]> git.ipfire.org Git - thirdparty/gcc.git/blob - libgfortran/generated/maxloc1_4_i4.c
re PR libfortran/32972 (performance of pack/unpack)
[thirdparty/gcc.git] / libgfortran / generated / maxloc1_4_i4.c
1 /* Implementation of the MAXLOC intrinsic
2 Copyright 2002 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
4
5 This file is part of the GNU Fortran 95 runtime library (libgfortran).
6
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public
9 License as published by the Free Software Foundation; either
10 version 2 of the License, or (at your option) any later version.
11
12 In addition to the permissions in the GNU General Public License, the
13 Free Software Foundation gives you unlimited permission to link the
14 compiled version of this file into combinations with other programs,
15 and to distribute those combinations without any restriction coming
16 from the use of this file. (The General Public License restrictions
17 do apply in other respects; for example, they cover modification of
18 the file, and distribution when not linked into a combine
19 executable.)
20
21 Libgfortran is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
25
26 You should have received a copy of the GNU General Public
27 License along with libgfortran; see the file COPYING. If not,
28 write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
29 Boston, MA 02110-1301, USA. */
30
31 #include "config.h"
32 #include <stdlib.h>
33 #include <assert.h>
34 #include <limits.h>
35 #include "libgfortran.h"
36
37
38 #if defined (HAVE_GFC_INTEGER_4) && defined (HAVE_GFC_INTEGER_4)
39
40
41 extern void maxloc1_4_i4 (gfc_array_i4 * const restrict,
42 gfc_array_i4 * const restrict, const index_type * const restrict);
43 export_proto(maxloc1_4_i4);
44
45 void
46 maxloc1_4_i4 (gfc_array_i4 * const restrict retarray,
47 gfc_array_i4 * const restrict array,
48 const index_type * const restrict pdim)
49 {
50 index_type count[GFC_MAX_DIMENSIONS];
51 index_type extent[GFC_MAX_DIMENSIONS];
52 index_type sstride[GFC_MAX_DIMENSIONS];
53 index_type dstride[GFC_MAX_DIMENSIONS];
54 const GFC_INTEGER_4 * restrict base;
55 GFC_INTEGER_4 * restrict dest;
56 index_type rank;
57 index_type n;
58 index_type len;
59 index_type delta;
60 index_type dim;
61
62 /* Make dim zero based to avoid confusion. */
63 dim = (*pdim) - 1;
64 rank = GFC_DESCRIPTOR_RANK (array) - 1;
65
66 len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
67 delta = array->dim[dim].stride;
68
69 for (n = 0; n < dim; n++)
70 {
71 sstride[n] = array->dim[n].stride;
72 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
73
74 if (extent[n] < 0)
75 extent[n] = 0;
76 }
77 for (n = dim; n < rank; n++)
78 {
79 sstride[n] = array->dim[n + 1].stride;
80 extent[n] =
81 array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
82
83 if (extent[n] < 0)
84 extent[n] = 0;
85 }
86
87 if (retarray->data == NULL)
88 {
89 size_t alloc_size;
90
91 for (n = 0; n < rank; n++)
92 {
93 retarray->dim[n].lbound = 0;
94 retarray->dim[n].ubound = extent[n]-1;
95 if (n == 0)
96 retarray->dim[n].stride = 1;
97 else
98 retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
99 }
100
101 retarray->offset = 0;
102 retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
103
104 alloc_size = sizeof (GFC_INTEGER_4) * retarray->dim[rank-1].stride
105 * extent[rank-1];
106
107 if (alloc_size == 0)
108 {
109 /* Make sure we have a zero-sized array. */
110 retarray->dim[0].lbound = 0;
111 retarray->dim[0].ubound = -1;
112 return;
113 }
114 else
115 retarray->data = internal_malloc_size (alloc_size);
