]> git.ipfire.org Git - thirdparty/gcc.git/blob - libgfortran/generated/maxval_i4.c
* libgfortran.h (array_t, size0) New declarations.
[thirdparty/gcc.git] / libgfortran / generated / maxval_i4.c
1 /* Implementation of the MAXVAL intrinsic
2 Copyright 2002 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
4
5 This file is part of the GNU Fortran 95 runtime library (libgfor).
6
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Lesser General Public
9 License as published by the Free Software Foundation; either
10 version 2.1 of the License, or (at your option) any later version.
11
12 Libgfortran is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU Lesser General Public License for more details.
16
17 You should have received a copy of the GNU Lesser General Public
18 License along with libgfor; see the file COPYING.LIB. If not,
19 write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "config.h"
23 #include <stdlib.h>
24 #include <assert.h>
25 #include <float.h>
26 #include "libgfortran.h"
27
28 void
29 __maxval_i4 (gfc_array_i4 * retarray, gfc_array_i4 *array, index_type *pdim)
30 {
31 index_type count[GFC_MAX_DIMENSIONS - 1];
32 index_type extent[GFC_MAX_DIMENSIONS - 1];
33 index_type sstride[GFC_MAX_DIMENSIONS - 1];
34 index_type dstride[GFC_MAX_DIMENSIONS - 1];
35 GFC_INTEGER_4 *base;
36 GFC_INTEGER_4 *dest;
37 index_type rank;
38 index_type n;
39 index_type len;
40 index_type delta;
41 index_type dim;
42
43 /* Make dim zero based to avoid confusion. */
44 dim = (*pdim) - 1;
45 rank = GFC_DESCRIPTOR_RANK (array) - 1;
46 assert (rank == GFC_DESCRIPTOR_RANK (retarray));
47 if (array->dim[0].stride == 0)
48 array->dim[0].stride = 1;
49 if (retarray->dim[0].stride == 0)
50 retarray->dim[0].stride = 1;
51
52 len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
53 delta = array->dim[dim].stride;
54
55 for (n = 0; n < dim; n++)
56 {
57 sstride[n] = array->dim[n].stride;
58 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
59 }
60 for (n = dim; n < rank; n++)
61 {
62 sstride[n] = array->dim[n + 1].stride;
63 extent[n] =
64 array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
65 }
66
67 if (retarray->data == NULL)
68 {
69 for (n = 0; n < rank; n++)
70 {
71 retarray->dim[n].lbound = 0;
72 retarray->dim[n].ubound = extent[n]-1;
73 if (n == 0)
74 retarray->dim[n].stride = 1;
75 else
76 retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
77 }
78
79 retarray->data = internal_malloc (sizeof (GFC_INTEGER_4) *
80 (retarray->dim[rank-1].stride * extent[rank-1]));
81 retarray->base = 0;
82 }
83
84 for (n = 0; n < rank; n++)
85 {
86 count[n] = 0;
87 dstride[n] = retarray->dim[n].stride;
88 if (extent[n] <= 0)
89 len = 0;
90 }
91
92 base = array->data;
93 dest = retarray->data;
94
95 while (base)
96 {
97 GFC_INTEGER_4 *src;
98 GFC_INTEGER_4 result;
99 src = base;
100 {
101
102 result = -GFC_INTEGER_4_HUGE;
103 if (len <= 0)
104 *dest = -GFC_INTEGER_4_HUGE;
105 else
106 {
107 for (n = 0; n < len; n++, src += delta)
108 {
109
110 if (*src > result)
111 result = *src;
112 }
113 *dest = result;
114 }
115 }
116 /* Advance to the next element. */
117 count[0]++;
118 base += sstride[0];
119 dest += dstride[0];
120 n = 0;
121 while (count[n] == extent[n])
122 {
123 /* When we get to the end of a dimension, reset it and increment
124 the next dimension. */
125 count[n] = 0;
126 /* We could precalculate these products, but this is a less
