]> git.ipfire.org Git - thirdparty/gcc.git/blob - libgfortran/generated/maxloc1_4_i4.c
All files: Update FSF address.
[thirdparty/gcc.git] / libgfortran / generated / maxloc1_4_i4.c
1 /* Implementation of the MAXLOC intrinsic
2 Copyright 2002 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
4
5 This file is part of the GNU Fortran 95 runtime library (libgfortran).
6
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public
9 License as published by the Free Software Foundation; either
10 version 2 of the License, or (at your option) any later version.
11
12 In addition to the permissions in the GNU General Public License, the
13 Free Software Foundation gives you unlimited permission to link the
14 compiled version of this file into combinations with other programs,
15 and to distribute those combinations without any restriction coming
16 from the use of this file. (The General Public License restrictions
17 do apply in other respects; for example, they cover modification of
18 the file, and distribution when not linked into a combine
19 executable.)
20
21 Libgfortran is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
25
26 You should have received a copy of the GNU General Public
27 License along with libgfortran; see the file COPYING. If not,
28 write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
29 Boston, MA 02110-1301, USA. */
30
31 #include "config.h"
32 #include <stdlib.h>
33 #include <assert.h>
34 #include <float.h>
35 #include <limits.h>
36 #include "libgfortran.h"
37
38
39 extern void maxloc1_4_i4 (gfc_array_i4 *, gfc_array_i4 *, index_type *);
40 export_proto(maxloc1_4_i4);
41
42 void
43 maxloc1_4_i4 (gfc_array_i4 *retarray, gfc_array_i4 *array, index_type *pdim)
44 {
45 index_type count[GFC_MAX_DIMENSIONS];
46 index_type extent[GFC_MAX_DIMENSIONS];
47 index_type sstride[GFC_MAX_DIMENSIONS];
48 index_type dstride[GFC_MAX_DIMENSIONS];
49 GFC_INTEGER_4 *base;
50 GFC_INTEGER_4 *dest;
51 index_type rank;
52 index_type n;
53 index_type len;
54 index_type delta;
55 index_type dim;
56
57 /* Make dim zero based to avoid confusion. */
58 dim = (*pdim) - 1;
59 rank = GFC_DESCRIPTOR_RANK (array) - 1;
60
61 /* TODO: It should be a front end job to correctly set the strides. */
62
63 if (array->dim[0].stride == 0)
64 array->dim[0].stride = 1;
65
66 len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
67 delta = array->dim[dim].stride;
68
69 for (n = 0; n < dim; n++)
70 {
71 sstride[n] = array->dim[n].stride;
72 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
73 }
74 for (n = dim; n < rank; n++)
75 {
76 sstride[n] = array->dim[n + 1].stride;
77 extent[n] =
78 array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
79 }
80
81 if (retarray->data == NULL)
82 {
83 for (n = 0; n < rank; n++)
84 {
85 retarray->dim[n].lbound = 0;
86 retarray->dim[n].ubound = extent[n]-1;
87 if (n == 0)
88 retarray->dim[n].stride = 1;
89 else
90 retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
91 }
92
93 retarray->data
94 = internal_malloc_size (sizeof (GFC_INTEGER_4)
95 * retarray->dim[rank-1].stride
96 * extent[rank-1]);
97 retarray->offset = 0;
98 retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
99 }
100 else
101 {
102 if (retarray->dim[0].stride == 0)
103 retarray->dim[0].stride = 1;
104
105 if (rank != GFC_DESCRIPTOR_RANK (retarray))
106 runtime_error ("rank of return array incorrect");
107 }
108
109 for (n = 0; n < rank; n++)
110 {
111 count[n] = 0;
112 dstride[n] = retarray->dim[n].stride;
113 if (extent[n] <= 0)
114 len = 0;
115 }
116
117 base = array->data;
118 dest = retarray->data;
119
120 while (base)
121 {
122 GFC_INTEGER_4 *src;
123 GFC_INTEGER_4 result;
124 src = base;
125 {
126
127 GFC_INTEGER_4 maxval;
128 maxval = -GFC_INTEGER_4_HUGE;
129 result = 1;
130 if (len <= 0)
131 *dest = 0;
132 else
133 {
134 for (n = 0; n < len; n++, src += delta)
135 {
136
137 if (*src > maxval)
138 {
139 maxval = *src;
140 result = (GFC_INTEGER_4)n + 1;
141 }
142 }
143 *dest = result;
144 }
145 }
146 /* Advance to the next element. */
147 count[0]++;
148 base += sstride[0];
149 dest += dstride[0];
150 n = 0;
151 while (count[n] == extent[n])
152 {
153 /* When we get to the end of a dimension, reset it and increment
154 the next dimension. */
155 count[n] = 0;
156 /* We could precalculate these products, but this is a less
