 {
70 if (GFC_DESCRIPTOR_RANK (retarray) != 1)
71 runtime_error ("rank of return array does not equal 1");
72
73 if (retarray->dim[0].ubound + 1 - retarray->dim[0].lbound != rank)
74 runtime_error ("dimension of return array incorrect");
75
76 if (retarray->dim[0].stride == 0)
77 retarray->dim[0].stride = 1;
78 }
79
80 /* TODO: It should be a front end job to correctly set the strides. */
81
82 if (array->dim[0].stride == 0)
83 array->dim[0].stride = 1;
84
85 dstride = retarray->dim[0].stride;
86 dest = retarray->data;
87 for (n = 0; n < rank; n++)
88 {
89 sstride[n] = array->dim[n].stride;
90 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
91 count[n] = 0;
92 if (extent[n] <= 0)
93 {
94 /* Set the return value. */
95 for (n = 0; n < rank; n++)
96 dest[n * dstride] = 0;
97 return;
98 }
99 }
100
101 base = array->data;
102
103 /* Initialize the return value. */
104 for (n = 0; n < rank; n++)
105 dest[n * dstride] = 1;
106 {
107
108 GFC_INTEGER_4 maxval;
109
110 maxval = -GFC_INTEGER_4_HUGE;
111
112 while (base)
113 {
114 {
115 /* Implementation start. */
116
117 if (*base > maxval)
118 {
119 maxval = *base;
120 for (n = 0; n < rank; n++)
121 dest[n * dstride] = count[n] + 1;
122 }
123 /* Implementation end. */
124 }
125 /* Advance to the next element. */
126 count[0]++;
127 base += sstride[0];
128 n = 0;
129 while (count[n] == extent[n])
130 {
131 /* When we get to the end of a dimension, reset it and increment
132 the next dimension. */
133 count[n] = 0;
134 /* We could precalculate these products, but this is a less
135 frequently used path so proabably not worth it. */
136 base -= sstride[n] * extent[n];
137 n++;
138 if (n == rank)
139 {
140 /* Break out of the loop. */
141 base = NULL;
142 break;
143 }
144 else
145 {
146 count[n]++;
147 base += sstride[n];
148 }
149 }
150 }
151 }
152 }
153
154
155 extern void mmaxloc0_4_i4 (gfc_array_i4 *, gfc_array_i4 *, gfc_array_l4 *);
156 export_proto(mmaxloc0_4_i4);
157
158 void
159 mmaxloc0_4_i4 (gfc_array_i4 * retarray, gfc_array_i4 *array,
160 gfc_array_l4 * mask)
161 {
162 index_type count[GFC_MAX_DIMENSIONS];
163 index_type extent[GFC_MAX_DIMENSIONS];
164 index_type sstride[GFC_MAX_DIMENSIONS];
165 index_type mstride[GFC_MAX_DIMENSIONS];
166 index_type dstride;
167 GFC_INTEGER_4 *dest;
168 GFC_INTEGER_4 *base;
169 GFC_LOGICAL_4 *mbase;
170 int rank;
171 index_type n;
172
173 rank = GFC_DESCRIPTOR_RANK (array);
174 if (rank <= 0)
175 runtime_error ("Rank of array needs to be > 0");
176
177 if (retarray->data == NULL)
178 {
179 retarray->dim[0].lbound = 0;
180 retarray->dim[0].ubound = rank-1;
181 retarray->dim[0].stride = 1;
182 retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
183 retarray->offset = 0;
184 retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_4) * rank);
185 }
186 else
187 {
188 if (GFC_DESCRIPTOR_RANK (retarray) != 1)
189 runtime_error ("rank of return array does not equal 1");
190
191 if (retarray->dim[0].ubound + 1 - retarray->dim[0].lbound != rank)
192 runtime_error ("dimension of return array incorrect");
193
194 if (retarray->dim[0].stride == 0)
195 retarray->dim[0].stride = 1;
196 }
197
198 /* TODO: It should be a front end job to correctly set the strides. */
199
200 if (array->dim[0].stride == 0)
201 array->dim[0].stride = 1;
202
203 if (mask->dim[0].stride == 0)
204 mask->dim[0].stride = 1;
205
206 dstride = retarray->dim[0].stride;
207 dest = retarray->data;
208 for (n = 0; n < rank; n++)
209 {
210 sstride[n] = array->dim[n].stride;
211 mstride[n] = mask->dim[n].stride;
212 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
213 count[n] = 0;
214 if (extent[n] <= 0)
215 {
216 /* Set the return value. */
217 for (n = 0; n < rank; n++)
218 dest[n * dstride] = 0;
219 return;
220 }
221 }
222
223 base = array->data;
224 mbase = mask->data;
225
226 if (GFC_DESCRIPTOR_SIZE (mask) != 4)
227 {
228 /* This allows the same loop to be used for all logical types. */
229 assert (GFC_DESCRIPTOR_SIZE (mask) == 8);
230 for (n = 0; n < rank; n++)
231 mstride[n] <<= 1;
232 mbase = (GFOR_POINTER_L8_TO_L4 (mbase));
233 }
234
235
236 /* Initialize the return value. */
237 for (n = 0; n < rank; n++)
238 dest[n * dstride] = 1;
239 {
240
241 GFC_INTEGER_4 maxval;
242
243 maxval = -GFC_INTEGER_4_HUGE;
244
245 while (base)
246 {
247 {
248 /* Implementation start. */
249
250 if (*mbase && *base > maxval)
251 {
252 maxval = *base;
253 for (n = 0; n < rank; n++)
254 dest[n * dstride] = count[n] + 1;
255 }
256 /* Implementation end. */
257 }
258 /* Advance to the next element. */
259 count[0]++;
260 base += sstride[0];
261 mbase += mstride[0];
262 n = 0;
263 while (count[n] == extent[n])
264 {
265 /* When we get to the end of a dimension, reset it and increment
266 the next dimension. */
267 count[n] = 0;
268 /* We could precalculate these products, but this is a less
269 frequently used path so proabably not worth it. */
270 base -= sstride[n] * extent[n];
271 mbase -= mstride[n] * extent[n];
272 n++;
273 if (n == rank)
274 {
275 /* Break out of the loop. */
276 base = NULL;
277 break;
278 }
279 else
280 {
281 count[n]++;
282 base += sstride[n];
283 mbase += mstride[n];
284 }
285 }
286 }
287 }
288 }