127 frequently used path so proabably not worth it. */
128 base -= sstride[n] * extent[n];
129 dest -= dstride[n] * extent[n];
130 n++;
131 if (n == rank)
132 {
133 /* Break out of the look. */
134 base = NULL;
135 break;
136 }
137 else
138 {
139 count[n]++;
140 base += sstride[n];
141 dest += dstride[n];
142 }
143 }
144 }
145 }
146
147 void
148 __mmaxval_i4 (gfc_array_i4 * retarray, gfc_array_i4 * array, index_type *pdim, gfc_array_l4 * mask)
149 {
150 index_type count[GFC_MAX_DIMENSIONS - 1];
151 index_type extent[GFC_MAX_DIMENSIONS - 1];
152 index_type sstride[GFC_MAX_DIMENSIONS - 1];
153 index_type dstride[GFC_MAX_DIMENSIONS - 1];
154 index_type mstride[GFC_MAX_DIMENSIONS - 1];
155 GFC_INTEGER_4 *dest;
156 GFC_INTEGER_4 *base;
157 GFC_LOGICAL_4 *mbase;
158 int rank;
159 int dim;
160 index_type n;
161 index_type len;
162 index_type delta;
163 index_type mdelta;
164
165 dim = (*pdim) - 1;
166 rank = GFC_DESCRIPTOR_RANK (array) - 1;
167 assert (rank == GFC_DESCRIPTOR_RANK (retarray));
168 if (array->dim[0].stride == 0)
169 array->dim[0].stride = 1;
170 if (retarray->dim[0].stride == 0)
171 retarray->dim[0].stride = 1;
172
173 len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
174 if (len <= 0)
175 return;
176 delta = array->dim[dim].stride;
177 mdelta = mask->dim[dim].stride;
178
179 for (n = 0; n < dim; n++)
180 {
181 sstride[n] = array->dim[n].stride;
182 mstride[n] = mask->dim[n].stride;
183 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
184 }
185 for (n = dim; n < rank; n++)
186 {
187 sstride[n] = array->dim[n + 1].stride;
188 mstride[n] = mask->dim[n + 1].stride;
189 extent[n] =
190 array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
191 }
192
193 for (n = 0; n < rank; n++)
194 {
195 count[n] = 0;
196 dstride[n] = retarray->dim[n].stride;
197 if (extent[n] <= 0)
198 return;
199 }
200
201 dest = retarray->data;
202 base = array->data;
203 mbase = mask->data;
204
205 if (GFC_DESCRIPTOR_SIZE (mask) != 4)
206 {
207 /* This allows the same loop to be used for all logical types. */
208 assert (GFC_DESCRIPTOR_SIZE (mask) == 8);
209 for (n = 0; n < rank; n++)
210 mstride[n] <<= 1;
211 mdelta <<= 1;
212 mbase = (GFOR_POINTER_L8_TO_L4 (mbase));
213 }
214
215 while (base)
216 {
217 GFC_INTEGER_4 *src;
218 GFC_LOGICAL_4 *msrc;
219 GFC_INTEGER_4 result;
220 src = base;
221 msrc = mbase;
222 {
223
224 result = -GFC_INTEGER_4_HUGE;
225 if (len <= 0)
226 *dest = -GFC_INTEGER_4_HUGE;
227 else
228 {
229 for (n = 0; n < len; n++, src += delta, msrc += mdelta)
230 {
231
232 if (*msrc && *src > result)
233 result = *src;
234 }
235 *dest = result;
236 }
237 }
238 /* Advance to the next element. */
239 count[0]++;
240 base += sstride[0];
241 mbase += mstride[0];
242 dest += dstride[0];
243 n = 0;
244 while (count[n] == extent[n])
245 {
246 /* When we get to the end of a dimension, reset it and increment
247 the next dimension. */
248 count[n] = 0;
249 /* We could precalculate these products, but this is a less
250 frequently used path so proabably not worth it. */
251 base -= sstride[n] * extent[n];
252 mbase -= mstride[n] * extent[n];
253 dest -= dstride[n] * extent[n];
254 n++;
255 if (n == rank)
256 {
257 /* Break out of the look. */
258 base = NULL;
259 break;
260 }
261 else
262 {
263 count[n]++;
264 base += sstride[n];
265 mbase += mstride[n];
266 dest += dstride[n];
267 }
268 }
269 }
270 }
271