116 }
117 else
118 {
119 if (rank != GFC_DESCRIPTOR_RANK (retarray))
120 runtime_error ("rank of return array incorrect");
121 }
122
123 for (n = 0; n < rank; n++)
124 {
125 count[n] = 0;
126 dstride[n] = retarray->dim[n].stride;
127 if (extent[n] <= 0)
128 len = 0;
129 }
130
131 base = array->data;
132 dest = retarray->data;
133
134 while (base)
135 {
136 const GFC_INTEGER_4 * restrict src;
137 GFC_INTEGER_4 result;
138 src = base;
139 {
140
141 GFC_INTEGER_4 maxval;
142 maxval = (-GFC_INTEGER_4_HUGE-1);
143 result = 0;
144 if (len <= 0)
145 *dest = 0;
146 else
147 {
148 for (n = 0; n < len; n++, src += delta)
149 {
150
151 if (*src > maxval || !result)
152 {
153 maxval = *src;
154 result = (GFC_INTEGER_4)n + 1;
155 }
156 }
157 *dest = result;
158 }
159 }
160 /* Advance to the next element. */
161 count[0]++;
162 base += sstride[0];
163 dest += dstride[0];
164 n = 0;
165 while (count[n] == extent[n])
166 {
167 /* When we get to the end of a dimension, reset it and increment
168 the next dimension. */
169 count[n] = 0;
170 /* We could precalculate these products, but this is a less
171 frequently used path so probably not worth it. */
172 base -= sstride[n] * extent[n];
173 dest -= dstride[n] * extent[n];
174 n++;
175 if (n == rank)
176 {
177 /* Break out of the look. */
178 base = NULL;
179 break;
180 }
181 else
182 {
183 count[n]++;
184 base += sstride[n];
185 dest += dstride[n];
186 }
187 }
188 }
189 }
190
191
192 extern void mmaxloc1_4_i4 (gfc_array_i4 * const restrict,
193 gfc_array_i4 * const restrict, const index_type * const restrict,
194 gfc_array_l1 * const restrict);
195 export_proto(mmaxloc1_4_i4);
196
197 void
198 mmaxloc1_4_i4 (gfc_array_i4 * const restrict retarray,
199 gfc_array_i4 * const restrict array,
200 const index_type * const restrict pdim,
201 gfc_array_l1 * const restrict mask)
202 {
203 index_type count[GFC_MAX_DIMENSIONS];
204 index_type extent[GFC_MAX_DIMENSIONS];
205 index_type sstride[GFC_MAX_DIMENSIONS];
206 index_type dstride[GFC_MAX_DIMENSIONS];
207 index_type mstride[GFC_MAX_DIMENSIONS];
208 GFC_INTEGER_4 * restrict dest;
209 const GFC_INTEGER_4 * restrict base;
210 const GFC_LOGICAL_1 * restrict mbase;
211 int rank;
212 int dim;
213 index_type n;
214 index_type len;
215 index_type delta;
216 index_type mdelta;
217 int mask_kind;
218
219 dim = (*pdim) - 1;
220 rank = GFC_DESCRIPTOR_RANK (array) - 1;
221
222 len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
223 if (len <= 0)
224 return;
225
226 mbase = mask->data;
227
228 mask_kind = GFC_DESCRIPTOR_SIZE (mask);
229
230 if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
231 #ifdef HAVE_GFC_LOGICAL_16
232 || mask_kind == 16
233 #endif
234 )
235 mbase = GFOR_POINTER_TO_L1 (mbase, mask_kind);
236 else
237 runtime_error ("Funny sized logical array");
238
239 delta = array->dim[dim].stride;
240 mdelta = mask->dim[dim].stride * mask_kind;
241
242 for (n = 0; n < dim; n++)
243 {
244 sstride[n] = array->dim[n].stride;
245 mstride[n] = mask->dim[n].stride * mask_kind;
246 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
247
248 if (extent[n] < 0)
249 extent[n] = 0;
250
251 }
252 for (n = dim; n < rank; n++)
253 {
254 sstride[n] = array->dim[n + 1].stride;
255 mstride[n] = mask->dim[n + 1].stride * mask_kind;
256 extent[n] =
257 array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
258
259 if (extent[n] < 0)
260 extent[n] = 0;
261 }
262
263 if (retarray->data == NULL)
264 {
265 size_t alloc_size;
266
267 for (n = 0; n < rank; n++)
268 {
269 retarray->dim[n].lbound = 0;
270 retarray->dim[n].ubound = extent[n]-1;
