]> git.ipfire.org Git - thirdparty/gcc.git/blob - libgfortran/generated/maxloc1_8_i8.c
re PR libfortran/19308 (I/O library should support more real and integer kinds)
[thirdparty/gcc.git] / libgfortran / generated / maxloc1_8_i8.c
1 /* Implementation of the MAXLOC intrinsic
2 Copyright 2002 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
4
5 This file is part of the GNU Fortran 95 runtime library (libgfortran).
6
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public
9 License as published by the Free Software Foundation; either
10 version 2 of the License, or (at your option) any later version.
11
12 In addition to the permissions in the GNU General Public License, the
13 Free Software Foundation gives you unlimited permission to link the
14 compiled version of this file into combinations with other programs,
15 and to distribute those combinations without any restriction coming
16 from the use of this file. (The General Public License restrictions
17 do apply in other respects; for example, they cover modification of
18 the file, and distribution when not linked into a combine
19 executable.)
20
21 Libgfortran is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
25
26 You should have received a copy of the GNU General Public
27 License along with libgfortran; see the file COPYING. If not,
28 write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
29 Boston, MA 02110-1301, USA. */
30
31 #include "config.h"
32 #include <stdlib.h>
33 #include <assert.h>
34 #include <float.h>
35 #include <limits.h>
36 #include "libgfortran.h"
37
38
39 #if defined (HAVE_GFC_INTEGER_8) && defined (HAVE_GFC_INTEGER_8)
40
41
42 extern void maxloc1_8_i8 (gfc_array_i8 *, gfc_array_i8 *, index_type *);
43 export_proto(maxloc1_8_i8);
44
45 void
46 maxloc1_8_i8 (gfc_array_i8 *retarray, gfc_array_i8 *array, index_type *pdim)
47 {
48 index_type count[GFC_MAX_DIMENSIONS];
49 index_type extent[GFC_MAX_DIMENSIONS];
50 index_type sstride[GFC_MAX_DIMENSIONS];
51 index_type dstride[GFC_MAX_DIMENSIONS];
52 GFC_INTEGER_8 *base;
53 GFC_INTEGER_8 *dest;
54 index_type rank;
55 index_type n;
56 index_type len;
57 index_type delta;
58 index_type dim;
59
60 /* Make dim zero based to avoid confusion. */
61 dim = (*pdim) - 1;
62 rank = GFC_DESCRIPTOR_RANK (array) - 1;
63
64 /* TODO: It should be a front end job to correctly set the strides. */
65
66 if (array->dim[0].stride == 0)
67 array->dim[0].stride = 1;
68
69 len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
70 delta = array->dim[dim].stride;
71
72 for (n = 0; n < dim; n++)
73 {
74 sstride[n] = array->dim[n].stride;
75 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
76 }
77 for (n = dim; n < rank; n++)
78 {
79 sstride[n] = array->dim[n + 1].stride;
80 extent[n] =
81 array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
82 }
83
84 if (retarray->data == NULL)
85 {
86 for (n = 0; n < rank; n++)
87 {
88 retarray->dim[n].lbound = 0;
89 retarray->dim[n].ubound = extent[n]-1;
90 if (n == 0)
91 retarray->dim[n].stride = 1;
92 else
93 retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
94 }
95
96 retarray->data
97 = internal_malloc_size (sizeof (GFC_INTEGER_8)
98 * retarray->dim[rank-1].stride
99 * extent[rank-1]);
100 retarray->offset = 0;
101 retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
102 }
103 else
104 {
105 if (retarray->dim[0].stride == 0)
106 retarray->dim[0].stride = 1;
107
108 if (rank != GFC_DESCRIPTOR_RANK (retarray))
109 runtime_error ("rank of return array incorrect");
110 }
111
112 for (n = 0; n < rank; n++)
113 {
114 count[n] = 0;
115 dstride[n] = retarray->dim[n].stride;
116 if (extent[n] <= 0)
117 len = 0;
118 }
119
120 base = array->data;
121 dest = retarray->data;
122
123 while (base)
124 {
125 GFC_INTEGER_8 *src;
126 GFC_INTEGER_8 result;
127 src = base;
128 {
129
130 GFC_INTEGER_8 maxval;
131 maxval = -GFC_INTEGER_8_HUGE;
132 result = 1;
133 if (len <= 0)
134 *dest = 0;
135 else
136 {
137 for (n = 0; n < len; n++, src += delta)
138 {
139
140 if (*src > maxval)
141 {
142 maxval = *src;
143 result = (GFC_INTEGER_8)n + 1;
144 }
145 }
146 *dest = result;
147 }
148 }
149 /* Advance to the next element. */
150 count[0]++;
151 base += sstride[0];
152 dest += dstride[0];
153 n = 0;
154 while (count[n] == extent[n])
155 {
156 /* When we get to the end of a dimension, reset it and increment
157 the next dimension. */
