]> git.ipfire.org Git - thirdparty/gcc.git/blob - libgfortran/generated/maxval_i4.c
iresolve.c (gfc_resolve_all, [...]): Use PREFIX.
[thirdparty/gcc.git] / libgfortran / generated / maxval_i4.c
1 /* Implementation of the MAXVAL intrinsic
2 Copyright 2002 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
4
5 This file is part of the GNU Fortran 95 runtime library (libgfor).
6
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Lesser General Public
9 License as published by the Free Software Foundation; either
10 version 2.1 of the License, or (at your option) any later version.
11
12 Libgfortran is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU Lesser General Public License for more details.
16
17 You should have received a copy of the GNU Lesser General Public
18 License along with libgfor; see the file COPYING.LIB. If not,
19 write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "config.h"
23 #include <stdlib.h>
24 #include <assert.h>
25 #include <float.h>
26 #include "libgfortran.h"
27
28
29 extern void maxval_i4 (gfc_array_i4 *, gfc_array_i4 *, index_type *);
30 export_proto(maxval_i4);
31
32 void
33 maxval_i4 (gfc_array_i4 *retarray, gfc_array_i4 *array, index_type *pdim)
34 {
35 index_type count[GFC_MAX_DIMENSIONS - 1];
36 index_type extent[GFC_MAX_DIMENSIONS - 1];
37 index_type sstride[GFC_MAX_DIMENSIONS - 1];
38 index_type dstride[GFC_MAX_DIMENSIONS - 1];
39 GFC_INTEGER_4 *base;
40 GFC_INTEGER_4 *dest;
41 index_type rank;
42 index_type n;
43 index_type len;
44 index_type delta;
45 index_type dim;
46
47 /* Make dim zero based to avoid confusion. */
48 dim = (*pdim) - 1;
49 rank = GFC_DESCRIPTOR_RANK (array) - 1;
50 assert (rank == GFC_DESCRIPTOR_RANK (retarray));
51 if (array->dim[0].stride == 0)
52 array->dim[0].stride = 1;
53 if (retarray->dim[0].stride == 0)
54 retarray->dim[0].stride = 1;
55
56 len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
57 delta = array->dim[dim].stride;
58
59 for (n = 0; n < dim; n++)
60 {
61 sstride[n] = array->dim[n].stride;
62 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
63 }
64 for (n = dim; n < rank; n++)
65 {
66 sstride[n] = array->dim[n + 1].stride;
67 extent[n] =
68 array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
69 }
70
71 if (retarray->data == NULL)
72 {
73 for (n = 0; n < rank; n++)
74 {
75 retarray->dim[n].lbound = 0;
76 retarray->dim[n].ubound = extent[n]-1;
77 if (n == 0)
78 retarray->dim[n].stride = 1;
79 else
80 retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
81 }
82
83 retarray->data
84 = internal_malloc_size (sizeof (GFC_INTEGER_4)
85 * retarray->dim[rank-1].stride
86 * extent[rank-1]);
87 retarray->base = 0;
88 }
89
90 for (n = 0; n < rank; n++)
91 {
92 count[n] = 0;
93 dstride[n] = retarray->dim[n].stride;
94 if (extent[n] <= 0)
95 len = 0;
96 }
97
98 base = array->data;
99 dest = retarray->data;
100
101 while (base)
102 {
103 GFC_INTEGER_4 *src;
104 GFC_INTEGER_4 result;
105 src = base;
106 {
107
108 result = -GFC_INTEGER_4_HUGE;
109 if (len <= 0)
110 *dest = -GFC_INTEGER_4_HUGE;
111 else
112 {
113 for (n = 0; n < len; n++, src += delta)
114 {
115
116 if (*src > result)
117 result = *src;
118 }
119 *dest = result;
120 }
121 }
122 /* Advance to the next element. */
123 count[0]++;
124 base += sstride[0];
125 dest += dstride[0];
126 n = 0;
127 while (count[n] == extent[n])
128 {
129 /* When we get to the end of a dimension, reset it and increment
130 the next dimension. */
131 count[n] = 0;
132 /* We could precalculate these products, but this is a less
