]> git.ipfire.org Git - thirdparty/gcc.git/blob - libgfortran/generated/maxval_i4.c
acinclude.m4 (LIBGFOR_CHECK_ATTRIBUTE_VISIBILITY): New.
[thirdparty/gcc.git] / libgfortran / generated / maxval_i4.c
1 /* Implementation of the MAXVAL intrinsic
2 Copyright 2002 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
4
5 This file is part of the GNU Fortran 95 runtime library (libgfor).
6
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Lesser General Public
9 License as published by the Free Software Foundation; either
10 version 2.1 of the License, or (at your option) any later version.
11
12 Libgfortran is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU Lesser General Public License for more details.
16
17 You should have received a copy of the GNU Lesser General Public
18 License along with libgfor; see the file COPYING.LIB. If not,
19 write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "config.h"
23 #include <stdlib.h>
24 #include <assert.h>
25 #include <float.h>
26 #include "libgfortran.h"
27
28
29 extern void __maxval_i4 (gfc_array_i4 *, gfc_array_i4 *, index_type *);
30 export_proto_np(__maxval_i4);
31
32 void
33 __maxval_i4 (gfc_array_i4 *retarray, gfc_array_i4 *array, index_type *pdim)
34 {
35 index_type count[GFC_MAX_DIMENSIONS - 1];
36 index_type extent[GFC_MAX_DIMENSIONS - 1];
37 index_type sstride[GFC_MAX_DIMENSIONS - 1];
38 index_type dstride[GFC_MAX_DIMENSIONS - 1];
39 GFC_INTEGER_4 *base;
40 GFC_INTEGER_4 *dest;
41 index_type rank;
42 index_type n;
43 index_type len;
44 index_type delta;
45 index_type dim;
46
47 /* Make dim zero based to avoid confusion. */
48 dim = (*pdim) - 1;
49 rank = GFC_DESCRIPTOR_RANK (array) - 1;
50 assert (rank == GFC_DESCRIPTOR_RANK (retarray));
51 if (array->dim[0].stride == 0)
52 array->dim[0].stride = 1;
53 if (retarray->dim[0].stride == 0)
54 retarray->dim[0].stride = 1;
55
56 len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
57 delta = array->dim[dim].stride;
58
59 for (n = 0; n < dim; n++)
60 {
61 sstride[n] = array->dim[n].stride;
62 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
63 }
64 for (n = dim; n < rank; n++)
65 {
66 sstride[n] = array->dim[n + 1].stride;
67 extent[n] =
68 array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
69 }
70
71 if (retarray->data == NULL)
72 {
73 for (n = 0; n < rank; n++)
74 {
75 retarray->dim[n].lbound = 0;
76 retarray->dim[n].ubound = extent[n]-1;
77 if (n == 0)
78 retarray->dim[n].stride = 1;
79 else
80 retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
81 }
82
83 retarray->data
84 = internal_malloc_size (sizeof (GFC_INTEGER_4)
85 * retarray->dim[rank-1].stride
86 * extent[rank-1]);
87 retarray->base = 0;
88 }
89
90 for (n = 0; n < rank; n++)
91 {
92 count[n] = 0;
93 dstride[n] = retarray->dim[n].stride;
94 if (extent[n] <= 0)
95 len = 0;
96 }
97
98 base = array->data;
99 dest = retarray->data;
100
101 while (base)
102 {
103 GFC_INTEGER_4 *src;
104 GFC_INTEGER_4 result;
105 src = base;
106 {
107
108 result = -GFC_INTEGER_4_HUGE;
109 if (len <= 0)
110 *dest = -GFC_INTEGER_4_HUGE;
111 else
112 {
113 for (n = 0; n < len; n++, src += delta)
114 {
115
116 if (*src > result)
117 result = *src;
118 }
119 *dest = result;
120 }
121 }
122 /* Advance to the next element. */
123 count[0]++;
124 base += sstride[0];
125 dest += dstride[0];
126 n = 0;
127 while (count[n] == extent[n])
128 {
129 /* When we get to the end of a dimension, reset it and increment
130 the next dimension. */
131 count[n] = 0;
132 /* We could precalculate these products, but this is a less