271 if (n == 0)
272 retarray->dim[n].stride = 1;
273 else
274 retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
275 }
276
277 alloc_size = sizeof (GFC_INTEGER_4) * retarray->dim[rank-1].stride
278 * extent[rank-1];
279
280 retarray->offset = 0;
281 retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
282
283 if (alloc_size == 0)
284 {
285 /* Make sure we have a zero-sized array. */
286 retarray->dim[0].lbound = 0;
287 retarray->dim[0].ubound = -1;
288 return;
289 }
290 else
291 retarray->data = internal_malloc_size (alloc_size);
292
293 }
294 else
295 {
296 if (rank != GFC_DESCRIPTOR_RANK (retarray))
297 runtime_error ("rank of return array incorrect");
298 }
299
300 for (n = 0; n < rank; n++)
301 {
302 count[n] = 0;
303 dstride[n] = retarray->dim[n].stride;
304 if (extent[n] <= 0)
305 return;
306 }
307
308 dest = retarray->data;
309 base = array->data;
310
311 while (base)
312 {
313 const GFC_INTEGER_4 * restrict src;
314 const GFC_LOGICAL_1 * restrict msrc;
315 GFC_INTEGER_4 result;
316 src = base;
317 msrc = mbase;
318 {
319
320 GFC_INTEGER_4 maxval;
321 maxval = (-GFC_INTEGER_4_HUGE-1);
322 result = 0;
323 if (len <= 0)
324 *dest = 0;
325 else
326 {
327 for (n = 0; n < len; n++, src += delta, msrc += mdelta)
328 {
329
330 if (*msrc && (*src > maxval || !result))
331 {
332 maxval = *src;
333 result = (GFC_INTEGER_4)n + 1;
334 }
335 }
336 *dest = result;
337 }
338 }
339 /* Advance to the next element. */
340 count[0]++;
341 base += sstride[0];
342 mbase += mstride[0];
343 dest += dstride[0];
344 n = 0;
345 while (count[n] == extent[n])
346 {
347 /* When we get to the end of a dimension, reset it and increment
348 the next dimension. */
349 count[n] = 0;
350 /* We could precalculate these products, but this is a less
351 frequently used path so probably not worth it. */
352 base -= sstride[n] * extent[n];
353 mbase -= mstride[n] * extent[n];
354 dest -= dstride[n] * extent[n];
355 n++;
356 if (n == rank)
357 {
358 /* Break out of the look. */
359 base = NULL;
360 break;
361 }
362 else
363 {
364 count[n]++;
365 base += sstride[n];
366 mbase += mstride[n];
367 dest += dstride[n];
368 }
369 }
370 }
371 }
372
373
374 extern void smaxloc1_4_i4 (gfc_array_i4 * const restrict,
375 gfc_array_i4 * const restrict, const index_type * const restrict,
376 GFC_LOGICAL_4 *);
377 export_proto(smaxloc1_4_i4);
378
379 void
380 smaxloc1_4_i4 (gfc_array_i4 * const restrict retarray,
381 gfc_array_i4 * const restrict array,
382 const index_type * const restrict pdim,
383 GFC_LOGICAL_4 * mask)
384 {
385 index_type rank;
386 index_type n;
387 index_type dstride;
388 GFC_INTEGER_4 *dest;
389
390 if (*mask)
391 {
392 maxloc1_4_i4 (retarray, array, pdim);
393 return;
394 }
395 rank = GFC_DESCRIPTOR_RANK (array);
396 if (rank <= 0)
397 runtime_error ("Rank of array needs to be > 0");
398
399 if (retarray->data == NULL)
400 {
401 retarray->dim[0].lbound = 0;
402 retarray->dim[0].ubound = rank-1;
403 retarray->dim[0].stride = 1;
404 retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
405 retarray->offset = 0;
406 retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_4) * rank);
407 }
408 else
409 {
410 if (GFC_DESCRIPTOR_RANK (retarray) != 1)
411 runtime_error ("rank of return array does not equal 1");
412
413 if (retarray->dim[0].ubound + 1 - retarray->dim[0].lbound != rank)
414 runtime_error ("dimension of return array incorrect");
415 }
416
417 dstride = retarray->dim[0].stride;
418 dest = retarray->data;
419
420 for (n = 0; n < rank; n++)
421 dest[n * dstride] = 0 ;
422 }
423
424 #endif