158 count[n] = 0;
159 /* We could precalculate these products, but this is a less
160 frequently used path so proabably not worth it. */
161 base -= sstride[n] * extent[n];
162 dest -= dstride[n] * extent[n];
163 n++;
164 if (n == rank)
165 {
166 /* Break out of the look. */
167 base = NULL;
168 break;
169 }
170 else
171 {
172 count[n]++;
173 base += sstride[n];
174 dest += dstride[n];
175 }
176 }
177 }
178 }
179
180
181 extern void mmaxloc1_8_i8 (gfc_array_i8 *, gfc_array_i8 *, index_type *,
182 gfc_array_l4 *);
183 export_proto(mmaxloc1_8_i8);
184
185 void
186 mmaxloc1_8_i8 (gfc_array_i8 * retarray, gfc_array_i8 * array,
187 index_type *pdim, gfc_array_l4 * mask)
188 {
189 index_type count[GFC_MAX_DIMENSIONS];
190 index_type extent[GFC_MAX_DIMENSIONS];
191 index_type sstride[GFC_MAX_DIMENSIONS];
192 index_type dstride[GFC_MAX_DIMENSIONS];
193 index_type mstride[GFC_MAX_DIMENSIONS];
194 GFC_INTEGER_8 *dest;
195 GFC_INTEGER_8 *base;
196 GFC_LOGICAL_4 *mbase;
197 int rank;
198 int dim;
199 index_type n;
200 index_type len;
201 index_type delta;
202 index_type mdelta;
203
204 dim = (*pdim) - 1;
205 rank = GFC_DESCRIPTOR_RANK (array) - 1;
206
207 /* TODO: It should be a front end job to correctly set the strides. */
208
209 if (array->dim[0].stride == 0)
210 array->dim[0].stride = 1;
211
212 if (mask->dim[0].stride == 0)
213 mask->dim[0].stride = 1;
214
215 len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
216 if (len <= 0)
217 return;
218 delta = array->dim[dim].stride;
219 mdelta = mask->dim[dim].stride;
220
221 for (n = 0; n < dim; n++)
222 {
223 sstride[n] = array->dim[n].stride;
224 mstride[n] = mask->dim[n].stride;
225 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
226 }
227 for (n = dim; n < rank; n++)
228 {
229 sstride[n] = array->dim[n + 1].stride;
230 mstride[n] = mask->dim[n + 1].stride;
231 extent[n] =
232 array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
233 }
234
235 if (retarray->data == NULL)
236 {
237 for (n = 0; n < rank; n++)
238 {
239 retarray->dim[n].lbound = 0;
240 retarray->dim[n].ubound = extent[n]-1;
241 if (n == 0)
242 retarray->dim[n].stride = 1;
243 else
244 retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
245 }
246
247 retarray->data
248 = internal_malloc_size (sizeof (GFC_INTEGER_8)
249 * retarray->dim[rank-1].stride
250 * extent[rank-1]);
251 retarray->offset = 0;
252 retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
253 }
254 else
255 {
256 if (retarray->dim[0].stride == 0)
257 retarray->dim[0].stride = 1;
258
259 if (rank != GFC_DESCRIPTOR_RANK (retarray))
260 runtime_error ("rank of return array incorrect");
261 }
262
263 for (n = 0; n < rank; n++)
264 {
265 count[n] = 0;
266 dstride[n] = retarray->dim[n].stride;
267 if (extent[n] <= 0)
268 return;
269 }
270
271 dest = retarray->data;
272 base = array->data;
273 mbase = mask->data;
274
275 if (GFC_DESCRIPTOR_SIZE (mask) != 4)
276 {
277 /* This allows the same loop to be used for all logical types. */
278 assert (GFC_DESCRIPTOR_SIZE (mask) == 8);
279 for (n = 0; n < rank; n++)
280 mstride[n] <<= 1;
281 mdelta <<= 1;
282 mbase = (GFOR_POINTER_L8_TO_L4 (mbase));
283 }
284
285 while (base)
286 {
287 GFC_INTEGER_8 *src;
288 GFC_LOGICAL_4 *msrc;
289 GFC_INTEGER_8 result;
290 src = base;
291 msrc = mbase;
292 {
293
294 GFC_INTEGER_8 maxval;
295 maxval = -GFC_INTEGER_8_HUGE;
296 result = 1;
297 if (len <= 0)
298 *dest = 0;
299 else
300 {
301 for (n = 0; n < len; n++, src += delta, msrc += mdelta)
302 {
303
304 if (*msrc && *src > maxval)
305 {
306 maxval = *src;
307 result = (GFC_INTEGER_8)n + 1;
308 }
309 }
310 *dest = result;
311 }
312 }
313 /* Advance to the next element. */
314 count[0]++;
315 base += sstride[0];
316 mbase += mstride[0];
317 dest += dstride[0];
318 n = 0;
319 while (count[n] == extent[n])
320 {
321 /* When we get to the end of a dimension, reset it and increment
322 the next dimension. */
323 count[n] = 0;
324 /* We could precalculate these products, but this is a less
325 frequently used path so proabably not worth it. */
326 base -= sstride[n] * extent[n];
327 mbase -= mstride[n] * extent[n];
328 dest -= dstride[n] * extent[n];
329 n++;
330 if (n == rank)
331 {
332 /* Break out of the look. */
333 base = NULL;
334 break;
335 }
336 else
337 {
338 count[n]++;
339 base += sstride[n];
340 mbase += mstride[n];
341 dest += dstride[n];
342 }
343 }
344 }
345 }
346
347 #endif