133 frequently used path so proabably not worth it. */
134 base -= sstride[n] * extent[n];
135 dest -= dstride[n] * extent[n];
136 n++;
137 if (n == rank)
138 {
139 /* Break out of the look. */
140 base = NULL;
141 break;
142 }
143 else
144 {
145 count[n]++;
146 base += sstride[n];
147 dest += dstride[n];
148 }
149 }
150 }
151 }
152
153
154 extern void __mmaxval_i4 (gfc_array_i4 *, gfc_array_i4 *, index_type *,
155 gfc_array_l4 *);
156 export_proto_np(__mmaxval_i4);
157
158 void
159 __mmaxval_i4 (gfc_array_i4 * retarray, gfc_array_i4 * array, index_type *pdim, gfc_array_l4 * mask)
160 {
161 index_type count[GFC_MAX_DIMENSIONS - 1];
162 index_type extent[GFC_MAX_DIMENSIONS - 1];
163 index_type sstride[GFC_MAX_DIMENSIONS - 1];
164 index_type dstride[GFC_MAX_DIMENSIONS - 1];
165 index_type mstride[GFC_MAX_DIMENSIONS - 1];
166 GFC_INTEGER_4 *dest;
167 GFC_INTEGER_4 *base;
168 GFC_LOGICAL_4 *mbase;
169 int rank;
170 int dim;
171 index_type n;
172 index_type len;
173 index_type delta;
174 index_type mdelta;
175
176 dim = (*pdim) - 1;
177 rank = GFC_DESCRIPTOR_RANK (array) - 1;
178 assert (rank == GFC_DESCRIPTOR_RANK (retarray));
179 if (array->dim[0].stride == 0)
180 array->dim[0].stride = 1;
181 if (retarray->dim[0].stride == 0)
182 retarray->dim[0].stride = 1;
183
184 len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
185 if (len <= 0)
186 return;
187 delta = array->dim[dim].stride;
188 mdelta = mask->dim[dim].stride;
189
190 for (n = 0; n < dim; n++)
191 {
192 sstride[n] = array->dim[n].stride;
193 mstride[n] = mask->dim[n].stride;
194 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
195 }
196 for (n = dim; n < rank; n++)
197 {
198 sstride[n] = array->dim[n + 1].stride;
199 mstride[n] = mask->dim[n + 1].stride;
200 extent[n] =
201 array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
202 }
203
204 for (n = 0; n < rank; n++)
205 {
206 count[n] = 0;
207 dstride[n] = retarray->dim[n].stride;
208 if (extent[n] <= 0)
209 return;
210 }
211
212 dest = retarray->data;
213 base = array->data;
214 mbase = mask->data;
215
216 if (GFC_DESCRIPTOR_SIZE (mask) != 4)
217 {
218 /* This allows the same loop to be used for all logical types. */
219 assert (GFC_DESCRIPTOR_SIZE (mask) == 8);
220 for (n = 0; n < rank; n++)
221 mstride[n] <<= 1;
222 mdelta <<= 1;
223 mbase = (GFOR_POINTER_L8_TO_L4 (mbase));
224 }
225
226 while (base)
227 {
228 GFC_INTEGER_4 *src;
229 GFC_LOGICAL_4 *msrc;
230 GFC_INTEGER_4 result;
231 src = base;
232 msrc = mbase;
233 {
234
235 result = -GFC_INTEGER_4_HUGE;
236 if (len <= 0)
237 *dest = -GFC_INTEGER_4_HUGE;
238 else
239 {
240 for (n = 0; n < len; n++, src += delta, msrc += mdelta)
241 {
242
243 if (*msrc && *src > result)
244 result = *src;
245 }
246 *dest = result;
247 }
248 }
249 /* Advance to the next element. */
250 count[0]++;
251 base += sstride[0];
252 mbase += mstride[0];
253 dest += dstride[0];
254 n = 0;
255 while (count[n] == extent[n])
256 {
257 /* When we get to the end of a dimension, reset it and increment
258 the next dimension. */
259 count[n] = 0;
260 /* We could precalculate these products, but this is a less
261 frequently used path so proabably not worth it. */
262 base -= sstride[n] * extent[n];
263 mbase -= mstride[n] * extent[n];
264 dest -= dstride[n] * extent[n];
265 n++;
266 if (n == rank)
267 {
268 /* Break out of the look. */
269 base = NULL;
270 break;
271 }
272 else
273 {
274 count[n]++;
275 base += sstride[n];
276 mbase += mstride[n];
277 dest += dstride[n];
278 }
279 }
280 }
281 }
282