157 frequently used path so proabably not worth it. */
158 base -= sstride[n] * extent[n];
159 dest -= dstride[n] * extent[n];
160 n++;
161 if (n == rank)
162 {
163 /* Break out of the look. */
164 base = NULL;
165 break;
166 }
167 else
168 {
169 count[n]++;
170 base += sstride[n];
171 dest += dstride[n];
172 }
173 }
174 }
175 }
176
177
178 extern void mmaxloc1_4_i4 (gfc_array_i4 *, gfc_array_i4 *, index_type *,
179 gfc_array_l4 *);
180 export_proto(mmaxloc1_4_i4);
181
182 void
183 mmaxloc1_4_i4 (gfc_array_i4 * retarray, gfc_array_i4 * array,
184 index_type *pdim, gfc_array_l4 * mask)
185 {
186 index_type count[GFC_MAX_DIMENSIONS];
187 index_type extent[GFC_MAX_DIMENSIONS];
188 index_type sstride[GFC_MAX_DIMENSIONS];
189 index_type dstride[GFC_MAX_DIMENSIONS];
190 index_type mstride[GFC_MAX_DIMENSIONS];
191 GFC_INTEGER_4 *dest;
192 GFC_INTEGER_4 *base;
193 GFC_LOGICAL_4 *mbase;
194 int rank;
195 int dim;
196 index_type n;
197 index_type len;
198 index_type delta;
199 index_type mdelta;
200
201 dim = (*pdim) - 1;
202 rank = GFC_DESCRIPTOR_RANK (array) - 1;
203
204 /* TODO: It should be a front end job to correctly set the strides. */
205
206 if (array->dim[0].stride == 0)
207 array->dim[0].stride = 1;
208
209 if (mask->dim[0].stride == 0)
210 mask->dim[0].stride = 1;
211
212 len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
213 if (len <= 0)
214 return;
215 delta = array->dim[dim].stride;
216 mdelta = mask->dim[dim].stride;
217
218 for (n = 0; n < dim; n++)
219 {
220 sstride[n] = array->dim[n].stride;
221 mstride[n] = mask->dim[n].stride;
222 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
223 }
224 for (n = dim; n < rank; n++)
225 {
226 sstride[n] = array->dim[n + 1].stride;
227 mstride[n] = mask->dim[n + 1].stride;
228 extent[n] =
229 array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
230 }
231
232 if (retarray->data == NULL)
233 {
234 for (n = 0; n < rank; n++)
235 {
236 retarray->dim[n].lbound = 0;
237 retarray->dim[n].ubound = extent[n]-1;
238 if (n == 0)
239 retarray->dim[n].stride = 1;
240 else
241 retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
242 }
243
244 retarray->data
245 = internal_malloc_size (sizeof (GFC_INTEGER_4)
246 * retarray->dim[rank-1].stride
247 * extent[rank-1]);
248 retarray->offset = 0;
249 retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
250 }
251 else
252 {
253 if (retarray->dim[0].stride == 0)
254 retarray->dim[0].stride = 1;
255
256 if (rank != GFC_DESCRIPTOR_RANK (retarray))
257 runtime_error ("rank of return array incorrect");
258 }
259
260 for (n = 0; n < rank; n++)
261 {
262 count[n] = 0;
263 dstride[n] = retarray->dim[n].stride;
264 if (extent[n] <= 0)
265 return;
266 }
267
268 dest = retarray->data;
269 base = array->data;
270 mbase = mask->data;
271
272 if (GFC_DESCRIPTOR_SIZE (mask) != 4)
273 {
274 /* This allows the same loop to be used for all logical types. */
275 assert (GFC_DESCRIPTOR_SIZE (mask) == 8);
276 for (n = 0; n < rank; n++)
277 mstride[n] <<= 1;
278 mdelta <<= 1;
279 mbase = (GFOR_POINTER_L8_TO_L4 (mbase));
280 }
281
282 while (base)
283 {
284 GFC_INTEGER_4 *src;
285 GFC_LOGICAL_4 *msrc;
286 GFC_INTEGER_4 result;
287 src = base;
288 msrc = mbase;
289 {
290
291 GFC_INTEGER_4 maxval;
292 maxval = -GFC_INTEGER_4_HUGE;
293 result = 1;
294 if (len <= 0)
295 *dest = 0;
296 else
297 {
298 for (n = 0; n < len; n++, src += delta, msrc += mdelta)
299 {
300
301 if (*msrc && *src > maxval)
302 {
303 maxval = *src;
304 result = (GFC_INTEGER_4)n + 1;
305 }
306 }
307 *dest = result;
308 }
309 }
310 /* Advance to the next element. */
311 count[0]++;
312 base += sstride[0];
313 mbase += mstride[0];
314 dest += dstride[0];
315 n = 0;
316 while (count[n] == extent[n])
317 {
318 /* When we get to the end of a dimension, reset it and increment
319 the next dimension. */
320 count[n] = 0;
321 /* We could precalculate these products, but this is a less
322 frequently used path so proabably not worth it. */
323 base -= sstride[n] * extent[n];
324 mbase -= mstride[n] * extent[n];
325 dest -= dstride[n] * extent[n];
326 n++;
327 if (n == rank)
328 {
329 /* Break out of the look. */
330 base = NULL;
331 break;
332 }
333 else
334 {
335 count[n]++;
336 base += sstride[n];
337 mbase += mstride[n];
338 dest += dstride[n];
339 }
340 }
341 }
342 }
343