133 frequently used path so proabably not worth it. */
134 base -= sstride[n] * extent[n];
135 dest -= dstride[n] * extent[n];
136 n++;
137 if (n == rank)
138 {
139 /* Break out of the look. */
140 base = NULL;
141 break;
142 }
143 else
144 {
145 count[n]++;
146 base += sstride[n];
147 dest += dstride[n];
148 }
149 }
150 }
151 }
152
153
154 extern void mmaxval_i4 (gfc_array_i4 *, gfc_array_i4 *, index_type *,
155 gfc_array_l4 *);
156 export_proto(mmaxval_i4);
157
158 void
159 mmaxval_i4 (gfc_array_i4 * retarray, gfc_array_i4 * array,
160 index_type *pdim, gfc_array_l4 * mask)
161 {
162 index_type count[GFC_MAX_DIMENSIONS - 1];
163 index_type extent[GFC_MAX_DIMENSIONS - 1];
164 index_type sstride[GFC_MAX_DIMENSIONS - 1];
165 index_type dstride[GFC_MAX_DIMENSIONS - 1];
166 index_type mstride[GFC_MAX_DIMENSIONS - 1];
167 GFC_INTEGER_4 *dest;
168 GFC_INTEGER_4 *base;
169 GFC_LOGICAL_4 *mbase;
170 int rank;
171 int dim;
172 index_type n;
173 index_type len;
174 index_type delta;
175 index_type mdelta;
176
177 dim = (*pdim) - 1;
178 rank = GFC_DESCRIPTOR_RANK (array) - 1;
179 assert (rank == GFC_DESCRIPTOR_RANK (retarray));
180 if (array->dim[0].stride == 0)
181 array->dim[0].stride = 1;
182 if (retarray->dim[0].stride == 0)
183 retarray->dim[0].stride = 1;
184
185 len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
186 if (len <= 0)
187 return;
188 delta = array->dim[dim].stride;
189 mdelta = mask->dim[dim].stride;
190
191 for (n = 0; n < dim; n++)
192 {
193 sstride[n] = array->dim[n].stride;
194 mstride[n] = mask->dim[n].stride;
195 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
196 }
197 for (n = dim; n < rank; n++)
198 {
199 sstride[n] = array->dim[n + 1].stride;
200 mstride[n] = mask->dim[n + 1].stride;
201 extent[n] =
202 array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
203 }
204
205 for (n = 0; n < rank; n++)
206 {
207 count[n] = 0;
208 dstride[n] = retarray->dim[n].stride;
209 if (extent[n] <= 0)
210 return;
211 }
212
213 dest = retarray->data;
214 base = array->data;
215 mbase = mask->data;
216
217 if (GFC_DESCRIPTOR_SIZE (mask) != 4)
218 {
219 /* This allows the same loop to be used for all logical types. */
220 assert (GFC_DESCRIPTOR_SIZE (mask) == 8);
221 for (n = 0; n < rank; n++)
222 mstride[n] <<= 1;
223 mdelta <<= 1;
224 mbase = (GFOR_POINTER_L8_TO_L4 (mbase));
225 }
226
227 while (base)
228 {
229 GFC_INTEGER_4 *src;
230 GFC_LOGICAL_4 *msrc;
231 GFC_INTEGER_4 result;
232 src = base;
233 msrc = mbase;
234 {
235
236 result = -GFC_INTEGER_4_HUGE;
237 if (len <= 0)
238 *dest = -GFC_INTEGER_4_HUGE;
239 else
240 {
241 for (n = 0; n < len; n++, src += delta, msrc += mdelta)
242 {
243
244 if (*msrc && *src > result)
245 result = *src;
246 }
247 *dest = result;
248 }
249 }
250 /* Advance to the next element. */
251 count[0]++;
252 base += sstride[0];
253 mbase += mstride[0];
254 dest += dstride[0];
255 n = 0;
256 while (count[n] == extent[n])
257 {
258 /* When we get to the end of a dimension, reset it and increment
259 the next dimension. */
260 count[n] = 0;
261 /* We could precalculate these products, but this is a less
262 frequently used path so proabably not worth it. */
263 base -= sstride[n] * extent[n];
264 mbase -= mstride[n] * extent[n];
265 dest -= dstride[n] * extent[n];
266 n++;
267 if (n == rank)
268 {
269 /* Break out of the look. */
270 base = NULL;
271 break;
272 }
273 else
274 {
275 count[n]++;
276 base += sstride[n];
277 mbase += mstride[n];
278 dest += dstride[n];
279 }
280 }
281 }
282 }
283